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Résumé

Le domaine de la matière condensée est l’une des branches les plus vastes et les
plus polyvalentes de la physique. Il traite des propriétés quantiques de la matière
cristalline et des effets résultant de l’interaction des grandes quantités d’atomes et
d’électrons mis en jeu : de l’ordre de 1010 à 1023. C’est aussi le domaine de la
physique qui a fourni le plus d’avancées technologiques au cours des dernières dé-
cennies. Citons par exemple le développement de l’électronique moderne avec les
transistors à base de silicium, la technologie laser, les disques durs mécaniques et à
mémoire flash, l’imagerie à résonance magnétique, et plus récemment le développe-
ment des nano-technologies.

Une nouvelle branche de recherche a été ouverte en 2004, suivant la découverte
expérimentale du graphène [1], le tout premier matériau bidimensionnel (2D), con-
stitué d’atomes de carbone disposés en nid d’abeille. Pour cette découverte, A.
Geim et K. Novoselov ont reçu le prix Nobel de physique 2010. Avant cela, les
matériaux 2D n’étaient étudiés que théoriquement, car il était communément ad-
mis qu’ils ne pouvaient pas être thermodynamiquement stables [2–4]. Depuis lors,
la communauté scientifique a déployé des efforts considérables pour prédire, syn-
thétiser et caractériser de nouvelles structures 2D, tout en développant les modèles
théoriques qui leur sont applicables. Dans le cadre de la mécanique quantique,
le confinement à deux dimensions d’espace est à l’origine de nombreuses propriétés
exotiques, la plupart d’entre elles provenant de la structure électronique du système.

Les applications envisagées couvrent de nombreux domaines, avec un fort pen-
chant vers l’électronique [5]. L’une des plus attrayantes est la réalisation de tran-
sistors à partir d’hétérostructures 2D [6, 7], plus efficaces et brisant la limite de
taille de la technologie actuelle basée sur le silicium. Les autres applications vont
du photovoltaïque [8–10] aux batteries solides [11], aux capteurs de gaz [12, 13], ou
aux catalyseurs [14]. Cependant, avant de parvenir à des dispositifs fonctionnels,
certains défis doivent être relevés. L’un d’eux est la stabilité à l’air des systèmes 2D,
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qui peut être résolue par des procédés d’encapsulation en cours de développement.
Un autre est de trouver des substrats non conducteurs : en effet, la plupart des
matériaux 2D sont synthétisés sur un substrat métallique, ce qui rend impossible
les mesures de conduction et les applications électroniques.

Parallèlement, le domaine des matériaux topologiques est également en plein
essor, comme en témoigne le prix Nobel 2016 attribué à D.J. Thouless, F.D.M.
Haldane et JM. Kosterlitz “pour les découvertes théoriques des transitions de phase
topologiques et des phases topologiques de la matière”. Dans ce nouveau paradigme,
certaines propriétés de la structure de bande des cristaux peuvent être expliquées
et prédites à partir de leur ordre topologique, plutôt que par leur géometrie. Les
isolants topologiques, qui hébergent des états métalliques robustes à leur surface,
ont été les premiers à être mis en évidence [15, 16], et il n’a pas fallu longtemps
pour que le concept soit étendu aux matériaux bidimensionnels [17] et aux semi-
métaux [18]. Leurs caractéristiques sont encore à l’étude, avec un double intérêt.
Le premier, d’un point de vue fondamental, pose des questions sur l’origine de ces
propriétés topologiques, et sur la façon dont les transitions de phase topologiques
pourraient être réalisées. Le second, plus appliqué, vise à réaliser des systèmes
expérimentaux, avec les promesses futures de courants sans dissipation et à haute
fréquence [6]. Ces concepts sont développés dans le chapitre 1

Située à l’intersection de ces deux domaines, cette thèse de doctorat se concen-
tre sur les matériaux bidimensionnels à lignes nodales de Dirac (LND), un type de
semi-métal topologique où un croisement de bande protégé par symétrie se produit
le long d’une boucle fermée ou d’une ligne ouverte dans l’espace réciproque, au lieu
de points discrets comme c’est le cas pour les semi-métaux de Dirac tels que le
graphène.
La première preuve expérimentale d’un système bidimensionnel à lignes nodales de
Dirac, Cu2Si sur Cu(111), a été publiée en 2017 par Feng et al. [19], et a été un
point de départ pour notre travail. Malgré un nombre croissant de travaux prédis-
ant par le calcul des matériaux 2D stables à LND, il n’existe pratiquement aucune
réalisation expérimentale à ce jour, ce qui entrave la compréhension pratique de
ces systèmes. L’une des difficultés de la synthèse des matériaux 2D réside dans
l’indépendance requise vis-à-vis du substrat. Une première approche consiste à ex-
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folier une couche 2D et à la transférer, au risque de l’endommager, tandis qu’une
seconde approche consiste à faire croître une monocouche directement sur un sub-
strat par évaporation sous ultra-vide, en supposant des interactions négligeables
entre la surface 2D et son substrat. C’est cette seconde approche que nous avons
adoptée ici.

Ce travail se veut une étape vers la réalisation expérimentale de matériaux
bidimensionnels à lignes nodales de Dirac. Il se concentre sur la réalisation et la
caractérisation de surfaces 2D et compare leur structure électronique avec celles
simulées publiées dans la littérature. Les principales techniques employées pour la
caractérisation des échantillons sont la photoémission de rayons X (XPS) et la spec-
troscopie de photoémission résolue en angle (ARPES), principalement utilisant des
rayonnements synchrotron, avec l’aide de la diffraction d’électrons à basse énergie
(LEED) et de la microscopie à effet tunnel (STM). Ces techniques sont décrites
dans le chapitre 2.

En ce qui concerne les systèmes étudiés, deux d’entre eux sont au cœur de notre
travail : Cu2Si et Cu2Ge. Tous deux sont des monocouches atomiquement planes
ayant un réseau hexagonal, et sont prédits héberger des LNDs [19, 20].

Dans le chapitre 3, nous présentons notre travail sur Cu2Si. Dans un premier
temps, nous reproduisons les résultats de la littérature existante, confirmant les
résultats principaux : la présence de deux lignes nodales de Dirac concentriques
centrées autour de Γ, situées dans le premier eV sous le niveau de Fermi. Ceci in-
dique des interactions négligeables entre la monocouche de surface et le substrat de
cuivre. Nous étendons ensuite notre étude à l’effet d’un dépôt de Pb sur la structure
électronique de Cu2Si/Cu(111). Il a en effet été démontré que l’adsorption d’un élé-
ment peut augmenter couplage spin-orbite dans les monocouches 2D [21], pouvant
donner lieu à des ouvertures de gaps ou à des levées de dégénérescence de bandes.
Nous montrons que dans le cas de Pb/Cu2Si/Cu(111), une séparation de bande se
fait, et qu’aucune ouverture de gap n’est observée près des ligne nodales, indiquant
une robustesse des LND plus importante qu’attendue. Des mesures résolues en
spin ont été réalisée sur les bandes séparées pour déterminer si elles étaient ou non
polarisées en spin, mais n’ont pas été concluantes.
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Nous poursuivons par l’étude de la croissance de Cu2Si sur le substrat semi-
conducteur Si(111). Ce système, présentant à première vue une surface similaire à
celle de Cu2Si/Cu(111), a l’avantage d’avoir sa structure atomique déjà décrite dans
la littérature [22], mais une comparaison de la structure de bande avec la mono-
couche de Cu2Si faisait défaut. De plus, l’utilisation de rayonnement synchrotron
nous permet de réaliser une caractérisation plus détaillée que celles existantes. Nous
montrons d’importantes modifications de la structure de bande, et les attribuons à
une forte hybridation hors-plan existant entre la couche de Cu2Si et son substrat
Si(111), justifiés par des calculs de théorie de la fonctionnelle de la densité (DFT).
En particulier, Une des bandes prédites pour le système libre s’hybride fortement
avec le substrat, empêchant l’existence de lignes nodales dans ce système. Les deux
autres bandes électroniques ne sont pratiquement pas perturbées et présentent une
dispersion linéaire. Le défi de trouver un substrat non métallique pour Cu2Si reste
donc ouvert.

Dans le chapitre 4, nous nous intéressons à la monocouche plane de Cu2Ge,
dans laquelle l’existence de LND a été prédite en 2020 [20], mais qui n’a encore fait
l’objet d’aucune réalisation expérimentale. Nous avons montré, en nous appuyant
sur un ensemble de mesures, que la surface synthétisée présente des propriétés
compatibles avec la réalisation réussie de Cu2Ge sur Cu(111). En ce qui concerne
la structure atomique, une reconstruction de surface (

√
3×
√

3) R30° a été observée
après évaporation de Ge sur Cu(111), et les mesures XPS ont montré un unique site
d’adsorption pour les atomes de Ge, en accord avec les attentes pour la monocouche
de Cu2Ge. Plus important encore, nous avons observé par ARPES la présence de
trois bandes se croisant sans aucun gap détectable, en excellent accord avec les
prédictions de la DFT, à l’exception d’un décalage vertical de 0,15 eV attribué
au transfert de charge depuis le substrat. Nous concluons donc avoir synthétisé
avec succès pour la première fois Cu2Ge, avec des interactions suffisamment faibles
avec son substrat Cu(111) pour ne pas perturber ou induire une ouverture dans
les LND. Ce serait également l’un des rares rapports expérimentaux d’un matériau
bidimensionnel à LND.

En parallèle, nous avons étudié la croissance de Ge sur Cu(111), résultant en une
reconstruction de surface (“8.88×8.88”)R30°, dans une tentative d’obtenir Cu2Ge
sur un substrat semi-conducteur. La structure électronique de la surface obtenue
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diffère grandement de la monocouche de Cu2Ge, avec une absence notable de croise-
ment de bandes, de la présence de bandes intenses près du point Γ provenant de
Ge(111), et de fortes caractéristiques Umklapp observées sur la surface de Fermi.
Deux éléments sont proposés pour expliquer ces différences. Le plus évident provient
de l’étude de la structure atomique : en effet, d’après la littérature existante et nos
résultats, il semble clair que Cu/Ge(111) ne forme pas une surface plane et pour-
rait avoir une stœchiométrie de surface différente de celle de Cu2Ge, résultant en
un système entièrement différent du Cu2Ge théorique ou du Cu2Ge/Cu(111) ex-
périmental. Cependant, nous notons qu’une surface de Cu2Ge déformée aurait pu
conduire à des états de LND gapés, intéressants en soi. Ceci nous amène au deux-
ième élément expliquant la différence de structure de bande électronique : le choix
du substrat.
En effet, le substrat Ge(111) présente des liaisons pendantes et forme des liaisons
fortes avec le Cu évaporé sur le dessus, rendant impossible dans ce cas l’obtention
d’une surface découplée du substrat comme dans le cas du Cu2Ge/Cu(111), ce qui
conduit également à la discommensuration et donc aux états Umklapp. Par analo-
gie avec le Cu2Si/Si(111), nous émettons également l’hypothèse que l’absence d’une
bande de type électronique pourrait provenir de l’hybridation des orbitales hors plan
du substrat avec la surface. Malgré l’absence de LND dans ce système, ce travail
constitue, à notre connaissance, la première caractérisation complète de la structure
électronique de la reconstruction de la surface (“8,88×8,88”)R30° de Cu/Ge(111).

Dans le dernier chapitre, chapitre 5, nous présentons un travail préliminaire sur
le système Pb/SiC, motivé par la prédiction d’un effet Hall de spin quantique à large
gap prédit dans une monocouche hexagonale de Pb [23], et le fait que le SiC soit
un substrat approprié pour les applications électroniques. Pb a été évaporé sur les
trois principales reconstructions de surface de SiC(0001), et les spectres XPS sont
présentés. Une reconstruction de surface (2×2) a été observée pour la première fois
après dépôt de Pb sur la surface de SiC (

√
3 ×
√

3), montrant une organisation
cristalline, et nos mesures indiquent également l’existence d’une phase cristalline
(3×3) induite par Pb sur le substrat SiC-(3×3). Ce travail sera poursuivi dans le
cadre d’une thèse de doctorat à part entière.

Le travail présenté ici est une étape vers la compréhension et l’utilisation des
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matériaux à ligne nodale de Dirac bidimensionnelle. Nous illustrons les difficultés
liées aux substrats semi-conducteurs, tout en préparant avec succès des mono-
couches sur le substrat Cu(111). Nous avons confirmé les propriétés du Cu2Si
et montré leur stabilité même après adsorption de Pb, tout en réalisant pour la
première fois le matériau bidimensionnel à lignes nodales de Dirac Cu2Ge. Ces
systèmes sont des candidats possibles pour des applications électroniques à haute
fréquence en raison des porteurs de charges à grande vitesse provenant de la dis-
persion linéaire et de la forte densité d’états à la LND. Les applications potentielles
comprennent également les capteurs à l’échelle nanométrique et les capteurs de gaz.
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Introduction

«The beginning of knowledge is the discovery of something
we do not understand.» - Frank Herbert

The field of condensed matter is one of the largest and most versatile branches
of physics. It deals with the quantum properties of crystalline matter, and with
the effects resulting from the large amounts of atoms (1010 - 1023) and electrons
interacting. It is arguably the domain of physics that provided the most techno-
logical advances in the past decades, from the development of modern electronics
with silicon-based transistors to laser technology, hard drives, magnetic resonance
imaging, and more recently taking the lead role in the understanding of nanotech-
nology.

A new line of research was opened in 2004 by the experimental realization of
graphene [1], the first-ever two-dimensional (2D) material, constituted of carbon
atoms arranged in a honeycomb structure, for which A. Geim and K. Novoselov
were awarded the 2010 Nobel Prize in Physics. Before that, 2D materials were
theoretically studied for their exotic properties and as toy models only, as it was
commonly accepted that they could not be thermodynamically stable [2–4]. Since
then, a tremendous effort has been made by the scientific community to predict,
synthesize and characterize new 2D structures, while expanding on the theoretical
models applicable to them. In the framework of quantum mechanics, the confine-
ment to two dimensions in space results in many exotic properties, most of them
originating from the electronic structure of the system.

The applications envisioned span numerous domains, with a strong trend to-
wards electronics [5]. One of the most appealing is the realization of transistors
from 2D hetero-structures [6, 7], more efficient and breaking the size limit of the
current silicon-based technology. Others range from photovoltaics [8–10] to solid-
state batteries[11], gas sensors [12, 13], or catalysts [14]. However, before reaching
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functional devices, some challenges are to be overcome. One issue is the air-stability
of 2D systems, which can be addressed by encapsulation processes under develop-
ment. Another is finding non-conductive substrates: indeed most 2D materials are
synthesized on a metallic substrate, making conduction measures and electronic
applications impossible.

Concurrently, the field of topological materials is in full swing, exemplified by
the 2016 Nobel Prize awarded to D.J. Thouless, F.D.M. Haldane and JM. Kosterlitz
“for theoretical discoveries of topological phase transitions and topological phases
of matter”. In this new paradigm, properties of the band structure of crystals can
be explained and predicted from their topological order. Topological insulators,
i.e. bulk insulators hosting robust metallic states on their surface, were the first
to be evidenced [15, 16], and it was not long before the concept was extended to
two-dimensional materials and to semimetals [17, 18].
Their characteristics are still under study, with a two-fold interest. The first, from
a fundamental approach, asks questions about the origins of those topological prop-
erties, and how topological phase transitions could be realized. The second, more
applied, aims at realizing experimental systems, with the future promises of dissi-
pationless and high-frequency currents [6].

At the intersection of these two fields, the focus of this PhD thesis is on two-
dimensional Dirac nodal line materials, a type of topological semimetal where a
symmetry protected band crossing happens either along a closed loop or an open line
in the reciprocal space, instead of discrete points as is the case for Dirac semimet-
als such as graphene. The first experimental evidence of a two-dimensional Dirac
nodal line (DNL) system was published in 2017 by Feng et al. [19], using a Cu2Si
monolayer grown on a Cu(111) substrate, and was a starting point for our work.
Despite a growing number of computational work predicting stable 2D DNL mate-
rials, there are hardly any experimental realizations so far, hindering the practical
understanding of these systems. One of the difficulties in synthesizing 2D materials
resides in the independence required from the substrate. One approach consists in
exfoliating a 2D layer and transferring it, at the risk of damaging it, while a second
approach consists of growing a monolayer directly on a substrate by evaporation in
ultra-high vacuum, assuming negligible interactions between the 2D surface and its
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substrate. It is this second approach we adopted here.

This work is intended to be a step towards the experimental realization of two-
dimensional Dirac nodal lines materials. It focuses on the realization and charac-
terization of 2D surfaces and compares their electronic structure with simulated
ones published in the literature. The key techniques employed for sample charac-
terization are x-ray photoemission and angle-resolved photoemission spectroscopy,
with the help of low energy electron diffraction and scanning tunnelling microscopy.
These techniques are described in chapter 1.

Regarding the systems studied, two of them are at the heart of our work: Cu2Si
and Cu2Ge. Both are atomically flat monolayers with a hexagonal lattice and are
predicted to host DNLs [19, 20].

In chapter 3 we present our work on Cu2Si. As a first step, we replicate the
existing literature results, and extend our study to the effect of Pb-deposition on
the electronic structure of Cu2Si/Cu(111) in an attempt to get insight into the ma-
nipulation and robustness of Dirac nodal lines, as adsorption of a heavy element has
been shown to act as an effective intrinsic spin-orbit coupling enhancer in 2D mono-
layers [21]. We show for Pb on Cu2Si/Cu(111) that a band splitting is seen, and
that no gap opening is observed near the DNLs, indicated an unexpected robustness
of the DNLs. We follow by the study of the growth of Cu2Si on a Si(111) substrate.
This system, presenting at first glance a surface layer similar to Cu2Si/Cu(111) has
the advantage of having its atomic structure already described in the literature, but
a band structure comparison with the Cu2Si monolayer was lacking. We show im-
portant modifications in the band structure, and attribute it to strong out-of-plane
hybridization existing between the Cu2Si layer and its Si(111) substrate.

In chapter 4 we present a study of a surface realized by Ge evaporation on a
Cu(111) substrate, and compare it to the expected band structure for a Cu2Ge
monolayer, finding good agreement. We emphasize that monolayer Cu2Ge has not
been the object of any reported experimental realization so far and that the compu-
tational work predicting its electronic properties dates from 2020. Our work would
then be the first to successfully synthesize a Cu2Ge monolayer, mostly decoupled
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from its substrate. In a second part, we study a Cu-Ge surface alloy obtained by Cu
evaporation on Ge(111) and compare its properties with the previous system. We
find that its atomic and electronic structure are different from freestanding Cu2Ge,
highlighting once again the strong interactions originating from semiconductor sub-
strates.

Finally, in chapter 5, we show the first steps of a study of the growth of Pb
on SiC(0001), motivated by the prediction of a large gap topological insulator in
monolayer Pb [22] with honeycomb structure. SiC being a robust large bandgap
semiconductor makes a convenient substrate for further applications. A (2×2) Pb-
induced surface reconstruction was observed for the first time after deposition of
the SiC (

√
3 ×
√

3) surface, showing a crystalline organisation, and our measure-
ment point towards the existence of a crystalline (3×3) Pb-induced phase on the
SiC-(3×3) substrate.
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Chapter 1: Basic concepts

1.1 A view of the 2D materials landscape
«Graphene is dead, long live graphene» A. K. Geim

1.1.1 The countless 2D materials

A material is considered purely two-dimensional (2D) if it is constituted of only one
atomic layer, preferably with all its atoms being co-planar. The denomination of
2D is however often extended to buckled materials, and to some systems made of
two or three non-identical atomic layers.

Until recently, the existence of isolated or free-standing two-dimensional mate-
rials was believed to be physically impossible. Various renowned physicists such
as Peierls [1], Landau [2] and later Mermin [3] argued, backed by experimental
observations, that such low dimensional crystal lattices would be thermodynami-
cally unstable at any temperature, and should either melt or aggregate, as thermal
fluctuations would be of the order of the interatomic distance. The study of 2D
materials was thus restrained to purely theoretical work, or by considering them as
a surface layer on a 3D material of similar lattice parameters.

A sudden paradigm shift occurred in 2004 when Geim and Novoselov [4] experi-
mentally isolated graphene, a purely 2D layer made of carbon atoms with a honey-
comb structure. For this and their subsequent studies, they were awarded in 2010
the Nobel Prize “for groundbreaking experiments regarding the two-dimensional
material graphene”. Since then, the research on 2D materials has become an ex-
tremely popular subject area, interested in the fundamental properties of these
materials as well as their possible applications. Among the most studied systems,
let us cite two families: the transition metal dichalcogenides (TMDs), created from
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combinations of transition metals (e.g., Mo, W, Hf) and chalcogens (e.g., S, Se,
Te) [5–8], and the X-enes [9], usually created from group IV or V elements, which
exhibit structures that are some variation of the (buckled) honeycomb one. Silicene
[10, 11], germanene [12, 13], bismuthene [14] , phosphorene [15, 16], borophene [17–
23] or plumbene [24–29] (respectively for Si, Ge, P, B and Pb based structures) are
examples of promising X-enes.

More recently, a few 2D binary compounds with copper have been shown to
exhibit a hexagonal lattice with a planar configuration. Cu2Si [30, 31] and Cu2Ge
[32, 33], which have been the focus of most of the work presented here, as well as
CuSe [34] and Cu2Te [35].

1.1.2 For which applications?

Possible applications of 2D materials seem almost unlimited, due to the highly
versatile properties achievable with the various 2D materials.The most widespread
applications reside in the field of electronics [36], especially as part of transistors [8,
10, 37, 38]. Ideally, transistors could be fully made of 2D materials heterostructures,
enabling much smaller sizes. The size limit of silicon-based transistors is partly due
to the apparition of undesirable quantum effects. In 2D materials, quantum confine-
ment is often what is at the origin of the specific physical properties: what is now
inconvenient in the miniaturization of transistors could be turned into a controlled
asset. The possibility of almost perfect conduction without heat dissipation and
high carrier speed [39] would also enable much cleaner and more efficient processes,
and the potential for flexible and transparent materials would open original per-
spectives. Furthermore, 2D materials could be used for valleytronics applications
[40, 41], and the possibility to obtain spin-polarized conduction channels could lead
towards spintronics applications [42].

2D materials are also of great interest to the field of energy production and
transformation. The possibility to achieve 2D heterostructures, with some trans-
parent and/or flexible layers would find application in photovoltaics [43–45], and
can readily be used to improve the efficiency of existing solar cells. Staying in
the energy domain, 2D materials will likely be future components of all-solid-state
lithium batteries [46], while the surface-to-volume ratio of 2D materials makes them
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efficient electrocatalysts in electrolysis processes for hydrogen production [47, 48],
and for energy storage [48]. Highly reactive 2D surfaces are appealing as well for
efficient catalysis [49], and for the realization of gas sensors [50, 51], which now ex-
tends to biosensors [52, 53] for use in medicine, where 2D materials are additionally
considered as plausible therapeutic treatment agents [53]. Finally, while not the fo-
cus of this work, 2D materials often display impressive mechanical properties, such
as outstanding mechanical strength and toughness [54, 55], as well as piezoelectric
and ferroelectric capacity [56].

Before reaching those applications, major challenges still need to be addressed
[36, 37, 57]. These issues are found in all the aforementioned fields, more or less
strongly depending on the considered material. The fragility of 2D sheets makes
them difficult to transfer without inducing unwanted holes or dislocations, compli-
cating the fabrication of heterostructures with precise layer placement and inter-
faces. The growth is often made on a substrate, but the decoupling is often not
discussed. Some materials can however be exfoliated, either mechanically or chem-
ically. Additionally, some 2D materials are not air-stable and would necessitate
specific encapsulation techniques to be used outside of a vacuum. Finally, most of
the 2D materials are made and studied in laboratories, and processes for large-scale
fabrication are yet to be implemented.

1.2 Topological materials
Another rapidly growing field of research in condensed matter physics is the one of
topological materials, providing a new paradigm in material description and classi-
fication. Indeed, while the most common way to classify materials is based on their
geometrical properties and symmetries, it is now proposed to classify materials by
their topological order. A non-trivial topology leads to unusual properties, that are
robust against continuous deformation of the system parameters as the topological
order is an invariant.

1.2.1 A short background on topological matter

The “classical” Hall effect was discovered in 1879 by E. H. Hall, when he observed
that an electric current flowing through a material subjected to a magnetic field
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produces a voltage perpendicular to the field. One century later, in 1980, Klaus von
Klitzing discovered unexpectedly that in two-dimensional electron systems, when
subjected to low temperatures and strong magnetic fields, the Hall resistance would
take quantized values [58]. This phenomenon is called the quantum Hall effect, or
integer quantum Hall effect. It was then found that the Hall conductance σH , is a
topological invariant [59, 60].

For more than two decades, the domain of topological materials was limited to
QHE materials, until the discovery of topological insulators which suggested that
it involved a much broader class of materials. Evidenced in the 2000s, topological
insulators (TI) are characterized by the quantum spin Hall (QSH) effect [61–63].
Topological insulators and QSH systems are thus often used interchangeably in the
literature. A schematic representation of QH and QSH systems is shown in Fig-
ure 1.1 (a). QSH systems are insulators in the bulk but are characterized by the
presence of metallic states along their edges with linear dispersion, forming spin-
polarized conduction channels counter-propagating on the edge, as represented in
Figure 1.1 (b). The spatial separation of these edge states forbids backscattering,
opening the possibility of dissipationless spin current at room temperature in QSH
systems. This was first described by Murakami et al. in 2003 [61], soon followed
by Kane and Mele in 2005 who proposed graphene as a possible QSH material [62]
and developed further the theoretical description of topological insulators [63] with
the introduction of the Z2 number, a topological invariant that can determine if a
material can exhibit QSH states or not. QSH at room temperature in graphene was
then later experimentally confirmed [64].

We will now try to give here a (very) simplified way to understand the topo-
logical order. The question to answer is: after one turn around the Brillouin zone,
do we obtain the same set of wave functions, or a modified one? An analogy can
be made with two closed strips: a simple one and a Möbius strip. After one turn,
independently of the starting point or the trajectory chosen, one will end up in the
same position in the simple strip, while with the Möbius strip one will end up at a
different point.

Let’s consider one filled electronic band of a crystal, whose electronic states are
described by Bloch wave functions ψk, k being the crystal momentum vector. It
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(a)
(b)

Fig. 1.1 – (a) In the quantum Hall system (left), an applied magnetic field
causes electrons to bounce off the edge of the sample in circular orbits,
forming a flow of charges around the edges of the material. In the quantum
spin Hall system (right) the spin-up and spin-down charge carriers flow
in opposite directions in edge channel states, without the need for any
external field, as this role is played by the intrinsic spin-orbit coupling of
the system. Figure and caption adapted from [65]. (b) In a QSH system,
edge states cross the bulk bandgap. The states are spin-polarized, with
linear dispersion.

follows from Bloch’s theorem that ψk is defined only up to a reciprocal lattice vector
K, up to a phase factor α, such as ψk(r) = eiαψk+K(r). The same applies to the
eigen energies: Ek = Ek+K . The energy is then periodical in the reciprocal space,
which is reflected in the periodic boundary conditions of the Brillouin zone. Thus,
the Brillouin zone of a 2D system is equivalent to a 2D-torus (i.e. homeomorphic
to a donut), as it has periodical boundary conditions in the direction kx and ky.
The reasoning is the same in 3D, with the addition of the kz dimension, A 3D-torus
is however more difficult to visualize. As physical measurements deal with |ψk|2

rather than ψk, the phase has long been overlooked. The work of M. Berry [66]
was a pioneer in uncovering its importance. Indeed, it was found that while for
most materials the phase change after a turn around the Brillouin zone was null,
it was not the case for a few of them: the topological insulators. This topological
order is characterized, for 2D TIs, by the topological invariant Z2 [63] derived from
the Berry curvature, which is zero for 0 trivial insulators and 1 for TIs (modulo
2). We also note that topological orders can either be intrinsic, where the emergent
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properties can be robust against any local perturbations, or symmetry-protected,
where they are only protected against perturbations that do not break these specific
symmetries. The symmetries involved are usually the inversion, time-reversal, or
crystalline symmetries.

An important concept in topological materials is the one of band inversion,
which describes the local inversion in the usual order of the conduction (empty)
and valence (filled) bands, where a gap is opened, usually in a high-symmetry point
of the Brillouin zone. This occurs in TIs, and can be explained by a continuity re-
quirement. The wave functions of the filled bands of the topological insulator have
a robust topological order, insensitive to continuous deformations, that has to be
conserved. At the interface between a TI and the vacuum (or any other trivial in-
sulator), the continuity of the wave function is required. However, it is not possible
to continually deform the filled valence band of a TI into a filled valence band of a
trivial insulator, which does not possess the same topological order (i.e. the same Z2

number). What is possible is to transform an empty band of the TI, which does not
possess a topological order, into a filled band of the trivial insulator. This results in
a twist of the bands at the interface, called band inversion. At the inversion point
the bands touch, inducing a metallic character in the interface region, as shown in
Figure 1.1 (b). The origin of the band inversion is often attributed to the SOC [63],
but the exact mechanisms are still under question, and some other phenomena such
as scalar relativistic effects and lattice distortion have been proposed as drivers of
the band inversion [67]. Finally, the presence of the time-inversion symmetry in
non-centrosymmetric systems can also lead to band inversion [68].
In any case, the presence of SOC is required to open the gap and make a TI [63]. As
the size of the spin-orbit is proportional to the fourth power of the effective nuclear
charge Z, heavier elements are favoured in the search of large gaps (i.e. measurable
at room temperature) in QSH systems, which remains one of the main pursuits in
the domain. By comparison, graphene has a SOC induced gap of the order of 10-3

meV, which would require an unrealistically low temperature to directly observe the
QSH effect. In chapter 5 we present our first results toward the growth of Pb/SiC,
as monolayer Pb with hexagonal lattice is expected to be a large gap QSH material
[24–29].
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While topological insulators were the first class of topological materials widely
studied, the concept was soon extended to topological semimetals [69–72], and from
3D materials to 2D ones [73–75], opening the possibilities of smaller and more easily
functionalized devices.

1.2.2 Topological semimetals

After the discovery of topological insulators came the discovery of topological
semimetals (TSM). Three types of TSMs, Dirac (DSM), Weyl (WSM), and nodal-
line semimetals (NLS) have been discovered [72]. These three TSM are schemat-
ically represented in Figure 1.2. They have some shared features: a symmetry
demanded band crossing, and a linear band dispersion. A DSM, shown in Fig-
ure 1.2 (a), is the result of two doubly degenerate bands crossing near the Fermi
level at a discrete point in k-space, usually designated as a Dirac point. The Dirac
point is demanded by both inversion and time-reversal symmetry. When either
inversion symmetry or time-reversal symmetry is broken, the doubly degenerate
bands become spin-split (when SOC is considered), separating into two singly de-
generate band crossings called Weyl points, shown in Figure 1.2 (b).

