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Résumé en Français

Ce manuscrit donne quelques éléments sur certaines avancées récentes dans les mesures d'interférométrie basées sur l'effet Hall quantique. Grâce au développement de l'industrie des semi-conducteurs, nous sommes aujourd'hui capables de faire croître des matériaux bidimensionnels avec de moins en moins d'impuretés. Un tel matériau refroidi à très basse température offre un milieu dans lequel les électrons peuvent se propager en ligne droite sans être dispersés par un quelconque défaut.

L'étude de la résistance Hall de tels matériaux à haut champ magnétique a conduit à la découverte de l'effet Hall quantique en 1980 [START_REF] Klitzing | New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[END_REF] (que nous pourrons renommer l'effet Hall quantique entier). Dans de tels matériaux, que l'on qualifie d'"isolants topologiques", le transport du courant s'effectue sur les bords du matériau par l'intermédiaire d'un nombre quantifié de canaux de bord unidimensionnels, alors que le centre du matériau demeure isolant. La physique de cet effet repose uniquement sur un modèle quantique d'électron libre, et les états de bord peuvent être considérés comme des fils quantiques parfaits unidimensionnels bien décrits par la théorie de Landauer et Büttiker.

Si l'on ajoute à cela la possibilité de créer un équivalent de lame semi-réfléchissante pour les électrons avec le contact ponctuel quantique (QPC), l'effet Hall quantique nous offre la possibilité de manipuler des excitations électroniques cohérentes à l'échelle de l'électron unique, et ceci de manière très contrôlée. Grâce à cela, nous avons été en mesure de concevoir la plupart des interféromètres quantiques introduits pour la première fois dans le domaine de l'optique pour décrire les photons, mais avec son cousin fermionique, l'électron.

Au-delà de l'outil qu'il fournit pour construire des interféromètres électroniques, l'effet Hall quantique a aussi introduit de nouveaux concepts théoriques, notamment après la découverte de nouveaux états de Hall à plus haut champ magnétique, qui correspondent à un facteur de remplissage fractionnaire. Découvert seulement deux ans après la découverte de la version entière de l'effet, l'effet Hall quantique fractionnaire (FQHE) [START_REF] Tsui | Two-Dimensional Magnetotransport in the Extreme Quantum Limit[END_REF] a introduit le concept de quasi-particules fractionnaires. Pour une certaine valeur du facteur de remplissage, les électrons se condensent en une nouvelle phase Contents quantique fortement corrélée : les excitations élémentaires de ce système sont alors décrites par des particules portant une fraction de la charge d'un électron. L'origine de cet effet Hall fractionnaire a été assez rapidement comprise comme provenant des interactions coulombiennes entre les électrons, qui était un des éléments absents de la compréhension de l'effet Hall quantique entier. Ses composants élémentaires décrivent des comportements collectifs qui atténuent l'interaction coulombienne, en redistribuant la densité électronique. L'élément clé pour comprendre cet effet a été apporté par R. Laughlin [START_REF] Laughlin | Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations[END_REF] qui a proposé une fonction d'onde électronique du niveau fondamental, pour les états fractionnaires ν = 1/m avec m entier impair.

Au-delà de leur charge fractionnaire, les excitations de l'effet Hall fractionnaire ont suscité beaucoup d'intérêt en raison de leur statistique d'échange exotique. On parle de statistiques quantiques lorsque l'on considère un ensemble de plusieurs particules quantiques indiscernables, et que l'on se pose la question de savoir comment le système change lorsque deux particules sont permutées, ou de manière équivalente lorsqu'une particule entoure la seconde (on parle généralement de « tressage » ou « braiding » en anglais). Pour un système tridimensionnel, en faisant deux fois un échange de particules le système doit se retrouver à nouveau dans l'état initial, ce qui conduit à la définition de deux catégories de particules : celles avec des fonctions d'onde symétriques et une phase d'échange ϕ = 0, que l'on appelle les bosons, et celles avec des fonctions d'onde antisymétriques et une phase d'échange ϕ = π, que l'on appelle les fermions. Mais si l'on considère un système quantique contraint en deux dimensions, cette classification s'effondre (voir figure 1).

Dans ce cas, l'échange de particules peut être encodé par n'importe quelle phase d'échange statistique au lieu d'accumuler uniquement un signe plus ou moins dans la fonction d'onde, et le « tressage » de telles particules conduit à une phase d'échange non triviale. Ce concept de particules exotiques non bosoniques et non fermioniques a été introduit pour la première fois à la fin des années 70 par J.Myrheim et J.Leinaas [START_REF] Leinaas | On the theory of identical particles[END_REF] (et cela quelques années même avant la découverte de l'effet Hall quantique entier !).

Pour les désigner, une nouvelle catégorie de particules quantiques a été introduite par F. Wilczek pour décrire ces particules avec une phase d'échange quelconque : l'anyon [START_REF] Wilczek | Quantum Mechanics of Fractional-Spin Particles[END_REF]. La réalisation d'une expérience permettant de sonder, d'une façon indépendante de la charge, la statistique des excitations élémentaires dans l'effet Hall fractionnaire a fait l'objet de nombreux efforts depuis leur découverte. Une grande partie des travaux ont essayé de voir des signatures du « tressage » en utilisant des interféromètres a une particule, dans des géométries de type cavités. L'idée est de mesurer la phase accumulée par un courant de particules encerclant un grand nombre d'anyons piégés dans une cavité. Néanmoins, dans la plupart des mesures avec une géométrie fermée,
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Figure 1: Schéma illustrant l'échange de particules en 3D et en 2D. Pour des particules en trois dimensions, la trajectoire de la particule enlaçant la seconde peut être continument réduite à l'identité, à l'aide de la dimension supplémentaire: en "hautes dimensions", les seules statistiques d'échange possibles sont soit fermioniques, soit bosoniques. Pour un système bidimensionnel, la trajectoire est contrainte dans un plan, et ne peut être réduite à l'identité, ce qui rend possible l'existence de statistiques exotiques décrites par n'importe quelle phase d'échange. les interactions de Coulomb brouillent généralement le signal provenant du « tressage ». Il faut soigneusement écranter cette interaction afin de retrouver un régime sensible à la phase d'échange et ainsi pour être capable de voir la signature du tressage, ce qui a été récemment observé à l'université de Purdue [START_REF] Nakamura | Aharonov-Bohm interference of fractional quantum Hall edge modes[END_REF][START_REF] Nakamura | Direct observation of anyonic braiding statistics[END_REF]. Dans notre cas, nous avons choisi un chemin différent : nous nous sommes intéressés à un interféromètre à deux particules dans une géométrie ouverte : le collisionneur mésoscopique, en suivant une proposition de B. Rosenow, I.P. Levkivskyi et B.I. Halperin [START_REF] Rosenow | Current Correlations from a Mesoscopic Anyon Collider[END_REF][START_REF] Bartolomei | Fractional statistics in anyon collisions[END_REF] (figure 2 a et b).

L'idée du collisionneur est de sonder le résultat de la collision entre deux faisceaux très dilués d'anyons, en mesurant les corrélations croisées des fluctuations de courant à basse fréquence entre les deux sorties. Pour un courant constitué de fermions, le principe d'exclusion de Pauli interdit à deux particules de se regrouper dans la même sortie, ce qui conduit à une exclusion parfaite et à l'absence de fluctuations à la sortie.

Pour des particules avec une statistique d'échange fractionnaire, la collision implique des processus de « tressage » non triviaux qui génèrent un signal de corrélations croisées fortement négatif. Pour quantifier cet effet, on introduit par analogie avec les mesures de bruit de grenaille, un facteur de Fano généralisé P , qui traduit les effets de la statistique d'échange au centre de l'échantillon. L'extraction de ce facteur P à la fois pour des états à facteurs de remplissage entiers et dans le cas fractionnaire ν = 1/3, Figure 2: Résumé de la première expérience: mesure de la statistique fractionnaire de l'état de Laughlin ν = 1/3 dans un collisionneur mésoscopique a) Principe de l'expérience: deux courants I 1 et I 2 très dilués sont générés à l'aide de deux contacts ponctuels quantiques QPC 1 et QPC 2 à l'entrée desquels des tensions V 1 et V 2 sont appliquées. Pour extraire le facteur P , on mesure les corrélations croisées des fluctuations de courant entre les sorties 3 et 4, par rapport à la somme des courants en entrée I + . b) Réalisation expérimentale du dispositif (image colorée prise au microscope électronique). En plus des tensions dc, on applique aux différents contacts un petit signal alternatif à basse fréquence, qui permet par détection homodyne la mesure des transmissions de chaque QPC . c) Mesure des corrélations croisées des fluctuations de courant a la sortie du collisionneur, en rouge/orange pour des états entiers, et en bleu pour l'état de Laughlin ν = 1/3 (pour différentes dilutions). Notre mesure discrimine les états fermioniques, où le principe d'exclusion de Pauli entraine des fluctuations faiblement positives (P ≃ 0), et l'état ν = 1/3 pour lequel les corrélations croisées sont fortement négatives, et où une valeur P ≃ -2 est extraite, en accord avec la théorie (ligne en pointillés). d) Mesure de l'évolution du facteur du facteur de Fano généralisé par rapport à la différence de courant en entrée du collisionneur I -. La courbe noire correspond à la prévision théorique pour une structure de bord simple décrivant un liquide de 

Introduction

This manuscript gives some elements on some recent advances in interferometry measurements based on the quantum Hall effect. Thanks to the development of the semiconductor industry, we are now able to grow two-dimensional materials with less and less impurities. Such a material cooled at very low temperature provides a medium in which electrons can propagate in a straight line without being scattered by any defect.

The study of the Hall resistance of such materials at high magnetic field led to the discovery of the quantum Hall effect in 1980 [START_REF] Klitzing | New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[END_REF] (which we will rename the integer quantum Hall effect). In such materials, which are called "topological insulators", the current transport takes place on the edges of the material through a quantized number of one-dimensional edge channels, while the bulk of the material remains insulating. The physics of this effect relies solely on a free electron quantum model, and the edge states can be considered as one-dimensional perfect quantum wires well described by the Landauer-Büttiker theory.

If we add to this the possibility to create an equivalent of an electronic version of a beam splitter with the quantum point contact (QPC), the quantum Hall effect offers us the possibility to manipulate coherent electronic excitations at the single electron scale, and in a very controlled way. Thanks to these elements, we have been able to design most of the quantum interferometers first introduced in the field of optics to describe photons, but with its fermionic counter-part, the electron.

Beyond the tool it provides to build electronic interferometers, the quantum Hall effect has also introduced new theoretical concepts, notably after the discovery of new quantum Hall states at higher magnetic fields, for a fractional filling factor. Discovered only two years after the discovery of its integer version of the effect, the fractional quantum Hall effect (FQHE) [START_REF] Tsui | Two-Dimensional Magnetotransport in the Extreme Quantum Limit[END_REF] introduced the concept of fractional quasi-particles.

For some value of the filling factor, the electrons condense into a new strongly correlated quantum phase: the elementary excitations of this system are then described by particles carrying a fraction of the electron charge. The origin of this fractional Hall effect was rather quickly understood as arising from Coulomb interactions between
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electrons, which was one of the missing elements in the derivation of the integer quantum Hall effect. Its elementary components describe collective behaviors that mitigate the Coulomb interaction, redistributing the electron density. The key element to understand this effect was brought by R. Laughlin in 1983 [START_REF] Laughlin | Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations[END_REF] who proposed an electronic wave function of the ground-state, for fractional states at filling factor ν = 1/m with m odd integer.

Beside their fractional charge, FQHE excitations have attracted much interest because of their exotic fractional exchange statistics. Quantum statistics arises when one considers many indistinguishable quantum particles, and asks how the system changes when two particles are exchanged, or equivalently when one particle encircles the second one (this is usually referred to as "braiding"). For a three-dimensional system, by swapping particles twice, the system must be back to the initial state, which leads to a constraint on the exchange phase, and the definition of two categories of particles:

those with symmetric wave functions and an exchange phase ϕ = 0, which we call bosons, and those with antisymmetric wave functions and an exchange phase ϕ = π, which we call fermions. But if we consider a quantum system constrained in two dimensions, this classification breaks down.

In this case, the exchange of particles can be encoded by any statistical exchange phase instead of accumulating only a plus or minus sign in the wave function, and the "braiding" of such particles leads to a non-trivial exchange phase. This concept of exotic non-bosonic and non-fermionic particles was first introduced in the late 1970s by J.Myrheim and J.Leinaas (and this even a few years before the discovery of the quantum Hall effect!). To describe these particles with any exchange phase, a new category of quantum particles was introduced by F. Wilczek [START_REF] Wilczek | Quantum Mechanics of Fractional-Spin Particles[END_REF] : the anyon.

The realization of an experiment allowing to probe, independently of the charge, the statistics of elementary excitations in the fractional Hall effect has been the object of many efforts since their discovery. Most of the work have been focused on the observation of braiding signature in single particle cavities. The idea here is to measure the phase accumulated by a current of anyons encircling many anyons trapped in the bulk of the cavity. In such closed geometry, the charge effect due to coulomb interaction is preponderant, and generally blurs the braiding effect. One must carefully screen this interaction in order to recover a regime sensitive to the exchange phase and thus to be able to see the braiding signature, which was recently observed at the Purdue university [START_REF] Nakamura | Aharonov-Bohm interference of fractional quantum Hall edge modes[END_REF][START_REF] Nakamura | Direct observation of anyonic braiding statistics[END_REF].

In our case, we have chosen a different path: we are interested in a two-particle

interferometer in an open geometry, the mesoscopic collider, following a proposal by B.Rosenow, I.P. Levkivskyi and B.I. Halperin [START_REF] Rosenow | Current Correlations from a Mesoscopic Anyon Collider[END_REF][START_REF] Bartolomei | Fractional statistics in anyon collisions[END_REF]. The idea of the collider is to probe the result of the collision between two very dilute beams of anyons, by measuring
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the low frequency cross-correlated fluctuations of current between the two outputs.

For fermions, the Pauli exclusion principle forbids two particles to bunch in the same output, which leads to a perfect anti-bunching and no fluctuations at the output. For particles with fractional exchange statistics, the collision involves non-trivial braiding, which generates a strongly negative cross-correlation signal.

A last chapter introduces a second collision experiment to produce and characterize 

Part I Quantum Hall Effect Tool Box 1 Two-dimensional electrons in high magnetic field

In this first introductory chapter, we will discuss briefly the physics of an electron confined in two dimensions and subjected to a strong magnetic field, conditions that give rise to the Quantum Hall effect. First, we will see that such a two-dimensional electronic system can be obtained at very low temperature in some semiconductor materials, grown in a very controlled way, with very few impurities. In this case, the electronic transport is described by the transmission and refection of electronic waves along the conductor, in the Landauer-Büttiker theory. By adding a strong magnetic field perpendicular to the 2D gases, we obtain, for some values of the ratio of density over magnetic field, very special electronic states: the integer and fractional quantum Hall regimes. The latter is at the heart of this manuscript.

Coherent transport in two-dimensional electron gas 1.Two-dimensional electron gas and quantum point contact in semiconductor hetero-structures

Two-dimensional electron gas (2DEG)

The first element that we must introduce is a medium in which electronic waves can propagate freely, which means in a ballistic way and without loosing phase coherence. This kind of transport can be obtained in two-dimensional electron gases (2DEG) at the interface of GaAs/AlGaAs hetero-structures [START_REF] Datta | Electronic Transport in Mesoscopic Systems[END_REF]. The change of band gap between the two semiconductors imposes at equilibrium an electrostatic potential that bends the band structure at the interface, allowing at this point the Fermi energy to cross the conduction band. by molecular beam epitaxy which allows very high crystalline purity, and therefore at cryogenic temperature, the mean free path becomes larger than the typical size of a sample (l m f p ≃ 10 -100µm ). More interestingly, the phase relaxation length, at which an excitation looses its coherence, may also be larger than the sample size. We can thus design interferometric samples of few microns size in order to enforce the wave nature of electronic transport [START_REF] Ji | An electronic Mach-Zehnder interferometer[END_REF][START_REF] Preden Roulleau | Finite bias visibility of the electronic Mach-Zehnder interferometer[END_REF][START_REF] Preden Roulleau | Direct Measurement of the Coherence Length of Edge States in the Integer Quantum Hall Regime[END_REF][START_REF] Rössler | Transport properties of clean quantum point contacts[END_REF]: for distance smaller than the mean free path, electronic propagation is coherent and ballistic, and must be described in the Landauer-Buttiker formalism. The carrier density in such 2D conducting layer is of the order of 10 11 cm -2 , with a high mobility ranging from 10 6 /10 7 cm -2 V -1 s -1 [START_REF] Hiyamizu | Improved Electron Mobility Higher than 106 cm2/Vs in Selectively Doped GaAs/N-AlGaAs Heterostructures Grown by MBE[END_REF].

Quantum point contact (QPC)

A consequence of ballistic and phase coherent transport is that we cannot consider anymore the electron as a point-like particle, but rather as a probability wave that can lead to phase related interference. In that case the charge transport is described by the Landauer formalism, in which the total conductance can be computed as the sum of the transmission of electronic modes across the conductor, each mode contributing by a factor 2e 2 h to the total conductance [START_REF] Landauer | Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction[END_REF]. The low density in this conductive films can be depleted by applying a negative voltage on gates on-top of the two-dimensional electron gas, in a structure called a quantum point contact QPC (see gate voltage generates a saddle potential [START_REF] Büttiker | Quantized transmission of a saddle-point constriction[END_REF], which redefines the sample's geometry and creates a controllable narrow constriction under the two gates. This creates a strong confinement, and allows us to control the transmission along the ballistic conductor mode by mode. The first experimental signature of the quantization of conductance was obtained in AlGaAs two-dimensional electron gas using a quantum point contact [START_REF] Van Wees | Quantized conductance of point contacts in a two-dimensional electron gas[END_REF][START_REF] Wharam | One-dimensional transport and the quantisation of the ballistic resistance[END_REF]: Fig. 1.2b) shows the first experimental signature of Landauer quantization of transport from [START_REF] Van Wees | Quantized conductance of point contacts in a two-dimensional electron gas[END_REF]. The resistance and conductance of the sample are plotted with respect to the gate voltage: as we increase the negative voltage, we see that the conductance decreases by steps of 2e 2 h , as we reflect one by one the transmission modes. The next subsection introduces the Landauer description of quantum transport, that will be necessary to understand the edge transport of quantum Hall effect.

Landauer formalism of a ballistic conductor

In that section, we will introduce the Landauer scattering formalism to describe quantum mesoscopic conductors. It is also often referred to as the Landauer-Büttiker formalism in the more general case of a multi-terminal device [START_REF] Büttiker | Generalized many-channel conductance formula with application to small rings[END_REF].

As sketched on the fig. 1.3, we consider a narrow two-dimensional ballistic conductor of length L x and width L y sandwiched between two large contacts with respective chemical potential µ L and µ R , that we assume to be reflection-less perfect reservoirs of electrons of charge -e. We will not consider the spin degeneracy to be consistent with the measurements at high magnetic field, in which the Zeeman effect raises the degeneracy. More details will be introduced in the section about the integer quantum Hall effect.

The narrow width L y ≪ L x of the conductor imposes a quantization of the y momentum k y = πn L y , where n is an integer, and the transport along x is described by a plane wave:

Ψ k x ,k y (x, y) = Φ k x (x)Φ n (y) (1.1) Φ k x (x) = 1 L x e i k x x (1.2) ϵ = ħ 2 k 2 x 2m * + ϵ n (1.3)
The current density flowing from each reservoir can be computed from the motion of electrons with respect to the Fermi-Dirac distribution

f 0 (ϵ) = a) b) V qpc V qpc 2DEG Figure 1
.2: a)Scheme of a quantum point contact: by applying a negative gate voltage V q pc on the two capacitive gates, the electronic density under the structure gets depleted, which allows us to select the transmission modes along a ballistic conductor. b)Resistance and conductance of a two-dimensional electron gas AlGaAs/GaAs as a function of the quantum point contact gate voltage. As we increase the negative gate voltage, the conductance through the sample drops by steps of 2e 2 h , revealing the quantization of conductance in agreement with the Landauer picture. Data taken from [START_REF] Van Wees | Quantized conductance of point contacts in a two-dimensional electron gas[END_REF]. space k, the current density writes :

j µ = k x ,k y 1 L x L y (-e)v( - → k ) f 0 (ϵ -µ) (1.4) I µ = L y j µ = n d k x 2π (-e)v n (k x ) f 0 (ϵ n -µ) (1.5)
Due to the quantization of k y the current of a narrow 2D conductor is described as a discrete sum over all occupied electric subbands, labeled by n, of one dimensional L y is associated to an energy ϵ n , and to a transverse wave-function φ n (y) (sketched in blue). b) In the case in which a single subband is occupied, the system is described as a perfect one dimensional conductor. ballistic channels along x. In the following derivation, we consider that the width is narrow enough such that a single of these subbands is occupied, and use the notation

k = k x . Using the definition of the velocity v(k) = 1 ħ d ϵ d k : I L = -e h d ϵ f 0 (ϵ -µ L ) (1.6) I R = -e h d ϵ f 0 (ϵ -µ R ) (1.7)
The currents flowing from the left contact to the right contact is computed as the difference of currents flowing from the left and from the right:

I = I L -I R . I = I L -I R = - e h d ϵ f 0 ϵ -µ L -f 0 ϵ -µ R (1.8)
In the case of a bias V applied at contact 1 (µ L -µ R = -eV ), we recover the famous Landauer formula for a single mode ballistic conductor:

I = - e h +∞ -∞ d ϵ f 0 ϵ -µ L -f 0 ϵ -µ R = - e h (µ L -µ R ) = e 2 h × V (1.9)
In the most general case involve many occupied modes ϵ n (k) each one with some transmission T n (ϵ), that we consider to be independent of the energy, the current can be seen as the independent sum of all mode contribution, each one accounting by a factor e 2 h to the conductance:

I = GV = n e 2 h T n × V (1.10)
In the case of a quantum point contact, like the one used in fig. 1 

-→ F L = -e( - → v ∧ - → B + - → E
). These two terms coming from the electric field and the magnetic field can be interpreted separately as follows. The magnetic field gives rise to a circular motion in the plane perpendicular to the field, called a cyclotron orbit. If we consider a uniform field along the z axis

- → B = B -→ u z : - → r = - → r 0 + r c (cos(ω c t ), si n(ω c t ), 0) (1.11) - → v = ω c r c (-si n(ω c t ), cos(ω c t ), 0)
(1.12)

The integer Quantum Hall effect

In the case of classical electron, the initial conditions (position and speed) of the motion fix both the radius r c = mv eB of the orbit, the cyclotron frequency and the guiding center -→ r 0 . On top of the cyclotron orbit, the electric field component -→ E = E -→ u x due to the voltage drop along the sample, adds a drift to the circular motion 

-→ v D = - → E ∧ - → B B 2 = -E B -→ u y . The total velocity writes - → v = r c ω c (-si n(ω c t ), r c ω c cos(ω c t ), 0)+ -→ v D
→ v d t = -e( - → v ∧ - → B + - → E ) -m - → v τ
In the stationary regime, a transverse electric field counterbalances the effect of this drift, and therefore the resistivity which relate the current density to the electric field

- → E = [ρ] - → j becomes a tensor: - → E = 1 σ 0 B ne -B ne 1 σ 0 - → j (1.13)
Where n is the particle density, and σ 0 = ne 2 τ m is the classical Drude conductivity at zero field. We find that the longitudinal resistivity is independent of the magnetic field and is the one expected from the zero field Drude model, whereas the transverse resistivity grows linearly with the field (see fig. 1.4c).

