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Résumé

Ces dernières années, on a assisté à une augmentation spectaculaire de
l’intérêt académique et sociétal pour l’apprentissage automatique équitable. En
conséquence, des travaux significatifs ont été réalisés pour inclure des contraintes
d’équité dans les algorithmes d’apprentissage automatique. Le but principal est
de s’assurer que les prédictions des modèles ne dépendent d’aucun attribut sen-
sible comme le genre ou l’origine d’une personne par exemple. Bien que cette
notion d’indépendance soit incontestable dans un contexte général (Dwork et al.,
2012), elle peut théoriquement être définie de manière totalement différente selon
la façon dont on voit l’équité. Par conséquent, de nombreux articles récents abor-
dent ce défi en utilisant leurs "propres" objectifs et notions d’équité. Les objectifs
sont catégorisés en deux familles différentes : L’équité individuelle et l’équité de
groupe. Cette thèse donne d’une part, une vue d’ensemble des méthodologies
appliquées dans ces différentes familles afin d’encourager les bonnes pratiques.
Ensuite, nous identifions et complétons les lacunes en présentant de nouvelles
métriques et des algorithmes de machine learning équitables qui sont plus ap-
propriés pour des contextes spécifiques.

La méthode d’équité de groupe impose l’égalité sur des distributions et
s’oppose donc à l’équité individuelle qui impose l’égalité à un niveau local ou
le plus individuel possible. De nombreuses approches ont été employées ces
dernières années pour atteindre cet objectif. Nous distinguons deux familles
d’atténuation que nous avons nommées, premièrement, méthodes de retraitement
de prédiction où le modèle de prédiction encourage l’atténuation du biais sur la
prédiction elle-même ; et deuxièmement, méthodes de représentation équitable où
un adversaire atténue le biais sur une représentation intermédiaire latente. Dans
le cadre de la première famille qui s’interesse à la sortie des prédictions, nous
avons proposé deux nouveaux algorithmes: Le premier basé sur du boosting
d’arbes de décision à montré des résultats très compétitifs sur des ensembles
de données réels tabulaires. Le second, basé sur le coefficient de corrélation
maximal de Hirschfeld-Gebelein-Rényi (HGR) permet l’application de technique
d’atténuation de biais pour le cas continue. Des articles récents ont montré que
les approches par représentation adverse équitable peuvent donner de meilleurs
résultats en termes de précision de prédiction tout en restant équitable dans des
scénarios complexes de monde réel. Nous avons étudié les raisons qui peuvent
induire cette surperformance et nous avons proposé une extension de notre al-
gorithme basé sur le HGR pour la représentation équitable.

D’autre part, un autre sous-domaine de l’apprentissage automatique équitable
est l’équité individuelle. Le concept d’équité individuelle peut être résumé
comme suit : "Les personnes similaires doivent être traitées de manière simi-
laire", la notion de similarité étant codée par une distance spécifique sur l’espace
d’entrée. Nous avons proposé de nouvelles métriques pour évaluer le niveau
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de biais au sens individuel, ainsi que deux nouveaux algorithmes. Le premier
s’appuie sur de l’auto-encodage variationnel (VAE) pour garantir un traitement
similaire aux personnes similaires, et le second par intervention, où nous nous
appuyons sur un graphe causal spécifique pour générer des observations contre-
factuelles pour chaque individu (Grari et al., 2021a).

Nous considérons ensuite des scénarios pratiques du monde réel. Tout
d’abord, nous examinons un contexte où la variable sensible n’est pas présente
dans l’ensemble d’entrainement. Nous avons pour cela proposé un modèle
d’inférence bayésien basé sur un graphe de connaissances causales afin de
récupérer les informations sensibles et d’atténuer ce proxy biaisé dans le pré-
dicteur final. Enfin, nous nous intéressons également à l’atténuation des biais
du modèle dans une application operationelle, en particulier dans la construc-
tion d’un modèle de tarification d’assurance débiaisé. À cette fin, nous avons
créé un cadre général dans lequel un seul modèle de tarification complet est en-
traîné en générant les composantes de tarification géographiques et automobile
nécessaires pour prédire la prime pure tout en atténuant le biais indésirable.
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Abstract

The past few years have seen a dramatic rise of academic and societal inter-
est in fair machine learning. As a result, significant work has been done to include
fairness constraints in the training objective of machine learning algorithms. Its
primary purpose is to ensure that model predictions do not depend on any sen-
sitive attribute as gender or race, for example. Although this notion of indepen-
dence is incontestable in a general context (Dwork et al., 2012), it can theoretically
be defined in many different ways depending on how one sees fairness. As a re-
sult, many recent papers tackle this challenge by using their "own" objectives and
notions of fairness. Objectives can be categorized in two different families: Indi-
vidual and Group fairness. This thesis gives an overview of the methodologies
applied in these different families in order to encourage good practices. Then,
we identify and complete gaps by presenting new metrics and new Fair-ML al-
gorithms that are more appropriate for specific contexts.

The group fairness method enforces equality over the general distributions
and is therefore opposed to individual fairness for enforcing equality at a local
level. Many approaches have been employed these recent years to achieve this
objective. We distinguish two mitigation families that we have named, first, pre-
diction retreatment methods where a prediction model encourages bias mitigation
on the output prediction; and second, fair representation methods where an adver-
sarial mitigates the bias on a latent intermediary representation. In the first fam-
ily, which focuses on output predictions, we proposed two new algorithms: One
based on decision tree boosting has shown very competitive results on real tab-
ular data sets. The second one, based on the Hirschfeld-Gebelein-Rényi (HGR)
maximum correlation coefficient, allows bias mitigation techniques for the con-
tinuous case. Recent papers have shown that the fair adversarial representation
can give better results in prediction accuracy while remaining fair in complex
real-world scenarios (Adel et al., 2019). We investigated empirically why these
methods can give better results and we proposed an extension of our algorithm
based on the HGR for fair representation.

On the other hand, another sub-field of fair machine learning is individual
fairness. The concept can be summarized as follows: "similar people should be
treated similarly", the similarity being encoded in a specific distance between
individuals. We have proposed some new metrics to assess the level of bias in
the individual sense, along with two new algorithms. The first one relies on
Variational Autoencoding (VAE) to ensure similar treatment to similar people,
the second one leveraging intervention, where we rely on a specific causal graph
for generating some counterfactual observations for each individual (Grari et al.,
2021a).

We then consider practical, real-world scenarios. First, we examine a context
where the sensitive variable cannot be present in the training set. For this spe-
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cific purpose, based on a causal knowledge graph, we have created a Bayesian
inference model to recover the sensitive information and subsequently mitigate
this biased proxy in the final predictor model. Finally, we are also interested in
mitigating the biases model in a real-world application, particularly in construct-
ing a debiased insurance pricing model. For this purpose, we created a general
framework in which a single whole pricing model is trained by generating geo-
graphic and car pricing components needed to predict the pure premium while
mitigating the unwanted bias according to the desired metric.
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Introduction

Over the past few years, machine learning algorithms have emerged in many differ-
ent fields of application. However, this development is accompanied by a growing
concern about their potential threats, such as their ability to reproduce discrimination
against a particular group of people based on sensitive characteristics (e.g., religion,
race, gender, etc.). The standard machine learning models only optimize accuracy
and are prone to learn all the relevant information for the task whether they are sen-
sitive or not. In particular, algorithms trained on biased data have been shown to be
susceptible to learn, perpetuate or even reinforce these biases (Bolukbasi et al., 2016).
Many incidents of discrimination have been documented these recent years. For ex-
ample, an algorithmic model used to generate predictions of criminal recidivism in
the United States (COMPAS) discriminated against black defendants (Angwin et al.,
2016). Also, discrimination based on gender and race could be demonstrated for tar-
geted and automated online advertising on employment opportunities (Lambrecht
and E. Tucker, 2016). The stakes are therefore major for citizens, and we must un-
derstand and master them. In this context, the EU introduced the General Data Pro-
tection Regulation (GDPR) in May 2018. This legislation represents one of the most
important changes in the regulation of data privacy in more than 20 years. It strictly
regulates the collection and use of sensitive personal data. With the aim of obtaining
non-discriminatory algorithms, it rules in Article 9(1): "Processing of personal data
revealing racial or ethnic origin, political opinions, religious or philosophical beliefs,
or trade union membership, and the processing of genetic data, biometric data for
the purpose of uniquely identifying a natural person, data concerning health or data
concerning a natural person’s sex life or sexual orientation shall be prohibited." (Eu-
ropean Commission, 2016). A naive method to mitigate the underlying bias could
be to simply remove sensitive attributes from the training data set. This concept is
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Chapter 1. Introduction

known as "fairness through unawareness" (Pedreshi et al., 2008). While this approach
may prove viable when using conventional, deterministic algorithms with a man-
ageable quantity of data, it is insufficient for machine learning algorithms trained on
“big data”. Here, complex correlations in the data may provide unexpected links to
sensitive information. For example, the height of an adult could provide a strong in-
dication about gender. Such a situation will be called “proxy discrimination” in (Prince
and Schwarcz, 2019). For this reason, next to optimizing the performance of a ma-
chine learning model, the new challenge for data scientists/actuaries is to determine
whether the model output predictions are discriminatory, and how it would be pos-
sible to mitigate such unwanted bias. A new research field has emerged to find solu-
tions to this problem: fair machine learning. Recently, there has been a dramatic rise
of interest by the academic community. Many questions have been raised, such as:
How to define fairness (Hinnefeld et al., 2018; Hardt et al., 2016; Dwork et al., 2012;
Kusner et al., 2017; Goyal et al., 2022)? How to mitigate the sensitive bias (Zhang et al.,
2018; Grari et al., 2020a; Kamiran and Calders, 2012; Bellamy et al., 2018; du Pin Cal-
mon et al., 2017; Zafar et al., 2017c; Celis et al., 2019; Wadsworth et al., 2018; Louppe
et al., 2017; Do et al., 2021; Chen et al., 2019; Kearns et al., 2017; Emelianov et al., 2019)?
How to keep a high prediction accuracy while remaining fair in a complex real-world
scenario (Grari et al., 2019; Adel et al., 2019)? These questions will be further reviewed
in the following parts.

Quantify and Define Fairness Objectives
Research on discrimination in technical systems has at its root a social and ethical con-
cept and significantly precedes the current trend of work on fairness in machine learn-
ing (Moor, 1985; Huff and Cooper, 1987; Friedman and Nissenbaum, 1996). However,
this literature reflects a subjective human sense of unfairness and does not suggest
formalized quantitative measures. The first examples of fairness definitions (or fair-
ness criteria) appeared in the field in 2008 known as "discrimination-aware data min-
ing" (Pedreshi et al., 2008). Since then, quantifying and monitoring fairness from
different perspectives has gained significant momentum in the scientific community,
resulting in an incredible number of mathematical definitions proposed over the past
decade. For example, in 2018, (Verma and Rubin, 2018) have identified more than
twenty different notions of fairness, and that number has been growing ever since.
This phenomenon is not surprising since every moral aspect of society, which may
seem subjective, results in different desired positions for everyone. These various
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objectives are separated into two main groups: Group fairness and Individual fair-
ness. While Group fairness aims at treating all the different sensitive groups equally,
Individual fairness aims at treating similar people similarly. Unfortunately, these fair-
ness definitions have fundamental incompatibilities, they are partially contradictory
and/or partially complementary. They cannot be satisfied simultaneously with each
other, except under certain constraints that we will discuss. Therefore, because of the
inherent incompatibility in the current standard strategies in fairness, practitioners
implementing and/or evaluating fairness must choose only one among them. There
is no explicit agreement on the definition to apply for each situation. The right choice
of fairness definition depends primarily on the goodwill of practitioners and on the
regulation law applied to each specific use case.

We note that, while plenty of measures have been proposed recently to monitor
and quantify fairness for discrete variables, only a few are well suitable for contin-
uous ones. This is a critical point since monitoring a fairness objective between the
outputs of the regression models and any given continuous sensitive variable can be
desirable, for example, between age-sensitive attribute and income output. For this
purpose, we propose to address this issue with a new estimation of the Hirschfeld-
Gebelein-Renyi (HGR) maximal correlation coefficient by neural network. We will
show that it is a suitable measure to assess the level of dependence between outputs
of regression models and any given continuous sensitive variable. This measure is
more appropriate than the traditional Pearson correlation or Kendall’s tau since it
captures in a much more consistent way the non-linearity between variables. Also,
we will show that it is a more relevant measure than some divergences from probabil-
ity theory, such as the popular mutual information. Though the mutual information is
widely spread in the literature, it is, however, difficult to measure, to be interpretable
(e.g., not a normalized measure), and optimize in the continuous case with a finite
set, as already shown numerous times in the literature (Mary et al., 2019; Lee, 2021;
Bach and Jordan, 2002; Yan et al., 2020a). Also, note that mutual information is not
a dependence measure according to Renyi’s stipulations (Rényi, 1959). We will pro-
vide a theoretical analysis of the consistency of our HGR estimator, along with its
nice properties compared to state-of-the-art measures. In addition, we will see that
compared to the binary case where the fairness measures are fully reliable, they are,
for the majority, only estimations in the continuous case. For this reason, we also con-
tribute to a new measure, FairQuant, based on discretization. It requires splitting the
set samples with different quantiles with regard to the sensitive attribute.

In terms of individual fairness, metrics measuring the total discrepancies between
individuals remain understudied. For example, they do not allow the choice of a fixed
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threshold defining when individuals are similar. We consider it essential that practi-
tioners have control over this choice of similarity threshold, as it allows greater con-
trol over the objective. To this end, we will propose new metrics to assess individual-
level fairness based on this purpose. Furthermore, regarding fairness from a causal
perspective, we note that fairness criteria for assessing counterfactual fairness are em-
ployed in different ways in state-of-the-art. We will briefly address the difference and
discuss some metrics that make the most sense in the desired context.

Achieving Fairness Objectives
In light of the recent popularity of fair machine learning, various developments have
been made to increase fairness of the predictor model. Unfortunately, in most cases,
improving fairness is at the expense of the primary goal of machine learning: Accu-
racy. However, sacrificing predictive performance is often not viewed as an accept-
able option. Hence, the need to keep the maximum fairness level without degrading
too much prediction accuracy has gained a high interest in the research community,
leading to the development of new architectures for maximizing this trade-off be-
tween accuracy and fairness. Three prominent families of fairness approaches exist
in the literature. While pre-processing (Kamiran and Calders, 2012; Bellamy et al.,
2018; du Pin Calmon et al., 2017) and post-processing (Hardt et al., 2016; Chen et al.,
2019) approaches respectively act on the input or the output of a classically trained
predictor, in-processing approaches mitigate the undesired bias directly during the
training phase (Zafar et al., 2017c; Zhang et al., 2018; Wadsworth et al., 2018; Louppe
et al., 2017). In this thesis, we will focus on in-processing fairness and in particular
with adversarial learning, which reveals as the most powerful framework for set-
tings where acting on the training process is an option. The emergence of Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014) provided the required under-
pinning for fair predictors using adversarial debiasing. The predictor model and the
adversarial model are optimized simultaneously in a min-max game in order to find
a trade-off between prediction accuracy and fairness. However, we will show in this
thesis that while adversarial strategies are effective for debiasing in most cases and
are considered as the most generalizable approach to different bias inducements (Li
et al., 2021), many key application objectives are still missing and should be further
studied.

Currently, we observe that many fairness applications focus on tabular data, mainly
because it contains sensitive personal information about individuals and causes direct
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and indirect discrimination. However, most bias mitigation strategies focus on neu-
ral networks and we noticed a lack of work on fair classifiers based on decision trees
even though they have proven very efficient for tabular datasets. In an up-to-date
comparison of state-of-the-art classification algorithms in tabular data, tree boosting
outperforms deep learning (Zhang et al., 2017). For this reason, we propose a novel
approach of adversarial gradient tree boosting for increasing fairness during training.
To the best of our knowledge, this is the first adversarial learning method for generic
classifiers, including decision trees. We empirically compare our proposal and its
variants with several state-of-the-art approaches, for different fairness metrics. The
results show that our algorithm achieves a higher accuracy while obtaining the same
level of fairness, as measured using a set of different common fairness definitions.

The second studied issue is the mitigation of unwanted biases in a continuous
case. As mentioned above and as shown in (Mehrabi et al., 2021), the continuous case
for regression task and/or continuous sensitive attribute has not received the same
amount of attention from the research community. Plenty of fair algorithms have
been proposed recently to tackle this challenge for discrete variables, but only a few
ideas exist for continuous ones. This is a central point since we demonstrate that the
most traditional fair adversarial algorithms (Zhang et al., 2018; Adel et al., 2019) are
not suitable for the continuous case. Indeed, we show that these latter algorithms the-
oretically do not generally optimize the most traditional fairness objective when the
sensitive attribute is continuous. The traditional model structure has to be therefore
revisited. For this reason, we propose a new adversarial architecture by minimiz-
ing our HGR estimation directly with adversarial neural network architecture. This
strategy is theoretically optimal for solving the most common fairness objectives. The
idea is to predict the target task while minimizing the ability of an adversarial neural
network to find the estimated transformations required to predict the HGR coeffi-
cient. We empirically assess and compare our approach and demonstrate significant
improvements on previously presented work in the field.

Another research sub-field family tackles the problem of learning fair representa-
tions. This approach resembles a mix of pre- and in-processing as the input data is
mapped into intermediate learning representations that are unbiased with respect to
sensitive source distribution and can therefore generalize to other domains. The lit-
erature shows that this approach empirically outperforms models that act directly on
output predictions, which we denote prediction retreatment. We will propose to study
in this thesis the reasons why such an architecture outperforms the state of the art.
To the best of our knowledge, this is the first work to compare mitigation at different
levels of neural architectures. We argue that acting at intermediary levels of neural
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representations allows the best trade-off between expressiveness and generalization
for bias mitigation. In addition, we propose to extend our neural network architecture
to a fair representation by minimizing the HGR coefficient on an intermediary latent
space. The HGR network is trained to discover non-linear transformations between
the multidimensional latent representation and the sensitive feature. We empirically
compare our different proposals and their variants with several state-of-the-art ap-
proaches, for different fairness metrics. Experiments show the great performance of
our different approaches.

Third, we note that the vast majority of the state-of-the-art approaches rely on
having access to the sensitive information to be mitigated during training. However,
in practice, it is often unrealistic to assume that this sensitive information is available
or even collected. In Europe, for example, a car insurance company cannot ask a po-
tential client about his/her origin or religion, as this is strictly regulated. Yet, only a
few prior works address the issue of mitigating bias in this difficult setting, in partic-
ular to meet classical fairness objectives. By leveraging recent developments for ap-
proximate inference, we propose a novel approach to fill this gap. To infer a sensitive
information proxy, we introduce a new variational auto-encoding-based framework
named SRCVAE that relies on knowledge of the underlying causal graph. The bias
mitigation is then done in an adversarial fairness approach. Our proposed method
empirically achieves significant improvement over existing works in the field. We ob-
serve that the generated proxy’s latent space correctly recovers sensitive information
and that our approach achieves a higher accuracy against competitors while obtain-
ing the same level of fairness on real datasets.

Furthermore, we claim that mitigating undesired biases with a generic fair algo-
rithm can be counterproductive for specific applications. For example, mitigating
unwanted biases in insurance pricing with a traditional fair algorithm may be in-
sufficient to maintain adequate accuracy. Indeed, the traditional pricing model is
currently built in a two-stage structure that considers many potentially biased com-
ponents such as car or geographic risks. We will show that this traditional structure
has significant limitations in achieving fairness. There is a risk of not acting correctly
all along with the components (for e.g. some of them can be unfairly neutralized on
the objective predictive task). We extend the use of autoencoders to generate multi-
ple aggregated pricing factors in a fairness context. We propose a general framework
in which a single whole pricing model is trained by generating the geographic and
car pricing components needed to predict the pricing premium while mitigating the
unwanted bias according to a desired fair objective.

In addition, the definition of individual fairness suffers from a subtle concept of
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"similar individual". According to its original mathematical definition, individual
fairness requires a similarity distance between individuals to assess whether proxi-
mate individuals have comparable outcomes. However, this distance is a source of
bias, and most current approaches rely on it. To this end, without accessing a simi-
larity distance, we present a new framework method that leverages Variational Au-
toencoder (VAE). We demonstrate that our algorithm, can enforce individual fairness.
In addition, we propose studying the connection with group fairness approaches to
explore whether they can enforce fairness in an individual sense.

A last, from a fairness causal perspective, counterfactual fairness enforces the idea
to imagine what any individual would look like with a variation of a given attribute
of interest, such as a different gender or race for instance. This enables the simulation
of counterfactual samples used for training the target fair model, the goal being to
produce similar outcomes for every alternate version of any individual. We report
that most of the current counterfactual approaches mitigate the bias in this interme-
diate phase called causal graph generation and then assess its fairness level. These
works, which do not focus on the final predictor itself, assume that giving fair gener-
ated counterfactual observations as input to a traditional machine learning algorithm
is sufficient to maintain the fairness objective. We argue that it is not always the case
and the final predictions need to be evaluated to ensure a good fairness level. In addi-
tion, we note that no approach addresses the continuous case, the existing approaches
may not hold when, for instance, the sensitive attribute is the age or the weight of an
individual. To this end, we define a novel approach for counterfactual individual
fairness tolerant to continuous features that focuses on the predictor model itself, no-
tably via a dynamic sampling method that targets individualized hard locations of
the sensitive space (Grari et al., 2020b).

Document Structure
The thesis is structured as follows. After a brief overview of the vast domain of the
Fair Machine Learning field, Chapter 2 presents some key elements of technical con-
text from related background that are relevant to this thesis and, in particular, the two
main families of methods that we focus on: Group and Individual Fairness. Chapter 3
is devoted to the fairness measures for the different tasks of a predictive model. Then,
we focus on how we correct biased models via adversarial learning for neural net-
works predictors in Chapter 4 and Gradient Tree Boosting in Chapter 5, respectively.
In Chapter 6, we study the fairness issue when the sensitive attribute is not accessible,
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and we propose a novel approach to fill this gap. In Chapter 7, we briefly describe
the actuarial pricing literature with a traditional model, and propose a general model
that is better adapted for a real-world fairness context. Chapter 8 is devoted to the
study of individual fairness and counterfactual fairness.

Finally, this manuscript ends by summarizing the contributions of this thesis and
discussing the perspectives it opens.
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2

Unwanted Biases in Machine
Learning

2.1 | Fairness in Machine Learning: Background
There are various notions of fairness, that can be related to discrimination. For in-
stance, direct discrimination happens when a person is treated less favorably than
another person in a comparable situation, in the sense that the two persons are oth-
erwise similar except on a sensitive attribute. This is also called systematic discrimi-
nation or disparate treatment. In contrast, indirect discrimination happens when an
“apparently neutral practice put persons of a protected ground at a particular disadvantage
compared with other persons”, as explained in (Zliobaite, 2015). Such discrimination is
also known as structural discrimination or disparate outcome.

In many articles about discrimination, the sensitive attribute is the race, religion,
gender, or sex (difference with gender in (Torgrimson and Minson, 2005)) of a person.
The gender bias as for example a long history. In 1978, the Supreme Court in the U.S.
stated that “the differential was discriminatory in its "treatment of a person in a manner
which, but for that person’s sex, would be different." The statute, which focuses on fairness to
individuals, rather than fairness to classes, precludes treating individuals as simply compo-
nents of a group such as the sexual class here. Even though it is true that women as a class
outlive men, that generalization cannot justify disqualifying an individual to whom it does
not apply”. Following that decision, theoretical discussions about fairness of gender-
based pricing started. In Europe, on 13 December 2004, the so-called gender directive
was introduced (Council Directive 2004/113/EC), even if it took almost ten years to
provide legal guidelines on the application of the directive to insurance activities. The
goal was to enforce the principle of equal treatment between men and women in the

11



Chapter 2. Unwanted Biases in Machine Learning

access to and supply of goods and services, including insurance. As a direct conse-
quence, it prohibited the use of gender as a rating variable in insurance pricing. As
discussed in (Schmeiser et al., 2014), gender equality in the European Union (EU) has
been supposed to be ensured from 21 December 2012. However, even if the sensitive
variable is not included in the training data, complex correlations from other features
may provide unexpected persistent bias in the prediction outputs (Dwork et al., 2012;
Pedreshi et al., 2008). For instance, the color and the model of a car combined with
the driver’s occupation can lead to unwanted gender bias in the prediction of car in-
surance price. Nevertheless, it is not obvious to claim that biases come explicitly from
features in the training data, the model itself, or even the practitioner because each of
them contributes to this result in one way or another. Yet, we will separate them to
clarify it.

Biased Data Most sources of bias in machine learning lie in the data itself. For
example, it may occur whenever the training data is not representative of the true
population. One of them is the Reporting Biases that arise when reporting and measur-
ing particular features of interest is skewed (Suresh and Guttag, 2019; Mehrabi et al.,
2021). A dramatic example is the involvement of a commercial risk assessment soft-
ware for criminal risk prediction in the United States, COMPAS, which takes as input
a proxy of crimes from prior arrests. However, this proxy reflects a bias of policing
and discriminatory laws in the United States that is known to be more likely to arrest
more non-Caucasians than Caucasians. The results showed higher false-positive rates
for African American offenders than Caucasian offenders. Another one is the Selec-
tion biases that occur when individuals in the data come from a non-random selection
of the full distribution population. It may happen, for example, in insurance pric-
ing, where a lack of geographical diversity in policyholders can be observed (Mathis,
2007). The results can demonstrate biases in favor of specific areas, which is known
to be correlated with race (Frees and Huang, 2021).

Biased Predictor Model Some other sources of bias in machine learning come
from the model predictor itself. First, even if the data are completely correct, the
model can make errors on specific local segments especially when the observations
are not majority. Note that monitoring multiple sensitives attributes such as gender
and race, for example, increase the probability of having some minority group unbal-
anced with other and being unfairly treated. In addition, another concept less known
in the Fair-ML community is the indirect discrimination from a causal paradox. For
example, imagine an insurance context where sensitive attribute gender has origi-
nally no dependence on the claim target task. Trivially, one might expect the output
of a model classifier to be unbiased since there is no bias between the target and the
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sensitive. However, the output can be highly biased towards the sensitive in prac-
tice (Grari et al., 2019). This is related to the fact that the training dataset can contain
explanatory variables highly correlated to the target and the sensitive attribute (e.g.,
car’s color correlated to aggressiveness and gender). Unfortunately, in trying to re-
cover the aggressiveness information, the predictor classifier indirectly captures the
gender information in its prediction. This effect is illustrated below in a synthetic
scenario described in subsection 5.3.

Biased Practitioner The practitioner can also bias the predictions in a certain man-
ner. First, the process of ‘Feature engineering’, that consists in cleaning and trans-
forming the data before the training phase, can be done in subjective ways. Some
input variables are transformed to make them more valuable to the predictor model,
which has a crucial downstream impact on the output predictions. Second, a less
common example in the community is the use of specific "tricks" to modify the output
as desired. Data scientists or actuaries may, in cases, slightly modify the output of ML
models in a way that suits them. This type of practice can induce implicit biases in the
prediction by the practitioner. A well-known example is the so-called "GAM" models
because they allow modeling the prediction as desired. Non-life insurance actuaries,
for example, use them widely in pricing modeling. Indeed, polynomial regression
or splines allow correcting the trend. For example, by giving minimal credibility to
the prediction of the number of claims of the elderly, they can reshape the trend that
seems most accurate. However, there is no evidence that this is a wise choice. If, for
example, several actuaries were given the same modeling task, the predictions might
be different. This induces a bias on the part of the practitioners, based on their own
mental and personal experiences, that may not apply more generally.

2.1.1 | Group Fairness
Group fairness refers to the notion that specific groups of people (e.g., men and
women, Caucasians and non-Caucasians) are potentially subject to prejudice and un-
fair decisions. It, therefore, aims to ensure equal treatment of groups. Multiple statis-
tical definitions have been proposed recently to address this intention from different
perspectives. The most common one in the literature is the statistical independence
criterion, Demographic Parity, which requires independence between the output pre-
diction and the sensitive attribute. Other statistical criteria address the objective of
the predictive task error measurement. One of them is the statistical separation cri-
terion, Equalized Odds (Hardt et al., 2016), which requires the same independence as
demographic parity and an additional condition based on the target feature task. This
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metric is widely used in binary settings for comparing the different elements of con-
fusion matrices between the sensitive groups. However, as we will discuss, the use
of this latter criterion in a continuous setting is less meaningful and more challeng-
ing. For this reason, we have addressed a new statistical criterion based on residual
independence, Residuals Parity, by requiring that the difference between the predic-
tion and the target is independent to the sensitive attribute. We will also discuss the
tension when trying to achieve several of these objectives simultaneously. Signifi-
cant work has been done in enforcing these different fairness criteria. Three distinct
strategy groups exist.

Algorithms that belong to the "pre-processing" family ensure that the input data
is fair. This can be achieved by suppressing the sensitive attributes, changing class
labels of the data set, and reweighting or resampling the data (Kamiran and Calders,
2012; Bellamy et al., 2018; du Pin Calmon et al., 2017).

The second group of mitigation algorithms follows a "post-processing" approach.
In this case, only the output of a trained classifier is modified. For instance, a Bayes
optimal equalized odds predictor can be used to change output labels with respect to
an equalized odds objective (Hardt et al., 2016). A different paper presents a weighted
estimator for demographic disparity which uses soft classification based on proxy
model outputs (Chen et al., 2019). The advantage of post-processing algorithms is
that fair classifiers are derived without the necessity of retraining the original model
which may be time-consuming or difficult to implement in production environments.
However, this approach may have a negative effect on accuracy or could compromise
any generalization acquired by the original classifier (Donini et al., 2017).

The final type of mitigation strategy corresponds to the "in-processing" algorithms.
Here, undesired bias is directly mitigated during the training phase. A straightfor-
ward approach to achieve this goal is to integrate a fairness penalty directly in the
loss function. One such algorithm integrates a decision boundary covariance con-
straint for logistic regression or linear SVM (Zafar et al., 2017c). Then, the emergence
of adversarial learning by employing two models that play against each other has
led to many biases mitigation architectures. In this field, a neural network predictor
is trained to predict the label Y, while simultaneously minimizing the ability of an
adversarial model to identify the sensitive attributes from predictions (Zhang et al.,
2018; Wadsworth et al., 2018; Louppe et al., 2017; Adel et al., 2019).

Prediction Retreatment We refer by Prediction Retreatment all the approaches that
act on the output prediction itself. One of the most known approaches is the simple
adversarial algorithm: To ensure independence between the output and the sensitive
attribute, (Zhang et al., 2018) feeds the prediction output as input to an adversary net-
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work. The objective of such an adversarial model is to predict the sensitive attribute,
and update the predictor weights to fool the adversary.

Fair Representation On the other hand, several research sub-fields in the mix of
in-processing and post-processing family tackle the problem of learning fair repre-
sentations. Domain adaptation (Daume III and Marcu, 2006; Blitzer et al., 2006) and
domain generalization (Muandet et al., 2013; Li et al., 2017) consist in learning rep-
resentations that are unbiased with respect to a source distribution, and can there-
fore generalize to other domains. Some of the works in these fields involve the
use of adversarial methods (Ganin and Lempitsky, 2014; Ganin et al., 2016; Tzeng
et al., 2017), close to our work. Several strategies mitigate bias towards a sensitive
attribute through representation. (Zemel et al., 2013) relies on a discriminative clus-
tering model to learn a multinomial representation that removes information regard-
ing a binary sensitive attribute. In a different approach, (Alvi et al., 2018) learn an
unbiased representation by minimizing a confusion loss. Invariant representations
can also be learnt using Variational Auto-Encoders (Kingma and Welling, 2013), by
adding a mutual information penalty term (Moyer et al., 2018). (Adel et al., 2019)
learn a fair representation by inputting it to an adversary network, which is pre-
vented from predicting the sensitive attribute (see Chapter 4.3). Other works min-
imize the mutual information between the representation and the sensitive attribute:
(Kim et al., 2019b) rely on adversarial training with a discriminator detecting the bias,
while (Ragonesi et al., 2020) rely on a neural estimation of mutual information (Belg-
hazi et al., 2018).

While group fairness is the predominant sub-field in the Fair-ML community and
has proven effective in treating groups equally, it suffers from a significant ethical
weakness: individuals can be unfairly treated.

2.1.2 | Individual Fairness
The idea behind individual fairness, as defined by (Dwork et al., 2012), is that “similar
people should be treated similarly”. This implies the existence of a similarity distance
between individuals, referred to as dX , which generally comes from expert knowl-
edge about the domain at hand but can also be learnt from data (Mukherjee et al.,
2020; Ilvento, 2019), with either a human feedback or the assumption of access to
embedded features satisfying a factor model. Some approaches assume access to this
distance and propose to enforce individual fairness via regularization (Yurochkin and
Sun, 2020) or distributionally robust optimization (Yurochkin et al., 2019). The pro-
cess involves, at each iteration, finding similar individuals with the most disparate
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treatments. Other methods consist in enforcing individual fairness without access to
dX (Gillen et al., 2018; Jung et al., 2019), but with access to an oracle that identifies
fairness violations across pairs of individuals.
A slightly different notion of individual fairness is counterfactual fairness (Kocaoglu
et al., 2018) where a decision is fair for an individual if it coincides with the one that
would have been taken in a counterfactual world in which the values of its sensitive
attributes were different. The objective is therefore to produce similar outcomes for
every alternate version of any individual. For example, if I am a man who lives in
Paris, have a black Renault car and am an engineer, the question is: what would I
have as characteristics if I were a woman? Would I still have the same car, the same
color ? Once assigned, the idea is to ensure similar outcomes for factual and coun-
terfactual versions of individuals. Usually, counterfactuals are obtained by learning
a causal inference framework involving unobserved confounders. Some approaches
leverage the causal framework of Pearl (Russell et al., 2017). Other works have ad-
dressed this objective from GANs models (Kocaoglu et al., 2018; Xu et al., 2019). Other
methods propose to use variational autoencoder methods (Louizos et al., 2017; Kim
et al., 2021) to disentangle the exogenous uncertainty into different latent variables.
However, most of these approaches enforce the fairness objective on the counterfac-
tual generation and do not focus on the final predictor itself. They assume that giving
a fair generated counterfactual observation as input to a traditional machine learning
algorithm is sufficient to maintain the fairness objective. We argue that a two-step
method that focusing separately on the generation of counterfactuals and on a fair
prediction model is more appropriate. We propose to develop this general method
by dealing with binary and continuous settings. We will compare empirically these
two approaches in chapter 8.2.

2.2 | Problem Statement
Throughout this document, we consider a supervised machine learning predictive
model hwh with parameters wh for regression or classification problems, uses as a
predictor model. We consider a variable Y that we want to predict for every input X,
that is either quantitative or categorical and a collection of possible features that were
collected. Among the features, S will denote sensitive attributes, for which we aim at
ensuring fairness of the model. The training data consists of n examples (xi, si, yi)

n
i=1,

where xi ∈ Rd is the feature vector with d predictors of the i-th observation, si ∈ ΩS

the value of its sensitive attribute and yi ∈ ΩY its label to be predicted. According
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to the setting, the domain ΩS of the sensitive attribute S can be either a discrete or a
continuous set.

Although fairness is inherently an ethical and social concept, it is essential to de-
fine some clear mathematical objectives for machine learning predictions. In the fol-
lowing, we outline the most popular formal definitions used in recent research.

2.2.1 | The Objectives in Group Fairness
The Group Fairness family focus on the equality over the general distributions. In
this part, we list three common objectives that we will use all along the thesis. Note
that other objectives that we do not focus on are reported in (Verma and Rubin, 2018).

1) Demographic Parity The most common objective in fair machine learning is De-
mographic parity (Dwork et al., 2012) (or Independence criteria). Based on this definition,
a model is considered fair if the output prediction Ŷ from features X is independent
of the sensitive attribute S: Ŷ ⊥⊥ S.

Definition 1. A machine learning algorithm achieves Demographic Parity if the associated
prediction Ŷ is independent of the sensitive attribute S 1:

P(Ŷ|S) = P(Ŷ)

2) Equalized Odds The second most common objective in fair machine learning is
Equalized Odds (Hardt et al., 2016) (or strict separation criteria). Based on this definition,
a model is considered fair if the output prediction Ŷ from features X is independent
of the sensitive attribute S given the outcome true value Y: Ŷ ⊥⊥ S|Y.

Definition 2. A machine learning algorithm achieves Equalized Odds if the associated pre-
diction Ŷ is conditionally independent of the sensitive attribute S given Y:

P(Ŷ|S, Y) = P(Ŷ|Y)

To illustrate Equalized Odds, consider a model developed to predict the presence
of patient tumors in medical records with gender as a sensitive feature. Let’s imag-
ine that a traditional model (e.g, a logistic regression) would predict more tumors on
male than female patients. In satisfying demographic parity on this model, the (pos-
itive) base rate would be the same for both males and females. This means that the

1For the binary case, it is equivalent to E(Ŷ|S) = E(Ŷ)
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model would increase the predictive error by detecting fewer tumors for males and
more for females to enforce fairness. However, in a medical context, an error is more
dramatic, especially for false negatives. In the Equalized Odds objective, the false-
positive and false-negative rates will be the same for males and females. This fairness
criterion seems, therefore, more appropriate for this medical application. Note that it
would also be possible to focus solely on false negatives by assigning only the Y = 1
condition in the equalized odds definition. This particular case is named as equalized
opportunity (Hardt et al., 2016).

3) Equalized Residuals We contributed to a new objective in fair machine learning
denoted as Equalized Residuals (Grari et al., 2020a), in which a model is considered
fair if the residuals Ŷ− Y from features X is independent of the sensitive attribute S:
Ŷ− Y ⊥⊥ S. While for the binary case, equalized odds appear to be sufficient since it
allows the control of false-positive and false-negative rates, this fairness criterion is,
better adapted for the continuous case.

Definition 3. A machine learning algorithm achieves Equalized Residuals if the associated
residuals (Ŷ−Y) is independent of the sensitive attribute S:

P(Ŷ−Y|S) = P(Ŷ−Y)

To illustrate it, let’s imagine a car insurance pricing scenario where young people
have higher claims than older people. A classical pricing model would charge young
people a higher premium. However, in the case of demographic parity, the average
price would be the same across all ages. This means that older people would gener-
ally pay more more than their real cost, and younger people less. Equalized residuals
will ensure that the residuals between the predictions and the real claim cost are pre-
served, independently from the sensitive variable age. This ensures that for all ages,
the overall error does not deviate too much. The choice between the two is then sub-
jective. Some will find it fairer to give the same price by choosing demographic parity,
and others will find it abnormal to charge more elders than they should. They may
consider it fairer to assign the same error.

Incompatibilities Objectives

The objectives mentioned above present fundamental incompatibilities. It is not usu-
ally possible for a predictor model to hold these objectives simultaneously (Guidotti
et al., 2018; Hardt et al., 2016). We list below the different possibilities:
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a) Demographic Parity AND Equalized Odds: Many papers recently claim (Baro-
cas et al., 2017; Alves et al., 2021; Castelnovo et al., 2022) that when the Y target is bi-
nary, the independence and the separation criterion are at odds except in two specific
cases. The first case is when the output prediction Ŷ is independent of the target vari-
able Y. It creates tension with the predictive objective where the output predictions
cannot accurately predict the target. The second statement is when the target variable
Y must be independent of the sensitive attribute S. However, this specific case is only
dependent on the original data set and can not be modified by the practitioners.

These two statements seen above are only compatibility requirements: at least
one of them must be satisfied to achieve both objectives. However, note that satisfy-
ing one of them does not necessarily imply achieving both fairness criteria. We still
have to enforce it. We cannot state, for example, that if S ⊥⊥ Y then it necessarily
implies demographic parity and equalized odds simultaneously. For example, let’s
consider S ⊥⊥ Y and X not independent of S, the predictor model may not satisfy just
demographic parity in particular cases (as demonstrated in Proposition 1). Please
note that we empirically experiment this specific case with the red car example (see
the subsection 5.3).

Proposition 1. Assume Y and S binaries or continuous, S is independent of Y, X is not
independent of S. Then, the demographic parity may not be satisfied.

Proof. Assume X ∈ [Xa, Xb] where Xa ⊥⊥ S and Xb 6⊥⊥ S and suppose that the predic-
tor hwh is a regression model where the activation function h is either sigmoid for a
binary setting or identity for regression setting.

P(Ŷ | S) = P(hwh(X) | S) = P(hwh(Xa, Xb) | S) (2.1)

= P(h(wha Xa + whb Xb + b)) | S) (2.2)

If Xb 6⊥⊥ Y | Xa, whb 6= 0 then: P(Ŷ | S) 6= P(S)
Please note that Demographic Parity may be satisfies when the correlated variable

X to S are independent to Y. For example, in our case if Xb ⊥⊥ Y the weight whb should
be zero:

P(Ŷ | S) = P(hwh(X) | S) = P(hwh(Xa, Xb) | S) (2.3)

= P(h(wha Xa + b)) | S) = P(S) (2.4)
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Finally, note that taking the output predictions as a constant corresponding to
the majority classes or the mean (in the continuous case) as Ŷ = E(Y) achieves both
objectives, but the performance accuracy cannot be greater than the variance.

b) Demographic Parity AND Equalized Residuals: Independence (Ŷ ⊥⊥ S) and
residual independence (Ŷ − Y ⊥⊥ S) are incompatible except in one case. Both the
target and the prediction are independent of the sensitive attribute S. In this case, it
is not sufficient to obtain the output prediction Ŷ independent of the target variable
Y. Moreover, the residuals may also suffer from a dependence on S related to the
initial dependence between Y and S. Please note that using the above example with
a constant model is not possible, as the error between the sensitive groups may vary.