At the difference of the DSM and WSM, in nodal-line semimetal (NLS) the
bands do not cross at discrete points but rather cross along open lines or closed
lines (i.e. loops) in k-space, as shown in Figure 1.2 (c). NLS can be categorized into
two types: Dirac nodal line semimetals (DNLS) and Weyl nodal line semimetals
(WNLS). The DNLS are found in materials with both inversion symmetry and
time-reversal symmetry. When SOC is neglected (or negligible), band inversions
happen at one or more high-symmetry points of the Brillouin zone, resulting in
two doubly degenerate bands crossing each other to form a fourfold degenerate
nodal line [72]. The band crossing can also be enforced by the non-symmorphic
space-group symmetry of the system [68], which can help stabilize the DNLs in
the presence of SOC [74, 76] that otherwise tends to gap the DNL. WNLS lack
either inversion or time-reversal symmetry allowing for spin splitting. Therefore,
the otherwise fourfold degenerate nodal lines split into two singly degenerate nodal
lines, which are protected by one additional symmetry.

The existence of DNL is strongly tied to the symmetries present in the sys-
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Fig. 1.2 – Schematic illustration of Dirac node, Weyl node and Nodal
line/loop in k-space. (a) A Dirac semimetal, where the bands disperse
linearly around the Dirac point, represented by a green dot. (b) A Weyl
semimetal, in which the Weyl points with opposite chirality are connected
by a Fermi arc. The Weyl points are represented by a green dot and the
Fermi arc by a black dotted line. (c) Nodal line semimetals, where the va-
lence and conduction bands cross along an open or closed line, represented
by a green circle/line. From [72]

tem. Three types of crystalline symmetries can generate DNL: inversion plus time-
reversal symmetry, mirror reflection symmetry, and non-symmorphic symmetries.
Figure 1.3 shows the different topological states, and how symmetries link them
together. By the addition or the breaking of symmetries, it is possible to transition
from one topological state to another.

1.2.3 2D Nodal-line semimetals

While the concept of NLS was first developed and realized in 3D materials [69, 71,
77, 78] in the search of a 3D analogous to graphene, it was quickly extended to 2D
materials as well. Like their 3D counterparts, 2D DNLs have Dirac fermions near
the linear band crossing of their valence and conduction bands, and this crossing is
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Fig. 1.3 – Diagram of the different topological states and their relationship
with each other. The symmetries in red (blue) captions indicate the global
symmetry or spatial/lattice symmetry elements that need to be preserved
(broken) to obtain a different topological phase. From [72]

required from a given set of symmetries. While a recent idea, 2D Dirac nodal lines
have been predicted in a growing variety of systems, such as 2D honeycomb kagome
lattice [79], in 2D compounds X2Y (X = Ca, Sr, and Ba; Y = As, Sb, and Bi) [80],
X2YZ4 (X = K, Cs, Rb, Y = Cr, Cu, Z = Cl, F) [81], and MX (M = Pd, Pt; X
= S, Se, Te) [82], in 2D Lieb lattices [83], in hydrogenated boron layers [84, 85],
MgB2 [86], MnN [87], B2C [88], black phosphorous films [89], C4N4 [90], ScX (X =
P, As) [91], CuMg2 [92], but also in monolayer Cu2Ge, Fe2Ge, Fe2Sn [33] and Cu2Si
[31]. It is interesting to note that while most of these systems have a honeycomb
or hexagonal lattice, it is not a requirement. Borophane for instance is constituted
of 5- and 7-membered rings [85].

The experimental realizations are sparse so far, with the notable examples of
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Cu2Si [31] which is the first 2D material in which DNLs have been confirmed when
grown on Cu(111), followed by Bi/Cu(111) [93], and recently by the exfoliable 2D
layers of borophane [94] and TaNiTe5 [95]. We also note that CuSe, despite its band
structure similar to Cu2Si, has been shown to present gaps where the DNLs should
cross when prepared on Cu(111) [34]. One of the most pressing issues of the field
seems, for now, to increase the number of experimental realizations, with a focus
on the choice of substrate or possibility for exfoliation, strategies to get the nodal
lines as close to the Fermi level as possible, and air stability. This work focuses on
the systems Cu2Si and Cu2Ge, belonging to the class of 2D Dirac nodal line (DNL)
materials.

Although the interest in 2D DNL systems is often motivated by the attempt to
better understand the exotic properties of 2D topological materials and the condi-
tions for their emergence, the possible applications of such materials are fascinating.
From a fundamental point of view, they can be good platforms to study topological
phase transitions, either towards others TSM or to TI phases [72, 96]. Additionally,
TSM with magnetic properties are expected to exhibit topologically non-trivial
superconductivity, leading to the elusive Majorana surface states [97]. On more
direct applications, the presence of Dirac fermions near the nodal lines offer the
possibility of high-speed electronics due to ultrahigh electron mobility, and the pos-
sibility of spin-polarized channels offers low-dissipation conduction. Compared to
Dirac semimetals, the presence of a crossing line instead of a crossing point could
comparatively offer a higher electron density for the conduction. Furthermore, the
nodal lines are not necessarily located on high-symmetry points, allowing for an
easier manipulation of their properties.
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Chapter 2: Experimental techniques: STM, XPS
and ARPES

2.1 The experimental setup

2.1.1 Ultra-high vacuum, why ?

The experimental work presented in this manuscript has been performed on many
different setups, all of them under ultra-high vacuum (UHV), i.e. in environments
where the pressure is 6 10-9 mbar. There are two main reasons for the need for a
good vacuum in electron spectroscopy, STM or surface preparation: (1) avoiding
electron scattering on gas molecules in the path from the sample to the analyzer
in the case of spectroscopy, (2) avoiding surface contamination by adsorption
of unwanted species, which would denature our sample and attenuate and distort
spectra. This criterion is especially important when studying the properties of a
surface. In the case of STM, unwanted adsorption also concerns the conductive tip
of the microscope, which need to remain “clean” for imaging with atomic resolution.
Condition (1) is already met by a vacuum of about 10-4 mbar. Condition (2) is met
when the partial pressures of highly reactive gas are in the order of 10-10 mbar.
This pressure matches the criterion of having only a few per cent of a monolayer
of adsorbed atoms deposited in one hour [1]. By comparison, a vacuum in the or-
der of 10-6 mbar leads to approximately one monolayer of residual gas per second.
Typically, measurements are realized in chambers with a base pressure in the low
10-10 mbar down to a few 10-11 mbar.

In order to achieve UHV conditions, different pumping systems are used to ob-
tain different vacuum ranges. Usually, three stages are necessary, each with its
own pumping system, and are called: primary vacuum, secondary vacuum and
ultra-high vacuum. Primary vacuum (down to 10-3 mbar) is commonly achieved
using rotary pumps and cryosorption pumps. Secondary vacuum (10-3-10-9 mbar)
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is reached using turbo-molecular or diffusion pumps, and UHV (10-9 mbar and be-
low) necessitates ion pumps, often complemented by auxiliary titanium sublimation
pumps.

2.1.2 The setup: one of many

A picture of our in-lab setup is shown in Figure 2.1, with its visible equipment
annotated. The preparation chamber is equipped with an ion-gun for cleaning by
Ar sputtering, a transfer rod with a heating stage for direct current and resistive
heating, an e-beam evaporator for monolayer deposition, a quartz micro-balance
for calibration, and a low energy electron diffraction (LEED) apparatus for the
crystalline characterization of the surface. As the diffraction pattern occurs imme-
diately, LEED is a very convenient tool for quick characterization. In this work,
it was used as a first step to determine sample cleanliness (an oxidized Cu crystal
will show a very poor LEED pattern, getting sharper as the oxide is removed) be-
fore using more time-consuming techniques (XPS, ARPES, STM). It was also used
to observe the periodicity of the surfaces synthesized compared to their substrate
and adjust the growth parameters in order to optimize the LEED pattern (sharp
spots, low background), being in first approximation a good criterion for the local
crystalline organization.

In our laboratory, the measurement chamber is equipped with a scanning tun-
nelling microscope. At synchrotron facilities, where we performed XPS and ARPES,
the measurement chamber is equipped with a semi-hemispherical analyzer. More
details on these are given below.
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Fig. 2.1 – Annotated picture of our preparation and STM chambers.

2.2 Scanning tunnelling microscope (STM)

The scanning tunnelling microscope (STM) is an instrument for imaging surfaces
at the atomic level. It has been invented in 1981 by Gerd Binnig and Heinrich
Rohrer for which they were awarded the Nobel prize in Physics in 1986 and is now
renowned among scientists for its large possibilities. In physics, STM is mainly used
for the visualization and manipulation of atoms, to study local electronic properties
by scanning tunnelling spectroscopy, and more recently, with the development of
the spin-polarized STM, to characterize magnetic properties. Atoms are not imaged
directly, instead, STM measures the local density of electronic states. In this work,
the STM results presented were obtained using a VT SPM machine from Scienta
Omicron.
To understand how an STM works, a brief description of its components is needed.
One of its most crucial parts is the probe metallic tip, atomically sharp, usually ob-
tained from chemically etched tungsten or by mechanical cutting. This tip is moved
along the sample surface and its displacement is finely controlled by three mutually
perpendicular piezoelectric tubes which expand or contract under an applied volt-
age and are regulated by a feedback loop (see Figure 2.2). As piezoelectric tubes
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Fig. 2.2 – Principle of scanning tunnelling microscopy: Applying a negative
(positive) voltage to the sample and grounding the tip yields electron tun-
nelling from occupied (unoccupied) states at the surface into unoccupied
(occupied) states of the tip. Keeping the tunnelling current constant while
scanning the tip over the surface, the tip height follows a contour of the
constant local density of states. Image from [2].

only allow a small displacement (maximum extension ∼ µm), the coarse approach
toward the sample is done by mechanical motors step by step.

2.2.1 The tunnelling effect

The tunnelling effect is the fundamental concept behind STM. In classical mechan-
ics, if an object is trapped in a potential well and does not possess sufficient energy
to overcome the depth of the well, it is impossible for it to escape. In quantum
mechanics, it is however not the case. Due to the dual description wave/particle for
all quantum objects and to the Heisenberg uncertainty principle, the uncertainty
in the exact location of particles allows these particles to break rules of classical
mechanics and “go through” an energy barrier that would classically be impassable.
We show in Figure 2.3 the simplest case of a one-dimensional barrier, of height V0

and thickness L. On the left side is an incident particle with energy E<V0 described
by the wave function ΨI . If the barrier height is not infinite, there exists a proba-



2.2. Scanning tunnelling microscope (STM) 41

bility for the particle to cross the barrier. Inside the barrier, it is described by ΨII ,
and by ΨIII afterwards. ΨI is a free particle wave function, and must satisfy the
Schrödinger equation when reaching the potential barrier:

− ~2

2m
d2

dx2 Ψ(x) + (V0 − E)Ψ(x) = 0 (2.1)

Solving this equation for the three different domains, with the help of boundary
and continuity conditions, it can be shown that the incident particle can either be
reflected by the barrier or cross through it. ΨII is an evanescent wave: it decays
exponentially with the length L of the barrier. A reasonable approximation of the
transmission coefficient through the barrier may be obtained by taking the square
of the ratio of the amplitudes of ΨIII and ΨI . In this case, the probability of
tunnelling through the barrier is proportional to:

e−
2
~

√
2m(V0−E)L := e−2κL (2.2)

With m the mass of the particle, E its energy in vacuum, V0 the barrier height
(i.e. the sample or tip work function) and L the barrier length (i.e. the distance
tip-sample). The transmitted wave ΨIII is again a free particle wave function, with
the same energy as the incoming wave ΨI . Hence, during tunnelling, no particle is
lost.

2.2.2 Working principle of an STM

In an STM experiment, the potential barrier is represented by the vacuum between
the tip and the sample, as well as the work function of the sample or the tip (i.e.
the energy needed to extract an electron from it). The tunnelling current is given
above by I ∼ e−

2
~

√
2m(V0−E)L, and varies exponentially with the distance tip-sample.

Hence, an increase of the tunnelling distance of only 1 Å changes the tunnelling
currents by about one order of magnitude, which underlines the importance of fine
control of the tip position and overall stability of the measurement apparatus. For
this reason, STM are usually installed at underground level with strong foundations
and possess various vibration cancelling systems. In the example above, increasing
the voltage bias corresponds to increasing the particle energy E, and to diminishing,
by comparison, the height of the barrier, making tunnelling easier.

By applying a negative voltage to the sample and approaching sufficiently close
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Fig. 2.3 – The tunnelling effect. On the left side is an incident particle with
energy E described by the wave function ΨI , arriving on a one-dimensional
barrier of height V0 (>E) and thickness L. If the barrier height is not infinite,
there exists a probability for the particle to cross the barrier. Inside the
barrier the particle is described by ΨII , an evanescent wave. After the
barrier, it is described by ΨIII , which is similar to ΨI but with a decreased
probability.

the tip (which is grounded), electron tunnelling will occur from the occupied states
of the sample towards the unoccupied states of the metallic tip. Conversely, a
positive voltage can be applied to the sample to probe its unoccupied states with
electrons tunnelling from the tip. It is of course the reverse if the sample is grounded
and the tip polarized. A schematic representation of the energy levels of a semicon-
ductor sample and a metallic tip is shown in Figure 2.4. In the case of a semicon-
ductor sample, the bias applied needs to be large enough to overcome the bandgap
of the material, otherwise, no electron flow can occur.

Setting a constant tunnelling current while scanning with the tip over the sur-
face will make the tip follow a contour of constant density of states, thus imaging
the surface, see Figure 2.2 b. If the tunnelling current exceeds the set value, the
feedback control system will increase the distance between the tip and the sample.
Conversely, if the tunnelling current is less than the set current value, the feedback
control system will bring the tip closer to the surface of the sample. This results
in a three-dimensional map of the surface, with the height variation as a function
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Fig. 2.4 – Schematic representation of positive and negative STM bias. If
the sample bias is higher than the tip bias (Vbias>0), its Fermi level shifts
to higher energy, and the electron will flow from the sample filled states
toward the tip. In the reverse case (Vbias<0) the electrons will flow from
the tip toward the sample empty states. This way, both empty and filled
states can be mapped by STM.

of (x, y). This is the model used for the STM images presented in this work. It
is important to keep in mind that STM shows the electronic local density of states
and not “real” images of atoms.
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2.3 X-ray photoelectron spectroscopy (XPS)
and Angle-resolved photoelectron spectroscopy
(ARPES) Techniques

2.3.1 A Short History of photoelectron spectroscopy

All photoelectron spectroscopy techniques are based on the photoelectric principle,
describing the emission of an electron induced upon illumination by photons, as
shown in Figure 2.5. But the path from understanding that light could create a
current to the use of this property to perform spectroscopy experiments was long,
and marked by major steps in the understanding of the underlying physics.

The first account of a photoelectric effect, purely phenomenological, dates from
as early as 1839 and is attributed to the French scientist Edmond Becquerel [3].
In 1902 Phillip Lenard, who was awarded a Nobel prize in 1905 “for his work on
cathode rays”, discovered that the energy (speed) of the charged particles ejected
from a cathode depends only on the wavelength, and not on the intensity of the
incident light [4], and that these particles are identical to electrons, which had been
described by the British physicist Joseph John Thomson in 1897. This first obser-
vation, along with the observed “instantaneity” between the arrival of light and the
emission of electrons, and the threshold effect (no electrons are emitted when using
light with a wavelength higher than a given threshold) were not explainable in the
paradigm of light described purely as an electromagnetic wave through Maxwell’s
equations.

A few years later, in 1905, Albert Einstein came up with a corpuscular descrip-
tion of light [5], in which particles of light, photons, carry a quantized amount of
energy E = hν proportional to their frequency ν and to the quanta of energy h:
the Planck constant. Einstein postulated that the photons transferred their energy
to the electrons, and by conservation of energy, this reasoning led to the photoelec-
tric equation Ek = hν − Φ, where Ek is the kinetic energy of the emitted electron
(the photoelectron), hν the incident photon energy, and Φ the energy necessary
to move the emitted electron from the surface of its material to the vacuum level
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(i.e. its work function). In 1921 he obtained the Nobel Prize “for his services to
Theoretical Physics, and especially for his discovery of the law of the photoelectric
effect”.In 1922 Arthur Compton measured the change in wavelength of x-rays after
they interacted with free electrons, and showed that the change could be calculated
by treating x-rays as made of photons, thus understanding the true nature of x-ray
radiations. This earned him the 1927’s Nobel prize “for his discovery of the effect
named after him”.
The next milestone towards experimental applications, was the development in 1957
by Kai Seigbahn of the first x-ray photoemission spectroscopy experiment, allow-
ing the study of electronic core levels for solids [6]. As the founder of the XPS
technique, Seigbahn received the Nobel prize in 1981 “for his contribution to the
development of high-resolution electron spectroscopy”. Building on this, technical
refinements developed XPS and made it an essential tool for physicists and chemists.
Further progress made on the detectors and light sources allowed for angle-resolved
and spin-resolved experiments, as well as time-resolved ones using pump-probe ex-
periments with pulsed laser sources, multiplying the applications of photoelectron
spectroscopy.

2.3.2 Theory of photoelectron spectroscopy (PES)

We will describe here two kinds of PES: X-ray photoelectron spectroscopy (XPS),
and angle-resolved photoelectron spectroscopy (ARPES).

X-ray photoelectron spectroscopy (XPS) is a straightforward photon-in electron-
out process. A photon of known energy ejects a core-level electron, and by measur-
ing the kinetic energy of this electron, one can deduce its original binding energy
level. XPS is a powerful tool to identify a material composition and its chemical
structure, as the energy of a core level is affected by its surroundings (chemical
shift). The energies of the incident photons typically range from 100 eV to 2000 eV.

ARPES is also a photon-in, electron-out, spectroscopy similar to XPS, at the
difference that the angle of emission of the photoelectron is also detected in addition
to its kinetic energy, and that it probes the valence electron instead or the core-
level ones. It is used to observe the distribution of electrons in the reciprocal
space of solids. The incident photon energies typically range from 30eV to 300eV.
When using ultraviolet light (30-120eV) instead of x-rays, the term angle-resolved
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Fig. 2.5 – A photon transfers its energy hν to an electron. If this energy
allows the electron to reach the vacuum energy level, it is emitted and
becomes a photoelectron with a kinetic energy Ek = hν−|Eb|−Φ, with Eb
its binding energy and Φ the work function of the solid, or of the apparatus
collecting the photoelectron.

ultraviolet photoelectron spectroscopy (ARUPS) is also commonly used.

2.3.2.1 The Three-Step Model

One of the simplest and most used manners to describe the photoemission pro-
cess is the so-called three-step model, in which the photoemission process is being
separated into three independent processes. While purely phenomenological, this
model proposed in 1964 by Berglund and Spicer [7] has been very successful when
compared to experimental measurements. In the first step, a photon is absorbed by
an electron in a solid and excites it. In the second step, the excited electron travels
through the solid to its surface. In the third step, the electron escapes through the
surface energy barrier (i.e. its work function) into the vacuum, where it is detected
and its kinetic energy is measured. All these different energy levels are represented
in Figure 2.6.

When a photon of energy hν excites an electron, this one goes from a Bloch
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Fig. 2.6 – Schematic representation of the different energies and energy
levels involved in PES. A bound electron of binding energy Eb is excited by
a photon of energy hν and leaves the sample. The now photoelectron travels
in vacuum to the spectrometer, where its kinetic energy Ek is measured by
the spectrometer. From energy conservation laws, Ek = hν − |Eb| − Φsp,
with Φsp being the work function of the analyzer.

state in the crystal towards a free-electron state. The energy of the photon is
transferred to the electron, while its momentum can be neglected, being many
orders of magnitude smaller than the one of electrons in the UV/soft x-rays range
in which we are working here. The transitions allowed by photo-excitation are thus
only vertical in k-space. The conservation laws of energy and momentum can thus
be written as

Ek = hν − |Eb| − Φsp (2.3)

kf = ki (2.4)

where Ek and Eb are the kinetic and binding energies of the photoelectron, hν
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Fig. 2.7 – Spectrum of the Si 2p core level measured on Si(111) with hv =
150 eV, using a synchrotron light source. Its doublet is clearly resolved.

the energy of the incident photon, and Φsp the work function of the spectrome-
ter detector. ki and kf are the electron momentum before and after excitation
respectively, still inside the crystal. All photoelectrons respecting these equations
will contribute to the creation of elastic peaks, while the others (with a non-zero
energy loss) will often be considered as a background signal. In some specific cases
where those non-zero energy loss interactions are not random but stem from well
defined interaction those photoelectrons can create well defined peaks that can also
be subject of study. We remark that the law on momentum conservation inside a
crystal is only valid modulo a vector of the reciprocal lattice G, such as kf = ki+G.

Figure 2.7 shows an example of XPS spectra: the Si2p core-level of a Si(111)
sample was probed by 150 eV photons, resulting in a characteristic doublet shape.
The peaks area ratio is determined by the orbital of origin, while the separation
between the doublets (the spin-orbit splitting) is core-level and element-specific,
and is tabulated. The high energy resolution of the spectrum presented here is due
to the synchrotron light-source used (VUV beamline, Elettra) where the energy
resolution is the order of 20 meV and allows an excellent distinction between the
Si 2p3/2 and Si 2p1/2 peaks, separated by 0.6 eV. With conventional laboratories
sources such as x-ray lamps, the two doublets of the Si2p core-level are usually not
separated as the energy resolution is often in the order of 1 eV.

In the second step, the excited electron travels through the solid to its surface.
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Fig. 2.8 – “Universal curve” of the inelastic mean free path of an electron in
a solid as a function of its kinetic energy, with experimental points. From
[11].

While photoemission can occur up to a few micrometres in the depth of a material,
photoelectrons that manage to leave the solid without energy loss usually originate
from tens of ångströms below the surface. The average distance an electron can
travel inside a material without losing energy is called the inelastic mean free path
(IMFP). As a first approximation, the IMFP of photoelectrons follows a “universal
curve” [8] depicted in Figure 2.8, with a minimum around 4 Å for 50 eV of kinetic
energy, and a general range of 4 Å to 4 nm for kinetic energies in the range 10-5000
eV. This model is however oversimplified and more precise ones have been developed
[9]. For up-to-date and precise values, one can refer to the NIST database for
instance [10]. We see from Figure 2.8 that varying the incident photon energy, and
thus the kinetic energy of the photoelectron, can enable us to collect information at
different depths in a material. This property comes in handy to identify the origin
of the signal measured. In the case of a layer with different chemical composition
than its substrate for example, measuring one core level at different photon energies
will allow determining which peaks originate from the layer and which ones come
from the substrate. This is one important asset of synchrotron facilities, where
photon energy can be tuned at the desire of the experimentalist, which is not the
case in more conventional light sources. A similar depth probing can however be
achieved by varying the angle of incidence of the photons, with the disadvantage of
measuring slightly different cross-sections of the sample for each angle.

During the transmission to the surface, the third step, the symmetry is conserved
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Fig. 2.9 – Drawing of the ARPES apparatus. The analyzer resolves in
energy and angle, giving information on binding energy and momentum.
Credits: [12]

in the surface plane but is broken perpendicularly to the surface: the component
of the electron momentum parallel to the surface plane (k‖) is conserved, but the
component perpendicular to the surface (k⊥) is not conserved. A schematic repre-
sentation of the momentum relationship during the surface crossing is represented
in Figure 2.10. We note that the momentum transferred by the photon to the elec-
tron is neglected, as it is around two orders of magnitude smaller in the UV range.
It is then possible to write:

k‖ = 1
~

√
2meEk sin θout (2.5)

Where Ek is the photoelectron kinetic energy, me its mass, and θout its emission
angle with respect to the surface from which it originates. For ARPES measure-
ments, this formula allows converting the emission angle, which is measured by
the analyzer, to a momentum value. A drawing of the PES apparatus is shown in
Figure 2.9.

Since the electrons are being projected through the surface, the momentum per-
pendicular (k⊥) to the surface is not conserved. However, when assuming that the
final in-crystal states are free-electron-like with a bottom energy −V0, the perpen-
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Fig. 2.10 – Schematic representation of the parallel momentum conserva-
tion in PES. While the momentum component parallel to the surface is
conversed, the component perpendicular is not.

dicular momentum can be approximated by

k⊥ = 1
~

√
2me(Ek cos2 θout + V0) (2.6)

While in XPS only the kinetic energy Ek of the core-level photoelectrons are mea-
sured, the use of a two-dimensional detector in ARPES allows measuring conjointly
the angle of emission θout. Using this, it gets possible to obtain two-dimensional
images of the valence bands.

We note that in the case of a two-dimensional material, only the parallel mo-
mentum k‖, which is conserved, is relevant. Conversely, determining if an electronic
band disperses with varying photon energy is a good way to determine if the sys-
tem studied is two-dimensional or three-dimensional, or to determine if the signal
observed originates from the surface or the bulk of a material.

We also recall that inside the crystal the momentum is defined to a reciprocal
lattice vector G (kf = ki +G). In the presence of two different lattices, for example
a surface layer with different periodicity than the bulk, Umklapp scattering can
occur: the G vector involved in the scattering of a surface electron can be the one
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of the bulk lattice, resulting in an apparent translation of the surface band by a
reciprocal lattice vector of the bulk. Despite the words of Rudolph Peierls: “I used
the German term Umklapp (flip-over) and this rather ugly word has remained in
use...”, such bands are also sometimes called “shadow”, “ghost” or “replicas” bands,
and we will see experimental examples of them in chapter 3 and chapter 4.

Finally, the spin is also conserved in the photoemission process. With the suit-
able detectors, it is then possible to measure the projection of the spin of a pho-
toelectron along three orthogonal directions in space. Combined with ARPES, it
is feasible to obtain direct indications on the spin-polarization of electronic bands,
even though the process is generally extremely time-consuming due to the low effi-
ciency of the spin detectors.

2.3.2.2 Description of the photoemission intensity

We are here interested in finding an expression for the experimentally measured
photoemission intensity.

Upon interaction with light, and taking a mono-electronic approach, the initial
state of an electron ΨN

i (N =number of electrons) evolves to a final state ΨN
f with

a transition probability ωfi [13] given by Fermi’s golden rule

ωfi = 2π
~
∑
f

| < ΨN
f |Hint|ΨN

i > |2δ(Ef − Ei − hν) (2.7)

Where Ef , Ei and hν are respectively the energies of the final state, initial state and
incident photon. The interaction Hamiltonian Hint describes the electron-photon
interaction, which can be written as

Hint = − e

me

A.p (2.8)

Where e and me are the charge and mass of the electron, A the vector potential
of the incident photon, and p the momentum operator of the electron. In this
expression of the Hamiltonian, some assumptions are made. First, the Coulomb
gauge (∇A = 0) is chosen. Then, all second or higher orders terms in A are
neglected, which assumes that the intensity of the source is not too strong (when
using bright synchrotrons sources, second order terms are sometimes to be taken
into account). The electric dipole approximation is also made here, which assumes
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that A(r) = A. This independence on position is justified when the photons
wavelength is much larger that the spatial extension of the atom probed, which
can then be considered as punctual. In the low energy X-rays (<1000 eV) and UV
ranges used in this work, this approximation stands.
Using the same A as above, the intensity I(k, Eb) of the spectral weight is given
by

I(k, Eb) = I0|Mfi(k, Eb)|2f(Eb, T )A(k, Eb) (2.9)

With
Mfi(k, Eb) =

∑
f

< ΨN
f |Hint|ΨN

i > (2.10)

This intensity I(k, Eb) is what is measured in an ARPES experiment. Additional
terms can be added in the form of products of delta functions accounting for all
conservation laws stated above. I0 is a constant, M(k, Eb) describes the matrix ele-
ments dependent on incident photon energy. They modulate the intrinsic intensities
according to geometric and experimental constraints such as light polarization and
emission direction. It enforces the selection rules between initial and final states.
More details will be given below. f(Eb, T ) is the Fermi-Dirac distribution function,
which tells the occupation probability as a function of both temperature and energy.
Finally, A(k, Eb) is the single-particle spectral function (not to be confused with
the vector potential), which decides the existence of a peak and its intrinsic width
and intensity. It can be thought of as a generalized density of state, and does not
depend on experimental conditions. In non-interacting electron systems, it takes
the form of delta function at a given momentum and energies. For interacting sys-
tems it can be generalized and is written as the imaginary part of Green’s function:
A(k, Eb) = −ImG(k, Eb)., and can be rewritten as

A(k,Eb) = − 1
π

∑′′(k,Eb)
[Eb − εk −

∑′(k,Eb)]2 + [∑′′(k,Eb)]2 (2.11)

Where εk is the band energy and ∑(k, ω) := ∑′(k, ω) + i
∑′′(k, ω) is the self energy

of the system separated into its real and imaginary parts. We remark that the
spectral function takes here the form of a Lorentzian.

As said above, the polarization of the incident light can play an important role
in the features observed in ARPES, through the transition matrix element. Indeed,
the final state obtained will depend on the symmetries of the initial state probed
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and of the probe, here the incident photon.
A schematic representation of linear light polarization is shown in Figure 2.11. The
linear horizontal (LH) polarization, sometimes called p-polarization, is parallel to
the plane of incidence while the linear vertical (LV) polarization, sometimes called
s-polarization, is perpendicular to the plane of incidence. In our example, the scat-
tering plane, defined by the incident photon vector and the photoelectron final mo-
mentum kf , is a mirror plane of the sample, perpendicular to the sample surface. A
combination of linear polarizations results in elliptical or circular light polarizations.
The transition matrix element can be written asMfi(k, Eb) = ∑

f < ΨN
f |Hint|ΨN

i >

To have non-vanishing intensity, the transition matrix element must be even with
respect to the mirror plane of the measured sample. The initial state ψi parity
with respect to the mirror plane is even for LH (p) polarization and odd for LV (s)
polarization. Assuming the final state ψf as a free electron, it is always even with
respect to the mirror plane.

Therefore, we have two possibilities depending on the light polarization. For
LV (s) polarization the initial state ψi must be odd with respect to the mirror
plane to make the overall space integral Mfi(A) 6= 0. On the contrary, for LH
(p) polarization the initial state ψi must be even. We see here that photoemission
with different light polarization provides a direct measure of the ground state wave
function parities. In the example of Figure 2.11, the lobes of a dx2−y2 orbital are
represented on the surface, with their signs. These lobes have even parity with
respect to the mirror plane (scattering plane): LH (p) polarized light will efficiently
probe its electronic states, while LV (s) polarized light will result in an overall
null matrix element, forbidding the transition thus extinguishing the signal. An
experimental example of vanishing matrix element is shown in Figure 2.12 on a
Cu(111) crystal surface-state. Mulazzi et al. showed that the Shockley surface
state of Cu(111), originating mainly from sp-orbitals, would emit an intense signal
when probed with LH (p) polarized light, while almost vanish when probed with
LV (s) polarized light [14]. A summary table of the s, p and d orbital’s symmetry
with respect to the mirror plane is presented in Table 2.1, along with the light
polarization (LV or LH) that is required to probe their electronic states.