Electrons under strong magnetic field

The quantum Hall effect (renamed for later purpose integer quantum Hall effect IQHE) occurs when you apply on top of a ballistic two-dimensional electron gas a strong perpendicular magnetic field. This effect has been first discovered by K. von Klitzing, G. Dorda, and M. Pepper [START_REF] Klitzing | New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[END_REF] in a high mobility silicon MOSFET. From this material they build a Hall-bar sample which allows measuring both the longitudinal and the transverse "Hall" resistance of the film by measuring the voltage drop along the two axis of the sample. On top of that, they used a global top-gate to change the electronic density of the sample. By applying a uniform magnetic field of 15T perpendicular to the electron gas and by varying the top gate voltage controlling the electron density, they observed that the transverse resistance shows a succession of plateaus accompanied by a suppression of the longitudinal resistance (see fig. where ν takes integer value on the plateaus. We will see that ν is called the Landau filling factor, and it arises from the quantum derivation of a single free electron in a uniform magnetic field. This quantization of the resistance is exactly the one expected for transmission modes in the Landauer picture G x y = ν e 2 h . The fact that the longitudinal resistance of the sample drops to zero informs us that the bulk of the material is insulating: all the transport occurs at the edge of the sample through a few modes.

Similar measurements can be done with different 2D materials. An alternative way for the observation of the quantum Hall effect is to fix the electron density and to vary the magnetic field, as represented in Fig. 1.5b. In this case, the quantization of the Hall resistance appears as a function of magnetic field with a 1/B periodicity. 

Semi-classical picture

Before using a quantum description, we can reuse the classical model to have an intuition of why edge states transport occurs when you consider ballistic electron in a strong field. When the mean free path becomes larger than the cyclotron orbit, the particles in the bulk of the material are trapped on these cyclotrons orbits, and it cannot contribute to the transport. In the ballistic case, the Drude model predict that both the longitudinal conductivity and the resistivity are zero σ xx = 0/ρ xx = 0.

To recover transport properties we have to introduce a confining potential at the edge of the sample which is acting like some sort of mirror: as electrons cannot exit the sample, they follow skipping orbits of opposite directions on opposite sides of the sample, which gives one chiral edge state on each side of the two-dimensional electron gas, which is sketched on fig. when the mean free path is much larger than the cyclotron orbits, the bulk electrons are frozen in the circular orbits, and do not contribute to the transport. On the edge, the electrons cannot exit the sample, and this confining potential can be seen as a mirror on which the cyclotron orbits turn into skipping orbits, recovering transport properties at the edge. b) Quantum version of the cyclotron orbits: due to the quantization of the electron momentum, the cyclotron radius becomes quantized, each cyclotron orbit contains an integer number ν of electrons (here ν = 3)

Quantum derivation

Now we want to have a quantum description of a single electron in the bulk of our two-dimensional electron gas. Far from the confining potential at the edge, We will follow mostly the notations and derivations from [START_REF] Yoshioka | Two-Dimensional Electrons in a Magnetic Field[END_REF][START_REF] Girvin | Modern Condensed Matter Physics[END_REF]. The general Hamiltonian describing the particle is the one of a free electron in a

- → B = ∇ ∧ - → A field: H = - → Π 2 2m + g µ B SB (1.16) - → Π = - → p + e - → A (1.17)
Where the first part of the Hamiltonian describes the kinetic energy and the second one the spin interaction with a uniform magnetic field (g is the Lande factor, µ B is the Bohr Magneton and S = ±1/2 is the electron spin). At sufficiently large field, this will lift the spin degeneracy into two sub-bands separated by the Zeeman frequency ħω Z = 1 2 g µ B B [START_REF] Maekawa | Magnetoresistance in Two-Dimensional Disordered Systems: Effects of Zeeman Splitting and Spin-Orbit Scattering[END_REF]. Considering only the kinetic energy, and dropping the spin degeneracy, we see that the mechanical momentum -→ Π couples the electron momentum to the vector potential of the magnetic field. From -→ Π we can introduce two ladder operators from which we can rewrite the Hamiltonian as a harmonic oscillator at the cyclotron 1.2 The integer Quantum Hall effect

frequency ω c = eB mc . a = l B 2ħ (Π x + i Π y ) (1.18) a † = l B 2ħ (Π x -i Π y ) (1.19) a, a † = 1 (1.20) H = ħω c (a † a + 1/2), (1.21) 
with l 2 B = ħ eB , the magnetic length. The eigenstates ϵ n = ħω c (n + 1/2) of this Hamilto- Because of the translational invariance of the problem, these Landau levels are massively degenerated. We can introduce to this extent a new set of conjugated space variables which are the guiding center coordinates of the orbit, -→ R , via the relation:

- → R = - → r - l 2 B ħ -→ u z ∧ - → Π (1.22) R x , R y = i l 2 B (1.23)
Chapter 1. Two-dimensional electrons in high magnetic field

From this two conjugated variables, we can define a second set of ladder operators:

b = 1 2l B (R x -i R y ) (1.24) b † = 1 2l B (R x + i R y ) (1.25) b, b † = 1 (1.26)
We can also show that a and b define two independent harmonic oscillators as a, b =

a, b † = 0.
The degeneracy comes from the fact that the Hamiltonian does not depend on the b operator (this can be seen as a zero frequency oscillator), and can be obtained by computing how many of this cyclotron orbits can fit on the area of the sample.

The spatial extension of a state is obtained from the Heisenberg principle and the commutation relation between R x and R y : ∆R x ∆R y = 2πl 2 B and we deduce that the degeneracy of each Landau Level is given by the number N φ of flux quantum Φ 0 = h e threading through the sample:

N φ = A ∆R x ∆R y = eB A h = Φ Φ 0 , (1.27) 
Where A = L x L y is the total surface of the sample. It follows that for a given electron density n e the number of fully filled Landau levels, called the Landau filling factor, is given by ν = N e N φ = nh eB . The energy levels are described by two quantum numbers related to the two ladder operators |n, m〉, n labeling the Landau level and m the degeneracy within it. The ground state of this system |0, 0〉 is highly degenerated, as the application of b † does not change the energy (b † ) m m! |0, 0〉 = |0, m〉, and it is called the lowest landau level (LLL). Any higher Landau levels can be obtained through the

application of a † : |n, m〉 = (a † ) n n! (b † ) m m! |0, 0〉.

Derivation of the wave function of the Lowest Landau level(LLL)

To derive the ground state, we use the fact that it is annihilated by both a and b operators: a |0, 0〉 = b |0, 0〉 = 0. The wave function must be derived in a given gauge:

we choose the symmetric gauge for the magnetic field

- → A = 1 2 - → r ∧ - → B
. By using the complex notation for the spatial coordinates,z = x+i y l B , we find two coupled equations of z and z * that leads to the single particle wave functions in the symmetric gauge: 
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The many-body wave function of particles without interactions can be built with the single particle states from a Slater determinant, which leads to the expression of the lowest Landau level:

Ψ 0 (z 1 , ..., z N ) = φ 0,0 (z 1 ) . . . φ 0,0 (z N ) . . . . . . . . . φ 0,N (z 1 ) . . . φ 0,N (z N ) (1.30) Ψ 0 (z 1 , ..., z N ) = i , j (z i -z j )e -1 4 i |z i | 2 (1.31)
The polynomial in the wave function reflect the exclusion of particles: the probability to have two particles at the same position is zero, and the wave function is antisymmetric with respect to particle exchange z i ↔ z j .

Localization due to disorder

Up to now we have seen that, for some value of the ratio electron density over the magnetic field, the system is described by the physics of the Landau levels, which lead to a quantization of the resistivity, according to the number of fully filled Landau levels. Considering only the effect of the magnetic, this quantization would not hold away from the exact value of the magnetic field that gives an integer value of the filling factor. In that case, we would not see any plateaux, only singular values of the field for which the longitudinal resistivity cancels (see fig. disorder, which generates some localized sates in the bulk, that do not contribute to the transport due to the Anderson localization [START_REF] Cutler | Observation of Anderson Localization in an Electron Gas[END_REF][START_REF] Lee | Anderson Localization in Two Dimensions[END_REF]. In that case, adding electrons to a fully filled Landau levels fills the localized sates without changing the conductance of the system, which explains the conductance plateaus with a finite width.

The integer quantum Hall effect can be totally understood by the physics of a free electron in a strong magnetic field, but it doesn't take into account the coulomb interaction between particles. This is this coulomb interaction which is at the origin of the fractional quantum Hall effect (FQHE). 

The fractional quantum Hall effect

In 1982, only two years after the discovery of the quantum Hall effect, a striking observation was made by D. C. Tsui, H. L. Stormer, and A. C. Gossard [START_REF] Tsui | Two-Dimensional Magnetotransport in the Extreme Quantum Limit[END_REF]. Instead of the metallic behavior expected at filling factors less than unity, a new Hall quantized plateau at non-integer value of the filling factor ν = 1 3 was observed. After further improvement of the sample disorder, many of this new fractional states have been found (see fig. 1.9). Each of this plateau corresponds to a distinct topological phase of the highly correlated fluid of electrons, which arises from strong coulomb interactions. Shortly after this experimental observation, many predictions were made about the elementary excitations emerging from these states, and it was shown that each fractional state hosts fractionally charged quasi-particles with exotic exchange statistics [START_REF] Leinaas | On the theory of identical particles[END_REF][START_REF] Laughlin | Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations[END_REF][START_REF] Halperin | Statistics of Quasiparticles and the Hierarchy of Fractional Quantized Hall States[END_REF][START_REF] Wilczek | Quantum Mechanics of Fractional-Spin Particles[END_REF]. To refer to such non-bosonic and non-fermionic particles, the term anyon was coined by Frank Wilzcek [START_REF] Wilczek | Quantum Mechanics of Fractional-Spin Particles[END_REF]. Most of these predictions come from a wave-function proposal for the lowest Landau level of some of these fractional states Figure 1.9: Fractional Quantum Hall effect of a Hall bar made of GaAs from [START_REF] Willett | Observation of an even-denominator quantum number in the fractional quantum Hall effect[END_REF]. In addition to the integer filling factors, we see a new zoology of fractional filling factors. by R.Laughlin [START_REF] Laughlin | Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations[END_REF].

The Laughlin wave function

From the wave function of the lowest Landau level for ν = 1, Robert Laughlin [START_REF] Laughlin | Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations[END_REF] realized that one could write a state for a ν = 1/m with m odd integer, by simply taking the mt h power of the polynomial reflecting particle interaction.

Ψ ( 1 m ) 0 (z 1 , ..., z N ) = i , j (z i -z j ) m e -1 4 i |z i | 2 (1.32)
In doing so, this increases the power law at which the wave-function vanishes, which reduces the coulomb interactions. This beautiful insight comes from the plasma analogy that one can draw between the probability distribution of this many-body states and the partition function of a two-dimensional one-component classical plasma of charge m quasi-particles. The elementary excitations of this fake plasma are particles with unity charge, which leads to a charge 1 m of the electron charge.
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To have a deeper understanding of these excitations, we can use the Laughlin wave function to extract the charge and the statistics.

Charge and statistics of Laughlin states

To describe the charge and the statistics of Laughlin quasi-particles, it is convenient to work with quasi-holes, which can be easily obtained from the electronic Laughlin wave function. The wave function describing a single quasi-hole at position Z is given by:

Ψ h (Z ) = e -|Z | 2 4m Π i (z i -Z ) × Ψ ( 1 m ) 0 [z],
where the factor e -|Z | 2 4m insures the normalization of the wave function at any position Z . From this wave function, we can compute the Berry phase [START_REF] Victor | Quantal phase factors accompanying adiabatic changes[END_REF] 

γ = d - → l .A( - → l
) from the berry curvature A accumulated by the total wave-function when the hole is moving on a closed loop. In this case, this phase is equal to the Aharonov-Bohm phase of a fractionally charged particle:

A Z = i 〈Ψ h (Z )| ∂ Z |Ψ h (Z )〉 = + i Z * 4m (1.33) A Z * = i 〈Ψ h (Z )| ∂ Z * |Ψ h (Z )〉 = - i Z 4m (1.34) A X = A Z + A Z * = + Y 2ml B (1.35) A Y = i (A Z -A Z * ) = - X 2ml B (1.36)
Then, using the Green theorem, we find:

γ = d - → l .A( - → l ) = d X d Y ( ∂A Y ∂X - ∂A X ∂Y ) = - e/m ħ * Φ (1.37)
With Φ = A * B the magnetic flux across the area delimited by the closed loop. We find that the Berry Phase accumulated by moving a quasi-hole is the phase picked up by a fractional charge q = e m . What about statistics ? To discuss statistical exchange, we need to introduce (at least) two quasi-particles, and compute the Berry phase accumulated when moving one particle around the second one. To that extent, we can create a two-holes wave function, and compute the accumulated phase when one hole encircles the second one (see fig. 1

.10).

The wave function describing two holes at position Z 1 and Z 2 in the LLL is a generalization of the expression for one hole:

Ψ 2h (Z 1 , Z 2 ) = e -|Z 1 | 2 +|Z 2 | 2 4m |Z 1 -Z 2 | 1/m Π i (z i -Z 1 )Π j (z j -Z 2 )Ψ ( 1 m ) 0 [z] (1.38)
For convenience, we fix Z 2 = 0 and Z 1 = Z , and move Z on a closed loop of area A 

The fractional quantum Hall effect

A Z = + i Z * 4m - i 2m 1 Z (1.39) A Z * = - i Z 4m + i 2m 1 Z * (1.40) A X = Y 2m - 1 m Y |Z | 2 (1.41) A Y = - X 2m + 1 m X |Z | 2 (1.42)
The first term has already been discussed, it corresponds to the AB phase accumulated by the quasi-hole of fractional charge e/m. The second term is related to the (double) statistical exchange that occurs when encircling one hole with the other one. It leads to an extra phase factor of 2π m showing that Laughlin quasi-particles are anyons that obey fractional statistics with an exchange phase π/m. The total phase accumulated during this process is thus:

γ = d - → l .A( - → l ) = - e/m ħ Φ + 2π m (1.43)
We can do this calculation for the LLL of the integer Hall effect, and see that encircling a hole with another one will not affect the phase accumulated by the wave-function,
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in that case the extra term being equal to 2π.

The composite Fermions picture and Jain sequence

Up to this point, we have a good understanding of both the integer filling factors, and the Laughlin states with filling factors ν = 1 2p+1 with p an integer. But looking at the figure 1.9, we clearly see many more FQHE states than what we expect from the Laughlin fractions. The most visible ones are the so-called hierarchy states, given by ν = q 2p+1 . These states are actually the composite Fermions equivalent of integer states for electrons. This relation between FQHE and IQHE has been introduced by J.

Jain, and this filling factors are often referred as Jain sequence [START_REF] Jain | Composite-fermion approach for the fractional quantum Hall effect[END_REF][START_REF] Jain | Theory of the fractional quantum Hall effect[END_REF]. Starting with the Laughlin wave-function, we can notice that its polynomial dependence can be understood as a composite object built by attaching an even number of vortices 2p to the electron:

Ψ 1 2p+1 [z] = i < j (z i -z j ) 2p i < j (z i -z j )e -1 4 i |z i | 2 = i < j (z i -z j ) 2p Ψ 1 [z] (1.44)
The first product creates a 2p vortex at any electron position, and the second one reflect the ν = 1 state of the composite object. All the following filling factors of the Jain sequence can be understood as the integer quantum Hall effect of this composite fermions. We can build these states by introducing a ±2p vortex at the position of each electron. By moving a particle around this vortex, the wave function accumulates a phase 2p × 2π. Such vortex is built by attaching 2p quantum of flux to each electron, which reduces the effective magnetic field B * = B ± 2pn e Φ 0 felt by the composite particles. The Jain sequence is therefore given by computing the electronic filing factor ν from integer filing factor of composite states ν * = q :

B * = B ± 2pn e Φ 0 (1.45) ν * = q = ν 1 ± 2pν (1.46) ν = q 2pq ± 1 (1.47)
This composite fermions picture involves ν * coupled edge channels, with different charge carriers, which leads to strong edge reconstruction effects. The typical example is the ν = 2/3 state, which can be first understood as a down stream integer edge channel, and an up stream 1/3 channel [START_REF] Macdonald | Edge states in the fractional-quantum-Hall-effect regime[END_REF][START_REF] Johnson | Composite edges in the =2/3 fractional quantum Hall effect[END_REF], but which relaxes into a charged downstream channel and an upstream neutral mode [START_REF] Meir | Composite edge states in the \ensuremath{\nu}=2/3 fractional quantum Hall regime[END_REF][START_REF] Kane | Randomness at the Edge: Theory of Quantum Hall transport at filling =2/3[END_REF][START_REF] Sabo | Edge reconstruction in fractional quantum Hall states[END_REF][START_REF] Protopopov | Transport in a disordered =23 fractional quantum Hall junction[END_REF].

Physics at the edge

From two-dimensional bulk to one dimensional edge

In the previous section, we have seen the rich physics of a two-dimensional electron gas under a strong magnetic field: the electronic band structure splits into highly degenerate Landau levels, which is the signature of the quantization of cyclotron orbits in classical systems. Therefore, when the chemical potential lays between two levels, the bulk of the sample is insulating, and transport occurs along a few one dimensional edge channels, which can be seen as perfect one dimensional quantum wires. For the integer Hall regime, the number of edge states matches the filling factor, whereas for fractional filling factors it corresponds to the integer filling factor ν * in the composite fermion picture. Such material is what we call a topological insulator.

This concept has been introduced after the discovery of the quantum spin Hall effect [START_REF] Kane | Quantum Spin Hall Effect in Graphene[END_REF][START_REF] Bernevig | Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells[END_REF][START_REF] Ando | Topological Insulator Materials[END_REF]. The ability to probe the two-dimensional physics in the bulk of the sample through its edges relies on the bulk-edge correspondence for topological insulators [START_REF] Cayssol | Topological and geometrical aspects of band theory[END_REF]. The conductance quantization of the quantum Hall effect is independent of the microscopic detail of the Hamiltonian (material, particle mass, disorder), and therefore the filling factor ν can be defined as a topological invariant, called the Chern number [START_REF] Hatsugai | Chern number and edge states in the integer quantum Hall effect[END_REF]. As long as the conductivity is quantized, the band structure remains gapped, and this Chern number fully describe the phase, both in the bulk and at the edge. The existence of edge states is therefore a direct consequence of the change of this topological invariant going from the electron gas in the QHE regime to the topologically trivial vacuum outside the sample: to change the topological index the system must undergo a quantum phase transition, and the gap must close at the interface between two different topological insulators, leading to the emergence of edge states. This leads to a one to one correspondence between the topological properties of the bulk far from the boundaries, i.e. the filling factor, and the dynamics of the edges. The following section introduces the tools needed to describe interacting fermions confined in one dimension.

Fermi liquid breakdown

The physics of transport at the edge of a fractional quantum Hall fluid is described by strongly interacting Fermions confined in one dimension. Introducing interactions in a many-body system of particles is a very complex problem, as the interaction potential for a single particle depends on the position of all other particle. The Fermi liquid theory was introduced in 1956 by Landau [START_REF] Landau | The Theory of a Fermi Liquid[END_REF] to describe interacting fermions in "high" dimensions (d ≥ 2). The Fermi liquid theory states that for a system of interacting electrons, the low energy excitations are described equivalently by a system of weakly interacting quasi-particles, with a finite lifetime, and with electronic charges, spin and statistics, up to some renormalization of the mass. It relies on the fact that close to the Fermi energy most of the effect of interactions are screened, and therefore the free Fermion model remains valid. In one dimension, this method based on perturbation approach does not hold anymore: we cannot describe the system with a free quasi-particle, but rather with collective bosonic modes called plasmon. In that formalism, the Hamiltonian of interacting electrons can be reduced to a free-boson system, called a Tomonaga-Luttinger liquid [START_REF] Luttinger | An Exactly Soluble Model of a Many-Fermion System[END_REF][START_REF] Tomonaga | Remarks on Bloch's Method of Sound Waves applied to Many-Fermion Problems[END_REF]. That chapter introduces the formalism used to describe the one dimensional edge states of the quantum Hall effect, valid both with and without interactions. First, we describe the Tomonaga-Luttinger liquid theory applied to a single edge mode of the integer quantum Hall effect. We then generalize this description to Laughlin fractions, and illustrate it thanks to a hydrodynamical approach. The second part of this chapter focuses on the description of current-noise measurements in a one dimensional conductor, which will be our main physical observable all along this manuscript. 

Interactions for 1D fermions and the

Luttinger theory

In this part, I give the basic elements of the bosonic description of fermions in one dimension, following various review works [START_REF] Kane | Edge-State Transport[END_REF][START_REF] Martin | Course 5 Noise in mesoscopic physics[END_REF][START_REF] Von | Bosonization for beginnersrefermionization for experts[END_REF][START_REF] Giamarchi | Quantum Physics in One Dimension[END_REF]].