In practice The different compatibility requirements are therefore strong and not
necessary feasible in practice, this is is a fundamental problem since if multiple no-
tions are required simultaneously by the practitioners, the machine learning model
should make a trade-off to satisfy some objectives notions at the expense of others.
Therefore, in the current standard strategies in fairness, practitioners implementing
and/or monitoring fairness must choose only one among them.

2.2.2 | The Objectives in Individual Fairness
It is possible for a ML model that satisfies group fairness to be manifestly unfair to
subgroups of protected groups and individuals (Dwork et al., 2012). For example,
a person may be refused a position only because she belongs to a privileged group,
regardless of her merit within the group. To cope with this issue two sub-fields in
the individual domain area exist in the literature: Fairness Through Awareness and a
causal perspective, counterfactual fairness, that we will describe below.

Fairness Through Awareness (FTA)

In this specific sub-field the objective is to force a predictor model to have similar
output predictions to similar individuals. This objective involves comparing individ-
uals rather than focusing on groups of people who share specific characteristics. Let’s
denote the corresponding information features x1 and x2 of two individuals. The
objective is defined as follows (Dwork et al., 2012):

Definition 4. A machine learning algorithm, with an associated predictor h with parameters
wh, achieves Individual Fairness with respect to a distance metric dX on the input space X if
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hwh is K-lipschitz for a certain K:

∀ x1, x2 ∈ X , |hwh(x1)− hwh(x2)| ≤ KdX (x1, x2)

Individual fairness is therefore dependent on the choice of the input space dis-
tance dX . The distance dX can come from expert knowledge, or can be learnt from
data as outlined in (Mukherjee et al., 2020). This choice affect the fairness objective.

In particular, the distance dX can be learned with the sensitive subspace method
of (Yurochkin et al., 2019) which is defined as follows:

dX (x1, x2) = (x1 − x2)
T(I − Pran(A))(x1 − x2) (2.5)

where Pran(A) is the projection matrix onto the span of A = [a1, .., ak] which is re-
ferred to as the sensitive subspace. The sensitive subspace can be learnt by fitting a
model to predict S with X as variable: either a softmax regression model for a discrete
sensitive variable, or an appropriate generalized linear model for a continuous sen-
sitive variable. The vectors [a1, .., ak] can then be defined as the weights of the fitted
model. Defined that way, the distance declares pairs of points that differ mainly in
their sensitive attributes as similar.

Counterfactual Individual Fairness

The Counterfactual fairness has been recently introduced for quantifying fairness at
the most individual sense (Kusner et al., 2017). Rather than globally considering eq-
uity over the entire population, the idea is to imagine what any individual would
look like with a variation of a given attribute of interest, such as a different gender or
race for instance. This approach considers additional knowledge, it requires strong
hypothesis about the structure of the world, in the form of a causal model. One of the
most known example in the literature is to leverage the previous work in (Pearl et al.,
2009), which provides general theory for modeling causal relationships between vari-
ables. Inferring causal effects in the causal model is facilitated by do-operator by sim-
ulating the physical intervention that forces some variable X to take a certain value x,
formally denoted by do(X = x) or do(x).

Definition 5. Counterfactual demographic parity (Kusner et al., 2017): A predictive func-
tion hwh is considered counterfactually fair for a causal world G, if for any x ∈ X and
∀y ∈ Y,∀(s0, s1) ∈ ΩS with s0 6= s1: p(ŶS←s0 = y|X = x, S = s0) = p(ŶS←s1 =
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y|X = x, S = s0), where ŶS←s1 = hθ(XS←s1) is the outcome of the predictive function hwh

for any transformation XS←s1 of input X, resulting from setting s1 as its sensitive attribute
value, according to the causal graph G.

Following definition 5, an algorithm is considered counterfactually fair in term of
independence if the predictions are equal for each individual in the factual causal world
and in any counterfactual world. It therefore compares the predictions of the same
individual with an alternate version of him/herself. Similar extension can be done
to adapt a separation objective for the Counterfactual framework (Pfohl et al., 2019).
Learning transformations X̂S←s for a given causal graph is at the heart of Counterfac-
tual Fairness, as described in the section 8.2

2.3 | Discussion
After having sketched some key elements of fairness, this chapter presented two fam-
ilies of approaches: group fairness and individual fairness. Practitioners implement-
ing and/or evaluating fairness in technical systems must first decide the main con-
cept to apply. This choice is determined by the goodwill of the practitioner or by the
regulation law. We note that the law is currently not very clear on this subject. Only
the objectives of fairness through unawareness are mandatory in some areas, as in in-
surance pricing with the gender feature. However, the situation is likely to change in
the future, and criteria other than fairness unawareness will probably be considered.
Once the choice of an objective has been made, it is necessary to choose the statistical
measure to be used in order to quantify and mitigate the desired bias. The following
points will be discussed in the next two chapters.
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3

Measuring Fairness

In this chapter, we discuss how to mathematically quantify the different fairness ob-
jectives that were outlined in the previous chapter. Because the different measures
differ depending on the types of sensitive attributes S and the objective task, we
propose to organize this chapter in three different parts: Binary, Continuous, and
Frequency settings. Note that we contributed to new estimation measures on Contin-
uous Statistical Dependence and Frequency Statistical dependence.

The contributions of this chapter are threefold:

� We propose a new estimation of the the χ2 divergence and the HGR maximal
correlation along with a theoretical analysis of its consistency ;

� We propose a new measure for continuous setting based on the discretization
of the sensitive attribute.

� We provide new measures for Fairness Through Unawareness based on a simi-
larity individual threshold and we propose a Total Effect measure for counter-
factual fairness based on the predictor model.

3.1 | Group Fairness in Binary Setting
This section focuses on a binary scenario where the targeted sensitive attribute and
the actual value of the outcome are both binary ((S, Y) ∈ [0, 1])

1) Demographic Parity The use of Demographic Parity was originally introduced in
this context of binary scenarios (Dwork et al., 2012), where the underlying idea is
that each demographic group has the same chance for a positive outcome.
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Definition 6. A classifier is considered fair according to the demographic parity principle if

P(Ŷ = 1|S = 0) = P(Ŷ = 1|S = 1)

There are multiple ways to assess this objective. The p-rule assessment ensures
the ratio of the positive rate for the unprivileged group is no less than a fixed thresh-
old p. The classifier is considered totally fair when this ratio satisfies a 100%-rule.
Conversely, a 0%-rule indicates a completely unfair model.

p-rule: min

{
P(Ŷ = 1|S = 1)
P(Ŷ = 1|S = 0)

,
P(Ŷ = 1|S = 0)
P(Ŷ = 1|S = 1)

}
(3.1)

The second metric available for Demographic Parity is the disparate impact (DI) as-
sessment (Feldman et al., 2015). It considers the absolute difference of outcome distri-
butions for subpopulations with different sensitive attribute values. The smaller the
difference, the fairer the model.

DI: |P(Ŷ = 1|S = 1)−P(Ŷ = 1|S = 0)| (3.2)

Note that potential differences between demographic groups are not taken into
account in this notion. Indeed, in this binary context, only the weak independence is
required1: E(Ŷ|S) = E(Ŷ).

2) Equalized Odds Equalized Odds can be measured with the disparate mistreat-
ment (DM) (Zafar et al., 2017c). It computes the absolute difference between the false
positive rate (FPR) and the false-negative rate (FNR) for both demographics.

DFPR : |P(Ŷ = 1|Y = 0, S = 1)−P(Ŷ = 1|Y = 0, S = 0)| (3.3)

DFNR : |P(Ŷ = 0|Y = 1, S = 1)−P(Ŷ = 0|Y = 1, S = 0)| (3.4)

The notion of fairness here is that chances of being correctly (or incorrectly) classi-
fied as positive should be the same across groups. The closer the values of DFPR and
DFNR to 0, the lower the degree of disparate mistreatment of the classifier. Therefore
the classifier is considered fair if across both demographics S = 0 and S = 1, for
the outcome Y = 1 the predictor Ŷ has equal true positive rates, and for Y = 0 the
predictor Ŷ has equal true-negative rates (Hardt et al., 2016). The implicit notion here
is that a perfect classifier is necessarily fair. The European Commission warns that
this practice can lead to taking as much information as possible for prediction, which
contradicts the data minimization requirement of the General Data Protection Regu-
lation. Also, giving too much importance to the target Y can be counterproductive if
this variable is itself a source of bias (Castelnovo et al., 2022).

1E(Ŷ) = 1 ∗P(Ŷ = 1) + 0 ∗P(Ŷ = 0) = P(Ŷ = 1) (same with E(Ŷ | S) = P(Ŷ = 1 | S))
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3.2. Group Fairness in Continuous Statistical Dependence

3.2 | Group Fairness in Continuous Statistical
Dependence

We consider now a continuous scenario where the targeted sensitive attribute and
the actual value of the outcome are both continuous ((S, Y) ∈ R2). In order to assess
these fairness definitions in the continuous case, it is essential to look at the concepts
and measures of statistical dependence. Simple ways of measuring dependence are
Pearson’s correlation, Kendall’s tau, or Spearman’s rank correlation. Those types of
measures have already been used in fairness, with the example of mitigating the con-
ditional covariance for categorical variables (Zafar et al., 2017c). However, the major
problem with these measures is that they only capture a limited class of association
patterns, like linear or monotonically increasing functions. For example, a random
variable with standard normal distribution and its cosine (hence, non-linear) trans-
formation are not correlated in the sense of Pearson.

3.2.1 | Dependence via Information Theory
One of the most fundamental quantity for measuring the dependence between two
random variables is the Mutual information. Let U and V be random variables, the
mutual information is defined as:

I(U, V) =
∫

R

∫
R

PU,V(j, j
′
) ∗ log(QU,V(j, j

′
))djdj′ (3.5)

with :

QU,V(j, j
′
) =

PU,V(j, j
′
)√

PU(j)
√

PV(j′)
(3.6)

Where PU,V is the joint distribution of U and V, PU and PV are the corresponding
marginal distributions. Many recent works focused on the approximation of the mu-
tual information. Its estimation can be done with a k-NN-based non-parametric esti-
mator (Kraskov et al., 2004) or by neural estimation with MINE (Belghazi et al., 2018).

Recently, the usage of an other f-divergence, the χ2 divergence, has been of high
interest in the fairness research field (Fukuchi and Sakuma, 2015; Hashimoto et al.,
2018) and, more specifically, in the continuous setting where the mutual information
have more difficulty as shown in (Mary et al., 2019). The χ2 divergence between the
joint distribution and the product of its marginals is defined as follows:

χ2(PU,V , PU ⊗ PV) =
∫

R

∫
R

QU,V(j, j
′
)2djdj′ − 1 (3.7)
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The strategy proposed by (Mary et al., 2019) is to estimate the χ2 divergence via Ker-
nel Density Estimation (KDE). This implies the difficult choice of the kernel density
function to be used. All estimations in (Mary et al., 2019) have been done with a Gaus-
sian kernel by setting the bandwidth with the classic Silverman’s rule (Läuter, 1988),
which can be hard to generalize for all data. For this reason, we propose a new ap-
proach to avoid approximating the density with KDE. We apply an approach similar
to MINE (Belghazi et al., 2018). For this, we use the following "dual representation"
of χ2.

Theorem 3.2.1. The χ2 divergence admits the following representation (Broniatowski and
Leorato, 2006):

χ2(P, Q) = sup
f :Ω→R

EP( f )− EQ( f +
1
4

f 2) (3.8)

where the supremum is taken over all functions f such that the expectations are finite.

Algorithm 1 χ2 Neural Estimation

Input: Distributions PU,V and PV , Neural Network fθ , Input: Batchsize b, Learning
rate α
repeat
Draw b samples from the joint distribution:
(u1, v1), ..., (ub, vb) ∼ PUV
Draw b samples from the V marginal distribution:
v̄1, ..., v̄b ∼ PV
Evaluate the lower bound:
J(θ)← 1

b ∑b
i=1 fθ(ui, vi)− 1

b ∑b
i=1( fθ(ui, v̄i) +

1
4 fθ(ui, v̄i)

2)
Update the network parameters by gradient ascent:
θ ← θ + α∇J(θ)
until convergence

Like MINE (Belghazi et al., 2018) we use a set of functions FΘ = { fθ}θ∈Θ, defined
by a given neural network f with parameters θ ∈ Θ, as the class of functions that can
be considered in 3.8 for the approximation χ2

θ of χ2. We get the following objective to
optimize for neural estimation of χ2:

χ2
Θ(PUV , PU ⊗ PV) = max

θ∈Θ
EPUV ( fθ)− EPU⊗PV ( fθ +

1
4

f 2
θ ) (3.9)

This is done by algorithm 1, which takes distributions PUV and PV as input, from
which it draws mini-batches of PU,V and PU⊗ PV (in practice, samples are drawn from
training data (U, V) rather than from true distributions). Then, mini-batches are used
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3.2. Group Fairness in Continuous Statistical Dependence

to estimate and optimize the difference of expectations from 3.9 via stochastic gradi-
ent ascent. Note that, since the use of neural networks for χ2 estimation restricts the
possible functions to a given compact set FΘ defined by the neural architecture used,
χ2

Θ is only a lower-bound of χ2: χ2(PUV , PU ⊗ PV) ≥ χ2
Θ(PUV , PU ⊗ PV). However,

it enables to obtain very efficient estimations of χ2 for various distributions of vari-
ables, as shown in figure 3.1 for Multivariate Gaussians where the x-axis represents
different covariances between U and V. In this figure, we observe that, as expected,
our estimated χ2

θ divergence is below the real χ2 for this data, while presenting a very
similar shape.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

2

4

6

8

10
Multivariate Gaussian Distribution

ChiSquare
ChiSquare Estimation
HGR^2
Mutual Information

Figure 3.1: χ2 estimation for bivariate Gaussians with a ρ correlation coefficient

Although the f-divergence and mutual information is widely spread in the liter-
ature, it is, however, difficult to measure, to be interpretable (e.g., not a normalized
measure), and optimize in the continuous case with a finite sample, as already shown
numerous times in the litterature (Lee, 2021; Bach and Jordan, 2002; Yan et al., 2020a).
To cope with these issues, we will focus on statistical correlation measures in the fol-
lowing.

3.2.2 | Correlation Dependence
To overcome linearity and the f-divergence limitations, (Scarsini, 1984) first intro-
duced a series of axioms that a measure of concordance δ between two random vari-
ables should satisfy. Among them, δ(U, V) = 0 if and only if U and V are indepen-
dent, and δ(U, V) = 1 if and only if U and V are co-monotonic, meaning that there
is some deterministic monotone relationship between U and V (i.e., there are f and g
such that V = f (U) and U = g(V)). (Rényi, 1959) suggested to consider the supre-
mum of r( f (U), g(V)), where r denotes Pearson’s correlation, for all functions f and
g such that the correlation can be computed. Such measure was considered earlier in
(Hirschfeld, 1935) and (Gebelein, 1941), defined as:
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HGR(U, V) = max
f ,g
{r( f (U), g(V))} ,

An alternative expression is obtained by considering standardized transforma-
tions for both variables where S(U) = { f : U → R : E[ f (U)] = 0 and E[ f (U)2] = 1}
for any variable U.

HGR(U, V) = max
f∈S(U),g∈S(V)

{E[ f (U)g(V)]} . (3.10)

This measure also appeared earlier in (Barrett and Lampard, 1955) and (Lancaster,
1958), while introducing what is called nonlinear canonical analysis, where we write the
joint density of the pair (U, V) as:

PUV(u, v) = PU(u)PV(v)

[
1 +

∞

∑
i=1

αihU,i(u)hV,i(v)

]

for some decreasing αi’s in [0, 1] and for some series of orthonormal centered func-
tions hU,i’s and hV,i’s, called canonical components. Then one can prove that under
mild technical conditions,

HGR(U, V) = max
f∈S(U),g∈S(V)

{E[ f (U)g(V)]} = E[hU,1(U)hV,1(V)]

The HGR coefficient is equal to 0 if, and only if, the two random variables are in-
dependent. If they are strictly dependent the value is 1. For instance, if (U, V) is
a Gaussian vector with correlation r, then hi’s are Hermite’s polynomial functions,
h1(u) = u, and HGR(U, V) = |r| (the value of the maximal correlation in the Gaus-
sian case was actually established in (Gebelein, 1941)). (Jensen and Mayer, 1977) ex-
tended (Rényi, 1959)’s approach by considering some association measure that de-
pend non only on the first canonical correlation, but all of them. Several papers, such
as (Buja, 1990), discussed the estimation of maximal correlation, or such as kernel
based techniques in (Dauxois and Nkiet, 1998), where U and V are no longer univari-
ate random variables but can take values in more general Hilbert spaces, and more
recently (Tjøstheim et al., 2022).

The spaces for the functions f and g are infinite-dimensional. This property is the
reason why the HGR coefficient proved difficult to compute. Over the last few years,
many other non-linear dependence measures have been introduced like the Kernel
Canonical Correlation Analysis (KCCA) (Hardoon and Shawe-Taylor, 2009), the Dis-
tance or Brownian Correlation (dCor) (Székely et al., 2009), the Hilbert-Schmidt In-
dependence Criterion (HSIC and CHSIC) (Gretton et al., 2005; Póczos et al., 2012).
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3.2. Group Fairness in Continuous Statistical Dependence

Comparing those non-linear dependence measures (Lopez-Paz et al., 2013), the HGR
coefficient seems to be an interesting choice: it is a normalized measure which is ca-
pable of correctly measuring linear and non-linear relationships, it can handle multi-
dimensional random variables and it is invariant with respect to changes in marginal
distributions.

Note that correlation measure HGR can be extended to a conditional version 3 as:

HGR(U, V|Z) = max
f∈S(U|Z),g∈S(V|Z)

{
E[ f (U)g(V)|Z]

}
Several approaches rely on Witsenhausen’s linear algebra characterization (see

(Witsenhausen, 1975) to compute the HGR coefficient. For discrete features, this char-
acterization can be combined with Monte-Carlo estimation of probabilities (Bahar-
louei et al., 2019), or with kernel density estimation (KDE) (Mary et al., 2019) to com-
pute the HGR coefficient. Note that this latter approach can be extended to the contin-
uous case by discretizing the density support. However, they make a strong assump-
tion by basing their approach on a Gaussian Kernel Distribution Estimator (KDE).
This makes it difficult to generalize on all different kinds of data sets. Another way
to approximate this coefficient, Randomized Dependence Coefficient (RDC) (Lopez-
Paz et al., 2013), is to require that f and g belong to reproducing kernel Hilbert spaces
(RKHS) and take the largest canonical correlation between two sets of copula random
projections. However, it has been shown to have difficulty to recover optimal trans-
formations on empirical scenarios in which the relationship is highly unsteady (Mary
et al., 2019). We will propose a new estimation of the HGR maximal correlation to
overcome these limitations.

3.2.3 | HGR Estimation by Neural Network
Recently we proposed a new approach (Grari et al., 2020a) to estimate the HGR by
deep neural network (HGRNN). The main idea is to use two inter-connected neural
networks to approximate the optimal transformation functions f and g from Eq. 3.10.
The HGR_NN estimator is computed by considering the expectation of the products
of standardized outputs of both networks ( f̂w f and ĝwg ). The respective parameters
w f and wg are updated by gradient ascent on the objective function to maximize:
J(w f , wg) = E[ f̂w f (U)ĝwg(V)]. This estimation has the advantage of being estimated
by backpropagation. Algorithm 2 depicts the optimization process of our estimation
of the HGR. Until convergence, it samples instantiations of (U, V) from PU,V (or from

2r(U, V) := Cov(U;V)
σU σV

, where Cov(U; V), σU and σV are respectively the covariance between U and V,
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Algorithm 2 HGR Estimation by Neural Network

Input: Distributions PU,V , Neural Networks fω f and gωg ,
Input: Batchsize b, Learning rates α f , αg
repeat
Draw b samples from the joint distribution:
(u1, v1), ..., (ub, vb) ∼ PUV
Calculate the average and variance of the transformation predictions:
m f ← 1

b ∑b
i=1 fω f (ui) ; σ2

f ←
1
b ∑b

i=1( fω f (ui)−m f )
2

mg ← 1
b ∑b

i=1 gωg(vi) ; σ2
g ← 1

b ∑b
i=1(gωg(vi)−mg)2

Standardize w.r.t. the minibatch:
∀i : f̂ω f (ui)←

fω f (ui)−m f√
σ2

f +ε
; ĝωg(vi)←

gωg (vi)−mg√
σ2

g+ε

Maximize the following objective function J by gradient ascent:
J(ω f , ωg) =

1
b ∑b

i=1 f̂ω f (ui) ∗ ĝωg(vi)

ω f ← ω f + α f
∂J(ω f ,ωg)

∂ω f
; ωg ← ωg + αg

∂J(ω f ,ωg)

∂ωg

until convergence

a training set of data) to form mini-batches. At each iteration, it computes expecta-
tion and variance estimators of fω f and gωg on the current batch. These estimators are
used to standardize the outputs of both neural networks on the batch. Finally, it up-
dates the parameters of both networks by gradient ascent on the objective function to
maximize J(ω f , ωg). Note that the gradients are computed by back-propagating not
only through the output values of ω f and ωg but also through means and variances
of the batch, to ensure convergence. At the end, the HGRNN(U, V) estimator can be
computed by considering the expectation of the products of standardized outputs of
both networks.

This neural estimator HGRNN(U, V) is a lower-bound of HGR(U, V) (at least
on the training data set). However, as experimentally shown in figure 3.2, our es-
timator gives very accurate approximations in various settings. For these experi-
ments, we produced artificial data (U, V) with non-linear dependencies. Four data
sets were generated by instantiating U with samples drawn from an uniform dis-
tribution U (−10; 10) and defining V according to a non-linear transformation of U:
V = F(U) + ε, with F a given association pattern and ε ∼ N (0, σ2) a random noise
added to V. Each sub-figure in Fig.3.2 corresponds to a data set generated according
to the association pattern plotted in the small box in its left corner (500 pairs (U, V)

were generated for each data set). Note that for each of the scenarios, the linear corre-

the standard deviation of U and the standard deviation of V, respectively.
3Where S(U|Z) = { f : U → R : E[ f (U)|Z] = 0 and E[ f (U)2|Z] = 1}
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Figure 3.2: HGR estimation in various settings

lation between U and V is 0, but the HGR coefficient is theoretically equal to 1 when
no noise is added to the transformation (when σ2 = 0). The aim is to assess the ability
of the HGR estimators to recover the HGR value, despite some complex association
patterns and some noise in the data. We compare the HGR estimation values with
other approaches described above, denoted HGR_KDE for its KDE estimation and
HGR_RDC for the random copula approach. For our estimator HGR_NN, we con-
sider some neural networks f and g of three layers, each including ten units with tanh
activation function and Xavier initialization.

It shows that that, when no noise is added to the data, HGR_KDE and HGR_RDC
have difficulties to recover the optimal transformations on the two last scenarios in
which the relationship is either not continuous or highly unsteady. Thanks to the
higher freedom provided by the use of neural networks, HGR_NN succeeds in re-
trieving a HGR of 1 for these settings. When noise is added to the data, the true
HGR coefficient could be lower than 1. We thus assess the ability of the estimators
to approach the HGR value that would be induced by optimal transformations f and
g on the data. Note that our approach cannot exceed its value, due to the use of a
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restricted set of neural transformation functions. From the figure, we observe that the
curve of HGR_NN is always the highest (thus the closest to the optimal value from
the data), and that the difference between our approach and the others increases with
noise. HGR_NN appears more robust to noise. Additional experiments on the power
of dependence of our estimator have also shown that our estimator is usually more
efficient than its competitors for discerning dependent from independent samples in
various settings.

Theoretical Properties: In the following we study the consistency of our HGRNN

estimator. We consider a family of continuous neural networks FΘ = ( fw f , gwg)

parametrized by a compact domain Θ ⊂ Rk with Θ = (w f , wg) where our HGR ap-
proximation is denoted as HGRΘ(U, V). All the proofs can be found in the appendix
in section A.1.

Definition 7. (Strong consistency) The estimator ̂HGR(U, V)n is strongly consistent if for
all ε > 0, there exists a positive integer N and a choice of statistics network such that:

|HGR(U, V)− ̂HGR(U, V)n| ≤ ε, a.s. (3.11)

As explained in MINE (Belghazi et al., 2018), the question of consistency is di-
vided into two problems: a deterministic approximation problem related to the choice
of the statistics network, and an estimation problem related to the use of empirical
measures.

The first lemma addresses the approximation problem using universal approxi-
mation theorems for neural networks (Hornik et al., 1989):

Lemma 3.2.2. (approximation) Let η > 0. There exists a family of continuous neural net-
works FΘ parametrized by a compact domain Θ ⊂ Rk, such that

|HGR(U, V)− HGRΘ(U, V)| ≤ η. (3.12)

The second lemma addresses the estimation problem, making use of classical con-
sistency theorems for extremum estimators (Geer and van de Geer, 2000). It states the
almost sure convergence of HGR_NN to the associated theoretical neural HGR mea-
sure as the number of samples goes to infinity:

Lemma 3.2.3. (estimation) Let η > 0, and FΘ a family of continuous neural networks
parametrized by a compact domain Θ ⊂ Rk. There exists an N ∈N such that:

∀n ≥ N, | ̂HGR(U, V)n − HGRΘ(U, V)| ≤ η, a.s. (3.13)
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It is implied here that, from rank N, all sample variances are positive in the defi-
nition of ̂HGR(U, V)n, which makes the latter well-defined.

We deduce from these two lemmas the following result:

Theorem 3.2.4. ̂HGR(U, V)n is strongly consistent.

3.2.4 | Demographic Parity in the Continuous Case
Compared to the most common discrete binary setting, where the demographic par-
ity can be reduced to ensure weak independance: E[Ŷ|S] = E[Ŷ] (Agarwal et al., 2018)
and implies sup

f
r( f (X), S) = 0, it does not generally imply demographic parity

when S is continuous. On the other hand, the minimization of the HGR dependence
ensures strong Independence on distributions: P[Ŷ|S] = P[Ŷ] (Grari et al., 2020a) and
therefore satisfies the demographic parity objective as below:

Definition 8. A machine learning algorithm achieves Demographic Parity if the associated
prediction Ŷ and the sensitive attribute S satisfies:

HGR(Ŷ, S) = 0. (3.14)

Compared to the binary case where fairness measures as p-rule or the DI metrics
are fully reliable, they are not sufficient in the continuous case. Also, all the continu-
ous measures discussed so far (HGR_NN,HGR_KDE, HGR_RDC,χ2_NN and MINE)
are only estimations and are therefore not totally reliable. For this reason, we also
introduce a metric based on discretization of the sensitive attribute. This metric, de-
noted as FairQuant metric (Grari et al., 2020a) splits the set samples X in K quantiles
denoted as Xk (50 in our experiments) with regards to the sensitive attribute, in order
to obtain sample groups of the same size. It computes the mean absolute difference
between the global average and the means computed in each quantile:

Definition 9. We define K as the number of quantiles, mk as the mean of the predictions
hw(Xk) in the k-th quantile set Xk, and m its mean on the full sample X. The FairQuant is
defined as below:

FairQuant =
1
K

K

∑
k=1
|mk −m| (3.15)
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3.2.5 | Equalized Residuals in the Continuous Case
Following the same reasoning, we compare the model’s residuals with the sensitive
attribute. We also consider the HGR measure in this context since the weak indepen-
dence by expectation is not sufficient from residuals observations.

Proposition 1. A machine learning algorithm achieves equalized residuals if the associated
residuals Ŷ−Y and the sensitive attribute S satisfies:

HGR(Ŷ−Y, S) = 0. (3.16)

Therefore, the two metrics we will use for this purpose are HGR(Ŷ − Y, S) and
the Fairquant on residuals. The latter takes mk as the mean of the residuals over the
k-th set of quantiles and m its mean on the full sample X.

3.2.6 | Group Fairness in Frequency Statistical Dependence
In this setting, we assume that the outcome target Y can be represented as a number
of events occurring in a fixed interval of time. In this particular frequency setting, we
notice a lack of work for assessing the level of fairness.

1) Demographic Parity For the demographic parity objective, the weak indepen-
dence by expectation is not sufficient in this context to ensure the definition of 2.1.
Indeed, the nature of the continuous output of a number of events requires the no-
tion of strong independence in the distribution. We propose in this context to apply
the same notion as seen above in the continuous proposes section 3.2 by assessing the
HGR neural network estimator and the Fairquant Def. 3.15.

2) Equalized Odds For the equalized odds objective, we propose to assess the level
of independence on each number of events Y. For this purpose, the notion of demo-
graphic parity is required for each subset of value Y.

HGREO =
1

#ΩY
∑

y∈ΩY

HGR(hwh(X), S)

FairQuantEO =
1

#ΩY
∑

y∈ΩY

1
K

K

∑
i=1
|mi,y −m|

with mi,y as the mean of the predictions hw(Xk) in the k-th quantile set Xk conditioned
on Y = y, and m its mean on the full sample X. For computational reasons, ΩY

denotes the set of ‘valid’ entries. In the context of counts, the standard goodness
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of fit test is Pearson’s chi-squared test, unfortunately, the latter is not valid if the
expected frequencies are too small (as in (Bol’shev and Mirvaliev, 1979) and there is
no general agreement on the minimum expected frequency allowed). In practice, if
y ∈ {0, 1, 2, 3, 4, 5, 6} with (say) less than 1% for counts (strictly) exceeding 2, it is
rather common to consider ΩY = {0, 1, 2+}, where 2+ denotes the case where counts
exceed (strictly) 1.

3.3 | Measuring Individual Fairness

3.3.1 | Fairness Through Awareness
One way to assess individual fairness is to estimate the consistency metric (Mukher-
jee et al., 2020; Yurochkin et al., 2019), which measures the difference in output pre-
diction between individuals who share the same characteristics except for a specific
selected demographic characteristic. For example, in a classification task, (Yurochkin
et al., 2019) measures how often output prediction classes change only because of
differences in a demographic feature. The implicit idea is to observe if the predic-
tor is invariant under certain sensitive perturbations to the input. We argue that this
measure is difficult to use in practice since it strongly depends on which variable
is selected. Finding a strongly sensitive dependant feature is not always feasible in
practice. For example, consider the individual fairness objective on the Adult data
set (Dua and Graff, 2017) that aims to predict income above $50, 000 with gender as a
binary sensitive attribute. In this case, (Mukherjee et al., 2020; Yurochkin et al., 2019)
compare the predictions following changes in the explanatory variable Marital Status
which corresponds to information such as Married, Divorced, etc... However, basing
all our effort on this sort of proxy is not feasible in practice as there is no real evi-
dence that this variable is the more appropriate. Note that we cannot consider the
demographic feature as the sensitive attribute since it is not considered as input to
the model in our problem setting.

In order to overcome this limitation, we propose as new contributions, two indi-
vidual fairness metrics that are dependent on dX (e.g., obtained via equation 2.5). For
α ∈ [0, 1], we denote as qα the quantile of level α of the set {dX (xi, xj), 0 ≤ i < j ≤ n}
and q̃α the quantile of level α of the set {||xi − xj||, 0 ≤ i < j ≤ n}

Definition 10. We define Mean Region Discrepancy of level α (MRDα) as:

MRDα =
∑i<j |h(xi)− h(xj)|1{dX (xi ,xj)≤qα}

∑i<j 1{dX (xi ,xj)≤qα}
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Definition 11. We define Mean Double Region Discrepancy of levels α, β (MDRDα,β) as:

MDRDα,β =
∑i<j |h(xi)− h(xj)|1{dX (xi ,xj)≤qα}1{||xi−xj||≥q̃β}

∑i<j 1{dX (xi ,xj)≤qα}1{||xi−xj||≥q̃β}

Definition 10 directly encodes the idea that "similar people should be treated sim-
ilarly": we select pairs of data point that are similar to a predefined level α and mea-
sure the mean discrepancies of outputs for these pairs. The smaller the MRDα, the
fairer the algorithm at the individual level. Definition 11 considers an additional
1{||xi−xj||≥q̃β} factor that eliminates pairs that are already similar in an euclidean sense.
Indeed, the predictor h, assuming an adequate choice of activation functions, can be
considered as a lipschitz function with respect to euclidean distances, which guaran-
tees closeness of outputs for close couples (in the euclidean sense). By weeding out
those pairs, we ensure that we measure discrepancies for relevant data points.

3.3.1.1 | Counterfactual Fairness

There are multiple ways of measuring counterfactual fairness in the literature. We
note two different approaches: Some measure separation at a group level, others fo-
cus at individual level.

First, there is a statistical parity version at a group level specific for counterfac-
tual fairness. It measures the separation of the generated outcomes from the causal
intervention. We denote this metric TCE for Total Causal Effect, which is defined as
follows:

TCE = P(YA←a1)− P(YA←a0) (3.17)

This metric is widely used in the literature to evaluate the performance of counter-
factual models (often denoted as Total Effect in the literature). As discussed in the
subsection 2.1, the majority of the state of the art algorithms compute the counter-
factual fairness penalization directly on the outcome generation from causal graph
(inference phase). They compute afterward a final predictor model on the factual and
counterfactual observations as (Kim et al., 2021; Xu et al., 2019). However, depending
on the final predictor model, the predictions must be evaluated to ensure fairness.
For this purpose, we introduce the Total Predictions Effect (TPE), which refers to the
statistical parity on the output prediction from intervention. The metric is defined for
a predictor hwh as follows:

TPE = P(hwh(XA←a1))− P(hwh(XA←a0)) (3.18)
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Other approaches (Kim et al., 2021; Xu et al., 2019) evaluate the total effect on
specific subgroups, denoted o, generally not dependent on the sensitive. We de-
fine them separately using the same procedure, Counterfactual Causal effect: CPE =

P(YA←a1 |o)− P(YA←a0 |o) and Counterfactual Prediction Effect: CPE = P(hwh(XA←a1)|o)−
P(hwh(XA←a0)|o).

Finally we present the counterfactual metric that measure fairness at individual
level.

Definition 12. Counterfactual demographic parity (Kusner et al., 2017)
The CF measure is defined, for the mtest individuals from the data set, as:

CF =
1
m

m

∑
i

E(x′,a′)∼C(i)[∆(hwh(xi, ai), hwh(x′, a′))] (3.19)

where ∆ is a cost function between two predictions (e.g., the logit paring cost for the binary
case and a simple squared difference for the continuous setting). C(i) is the set of counter-
factual samples for the i-th individual of the data set. This corresponds to counterfactuals
sampled with an inference process.

3.4 | Conclusion
We have shown in this chapter that even when the objective is decided, there are
many ways to quantify it. This makes deployment in practice complicated. Why
choosing this particular metric with this or that threshold to accept that the model is
fair? These are questions that various regulators are currently asking.

Also, some sub-areas, such as the continuous case, have not yet been studied
enough. We have proposed new ways to measure the X2 divergence and the HGR
maximum correlation with neural networks that shown to be more suitable in the
continuous setting. We will now focus on reducing unwanted biases to improve the
level of fairness.
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4

Ensuring Group Fairness for Neural
Network Predictors

In this chapter, we focus on in-processing fairness and in particular with adversarial
learning, which reveals as the most powerful framework for settings where acting
on the training process is an option. Since this method relies on penalization during
training, we will first describe the general literature on this subject. Then, we will
show how penalization is achieved in the fairness framework for the two fairness
objectives (demographic parity and those referred to error parity) and this for three
following prediction tasks: binary, continuous and frequency task.

Parts of the work presented in this chapter are the subject of two papers: Fairness-
Aware Neural Rényi Minimization for Continuous Features, published at the IJCAI 2020
conference (Grari et al., 2020a) and Learning Unbiased Representations via Rényi Mini-
mization, published at the ECML-PKDD 2021 conference (Grari et al., 2021b).

The contributions are fourfold:

� We have identified a main issue for applying fairness with traditional state-of-
the-art adversarial approaches: They are theoretically not able to optimize the
most classical fairness criterion such as demographic parity in the continuous
case;

� We propose new adversarial approaches based on the minimization of the HGR
coefficient. The structures allow mitigation either on the output prediction itself
or on latent spaces. The adversaries approximates the HGR by finding non-
linear transformations of the data;

� We proposed the first work to compare attenuation at different levels of neural
architectures. We argue that operating at intermediate levels of neural repre-
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Chapter 4. Ensuring Group Fairness for Neural Network Predictors

sentations offers the best trade-off between expressiveness and generalization
for bias mitigation.

� We demonstrate empirically that our neural HGR-based approach is very com-
petitive for fairness learning on artificial and real-world popular data sets.

The remainder of this chapter proceeds as follows. First, Section 4.1 briefly recaps
the principle of adversarial learning. Next, Section 4.2 outlines the biases mitigation
algorithms based on the output predictions and Section 4.3 on latent representation.
Then in section 4.4 we propose a summary of the different methods. Finally, section
5.3 presents different experimental results of our approaches.

4.1 | Penalization via Adversarial Learning
In this section, we will describe briefly certain types of penalization during the train-
ing of the predictor model. One of the most known penalization procedure for a
classical machine learning model hwh(X) is as follow:

argmin
wh

{
L(hwh(X), Y) + λp(wh)

}
for some penalty function p, usually taking into account the complexity of the model,
in order to avoid overfitting.

Adversarial machine learning (Goodfellow et al., 2018) are machine learning tech-
niques that aim at robustifying the predictive mode, by attempts to fool models by
supplying deceptive input. In order to improve the robustness of the model, it can be
natural to consider an adversarial approach such as:

argmin
wh

{
max

m,|m|<ε

{
L(hwh(X), Y) + λ`(hwh(X), hwh(X + m))

}}
where we consider the worst-case impact of a small perturbation of the data. The first
term represents the classical loss function L which is minimized in order to improve
the accuracy of the predictions. The second term is a penalization that ensures that the
prediction between an altered version (the highest perturbation m on X) and the real
version will be as similar as possible. A classical example in the context of pictures
labeling is the ostrich example in (Szegedy et al., 2014), where all pictures (yellow bus,
dog, pyramid, insect, etc), slightly perturbed with some noisy picture, still, look as
before for a human eye, but are all labeled as an ostrich.

Some other types of adversarial learning which are more related to our work rely
on two separate machine learning models trained simultaneously to play against each
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4.2. Adversarial Prediction Retreatment

other. The most popular one is the Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014). The objective is, given a training set, to generate new data follow-
ing the underlying distribution. The two models are defined as the generator G that
captures the data distribution X ∈ Rd from a dz-dimensional random noise Z ∈ Rdz ,
and a discriminative model D that estimates the probability that a sample came from
the real training data X rather than G.

argmin
G

{
max

D

{
EX∼pdata [log(D(X)] + EZ∼pz [log(1− D(G(Z))]

}}
This framework corresponds to a minimax two-player game. The first term represents
the expectation over the real data X from the training distribution pdata. This term is
only used for the discriminator and allows to assign the larger label to the real data.
The second term is expectation over noise. It inputs the noise Z with distribution pz

(e.g., a multivariate normal distribution) to the generator to obtain G(Z). This latter
generator’s output represents the generated observations and is fed as input to the
discriminator for obtaining D(G(Z)). While the discriminator attempts to minimize
D(G(Z)), the generator attempts to fool the discriminator. The generator discovers
new samples that the discriminator is not able to distinguish from real data.

4.2 | Adversarial Prediction Retreatment

4.2.1 | Improving Demographic Parity
The fair state-of-the-art algorithms for achieving the demographic parity objective are
generally constructed with a penalization term that can be plugged in the following
generic optimization problem as below:

arg min
wh

{
L(hwh(X), Y) + λp(hwh(X), S)

}
(4.1)

where L is the predictor loss function (the mean squared error for regression or log-
loss for the binary classification task for example) between the output hwh(X) ∈ R

and the corresponding target Y, with hwh the prediction model which can be for ex-
ample be GLM or a deep neural network with parameters wh, and p(hwh(X), S) the
penalization term which evaluates the correlation loss between two variables. The
aim is thus to find a mapping hwh(X) which both minimizes the deviation with the
expected target Y and does not imply too much dependency with the sensitive S.
The hyperparameter λ controls for impact of the correlation loss in the optimization.
The correlation loss p can correspond to a Pearson coefficient, a Mutual Information
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Neural Estimation (MINE, (Belghazi et al., 2018)), or our HGR neural estimators that
we will discuss below. Our proposed approach to estimate the HGR coefficient with
neural networks as shown in the chapter 3 can allow us to mitigate the bias by ad-
versarial learning during the process. We propose two adversarial algorithms that
we will describe bellow and we will compare them. We first describe our theoretical
contribution for showing the interest of the Rényi adversarial method comparing to
the simple adversarial methods which are currently the most used algorithms in the
state-of-the-art literature.