We assumed in our example above a geometry where the scattering plane coin-
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Parity / mirror plane Probed by
s even LH (p)

px, pz even LH (p)
py odd LV (s)

dx2-y2 , dz2 , dxz even LH (p)
dxy, dyz odd LV (s)

Table 2.1 – Summary table of orbital’s polarizations with respect to the mirror
plane, with the light polarization type (linear vertical or linear horizontal) adapted
to measurement.

cides with a mirror plane of the crystal. When it is not the case, symmetry mixing
can be observed, and the matrix element cannot be null. Furthermore, we note
that in addition to the symmetry selection rules above, the strength of interaction
with light also depends on the shape of the orbitals considered: the signal intensity
gets higher the more the spatial extension of the orbital lie in the direction of the
E-field [15].

To summarize: the observed intensity of measured spectra in a photoemission
experiment is heavily dependent on the photon energy, light polarization and geo-
metrical setup of the experiment. One great advantage of synchrotron beamlines
is the common possibility to choose light polarization and photon energy, enabling
a complete characterization of the band structure, and even observing bands that
could have been missed otherwise.

While more complex models than the three-step model will not be discussed in
detail here, it is important to know its main limitations. The three-step approach
to photoemission ignores the fact that photoemission has to be described as one
coherent excitation process. The initial and final states in the photoemission process
are assumed to be Bloch states with an infinite lifetime, which does not allow for
transitions into evanescent bandgap states, e.g. states that decay exponentially into
the solid. Similarly, the assumption of an infinite lifetime for the initial state does
not in practice allow the calculation of photoemission spectra that involve surface
states. A more detailed model, described in the second quantization formalism, is
the so-called one-step model. In it, a Bloch wave electron is excited into a wave
that propagates freely in the vacuum but decays away from the surface into the



56 Chapter 2. Experimental techniques: STM, XPS and ARPES

Fig. 2.11 – Representation of LH (p) and LV (s) light polarization. The lin-
ear horizontal (LH) polarization, sometimes called p-polarization, is parallel
to the plane of incidence. The linear vertical (LV) polarization, sometimes
called s-polarization, is perpendicular to the plane of incidence. Orbitals
and their parity with respect to the plane of incidence are schematically
represented on the surface of the sample. The lobes of a dx2−y2 are repre-
sented.

Fig. 2.12 – ARPES of Cu(111) surface state with different light polariza-
tions, at 30 eV. (a) with linear horizontal (p) polarization and (b) with
linear vertical (s) polarization. From [14].
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solid. This decay accounts for the short IMFP of the electron in a solid, and
allows for transitions into evanescent bandgap states. It also allows describing the
many-body effects accurately, such as the interaction electron-electron, electron-
holes and phonon-electron originating from the sudden ejection of an electron from
the crystal. The one-step model also allows the calculation of photoemission spectra
that involve surface states and to describe correlation effects [16], and is favored for
computational ARPES.

2.3.3 Curve fitting in XPS and ARPES data analysis

«With four parameters I can fit an elephant, and with five I can make him wiggle
his trunk » John von Neumann

In this section, we present what needs to be considered for a proper curve fitting
of XPS spectra. Curve fitting is the process by which the analyst will try to obtain a
signal matching the experimental one by the use of analytic tools. By using definite
peak line shapes and background functions, a fit can be realized (usually by the χ2

method).

All the XPS fits realized in this work were made using the Igor Pro Paris Pho-
toemission Package [17].

The experimentalist must be wary of the physical reality underlying a fit. Given
enough peaks with enough free parameters, anything can be fitted nicely enough.
It is important to keep in mind some constraints. A good starting point is to
use the binding energy and spin-orbit splitting tables, as these values are quasi
constant for all measurements, and to set the branching ratio (i.e. relative areas) of
doublets components according to their orbitals (p = 0.5, d = 0.66, f = 0.75). The
Lorentzian full width at half maximum (FWHM) is on the first approach similar
for all contributions originating from a homogeneous volume of the sample (bulk
and surface components might however differ). Then, the choice of peak shapes
and background subtraction is crucial.
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2.3.3.1 Peak shapes

In a real photoemission experiment, the ground state core electron binding energy
cannot be directly probed, because the measured binding energy incorporates both
initial state and final state effects, and the spectral linewidth is broadened due to
the finite core-hole lifetime (τ). In addition, a Gaussian broadening originating
from the experimental setup and its resolution is observed.

Assuming an exponential decay probability for the core hole (∝ exp−t/τ), the
spectral function will have a Lorentzian shape with an intensity given by

ILorentz (E) = 1
π

Aσ

(E − E0)2 + σ2

With: A = peak area

Full width at half maximum (FWHM) = 2σ

E0 = peak central value

(2.12)

From the theory of Fourier transforms, σ and τ are linked by the incertitude
relation: ∆σ∆τ ≥ ~. A short-lived state with small τ will thus lead to a broader
peak.

Besides Lorentzian broadening, photoemission spectra are also affected by a
Gaussian broadening, whose contribution can be expressed by

IGauss (E) = A

σ
√

2π
exp

[
−(E − E0)2

2σ2

]

with FWHM = 2
√

2 ln(2)σ
(2.13)

Three main factors enter the Gaussian broadening of the spectra: the experimental
energy resolution, vibrational, and inhomogeneous broadening. The first effect is
caused by the imperfect monochromaticity of the photon beam which results in a
finite bandwidth, and by the limited resolving power of the analyzer. For compar-
ison, laboratory x-ray sources have energy resolutions of the order of the eV for
Mg Kα x-rays and lower for other sources, while synchrotron light has an energy
resolution around 10 meV. For UV, it is usually the analyzer that limits the reso-
lution, independently of the light source, and is in the order of the meV for newer
commercial analyzers. The vibrational component is produced by the excitation of
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low energy vibrational modes both in the initial and in the final states, and can be
reduced by measuring at low temperature. Finally, inhomogeneous broadening can
originate from the presence of unresolved core level components in the spectrum,
from differential surface charging of the sample (mitigated by properly grounding
the sample), or from the response function of the analyzer.

In order to take into account both the Lorentzian intrinsic peak shape and the
Gaussian broadening,Voigt functions are commonly used. They are a convolution
of Lorentzian and Gaussian line shapes.

IVoigt (E) = IGauss (E)⊗ ILorentz (E) (2.14)

Pseudo-Voigt (weighted sum of Lorentzian and Gaussian) lineshapes have also
widely been used in peak fitting, as they are easier to implement. They are however
an approximation of a proper Voigt function.

In the case of metallic samples, it has been shown on theoretical grounds that
asymmetric profiles should be expected as a result of the many-electron interactions
of the metallic conduction electrons with the accompanying deep hole in the final
state [18]. While different asymmetrical peak shapes exist, the Doniach-Sunjic
asymmetrical peak is the only one having a theoretical basis, and is written:

ID-S (E) = 1
π

A Γ[1− α][
(E − E0)2 + σ2

](1−α)/2 cos
[
πα

2 − (1− α) arctan
(
E − E0

σ

)]
(2.15)

With FWHM = 2σ, Γ the gamma function, and α the asymmetry parameter (α
= 0 for pure Lorentz function). 0 ≤ α < 1 It is important to note that the
Doniach-Sunjic peak shape has an infinite integral, which makes it problematic in
quantitative work. Additionally, determining its actual peak position and FWHM
is made more difficult by the asymmetrical shape of the peak. In most cases, a
Gaussian broadening is applied on the Doniach-Sunjic peak shape, to account for
the experimental broadening.

In this thesis, Voigt and Doniach-Sunjic peak shapes have been used for XPS
spectra fitting.
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2.3.3.2 Background

All photoelectrons arriving on the detector without any energy loss, thus obeying
Equation 2.3, make the elastic peaks. By opposition, photoelectrons with a non-
quantified energy loss create the background signal.

Experimentally, properly differentiating the background from the peaks is far
from trivial, but is crucial for fine analysis, especially quantitative. Many back-
ground shapes are commonly used, none of which are physically exact, nor pretend
to be. To optimally fit the data, the goal is thus to choose the least wrong type of
background.

The background type chosen for our fits is the Shirley background. It was
designed to account for the difference in background height between the two sides
of the peak in a photoelectron spectrum[19]. This is a feature shared by all XPS
spectra: a stair-like shape of the general background, each new step appearing on
the higher BE side of a core-level peak. This can be observed in the Si 2p spectra
shown in Figure 2.7. This asymmetrical distribution is easily understandable: the
electrons of a given core-level lose energy through scattering events, appearing on
the higher BE side. To appear on the lower BE side, a gain of energy is required,
which is comparatively extremely rare. Ideally, each core level peak should possess
its own Shirley step, which is what we did in all the XPS fits presented in this
thesis, with identical parameters for all components fitted.

More specifically, we used a generalized Shirley background [20] whose shape is
given by

BGenShir (E) = Sh

∫ E

E0
I∗ (E ′) dE ′ + Sl

∫ E

E0
dE ′

∫ E′

E0
I∗ (E ′′) dE ′′

+ Sc

∫ E

E0
dE ′

∫ E′

E0
dE ′′

∫ E′′

E0
I∗ (E ′′′) dE ′′′

(2.16)

I∗(E) = I(E)− I (E0), with I(E) the sum of all peaks without background.
E0 is chosen on the low binding energy side of the peaks. We used an active approach
to peak modelling: the background is always assessed during the optimization of the
peak parameters, and not beforehand as is sometimes more traditionally done. This
was found to always lead to more accurate results [21]. In the case of high-intensity
backgrounds, we sometimes used a quadratic background in addition to the Shirley-
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step. While not based on any physical phenomena, quadratic backgrounds can be
useful to take into accounts Auger, plasmon lines or other peaks in the vicinity of
the core-level of interest, and has shown good results when used in combination
with a Shirley-step or Tougaard background [20].

The Tougaard background [22] is also commonly used to reproduce the stair-
like shape of the background, and is comparable to the Shirley-step background
in terms of accuracy. It is however more commonly used for large range XPS
measurements, and we choose not to use it here.

Various combinations of those backgrounds and of generalized and/or adapted
versions have been compared and combined [20, 21, 23, 24], but no generalization
can be made as to what is “the best” background shape, as it seems to vary from one
set of data to another. However a peak-specific background is always better than a
general one, and polynomial backgrounds are best to be avoided if not combined to
another type. All in all, the experimenter must keep in mind the limitations of the
peak shape and background used, and try their best to preserve the physics behind
the spectra.

More can be found in the literature about the use and misuse of curve fitting in
the analysis of core X-ray photoelectron spectroscopic data [25, 26].

2.3.3.3 ARPES data analysis

The analysis of ARPES data is mainly a question of image processing, with the
goal being to bring out the band structure of the studied material. Basic tech-
niques include Gaussian filtering and normalization of the spectra to compensate
asymmetries in the intensity (either induced by a non-constant background or by
matrix element effects). It is often fairly common to present second derivative im-
ages of ARPES spectra. Here we used in some cases the curvature method [27]
(which is actually a Laplacian treatment) to enhance the dispersive features in
ARPES spectra, which is an improvement on the second derivative method.

The tools used for ARPES analysis in this work are a combination of different
Igor macros collected on the different synchrotron beamlines we have been working
on, which were developed by Ryu Yukawa (Photon Factory), Polina Sheverdyaeva
(Elettra), Marcin Rosmus (Solaris), and Mathieu Silly (Soleil). These tools have
the advantage of being adapted to the way the ARPES data is saved and organized,
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which is often different from each beamline and acquisition mode.

2.3.4 XPS and ARPES experimental setup

2.3.4.1 The light source: from x-ray tube to synchrotron radiation

To obtain photoelectrons, it is necessary to have a photon source. Historically, the
first photon sources used for UPS were plasma discharge lamps. The principle is
to introduce a pressurised gas into a small volume, and ionize its molecules by ap-
plying an electrical discharge of several kV, creating a plasma. The de-excitation
of the atoms leads to emitted photons of strictly defined energies, which can then
be used in the photoemission process. Generally, noble gases are used, with He
being the most common. As different excited states can be reached, one element
can emit on different energies, with intensities depending on the transition proba-
bility. One specific energy (amongst the available ones) can then be selected by a
monochromator situated between the lamp and the sample.

To obtain x-rays, the conventional sources are x-ray tubes. Inside the tube is a
cathode emitting electrons which are accelerated towards an anode (Mg or Al). By
transmitting energy to the anode, core-level electrons are ejected. When outer-shell
electrons fill the vacancies, x-rays are emitted by fluorescence, with element-specific
energies. Those sources are still the most common for in-lab experiments, despite a
growing attraction for laser sources, making time-resolved measurements feasible.
Some of the experiments presented here, realized at the LPMS in Cergy, and on
Tempo, Soleil synchrotron, used these sources. But for most of the work shown
here, we used synchrotron radiation as a photon source.

The concept behind synchrotron radiation is that any charged particle (e.g. an
electron) will radiate electromagnetic waves when accelerated. The higher the ac-
celeration, the more energetic the emitted photons. When in the ultra-relativist
domain (� 0.99 c), the radiations are almost tangential to the trajectory, allow-
ing easier gathering, and are channelled through beamlines towards the endstations
where the experiments are taking place. Some important characteristics, already
stated previously, make synchrotron radiation very attractive as compared to con-
ventional light sources: the extremely high brightness of the excitation and high
energy resolution, the tunable photon energy, and the tunable light polarization.
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The greater the brightness, the more photons of a given wavelength and direction
are concentrated on a given area per unit of time, increasing the signal intensity
and signal to noise ratio, allowing to reach higher resolutions than with most in-lab
experiments, and with much shorter acquisition times. Energy resolution in syn-
chrotron is in the order of 10 meV compared to the ∼ 1 eV in x-ray lamps. The
acquisition time for XPS spectra can be easily reduced by a factor of 100 as well
due to the high intensity. The choice of photon energy and polarization allows for a
complete ARPES characterization and can lead to information of the depth origin
of a measured signal in XPS.

2.3.4.2 The hemispherical analyzer

Experimentally, the photoelectrons are gathered by a hemispherical analyzer, schemat-
ically represented in Figure 2.9. An array of electrostatic lenses located at the an-
alyzer entrance select photoelectrons arriving from a defined solid angle (angular
mode), or from a given region of the sample (spatial mode). This can be done be-
cause the trajectory of the electrons is dependent on their kinetic energy and only
the ones with a kinetic energy close to the pass energy Ep, following the radius of the
central trajectory between the electrodes, will hit the detector situated at the other
end. The energy window is determined by the following equation: δE = Ep

S
2R0

where S is the entrance slit width, R0 the radius of the analysis. The entrance slits
are mechanical slits used to optimize the ratio signal/resolution. A larger opening
means more photons, but less focused, inducing a loss of resolution. During a mea-
surement, the pass energy is set to a specific value, but a system of electrostatic
lenses placed before the entrance to the hemisphere is used to accelerate or retard
the photoelectrons, and their voltage are varied in order to scan over all possible
kinetic energies. For each particular energy, the number of electrons hitting the
detector are counted and saved, and later integrated into a spectrum. For core level
measurements, the angles can be also be integrated (core levels have no dispersion).
The detector in itself is usually constituted of multi-channel plates multiplying the
signal up to a factor 107, which is then measured on a two-dimensional CCD screen
(one dimension is for the energy, the second for the angles).

Using the information on both the energy and momentum of photoelectrons two
kinds of ARPES measurements are the most widespread: energy dispersion and
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Fig. 2.13 – Geometry of an ARPES experiment, showing the polar (θ), tilt
(φ) and azimuthal (ϕ) angles. Image from [28]

constant energy maps. To obtain energy dispersion plots, a collection of energy-
constant spectra are acquired with an angular acceptance range being physically
determined by a lens. Usually, the procedure needs to be repeated many times to
obtain a better signal/noise ratio.

The geometry of an ARPES experiment, with all the angles involved, are shown
in Figure 2.13. Rotation of the polar angle θ or of the tilt angle ϕ allow to translate
the measurement window in the reciprocal space (see Equation 2.5 for the relation-
ship between θ and the momentum), while the azimuthal angle φ is used to align
the crystal along the high-symmetry directions. All manipulators can rotate the
polar angle θ, but not always the azimuthal and tilt. For mechanical reasons, it is
very difficult to have all three rotations on a single manipulator, especially when it
needs to have a good thermal contact for low-temperature experiments.

To obtain constant energy maps (kx-ky spectrum), different techniques exist.
One consists of taking a collection of dispersion plots while rotating the sample
along the azimuthal angle. The resulting image is a portion of a disk. This kind of
measurement is sometimes called “pizza plots”, and was used on the VUV beamline
of Elettra synchrotron.

Another solution would be to rotate the sample along the polar axis. However,
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a procession of the light beam would occur if the sample was not perfectly aligned.
To remedy this issue, many experimental setups use deflectors to be able to map
the k-space without physically rotating the sample. Then, a collection of dispersion
plots is taken, with the deflector scanning over k-space. This method was used at
the Tempo beamline of Soleil synchrotron and UARPES of Solaris synchrotron. In
those last two methods, the angular range is determined by the lens selected, while
the energy range can be chosen freely.

Finally, another possibility is to make constant energy scans: kx-ky maps are
directly measured by the analyzer, which scans over the energies. This is faster, but
does not average over the detection channels of the analyzer as the previous meth-
ods did, and results in a more noisy signal with possible dead spots. Furthermore,
the energy range attainable is limited by the selected pass energy and is usually
smaller than with the previous methods.
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Chapter 3: A study on Cu2Si: a two-dimensional
Dirac nodal-loop system

3.1 Introduction to Cu2Si

3.1.1 Why Cu2Si?

Cu2Si is the first two-dimensional material in which Dirac nodal-loops (DNL) have
been experimentally evidenced, in a 2017 study by Feng et al. [1], were it was
synthesized on a Cu(111) substrate. Their work is in line with the topical issue:
do three-dimensional topological semimetals have counterparts in two-dimensional
materials? While graphene and the x-ene family among others proved good exam-
ples of 2D Dirac semimetals, the existence of 2D Dirac nodal-lines semimetals was
yet to be experimentally evidenced despite multiple predictions [2–8].

Since the discovery of DNLs in Cu2Si/Cu(111), the Cu2Si system attracted
further interest, and more interesting properties have been discovered by compu-
tational work, opening more possibilities for future applications. The presence of
DNLs in a system makes it a good candidate for high-frequency electronic applica-
tions due to the possible high-velocity charges carriers arising from the linear band
dispersion [1]. Additionally, their higher density of states near the DNLs compared
to Dirac cones materials would make them superior for such applications. Cu2Si is
predicted to be a promising candidate for nanoscale electrodes, surpassing graphene
[9], or could be used as anode material for lithium and sodium ion batteries [10].

The creation of magnetic moments on the monolayer following adsorption of
NOx and COx (x = 1, 2) gas molecules indicates good possibilities for the use of
Cu2Si as a discriminant gas sensor [11, 12]. Electroreduction is also envisaged [13].
The surface encapsulation of Cu2Si with graphene was recently achieved [14], rais-
ing new possibilities for the air-stability of the system.
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On more fundamental properties, it was shown by simulations that edge states
of Cu2Si could be magnetic, and that carrier doping in a nano-ribbon can induce
a transition between ferromagnetic and non-magnetic states [15]. The supercon-
ductive nature of free-standing Cu2Si has also been revealed, being an intrinsic
BCS-type superconductor with predicted superconducting temperature Tc being
∼4.1 K [16] or 1.54 K [17]. This Tc is however decreasing with increasing in-plane
strain, and superconductivity is expected to be suppressed at strains lower than the
one experienced by the Cu2Si monolayer when prepared on a Cu(111) or Si(111)
substrate (6.7% and 9.7% lattice mismatch respectively).

In the following section, we present the existing literature on Cu2Si, on which
we build for the next parts. In section 3.2, we study the impact of Pb deposition
on the electronic structure of Cu2Si/Cu(111). Then, in section 3.3, we characterize
Cu2Si grown on a Si(111) semiconductor substrate and explore how the substrate
interacts with the surface layer.

3.1.2 Predictions and first realization of Cu2Si

The Cu2Si system is already well present in the literature, and we will regroup below
the state of knowledge regarding its structural, growth, and electronic properties.

A Cu2Si monolayer forms a planar hexacoordinated sheet, composed of a honey-
comb Cu lattice and a triangular Si lattice, in which Si and Cu atoms are co-planar,
as shown in Figure 3.1. The theoretical lattice constants for the free-standing Cu2Si
monolayer are of a = b = 4.123 Å [18]. It belongs to the space group P63/mmc
No. 194. We note here that atomically flat (i.e. not buckled) monolayer are rather
rare in the field of 2D materials. First-principle calculations realized in 2015 by
L-M. Yang et al. [18] have confirmed that the flat Cu2Si monolayer is the global
minimum energy structure in 2D space. It is stabilized by the presence of covalent
bonds resulting from the direct overlap of orbitals, and possesses a strong chemical
bonding and high in-plane stiffness. The absence of any imaginary phonon modes
furthermore demonstrates the local structural stability of the monolayer. Interest-
ingly, despite claiming the prediction of a “new completely flat 2D hexacoordinated
structure”, the description of a Cu2Si surface silicide on Cu(111) can be found in
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Fig. 3.1 – Top and side view of a Cu2Si monolayer are shown. The orange
and blue spheres represent Cu and Si atoms respectively. The primitive
unit cell of the system is represented by a black lozenge. It has unit vectors
rotated 30° and

√
3 times larger than the bulk Cu(111).

previous work [19–24]. However, those experimental studies were approaching the
subject from an interface/surface alloy point of view, rather than from a 2D ma-
terial one, brought up to date more recently. These studies describe the existence
of a (

√
3 ×
√

3)R30°Cu2Si phase on Cu(111) obtained by decomposition of SiH4,
whose atomic structure might correspond to the one proposed by L - M. Yang et al.
[18] described above. A normal incidence X-ray standing wave (NIXSW) analysis
[22] demonstrated the atomic flatness of the structure (buckling < 0.07 Å), while
proposing an atomic model for the surface corresponding to Figure 3.1. Further
work [25] showed that the Cu2Si surface alloy exists in these phases with the Si ion
cores occupying FCC:HCP:Bridge sites with ratio 25:25:50 [25]. A schematic view
of these three sites is presented in Figure 3.2. It is however the work of Feng et al.
[1] that unraveled the special electronic properties of Cu2Si.

They demonstrated, based on combined theoretical calculations and angle-resolved
photoemission spectroscopy (ARPES), that the electronic structure of a Cu2Si
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Fig. 3.2 – The three different phases of monolayer Cu2Si on Cu(111), with
Si atoms occupying the FCC, HCP, and bridge sites. From Feng et al. [1],
sup. mat.

monolayer on a Cu(111) substrate displays two concentric nodal loops around the
Γ point, arising from the crossing of two hole-like bands (labelled α and β) and
one electron-like band (labelled γ) near the Fermi level. The γ band crosses the
α and β bands linearly in all directions without opening of energy gaps, forming
the DNL. The band structure of freestanding Cu2Si is shown in Figure 3.3, with
the orbital-contribution projection. It is found that the α and β bands are mainly
composed of Si px/py, Cu dxy, Cu dx2-y2 and Cu px/py orbitals, while the γ band
is mainly composed of Si pz and Cu pz, dxz and dyz orbitals. In the absence of
spin orbit coupling (SOC), these DNLs are found to be protected by a mirror re-
flection symmetry along the xy plane (Mz): the Mz parity of the orbitals forming
the band γ are opposite to the ones forming the α and β bands. The opposing Mz

parities indicate that the band γ cannot couple with the bands α and β, therefore
both Dirac nodal loops remain gapless. When the Mz mirror symmetry is broken,
two gapless Dirac points remain along the Γ−M and Γ−K directions, protected
by Mσ and C2 symmetry respectively. Time-reversal and inversion symmetries do
also protect these states. A complete description and discussion of the symmetries
involved here was given by Feng et al. [1]. In the presence of SOC, gaps ranging
from 5 meV to 15 meV are predicted to open. These gaps are rather small, due to
the weak intrinsic SOC strength in Cu2Si, and are not observed by ARPES within
the experimental resolution. The absence of folded bulk bands from the Cu(111)
substrate in ARPES also indicates a weak interaction between the substrate and
the Cu2Si monolayer, preserving to a large extent the properties expected from a
freestanding Cu2Si monolayer obtained from DFT calculations that do not include
any substrate. These results were confirmed in a following study aiming at capping
the Cu2Si/Cu(111) system by graphene [14].
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Fig. 3.3 – Orbital projected band structures of freestanding Cu2Si. The
three bands that cross the Fermi level are labelled as α, β and γ. From
Feng et al. [1], sup. mat.

3.1.3 Cu2Si on a Si(111) substrate

The successful synthesis of a 2D DNL semimetal is a milestone towards a better
understanding of the physical properties of such systems. For practical applications
however, being able to grow or transfer it on a non-conductive substrate, instead
of a metallic one, would be necessary. Based on the existing literature, it appears
that the growth of Cu on a Si(111) substrate can result in an hexagonal lattice
with Cu2Si surface stoichiometry, making Si(111) a substrate worth investigating
for the possible existence of DNLs in Cu2Si/Si(111). As these studies are 20 to 40
years old, they could obviously not adopt this approach at the time, nor compare
with the recently predicted properties of Cu2Si. We will describe here the state of
knowledge on this matter.

The deposition of ∼1 monolayer (ML) of Si on Cu(111) was found to result in
a superstructure [26], and was shown by Auger electron diffraction to form a pla-
nar geometry with sixfold symmetry [27]. The overlayer is discommensurate with
the Si substrate (i.e. neither commensurate nor incommensurate) and consists of
domains quasi-periodically ordered with a 5.55×5.55 periodicity, with a ±3° rota-
tion with respect to the Si(111) substrate [28–30]. In a study using X-ray standing
waves (XSW), Zegenhagen et al [31] proposed in 1992 a detailed atomic model of
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the surface, referred as the Cu2Si/Si(111) quasi-“5.55×5.55” surface reconstruction.
Its atomic model is presented in Figure 3.4, and was later confirmed by numerous
studies employing complementary techniques such as x-ray diffraction STM, XPS,
and ultra-violet photoelectron diffraction (UVPD) study [32–34]. Those studies also
confirmed the Cu2Si stoichiometry of the surface, CuSi and CuSi2 having been also
considered. They furthermore demonstrated that the Si atoms are co-planar with
substitutional Su Cu atoms, while the Cu2Si layer has a corrugation estimated to
0.27 Å (maximum height difference between Cu atoms occupying Su and H3 sites).
More recently, it was shown that a CuSi2 precursor phase would exist during the
formation of the topmost copper silicide monolayer, due to the yet incomplete sub-
stitution of Cu atoms by Si [35].

The atomic model, shown in Figure 3.4, consists of a surface tiled with the
Cu2Si/Si(111) quasi-“5.55×5.55” domains, lacking the long-range order of the free-
standing Cu2Si monolayer, or of Cu2Si/Cu(111). It worth remarking that in the
discommensurate phase the degree of local Si-Si back-bonding depends on the indi-
vidual sites. Using a He source, Neff et al. (2001) [36] performed Fermi surface and
band mapping measurements of the Cu2Si/Si(111) quasi-“5.55×5.55” surface, and
observed strong Umklapp bands features, especially in the second Brillouin zone,
arising from the different periodicity of the substrate and the bulk material.

3.1.4 Our plans for Cu2Si

While showing great promises and attracting a lot of new research, the use of Cu2Si
still faces numerous challenges. On a fundamental point of view, the manipula-
tion of the DNLs (shifts, opening, splitting) can be used to study topological phase
transitions between different types of Dirac semimetals, and possibly quantum-spin
hall insulators [38, 39]. One way to do so is by changing the symmetries of the
system, as they are strongly linked to the existence and preservation of the DNL.
We have also seen the DNLs could become gaped when intrinsic SOC is taken into
account. It has been shown that higher SOC could be induced in a 2D system
by heavy-element deposition [40], and experimentally demonstrated to successfully
open a gap in graphene’s Dirac cones [41, 42] and split bands [43]. Following this,
we present in section 3.2 our work on the impact of Pb deposition on the nodal-lines
of Cu2Si/Cu(111).
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Fig. 3.4 – Top: Schematic representation of the discommensurate Cu2Si/Si(111) quasi-
“5.55×5.55” surface, as described by Zegenhagen et al [31, 37]. Copper atoms are rep-
resented by orange spheres, silicon atoms by blue spheres. The Cu2Si layer replaces
the topmost layer of Si(111)-1x1 surface. The lattice parameter of this topmost Cu2Si
layer is larger by 9.7% compared to the Si(111), and the large lattice misfit leads to
a regular dislocation network, creating discommensurate domains, represented here by
the large hexagons of variable colours. Complete tiling of the surface requires three
types of twisted domains (±3° with respect to the substrate orientation), two of them
being rotationally equivalent (here the pink and orange hexagon). Bottom: Side view.
The left-hand side of the surface shows the topmost layer of the clean Si(111), while
the right-hand part is covered with Cu (orange sphere), showing the positioning of the
Cu2Si layer. The side view show the respective positions of the atoms: Cu atoms on Su

sites are co-planar with their Si neighbours and directly above the center of a Si-formed
hexagon, while Cu atoms on H3 sites lie higher (0.27 Å) [33] and are directly above the
previous Si atoms.
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We also discussed the literature treating of Cu2Si/Si(111), having in mind the
importance of non-conductive substrates. Building on this knowledge, we present
in section 3.3 our attempt at going further in the band structure characterization,
enabled by the use of synchrotron light allowing us to vary the incident photon
energies as well as light polarization. We aimed to determine if Dirac nodal lines
were present on Cu2Si/Si(111), whether gapless or not, as a gap opening could
be expected from the slight buckling of the layer [44]. Finding a suitable non-
conducting substrate would represent a leap towards practical applications.
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3.2 Deposition of Pb on Cu2Si/Cu(111)
In this section, we present angle-resolved photoelectron spectroscopy (ARPES)
and x-ray photoelectron spectroscopy (XPS) measurements obtained on the system
Pb/Cu2Si/Cu(111). We start by a characterization of the clean Cu(111) substrate,
followed by Cu2Si/Cu(111), and finally moving towards Pb/Cu2Si/Cu(111).

These results were obtained from different experiments. The clean Cu(111)
was studied at the UARPES beamline (Solaris synchrotron, Poland), and by He
lamp on Tempo beamline (Soleil synchrotron, France). Results from Cu2Si/Cu(111)
come from the VUV beamline (Elettra synchrotron, Italy), and from the ARPES
apparatus of the LPMS (Cergy University, France), where the growth process was
optimized. Finally, the results from Pb/Cu2Si/Cu(111) presented here come from
the VUV beamline (Elettra synchrotron, Italy), and from the RGBL-2 beamline
(Bessy synchrotron, Germany).