Let's first consider the simple case of the integer quantum Hall regime with a single edge channel of length L in the absence of interactions. A generic one dimensional system of free fermions is described by the Hamiltonian H = k ϵ k c † k c k , where c † k and c k are the fermionic creation and annihilation operators for electrons of wave-vector k obeying the usual fermionic anti-commutation relations. The low energy behavior of the system is obtained by linearization of the dispersion relation close to the Fermi energy: This leads to two edge states with opposite drift velocity ±v F separated by 2k F , which at low energy forbids any scattering from one branch to the other, separating elec-trons between two species of right-movers and left-movers particles (fig. 2

ϵ k ≃ ħv F (k ± k F ) (2.1) E k E F k-k F

.1). The

Hamiltonian describing this one dimensional system becomes:

H = H R + H L ≃ k ħv F kc † k c k - k ħv F kd † k d k (2.2) With {c † k , c k ′ } = δ k,k ′ and {d † k , d k ′ } = δ k,k ′ the
creation/annihilation operators for right and left moving electrons. From now, we will consider a single edge channel, the right movers for instance, and keep only the right moving part of the Hamiltonian H R . We define the N-fermion ground state, i.e the fully filled Fermi sea with no electron-hole

excitations |N 〉 0 = k<k F c † k |0〉.
Due to the linearization of the dispersion relation, we introduce an infinity of states k < k F : to avoid divergences, we remove the (infinite) contribution of the filled Fermi sea, by considering only normal-ordered operators

: O : = O -〈N | 0 O |N 〉 0 = O -〈O〉 0 .
The density operator at the edge writes:

ρ(x) = : Ψ(x) † Ψ(x) : = Ψ(x) † Ψ(x) -〈Ψ(x) † Ψ(x)〉 0 (2.3) ρ(x) = 1 L q ρ q e i q x
(2.4)

ρ q = k c † k+q c k (2.5)
This last relation shows that the density fluctuations are related to the creation of an electron-hole pair of energy ħv F q. From the anti-commutation relation of c k , we can show that the density operator obeys the so called Kac-Moody commutation relation:

[ρ -q , ρ q ′ ] = qL 2π δ q q ′ (2.6)
From this we want to define a bosonic operator b q such that [b † q , b q ′ ] = δ q q ′ , which are up to a renormalization factor, the density fluctuations at the edge:

b † q = 2π Lq ρ q (2.7) b q = 2π Lq ρ -q (2.8)
This bosonic fields are called plasmons, or edge magneto-plasmons in the case of the quantum Hall effect.

The strength of the bosonization method is that the Hamiltonian has the same form in the bosonic representation and in the fermionic, and therefore generate the same Hilbert space [START_REF] Haldane | Fractional statistics" in arbitrary dimensions: A generalization of the Pauli principle[END_REF]:

H = ħv F q qb † q b q + πN 2 L (2.9)
Where N is the fermion number operator. In this Hamiltonian, the first relates the creation of electron-hole pairs plasmonic excitations, whereas the second term accounts for the average energy of the N particle Fermi sea, which naturally disappears when considering normal ordered quantities. Therefore, this term will be removed in the following computations.

To relate the different observables of the system to the bosonic representation, we introduce the bosonic field Φ(x), which is defined by :

ρ(x) = 1 2π ∂ x Φ(x) (2.10)
Using the relation between the density and the plasmon operator b q , the bosonic field can be expressed as :

Φ(x) = -i q 2π Lq (b q e i q x -b † q e -i q x ) (2.11)
and it obeys the following commutation relations:

[Φ(x), Φ(x ′ )] = i πsi g n(x -x ′ ) (2.12)
This last relation 2.12 is what encodes the statistics of the quasi-particles contained in the bulk, and is a direct consequence of the bulk edge correspondence. Here, for an integer edge state, the exchange phase is π, and the edge describes fermionic quasiparticles. Using the charge conservation equation, we can also relate the current through the edge channel to this field:

I = e 2π ∂ t Φ (2.13)
From this relation, we can compute the conductivity of the edge by coupling the electrons to an external field arising from a dc bias voltage V d c , and recover the Landauer conductivity of a single edge channel I = e 2 h V d c . Finally, the Hamiltonian of the right moving particles can be express as a function of the density at the edge.

H = 1 2 hv F d xρ(x) 2 = hv F 8π 2 d x(∂ x Φ(x)) 2 (2.14)

Interactions in the bosonization picture

The strength of the bosonic representation of the problem, is to give exact solutions in presence of an interaction potential. A general definition of the interaction

Hamiltonian is:

H i nt = d xd yρ(x)U (x -y)ρ(y) (2.15)
where U (xy) is the interaction potential. In the case where the interaction range is much smaller than the wavelength (which is the case as long as we are in the low frequency regime f < 10G H z), one can approximate the interaction potential with a short range potential. In that case, s the interaction potential writes U (xy) = u 0 δ(xy). The full Hamiltonian becomes:

H = H c + H i nt = ħv F + 4πu 0 4π d x(∂ x Φ R (x)) 2 (2.16) = ħ ṽF 4π d x(∂ x Φ(x)) 2 (2.17) 
with

H c = hv F 8π 2 d x(∂ x Φ(x)) 2
is the kinetic part of the Hamiltonian, and ṽF is the renormalized plasmon velocity with interactions. The short range interaction only changes the velocity of the plasmon, and the Hamiltonian with short range interaction is identical to the one of a free particle.

Case of a FQHE Laughlin states

The observation of a quantum Hall phase at fractional filling factor ν = 1 m with m odd integer, implies the existence of incompressible gapped states, that must minimize the electron-electron interactions, and lead to a quantization of the conductance with a fractional value of the conductivity G = 1 h :

H ν=1 → H ν=1/m = ħv F 4πν d x(∂ x Φ(x)) 2 (2.18)
An intuitive way to derive this result as well as the equation of motion of charge at the edges of the fractional quantum Hall conductor is to consider a hydro-dynamical description of the problem. This analogy between the edge of a Laughlin liquid and the Luttinger model has been introduced by X.G Wen in the early 90's [START_REF] Wen | Electrodynamical properties of gapless edge excitations in the fractional quantum Hall states[END_REF][START_REF] Wen | Mean-field theory of spin-liquid states with finite energy gap and topological orders[END_REF][START_REF] Wen | Gapless boundary excitations in the quantum Hall states and in the chiral spin states[END_REF][START_REF] Wen | Theory of the edge states in fractional quantum hall effects[END_REF].

Interactions for 1D fermions and the Tomonaga-Luttinger theory

We consider a two-dimensional quantum Hall droplet, with a filling factor ν and a fixed density n 0 (fig. 2.2). The incompressibility of the (ground) state imposes a constraint on the low excitations of the systems: at a fixed number of particles, the only displacements are the ones that conserve the droplet area. Therefore, we can relate the electronic density at the edge with the surface density and a small displacement of the edge at position x: The total 2D Hamiltonian describing the edge displacement (with respect to the equilibrium) is the electrostatic interaction with the confining potential U (x, y) at the edge:

δρ(x) = ρ(x) -ρ 0 = h(x) 0 d yn 0 = n 0 h(x) (2.19)
δH = H -H 0 = d x h(x) 0 d y(-e)n 0 U (x, y) (2.20)
By definition, the curvilinear abscissa x is defined along the equipotential of U, and therefore, we can only keep the dependence of U on y in eq. 2.18. Introducing V = d yU (y), we can write that:

h(x) 0 d y U (y) = V (h(x)) -V (0) ≃ ∂V ∂y y=0 h(x) + 1 2 ∂ 2 V ∂y 2 y=0 h(x) 2 (2.21) = U (0)h(x) + 1 2 ∂U ∂y y=0 h(x) 2 (2.22)
Then the displacement Hamiltonian writes:

δH = -en 0 d x U (0)h(x) + 1 2 ∂U ∂y y=0 h(x) 2 (2.23) = 1 2 en 0 E d xh(x) 2 (2.24)
We want to remove the surface density and the electric field E at the edge from this expression. This can be done thanks to the definitions of the drift velocity and the filling factor: v f = E B and ν = hn 0 eB . From this, the edge Hamiltonian rewrite: 

δH = hv f 2ν d xδρ(x) 2 (2.

Fermionic operators and tunneling between edges

First, we address the case of an integer edge channel. To describe the tunneling between two one dimensional edge channels, we want to relate the fermionic creation operators ψ † to the bosonic fields operator Φ. This can be achieved by noticing that the effect of ψ † (x) on any state |N 〉 is to add one electron at position x. Therefore, the density ρ(x ′ ) of the state ψ † (x) |N 〉 is increased by one at position x ′ = x:

ρ(x ′ )Ψ † (x) |N 〉 = δ(x -x ′ )Ψ † (x) |N 〉 + Ψ † (x)ρ(x ′ ) |N 〉 (2.26)
Where the first term corresponds to the extra electron added in x = x ′ and the second term corresponds to the density of the initial state |N 〉. From this we have the commu-tator of both the fermionic field and the bosonic field with the density (which for an integer channel is obtained from the derivative of the relation 2.12):

ρ(x ′ ), Ψ † (x) = δ(x -x ′ )Ψ † (x) (2.27) ρ(x ′ ), Φ(x) = i δ(x -x ′ ) (2.28)
From this last relations, we get that the fermionic field must write as Ψ † (x) ∝ e -i Φ(x) .

We need to face one last issue: the bosonic fields are defined for a fixed number of electrons, whereas a fermionic operator by definition changes by one unit the number of particles. To make this representation complete, we need to add as a prefactor, a unitary operator F , called a Klein factor, that remove one highest energy electron from the system.

The full relation between the boson and fermion fields is what we call the bosonization identity:

Ψ(x) = F a e i Φ(x) (2.29)
With a is an exponential cutoff on momentum to regularize sums at high k introduced in the Luttinger model.

The statistics of these reconstructed fermionic operator is therefore fully described by eq.2.12. Using the Baker-Campbell-Hausdorff formula e A e B = e A+B e 1 2 [A,B ] :

Ψ(x)Ψ(x ′ ) = Ψ(x ′ )Ψ(x)e -[Φ(x),Φ(x ′ )] (2.30)
For an integer edge channel, we recover fermionic statistics:

Ψ(x)Ψ(x ′ ) = Ψ(x ′ )Ψ(x)e -i πsi g n(x-x ′ ) = -Ψ(x ′ )Ψ(x) (2.31)
For the fractional case ν = 1/m, the insertion of the term 1/ν in the definition of the Hamiltonian 2.25) has a very important consequence on the commutation relations of the bosonic field, which are modified to:

[Φ(x), Φ(x ′ )] = i πνsi g n(x -x ′ ) = i π m si g n(x -x ′ ) (2.32) ρ(x ′ ), Φ(x) = i νδ(x -x ′ ) (2.33)
In this case, the modification of the commutation relations changes the definition of the fermionic creation operator to

Ψ ∝ e i Φ(x) ν = e i mΦ(x) (2.34) Ψ(x)Ψ(x ′ ) = e i mπ si g n(x -x ′ )Ψ(x ′ )Ψ(x) (2.35)
Where m must be an odd integer to insure proper antisymmetric commutations.

This little change as a dramatic effect on the low excitations of the system: beside electronic excitations, we can also consider the quasi-particles creation operators define previously by Ψ q p ∝ e i Φ(x) . We notice that this operator creates an edge excitation with exotic fractional statistics, with an exchange phase of π m :

Ψ q p (x)Ψ q p (x ′ ) = e i π m si g n(x-x ′ ) Ψ q p (x ′ )Ψ q p (x) (2.36)
We recover, at the edge, the Laughlin anyon defined in bulk of the two-dimensional electron gas in the previous section.

The tunneling between two edges at a quantum point contact is described by a tunneling operator A which reflect the charge exchanged at the constriction: it destroys a particle in one branch 1 and create a particle in the opposite branch 2. Thus, we can write:

A(t ) = ξΨ 2 (0, t ) † Ψ 1 (0, t ) (2.

37)

I T = i q(A † -A) (2.38)
With ξ a tunneling amplitude, which is related to the transmission. The tunneling current I T reflects the exchange of particles of charge q during a tunneling event. For an integer edge channel, the only tunneling process is electron tunneling (q = e) , but in the Laughlin case, there are two different species, and the particle exchange depends on the transmission regime (see fig. 2.3). When the tunneling amplitude is small (weak back-scattering regime WBS), the tunneling is described by exchange of fractionally charged quasi-particles of charge q/m. The tunneling operator in that case can be expressed as:

A W B S (t ) = ξΨ q p,2 (0, t ) † Ψ q p,1 (0, t ) (2.

39)

I T = i e m (A † W B S -A W B S ) (2.40)
Whereas in the opposite regime of strong tunneling ( strong back-scattering regime SBS), we recover electronic exchange of particle between edges. The picture generally used is that in the SBS regime, the tunneling occurs through an insulating region in So far we have seen in that section that one dimensional quantum transport at the edge of a quantum Hall liquid is equivalently described by a set of bosonic fields.

In the case of a fractional state ν = 1/m, the commutation relations of these edge plasmon fields reflect the topological properties of the bulk. The tunneling between two opposite edges in that case can occur by random exchange of single elementary fractional anyon. Analyzing the current fluctuations due to tunneling processes at a quantum point contact is our main quantity of interest, and this what we are about to develop now.

Noise in mesoscopic conductors

Correlation functions and spectral density of noise

Most of the measurements introduced in the next chapters are measurements of current noise, i.e. the fluctuations around a mean value: i (t ) = i 0 + δi (t ) [START_REF] Landauer | The noise is the signal[END_REF][START_REF] Ya | Shot noise in mesoscopic conductors[END_REF]. We define the auto-correlations of current fluctuations by:

C i i (t , t ′ ) = 〈δi (t )δi (t ′ )〉 (2.41)
In the case of a stationary process, this quantity depends only on the difference

τ = t -t ′ : C i i (τ) = 〈δi (0)δi (τ)〉 .
We then define the noise spectral density, which is the Fourier transform of the current correlations:

S i i (ω) = 2 d τC i i (τ)e i ωτ (2.42)
It is also convenient to introduce a definition of the noise spectral density as a function of the Fourier transform of the current, by using the Wiener-Khinchin relation:

S i i (ω) = lim T m →+∞ 2 T m 〈|δi (ω)|〉 (2.43)
In our case, the current fluctuations are converted to voltage fluctuations on the output impedance Z (ω), which combines the Hall resistance and a LC tank circuit (see appendix A): δV (ω) = Z (ω)δi (ω). The voltages at the different Ohmic contacts are amplified and then integrated on a bandwidth to obtain the power:

P = 〈δV 2 〉 = ∆ω d ω 2π S V V (ω) (2.44)

Origins of voltage fluctuation across a mesoscopic conductor

We start by listing the different noise sources in mesoscopic conductors, which are summarized in figure 2.4.

Johnson-Nyquist noise

The first source of noise is due to the thermal agitation of the electrons in the conductor, often referred to as the Johnson-Nyquist noise [START_REF] Landauer | Johnson-Nyquist noise derived from quantum mechanical transmission[END_REF]. This agitation leads to a white noise of voltage, directly proportional to the temperature θ of the electrons. [START_REF] Kobayashi | Shot Noise in Mesoscopic Systems: From Single Particles to Quantum Liquids[END_REF]). To avoid the low frequency 1/ f noise, we shift the current shot noise measurement to the M H z range, at which both thermal and shot noise can be considered as white noises. At higher frequencies, the thermal noise and the shot-noise are suppressed respectively at k B θ/h and qV /h, and the contribution of the quantum noise, related to vacuum fluctuations of the electric field, becomes preponderant.

S i i (ω = 0) = 4k B θRe(1/Z ) (2.
with Z the complex impedance of the conductor.

1/ f noise

The second type of noise is referred to as the 1/ f noise, or sometime called pink noise [START_REF] Hooge | 1/f noise[END_REF][START_REF] Dutta | Low-frequency fluctuations in solids: $\frac{1}{f}$ noise[END_REF]. This noise is believed to arise from the motion of impurities and background charges, leading to conductance fluctuations. All these mechanisms lead to a spectral noise proportional to 1/ f . To avoid contributions from this phenomenon, we shift the low frequency noise measurement to the M H z range. Notice that we are still in the low frequency limit as we have ħω ≪ k B θ.

Shot noise

The source of main interest is what we call the shot-noise. It was first introduced by Walter Schottky in 1918 [START_REF] Schottky | Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern[END_REF], to explain the noise generated by a source of charged particles emitted in an independent manner, at a small probability that follows a

Poisson distribution. The fluctuations of current come from the granularity of charge carriers. The spectral density of current noise is directly proportional to the variance of particle number during measurement time, which is the average number of particle in the case of a Poissonian distribution. Therefore, in that case the spectral density is proportional to the average current and to the elementary charge transferred q by the tunneling event:

S i i = 2q〈i 〉 (2.46)
For any emission process and transport regime, we define the Fano factor by the ratio of the spectral density by the one of a Poissonian distribution:

F = S i i 2q〈i 〉 .
The measurement of the Fano factor has been an important tool in the study of the transport properties of materials both in diffusive metal [START_REF] Henny | 1/3-shot-noise suppression in diffusive nanowires[END_REF][START_REF] Liefrink | Experimental study of reduced shot noise in a diffusive mesoscopic conductor[END_REF], or superconductors [START_REF] Lefloch | Doubled Full Shot Noise in Quantum Coherent Superconductor-Semiconductor Junctions[END_REF]. The following section focuses on the ballistic case described by the Landauer picture of transport.

Low frequency shot noise in the Landauer picture

In that section, we follow the wave-packet approach introduced by T.Martin and R.Landauer [START_REF] Th | Wave-packet approach to noise in multichannel mesoscopic systems[END_REF][START_REF] Landauer | Time delay in wave packet tunneling[END_REF][START_REF] Martin | Les Houches Session LXXXI[END_REF]. We start to describe in this section a two terminals device as the one use in section 1.1.2: two contacts L and R with chemical potentials µ L and µ R are connected to a chiral single mode quantum conductor (typically an ideal quantum hall conductor at ν = 1 ). A tunneling barrier inside the conductor (typically a quantum point contact) allows some back-scattering T .

The Landauer approach implies that electrons travel through the sample in the form of well-ordered wave-packet. Therefore, the current generated by a dc voltage is noiseless: for bias V applied, the current flowing from this contact can be seen as a succession of pulse carrying a unit of charge, separated by τ = h ∆ϵ = h eV . The output current is related to the pulse j (t ) emitted at time n × τ, but with some occupancy g n that reflects the scattering events: The power spectral density is then obtained from the variance of the electron occupancy g n . Using the Wiener-Khinchin formulation of the spectral density of noise, and the Fourier transform of the current 2.48, we find:

i (t ) = n g n j (t -nτ) (2.47) d t j (t ) = e (2.
S i i (ω) = lim T m →+∞ 2 T m 〈|δi (ω)| 2 〉 (2.49) 〈δi 2 (ω → 0)〉 = e 2 n (〈g 2 n 〉 -〈g n 〉 2 ) = e 2 T m τ × (〈g 2 〉 -〈g 〉 2 (2.50
)

S i i (ω ≃ 0) = 2e 2 τ (〈g 2 〉 -〈g 〉 2 ) (2.51)
The next step is to compute 〈g 2 〉 and 〈g 〉 2 . To that extent, we consider the different possibilities leading to a non-zero current across the junction, with probabilities given by the Fermi distribution of the left and right leads. There are only six possible histories of pulses:

• No electron emitted with probability (1

-f L )(1 -f R ) and g = 0
• One electron is emitted in each leads with probability f L f R and leading in any case to zero current g = 0

• One electron is emitted from the left contact and transmitted to the right contact

with probability (1 -T ) f L (1 -f R ) leads to g = +1
• One electron is emitted from the right contact and transmitted to the left contact

with probability (1 -T ) f R (1 -f L ) leads to g = -1
• One electron is emitted from the left contact and reflected back to the left contact with probability T f L (1f R ) leads to g = 0

• One electron is emitted from the right contact and reflected back to the right contact with probability

T f R (1 -f L ) leads to g = 0
With that you can compute the average and variance of electron occupancy g :

〈g 〉 = (1 -T ) f L (1 -f R ) -f R (1 -f L ) (2.52
)

〈g 2 〉 = (1 -T ) f L (1 -f R ) + f R (1 -f L ) (2.53) 〈g 2 〉 -〈g 〉 2 = (1 -T )[ f L (1 -f R ) + f R (1 -f L )] -(1 -T ) 2 ( f L -f R ) 2 (2.54)
The low frequency spectral density of a two terminal one dimensional conductor is obtained by summing the contribution of all energies:

h 2e 2 × S i i (0) = d ϵ[1 -T (ϵ)][ f L (1 -f L ) + f R (1 -f R )] + d ϵT (ϵ)[1 -T (ϵ)][ f L -f R ] 2 (2.55) With f i = f i (ϵ -µ i )
is the Fermi distribution function in the lead i. The equation 3.16

has two terms: the first one describe the thermal fluctuations in the two lead, whereas the second terms describe the exchange between the lead, leading to shot noise. To see that, we can take the low and high temperature limit case. For high temperature eV ≪ k B θ, the second term is negligible, and by noticing that

f i (1 -f i ) = -k B θ ∂ f i
∂ϵ , the first term leads to the Johnson Nyquist formula:

S i i (0) = 4k B θ(1 -T ) e 2 h
(2.56)

In the low temperature limit, the two Fermi distribution functions become a step function, and the first term is negligible, leading to the quantum shot noise formula:

S i i (0) = 2eT (1 -T ) e 2 h V = 2e(1 -T ) × 〈i 〉 (2.57)
where 〈i 〉 is the average back-scattered current. In this regime, we expect a reduction of the Shot noise, leading to a Fano factor: F = (1 -T ). Between this two regimes, one cannot neglect one of the two term, and the noise is a combination of thermal and shot noise.In that case, the two terminals shot noise at temperature θ is given by:

S i i (0) = 4k B θG 0 T + 2eT (1 -T )G 0 |V |[cot h( eV 2k B θ ) - 2k B θ eV ] (2.58)
This calculation was led in the simpler case of a two terminal conductor. Our measurements involve a four terminal geometry, in which the thermal contribution does not depend on the QPC transmission. In that case, the QPC has two inputs (contacts 1 and 2), and two outputs(contacts 3 and 4): we can probe the auto-correlation noise spectrum at each output (S i 3 i 3 /S i 4 i 4 ) and the cross-correlation between output (S i 3 i 4 ).
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Figure 2.6: Typical shot noise two (left) and four (right) terminal geometries. A DC bias is applied at one contact, and the noise is collected through a low noise amplifier.

