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Résumé grand public en français 
 

Cette étude porte sur les maladies du neurone moteur et sur les liens entre dysfonctions 

cellulaires et mort neuronale. Nous travaillons sur une forme génétique de maladie du neurone moteur 

causée par des mutations du gène SPG11. Ces mutations conduisent à la perte de fonction de la 

protéine codée par ce gène, la spatacsine. Notre objectif est de comprendre comment des défaillances 

cellulaires causées par la perte de fonction de spatacsine peuvent conduire à l’apparition d’une 

maladie chez les patients. 

D’après des études récentes, la fonction de la spatacsine est liée aux compartiments 

d’élimination des déchets cellulaires : les lysosomes. Ces organelles sont sphériques mais ont la 

capacité de former des tubules avec leur membrane, afin de procéder à la formation de nouveaux 

lysosomes. En absence de spatacsine, leur fonctionnement se dérègle entrainant la mort des neurones. 

Le but de ce projet est d’identifier quelle est la fonction de la spatacsine dans la formation des tubules.  

Nous nous intéressions à la capacité qu’ont les lysosomes, lieux de la dégradation cellulaire, à 

déformer leur membrane et à devenir allongés ou tubulaires. Or, nous avons découvert que cette 

capacité à se déformer repose sur l’action de notre protéine d’intérêt : la spatacsine.  

La spatacsine est une protéine qui ne déforme pas elle-même la membrane des lysosomes. 

Son rôle est de mettre en relation d’autres protéines pour permettre cette déformation. Pour réaliser 

son action, la spatacsine a une position stratégique. Elle se trouve dans l’organelle le plus imposant de 

la cellule : le réticulum endoplasmique. Et si la spatacsine a la capacité de réguler la fonction des 

lysosomes, c’est car le réticulum endoplasmique et les lysosomes sont par endroits extrêmement 

proches. On appelle ces zones des zones de contacts, elles ont été récemment mises en lumières par 

de nombreux travaux qui démontrent leur implication dans de diverses fonctions de régulation des 

mécanismes cellulaires.  

Par sa présence à ces zones de contact entre réticulum et lysosomes, la spatacsine interagit 

avec d’autres protéines qui vont déformer la membrane des lysosomes. La spatacsine interagit 

également avec certaines protéines pour en dégrader d’autres. Ainsi elle orchestre à l’interface entre 

le réticulum et les lysosomes l’action d’une machinerie complexe qui permet aux lysosomes de se 

déformer, de se déplacer et de se positionner dans la cellule. 

A court terme, il apparait important de relier ce que nous avons découvert du fonctionnement 

de la régulation de la dynamique des lysosomes par la spatacsine à la mort neuronale. Dans un second 

temps, l’objectif sera d’agir sur le mécanisme que nous avons identifié, afin de prévenir la dysfonction 

des lysosomes. Prévenir la dysfonction lysosomale permettra potentiellement de prévenir la mort 

neuronale.  

Le défi est de relier les différentes échelles d’études, c’est-à-dire de réussir à transposer le 

savoir acquis dans nos modèles d’étude cellulaire à l’échelle d’un éventuel traitement qui empêcherait 

la mort neuronale due à l’absence de spatacsine. Ainsi, un mécanisme prévenant la mort neuronale en 

culture devra être transposé à l’échelle d’un organisme entier, sur notre modèle de souris, puis à 

l’échelle du patient humain, si toutes les étapes préliminaires sont franchies avec succès. 

 

  



Résumé de la thèse en français 
 

Notre objectif durant ce projet a été de définir la fonction moléculaire de la spatacsine 
et sa localisation cellulaire qui restent mal connues. L’identification de la fonction moléculaire 
de la spatacsine permettra une meilleure compréhension des mécanismes cellulaires à l’origine 
de la mort neuronale dans des modèles de maladie du neurone moteur. 

 
Nous avions trois objectifs principaux afin de déterminer la fonction moléculaire de la 

spatacsine.  
1° Tout d’abord il apparaissait important de définir la localisation subcellulaire de la 

spatacsine qui reste controversée. Notre objectif était d’identifier à quelle(s) membrane(s) se lie 
la spatacsine et nos résultats préliminaires semblait indiquer qu’elle était principalement 
localisée au niveau du réticulum endoplasmique, ce que nous avons confirmé. 

2° Ensuite, notre deuxième objectif était d’identifier comment la spatacsine pouvait 
réguler la formation de lysosome tubulaires et notre hypothèse était que cette régulation était 
liée à la formation de zones de contact entre le réticulum endoplasmique et les lysosomes.  

3° Notre troisième et dernier objectif consistait à identifier le rôle de la spatacsine dans 
la régulation de la dégradation ubiquitine-dépendante. En effet, nos résultats préliminaires 
indiquaient que la spatacsine interagissait avec plusieurs protéines de la voie ubiquitine-
protéasome pour réguler la formation de lysosomes tubulaires. 
 

Notre premier objectif dans ce projet était de préciser la localisation subcellulaire de la 
spatacsine. Grâce à l’utilisation de techniques de microscopie à super-résolution, nous avons 
pu observer que la spatacsine, exprimée avec un tag permettant sa détection dans des 
fibroblastes de souris, se localise au niveau du réticulum endoplasmique. Ce résultat a été 
confirmé par d’autres expériences que nous avons menées et qui reposaient sur le 
fractionnement subcellulaire de cerveaux de souris. Par des méthodes de centrifugations 
différentielles et d’isolation de compartiments à l’aide de gradients, nous avons pu montrer que 
la spatacsine était enrichie au niveau de la fraction subcellulaire contenant le réticulum 
endoplasmique. Enfin, nous avons également pu montrer que la spatacsine était fortement 
associée à la membrane du réticulum endoplasmique car seuls de forts détergents la solubilisent.  

 
 Notre second objectif concernait le rôle de la spatacsine dans la régulation de la 

dynamique des lysosomes tubulaires et l’éventuelle implication de contacts entre le réticulum 
endoplasmique et les lysosomes dans cette régulation. Nous avons montré en observant les 
lysosomes tubulaires en live imaging sur cellules intactes et exprimant des protéines 
fluorescentes, que la spatacsine, via son domaine C-terminal régulait la formation de lysosomes 
tubulaires mais également leur vitesse de déplacement et leur durée de vie. Nous avons 
également montré que cette altération des propriétés des lysosomes tubulaires avait pour 
conséquence une redistribution des lysosomes plus proches du noyau en absence de spatacsine.  

 
 Les lysosomes tubulaires ont une relation privilégiée avec le réticulum 

endoplasmique. Des approches de super-résolution et de live imaging ont permis de montrer 



que les lysosomes tubulaires sont extrêmement proches du réseau de réticulum endoplasmique 
et que leur déplacement se fait le long de ce réseau. De plus il apparaît que les contacts entre le 
réticulum endoplasmique et les lysosomes sont altérés en absence de spatacsine. Au niveau de 
ces zones de contacts, la spatacsine réticulaire interagit avec son partenaire lysosomal, la 
spastizine. La spastizine est une protéine dont la mutation perte de fonction cause une forme de 
paraplégie spastique héréditaire, la forme SPG15, qui est très similaire à la forme SPG11 sur 
laquelle nous travaillons. Nous avons également pu mettre en évidence que la spastizine 
interagit avec la Kinésine KIF13A, qui est un moteur moléculaire et qui permet de former les 
lysosomes tubulaires et de promouvoir leur mouvement. L’interaction entre spatacsine et 
spastizine au niveau des zones de contacts entre le réticulum endoplasmique et les lysosomes 
est donc extrêmement importante pour la formation de lysosomes tubulaires. 

 
 Enfin, pour notre troisième objectif concernant le rôle de la spatacsine dans la 

dégradation dépendante de l’ubiquitine, nous avons montré grâce à une méthode innovante de 
criblage basée sur l’analyse d’image automatisée, que la spatacsine interagissait avec des 
protéines liées à la dégradation ubiquitine-dépendante pour réguler la formation de lysosomes 
tubulaires. Ainsi, la spatacsine a la capacité d’interagir via son domaine C-terminal avec la 
protéine UBR4 pour dégrader un autre de ses partenaires lysosomaux : AP5z1. Cette 
dégradation est nécessaire pour éviter que AP5z1 soit trop présent aux lysosomes, et par son 
interaction avec la spatacsine, empêche celle-ci d’interagir avec son autre partenaire la 
spastizine. En effet, perturber l’interaction spatacsine-spastizine, empêche le recrutement de la 
spastizine aux lysosomes et empêche la formation de lysosomes tubulaires. Nous avons 
également pu montrer que l’interaction spatacsine-spastizine était dépendante de l’architecture 
du réticulum endoplasmique car perturber celle-ci empêche l’interaction entre les deux 
protéines. 

 
A la suite de ce projet, qui a permis d’identifier de nouvelles fonctions de la spatacsine 

dans la régulation de la dynamique des lysosomes tubulaires d’une part et qui a identifié de 
nouvelles fonctions pour les contacts lysosomes-réticulum endoplasmique d’autre part, il 
apparait important de continuer à investiguer le rôle de la spatacsine.  

Nous avons fait des progrès significatifs dans la compréhension des mécanismes 
moléculaires impliquant la spatacsine, et de nombreuses questions sont soulevées par ces 
nouveaux résultats. Il apparaît tout d’abord important de savoir si ces mécanismes de régulation 
de la fonction lysosomale sont les mêmes dans les modèles neuronaux. En effet, ce sont les 
neurones qui sont le plus affectés par la pathologie SPG11. Ainsi, nous pourrons évaluer si ces 
fonctions de la spatacsine sont liées à l’apparition de la neurodégénérescence.  

 
De plus, afin de mieux comprendre le mécanisme de régulation de la formation des 

lysosomes tubulaires par la spatacsine, certains tests sont nécessaires comme identifier 
comment le système répond à divers stress cellulaires. Enfin, il apparaît important d’identifier 
par quels mécanismes nous pourrions compenser l’absence de spatacsine sur la formation des 
lysosomes tubulaires afin de voir s’il est possible de prévenir la neurodégénérescence liée à la 
dysfonction lysosomale dans la paraplégie spastique de type 11.  
  



ABSTRACT 
 

The loss of spatacsin, involved in hereditary spastic paraplegia type SPG11, causes 
lysosomal dysfunction. The molecular function of spatacsin has, thus far, remained elusive. 
Here, we used a combination of trained neural networks and targeted image analysis coupled 
to an siRNA screen to show that spatacsin function is associated with ubiquitin-mediated 
proteolysis. We demonstrated that spatacsin controls lysosome morphology and dynamics by 
acting at the contact sites between the Endoplasmic Reticulum (ER) and lysosomes and that 
this regulatory function of spatacsin relies on ubiquitin-dependent degradation of AP5Z1.  

Spatacsin is required for the formation and dynamics of tubular lysosomes. We 
identified a pool of lysosomes with a tubular shape that corresponds to dynamic lysosomes.  

The highly dynamic tubular lysosomes we observed in mouse fibroblasts were strongly 
associated with the ER. Consistent with this finding, spatacsin was localized to the ER and 
interacted with lysosome-localized spastizin at the contact sites between the ER and lysosomes. 
Our data show, for the first time, that proteins acting at contact sites between the ER and 
lysosomes regulate the motility of lysosomes along the ER network. We identified AP5Z1, 
known to interact with spatacsin and localized in lysosomes, as a protein degraded in a 
ubiquitin- and spatacsin-dependent manner to regulate tubular lysosome formation and motility. 
However, spatacsin required several of its partners, such as UBR4, to mediate 
AP5Z1degradation.  

Importantly, the interaction of spatacsin with its partners, spastizin and AP5Z1, is 
modulated by the morphology of the ER network and could thus play a role in coupling ER 
morphology to lysosome function.  

We thus identify spatacsin as a protein present at contact sites between the ER and 
lysosomes that is critical for the coordination of lysosome trafficking with ER network 
morphology. 
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INTRODUCTION 

I. Context of Study 

a) The growing need to tackle neurodegenerative diseases 
 

Neurodegenerative diseases constitute a major discipline of interest as the world population gets older. 

According to the World Health Organization & United Nations, there will be two billion people over the age 

of 60 in 2050 (against one billion in 2020). Among diseases that come with ageing, Alzheimer’s Disease is 

the most frequently diagnosed. It is stated that it affects 5% of adults over 65 and up to 50% of adults over 

85 years old (Cummings, 2004). On top of the distress caused by the disease itself on individuals, with 

symptoms such as apathy, anxiety, depression, sleep disorders, etc. (Ritchie and Lovestone, 2002), the cost 

for society of the care of patients is enormous.  In 2015, the global societal cost of dementia was estimated 

to be 818 billion of dollars (Ritchie and Lovestone, 2002). It is therefore one of the challenges of the 21st 

century to better understand the mechanisms of neurodegeneration. 

For the most frequent neurodegenerative diseases such as Alzheimer, the etiology is unknown: it is 

thus difficult to study their physiopathology and to develop therapeutic strategies. In contrast, there are 

many rare neurodegenerative diseases of identified genetic origin. In these cases, the etiology is a known 

gene mutation, allowing development of relevant models to study these diseases. My thesis focuses on a 

group of rare neurodegenerative diseases, Hereditary Spastic Paraplegias. 

 

b) Hereditary Spastic Paraplegias (HSP) 
 

HSP prevalence & common mechanisms with other neuro-degenerative disorders 

HSP constitute a family of neurodegenerative diseases with a genetic origin. They are rare (with an 

estimated prevalence of 3-9/100 000 in Europe/North America) (Blackstone, 2012; Blackstone et al., 2011) 

but their study is important for the patients and also to understand the mechanisms of the onset and the 

progression of neurodegenerative diseases in general. Indeed, there are common cellular mechanisms that 

are affected between Hereditary Spastic Paraplegias and more frequent diseases such as Alzheimer Disease, 

Parkinson disease or Huntington disease. Whether it is at the level of lysosomal dysfunctions (Ferguson, 

2019; Lie and Nixon, 2019; Neefjes and van der Kant, 2014; Schreij et al., 2016), at the level of mitochondrial 

dysfunctions (Kwong et al., 2006), endoplasmic reticulum regulation (Chiurchiù et al., 2014), lipid 

accumulation (Sipione et al., 2020) or microtubule disruption (Zempel and Mandelkow, 2015).  

One of the particularity of Hereditary Spastic Paraplegias is that the disease can occur at any age, 

due to the number of different genes that are affected, but the onset is more common in childhood or early 

adulthood (Erfanian Omidvar et al., 2021).  
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Classification of HSPs  

HSP present a high variability of symptoms, but they are characterized by a common feature: the 

degeneration of the pyramidal tract, also known as cortico-spinal tract (See Figure 1). This tract is involved 

in the control of voluntary movements and is formed by the axons of neurons of the motor cortex projecting 

towards motoneurons of the spinal cord (Blackstone, 2012). Degeneration of the pyramidal neurons results 

in the development of a pyramidal syndrome with lower limb spasticity that will worsen with the disease 

progression. The degeneration of the tract happens in a retrograde pattern, causing an axonopathy, so the 

lower limbs are the first to be affected (Deluca et al., 2004).  

Common symptoms 

The pyramidal syndrome is characterized by a spasticity of the lower limbs. Patients have a motor 

weakness that can go up to paralysis. Spasticity corresponds to a muscular stiffness caused by muscle hyper 

contractibility, which is normally inhibited by the cortico-spinal tract.  

Other symptoms can be observed in HSP patients along the pyramidal syndrome, constituting 

complex forms of HSP. These symptoms and include ataxia, dementia, cognitive impairment, neuropathy, 

epilepsy, etc. (Fink, 2013; Harding, 1983; Lo Giudice et al., 2014) – (see Figure 1) . The only treatments 

available for patients are targeting the muscle contraction to limit the spasticity, but no curative treatment 

of the disease exists so far. 

 

Figure 1: Left: Scheme showing the cortico-spinal tract in yellow (adapted from (Blackstone, 2012)). Right: 

Prevalence of complex and pure forms of HSP (From Blackstone et al, 2011-2012-2018 + Ghaedi et al, 2019) 

Over 80 SPG genes have been identified to be causing forms of HSP when mutated explaining the 

variability of symptoms. The transmission of the disease can be autosomal recessive or dominant (see 

Figure 1). Among these diversity of genetic causes for HSP, there are also several different cellular pathways 

that are affected by mutations responsible for HSPs. 
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c) Cellular pathways impaired in Hereditary Spastic Paraplegias 
 

Several cellular pathways have been shown as altered in HSPs such as Endoplasmic Reticulum Shaping, 

the endolysosomal pathway, transport of cargoes or mitochondrial function. My goal is not to list all 

organelles or pathways affected by HSP proteins mutations as it has been done extensively and in details 

by fellow researchers (Blackstone, 2012; Blackstone et al., 2011; Toupenet Marchesi et al., 2021). 

HSP proteins involved in Endoplasmic Reticulum shaping 

Traditionally, the proteins of HSP pure forms have been associated with the Endoplasmic Reticulum 

(ER). Spastin (SPG4), for example, is an ATPase that severs microtubules (Connell et al., 2009) but its 

isoforms starting at methionine M1, that has the particularity to have an hairpin domain, is located to the 

ER and participates to its morphogenesis (Park et al., 2010). It appears that Spastin cooperates with GTPase 

Atlastin1 (SPG3A)(Rismanchi et al., 2008) and with REEP1 (SPG31) to ensure that the structure of the ER is 

properly formed, especially at the level of the ER-tubular network and the formation of three-way junctions 

(Park et al., 2010). As lipid droplets are formed at the ER (Walther et al., 2017), the loss of the HSP proteins 

involved in the ER morphogenesis have consequences on the lipid droplets biogenesis (Klemm et al., 2013; 

Papadopoulos et al., 2015).  

 

  

Figure 2 : HSP proteins are represented in multiple cellular pathways (Blackstone, 2012). 
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HSP proteins involved in endo-lysosomal pathway 

Another example of a cellular compartment that is commonly affected by HSP proteins mutations 

is the endolysosomal compartment. Showing that there are multiple levels of interaction between 

organelles and that the loss of one protein doesn’t have only one type of consequence, the loss of Spastin 

has an impact on endosomal fission as well (Allison et al., 2013). These cases of multiple organelles 

dysfunctions in the cell help researchers identify new pathways of regulation & interactions between 

organelles. Lysosomal defects caused by mutations of ER proteins have been also identified in SPG8 

(strumpellin) and SPG31 (REEP1) HSP forms (Allison et al., 2017a). 

The lysosomal compartment fails to renew itself in SPG11 and SPG15 (Chang et al., 2014a). This 

leads to lysosomal accumulation in SPG11 and SPG15 HSPs (Branchu et al., 2017; Khundadze et al., 2013a) 

and SPG48 HSP also presents some forms of lysosomal accumulation (Khundadze et al., 2019a). 

 

HSP proteins & mitochondria 

The paraplegin protein (SPG7) is localized at the mitochondria and its absence is responsible for 

mitochondrial defect (Casari et al., 1998). ER-protein REEP1 is also involved at the level of the mitochondria 

as it facilitates the formation of contacts between the ER and mitochondria and this plays a role in 

neurodegeneration (Lim et al., 2015). The protein Spartin (SPG20) is localized to mitochondria (Lu et al., 

2006), and it has been reported as playing a role in mitochondrial metabolism (Ring et al., 2017) and in 

mitochondrial respiratory chain (Spiegel et al., 2017). 

 

HSP proteins and cellular transport 

The motor protein, KIF5A (SPG10) is promoting axonal transport of mitochondria, which is very 

important for the survival of motor neurons (Karle et al., 2012). Spastin (SPG4), that we mentioned earlier, 

is involved in cellular polarization, by interacting with protrudin and regulates bone morphogenetic protein 

receptor trafficking in the cell (Connell et al., 2020). Other kinesins KIF1A (SPG30) and KIF1C (SPG58) that 

are involved in cargo transport at neurites are mutated in forms of HSPs (Caballero Oteyza et al., 2014; 

Citterio et al., 2015) 

Hereditary Spastic Paraplegias constitute a family of very diverse disorders, they share however several 

symptoms. Similarly, the proteins mutated in forms of HSP are implicated in a few different cellular 

pathways and similarities between disorders emerge, several main themes are found between pathologies. 

Therefore, studying the cellular mechanisms involved in the disease development of a given HSP is also 

potentially relevant for the study of other HSPs or neuronal pathologies. 
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II. Hereditary Spastic Paraplegia Type SPG11 

a) A complex form of HSP 
 

Symptoms 

The type SPG11 of HSP is the most frequent autosomal recessive HSP (Tesson et al., 2015) and it is 

indissociable from a clinician point of view from the SPG15 type (Hanein et al., 2008a). It is a complex form 

of HSP meaning that patients can have several other symptoms additional to the pyramidal syndrome (de 

Souza et al., 2017). The most frequent symptoms additional to the pyramidal syndrome are a cognitive 

impairment, a thinning of the corpus callosum, ataxia (a lack of muscle control or coordination of voluntary 

movements), visual impairment etc. (see Figure 3). 

 

Figure 3: Symptoms of HSP type SPG11. Left: Frequent symptoms associated to SPG11 HSP. Right: 

illustration of thinning of the corpus callosum in SPG11 HSP (blue arrow) that can be observed by MRI 

(Boukhris et al., 2008). 

Mutations of SPG11 have been associated to other diseases  

Variability of symptoms in SPG11 led to classification of SPG11 patients as suffering from Amyotrophic 

Lateral Sclerosis (ALS) or Charcot-Marie Tooth disease (CMT). For ALS, it constitutes a rare subset of the 

disease with a genetic origin and a juvenile onset as typical age of onset of regular ALS is normally 55-75 

years and the origin of the disease is mainly sporadic (Denora et al., 2016a; Orlacchio et al., 2010). The 

theme of clinical overlap between HSP and forms of amyotrophic lateral sclerosis has been discussed as 

they have in common to show prominent upper motor neurons signs (Fink, 2001; Strong and Gordon, 2005). 

For Charcot-Marie Tooth, this neuropathy shows damage to peripheral nerves and in particular the ones 

controlling lower limb muscles and mutations of SPG11 gene can cause such clinical features (Montecchiani 

et al., 2016). 
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b) Cellular biology of SPG11 HSP 
 

b.1 spatacsin: the product of SPG11 gene 
 

Most mutations observed in SPG11 patients are missense mutations (Stevanin et al., 2008), 

suggesting that the disease is due to the loss of function of the SPG11 gene product spatacsin. Spatacsin is 

a 2443 amino acids protein in human (280 kDA) (Stevanin et al., 2007a). This long protein -the median length 

of protein in H. Sapiens is 375 a.a (Brocchieri and Karlin, 2005)- is of unknown structure, only putative 

domains have been identified and are represented in Figure 4 (Cogo et al., 2020; Hirst et al., 2013a; Stevanin 

et al., 2007a).  

 

 

Figure 4 : Representation of the putative domains of spatacsin Protein (Cogo et al., 2020) 

 

One particularly interesting domain of spatacsin might be its Cter domain also known as 

“Spatacsin_C” domain. In a recent study, it has been proposed that this domain that was conserved through 

evolution might have a tertiary structure homologous to VPS16_C protein (Alexander L. Patto and O’Kane, 

2020). This could bring us information on a potential function for this domain as VPS16 is known to be part 

of the HOPS complex and to participate in endolysosomal transport (Alexander L. Patto and O’Kane, 2020).  
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b.2 Cellular localization of spatacsin 
 

Sucellular localization of spatacsin has been largely investigated, but it is still debated. Spatacsin is 

expressed at very low endogenous levels in cells and the antibodies against it are poorly specific. From the 

literature, when using anti-spatacsin antibodies, it seems that spatacsin cellular localization is cytoplasmic, 

with a granular pattern (see Figure 5). 

 

Figure 5: Subcellular localization of spatacsin in various cell types using antibodies against spatacsin (Hirst 

et al., 2013a; Murmu et al., 2011a; Pérez-Brangulí et al., 2014) 

This diffuse localization does not give precise information on spatacsin sub-cellular compartment 

association, it can be sometimes seen as colocalizing with ER (Cogo et al., 2020; Murmu et al., 2011a) or 

cytoskeleton (Murmu et al., 2011a; Pérez-Brangulí et al., 2014).  

Using over-expressed constructs of spatacsin coupled to a tag or cell lines stably expressing tagged 

spatacsin show a diffuse and granular cytoplasmic staining pattern (see Figure 6). 

 

Figure 6: Subcellular localization of spatacsin in various cell types expressing a tagged spatacsin (Boutry et 

al., 2018; Cogo et al., 2020; Hirst et al., 2021a; Pérez-Brangulí et al., 2014).  
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The precise subcellular localization of spatacsin remains vague, but there is a convergence in the 

literature pointing toward a partial and transitory localization of spatacsin at the endolysosomal 

compartment (Boutry et al., 2018; Hirst et al., 2021a, 2013a; Schröder et al., 2007; Wyant et al., 2018). 

Indeed it seems that spatacsin can be recruited to lysosomes either in starvation conditions (Hirst et al., 

2021a; Wyant et al., 2018) or in conditions of lipid accumulation in lysosomes (Boutry et al., 2018), see 

Figure 7. 

 

Figure 7 : Spatacsin is enriched at the lysosomes in response to different cellular stresses (Boutry et al., 

2018; Hirst et al., 2021a; Wyant et al., 2018). 

 

b.3. Spatacsin ‘s role at the endolysosomal compartment 
 

Endolysosomal compartment is enlarged in absence of spatacsin 

Besides spatacsin partial localization at the endolysosomes, there have been several studies 

pointing toward a role of spatacsin at the level of the late endosomes/lysosomes (see Figure 6). One of the 

first study on SPG11 patients fibroblasts showed an enlargement of the endolysosomal compartment 

(stained by LAMP1 Lysosomal protein) in absence of spatacsin, compared to healthy controls (Renvoisé et 

al., 2014). In another study on Hela cells, in starvation (i.e., a culture medium depleted from amino acids), 

cells acquired an enlarged endolysosomal compartment after 6h of starvation. After 24h, the compartment 

normally returns to its original size but this does not happen in absence of spatacsin (Chang et al., 2014), 

showing that spatacsin is required for lysosomes recovery.  

Spatacsin is involved in Lysosome Recycling during Autophagy 

Autophagy is an evolutionarily conserved process by which cytoplasmic proteins and organelles are 

catabolized (Mizushima and Komatsu, 2011) During starvation, the protein mTOR (mammalian target of 

rapamycin), a nutrient-responsive kinase, is inhibited, and this induces autophagy. In autophagy, 

autophagosomes envelop and sequester intracellular components and then fuse with lysosomes to form 

autolysosomes, which degrade their contents to regenerate nutrients. The regulation of autophagy in 

response to nutrients abundance is dependent on mTOR signaling, which is inhibited during initiation of 

autophagy.   
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Reactivation of mTOR happens after prolonged starvation and attenuates autophagy and generates 

proto-lysosomal tubules. The lysosomes renew themselves via a process of membrane budding and 

formation of tubes followed by fission to form new proto lysosomes. This process is called Autophagic 

Lysosomal Reformation (ALR) (Yu et al., 2010)(see Figure 8). 

 

Figure 8 : Autophagic Lysosomal Reformation during prolonged starvation (Yu et al., 2010). 

In absence of spatacsin, less tubules are observed emanating from lysosomal membrane in 

starvation conditions and this results in an impairment of the reformation of the lysosomes pool leading 

ultimately to a lysosome depletion (Chang et al., 2014a). These results indicate that spatacsin has a role in 

the process of reforming new membranes from the lysosomes in starvation conditions. 

 

b.4. Dysfunctions in the clearance of degradation-destined cargoes 
 

Accumulation of autophagosomal content in absence of spatacsin 

An impressive convergence of data in the literature of SPG11 HSP indicates that in absence of 

spatacsin, there is an accumulation of autophagosomes membrane marker (LC3-II) or autophagosomes 

content (p62) (See Figure 9). Whether it was measured by counting the amount of vesicles positive for these 

markers or by measuring global levels of these proteins, virtually all studies showed an impairment in 

absence of spatacsin (Boutry et al., 2018; Branchu et al., 2017; Chang et al., 2014a; Khundadze et al., 2021; 

Renvoisé et al., 2014; Vantaggiato et al., 2019; Varga et al., 2015). This indicates that the content that was 

destined for degradation was not normally degraded by the cell in absence of spatacsin.  
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Figure 9 : Endosome biogenesis & autophagy pathways to the lysosome, adapted from (Reggiori and 

Klumperman, 2016). 

 

No alteration of lysosomal degradation capacity in absence of spatacsin 

Interestingly, in vitro assays testing lysosomal degradation agree that there is no enzymatic 

alteration of the lysosomes in absence of spatacsin and that nor their acidification nor degradative 

capacities are altered (Branchu et al., 2017; Chang et al., 2014a; Renvoisé et al., 2014; Varga et al., 2015). 

However, it is still possible that some enzymatic activities of lysosomes are altered in vivo. Measuring such 

activities in vivo is challenging and has not been evaluated in SPG11 models.  

The cargo degradation defects observed in absence of spatacsin could also be explained by a 

default of autophagosomes – lysosomes fusion (Khundadze et al., 2021). Moreover, other types of 

accumulation of cargoes have been observed in the brain of SPG11 patients such as ubiquitin aggregates in 

granular lysosome like structures or P62/TDP43 accumulation resembling amyotrophic lateral sclerosis 

lesions (Denora et al., 2016a) (Mori et al., 2021).   
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 b.5. The role of lipids in lysosomal clearance in SPG11 HSP 
 

In a Spg11 knockout mouse model, along with accumulation of autophagic degradation content, a 

lack of lipid droplets accompanied with a slower lipid clearance from the lysosomes was observed (Branchu 

et al., 2017). This was confirmed in following studies where the nature of the lipid accumulation was 

identified as simple gangliosides such as GM2 and cholesterol (Boutry et al., 2019a, 2018). Interestingly, the 

accumulation of lipids was linked to lysosomal membrane recycling processes dependent of spatacsin, 

dynamin and clathrin which seemed to share many features with autophagic lysosomal reformation but 

occurred in basal conditions (Boutry et al., 2019a, 2018).  

A direct correlation was found between the accumulation of ganglioside GM2 and autophagic 

marker p62 accumulation: as GM2 levels went up in lysosomes so did p62 levels. Decreasing GM2 levels 

with miglustat, an inhibitor of glucosylceramide synthase used to treat Gaucher disease, resulted in P62 

level decrease in lysosomes (Boutry et al., 2018)-see Figure 10. This indicates that the potential clogging of 

the lysosomal compartment with lipids complicates the degradative action of lysosomes and prevents the 

clearance of substrates. 

 

Figure 10 : Ganglioside accumulation promotes cargo destined for autophagy accumulation in 

lysosomes (Boutry et al., 2018). 

Similar features have been observed in a group of disorders called Lysosomal Storage Disorders 

(LSD) such as Niemann-Pick type C or Sandhoff disease (Breiden and Sandhoff, 2019; Sandhoff and Harzer, 

2013, p. 201; Vanier, 2010). Although the proportions of lipid accumulation in lysosomes is smaller in SPG11 

HSP compared to the other LSDs, a similar link between these accumulations and neurodegeneration has 

been observed.  
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b.6. Linking Spg11-related cellular defects to neurodegeneration 
 

Mouse models of Spg11-/- mice have shown an impairment of the motor and cognitive phenotype 

in absence of spatacsin (Branchu et al., 2017; Khundadze et al., 2021; Varga et al., 2015). These studies 

confirm that the loss of SPG11 leads to neuronal loss, notably in motor cortex. The use of Zebrafish models 

where SPG11 was invalidated using morpholinos showed that they developed a motor phenotype as well 

and had a perturbed axonal growth (Boutry et al., 2018; Martin et al., 2012). Moreover, these degenerative 

phenotypes seemed to be linked to ganglioside accumulation in neurons (Boutry et al., 2018). Indeed, 

lowering GM2 levels with miglustat in zebrafish knockdown for Spg11 improved the motor phenotype and 

lowering GM2 by miglustat or miRNA against GM3 synthase prevented death of Spg11-/- neurons (Boutry 

et al., 2018). 

Other studies on neuronal models derived from induced pluri-potent stem cells lacking spatacsin 

observed neurite growth abnormalities (Pérez-Brangulí et al., 2014), proliferation defects in Neuronal 

Progenitors Cells (NPCs) (Mishra et al., 2016) and altered cell cycle in NPCs along with premature 

neurogenesis in organoids (Pérez-Brangulí et al., 2019). These defects seemed to be linked to a deregulation 

of the Wnt/GSK3β pathway based on a transcriptomic analysis that was performed on SPG11 patient cell 

lines (Mishra et al., 2016). In consequence, a proposed strategy adopted was to inhibit GSK3β signaling 

using the drug Tideglusib. The neurites abnormal growth, the premature neurogenesis and the NPCs 

proliferation defects were all rescued by Tideglusib treatment (Mishra et al., 2016; Pérez-Brangulí et al., 

2019; Pozner et al., 2018). GSK3β is a kinase that is implicated in numerous cellular pathways (Wu and Pan, 

2010) but reports have shown its implication in lysosomal biogenesis via nuclear translocation of 

Transcription Factor EB (TFEB) (Parr et al., 2012). It is possible that Tideglusib may be acting on lysosomal 

function considering that TFEB signaling was altered in cells lacking spatacsin (Boutry et al., 2019a).  

The lysosomal dysfunctions causing an accumulation of undegraded material likely causes 

degeneration of motor neurons of the cortico-spinal tract as they are more fragile than other cells. 

Moreover, they don’t divide and rely more than other cells on their autophagic degradation capacity to 

remove unwanted cellular materials.  

Even if spatacsin is involved in lysosomal function and neurodegeneration, its precise cellular role 

remains unknown. Investigating its relationship with two other HSP proteins AP5z1 (SPG48) and spastizin 

(SPG15), that interact with spatacsin, provides more information on its potential role. 

 

c) AP5z1 and spastizin, interactors of spatacsin and their link to 
endolysosomal dysfunctions 

 

AP5z1 (along with other AP5 subunits) and spastizin were reported to interact with spatacsin for the 

first time in a study that was screening for proteins implicated in DNA damage and repair (Słabicki et al., 

2010a, p. 5). If downregulating AP5z1 and spastizin made cells more sensitive to DNA damage, 

downregulating spatacsin had no effect on this parameter even if spatacsin was found be phosphorylated 
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by ATM upon DNA damage in a previous study (Matsuoka et al., 2007). AP5z1 and spastizin are encoded by 

genes mutated in SPG48 and SPG15 (Hanein et al., 2008a; Słabicki et al., 2010a).  

AP5 is a member of the family of adaptor protein complexes 

Adaptor protein complexes are known to associate with clathrin (for AP1, AP2 and AP3 ) and to 

recognize various cargoes to concentrate them in vesicular carriers (Park and Guo, 2014) (see Figure 11). 

AP1 has been reported to play a role in somato-dendritic sorting, AP2 in pre & post-synaptic endocytosis 

and AP3 in sorting of synaptic vesicles, underlining their importance for the functioning of neurons and 

explaining why mutations affecting these complexes lead to neurodegenerative disorders (Guardia et al., 

2018). AP4 and AP5 are expressed in smaller proportions compared to other AP complexes and have less 

clear molecular role (Hirst et al., 2013b). 

AP5z1 and spastizin form a protein complex with spatacsin 

Spatacsin, spastizin and AP5z1 were proposed to interact in stochiometric proportions to form a 

protein complex (an hexametric complex, as AP5z1 is associated to 3 other subunits of the AP5 complex -

see Figure 11)(Hirst et al., 2013a). Moreover, it appears that stability of the proteins of the complex are 

interdependent. Indeed, downregulating SPG11 by siRNA leads to an important loss of spastizin and 

downregulating SPG15 leads to spatacsin loss. However, downregulation of SPG11 or SPG15 only leads to 

moderate loss of AP5z1 and downregulation of SPG48 had no effect on spatacsin or spastizin levels (Branchu 

et al., 2017, p. 217; Hirst et al., 2013b; Khundadze et al., 2013a; Renvoisé et al., 2014; Vantaggiato et al., 

2019; Varga et al., 2015). At least for the spatacsin-spastizin co-dependence, it seems that the regulation 

of their protein levels isn’t transcriptional as there is no alteration of SPG11-mRNA in a Spg15 -/- mouse 

model (Khundadze et al., 2013a).  

 

Figure 11: The hexametric complex of HSP proteins: AP5z1/spatacsin/spastizin in the realm of AP complexes 

(Sanger et al., 2019). 

The existence of this AP5z1/spatacsin/spastizin complex where partners are interdependent might 

explain the similarities that were observed concerning the functions of these HSP proteins.  
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AP5z1 and spastizin sub-cellular localization 

Like spatacsin, it seems that AP5z1 and SPG15 are rather cytoplasmic proteins that are recruited to 

the endo/lysosomal compartment upon starvation (Chang et al., 2014a; Hirst et al., 2021a, 2013b, 2011a; 

Wyant et al., 2018) (see Figure 12). However, one study reports the existence of an AP5z1 isoform that is 

nuclear (Słabicki et al., 2010a) and another one indicates that AP5z1 is not enriched in heavy membranes 

fractions that are enriched in endolysosomal marker Lamp1 but rather in the membrane fraction containing 

early endosomes marker EEA1  (Khundadze et al., 2013a).  

For spastizin, one study observed its localization to the midbody of cells (Sagona et al., 2010a) and 

another to the early endosomes with only partial localization to the endolysosomes (Khundadze et al., 

2013a). One of the particularity of spastizin is to possess a FYVE domain that grants it the ability to bind 

Phosphatidylinositol-3-phosphate (PI3P) (Sagona et al., 2010a). All studies on spastizin agree that its 

localization is dependent on the FYVE domain. Indeed, when a mutation is introduced in the FYVE domain,  

spastizin becomes completely cytoplasmic and is no longer recruited to membranes (Chang et al., 2014a; 

Khundadze et al., 2013a; Sagona et al., 2010a).  

The same phenomenon of spastizin cytoplasmic re-localization is observed when cells are treated 

with wortmannin, an inhibitor of phosphoinositide 3 kinases, preventing the phosphorylation of PtdIns 

(Chang et al., 2014a; Khundadze et al., 2013a) (see Figure 12). This indicates that the ability of spastizin to 

be located to membranes is dependent on its ability to bind PI3P. A recent study shows that expression of 

a construct containing the spastizin FYVE domain alone results in its localization to early endosomes 

membranes where PI3P is the most enriched and that the localization of spastizin at late 

endosomes/lysosomes is to be explained by the rest of the protein sequence and maybe by interaction with 

spatacsin (Hirst et al., 2021a). 

 

Figure 12 : Subcellular localization of spastizin (Hirst et al., 2021, 2013). 

Loss of AP5z1 and spastizin cause endolysosomal defects.  

Fibroblasts of SPG15 patients have an enlarged endo/lysosomes compartment (Renvoisé et al., 

2014) and cells depleted of SPG15 or AP5z1 have an alteration of autophagic lysosomal reformation causing 

accumulation of undigested cargoes in the cells (Chang et al., 2014a; Khundadze et al., 2019a). This is 

probably explaining why both knocked-out mouse models for SPG15 or AP5Z1 present aberrant 

accumulation of non-degraded material in their lysosomal compartment (Khundadze et al., 2019a, 2013a). 

As we have seen previously in Spg11-/- model these accumulations of material in the lysosomes of neurons 

are linked to neurodegeneration and both Ap5z1-/- and Spg15-/- mouse models present an alteration of their 

motor phenotype (Khundadze et al., 2019a, 2013a).   
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Again, no alteration of lysosomal hydrolase activity were observed in in vitro assays for Ap5z1-/- 

model (Khundadze et al., 2019a) and a moderate increase (less than 50% by Western Blot assay) of 

Cathepsin D activity is reported at 16 months in Spg15-/- model (Khundadze et al., 2013a). Interestingly, a 

double knocked-out model for SPG11 & SPG15 present similar endolysosomal defects that as Spg11-/- or 

Spg15-/- models (Khundadze et al., 2021) underlining that both proteins are implicated in the same cellular 

mechanisms regulating endolysosomal pathway. 

Potential roles of spastizin in cytokinesis and autophagosome maturation 

If they share a lot of characteristics with spatacsin in terms of endolysosomal transitory localization 

and implications in the endolysosomal system, AP5z1 and spastizin also have their particularities. An early 

study on spastizin showed that it is a key player in cytokinesis by interacting with PI3P at the level of the 

midbody. This localization of spastizin to the midbody is dependent of its interaction with molecular motor 

from the Kinesin family : KIF13A (Sagona et al., 2010a).  

Another study tried to explain the endolysosomal defects observed in absence of spastizin by 

showing that it interacts with early endosomes RAB5 GTPase and recycling endosome RAB11 GTPase (see 

Figure 9). On top of these interactions, they showed that spastizin was also interacting with 

Beclin1/RUBCN/UVRAG complex, which is involved in autophagosome maturation & endosome motility. 

Therefore, the lack of spastizin would result in less early endosome-late endosome fusion causing a latter 

alteration of the endolysosomal pathway (Vantaggiato et al., 2019). These data might find supporting 

literature in a study conducted on a Zebrafish model invalidated for spastizin homolog that showed an 

accumulation of RAB11 positive vesicles (Kanagaraj et al., 2014). 

Role of AP5z1 in lysosomal enzymes sorting 

AP5z1 is involved in protein sorting from the Golgi toward the endolysosomes especially for sorting of 

M6PR (Hirst et al., 2018a). Indeed, an alteration of Mannose 6-Phosphate Receptor (M6PR) trafficking was 

observed in absence of AP5Z1 (Hirst et al., 2011a) and M6PR clustering was observed upon AP5z1 

downregulation (Hirst et al., 2015). Mannose 6 phosphate is a sugar added in the Golgi to cargoes destined 

to early endosomes, it will bind to M6P Receptor. Then the substrate-receptor complex enters clathrin 

coated vesicles from Golgi to early endosomes. This route is important for lysosomal enzymes targeting 

from the ER, then from Golgi to the endolysosomal compartment. So, an alteration of the M6PR pathway 

could in part explain some of the aberrant accumulation of material in lysosomes. On top of M6PR traffic 

alteration, the Ap5z1-/- mouse model showed an aberrant Golgi structure at 16 months and accumulation 

of constitutive Golgi proteins in the lysosomes (Khundadze et al., 2019a). 

AP5z1, spastizin, spatacsin share many features, in terms of the cellular defects that are observed in 

the HSPs that are associated to mutations of their coding genes. Indeed, the three knocked-out mouse 

models had an impaired motor phenotype and lysosomal aberrant accumulations. Whether the proteins 

always exist in a protein complex or only transitory is unknown, but it appears that their molecular role are 

interdependent. The extent of the interdependence and the regulation of their interaction remains to be 

more investigated. 
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d) Involvement of the lysosomes in neurodegenerative disorders 
 

If we consider a broader scale than Hereditary Spastic Paraplegias, lysosomes constitute a 

compartment particularly vulnerable to failure in neurodegenerative disease (Nixon, 2013). Neurons, as 

postmitotic cells are particularly dependent of the lysosomal system. Moreover, they are further challenged 

by their extreme geometric asymmetry. The cell’s rely on two proteolytic clearance systems, the Ubiquitin 

Proteasome System (UPS) and the autophagic pathway (Berke and Paulson, 2003; Goldberg, 2003). 

The two systems share the use of adaptor proteins such as ubiquitin and p62, and lysosomal 

degradation is upregulated when proteasome activity is inhibited, highlighting that the two pathways are 

interdependent (Sitte et al., 2000). 

With ageing, there is an increased need for degradation of damaged organelles, but the proteolysis 

capacity of the cells decreases. As a result : lipofuscin aggregate presence in lysosomes is linearly correlated 

with age in various organisms (Brunk and Terman, 2002). This might explain why lysosomal dysfunction 

appear to be connected to age. But at the other end of the spectrum, lysosomal phenotypes can also be 

caused by a variety of genetic conditions altering the degradative pathway. 

 
Alzheimer’s Disease 
 

A direct genetic link between lysosomal dysfunction and Alzheimer Disease (AD) are mutations of 

PS1 (Presenilin), the most common cause of early-onset familial AD (Sherrington et al., 1995). The role of 

PS1 in lysosome acidification has been confirmed in various systems (Wolfe et al., 2013), and recent 

evidence has shown that normalizing lysosomal acidification fully reverses defective autophagy and 

lysosome function in PS1-deficient cells (Coen et al., 2012).  

In several AD mouse models, various lipid storage materials such as cholesterol or sphingolipids 

accumulate in endolysosomal compartments, reminding of defects observed in lysosomal storage disorders 

or HSP. These lipid accumulations can promote lysosome deacidification and prevent the processing and 

clearance of Amyloid Precursor Protein (APP) and its metabolites (Karaca et al., 2014). Another major risk 

factor for AD, lipoprotein ApoE4, increases levels of intracellular A-beta peptide (Aβ) when it is 

overexpressed, enlarges lysosomes and alters their morphology and causes neurodegeneration (Belinson 

et al., 2008). 

Fronto Temporal Dementia  

Fronto Temporal Dementia (FTD) is the second most common dementia in people younger than 65 

years (Onyike and Diehl-Schmid, 2013). Mutation of GRN is responsible for FTD, and it has been observed,– 

in mice models & patients– that there are enlarged lysosomal vesicles and lipofuscin accumulations in 

absence of GRN (Ahmed et al., 2010; Valdez et al., 2017). Moreover, GRN-deleted mice have increased 

levels of TMEM 106B, a lysosomal protein which is known as a risk factor for FTD (Brady et al., 2013). This 

TMEM protein regulates the morphology of lysosomes, the degradation of endocytosed cargo & lysosomal 

trafficking (Brady et al., 2013). 
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Another cause of FTD is the gene encoding Valosin-Containing Protein (VCP, also known as p97) 

(Watts et al., 2007). VCP regulates endolysosomal sorting of endocytosed ubiquitinated cargoes (Ritz et al., 

2011) and its mutation is known to disrupt selective autophagy. VCP depletion or the expression of mutant 

VCP in cell models causes immature autophagosomes containing ubiquitinated substrates to accumulate 

(Tresse et al., 2010). 

Lysosomal Storage Disorders (LSDs) 

LSDs can be caused by a loss of function of hydrolytic enzymes at the lysosomes causing an 

accumulation of the substates. For example, in Gaucher disease, the loss of glucocerebrosidase activity 

results in accumulation of ceramides, causing additional defects such as autophagosome-lysosome fusion 

and autophagic lysosome reformation impairment (Magalhaes et al., 2016; Osellame et al., 2013). But the 

cause for LSDs can also be the loss of the transporter to the lysosome of the enzyme, which is the case for 

mucopolysaccharidoses (Jeyakumar et al., 2005). There can also be a loss of the transporter of the substrate 

for example NPC, a cholesterol transporter from the lysosomes whose loss of function results in massive 

cholesterol accumulation in the lysosomes (Carstea et al., 1997; Loftus et al., 1997). 