4.2.1.1 | Adversarial Simple Architecture

Some approaches (Zhang et al., 2018) assess the level of dependency by considering
the ability to reconstruct the sensitive attribute S from the output prediction hwh(X).
By feeding the output prediction as input to an adversary fw f that takes the form of
a GLM or deep neural network with the objective to predict S, it allows to measure
the level of dependence during the training. The goal is to obtain a predictor model
hwh whose outputs do not allow the adversarial function to reconstruct the value of
the sensitive attribute. If this objective is achieved, the data bias in favor of some
demographics disappeared from the output prediction. The predictor with weights
wh has fooled the adversary. The optimization problem is as below:

argmin
wh

{
max

w f

{
LY (hwh(X), Y)− λLS ( fw f (hwh(X)), S)

}}
(4.2)

where LY is the predictor loss function between the output hwh(X) ∈ R and the cor-
responding target Y and LS is the adversary loss function between the adversary
output fw f (hwh(X)) ∈ R and the corresponding sensitive attribute S. The hyperpa-
rameter λ controls the impact of the dependence loss in the optimization. The predic-
tion hwh(X) is the input given to the adversarial fw f . Figure 4.1 gives the architecture
of this adversarial learning algorithm. It depicts the predictor function hwh , which
outputs the prediction from X, the adversarial predictor fw f which seeks at defining
the most accurate prediction of S from the output of the predictor function hwh . Left
arrows represent gradients back-propagation. The learning is done via stochastic gra-
dient, alternating steps of adversarial maximization, and global loss minimization.
At the end of each iteration, the algorithm updates the parameters of the prediction
parameters hwh by one step of gradient descent. Concerning the adversarial, the back-
propagation of the parameters w f is carried by multiple steps of gradient ascent. This
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allows to optimize an accurate estimation of the sensitive attribute at each step, lead-
ing to a greatly more stable learning process.
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Figure 4.1: The Adversarial simple architecture

Note that for an infinite λ, the second term is the only one to be optimized. Max-
imizing the negative gradient on the parameter w f allows minimizing the loss func-
tion between the adversary’s prediction and the sensitive attribute.

Then, by minimizing this term in a second step via the wh parameters, it allows
removing all the sensitive biases. Also, note that, if there exists (w∗h, w∗f ) such that
w∗f = arg maxw f

{Pw∗h ,w f (S|h∗wh
(X))} on the training set, Pw∗h ,w∗f (S|h

∗
wh
(X)) = P̂(S)

and Pw∗h (Y|X) = P̂(Y|X), with P̂(S) and P̂(Y|X) the corresponding distributions on
the training set, (w∗h, w∗f ) is a global optimum of our min-max problem eq. (4.2). In
that case, we have both a perfect classifier in training and a completely fair model
since the best possible adversary is not able to predict S more accurately than the
estimated prior distribution. While such a perfect setting does not always exist in the
data, it shows that the model is able to identify a solution when it reaches one. If a
perfect solution does not exist in the data, the optimum of the minimax problem is a
trade-off between prediction accuracy and fairness, controlled by the hyperparameter
λ.

Theoretical Properties in Continuous Setting

Consider a continuous setting where the sensitive attribute S is a continuous one-
dimensional random variable with a regression problem as follows:

inf
f :R→R

E((S− f (Ŷ))2) (4.3)

The variable that minimizes the quadratic risk is E(S|Ŷ). Thus, prediction retreat-
ment algorithms with predictive adversaries (Zhang et al., 2018) (i.e., LS as mean
square error loss), which consider such optimization problems for mitigating biases,
achieve the global fairness optimum when E(S|Ŷ) = E(S). This does not generally
imply demographic parity when S is continuous. On the other hand, adversarial

43



Chapter 4. Ensuring Group Fairness for Neural Network Predictors

approaches based on the HGR_NN (Grari et al., 2020a) achieve the optimum when
HGR(Ŷ, S) = 0, which is equivalent to demographic parity: P(Ŷ|S) = P(Ŷ).

To illustrate this, we consider the maximization problem sup f :R→R ρ( f (Ŷ), S),
which corresponds to the situation where the neural network g is linear in the HGR
neural estimator. We have the following result:

Theorem 4.2.1. If E(S|Ŷ) = E(S), then sup f ρ( f (Ŷ), S) = 0. Else, f ∗ ∈ arg max f ρ( f (Ŷ), S)
iff there exists a, b ∈ R, with a > 0, such that:

f ∗(Ŷ) = aE(S|Ŷ) + b (4.4)

In other words, the simpler version of the HGR_NN, with g linear, finds the op-
timal function in terms of regression risk, up to a linear transformation that can be
found by simple linear regression. The simplified HGR estimation module therefore
captures the exact same non-linear dependencies as the predictive adversary in re-
lated work (Zhang et al., 2018). Thanks to the function g, in cases where S cannot be
expressed as a function of Ŷ only, the HGR neural network can capture more depen-
dencies than a predictive NN (or equivalently a simplified HGR neural network).

Specific example to understand the difference: Let us consider the following ex-
ample below where:

Y ∼ N (µ, σ2) Ŷ = arctan(S2) + Uπ (4.5)

where U ⊥ Y and U follows a Bernoulli distribution with p = 1
2 . In this set-

ting, we have S2 = tan(Ŷ), HGR(Ŷ, S) = 1 and due to the hidden variable U,
neither Ŷ nor S can be expressed as a function of the other. In that case, the sim-
plified maximal correlation, ρ(E(S|Ŷ), S), has the following bounds, with α = µ

σ :√
1− e−

α2
2 ≤ ρ(E(S|Ŷ), S) ≤

√
1− e−

α2
2 (1 + α2)−

3
2 . In the degenerate case α = 0, we

have E(S|Ŷ) = 0: the predictive neural network cannot find any dependence. For
non-zero values of α, the distribution of S is no longer centered around the axis of
symmetry of the square function, so that the prediction becomes possible. However,
as shown in the inequality above, the simplified maximal correlation is less than 1,
and close to 0 when µ� σ.
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In Figure 4.2, we illustrate the bounds
(proof in appendix in section B.1),
ρ(E(S|Ŷ), S) being estimated by Monte-
Carlo. First, we note that the upper bound
is close to ρ(E(S|Ŷ), S), whereas the lower

bound
√

1− e−
α2
2 is not as precise. For

non-zero values of α, ρ(E(S|Ŷ), S) is pos-
itive, so that a predictive neural network
can capture some non-linear dependencies
between S and Ŷ.
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Figure 4.2: Simplified HGR w.r.t α

This is due to the fact that, for α 6= 0, the square function is bijective when re-
stricted to some open interval containing the mean of S, whereas when α = 0, such
an interval cannot be found. When this interval is large and the standard deviation of
S is not too large (which corresponds to high values of |α|), ρ(E(S|Ŷ), S) approaches
1 and the S prediction error approaches 0. In the opposite case, ρ(E(S|Ŷ), S) is close
to 0 and a predictive neural network cannot capture dependencies.

Therefore, as shown by the example, the bilateral approach of the HGR, as op-
posed to the unilateral approach of predictive models, can capture more dependen-
cies in complex regression scenarios. In adversarial bias mitigation settings, predic-
tive adversaries might not be able to properly detect bias. Adversarial approaches
based on the HGR_NN are better fitted for bias mitigation in such continuous com-
plex settings.

4.2.1.2 | Adversarial HGR Architecture

We propose a novel adversarial approach based on our HGR neural network esti-
mation (Grari et al., 2020a). It uses an adversarial network that takes the form of
two inter-connected neural networks for approximating the optimal transformations
functions f and g for approximating the sensitive dependence by HGR.

arg min
wh

{
max
w f ,wg

{
L(hwh(X), Y) + λE(X,S)∼D( f̂w f (hwh(X))ĝwg(S)

}}
(4.6)

where L is the predictor loss function between the output hwh(X) ∈ R and the cor-
responding target Y. The second term, which corresponds to the expectation of the
products of standardized outputs of both networks ( f̂w f and ĝwg ), represents the HGR
estimation between the output variable hwh(X) and the sensitive attribute S. The hy-
perparameter λ controls the impact of the dependence loss in the optimization.
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The prediction hwh(X) is the input given to the adversarial fw f and the sensitive
S is given as input to the adversarial gwg . In that case, we only capture for each gra-
dient iteration the estimated HGR between the prediction and the sensitive attribute.
Figure 4.3 gives the full architecture of the adversarial learning algorithm using the
neural HGR estimator for demographic parity. It depicts the prediction function hwh ,
which outputs Ŷ from X, and the two neural networks fw f and gwg , which seeks at
defining the more strongly correlated transformations of Ŷ and S. The algorithm 3 de-
picts our Fair Rényi algorithm for the Demographic Parity task. The algorithm takes
as input a training set from which it samples batches of size b at each iteration. At
each iteration, it first standardizes the output scores of networks fw f and gwg to ensure
0 mean and a variance of 1 on the batch. Then it computes the objective function to
maximize the estimated HGR score and the global predictor objective. Finally, at the
end of each iteration, the algorithm updates the parameters of the HGR adversary w f

and wg by multiple steps of gradient ascent and the regression parameters wh by one
step of gradient descent.
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Figure 4.3: The Rényi adversarial algorithm for demographic parity.
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Algorithm 3 Fair Rényi Algorithm for Demographic Parity

Input: Training set T , Loss function L, Batchsize b,
Input: Neural Networks hωh , fω f and gωg ,
Input: Learning rates α f , αg and αh, Fairness control λ
Repeat
Draw b samples (x1, s1, y1), ..., (xb, sb, yb) from T
Calculate the mean and variance of the transformations:
m f ← 1

b ∑b
i=1 fω f (hωh(xi)) ; mg ← 1

b ∑b
i=1 gωg(si)

σ2
f ←

1
b ∑b

i=1( fω f (hωh(xi))−m f )
2

σ2
g ← 1

b ∑b
i=1(gωg(si)−mg)2

Standardize the transformations:
∀i : f̂ω f (hωh(xi))←

fω f (hωh (xi))−m f√
σ2

f +ε

∀i : ĝωg(si)←
gωg (si)−mg√

σ2
g+ε

Compute the objectives:
J(ω f , ωg) =

1
b ∑b

i=1 f̂ω f (hωh(xi)) ∗ ĝωg(si)

L(ωh, ω f , ωg) =
1
b ∑b

i=1 L(hωh(xi), yi) + λJ(ω f , ωg)
Update the adversary by gradient ascent:

ω f ← ω f + α f
∂J(ω f ,ωg)

∂ω f
; ωg ← ωg + αg

∂J(ω f ,ωg)

∂ωg

Update the predictor model hωh by gradient descent:

ωh ← ωh − αh(
∂L(ωh,ω f ,ωg)

∂ωh
)

4.2.2 | Improving Equalized Odds
The fair in-processing algorithms for achieving the equalized odds objective are gen-
erally constructed with a penalization term that can be plugged in the following
generic optimization problem as below:

arg min
wh

{
L(hwh(X), Y) + λp(hwh(X), S, Y)

}
(4.7)

where p(hwh , Y, S) is the penalization term which evaluates the correlation loss be-
tween the output prediction and the sensitive attribute given the expected outcome
Y. The aim is thus to find a mapping hwh(X) which both minimizes the deviation with
the expected target Y and does not imply too much dependency with the sensitive S
given Y.

4.2.2.1 | Adversarial Simple Architecture

Following the idea of adversarial simple architecture for demographic parity, (Zhang
et al., 2018) proposes to concatenate the label Y to the output prediction to form the
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input vector of the adversary (hwh(X), Y), so that the adversary function fw f could be
able to output different conditional probabilities depending on the label Yi of i.

argmin
wh

{
max

w f

{
LY (hwh(X), Y)− λ

{
LS ( fw f (hwh(X), Y), S)

}}
Figure 4.4 gives the full architecture of this adversarial learning algorithm for equal-
ized odds. It depicts the predictor function hwh , which outputs the prediction from X,
the adversarial predictor fw f which seek at defining the most accurate prediction of
S from the predictor function hwh and the targeted variable Y. Left arrows represent
gradients back-propagation. Here again, the learning is done via stochastic gradient,
alternating steps of adversarial maximization, and global loss minimization.
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Figure 4.4: The Fair adversarial simple algorithm for equalized odds.

However, as demographic parity, this algorithm can only be considered in binary
cases since it does not generally imply equalized odds when S is continuous.

4.2.2.2 | Adversarial HGR Architecture

Whether the sensitive variable is continuous or binary, we propose to extend the idea
of our HGR adversarial algorithm for equalized odds for binary outcomes Y (Grari
et al., 2021c). For the decomposition of disparate mistreatment, we divide the mitiga-
tion based on the two different values of Y. Identification and mitigation of the spe-
cific non-linear dependence for these two subgroups leads to the same false-positive
and the same false-negative rates for each demographic. The optimization is written
as follows:

arg min
wh

{
max

w f0 ,wg0 ,w f1
,wg1

{
L(hwh(X), Y)

+ λ0E(X,S)∼D0
( f̂w f0

(hwh(X))ĝwg0
(S))

+ λ1E(X,S)∼D1
( f̂w f1

(hwh(X))ĝwg1
(S))

}}
where D0 corresponds to the distribution of pair (X, S) conditional on Y = 0 and D1

to the distribution conditional on Y = 1. The hyperparameters λ0 and λ1 control the
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impact of the dependence loss for the false positive and the false negative objective
respectively.

For instance, the first penalization (controlled by λ0) enforces the independence
between the output prediction hwh(X) and the sensitive S only for the cases where
Y = 0. It enforces naturally the mitigation of the difference of false positive rate be-
tween demographics since at optimum for w∗h with (X, S) ∼ D0, HGR(hw∗h (X), S) = 0
and implies theoretically: hw∗h (X, S) ⊥⊥ S|Y = 0. This idea can be generalized for non-
binary outcomes Y as:

arg min
wh

{
max

w f0 ,wg0 ,...,w fK ,wgK

{
L(hwh(X), Y) +

1
K + 1 ∑

y∈ΩY

λyE(X,S)∼Dy( f̂w fy
(hwh(X))ĝwgy

(S))
}}

where Dy corresponds to the distribution of pair (X, S) conditional on Y = y and
K = #ΩY − 1. The hyperparameters λy control the impact of the dependence loss
for the objectives. Each penalization enforces the independence between the output
prediction and the sensitive S only for the cases where Y = y.

This latter objective can be conducted on frequency tasks where the outcome tar-
get Y can be represented as a number of events occurring in a fixed interval of time.

4.2.3 | Improving Equalized Residuals
The adversarial approaches structures for the equalized residual objective are quite
similar to demographic parity. The idea is that instead of comparing the dependence
between the output prediction and the sensible attribute, we compare the observed
residuals R = Ŷ− Y against the latter. The penalty compares at each step the depen-
dence term HGR(Ŷ−Y, S) (more information in appendix in section B.2).

4.3 | Extension to Fair Representation
This recent decade, deep learning models have shown very competitive results by
learning representations that capture relevant information for the learning task. How-
ever, the representation learnt by the deep model may contain some bias from the
training data. This bias can be intrinsic to the training data, and may therefore induce
a generalisation problem due to a distribution shift between training and testing data.
For instance, the color bias in the colored MNIST data set (Kim et al., 2019b) can make
models focus on the color of a digit rather than its shape for the classification task. The
bias can also go beyond training data, so that inadequate representations can perpet-
uate or even reinforce some society biases (Bolukbasi et al., 2016) (e.g. gender or age).
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The fair representation algorithms are constructed by mitigating the underlying bias
on an intermediary latent space Z. We have carried out a specific analysis for compar-
ing this approach to the prediction retreatment methods. We show in the subsection
4.5.3 that mitigation at intermediate levels of encoding can induce the best trade-offs
expressiveness/generalization.

4.3.1 | Improving Demographic Parity
The fair representation algorithms for achieving the demographic parity objective are
generally constructed with a penalization term that can be plugged in the following
generic optimization problem as below:

arg min
wh,wψ

{
L(hωh(φωφ(X)), Y) + λp(φωφ(X)), S)

}
(4.8)

where L is the predictor loss function between the output prediction hωh(φωφ(X)) ∈
R and the corresponding target Y, with hωh the predictor neural network with param-
eters ωh and Z = φωφ(X) the latent fair representation with φωφ the encoder neural
network, with parameters ωφ.

The second term, p(φωφ(X), S) is the penalization term which evaluates the corre-
lation loss between the latent space and the sensitive feature. Notice that in compar-
ison with the prediction retreatment the correlation loss is evaluated with only mul-
tidimentional space since the latent space Z is generally multidimensional, which is
not necessarily the case for prediction retreatment where the output feature can be
1-dimensional. Note that by mitigating the underlying bias in the latent space Z,
it enforces the demographic parity task. Due to L-Lipschitzness of neural network
architectures, we know that HGR(Z, S) ≥ HGR(hωh(Z), S). Acting on Z leads to
remove bias from Z even for components ignored by the predictor hwh in train. We
argue that this allows to gain in stability at test time, which induces a greater variance
of sensitive dependence of the output Ŷ (see subsection 4.5.3).

Simple adversarial algorithm extension: Following the idea of (Zhang et al., 2018),
(Adel et al., 2019) proposes to extend this methodology in a fair representation way
by using a penalization function p that takes the form of a deep neural network. This
latter function has the objective of predicting the sensitive feature S by taking the
latent space Z as input. Note that the predictor hwh and the adversarial φwφ models
are, as in prediction retreatment, optimized simultaneously in a min-max game. The
level of dependence here is assessed by how we can be able to reconstruct S from Z.
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Figure 4.5: Learning Unbiased Representations via Rényi Minimization

Rényi adversarial architecture extension: We propose a method that enforces De-
mographic Parity via Renyi minimization for a latent variable. The objective is to
find a latent representation Z which both minimizes the deviation between the target
Y and the output prediction Ŷ, provided by a function hwh(Z), and does not imply
too much dependence with the sensitive S. As explained above in section 2.2, our
HGR estimation by deep neural network (Grari et al., 2020a) is a good candidate for
standing as the adversary HGR(Z, S) to plug in the global objective (4.1). Notice,
we can consider the latent representation Z or even the sensitive attribute S as multi-
dimensional. This can therefore provide a rich representation of the latent space or
even take into account several sensitive features at the same time (for e.g. gender and
age or the 3 channels of an image, see 4.5). Please note that our HGR NN estima-
tion can handle multi-dimensional cases for both U and V. The mitigation procedure
follows the optimization problem:

min
wh,wφ

max
w f ,wg

L(hωh(φωφ(X)), Y) + λE( f̂w f (φωφ(X))ĝwg(S)) (4.9)

where L is the predictor loss function between the output prediction hωh(φωφ(X)) ∈
R and the corresponding target Y, with hωh the predictor neural network with param-
eters ωh and Z = φωφ(X) the latent fair representation with φωφ the encoder neural
network, with parameters ωφ. The second term, which corresponds to the expecta-
tion of the products of standardized outputs of both networks ( f̂w f and ĝwg ), repre-
sents the HGR estimation between the latent variable Z and the sensitive attribute S.
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The hyperparameter λ controls the impact of the correlation loss in the optimization.

Figure 4.5 gives the full architecture of our adversarial learning algorithm using
the neural HGR estimator between the latent variable and the sensitive attribute. It
depicts the encoder function φwφ , which outputs a latent variable Z from X, the two
neural networks fw f and gwg , which seek at defining the most strongly correlated
transformations of Z and S and the neural network hωh which outputs the prediction
Ŷ from the latent variable Z. Left arrows represent gradients back-propagation. The
learning is done via stochastic gradient, alternating steps of adversarial maximization
and global loss minimization. In algorithm 4, we present the pseudo-code for our
Rényi Fair Representation algorithm.

Algorithm 4 Rényi Fair Representation

Input: Training set T , Loss function L, Batchsize b, Epochs for HGR nHGR
Input: Neural Networks φwφ ,hwh , fw f and gwg ,
Input: Learning rates α f , αg, αφ and αh. Fairness control λ
Repeat
Draw b samples (x1, s1, y1), ..., (xb, sb, yb) from T
Compute the predictor objective:
LY(wh, φwφ) =

1
b ∑b

i=1 L(hwh(φwφ(xi)), yi)
Update the predictor model hwh by gradient descent:
wh ← wh − αh(

∂LY
∂wh

)
Repeat nHGR times
Calculate the mean and variance of the transformations:
m f ← 1

b ∑b
i=1 fw f (φwφ(xi)) ; mg ← 1

b ∑b
i=1 gwg(si)

σ2
f ←

1
b ∑b

i=1( fw f (φwφ(xi))−m f )
2

σ2
g ← 1

b ∑b
i=1(gwg(si)−mg)2

Standardize the transformations:
∀i : f̂w f (φwφ(xi))←

fw f (φwφ (xi))−m f√
σ2

f +ε

∀i : ĝwg(si)←
gwg (si)−mg√

σ2
g+ε

Compute the objectives:
J(w f , wg, wφ) =

1
b ∑b

i=1 f̂w f (φwφ(xi)) ∗ ĝwg(si)

LE(wh, wφ, w f , wg) =
1
b ∑b

i=1 L(hwh(φwφ(xi)), yi) + λJ(w f , wg, wφ)
Update the adversary by gradient ascent:
w f ← w f + α f

∂J
∂w f

; wg ← wg + αg
∂J

∂wg

Update the encoder model φwφ by gradient descent:
wφ ← wφ − αφ(

∂LE
∂wφ

)
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4.4 | Summary of the Different Methods
In order to fully understand our contributions against the state of the art, we illustrate
in Figure 4.6 the various fair adversarial neural network architectures existing in the
literature (including two of our contributions in the middle). We have named by
ourselves these different sub-domains (Prediction retreatment, etc.). We distinguish
two fair adversarial families:

� Fair Representation: The mitigation is carried on an intermediary latent vari-
able Z. The multidimensional latent variable is fed to the adversary and to the
predictor.

� Prediction Retreatment: The mitigation is carried on the prediction itself. The
prediction is fed to the adversary.

For these two families, we distinguish 3 subfamilies:

� Simple Adversarial: The adversary tries to predict the sensitive attribute. The
bias is mitigated by fooling this adversary.

� Rényi Adversarial: The adversary tries to find adequate non-linear transforma-
tions for the estimation of the HGR coefficient. The bias is mitigated via the
minimization of this estimation.

� F-divergence Adversarial: The Mutual Information Neural Estimator (Belghazi
et al., 2018) or our chi-square divergence neural estimation is used as adver-
sary. The bias is mitigated via the minimization of the dual-representation of
the f-divergence (Donsker-Varadhan representation for mutual information and
representation of Theorem 3.8 for χ2 divergence).

4.5 | Empirical Results

4.5.1 | Synthetic Scenario
In order to test the efficiency of our different algorithms, we set up three synthetic
scenarios.
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Figure 4.6: Fair adversarial architectures for Demographic Parity

Scenario 1

The subject of this first scenario is a pricing algorithm for a fictional household insur-
ance policy. The goal of this exercise is to achieve demographic parity by producing a
fair predictor which estimates the average cost without incorporating any bias against
the policyholder’s age. We want to compare our proposed algorithm (Rényi adversar-

54



4.5. Empirical Results

ial on prediction retreatment) with a classical neural network called Standard NN). We
create three explicit variables: Age of the policyholder, total surface and age of the
building. We consider the policyholder’s age as sensitive attribute and we construct
the average cost variable Y with the last two variables only (without the sensitive vari-
able). To evaluate this, we create the target variable Y with an exponential function
which takes into account the two explicit variables mentioned above. The surface
variable is a polynomial transformation of age. This transformation is chosen such
that no linear correlation exists between surface and age (Pearson correlation = 0.00).
On the other hand, it is expected that the HGR coefficient will be non-zero for the
Standard NN (estimated to 62%). We report below details on the distributions used
in this synthetic scenario:

Age ∼N (40, 5); ε1 ∼ N (0, 1); ε2 ∼ N (0, 1)

Sur f ace =− 0.25 ∗ (−Age + 40)2 + 150 + 5 ∗ ε1

BldgAge ∼N (30, 10)

Y =100 + 0.0005 ∗ e(0.06∗Sur f ace+0.1∗BldgAge+0.2∗ε2)

In order to solve this problem and, thus, to minimize the non-linear dependence
between the age and the predictions we execute different scenario and use specific
hyperparameters λ for each of them. For each scenario, we repeat five experiments
by randomly sampling two subsets, 70% for the training set and 30% for the test set.
The choice of this value depends on the main goal, resulting in a trade-off between
accuracy and fairness. In figure 4.7, we see clearly that higher values of λ produce
fairer predictions, while a specific hyperparameter λ near 0 allows to only focus on
optimizing the predictor loss. We note a MSE error gap of 700 between λ = 0 and
λ = 125. Choosing λ between 25 and 50 appears to be an interesting choice for this
scenario.

In Figure 4.8, the blue curves represent the predictions of the Standard NN. The
quadratic link between the prediction and the sensitive attribute age can be easily
observed. As expected, increasing λ leads to predictions almost stable, around a price
of about 226 euros.
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Figure 4.7: Impact of hyperparameter λ. Higher values of λ produce fairer predictions, while
λ near 0 corresponds to only optimizing the regression predictor.
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Scenario 2

Inspired by (Louppe et al., 2017), we consider the following toy scenario in a binary
target and continuous standard gaussian sensitive attribute setting:

X|S = s ∼ N
[(

0
0

)
,

(
1 − 1

2

− 1
2 1

)]
when Y = 0, (4.10a)

X|S = s ∼ N
[(

1
1 + 3 sin s

)
,

(
1 0
0 1

)]
when Y = 1 (4.10b)

Our goal is to learn a representation Z of the input data that is no longer biased
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(a) Biased model: λ = 0 ; HGR(Z, S) = 52% ; HGR(Ŷ, S) = 30% ; Acc = 79%
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(b) Unbiased model: λ = 13 ; HGR(Z, S) = 5% ; HGR(Ŷ, S) = 4% ; Acc = 68%

Figure 4.9: Toy example. (Left) Decision surface in the (X1, X2) plane. The figure (a) shows
the decision surface for a biased model focused on a prediction loss. Ŷ values are highly
correlated with S, samples with S around π

2 and Y = 1 being easier to classify than those
with S between −π

2 and 0. The figure (b) shows decision surfaces for our fair model. These
are vertical, meaning that only X1 influences the classification, and therefore Ŷ is no longer
biased w.r.t S. (Middle left) Z1-slices in the (X1, X2) plane. The comparison between the figure
below and above highlights the fact that adversarial training allows to create an unbiased
representation Z. (Middle right) Conditional probability densities of Z1 at S = −π

2 , 0, π
2 .

With λ = 0, the densities are dependent on S, whereas they are not anymore with adversarial
training. (Right) In blue, the function modeled by the neural network g in the HGR Neural
Network. In red, the closest linear transformation of sin(S) to g(S).

w.r.t S, while still accurately predicting the target value Y. Figure 4.9 compares the
results of both a biased model (a) with a hyperparameter λ = 0 and an unbiased
model (b) with λ = 13 applied on the toy scenario data. In the context of the Rényi
Minimization method, it is interesting to observe the maximal correlation functions
learnt by the adversary. When λ = 0, the adversary with sensitive attribute input
models the sin function up to a linear transformation, which also maximizes the cor-
relation with the input data as shown in (4.10b). In that case, the representation Z still
carries the bias of X w.r.t S, in the same sin shape. When λ = 13, the neural network
g is unable to find the sin function, which seems to indicate that the representation Z
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does not carry the bias w.r.t S anymore. This is confirmed by the low HGR coefficient
between Z and S, the Z1-slices as well as the conditional densities of Z1 at different
values of S. Not only does the adversarial induce an unbiased representation, it also
leads to an almost completely unbiased target Ŷ, as shown by the vertical decision
surfaces and the 4% HGR between Ŷ and S. This is at the cost of a slight loss of
accuracy, with an 11% decrease.

Scenario 3

Before considering real-world experiments, we follow the MNIST experimental setup
defined by (Kim et al., 2019b), which considers a digit classification task with a color
bias planted into the MNIST data set (LeCun et al., 2010; Kim et al., 2019a). In the
training set, ten distinct colors are assigned to each class. More precisely, for a given
training image, a color is sampled from the isotropic normal distribution with the
corresponding class mean color, and a variance parameter σ2. For a given test image,
a mean color is randomly chosen from one of the ten mean colors, without consider-
ing the test label, and a color is sampled from the corresponding normal distribution
(with variance σ2). Seven transformations of the data set are designed with this pro-
tocol, with seven values of σ2 equally spaced between 0.02 and 0.05. A lower value
of σ2 implies a higher color bias in the training set, making the classification task on
the testing set more difficult, since the model can base its predictions on colors rather
than shape. The sensitive feature, color, is encoded as a vector with 3 continuous
coordinates. We compare in this experiment algorithms based on prediction retreat-
ment with the simple adversarial (Zhang et al., 2018) and our Rényi adversarial (Grari
et al., 2020a). We also add in this comparison the algorithms based on fair representa-
tion with the mutual information (Ragonesi et al., 2020), the adversarial simple (Kim
et al., 2019b) and our Rényi adversarial (Grari et al., 2021b). For each algorithm and
for each data set, we obtain the best hyperparameters by grid search in five-fold cross
validation.

Results, in terms of accuracy, can be found in Table 4.1. Notice, the state-of-the-art
obtains different results than reported in (Ragonesi et al., 2020) because we consider
a continuous sensitive feature and not a 24-bit binary encoding. Our adversarial al-
gorithm via fair representation achieves the best accuracy on the test set for the seven
scenarios. The most important gap is for the smallest sigma where the generalisation
is the most difficult. The larger number of degrees of freedom carried by the two
functions f and g made it possible to capture more unbiased information than the
other algorithms on the multidimensional variables Z and S.
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Color variance

Training σ = 0.020 σ= 0.025 σ = 0.030 σ = 0.035 σ = 0.040 σ = 0.045 σ = 0.050

ERM (λ = 0.0) 0.476 ± 0.005 0.542 ± 0.004 0.664 ± 0.001 0.720 ± 0.010 0.785 ± 0.003 0.838 ± 0.002 0.870 ± 0.001
MI FR (Ragonesi et al., 2020) 0.592 ± 0.018 0.678 ± 0.015 0.737 ± 0.028 0.795 ± 0.012 0.814 ± 0.019 0.837 ± 0.004 0.877 ± 0.010

Simple PR (Zhang et al., 2018) 0.584 ± 0.034 0.625 ± 0.033 0.709 ± 0.027 0.733 ± 0.020 0.807 ± 0.013 0.803 ± 0.027 0.831 ± 0.027
Simple FR (Kim et al., 2019b) 0.645 ± 0.015 0.720 ± 0.014 0.787 ± 0.018 0.827 ± 0.012 0.869 ± 0.023 0.882 ± 0.019 0.900 ± 0.012
Rényi PR (Grari et al., 2020a) 0.571 ± 0.014 0.655 ± 0.022 0.721 ± 0.030 0.779 ± 0.011 0.823 ± 0.013 0.833 ± 0.026 0.879 ± 0.010
Rényi FR (Grari et al., 2021b) 0.730 ± 0.008 0.762 ± 0.021 0.808 ± 0.011 0.838 ± 0.010 0.878 ± 0.011 0.883 ± 0.012 0.910 ± 0.007

Table 4.1: MNIST with continuous color intensity

4.5.2 | Real-World Experiments
Data sets
Our experiments on real-world data are performed on five data sets. First, we ex-

periment with three data sets where the sensitive attribute and the target are both
continuous:

� The US Census demographic data set is an extraction of the 2015 American
Community Survey 5-year estimates. It contains 37 information features about
74,000 American census tracts. Our goal is to predict the percentage of children
below the poverty line. We consider gender as a sensitive attribute encoded as
the percentage of the women in the census tract.

� The Motor Insurance data set originates from a pricing game organized by The
French Institute of Actuaries in 2015 (The Institute of Actuaries of France, 2015).
The data set contains a total of 15 attributes for 36,311 observations. The task is
to predict the average claim cost of third-party material claims per policy. As
the sensitive attribute we use the driver’s age.

� The Crime data set is obtained from the UCI Machine Learning Repository (Dua
and Graff, 2017). This data set includes a total of 128 attributes for 1,994 in-
stances from communities in the US. The task is to predict the number of vio-
lent crimes per population for US communities. As the sensitive attribute we
use the race information with the ratio of an ethnic group per population.

We experiment with two data sets with a binary classification task where the sen-
sitive features are continuous:

� Compas: The COMPAS data set (Angwin et al., 2016) contains 13 attributes of
about 7,000 convicted criminals with class labels that state whether or not the
individual reoffended within 2 years of their most recent crime. Here, we use
age as sensitive attribute.
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� Default: The Default data set (Yeh and Lien, 2009) contains 23 features about
30,000 Taiwanese credit card users with class labels which state whether an in-
dividual will default on payments. As sensitive attribute, we use age.

Fairness Algorithms

As a baseline, we use a classic, "unfair" deep neural network, Standard NN. We
compare our different approaches with state-of-the-art algorithms. We compare fair
prediction retreatment methods based on f-divergences (lower right in Figure 4.6)
with the mutual information (Grari et al., 2020a), the χ2 divergence estimated by
KDE (Mary et al., 2019) 2 and by neural network (Grari et al., 2020a). In addition,
still in the fair prediction retreatment category, we compare the simple adversarial
algorithm (Zhang et al., 2018) (upper right in Figure 4.6) and our Rényi adversar-
ial (Grari et al., 2021b) (middle right in Figure 4.6). Also, we include methods based
on fair representation with the mutual information (Ragonesi et al., 2020) (lower left
in Figure 4.6), simple adversarial (Adel et al., 2019) (upper left in Figure 4.6) and our
Rényi algorithm (Grari et al., 2021b) (middle left in Figure 4.6).

Metrics and Experimental Conditions

In a same setting, the hyperparameter λ of the different approaches allows us to
balance the relative importance of accuracy and fairness. For each algorithm and for
each data set, we attempted to obtain comparable results by giving similar predic-
tive performance of the models. We obtain the best hyperparameters by grid search
in five-fold cross validation (specific to each of them), 80% for the training set and
20% for the test set. Depending on the task, we parameterized the number of layers
between 3 and 5 and between 8 and 32 for the number of units. For all the differ-
ent fair representation algorithms, we assign the latent space with only one hidden
layer with 64 units. Mean normalization was applied to all the outcome true val-
ues in the continuous cases. We used Tanh activation functions, Dropout and Xavier
initialization. The considered regression loss is MSE. Notice, we applied a mean nor-
malization to the different outcome true value. Finally, we report the average of the
mean squared error (MSE), the accuracy (ACC) and the mean of the fairness metrics
HGR_NN (Grari et al., 2020a), HGR_KDE (Mary et al., 2019), HGR_RDC (Lopez-Paz
et al., 2013) and MINE (Belghazi et al., 2018) on the test set. Since none of these
fairness measures are fully reliable (they are only estimations which are used by the
compared models), we also use the FairQuant metric (Grari et al., 2020a), based on
the quantization of the test samples in 50 quantiles w.r.t. to the sensitive attribute.
As discussed in section 3.2.4, this metric corresponds to the mean absolute difference
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between the global average prediction and the mean prediction of each quantile.

Results and Discussion

As expected, the baseline, Standard NN, is the best predictor but also the most
biased one. It achieves the lowest prediction errors and ranks amongst the highest
and thus worst values for all fairness measures throughout all data sets and tasks.

For demographic parity, the results of our experiments can be found in Table 4.2.
While being better in terms of predictive performance, our Rényi Fair Representation
algorithm (Rényi FR) achieves on four data sets (except on the Crime data set) the best
level of fairness assessed by HGR estimation, MINE, and FairQuant. On the Crime
data set, the approach by χ2

KDE (Mary et al., 2019) gets slightly better results but with
a very high volatility. Note, the simple adversarial on Fair Representation (Adel et al.,
2019) obtains (except on the Crime data set) better results than simple adversarial on
fair prediction retreatment (Zhang et al., 2018).

For equalized residuals, Table 4.3, our approach based on the Rényi minimization
achieves (except on the Crime data set, too) the best result with the lowest values
for the metric FairQuant. The approach based on χ2

KDE (Mary et al., 2019) performs
slightly worse. For the mutual information estimation approach, except on the UC
Census data set, it achieves worse results in fairness and accuracy. Globally, our
neural approach based on the Rényi minimization, appears to be very competitive
in every setting.
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Figure 4.10: Impact of hyperparameter λ (COMPAS data set): Higher values of λ produce
fairer predictions.

2https://github.com/criteo-research/continuous-fairness
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MSE HGR_NN HGR_KDE HGR_RDC MINE FairQuant

U
S

C
en

su
s

Standard NN 0.274 ± 0.003 0.212 ± 0.094 0.181± 0.00 0.217 ± 0.004 0.023 ± 0.018 0.059 ± 0.00
Rényi PR (Grari et al., 2020a) 0.526 ± 0.042 0.057 ± 0.011 0.046 ± 0.030 0.042 ± 0.038 0.001 ± 0.001 0.008 ± 0.015
χ2

KDE PR (Mary et al., 2019) 0.541 ± 0.015 0.075 ± 0.013 0.061 ± 0.006 0.078 ± 0.013 0.002 ± 0.001 0.019 ± 0.004
χ2

NN PR (Grari et al., 2020a) 0.535 ± 0.039 0.069 ± 0.037 0.048 ± 0.027 0.044 ± 0.032 0.002 ± 0.001 0.008 ± 0.013
MI PR (Grari et al., 2020a) 0.537 ± 0.046 0.058 ± 0.042 0.048 ± 0.029 0.045 ± 0.037 0.001 ± 0.001 0.012 ± 0.016
Simple FR (Adel et al., 2019) 0.552 ± 0.032 0.100 ± 0.028 0.138 ± 0.042 0.146 ± 0.031 0.003 ± 0.003 0.035 ± 0.011
Simple PR (Zhang et al., 2018) 0.727 ± 0.264 0.097 ± 0.038 0.135 ± 0.036 0.165 ± 0.028 0.009 ± 0.005 0.022 ± 0.019
Rényi FR (Grari et al., 2021b) 0.523 ± 0.035 0.054 ± 0.015 0.044 ± 0.032 0.041 ± 0.031 0.001 ± 0.001 0.007 ± 0.002

M
ot

or

Standard NN 0.945 ± 0.011 0.201 ± 0.094 0.175 ± 0.0 0.200 ± 0.034 0.188 ± 0.005 0.008 ± 0.011
Rényi PR (Grari et al., 2020a) 0.971 ± 0.004 0.072 ± 0.029 0.058 ± 0.052 0.066 ± 0.009 0.000 ± 0.000 0.006 ± 0.02
χ2

KDE PR (Mary et al., 2019) 0.979 ± 0.119 0.077 ± 0.023 0.059 ± 0.014 0.067 ± 0.028 0.001 ± 0.001 0.006 ± 0.002
χ2

NN PR (Grari et al., 2020a) 0.975 ± 0.003 0.076 ± 0.016 0.067 ± 0.0005 0.067 ± 0.015 0.001 ± 0.001 0.005 ± 0.0002
MI PR (Grari et al., 2020a) 0.982 ± 0.003 0.078 ± 0.013 0.068 ± 0.004 0.069 ± 0.009 0.000 ± 0.000 0.004 ± 0.001
Simple FR (Adel et al., 2019) 0.979 ± 0.003 0.101 ± 0.04 0.09 ± 0.03 0.101 ± 0.04 0.002 ± 0.002 0.009 ± 0.004
Simple PR (Zhang et al., 2018) 0.998 ± 0.004 0.076 ± 0.034 0.091 ± 0.024 0.129 ± 0.08 0.001 ± 0.001 0.004 ± 0.001
Rényi FR (Grari et al., 2021b) 0.962 ± 0.002 0.070 ± 0.011 0.055 ± 0.005 0.067 ± 0.006 0.000 ± 0.000 0.004 ± 0.001

C
ri

m
e

Standard NN 0.384 ± 0.012 0.732 ± 0.013 0.525 ± 0.013 0.731 ± 0.009 0.315 ± 0.021 0.353 ± 0.006
Rényi PR (Grari et al., 2020a) 0.781 ± 0.016 0.356 ± 0.063 0.097 ± 0.022 0.171 ± 0.03 0.009 ± 0.008 0.039± 0.008
χ2

KDE PR (Mary et al., 2019) 0.778 ± 0.103 0.371 ± 0.116 0.115 ± 0.046 0.177 ± 0.054 0.024 ± 0.015 0.064 ± 0.023
χ2

NN PR (Grari et al., 2020a) 0.785 ± 0.028 0.385 ± 0.068 0.106 ± 0.024 0.184 ± 0.020 0.020 ± 0.031 0.123 ± 0.012
MI PR (Grari et al., 2020a) 0.782 ± 0.034 0.395 ± 0.097 0.110 ± 0.022 0.201 ± 0.021 0.032 ± 0.029 0.136 ± 0.012
Simple FR (Adel et al., 2019) 0.836 ± 0.005 0.384 ± 0.037 0.170 ± 0.027 0.371 ± 0.035 0.058 ± 0.027 0.057 ± 0.007
Simple PR (Zhang et al., 2018) 0.787 ± 0.134 0.377 ± 0.085 0.153 ± 0.056 0.313 ± 0.087 0.037 ± 0.022 0.063 ± 0.046
Rényi FR (Grari et al., 2021b) 0.783 ± 0.031 0.369 ± 0.074 0.087 ± 0.031 0.173 ± 0.044 0.011 ± 0.006 0.043 ± 0.012

ACC HGR_NN HGR_KDE HGR_RDC MINE FairQuant

C
O

M
PA

S

Standard NN 68.7% ± 0.243 0.363 ± 0.005 0.326 ± 0.003 0.325 ± 0.008 0.046 ± 0.028 0.140 ± 0.001
Rényi PR (Grari et al., 2020a) 59.7% ± 2.943 0.147 ± 0.000 0.121 ± 0.002 0.101 ± 0.007 0.004 ± 0.001 0.018 ± 0.018
MI PR (Grari et al., 2020a) 54.4% ± 7.921 0.134 ± 0.145 0.123 ± 0.111 0.141 ± 0.098 0.014 ± 0.023 0.038 ± 0.050
Simple FR (Adel et al., 2019) 55.4% ± 0.603 0.118 ± 0.022 0.091 ± 0.012 0.097 ± 0.034 0.006 ± 0.007 0.013 ± 0.016
Simple PR (Zhang et al., 2018) 51.0% ± 3.550 0.116 ± 0.000 0.081 ± 0.003 0.086 ± 0.010 0.002 ± 0.003 0.010 ± 0.005
Rényi FR (Grari et al., 2021b) 60.2% ± 3.076 0.063 ± 0.024 0.068 ± 0.018 0.067 ± 0.014 0.001 ± 0.002 0.011 ± 0.018

D
ef

au
lt

Standard NN 82.1% ± 0.172 0.112 ± 0.013 0.067 ± 0.010 0.089 ± 0.014 0.002 ± 0.001 0.015 ± 0.002
Rényi PR (Grari et al., 2020a) 79.9% ± 2.100 0.082 ± 0.015 0.075 ± 0.019 0.072 ± 0.010 0.001 ± 0.001 0.007 ± 0.007
MI PR (Grari et al., 2020a) 80.1% ± 2.184 0.093 ± 0.020 0.057 ± 0.002 0.066 ± 0.012 0.001 ± 0.001 0.008 ± 0.001
Simple FR (Adel et al., 2019) 79.2% ± 1.207 0.054 ± 0.025 0.048 ± 0.015 0.064 ± 0.009 0.001 ± 0.001 0.005 ± 0.002
Simple PR (Zhang et al., 2018) 77.9% ± 9.822 0.052 ± 0.017 0.044 ± 0.013 0.056 ± 0.004 0.000 ± 0.000 0.004 ± 0.000
Rényi FR (Grari et al., 2021b) 80.8% ± 0.286 0.041 ± 0.008 0.044 ± 0.006 0.047 ± 0.002 0.001 ± 0.002 0.005 ± 0.001

Table 4.2: Results for Demographic Parity Best performance among fair algorithms in bold.