In the case of a DC bias V at finite temperature θ, the four terminal auto-correlation spectral density at any of the two outputs becomes: In this four contacts configuration, we can also probe the cross-correlations between the two edge potentials. We define the cross-correlations of the two output currents by:

S i k i k (0) = 4k B G 0 θ + 2eT (1 -T )G 0 |V |[cot h( eV 2k B θ ) - 2k B θ eV ] (2.59) With G 0 = e 2 h ,
S i 3 i 4 (ω) = d (t -t ′ )〈δi 3 (t )δi 4 (t ′ )〉e i ω(t -t ′ )
(2.60)

The current conservation between the outputs and the inputs i 1 + i 2 = i 3 + i 4 leads to a relation between the expected excess noise:

∆S i 1 i 1 + ∆S i 2 i 2 + 2∆S i 1 i 2 = ∆S i 3 i 3 + ∆S i 4 i 4 + 2∆S i 3 i 4 (2.61)
Where the excess noise is defined by removing the zero bias noise contribution:

∆S(V ) = S(V ) -S(V = 0)
. The input currents are noiseless for ballistic transport, and the auto-correlation noise at the two outputs are equal. Therefore, in that configuration the auto-correlation noise and the cross-correlation noise are equal up to a sign:

∆S i 3 i 3 = ∆S i 4 i 4 = -∆S i 3 i 4 (2.62) S i 3 i 4 (0) = -2eT (1 -T )G 0 |V |[cot h( eV 2k B θ ) - 2k B θ eV ] (2.63)
Notice that the thermal fluctuations naturally disappear in the measurement of the cross-correlations, and therefore we expect to have no noise at zero bias:

∆S i 3 i 4 ≃ S i 3 i 4 .

High frequency shot noise

Up to now, we have only investigated the low frequency limit of the spectral density, which is valid as long as h f ≪ k B θ (400M H z at 20mK ). In the last chapter, we will be interested in the high frequency spectral density of shot noise in the opposite regime [START_REF] Reznikov | Temporal Correlation of Electrons: Suppression of Shot Noise in a Ballistic Quantum Point Contact[END_REF][START_REF] Zakka-Bajjani | Experimental Test of the High-Frequency Quantum Shot Noise Theory in a Quantum Point Contact[END_REF].

h f ≫ k B θ
In that case, the correlations' operator between current at different times becomes non Hermitian, and the high frequency current fluctuations are related to the symmetrized density of noise S s ym ( f ):

S s ym ( f ) = d t e i 2π f t (〈δi (t )δi (0)〉 + 〈δi (0)δi (t )〉) (2.64)
For high frequency shot noise measurement in the case of a four terminal quantum point contact geometry, with a DC bias V d c the excess high frequency spectral density can be computed from the low frequency shot-noise spectral density thanks to fluctuation-dissipation relations [START_REF] Safi | Time-dependent theory of nonlinear response and current fluctuations[END_REF][START_REF] Roussel | Perturbative fluctuation dissipation relation for nonequilibrium finite-frequency noise in quantum circuits[END_REF]:

∆S( f ,V d c ) = 1 2 (∆S(0,V d c + h f q ) + ∆S(0,V d c - h f q )) (2.65)
This relation presupposes that the transmission is weakly non-linear with input current, and that particles of charge q are tunneling at the QPC. Therefore, this relation is valid both for integer Quantum Hall regime and Fractional quantum Hall fluid in the weak back-scattering limit. From the expression of the low frequency shot noise, we obtain the high frequency shot noise at finite temperature: 

∆S( f ,V d c ) 2qT (1 -T ) * G ν = V d c + h f /q 2 * cot h( eV d c + h f 2k B θ ) + 1 2 (V d c -h f /q) * cot h( qV d c -h f 2k B θ ) - h f q * cot h( h f 2k B θ ) (2.66)

Noise in the fractional regimes: fractional charges detection

After the discovery of the FQHE plateau, and the Laughlin proposal for the ground state wave function, the fractional charge prediction was a direct consequence of the fractional filling factor. The direct evidence of these quasi-particles was first extracted from low frequency shot noise at filling factor ν = 1/3, in the limit of weak back-scattering T ≪ 1 [START_REF] Saminadayar | Observation of the e/3 fractionally charged Laughlin quasiparticle[END_REF][START_REF] De Picciotto | Direct Observation of a Fractional Charge[END_REF] (see fig. 2.8). The current auto-correlation noise collected after the partitioning of a single edge state for a bias larger than the thermal fluctuations (V ≫ k B θ/q) is directly proportional to the transferred charge q = e/3

and to the small back-scattered current [START_REF] Kane | Nonequilibrium noise and fractional charge in the quantum Hall effect[END_REF]. The theoretical tool of Luttinger liquids

gives an exact solution of current and noise in the weak back-scattering limit T ≪ 1, predicting the transfer of fractional charges q = e 3 . Experimentally, we deviate from this limit case, and we need to take into account the transmission dependence. To fit the data and extract the charge, we use a generalization of the shot noise reduction formula derived first in the case of non-interacting fermions [START_REF] Th | Wave-packet approach to noise in multichannel mesoscopic systems[END_REF] and generalized to any exclusion distribution [START_REF] Isakov | Conductance and Shot Noise for Particles with Exclusion Statistics[END_REF] by changing T → T (1-T ), which has been successfully used to extract fractional charges [START_REF] Rosenow | Nonuniversal Behavior of Scattering between Fractional Quantum Hall Edges[END_REF][START_REF] Feldman | Why a noninteracting model works for shot noise in fractional charge experiments[END_REF]: More recent evidence of the fractional charge can be found through noise measurements by measuring the Josephson cut-off V 0 = h f q , which is inversely proportional to the charge. This has been first achieved at filling factor ν = 2/5 in photo-assisted shot noise measurement [START_REF] Kapfer | A Josephson relation for fractionally charged anyons[END_REF]. By measuring the low frequency shot noise while sending a high frequency AC voltage on top of a DC voltage to a QPC , Kapfer et al. extracted a charge e/5 on the inner edge channel and a charge e/3 on the outer one (see fig. 2.9 a and c). Similarly, we have been able to test this Josephson relation by directly measuring the high frequency shot noise in the G H z range with respect to the DC voltage [START_REF] Bisognin | Microwave photons emitted by fractionally charged quasiparticles[END_REF], for filling factor ν = 3,ν = 4/3, ν = 2/3 . In both cases, the noise (low frequency in the photo assisted experiment and high frequency in our case) gets canceled for bias lower than V 0 , and a charge e/3 for fractional edge channels can be extracted from the value of this cutoff (see fig. 

∆S i i (0) = 2qT (1 -T ) e 2 3h |V |[cot h( qV 2k B θ ) - 2k B θ qV ] ( 2 

Unveiling exchange statistics with quantum interferometers

In the first chapter, we have introduced the physics of the fractional Quantum Hall effect, in which the elementary excitations are described by fractional quasi-particles, with exotic exchange statistics. A clear signature of the existence of these anyons has been obtained in the 90s by extracting their fractional charge q [74, [START_REF] De Picciotto | Direct Observation of a Fractional Charge[END_REF][START_REF] Saminadayar | Observation of the e/3 fractionally charged Laughlin quasiparticle[END_REF]from the measurement of the current fluctuations resulting from the random tunneling of anyons between two counter-propagating edge channels brought close to each-other by a quantum point contact. However, direct experimental signatures of fractional statistics have remained elusive for a long time. Two different routes have been proposed in order to provide evidence of the fractional statistics of the elementary excitations of FQH phases (for reviews, see [START_REF] Stern | Anyons and the quantum Hall effect-A pedagogical review[END_REF][START_REF] Feldman | Fractional charge and fractional statistics in the quantum Hall effects[END_REF]). The first one is to measure the braiding phase 2ϕ in a single particle interferometer, such as an electronic Fabry-Perot [START_REF] De C. Chamon | Two point-contact interferometer for quantum Hall systems[END_REF][START_REF] Law | Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics[END_REF] interferometer. However, the measurement of fractional statistics in these systems are obscured by competing effects of the Coulomb interaction [START_REF] Halperin | Theory of the Fabry-Pérot quantum Hall interferometer[END_REF] which are dominant in small size interferometers [START_REF] Camino | e/3 Laughlin Quasiparticle Primary-Filling =1/3 Interferometer[END_REF][START_REF] Ofek | Role of interactions in an electronic Fabry-Perot interferometer operating in the quantum Hall effect regime[END_REF][START_REF] Mcclure | Fabry-Perot interferometry with fractional charges[END_REF].

Single particle interferometers

Taking a specific care to screen the effects of the Coulomb interaction, Aharonov-Bohm oscillation of the conductance through Fabry-Perot interferometers have been observed but not in the fractional regime until recently [START_REF] Sahasrabudhe R. Rahman | Aharonov-Bohm interference of fractional quantum Hall edge modes[END_REF]. Last year using additional two-dimensional electron gases as screening layers, allowing one to operate the interferometer in the non-interacting regime, jumps of phase 2π/3 were observed [START_REF] Nakamura | Direct observation of anyonic braiding statistics[END_REF] at filling factor ν = 1/3 which are consistent with the addition or removal of one anyon within the Fabry-Perot cavity.

Two particles interferometers

The second one is to measure the exchange statistics of particles from two particles interferometry experiments, which have been introduced in the context of optics by Hanbury-Brown and Twiss [START_REF] Brown | Correlation between Photons in two Coherent Beams of Light[END_REF]. Such experiments, where one measures intensity correlations (light intensity in optics, current correlations in electronics) at the output of a beam-splitter scattering elementary particles have demonstrated the bunching of photons (bosons) [START_REF] Hong | Measurement of subpicosecond time intervals between two photons by interference[END_REF] or the anti-bunching of electrons [START_REF] Liu | Quantum interference in electron collision[END_REF][START_REF] Ol'khovskaya | Shot Noise of a Mesoscopic Two-Particle Collider[END_REF][START_REF] Bocquillon | Coherence and Indistinguishability of Single Electrons Emitted by Independent Sources[END_REF], colliding on the splitter. In the context of anyons, it was predicted in the 2000s that bunching effect in current correlation measurements could provide information on their fractional statistics [START_REF] Safi | Partition Noise and Statistics in the Fractional Quantum Hall Effect[END_REF][START_REF] Vishveshwara | Revisiting the Hanbury Brown-Twiss setup for fractional statistics[END_REF][START_REF] Kim | Signatures of Fractional Statistics in Noise Experiments in Quantum Hall Fluids[END_REF][START_REF] Campagnano | Hanbury Brown-Twiss interference of anyons[END_REF][START_REF] Campagnano | Hanbury Brown and Twiss correlations in quantum Hall systems[END_REF][START_REF] Lee | Negative Excess Shot Noise by Anyon Braiding[END_REF]. All the different proposed geometries share in common several quantum point contacts, which are used both as anyon emitters and anyon scatterers. We discuss in this work the signatures of anyonic statistics [START_REF] Bartolomei | Fractional statistics in anyon collisions[END_REF] observed in the geometry of the anyon collider proposed by B.Rosenow, I.P. Levkivskyi and B.I. Halperin [START_REF] Rosenow | Current Correlations from a Mesoscopic Anyon Collider[END_REF]. We start in the first section by presenting the principle of the experiment and the theoretical predictions for electron and anyon collisions. We then discuss in the second section the random emission of particles at a single quantum point contact used as an electron (in the integer case) or anyon (in the fractional case) source. The results of the collision experiments are presented in the following sections for a symmetric bias of the collider and for the asymmetric bias. We finally discuss the possible existence of edge reconstruction mechanisms leading to the presence of upstream neutral modes that could affect the results of anyon collisions.

The collider geometry

The geometry is based on a Hong-Ou-Mandel interferometer tuned in the fractional Quantum Hall regime ν = 1 3 , which means that all the transport is governed by quasi-particles exchange (fig. 3.2). The system is made of two one dimensional edge channels leading to a central quantum point contact cQPC at which the collisions occur. In the two input arms, we generate very dilute currents of particles I 1 and I 2 , thanks to a small tunneling T S through input QPC 1 and QPC 2 . The two input quantum point contacts tuned in the weak back scattering regime play the role of random anyon sources. Then, the particles incoming at the center can either be transmitted with probability (1 -T ) or reflected with probability T toward the output arms (3 and 4), where we collect the current fluctuations.

In order to develop a simple picture of signatures of bunching and anti-bunching in a collision experiment, we start to consider the situation where two particles are simultaneously incoming on the beam splitter: in that case, the geometry is the one of a Hong Ou Mandel interferometer [START_REF] Hong | Measurement of subpicosecond time intervals between two photons by interference[END_REF][START_REF] Bocquillon | Coherence and Indistinguishability of Single Electrons Emitted by Independent Sources[END_REF]. After a collision occurs, three outcomes are possible (see fig. 3.3): either the two particles go in opposite arms with probability P (1, 1),or they can bunch together in one of the two outputs (with the same probability P (2, 0) = P (0, 2)). To extract information about this bunching or anti-bunching effects, we record the cross-correlations between electrical currents fluctuations at the output of the interferometer. For classical indistinguishable particles, the probabilities at the output of the splitter are not affected by other particles, and each particle has the same probability T to be transmitted. In the absence of statistics of quantum origin, the two particles can either come out of the same side of the splitter (bunching) or in distinct arms (anti-bunching) with classical probabilities. In the first case, an excess of particles (compared to the average current) is recorded in one arm, and a deficit in the other arm, giving a negative contribution to the cross-correlations. In the second case, no variations with respect to the average current are recorded, giving a zero contribution to the cross-correlations.

Classical one dimensional lattice

Classical particles

To have a clear idea of how quantum statistics affect the cross-correlations, B.Rosenow and collaborators [START_REF] Rosenow | Current Correlations from a Mesoscopic Anyon Collider[END_REF] use a simple classical lattice model in which the particles are moving on a 1D chain representing the two edge states coming to the central QPC . At any time t , each site has a small probability T i << 1 to host a particle, which result from the tunneling at QPC 1 and QPC 2 . These particles move toward the QPC at fixed velocity: a particle on site i at time t will be on site i + 1 at time t + τ. After the beam splitter, we can easily find the occupation probabilities from simple classical probabilities:

P (0, 0) = (1 -T 1 )(1 -T 2 ) (3.1) P (1, 0) = T 1 (1 -T 2 )(1 -T ) + T 2 (1 -T 1 )T (3.2) P (0, 1) = T 2 (1 -T 1 )(1 -T ) + T 1 (1 -T 2 )T (3.3) P (1, 1) = 1 -2T (1 -T ) T 1 T 2 (3.4) P (2, 0) = P (0, 2) = T (1 -T )T 1 T 2 (3.5)

Quantum statistics in the classical model

To take into account exchange statistics in this classical toy model, we can introduce a quasi probability p to modify the bunching and anti-bunching probabilities.

Therefore, we have modified occupation at the output:

P (2, 0) = P (0, 2) = (1 -p)T (1 -T )T 1 T 2 (3.6) P (1, 1) = 1 -2T (1 -T )(1 -p) T 1 T 2 (3.7)
For a value 0 ≤ p ≤ 1, the factor (1p) decreases the bunching probability P (2, 0) = P (0, 2). In particular, for a value of p = 1, we recover the fermionic behavior, with a perfect anti-bunching P (2, 0) = P (0, 2) = 0. On the contrary, for a negative value of p, the bunching probabilities are enhanced compared to classical particle: we are describing boson-like particles. From this relation, we can deduce the crosscorrelations of particle fluctuations at outputs 3 and 4 〈δN 3 δN 4 〉:

〈N 3 N 4 〉 = P (1, 1) = 1 -2T (1 -T )(1 -p) T 1 T 2 (3.8) 〈N 3 〉 = T 1 (1 -T ) + T 2 T (3.9) 〈N 4 〉 = T 2 (1 -T ) + T 1 T (3.10) 〈δN 3 δN 4 〉 = -T (1 -T ) 2T 1 T 2 (1 -p) + (T 1 -T 2 ) 2 (3.11)
The current cross-correlations S I 3 I 4 are related to the cross-correlations particle number of charge q by:

S I 3 I 4 = 2 q 2 τ 〈δN 3 δN 4 〉 (3.12)
Finally, we want the result for the balanced collider, and define T 1 = T 2 = T S :

S I 3 I 4 = -2qT (1 -T )T S (1 -p) × I + (3.13) I + = 2qT S τ (3.14)
We then define a Fano factor of the cross-correlations term by dividing by 2qT (1-T )I + which can be seen as the sum of the shot noise generated separately by the average current I + 2 in the two input arms:

P = S I 3 I 4 2qT (1 -T )I + = -(1 -p)T S (3.15)
Taking the value p = 1 gives the expected P = 0 value for fermions: the Pauli principle forbid two particles to bunch in the same arm and therefore no cross-correlated events occurs. For value of p < 0, we increase the probability of particles bunching and this situation describe bosonic-like behavior. The bunching behavior expected for Boson results in a negative value of the generalized Fano factor.

What is the expected value of this Fano factor for anyons ?

Anyons have intermediate statistics between fermions and bosons [START_REF] Wilczek | Quantum Mechanics of Fractional-Spin Particles[END_REF][START_REF] Haldane | Fractional statistics" in arbitrary dimensions: A generalization of the Pauli principle[END_REF], and therefore we expect the collision to show negative anti-bunching cross-correlations. To quantify the anyon collision, we want to find the pseudo Fano factor P for the Laughlin case ν = 1/3. The classical lattice model introduced here cannot capture the physics of the highly correlated fractional state, and the long range correlations from which arises the anyons. To get meaningful results for such state, we need to introduce a quantum Luttinger liquid model, which is achieved by B. Rosenow and collaborators [START_REF] Rosenow | Current Correlations from a Mesoscopic Anyon Collider[END_REF], and what we are about to introduce in the next section.

Quantum description

We describe in that section the full collider represented in fig. 3.2: the diluted current I 1 and I 2 are generated by the tunneling of charge at QPC 1 and QPC 2 due to bias voltage V 1 and V 2 . This time, the four edges states of the sample as described as one dimensional quantum channels, using the tools introduced in the second chapter.

Fermionic case

For non-interacting fermions, the quantum model can be derived in the scattering approach [START_REF] Ya | Shot noise in mesoscopic conductors[END_REF] (see formula 3.16). The low frequency current cross-correlations can be expressed with the input arms Fermi distribution function, that must be modified to take into account the out of equilibrium Poissonian emission f k (ϵ)

θ→0 → h(-ϵ) + T k h(ϵ)h(eV -ϵ)
where h is the Heaviside step function. Within the scattering approach, the current cross-correlations reads:

〈δI 3 δI 4 〉 2e 2 h = T (1 -T ) d ϵ f 1 (1 -f 1 ) + f 2 (1 -f 2 ) -f 1 (1 -f 2 ) -f 2 (1 -f 1 ) (3.16)
where the first two terms reflect the fluctuations of electron occupation probabilities due to the random emission in the two edges, and the two others reflect the tunneling process. We already see that in the case of a balanced collider, T 1 = T 2 and f 1 = f 2 , the cross-correlations vanish as a consequence of fermion exclusion. Using the displaced distribution functions f 1 and f 2 in the zero temperature limit, we can compute the case in which the two input transmissions are set equal T 1 = T 2 = T S but two different voltages V 1 and V 2 create an imbalance, from which we can deduce an expression of P (I -/I + ):

〈δI 3 δI 4 〉 = -2eT (1 -T )T 2 S e 2 h |V 1 -V 2 | V 1 =V 2 → 0 (3.17) P = 〈δI 3 δI 4 〉 2eT (1 -T )I + = -T S |V 2 -V 1 | |V 1 | + |V 2 | = -T S I - I + (3.18)
where I -= |I 2 -I 1 | is the input currents difference. We recover with the Landauer approach for fermions the same dependence with input transmission T S and vanishing P factor as in the classical lattice model for p = 0. For non balanced collider, the cross-correlations become slightly negative and proportional to T S .

We are about to see that for anyons in a highly correlated FQHE liquid, the non-trivial braiding processes between the edges lead to large cross-correlations, but also to a P factor independent of T S .

