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Abstract 

Drug safety is a critical issue causing significant public health and financial burden. Pharmacovigilance 

(PV) is the science related with all aspects of drug safety, focusing on the post-marketing drug safety. 

Typically, PV activities are not supported by specific tools systematically developed to this purpose.  

Active Pharmacovigilance (AP) is a new paradigm aiming to increase the PV data space via the active 

pursue of data which could in principle be produced for another main purpose, but they could also 

potentially be useful for PV as a secondary use. Technically, the exploitation of these data sources 

requires the use of Knowledge Engineering (KE) computational approaches, aiming to integrate, mine 

and semantically align the respective data. The challenges of integrating the use of these KE and 

potentially other “intelligent” technical paradigms as well as data sources in the clinical environment 

and beyond that are evident. Revisiting the AP paradigm towards focusing on the exploitation of 

emerging data sources and technologies is necessary in order to improve medical practice, patient safety 

and clinical research.  

This thesis aims to redefine AP based on the opportunities provided by the potential of integrating 

emerging data sources and “intelligent” technologies. More specifically, it emphasizes on the legal and 

organizational aspects, elaborating the related “Business Processes” (BPs) and the respective “User 

Goals” (UGs) and their value in updating the AP paradigm. 

To this end, a systematic review of the research papers focusing on the use of KE for drug safety has 

been conducted, identifying the technical approaches and the data sources used, while also investigating 

potential technical and research gaps. Based on these findings a number of activities has been launched, 

aiming to support the integration of these data sources and technical approaches in the clinical context 

and beyond. The regulatory context has been analysed, the respective BPs were identified and elaborated 

and finally a well-defined set of  “User-Goals” has been produced and the respective challenges on the 

integration of “intelligent” technologies were elaborated. Ultimately, based on these findings, the vision 

of integrating AP as part of a “Learning Healthcare System” is presented. 

Finally, a set of technical research lines were also elaborated, providing clear pathways for future 

research initiatives. More specifically, a Knowledge Graph using PV data is currently under 

construction, based on PV signal report information published by Uppsala Monitoring Centre, the World 

Health Organization reference centre for PV. Furthermore, emphasizing on the potential use of Systems 

Pharmacology oriented data, an ontology enabling the semantic modelling of biochemical pathway 

information aligned with Systems Theory concepts has also been designed. 

 

Keywords: Active Pharmacovigilance, Drug Safety, Knowledge Engineering, Semantic Web, 

Ontologies 
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Résumé détaillé 

La sécurité des médicaments (DS) est un problème de santé publique important, car les 

effets indésirables des médicaments (EIM) entraînent un fardeau de santé publique important. 

La pharmacovigilance (PV) est définie comme «la science et les activités liées à la détection, 

à l'évaluation, à la compréhension et à la prévention des effets indésirables ou de tout autre 

problème éventuel lié aux médicaments ». L'une des principales activités de PV est 

l'investigation de nouveaux effets indésirables potentiels, appelés «signaux», à partir de 

l'utilisation des données de surveillance post-commercialisation du médicament, mais 

également des données produites aux stades antérieurs de pré-commercialisation. En règle 

générale, les signaux PV sont issus des données d’observation individuelle d’effets indésirables 

(ICSR) soumis par des professionnels de la santé (HCP) ou des patients via des systèmes de 

déclaration spontanée (SRS). Ces rapports sont analysés statistiquement (par exemple par une 

analyse de disproportionalité – AD) pour identifier les signaux PV potentiels. Ces signaux sont 

ensuite étudiés par des groupes d'experts en combinant d’autres preuves provenant d'autres 

sources de données (c.-à-d. littérature scientifique, essais cliniques, etc.) pour valider ou 

invalider le signal. Ce processus est également défini comme «Pharmacovigilance passive» car 

il est basé sur des rapports soumis volontairement par des patients ou des HCP. 

Les progrès des technologies de l'information et de la communication (TIC) permettent 

l'utilisation de nouvelles sources de données émergentes, généralement construites à d'autres 

fins principales, élargissant l'espace de preuves du monde réel utilisé pour rechercher de 

nouveaux signaux PV potentiels. Ces sources de données émergentes pourraient améliorer 

considérablement l'identification et l'élaboration de signaux PV potentiels, en complément des 

preuves produites par l'analyse des ICSR. Ainsi, la pharmacovigilance active (PA) va au-delà 

de l'utilisation des bases de données ICSR et peut être définie comme «un processus 

systématique qui cherche à identifier les problèmes de sécurité grâce à des analyses 

épidémiologiques des bases de données de soins de santé», faisant généralement référence à 

l'exploitation des dossiers patients (DP) dans ls systèmes d’information hospitaliers ou des 

bases de données d'observation , s'étendant parfois également à d'autres types de sources de 

données.  

L’exploitation de ce déluge de données à des fins de DS comporte ses défis et nécessite 

d'introduire des méthodes de calcul puissantes pour permettre de prendre en compte 

l'hétérogénéité et la complexité des données sous-jacentes et en extraire de façon efficace des 

connaissances.  Ce besoin exigeant dont l’objectif est de renforcer les preuves peut être abordé 

du point de vue de l’ingénierie des connaissances. 

L'ingénierie des connaissances (KE) est une discipline de l’intelligence artificielle qui 

fait référence à l'ingénierie de systèmes intelligents incorporant beaucoup de connaissances tels 

les systèmes experts. KE se concentre sur l'identification, la création, le stockage et la mise à 

disposition des connaissances afin de rester neutre face aux outils de partage et d'utilisation. 

file://///Ingénierie/fr-fr/
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Les sous-disciplines associées sont : (a) l'extraction des connaissances (par exemple basée sur 

le traitement du langage naturel), (b) la représentation des connaissances (par exemple des 

représentations formelles telles que des ontologies,  (c) l'intégration des connaissances (c'est-à-

dire l'alignement syntaxique et sémantique et la normalisation de différents types de 

connaissances du domaine, (d) la diffusion des connaissances (c.-à-d. modélisation des 

informations à des fins de communication, se concentrant par exemple sur l'interopérabilité 

entre des systèmes TIC hétérogènes), et (e) la gébération de connaisances par exemple en 

utilisant des techniques de fouille de données). 

Nous soutenons que les technologies émergentes collectivement appelées « Intelligence 

Artificielle » (IA), et en particulier KE pourraient jouer un rôle crucial dans le contexte de la 

sécurité des médicaments. Cependant, les paradigmes technologiques « intelligents » sont 

difficiles à intégrer dans l'environnement clinique ou le contexte du soin en général. En se 

concentrant sur le domaine de la PV, le contexte réglementaire et les particularités des processus 

métiers (Business processes - BP) respectifs, crée un environnement complexe où l'intégration 

d'outils informatiques innovants est aujourd’hui difficile. Étant donné que l'intégration 

d'applications « intelligentes » dépend fortement des interactions spécifiques de l'utilisateur 

final, la détection précoce et la répartition appropriée de ces interactions ou conflits entre les 

BP sont cruciales, car elles affectent considérablement les « objectifs de l'utilisateur » (UG) et 

affectent aussi la conception des processus de soins de santé appliqués et l'intégration de 

nouveaux outils informatiques. 

Par conséquent, l'hypothèse principale de cette thèse est que l'intégration des 

technologies KE émergentes pourrait être utile pour définir la « pharmacovigilance active » en 

tant que nouveau paradigme de fonctionnement de la PV clinique basé sur l'identification et 

l'analyse des processus métiers et des objectifs des utilisateurs. 

L'objectif principal de cette thèse est de définir clairement le concept de 

pharmacovigilance active et de le réviser, en mettant l'accent sur l'impact potentiel des 

approches d'ingénierie des connaissances et en identifiant les étapes nécessaires en termes de 

«feuille de route». Pour atteindre cet objectif, un certain nombre d'objectifs intermédiaires ont 

été définis comme suit : 

 Fournir un aperçu détaillé des travaux de recherche menés concernant 

l'application de l'ingénierie des connaissances à des fins de sécurité des 

médicaments et mettre en évidence les lacunes potentielles des recherches dans 

ce domaine 

 Identifier les processus métiers liés à la pharmacovigilance 

 Définir un ensemble d’objectifs utilisateur en fonction des commentaires des 

utilisateurs finaux 
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 Élaborer sur les développements techniques nécessaires afin d’identifier les 

défis à venir de l'utilisation des approches KE, sur la base d'une expérience 

pratique 

 

Methodology 

Cette thèse a été menée dans le cadre du projet PVClinical1, qui vise à construire une 

plate-forme Web basée sur KE pour faciliter l'investigation des signaux d'effets indésirables 

potentiels dans le contexte clinique et au-delà. La méthodologie appliquée au cours de cette 

thèse peut se résumer aux étapes suivantes :  

1. Revue systématique des approches KE utilisées pour DS 

2. Vue d'ensemble du cadre réglementaire de la PV en Europe 

3. Analyse des processus métiers (BP) actuellement appliqués et liés à la PV 

4. Définition des objectifs de l'utilisateur sur la base 1) des ΒP élaborés, 2)  des commentaires 

des utilisateurs finaux et 3) d'une analyse de l'état de l'art (SotA) 

5. Sur la base de ce qui précède, fournir un nouveau paradigme permettant l'intégration de l'AP 

dans la pratique clinique. 

 

L'état de l'art 

Un article présentant un aperçu de l'état de l'art concernant l'utilisation des approches 

KE dans le contexte du DS a été publié comme l'un des principaux résultats de la thèse 

présentée. Une recherche systématique a été effectuée en interrogeant deux référentiels 

bibliographiques : PubMed2 et Web of Science3. L'étude comprenait l'étape de recherche 

d'articles et deux étapes de révision consécutives, la première visait à filtrer les articles non 

pertinents avec les domaines KE et DS à partir de leur titre et de leur résumé, et la seconde était 

consacrée à l'évaluation détaillée du texte intégral des articles restants. Ces derniers ont été  

cartographier wen fonction de critères d'analyse spécifiques. 

Sur la base des résultats de l'article, si un large intérêt pour l'exploitation de sources de 

données diverses et émergentes est évident, cela soulève de nombreux défis et de la place pour 

des recherches supplémentaires. Par exemple, les connaissances biologiques sous-jacentes au 

métabolisme des médicaments et aux mécanismes pharmacologiques n'ont pas été 

suffisamment élaborées pour déduire de nouvelles relations de cause à effet entre les 

médicaments et les effets indésirables. Outre les sites polymorphes et les altérations de 

l'expression génique, d'autres mécanismes moléculaires, tels que les éléments régulateurs et les 

modifications épigénétiques, peuvent avoir une relation directe ou indirecte avec les 

                                                 
1 https://pvclinical-project.eu 
2 https://www.ncbi.nlm.nih.gov/pubmed/ 
3 https://webofknowledge.com/ 

https://pvclinical-project.eu/
https://www.ncbi.nlm.nih.gov/pubmed/
https://webofknowledge.com/
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médicaments et par conséquent les EIM. En outre, la standardisation des données d'observation 

des soins de santé est un problème. Les modèles de données communs reposant sur des 

terminologies de référence, telles que le MDP OMOP, peuvent accroître l'applicabilité et la 

reproductibilité des méthodes d'analyse computationnelle dans le domaine. Malgré le bruit et 

la complexité inhérents à l'analyse du contenu des médias sociaux, cette source de données ne 

peut être négligée en raison de sa large pénétration dans la vie quotidienne et de sa capacité à 

fournir des informations en particulier sur les événements de santé arrivant rarement. 

En termes d'activités KE, l'extraction et la représentation des connaissances ont été 

largement élaborées, tandis que l'accent mis sur la diffusion des connaissances était assez limité. 

De même, la détection des évènements indésirables, la collecte d'informations et l'évaluation 

ont attiré la plupart des efforts de recherche parmi les activités de base du DS, tandis que la 

détection du signal, l'analyse MoA (Mechanism of Action) et l'identification des interactions 

médicamenteuses sont les trois sujets les plus ciblés du DS. Inversement, l'accent mis sur la 

déclaration des événements indésirables est limité et peut être identifié comme une lacune pour 

des recherches ultérieures. 

Il est intéressant de noter que certaines études ont exploité conjointement plusieurs 

sources de données, illustrant, par exemple, la valeur ajoutée des méthodes KE en matière 

d'intégration des données, ainsi que l'intérêt pour une liaison/modélisation systématique entre 

le phénotype et les éléments du génome/protéome qui interagissent avec le médicament. Ce 

besoin d'une approche systématique facilitant l'intégration d'informations biochimiques et 

génotypiques de bas niveau avec des modèles phénotypiques appliquant le paradigme de la 

pharmacologie des systèmes (Systems Pharmacology – SP) a déjà été identifié comme une 

opportunité de recherche. Si ces modèles illustrent des résultats remarquables, ils n'exploitent 

pas pleinement la puissance de certaines approches KE telles que des ontologies, étant 

généralement basés sur des règles (au moins partiellement) afin de modéliser des processus 

physiologiques, biologiques ou pharmacodynamiques / pharmacocinétiques. En particulier, ils 

n'utilisent pas de modèles ontologiques de référence décrivant la biologie des systèmes ou les 

concepts de SP de manière systématique. Par conséquent, la modélisation holistique des effets 

indésirables, combinant la puissance des ontologies et du raisonnement en logique de 

description (DL) avec les modèles mathématiques ou empiriques de pharmacocinétique et de 

pharmacodynamique est un sujet de recherche ouverte. Une telle approche pourrait permettre 

l'intégration de sources de big data (via des ontologies) avec des modèles multi-échelles SP, 

pour faciliter la médecine de précision. Des résultats très prometteurs ont été obtenus en 

combinant l'inférence statistique sur les données des déclarations spontannées et la modélisation 

basée sur l'ontologie et l'inférence sur les caractéristiques et les catégories de l'EIM. Ainsi, cette 

approche enrichie avec des modèles SP sera également considérée comme une opportunité de 

recherche et élaborée plus avant par des études futures. 

En ce qui concerne les défis techniques, la performance du raisonnement constitue un 

enjeu important, en particulier lorsque l'on considère des modèles de connaissances à grande 

échelle. Par exemple, afin d'éviter l'héritage multiple, OAE (une ontologie de référence assez 
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grande dans le domaine des effets indésirables) n'accepte qu'un seul terme parent dans la 

hierarchie et permet aux autres termes parents d'être obtenus automatiquement par 

raisonnement. Un autre exemple de compromis à la modélisation des connaissances dans un 

souci de performance est le cas de DINTO (ontologie des interactions médicamenteurses), où 

l'ontologie a dû être simplifiée pour être traitée par des raisonneurs existants. Ainsi, les 

problèmes de performances dans les logiciels de raisonnement DL peuvent être considérés 

comme un goulot d'étranglement pour l'adoption dans le monde réel de modèles d'ontologies 

complexes / volumineux. 

En conclusion, malgré le nombre croissant d'études exploitant KE pour DS, l'absence 

d'une «success-story» majeure - au-delà de la preuve de concept - est évidente. Cela constitue 

un défi important pour les chercheurs du domaine, qui doivent répondre s'ils souhaitent 

valoriser les approches KE dans le contexte du DS et, par conséquent, faciliter leur adoption 

plus large par les parties prenantes du DS. Bien que peu d'études aient atteint ou se soient 

explicitement concentrées sur la pratique de routine du DS, nous soutenons que l'implication 

des méthodes KE dans les processus DS établis peut considérablement contribuer au 

développement d'un système de santé avancé et d'apprentissage continu, ce qui est nécessaire 

pour une surveillance efficace du DS. Enfin, nous suggérons que l'utilisation d'approches KE, 

par ex. les ontologies, en combinaison avec des modèles pharmacocinétiques et 

pharmacodynamiques, pourraient faciliter la construction d'un cadre SP capable de fournir une 

voie vers la médecine de précision en exploitant des preuves du monde réel. 

 

Contexte réglementaire et aspects de gestion 

Dans le cadre de la thèse présentée, une analyse a été menée dans le but de consolider 

diverses informations, y compris provenant des utilisateurs finaux, pour identifier les «objectifs 

utilisateurs» (UG) à propos de  l'adoption de paradigmes techniques «intelligents» pour la 

sécurité des médicaments dans le contexte clinique. Les UG sont des « exigences abstraites des 

utilisateurs, ne faisant pas directement référence à des approches techniques spécifiques », 

directement attribuées aux utilisateurs comme « rôles » ou « acteurs ». La définition des UG 

vise à mettre en évidence les «lacunes» dans les processus métiers (BP) actuellement appliqués 

et la résolution des conflits potentiels entre les acteurs et les BP, en fournissant ainsi une 

contribution à la conception globale du système. 

À cette fin, l'accent a été mis sur les résultats de deux parties du processus global: (a) 

un « aperçu du cadre réglementaire » basé sur un examen approfondi de la législation 

européenne relative à la PV et la contribution d'experts PV, et (b) « Identification et élaboration 

de BP ». 

 

Cadre réglementaire 

Les organisations de surveillance des médicaments (DSMO) jouent un rôle crucial dans 

les étapes pré et post-commercialisation du cycle de vie d'un médicament, c'est-à-dire des essais 
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cliniques et de l'autorisation de mise sur le marché à la surveillance post-commercialisation, et 

généralement, elles maintiennent également le SRS. Par exemple, la Food & Drug 

Administration (FDA) aux États-Unis maintient le système de déclaration d'événements 

indésirables et en Europe, l'Association européenne des médicaments (EMA) maintient 

EudraVigilance. Par ailleurs, le Centre de surveillance d'Uppsala (WHO-UMC) est le centre de 

référence de l'OMS (Organisation Mondiale de la Santé) sur la PV et gère la plus grande base 

de données de ICSR à l'échelle mondiale, VigiBase. 

Insistant sur le contexte européen, la directive 2010/84 (appliquée en juillet 2012 via le 

règlement n ° 520/2012 et les bonnes pratiques de pharmacovigilance - GVP - modules I à 

XVI), a marqué une mise à jour politique majeure concernant les exigences de sécurité pour les 

médicaments à usage humain. En ce qui concerne la surveillance post-commercialisation, elle 

a ordonné le déploiement de SRS nationaux permettant également des déclarations par les 

citoyens. En outre, les sociétés pharmaceutiques étaient tenues de maintenir et de mettre à jour 

régulièrement des plans de gestion des risques (PGR) et de fournir des rapports périodiques de 

mise à jour de sécurité (PSUR). Toutes les parties prenantes ont été chargées d'échanger 

activement des données et enfin, toutes les informations collectées sont évaluées par le comité 

d'évaluation des risques de pharmacovigilance (PRAC) de l'EMA, chargé d'évaluer les risques 

médicamenteux dans l'UE. 

 

Processus métiers 

Le tableau 1 et le tableau 2 décrivent les BP pertinents tels qu'ils ont résulté des ateliers 

et des entretiens avec des cliniciens et des experts en PV. Pour chacun de ces BP, les avantages 

potentiels de l'utilisation d'outils informatiques pour soutenir ont été élaborés pour identifier et 

hiérarchiser les objectifs de l’utilisateur pertinents. 

Tableau 1. Les processus métiers en relation avec PV dans l’environnement clinique  

Nom Description Acteurs Données 

BP1: 

Consultations 

externes 

BP1 pourrait inclure 

l'enregistrement du patient et ses 

antécédents médicaux dans le DP de 

l'hôpital, l'examen clinique, la 

prescription électronique, etc. 

 Médecin  

 Infirmière 

Démographie, 

antécédents médicaux, 

résultat de laboratoire, 

diagnostic, ePrescription 

BP2: 

Hospitalisation 

BP2 comprend les étapes BP1 ainsi 

que les procédures cliniques (par 

exemple une opération), les entrées 

informatisées des prescriptions du 

médecin (CPOE), la maintenance 

des notes cliniques et la sortie du 

patient. 

 Médecin  

 Pharmacologue  

 Infirmière 

 

Données BP1 et aussi 

notes cliniques, données 

CPOE, notes de sortie 
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BP3: 

évaluation de 

service 

Le BP3 ne fait pas référence à la 

pratique clinique mais est 

régulièrement appliqué dans les 

hôpitaux pour évaluer des 

paramètres cliniquement pertinents 

(effets indésirables, infections 

hospitalières, erreurs, etc.). 

 Médecin  

 Pharmacologue  

 Infirmière 

 Scientifique 

informatique  

 Gestionnaire 

Statistiques sur les DP, 

liste priorisée d’effets 

indésirables d’intérêt, 

comparaison avec 

d’autres sources de 

données 

 

Tableau 2. Les processus métiers en relation avec PV en dehors de l’environnement clinique 

Nom Description Acteurs Données 

BP4: Essais 

cliniques 

BP4 comprend la conception d'une 

étude / intervention, la définition 

des cohortes de patients, la collecte 

et la conservation des données, la 

comparaison avec d'autres essais 

cliniques et également la 

communication des résultats 

 Médecin  

 Expert 

PV  

 

Données démographiques, 

antécédents médicaux, 

profilage génétique, résultats 

de laboratoire, notes 

cliniques, rapports de sécurité 

et d'efficacité 

BP5: mise à jour 

des rapports 

périodiques de 

sécurité 

BP5: mise à jour des rapports 

périodiques de sécurité 
 Médecin  

 Expert 

PV  

 

Données sur l'innocuité des 

médicaments, statistiques, 

documentation / rapports, 

listes hiérarchisées 

d'événements indésirables 

d'intérêt 

BP6: revue de la 

littérature 

hebdomadaire 

BP6 fait référence à des revues de 

littérature, y compris la mise en 

forme de requêtes basées sur des 

mots-clés et des synonymes par 

rapport à diverses sources de 

littérature 

 Médecin  

 Expert 

PV  

 

Documentation / rapports 

BP7: Gestion des 

risques 

BP7 comprend une revue de la 

littérature, une revue des données 

d'essais cliniques pertinentes, ainsi 

que le calcul des facteurs de risque 

 Expert 

PV 

Données, statistiques, 

documentation / rapports sur 

la sécurité des médicaments 

 

Objectifs et défis des utilisateurs concernant l'intégration de systèmes informatiques 

«intelligents» dans l'environnement clinique 

L’identification des objectifs de l’utilisateur en ce qui concerne l'intégration de systèmes 

informatiques «intelligents» dans l'environnement Clinique a été identifié comme une étape clé 

pour l’adoption du paradigm de PA en vie réelle. 

 

Objectifs de l'utilisateur 

La liste finale des UG identifiés est résumée dans le tableau 3.
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Tableau 3. Liste finalisée des objectifs des utilisateurs 

ID Titre Description Référence aux BP 

UG1 
L'utilisation de synonymes de nom de 

médicaments doit être encouragée 

La recherche d'informations sur le médicament en utilisant la substance active, le nom 

empirique ou commercial doit être soutenue 

Tous les BP sont pertinents, 

mais cette fonctionnalité 

serait particulièrement utile 

pour BP5, BP6 où des 

requêtes complexes sont 

formées 

UG2 

Une approche graphique avec une 

visualisation hierarchique des concepts 

(pour le codage) doit être possible 

Les niveaux / hiérarchies conceptuels et les regroupements de concepts fournis par des 

codages bien définis (par exemple, les niveaux MedDRA et WHO-ATC) pourraient 

faciliter la formulation des requêtes de recherche par les utilisateurs de manière plus 

succincte, en exploitant la sémantique fournie par les codages respectifs dans le cadre du 

Interface utilisateur. 

Tous  

UG3 

Des concepts non ambigus bien définis 

devraient être utilisés sur la base de 

thésaurus, dictionnaires et ontologies 

médicales largement acceptés 

L'utilisation de termes bien définis devrait améliorer la formulation des requêtes en 

réduisant l'ambiguïté sémantique et en améliorant l'accès à des sources de données 

pertinentes et bien normalisées. 

Tous les BP sont pertinents, 

mais cette fonctionnalité 

serait particulièrement utile 

pour BP5, BP6 où des 

requêtes complexes sont 

formées 

UG4 

Une multitude de sources de données 

doivent être utilisées, y compris, mais 

sans s'y limiter, les ICSR 

Il convient d'utiliser à la fois des sources bien établies (c'est-à-dire des sources largement 

utilisées dans la pratique quotidienne), ainsi que des sources émergentes qui font l'objet de 

recherches approfondies pour leur intérêt potentiel dans les études sur l'innocuité des 

médicaments. 

BP2, BP3, BP4, BP5, BP6, 

BP7 

UG5 

Évaluation statistique des signaux 

possibles et évaluation computationnelle 

de la causalité 

Des métriques statistiques basées sur des techniques d'analyse de la disproportionnalité est 

la principale approche pour la détection et la hiérarchisation des signaux de sécurité 

potentiels qui en résulte et celles-ci devraient être largement utilisés. 

BP3, BP4, BP5, BP7 
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UG6 
Exploiter les caractéristiques spéciales 

fournies par chaque source de données 

Chaque source de données fournit des données de différents types avec des caractéristiques 

différentes, exploitables en termes d'investigation des signaux de sécurité des 

médicaments. Par exemple, si les statistiques DA (par exemple, PRR, ROR, etc.) peuvent 

être extrêmement utiles dans les bases de données ICSR, ces mesures peuvent ne pas être 

pertinentes pour les médias sociaux et par conséquent, les caractéristiques spéciales de 

chaque source de données doivent être prises en compte. 

BP2, BP3, BP4, BP5, BP7 

UG7 
Des fonctionnalités avancées d'analyse 

visuelle doivent être intégrées 

En plus des données statistiques-numériques, des aides visuelles pourraient faciliter une 

enquête approfondie sur les signaux de sécurité potentiels 

BP2, BP3, BP4 

UG8 

Des processus à long terme / «en pause» 

pour enquêter sur un signal d'innocuité 

des médicaments doivent être 

disponibles 

Une fonction «enregistrer pour l'instant et reprendre plus tard» est essentielle, car de tels 

processus prennent du temps et sont laborieux. Surtout dans l'environnement clinique où la 

PV n'est pas la priorité absolue des HCP, une telle caractéristique serait de la plus haute 

importance. 

BP2, BP3, BP4, BP5, BP6, 

BP7 

UG9 
La capacité de surveillance à long terme 

d'un signal doit être fournie 

De nombreux signaux de sécurité peuvent impliquer la recherche d'études longitudinales 

ou la surveillance à long terme d'un médicament et peuvent donc s'étendre sur de longues 

périodes. De même, l'analyse des essais cliniques ou la fourniture de services cliniques 

sont également considérées comme des processus longs. 

BP3, BP4, BP5, BP6 

UG10 

Les «scénarios» d’enquête doivent être 

identifiés comme le principal paradigme 

d’utilisation 

Malgré la valeur avérée des recherches directes pour la détection de signaux, la 

formulation de scénarios d'investigation pourrait être encore plus bénéfique en raison de 

l'analyse plus approfondie avec des capacités améliorées qu'ils offrent. Néanmoins, une 

certaine fonction de «recherche / enquête rapide» peut également être incluse. 

BP2, BP3, BP4, BP5, BP6, 

BP7 

UG11 
Contrôle d'accès basé sur les rôles pour 

les utilisateurs 

Ce contrôle peut permettre l'analyse simultanée de plusieurs signaux PV. Les utilisateurs 

peuvent créer, modifier ou supprimer des scénarios, en fonction des autorisations 

spécifiques accordées à chacun d'entre eux. De plus, la collaboration et le travail d'équipe 

peuvent être encouragés et ainsi éviter les erreurs 

Tous 

UG12 
Génération complète de rapports à 

partir de chaque scénario d'enquête 

Un rapport de scénario d'enquête serait très utile pour diffuser les résultats de l'enquête à 

d'autres experts cliniques ou à d'autres parties prenantes (par exemple, les agences de 

réglementation, etc.). 

BP2, BP3, BP4, BP5, BP6, 

BP7 
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UG13 
Accès aux informations pour chaque cas 

de patient individuel 

En raison de la variabilité inter-patient, l'enquête sur les effets indésirables suspectés exige 

l'accès à autant d'informations détaillées disponibles. Cela pourrait concerner, par exemple, 

le profil génétique d'un patient affecté par un EIM lors d'essais cliniques ou la forme 

originale des ICSR qui documentent un signal. 

BP2, BP4, BP5, BP7 

UG14 
Possibilité de remonter à la source de 

données brute d'origine 

La fiabilité ne peut être évaluée ou prouvée que si l'origine exacte des données peut être 

retracée, une caractéristique qui peut également être importante pour le partage de données 

médicales. 

BP4, BP5 

UG15 Convivialité 

Relever les défis cruciaux du milieu clinique, tels que le calendrier serré des cliniciens ou 

la sous-estimation de la PV en raison de la priorité plus élevée des autres procédures 

cliniques 

Tous 

UG16 Protection des données et confidentialité 
Conformité au cadre réglementaire et aux légalités strictes (par exemple le règlement 

général sur la protection des données RGPD) 

Tous 

UG17 Extensibilité et adaptabilité 

Être polyvalent avec de nouvelles sources de données potentielles de pharmacovigilance et 

opérationnel dans des environnements distincts (différents hôpitaux, CRO, etc.), quelle que 

soit l'infrastructure informatique utilisée (par exemple, le dossier médical électronique) ou 

les procédures appliquées 

Tous 

UG18 Interopérabilité 
Les données générées (par exemple les rapports consolidés) doivent également être 

exploitables de manière informatique par d'autres systèmes d'information. 

BP2, BP5, BP7 
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Défis 

Les obstacles à l'adoption de systèmes intelligents (SI) dans les activités PV axées sur 

le contexte clinique sont élucidés (au moins en partie) par les UG identifiés, cependant, ils 

peuvent être généralisés en faisant référence à l'adoption des SI dans le domaine de la santé 

dans son ensemble, au-delà de la pharmacovigilance. 

 Ensembles de données médicales fragmentées 

 Pièges techniques inhérents aux SI (c.-à-d. Polyvalence, validité et interprétabilité) 

 Convivialité 

 Problème juridique 

 Sécurité des informations 

 

Pharmacovigilance active dans le contexte d'un système de santé auto-apprenant 

Sur la base des BP et des UG identifiés dans les chapitres précédents, il est apparu 

clairement qu'un changement de paradigme des processus de sécurité des médicaments 

actuellement appliqués devait être appliqué, allant vers l'intégration d'approches informatiques 

«intelligentes» et de sources de données «réelles». 

Plus précisément, renforcer les hôpitaux avec de meilleures infrastructures 

informatiques pour les soutenir dans la collecte et l'analyse des données, et les interconnecter 

via des réseaux d'échange d'informations avec d'autres domaines qui ne sont pas strictement 

cliniques (par exemple, les services sociaux ou les soins primaires, la recherche, le 

développement de médicaments, les sources de données sur le mode de vie, etc. .) pourrait offrir 

des avantages bidirectionnels et également soutenir la prise de décision politique. Ces avantages 

concernent les processus de santé dans leur ensemble, y compris la sécurité des médicaments 

et la PV. 

Dans cette nouvelle ère de développement de médicaments et de gestion de la sécurité 

où les technologies joueront inévitablement un rôle de premier plan, nous soutenons que le 

passage aux paradigmes de «Learning Healthcare System» (LHS) et de «Active 

Pharmacovigilance» (AP) pourrait apporter des avantages importants, principalement pour la 

sécurité et la santé mais aussi en terme de gestion des coûts. Bien que les défis administratifs, 

financiers et réglementaires ne doivent pas être sous-estimés, nous soutenons qu'une telle 

approche pourrait considérablement améliorer le temps et le coût global du développement de 

médicaments menant à de nouveaux médicaments plus sûrs plus rapidement. 

Un concept clé pour LHS est l'idée de «médecine centrée sur le patient» où les citoyens 

sont identifiés comme (a) producteurs de données, (b) cocréateurs de services et (c) 

consommateurs de services. Les principaux axes politiques généralement définis dans le 

contexte de la vision LHS sont: (a) l'adoption rapide des résultats de la recherche dans la 

pratique clinique de routine; (b) le changement de culture parmi les différentes parties 

prenantes; et (c) la collaboration des patients et des médecins pour produire des preuves. Il est 

à noter que la vision LHS met l'accent sur la participation du patient à la prise de décision 
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globale afin de personnaliser les plans de soins au lieu de délivrer un traitement standard conçu 

pour la «personne moyenne» évoluant vers la vision de la médecine de précision. 