 

 

Figure 13 : Links between the endolysosomal pathway and neurodegenerative disorders (Reggiori and 

Klumperman, 2016). EE : Early Endosomes. LE : Late Endosomes. PAS : Phagophore Assembly Site. AL : 

Autolysosome. AP :autophagosome. 

The aim of this far from exhaustive catalog of neurogenerative disorders that have a lysosomal 

component to the disease is to show that beyond SPG11 pathology there is a real challenge on the broader 

scale to solve the mysteries of lysosomal dysfunctions that appear to be relevant for many patients. 
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e)  Other cellular alterations in absence of spatacsin 
 

 

There is a dominant part of the literature on SPG11 HSP focusing on lysosomal function, but other 

organelles start to draw the attention. For example, mitochondrial transport alteration has been reported 

in neurites of SPG11 patient derived neurons (Güner et al., 2021), and a problem of mitochondrial fission 

has been reported in neurons lacking AP5z1 or spastizin (Denton et al., 2018). 

In their screening of potential interactors of SPG11, recent studies have highlighted a potential role for 

spatacsin at the level of the proteasome, the cytoskeleton and t-RNA synthases (Alexander L. Patto and 

O’Kane, 2020, p. 202). The cytoskeleton seemed to be altered in neuronal model lacking SPG11 as the cells 

contained more acetylated tubulin (Pérez-Brangulí et al., 2014). 

One of the most interesting results for my work during my PhD was the study showing that there was 

a global calcium homeostasis alteration in the cells lacking spatacsin (Boutry et al., 2019a)-See Annex-1.  

This alteration of calcium homeostasis is caused by an excessive entry of extracellular calcium via a 

process called Store Operated Calcium Entry (SOCE). In this process, upon low levels of calcium in the 

Endoplasmic Reticulum (ER), the ER will contact the Plasma Membrane (PM) to import calcium from the 

extracellular space. These ER-PM contacts are modified by a change of cholesterol balance at the plasma 

membrane which results from an impaired cholesterol homeostasis in the cells caused by the absence of 

spatacsin. In this work, we were able to show that calcium homeostasis and cholesterol homeostasis, 

notably at the lysosomes, are linked in a co-regulation cycle. It appears that progressive clogging of the 

lysosomes in absence of spatacsin plays a role in these processes and that calcium levels indirectly regulate 

lysosomal function by playing on master lysosome regulator TFEB translocation to the nucleus (see Figure 

14).  
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Figure 14: A cycle of linked phenomena leading to cholesterol accumulation in lysosomes in absence of 

spatacsin. 

1) Cholesterol accumulates in absence of spatacsin 

2) Cholesterol is less exported from lysosomes via membrane tubulation because of spatacsin lack 

3) Lack of cholesterol export toward Plasma Membrane (PM) changes its cholesterol composition 

4) Cholesterol decrease at the PM triggers ER-PM contacts between STIM1 and Orai1 stimulating 

import of extracellular calcium 

5) Cytosolic calcium levels are increased upon excessive extracellular calcium entrance 

6) TFEB regulated by calcium dependent activity of calcineurin is translocated to the nucleus & 

modifies lysosomal function 

 

These results underline that the cell is a dynamic system, where organelles and pathways interact 

at multiple levels. What is also particularly interesting here is that the thematic of calcium homeostasis, 

lipid homeostasis, and ER-contacts with the PM point toward a role of ER in the cellular phenotypes 

associated with SPG11 loss of function. Inter-organelles contacts are extremely important in the regulation 

of multiple cellular pathways, especially at the level of endosomes-ER contacts.  

The consequences of spatacsin loss of function have been widely investigated, but the molecular 

role of spatacsin remains unknown. Investigating inter-organelle interface may help to elucidate this role. 
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III. Endoplasmic Reticulum contacts with Endosomes 
and Lysosomes  

 

The endoplasmic reticulum is the biggest organelle of the cell, it is very dynamic and has been at the 

center of the recent literature produced on membrane contacts between organelles. I will discuss what has 

been discovered concerning membrane contact sites of the ER with organelles. My focus will be on contacts 

between ER and the endo/lysosomal compartment as we are interested especially in it to investigate 

spatacsin molecular role. 

a) What constitutes a contact between two organelles? 
 

Since the 1950s, electronic microscopy observations have shown that membranes of different 

organelles can be in proximity (see Figure 15). In the 1980s, it appeared that protein bridges could exist 

between these membranes (Kawamoto et al., 1986). One of the first elucidated protein bridges between 

organelles was the contact between vacuolar protein Vac8 and nuclear envelope protein Nuj1 in yeast (Pan 

et al., 2000). 

A protein-protein interaction between two membranes constitutes a tether and is an actual physical 

bond that can withhold some tension. Contacts of the sorts can exist between all organelles and have 3 

principal functions, which can be cumulated (Bord, 2016) -see Figure 15 : 

1) Forming a physical bridge between two membranes to maintain them together 

2) Transferring small molecules such as ions or lipids in a non-vesicular way 

3) Coordinating the function of contact machineries 

It is important to note that in such contacts, membranes of organelles do not fuse and that the distance 

between membranes is estimated to be between a few nanometers up to forty nanometers. Also, even if 

the membranes are not fused, the contacts are still quite strong as some of them can even resist 

fractionation experiments (Vance, 1990; Williamson et al., 2015).  

Moreover, strong modification of organelle shape by osmotic shock does nots abolish contacts 

between membranes especially between the ER and respectively plasma membrane, endosomes, 

lysosomes, mitochondria, peroxisomes and lipid droplets (King et al., 2020). Interestingly, this study also 

revealed that the nature of lipid domains present at sites of contact between organelles may vary from one 

contact to another. Ordered lipid domains are found at contact sites between ER and mitochondria for 

example while disordered domains are found at contact sites between ER and lysosomes or peroxisomes 

(King et al., 2020). 

  



29 
 

 

Figure 15. Left: Different categories of tethers exist and have various functions. Right : Electronic 

microscopy of Contacts between the ER and other organelles, from (Bord, 2016; Wu et al., 2018). 

 

b) The ER: the major organelle for membrane contacts sites 
 

According to a recent publication studying extensively contact sites in cells, most contacts found 

between organelles are between the ER and any other organelle (Valm et al., 2017) (see Figure 16). To 

explain this finding, they measured the volume that is occupied in the cells by the ER. The ER accounts for 

“only” 35% of the cell volume at a given time point, but being a very dynamic compartment, in only 15 min 

it was observed that it had occupied about 97% of the cell volume at least transiently. Still according to this 

publication, the ER makes most contacts with mitochondria, then the lipid droplets, the peroxisomes, the 

lysosomes/endosomes (they used a Lamp1 staining) and the Golgi came last (see Figure 16). 
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Figure 16. Left: The ER makes contacts with multiple organelles in the cell. Right : Quantification of the 

number of contacts between the different organelles, from (Valm et al., 2017; Wu et al., 2018). 

Other organelles can also make contact between one another such as lysosome with mitochondria or 

with peroxisomes as we can see on Figure 16 but far less than with the ER.  

 

c) Roles of membrane contacts sites at the interface between ER 
and other organelles 

 

Extensive reviews have listed and analyzed the functions of contact sites between the ER and other 

organelles (Helle et al., 2013; Phillips and Voeltz, 2016; Prinz, 2014; Prinz et al., 2020; Wu et al., 2018). We 

will focus more on ER-lysosomes contacts but first it seems important to mention the functions that are 

important for the other contacts of the ER. 

 

c.1 Phosphoinositides at membrane contact sites of the ER with other 
compartments 
 

Phosphoinosites are lipids that are rare and dynamic and are involved in the regulation of transfers 

of lipids and other functions taking place at ER contact sites with other membranes. 

They are amphiphilic, with the polar head toward the cytosol and the hydrophilic tail in the lipid 

bilayer. There are 8 different phosphoinositides (see Figure 17). Phosphoinositides are obtained by 

phosphorylation or dephosphorylation of other phosphoinositides. These conversions are performed by 34 

identified phosphatases and 20 kinases, some of which are causing forms of Charcot-Marie Tooth disease 
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or cilipoathies when mutated. This regulatory machinery allows for a fine tuning of the regulation of 

vesicular trafficking via phosphoinositides signaling (Dickson and Hille, 2019). 

Phosphatidylinositol (PI) is the precursor of all phosphoinositides species. It is synthetized in the 

ER, and is then transported to the other membranes by vesicular transport or non-vesicular transport via 

lipid transfer proteins at contact sites. 

PI3P is enriched at the early endosomes. Protrudin and FYCO1, which are involved in lysosome 

movement, both have a FYVE domain that allow them to bind to PI3P(Pankiv et al., 2010; Raiborg et al., 

2015). 

PI4P is increased at the plasma membrane and the Golgi.  

PI5P is a very rare phosphoinosited found in the nucleus and plasma membrane.  

PI(3.5)P2 is a late endosomes/lysosomes phosphoinositides that can only be synthetized by PIKFyve 

kinase. It regulates endosomal fission and fusion processes to maintain membrane homeostasis. It also 

induces the release of cortactin from the endosomal actin network, to regulate membrane trafficking and 

membrane curvature (N. H. Hong et al., 2015). 

PI(3.4)P2 is a very rare phosphoinositide found at the plasma membrane and endocytic 

compartment. 

PI(4.5)P2 is the most abundant phosphoinositide and is found principally at the plasma membrane.  

PI(3.4.5)P3 is a very rare phosphoinositide which very tightly regulated and is found mostly at the 

plasma membrane. 

 

Figure 17 : The different phosphoinositides of the cell and their main subcellular localization (Dickson and 

Hille, 2019). 

 

c.2 ER contacts with the plasma membrane (PM) 
 

The plasma membrane does not fit the definition of an organelle but the contacts it makes with 

the ER have shown to be important for several functions. First, contacts formed between the ER protein 

Stim1, and the PM Orai1 calcium channel are required to perform Store Operated Calcium Entry (mentioned 

before as being altered in SPG11 HSP). This replenishment of the ER Calcium store from the extracellular 

space is indeed dependent of the existence of membrane contact sites.  
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Lipid exchanges also take place between the two membranes, for example TMEM24 triggers an 

exchange of phosphatidylinositol from the ER to the PM in response to a change in calcium flux (Sun et al., 

2019). Similarly ORP5/8 (oxysterols related binding proteins) are recruited at contacts between the ER and 

the PM to promote PI4P transfer to the ER in exchange of phosphatidylserine (Sohn et al., 2018). 

ORP5 & ORP8 are proteins of the ER membrane that mediate the counter-transport of PI4P for 

phosphatidylserine at ER-plasma membrane contac sites. They recognize PI4P via their PH domain and their 

ORD domain transfers phosphatidylserine from the ER to the plasma membrane. PI4P is then hydrolysed at 

the ER membrane to maintain the PI4P gradient that drives the lipid exchange (Chung et al., 2015). 

Synaptotagmins of the ER E-Syt2/3 form contact sites with the plasma membrane by binding 

PI(4.5)P2 found at the plasma membrane (Giordano et al., 2013). Moreover, the contact sites between ER 

and the plasma membrane are required for delivery of Phosphatidyinositol from the ER to the plasma 

membrane as a precursor for synthesis of PI4P and PI(4.5)P2. This contact is regulated by Nir2/3 proteins 

(Chang and Liou, 2015) 

 

c.3 ER and mitochondria 
 

ER forms the most contacts with mitochondria, principally to transfer it some of its calcium via its 

IP3R receptor channel. The calcium efflux is received at the mitochondria level by VDAC channel (Szabadkai 

et al., 2006). IP3 receptor is itself regulated by the exposure to reactive oxygen species at the membrane 

contacts between ER and mitochondria (Lock et al., 2012). The linkage of ER and mitochondria is regulated 

by the dynamin-like protein mitofusin (de Brito and Scorrano, 2008). ER regulates the mitochondrial 

dynamics in the cell via the Miro protein and DRP1 promoting fission of the mitochondrial compartment 

(Murley et al., 2013).  

The ER contacts with mitochondria promotes the recruitment of actin/myosin on site resulting in 

the constriction of mitochondria. ER also facilitates the recruitment of fission machinery at the contact area 

promoting mitochondria fission (Friedman et al., 2011) (See Figure 18). In addition, via the ER-Mitochondria 

Encounter Structure (ERMES), exchanges of lipids like phosphatidylserine and phosphatidylcholine are 

happening at ER-mitochondria contact sites (Lahiri et al., 2014). The ER-mitochondria lipid exchanges at 

contact sites are also required to synthesize phosphatidylethanolamine, an essential constituent of 

membranes (Kainu et al., 2013). 

 

c.4 ER and Golgi 
 

Golgi and ER exchange mainly lipids at the level of their contact sites, these lipid transfers are 

mediated by lipid transfer proteins recruited to contact sites (Peretti et al., 2008). ER and Golgi exchange 

ceramides via CER transferase (Kawano et al., 2006) and also sterols and PI4P (Mesmin et al., 2013). PI4P is 

bound by two other proteins that have PH domains : ceramide transporter (CERT) and oxysterol binding 

protein (OSBP1). Both proteins bind VAPs at the ER and PI4P at the Golgi forming a membrane contact site. 
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CERT will then be able to transfer ceramide from the ER to the Golgi and OSBP1 will transfer cholesterol 

from ER to Golgi as well (Peretti et al., 2008). It has also been found that OSBP1 mediates a back transfer of 

PI4P from the Golgi to the ER where it will be dephosphorylated to provide energy for sterol transfer 

(Mesmin et al., 2013). 

 

 

Figure 18 : The different functions of membrane contact sites (Prinz et al., 2020). 

 

c.5 ER and Lipid droplets 
 

At the level of lipid droplets contacts with ER, the triglyceride synthesis is regulated by FATP1 (Xu 

et al., 2012). These storage organelles have only a monolayer surrounding them, and it is sometimes in 

continuity with the ER membrane at the level of contacts, constituting an exception in the realm of 

membrane contact sites. Seipin is also an important protein localized at the level of ER contact sites with a 

role in the regulation of the morphology of lipid droplets (Salo et al., 2016). 

 

c.6 ER and peroxisomes 
 

Peroxisomes lipid synthesis is happening in partnership with the ER via regulation of VAPs and 

ACBD5 at ER-peroxisomes contact sites (Hua et al., 2017), it appears that these contacts also regulate the 

position of peroxisomes in the cell (Wang et al., 2018). 

 

ER contacts with other organelles are involved in the regulation of lipid transfer, in calcium flux, in 

organelle fission and positioning. These functions are often under the control of Phosphoinositide 

regulation. The role of ER at membrane contact site appears relevant for the cellular defects observed in 

absence of spatacsin (see Introduction -I). Since loss of spatacsin has been shown to alter lysosome function 

(Renvoisé et al., 2014), but also some ER function (Boutry et al., 2019a), we will now more specifically focus 

on the ER-lysosome contacts.  
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d) Focus on ER- lysosomes contacts 
 

d.1 Lysosome positioning & movement 
 

How do lysosomes & endosomes move in the cell? 

The function of lysosomes relies on their ability to move and to be at the right place in the cell. At 

steady state, there is a pool of relatively static lysosomes that are found close to the cell nucleus, where the 

Micro Tubule Organizing Center (MTOC) is located. This pool of lysosomes will fuse with autophagosomes 

or multi-vesicular bodies containing content destined for degradation. A second pool of lysosomes is found 

at the periphery of the cell, they are more dynamic and can be involved in other functions such as plasma 

membrane repair (Cabukusta and Neefjes, 2018)(see Figure 19). 

The positioning of lysosomes is dependent on their ability to move, which is based on molecular 

motors: Kinesins (moving particles toward the cell periphery) and Dynein (moving particles toward the 

nucleus). The molecular motors move on a microtubule network, their displacement requires energy (under 

the form of ATP or GTP) (Cabukusta and Neefjes, 2018). 

Lysosomes position in the cell can be modified by a variety of parameters. The cell response to 

nutrient abundance via the mTor pathway for example changes lysosomal position. Starvation of cells or 

use of Torin inhibitor of mTor result in activation of autophagy, and this is linked to a peri-nuclear clustering 

of lysosomes. Reinstituting nutrient rich conditions redistributes lysosomes toward the periphery (Ba et al., 

2018; Korolchuk et al., 2011). Moreover, the activation of TFEB, lysosomal transcription factor, by trehalose, 

causing an altered lysosomal biogenesis, results in a perinuclear clustering (Ba et al., 2018).  

The lysosomes also rely on calcium signaling for the movement and positioning in the cells via 

TRPML1 lysosomal channel flux (Li et al., 2016). In addition, PI3P is also involved in the regulation of 

vesicular transport by binding to Rab7 and LC3 via the adaptor protein FYCO1 (Pankiv et al., 2010). Finally, 

mTorC1 activity in autophagy regulation is also dependent on PI3P and lysosomal positioning, underlining 

how inter-dependent the parameters ruling lysosomal dynamics are (Hong et al., 2017). 
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Both the ER and the endosomes are very dynamic compartments, however, it has been shown that 

membrane contact sites are maintained during transport of organelles on the microtubular network 

(Friedman et al., 2010). This conservation of membrane contact sites permits the regulation of lysosomal 

movement by the ER, via several proteins. The ER-Lysosome association is close to microtubules (see Figure 

19) and the contact between ER and Lysosomes favors long-distance transport, if lysosomes are not 

associated with the ER, they are more likely to undergo a diffusive movement than a directed one (Guo et 

al., 2018). 

 

Figure 19. Left: Two principal clusters of lysosomes exist in the cell and move on cytoskeleton. Right: 

Lysosomes long-distance transport on microtubules is associated with ER contact, Green=late 

endosomes/lysosomes marker Lamp1, Magenta=ER marker Sec61β, Yellow=microtubules marker α-tubulin 

(Cabukusta and Neefjes, 2018a; Guo et al., 2018). 

 

Lysosomes movement regulation 

Several mechansisms regulating lysosome dynamics have been described.  

First, we can cite ORP1L, a cholesterol sensor that is present on lysosomes, and will change its 

conformation based on cholesterol levels in the lysosomal membrane. ORP1L can bind VAP at the ER on 

one end and Rab7 at the Late Endosomes/Lysosomes (referred as lysosomes) on the other end. When 

cholesterol levels are low, ORP1L promotes the movement of lysosomes toward the cell periphery while 

when cholesterol levels are higher, it will promote their localization toward the cell center (Johansson et 

al., 2005; Rocha et al., 2009a)(see Figure 20). Interestingly, ORP1L has also been shown to be involved in 

autophagosome movement which is important for their proper fusion with lysosomes (Wijdeven et al., 

2016). 

Another example of a well identified protein of ER-lysosomes contacts that drives lysosomal 

position is Protrudin. Indeed, Protrudin is an ER transmembrane protein interacting with the 

Rab7/PI3P/FYCO1 complex mentioned before. Protrudin promotes the loading of FYCO1 on kinesins and 

therefore promotes Lysosomes movement toward the cell periphery (Raiborg et al., 2015a)(see Figure 20). 
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At the opposite of protrudin, RNF26 is a ubiquitin ligase localized in the ER that is preventing both 

early endosomes and late endosomes movements. RNF26 binds and ubiquitinates p62, therefore triggering 

the binding of early endosomes adaptor ESP15 and late endosomes adaptor TOLLIP on ubiquitinated p62 

and trapping vesicles at the ER, close to the nucleus, where RNF26 is located. Upon de-ubiquitination of 

p62 by USP15, particles are released and can spread again throughout the cell (Jongsma et al., 2016a). Very 

recently, another example of a restricting role of the ER in the lysosomes movement has been discovered 

via the sorting nexin SNX19 that tethers lysosomes to the ER by binding PI3P (Saric et al., 2021). 

 

Figure 20. Left: Regulation of lysosomal movement by ER-lysosomes contact via VAP-ORP1L interaction. 

Right: Regulation of lysosomal movement by  ER-Lysosome contact via protrudin/Rab7/FYCO1 interaction 

(Cabukusta and Neefjes, 2018a). 

To conclude, ER-Lysosome contact proteins can regulate lysosome movement toward the cell 

periphery or the cell center depending on the cellular environment. But lysosomal movement also regulates 

ER-architecture, by “hitchhiking” of ER-tubules on lysosomes to form new three way junctions (Guo et al., 

2018; Spits et al., 2021a) and this reshaping action of lysosomes on ER tubular network is also regulated by 

cell nutrient availability (Lu et al., 2020). 
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d.2 Lipid trafficking at the ER-lysosomes contacts  
 

Lipids are delivered to lysosomes by endocytosis, and their breakdown in late endosomes 

lysosomes is happening thanks to hydrolases. Most lipid degradation products are used by the cell to create 

new lipids. For example, in human fibroblasts,  90% of the sphingoid base is recycled after degradation and 

10 % synthesised. The fatty acids produced by degradation in lysosomes can also be used to produce energy 

(Gillard et al., 1998). 

 

Cholesterol handling at the lysosomes and lipid transporters 

Cholesteryl esters are digested by lysosomal acid lipases and this releases cholesterol. The absence 

of acid lipase activity causes Wollman disease, a disorder of cholesteryl ester storage (Du et al., 1998). 

Cholesterol however is not catabolized in lysosomes, and its main pathway for clearance from the body is 

conversion to bile salts in hepatocytes and excretion (Dawson, 2015). Niemann-pick disease develops if 

cholesterol transporters to the lysosomes NPC1 or NPC2 are impaired. NPC2 is in the lysosome lumen and 

brings cholesterol to NPC1 on the lysosome surface. In Niemann pick disease, there is an accumulation of 

cholesterol, sphingomyelin and gangliosides in lysosomes of neurones (Walkley and Vanier, 2009). 

 

Cholesterol is so far the only lipid that was identified to be exchanged at ER-endosomes contacts. 

Cholesterol, as other lipids, is insoluble and can be transported either by vesicular transport or by non-

vesicular transport at the level of a contact site also called “channeling”. This channeling of lipids is based 

on the presence of Lipid Transport Proteins (LTPs)(Wong et al., 2019). The LTPs will bind to the lipid at the 

donor membrane and deliver it across the contact space to the acceptor membrane (Lev, 2010). This form 

of lipid transfer is based on the binding properties of LTPs. Indeed each LTP binds specific lipids, allowing 

the sorting of lipid transfer at contact sites.  
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Moreover, the channeling rate of a given lipid is linked to the enrichment of said lipid at the 

contacts or it can also be driven by the abundance of its specific LTPs at contact sites, it can also be 

transferred againts a counter gradient of another lipid (Chiapparino et al., 2016; Wong et al., 2019) (see 

Figure 21). 

 

 

 

 

 

 

 

 

 

Figure 21: Different mode of actions of Lipid Transporter Proteins across membranes (Wong et al., 2019). 

 

Regulators of cholesterol exchanges at ER-lysosomes contacts 

STARD3, one of the major tether implicated in cholesterol transport at ER-endosomes interface is 

localized at the lysosome surface. STARD3 interacts with VAPA/B and MOSPD2, two ER resident proteins. 

The bridging between STARD3 and VAPs for example allows the transport of cholestrol from the ER to the 

late endosomes (Wilhelm et al., 2017a). Interestingly, a STARD3-/- mice model showed only modest 

cholesterol level alterations, indicating that cholesterol transport pathway are mutiple and redundent 

(Kishida et al., 2004) (see Figure 22). The STARD3-NL protein is involved in ER-late endosomes contact but 

does not have the ability to bind cholesterol, its ability to interact with STARD3 likely regulates the 

cholesterol transport at contact sites in a indirect manner (Alpy et al., 2013). 

 

One other major protein in cholesterol exchanges at ER-endosomes contacts is late endosomes 

ORP1L implicated in the regulation of lysosome localization (Rocha et al., 2009a). By binding with Annexin 

A1 at the ER, it regulates ER-endosome cholesterol transport and this process is important for Intra Luminal 

Vesicles formation at muti-vesicular bodies (Eden et al., 2016). Moreover, the action of ORP1L at membrane 

contact sites is also operating cholesterol transfer in the opposite direction : from the endosomes to the ER 

(Zhao and Ridgway, 2017). This cholesterol transport by ORP1L is under the regulation of PI(4.5)P2 and 

PI(3.5)P2 which will enhance cholesterol transport by ORP1L from the ER to the lysosomes (Dong et al., 

2019). 
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Finally, an interesting result in ER-Lysosomes cholesterol exchanges at membrane contact sites is 

the involment of cholesterol transporter NPC1, mutated in Niemann Pick disease. It appears that NPC1 

localized at lysosomes is binding GramD1b cholesterol transporter at the ER and promotes the export of 

cholesterol from late endosomes/Lysosomes to the ER (Höglinger et al., 2019). 

 

 

Figure 22: Multiple routes exist for cholestrol exchanges between Lysosome and ER at membrane contact 

sites (Meng et al., 2020). 

 

Cholesterol exchanges at ER-Lysosome contact sites are happening via several different routes and 

tethers (see Figure 22), perturbations of these exchanges cause different defects. As we mentioned before, 

the absence of VAPs only cause a minor change in cholesterol at the lysosomes. However, we know that 

NPC1 absence causes major accumulations of cholesterol at the lysosomes and this lacks of NPC1 alo 

reduces the number of contacts between ER and lyso (Höglinger et al., 2019). As we have seen cholesterol 

homeostasis alterations in absence of spatacsin, we can wonder if these can be linked to alterations of ER-

lysosomes contacts. 
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d.3 Calcium exchanges at ER -lysosomes contacts  
 

Cytosolic calcium concentration is around 100 nM, which is relatively low compared to extra-

cellular calcium levels going up to 2 mM. The principal calcium storage is the ER, because of its large volume 

and a calcium concentration of about 500 µM (Koch, 1990). The ER uptakes cytosolic calcium via SERCA 

pumps and releases it via IP3 receptors, which are activated by inositol tri-phosphate (Taylor et al., 2014). 

The late endosomes/lysosomes have a calcium concentration similar to ER, while early endosomes have a 

slightly lower calcium concentration (Lloyd-Evans et al., 2010). 

No channel is known in lysosomes that uptakes calcium, however calcium release occurs via TRPML 

and TPC channels. TRPML1 is a non-selective ion channel activated by PI(3.5)P2 and which loss causes lipid 

accumulation in lysosomes in a lysosomal storage disorder named Mucolipidosis type IV (Bach, 2001). 

TRPML1 has been implicated in the regulation of numerous lysosomal functions including autophagy and 

autophagic lysosomal reformation regulation (Di Paola et al., 2018). TPC1/2 channels are also activated by 

PI(3.5)P2 but are rather a Na+ channel, they actually releases very little quantity of Ca2+ (P. Li et al., 2019). 

TPC1 calcium channel is localized at ER-endosome contact sites, its action as a calcium channel 

appears to be NAADP sensitive (Kilpatrick et al., 2017). This contact is under dependence of calcium 

signaling as inactivation or inhibition of TPC1 results in fewer ER-endosome contacts. Lysosomes can be 

loaded in calcium by capturing calcium released by the IP3Receptor of the ER (López Sanjurjo et al., 

2014)(see Figure 23). To fulfill this purpose, IP3R are found preferentially at ER-lysosomes contact sites. The 

uptake of ER calcium by the lysosome is dependent on action of V-ATPase lysosomal acidification pumps 

(Atakpa et al., 2018).  

 

Figure 23 : Calcium is released from the ER to the lysosomes via IP3R (Atakpa et al., 2018). 

Exchanging calcium at ER-Lysosome contact sites can be used to regulate lysosomal function, for 

example TRPML1 channel is regulating lysosomal positioning via Ca2+ signaling (Li et al., 2016). 
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d.4 Involvement of the ER in lysosome tubulation/fission  
 

A good balance between fission and fusion events in lysosomes is required for their proper cargo 

and membrane recycling balance (Freeman and Grinstein, 2018; Saffi and Botelho, 2019). There are 

different types of vesicular fission (see Figure 24) and they are dependent on the “classical” vesicle forming 

protein machinery, that is to say : clathrin, dynamins and Adaptor Protein (AP) complexes (Hirst et al., 2015; 

Miller et al., 2015; Rong et al., 2012; Schulze et al., 2013). If splitting of lysosomes by vesiculation remains 

poorly understood, the splitting of lysosomal tubules seems to be linked to ER action at ER-Lysosome 

contacts. 

Autophagic Lysosomal Reformation (ALR) tubulation 

First of all, as we mentioned before, lysosomes exposed to starvation undergo ALR under the regulation 

of mTor signaling, a process in which spatacsin and spastizin have been identified to play a role (Chang et 

al., 2014a). The goal of ALR is to renew the pool of lysosomes and to achieve this, there are 3 steps (Chen 

and Yu, 2017) (see Figure 24): 

1) Inducing membrane deformation 

2) Elongation of the emerging tube 

3) Fission of the tube that will reform new lysosomes 

ALR processes of tubulation are under the regulation of phosphoinositide signaling, it requires the 

conversion of PI4P to PI(4.5)P2 to recruit clathrin at the membrane of the lysosomes and to connect the 

emerging tube to motor protein KIF5B (Rong et al., 2012). PI4P itself seems to be refraining tubulation as 

blocking its synthesis results in hyper tubulation (Sridhar et al., 2012). PI(3.5)P2 synthesized by PikFYVE is 

also necessary for ALR as when PikFYVE is inhibited, the reformation of terminal lysosomes is prevented 

(Bissig et al., 2017). Knowing that PI(3.5)P2 is an activator of TRPML1 ion channel found on lysosomes, the 

action of PI(3.5)P2 on tubulation can be linked to a ion efflux via TRPML1, necessary to modify the organelle 

osmotic properties and being able to deform its membrane (Freeman and Grinstein, 2018).  

 

Figure 24 : Mechanisms of lysosomal tubulation and fission (Saffi and Botelho, 2019).  
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Non-ALR linked tubulation 

We can also mention other types of membrane deformation happening in a context different from 

ALR. In macrophages, the lysosomal compartment is extremely dynamic as macrophages are estimated to 

internalize an area equivalent to their entire cell surface every 30 minutes (Steinman et al., 1976). The 

endolysosomal compartment is therefore under a pressure to emit tubules and vesicles that will fuse with 

the plasma membrane to recycle its inner membrane content. Therefore, the tubulation is very strong in 

macrophages upon activation of pinocytosis and it is dependent on microtubules and kinesins (Hollenbeck 

and Swanson, 1990; J. Swanson et al., 1987, 1987). A similar network of tubular lysosomes which is 

dependent on VCP activity has been more recently observed in Drosophila muscle, and appears to be linked 

to proper autophagosome-lysosome fusion, therefore regulating proteostasis in the cell (Johnson et al., 

2015). Moreover, membrane tubulation is not happening only at the level of late endosomes/lysosomes 

but also at recycling endosomes, to properly sort cargo between what is destined to lysosomal degradation 

and what will be recycled at the ER/Golgi membrane. This tubulation requires the KIF13A kinesin (Delevoye 

et al., 2014, 2009). 

Endosome tubule fission linked to ER action 

ER forms a tubular envelope at specific contacts with endosomes, where it will promote endosome 

fission, similarly to what was observed for ER contacts linked to mitochondrial fission (see Figure 25). These 

sites are marked by FAM21, a retromer associated protein (Rowland et al., 2014a). The retromer is a 

multiprotein complex which controls cargo sorting and mediates endosome tubulation, it is involved in 

endosome to Golgi transport of M6P receptor (Seaman, 2012). At endosomes-ER contact sites, there is an 

actin assembly that requires ARP2/3 and WASH complex (see Figure 25). The endosome fission is dependent 

of TMCC1 at the ER and of CORO1C at the Endosome, although not at 100% because depletion of either 

protein does not completely abolish endosome fission. Once the tubular fission is completed, the cargo 

contained by the tube can be exported to Golgi or to other destinations (Hoyer et al., 2018). This retromer 

cargo export pathway is also regulated by the interaction between SNX2 (retromer) and VAPs (ER) (Dong et 

al., 2016).  

 

Figure 25 : ER mediates endosomal fission at ER-endosome contacts sites (Rowland et al., 2014a). 
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Regulation of endosomal fission 

Another interesting machinery regulating endosome fission at ER contact sites is the interaction 

between Spastin (ER) and IST1 (endosome, associated to ESCRT). Spastin and IST1 interaction promotes 

fission of endosomes at ER-endosomes contacts sites but not the formation of said contacts (Allison et al., 

2013). In cells depleted of Spastin, the lifetime of endosomal tubules is increased and the general 

endolysosomal compartment is altered, promoting axonopathy and SPG4 HSP (Allison et al., 2017a) (see 

Figure 26). 

Most of the examples concerning ER regulation of endosome fission concern endosomes that are 

not presented as late endosomes or lysosomes. However, one can speculate that this regulation of 

endosome fission by ER might also play a role for late endosomes/lysosome fission. Indeed, the contacts 

between ER and endosomes actually increase as they mature (Friedman et al., 2013) and ER-endosomes 

contacts are necessary for endosome maturation. ER protrudin and late endosomes PDZ8 exchange lipid at 

ER-late endosomes contacts which is a necessary maturation step for the proper functioning of 

endolysosomal system of degradation (Shirane et al., 2020). Moreover, the Arp2/3 and WASH complex 

mentioned before are also involved in the construct of an actomyosin ring necessary for tubule fission at 

melanosomes (Ripoll et al., 2018). Finally, upon depletion of WASH complex, the endolysosomes stained by 

Lamp1 showed defects in tubule fission (Gomez et al., 2012).  

 

 

Figure 26: Lack of Spastin causes an inhibition of endosomal fission at ER-endosome contact sites which 

has consequences on the whole endolysosomal pathway (Allison et al., 2017). 

 

In absence of spatacsin, there is an impairment of the lysosomal membrane recycling, and this 

impairment is linked to gangliosides and cholesterol accumulations in the lysosome. There is also a lack of 

lysosomal tubules emanating from lysosomal membrane in absence of spatacsin. Our goal will be to assess 

if these tubulation defects of the endo/lysosomal compartment are linked to contacts with the ER. 
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e) Lysosomes contacts with other compartments 
 

As mentioned previously, most contact sites involving Endosomes/Lysosomes involve the ER, but they 

also contact other organelles for specific functions. For example, Lysosomes contact peroxisomes in a 

PI(4.5)P2 regulated way to transfer cholesterol (Chu et al., 2015; Hu et al., 2018), an interesting mechanism 

for SPG11 HSP where we observed an accumulation of cholesterol in lysosomes in absence of spatacsin. 

Lysosomes also make contact with mitochondria and the contact between mitochondrial FIS1 and late 

endosomes or lysosomes Rab7 promotes mitochondrial fission at Lysososomes-Mitochondria contact sites 

(Wong et al., 2018). This is a process under the regulation of cholesterol transporter ORP1L and 

phosphoinositide PI4P (Boutry and Kim, 2021). 

There can also be endosome-endosome contacts, that are dependent on MOSPD2 ER protein, so these 

endosome-endosome contacts are under a form of ER regulation. These contacts are involved in regulation 

of particle clustering and fusion between compartments (Di Mattia et al., 2018). Recently, it has been shown 

that protein tethering between organelles is involved is early steps of pore formation during events of 

membrane fusion, proposing a role for endosome-endosome contacts in endocytic delivery (Davis et al., 

2021). 

Investigating roles of spatacsin at ER-Lysosome interface promises to be interesting considering the 

variety of mechanisms regulated by the ER that are relevant for the cellular defects happening in absence 

of spatacsin. However, it is likely that not everything that spatacsin does is related to ER-Lysosome contacts, 

and if these contacts are impaired why not contacts between lysosomes and other compartments?  
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f) Regulation of membrane contact site formation 
 

This area of the literature concerning regulation of what signals regulate the formation of membrane 

contact sites remains scarce, but it is a very interesting area to investigate to better understand membrane 

contact sites role in the cell. 

One of the examples of membrane contact site regulation is that ER-Lysosome contacts are regulated 

via phosphorylation of the FFAT domain of VAP-binding proteins. Phosphorylation of this motif promotes 

the formation of ER-Lysosome contacts and cholesterol exchange (Di Mattia et al., 2020).  

Contact sites between membranes can also be modified in response to various cellular stresses. In long-

term ER stress response, the IP3R-GRP75-VDAC calcium release pathway from ER to mitochondria, that we 

have described before, can induce apoptosis signaling. This happens by increasing Ca2+ flux at the ER-

mitochondria junctions that will induce oxidative phosphorylation (see Figure 27). BCL-2 on the contrary, is 

an apoptosis regulating protein which reduces the calcium signaling at the membrane contact interface, 

while increasing ER-Mitochondria contacts to prevent apoptosis (Xu et al., 2018, p. 2).  

In response to hypoxic stress, i.e. cells exposed to low O2, there is an enrichment of FUN14 at ER-

mitochondria contacts promoting mitochondrial fission (Wu et al., 2016). Also, mitochondrial dysfunction 

in an obesity model showed problem in ROS metabolism resulting in more ER-Mitochondria contacts 

(Arruda et al., 2014). 

The regulation of peroxisomes-lipid droplets contacts happens via Spastin in response to oxidative 

stress (Chang et al., 2019) and is accompanied by the formation of early endosomes-mitochondria contacts 

(RAB5-Alsin) (Hsu et al., 2018). In a yeast model, it has been shown that the transfer of ceramide from ER 

to Golgi happens to prevent lipotoxicity of ceramide accumulation (Liu et al., 2017).  

 

Figure 27 : Regulation apoptosis signaling by calcium flux at ER-Mitochondria contacts in response to ER 

stress (Prinz et al., 2020). 

There is no unified function of membrane contact sites per se, as we have discussed, their roles in the 

cell are multiple and dynamic. The fact that various cellular stress can affect the distribution and number 

of these contacts and their local activity is an interesting feature of membrane contact sites. As it has been 

discussed by other researchers, it is possible that these contacts constitutes a conserved machinery that 

serves the cell in its responses to cellular stress (Molino et al., 2017).  
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g) Membrane contacts sites proteins involved in 
neurodegenerative diseases  

 

Due to the importance of contact sites between organelles for cell physiology, it is likely that their 

alterations may play a role in pathological conditions. We will explore here some neurodegenerative 

diseases where membrane contact sites might contribute to physiopathology. 

The ER–resident VAPB protein, implicated in numerous contact sites between the ER and other 

organelles (see before), has been found to be mutated in a form of Amyotrophic Lateral Sclerosis (ALS) 

(Nishimura et al., 2004). However, it is not known whether the mutation of VAPB identified as causal for 

ALS is affecting the ability of the protein to form membrane contact sites. 

In models of Alzheimer’s disease, presenilin 2 is enriched at ER-Mitochondria contact sites and 

regulates calcium efflux, its absence causes defects in the regulation of the ER-Mitochondria interface 

(Area-Gomez et al., 2012; Zampese et al., 2011). 

In Parkinson’s disease, alpha synuclein is found in Mitochondria Associated Membranes of ER (MAM). 

Mutation of  alpha synuclein reduced its presence in MAM, impairing ER-mitochondria contact and 

promoting more mitochondrial fission (Guardia-Laguarta et al., 2014).  

GM1 gangliosidosis (Landing disease), a form of lysosomal storage disorder, shows an accumulation of 

GM1 at the ER-Mitochondria interface in a mouse model for the disease. This causes an hyperactivation of 

IP3R at the ER and a mitochondria overload of calcium, resulting in apoptosis signalling (Sano et al., 2009). 

 

Membrane contact sites proteins mutated in Hereditary Spastic Paraplegias (HSPs) 

Spastin is an ER shaping protein (Park et al., 2010), mutated in HSP type SPG4 and by interacting 

with endosomal IST1 (part of ESCRT sorting complex), it promotes the fission of endosomal tubules at the 

level of ER-endosomes contact sites. Defects in this function are linked to the apparition of HSP phenotype 

(Allison et al., 2017a, 2013). Interestingly, Spastin is also important for peroxisomes lipid droplets (LD) 

interaction (Chang et al., 2019) and for ER-LD contacts (Arribat et al., 2020), underlining the importance of 

ER-resident proteins at multiple levels of regulation in the cells via membrane contact sites. 

Spastin interacts with Protrudin, that we mentioned earlier, to shape the ER along with other HSP 

proteins (Chang et al., 2013; Connell et al., 2020). Protrudin (ZFYVE 27) wa proposed to be mutated in SPG33 

(Mannan et al., 2006). And we know that protrudin is an ER-resident protein, making contact with late 

endosomes to regulate their dynamics (Raiborg et al., 2015a).  

REEP1 has also been shown to facilitate ER-mitochondria interactions (Lim et al., 2015). This ER-

mitochondria interface is mediated by REEP1/2 in response to DNA damage by regulating a change of ER 

tubular morphology, increasing ER-mitochondria contacts and triggering apoptosis pathway activation via 

calcium signaling at ER- mitochondria contacts (Zheng et al., 2018). 
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Seipin (BSCL2), that we mentioned earlier as implicated at ER-LD contact sites, is mutated in SPG17 

(Ito, 1993; Ito et al., 2008). The interesting thing about seipin, is that some of its mutations result in 

accumulation of the mutant Seipin in the ER, activating the Unfolded Protein Response (UPR) pathway and 

inducing ER stress-mediated cell death (Ito and Suzuki, 2009). 

Importance of ER-lysosomes contact sites for spatacsin molecular role 

In this part of the introduction concerning membrane contact sites, I wanted to emphasize on the 

multiple regulatory roles that the ER performs via its contacts with other organelles. By regulating organelle 

position, the maturation of the endolysosomal system, regulation of lipid flux or calcium flux, the ER-

lysosomes interface appears extremely relevant to study regarding the phenotypes observed in absence of 

spatacsin. 

Moreover, it appears that membrane contact sites respond to various cellular stress, which is very 

interesting in our model, regarding the fact that neurons are particularly vulnerable to cellular stress. 

Finally, it appears that several hereditary spastic paraplegia proteins are implicated in ER contacts with 

other organelles, and this is encouraging to place our focus on the ER-Lysosomes interface (see Figure 28). 

The next part will deal with aspects of substrate degradation regulation in the cell, especially at the ER, as 

SPG11 HSP is a disease of accumulation of non-degraded material. 

 

 

Figure 28: Can the molecular role of spatacsin be linked to ER-lysosomes contacts ? 
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IV. The importance of the ER in degradative 
pathways regulation 

 

One of the main functions of the lysosomes is to degrade cellular components to recycle them. This can 

happen via autophagy as we have seen previously or via proteasomal degradation. The proteasome is a 

cytosolic protein complex that is, at first glance, unrelated to lysosomal dependent degradation. As 

preliminary data on spatacsin function led us to think that degradative processes dependent of ubiquitin 

were important (see Results), I wanted to investigate what are the main degradative pathways of the cell. 

Moreover, it appears that the endoplasmic reticulum (ER) is involved in the regulation of part of the 

ubiquitin-dependent degradation pathway, which is susceptible to link our hypothesis of a role of spatacsin 

at ER-lysosomes interface with a potential role in ubiquitin regulation. 

a) The ubiquitin degradation pathway  
 

Ubiquitin is a 76 amino acids protein that can be added to a substrate by specific enzymes to modulate 

its function and notably promote its degradation. There are 3 steps in the ubiquitination process (see Figure 

29). First, the E1 enzyme will activate ubiquitin using ATP. Then the E2 class of enzymes will receive the 

ubiquitin via a thio-ester bond. Finally, E3 class of enzymes transfer ubiquitin from E2 to a lysine of the 

substrate. 

 

 

Figure 29: The three steps of ubiquitination mediated by the 3 classes of enzymes. from 

https://www.creative-diagnostics.com/proteolysis-ubiquitin.html 

More than 800 E3s are believed to be encoded in the human genome, and they are divided in three major 

classes: 

• RING finger proteins (most common)  

• HECT (homologous E6-AP Cter)  

• Ubox domain proteins  
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After the fixation of the first ubiquitin on the substrate, other ubiquitins can be added on the original 

ubiquitin through any of its seven Lys residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, and Lys63), creating 

polyubiquitinated substrates (see Figure 31). Among the eight linkages, the most prominent is Lys48 

linkage, which represents up to half of all linkages and generates a proteasomal degron, i.e. a protein 

signaling information that will target the substrate to proteasomal degradation. Second most common is 

Lys63 linkage, which facilitates the autophagic degradation of protein substrates together with their 

associated cellular materials such as damaged mitochondria and invading pathogens (see Figure 31). 

Ubiquitins can also be removed from the substrates by De-UBiquitinases enzymes (DUBs). About 90 

DUBs have been identified so far and modulate the rate of substrate degradation by the proteasome or 

other destinations. There are 2 major classes of DUBs: cysteine proteases & metalloproteases. 

The primary function of ubiquitination is to generate degrons on short lived proteins and 

misfolded/damaged proteins and thanks to the variety of E3s that exist combined to DUBs, the substrates 

can be very precisely addressed to their destination (Kwon and Ciechanover, 2017) (see Figure 31). 

For example, the accepted ‘canonical’ signal for proteasomal recognition is a polyubiquitin chain that 

is anchored to a lysine residue in the target substrate and is assembled through isopeptide bonds involving 

lysine 48 of ubiquitin. However, homogeneous polyubiquitin chains based on linkages involving lysines 6, 

11, 27, 29 and 48 can also mediate proteasomal degradation (Dammer et al., 2011). 

Lysine-63-based chains have been shown to target mainly membrane proteins for degradation in the 

lysosome (Lauwers et al., 2010). Furthermore, some proteins can be degraded following modification by a 

single ubiquitin (monoubiquitylation) or multiple single ubiquitins (multiple monoubiquitylation) (Boutet et 

al., 2007; Kravtsova-Ivantsiv et al., 2009). A few exceptional cases have been reported, where the 

proteasome can degrade proteins that have not been modified by ubiquitin at all. 

It is also possible that the ubiquitination of substrates does not promotes their degradation but rather 

is involved in signaling. On top of that, sometimes, the degron on substrates is not of ubiquitinated nature 

as for example in the N-end rule pathway. This pathway mediates autophagic proteolysis of substrates 

independently of ubiquitin chains, an arginine is fixed on the protein in N-ter that will be recognized by p62 

for autophagic targeting and lysosomal degradation (Sriram et al., 2011). 
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Figure 31 : The ubiquitin code for substrates targeting (Kwon and Ciechanover, 2017). 

 

 

b) Proteasome and autophagy relationship for degradation 
 

It is estimated that the proteasome is responsible for 80%-90% of the total protein degradation 

happening in cells, while autophagic degradation is responsible for the 10-20% remaining (Kravtsova-

Ivantsiv and Ciechanover, 2012). This is however more balanced to 50-50% in non-proliferating cells such 

as neurons, pointing toward a more important role of autophagy in these cells (Hara et al., 2006; Liang et 

al., 2010) 

While the ubiquitin proteasome system is recognized as a major highly specific and selective route for 

cellular protein degradation, autophagy is involved mostly in bulk destruction in response to stress (Cohen-

Kaplan et al., 2016). Short-lived protein that are involved mostly in regulatory processes are generally 

degraded by the proteasome (Naujokat and Hoffmann, 2002) while long-lived proteins are preferentially 

degraded by autophagy (Mortimore et al., 1988).  
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Targeting of substrates to the proteasome  

For the proteasomal degradation, ubiquitinated substrates will bind ubiquitin-associated proteins 

(UBA) or Ubiquitin-like proteins (UBL), which are shuttling proteins. UBA & UBL preferentially bind Lys48 

ubiquitin chains, and they will carry substrates to the proteasome. Ubiquitinated substrates are delivered 

to 19S subunit of the proteasome, where are found ubiquitin receptors, such as Rpn1 subunit of the 

proteasome, that will bind the UBA/UBL associated to the substrate (Elsasser et al., 2002). Then the 

substrate is de-ubiquitinated at the 19S proteasome, unfolded and translocated to the proteolytic chamber 

of the 20S proteasome where it will be degraded (Gallastegui and Groll, 2010) (see Figure 32). 