Anyonic case

To capture the physics at the edge of a Fractional quantum Hall fluid, we derive transport and tunneling of quasi-particles at cQPC in the chiral Tomonaga-Luttinger formalism. In that case we have seen in the section 2.1 that the low energy one dimensional charge propagation can be fully described by particles-holes excitation of the system through the introduction of bosonic fields, φ k (x, t ) with k = 1, 2 indexes the two arm incoming to the cQPC and their related charge density ρ k = 1 2π ∂ x φ k and current I k = e 2π ∂ t φ k . These fields satisfy the bosonic commutation relations:

[φ k (x), φ l (y)] = i πνδ kl si g n(x -y) (3.19)
at equal time, and similarly for equal position and different time:

[φ k (t 1 ), φ l (t 2 )] = i δπδ kl si g n(t 1 -t 2 ) (3.20)
where δ = 1 m encodes the statistics of the Laughlin state in absence of edge reconstruction effect [START_REF] Rosenow | Nonuniversal Behavior of Scattering between Fractional Quantum Hall Edges[END_REF]. The partitioning at cQPC (at position x = 0) is described by a tunneling operator A of a fractional charge q defined by: A(t ) = ξΨ q p,2 (0, t ) † Ψ q p,1 (0, t ) = ξe i (φ 2 (0,t )-φ 1 (0,t ))

(3.21)

I T = i q(A † -A) (3.22)
With I T the tunneling current at the constriction. The tunneling of quasi-particles in each of the two input arms 1 and 2, is modeled by adding to the equillibrium field φ (0) k a term describing the out of equilibrium fluctuations of the bosonic field due to the tunneling of fractional charge at the input QPC, which is described by a Poissonian random variable N k . We can write:

φ k = φ (0) k + 2πλN k (3.23) 〈 d N k d t 〉 = 〈I k 〉 q (3.24)
Where the second term corresponds to a random emission of a charge λ. For a

Laughlin states ν = 1/m where no edge reconstruction is expected, λ = 1 m is the quasiparticles fractional charge. and In presence of edge reconstruction, the value of the emitted charge λ can change [START_REF] Kane | Randomness at the Edge: Theory of Quantum Hall transport at filling =2/3[END_REF][START_REF] Levkivskyi | Universal nonequilibrium states at the fractional quantum Hall edge Ivan P. Levkivskyi[END_REF]. After the cQPC we can relate the output current I 3 = 〈I 1 〉 -〈I T 〉 and I 4 = 〈I 2 〉 + 〈I T 〉 to the input current and the tunneling. We also define the total input current I + = 〈I 1 〉 + 〈I 2 〉 and the input current difference

I -= 〈I 1 〉 -〈I 2 〉.
In that case, the correlation between the outputs is given by:

〈δI 3 δI 4 〉 = -〈δI 2 T 〉 + 〈δI 1 δI T 〉 + 〈δI 2 δI T 〉 (3.25) = -〈δI 2 T 〉 + q(〈I + 〉 ∂ ∂I - + 〈I -〉 ∂ ∂I + )〈I T 〉 (3.26) 
The first term in this relation gives the noise generated by the tunneling at the central QPC, whereas the two other terms correspond to the fluctuation in the input arm transmitted through the cQPC . The following steps completed by Rosenow et al. is to compute the average value and the fluctuations of the tunneling current from the correlator of the tunneling operator:

〈I T 〉 = q +∞ -∞ 〈 A † (0), A(t ) 〉 (3.27) 〈δI 2 T 〉 ω=0 = q 2 +∞ -∞ 〈{A † (0), A(t )}〉 (3.28)
Where the commutator and anti-commutator can be computed from the correlation function of the tunneling operator at equilibrium:

〈A(t )A † (0)〉 = 〈A(t )A † (0)〉 0 × exp - 〈I 1 〉 q (1 -e -2i πλ )t × exp - 〈I 2 〉 q (1 -e +2i πλ )t (3.29) 〈A(t )A † (0)〉 0 = |ξ| 2 e i πδsi g n(t ) ( τ c |t | ) 2δ (3.30)
Where 〈A(t )A † (0)〉 0 is the equilibrium correlation function, where τ c is a short time cutoff. The tunneling current and its fluctuations can now be computed at leading order of τ c :

〈I T 〉 = C si n(πδ)I m(I + + i I - t an(πλ) ) 2δ-1 (1 + O(τ c )) (3.31) 〈δI 2 T 〉 ω=0 = C q cos(πδ)Re(I + + i I - t an(πλ) ) 2δ-1 (1 + O(τ c )) (3.32) Where C = 4q|ξ| 2 τ 2δ c Γ(1-2δ)[ 1-cos(2πλ) q ] 2δ-1 and Γ(z) = +∞ 0 d u u z-1 e -u
is the Euler Gamma function (defined only for Re(z) > 0 meaning δ < 1/2).

Exactly as in the classical model, we can define the generalized Fano factor as :

P (I -/I + ) = 〈δI 3 δI 4 〉 q I + ∂ ∂I -〈I T 〉 I -=0 (3.33) 
Where ∂ ∂I -〈I T 〉

I -=0
≃ T in the weak back-scattering regime T ≪ 11 . Using the computation of 〈δI 2 T 〉 ω=0 , we find the expression of the P factor with respect to the two parameters λ and δ used in the Luttinger description of the edge channels:

P (x = I -/I + ) = Re[(1 -i x tan (πλ) ) 2δ-2 ] -x tan (πλ) I m[(1 -i x tan (πλ) ) 2δ-2 ] - tan (πλ) tan (πδ)(1 -2δ) Re[(1 -i x tan (πλ) ) 2δ-1 ] (3.34)
From this expression, we can compute the expected values of P (I + /I -) with the current imbalance for all the different Laughlin states ν = 1/m, with δ = λ = 1 m (plotted on figure 3.4).

For a vanishing input current difference, we find the result for the balanced collider:

P (0) = 1 - t an(πλ) t an(πδ)(1 -2δ) λ=δ= 1 m = -2 m -2 m=3 = -2 (3.35)
This negative P (0) factor highlights the ability of particles to form packets of charge at one output, leading to negative cross-correlations. The second important remark is that the P (I -/I + ) factor for anyons does not depend on the input QPC transmission T S , in contrast with both the classical toy-model, and the result for fermions and bosons. As shown in Morel et al. [START_REF] Morel | Fractionalization and anyonic statistics in the integer quantum Hall collider[END_REF], the non-zero leading term in anyon collisions involves many non-trivial braiding processes between inputs currents and 

Sample description

Transport properties and quantum hall signatures

We describe here how to achieve and measure anyonic collisions in a two-dimensional electron gas made with an AlGaAs/GaAS heterostructure. The properties of the 2D gas can be characterized by Hall bar measurements. The electron density is n s = 1.09 * 10 15 m -2 and the mobility µ = 1.4 * 10 6 cm 2 .V -1 s -1 . To build the collider introduced in the proposal [START_REF] Rosenow | Current Correlations from a Mesoscopic Anyon Collider[END_REF], we need to implement, both in the integer and fractional regime, the various elements of the anyon collider interferometer: one dimensional fractional quantum wires, beam-splitter and particle sources. Fig. 3.5 is an electron microscope image of the sample. The edge sates are represented with plain lines, and tunneling with dotted lines. The sample is cooled down to 25mK thanks to a dilution cryostat, and a strong magnetic field up to 14T is applied, so the electronic transport is governed by the quantum Hall regime. In that regime, the electronic excitations can be carried ballistically over long distance through the chiral edge states, without any loss: the longitudinal resistance of the sample goes to zero.

The figure 3.6 represents the transmission of current between two different contacts

T i → j . These transmissions are determined by measuring the voltage drop between the two contacts i and j with a lock-in amplifier scheme at a low frequency of few H z.

With the previous notation, we see that T 1→5 = 1 -T 1 (red curve), T 7→5 = T 1 (Navy blue curve),T 2→6 = 1 -T 2 (purple curve) and T 8→6 = T 2 (light blue curve).

As we increase the field, we see a succession of plateaus of 1 -T i corresponding to the different quantum Hall filling factors of the 2DEG. When the transmission is on a plateau, the back-reflection T i goes to zero, insuring we have perfect quantum hall regime transport properties. This is notably the case of the ν = 3, ν = 2 and ν = 1 3 states, that will be studied in this chapter. The next elements to be implemented are the particle emitters, for both electronic and anyonic excitations. For experimental realization of this proposal, the sources have to generate a dilute and random particle beam, each emission follows a Poissonian law (Poissonian source). In our case, this can be simply done by using the random tunneling of charge when we apply a dc voltage V 0 on a QPC : the partitioning of the incoming current I 0 = ν e 2 h V 0 on such a tunnel junction in the weak back-scattering limit occurs through the random transfer of charge q. For integer edge states, the transferred charge is the one of the electron e, but in the fractional regime ν = 1/3, the partitioning of current with small back-scattering probability occurs through the random transfer of quasi-particles of fractional charge q = e/3. The architecture of the sample uses three QPC : the two first (QPC 1 and QPC 2 ) are used as Poissonian sources, and the last one (cQPC ) acts as the central beam-splitter, where particles collisions occur. We apply and collect voltages at Ohmic contacts labeled from 1 to 8. Contacts 1 and 2 are the input of QPC 1 and QPC 2 , and contacts 3 and 4 are the outputs of the cQPC where we proceed to low frequency noise measurement. Contacts 5, 6, 7 and 8 are inside the input QPC and are used to measure the different transmissions T 1 , T 2 and T . We apply a bias dc voltage at input contacts 1 and 2, generating a noiseless current dc I 0,i = νe 2 h V i . The two incoming currents are then partitioned on QPC 1 and QPC 2 , with small tunneling probabilities T 1 and T 2 , which generates two diluted beams of particles toward cQPC . To extract the values of T 1 and T 2 we send, in addition with the dc current, a small ac signal at a given modulation frequency (around 10Hz) to contacts 1 and 2, and measure the current transmitted to contacts 5 and 6, thanks to a lock-in amplifier. For a sample in the quantum Hall regime, we expect to recover the total input current G ν V i when the QPC is fully open, and zero current when the junction is fully depleted. In between, we define the transmission of the QPC through the measurement of the differential conductance

Transmission and current measurements

T i = 1 G ν ∂I 0 i ∂V , with G ν = e 2 h
for integer quantum Hall effect, and

G ν= 1 3 = e 2
3h for the Laughlin 1 3 state. For filling factors with more than one edge channels, such as integer ν = 2 and ν = 3 states, we can select which edge mode is transmitted by depleting more the 2DEG under the QPC . Assuming there are no interactions between edge states, the channels close one by one, and the full conductance is given by: G = n T n G ν where n indexes the number of edge modes: T n is the transmission of the n t h mode, and G ν the conductance of the mode. The input QPC transmissions with respect to the gate voltage applied are plotted on fig. 3.7 for the different filling factor of interest. Plain lines corresponds to input 1 and dashed lines to the input 2.

To measure the central QPC transmission, we send again a small ac voltage on contact 8, and measure the transmitted and reflected currents at contacts 3 and 4 with a second lock-in amplifier. As the signal is going through the low frequency noise amplification chain, we must choose a modulation frequency (987k H z) close enough to the resonance frequency of the two tank circuits(1.105M H z). Knowing the input QPC transmission and the incoming current on cQPC , we can deduce the cQPC transmission.

Charges characterisation

Single QPC shot noise and charge transfer at a quantum point contact

Before proceeding to collisions experiments, we want to be sure to be in the right regime of emission at each of the three QPC : quasi-particles of charge e in the integer regimes, and fractional quasi-particles of charge q = e 3 in the fractional ν = 1 3 state. This is done by measuring the current fluctuations resulting from the shot noise of quasi-particles at a single quantum point contact. Such configurations are easily accessible with the collider by setting two QPC out of three to either transmission 1 h with QPC gate voltage (plain lines are for QPC 1 and dashed lines for QPC 2 ). The integer cases ν = 2 and ν = 3 have respectively two and three edge sates carrying electronic excitations, whereas the ν = 1/3 case have a single edge state with a fractional conductance of 1 3 × e 2 h . When the conductance lays between two plateaus, a single edge state is partially transmitted, and will lead to current shot noise when a bias current is applied. 2 , because of the small number of average for this measurement. or 0. The voltage fluctuations at the two output Ohmic contacts are collected through two LC tank circuits matched to the same frequency. After the calibration steps (see appendix A) we are able to extract the current spectral density S i j , auto and crosscorrelations, from voltage fluctuations: 〈δV i δV j 〉 = γ i j × S i j .

From now on, we will only consider current spectral density, which is simply obtained by dividing the integrated voltage fluctuations by the calibration factor γ i j

Charge transfer at the central QPC

We first characterize the cQPC , which is the main beam splitter at which collisions occur. We want to be in a configuration such that tunneling occurs only at the center of the sample. To that extent, we let the input QPC fully open and induce a direct current to the cQPC by applying a dc voltage at Ohmic contact 7 or 8 (see fig. 3.8a).We collect the auto-correlations and cross-correlations shot noise at each output 3 and 4.

When the back-scattering probability T is small, the shot noise is proportional to the fractional charge q = e/m [START_REF] Kane | Nonequilibrium noise and fractional charge in the quantum Hall effect[END_REF][START_REF] De Picciotto | Direct Observation of a Fractional Charge[END_REF][START_REF] Saminadayar | Observation of the e/3 fractionally charged Laughlin quasiparticle[END_REF], to the current I 0 incoming on the cQPC and to the transmission T . For weak non-linearities of the backscattered current, we use a modified expression for the current noise changing the transmission dependence T → T (1 -T ). This expression, valid in the non-interacting limit [START_REF] Feldman | Why a noninteracting model works for shot noise in fractional charge experiments[END_REF], has been extended in the FQHE and used to extract the fractional charge for various quantum Hall states:

∆S 33 = ∆S 44 = 2qT (1 -T )I 0 coth ( qV 2k B θ ) - 2k B θ qV (3.36) ∆S 34 = -2qT (1 -T )I 0 coth ( qV 2k B θ ) - 2k B θ qV (3.37)
where: V is the applied dc voltage, θ is the electronic temperature and ∆S 33 (V ) and ∆S 44 (V ) are the excess auto-correlations of the current fluctuations at the two outputs 3 and 4 of the quantum point contact, where we have subtracted the zero bias value to remove the thermal noise and amplifier noise contributions (∆S i j (V ) = S i j (V ) -

S i j (V = 0)
). ∆S 34 is the excess cross-correlations of the current fluctuations between outputs 3 and 4. In the case of cross-correlations, the thermal noise and the amplifier noise naturally disappeared as uncorrelated noise sources between output. There still remains a small noise offset in the cross-correlations, which is subtracted in the measurement of excess noise.

We describe in this section a single QPC setup with noiseless input current I 0 , therefore the current conservation between the input 1/2 and the outputs 3/4 of the cQPC , 

Poissonian quasi-particles emission from the input QPC

We also proceed to the charge characterization of the excitations randomly generated by QPC 1 and QPC 2 , but measuring single QPC shot noise. One more time, we set the sample to a configuration in which only one input QC P is partitioned. These measurement configurations are represented on Fig. 3.10.a and Fig. 3.10.b. The input QPC 1 and QPC 2 are set to partially backscatter the input current I 0 with probabilities T 1 and T 2 . In order to measure the partitioning by a single quantum point contact (input QPC ), cQPC is fully closed. As a consequence, only the auto-correlations noises ∆S 33 and ∆S 44 can be measured, the second output of each input QPC is not connected to contact 3 or 4. The auto-correlations noise with respect to the input current are presented on Fig. 3.10.e (for QPC 1 ) and Fig. 3.10.f (for QPC 2 ). The red points correspond to the measurement at the integer filling factor ν = 2: as expected, the noise data are consistent with the transfer of electrons with a charge q = e. For the fractional filling factor ν = 1/3, measurements in the weak back-scattering regime (blue and cyan points) are consistent with the transfer of fractional charge q = e/3.

During the collision experiments, we also study the case of electron collision in the fractional regime, by using the input sources in the strong back scattering regime . For small values of the input current I 0 we see that the charge extracted matches perfectly to q = e. When we increase more the bias, we see that the transmission deviates from the strong back scattering regime, and at some point we recover a small transmission. At this point, the charge measured at the inputs also deviates from the value of q = e, and tends to the anyon charge q = e/3. For small values of the input current I 0 the charge matches perfectly to q = e then deviates and tends to a value q = e/3 b) As we increase more the bias, we see that the transmission deviates from a value T S = 0.75 to T S = 0.2 which is consistent with the charge extracted These experiments, where a single quantum point contact partitions the noiseless current I 0 , confirm that electrons (respectively anyons) with charge q = e (resp. e/3) can be randomly emitted when the bulk filling factor has an integer value (resp. fractional value ν = 1/3). We have also shown that we can generate electronic excitations for a fractional filling factor, by setting the tunneling at the input to the strong back scattering regime. Now that we have confirmed the nature of charge carrier for each filling factor, we want to characterize the statistics using the collider configuration. Once the role of the quantum point contacts as random emitters of electrons and anyons has been established, these three basic elements can be combined in the collision experiment. To discriminate between fermion statistics and anyons statistics, the experiment will be carried at both integer filling factor, ν = 2 and ν = 3, and in the fractional Laughlin state ν = 1/3. For the integer state ν = 3 (ν = 2), with three (two) edge channels, the collision experiment is implemented using the outer edge channel In the collider configuration (see 3.12), two diluted currents of electrons (for ν = 2 and ν = 3) and anyons (for ν = 1/3) are generated by the partitioning of the currents I 0 1 and I 0 2 generated simultaneously at the inputs of QPC 1 and QPC 2 . If the transmission of the two inputs are set at the same values, T 1 = T 2 = T S , such that the currents incoming on cQPC are equal, I 1 = I 2 , the collider is in a balanced configuration: I -= 0. We then monitor the output current cross-correlations ∆S 34 with respect to the total current I + = I 1 + I 2 at the input of cQPC , for different values of the back-scattering probabilities T S .

Results for the balanced collider

Some elements about the definition of the P factor in the experimental set-up

Before proceeding to the measurement of the generalized Fano factor, we must tackle some definition issues. In the proposal [START_REF] Rosenow | Current Correlations from a Mesoscopic Anyon Collider[END_REF], the calculations are valid only in the weak back-scattering regime T ≪ 1. Experimentally, we have to extend the definition of the P factor for slightly higher value of the transmission T ≃ 0.2. To take into account the deviation of the transmission dependence, we use the same law as the one used for charge measurement, going from a definition S i 3 i 4 = P × 2qT I + for T ≪ 1 to:

S i 3 i 4 = P × 2qT (1 -T )I + (3.40) 
To confirm this behavior, we measure the evolution of the cross-correlations noise With that, we see in the 3.13b) that the cross-correlations indeed scale as T (1 -T ) (black dotted curve), which comforts the experimental definition of the factor. For the rest of this measurement, we will be using this definition of P . 

Electronic collisions at integer filling factors

We start by the measurement of electron collisions in the integer case, ν = 2 and ν = 3. In this case we expect a suppression of cross-correlations as a signature of fermionic statistics (Pauli exclusion principle). For the filling factor ν = 2, we set the magnetic field to B = 2.25T , and proceed to the measurement of ∆S 34 with input current I + (see 3.14a), for different value of the dilution T S (plotted on 3.14a). The various measurements at different transmissions show the same behavior, where ∆S 34 is slightly positive for small values of I + then tends to flatten with a slope very close to zero as expected for fermions (the red dotted line is the prediction for fermions, P = 0). The small positive cross-correlations ∆S 34 tend to be more important when the back-scattering probability T S is lowered, and could be related to residual effects of the Coulomb interaction that would tend to reinforce the exclusion statistics of fermions. Even if we proceeded to a single QPC characterization of the two inputs in the last section, showing that QPC 1 and QPC 2 do carry electron charge at ν = 2, we are able to track the emitted charge at the input in the collision experiment itself. This can be achieved by measuring simultaneously the auto and cross-correlations of the current fluctuations at the collider output, then using the current conservation between the input arm and the output one, we get:

∆S 33 + ∆S 44 + 2∆S 34 = ∆S 11 + ∆S 22 .
As we have seen in the cQPC charge calibration section, the sum of the current noises at the outputs of cQPC is equal to the sum of the current noises at the inputs.

However, contrary to single QPC situation, where a single noiseless input current I 0 was partitioned, in the collider case, the currents I 1 and I 2 at the input of cQPC are noisy: cross and auto-correlations are no longer equal up to sign, and therefore do not carry the same information. In addition, the sum of the noises at cQPC inputs, ∆S 11 + ∆S 22 corresponds to the sum of the partitioning of particles of charge q by QPC 1 and QPC 2 . In the balanced case where T 1 = T 2 = T S , ∆S 11 and ∆S 22 are equal and the charge of the colliding particles can thus be extracted from the sum of the output noises:

∆S 33 + ∆S 44 + 2∆S 34 = 4qT S (1 -T S )I 0 coth ( qV 2k B θ ) - 2k B θ qV (3.41)
The red dashed line of fig. 3.14 corresponds to the prediction of eq 3.41. This allows to show in the same experiment, that the observation of fermionic exclusion statistics in the collision experiment (P = 0) is correlated with the emission of electrons with charge q = e by the input QPC . . The red dashed line is the prediction for the emission of electrons by QPC1 and QPC2 (charge q = e). The blue dashed line is the prediction for the emission of anyons with q = e/3. c)Normalized excess cross-correlations as a function of the total input current I + .

Case of the strong back-scattering regime at

ν = 1 3
We want to study now the opposite regime of emission at the input sources, which corresponds to the strong back scattering regime 1 -T S ≪ 1. In that regime, the particles emitted by the input QPC are electrons of charge e, even at a filling factor ν = 1/3, and we expect in that situation to recover fermionic collisions at cQPC . In this regime we also expect strong non-linear evolution of the transmission with the input current [START_REF] Kane | Nonequilibrium noise and fractional charge in the quantum Hall effect[END_REF][START_REF] Kane | Edge-State Transport[END_REF][START_REF] Chang | Observation of Chiral Luttinger Behavior in Electron Tunneling into Fractional Quantum Hall Edges[END_REF][START_REF] Chang | Chiral Luttinger liquids at the fractional quantum Hall edge[END_REF], such that at high bias voltage the back-scattering probability goes to zero, eventually restoring the weak back-scattering regime, where we should recover anyon behavior. Our measurements presented on Figure 3.17 are perfectly consistent with this picture. The cross-correlations start to be slightly positive, exactly as in the electron case, before switching to a negative slope which is a signature of anyon collision. The simultaneous measurements of the transmission and the charge emitted by the sources show that the switch from the electron to the anyon behavior in the collision precisely occurs when the charge changes from the electron charge and tends towards q = e/3. This measurement provides a very consistent picture between the charge measurements and the collision data. Finally, we can notice that the slope in the anyon emission regime, P = -1.3 for a value T S = 0.18, is smaller compared to previous measurements in the weak back scattering regime(see Fig. 3.16.c), which is a consequence of the reduction of the slope when the back-scattering probability of QPC1 and QPC2 is increased, moving away from the Poissonian emission of anyons.

The evolution of the slope as we deviate slightly from the WBS regime will be studied in more details in a next section. The red dashed line corresponds to a charge e, whereas the blue dashed line is for e/3. We see two different regimes: for low bias the transmission is indeed in the SBS regime (T S ≃ 0.7), and the data shows an emitted charge e. When the bias is too strong, the transmission T S decreases, up to the point (vertical black dotted lines) in which we recover fractional charge emission. c) Normalized excess cross-correlations as a function of the total input current I + . The result is in agreement with the extracted charge of panel b): when the transmission T S is in the SBS regime, the transmission through the QPC is electronic, and the cross-correlations are slightly positive, exactly as in the case of integer filling factors. When the transmission decreases, we recover fractional charges emission at the input, and the cross-correlations become negative, recovering a negative P ≃ -1.3 factor.