À cette fin, le paradigme LHS se concentre également sur l'utilisation de preuves «du 

monde réel» basées sur des données collectées dans la pratique clinique quotidienne via les 

DPs. Les données du DP sont constamment mises à jour et constituent une source d'information 

évolutive qui peut être utilisée comme base pour des conclusions et des connaissances 

spécifiques à la population, plus faciles à utiliser car elles sont déjà produites dans le cadre de 

la pratique clinique quotidienne et plus simples à utiliser que les connaissances produites via 

un essai contrôlé randomisé. Bien que le paradigme LHS ne soit pas nouveau et que certaines 

initiatives orientées LHS dans le monde entier puissent être identifiées, les réformes visant à 

appliquer la LHS dans des contextes réels restent largement théoriques. 

Le flux de l'information dans un système de soins de santé typique aujourd'hui est 

illustré dans la figure 1, mettant en évidence le manque de traduction de la recherche en pratique 

clinique. En alignant les activités PV typiques dans le contexte de ce flux d'information, les 

preuves utilisent généralement des approches «passives» produites via une analyse de 

disproportionnalité basée sur les ICSR. Il convient de noter que la principale contribution des 

patients concernant les effets indésirables potentiels provient de la soumission des ICSR et qu'il 

s'agit clairement d'un canal de communication très faible, car les ICSR sont fortement sous-

déclarés. Par conséquent, bien que beaucoup d'efforts soient déployés pour réduire le temps 

entre l'apparition des premières preuves et les mesures réglementaires pour la sécurité des 

médicaments, l'écart de traduction est toujours là principalement en raison du manque de 

données, ce qui affecte fortement le processus global. 

 

Figure 1: Flux informationnel d'un système de santé typique 

En combinant les deux paradigmes de LHS et AP, nous proposons une mise à jour du 

cycle de vie principal de l'information LHS, en mettant l'accent sur deux concepts: (a) le besoin 

de diffuser les connaissances produites à la communauté, et (b) le besoin de transparence. Bien 
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que ces deux concepts aient été élaborés dans une certaine mesure dans le contexte de LHS, 

nous les soulignons car ils sont particulièrement importants pour AP. 

 

Figure 2: Le cycle AP-LHS: le cycle de vie des informations du système de santé 

d'apprentissage adapté à la pharmacovigilance active 

À cette fin, la définition et le calcul itératif d'un rapport bénéfice-risque centré sur le 

patient (PCBRR) joue un rôle important car il est utilisé dans toutes les parties du cycle AP-

LHS respectif visant à soutenir un traitement personnalisé. PCBRR pourrait être décrit via les 

fonctionnalités suivantes: 

1. Doit prendre en compte les approches AD sur les données communautaires 

2. Devrait prendre en compte les données personnelles liées à la clinique 

3. Devrait prendre en compte les données de style de vie personnelles 

4. Doit prendre en compte les préférences personnelles du patient 

5. Doit être spécialisé pour des effets indésirables spécifiques 

6. Le résultat global doit être lié aux sources d'information / données brutes d'origine 
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Figure 3: Le rapport bénéfice-risque axé sur le patient - principales sources 

d'information 

Sur la base de ce qui précède, l'AP pourrait être définie comme la «poursuite 

systématique» de RWE (real world evidences – preuves basées sur es données de vie réelles) 

dans toutes les sources de données possibles visant à « apprendre » afin de soutenir une prise 

de décision clinique personnalisée basée également sur des informations individuelles, y 

compris le patient en tant qu'acteur du processus de décision proprement dit ». 

Même si le paradigme AP-LHS semble être aligné sur les UG identifiés dans cette thèse, 

les défis du changement de paradigme proposé ne doivent pas être sous-estimés. À cette fin, 

nous considérons que les UG et les BP identifiés pourraient apporter des éclairages utiles et 

faciliter les prochaines étapes de la vision d'intégration des AP dans le cadre d'un LHS. 

Techniquement, nous soutenons que l'adoption d'approches de calcul KE et d'outils basés sur 

KE pourrait être cruciale pour cette vision car ils pourraient fournir l'infrastructure technique 

pour soutenir cette vision. À cette fin, plusieurs défis peuvent être identifiés (par exemple, 

changement de mentalité, engagement de la direction, financement, biais de diverses natures, 

interopérabilité, utilisabilité, sécurité de l'information). 

Nous soutenons que les approches informatiques liées à la KE pourraient fournir des 

solutions et faciliter la résolution (au moins en partie) des défis techniques identifiés. Par 

exemple, les paradigmes des données liées (link data) et du Web sémantique, c'est-à-dire 

l'utilisation d'ontologies OWL / RDF, pourraient améliorer l'interopérabilité sémantique. En 

outre, de nouveaux modèles de données permettant l'expansion de l'espace de données de 

manière pratique pourraient être déployés, en utilisant des ontologies (par exemple, 

OpenPVSignal est un modèle ontologique construit afin de permettre l'intégration 

d'informations de signal PV en texte libre). De même, les modèles ontologiques pourraient 

faciliter l'intégration de la pharmacogénomique, des informations sur les voies, des 

informations sur le mode de vie, etc. 
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Plus spécifiquement, les avantages de se concentrer sur les approches KE pour chacune 

des trois branches du cercle AP-LHS peuvent être résumés comme suit: 

- D2K: Data to Knowledge 

Les approches KE peuvent considérablement faciliter l'intégration des données 

provenant de diverses sources de données dans un format unifié exploitable par 

ordinateur. En outre, les méthodes d'extraction de connaissances (par exemple, le 

traitement automatique des langues sur des données réelles ou une autre source) 

pourraient (semi) automatiquement alimenter le cercle AP-LHS avec les connaissances 

requises. 

- K2P: Knowledge to Performance 

La diffusion des connaissances de manière opportune et interopérable est cruciale pour 

améliorer les performances. À cette fin, représenter les connaissances en utilisant des 

normes bien définies, garantissant à la fois l'interopérabilité syntaxique et sémantique, 

pourrait avoir un impact significatif sur la manière dont ces connaissances sont 

intégrées dans les outils informatiques pour augmenter les performances et également 

sur la façon dont elles sont diffusées aux parties prenantes (par exemple, les 

professionnels de la santé). 

- P2D: Performance to Data 

Intégrer des données via plusieurs sources de données afin de mesurer l'impact potentiel 

et d'intégrer cet impact quantifié dans les données utilisées pour alimenter le prochain 

cycle du paradigme AP-LHS. De plus, les connaissances produites dans le cadre de la 

branche K2P pourraient être intégrées dans l'ensemble du processus via des modèles de 

connaissances spécifiques (par exemple, des signaux PV non confirmés pourraient 

alimenter la branche D2K via le modèle OpenPVSignal) 

Enfin, il convient de souligner que les approches techniques KE pourraient également 

améliorer la transparence, qui est un aspect tranversal de la vision proposée. Par exemple, 

l'application des principes de données FAIR (Findable, Accessible, Interoperable, Reusable) 

pourrait être cruciale pour accroître la confiance dans les diverses composantes du cycle AP-

LHS. 

Il convient de souligner que les technologies KE respectives référencées ici sont 

relativement matures. Par exemple, les principes FAIR peuvent être très bien soutenus par les 

normes techniques liées aux données liées et au Web sémantique qui sont activement soutenues 

depuis 20 ans. En outre, les techniques d'extraction des connaissances sont activement étudiées 

et ont déjà été (au moins en partie) réussies, également à des fins de sécurité des médicaments. 

Par conséquent, au moins en principe, les technologies clés de KE sont là, prêtes à soutenir la 

vision d'AP-LHS.  

 

Perspectives de travaux futurs 
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Au fur et à mesure que cette thèse évoluait, un certain nombre de futurs cheminements 

de travail ont été identifiés et activement étudiés. Ceux-ci se réfèrent principalement à des 

travaux techniques non encore validés qui demandent plus de temps et dépassent le cadre de 

cette thèse. Plus précisément, deux chemins de travail techniques ont été élaborés car nous 

soutenons qu'ils pourraient apporter une valeur significative dans l'intégration de la vision AP 

dans l'environnement clinique. En tant que tels, nous les soulignons comme deux perspectives 

de travaux futurs clairs en termes d'utilisation d'approches KE pour intégrer l'AP dans des 

applications du monde réel. 

 

Graphe de connaissances OpenPVSignal 

Les informations sur les signaux PV sont généralement publiées par les DSMO après 

avoir été minutieusement étudiées par des groupes d'experts en les combinant de surcroit avec 

des informations provenant d’autres sources de données pertinentes (par exemple, la littérature 

scientifique, les essais cliniques, les informations sur la sécurité des médicaments similaires, 

etc.) afin de fournir des informations sur la « forc e» du signal et quelle pourrait être la relation 

causale entre le médicament et les effets indésirables respectifs. De toute évidence, ces 

informations sont inestimables pour les activités de sécurité des médicaments à toutes les étapes 

du cycle de vie d'un médicament. 

Étant donné que le format textuel actuel des rapports sur les signaux PV ne peut pas être 

traité automatiquement, les experts en sécurité des médicaments doivent examiner 

manuellement les sources PV pertinentes, un processus laborieux et potentiellement sujet aux 

erreurs. Étant donné que ces informations / données pourraient jouer un rôle important dans les 

activités de sécurité des médicaments, nous soutenons que leur publication dans un format 

conforme aux principes FAIR pourrait permettre leur réutilisation systématique, y compris le 

traitement (semi) automatique et le raisonnement. Pour résoudre ce problème, nous avons 

récemment développé et publié OpenPVSignal, pour faciliter la normalisation, la diffusion, 

l'interconnexion et la vérification des informations de signal ADR d'une manière conforme à 

FAIR, basée sur les paradigmes du Web sémantique et des données liées permettant également 

un raisonnement automatique sur le modèle OpenPVSignal et Sémantique du langage 

d'ontologie Web (OWL). À cette fin, nous avons commencé le développement d'un graphe de 

connaissances (KG), basé sur OpenPVSignal, modélisant les rapports sur les signaux PV, tels 

que produit par l'OMS-UMC dans le cadre de leur lettre bimensuelle pour les dix dernières 

années (entre 2011-2019)4.  

 

Pharmacologie des systèmes 

La PV dans l'environnement clinique pourrait être considérablement améliorée grâce à 

l'engagement de sources de données émergentes, en engageant des informations sur le 

mécanisme d'action pharmacologique (MoA). Les sources de données biochimiques, 

                                                 
4 https://www.who.int/medicines/publications/newsletter/en/ 

https://www.who.int/medicines/publications/newsletter/en/
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génétiques, sur les voies et la pharmacogénomique font partie de cet écosystème de sources de 

données émergentes. Comme l'analyse des profils biochimiques et génétiques personnels 

devient moins onéreuse et fait partie d'une vision globale de la « médecine personnalisée », 

l'exploitation de ces sources de données dans le contexte de la PV, combinée à d'autres données 

cliniquement pertinentes (par exemple les résultats des tests de laboratoire) soutiendrait le 

paradigme de « pharmacovigilance personnalisée». À cette fin, la pharmacologie des systèmes 

(SP) pourrait être le lien vers des connaissances, fournissant les moyens d'intégrer des données 

hétérogènes de granularité variable. 

L'une des approches de modélisation formelle les plus négligées dans le contexte de SP 

est l'utilisation de modèles basés sur les états (issus de la théorie des systèmes de contrôle 

(CST), comme les machines à états (SM) ou les automates. Les modèles SM sont souvent 

considérés comme un sous-domaine de CST mais au lieu d'utiliser le concept de fonctions de 

transfert, les SM sont définis sur des états et des transitions. Dans un système modélisé à l'aide 

de SM, chaque nouvelle entrée conduit potentiellement le système à un autre état via une 

transition. 

Nous soutenons que les modèles basés sur les états (SBM) permettent la représentation 

des transitions basées sur des approches probabilistes et l'utilisation du temps comme dimension 

de modélisation principale, et s'inscrivent donc dans le contexte d'applications du monde réel 

concernant la PV ou la pharmacologie en général, comme les concepts d'état, d'entrée et de 

transition correspondent au paradigme général d'une administration de médicament agissant 

comme un événement déclencheur (entrée) provoquant une turbulence biochimique (transition) 

conduisant à un nouvel état biochimique (ou physiologique). En règle générale, ces séquences 

de divers «états» en pharmacologie et en biologie sont appelées «informations sur les voies» et 

ont été utilisées pour élucider le MoA des médicaments parmi d’autres cas d’utilisation. Les 

SBM ont un énorme avantage par rapport aux modèles de calcul QSP typiques, car ils ne 

dépendent pas nécessairement de modèles quantitatifs (par exemple, des équations 

différentielles) qui sont très difficiles à produire et à valider, alors qu'ils pourraient encore les 

inclure dans le modèle global de transition d'états. Les SBM pourraient utiliser ces modèles 

mathématiques bien définis (lorsqu'ils sont disponibles), mais ils pourraient également être 

utilisés pour exploiter des connaissances d'experts non quantitatives ou empiriques concernant 

le comportement des systèmes biologiques. Étant donné que la plupart des connaissances de 

domaine bien validées en pharmacologie et en biologie (c'est-à-dire le comportement PK / PD 

d'un médicament) ne peuvent pas être quantifiées en détail et validées (ou du moins, il est très 

difficile de le faire car cela dépend fortement des approches en biologie humide) , l'utilisation 

de tels modèles dans le contexte de la SP est inestimable. 

En outre, nous soutenons que l'utilisation des technologies du Web sémantique et des 

ontologies utilisées comme infrastructure technologique pour exploiter ces modèles pourrait 

également fournir des avantages informatiques significatifs, en particulier en ce qui concerne 

l'intégration de données et les capacités de raisonnement automatique. Pour consolider ce qui 

précède, un tel modèle pourrait probablement être utile dans le contexte de diverses 
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applications, également non liées à la sécurité des médicaments ou à la PV. Cependant, la PV 

est un bon choix pour une application exemplaire d'un tel modèle de données en raison de sa 

grande importance clinique et de l'existence de données probantes provenant de sources de 

données multiples (et potentiellement hétérogènes). 

À cette fin, nous avons commencé à travailler sur une ontologie de pharmacologie des 

États (SPO) comme moyen pratique d'intégrer les sources de données respectives dans un KG 

et d'étudier les avantages informatiques respectifs. SPO permet de représenter les principaux 

concepts et modèles SBM de manière systématique, facilitant ainsi la combinaison des logiques 

de description (DL) et des SBM dans un seul cadre de calcul. Le but ultime serait de construire 

un KG, basé (au moins en partie) sur SPO pour combiner la puissance du raisonnement DL 

avec la modélisation SM pour identifier les effets indésirables potentiels sur une base 

personnalisée, basée sur des données personnelles (par exemple des tests de laboratoire, un 

profil génétique, etc. .) et aussi le mécanisme ADR d'information sur l'action. 

 

Conclusion 

Une méthodologie basée sur le «design thinking» a été appliquée dans le cadre du projet 

PVClinical afin d'étudier l'impact potentiel que les méthodes de calcul KE pourraient avoir dans 

la révision des processus PV dans l'environnement clinique. Plus spécifiquement, dans le projet 

PVClinical, une plate-forme Web est développée afin de faciliter l'étude des signaux PV 

potentiels, en utilisant KE comme son principal paradigme technique. Alors que les 

développements techniques du développement de la plate-forme sont considérés comme hors 

de portée de la thèse actuelle, un certain nombre d'objectifs ont été identifiés concernant la 

révision et la définition claire de l'AP et l'impact que les approches de calcul KE pourraient 

avoir à cet égard. Enfin, deux voies de travail techniques ont été activement étudiées, décrivant 

deux voies de recherche futures en termes d'utilisation d'ontologies pour construire des KG qui 

pourraient soutenir les objectifs DS et AP. 

Résumant la contribution de la thèse présentée, les points clés suivants pourraient être 

soulignés: 

 Une analyse qualitative et quantitative détaillée des tendances de la recherche de 

la dernière décennie concernant l'utilisation de la KE à des fins de DS a été 

présentée via une revue systématique et cartographique approfondie de la 

littérature scientifique respective. 

 Sur la base de cet examen systématique, les lacunes de la recherche ont été mises 

en évidence 

 Un ensemble de BP liés au PV a été défini et élaboré, en tenant compte du 

contexte légal et réglementaire 

 Un ensemble d'UG a été identifié sur la base des BP respectifs et de la 

contribution des HCP et des experts PV 

 AP a été redéfini dans le cadre d'un paradigme LHS plus large, basé sur les 

derniers développements techniques 
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En conclusion, nous soutenons que ce nouveau paradigme (et potentiellement 

l'élaboration des résultats intermédiaires de cette thèse, c'est-à-dire les BP et UG identifiés) 

pourrait avoir des avantages significatifs dans les aspects suivants et qu'il devrait donc être 

activement étudié en termes d'élaboration des politiques car il pourrait avoir un impact 

significatif sur (a) la qualité des soins de santé, (b) le développement de médicaments et (c) les 

coûts de santé. 
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1. Introduction 

Drug Safety (DS) is an important issue of public health interest, as Adverse Drug 

Reactions (ADRs)5 cause a significant public health burden with a very big financial impact. A 

recent review of European studies estimated that the cost of ADRs between €2,851 and € 9,015 

for the inpatient setting and €174 to €8,515 for the outpatient setting. Furthermore, the impact 

of ADRs on the length of stay is estimated at 9.2 ± 0.2 days (outpatient setting) and 6.1 ± 2.3 

days (inpatient setting) (Formica et al., 2018). According to the US Office of Disease 

Prevention and Health Promotion Adverse Drug Events (ADEs) account for 1 in 3 of all hospital 

adverse events, concern about 2 million hospital stays each year, and prolong hospital stays by 

1.7 to 4.6 days. Regarding outpatient settings, each year ADEs account for over 3.5 million 

physician office visits, about 1 million emergency department visits and, approximately, 

125,000 hospital admissions (Adverse Drug Events | health.gov). 

Due to the importance of DS and its major impact, numerous concepts around this 

domain have been developed and elaborated as part of various research initiatives. This 

introductory section provides the definitions of the main concepts as well as an overview of the 

domain, also identifying the problem addressed by this thesis. 

Pharmacovigilance (PV) is defined as “the science and activities related to the detection, 

assessment, understanding and prevention of adverse effects or any other possible drug-related 

problems” (World Health Organization, 2002). Obviously, the domain of PV intersects with all 

aspects of DS, but the use of term “vigilance” highlights the focus on the investigation of 

data/information coming in the realm of drug development from the outer “real-world”. To this 

end, one of the main PV activities concerns the discovery and investigation of clues for potential 

new or partially documented ADRs, also known as “signals”. Signals are typically identified 

based on Drug-Event Combinations (DEC) which are “suspiciously” frequently identified in 

the respective data sources, disproportionally compared to what expected. Signal identification 

processes are based on the use of post-marketing surveillance data but it could also exploit data 

produced in pre-marketing stages of drug development and testing, i.e. clinical trials. Typically, 

                                                 
5 Throughout the thesis, the term “Adverse Drug Reaction” is used. As this term is sometimes used interchangeably 

with the term “Adverse Drug Event” (ADE), we clarify that ADEs refer to side-effects that may or may not have 

causal relationship with the drug, including the events caused by drug misuse (e.g. overdose). Respectively, ADR 

refer to side-effects that occur after a legitimate drug use (i.e. there is no overdose) and therefore “characterised 

by the suspicion of a causal relationship between the drug and the occurrence”. For a comprehensive definition of 

terms used in DS we refer the reader to (Lindquist, 2007) 
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PV signals are identified based on the frequency of Individual Case Safety Reports (ICSRs) 

manually submitted by Health Care Professionals (HCPs) or patients via Spontaneous 

Reporting Systems (SRSs). These reports are analysed using “Disproportionality Analysis” 

(DA) approaches (Montastruc et al., 2011) to identify potential PV signals. The latter are further 

elaborated by expert groups who combine evidence from other data sources (i.e. scientific 

literature, clinical trials etc.) and then communicated via public communication channels 

(websites, newsletters, etc.). This process is also defined as “Passive Pharmacovigilance” as it 

is based on voluntarily submitted reports by patients or HCPs (World Health Organization, 

2018). 

Advances in Information and Communication Technologies (ICT) and vast data 

collection capabilities enable the use of new, emerging data sources, typically built for other 

primary purposes, expanding the real-world evidence (RWE) space used to explore potential 

PV signals. The information produced from these emerging data sources, could significantly 

improve the identification and the elaboration of potential PV signals, acting complementary to 

the evidence produced via the analysis of ICSRs.  

Active Pharmacovigilance (AP) goes beyond the use of ICSR databases and can be 

defined as “a systematic process that seeks to identify safety issues through epidemiologic 

analyses of healthcare databases” (Wiktorowicz et al., 2012), usually referring to the 

exploitation of Electronic Health Record (EHR) systems or observational databases 

(Wiktorowicz et al., 2012)(Li et al., 2018)(Coloma et al., 2011), sometimes also extending to 

other kinds of web based data sources too (Hrmark and Van Grootheest, 2012) (e.g. mining 

data from forums, social media, search logs etc.).  

The term “real-world” evidence (RWE) refers to information mined primarily from 

EHRs but can also include other data sources, e.g. social media, behavioural information mined 

from electronic device usage patterns like internet browsing, use of mobile phones etc. (Real-

World Evidence | FDA)(Sherman et al., 2016). It should be noted that some regulatory and drug 

safety monitoring organizations have already opened the discussion regarding the usage of 

these emerging information data sources (Guidance for Industry Internet/Social Media 

Platforms with Character Space Limitations-Presenting Risk and Benefit Information for 

Prescription Drugs and Medical Devices, 2014) (Brosch et al., 2019). The ultimate goal of these 

approaches would be the “hypothesis free signal detection” where potential signals would be 
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automatically identified using evidence derived from or produced by data mining approaches 

upon multimodal data repositories. 

However, the vision of exploiting the current data deluge for DS purposes comes with 

its challenges and clearly dictates the need to introduce high-throughput computational methods 

to enable efficient knowledge extraction and management, compensating for the underlying 

data heterogeneity and complexity. This need becomes more demanding, especially considering 

the concurrent investigation of diverse types of data, in order to strengthen the evidence of the 

outcomes provided by the respective computational methods (Koutkias and Jaulent, 2015) and 

then produce the needed “knowledge”, i.e. the respective signal. 

In Computer Science, knowledge is represented “by facts, rules and other symbolic 

structures, rather than the traditional representation as abstract numbers or algorithms” (Fox, 

1984). Knowledge Engineering (KE) is the discipline that elaborates on the theories, methods, 

and tools for developing knowledge-intensive applications (Schreiber, 2008). KE is generally 

considered part of the wider Artificial Intelligence (AI) technologies and typically entails: (a) 

knowledge extraction (e.g. based on Natural Language Processing (NLP)), (b) knowledge 

integration (i.e. syntactic and semantic alignment and normalization of different kinds of 

knowledge), (c) knowledge representation (i.e. modelling of domain/application knowledge in 

computationally exploitable formats like ontologies), (d) knowledge dissemination (i.e. 

modelling information for communication purposes focusing for example on interoperability 

among heterogeneous ICT systems), and (e) knowledge elicitation (i.e. generating or 

discovering new knowledge via AI and/or advanced KE techniques like semantic mining).  

1.1. Definition of the problem 

Despite the fact that DS is a crucial aspect of the overall provided healthcare, it lacks IT 

tools and processes which could systematically support DS and integrate it as a part of everyday 

clinical practice. Furthermore, given the overwhelming development of IT based technologies 

and paradigms (e.g. big data, machine learning - ML) and their wide adoption in various 

domains, the lack of their adoption in the DS domain (and healthcare as a whole) marks a clear 

gap. 

To this end, we argue that the emerging technologies collectively referred as “Artificial 

Intelligence” (AI), and especially KE could play a crucial role towards the improvement of IT 
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tools aiming to support DS and their integration in the every-day clinical practice. However, 

“intelligent” technological paradigms are challenging to integrate in the context of the clinical 

environment or in wider healthcare settings. Recently, a high profile paper identified the need 

to develop a “delivery science” for this intelligent technical paradigms, moving beyond the 

process of building machine learning algorithms but also emphasizing on the overall 

operational/business processes and the new systems for care delivery enabled by these technical 

approaches |(Li et al., 2020). Focusing on the domain of PV, the regulatory context and the 

peculiarities of the respective Business Processes (BPs) applied in healthcare, create a complex 

environment where the integration of innovative IT tools is even more challenging. For 

example, the assessment of potential ADRs by HCPs could be considered a BP (let’s call it 

BP1) which might interfere with other BPs e.g. patient’s treatment (let’s call it BP2). In the 

clinical setting, BP2 is of the outmost importance but it cannot be standardized due to variations 

in patients’ treatments and the distinct structure of medical facilities, as even clinics in the same 

hospital might apply different BPs for various reasons. The early detection and proper 

chartering of interactions or conflicts among the applied BPs is crucial, as they significantly 

affect the so-called “User Goals” (UGs), and therefore such a process can significantly facilitate 

the integration of “intelligent” applications. 

Therefore, the main hypothesis of this thesis is that the integration of emerging 

Knowledge Engineering technologies could be used to revision of “Active Pharmacovigilance” 

as a new clinical functioning paradigm, based on the analysis of the respective Business 

Processes and User Goals. 

1.2. Background 

 Drug Safety 

DS processes can be roughly organized in two main parts along a drug’s lifetime: (a) 

the pre-marketing DS procedures and, (b) the post-marketing DS procedures. 

The pre-marketing DS processes are heavily affected by the drug licensing procedure 

and are typically based on a set of long clinical trials organized in order to ensure safety and 

efficacy of the drug under development. While there is no clear and universally accepted 

definition of the clinical trial phases as they are designed in an ad-hoc manner, they can be 

roughly described as following (Friedman et al., 2010b)(Friedman et al., 2015b): 
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Table 1: Clinical trial phases 

Phase Goal Typical number of participants 

Preclinical Non-human (lab and/or animal testing) to 

collect information regarding toxicity, 

efficacy, pharmacokinetics and 

pharmacodynamics 

N/A 

Phase 0 Pharmacokinetics evaluation (e.g. oral 

bioavailability and active substance half-

life) 

10 people 

Phase I Healthy volunteers/may be patients who 

have failed to improve via standard 

therapies. Testing mostly emphasizing on 

tolerability and safety (various dosage 

schemes). Also aiming to characterize 

pharmacokinetics and 

pharmacodynamics. 

20–100 healthy volunteers 

Phase II Testing on patients to assess efficacy and 

side effects, aiming to decide if the drug 

development should be further pursued. 

Participants selected with narrow 

inclusion/exclusion criteria. 

100–300 patients 

Phase III Testing of drug on patients to assess 

efficacy, effectiveness and safety. 

Typically, they aim to support regulatory 

purposes (e.g. drug approval). 

Participants selected with wider inclusion 

criteria. 

300–3,000 patients 

Phase IV Post-marketing surveillance Depending on the target patient 

group 

In all clinical trial phases, the patient “cohorts” are carefully selected in order to confirm 

or reject a specific hypothesis. The design of pre-marketing clinical trials is far from trivial and 

a number of systematic design challenges have already been identified (Singh and Loke, 2012). 

In order to overcome such challenges, innovative design approaches like “adaptive” clinical 

trial designs are also actively pursued (Bhatt and Mehta, 2016). 

Despite the application of the clinical trials processes and the respective regulations, 

medical history is full of drug safety tragedies (Paine, 2017) including drugs which were 

successfully tested in the pre-marketing clinical trials and withdrawn afterwards (Onakpoya et 

al., 2016). The post-marketing DS procedures are very different as the drug is used by the 

general population. Compared to the pre-marketing phase, regardless of the cohort size of the 

respective clinical trial, in the post-marketing phase the drug is “tested” in real-world 

conditions, by a vastly wider and heterogeneous population. Post-marketing DS includes 
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surveillance of potential ADRs in real-world circumstances, including interactions with other 

drugs, conditions etc. As post-marketing DS is a data intensive process, it needs to use all 

potential means to support public health including the integration of novel IT technologies 

aiming to exploit the currently available data deluge. 

 Clinical practice and Drug Safety 

Typically, prescribing HCPs do not have systematic support in terms of DS, and mostly 

depend on the information provided by the package leaflet, a.k.a. Patient Information Leaflet 

(PIL), the Summary of Product Characteristics (SmPC) document or an online search in order 

to avoid ADRs or drug-to-drug interactions (DDIs) or provide guidance to the patient. In some 

hospitals/clinics, there is also support from specialized PV departments, engaging clinical 

pharmacologists to support clinicians in their decision making when there are doubts or 

contradicting evidence, however this cannot be considered a standard practice. It should also 

be noted that some healthcare organizations retrospectively analyse ADR prevalence in order 

to define specific guidelines as part of their quality assurance processes. 

There are also some approaches which can be marginally positioned between research 

and clinical practice. For example, the Clinical Decision Support Systems (CDSSs) raising 

“alerts” during the prescription process have been extensively investigated in terms for research 

purposes and have also been deployed in many hospitals. However, still,  CDSSs are far from 

being considered as a standard approach. Furthermore, pharmacogenomics (PGx), i.e. the 

prediction of potential ADRs/DDIs based on the patient’s genetic profile, is a relatively new 

approach which is still in its infancy as Clinical Practice Guidelines (CPGs) based on 

pharmacogenomics are currently been developed (Relling and Klein, 2011) and have only 

recently been adopted by regulatory organizations. Finally, as part of research projects, various 

aspects of KE were also investigated to elaborate on potential PV signals, based on EHR 

systems (Bernonville et al., 2013; Yuksel et al., 2016; Natsiavas et al., 2019b). 

Regardless of the clinical treatment setting specifics (e.g. if the patient is hospitalized 

or not, or he/she is treated by a private doctor), both HCPs and patients are urged to submit 

ICSRs if an ADR occurs, but it has been identified that these are heavily underreported (Hazell 

and Shakir, 2006). To this end, initiatives like the Sentinel project in the United States6 and the 

                                                 
6 https://www.fda.gov/safety/fdas-sentinel-initiative 

https://www.fda.gov/safety/fdas-sentinel-initiative
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China Hospital Pharmacovigilance System (CHPS) (Li et al., 2018) could be a step forward as 

they aim to collect data from EHR system hospitals in a wide scale. Indicatively, during the 

COVID-19 pandemic, significant findings were published based on analysis conducted using 

data provided by CHPS (Sun et al., 2020). That said, it is clear that the currently applied 

practices are significantly lacking as they solely depend on EHR systems and therefore do not 

fully exploit the potentials of modern technologies. 

 Knowledge Engineering and Drug Safety 

Recent research has illustrated that KE can contribute in addressing DS challenges. In 

particular, KE applications for DS can facilitate the integration and analysis of heterogeneous 

data sources (Koutkias and Jaulent, 2015), and represent the respective knowledge in a manner 

which facilitates advanced processing capabilities like automatic inference (Natsiavas et al., 

2018a).  

KE emphasizes on the definition of explicit semantics via well-defined knowledge 

structures, i.e. common reference terminologies, thesauri, or ontologies. The use of such 

reference knowledge structures is a key aspect in KE, as it facilitates “machine-understandable” 

interlinking, comparison, reuse and further processing of data in two ways: (a) it enhances 

semantic interoperability through common reference concepts, and (b) it provides the 

underlying semantic infrastructure for automatic inference, as these concepts are typically part 

of well-defined structures (e.g. concept hierarchies/graphs) defining each concept’s semantics. 

Thus, the use of reference knowledge structures is crucial in order to characterize a 

computational method/system as “knowledge-based”. 

1.3. Objectives 

This thesis has been conducted in the context of PVClinical project7, which aims to build 

a KE-based web platform facilitating the investigation of potential ADR signals in the clinical 

context and beyond. More specifically, the PVClinical project aims to provide a web 

application/tool to integrate various data sources, using KE as its main technical paradigm. 

Ultimately, PVClinical aims to support PV experts, regulators and clinicians in potential ADRs 

                                                 
7 https://pvclinical-project.eu  

https://pvclinical-project.eu/
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investigation and therefore their decision-making process, both in the clinical setting and 

beyond. 

As this thesis focuses on AP and the potential impact of KE approaches on it, the 

technical development of the PVClinical web application is considered out of this thesis scope. 

However, since PVClinical engages various KE-oriented technical activities and aims at the 

same end-user categories, the overall project design and most importantly the process of 

communicating with end-users and partners in the context of the PVClinical project design 

provided a valuable input for the successful completion of this PhD thesis. 

The main goal of this thesis is to clearly define the concept of Active Pharmacovigilance 

and revision it, emphasizing on the potential impact of Knowledge Engineering approaches 

and, moreover, propose  further steps towards its practical application in real-world conditions. 