Equalized Residuals
MSE HGR_NN HGR_KDE HGR_RDC FairQuant

U
S

C
en

su
s Standard NN 0.274 ± 0.003 0.157 ± 0.006 0.098 ± 0.002 0.122 ± 0.002 0.008 ± 0.001

Rényi PR (Grari et al., 2020a) 0.334 ± 0.021 0.068 ± 0.019 0.053 ± 0.04 0.055 ± 0.046 0.003 ± 0.002
χ2

KDE PR (Mary et al., 2019) 0.408 ± 0.004 0.092 ± 0.017 0.049 ± 0.003 0.063 ± 0.005 0.009 ± 0.001
χ2

NN PR (Grari et al., 2020a) 0.384 ± 0.012 0.084 ± 0.021 0.054 ± 0.042 0.057 ± 0.022 0.006 ± 0.004
MI PR (Grari et al., 2020a) 0.406 ± 0.021 0.083 ± 0.017 0.055 ± 0.017 0.082 ± 0.015 0.008 ± 0.006

M
ot

or

Standard NN 0.945 ± 0.015 0.145 ± 0.005 0.102 ± 0.038 0.123 ± 0.041 0.075 ± 0.006
Rényi PR (Grari et al., 2020a) 0.991 ± 0.021 0.102 ± 0.007 0.082 ± 0.008 0.092 ± 0.009 0.011 ± 0.015
χ2

KDE PR (Mary et al., 2019) 1.019 ± 0.01 0.111 ± 0.007 0.079 ± 0.005 0.098 ± 0.005 0.015 ± 0.011
χ2

NN PR (Grari et al., 2020a) 1.011 ± 0.012 0.114 ± 0.011 0.081 ± 0.008 0.077 ± 0.007 0.014 ± 0.0010
MI PR (Grari et al., 2020a) 1.024 ± 0.017 0.121 ± 0.022 0.091 ± 0.007 0.092 ± 0.005 0.031 ± 0.009

C
ri

m
e

Standard NN 0.384 ± 0.024 0.472 ± 0.036 0.244 ± 0.01 0.440 ± 0.011 0.047 ± 0.004
Rényi PR (Grari et al., 2020a) 0.583 ± 0.044 0.382 ± 0.089 0.151 ± 0.017 0.222 ± 0.045 0.028 ± 0.006
χ2

KDE PR (Mary et al., 2019) 0.579 ± 0.074 0.381 ± 0.097 0.152 ± 0.035 0.221 ± 0.068 0.048 ± 0.035
χ2

NN PR (Grari et al., 2020a) 0.581 ± 0.069 0.353 ± 0.092 0.142 ± 0.029 0.211 ± 0.038 0.042 ± 0.028
MI PR (Grari et al., 2020a) 0.583 ± 0.054 0.413 ± 0.15 0.161 ± 0.027 0.232 ± 0.018 0.052 ± 0.013

Table 4.3: Results for Equalized Residuals in terms of accuracy (MSE) and fairness metrics.

Impact of mitigation weight In Figure 4.10, we plot the performance of different
scenarios by displaying the HGR against the Accuracy with different values of the
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hyperparameter λ. This plot was obtained on the COMPAS data set with 4 algo-
rithms: our two Rényi approaches, the Simple Fair Representation (Adel et al., 2019)
and the Simple Prediction Retreatment (Zhang et al., 2018). The different curves is
obtained by Nadaraya-Watson kernel regression (Bierens, 1988) between the Accu-
racy of the model and the HGR. Varying the hyperparameter λ allows to control the
fairness/accuracy trade-off. Here, we clearly observe for all algorithms that the Ac-
curacy, or predictive performance, decreases when fairness increases. Higher values
of λ produce fairer predictions w.r.t the HGR, while near 0 values of the hyperparam-
eter λ result in the optimization of the predictor loss with no fairness consideration
(dots in the upper left corner of the graph). We note that, for all levels of predictive
performance, our two Rényi approaches outperforms the state of the art algorithms.
Also, we note that algorithms based on fair representation outperforms prediction
retreament (except some for simple adversarial where the level of fairness is very low
close to the most biased model). We will conduct an experiment below to analyze this
results.

4.5.3 | Fair Representation Compared to Prediction Retreatment
In order to further analyze the benefits of mitigation in neural representations com-
pared to prediction retreatments, we propose to consider various architectures of pre-
dictors h and encoders φ, with adversarial HGR mitigation being applied on the out-
put of the encoder as depicted in figure 4.6. To get comparable results between set-
tings, we consider a constant full architecture (encoder + predictor), composed of 5
layers with 4 hidden layers with 32 units each.

In figure 4.11, we compare on the COMPAS dataset 5 different settings where mit-
igation is applied on a different layer of this full architecture: LayerX corresponds to
a setting where mitigation is applied on the output of layer X (encoder of X layers,
predictor of 5-X layers). Layer5 thus corresponds to our Rényi prediction retreatment
approach , Rényi PR (no predictor function, the encoder function h directly outputs
the prediction). Layer3 is the standard setting used for our approach in the previ-
ous results reported above (Rényi FR). As in Figure 4.10, plotted results correspond
to fairness-accuracy trade-offs obtained with different values of λ. We notice that
applying mitigation too early in the architecture (Layer1) leads to very poor results.
This can be explained by the fact that for this simple encoding setting, the encoder
expressiveness is to weak to effectively remove non-linear dependencies w.r.t. the
sensitive attribute, without removing too much useful information for prediction. At
the contrary, when mitigation is applied late in the architecture (Layer4 and Layer5)
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Figure 4.11: Impact of hyperparameter λ (COMPAS data set) for various encoders φ and
predictors h.

we observe generalization limits of the approach. While results on the training set
are similar to those of Layer3, these settings lead to predictions at test time that are
more dependent on the sensitive attribute. Due to L-Lipschitzness of neural network
architectures, we know that HGR(Z, S) ≥ HGR(hwh(Z), S). Acting on Z leads to re-
move bias from Z even for components ignored by the predictor φ in train. However,
we argue that this allows to gain in stability at test time, when such components can
be activated for new inputs, compared to late approaches, such as Layer4 or Layer5,
which induce a greater variance of sensitive dependence of the output Ŷ . Mitiga-
tion at intermediate levels, such as Layer3, appears to correspond to the best trade-off
expressiveness/generalization.

4.6 | Conclusion
In this chapter we have identified a main issue for applying fairness for any con-
tinuous sensitive features: The traditional state-of-the-art adversarial algorithm are
theoretically not able to optimize the most classical fairness objective as demographic
parity. To address this issue we leverage our HGR maximal correlation, which has
shown to be very efficient in capturing non-linear dependencies and for debiasing a
predictor model with adversarial learning. We have theoretically showed the interest
of using this fairness metric as a penalization term compared to the simple adversar-
ial methods and in particular for the continuous case. We investigated empirically
why fair adversarial representation methods can give better results. For this purpose,
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we have compared mitigation at different levels of neural architectures. We argue
that acting at intermediary levels of neural representations allows the best trade-off
between expressiveness and generalisation for bias mitigation. For further investi-
gation, we will apply this architecture for information bottleneck purposes (e.g., for
data privacy), which might be improved with an HGR_NN penalization as suggested
in (Asoodeh et al., 2015).
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5

Ensuring Group Fairness for Gradient
Tree Boosting Predictors

This chapter focuses on fairness for another family of ML methods: decision tree
predictors. So far, we have mainly focused on linear regression or neural networks,
which constitute the bulk of the Fair-ML research community. However, ensemble
methods combining several decision tree classifiers have proven very efficient for var-
ious applications. In practice for tabular data sets, actuaries and data scientists prefer
the use of gradient tree boosting over neural networks due to its generally higher ac-
curacy rates (Zhang et al., 2017). Our purpose in this chapter is the development of
fair classifiers based on decision trees. We propose a novel approach to combine the
strength of gradient tree boosting with an adversarial fairness constraint.

Most of the work presented in this chapter was the subject of the paper: Fair
Adversarial Gradient Tree Boosting, published at the ICDM 2019 conference (Grari et al.,
2019).

The contributions are threefold:

� To the best of our knowledge, we propose the first adversarial learning method
for generic classifiers, including decision trees;

� We apply adversarial learning for fair classification on decisions trees;

� We empirically compare our proposal and its variants with several state-of-the-
art approaches, for two different fairness metrics. Experiments show the great
performance of our approach.

The remainder of this chapter proceeds as follows. First, Section 5.1 briefly recaps
the principle of classical gradient tree boosting. Next, section 5.2 outlines a novel
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algorithm which combines gradient tree boosting with adversarial debiasing. Finally,
section 5.3 presents experimental results of our approach.

This present work will focus on the group fairness objective in a binary setting.
The targeted sensitive attribute and the actual value of the outcome are both binary
((S, Y) ∈ [0, 1])). Please note that this work could be extended in the continuous case
using the techniques in the previous chapter.

5.1 | Gradient Tree Boosting
In order to establish the basis for our approach and also to introduce our notation,
we first summarize the principle of classical gradient tree boosting. The "Gradient
Boosting Machine" (GBM) constitutes a prediction model for regression and classifi-
cation problems based on an ensemble technique where multiple weak learners are
combined to produce a strong learner (Friedman, 2001). Often, such weak learners
are decision trees, generally of the type Classification And Regression Tree (CART).
In this case, the algorithm is called gradient tree boosting (GTB). The weak learners
are built sequentially. Eventually, a strong classifier is obtained as a weighted sum of
the weak learners. The classical gradient method is used to optimize the model for
any differentiable loss function.

The objective of the GBM is to find a good estimate of the function F which ap-
proximately minimizes the empirical loss function:

min
F

n

∑
i=1
L(yi, F(xi)) (5.1)

where the loss function L(yi, F(xi)) measures the i-th prediction compared to the
true label. In the classical version of the GBM, the prediction corresponding to a
feature vector x is given by an additive model of the form

FM(xi) =
M

∑
m=0

γmhm(xi) (5.2)

where M is the total number of iterations, and hm(xi) corresponds to a weak learner
at step m in the form of a greedy CART prediction.

The main steps for fitting the model are shown as pseudo code in Algorithm 5.
The method exploits the fact that the residual corresponds to the negative gradient of
the loss function. Thus, we calculate at each step m the so-called "pseudo residuals":
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rim = −
[

∂L(yi, F(xi))

∂F(xi)

]
F(x)=Fm−1(x)

for i = 1, . . . , n (5.3)

In order to update the model, we fit a new weak learner hm(x) to those pseudo
residuals and add it to the current model. This step is repeated until the algorithm
converges.

Algorithm 5 Classical Gradient Boosting

Input: Training set (xi, si, yi)
n
i=1, a number of iterations M, a differentiable loss func-

tion L(y, F(x))

Initialize: Calculate the constant value:

F0(x) = arg min
γ

n

∑
i=1
L(yi, γ)

for m = 1 to M− 1 do

(a) Calculate the pseudo residuals:

rim = −
[

∂L(yi, F(xi))

∂F(xi)

]
F(x)=Fm−1(x)

for i = 1, . . . , n

(b) Fit a classifier hm(x) to pseudo residuals using the training set (xi, rim)}n
i=1

(c) Compute multiplier γm by solving the following one-dimensional optimiza-
tion problem:

γm = arg min
γ

n

∑
i=1
L (yi, Fm−1(xi) + γ ∗ hm(xi))

(d) Update the model:

Fm(xi) = Fm−1(xi) + γm ∗ hm(xi)

end for

69
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5.2 | Fair Adversarial Gradient Tree Boosting
(FAGTB)

Our aim is to learn a classifier that is both effective for predicting true labels and
fair, in the sense that it cares about metrics defined in section 3.1 for demographic
parity or equalized odds. The idea is to leverage the great performance of GTB for
classification, while adapting it for fair machine learning via adversarial learning.

5.2.1 | Min-Max formulation
The GTB processes sequentially by gradient iteration (see Section 5.1). This architec-
ture allows us to apply for fair classification with decision tree algorithms the concept
of adversarial learning, which corresponds to a two-player game with two contra-
dictory components, such as in generative adversarial networks (GAN) (Goodfellow
et al., 2014). In the vein of (Zhang et al., 2018; Louppe et al., 2017; Wadsworth et al.,
2018) for fair classification, we consider a predictor function F, that outputs the prob-
ability of an input vector X for being labelled Y = 1, and an adversarial model A
which tries to predict the sensitive attribute S from the output of F. Depending on
the accuracy rate of the adversarial algorithm, we penalize the gradient of the GTB at
each iteration. The goal is to obtain a classifier F whose outputs do not allow the ad-
versarial function to reconstruct the value of the sensitive attribute. If this objective is
achieved, the data bias in favor of some demographics disappeared from the output
prediction.

The predictor and the adversarial classifiers are optimized simultaneously in a
min-max game defined as:

arg min
F

max
θA

n

∑
i=1
LFi(F(xi))− λ

n

∑
i=1
LAi(F(xi); θA) (5.4)

where LFi and LAi are respectively the predictor and the adversary loss for the train-
ing sample i given F(xi) ∈ R, which refers to the output of the GTB predictor for
input xi. The hyperparameter λ controls the impact of the adversarial loss.

The targeted classifier outputs the label Ŷ which maximizes the posterior P(Ŷ|X).
Thus, for a given sample xi, we get:

ŷi = arg max
y∈{0;1}

pF(Y = y|X = xi) (5.5)
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Figure 5.1: The architecture of the Fair Adversarial Gradient Tree Boosting (FAGTB). 4 steps
are depicted, each one corresponding to a tree h that is added to the global classifier F. The
neural network on the right is the adversary that tries to predict the sensitive attributes from
the outputs of the classifier. Solid lines represent forward operations, while dashed ones
represent gradient propagation. At each step m, gradients from the prediction loss and the
adversary loss are summed to form the target for the next decision tree hm+1.

where pF(Y = 1|X = xi) = σ(F(xi)), with σ denoting the sigmoid function. There-
fore, LFi is defined as a logistic regression loss:

LFi(F(xi)) =− log pF(Y = yi|X = xi)

=− 1yi=1 log(σ(F(xi)))

− 1yi=0 log(1− σ(F(xi)))

(5.6)

where 1cond equals 1 if cond is true, 0 otherwise.

The adversary A corresponds to a neural network with parameters θA, which
takes as input the sigmoid of the predictor’s output for any sample i (i.e., PF(Y =

1|X = xi)), and outputs the probability PF,θA for the sensitive to equal 1:

� For the demographic parity task, PF(Y = 1|X = xi) is the only input given to
the adversary for the prediction of the sensitive attribute si. In that case, the
network A outputs the conditional probability PF,θA(S = 1|V = vi) = A(vi),
with V = (σ(F(X))).

� For the equalized odds task, the label yi is concatenated to PF(Y = 1|X = xi) to
form the input vector of the adversary vi = (σ(F(xi)), yi), so that the function A
could be able to output different conditional probabilities PF,θA(S = 1|V = vi)

depending on the label yi of i.
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The adversary loss is then defined for any training sample i as:

LAi(F(xi); θA) =− 1si=1 log(σ(A(vi)))

− 1si=0 log(1− σ(A(vi)))
(5.7)

with vi defined according to the task as detailed above.
Note that, for the case of demographic parity, if there exists (F∗, θ∗A) such that

θ∗A = arg maxθA
PF∗,θA(S|V) on the training set, PF∗,θ∗A(S|V) = P̂(S) and PF∗(Y|X) =

P̂(Y|X), with P̂(S) and P̂(Y|X) the corresponding distributions on the training set,
(F∗, θ∗A) is a global optimum of our min-max problem eq. (5.4). In that case, we
have both a perfect classifier in training, and a completely fair model since the best
possible adversary is not able to predict S more accurately than the estimated prior
distribution. Similar observations can easily be made for the equalized odds task (by
replacing P̂(S) by P̂(S|Y) and using the corresponding definition of V in the previous
assertion). While such a perfect setting does not always exists in the data, it shows
that the model is able to identify a solution when it reaches one. If a perfect solu-
tion does not exists in the data, the optimum of our min-max problem is a trade-off
between prediction accuracy and fairness, controlled by the hyperparameter λ.

5.2.2 | Learning
The learning process is outlined as pseudo code in Algorithm 6. The algorithm first
initializes the classifier F0 with constant values for all inputs, as done for the classical
GBT. Additionally, it initializes the parameters θA of the adversarial neural network
A (a Xavier initialization is used in our experiments). Then, at each iteration m, be-
yond calculating the pseudo residuals rim for any training sample i w.r.t. the targeted
prediction loss LFi , it computes pseudo residuals tim for the adversarial loss LAi too.
Both residuals are combined in uim = rim − λ ∗ tim, where λ controls the impact of the
adversarial network. The algorithm then fits a new weak regressor hm (a decision tree
in our work) to residuals using the training set {(xi, uim)}n

i=1. This pseudo-residuals
regressor is supposed to correct both prediction and adversarial biases of the previous
classifier Fm−1. It is added to it after a line search step, which determines the best γm

weight to assign to hm in the new classifier Fm. Finally, the adversarial has to adapt its
weights according to new outputs (i.e., using the training set {(Fm(xi), si)}n

i=1). This
is done by gradient backpropagation. A schematic representation of our approach
can be found in Figure 5.1.
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Algorithm 6 Fair Adversarial Gradient Tree Boosting

Input: training set (xi, si, yi)
n
i=1, a number of iterations M, an adversarial learning

rate α, a differentiable loss function LF for the output classifier and LA for the
adversarial classifier.

Initialize: Calculate the constant value:

F0(x) = arg min
γ

n

∑
i=1
LFi(γ)

Initialize parameters θA of the neural network A(x)

for m = 1 to M− 1 do

(a) Calculate the pseudo residuals:

rim = −
[

∂LFi(F(xi))

∂F(xi)

]
F(x)=Fm−1(x)

for i = 1, . . . , n

(b) Calculate the pseudo residuals of the adversarial from the input Fm−1(xi):

tim = −
[

∂LAi(F(xi; θA))

∂F(xi)

]
F(x)=Fm−1(x)

for i = 1, . . . , n

(c) Calculate the training loss derivative: uim = rim − λ ∗ tim

(d) Fit a classifier hm(x) to pseudo residuals using the training set {(xi, uim)}n
i=1

(e) Compute multiplier γm by solving the one-dimensional optimization problem:

γm = arg min
γ

n

∑
i=1
LFi (Fm−1(xi) + γ ∗ hm(xi))− λ ∗ LAi(Fm−1(xi) + γ ∗ hm(xi); θA).

(f) Update the learning model:

(g) Fit the adversarial A to the using the new outputs (i.e., using the training set
{(Fm(xi), si)}n

i=1)

θA := θA − α ∗ ∂LAi(Fm(xi); θA)

∂θA

end do
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5.3 | Empirical Results

We evaluate the performance of our algorithm empirically with respect to regression
accuracy and fairness. We conduct the experiments on a synthetic scenario, but also
on real-world data sets. Finally, we compare the results with state-of-the-art algo-
rithms.

Synthetic Scenario

We illustrate the fundamental functionality of our proposal with a simple toy scenario
which was inspired by the Red Car example (Kusner et al., 2017). The subject is a
pricing algorithm for a fictional car insurance policy. The purpose of this exercise is
to train a fair classifier which estimates the claim likelihood without incorporating
any gender bias. We want to demonstrate the effects of an unfair model versus a fair
model.

We focus on the general claim likelihood and ignore the severity or cost of the
claim. Further, we only consider the binary case of claim or not (as opposed to a fre-
quency). We assume that the claim likelihood only depends on the aggressiveness
and the inattention of the policyholder. To make the training more complex, these
two properties are not directly represented in the input data but only indirectly avail-
able through correlations with other input features. We create a binary label Y with
no dependence with the sensitive attribute S. Concretely, we use as features the pro-
tected attribute gender of the policyholder, and the unprotected attributes color of the
car, and age of the policyholder. In our data distribution, the color of the car is strongly
correlated with both gender and aggressiveness. The age is not correlated with gender.
However, the age is correlated with the inattention of the policyholder. Thus, the
latter input feature is actually linked to the claim likelihood. First, we generate the
training samples (xi, si, yi)

n
i=1. The unprotected attributes xi = (ci, ai) represent the

color of the car and the age of the policyholder, respectively. s is the protected variable
gender. y is the binary class label, where y = 1 indicates a registered claim. As stated
above, we do not use the two features aggressiveness (A) and inattention (I) as input
features but only to construct the data distribution which reflects the claim likelihood.
In order to make it more complex, we add a little noise εi. These training samples are
generated as follows:
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si ∼ B(0, 1)(
Ii

ai

)
∼ N

[(
0
40

)
,

(
1 4
4 20

)]

Ai ∼ N (0, 1)

ci = (1.5 ∗ si + Ai) > 1

yi = σ(Ai + Ii + εi) > 0.5

εi ∼ N (0, 0.1)

where B(p) denotes the bernoulli distribution with probability p and N (µ, σ) the
normal distribution with µ and σ as mean and standard deviation parameters.

A correlation matrix of the distribution is shown in Table 5.1.

We execute first a classical GTB algorithm. In Figure 5.3, on the top-left graph,
we can see the curves of accuracy and the fairness metric p-rule during the training
phase. Even though there is no obvious link with the sensitive attribute, we notice
that this model is unfair (p-rule of 67%). In fact, the outcome observations Y depend
exclusively on A and I which should have no dependence with the sensitive feature
S. To reconstruct the aggressiveness, the classifier has to consider the color of the
car. Unfortunately, it incorporates the sensitive information too, resulting in a claim
likelihood prediction one and a half times more for men than for women (1/0.67).

To solve this problem, we also plot in Figure 5.3 curves for our FAGTB model
with 5 different values of λ, optimized for demographic parity. We observe that λ ef-
ficiently controls fairness against accuracy, with a p-rule that increases to 1 (perfectly
fair model) for λ ≥ 0.016. Of course this is at the cost of a slight loss of accuracy. Of
course this is at the cost of a slight loss of accuracy. We note that gaining 29 points
of p-rule leads to a decrease of accuracy of 10 points. To have a better understanding
of what is happening when we consider the model as fair in this specific scenario,
we plot the permutation feature importance (Breiman, 2001; Fisher et al., 2019) (cal-
culated on the model performance reduction after randomly shuffling a feature) for
the fair and the unfair model in Figure 5.2. With higher lambda values, the weight of
color, which is indirectly correlated with the sensitive attribute, tends to be cancelled.

Comparison Against the State-of-the-Art
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Table 5.1: Correlation matrix of the synthetic scenario

a 1.0
A 0.01 1.0
c -0.01 0.68 1.0
s 0.0 -0.01 0.36 1.0
I 0.90 0.01 0.0 0.0 1.0

a A c s I

The features are: age (a), agressivity (A), color (c), gender (s), inattention (I)

Color Age
0.00

0.05

0.10

0.15

0.20

0.25
Unfair model (FAGTB with =0.000)

Color Age
0.00

0.05

0.10

0.15

0.20

0.25
Fair model (FAGTB with =0.015)

Figure 5.2: Synthetic Scenario: Feature importance for a biased model (λ = 0) and a fair
model (λ = 0.015) optimized for demographic parity.

Data Sets

For our experiments we use 4 different popular data sets often used in fair classifica-
tion:

� Adult: The Adult UCI income data set (Dua and Graff, 2017) in this specific
experiment the class labels state if the income is higher than $50,000 or not. As
sensitive attribute we use gender encoded as a binary attribute, male or female.

� Compas: The COMPAS data set (Angwin et al., 2016) with the same setting as
Subsection 4.5

� Default: The Default data set (Yeh and Lien, 2009) with the same setting as
Subsection 4.5

� Bank: The bank marketing data set (Moro et al., 2014) contains 16 features about
45,211 clients of a Portuguese banking institution. The goal is to predict if the
client has subscribed or not to a term deposit. We consider the age as sensitive
attribute, encoded as a binary attribute, indicating whether the client’s age is
between 33 and 60 years, or not.
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Figure 5.3: Synthetic scenario: Accuracy and p-rule metric for a biased model (λ = 0) and for
several fair models with varying values of λ optimized for demographic parity.

For all data sets, we repeat 10 experiments by randomly sampling two subsets,
80% for the training set and 20% for the test set. Finally, we report the average of the
accuracy and the fairness metrics from the test set.

Fairness Algorithms

Because different optimization objectives result in different algorithms, we run sep-
arate experiments for the two fairness metrics of our interest, demographic parity
(Table 5.2) and equalized odds (Table 5.3). More specifically, for demographic parity
we aim at a p-rule of 90% for all algorithms and then compare the accuracy. Optimiz-

77



Chapter 5. Ensuring Group Fairness for Gradient Tree Boosting Predictors

ing for equalized odds, results are more difficult to compare. In order to be able to
compare the accuracy, we have done our best to obtain, each time, a disparate level
below 0.03.

As a baseline, we use a classical, "unfair" gradient tree boosting algorithm, Stan-
dard GTB, and a deep neural network, Standard NN.

Further, to evaluate if the complexity of the adversarial network has an impact
on the quality of the results, we compare a simple logistic regression adversarial,
FAGTB-1-Unit, with a complex deep neural network, FAGTB-NN. In this latter, the
adversarial architecture consists of 3 hidden layers with 64, 32, and 16 units, respec-
tively, and ReLU activations.

In addition to the algorithms mentioned above, we evaluate the following fair
state-of-the-art in-processing algorithms: Wadsworth2018 (Wadsworth et al., 2018)2,
Zhang2018 (Zhang et al., 2018)3, Kamishima (Kamishima et al., 2012)1 Feldman (Feld-
man et al., 2015)1, Zafar-DI (Zafar et al., 2017b)1 and Zafar-DM (Zafar et al., 2017a)1.

For each algorithm and for each data set, we obtain the best hyperparameters by
grid search in 5-fold cross validation (specific to each of them).

For Standard GTB, we parameterize the number of trees and the maximum tree
depth. For example, for the Bank data set, a tree depth of 3 with 800 trees is sufficient.
For the Standard NN, we parameterize the number of hidden layers and units with
a ReLU function and we apply a specific dropout regularization to avoid overfitting.
Further, we use an Adam optimisation with a binary cross entropy loss. For the Adult
UCI data set for example, the architecture consists of 2 hidden layers with 16 and
8 units, respectively, and ReLU activations. The output layer comprises one single
output node with sigmoid activation.

For FAGTB, to accelerate the learning phase, we decided to sacrifice some perfor-
mance by replacing the one-dimensional optimization γm by a specific fixed learning
rate for the classifier predictor. All hyperparameters mentioned above, for trees and
neural networks, are selected jointly. For FAGTB-NN, in order to achieve better re-
sults, we execute for each gradient boosting iteration several training iterations of the
adversarial NN. This produces a more persistent adversarial algorithm. Otherwise,
the predictor classifier GTB could dominate the adversary. At the first iteration, we
begin with modeling a biased GTB and we then model the adversarial NN based
on those biased predictions. This approach allows to have a better weight initializa-
tion of the adversarial NN. It is more suitable for the specific bias on the data set.

1https://github.com/algofairness/fairness-comparison
2https://github.com/equialgo/fairness-in-ml
3https://github.com/IBM/AIF360
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Without this specific initialization we encountered some cases where the predictor
classifier surpasses the adversarial too quickly and tends to dominate from the be-
ginning. Compared to the FAGTB-NN, the adversary of the FAGTB-1-Unit is more
simple. In this case, the 2 parameters of the adversarial are chosen randomly and for
each gradient boosting iteration only one is computed for the adversarial unit.

Results

For demographic parity (Table 5.2), as expected Standard GTB and Standard NN
achieve the highest accuracy. However, they are also the most biased models. For
example, the classical gradient tree boosting algorithm achieves a 32.6% p-rule for the
Adult UCI data set. In this particular case, the prediction for earning a salary above
$50,000 is in average more than three times higher for men than for women. Using
such a predictor for setting the salary for any new employee would thus perpetuate
this bias for training data.

Comparing the mitigation algorithms, FAGTB-NN achieves the best result with
the highest accuracy for a p-rule equality of about 90%. The choice of a neural net-
work architecture for the adversary proved to be in any case better than a simple
logistic regression. This is particularly true for the COMPAS data set where, for a
similar p-rule, the difference in accuracy is considerable (2.7 points). Recall that for
demographic parity the adversarial classifier only has one single input feature which
is the output of the prediction classifier. It seems necessary to be able to segment this
input in several ways to better capture information relevant to predict the sensitive
attribute. The sacrifice of accuracy is less important for the Bank and the Default data
set. The dependence between the sensitive attribute and the target label is thus less
important than for the COMPAS data set. To achieve a p-rule of 90%, we sacrifice
4.6 points of accuracy (Comparing GTB and FAGTB-NN) for COMPAS, 0.7 points for
Default and 0.6 points for Bank.

In Figure 5.5 we plot the distribution of the predicted probabilities for each sensi-
tive attribute S for 3 different models: An unfair model with λ = 0, and 2 fair FAGTB
models with λ = 0.06 and λ = 0.15, respectively. For the unfair model, the distri-
bution differs most in lower probabilities. The second graph shows an improvement
but there remain some differences. For the final one, the distributions are practically
aligned.

For equalized odds, the min-max optimization is more difficult than for demo-
graphic parity. The fairness metrics DispFPR and DispFNR (e.q. 3.3 and 3.4 respec-
tively) are not exactly comparable thus we did not succeed to obtain the same level
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Table 5.2: Results for Demographic Parity

Adult COMPAS Default Bank
Accuracy P-rule Accuracy P-rule Accuracy P-rule Accuracy P-rule

Standard GTB 86.8% 32.6% 69.1% 61.2% 82.9% 77.2% 90.8% 48.1%
Standard NN 85.3% 31.4% 67.5% 71.1% 82.1% 63.3% 90.3% 58.6%
FAGTB-1-Unit 84.4% 90.4% 61.8% 90.1% 81.5% 90.1% 90.1% 90.0%
FAGTB-NN 84.9% 90.3% 64.5% 90.0% 82.2% 90.2% 90.2% 90.0%
(Wadsworth et al., 2018) 83.1% 89.7% 63.9% 90.1% 81.8% 90.0% 90.2% 90.1%
(Zhang et al., 2018) 83.3% 90.0% 64.1% 89.8% 81.4% 90.0% 90.0% 90.0%
(Zafar et al., 2017c) 82.2% 89.8% 63.9% 89.7% 80.7% 89.8% 89.2% 90.1%
(Kamishima et al., 2012) 82.3% 89.9% 63.8% 90.0% 81.1% 90.0% 89.6% 89.9%
(Feldman et al., 2015) - - 61.4% 90.1% 72.2% 90.2% - -

Comparing our approach with different common fair algorithms by accuracy and
fairness (p-rule metric) for the Adult UCI, the COMPAS, the Default and the Bank

data set.

Table 5.3: Results for Equalized Odds

Adult COMPAS
Accuracy DispFPR DispFNR Accuracy DispFPR DispFNR

Standard GTB 86.8% 0.06 0.07 69.1% 0.12 0.20
Standard NN 85.3% 0.07 0.10 67.5% 0.09 0.15
FAGTB-1-Unit 86.3% 0.02 0.02 65.1% 0.03 0.12
FAGTB-NN 86.4% 0.02 0.02 66.2% 0.01 0.02
(Wadsworth et al., 2018) 84.9% 0.02 0.03 65.4% 0.02 0.03
(Zhang et al., 2018) 84.8% 0.03 0.03 64.9% 0.03 0.02
(Zafar et al., 2017a) 83.9% 0.03 0.09 64.3% 0.09 0.17
(Kamishima et al., 2012) 82.6% 0.06 0.24 63.6% 0.08 0.11
(Feldman et al., 2015) 80.6% 0.07 0.05 61.1% 0.03 0.03

Default Bank
Accuracy DispFPR DispFNR Accuracy DispFPR DispFNR

Standard GTB 82.9% 0.02 0.04 90.8% 0.04 0.06
Standard NN 82.1% 0.02 0.05 90.3% 0.05 0.08
FAGTB-1-Unit 82.1% 0.00 0.01 89.7% 0.02 0.07
FAGTB-NN 82.5% 0.00 0.01 90.3% 0.01 0.07
(Wadsworth et al., 2018) 81.2% 0.01 0.02 89.4% 0.01 0.07
(Zhang et al., 2018) 81.9% 0.00 0.01 89.8% 0.00 0.07
(Zafar et al., 2017a) 81.0% 0.00 0.03 89.5% 0.01 0.08
(Kamishima et al., 2012) 80.5% 0.00 0.04 89.3% 0.00 0.08
(Feldman et al., 2015) 71.8% 0.02 0.02 87.1% 0.05 0.06

Comparing our approach with different common fair algorithms by accuracy and
fairness (DispFPR, DispFNR) for the Adult UCI, the COMPAS, the Default and the

Bank data set.

of fairness. However, we notice that the FAGTB-NN achieves better accuracy with a
reasonable level of fairness. Concretely, we achieve for the 4 data sets and for both
metrics values below 0.02 or less, except for the Bank data set where DispFNR is equal
to 0.07. For this data set, most of the state-of-the-art algorithms result in a DispFNR
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between 0.06 and 0.08. It proves hard to achieve a low False Negative Rate (FNR) be-
cause the target feature deals with an imbalanced problem (11.7% of positive class).
A possible way to handle this problem of imbalanced target class could be to add
a specific weight directly in the loss function. We also notice that the difference in
the results between FAGTB-1-Unit and FAGTB-NN is much more significant, a lin-
ear adversarial being not sufficient to predict the sensitive attribute accurately in that
case.

In order to better understand the impact of hyperparameter λ, we illustrate its
impact on the accuracy and the p-rule metric in Figure 5.4 for the Adult UCI data set.
For that, we model the FAGTB-NN algorithm with 10 different values of λ and we run
each experiment 10 times. In the graph, we report the accuracy and the p-rule fairness
metric, and finally plot a polynomial regression of second order to demonstrate the
general effect.
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Figure 5.4: Impact of hyperparameter λ (Adult UCI data set): Higher values of λ produce
fairer predictions, while λ near 0 allows to only focus on optimizing the classifier predictor.

5.4 | Conclusion
In this chapter, we developed a new approach to produce fair gradient boosting al-
gorithms. Compared with other state-of-the-art algorithms, our method proved to be
more efficient in terms of accuracy while obtaining a similar level of fairness.

Currently, we use a neural network architecture for the adversary. We chose
this approach in order to recover the gradient of the input. Another possible
strategy is to replace the adversarial neural network with deep neural decision
forests (Kontschieder et al., 2015) which allow making an architecture of trees only.
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Figure 5.5: Distributions of the predicted probabilities given the sensitive attribute S (Adult
UCI data set)

Another field left for further investigations is the mathematical identification of the
optimal hyperparameter λ. The objectives are to automatically find the best trade-off
between accuracy and fairness and improve optimization convergence. In addition,
we are also interested in implementing this architecture by replacing the simple ad-
versarial with our HGR adversarial network, which will allow us to deal with contin-
uous and/or multidimensional features. Finally, it might be interesting to investigate
a measure that does not only consider the general case of bias but can also spot and
quantify bias that persists in specific sub-segments of the population.
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6

Group Fairness Without the
Sensitive Attribute

In this chapter, we investigate a new way to still satisfy some fairness criteria without
having access to the sensitive attribute during the training process. In recent years,
most fairness strategies in machine learning have focused on mitigating unwanted
biases by assuming that sensitive information is available. However, this is not al-
ways the case in practice: due to privacy purposes and regulations such as RGPD in
the EU, many personal sensitive attributes are frequently not collected. Yet, only a
few prior works address the issue of mitigating bias in this difficult setting, in partic-
ular to meet classical fairness objectives such as Demographic Parity and Equalized
Odds. By leveraging recent developments for approximate inference, we propose in
this chapter an approach to fill this gap. To infer a sensitive information proxy, we
introduce a new variational auto-encoding-based framework named SRCVAE that
relies on knowledge of the underlying causal graph. The bias mitigation is then done
after this inference step via an adversarial fairness approach. Our proposed method
empirically achieves significant improvement over existing works in the field. We ob-
serve that the generated proxy’s latent space correctly recovers sensitive information
and that our approach achieves a higher accuracy while obtaining the same level of
fairness on two real datasets.

Most of the work presented in this chapter is the subject of the paper Fairness
without the sensitive attribute via Causal Variational Autoencoder, published at the IJCAI
2022 conference (Grari et al., 2021c).

The remainder of this chapter proceeds as follows. First, section 6.1 reviews pa-
pers related to our work and the motivation. Section 6.2 describes the methodology
of our SRCVAE algorithm. Finally, section 6.3 presents experimental results of our
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approach.

6.1 | Motivation and Related Work
Currently, the vast majority of these state-of-the-art approaches rely on having access
to the sensitive information to be mitigated during training (though sometimes en-
crypted as in (Veale and Binns, 2017; Kilbertus et al., 2018)). However, in practice, it
is often unrealistic to assume that this sensitive information is available or even col-
lected. In Europe, for example, a car insurance company cannot ask a potential client
about his/her origin or religion, as this is strictly regulated. Note that, as discussed
in chapter 2, ignoring sensitive attributes as input of predictive models in order to
achieve fairness, which is known as "fairness through unawareness" (Pedreshi et al.,
2008), is not enough. Some complex correlations in the data may provide unexpected
links to sensitive information (Dwork et al., 2012).

For this reason, some approaches have attempted to obtain a fair predictor model
without the sensitive information. From the state-of-the-art literature, one possible
way to achieve fairness despite the unavailability of sensitive attributes during train-
ing is to use transfer learning methods from external sources of data where the sensi-
tive group labels are known. For example, (Madras et al., 2018) proposed to learn fair
representations via adversarial learning on a specific downstream task and transfer
it to the targeted one. (Schumann et al., 2019) and (Coston et al., 2019) focus on do-
main adaptation. (Mohri et al., 2019) considers an agnostic federated learning context
by equalizing the performance of all participants through the lens of minimax opti-
mization and fair resource allocation. However, this makes the actual desired bias
mitigation highly dependent on the distribution of the external data. Other methods
require prior knowledge on sensitive correlations. With prior assumptions, (Gupta
et al., 2018) and (Zhao et al., 2021) mitigate the dependence of the predictions on the
available features that are known to be likely correlated with the sensitive attribute.
However, such strongly correlated features do not always exist in the data.

Finally, a few approaches address this objective without any prior knowledge on
the sensitive information. Some of these works aim at improving the accuracy for
the worst-case protected group (Rawlsian Max-Min objective) by leveraging tech-
niques from distributionally robust optimization (Hashimoto et al., 2018) or adver-
sarial learning (Lahoti et al., 2020). Other works act on the input data using a cluster-
based balancing strategy in order to minimize the biases locally (Yan et al., 2020b).
However, such methods are usually ineffective for traditional group fairness defi-
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nitions such as demographic parity and equalized odds. Their blind way of mitigation
affects non-sensitive information, likely implying a degradation of the predictor ac-
curacy.

To overcome the limitations of these approaches (i.e., possessing relevant exter-
nal data or correlated features and blind way of mitigation), we propose a novel
approach that leverages a causal graph to reconstruct sensitive information using
Bayesian variational autoencoders (VaEs). The inferred information is then used as a
proxy for mitigating biases in an adversarial fairness training setting. We empirically
show that this approach, based on sensitive reconstruction, is significantly more ef-
fective for achieving usual fairness objectives than its competitors, with a more direct
control on mitigated biases. Our approach is inherently different from the aforemen-
tioned approaches. Based on minimal prior knowledge of causal relationships in the
data, we perform Bayesian inference of latent sensitive proxies, whose dependencies
with prediction outputs are mitigated in a second training step.