3.2.1 Characterization of a clean Cu(111) single crystal

3.2.1.1 Preparation of Cu(111)

Copper is a widely used substrate, commercially available in the form of a polished
single crystal with the desired surface orientation. Our Cu(111) crystal was bought
from “Surface preparation laboratory”. The preparation of a Cu(111) monocrystal
consists of cycles of ion (Ar+) sputtering, followed by annealing. From the vari-
ous setups we used, we observed that any ion gun voltage from 0.6 keV to 3 keV
produce a clean surface, with sputtering times ranging from 30 min to 1h at once.
A subsequent annealing of 15 min at 450°C allows for proper mobility of the Cu
atoms on the surface, and a slow decrease in temperature results in larger terraces.
One has to be careful not to exceed 500°C, above which carbon and sulfur start to
migrate from the bulk [45, 46].

3.2.1.2 XPS of Cu(111)

We used XPS to evaluate the Cu(111) cleanliness. In Figure 3.5a, an overview scan
taken with hv = 650 eV is presented. The peaks identified are Cu 3p (76 eV) and
Cu 2s (123 eV), as well as the valence band close to the Fermi energy. While no
other element is visible at first, one might be more cautious and focus on expected
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contaminants, such as oxygen or carbon. In Figure 3.5b is presented a zoom on the
energy range at which the C 1s peak should appear. To be more surface sensitive,
the spectrum was taken at hv = 334 eV, 50 eV above the binding energy of C 1s
(284 eV), which minimizes the photoelectron inelastic mean free path (IMFP). In
the absence of any feature emerging from the background noise, the Cu(111) is
deemed sufficiently clean.

3.2.1.3 ARPES of Cu(111)

We show in Figure 3.6 the positions of the high-symmetry points Γ, K, and M in
the reciprocal hexagonal lattice. The band structure of copper is well studied, from
early computational work [47] to state of the art ARPES [48, 49]. Its most preem-
inent feature is the presence of a parabolic Shockley surface state, originating from
the two-dimensional electron gas present at the surface resulting from the broken
translational symmetry, in a similar fashion to Au(111) or Ag(111). This Shockley
state, shown in Figure 3.7a and Figure 3.7b, is commonly used as a benchmark
for ARPES performance and resolution, and its observation and sharpness can be
used as a cleanliness indicator when core-level spectroscopy is not available. With
high-enough resolution, typically obtainable only from low-energy laser sources, a
Rashba spin-splitting can be observed [48].

In addition to this surface state, copper also presents many bulk bands. As
some of them are crossing the Fermi level, it is crucial for a proper comparison to
measure them on the clean substrate, before any element deposition. Figure 3.8
present wide-angle measurements of Cu(111) Fermi surface and of its band disper-
sion along the Γ−M direction. The first Brillouin zone of Cu(111) is represented
on Figure 3.8 (a) by an orange hexagon, with dimensions Γ −K = 1.642 Å-1 and
Γ −M = 1.423 Å-1. Additionally to the surface state (SS) band, two other bands
are observed, having a hexagonal symmetry and crossing the Fermi level close to
the Brillouin zone boundary, and are labelled D and E respectively. A cut along
M − Γ −M is presented in Figure 3.8 (b). In order to allow the deeper band to
be observed alongside the surface Shockley band, a logarithmic colour scale was
necessary. Three bands cross the Fermi level: the surface state (SS) at 0.2 Å-1, a
diffuse band (D) around 1 Å-1, and another one (E) crossing at 1.22 Å-1. Deeper in
energy, below 2 eV, bulk bands are observed.
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(a)

(b)

Fig. 3.5 – (a) XPS scan at 650 eV of a clean Cu(111) surface. The only
visible peaks are attributed to Cu core levels, and to the valence band near
the Fermi level. (b) Spectra taken at 330 eV on a clean Cu(111) surface.
The position of C 1s is marked by a blue dashed line. The absence of any
feature above the noise level indicates complete removal of adventitious
carbon.
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Fig. 3.6 – Schematic representation of the honeycomb reciprocal lattice
with its main high-symmetry points Γ, M and K. b1 and b2 are the lattice
reciprocal vectors.

(a) (b)

Fig. 3.7 – Measurements of the parabolic Shockley surface state of Cu(111),
around Γ. (a) Fermi surface measured at hv = 100 eV. (b) Band dispersion
along Γ at hv = 25 eV, showing the parabolic Shockley surface state.
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Fig. 3.8 – (a) Fermi surface of Cu(111) at hv = 100 eV, centered around
Γ. The first Brillouin zone is represented with an orange hexagon. The
Γ−M direction corresponds to kx and the Γ−K direction corresponds to
ky. Three bands are observed, labelled SS, D and E. (b) Band dispersion of
Cu(111) along Γ −M , at hv =75 eV. Three bands are crossing the Fermi
level. Their crossing is represented by a white dash on the right side.

When using a UV lamp as a photon source, He II (hv = 40.8 eV) was preferred
to He I (hv = 21.2 eV) despite its lower photon intensity, as He I is ill-suited to
measurements involving a Cu substrate. Indeed, as shown in Figure 3.9, when using
He I, “shadow” bulk bands are imaged by He I β instead of He I α, occasioning
a vertical shift of 1,87 eV (EHeIβ − EHeIα). This results in the Cu bulk bands
being duplicated close to -1 eV below the Fermi level, exactly in our energy zone of
interest. This phenomenon does not occur using He II, as no other spectral ray is
close in energy.

3.2.2 Growth process of Cu2Si and Pb evaporation

Once a clean Cu(111) single crystal is obtained by the procedure described above,
∼ 0.5 monolayer (ML) of Si is evaporated on top of it from a direct current source
(a power feed-trough that allows passing current into a piece of Si wafer), with Cu
kept at 250°C. The apparition of a (

√
3×
√

3)R30° surface reconstruction observed
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Fig. 3.9 – Cu(111) band dispersion measured with He I (hv = 21.2 eV).
On the left side are shown the bulk bands, much stronger in intensity
than the surface states. On the right is presented a spectrum focusing on
those surface states. The parabolic Shockley state is visible, as well as low-
dispersive features around -1 eV. These features originate from the bulk
bands imaged by He I β instead of He I α, occasioning a vertical shift of
1.87 eV (EHeIβ − EHeIα).

by low energy electron diffraction (LEED) (see Figure 3.10 (b)) is the sign of the
formation of Cu2Si. The evaporation of 1/3-1 ML of Pb on top of the Cu2Si leads
to additional LEED diffraction spots, as shown in Figure 3.10 (c). These spots are
aligned with the (1×1) spots and have a periodicity similar to a (4×4), which are
all represented on Figure 3.10 (d). These spots could also originates from a triple-
domain (4×1) periodicity, as it as been observed on In/Si(11) systems [50, 51].

Above 1 ML of Pb, the (
√

3×
√

3)R30° diffraction spots disappear and results
in the LEED pattern shown in Figure 3.10 (e). The pattern, akin to a (4×4) pe-
riodicity, shows however double diffraction spots. The formation of a Pb overlayer
on top of Cu(111) described by Meyers et al. [52] is identical to the one observed
here. It is described as an incommensurate Pb layer, with a lattice constant smaller
than that of the commensurate p(4×4) structure and decreasing with increased Pb
deposition. They observe it as appearing above 1 ML of Pb, with additional Pb
deposition leading to a bulk-like growth: in a layer-by-layer mode at T = 200 K
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(Franck van der Merwe) and in 3D islands at T > 300 K (Stranski-Krastanow). It is
uncertain if below 1ML the Pb overlayer is commensurate or not with the substrate.

The similarities between Pb growth on Cu(111) and Cu2Si/Cu(111) can be un-
derstood from the similar atomic arrangement of the top surface layer. We note
however that no new diffraction spots were observed by Meyer et al. below 1 ML of
Pb coverage, which is not our case here. Given the LEED observed, we hypothesize
that below 1 ML the Pb form discontinuous layers, leaving some areas uncovered.

3.2.3 XPS measurements on Cu2Si/Cu(111) before and af-
ter Pb deposition

XPS overviews of clean samples of Cu2Si/Cu(111) before and after Pb deposition
are shown in Figure 3.11, where all peaks measured belong to Cu, Si or Pb.

Higher-resolution spectra of the Si 2p core level are presented in Figure 3.12 and
Figure 3.13, before and after Pb deposition respectively. On Cu2Si/Cu(111) the Si
2p core level is measured for hv = 150 eV and hv = 250 eV. One main component
is observed, corresponding to surface Si. A small shoulder on the lower BE side
(-0.24 eV) of the main peak, increasing with photon energy, is attributed to excess
Si forming bulk islands on the surface, as already observed in the literature [1] (sup.
materials). Doniach-Sunjic peak shapes are used, with an FWHM of 30 meV and
Gaussian broadening in the range 60-90 meV, with a fixed ∆SO = 0.61 eV. The
asymmetry parameter is 0.07. This picture is coherent with the atomic model of
Cu2Si and with the previous observations of Feng et al. [1].

Once Pb is deposited on the surface, a new contribution appears, as shown in
Figure 3.13. The position of this new component, relative to the main peak, is
dependent on the Pb coverage, as shown in Figure 3.14. For the lower Pb coverage,
corresponding to the minimal Pb coverage where the Pb-induced superstructure is
observable by LEED (∼ 1/3 ML), the shoulder is lying close (0.2 eV) to the main
Si 2p peak. When increasing the Pb coverage, this shoulder shifts to 0.27 eV higher
binding energy. This is an example of chemical shift, where the electrons of Si atoms
are influenced by the presence of Pb atoms, which have a higher electronegativity.
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Fig. 3.10 – Step by step LEED images the Pb/Si/Cu(111) growth process.
On (a), a (1×1) spot of the clean Cu(111) crystal are circled in red. (b)
After Si evaporation, a (

√
3 ×
√

3)R30° surface reconstruction appears,
typical of the formation of Cu2Si/Cu(111), and is circled in blue. (c) After
Pb evaporation, new diffraction spots appear, circled in green. These spots
are aligned with the (1×1) spots and have a periodicity similar to a (4×4)
superstructure with missing spots, or to a triple-domain (4×1) periodicity.
(d) The LEED image in (c) is entirely mapped with the superposition of
(1×1), (

√
3 ×
√

3)R30°, and (4×4) with missing spots. (e) If more than 1
ML of Pb is deposition, the (

√
3×
√

3)R30° spots disappear and a double
spot appears in the (4×4).
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Fig. 3.11 – XPS overviews of Cu2Si/Cu(111) before and after Pb deposi-
tion. All features observed are labelled, and belong either to Cu, Si or Pb,
validating the cleanliness of the surface.

The “high coverage” presented in the graph corresponds to the optimized coverage
determined by LEED (< 1 ML), used for all the data presented here. The position
of the Pb-induced Si 2p component can be used as a relative Pb calibration tool,
ensuring a better reproducibility of experiments for different samples.

In Figure 3.13b the fits of the Si 2p core level are shown for hv = 150 eV and hv
= 250 eV. The parameters used are similar to the ones used before Pb deposition.
We find three different contributions. The main doublet, peak 1, originates from the
surface Si forming the Cu2Si monolayer, and peak 3 is attributed to bulk Si forming
3D islands on the surface, as previously already observed before Pb deposition.
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Fig. 3.12 – Si 2p core level of Cu2Si/Cu(111) for hv = 150 eV and hv = 250
eV. One main component is observed, corresponding to surface Si. A small
shoulder on the lower BE side, increasing with photon energy, is attributed
to excess Si forming bulk islands on the surface.

The new contribution, peak 2, thus originates from Si bonding with Pb atoms.
It is located 0.44 eV higher in binding energy than the main contribution. This
contribution is attributed to Si atoms interacting with the Pb deposited atoms. As
the photon energy increase, becoming less surface-sensitive, this new contribution
increases in intensity. This signifies that the Si atoms emitting this signal are not
on the topmost layer of the system. In other words, this means that the Pb atoms
are above the Si atoms, and do not migrate below the Cu2Si monolayer.

In Figure 3.15 we present the Cu 3p core level of Cu2Si/Cu(111), for hv = 123
eV (most surface sensitive) and hv = 223 eV (more bulk sensitive). In both cases,
one doublet with a branching ratio of 0.5 and a ∆SO of 2.38 eV leads to a good fit.
While at least two contributions are expected (bulk Cu and surface Cu), they are
not resolved here, possibly due to the large full width at half maximum (FWHM)
(∼2 eV) of the Cu 3p peaks, and to the high background surrounding the core level
signal for lower photon energies. The same Cu 3p core level is measured after Pb
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(a)

(b)

Fig. 3.13 – Si 2p core level of Cu2Si/Cu(111) after Pb deposition (≈ 1 ML).
(a) show the superposition of the core level measured at hv = 150 eV and
hv = 250 eV, the former one being more surface sensitive and the latter one
more bulk sensitive. Compared to before Pb deposition, a new contribution
is observed, marked by an arrow. (b) and (c) show the fits of these spectra.
Peak 1 corresponds to the surface Si forming the Cu2Si monolayer, peak
2 is the new contribution originating from Si bonding with Pb atoms, and
peak 3 is attributed to bulk Si forming islands on the surface.
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Fig. 3.14 – Evolution of the Si 2p core level for two Pb coverage. Here, “low
coverage” corresponds to the minimal Pb coverage where the Pb-induced
superstructure is observable by LEED, while “high coverage” corresponds
to the optimized coverage determined by LEED (≈ 1 ML), used for all the
data presented here. A shift of +0.27 eV in the Pb-induced XPS component
is observed between the two coverages, with the higher binding energy
corresponding to the higher Pb deposition.

deposition, and shown in Figure 3.16. Using the same fitting parameters as above,
except for the backgrounds, we obtain similar fits. No new contribution is observed
on the surface or as bulk that could be attributable to Pb deposition. This leaves
two possibilities: either the Pb atoms do not bond significantly with Cu atoms or
the contribution of Cu atoms being influenced by Pb are not resolved from the bulk
Cu signal.

Two Pb core levels: Pb 4f and Pb 5d, are presented in Figure 3.17. Each
core level is measured for two photon energies, with the lowest one being the more
surface sensitive. In all fits, Doniach-Sunjic peaks were used, as is usual for Pb,
with Shirley-steps for the background. For Pb 4f, we found a ∆SO of 4.86 eV, and
used an FWHM of 0.31 eV with 0.15 eV of Gaussian broadening. The asymmetry
parameter is 0.084. For Pb 5d, we found a ∆SO of 2.62 eV, and used an FWHM
of 0.20 eV with 0.14 eV of Gaussian broadening. The asymmetry parameter is
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Fig. 3.15 – Cu 3p core level of Cu2Si/Cu(111) for hv = 123 eV and hv =
223 eV. One doublet is sufficient for fitting the spectrum.

Fig. 3.16 – Cu 3p core level of Cu2Si/Cu(111) + Pb, for hv = 123 eV and
hv = 223 eV. No new contribution imputable to Pb is observed.
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0.067. We note that in some cases, the branching ratio had to be lowered below
the expected 0.75 value to match the spectrum (branching ratio of 0.67 for Pb 4f
with hv = 300 eV, and of 0.55 for Pb 5d with hv = 90 eV). In both cases, one
doublet is sufficient to obtain a good fit, for both energies. The absence of any
bulk-like contribution shows that Pb does not form islands on the surface. This is
in good agreement with the proposed growth model where Pb forms first a 2D layer,
given that Pb coverage is < 1 ML. As seen above, Pb deposition induces a clear
change in the Si 2p XPS spectra, implying some level of interaction between the
two elements. As no new contribution is observed in the Cu 3p core levels after Pb
deposition, and only one contribution is observed on the Pb core-level spectra, we
conclude that Pb atoms evaporated stay on top of the surface and interact with Si
atoms only. From the LEED patterns observed and according to previous literature
[52], we discussed above the possibility of the Pb overlayer being discommensurate
with the substrate, although close to a p(4×4) reconstruction. However, from the
XPS only, the discommensuration is not visible, as all Pb atoms appear to share
an identical chemical environment. It is possible that below 1ML of Pb (which is
our case here), the Pb overlayer is still commensurate with Cu2Si. We show in
Figure 3.18 the atomic model of Cu2Si, with the (1×1), (

√
3×
√

3)R30° and (4×4)
unit cells represented. We provide an illustration of a possible position for Pb
atoms, where all Pb atoms have a similar chemical environment. The possibility
of a triple domain (4×1) reconstruction has also been mentioned, but no fitting
atomic model has been found. In any cases, STM measurements would be needed
to gain a deeper understanding of the atomic structure of the surface.

3.2.4 ARPES measurements on Cu2Si/Cu(111) before and
after Pb deposition

3.2.4.1 ARPES measurements on Cu2Si/Cu(111)

The band structure of Cu2Si/Cu(111) along the Γ −M direction is shown in Fig-
ure 3.19. In total, three bands are observed: two hole-like bands labelled α and β,
seen at hv = 41 eV, and a electron-like band labelled γ seen at hv = 60 eV. The
γ band crosses the α and β bands around -0.9 eV and -0.4 eV respectively, and all
the bands appear continuous (no gap), with a quasi-linear dispersion. Their Fermi
vectors were measured as follows: α band: 0.35±0.02 Å-1, β band: 0.48±0.02 Å-1,
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Fig. 3.17 – Pb 4f and Pb 5d core levels of Cu2Si/Cu(111) + Pb, for different
photon energies. The lowest energies are more sensitive to the surface. Only
one contribution is observed in all cases.

and γ band: 0.65±0.05 Å-1. The γ band being more diffuse than the others, an
exact determination of its position is more difficult, and the curvature method can
induce some shifts in the scale, the error in its position is thus larger. A schematic
representation of those three bands is shown in Figure 3.19 (e), and can be com-
pared to the DFT calculation of Feng et al. obtained for the freestanding Cu2Si
monolayer [1], shown in Figure 3.19 (f).

The main conclusion is that the ARPES measurements are in good agreement
with the band structure predicted for the freestanding Cu2Si monolayer, with an
upward shift in the Fermi level (the band crossings lie 0.3 eV below the predictions).
The presence of the two concentric Dirac nodal loops centred around Γ appear to
be present in the experimental system by confronting the ARPES measurements.
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Fig. 3.18 – Atomic model of Cu2Si, with the (1×1), (
√

3 ×
√

3)R30° and
(4×4) unit cells represented. We provide an illustration of a possible posi-
tion for Pb atoms, where all Pb atoms have a similar chemical environment.

These results match those obtained from the two previous experimental studies
involving Cu2Si [1, 14], confirming the reproducibility of the ARPES measurements
of Cu2Si grown on a Cu(111) substrate.

3.2.4.2 ARPES measurements on Pb/Cu2Si/Cu(111)

We are now interested in the effect of Pb evaporation on top of Cu2Si/Cu(111).
As described above, a superstructure is observed by LEED, corresponding to the
formation of an incommensurate Pb overlayer. The diffraction spots of Cu2Si re-
main visible, implying that the crystalline periodicity of the monolayer is conserved.
We want to determine if the bands observed above (α, β and γ) are still present,
if they still cross (i.e. if DNLs are still present), and if different features are observed.

Constant energy ARPES spectra (kx-ky maps) measured with hv = 30 eV are
shown in Figure 3.20, and their curvature image in Figure 3.21. Three bands are
observed, labelled as α, α′ and β. The α and β bands are similar to the ones
observed on Cu2Si/Cu(111), while the α′ is new. Its dispersion follows the one of
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Fig. 3.19 – ARPES on Cu2Si/Cu(111), before any Pb deposition, along the
Γ −M direction with LV-polarized light, centered around Γ. (a) and (b)
show the spectrum measured with hv = 41 eV and its curvature image. Two
hole-like bands are identified on the left-hand side of the images, labelled
α and β. A third band (electron-like) labelled γ is faintly distinguishable.
It is better seen on (c) where the same region is measured with hv = 60
eV, and on (d), which shows the curvature of (c). (e) shows schematically
the three bands observed. These are in good agreement with the DFT
calculations for the free-standing Cu2Si shown in (f) (from [1])
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the α band, and its shape is also hexagonal, hence its denomination of α′. These
bands are schematically represented in Figure 3.21, along with the DFT prediction
of the Fermi surface for the freestanding Cu2Si monolayer, as well as the size of its
Brillouin zone and the position of the high symmetry points M and K.

In order to better observe the dispersion of these bands, E-kx cuts are shown in
Figure 3.22 (Γ-M direction) and Figure 3.23 (Γ-K direction). Figure 3.22 (a) is a
cut taken at hv = 30 eV, as the kx-ky maps shown before, along the Γ-M direction.
Here again, the bands α, α′ and β are identified and labelled, and better seen in
(b) which is the curvature image of (a). The similarity in the dispersion of α and
α′ is evident here. While the electron-like band γ is perceived, its intensity is weak
at this photon energy. Figure 3.22 (c) and (d) is measured at hv = 60 eV. Here,
only the γ band is observed. From the curvature images, no gap in the bands is ob-
served within our experimental resolution.A schematic representation of the bands
observed is presented in Figure 3.22 (e). To complete the picture, Figure 3.23 shows
E-kx cuts along the Γ-K direction, with hv = 30 eV. In this direction, the β band
is not visible, and only α and α′ are identified.

Further experiments allowed us to measure farther into the reciprocal space.
Constant energy spectra (kx-ky maps) are presented in Figure 3.24, reaching up
to the second Brillouin zone (2BZ). For better visualization, the first and second
Brillouin zones (1BZ and 2BZ) of Cu2Si are represented as well as the first Brillouin
zone of Cu(111),

√
3 times larger and rotated 30°. The K point of Cu(111) 1BZ thus

corresponds to the centre of Cu2Si 2BZ (Γ′). Compared to the previous kx-ky maps
showed, two more bands are observed. One of them, that we label δ, is hexagonal,
rotated 30° compared to the α band, and curves when going deeper in energy. Its
dispersion is hole-like, meaning that the further down we go in energy, the more
distant from Γ it will be, ensuring that it is not confused with the γ band, which
disperses in the opposite direction. We attribute its origin to the Pb layer. Another
band, labeled Cubulk, is very intense and lies after the 1BZ of Cu2Si. This band
originates the Cu(111) bulk and corresponds well to the one described in subsec-
tion 3.2.1. We note here that the α′ band is barely visible due to a lower resolution
compared to Figure 3.20, and to the different photon energy used. A schematic
representation of all the bands originating from the system Pb/Cu2Si observed at
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Fig. 3.20 – Constant energy maps of Pb/Cu2Si/Cu(111) at 30 eV, LV po-
larisation, 20 K. Eight constant energy maps are shown, ranging from the
Fermi level to -1.4 eV below it. In the bottom right corner is shown the
DFT calculation of the Fermi surface for the freestanding Cu2Si monolayer,
as well as the size of its Brillouin zone and the position of the high sym-
metry points M and K. Three bands are observed, which are drawn over
the central image, and labelled as α, α′ and β. The bands α and α′ are
hexagonal, while β is a hexagram with rounded corners. Curvature images
of these spectra are shown in Figure 3.21
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Fig. 3.21 – Curvature images of the constant energy maps shown in Fig-
ure 3.20. A schematic representation of the three bands observed is added.
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Fig. 3.22 – ARPES 2D cuts along the M-Γ-M direction in of
Pb/Cu2Si/Cu(111). (a) and (b) show the measured spectra with hv =
30 eV and its curvature image respectively. The images are centred on Γ.
Three bands are observed, labelled α, α′ and β by identification with the
band structure before Pb deposition. (c) and (d) show the measured spec-
tra with hv = 60 eV and its curvature image respectively. Only one band,
γ, is observed here. (e) represents schematically all the bands observed.
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Fig. 3.23 – ARPES 2D cuts along K-Γ-K direction in of Pb/Cu2Si/Cu(111).
In this direction, only the α and α′ bands are visible.

the Fermi surface is shown in Figure 3.25.

Two E-kx cuts are labelled in Figure 3.24: both along the Γ-M direction, “cut 1”
is in Cu2Si 2BZ, while “cut 2” is in Cu2Si 1BZ. The resulting images are shown in
Figure 3.26. Cut 1 is centred on the M high symmetry point, allowing us to see the
α and β bands entirely. The Cu(111) bulk band is here labelled as ε. Being close
to the K point of Cu(111), where Cu does never have states, allows for an increase
in the signal/noise ratio near Γ′ compared to measurements near Γ in the 1BZ. The
high intensity of α and β bands makes it clear that they are not gaped. In the
second picture (cut 2), the signal is not as good but the bands are also visible. At
this photon energy, the γ band is barely visible and is discernible almost only in
the lower binding energies.

The Fermi vectors of the bands observed are regrouped in Table 3.1, measured
in the Γ-M and Γ-K directions. By comparison to before Pb deposition, the Fermi
vectors of the hole-like bands α and β are smaller, while the Fermi vector of the
electron-like band γ is larger. This indicates a rigid shift of the Fermi level towards
higher binding energy. The Cu2Si layer thus transfers charges to the Pb layer. If we
look at the position of the band crossing, the same shift is observed. The crossing
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Fig. 3.24 – Constant energy maps of Pb/Cu2Si/Cu(111) measured with hv
= 45 eV and at T° = 40 K. (a) shows the Fermi surface. The first and
second Brillouin zones (1BZ and 2BZ) of Cu2Si are represented by blue
hexagons, with the high symmetry points Γ, M and K labelled in white.
The first Brillouin zone of Cu(111) is represented by an orange hexagon.
(b) shows a constant-energy cut 0.8 eV below the Fermi level. Two new
bands are labelled: δ, originating from the Pb layer, and Cubulk. (c) shows
a constant-energy cut 1.4 eV below the Fermi level. Two cuts are labelled,
the resulting images are displayed in Figure 3.26

Fig. 3.25 – Schematic representation of all bands observed on the Fermi
surface as shown in Figure 3.24
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Fig. 3.26 – E-kx cuts along the Γ-M direction as shown in Figure 3.24. (a)
is centered on M, and (b) on Γ.

of the γ band with the α and β bands takes place around -1.2 eV and -0.65 eV
respectively. This is a change in the binding energy of 0.25-0.3 eV compared to
before Pb deposition. The γ band also crosses the new α′ band around - 0.9 eV.

Fermi vectors, in Å-1

Band name Γ-M direction Γ-K direction
α 0.23 0.23
α′ 0.35 0.39
β 0.40 -
γ 0.69 0.68
δ 0.75 0.68

Table 3.1 – Fermi vectors of all bands from Pb/Cu2Si/Cu(111). Precision is given
at ± 0.02 Å-1.

The splitting of the α band into α and α′ most likely originates from the Pb
deposition, as such phenomenon has been observed in graphene [41–43]. According
to calculations from Brey et al. [40] on Pb deposition on graphene, two different
kinds of SOC can be induced. A periodic and commensurate Pb atoms disposition
should induce spin-conserving intrinsic-like SOC, whereas a random distribution
of Pb adatoms should result in a spin-flipping Rashba-like SOC. In both cases,
the intensity of the induced SOC is expected to be proportional to the amount
of Pb deposited. In our system, the Pb sheet is crystalline and appears to be
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commensurate with Cu2Si for a Pb coverage below 1 ML. One question naturally
arises: what is the spin polarization of the α and α′ bands?

We tried to answer this question by performing Spin-ARPES measurements
on the RGBL-2 beamline at Bessy synchrotron, equipped with a Mott detector.
Figure 3.27 shows the resulting measurements. The spin component of the photo-
electrons can only be measured along a constant-momentum line. To understand
better where in the reciprocal space this measure was taken, Figure 3.27 (a) shows
the E-kx position where the classical ARPES was measured. This cut is shown in
(b). Three bands, the α, α′ and β are visible. At this position, the spin polar-
ization of the bands was measured along a constant-momentum line, around 0.4
Å-1, as represented on the image. The resulting spin measurements are shown in
Figure 3.27 (c) and (d), for the in-plane and out-of-plane spin components respec-
tively, with a zoom-in on the surface bands in (e) and (f). While the signal for the
bulk bands (below -2 eV) is reasonable, the one for the surface bands (above -2 eV),
in which we are interested here, is of low-intensity and noisy: the bands observed
in ARPES cannot be distinguished here, even less their possible spin-polarization.
The difference between spin up and spin down is plotted alongside each graph,
and no distinctive feature is observed within our experimental resolution, despite
acquisition times of several hours.



106 Chapter 3. A study on Cu2Si

Fig. 3.27 – Spin-ARPES on Pb/Cu2Si/Cu(111) split bands.(a) and (b) show
where the constant-momentum line for spin measurement was taken. (c)
and (d) are the resulting spin spectrum, measured at hv = 30 eV, in the
in-plane and out of plane directions respectively.
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3.2.5 Conclusion

We have successfully synthesized a Cu2Si monolayer on a Cu(111) substrate, with
XPS and ARPES results in agreement with the few previous experimental works on
this system [1, 14]. ARPES measurements especially confirmed the presence of two
concentric Dirac nodal loops centred around Γ, and the close similarity between the
band structure of the experimental system and the predictions for the freestanding
Cu2Si monolayer.

We then took interest in the effects of Pb deposition of Cu2Si/Cu(111), as a
heavy element can induce SO splitting in 2D materials [40, 41, 43]. The LEED
pattern would correspond to a (4×4) periodicity, or to a triple domain (4×1). It
would be interesting to perform STM experiments on this system, to determine
more accurately the atomic organisation of the Pb atoms. The XPS found that
the Pb atoms adsorbed on top of the Cu2Si monolayer, and interacted only with
Si atoms, with a peak shift in a Si 2p component dependent on the amount of
Pb deposited. ARPES measurements showed the preservation of the band struc-
ture of Cu2Si, with the addition of a Pb band, and more remarkably of a split of
one of the Cu2Si band, characteristic of an increase of SO coupling in the system.
Spin-resolved measurements however were inconclusive and failed to provide more
information on the properties of this SO increase, due to a too poor signal/noise
ratio. This could be attempted again on a surface of higher quality and freshly
prepared, with sufficient acquisition time. We underline that the DNLs and the
linear dispersion of the bands are preserved and that no gap was detected within
our experimental resolution, indicating strong robustness of the nodal lines: neither
the induced SO coupling nor the symmetry breaking at the surface was sufficient to
gap them. This would prove useful for applications where Cu2Si monolayers might
not be as pristine as in lab conditions. This would however require the growth or
transfer onto a non-conductive substrate.

In this optic, we focus our attention in the following section on the study of
the growth of Cu2Si on a Si(111) substrate and in its characterization by XPS and
ARPES.
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3.3 Of the influence of a semiconducting substrate:
Cu2Si/Si(111)

We present in this section our work on the characterization of the Cu2Si/Si(111)
(“5.55×5.55”) surface reconstruction by ARPES, XPS and DFT calculations. This
work has been the subject of a publication [53], from which part of the information
presented here is adapted.