To reach this goal, a number of intermediate objectives were defined and can be summarized 

as follows: 

- Provide a detailed overview of the research work conducted regarding the application 

of KE for Drug Safety purposes and highlight potential research gaps 

- Identify the Business Processes related with Pharmacovigilance 

- Define a set of User Goals based on the end-users’ input 

- Provide pilot developments of technical  artefacts supporting the vision of AP in the 

clinical context, ultimately aiming to identify the practical challenges of using KE 

approaches, based on hands-on experience 

1.4. Methodology 

The presented PhD thesis significantly overlaps with the “user requirements analysis” 

and design phase of the PVClinical project. The  detailed methodological steps applied are 

based on the process described in (Natsiavas et al., 2018c) and can be summarized in the 

following steps, also shown in Figure 1:  
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Figure 1: Methodology overview 

Initially, a thorough assessment of the Regulatory Framework for all PV processes in 

the European Union (EU) was conducted based on the pertinent literature and was further 

refined by the input as well as the empirical knowledge provided by the PVClinical project 

partners. 

A crucial, early identified point of interest concerned the need to elaborate on the 

respective BPs engaged with the various PV activities. BPs are defined as a collection of 

relevant and ordered structured activities/tasks aiming to produce a specific outcome (Weske, 

2012). For example, ADR evaluation can be considered as a BP conducted in the context of a 

hospital, in tandem with other BPs (e.g. patient treatment, administrative processes, etc.). Novel 

IT tools, like the one designed by PVClinical could reshape the current practices of ADR 

assessment, which today are typically performed manually with no systematic support of 

specialized IT tools. Realizing this, workshops and interviews with various stakeholders were 

conducted in order to identify, classify and analyse the BPs in arbitrary categories. Based on 

this input, it was early identified that integrating “intelligent technologies” aiming to support 

PV activities in the context of real-world healthcare activities is far from trivial.  

These challenges were clearly depicted in the so-called User Goals (UGs) which outline 

the priorities raised by the end-users. UGs are defined as “abstract user requirements, not 

directly referring to specific technical solutions or components” (Natsiavas et al., 2018c), 
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directly attributed to specific user actors or “roles”. The definition of UGs facilitates the early 

identification and resolution of potential conflicts between actors. The presented UGs have been 

analysed based on feedback provided by clinicians and PV experts in the context of the 

PVClinical project. 

It should be highlighted that the above steps were not conducted sequentially. On the 

contrary, the outcomes presented were iteratively refined. More specifically, a “Design 

Thinking” based approach was used in order to integrate the user feedback in the overall process 

(Roberts et al., 2016). Design Thinking emphasizes on the need for empathy for end-users and 

urges designers to “get in the user’s shoes”, and use “action-oriented rapid prototyping” in an 

iterative fashion. While Design Thinking is fully compatible with “agile” software development 

practices8 and has been used with some success in healthcare (Altman et al., 2018), it is still not 

widely adopted. However, it has been recently identified as one of the methodological tools 

which could potentially enable the successful integration of intelligent technical paradigms in 

the healthcare settings (Li et al., 2020). 

Figure 2 depicts the rationale of the process applied in this thesis in order to integrate 

end-user feedback, so as to elaborate on the respective UGs and the challenges regarding the 

integration of Intelligent Systems (ISs) in real-world healthcare realms. A noteworthy point 

concerns the adoption of “Design Thinking” oriented approaches in the overall process, e.g. the 

so-called “Think-aloud” testing sessions, where end users are encouraged to test a prototype, in 

this case, a prototype of the PVClinical project platform, while thinking aloud. At the same 

time, the “development team” keeps notes, or even records the session in order to mine potential 

useful features, in this case UGs. The main benefit of applying a “Design Thinking” based 

approach is that the “development team” can extract end-users’ opinions in high detail via the 

interaction with an existing prototype without the need to reach a big number of end-users (e.g. 

via surveys or questionnaires).  

                                                 
8 Agile software development is a term typically used to characterize approaches emphasizing on pragmatic 

software code production instead of applying rigor methodologies focusing on formal procedures (strict design 

procedures, laborious documentation management etc.). The term « agile » has been widely adopted after the so-

called « agile manifesto » produced by some high profile software engineering experts in 2001 – 

http://agilemanifesto.org 

http://agilemanifesto.org/
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Figure 2: Process applied to integrate user feedback 

 

1.5. Thesis structure 

This PhD thesis is organized in 7 chapters, following the rationale presented in Figure 

1. Along this line, the manuscript format is based on the papers published in the context of this 

PhD presented as “free standing” papers in respective chapters9. Furthermore, in each of these 

chapters, a subsection named “Beyond the paper” describes progress made after the paper was 

published and comments on how the presented work contributes to the overall goal of the thesis.  

More specifically, in Chapter 1, we define the main concepts and the problem targeted 

in the thesis via the definition of a formal “hypothesis”. Moreover, a background regarding the 

clinical practice and DS is provided. The value of KE in the context of DS is highlighted and 

the methodology applied is described. Finally, the contribution of the thesis is summarized. 

In Chapter 2, a Systematic and Mapping Review is presented regarding the KE 

computational approaches and the respective data sources used in the last decade for research 

on DS (the paper was originally published on May 2019 (Natsiavas et al., 2019b). To this end, 

a complete map of the used data categories is provided referring to both established and 

emerging data sources. Furthermore, the respective computational methods are analysed and 

                                                 
9 As the manuscript is based on the presentation of already published papers, inevitably there are things which are 

repeated/overlap (e.g. concept definitions). While the author recognizes that this might be tiring or even confusing 

for this thesis end-reader, it was the selected way to outline this PhD’s work in terms of its main outcomes, and 

therefore present the respective work in a more cohesive manner. 
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prominent research works are highlighted. Conclusively, several research gaps and new trends 

are highlighted based on the provided quantitative and qualitative analysis. 

Chapter 3 presents the paper providing an overview of the EU legal context and 

identifies the BPs related with PV activities, (originally published in April 2020(Natsiavas et 

al., 2020)). These are elaborated both regarding the clinical environment and beyond, i.e. 

processes conducted by PV activities run by pharma industry companies or regulatory 

organizations. 

Similarly, Chapter 4 presents the paper regarding the UGs and the main information 

workflow identified as part of the PVClinical project platform design. Τhe original UGs are 

further elaborated in the same chapter, beyond the paper, which was originally published in 

August 2019(Natsiavas et al., 2019a). 

Chapter 5 redefines AP in the context of a Learning Healthcare System (LHS) paradigm. 

More specifically, LHS paradigm is explained and the vision of integrating multi-modal AP in 

every-day clinical practice is depicted, also emphasizing the need to provide personalized 

treatment and therefore, personalized DS clinical decision too. 

Chapter 6 summarizes a set of research paths which have been actively investigated 

during this PhD and can be used as future research work tracks. These research paths include 

the building of a big Knowledge Graph of PV information and the use of ontologies to model 

Systems Pharmacology information along the gaps identified by the systematic review 

presented in Chapter 2. 

Finally, Chapter 7 concludes the thesis, summarizing the work done and providing its 

final conclusions. 
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2. State of the Art 

This chapter provides an overview of the State of the Art regarding the use of KE 

approaches in the context of DS. To this end, the first paper published in the context of this PhD 

is presented (Natsiavas et al., 2019b), titled “Computational Advances in Drug Safety: 

Systematic and Mapping Review of Knowledge Engineering Based Approaches”. Furthermore, 

an extra subsection describes on how this thesis conducted in the context of the PVClinical 

project stands against the findings of the presented systematic review. 
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2.1. Computational Advances in Drug Safety: Systematic and Mapping 

Review of Knowledge Engineering Based Approaches  

Pantelis Natsiavas1,2, Andigoni Malousi3, Cédric Bousquet2,4, Marie-Christine 

Jaulent2 and Vassilis Koutkias1* 
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 Abstract 

Drug Safety (DS) is a domain with significant public health and social impact. 

Knowledge Engineering (KΕ) is the Computer Science discipline elaborating on methods and 

tools for developing “knowledge-intensive” systems, depending on a conceptual “knowledge” 

schema and some kind of “reasoning” process. The present systematic and mapping review 

aims to investigate KE-based approaches employed for DS and highlight the introduced added 

value as well as trends and possible gaps in the domain. 

Journal articles published between 2006 and 2017 were retrieved from 

PubMed/MEDLINE and Web of Science® (873 in total) and filtered based on a comprehensive 

set of inclusion/exclusion criteria. The 80 finally selected articles were reviewed on full-text, 

while the mapping process relied on a set of concrete criteria (concerning specific KE and DS 
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core activities, special DS topics, employed data sources, reference ontologies/terminologies 

and computational methods, etc.). The analysis results are publicly available as online 

interactive analytics graphs. 

The review clearly depicted increased use of KE approaches for DS. The collected data 

illustrate the use of KE for various DS aspects, such as Adverse Drug Event (ADE) information 

collection, detection and assessment. Moreover, the quantified relation of using KE for the 

respective DS core activities highlighted room for intensifying research on KE for ADE 

monitoring, prevention and reporting. Finally, the assessed use of the various data sources for 

DS special topics demonstrated extensive use of dominant data sources for DS surveillance, i.e. 

Spontaneous Reporting Systems, but also increasing interest in the use of emerging data 

sources, e.g. observational healthcare databases, biochemical/genetic databases and social 

media. 

Various exemplar applications were identified with promising results, e.g. improvement 

in ADR prediction, detection of drug interactions and novel ADE profiles related with specific 

mechanisms of action, etc. Nevertheless, since the reviewed studies mostly concerned proof-

of-concept implementations, more intense research is required to increase the maturity level 

that is necessary for KE approaches to reach routine DS practice. 

In conclusion, we argue that efficiently addressing DS data analytics and management 

challenges, requires the introduction of high-throughput KE-based methods for effective 

knowledge discovery and management and, ultimately, the establishment of a learning DS 

system. 

 Introduction 

Pharmacovigilance (PV)10, also known as Drug Safety (DS), is “the science and 

activities related to the detection, assessment, understanding and prevention of adverse effects 

or any other possible drug-related problems” (World Health Organization, 2002). DS is an 

important issue of public health interest, given that adverse drug reactions (ADRs11) and 

                                                 
10 Due to the numerous abbreviations used in the article, Appendix provides an abbreviation index to facilitate 

reading. 
11 ADEs: Side-effects that may or may not have causal relationship with the drug, including the events caused by drug misuse 

(e.g. overdose). ADRs: Side-effects that occur after a legitimate drug use (i.e. there is no overdose) and therefore “characterised 

by the suspicion of a causal relationship between the drug and the occurrence”. For a comprehensive definition of terms used 

in DS we refer the reader to (Lindquist, 2007). 
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adverse drug events (ADEs1) cause a significant social and financial burden12. An important 

part of DS concerns the identification of the so-called “signals”13, performed by national and 

international drug monitoring/regulatory organizations (e.g. the Uppsala Monitoring Centre 

(UMC), the European Medicines Agency (EMA), the Food and Drug Administration (FDA) in 

the United States, etc.). Signal detection is typically based on the analysis of individual case 

safety reports gathered in Spontaneous Reporting Systems (SRSs), e.g. using 

disproportionality-based statistical methods (Montastruc et al., 2011). 

The current era of “data explosion” affects the entire spectrum of health, including DS. 

While traditionally post-marketing DS surveillance relied on SRSs as well as clinical studies 

and the scientific literature, advances in Information and Communication Technologies (ICT) 

recently enabled the exploitation of new/emerging data sources, such as observational 

healthcare databases, biochemical and genetic databases, social media, internet search logs, etc. 

To this end, various computational analysis methods have been proposed for post-marketing 

DS surveillance (Harpaz et al., 2012), illustrating both strengths and weaknesses (Hauben and 

Norén, 2010). For the development and safety monitoring of new drugs (i.e., prior to market 

authorization), computational approaches attract lately a major interest as well, especially in 

the scope of in silico clinical trials (Pappalardo et al., 2018) and Precision Medicine (Collins 

and Varmus, 2015). Multi-scale modelling approaches (exploiting low-level biochemical 

information regarding the behaviour of molecular structures as well as more abstract 

information regarding the phenotypic action of a drug via mathematic models, systems, or 

network-based structures) are being used in Systems Pharmacology (SP) (Mager and Kimko, 

2016). In particular, SP-based approaches have been used for DS (Trame et al., 2016) (Bai et 

al., 2014) (Schotland et al., 2016) (Boland et al., 2016) and regulatory actions (Lorberbaum et 

al., 2015) , as they facilitate in silico clinical trials (Ramanujan et al., 2016)(Rieger et al., 2018) 

, including the simulation of individual patient characteristics towards the overall vision of 

Precision Medicine (Birtwistle et al., 2016).  

                                                 
12 By reviewing European studies (Formica et al., 2018) estimated: a) the cost of ADRs between €2,851 and € 9,015 for the 

inpatient setting and €174 to €8,515 for the outpatient setting; (b) the impact of ADRs on the length of stay to be 9.2 ± 0.2 days 

(outpatient setting) and 6.1 ± 2.3 days (inpatient setting). Furthermore, the US Office of Disease Prevention and Health 

Promotion estimated that ADEs account for 1 in 3 of all hospital adverse events, concern about 2 million hospital stays each 

year, and prolong hospital stays by 1.7 to 4.6 days. Regarding outpatient settings, each year ADEs account for over 3.5 million 

physician office visits, about 1 million emergency department visits and, approximately, 125,000 hospital admissions 

(https://health.gov/hcq/ade.asp). 

13 “Information that arises from one or multiple sources (including observations and experiments) which suggests a new, 

potentially causal association, or a new aspect of a known association, between an intervention and an event or set of related 

events, either adverse or beneficial, that is judged to be of sufficient likelihood to justify verificatory action” (Council for 

International Organizations of Medical Sciences (CIOMS), 2010). 

https://health.gov/hcq/ade.asp
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To this end, the recent data deluge dictates the need to introduce high-throughput 

computational methods in DS, that will enable efficient knowledge extraction and management, 

compensating the underlying data heterogeneity and complexity. This need becomes more 

demanding, especially considering the concurrent investigation of diverse types of data, in order 

to strengthen the evidence of the outcomes provided by the respective computational methods 

(Koutkias and Jaulent, 2015). 

In Computer Science, knowledge is represented “by facts, rules and other symbolic 

structures, rather than the traditional representation as abstract numbers or algorithms” (Fox, 

1984). Knowledge Engineering (KE) is the discipline that elaborates on the theories, methods, 

and tools for developing knowledge-intensive applications (Schreiber, 2008). KE typically 

entails: (a) knowledge extraction (e.g. based on Natural Language Processing (NLP)14), (b) 

knowledge integration (i.e. syntactic and semantic alignment and normalization of different 

kinds of knowledge), (c) knowledge representation (i.e. modelling of domain/application 

knowledge in computationally exploitable formats like ontologies15), (d) knowledge 

dissemination (i.e. modelling information for communication purposes focusing for example 

on interoperability among heterogeneous ICT systems), and (e) knowledge elicitation (i.e. 

generating or discovering new knowledge via advanced KE techniques like semantic mining).  

Recent research has illustrated that KE can contribute in addressing DS challenges. In 

particular, KE applications for DS can facilitate the integration and analysis of heterogeneous 

data sources (Koutkias and Jaulent, 2015), and represent the respective knowledge in a manner 

which facilitates advanced processing capabilities like automatic inference (Natsiavas et al., 

2018a). The later requires the definition of explicit semantics via well-defined knowledge 

structures, i.e. common reference terminologies, thesauri, or ontologies. The use of such 

reference knowledge structures is a key aspect in KE, as it facilitates “machine-understandable” 

interlinking, comparison, reuse and further processing of data in two ways: (a) it enhances 

semantic interoperability through common reference concepts, and (b) it provides the 

underlying semantic infrastructure for automatic inference. Thus, the use of reference 

                                                 
14 An interesting review on text mining for ADEs has been presented by Harpaz et al. (Harpaz et al., 2014). 

15 “In Computer and Information sciences, an ontology defines a set of representational primitives for modelling a domain of 

knowledge or discourse. The representational primitives are typically classes (or sets), attributes (or properties), and 

relationships (or relations among class members). The definitions of the representational primitives include information about 

their meaning and constraints on their logically consistent application.” (Gruber, 2009). 
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knowledge structures is crucial in order to characterize a computational method/system as 

“knowledge-based”. 

In KE, semantics are expressed via relationships among the referred concepts (e.g. 

“Myocardial Infarction” occurs_in ‘Myocardium’), or via a hierarchy of concepts and their 

properties using “sub-concepts” (e.g. the term “Myocardial Infarction” is_a “Cardiac 

Disorder”) and “sub-properties”, respectively. A knowledge structure could describe how 

ADEs such as ‘myocardial infarction’ may be associated to the corresponding pathological 

process and anatomical location, e.g. ‘Myocardial Infarction’ is_a ‘Cardiac Disorder’ and 

occurs_in ‘Myocardium’. An ICT system would represent this knowledge and the respective 

concepts using a reference terminology, e.g. MedDRA16. Such an explicit and computationally 

exploitable representation of knowledge enables “reasoning”. As an example of how a 

computer may perform automatic reasoning, explicit linking of an ADE to its corresponding 

biological process (e.g., ‘Cardiac Failure’ is associated to ‘Heart Contraction’) allowed the 

identification of 190 genes that are associated with heart contraction and could potentially have 

a role in cardiac failure (Sarntivijai et al., 2016). 

This study constitutes a “systematic and mapping review”17, conducted in accordance 

with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

statement (Moher et al., 2009). It aims to present KE-based approaches for DS and their 

potential application in current DS practice, illustrating the added value through exemplar 

research efforts spanning diverse dimensions of DS research. Thus, the main research question 

of the current study is: “What are the main KE methods applied in the DS domain, upon which 

knowledge models and data sources are they applied, what is their contribution/added value 

for DS, and what are the potential gaps, challenges and opportunities for further research?”. 

 Methods 

A systematic search was performed by querying two reference bibliographic 

repositories: PubMed18 and Web of Science19. The study comprised of the article retrieval step 

                                                 
16 MedDRA® (the Medical Dictionary for Regulatory Activities) is a reference, international terminology in the domain of DS, 

developed under the auspices of the International Council for Harmonisation of Technical Requirements for Pharmaceuticals 

for Human Use (ICH). The MedDRA® trademark is owned by IFPMA on behalf of ICH. 

17 A mapping review aims “to map out and categorize existing literature on a particular topic, identifying gaps in research 

literature from which to commission further reviews and/or primary research” (Grant and Booth, 2009). 
18 https://www.ncbi.nlm.nih.gov/pubmed/ 

19 https://webofknowledge.com/  

https://www.ncbi.nlm.nih.gov/pubmed/
https://webofknowledge.com/
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and two consecutive review stages (Figure 3); the first aimed to filter irrelevant articles with 

the domains of KE and DS based on their title and abstract, and the second was devoted to 

evaluating the remaining papers’ full-text in detail, and map them based on specific analysis 

criteria. 
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Figure 3: Rationale of the review methodology 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

49 
 

The review was conducted by the authors of the paper. In the retrieval stage, we defined 

and executed two queries (provided as Supplementary Material20) and imported the obtained 

citations in BibReview21, a tool that was used throughout our study enabling collaborative 

review of bibliographic data (Lamy et al., 2015). The queries included two core parts (linked 

with the logical operator AND), each comprising of synonym terms describing the domains of 

interest, i.e. KE and DS. We considered articles written in English and published in scientific 

journals between 2006 and 2017. 2006 was selected as the starting year of our review, since 

there was no much activity on KE for DS until then and a key study regarding the use of 

MedDRA has sparkled an interesting discussion about the use of formal semantics, highlighting 

the prospects and the need for further research (Bousquet et al., 2005b). 

In addition, the current study relied on the following inclusion and exclusion criteria: 

1) Inclusion criteria: (a) articles exploiting clearly KE methods/technologies; (b) articles 

referring to algorithms exploiting formal mathematic structures (e.g. graphs), as these can 

be considered knowledge representation schemes, and (c) articles in which NLP was 

employed to extract information from free-text sources combined with other KE processes, 

e.g. ML algorithms using reference terminologies/ontologies. 

2) Exclusion criteria: (a) articles referring to “inference” through plain statistics; (b) articles 

referring to ontologies (e.g. Gene Ontology (GO)) as simple data sources, without 

exploiting their underlying semantics; (c) articles not reporting the use of at least one 

knowledge source, e.g. a terminology, a thesaurus, an ontology, etc.; (d) opinion or review 

papers not providing concrete suggestions or designs, and (e) articles from the same authors 

with a high degree of overlapping22. 

Table 2 partially presents the analysis criteria employed in the overall mapping process. 

These were based on established knowledge in the domain, experiences and tacit knowledge of 

the authors, and the outcomes obtained as the review progressed. While other systematic 

reviews related with KE were considered for criteria definition (e.g. (Wnuk and Garrepalli, 

2018), (Bjørnson and Dingsøyr, 2008)), to a great extent these were found irrelevant for our 

study. In order to reduce the subjectivity of the review process, specific enumerations of 

answers for each review criterion were defined. The authors iteratively examined the possible 

                                                 
20 https://www.frontiersin.org/articles/10.3389/fphar.2019.00415/full#supplementary-material 
21 https://pypi.org/project/BibReview/  

22 In such cases, only the most representative article was considered in our review. 

https://www.frontiersin.org/articles/10.3389/fphar.2019.00415/full%23supplementary-material
https://pypi.org/project/BibReview/
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answers for each criterion, to make sure that these are orthogonal (not conceptually 

overlapping) to the extent possible. Furthermore, specific explanations for each criterion value 

were added in a spreadsheet file used for data gathering and analysis23, in order to avoid 

ambiguities for the reviewers. 

Table 2: Analysis criteria and indicative answers 

Criterion Indicative answers 

DS core activities ADE information collection, ADE detection, ADE assessment, ADE monitoring, 

ADE prevention, ADE reporting 

DS special topics Comparative drug analysis, Drug interactions, MoA identification/analysis 

Personalized drug safety, Signal detection, Specific (class of) disease, Specific (class 

of) drug(s), Specific adverse effect, Vaccine safety 

Data source 

categories 

ADE databases, Bibliographic databases, Clinical narratives, Clinical trials, Drug 

information databases, EHRs, Genetics and biochemical databases, HL7 messages, 

Manually annotated corpora, mHealth apps, Patient summaries, PHRs, Social media, 

Structured Product Labels, Spontaneous Reporting Systems  

Data source(s) Absorption, Distribution, Metabolism, and Excretion Associated Proteins database 

(ADME-APs), ADE Corpus, ADEpedia, ADRMine Corpus, AEOLUS, AERS-DM, 

etc. 

KE core activities Knowledge dissemination, Knowledge elicitation, Knowledge extraction, Knowledge 

integration and Knowledge representation 

Computational 

method(s) 

Data mining, Disproportionality analysis, Graph-based inferencing, Information 

extraction (e.g. Natural Language Processing), Machine Learning, Ontology 

reasoning, Rule-based inferencing, Simulation, Terminological reasoning, Vector-

based similarity identification 

Challenges/ 

weaknesses 

Commercial tools, Competing interests, Evaluation against small dataset, Evaluation 

restricted on a narrow scope, Evaluation with simulated data, Knowledge model not 

available, Knowledge model not validated for completeness, No evaluation regarding 

knowledge modelling quality criteria, No statement regarding competing interests, 

Not applying formal DL semantics, Not using a knowledge representation standard, 

Proprietary datasets, Significant dependence on manual work 

Reference 

terminologies/ 

ontologies 

Adverse Event Reporting Ontology (AERO), Anatomical Therapeutic Chemical 

Classification System (ATC), Basic Formal Ontology (BFO), British National 

Formulary (BNF) Dictionary, ChEBI, etc. 

Knowledge 

formalism 

DAML+OIL, Frame-based ontology, OWL, RDF, Relational, SWRL, XML 

Country e.g. Australia, Belgium, Canada, China, Denmark, France, etc. 

Organization type Academia/Research, Healthcare, Industry, DS Monitoring 

In order to mitigate the risk for various kinds of bias, we applied the guidelines provided 

by (Drucker et al., 2016) and (Altman et al., 2011) (further discussed in subsection “Risk of 

bias”). 

                                                 
23 The detailed review results and the overall mapping outcome is documented in the MS Excel file, which is provided as 

Supplementary Material - https://www.frontiersin.org/articles/10.3389/fphar.2019.00415/full#supplementary-material 

https://www.frontiersin.org/articles/10.3389/fphar.2019.00415/full%23supplementary-material
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 Results 

The results are provided as supplementary material in the form of an Excel file24, while 

they are also publicly available as online interactive analytics forms, enabling their 

investigation in further detail25. This section presents the most important facets of these results.  

Article selection 

Figure 17 depicts the number of selected papers in each step of the review process, 

following the PRISMA guidelines (Moher et al., 2009). From the 873 articles initially retrieved, 

94 articles were selected to be evaluated in full detail. 14 of them were excluded during the full-

text review according to the exclusion criteria defined (section Methods). Finally, 8026 articles 

were included in the presented review. 

                                                 
24 https://www.frontiersin.org/articles/10.3389/fphar.2019.00415/full#supplementary-material 
25 The online analytics are available at https://inab-certh.github.io/Knowledge-Engineering-for-Drug-Safety-Systematic-and-

mapping-review/analytics and the respective files can be accessed at https://github.com/inab-certh/Knowledge-Engineering-

for-Drug-Safety-Systematic-and-mapping-review. 

26 The list of selected articles is provided as Supplementary Material - 

https://www.frontiersin.org/articles/10.3389/fphar.2019.00415/full#supplementary-material.  

https://www.frontiersin.org/articles/10.3389/fphar.2019.00415/full%23supplementary-material
https://inab-certh.github.io/Knowledge-Engineering-for-Drug-Safety-Systematic-and-mapping-review/analytics
https://inab-certh.github.io/Knowledge-Engineering-for-Drug-Safety-Systematic-and-mapping-review/analytics
https://github.com/inab-certh/Knowledge-Engineering-for-Drug-Safety-Systematic-and-mapping-review
https://github.com/inab-certh/Knowledge-Engineering-for-Drug-Safety-Systematic-and-mapping-review
https://www.frontiersin.org/articles/10.3389/fphar.2019.00415/full%23supplementary-material
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Figure 4: The PRISMA flow in the context of the current study 

The “demographic” features of the selected articles are illustrated in Figure 3. In 

particular, Figure 5A presents the distribution of articles according to the organization category 

of the respective authors, highlighting that industrial, healthcare and DS monitoring 

organizations contributed less in the domain, compared to research organizations. As shown in 

the author-country distribution depicted in Figure 5B, most articles were produced by 

organizations located in the USA. However, China, France and Spain are also among the 

leading countries in researching KE for DS. In terms of time evolution, Figure 5C depicts an 

increasing trend in the number of publications after 2010. 
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Figure 5: (A) Number of articles per authors' organization category, (B) author-country 

distribution (showing only n > 3 articles), and (C) distribution of the selected articles per year. 

Synthesized findings 

In this section, we present in detail the results of our quantified analysis based on the 

criteria presented in Table 2. Furthermore, we provide an overview of the impact of the selected 

papers on the main topics posed by the study research question, as described in the Introduction 

section27. 

Quantified analysis 

                                                 
27 A catalogue with Web links to data sources, reference terminologies, ontologies, standards, technologies, and systems 

referred in the study is provided in the Appendix. 
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Figure 6 depicts the distribution of the reviewed articles, according to the DS core 

activities and special topics. As shown in Figure 6A, “ADE detection”, “ADE information 

collection” and “ADE assessment” attract most research efforts among the core DS activities. 

Respectively, Figure 6B depicts that signal detection, mechanism of action (MoA) analysis and 

drug interactions are the leading DS special topics. 

 

 Figure 6: Number of articles related with: (A) DS core activities, and (B) DS special topics. 

Figure 7 depicts the main KE activities employed in the reviewed articles and their time 

evolution (Figure 7C), as well as the number of articles related with the most prominent 

computational approaches (Figure 7A). Knowledge extraction, representation and elicitation 

were the main focus, mostly through the application of NLP, terminological reasoning, 

ontological reasoning and vector-based similarity identification using ML algorithms, e.g. 

Support Vector Machines (SVMs). Typically, more than one KE core activities were employed 

in each article. As shown in Figure 7B only knowledge extraction seems to be a standalone 

approach employed in a significant number of papers. This overlapping between the use of 

more than one KE core activities outlines the complexity of the targeted problems and the need 

for synthesized approaches to address them. 
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Figure 7: KE and computational approaches: (A) number of articles per computational 

approach, (B) overlapping of the most prominent KE activities within the selected articles, 

and (C) KE activities and number of respective articles across time. 
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Figure 8A-C present the associations between the various DS and KE core activities, 

the DS special topics and the data source categories, as well as the KE core activities and the 

data sources, respectively, in the form of chord diagrams. Figure 8D depicts a Sankey diagram 

presenting the most significant interconnections28 among the DS special topics, the most 

important data source categories, and the KE core activities based on the reviewed articles. 

Interestingly, “signal detection”, “MoA analysis and identification” and “Drug interactions” are 

the three most elaborated DS special topics, exploiting a number of heterogeneous data sources, 

e.g. SRSs, ADE databases, etc. 

                                                 
28 Only connections with weight greater than 5 are depicted, to maintain readability. 
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Figure 8: Links between: (A) KE core activities and DS core activities, (B) DS special topics 

and data source categories, (C) KE core activities and data source categories. (D) The most 

prominent connections among KE core activities, data source categories and DS special 

topics. 
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One of the key KE foundations is the reuse of established/reference knowledge 

structures (i.e. ontologies, standard terminologies, etc.). This facilitates semantic 

interoperability between different systems and widens the spectrum upon which KE approaches 

are applicable to. Figure 9 presents the most widely adopted terminologies/ontologies in the 

reviewed articles29. Unified Medical Language System (UMLS), MedDRA, the Anatomical 

Therapeutic Chemical Classification (ATC) system, the Systematized Nomenclature of 

Medicine-Clinical Terms (SNOMED-CT) and the International Classification of Diseases 

(ICD) are the most widely used terminologies, while the Ontology for Adverse Events (OAE), 

the Vaccine Ontology (VO) and GO are the most widely referred ontologies. 

 

Figure 9: Reference knowledge sources (i.e., terminologies/vocabularies/thesauri and 

ontologies) employed in the reviewed articles. 

The types of data sources employed in the reviewed articles vary significantly, 

highlighting the complexity of the domain and the need for advanced data integration and 

representation schemes based on KE (Koutkias and Jaulent, 2015). Figure 10A presents the 

distribution of data source categories, while Figure 10B presents the most popular data 

sources30, as employed in the reviewed articles. SRSs (e.g. the FDA Adverse Event Reporting 

System (FAERS) and the Vaccine Adverse Event Reporting System (VAERS)), drug 

information databases (e.g. DrugBank), ADE databases (mainly the Side Effect Resource 

                                                 
29 Not all referenced terminologies/ontologies are presented for readability purposes. The full list of referenced 

terminologies/ontologies can be found in the detailed analysis provided as Supplementary Material in the form of an Excel file 

- https://www.frontiersin.org/articles/10.3389/fphar.2019.00415/full#supplementary-material. 

30 Not all data sources identified are presented for readability purposes. The full list of data sources identified can be found in 

the fully detailed analysis provided as supplementary material in the form of an Excel file - 

https://www.frontiersin.org/articles/10.3389/fphar.2019.00415/full#supplementary-material. 

https://www.frontiersin.org/articles/10.3389/fphar.2019.00415/full%23supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2019.00415/full%23supplementary-material
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(SIDER)), genetic and biochemical information data sources (e.g. GO and the Kyoto 

Encyclopaedia of Genes and Genomes - GenomeNet (KEGG)), as well as scientific literature 

repositories (i.e. PubMed/MEDLINE) are the most prominent ones. 

 

Figure 10: Use of main data sources: (A) number of articles per data source category, (B) 

number of articles per data source, and (C) schematic representation of main data sources 

used and their categories. 