6.2 | Methodology
In this chapter, we consider training data where the binary sensitive attribute si for all
i is unobserved. The only available training data is therefore (xi, yi)

n
i=1, where xi ∈ Rp

is the feature vector of the i-th example and yi its binary outcome. In our context the
training sample xi is decomposed into two feature vectors xci ∈ Rpc and xdi ∈ Rpd . In
addition, we consider an - unobserved - binary sensitive attribute si for all i.

In our approach, we first assume the existence and availability of a specific causal
graph which underlies the training data, as discussed in subsection 6.2.1. The causal
graph allows us to infer, through Bayesian inference, a latent representation contain-
ing as much information as possible about the sensitive feature. This process is de-
scribed in subsection 6.2.2. Finally, we present in subsection 6.2.3 our methodology
to mitigate fairness biases while preserving as much as possible prediction accuracy
using this latent representation.

6.2.1 | Causal Structure of SRCVAE
Our work relies on the assumption of having an underlying causal graph describing
the data, where causal interactions are indicated as directed edges between subsets of
features (nodes). In particular, we suppose that the graph can be represented by the
illustration shown in Figure 6.1. This structure is aimed to be generic enough to fit
with most real world settings (slightly different graphs are studied in appendix C.2).
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Figure 6.1: Causal graphs of SRCVAE: Left graph represents prior expert knowledge, where
x is mapped into two components xc and xd. Right graph denotes the graph considered in
our approach, with a multivariate confounder z inferred to be used as a proxy of the sensitive
attribute s. Solid arrows denote causal links, red dashed arrows denote inference, grey circles
denote missing attributes.
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Figure 6.2: Causal Graph - Adult UCI

In the leftmost graph, parents of the output y are split into three components xc, xd

and s. The subsets xc and xd regroup together all of the features that are given as input
x to the model. The distinction between the two relies on the existence or absence
of a causal relationship with the missing sensitive information s: no interaction is
assumed with xc, while some is with xd. In addition, some causal relationship may
exist between xc and xd.

To illustrate the generic aspect of this framework, we apply it to the Adult UCI
dataset. The assumed causal graph of this dataset, with Gender as the sensitive at-
tribute s and Income as the expected output y, is shown in Figure 6.2. In this context,
xc is the set of variables Race, Age and Native_Country which do not depend on the
sensitive attribute, while xd corresponds to all remaining variables that are generated
from xc and s (i.e., xd = {Education, Work_Class, ...}).

86



6.2. Methodology

Assuming that all of the variables except s are available, our purpose is to recover
all the hidden information not caused by the set xc but responsible of xd and y. In
a real world scenario, it is noteworthy that the accuracy with which one can recover
the real sensitive s depends on the right representation of the complementary set xc.
Yet, it is possible that the set xc is under-represented. In such a case, there is a risk
that the reconstruction of s may contain some of this missing additional information.
For instance, assuming that the graph from Figure 6.2 is the exact causal graph that
underlies the Adult UCI, let us consider a setting where the variable Race is hidden.
Hence, this variable would be likely to leak in the sensitive variable reconstruction.
In such a leakage setting, we argue that working with a binary sensitive proxy would
strongly degrade the inferred sensitive information, by introducing noise in the re-
construction. This is what motivated us to rather consider the rightmost graph from
Figure 6.1. It considers a multivariate continuous intermediate confounder z that
both causes the sensitive s and the observed variables in xd and y. As long as the
confounder z contains the real sensitive information, removing the corresponding de-
pendence with the output prediction is guaranteed to ensure fairness for the model
(we prove this in 6.2.1). As we observe in the experiments section, such a multivariate
proxy also allows for better generalization abilities for mitigated prediction.

6.2.2 | Reconstructing the Sensitive Attributes
We describe in this section the first step of our SRCVAE (Sensitive Retrieval Causal
Variational Autoencoder) framework, which aims at generating a latent representa-
tion z that contains as much information as possible about the real sensitive feature
s. As discussed above, our strategy is to use Bayesian inference approximation, using
the pre-defined causal graph represented in Figure 6.1.

VAE Leveraging recent developments for approximate inference with deep learn-
ing, many different works proposed to use Variational Autoencoding methods
(VAE) (Kingma and Welling, 2013) to model exogenous variables in causal graphs.
It has been shown to achieve successful empirical results, in particular in the sub-
field of counterfactual fairness (Louizos et al., 2017; Grari et al., 2020b). We propose
to apply VAE for our setting of fairness with hidden sensitive attribute.

Following the rightmost causal graph from Figure 6.1, the distribution pθ(xc, xd, y|z)
can be factorized as:

pθ(xc, xd, y|z) = p(xc)pθ(xd|xc, z)pθ(y|xc, xd, z)
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Given an approximate posterior qφ(z|xc, xd, y), we obtain the following variational
lower bound:

log(pθ(xc, xd, y)) ≥E (xc,xd,y)∼D,
z∼qφ(z|xc,xd,y)

[log pθ(xd, y|xc, z) + log(p(xc))

− DKL(qφ(z|xc, xd, y)||p(z))
]

(6.1)

where DKL denotes the Kullback-Leibler divergence of the posterior qφ(z|xc, xd, y)
from a prior p(z), typically a standard Gaussian distribution N (0, I). The posterior
qφ(z|xc, xd, y) is estimated using a deep neural network with parameters φ, which
typically outputs the mean µφ and the variance σφ of a diagonal Gaussian distribution
N (µφ, σφ I).

The likelihood term, which factorizes as pθ(xd, y|xc, z) = pθ(xd|xc, z)pθ(y|xc, xd, z),
is defined as the output of a neural network with parameters θ. Since attracted
by a standard prior, the posterior is supposed to remove the probability mass for
any information of z that is not involved in the reconstruction of xd and y. Since
xc is given together with z as input of the likelihoods, all the information from xc

should be removed from the posterior distribution of z. In this chapter, we employ
a variant of the ELBO optimization as done in (Pfohl et al., 2019), where the term
DKL(qφ(z|xc, xd, y)||p(z)) is replaced by a Maximum Mean Discrepancy (MMD) term
LMMD(qφ(z)||p(z)) between the aggregated posterior qφ(z) and the prior. This has
been shown to be more powerful than the classical DKL for ELBO optimization in
(Zhao et al., 2017), as the latter may be too restrictive (Chen et al., 2016; Sønderby
et al., 2016), and also tends to overfit the data.

HGR Minimization To be accurate, inference must ensure that no dependence is
created between xc and z (no arrow is linking xc to z in the rightmost graph in Fig-
ure 6.1). This ensures the generation of a proper sensitive proxy that is not linked to
the complementary xc. However, by optimizing the ELBO Equation 6.1, some depen-
dence may still be observed empirically between xc and z, as we show in Section 6.3.
This is due to some information from xc leaking to the inferred z. In order to en-
sure some minimum independence level, we add a penalisation term in the proposed
loss function. Leveraging our HGR estimation seen in chapter 3 by neural network
(HGR_NN) for mitigating the dependence between continuous variables, we extend
this main idea by adapting this penalization to the case of variational autoencoders.

In the following, we denote as ĤGR
w f ,wg

U∼DU ,V∼DV (U, V) the neural estimation of
HGR between two variables U and V, computed via two inter-connected neural net-
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Figure 6.3: Neural architecture of SRCVAE in max phase for the HGR estimation between xc
and z via gradient ascent (a) and Variational autoencoder structure of SRCVAE in min phase
(b).

works f and g with parameters w f and wg:

ĤGR
w f ,wg

U∼DU ,V∼DV
(U, V) = max

w f ,wg
EU∼DU ,V∼DV ( f̂w f (U)ĝwg(V))

where DU (resp. DV ) is the distribution of U (resp. V), and f̂ (resp. ĝ) refer to stan-
dardized outputs of network f (resp. g).

Reconstruction Objective Altogether, the final objective of our SRCVAE approach
is given as:

arg min
θ,φ

max
w f ,wg

−E (xc,xd,y)∼D,
z∼qφ(z|xc,xd,y)

[log pθ(xd, y|xc, z)

+ λmmdLMMD(qφ(z)||p(z))]

+ λin f ĤGR
w f ,wg

(xc,xd,y)∼D,
z∼qφ(z|xc,xd,y)

(xc, z)

where λmmd, λin f are scalar hyperparameters. The additional MMD objective can be
interpreted as minimizing the distance between moments of each aggregated latent
code distribution and the prior distribution. Note that giving y as input of the in-
ference scheme q(z|xc, xd, y) is allowed since z is only used during training (see next
section).

In Figure 6.3, we represent the min-max structure of SRCVAE. The left structure
represents the max phase where the HGR between z and xc is estimated by gradient
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ascent with multiple iterations. The right graph represents the min phase where the
reconstruction of xd and y is performed by the decoder pθ (red frame) via the gen-
erated latent space z from the decoder qφ. The adversarial HGR component (blue
frame) ensures independence between the generated latent space z and xc. The net-
work f takes the set xc as input, while g takes the continuous representation space
z. This way, for each gradient iteration of SRCVAE we capture the estimated HGR
between the set xc and the generated proxy latent space z. At the end of each itera-
tion, the algorithm updates the parameters of the decoder parameters θ as well as the
encoder parameters φ by one step of gradient descent. λin f controls the importance
of the dependence loss in the optimization.

6.2.3 | Mitigating the Unwanted Biases
The sensitive reconstruction model can now be used for training a fair predictive
function hwh . We propose to mitigate the unwanted bias via an adversarial penaliza-
tion during the training phase that depends on the targeted fairness objective.

Demographic Parity We propose to find a mapping hwh(x) that both minimizes the
deviation with the expected target y and does not imply much dependency with the
representation z, inferred from qφ(z|xc, xd, y) as described in the previous section. We
propose the following optimization, which considers a neural estimation of HGR as
well, but this time applied to variables hwh(x) (the output of the classifier) and z (the
inferred latent representation):

arg min
θ

max
ψ f ,ψg
L(hwh(x), y) + λDP ĤGR

ψ f ,ψg

(xc,xd,y)∼D,
z∼qφ(z|xc,xd,y)

(hwh(x), z)

where L is the predictor loss function (the log-loss function in our experiments) of
the output hwh(x) ∈ R w.r.t. the target label y. The hyperparameter λDP controls
the impact of dependence between the output prediction hwh(x) ≈ p(y = 1|xd, xc)

and the sensitive proxy z. To assess this correlation, K different representations are
sampled for each observation (xci , xdi , yi) from the causal model (200 in our experi-
ments). As in the inference phase, the backpropagation of the HGR adversary with
parameters ψ f and ψg is performed by multiple steps of gradient ascent.

Practice in real-world As mentioned in the first subsection, the assumed causal
graph 6.1 requires the right representation of the complementary set xc. If the set
xc is under-represented, some specific hidden attributes can be integrated with the
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sensitive information in the inferred sensitive latent space z. The following Theo-
rem 6.2.1 allows us to ensure that mitigating the HGR between z and ŷ implies some
upperbound for the targeted objective (proof in appendix C.1).

Theorem 6.2.1. For two nonempty index sets S and Z such that S ⊂ Z and Ŷ the output
prediction of the model, we have:

HGR(Ŷ, Z) ≥ HGR(Ŷ, S) (6.2)

Therefore, minimizing HGR(Ŷ, Z) tends to reduce the real bias objective HGR(Ŷ, S).
Results on benchmark and real-world datasets demonstrate below in part 6.3 that
such an assumed graph demonstrates good robustness properties. This property is
also held for equalized-odds we consider below, with HGR(Ŷ, Z|Y) ≥ HGR(Ŷ, S|Y).

Equalized odds We extend the demographic parity optimization to the equalized
odds task. The objective is to find a mapping hwh(x) which both minimizes the de-
viation with the expected target y and does not imply too much dependency with
the representation z conditioned on the actual outcome y. For the decomposition of
disparate mistreatment, we propose to divide the mitigation based on the two differ-
ent values of y. Identification and mitigation of the specific non linear dependence
for these two subgroups leads to the same false positive and the same false negative
rates for each demographic. We propose the following optimization:

arg min
θ

max
ψ f0

,ψg0 ,ψ f1
,ψg1

L(hwh(x), y) + λ0 ĤGR
ψ f0

,ψg0

(x,y)∼D0,
z∼qφ(z|x,y)

(hwh(x), z) + λ1 ĤGR
ψ f1

,ψg1

(x,y)∼D1,
z∼qφ(z|x,y)

(hwh(x), z)

with D0 (resp. D1) corresponding to the observations set (x, y) verifying y = 0 (resp.
y = 1). The hyperparameters λ0 and λ1 control the impact of the dependence loss
for the false positive and the false negative objective respectively. The first penali-
sation (controlled by λ0) enforces the independence between the output prediction
hwh(x) ≈ pθ(y = 1|x) and the sensitive proxy z only for the cases where y = 0. It
enforces the mitigation of the difference of false positive rates between demograph-
ics, since at optimum for w∗h with no trade-off (i.e., with infinite λ0) and (x, y) ∼ D0,
HGR(hw∗h (x), z) = 0 and implies theoretically: hw∗h (x) ⊥ z|y = 0. The second one
enforces the mitigation of the difference between the true positive rates, since the de-
pendence loss is performed between the output prediction hwh(x) and the sensitive
proxy only for cases where y = 1 (i.e., mitigation of ∆FNR).
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(a) λin f =0.0; HGR(xc , z)=81.7% (b) λin f =0.2; HGR(xc , z)=22.6%

Figure 6.4: Inference phase for Adult UCI: t-SNE of the sensitive latent reconstruction Z.
Blue points are males (S = 1), red ones are females (S = 0). Increasing λin f improves the
independence of z from xc. This leads to a better separation between male and female data
points, which indicates a proper sensitive proxy.

6.3 | Experimental Results
For our experiments, we empirically evaluate the performance of our contribution
on real-world data sets where the sensitive s is available. This allows to assess the
fairness of the output prediction, obtained without the use of the sensitive attribute,
w.r.t. this ground truth. For this purpose, we use the Adult UCI and Default datasets,
presented in Subsection 4.5.

Sensitive Reconstruction In order to understand the interest of mitigating the de-
pendence between the latent space z and the complementary set xc during the in-
ference phase, we plot the t-SNE of z with two different inference models for the
Adult UCI dataset in Figure 6.4. We consider a version of our model trained without
the penalization term (λin f = 0.00) as a baseline. It is then compared to a version
trained with a penalization term equal to 0.20. As expected, training the inference
model without the penalization term results in a poor reconstruction of the z proxy,
where the dependence on xc is observed. We can observe that the separation between
the men (blue points) and women (red points) data is not significant. We also observe
that increasing this hyper-parameter λin f allows to decrease the HGR estimation from
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81.7% to 22.6% and to greatly increase the separation between male and female data
points.
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Figure 6.5: Distributions of the predicted probabilities given the real sensitive s (Adult UCI
data set) for the Demographic Parity task.
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Figure 6.6: Dynamics of adversarial training

Bias Mitigation The dynamics of adversarial training for demographic parity is
performed for Adult UCI with unfair (λDP = 0) and fair (λDP = 0.5) models as il-
lustrated in Figure 6.6. Other values are presented in appendix C.3. We represent
the accuracy of the model (top), the P-rule metric between the prediction and the real
sensitive s (middle), and the HGR between the prediction and the latent space z (bot-
tom). For the unfair model (leftmost graph) we observe that the convergence is stable
and achieves a P-rule of 29.5%. As expected, the penalization loss decreases (mea-
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Figure 6.7: Demographic Parity task
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Figure 6.8: Equalized odds task

sured with the HGR estimator) when the hyperparameter λDP is increased. It allows
to increase the fairness metric P-rule to 83.1% with a slight drop of accuracy.

In Figure 6.5 we plot the distribution of the predicted probabilities for each sensi-
tive attribute s for three different models: an unfair model with λDP = 0, and two
fair models with λDP = 0.45 and 0.50, respectively. For the leftmost graph (i.e.
λDP = 0) the model appears to be very unfair, since the distribution between the
sensitive groups differs importantly. As expected, we observe that the distributions
are more aligned as λDP values increase.

For the two datasets, we test different models where, for each, we repeat five runs
by randomly sampling two subsets, 80% for the training set and 20% for the test set.
As different optimization objectives result in different algorithms, we run separate
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Figure 6.9: Additional Experiments

experiments for the two fairness objectives of our interest. As an optimal baseline
to be reached, we consider the approach from (Adel et al., 2019) using observations
of the sensitive s during training, which we denote as True S. We also compare var-
ious approaches specifically designed to be trained in the absence of the sensitive
information during training: FairRF (Zhao et al., 2021), FairBalance (Yan et al., 2020b),
ProxyFairness (Gupta et al., 2018) and ARL (Lahoti et al., 2020). The latter is only com-
pared for the equalized odds task (i.e. discussion in (Zhao et al., 2021)). We plot
the performance of these different approaches by displaying the Accuracy against
the P-rule for Demographic Parity (Figure 6.7) and the Disparate Mistreatment (DM)
for Equalized Odds (Figure 6.8). For all algorithms, we clearly observe that the Ac-
curacy, or predictive performance, decreases when fairness increases. As expected,
the baseline True S achieves the best performance for all the scenarios with the high-
est accuracy and fairness. We note that, for all levels of fairness (controlled by the
mitigation weight in every approach), our method outperforms state-of-the-art algo-
rithms for both fairness tasks (except some points for very low levels of fairness, on
the left of the curves). We attribute this to the ability of SRCVAE to extract a useful
sensitive proxy, while the approaches FairRF and ProxyFairness seem to greatly suf-
fer from merely considering correlations present in the data for mitigating fairness.
The approach FairBalance, which pre-processed the data with clustering, seems inef-
ficient and degrades the predictive performance too significantly. The advantages of
our approach are even more pronounced on the Default dataset, where a less obvi-
ous correlation exists between observed variables and the sensitive attribute. In that
setting, leveraging the knowledge of a causal graph appears to be crucial.
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Proxy dimensions In figure 6.9(a), we perform an additional experiment on the sen-
sitive proxy. For the two datasets we observe that increasing z dimensions results in
increased accuracy. Increasing the dimensions to 5 for Adult UCI (same experiment
for Default in appendix C.3) allows to obtain better results in terms of accuracy and
this for all levels of P-rule. We claim that mitigating biases in larger spaces allows bet-
ter generalisation abilities at test time, as already observed in section 4.5. It supports
the choice of considering a multivariate sensitive proxy z, rather than directly acting
on a reconstruction of s as a univariate variable.

Noisy graph In figure 6.9(b), we analyse the impact of noise in the causal graph. To
do this, we focus on cases where the decomposition of x in sets xc and xd is noisy, or
sets of variables are under-represented. For this purpose, we experimented 8 scenar-
ios on the Adult UCI data set. First, we removed features from xc: the race (S1), the
age (S2). Then, we removed features from xd: the education (S3) and the hour (S4). Fi-
nally, we moved features from xc to xd and reversely: membership inversion between
race and education (S5), membership inversion between age and hour (S6), inclusion
of age in xd (S7) and inclusion of hour in xc (S8). From the results, our approach ap-
pears greatly robust to noise, with results in every scenario at least comparable to the
best considered competitors (which all present settings where performances catas-
trophically drop as observed in Fig. 6.7 and 6.8). This robustness is partly achieved
thanks to the use of a multivariate continuous proxy z, which limits the possible lack
of sensitive information that would occur with a scalar proxy of s, if non-sensitive
information leaks in the reconstruction. While the inclusion of variables from xd to
xc may induce the removal of some useful sensitive information from the proxy, the
inclusion of variables from xc to xd may lead to optimize the independence of some
non sensitive information with model outputs. If fairness needs to be guaranteed, the
expert must thus tend to favor false xd variables rather than false xc, the former only
inducing a slight accuracy loss in most cases (as demonstrated in Theorem 6.2.1).

6.4 | Conclusion and Future Work
In this chapter we proposed a new way to mitigate undesired bias without the avail-
ability of the sensitive demographic information in training. To generate a latent
representation which is expected to contain as much sensitive information as possi-
ble, the approach relies on a new variational auto-encoding based framework named
SRCVAE. In a second phase, inferred proxies serve to mitigate biases in an adver-
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sarial fairness training of a prediction model. Compared with other state-of-the-art
algorithms, our method proves to be more efficient in terms of accuracy for similar
levels of fairness. For further investigation, we are interested in extending this work
to settings where the actual sensitive can be continuous (e.g. age or weight attribute)
and/or multivariate.
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7

Group Fairness for Insurance Pricing

This chapter discusses the importance of adapting the traditional fairness algorithms
to specific real-life applications and, in particular, to insurance pricing. We claim
that mitigating undesired biases with a generic fair algorithm can be counterproduc-
tive for specific applications. Fairness in insurance pricing is a relatively new and
much-requested topic, especially in light of new laws and regulations and past issues
encountered in practice (Dolman et al., 2021; Frees and Huang, 2021; Embrechts and
Wüthrich, 2022; Block et al., 2008). Consequently, companies/regulators are looking
for new methodologies to ensure a sufficient level of fairness while maintaining an
adequate accuracy of predictive models. However, traditional Fair-ML as adversarial
methods are not currently adequate for insurance pricing. Therefore, for these pur-
poses, we have developed a more suitable and effective framework to satisfy a fair-
ness objective while maintaining a sufficient level of predictor accuracy. Please note
that, in insurance, the term pricing is underpinned by the “pure premium”, which is
the basic and essential element in assigning prices to policyholders. We are looking
at this from the insurer’s perspective, for whom the pricing target is an exercise in
predicting future costs.

At the core of insurance business lies classification between risky and non-risky
insureds, actuarial fairness meaning that risky insureds should contribute more and
pay a higher premium than non-risky or less-risky ones. Actuaries, therefore, use
econometric or machine learning techniques to classify, but the distinction between
a fair actuarial classification and ‘discrimination’ is subtle. For this reason, there
is a growing interest about fairness and discrimination in the actuarial community
(Lindholm et al., 2022). Surprisingly, we will show that debiasing the predictor alone
may be insufficient to maintain adequate accuracy (1). Indeed, the traditional pric-
ing model is currently built in a two-stage structure that considers many potentially
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biased components such as car or geographic risks. We will show that this tradi-
tional structure induce significant limitations in achieving fairness. For this reason,
we have developed a novel pricing approach. Recently some approaches have shown
the value of autoencoders in pricing (Blier-Wong et al., 2021b; Wuthrich and Merz,
2021). In this chapter, we will show that (2) these techniques can be generalized to
multiple pricing factors (e.g., geographic, car type), and that (3) perfectly be adapted
for the fair pricing context since it allows to debias the set of pricing components.
We extend this main idea to a general framework in which a single whole pricing
model is trained by generating the geographic and car pricing components needed to
predict the pure premium while mitigating the unwanted bias according to the de-
sired metric. In this context of big data, where insurance companies collect more and
more data, aggregating features by representation learning techniques seems to be a
judicious choice to ensure explainability, computational traceability and fairness. We
present our approach on private car insurance but it can be generalized for commer-
cial, health, and household insurance products.

In section 7.1, we briefly describe the actuarial pricing literature with the applica-
tion of fair adversarial algorithms. In section 7.2, we present our general extension
that is more adapted for applying fairness to actuarial pricing. Finally, section 7.3
presents the experimental results of the approaches.

Parts of the work presented in this chapter are the subject of the paper A fair pricing
model via adversarial learning (Grari et al., 2022).

7.1 | Actuarial Pricing
Insurance is usually described as the contribution of many to the misfortune of the
few by pooling risks together. A fair contribution that should be asked to policyhold-
ers, who purchased an insurance policy, is its expected loss over the coverage period
of the contract (usually one year), the so-called pure premium. Insurance pricing re-
lies essentially on the law of large numbers, but since risks have to be homogeneous,
it is important to classify the risks properly, as explained for instance in (Thomas,
2012). For this risk classification, insurers try to split policyholders into different
groups, and risks are pooled within each group. Those groups are supposed to be
as homogeneous as possible. They are usually based on observable factors, such as in
motor insurance, the age of the (main) driver, the power of the car, some information
about the spatial location, possibly the value of the car, and maybe the gender of the
driver. This classification is never perfect, but it should be accepted by policyholders
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and as valid as possible to be a competitive premiums. Heterogeneity within groups
means that policyholders cross-subsidy, which could yield adverse selection, where
lower risks might be attracted by a competitor. Insurers can capture this residual het-
erogeneity by offering some more personalized premiums (possibly cheaper for some
of them), while the more risky will remain in the portfolio, and cross-subsidy will not
work anymore. Therefore, the goal of risk classification is to charge for a risk-based
fair actuarial premium and to avoid unnecessary cross-subsidy. As explained in (Pae-
fgen et al., 2013), “In order to differentiate the risk of insurance policies, actuaries use a set
of rate factors to separate policies into groups (i.e., tariff classes).“ For each tariff class, actu-
aries analyze historical claims data to arrive at a reliable estimate of the corresponding pure
premium, that is, the minimum required payment per policy to cover the expected losses from
its class.”

7.1.1 | Description of the Method
A classical technique in actuarial science is based on Generalized Linear Models,
GLM, since they satisfy a “balance property”, as called in (Wuthrich and Merz, 2021)
for instance, stating that the sum of yi’s (on the training dataset) should equal the sum
of ŷi’s. The economic interpretation is that the first sum of the sum of losses, while the
second one is the sum of premiums. Hence, using GLMs, we ensure that, on average,
the insurer will be able to repay policyholders claiming a loss. Unfortunately, GLMs
experience difficulties when categorical rating factors have a large number of levels,
not only because of the computational cost of dealing with high-dimensional design
matrices, but also because of the implied statistical uncertainty, both in parameter es-
timation and prediction (even if regularization techniques can be used, as in (Frees
and Lee, 2015)).

In this insurance pricing context, the GLM preditor model is not fitted only once
as in the traditional machine learning standard. Instead, as mentioned in (Taylor,
1989), (Boskov and Verrall, 1994), or more recently (Tufvesson et al., 2019) a standard
approach in insurance is to consider a two-step procedure, where the first step ini-
tially considers the generation of geographic and automobile risk components. Then
the second step is based on the predictive task. The insurer often has recourse to a
large number of external variables, which can usually exceed a hundred (Boucher,
2016; Beraud-Sudreau, 2017). These can be geographical (e.g., the total number of
thefts or crime rate in the area of residence) and car-specific (e.g., airbag, emergency
braking, etc.). (Shi and Shi, 2021) recalls that it can be difficult to use, in classical actu-
arial pricing models, categorical variables with a large number of categories, such as a

101



Chapter 7. Group Fairness for Insurance Pricing

ZIP code (spatial information) or type/variant/version/model/make of cars (vehicle
information). In order to keep models under control (i.e., computational traceability
and explainability), actuaries traditionally prefer to aggregate all this information into
single variables. The generation of these components is performed by a first model
based on the prediction of the target Y (i.e., frequency and severity), excluding all
external information (spatial and unstructured effects). The idea is that the observed
residuals of this model correspond to the missing information that it was unable to
capture (i.e., geographical, car information). In this way, a second model is trained
on these observed residues from these external data. This method allows assigning
external risk prediction to new policyholders based on their external information. For
example, suppose a policyholder comes from a residential area that the insurer has
never had in its historical data. In this case, the insurer will still be able to gener-
ate a geographic risk level using only external information from the area. Note that
actuaries, notably by K-Nearest Neighbors (KNN) methods, reprocess this residual
to smooth the predictions (e.g, KNN on the spatial neighborhood for the geographic
component). As discussed in (Blier-Wong et al., 2021b), early geographic models in
actuarial science were models that smoothed the residuals of a regression model (also
called “correction models”) where geographic effects are captured after the main regres-
sion model, in a smoothing model, as in (Taylor, 1989). For example (Fahrmeir et al.,
2003), and more recently (Wang et al., 2017), suggested using spatial interpolation, in-
spired by kriging techniques, to capture spatial heterogeneity. In addition, a quantile
approach is applied to these components in order to divide these components into
several risk levels. Finally, a final model is fitted to the objective task based on these
generated risk components and policyholder information.

In this particular context, the training data xi ∈ Rd is decomposed into to subsam-
ple xpi ∈ Rdp corresponding to the policyholder’s information, xgi ∈ Rdg correspond-
ing to the geographical information with pg predictors and xci ∈ Rdc corresponding
to the car information with dc predictors.

In Figure 7.1, we have represented the general process of the two-step traditional
pricing. For the first step, a model hw0 with parameters w0 is fitted to predict the tar-
get task Y from the policyholder’s information Xp (i.e., without including the external
information Xg and Xc). The residual of this model R is calculated (can be calculated
on the relative difference in practice (Said, 2016)). In second, some models hwg and
hwc with parameters wg and wc are trained to predict the observed residuals R from
the corresponding set of variables Xg and Xc respectively. Some prereatreatments are
realized on the output predictions of these models as KNN methods and/or quan-
tiles. Finally, a last model hwh with parameter wh is trained to predict the target task
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Figure 7.1: Two-Step Traditional Pricing model

Y from the policyholder’s information Xp and the two generated features C and G.

7.1.2 | Fairness on the Traditional Two-Step Pricing Model
A classic methodology for enforcing fairness should be to act directly on the final
predictor model hwh . An additional adversarial (e.g, simple or HGR seen in chapter 3)
could mitigate the sensitive bias during the training process. However, we argue that
this is not an appropriate process. Note that the car risk C and the geographic risk G
have already been trained in the first step and are not re-trained in this optimization.
Therefore, the unwanted bias is only mitigated on the predictor hwh . Consequently,
if the predictor hwh is a GLM and if G and C are strongly dependent on the sensitive
attribute S, the parameters wh corresponding to G and C may tend towards 0 and
thus nullify the effect of these factors. For improving fairness, the risk is to miss the
relevant information about G and C for predicting Y.

This motivates us for a more robust model that breaks away from this drawback.
So the goal here will be to define a new actuarial framework that is able to generate
fair geographical and car variables, that are strongly correlated with the risk Y, but
fair with respect to S.
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7.2 | Pricing with an Autoencoder Structure
We propose in this section to generalize an actuarial model that would be better fit-
ted for fairness. The main idea would be to train the geographical and car risk at the
same time of the model. As discussed in (Wuthrich and Merz, 2021), a classical start-
ing point is some initial feature engineering step, where some embedding of spatial
components, and information relative to the vehicle, are considered, using principal
component analysis (PCA). However, in this approach, the generated components are
not trained with the predictor and cannot be specifically targeted to the objective task.
Instead of considering several separate models stacked together as described above,
it is possible to create a unique actuarial pricing model that can be trained as a whole.
This has different advantages, which we will mention below, especially for fairness.
Different approaches have recently focused on spatial embedding (Blier-Wong et al.,
2021a,b) and have shown superior performance than traditional pricing strategies.
These models propose to aggregate by deep neural network the geographic informa-
tion into a unique/multidimensional representation by providing this information
into the predictor model during the training. As said in (Blier-Wong et al., 2021b),
those “geographic embeddings are a fundamentally different approach to geographic models
studied in actuarial science”, since the different models are trained at the same time with
the objective to predict the pure premium. It allows having aggregate geographic
risks adapted for the targeted risks. We extend this main idea to a general framework
where a unique model is trained by generating the car (C) and geographic pricing (G)
components required to predict the pure premium.

7.2.1 | Description of the Method
First in a pure predictive task, we propose to find a car and a geographical aggrega-
tion via a latent representation C and G respectively, which both minimizes the devi-
ation between the target Y and the output prediction Ŷ. In Figure 7.2, we represent
our model extension. The output prediction is provided by a function hwh(Xp, C, G)

where hwh is a predictor with parameters wh, which takes as input Xp the policies in-
formation, C and G. Let cwc and γwγ be two neural networks with respective parame-
ters wc and wγ, the latent representation C is generated as cwc(Xc) (resp. G as γwγ(Xg))
with Xc as the information about the car (resp. Xg as the geographical information).
Depending on the task or objective, we can consider the latent representation C and
G as multi-dimensional. This can therefore provide a rich representation for the ge-
ographical and car ratemaking. The mitigation procedure follows the optimization
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Figure 7.2: Pricing model via an autoencoder structure

problem:

arg min
hwh ,gwg ,cwc

{
L(hwh(Xp, γwγ(Xg), cwc(Xc)), Y)

}
(7.1)

whereL is the predictor loss function between the prediction hwh(Xp, γwγ(Xg), cwc(Xc)) ∈
R and the corresponding target Y. Note that smoothing can be performed on G such
as (Blier-Wong et al., 2021b) to avoid that some nearby regions have too high premium
volatility, especially when the risk exposure is very low.

7.2.2 | A Fair Pricing Model via an Autoencoder Structure
In this section, we adapt our autoencoder pricing model by adding an adversarial
structure for fairness purposes. The objective is to find a mapping of a prediction
hwh(X) that both minimizes the deviation from the expected target Y and does not im-
ply too much dependence on the sensitive attribute S, according to its definition for
the desired fairness objective seen in section 2.2. This strategy is radically different
from the previous two-stage traditional strategy since the training of the car risk and
the geographic risk is done simultaneously with the learning of the predictor. In this
case, the objective is, unlike the previous model, to recover the essential information
from G and C to predict Y and solely neutralize the undesirable effects during the
learning process. To achieve this, the back-propagation of the learning of the cwc and
γwγ encoders is performed at the same time as the penalization of the adversarial fair-
ness component. It allows minimizing the deviation from the expected target Y and
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does not imply too much dependence on the sensitivity S, as defined for the desired
fairness objective 2.2. The predictor hwh is also back-propagated in the same way but
takes as input the G and C attributes in addition to the policy contract information
Xp.

Demographic Parity The predictor function is defined as hwh(Xp, γwγ(Xg), cwc(Xc))

where h is a predictor model that takes as input Xp, the geographical risk γwγ(Xg)

and the car risk cwc(Xc)).
The mitigation procedure follows the optimization problem:

arg min
cwc ,γwγ ,hwh

{
max
w f ,wg

{
L(hwh(Xp, γwγ(Xg), cwc(Xc)), Y)

+ λE( f̂w f (hwh(Xp, γwγ(Xg), cwc(Xc))) ∗ ĝwg(Xp))
}} (7.2)

where L is the predictor loss function between the output prediction and the corre-
sponding target Y. We add in this objective optimization a second term representing
our HGR estimation between the output prediction and the sensitive attribute S. It
corresponds to the expectation of the products of standardized outputs of both net-
works ( f̂w f and ĝwg ). The hyperparameter λ controls the impact of the correlation loss
in the optimization.

Figure 7.3 gives the full architecture of our adversarial learning algorithm using
the neural HGR estimator between the output predictions and the sensitive attribute
S. It depicts the encoders functions γwγ and cwc , which respectively outputs a latent
variable G from Xg and C from Xc. The two neural networks fw f and gwg , which seek
at defining the most strongly correlated transformations of the output predictions
hωh(Xp, γwγ(Xg), cwc(Xc)) and S. The model hωh outputs the prediction Ŷ from the
information Xp, G and C. The encoders aggregate the information of G and C from
the information of Xg and Xc in order to maximize the performance accuracy for
hwh and simultaneously minimize the HGR estimation finding with the adversary
fw f and gwg . Left arrows represent gradient back-propagation. The learning is done
via stochastic gradient, alternating steps of adversarial maximization, and global loss
minimization.

The algorithm takes as input a training set from which it samples batches of size b
at each iteration. At each iteration, it first standardizes the output scores of networks
fw f and gwg to ensure 0 mean and a variance of 1 on the batch. Then it computes
the HGR neural estimate and the prediction loss for the batch. At the end of each
iteration, the algorithm updates the prediction parameters ωh as well as encoder pa-
rameters ωγ and ωc by one step of gradient descent.
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Chapter 7. Group Fairness for Insurance Pricing

Equalized odds For equalized odds, we also extend the main idea of mitigation
seen in section 4.2.2.2. The mitigation procedure follows the optimization problem:

arg min
cwc ,γwγ ,hwh

{
max

w f0
,wg0 ,..,w fK

,wgK

{
L(hwh(Xp, γwγ(Xg), cwc(Xc)), Y)

+
1

K + 1 ∑
y∈ΩY

λyE(X,S)∼Dy( f̂w fy
(hwh(Xp, γwγ(Xg), cwc(Xc)) ∗ ĝwgy (S))

}}(7.3)

where Dy corresponds to the distribution of pair (X, S) conditional on Y = y and
K = #ΩY − 1. The hyperparameters λy control the impact of the dependence loss
for the different number event objective. The penalization enforces the independence
between the output prediction and the sensitive S only for the cases where Y = y. It
enforces naturally the mitigation of equalized odds since it enforces the mitigation of
biases for demographic parity for each number of events.

7.3 | Results and Discussion
We evaluate the performance of these fair algorithms empirically with respect to per-
formance accuracy and fairness. We conduct the experiments on a synthetic scenario
and real-world datasets.

7.3.1 | Synthetic Scenario
We illustrate the fundamental functionality of our proposal with a simple synthetic
scenario that was inspired by the Red Car example illustrated in chapter 5. The pur-
pose of this exercise is also to estimate the claim likelihood without incorporating
any gender bias in terms of Demographic Parity. However, here, external informa-
tion about geography and car is added to the model, making the fairness task more
complex. We compare for this objective, the fair traditional pricing structure denoted
as BASE and the fair pricing autoencoder structure as shown in the subsection 7.2.2
denoted as OURS. We focus on the general claim likelihood and ignore the severity
or cost of the claim. Further, we only consider the binary case of claim or not (as
opposed to a frequency). We assume that the claim likelihood only depends on the
aggressiveness and the inattention of the policyholder. To make the training more
complex, these two properties are not directly represented in the input data but are
only indirectly available through correlations with other input features. We create a
binary label Y with no dependence on the sensitive attribute S. Concretely, we use
as protected attribute the gender of the policyholder. The unprotected attributes color,
the maximum speed of the cars, and the average salary of the policyholder’s area are
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7.3. Results and Discussion

all caused by the sensitive attribute. In our data distribution, the color and the maxi-
mum speed of the car are strongly correlated with both gender and aggressiveness. Age
is not correlated with gender. However, age is correlated with the inattention of the
policyholder. Thus, the latter input feature is actually linked to the claim likelihood.

First, we generate the training samples
(xpi , xgi , xci , si, yi)

n
i=1. The unprotected at-

tribute xpi = agei represents the policy in-
formation with the age of the policyholder,
xgi = Sali represents the geographical in-
formation with the average salary of the
area and xci = (Coli, Spi) represent the col-
ors and the maximum speed of the car.

age

Agg

Y

InaS Col

Sp
Sal

Figure 7.4: Causal Graph - Synthetic Scenario

We plot the performance of these different approaches in Figure 7.5. In the first
graph, we can see the curves of accuracy against the fairness metric p-rule during the
training phase. Note that on the top of the left of these curves, the λ hyper-parameters
are fixed to 0 for the two models, therefore, only the performance accuracy is op-
timized during the training for this case. We observe that, for all levels of fairness
(controlled by the mitigation weight λ in the two approaches), the model via autoen-
coder outperforms the traditional two-stage model. We attribute this to the ability of
the autoencoder to extract a useful car and geographic risk. The traditional pricing
structure has significant limitations in achieving fairness. In the middle left graph,
as expected for the autoencoder model, we observe that the dependence between car
risk and the sensitive S is lower for higher λ. However, this is not the case for the tra-
ditional model, where we observe stagnation since the minimax fairness optimization
is performed only on the final predictor model. Furthermore, we observe on the two
most right graphs that the bias reduction is at the expense of the essential unbiased
information for the traditional one. This information is too strongly reduced for the
latter, in contrast to the autoencoder model where the dependence between the car
risk and the prediction is higher while being less biased.

7.3.2 | Real-World Datasets
We consider two real-world datasets: the pricingame 2015 (The Institute of Actuaries
of France, 2015; Charpentier, 2014) and 2017 (The French Institute of Actuaries, 2017).
Each of them contains 100, 000 TPL policies for private motor insurance. In these data
sets, we perform the two objectives of fairness Demographic Parity and Equalized Odds
for three different tasks: Binary, frequency, and continuous objectives. For the binary
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Figure 7.5: Impact of hyperparameter λ (Synthetic Scenario): (Left) For all levels of predictive
performance accuracy, our proposed method outperforms the traditional fair pricing model.
(Middle left) Higher λ values produce a fairer car risk to our approach than traditional car
risk where biases mitigation is not performed. (Middle right and Right) Higher λ values
significantly reduce the dependence between output predictions and the car risk, as well as
for the geographical risk in comparison to our proposed model.

objective, we propose to predict the TPL claim of policyholders. For the continuous
objective, we propose to predict the cost of third-party material claims (euro). For the
frequency objective, we predict the number of third-party claims. For the Pricingame
2017 dataset, we consider xc as the set of variables vh_age, vh_cyl, vh_din, vh_speed,
vh_value, vh_weight, vh_make, vh_model , vh_sale_begin,sale_end, vh_type , xg as the set
of variables representing more than 100 hundreds external features collected from
French INSEE organism via the INSEE_code (more details in the code1) and all the
remaining variables for xp. For the Pricingame 2015 dataset, we considers xc as the set
of variables Type, Category, Group1, Value of the car, xg as the Density feature and all

1https://github.com/LeoPetrini/XGBoost-in-Insurance-2017
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the remaining variables for xp (more information in (Dutang and Charpentier, 2019)).
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Figure 7.6: Scenario 1 - Binary objective - Pricingame 2015 dataset (similar results as synthetic
scenario)

As the synthetic scenario, we compare for this objective, the fair traditional pricing
structure denoted as BASE and the fair pricing autoencoder structure as shown in the
subsection 7.2.2 denoted as OURS. For all data sets, we repeat five experiments by
randomly sampling two subsets, 80% for the training set and 20% for the test set.