Case of an unbalanced collider

So far, we have studied electron and anyon collisions in the case of a balanced collider, in which we set V 1 = V 2 = V S and T 1 = T 2 = T S , such that the input currents are equal I 1 = I 2 and I -= 0. In this setting, the collider is only sensitive to exclusion statistics of particles, and it is the best configuration to discriminate between fermions and anyons. In that case, the Pauli exclusion principle for fermions induces a complete suppression of the cross-correlations of the current fluctuations between the splitter outputs. Therefore, the measurement of strongly negative cross-correlations is a robust signature of bunching effects, and fractional statistics. In that section, we will investigate the case of an unbalanced collider, in which case I 1 ̸ = I 2 and I -̸ = 0. This can be achieved by setting the same input transmissions

T 1 = T 2 = T S , but with different bias voltages V 1 ̸ = V 2 .
In this configuration, we expect negative crosscorrelations both for electrons and for anyons. For electrons, the cross-correlations are slightly negative and linear with the input imbalance -T S I - I + . However, in the anyon case, the evolution of the Fano factor P as a function of the imbalance I -/I + provides experimental test of the theoretical predictions of the Luttinger model of anyon collisions developed in Ref. [START_REF] Rosenow | Current Correlations from a Mesoscopic Anyon Collider[END_REF]. In particular, this evolution depends on the two parameters of the theory, the screened colliding charge λ and more importantly the exchange statistics δ (see equation 3.34). The fig. 3.18 shows the measurements of the cross-correlations with respect to the input current I + , for different values of the imbalance of current. The slope corresponds to the different values of P (I -/I + ), and can be quantitatively compared to the theoretical model of eq.3.34 (black plain line).

These data correspond to a very diluted input current T S ≃ 0.05, in that case, we see a very good agreement with the predictions [START_REF] Rosenow | Current Correlations from a Mesoscopic Anyon Collider[END_REF]. In the next section, we deal with the robustness of the anyon collision picture, and we will see how this behavior evolves as the transmission deviates from the very diluted case. 

Robustness of the P factor with temperature and dilution

We start by the study of the anyon collisions with respect to the dilution of the input T S . The figure 3.19 shows the results of the collisions P ( I - I + ) as we dilute less and less the input currents. We see that the extracted P factor is proportionally reduced as we deviate from the diluted regime, going from P ≃ -2 value to P = -1.5 at T S = 0.15, but keeping the same behavior with the unbalance. The blue dashed line corresponds to the formula 3.34 with some proportional rescaling as we increase the back scattering T S of current at the input. Some remarks can be made about this measurement. First we do not have a clear picture of what is expected in the intermediate regime, but the two limiting cases are known: the very dilute case is the one of the anyon collider, with very negative cross-correlations whereas for small dilution, which correspond to the SBS regime at the input, we expect to have no cross-correlations (fermionic collider), which is coherent with the observed reduction of P when reducing the dilution of the input currents. The second point is about the dependence of the P factor with T S from the classical model and the one from the Luttinger model and the experimental results.

The classical lattice model predicts that the cross-correlations are proportional to the input dilution T S , therefore the more diluted is the current, the smaller are the cross-correlations. Our measurements, show a different dependence: the most diluted case corresponds to the larger cross-correlations. When the back-scattering transmission is increased, the particles emission in the input arms deviates from the Poissonian regime of the model, and the cross-correlations are reduced. We also study the variation of the anyon collisions as we increase the electronic temperature. We did the measurements for optimal anyon collider (balanced and with very diluted input) at different temperature, set by the mixing chamber temperature, These measurements are plotted on fig. 3.20. Even if we saw previously that the anyon emission at a QPC is robust up to 150mK , We see that the collider set up have a behavior much more sensitive to the temperature: from a value P = -1.9 at base temperature 30mK , the collider Fano factor goes to a value of P = -1.6 at 50mK , P = -1.1 at 100mK and P = -0.45 at 150mK . Finally, if we plot the evolution of P with the temperature, we see a rather linear behavior with the electronic temperature for high temperature. On the opposite, for lower temperature, we expect the Fano factor to saturate at the anyonic value P = -2. But more measurements in that regime are needed. 

Effects of neutral modes in the collider geometry

Edge reconstruction and neutral modes

We have seen in this chapter that our measurements are in total agreement with the Luttinger liquid theory for a single fractional Laughlin edge ν = 1/3, without edge reconstruction processes. Such effects lead to a redistribution of the charge density carried at the edge, with the appearance of an upstream neutral modes and a downstream charged mode. The prominent cases to see this mechanism are the particle-hole conjugated states like ν = 2/3. In that case, for non-interacting channels (no tunneling between the two edges) the topological order predicts that the current is carried by two counter-propagated edge channels, one downstream mode carrying electrons of charge e, and one upstream mode carrying fractional charges e/3 [START_REF] Johnson | Composite edges in the =2/3 fractional quantum Hall effect[END_REF].

But experimentally, this non-interacting channels picture is not what is observed:

for a strong enough inter-channel interaction, edge reconstruction occurs, and the edge structure splits into a downstream charged mode carrying the charge, and an upstream neutral mode. For a single edge channel, where there is no inter-channel scattering possible, edge reconstruction has been predicted to occur when the confining potential is smooth. In that case, additional charged and neutral modes are also predicted. Such effects have been first introduced in the integer case ν = 1 [START_REF] Macdonald | Quantum Dots in Strong Magnetic Fields: Stability Criteria for the Maximum Density Droplet[END_REF][START_REF] Chamon | Sharp and smooth boundaries of quantum Hall liquids[END_REF],

and latter extended to the fractional case [START_REF] Wan | Reconstruction of Fractional Quantum Hall Edges[END_REF][START_REF] Joglekar | Edge reconstructions in fractional quantum Hall systems[END_REF]. Contrary to the ν = 2/3 case, the edge reconstruction for a single edge ν = 1/3 is not expected, and might be dependent of the microscopic details of a given sample. In any case, the edge reconstruction processes are responsible for non-universal modifications of the transport properties of the edge, and of the parameter δ, which could in that case differ from δ = 1/3 [START_REF] Rosenow | Nonuniversal Behavior of Scattering between Fractional Quantum Hall Edges[END_REF][START_REF] Yang | Field Theoretical Description of Quantum Hall Edge Reconstruction[END_REF].

Experimentally, these neutral modes have been observed first in the particle-hole conjugated states 2/3 and 3/5 (and 5/2 but this one is a special case) [START_REF] Bid | Observation of neutral modes in the fractional quantum Hall regime[END_REF]. The idea is to create a counter propagating neutral mode on some contact by Joule heating, which can be partitioned back to charge mode by an upstream QPC (conversion labeled N → C ). We detect the neutral mode by measuring the excess noise due to this conversion. It was also proved that the opposite mechanism occurs [START_REF] Gross | Upstream Neutral Modes in the Fractional Quantum Hall Effect Regime: Heat Waves or Coherent Dipoles[END_REF]: the partitioning of a charged mode on a QPC can generate neutral excitation when edge reconstruction is enabled (conversion labeled C → N ). Finally, measurement have also shown that small neutral mode effects can be also observed for a single fractional channel at ν = 1/3 [START_REF] Inoue | Proliferation of neutral modes in fractional quantum Hall states[END_REF]. In the context of the anyon collider, such neutral modes would eventually alter the result of the collisions, therefore we need to check the absence of neutral mode signatures in the collider sample.

Detection of the neutral mode in the collider geometry

To detect the potential neutral modes for our sample, we combine the two conversion C → N and N → C , that we will label C → N → C (see configuration on fig. used in [START_REF] Bartolomei | Fractional statistics in anyon collisions[END_REF]. The blue and red data points correspond to two different values of the transmission of QPC 1 T 1 = 0 and T 1 = 0.55. In the first case, T 1 = 0, the conversion N → C is suppressed, whereas it should be optimal for a transmission close to 0.5.

As expected, we see no signal on the output 4 and in the cross-correlations, but also a quasi-zero signal on the output 3 (we see a small reduction of the noise between T 1 = 0 and T 1 = 0.55, which is exactly the opposite of what is expected for a conversion N → C ). Up to this point, there seem to be no edge reconstruction processes in our collider experiment, or if they are, our set-up is not sensitive to them. To be sure that our double conversion set-up can successfully detect neutral modes, we proceeded to a comparison with the standard case ν = 2/3 where we expect neutral modes to be present.

3.8.3

Comparison between ν = 1/3 and ν = 2/3

We proceed to the same measurements (see fig. Finally, we can plot the difference δ∆S I 3 I 3 (see fig. 3.24 between the current noise in the case T 1 = 0.5 and in the case T 1 = 0/T 1 = 1 (we take the average of the opened and closed cases) to compare the two filling factors. For ν = 2/3, we see a linear of neutral modes. Finally, we can moderate a little the total absence of neutral modes at 1/3 in our samples. Indeed, we obtain some samples without neutral modes, but some others seem to show neutral mode signatures at ν = 1/3, although always much smaller than for ν = 2/3. This can also happen for the same sample, but between two cool down. This tends to prove that in the case of a simple edge structure, the existence of neutral modes is very dependent on the fabrication of the sample, and on the experimental conditions. 

Non-linearities of transmission of Luttinger liquids

We have seen both during the charge characterization and the collision experiment, that the transmission of the QPC shows a strong non-linear behavior with the bias voltage V . To check the validity of the Luttinger model for a Laughlin states at ν = 1/3, we proceed to the analysis of the evolution of the transmission with the bias voltage, often referred as "I-V characteristic". The Tomonaga-Luttinger model predicts a nonlinear behavior of a small tunneling current between two Luttinger liquids with respect to the bias voltage [START_REF] Kane | Nonequilibrium noise and fractional charge in the quantum Hall effect[END_REF][START_REF] Kane | Edge-State Transport[END_REF][START_REF] Chang | Observation of Chiral Luttinger Behavior in Electron Tunneling into Fractional Quantum Hall Edges[END_REF][START_REF] Chang | Chiral Luttinger liquids at the fractional quantum Hall edge[END_REF]: I T ∝ V α which leads to T = ∂I T ∂V × 3h e 2 ∝ V α-1 for the transmission, For the weak back scattering regime T ≪ 1, where the tunneling occurs between fractional edges and through a bulk with fractional filling factor, the tunneling current power law is α = 2δ -1, and the transmission scales as T ∝ V 2δ-2 .

In the case of the strong back scattering regime, the small tunneling 1 -T occurs through an insulating region, and this changes the expected power law to α = 2 δ -1 and the transmission scales as 1 -T ∝ V 2 δ -2 . For a single Laughlin edge state at ν = 1 m and without edge reconstruction, the expected value is δ = 1 m , but for more complex edge structure, inter-channel coupling could lead to edge reconstruction mechanisms modifying the value of delta from 1 m [START_REF] Kane | Randomness at the Edge: Theory of Quantum Hall transport at filling =2/3[END_REF][START_REF] Levkivskyi | Universal nonequilibrium states at the fractional quantum Hall edge Ivan P. Levkivskyi[END_REF]. The scaling of this power law is a second check to insure the absence of reconstruction mechanisms and neutral mode in the collision experiment. ). From the fit of l og (1 -T ), we extract a value 0.31 < δ < 0.36, which is in total agreement with the expected value for a single edge without reconstruction effect δ = 1 3 . Fig. 3.26 shows the result for the weak back-scattering regime T ≪ 1. In this situation, the transmission is expected to vanish with the bias voltage, but instead of that the transmission seems to saturate to a non-universal value 0.058 for this sample which leads to an overfitting of the power law and a large value δ = 0.71. If we remove this offset by hand by defining simply T = T -0.058, we extract a value δ = 0.36, in agreement with the result in the strong back scattering regime, and with the theory. states. We also looked for the possible presence of neutral modes in our samples in the 1/3 state, without obtaining any visible effect compared to the same measurement performed for the 2/3 state. Nevertheless, the presence of neutral modes seems to depend on the samples and even on the cool-down.

Non-linearities of transmission of Luttinger liquids

Squeezing of edge magneto-plasmon

So far we have been interested in the properties of the elementary quasi-particles that carry the current at the edge of a 2DEG both in the fractional and integer regime.

From low frequency noise measurements in a collider geometry, we have been able to probe quantitatively the differences between fermionic statistics in the integer regime and anyon statistics with an exchange phase π/3 in the fractional regime. However, we have also seen in the second chapter that, through the bosonization relations, the excitations of a one dimensional collection of particles can be equivalently described by particle-hole pair excitations, which are bosonic excitations called edge magneto plasmons (EMP). In this chapter, we study the generation of an edge magneto plasmon squeezed state in integer quantum Hall edge channels. A squeezed bosonic vacuum state is a non-classical state which exhibits fluctuations smaller than the vacuum states for a given quadrature of the field. These states have been introduced first in optics [START_REF] Walls | Squeezed states of light[END_REF], and later in condensed matter systems for Josephson parametric amplifiers [START_REF] Wu | Generation of Squeezed States by Parametric Down Conversion[END_REF][START_REF] Yurke | Observation of 4.2-K equilibrium-noise squeezing via a Josephsonparametric amplifier[END_REF] or for microwave cavities [START_REF] Castellanos-Beltran | Amplification and squeezing of quantum noise with a tunable Josephson metamaterial[END_REF][START_REF] Mallet | Quantum State Tomography of an Itinerant Squeezed Microwave Field[END_REF][START_REF] Eichler | Observation of Two-Mode Squeezing in the Microwave Frequency Domain[END_REF]). In order to characterize the amplitude of EMP squeezing, we perform high frequency noise measurements in the G H z range. Similar measurements have already been performed on low impedance tunnel junctions [START_REF] Gasse | Observation of Squeezing in the Electron Quantum Shot Noise of a Tunnel Junction[END_REF]. The idea here is to create an on-chip squeezed vacuum state in the high impedance environment of a quantum Hall conductor (few kΩ). I will show that EMP squeezed states at frequency f can be generated by partitioning on a QPC an ac voltage at twice the frequency 2 f and a dc voltage. At the Josephson threshold eV d c = h f , the QPC is a non-linear scattering element for plasmons at frequency f , that can be used to produce a squeezed state. By measuring the high frequency noise (at frequency f ) in phase with the pump signal, we observe a reduction of the noise below the vacuum noise, which is the signature of squeezing. Before describing the experimental results, I first discuss the set-up required to measure the high frequency or RF noise (introduced in section 2.2.4), in the absence and in the presence of a high frequency pump. In the latter case, the RF noise becomes non-isotropic, and for well-chosen values of the ac and dc amplitude, the contribution of the ac pump at frequency f becomes negative.

Squeezing of the bosonic EMP field and relation with the RF current

In the second chapter, we have seen that one dimensional transport at the edge is described by a bosonic field, which at a fixed time is related to the annihilation operator b q through: Φ(x) = -i q 2π

Lq [b q e i q xh.c.] Where the discretization is set by the length of the one dimensional wire Lq 2π = n. Equivalently at a fixed position, the discretization is given by the long measurement time T m , T m ω 2π = n and the bosonic field reads:

Φ(t ) = -i ω 2π T m ω [b ω e -i ωt -h.c.] (4.1)
where b † ω is the operator which creates a single plasmon of energy ħω and obeys the usual bosonic commutation relations [b † ω , b ω ′ ] = δ ωω ′ . These two representations of the bosonic field are related by the fixed plasmon velocity v = ω q . To describe the squeezing of the EMP bosonic modes, we introduce the quadrature of the bosonic field X ω,ϕ at the pulsation ω and phase ϕ:

X ω,ϕ = b ω e i ϕ + b † ω e -i ϕ 2 (4.2)
We also introduce the perpendicular quadrature Y ω,ϕ = X ω,ϕ+ π 2 . In this case, the two perpendicular quadratures are conjugated operators:

[X ω,ϕ , Y ω ′ ,ϕ ] = i δ ω,ω ′ (4.3) 
Their fluctuations are what we want to measure in the squeezing experiment:

〈∆X 2 ω,ϕ 〉 = 1 2 + 〈b † ω b ω 〉 -〈b † ω 〉〈b ω 〉 + Re (〈b 2 ω 〉 -〈b ω 〉 2 )e 2i ϕ (4.4)
In the case of a classical state described by a coherent state b |α〉 = α |α〉, the fluctuations of the quadrature operator are isotropic and such that:

〈b † ω b ω 〉 α = 〈b † ω 〉〈b ω 〉 α (4.5) 〈b 2 ω 〉 α = 〈b ω 〉 2 α (4.6) 〈∆X 2 ω,ϕ 〉 α = 1 2 (4.7)
where 〈∆X 2 ω,ϕ 〉 = 1 2 is what we call the vacuum fluctuations. For a non-classical squeezed state, there is a given phase ϕ 0 for which the fluctuations of the quadrature go under the vacuum fluctuations 〈∆X 2 ω,ϕ 〉 < 1/2. In this case, the Heisenberg inequalities applied to the two perpendicular quadratures at this phase, 〈∆X 2 ω,ϕ 0 〉〈∆Y 2 ω,ϕ 0 〉 ≥ 1/4, tells us that the perpendicular quadrature must exhibit enhanced fluctuations ω,ϕ 0 〉 > 1/2 related to the high frequency f = ω 2π current fluctuations measured by homodyne lock-in measurements. We define I f ,φ (t ) = cos(2π f t +ϕ)I (t ), where I (t ) is the current flowing in the edge channel I (t ) = e 2π ∂ t Φ(t ). The average value and the fluctuations of I f ,ϕ (t ) is then related to the average value and the fluctuations of the field quadrature

X f ,ϕ : 〈I f ,ϕ t 〉 = -e 2 f T m 〈X f ,ϕ 〉 (4.8) S f ,ϕ = 4 d τ〈δI f ,ϕ (t -τ/2)δI f ,ϕ (t + τ/2) t 〉 = 2e 2 f 〈∆X 2 f ,ϕ 〉 (4.9)
In addition to the zero temperature quantum fluctuations, we need to add a thermal contribution to the vacuum e 2 f . However, for low temperature such that k B θ ≪ h f , thermal plasmons are negligible in comparison with the vacuum fluctuations. In our set-up, we study squeezing at a high frequency f = 7.75G H z and a low temperature θ = 30 -40mK : in that case that the number of thermal plasmons is given by the

Bose-Einstein distribution, n B (h f /k B θ) = 1 e h f /k B θ -1 ≈ 10 -5 ≪ 1/2.
Therefore, measuring the high frequency noise at frequency f = ω/2π allows to get information on the squeezing amplitude of the bosonic field: for a classical state, we expect no dependence of the finite frequency noise with the phase, and S f ,ϕ = e 2 f whereas for a non-classical squeezed state, for some phase the noise of the system can go below the vacuum fluctuations ϕ 0 , S f ,ϕ 0 < e 2 f . Figure 4.2: Principle of the squeezing experiment: the collision of an ac signal at frequency 2 f and a dc bias on a quantum point contact generates a squeezed EMP state at frequency f . We probe the squeezing amplitude of this mode by measuring the high frequency noise at this frequency f .

To generate an EMP squeezed state at frequency f , we combine at a half transmitted QPC T = 0.5, a dc bias voltage V d c with an ac sine wave at a double frequency 2 f in a four terminals geometry (see Fig. 4.2). Then we collect the high frequency current fluctuations at one of the two outputs of the QPC using a mixer with reference phase ϕ. The current fluctuations after the QPC can be computed with an electronic wave scattering theory of the two states generated by the ac pump and the dc voltage. The noise can be computed from what we call the Wigner representation of the sources [START_REF] Ferraro | Wigner function approach to single electron coherence in quantum Hall edge channels[END_REF]: 

W i (t , ω) = d τ〈Ψ i (t + τ/2) † Ψ i (t -τ/2)〉e i ωτ
∆W ac (t , ω) = W ac (t , ω) -f 0 (ω)
The excess noise δS f ,ϕ at frequency f arising from the collision of a dc bias ∆ f µ=-eV d c (ω) and the ac signal ∆W ac (t , ω) reads:

δS f ,ϕ (V d c ,V ac ) = T (1 -T )e 2 d ω ′ 2π ∆ f -eV d c (ω ′ )g 0 (ω, ω ′ ) + T (1 -T )e 2 d ω ′ 2π ∆W ac (t , ω ′ ) t g -eV d c (ω, ω ′ ) + T (1 -T )e 2 d ω ′ 2π cos (2ωt + 2ϕ)∆W ac (t , ω ′ ) t (1 -2 f -eV d c (ω ′ )) (4.11) with g µ (ω, ω ′ ) = 1 -f µ (ω ′ -ω) -f µ (ω ′ + ω) .
In that expression, the first term corresponds to the excess RF noise generated by the dc voltage, while the two others are related to the collision between the two sources. The second term correspond to a positive and isotropic contribution to the noise. The last term is the one from which arises the squeezing: it is strongly non-isotropic and take negative values.

The fig 4 .3 shows some simulations of the collision between an ac voltage V ac = 30µV at frequency f = 7.75G H z for a temperature θ = 50mK and a transmission T ≃ 0.5.

The panel a) represents the RF noise with respect to the bias voltage, for three different phases (ϕ = 0, ϕ = π 4 and ϕ = π 2 ). The black line correspond to the Rf noise without the ac pump δS f (V d c , 0). One remarkable thing to see, is that changing V d c → -V d c corresponds to a relative shift of ϕ = π/2 of the local oscillator, and therefore measuring V d c = ±V ac allows to measure the two perpendicular quadratures. We see that for a phase ϕ = 0 and a dc amplitude V d c = -V ac the contribution of the pump becomes negative, and therefore the system exhibits a net noise reduction in comparison to the 1/2 vacuum fluctuations. Finally, we can reconstruct the fluctuations of the bosonic field quadrature from the excess noise with respect to the phase ϕ, by adding by hand the vacuum fluctuation:

〈∆X 2 〉 = 1 2 + 1 e 2 f δS f ,ϕ (V d c ,V ac ).
Panel b is a polar plot of 〈∆X 2 〉 (red dots) and 〈∆Y 2 〉 (blue dots) with respect to the reference phase ϕ. 