The selected articles were also critically reviewed to identify challenges or weaknesses 

and, consequently, gaps in the applied research practices. As shown in Figure 11, in many of 

the reviewed articles the research significantly depended on manual work (e.g. data curation, 

annotation, etc.) conducted by a small group of experts. Furthermore, despite elaborating on 

KE representation schemes like ontologies, many studies did not evaluate the proposed models 

regarding quality, e.g. using quality metrics frameworks like the Ontology Quality Evaluation 

Framework (OQuaRE) (Duque-Ramos et al., 2014). This finding may indicate a difficulty to 

apply the respective approaches at large-scale with real-world data. Moreover, a wide range of 

studies did not use an interoperable knowledge representation format (e.g. ontologies), while in 
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many studies the presented KE approaches were evaluated in a narrower scope than the one 

presented as their main use case.  

 

Figure 11: Identified challenges/weaknesses as reported in the reviewed articles. 

Data and Knowledge sources 

In this subsection, we present the main data sources used in KE for DS, as well as the 

employed knowledge sources, i.e. reference ontologies/terminologies, as identified in our 

review31.  

Data sources 

Table 3 presents the usage of data sources for specific DS applications, citing also the 

respective articles. We organize data sources in two main types: (a) those established or 

dominant in the domain of DS, such as SRSs, clinical trial databases, and bibliographic 

databases, and (b) emerging or quite new, such as observational healthcare databases, 

biochemical/genetic information databases, and social media platforms. 

                                                 
31 The special characteristics of each data source category and their possible contribution in signal detection are explicitly 

described in (Koutkias and Jaulent, 2015). 
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Table 3: Use of data sources in the reviewed articles for most prominent DS applications. 

 Category Application in Drug Safety  

Established 
data sources 

SRS 

Signal detection (Sarntivijai et al., 2012) (Tao et al., 2012) (Cheng et al., 2013) (Iyer et al., 2014) (Courtot et al., 2014) 
(Cheng and Zhao, 2014) (Boyce et al., 2014) (Wang et al., 2014)(Cai et al., 2015) (Dupuch and Grabar, 2015) (Liu and 

Chen, 2015) (Koutkias and Jaulent, 2016) (Liu et al., 2016) (Voss et al., 2017) (Knowledge Base workgroup of the 
Observational Health Data Sciences and Informatics (OHDSI) collaborative, 2017) (Cai et al., 2017) (Liu et al., 2018) 

Validation (Henegar et al., 2006) (Gottlieb et al., 2012) (Iyer et al., 2014) (Courtot et al., 2014) 

Monitoring (Marcos et al., 2013) 

ADE databases 

Signal detection (Huang et al., 2011) (Gurulingappa et al., 2012) (Cheng et al., 2013) (Iyer et al., 2014) (Cheng and 
Zhao, 2014) (Shang et al., 2014) (Cai et al., 2015) (Koutkias and Jaulent, 2015) (Jiang et al., 2015) (Herrero-Zazo et al., 
2015) (Koutkias and Jaulent, 2016) (Kawazoe et al., 2016) (Bravo et al., 2016) (Eshleman and Singh, 2016) (Lowe et 
al., 2016) (Noor et al., 2016) (Knowledge Base workgroup of the Observational Health Data Sciences and Informatics 

(OHDSI) collaborative, 2017) (Nguyen et al., 2017) (Abdelaziz et al., 2017) 

MoA identification/analysis (Huang et al., 2011) (Gottlieb et al., 2012) (Xu and Wang, 2013) (Cai et al., 2015) 
(Herrero-Zazo et al., 2015) (Guo et al., 2016) (Noor et al., 2016) (Personeni et al., 2017) (Piñero et al., 2017) 

(Abdelaziz et al., 2017) 

Validation (Gurulingappa et al., 2012)  

Drug information 
databases 

Signal detection (Tari et al., 2010) (Huang et al., 2011) (Iyer et al., 2014) (Cheng and Zhao, 2014) (Boyce et al., 2014) 
(Cai et al., 2015) (Koutkias and Jaulent, 2015) (Herrero-Zazo et al., 2015) (Koutkias and Jaulent, 2016) (Zhang et al., 

2016) (Noor et al., 2016) (Knowledge Base workgroup of the Observational Health Data Sciences and Informatics 
(OHDSI) collaborative, 2017) (Abdelaziz et al., 2017) 

MoA identification/analysis (Lin et al., 2010) (Tari et al., 2010) (Huang et al., 2011) (Gottlieb et al., 2012) (Cai et al., 
2015) (Herrero-Zazo et al., 2015) (Zhang et al., 2016) (Noor et al., 2016) (Abdelaziz et al., 2017) 
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Bibliographic 
databases 

Signal detection (Tari et al., 2010) (Gurulingappa et al., 2012) (Boyce et al., 2014) (Zhang et al., 2014) (Shang et al., 
2014) (Koutkias and Jaulent, 2016) (Zhang et al., 2016) (Lowe et al., 2016) (Bravo et al., 2016) (Voss et al., 2017) 

(Knowledge Base workgroup of the Observational Health Data Sciences and Informatics (OHDSI) collaborative, 2017) 
(Noor et al., 2016) 

MoA identification/analysis (Tari et al., 2010) (Hur et al., 2012) (Xu and Wang, 2013) (Zhang et al., 2016) (Piñero et 
al., 2017) (Cañada et al., 2017)  

Clinical trials data 

Signal detection (Huang et al., 2011) (Boyce et al., 2014) (Koutkias and Jaulent, 2015) (Knowledge Base workgroup of 
the Observational Health Data Sciences and Informatics (OHDSI) collaborative, 2017) 

MoA identification/analysis (Huang et al., 2011) 

Emerging data 
sources 

EHRs 

Signal detection (Zhang et al., 2014) (Boyce et al., 2014) (Jiang et al., 2015) (Declerck et al., 2015) (Yuksel et al., 2016) 
(Voss et al., 2017) (Noor et al., 2016) (Knowledge Base workgroup of the Observational Health Data Sciences and 
Informatics (OHDSI) collaborative, 2017) (Ceusters et al., 2011) (Personeni et al., 2017) (Henriksson et al., 2016) 

CDSS development (Koutkias et al., 2012) (Gottlieb et al., 2012) (Neubert et al., 2013) (Doulaverakis et al., 2014) 

Clinical narratives 
Signal detection (Iyer et al., 2014) (Zhang et al., 2014) (Sarker and Gonzalez, 2015) (Henriksson et al., 2015) 

(Henriksson et al., 2016) (Iqbal et al., 2017) 

Biochemical and 
genetic information 

databases 

Signal detection (Arikuma et al., 2008) (Tari et al., 2010) (Boyce et al., 2014) (Cai et al., 2015) (Kawazoe et al., 2016) 
(Noor et al., 2016) (Knowledge Base workgroup of the Observational Health Data Sciences and Informatics (OHDSI) 

collaborative, 2017) (Abdelaziz et al., 2017) 

MoA identification/analysis (Arikuma et al., 2008) (Tari et al., 2010) (Gottlieb et al., 2012) (Hur et al., 2012) (Cai et al., 
2015) (Noor et al., 2016) (Piñero et al., 2017) (Abdelaziz et al., 2017) 

SPLs 

Comparative drug analysis (Bisgin et al., 2011) (Boyce et al., 2013) (Boyce et al., 2014) 

MoA identification/analysis (Gottlieb et al., 2012) (Cai et al., 2015) (Guo et al., 2016) (Abdelaziz et al., 2017) 

CDSS development (Neubert et al., 2013) (Doulaverakis et al., 2014) 
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Social media 
ADE information collection (Sarker and Gonzalez, 2015) (Nikfarjam et al., 2015) (Liu and Chen, 2015) (Liu et al., 

2016) (Eshleman and Singh, 2016) (Audeh et al., 2017) (Cocos et al., 2017) (Nguyen et al., 2017) (Liu et al., 2018) 
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Established data sources 

SRSs constitute the dominant data source for DS. They have been widely used in the 

reviewed articles for signal identification (mostly through NLP) as well as monitoring and 

validation. Interestingly, in order to improve the mining capacity of FAERS for signal detection 

and promote semantic interoperability between FAERS and other data sources, NLP techniques 

and normalization procedures were applied to FAERS data using reference terminologies, i.e., 

MedDRA, RxNorm and the National Drug File - Reference Terminology (NDF-RT) (Wang et 

al., 2014). 

ADE databases [mostly SIDER, the Comparative Toxicogenomics Database (CTD) and 

MetaADEDB), clinical trials data (from ClinicalTrials.gov), drug information databases (e.g. 

DrugBank) and bibliographic databases (i.e. PubMed/MEDLINE and the Semantic MEDLINE 

Database (SemMedDB) (Kilicoglu et al., 2012), a database of semantic relationships extracted 

from MEDLINE] have been employed for signal detection and MoA investigation.  

Emerging data sources 

Observational healthcare databases and Electronic Health Records (EHRs) in particular, 

gained a major interest recently for DS research. In the scope of KE for DS, structured EHRs 

were used for signal detection, combining the use of ontologies and NLP approaches, as well 

as for developing medication-related Clinical Decision Support Systems (CDSSs). 

Unstructured EHR data, i.e. free-text clinical notes, were also used for ADR identification.  

Recent advances in high-throughput sequencing technologies enable the integration of 

biological information to support the new field of SP by focusing on gene-drug-disease 

interaction networks. An increasing number of these frameworks incorporate genetic data (most 

often genomic polymorphisms as described in PharmGKB) for drug-drug interactions (DDIs) 

and ADR in silico prediction, stressing the need to integrate such data to complement in vivo 

and in vitro investigations on pharmacogenomics. Information on pathways (e.g. from KEGG), 

proteins (e.g. from UniProt) and their annotations with GO were the most prominent data 

sources for ADE identification and the analysis of the respective MoA. Interestingly, the use of 

biomolecular functional network data improved ADR predictions (Huang et al., 2011), and 

suggests that such prediction could help to design new models for investigating ADRs and their 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

65 
 

MoA, to avoid tedious and costly clinical trials, in line with the paradigms of in silico clinical 

trials and SP. 

Structured Product Labels (SPLs) have been also used in various studies, including 

comparative drug analysis and the analysis of drug MoA. Furthermore, national SPL indexes 

were used as a data source for localized CDSSs. 

Social media (mostly Twitter, DailyStrength.com and dedicated patient forums) 

attracted recently major interest for DS. Exploiting KE activities like knowledge extraction in 

social media can add a valuable new data source in the DS ecosystem, as they are characterized 

by three interesting aspects (Koutkias et al., 2017): (a) they provide vast amounts of data, (b) 

posts could be monitored across time and trends could be identified in relation with triggering 

events (e.g. new safety issues reported by regulatory authorities or announced in the media), 

and (c) user interconnections (e.g. mentions, responses, followership, etc.) could create a “social 

graph” which could provide useful insights through graph-based Social Network Analysis 

(SNA). Notably, a comparative study concerning the prevalence of ADR mentions in Twitter 

and other social media platforms concluded that social media can be considered as a valuable 

data source for DS (Nguyen et al., 2017).  

Knowledge sources 

Table 3 summarizes the use of the most prominent knowledge sources in the reviewed 

articles, citing indicative references32. We categorize them into reference terminologies, 

thesauri and vocabularies, spanning from simple hierarchies to ontologies which express richer 

semantics. 

 

 

                                                 
32 In the detailed analysis results (provided as Supplementary Material), all referenced knowledge sources for each paper are 

identified. For readability, we only refer in the manuscript to the most prominent knowledge sources used. 
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Table 4: Use of the most prominent knowledge sources in the reviewed articles. 

 Knowledge 
source 

Use in the reviewed articles 

Terminologies / 
Thesauri / 

Vocabularies 

MedDRA /  
WHO-ART 

Semantic annotation of concepts (grouping, classification etc.) (Henegar et al., 2006) (Neubert et al., 2013) (Courtot et 
al., 2014) (Jiang et al., 2015) (Declerck et al., 2015) (Guo et al., 2016) (Xie et al., 2016b) (Xie et al., 2016a) (Voss et al., 

2017) (Cai et al., 2017) (Segura-Bedmar and Martínez, 2017) 

Reference terminology for data integration (Sarntivijai et al., 2012) (Boyce et al., 2014) (Sarntivijai et al., 2016) 
(Yuksel et al., 2016) (Knowledge Base workgroup of the Observational Health Data Sciences and Informatics (OHDSI) 

collaborative, 2017) 

NLP (e.g. Named Entity Recognition) (Bisgin et al., 2011) (Gurulingappa et al., 2012) (Iyer et al., 2014) (Cai et al., 
2015)  

UMLS 

NLP (e.g. Named Entity Recognition) (Segura-Bedmar et al., 2010) (Segura-Bedmar et al., 2011) (He et al., 2013) 
(Kang et al., 2014) (Shang et al., 2014) (Sarker and Gonzalez, 2015) (Jiang et al., 2015) (Zhang et al., 2016) (Liu et al., 

2016) (Eshleman and Singh, 2016) (Liu et al., 2018) 

Reference terminology for data integration (Henegar et al., 2006) (He et al., 2013) (Iyer et al., 2014) (Cheng and Zhao, 
2014) (Boyce et al., 2014) (Cai et al., 2015) (Bravo et al., 2016) (Piñero et al., 2017) (Noor et al., 2016) (Cohen and 

Widdows, 2017) (Abdelaziz et al., 2017) 

ATC 

Reference terminology for data integration (Koutkias et al., 2012) (Gottlieb et al., 2012) (Cheng et al., 2013) (Neubert 
et al., 2013) (Kawazoe et al., 2016) 

NLP (e.g. Named Entity Recognition) (Bisgin et al., 2011) (Henriksson et al., 2016) (Segura-Bedmar and Martínez, 
2017) 

Semantic annotation of concepts (grouping, classification etc.) (Lin et al., 2010) (Iyer et al., 2014) (Doulaverakis et al., 
2014) (Cheng and Zhao, 2014) (Cai et al., 2015) (Personeni et al., 2017) (Abdelaziz et al., 2017) 
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RxNorm 
Reference terminology for data integration (Iyer et al., 2014) (Boyce et al., 2014) (Wang et al., 2014) (Jiang et al., 

2015) (Voss et al., 2017) (Hogan et al., 2017) (Knowledge Base workgroup of the Observational Health Data Sciences 
and Informatics (OHDSI) collaborative, 2017) (Cai et al., 2017) (Personeni et al., 2017) 

ICD-9/10 

Reference terminology for data integration (Koutkias et al., 2012) (Boyce et al., 2014) (Declerck et al., 2015) (Yuksel 
et al., 2016) 

Semantic annotation of concepts (grouping, classification etc.) (Huang et al., 2011) (Zhang et al., 2013) (Doulaverakis 
et al., 2014) (Henriksson et al., 2015) (Personeni et al., 2017) 

SNOMED-CT 

Semantic annotation of concepts (grouping, classification etc.) (Iyer et al., 2014)(Henriksson et al., 2015) (Guo et al., 
2016) (Personeni et al., 2017) 

Reference terminology for data integration (Zhang et al., 2013) (Boyce et al., 2014) (Declerck et al., 2015) (Yuksel et 
al., 2016) 

MeSH 
NLP (e.g. Named Entity Recognition) (Kang et al., 2014) (Henriksson et al., 2015) (Lowe et al., 2016) (Voss et al., 

2017) (Piñero et al., 2017) (Knowledge Base workgroup of the Observational Health Data Sciences and Informatics 
(OHDSI) collaborative, 2017) or manually (Cheng and Zhao, 2014)(Bravo et al., 2016) 

Ontologies 

OAE/VAE 

Combined with disproportionality analysis for signal detection and comparative drug analysis (Sarntivijai et al., 2012) 
(Xie et al., 2016b) (Xie et al., 2016a) (Wang et al., 2017) 

Basis for other ontologies (Tao et al., 2012)(Marcos et al., 2013) (Lin and He, 2014) (Herrero-Zazo et al., 2015) (Guo 
et al., 2016) (Wang et al., 2017) (Liu et al., 2017) 

Enhance NLP results (Gurulingappa et al., 2012) (Hur et al., 2012) 

OntoADR 

Combined with OAE to investigate MoA of Tyrosine Kinase Inhibitors (Sarntivijai et al., 2016) 

Secondary use of EHRs and observational studies data (e.g. signal detection and automatic report generation) 
(Declerck et al., 2015) (Yuksel et al., 2016) 

Searching, coding, and information retrieval of ADE information (Bousquet et al., 2014) (Souvignet et al., 2016) 
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Reference terminologies, thesauri and vocabularies 

Several knowledge sources (e.g. UMLS, MedDRA, ATC, RxNorm, ICD, SNOMED-

CT, and Medical Subject Headings (MeSH)) were used as reference terminologies for 

knowledge extraction through Named Entity Recognition (NER), which is a typical step in NLP 

applications. Furthermore, they provided a “light” semantic structure of concepts (i.e. a concept 

hierarchy), which could be exploited for automatic inference. One of their most prominent uses 

was the semantic normalization of heterogeneous data sources during data integration. For 

example, UMLS was widely used in knowledge extraction activities, i.e. as reference 

terminology in NER steps applied to recognize entities in free-text through the MetaMap-MMtx 

tool, to reduce the semantic ambiguity between the various data sources. MedDRA and the 

World Health Organization (WHO) Adverse Reaction Terminology (WHO-ART) were used to 

semantically categorize and interrelate (e.g. group) concepts regarding signals or ADE reports 

and also as common reference terminologies for integration purposes or NLP tasks. In US-

originated studies, RxNorm was used as a reference terminology for drugs, but to a smaller 

extent compared to ATC overall. An interesting application of SNOMED-CT was for 

enhancing the semantics provided by WHO-ART (Alecu et al., 2008) and MedDRA (Bousquet 

et al., 2014) (Dupuch and Grabar, 2015). 

Ontologies 

OAE (He et al., 2014b) and VO (Lin and He, 2012) (Zhang et al., 2013) constitute 

reference ontologies in the domain. They were combined with statistical approaches and 

disproportionality analysis for the comparative analysis of drugs and ADE profiles. OAE and 

VO were also used to enhance the results of plain NLP algorithms, or as a conceptual base for 

other ontologies like the Ontology of Vaccine Adverse Events (OVAE), the Ontology of Drug 

Neuropathy Adverse Events (ODNAE), the Ontology of Cardiovascular Drug AEs 

(OCVDAE), the Ontology of Chinese Medicine for Rheumatism (OCMR), and the Ontology 

of Genetic Susceptibility Factors (OGSF). Furthermore, OAE has been identified as an 

ontology which could support a systems-based modeling approach for regulatory drug approval 

purposes (Sinha et al., 2016)(Zhichkin et al., 2012). 

The RxNorm-based Drug Ontology (DrOn) represents the therapeutic functions of drug 

products, including their MoA at the molecular level and their adverse effects (Hogan et al., 
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2017). However, it seems that it is not extensively employed for DS purposes, as DS was not 

among its main use cases. 

Notably, OntoADR is an ontologized version of MedDRA (Bousquet et al., 2014), 

which was used in the SALUS project to integrate MedDRA in an overall ontology-based 

information model and support secondary use of EHR data for DS (Declerck et al., 2015) and 

observational studies (Yuksel et al., 2016). Similarly, OAE and MedDRA have been interlinked 

to investigate the biological mechanisms of Tyrosine Kinase Inhibitors (Sarntivijai et al., 2016). 

Knowledge Engineering activities 

In this subsection, we present how the main KE activities were employed in the 

reviewed articles and highlight the most prominent approaches. Thus, we emphasize on the 

employed KE methods, illustrating how these were employed for DS. 

Knowledge dissemination 

A platform aiming to facilitate knowledge dissemination regarding drug safety, efficacy, 

and effectiveness was proposed, overcoming the issue of outdated drug product labels (Boyce 

et al., 2013). The study integrated many data sources in a single knowledge graph containing 

information related with drug products (including ADEs and DDIs) and provided a proof-of-

concept Web interface allowing to actively explore all the information related with a specific 

drug product. Knowledge dissemination approaches were also employed to support 

comparative drug analyses regarding ADEs and contraindications, using visual analytics 

combined with ontological reasoning (Lamy et al., 2017). 

Knowledge elicitation 

Knowledge elicitation activities are typically related with rule-based inferencing 

combined with ontological reasoning methods. For instance, a conceptual model relying on the 

Drug Interaction Ontology (DIO) to identify DDIs was developed based on two rule-based 

inferencing modules (Pathway object constructor and Drug interaction detector) (Arikuma et 

al., 2008). Drug-Drug Interactions Ontology (DINTO) combined Description Logic (DL) 

(Baader et al., 2004) based reasoning with rules formed in the Semantic Web Rules Language 

(SWRL) to identify DDIs and investigate their MoA (Herrero-Zazo et al., 2015), upon a 

conceptual model exploiting Pharmacokinetics and Pharmacodynamics related knowledge. The 
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Drug Enzyme Interaction (DEI) ontology was combined with a rule-base to investigate drug 

MoAs (Zhang et al., 2016). Similarly, ProLog was used to encode rules regarding drug 

metabolism and conduct reasoning to identify potential DDIs (Tari et al., 2010). In addition, 

SPARQL queries following specific patterns regarding temporal inference were used to identify 

ADRs upon HL7 messages integrated in one large Resource Description Framework (RDF) 

graph (Kawazoe et al., 2016). Rules referring to four levels of interaction mechanisms, namely, 

pharmacokinetic, pharmacodynamic, pharmacogenetic, and multi-pathway interaction, were 

employed to identify DDIs and their underlying MoAs upon a large RDF knowledge graph 

integrating 15 DDI databases (Noor et al., 2016). 

Inferencing methods based on graph theory were also extensively applied. Graph 

clustering coefficient analysis was used to identify similar ADE clusters (Lin et al., 2010). Node 

closeness in a protein–protein interaction graph was used to infer DDIs (Gottlieb et al., 2012), 

while network centrality was investigated in a gene-gene interaction graph as a metric of gene 

importance in terms of causing fever (Hur et al., 2012). Several graph-based metrics (i.e. 

connectivity, betweenness and clustering coefficient) were used to predict ADEs in a 

knowledge graph built upon MetaADEDB (Cheng et al., 2013). Graph shortest paths were used 

to identify the weight of relationships in a vaccine-related network extracted from SemMedDB, 

to confirm the structural validity of VO (Zhang et al., 2013). A similar approach was used to 

identify relationships between drugs and ADE terms presented in the UMLS Metathesaurus 

semantic network, in order to extract ADEs from biomedical text (Kang et al., 2014). A graph 

kernel based ML approach was used to extract drug-enzyme relationships from the literature, 

using UMLS as reference terminology (Zhang et al., 2016). Graph-based metrics combined 

with terminological reasoning were employed to calculate the semantic distance between 

MedDRA terms and cluster them to improve Standardized MedDRA Queries (SMQs) (Dupuch 

and Grabar, 2015). The relationships of drugs and their effects were modelled in the form of 

the so-called Drug Effect Graph and used topological characteristics to identify ADE relations 

in Twitter (Eshleman and Singh, 2016). 

DL-based reasoning upon ontologies was applied in various cases (Vandervalk et al., 

2013) (Zhang et al., 2013) (Courtot et al., 2014) (Herrero-Zazo et al., 2015) (Souvignet et al., 

2016) (Lamy et al., 2017). In particular, combining the use of ontology reasoning (upon OAE 

and VO) with more traditional disproportionality measures like the Proportional Reporting 

Ratio (PRR) was used to analyse already identified ADEs and interrelate the statistic properties 
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of each signal with the categorical information provided by the respective ontologies 

(Sarntivijai et al., 2012) (Xie et al., 2016b) (Wang et al., 2017). A similar approach, combining 

ontology reasoning upon OAE interlinked with MedDRA and disproportionality analysis of 

SRS data (i.e. FAERS and VAERS) was presented in (Sarntivijai et al., 2016) and (Xie et al., 

2016a). 

Terminological reasoning was combined with ontologies and other statistical 

approaches, including disproportionality analysis. For example, an advanced association rule 

mining approach was presented for identifying causality between drugs and ADEs in FAERS 

(Cai et al., 2017). In particular, the Relative Reporting Ratio (RRR) was used to model 

confidence as defined in association rule mining, combined with terminological reasoning 

based on RxNorm and MedDRA upon FAERS data.  

ML was also identified as a prominent paradigm employed for knowledge elicitation. 

SVMs were used in several classification schemes (Huang et al., 2011) (Zhang et al., 2016) 

(Henriksson et al., 2016), while association rules were elicited and contextualized in (Koutkias 

et al., 2012) for ADE prevention based on EHR data. Vector-based similarity mechanisms were 

also extensively used, mostly for content-based document classification (Henriksson et al., 

2015) (Nikfarjam et al., 2015) (Cocos et al., 2017). For example, SemMedDB predicates (i.e., 

triplets in the form of subject-predicate-object) were modelled as vectors and used an SVM to 

classify concepts (Cohen and Widdows, 2017), while deep-learning neural networks were used 

to identify ADEs in Twitter (Cocos et al., 2017). A vector-based approach implemented pattern 

structures, in combination with the class hierarchies of three medical ontologies (ICD-9-CM, 

SNOMED-CT, and ATC), to mine association rules that characterize ADEs occurring in 

distinct patient subgroups (Personeni et al., 2017).  

Finally, a large-scale DDI prediction system relying on a large RDF knowledge base 

was developed upon vector-based as well as graph-based similarity metrics combined with 

terminological reasoning (Abdelaziz et al., 2017). 

Knowledge extraction 

The most widely used knowledge extraction approach refers to the use of NLP 

techniques applied on unstructured data, i.e. free-text, originated from biomedical literature, 

social media, clinical notes, etc., using various computational methods (including ML-based). 
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Relying on core NLP methods, the DrugNerAR system demonstrated its ability to 

identify drug mentions in biomedical literature for DDI identification (Segura-Bedmar et al., 

2010), and drug-gene relationships, extracted from MEDLINE (Xu and Wang, 2013). NLP was 

also used upon bibliographic data sources, storing a structured representation of plain text in a 

“parse tree database” for further elaboration and reasoning to identify DDIs (Tari et al., 2010). 

Notably, an alternative approach targeting social media took into account the 3 previous and 

the 3 next tokens to analyse each token in its context for identifying ADR mentions (Nikfarjam 

et al., 2015). Context-based semantic analysis across sentences improved the identification of 

ADRs in patient forums, using the NegEx tool and drug indications to filter out negated ADEs 

and drug indications, respectively (Liu and Chen, 2015). NLP was also applied on clinical notes 

to identify DDIs based on drug-gene relationships extracted from SemMedDB (Zhang et al., 

2014), while SemMedDB was also exploited for Literature Based Discovery aiming at signal 

assessment (Shang et al., 2014). Similarly, NLP was applied on the clinical notes of a large 

dataset, taking into account contextual information (i.e. temporal information and 

categorization in factual, hypothetical or negated sentence), to detect ADEs specific to 

antipsychotics and antidepressants (Iqbal et al., 2017). NLP was also applied on WikiPedia to 

identify drugs and conditions in the title of its articles, as well as links to other pages related to 

drugs, conditions and ADRs, aiming to construct a lexicon of ADR terms (Lowe et al., 2016).  

An alternative approach used topic modelling on free-text drug leaflets to generate novel 

hypotheses regarding DS (Bisgin et al., 2011). Topic modelling and sentiment polarity were 

used as contextual information regarding the identification of ADEs in Twitter (Eshleman and 

Singh, 2016). Ontology-assisted NLP was used to identify ADE mentions in free-text sources, 

i.e. medical case reports and literature, targeting at signal identification (Gurulingappa et al., 

2012). Finally, SPLs were used to extract information and integrate it in a large RDF graph 

(Boyce et al., 2013). 

On exploiting ML-based approaches, the SSEL-ADE framework relied on an SVM 

employing n-grams and graph-based metrics to identify ADE mentions in social media (Liu et 

al., 2018). N-gram models were used combining 3 SVM kernels and stacked generalization to 

improve the identification of DDIs in biomedical literature (He et al., 2013). An ensemble of 

ML methods was employed to identify DDIs in clinical narratives, taking into account 

contextual information for the analysis of each term (i.e., negation, speculation and temporality) 

(Henriksson et al., 2015) (Henriksson et al., 2016). Notably, third-party data sources were 
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integrated in one knowledge base combined with ML to identify ADEs in biomedical literature 

(Bravo et al., 2016). Interestingly, crowdsourcing was used to manually annotate a corpus of 

free-texts (in a reasonable time and without bias) to train the ML model. 

Knowledge integration 

WHO-ART and SNOMED-CT were mapped based on synonymy in the UMLS 

Metathesaurus to automatically generate definitions of WHO-ART terms in a DL formalism, 

i.e. the Web Ontology Language (OWL), aiming to identify WHO-ART terms that may be 

grouped together (Alecu et al., 2008). As the same medical condition may be coded with 

different terms in DS databases, it was assumed that such approach would enable to group 

similar terms and improve signal generation. As a next step in the same line of work, SNOMED-

CT was used to convert MedDRA to an OWL ontology, namely, OntoADR, which combined 

the semantics of MedDRA and SNOMED-CT (Bousquet et al., 2014), through a relational 

database implementation (Souvignet et al., 2016). 

Koutkias and Jaulent investigated the limitations of computational signal detection 

methods when applied on single data sources, and elaborated on multiple heterogeneous signal 

detection methods, data sources and other drug-related resources under a common, integrated 

framework (Koutkias and Jaulent, 2015). The framework relied on the Pharmacovigilance 

Signal Detection Ontology (PV-SDO) and a multiagent system, implementing a comprehensive 

workflow comprising of method selection and execution, as well as outcomes’ aggregation, 

filtering, ranking and annotation (Koutkias and Jaulent, 2016). 

Declerck et al. proposed an ontology-based abstraction layer called Common 

Information Model – CIM (Declerck et al., 2015). CIM was populated through software 

“bridges” based on mappings of local EHR databases to CIM, thus accommodating the 

dependencies of the overall framework on the local EHR data schemas. 

Furthermore, various data sources (SPLs, ADE information, clinical trials data, etc.) 

were integrated in a single knowledge graph based on common-terms matching and mappings 

to reference terminologies, in order to provide a unified and semantically enhanced knowledge 

base for information regarding drug products (Boyce et al., 2013).  

Considering the integration of biochemical data for DS, several sources such as UMLS, 

DrugBank, CTD and UniProt were integrated in one large RDF graph for ADR detection 
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(Abdelaziz et al., 2017). Several heterogeneous data sources were also integrated to interrelate 

biochemical and phenotypic information for predicting ADEs through an SP approach (Huang 

et al., 2011) (Cheng and Zhao, 2014). Furthermore, the Adverse Drug Reaction Classification 

System (ADReCS) combines a hierarchical structure of concepts (similar to the MedDRA 

structure) and integrates information from a large number of ADE and biochemical data 

sources, explorable through a Web interface for signal assessment (Cai et al., 2015). Similarly, 

DisGeNet is a comprehensive centralized repository created by integrating data from curated 

databases and two datasets obtained by mining the scientific literature (Piñero et al., 2017). It 

focuses on the associations between genes/variants and diseases. DS is one of DisGeNet’s main 

use cases and can also be considered as a large knowledge graph as it is also available in RDF 

format (Queralt-Rosinach et al., 2016). 

Regarding medication-based CDSSs, Koutkias et al. integrated various knowledge 

sources using the Computerized Interpretable Guideline (CIG) formalism (Koutkias et al., 

2012); they used meta-rules to integrate these sources and well-defined communication 

interfaces, in order to satisfy both performance requirements and also the need to obtain 

knowledge from third-party sources. In the same context, a combination of rule-based and 

ontology-based knowledge representation was developed to accommodate the need for 

integrating various data sources and also providing effective DSS support to prevent ADEs in 

a computationally effective manner (Doulaverakis et al., 2014). 

The D3 (Drug-drug interactions Discovery and Demystification) system aimed to infer 

MoAs for DDIs based on an integrated RDF schema of 12 biomedical resources and 15 DDI 

databases (Noor et al., 2016). Some data sources included data in RDF format obtained from 

Bio2RDF, which were semantically aligned through the use of UMLS and a set of specific 

relationships (e.g. “has indication”). Non-UMLS compatible data sources were also integrated 

via explicit database cross-references. 

The LAERTES knowledge base which was built in the context of the Observational 

Health Data Sciences and Informatics (OHDSI) collaborative (Knowledge Base workgroup of 

the Observational Health Data Sciences and Informatics (OHDSI) collaborative, 2017), 

integrated multiple data sources into a common knowledge schema for signal investigation, in 

compliance with the OMOP Common Data Model (CDM) (Boyce et al., 2014) (Voss et al., 

2017). 
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Knowledge representation 

Ontologies are the most commonly used knowledge representation formalism and, 

therefore, several ontologies were introduced targeting the domain of DS, mostly using OWL 

and RDF.  