3.3.1 Cu2Si/Si(111): sample preparation

Clean Si(111) surfaces, showing a (7×7) surface reconstruction, were prepared by
flashing the sample to 1150-1200°C and annealing with reducing the temperature
from 850°C to 600°C over the course of 5 minutes, under UHV. An evaporator was
prepared using a tungsten filament and a copper wire (99.999% purity) as a source
of Cu atoms. The deposition rate was evaluated at 0.5 Å.min−1 by the means
of a quartz micro-balance. This corresponds to ∼ 0.2ML.min−1 as one monolayer
(ML) of Cu(111) = 2.6 Å. 1 ML was deposited on the Si substrate held at 630°C
and annealed at the same temperature for 2 minutes after deposition. As for the
Si(111) (7×7), the Cu2Si incommensurate (“5.55×5.55”) surface reconstruction was
checked by low energy electron diffraction (LEED) , as shown in Figure 3.28, and
reproduces accurately what is expected [31, 33, 36]. It is interesting to note that it
is possible to recover the Si(111) (7×7) with a flashing procedure, one sample can
thus be used or “refreshed" multiple times.

Two samples were prepared following this procedure: the first cut along the
Si(111) Γ-M direction and the second cut along the Si(111) Γ-K direction. In the
following, the samples will be referred to by their cut orientation.

3.3.2 ARPES characterization

All ARPES measurements presented in this section were taken at the beamline BL-
2A MUSASHI of Photon Factory, KEK, Japan. Measurements of angle-resolved
photoemission spectroscopy were performed at 20 K, and XPS overview showed no
other elements than Si and Cu.

Figure 3.29 (a) shows the photoemission Fermi surface map of the Cu2Si surface,
taken at a photon energy of 70 eV and with linear-horizontal (LH) polarization.
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Fig. 3.28 – LEED images. a) Si(111) 7×7 reconstruction b) and c) Cu2Si
“5.55×5.55” reconstruction for electron energy of 46 eV and 117 eV. The
white arrows indicates the position of one of the six first-order Si(111) spots

These parameters were experimentally determined as the optimal ones for a high
resolution of the electronic bands. Contours of the Fermi surface are composed of
a hexagon, exhibiting large photoemission intensity, and lower intensity structures.
The photoemission bands are composed of the surface bands and their Umklapp
scattering replicas associated with the quasi-“5.55×5.55” periodicity. The map of
the Fermi surface is reproduced by taking into account two types of Fermi surfaces
(hexagonal and flower-shaped) with ±3° rotations and by tiling with the Umklapp
scattering vectors, as shown in Figure 3.29 (b-d). We note that the hexagonal and
flower-shaped Fermi surfaces match with the energy contours of the α and β bands
of the Cu2Si layer [1, 18]. The tiling of the hexagonal (α) band is consistent with the
previous band-mapping of the Si(111)quasi-“5×5”-Cu surface [36]. The observation
and subsequent tiling of the β band is a novelty.

The electronic band structure was also measured along two directions in the
reciprocal space: Γ-K and Γ-M of the Si(111) 1×1 Brillouin zone surface. The
results are shown in Figure 3.30, using 70 eV LH-polarized photons, along with the
curvature image of both spectra. The presence of bands crossing the Fermi level
indicates that the surface is metallic.

On both spectra, one can recognize the Si(111) bulk bands [54, 55] around the Γ
point. The bulk bands are composed of many sub-bands that are generated due to
the quantum confinement by the narrow space charge layer at the surface of Si [56].
The white dotted line in the figures traces the edge of the bulk bands and, within
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Fig. 3.29 – Study of the Fermi surface of Cu2Si. Top left: Constant energy
contour map measured using 70 eV linear horizontal polarized photons at
the Fermi level. Two bands, one hexagonal (α) and one flower-shaped (β),
are observed, as well as lighter patterns arising from Umklapp scattering.
Top right: Schematic representation of the hexagonal α band, in green,
and its Umklapp tiling, in black. The Umklapp vectors, by which the
α band is translated, are represented by the arrows centred on Γ, and
the Si(111) Brillouin zone is represented by the dashed hexagon. Bottom
left: Schematic representation of the flower-shaped β band, in red, and
its Umklapp tiling, in black. Bottom right: Superposition of the three
precedent images, creating the complete quasi-“5×5” Umklapp scattering
of the Fermi surface.
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the bulk bandgap, one can identify dispersion curves of the α band that crosses
the Fermi level (EF ). The Fermi vector of the α band along the Γ-M direction is
0.42 Å-1, which is similar to the previously reported value [36], and 0.48 Å-1 along
the Γ-K direction. The metallic β band is also identified for the first time (it was
not resolved in the previous studies), and is better seen in the Γ-K direction. Its
Fermi vectors are measured as 0.65 Å-1 along the Γ-M direction, and 0.54 Å-1 along
the Γ-K direction. The Fermi vectors are given within a ±0.02 Å-1 error. Other
bands, indicated by arrows in Figure 3.30, correspond to replica bands by the quasi-
“5.55×5.55” Umklapp scattering of the α and β bands. We confirm the observation
of no other band at the Fermi level for different photon energy (hv = 35, 40, 50, 60,
80, 100 and 105 eV), and with LH and LV polarized light, which are not shown here.

The α and β bands observed in the present research are hole-like and also have
similar dispersion curves (Fermi surfaces) to those of the α and β bands in the
work of Feng et al. [1], we thus find it natural to equate them. A comparison
between Fermi vectors for three different systems is presented in Table 3.2. Taking
parameters of the freestanding Cu2Si as a reference, the wave vectors show opposite
shifts between the Cu and Si substrates. The kF values become smaller on Cu(111)
but larger on Si(111), indicating a lower and higher shift in the energy of the α and
β bands, respectively. In the case of Cu(111), the substrate transfers charges to the
monolayer, while it is the opposite with Si(111).

Concerning the γ band in the free-standing Cu2Si layer, it was not observed
under the present experimental conditions at the Fermi level for the Cu2Si/Si(111)
quasi-“5.55×5.55” surface, at the difference of the α and β bands. We infer that
this difference is due to the orbital symmetry.

Indeed, as discussed earlier, the α and β bands have the mixed Si px/py and
Cu px/py characters. On the other hand, the γ band originates from Si pz and
Cu pz orbitals [1]. Looking at the orbitals occupation in space, this means that in
the surface layer the α and β bands distribute in-plane, while the γ band extends
out-of-plane. It can then be expected that the pz states in the Cu2Si layer make
interactions with Si dangling-bond (pz) states of the Si(111) substrate, resulting in
the formation of the bonding-states. This picture is consistent with the structure
model of the Cu2Si/Si(111) (“5.55×5.55”) surface presented in Figure 3.4. In order
to verify this hypothesis, DFT calculations were made on the Cu2Si/Si(111) system.
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(a) (b)

Fig. 3.30 – Photoelectron dispersion plot of Cu2Si monolayer on a Si(111)
substrate along the Γ-K (a) and Γ-M (b) directions, using 70 eV LH-
polarized photons. The white dotted line represents the projected bulk
states of Si(111)[54, 55]: everything above it originates from the Cu2Si
monolayer. Two metallic bands are observed, labelled as α and β, as well
as Umklapp replica bands denoted by black arrows. Curvature images of
both spectra are presented for better visualization of the main bands’ posi-
tions. The thinner features, such as Umklapp bands, might better be seen
on the original spectra.

Direction band
Free-standing

Cu2Si

Cu2Si

Cu(111)

Cu2Si

Si(111)

α 0.37 0.23 0.48

Γ-K β 0.39 0.27 0.54

α 0.34 0.21 0.42

Γ-M β 0.50 0.31 0.65

Table 3.2 – Fermi vectors kF in the three systems: free-standing Cu2Si,
Cu2Si/Cu(111) and Cu2Si/Si(111), for the bands α and β, along the Γ-K and Γ-M
directions. The unit is Å-1. Values of the free-standing layer are obtained from the
DFT calculation, while those of the Cu2Si/Cu(111) and Cu2Si/Si(111) are exper-
imentally determined, with accuracy of ±0.02 Å-1. The values for Cu2Si/Cu(111)
are comparable to the ones already published [1].
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3.3.3 DFT calculations on Cu2Si/Si(111)

To understand the differences between the band structure observed and the one pre-
dicted for free-standing Cu2Si, first-principles calculations taking into account the
substrate were realized. These simulations are the work of H.-T. Jeng (National
Tsing-Hua University and Academia Sinica, Taiwan), C.-H. Chen and A. Huang
(National Tsing-Hua University, Taiwan)

Those first-principles calculations were performed using the projected augmented
wave method (PAW) [57, 58] as implemented in the Vienna Ab initio Simulation
Package (VASP) [59–62] based on density functional theory (DFT) with the Perdew-
Burke-Ernzerhof (PBE) type of generalized gradient approximation (GGA). A 12
× 12 × 1 Monkhorst-Pack k-mesh with a cutoff energy of 400 eV is used in the
self-consistent field calculations. The geometry of all the systems are optimized
with the total energies converged within 10-4 eV. To study the substrate effect in
the Cu2Si/Si(111) systems, we put Cu2Si 1x1 monolayer on top of a 12-layer Si 1x1
substrate with the Cu2Si lattice constant of 4.09 Å.

In Figure 3.31, the calculated band structures of a Cu2Si monolayer are pre-
sented, for the freestanding layer and for the layer grown on a Si(111) substrate.
For the free-standing Cu2Si, the band structure is consistent with the previous re-
port [1]. Three metallic bands are labelled: two hole-like bands, α+ and β+, and
one electron-like band, γ−, at the Γ point. The bands cross each other in regions
with linear dispersion and generate two loops of the nodal lines [1]. Wave functions
of the α+ and β+ bands have even-parity, while that of the γ− band has odd-parity
with respect to the mirror symmetry Mz. On the Si substrate, the discommensu-
rate Cu2Si/Si(111)-(“5.55×5.55”) reconstruction was modelled by a commensurate
structure with similar atomic structure parameters. Despite its simplicity, the model
is sufficient to capture electronic change coming from the back-bond formation be-
tween the overlayer and the substrate as observed by ARPES. The band structure
for different relative positions of the Cu2Si monolayer with respect to the Si(111)
substrate were also tried, leading to results in poorer agreement with the ARPES
experimental results. As shown in Figure 3.31 (b), the α and β bands remain al-
most unchanged, while the γ band changes significantly. Furthermore, comparing
Figure 3.31 (a) and (b) (free-standing and with Si substrate respectively), one can
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recognize additional bands around K point at binding energy of 1-2 eV in (b), as
observed by ARPES and shown in Figure 3.30a. The calculation supports our ex-
perimental results, evidencing that the γ band is much more strongly influenced by
the Si(111) substrate than the α and β bands.

Another recent experimental work on this system [63] proposes that the γ band
is shifted to higher energies and would cross the α and β bands ∼1 eV above the
Fermi level . The authors do not however explain why this shift would impact only
the γ band, nor provide computational work backing up this claim. We suppose
that the band they observed, showing a weak intensity, does not have the same
origin as the γ band of the Cu2Si monolayer.

3.3.4 XPS characterization

To complement the ARPES results, XPS spectra of the Si 2p and Cu 3p core levels
were measured on the Cu2Si/Si(111)-(“5.55×5.55”) surface, on the VUV beamline
of Elettra synchrotron, Trieste, Italy.

The Cu 3p spectra are presented in Figure 3.32 for two photon energies (123 eV
and 223 eV), with higher energy being more bulk-sensitive. In both cases, only one
Voigt doublet is sufficient to fit the experimental points. The best fits are obtained
for a ∆SO = 2.52 eV, a branching ratio fixed at 0.5, and a Lorentzian width WL =
0.92 eV. The Gaussian widths used are 1.49 eV and 1.96 eV for the photon energies
of 123 eV and 223 eV respectively. The absence of any other contributions shows
that the Cu is present only on the surface and does not migrate in the bulk, at least
not in detectable proportions. According to the atomic model presented above, Cu
atoms should occupy two adsorption sites (Su and H3), whose contributions are not
resolved here.

The Si 2p spectra are presented in Figure 3.33. Two photon energies (150 eV
and 250 eV) are shown with their fits. Here, lower photon energy (150 eV) is most
surface-sensitive, while higher photon energy (250 eV) will be more bulk-sensitive.
We find the existence of five doublets with the same relative positions for the two
photon energies, as given in Table 3.3. Voigt functions were used, with a fixed
Lorentzian width WL of 40 meV as is commonly found in the literature [64, 65].
The fitting parameters used are regrouped in Table 3.4 for easier readability.
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Fig. 3.31 – Calculated band structure for a monolayer of CuSi, in its free-
standing form and with a Si(111) substrate. (a) Freestanding. Three
metallic bands are clearly identified, namely α+, β+, and γ−, with the sign
corresponding to their parity with respect to the mirror symmetry Mz. (b)
On Cu2Si on Si(111), following the atomic model in (c,d). The contributions
of the different orbitals is represented as follows: red from the surface Si-pz,
green from the surface Cu-pz, blue from the surface Si and surface Cu px
and py, and black for other sources. The red rectangle in (b) represents
the extent of the ARPES experiment. (c) Top view of the Cu2Si structure.
(d) Side view of the Cu2Si/Si(111) structure, based on the model shown
in Figure 3.4, used for the DFT calculation. Blue and red spheres are Si
atoms, orange spheres are Cu atoms.

One component, S1, is directly attributed to the surface as its area decrease with
increasing photon energy. Its contribution is attributed to the Si-Cu bonds formed
on the surface layer. All other contributions increase in relative area with increased
depth probing and are attributed to bulk contributions (B1 to P3). The most intense
bulk contribution, B1, is attributed to bulk Si(111) and is used as a reference for
relative peak positions. The observation of only one surface contribution is coherent
with the atomic model proposed, where all surface Si atoms are equivalent. S1

is located at a lower binding energy (-0.28 eV) than B1. Santis et al. [33] also
attributed a lower binding energy peak to the (“5.55×5.55”) surface, with a relative
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Fig. 3.32 – Cu3p XPS spectra of Cu2Si/Si(111) for hv = 123 eV and hv
= 223 eV. One doublet is sufficient for a fit. Its important width could
however hide more than one contribution.

position of -0.5 to -0.6 eV however.
We attribute all other observed components (P1, P2, P3)to the presence of Si-

(7×7) on the surface. Indeed, the Si-(7×7) and Cu/Si(111)-(“5.55×5.55”) phases
have been shown to coexist [66], and is in agreement with Santis et al. [33]. By
comparing the measured spectra to published work on the Si-(7×7) [67], we find
that all remaining components match the peak positions and energy dependence of
the (7×7) doublets, once aligned on the bulk peak. P1 would then originate from
the rest atoms, P2 from the atoms binding to the adatoms, and P3 would originate
from the adatoms.
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Fig. 3.33 – Si2p XPS spectra of Cu2Si/Si(111) at hv = 150 eV and hv =
250 eV. Five Voigt doublets are used to obtain a good fit. One surface com-
ponent is identified. Fit parameters are given in Table 3.4 and Table 3.3.

Distance to bulk peak B1 Part of tot. area 150 eV Part of tot. area 250 eV

Peak B1 - 0.15 0.20

Peak S1 - 0.28 eV 0.77 0.59

Peak P1 - 0.43 eV 0.06 0.10

Peak P2 + 0.46 eV 0.02 0.06

Peak P3 + 0.83 eV 0.01 0.05

Table 3.3 – Peak positions relative to the main bulk peak (B1) are presented, in
binding energy, as well as the part of the total peaks area. The precision on the
relative energy difference is given at ±0.01 eV, and the relative area at 10% of the
given value.
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Fitting parameters

WL 0.04 eV

∆SO 0.59±0.01 eV

Branching ratio 0.44±0.01

Gaussian widths WG for the different photon energies

Peak hv = 150 eV hv = 250 eV

B1 0.29 eV 0.36 eV

S1 0.19 eV 0.20 eV

P1 0.18 eV 0.33 eV

P2 0.19 eV 0.31 eV

P3 0.20 eV 0.41 eV

Table 3.4 – Fitting parameters for the Cu/Si(111) Si 2p core-level. Peak positions
relative to the bulk peak are presented, in binding energy. The precision on the rel-
ative energy difference is given at ±0.01 eV. Lorentzian FWHM (WL) and Gaussian
broadening (WG) are given for all photon energies, along with spin-orbit splitting
(∆SO) and branching ratio. The precision of Gaussian broadening is ±0.02 eV.
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3.3.5 Conclusion

In summary, we mapped the Fermi surface and band dispersion curves of a Cu2Si
layer on Si(111), forming a quasi-“5.55×5.55” surface reconstruction, by angle-
resolved photoemission spectroscopy. This is to date the most detailed band-
structure measured on this system, with the observation of two bands (α and β)
crossing the Fermi level compared to only one band being resolved in the previous
works [36]. The possibility to change photon energy and polarization allowed us to
rule out the presence of any other band with strong intensity. The complex struc-
ture of the Fermi surface is completely explained by its tiling by the observed bands
and their Umklapp replicas originating from the difference of periodicity between
the bulk and the surface layer. XPS measurements were realized, showing good
agreement with the established structural model.

By comparing the experimental results with DFT band calculations, we found
that electronic states originating from x-y (in-plane) orbitals remained unchanged
but those originating from z- (out-of-plane) orbitals are modified when the overlayer
is prepared on a Si substrate. One of the bands predicted for the free-standing
system then strongly hybridizes with the substrate, forbidding the preservation of
nodal lines in this system.

This work links the theoretically predicted free-standing monolayer to the one
prepared on a Si(111) substrate, and the evolution of its electronic structure. We
show that calculations on free-standing layers are an important first step, but that
the substrate chosen and dramatically impact the electronic properties of the mono-
layer. Indeed, for Cu2Si, a Cu(111) substrate results in minimal interactions, but a
Si(111) substrate strongly interacts.
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Chapter 4: Towards the experimental realization
of Cu2Ge: a new Dirac nodal-loop material

4.1 Introduction to Cu2Ge

4.1.1 Cu2Ge: a planar hexacoordinate material with two
concentric DNLs

Amongst the theoretically predicted two-dimensional nodal-loop semimetals, Cu2Ge
appears a promising candidate to experimental realization, as it bears many simi-
larities to the previously studied system Cu2Si. This system was first presented by
L.-M. Yang et al. in 2015 [1], where it is described as the first stable planar hexaco-
ordinate germanium material in 2D space, presenting a metallic and non-magnetic
character. Its atomic structure consists of a superposition of a honeycomb lattice of
Cu atoms, with a triangular lattice of Ge atoms located at the centre of the honey-
combs, as illustrated in Figure 4.1, forming a sheet belonging to the P6/mmm space
group symmetry. Each Cu atom has three Cu and three Ge atoms as neighbours,
while Ge atoms are surrounded by six Cu atoms. This Cu2Ge is atomically flat,
with all its atoms resting on the same plane and forming bond angles of 60°. The
unit cell of the Cu2Ge monolayer consists of two Cu atoms and one Ge atom, with
lattice constants of a = b = 4.214 Å, and Ge–Cu and Cu–Cu bond lengths of 2.433
Å. The structural stability was demonstrated by the absence of imaginary phonon
mode and attributed to the presence of multi-centre σ bonds (covalent bonds result-
ing from the direct overlap of orbitals). Furthermore, ab-initio calculations showed
that this atomic configuration was the global energy minimum amongst other sta-
ble Cu2Ge isomers. Molecular dynamics simulations also showed that the structure
is overall maintained upon annealing up to 1200 K during 10 ps, but we will see
later that on experimental time scales of a few seconds, the structure obtained
deteriorates above 500°C.

While the electronic structure of Cu2Ge was already presented by L.-M. Yang
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Fig. 4.1 – Top and side view of a Cu2Ge monolayer are shown on the left
side of the image. The orange and purples spheres represent Cu and Ge
atoms respectively. The unit vectors a and b are represented by blue arrows
and form a diamond-shaped primitive unit cell of the system. The right
side shows the (1×1) Cu surface with its unit vectors. It can be seen that
the unit vectors of Cu2Ge are

√
3 times longer than the ones of Cu(111),

and rotated by 30°, thus forming a (
√

3×
√

3)R30° surface reconstruction.
The position of the Cu2Ge layer with respect to the substrate might not
reflect the reality. It is drawn here as if the monolayer only occupies top
sites, whereas its atoms could also occupy HCP, FCC or bridge sites, as for
Cu2Si, see Figure 3.2.
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et al. [1], it was not until a study by L. Liu et al. (2020) [2] that its topolog-
ical properties were investigated, and the Dirac nodal-lines were revealed. They
demonstrated the existence of two concentric DNLs around Γ, protected by the Mz

mirror reflection symmetry. Three bands are involved in the existence of the DNLs:
two hole-like and one electron-like, respectively labelled α, β and γ, as presented
in Figure 4.2a. From band projection calculations, it is shown that the α and β

bands are mainly composed of the Cu dxy/dx
2 − y2 and Ge px/py orbitals, while

the γ band is composed of the Cu dxz and Ge pz orbitals. Therefore, the α and
β bands have even-parity (+) eigenvalues of Mz while the γ band has odd-parity
(−) eigenvalues of Mz, forbidding hybridization with each other and thus ensuring
gapless DNLs in the absence of SOC. The two DNLs, shown in Figure 4.2b along
with their projection on the Fermi surface, form two loops and are located within
0.8 eV of the Fermi surface. Once the SOC is taken into account, band openings
are observed along the Γ-M and Γ-K directions as presented in Figure 4.2c. The
innermost nodal-line (points A and A’) shows gaps of 47.2 meV and 45.1 meV along
the directions Γ-M and Γ-K respectively, while the outermost (with point B and B’)
shows gaps of 63 meV and 59.3 meV along those directions. These gaps are larger
than the ones expected in Cu2Si from the same types of calculations, ranging from
5 meV to 15 meV. [3], probably due to the stronger SOC induced by Ge, heavier
than Si.

There are yet too few 2D DNLs materials experimentally evidenced, and ex-
panding the list is crucial for a better understanding of their general properties.
The importance of synthesizing such materials is manifold. From a fundamental
point of view, Cu2Ge could be used as a platform to study possible topological phase
transitions, by changing the symmetries of the system either intrinsically (e.g. by
physical deformation) or by an external field. For example from DNL semimetal to
topological insulator, topological crystalline insulator and Chern insulator [4]. If a
topological insulator state can be reached, it would open the way to Quantum-spin
Hall effect materials (dissipationless devices), and if WNLs are obtained, the possi-
bility of exotic superconductive states such as Majorana surface states is open [5].
On more direct applications, the presence of DNLs close to the Fermi level with
no other state close to it should ensure high electronic mobility due to the linear
dispersion. Adding to that, DNLs system could have a higher carrier density than
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(a)

(b)

(c)

Fig. 4.2 – (a) Calculated band structure of the Cu2Ge monolayer in the
absence of SOC. The three bands labelled α, β and γ cross in four points
along the Γ-M and Γ-K lines: A, A’, B, and B’. For the α, β and γ bands,
the parity of mirror symmetry is labelled by the plus or minus sign in
parentheses. (b) Energy dispersion of the two DNLs passing through the
A and A’ (B and B’) points, together with their projections onto the first
Brillouin zone using the colour scale. (c) Zoom-in band structures around
the A and B (A’ and B’) points, obtained by including SOC. The numbers
represent the gaps (in meV) at the A, A’, B, and B’ points. Figures and
caption from [2].
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systems with Dirac cones, due to the band crossing happening along a 2D line and
not only at discrete points. Those properties would lead to uses in high-frequency
2D heterostructure devices. Despite the interesting properties predicted in Cu2Ge,
there is no experimental realization of it reported in the literature to the best of
our knowledge. We thus decided to attempt to remedy this problem. We adopted
a two-fold approach: on one hand pursuing the synthesis of Cu2Ge on a Cu(111)
substrate, optimistic from the results obtained with Cu2Si/Cu(111), and on the
other hand, explore the electronic properties of Cu on Ge(111) in an attempt to
determine if a Cu2Ge monolayer could be obtained on a non-conductive substrate.

4.1.2 Experimental approach to Cu2Ge realization

While no synthesis of a planar hexacoordinate Cu2Ge is mentioned in the literature,
growth studies of both Ge on Cu(111) and Cu on Ge(111) exist, with a focus oriented
towards the growth mode and atomic structure of interfaces and surfaces rather than
on their possible electronic properties. We will discuss in the following paragraphs
the experimental work on which our work took support.

4.1.2.1 Growth of Ge/Cu(111): state of the art

There exist few reports on the growth of Ge on Cu(111), possibly because the first
accounts did not augur anything exciting or at least different than Si on Cu(111),
more studied. It is in one study comparing those two types of interfaces that most of
the information can be found. In 1990, R. Dudde et al. [6] studied by angle-resolved
direct and inverse photoemission the growth of Ge on Cu(111) for thickness ranging
from 3 Å to 25 Å, reporting only a diffuse LEED background signal before anneal-
ing, and a (1×1) LEED pattern after a 3 min anneal at 420 K for thin films (< 5
Å). For thicker films, the spectroscopic measurements show a continuous transition
toward bulk Ge states. In a more recent study (2003) [7], using low-energy electron
diffraction (LEED) and Auger electron spectroscopy (AES) it has been observed
that the Ge/Cu(111) system shows a (1×1) structure up to 5 monolayers deposited
at 300 K, that interdiffusion of Ge/Cu(111) films occurs as soon as 375 K, and that
the Auger peaks were restored to their original kinetic energy upon annealing above
500 K.
Finally, in 2017 the successful preparation of bi-layer islands of Ge on Cu(111) have
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been shown to host Dirac cones in an STS study [8], where the proposed periodic-
ity of the islands with respect to Cu(111) is a (

√
3 ×
√

3)R30°. In this study, the
annealing temperatures were kept below 500 K to avoid intermixing leading to the
formation of a surface alloy, and the islands are thought to be composed only of Ge
atoms.

It is however the surface alloy Cu2Ge that interests us in this work, and we will
discuss in section 4.2 our attempt to realize it.

4.1.2.2 Growth of Cu/Ge(111): state of the art

A detailed study of the surface reconstructions of monolayer Cu on Ge(111) was
conducted by M. Börhinger et al. [9], in which they describe a discommensurate,
hexagonal domain superlattice, with a (“8.88×8.88”)R30° periodicity with respect
to the substrate. Atomic resolution STM images show that these domains are con-
stituted of a local (1×1) geometry with a 5% lattice mismatch with the substrate,
with the domain walls forming an ordered zigzag pattern allowing for a relaxation
of the surface stress. The locally commensurate domains exhibit a slight buckling,
with some of the atoms resting on a higher plane than their neighbours. A precise
measurement of this height difference was deemed too difficult, due to the different
electronic contributions of atoms of different elements inducing a too large uncer-
tainty.

They proposed three possible atomic models, with respective surface stoichiome-
tries of Cu2Ge, CuGe and CuGe2, further x-ray standing waves measurements
(XSW) [10] leaning in favour of the last two models. All these models have a
buckled surface. A later x-ray photoelectron diffraction (XPED) study [11] is also
reporting a Cu/Ge(111)-(“8.8×8.8”)R30° structure, and confirms the buckling of
the layer, giving a 12° bond angle between the lower and higher atoms. This time
only two possible atomic models are proposed, with Cu2Ge and CuGe2 stoichiome-
tries, in order to agree with the forward scattering peaks observed. These models,
differing only from the element occupying a given site, are presented in Figure 4.3.
We note that the diagram is not to scale and that the last three atomic plans should
be seen as one buckled layer.
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Fig. 4.3 – Structural model for the local atomic structure within the
Cu/Ge(111) discommensurate domains in (a) top view and (b) side view.
The black filled circles correspond to the substrate Ge atoms, with the
last Ge layer being taken into account for the surface stoichiometry. The
white circles correspond to the Cu atoms in the Cu2Ge model, while in
the CuGe2 model the topmost atoms (H3 sites) are replaced by Ge atoms.
The left-hand side of the pictures (a) and (b) suggest a stacking fault. In
it, there is an hcp-stacking instead of fcc-stacking of the substitutional Cu
atoms (Su) with respect to the underlying substrate lattice. These two
coexistent stacking models explain the STM images obtained [9]). The es-
timated height between the Su and H3 sites is estimated at 0.5 Å [11]. The
last three atomic plans: last Ge layer, Su and H3 sites should be seen as
a buckled surface rather than distinct atomic layers. Figure and caption
adapted from [11].
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The first model, resulting in a CuGe2 stoichiometry, consists of Cu atoms sub-
stituting for Ge atoms on the surface (Su sites), and Ge atoms adsorbing above in
H3 sites. At room temperature, the Cu atoms may be randomly distributed over
the substitutional Su or the H3 positions, while the respective other site is occupied
by a Ge atom. Interchange of the two species may be permitted, resulting in an
internal atomic structure difficult to resolve (it was not managed until now). At
low temperature, the Cu and Ge would reach their energy minimum configuration:
Cu in the surface layer and Ge on top.

The second model, resulting in a Cu2Ge stoichiometry, is a limit case of the first,
in which all the topmost Ge layer is replaced by Cu, resulting in a double Cu layer.
In both models, the alternation of stacking fault and regular fault from domain to
domain would explain the shift of the atomic rows observed in STM [9]. Due to
the very similar scattering strengths of Cu and Ge, a differentiation between the
two appears difficult, and a possible transition from one to another with increasing
Cu coverage is not excluded either. The determination of the stoichiometry of the
surface alloy Cu/Ge(111) is still an open question, and the possibility of a a phase
coexistance is not excluded [11], as it is the case on Cu/Si(111) [12].

It is worth remarking that these studies disagree with the first experimental
work on Cu/Ge(111) [13] which, using valence-band and core level measurements,
describes a commensurate and ordered (5×5)R30° reconstruction at low coverage,
from 0.27 monolayer (ML) to 1 ML, and the formation of bulk-like Cu for higher
coverage, from 1 ML up to 12 ML. Their LEED patterns do not however display all
the spots expected in a (5×5) R30° surface reconstruction, and while the authors
acknowledge this, they compare it to the (5×5)Cu/Si(111), which was later better
understood as a discommensurate surface reconstruction [6, 14, 15]. A discommen-
surate surface would furthermore explain the LEED pattern they observed. The
quality of LEED measurements of this time, alongside the will to identify similari-
ties with Cu/Si(111) might explain an imprecise conclusion.

We should note here that the possibility of a buckled Cu2Ge monolayer is worth-
while to investigate, as it could host gaped Dirac nodal-loops if its electronic cou-
pling to the substrate is sufficiently weak [2], as a buckling would break the Mz
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mirror reflection symmetry protecting the DNLs in the absence of SOC.
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4.2 The first experimental realization of Cu2Ge
on Cu(111)

4.2.1 Clean Cu(111)

For a description of the cleaning procedure and cleanliness characterization of
Cu(111), see subsection 3.2.1.