Depending on the objective, we report the average of the accuracy (ACC), the
Expected Deviance Ratio (EDR), the average of the mean squared error (MSE), the
GINI, the mean of the HGR metric HGRNN and the FairQuant metric on the test set.
We plot the performance of these different approaches by displaying the predictive
performance (ACC, EDR, MSE and GINI) against the FairQuant for Demographic
Parity in the two left most graphs in Figures 7.6,7.8,7.9 and with separate mistreat-
ment for each cases of the target Y for Equalized Odds (Figure 7.10). For all algo-
rithms, we clearly observe that the predictive performance decreases when fairness
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increases. We note that, for all levels of fairness (controlled by the mitigation weight
in every approach), our method outperforms the traditional algorithm for both fair-
ness tasks. We attribute this result, as in the synthetic scenario, to the ability of our
approach to extract useful components from the mitigated car and geographic risks.
In contrast, the traditional approach suffers significantly from merely mitigating bi-
ases on the predictor model only. We observe in the middle right graphs of the Fig-
ures 7.6, 7.9 that the dependencies between the car risks and the predictions are all
more important than the traditional one, and this is valid for all levels of fairness.
In Figure 7.7 we plot the distribution of the predicted probabilities for each demo-
graphic group of the sensitive attribute S for 3 different models: An unfair model
(λ = 0), and a mildly fair model (λ = 1.1) and a strongly fair one (λ = 2.0). For the
unfair model, the distribution differs most for the lower probabilities. As expected,
we observe that the distributions are more aligned with a higher λ. Figure 7.10 com-
pares the results of (a) the demographic parity task and (b) the equalized odds task.
We plot for this purpose the predictive performance (measured by MSE) against the
fairness metric (measured by FairQuant) with separate mistreatment for each case of
the target Y = {0, 1, 2+}. For all cases, our method outperforms the traditional one.
We also observe that for the demographic parity task and in particular when Y = 0,
the bias mitigation is more pronounced (FairQuant closer to 0) than in other cases
(Y = {1, 2+}). Most observations have no claims (87.7%), therefore, the weight for
the 0 case should be higher. In contrast, our proposed equalized odds strategy by sep-
arating the cases for different λ shows a significant improvement for the cases with
claims (Y = {1, 2+}). The FairQuant is closer to zero in these cases, except for the
traditional one where the FairQuant stabilizes at 0.003 for Y = 1. Note that this is
not at the sacrifice of the non-claimed observations where the results are close to the
demographic parity results.
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Figure 7.7: Distributions of the predicted probabilities given the sensitive attribute S
(Pricingame 2015 dataset). Higher λ values produce more aligned distributions between men
and women.
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Figure 7.9: Scenario 2 - Frequency objective (Left and Middle left) For all levels of predictive
performance, GINI or MSE, our proposed method outperforms the traditional fair pricing
model. (Middle right and right) Higher λ values significantly reduce the dependence between
output predictions and the car risk, as well as for the geographical risk in comparison to our
proposed model.
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(a) Demographic Parity task
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(b) Equalized Odds task with λ0 = λ1 = λ2+

Figure 7.10: Frequency task (Pricingame 2015 dataset) - The figures show the results between
the prediction performance (MSE) against the fairness metric (FairQuant) for the demographic
parity task (a) and for the equalized odds task (b). (Left) represents the results only for cases
where Y = 0 (87.7% of the observations), (Middle) only for one-claim cases where Y = 1
(10.4% of the observations) and (Right) for high-claim cases where Y ≥ 2 (1.9% of the obser-
vations). For all cases, our method outperforms the traditional one. We also observe that the
demographic parity objective gives more weight to mitigation where there are more obser-
vations, especially for unclaimed (Y = 0). While for observations with claims, it seems to be
more discarded. In contrast, our proposed method for equalized odds objective seems more
consistent even for cases with fewer observations. We note that for the 3 cases, the fairness is
very close to the optimum (FairQuant very close to 0).
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7.4 | Conclusion
We developed a novel general framework designed specifically for insurance pricing.
First, we extend autoencoders to generate the geographic and car rating components
needed for pure premium prediction. To the best of our knowledge, this is the first
such method to be applied in a single whole insurance pricing model, as it tradition-
ally requires a two-step structure. Compared with the traditional pricing method, our
method proves to be more efficient in terms of performance accuracy on various arti-
ficial and real data sets. We attribute this to the ability of the autoencoder to extract
useful car and geographic risks, while the traditional pricing structure has significant
limitations in correctly modeling the risks associated with these deep and complex
components. Furthermore, this general framework has proven to be highly interest-
ing for applying an adversarial learning approach specifically designed to improve
the fairness of insurance pricing. We show empirically that the different components
predicted by the model are debiased in contrast to traditional approaches that might
remove the important information for predicting the pure premium. This approach
shows to be more efficient in terms of accuracy for similar levels of fairness on various
data sets. As future work, it might be interesting to consider a generalization of our
proposal for telematics insurance where some biases can be mitigated on different
aggregation scores.
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8

Individual Fairness

This chapter considers two ways of looking at individual fairness.

First, we are interested to look at the link between the traditional adversarial
group fairness models (discussed in section 4) and models from individual fairness
through awareness. Most of the current approaches involves comparing individu-
als from a distance dX . This distance can come from expert knowledge, or can be
learnt from linear projection on data as discussed in Section 2.2.2. We will see that
fair representations algorithms like (Adel et al., 2019; Grari et al., 2021b) mitigate the
underlying bias not only for group fairness but also on the individual sense for some
implicit similarity distance dX . In this comparison, we also present a new frame-
work method, that leverages the Variational Autoencoder (VAE) algorithm and the
Hirschfeld-Gebelein-Renyi (HGR) maximal correlation coefficient for enforcing indi-
vidual fairness without access to the fair distance dX . We demonstrate the effective-
ness of our approach in enforcing individual fairness on several machine learning
tasks prone to algorithmic bias, even compared with the same distance dX as the one
used by competitors approaches (e.g., (Yurochkin et al., 2019))

In the second section we are interested to apply fairness in a causal perspective,
counterfactual fairness, which is close to the general individual fairness since it aims
at building prediction models which ensure fairness at the most individual level.
Rather than globally considering equity over the entire population, the idea is to
imagine what any individual would look like with a variation of a given attribute
of interest, such as a different gender or race for instance. Therefore, the difference
with the general individual fairness is that it requires an intervention from the sentive
feature. Existing approaches rely on Variational Auto-encoding of individuals, using
Maximum Mean Discrepancy (MMD) penalization to limit the statistical dependence
of inferred representations with their corresponding sensitive attributes. This enables
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the simulation of counterfactual samples used for training the target fair model, the
goal being to produce similar outcomes for every alternate version of any individual.
In this work, we propose to rely on an adversarial neural learning approach, that is
particularly well fitted for the continuous setting, where values of sensitive attributes
cannot be exhaustively enumerated. Experiments show significant improvements in
term of counterfactual fairness for both the discrete and the continuous settings.

8.1 | Fairness Through Awareness
The method that we propose in order to enforce individual fairness is based on Vari-
ational Autoencoding methods (VAE), which is the basis of the first step of our al-
gorithm (Figure 8.1). While some recent work leverage VAE methods for counter-
factual inference (Chiappa, 2019; Madras et al., 2019; Pfohl et al., 2019; Louizos et al.,
2015), we make use of this technique to generate similar individuals via the encoding-
decoding process. We learn an unobserved confounder U of which we mitigate the
bias w.r.t the sensitive variable, and generate new individuals based on the latent vari-
able U. Then, we make use of this learnt generator in the prediction step, by adding a
regularization term representing differences of outputs between similar individuals.

8.1.1 | Step 1: Rényi Variational Inference
The original formulation of VAE consists in optimizing the classical lower bound
(ELBO):

LELBO = −Eu∼qφ(u|x)(log pθ(x|u)) + DKL(qφ(u|x)||p(u)) (8.1)

DKL is defined as the Kullback-Leibler divergence, which computes distances be-
tween distributions, and the prior p(u) is typically a standard Gaussian distribution.
qφ(u|x) is represented as a neural network, referred to as the encoder, (see Figure 8.1),
that outputs the mean µφ and variance σφ of a Gaussian distribution, which allow to
infer, stochastically, the variable U. The decoding process, corresponding to pθ(x|u)
and materialized by a neural network, consists in predicting X based on U. The over-
all objective consists in both minimizing the reconstruction error (first term) and the
divergence (distance) with a standard Gaussian.

We adapt the ELBO by making two changes to the global step 1 objective. If we
directly learnt the VAE with Eq. 8.1, we would obtain a generator that does generate,
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8.1. Fairness Through Awareness

for a given x, a similar individual, but not similar in an acceptable sense for individual
fairness. The underlying notion of similarity would be closer to an euclidean one,
and thus would not be necessarily fair. As discussed in (Castelnovo et al., 2022),
dealing with euclidean comparison implies that any smooth predictor function hwh

shall satisfy individual fairness condition (Eq. 4) and is therefore not a very interesting
notion of fairness.

However, by debiasing the latent variable U, generated individuals could be sim-
ilar to the original one (depending on the level of debiasing) in a fairer sense. The
assumption is that, if U both adequately represents the input data and eliminates in-
formation about the sensitive attribute, individuals generated from U will be close
to the original one in terms of debiased attributes. As shown in previous sections,
a good candidate for debiasing the latent variable is the HGR, which has the ability
to capture non-linear dependencies. We add the term HGR(U, S) to Eq.8.1, with a
hyperparameter λHGR that controls the trade-off between debiasing and reconstruc-
tion, and therefore use the HGR_NN to estimate the HGR coefficient. Also, similarly
to (Pfohl et al., 2019), we replace the KL-divergence with a Maximum Mean Discrep-
ancy (MMD) term (Gretton et al., 2012) LMMD(qφ(u)||p(u)). As shown in (Zhao et al.,
2017; Chen et al., 2016), the DKL can be too restrictive (uninformative latent code prob-
lem) and tends to overfit the data.

Therefore, the final minimization objective for the VAE step is:

LVAE =− Eu∼qφ(u|x)(log pθ(x|u))

+ λMMDLMMD(qφ(u)||p(u))

+ λHGRHGR(U, S) (8.2)

This heuristic approach does not make use of any given distance dX , but actually
learns its own notion of similarity: individuals can be considered similar if they are
close, in an euclidean sense, on the latent space. Additionally, we can also note that a
significant difference with counterfactual inference is that the sensitive attribute is not
used as input for the VAE. In counterfactual inference, having the sensitive attribute
as input allows to generate counterfactual individuals with different values of S.

8.1.2 | Step 2: Individually Fair Prediction
Once the inference model is learnt, we can generate similar versions of each training
individual, and use them to learn an individually fair predictive function hwh . The
global objective function for step 2 is:
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Figure 8.1: VAE-IF - Two steps algorithm for individual fairness

Lglobal = L(hwh(X), Y) + λLIF(hwh , X, X̂1, ...X̂m) (8.3)

where L is a suitable loss function for the problem at hand (regression or classifi-
cation), X̂1, ...X̂m are m individuals generated by the inference model learnt at step 1
and similar to X, and LIF, referred to as the Individual Fairness Loss, can be defined
as:

LIF(hwh , X, X̂1, ...X̂m) =
1
m

m

∑
i=1
L(hwh(X̂i), hwh(X)) (8.4)

LIF is a regularization term that, if minimized, ensures that similar individuals (in
the sense of the step 1 VAE) have similar outputs. The hyperparameter λ controls the
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trade-off individual fairness/accuracy. Therefore, for sufficiently high values of λ, the
algorithm is individually fair w.r.t a distance dX if the generated individuals are close
to X in the sense of dX . Since we assume no access to dX , we do not directly enforce,
in step 1, closeness of generated individuals in the sense of dX , and we therefore have
to rely on experimental results to assess the individual fairness of our algorithm w.r.t
to a reasonable distance dX for the task at hand.

8.1.3 | Experiments
We empirically evaluate the performance of our contribution on 3 real world data sets.
For the discrete scenario and specifically in the binary case (Y ∈ {0, 1}, S ∈ {0, 1}),
we use 3 different popular data sets: For the discrete scenario and specifically in the
binary case (Y ∈ {0, 1}, S ∈ {0, 1}), we use the popular Adult UCI data set. For the
continuous setting (Y and S are continuous), we use the data sets Motor and Crime
data set. Please not that all of these data set are with the same setting as Subsec-
tion 4.5.

Metrics and experimental conditions

We repeat five experiments with random 80%/20% train-test splits. We report the av-
erages of mean squared error (MSE) or balanced accuracy (B-Acc%), the Individual
Fairness Loss (IFL) defined in 8.4, the MRD and MDRD metrics defined in subsec-
tion 3.3.1 (choices of α and β are reported in the Appendix in section D.1), ∆DP for
binary sensitives or the HGR for continuous sensitives. Therefore, we can assess both
the individual fairness of algorithms w.r.t the intrinsic metric of the step 1 VAE (IFL)
and the distance dX (MRD, MDRD). The latter is learned with the subspace method
of (Yurochkin et al., 2019) presented in chapter 3. We fit a logistic regression model to
predict the sensitive S, and we calculate the projection matrix onto the span of A cor-
responding to the weight of the fitted model (more information in subsection 2.2.2).
While this distance deals with a linear link, it is still reasonable for our comparison
since it also compares individuals independently of the sensitive S.

We can also assess the group fairness with the HGR and ∆DP, as it is interesting
to observe whether models trained for individual fairness perform well in terms of
group fairness. Note that, for the Adult experiment, we report 2 group fairness met-
rics.

The baseline we use is a classic deep neural network (Standard NN). We com-
pare our method with state of the art algorithms, among which the SenSR (Yurochkin
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et al., 2019) algorithm which enforces Individual Fairness with knowledge of the fair
distance dX , as well as group fairness algorithms. Among the group fairness algo-
rithms, we compare our approach to two adversarial methods (Zhang et al., 2018;
Adel et al., 2019) which both involve an adversary that aims at predicting the sensitive
attribute (from either a representation of the input, or from the prediction outputs).
We also compare our method to the bias mitigation method introduced in section 4.5
for group fairness.

All hyper-parameters for every approach were tuned by 5-fold cross-validation.
For the Adult UCI data set for our approach for instance, in step 1, the encoder qφ

architecture is an MLP of only one hidden layers with 256 units and a ReLU activa-
tion. The latent variable U is a 20 dimensional vector. On this dataset, the decoder
pθ is an MLP of also one hidden layer with 256 units and a ReLu activation function
and the output consists in 95 units to reconstruct X (number of features). The two
sub-networks f and g in the HGR adversarial neural network are both made of three
hidden layers with 15 units. Notice that f takes only a one-dimensional input which
corresponds to the sensitive feature S and g takes a 20 dimensional input which cor-
responds to the latent space U. In step 2, the predictor corresponds to a MLP with
three hidden layers of 64, 32 and 8 units respectively with ReLu activation functions
and one single output node with a sigmoid activation to reconstruct Y.

For the step 1, we used a Gaussian radial basis function kernel for the MMD con-
straint. For the Motor dataset, the prior distribution p(U) considered for training the
models is a 20-dimensional standard Gaussian and, for Crime, it is a 5-dimensional
standard Gaussian.

Results

Results can be found in tables 8.1 and 8.2. For all of the fair algorithms, we attempted
to obtain comparable predictive performances by giving similar balanced accuracies
(B-Acc%) for classification or mean squared errors (MSE) for regression for all the
algorithms, in the same settings. Each of the algorithms considered has a hyperpa-
rameter that allows to balance the relative importance of accuracy and fairness while
learning. Best performances among fair algorithms are in bold.

For the three data sets, our algorithm enforces individual fairness at the best level
among the other algorithms, not only with respect to its inner metric (IFL), but also
and most importantly with respect to the dX distance as shown by the MRD and
MDRD metrics. In particular, our method VAE-IF outperforms SenSR in individual
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Figure 8.2: Pareto fronts for IFL, MRD, MDRD. Higher values of λ produce fairer predictions,
while λ near 0 only focuses on optimizing the predictor.
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Figure 8.3: Impact of the hyperparameters λHGR of the step 1 and the λstep2 of the step 2 on
individual fairness metrics for the Crime data set.

B-Acc% IFL MRD MDRD ∆DPG ∆DPR

A
du

lt

Standard NN 82.6% ± 0.2 0.239 ± 0.028 0.031 ± 0.012 0.052 ± 0.010 0.249 ± 0.002 0.129 ± 0.001
SenSR (Yurochkin et al., 2019) 79.2% ± 0.7 0.327 ± 0.057 0.020 ± 0.008 0.015 ± 0.010 0.143 ± 0.023 0.110 ± 0.016
Simple PR (Zhang et al., 2018) 79.1% ± 2.3 0.362 ± 0.054 0.026 ± 0.019 0.081 ± 0.029 0.264 ± 0.042 0.126 ± 0.032
Simple FR (Adel et al., 2019) 79.9% ± 0.6 0.348 ± 0.013 0.013 ± 0.008 0.023 ± 0.022 0.209 ± 0.016 0.110 ± 0.006
Rényi FR (Grari et al., 2021b) 80.1% ± 0.9 0.321 ± 0.011 0.022 ± 0.004 0.018 ± 0.027 0.154 ± 0.015 0.089 ± 0.003
VAE-IF (Grari et al., 2021a) 80.2% ± 0.6 0.001 ± 0.001 0.010 ± 0.006 0.010 ± 0.013 0.249 ± 0.040 0.113 ± 0.019

Table 8.1: Experimental results for the discrete dataset

fairness while having better accuracy, even knowing that the SenSR algorithm makes
use of the fair distance dX . Unsurprisingly, in terms of group fairness metrics, our al-
gorithm does not perform as well as the group fairness algorithms such as our Rényi
fair representation (Rényi FR) as shown with the ∆DPR and the HGR for the three
data sets. Our algorithm still achieves group fairness debiasing (better than baseline)
except for the Gender variable in the Adult experiment. Note that simple fair repre-
sentation (Simple FR) (Adel et al., 2019) and our Rényi FR obtain good performances
on individual fairness metrics even though these methods were initially intended for
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MSE IFL MRD MDRD HGR

M
ot

or

Standard NN 0.946 ± 0.003 0.023 ± 0.005 0.043 ± 0.004 0.118 ± 0.026 0.208 ± 0.045
SenSR (Yurochkin et al., 2019) 0.996 ± 0.029 0.039 ± 0.005 0.065 ± 0.003 0.209 ± 0.031 0.168 ± 0.024
Simple PR (Zhang et al., 2018) 0.976 ± 0.016 0.042 ± 0.020 0.116 ± 0.026 0.139 ± 0.045 0.196 ± 0.015
Simple FR (Adel et al., 2019) 0.981 ± 0.009 0.001 ± 0.001 0.009 ± 0.004 0.028 ± 0.012 0.150 ± 0.076
Rényi FR (Grari et al., 2021b) 0.972 ± 0.004 0.008 ± 0.003 0.019 ± 0.005 0.042 ± 0.014 0.079 ± 0.018
VAE-IF (Grari et al., 2021a) 0.972 ± 0.001 0.001 ± 0.000 0.008 ± 0.001 0.028 ± 0.008 0.169 ± 0.022

C
ri

m
e

Standard NN 0.387 ± 0.008 0.448 ± 0.080 0.185± 0.015 0.164 ± 0.095 0.772 ± 0.022
SenSR (Yurochkin et al., 2019) 0.999 ± 0.084 0.379 ± 0.028 0.123 ± 0.041 0.274 ± 0.063 0.608 ± 0.061
Simple PR (Zhang et al., 2018) 0.990 ± 0.069 0.051 ± 0.012 0.014 ± 0.004 0.028 ± 0.020 0.496 ± 0.031
Simple FR (Adel et al., 2019) 0.996 ± 0.021 0.001 ± 0.000 0.002 ± 0.000 0.002 ± 0.001 0.549 ± 0.012
Rényi FR (Grari et al., 2021b) 1.001 ± 0.017 0.000 ± 0.000 0.002 ± 0.001 0.002 ± 0.002 0.254 ± 0.096
VAE-IF (Grari et al., 2021a) 0.972 ± 0.004 0.000 ± 0.000 0.002 ± 0.001 0.002 ± 0.001 0.531 ± 0.050

Table 8.2: Experimental results for the continuous dataset

group fairness. This is due to the fact that they both predict the outcome from a de-
biased representation. The prediction module being a lipschitz function, these two
methods give similar predictions for individuals with similar representations.

In Figure 8.2, we plot 3 Pareto fronts displaying the IFL, MRD and the MDRD
against the MSE with different values of the hyperparameter λ. These plots were
obtained on the Crime data set with 4 algorithms: VAE-IF, Simple FR , Simple FR
and Rényi FR. Varying the hyperparameter λ allows to control the fairness/accuracy
trade-off. Here, we clearly observe for all algorithms that the MSE, or predictive
performance, decreases when fairness increases. Higher values of λ produce fairer
predictions w.r.t the three fairness metrics, while near 0 values of the hyperparameter
λ result in the optimization of the predictor loss with no fairness consideration. We
note that, for all levels of predictive performance, our method outperforms the state
of the art algorithms in terms of the three fairness metrics. The gap is even higher
(in our favour) on the IFL metric, since our method consists in mitigating this latter
metric.

In Figure 8.3, we plot the iso-MRD and iso-MDRD surfaces in the (λHGR, λstep2)

plane, λHGR being the hyperparameter in step 1 and λstep2 the regularization hyper-
parameter in the prediction step. We can make several observations based on these
two plots. First, for any value of λHGR, if the value of λstep2 is not high enough, then
MRD and MDRD are not mitigated. That is to say: adding importance to the reg-
ularization term in step 2 improves fairness. Second, these plots allow us to assess
the performance of the step 1 of the algorithm. Indeed, even for very high values of
λstep2, if λHGR is not high enough, then both the MRD and MDRD are not mitigated.
This highlights the necessity of proper tuning of the λHGR in step 1. The more step 1
mitigates the bias in the confounder, the more the algorithm is individually fair. Note
that the optimal values of MRD and MDRD are obtained for high values of λHGR and
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λstep2.

8.2 | Adversarial Counterfactual Fairness

X

Y

US

Figure 8.4: Graphical causal model. Unobserved confounder U has effect on both X and Y.

In this section, we focus on an other sub field of individual fairness: Counterfactual
Fairness. In particular, counterfactual fairness aims at imagine what any individual
would look like with a variation of a given attribute of interest, such as a different
gender or race for instance. As discussed in section 2.2.2, it involves inferring causal
effects from a causal model. Existing approaches rely on Variational Auto-encoding
of individuals and use a Maximum Mean Discrepancy (MMD) penalization to limit
the statistical dependence of inferred representations with their corresponding sensi-
tive attributes. This enables the simulation of counterfactual samples used for train-
ing the target fair model, the goal being to produce similar outcomes for every al-
ternate version of any individual. In this work, we propose to rely on an adversar-
ial neural learning approach, that enables more powerful inference than with MMD
penalties, and is particularly better fitted for the continuous setting, where values of
sensitive attributes cannot be exhaustively enumerated. Experiments show signifi-
cant improvements in term of counterfactual fairness for both the discrete and the
continuous settings.

8.2.1 | Background
We focus on the classical causal graph depicted in Fig.8.4, often used in the coun-
terfactual fairness literature (Kusner et al., 2017; Pfohl et al., 2019; Chiappa, 2019),
which can apply for most applications. For more specific tasks, note further that
our approach could be easily adapted for different graphs, such as those explored in
(Kusner et al., 2017) for instances. In this causal graph, both input X and outcome
Y only depend on the sensitive attribute S and a latent variable U, which represents
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all the relevant knowledge non dependent on the sensitive feature S. In that setting,
the knowledge of U can be used during training to simulate various versions of the
same individual, corresponding to different values of S, in order to obtain a predictive
function hwh which respects the fairness objective from definition 5. For any training
individual, U has to be inferred since only X, S and Y are observed. This inference
must however ensure that no dependence is created between U and S (no arrow from
U to S in the graph from Fig.8.4), unless preventing the generation of proper alterna-
tive versions of X and Y for any values S.

Concerning causal effect identifiability (i.e., whether a joint distribution of latent
and observed confounder variables can be uniquely inferred from observations), suf-
ficient conditions as raised in (Louizos et al., 2017; Madras et al., 2019; Kilbertus et al.,
2020) imply strong assumptions which require specific directed acyclic graphs dif-
ferent from ours. As in (Pfohl et al., 2019), that considers the same causal graph, we
make no formal guarantee on identification even in the case where these assumptions
hold (more information in their article). However, we argue that, given any distribu-
tion P(U, S, X, Y) exactly inferred from a sufficiently large amount of observations
(X, Y, S), with a constant prior on U, the counterfactual quantities P(XS←s′ |X, Y, S)
and P(YS←s′ |X, Y, S) are identifiable, whenever U is independent from S. From this,
if the prior P(U) is the true one, and the decoding is sufficiently powerful, a classifier
can be trained to minimize counterfactual unfairness according to the inferred model
(step 2 in the following).

Several current approaches (Louizos et al., 2017; Kim et al., 2021; Kocaoglu et al.,
2018; Xu et al., 2019) enforce fairness on counterfactual data generated by their model.
These works, which do not focus on the final predictor itself, assume that giving fair
generated counterfactual observations as input to a traditional machine learning al-
gorithm is sufficient to maintain the fairness objective. We argue that it is not always
the case and the final predictions need to be evaluated to ensure a good fairness level.
For this reason, we rather leverage a two-step method, as already considered in (Rus-
sell et al., 2017; Pfohl et al., 2019), that focus separately on Causal Inference (step 1)
and Model Learning (step 2). We develop and discuss the general principles of this
family of methods in the following.

Step 1: Counterfactual Inference
The goal is to define a way to generate counterfactual versions of original individ-
uals. As discussed above, this is usually done via approximate Bayesian inference,
according to a pre-defined causal graph.
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The initial idea to perform inference was to suppose with strong hypothesis a
non deterministic structural model with some specific distribution for all the causal
links (Kusner et al., 2017). In this setting, the posterior distribution of U was esti-
mated using the probabilistic programming language Stan (Team et al., 2016). Then,
leveraging recent developments for approximate inference with deep learning, many
works (Chiappa, 2019; Pfohl et al., 2019; Madras et al., 2019; Louizos et al., 2017) pro-
posed to use Variational Autoencoding (Kingma and Welling, 2013) methods (VAE)
to generalize this first model and capture more complex - non linear - dependencies
in the causal graph.

Following the formulation of VAE, it would be possible to directly optimize the
classical lower bound (ELBO) (Kingma and Welling, 2013) on the training set D, by
minimizing:

LELBO =−E (x,y,s)∼D,
u∼qφ(u|x,y,s)

[log pθ(x, y|u, s)] + DKL(qφ(u|x, y, s)||p(u)) (8.5)

where DKL denotes the Kullback-Leibler divergence of the posterior qφ(u|x, y, s)
from a prior p(u), typically a standard Gaussian distribution N (0, I). The poste-
rior qφ(u|x, y, s) is represented by a deep neural network with parameters φ, which
typically outputs the mean µφ and the variance σφ of a diagonal Gaussian distribu-
tion N (µφ, σφ I). The likelihood term factorizes as pθ(x, y|u, s) = pθ(x|u, s)pθ(y|u, s),
which are defined as neural networks with parameters θ. Since attracted by a stan-
dard prior, the posterior is supposed to remove probability mass for any features of
the latent representation U that are not involved in the reconstruction of X and Y.
Since S is given together with U as input of the likelihoods, all the information from
S should be removed from the posterior distribution of U.

However, many state of the art algorithms (Chiappa, 2019; Louizos et al., 2017;
Madras et al., 2019; Pfohl et al., 2019) show that the independence level between the
latent space U and the sensitive variable S is insufficient with this classical ELBO
optimization. Some information from S leaks in the inferred U. In order to ensure
a high level of independence, a specific TARNet (Shalit et al., 2017) architecture can
be employed (Madras et al., 2019) or a penalisation term can be added in the loss
function. For example, (Chiappa, 2019; Pfohl et al., 2019) add a Maximum Mean Dis-
crepancy (MMD) (Gretton et al., 2012) constraint. The MMD term can be used to
enforce all the different aggregated posterior to match the prior distribution(Pfohl
et al., 2019): LMMD(qφ(u|S = sk)||p(u)) for all sk ∈ ΩS (referred to as MMD wrt P(U)

in the following). Alternatively, the constraint can directly enforce the matching be-
tween pairs of posteriors (Chiappa, 2019): LMMD(qφ(u|S = sk)||qφ(u|S = s)) for all
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sk ∈ ΩS, with s standing for the original sensitive value of the considered individ-
ual (referred to as MMD wrt Us in the following). Notice that while this additional
term can improve independence, it can also encourage the model to ignore the latent
confounders U, by being too restrictive. One possible approach to address this issue
is to apply weights λ (hyperparameters) to control the relative importance of the dif-
ferent terms. In addition, as already done in chapter 6, we employ a variant of the
ELBO optimization, where the DKL(qφ(u|x, y, s)||p(u)) term is replaced by a MMD
term LMMD(qφ(u)||p(u)) between the aggregated posterior qφ(u) and the prior.

Finally, the inference for counterfactual fairness can be optimized by minimizing
(Pfohl et al., 2019):

LCE−VAE =− E
(x,y,s)∼D,

u∼qφ(u|x,y,s)

[
λx log(pθ(x|u, s)) +
λy log(pθ(y|u, s))

]

+λMMD LMMD(qφ(u)||p(u)) (8.6)

+λADV
1

ms
∑

sk∈ΩS

LMMD(qφ(u|s = sk)||p(u))

where λx, λy, λMMD, λADV are scalar hyperparameters and ms = |ΩS|.
Note that we chose to present all models with a generic inference scheme

q(U|X, Y, S), while most approaches from the literature only consider q(U|X, S). The
use of Y as input is allowed since U is only used during training, for generating coun-
terfactual samples used to learn the predictive model in step 2. Various schemes of
inference are considered in our experiments (section 8.2.4).

Step 2: Counterfactual Predictive Model
Once the causal model is learned, the goal is to use it to learn a fair predictive func-
tion hwh , by leveraging the ability of the model to generate alternative versions of
each training individual. The global loss function, LGL , is usually composed of the
traditional predictor loss l(hwh(xi, si), yi) (e.g. cross-entropy for instance i) and a coun-
terfactual unfairness estimation term LCF (wh):

LGL(wh) =
1
m

m

∑
i

l(hwh(xi, si), yi) + λLCF (wh) (8.7)

where λ is an hyperparameter which controls the impact of the counterfactual loss
in the optimization. The counterfactual loss LCF (wh) considers differences of pre-
dictions for alternative versions of any individual. For example, (Russell et al., 2017)
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considers the following Monte-Carlo estimate from B samples for each individual i
and each value s ∈ ΩS:

LCF (wh) =
1
m

m

∑
i=1

1
ms

∑
sk∈ΩS

1
B

B

∑
b=1

∆i,b
sk

(8.8)

where ∆i,b
sk = ∆(hwh(xb

i,S←si
, si), hwh(xb

i,S←sk
, sk)) is a loss function that compares two

predictions, xb
i,S←s denotes the b-th sample from the causal model for the i-th individ-

ual of the training set and the sensitive attribute value s. Following the causal model
learned at step 1, xb

i,S←s is obtained by first inferring a sample u from qφ(u|xi, si, yi)

and then sampling xb
i,S←s using pθ(x|u, s) with the counterfactual (or factual) at-

tribute value s. According to the task, ∆ can take various forms. For binary clas-
sification, it can correspond to a logit paring loss as done in (Pfohl et al., 2019):
∆(z, z′) = (σ−1(z)− σ−1(z′))2, where σ−1 is the logit function. For continuous out-
comes, it can simply correspond to a mean squared difference.

Discussion
For now, state-of-the-art approaches have focused specifically on categorical variables
S. Unfortunately, the classical methodology for CounterFactual Fairness as described
above cannot be directly generalized for continuous sensitive attributes, because the
two steps involve enumerations of the discrete counterfactual modalities sk in the
set ΩS. Particularly in step 1, sampling S from a uniform distribution for approxi-
mating the expectation Es∼p(S)LMMD(qφ(u|S = s)||p(u)) is not an option since this
requires to own a good estimation of qφ(u|S = s) for any s ∈ ΩS, which is difficult
in the continuous case. While such a posterior can be obtained for discrete sensitive
attributes (at least when |ΩS| << m) by aggregating the posteriors qφ(u|xi, si, yi)

over training samples i such that si = s, such a simple aggregation over filtered
samples is not possible for continuous attributes. On the other hand existing ap-
proaches based on MMD costs imply to infer codes U from a distribution that takes
S as input, in order to be able to obtain the required aggregated distributions via:
qφ(u|s) = Epdata(x,y|s)[qφ(u|x, y, s)]. Omitting S from the conditioning of the genera-
tor would correspond to assume the mutual independence of u and s given x and
y, which is usually wrong. On the other hand, passing S to the generator of U can
encourage their mutual dependency in some settings, as we observe in our experi-
ments.
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8.2.2 | Adversarial Learning for Counterfactual Fairness
In this section we revisit the 2 steps shown above by using adversarial learning rather
than MMD costs for ensuring Counterfactual Fairness. Our contribution covers a
broad range of scenarios, where the sensitive attribute S and the outcome value Y can
be either discrete or continuous.

Step 1: Counterfactual Inference

X
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Figure 8.5: Architecture of our Counterfactual inference process. Blue arrows represent the
retro-propagated gradients for the minimization of the global objective. The red one cor-
responds to the gradients for the adversarial optimization. Circles are observed variables,
squares are samples from the neural distributions.

To avoid the comparison of distributions for each possible sensitive value, which
reveals particularly problematic in the continuous setting, we propose to employ an
adversarial learning framework, which allows one to avoid the enumeration of pos-
sible values in ΩS. The idea is to avoid any adversarial function to be able to decode
S from the code U inferred from the encoder qφ, which allows one to ensure mutual
independence of S and U. This defines a two-players adversarial game, where the
goal is to find parameters φ which minimize the loss to reconstruct X and Y, while
maximizing the reconstruction loss of S according to the best decoder pψ(S|U):

arg min
θ,φ

max
ψ
LADV(θ, φ, ψ) (8.9)

with, for the graphical causal model from figure 8.4:
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LADV(θ, φ, ψ) =− E
(x,y,s)∼D,

u∼qφ(u|x,y,s)

[
λx log(pθ(x|u, s)) +
λy log(pθ(y|u, s))

]

+λMMD LMMD(qφ(u)||p(u)) (8.10)

+λADV E
(x,a)∼D,

u∼qφ(u|x,y,s)

[log(pψ(s|u))]

where λx, λy, λMMD, λADV are scalar hyperparameters. Compared to existing ap-
proaches presented in previous section, the difference is the last term which corre-
sponds to the expectation of the log-likelihood of S given U according to the decoder
with parameters φ. This decoder corresponds to a neural network which outputs the
parameters of the distribution of S given U (i.e., the logits of a Categorical distribu-
tion for the discrete case, the mean and log-variance of an diagonal Gaussian in the
continuous case).

All parameters are learned conjointly. Figure 8.5 gives the full architecture of our
variational adversarial inference for the causal model from figure 8.4. It depicts the
neural network encoder qφ(U|X, Y, S) which generates a latent code U from the in-
puts X, Y and S. A neural network decoder pθ(X, Y|U) reconstructs the original X
and Y from both U and S. The adversarial network pψ tries to reconstruct the sensitive
attribute S from the confounder U. As classically done in adversarial learning, we al-
ternate steps for the adversarial maximization and steps of global loss minimization
(one gradient descent iteration on the same batch of data at each step). Optimiza-
tion is done via the re-parametrization trick (Kingma and Welling, 2013) to handle
stochastic optimization.

8.2.3 | Step 2: Counterfactual Predictive Model

As described in section 2.3, the counterfactual fairness in the predictive model learned
at step 2 is ensured by comparing, for each training individual, counterfactual pre-
dictions YS←s′ for all s′ ∈ ΩS. For the discrete case (i.e., S is a Categorical variable),
we keep this process for our experiments. However, for the continuous setting (i.e.,
S is for instance generated from a Gaussian), such an approach must be somehow
adapted, due to the infinite set ΩS. In that case, we can consider a sampling distribu-
tion P′(S) to formulate the following loss, which can be optimized via Monte-Carlo
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sampling and stochastic gradient descent (SGD):

LGL(wh) =
1
m

m

∑
i

l(hwh(xi), yi) + λ E
u∼P(u|xi ,si ,yi),

x̃∼P(x|ui ,si),
s′∼P′(S),x′∼P(x|u,s′)

[(hwh(x̃) − hwh(x′))2] (8.11)

This formulation is equivalent to the one from Eq. 8.8, for continuous outcomes
Ŷ (thus considering a least squared cost as ∆) and for continuous attributes S (thus
using the sampling distribution P′(S) rather than considering every possible s ∈ ΩS).

Note that using a non-uniform sampling distribution P′(S) would enforce the
attention of the penalisation near the mass of the distribution. This prevents using
the prior of S estimated from the training set, since this would tend to reproduce
inequity between individuals: counterfactual predictions for rare S values would be
be little taken into account during training. We therefore consider a uniform P′(S) in
our experiments for the continuous setting when using the LCF(wh) objective at step
2.

However, for the specific case of high-dimensional sensitive attributes S, using a
uniform sampling distribution P′(S) could reveal as particularly inefficient. The risk
is that a high number of counterfactual samples fall in easy areas for the learning
process, while some difficult areas - where an important work for fairness has to be
performed - remain insufficiently visited.

To tackle this problem, we propose to allow the learning process to dynamically
focus on the most useful areas of ΩS for each individual. During learning, we con-
sider an adversarial process, which is in charge of moving the sampling distribution
P′(S), so that the counterfactual loss is the highest. This allows the learning process to
select useful counterfactuals for ensuring fairness. Who can do more can do less: dy-
namically focusing on hardest areas allows one to expect fairness everywhere. Again,
we face a two-players adversarial game, which formulates as follows:

arg min
wh

arg max
φ

LDynCF(wh, φ) (8.12)

with:

LDynCF(wh, φ) =
1
m

m

∑
i

l(hwh(xi), yi) + λ E
u∼P(u|xi ,si ,yi),

x̃∼P(x|u,si),
s′∼Pφ(s|u),x′∼P(x|u,s′)

[(hwh(x̃)− hwh(x′))2]

Compared to Eq. 8.11, this formulation considers an adversarial sampling distri-
bution Pφ(S|U) rather than a uniform static distribution P′(S). It takes the form of a

132



8.2. Adversarial Counterfactual Fairness

neural network that outputs the parameters of the sampling distribution for a given
individual representation U. In our experiments we use a diagonal logit-Normal dis-
tribution sigmoid(N (µφ(u), σ2

φ(u)I)), where µφ(u) and σ2
φ(u) stand for the mean and

variance parameters provided by the network for the latent code u. Samples from this
distribution are then projected on the support ΩS via a linear mapping depending on
the shape of the set. Passing U as input for the network allows the process to define
different distributions for different codes: according to the individual profiles, the un-
fair areas are not always the same. This also limits the risk that the adversarial process
gets stuck in sub-optima of the sensitive manifold. As done for adversarial learning
in step 1, all parameters are learned conjointly, by alternating steps for the adversar-
ial maximization and steps of global loss minimization. The re-parametrization trick
(Kingma and Welling, 2013) is also used, for the adversarial optimization of Pφ(S|U).

8.2.4 | Experiments
We empirically evaluate the performance of our contribution on 6 real world data sets.
For the discrete scenario and specifically in the binary case (Y ∈ {0, 1}, S ∈ {0, 1}), we
use 3 different popular data sets: the Adult UCI income data set (Dua and Graff, 2017)
with a gender sensitive attribute (male or female), the COMPAS data set (Angwin
et al., 2016) with the race sensitive attribute (Caucasian or not-Caucasian) and the
Bank dataset (Moro et al., 2014) with the age as sensitive attribute (age is between 30
and 60 years, or not). For the continuous setting (Y and S are continuous), we use the
3 following data sets: the US Census dataset (US Census Bureau, 2019) with gender
rate as sensitive attribute encoded as the percentage of women in the census tract,
the Motor dataset (The Institute of Actuaries of France, 2015) with the driver’s age as
sensitive attribute and the Crime dataset (Dua and Graff, 2017) with the ratio of an
ethnic group per population as sensitive attribute.