As regards the ADE representation, OAE is the most prominent ontology. OAE is a 

community-based outcome, widely used to semantically categorize ADEs (He et al., 2014b). 

Respectively, VO is a community-based ontology used to semantically categorize vaccines (Lin 

and He, 2012) (Hur et al., 2012) (Zhang et al., 2013), typically used in combination with OAE. 

VO was also used in combination with the Time Event Ontology (TEO) which was developed 

to formally represent the time-oriented aspects of an ADE report (Tao et al., 2012), as time has 

been recognized as an important aspect of ADEs (Personeni et al., 2017) (Iqbal et al., 2017). 

VO and OAE were also used as the conceptual base of OVAE to depict relationships between 

vaccines, adverse events, and patient age groups (Marcos et al., 2013), in the context of the 

VIOLIN vaccine safety analysis system (He et al., 2014a), and to classify and update data 

regarding ADEs of Hepatitis vaccines (Xie and He, 2017). VO and OAE were referenced by 

OGSF, aiming to model the genetic susceptibility (or predisposition) to vaccine adverse events 

(Lin and He, 2014). Furthermore, ODNAE extends OAE to facilitate the analysis of drugs 

causing neuropathy adverse events (Guo et al., 2016). Similarly, OCVDAE extends OAE to 

facilitate the analysis of ADEs caused by cardiovascular drugs (Wang et al., 2017), and OCMR 

extends OAE to facilitate the comparative analysis of traditional Chinese drugs regarding 

rheumatism (Liu et al., 2017).  

Henegar et al. modelled MedDRA using DAML+OIL (OWL’s predecessor) to support 

automatic signal generation (Henegar et al., 2006). The same group created an OWL ontology 

to enrich the formal definitions of WHO-ART terms with associative relations provided by 

SNOMED-CT to support grouping of WHO-ART terms related to the same medical condition 

(Alecu et al., 2008) and, as a further step, presented an ontologized version of MedDRA, 

exploiting SNOMED-CT semantics (Bousquet et al., 2014). OWL was also used to model 

ADEs focusing on the patient’s medical history concepts and their time-related aspects 

(Ceusters et al., 2011). Moreover, the Adverse Event Reporting Ontology (AERO) was 

proposed by modelling case definitions related to adverse events following immunization to 

support the respective information processing workflow (Courtot et al., 2014). 
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In the scope of representing drug interactions, DIO models drug metabolic pathway 

related concepts, including information from organ to molecular level, supporting SP 

approaches (Arikuma et al., 2008). DEI models the interactions of drugs and enzymes, used to 

infer potential DDIs from biomedical literature (Zhang et al., 2016). DINTO provides a DDI 

classification schema and a conceptual model taking into account both the pharmacokinetic and 

pharmacodynamic aspects of DDIs (Herrero-Zazo et al., 2015). DINTO references OAE and 

integrates knowledge from other data sources (i.e. ChEBI, DrugBank, and SIDER) with no 

manual curation, following the NeOn KE methodology (Suárez-Figueroa et al., 2012). 

In a few cases, the RDF representation formalism was used without aiming to formulate 

a specific conceptual model; for example, HL7 messages were converted to RDF and integrated 

to a large RDF model to confirm that they could be used in the context of ADR detection 

(Kawazoe et al., 2016). 

Alternatively, relational databases were used as a knowledge base storage formalism, 

since they provide a mature data storage paradigm, able to support vast data storage in a 

computationally effective manner that is widely used in real-world enterprise systems. 

Compared to ontologies, relational databases are not specifically designed to support KE 

activities (e.g. automatic reasoning). On the other hand, while ontologies can support formal 

semantics and automatic reasoning given their underlying robust mathematical background, i.e. 

DL, the respective data storage systems are not yet mature enough and the automatic reasoning 

process is computationally expensive for large knowledge graphs, making relational databases 

a competing alternative for large knowledge bases. To this end, MEDLINE abstracts were used 

to extract knowledge on drug metabolism and interactions (storing the corresponding structured 

representation into a database in the form of a tree-structure representation) and queried to 

identify DDI mentions (Tari et al., 2010). SemMedDB contains statements in the form of triples 

(subject-predicate-object) extracted from MEDLINE and stored in a relational format (Zhang 

et al., 2014). MetaADEDB relies on a relational schema to integrate several heterogeneous data 

sources for DS (Cheng et al., 2013).  

Hybrid data storage approaches have been also proposed, using both relational and RDF 

formalisms. For example, LAERTES used relational databases as its basic data storage 

paradigm (Boyce et al., 2014) (Knowledge Base workgroup of the Observational Health Data 

Sciences and Informatics (OHDSI) collaborative, 2017). However, it also employs the Web 

Annotation Data Model (WADM), to enable “drill-down” into evidence supporting a statistic 
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measure of association between a drug and a Health Outcome of Interest (HOI) (e.g. a count, 

PRR, etc.). DisGeNet is also available both in relational and RDF version, accompanied by an 

ontology which defines its conceptual model.  

Impact of Knowledge Engineering on Drug Safety 

In this subsection, we highlight the contribution that the employed KE approaches have 

in DS core activities (Table 2). In particular, the emphasis is given on illustrating the value of 

adopting KE approaches for DS and their potential application in current DS practice. 

ADE information collection 

Currently, information collection methods to support routine DS activities (e.g. signal 

identification) are mostly focusing on SRS, bibliographic, and clinical trial data. In particular, 

bibliographic search is typically conducted manually by experts, requiring the formulation of 

the respective query (i.e. define the terms of interest, expand the query through synonyms, etc.), 

and the manual evaluation of the returned results based on expert tacit knowledge. On the other 

hand, via the formalization of knowledge in an explicit way, the use of KE tools can automate 

this process, facilitate the exploitation of new/emerging data sources, and reduce errors in the 

process. 

Bibliographic data sources were used to extract DDIs (Segura-Bedmar et al., 2010) (Tari 

et al., 2010) (He et al., 2013) and ADE mentions (Gurulingappa et al., 2012) (Kang et al., 2014). 

NLP combined with disproportionality analysis was used to identify DDIs in free-text clinical 

notes, concluding that the narrative part of EHRs can complement existing sources for post-

marketing DDI surveillance (Iyer et al., 2014). Similarly, clinical narratives were exploited for 

ADE identification (Zhang et al., 2014) (Henriksson et al., 2015). Notably, psychiatric clinical 

notes were used to identify ADEs achieving an F-score of 0.83 (Iqbal et al., 2017). EHR data 

were also used to generate ADE reports automatically, aiming to address ADE underreporting 

by clinicians (Declerck et al., 2015).  

Various studies exploited social media with promising results33. In particular, they were 

used to identify ADE mentions using various NLP techniques (Sarker and Gonzalez, 2015) 

                                                 
33 A relatively updated list of studies working on ADE extraction upon social media is presented in (Liu et al., 2018), regardless 

if they employ KE techniques or not. 
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(Nikfarjam et al., 2015), concluding that since the language used is highly informal, the use of 

context and sentiment analysis could further improve the results. A combination of statistical 

learning and semantic filtering improved the recognition of known ADRs in patient forums 

with precision ranging between 75% and 82% and recall between 56.5% and 65.3% (Liu and 

Chen, 2015). High accuracy in recognizing ADE mentions in two MedHealth forums and 

Twitter were also reported, with area under the curve (AUC) values of 84.5%, 77.3%, and 

84.5%, respectively (Liu et al., 2016). Finally, a graph-based inference approach combined with 

topic modelling and sentiment analysis identified adverse drug effect mentions in Twitter with 

precision exceeding 85% and F1 exceeding 81% (Eshleman and Singh, 2016). 

ADE detection 

Systematic approaches for knowledge extraction, integration and further processing 

(e.g. based on DL reasoning) demonstrated promising results on ADE detection. An exemplar 

implementation of in silico DDI prediction incorporating drug metabolic pathways and 

molecular events enabled the quantitative evaluation of drug interactions (Arikuma et al., 2008). 

A prototype implementation was able to quantitatively examine the effect of irinotecan-

ketoconazole interactions using numerical simulations. The extension of this method for other 

drug pairs as well as multiple drug interactions showed the potential to support computational 

DDI predictions using DIO. As a result, four potential drug interactions that involved 

cytochrome p450 (oxidation by CYP3A4) and drug binding reaction to albumin were 

automatically detected via DIO, while two of them had not been reported in the literature. DDIs 

were successfully identified (>75% according to the presented evaluation scheme) by modelling 

the behaviour of regulatory elements, particularly enzymes (Tari et al., 2010). Furthermore, live 

attenuated influenza vaccines were found to have lower chance of inducing Guillain-Barre 

Syndrome and paralysis than trivalent (killed) inactivated influenza vaccine (Sarntivijai et al., 

2012). 

Integrated knowledge bases created with the support of KE processes demonstrate 

remarkable results regarding ADE detection. The ability to identify ADEs through large-scale 

data integration in one knowledge base was demonstrated using MetaADEDB (Cheng et al., 

2013). Using FAERS as the gold standard during the evaluation process, MetaADEDB 

facilitated ADE detection (AUC value reported more than 0.9 by 10-fold cross validation and 

0.912 for external validation). Furthermore, the LAERTES knowledge base (Knowledge Base 

workgroup of the Observational Health Data Sciences and Informatics (OHDSI) collaborative, 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

79 
 

2017) was evaluated including positive and negative controls, illustrating an AUC value of 0.92 

(Voss et al., 2017). 

Notably, INferring Drug Interactions (INDI) inferred both pharmacokinetic and 

pharmacodynamic DDIs upon EHR data by applying ML on drug MoA similarity and their 

biochemical properties (Gottlieb et al., 2012). Its validation confirmed one of the predicted 

CYP-related DDIs using hospital data in Israel. Finally, Tiresias, a DDI prediction system 

relying on a large integrated RDF knowledge base, was successfully used to predict DDIs, 

identifying 68% of all DDIs found after 2011, using only information about DDIs present in 

the January 2011 version of DrugBank (Abdelaziz et al., 2017). 

ADE assessment 

ADE assessment mostly refers to the analysis of the underlying MoA as well as the 

comparative analysis of drugs. These activities typically require the integration of 

heterogeneous data sources, including biochemical and genetic information databases. 

Dynamic reconstruction of drug metabolic pathways from primitive molecular events 

using information modelled in DIO was conducted, showing that unknown potential pathways 

can be inferred through the combination of ontologies and rule-based inference (Arikuma et al., 

2008). Similarly, drug target information was used to identify clusters of similar DDI cases 

reported in FAERS and provide explanations for their MoA (Lin et al., 2010). The ability to 

interpret the MoA of the respective DDIs was demonstrated by exploiting drug metabolism 

knowledge encoded in the form of rules linking proteins and drugs via four types of 

relationships (i.e. metabolizes, induces, inhibits, regulates) (Tari et al., 2010). For each DDI 

identified, the respective triggered rules could be considered as a description of the respective 

MoA. Alternatively, a gene interaction graph regarding vaccines was built based on 

bibliographic data, and provided a method to identify genes potentially related with the ADE 

of fever (Hur et al., 2012). DIO drug-enzyme relationships were used to model the mechanism 

of drug metabolism for DDI detection in biomedical literature, achieving an F-measure of 

84.97% for drug-enzyme relationships recognition and 83.19% for DDI recognition against the 

“in vivo” dataset used for evaluation (Zhang et al., 2016). Finally, in the context of the eTOX 

project a Web application was presented, aiming to facilitate the exploration of a knowledge 

base regarding drugs, genes and compounds’ toxicity associations for investigating liver 

toxicity (Cañada et al., 2017). 
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An interesting contribution was the development of a semantics-enabled Web analytics 

tool, namely, the Case Series Characterization Tool (CSCT) (Yuksel et al., 2016). CSCT has 

been used to conduct observational studies and comparative drug analyses, exploiting the 

integration of semantically and syntactically heterogeneous data sources, addressed by an 

ontology-based data information model. The CSCT deployment was validated by PV 

researchers from both UMC and the Lombardy Regional Pharmacovigilance Centre. The main 

advantages of the presented approach are: (a) easier definition of analysis rules (since CIM 

semantics were independent of the underlying data sources’ syntactic or semantic schema), and 

(b) scalability of the proposed integration model due to semantic mediation of CIM as 

“whenever a new source or target content model is to be added, the required mapping to the 

CIM is added in linear time, without affecting the existing resources”. 

Another notable contribution of the reviewed studies concerns the semantic 

enhancement of widely used terminologies like MedDRA. OntoADR (semantically) enhanced 

MedDRA using knowledge from sources such as SNOMED-CT (Bousquet et al., 2014) 

(Souvignet et al., 2016). The “ontologization” of MedDRA could significantly benefit 

disproportionality analysis, data mining or other techniques used for post-marketing DS 

surveillance, since MedDRA taxonomic limitations can decrease the sensitivity and specificity 

of signals computed by automatic approaches (Bousquet et al., 2005a) (Bousquet et al., 2005b) 

(Yokotsuka et al., 2000).  

Furthermore, the use of ontologies and the reasoning capabilities that they offer 

facilitated ADE profiling. In particular, the semantics provided by OAE and VO or their 

extensions combined with statistical approaches (i.e. disproportionality analysis) against 

various DS data sources (i.e. FAERS, VAERS, drug package insert documents from the China 

Food and Drug Administration Website) were employed, in order to extract ontology-assisted 

ADE profiles and investigate the underlying MoAs (Wang et al., 2017) (Lin and He, 2012) 

(Guo et al., 2016) (Xie et al., 2016a) (Xie et al., 2016b). Some profiles were identified as novel, 

since they were not previously reported in the literature (e.g. ADE profiles regarding the M. 

bovis strain Bacillus Calmette - Guerin (Xie et al., 2016a)). Using this approach, two drug 

ingredient classes and three cardiovascular drug MoA classes were found to have statistically 

significant class effects on 13 AEs (Wang et al., 2017). The fact that valid, novel ADE profiles 

were automatically inferred and linked to specific MoAs through the use of ontologies, 

highlights the significance of adopting KE-based approaches in the context of DS. 
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Another significant contribution of the reviewed KE approaches regarding ADE 

assessment concerned the prioritization of ADE signals according to their importance. A 

normalized AERS dataset and the Common Terminology Criteria for Adverse Events (CTCAE) 

were used to prioritize DDI-induced ADEs identified in FAERS (according to their severity), 

as well as occurrences of medications and problems extracted from clinical notes from Mayo 

Clinic’s EHR (Jiang et al., 2015). This ontology-based approach facilitated automatic 

prioritization of DDIs related to Warfarin, Clopidogrel and Simvastatin, three frequently 

prescribed cardiovascular drugs. 

Finally, regarding the investigation of ADE MoAs, the D3 system uses a rule-base with 

9 rules corresponding to 9 different interaction mechanisms divided into 4 levels (Noor et al., 

2016): pharmacokinetic (protein binding, metabolic inhibition, metabolic induction, transporter 

inhibition, and transporter induction); pharmacodynamic (additive-enhancement and 

competition); pharmacogenetic (SNPs that may alter drug exposure); and multiple pathway 

interactions (MPIs). For example, when both drugs x and z share at least 1 enzyme y and 1 

transporter y2, then an MPI mechanism could be inferred and the rule would be “x 

metabolized_by y; x transported_by y2; z metabolized_by y; z transported_by y2”. The results 

of using such an inference mechanism included 85% recall rate and 61% precision rate in terms 

of the inference or lack of inference of DDI MoA explanations, for a random collection of 

interacting and noninteracting drug pairs, respectively.  

ADE prevention 

In the context of the ReMine project, an ontology was developed to support adverse 

event prevention and mitigation, in addition to detection and monitoring, based on the patient’s 

medical history (Ceusters et al., 2011). While the ReMine project aimed to better document 

adverse events and facilitate the development of mitigation and prevention strategies on the 

long term, others were aiming at real-time interventions. For example, in the context of the 

PSIP (Koutkias et al., 2012), Panacea (Doulaverakis et al., 2014) and E-pharmacovigilance 

(Neubert et al., 2013) projects, knowledge-based DSSs were developed for preventing ADEs 

in the clinical environment, taking into account hospital data and also focusing on the clinical 

context to address aspects such as over-alerting.  

A novel Web analytics platform aimed to facilitate clinicians to conduct comparative 

drug analysis for ADE prevention (Lamy et al., 2017). The proposed tool was based on 
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ontological reasoning, in order to classify information and highlight important relationships 

between drugs and ADEs. The tool was evaluated by 22 General Practitioners, demonstrating 

high rates of user acceptance. 

Interestingly, few works focused on “personalized” ADE prevention. In particular, an 

automatic technique to identify genes and drugs relationships was presented (Xu and Wang, 

2013), as well as a prototype implementation of a Web browser plugin providing personalized 

warnings for DDIs based on ontologies and Personal Health Record (PHR) data (Vandervalk et 

al., 2013). 

ADE monitoring 

ADE monitoring concerns the process of tracking the evolution of an ADE through time, 

mostly for epidemiological reasons. As this process is mostly relevant with statistical metrics, 

KE approaches are not expected to significantly contribute in that and, therefore, ADE 

monitoring was not one of the main focuses in the reviewed papers. Notably, only one of the 

selected papers explicitly referred to ADE monitoring as one of its key objectives, through 

secondary use of EHR data (Yuksel et al., 2016). 

ADE reporting 

ADE reporting can be defined as a bidirectional activity: (a) patients and healthcare 

professionals (HCPs) reporting potential ADRs to regulatory agencies and the pharma industry, 

and (b) drug monitoring organizations or regulatory agencies communicating DS-related 

information (e.g. new signals or confirmed ADRs) to HCPs and patients. Both reporting 

channels pose challenges, e.g. under-reporting towards drug monitoring agencies, ambiguity 

and vast amount of information communicated to patients and HCPs, etc. These reporting 

processes could significantly benefit from KE approaches; however, it seems that this DS 

activity does not receive much attention and can be identified as a “research gap” with a lot of 

room for progress. 

An open Web platform based on SPL information and other interlinked data sources 

was developed to support the dissemination of information regarding DS by exploiting 

comparative drug effectiveness among other information (Boyce et al., 2013). The targeted 

users were primarily clinicians and researchers. 
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An ontology-supported methodology for reporting adverse events following 

immunization to regulatory agencies according to the Brighton case definition was presented 

based on the AERO ontology (Courtot et al., 2014). The study demonstrated the feasibility of 

confirming automated diagnosis and concluded that a logical formalization of existing 

guidelines could improve reporting by identifying missing elements and enforcing consistency 

through standardization. The approach allows medical experts to prioritize reports and, 

therefore, such formalization may accelerate the identification of vaccine-induced ADRs and 

the response of regulatory agencies.  

Interestingly, the SALUS project developed an ontology-based approach to 

automatically generate ADE reports from EHR data in the E2B format (Declerck et al., 2015).  

Risk of bias  

Bias is defined as a “systematic error, or deviation from the truth, in results or 

inferences” (Altman et al., 2011). Risk of bias can refer to multiple aspects of the systematic 

review process and can be related with various causes (Drucker et al., 2016). For example, 

“evidence selection bias occurs when a systematic review does not identify all available data 

on a topic” and this “can arise from publication bias, where data from statistically significant 

studies are more likely to be published than those that are not statistically significant”. It should 

be clarified that bias does not refer to imprecision (e.g. due to the reviewing process inherent 

subjectivity, further discussed in subsection Limitations), but only refers to systematic error 

introduced by the systematic review protocol. 

Table 5 depicts the main bias sources and the way that our study protocol has mitigated 

the respective risks. It should be noted that bias risks have been investigated mostly in the 

context of clinical trials or similar interventions and this has also affected the widely accepted 

risks of bias as well as their reporting or mitigation mechanisms. As the presented review does 

not refer to a medical intervention, the respective bias risks and their effect on the presented 

study have been adapted accordingly. 

Table 5: Analysis of bias risks and mitigation measures employed in the current study. 

Bias risk Application in current study Reporting/Mitigation 

Selection bias: missing 

important research 

Our systematic review focuses on 

qualitative criteria which cannot be 

We employed two bibliographic 

repositories (namely, PubMed and Web 
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because it was not 

published due to bias 

(e.g. due to lack of 

statistical significance) 

statistically measured. Therefore, 

criteria like statistical significance 

could not affect our study and 

reporting tools like funnel plots are 

not applicable. However, indexing 

errors in the systematic review 

initial data source(s) could lead to 

missing potentially relevant articles. 

of Science), in order to mitigate the risk 

of missing articles due to indexing errors. 

Primary study bias: 

reviewed studies could 

be biased regarding the 

evaluation mechanism 

used, the presented 

findings, conclusions, 

etc. (a.k.a. reporting 

bias) 

Since there is no widely accepted 

methodology to publish the results 

of KE practices on DS application, 

the reviewed studies report results in 

an arbitrary manner that could 

indeed affect overall conclusions. 

Identified specific evaluation and 

reporting weaknesses that could imply 

bias in the systematic review evaluation 

criteria. The reviewed studies that have 

been identified to suffer from such 

reporting weaknesses correspond to 

62.5% of the selected articles. 

Competing interests: 

reviewed studies (or even 

the presented systematic 

review) could be 

sponsored by companies 

or have other ties to 

industry 

The authors of the presented 

systematic review do not have ties 

with industry or any other kind of 

relationship which could imply 

competing interests. Some reviewed 

articles originate from companies 

and, therefore, this kind of bias 

could have an implication in their 

reported outcomes. 

The industrial participation in the studies 

was identified as a specific evaluation 

criterion. More specifically, these studies 

correspond to 30% of the selected 

articles. 

 Discussion 

Drug safety encompasses all data gathering and processing activities related with the 

detection, assessment, understanding and prevention of adverse effects throughout the entire 

lifecycle of drugs (World Health Organization, 2002). In a pre-market setting, clinical trials of 

newly developed drugs constitute the main procedure for identifying ADRs resulting from their 

use. However, due to time constraints, the limited population size as well as potential bias, 

clinical trials do not enable the detection of all possible ADRs. Consequently, post-marketing 

surveillance is necessary to identify new or incompletely documented ADRs throughout the 

time a drug is actively prescribed (World Health Organization, 2008). 

Recently, several studies argued that data employed for DS should be extended from the 

traditional data sources, i.e. SRSs and bibliography, to observational healthcare databases and 

even social media platforms, while linkage with biochemical and genetic information would be 

desirable to provide MoA and may allow to identify more unexpected AEs. In order to achieve 

this advancement and take into account these requirements, DS monitoring organizations have 

to face new challenges, both scientific and technical, given that the above sources are not 

designed to serve DS aspects per se. In particular, there is an emerging need for high-throughput 
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computational methods that will enable, from the one hand, efficient data analysis and 

interpretation and, on the other hand, knowledge extraction, representation, exploitation and 

management (Koutkias and Jaulent, 2015). 

Up to now, the emphasis in computational DS surveillance was mostly given on data-

driven and statistics-based approaches. The current review focused on KE, a discipline of 

Computer Science which exploits methods for acquiring, representing and exploiting 

knowledge, having as its cornerstone well-defined formalisms and structures. The study 

illustrated the methods employed and the impact that current KE-based approaches have in DS, 

while also highlighting trends, limitations, as well as opportunities for further research. 

Summary of main findings 

The number of studies exploiting KE for DS increased constantly between 2006 and 

2017 (Figure 5C). The reviewed articles illustrated the interest in exploiting diverse data and 

knowledge sources as well as the application of various KE methods, spread across the entire 

spectrum of the core KE activities as defined in our study (in many cases targeting multiple KE 

activities). Interestingly, these studies targeted diverse DS aspects as well, including both core 

DS activities (i.e. ADE information collection, assessment, etc.) and DS topics of special 

interest (e.g. vaccine safety, drug interactions, etc.), according to our study context (Table 2). 

The distribution of authors across the globe (Figure 5B) illustrated an international 

interest in KE for DS. However, the relatively low contribution from DS monitoring 

organizations as well as healthcare organizations in research studies in the field (Figure 5A), 

could be attributed to the lack of the required KE-oriented technical expertise and, perhaps, to 

the reluctance in adopting technological paradigms that are not directly related with familiar 

approaches, e.g. statistical inference, disproportionality analysis, etc. This may also indicate a 

significant challenge for KE researchers in the domain to illustrate a major “success story”, 

which would disseminate the value of KE approaches in the context of DS and, therefore, 

facilitate their wider adoption. The reviewed studies illustrated mostly proof-of-concept 

outcomes, indicating that KE for DS is still in its infancy, especially regarding its application 

in routine DS activities. 

While wide interest in exploiting diverse as well as emerging data sources is apparent, 

it raises many challenges and room for further research. For example, the biological knowledge 
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underlying drug metabolism and pharmacological mechanisms has not been adequately 

elaborated to infer new causal relationships among drugs and effects. Besides polymorphic sites 

and alterations to gene expression, other molecular mechanisms, such as regulatory elements 

and epigenetic modifications, may have direct or indirect relationship with medication and 

consequently ADEs. Furthermore, standardisation of observational healthcare data is an issue 

(Koutkias, 2019). Common data models relying on reference terminologies, such as the OMOP 

CDM (Voss et al., 2015), may scale-up the applicability and the reproducibility of 

computational analysis methods in the domain. Despite the inherent noise and complexity in 

analysing social media content, this data source cannot be neglected due to its wide penetration 

in everyday life and its capacity to provide insights especially for rare health-related events 

(Klein et al., 2018). 

To a great extent, the reviewed studies relied on publicly available data, provided, for 

example, via PubMed/MEDLINE and FAERS. Nevertheless, important, systematically curated 

and rather new Linked Data infrastructures such as the EBI-RDF platform34 and 

OpenPHACTS35 are available, which were not adequately considered in the reviewed studies. 

In terms of knowledge sources, UMLS, MedDRA, ATC, SNOMED-CT and ICD were the most 

widely used terminologies, as these constitute reference and well-curated resources with 

varying granularity. With respect to ontologies, OAE, VO and GO were the most widely used, 

due to their rich content and relevance with DS. 

In terms of KE activities, knowledge extraction and knowledge representation were 

extensively elaborated, while the focus on knowledge dissemination was quite limited (Figure 

8). Similarly, ADE detection, information collection and assessment attracted most research 

efforts among the DS core activities, while signal detection, MoA analysis, and identification 

of drug interactions are the three most focused DS special topics. Contrariwise, the focus on 

ADE reporting is limited, and it can be identified as a gap for further research (Natsiavas et al., 

2018a). 

Regarding the employed KE methods, NLP-based as well as graph-based inference were 

employed in many studies, while DL-based inferencing was quite limited. Interestingly, few 

studies exploited temporal modelling or analysis, despite the fact that time is extremely useful 

                                                 
34 https://www.ebi.ac.uk/rdf/  

35 http://www.openphactsfoundation.org/  

https://www.ebi.ac.uk/rdf/
http://www.openphactsfoundation.org/
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in the assessment of potential DS signals. In addition, very few studies employed holistic KE 

methodologies based e.g. on ontology patterns, quality control frameworks, etc. Adopting 

methodologies such as MIRO (Matentzoglu et al., 2018), NeOn (Suárez-Figueroa et al., 2012), 

OQuaRE (Duque-Ramos et al., 2014)) and XOD (He et al., 2018), could reinforce the 

credibility and the completeness of future contributions in the domain. Furthermore, the lack of 

focus on knowledge dissemination approaches is also evident. 

Interestingly, some studies jointly exploited multiple data sources, illustrating, for 

example, the added value of KE methods regarding integration (Koutkias and Jaulent, 2016), 

as well as the interest for systematic linkage/modelling between the phenotype and elements of 

the genome/proteome that interact with the drug, and activated pathways to investigate the 

MoA. This need for a systematic approach facilitating the integration of low-level biochemical 

and genotypic information with phenotypic models applying the SP paradigm has been already 

identified as a research opportunity (He, 2016) (Herrero-Zazo et al., 2016) (Mager and Kimko, 

2016). While such models illustrated remarkable results, they were not fully exploiting the 

power of ontologies, as they are typically based on rules (at least partially) in order to model 

physiological, biological, or pharmacodynamic/pharmacokinetic processes, and not using 

reference ontological models depicting Systems Biology or SP concepts in a systematic manner. 

While such models were implemented with remarkable results, they were either not fully 

exploiting the power of ontologies as they were partly rule-based (e.g. (Noor et al., 2016)), or 

they partially relied on known drug MoA/SP models (Herrero-Zazo et al., 2016). Therefore, the 

holistic modelling of ADRs, combining the power of ontologies and DL reasoning with the 

mathematical or empirical models of pharmacokinetics and pharmacodynamics is a topic of 

open research. Such an approach could enable the integration of big data sources (via 

ontologies) with SP multi-scale models, to facilitate Precision Medicine. Well-promising 

results were obtained by combining statistical-based inference on report data and ontology-

based modelling and inference upon ADR characteristics and categories (Xie et al., 2016b); 

thus, this approach enhanced with SP models shall be considered also as a research opportunity 

and further elaborated by future studies. 

With respect to technical challenges, reasoning performance constitutes an important 

issue, especially when considering large-scale knowledge models. For example, in order to 

avoid multiple inheritance, OAE (a quite big, reference ontology in the domain) asserts only 

one parent term and allows the other parent term(s) to be obtained automatically by reasoning 
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(Xie et al., 2016b). Another example of compromising knowledge modelling in the sake of 

performance is the case of DINTO (Herrero-Zazo et al., 2015), where the ontology had to be 

simplified in order to be processed by existing reasoners. Thus, performance issues in DL 

reasoning software may be considered as a bottleneck for the real-world adoption of 

complex/large ontology models. 

In terms of evaluation, the results presented in many of the reviewed articles 

significantly depended on manual work (e.g. data curation, annotation, etc.), or they were 

obtained by engaging a small group of experts. In addition, many of the presented KE 

approaches were evaluated focusing on a narrower scope than the one presented as their main 

use case. Overall, shortcomings related to evaluation were the most frequent in the reviewed 

studies (Figure 11). 

Besides weaknesses/challenges, some remarkable outcomes reported in the reviewed 

studies include: 

1) An improvement in ADR prediction by exploiting biomolecular functional network data in 

the context of clinical trials (Huang et al., 2011). 

2) An ontologized version of MedDRA which can facilitate grouping of ADRs that correspond 

to the same medical condition (Bousquet et al., 2014). 

3) The successful incorporation of contextualized, medication safety related CDSSs in 

commercial products (an EHR and a Computerized Physician Order Entry (CPOE) system) 

(Koutkias et al., 2012). 

4) A semantic interoperability platform automatically generating ADE reports from EHR data, 

aiming to address underreporting by clinicians (Declerck et al., 2015) (Yuksel et al., 2016). 

5) The successful identification of adverse drug effect mentions in Twitter with precision 

exceeding 85% and F1 exceeding 81% (Eshleman and Singh, 2016). 

6) The automatic detection of two novel drug interactions involving cytochrome p450 

(CYP3A4) and albumin as potential drug interaction proteins from DIO (Arikuma et al., 

2008). 

7) The conclusion that live attenuated influenza vaccines have lower chance of inducing 

Guillain-Barre Syndrome and paralysis than trivalent (killed) inactivated influenza vaccine 

(Sarntivijai et al., 2012). 

8) The extraction of novel, ontology-assisted ADE profiles regarding the M. bovis strain 

Bacillus Calmette – Guerin (Xie et al., 2016b). 
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9) A Web analytics platform relying on ontological reasoning, facilitating clinicians to conduct 

comparative drug analyses based on advanced and user-friendly analytics regarding ADEs 

and contraindications (Lamy et al., 2017). 

10) An ontology-supported methodology for reporting ADRs to regulatory agencies, 

demonstrating automated diagnosis confirmation (through standardization) and 

improvement in the reporting process (Courtot et al., 2014). 

To this end, Figure 12 illustrates the identified advancements of the data-driven 

perspective in DS through KE with respect to methods, enabling technologies, and exemplar 

applications. 

 

Figure 12: Advancing the data-driven perspective in DS through KE: methods, enabling 

technologies, and exemplar applications. 