4.2.2 Growth process of Ge on Cu(111)

After the Cu(111) sample was cleaned, Ge was evaporated from an e-beam evap-
orator, within a UHV chamber with base pressure in the low 10-10 mbar range.
The Ge evaporated originates from pieces of bulk Ge crystal. We aimed at de-
positing 0.5 monolayer (ML) over a few minutes, with the Cu(111) substrate kept
at 300±50°C. Uncertainty on the substrate temperature is mainly due to uncer-
tainty on the emission coefficient of Cu (we used ε = 0.1). Once evaporation is
done, prolonging the anneal for 5 more minutes yields a better low energy electron
diffraction (LEED) pattern. The determination of the optimal growth process was
done by optimization of the observed (

√
3×
√

3)R30° LEED pattern, which is pre-
sented in Figure 4.4. This reconstruction is consistent with what is expected from
the crystalline Cu2Ge monolayer described above. No other surface reconstruction
was observed by LEED, with a surface coverage of Ge ranging from 0.1 ML to 1
ML, and at varying temperatures of deposition and of anneal. Annealing above
500°C results in a degradation of the structure, followed by a disappearance of the
(
√

3×
√

3)R30° diffraction pattern.

Through the remainder of this section, we will refer to the surface obtained
as Ge/Cu(111), and show that its characteristics conform to what is expected of
Cu2Ge.

4.2.3 XPS results

Characterization of the sample obtained was done using XPS. A first step to verify
the quality of the surface is to check for impurities. Figure 4.5 shows an overview
scan taken at hv = 330 eV. All peaks present are assigned either to Ge or Cu. A



4.2. The first experimental realization of Cu2Ge/Cu(111) 141

Fig. 4.4 – (
√

3 ×
√

3)R30° surface reconstruction observed by LEED after
evaporation of Ge on Cu(111), of which one spot is circled in red. The red
arrow shows a spot of the substrate (1x1). Picture taken at 100 eV

scan with a finer resolution was taken around 284 eV of binding energy, where C
1s should be observed in the presence of carbon. It was measured at hv = 330
eV making it the most surface sensitive possible for the detection of C 1s. The
absence of any feature above noise level (i.e. in the detection limit) demonstrates
the absence of adventitious carbon on the surface, and thus the cleanliness of the
surface.

Once that cleanliness has been checked, we focused our attention on the core-
level spectra of Cu and Ge. Figure 4.6 shows the Ge 2p core level measured at three
different photon energies (hv = 1290 eV, 1330 eV and 1400 eV), the lower energies
being the most surface sensitives. For hv = 1290 eV, only the Ge 2p3/2 peak was
measured. Doniach-Sunjic peak-shapes were used to account for the asymmetry of
the peaks as is usual for Ge core levels, as well as a Shirley-type background. Using
the Fermi level for binding energy calibration, the position of the Ge 2p3/2 peak is
found at 1215.1 eV of binding energy, with a spin-orbit splitting of 30.97 eV. For all
photon energies we used an FWHM of 1.36 eV with a Gaussian broadening of 0.22
eV. The asymmetry parameter used was 0.055 in all three cases, and the branching
ratio was constrained to 0.5. In all cases, only one contribution is identified, in good
agreement with the atomic model proposed for Cu2Ge in which all Ge atoms have
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(a)

(b)

Fig. 4.5 – (a) shows an overview spectra taken at hv = 330 eV, where all
peaks observed belong either to Cu or Ge. KML and KLL are two Auger
peaks of Cu. (b) a finer spectrum measured at hv = 330 eV around the
expected position of C 1s, represented by a blue dashed line, demonstrates
the absence of adventitious carbon on the surface in the detection limit of
our experiment.
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an identical chemical environment.

The Ge 3d core level was also measured with three different photon energies,
hv = 80 eV, 130 eV and 180 eV , where lower energy increases surface sensitivity, and
is presented in Figure 4.7. As for Ge 2p, all the fits were realized using Doniach-
Sunjic peak shapes to account for the asymmetry of the peaks, and the background
was fitted using a Shirley step for each peak. Doublets relative areas were fixed at
a ratio of 0.66 as required for d orbitals, and spin-orbit splitting was 0.55 eV in all
three fits. Peak width was fixed for all peaks measured at a given photon energy,
but was allowed to change from one spectrum to another, increasing with photon
energy, to account for the experimental loss of resolution resulting in broadening at
higher photon energies.

We found that two pairs of doublets account satisfyingly to the signal measured.
Those two contributions are separated by 0.40 eV in all spectra. We attribute the
main contribution (Peak 1, largest area) to the Ge atoms residing in the topmost
layer, resulting in the periodic reconstruction (

√
3 ×
√

3)R30° observed by LEED.
We attribute the smaller contribution (Peak 2) to small Ge islands formed by excess
Ge evaporation, residing on top of the surface. This argument is supported by the
evolution of the relative areas of the two components with increasing photon energy.
Looking at the ratio between the area of the two contributions, we determined that
the smaller one represented 7%, 4% and 2% of the larger one, for photon energies
of 80 eV, 130 eV and 180 eV respectively. By looking at the highest variations in
area ratio that could result in fits of adequate quality, we estimate the precision of
relative areas at ±1%. The decreasing sensitivity to the smaller component with
increasing energy (i.e. increasing probing depth) suggests that the atoms emitting
those photoelectrons are located above the ones of the larger component. This can
also be explained by the preparation method, which aims at depositing Ge in ex-
cess and uses the diffusion of Ge atoms by heating to form the largest crystalline
monolayer possible.

The absence of a second contribution in the Ge 2p spectra can be explained by
a surface of better prepared than the one measured above, as those measurements
were taken on different surfaces and with different equipment. It is also possible
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Fig. 4.6 – Ge 2p core level measured on Ge/Cu(111) at different photon
energies. In all cases, a single asymmetric doublet provides a good fit. (a)
Measured at hv = 1290 eV, only the Ge 2p3/2 peak is shown here. (b) hv
= 1330 eV. (c) hv = 1400 eV.
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that a small second contribution to Ge 2p is hidden in the asymmetrical shape of
the peak or in the background and cannot be resolved. The addition of a second
contribution does not however lead to better fits.

Finally, we present the Cu2p core level. Figure 4.8 shows a spectrum taken at
hv = 1100 eV, where Cu2p3/2 and Cu2p1/2 are identified. The presence of satellite
features following the peaks induces some difficulty to perform a proper background
fit, we thus decided to fit only the Cu2p3/2 peak, as is often found in the literature.
The weakness of the satellite features is however a good indicator of the absence
of oxidized copper species, as they get intense when oxides are present [16]. The
fitted spectra are presented in Figure 4.9. Voigt functions were used for the fits,
with an equal share of Gaussian and Lorentzian, as is usual in the literature. Total
FWHM was found to be 0.9 eV. In both spectra, two components are found, sep-
arated by 0.81 eV. The main peak, labelled peak 1, resides at 932.5 eV of binding
energy. The smaller component, labelled peak 2, forms a shoulder on the lower
binding-energy side and increases in relative area with increasing photon energy.
At hv = 1050 eV, the smaller component area represents 4% of the larger one, while
at hv = 1100 eV it represents 18%. As increasing energy increases probing depth,
we attribute the larger component to surface Cu, bonded to Ge, and the smaller
component to bulk Cu. At those energies, the inelastic mean free path (the average
distance that an electron with a given energy travels between successive inelastic
collisions) is around 5.5 Å[17] corresponding to between two and three atomic layers.

We conclude from the XPS data that the Ge involved in the crystalline structure
resides on one main site of adsorption, with an equal chemical environment for those
Ge atoms, and that the copper atoms have two distinct chemical environments:
bulk and surface. This is all in good agreement with the proposed atomic model
for Cu2Ge on Cu(111).
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Fig. 4.7 – The Ge 3d core level of Ge/Cu(111) was measured for three dif-
ferent photon energies (80 eV, 130 eV and 180 eV), to obtain information
on the depth dependence of the components. (a) presents the superposi-
tion of the three spectra. (b), (c) and (d) show the spectra fitting. Two
contributions are found: we attribute the main one (peak 1, in orange) to
Ge adsorbed on the topmost layer and the smaller (peak 2, in green) one
to islands formed from excess Ge. The background, obtained from Shirley
steps, is in grey.
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Fig. 4.8 – Cu2p core level at hv = 1100 eV. The weakness of satellite features
indicates the absence of oxidized copper species [16].

Fig. 4.9 – Cu 2p3/2 for Ge/Cu(111). (a) hv = 1050 eV, (b) hv = 1100 eV.
Two components are observed. Peak 1 is attributed to the surface contri-
bution and peak 2 to the bulk contribution, as its relative area increases
with increasing photon energy (i.e. probing depth).
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4.2.4 ARPES study

Before getting to the ARPES measurements, we show a schematic representation
of the Brillouin zones (BZ) of Cu2Ge and Cu(111) with their high-symmetry points
in Figure 4.10, for the reader to get a better understanding of the geometry of
the problem, and better locate the direction of measurement. As Cu2Ge forms
a (
√

3 ×
√

3)R30° surface reconstruction, its BZ is
√

3 times smaller and with a
30° rotation compared to the BZ of Cu(111), leading to the centre of the second
Brillouin zone (Γ2) of Cu2Ge coinciding with a K point of Cu(111).

We measured the band dispersion of the Ge/Cu(111) surface around Γ for vary-
ing photon energies and light polarization to observe all the electronic bands of the
system, and to determine the best experimental conditions to measure them. The
measurements, made along the direction Γ-K and ranging from 20 eV to 100 eV are
presented in Figure 4.11 and Figure 4.12, for linear horizontal and vertical horizon-
tal polarization respectively. We observe a strong intensity variation in the bands
with energy and polarization. The intensity variation of these bands originates from
the matrix element effects in the photoemission process. However, looking at all 2D
spectra, three bands can be identified as originating from the Cu2Ge surface, as they

Fig. 4.10 – Schematic representation of the Brillouin zones of Cu2Ge in
blue and Cu(111) in red. As the Cu2Ge form a (

√
3 ×
√

3)R30° surface
reconstruction, its BZ is

√
3 times smaller and with a 30° rotation compared

to the BZ of Cu(111).
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do not correspond to any band measured on clean Cu(111), see subsection 3.2.1.
These three bands are superposed to the first image of Figure 4.11, and presented
with a larger scale in Figure 4.13. Two of them have hole-like dispersion (their max-
ima are at Γ above the Fermi level). The closest to Γ is labelled as α band, while
the further to Γ is labelled as β band. Those two bands are better seen at lower
photon energies (hv≤ 50 eV, LH polarization). The third band has an electron-like
dispersion (its minimum is on Γ, below the Fermi level), and is labelled as γ. Less
defined as the other two, this band is better seen at higher photon energies (hv≥
50 eV), and especially at 70 eV with LH polarization or at 80 eV with LV polariza-
tion. At high photon energies (hv = 100 eV for example), a band can be observed
crossing the Fermi level with higher Fermi vector (1.3 Å-1). This band, very wide,
corresponds well to the closest band to Γ of the clean Cu(111) metal and is not of
interest to us here. We remark that the bands’ intensity seems more dependent on
the photon energy than on the light polarization: the orbitals contributing to the
bands must then have different parities with respect to the mirror plane (scattering
plane), which seems in agreement with the projected band calculations made by
Liu et al. [2] (supplementary materials).

Curvature images of selected spectra (LH polarization, hv = 20 eV, 50 eV and
70 eV) are shown in Figure 4.14. From them, it appears that the three bands ob-
served (α, β and γ) are all continuous, and that no gap is present at the crossings,
or at least not within our experimental resolution. According to the DFT calcula-
tions, the DNLs in Cu2Ge are protected by mirror reflection symmetry (Mz), and
should be gaped if this symmetry is broken. Here, the presence of a Cu(111) sub-
strate on one side of the surface and of the vacuum on the other side results in a
Mz symmetry breaking, but the absence of any sign of a detectable gap opening in
our ARPES measurements indicates a weak, or negligible, interaction between the
topmost layer and the Cu(111) substrate. Another argument in favour of the weak
interaction with the substrate is the absence of folded bands of Cu(111). We could
indeed expect Umklapp scattering with the (

√
3×
√

3)R30° superlattice leading to
a folding of the Cu(111) bands into the first Brillouin zone.

The Fermi vectors along the Γ-K direction (with respect to the Cu2Ge Brillouin
zone) were measured for the three bands α, β and γ. We found that they cross the



150 Chapter 4. Towards the experimental realization of Cu2Ge

Fig. 4.11 – ARPES of Ge/Cu(111) for photon energies ranging from 20 eV
to 100 eV, along the Γ-K direction, with linear horizontal light polarization.
The relative band intensities vary strongly with photon energy. A higher
intensity corresponds to a whiter hue. The three main observed bands
attributed to the surface are represented on the first image by green, blue
and orange dashed lines respectively.
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Fig. 4.12 – ARPES of Ge/Cu(111) for photon energies ranging from 30 eV
to 100 eV, along the Γ-K direction, with linear vertical light polarization.
The relative band intensities vary strongly with photon energy. A higher
intensity corresponds to a whiter hue.
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Fig. 4.13 – The ARPES spectrum of Ge/Cu(111) at hv = 20 eV with LH
polarized light is presented again. Left: as is. Middle: with a schematic
representation of the three bands observed attributed to the surface drawn
over. The bands are labelled α, β and γ and are represented by a blue,
orange and green line respectively, and are presented alone on the right.

Fig. 4.14 – 2D curvature images from selected spectra presented in Fig-
ure 4.11, along the Γ-K direction. The plots have been resized for a better
visualization of the bands continuity. (a) hv = 20 eV. All three bands α, β
and γ are seen. (b) hv = 50 eV, the α band is clearly observed.
(c) hv = 70 eV, here only the γ band is seen. From these images, it appears
that all bands are continuous (non-gaped).
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Fermi level at α : 0.22 ± 0.01 Å-1, β : 0.32 ± 0.02 Å-1 and γ : 0.55 ± 0.05 Å-1. All
these bands lie in the first Brillouin zone of Cu2Ge, which forms a hexagon with
dimensions Γ-M = 0.861 Å-1 and Γ-K = 0.994 Å-1, using the theoretical lattice
parameters. The varying uncertainties come from the observed sharpness of the
bands, the γ band being much larger than the other two. The measurement of the
Fermi vectors led to similar results at every photon energy where the α, β, γ bands
could be identified, with the variations of values showing no trend and being within
the error margin. Equivalent values are also found from the measurement of the
Fermi surface. Two Fermi surfaces, one measured with hv = 50 eV and the other
measured with a He II source (hv = 40.8 eV), are presented in Figure 4.15 and
Figure 4.16 respectively. The use of He II was favoured over He I for the reasons
explained in subsection 3.2.1. On those two figures, bands corresponding to DFT
calculations for freestanding Cu2Ge are superposed to the ARPES spectra. In both
cases, the α and β bands are nicely replicated by the experiment, while the γ band
is either not observed or out of the measurement range.

The absence of dispersion with varying photon energy is equivalent to having a
null kz dispersion, indicating a truly 2D system (see Equation 2.6). The observed
bands are in excellent agreement with the DFT calculations of freestanding Cu2Ge
[2], strengthening again the evidence of the experimental realization of Cu2Ge. The
main difference is the energy at which these bands cross: we observe the crossing
of the α and γ bands around 0.75±0.1 eV and the crossing of the β and γ bands
around 0.55±0.1 eV, while the DFT predicts 0.6 eV and 0.4 eV respectively. We
should note the large uncertainty regarding the precise crossing point of the bands,
mainly due to the lack of sharpness of the γ band, and to the small asymmetry ob-
served between the right-hand side and left-hand side of the spectra. Even taking
into account those uncertainties, it appears that the bands cross each other 0.15
eV deeper in energy compared to the predictions. Noticing that the distance sep-
arating the two crossings is coherent with the DFT calculations, we explain those
discrepancies by a vertical shift of the bands, induced by a charge transfer from the
Cu(111) substrate to the surface layer. The same phenomenon was observed for
Cu2Si/Cu(111) [3] and reproduced in our experiments.

The measurements from this chapter were obtained from two synchrotron beam-
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Fig. 4.15 – Fermi surface of Cu2Ge on Cu(111) measured with hv = 50 eV, in
the first Brillouin zone, centered on Γ and LV polarized light. The schematic
of α and β bands predicted for freestanding Cu2Ge are superposed to the
spectrum in the right image. The α forms a blue hexagon, the β band an
orange hexagram. While the γ band does not seem to be visible at this
photon energy, the measured spectrum shows an excellent match with α and
β bands, both in shape and Fermi vectors. The Γ-K direction correspond
here to ky axis, and the Γ-M direction to the kx axis.
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Fig. 4.16 – Fermi surface of Cu2Ge on Cu(111) measured with He II, in
the first Brillouin zone, with Γ at (0,0). The schematic of α, β and γ
bands predicted in freestanding Cu2Ge are superposed to the spectrum
in the bottom image. The α forms a blue hexagon, the β band an orange
hexagram and the γ band a green circle (truncated to two arcs here). While
the γ band does not seem to be distinguishable at this photon energy,
possibly due to the high background, the measured spectrum shows an
excellent match with α and β bands, both in shape and position. The Γ-K
direction correspond here to ky axis, and the Γ-M direction to the kx axis.
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lines. Cu 2p, Ge 2p and He II measurements were made on the Tempo beamline of
Soleil synchrotron, while Ge 3d and all the other ARPES spectra were acquired on
the UARPES beamline of Solaris synchrotron.

4.2.5 DFT comparison between CuGe2, Cu2Ge and CuGe

While all previous experimental results are in agreement with what is expected of
a freestanding Cu2Ge monolayer, the absence of stoichiometric characterization of
the surface raises an important issue: can we be certain that the surface is indeed
Cu2Ge, or could it be CuGe2, pure Ge, or any other alloys of Ge and Cu?

The possibility of pure Ge is dismissed from the outset. Indeed, monolayer Ge
(i.e. germanene) is predicted to be a buckled sheet exhibiting Dirac cones [18],
and bi-layer Ge islands grown on Cu(111) also exhibit Dirac cones [8], which is
not what we observe here by ARPES. The XPS spectra Cu 2p also showed that
we have Cu on the surface. More complicated alloys in the form of CuxGey with
x or y 6= 2 do not appear in the literature, but we can safely assume that they
would not result in a (

√
3 ×
√

3)R30° reconstruction as observed by LEED, and
might additionally display more complex XPS spectra. The possibility of CuGe2

is however worth investigating, especially as we will see in the next part that it is
one proposed stoichiometry for the growth of Cu/Ge(111). Additionally, a CuGe
honeycomb structure would also fit the criteria derived from LEED and XPS.

First-principles calculations were realized on these structures, resulting in the
band structure presented in Figure 4.17 along their atomic model, with the Cu2Ge
band structure given as a comparison, reproducing with good precision the work of
Liu et al. [2].. For the hexagonal CuGe2 monolayer, the band dispersion obtained is
very different from the one of monolayer Cu2Ge. Focusing on the first 2 eV below the
Fermi level, we notice the presence of only two bands, both having a local maximum
at Γ close to the Fermi level and one of them having almost flat dispersion in the
Γ-M direction. These bands are reminiscent of the band structure of clean Ge(111),
as presented in the next section, or in the existing literature [19–22]. No band
with a local minimum at Γ is observed, as is the case of the γ band in Cu2Ge and
in our experimental observations. From this, we can exclude CuGe2 as a system
potentially characterized in the above experiment. Interestingly, the honeycomb
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monolayer CuGe shows a closer resemblance to Cu2Ge. The α, β and γ bands
are identified and cross each other. The relative positions of the α and β bands
is however dissimilar. Indeed, in the case of Cu2Ge, they are close to each other
and parallel in the direction Γ−K, in agreement with the ARPES measurements.
However for CuGe, their separation is larger, especially in the Γ−M direction, and
does not match the E-kx maps or Fermi surface measurements. The existence of
nodal lines in honeycomb CuGe appears worth investigating, as well as its growth,
as it does not appear in the literature.

The first-principle calculations were done using the software WinmostarTM V10
(X-Ability Co. Ltd.), providing tools to run Quantum Espresso [23, 24]. The CuGe2

monolayer is modelled by a P6/mmm space group crystal, with vector sizes a = b
= 4.214 Å similar to the ones found for Cu2Ge, and the vertical spacing between
plans is set as c = 30 Å, which is a suitable distance for simulating two-dimensional
materials. For the honeycomb CuGe, the same lattice parameters were used. A
plane-wave basis is employed with a kinetic energy cutoff of 100 Ry, a charge density
cutoff of 400 Ry, and the k-space integration was done using 17x17 meshes in the
2D Brillouin zone. To determine the optimal lattice parameters, all atoms were
allowed to relax along with the calculated forces with a total energy convergence
threshold of 10-6 Ry and a force convergence threshold of 10-6 Ry. A Gaussian
smearing of 0.011 was used. Within the generalized gradient approximation of the
PBE exchange-correlation potential [25], we chose the projector augmented wave
method Ge-PBE-kjpaw and Cu-PBE-kjpaw potentials, available from PSlibrary
[26].
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4.2.6 Conclusions about Cu2Ge on Cu(111)

The growth of Ge on Cu(111) has been studied in an attempt to make the first
experimental realization of the Dirac nodal loop semimetal Cu2Ge. In the previ-
ous pages, we described the observation of a (

√
3 ×
√

3)R30° LEED pattern and
of a single adsorption site of Ge atoms by XPS, which is coherent with the Cu2Ge
monolayer atomic model. More importantly, the presence of the three electronic
bands α, β and γ by ARPES, none of them being gaped within our experimental
resolution, are in good agreement with the band structure calculated from DFT for
a freestanding Cu2Ge monolayer. We also ruled out the possibility of a Ge, CuGe
or CuGe2 layer.

By comparing our experimental results to the expected properties of freestand-
ing Cu2Ge obtained from simulations [2], we posit to have successfully synthesized
Cu2Ge, with interactions with its Cu(111) substrate weak enough to not disturb
or gap the DNLs. This is one of the few two-dimensional DNLs experimentally
observed.

It is also the experimental realization of one of the newly predicted 2D binary
compounds with copper. For now, three amongst them have been predicted to host
Dirac nodal-lines: Cu2Si, Cu2Ge and CuSe. The first two appear to preserve their
DNL structure when using a Cu(111) substrate, while CuSe/Cu(111), presenting a
honeycomb structure, has been shown to display gaps at the DNLs [27]. To pursue
towards applications, the main challenge to overcome is now the preparation (or
transfer) of Cu2Ge on a non-conductive substrate. It is with this aim in mind
that we will present in the next section a study mirroring this one, focusing on the
growth of Cu/Ge(111) and the characterization of the surface obtained.



160 Chapter 4. Towards the experimental realization of Cu2Ge

4.3 Atomic and electronic structure of the dis-
commensurate (“8.88 x 8.88”) R30° phase of
Cu/Ge(111)

4.3.1 The growth process of Cu/Ge(111)

Germanium is one of the most used and abundant semiconductor element after
silicon. It can be commercially bought in the shape of wafers and cut along the
desired crystallographic orientation. For this study, we used hexagonal Ge(111)
wafers. All preparations were realized in UHV with a base pressure in the low
10-10 mbar range. In order to remove the native oxide layer and clean the surface
of Ge(111), cycles of Ar+ sputtering followed by annealing were performed, as is
common in the literature [28–32]. One cycle consists of 20 min of Ar+ sputtering
at 1 kV with the Ge(111) kept at 450°C, followed by a 10 min annealing up to
750°C and a slow cooling down (≈ 15 min) to room temperature. 5 cycles of
sputtering/annealing are necessary to remove most of the native oxide when the
wafer is new, one cycle is sufficient to refresh the surface once the sample has
already been prepared and stayed in UHV. This method of preparation leads to
the well-known c(2×8) surface reconstruction of Ge(111), already identified since
1981 [33], and determined to be the most stable surface reconstruction of Ge(111),
before the (2×2) and c(4×2) with which it can coexist. The LEED picture of the
c(2×8) surface reconstruction of Ge(111) is shown in Figure 4.18a, and agrees with
the expected diffraction pattern [29]. To optimize the diffraction pattern, the most
important parameter is the temperature reached during annealing: too low and the
LEED pattern is not clearly resolved, too high and the Ge might melt.

Once the Ge(111)-c(2×8) surface is obtained, copper is evaporated on top
from an e-beam evaporator, while keeping the Ge substrate at 250°C, until a
(“8.88×8.88”)R30° LEED pattern is observed, as shown in Figure 4.18b. From
the e-beam evaporator calibration, the maximum amount of Cu deposited on the
surface for a LEED optimized image corresponds to 0.5 ML. This would hint to-
wards a CuGe2 surface stoichiometry, in line with the saturation coverage observed
by Zengenhagen et al. [10].
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(a) (b)

Fig. 4.18 – (a) LEED picture of Ge(111)-c(2×8) surface reconstruction,
taken at 120 eV. (b) Discommensurate (“8.88 × 8.88”)R30° surface recon-
struction of Cu/Ge(111), taken at 150 eV. The white arrows points to a
(1×1) diffraction spot of the Ge bulk.

4.3.2 Atomic structure characterization by STM

The Ge(111)-c(2×8) and the Cu/Ge(111)-(“8.88×8.88”)R30° surface reconstruc-
tions were studied by scanning tunnelling microscopy. In our setup, a positive volt-
age means that the electrons flow from the tip to the sample, mapping the empty
electronic states. All measurements were made at room temperature. The clean
Ge(111) surface and the c(2×8) reconstruction have already been extensively stud-
ied by STM with excellent results [28, 34, 35]. The consensual atomic model, con-
sisting of adatoms and rest atoms (i.e. surface layer atoms not bonded to adatoms),
is presented in Figure 4.19. Domains of (2×2) surface reconstruction have also been
observed coexisting with the c(2×8) and disordered domains. We present in Fig-
ure 4.20 images of the c(2×8) surface reconstruction, at 2 V and 250 pA (empty
states). On the larger scale image, we see the characteristic rows of dimers forming
different domains separated by disorganised borders. The smaller-scale images show
the adatoms, with a c(2×8) unit cell measuring 8 Å×30 Å, represented by a par-
allelogram overlayed. Two different phases are observed: in Figure 4.20b adatoms
present an asymmetric form, with some higher than others, while in Figure 4.20c
they all show the same height. Those two phases are already described in the lit-
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erature [34] and can coexist on a surface. The observation of the Ge(111) surface
was used to check the cleanliness and crystalline organisation of the sample surface
to further optimize the preparation parameters. It was also used to calibrate the
STM x-y-z scales, ensuring an adequate calibration for the following measurements
of less well-known structures.

After evaporation of Cu on the surface, a hexagonal superstructure starts to ap-
pear, corresponding to the (“8.88×8.88”)R30° surface reconstruction. We observed
that the (“8.88×8.88”)R30° domains grow at the foot of the steps and as flat islands
first, as illustrated by Figure 4.21 which shows a surface on which the amount of
Cu deposited is not sufficient to cover entirely the Ge terraces. We measured the
height of the different domains, which we will label as “Ge” for the Ge terraces
and as “CuGe” for the superstructure domains. We found ∆Ge−CuGe = 1.9 ± 0.1
Å, and ∆CuGe−Ge = 1.4 ± 0.1 Å , with a sum of height being in agreement with
the theoretical size of an atomic Ge step of 3.26 Å. The error bars were determined
as the standard deviation on many step height measurements. The superstructure
induced by Cu deposition adds height to the Ge terrace, but stays lower than a full
atomic plan. While most islands have a height of 0.19 Å above the surrounding Ge
terrace, some islands have been observed to lie one or two atomic plans above the
Ge terrace. Some domains with the superstructure can be seen residing lower than
the surrounding Ge terrace, and often near higher superstructure islands. As the
superstructure is an alloy made of Cu and Ge atoms, we suspect that the formation
of superstructured islands can “drain” surrounding Ge atoms, thus creating holes
in which Cu atoms will deposit and form their own superstructure there.

Increasing the Cu surface coverage leads to large areas covered by the super-
structure. We show in Figure 4.22a an almost entirely covered surface, with a
zoom-in in Figure 4.22b, both measured at 2 V, 250 pA. The unit lattice of the
superstructure is drawn on top, and its measured dimension is 35±1 Å in both
directions. The lattice parameter of Ge(111) being of 4 Å, the superstructure mea-
sured is in agreement with the (“8.88×8.88”)R30° model proposed by Böhringer et
al. [9] presented in section 4.1, which should lead to a 35.5Å lattice parameter. We
recall here that this superstructure is quasi-commensurate domains of Cu and Ge
atoms separated by domain walls. With a bias below 2 V and at smaller scales,
it is possible to obtain the atomic resolution of those domain walls, as shown in
Figure 4.23. Those domain walls form double rows, arranged in zig-zag patterns.
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Fig. 4.19 – Ball-and-stick model of the Ge(111)−c(2×8) surface in the top
view and side view (cut along the line LL’). Adatoms, first-layer atoms, and
second-layer atoms are shown by large black circles, medium-sized circles
(shaded for rest atoms, whites for backbond atoms) and small white circles,
respectively. A (2×2) and a conventional c(2×8) unit cells are also drawn.
Figure and caption from [35].
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(a) Large scale image of the Ge(111)-
c(2×8) surface

(b) Asymmetric c(2×8)

(c) Symmetric c(2×8)

Fig. 4.20 –Ge(111)-c(2×8) surface, measured at 2 V, 250 pA (empty states).
(a) 90 nm×60 nm. The characteristic rows are well visible, and different
domains are seen. (b) Asymmetric phase of the c(2×8), where all adatoms
do not have the same apparent height. 15 nm×9 nm. (c) Symmetric phase
of the c(2×8), where all adatoms have the same apparent height. 26 nm×8
nm. In (b) and (c), the c(2×8) unit cell is drawn on top, and measures 8
Å×30 Å.
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Fig. 4.21 – For low Cu coverage, the hexagonal superstructure correspond-
ing to the (“8.88×8.88”)R30° reconstruction forms preferentially at the foot
of atomic steps, or forms islands, leaving parts of the Ge terraces uncov-
ered. From the cut indicated by a white arrow whose profile is on the right,
the apparent height of the superstructure is 1.9 Å above the Ge terrace and
1.4 Å below the next.

In Figure 4.23 (a), on the top right of the image we can see a Ge terrace, with an
intermixing of c(2×8), (2×2) and disordered areas. The others areas are covered
by the superstructure. Once again, the superstructure unit cell is represented. In
Figure 4.23 (b) is presented a zoom-in insert from (a) of the domain walls, where
the zig-zag arrangement is visible. In Figure 4.23 (c), the atomic resolution inside of
the superstructure is achieved, measured at 150 mV and 1 nA (empty states). De-
spite being noisy, the periodicity observed, measured using a fast Fourier transform
(Figure 4.24) is 4.3±0.1 Å, in good agreement with the 5% expansion compared to
Ge(111) (1×1) described by Böhringer et al. [9], resulting in a 4.2 Å parameter.