 

Targeting of substrates to the autophagosome 

The delivery of cargoes destined for autophagic degradation happens via the adaptor proteins such 

as p62 that has an ubiquitin-binding domain (Bjørkøy et al., 2005) and has the ability to bind to Lc3-II, which 

is enriched at the forming autophagosome membrane (Pankiv et al., 2007) (see Figure 32). This process is 

called selective autophagy and differs from bulk autophagy where cargo internalized for degradation is not 

selectively shipped to the autophagosome. The formation of the autophagosome is under the control of 

ATG proteins, regulating autophagic degradation in the cell. P62 has a stronger affinity to bind substrate 

that are Lys63 ubiquitinated, but it has also been observed to target substrate to the proteasome (Babu et 

al., 2005).  

 

 

Figure 32. Left: The proteasome complex receiving ubiquitinated cargo bound to ubiquitin-associated 

proteins. (Budenholzer et al., 2017) Right: Targeting of ubiquitinated substrates to the autophagosome via 

p62 and LC3-II. 
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Response of the degradative systems to proteins aggregation 

Degrading misfolded proteins that are soluble is generally done by the ubiquitin proteasome 

system. Specific misfolded proteins can be degraded by chaperone-mediated autophagy (CMA), where 

substrates are recognized by chaperone Hsc70 and directly delivered to lysosomes for degradation (Kiffin 

et al., 2004; Rothenberg et al., 2010)(see Figure 33). 

In the case of accumulation of non-degraded misfolded proteins in cytoplasm forming an 

“aggresome”, chaperones and proteasomes associate with aggresome to clear it. A cooperation between 

the two degradative systems has been observed in the case of aggresome clearance(Nanduri et al., 2015). 

And if the proteasome is inhibited, the number of lysosomes retained at the centrosomes close to the 

aggresome is higher, in order to degrade it (Zaarur et al., 2014). Some parts of the aggresome are directed 

to macro-autophagy, for bulk-internalization in autophagosomes that will fuse with lysosomes for 

degradation (Hariharan et al., 2011) (see Figure 33). 

Proteasome inhibition has been shown to have consequences on lysosomal regulation and 

autophagosome biogenesis as well via TFEB and GSK3β signaling (C. Li et al., 2019; Zhan et al., 2016). As the 

regulators of both pathways seem to be tightly related, it seems that the ubiquitin proteasome pathway 

and autophagy are working in interdependent manners. 

 

Figure 33 : Degradation of misfolded proteins requires cooperation of degradative pathways 

(Ciechanover and Kwon, 2015).  
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c)  Regulation of ubiquitin proteasome pathway and autophagy by 
the endoplasmic reticulum 

c.1 ER Associated Degradation (ERAD) 
 

The endoplasmic reticulum (ER) receives a third of the total synthesized proteins of the cell 

(Kanapin et al., 2003), to catalyze specific post-translational modification such as addition of glycans, lipids, 

or new disulfide bonds formation in order to fold properly the proteins. The ER contains a variety of 

chaperones that are responsible for protein folding (Sitia and Braakman, 2003). If folding occurs improperly, 

proteins might aggregate in the ER which is a source of stress for the cell (Molinari et al., 2005). 

Upon detection of unfolded proteins in the ER, the Unfolded Protein Response (UPR) is activated 

in the ER. The UPR consists in upregulating chaperones in the ER to increase its folding capacity, expand ER 

volume and export unfolded protein out of the ER so they can be degraded, as the ER has no degradation 

machinery (Oslowski and Urano, 2011; Ron and Walter, 2007). 

The substrates of ERAD are targeted for retro-translocation by chaperone like lectins and are 

polyubiquitinated at the level of the ER-membrane (see Figure 34). The complexes responsible for ERAD 

substrates ubiquitination are E3 ligases named translocons (Mehrtash and Hochstrasser, 2019). Two major 

components of translocons are GP78 and HRD1, they have a wide variety of substrates (Fang et al., 2001; 

Zhang et al., 2015). 

After ubiquitination of the ERAD substrate, p97 (VCP) /cdc48 complex is recruited to the substrate, 

so it can be retro-translocated and brought to the cytosol for further modifications, such as de-

ubiquitinations, before being brought to the proteasome for degradation as described previously 

(Schuberth and Buchberger, 2005) (see Figure 34). 

 

c.2 ER to Lysosome Associated Degradation (ERLAD)  
 

Some substrates are resistant to ERAD degradation, for several reasons such as being too large or 

having a tendency to form aggregates (Fregno and Molinari, 2021). There is a growing list of substrates 

identified to be proteasome-resistant and destined to ERLAD (Fregno and Molinari, 2019). 

ERLAD consists in both macro-autophagy and non-macro autophagic pathways to deliver ERAD 

resistant substrates to the lysosomes for degradation. Collagen for example is prone to misfolding and its 

degradation is enhanced by autophagy activation caused by rapamycin treatment (Ishida et al., 2009). The 

identification of misfolded pro-collagen is dependent on ER-chaperone Calnexin action and the ER receptor 

FAM134B. Together they perform the autophagy mediated quality control of procollagen. FAM134B has 

the ability to bind LC3-II at the autophagosome to deliver the collagen, which is complexed to calnexin, to 

degradation at the lysosomes (Forrester, 2019) (see Figure 34). 

  



54 
 

 

Figure 34: Mechanisms of endoplasmic reticulum regulation of misfolded protein degradation (Fregno 

and Molinari, 2019). 

 

c.3 ER-phagy 
 

The ER is an organelle that undergoes continuous recycling of its components to maintain its 

integrity. This can happen in basal conditions or in response to certain stress conditions (Omura et al., 1967). 

While ERAD is limited to degradation of proteins, autophagosomes are able to internalize entire parts of 

the ER by macro ER-phagy (De Leonibus et al., 2019). But ER content can also be shipped to lysosomes via 

vesicular delivery as seen before in ERLAD and by invagination of lysosomal membrane around ER (Schuck 

et al., 2014)(see Figure 35). This more precise sorting of ER for autophagy is mediated by various ER-phagy 

adaptors. For example, downregulation of FAM134B causes an enlarged ER while it fragments the ER when 

overexpressed (Khaminets et al., 2015).  

Another ER-phagy adaptor, Sec62, is implicated in the phase of recovery following an ER stress. 

Indeed, the unfolded protein response (UPR), mentioned earlier, creates an excess of ER that needs to be 

recycled as well as excess chaperones. Sec62 role is to deliver ER components to the autolysosomal system 

via its LC3 interacting region (Fumagalli et al., 2016). This recovery from ER stress, named recov-ER-phagy 

is also relying on ESCRT sorting machinery at the late endosomes/lysosomes them to directly engulf ER 

components (Loi et al., 2019) (see Figure 35).  
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Atlastin 3 (ATL3) and Reticulon 3 (RTN3) are two other ER-phagy adaptors that will mediate 

specifically the degradation of the tubular ER upon starvation. ATL3 binds to GABARAP which is a member 

of the LC3 family to perform its action (Chen et al., 2019, p. 3). RTN3 and RTN3L (long isoform) are involved 

in ER tubule fragmentation and interact with LC3/GABARAP protein family as well (Grumati et al., 2017). 

P62 adaptor is also involved in ER-phagy regulation by interacting with TRIM13 in the N-degron 

pathway (Ji et al., 2019)(see Introduction IV-A). Under stress conditions, proteins that are targeted for 

degradation accumulate at the ER exit sites also called ER-phagy sites. At these sites, the recruitment of the 

coat protein complex COPII permits the packing of ER fragments into autophagosomes (Cui et al., 2019). 

This is another way of regulating procollagen turnover at these exit sites (Omari et al., 2018)(see Figure 35). 

The nuclear envelope, the lamina, which is connected to the ER, appears to be degraded by 

autophagy using components of the ER-phagy machinery (Mijaljica and Devenish, 2013). This form of 

nucleophagy appears to be important for maintaining the integrity of nuclear shape and protecting the cell 

from tumorigenesis (Dou et al., 2015). 

 

 

Figure 35: Different internalization of ER components by lysosomes for ER-phagy (Chino and Mizushima, 

2020). 

 

The ER cooperates with the ubiquitin proteasome pathway and the autophagic pathway to promote 

degradation of misfolded proteins or of other cargoes. ER is also dependent on the autophagic pathway for 

the degradation of its own machinery. This happens basally or in response to ER stress and highlights that 

organelles need to cooperate to regulate cellular homeostasis. 
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d) Cooperation between endoplasmic reticulum and ubiquitin 
pathway in non-degradative regulations 

 

Regulation of endosomal position 

We have already mentioned the interesting mechanism regulating endosomes position based on 

ubiquitin signaling (Jongsma et al., 2016a). The ER-located RNF26 E3 ligase can ubiquitinate p62 near the 

ER, recruiting the vesicles that bear ubiquitin binding domains and trapping these vesicles at the ER 

interface. The vesicles can be released by action of the De-ubiquitinase USP15 creating a “stop & go” 

mechanism to selectively trap endosomal vesicle at ER/endosome contact sites via a ubiquitin dependent 

machinery (see Figure 36). 

RNF26, via its partner UBE2J1, which is an E2 ubiquitin conjugating enzyme of the ER membrane, and 

the use of the “stop and go” system, promotes the trafficking of EGF receptor to lysosomes (Cremer et al., 

2021). This kind of mechanism adds to the complexity and the versatility of ER regulation of endosomes 

dynamics and help us understand how the ER/endosome contact sites can be regulated via ubiquitin 

signaling, an area of the literature that remains open for new mechanisms.  

 

 

Figure 36: The “stop & go” mechanism, dependent on ubiquitin and ER to regulate endosomal 

position (Jongsma et al., 2016). 
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Regulation of collagen secretion 

 

Another interesting example of such ubiquitin/ER collaboration is the regulation of collagen secretion 

via E3 ligase Cullin3 (McGourty et al., 2016). This E3 ligase has the particularity to bind with many different 

adaptors, here the adaptor that is involved is KLHL12. Cullin3 and KLHL12 will ubiquitinate ER-protein Sec31 

under the calcium-dependent regulation of PEF1 & ALG2. This ubiquitination of Sec31 then allows the 

formation of large COPII coats at the ER membrane and promotes collagen vesicular secretion (see Figure 

37). 

 It is very interesting to observe that the vesicle formation at the ER is under regulation of ubiquitin 

signaling , which was shown before by the same group (Jin et al., 2012) and calcium regulation of this 

process adds a level of regulation of this secretory pathway (see Figure 37). Interestingly this works both 

ways. Indeed, if Cul3 promotes vesicle formation by ubiquitination of Sec31, its de-ubiquitination by de-

ubiquitinase USP8 decreases the size of the ER vesicles and prevents collagen secretion (Kawaguchi et al., 

2018). 

 

 

Figure 37: Collagen vesicular secretion by the ER is under regulation of ubiquitin and calcium signaling 

regulation  (McGourty et al., 2016). 
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e) Dysfunctions of the degradative pathways in neurological 
disorders 

 

We have discussed earlier in the first part of the introduction the links between faulty degradation of 

substrates at the endolysosomal compartment and neurodegenerative disorders and we will try to focus 

more here on the steps that precede the degradation taking place at the lysosomes or happens via other 

machineries of degradation. 

 

e.1 Role of the ubiquitin proteasome pathway in neurological disorders 
 

First, the importance of ageing in the regulation of degradative pathways can be illustrated in the 

way cells respond to a proteasome stress. In a study performed on rat neurons, if the proteasome is 

inhibited, autophagy is efficiently activated in neurons from young individuals but this is not the case for 

older ones, indicating that with age the pathway involved in autophagy activation is likely impaired (Gavilán 

et al., 2015). Ageing is linked to a general slowdown of the proteasomal activity, preventing a correct 

degradation of ubiquitinated substrates (Isabel and David, 2014). When proteasome is artificially activated, 

it delays ageing (Chondrogianni et al., 2014). Experiments have been conducted to increase proteasome 

activity by inhibiting de-ubiquitinase USP14, which is responsible for de-ubiquitination of cargoes docked 

to proteasome. Doing so speeds up the degradation of oxidized proteins, theoretically enhancing the 

capacity of cells to resist to oxidative stress (Lee et al., 2010). But at the same time, mutations of USP14, 

altering its function, lead to a neurological disease (Marshall et al., 2013). 

The involvement of ubiquitin E3 ligases in neurological disorders is quite important (Lescouzères 

and Bomont, 2020). One of the most famous example might be E6-Ap, one of the first identified HECT E3 

ligase mutated in Angelman syndrome, which is characterized by are a severe impairment of the 

neurological development (Kishino et al., 1997). Parkin is another famous example of E3 ligase (also known 

as RING, from the RING family) which is causing a form of juvenile parkinsonism when mutated (Kitada et 

al., 1998). CUL3 ubiquitin ligase and its many adaptors is involved in forms of giant axon neuropathy 

(Bomont et al., 2000), in neuronal ceroid lipofuscinosis, which is a form of lysosomal storage disorder 

(Staropoli et al., 2012) and in epilepsy (Azizieh et al., 2011; Van Bogaert et al., 2007). 
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e.2 Diseases linked to Endoplasmic Reticulum proteins regulating 
degradation  
 

The ER chaperone VCP/p97, that was mentioned earlier as involved in ER-associated degradation 

(ERAD) is causing a multi system neurodegenerative disorder i.e., IBMPFD = Inclusion Body Myopathy / 

Paget disease of the bone/ Fronto Temporal Dementia. The main feature of this disorder is ubiquitin 

inclusions in muscle, brain, and bone tissues (Ju and Weihl, 2010). On top of that, mutation of p97/VCP also 

cause an impairment of autophagy, as its absence is impairing the maturation of autophagosomes (Tresse 

et al., 2010) and also the formation of tubular lysosomes (Johnson et al., 2015). 

ER-Phagy adaptors, that we presented earlier, are also causing neurodegenerative disorders, for 

example, mutations of RTN3 can cause rare forms of Alzheimer’s disease (Zou et al., 2018) while mutations 

of ATL3 cause an hereditary sensory neuropathy (Fischer et al., 2014) . Mutations of FAM134B are also the 

cause for another form of neuropathy (Kurth et al., 2009). It appears also that Rab7a, which is mutated in 

a form of neuropathy (DiVincenzo et al., 2014) is modulating ER stress and ER morphology, as when 

depleted, it leads to ER stress and causes ER enlargement (Mateus et al., 2018). 

 

e.3 Hereditary Spastic Paraplegia Proteins 
 

For HSPs, dysfunctions of the degradative pathways are happening at many levels. For example, in 

brain of SPG11 patients, cytoplasmic granular structures looking like lysosomes that are positive to p62 and 

ubiquitin staining were observed. This was revealing the accumulation of undegraded ubiquitinated cargo 

and reminding of lesions observed in Amyotrophic Lateral Sclerosis (ALS) (Denora et al., 2016a). 

 

Proteins involved in ubiquitination/de-ubiquitination of substrates 

 

Spartin (SPG20) does not have an E3 ligase activity but, by binding AIP4/AIP5 E3 ligases it recruits 

them to lipid droplets and regulates their turnover by promoting adipophilin ubiquitination (Edwards et al., 

2009; Hooper et al., 2010). Indeed, depletion of Spartin increases the number and size of lipid droplets 

(Eastman et al., 2009).  

ER membrane proteins Erlin1/2 (SPG62/SPG18) can bind IP3R channels that we have seen are so 

important for calcium efflux from the ER toward other organelles. By interacting as a recognition factor with 

IP3R they promote its polyubiquitination by RNF170 (Lu et al., 2011). RNF170 is an E3 ligase that is mutated 

in a form of HSP (de Sainte Agathe et al., 2021) and its ubiquitination of IP3R regulates its degradation by 

ER associated degradation, (Pearce et al., 2009).  
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De -ubiquitinase (DUB) USP8 is mutated in Cushing disease (Reincke et al., 2015) and may also be 

a cause for SPG59 (Novarino et al., 2014), this DUB has the ability to interact directly with adaptor p62 and 

preferentially removes Lys-11 ubiquitin chains from p62 acting as a negative regulator of autophagy (Peng 

et al., 2019).  

WD-48 (SPG60) (Novarino et al., 2014) binds USP46 and USP1, stimulating their de-ubiquitinase 

activity (Yin et al., 2015). USP1 has a role in autophagy regulation (Raimondi et al., 2018) and USP46 

regulates trafficking of AMPA receptor, which are involved in learning & memory (Huo et al., 2015). 

Ubiquitin associated protein (UBAP1) is a member of the ESCRT complex which participates in cargo sorting 

by interacting with ubiquitinated substrates (Agromayor et al., 2012). Its mutation is responsible for 

endosome clustering and enlargement leading to HSP SPG80 (Lin et al., 2019). 

These examples illustrate that regulation of ubiquitin-dependent pathways is relevant for the 

physiopathology of various forms of HSP (see Figure 38). 

 

Proteins involved in ER response to stress and ER remodeling 

 

Seipin (SPG17) that is implicated in ER-lipid droplet contacts, seems to be also involved in ER stress. 

Indeed, when Seipin is mutated, due to improper folding, proteins accumulate in the ER and this results in 

the activation of the unfolded protein response and induces cell death (Ito and Suzuki, 2009).  

REEP1 (SPG31) is also linked to ER stress regulation as REEP1-/- mice have elevated ER stress levels. 

By decreasing ER stress levels using salubrinal, the motor phenotype of REEP1-/- mice was partially rescued 

linking ER stress and the development of the impaired motor phenotype of SPG31 (Wang et al., 2020, p. 1). 

RTN2 is an ER-shaping protein mutated in SPG12, is involved in ER architecture remodeling and upon ER 

stress, it binds autophagy protein ATG8 to regulate ER-phagy (Zhang et al., 2020). 

Atlastin 1, remodeler of the tubular ER and cause of HSP when mutated, is under regulation of the 

E3 ubiquitin ligase SYVN1. Ubiquitination of ATL1 by SYVN1 prevented ATL1 GTPase activity and ER 

remodeling (Zhao et al., 2020). Another HSP protein under ubiquitin dependent regulation is Spastin, indeed 

Spastin is subject to neddylation-dependent proteasome degradation. Neddylation refers to the labelling 

of substrates with Nedd8 protein, an ubiquitin-like protein that activates Cullin ligases (Enchev et al., 2015) 

(see Figure 38).  
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Proteins involved in the degradative pathways, when mutated, cause a variety of neurological 

disorders, including many forms of HSP. They can be involved at every level of the regulation of degradation, 

whether it at the proteasome itself, at the level of chaperones regulating ER-associated degradation, 

ubiquitin ligases and de-ubiquitinases or ER-phagy adaptors, see Figure 38 for an overview of HSP roles in 

the degradative pathways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: Hereditary Spastic Paraplegias are implicated at multiple levels of the degradative pathways. 
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V. Objectives of the study 
 

We have seen in the first part of the introduction that HSPs constitute a family of neurodegenerative 

disorders that do not share only common symptoms but also share common cellular biology defects. SPG11 

HSP is mainly characterized at the level of cell biology by lysosomal dysfunctions. Indeed, in absence of 

spatacsin, lysosomes fail to renew themselves, accumulate lipids such as GM2 and cholesterol and have 

altered calcium levels.  

The endoplasmic reticulum can form membrane contact sites with all organelles of the cell and 

especially with lysosomes. At ER-Lysosomes interfaces, lipids such as cholesterol are exchanged, calcium is 

exchanged, and lysosome biogenesis and positioning are regulated. The convergence between these 

functions identified for ER-Lysosomes contact sites and the defects observed in absence of spatacsin led us 

to explore the potential implication of spatacsin at ER-Lysosomes contact sites. Moreover, spatacsin shows 

a diffuse pattern of localization which does not exclude it from being present at ER-lysosomes contacts. 

The ER is also deeply involved in regulation of the ubiquitin proteasome pathway and in autophagic 

degradation of various substrates and even itself, in context of stress or not. In a yeast two hybrid screen 

performed on spatacsin Cter, the ubiquitin proteasome pathway was identified as playing a role in spatacsin 

action (see Results). But what could be the implication of ubiquitin-dependent proteolysis in spatacsin role 

at the lysosomes? 

My goal in this work was to explore spatacsin molecular role to link its action at the lysosomes to a 

potential role at ER-Lysosomes contact sites and to ubiquitin-dependent degradation pathway (see Figure 

39). 

 

Figure 39: Key concepts of the study implicating spatacsin molecular function.  
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METHODS: AUTOMATED IMAGE ANALYSIS, STRENGTH & 
WEAKNESSES 

 

PREAMBLE: I will mainly discuss in the methods section my approach of image analysis during my PhD. I will 

detail the tools that I used and developed to perform for example automated tubular lysosome detection 

and tracking, which have been instrumental to my work. 

 

I. Principles of image analysis 

a) An Image is a matrix 
 

When you acquire an image on a confocal microscope for example, the TIFF file that you get contains 

much information but the principal one is an array which dimensions correspond to the size of the area you 

captured under the microscope (here in the example on Figure 40: 1027*921 pixels) and each of these 

pixels contains an information. The value of the pixel corresponds to the local intensity of the signal, and it 

is a number ranging from 0 to 255 if you are in 8 bits and from 0 to 65535 in you are in 16 bits. Having a 

broader range of values for your pixels allows you to capture more details in the variations of the signal. 

So, you have a 1024*921 matrix that contains values ranging from 0 to 65535. In this example, we want 

to detect a lysosome. A lysosome corresponds to a group of pixels that have a higher value (here 5 to 20 

times) than the background signal, which corresponds to the noise of the image capturing process (Figure 

40). 

 

 

 

 Figure 40. Left : 1024* 921 image of lysosomal staining. Middle : Zoom on a lysosome. Rigth: The same 

lysosome represented in an Excel sheet containing the intensity value of each pixel. 

  



64 
 

If your goal is to detect a lysosome for example, then in “matrix language” it corresponds to detecting 

a group of pixels that have a higher value than their surroundings. Depending on the quality of the image 

and the intensity of the signal, the signal to noise ratio will vary, here it is about 10 (background noise is 

120, signal is over 1200, see Figure 40). Moreover, you can couple that to the notion of size. Indeed, for the 

lysosome, you know that this kind of particles is about 300 nm to 1 µm wide. Knowing the size of your pixel 

(here about 120 nm), if you are looking for a lysosome, you know that your group of pixels will be 

approximately 3 to 10 pixels wide, which corresponds to an area (if we assume it’s a circle) of about 7 pixels 

to 80 pixels. 

 

b) The MATLAB software & interesting toolboxes 
 

b.1 Binarization of images 
 

To simplify the analysis of an image, one can binarize it. It means that your 1024*921 matrix will 

no longer contain values that range from 0 to 65535 but only zeros and ones. The operation of going from 

the original image to the binarized version is totally dependent on what you want to do. In my example of 

lysosome detection, by observing my image, I saw that background noise intensity is about 120-150 while 

lysosomal signal seems to start around 800-900. Values of signal and ratio seem sufficiently different for 

me to hypothesize that “all lysosomal signal is above 800”. This statement is translated in a thresholding 

operation, where I will artificially equal all values under 800 to zero and all values above to one. Zeros will 

correspond to background and ones to lysosomes. Or I can do the same thing with a threshold at 400 to 

capture potentially more lysosomal signal (see Figure 41). 
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Figure 41. Upper Left : Original image. Upper right : Binarized image with a fixed threshold at 800. Bottom 

Left : Binarized image with a threshold at 400. Bottom right : Binarized image with a threshold computed 

by Otsu’s method. 

 

In this example, we can see that setting the threshold at 800 is probably too high and does not 

capture the lysosomal signal. 400 seems to be a better threshold but remains not perfect. This is where we 

can look into MATLAB library for more complex way to define a threshold. 

Many formulas exist to calculate a threshold to distinguish an object from its background 

(Rogowska, 2009). I tested several thresholds and used two of them, for different applications. For 

lysosomal detection, I obtained the best results with the Otsu thresholding method (Otsu, 1979). The 

complex mathematical formulas computing this threshold value are contained in the multithresh function 

in MATLAB (“Multilevel image thresholds using Otsu’s method - MATLAB multithresh - MathWorks France,” 

n.d.). In our example, with Otsu’s method, the computed threshold is 302, and it captures the lysosomal 

signal quite well (see Figure 41). 
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Otsu thresholding is quite convenient, and the threshold value is computed for each image very 

fast by MATLAB, so it proves to be a handy tool. However, if it performs quite well for lysosomes detection 

where signals are bright and spot-shaped, this is not the case for example if you want to detect an entire 

cell, which signal is more diffuse and less spot like. For cell detection, such as fibroblasts stained with cell 

tracker, the Kittler thresholding method gave better results (Kittler and Illingworth, 1986). See Figure 42 for 

a comparison of Otsu thresholding method and Kittler for cell detection. 

 

 

 

Figure 42: Comparison of Otsu and Kittler thresholding for cell detection. 

 

b.2 Cleaning images & shape analysis  
 

To “improve” the detection of your cell in the previous example and getting rid of the flaws of a 

weak signal for example, you can “clean” your image. Cleaning an image in this example starts with filling 

the gaps. Indeed, in the above example (Figure 42), you can see that some pixels are isolated. By using the 

function imdilate of MATLAB, every white pixel of the image will be surrounded by other white pixels with 

a thickness that you decide in the parameters of imdilate. Once this is done, remaining holes in the mask of 

the cell can be filled if they are surrounded by other white pixels using imfill. This can however cause 

artifacts of detection, creating areas that are supposed to be non-cell to be detected as cell (see red circle 

in Figure 43).  
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Figure 43: Cleaning cell masks using binary transformation functions and potential artifacts creation. Red 

circle marks an artifact of cell detection. 

 

One of the functions that I used the most during my analysis of binary images is the function 

regionprops. As written in MATLAB documentation “regionprops returns measurements for the set of 

properties for each component (object) in the binary image”. This function computes various parameters 

on each individual binary object on the image, for example, for each lysosome, it will calculate its area in 

pixels, its circularity (whether the object is round or not from 0 to 1), its perimeter and many other features. 

All this information is stored in tables in MATLAB, and to know which lysosome is which, the table contains 

the list of pixels of each lysosome, giving an information on what coordinates correspond to each object. 
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b.3 batch processing of images 
 

One of the main advantages of automated analysis is to gain time, especially if you deal with large 

data sets. In MATLAB, the strategy I adopted, for example for my siRNA screening effect on lysosomal 

tubulation (see Results), was to store images in individual folders. Each folder contained the different 

images corresponding to the different fluorescent channels of the acquisition and based on their name a 

different information was extracted from them. One of the easy things to do is to use the automatic labelling 

that is implemented in most microscopes, in the example, the image acquired with the first wavelength is 

labeled “w1” while the second one is labeled “w2”. Using the regexp function on MATLAB you can apply a 

different operation on the image whether they are labeled with “w1” or “w2” (see Figure 44). 

 

 

Figure 44: Principles of batch analysis using MATLAB. 

If your images and folders are correctly labeled you can program MATLAB to open every folder, find 

images with the right label, extract information (for example how many lysosomes are present per unit 

area) and store it in an output table. 
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c) ICY spot detector 
 

Besides thresholding tools included in MATLAB, I used the ICY spot detector (Olivo-Marin, 2002). For 

lysosomes detection, I generally used the scale 2 (objects around 3 pixels in size) with a sensitivity of 140. 

140 is the maximum sensitivity as I wanted to detect as many particles as possible (see Figure 45). 

 

 

Figure 45: Comparison of lysosomal detection between Otsu thresholding method and ICY spot detector. 

 

ICY spot detector main advantage over Otsu thresholding method is that each detected particle is 

individualized from the others, which is not the case with Otsu. Indeed, close lysosomes are often detected 

as one particle which can mislead the analysis depending on what feature you want to extract. For example, 

if you want to know what area is covered by the lysosomal staining, then Otsu is the better method because 

it captures more of the lysosomal staining, but if you want to count particles, or extract their individual 

properties, identify their precise localization, then ICY spot detector gives better results (see Figure 45). 
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II. Applications 

a) Tubular lysosomes detection 
 

Using the regionprops function, I defined by trial & error the shape of a tubular lysosome using 3 

parameters. A tubular lysosome should have a circularity under 0.5 (0 is the opposite of a circle, 1 is a 

perfect circle), it should have an eccentricity above 0.9 (1 is a perfect straight line) and its long dimension 

should be at least 4 times higher than the small one. This method is quite efficient for tubular lysosome 

detection (see Figure 47). 

To refine my detection of tubular lysosomes, I tried an approach to discriminate between round and 

tubular particles that was not fixed by an empirical decision of which parameters were relevant. I used the 

“Classification learner” application of MATLAB to define a mathematical model for tubular lysosome 

detection. To do this, I constituted a training set for my model that consisted of 12 variables (area, 

perimeter, eccentricity etc.) defining the shape of particles, these 12 variables were extracted by 

regionprops function.  

And I labeled by hand the class of each object to accompany the 12 variables (x1,…,x12), class 1 is 

tubular lysosome and class 2 is round lysosome.  

 

 

Figure 46: The classification learner application for tubular lysosome detection. 
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The data set was implemented in the Classification Learner interface, I had a table containing 2431 

values, 401 tubular lysosomes and 2030 round lysosomes. With this table, the application tested different 

models and opted for a logistic regression model that gave the best accuracy results. A set of parameters 

(β0, β1,…) predicting the role of each variable in discriminating between round and tubular was determined 

(see Figure 36).  

The overall accuracy of this model is 91.4%, meaning that once the parameters were fixed on the 

training set, 9 times out of 10 the particle was labeled in the correct class (tubular or round) based on the 

model parameters. However, if we take a closer look to the confusion matrix (see Figure 46), we can see 

that a class 2 object (a round lysosome) is classified as round 97% of time but a class 1 object (tubular) is 

correctly classified only 65% of times. This means that round particles are almost never mistaken as tubular 

but a third of tubular particles are mistaken as round. This model has an almost 0 “false positive” detecting 

rate but a very high “false negative” rate. Strikingly, this model detects more tubular lysosomes than the 

one with the fixed parameters (see Figure 47), showing how difficult it can be to discriminate between 

round and tubular lysosomes. 

 

 

 

Figure 47: Comparison of different methods for tubular lysosome detection. 
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In the mouse embryonic fibroblast model of the lab, we know that there are less tubular lysosomes 

in absence of spatacsin (Boutry et al., 2019) (see Results). Let’s compare the results obtained for tubular 

lysosome detection on the same cells, one Wild-Type (WT) condition and one Knocked-Out (KO) for SPG11 

condition, with 3 methods: the” Fixed Parameters” method, the “Logistic regression” method and a 

labelling “By Hand” performed by me on images using ImageJ multipoint tool. 

 

Figure 48: Comparison of tubular lysosome detection methods 

We see on Figure 48 that the automated methods missed indeed part of the tubular lysosomes 

compared to the “manual” one, but importantly, in all methods, the difference between WT and KO cells 

remained significative. This is an indicator that automated methods, although imperfect, still capture the 

difference in the studied parameter, and the time that is gained by the automation (a few minutes for an 

entire data set versus a few minutes for each cell) justifies the use of automated detection of tubular 

lysosomes. 

The MATLAB code used for this application can be found in Annex 2- a) . 
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b) Tubular lysosomes tracking  
 

The tracking of tubular lysosomes is built on top of the tubular lysosome detection algorithm. Indeed, 

to track the movement of lysosomes, it is important to detect them properly first. For particle tracking, the 

lysosomes are detected on the multiple images that compose the timelapse video creating a sequence of 

binary images containing tubular lysosomes. Then the coordinates of their centroids (identified by 

regionprops) associated with the number of the frame they are in, are exported in a table.  

This table is analyzed by the track function that was originally written by John C. Crocker in 1998 and 

has been updated since (DeConinck, 2014). The track function will link the different centroids to form 

trajectories, given a maximum displacement distance between two frames that I set at the mean size of a 

tubular lysosome which is 2.4 µm (see Figure 49). The track function then outputs another table that 

contains only trajectories longer than 3 frames, with the associated coordinates of the centroids sorted in 

a frame-dependent order. 

Then the displacement per particle was measured using Pythagoras Theorem on the coordinates of 

centroids (see Figure 49). The mean speed of particles during trajectories was obtained by the ratio of the 

displacement on the duration of the trajectory. The track function cannot compute trajectories on data sets 

that contain several hundreds of particles per frame, it is limited to under 100 particles, which is perfect to 

analyze tubular lysosome trajectories but could not be used to analyze the general movement of all 

lysosomes in the cell. 

 

 

 

Figure 49. Left: Measuring displacement between two frames principle. Right: Maximum displacement 

between two frames for tubular lysosome detection. 
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I compared the results I obtained using this automated tracking method with a more manual 

method. I obtained the coordinates of the centroids of the tubular lysosomes using the multi-point tool of 

ImageJ and exported this information in a table that I analyzed similarly in MATLAB based on Pythagoras to 

obtain duration, mean speed and length of the trajectory. 

What is striking when you compare the results obtained by the two methods is that the trajectory 

captured by the automated method are much shorter in duration (see Figure 50). You follow the trajectory 

of the lysosome for mean duration of 5-10 seconds with the automated detection while, by hand you can 

follow them for the whole 60 seconds of the timelapse video. This is explained by the fact that as we saw 

in the previous part, the detection of tubular lysosome is not perfect, and sometimes the tubular particle is 

not detected by the algorithm, creating a gap of information in the trajectory. Therefore, the automated 

method captures only fragments of lysosomal trajectories and not the complete sequence.  

 

 

 

Figure 50: Comparison of tubular lysosome movement by hand or using automated tracking of particles. 
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However, as this detection is way faster (it takes hours to analyze the trajectories of a single cell by 

hand and a few minutes for an entire batch of cells by MATLAB), the data sets obtained with the automated 

detection method are extremely large, containing thousands of fragments of trajectories. Therefore, the 

data is not considered in terms of median or mean for the results obtained by the automated method but 

rather is proportion of particles per analyzed cell that are above a cut-off value. This also avoids the risk of 

having a single cell that contains many trajectories to excessively weight on the results. And the fact that 

we consider only fragments of trajectories explains why the values of displacement and duration are so 

much smaller than the one obtained with the manual methods on complete trajectories. The value obtained 

for the speed are however quite similar (see Figure 50). 

Most importantly, with both methods, we measured an impairment of the displacement length, 

duration, and speed of tubular lysosomes in absence of spatacsin (see Figure 50), indicating that the 

automated tracking of lysosomal trajectories is suitable for our analysis. 

The MATLAB code used for this application can be found in Annex 2- b). 
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c) Other applications using MATLAB 
 

c.1 Area overlap between masks 
 

I used this method to measure the overlapping area between the Endoplasmic Reticulum and the 

lysosomes. Considering the resolution limit, the overlap between the ER and the Lysosomes does not reflect 

a fusion of the two compartments but rather a spatial proximity.  

To measure the overlap between the compartments, they must be binarized first. The ER was 

binarized by hand using the thresholding tool of ImageJ, all other methods failed to deliver consistent 

satisfactory results. The lysosomes were binarized using ICY spot detector because the goal was to measure 

in % the overlapping area with the ER compared to the area of each particles as not all particles are the 

same size (see Figure 51). 

To determine the area of the overlap between the two compartments, every pixel that constitutes 

the ER mask (=1 in the binary image) is stored in a table, and this information is used to select pixels that 

have the exact same position in the lysosomal mask, whether they are equal to 1 or 0. This creates a third 

binary image that contains the intersection of the two masks and the area of each intersection is extracted 

using regionprops (see Figure 51). 

 

 

 

Figure 51: Illustration of the principle of area overlap. 

 

The MATLAB code used for this application can be found in Annex 2- c) . 
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c.2 Clustering of particles around the nucleus  
 

This analysis method was not written by me but by Raphaël Matusiak, a former engineer of the 

team, I only brought minor modifications to it.  

The principle is to detect the centroids of all lysosomes using either regionprops on an image that 

has been binarized by ICY Spot detector or to use the pkfnd (peak find) function on the original grayscale 

image of the lysosomes. Then the distance between the centroid of each particle and the centroid of the 

nucleus of the cell is measured. Finally, these distances are expressed as a fraction of the maximum distance 

obtained between the farthest away lysosome and the nucleus (see Figure 52). 

 

 

 

Figure 52: Measurement of particle clustering around the nucleus. 

The MATLAB code used for this application can be found in Annex 2-d) . 
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c.3 Fluorescence ratio of a signal in compartments 
 

To determine what is the proportion of fluorescent cholesterol that is contained in the lysosomes 

for example (Boutry et al., 2019), the fluorescence in the lysosomes needs to be compared to the total 

fluorescence of the cell. This can be done by hand using ImageJ, but automation of the process is also 

possible.  

Based on what we have seen before, we can process our data set in batch with folders containing 

3 images, each of them with a recognizable label. The first image is the cell stained by cell tracker that will 

be binarized with Kittler threshold to extract the cell mask. The second image is the lysosomal staining that 

will be binarized using Otsu threshold to extract the lysosomal mask. Using a conditional selection, we can 

extract the lysosomal mask that is contained in an individual cell. Then the fluorescence intensity in the 

third image is measured inside the cell mask on one side and in the lysosomal mask on the other side (see 

Figure 53).  

 

 

 

Figure 53: Principle of lysosomal ratio measurement using masks. 

The noise of the fluorescence signal is measured as the signal that is outside of the cell mask after 

removing twice the eventual bright spots with Otsu thresholding. 

Areas of both masks are extracted using regionprops and the formula of the fluorescence ratio is: 

𝑅𝑎𝑡𝑖𝑜 =
(𝐿𝑦𝑠𝑜 𝑓𝑙𝑢𝑜 − 𝑛𝑜𝑖𝑠𝑒) ∗ 𝐿𝑦𝑠𝑜 𝐴𝑟𝑒𝑎

(𝐶𝑒𝑙𝑙 𝑓𝑙𝑢𝑜 − 𝑛𝑜𝑖𝑠𝑒 ) ∗ 𝐶𝑒𝑙𝑙 𝐴𝑟𝑒𝑎
 

 

The MATLAB code used for this application can be found in Annex 2-e).  
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RESULTS  
 

PREAMBLE: During my PhD, I had the opportunity to work on two papers that were submitted for 

publication. The first one from 2019 can be found in Annex 2 as it was part of Maxime’s Boutry PhD 

thesis work, and I was only the second author on it.  

The second paper however, that was recently submitted, summarizes the results that I obtained during 

my PhD thesis. I wrote the paper with Frédéric and performed most of the analyses and experiments 

with him. Raphaël performed the Neural Network analysis & wrote the first version of the particle 

clustering algorithm. Margaux took care of our mice models. Julien was involved in the characterization 

of the truncated spatacsin mouse model. Maxime was involved in the characterization of the lysosomal 

phenotype in fibroblasts in absence of spatacsin. 

Article 1: Endoplasmic reticulum shape regulates 
lysosome motility in a ubiquitin and spatacsin-

dependent manner (submitted) 
 

Alexandre Pierga1-4, Raphaël Matusiak1-4, Margaux Cauhapé1-4, Julien Branchu1-4, Maxime 
Boutry1-4, and Frédéric Darios1-4. 

 

1 : Sorbonne Université, F-75013, Paris, France  

2 : Paris Brain Institute, ICM, F-75013, Paris, France 

3 : Inserm, U1127, F-75013, Paris, France 

4 : CNRS, UMR 7225, F-75013, Paris, France  

 

  



80 
 

Abstract 
 

The endoplasmic reticulum (ER) forms contacts with the lysosomal compartment, regulating 

lysosome positioning and dynamics. However, the mechanisms regulating the formation and function 

of such contacts are unknown. Here, we demonstrate that spatacsin is an ER-resident protein that 

regulates lysosome motility, shown by the presence of tubular lysosomes. Screening for spatacsin 

partners required for this function showed spatacsin to act in a ubiquitin-dependent manner. spatacsin 

promotes the degradation of its partner AP5Z1. This in turn facilitates the interaction of spatacsin with 

spastizin, which allows recruitment of KIF13A to the lysosomal compartment, regulating lysosomal 

dynamics. Importantly, the interaction of spatacsin with spastizin occurred at contact sites between 

the ER and lysosomes, and tubular lysosomes, which were highly dynamic, were entangled in a 

network of tubular ER. Alteration of the ER network morphology impaired the interaction of spatacsin 

with its partners and resulted in aberrant lysosomal dynamics, showing that the ER promotes lysosome 

movement by its action at contact sites. Our work thus demonstrates that the integrity of the ER 

network is required to promote lysosome motility and spatacsin contributes to the regulation of this 

phenomenon in a ubiquitin-dependent manner. 
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Introduction 
 

Lysosomes are membrane-limited organelles responsible for the degradation of various 

cellular substrates. They degrade the content of late endosomes and autophagosomes upon fusion 

with these subcellular compartments. In addition, they also participate in many other cellular 

functions, such as cell metabolism and the repair of plasma membranes, as well as adhesion and 

migration(Ballabio and Bonifacino, 2020). These diverse functions rely on the cellular localization of 

lysosomes, as well as their motility and remodeling(Hipolito et al., 2018; Pu et al., 2016). Accordingly, 

lysosomes are a highly dynamic subcellular compartment(Bonifacino and Neefjes, 2017). They are 

retrogradely transported along microtubules upon coupling to cytoplasmic dynein and move 

anterogradely toward the cell periphery upon coupling to various kinesins(Ballabio and Bonifacino, 

2020), changing their cellular distribution. Their shape is also dynamically controlled depending on 

cellular needs. For example, they form a tubular network following phagocyte activation in 

macrophages(Hipolito et al., 2018) or tubules emanating from autolysosomes are observed during 

autophagy lysosome reformation (ALR) to terminate autophagy(Yu et al., 2010). Such changes in shape 

likely rely on the cytoskeleton and molecular motors(Boes et al., 2002; Du et al., 2016) but it is not 

known whether all tubular lysosomes formed in response to various cellular stimuli are equivalent. 

It has recently emerged that endosomes and lysosomes not only interact with the cytoskeleton 

but also form functional contacts with other subcellular organelles the endoplasmic reticulum (ER). 

Such contacts with the ER are involved in the filling of lysosomes with Ca2+ or the non-vesicular transfer 

of lipids between the two subcellular compartments(Wang et al., 2017; Wilhelm et al., 2017b). The 

interactions of the ER with endosomes and lysosomes also regulate the morphology and trafficking of 

these subcellular compartments. For example, the interaction of endosomes and lysosomes with the 

ER control ER architecture by modulating the formation of the ER network at the cell periphery(Spits 

et al., 2021b). Conversely, the ER mediates the distribution and trafficking of endolysosomes through 

various mechanisms involving the proteins RNF26, protrudin, and ORP1L(Jongsma et al., 2016b; 

Raiborg et al., 2015b; Rocha et al., 2009b) or it can regulate the morphology of endolysosomes by 

promoting their fission(Allison et al., 2017b; Rowland et al., 2014b). Furthermore, the morphology of 

the ER regulates the trafficking of lysosomes in axons(Özkan et al., 2021). However, the control of 

endolysosomal dynamics is still only partially understood(Cabukusta and Neefjes, 2018b) and the 

molecular mechanisms linking ER morphology and lysosome function have not been elucidated. 

Lysosome function is impaired in various pathological conditions, such as, for example, in 

neurodegenerative diseases(Oyarzún et al., 2019). Among them is hereditary spastic paraplegia type 

SPG11, which is due to loss-of-function mutations in the SPG11 gene, leading to the absence of 

spatacsin(Stevanin et al., 2007b). The subcellular localization of spatacsin is still debated, as it has been 

proposed to be localized in the ER, microtubules, or lysosomes(Hirst et al., 2013a; Murmu et al., 

2011b).  
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However, the loss of spatacsin function has been shown to impair lysosome distribution and 

ALR(Boutry et al., 2019b; Chang et al., 2014b), suggesting a lysosomal function for this protein. 

spatacsin bears a spatacsin_C domain in its C-terminus, which has been conserved throughout 

evolution up to plants(Alexander L Patto and O’Kane, 2020). However, this domain has no homology 

in the human genome, suggesting a specific function. spatacsin interacts with spastizin and AP5Z1, two 

proteins encoded by genes mutated in other forms of hereditary spastic paraplegia, SPG15 and SPG48, 

respectively(Hanein et al., 2008b; Słabicki et al., 2010b, p. 48). spastizin contains a FYVE domain, which 

binds to phosphatidylinositol-3-phosphate, allowing its recruitment to lysosomes(Hirst et al., 2021b). 

AP5Z1 is a subunit of the adaptor protein complex AP5, involved in the sorting of proteins in late 

endosomes(Hirst et al., 2018b). Loss-of-function mutations in SPG11, SPG15, or SPG48 lead to the 

lysosomal accumulation of material(Branchu et al., 2017; Khundadze et al., 2019b, 2013b; Varga et al., 

2015). However, it is not known how the absence of these proteins leads to lysosomal dysfunction and 

the mechanisms that regulate the interactions between these proteins have not been investigated.  

Here, we show that spatacsin is an ER protein that regulates the shape and motility of 

lysosomes in a ubiquitin-dependent manner. We show that spatacsin-mediated degradation of AP5Z1 

facilitates its interaction with spastizin, allowing the recruitment of spastizin to lysosomes. spastizin in 

turn recruits the motor protein KIF13A, which regulates the motility of lysosomes. We also 

demonstrate that this regulatory pathway is impaired when the morphology of the ER is modified by 

blocking the homotypic fusion of ER tubules. Overall, our data show that ER morphology can control 

lysosomal dynamics in a spatacsin- and ubiquitin-dependent manner.  
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Results 
 

1. spatacsin is an endoplasmic reticulum-associated protein 
 

 We investigated the subcellular localization of spatacsin by transfecting mouse embryonic 

fibroblasts (MEFs) with a vector allowing the expression of spatacsin with a C-terminal V5 tag and 

determined its localization by immunostaining and confocal imaging. spatacsin-V5 showed a diffuse 

distribution that poorly colocalized with late endosomes and lysosomes stained with Lamp1. By 

contrast, spatacsin-V5 partially colocalized with the ER labelled by the expression of GFP-Sec61 (Fig 

1A). V5-tagged spatacsin appeared to be mainly associated with the ER by STED imaging (Fig 1B). 