Measurement of the high frequency current fluctuations 4.2.1 RF noise set-up

We describe here the high frequency noise set up depicted on fig 4.4, which is the same one we used in ref. [START_REF] Bisognin | Microwave photons emitted by fractionally charged quasiparticles[END_REF]. We want to measure the spectral density of noise in the GHz range generated on a single integer edge channel. The sample is a twodimensional electron gas in a GaAs/AlGaAs heterostructure with four contacts and one QPC . The surface density is n = 1.9 × 10 15 m -2 and mobility µ = 2.4 × 10 6 cm -2 V -1 s -1 . The field is set to reach the ν = 3 quantum Hall regime, and we set the QPC so that only the outer edge channel is partially reflected with transmission T ≃ 0.5. The current fluctuations are collected at Ohmic contact 4 which is connected to a broadband coaxial cable with a low characteristic impedance of 50Ω in order to measure the current noise at 7.75G H z. Notice that due to the high impedance of the sample, only one percent of the signal coming from the sample is transferred to the 50Ω output RF-line. Therefore, we already expect to have a rather poor "signal-to-noise ratio" (of course the signal being the noise), and we need to have a very stable set-up to be able to average over very long times (typically days). With that in mind, we need to remove the unwanted sources of noise that come from outside of the sample. What we want to measure is typically of the order of the quantum noise, that arises from the vacuum fluctuations of the edge magneto plasmon ground state, and are given by e 2 f ≃ 10 -28 A 2 /H z at f = 7.75G H z. The largest source of noise is the low noise amplifier on the 4K plate 4Gk B T ≃ 10 -24 A 2 /H z. This noise can be removed thanks to a microwave Mach-Zehnder scheme using two balanced RF amplifications lines [START_REF] Zakka-Bajjani | Experimental Test of the High-Frequency Quantum Shot Noise Theory in a Quantum Point Contact[END_REF][START_REF] Parmentier | A high sensitivity ultralow temperature RF conductance and noise measurement setup[END_REF].

The signal emitted by the sample is coupled, using a first hybrid coupler, to the radiation generated by a 50Ω resistor connected to the mixing chamber stage. The two signals are then separately amplified by two amplification chains composed of one cryogenic RF amplifier at 4K and one room temperature amplifier. A delay line is used to correct the delay between the two lines, then a second hybrid coupler decouples the two signals. For the right delay between the two lines, at the output of the second hybrid coupler, all the signal generated by the sample exits at the right output of the coupler whereas the signal generated by the 50Ω load exits at the left output.

On the contrary, the amplifier noise is equally distributed between the two outputs of the coupler and can then be efficiently subtracted by measuring the difference between the two outputs. After that, two IQ mixers are used to down-convert the signal with a sinus at frequency f and phase ϕ. The RF noise is finally obtained by using a power diode which integrates the power at the output of the mixer over a 800M H z bandwidth set by a series of low pass filters. Next, by taking the difference between I and Q ports of the first output (signal) and the Q and I ports of the second output, we remove most of the noise coming from the two amplifier lines. Finally, we apply a step modulation to the dc bias applied to the sample at the low frequency of 234 Hz, in order to remove the thermal noise of the 50Ω impedance and any spurious amplifier noise. The quantity we extract with this set -up is therefore the excess noise with respect to the noise at zero dc bias: Doing so, we remove all the thermal noise (from the 50Ω load at 20mK , but also any remaining noise from the amplification chain) but also the quantum noise. In the case of the squeezing set-up, this also removes the contribution of the pump to the RF noise at zero DC bias δS pump = S f ,ϕ (V d c = 0,V ac ). This set-up enables to measure the bias-dependence of the high frequency noise, but it must be combined to an accurate measurement of the zero-bias noise generated by the pump. Additionally, the total excess noise needs to be compared to the vacuum fluctuations in order to extract the information on the amplitude of squeezing obtained. In addition to the RF noise, we also measure on the second output (Ohmic contact 3) the low frequency noise (≃ 1M H z) through a LC tank circuit, as it is described in Appendix A. This measurement is mostly used here for the calibration of the high frequency noise.

∆S f ,ϕ (V d c ,V ac ) = S f ,ϕ (V d c ,V ac ) -S f ,ϕ (V d c = 0,V ac ) (4.12)

Calibration of the high frequency noise

In this section, we want to calibrate the gain of our high frequency noise set-up, using the noise generated at the QPC by the dc bias only (without the pump). Our set-up enables the measurement of both the low frequency and the high frequency excess shot noise. We have seen in the second chapter that the shot noise generated by a dc bias V d c on a QPC with transmission T , at a temperature θ is given by:

∆S f =0 (V d c ) = 2eT (1 -T ) e 2 h V d c cot h( eV d c 2k B θ ) (4.13) ∆S f (V d c ) = eT (1 -T ) e 2 h [(V d c + h f e )cot h( eV d c + h f 2k B θ ) + (V d c - h f e )cot h( eV d c -h f 2k B θ ) -2 h f e cot h( h f 2k B θ )] (4.14) 
Therefore, for bias much larger than the emission threshold V 0 = h f /e, the linear slope of the RF noise and the LF noise must be the same. To calibrate the output RF noise we first calibrate the LF noise (see A,) and find the RF noise gain from the ratio between the two slopes: fig. We have seen that the High frequency noise set-up is able to measure the excess noise with respect to zero bias. However, the determination of the squeezing requires to measure also the noise generated by the pump at zero DC bias. To do so, we need to slightly change the measurement set-up described above. Instead of modulating the dc voltage, we apply here a low frequency modulation (using a mixer and a square voltage at a frequency of 234 Hz) to the pump amplitude. The dc voltage is set to V d c = 0. In that case, the quantity we measure corresponds to the excess noise generated by the pump at zero dc bias.

We measure both the low and high frequency current noise as a function of an increasing amplitude of the pump V ac . The low frequency noise allows to have an accurate measurement of the RF line attenuation (see fig. .75G H z with respect to the pump amplitude, and prediction from the numerical computation. Notice that we average much more for the small amplitudes that will be used in the next sections.

Excess RF Noise with ac pump

In that case we go back to the RF noise set-up where the dc voltage is modulated by a square low frequency signal, and measure the excess RF noise, on which we add the zero bias pump noise δS pump (V ac ) computed in the previous section. On top of that we add the ac pump voltage at the doubled frequency 2 f = 15.5G H z, and calibrated amplitude V ac = 33µV (see fig. 4.8)1 . We measure the excess noise at frequency f = 7.75G H z with the dc bias voltage V d c , and repeat the measurement for different phase differences between the pump and the reference signal of the RF noise ϕ. .5G H z is added to the RF noise set-up. We do not consider the low frequency noise measurement in this section, the output 3 can be considered as grounded.

Fig. 4.9 shows results of the measurement of δS f ,ϕ (V ac ,V d c ) for two different phases ϕ = 0 and ϕ = π 4 . We observe that the high frequency noise is highly phase-dependent, and matches perfectly to the numerical simulations (dashed lines). For a phase ϕ = 0, we observe a maximum squeezing effect, with clear negative excess noise of for V d c = -V ac = -33µV , whereas for V d c = +V ac = +33µV , which corresponds to the perpendicular field quadrature fluctuation, we have a clear positive increase of the RF noise. For a phase ϕ = π 4 , the noise becomes symmetric with bias voltage, and positive. The excess noise can be converted into bosonic quadrature fluctuations with the relation: 〈∆X 2 f ,ϕ 〉 = 1 2 + 1 e 2 f δS f ,ϕ (V ac ,V d c ), which is the right axis of fig. 4.9. We see that for the ϕ = 0 phase, we reduce the vacuum fluctuation squeezing, going to a value 〈∆X 2 f ,ϕ 〉 ϕ=0 = 0.41, which correspond to a squeezing factor -10l og (0.41/0.5) ≃ 2d B , which is close to the maximum squeezing amplitude predicted by the numerical model, and comparable to what is obtained in [START_REF] Gasse | Observation of Squeezing in the Electron Quantum Shot Noise of a Tunnel Junction[END_REF]. 

Conclusion

This manuscript is dedicated to the measurement of current fluctuations in electronic colliders implemented in fractional and integer quantum Hall conductors. We have seen that along the one-dimensional chiral edge channels of the Quantum Hall effect, the current and its fluctuations can be described by collective modes describing the propagation of charge density, that we call edge magneto plasmons (EMP).

The second experiment introduced in my manuscript focuses on the generation of a squeezed EMP mode at high frequency from the collision at a quantum point contact between excitations generated by a dc and an ac drive. The amplitude of squeezing can then be characterized by measuring the fluctuations of the two quadratures of the high frequency current flowing in the conductor. The generation of such states within interferometric systems is of great interest for the improvement of the accuracy of plasmon quantum Hall interferometer, with applications in metrology [START_REF] Caves | Quantum-mechanical noise in an interferometer[END_REF] or in quantum information [START_REF] Bosco | Transmission lines and resonators based on quantum Hall plasmonics: Electromagnetic field, attenuation, and coupling to qubits[END_REF].

The first experiment that I introduced, the anyon collider, is the main result of this manuscript. It focuses on the measurement of the exchange statistic of the elementary excitations of the fractional Hall effect at filling factor ν = 1/3, by measuring the cross-correlations of the low frequency current fluctuations in a mesoscopic collider geometry [START_REF] Bartolomei | Fractional statistics in anyon collisions[END_REF]. Our results show full agreement with predictions made for a Laughlin liquid describing abelian anyons with a π/3 exchange phase, without any indications of edge reconstruction phenomena (see a summary of the measurements on fig. 4.11).

Further measurements in these Laughlin states are still needed in order to understand some specific features, such as the temperature dependence of the signatures of fractional statistics in the collider, or the evolution of these signatures as a function of the transmission of the central beam-splitter. This method could also be used to study other abelian anyons, for example with a e/5 charge, or finally to study the collision result in the presence of edge reconstruction effect, at ν = 2/3 for example.

Nevertheless, today most of the interest of the Quantum Hall community seems to be focused on the study of half-integer filling factors [START_REF] Greiter | Paired Hall state at half filling[END_REF]. The only representative of that kind to have been clearly measured is the 5/2 state formed in the second Landau level [START_REF] Willett | Observation of an even-denominator quantum number in the fractional quantum Hall effect[END_REF]. Several theoretical models have been proposed for this filling factor, some describing abelian exchange statistics, and others, more interestingly, describing non-abelian exchange statistics [START_REF] Moore | Nonabelions in the fractional quantum hall effect[END_REF].

Measurements of the e/4 charge in tunneling experiments [START_REF] Iuliana | Quasi-Particle Properties from Tunneling in the v = 5/2 Fractional Quantum Hall State[END_REF][START_REF] Dolev | Observation of a quarter of an electron charge at the nu = 5/2 quantum Hall state[END_REF] and inside cavities [START_REF] Willett | Measurement of filling factor 5/2 quasiparticle interference with observation of charge e/4 and e/2 period oscillations[END_REF], the presence of a counter-propagating neutral mode [START_REF] Bid | Observation of neutral modes in the fractional quantum Hall regime[END_REF], as well as more recent measurements of the half integer thermal conductivity signature of this state [START_REF] Banerjee | Observed quantization of anyonic heat flow[END_REF][START_REF] Banerjee | Observation of half-integer thermal Hall conductance[END_REF][START_REF] Dutta | Distinguishing between non-abelian topological orders in a quantum Hall system[END_REF] seem to confirm its non-abelian properties.

In this case, exchanges between non-abelian particles are no longer described by an exchange phase but rather by some unitary operator acting on a large number of highly degenerate ground states. The collider geometry introduced in this manuscript should provide a powerfull tool to study the non-abelian statistics of the ν = 5/2 state, yet no clear theoretical predictions have been done in this regime. Finally, the creation and manipulation of these states is of great scientific interest, with the discovery and study of new highly correlated phases of matter, but also in the longer term, could have technological benefits. These highly correlated systems are at the basis of proposals related to the development of topologically protected quantum computing [138,[START_REF] Nayak | Non-Abelian anyons and topological quantum computation[END_REF], with the prospect of implementing qubits with a very low error rate. The sample is a R ν resistance connected to the 50Ω coaxial output line. Before the amplification stage, we connect a copper coil to the ground (≃ 110µH ), with a small resistance R L . The capacitance is the one of the coaxial cable (≃ 180pF ). To match the two resonance frequencies, we add some cable length at one output.The Equivalent impedance with tank circuit at output 34 Z 3/4 with 1/R 3/4 = 1/R ν + 1/R L , the total resistance. The frequency response has a Lorentzian shape, with resonance frequency

ν 0 = 2π L 3/4 * C 3/4 ≃ 1.1M H z
The signal collected by the two tank circuits is amplified by a chain of cryogenic and then room temperature amplifiers of total gain G 3 ≃ G 4 .

To extract Z i and G i , we proceed to two measurements: first we send an uncalibrated AC signal to the central QPC and fit the frequency response of each tank circuit with a RLC model (eq.1), to know accurately the central frequencies f 0,3 / f 0,4 , and the quality factors Q 3 and Q 4 . We let the input QPC open, and send the small voltage on contact 8, so the full current is incoming to cQPC . If the cQPC is fully closed, all the current is reflected to contact 3, and the frequency response of LC tank circuit 3 is obtained. The second set up would be to open fully the cQPC , and therefore obtain the frequency response of the second LC circuit.

With these configurations, we can extract the quality factors and resonance frequencies of the two tank circuits, at any field. At ν = 1/3, we obtain Q 3 ≃ Q 4 ≃ 56, f 0,3 = 1.112M hz and f 0,4 = 1.100M H z.

Finally, we need to calibrate the gain of both amplifier chains. For this calibration, we monitor the thermal noise in absence of shot noise by heating the mixing chamber temperature θ from the 25mK base temperature to few hundreds of mK , and record auto-correlations at both outputs. To monitor the noise emitted at contact 34, we measure the auto-correlation power spectrum S V 3 V 3 = S 33 (S V 4 V 4 = S 44 ) with a vector signal analyzer, and integrate the signal on a bandwidth ∆ν centered on the frequency f 0 = ω 0 /2π. The mean square fluctuations of the output voltage is recovered by integrating the real part of the spectrum over the bandwidth: ). c) The dots show temperature calibration for the two amplification lines: we measure the auto-correlation signal at each output with increasing the temperature, and extract the linear slope to deduce the total gain.

〈δV i δV i 〉 = G 2 i ν 0 + ∆ν

3 Figure 3 :

 33 Figure2: Résumé de la première expérience: mesure de la statistique fractionnaire de l'état de Laughlin ν = 1/3 dans un collisionneur mésoscopique a) Principe de l'expérience: deux courants I 1 et I 2 très dilués sont générés à l'aide de deux contacts ponctuels quantiques QPC 1 et QPC 2 à l'entrée desquels des tensions V 1 et V 2 sont appliquées. Pour extraire le facteur P , on mesure les corrélations croisées des fluctuations de courant entre les sorties 3 et 4, par rapport à la somme des courants en entrée I + . b) Réalisation expérimentale du dispositif (image colorée prise au microscope électronique). En plus des tensions dc, on applique aux différents contacts un petit signal alternatif à basse fréquence, qui permet par détection homodyne la mesure des transmissions de chaque QPC . c) Mesure des corrélations croisées des fluctuations de courant a la sortie du collisionneur, en rouge/orange pour des états entiers, et en bleu pour l'état de Laughlin ν = 1/3 (pour différentes dilutions). Notre mesure discrimine les états fermioniques, où le principe d'exclusion de Pauli entraine des fluctuations faiblement positives (P ≃ 0), et l'état ν = 1/3 pour lequel les corrélations croisées sont fortement négatives, et où une valeur P ≃ -2 est extraite, en accord avec la théorie (ligne en pointillés). d) Mesure de l'évolution du facteur du facteur de Fano généralisé par rapport à la différence de courant en entrée du collisionneur I -. La courbe noire correspond à la prévision théorique pour une structure de bord simple décrivant un liquide de Laughlin, nous permettant d'extraire une phase d'échange anyonique φ = π/3

  squeezed edge magneto plasmon states at high frequency f inside quantum Hall interferometers at integer filling factor. Such states are obtained by the collision of a high frequency ac voltage at twice the frequency 2 f and a dc voltage. The measurement of the high frequency noise enable to quantify the squeezed state obtained. This manuscript is composed of two parts. The first part is an introduction to the different elements necessary to understand the physics occurring both in the bulk and at the edge of a fractional quantum Hall liquid. Then the two last chapters describe two experiments done in quantum Hall interferometry. The first one is about the anyon collider, which probes the unusual statistics of the Laughlin state ν = 1/3 through low frequency cross-correlation noise measurements. The second one is about generating some non-classical squeezed plasmonic edge state in integer edge channels and characterize it with high frequency noise measurements.
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 111 Figure 1.1: Transverse cut (left) and band structure (right) of a typical AlGaAs/GaAs hetero-structure with Si dopant. Band bending at the interface defines a conducting layer at low temperatures.
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 1 fig. 1.2 a). This structure is made of two golden capacitive top gates deposited on top of the hetero-structure of fig. 1.1, about 100nm from the 2DEG. Applying a negative

Figure 1 . 3 :

 13 Figure 1.3: a)Landauer scattering picture of quantum transport: a narrow 2D conductor is connected to two contacts with different potentials µ L and µ R . b) Electric subbands due to the confinement along the y direction. Each wave vector k y = πnL y is associated to an energy ϵ n , and to a transverse wave-function φ n (y) (sketched in blue). b) In the case in which a single subband is occupied, the system is described as a perfect one dimensional conductor.

1 . 2 The integer Quantum Hall effect 1 . 2 . 1

 12121 .2, the negative voltage can be seen as a way to reduce the effective width of the sample in this region, which increases the sub-band separation and switches off one by one the contribution of the transmission modes. Now we are about to see that the effect of a strong magnetic field on a coherent two-dimensional electron gas leads to tremendously reduce the number of transmitted channel, in what we call the quantum Hall effect. Classical electron in the Drude model Before diving into the Quantum version of the Hall effect, it is useful to do a short reminder about the classical Hall effect. The Hall effect occurs when a current is flowing through a conducting layer under a magnetic field: on top of the longitudinal voltage drop along the direction in which the current flows, we see a voltage drop in the transverse direction. This one grows linearly with the component of the magnetic field perpendicular to the surface. The Hall effect can be understood with the Drude model, which describes electrons as classical particles with charge -e. A classical particle with charge -e in an electromagnetic field is subject to a Lorentz force

  and the motion is a combination of a cyclotron orbit around the guiding center -→ r 0 , and a drift of these orbits in the y direction. In the Drude model, we must add some momentum relaxation due to scattering events,-m - → v τ with τ the mean scattering time. The equation of motion in the Drude model becomesm d -

Figure 1 . 4 :

 14 Figure 1.4: a) Hall bar measurement set-up: a strong magnetic field is applied on top of a conducting film, in which a DC current I is flowing. We proceed to a four point measurement of the voltage drop in the same direction of the current, and in the transverse direction to extract R xx = L W ρ xx and R x y = ρ x y b)Classical cyclotron orbit of a charged particle in a strong magnetic field. On top of the circular orbit, the electric field in the direction in which the current is flowing, adds a drift in transverse direction y to the motion. c) Magnetic field dependence of the magneto resistance obtain from the classical Drude model. The longitudinal resistivity is independent of field, whereas the transverse resistance grows linearly with the magnetic field.

Figure 1 . 5 :

 15 Figure 1.5: a)First experimental evidence of the Quantum Hall effect [1].The measurements are performed on a gated Hall bar, as sketched. The longitudinal and transverse voltage drops are plotted versus the gate voltage: as we change the electronic density, the resistance show a series of plateau and deeps corresponding to integer filling factors. b)Integer quantum Hall effect measurement with the magnetic field, adapted from [21]) field

Figure 1 . 6 :

 16 Figure 1.6: a) Classical picture of the integer quantum Hall effect:when the mean free path is much larger than the cyclotron orbits, the bulk electrons are frozen in the circular orbits, and do not contribute to the transport. On the edge, the electrons cannot exit the sample, and this confining potential can be seen as a mirror on which the cyclotron orbits turn into skipping orbits, recovering transport properties at the edge. b) Quantum version of the cyclotron orbits: due to the quantization of the electron momentum, the cyclotron radius becomes quantized, each cyclotron orbit contains an integer number ν of electrons (here ν = 3)
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 17 Figure 1.7: a) Landau levels and Zeeman splitting: the band structure splits into Landau levels, each one separated by the cyclotron energy ħω c . In addition, the Zeeman splitting raise the spin degeneracy by an energy ħω Z : each channel is also spin polarized. The Landau filling factor is define as the number of occupied sub-band, in this case we are sitting at ν = 2 b) Sketch of a Hall bar in the state ν = 2: transport occurs at the edge through two spin-polarized edge channels
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  1.8a). If one increases the electronic density, we should start to fill the next Landau level, and therefore obtain a standard metallic behavior. The extra ingredient comes actually from the sample

Figure 1 . 8 :

 18 Figure 1.8: a) In the absence of impurities, the quantum Hall effect can only occur for precise values of the ratio electron density over magnetic field. The landau levels are infinitely sharp, and no quantization would be observed. b) In presence of disorder, the localization broaden the Landau levels by adding some localized states that do not contribute to the transport. In that case, we observe a Hall quantization for a range of values of the filling factor

Z 1 Z 2 Figure 1 . 10 :

 12110 Figure 1.10: Sketch of two quasi-holes at the surface of a Laughlin liquid. By moving one particle around the second one, the wave function accumulates an Aharonov-Bohm phase plus a statistical exchange phase of 2 × π m . The generalization for N quasi-particles would lead to a phase 2N × π m

Tomonaga-Luttinger theory 2 . 1 . 1

 211 Non-interacting one dimensional fermion in the Tomonaga-

Figure 2 . 1 :

 21 Figure 2.1: Left panel: Linearization of the band structure for a one dimensional system of fermions. By investigating the electron dynamics at low energies close to the Fermi surface, we can approximate the true dispersion relation with a linear one ϵ k = ħv f k. Right panel: Action of a fermionic ladder operators c † k+q c k on one branch of a Luttinger liquid (chiral case).
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 2 . We can notice that a simple change in the Hamiltonian describing a single integer edge, introducing the filling factor ν leads to the right conductance 1 m e 2

Figure 2 . 2 :

 22 Figure 2.2: Representation of a two-dimensional quantum Hall droplet. Incompressibility implies that the surface is conserved. The only excitations are small displacement of the edge that propagate along the curvilinear abscissa x

25 )

 25 By a purely classical hydrodynamical model, we find the same Hamiltonian as in the last section. Quantization of this Hamiltonian is achieved by adding the commutation relation between the conjugated variables of the problem, which leads to the same Kac-moody relation between the density operators. Notice that this argument based only on the incompressibility of Hall states is valid both in the integer regime (ν = 1 and in the case of a single fractional state ν = 1/m (Laughlin states). We find the 1 ν re-scaling factor introduced by hand in the Hamiltonian to get the right conductance.