This STM work confirmed the previous observations of Böhringer et al. [9] of the
Cu induced (“8.88×8.88”)R30° surface reconstruction on Ge(111). A discommensu-
rate superstructure forms with an overall periodicity 8.88 larger than the Ge(111)
unreconstructed surface. This superstructure is locally quasi-commensurate, and
forms domains separated by walls. We note that it is the first time that the do-
mains are resolved atomically at room temperature, even though it was not expected
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(a)

(b)

Fig. 4.22 – STM images of the (“8.88×8.88”)R30° superstructure. (a) The
surface is almost entirely covered by the Cu induced superstructure. The
islands formed at lower coverage merged together forming terraces. 175
nm×170 nm. (b) Detailed image of the superstructure. In these conditions,
the internal atomic arrangement cannot be resolved. The unit lattice of the
superstructure is drawn on top, and measures 35 ±1 Å in both directions, in
good agreement with the proposed 8.88 periodicity. 26 nm×20 nm, empty
states.

to be possible at room temperature due to the high atomic mobility and possible
site exchanges of the Ge and Cu atoms forming the reconstruction. We remark
however the difficulty to obtain stable images in those conditions. Now that the
atomic structure of our system is understood, it would be interesting to study its
electronic properties. Furthermore, the surface stoichiometry is still undetermined,
with Cu2Ge and CuGe2 being the main contenders, making it difficult to predict
its electronic properties.



4.3. The (“8.88×8.88”)R30° phase of Cu/Ge(111) 167

Fig. 4.23 – STM images of the Cu/Ge-(“8.88× 8.88”)R30° surface. Left:
the walls separating each domain of (“8.88×8.88”)R30° are visible. They
are formed of double rows with an alternating arrangement (i.e. a zig-zag
pattern). The unit cell is drawn on top, with its corners on the centers of
domains. On the top right corner of the image, a Ge terrace is visible, with
mixed phases of (2×2), c(2×8) and disorganized areas. 25×25 nm, 1.8 V,
1 nA. Top right: insert from the left image, focusing on the domain walls
contrast. One of the domain walls is drawn over with a white zig-zag line.
The inside of the domains is not resolved. Bottom right: atomic resolution
inside the superstructure, for the first time resolved at room temperature.
The atomic distance is measured at 4.3±0.1 Å. 10×8 nm, 150 mV, 1 nA.
All three images probe the empty states.
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Fig. 4.24 – 2D fast Fourier transform of the atomically-resolved
(“8.88×8.88”)R30° superstructure shown in Figure 4.23 (c). The dis-
tance between the most intense points indicates a periodicity of 4.3±0.1
Å, slightly higher (5-10%) than bulk Ge (1×1).

4.3.3 XPS study

4.3.3.1 XPS on clean Ge(111)-c(2×8)

We start by measuring the core levels spectra of the clean Ge(111) substrate. The
Ge 3d core-level of the clean Ge(111)-c(2×8) was measured at three different pho-
ton energies (hv = 80 eV, 180 eV and 280 eV). The fitted spectra are presented in
Figure 4.25, with the contributions observed attributed to the atomic model pre-
sented above. All spectra were analyzed with four spin-orbit doublets, one of which
corresponds to the bulk Ge (labelled B), and three others to surface components
(labelled S1, S2, S3), none of which can be attributed to an oxide species. The
assignation of the bulk component is justified by the increase of relative area with
probed depth (i.e. photon energy) compared to the relative area diminution of the
other components. The positions of the surface peaks, relative to the bulk peak,
are as follows: ∆B-S1 = -0.26 eV, ∆B-S2 = -0.75 eV, ∆B-S3 = +0.17 eV. Those
relative positions are given at ±0.01 eV, corresponding to the variation observed
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between the peaks’ relative positions in the different fits. The spin-orbit splitting
between the 3d5/2 and 3d3/2 peaks is found to be ∆SO = 0.58 eV in agreement with
the tabulated values, and the branching ratio was fixed at 0.66. As the surface does
not appear metallic (see ARPES results in subsubsection 4.3.4.1), all peak shapes
used are Voigt functions, with a FWHM of 0.12 eV and a Gaussian broadening of
0.31 eV with variations of the order of ± 0.02 eV depending on the photon energy
(without any noticeable trend). The background was fitted using an individual
Shirley-step function with the same parameters for each peak. Peak width, peak
area and Shirley-step height were the only parameters allowed to vary from one
spectrum to another, resulting in a very robust fit. This fit is also in good agree-
ment with the existing literature [32, 36]. Each surface component can then be
attributed to distinct atomic sites. A model of the atomic structure of Ge(111)-
c(2×8) surface is presented in Figure 4.19, consisting of adatoms and rest atoms
(i.e. first-layer atoms not bonded to adatoms). Using the work of Göthelid et al.
[36], the S1 peak can be attributed to first-layer backbond atoms (wide white cir-
cles), the S2 peak to the rest atoms (shaded circles) and the S3 peak to the adatoms
(large black circles). In the model structure presented above, the second layer atom
signal is indistinguishable from the bulk.

4.3.3.2 XPS on the (“8.88 x 8.88”)R30° phase of Cu/Ge(111)

XPS spectra of the Ge 3d core level of Cu/Ge(111) are presented in Figure 4.26. The
surface, already described above and schematically presented in Figure 4.3, is rather
complex and presents many different chemical environments for the Ge atoms. A
proper fitting of the spectra recorded is thus rather delicate and was made possible
only due to the high-resolution of synchrotron light. We measured the Ge 3d core
level for three different photon energies (hv = 80 eV, 180 eV and 330 eV) to gain
insight on the origin of the signal and obtain more robust fits. For all cases, the
best fit was obtained using six asymmetric Doniach-Sunjic doublets. To ensure a
physical grounding of the fits, an array of precautions and constraints were taken.
For a given photon energy, Lorentzian FWHM (WL), Gaussian broadening (WG)
and the Shirley-step background were constrained to be the same for all peaks,
with starting parameters based on the clean Ge(111) Ge 3d fits. A broadening of
all peaks is observed at hv = 330 eV, explained by a decrease in experimental res-
olution. The asymmetry parameter used was identical for all peaks (0.026). Those
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Fig. 4.25 – XPS spectra of the Ge 3d core level of clean Ge(111)-c(2x8) sur-
face reconstruction, measured at different photon energies. All spectra are
fitted by four spin-orbit doublets, one of which corresponds to the bulk (B)
and three others to surface components (S1, S2, S3). These contributions
are linked to the atomic model of Ge(111)-c(2x8), image from [35].
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parameters are all gathered in Table 4.1a. Finally, we made sure that the relative
peak positions were the same for all spectra. These positions are given with respect
to the peak labelled as Peak 1, in binding energy. The FWHM and relative peak
positions are given with a precision of 0.01 eV, corresponding to the variations ob-
served on the different fits.
We will now discuss the origin of the different spectroscopic contributions, some
being shown directly on the atomic model in Figure 4.26. We present in Table 4.2
the percentage of the total fitted area occupied by each doublet, for every photon
energy used, and comment on their variation for increasing photon energy. Totals
might not be of 100% due to rounding errors. We should note that the precision
in the determination of peak area is subject to caution, especially with the use of
Doniach-Sunjic peaks which extend up to infinity and thus have an area which de-
pends on the energy range selected for the fit window. We estimate the precision
to a few % of a given peak own’s area at best.

From 4.2 it is clear that Peak 1 increases the most with photon energy (i.e.
with depth sensitivity). We thus attribute it to the bulk Ge, laying below the three
atomic layers forming the surface. Peak 6, located at -0.19 eV from Peak 1, also
increases in area with photon energy. This peak thus does not originates from the
topmost atomic layer. Three components (Peak 2, Peak 3 and Peak 4 ) show a
decreasing relative area with increasing photon energy, and are thus attributed to
surface components. The last component, Peak 5, has a too-small relative area
change to see a clear variation trend. If we look at the atomic model shown in
Figure 4.3, we can identify at least three different chemical environments for Ge
atoms in the case of a CuGe2 surface stoichiometry: bulk, last Ge layer (taken into
account in the surface stoichiometry), and topmost layer (H3 sites). In the case of a
Cu2Ge surface stoichiometry, the topmost layer is entirely populated by Cu atoms,
there is thus one less chemical environment for Ge atoms. To this we can add the
domain walls, even though it is not sure from what element they are constituted.
Furthermore, they are not structurally described, so we have no information on a
possible multiplicity of contributions. The two different stacking models could also
lead to different contributions, however with all first- and second-neighbours being
the same for all Ge in both stacking configurations we find it more likely that those
differences might not be resolved.
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Photon energy WL WG

80 eV 0.12 0.21
180 eV 0.12 0.24
330 eV 0.12 0.33
∆SO 0.58 eV
Branching ratio 0.66
Asymmetry 0.026

(a)

Distance to Peak 1
Peak 2 - 0.41 eV
Peak 3 - 0.66 eV
Peak 4 + 0.23 eV
Peak 5 + 0.52 eV
Peak 6 - 0.19 eV

(b)

Table 4.1 – Fitting parameters used for the Cu/Ge(111) Ge 3d core-level. (a)
Lorentzian FWHM (WL) and Gaussian broadening (WG) are given for all photon
energies, along with spin-orbit splitting (∆SO), branching ratio and Doniach-Sunjic
asymmetry parameters that are kept identical for all fits. (b) Peak positions relative
to peak 1 are presented, in binding energy.

% of total area Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6
80 eV 15 31 12 6 2 34
180 eV 19 29 9 4 1 38
330 eV 28 22 8 3 1 38
Variation Increase Decrease Decrease Decrease Stable Increase

Table 4.2 – Percentage of the total fit area occupied by each peak for each photon
energy. A decrease of area with increasing energy indicates an origin at the surface,
while an increase of area indicates an origin in the bulk/below the surface.

Using this information we can attribute Peak 1 to the bulk and Peak 6 to
the last Ge layer. Looking at the peaks’ relative areas, we then attribute Peak
2 to the topmost layer as its area is the largest of the surface contributions and
should originate from the atomic sites hosting more atoms. This assumes a surface
stoichiometry of CuGe2. The second-largest area surface contribution is Peak 3, and
is attributed to the domain walls. We are left with two small contributions, Peak
4 from the surface, and Peak 5, that could be attributed to Ge atoms substituting
Cu atoms on the lower surface layer (Su sites), patches of clean Ge left uncovered,
or Ge surface clusters. We note that this attribution of the peaks observed to the
atomic structure could be greatly improved by a definitive atomic model and the
determination of the surface stoichiometry of this system.
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Fig. 4.26 – XPS spectra of the Ge 3d core level of Cu/Ge(111) at different
photon energies: hv = 80 eV, 180 eV and 330 eV. Six asymmetric Doniach-
Sunjic doublets are used for all fit, with constrained parameters described
in the text. On the bottom right is recalled the proposed atomic structure,
with a partial attribution of the XPS components.
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4.3.4 ARPES study

4.3.4.1 ARPES on clean Ge(111)-c(2 × 8)

There exist a few ARPES studies dating from the eighties describing the band struc-
ture of Ge(111)-c(2×8) [19–22], from the time where the c(2×8) atomic structure
was still to be fully determined. All of these studies do not fully agree on band
assignment and existence, mainly due to the limited resolution and acquisition of
the 1D detectors used at the time, but the work of J. Aarts et al. [22] provides an
excellent comparison and discussion of all those results, and was here used exten-
sively for the analysis. It is worth remarking that purely computational work, while
more recent, tends to obtain a metallic character of the surface due to difficulty in
determining an accurate bandgap [29, 37], despite experimental observations show-
ing the existence of a non-null bandgap [38]. We could not find contemporary (≤
20 years) ARPES work on Ge(111)-c(2×8), even though it has been used as a sub-
strate for 2D systems such as Pb/Au [39], Sn [34], In/Pb [40] or Pb [41], all studied
by ARPES.

We present in Figure 4.27 and Figure 4.28 the band dispersion of Ge(111)-
c(2×8) at hv = 50 eV and hv = 20 eV respectively. Both spectra are measured
along the Γ-K direction with respect to Ge(111), using LH polarized light. In both
cases, a 2D curvature of the spectrum is presented to determine more accurately
the bands’ shape and position. The observed bands are labelled on the curvature
images. Three dispersive features with a strong signal between -2.5 eV and -4 eV are
observed on the spectra taken at hv = 20 eV, and are labelled A, B and C. We can
remark an asymmetry of intensities between the right and left sides of Γ, which was
already observed in previous works and accurately modelled by calculations [21].
On the hv = 50 eV spectra, only the A feature is observable, with its minimum
(not observed in this angular range) below -8 eV, in good agreement with Wachs
et al. [20] whereas other sources do not observe any features below -4 eV [19, 22].
All experimental work until now only observed two of these bands (A, B or C),
but they are all expected from the calculations and can be assigned to bulk band
transitions [21]. On Figure 4.27 (hv = 20 eV), three features are observed between
-0.5 eV and -2 eV, labelled S1, S2 and S3. All of them can be attributed to surface
states [22]. S1 and S2 are again observed in Figure 4.28 (hv = 50 eV), along with
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(a) (b)

Fig. 4.27 – (a) Band dispersion of Ge(111)-c(2×8) at hv = 20 eV, along
Γ-K/Ge(111), and LH polarized light. (b) 2D curvature image of (a).

a non-dispersive pair of bands labelled S4 and S4’. Despite not being predicted by
calculations, this non-dispersive feature has been observed in most work on Ge(111)-
c(2×8) [19, 20, 22] but not on cleaved surfaces (which do not display the c(2×8)
surface reconstruction), and is thus attributed to a surface state. In previous works,
only one band was seen, and we attribute the presence of two here to the higher
energy resolution of our experiment. We also remark the presence of a bandgap,
none of the bands reaching the Fermi level. Careful calibration of the Fermi level
was made using the sample holder as a reference and assuming no sample charging
as none was observed during XPS measurements.

4.3.4.2 ARPES on Cu/Ge(111)

The Fermi surface of Cu/Ge(111), measured at hv = 50 eV, is presented in Fig-
ure 4.29a. Multiple bands are observed. As the surface is discommensurate, Umk-
lapp scattering is strongly expected similarly to Cu2Si/Si(111). The aim here is to
identify the main bands and their Umklapp replicas, corresponding to a translation
by a vector of the reciprocal lattice of the overlayer. The bands close to Γ will
be discussed later below. The whole identification process is shown step by step
through Figure 4.29b to Figure 4.29g. We start with two bands: one hexagon shown



176 Chapter 4. Towards the experimental realization of Cu2Ge

(a)
(b)

Fig. 4.28 – (a) Band dispersion of Ge(111)-c(2×8) at hv = 50 eV, along
Γ-K/Ge(111), and LH polarized light. (b) 2D curvature image of (a).

in blue, and a hexagram inscribed in the hexagon, shown in orange. The replicas
must preserve the sixfold symmetry, each band must then be replicated six times.
All translating vectors must also have the same norm. Taking those constraints
into account, we show in the following figures the patterns obtained by translation
of the two main bands, and overlay them to the spectrum, first individually and
then together. While the measured intensity of the bands varies strongly with the
measured region in k-space, all observed features are nicely superimposed to the
bands drawn. The size of the translation vectors, determined based on the spectra,
is 0.19 Å-1. From 2D scans at higher photon energy, we determined Γ−K = 0.974
Å-1, leading to a reciprocal lattice vector of 1.69 Å-1, for Ge(111). The periodicity
to the surface being 8.88 larger than the bulk, we expect Umklapp vectors of size
1.69/8.88 = 0.19 Å-1, in excellent agreement with our measurement.

ARPES spectra along the Γ−K direction for selected photon energies are pre-
sented in Figure 4.30 and Figure 4.31, with LV and LH polarized light respectively.
The relative intensity of the bands observed is strongly dependent on the mea-
surement parameters, especially concerning the bands close to Γ, which can almost
be suppressed with LV light depending on the photon energy. By comparison to
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the ARPES spectra obtained previously on the clean Ge(111)-c(2×8) substrate, we
assign those bands to bulk states. On the figures, they correspond to all bands en-
compassed by the black dotted lines. It is worth remarking that some of those bands
cross the Fermi level, implying a vertical shift in the bands (i.e. a charge transfer)
compared to the clean substrate of approximately 0.7 eV. These bulk bands near Γ
are also well seen along the Γ−M direction, shown for hv = 50 eV in Figure 4.32.
The other bands, best seen on Figure 4.30 bottom (hv = 50 eV, LV polarization) are
marked by white lines, and are attributed to the surface as they do not correspond
to anything observed on clean Ge(111). We confirm that their Fermi vectors are
identical to the ones from the Fermi surface spectrum.

The spectroscopic measurements from this chapter were all obtained at the
UARPES beamline of Solaris synchrotron.
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(a) (b)

(c) (d)

Fig. 4.29 – First part - (a) Fermi surface of Cu/Ge(111) at hv = 50 eV,
with LV polarized light. Many bands are observed, and Umklapp scattering
is expected due to the discommensurate surface. (b) Two main bands are
proposed, one hexagonal (blue) with an inscribed hexagram (orange). (c)
and (d) Duplication of the band by six translations. Vector sizes are all
identical and determined from the spectrum.
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(e) (f)

(g)

Fig. 4.29 – Second part - (e) and (f) superposition to the spectrum of
the patterns obtained from the translation of the hexagonal and hexagram
bands respectively. (g) superposition of both patterns to the original spec-
trum. All features measured are superposed to the bands drawn.
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Fig. 4.30 – ARPES spectra of Cu/Ge(111) along the Γ − K direction,
with LV polarized light, for different photon energies. All features around
Γ encompassed by the dashed black lines are attributed to bulk bands.
Surface bands are indicated on the bottom image by white lines.
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Fig. 4.31 – ARPES spectra of Cu/Ge(111) along the Γ − K direction,
with LV polarized light, for different photon energies. All features around
Γ encompassed by the dashed black lines are attributed to bulk bands.
Further, many bands are observed crossing the Fermi level. On the bottom
image, at hv = 100 eV, the K high-symmetry point is visible and denoted
by a vertical white line.
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Fig. 4.32 – Cut along the Γ −M direction, at 50 eV, with LV polarized
light. The bands close to Γ, attributed to the bulk, are well visible here.

4.3.5 Conclusions about Cu/Ge(111)

If we compare the band structure of Cu/Ge(111) to the one of Ge/Cu(111), we
quickly realize they are very different. The first difference lies in the presence of
strong bands near Γ reaching up to the Fermi surface and originating from the
substrate, while in Ge/Cu(111) all the bands involved in the conduction originated
from the surface layer. The second, in the absence of any electron-like band that
could cross the others bands and induce a DNL. Here, on Cu/Ge(111), no band
crossing is observed. Thirdly, the relative positions of the two surface bands ob-
served are exchanged as compared to Cu2Ge: the hexagonal band is the outer one,
while the hexagram becomes the inner one. Finally, the presence of strong Umklapp
features are observed.

Those differences can be explained by two main causes. The first one, most ob-
vious, is the difference in the atomic structure. From the existing literature and our
results, it appears clearly that Cu/Ge(111) does not form a planar hexacoordinate
surface, and could have a different stoichiometry than Cu2Ge, resulting in a system
entirely different from the theoretical Cu2Ge or the experimental Cu2Ge/Cu(111)
that we presented. We nevertheless remark that the band structure observed does
not correspond either to the one computed for a flat CuGe2 monolayer, presented
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in Figure 4.17.

However, the atomic structure in itself was not a deterrent for this experiment,
as a buckled Cu2Ge surface could have led to gaped DNL states. The second
cause is the substrate’s influence. Indeed, the Ge(111) substrate presents dangling
bonds and forms strong bonds with the Cu evaporated on top, making it impossi-
ble in this case to obtain a surface decoupled from the substrate as in the case of
Cu2Ge/Cu(111), which also leads to the discommensuration and thus the Umklapp
replicas. By analogy with Cu2Si/Si(111), we also hypothesize that the absence of
an electron-like band might originate from the hybridization of out-of-plane orbitals
of the substrate with the surface. Indeed, the gamma band of Cu2Ge originates
mainly from the Ge pz orbital [2] (SM), which is out-of-plane, and is the one most
strongly impacted here by the substrate change.

This system presents many similarities to Cu2Si/Si(111): discommensurate do-
mains leading to Umklapp states, intense substrate states near Γ, and a buckled
surface. In both cases, the surface cannot be considered independent from its sub-
strate and its electronic band structure is different from what is expected from the
corresponding 2D free-standing monolayer. This highlights the importance of ex-
perimental realizations, needed to observe the full complexity of physical systems,
which is not available in initial computational results.

This work is, to the best of our knowledge, the first complete electronic structure
characterization of the (“8.88×8.88”)R30° surface reconstruction of Cu/Ge(111).
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Chapter 5: First steps on Pb/SiC, a good can-
didate for quantum spin Hall effect

5.1 Pb/SiC, a system full of promise

As discussed in subsection 1.2.1, possible candidates for the QSHE are honeycomb-
lattice structures with two sublattices, similar to graphene, according to the Kane
and Mele model [1, 2]. We also mentioned that a larger gap was more likely to be
obtained in systems with high SOC, i.e. in systems with heavy elements. It is then
only natural to look for candidates in the X-ene family: mono-elemental systems
exhibiting the same 2D honeycomb structure as graphene, usually chemically close,
and preferentially towards the heaviest elements, such as Pb or Bi.

Recently, a new candidate for room-temperature QSH insulator was proposed,
consisting of a hexagonal or honeycomb monolayer of lead [3–8], and silicon car-
bide (SiC) was proposed as a substrate [6]. Remarkably large band gaps were
found, ranging from 0.5 eV - 1 eV for a simple monolayer [3] to 1 eV - 1.34 eV for
hydrogen-decorated layers [4], depending on the model used. These large band gaps
originate from the large intrinsic spin-orbit coupling (SOC) of Pb atoms. However,
experimental confirmation of these theoretical predictions on Pb/SiC is still needed.
Simultaneously, monolayer Bi on SiC(0001) was demonstrated to host edge states
compatible with the QSHE theoretically expected in this system, with a large gap
of 0.8 eV at room temperature [9]. Another wide-gap system that seems promising
is hexagonal Sn on SiC(0001), in which a 2 eV gap was measured, with hopes for
TI states [10].

A question therefore arises: can a hexagonal or honeycomb Pb monolayer be
synthesized on SiC, and if so, with what crystalline structure and with which elec-
tronic properties? Even if such a Pb monolayer did not exhibit the QSHE, it could
still display rich physics. Indeed the similar Pb/Si(111) system showed evidence for
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a strongly correlated 2D metal phase at low Pb density [11] or 2D superconductiv-
ity in dense Pb layers [12]. With these perspectives in mind, we present below our
preliminary work on the growth and characterisation of Pb on SiC(0001), starting
with an introduction to SiC and its complex surfaces.

5.2 An introduction to SiC

5.2.1 What is SiC?

Silicon carbide is a large-gap semiconductor full of qualities. It has a hardness com-
parable to diamond, a good thermal conductivity, high radiation resistance, and a
high breakdown voltage. It is also well suited for demanding applications in harsh
environments, such as high temperature, high power, and high-frequency ones due
to its high carrier saturation velocity [13]. It is also to be noted that it oxidizes in
the same way as silicon. It is also a substrate commercially available, facilitating
widespread studies using it.

The structure of silicon carbide (SiC) can be viewed as a stack of planar layers
of silicon and carbon atoms. These layers go by pair (one Si, one C), the distance
between the Si plane and the C plane in a bilayer being much smaller than between a
bilayer and the next. Their atoms are placed on three possible groups of sites we will
call A, B and C, represented in Figure 5.1. In total, more than 250 polymorphisms
have been identified [14], and while some belong to amorphic phases, many of
them are crystalline and are called polytypes. The polytypes differ only in the
stacking sequence of the hexagonally close-packed bilayers of Si and C atoms along
the cubic [111] (or equivalent hexagonal [0001]) direction. For example, stacking
ABCABC. . . correspond to a cubic structure, called 3C-SiC in Ramsdell notation,
while a stacking order of ABAB. . . correspond to a hexagonal structure called
2H-SiC. The Ramsdell notation is a compact notation indicating the periodicity
by a number and the geometry by a letter (C for cubic, H for hexagonal, R for
rhombohedral). Due to its bilayered structure, the two sides of a SiC crystal are
not equivalent: one side will end with a carbon plane, while the other will end with
a Si plane. To differentiate between the sides, an overline is used: the Si-terminated
side of a hexagonal SiC will be designated as (0001), while its C-terminated side
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Fig. 5.1 – On the left is represented the stacking order of the main SiC
polytypes. The rectangle shows the smallest unit reproduced to obtain the
polytype. Figure from [15]. On the right is the top view of the A, B, C
positions.

will be designated as (0001̄), or sometimes as (000-1). All these polytypes result in
a semiconductive material with a large gap, ranging from 2.39 eV (3C) to 3.26 eV
(4H) [13].

5.2.2 SiC surface preparation

SiC has native silicon oxide on its surface, as well as possible contaminants, that
need to be removed to obtain a clean substrate. Over time various cleaning meth-
ods have been proposed and used for SiC, often deriving from the ones used for
silicon. While wet etching was popular at a time [16–18], leaving the SiC as a
(1×1) unreconstructed surface, it often leaves traces of contaminants and/or oxide,
and is not able to remove the surface scratches and subsurface defects left behind
by polishing. Dry etching has been shown to overcome those issues [9, 19, 20]. It
consists of heating the substrate in a UHV chamber to up to 1230°C under a H2

and He atmosphere (close to 1 atm of gas pressure is used), leaving an H-passivated
(1×1) surface. The main limitation of dry etching is the very specific equipment
and UHV chamber it requires.

We adopted a third approach: deoxidation and cleaning by direct-current heat-
ing. Commonly used, sometimes after wet etching, this technique requires passing a
current through a SiC sample inside a UHV chamber, high enough for the topmost
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Si layers to evaporate, removing the native oxide and any surface contaminants in
the process [13, 18, 21]. This method results in an array of possible surface recon-
structions dictated by the heating temperature. Figure 5.2 shows the LEED pat-
tern of the three main surface reconstructions obtainable from 6H- or 4H-SiC(0001):
(3×3), (

√
3×
√

3)R30° and (6
√

3×6
√

3)R30°, from the most silicon-rich to the most
carbon-rich surface. Indeed, as the silicon evaporates at a lower temperature than
the carbon, continuous heating will deplete the surface in silicon. It is then possible
to enrich the surface again by evaporating Si on it.

Usually, the SiC substrate is kept for a night at 600°C, to outgas most of the
contaminants while keeping intact the oxide layer. It is then flashed around 1100°C
to remove the oxide, in a vacuum pressure always kept below 10-9 mbar. To obtain
the (3×3) surface reconstruction, it is then necessary to heat at 650-800°C under
a constant flux of Si. This surface is pyramids of Si atoms (one adatom on top of
three trimers) resting on top of an additional Si layer, as shown in Figure 5.3 (a).
Further annealing at 1000°C will deplete most of the surface Si and result in the
(
√

3×
√

3)R30° reconstruction, formed by a Si adlayer as shown in Figure 5.3 (b).
These adatoms adsorb on the T4 sites, directly above some of the C atoms of the
last SiC bulk layer. This model is the most recently accepted one [22]. Above 1100
°C, the (6

√
3× 6

√
3)R30° surface reconstruction will appear. Its exact composition

is still debated, but it is now agreed upon that its topmost layer is a honeycomb
carbon layer partially covalently bonded to the Si-terminated SiC substrate [23],
sometimes called the zero-layer graphene (ZLG), as shown in Figure 5.4. Higher
annealing temperatures results in the graphitization of SiC [24, 25]: the silicon
atoms in the SiC bilayers will evaporate, resulting in a graphitized surface. By finely
controlling the annealing it is possible to obtain a single graphene layer on top of
SiC [23, 26–28], a possibility that renewed interest in SiC as a substrate.In addition
to these well-known surface reconstructions, a large amount of meta-stable phases
exist, especially in-between the (3×3) and the (

√
3×
√

3)R30° reconstructions.
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Fig. 5.2 – Phase diagram of SiC(0001) with LEED images, measured at
75 eV, 100 eV and 100 eV respectively. Under annealing, the surface gets
depleted in Si, and different surface reconstructions with increasing C/Si
surface ratios are being observed. The (1x1) bulk periodicity is identified
by a red circle.

Fig. 5.3 – Atomic models of SiC(0001) reconstructions. (a) shows the (3×3)
surface, where Si adatoms and trimers rest on top of an additional Si layer.
(b) shows the (

√
3×
√

3)R30°, formed by an Si adlayer.
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Fig. 5.4 – Side view of the (6
√

3×6
√

3)R30° structure. It is terminated by a
honeycomb carbon layer, the zero-layer graphene, that is partially bonded
to the SiC bulk.

5.3 Pb/SiC Experimental results

5.3.1 Growth and sample preparation

The growth of Pb on SiC(0001) has been investigated for the three main surface
reconstructions of SiC(0001): (3×3), (

√
3 ×
√

3)R30° and (6
√

3 × 6
√

3)R30°, with
more interest given towards the first two.

The first step of this study was the preparation of a 4H-SiC(0001) substrate as
described above.From there, Pb was deposited from an evaporation cell on the SiC
kept at room temperature, and anneals were performed in front of the LEED by
steps of 50°C. One new crystalline phase, with periodicity (2×2), was observed by
LEED after Pb deposition on a SiC-(

√
3×
√

3)R30° surface, as shown in Figure 5.5.
Deposition of 1 ML of Pb led to the dissipation of the (

√
3 ×
√

3)R30° LEED
pattern, leaving only the bulk (1×1) visible. A subsequent anneal with T°= 200-
250°C results in a (2×2) pattern, stable up to 500°C, above which the LEED pattern
reverts to the (

√
3×
√

3)R30° surface reconstruction, indicating Pb desorption. We
note that the Pb coverage given is only indicative, due to the large imprecision in
the calibration realized from a quartz microbalance.

Figure 5.6 shows a top-view schematic representation of the SiC (
√

3×
√

3)R30°
surface reconstruction. On it is represented the (1×1) unit cell, the (

√
3×
√

3)R30°
unit cell, as well as a (2×2) unit cell. Different simple models of adsorption sites
for Pb atoms result in a (2×2) periodicity. Most likely, they could rest on H3 sites
(at the centre of the hexagons, i.e. at the corners of the unit cell drawn), or occupy
some of the T4 sites left empty as well as replace some T4 Si atoms.
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Fig. 5.5 – Phase diagram of Pb evaporation on SiC (
√

3×
√

3)R30°. Evap-
oration of 1 ML at room temperature covers the surface reconstruction.
After an anneal at 250°C, a (2×2) periodicity appears. Pictures taken at
100 eV, 80 eV and 110 eV respectively.