We confirmed the subcellular localization of endogenous spatacsin by fractionating Spg11+/+ 

and Spg11-/- mouse brains by differential centrifugation (Fig. 1C). spatacsin, encoded by Spg11, was 

present in all but the S3 fraction, which corresponds to soluble proteins of the cytosol. spatacsin, along 

with the ER transmembrane Ca2+ sensor STIM1 and ER chaperone GRP78, was enriched in the 

microsomal P3 fraction, whereas the lysosomal peptidase cathepsin D and outer mitochondrial 

membrane channel VDAC were enriched in the P2 fraction (Fig 1C). We then prepared lysosome and 

ER enriched fractions from Spg11+/+ and Spg11-/- mouse brains using density gradients to complete the 

analysis. We detected very low levels of spatacsin in the lysosomal fraction, but the signal was stronger 

in the ER fraction, indicating that endogenous spatacsin is enriched in the ER (Fig. 1D).  

spatacsin has been proposed to contain transmembrane regions(Stevanin et al., 2007b), which 

could allow its tight association with membranes. We tested this hypothesis by subjecting membrane 

fractions obtained from the brains of Spg11+/+ and Spg11-/- mice to various extraction conditions (i.e., 

high salt, low pH, high pH, and detergents)(Zhu et al., 2003). spatacsin and the integral ER-membrane 

protein STIM1 were not released from the membranes by high salt concentration or low or high pH 

buffer but were solubilized by the detergent deoxycholate (Fig. 1E). Conversely, the membrane-

associated protein calreticulin was released from the membranes by high salt, as well as high and low 

pH buffers (Fig. 1E). Overall, our data show that spatacsin is likely associated with the ER membrane 

by transmembrane domains(Stevanin et al., 2007b). 
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Figure 1. spatacsin is an endoplasmic reticulum protein.  
 

A. MEFs expressing the ER marker GFP-Sec61 and V5-tagged spatacsin. Cells were immunostained 

with anti-V5 antibody and the lysosome marker Lamp1. Scale bar: 5 µm. 

B. STED images of MEFs expressing the ER marker GFP-Sec61 and expressing V5-tagged spatacsin. 

Cells were immunostained with anti-V5 and anti-GFP antibodies. Scale bar: 5 µm 

C. Western blot analysis of subcellular fractions prepared from Spg11+/+ and Spg11-/- mouse brains by 

differential centrifugation. Proteins of each fraction were immunoblotted with antibodies raised 

against spatacsin, ER proteins STIM1 and GRP78, lysosomal protein cathepsin D (Cath D), and 

mitochondrial protein VDAC. Note that spatacsin was enriched in fraction P3 (highlighted in the red 

rectangle). 

D. Western blot analysis of ER- and lysosome-enriched fractions obtained from Spg11+/+ and Spg11-/- 

mouse brains. Immunoblots with antibodies raised against spatacsin, ER protein STIM1, and 

lysosomal protein cathepsin D. ER fractions are encircled by the red rectangle. The asterisk indicates 

nonspecific signals. 

E. Membrane association of spatacsin. P3 fractions of Spg11+/+ and Spg11-/- mouse brains were 

resuspended in the indicated buffers or detergents and re-fractionated into the supernatant (S) and 

membrane pellet (P). spatacsin was released from membranes solely with the detergent 

deoxycholate (DOC), like the transmembrane protein Stim1. 
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2. spatacsin regulates the morphology and motility of lysosomes 
 

The loss of spatacsin function has been shown to affect lysosome function(Boutry et al., 2019b, 

2018; Branchu et al., 2017; Chang et al., 2014b; Varga et al., 2015). We transfected Spg11+/+ and Spg11-

/- MEFs with vectors expressing GFP-Sec61 to label the ER, and Lamp1-mCherry, a marker of late 

endosomes and lysosomes (henceforth referred to as lysosomes). The absence of spatacsin had no 

visible impact on the morphology of the ER, as observed by live confocal imaging (Supplementary Fig. 

1A). By contrast, the distribution and morphology of lysosomes was altered in Spg11-/- compared to 

Spg11+/+ MEFs. In the absence of spatacsin, lysosomes were clustered around the nucleus (Fig. 2C, 

Suppl. Fig. 1B), as previously observed(Boutry et al., 2019b). Furthermore, we observed a higher 

number of tubular lysosomes in Spg11+/+ than Spg11-/- cells (Fig. 2C-D). We also observed a higher 

number of tubular lysosomes in Spg11+/+ than Spg11-/- fibroblasts when they were labelled with the 

acidic marker Lysotracker, with a pulse of Dextran-Texas Red followed by a long chase, or with DQ-

BSA, which fluoresces upon degradation by lysosomal hydrolases(Marwaha and Sharma, 2017) 

(Supplementary Fig. 1C-D). These results suggests that tubular lysosomes represent a population of 

catalytically active lysosomes.  

Furthermore, tracking individual lysosomes in wildtype MEFs by live imaging showed tubular 

lysosomes to move, on average, faster than round lysosomes (Fig. 2E). The proportion of lysosomes 

with a speed > 0.3 µm/sec, corresponding to microtubule-dependent movement for these 

organelles(Cordonnier et al., 2001), was higher among the tubular than round lysosomes (Fig. 2F), 

suggesting that tubular lysosomes are highly mobile and dynamic. Comparison of the speed of 

lysosomes in Spg11+/+ and Spg11-/- MEFs showed that tubular lysosomes move faster in Spg11+/+ than 

Spg11-/- MEFs, whereas the dynamics of round lysosomes was not affected (Fig. 2G-H). The difference 

in the dynamics of tubular lysosomes was validated by automated tracking, which showed tubular 

lysosomes to travel a longer distance in 1 min and to be longer lived in Spg11+/+ than Spg11-/- MEFs 

(Fig. 2I-K, Supplementary Videos 1-2). We used this this method to analyze lysosomal dynamics in 

subsequent experiments. Overall, these data suggest that tubular lysosomes labelled in MEFs are 

catalytically active and highly dynamic and that spatacsin is important for the control of their formation 

and motility.  

We then used MEFs derived from a mouse line in which exons 32 to 34 of Spg11 are spliced 

out (Suppl. Fig. 2A-C) to elucidate the molecular mechanisms by which spatacsin controls these 

lysosomal phenotypes. Such splicing retained the reading frame and led to the expression of a protein 

called spatacsin32-34, which lacks a domain of 170 amino acids, partially deleting the conserved 

spatacsin_C domain (Fig. 2A, Suppl. Fig. 2A-C). Western blot analysis of brains obtained from Spg11+/+, 

Spg11-/-, and Spg1132-34/32-34 mice showed the latter strain to express a spatacsin protein that is 

slightly smaller than the wildtype protein (Fig. 2B).  

Overexpression of spatacsin 32-34 with a C-terminal V5 tag in MEFs showed diffuse and ER-

associated localization like that of full-length spatacsin (Supplementary Fig. 2D). Like Spg11-/- MEFS, 

Spg1132-34/ 32-34 fibroblasts showed clustering of lysosomes around the nucleus and fewer tubular 
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lysosomes than wildtype cells (Fig. 2C-D, Suppl. Fig. 1B). The dynamics of tubular lysosomes was also 

altered in Spg1132-34/32-34 MEFs (Fig. 2I-K). Overall, these results suggest that the spatacsin domain 

encoded by exons 32 to 34 of Spg11 plays an important role in the formation and dynamics of tubular 

lysosomes.  

 

Figure 2.  spatacsin regulates lysosomal dynamics and positioning 
 

A. Representation of the spatacsin_C domain and the region truncated in the Spg11∆32-34/∆32-34 mouse 

model. 

B. Western blot showing expression of truncated spatacsin in Spg11∆32-34/∆32-34 mouse brain. Equal 

loading was validated by clathrin heavy chain (HC) immunoblotting. 

C. Lamp1-mCherry expression in Spg11+/+, Spg11-/-, and Spg11∆32-34/∆32-34 MEFs imaged by spinning-

disk confocal microscopy. Note the perinuclear clustering of lysosomes in Spg11-/- and Spg11∆32-

34/∆32-34 MEFs and the presence of tubular lysosomes in Spg11+/+ MEFs (white arrowheads). Scale 

bar: 5 µm. 

D. Quantification of the number of tubular lysosomes in Spg11+/+, Spg11-/-, and Spg11∆32-34/∆32-34 MEFs. 

Median and 95% CI, N = 45 cells from three independent experiments. ***P < 0.001 for both Spg11-

/- and Spg11 ∆32-34/∆32-34 when compared to Spg11 +/+ MEFs. Kruskall-Wallis test followed by Dunn’s 

multiple comparisons test.  

  



87 
 

 

Figure 2.  spatacsin regulates lysosomal dynamics and positioning (second part) 
 

E. Average speed of tubular and round lysosomes in wildtype MEFs. Median and 95% CI, N = 110 from 
five independent MEFs. ****P < 0.0001, Mann-Whitney test. 

F. Quantification of the proportion of lysosomes with an average speed > 0.3 µm/sec according to 
their shape in wildtype MEFs. Median and 95% CI. **P < 0.01, Mann-Whitney test. 

G. Quantification of the average speed of tubular lysosomes in Spg11+/+ and Spg11-/- MEFs. Median 
and 95% CI, N > 100 from five independent MEFs. ****P < 0.0001, Mann-Whitney test. 

H. Quantification of the average speed of round lysosomes in Spg11+/+ and Spg11-/- MEFs. Median and 
95% CI, N = 110 from five independent MEFs. Mann-Whitney test. 

I. Heatmap indicating the lifetime of tubular lysosomes during their movement obtained by projecting 
binary images of tubular particle detection over time. Blue indicates a shorter lifetime in seconds 
and red a longer lifetime. Scale bar: 5 µm. 

J. Quantification of the proportion of tubular lysosomes moving > 1.2 µm in Spg11+/+, Spg11-/-, and 
Spg11∆32-34/∆32-34 MEFs. Mean and 95% CI, N = 35 cells from three independent experiments. **P < 
0.01 for both Spg11-/- and Spg11 ∆32-34/∆32-34 when compared to Spg11 +/+ MEFs. One-way ANOVA 
followed by Sidak’s multiple comparisons test.  

K. Quantification of the proportion of tubular lysosomes lasting < 3 s in Spg11+/+, Spg11-/-, and 
Spg11∆32-34/∆32-34 MEFs. Mean and 95% CI, N = 35 cells from three independent experiments. ****P 
< 0.0001 for both Spg11-/- and Spg11 ∆32-34/∆32-34 when compared to Spg11 +/+ MEFs. One-way 
ANOVA followed by Sidak’s multiple comparisons test.   



88 
 

 

Supplementary Figure 1. spatacsin regulates the morphology, positioning, 

and motility of endolysosomes 

A. Live imaging of the ER marker Sec61ß-GFP and lysosome marker Lamp1-mCherry in Spg11+/+, 
Spg11-/-, and Spg11∆32-34/∆32-34 MEFs. Note that the absence of spatacsin (Spg11-/-) or expression of 
truncated spatacsin (Spg11∆32-34/∆32-34) did not alter ER morphology. Scale bar: 5 µm. 

B. Quantification of the distance of lysosomes from the nucleus in Spg11+/+, Spg11-/-, and Spg11∆32-

34/∆32-34 fibroblasts. Mean and 95% CI, N = 53 cells from three independent experiments. *P < 0.05 
for both Spg11-/- and Spg11 ∆32-34/∆32-34 when compared to Spg11 +/+ by Dunnett’s multiple 
comparisons test (two-way ANOVA nonparametric test).  

C. Live imaging of lysosomes stained with various markers in Spg11+/+ MEFs. Note that tubular 
lysosomes were positive for Lamp1, Dextran-Texas Red (TR), and Lysotracker, as well as DQ-BSA, 
indicating that they are an acidic and catalytically active compartments. Scale bar: 5 µm. 

D. Quantification of the number of tubular lysosomes in Spg11+/+and Spg11-/- MEFs using the 
fluorescent markers DQ-BSA-green, Lysotracker-Green, or Dextran-Texas Red. Median and 95% CI, 
N > 40 cells from three independent experiments. *P < 0.05, Kruskall-Wallis test followed by 
Dunn’s multiple comparisons test.   



89 
 

 

Supplementary Figure 2. Characterization of Spg11∆32-34/∆32-34 model. 
 

A. Diagram showing the genomic structure of the mouse Spg11 gene (top), the targeting vector 
(middle), and the targeted locus upon excision of the neomycin resistance cassette and action of 
the Cre-recombinase (bottom). The mutations introduced were c.6052C > T (p. Arg2018*) and 
c.6061C > T (p. Gln2021*). Scheme adapted from (Branchu et al., 2017).  

B. Sequencing of RT-PCR product obtained from the brains of homozygous mice that incorporated the 
targeting vector, showing the splicing of exons 32, 33, and 34. 

C. Scheme representing the mRNA produced in a wildtype mouse, a mouse that incorporated the 
targeting vector, or after the action of the Cre recombinase. Note that the intermediate model 
expressing the floxed allele showed splicing of exons 32 to 34 with conservation of the reading 
frame between exons 31 and 35. It was thus equivalent to a functional deletion of exons 32 to 34, 
leading to expression of a protein called spatacsin∆32-34. 

D. Immunostaining of cells expressing the ER marker GFP-Sec61  and V5-tagged spatacsin or V5-
tagged spatacsin∆32-34. Cells were immunostained with anti-V5 antibody and the lysosome marker 
cathepsin D. Scale bar: 5 µm.  
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3. Involvement of the ubiquitin-dependent proteolysis pathway in 
spatacsin-mediated regulation of endolysosomes 

 

We next aimed to define the molecular action of spatacsin in the formation of tubular lysosomes. 

We thus sought to identify proteins that bind to the domain encoded by exons 32 to 34 of Spg11. We 

performed a two-hybrid screen with the C-terminal region of human spatacsin (aa 1943-2443, 

containing the spatacsin_C domain) and a second screen with the same C-terminal fragment in which 

the amino acids encoded by exons 32-34 were deleted. Comparison of the two screens identified 

several proteins that potentially bind directly to the domain encoded by exons 32 to 34 (Fig. 3A, Suppl. 

Tables 1 and 2).  

Among the proteins that could potentially bind to the domain encoded by exons 32 to 34, we 

aimed to identify those important for the regulation of lysosome morphology. Thus, we downregulated 

each identified partner in wildtype MEFs using siRNA and analyzed the consequences on the 

lysosomes, which were imaged by spinning disk confocal microscopy after staining with Dextran-Texas 

Red. 

We used two methods to quantify the effect of siRNA on lysosomes. First, we developed an 

unbiased classification method to discriminate between lysosomal staining in Spg11-/- and Spg11+/+ 

MEFs by training a neural network that exploited all parameters of the lysosomal staining in images. 

The trained neural network was then used to predict the probability of the cell to be considered as a 

Spg11-/- fibroblast for each image of fibroblasts transfected with siRNA. In parallel, we performed a 

directed analysis that automatically detected tubular lysosomes. For both methods, we evaluated how 

well the downregulation of each candidate using siRNA in wildtype MEFs phenocopied the lysosomal 

phenotype of Spg11-/- MEFs. We compared the effect of each siRNA with that of three independent 

siRNAs downregulating Spg11 (Fig. 3B; Supplementary Fig. 3). The neural network approach identified 

28 genes and directed analysis identified 11 genes that, after downregulation by siRNA, were at least 

as effective as Spg11 siRNA to phenocopy Spg11-/- MEFs (Fig. 3C, Suppl. Tables 1 and 2). Eight genes 

were identified by both analyses, suggesting their importance in the function of spatacsin in lysosomes. 

Gene ontology analysis of the candidates identified by the two approaches suggested a role of the 

ubiquitin-dependent protein catabolic process and proteolysis in modulation of the lysosomal 

phenotype (Fig. 3C), suggesting that the action of spatacsin on lysosomes is linked to ubiquitin-

dependent proteolysis. We confirmed this hypothesis by expressing mutant ubiquitin-K0, which 

prevents poly-ubiquitination of substrates required for degradation(Wu-Baer et al., 2003). Expression 

of this mutant in wildtype MEFs decreased the number of tubular lysosomes, as well as their dynamics 

(Fig. 3D-F), suggesting a role for ubiquitination in the control of lysosomal phenotype by spatacsin.  
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Figure 3. Ubiquitin-dependent proteolysis contributes to the regulation 
of the lysosome phenotype by spatacsin 
 

A. Scheme showing the strategy to identify interactors of the domain of spatacsin encoded by exons 

32 to 34 of SPG11. Yeast two-hybrid screens were performed with the C-terminal domain of human 

spatacsin (aa 1943-2443) or the same domain missing exons 32 to34 as bait. Interactors specifically 

interacting with the spatacsin domain encoded by exons 32 to 34 (orange) were selected. 

 

B. Design of the screening process for interactors of the spatacsin domain encoded by exons 32 to 34 

of SPG11. Each interactor was downregulated by siRNA in wildtype MEFs, and lysosomes imaged 

by spinning disk confocal microscopy. The effect of the siRNAs was analyzed using an unbiased 

method (trained neural network) or directed analysis to quantify the presence of tubular lysosomes. 

 

C. Table summarizing the pathways identified by gene ontology analysis as being significantly 

enriched in the list of genes identified by neural network analysis, directed analysis, or both. FDR: 

False discovery rate. 
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Figure 3. Ubiquitin-dependent proteolysis contributes to the regulation of the 
lysosome phenotype by spatacsin (second part) 

 

D. Live images of lysosomes in wildtype MEFs co-transfected with Lamp1-mCherry and either Ubi-His 

or UbiK0-His. Scale bar: 10 µm. 

E. Quantification of the number of tubular lysosomes in wildtype MEFs transfected with an empty 

vector or vectors expressing ubiquitin or mutant ubiquitin-K0. Median and 95% CI, N = 75 cells from 

three independent experiments. ***P < 0.001, Kruskall-Wallis test followed by Dunn’s multiple 

comparisons test. 

F. Quantification of the proportion of tubular lysosomes moving > 1.2 µm in wildtype MEFs transfected 

with an empty vector or vectors expressing ubiquitin or mutant ubiquitin-K0. Mean and 95% CI, N = 

35 cells from three independent experiments. ****P < 0.0001, **P < 0.01. One-way ANOVA 

followed by Sidak’s multiple comparisons test. 

 

Supplementary Figure 3. Downregulation of spatacsin by siRNA. 
 
Western blot of wildtype MEFs transfected with control siRNA or independent siRNA that downregulate 

spatacsin purchased from Dharmacon (A) or ThermoFisher (B). Lysate of Spg11-/- MEFs was used as a 

negative control. Equal loading was validated by clathrin heavy chain (A) or -tubulin (B) immunoblotting.  
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4. spatacsin promotes the ubiquitin-dependent degradation of 
AP5-Z1 

 

Our screening approach showed that the control of tubular lysosome formation and dynamics 

by spatacsin depends on poly-ubiquitination and proteolysis. We then aimed to identify candidate 

proteins that may be regulated by ubiquitination and/or proteolysis to control lysosomal phenotype. 

Exploration of the interactome of the spatacsin domain encoded by exons 32 to 34 revealed no binding 

partners with endolysosomal localization, suggesting that ubiquitin-dependent regulation may act on 

other proteins present in the endolysosomal system. Among spatacsin binding partners, spastizin and 

AP5Z1 co-immunoprecipitate with spatacsin and colocalize with lysosomes(Hirst et al., 2021b, 2013a) 

(Supplementary Fig. 4A; Fig. 4E). We thus investigated whether spastizin or AP5Z1 are regulated by 

ubiquitin-dependent proteolysis. Overexpression of spatacsin-GFP in wildtype MEFs lowered levels of 

AP5Z1, whereas spastizin levels were unaffected (Fig. 4A, B). Co-transfection of ubiquitin-K0 with the 

vector expressing spatacsin-GFP blocked this effect on AP5Z1, suggesting that spatacsin mediates poly-

ubiquitin-dependent degradation of AP5Z1 (Fig. 4A, B).  

The downregulation of AP5Z1 was not observed upon overexpression of spatacsin 32-34–GFP, 

suggesting that the domain encoded by exons 32 to 34 contains the information that controls the 

degradation of AP5Z1 (Fig. 4C). Among the proteins that bind to the domain encoded by exons 32 to 

34 of Spg11 and important for lysosomal phenotype, we confirmed by co-immunoprecipitation that 

UBR4 interacts with the C-terminal domain of spatacsin, but not the domain lacking the fragment 

encoded by exons 32 to 34 of Spg11 (Supplementary Fig. 4B). UBR4 is an N-recognin involved in the 

degradation of proteins with an N-Degron motif(Sriram et al., 2011). AP5Z1 is predicted to have such 

a motif according to the Eukaryotic Linear Motif Resource (http://elm.eu.org/index.html). 

Downregulation of UBR4 using siRNA led to higher amount of AP5Z1 in the presence of spatacsin-GFP 

(Fig. 4D) and a lower number of tubular lysosomes (Supplementary Fig. 4C), suggesting that AP5Z1 

degradation may be mediated by UBR4 and that preventing AP5Z1 degradation may impair the 

formation of tubular lysosomes. 

We next tested whether AP5Z1 levels contribute to the regulation of lysosome function by co-

transfecting wildtype MEFs with Lamp1-mCherry and either a vector expressing GFP-AP5Z1 (Fig. 4E) or 

siRNA that downregulate AP5Z1 (Supplementary Fig. 4D). Both overexpression and downregulation of 

AP5Z1 decreased the number of tubular lysosomes (Fig. 4F, Suppl. Fig. 4E). GFP-AP5Z1 also affected 

lysosomal dynamics in control fibroblasts (Fig. 4G). Overall, these data show that AP5Z1 levels must be 

tightly regulated to control lysosomal dynamics and suggest that spatacsin contributes to such 

regulation by promoting the ubiquitin-dependent degradation of AP5Z1.  

  

http://elm.eu.org/index.html
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Figure 4. spatacsin promotes ubiquitin-dependent degradation of 
AP5Z1 
 

A. Western blot analysis of wildtype MEFs overexpressing spatacsin-GFP alone or together with 

ubiquitin or mutant ubiquitin-K0.  

B. Overexpression of spatacsin leads to lower levels of endogenous AP5Z1. This effect was blocked by 

co-expression of mutant ubiquitin-K0 (Left). Levels of endogenous spastizin were not significantly 

affected by expression of spatacsin-GFP or ubiquitin. Mean ± SEM, *P < 0.05, **P < 0.01, ***P < 

0.001, Kruskall-Wallis test. 

C. Western blots showing levels of spatacsin-GFP, spastizin, AP5Z1, and actin in MEFs overexpressing 

GFP, spatacsin-GFP, or spatacsin32-34-GFP (Left). Right: quantification of the western blots showing 

that overexpression of full-length spatacsin-GFP, but not spatacsin32-34-GFP, leads to lower levels 

of endogenous AP5Z1. Mean ± SEM, *P < 0.05, **P < 0.01, Kruskall Wallis test.  

D. Western blot showing higher levels of AP5Z1 in wildtype MEFs transfected with siRNA that 

downregulates the N-recognin UBR4. Mean ± SEM, *P < 0.05, Mann-Whitney test. 
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Figure 4. spatacsin promotes ubiquitin-dependent degradation of 
AP5Z1 (second part) 

 

E. Live images of wildtype MEFs expressing Lamp1-mCherry and GFP-AP5Z1.Scale bar: 10 µm. 

F. Quantification of the number of tubular lysosomes in wildtype MEFs transfected with a vector 

overexpressing GFP-AP5Z1. Mean and 95% CI, N = 78 for cells from three independent experiments. 

***P < 0.001, Mann-Whitney test. 

G. Quantification of the proportion of tubular lysosomes moving > 1.2 µm in wildtype MEFs transfected 

with a vector overexpressing GFP-AP5Z1. Mean and 95% CI, N = 30 cells from three independent 

experiments. **P < 0.01, unpaired t-test. 
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Supplementary Figure 4. spatacsin promotes ubiquitin-dependent 
degradation of AP5z1 
 

A. Wildtype MEFs expressing spastizin-HA were immunostained with anti-Lamp1 and anti-HA 

antibody. Note the colocalization of spastizin-HA with lysosomal marker Lamp1. Scale bar: 5 µm. 

B. Western blots showing co-immunoprecipitation of UBR4 with the C-terminal domain of spatacsin 

(aa 1943-2443, GFP-spatacsin-Cter) but not the construct lacking amino acids encoded by exons 32 

to 34 (GFP-spatacsin-Cter32-34). 

C. Quantification of the number of tubular endolysosomes in wildtype MEFs transfected with siRNA 

that downregulates UBR4. Data obtained with two independent siRNAs were combined. Median 

and 95% CI, N = 68 cells from three independent experiments. ***P < 0.001, Mann-Whitney test. 

D. Western blot showing downregulation of AP5Z1 48 h after transfection with two independent 

siRNAs. Equal loading was validated by -tubulin immunoblotting. 

E. Quantification of the number of tubular lysosomes in wildtype MEFs transfected with siRNA that 

downregulate AP5Z1. Data obtained with two independent siRNAs were combined. Median and 

95% CI, N = 74 cells from three independent experiments. ***P < 0.001, Mann-Whitney test. 
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5. Ubiquitin-dependent degradation of AP5Z1 promotes spastizin 
recruitment to lysosomes 

 

We then evaluated the consequences of blocking spatacsin-mediated degradation of AP5Z1. 

Expression of Ubiquitin-K0, which prevented degradation of AP5Z1 resulted in increased interaction of 

AP5Z1 with spatacsin and diminished interaction of spastizin with spatacsin, as evaluated by co-

immunoprecipitation (Fig. 5A-B). Thus, spatacsin-mediated degradation of AP5Z1 appears to favor the 

interaction of spatacsin with spastizin. We tested this hypothesis by overexpressing AP5Z1 and 

observed that it lowered the amount of spastizin co-immunoprecipitated with spatacsin (Fig. 5C-D). 

Overall, these data suggest that spatacsin contributes to the regulation of AP5Z1 levels by promoting 

its degradation, thus favoring the interaction of spatacsin with spastizin. 

spatacsin is required to recruit spastizin to lysosomes(Hirst et al., 2021b). Accordingly, we observed 

weaker colocalization of spastizin-GFP with Lamp1-mCherry in Spg11-/- than Spg11+/+ MEFs by live 

imaging (Suppl. Fig 5A-B). Thus, spatacsin-mediated AP5Z1 degradation may regulate the localization 

of spastizin to lysosomes. Overexpression of AP5Z1 or preventing its degradation by the expression of 

ubiquitin-K0 in wildtype MEFs, significantly decreased the localization of spastizin-GFP to lysosomes 

(Fig. 5E). Overall, these data suggest that spatacsin-mediated ubiquitin-dependent degradation of 

AP5Z1 contributes to lysosomal localization of spastizin.  
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Figure 5. AP5Z1 regulates spastizin recruitment to lysosomes 
 

A. Western blots showing that the interaction of spatacsin-GFP with AP5Z1 and spastizin is modulated 

by the expression of mutant ubiquitin-K0.  

B. Quantification of immunoprecipitation showing that ubiquitin-K0 increases the amount of AP5Z1 

and decreases the amount of spastizin immunoprecipitated with spatacsin-GFP. Mean ± SEM, *P < 

0.05, Kruskall-Wallis test.  

C. Western blots showing that the interaction of spatacsin-GFP with spastizin decreases when AP5Z1 

is overexpressed. 

D. Quantification of immunoprecipitation showing that overexpression of AP5Z1 increases the 

interaction of spatacsin-GFP with AP5Z1 and decreases the interaction of spatacsin-GFP with 

spastizin. Mean ± SEM, *P < 0.05, Mann-Whitney test. 

E. Quantification of the proportion of spastizin-GFP colocalized with Lamp1-mCherry in wildtype MEFs 

overexpressing AP5Z1, ubiquitin, or ubiquitin-K0. Mean and 95% CI, N > 36 cells from three 

independent experiments. *P < 0.05, one-way ANOVA followed by Sidak’s multiple comparison test. 
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Supplementary Figure 5. spatacsin is required for lysosomal localization 
of spastizin 
 

A. Expression of spastizin-GFP and Lamp1-mCherry in Spg11+/+ and Spg11-/- MEFs. Note the 

localization of spastizin-GFP along the tubular lysosomes in Spg11+/+ MEFs (arrowheads in insert), 

and the absence of colocalization of spastizin-GFP with lysosomes in Spg11-/- MEFs. Scale bar 10 

µm. 

B. Quantification of the proportion of spastizin-GFP colocalized with Lamp1-mCherry in Spg11+/+ and 

Spg11-/- MEFs. Mean and 95% CI, N > 50 cells from three independent experiments. ****P < 0.0001, 

unpaired T-test.  

 

6. spastizin regulates tubular lysosome motility 
 

Live imaging showed that spastizin-GFP is localized along tubular lysosomes (Inset Suppl. Fig. 

5A), suggesting that it may play a role in lysosome motility. We tested this hypothesis by 

downregulating its expression using siRNA (Fig. 6A). Downregulation of spastizin resulted in a decrease 

in the number of tubular lysosomes (Fig. 6B). Treatment of MEFs with the PI3 kinase inhibitor 

wortmannin prevented the lysosomal localization of spastizin (Fig. 6C) and decreased the number of 

tubular lysosomes and their dynamics (Fig. 6D). These results suggest that recruitment of spastizin to 

lysosomes is required to mediate their motility. 

spastizin has been shown to interact with the motor protein KIF13A(Sagona et al., 2010b). 

Transfection of MEFs with a vector expressing KIF13A-YFP showed it to be partially colocalized with 

Lamp1 immunostaining (Fig. 6E). Overexpression of the mutant KIF13A-ST-YFP, devoid of the motor 

domain(Delevoye et al., 2014b) but capable of interacting with spastizin (Supplementary Fig. 6), 

prevented the formation of tubular lysosomes and altered their dynamics (Fig. 6F).Overall, these 

results suggest that spastizin mediates the recruitment of KIF13A to lysosomes to control the 

formation of tubular lysosomes and their motility.  
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Figure 6. spastizin regulates lysosome morphology and dynamics 
 

A. Western blot showing downregulation of spastizin 48 h after transfection of wildtype MEFs with 

siRNA. Equal loading was validated by clathrin heavy chain immunoblotting. 

B. Quantification of the number of tubular lysosomes in wildtype MEFs transfected with siRNAs that 

downregulate spastizin. Data obtained using two independent siRNAs were combined. Median and 

95% CI, N = 92 cells from three different independent experiments. ****P < 0.0001, Mann-Whitney 

test. 

C. Images of wildtype MEFs expressing spastizin-GFP and Lamp1-mCherry treated with 100 nM 

wortmannin for 1 h. Note the loss of colocalization of spastizin-GFP and Lamp1-mCherry upon 

wortmannin treatment. Scale bar: 5 µm 

D. Left: quantification of the number of tubular lysosomes in wildtype MEFs treated with wortmannin. 

Median and 95% CI, N = 32 cells from three different independent experiments. ***P = 0.0009, 

Mann-Whitney test. Right: proportion of tubular lysosomes moving > 1.2 µm (right) in wildtype 

MEFs treated with wortmannin. Median and 95% CI, N = 17 cells from three different independent 

experiments. **P = 0.014, Mann-Whitney test.  
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Figure 6. spastizin regulates lysosome morphology and dynamics 
(second part) 

 

E. Images showing the partial colocalization of Lamp1-mCherry with KIF13A-YFP and mutant KIF13A-

ST-YFP lacking the motor domain. Scale bar: 5 µm. 

F. Left: quantification of the number of tubular lysosomes in wildtype MEFs transfected with wildtype 

KIF13A or mutant KIF13A-ST. Median and 95% CI, N = 58 cells from three different independent 

experiments. ****P < 0.0001, Kruskall-Wallis test. Right: proportion of tubular lysosomes moving > 

1.2 µm in wildtype MEFs transfected with wildtype KIF13A or mutant KIF13A-ST. Mean and 95% CI, 

N = 22 cells from three different independent experiments. *P < 0.05, one-way ANOVA, Dunnett’s 

multiple comparisons test. 

 

Supplementary Figure 6. Interaction of spastizin with KIF13A 
 

Western blots showing co-immunoprecipitation of spastizin-HA with KIF13A-YFP or mutant KIF13A-ST-YFP 

(devoid of the motor domain). 
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7. The ER is a platform to promote the formation of tubular 
lysosomes and regulate their motility  

 

Our data, thus far, suggested that spatacsin mediates the degradation of AP5Z1 in a ubiquitin-

dependent manner, facilitating the interaction of spatacsin with spastizin and allowing the recruitment 

of spastizin to lysosomes, thus contributing to regulate the formation and dynamics of tubular 

lysosomes. We next aimed to determine the localization of the interaction between ER-associated 

spatacsin and spastizin. A proximity-ligation assay in MEFs transfected with spatacsin-V5 and spastizin-

HA showed the interaction of spatacsin with spastizin to occur at lysosomes labelled by Lamp1 

immunostaining (Fig. 7A). This suggests that the interaction of spatacsin with spastizin occurs at 

contact sites between the ER and lysosomes. 

Based on our results, we analyzed the interaction of lysosomes with the ER network. The analysis 

of live images of MEFs expressing Lamp1-mCherry and GFP-Sec61  showed ~85% of Lamp1-mCherry-

positive particles to be in contact with the ER. However, consideration of only highly motile tubular 

lysosomes increased the proportion that was in contact with the ER to approximately 95% (Fig. 7B-C). 

Moreover, the overlap of lysosome and ER staining was greater for tubular lysosomes than round 

lysosomes, suggesting that they were in closer proximity to the ER. (Fig. 7D). Live imaging showed that 

tubular lysosomes move along the ER tubular network (Fig. 7E, Suppl. Video 3), also suggesting that 

tubular lysosomes are closely associated with the ER network. Accordingly, STED microscopy showed 

that the tubular lysosomes were entangled in a network of ER tubules (Fig. 7F). Overall, these data 

show that dynamic tubular lysosomes are strongly associated with the ER tubular network.  

Given the strong association of dynamic tubular lysosomes with the ER network, we assessed 

whether ER network integrity contributes to lysosome morphology and/or motility. Atlastin-1 is a 

GTPase involved in the homotypic fusion of ER tubules, thus regulating ER network morphology(Hu et 

al., 2009). As previously observed, expressing a form of atlastin-1 mutated in the GTPase domain 

(atlastin K80A) strongly altered the morphology of the ER (Supplementary Fig. 7A-B)(Hu et al., 2009). 

Disruption of the ER tubular network by expression of atlastin K80A resulted in a decrease in the 

number of tubular lysosomes (Fig. 7G) and affected their dynamics (Fig. 7G), indicating that the 

integrity of the ER tubular network is necessary for tubular lysosome formation and dynamics.  

Finally, we evaluated the impact of ER network alteration on AP5Z1 levels as well as on the 

interaction of spatacsin with its partners. Co-transfection of atlastin-K80A-myc with spatacsin-GFP 

prevented spatacsin-dependent degradation of AP5Z1 (Fig. 7H, Supplementary Fig. 7C). It also led to a 

higher amount of AP5Z1 and a lower amount of spastizin coimmunoprecipitated with spatacsin-GFP 

(Fig. 7H, Supplementary Fig. 7D). This observation is consistent with a role of AP5Z1 and spastizin in 

the regulation of tubular lysosome formation and dynamics. As spatacsin did not interact with either 

wildtype or the K80A variant of atlastin, the effect of atlastin on lysosome morphology and motility is 

likely modulated by ER network morphology.  
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Figure 7. ER is a platform to promote the formation of tubular 
lysosomes and regulate their motility 
 

A. Proximity-ligation assay (PLA) showing the interaction between V5-tagged spatacsin and HA-

tagged spastizin in wildtype MEFs. The PLA signal (cyan) is detected at the level of lysosomes 

immunostained with Lamp1 (arrowheads). Scale bar: 5 µm. 

B. Binarized image of fibroblasts expressing GFP-Sec61  and Lamp1-mCherry. Note the strong overlap 

(white) between the ER (magenta) and lysosome (green) masks. Red arrowheads point to tubular 

lysosomes. 

C. Quantification of the proportion of lysosomes free from contact with the ER depending on their 

shape. Mean and 95% CI, N = 13 cells from three independent experiments. ****P < 0.0001, 

unpaired t-test.  

D. Quantification of the proportion of lysosomes that have an area overlapping with the ER > 50% 

based on their shape. Mean and 95% CI, N = 13 cells from three independent experiments. **P < 

0.01, unpaired t-test. 
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Figure 7. ER is a platform to promote the formation of tubular lysosomes and regulate 
their motility (second part) 

E. Snapshot images of live imaging of a wildtype MEF transfected with Lamp1-mCherry (Magenta) and 

GFP-Sec-61β (Green). A tubular lysosome trafficking along the ER tubule network is indicated by an 

arrow. Scale bar: 5 µm.  

F. STED image of a tubular lysosome stained with Lamp1 antibody and its close interaction with the ER 

tubular network stained by anti-V5 antibody targeting Reticulon2-V5 (Rtn2-V5) expressed in wildtype 

fibroblasts. Scale bar: 1 µm. 

G. Left: quantification of the number of tubular lysosomes in wildtype MEFs transfected with a vector 

overexpressing wildtype atlastin, or mutant atlastin K80A. Median and 95% CI, N = 61 cells from three 

independent experiments. ****P < 0.0001, Kruskall-Wallis test followed by Dunn’s multiple comparison 

test. Right: proportion of tubular lysosomes moving > 1.2 µm. Mean and 95% CI, N = 25 cells from three 

independent experiments. **P = 0.0052, one-way ANOVA, Dunnett’s comparison test. 

H. Western blots showing that the interaction of spatacsin-GFP with AP5Z1 and spastizin is modulated by 

the expression of mutant atlastin K80A.   
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Supplementary Figure 7. Mutant atlastin K80A disrupts the ER network 
and lysosomal dynamics 
 

A. Anti-myc immunostaining of wildtype MEFs transfected with Lamp1-mCherry, GFP-Sec61  and 

either Atlastin-myc or mutant atlastin K80A-myc. All cells expressing Lamp1-mCherry and GFP-

Sec61  were positive for myc immunostaining. 

B. Live imaging of MEFs expressing Lamp1-mCherry, GFP-Sec61  and either atlastin-myc or mutant 

atlastin K80A-myc. Note the change in ER morphology in MEFs co-transfected with atlastin K80A-

myc 
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Supplementary Figure 7. Mutant atlastin K80A disrupts the ER network and 

lysosomal dynamics (second part) 

  

C. Quantification of Western blots showing that AP5Z1 levels are decreased upon expression of spatacsin 

GFP, which is blocked when cells are co-transfected with a vector expressing atlastin K80A. Mean ± SEM, 

*P < 0.05. Kruskall Wallis test. 

D. Quantification of Western blots showing that the interaction of spatacsin-GFP with AP5Z1 and spastizin 

is modulated by expression of mutant atlastin K80A. Mean ± SEM, *P < 0.05, ** P< 0.01. Kruskall Wallis 

test followed by Dunn’s multiple comparison test.  

 

Figure 8. Scheme summarizing the molecular action of spatacsin.  
Spatacsin is an ER-resident protein that mediates the degradation of AP5Z1 using accessory proteins such as 

UBR4. Upon degradation of AP5Z1, spatacsin can interact with spastizin at the levels of contact sites between ER 

and lysosomes. This allows the recruitment of the molecular motor KIF13A, which likely allows the formation of 

tubular lysosomes and their movement.  
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Discussion 
 

The loss of spatacsin, involved in hereditary spastic paraplegia type SPG11, causes lysosomal 

dysfunction(Boutry et al., 2018; Branchu et al., 2017; Chang et al., 2014b; Varga et al., 2015). The 

molecular function of spatacsin has, thus far, remained elusive. Here, we used a combination of trained 

neural networks and targeted image analysis coupled to an siRNA screen to show that spatacsin 

function is associated with ubiquitin-mediated proteolysis. We demonstrate that spatacsin controls 

lysosome morphology and dynamics by acting at the contact sites between the ER and lysosomes and 

that this regulatory function of spatacsin relies on ubiquitin-dependent degradation of AP5Z1.  

spatacsin is required for the formation and dynamics of tubular lysosomes. We identified a 

pool of lysosomes with a tubular shape that corresponds to dynamic lysosomes. Their mean velocity, 

which is > 0.3 µm/sec, is consistent with microtubule-based movement(Cordonnier et al., 2001). 

Furthermore, such tubular lysosomes rely on the presence of spastizin at the surface of lysosomes, 

which recruits the molecular motor KIF13A. KIF13A is a plus end-directed microtubule motor that 

allows the movement of vesicles toward the cell periphery(Nakagawa et al., 2000) and promotes the 

formation of tubules in recycling endosomes(Delevoye et al., 2014b). KIF13A likely contributes to the 

formation of tubular lysosomes by pulling on membranes, as shown in endosomes(Delevoye et al., 

2016). This action may also participate in the motility of tubular lysosomes (Fig. 8). spastizin/KIF13A 

coupling to lysosomes by spatacsin may thus contribute to the trafficking of lysosomes toward the cell 

periphery and may explain the clustering of lysosomes around the nucleus when spatacsin is 

absent(Boutry et al., 2019b).  

The formation of tubules emanating from lysosomes has also been observed after long-term 

starvation in ALR, a cellular process that relies on spatacsin and spastizin but appears to be 

independent of AP5Z1(Chang et al., 2014b). Starvation has been shown to promote lysosomal 

recruitment of spastizin in a Rag GTPase-dependent manner(Hirst et al., 2021b). The recruitment of 

spastizin to lysosomes may contribute to the formation of tubules in ALR. However, the lysosomal 

tubules observed in ALR and in our study may differ, as ALR tubules are catalytically inactive(Yu et al., 

2010) and rely on the kinesin KIF5B for their formation(Du et al., 2016). This suggests that there are 

differences in lysosomal tubules that may be associated with different molecular motors possibly 

involved in different lysosomal functions(Pu et al., 2016). 

The highly dynamic tubular lysosomes we observed in MEFs were strongly associated with the 

ER. Consistent with this finding, spatacsin was localized to the ER and likely interacted with lysosome-

localized spastizin at the contact sites between the ER and lysosomes. Proteins present at the ER-

Lysosomes contact sites, such as ORP1L, RNF26, and FYCO1, can change the cellular localization of 

lysosomes, depending on their molecular interactions(Jongsma et al., 2016b; Raiborg et al., 2015b; 

Rocha et al., 2009b). Our data show, for the first time, that proteins acting at contact sites between 

the ER and lysosomes regulate the motility of lysosomes along the ER network. Furthermore, the 

mechanisms that regulate the membrane contact sites are critical to understanding how they may 

respond to physiological stimuli(Venditti et al., 2021).   
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Our strategy of screening for the role of putative spatacsin partners in the formation of tubular 

lysosomes revealed an unexpected role for ubiquitin-dependent degradation in the function of 

spatacsin. We identified AP5Z1, known to interact with spatacsin and localized in lysosomes(Hirst et 

al., 2013a), as a protein degraded in a ubiquitin- and spatacsin-dependent manner to regulate tubular 

lysosome formation and motility. However, spatacsin required several its partners, such as UBR4, to 

mediate AP5Z1 degradation (Fig. 8).  

AP5Z1 is a subunit of the adaptor protein complex AP5(Hirst et al., 2011b), which needs to be 

tightly regulated, as both its overexpression or downregulation impaired lysosome motility. Adaptor 

protein complexes recruit proteins to specific subcellular compartments to modulate intracellular 

trafficking(Sanger et al., 2019). Their activation relies on their interaction with specific cargo and 

transmembrane proteins. However, inactivation of these complexes is also important in the regulation 

of trafficking events. Phosphorylation has been proposed to inactivate AP1 and AP2 

complexes(Beacham et al., 2019). AP5 may be negatively regulated by spatacsin in a ubiquitin-

dependent manner through the degradation of at least one subunit of this complex. Our data suggest 

that AP5Z1, required for the formation of tubular lysosomes, must be degraded to allow the 

association of spastizin with lysosomes, which is mediated by spatacsin. 

Importantly, the interaction of spatacsin with its partners, spastizin and AP5Z1, is modulated 

by the morphology of the ER network and could thus play a role in coupling ER morphology to lysosome 

function. The morphology of the ER was recently proposed to regulate the trafficking of lysosomes in 

the pre-axonal region to control the availability of axonal lysosomes in neurons(Özkan et al., 2021). As 

ER-resident spatacsin can control lysosome motility depending on ER morphology, it is possible that 

spatacsin could contribute to the regulation of lysosome trafficking in neurons. The absence of 

spatacsin in SPG11 patients and models may thus impair lysosome trafficking in axons, leading to their 

accumulation in the cell body. In the long term this could contribute to the lysosomal storage disorder 

that has been observed in Spg11 knockout models and the brains of SPG11 patients(Boutry et al., 2018; 

Branchu et al., 2017; Denora et al., 2016b). 

We thus identify spatacsin as a protein present at contact sites between the ER and lysosomes 

that is critical for the coordination of lysosome trafficking with ER network morphology. ER 

morphology and lysosome function are impaired in several forms of hereditary spastic 

paraplegia(Allison et al., 2017b; Darios et al., 2022). The results of this study, identifying a spatacsin-

mediated link between ER shape and lysosome motility, may thus represent a unifying 

pathophysiological mechanism for a variety of hereditary spastic paraplegias. 
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Experimental procedures 
 

Mouse models 
 

The Spg11 knockout (Spg11-/-) model has been previously described(Branchu et al., 2017). This 

model was generated by inserting two stop codons in exon 32, leading to the loss of expression of 

spatacsin, and can thus be considered as a functional Spg11 knockout. To obtain this mouse model, 

we created an intermediate model in which floxed exons 32 to 34 bearing the stop codons were 

inserted in the reverse orientation in intron 34(Branchu et al., 2017) (Suppl. Fig. 1A). RT-PCR of the 

transcripts followed by sequencing of brain and spleen samples showed this intermediate model to 

express the floxed allele, with the splicing of exons 32 to 34 and conservation of the reading frame 

between exon 31 and exon 35 (Suppl. Fig. 1B-C). It was thus equivalent to a functional deletion of exons 

32-34 and was named Spg11 32-34/  32-34. 

Antibodies  
 

The antibodies used for immunofluorescence and immunoblotting were rat anti-Lamp1 (clone 

1D4B, Development Studies Hybridoma Bank, University of Iowa, USA, deposited by JT August), rabbit 

anti-V5 (Cat#8137, Sigma), mouse anti-V5 (Cat#Ab27671, Abcam), rat anti-HA (clone 3F10, 

Cat#11867423001, Merck), rabbit anti-HA (Cat#ab9110, Abcam), rabbit anti-GFP (Cat#6556, Abcam), 

mouse anti-Myc (clone 9E10, Development Studies Hybridoma Bank), rabbit anti-Stim1 (Cat#5668, Cell 

Signaling Technology), GRP78 (clone40/BiP, Cat#610978, BD Biosciences), rabbit anti-cathepsin D 

(Cat#Ab75852, Abcam), rabbit anti-spatacsin (Cat#16555-1-AP, ProteinTech), rabbit anti-spastizin 

(Cat#5023, ProSci), rabbit anti-AP5Z1 (Cat#HPA035693, Sigma), rabbit anti-calreticulin (Cat#SPA600F, 

Enzo Life Sciences), mouse anti-VDAC1 (Cat#Ab16814, Abcam), mouse anti-clathrin heavy chain (clone 

23, Cat#610500, BD Biosciences), and rabbit anti-UBR4 (Cat#Ab86738, Abcam). 