52 2. 1 Figure 2 . 3 :

 52123 Figure 2.3: Sketch of a tunneling experiment with quantum Hall channels in the fractional 1/3 regime. The blue area represents the FQHE liquid, and the grey area the depleted region under the quantum point contact. Depending on the transmission of the channel, the charge transfer occurs by either fractional quasi-particle (small transmission or WBS) or by integer charge e (strong tunneling, or SBS).

48 )

 48 With g n takes a value +1 if an electron is transferred from the left to the right (or-1 from right to left), and zero in other cases (no emission, or one electron is emitted in each direction). The values of g n also reflect the exclusion of fermions: g n = 2 is forbidden by the Pauli principle.

VFigure 2 . 5 :

 25 Figure 2.5: Landauer scattering picture of quantum transport: a single mode conductor is connected to two contact with different potential µ L and µ R . A scattering region at the center of the conductor can induce some back scattering probabilities T , generating current fluctuations (quantum shot noise)

  is the conductance of the edge state. The black data points of fig 2.7 shows a low frequency shot noise measurement, which is in perfect agreement with the shot noise reduction formula 2.59.

Figure 2 . 7 :

 27 Figure 2.7: Finite frequency shot noise at f = 7.75G H z (blue curves)and low frequency shot noise f ≃ 1.1M H z (black curves) from partitioning a single edge states at ν = 3. At high bias (eV > h f ), the two curves show a linear behavior with input bias, which is proportional to the charge transferred and to the scattering properties of the QPC T (1-T ). The finite frequency noise is null for low bias, with a voltage cutoff V 0 = h f /e. The calibration of the RF noise is made such that the high bias linear fit of the low and high frequency noise give the same slope.
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 67 In the next few years, this method has detected various fractional charges at different filling factor: e 5 charges at ν = 2
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 2829 Figure 2.8: First experimental evidence of fractional charge tunneling at a quantum point contact in the FQHE in the Weizmann Institute[START_REF] De Picciotto | Direct Observation of a Fractional Charge[END_REF](left) and the CEA group (right)[START_REF] Saminadayar | Observation of the e/3 fractionally charged Laughlin quasiparticle[END_REF]. By collecting the low frequency current shot noise with respect to the back-scattered current, the high bias behavior is proportional to e/3.

Figure 3

 3 Figure 3.1: a) Fabry-Perot interferometer in the ν = 1/3 FQHE from the Purdue group[START_REF] Nakamura | Direct observation of anyonic braiding statistics[END_REF]. Two QPC define a cavity inside which currents are trapped. One can change the effective surface of the cavity by applying negative plunger gate voltage. b) "Pyjama plot": the interference pattern varies by changing the magnetic flux across the sample, which can be done by changing either the surface (plunger gate voltage) or the magnetic field. In addition to the expected straight lines (Aharanov-Bohm regime) we see jumps of the phase by2π 3 as we change the field, which is interpreted as removing one anyon from the bulk of the cavity.

Figure 3 . 2 :

 32 Figure 3.2: Principle of operation of the collider: the sample consists of three QPCs. QPC 1 and 2 are used as random sources, generating a diluted current in the input arms leading to the cQPC . Depending on the transmission regime and the filling factor, the current is related to the transport of fermionic (IQHE) or anyonic (FQHE) quasi-particles.
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 03030403033 Figure 3.3: Diagram in the classical model illustrating the collision between two particles simultaneously incoming to the central beam splitter.In the absence of statistics of quantum origin, the two particles can either come out of the same side of the splitter (bunching) or in distinct arms (anti-bunching) with classical probabilities. In the first case, an excess of particles (compared to the average current) is recorded in one arm, and a deficit in the other arm, giving a negative contribution to the cross-correlations. In the second case, no variations with respect to the average current are recorded, giving a zero contribution to the cross-correlations.

Figure 3 . 4 :

 34 Figure 3.4: Computation of the Pseudo Fano factor with current imbalance P (I + /I -) for different Laughlin filling factors ν = 1 m . The case m = 3 is the one we are interested in and corresponds to the most negative values of the cross-correlations.

Figure 3 . 5 :

 35 Figure 3.5: Scanning electron microscope (SEM) image of the sample, with false colors. Ohmic contacts are labeled from 1 to 8, and chiral edge currents are represented with plain line, and tunneling with dotted lines. After partitioning at input QPC, we represent the quasiparticles emission toward cQPC with red dots, and the result of quasi-particles collisions with green dots.

Figure 3 . 6 :

 36 Figure 3.6: Transmissions along different contacts with respect to the magnetic field. As we reach a quantum Hall regime, the current is perfectly transmitted along one dimensional edge channels (purple and red curves), and therefore the back-reflected currents (blue curves) drop to zero.

Figure 3 . 7 :

 37 Figure 3.7: Input QPC 1 and QPC 2 differential conductance in unit of e 2h with QPC gate voltage (plain lines are for QPC 1 and dashed lines for QPC 2 ). The integer cases ν = 2 and ν = 3 have respectively two and three edge sates carrying electronic excitations, whereas the ν = 1/3 case have a single edge state with a fractional conductance of1 3 × e 2 h . When the conductance lays between two plateaus, a single edge state is partially transmitted, and will lead to current shot noise when a bias current is applied.2 , because of the small number of average for this measurement.

I 3 (

 3 t ) + I 4 (t ) = I 0 , leads to a relation between auto and cross-correlation noise: ∆S 33 + ∆S 44 + 2∆S 34 = ∆S I 0 I 0 = 0 (3.38) ∆S 33 = ∆S 44 = -∆S 34 (3.39) This relation explains why ∆S 33 and ∆S 34 are equal up to a sign, and therefore carry the same information about the charge transfer. Of course, this relation is only true in a single QPC configuration, and no longer holds in the collider geometry. Nevertheless, it will allow tracking the charge emitted by the input QPC during the collision experiment, as the sum of auto-correlations and cross-correlations noise gives access to the input current fluctuation and therefore to the input shot noise.
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 33839 Figure 3.8 presents various noise measurements for the fractional filling factors 1/3 in the configuration described on panel 3.8.a. The input quantum point contacts QPC 1 and QPC 2 are fully open, and the current I 0 is partitioned by cQPC only. Panel 3.8.c presents the cross and auto-correlations of the current fluctuations as a function of the incoming current I 0 for various back-scattering probabilities T of cQPC (see
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 310 Figure 3.10: a) (resp. b))Experimental configuration for the measurement of the partition noise by input QPC 1 (resp. QPC 2 ). In this configuration, we only consider the upper half of the sample (resp. the lower), and the geometry is the one of a single QPC shot noise. In that case we do not have access to cross-correlations, and we only measure the auto-correlations at output 4 (resp. output 3) c) (respectively d)) Back-scattering probability T 1 (resp. T 2 ) as a function of I 0 . e) (resp. f )) Measurement of the auto-correlations of the current fluctuations as a function of the input current I 0 .

Figure 3 . 11 :

 311 Figure 3.11: a)Characterization of the charge emitted by the two input sources QPC 1 (blue dots) and QPC 2 (blue diamonds) in the strong back scattering regime.For small values of the input current I 0 the charge matches perfectly to q = e then deviates and tends to a value q = e/3 b) As we increase more the bias, we see that the transmission deviates from a value T S = 0.75 to T S = 0.2 which is consistent with the charge extracted

Figure 3 . 12 :

 312 Figure3.12: Balanced configuration of the collider. The dc bias voltages are applied at contacts 1 and 2. All QPC are partially transmitted, and we deduce all the transmission by proceeding to lockin measurements between contacts 1 and 5 (QPC 1 ), 2 and 6 (QPC 2 ), and finally 7 to 3 or 8 to 4 (cQPC ). The cross-correlations noise and autocorrelations noise are collected at contacts 4 and 3.

(

  red and orange curves on fig. 3.7). At ν = 1/3, the current is carried by a single edge channel (blue curves on fig. 3.7).

  fig 3.13a), in which we measure the cross-correlations S i 3 i 4 with respect to the input current I + , for different values of the transmission T , and extract the slope α(T ) × I + .

Figure 3 . 13 :

 313 Figure 3.13: a)Evolution of the cross-correlations scaling with input current (in the balanced collider geometry) for different values of the central QPC transmission. b) Linear fitting parameter α, from the fit S i 3 i 4 = α × I + , with respect to the transmission T . The cross-correlations exhibit a shot-noise reduction T (1 -T ), and the definition of the pseudo Fano factor becomes P = S i 3 i 4 2qT (1-T )I +
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 3142315316 Figure 3.14: Electron collisions, ν = 2. a) Back-scattering probability T S for input QPCs. b) Normalized excess noise incoming on cQPC .It is computed from the sum of auto and cross-correlations of the current fluctuations at the output of cQPC . The red dashed line is the prediction for the emission of electrons by QPC1 and QPC2 (charge q = e). c) Normalized excess cross-correlations by the factor eT (1-T ) as a function of the total input current I + . The red dashed line is the prediction for fermions P = 0 and the blue one the predictions for anyons with the phase ϕ = π/3, P = -2.
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 317 Figure 3.17: Collisions, ν = 1/3, strong back-scattering regime. a)Back-scattering probability T S for the two input QPCs. b) Charge characterization by current conservation.The red dashed line corresponds to a charge e, whereas the blue dashed line is for e/3. We see two different regimes: for low bias the transmission is indeed in the SBS regime (T S ≃ 0.7), and the data shows an emitted charge e. When the bias is too strong, the transmission T S decreases, up to the point (vertical black dotted lines) in which we recover fractional charge emission. c) Normalized excess cross-correlations as a function of the total input current I + . The result is in agreement with the extracted charge of panel b): when the transmission T S is in the SBS regime, the transmission through the QPC is electronic, and the cross-correlations are slightly positive, exactly as in the case of integer filling factors. When the transmission decreases, we recover fractional charges emission at the input, and the cross-correlations become negative, recovering a negative P ≃ -1.3 factor.
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 73 Figure 3.18: a) P factor extraction for different value of the imbalance between the two inputs in the very dilute case (T S = 0.05). The measurements are performed at fixed transmission of all QPC, but with different bias voltage V 1 and V 2 . b)Experimental verification of the P ( I - I + ) behavior at ν = 1 3 (data point) in good agreements with the computations of[8].
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 5319 Figure 3.19: Evolution of the P factor with the input current unbalance I - I + for different values of the dilution at the input T S . The blue dashed lines correspond to the formula 3.34 with proportional for T S deviating from the diluted regime.
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 320 Figure 3.20: Evolution of the anyon collisions with temperature a) Cross-correlations of the current fluctuations between the two outputs for different temperatures θ. The dashed lines correspond to the extracted P factor. b) Input QPC transmission T S for the different temperatures. c) Evolution of the P factor with the electronic temperature θ.
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 211321 figure 3.22 shows the results of neutral mode detection at ν = 1/3, with the sample

Figure 3 . 22 :

 322 Figure 3.22: Neutral mode detection at ν = 1/3. Red and blue points correspond to two different QPC 1 transmissions: T 1 = 0 in blue and T 1 = 0.55 in red. a) Cross-correlations of current noise fluctuations ∆S I 3 I 4 b) Auto-correlations of current noise fluctuations. We see a slight reduction of the noise when partitioning QPC 1 , which is not coherent with the generation of a counterpropagating neutral mode. c) Auto-correlations of current noise fluctuations ∆S I 4 I 4 d) Transmission T of cQPC (diamonds) and T 1 of QPC 1 (circles) for the two measurements
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 323 Figure 3.23: a) Neutral mode detection at ν = 2/3. The left panel is the auto-correlations noise ∆S I 3 I 3 , where we see an excess noise when T 1 is partitioning (blue dots) in comparison when the QPC 1 is fully transmitting (T 1 = 0, red dots) or fully closed (black dots) b)Neutral mode detection at ν = 1/3 again we see no signature of neutral modes on ∆S I 3 I 3
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 324 Figure 3.24: Difference between ∆S I 3 I 4 for T 1 = 0.55 and T 1 = 0 for ν = 1/3 and ν = 2/3. At ν = 1/3 we see an almost zero (slightly negative) signal and no bias dependence. At ν = 2/3, we see a clear excess of noise with a linear behavior with I 0 , which is the signature of a neutral mode being partitioned at QPC 1
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 3253 Figure 3.25: a) Transmission 1 -T in the strong back-scattering regime. The dashed line represents the expected scaling V 4 for a value δ = 1/3. b) Fit of l og (1-T ). We extract a value between δ = 0.31 (black dashed line)and δ = 0.36 (red dashed line)

Figure 3 .

 3 Figure 3.26: a) Transmission T of the QPC in the weak backscattering regime.For a large value of V , the transmission saturates at 0.058 instead of going to zero, b) Power law fitting of l og (T ). The saturation leads to an overestimation of δ = 0.71 at large bias. c)Power law fitting of l og ( T ). Removing the offset allows us to extract the value δ = 0.36 in agreement with the SBS measurements
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 41 Figure 4.1: Squeezing of the quadrature of a bosonic field. For a phase ϕ 0 , the fluctuations 〈∆X 2 ω,ϕ 0 〉 < 1/2 are below the vacuum fluctuations (dotted black line), whereas the perpendicular quadrature 〈∆Y 2 ω,ϕ 0 〉 > 1/2

(4. 10 )

 10 This relation between current noise and the Wigner representation of the correlations of the fermionic field at the input of a quantum point contact has been previously used in tomography experiments to fully reconstruct the Wigner representation of the electronic coherence generated by electronic sources[START_REF] Grenier | Single-electron quantum tomography in quantum Hall edge channels[END_REF][START_REF] Jullien | Quantum tomography of an electron[END_REF][START_REF] Bisognin | Quantum tomography of electrical currents[END_REF]. For a dc voltage, the Wigner representation does not depend on the time and is simply given by the shifted Fermi distribution at potential µ = -eV d c : W d c (t , ω) = f -eV d c (ω). Whereas for an ac voltage, the Wigner representation W ac (t , ω) is a time dependent generalization of the distribution function. The contribution of the Fermi sea can be easily removed in what we call the excess Wigner function:

Figure 4 . 3 :

 43 Figure 4.3: a) Numerical simulation of δS f ,ϕ (V d c ,V ac )/T (1 -T ) for a V ac = 30µV pump amplitude, and different phases ϕ = 0 (red line), ϕ = π 4 (blue line) and ϕ = π 2 (red dashed line). The black curve corresponds to the situation without pump δS f ,ϕ (V d c , 0)/T (1 -T ). b) Polar plots the field quadrature 〈∆X 2 〉 = 1 2 + 1 e 2 f δS f ,ϕ (V d c ,V ac ) (red dots) and the perpendicular quadrature 〈∆Y 2 〉 (blue dots) for a transmission T = 0.5, and optimal parameters V d c = V ac = 30µV . The black dashed line correspond to the vacuum fluctuations.

Figure 4 . 4 :

 44 Figure 4.4: Set-up for high frequency noise measurement on contact 4, with the balance Mach-Zehnder scheme. The low frequency noise is also collected on contact 3

  4.5b) shows the lock-in voltage collected by the power diode V d i od e with respect to the measured low frequency noise, shifted by the low frequency noise at the emission threshold δ∆S 0 (V d c ) = ∆S 0 (V d c ) -∆S 0 (V d c + h f e ). The linear black fit gives the conversion factor between the LF noise gain and the RF noise, The fig. 4.5c) shows the result of the noise calibration: both low frequency and high frequency signals perfectly agrees with theory prediction for ∆S 0 (V d c ) and ∆S f (V d c ) (black lines).

Figure 4 . 5 : 4 . 3 Photo-assisted squeezing of EMP 4 . 3 . 1

 4543431 Figure 4.5: RF noise calibration.a) We measure both the dc shot noise and the RF noise as a function of the dc bias applied to the sample.b) From the low frequency calibration, we find the high frequency calibration by setting the slopes at high bias to be equal. c) Shows the RF noise and LF noise after calibration steps. Black curves are theory predictions

Figure 4 . 6 :Figure 4 . 7 :

 4647 Figure 4.6: Set-up for the measurement of the pump noise: we modulate the ac drive with a low frequency square voltage, which is used to demodulate the RF noise.

Figure 4 . 8 :

 48 Figure 4.8: Squeezing set-up: an ac pump voltage at doubled frequency 2 f = 15.5G H z is added to the RF noise set-up. We do not consider the low frequency noise measurement in this section, the output 3 can be considered as grounded.

Figure 4 . 9 : 4 . 3 . 3

 49433 Figure 4.9: Squeezing of EMP: RF noise measurement for two different reference phase ϕ = 0 in red and ϕ = π 4 in yellow. The right axis correspond to the conversion in bosonic quadrature fluctuation 〈∆X 2 ω,ϕ 〉

Figure 4 . 10 :

 410 Figure 4.10: Reconstruction of the fluctuations of the field quadrature for the two IQ channel.a) The excess noise is only measured for the two value V d c = V ac = ±33µV with respect to the reference phase ϕ. b) Polar plots of 〈∆X 2ω,ϕ 〉 ϕ for the two respective channels. Blue and red dots correspond to the value V d c = ±33µV on the left panel. We see a great agreement with numerical model (dotted black line).

Figure 4 . 11 :Figure A. 1 :

 4111 Figure 4.11: Summary of the anyon collider results, both in the integer (ν = 3 and ν = 2) and in the fractional ν = 1/3 quantum Hall states. Negative cross-correlations are a signature of non-trivial anyon braiding at the central QPC

2 ν 0 -∆ν 2 dFigure A. 2 :

 2022 Figure A.2: a) The red dots are lock-in measurements of the frequency response of output 3 (Real part, imaginary part and absolute value) at ν = 1 3 field. The black dashed line is a Lorentzian fit from (1). b) Comparison of the two tank circuit responses (from lock-in measurements). The outputs are balanced such that the two resonances are as close as possible: The cross-correlation signal is proportional to the overlap between the two circuit bandwidths (C.F eq (3)). c) The dots show temperature calibration for the two amplification lines: we measure the auto-correlation signal at each output with increasing the temperature, and extract the linear slope to deduce the total gain.
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1.3 The fractional quantum Hall effectWe have seen in that section the rich physics of a two-dimensional electron gas under a strong magnetic field: the quantum Hall effect. Such material is what we call a topological insulator: the bulk of the sample is insulating, and the transport occurs only at the edge of the electron gas, through a quantified number of modes. To study such material, we can only probe the one dimensional edge of the 2DEG, which is the subject of the next chapter.

We follow here the "physicist" convention used in the ref.[START_REF] Rosenow | Current Correlations from a Mesoscopic Anyon Collider[END_REF] (no factor

2). It does not change the value of P .

For experimental convenience the two sources in our case are sent to the same contact, but it does not change the collision as a DC bias can be indifferently put on any side of the QPC

Acknowledgements

devant le jury composé de : M. Jean-Noël Fuchs ----------------

Part II Results

3 Fractional statistics from Anyon collision in the Laughlin state

This chapter represents the main result of this manuscript. It describes the experimental implementation of a collider interferometer [START_REF] Rosenow | Current Correlations from a Mesoscopic Anyon Collider[END_REF][START_REF] Bartolomei | Fractional statistics in anyon collisions[END_REF] in the Fractional Quantum Hall regime at filling factor ν = 1/3. First, we will show that noise measurements in the collider geometry allow to discriminate between the fermionic statistics of the integer states, and the anyonic ones in the fractional case. By analogy with shot noise measurement, we introduce a generalized Fano factor P , which encapsulates imprints of the exchange statistics of charge carriers. We provide various measurements for different regimes of emission of the sources, both for ν = 1/3 and for the integer case ν = 2 and ν = 3. The results in the fractional regime show perfect agreement with the expectations for Laughlin anyons with statistical exchange phase ϕ = π/3. We also performed measurements to verify the validity of the model of a single fractional edge channel, looking for the possible existence of counter-propagating neutral modes, and checking the transmission dependence in input currents at a quantum point contact.

Weak back-scattering limit for the fractional case

Now that we have a good picture of electron collision, we go to the most interesting case, which is the anyon collision at filling factor ν = 1/3. The magnetic field is set to B = 13.5T , where the current is carried by a single fractional edge channel. The input QPC transmission is set in the weak back-scattering regime T S ≪ 1 (see Figure 3 

A Calibration of amplification chains

In this setup, we proceed to two low frequency noise measurements at outputs 3 and 4 of the collider. Here we describe the gain and tank circuit calibrations both for autocorrelation and cross-correlation signals. The voltages at contacts 3 and 4 are first collected through two LC tank circuits, moving the measurement frequency from zero

The inductance is made of a copper wire inductor (115µH ), and the capacitance is the one of the cables (C ≃ 180pF ). Notice that we are still in the zero frequency limit as f 0 ≪ k B T h ≃ 500M H z at base temperature. To maximize the cross correlation signal, a small capacitance is added in parallel at output 4, to match the resonances at Ohmic contacts 3 and 4 (ω 0,3 ≃ ω 0,4 ≃ ω 0 ). These two elements are in parallel with the output resistance of the sample R ν = 1 ν × R k ≃ 75kΩ impedance of the sample. To take into account the loss in the inductor, we add a small resistance R L in parallel, so the total resistance plug to the LC resonator is

The equivalent impedance of the circuit at outputs 3 and 4 are therefore given by:

In these experiments, we are interested in the particle shot noise at finite temperature.

We neglect the frequency dependence of the amplifiers over the full frequency band.

In the case of low frequency shot noise, the current auto-correlations, and crosscorrelations spectral density does not depend on frequency, and therefore we can rewrite:

and, same for the auto-correlation signal:

The γ i j =