Applications in routine DS practice 

Employing ICT tools in routine DS practice conducted by hospitals, pharmaceutical 

companies, Contract Research Organizations (CROs) as well as drug regulatory organizations, 

imposes major challenges (Lu, 2009). In this subsection, we highlight the reviewed studies 

explicitly focusing on practical applications engaged with real-world environments as part of 

their pilot or validation phase.  
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The knowledge components of the CDSS developed in the PSIP project were based on 

EHR data obtained from three European countries (Koutkias et al., 2012). The CDSS was 

connected to the respective Hospital Information Systems (HIS) to identify and prevent 

potential ADEs. PSIP elaborated on contextualizing the CDSS knowledge in the particular local 

setting, such as the hospital/clinic and the targeted users. For example, in order to avoid over-

alerting, alert generation was based on thresholds considering the statistical significance of each 

ADE rule in each particular clinical site. In addition, clinicians (both hospital pharmacists and 

medical doctors) were engaged in the system design and evaluation. The electronic service for 

DDI and ADE prevention during medication prescription of the Panacea CDSS was evaluated 

using patient data from a public hospital in Thessaloniki, Greece (Doulaverakis et al., 2014). 

Similarly, the E-pharmacovigilance system was deployed through a Web interface to present 

DS data to treating physicians (paediatric and internal medicine inpatient clinics from the 

University Hospital of Erlangen-Nurnberg) within the local HIS (Neubert et al., 2013). 

The SALUS project focused on a practical implementation to automatically produce 

ADE reports based on real-world clinical data in two pilot sites (a regional clinical data 

warehouse maintained in Lombardy Region, Italy and the commercial EHR system in 

Uniklinikum Dresden, Germany) (Declerck et al., 2015). Notably, SALUS developed a signal 

analysis tool, which was validated by DS experts in pragmatic cases (Yuksel et al., 2016). 

Finally, a visual analytics platform to support comparative drug studies was deployed and 

evaluated by clinicians to assess the physician’s decision whether to consider the new drug for 

future prescriptions (Lamy et al., 2017). 

It is clear that most KE approaches are currently in an experimental phase and have not 

yet entered routine DS practice beyond pilots, due to technical challenges (e.g. automated 

reasoning upon big data volumes is computationally ineffective), or procedural/organizational 

challenges (e.g. need of clear evidence regarding CDSS performance, need to validate the 

respective knowledge data sources, etc.). The DS-related routine procedures which could be 

improved via KE-oriented applications can be summarized as follows: (a) DS procedures 

applied in the clinical environment to report and/or prevent ADEs, (b) DS-related information 

assessment and dissemination from the drug regulatory organizations point of view, and (c) 

assessment of potential signals in clinical trials of new drugs. The practical challenges of these 

processes in each context have already been highlighted. Notably, clinicians do not feel 

confident about the currently applied DS procedures (Vallano et al., 2015), while the need for 
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better and more active DS surveillance has been identified by both drug regulatory 

organizations (Weaver et al., 2008) and the industry (Lu, 2009). 

The use of KE technologies like the use of the Semantic Web and Linked Data 

paradigms could significantly facilitate information and knowledge extraction, integration, 

elicitation and dissemination and, therefore, accommodate the imposed challenges on routine 

DS tasks. The main advantages of using KE approaches in real-world DS applications could be 

summarized as following:  

(a) Information linking could be significantly improved and automated, reducing the need 

for manual data exploration through automatic processing. 

(b) Semantic enhancement of already established information processing workflows 

(typically based on statistical measures like disproportionality analysis). The already 

established statistical processing could be combined with well-defined knowledge 

sources and their semantics to improve outcomes (e.g. regarding causality assessment). 

(c) Error prevention could be facilitated by integrating different data sources to be used as 

control sources, in order to prevent false positives, over-alerting etc. 

(d) Process acceleration as KE approaches could save a lot of time via (semi)-automatic 

data retrieval and interlinking. 

The above advantages advocate for more intense research in the domain, in order to 

increase the level of maturity, which is necessary to employ KE approaches in routine DS 

practice. 

Limitations 

The main source of limitation for the current study concerns the risk of bias. As 

explained in subsection Risk of bias, our analysis considered such risks and followed specific 

mitigation actions to eliminate them. Subjectivity in the review process as well as in the 

definition of the domain is a significant issue for review studies. We believe that the 

participation of domain experts in our study, the employment of an appropriate conflict 

resolution protocol, as well as the adoption of reference definitions (e.g. to establish the analysis 

criteria) significantly reduced this issue. However, some risk inevitably remains; for example, 

in the paper submission phase we realized that one relevant paper was not included in our study 

(Bean et al., 2017), because we did not include the term “Knowledge Graph” (a term recently 
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coined in the domain of KE) in our query terms. In addition, given that our query for article 

retrieval was focused on DS per se, some interesting resources that could be of wider scope, 

and not explicitly targeting or being used for DS, have not been considered in our study. 

Conclusions 

Computational methods in the domain of DS have been primarily data-driven. However, 

in the era of big data, data heterogeneity and complexity hamper the application of these 

methods at large scale and across data sources. In order to overcome these shortcomings, an 

increasing number of studies employ KE methods and tools. Especially as semantic 

technologies and standards evolve and KE approaches gain awareness, the potential of 

enriching the traditional data analytics approaches for DS with knowledge-based components 

becomes stronger. 

Along this perspective, this review highlighted exemplar research efforts by presenting 

a variety of knowledge-intensive activities applied in the DS field, such as normalization of DS 

data, integration of data from heterogeneous sources, the use of semantic models and 

terminologies to facilitate signal detection, and semantic processing of DS data, to name a few. 

In addition, we referred to a number of knowledge-based tools and platforms that have been 

employed to reinforce DS and support ADR detection, contextualized ADE prevention, and 

large-scale, semantically-enriched combinatorial signal detection. Through the conducted 

analysis, our study illustrated the contribution, the complementarity as well as the advances that 

KE-based approaches may bring to traditional data analytics applied in DS. 

Despite the increasing number of studies exploiting KE for DS, the lack of a major 

“success-story” – beyond proof-of-concept – is apparent. This constitutes a significant 

challenge for researchers in the domain, that have to respond to, if they wish to foster the value 

of KE approaches in the context of DS and, therefore, facilitate their wider adoption by DS 

stakeholders. Although few studies reached or explicitly focused on routine DS practice, we 

argue that engaging KE methods in established DS processes can substantially contribute in the 

development of an advanced, continuous learning health system (Friedman et al., 2015), which 

is necessary for efficient DS surveillance. Finally, we suggest that the use of KE approaches, 

e.g. ontologies, in combination with pharmacokinetics and pharmacodynamics models could 

facilitate the construction of an SP framework able to provide a pathway towards Precision 

Medicine exploiting real-world evidence (Helmlinger et al., 2017) (Caudle et al., 2016). 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

93 
 

 Conflict of Interest 

The authors declare that the research was conducted in the absence of any commercial 

or financial relationships that could be construed as a potential conflict of interest. 

 Author Contributions 

VK and MCJ conceived the study in the scope of the SAFER project. VK supervised 

the study, defined the search protocol and executed the queries against the two data sources (i.e. 

PubMed and Web of Science). PN and VK defined the inclusion/exclusion rules. PN, VK and 

AM independently reviewed all the obtained articles, while CB and MCJ contributed in conflict 

resolution. The analysis criteria were initially defined by VK, progressively refined by PN and 

reviewed by AM, CB and MCJ. PN performed the data analysis and published the online 

interactive analytics graphs. AM provided expertise on biochemical/genetic data sources. All 

the authors contributed in the interpretation of the study findings and in writing the manuscript. 

All the authors reviewed and approved the content of the manuscript. 

 Funding 

This research has been co-financed by the European Union and Greek national funds 

through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the 

call RESEARCH – CREATE – INNOVATE (project code: Τ1EDK-03789). 

The study relied also on material and research outcomes supported by a Marie Curie 

Intra European Fellowship project awarded to the corresponding author within the 7th European 

Community Framework Programme FP7/2007-2013 under REA grant agreement 330422 – the 

SAFER project. 

 References 

Abdelaziz, I., Hassanzadeh, O., Zhang, P., and Sadoghi, M. (2017). Large-scale structural and 

textual similarity-based mining of knowledge graph to predict drug–drug interactions. 

Web Semant. Sci. Serv. Agents World Wide Web 44, 104–117. 

doi:10.1016/J.WEBSEM.2017.06.002. 

Adverse Drug Events | health.gov Available at: https://health.gov/our-work/health-care-

quality/adverse-drug-events [Accessed July 9, 2020]. 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

94 
 

Alecu, I., Bousquet, C., and Jaulent, M.-C. (2008). A case report: using SNOMED CT for 

grouping Adverse Drug Reactions Terms. BMC Med. Inform. Decis. Mak. 8 Suppl 1, S4. 

doi:10.1186/1472-6947-8-S1-S4. 

Altman, D., Antes, G., Gøtzsche, P., Higgins, J., Jüni, P., Lewis, S., et al. (2011). “Assessing 

risk of bias in included studies,” in Cochrane Handbook for Systematic Reviews of 

Interventions Version 5.1.0, eds. J. P. Higgins, D. G. Altman, and J. A. Sterne Available 

at: www.handbook.cochrane.org. 

Arikuma, T., Yoshikawa, S., Azuma, R., Watanabe, K., Matsumura, K., and Konagaya, A. 

(2008). Drug interaction prediction using ontology-driven hypothetical assertion 

framework for pathway generation followed by numerical simulation. BMC 

Bioinformatics 9 Suppl 6, S11. doi:10.1186/1471-2105-9-S6-S11. 

Audeh, B., Beigbeder, M., Zimmermann, A., Jaillon, P., and Bousquet, C. (2017). Vigi4Med 

Scraper: A Framework for Web Forum Structured Data Extraction and Semantic 

Representation. PLoS One 12, e0169658. doi:10.1371/journal.pone.0169658. 

Baader, F., Horrocks, I., and Sattler, U. (2004). “Description Logics,” in Handbook on 

Ontologies, eds. S. Staab and R. Studer (Berlin, Heidelberg: Springer Berlin Heidelberg), 

3–28. doi:10.1007/978-3-540-24750-0_1. 

Bai, J. P. F., Fontana, R. J., Price, N. D., and Sangar, V. (2014). Systems pharmacology 

modeling: an approach to improving drug safety. Biopharm. Drug Dispos. 35, 1–14. 

doi:10.1002/bdd.1871. 

Bean, D. M., Wu, H., Iqbal, E., Dzahini, O., Ibrahim, Z. M., Broadbent, M., et al. (2017). 

Knowledge graph prediction of unknown adverse drug reactions and validation in 

electronic health records. Sci. Rep. 7, 16416. doi:10.1038/s41598-017-16674-x. 

Bernonville, S., Guillot, B., Pedersen, H. G., Koutkias, V., and Beuscart, R. (2013). The PSIP 

project for Adverse Drug Events prevention. IRBM 34, 263–266. 

doi:10.1016/J.IRBM.2013.09.001. 

Bhatt, D. L., and Mehta, C. (2016). Adaptive Designs for Clinical Trials. N. Engl. J. Med. 

375, 65–74. doi:10.1056/NEJMra1510061. 

Birtwistle, M. R., Hansen, J., Gallo, J. M., Muppirisetty, S., Ung, P. M.-U., Iyengar, R., et al. 

(2016). “Systems Pharmacology: An Overview,” in Systems Pharmacology and 

Pharmacodynamics, eds. D. E. Mager and H. H. C. Kimko (Springer, Cham), 53–80. 

doi:10.1007/978-3-319-44534-2_4. 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

95 
 

Bisgin, H., Liu, Z., Fang, H., Xu, X., and Tong, W. (2011). Mining FDA drug labels using an 

unsupervised learning technique--topic modeling. BMC Bioinformatics 12 Suppl 10, 

S11. doi:10.1186/1471-2105-12-S10-S11. 

Bjørnson, F. O., and Dingsøyr, T. (2008). Knowledge management in software engineering: 

A systematic review of studied concepts, findings and research methods used. Inf. Softw. 

Technol. 50, 1055–1068. doi:10.1016/J.INFSOF.2008.03.006. 

Boland, M. R., Jacunski, A., Lorberbaum, T., Romano, J. D., Moskovitch, R., and Tatonetti, 

N. P. (2016). Systems biology approaches for identifying adverse drug reactions and 

elucidating their underlying biological mechanisms. Wiley Interdiscip. Rev. Syst. Biol. 

Med. 8, 104–22. doi:10.1002/wsbm.1323. 

Bousquet, C., Henegar, C., Lillo-Le Louët, A., Degoulet, P., and Jaulent, M.-C. (2005a). 

Implementation of automated signal generation in pharmacovigilance using a 

knowledge-based approach. Int. J. Med. Inform. 74, 563–571. 

doi:10.1016/j.ijmedinf.2005.04.006. 

Bousquet, C., Lagier, G., Lillo-Le Louët, A., Le Beller, C., Venot, A., and Jaulent, M.-C. 

(2005b). Appraisal of the MedDRA conceptual structure for describing and grouping 

adverse drug reactions. Drug Saf. 28, 19–34. doi:10.2165/00002018-200528010-00002. 

Bousquet, C., Sadou, É., Souvignet, J., Jaulent, M.-C., and Declerck, G. (2014). Formalizing 

MedDRA to support semantic reasoning on adverse drug reaction terms. J. Biomed. 

Inform. 49, 282–291. doi:10.1016/j.jbi.2014.03.012. 

Boyce, R. D., Horn, J. R., Hassanzadeh, O., Waard, A. de, Schneider, J., Luciano, J. S., et al. 

(2013). Dynamic enhancement of drug product labels to support drug safety, efficacy, 

and effectiveness. J. Biomed. Semantics 4, 5. doi:10.1186/2041-1480-4-5. 

Boyce, R. D., Ryan, P. B., Norén, G. N., Schuemie, M. J., Reich, C., Duke, J., et al. (2014). 

Bridging Islands of Information to Establish an Integrated Knowledge Base of Drugs and 

Health Outcomes of Interest. Drug Saf. 37, 557–567. doi:10.1007/s40264-014-0189-0. 

Bravo, À., Li, T. S., Su, A. I., Good, B. M., and Furlong, L. I. (2016). Combining machine 

learning, crowdsourcing and expert knowledge to detect chemical-induced diseases in 

text. Database (Oxford). 2016. doi:10.1093/database/baw094. 

Brosch, S., de Ferran, A.-M., Newbould, V., Farkas, D., Lengsavath, M., and Tregunno, P. 

(2019). Establishing a Framework for the Use of Social Media in Pharmacovigilance in 

Europe. Drug Saf., 1–10. doi:10.1007/s40264-019-00811-8. 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

96 
 

Cai, M.-C., Xu, Q., Pan, Y.-J., Pan, W., Ji, N., Li, Y.-B., et al. (2015). ADReCS: an ontology 

database for aiding standardization and hierarchical classification of adverse drug 

reaction terms. Nucleic Acids Res. 43, D907–D913. doi:10.1093/nar/gku1066. 

Cai, R., Liu, M., Hu, Y., Melton, B. L., Matheny, M. E., Xu, H., et al. (2017). Identification of 

adverse drug-drug interactions through causal association rule discovery from 

spontaneous adverse event reports. Artif. Intell. Med. 76, 7–15. 

doi:10.1016/j.artmed.2017.01.004. 

Cañada, A., Capella-Gutierrez, S., Rabal, O., Oyarzabal, J., Valencia, A., and Krallinger, M. 

(2017). LimTox: a web tool for applied text mining of adverse event and toxicity 

associations of compounds, drugs and genes. Nucleic Acids Res. 45, W484–W489. 

doi:10.1093/nar/gkx462. 

Caudle, K. E., Gammal, R. S., Whirl-Carrillo, M., Hoffman, J. M., Relling, M. V, and Klein, 

T. E. (2016). Evidence and resources to implement pharmacogenetic knowledge for 

precision medicine. Am. J. Health. Syst. Pharm. 73, 1977–1985. 

doi:10.2146/ajhp150977. 

Ceusters, W., Capolupo, M., de Moor, G., Devlies, J., and Smith, B. (2011). An evolutionary 

approach to realism-based adverse event representations. Methods Inf. Med. 50, 62–73. 

doi:10.3414/ME10-02-0016. 

Cheng, F., Li, W., Wang, X., Zhou, Y., Wu, Z., Shen, J., et al. (2013). Adverse Drug Events: 

Database Construction and in Silico Prediction. J. Chem. Inf. Model. 53, 744–752. 

doi:10.1021/ci4000079. 

Cheng, F., and Zhao, Z. (2014). Machine learning-based prediction of drug-drug interactions 

by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J. Am. 

Med. Inform. Assoc. 21, 278–86. doi:10.1136/amiajnl-2013-002512. 

Cocos, A., Fiks, A. G., and Masino, A. J. (2017). Deep learning for pharmacovigilance: 

recurrent neural network architectures for labeling adverse drug reactions in Twitter 

posts. J. Am. Med. Informatics Assoc. 24, 813–821. doi:10.1093/jamia/ocw180. 

Cohen, T., and Widdows, D. (2017). Embedding of semantic predications. J. Biomed. Inform. 

68, 150–166. doi:10.1016/j.jbi.2017.03.003. 

Collins, F. S., and Varmus, H. (2015). A New Initiative on Precision Medicine. N. Engl. J. 

Med. 372, 793–795. doi:10.1056/NEJMp1500523. 

Coloma, P. M., Schuemie, M. J., Trifirò, G., Gini, R., Herings, R., Hippisley-Cox, J., et al. 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

97 
 

(2011). Combining electronic healthcare databases in Europe to allow for large-scale 

drug safety monitoring: the EU-ADR Project. Pharmacoepidemiol. Drug Saf. 20, 1–11. 

doi:10.1002/pds.2053. 

Council for International Organizations of Medical Sciences (CIOMS) (2010). Practical 

Aspects of Signal Detection in Pharmacovigilance, Council for International 

Organizations of Medical Sciences. Report of CIOMS Working Group VIII. 1st ed. 

Geneva: CIOMS Available at: http://www.cioms.ch/index.php/publications/available-

publications/540/view/54/other/27/practical-aspects-of-signal-detection-in-

pharmacovigilance-report-of-cioms-working-group-viii. 

Courtot, M., Brinkman, R. R., and Ruttenberg, A. (2014). The logic of surveillance 

guidelines: An analysis of vaccine adverse event reports from an ontological perspective. 

PLoS One. doi:10.1371/journal.pone.0092632. 

Declerck, G., Hussain, S., Daniel, C., Yuksel, M., Laleci, G. B., Twagirumukiza, M., et al. 

(2015). Bridging Data Models and Terminologies to Support Adverse Drug Event 

Reporting Using EHR Data. Methods Inf. Med. 54, 24–31. doi:10.3414/ME13-02-0025. 

Doulaverakis, C., Nikolaidis, G., Kleontas, A., and Kompatsiaris, I. (2014). Panacea, a 

semantic-enabled drug recommendations discovery framework. J. Biomed. Semantics 5, 

13. doi:10.1186/2041-1480-5-13. 

Drucker, A. M., Fleming, P., and Chan, A.-W. (2016). Research Techniques Made Simple: 

Assessing Risk of Bias in Systematic Reviews. J. Invest. Dermatol. 136, 109–114. 

doi:10.1016/J.JID.2016.08.021. 

Dupuch, M., and Grabar, N. (2015). Semantic distance-based creation of clusters of 

pharmacovigilance terms and their evaluation. J. Biomed. Inform. 54, 174–185. 

doi:10.1016/J.JBI.2014.11.007. 

Duque-Ramos, A., Boeker, M., Jansen, L., Schulz, S., Iniesta, M., and Fernández-Breis, J. T. 

(2014). Evaluating the Good Ontology Design Guideline (GoodOD) with the ontology 

quality requirements and evaluation method and metrics (OQuaRE). PLoS One 9, 

e104463. doi:10.1371/journal.pone.0104463. 

Eshleman, R., and Singh, R. (2016). Leveraging graph topology and semantic context for 

pharmacovigilance through twitter-streams. BMC Bioinformatics 17, 335. 

doi:10.1186/s12859-016-1220-5. 

Ferner, R. E., and McGettigan, P. (2018). Adverse drug reactions. BMJ 363, k4051. 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

98 
 

doi:10.1136/BMJ.K4051. 

Formica, D., Sultana, J., Cutroneo, P., Lucchesi, S., Angelica, R., Crisafulli, S., et al. (2018). 

The economic burden of preventable adverse drug reactions: a systematic review of 

observational studies. Expert Opin. Drug Saf. 17, 681–695. 

doi:10.1080/14740338.2018.1491547. 

Fox, J. (1984). A short account of Knowledge Engineering. Knowl. Eng. Rev. 1, 4. 

doi:10.1017/S0269888900000424. 

Friedman, C. P., Rubin, J., Brown, J., Buntin, M., Corn, M., Etheredge, L., et al. (2015). 

Toward a science of learning systems: A research agenda for the high-functioning 

Learning Health System. J. Am. Med. Informatics Assoc. 22, 43–50. 

doi:10.1136/amiajnl-2014-002977. 

Friedman, L. M., Furberg, C. D., and Demets, D. L. (2010). Fundamentals of clinical trials. 

Springer New York doi:10.1007/978-1-4419-1586-3. 

Gagne, J. J., Rassen, J. A., Walker, A. M., Glynn, R. J., and Schneeweiss, S. (2012). Active 

safety monitoring of new medical products using electronic healthcare data:  selecting 

alerting rules. Epidemiology 23, 238–46. doi:10.1097/EDE.0b013e3182459d7d. 

Gottlieb, A., Stein, G. Y., Oron, Y., Ruppin, E., and Sharan, R. (2012). INDI: a computational 

framework for inferring drug interactions and their associated recommendations. Mol. 

Syst. Biol. 8, 592. doi:10.1038/msb.2012.26. 

Grant, M. J., and Booth, A. (2009). A typology of reviews: an analysis of 14 review types and 

associated methodologies. Health Info. Libr. J. 26, 91–108. doi:10.1111/j.1471-

1842.2009.00848.x. 

Gruber, T. (2009). “Ontology,” in Encyclopedia of Database Systems, eds. Liu Ling and M. 

T. Özsu (Boston, MA: Springer US), 1963–1965. doi:10.1007/978-0-387-39940-9_1318. 

Guidance for Industry Internet/Social Media Platforms with Character Space Limitations-

Presenting Risk and Benefit Information for Prescription Drugs and Medical Devices 

(2014). Available at: http://www.fda.gov/Drugs/GuidanceComplianceRegulator. 

Guo, A., Racz, R., Hur, J., Lin, Y., Xiang, Z., Zhao, L., et al. (2016). Ontology-based 

collection, representation and analysis of drug-associated neuropathy adverse events. J. 

Biomed. Semantics 7, 29. doi:10.1186/s13326-016-0069-x. 

Gurulingappa, H., Mateen-Rajput, A., and Toldo, L. (2012). Extraction of potential adverse 

drug events from medical case reports. J. Biomed. Semantics 3, 15. doi:10.1186/2041-



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

99 
 

1480-3-15. 

Harpaz, R., Callahan, A., Tamang, S., Low, Y., Odgers, D., Finlayson, S., et al. (2014). Text 

mining for adverse drug events: the promise, challenges, and state of the art. Drug Saf. 

37, 777–790. doi:10.1007/s40264-014-0218-z. 

Harpaz, R., DuMouchel, W., Shah, N. H., Madigan, D., Ryan, P., and Friedman, C. (2012). 

Novel Data Mining Methodologies for Adverse Drug Event Discovery and Analysis. 

Clin. Pharmacol. Ther. 91, 1010–1021. doi:10.1038/clpt.2012.50. 

Hauben, M., and Norén, G. N. (2010). A Decade of Data Mining and Still Counting. Drug 

Saf. 33, 527–534. doi:10.2165/11532430-000000000-00000. 

He, L., Yang, Z., Zhao, Z., Lin, H., and Li, Y. (2013). Extracting drug-drug interaction from 

the biomedical literature using a stacked generalization-based approach. PLoS One 8, 

e65814. doi:10.1371/journal.pone.0065814. 

He, Y. (2016). Ontology-based Vaccine and Drug Adverse Event Representation and Theory-

guided Systematic Causal Network Analysis toward Integrative Pharmacovigilance 

Research. Curr. Pharmacol. reports 2, 113–128. doi:10.1007/s40495-016-0055-0. 

He, Y., Racz, R., Sayers, S., Lin, Y., Todd, T., Hur, J., et al. (2014a). Updates on the web-

based VIOLIN vaccine database and analysis system. Nucleic Acids Res. 42, D1124-32. 

doi:10.1093/nar/gkt1133. 

He, Y., Sarntivijai, S., Lin, Y., Xiang, Z., Guo, A., Zhang, S., et al. (2014b). OAE: The 

Ontology of Adverse Events. J. Biomed. Semantics 5, 29. doi:10.1186/2041-1480-5-29. 

He, Y., Xiang, Z., Zheng, J., Lin, Y., Overton, J. A., and Ong, E. (2018). The eXtensible 

ontology development (XOD) principles and tool implementation to support ontology 

interoperability. J. Biomed. Semantics 9, 3. doi:10.1186/s13326-017-0169-2. 

Helmlinger, G., Al-Huniti, N., Aksenov, S., Peskov, K., Hallow, K. M., Chu, L., et al. (2017). 

Drug-disease modeling in the pharmaceutical industry - where mechanistic systems 

pharmacology and statistical pharmacometrics meet. Eur. J. Pharm. Sci. 109, S39–S46. 

doi:10.1016/J.EJPS.2017.05.028. 

Henegar, C., Bousquet, C., Lillo-Le Louët, A., Degoulet, P., and Jaulent, M.-C. (2006). 

Building an ontology of adverse drug reactions for automated signal generation in 

pharmacovigilance. Comput. Biol. Med. 36, 748–767. 

doi:10.1016/j.compbiomed.2005.04.009. 

Henriksson, A., Kvist, M., Dalianis, H., and Duneld, M. (2015). Identifying adverse drug 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

100 
 

event information in clinical notes with distributional semantic representations of 

context. J. Biomed. Inform. 57, 333–349. doi:10.1016/j.jbi.2015.08.013. 

Henriksson, A., Zhao, J., Dalianis, H., and Boström, H. (2016). Ensembles of randomized 

trees using diverse distributed representations of clinical events. BMC Med. Inform. 

Decis. Mak. 16 Suppl 2, 69. doi:10.1186/s12911-016-0309-0. 

Herrero-Zazo, M., Segura-Bedmar, I., Hastings, J., and Martínez, P. (2015). DINTO: Using 

OWL Ontologies and SWRL Rules to Infer Drug–Drug Interactions and Their 

Mechanisms. J. Chem. Inf. Model. 55, 1698–1707. doi:10.1021/acs.jcim.5b00119. 

Herrero-Zazo, M., Segura-Bedmar, I., and Martínez, P. (2016). Conceptual models of drug-

drug interactions: A summary of recent efforts. Knowledge-Based Syst. 114, 99–107. 

doi:10.1016/j.knosys.2016.10.006. 

Hogan, W. R., Hanna, J., Hicks, A., Amirova, S., Bramblett, B., Diller, M., et al. (2017). 

Therapeutic indications and other use-case-driven updates in the drug ontology: anti-

malarials, anti-hypertensives, opioid analgesics, and a large term request. J. Biomed. 

Semantics 8, 10. doi:10.1186/s13326-017-0121-5. 

Hrmark, L., and Van Grootheest, K. (2012). Web-based intensive monitoring: From passive 

to active drug surveillance. Expert Opin. Drug Saf. 11, 45–51. 

doi:10.1517/14740338.2012.629184. 

Huang, L.-C., Wu, X., and Chen, J. Y. (2011). Predicting adverse side effects of drugs. BMC 

Genomics 12 Suppl 5, S11. doi:10.1186/1471-2164-12-S5-S11. 

Hur, J., Ozgür, A., Xiang, Z., and He, Y. (2012). Identification of fever and vaccine-

associated gene interaction networks using ontology-based literature mining. J. Biomed. 

Semantics 3, 18. doi:10.1186/2041-1480-3-18. 

Iqbal, E., Mallah, R., Rhodes, D., Wu, H., Romero, A., Chang, N., et al. (2017). ADEPt, a 

semantically-enriched pipeline for extracting adverse drug events from free-text 

electronic health records. PLoS One 12, e0187121. doi:10.1371/journal.pone.0187121. 

Iyer, S. V., Harpaz, R., LePendu, P., Bauer-Mehren, A., and Shah, N. H. (2014). Mining 

clinical text for signals of adverse drug-drug interactions. J. Am. Med. Informatics Assoc. 

21, 353–362. doi:10.1136/amiajnl-2013-001612. 

Jiang, G., Liu, H., Solbrig, H. R., and Chute, C. G. (2015). Mining severe drug-drug 

interaction adverse events using Semantic Web technologies: a case study. BioData Min. 

8. doi:10.1186/s13040-015-0044-6. 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

101 
 

Kang, N., Singh, B., Bui, C., Afzal, Z., van Mulligen, E. M., and Kors, J. A. (2014). 

Knowledge-based extraction of adverse drug events from biomedical text. BMC 

Bioinformatics 15, 64. doi:10.1186/1471-2105-15-64. 

Kawazoe, Y., Imai, T., and Ohe, K. (2016). A Querying Method over RDF-ized Health Level 

Seven v2.5 Messages Using Life Science Knowledge Resources. JMIR Med. informatics 

4, e12. doi:10.2196/medinform.5275. 

Kilicoglu, H., Shin, D., Fiszman, M., Rosemblat, G., and Rindflesch, T. C. (2012). 

SemMedDB: a PubMed-scale repository of biomedical semantic predications. 

Bioinformatics 28, 3158–60. doi:10.1093/bioinformatics/bts591. 

Klein, A. Z., Sarker, A., Cai, H., Weissenbacher, D., and Gonzalez-Hernandez, G. (2018). 

Social media mining for birth defects research: A rule-based, bootstrapping approach to 

collecting data for rare health-related events on Twitter. J. Biomed. Inform. 87, 68–78. 

doi:10.1016/J.JBI.2018.10.001. 

Knowledge Base workgroup of the Observational Health Data Sciences and Informatics 

(OHDSI) collaborative (2017). Large-scale adverse effects related to treatment evidence 

standardization (LAERTES): an open scalable system for linking pharmacovigilance 

evidence sources with clinical data. J. Biomed. Semantics 8, 11. doi:10.1186/s13326-

017-0115-3. 

Koutkias, V. (2019). From Data Silos to Standardized, Linked, and FAIR Data for 

Pharmacovigilance: Current Advances and Challenges with Observational Healthcare 

Data. Drug Saf. 42, 583–586. doi:10.1007/s40264-018-00793-z. 

Koutkias, V. G., and Jaulent, M.-C. (2015). Computational Approaches for 

Pharmacovigilance Signal Detection: Toward Integrated and Semantically-Enriched 

Frameworks. Drug Saf. 38, 219–232. doi:10.1007/s40264-015-0278-8. 

Koutkias, V. G., Lillo-Le Louët, A., and Jaulent, M.-C. (2017). Exploiting heterogeneous 

publicly available data sources for drug safety surveillance: computational framework 

and case studies. Expert Opin. Drug Saf. 16, 113–124. 

doi:10.1080/14740338.2017.1257604. 

Koutkias, V., and Jaulent, M.-C. (2016). A Multiagent System for Integrated Detection of 

Pharmacovigilance Signals. J. Med. Syst. 40, 37. doi:10.1007/s10916-015-0378-0. 

Koutkias, V., Kilintzis, V., Stalidis, G., Lazou, K., Niès, J., Durand-Texte, L., et al. (2012). 

Knowledge engineering for adverse drug event prevention: On the design and 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

102 
 

development of a uniform, contextualized and sustainable knowledge-based framework. 

J. Biomed. Inform. 45, 495–506. doi:10.1016/j.jbi.2012.01.007. 

Lamy, J.-B., Berthelot, H., Favre, M., Ugon, A., Duclos, C., and Venot, A. (2017). Using 

visual analytics for presenting comparative information on new drugs. J. Biomed. 

Inform. 71, 58–69. doi:10.1016/J.JBI.2017.04.019. 

Lamy, J.-B., Séroussi, B., Griffon, N., Kerdelhué, G., Jaulent, M.-C., and Bouaud, J. (2015). 

Toward a Formalization of the Process to Select IMIA Yearbook Best Papers. Methods 

Inf. Med. 54, 135–144. doi:10.3414/ME14-01-0031. 

Li, X., Li, H., Deng, J., Zhu, F., Liu, Y., Chen, W., et al. (2018). Active pharmacovigilance in 

China: recent development and future perspectives. Eur. J. Clin. Pharmacol. 74, 863–

871. doi:10.1007/s00228-018-2455-z. 