The secondary antibodies used for immunofluorescence were purchased from ThermoFisher: 

donkey anti-mouse IgG Alexa 488 (Cat#A21202), goat anti-rabbit IgG Alexa 555 (Cat#A21429) and goat 

anti-rat IgG Alexa 647 (Cat#A21247). For STED microcopy, the secondary antibodies were goat anti-

rabbit IgG STAR 580 (Cat#ST580-1002, Abberior, Göttingen, Germany) and goat anti-mouse IgG STAR 

635 (Cat#ST635-1001, Abberior). The secondary antibodies coupled to horseradish peroxidase used 

for immunoblotting were purchased from Jackson ImmunoResearch (Ely, UK): donkey anti-mouse IgG 

(Cat#JIR715-035-151) and donkey anti-rabbit IgG (Cat#711-035-152).  
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Plasmids 
 

The spastizin-GFP vectors has been previously described(Hanein et al., 2008b). spastizin-HA 

was obtained by replacing GFP with an HA tag in the spastizin-GFP vector. A codon-optimized vector 

expressing human spatacsin was generated (Baseclear, Leiden, Netherlands) in a gateway compatible 

system (ThermoFisher). The cDNA was transferred by LR clonase into the pDest-47 vector 

(ThermoFisher), leading to a vector expressing spatacsin-GFP. Deletion of nucleotides 6013 to 6477 of 

optimized spatacsin cDNA resulted in spatacsin 32-34. C-terminal fragments of spatacsin (aa 1943-2433) 

and spatacsin 32-34 (aa 1943-2226) were amplified by PCR and inserted in the pDest-53 vector 

(ThermoFisher), leading to vectors that expressed GFP-spatacsin-Cter and GFP-spatacsin-Cter 32-34. 

The other plasmids used in the study were obtained from other laboratories or Addgene. GFP-Sec61  

was obtained from G. Voeltz(Voeltz et al., 2006), AP5Z1-His from M Slabicki(Słabicki et al., 2010b, p. 

48), ubiquitin-His and ubiquitin-K0-His from R. Baer(Wu-Baer et al., 2003), reticulon2-V5 from E. 

Reid(Montenegro et al., 2012), atlastin-Myc and atlastin K80A-Myc from J. Hu(Hu et al., 2009), KIF13A-

YFP and KIF13A-ST-YFP from C. Delevoye(Delevoye et al., 2014b), and Lamp1-GFP (#16290) and Lamp1-

mCherry (#45147) from Addgene.  

siRNA 
 

The siRNAs used to downregulate Spg11 were either On-target plus siRNAs (Dharmacon), with 

the sequences CAGCAGAGAGUUACGCCAA (#J-047107-09-0002) and CAGUAUGUGCCGGGAGAUA (#J-

047107-12-0002), or from ThermoFisher, with the sequence GGUUCUACCAGGCUUCUAUtt 

(#s103130). The siRNAs used to downregulate Spg15 and AP5z1 were Silencer Select siRNAs form 

Thermofisher. For Spg15, the sequences were CUUCAACUCCUGCAACGAAtt (#s102537) and 

GAGCGAUACCAAGAGGUAAtt (#s102536). For AP5Z1, the sequences were 

GGAGCAGAGUAACCGGAGAtt (#s106997) and UCUGCUCCCGGGUCACUAAtt (#s106999). The siRNAs 

used to test the role of spatacsin interactors identified by the two-hybrid screen were Silencer Select 

siRNAs from ThermoFisher and are listed in Supplementary Table 3.  

 

Subcellular fractionation of brain tissue 
 

Mice were killed using CO2 and the brains immediately dissected and rinsed twice in PBS at 

4°C. Subcellular fractionation was performed according to a previously described procedure(Zhu et al., 

2003). Dissected brains were homogenized in 0.32 M sucrose and 10 mM HEPES (pH 7.4) using a PFTE 

(polytetrafluoroethylene) pestle attached to a stirrer (Heidolph, Germany) rotating at 500 rpm. 

Lysates were centrifuged at 1,330 x g for 3 min, generating a pellet (P1) and a supernatant (S1). The S1 

supernatant was centrifuged at 21,200 x g for 10 min, producing a pellet (P2) and a supernatant (S2). 

The S2 supernatant was then centrifuged at 200,000 x g for 1 h, generating a pellet (P3) and a 

supernatant (S3).  
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Isolation of the ER and lysosome-enriched fractions 
 

Isolation of the ER and lysosome-enriched fractions was performed according to previously 

described protocols with several modifications(Bozidis et al., 2007; Graham, 2000). After killing mice 

using CO2, the brains were immediately extracted and washed with PBS at 4°C. Brains were 

mechanically dissociated in 250 mM sucrose, 1 mM EDTA, 10 mM Hepes pH 7.4, 1 mM DTT and 25 mM 

KCl supplemented with a protease inhibitor cocktail (Thermofisher), as described for subcellular 

fractionation. Lysates were centrifuged at 800 x g for 5 min and the pellets discarded. The supernatant 

was centrifuged at 20,000 x g for 10 min and the resulting pellet A retained for lysosome isolation and 

the supernatant A for ER isolation. For lysosome isolation, pellet A was resuspended in 2 mL of the 

initial buffer and deposited on 10 ml of 27% Percoll solution in a 15-mL tube. After 90 min of 

centrifugation at 20,000 x g, the lysosomal fraction was visible close to the bottom of the tube and 

collected by pipetting. It was then resuspended in the initial buffer and centrifuged at 20,000 x g for 

10 min. The pellet was resuspended in sample buffer and analyzed by western blotting. 

To isolate the ER, supernatant A was deposited on a gradient of several sucrose solutions 

prepared in 10 mM Tris pH 7.4 and 0.1 mM EDTA. The sucrose concentrations of the three solutions 

were from the bottom up: 2 M, 1.5 M, and 1.3 M. The preparation was centrifuged for 70 min at 

152,000 x g. After centrifugation, the ER-enriched fraction was found at the phase-limit between the 

1.3 M sucrose solution and the 1.5 M sucrose solution. The fraction was collected and resuspended in 

the initial buffer and centrifuged for 45 min at 152,000 x g. The pellet was resuspended in sample 

buffer and analyzed by western blotting. 

Membrane association assay  
 

To determine the membrane association of spatacsin, we collected the P3 fraction obtained 

from the subcellular fractionation of the brains and followed a previously published protocol(Zhu et 

al., 2003). The membrane fraction was treated with one of the following solutions: 1 M NaCl and 25 

mM phosphate buffer (pH 7.4); 100 mM glycine buffer (pH 2.8); 100 mM carbonate buffer (pH 11.0); 

or 1.0% sodium deoxycholate and centrifuged at 200,000 x g for 60 min. The final pellet and the 

supernatants analyzed by western blotting.  

Mouse embryonic fibroblast cultures 
 

Mouse embryonic fibroblasts were prepared using 14.5 day-old embryos obtained from the 

breeding of heterozygous (Spg11+/- or Spg11+/ 32-34) mice as previously described(Boutry et al., 2019b). 

Comparisons between mutant and wildtype fibroblasts were always performed using fibroblasts 

originating from embryos of the same breeding. All experiments were performed with fibroblasts 

between passages 4 and 6. 

  



112 
 

Transfection 
 

Fibroblasts were transfected using the NEON transfection system (ThermoFisher) with one 

pulse of 30 ms at 1350 V, according to manufacturer instructions. Cells (5 x 105) were transfected with 

5 µg plasmid and used 24 h later. When we co-transfected a vector expressing a fluorescent protein 

together with a vector expressing a non-fluorescent protein for live imaging, we imaged cells 

expressing the fluorescent protein and then fixed the cells afterwards to verify that > 95% of cells 

expressing the fluorescent marker were also positive for the nonfluorescent protein by 

immunostaining. For transfection with siRNA, 50 x 103 cells were transfected with 1 pmol siRNA and 

analyzed after 48 h in culture. 

Chemicals 
 

Lysotracker Green and Red (Thermofisher) were used at 50 nM for 30 min to stain acidic 

lysosomes in fibroblasts. DQ-Red-BSA and DQ-Green-BSA (Thermofisher) were added to the culture 

medium at 2 µg/ml 1 h before imaging and then washed once with culture medium. Texas-Red 

conjugated dextran (10,000 MW –Thermofisher) was added to the culture medium at 100 µg/ml and 

the cells incubated for 4 h to allow its internalization by endocytosis and chased for 24 h to stain the 

lysosomal compartment. The PI3 kinase inhibitor wortmannin (Sigma) was used at 100 nM for 1 h. 

Immunofluorescence 
 

Cells were fixed in 4% PFA in PBS for 20 min and then permeabilized for 5 min in PBS containing 

0.2% v/v Triton X-100. Cells were then blocked for 45 min in PBS with 5% w/v BSA (PBS-BSA) and 

incubated with primary antibodies in PBS-BSA overnight at 4°C. Cells were washed three times with 

PBS and incubated with secondary antibodies coupled to fluorophores. After three washes with PBS, 

glass coverslips were then mounted on glass slides using Prolong Gold antifade reagent 

(ThermoFisher).  

Confocal microscopy 
 

Images of immunofluorescence were acquired using an inverted laser scanning Leica SP8 

confocal microscope (Mannheim, Germany) with a 63X objective N.A. 1.40. STED microscopy was 

performed using a Stedycon device (Abberior) mounted on an inverted Zeiss Imager M2 microscope, 

with a 100X objective N.A. 1.46.  

For live imaging, cells were imaged at 37°C and 5% CO2 using a Leica DMi8 inverted spinning 

disk confocal microscope equipped with 63X objective N.A. 1.40 and a Hamamatsu Orca flash 4.0 

camera. Timelapses of cells were acquired to analyze the trajectories of the lysosomes with one image 

taken every 1 s for 1 min.  
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Two-Hybrid screen 
 

The yeast two-hybrid screen was performed by Hybrigenics (Paris, France) using an adult 

human cDNA brain library. The bait was either the complete 1943-2443 domain of human spatacsin or 

the same domain lacking the amino acids encoded by exons 32 to 34. 

Image analysis 
 

Measurement of particle clustering around the nucleus  
 

Lysosomes were stained for the expression of Lamp1-mCherry, and images captured using a 

spinning disk confocal microscope. The particles were then detected and individualized using the Spot 

Detector plugin of ICY software. Spots were detected using a scale of three pixels and a sensitivity of 

140. A size filter discarded all particles with an area < 10 pixels. The result was exported as a binary 

image. The distance between the centroid of each particle and the centroid of the nucleus was 

measured using MATLAB software, as described previously(Boutry et al., 2019b).  

Tubular lysosome detection 
 

After detecting lysosomal particles using Spot Detector, the regionprops function of the 

MATLAB Image Processing Toolbox was used to determine the shape characteristics of the particles on 

the binary images. Tubular lysosomes were defined as follows: circularity < 0.5, eccentricity > 0.9, and 

a width/length ratio > 4. The selected particles were saved in a new image. To screen the effect of 

siRNAs on tubular lysosomes, we defined a tubulation index, for which we normalized the number of 

tubular lysosomes/µm2 to a value ranging from 0 to 1, corresponding to the average number of tubular 

lysosomes/µm2 quantified in Spg11-/- and Spg11+/+ fibroblasts analyzed in the same experiment.  

Lysosome trajectory analysis 
 

Analysis of the movement and trajectories of lysosomes was performed on the 60 timelapse 

images. First, to analyze the trajectory characteristics of round and tubular lysosomes particles, the 

particles were labeled by hand using the multipoint tool of Fiji software to extract their coordinates. 

The length of the trajectory and the mean speed were then computed using MATLAB. We then 

performed automated analysis solely for tubular lysosomes using MATLAB software. The regionprops 

function was used to detect the position of the centroids of tubular lysosomes during the timelapse. 

Once the coordinates were obtained, they were analyzed using John C. Crocker track.pro ‘freeware’ 

MATLAB function to determine the characteristics of the particle trajectories, considering that the 

maximum theoretical displacement of a particle between two frames was the approximate size of one 

tubular lysosome, hence 2.4 µm – 20 pixels. Then, the total distance that each particle traveled, its 

speed during the movement, and its lifetime were calculated.  
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Measurement of the area of the ER-Lysosomes overlap 
 

The binarization of lysosomal staining was performed using Spot Detector. The binarization of 

ER staining was performed using the ImageJ thresholding tool. Once the two binary images were 

obtained, they were compared using MATLAB and the area of overlap between the two stainings per 

particle was measured using the regionprops function. 

Image classification by a neural network 
 

Lysosomes of Spg11+/+ and Spg11-/- fibroblasts, as well as Spg11+/+ fibroblasts transfected with 

siRNAs, were stained using Texas-Red conjugated dextran. Images were acquired using a spinning disk 

confocal microscopy, generating an image library. 

To train the Spg11 classification model, Tensorflow (https://www.tensorflow.org/?hl=fr) and 

Scikit-learn (https://scikit-learn.org/stable/) Python libraries were used. Images of lysosomes of Spg11-

/- (n = 742 cells) and Spg11+/+ (n = 735 cells) MEFs were used as a database. Training and test sets were 

generated randomly with a test set size of 15% (111 Spg11+/+ fibroblast images and 112 Spg11-/- 

fibroblast images). Initial images of 921x1024 pixels were resized to 224x224 pixels to reduce input 

size while retaining consistent information. Data augmentation was performed using flip Tensorflow 

functions to improve training and artificially increase the number of images. Finally, the image pixel 

values were normalized between 0 and 1. The transfer learning approach was used to avoid model 

training from scratch. The VGG16 (Simonyan and Zisserman, 2015) neural network structure was used 

and downloaded using the TensorFlow hub library (https://www.tensorflow.org/hub?hl=fr). VGG16 is 

a convolutional neural network model trained on ImageNet, which is a dataset of over 14 million 

images belonging to 1,000 classes. The top three layers were excluded and replaced with three other 

layers: one dense layer of 512 neurons, a dropout layer, and a 64-neuron layer. The final layer was the 

soft-max layer. The neural network was trained using a NVIDIA GeForce GTX 1050 Ti for 150 epochs, 

with a starting learning rate at 0.0001 and a batch size at 32. Model evaluation resulted in 79.5% total 

accuracy on the test set.  

The trained model was used to predict the probability of the cell to be considered as a Spg11-

/- fibroblast for each image of fibroblast transfected with siRNA. For each siRNA, the arithmetic mean 

of the probability was calculated. 

Protein extraction from cells 
 

MEFs were washed twice with PBS and lysed in 100 mM NaCl, 20 mM Tris pH7.4, 2 mM MgCl2, 1% SDS, 

and 0.1% Benzonase (Sigma). Samples were centrifuged at 17,000 x g for 15 min and the supernatants 

recovered as solubilized proteins. The protein concentration was determined using the BCA assay kit 

(Thermofisher). 
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Western Blotting 
 

Protein lysates supplemented with sample buffer (final concentration 80 mM TrisHCl pH 6.8, 10 mM 

DTT, 2% SDS, 10% glycerol) were separated on 3-8% Tris-acetate or 4-12 Bis-Tris gels (Thermofisher). 

Proteins were then transferred to PVDF membranes (Merck). Membranes were then incubated in 

Ponceau red for 5 min and blocked in PBS-0.02% Tween (PBST) with 5% milk for 45 min. The 

membranes were incubated with primary antibodies in PBST-5% milk overnight at 4°C. Secondary 

antibodies were conjugated with HRP (Jackson Lab) and the signals visualized using chemiluminescent 

substrates (SuperSignal West Dura/Femto; Thermofisher). The chemiluminescent signal was then 

acquired on Amersham Hyperfilm ECL. Signal intensities of the western blots were quantified using the 

ImageJ gel analysis plugin. 

Co-immunoprecipitation 
 

Cells were lysed on ice in 100 mM NaCl, 20 mM Tris pH7.4, 1 mM MgCl2, and 0.1% NP40 supplemented 

with a protease inhibitor cocktail. Samples were centrifuged at 17,000 x g for 15 min at 4°C. Ten 

percent of the supernatant was retained, supplemented with sample buffer, and was used to monitor 

protein quantity for the inputs. The remaining 90% of the supernatants was incubated with 10 µL of 

GFP-trap beads (Chromotek, Germany) for 90 min using a rotating wheel at 4°C. Beads were washed 4 

times in lysis buffer and supplemented with sample buffer with DDT. Beads and inputs were then 

analyzed by western blotting.  

Proximity Ligation Assay 
 

MEFs were fixed in PBS containing 4% PFA for 15 min. The Duolink Proximity Ligation Assay (PLA, 

Sigma) was then performed according to the manufacturer’s instructions. After performing the PLA 

reaction, we immuno-stained the cells with fluorescent secondary antibodies to detect transfected 

cells and used the Prolong Gold antifade mounting medium (Thermofisher) instead of the Duolink in 

situ mounting medium provided with the kit. 

Statistics 
 

Data were analyzed using GraphPad Prism version 9 software. Comparisons of the ranks were 

performed using nonparametric tests for sample sets with N < 10. Mann-Whitney tests were used to 

compare two sets of data and Kruskall-Wallis tests to compare more than two sets of data. Data 

normality was assessed using the D’Agostino-Pearson test for sample sets with N > 10. Comparisons 

of the medians were performed by Mann-Whitney or Kruskall-Wallis tests for nonnormally distributed 

data. Comparisons of the means were performed by unpaired t-tests or ANOVA followed by Sidak’s 

multiple comparisons test for normally distributed data.  
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Gene name siRNA#1 siRNA#2 Mean 
ENC1 0.48 0.45 0.47 
EEf1D 0.70 0.19 0.45 
EP400 0.40  0.40 
ARHGEF6 0.50 0.28 0.39 
PSMD2 0.37 0.39 0.38 
RNF31 0.43 0.26 0.35 
YWHAH 0.20 0.47 0.33 
ANXA7 0.34 0.32 0.33 
ARIH2 0.22 0.42 0.32 
HIPK2 0.37 0.27 0.32 
EXOC7 0.37 0.26 0.31 
COPS4 0.42 0.19 0.31 
SMARCE1 0.24 0.34 0.29 
VCPIP1  0.28 0.28 
LDHA 0.31 0.23 0.27 
UBR4 0.30 0.24 0.27 
MKRN3 0.17 0.35 0.26 
KDM5D 0.26 0.25 0.25 
MAP3K11 0.29 0.19 0.24 
SPG7 0.23 0.23 0.23 
SPTBN1 0.20 0.26 0.23 
ALDOA 0.20 0.26 0.23 
MYCBP2 0.10 0.33 0.22 
USP8 0.27 0.16 0.21 
TRIP12 0.20 0.23 0.21 
USP14 0.29 0.13 0.21 
MOAP1 0.16 0.24 0.20 
NEFL 0.23 0.17 0.20 
PDS5B 0.20 0.17 0.18 
PIK3CB 0.10 0.26 0.18 
CARS2 0.23 0.13 0.18 
IFT172 0.23 0.10 0.16 
VPS8 0.13 0.19 0.16 
TIAM1 0.17 0.13 0.15 
TRP53BP1  0.10 0.20 0.15 
PBXIP1 0.13 0.10 0.11 
BLZF1 0.06 0.23 0.14 
FRY 0.17 0.10 0.13 
IFI30 0.07 0.20 0.13 
DMAP1 0.10 0.16 0.13 
SPARCL1 0.13 0.11 0.12 
KCTD9 0.19 0.03 0.11 
CLU 0.10 0.10 0.10 
KCNAB2 0.10 0.07 0.08 
TTC8 0.03 0.03 0.03 

 

Supplementary table 1. Unbiased analysis of the effect of siRNAs that downregulate genes encoding 

putative binding partners of the domain of spatacsin encoded by exons 32-34 of SPG11. The scores represent the 

probability of phenocopying Spg11-/- MEFs (see methods). Bold indicates genes that are at least as efficient as 

three independent Spg11 siRNAs (SPG11#1: 0.36, SPG11#2: 0.2, SPG11#3: 0.26). 
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Gene name siRNA#1 siRNA#2 Mean 
PSMD2 0.08 0.37 0.22 
UBR4 0.17 0.31 0.24 
ARHGEF6 0.42 0.14 0.28 
EEf1D 0.39 0.28 0.34 
IFT172 0.31 0.40 0.36 
FRY 0.34 0.46 0.40 
BLZF1 0.42 0.42 0.42 
USP8 0.38 0.47 0.42 
TRIP12 0.56 0.35 0.46 
KDM5D 0.36 0.60 0.48 
ENC1 0.71 0.38 0.55 
RNF31 0.67 0.48 0.57 
COPS4 0.48 0.7 0.59 
VCPIP1  0.59 0.59 
EXOC7 0.72 0.47 0.60 
KCTD9 0.62 0.62 0.62 
TTC8 0.72 0.52 0.62 
SMARCE1 0.68 0.63 0.66 
SPARCL1 0.73 0.58 0.66 
NEFL 0.76 0.59 0.68 
TIAM1 0.87 0.58 0.72 
KCNAB2 0.85 0.73 0.79 
USP14 0.66 0.92 0.79 
TRP53BP1  0.88 0.73 0.81 
LDHA 0.64 1 0.82 
PDS5B 0.82 0.83 0.82 
PBXIP1 0.45 1.29 0.87 
CARS2 0.67 1.10 0.88 
HIPK2 0.82 0.95 0.88 
YWHAH 0.69 1.09 0.89 
EP400 0.89  0.89 
MYCBP2 1.07 0.80 0.93 
CLU 1.22 0.66 0.94 
IFI30 1.13 0.82 0.98 
SPTBN1 1.09 0.97 1.03 
MKRN3 1.09 0.98 1.04 
DMAP1 1.41 0.68 1.05 
ANXA7 1.01 1.10 1.06 
ARIH2 1.12 1.10 1.11 
ALDOA 1.08 1.19 1.13 
MOAP1 1.10 1.15 1.13 
PIK3CB 1.60 0.66 1.13 
VPS8 1.20 1.08 1.14 
MAP3K11 1.46 0.89 1.18 
SPG7 0.92 1.55 1.23 
    

Supplementary Table 2. Analysis of the proportion of tubular lysosomes in control MEFs transfected with 

siRNA that downregulate genes encoding putative binding partners of the domain of spatacsin encoded by exons 

32 to 34 of SPG11. The scores represent the normalized number of tubules (score = 1 for control MEFS, score = 0 

for Spg11-/- MEFS). Bold indicates genes that are at least as efficient as three independent Spg11 siRNA (SPG11#1: 

0.55, SPG11#2: 0.43, SPG11#3: 0.50) in decreasing the proportion of tubular lysosomes.  



Location (Row-Col) RefSeq Accession Number Gene Symbol Full Gene Name Gene ID siRNA ID Exon(s) Targeted Sense siRNA Sequence Antisense siRNA Sequence

A1 NM_007438 Aldoa aldolase A, fructose-bisphosphate 11674 s62248 6 GCAUUGUACCCAUUGUGGAtt UCCACAAUGGGUACAAUGCca

A2 NM_009674 Anxa7 annexin A7 11750 s62362 Not Determined GGCUAAUCGCGAUUUGCUAtt UAGCAAAUCGCGAUUAGCCat

A8 NM_152801 Arhgef6 Rac/Cdc42 guanine nucleotide exchange 73341 s91692 19 GAUUCUUAAGGUGAUCGAAtt UUCGAUCACCUUAAGAAUCtg

A9 NM_011790 Arih2 ariadne homolog 2 (Drosophila) 23807 s76477 Not Determined GGAAGACGCAUGGUAGUGAtt UCACUACCAUGCGUCUUCCag

A10 NM_025505 Blzf1 basic leucine zipper nuclear factor 1 66352 s83070 Not Determined CGAGUACAGACAGAGAUAAtt UUAUCUCUGUCUGUACUCGga

A11 XM_906739 Cars2 cysteinyl-tRNA synthetase 2 71941 s206416 Not Determined CAUGCAUACUCGACAGCUAtt UAGCUGUCGAGUAUGCAUGgc

B2 NM_013492 Clu clusterin 12759 s64077 Not Determined GAAGAAGUCUCUAAGGAUAtt UAUCCUUAGAGACUUCUUCtg

B3 NM_012001 Cops4 COP9 (constitutive photomorphogenic) 26891 s77325 5 GAACGAAUCCACAAAUGAAtt UUCAUUUGUGGAUUCGUUCtg

B5 NM_023178 Dmap1 DNA methyltransferase 1-associated protein 66233 s82845 4 GCUUCGUAGUUAUUCACGAtt UCGUGAAUAACUACGAAGCgc

B7 NM_023240 Eef1d eukaryotic translation elongation factor 1 66656 s83645 6,8 CACCAGCAGAGGACGAUGAtt UCAUCGUCCUCUGCUGGUGtg

B8 NM_007930 Enc1 ectodermal-neural cortex 1 13803 s65503 2 CCAUCAACAUCUACCUGUUtt AACAGGUAGAUGUUGAUGGag

B9 NM_029337 Ep400 E1A binding protein p400 75560 s93641 Not Determined GAGUUGCCCUUAAUCGAUUtt AAUCGAUUAAGGGCAACUCag

B10 NM_016857 Exoc7 exocyst complex component 7 53413 s79165 Not Determined CAGCUGAACUUACUAAGCAtt UGCUUAGUAAGUUCAGCUGca

B11 XM_488539 Fry furry homolog (Drosophila) 320365 s115690 Not Determined GACCAUUGAAAAAUACGUAtt UACGUAUUUUUCAAUGGUCtt

C1 AK003718 Hipk2 homeodomain interacting protein kinase 2 15258 n417910 1 UCAUUUUCGUUGUAGAAAAtt UUUUCUACAACGAAAAUGAtg

C2 NM_023065 Ifi30 interferon gamma inducible protein 30 65972 s82442 2 GAGUCAGCCUGUAUUAUGAtt UCAUAAUACAGGCUGACUCtg

C3 NM_026298 Ift172 intraflagellar transport 172 homolog 67661 s85415 15 CAACAUUGGUACUAUCAGUtt ACUGAUAGUACCAAUGUUGta

C4 NM_010598 Kcnab2 potassium voltage-gated channel, shaker- 16498 s68603 12 GCUCGGCAGUUCAACCUGAtt UCAGGUUGAACUGCCGAGCca

C5 NM_134073 Kctd9 potassium channel tetramerisation domain 105440 s98464 Not Determined CUGAAGAACUGUAAUCUCAtt UGAGAUUACAGUUCUUCAGtt

C6 NM_011419 Kdm5d lysine (K)-specific demethylase 5D 20592 s74014 6 CAAACAACCAGAUAAAGAAtt UUCUUUAUCUGGUUGUUUGct

C7 NM_010699 Ldha lactate dehydrogenase A 16828 s69141 2 GUAUCUUAAUGAAGGACUUtt AAGUCCUUCAUUAAGAUACtg

C9 NM_022012 Map3k11 mitogen-activated protein kinase kinase 26403 s77074 10 CGUGGUACCUAGAUUCAGAtt UCUGAAUCUAGGUACCACGtg

C10 NM_011746 Mkrn3 makorin, ring finger protein, 3 22652 s76225 1 GGAAACGUGCUGUUUAAAAtt UUUUAAACAGCACGUUUCCct

C11 NM_022323 Moap1 modulator of apoptosis 1 64113 s82133 Not Determined GGAUAUGAAUCCUCGGAAAtt UUUCCGAGGAUUCAUAUCCat

D1 NM_207215 Mycbp2 MYC binding protein 2 105689 s232922 58 GCAUAGUACAUGAUGCAAUtt AUUGCAUCAUGUACUAUGCct

D2 NM_010910 Nefl neurofilament, light polypeptide 18039 s70560 2 ACAUCGAGAUUGCAGCUUAtt UAAGCUGCAAUCUCGAUGUcc

D3 NM_146131 Pbxip1 pre-B-cell leukemia transcription factor 229534 s106202 10 GGACGAAUCUGGGAGCAGAtt UCUGCUCCCAGAUUCGUCCgc

D4 NM_175310 Pds5b PDS5, regulator of cohesion maintenance, 100710 s97646 Not Determined CGAUAAACUAAAGGAUAUAtt UAUAUCCUUUAGUUUAUCGgg

D5 NM_029094 Pik3cb phosphatidylinositol 3-kinase, catalytic, beta 74769 s93108 22 CAUAGAUUUUGGGCAUAUUtt AAUAUGCCCAAAAUCUAUGtg

D6 NM_134101 Psmd2 proteasome (prosome, macropain) 26S 21762 s74996 Not Determined CACCCAGAUUGACAAGUAUtt AUACUUGUCAAUCUGGGUGag

D7 NM_194346 Rnf31 ring finger protein 31 268749 s114092 15 CGGCAUUGACUGUCCGAAAtt UUUCGGACAGUCAAUGCCGtt

D8 NM_020618 Smarce1 SWI/SNF related, matrix associated, actin 57376 s81271 Not Determined GUGAGAGUGUGGUACCUGAtt UCAGGUACCACACUCUCACtg

D9 NM_010097 Sparcl1 SPARC-like 1 13602 s65275 Not Determined CACUAACACUGGAUCUACAtt UGUAGAUCCAGUGUUAGUGtt

D11 NM_153176 Spg7 spastic paraplegia 7 homolog (human) 234847 s107971 Not Determined CGUGCACACGUUCAACUUUtt AAAGUUGAACGUGUGCACGga

E2 NM_175836 Sptbn1 spectrin beta, non-erythrocytic 1 20742 s74306 24,24 CGAUGUUACAAGAACGGUUtt AACCGUUCUUGUAACAUCGtg

E3 NM_009384 Tiam1 T-cell lymphoma invasion and metastasis 1 21844 s75132 Not Determined GGCUGUCAAUCUACGAGGAtt UCCUCGUAGAUUGACAGCCtg

E4 NM_013735 Trp53bp1 transformation related protein 53 binding 27223 s77592 Not Determined GUCAGGUCAUUGAACGGUUtt AACCGUUCAAUGACCUGACtg

E5 NM_133975 Trip12 thyroid hormone receptor interactor 12 14897 s67172 17 GGGACGAGUUUAUACUAUUtt AAUAGUAUAAACUCGUCCCag

E6 NM_198311 Ttc8 tetratricopeptide repeat domain 8 76260 s94186 5 GGAAGACCCAUAACAGGUUtt AACCUGUUAUGGGUCUUCCag

E7 XM_980597 Ubr4 ubiquitin protein ligase E3 component n- 69116 s87461 Not Determined CCAUCGAGAUCAGUAACAAtt UUGUUACUGAUCUCGAUGGtg

E8 NM_021522 Usp14 ubiquitin specific peptidase 14 59025 s81807 2,2 GAAGGUGUAGAAUUGAAUAtt UAUUCAAUUCUACACCUUCaa

E9 NM_019729 Usp8 ubiquitin specific peptidase 8 84092 s96531 12 GCGAGAACCUUUGACGAGAtt UCUCGUCAAAGGUUCUCGCtg

E11 NM_001081366 Vps8 vacuolar protein sorting 8 homolog (S. 209018 s101999 44 CCAGAGGACUCAAUCCCAAtt UUGGGAUUGAGUCCUCUGGat

F1 NM_011738 Ywhah tyrosine 3-monooxygenase/tryptophan 5- 22629 s76184 Not Determined GGGAGAAGAUUGAAAAGGAtt UCCUUUUCAAUCUUCUCCCgg

A1 NM_007438 Aldoa aldolase A, fructose-bisphosphate 11674 s62250 8 CCAUCAACCUCAAUGCUAUtt AUAGCAUUGAGGUUGAUGGat

A2 NM_009674 Anxa7 annexin A7 11750 s62363 Not Determined CUAUGAUGCCUGGAGCUUAtt UAAGCUCCAGGCAUCAUAGta

A8 NM_152801 Arhgef6 Rac/Cdc42 guanine nucleotide exchange 73341 s91693 16 GAGUUUAAGUUGCCUACGAtt UCGUAGGCAACUUAAACUCca

A9 NM_011790 Arih2 ariadne homolog 2 (Drosophila) 23807 s202669 Not Determined GCAGUACACCUAUCCAUAUtt AUAUGGAUAGGUGUACUGCag

A10 NM_025505 Blzf1 basic leucine zipper nuclear factor 1 66352 s83071 Not Determined CCCUAUACCAGAUAUGAAAtt UUUCAUAUCUGGUAUAGGGat

A11 XM_906739 Cars2 cysteinyl-tRNA synthetase 2 71941 s206417 Not Determined GCAAGCUGGUCAACACGGUtt ACCGUGUUGACCAGCUUGCca

B2 NM_013492 Clu clusterin 12759 s201173 Not Determined GGAGUAGGUAUAUUAAUAAtt UUAUUAAUAUACCUACUCCct

B3 NM_012001 Cops4 COP9 (constitutive photomorphogenic) 26891 s77323 7 GGCUACUCUUUUUAAGGAUtt AUCCUUAAAAAGAGUAGCCag

B5 NM_023178 Dmap1 DNA methyltransferase 1-associated protein 66233 s82847 3 GCCUUUUACUAACCCAGCUtt AGCUGGGUUAGUAAAAGGCat

B7 NM_023240 Eef1d eukaryotic translation elongation factor 1 66656 s83647 2,4 GUUUAAAUAUGAUGAUGCAtt UGCAUCAUCAUAUUUAAACtt

B8 NM_007930 Enc1 ectodermal-neural cortex 1 13803 s65504 2 CCCGGGUCAUUAUCAAUGAtt UCAUUGAUAAUGACCCGGGag

B10 NM_016857 Exoc7 exocyst complex component 7 53413 s79164 Not Determined GGAAUACAACAUGCCUAAAtt UUUAGGCAUGUUGUAUUCCtt

B11 XM_488539 Fry furry homolog (Drosophila) 320365 s115689 Not Determined GAACUAUCCCUUCGACAUAtt UAUGUCGAAGGGAUAGUUCct

C1 AK003718 Hipk2 homeodomain interacting protein kinase 2 15258 n417906 1 GCAUUGUAAAUUUAUGAGAtt UCUCAUAAAUUUACAAUGCta

C2 NM_023065 Ifi30 interferon gamma inducible protein 30 65972 s82440 2 ACAUCACCCUGGUGCCCUAtt UAGGGCACCAGGGUGAUGUtc

C3 NM_026298 Ift172 intraflagellar transport 172 homolog 67661 s85417 22 GCUGCGCAGAGACUACUAUtt AUAGUAGUCUCUGCGCAGCtt

C4 NM_010598 Kcnab2 potassium voltage-gated channel, shaker- 16498 s68601 15 GGAGAACAUUGGAGCAAUAtt UAUUGCUCCAAUGUUCUCCat

C5 NM_134073 Kctd9 potassium channel tetramerisation domain 105440 s98463 Not Determined GCAGGAACCGAUUUAGAAAtt UUUCUAAAUCGGUUCCUGCca

C6 NM_011419 Kdm5d lysine (K)-specific demethylase 5D 20592 s74013 3 GGAAGAUCUUGGACCUUUAtt UAAAGGUCCAAGAUCUUCCtc

C7 NM_010699 Ldha lactate dehydrogenase A 16828 s69140 4 GUUCAUCAUUCCCAACAUUtt AAUGUUGGGAAUGAUGAACtt

C9 NM_022012 Map3k11 mitogen-activated protein kinase kinase 26403 s77075 4 AGACCCUAAAGAUUACUGAtt UCAGUAAUCUUUAGGGUCUtg

C10 NM_011746 Mkrn3 makorin, ring finger protein, 3 22652 s76226 1 GCCCGGCAAUUGAGAGAGAtt UCUCUCUCAAUUGCCGGGCtc

C11 NM_022323 Moap1 modulator of apoptosis 1 64113 s82132 Not Determined GGCUUACUGCAGUUGCUGAtt UCAGCAACUGCAGUAAGCCtg

D1 NM_207215 Mycbp2 MYC binding protein 2 105689 s232923 21 CGGCAGUCCUUUUAAUGGAtt UCCAUUAAAAGGACUGCCGtg

D2 NM_010910 Nefl neurofilament, light polypeptide 18039 s70562 1 GCUUCACCGUGCUAACCGAtt UCGGUUAGCACGGUGAAGCgg

D3 NM_146131 Pbxip1 pre-B-cell leukemia transcription factor 229534 s106204 10 GAGAUUUUGUGGAUGCCUUtt AAGGCAUCCACAAAAUCUCtg

D4 NM_175310 Pds5b PDS5, regulator of cohesion maintenance, 100710 s97644 Not Determined GGAACUUUAUCUAAACCUAtt UAGGUUUAGAUAAAGUUCCtt

D5 NM_029094 Pik3cb phosphatidylinositol 3-kinase, catalytic, beta 74769 s93109 24 GGGAAAGCUGGACUACUAAtt UUAGUAGUCCAGCUUUCCCtg

D6 NR_027485 Psmd2 proteasome (prosome, macropain) 26S 21762 n255792 1 GAGCUGACAUUCACACUCUtt AGAGUGUGAAUGUCAGCUCct

D7 NM_194346 Rnf31 ring finger protein 31 268749 s114094 17 GACCCUAACUGCAAGGUGAtt UCACCUUGCAGUUAGGGUCtg

D8 AK017922 Smarce1 SWI/SNF related, matrix associated, actin 57376 n436156 1 GCACUUAGGUACCAGAUUAtt UAAUCUGGUACCUAAGUGCtt

D9 NM_010097 Sparcl1 SPARC-like 1 13602 s65276 Not Determined GCACGAACUUCCAAUGUAAtt UUACAUUGGAAGUUCGUGCaa

D11 NM_153176 Spg7 spastic paraplegia 7 homolog (human) 234847 s107973 Not Determined CAGCCGAAGAUGAACUGAAtt UUCAGUUCAUCUUCGGCUGct

E2 NM_175836 Sptbn1 spectrin beta, non-erythrocytic 1 20742 s74307 10,10 GGAAUGAGCUCAUACGGCAtt UGCCGUAUGAGCUCAUUCCgc

E3 NM_009384 Tiam1 T-cell lymphoma invasion and metastasis 1 21844 s75133 Not Determined GAGAUUCUCGAGAUCAAUAtt UAUUGAUCUCGAGAAUCUCat

E4 NM_013735 Trp53bp1 transformation related protein 53 binding 27223 s77593 Not Determined GUCUCCGUGUUGUAGCUAAtt UUAGCUACAACACGGAGACcc

E5 NM_133975 Trip12 thyroid hormone receptor interactor 12 14897 s67171 15 GAUUGACCUUGUUCCACGAtt UCGUGGAACAAGGUCAAUCtg

E6 NM_198311 Ttc8 tetratricopeptide repeat domain 8 76260 s94185 3 GAAAUGAUCCUGGAUGAAAtt UUUCAUCCAGGAUCAUUUCag

E7 XM_980597 Ubr4 ubiquitin protein ligase E3 component n- 69116 s87463 Not Determined CACGGGAUGUUACAACAUUtt AAUGUUGUAACAUCCCGUGat

E8 NM_021522 Usp14 ubiquitin specific peptidase 14 59025 s81808 6,7 GGAUAAAACUUCUUCUAGUtt ACUAGAAGAAGUUUUAUCCat

E9 NM_019729 Usp8 ubiquitin specific peptidase 8 84092 s96530 4 GCCUUAAACUAAGAUACGAtt UCGUAUCUUAGUUUAAGGCtt

E10 NM_173443 Vcpip1 valosin containing protein (p97)/p47 70675 s89045 1 GGACGGCAGUCUAUGGUUAtt UAACCAUAGACUGCCGUCCat

E11 NM_001081366 Vps8 vacuolar protein sorting 8 homolog (S. 209018 s202079 40 GAAAUUCACAGAAUUUGAAtt UUCAAAUUCUGUGAAUUUCtc

F1 NM_011738 Ywhah tyrosine 3-monooxygenase/tryptophan 5- 22629 s76183 Not Determined GAGGGUUAUUAGUAGCAUUtt AAUGCUACUAAUAACCCUCca

Supplementary Table 3 : list  of genes invalidated during the  siRNA mini-screen 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Aldoa
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=11674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Anxa7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=11750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Arhgef6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=73341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Arih2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=23807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Blzf1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=66352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Cars2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=71941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Clu
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=12759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Cops4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=26891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Dmap1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=66233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Eef1d
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=66656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Enc1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=13803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Ep400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=75560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Exoc7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=53413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Fry
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=320365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Hipk2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=15258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Ifi30
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=65972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Ift172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=67661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Kcnab2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=16498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Kctd9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=105440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Kdm5d
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=20592
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Ldha
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=16828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Map3k11
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=26403
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Mkrn3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=22652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Moap1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=64113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Mycbp2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=105689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Nefl
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=18039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Pbxip1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=229534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Pds5b
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=100710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Pik3cb
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=74769
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Psmd2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=21762
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Rnf31
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=268749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Smarce1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=57376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Sparcl1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=13602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Spg7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=234847
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Sptbn1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=20742
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Tiam1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=21844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=search&term=Trp53bp1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=27223
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Supplementary results  
 

a) Spatacsin cellular localization  
 

During my PhD thesis, I performed experiments that were not included in the manuscript. I summarize 

here the main supplementary data that will be used for my general discussion. 

Spatacsin is not a cytoplasmic protein 

 

When overexpressed in mouse embryonic fibroblasts, Spatacsin-V5 appeared cytoplasmic and 

granular. To test if Spatacsin-V5 was a soluble protein contained in the cytoplasm, we performed a 

cytoplasmic washout of cells using the soft detergent saponin for twenty seconds and fixed the cells 

immediately after. 

 

 

 

Figure 54: Fibroblasts transfected with spatacsin-v5 had their cytoplasm washed out with saponin. 

Spatacsin-v5 signal was unchanged after cytoplasmic washout while soluble protein GFP was completely 

washed out. V5-control was used to ensure that there was no non-specific signal linked to V5 tag. Scale bar 

5 µm. 

Spatacsin-v5 is not a soluble protein it is rather bound to membranes as removing the cytosol of cells did 

not change its signal. 
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Spatacsin is present at ER-Lysosomes contact sites 

 

 We co-stained fibroblasts transfected with spatacsin-v5 with lysosomes marker Lamp1 and ER 

fluorescent protein Sec61β-GFP to see if we could detect spatacsin at ER-lysosomes contact sites. 

 

 

Figure 56: Spatacsin is present at ER-Lamp1 contact sites, see white arrows. Scale bar 5 µm. 

 

Spatacsin seems to be present at ER-Lysosomes contacts. However, we do not have the STED 

resolution to affirm that spatacsin is present for sure at the contacts, these are confocal images.  
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Spatacsin/spastizin recruitment to lysosomes 

 

According to a recent publication, spatacsin is recruited to Lamp1-positive compartment in 

response to nutrient stresses or inhibition of PI(3.5)P2 synthesis (Hirst et al., 2021b). We observed 

recruitments of spatacsin-V5 and spastizin-GFP at the lysosomes in our model for short periods of starvation 

(2 hours HBSS).  

 

Figure 57: Spatacsin and spastizin recruitment to lysosomal compartment (white arrows) after two hours 

of starvation in HBSS. Scale bar 5 µm. 

 

 We also measured the effect of short starvation on tubular lysosome formation. 

 

Figure 58: short starvation of fibroblasts had a positive effect on tubular lysosome formation in 

spatacsin depleted cells. Kruskal-Wallis test *** p<0.001. 
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b) Testing the effect of spatacsin recruitment to lysosomes on 
tubular lysosomes formation 

 

According to (Hirst et al., 2021b), the PIKFYVE inhibitor YM20136 promotes spatacsin recruitment to 

lysosomes while mTorc1 inhibitor Torin has a negative effect on spatacsin recruitment to lysosomes. We 

therefore tested their effect on tubular lysosomes formation. Both treatments had a negative impact on 

tubular lysosome formation. 

 

Figure 59: Number of tubular lysosomes formed in cells upon YM2016-36 and Torin treatment. Both treatments 

had a negative impact on tubular lysosome formation. Mann-Whitney tests **** indicates p<0.0001. 

c) Tubular lysosomes properties  
 

Tubular lysosome length is not changed in absence of spatacsin 

 The length of tubular lysosomes was measured in live fibroblasts cells stained with Texas Red 

dextran. 

 

Figure 60: Tubular lysosomes length is unchanged in absence of spatacsin. Mann Whitney test. 
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d) ER-lysosomes contacts are modified in absence of spatacsin 
 

Analysis of electronic microscopy images of Spg11-/- and Spg11+/+ mouse embryonic fibroblasts 

showed that ER-Lysosomes contacts were altered in absence of spatacsin. 

 

 

 

Figure 61. A: Illustration of membrane contact between ER and Lyso (See Arrows). B: The proportion of 

lysosomes that are not at all in contact with the ER is increased in absence of spatacsin. C: The proportion of 

membrane of the lysosomes that is in contact with the ER is also decreased in absence of spatacsin Mann-

Whitney tests p<0.01  
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e) Spg11Δ32-34/Δ32-34 mouse model  
 

Spg11Δ32-34/Δ32-34 mice develop a motor phenotype 

We have seen in the first part of the results that spatacsin32-34 domain is important for the function 

of spatacsin. The importance of the function of spatacsin32-34 domain is shown by the fact that mice that 

are depleted of it, but conserve a truncated spatacsin, develop a motor phenotype resembling Spg11-/- 

motor phenotype (see Figure 62).  

 

 

 

Figure 62 A: Spg11Δ32-34/Δ32-34 mice develop a motor phenotype like Spg11-/-mice. B: Neuronal loss in specific 

tissues of Spg11Δ32-34/Δ32-34 mice brain Spg11-/-mice. Analysis performed by J.Branchu (unpublished data). 
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Spg11Δ32-34/Δ32-34 neurons accumulate gangliosides in their lysosomes 

It has been recently shown that one of the hallmark of SPG11 HSP is GM2 accumulation in the 

lysosomes of cultured neurons in absence of spatacsin (Boutry et al., 2018). Therefore I tested if neurons 

that have a truncated spatacsin also accumulate ganglioside GM2. 

 

Figure 63: Cultured neurons that have a truncated spatacsin accumulate GM2 ganglioside in their 

lysosomes. Mann-Whitney test *** p<0.001.  
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f) Ubiquitin-dependent degradation of substrates alterations 
 

Ubiquitin accumulates in cells in absence of spatacsin 

 Expressing ubiquitin-His in fibroblasts revealed that it forms aggregates in the cytosol of cells in 

absence of spatacsin. Some of the ubiquitin aggregates in absence of spatacsin colocalize with lysosomes. 