Additionally to the 6 real-world datasets, we consider a synthetic scenario, that al-
lows us to perform a further analysis of the relative performances of the approaches.
The synthetic scenario subject is a pricing algorithm for a fictional car insurance pol-
icy, which follows the causal graph from figure 8.4. We simulate both a binary and a
continuous dataset from this scenario. The main advantage of these synthetic scenar-
ios is that it is possible to get "ground truth" counterfactuals for each code U, obtained
using the true relationships of the generation model while varying S uniformly in ΩS.
This will allow us to evaluate the counterfactual fairness of the models without de-
pending on a given inference process for the evaluation metric, by relying on predic-
tion differences between these true counterfactuals and the original individual. The
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objective of this scenario is to achieve a counterfactual fair predictor which estimates
the average cost history of insurance customers. We suppose 5 unobserved variables
(Aggressiveness, Inattention, Restlessness, Reckless and Overreaction) which corre-
sponds to a 5 dimensional confounder U. The input X is composed of four explicit
variables X1, ..., X4 which stand for vehicle age, speed average, horsepower and aver-
age kilometers per year respectively. We consider the policyholder’s age as sensitive
attribute S. The input X and the average cost variable Y are sampled from U and
S as depicted in figure 8.4. We propose both a binary (reported in the Appendix in
section D.2) and a continuous version of this scenario. For both of them, 5000 indi-
viduals are sampled. Details of distributions used for the continuous setting of this
synthetic scenario are given below:

U ∼ N




0

0.5
1

1.5
2

,


1 0 0 0 0
0 4 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 2




X1 ∼ N (7 + 0.1 ∗ S + U1 + U2 + U3, 1);

X2 ∼ N (80 + S + U2
2 , 10);

X3 ∼ N (200 + 5 ∗ S + 5 ∗U3, 20);

X4 ∼ N (104 + 5 ∗ S + U4 + U5, 1000)

X ∼ [X1, X2, X3, X4];

S ∼ N [45, 5];

Y ∼ N (2 ∗ (7 ∗ S + 20 ∗∑
j

Uj), 0.1)

8.2.4.1 | Step 1: Counterfactual Inference

In this section, we report experiments performed for assessing our adversarial ap-
proach for Counterfactual Inference (step 1 of the previous section). We compare our
adversarial approach with two version of the approach in Eq. 8.6, each using one of
the two MMD constraints MMD wrt P(S) or MMD wrt Us as presented in section
8.2.1 (step 1). Note that these approaches are not applicable for continuous datasets
as discussed at the end of section 8.2.1. For every approach, we compare three dif-
ferent inference schemes for U: qφ(u|x, y, s), qφ(u|x, y) and qφ(u|x, s). As a baseline,
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we also use a classical Variational Autoencoder inference without counterfactual in-
dependence constraint (i.e., Eq. 8.6 without the last term).

All hyper-parameters for every approach have been tuned by 5-fold cross-
validation. For the US Census data set for our approach for instance, the encoder
qφ architecture is an MLP of 3 hidden layers with 128, 64 and 32 units respectively,
with ReLU activations. On this dataset, the decoder pθ is an MLP of only one hidden
layer with 64 units with a ReLu activation function and the output consists in one
single output node with linear activation to reconstruct Y and 37 units to reconstruct
X (number of features). The adversarial neural network pψ is an MLP of two hid-
den layers with 32 and 16 units respectively. For the binary datasets, a sigmoid is
applied on the outputs of decoders for S and Y. For both MMD constraints we used
a Gaussian radial basis function kernel. For all datasets, the prior distribution p(U)

considered for training the models is a five-dimensional standard Gaussian.

In order to evaluate the level of dependence between the latent space U and the
sensitive variable S, we compare the different approaches by using the neural esti-
mation of the HGR correlation coefficient given in chapter 3. The estimator is trained
for each dataset and each approach on the train set, comparing observed variables S
with the corresponding inferred codes U.

For all data sets, we repeat five experiments by randomly sampling two subsets,
80% for the training set and 20% for the test set. Finally, we report the average re-
construction loss for X and Y on the test set, as long as the HGR between inferred
test codes and the corresponding sensitive attributes. Results of our experiments can
be found in table 8.3 for the discrete case and table 8.4 for the continuous case. For
all of them, we attempted via the different hyperparameters (λx, λy, λMMD, λADV) to
obtain the lower dependence measure while keeping the minimum loss as possible
to reconstruct X and Y.
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(b) λ = 0.10 ; CF = 44%
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(c) λ = 0.30 ; CF = 04%

Figure 8.6: Impact of λ (Crime data set) on a specific instance i. Blue points are counterfac-
tual predictions hwh(xi,S←s′) from 1.000 points S ← s′ generated randomly. The red cross
represents the prediction hwh(xi,S←s) for the real S = s of instance i.
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Table 8.3: Inference results in the discrete case

Adult UCI Compas Bank Synthetic Scenario
Loss X Loss Y HGR Loss X Loss Y HGR Loss X Loss Y HGR Loss X Loss Y HGR

({
x,

y,
s}

) No Constraint, q(u|x, y, s) 0.0781 0.0006 0.6984 0.0278 0.0041 0.6952 0.0963 0.0001 0.5988 0.2681 0.0085 0.9725
Adv. Constraint, q(u|x, y, s) 0.1091 0.0009 0.5453 0.0254 0.0020 0.2693 0.2038 0.0005 0.3423 0.2669 0.0721 0.4167
MMD wrt P(U), q(u|x, y, s) 0.1286 0.0012 0.7017 0.0252 0.0029 0.6565 0.2002 0.0002 0.4521 0.2535 0.0839 0.6623
MMD wrt Us, q(u|x, y, s) 0.0938 0.0009 0.7181 0.0259 0.0098 0.8892 0.1263 0.0003 0.5188 0.2762 0.0351 0.5697

({
x,

y}
) No Constraint, q(u|x, y) 0.0786 0.0008 0.6077 0.0274 0.0133 0.3817 0.0957 0.0001 0.4989 0.2577 0.0022 0.6418

Adv. Constraint, q(u|x, y) 0.1272 0.0329 0.1811 0.0245 0.0013 0.1728 0.1858 0.0073 0.2476 0.2649 0.1015 0.4521
MMD wrt P(U), q(u|x, y) 0.1287 0.0016 0.6092 0.0259 0.0055 0.4470 0.1898 0.0003 0.3716 0.2567 0.0885 0.6868
MMD wrt Us, q(u|x, y) 0.0872 0.0013 0.6852 0.0266 0.0094 0.3109 0.1415 0.0003 0.3929 0.2674 0.0553 0.4473

({
x,

s}
) No Constraint, q(u|x, s) 0.0982 0.3534 0.6689 0.0288 0.8246 0.3726 0.1391 0.2101 0.5572 0.2686 0.0128 0.7040

Adv. Constraint, q(u|x, a) 0.0995 0.3462 0.5259 0.0271 0.6889 0.4344 0.1880 0.2110 0.3061 0.2589 0.0980 0.4264
MMD wrt P(U), q(u|x, s) 0.1308 0.3559 0.3586 0.0288 0.7611 0.4365 0.2141 0.2129 0.3386 0.2506 0.1176 0.6298
MMD wrt Us, q(u|x, s) 0.0940 0.3603 0.5811 0.0278 0.7314 0.3345 0.1485 0.2135 0.5536 0.2584 0.1076 0.4692

Table 8.4: Inference results in the continuous case

US Census Motor Crime Synthetic Scenario
Loss X Loss Y HGR Loss X Loss Y HGR Loss X Loss Y HGR Loss X Loss Y HGR

No Cons. q(u|x, y, s) 0.1685 0.0019 0.5709 0.2526 0.0024 0.9023 0.4558 0.0016 0.9059 0.6788 0.0076 0.9523
No Cons. q(u|x, y) 0.1690 0.0005 0.4163 0.3068 0.0034 0.9479 0.4523 0.0018 0.8998 0.6495 0.0003 0.6227
No Cons. q(u|x, s) 0.1726 0.2886 0.8252 0.3377 0.9381 0.9728 0.4634 0.3999 0.9076 0.6751 0.4554 0.8650
Adv q(u|x, y, s) 0.1617 0.0004 0.3079 0.4702 0.0035 0.2941 0.4865 0.0701 0.5268 0.6804 0.0088 0.2280
Adv q(u|x, y) 0.1663 0.0009 0.2980 0.3694 0.0057 0.3314 0.4835 0.0571 0.6024 0.6633 0.1196 0.3175
Adv q(u|x, s) 0.1828 0.2891 0.3285 0.4706 0.9878 0.2478 0.4904 0.3933 0.5810 0.6862 0.8819 0.5148

As expected, the baseline without the independence constraint achieves the best
X and Y reconstruction loss, but this is also the most biased one with the worst depen-
dence in term of HGR in most datasets. Comparing the different constraints in the
discrete case, the adversarial achieves globally the best result with the lower HGR
while maintaining a reasonable reconstruction for X and Y. It is unclear which MMD
constraint performs better than the other. We observe that the best results in terms
of independence are obtained without the sensitive variable given as input of the
inference network (inference only with X and Y). Note however that for the MMD
constraints, this setting implies to make the wrong assumption of independence of U
w.r.t. S given X and Y for the estimation of the constraint (as discussed at the end of
section 8.2.1). This is not the case for our adversarial approach, which obtains par-
ticularly good results on this setting for discrete datasets. On continuous datasets,
our approach succeeds in maintaining reasonable reconstruction losses for important
gains in term of HGR compared to the classical VAE approach (without constraint).
Interestingly, on these datasets, it appears that our approach obtains slightly better
results when using the full information (X, Y and S) as input of the inference net-
work. We explain this by the fact that removing the influence of a binary input is
harder than the one of a smoother continuous one, while this can reveal as a useful
information for generating relevant codes.
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8.2.4.2 | Step 2: Counterfactual Predictive Model

This section reports experiments involving the training procedure from step 2 as de-
scribed in section 8.2.2. The goal of these experiments is threefold: 1. assess the
impact of the adversarial inference on the target task of counterfactual fairness, 2.
compare our two proposals for counterfactual bias mitigation (i.e., using a uniform
distribution or an adversarial dynamic one for the sampling of counterfactual sensi-
tive values) and 3. assess the impact of the control parameter from Eq.8.12.

The predictive model used in our experiments is a MLP with 3 hidden layers. The
adversarial network Pφ from Eq.8.13 is a MLP with 2 hidden layers and RELU activa-
tion. For all our experiments, a single counterfactual for each individual is sampled
at each iteration during the training of the models. Optimization is performed using
ADAM.

Tables 8.5 and 8.6 report results for the discrete and the continuous case respec-
tively. The inference column refers to the inference process that was used for sam-
pling counterfactuals for learning the predictive model. For each setting, we use the
best configuration from tables 8.3 and 8.4. The mitigation column refers to the type of
counterfactual mitigation that is used for the results: No mitigation or LCF (Eq.8.8) for
the discrete case; No mitigation, LCF (Eq.8.11) or LDynCF (Eq.8.13) for the continuous
setting. Results are reported in terms of accuracy (for the discrete case) or MSE (for
the continuous case) and of Counterfactual Fairness (CF). The CF measure is defined,
for the mtest individuals from the test set, as:

CF =
1

mtest

mtest

∑
i

E(x′,s′)∼C(i)[∆(hwh(xi, si), hwh(x′, s′))] (8.13)

where C(i) is the set of counterfactual samples for the i-th individual of the test set.
This corresponds to counterfactuals sampled with the Adversarial inference process
defined at step 1 (with the best configuration reported in tables 8.3 and 8.4). As dis-
cussed above, the synthetic datasets allow one to rely on "true" counterfactuals for the
computation of counterfactual fairness, rather than relying on an inference process
which may include some bias. For these datasets, we thus also report an additional
RealCF metric, which is defined as in Eq. 8.13, but using these counterfactuals sam-
pled from the true codes used to generate the test data. For both CF and RealCF, for
every i from the test set, |C(i)| equals 1 for binary settings and |C(i)| equals 1000 for
the continuous one. ∆ is a cost function between two predictions, the logit paring cost
for the binary case (more details given in section 8.2.1 step 2) and a simple squared
difference for the continuous setting.
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Results from both tables first confirm the good behavior of our inference model
from step 1, which allows one to obtain greatly better results than other inference
processes for both the discrete and the continuous settings. Our adversarial counter-
factual inference framework allows one to get codes that can be easily used to gen-
erate relevant counterfactual individuals. For this observation, the most important
results are those given for the synthetic scenarios, for which the RealCF metric shows
good results for our method, while strongly reliable since relying on counterfactuals
sampled from true codes of individuals.

Secondly, results from table 8.4 show that, even in the continuous setting where
the enumeration of all values from ΩS is not possible, it is possible to define coun-
terfactual mitigation methods such as our approaches LCF and LDynCF. These two
methods, used in conjunction with our Adversarial Inference, give significantly bet-
ter results than no mitigation on every dataset. Interestingly, we also observe that
LDynCF allows one to improve results over LCF, which shows the relevance of the
proposed dynamic sampling process.Furthermore, note that we can reasonably ex-
pect even better results compared to LCF on data with higher-dimensional sensitive
attributes.

To illustrate the impact of the hyperparameter λ on the predictions accuracy (MSE
Error) and the counterfactual fairness estimation (CF), we plot results for 10 different
values of λ (5 runs each) on figure 8.7 for the Crime data set. It clearly confirms that
higher values of λ produce fairer predictions, while a value near 0 allows one to only
focus on optimizing the predictor loss. This is also observable from Fig. 8.6 which
plots counterfactual predictions for a specific instance i from the test set. Higher
values of λ produce clearly more stable counterfactual predictions.

Table 8.5: Counterfactual Fairness Results for the Discrete Case

Inference Mitigation
Adult UCI Compas Bank Synthetic Scenario

Accuracy CF Accuracy CF Accuracy CF Accuracy CF Real CF

Without Constraint
None 84.22% 0.0096 67.12% 0.0102 90.64% 0.0369 99.49% 0.1087 0.1810
LCF 83.28% 0.0008 66.20% 0.0051 90.46% 0.0024 95.89% 0.0757 0.1327

MMD None 84.22% 0.0116 67.12% 0.0076 90.64% 0.0469 99.49% 0.1074 0.1775
LCF 83.84% 0.0024 65.91% 0.0041 90.64% 0.0043 99.29% 0.0893 0.1557

Adversarial
None 84.22% 0.0114 67.12% 0.0118 90.64% 0.0376 99.49% 0.1426 0.1838
LCF 83.74% 0.0002 66.73% 0.0001 90.60% 0.000 93.19% 0.0001 0.0014

In figure 8.8, we consider the distribution of considered counterfactual samples
w.r.t. to the sensitive variable S for the uniform sampling strategy from P′(S) and
the dynamic strategy as defined in Eq.8.12. This is done on the Motor dataset
and for a specific randomly sampled instance i with sensitive attribute ai = 75,
at a given point of the optimization, far before convergence (the model is clearly
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Table 8.6: Counterfactual Fairness Results for the Continuous Case

Inference Mitigation
US Census Motor Crime Synthetic Scenario

Accuracy CF MSE CF MSE CF MSE CF Real CF

Adversarial
None 0.274 0.0615 0.938 0.0285 0.412 0.7412 0.454 0.2490 1.1248
LCF 0.289 0.0009 0.941 0.0009 0.452 0.0154 0.572 0.0014 0.2013
LDynCF 0.290 0.0008 0.940 0.0005 0.445 0.0076 0.568 0.0013 0.2000

Without Constraint
None 0.274 0.0433 0.938 0.0271 0.381 0.7219 0.454 0.2919 1.1338
LCF 0.307 0.0010 0.939 0.0021 0.407 0.2938 0.531 0.1968 0.3303
LDynCF 0.310 0.0008 0.942 0.0016 0.418 0.2881 0.546 0.1743 0.3188
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Figure 8.7: Impact of hyperparameter λ (Crime data set)

unfair at this point). The blue points are the counterfactual fairness estimation
(hθ(Xi,S←s, s)− hθ(Xi,S←s′ , s′)) for each counterfactual sampled s’b (1.000 points) from
the uniform distribution P′(S). The red points are the counterfactual fairness estima-
tions for counterfactuals corresponding to s’ values (30 points) sampled from our
dynamic distribution Pφ(s′|u) = N (µφ(u), σ2

φ(u)I), where φ are the parameters of the
adversarial network which optimizes the best mean and variance for each latent code
u (µφ(u) and σ2

φ(u)). Being optimized to maximize the error at each gradient step,
the red points are sampled on lower values of S where the error is the most impor-
tant. More importantly, very few points are sampled in the easy area, near the true
sensitive value of i which is 75. This demonstrates the good behavior of our dynamic
sampling process.

8.2.5 | Total and Counterfactual Effect
In addition, we propose to compare performances of our approach with works based
on fair data generation (Louizos et al., 2017; Kim et al., 2021; Kocaoglu et al., 2018; Xu
et al., 2019), to emphasize the benefits of our two-steps process for learning counter-
factually fair prediction models.
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Figure 8.8: Dynamic Sampling Visualization for a randomly sampled individual whose age S
is 75. Red points are sampled counterfactuals from the dynamic distribution Pφ(s′|u) with u
the inferred confounding for this individual.

Traditionally, these methods are evaluated in terms of total and counterfactual
causal effect of the sensitive on the data generated by the models. Total causal effect
(TCE) aims at assessing the statistical parity on the outcomes generated from causal
intervention. TCE for binary sensitives is defined as:

TCE = P(YS←s1)− P(YS←s0) (8.14)

where YS←s corresponds to generated causal transformation of input Y, resulting
from setting s as the sensitive attribute to the corresponding individual, according
to the causal graph G (i.e., obtained via distribution P(YS←s|X, Y, S)).

A limit of such a metric is that it only considers fairness in the data given as train-
ing set for learning the predictor model. We claim that this is not enough since any
residual bias in these data may strongly impact the final prediction (on both training
and testing data). To overcome this limitation, and assess total effect of sensitives on
predictions rather than on training data only, we introduce the Total Predictions Effect
(TPE), which refers to the statistical parity of the output prediction from intervention.
The metric is defined in the binary case as:

TPE = P(hθ(XS←s1))− P(hθ(XS←s0)) (8.15)

which takes into account the fairness of the predictor from transformed data XS←s.
Following (Kim et al., 2021; Xu et al., 2019), we also consider counterfactual effects,

which depend on the effect of the sensitive on the outcome for specific individuals (or
groups of individuals). Similarly as for the total effect, for any observation o, we con-
sider the Counterfactual Causal Effect defined as: CCE = P(YS←s1 |o) − P(YS←s0 |o)
and introduce the Counterfactual Prediction Effect as: CPE = P(hθ(XS←s1)|o) −
P(hθ(XS←s0)|o).
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Causal Effect In Table 8.7, we represent the results from the different generated
data observations on the Adult UCI dataset. We consider the condition observations
o as the concatenation of the features race and native_country as in (Xu et al., 2019; Kim
et al., 2021) (O = {race, native_country}). We report the chi-square distance χ2 that in-
dicates the similarity between the generated and the real dataset. We consider three
baselines that are unaware of the fairness constraint: CausalGan (Kocaoglu et al.,
2018) that preserves the causal structures, the DCEVAE WR that represents the DC-
VAE architecture (Kim et al., 2021) without any fairness regulation term (i.e., β f = 0
according to notations in (Kim et al., 2021)) and the original data. Our approach that
contains no fairness penalty on the generated outcomes (in step 1) is also designed
to reflect the causal structure. We also analyze the impact of CFGAN CE (Xu et al.,
2019), which aims at decreasing the TCE in the generated data, CFGAN CE (Xu et al.,
2019) which in turn aims at decreasing the 4 different (CCE), and finally DCEVAE,
which corresponds to the DCVAE model with a fairness penalization set to β f = 0.3.

As expected, only the three last methods, which act on the data rather than on
the predictor itself, are able to mitigate TCE and CCE. Our method does not seek at
mitigating biases in inferred outcomes, but seeks at leveraging inferred variables that
allow it to learn a fair predictor. This is thus without any surprise that the recon-
structed Y are not unbiased with regards to the sensitive; this is even a good indica-
tion of no information loss in the step 1 of our process, despite mitigating correlation
between the latent confounder U and the sensitive A. In the following, we compare
these observations to results in prediction effects.

Table 8.7: Total Causal Effect and Counterfactual Causal Effect on Adult UCI

Total Causal Effect (TCE)
Counterfactual Causal Effect (CCE) X2
o00 o01 o10 o11

Real Data 0.1936 0.1785 0.1266 0.1293 0.2023 0
Causal GAN 0.1729 0.0717 0.1201 0.1326 0.1856 20388
DCEVAE WR 0.1819 0.1694 0.1472 0.1522 0.1899 20822
OURS 0.1834 0.1783 0.1803 0.1778 0.1845 21641
CFGAN CE 0.0135 0.0586 0.0087 0.003 0.0148 20591
CFGAN TE 0.0171 0.007 0.0168 0.0201 0.0169 20541
DCEVAE 0.0050 0.0051 0.0040 0.0043 0.0051 21142

Predictions Effect In this part, we focus on the level of fairness of the final predictor
model. A Logistic Regression (LR), a Neural Network (NN) and a classification tree
(CART) are considered in the following. These predictors are either trained on the
datasets produced from generation-focused models (i.e., CausalGAN, CFGAN TE,
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CFGAN CE, DCVAE RW and DCEVAE), or trained in the second step as described
in subsection 8.2.3 for our two-steps model. Please note that our algorithm can only
handle derivative gradient during the optimization, therefore we have discarded the
tree CART.

We report the results for each prediction model in Table 8.8, in terms of TPE, CPE
(measured on generated data for test samples) and prediction accuracy (measured
on the original test dataset). From this table, we observe completely different results
than those from previous table, with generation based models such as CFGAN greatly
penalized compared to two-steps methods such as ours. This confirms our intuition
that, even if produced data have biases well mitigated on the test set (as seen in table
8.7), some small residuals of these biases can stay in the data. Then, the learning
process is free to assign important emphasis on these problematic features, if this
helps to achieve good prediction accuracy. In two-steps approaches such as ours, this
is not the case, since biases of the outcomes are mitigated while learning prediction
models, which enables more fairness robustness on test data.

Table 8.8: Total Predictions Effect and Counterfactual Predictions Effect on Adult UCI

Total Predictions Effect (TPE)
Counterfactual Predictions Effect (CPE)

Accuracyo00 o01 o10 o11
Causal GAN - NN 0.1834 0.1148 0.134 0.1353 0.1965 0.8138
Causal GAN - LR 0.1368 0.0634 0.0985 0.0576 0.1535 0.7997
Causal GAN - CART 0.2204 0.0163 0.112 0.1252 0.2482 0.8082
DCEVAE RW - NN 0.1782 0.1758 0.1768 0.1771 0.1786 0.8133
DCEVAE RW - LR 0.1867 0.1237 0.1866 0.16474 0.1912 0.8040
DCEVAE RW - CART 0.2161 0.0662 0.1726 0.22638 0.22742 0.8119
CFGAN CE - NN 0.1394 0.1312 0.1339 0.0968 0.1463 0.8085
CFGAN CE - LR 0.1486 0.0603 0.1161 0.0597 0.1662 0.8153
CFGAN CE - CART 0.1501 0.101 0.0993 0.1119 0.1612 0.8143
CFGAN TE - NN 0.1415 0.0637 0.1266 0.1059 0.1498 0.8129
CFGAN TE - LR 0.1793 0.0295 0.1603 0.0528 0.2029 0.8116
CFGAN TE - CART 0.1794 0.0244 0.1463 0.0802 0.2004 0.8096
DCEVAE - NN 0.0047 0.027 0.0205 0.0205 0.0021 0.7997
DCEVAE - LR 0.0172 0.0525 0.0169 0.0169 0.0157 0.8019
DCEVAE - CART 0.0297 0.0265 0.0243 0.0243 0.0255 0.7999
Ours - NN 0.0007 0.0044 0.0009 0.0017 0.0014 0.8441
Ours - LR 0.0139 0.0179 0.0175 0.0166 0.013 0.8279

8.3 | Conclusion
We have seen in this chapter two different look of individual fairness. First, we
have presented a new method based on variational inference for enforcing Fairness
Through Awareness without accessing to a distance metric. In a first step, entitled
Rényi Variational Inference, we infer an unbiased confounder by combining ELBO
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optimization with HGR minimization. In a second step, we mitigate individual bias
by adding a regularization term, representing output discrepancies between similar
individuals, to global objective of a predictive neural network. This method proved
to be very efficient on 3 real-world data sets for several individual fairness metrics
that we proposed.

In addition, we have developed a new adversarial learning approach for counter-
factual fairness. To the best of our knowledge, this is the first such method that can be
applied for continuous sensitive attributes. The method proved to be very efficient
for different dependence metrics on various artificial and real-world data sets, for
both the discrete and the continuous settings. Finally, our proposal is applicable for
any causal graph to achieve generic counterfactual fairness. As future works, it might
be interesting to consider a generalization of our proposal for Path Specific (Chiappa,
2019) counterfactual fairness in the continuous case.
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9

Conclusion and Perspectives

9.1 | Summary of the Contributions
Despite the fairness field being vast, we identified weaknesses in current traditional
approaches that may produce an undesirable results. For example, we identify a lack
of work for predictor models adapted explicitly to the tabular datasets or for continu-
ous settings. We also raised the point that current fair algorithms are often restricted
to simple contexts where sensitive variables are supposed to be present. Also, con-
sidering generic fair algorithm can be counterproductive for specific applications, as
we have observed in insurance pricing.

Finally, the different contributions made in this thesis can be organized into two
themes: those that focus on identifying and completing unstudied or partially studied
sub-contexts in the Fair-ML community and those that provide rigorous methodolo-
gies to avoid counterproductive practices in a real context.

We use this point of view to summarize our contributions below. Additionally, we
present how these contributions can be used to draw conclusions in a more general
context of the field of fairness.

9.1.1 | Completing the Gaps
Fair Algorithms adapted to Tabular Datasets Most current fairness approaches fo-
cus more on tabular data than on text, images, or video. Collecting personal and
individual information leads to direct or indirect discrimination in output prediction.
Surprisingly we have noticed a lack of work for fair classifiers based on decision trees
even though they have proven very efficient for tabular dataset. For this reason, we
developed a new approach to produce fair gradient boosting algorithms. Our gra-
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dient boosting framework has allowed us to consider any regression machine, by
iteratively feeding it with both prediction and fairness residuals as target outputs.
This enables the use of very effective machines such as CART decision trees for fair
machine learning. To the best of our knowledge, this is the first adversarial learn-
ing method for generic classifiers, including decision trees. Compared with other
state-of-the-art algorithms, our Fair Gradient Tree Boosting approach proves to be
more efficient in terms of accuracy while obtaining a similar level of fairness. Since
our publication, we note that efforts have been made on this point, for example, by
combining trees with mixed-integer optimization (MIO) (Aghaei et al., 2021) or by
enforcing group fairness on XGBoost model (Ravichandran et al., 2020).

Unwanted biases in continuous case In addition, we have identified a main issue
for applying fairness for any continuous sensitive features: The traditional state-of-
the-art adversarial algorithms are theoretically not able to optimize the most classical
fairness objective as demographic parity. To address this issue we have contributed to
a new estimation of the Hirschfeld-Gebelein-Rényi (HGR) maximal correlation. This
estimation has allowed us to measure and mitigate non linear dependencies between
features. Our estimation, the HGR_NN, is an approximation by deep neural network
which has shown to be very useful for debiasing a predictor model with adversarial
learning. We have theoretically shown the interest of using this fairness metric as
a penalization term compared to the simple adversarial methods for the continuous
case. It therefore allows us to use it for mitigating the underlying bias on the output
prediction (Grari et al., 2020b), on an intermediary representation space (Grari et al.,
2021b) and finally for a general framework in individual fairness (Grari et al., 2021a).

No access to the sensitive attribute Not having access to the sensitive attribute is
a classic context in practice and is a challenge to overcome to ensure fairness. The
need of new approaches for algorithmic fairness that break away from the prevailing
assumption of observing sensitive characteristics has been many times highlighted,
as in (Tomasev et al., 2021). By leveraging recent developments for approximate in-
ference via variational auto-encoding, we have inferred a sensitive information proxy
with a new framework named SRCVAE. The bias mitigation is done in a second step
in an adversarial fairness approach. Our proposed method has empirically achieved
significant improvement over existing works in the field. We have observed that the
generated proxy’s latent space correctly recovers sensitive information and that our
approach achieves a higher accuracy while obtaining the same level of fairness on
two real datasets.
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9.1.2 | Understanding and Avoiding Counterproductive
Practices

Beware of the generalisation of traditional fair models Furthermore, we claim that
mitigating undesired biases with generic fair algorithms can be counterproductive for
specific applications. We have shown that mitigating unwanted biases in insurance
pricing via adversarial algorithms is not adaptable. Some components essential to
the predictive actuarial pricing have been unfairly neutralized on the predictive task.
Acting unwanted biases via adversarial learning on autoencoder seems a promising
choice for specific cases. An autoencoder structure has allowed us to generate multi-
ple aggregated pricing factors and, at the same time, debiasing them with adversarial
learning. The results show the relevance of the method compared to the traditional
one. We argue that this type of framework can be generalized to many other appli-
cations that require the creation of specific components, such as telematics, human
behaviors, or credit scoring.

Beware of the Importance of the Architecture First, among this zoo of attenuation
algorithms, we wanted to understand why some approaches such as fair represen-
tation perform significantly better than predictive reprocessing. To this end, we pro-
posed the first work to compare attenuation at different levels of neural architectures.
We argue that operating at intermediate levels of neural representations offers the
best trade-off between expressiveness and generalization for bias mitigation.

Beware of what is being assessed We report that a large majority of counterfac-
tual approaches do not evaluate the level of fairness on the final output prediction.
Instead, they ensure and evaluate only an intermediary step called causal graph gen-
eration. The problem is that even if the counterfactual-generated observations are
fair, it is not guaranteed that the predictor model is fair. We have shown an inter-
est in penalizing the predictor model rather than the generated data. We have also
contributed to a new framework that can suit either continuous or binary settings.

9.2 | Overview of Future Works and Perspectives
The contributions of this thesis open several promising directions for further works.
Beyond some perspectives announced in the different chapters, these include
prospective works on the proposed fairness approaches and criteria.
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Six main research directions are identified, developed in the following sections.
First, we discuss the questions opened by the transparence induces by the fair algo-
rithm. Then, we propose prospective studies to extend the work conducted in thesis
to the privacy domain. Next, we discuss the difficulty on the real application of fair-
ness on a deployment phase. Finally, we identify perspectives opening the discussion
on the consequences of the contributions of this thesis for the discovery and malicious
unwanted biases.

More Transparent Algorithms
Currently, most fairness algorithms focus exclusively on the fairness criteria. How-
ever, as mentioned at different levels of this thesis, many tensions coexist when in-
creasing fairness, such as decreasing model performance or privacy. Moreover we
note that additionally there is an issue of transparency. Increasing fairness comes
at the expense of something else, and not knowing the precise induced change be-
tween a biased and an unbiased model can be problematic. For example, adding
an adversarial structure may lead to an increase in model complexity and reduce its
confidence in domains like health care, finance, and security, which can be harmful.
We argue that understanding the induced changes is one of the future challenges in
the Fair-ML community. We identify some prospective studies for this purpose. A
recent work (Wang et al., 2020) proposes a hierarchical rule-based model for classifi-
cation tasks, Concept Rule Sets (CRS), with a strong transparent inner structure. To
develop a model that achieves three objectives: a high classification performance, low
complexity, and fair predictions. It would be interesting to implement this contribu-
tion with adversarial neural network architecture. By taking up the general idea of
our different frameworks, the negative gradient from the adversarial (e.g., adversar-
ial simple or our HGR) could be added to the predictor gradient of the discrete CRS
via continuous Multilayer Logical Perceptron (MLLP) and Random Binarization (RB).
Finally, it might be interesting to investigate a measure that does not only consider
the general case of bias but can also spot and quantify bias that persists in specific
sub-segments of the population.

More Private Algorithms
Moreover, in an ethical context, it also seems essential to address the anonymization
of datasets, especially when we know, for example, that "99.98% of Americans would
be correctly re-identified in any dataset using 15 demographic attributes" (Rocher et al.,
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2019). A typically formalized notion used in the privacy literature is the differential
privacy (Cynthia, 2006). It guarantees that a predictor model is trained on aggregate
individuals and does not encode individuals’ information. As raised by (Cummings
et al., 2019; Alves et al., 2021; Pujol et al., 2020), there is tension between fairness and
differential privacy. For example, (Alves et al., 2021) proves that it is impossible to
simultaneously satisfy exact differential privacy and fairness (on equal opportunity)
while maintaining a non-trivial accuracy of the predictor model. For future work, we
are interested in working on a relaxed version of differential parity that would also
include the fairness objective while keeping a correct level of the model’s predictive
performance. The privacy link with our HGR work is very close, especially with the
Renyi-Divergence. For example, recent work uses Renyi-Divergence (Mironov, 2017)
to relax this strict definition, so it seems interesting to study these two objectives at
the same time.

Difficulty on Deployment
We believe that, although research on fair machine learning is progressing very
rapidly, there is still a long way to go before its application becomes a reality. We
see many obstacles that prevent achieving this aim.

First of all, as discussed in this thesis, fairness can be perceived differently by ev-
eryone. For this reason, currently there are 21 criteria that measure fairness. Choosing
one of them may negatively impact others, and finding a generic measure that satis-
fies everyone is impossible.

Second, we expect the auditor and practitioner to possess the sensitive variable
to certify fairness or even mitigate biases as adequately as possible. However, we
are skeptical that this can be achieved in many areas. For example, requesting the
origin or religion of policyholders for financial institutions or insurers in France is
unacceptable, even in a good faith context. Some papers have recently focused on
not giving the true sensitive variable to the practitioner while allowing bias mitiga-
tion (Kilbertus et al., 2018; Veale and Binns, 2017). Here, the sensitive variable is en-
crypted so that the practitioner can build a fair prediction model. The regulator that
is controlling the model is the only one who has access to the sensitive variable in the
deployment phase. Although this solution seems to be interesting for privacy rea-
sons, it is not enough, since individuals still have to give their sensitive information
to the regulator. Due to the increasing number of cyberattacks and possible mistrust
in the regulator, we are dubious that it will work. For example, we are skeptical that
policyholders would want to give information on their religion or race just to get a
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car insurance, especially in EU. Applying fairness from a sensitive proxy such as ours
(Grari et al., 2021c) in real-world applications does not seem to be possible yet as they
are not mature enough. There is no guarantee of the resulting fairness level. A pos-
sible solution would be to give an option to the individuals wishing to benefit from
fairness. But those who have not given the sensitive variable could be unjustifiably
penalized.

In addition, some recent papers such as (Mishler and Dalmasso, 2022) have shown
that there can be a significant instability between the level of fairness observed in the
training and deployment phases. Naturally, one might expect this to be related ex-
clusively to a change in distribution between the training and the test datasets. How-
ever, this is not the only reason. In particular, they show that the algorithms to which
fairness has been applied are very unstable, even when the marginal distribution of
features remains the same. The reason for that could be a conceptual shift where only
the conditional distribution is different.

Furthermore, it is still challenging to understand what happens when a fairness
metric is satisfied. For example, although the adversarial algorithms we have used
in this work are very efficient, we know very little about the impacts on prediction.
Therefore, in the future work, we would like to study the changes induced on local
boundaries. In particular, by looking at the direction of the gradients of the adver-
sarial network. This aim to detect segments that are most modified by the increase in
fairness.

Finally, improving a fairness criterion requires using a testing framework that can
be applied in an audit proposal. As mentioned in the paper (Wachter et al., 2021), the
main reason for which fairness automation does not work in Europe is that, by design,
the law does not provide "a static or homogeneous framework suitable for discrimination
testing in AI system". We suspect that this is related to the fact that each AI application
requires specific fairness criteria which complicates the task. Choosing the right cri-
teria for a specific situation has always been a central issue in human history. There-
fore, we believe that it must be tailored to each task. For example, in medicine, a false
negatives has a dramatic impact on patient’s life. In this case choosing equalizing op-
portunity is more suitable. On the other hand, choosing demographic parity is more
suitable for income assignments to obtain the same average for each demographic
group. A future direction could be that judges, regulators, researchers and private
sectors will increasingly need to work together and develop standards and certifying
procedures to ensure that algorithmic disparity does not remain uncontrolled.
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Discovering and/or Increasing Sensitive Biases : a Dangerous
Shift of Paradigm
We caution that the type of approaches presented in this thesis can lead to opposite
objectives or harmful practices. For example, practitioners intending to increase spe-
cific effects of variables on the prediction may achieve the opposite of the fairness
objective. Note that increasing a feature effect on the prediction can be achieved by
reversing the positive sign to the negative one of the second term corresponding to
the HGR penalty (equation 4.6). In that case, as previously, the algorithm captures
the estimated HGR dependence between the prediction and the sensitive attribute
for each gradient iteration. However, instead of decreasing, this dependency will in-
crease during training. The hyperparameter λ still allows controlling the trade-off
level between the dependence loss and the accuracy. For example, a λ that tends to
infinity will only consider the effect of the variable on the prediction. It should be
noted that this objective goes beyond the Fair-ML field since some real applications
are subject to the interest of increasing the effect of certain variables. For example, in
non-life insurance and particularly in price elasticity, actuaries often recourse to in-
creasing variables’ effects for business purposes. They maximize the individual price
effect of the policyholder, regardless of the set of other variables (Krolikowski, 2021).

It should also be noted that some practitioners may attempt to approximate a
sensitive variable by inference, such as our SCRCVAE architecture seen in chapter 7
for not necessarily ethical reasons. Note that the regulations or laws are not clear on
this subject, and for the moment, in many real-world applications, nothing prohibits
a practitioner from increasing the effect of a proxy or even the sensitive variable itself
on the prediction.

Excessive Focus on Popular Real-World Datasets.
Some real-world datasets, such as the Adult UCI (Dua and Graff, 2017) or Com-
pass (Angwin et al., 2016) datasets, have gained a dramatic rise in popularity for
testing the performance of algorithms in the Fair-ML community. However, we
would like to point out that giving them our full attention can be problematic. We
tend to overestimate them, and we are skeptical about the generalization of some al-
gorithms. We need to be careful to not over-adjust the accuracy/fairness trade-off
only for these data. These datasets follow particular distribution laws and causality
graphs, so it seems problematic to consider them as a generality. Although we have
used lesser-known data such as Pricingame and Default in this thesis, we believe that
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other publicly available datasets would benefit from generalization in the future. We
also note that the commonly used datasets in the Fair-ML community are easy to mit-
igate. They do not exhibit atypical scenarios. A less discussed topic in this thesis that
would be interesting to investigate is extreme dependency cases or atypical graphs
that would complexify mitigation. For example, if the dependence between the sen-
sitive and the target is high (e.g., HGR≥ 0.9), one could ask whether the trade-off
between accuracy and fairness is still feasible. One of the two would probably take
over the other. A first direction could be to conduct an extensive empirical compar-
ative study of fair algorithms on many datasets, as has often been done on pure per-
formance comparisons (e.g., a benchmark of classifiers on 71 datasets (Zhang et al.,
2017)). A second direction could be to study atypical synthetic scenarios to under-
stand how the different state-of-the-art algorithms behave.

Mitigating Biases Algorithms Beyond Fairness
Ensuring independence between variables has much broader applications than fair-
ness alone. Many areas could benefit from this type of practice. For example, one
widespread case is the unwanted noise interfering with machine learning prediction.
This can be encountered, for example, in high-resolution microscopic, nuclear mag-
netic, medical, astronomical and satellite images or any type of sounds. We note that
a sub-field of mitigation algorithms, named Pileup models, aims to reduce the noise of
stacked particles and improve the performance of key physics observables. The link
is often very close to fair machine learning algorithms. We note, for example, that the
very first adversarial mitigation algorithm came from this field and was created in
2017 "Learning to Pivot with Adversarial Networks" (Louppe et al., 2017). As stated
in many papers (Tamba et al., 2022; Wagner, 2021), the pileup separation is often a
complicated nonlinear relationship. It would be interesting to investigate the interest
of HGR in this field. Another application could be in Fluorescence microscopy, that
is often noisy due to illuminating light (i.e., shot noise) (Laine et al., 2021). It might
be interesting to explore how to extract and mitigate this biased source of informa-
tion via classical fair adversarial learning models. Finally, as microeconomics and
human behavior often require predictions from all else being equal, the use of an HGR
adversarial algorithm from multidimensional individual information seems to be a
promising choice.

Finally, retrieving information not present in the training set is a vast area. Our
SCRCVAE algorithm can search for specific external effects in many other applica-
tions. For example, a company seeking to know the health status of a potential cus-
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tomer could deduce this information from a knowledgeable causal graph. In this
thesis, we also conduct some work on telematics insurance purposes for retrieving
external information on policyholders’ behavior (Corradin et al., 2022). We have used
an EM algorithm. In the future, we are interested to see the potential added value of
our VAE-architecture (Grari et al., 2021c).
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Appendix
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Supplementary Material of Chapter 3

This is the supplementary material of the chapter 3, Measuring Fairness. It provides
proofs of our theoretical claims about the HGR neural estimator.

A.1 | Consistency of the HGR NN Estimator
The domains U and V of the random variables U and V are assumed to be compact.

We define the theoretical HGR as follows:

HGR(U, V) = sup
f :U→R,g:V→R

ρ( f (U), g(V)) (A.1)

where ρ is the Pearson’s correlation coefficient and f , g are (measurable) functions
with finite and positive variance w.r.t the distributions of U and V.

We define the theoretical neural HGR measure associated to a family of neural
networks FΘ:

HGRFΘ(U, V) = sup
( fθ f

,gθg )∈FΘ

ρ( fθ f (U), gθg(V)) (A.2)

Θ is a compact domain of Rk for a given k.
FΘ ⊂ {( fθ f , gθg), fθ f and gθ f neural networks with parameters (θ f ,θg) ∈ Θ}.
We use the abuse of notation HGRΘ(U, V) to refer to HGRFΘ(U, V). HGRΘ(U, V) is
well-defined when fθ f (U) and gθg(V) are not constant for all (θ f ,θg) ∈ Θ.

We define the empirical HGR neural measure, given n i.i.d samples of (U, V) and
a family FΘ, as:

̂HGR(U, V)n = sup
(θ f ,θg)∈Θ

ρn( fθ f (U), gθg(V)) (A.3)

157



Appendix A. Supplementary Material of Chapter 3

where ρn is the sample correlation computed using the samples of (U, V). ρn is
well-defined iff the sample variances are positive.