Lin, S.-F., Xiao, K.-T., Huang, Y.-T., Chiu, C.-C., and Soo, V.-W. (2010). Analysis of 

adverse drug reactions using drug and drug target interactions and graph-based methods. 

Artif. Intell. Med. 48, 161–166. doi:10.1016/j.artmed.2009.11.002. 

Lin, Y., and He, Y. (2012). Ontology representation and analysis of vaccine formulation and 

administration and their effects on vaccine immune responses. J. Biomed. Semantics 3, 

17. doi:10.1186/2041-1480-3-17. 

Lin, Y., and He, Y. (2014). The ontology of genetic susceptibility factors (OGSF) and its 

application in modeling genetic susceptibility to vaccine adverse events. J. Biomed. 

Semantics 5, 19. doi:10.1186/2041-1480-5-19. 

Lindquist, M. (2007). The need for definitions in pharmacovigilance. Drug Saf. 30, 825–30. 

doi:10.2165/00002018-200730100-00001. 

Liu, J., Zhao, S., and Wang, G. (2018). SSEL-ADE: A semi-supervised ensemble learning 

framework for extracting adverse drug events from social media. Artif. Intell. Med. 84, 

34–49. doi:10.1016/J.ARTMED.2017.10.003. 

Liu, J., Zhao, S., and Zhang, X. (2016). An ensemble method for extracting adverse drug 

events from social media. Artif. Intell. Med. 70, 62–76. 

doi:10.1016/J.ARTMED.2016.05.004. 

Liu, Q., Wang, J., Zhu, Y., and He, Y. (2017). Ontology-based systematic representation and 

analysis of traditional Chinese drugs against rheumatism. BMC Syst. Biol. 11, 130. 

doi:10.1186/s12918-017-0510-5. 

Liu, X., and Chen, H. (2015). A research framework for pharmacovigilance in health social 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

103 
 

media: Identification and evaluation of patient adverse drug event reports. J. Biomed. 

Inform. 58. doi:10.1016/j.jbi.2015.10.011. 

Lorberbaum, T., Nasir, M., Keiser, M. J., Vilar, S., Hripcsak, G., and Tatonetti, N. P. (2015). 

Systems pharmacology augments drug safety surveillance. Clin. Pharmacol. Ther. 97, 

151–8. doi:10.1002/cpt.2. 

Lowe, D. M., O’Boyle, N. M., and Sayle, R. A. (2016). Efficient chemical-disease 

identification and relationship extraction using Wikipedia to improve recall. Database 

(Oxford). 2016. doi:10.1093/database/baw039. 

Lu, Z. (2009). Information technology in pharmacovigilance: Benefits, challenges, and future 

directions from industry perspectives. Drug. Healthc. Patient Saf. 1, 35–45. 

doi:10.2147/DHPS.S7180. 

Mager, D. E., and Kimko, H. H. C. (2016). Systems Pharmacology and Pharmacodynamics. , 

eds. D. E. Mager and H. H. C. Kimko Cham: Springer International Publishing 

doi:10.1007/978-3-319-44534-2. 

Marcos, E., Zhao, B., and He, Y. (2013). The Ontology of Vaccine Adverse Events (OVAE) 

and its usage in representing and analyzing adverse events associated with US-licensed 

human vaccines. J. Biomed. Semantics 4, 40. doi:10.1186/2041-1480-4-40. 

Matentzoglu, N., Malone, J., Mungall, C., and Stevens, R. (2018). MIRO: guidelines for 

minimum information for the reporting of an ontology. J. Biomed. Semantics 9, 6. 

doi:10.1186/s13326-017-0172-7. 

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., and Group, T. P. (2009). Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. 

PLoS Med. 6, e1000097. doi:10.1371/journal.pmed.1000097. 

Montastruc, J.-L., Sommet, A., Bagheri, H., and Lapeyre-Mestre, M. (2011). Benefits and 

strengths of the disproportionality analysis for identification of adverse drug reactions in 

a pharmacovigilance database. Br. J. Clin. Pharmacol. 72, 905–8. doi:10.1111/j.1365-

2125.2011.04037.x. 

Natsiavas, P., Boyce, R. D., Jaulent, M.-C., and Koutkias, V. (2018a). OpenPVSignal: 

Advancing Information Search, Sharing and Reuse on Pharmacovigilance Signals via 

FAIR Principles and Semantic Web Technologies. Front. Pharmacol. 9, 609. 

doi:10.3389/fphar.2018.00609. 

Natsiavas, P., Jaulent, M.-C., and Koutkias, V. (2019a). A Knowledge-Based Platform for 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

104 
 

Assessing Potential Adverse Drug Reactions at the Point of Care: User Requirements 

and Design. in Studies in health technology and informatics, 1007–1011. 

doi:10.3233/SHTI190376. 

Natsiavas, P., Malousi, A., Bousquet, C., Jaulent, M.-C., and Koutkias, V. (2019b). 

Computational Advances in Drug Safety: Systematic and Mapping Review of 

Knowledge Engineering Based Approaches. Front. Pharmacol. 10, 415. 

doi:10.3389/fphar.2019.00415. 

Natsiavas, P., Rasmussen, J., Voss-Knude, M., Votis, Κ., Coppolino, L., Campegiani, P., et al. 

(2018b). Comprehensive user requirements engineering methodology for secure and 

interoperable health data exchange. BMC Med. Inform. Decis. Mak. 18, 85. 

doi:10.1186/s12911-018-0664-0. 

Neubert, A., Dormann, H., Prokosch, H.-U., Bürkle, T., Rascher, W., Sojer, R., et al. (2013). 

E-pharmacovigilance: development and implementation of a computable knowledge 

base to identify adverse drug reactions. Br. J. Clin. Pharmacol. 76 Suppl 1, 69–77. 

doi:10.1111/bcp.12127. 

Nguyen, T., Larsen, M. E., O’Dea, B., Phung, D., Venkatesh, S., and Christensen, H. (2017). 

Estimation of the prevalence of adverse drug reactions from social media. Int. J. Med. 

Inform. 102, 130–137. doi:10.1016/j.ijmedinf.2017.03.013. 

Nikfarjam, A., Sarker, A., O’Connor, K., Ginn, R., and Gonzalez, G. (2015). 

Pharmacovigilance from social media: mining adverse drug reaction mentions using 

sequence labeling with word embedding cluster features. J. Am. Med. Inform. Assoc. 22, 

671–81. doi:10.1093/jamia/ocu041. 

Noor, A., Assiri, A., Ayvaz, S., Clark, C., and Dumontier, M. (2016). Drug-drug interaction 

discovery and demystification using Semantic Web technologies. J. Am. Med. 

Informatics Assoc., ocw128. doi:10.1093/jamia/ocw128. 

Onakpoya, I. J., Heneghan, C. J., and Aronson, J. K. (2016). Post-marketing withdrawal of 

462 medicinal products because of adverse drug reactions: a systematic review of the 

world literature. BMC Med. 14, 10. doi:10.1186/s12916-016-0553-2. 

Paine, M. (2017). Therapeutic disasters that hastened safety testing of new drugs. Clin. 

Pharmacol. Ther. 101, 430–434. doi:10.1002/cpt.613. 

Pappalardo, F., Russo, G., Tshinanu, F. M., and Viceconti, M. (2018). In silico clinical trials: 

concepts and early adoptions. Brief. Bioinform. doi:10.1093/bib/bby043. 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

105 
 

Personeni, G., Bresso, E., Devignes, M.-D., Dumontier, M., Smaïl-Tabbone, M., and Coulet, 

A. (2017). Discovering associations between adverse drug events using pattern structures 

and ontologies. J. Biomed. Semantics 8, 29. doi:10.1186/s13326-017-0137-x. 

Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons, J., Centeno, 

E., et al. (2017). DisGeNET: a comprehensive platform integrating information on 

human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839. 

doi:10.1093/nar/gkw943. 

Queralt-Rosinach, N., Piñero, J., Bravo, À., Sanz, F., and Furlong, L. I. (2016). DisGeNET-

RDF: harnessing the innovative power of the Semantic Web to explore the genetic basis 

of diseases. Bioinformatics 32, 2236–8. doi:10.1093/bioinformatics/btw214. 

Ramanujan, S., Gadkar, K., and Kadambi, A. (2016). “Quantitative Systems Pharmacology: 

Applications and Adoption in Drug Development,” in Systems Pharmacology and 

Pharmacodynamics, eds. D. E. Mager and H. H. C. Kimko (Springer, Cham), 27–52. 

doi:10.1007/978-3-319-44534-2_3. 

Real-World Evidence | FDA Available at: https://www.fda.gov/science-research/science-and-

research-special-topics/real-world-evidence [Accessed June 25, 2020]. 

Relling, M. V, and Klein, T. E. (2011). CPIC: Clinical Pharmacogenetics Implementation 

Consortium of the Pharmacogenomics Research Network. Clin. Pharmacol. Ther. 89, 

464–7. doi:10.1038/clpt.2010.279. 

Rieger, T. R., Allen, R. J., Bystricky, L., Chen, Y., Colopy, G. W., Cui, Y., et al. (2018). 

Improving the generation and selection of virtual populations in quantitative systems 

pharmacology models. Prog. Biophys. Mol. Biol. 139, 15–22. 

doi:10.1016/J.PBIOMOLBIO.2018.06.002. 

Santoro, A., Genov, G., Spooner, A., Raine, J., and Arlett, P. (2017). Promoting and 

Protecting Public Health: How the European Union Pharmacovigilance System Works. 

Drug Saf. 40, 855–869. doi:10.1007/s40264-017-0572-8. 

Sarker, A., and Gonzalez, G. (2015). Portable automatic text classification for adverse drug 

reaction detection via multi-corpus training. J. Biomed. Inform. 53, 196–207. 

doi:10.1016/j.jbi.2014.11.002. 

Sarntivijai, S., Xiang, Z., Shedden, K. A., Markel, H., Omenn, G. S., Athey, B. D., et al. 

(2012). Ontology-Based Combinatorial Comparative Analysis of Adverse Events 

Associated with Killed and Live Influenza Vaccines. PLoS One 7, e49941. 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

106 
 

doi:10.1371/journal.pone.0049941. 

Sarntivijai, S., Zhang, S., Jagannathan, D. G., Zaman, S., Burkhart, K. K., Omenn, G. S., et al. 

(2016). Linking MedDRA(®)-Coded Clinical Phenotypes to Biological Mechanisms by 

the Ontology of Adverse Events: A Pilot Study on Tyrosine Kinase Inhibitors. Drug Saf. 

39, 697–707. doi:10.1007/s40264-016-0414-0. 

Schotland, P., Bojunga, N., Zien, A., Trame, M. N., and Lesko, L. J. (2016). Improving drug 

safety with a systems pharmacology approach. Eur. J. Pharm. Sci. 94, 84–92. 

doi:10.1016/J.EJPS.2016.06.009. 

Schreiber, G. (2008). “Knowledge Engineering,” in Handbook of Knowledge Representation, 

eds. F. Van Harmelen, V. Lifschitz, and B. Porter (Elsevier), 929–946. 

doi:10.1016/S1574-6526(07)03025-8. 

Segura-Bedmar, I., Crespo, M., de Pablo-Sánchez, C., and Martínez, P. (2010). Resolving 

anaphoras for the extraction of drug-drug interactions in pharmacological documents. 

BMC Bioinformatics 11 Suppl 2, S1. doi:10.1186/1471-2105-11-S2-S1. 

Segura-Bedmar, I., and Martínez, P. (2017). Simplifying drug package leaflets written in 

Spanish by using word embedding. J. Biomed. Semantics 8, 45. doi:10.1186/s13326-017-

0156-7. 

Segura-Bedmar, I., Martínez, P., and de Pablo-Sánchez, C. (2011). A linguistic rule-based 

approach to extract drug-drug interactions from pharmacological documents. BMC 

Bioinformatics 12 Suppl 2, S1. doi:10.1186/1471-2105-12-S2-S1. 

Shang, N., Xu, H., Rindflesch, T. C., and Cohen, T. (2014). Identifying plausible adverse 

drug reactions using knowledge extracted from the literature. J. Biomed. Inform. 52, 

293–310. doi:10.1016/j.jbi.2014.07.011. 

Sherman, R. E., Anderson, S. A., Dal Pan, G. J., Gray, G. W., Gross, T., Hunter, N. L., et al. 

(2016). Real-world evidence - What is it and what can it tell us? N. Engl. J. Med. 375, 

2293–2297. doi:10.1056/NEJMsb1609216. 

Singh, S., and Loke, Y. K. (2012). Drug safety assessment in clinical trials: methodological 

challenges and opportunities. Trials 13, 138. doi:10.1186/1745-6215-13-138. 

Sinha, V., Huang, S.-M., Abernethy, D. R., Wang, Y., Zhao, P., and Zineh, I. (2016). “Role of 

Systems Modeling in Regulatory Drug Approval,” in Systems Pharmacology and 

Pharmacodynamics, eds. D. E. Mager and H. H. C. Kimko (Springer, Cham), 15–25. 

doi:10.1007/978-3-319-44534-2_2. 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

107 
 

Souvignet, J., Declerck, G., Asfari, H., Jaulent, M.-C., and Bousquet, C. (2016). OntoADR a 

semantic resource describing adverse drug reactions to support searching, coding, and 

information retrieval. J. Biomed. Inform. 63, 100–107. doi:10.1016/j.jbi.2016.06.010. 

Suárez-Figueroa, M. C., Gómez-Pérez, A., and Fernández-López, M. (2012). “The NeOn 

Methodology for Ontology Engineering,” in Ontology Engineering in a Networked 

World, eds. M. C. Suárez-Figueroa, A. Gómez-Pérez, E. Motta, and A. Gangemi (Berlin, 

Heidelberg: Springer Berlin Heidelberg), 9–34. doi:10.1007/978-3-642-24794-1_2. 

Sun, J., Deng, X., Chen, X., Huang, J., Huang, S., Li, Y., et al. (2020). Incidence of Adverse 

Drug Reactions in COVID‐19 patients in China: an active monitoring study by Hospital 

Pharmacovigilance System. Clin. Pharmacol. Ther., cpt.1866. doi:10.1002/cpt.1866. 

Tao, C., He, Y., Yang, H., Poland, G. A., and Chute, C. G. (2012). Ontology-based time 

information representation of vaccine adverse events in VAERS for temporal analysis. J. 

Biomed. Semantics 3, 13. doi:10.1186/2041-1480-3-13. 

Tari, L., Anwar, S., Liang, S., Cai, J., and Baral, C. (2010). Discovering drug-drug 

interactions: a text-mining and reasoning approach based on properties of drug 

metabolism. Bioinformatics 26, i547-53. doi:10.1093/bioinformatics/btq382. 

Trame, M. N., Biliouris, K., Lesko, L. J., and Mettetal, J. T. (2016). Systems pharmacology to 

predict drug safety in drug development. Eur. J. Pharm. Sci. 94, 93–95. 

doi:10.1016/J.EJPS.2016.05.027. 

Vallano, A., Castaneda, P., Quijada Manuitt, M., Simon, P., Pedrós C, Quintana B, et al. 

(2015). Hospital Doctors’ Views and Concerns about Pharmacovigilance. J. 

Pharmacovigil. 03, 1–5. doi:10.4172/2329-6887.1000160. 

Vandervalk, B., McCarthy, E. L., Cruz-Toledo, J., Klein, A., Baker, C. J. O., Dumontier, M., 

et al. (2013). The SADI Personal Health Lens: A Web Browser-Based System for 

Identifying Personally Relevant Drug Interactions. JMIR Res. Protoc. 2, e14. 

doi:10.2196/resprot.2315. 

Voss, E. A., Boyce, R. D., Ryan, P. B., van der Lei, J., Rijnbeek, P. R., and Schuemie, M. J. 

(2017). Accuracy of an automated knowledge base for identifying drug adverse 

reactions. J. Biomed. Inform. 66, 72–81. doi:10.1016/J.JBI.2016.12.005. 

Voss, E. A., Makadia, R., Matcho, A., Ma, Q., Knoll, C., Schuemie, M., et al. (2015). 

Feasibility and utility of applications of the common data model to multiple, disparate 

observational health databases. J. Am. Med. Inform. Assoc. 22, 553–64. 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

108 
 

doi:10.1093/jamia/ocu023. 

Wang, L., Jiang, G., Li, D., and Liu, H. (2014). Standardizing adverse drug event reporting 

data. J. Biomed. Semantics 5. doi:10.1186/2041-1480-5-36. 

Wang, L., Li, M., Xie, J., Cao, Y., Liu, H., and He, Y. (2017). Ontology-based systematical 

representation and drug class effect analysis of package insert-reported adverse events 

associated with cardiovascular drugs used in China. Nat. Sci. Reports 7. 

doi:10.1038/s41598-017-12580-4. 

Weaver, J., Willy, M., and Avigan, M. (2008). Informatic tools and approaches in 

postmarketing pharmacovigilance used by FDA. AAPS J. 10, 35–41. 

doi:10.1208/s12248-007-9004-5. 

Weske, M. (2012). Business process management : concepts, languages, architectures. 

Springer Available at: https://books.google.gr/books?id=-

D5tpT5Xz8oC&pg=PA5&redir_esc=y#v=onepage&q&f=false [Accessed November 23, 

2018]. 

Wiktorowicz, M., Lexchin, J., and Moscou, K. (2012). Pharmacovigilance in Europe and 

North America: Divergent approaches. Soc. Sci. Med. 75, 165–170. 

doi:10.1016/j.socscimed.2011.11.046. 

Wnuk, K., and Garrepalli, T. (2018). Knowledge Management in Software Testing: A 

Systematic Snowball Literature Review. e-Informatica Softw. Eng. J. 12, 51–78. 

doi:10.5277/E-INF180103. 

World Health Organization (2008). A practical handbook on the pharmacovigilance of 

antimalarial medicines. World Health Organization Available at: 

http://www.who.int/malaria/publications/atoz/9789241547499/en/ [Accessed December 

12, 2018]. 

World Health Organization (2018). Module 10: Pharmacovigilance. Available at: 

https://www.who.int/hiv/pub/10.pdf. 

World Health Organization, W. C. C. for I. D. M. (2002). The importance of 

pharmacovigilance. World Health Organization Available at: 

http://apps.who.int/medicinedocs/en/d/Js4893e/ [Accessed December 12, 2018]. 

Xie, J., Codd, C., Mo, K., and He, Y. (2016a). Differential Adverse Event Profiles Associated 

with BCG as a Preventive Tuberculosis Vaccine or Therapeutic Bladder Cancer Vaccine 

Identified by Comparative Ontology-Based VAERS and Literature Meta-Analysis. PLoS 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

109 
 

One 11, e0164792. doi:10.1371/journal.pone.0164792. 

Xie, J., and He, Y. (2017). “Ontology-Based Vaccine Adverse Event Representation and 

Analysis,” in Healthcare and Big Data Management. Advances in experimental medicine 

and biology (Singapore), 89–103. doi:10.1007/978-981-10-6041-0_6. 

Xie, J., Zhao, L., Zhou, S., and He, Y. (2016b). Statistical and Ontological Analysis of 

Adverse Events Associated with Monovalent and Combination Vaccines against 

Hepatitis A and B Diseases. Sci. Rep. 6, 34318. doi:10.1038/srep34318. 

Xu, R., and Wang, Q. (2013). A semi-supervised approach to extract pharmacogenomics-

specific drug-gene pairs from biomedical literature for personalized medicine. J. Biomed. 

Inform. 46, 585–93. doi:10.1016/j.jbi.2013.04.001. 

Yokotsuka, M., Aoyama, M., and Kubota, K. (2000). The use of a medical dictionary for 

regulatory activities terminology (MedDRA) in prescription-event monitoring in Japan 

(J-PEM). Int. J. Med. Inform. 57, 139–53. doi:10.1016/S1386-5056(00)00062-9. 

Yuksel, M., Gonul, S., Laleci Erturkmen, G. B., Sinaci, A. A., Invernizzi, P., Facchinetti, S., 

et al. (2016). An Interoperability Platform Enabling Reuse of Electronic Health Records 

for Signal Verification Studies. Biomed Res. Int. 2016, 6741418. 

doi:10.1155/2016/6741418. 

Zhang, R., Cairelli, M. J., Fiszman, M., Rosemblat, G., Kilicoglu, H., Rindflesch, T. C., et al. 

(2014). Using semantic predications to uncover drug-drug interactions in clinical data. J. 

Biomed. Inform. 49, 134–47. doi:10.1016/j.jbi.2014.01.004. 

Zhang, Y., Tao, C., He, Y., Kanjamala, P., and Liu, H. (2013). Network-based analysis of 

vaccine-related associations reveals consistent knowledge with the vaccine ontology. J. 

Biomed. Semantics 4, 33. doi:10.1186/2041-1480-4-33. 

Zhang, Y., Wu, H.-Y., Du, J., Xu, J., Wang, J., Tao, C., et al. (2016). Extracting drug-enzyme 

relation from literature as evidence for drug drug interaction. J. Biomed. Semantics 7, 11. 

doi:10.1186/s13326-016-0052-6. 

Zhichkin, P. E., Athey, B. D., Avigan, M. I., and Abernethy, D. R. (2012). Needs for an 

Expanded Ontology-Based Classification of Adverse Drug Reactions and Related 

Mechanisms. Clin. Pharmacol. Ther. 91, 963–965. doi:10.1038/clpt.2012.41. 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

 

110 
 

 Appendix 

Table A: Abbreviations used in the study 

Abbreviation Full text Abbreviation Full text 

ADE Adverse Drug Event IT Information Technology 

ADR Adverse Drug Reaction KE Knowledge Engineering 

AUC Area Under the receiver 

operating characteristic 

Curve 

ML Machine Learning 

CDM Common Data Model MoA Mechanism of Action 

CDSS Clinical Decision Support 

System 

MPI Multiple Pathway 

Interactions 

CIG Computer Interpretable 

Guidelines 

NER Named Entity Recognition 

CSCT Case Series 

Characterization Tool 

NLP Natural Language Processing 

CIM Common Information 

Model 

PHR Personal Health Record 

CPOE Computerized Physician 

Order Entry  

PRR Proportional Reporting Ratio 

DDI Drug-drug interaction   

DEI Drug Enzyme Interaction 

ontology 

RRR Relative Reporting Ratio 

DIO Drug Interactions 

Ontology 

SNA Social Network Analysis 

DL Description Logics SNP Single Nucleotide 

Polymorphism 

DS Drug Safety SP Systems Pharmacology 

DSS Decision Support Systems SPL Structured Product Label 

EHR Electronic Health Record SRS Spontaneous Reporting 

System 

FDA Food and Drug 

Administration 

TEO Time Event Ontology 

HCP Healthcare Professional UMC Uppsala Monitoring Centre 

HIS Hospital Information 

System 

XOD eXtensible Ontology 

Development 
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Table B: catalogue with Web links to data sources, reference terminologies, ontologies, standards, technologies, and systems referred in the 

study. 

Abbreviation Full text (if applicable) and link 

ADReCS Adverse Drug Reaction Classification System (http://bioinf.xmu.edu.cn/ADReCS/) 

ATC Anatomical Therapeutic Chemical Classification system (https://www.whocc.no/atc_ddd_index/) 

Bio2RDF http://bio2rdf.org/ 

CheBI Chemical Entities of Biological Interest (https://www.ebi.ac.uk/chebi/) 

CTD Comparative Toxicogenomics Database (http://ctdbase.org/) 

D3 Drug-drug interaction Discovery and Demystification (https://scholar.colorado.edu/csci_gradetds/106/) 

DAML+OIL https://www.w3.org/TR/daml+oil-reference/ 

DINTO Drug-Drug Interactions Ontology (http://www.ontobee.org/ontology/DINTO) 

DrOn Drug Ontology (https://www.ebi.ac.uk/ols/ontologies/dron) 

DrugBank https://www.drugbank.ca/ 

E2B http://www.ich.org/products/electronic-standards.html 

FAERS FDA Adverse Event Reporting System 

(https://www.fda.gov/drugs/guidancecomplianceregulatoryinformation/surveillance/adversedrugeffects/ucm082193.htm) 
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GO Gene Ontology (http://www.geneontology.org/) 

ICD International Classification of Diseases (http://www.who.int/classifications/icd/en/) 

INDI INferring Drug Interactions (https://www.cs.tau.ac.il/~bnet/software/INDI/) 

KEGG Kyoto Encyclopaedia of Genes and Genomes – GenomeNet (https://www.genome.jp/kegg/) 

LAERTES Large-scale adverse effects related to treatment evidence standardization (https://github.com/OHDSI/KnowledgeBase/tree/master/LAERTES) 

MedDRA Medical Dictionary for Regulatory Activities (https://www.meddra.org/) 

MeSH Medical Subject Headings (https://www.nlm.nih.gov/mesh/) 

MetaADEDB http://lmmd.ecust.edu.cn/online_services/metaadedb/ 

MIRO Minimal Information for Reporting of an Ontology (https://zenodo.org/record/398804) 

NDF-RT National Drug File - Reference Terminology (https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/NDFRT/) 

OAE Ontology for Adverse Events (http://www.oae-ontology.org/) 

OCMR Ontology of Chinese Medicine for Rheumatism (http://www.ontobee.org/ontology/OCMR) 

OCVDAE Ontology of Cardiovascular Drug Adverse Events (http://bioportal.bioontology.org/ontologies/OCVDAE) 

ODNAE Ontology of Drug Neuropathy Adverse Events (http://www.ontobee.org/ontology/ODNAE) 

OGSF Ontology of Genetic Susceptibility Factors (https://www.ebi.ac.uk/ols/ontologies/ogsf) 
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OHDSI Observational Health Data Sciences and Informatics (https://www.ohdsi.org/) 

OVAE Ontology of Vaccine Adverse Events (http://www.violinet.org/ovae/) 

OWL Web Ontology Language (https://www.w3.org/OWL/) 

OQuaRE Ontology Quality Evaluation Framework (http://miuras.inf.um.es/oquarewiki/index.php5/Main_Page) 

PharmGKB Pharmacogenomics Knowledge Base (https://www.pharmgkb.org/) 

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses (http://prisma-statement.org/) 

PV-SDO Pharmacovigilance Signal Detection Ontology (http://safer-project.eu/SignalDetectorsOntology.owl) 

RDF Resource Description Framework (https://www.w3.org/RDF/) 

RxNorm https://www.nlm.nih.gov/research/umls/rxnorm/ 

SemMedDB Semantic MEDLINE Database (https://skr3.nlm.nih.gov/SemMedDB/) 

SIDER Side Effect Resource (http://sideeffects.embl.de/) 

SMQ Standardized MedDRA Queries (https://www.meddra.org/standardised-meddra-queries) 

SNOMED-

CT 

Systematized Nomenclature of Medicine-Clinical Terms (https://www.snomed.org/) 

SPARQL SPARQL Protocol and RDF Query Language (https://www.w3.org/TR/2013/REC-sparql11-overview-20130321) 
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SWRL Semantic Web Rules Language (https://www.w3.org/Submission/SWRL/) 

UMLS Unified Medical Language System (https://www.nlm.nih.gov/research/umls/) 

UniProt https://www.uniprot.org/  

VAERS Vaccine Adverse Event Reporting System (https://vaers.hhs.gov/) 

VO Vaccine Ontology (http://www.violinet.org/vaccineontology/) 

WADM Web Annotation Data Model (https://www.w3.org/TR/annotation-model/) 

WHO-ART World Health Organization Adverse Reaction Terminology (https://www.who-umc.org/vigibase/services/learn-more-about-who-art/) 

 

https://www.uniprot.org/
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2.2. Beyond the paper: Where does this thesis stand in terms of the recent 

Knowledge Engineering advances in the context of Drug Safety  

Attempting to cover the time gap between the publication of the review paper presented 

in the previous subsection and the time of this thesis writing, several interesting projects should 

be highlighted. For example, the PractikPharma project36 aims to construct a Knowledge Graph 

named PGxLOD, integrating various data sources to support pharmacogenomics studies 

(Monnin et al., 2019). Furthermore, the DOMINO project37 organized in the context of the 

DRUGS-SAFE initiative, aims to analyse data from discussion forums to identify messages 

regarding drug safety (Bigeard et al., 2018). To the same end, depicting prominent works 

regarding the analysis of social media data for PV purposes, the WEB-RADR project published 

a recommendations paper, concluding that “social media channels may provide a useful adjunct 

to pharmacovigilance activities” even though “Facebook and Twitter, are not recommended for 

broad statistical signal detection” (van Stekelenborg et al., 2019).  

As depicted in the presented Systematic Review paper, several research gaps were 

identified regarding the use of KE approaches for DS purposes. These were clearly enumerated 

in terms of technical approaches and missing data, e.g. lack of focus on Systems Pharmacology 

approaches and the need to use KE (e.g. ontologies) with low level pharmacology models.  

Furthermore, it was highlighted that while KE approaches are actively investigated, they 

are not yet adopted by IT systems used in the everyday clinical practice. For example, while 

the value of integrating heterogeneous emerging data sources (e.g. social media, observational 

data etc.) and consolidate them with data traditionally used for PV (e.g. ICSRs) is widely 

recognized, yet it is still far from being part of standard practice. To this end, alternative 

approaches could also be investigated (e.g. integrating analysis results instead of raw data) as 

they could substantially contribute to the development of an advanced continuous learning 

health system (Friedman et al., 2015a) hence, in principle, facilitating to close the “loop” of 

information between clinicians, patients and researchers. 

                                                 
36 http://practikpharma.mystrikingly.com/  
37 https://drugssafe.fr/2019/09/12/domino/  

http://practikpharma.mystrikingly.com/
https://drugssafe.fr/2019/09/12/domino/
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To this end, the key issue of identifying the challenges hindering the integration of 

“intelligent” systems (i.e. systems based on AI paradigms, including KE-oriented systems) in 

real-life operational healthcare environments was early identified as a critical issue. Thus, while 

the use of KE-based analytics and advanced User Interfaces might be extremely useful, the need 

to elaborate on the respective BPs and UGs in order to identify potential gaps in the applied 

processes was also identified as a priority setting the main context for this thesis. 
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3. Regulatory context and Management aspects 

In this chapter, the BPs related with pharmacovigilance are depicted. More specifically, 

a paper presented in ICIMTH 2020 provides an overview of the regulatory context in European 

Union which sets the baseline for all European countries and depicts the identified BPs 

(Natsiavas et al., 2020). Furthermore, in the “Beyond the paper” section, a brief introduction of 

the various stakeholders engaged in AP processes is provided. It should be highlighted that the 

analysis of these BPs might seem trivial for PV experts however it is far from obvious for other 

professional domains, aiming to support the overall AP vision (e.g. software engineers, IT 

researchers etc.). 
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3.1. Supporting Active Pharmacovigilance via IT tools in the clinical 

setting and beyond: Regulatory context and Management aspects 
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 Abstract 

Information Technology (IT) could have a prominent role towards the “Active 

Pharmacovigilance” (AP) paradigm by facilitating the analysis of potential Adverse Drug 

Reactions (ADRs). PVClinical project aims to build an IT platform enabling the investigation 

of potential ADRs in the clinical environment and beyond. In this paper, we outline the 

respective EU regulatory framework and the related Business Processes (BPs), elaborated 

based on input from clinicians and PV experts as part of the project’s “user requirements 

analysis” phase, highlighting their potential pivotal role in the design of IT tools aiming to 

support AP. 
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 Introduction 

Adverse Drug Reactions (ADRs) are detrimental regarding public health and cost 

(Formica et al., 2018) and therefore, preventing them is critical both during drug development, 

as well as during clinical practice (Ferner and McGettigan, 2018). To this end, 

Pharmacovigilance (PV) is defined as the science and activities related with all aspects of the 

detection and management of ADRs (World Health Organization, 2002).  

The investigation of potential new or partially documented ADRs (a.k.a. “signals”) is 

based on the collection of Individual Case Safety Reports (ICSRs) via Spontaneous Reporting 

Systems (SRSs), based on “Disproportionality Analysis” (DA) approaches (Montastruc et al., 

2011). 

Recent breakthroughs in Information Technologies (IT) enable the use of new, emerging 

data sources expanding the real-world evidence space used to explore potential PV signals. The 

“Active Pharmacovigilance” (AP) paradigm refers to the “hot pursuit” of all possible data 

sources, instead of “passively” waiting for ICSRs to be submitted (Gagne et al., 2012).  