 

Figure 64: Ubiquitin forms cytosolic aggregates in absence of spatacsin. Insets show localization of 

ubiquitin aggregates respectively to lysosomal staining (Lamp1). In absence of spatacsin, some of the 

ubiquitin aggregates colocalize with lysosomes. Scale bar 5 µm. 

 

Preventing poly-ubiquitination results in ubiquitin aggregation in cytosol of cells  

 Expression of mutant ubiquitin k0 in wild-type fibroblasts resulted in ubiquitin accumulations in the 

cytosol of cells. Ubiquitin accumulations colocalized partially with lysosomal staining Lamp1. 

 

Figure 65: Mutant ubiquitin k0 forms cytosolic aggregates in wild type fibroblasts. Insets show localization 

of ubiquitin aggregates respectively to lysosomal staining (Lamp1). Some of the ubiquitin aggregates 

colocalize with lysosomes. Scale bar 5 µm.  
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Proteasome inhibition prevents tubular lysosome formation 

Proteasome inhibitor MG-132 has a negative impact on the tubular lysosome formation in wild 

type cells. 

 

Figure 66: Inhibition of proteasome activity by MG-132 results in tubular lysosome loss. Mann Whitney test ** 

p<0.01. 

 

g) AP5z1 mechanism of degradation 
 

We have shown that AP5z1 degradation that was promoted by spatacsin was dependent on poly-

ubiquitination. Therefore, to determine which degradative pathway was responsible for this degradation, 

we tested proteasome inhibition with MG-132 and lysosomal degradative inhibition with bafilomycin on 

AP5z1 levels in Figure 67. 

 

Figure 67: Variations of AP5z1 levels when degradative pathways are inhibited. 

It appears that spatacsin-mediated degradation of AP5z1 is dependent on lysosomal degradative 

activity rather than proteasomal degradative activity.  



132 
 

h) AP5z1 expression and KIF13A-ST expression induce a lysosomal 
clustering 

 

We overexpressed AP5z1- GFP and motor-less kinesin KIF13A-ST-GFP in wild type fibroblasts and 

measured the consequences on lysosomal positioning. 

 

 

 

Figure 68: Lysosomal clustering when motor-less KIF13A-ST-GFP and AP5z1-GFP are expressed in wild type 

cells. We can see that there is a repositioning of the particles. 1-way ANOVA, * indicates p<0.01. 
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DISCUSSION 

I. Spatacsin subcellular localization 
 

a) Spatacsin relationship with the Endoplasmic Reticulum (ER) 
 

In this work, to identify spatacsin subcellular localization, we fractionated mouse brains, a tissue in 

which spatacsin is expressed (Branchu et al., 2017), and we used spatacsin-V5 to study spatacsin localization 

in mouse fibroblasts. 

We obtained several information from these experiments: 

1) Spatacsin is not soluble & is found in the “light membranes” fraction (i.e., the pellet after 

100 000g centrifugation) (see Results Figure 1 C). 

2) Spatacsin is enriched in an ER-enriched fraction and not in a lysosomal enriched fraction (see 

Results Figure 1 D). 

3) Spatacsin is very tightly attached to membranes in the “light membranes” fraction as it is quite 

difficult to solubilize it (only strong detergents like deoxycholate could solubilize it) (see Results 

Figure 1 E). 

4) Spatacsin-V5 shows a pattern of localization that does not correspond to a cytosolic protein 

(see Figure 54). Indeed, washing out cytoplasm of cells with saponin before fixation had no 

effect on cellular localization of spatacsin-V5. 

5) Spatacsin-V5 is also present in areas where ER and lysosomes colocalize, making it a good 

candidate for being a protein present at ER-lysosomes contact sites (see Figure 56). 

 

What can we conclude from this? We can see on the experiments where we purified ER and 

lysosomal fractions (Results Figure 1-D) that spatacsin is not 100% an ER-located protein, some of it is still 

present in the lysosomal fraction. However, it appears that the majority of endogenous spatacsin in mouse 

brains and of spatacsin-V5 expressed in fibroblast is present in the ER. It is a possibility that spatacsin 

present in the lysosomal fraction corresponds to its presence at ER-lysosomes contact sites. 
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Spatacsin is a protein likely present at membrane contact sites between the ER and lysosomes (see 

Figure 56). We could study this ER-lysosome interface more clearly if there was a protocol to isolate it in a 

similar manner that it is possible to isolate the contacts between ER and peroxisomes (David et al., 2013). 

It would be also interesting to verify if fractionation of mouse fibroblasts expressing spatacsin-V5 would 

lead to similar enrichments of the tagged protein in the ER fraction. However, as spatacsin is very difficult 

to express, it is not certain that we would have sufficient material to perform such experiments.  

 

b) Spatacsin localization in other models 
 

If we compare the patterns of expression of spatacsin-V5 in mouse fibroblasts to the ones obtained 

in mouse neurons (Boutry et al., 2018), we see that they are very similar which indicates that spatacsin is 

likely an ER-protein in neurons as well. Our results on spatacsin sub-cellular localization could seem to 

disagree with another recent paper on spatacsin which used Hela cells expressing spatacsin-GFP under 

Spg11 promoter expression (Hirst et al., 2021b). Indeed, using this precise method for spatacsin sub-cellular 

identification they mainly develop the point that spatacsin is a lysosomal (stained by Lamp1) protein. And 

if the part of this paper concerning the recruitment of the protein to the lysosomes is very clear, this 

statement that spatacsin is only a lysosomal protein in basal conditions I must disagree with. If we look at 

the images (which are representative images chosen by the author) of spatacsin-GFP staining, we can clearly 

see that a large part of the spatacsin signal is not colocalizing with Lamp1 and that spatacsin-GFP is showing 

a pattern of localization very much like what we observe with spatacsin V5 (see Figure 69). 

 

Figure 69: Spatacsin-GFP sub-cellular localization in Hela cells shows a pattern of localization that is only 

partially lysosomal (Hirst et al., 2021b). 
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Therefore, I am confident that it is an encouraging data supporting the fact that spatacsin is partially 

located at the lysosomes but a large part of it remains not lysosomal in basal conditions and is likely found 

in the ER. I will also be quite curious to see what will be the subcellular localization of endogenous tagged 

spatacsin by CRISPR technology (Krumm et al., 2021) as this recent paper did not include any 

immunofluorescence of spatacsin localization. 

 

c) Are ER-lysosomes contacts changed in absence of spatacsin? 
 

We have mentioned the fact that there seems to be no major alteration of the ER network in cells 

that lack spatacsin or that possess spatacsinΔ32-34. We performed a tubular ER network morphological 

analysis like described in (Spits et al., 2021b), and no alteration of the number of tubular ER junctions was 

observed. The only alterations of the ER that we can report are the increased contacts in absence of 

spatacsin between ER and plasma membrane that are involved in store-operated calcium entry (Boutry et 

al., 2019b). Overall, we have no reason to believe that spatacsin absence has any drastic consequences on 

ER architecture. 

However, as we have seen previously, spatacsin is present at ER-Lysosomes contacts and it is a 

strategic position for its involvement in tubular lysosome dynamics regulation. Tubular lysosomes have a 

privileged contact with the ER, making more contacts with it and being in closer proximity. STED images 

also showed how entangled the tubular lysosomes are in the ER network and live imaging showed that the 

tubular lysosomes are moving along the ER tubular network (see Results Figure 7). 

So, is there an impairment of ER-Lysosomes contacts in absence of spatacsin? With fluorescent 

microscopy images, the Pearson correlation coefficient between ER and lysosomal staining as used in 

(Höglinger et al., 2019) showed no difference in absence of spatacsin and there was no difference in area 

overlap between ER and lysosomes in absence of spatacsin either.  

However, if we go the resolution of electronic microscopy images, we observe that in wild-type 

fibroblasts, less than 8% of lysosomes are not in contact with the ER, while there is about 15% of lysosomes 

that are not in contact with the ER in absence of spatacsin (Figure 61). Moreover, the proportion of the 

lysosomal membrane that is in contact with the ER is lower in fibroblasts that have no spatacsin (see Figure 

61). These results indicate that the ER-lysosomes contacts are indeed modified in absence of spatacsin, 

although in modest proportions. 

It is then likely that spatacsin is not an essential tether for ER-Lysosomes contacts if we consider 

the definition proposed in other publications (Bord, 2016; Scorrano et al., 2019). Spatacsin may have a 

signalingfunction at ER-Lysosomes contact sites. 
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d) Spatacsin recruitment to lysosomes and tubular lysosome 
formation 

 

A recent study on the Rag GTPase involvement in spatacsin-spastizin-AP5z1 complex recruitment 

to lysosomes showed that that the recruitment of the proteins to the lysosomes is dependent of mTor 

regulator RagC and PI3P at the lysosomes (Hirst et al., 2021b). 

We cannot extract any information on the consequences of the complex recruitment on the 

dynamics of tubular lysosome formation from this study as it was performed on fixed cells and tubular 

lysosomes are lost upon regular paraformaldehyde fixation. To observe tubular lysosomes, it is necessary 

to perform live imaging or to use specific fixation techniques, which are listed and explained in 

supplementary material of (Suresh et al., 2021).  

In our fibroblast model, we have observed similar recruitment of spatacsin and spastizin to 

lysosomes (see Figure 57) in conditions of amino acid deprivation. Indeed, short starvation (2h HBSS) has a 

positive impact on tubular lysosome formation in Spg11-/- cells (see Figure 58). However, this cannot be the 

result of spatacsin recruitment to lysosomes, but we have seen that spastizin is also recruited to lysosomes. 

Even if spastizin is greatly depleted in Spg11-/- cells, the recruitment of the remaining spastizin to lysosomes 

could explain the positive effect we observed in starvation. 

It will be interesting to see if all conditions bringing the spatacsin-spastizin-AP5z1 complex to the 

lysosomes result in tubular lysosome formation. For now, in our model, we have measured a positive effect 

of starvation on tubular lysosome formation and a negative impact on tubular lysosome formation of 

wortmannin (see Results Figure 6) and mTorc1 inhibitor Torin (see Figure 59). These two treatments indeed 

prevented recruitment of proteins to lysosomes (Hirst et al., 2021b; Wyant et al., 2018). However, PIKFYVE 

inhibitor YM-2016-36, which increases PI3P content of lysosomes, is presented as promoting the complex 

recruitment to lysosomes and we have observed that it strongly inhibited tubular lysosomes formation by 

creating round and enlarged lysosomes (see Figure 59). Maybe for short treatments of YM2016-36 (15 to 

20 minutes) could tubulation be promoted before the membrane tension becomes too high due to the 

excess fusion between lysosomes. 

This data is still consistent with spatacsin being a protein of ER-Lysosomes contact sites. Indeed, 

we have mentioned several examples in the introduction where the formation of contacts between the ER 

and other organelles is under the control of phosphoinositide signaling (Chung et al., 2015; Sohn et al., 

2018). Moreover, the recruitment of proteins involved in inter-organelle contacts to the area of contact has 

been observed in starvation conditions, with the example of ATG14 recruitment to ER-autophagosome 

contact in starvation (Hamasaki et al., 2013).  

It would also be interesting to test is if the recruitment of spatacsin-spastizin-AP5z1 complex is 

dependent of endoplasmic reticulum integrity by using ATLK80A. Indeed, recent studies link the activity of 

RAG GTPase to ER regulation. For example, it has been shown that ER protein WDR35 regulates RagA 

activity to influence mTor activity (Sekiguchi et al., 2019). It has also been shown that, in a model where 

tunicamycin elicits ER stress, there is an increased expression of eNos which activates mTor through RagC. 

This mechanism will lead to the accumulation of p62 in cells, linking ER-stress and RagC regulation and 

potentially also spatacsin-spastizin recruitment to the lysosomes (Guha et al., 2017).  
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II. Regulation of lysosomes shape, motility & 
positioning by spatacsin  
 

a) Physical properties of tubular lysosomes 
 

From J. Swanson papers from the 1980s, we know that, in macrophages, tubular lysosome 

formation is activated upon pinocytosis (Hollenbeck and Swanson, 1990; J Swanson et al., 1987; Swanson 

et al., 1992). We also know from the Autophagic Lysosomal Reformation (ALR) literature that autophagy 

activation regulates tubulation of lysosomes (Chen and Yu, 2017; Yu et al., 2010). Recently, in macrophages, 

it has been shown that tubulation can be triggered via MMP9 (Matrix Metalloprotease 9) signaling, a key 

player in macrophage biology which activates PI3K-Akt pathway (Suresh et al., 2021).  

Tubular lysosomes are different from regular lysosomes in their movement, they are more motile 

and require the Rab7-FYCO1 complex for their formation (Mrakovic et al., 2012). It appears that they are 

also less degradative than round lysosomes and present a calcium gradient higher in the lumen than in the 

tubular part (Suresh et al., 2021). 

Moreover, to deform the lysosomal membrane during tubulation, the deformation must be physically 

possible. Indeed, surface membrane tension, which is dependent of the osmosis of the lysosomes, needs 

to be low enough so that the membrane can form a protrusion (Freeman and Grinstein, 2018; Saric and 

Freeman, 2021). Many factors will regulate surface membrane tension, in Freeman & al papers, they 

develop the argument that lysosomal channels such as TRPMLs are extremely important in regulating 

lysosomal osmosis and indeed, it has been shown that TRPML1 channel is regulating lysosomal positioning 

& motility via tubulation (Li et al., 2016). 

In our model, there is no difference in tubular lysosome length in absence of spatacsin (Figure 60). 

Moreover, in cells lacking spatacsin, the number of tubular lysosomes is not completely abolished. It 

appears that, tubulation can be promoted by starvation (see Figure 58) or by modulating calcium 

homeostasis- (Boutry et al., 2019b) even in absence of spatacsin. So, there is no physical impossibility for 

cells to form tubular lysosomes in absence of spatacsin pointing again toward a role of spatacsin at the 

signaling level for tubular lysosome formation, and not a physical role. 
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b) What is the role of tubular lysosomes? 
 

We showed that in absence of spatacsin or in presence of a truncated spatacsin in his Cter domain 

(removal of exons 32-34) there is:  

- a loss of tubular lysosomes which are catalytically active lysosomes and not tubes emanating to reform 

proto lysosomes 

- a loss of motility of these tubular lysosomes 

- a clustering of all lysosomes close to the nucleus (see Results-Figure 2) 

 

Tubular shape reflects a transitory dynamic movement 

 

Some of these parameters seem to be linked. In our results, every time there was a loss of tubular 

lysosomes, the remaining tubular lysosomes where less dynamic. So, it appears that at least these two 

parameters are correlated. If we consider the way lysosomal movement has been described so far, the 

same kinesin (KIF5B-kinesin1) is involved in membrane deformation and lysosomal movement, our 

observations seem to be coherent with such results (Du et al., 2016; Guardia et al., 2016). Tubular 

lysosomes being more dynamic than the regular round lysosomes, their presence or absence is likely an 

indicator of the more general dynamic state of the whole lysosomal compartment. This general alteration 

of movement is reflected in the peri-nuclear clustering that we observed in absence of spatacsin. However, 

the peri-nuclear clustering of the particles was not observed every time the tubular lysosomes were lost 

implying that maybe there are more complex regulations for lysosomal positioning.  

 

Tubular lysosomes for a special role in fusion with other organelles? 

 

Several studies on tubular lysosomes point toward a specific role of this elongated compartment 

in the regulation of lysosomes fusion with other compartments to promote degradation of substrates, this 

is the case for lysosome-autophagosome fusion in macrophages (Suresh et al., 2021). This has also been 

observed in Drosophila to regulate muscle activity by regulating cellular degradative activity (Johnson et al., 

2015; Murakawa et al., 2020). In C.elegans, the role of tubular lysosome degradative activity was linked to 

degradation of peroxisomes by autophagy (pexophagy) (Dolese et al., 2021). We can wonder if the tubular 

aspect of lysosomes is simply a transitory state linked to the promotion of their movement by kinesins and 

that indicates that these lysosomes are destined for fusion with other compartments of the 

endosomal/autophagosomal pathway. 
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c) Protein degradation in the cell and tubular lysosome formation  
 

Ubiquitinated substrates are accumulating in absence of spatacsin 

 

We have shown that ubiquitin dependent degradation of AP5z1 promoted by spatacsin was 

necessary for tubular lysosome formation. So, it appears that protein degradation and tubular lysosome 

formation are two inter-connected pathways. If we take a broader perspective than the spatacsin-mediated 

degradation of AP5z1, we can observe that in absence of spatacsin, there is a general alteration of the 

ubiquitin staining. Ubiquitin tends to aggregate in the cytoplasm of cells that lack spatacsin (see Figure 64). 

The ubiquitin-positive cytoplasmic aggregates colocalize with lysosomal staining Lamp1 (Inset-Figure 64) 

but not completely, indicating that this accumulation of ubiquitinated substrate is not specific of a 

lysosomal alteration. It seems to be a general alteration of ubiquitinated cargo sorting mediated by 

spatacsin.  

 

Poly-ubiquitination of substrates  

 

By using the mutant ubiquitin k0, to prevent poly-ubiquitination of substrates, we have confirmed 

that ubiquitin dependent degradation was required for tubular lysosome formation and dynamics. 

However, using ubiquitin k0 drastically changes the way substrates are degraded in the cells. Even if the 

lysosomal staining didn’t show obvious alterations (see Figure 65), hundreds of substrates had their fate 

potentially altered (Ziv et al., 2011). This may be the reason why the lysosomes did not significantly 

clustered around the nucleus when ubiquitin k0 was expressed in cells (data not shown). It is possible that 

a multiplicity of effects was taking place in this condition. 

Interestingly, the pattern of accumulation of ubiquitin in absence of spatacsin looks like the 

aggregation pattern that is observed when mutant ubiquitin k0 is expressed in wild-type cells (Figure 65). 

This would support a role of spatacsin in sorting of poly-ubiquitinated substrates. Proteomic approaches 

would be necessary to determine the nature of the whole range of proteins that aggregate and accumulate 

in absence of spatacsin. 

 

The role of the proteasome 

 

The link between degradation of ubiquitinated substrates and tubular lysosome formation is 

further supported by the effect of proteasome inhibitor MG-132 on tubular lysosome formation (see Figure 

66). Indeed, blocking proteasome activity for 4h resulted in the loss of tubular lysosomes. Another inhibitor 

of proteasome, epoxomicin, showed similar results than MG-132 (data not shown).  
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Are tubular lysosomes responsible for ubiquitinated substrate delivery? 

 

 This role for tubular lysosomes has been proposed in (Johnson et al., 2015), where defective tubular 

lysosomes carried no ubiquitinated positive content and this resulted in a global alteration of ubiquitin 

dependent degradation in the cells. It would be interesting to test if our tubular lysosomes are indeed 

ubiquitin positive organelles to gain further information on their function. However, if we might have 

thought that in cells lacking spatacsin, the loss of tubular lysosomes was responsible for ubiquitin 

accumulation, the fact that ubiquitin k0 and MG-132 produced similar effects advocates for the opposite 

correlation. It rather seems that the accumulation of substrates is preventing the tubular lysosomes 

formation and movement. This could be explained by the prevention of AP5z1 degradation and by the fact 

that lysosomes probably need to uptake additional substrates to degrade, therefore changing their regular 

activity. 

 

d) Relationship between lipid accumulation and tubular lysosomes  
 

Cholesterol accumulation and the positioning of lysosomes 

 

Previous work on lysosomes dysfunctions in absence of spatacsin focused on the impact of lipid 

accumulation on lysosomal function (Boutry et al., 2019a, 2018). For example, it was proposed that 

lysosome clustering around the nucleus was caused by an accumulation of cholesterol that will drive 

lysosomes toward the center of the cell in an ORP1L-dependent manner following the model developed by 

(Rocha et al., 2009b). However, decreasing cholesterol levels in the cell did not restore the lysosomes 

position toward the periphery. And as we have developed in our mechanism, it is therefore more of a 

problem of lysosomal dynamics that results in particle clustering, and the cholesterol accumulation reflects 

an impairment of cholesterol export from the lysosomes without being the cause of their mis-localization. 

 

Lipid accumulation and membrane tension 

 

Another interesting hypothesis that was formulated at the time was that the accumulation of lipids 

impaired the recycling of lysosomal membrane, similarly to what was observed in lysosomal storage 

disorders (Platt et al., 2012). Although, it was not clear how exactly these accumulations could perturb 

lysosomal reformation. When we treated cells with U18666A, the inhibitor of NPC1 that induces massive 

cholesterol accumulation, lysosomes were extremely enlarged and extremely round. And this is correlated 

to a strong decrease in membrane tubulation. The “roundness” of the lysosomes in this condition reflects 

an extreme surface tension, preventing the protrusion of membrane from the tensed compartment 

(Freeman and Grinstein, 2018).   
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Although U18666A cannot be washed, I have observed other conditions that can trigger round and 

enlarged lysosomes that have a high surface tension. This happens when cells are treated with YM-201636, 

inhibitor of PIKFYVE enzyme, preventing endolysosomal membrane fission (Bissig et al., 2017).It also 

happens if cells are treated with lysosomal acidification inhibitor bafilomycin. In both conditions, upon 

enlargement of lysosomes, the tubulation of lysosomes is strongly inhibited but upon washing of the drugs 

and restoration of a regular lysosomal size, tubulation can happen again (data not shown).  

It is possible that the correlated lysosomal cholesterol decrease and tubulation restoration observed 

when calcium homeostasis is modified (although activating TFEB in parallel) is explained by a change of 

osmosis of the lysosome. This change of osmosis would allow the lysosome to deform its membrane and to 

export cholesterol again (Boutry et al., 2019b), rather than a cholesterol decrease would allow lysosomal 

membrane deformation, especially considering the modest proportions of the cholesterol accumulation in 

lysosomes of these cells (Boutry et al., 2019b). 

 

e) Lysosomal calcium and tubulation 
 

It was shown that in absence of spatacsin, store operating calcium entry is responsible for elevated 

lysosomal calcium levels (Boutry -unpublished data). As we have seen that ER has the ability to transfer 

calcium to lysosomes (Atakpa et al., 2018), we can wonder if the increased lysosomal calcium levels come 

from an increased ER-lysosomal calcium transfer at contact sites between ER and lysosomes. And as 

spatacsin is localized at these contacts, we can wonder if it is having a role in regulating this calcium transfer 

from the ER to lysosomes, maybe via some of its partners.  

Moreover, as TRPML1 releases less calcium in absence of spatacsin (Boutry -unpublished data), the 

lysosomal calcium levels are less decreased upon TRPML1 activation, and these alterations can be 

problematic for osmosis of lysosomal compartment and local calcium signaling. The activity of TRPML1 

channel has direct consequences on the ability of the lysosomal membrane to deform (Li et al., 2016). 
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f) Kinesin(s) involvement in lysosomal positioning 
 

Interaction in fibroblasts of KIF13A and spastizin 

 

  According to one of the first study on spastizin, it interacts with KIF13A to regulate its transport to 

midbody for cytokinesis (Sagona et al., 2010). We verified this interaction by immunoprecipitation; it is not 

extremely strong but both proteins are expressed at low levels and are difficult to detect. The interaction 

is stronger between spastizin and the motor-less KIF13A-ST.  

When expressed in mouse fibroblasts, KIF13A shows a tubular recycling endosomes enrichment as 

described in (Delevoye et al., 2014a). We can observe some KIF13A at lysosomes, but it is far from most of 

it. KIF13A devoid of motor domain was much more enriched at lysosomes which could explain its better 

interaction with lysosomal spastizin. Or this could be explained by the fact that spastizin interacts with the 

“Stalk” part of KIF13A and not the motor domain, and the presence of the motor domain might perturb the 

interaction (see Figure 70). 

 

Figure 70: spastizin interacts with KIF13A and KIF13A-ST (Delevoye et al., 2014b; Sagona et al., 2010b) 

KIF13A has been shown to regulate sorting of lysosomal enzymes and is involved in endosomal 

positioning (Delevoye et al., 2009; Nakagawa et al., 2000), so it is rather an interesting kinesin for regulation 

of lysosomal positioning.  

 

KIF13A contribution to lysosomal positioning  

 

The clustering of lysosomes induced when we express KIF13A-ST is intermediate compared to the 

clustering we observe in absence of spatacsin, and the same effect happens when we overexpress AP5z1 

which prevents spatacsin interaction with spastizin and therefore KIF13A action (see Figure 68 and Figure 

71). It is likely that tubular lysosomes movement and positioning is not reliant only on KIF13A but rather on 

several kinesins (such as KIF5B or others).  
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 Figure 71: perinuclear clustering of lysosomes is slightly different when “motor-less” KIF13A is 

expressed compared to cells lacking spatacsin. 

It would be interesting to test the effect of downregulation of other kinesins such as KIF5B in our model 

to see what the effect on tubular lysosome dynamics and positioning in the cell would be. Moreover, it has 

been shown that lysosomal movement is not the same considering the kinesin they travel with (Guardia et 

al., 2016). It is therefore possible that different classes of tubular lysosomes exist depending on which 

kinesin they bind to, similarly to what was proposed in a recent publication (Suresh et al., 2021). This adds 

a layer of complexity in the regulation of cellular movement of tubular lysosomes. 

  



144 
 

III. The importance of Spatacsin_C domain 
 

We have shown that spatacsin regulates tubular lysosomes formation & dynamics, and that these 

function of spatacsin was dependent on the presence of the domain encoded by its exons 32 to 34. This 3 

exons long domain overlaps with Spatacsin_C domain which is a conserved domain of the protein. 

 

a) Potential structure of Spatacsin_C domain 
 

“Spatacsin_C” domain has been conserved throughout evolution and has a potential structure 

homology with the Cter domain of VPS16 (Alexander L. Patto and O’Kane, 2020). Interestingly, mutations 

of VPS16 result in lysosomal abnormalities in patients with dystonia or with mucopolysaccharidosis, a form 

of lysosomal storage disorder (Sofou et al., 2021; Steel et al., 2020, p. 16). This lysosomal phenotype could 

be linked to the function of VPS16 in the autophagosome-lysosome fusion, (Jiang et al., 2014; Wartosch et 

al., 2015). A similar defect in lysosome-autophagosome fusion in absence of spatacsin has been proposed 

by another publication on Spg11-/-/Spg15-/- model (Khundadze et al., 2021). We have not observed similar 

defects when we considered the total lysosomal population in our cells in absence of spatacsin but this 

might require additional attention and investigation especially regarding tubular lysosomes and their fusion 

with other compartments. 

 

b) Spg11Δ32-34/Δ32-34 mouse model  
 

Mice that express the truncated spatacsin Δ32-34/Δ32-34 develop a neuronal loss and a motor 

phenotype that strongly resembles the motor phenotype acquired by mice depleted of spatacsin (see 

Figure 62). This tells us that spatacsin function in tubular lysosome formation & regulation of their dynamic 

which is dependent on spatacsin32-34 domain is linked to neurodegeneration. 

We also observed accumulation of Ganglioside GM2 in lysosomes in the brain of Spg11Δ32-34 mice and 

in cultured neurons (see Figure 63). This is like what was observed in (Boutry et al., 2018) showing that 

spatacsin32-34 domain is important for the regulation of lysosomal function. 
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c) Diversity of identified spatacsin32-34 partners 
 

Performing a siRNA mini-screen on spatacsin32-34 domain interactors 

 

There was a very large number of proteins (about 80) that were identified to interact with the C-Ter 

part of spatacsin (a.a. 1943-2443). Yeast 2 hybrid technique for protein-protein interaction identification is 

producing a lot of false positive results (Zhang et al., 2010), and most of the interactions with spatacsin 

were rated “D” so potentially resulting of false-positive interaction. Considering the interactors that were 

specific of the spatacsin32-34 domain helped shorten the list of spatacsin interactors that might be involved 

in tubular lysosome formation regulation. 

 

Taking advantage of the generated data set to perform a non-biased analysis 

 

One of the shortcomings of the siRNA mini screen that I performed was that I decided arbitrarily which 

parameter I was going to measure (i.e., the number of tubular lysosomes) to evaluate the consequences of 

each siRNA. The number of tubular lysosomes observed per cell is variable from one day to the other but 

the tubular lysosome loss in absence of spatacsin is always visible. This led me to normalize the number of 

tubular lysosomes observed in each condition to the controls of each batch of conditions. This strategy 

allowed me to have tubulation scores that we could rank and compare no matter the day the experiment 

was performed.  

And in parallel, I had generated this large data set of images of lysosomes with many Spg11+/+ and 

Spg11-/- conditions (about 750 images for each condition) that were my controls for each batch of siRNA 

that were tested. So, there came the idea to perform an unsupervised analysis by training a neural network. 

There was however not enough images to train a neural network, so we had to artificially increase the 

number of images by cropping them or rotating them, which is a common practice in neural network 

training (Shorten and Khoshgoftaar, 2019). 
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The short list of interactors of spatacsin Cter involved in tubular formation 

 

Once the neural network was able to differentiate between Spg11+/+ and Spg11-/- conditions, we could 

perform a new classification of the siRNAs effects. The comparison of the results obtained by the 2 

approaches showed convergences & some differences, likely because the neural network considers more 

parameters than the directed analysis. But overall, we obtained a final shortlist of genes (see Figure 72). 

 

 

Figure 72: The short list of the 8 spatacsin32-34 potential interactors important for tubular lysosome 

formation after comparing both method of analysis, and their involvement in different pathways. 

 

UBR4 and its multiple potential roles 

 

We have shown that UBR4 was involved in spatacsin mediated degradation of AP5z1, but UBR4 has 

been studied for other interesting functions. UBR4 interacts with microtubules and the endoplasmic 

reticulum in neurons (Shim et al., 2008, p. 600) and it is interestingly causing Episodic Ataxia when mutated 

(Conroy et al., 2014). On top of that, UBR4 binds to calmodulin to regulate calcium homeostasis in neurons 

(Belzil et al., 2013) and forms meshwork structures with clathrin contributing to membrane morphogenesis 

(Nakatani et al., 2005). All these features of UBR4 make it a very interesting interactor of spatacsin, 

especially at the level of ER-Lysosomes contact sites. 
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Other potentially interesting interactors of spatacsin 

 

We have identified a role of UBR4 in AP5z1 ubiquitin-dependent degradation, but we have not 

investigated what might be the potential link between the other interactors and tubular lysosome 

formation. While PSMD2 and USP8 seem to be involved in ubiquitin dependent protein degradation, the 

rest of the interactors seemed hardly related to the mechanism we have identified, and it is likely that they 

are involved more indirectly in tubular lysosome formation. 

PSMD2 encodes the subunit Rpn1 of the proteasome, which is involved in the recognition and 

docking of ubiquitin and ubiquitin like domains (Shi et al., 2016). USP8 is a hereditary spastic paraplegia 

gene (Novarino et al., 2014). The protein has a de-ubiquitinase activity and spatacsin is interacting with 

USP8 at its de-ubiquitinase domain, maybe spatacsin could be under the regulation of ubiquitin signaling 

and de-ubiquitinated by USP8? It has also been shown that USP8 is important for endosomal integrity and, 

in its absence, ubiquitinated proteins accumulate in endosomes (Row et al., 2006).  

 

 

d) Comparison of different interactomes of spatacsin 
 

We have identified many potential interactors of spatacsin Cter domain using the yeast 2 hybrid 

screening technique. Two other recent publications on BioRxiv published potential interactors of spatacsin 

using different techniques. 

The first paper used a mass spectrometry approach to identify interactors of a GFP-Spatacsin_C 

construct expressed in Mel-2 cell line of Drosophila (Alexander L. Patto and O’Kane, 2020). They performed 

two screens based on the promoter they used to express the spatacsin construct. This approach identified 

membrane trafficking proteins and several aminoacyl-tRNA synthetases as potential interactors of 

Spatacsin_C domain. 

The second paper identified interactors by mass spectrometry from a pull-down of interactors of a 

spatacsin-Flag construct that was exposed to a lysate of murine brain (Cogo et al., 2020). They identified a 

subset of 14-3-3 proteins as physiological interactors of spatacsin, which interaction is modulated by PKA-

dependent phosphorylation of spatacsin at Ser1955. 
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The three interactomes identify tens to hundreds of potential interactors of spatacsin. The common 

proteins that were identified between the different screens are listed in Figure 73. 

 

 

Figure 73:  Common potential interactors of spatacsin in three interactomes  

 

 The only two common proteins identified by the three approaches were Dynamin1 and YWHAH. 

We have confirmed interaction of Dynamin1 with spatacsin by co-immunoprecipitation (Boutry et al., 

2018), and Dynamin1 is a neural specific dynamin involved in membrane fission of organelles (Lee et al., 

2016). This points toward a potential role of spatacsin in membrane fission via Dynamin1, which is 

particularly interesting as preliminary data indicate that there might be an excessive fission of the tubular 

lysosomes in absence of spatacsin.  

YWHAH is an adaptor of the 14-3-3 protein family which is involved in regulation of its binding protein 

through interaction with phosphorylated motifs (Cogo et al., 2020). According to the study, spatacsin 

phosphorylation by PKA enzyme would promote its interaction with YMHAH and promote its re-localization 

from the plasma membrane to the rest of the cell. Phosphorylation of spatacsin is an interesting parameter 

to consider concerning its potential regulation. 

The fact that spatacsin has so many potential interactors is quite a surprising result, considering that it 

is expressed at very low endogenous levels. It is nonetheless possible that it is one of the features of 

spatacsin to have the capacity to interact with many proteins, like adaptor proteins for example. Moreover, 

the overlap between interactomes is very small so there is a strong chance that there are a lot of false 

positive interactors in these data. It is interesting to note that UBR4 that we have identified in our 

mechanism and confirmed interaction with spatacsin by co-immunoprecipitation is found in another 

interactome. 
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IV. Spatacsin mechanism of action with interactors 
spastizin & AP5z1  

 

We have shown in our study that both spastizin and AP5z1 were necessary for spatacsin regulation of 

tubular lysosome formation and dynamics. 

 

SpatacsinΔ32-34 does not interact with spastizin and AP5z1 

 

We observed that truncated spatacsin does not interact by co-immunoprecipitation with AP5z1 and 

spastizin. This might explain why the lysosomal defects observed with truncated spatacsin are so resembling the 

ones of cells devoid of spatacsin, as spatacsin interaction with spastizin and AP5z1 is paramount for tubular 

lysosome formation as we have shown.  

 

Ubiquitin-dependent degradation of AP5z1 promoted by spatacsin 

 

We have shown that the regulation of AP5z1 levels must be precise as too much or too little AP5z1 

results in tubular lysosome loss and in tubular lysosome dynamics alteration. But how is AP5z1 degraded?  

 We tested the effect of preventing proteasomal degradation with MG-132 and preventing 

lysosomal acidification with bafilomycin on spatacsin promotion of AP5z1 degradation (see Figure 67). 

These results, that need to be confirmed, seem to indicate that AP5z1 degradation would be taking 

place in the lysosomes rather than at the proteasome. If it verifies that AP5z1 is indeed degraded at the 

lysosomes, it poses an interesting challenge as the protein is normally at least partially located at lysosomal 

membrane. It is possible that AP5z1 is shipped from one lysosome to another for degradation or that it 

needs to be relocated to the cytosol to be degraded but then we don’t know how this could be happening.  

While the downregulation of UBR4 led to increased levels of AP5z1, downregulation of potential 

interactor USP8 led to reduced levels of AP5z1 and to lesser interaction with spatacsin. It is therefore 

possible that spatacsin-AP5z1 interaction is mediated by other interactors of spatacsin such as USP8, in an 

antagonist regulation of UBR4 regulation. There are maybe different layers of complexity in the mechanism 

of spatacsin promotion of degradation of AP5z1 mediated by proteins of the ubiquitin-proteasome 

pathway. 
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Spatacsin-spastizin interaction at ER-lysosomes contact sites 

 

 If it is so important to degrade AP5z1, it is to prevent it from reducing spastizin-spatacsin interaction 

by competitive interaction. Moreover, blocking this spastizin-spatacsin interaction prevents spastizin 

recruitment to lysosomes, a result coherent with what was observed recently in another study (Hirst et al., 

2021b). Accordingly, we observed that in Spg11-/- cells, overexpressed spastizin is not efficiently recruited 

to lysosomes compared to when spatacsin is present. In Spg11-/- cells, AP5z1 levels are decreased by about 

50%, so the mis localization of spastizin there is not linked to AP5z1 excess but to the lack of spatacsin. This 

shows that AP5z1 mediation of spastizin localization is only happening via its interference in spatacsin-

spastizin interaction. Indeed, downregulating AP5z1 had no effect on spastizin localization at the lysosomes 

(Hirst et al., 2021b). 

Proximity ligation assay showed that spatacsin-spastizin interaction is happening only at the 

lysosomes. This interaction is happening likely at membrane contact sites between ER and lysosomes as we 

know spatacsin is present in majority at the ER, while spastizin is enriched at lysosomes. This ER-lysosome 

specific interaction is supported by the fact that modifying ER-architecture with ATLK80A diminishes this 

spatacsin-spastizin interaction. It appears also that this modification of ER prevents spatacsin degradation 

of AP5z1, which would suggest that this degradation is also dependent on a functional ER-lysosome contact. 

It would be interesting here to quantify if ATLK80A induces a loss of ER-lysosome contacts and if it has 

consequences on the sub-cellular localization of spatacsin, spastizin and AP5z1.  

 

 During this study, we learned a lot on spatacsin molecular role and its regulation of the tubular 

lysosomes formation. However, with every answered question come several new ones. We are not yet at 

the point where we understand everything of spatacsin molecular role and new challenges and questions 

await for future studies on spatacsin. 
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V. Shortcomings of the study  
 

a) The use of non-neuronal model 
 

Spatacsin is expressed in the whole body, although its loss affects mostly neuronal cells as observed in 

SPG11 HSP patients (Deluca et al., 2004) and in Spg11-/- mice (Branchu et al., 2017). During this study, we 

used Mouse Embryonic Fibroblasts (MEF) as a model to study the molecular role of spatacsin. Fibroblasts 

are a relatively undifferentiated mesodermal derived cell type found in abundance in connective tissue and 

responsible for the secretion of extracellular matrix (Garfield, 2010). Primary fibroblasts obtained from mice 

embryos are much easier to culture than neurons. The main advantage of using MEFs is that, granting that 

you obtain the genotype you want in your breeding, you can have a pair of cell lines in a single dissection, 

one wild type and one Spg11-/- that are extremely close genetically. MEFs grow fast in culture, they can be 

frozen for later use and can be easily electroporated, a transfection technique that I used a lot during this 

study for gene downregulation or gene over-expression. Spg11-/- MEFs show no obvious alteration of 

proliferation, only the lysosomal phenotype that we mentioned was observed.  

Neuronal cultures are much more complicated to handle to perform the same experiments as MEFs, 

but they do reflect more accurately the pathology associated with spatacsin loss of function. For example, 

MEFs do not accumulate ganglioside GM2 that was associated with neurodegenerative phenotype in mice 

and zebrafish (Boutry et al., 2018) in their lysosomes. Monoculture of neurons issued from mouse embryos 

remain an imperfect model as well, as it does not reflect the real complexity of the brain, nor does it reflect 

of the extreme architecture of axons of the pyramidal tract that are affected by spatacsin loss of function. 

It was shown that Spg11-/- neurons are most susceptible to cellular death when exposed to glutamate 

(Boutry et al., 2018) but I also observed that after 15 days of culture, they die more than Spg11+/- and 

Spg11+/+ neurons (see Figure 74). 

 

Figure 74: Survival rate of Spg11-/- neurons is altered after 15 days of culture. **** MW test p<0.0001 

Although we know that neuronal cultures accumulate cholesterol like fibroblasts and present calcium 

homeostasis alterations (Boutry et al., 2019a), we did not observe tubular lysosomes in neurons. We also 

haven’t studied the dynamics of their lysosomes in absence of spatacsin, which would be interesting to 

study.   
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b) The difficulty of working on endogenous spatacsin 
 

Spatacsin and its binding partners AP5z1 and spastizin are expressed at very low endogenous levels 

(Hirst et al., 2021b). Moreover, the antibodies available for spatacsin are poorly specific, except from the 

one manufactured by ProteinTech (see Experimental Procedures) which is acceptable for western blot 

applications. Therefore, detecting spatacsin on western blot assays always required loading an Spg11-/- 

control to see which band corresponds to spatacsin as there are so many that are marked by the anti-

spatacsin antibody.  

In our study, we had to over-express tagged proteins to observe them. If it allowed us to study their 

localization for example, as it was not representing their real level of expression in the cell, it might have 

created artifacts. Although protein over-expression is not ideal, it has the advantage to be easily obtained, 

images can be acquired in less than 12 hours after transfection of cells. Again, working on a model that has 

an endogenous tagged spatacsin would have been interesting, this was recently achieved and seems 

promising for spatacsin study (Krumm et al., 2021). 

 

c) Cellular biology and reductionism 
 

Emergence of complexity 

In cell biology, it appears impossible to explain all phenomena that are taking place. Moreover, there 

is a difference between “naming the parts” that are involved in a mechanism and explaining how the 

mechanism works. Most of the times, we deal with an input parameter that will affect a “black box” 

mechanism that will produce an output parameter (Nurse, 1998). In this study on spatacsin molecular role, 

we are getting closer to the explanation, but we are not there yet. We were able to cut the mechanisms 

into parts by invalidating some genes, but can we reconstruct the mechanisms by just a sum of the parts? 

There could be layers of interaction that we did not anticipate like redundancy between our parameters for 

example. 

Moreover, the emergence of complexity in “simple” mechanisms applies to cellular biology and models 

that don’t include many parameters can behave in very complex patterns (Kauffman and Kauffman, 1993). 

This goes with the notion of chaos, also known as “butterfly effect”, emerging in the variability of simple 

phenomena (Gleick, 1987). Indeed, there are so many interconnected pathways of regulations interacting 

with one another, that a minor change at one end of the mechanism could result in drastic changes at the 

other end in an unpredictable fashion. This is preventing us to draw simple boundaries and to oversimplify 

mechanisms or think that they will always be accurately describing the reality. However, this does not 

prevent us to try to build as accurate as possible models that will capture a good part of the information, 

even being by essence unable to capture the whole complexity of biological mechanisms. Recent examples 

highlighted the limitations of reductionism in approaches of regulation of organisms development (Green 

and Batterman, 2017).  
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These are the reasons that motivated us to limit the study of spatacsin molecular role to a few proteins 

despite identifying several interesting interactors of the protein, as the more elements there are in a 

mechanism, the more complexity there will be. The advantages we had in this study were that first, we 

were working on “intact” cells with live-imaging, and we did not limit our approach to only in vitro assays 

such as western blot analysis of cell lysates. Moreover, in our study, we tried to introduce the notion of 

time, indeed even if it was just for a few minutes of imaging, we followed the cell for more than a single 

snapshot at a given time point, which allowed us to extract additional information on the behavior of the 

lysosomes. Finally, using the siRNA technology allowed us to precisely downregulate genes one by one, 

limiting the number of parameters involved.  

 

The scale dilemma 

At which scale should we model a biological problem? When we study a biological phenomenon, this 

question might be difficult to answer. Indeed, if we take the example of our study on spatacsin molecular 

role, what is indeed causing the neurodegeneration? Is it the unfulfilled molecular role of spatacsin at the 

ER-Lysosomes interface? Is it an impairment of the lysosomal compartment at the subcellular level due to 

spatacsin absence? Is it an impairment of the general cell metabolism caused by an imbalance of the 

lysosomal function? Is it a specific cell type malfunctioning in a tissue that results in an alteration of the 

whole functioning of an organ? All scales are connected but identifying the one that is the most important 

for the development of neurodegeneration is not an easy task. 

If we consider the example of the gain of resolution provided by STED imaging (see Figure 75), when 

we look at the interaction between Endoplasmic Reticulum and Lysosomes, we realize that we completely 

miss the complexity of this interaction at low resolution. STED imaging reveals how tightly entangled the 

compartments are. 

 

 

Figure 75: The gain of resolution from spinning disk imaging (left) compared to STED imaging (right) 

changes the dimension of ER-Lysosome connection. Magenta: lamp1-mcherry. Green: ER staining 

(sec61/RTN2). Scale bars: Left 5 µm, Right 1 µm. 
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It is as if it is not the same question anymore for ER-Lysosome interaction, we can wonder if it does 

make sense to distinguish between compartments at this interface? When we see there is so much 

proximity in the contact between them and how they appear so tightly bound. 

 

Limits of reductionism 

 

The general reductionist approach of cellular biology is reflected by the existence of many 

subdisciplines: regulation of autophagy, of cellular traffic, of cellular signaling etc. This might cause 

problems of inapplicability and of identifying clear cut effects (Brigandt and Love, 2017). Indeed, models 

get so specialized that it is sometimes difficult to find the way back to the original scientific question that 

motivated the design of the model. This might explain the difficulty to go back to the patient level from a 

cellular biology finding. It first requires an as accurate as possible understanding of the studied mechanism 

to see if we can find any way to rescue eventual defaults. Then going back, in our example, to the neuronal 

level is necessary and challenging, then bringing up the solution to the mice model requires additional 

testing of the model and then eventually, at the end of the process, if all steps are correctly overcome the 

patient might benefit from it. 

According to (Brigandt and Love, 2017), it would be interesting to mix up more disciplines in the design 

of our models in an attempt to capture more information. In our study this evokes to me the use of more 

precise physics for lysosomal deformation or movement modelling, the use of automation to collect large 

data sets bearing more statistical power and the use of machine learning to pick parameters that might be 

too complex for the human brain to imagine. As reductionism is likely an imperfect way to study biological 

phenomena, it is however the least bad available option to study them and has produced great successes 

over the years of cellular biology history. That said, it is important that we remain careful in our scientific 

practice and humble in our conclusions as we ignore far more than we know. 
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VI. Importance of this work 
 

a) Better understanding of spatacsin molecular function  
 

In this study on spatacsin molecular role, we produced original data. Indeed, the sub-cellular 

fractionation of mouse brain revealed spatacsin sub-cellular localization and had never been performed 

before, likely due to the difficulty of performing spatacsin detection by Western Blot. We managed to 

extract a lot of information from these assays that helped us to learn more on spatacsin localization and 

ultimately on its function. This was combined with microscopy approaches to take advantages of super-

resolution imaging (STED) which revealed the localization of spatacsin-V5 to endoplasmic reticulum 

staining. 

Moreover, we showed that spatacsin function was important to regulate the tubular lysosomes 

dynamics, a role that was never identified before, even if spatacsin involvement in the regulation of 

lysosomal compartment had been studied. We also showed that spatacsin function in the regulation of 

tubular lysosome dynamics was dependent on spatacsin32-34 domain. The importance of this domain for 

SPG11 HSP is highlighted by the neurodegenerative phenotype that is affecting mice that have a truncated 

spatacsinΔ32-34. 

Spatacsin interaction with proteins of the ubiquitin depedent pathway to regulate tubular lysosome 

formation is a new feature of spatacsin role that we discovered. This is also an interesting example of 

regulation of a lysosomal function that is based on ubiquitin signaling. 