Lemma A.1.1. (approximation) Let η > 0. There exists a family of continuous neural net-
works FΘ parametrized by a compact domain Θ ⊂ Rk, such that HGRΘ(U, V) is well-defined
and:

|HGR(U, V)− HGRΘ(U, V)| ≤ η. (A.4)

Proof. Let η > 0 and ε > 0.

There exist functions f ∗, g∗ centered and standardized such that:

HGR(U, V)− ρ( f ∗(U), g∗(V)) < ε

Let f and g some functions with positive and finite variance and f̃ =
( f−µ f )

σf
;

g̃ =
(g−µg)

σg
, so that f̃ (U) and g̃(V) are centered and standardized.

HGR(U, V)− ρ( f (U), g(V))

≤ ε + ρ( f ∗(U), g∗(V))− ρ( f̃ (U), g̃(V))

= ε + E( f ∗(U)g∗(V))− E( f̃ (U)g̃(V)) (A.5a)

Using the Cauchy-Schwarz inequality:

E( f ∗(U)g∗(V))− E( f̃ (U)g̃(V))

= E
(
( f ∗(U)− f̃ (U))g∗(V)

)
+ E

(
(g∗(V)− g̃(V)) f̃ (U)

)
≤
√

E
(
( f ∗(U)− f̃ (U))2

)
+

√
E
(
(g∗(V)− g̃(V))2

)
(A.6a)

Let ||h||2 = E(h(X)2)1/2 with X ∼ U or X ∼ V depending on the context. The
inequality becomes:

HGR(U, V)− ρ( f (U), g(V)) ≤ ε + || f ∗ − f̃ ||2 + ||g∗ − g̃||2 (A.7a)

158



A.1. Consistency of the HGR NN Estimator

Let’s find a bound of || f ∗ − f̃ ||2 that depends on || f ∗ − f ||2:

|| f ∗ − f̃ ||22 = 2− 2E
(

f ∗(U)

(
f (U)− µ f

σf

))
(A.8a)

= 2− 2
E ( f ∗(U) f (U))

σf
(A.8b)

= 2 +
1
σf

E
(
( f ∗(U)− f (U))2 − 1− σ2

f − µ2
f

)
(A.8c)

≤ 2 +
1
σf

(|| f ∗ − f ||22 − 1− σ2
f ) (A.8d)

=
|| f ∗ − f ||22

σf
+ 2− (

1
σf

+ σf ) (A.8e)

We bound the standard deviation error, using Cauchy-Schwarz inequality in (9c)
and triangular inequality in (9d):

|1− σf | ≤
√
|1− E( f (U)2)|+ |E( f (U))| (A.9a)

=

√∣∣∣E(( f ∗(U)− f (U))( f ∗(U) + f (U))
)∣∣∣

+
∣∣E( f (U)− f ∗(U)

)∣∣ (A.9b)

≤
√
|| f ∗ − f ||2|| f ∗ + f ||2 + || f ∗ − f ||2 (A.9c)

≤
√
|| f ∗ − f ||2(|| f ∗ − f ||2 + 2|| f ∗||2) + || f ∗ − f ||2 (A.9d)

=
√
|| f ∗ − f ||22 + 2|| f ∗ − f ||2 + || f ∗ − f ||2 (A.9e)

Using (A.9e), we have:

|| f ∗ − f ||22
σf

≤ || f
∗ − f ||22

1− |1− σf |
(A.10a)

≤ || f ∗ − f ||22
1− (

√
|| f ∗ − f ||22 + 2|| f ∗ − f ||2 + || f ∗ − f ||2)

Combining this with (A.8e):

|| f ∗ − f̃ ||22 ≤
|| f ∗ − f ||22

1− (
√
|| f ∗ − f ||22 + 2|| f ∗ − f ||2 + || f ∗ − f ||2)

+ 2− (
1
σf

+ σf ) (A.11a)
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t : x → x2

1− (
√

x2 + 2x + x)
(A.12a)

is continuous at 0 so there exists γ1 > 0 such that |x| ≤ γ1 ⇒ t(x) ≤ η2

8

r : x → 2− (
1
x
+ x) (A.13a)

is continuous at 1 so there exists γ2 > 0 such that |x− 1| ≤ γ2 ⇒ r(x) ≤ η2

8

s : x →
√

x2 + 2x + x (A.14a)

is continuous at 0 so there exists γ3 > 0 such that |x| ≤ γ3 ⇒ |s(x)| ≤ min(γ2, 1
2 )

By the universal approximation theorem (see corollary 2.2 of (Hornik et al., 1989))
and knowing that U is bounded, we may choose a continuous feedforward network
function fθ f such that:

|| f ∗ − fθ f ||2 ≤ min(γ1, γ3)

By construction of γ1 and γ3, fθ f has positive variance and: || f ∗ − f̃θ f ||2 ≤√
η2

8 + η2

8 = η
2

Similarly, we can choose a continuous feed-forward network function gθg such
that: ||g∗ − g̃θg ||2 ≤

η
2

Therefore:

HGR(U, V)− ρ( fθ f (U), gθg(V)) ≤ ε + η

Taking the limit as ε approaches 0:

HGR(U, V)− ρ( fθ f (U), gθg(V)) ≤ η

For Θ a given subset of Rk with k the number of coordinates in (θ f , θg), we de-
note as FΘ the family of neural networks with the same architecture as ( fθ f , gθg),
parametrized by Θ.

We can find a compact set Θ containing (θ f , θg) such that all the elements of FΘ

have positive and finite variance: while the finitude of the variance is due to the
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boundedness of U, V and the continuity of the neural networks w.r.t the input, the
positivity can be obtained by using the argument of the continuity of the variance
w.r.t the parameters (due to the boundedness of U, V and the continuity of the neural
networks w.r.t the parameters).

Choosing such a compact set Θ, we obtain the result:

|HGR(U, V)− HGRΘ(U, V)| ≤ η. (A.15)

Lemma A.1.2. (estimation) Let η > 0, and FΘ a family of continuous neural networks
parametrized by a compact domain Θ ⊂ Rk. There exists an N ∈N such that:

∀n ≥ N, | ̂HGR(U, V)n − HGRΘ(U, V)| ≤ η, a.s. (A.16)

Proof. To simplify notations, we will note f and g for f (U) and g(V) when there is no
ambiguity.
Let η > 0. By triangular inequality:

| ̂HGR(U, V)n − HGRΘ(U, V)|

≤ sup
(θ f ,θg)∈Θ

∣∣ρn( fθ f , gθg)− ρ( fθ f , gθg)
∣∣ (A.17)

We denote En the empirical expectation, so that:

ρn(X, Y) =
En(XY)− En(X)En(Y)√

En(X2)− En(X)2
√

En(Y2)− En(Y)2
(A.18)

The function (θ f , θg, u, v)→ ( fθ f (u), gθg(v)) is continuous on a compact set, so it is
bounded. The neural networks are, therefore, uniformly bounded. The compactness
of Θ, along with the uniform boundedness argument and the continuity of the neu-
ral networks w.r.t their parameters, allows to use the uniform law of large numbers
(Geer and van de Geer, 2000) to obtain the almost sure uniform convergence of all
empirical expectations in ρn, to the corresponding expectations.

The almost sure uniform convergence is compatible with addition, subtraction,
multiplication and division, so long as some hypotheses are verified. The compatibil-
ity with the first three operations can easily be demonstrated. As for division, we rely
on the fact that we can find a uniform positive lower bound for Var( fθ f ) and Var(gθg).
Indeed, these are positive and continuous functions w.r.t θ f (resp. θg) on a compact
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set. We can note that this uniform positive lower-bound for the variances, combined
with the almost sure uniform convergence of the sample variances, allows us to state
that, eventually, all sample variances are positive.

We deduce, by compatibility of operations with almost sure uniform convergence,
the almost sure uniform convergence of ρn( fθ f , gθg) to ρ( fθ f , gθg).

Therefore, by combining the previous result with (A.17), we can find N ∈N such
that:

∀n ≥ N, | ̂HGR(U, V)n − HGRΘ(U, V)| ≤ η, a.s. (A.19)

Theorem A.1.3. ̂HGR(U, V)n is strongly consistent.

Proof. This is a direct consequence of Lemma A.1.1 combined with Lemma A.1.2.
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Supplementary Material of Chapter 4

This is the supplementary material of the chapter 4, Ensuring Group Fairness for
Neural Network predictors. This supplementary material is as follows. First, Sec-
tion B.1 provides the proofs of our comparison with simple adversarial algorithms.
Then, section B.3 provides further details about our experiments.

B.1 | Comparison With Simple Adversarial
Algorithms

Theorem B.1.1. If E(Y|X) is constant, then sup f ρ( f (X), Y) = 0. Else, f ∗ ∈
arg max f ρ( f (X), Y) iff there exists a, b ∈ R, with a > 0, such that:

f ∗(X) = aE(Y|X) + b (B.1)

Proof. Let f a function with positive and finite variance w.r.t X.
Using the law of total expectation in (21b) and pulling out the known factor f (X) in
(21c):

Cov( f (X), Y) = E( f (X)Y)− E( f (X))E(Y) (B.2a)

= E
(

E( f (X)Y|X)
)
− E( f (X))E(E(Y|X)) (B.2b)

= E
(

f (X)E(Y|X)
)
− E( f (X))E(E(Y|X)) (B.2c)

= Cov( f (X), E(Y|X)) (B.2d)
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If E(Y|X) is constant, Cov( f (X), Y) = 0 and therefore ρ( f (X), Y) = 0, so that
sup f ρ( f (X), Y) = 0. Else, using B.2 and by the Cauchy-Schwarz inequality:

ρ( f (X), Y) =
Cov( f (X), Y)

σf (X)σY
(B.3a)

=
Cov( f (X), E(Y|X))

σf (X)σY
(B.3b)

≤
σE(Y|X)

σY
(B.3c)

= ρ(E(Y|X), Y) (B.3d)

The inequality above shows that any linear transformation of E(Y|X) with posi-
tive slope maximizes ρ( f (X), Y). Conversely, for f ∗ ∈ arg max f ρ( f (X), Y), B.3c is an
equality, which gives ρ( f ∗(X), E(Y|X)) = 1. This implies that there exists a, b ∈ R,
with a > 0, such that f ∗(X) = aE(Y|X) + b.

Note that a one-dimensional linear regression with f ∗(X) as input and Y as output
allows to find E(Y|X).

Proposition 2. Given Y ∼ N (µ, σ2), X = arctan(Y2) +Uπ, where U ⊥ Y and U follows
a Bernoulli distribution with p = 1

2 , we have:

E(Y|X) = tanh
(

µ
σ2

√
tan(X)

)√
tan(X)

Proof. We have Y2 = tan(X), so that:

Y = (21{Y>0} − 1)
√

tan(X) (B.4)

so it is sufficient to compute E(1{Y>0}|X):

E(1{Y>0}|X) = E
(

E(1{Y>0}|X, U)
∣∣∣X) (B.5a)

= E
(

E(1{Y>0}| tan(X), U)
∣∣∣X) (B.5b)

= E
(

E(1{Y>0}| tan(X))
∣∣∣X) (B.5c)

= E(1{Y>0}| tan(X)) (B.5d)

= E(1{Y>0}|Y2) (B.5e)
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Let y > 0 and 0 < ε < y:

E(1{Y>0}||Y2 − y| < ε)

=
P(Y > 0,

√
y− ε < Y <

√
y + ε)

P(
√

y− ε < Y <
√

y + ε) + P(−√y + ε < Y < −√y− ε)
(B.6a)

=

∫ √y+ε

√
y−ε

PY(u)du∫ √y+ε

√
y−ε

PY(u)du +
∫ −√y−ε

−√y+ε
PY(u)du

(B.6b)

=

∫ √y+ε

√
y−ε

PY(u)du∫ √y+ε

√
y−ε

(PY(u) + PY(−u))du
−−→
ε→0

PY(
√

y)
PY(
√

y) + PY(−
√

y)
(B.6c)

Therefore, knowing that PY(y) = e−
1
2 (

y−µ
σ )2

√
2π

we have:

2E(1{Y>0}|X)− 1 =
PY(|Y|)− PY(−|Y|)
PY(|Y|) + PY(−|Y|)

(B.7a)

= tanh
( µ

σ2 |Y|
)

(B.7b)

= tanh
( µ

σ2

√
tan(X)

)
(B.7c)

Taking the conditional expectation in B.4 and plugging in B.7c, we obtain:

E(Y|X) = tanh
(

µ
σ2

√
tan(X)

)√
tan(X)

Proposition 3. With the same hypotheses as in proposition 2, and denoting α = µ
σ , we have:√

1− e−
α2
2 ≤ ρ(E(Y|X), Y) ≤

√
1− e−

α2
2 (1 + α2)−

3
2

Proof. We first note that, knowing that |Y| =
√

tan(X) and with a parity argument:

E(Y|X) = tanh
( µ

σ2 Y
)

Y (B.8)

We have:

ρ(E(Y|X), Y)2 =
Cov(Y, E(Y|X))

σ2 (B.9a)

=
Cov(Y, Y)−Cov(Y, Y− E(Y|X))

σ2 (B.9b)

= 1− E

((
Y
σ

)2 (
1− tanh

( µ

σ2 Y
)))

(B.9c)
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With a variable change (y = y′
σ ), we obtain:

E

((
Y
σ

)2 (
1− tanh

( µ

σ2 Y
)))

=
1√
2π

∫
R

2y2e−αy

eαy + e−αy e−
1
2 (y−α)2

dy (B.10a)

= e−
α2
2 × 1√

2π

∫
R

y2

cosh(αy)
e−

1
2 y2

dy (B.10b)

We have, for all y ∈ R, 1 ≤ cosh(αy) ≤ e
α2y2

2 . This gives:

1√
2π

∫
R

y2e−
1
2 y2

dy ≤ 1√
2π

∫
R

y2

cosh(αy)
e−

1
2 y2

dy

≤ 1√
2π

∫
R

y2e−
1
2 (1+α2)y2

dy (B.11)

i.e

1 ≤ 1√
2π

∫
R

y2

cosh(αy)
e−

1
2 y2

dy ≤ (1 + α2)−
3
2 (B.12)

We combine B.9c, B.10b and B.12 to obtain the result:√
1− e−

α2
2 ≤ ρ(E(Y|X), Y) ≤

√
1− e−

α2
2 (1 + α2)−

3
2

Proposition 4. We consider the global fairness objective of the prediction retreatment simple
adversarial algorithm, with X the input data, Y the output data and S the sensitive attribute
(with Ŷ = f (X)):

max
f

min
g

E
((

S− g( f (X))
)2
)

(B.13)

whose optimum is achieved when E(S|Ŷ) = E(S), different from the demographic parity
fairness objective P(S|Ŷ) = P(S) for continuous features.

Proof. We have:

max f ming E
((

S− g( f (X))
)2
)
= max f E

((
S− E(S| f (X))

)2
)
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Some algebraic manipulations with expectations give:

E
((

S− E(S|Ŷ)
)2
)
= E(S2)− 2E

(
SE(S|Ŷ)

)
+ E(E(S|Ŷ)2) (B.14a)

= E(S2)− 2E
(

E
(
SE(S|Ŷ)

∣∣Ŷ))
+ E(E(S|Ŷ)2) (B.14b)

= E(S2)− E(E(S|Ŷ)2) (B.14c)

= (E(S2)− E(S)2)

−
(

E(E(S|Ŷ)2)− E(E(S|Ŷ))2
)

(B.14d)

= σ2
S − σ2

E(S|Ŷ) (B.14e)

Therefore, the global fairness objective is equivalent to

min f σ2
E(S| f (X))

In the optimal case, we have σE(S|Ŷ) = 0, which corresponds to the case when E(S|Ŷ)
is constant equal to its expectation i.e:

E(S|Ŷ) = E(S)

B.2 | Equalized Residuals
We propose an adversarial approach based on our HGR neural network estima-
tion (Grari et al., 2020a) for enforcing equalized residuals. It uses an adversarial net-
work that takes the form of two inter-connected neural networks for approximating
the optimal transformations functions f and g for approximating the sensitive depen-
dence by HGR.

arg min
wh

{
max
w f ,wg

{
L(hwh(X), Y) + λE(X,S)∼D( f̂w f (hwh(X)−Y)ĝwg(S)

}}
(B.15)

where L is the predictor loss function between the output hwh(X) ∈ R and the cor-
responding target Y. The second term, which corresponds to the expectation of the
products of standardized outputs of both networks ( f̂w f and ĝwg ), represents the HGR
estimation between the residuals variable hwh(X) − Y and the sensitive attribute S.
The hyperparameter λ controls the impact of the dependence loss in the optimiza-
tion.
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B.3 | Experiments

B.3.1 | Datasets
Our experiments on real-world data are performed on five data sets. First, we exper-
iment with three data sets where the sensitive and the outcome true value are both
continuous:

� The US Census demographic data set (US Census Bureau, 2019) is an extraction
of the 2015 American Community Survey, with 37 features about 74,000 cen-
sus tracts. The target is the percentage of children below the poverty line, the
sensitive attribute is the percentage of women in the census tract.

� The Motor Insurance data set (The Institute of Actuaries of France, 2015) orig-
inates from a pricing game organized by The French Institute of Actuaries in
2015, with 15 attributes for 36,311 observations. The target is the average claim
cost per policy, the sensitive attribute is the driver’s age.

� The Crime data set is obtained from the UCI Machine Learning Repository (Dua
and Graff, 2017), with 128 attributes for 1,994 instances. The target is the number
of violent crimes per population, the sensitive attribute is the ratio of an ethnic
group per population.

We experiment with two data sets with a binary classification task where the sen-
sitive features are continuous:

� Compas: The COMPAS data set (Angwin et al., 2016) contains 13 attributes of
about 7,000 convicted criminals with class labels that state whether or not the
individual reoffended within 2 years of their most recent crime. Here, we use
age as sensitive attribute.

� Default: The Default data set (Yeh and Lien, 2009) contains 23 features about
30,000 Taiwanese credit card users with class labels which state whether an in-
dividual will default on payments. As sensitive attribute, we use age.

B.3.2 | Experimental Parameters
For the reproducibility of the experimental results, we reported the deep learning
architecture and the different hyperparameters chosen. For all data sets, we repeat
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five experiments by randomly sampling two subsets, 80% for the training set and
20% for the test set.

Since the different data sets are not large, we train the different algorithms on a
NVIDIA Titan Xp (12 Gb) GPU and we report the average runtime of each scenario
(Runtime (s)). Note that we use an Adam optimization for each scenario.

Scenario λ Nb Epochs Batch Size Architecture hwψ Architecture φwφ Architecture fw f & gwg Runtime (s)
Biased Model 0 200 2048 FC:16 R, FC:8 R, FC:2 FC:16 R, FC:8 R, FC:4 R, FC:1 Sig FC:64 R, FC:64 R, FC:1 303
Biased Model 13 200 2048 FC:16 R, FC:8 R, FC:2 FC:16 R, FC:8 R, FC:4 R, FC:1 Sig FC:64 R, FC:64 R, FC:1 287

Table B.1: Synthetic Scenario. FC stands for fully connected, R for the ReLU activation func-
tion and Sig for the Sigmoid activation function.

Scenario λ Nb Epochs Batch Size Architecture hwψ Architecture φwφ Architecture fw f & gwg Runtime (s)
σ ≤ 0.03 0.250 10 512 see Table B.4 FC:10 SM FC:64 R, FC:64 R, FC:1 326
σ > 0.04 0.100 10 512 see Table B.4 FC:10 SM FC:64 R, FC:64 R, FC:1 371

Table B.2: MNIST with Continuous Color Intensity. FC stands for fully connected, R for ReLU,
SM for the Softmax activation function.

Scenario λ Nb Epochs Batch Size Architecture hwψ Architecture φwφ Architecture fw f & gwg Runtime (s)
US Census 20 150 2048 FC:128 R, FC:64 R,FC:64 FC:128 R, FC:64 R,FC:16 R,FC:1 FC:64 R, FC:64 R, FC:1 1873

Motor 1.5 1000 2048 FC:128 R, FC:64 R,FC:64 FC:128 R, FC:64 T,FC:16 R,FC:1 FC:64 R, FC:64 T, FC:1 235
Crime 3 3000 512 FC:128 R, FC:64 R,FC:64 FC:128 R, FC:64 T,FC:16 R,FC:1 FC:64 R, FC:64 T, FC:1 1584

COMPAS 200 850 2048 FC:128 R, FC:64 R,FC:64 FC:128 R, FC:64 R,FC:16 R,FC:1 Sig FC:64 R, FC:64 R, FC:1 1721
Default 100 400 2048 FC:128 R, FC:64 R,FC:64 FC:128 R, FC:64 R,FC:16 R,FC:1 Sig FC:64 R, FC:64 R, FC:1 3378

Table B.3: Real-world Experiments. FC stands for fully connected, T for Tanh, R for the ReLU
activation function and Sig for the Sigmoid activation function.

Encoder MNIST hwψ

Layer Number of outputs Kernel size Stride Activation function
Input x 3 ∗ 28 ∗ 28

Convolution 64 ∗ 26 ∗ 26 5 ∗ 5 1 ReLU
MaxPooling 64 ∗ 13 ∗ 13 - 2 -
Convolution 64 ∗ 11 ∗ 11 5 ∗ 5 1 ReLU
MaxPooling 64 ∗ 5 ∗ 5 - 2 -

Flatten - - - -
Fully-connected 512 - - ReLU
Fully-connected 64 - - None

Table B.4: Encoder hwψ used for the MNIST Scenario with Continuous Color Intensity
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Supplementary Material of Chapter 6

This is the supplementary material of chapter 6, Group Fairness without the sensitive
attribute. This supplementary material is as follows. First, Section C.1 provides the
proofs of our HGR theorem 6.2. Then, section C.2 provides further details about
an extended causal graph. Finally, section C.3 provides further details about our
experiments.

C.1 | Proof of the HGR Inequality
Theorem C.1.1. For two nonempty index set S and Z such that S ⊂ Z and Ŷ the output
prediction of a predictor model, we have :

HGR(Ŷ, Z) ≥ HGR(Ŷ, S) (C.1)

Proof. Let’s assume that the set Zc represent all the elements of Z private of S:
Zc = Z\S, Following the definition of the Hirschfeld-Gebelein-Renyi Maximum Cor-
relation Coefficient, we have:

HGR(Ŷ, Z) = sup
f :U→R,g:V→R

ρ( f (Ŷ), g(Z)) (C.2)

By the Cauchy inequality and by setting f (Z) = E[g(Ŷ)|Z], we can show the
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za

y

xa xzx!

Figure C.1: Causal graph of the SRCVAE: The following causal graph represents the more
general representation where x is mapped into four components xa, xd, xz and a;

equivalence characterization of the HGR:

HGR(Ŷ, Z) = sup
g

√
var(E(g(Ŷ)|Z)])

var(g(Ŷ))
(C.3)

= sup
g

√
E(E[g(Ŷ)|S, Zc]2) + E(g(Ŷ)|S, Zc)2

var(g(Ŷ))
(C.4)

= sup
g

√
E(E(E[g(Ŷ)|S, Zc]2|S)) + E(g(Ŷ)|S, Zc)2)

var(g(Ŷ))
(C.5)

≥ sup
g

√
E(E[g(Ŷ)|S]2) + E(g(Ŷ)|S, Zc)2

var(g(Ŷ))
= HGR(Ŷ, S) (C.6)

We use in (6) the Jensen inequality for conditional expectation.

C.2 | An Extended Causal Graph
As explained in the paper, our work relies on the assumption of underlying causal
graphs. In the figure C.1 we present a more general graph, where parents of the
output y are split in five components xa, xd, xz, xc and z, where xc contains only
variables not caused by the sensitive attributes in z. Although this graph is more
general, we have considered, for a sake of presentation, a simplified version in our
paper, which is enough to capture most dependencies in most settings. We denote
by xa (resp., xz), the set only caused by xc (resp., z). The variables subset xd is both
caused by the sensitive information z and xc. In our setting, we assume that we
observe x = (xc, xa, xd, xz), but variables in z remain hidden from the learner.

The decoder distribution, pθ(xc, xa, xd, xz, y|z), can be factorized as below:

pθ(xc, xa, xd, xz, y|z) = p(xc)p(xa|xc)pθ(xd|xc, z)pθ(xz|z)

pθ(y|xc, xa, xd, xz, z) (C.7)
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Given an approximate posterior qφ(z|xc, xa, xd, xz, y), we obtain the variational lower
bound as Eq. C.8

log(pθ(xc, xa, xd, xz, y)) ≥ E (xc ,xa ,xd ,xz ,y)∼D,
z∼qφ(z|xc ,xa ,xd ,xz ,y)

[log pθ(xd|xc, z)

+ log pθ(y|xc, xa, xd, xz, z) + log pθ(xz|z)

− DKL(qφ(z|xc, xa, xd, xz, y)||p(z))
]

=: −LELBO (C.8)

where DKL denotes the Kullback-Leibler
divergence of the posterior qφ(z|xc, xa, xd, xz, y) from a prior p(z), typically a standard
Gaussian distribution N (0, I). The posterior qφ(z|xc, xa, xd, xz, y, z) is represented by
a deep neural network with parameters φ, which typically outputs the mean µφ and
the variance σφ of a diagonal Gaussian distribution N (µφ, σφ I). The likelihood term
factorizes as pθ(xd, xz, y|xc, xa, xd, xz, z) = pθ(xd|xc, z)pθ(xz|z)pθ(y|xc, xa, xd, xz, z), are
defined as neural networks with parameters wh. The maximization of this marginal
log-likelihood is realized by the minimization of the negative lower bound, men-
tioned as LELBO. Since attracted by a standard prior, the posterior is supposed to re-
move probability mass for any features of z that are not involved in the reconstruction
of xd, xz and y. Since xc is given together with z as input of the likelihoods, all the in-
formation from xc should be removed from the posterior distribution of z. In practice,
we use the neural network layers to infer the parameters of a Gaussian distribution
over the joint space of z. To obtain the posterior distribution of qφ, p(z) is the prior
distributions following the Gaussian distribution, and we utilize the reparametriza-
tion, accordingly. Notice that the complementary set xc is not involved in any specific
reconstruction.

In addition, we employ in this paper a variant of the ELBO optimization as done
in (Pfohl et al., 2019), where the DKL(qφ(z|xc, xa, xd, xz, y)||p(z)) term is replaced by a
MMD term LMMD(qφ(z)||p(z)) between the aggregated posterior qφ(z) and the prior.
This has been shown more powerful than the classical DKL for ELBO optimization in
(Zhao et al., 2017), as the latter can reveal as too restrictive (uninformative latent code
problem) (Chen et al., 2016; Bowman et al., 2015; Sønderby et al., 2016) and can also
tend to overfit the data (Variance Over-estimation in Feature Space).

This inference must however ensure that no dependence is created between xc

and z (no arrow from xc to z in the graph from C.1), unless preventing the generation
of proper sensitive proxy which is not linked to the complementary. However, by
optimizing this ELBO optimization, some dependence can still be observed empiri-
cally between xc and z. Some information from xc leaks in the inferred z. In order to
ensure some minimum independence level we add a dependence penalisation term
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in this loss function. Leveraging the last research for mitigating the dependence with
continuous multidimensional space we extend the main idea of (Grari et al., 2021b)
by adapting this penalization in the variational autoencoder case. Originally, this
paper used an HGR estimation in a minmax game to penalize the intrinsic bias in
a multi dimensional latent representation for deterministic autoencoder. They have
showed that a neural HGR-based approach presents a very competitive results in the
continuous case by identifying some optimal transformations for multidimensional
features. Finally, the inference of our SRCVAE with the more general representation
is optimized by a mini-max game as follows:

arg min
wh,φ

max
w f ,wg

−E (xc,xa,xd,xz,y)∼D,
z∼qφ(z|xc,xa,xd,xz,y)

[[log pθ(xd|xc, z)

+ log pθ(y|xc, xa, xd, xz, z) + log pθ(xz|z)]

+ λmmdLMMD(qφ(z)||p(z))

+ λin f E (xc,xa,xd,xz,y)∼D,
z∼qφ(z|xc,xa,xd,xz,y)

( f̂w f (xc)ĝwg(z))]

where λmmd, λin f are scalar hyperparameters. The additional MMD objective can
be interpreted as minimizing the distance between all moments of each aggregated
latent code distribution and the prior distribution. Note that the use of y as input
for our generic inference scheme q(z|xc, xa, xd, xz, y) is allowed since z is only used
during training for learning a fair predictive model and is not used at deployment
time.

The complementary set xc is the only input given to the adversarial f and the con-
tinuous latent space z as input for the adversarial g. In that case, we only capture for
each gradient iteration the estimated HGR between the complementary set and the
generated proxy latent space. The algorithm takes as input a training set from which
it samples batches of size b at each iteration. At each iteration it first standardize the
output scores of networks fw f and gwg to ensure 0 mean and a variance of 1 on the
batch. Then it computes the objective function to maximize to estimate the HGR score
and the global variational reconstruction objective. At the end of each iteration, the
algorithm updates the parameters of the encoders parameters wh as well as the de-
coder parameters φ by one step of gradient descent. Concerning the HGR adversary,
the backpropagation of the parameters w f and wg is performed by multiple steps of
gradient ascent. This allows us to optimize a more accurate estimation of the HGR at
each step, leading to a greatly more stable learning process.
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C.3 | Experiments
We present in this following section the Impact of the Mitigation hyper-parameters,
the choice of our HGR compared to other penalties and the scenario of proxy dimen-
sions on Default Dataset.

C.3.1 | Impact of the Mitigation Hyper-Parameters
We present in Figure C.2 the dynamics of the adversarial training with different hy-
perparameters λDP, optimized for demographic parity. The choice of this value de-
pends on the main objective, resulting in a trade-off between accuracy and fairness.
We represent the accuracy of the model (top), the P-rule metric between the predic-
tion and the real sensitive S (middle), and the HGR between the prediction and the
latent space Z (bottom).

As desired, higher values of λDP produce fairer predictions, the P-rule (assessed
with the real sensitive) increase, while λDP near 0 allows to only focus on optimizing
the classifier predictor.

C.3.2 | Mitigation With Other Penalties
In the following subsection, we assume have first pretrained a bayesian inference
model qφ for reconstructing a sensitive proxy Z via our SRCVAE architecture (via
the simplified graph in our paper). We illustrate, for our specific case, the interest of
adopting an HGR-based approach inspired for mitigating unwanted biases. For this
purpose, we extend and compare different common state-of-the-art mitigating algo-
rithms for the demographic parity task. We focus on in-processing fairness, which
proves to be the most powerful framework for settings where acting on the training
process is an option.

We extend for each of these state-of-the-art algorithms the mitigation of our sen-
sitive proxy representation z.

SA_PR: Simple Adversarial via Prediction Retreatment We extend the idea of
(Zhang et al., 2018) by proposing a novel adversarial cost for fairness without de-
mographics via prediction retreatment.

arg min
wh

max
w f
L(hwh(xc, xd), y)

− λDPE(xc,xd,y)∼D [Ez∼qφ(z|xc,xd,y)( fw f (hwh(xc, xd))− z)2]
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where L is the predictor loss function (the log-loss function in our experiments) be-
tween the output hwh(xc, xd) ∈ R and the corresponding target y, with hwh a neural
network with parameters wh which takes as input the complementary set xc and the
descendant attribute xd. The hyperparameter λDP controls the impact of the depen-
dence loss in the optimization. Following the causal model learned at step 1, z is
obtained by inferring from the posterior distribution qφ(z|xdi , xci , yi). We generate
for each observation (xci , xdi , yi) multiple latent representation zk

i (k-ith generation),
which allows to have a better understanding of the specific sensitive distribution for
each individual. In practice, for the i-th individual of the training set we generate
K samples from the causal model (200 in our experiment). The adversarial f with
parameters w f takes as input the prediction hwh(xdi , xci) = pwh(yi = 1|xdi , xci) and
tries to predict the sensitive proxy z. A mean square loss function is applied for this
objective. The algorithm takes as input a training set from which it samples batches
of size b at each iteration. The backpropagation of the adversary f with parameters
ω f is performed by multiple steps of gradient descent (50 in our experiments). This
allows us to optimize a more accurate estimation of the biases at each step, leading to
a greatly more stable learning process.

SA_FR: Simple Adversarial via Fair Representation: We extend the idea of (Adel
et al., 2019) by proposing a novel adversarial representation cost for fairness without
demographics via fair representation.

arg min
wh ,wg

max
w f
L(hwh(gwg(xc, xd)), y)

− λDPE(xc ,xd ,y)∼D [Ez∼qφ(z|xc ,xd ,y)( fw f (gwg(xc, xd)))− z)2]

where gwg with parameters wg is the encoder which takes as input the complemen-
tary set xc and the descendant attribute xd, L is the predictor loss function (the log-
loss function in our experiments) between the output hwh(gwg(xc, xd)), y) ∈ R and the
corresponding target y, with hwh a neural network with parameters wh which takes as
input the representation of the encoder gwg . The hyperparameter λDP controls the im-
pact of the dependence loss in the optimization. Following the causal model learned
at step 1, z is obtained by inferring from the posterior distribution qφ(z|xdi , xci , yi).
We generate for each observation (xci , xdi , yi) multiple latent representation zk

i (k-ith
generation), which allows to have a better understanding of the specific sensitive dis-
tribution for each individual. In practice, for the i-th individual of the training set we
generate K samples from the causal model (200 in our experiment). The representa-
tion gwg(xc, xd) is the only input given to the adversarial f which aims to predict the
continuous latent space z . A mean square loss function is applied for this objective.
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The algorithm takes as input a training set from which it samples batches of size b
at each iteration. As in the inference phase, the backpropagation of the adversary
f with parameters ω f is performed by multiple steps of gradient descent (50 steps).
This allows us to optimize a more accurate estimation of the unwanted biases at each
step, leading to a greatly more stable learning process.

RA_PR: Rényi Adversarial via Prediction Retreatment: This is the proposed miti-
gation used in the paper where we extend the idea of (Grari et al., 2020a) by propos-
ing a novel HGR adversarial cost for fairness without demographics via prediction
retreatment.

arg min
wh

max
ψ f ,ψg
L(hwh(xc, xd), y)

+ λDP ĤGRψ f ,ψg

(xc,xd,y)∼D,
z∼qφ(z|xc,xd,y)

(hwh(xc, xd), z)

where L is the predictor loss function (the log-loss function in our experiments)
between the output hwh(xc, xd) ∈ R and the corresponding target y, with hwh a neu-
ral network with parameters wh which takes as input the complementary set xc and
the descendant attribute xd. The hyperparameter λDP controls the impact of the de-
pendence loss in the optimization. Following the causal model learned at step 1, z
is obtained by inferring from the posterior distribution qφ(z|xdi , xci , yi). We generate
for each observation (xci , xdi , yi) multiple latent representation zk

i (k-ith generation),
which allows to have a better understanding of the specific sensitive distribution for
each individual. In practice, for the i-th individual of the training set we generate K
samples from the causal model (200 in our experiment). The adversarial ψ f takes as
input the prediction hwh(xdi , xci) = pwh(yi = 1|xdi , xci) and the adversarial ψg takes
as input the continuous latent space zk

i (k-ith generation). In that case, we only cap-
ture for each gradient iteration the estimated HGR between the prediction and the
proxy latent space. The algorithm takes as input a training set from which it samples
batches of size b at each iteration. At each iteration, it first standardizes the output
scores of networks ψ f and ψg to ensure 0 mean and a variance of 1 on the batch.
Then it computes the objective function to maximize the estimated HGR score and
the global regression objective. As in the inference phase, the backpropagation of the
HGR adversary with parameters f and g is performed by multiple steps of gradient
ascent. This allows us to optimize a more accurate estimation of the HGR at each
step, leading to a greatly more stable learning process.
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RA_FR: Rényi Adversarial via Fair Representation: We extend the idea of (Grari
et al., 2021b) by proposing a novel adversarial cost for fairness without demographics
via fair representation.

arg min
wh,wv

max
ψ f ,ψg
L(hwh(vwv(xc, xd)), y)

+ λDP ĤGRψ f ,ψg

(xc,xd,y)∼D,
z∼qφ(z|xc,xd,y)

(hwh(vwv(xc, xd)), z)

where vwv with parameters wv is the encoder which takes as input the complemen-
tary set xc and the descendant attribute xd, L is the predictor loss function (the log-
loss function in our experiments) between the output hwh(vwv(xc, xd)) ∈ R and the
corresponding target y, with hwh a neural network with parameters wh which takes as
input the representation of the encoder vwv . The hyperparameter λDP controls the im-
pact of the dependence loss in the optimization. Following the causal model learned
at step 1, z is obtained by inferring from the posterior distribution qφ(z|xdi , xci , yi).
We generate for each observation (xci , xdi , yi) multiple latent representation zk

i (k-ith
generation), which allows to have a better understanding of the specific sensitive dis-
tribution for each individual. In practice, for the i-th individual of the training set we
generate K samples from the causal model (200 in our experiment). The adversarial
ψ f with parameters f takes as input the representation vwv(xdi , xci) and the adversar-
ial ψg takes as input the continuous latent space zk

i (k-ith generation). In that case, we
only capture for each gradient iteration the estimated HGR between the latent repre-
sentation and the proxy latent space. The algorithm takes as input a training set from
which it samples batches of size b at each iteration. At each iteration, it first standard-
izes the output scores of networks ψ f and ψg to ensure 0 mean and a variance of 1 on
the batch. Then it computes the objective function to maximize the estimated HGR
score and the global regression objective. As in the inference phase, the backpropa-
gation of the HGR adversary with parameters f and g is performed by multiple steps
of gradient ascent. This allows us to optimize a more accurate estimation of the HGR
at each step, leading to a greatly more stable learning process.
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Figure C.3: Demographic Parity task - Adversarial comparison for different level of fairness

We plot the performance of these different approaches by displaying the Accuracy
against the P-rule for Demographic Parity (Figure C.3) on Adult UCI data set. We
clearly observe for all algorithms that the Accuracy, or predictive performance, de-
creases when fairness increases. We note that, for all levels of fairness (controlled by
the mitigation weight in every approach), Rényi architectures (RA_FR and RA_PR)
outperforms simple adversarial architectures (SA_FR and SA_PR) for fairness tasks
(except some points for very low levels of fairness, at the left of the curves for SA_PR).
We attribute this to the ability of the Rényi to capture more complex - non linear de-
pendencies. We also observe, for these Rényi penalizations, that the architecture with
fair Representation is relatively similar to Prediction Retreatment. For the sake of
presentation and lower complexity in model we have adopted the RA_PR version
in our paper. It has the advantage of containing one less encoder network for quite
comparable results.
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C.3.3 | Proxy Dimensions
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(a) Default Data set

Figure C.4: Additional Experiments

In figure C.4, we perform an additional experiment on the sensitive proxy for th De-
fault data set. We observe that increasing z dimensions results in increased accuracy.
Increasing the dimensions to 3 allows to obtain better results in terms of accuracy
and this for all levels of P-rule. We claim that mitigating biases in larger spaces al-
lows better generalisation abilities at test time, as already observed in another context
in (Grari et al., 2021b). It supports the choice of considering a multivariate sensitive
proxy z, rather than directly acting on a reconstruction of s as a univariate variable.
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Figure C.2: Training curves with different hyperparameters λDP
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Supplementary Material of Chapter 8

D.1 | Threshold Choice for Individual Fairness Metric

We plot in Figure D.1, for the Adult UCI data set, the performance of our proposed
algorithm (section 8.1) against the SensR approach (Yurochkin et al., 2019) in terms
of MRD and MDRD for different levels of threshold (i.e., α, β). Note that for the left
graph, we have fixed a specific α = 0.0005. We observe that increasing the different
levels of threshold results in increasing the level of unfairness. Also, for all threshold
levels, our method outperforms the SenSR method. For the results in tables 8.1 and
8.2, we select a level of α = 0.0005 and β = 0.001.
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Figure D.1: Impact of α and β (Adult UCI data set)
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D.2 | Details on Artificial Datasets
Additionally to the 6 real-world datasets, we consider a synthetic scenario, that al-
lows us to perform a further analysis of the relative performances of the approaches.
The synthetic scenario subject is a pricing algorithm for a fictional car insurance pol-
icy. The objective of this scenario is to achieve a counterfactual fair predictor which
estimates the average cost history of insurance customers. We suppose 5 unob-
served variables (Aggressiveness, Inattention, Restlessness, Reckless and Overreac-
tion) which corresponds to a 5 dimensional confounder U. The input X is composed
of four explicit variables: vehicle age, speed average, horsepower and average kilo-
meters per year. We consider the policyholder’s age as sensitive attribute A. The
input X and the average cost variable Y are sampled from U and A as depicted in
figure 1 from the main paper. We propose both a binary and a continuous version of
this scenario. For both of them, 5000 individuals are sampled.

We report below details on the distributions for the discrete setting (binary A and
Y) of the synthetic scenario:

U ∼ N




0

0.5
1

1.5
2

,


1 0 0 0 0
0 4 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 2




X1 ∼ N (10 + 2 ∗ Ai + U1 + U2 + U3, 1);

X2 ∼ N (100 + 3 ∗ A + U2
2 , 10);

X3 ∼ N (200 + 4 ∗ A + 5 ∗U3, 20);

X4 ∼ N ((104 + 5 ∗ A + U4 + U5, 1000)

X ∼ [X1, X2, X3, X4];

A ∼ Bernouilli(0.5);

Y ∼ Bernouilli(sigmoid(5 ∗ (70 ∗ A + 20 ∗∑
j

Uj)))
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