In Figure 5.7, we show STM images of the Pb induced (2×2) surface recon-
struction. On the large scale image, the formation of 3D faceted Pb islands is
observed.Zooming in between the islands, we observe an atomic arrangement with
periodicity (2×2) with respect to SiC(0001) surface. By varying the Pb deposition
amount and annealing temperature it has been deduced that Pb forms a wetting
layer that can crystallize with a (2×2) periodicity under the right conditions, and
that extra Pb will form 3D islands, increasing in size with the annealing tempera-
ture.

While this (2×2) surface reconstruction has been reproduced on different sam-
ples and with different Pb sources in our laboratory, an attempt to reproduce it
at Soleil synchrotron failed, possibly due to a difficulty in monitoring precisely the
annealing temperatures. However, a complete set of XPS measurements was taken,
both on the clean SiC surfaces and after Pb deposition, for the Si 2p, C 1s and Pb
4f core levels. From the LEED patterns, no supplementary crystalline phase was
observed. The STM images shown above, as well as most of the fits presented in
the next section, are mainly the work of Axel Malecot who will pursue this research
project in his ongoing PhD work in our team.
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Fig. 5.6 – Schematic representation of the unit cells of the SiC (
√

3 ×√
3)R30° in black and SiC (1×1) in orange, and a (2×2) unit cell in purple.

White circles represent Si atoms, with the larger ones being one atomic
plan above, on the T4 adsorption sites. Black circles represent C atoms,
located below the Si ones.

Fig. 5.7 – STM images of Pb/SiC (2×2) reconstruction. On the large scale
image, the formation of Pb 3D islands is observed. On the small scale image,
measured in the yellow square area, we observe the atomic resolution of the
Pb induced (2×2) phase. Images provided by A. Malecot.
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5.3.2 XPS measurements on Pb/SiC-(3×3)

In Figure 5.8 is shown the Si 2p core level measured on a clean SiC-(3×3) surface,
for three photon energies (170 eV, 250 eV, 350 eV). The fits and attribution were
made following existing work [29, 30]. In all cases, Voigt functions were used, with
a Lorentzian FWHM of 0.15 eV. Four doublets are necessary to fit the spectra: two
originates from the bulk (B and B*) and two are surface states (SS1 and SS2),
whose origins are represented on the atomic model. The SS1 component comes
from the Si adatoms, while the SS2 originates from the Si trimers and Si adlayer
atoms. The attribution to the bulk or the surface is justified by the evolution of the
peaks’ relative area with the photon energy. Bulk peaks increase with increasing
photon energy, while surface ones decrease in intensity. It is worth noting that two
bulk components are observed, a specificity of the 4H polytype of SiC [30]. The B
and B* components originate from the presence of two domains corresponding to
different stacking sequences of the last Si-C bilayers. They are however usually not
observed on other surface reconstructions than the (3×3).

After deposition of 0.75 ML of Pb on top of a SiC-(3×3) at room temperature,
the LEED still shows a clear (3×3) pattern, with no additional spots. In Figure 5.9
(a), (b), and (c), Si 2p fits are presented for photon energies of 170 eV, 250 eV,
and 350 eV. The same four doublets as used before Pb deposition yield a good
fit. A comparison of the peaks’ relative positions, as well as their Gaussian widths
are shown in Table 5.1. Here again, Voigt functions were used, with a Lorentzian
FWHM of 0.15 eV. Two peak shifts are observed with respect to the bulk peak B:
a 0.10 eV shift of the SS2 peak towards lower BE, and a 0.05 eV shift of the B*
towards higher BE. We also remark that the SS1 peak, attributed to Si adatoms,
has lowered in intensity.

By looking at Figure 5.10 (a) and (b), showing the Pb 4f core level for hv = 287
eV and 387 eV respectively, we see that only one component is sufficient to account
for the spectra recorded. The fits were done by a Doniach-Sunjic line-shape to ac-
count for the asymmetry of the core level, as is usual for Pb fits, with an FWHM of
0.3 eV and a Gaussian broadening of 0.34 eV. This implies that all Pb atoms have
a similar chemical environment. Additionally, the C 1s core level, which remains
unchanged before and after Pb deposition as shown in Figure 5.10 (c), indicates
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Fig. 5.8 – Si 2p core level of SiC-(3×3) for three photon energies. For all
spectra, an identical set of four doublets are used for the fit. Two doublets
originate from the bulk (B and B*) and two from the surface (SS1 and
SS2). The origin of the contributions is represented on the atomic model
in (d), image from [31]. Fits parameters are given in Table 5.1.
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Relative positions (eV) B-B* B-SS1 B-SS2

SiC (3×3) 0.36 1.30 0.80

Pb + SiC (3×3) 0.41 1.31 0.90

Gaussian widths (eV) B B* SS1 SS2

SiC (3×3) 0.80 0.80 0.48 0.48

Pb + SiC (3×3) 0.80 0.80 0.48 0.48

Table 5.1 – Fit parameters and peak positions relative to the bulk peak (BE scale)
for the Si 2p core level before and after deposition of 0.75 ML of Pb on SiC-(3×3).
All peaks are fitted using Voigt line-shape with a Lorentzian FWHM of 0.15 eV.
The precision is given at ±0.02 eV for the binding energies and at ±0.05 eV for the
Gaussian broadening.

that Pb atoms stay on the surface and do not interact with the bulk C atoms, only
present in the bulk. One possible explanation is that the Pb atoms replace some
of the Si adatoms, which would explain nicely the shift observed in SS2, and the
diminution in intensity if SS1, which would then be comprised of fewer Si atoms
than before Pb deposition. We note however that to be fully coherent with this
picture, the presence of the S1 component after Pb depositions indicates that not
all Si adatoms are replaced by Pb. We should then have another SS2 peak at the
same binding energy as before. It is not clear why it is not observed here, possibly
it is not resolved. Another possibility would be that the Pb atoms lie in-between
the tetrahedrons formed by the Si adatoms and trimers. Yet another possibility
would be that the Pb atoms form an amorphous phase, adsorbing in-between the Si
trimers, and that there are unresolved components in the Pb 4f core level. However,
the first hypothesis appears favoured by the recent STM measurements performed
in our group by A. Malecot at the time of the writing. The existence of a crystalline
Pb-(3×3) phase forming on SiC-(3×3) is thus a possibility to explore.

As a side note, measurement of Pb core level showed that annealing above 370°C
resulted in the complete desorption of Pb on the SiC-(3×3) surface, indicating a
lower adherence on this surface than on the SiC-(

√
3 ×
√

3) where we observed
Pb up to 550°C, and on epitaxial graphene on a SiC-(6

√
3 × 6

√
3) surface, where
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Fig. 5.9 – Si 2p core level measured after deposition of 0.75 ML of Pb
on SiC-(3×3) for three photon energies. (a) shows a superposition of the
before/after Pb deposition Si 2p spectra For all spectra, an identical set
of four doublets are used for the fit, labelled in the same manner as in
Figure 5.8. Fits parameters are given in Table 5.1.
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Fig. 5.10 – (a) and (b) show the Pb 4f core level measured after deposition of
0.75 ML of Pb on SiC-(3×3) for hv = 287 eV and 387 eV respectively. Only
one asymmetric doublet is observed. (c) shows a superposition before/after
Pb deposition of the C 1s core level. No difference is observed.
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annealings up to 1250°C have been reported [32] before Pb desorption.
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5.3.3 XPS measurements on Pb/SiC-(
√

3×
√

3)R30°

We now turn to the SiC-(
√

3×
√

3)R30° surface. Its Si 2p core level was measured
and is shown in Figure 5.11. In addition to the bulk peak, three surface compo-
nents are identified, their area diminishing with increasing photon energy (i.e. with
surface sensitivity). Their attributions are represented on the atomic model of the
SiC-(

√
3×
√

3)R30° shown in Figure 5.13: the SS1 peak originates from the last Si
atomic layer, while the SS2 peak originates from the Si adlayer, by analogy with the
peak attributions made on the SiC-(3×3) surface. The SS3 peak, indistinguishable
at less surface sensitive energy, is attributed to the formation of small Si islands on
the surface, resulting from the Si deposition that is part of the surface preparation
process. Such a component is often found in the literature, such as in [23].

Fig. 5.11 – Si2p core level of SiC-(
√

3×
√

3)R30° measured at (a) hv = 170
eV, and (b) hv = 350 eV. Three and four doublets are observed, respectively.

1 ML of Pb was then deposited on the surface, followed by an anneal at 150-
300°C, the exact temperature being difficult to measure with the pyrometer avail-
able. The LEED observed is a (

√
3×
√

3)R30°, with increased background noise
before the annealing. The Si 2p core level is once again measured, shown in Fig-
ure 5.12. While the bulk and SS1 peak remained unchanged, a shift of -0.20 eV is
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Fig. 5.12 – Si2p core level of ML of Pb on SiC-(
√

3×
√

3)R30° measured at
(a) hv = 170 eV, and (b) hv = 350 eV. New components are observed.

observed for SS2, and two new surface components appear, labelled SS3 and SS4.
Their attribution to the surface is made once again by looking at the variation of
relative areas. Tables comparing the peaks positions, Gaussian broadening, and
percentage of the total fit area before and after Pb deposition are shown in Ta-
ble 5.2. To understand the origin of the new components observed, we will look at
the C 1s and Pb 4f core levels, shown in Figure 5.14 and Figure 5.15 respectively.

The C 1s level appears unchanged by the Pb deposition and is in both cases
nicely accounted for by a unique Voigt peak with Lorentzian FWHM of 0.30 eV
and a Gaussian broadening of 0.48 eV. This indicates that the Pb atoms do not
migrate toward the bulk. From the Pb 4f core level, measured at hv = 287 eV and
387 eV, two components are observed. They are fitted with Doniach-Sunjic peaks
of width 0.3 eV, as for the (3×3) surface, and a Gaussian broadening of 0.48 eV.
The separation between the peaks is 0.75 eV. When surface sensitivity decreases
(higher photon energy), a slight increase of SS1 is observed from 89% to 92% of the
total fitted area, while SS2 decreases from 11% to 8% of the total fitted area. While
this variation is weak, we can posit that the SS1 peak originates from Pb islands,
while the SS2 comes from a purely surface component. This interpretation is mo-
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Fig. 5.13 – Atomic model of SiC-(
√

3×
√

3)R30° surface reconstruction,
formed by a Si adlayer on top of the Si terminated SiC surface. The unit
cell is shown in red. The components observed in the Si 2p spectra shown
in Figure 5.11 are attributed to atomic positions. Image from [31]

tivated by STM results: we have observed that Pb on SiC-(
√

3×
√

3)R30° forms a
wetting layer followed by the creation of islands, increasing in size after annealing.
The (2×2) periodicity observed in our laboratory is formed by the wetting Pb layer.

Without more information on the atomic structure, it appears difficult to assign
a precise origin to the new surface peaks observed in the Si 2p core level. Further-
more, it appears that Pb does not form a crystalline layer on the surface measured:
no new LEED spots were seen here, nor bands by ARPES. Further investigation
should focus on the Pb induced (2×2) crystalline phase observed on this substrate.
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Fig. 5.14 – C 1s core level before (a) and after (b) 1 ML Pb deposition on
SiC-(

√
3×
√

3)R30°, at hv = 354 eV. The C 1s intensity remains unchanged,
originating only from the bulk of SiC, non-interacting with Pb atoms.

Fig. 5.15 – Pb 4f core level after deposition of 1 ML of Pb on SiC-
(
√

3×
√

3)R30°, at (a) hv = 287 eV and (b) hv = 387 eV.
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Relative peaks positions (eV) B-SS1 B-SS2 B-SS3 B-SS4

SiC-(
√

3×
√

3)R30° -0.34 -1.17 -2.05 —

1 ML Pb on SiC-(
√

3×
√

3)R30° -0.33 -0.97 -1.75 +0.60

Gaussian broadening B SS1 SS2 SS3 SS4

SiC-(
√

3×
√

3)R30° 0.58 0.49 0.49 0.49 —

1 ML Pb on SiC-(
√

3×
√

3)R30° 0.65 0.52 0.52 0.52 1.00

% of total area B SS1 SS2 SS3 SS4

SiC-(
√

3×
√

3)R30°
170 eV 55.0 34.9 8.9 1.1 —

350 eV 64.6 31.1 4.3 — —

1 ML Pb on SiC-(
√

3×
√

3)R30°
170 eV 38.5 27.1 18.8 15.7 19.0

350 eV 57.6 22.2 16.2 4.0 18.5

Table 5.2 – Fit parameters for the Si 2p core level before and after deposition of 1
ML of Pb on SiC-(

√
3×
√

3)R30°. The peak positions are relative to the bulk peak,
in BE scale. All peaks are fitted using Voigt line-shape with a Lorentzian FWHM
of 0.15 eV. The precision is given at ±0.02 eV for the binding energies and at ±0.05
eV for the Gaussian broadening.

5.3.4 XPS measurements on Pb/SiC-(6
√

3×6
√

3)R30°

The SiC-(6
√

3×6
√

3)R30° surface reconstruction has a honeycomb surface organi-
zation, terminated by a carbon plan covalently bonded to the Si terminated SiC
substrate, as shown above in Figure 5.4. Higher annealing temperatures lead to
the creation of graphene/graphite layers on top of the surface [24, 25], which we
took care to avoid during our sample preparation. Once the (6

√
3×6
√

3)R30° sur-
face was obtained, 1 ML of Pb was evaporated on it, followed by a short anneal
at 150-200°C. Following the Pb deposition, the LEED pattern observed was still a
(6
√

3×6
√

3)R30°. All the fits on the clean SiC surfaces were made in agreement
with the work of Silly et al. [23]. The C 1s core levels were measured before and
after Pb depositions, and are shown in Figure 5.16, and the fit parameters are pre-
sented in Table 5.3. On the clean surface, before Pb deposition, three components
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are observed. By looking at their evolution with photon energy, the bulk peak is
easily identified. The two others components, labelled S1 and S2, belong to surface
C atoms. The S1 component, located +0.94 eV from the bulk peak, is identified
as originating from the C-Si bonds between the surface C layer and the Si layer
beneath, and from the Si-C van der Waals interactions between Si left on the sur-
face with the C surface layer. The S2 component, at +1.78 eV, is identified as
originating from the C-C bonds in the surface C layer.

After Pb deposition, a new component, labelled S3, is observed at -1.16 eV from
the bulk peak and is attributed to C-Pb interactions. From its evolution with pho-
ton energy, we see that the C atoms at the origin of this peak are buried. This
could be explained by the presence of 3D Pb islands forming on top of the C layer.
The C atoms directly below the Pb atoms would then be at the origin of the S3 peak.

The Si 2p core level, presented in Figure 5.17 with its fitting parameter in Ta-
ble 5.4 appear to support this hypothesis. In addition to the bulk component, three
surface components are observed. S1 is attributed to the covalent Si-C bonds be-
tween the C layer and the Si bulk last layer. S2 is attributed to the van der Waals
Si-C interactions originating from Si that did not sublime during the surface prepa-
ration, staying above the C surface layer. Finally, the S3 component is attributed
to Si-Si bonds in the non-sublimated surface Si.
After Pb deposition, no new component is observed. There is however 0.2 eV shift
in the S2 component, now closer to the bulk peak, and an overall diminution on
the intensity of the bulk peak proportionally to the others. The S2 component
corresponds to Si atoms resulting from the incomplete sublimation of the last Si
layer during the sample preparation, these atoms can be covered by Pb islands,
thus explaining the energy shift. Due to the preparation method, a temperature
gradient exists on the sample during annealing. A shift in the measurement position
before/after Pb deposition could lead to different proportions of non-sublimed Si
atoms on the surface.

Finally, we point out that an STM study on graphitized SiC found that Pb forms
islands on the last C atomic plan (rather than on graphene domains) and that on the
SiC-(6

√
3×6
√

3)R30°, no wetting layer exists [33], which forms a coherent picture
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C 1s SiC-(6
√

3×6
√

3)R30°

SiC-6V3 B S1 S2 S3

Relative position to bulk peak (eV) 0 +0.94 +1.78 —

Gaussian width (eV)

(hv = 354 eV / hv = 534 eV)
0.74 / 0.65 0.74 / 0.65 0.74 / 0.70 —

Normalized area

(hv = 354 eV / hv = 534 eV
0.37 / 1.03 0.40 / 0.37 1.06 / 0.95 —

C 1s Pb/SiC-(6
√

3×6
√

3)R30°

Relative position to bulk peak (eV) 0 +0.84 +1.76 -1.16

Gaussian width (eV) 0.54 0.77 0.77 0.57

Normalized area

(hv = 354 eV / hv = 534 eV
0.27 / 0.91 0.40 / 0.43 1.12 / 1.01 0.04 / 0.10

Table 5.3 – Fit parameters used for the C 1s core level, before and after 1 ML Pb
deposition on the SiC-(6

√
3×6
√

3)R30° surface. Peak positions are given relatively
to the bulk peak, in the BE scale. Two photon energies are used and are specified
when the parameters used vary from one energy to the other. Voigt functions were
used, with a Lorentzian width of 0.39 eV for all peaks. Precision is given at 0.02 eV
for the binding energy, 0.05 eV for the Gaussian width, and approximately 5% of a
given area.

with our XPS measurements. The last two carbon plans of graphitized SiC can
also be decoupled from the substrate by Pb intercalation [28, 32]. It has also been
shown that the ZLG could be decoupled from the SiC substrate by intercalation of
Si atoms, forming a single layer graphene [23].
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Fig. 5.16 – C 1s core level before (a, b) and after (c, d) 1 ML Pb deposition
on SiC-(6

√
3×6
√

3)R30°. The doublets are attributed to specific C atoms
following the atomic model (e)
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Fig. 5.17 – Si 2p core level measured on SiC-(6
√

3×6
√

3)R30° before (a, b)
and after deposition of 1 ML of Pb (c, d), for two photon energies. In all
spectra, four components are observed, and their attribution is shown in
(e) on the atomic model.
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Fig. 5.18 – Pb 4f core level of 1 ML Pb/SiC-(6
√

3×6
√

3)R30°, for two
photon energies. Two components are observed, separated by 0.40 eV. One
increases in intensity with photon energy and is attributed to bulk Pb, and
one diminishes in intensity with increasing photon energy and is attributed
to surface Pb atoms.
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Si 2p SiC-(6
√

3×6
√

3)R30°

SiC-6V3 B S3 S2 S1

Relative position to bulk peak (eV) 0 -2.15 ± 0.1 -0.73 +0.55

Gaussian width (eV) 0.58 0.99 1.00 0.55

Normalized area

(hv = 170 eV / hv = 350 eV
1.01 / 1.02 0.03 / 0.01 0.14 / 0.05 0.07 / 0.04

Si 2p Pb/SiC-(6
√

3×6
√

3)R30°

Relative position to bulk peak (eV) 0 -2.15 ± 0.1 -0.92 +0.58

Gaussian width (eV) 0.58 0.99 1.00 0.55

Normalized area

(hv = 170 eV / hv = 350 eV
0.97 / 1.01 0.09 / 0.04 0.24 / 0.16 0.06 / 0.07

Table 5.4 – Fit parameters used for the Si 2p core level, before and after 1 ML Pb
deposition on the SiC-(6

√
3×6
√

3)R30° surface. Peak positions are given relatively
to the bulk peak, in the BE scale. Two photon energies are used and are specified
when the parameters used vary from one energy to the other. Voigt functions were
used, with a Lorentzian width of 0.15 eV for all peaks. Precision is given at 0.02 eV
for the binding energy, 0.05 eV for the Gaussian width, and approximately 5% of a
given area.

5.3.5 Conclusion and perspectives

From this exploratory work of Pb deposition on SiC(0001), some interesting new
results were obtained. A Pb induced (2×2) phase was observed after Pb deposi-
tion and annealing on a SiC-(

√
3 ×
√

3)R30° surface. Our results also raise the
possibility of an ordered Pb phase on SiC-(3× 3) preserving the lattice periodicity.
This hypothesis of a (3×3) Pb adatom layer replacing the ones of the SiC-(3×3) is
being tested by STM as part of the ongoing experimental work carried out in our
team. Those crystalline Pb-induced phases are not reported in the literature so far.
No other crystalline periodicity has been observed by LEED after Pb deposition
on SiC-(3 × 3) or SiC-(

√
3 ×
√

3)R30°. No crystalline layer was observed after Pb
deposition on the SiC-(6

√
3× 6

√
3)R30° surface. Instead, it appears that Pb forms

3D islands when annealed at low temperature (≈ 250°C).
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The results presented here will serve as the groundwork for the ongoing PhD
thesis of Axel Malecot, in which STM and spectroscopy for Pb on all surfaces recon-
struction of SiC, including the ones from the C-terminated face, will be investigated.
Additionally, the possibility to prepare a clean, unreconstructed SiC(0001) surface
by chemical preparation will be taken into consideration. The electronic properties
of the crystalline layers of Pb on SiC should be investigated, with the prospect of
finding a topological insulator phase with a large gap, while keeping open other
possibilities.
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Conclusions and perspectives

The research presented here aimed at providing a better understanding of two-
dimensional Dirac nodal line systems, with a focus on the experimental realization,
as there are hardly any reported in the literature so far. These systems can serve as
good platforms to study topological phase transitions in two-dimensional materials,
and could be used for high-speed electronics devices.

The main techniques used for characterization were x-ray photoelectron and
angle-resolved photoelectron spectroscopy (XPS and ARPES), mostly performed
using synchrotron sources, as well as some low energy electron diffraction (LEED)
and scanning tunnelling microscopy (STM). Two systems are at the centre of our
work: Cu2Si and Cu2Ge. They are 2D systems with a hexagonal lattice, which
have been predicted to host Dirac nodal lines as free-standing monolayers. In 2017,
Cu2Si was the first 2D Dirac nodal line (DNL) system to have been experimentally
realized, and one of the starting points of our project, while prediction of the elec-
tronic properties of Cu2Ge made in 2020 extended our research scope.

In chapter 3 we presented our work on Cu2Si. As a first step, we successfully
synthesized and characterized Cu2Si on a Cu(111) substrate, confirming the results
existing in the literature: the presence of two concentric Dirac nodal lines centred
around Γ, located in the first eV below the Fermi level. This indicates negligible
interactions between the surface monolayer and the Cu bulk.

In a second step, we investigated the effect of heavy element deposition, namely
Pb, on the system Cu2Si/Cu(111). Heavy-element adsorption of 2D systems has
been shown to increase its intrinsic spin-orbit coupling, leading to possible gap
openings and/or lift of degeneracy in electronic bands. Furthermore, any adsorption
would break the mirror symmetry of a 2D layer, which should also result in a
gap opening in one of the nodal lines of Cu2Si. Instead, we find that the Dirac
nodal lines are preserved in the presence of Pb: no gap opening has been observed
within our experimental resolution. Additionally, a splitting of one of the electronic
bands has been observed, attributed to a SOC increase induced by Pb, but spin-
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ARPES measurements were inconclusive in determining if the split bands were spin-
polarized. A surface state originating in the Pb overlayer has also been measured.
This is an encouraging result in the optics of future devices: the nodal lines are
more robust than expected, increasing the possibilities for capping of the monolayer
and for the realization of heterostructures with 2D systems, each preserving their
properties.

Finally, we studied the properties of Cu2Si/Si(111), as finding a non-conductive
substrate is necessary for electronic applications. While this system was already
described in the literature, the question of the presence of DNLs and comparison
with freestanding Cu2Si was not raised at the time of these studies. XPS mea-
surements were realized, showing good agreement with the established structural
model. We furthermore provided a complete characterization of the band structure
of the system, improving on previously reported results with the help of synchrotron
radiation. By comparing the experimental results with density functional theory
(DFT) band calculations, we observed that the electronic states originating from
x-y (in-plane) orbitals remained unchanged but those originating from z- (out-of-
plane) orbitals, especially pz orbitals, are modified when the Cu2Si layer is prepared
on a Si substrate. One of the bands predicted for the free-standing system strongly
hybridizes with the substrate, preventing the existence of nodal lines in this system.
The two other electronic bands remain almost unperturbed, and display a linear
dispersion. The challenge of finding a non-metallic substrate for Cu2Si is thus still
open.

In chapter 4 we take interest in Cu2Ge, which has been predicted to host DNLs
as a monolayer but lacks any experimental realization. We showed, supported by
an array of measurements, that the surface synthesized exhibits properties compat-
ible with the successful realization of Cu2Ge on Cu(111). Regarding the atomic
structure, a (

√
3 ×
√

3)R30° LEED pattern was observed after Ge evaporation on
Cu(111) and Ge atoms showed a single adsorption site using XPS, in agreement
with the expectations for a monolayer Cu2Ge. More importantly, we observed by
ARPES the presence of three bands crossing each other without any detectable gap,
in excellent agreement with the DFT predictions, save for a vertical shift of 0.15 eV
attributed to charge transfer from the Cu substrate. We thus posit to have success-
fully synthesized Cu2Ge, with interactions weak enough with its Cu(111) substrate
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to not disturb or gap the DNLs. This would be one of the few experimental reports
of a two-dimensional DNL material.

Concomitantly, we studied the growth of Ge on Cu(111), resulting in a
(“8.88×8.88”)R30° surface reconstruction, in an attempt to obtain Cu2Ge on a semi-
conductor substrate and performed mirror experiments to the ones realized above.
The electronic structure of the surface obtained differs vastly from the Cu2Ge mono-
layer, with a notable absence of band crossing, the presence of intense bands near
the Γ point originating from Ge(111), and strong umklapp features observed on the
Fermi surface. Two elements are proposed to explain those differences. The most
obvious originates from the study of the atomic structure: indeed, from the exist-
ing literature and our results, it appears clear that Cu/Ge(111) does not form a
planar surface and could have a different surface stoichiometry than Cu2Ge, result-
ing in a system entirely different from the theoretical Cu2Ge or the experimental
Cu2Ge/Cu(111). However, we note that a buckled Cu2Ge surface could have led
to gaped DNL states, interesting on their own. This gets us to the second element
explaining the different electronic band structure: the choice of substrate. Indeed,
the Ge(111) substrate presents dangling bonds and forms strong bonds with the Cu
evaporated on top, making it impossible in this case to obtain a surface decoupled
from the substrate as in the case of Cu2Ge/Cu(111), which also leads to the dis-
commensuration and thus the umklapp states. By analogy with Cu2Si/Si(111), we
also hypothesize that the absence of an electron-like band might originate from the
hybridization of out-of-plane orbitals of the substrate with the surface. Despite the
absence of DNLs in this system, this work is, to our knowledge, the first complete
electronic structure characterization of the (“8.88×8.88”)R30° surface reconstruc-
tion of Cu/Ge(111).

In the last chapter, chapter 5, we present an initial work on the system Pb/SiC,
motivated by the prediction of large gap quantum spin hall effect in honeycomb
monolayer Pb and SiC being a suitable substrate for electronic applications. Pb
was evaporated on the three main SiC(0001) surface reconstructions, and XPS spec-
tra are presented. A (2×2) Pb-induced surface reconstruction was observed for the
first time after deposition of the SiC (

√
3 ×
√

3) surface, showing a crystalline or-
ganisation, and our measurement point towards the existence of a crystalline (3×3)
Pb-induced phase on the SiC-(3×3) substrate. This work will be pursued in a fully-
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fledged PhD thesis.

The work presented here is a step towards the understanding and use of two-
dimensional Dirac nodal line materials. We illustrated the difficulties arising from
semiconductor substrates, while successfully preparing monolayers on Cu(111) sub-
strate. We confirmed the properties of Cu2Si and showed their stability even after
Pb adsorption, while realizing for the first time the 2D DNL material Cu2Ge. These
systems are possible candidates for high-frequency electronic applications due to
the high-velocity charges carriers arising from the linear dispersion, and to the high
density of states at the DNL. Potential applications also include nanoscale and gas
sensors.

Several avenues of work would be worth investigating. One is finding a suitable
non-conductive substrate on which to grow Cu2Si or Cu2Ge, possibly by using pas-
sivated surfaces that minimize surface interactions. Another would be to develop a
method to transfer a monolayer grown on Cu(111) on another substrate. Doping
of the monolayer could also shift the nodal lines closer to the Fermi level, which is
important for applications. A study of the air stability of these systems would also
be necessary. From a more fundamental approach, one could take interest in the
study of gap openings at the nodal lines, and in the characterization of the topolog-
ical order of the resulting insulator. Additionally, the superconductivity predicted
in Cu2Si could be worth investigating but would require a substrate inducing less
strain than Cu(111) in the monolayer. Finally, it was predicted that edge states of
Cu2Si could be magnetic, which has not been the object of experimental measure-
ments yet.





Subject : An experimental approach to the realization
and characterization of the two-dimensional Dirac nodal

line materials Cu2Si and Cu2Ge: Influence of the
substrate and of Pb-deposition on the electronic band

structure.

Abstract: The realization of new two-dimensional materials is a booming field of con-
densed matter, at once for the fundamental aspects, with the exotic properties emerging
from the reduced dimensionality, and for the potential technological applications, with
promises such as dissipationless currents and 2D heterostructures outperforming the cur-
rent silicon-based technology at a fraction of the size.
In this work, we took an experimental approach to the realization and characterization
of materials predicted to host Dirac nodal lines (DNLs), which despite many theoretical
predictions have seen few experimental realizations reported so far. These materials belong
to the recently evidenced class of topological semimetals, whose specificity is a symmetry-
protected band crossing of the valence and conduction bands along a line in momentum
space, with linear dispersion. As a first step, we focused on Cu2Si, the first 2D material
in which DNLs have been evidenced when prepared on a Cu(111) substrate. After suc-
cessfully reproducing existing results, we showed using ARPES and XPS that contrary to
expectations, the DNLs were preserved after deposition of Pb on the surface without any
gap, and that a band splitting occured. We followed by the investigation of Cu2Si/Si(111),
and found that despite a strongly related atomic structure, the Si(111) substrate interacts
strongly enough with the out-of-plane orbitals of the Cu2Si layer to prevent the existence
of the nodal lines.
We then looked at the 2D Cu2Ge system, predicted to host DNL, and attempted to syn-
thesize it by depositing Ge on Cu(111). By combining our LEED, XPS and ARPES
results we found that all measurements matched closely what was expected from a free-
standing Cu2Ge monolayer, showing the almost complete absence of interactions between
the Cu(111) substrate and the surface Cu2Ge layer grown on it. This is the first reported
experimental realization of the two-dimensional Dirac nodal line semimetal Cu2Ge. In a
mirroring study, we deposited Cu on Ge(111) and observed a dissimilar band structure.
Helped by STM, we explained those differences by a different atomic structure, and by a
strongly interacting substrate.
We highlight through this work the influence of the substrate, whether metallic or semi-
conductor, on the electronic properties of 2D DNL systems.
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