The ability of spatacsin to promote UBR4-dependent degradation is a new role for spatacsin and the 

involvement of this degradation in promoting the localization of spastizin to lysosomes confirms recent 

findings (Hirst et al., 2021b). 

 

b) Contribution to the field of tubular lysosomes 
 

While lysosomal and endosomal tubulation for compartment recycling is extensively studied, the field 

of tubular lysosomes is rather modest. We have confirmed that tubular lysosomes are particles that are 

more mobile than round lysosomes. We have shown that this motility is under a ubiquitin and spatacsin 

dependent regulation. We have confirmed that tubular lysosomes are indeed acidic compartments that 

represent a population of catalytically acidic lysosomes. We have shown that these tubular lysosomes can 

be observed in basal conditions in mouse embryonic fibroblasts, without requiring stimulation by cellular 

stress. 

We have identified a new role of ubiquitin-proteasome pathway in the regulation of tubular lysosome 

formation and lysosomal dynamics which was not expected and unknown. We have shown that kinesin 

KI13A is involved in tubular lysosome formation and dynamics, adding KIF13A to the list of kinesins 

regulating lysosomal movement.  
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c) Validating the use of automated tracking and image analysis to 
study lysosomes 

 

Our original approach combining the precise technology of siRNA, yeast 2 hybrid screening for 

exploratory discovery of interactors and live imaging using a well-defined parameter showed to be an 

efficient method to study the role of potential interactors of a protein. We reduced its time-consuming cost 

by taking advantage as much as possible of automation in image analysis. 

Our use of the neural network directed analysis that reinforced our results showed that unsupervised 

classification is possible and beneficial in the screening of potential interactors. 

 

d) Contribution to the functions of spastizin and AP5z1 
 

We confirmed a lysosomal localization for AP5z1 and spastizin and confirmed that spastizin localization 

at the lysosomes was dependent of spatacsin. We have shown that spatacsin dependent recruitment of 

spastizin to lysosomes could be negatively regulated by competitive interaction of AP5z1 with spatacsin. 

We have identified a mechanism for AP5z1 ubiquitin dependent degradation via UBR4 and spatacsin 

regulation. We have also shown the cooperation of spastizin and AP5z1 with spatacsin to regulate the 

formation and dynamic of tubular lysosomes 

We have confirmed the interaction of spastizin with KIF13A and showed that they were both involved 

in tubular lysosomes dynamics regulation.  

 

e) A new function for ER-lysosome contacts 
 

As spatacsin-spastizin interaction was happening only at the level of lysosomes, we have identified a 

new protein-protein contact materialized by spatacsin and spastizin at ER-lysosomes contact sites. This 

interaction is involved in the promotion of tubular lysosomes formation and dynamics. It is under regulation 

of a ubiquitin-dependent signaling pathway that degrades AP5z1.  

Moreover, it appears that this ER-Lysosomes contact is dependent of ER-architecture integrity and was 

perturbed upon ER-architecture disruption. This resulted in an alteration of the promoting role of the 

protein-protein interaction for tubular lysosomes dynamics. Ubiquitin signaling and ER architecture 

remodeling being very dynamic, it is likely that this new type of ER-Lysosomes contact is also very dynamic 

and adaptive to changes in cellular environment. 
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f) A better understanding of mechanisms linked to Hereditary 
Spastic Paraplegia 

 

Thanks to the identification of this spatacsin-based mechanism of regulation of the lysosomal function 

we have a better understanding of the “ER-Lysosomes connection” that is happening in the context of 

Hereditary Spastic Paraplegia. Indeed it is a thematic that has been evoked before (Allison et al., 2017b; Lee 

and Blackstone, 2020), proteins that are located at the ER regulate the lysosomal function via ER-Lysosomes 

contact. Spatacsin, is likely present at ER-Lysosomes contacts, therefore joining the family of proteins that 

are mutated in forms of HSP, located at the ER and involved in endolysosomal compartment regulation 

along with Spastin, REEP1 and Strumpellin.  

As the endolysosomal pathway appears to be dysregulated at many levels due to the mutation of 

proteins linked to HSP (see Figure 76), it is therefore important to continue to dig for an eventual unifying 

mechanism of endolysosomal compartment regulation by ER proteins for hereditary spastic paraplegias. 

Moreover, the involvement of endolysosomal defects in neurodegenerative diseases has been shown to be 

broader than HSP so it important to investigate the mechanisms regulating them for the understanding of 

the cellular biology of neurodegenerative diseases in general. 

 

 

 

Figure 76 : Involvement of hereditary spastic paraplegia proteins in the regulation of the endolysosomal 

pathway (Toupenet Marchesi et al., 2021) 
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VII. Next challenges & perspectives:  

 

a) Can we regulate tubular lysosome formation in a positive way? 
 

As we have seen in this study, spatacsin regulates tubular lysosome formation and their dynamics. We 

have identified several proteins involved in this mechanism as we have shown that they were necessary for 

the tubular lysosomes to form. It will also be interesting to identify positive regulators of tubular lysosome 

formation that could help us rescue spatacsin loss of function and potentially find a path to prevent 

neurodegeneration caused by spatacsin loss. 

 

Expressing spatacsin 

 

Rescuing spatacsin loss in Spg11-/- cells by re-expressing spatacsin has proven to be a difficult task. 

Indeed, it is very difficult to express spatacsin in cells, the efficiency of transfection is extremely low. I was 

unable to observe any spatacsin-GFP cells in live imaging as the signal was too low, making it difficult to 

observe tubular lysosome formation or tubular lysosome dynamics. The few cells that we can observe 

expressing a tagged spatacsin require the use of anti-tag antibodies. By using fixations techniques that 

conserve tubular lysosomes and expressing tagged spatacsin, I did not observe a significant rescue of the 

tubular lysosome formation.  

We must consider that Spg11-/- cells have almost no spastizin and reduced level of AP5z1, so to have a 

positive effect on tubular lysosome formation, it is possible that we need to express the 3 proteins. As they 

all have low transfection efficacy, it is an almost impossible task, unless changing the transfection method 

and using a more efficient method like lentiviral infection. However, Spg11 cDNA is too large for insertion 

in classical viral vectors used for gene therapy (up to 6.5kb while Spg11 cDNA is 7.7kb) (Bulcha et al., 2021) 

 

Stimulating ubiquitin-dependent degradation 

 

Besides trying to express spatacsin in cells, we could target other levels of the mechanism regulating 

tubular lysosome formation. This could be done for example by targeting the ubiquitin dependent 

degradation and promoting the degradation of substrates by using PROTAC technology (Huang and Dixit, 

2016) (see Figure 77).  

  



159 
 

 

 

Figure 77:  The principles of PROTAC technology to specifically promote the ubiquitin-dependent 

degradation of a substrate (Huang and Dixit, 2016). 

This technology is based on the design of proteins that will promote the ubiquitination of substrates 

thanks to their capacity to bind the target protein and E3 ligases (see Figure 77). Similar results can be 

achieved by tagging unwanted proteins with a hydrophobic ligand that will be recognized by the chaperone 

machinery and targeted for degradation. However, the challenge here would be to identify which proteins 

should be degraded to have a positive impact on tubular lysosome formation. 

 

Stimulating spatacsin/spastizin/AP5z1 recruitment to lysosomes 

 

We observed an enhancement of the tubular lysosome formation in starvation conditions, 

coinciding with the recruitment of spatacsin/spastizin/AP5z1 to the endolysosomes. It would be interesting 

to test the effect on tubular lysosomes formation of short exposition of cells to YM2016-36 and of 

expression of GDP-locked RagC, two conditions that stimulate spatacsin/spastizin/AP5z1 recruitment to 

lysosomes, (Hirst et al., 2021). 

 

Testing a DNA nanodevice promoting tubulation 

 

A recent study described the promoting tubulation effects of Tudor, a DNA nanodevice that triggers 

lysosomes tubulation in macrophages without activating them. Tudor is designed to be internalized by 

endocytic uptake and to display a fluorescent reporter. Its activity seems to be also independent of 

autophagy activation (Suresh et al., 2021). Testing the effect of Tudor on tubular lysosome formation in 

Spg11-/- cells could eventually restore it. 
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Expressing kinesins to restore tubulation and movement 

 

Overexpressing kinesins such as KIF13A or KIF5B to compensate for the loss of tubular lysosomes 

dynamics could be tested as they are important for lysosome dynamics. The P180 protein, a KIF5B-binding 

protein enriched in ER tubules seems to have a promoting role for ER mediated transport of lysosomes 

(Özkan et al., 2021). Expressing P180 in Spg11-/- fibroblasts may compensate the effect of loss of spatacsin 

on tubular lysosome formation and dynamics. 

 

b) Digging into the mechanism complexity 
 

The results we obtained allowed us to propose a role for spatacsin in regulating lysosome dynamics. 

However, several questions have still not been explored and may refine the mechanisms of action of 

spatacsin. 

 

Precising spatacsin cellular localization at ER-lysosomes contacts 

 

Why is it important for spatacsin to be at the interface between ER and lysosomes? The ER is a very 

dynamic compartment, in constant remodeling. Moreover, as most late endosomes and lysosomes are in 

contact with the ER, being present at ER-Lysosomes contact sites allows for a precise access to lysosomes 

to regulate their function even at the low expression levels of spatacsin. This is therefore a strategic position 

to regulate endolysosomal function for spatacsin.  

To precisely obtain the exact position of spatacsin at ER-lysosomes contacts, we could try to locate V5-

tagged spatacsin in electronic microscopy images by using biotin-conjugated antibodies against V5 tag or 

by using an APEX-spatacsin construct (Lam et al., 2015). Electron microscopy resolution would allow us to 

obtain a very precise spatacsin subcellular localization. However, as spatacsin is very poorly expressed, this 

approach requires a correlative microscopy set up to identify the position of the few cells expressing tagged-

spatacsin before proceeding to electron microscopy preparation. Another alternative would be to perform 

three colors STED imaging to observe the interaction between the ER, the lysosomes and V5-tagged 

spatacsin. 

 

Modulating the ER tubular network 

 

Could we play on the ER tubular network to modulate tubular lysosome dynamics? Indeed, we have 

shown that preventing homotypic fusion of ER tubules altered the formation of tubular lysosomes and their 

general dynamics, but what about promoting this homotypic fusion?  
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However, it is difficult to find ways to do so, overexpression of ER-tubular morphology regulators RTN3 

or ATL3 do not seem to create more junctions between ER tubules (Chen et al., 2019, p. 3; Grumati et al., 

2017, p. 3). Moreover, it has been shown that, upon starvation, because of the peri-nuclear clustering of 

lysosomes toward the cell center, there is a reduction of the number of three way junctions and of ER-

tubular network complexity (Spits et al., 2021b). As we have seen that starvation had a positive effect on 

tubular lysosome formation, this constitutes a mechanism independent of spatacsin action or, as this 

change in ER morphology is not drastic, the balance between ER tubule network branching and tubular 

lysosome dynamics is more complex than we thought. 

Lunapark is localized at three-way ER-junctions (Zhao et al., 2020) and its presence stabilizes the ER 

tubular junctions (Chen et al., 2015). Could Lunapark expression in cells modulate the tubular lysosome 

dynamics, and would it be a spatacsin dependent effect? As we have seen no major alteration of the ER 

tubular network in absence of spatacsin, we should not expect a strong effect. 

 

Identifying the complete AP5z1 degradation mechanism 

 

We have seen that AP5z1 degradation promoted by spatacsin was dependent on UBR4 and on poly-

ubiquitination. However, UBR4 has no E3 ligase activity. Then, which E3 ligase is ubiquitinating AP5z1? UBR4 

interacts with KCMF1 (E3 ligase) and RAD6 (E2) to regulate N-end rule substrates lysosome mediated 

degradation (J. H. Hong et al., 2015). It would then be interesting to test the involvement of KCMF1-RAD6 

in AP5z1 degradation as it appears that this process is  

taking place at the lysosomes. The lysosomal degradation of AP5z1 is further supported by the fact that 

UBR4 associates with several substrates to degrade them by autophagy, and that its absence is linked to 

LC3 accumulation (Tasaki et al., 2013). 

 

Measuring lipid transport at ER-lysosomes contacts in absence of spatacsin 

 

We have previously shown by using fluorescent cholesterol that the export of cholesterol from 

lysosomes was altered in absence of spatacsin (Boutry et al., 2019a). Several mechanisms of cholesterol 

export out of lysosome occur at contact sites between the ER and Lysosomes. Since we showed that 

spatacsin is present at this interface, I would like to test now, using the same fluorescent cholesterol, if 

there is an impairment in cholesterol transfer from the ER to the lysosomes in absence of spatacsin. This 

would refine the mechanism of import/export of cholesterol at the lysosomes. 

 

On a broader exploratory perspective, there are probably other functions of spatacsin to discover 

besides the regulation of tubular lysosome formation, indeed it has been recently shown that there were 

mitochondrial alterations in axons of neurons that lack spatacsin (Güner et al., 2021). 
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c) Going back to neuronal model 
 

Since loss of spatacsin is responsible for a neurodegenerative disease, it will be important to 

evaluate whether the observations we made in fibroblasts are also valid in neuronal models.  

 

The ER tubular network is extremely important in polarized neurons  

 

There are multiple ER-Lysosome contacts formed in neurons similarly to what was observed in 

other cell types (Wu et al., 2017). It appears that in neurons, the ER is polarized: the ER cisternae are 

localized mostly in the cellular body of the cell while axons contain mostly a tubular ER network. The 

architecture of this axonal ER network is very important and its disruption could lead to axon degenerative 

diseases (Öztürk et al., 2020). Moreover, hereditary spastic paraplegia reticulon and REEP proteins are 

involved in the shaping and maintenance of this axonal tubular network (Yalçın et al., 2017). It would be 

interesting to evaluate in these models whether the formation of tubular lysosomes, or even the dynamics 

of lysosomes in axons is disturbed. 

 

Are there tubular lysosomes in neurons? 

 

 Furthermore, a recent study showed that ER-lysosome contacts are important for lysosomal 

movement and axonal lysosome availability (Özkan et al., 2021). In this study, it appears that there are 

tubular lysosomes in neurons. It would be interesting to see if we can indeed observe tubular lysosomes in 

our neuronal model. To avoid electroporating these sensitive cells, we could use dyes that we have 

identified as staining tubular lysosomes in our fibroblast model such as fluorescent dextran and lysotracker. 

Then, analyzing the dynamics of the lysosomal compartment in neurons in absence of spatacsin will be 

necessary to look for alterations like the ones we have observed in our fibroblast model. 
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Is tubular lysosome dynamics loss causing lipid accumulations? 

 

 We know that loss of spatacsin leads to accumulation of gangliosides and cholesterol in lysosomes, 

and that the ganglioside accumulation is linked to neuronal death (Boutry et al., 2018). It would be 

interesting to evaluate whether the alteration of lysosome dynamics linked to formation of tubular 

lysosome contributes to the accumulation of lipids in lysosomes. We could first evaluate in fibroblasts if 

accumulation of cholesterol in lysosomes is modulated by the parameters that we identified as important 

for tubular lysosome formation and dynamics, such as overexpression of mutant ubiquitin k0, 

overexpression of AP5z1-GFP, of motor-less KIF13A-ST and of mutant Atlastin-K80A. If these parameters 

trigger a cholesterol accumulation, it will likely be showing that cholesterol export from lysosomes is reliant 

on tubular lysosomes formation and dynamics.  

 

Promoting lysosome fusion with other compartments 

 

Moreover, it will be also interesting to investigate the hypothesis of the preferred role of tubular 

lysosomes in fusion with autophagosomes and endosomes and if such defects could be linked to lipid 

accumulation. Maybe promoting autophagosomes-lysosome fusion in Spg11-/- cells using c-Src (Suzuki et 

al., 2020) or overexpressing ATG14 (Zhang et al., 2021, p. 14) could have a beneficial effect on lysosomal 

accumulations. 

If we ultimately find a way to promote tubular lysosome formation and if this is applicable to the 

better clearance of the lysosomal content in lysosomes of neurons, it will be interesting to test if it could 

improve their survival in absence of spatacsin. 
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Mutations in SPG11, leading to loss of spatacsin function, impair the formation of membrane

tubules in lysosomes and cause lysosomal lipid accumulation. However, the full nature of

lipids accumulating in lysosomes and the physiological consequences of such accumulation

are unknown. Here we show that loss of spatacsin inhibits the formation of tubules on

lysosomes and prevents the clearance of cholesterol from this subcellular compartment.

Accumulation of cholesterol in lysosomes decreases cholesterol levels in the plasma mem-

brane, enhancing the entry of extracellular calcium by store-operated calcium entry and

increasing resting cytosolic calcium levels. Higher cytosolic calcium levels promote the

nuclear translocation of the master regulator of lysosomes TFEB, preventing the formation of

tubules and the clearance of cholesterol from lysosomes. Our work reveals a homeostatic

balance between cholesterol trafficking and cytosolic calcium levels and shows that loss of

spatacsin impairs this homeostatic equilibrium.
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Mutations in the SPG11 gene are responsible for a severe
form of hereditary spastic paraplegia characterized by
bilateral weakness, spasticity in the lower limbs, as well

as ataxia or cognitive impairment1,2. Most mutations are trun-
cating mutations, suggesting that the symptoms are due to loss of
function of the SPG11 product, spatacsin3. Accordingly, knockout
of Spg11 in the mouse reproduces the main motor and cognitive
symptoms observed in patients4. Studies in SPG11 patient
fibroblasts and in Spg11 knockout mice suggested that loss of
spatacsin led to impaired function of lysosomes4–6. Lysosomes are
organelles containing hydrolytic enzymes that notably fuse with
endosomes or autophagosomes to allow degradation of their
content. After the degradation step, new lysosomes can be
reformed from the hybrid organelles7,8. Recycling of the lysoso-
mal membrane after the termination of autophagy, known as
autophagic lysosome recovery (ALR), relies on the formation of
tubules on the lysosomes. This mechanism involves proteins that
participate in membrane trafficking, such as clathrin and
dynamin9,10, but it also relies on spatacsin11.

Analysis of Spg11 knockout mice showed that the loss of
spatacsin function led to progressive accumulation of lipids in
lysosomes, both in neuronal and non-neuronal cells4. In parti-
cular, it was shown that loss of spatacsin led to lysosomal accu-
mulation of glycosphingolipids in neuronal models12. Most lipids
such as triacylglycerols, phospholipids, and gangliosides are
degraded by the lysosomal hydrolases into their basic building
blocks. The latter are then exported in the cytosol to be further
degraded to fuel energy metabolism or can re-enter biosynthetic
pathways13. In contrast, cholesterol is not degraded in the
endolysosomal pathway, but it is exported out of this subcellular
compartment. It is redistributed to the membranes of other
subcellular compartments, placing lysosomes at a crossroad of
cholesterol metabolism14. However, the molecular mechanisms
by which cholesterol leaves late endosomes/lysosomes and
reaches other subcellular compartments have been only partially
characterized15. Furthermore, alteration of cholesterol trafficking
is associated with many pathological conditions16. It is therefore
important to explore the downstream consequences for cellular
physiology of impaired cholesterol trafficking. Cholesterol has
long been known to influence cellular calcium homeostasis, but
little is known about the molecular mechanisms coupling change
in cholesterol concentration to alterations of calcium signaling17.

Here, we show that the loss of spatacsin function and the
associated inhibition of tubule formation in late endosomes/
lysosomes leads to the accumulation of cholesterol in this com-
partment, due to its impaired export out of the organelle. This
results in a decrease in the level of plasma membrane cholesterol
that disturbs intracellular calcium homeostasis. We demonstrate
that the resulting modification in cytosolic calcium levels con-
tributes to the impairment of lysosome tubulation and accumu-
lation of cholesterol in late endosomes/lysosomes and that this
process is TFEB-dependent.

Results
Tubules on lysosomes contributes to cholesterol clearance. We
analyzed the localization of lysosomes in control and spatacsin-
deficient (Spg11−/−) fibroblasts by LAMP1 immunostaining.
Spg11−/− cells showed perinuclear accumulation of LAMP1-
positive vesicles (Fig. 1a, b), a phenotype that has been linked to
the accumulation of cholesterol in late endosomes and
lysosomes18,19. We thus tested whether cholesterol accumulates
in the late endosomes/lysosomes of Spg11−/− fibroblasts by
monitoring intracellular localization of cholesterol with filipin,
which stains free cholesterol (Fig. 1c), or the fluorescent probe
derived from perfringolysin-O, GFP-D420 (Supplementary

Fig. 1a). The mean fluorescence intensity of filipin staining of
whole cells was the same in Spg11+/+ and Spg11−/− fibroblasts
(Fig. 1d), a result confirmed by the biochemical analysis of cel-
lular cholesterol content (Supplementary Fig. 1b). However, the
proportion of cholesterol colocalized with late endosomes/lyso-
somes was significantly higher in Spg11−/− than control fibroblasts
when monitored with filipin or GFP-D4 (Fig. 1e, Supplementary
Fig. 1c). Since mutations in SPG11 cause neurodegeneration3, we
evaluated the impact of loss of spatacsin function on cholesterol
distribution in neuronal models. Biochemical quantification
showed that the amount of total cholesterol was similar in
Spg11+/+ and Spg11−/− neurons (Fig. 1f). We monitored whether
cholesterol accumulates in the late endosomes/lysosomes of
Spg11−/− neurons with the GFP-D4 probe or filipin staining
(Fig. 1g, Supplementary Fig. 1d). Consistent with data obtained in
fibroblasts, the proportion of cholesterol colocalized with late
endosomes/lysosomes was significantly higher in Spg11−/− than
control neurons, suggesting that cholesterol distribution was
impaired in neurons in the absence of spatacsin (Fig. 1h, Supple-
mentary Fig. 1d). We previously showed that loss of spatacsin
induced the accumulation of gangliosides in lysosomes in neuronal
models12. We tested whether cholesterol accumulation could be a
consequence of the accumulation of gangliosides, by preventing
their synthesis using miglustat. Inhibition of ganglioside synthesis
did not prevent the accumulation of cholesterol in late endosomes/
lysosomes (Supplementary Fig. 1d), suggesting that cholesterol
accumulation is not a consequence of the accumulation of
gangliosides.
Since the distribution of cholesterol, but not the total amount,

was altered in the absence of spatacsin, we hypothesized that the
trafficking of cholesterol could be disturbed. We monitored the
trafficking of fluorescently labeled cholesterol. Control and
Spg11−/− fibroblasts were incubated with low density lipoprotein
(LDL) loaded with fluorescent cholesterol for two hours and
chased for 24 h. We quantified the colocalization of fluorescent
cholesterol with LAMP1 at several time points. During the first
four hours, the proportion of fluorescent cholesterol colocalized
with LAMP1 increased, consistent with the internalization of
LDL, and there was no difference in the internalization of
cholesterol between Spg11+/+ and Spg11−/− fibroblasts. At
longer chase times, there was a progressive decrease in the
colocalization of fluorescent cholesterol and LAMP1 in control
cells, consistent with the egress of cholesterol from late
endosomes/lysosomes21. In contrast, the proportion remained
stable in Spg11−/− cells (Fig. 1i), suggesting that the efflux of
cholesterol from late endosomes/lysosomes was altered in the
absence of spatacsin.
Spatacsin participates in the initiation of tubule formation on

lysosomes11. Accordingly, we observed that Spg11−/− fibroblasts
contained fewer lysosomes with tubules than Spg11+/+ fibroblasts
under basal condition when they were transfected with a vector
expressing LAMP1-mCherry and analyzed by live imaging
(Supplementary Fig. 2a, b). We tested whether the formation of
tubules contributed to cholesterol clearance from lysosomes using
siRNA to downregulate the clathrin heavy chain (Fig. 2a), a
protein essential for the initiation of tubule formation on late
endosomes/lysosomes9. Downregulation of the clathrin heavy
chain in wild-type fibroblasts significantly decreased the number
of tubules emanating from lysosomes and increased the
proportion of cholesterol colocalized with the LAMP1-positive
compartment under basal condition (Fig. 2b, c). Pulse-chase
experiments of LDL loaded with fluorescent cholesterol showed
that the efflux of cholesterol from late endosomes/lysosomes
decreased when clathrin heavy chain was downregulated
(Supplementary Fig. 2c). The scission of lysosome tubules
requires dynamin10, a binding partner of spatacsin12. The

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0615-z

2 COMMUNICATIONS BIOLOGY | (2019)2:380 | https://doi.org/10.1038/s42003-019-0615-z | www.nature.com/commsbio

www.nature.com/commsbio


inhibition of dynamin by dynasore increased the proportion of
cholesterol colocalized with late endosomes/lysosomes in control,
but not in Spg11−/− fibroblasts (Fig. 2d). These data suggest that
spatacsin and dynamin cooperate in a same pathway to clear
cholesterol from late endosomes/lysosomes. Overall, these data

suggest that the formation of tubules on lysosomes contributes to
the clearance of cholesterol from lysosomes.
We investigated whether lysosomal tubules are used for

cholesterol trafficking by transfecting fibroblasts with a vector
expressing LAMP1-mCherry and incubating them with LDL
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Fig. 1 The loss of spatacsin (Spg11−/−) promotes the accumulation of cholesterol in late endosomes/lysosomes. a Immunostaining of Spg11+/+ and
Spg11−/− fibroblasts with the late endosome/lysosome marker LAMP1. Nuclei are stained with DAPI. White lines indicate the cell periphery. Scale bar: 10
µm. b Distribution of late endosomes/lysosomes in Spg11+/+ and Spg11−/− fibroblasts. The maximum distance between particles and the nucleus was fixed
at 100 for each cell. Late endosomes/lysosomes cluster more around the nuclei of Spg11−/− than Spg11+/+ fibroblasts. The graph shows the mean ± SEM.
N= 65 cells from three independent experiments. Two-way ANOVA: ***p < 0.0001; **p < 0.01; *p < 0.05. c Staining of cholesterol with filipin and late
endosomes/lysosomes by the marker LAMP1 in Spg11+/+ and Spg11−/− fibroblasts. Insets show a higher magnification of the zone highlighted by a white
square. Scale bar: 10 µm. d Quantification of the intensity of filipin staining of whole cells showing no significant difference in the total amount of
cholesterol in Spg11+/+ and Spg11−/− fibroblasts. The graph shows the mean ± SEM. N > 85 cells from three independent experiments. T-test: p= 0.83.
e Quantification of the amount of filipin staining colocalized with the marker LAMP1, showing more cholesterol in late endosomes/lysosomes in Spg11−/−

than Spg11+/+ fibroblasts. The graph shows the mean ± SEM. N > 85 cells from three independent experiments. T-test: ***p < 0.0001. f Biochemical
quantification of total cholesterol levels in Spg11+/+ (N= 7) and Spg11−/− (N= 6) neurons. The graph shows the mean ± SD. Mann–Whitney test: p=
0.63. g Staining of cholesterol with GFP-D4 probe and immunostaining of the late endosome/lysosome marker LAMP1 in Spg11+/+ and Spg11−/− primary
cortical neurons. Scale bar: 5 µm. h Quantification of the amount of GFP-D4 staining colocalized with the marker LAMP1, showing more cholesterol in late
endosomes/lysosomes in Spg11−/− than Spg11+/+ neurons. The graph shows the mean ± SEM. N > 110 cells from three independent experiments. T-test:
***p < 0.001. i Quantification of the amount of Top-Fluor cholesterol colocalized with the marker LAMP1 in Spg11+/+ and Spg11−/− fibroblasts over time.
The graph shows the mean ± SEM. N > 95 cells analyzed in three independent experiments. Two-way ANOVA: ***p < 0.0001
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Fig. 2 Inhibition of tubule formation in late endososmes/lysosomes causes the accumulation of cholesterol. a Western blot showing the downregulation of
clathrin heavy chain (CHC) in wild-type mouse embryonic fibroblasts transfected with siRNA targeting CHC. b Quantification of the number of LAMP1-
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analyzed by live imaging. The graph shows the mean ± SEM. N > 58 cells analyzed in three independent experiments. T-test: ***p= 0.0004.
c Quantification of the amount of filipin staining colocalized with the LAMP1 marker in fibroblasts transfected with a control siRNA or a siRNA that
downregulates CHC. Downregulation of CHC resulted in a higher amount of cholesterol in late endosomes/lysosomes. The graph shows the mean ± SEM.
N > 78 cells analyzed in three independent experiments. T-test: ***p= 0.0002. d Two-hour treatment of fibroblasts with the dynamin inhibitor dynasore
(40 µM) induces the accumulation of cholesterol in Spg11+/+ but not Spg11−/− fibroblasts. The graph shows the mean ± SEM. N > 78 cells analyzed in three
independent experiments. Two-way ANOVA: *p= 0.037, **p= 0.0098. e Live imaging of fibroblasts expressing LAMP1-mCherry and loaded with
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lysosomes (asterisk). Arrowheads point to a lysosomal tubule undergoing fission. Scale bar: 2 µm
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loaded with fluorescent cholesterol for 2 h in the presence of
U18666a. This compound promotes the strong accumulation of
cholesterol in late endosomes and lysosomes22. Twenty minutes
after U18666a washout, which allows cholesterol egress from
lysosomes, live imaging showed the fluorescent cholesterol to be
localized to lysosomal tubules (Fig. 2e). Occasionally, tubules
fission gave rise to new vesicles containing cholesterol (Fig. 2e),
suggesting that tubulation in late endosomes/lysosomes is
involved in cholesterol trafficking.

Lysosome tubulation regulates plasma membrane cholesterol.
In cells, cholesterol levels are high in the plasma membrane,
intermediate in late endosome/lysosomes, and low in the endo-
plasmic reticulum (ER)23. We investigated whether the accumu-
lation of cholesterol in late endosomes/lysosomes changes its
concentration in the plasma membrane by staining cholesterol in
the plasma membrane of live cells using the probe GFP-D4.
Cholesterol levels in the plasma membrane were significantly
lower in Spg11−/− than control cells (Fig. 3a, b). We confirmed
this result by determining total and plasma membrane cholesterol
levels by an enzymatic assay. The total amount of cholesterol was
the same in Spg11−/− and Spg11+/+ cells (Supplementary

Fig. 1b), but it was lower in the plasma membrane of Spg11−/−

than Spg11+/+ cells (Fig. 3c). Similarly, the inhibition of tubule
formation in late endosomes/lysosomes by downregulation of
clathrin heavy chain or dynasore treatment led to the accumu-
lation of cholesterol in late endosomes/lysosomes at the expense
of the plasma membrane (Figs. 2 and 3d, e). Overall, these results
show that impaired trafficking of cholesterol out of late endo-
somes/lysosomes due to alterations in the formation of tubules
results in decreased levels of cholesterol in the plasma membrane.

Depletion of plasma membrane cholesterol increases store-
operated calcium entry. We then investigated the consequences
of impaired trafficking of cholesterol from lysosomes to the
plasma membrane by analyzing cells deficient in spatacsin, which
is required for the initiation of tubule formation11. On electron
microscopy preparations, the loss of spatacsin significantly
increased the number and size of the contacts between ER and the
plasma membrane (Fig. 4a–c). Such close contacts play a role in
various cellular functions and notably regulate transfer of lipids
between the membranes, or homeostasis of calcium24,25. Upon
depletion of the intracellular calcium store of the ER, the ER
calcium sensor STIM1 oligomerizes and interacts with the plasma
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Fig. 3 The inhibition of tubule formation on late endosomes/lysosomes lowers cholesterol content in the plasma membrane. a. Staining of live fibroblasts
with the probe GFP-D4, which allows staining of the plasma membrane cholesterol only. Scale bar: 10 µm. b Quantification of the intensity of GFP-D4
staining performed on live Spg11+/+ and Spg11−/− fibroblasts, showing a lower level of plasma membrane cholesterol in Spg11−/− than Spg11+/+ fibroblasts.
The graphs show the mean ± SEM. N > 95 cells analyzed in at least three independent experiments. T-test: ***p < 0.0001. c Biochemical quantification of
the proportion of cholesterol present in the plasma membrane in Spg11+/+ and Spg11−/− fibroblasts, showing a lower level of plasma membrane cholesterol
in Spg11−/− than Spg11+/+ fibroblasts. N= 6 independent assays. Wilcoxon paired test: *p= 0.031. d Quantification of the intensity of GFP-D4 staining
performed on live control fibroblasts transfected with control siRNA or siRNA targeting CHC. Downregulation of CHC decreases the amount of cholesterol
in the plasma membrane. The graph shows the mean ± SEM. N > 100 cells analyzed in two independent experiments. T-test: ***p < 0.0001. e Quantification
of the intensity of GFP-D4 staining performed on live control fibroblasts treated with dynasore (40 µM, 2 h). Inhibition of dynamin decreases the amount of
cholesterol in the plasma membrane. The graph shows the mean ± SEM. N > 80 cells analyzed in three independent experiments. T-test: **p= 0.0062
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Fig. 4 The depletion of plasma membrane cholesterol promotes higher store-operated calcium entry. a Electron micrograph of neurons in the cortex of a 2-
month-old Spg11−/− mouse, showing close contact between the endoplasmic reticulum (ER) and plasma membrane (PM). False colors highlight the
various cellular compartments. Scale bar: 250 nm. b, c Quantification of contacts between the ER and plasma membrane, defined as the zone where the
distance between the two membranes is lower than 30 nm. b Quantification of the mean length of individual contacts between the ER and plasma
membrane in the cortex of 2-month-old Spg11−/− or Spg11+/+ mice. c Quantification of the percentage of the plasma membrane in close contact with the
ER in the cortex of 2-month-old Spg11−/− or Spg11+/+ mice. The graphs represent the mean ± SEM. N > 23 cells analyzed in two independent mice for each
group. T-test: ***p < 0.0001. d Spg11−/− or Spg11+/+ mouse embryonic fibroblasts transfected with vectors expressing STIM1-mCherry imaged by
epifluorescence or total internal reflection microscopy (TIRF). Scale bar: 10 µm. e Quantification of the percentage of the cellular area with STIM1-mCherry
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medium, and the increase in cytosolic calcium measured with Fura-2, allowing the quantification of SOCE. The graph shows the mean ± SEM. N > 35 cells
from three independent experiments. g Increasing cholesterol levels in the plasma membrane with methyl-β-cyclodextrin (MBCD) loaded with cholesterol
decreases store-operated calcium entry in Spg11−/− fibroblasts, measured by the addition of 2 mM extracellular calcium after a 10-min treatment with
thapsigargin. The graph shows the mean ± SEM. N > 60 cells from three independent experiments
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membrane calcium channel Orai1, forming close contacts
between the ER and the plasma membrane and allowing the
import of extracellular calcium to restore normal intracellular
calcium homeostasis25. This mechanism is known as store-
operated calcium entry (SOCE). We analyzed the proximity of the
ER calcium sensor STIM1 and the plasma membrane by total
internal reflection fluorescence (TIRF) in cells transfected with a
vector expressing STIM1-mCherry. TIRF microscopy performed
on fibroblasts under basal conditions confirmed that the pro-
portion of the plasma membrane in close contact with the ER
calcium sensor STIM1 was higher in Spg11−/− than control cells
(Fig. 4d, e).
Levels of cholesterol in the plasma membrane regulate

SOCE26,27. We therefore tested whether lower levels of
cholesterol in the plasma membrane, caused by the loss of
spatacsin, altered SOCE. We treated fibroblasts in Ca2+-free
medium with the SERCA inhibitor thapsigargin to deplete the ER
calcium store and trigger SOCE. We then added 2 mM calcium in
the extracellular medium and calcium import was measured using
the cytosolic calcium probe Fura-2. Spg11−/− cells imported more
extracellular calcium than Spg11+/+ cells (Fig. 4f), suggesting that
the loss of spatacsin promoted SOCE under basal conditions.
We then investigated whether the increased SOCE observed in

the absence of spatacsin was due to lower levels of cholesterol in
the plasma membrane. We increased plasma membrane choles-
terol levels by exposing Spg11−/− fibroblasts for 1 h to methyl-β-
cyclodextrin loaded with cholesterol (Supplementary Fig. 3a, b).
This restored normal SOCE in Spg11−/− fibroblasts (Fig. 4g),
suggesting that cholesterol depletion from the plasma membrane
due to impaired lysosomal tubulation is responsible for the
increase in SOCE when spatacsin function is lost.

Plasma membrane cholesterol regulates cytosolic calcium
levels. SOCE promotes the entry of extracellular calcium into the
cytosol that is normally taken up by the ER25,28. We monitored
whether the increased SOCE due to the loss of spatacsin modified
cytosolic calcium levels in resting cells. Cytosolic calcium levels
were slightly, but significantly, higher in Spg11−/− than Spg11+/+

fibroblasts (Fig. 5a). We tested whether this increase in cytosolic
calcium was a consequence of increased SOCE by reducing
extracellular calcium levels to 0.4 mM by adding EGTA to the
culture medium for 1 h. Under these conditions, resting cytosolic
calcium levels were significantly reduced in both Spg11+/+ and
Spg11−/− fibroblasts (Fig. 5a). We confirmed this result by
downregulating the expression of STIM1 by transfecting fibro-
blasts with specific siRNA (Fig. 5b). Downregulation of STIM1
decreased SOCE and restored normal cytosolic calcium levels in
Spg11−/− cells (Fig. 5b, c), demonstrating that enhanced SOCE
increases cytosolic calcium levels in the absence of spatacsin.
Finally, we restored normal cytosolic calcium levels when we
increased cholesterol levels in the plasma membrane of Spg11−/−

fibroblasts (Supplementary Fig. 3), suggesting that the increase in
SOCE, caused by lower plasma membrane cholesterol levels, is
responsible for the alteration of cytosolic calcium levels (Fig. 5d).

Cytosolic calcium contributes to cholesterol accumulation in
lysosomes. Among other cellular functions, the entry of extra-
cellular calcium by SOCE has been proposed to regulate the
nuclear translocation of TFEB29, which is a major regulator of
lysosome function30. We monitored the amount of nuclear TFEB,
which represents the transcriptionally active protein30, in Spg11−/−

and Spg11+/+ fibroblasts. The amount of nuclear TFEB was
significantly higher in Spg11−/− than Spg11+/+ fibroblasts,
whereas cytosolic levels of TFEB were not significantly different
(Fig. 6a). Decreasing cytosolic calcium levels using the

intracellular chelator EGTA-AM or by lowering extracellular
calcium levels decreased the amount of nuclear TFEB in Spg11−/−

fibroblasts, suggesting that higher SOCE in Spg11−/− fibroblasts
is responsible for the nuclear translocation of the transcription
factor (Fig. 6a). Translocation of TFEB into the nucleus depends
on its phosphorylation state31, and it can be phosphorylated by
mTOR. The levels of phosphorylated S6 protein and S6 kinase,
two mTOR substrates, were similar in Spg11−/− and Spg11+/+

fibroblasts (Supplementary Fig. 4a), suggesting that mTOR
activity is not altered in absence of spatacsin and that it is not
responsible for nuclear TFEB in Spg11−/− fibroblasts. We then
examined whether the entry of calcium mediated by SOCE in
Spg11−/− fibroblasts could promote the nuclear translocation of
TFEB by regulating the calcium-dependent phosphatase calci-
neurin32. The amount of nuclear TFEB was partially restored in
Spg11−/− fibroblasts upon transfection with a siRNA down-
regulating calcineurin compared to a control siRNA (Fig. 6b, c).
Together, these data suggest that entry of calcium by SOCE in
Spg11−/− fibroblasts mediates the calcium-dependent depho-
sphorylation of TFEB, allowing its nuclear translocation.
Since TFEB regulates many lysosome functions, we wondered

whether the higher levels of nuclear TFEB due to higher cytosolic
calcium levels could regulate the formation of tubules of late
endosomes/lysosomes and modulate the cholesterol content in
this compartment. We decreased SOCE by downregulating
STIM1 or reducing extracellular free Ca2+ levels. These
treatments partially restored tubule formation in the absence of
spatacsin (Fig. 7a and Supplementary Fig. 4b). Similarly,
treatment with the intracellular calcium chelator EGTA-AM, to
decrease cytosolic calcium levels, increased the number of
lysosomes with tubules in Spg11−/− fibroblasts (Supplementary
Fig. 4c). We tested whether these effects where mediated by TFEB
by downregulating its expression using siRNA, leading to lower
levels of TFEB in both the cytoplasm and nucleus (Fig. 7b).
Downregulation of TFEB in Spg11−/− fibroblasts partially
restored the number of lysosomes with tubules (Fig. 7c). Overall,
these data suggest that altered calcium homeostasis impairs the
formation of tubules on lysosomes in the absence of spatacsin in a
TFEB-dependent manner.
We showed that tubule formation is required for the clearance

of cholesterol from lysosomes (Fig. 1). We thus investigated
whether treatment that restores the formation of tubules in the
absence of spatacsin also has an effect on cholesterol accumula-
tion in late endosomes/lysosomes. Decreasing SOCE by down-
regulating STIM1 expression corrected the accumulation of
cholesterol observed in lysosomes in Spg11−/− fibroblasts
(Fig. 7d). Similarly, decreasing cytosolic calcium levels with
EGTA-AM decreased cholesterol levels in late endosomes/
lysosomes in Spg11−/− fibroblasts (Fig. 7e) and Spg11−/− neurons
(Supplementary Fig. 4d). Downregulation of TFEB in Spg11−/−

fibroblasts also decreased the proportion of cholesterol in late
endosomes/lysosomes (Fig. 7f). Since TFEB was shown to
regulate lipid metabolism in liver33, we monitored whether
downregulation of TFEB could activate the transcription factor
SREBP that regulates cholesterol synthesis34. SREBP is activated
by its cleavage, and we detected no change in the levels of
activated SREBP between Spg11+/+ and Spg11−/− fibroblasts,
whether TFEB was downregulated or not (Supplementary Fig. 4e).
Together, these data suggest that increased cytosolic calcium
levels contributed to the accumulation of cholesterol in a TFEB-
dependent manner.
We also showed that the accumulation of cholesterol in late

endosomes/lysosomes slightly decreases cholesterol levels in the
plasma membrane (Fig. 3). We reasoned the treatment that
restores the distribution of cholesterol in late endosomes/
lysosomes in Spg11−/− fibroblasts should also restore normal
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levels of cholesterol in the plasma membrane. Inhibiting SOCE
via STIM1 downregulation indeed corrected cholesterol levels in
the plasma membrane of Spg11−/− fibroblasts (Fig. 7g), showing
that dysregulation of calcium homeostasis contributed to the
observed alterations in cholesterol trafficking. This demonstrates
that impaired calcium homeostasis due to the accumulation of
cholesterol in late endosomes/lysosomes contributed to the
maintenance or enhancement of the imbalanced cholesterol
distribution.

Discussion
Loss of spatacsin leads to accumulation of lipids in lysosomes,
both in neuronal and non-neuronal cells4, but the mechanisms
underlying the accumulation of lipids in this compartment are
unknown. Here we show that spatacsin is implicated in the
trafficking of cholesterol and demonstrate that alteration of this
trafficking pathway has functional consequences for the plasma
membrane and calcium homeostasis, affecting lysosome function.

Cholesterol is an essential constituent of cellular membranes,
but is unevenly distributed within subcellular compartments23,35.
The lipid composition of membranes, including the amount of
cholesterol, affects their biological functions36. The mechanisms
that regulate cholesterol transport between subcellular compart-
ments thus appear to be critical for cellular functions14. The
transport of cholesterol out of lysosomes requires the proteins
Niemann Pick Type C (NPC) 1 and 2 that likely allow cholesterol
to be integrated in the lysosomal membrane14,23,37. However, the
dissection of mechanisms allowing cholesterol transport is com-
plicated by the co-existence of vesicular transport of cholesterol21

and non-vesicular trafficking of cholesterol at the levels of contact
sites between lysosomes and other subcellular compartments35,38.

The formation of tubules on lysosomes requires clathrin, spa-
tacsin, and dynamin. These proteins are involved in the recycling
of lysosome membranes after the termination of autophagy9–11.
Although autophagic lysosome recovery occurs after the termi-
nation of autophagy, we show here that this machinery is also
used to clear cholesterol from late endosomes/lysosomes by
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Fig. 5 High store-operated calcium entry in the absence of spatacsin increases cytoplasmic calcium levels. a Quantification of cytosolic calcium levels in
Spg11+/+ and Spg11−/− fibroblasts in normal medium or medium supplemented with EGTA to lower the extracellular calcium to 0.4mM. The graphs
represent the mean ± SEM. N > 159 cells from three independent experiments. Two-way ANOVA: ***p < 0.0001. b Downregulation of STIM1 strongly
abrogates store-operated calcium entry in Spg11+/+ and Spg11−/− fibroblasts. The graphs show the mean ± SEM. N > 55 cells from three independent
experiments. Insert: western blot showing the downregulation of STIM1 in Spg11+/+ and Spg11−/− fibroblasts transfected with siRNA directed against
STIM1. c Downregulation of STIM1 decreases the levels of cytosolic calcium in Spg11−/− fibroblasts to those measured in Spg11+/+ fibroblasts. The graph
shows the mean ± SEM. N > 190 cells analyzed in three independent experiments. Two-way ANOVA: *p < 0.05. d Treatment of Spg11+/+ or Spg11−/−

fibroblasts with methyl-β-cyclodextrin (MBCD) loaded with cholesterol for 1 h restores normal cytosolic calcium levels in Spg11−/− cells. The graph shows
the mean ± SEM. N > 70 cells from three independent experiments. Two-way ANOVA: **p= 0.0017, ***p= 0.0006
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tubulation under basal conditions. Accordingly, downregulation
of spatacsin was shown to decrease the formation of tubules on
late endosomes/lysosomes under basal conditions11. The accu-
mulation of cholesterol in late endosomes/lysosomes due to the
inhibition of tubulation leads to lower cholesterol levels in the
plasma membrane. shRNA screening consistently identified
spatacsin as a regulator of cholesterol trafficking from lysosomes
toward the plasma membrane39. The formation of tubules could
give rise to vesicles that may participate in the vesicular traf-
ficking of cholesterol from late endosomes/lysosomes to the
plasma membrane. The mechanism that regulates such trafficking
is not clear, but it may involve Rab8a and myosin5b, as previously
observed21.
Changes in the concentration of cholesterol in the plasma

membrane enhance the entry of extracellular calcium by SOCE
and leads to higher cytosolic calcium levels, which could con-
tribute to alter calcium signaling17. Cholesterol affects SOCE in
various cellular systems26,40,41. Global depletion of cholesterol
in cells was shown to decrease SOCE40,41. In contrast, choles-
terol depletion in the plasma membrane was shown to enhance
SOCE26, consistent with our observation that SOCE was higher
when plasma membrane cholesterol levels were lower in
absence of spatacsin. This effect could be mediated by the
interaction of plasma membrane cholesterol with Orai1 chan-
nel, regulating its activity26. A recent study showed that the
entry of calcium by SOCE promotes nuclear translocation of
the master lysosomal gene TFEB, promoting its transcriptional
activity29 and thereby regulating autophagy, lysosome biogen-
esis, and metabolism of lipids33. In accordance with these
results, we observed increased nuclear translocation of TFEB in
absence of spatacsin. Decreasing calcium entry or cytosolic
calcium levels was sufficient to restore normal nuclear TFEB

levels in the absence of spatacsin. Thus, changes in plasma
membrane composition could indirectly modulate lysosomal
function through calcium-dependent regulation of TFEB.
Nuclear translocation of TFEB depends on its phosphorylation
state, and the calcium-dependent phosphatase calcineurin was
shown to dephosphorylate TFEB allowing its nuclear translo-
cation32. Our data suggest that calcium entry by SOCE allows
calcineurin-dependent nuclear translocation of TFEB. Major
kinases responsible for TFEB phosphorylation include mTOR,
ERK, GSK3β, and AKT31. Loss of spatacsin has been shown to
impair GSK3β phosphorylation42, and this signaling pathway
could also contribute to the higher nuclear translocation of
TFEB in Spg11−/− cells.

TFEB activation has been proposed to promote cellular clearance
in several lysosomal storage disorders43. It could be hypothesized
that increased nuclear translocation of TFEB is a compensatory
mechanism to restore lysosomal function in Spg11−/− cells. How-
ever, downregulation of TFEB or treatments that compensated the
nuclear translocation of TFEB in Spg11−/− cells partially restored
the formation of tubules on late endosomes/lysosomes, in the
absence of spatacsin, and restored cholesterol homeostasis. These
data therefore suggest that nuclear translocation of TFEB inhibited
the formation of tubules and the clearance of cholesterol in lyso-
somes. Nuclear translocation of TFEB may induce the expression of
proteins that block the tubulation of lysosomes and the recycling of
lysosomal membrane, but the nature of such factors is still to be
uncovered.
The interdependence of cholesterol trafficking and calcium

homeostasis that we observed highlights a homeostatic equili-
brium in which the impairment of cholesterol clearance from
lysosomes modifies plasma membrane composition, thus affect-
ing calcium homeostasis and lysosomal cholesterol content in a
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Fig. 6 High cytosolic calcium levels promotes nuclear translocation of TFEB in the absence of spatacsin. a Western blot of TFEB in cytosolic and nuclear
fractions of Spg11+/+ and Spg11−/− fibroblasts cultured for 2 h in normal medium or medium containing either 0.4mM CaCl2 or 0.5 µM EGTA-AM. Graphs
show the quantification of the amount of TFEB normalized to the levels of α-tubulin (Cytosol) and Histone H3 (Nuclei). One-way ANOVA: *p < 0.05, **p <
0.01. b Western blots of TFEB in cytosolic and nuclear fractions of Spg11+/+ and Spg11−/− fibroblasts transfected with control siRNA or a specific siRNA
that downregulates calcineurin (Calci). Downregulation of calcineurin is evidenced by western blot in the cytosolic fraction. c Quantification of the amount
of nuclear TFEB normalized to the levels of Histone H3 upon downregulation of calcineurin (SiCalci). One-way ANOVA: *p < 0.05
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TFEB-dependent manner. The compensatory role of the down-
regulation of TFEB or the decrease in cytosolic calcium levels on
the formation of tubules in late endosomes/lysosomes suggest
that spatacsin could be indirectly implicated in the formation of
tubules or that alternative mechanisms could compensate for the
absence of spatacsin. However, the exact role of spatacsin in the
maintenance of the homeostasis of calcium and cholesterol still
need to be elucidated.
Our data support the hypothesis that the loss of spatacsin leads

to similar impairment of cholesterol and calcium homeostasis
both in non-neuronal cells and in neurons. Hereditary spastic
paraplegia SPG11 is characterized by neuronal death in various
brain regions4,44. The persistent deregulation of cholesterol dis-
tribution could lead to a slight modification of calcium home-
ostasis. Calcium plays a central role in cellular physiology and
neuronal transmission45 and a persistent change in cytosolic
calcium levels could explain the behavioral alterations that were
observed in Spg11−/− mice long before neurodegeneration
occurred4. Alternatively, alteration in calcium homeostasis in

absence of spatacsin, could also contribute, in the long term, to
neurodegeneration46.
In conclusion, we demonstrate that loss of spatacsin function

impairs trafficking of cholesterol leading to a strong alteration of
cellular homeostasis that could contribute to neuronal dysfunc-
tion. Since SPG15 patients are indistinguishable from SPG11
patients47, it would be interesting to investigate whether similar
phenotype are observed in absence of spastizin. Atlastin that is
mutated in the SPG3 form of HSP has also been proposed to
modulate SOCE and lipid metabolism48. It would be interesting
to investigate the role of atlastin in the distribution of cholesterol.
Conversely, alterations of cholesterol trafficking in endosomes
and lysosomes have also been described in models of Alzheimer’s
disease49, and impaired distribution of cholesterol seems to play a
crucial role in neurodegeneration in the case of Alzheimer’s
disease50. It may be informative to test whether the deregulation
of cholesterol homeostasis in late endosomes in this disease also
induces an alteration of cellular homeostasis that could contribute
to persistent and deleterious impairment of lysosomal function.
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Fig. 7 High cytosolic calcium levels cause accumulation of cholesterol in late endosomes/lysosomes in the absence of spatacsin. a Quantification of the
number of LAMP1-positive tubules in Spg11+/+ and Spg11−/− fibroblasts expressing LAMP1-mCherry, analyzed by live imaging. The graphs show the mean
± SEM. N > 60 cells analyzed in four independent experiments. Two-way ANOVA: *p= 0.034, ***p < 0.0001. b Western blots of TFEB in cytosolic and
nuclear fractions of Spg11+/+ and Spg11−/− fibroblasts transfected with control siRNA or a specific siRNA that downregulates TFEB. c Quantification of the
number of LAMP1-positive tubules in Spg11+/+ and Spg11−/− fibroblasts transfected with control siRNA or siRNA that downregulates TFEB. The graph
shows the mean ± SEM. N > 60 cells analyzed in four independent experiments. Two-way ANOVA: ***p < 0.0001. d Downregulation of STIM1 decreases
the amount of cholesterol colocalized with LAMP1 in Spg11−/− fibroblasts. The graph shows the mean ± SEM. N > 95 cells analyzed in three independent
experiments. Two-way ANOVA: ***p < 0.001. e Lowering intracellular calcium levels with EGTA-AM (1 h) decreases the amount of cholesterol colocalized
with LAMP1 in Spg11−/− fibroblasts. The graph shows the mean ± SEM. N > 45 cells analyzed in three independent experiments. Two-way ANOVA: ***p <
0.001. f Downregulation of TFEB decreases the amount of cholesterol colocalized with LAMP1 in Spg11−/− fibroblasts. The graph shows the mean ± SEM.
N > 45 cells analyzed in three independent experiments. Two-way ANOVA: *p < 0.05. g Quantification of plasma membrane cholesterol with the probe
GFP-D4, performed on live Spg11+/+ and Spg11−/− fibroblasts, showing that downregulation of STIM1 restores normal levels of cholesterol in the plasma
membrane in Spg11−/− fibroblasts. The graph shows the mean ± SEM. N > 180 cells analyzed in three independent experiments. Two-way ANOVA: ***p <
0.0001
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Methods
Antibodies and chemicals. Thapsigargin, filipin, CaCl2, EDTA, and cholesterol
were purchased from Sigma. EGTA-AM was purchased from Thermo Scientific.
Dynasore was purchased from Abcam. Miglustat was purchased from Tocris.
Antibodies used in the study were: mouse anti-α-tubulin (Abcam); rat anti-LAMP1
(Clone 1D4B, Development Studies Hybridoma Bank), mouse anti clathrin heavy
chain (BD Biosciences), mouse anti-STIM1 (Cell Signalling), rabbit anti-TFEB
(Proteintech), rabbit anti-calcineurin (Abcam), rabbit anti-histone H3 (Cell Sig-
nalling), and rabbit anti SREBP (Abcam). For immunoblotting, the secondary
antibodies were conjugated to horseradish peroxidase (Jackson Laboratories) or
fluorochromes (IR-dye 800 or IR-dye 680; LI-COR). Secondary antibodies used for
immunofluorescence were purchased from Thermo Scientific.

Mouse embryonic fibroblast cultures. Spg11−/− mice in C57BL/6 N background
were described previously4. Mouse embryonic fibroblasts (MEFs) were prepared
using E14.5 embryos obtained from the breeding of heterozygous mice. After
removing the head and inner organs, the body was minced with a razor blade and
incubated in 0.25% trypsin/EDTA (Gibco) for 15 min at 37 °C. Cells were dis-
sociated and grown in DMEM medium (Gibco) supplemented with 10% FBS and
1% penicillin/streptomycin. All experiments were performed between passages 4
and 6. At least three independent preparations of fibroblasts were used for each
experiment.

Primary cultures of cortical neurons. Cortices of E14.5 embryos were
mechanically dissociated in HBSS medium and plated at 25,000 neurons cm−2 on
poly-D-Lysine (250 µg ml−1) coated glass coverslips. The neurons were grown in
Neurobasal medium supplemented with 2% B27 (Gibco), 2 mM L-glutamine and
2% fetal bovine serum. Half of the medium was changed every 2 days and neurons
were fixed after 6 days in vitro with 4% paraformaldehyde (PFA). When required,
neurons were treated with miglustat (100 µM) from the second day after plating.

Electron microscopy. Two-month-old male and female Spg11+/+ and Spg11−/−

mice were anaesthetized and killed by intracardiac perfusion with a solution of 4%
PFA in 0.1 M phosphate buffer at pH 7.4. Samples from the frontal cortex were
fixed in 1% glutaraldehyde in the same buffer, post-fixed in 2% osmium tetroxyde,
dehydrated, and embedded in Araldite. Ultrathin sections were stained with uranyl
acetate and lead citrate and examined using a Hitashi transmission electron
microscope. Images were analyzed using ImageJ.

Calcium imaging. Cells grown in Lab-Tek™ (Nunc) were washed with HCSS buffer
(120 mM NaCl, 5.4 mM KCl, 0.8 mM MgCl2, 15 mM glucose, and 20 mM Hepes
[pH 7.4]) and incubated with 2.5 µM Fura-2-AM (Life Technologies) for 30 min at
room temperature in the dark. Cells were washed with HCSS and incubated 15 min
at room temperature to allow Fura-2 de-esterification. Images were recorded with a
Nikon Eclipse Ti-E inverted microscope, with excitation of Fura-2-AM loaded cells
alternately at 340 and 380 nm. Emission at 510 nm was recorded. Conversion of
Fura-2 ratios into cytosolic calcium concentrations was performed as previously
described51.

Plasmids and transfection. LAMP1-mCherry was obtained from Addgene
(#45147). STIM1-mcherry was obtained from R. Lewis52. Fibroblasts were trans-
fected with the Neon transfection system (Invitrogen), according to the manu-
facturer’s instructions, using the following parameters: 1350 V, 30ms, and one pulse.
For overexpression studies, we used 0.5 µg DNA per 50 × 103 cells and the analysis
was performed 24 h after transfection. For silencing studies, 50 × 103 cells were
transfected with 1 pmol siRNA (Invitrogen) and analyzed 48 h later. The sequence of
siRNA targeting STIM1 was 5′-GCAAGGAUGUUAUAUUUGATT-3′, that tar-
geting clathrin heavy chain, 5′-CAUUGUCUGUGAUCGGUUUTT-3′, that target-
ing TFEB, 5′-CAACCUAAUUGAGAGAAGATT-3′, and that targeting calcineurin,
5′-GGGUUUGGAUAGGAUCAAUTT-3′.

Immunofluorescence. After fixation with 4% PFA, cells were incubated with PBS
containing 10 mM NH4Cl for 10 min at 22 °C to quench autofluorescence. Cells
were incubated with a solution of 5% BSA/ 0.1% Triton X-100 in PBS for 30 min at
22 °C and then with primary antibodies in 5% BSA/0.1% Triton X-100 in PBS
overnight at 4 °C. After washing, the cells were incubated with the secondary
antibodies for 45 min at room temperature and mounted in Prolong Gold reagent
(Thermo Scientific). Images were acquired with a Zeiss upright microscope
equipped with a Plan-APOCHROMAT objective (×63; NA: 1.4), allowing acqui-
sition of optical section images (Apotome 2 microscope).

Lysosome positioning. The position of lysosomes was assessed using ImageJ and
MATLAB software. Signals from the nucleus (DAPI) and lysosomes (LAMP1)
from an optical section were acquired with an Apotome 2 microscope. The cen-
troid of the nucleus was determined using the DAPI signal and centroids of each
lysosome were determined as the pixel with the highest intensity for each LAMP1-
positive vesicle. The distance between lysosome centroids and the nucleus centroid

was calculated. The results were expressed as the relative distance to the nucleus
with 100 being the distance between the nucleus and the farthest lysosome.

Live-cell imaging. The formation of tubules in late endosomes/lysosomes was
followed by live imaging of cells expressing LAMP1-mcherry at 37 °C and 5% CO2
using a Leica DMi8 microscope equipped with a Yokogawa Confocal Spinning
Disk module. Cells were chosen randomly, with the only criterion being LAMP1-
mCherry levels sufficiently high to detect lysosomal tubules.

Cholesterol staining. Cells were fixed with 4% PFA for 30 min at 22 °C. They were
then incubated with filipin (50 µg ml−1) in PBS supplemented with 10% FBS for 2 h
at room temperature in the dark, without prior permeabilization. Cells were then
processed for immunostaining when required. Cholesterol levels were quantified as
the mean gray value using ImageJ. Colocalization of cholesterol staining with
lysosomes was quantified using ImageJ on randomly chosen images of cultured
fibroblasts. First, we created a mask corresponding to LAMP1 staining using the
automatic threshold in Image J. The mask was copied to the corresponding
fluorescence image of cholesterol. We quantified the total intensity of cholesterol
fluorescence in the lysosome mask and expressed it as the percentage of total
cholesterol fluorescence in every cell. A preparation of domain D4 of prefringolysin
O fused to GFP (GFP-D4) was produced and purified as previously described53.
Labeling of total cholesterol was performed by incubating fixed and permeabilized
cells with 20 µg ml−1 recombinant GFP-D4 for 20 min at 22 °C. Cholesterol of the
outer leaflet of the plasma membrane was labeled by incubating live cells for 15 min
at 22 °C with 20 µg ml−1 GFP-D4 diluted in PBS containing 2 mM CaCl2 and 0.8
mM MgCl2. Cells were then fixed with 4% PFA for 20 min and processed for
imaging.

Cholesterol measurement. Cells cultured in 60 mm petri dishes were harvested
and lysed by incubation in 100 mM NaCl, 10 mM Tris HCl pH 7.4, 1 mM EGTA, 2
mM MgCl2, 1% Triton X-100, and Halt™ Protease Inhibitor Cocktail (Thermo
Scientific) for 30 min at 4 °C. The total cellular cholesterol concentration was
measured using the Amplex® Red Cholesterol Assay Kit (Thermo Scientific). The
values were normalized to total cellular protein concentration, which was deter-
mined by BCA assay (Thermo Scientific).

The cholesterol content of the plasma membrane was measured using a
protocol modified from Chu et al.39. In brief, cells were extensively washed with
ice-cold assay buffer (310 mM sucrose, 1 mM MgSO4, 0.5 mM Sodium phosphate
[pH 7.4]) and then incubated with or without 1 Uml−1 cholesterol oxidase for 3
min at room temperature. The buffer was removed and the cells washed once with
ice-cold assay buffer. Cells were lysed and the cholesterol concentration measured
as described above. The plasma membrane cholesterol concentration was
calculated by subtracting the amount of intracellular cholesterol (cells incubated
with cholesterol oxidase) from the total amount of cholesterol (cells incubated in
the absence of cholesterol oxidase). The values were normalized to total cellular
protein concentration determined by BCA assay.

Cholesterol trafficking. Unlabeled LDL (1 mg) from human plasma (Thermo
Scientific) was incubated with 50 nmol cholesterol (Top-Fluor cholesterol, Avanti
Polar Lipids) for 2 h at 40 °C and dialyzed overnight in PBS supplemented with 1
mM EDTA. LDL-deprived serum was prepared as described previously54. Cells
were cultured in medium prepared with LDL-deprived serum for 24 h. Cholesterol
trafficking was monitored by adding LDL complexed with Top-Fluor Cholesterol
to the cells followed by incubation for 2 h. Cells were washed with culture medium
and fixed with 4% PFA after various times of incubation in LDL-free medium.

Cholesterol loading of plasma membrane. Methyl-β-cyclodextrin (150 mg,
MBCD, Sigma) was mixed with 5 mg cholesterol (Sigma) in 1 ml PBS and soni-
cated for 5 min (45% duty cycle, Branson Sonifier 250). Cells were incubated for 1 h
at 37 °C with 1.5 mg ml−1 MBCD and 50 µg ml−1 cholesterol in serum-free DMEM
medium.

Western blot analysis. Downregulation of clathrin heavy chain or STIM1 was
evaluated by lysing cells in 100 mM NaCl, 10 mM Tris HCl pH 7.4, 1 mM EGTA, 2
mM MgCl2, 1% Triton X-100, and Halt™ Protease Inhibitor Cocktail (Thermo
Scientific) for 15 min at 4 °C. Lysates were cleared by a 15-min centrifugation at
16,000 × g at 4 °C. The subcellular localization of TFEB was evaluated by preparing
the cells as described previously55. Protein concentration was determined with the
BCA assay kit. Western blots were performed as described previously56. Signals
were visualized with a chemiluminescence substrate (SuperSignal West Dura) or
acquired with an Odyssey ClX (Li-COR) instrument. Signal intensities were
quantified using ImageJ software. Uncroped western blots are presented in Sup-
plementary Fig. 5.

Total internal reflection fluorescence microscopy. TIRF experiments were
performed on fibroblasts transfected with vectors expressing STIM1-mCherry,
using a previously described protocol57. Analyses were performed using ImageJ
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software. The TIRF signal was obtained by thresholding and the area containing
the TIRF signal normalized to the surface for each cell.

Statistics and data analysis. All statistical tests were performed using GraphPad
Prism 6 and the tests are described in the figure legends. Multiple comparisons
were performed using ANOVA when data had a normal distribution. Holm–Sidak
multiple comparison tests allowed to compare the means of the different sets of
data. P < 0.05 was considered to be statistically significant.

Ethical approval. The care and treatment of animals followed European legislation
(N° 2010/63/UE) and national (Ministère de l’Agriculture, France) guidelines for
the detention, use, and ethical treatment of laboratory animals. All experiments on
animals were approved by the local ethics committee (approval APAFIS-5199) and
conducted by authorized personnel.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available in Supplementary Data 1.
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Annex 2: MATLAB code of programs used for image 
analysis 

 

In green are the explanations of the code. 

 

a) Tubular lysosome detection 
 

close all 
location='C:\Users\alexandre.pierga\Documents\Folder'; 

 

  
% The absolute path to where your data folders are, here its an example  
%path 

  
fileList = dir(location); %obtaining the list of subfolders 
fileList = fileList([fileList.isdir]); %testing that the subfolders  
%are indeed subfolders 
numfiles = numel(fileList); % Number of folders in the directory 
name = {fileList.name}.';%obtaining the name of the folders 
CorrectOrder=natsortfiles(name);%sorting the folders in order 

  
A=[];%variables initialization 
B=[]; 
TableFinal=[]; 
TailleFinal=[]; 

  
for i = 1 : numfiles %opening a loop that will go through each subfolder 

     
    if length(char(CorrectOrder(i)))>=4 %this condition is necessary to  
        %remove phantom files named . and .. present in every file list 

         
            disp(['Reading folder ', char(CorrectOrder(i))]); 
            % giving you the information in the command window of which 
            % folder in being processed 

             
            directory=[char(location), '\', char(CorrectOrder(i)), '\']; 
            % Opening the current subfolder & Concatenating strings  
            %to obtain the absolute path to the pictures 

                             
            fileList2 = dir(directory); % obtaining the list of images  
            %in the subfolder 
            fileList2 = fileList2(~[fileList2.isdir]); % removes . and ..  
            numfiles2 = numel(fileList2); % Number of images in the directory  
            %normally =2 

             
                for j = 1 : numfiles2    % going through images 

                     
                   nom = fileList2(j).name; % list of images name 

                     
                    CANAL1 = 'w2'; % defining the label that will identify  
                    %the first channel, which the one marking the cell area 
                    % in my example, it is cell tracker and w2 corresponds 
                    % to 'wavelength 2' 
                    CANAL2 = 'w1'; % defining the label that will identify  
                    %the second channel, which the one marking the 
                    %lysosomes 
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                    % in my example, it is dextran and w1 corresponds 
                    % to 'wavelegnth 1' 

                        
                    if regexp(nom,CANAL1) ~= 0 

                      
                        loc1=strcat(directory, nom); 
                        image1 = imread(loc1); 

                         
                        % if the image name contains the label 'w2' then it 
                        % is defined as the image containing the cell 

                         

                         
                    elseif regexp(nom,CANAL2) ~= 0 

                     
                        loc2=strcat(directory, nom); 
                        image2 = imread(loc2); 

                         
                        % if the image name contains the label 'w1' then it 
                        % is defined as the image containing the lysosomes 

                         
                    end  
                end  %closing the images loop                     

                         
                   

[TableResultats,Tailletubules]=FonctionAnalyseTubules(image1,image2); 
                   %here we open an inner function that performs the 
                   %analysis of the number of lysosomes in the cell 
                   % its input parameters are the two images of the 
                   % subfolder and it will give as an output the number of 
                   % tubes per cell stacked in atable 

                    
                   A=TableResultats; 
                   B=Tailletubules; 

  
                   TableFinal=[TableFinal,A]; % results from different cells  
                   %are stacked on the same table 
                   TailleFinal=[TailleFinal;B];  
    end  

  

             
end % closing the subfolder loop 

  
 Parametres = {'Aire Cellule';'Nbe de Tubule';'Nbe de tubules/Aire'}; 
 TableFinal=table(TableFinal,'RowNames',Parametres); 
 %building the final output table that contains the output values 
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function[TableResultats,Tailletubules]=FonctionAnalyseTubules(image1,image2) 

  
% Inputs : image 1 -> Cell tracker  
% Image 2 : lysosomes 

  
% Outputs : 
% Result Table: 1 column per cell  

  
[f]=(image1);  
imagesc(f);%visualizing the image 
thresh =kittler(f);%calculating kittler thrshold value 

  
a=(f>thresh); 
%Thresholding the image 
imshow(a);%visualizing the thresholding 

  
b=imclean(a);%filling holes and cleaning the image 
imshow(b); 
% visualizing the cleaning 

  
c=remove(b,3000,1048576); 
%removing cellular debris based on their (inferior to 3000 pixels) 

  
imshow(c); 
%visualizing the cleaned image 

  
A= regionprops(c,'area');%c is a binary image of the cell(s) 
A=struct2table(A);% 
A=table2array(A); % A is now an array containing all areas of detected cells 

  
B=regionprops(c,'PixelList');% B contains the list of pixel of detected cells 
C=[]; 

  
TableResultats=NaN(3,1); % variable initialization 
Tailletubules=[]; 

  
for i=1:length(A) % initiating a loop going through cells 
       if A(i)>3000 
           C=[B(i)]; % C contains all pixels of a cell 
           E=[]; 
           D=[]; 

        
            for j=1:size(C,1)  
                D=struct2table(C(j)); 
                D=table2array(D); 
                E=[E;D]; %E contains the pixels of the same cell but  
                %concatenated in an array  

         
            end 

     
            AireCell=length(C.PixelList); 
            % the area of the cell in pixels corresponds to the number of 
            % pixels of the cell 

             
            thresh2=multitresh(image2); 
            %calculation of threshold for lysosomal detection 
            g=(image2>thresh2); 
            %thresholding of the image containing lysosomal staining 

             
           [m]=select(g,E);% selecting the lysosomes that are inside  
           %the detected cell 
           imshow(m);  
           %visualization of the lysosomes 
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            A2=m; 

                      
            B2=regionprops(A2,'area');%area extraction of individual lysosomes 
            B2=struct2table(B2); 
            B2=table2array(B2); 

  
            C2=regionprops(A2,'perimeter');%perimeter extraction 
            C2=struct2table(C2); 
            C2=table2array(C2);  

  
            D2=regionprops(A2,'PixelList');%pixels extraction 
            N=0; 

  
            EX=regionprops(A2,'Eccentricity');%eccentricity extraction 
            EX=struct2table(EX); 
            EX=table2array(EX);  

             
            MAX=regionprops(A2,'MajorAxisLength');%Major Axis length extraction 
            MAX=struct2table(MAX); 
            MAX=table2array(MAX);  

             
            MIX=regionprops(A2,'MinorAxisLength');%Minor Axis length extraction 
            MIX=struct2table(MIX); 
            MIX=table2array(MIX);  

             
            H2=[]; %variables initialization 
            G2=[]; 
            Nbetubules=[]; 
            T=[]; 

                                      
            for j2=1:length(B2) %going through every lysosome of the cell 

                              
                    if B2(j2)>20 % lysosomes need to be bigger than 20pixels 

  
                      Circularity=2*3.14116*B2(j2)/((C2(j2))^2);  
                      %Circlarity computation B(j): area C(j): perimeter 
                      F2=[]; 
                      E2=[]; 

                       

                                     
                      if Circularity < 0.5 && EX(j2)>0.9 && (MAX(j2))/(MIX(j2))>4 
                         N=N+1; 
                         %conditions that need to be fulfilled to be 
                         %considered tubular 

  
                         for k=1:size(D2,1)  
                            E2=struct2table(D2(j2)); 
                            E2=table2array(E2); 
                            F2=[F2;E2]; 
                            %F2 contains pixels of a selected tubular 
                            %lysosomes 
                         end 

                                             
                         G2=F2; 
                         H2=[H2;G2]; 
                         %H2 contains pixels of all selected tubular 
                         %lysosomes of the cell 
                         T=[T;MAX(j2)]; 
                         %is the length of each tubular lysosome in column 

                          
                      end 
                    end 
            end 
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              [m2]=select2(m,H2); 
              % selecting tubular lysosomes of the cell 
              imshow(m2); 
              %visualizing the tubular lysosomes 

             
              M=N; 
              Nbetubules=[Nbetubules;M]; 
              %number of tubules per cell 
              Tailletubules=[Tailletubules;T]; 
              %length of the tubules per cell 

               
              Ratio= Nbetubules/AireCell; 
              %ratio between the number of tubules and the cell area to 
              %obtain the number of tubes per unit area 
       end 

          

              

               
    TableResultats(1)=AireCell; 
    TableResultats(2)=Nbetubules; 
    TableResultats(3)=Ratio; 
          %building the results table 

   
end 

 

Other functions used in this program : 

• Function select: 

function[h]=select(image,E) 
  % selecting the pixels of the image contained in the E array          

                      
h=NaN(size(image)); 
k=image; 

  
for i=1:size(E,1)       
    h(E(i,2),E(i,1))=k(E(i,2),E(i,1)); 

     
end 

 

• Function imclean : 

function[BWfinal]=imclean(BWs) 

  
se90 = strel('line', 5, 90);%creates a vertical line length 5 pixels 
se0 = strel('line', 5, 0);%creates an horizontal line length 5 pixels 
BWsdil = imdilate(BWs, [se90 se0]); 
%of the cell border is dilated horizontally and vertically by 5 pixels 
BWdfill = imfill(BWsdil, 'holes'); 
%holes that are surrounded by pixels are filled 
seD = strel('diamond',1);%creates a diamond shape that has a radius of 1 
BWfinal = imerode(BWdfill,seD); 
%the imag eiis eroded on its border by the shape of the diamond 

  
end 
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b) Tubular lysosomes tracking 
 
close all 
clear 
location='C:\Users\a'; % The absolute path to where your data folders are 
fileList = dir(location);  
fileList = fileList([fileList.isdir]); %  
numfiles = numel(fileList); % Number of folders in the directory 

  

  
BB=[]; 
BBB=[]; 
for i1 = 1 : numfiles  

     
    if length(fileList(i1).name)>=4  

         
            display(['Reading folder ', char(fileList(i1).name)]); 
            directory=[char(location), '\', char(fileList(i1).name), '\'];  
            % Concatenate strings to obtain the absolute path to the 

pictures             
            fileList2 = dir(directory); % Opens all the files in directory  
            %and finds the center of the exit site for each image 
            fileList2 = fileList2(~[fileList2.isdir]); % utlisé pour 

retirer les 2 . et ..  
            name = {fileList2.name}.'; 
            CorrectOrder=natsortfiles(name); 
            numfiles2 = numel(fileList2); % Number of files in the 

directory 

            
            for j1 = 1 : numfiles2      

                 
                   nom = CorrectOrder(j1); 
                   display(['Reading image', char(nom)]); 
%                    nom = fileList2(j1).name; 
                   loc1=strcat(directory, nom); 
                   loc1=char(loc1); 
                   image = imread(loc1); 

                    

                    
                     A=imbinarize(image);%binarization de l'image 
                     A = imclearborder(A, 8);  
                     %retire ce qui touche le bord 
%                      imshow(A); 

                      
                     B=regionprops(A,'centroid');%extraction des centroide 

et formatage 
                     B=struct2table(B); 
                     B=table2array(B); 
                     J=j1*ones(size(B,1),1); 
                     BB=[B,J]; 
                     BBB=[BBB;BB]; 
            end 

                    
    end 

      

         
end 
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tracks = track(BBB,30); 

  
X=tracks; 
Y=zeros(size(X,1),1); 

  
for i=2:length(X(:,4)) 
    Y(i)=sqrt((X(i-1,1)-X(i,1))^2)+sqrt((X(i-1,2)-X(i,2))^2); 
end 

    
X=[X,Y]; 
Results=zeros(1,3); 

  
for i2=1:max(X(:,4)) 
    Z=zeros(1,5); 
    for j2=1:length(X(:,4)) 
        if X(j2,4)==i2 
           Z=[Z;X(j2,:)]; 
        end 
    end 

     
if size(Z,1)>10 
Distancetot=sum(Z(:,5))-(Z(2,5)); 
Tempstot=size(Z,1)-1; 
Vitesse=Distancetot/Tempstot; 
Results=[Results;[Distancetot,Tempstot,Vitesse]]; 

            

         
    end 
end 

  
TotNumberofParticles=size(tracks,1); 
TotNumberofTrajectories=max(tracks(:,4)); 
TrajectoriesFollowed=size(Results,1)-1; 
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c) Area overlap between masks 
 
close all 
location='C:\iphérie'; % The absolute path to where your data folders are 
fileList = dir(location);  
fileList = fileList([fileList.isdir]); %  
numfiles = numel(fileList); % Number of folders in the directory 
name = {fileList.name}.'; 
CorrectOrder=natsortfiles(name); 

  
TableFinal=[]; 

  
for i = 1 : numfiles  

     
  if length(char(CorrectOrder(i)))>=4  

         
            display(['Reading folder ', char(CorrectOrder(i))]); 
            directory=[char(location), '\', char(CorrectOrder(i)), '\']; % 

Concatenate strings to obtain the absolute path to the pictures 

                             
            fileList2 = dir(directory); % Opens all the files in directory 

and finds the center of the exit site for each image 
            fileList2 = fileList2(~[fileList2.isdir]); % utlisé pour 

retirer les 2 . et ..  
            numfiles2 = numel(fileList2); % Number of files in the 

directory 

             
                for j = 1 : numfiles2      

                     
                    nom = fileList2(j).name; 

                     
                    CANAL1 = 'c1'; % cell tracker 
                    CANAL2 = 'Tubes'; % canal lyso  
                    CANAL3 = 'c3'; % reticulum 

                        
                    if regexp(nom,CANAL1) ~= 0 

                      
                        loc1=strcat(directory, nom); 
                        image1 = imread(loc1); 

                         
                    elseif regexp(nom,CANAL2) ~= 0 

                     
                        loc2=strcat(directory, nom); 
                        image2 = imread(loc2); 

                     
                    elseif regexp(nom,CANAL3) ~= 0 

                     
                        loc3=strcat(directory, nom); 
                        image3 = imread(loc3); 

                         
                    end 
                end                       

                         
                   

[TableResultats]=FonctionAnalyseFibroRETICULUM(image1,image2,image3); 
                   A=TableResultats; 
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                   TableFinal=[TableFinal,A]; 
%                             
    end 

  

             
end 

  
 Parametres = {'Aire Cellule';'Aire lysosomes';'Ratio aire lysosomes / aire 

cellule';'Aire reticulum';'Aire RE/ Aire Cellule';'Aire Lyso contact 

RE';'Aire lyso contact/aire totale';'Nombre lysos';'Nombre lysos RE'}; 
 TableFinal=table(TableFinal,'RowNames',Parametres); 

     
function[TableResultats,p]=FonctionAnalyseFibroRETICULUM(image1,image2,imag

e3) 

  
% %Paramètres d'entrée : image 1 -> cell tracker 
% Image 2 : Marquage Lysosomal 
% Image 3 : sec61 gfp 

  
% Paramètre de sortie : 
% Tableau de résultat : 1 colonne par cellule 

  
[f]=traitementFibro(image1);%traitement de l'image 

  
A= regionprops(f,'area');%f est une image binaire avec les cellules 

sélectionnées 
A=struct2table(A);% 
A=table2array(A); % conversion de A en un vecteur répertoriant les aires 

  
B=regionprops(f,'PixelList');% B répertorie les pixels associées aux aires 
C=[]; 

  
TableResultats=NaN(9,length(A)); % initiation de la table de résultat 

  
for i=1:length(A) % C contient les pixels associés aux aires des cellules 
       if A(i)>3000 
           C=[B(i)]; % C contient les coordonnées des pixels d'une cellule 
           E=[]; 
           D=[]; 

        
            for j=1:size(C,1) % E répertorie toutes les coordonnées des 

pixels des aires dans une matrice N*2 
                D=struct2table(C(j)); 
                D=table2array(D); 
                E=[E;D]; 

         
            end 

     
            AireCell=length(C.PixelList); 
            % aire totale de la cellule 

                                                            
                    [n]=select(image2,E);% sélection des lysosomes avec 

seuil 
%                      
                    G=regionprops(n,'area'); 

                     
                    G=struct2table(G); 
                    G=table2array(G);%  vecteur avec aire des lysosomes 
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                    AireLysosomes=sum(G); % somme de l'aire des lysosomes 
                    NombreLysos=length(G); 

                     
                    RatioAireLysCell=AireLysosomes/AireCell;%ratio Aire 

lysosomes sur aire de la cellule 

                     
                    [n2]=select3(image3,E);% sélection du reticulum 

(kittler) 
                    G2=regionprops(n2,'area'); 
                    G2=struct2table(G2); 
                    G2=table2array(G2);%  vecteur avec aire des lysosomes 

                
                    AireRE=sum(G2); % somme de l'aire des lysosomes 

                              
                    RatioAireRECell=AireRE/AireCell;%ratio Aire lysosomes 

sur aire de la cellule 
                    H=[]; 
                    I=[]; 
                    J=[]; 

          
                    H=regionprops(n2,'PixelList'); %Pixels du marquage 

reticulum 
                    for i2=1:size(H,1) % H répertorie toutes les 

coordonnées des pixels des aires dans une matrice N*2 
                         I=struct2table(H(i2)); 
                         I=table2array(I); 
                         J=[J;I]; 

                  
                    end 

             
                    [p]=select(image2,J); % sélection des pixels lyso dans 

le reticulum 

             

                    G3=regionprops(p,'area'); 
                    G3=struct2table(G3); 
                    G3=table2array(G3); 
                    G3=find(G3>=5);%  vecteur avec aire des lysosomes 

                
                    AireLysosomesRE=sum(G3); % somme de l'aire des 

lysosomes 
                    NombreLysoRE=length(G3); 

                    
                    RatioAireLysRE=AireLysosomesRE/AireLysosomes; 

                     
    TableResultats(1,i)=AireCell; 
    TableResultats(2,i)=AireLysosomes; 
    TableResultats(3,i)=RatioAireLysCell; 
    TableResultats(4,i)=AireRE; 
    TableResultats(5,i)=RatioAireRECell; 
    TableResultats(6,i)=AireLysosomesRE; 
    TableResultats(7,i)=RatioAireLysRE; 
    TableResultats(8,i)=NombreLysos; 
    TableResultats(9,i)=NombreLysoRE; 
       imshow(n);            
       imshow(n2); 
       imshow(p); 

        
       end 
end 
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d) Clustering of particles 
tic 
close all 

  
clear all 
% clc 

  
% Déclaration de variable % 

  

  
x = 1; 
donneescell = {}; 
distancelysonoyau = []; 
DAPI = 'w1'; %% name of the image that has the center 
LAMP = 'Nouveau';%% name of the lamp1 image binarized 

  
location='C:\Users\alexandre.pierga\Desktop\10-09-2021-tubulation-334-

atlk80a\atlk80a\save\clustering'; % The absolute path to where your data 

folders are 
fileList = dir(location);  
fileList = fileList([fileList.isdir]); % retire les . et .. 
numfiles = numel(fileList); 
name = {fileList.name}.'; 
CorrectOrder=natsortfiles(name);% Number of folders in the directory 

  

  
%%%%%%%%%%%%%%%% OUVERTURE DES DOSSIERS ET FICHIERS %%%%%%%%%%%%% 

  

  
for i = 1:numfiles  

     
%     if length(fileList(i).name)>=4  

      
      if length(char(CorrectOrder(i)))>=4  
      disp(['Reading folder ', char(CorrectOrder(i))]); 
      directory=[char(location), '\', char(CorrectOrder(i)), '\'];  

             
%             directory=[char(location), '\', char(fileList(i).name), '\']; 

% Concatenate strings to obtain the absolute path to the pictures 

  
            fileList2 = dir(directory); % Opens all the files in directory 

and finds the center of the exit site for each image 
            fileList2 = fileList2(~[fileList2.isdir]); % utlisé pour 

retirer les 2 . et ..  
            numfiles2 = numel(fileList2); % Number of files in the 

directory 

             

  
            for j = 1 : numfiles2  

                 

            
                 nom = fileList2(j).name; 

                  

      
                 %%%%%%%%%%%%%%%% ANALYSE DU SIGNAL DAPI %%%%%%%%%%%%% 
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                 if regexp(nom,DAPI) ~= 0 % si le nom du fichier contient 

DAPI % 

   
                    loc=strcat(directory, nom); 
                    image=imread(loc); % lit l'image à partir de la 

localisation 
%                     image=thresh(image); 
                    image=imbinarize(image); % transforme l'image en binary 

(255 en 1) 

  
                    a  = regionprops(image, 'Centroid', 'Area'); 
                    s = []; 
                    s(:,1:2) = (cat(1,a.Centroid)); 
                    s(:,3) = (cat(1,a.Area)); 
                    m = max(s(:,3));                     

                     
                    for k = 1 : length(s(:,1)) 
                        if s(k,3) == m 
                            centrenoyau(1,1:2) = s(k,1:2); 
                        end 
                    end 

  
                 end 

                  

                  
                     %%%%%%%%%%%%%%%% ANALYSE DU SIGNAL LAMP1 %%%%%%%%%%%%%   

     

                      
                 if regexp(nom,LAMP) ~= 0 

                      
                    loc=strcat(directory, nom); 
                    image = imread(loc); 

                    

                     
                    I = bpass(image,1,5); 
                    r = round(I); 
                    thresh = multithresh(r); 
                    position = pkfnd(r,thresh,5); 

                     
                    figure; 
                    imagesc(r); 
                    axis image; 
                    hold on; 
                    title('Image lysosomes') 
                    plot(position(:,1),position(:,2),'g+'); 
                    hold off 

                     

  

                     
                 end 

  
            end 
            donneescell{x,1} = centrenoyau; 
            donneescell{x,2} = position; 
            position = []; 
            x = x + 1; 

             
    end 
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end 

  
%%%%%%%%%%%%%%%% calcul des distances noyau - lysosomes %%%%%%%%%%%%%%%%%% 

          

             
for i = 1 : length(donneescell(:,1)) 

     
    for j = 1 : length(donneescell{i,2}(:,1)) 

     
        donneescell{i,2}(j,3)=sqrt((donneescell{i,1}(1,1)-

donneescell{i,2}(j,1))^2+(donneescell{i,1}(1,2)-donneescell{i,2}(j,2))^2); 

         
    end 
end 

  
M=[]; 
for i = 1 : length(donneescell(:,1)) 

     
    m = max(donneescell{i,2}(:,3)); 

     
    for j = 1 : length(donneescell{i,2}(:,1)) 

         
        donneescell{i,2}(j,4) = donneescell{i,2}(j,3); 
        distancelysonoyau(j,i) = donneescell{i,2}(j,4)/m*100; 

         
    end 
    M=[M,m]; 
end 

  
clear x thresh signalLAMP signalDAPI s r donneescell fileList fileList2 i I 

image is_filtered j k LAMP loc location m nom numfiles numfiles2 o position 

directory a centrenoyau DAPI 
%  
[TableFinal,Table1]=traitementdonnees(distancelysonoyau); 
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e) Fluorescence ratio  
close all 
location='C:\Users\alexandre'; % The absolute path to where your data 

folders are 
fileList = dir(location);  
fileList = fileList([fileList.isdir]); %  
numfiles = numel(fileList); % Number of folders in the directory 

  
%%%%%%%%%%%%%%%% OUVERTURE DES DOSSIERS ET FICHIERS %%%%%%%%%%%%% 

  
TableFinal=[]; 

  
for i = 1 : numfiles  

     
    if length(fileList(i).name)>=4  

         
            display(['Reading folder ', char(fileList(i).name)]); 
            directory=[char(location), '\', char(fileList(i).name), '\']; % 

Concatenate strings to obtain the absolute path to the pictures 

                             
            fileList2 = dir(directory); % Opens all the files in directory 

and finds the center of the exit site for each image 
            fileList2 = fileList2(~[fileList2.isdir]); % utlisé pour 

retirer les 2 . et ..  
            numfiles2 = numel(fileList2); % Number of files in the 

directory 

             
                for j = 1 : numfiles2      

                     
                    nom = fileList2(j).name; 

                     
                    CANAL1 = 'w2'; % canal GM2/p62/GFPd4 
                    CANAL2 = 'w1'; % canal lyso 
                    CANAL3 = 'cell'; %canal cell tracker 

                        
                    if regexp(nom,CANAL1) ~= 0 

                      
                        loc1=strcat(directory, nom); 
                        image1 = imread(loc1); 

                         
                    elseif regexp(nom,CANAL2) ~= 0 

                     
                        loc2=strcat(directory, nom); 
                        image2 = imread(loc2); 

                     
                    elseif regexp(nom,CANAL3) ~= 0 

                     
                        loc3=strcat(directory, nom); 
                        image3 = imread(loc3); 

                         
                    end 
                end                       
                   

[TableResultats]=FonctionAnalyseFibro(image1,image2,image3); 
                   A=TableResultats; 
                    TableFinal=[TableFinal,A]; 
    end 
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end 

  
 Parametres = {'Aire Cellule';'Intensité moyenne cellule';'Aire 

lysosomes';'intensité moyenne lysosomes';'Ratio aire lysosomes / aire 

cellule';'Bruit de Fond';'RatioIntensite avec BF';}; 
 TableFinal=table(TableFinal,'RowNames',Parametres); 

     
function[TableResultats]=FonctionAnalyseFibro(image1,image2,image3) 

  
% %Paramètres d'entrée : image 1 -> Marquage GM2/P62/gfpd4 dans les 
% lysosomes 
% Image 2 : Marquage Lysosomal 
% Image 3 : Marquage du corps cellulaire 

  
% Paramètre de sortie : 
% Tableau de résultat : 1 colonne par cellule 

  

[f]=traitementFibro(image3);%traitement de l'image 

  
BF=noise(image1); % calcul du bruit de fond avec double seuillage otsu 

  
A= regionprops(f,'area');%f est une image binaire avec les cellules 

sélectionnées 
A=struct2table(A);% 
A=table2array(A); % conversion de A en un vecteur répertoriant les aires 

  
B=regionprops(f,'PixelList');% B répertorie les pixels associées aux aires 
C=[]; 

  
TableResultats=NaN(7,length(A)); % initiation de la table de résultat 

  
for i=1:length(A) % C contient les pixels associés aux aires des cellules 
       if A(i)>35000 
           C=[B(i)]; % C contient les coordonnées des pixels d'une cellule 
           E=[]; 
           D=[]; 

        
            for j=1:size(C,1) % E répertorie toutes les coordonnées des 

pixels des aires dans une matrice N*2 
                D=struct2table(C(j)); 
                D=table2array(D); 
                E=[E;D]; 

         
            end 

     
            AireCell=length(C.PixelList); 
            % aire totale de la cellule 

  
           [m]=select2(image1,E);% marquage du canal 1 (GM2 ou p62 ou 

gfpd4) 

         
            M=[];%matrice des intensités - Calcul de l'intensité de signal 

moyenne 

         
                for k=1:size(m,2) 
                    M=[M;m(:,k)]; 
                end                     
                    Intensitemoyennecellule= mean(M,'omitnan')-BF; 
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                    [n]=select(image2,E);% sélection des lysosomes avec 

seuillage 
%                     nb=imclean(n); 
%                      
                    G=regionprops(n,'area'); 
                    G=struct2table(G); 
                    G=table2array(G);%  vecteur avec aire des lysosomes 

                
                    AireLysosomes=sum(G); % somme de l'aire des lysosomes 

                              
                    RatioAireLysCell=(AireLysosomes)/AireCell;%ratio Aire 

lysosomes sur aire de la cellule 

                               
                    H=[]; 
                    I=[]; 
                    J=[]; 

          
                    H=regionprops(n,'PixelList'); %Pixels du marquage 

Lysosomal 

           
                    for i2=1:size(H,1) % H répertorie toutes les 

coordonnées des pixels des aires dans une matrice N*2 
                         I=struct2table(H(i2)); 
                         I=table2array(I); 
                         J=[J;I]; 

                  
                     end 

             
            [p]=select2(image1,J); % sélection des pixels du canal 1 

(GM2/p62)qui sont dans le marquage lysosomal = colocalisation 

             
               O=[];%matrice des intensités - Calcul de l'intensité de 

signal moyenne 

         
            for i3=1:size(p,2) 
                O=[O;p(:,i3)]; 
            end                     

             
            IntensitemoyenneLyso= mean(O,'omitnan')-BF; 

               
            

RatioIntensite=(AireLysosomes*(IntensitemoyenneLyso))/(AireCell*(Intensitem

oyennecellule)); 

                     
                    TableResultats(1,i)=AireCell; 
                    TableResultats(2,i)=Intensitemoyennecellule; 
                    TableResultats(3,i)=AireLysosomes; 
                    TableResultats(4,i)=IntensitemoyenneLyso; 
                    TableResultats(5,i)=RatioAireLysCell; 
                    TableResultats(6,i)=BF; 
                    TableResultats(7,i)=RatioIntensite; 
       imshow(m); %cellules détectées              
       imshow(n); 
%        imshow(nb); 
       % lysosomes sélectionnés 
       end 
end 
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