PVClinical project39, develops a Web-based platform exploiting Knowledge 

Engineering (KE) technologies to facilitate the investigation of potential ADRs, by clinicians, 

as well as PV experts and researchers. A preliminary design of the platform, i.e. a first set of 

“User Goals”/design objectives and its main information workflow was presented in (Natsiavas 

et al., 2019a). This paper focuses on the PV regulatory and procedural context and also 

discusses its key impacts on the design of novel IT tools aiming to support AP. 

 Methods 

The employed “user requirements analysis” process is based on the approach described 

in (Natsiavas et al., 2018c) (Figure 13) aiming to consolidate various information, including 

end-user input, to identify “User Goals” (UGs). UGs are “abstract user requirements, not 

directly referring to specific technical approaches” (Natsiavas et al., 2018c), directly attributed 

                                                 
39 https://pvclinical-project.eu       
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to user “roles” or “actors”. UGs’ definition aims to highlight  “gaps” in the currently applied 

Business Processes (BPs) and the resolution of potential conflicts between actors and BPs, to 

provide input in the overall system design. In this paper, we emphasize on the results of two 

parts of the overall process: (a) a “Regulatory framework overview” which was based on a 

thorough review of European legislation that pertains to PV and input from partners (including 

Pharmassist which is a Contract Research Organization conducting PV activities on behalf of 

pharma companies and therefore legally bound by this regulatory context), and (b) “BP 

identification and elaboration”. To this end, we discuss some key conclusions and their impact 

on the design of IT systems supporting AP paradigm. Noting a potential limitation of the applied 

approach, we conducted an exploratory review which was empirically validated, rather than a 

systematic review of literature/legislation. 

 

Figure 13: Overall methodology rationale 

 Results 

Regulatory framework 

Drug Safety Monitoring Organizations (DSMOs) play a crucial role in both the pre- and 

post-market stages of a drug life cycle, i.e. from clinical trials and marketing authorization to 

post-marketing surveillance, and typically, they also maintain SRS. For example, the U.S. Food 

& Drug Administration maintains (FDA) maintains the FDA Adverse Event Report System and 

European Medicines Association (EMA) maintains EudraVigilance. Notably, the Uppsala 

Monitoring Centre (WHO-UMC) is the WHO PV reference centre and maintains the largest 

database of ICSRs in a global scale, VigiBase.  

Emphasizing on the EU context, the directive 2010/84 (applied on July 2012 via 

regulation No 520/2012 and Good Pharmacovigilance Practices – GVP - Modules I to XVI), 

marked a major policy update regarding the safety requirements for the human drugs. Regarding 

post-market surveillance, it instructed the deployment of national SRSs also enabling citizen 
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reports. Furthermore, pharma companies were obliged to maintain and regularly update Risk 

Management Plans (RMPs) and provide Periodic Safety Update Reports (PSURs). All the 

stakeholders were instructed to actively exchange data and finally, all the collected information 

are evaluated by the EMA Pharmacovigilance Risk Assessment Committee (PRAC), 

responsible to assess drug risks in EU (Santoro et al., 2017). 

Business Processes 

Table 6 and Table 7 depict the relevant BPs as they resulted after workshops and 

interviews with clinicians and PV experts. For each of these BPs, the potential benefits of using 

IT tools were elaborated to identify and prioritize the relevant User Goals. 

Table 6: BPs related with PV in the clinical environment 

Name Description Actors Data 

BP1: Visit to 

outpatient 

clinics 

BP1 could include the registration 

of the patient and its medical history 

in the hospital EHR, clinical 

examination, ePrescription, etc. 

 Doctor 

 Nurse 

 

Demographics, Medical 

history, Lab result, 

diagnosis, ePrescription 

BP2: 

Hospitalization 

BP2 includes BP1 steps and also 

clinical procedures (e.g. an 

operation), computerized physician 

order entries (CPOE), clinical notes 

maintenance and patient discharge. 

 Doctor 

 Pharmacologist 

 Nurse 

 

BP1 data and also 

clinical notes,  CPOE 

data, discharge notes 

BP3: Service 

evaluation 

BP3 does not refer to clinical 

practice but is regularly applied in 

hospitals to evaluate clinically 

relevant metrics (ADRs, in-hospital 

infections, errors etc.). 

 Doctor 

 Pharmacologist 

 Nurse 

 IT scientist 

 Manager 

EHR statistics, 

prioritized lists of 

adverse events of 

interest, comparison with 

other data sources 

 

Table 7: BPs related with PV out of the clinical environment 

Name Description Actors Data 

BP4: Clinical 

trials 

BP4 includes the design of a 

study/intervention, the definition of 

patient cohorts, data collection and 

 Doctor Demographics, medical 

history, genetic profiling, 

lab results, clinical notes, 
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curation, comparison with other 

clinical trials and also results 

reporting 

 PV Expert  

 

safety and efficacy 

reports 

 

BP5: Update 

of Periodic 

Safety Reports 

BP5 includes the review and the 

statistical analysis of ICSRs, 

literature review, clinical trial data 

processing and reporting to 

regulatory authorities 

 Doctor 

 PV Expert  

 

Drug safety data, 

statistics, documentation 

/reports, prioritized lists 

of adverse events of 

interest 

BP6: Weekly 

literature 

review 

BP6 refers to literature reviews 

including the shaping of queries 

based on keywords and synonyms 

against various literature sources 

 Doctor 

 PV Expert  

 

Documentation/reports 

 

BP7: Risk 

management 

BP7 includes literature review, 

relevant clinical trial data review, 

and also the calculation of risk 

factors 

 PV Expert Drug safety data, 

statistics, 

documentation/reports 

 Discussion 

In this paper, we provide an overview of the PV regulatory context, and the identified 

BPs, resulted as part of the PVClinical “user requirements analysis” phase. In this section, we 

discuss their impact on the design of IT tools aiming to support AP.  

PV regulatory context highlights the need for IT tools which could support the robust 

analysis of heterogeneous data sources. To this end, KE technologies can accelerate and 

qualitatively improve tasks regularly conducted by PV experts, pharma industry and DSMOs 

(e.g. compilation of RMPs, PSURs etc.). The need to integrate various data sources is also 

supported by the analysis of the relevant BPs, identifying a gap regarding the use of automatic 

reasoning capabilities, and therefore further supporting the potential of KE. It is obvious that 

IT tools should have the capacity to retrieve, analyse and depict succinctly metrics of DA 

emphasizing prowess on advanced analytics features. Furthermore, it should be considered that 

in the clinical setting BPs might overlap and potentially conflict. For example, while potential 

ADR prevention is important, more urgent duties exist and they should not be interrupted or 

obstructed. Notably, the engagement of various actors with different educational and 

operational contexts, i.e. pharmacists and nurses apart from PV experts and medical doctors, 

also depicts the overall complexity of the clinical setting. For instance, while complex DA 

analytics are useful for a PV expert focusing on risk management, they might be irrelevant or 
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even obscuring for a clinician. Thus, the need to focus on usability is highlighted for IT tools 

supporting AP, both in the clinical context and beyond.  
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3.2. Beyond the paper: Stakeholders description 

In this section, the stakeholders engaged in PV processes are briefly described, as these 

could play a pivotal role in terms of the AP vision. More specifically, the role of the most 

prominent DSMOs and regulatory authorities is discussed, using the respective Greek National 

Drugs Organization as an example of a national DSMO/regulatory organization. 

 Regulatory Organizations and Drug Safety Monitoring Organizations 

The bodies that control the legality of the circulation of medicines and their safety are 

referred to as Regulatory Organizations (ROs). ROs can operate at national level (e.g. the Greek 

National Drugs’ Organization - NDO) or internationally (e.g. the European Medicines Agency 

- EMA). Although the tasks of each RO may differ depending on its mission and the legislation, 

an indicative list of tasks of a RO could be: 

- Supervision of clinical trial procedures for the preparation of new formulations (eg in 

terms of bioethics). 

- Checking the marketing legality of a preparation (e.g. granting a marketing 

authorization). 

- Check or define a formulation booklet that describes the identity of the formulation, as 

well as various information about its use (e.g. ADRs). 

- Providing counselling and dissemination of knowledge in case of emergencies (e.g. 

occurrence of serious ADRs that must be treated as urgent). 

(Huang et al., 2014) present a useful overview and a partial comparison of the main 

systems for data collection and analysis on PV internationally. In this section, we provide a 

brief description of the most prominent ROs/DSMOs and the respective Greek organization as 

an example of a local/national RO. 

Greek National Drugs Organization 

The Greek National Drugs Organization (NDO) was founded in 1983 by Law 1316 and 

is a Legal Entity under Public Law of the Ministry of Health and Social Solidarity. The 
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institutional mission of NDO is: "The promotion and safeguarding of public health by ensuring 

appropriate standards of safety, quality and efficiency for all products under the responsibility 

of EOF that circulate in the Greek market. Also, the implementation of relevant controls, the 

inspection and surveillance of the market and the provision of information that will contribute 

to the safe and effective use of these products by the citizens." 

In particular, its mission can be described as "the protection of Public Health” related 

with: 

- medicinal products for human and veterinary use 

- organic products for human and veterinary use 

- food supplements 

- special diet foods and nutritional supplements 

- biocides 

- medical devices 

- cosmetics 

In the framework of its mission and in accordance with the National and European 

legislation, NDO in cooperation with the European Union: 

- Evaluates and approves products. 

- Monitors the quality, safety and efficacy of medicines while it also inspects and 

monitors the market for all products under its responsibility. 

- Regulates the production, laboratory testing and clinical practice, distribution, 

marketing and advertising of the above products. 

- Promotes pharmaceutical study and research. 

- Informs healthcare scientists, competent bodies and the public with the latest 

information on the products under its responsibility, regarding their safe administration. 

A large part of NDO's activity is managerial, related to the pricing of drugs, the 

preparation of the national prescription, etc. At the same time, NDO regulates the drug market 

in terms of preventing shortages. 
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Regarding the audit procedures followed by NDO, they are divided into Pre-Audit and 

Post-Audit. The pre-approval checks concern preparations that have not been re-released in 

Greece and include the possibility of recognizing the approval given for this preparation in other 

European countries or by the EMA. Accordingly, NDO is responsible for the monitoring of 

clinical trial procedures performed in the country. Post-approval checks include PV procedures 

based on the legislation applicable within the European Union. These include the collection of 

suspicious / potential ADR reports through the national "Yellow Card" system40, i.e. the local 

SRS. The evaluation of these reports, as well as other data, is done by the NDO’s ADR 

Committee and the resulting data are sent to the World Health Organization (WHO) and the 

respective EU instruments.  

European Medicines Agency  

One of the main missions of the European Medicines Agency (EMA) is to facilitate the 

development of new drugs in a way that accelerates their final delivery to patients, through an 

efficient and fast licensing system. At the same time, it monitors the safety of medicines in 

Europe, throughout their life and provides relevant information to patients and other categories 

of stakeholders (e.g. doctors, pharmacists, researchers, pharma industry, etc.)41. 

Administratively, the EMA is the body of the European Union responsible for the 

scientific evaluation, and monitoring of drug safety. The application of the licensing and 

circulation rules is determined through the European medicines regulatory network42, which 

essentially controls the communication between the local ROs in the European countries. 

In terms of PV procedures, EMA holds and supports the EudraVigilance database43, 

which brings together reports of potential ADRs from all member countries44. These reports are 

sent by the national PV authorities: EudraVigilance is a reference point for the PV in Europe, 

as from these reports possible "safety signals" are identified. This assessment is made by the 

Pharmacovigilance Risk Assessment Committee (PRAC) which is made up of public health 

                                                 
40 https://www.eof.gr/web/guest/yellowgeneral 
41 https://www.ema.europa.eu/en/about-us/what-we-do 
42 https://www.ema.europa.eu/en/about-us/how-we-work/european-medicines-regulatory-network 
43 https://www.ema.europa.eu/en/human-regulatory/research-development/pharmacovigilance/eudravigilance 
44 https://www.ema.europa.eu/en/human-regulatory/overview/pharmacovigilance 

https://www.eof.gr/web/guest/yellowgeneral
https://www.ema.europa.eu/en/about-us/what-we-do
https://www.ema.europa.eu/en/about-us/how-we-work/european-medicines-regulatory-network
https://www.ema.europa.eu/en/human-regulatory/research-development/pharmacovigilance/eudravigilance
https://www.ema.europa.eu/en/human-regulatory/overview/pharmacovigilance
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experts and undertakes to assess the risk / benefit ratio of a drug. At the same time, 

EudraVigilance is an important tool for ADR investigation processes carried out by drug 

manufacturing or marketing companies. Based on EudraVigilance data, the EMA generates the 

corresponding reports. It is noted that the collection of reports is the responsibility of the local 

ROs rather than the EMA, which participates in their analysis, but is not the body receiving the 

report. 

Uppsala Monitoring Centre – WHO Collaborating Centre for International Drug 

Monitoring  

The Uppsala Monitoring Center - WHO Collaborating Center for International Drug 

Monitoring (WHO-UMC) is the World Health Organization (WHO) reference center for PV45. 

It was founded in 1978 and is responsible for the WHO Program for International Drug 

Monitoring. This program, in which 134 countries participate, including Greece and France, 

maintains the largest ICSR repository globally named VigiBase46, integrating reports from all 

participating countries. 

WHO-UMC does not act as a RO as it does not have the legal capacity to ban the 

marketing of medicines or to impose changes to their instruction booklet. Nevertheless, as it 

provides services very important for PV, it is an international reference center for ADRs and 

all organizations dealing with drug safety. 

The VigiBase database is the centerpiece of a tool ecosystem (e.g. VigiLyze47), which 

facilitates the investigation of potential security signals. These tools include capabilities for 

statistical analysis of reports, as well as their analytics. At the same time, WHO-UMC maintains 

and provides other support services such as WHO-Drug48. WHO-Drug is a reference dictionary 

for the global circulation of medicines as it is regularly updated and globally recognized as the 

most comprehensive index of medicines. 

                                                 
45 https://www.who-umc.org/about-us/our-story/ 
46 https://www.who-umc.org/vigibase/vigibase/ 
47 https://www.who-umc.org/vigibase/vigilyze/ 
48 https://www.who-umc.org/whodrug/whodrug-portfolio/ 

https://www.who-umc.org/about-us/our-story/
https://www.who-umc.org/vigibase/vigibase/
https://www.who-umc.org/vigibase/vigilyze/
https://www.who-umc.org/whodrug/whodrug-portfolio/
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Finally, a very important service provided by WHO-UMC is the circulation of a 

quarterly newsletter (WHO Pharmaceuticals Newsletter49) which includes information on the 

effectiveness and safety of medicines. Part of this newsletter is the communication of potential 

PV Signals, which are analyzed based on VigiBase data as well as other data sources (e.g. 

scientific literature). This information is analyzed by a team of experts in the field of PV (UMC 

Signal Review Panel) based on a specific procedure, which among other things is based on 

well-defined statistical metrics and algorithms (e.g. VigiRank (Caster et al., 2014)). 

U.S. Food & Drug Administration 

U.S. Food & Drug Administration (FDA)50 is the RO regulating drugs in the United 

States of America (USA) and is perhaps the largest RO, in terms of drug safety globally. The 

FDA's responsibilities go beyond drug safety and include food safety. 

Regarding drug safety, FDA is supported by the Office of Pharmacovigilance and 

Epidemiology and the Office of Medication Error Prevention and Risk Management, which are 

part of the Centre for Drug Evaluation and Research (CDER). FDA maintains its own ICSR 

collection system, the so-called FDA Adverse Event Report System (FAERS)51, as well as a 

similar vaccine-focused mechanism called the Vaccine Adverse Event Report System 

(VAERS)52. Individual reports submitted to FAERS are investigated by experts and combined 

with information from other data sources. These sources include the international scientific 

literature as well as information from the EHRs of the hospitals collected through the Sentinel 

initiative53. Potential PV signals are investigated by CDER experts and potentially evaluable 

results published on the web54. 

                                                 
49 https://www.who.int/medicines/publications/newsletter/en/ 
50 https://www.fda.gov/ 
51 https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/ 
52 https://vaers.hhs.gov/ 
53 https://www.fda.gov/Safety/FDAsSentinelInitiative/ucm2007250.htm 
54 https://www.fda.gov/Drugs/DrugSafety/ucm199082.htm 

https://www.who.int/medicines/publications/newsletter/en/
https://www.fda.gov/
https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/
https://vaers.hhs.gov/
https://www.fda.gov/Safety/FDAsSentinelInitiative/ucm2007250.htm
https://www.fda.gov/Drugs/DrugSafety/ucm199082.htm
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The collection of data and their partial communication is performed through the 

MedWatch program55, which facilitates the submission of individual reports, including by 

citizen reports. 

 Pharma Industry and Contract Research Organizations 

Contract Research Organizations (CROs) are companies that provide the 

pharmaceutical industry with a variety of services such as conducting and managing clinical 

trials, pharmacovigilance, regulatory and medical support, and quality management. As a result, 

more and more pharmaceutical companies outsource the above processes to CROs, due to the 

organized and specialized services they provide, while allowing them to reduce the time and 

costs required to carry out the same processes. In this sense, the PV procedures followed by 

CROs and pharmaceutical companies are the same. 

Typically, PV departments are an integral functional department of every 

pharmaceutical and CRO company. Marketing Authorization Holders (MAHs), i.e. the 

companies holding the right to commercialize a medicine, must have a well-designed PV 

system that will allow them to monitor the safety of their approved medicinal products and 

detect changes in the risk-benefit balance. The main processes performed by the PV 

Departments of pharmaceutical companies and CROs can be summarized as follows: 

- Collection, processing, evaluation, management, monitoring, coding and electronic 

submission of all serious and non-serious ADRs, coming from any source (spontaneous 

reports, literature, clinical trials), to the competent authorities within the legal time 

constraints. 

- Continuous monitoring and scientific evaluation of all ADR data, coming from any 

source, to detect potential safety signals. 

- Continuous monitoring of the safety profile and evaluation of the risk-benefit balance 

of medicines - Evaluation of all safety data of medicines, preparation and electronic 

submission to the competent authorities of Periodic Safety Update Reports (PSURs). 

                                                 
55 https://www.fda.gov/Safety/MedWatch/default.htm 

https://www.fda.gov/Safety/MedWatch/default.htm
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- Scientific evaluation of all information related to the risks of medicines, identification 

of new risks or changes in existing risks - Preparation of Risk Management Plans 

(RMPs) - Take risk minimization measures. 

- Disclosure of safety information to health professionals and patients. 

 Hospitals 

PV procedures in daily clinical practice are not standardized at any level and vary 

depending on the country, the hospital or the respective clinician. 

For example, in some large hospitals in France, there are PV centres which have a 

decisive-advisory role in the evaluation of possible ADRs after a relevant request of their 

medical staff. However, in other countries like Greece there is no corresponding structure in 

hospitals. Clinicians are required to report possible indications for ADRs through the NDO's 

"Yellow Card" system, or alternatively report potential ADRs via direct communication with 

the respective pharmaceutical company. However, in practice this communication channel is 

also under-functioning. The small number of reports collected from the hospital environment 

(internationally reported to not exceed 5% of cases) can be justified as follows: 

- lack of time for medical staff, 

- fear for bureaucratic or other complications (e.g. legal retaliation by pharma 

companies), 

- lack of specialized knowledge of clinical pharmacology, 

- the perception that these reports are not used in practice and therefore they are pointless, 

- lack of appropriate support tools for Communications and Informatics. 

HCPs typically retrieve ADR information mainly through the Internet56  and the search 

for the SmPC leaflets of the respective drug on online platforms. Also, information provided 

by reference "encyclopedias" of the genre (eg Meyler's encyclopedia (Aronson and Meyler, 

2015)) is often sought. However, these sources are not updated regularly and do not include 

data on the valuation of new PV signals. 

                                                 
56 for example, http://www.galinos.gr is the most prominent web site in Greece typically used by HCPs to get 

information about medicine 

http://www.galinos.gr/
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In terms of clinical practice, the possible investigation and treatment of suspected cases 

of ADRs is left to the practices of each clinician and the respective hospital. These practices are 

directly affected by the nature of the physician's employment relationship (external partner, 

private physician, trainee, etc.). In many cases, the nursing staff also plays an important role, 

as especially in cases of hospitalized patients, the patients' contact with the nurse is more 

frequent and the nursing staff is the one who administers the drugs and thus observes potential 

side effects. 

 Conclusion 

As the presented paper and this section depicts, PV is a highly regulated environment 

engaging multiple stakeholders with varying priorities. The ultimate goal of PV is to support 

the process of providing safer drugs to the public; thus, the activities of the various stakeholders 

need to be aligned towards this goal, exploiting also the opportunities provided by the new 

“intelligent” technological paradigms and the emerging data sources. This alignment process is 

far from trivial due to both technical and organizational barriers and to this end, the respective 

BPs were analysed, in order to support the mining of the UGs which could ultimately support 

the design of IT systems and the revision of the application of PV activities in the clinical 

context and beyond.
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4. User goals and challenges regarding the integration of 

“intelligent” IT systems in the clinical environment  

This chapter elaborated on the identified UGs and the main information workflow 

designed as part of the integration process of a KE-based IT platform designed in the context 

of the PVClinical project. A preliminary version of these UGs was presented in the conference 

Medinfo 2019 (Natsiavas et al., 2019a), and this paper is presented as is in the following 

subsection. Moreover, as the definition of UGs was iteratively refined, the “Beyond the paper” 

subsection presents the UGs as they were finalized, after the respective paper was published. 
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 Abstract 

Even though Adverse Drug Reactions (ADRs) constitute a significant public health 

issue, there is a lack of Information & Communication Technologies (ICT) tools supporting 

Pharmacovigilance (PV) activities at the point of care. In this paper, we present the rationale of 

a Web-based platform to address this need. The driving user scenario of the proposed platform 

refers to a clinician who investigates information for a possible ADR as part of a specific patient 

treatment. The goal is to facilitate this assessment through appropriate tools for searching 

various relevant data sources, analysing the acquired data, aggregating the obtained evidence, 

and offering follow-up ADR monitoring over time in a systematic and user-friendly way. In 

this regard, we describe the adopted user requirements engineering methodology and we 

illustrate the use of Knowledge Engineering (KE) as the platform’s main technical paradigm to 

enable heterogeneous data integration and encounter the complexity of the underlying 

information processing workflow.  

Keywords:  

Pharmacovigilance; Drug-Related Side Effects and Adverse Reactions; Knowledge 

Management 
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 Introduction 

Pharmacovigilance (PV) is defined as “the science and activities related to the detection, 

assessment, understanding and prevention of adverse effects or any other possible drug-related 

problems” (World Health Organization, 2002). As Adverse Drug Reactions (ADRs) cause a 

significant social and financial burden (Formica et al., 2018), PV is widely recognized as an 

important public health priority. An estimation by the US Office of Disease Prevention and 

Health Promotion has recently calculated that Adverse Drug Events (ADEs)57 are responsible 

for 1 in 3 of all hospital adverse events, related with about 2 million hospital stays each year 

and increased hospitalization by 1.7 to 4.6 days58. Thus, the detection and prevention of ADRs 

at the point of care rises as a major clinical issue as the probability of benefit should balance 

the possibility and cost of potential harm (Ferner and McGettigan, 2018). 

The assessment of potential new or incompletely documented ADRs (called “signals”) 

is typically performed by national and international drug monitoring/regulatory organizations 

(e.g. the Food and Drug Administration (FDA) in the US, the Uppsala Monitoring Centre 

(UMC), World Health Organization collaborating centre for international dug monitoring, etc.). 

These organizations perform statistical analysis of individual case safety reports (ICSRs) 

gathered in Spontaneous Reporting Systems (SRSs), in order to identify indications of a causal 

relationship between the drug administration and the adverse effect based on measures of 

disproportionality (Montastruc et al., 2011), taking also into account other sources of evidence 

(e.g. scientific literature, clinical trial databases, etc.). 

While SRSs are the dominant data source for PV, recent advances in Information and 

Communication Technologies (ICT) enable the exploitation of new, emerging data sources that 

can expand the real-world evidence base for PV (e.g. observational healthcare databases, social 

media, internet search logs, etc.). Thus, the need for comprehensive and knowledge-intensive 

ICT tools supporting the systematic and efficient exploitation of diverse data sources for PV is 

evident, in order to accommodate the entailed big data challenges (Koutkias and Jaulent, 2015).  

                                                 
57 ADEs include side-effects that may or may not have a causal relationship with the respective drug, also referring 

to cases of adherence failure. ADRs refer only to side-effects caused after legitimate drug use, therefore implying 

a possible causal relationship between the drug and the adverse effect (Lindquist, 2007).  
58 https://health.gov/hcq/ade.asp 

https://health.gov/hcq/ade.asp
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To this end, we develop a Web-based platform aiming to facilitate the early 

identification and assessment of potential ADRs at the point of care. The main objective is to 

contribute at “active”, post-marketing drug safety surveillance (Gagne et al., 2012), focusing 

on the timely assessment of potential drug safety risks, supporting clinicians (as well as PV 

experts and researchers) to explore diverse data sources of interest and obtain actionable 

insights via knowledge-intensive analytics (Koutkias et al., 2017). The proposed platform is 

currently in its “user requirements analysis” and “design” phase, which is driven by the real-

life scenario according to which a clinician investigates information for a possible ADR as part 

of a specific patient treatment. The ultimate goal is to facilitate the integration of ADR 

assessment in routine clinical practice (Figure 14), by introducing tools which facilitate the 

search of diverse data sources, the analysis of the acquired data, the aggregation of the evidence 

to conclude with ADR assessment, and follow-up ADR monitoring over time in a systematic 

and user-friendly way. 

 

Figure 14: Integrating the ADR assessment process in the clinical context. 

In this paper, we present the methodology applied and the main challenges identified 

during the “user requirements analysis” phase of our development, which were in turn mapped 

to relevant user goals. We also illustrate the main elements of the platform design through the 

respective information processing workflow. In this regard, we elaborate on how a Knowledge 

Engineering (KE) based approach can accommodate the respective design and development 

challenges. We further discuss practical implications of our work and outline directions for 

future work, aiming to support a comprehensive learning health system for active, post-

marketing drug safety surveillance at the point of care (Ramsey et al., 2017). 
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Compared to relevant works, like the SALUS platform (Yuksel et al., 2016), which 

focused on exploiting Electronic Health Records (EHRs) for ADR detection, or the platform 

developed in Web-RADR (Ghosh and Lewis, 2015), which exploited social media for new 

insights on drug safety, our work relies on multiple, diverse data sources, increasing the search 

space for real-world evidence with an explicit focus on the clinical environment. 

Methods 

The employed “user requirements analysis” process is an adjusted version of the 

methodology described in (Natsiavas et al., 2018b) and it can be summarized as follows:  

1. Analysis of the currently applied Business Processes (BPs) based on the respective user 

scenarios. 

2. Definition of User Goals upon the elaborated ΒPs based on end-user input. 

A Business Process (BP) is defined as a collection of relevant and ordered structured 

activities/tasks aiming to produce a specific outcome (Weske, 2012). ADR assessment can also 

be considered as a BP conducted in the context of a hospital, as part of other parallel BPs (e.g. 

patient treatment, administrative processes, etc.). We envisage that the use of the proposed 

platform could reform the current process of ADR assessment, typically conducted manually 

and with no systematic ICT support, to a well-defined sequence of information processing steps, 

supporting the overall clinical treatment processes. The ultimate goal is to optimize this BP 

model by satisfying the so-called User Goals. User goals are defined as “abstract user 

requirements, not directly referring to specific technical solutions or components” (Natsiavas 

et al., 2018b), associated with specific user actors or roles and facilitating timely identification 

and resolution of potential conflicts between actors. For the optimization of the ADR 

assessment process, user goals were elaborated based on feedback provided by clinicians and 

PV experts in the “user requirements analysis” and the “design” phases. 

Regarding the presented platform design, the main BP of interest refers to the 

assessment of a potential ADR by a clinician. However, other BPs could also interact with it, 

e.g. concerning the patient’s treatment. Given that patient treatment is the topmost priority in 

the clinical environment and that it is a personalized process, highly dependent on the local 

context (e.g. the way the specific clinic/hospital is organized), the modelling of these 

“interacting” BPs is very important and could be rather complex. The proper modelling and 
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early identification of such BP interactions could be critical as they may substantially affect the 

identified goals and, thus, the platform design. 

We model the identified BPs using flowcharts based on a notation similar to Business 

Process Management Notation (BPMN), in order to identify decision points, possible 

information processing bottlenecks, interactions with other BPs, etc. These flowcharts are 

further refined collectively by ICT experts, healthcare professionals (i.e. clinical doctors) and 

PV professionals (i.e. scientists who investigate potential ADR signals). Furthermore, 

interviews and workshops among researchers and end-users were conducted as part of the 

overall “user requirements analysis” phase to analyse the established BPs, identify the User 

Goals and refine the platform’s information processing workflow accordingly. Meetings were 

also held in the clinical environment (i.e. in the two hospitals which will host the platform in 

its pilot phase) to validate these goals and also address deployment issues in practice. 

All types of current and emerging data sources considered in PV [6], were found 

interesting to explore by the end users. These include the local EHR systems, national and 

international SRSs, reference bibliographic databases as well as social media. From a technical 

viewpoint, programmatic data access is considered of high priority, as it enables systematic data 

gathering (e.g. spontaneous reports from the FDA Adverse Event Reporting System via 

openFDA (Kass-Hout et al., 2016), articles via the PubMed Central Application Programming 

Interface, etc.). 

In order to successfully accommodate the imposed challenges regarding the synthesis 

and analysis of the vast data available, Knowledge Engineering (KE) is adopted as the main 

technical paradigm for our platform development. KE refers to methods, tools and theories for 

developing knowledge-intensive applications (Schreiber, 2008), and includes knowledge 

extraction, knowledge integration, knowledge representation, knowledge dissemination, and 

knowledge elicitation as its subdomains. 

In the scope of our work, which concerns the systematic exploitation of all the available 

evidence from multiple PV data sources for the assessment of possible ADRs, we employ two 

technology artefacts tightly related with KE, namely, “Linked Data” (Heath and Bizer, 2011) 

and “Semantic Web” (Shadbolt et al., 2006). Linked Data refer to a group of standards which 

facilitate the interconnection of data over the existing Internet infrastructure, while Semantic 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

143 
 

Web refers to the vision of semantically annotated publicly available data interlinked via Linked 

Data standards.  

The use of Semantic Web and Linked Data standards provides two main technical 

benefits: (a) Interoperability: The use of the Linked Data paradigm provides syntactic and 

semantic interoperability tools to interlink heterogeneous data sources and unify them in one 

processing realm. (b) Reasoning capabilities: The well-defined semantics upon a robust 

mathematical infrastructure, i.e. Description Logics (Baader et al., 2004), enable automatic 

reasoning through specific software, a.k.a. “reasoners”. 

 Results 

Based on this methodology and the choice of KE as the main technical paradigm, several 

challenges were identified from the end-user perspective, leading to concrete user goals and the 

design of the platform’s information processing workflow. In particular, given the 

characteristics of the clinical environment, the following challenges (enumerated with Cx) 

regarding the adoption of an ICT-based ADR assessment process were identified: 

C1 | Lack of time: While the assessment of potential ADRs is identified as an important 

task, it is often neglected by clinicians due to lack of time. 

C2 | Lack of expertise: PV entails specialized knowledge, which may not be available 

in clinical settings. While this argument supports the need for ICT-based support tools, it could 

also be conceived as a barrier for their adoption as their value might not be evident for the end-

users. 

C3 | Adaptation to the clinical workflow: Workflow diversity among various clinical 

environments (different hospitals, or even different clinics in the same hospital apply different 

BPs) could hinder the definition and the adoption of a “one-size-fits-all” workflow of PV 

information processing. 

C4 | Inadequate evidence: While spontaneous reports are the dominant source of 

evidence for PV, other data sources such as EHRs, bibliographic databases, and even social 

media platforms are interesting for clinicians during ADR assessment. However, systematic 

access to multiple data sources shall be facilitated through appropriate tools. 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

144 
 

C5 | Coping with “big data”: Expanding the search space for PV does not only provide 

a broader evidence space, but it also imposes “big data” challenges. 

 

Figure 15: Outline of the main information processing workflow supported by the proposed 

platform (tasks related with Knowledge Engineering are highglihted in red). 

Overall, challenges C1-C5 have been discussed in the conducted workshops and the 

following user goals (enumerated with Gx) were identified and mapped to the respective 

challenges: 

G1 | Flexibility and Unobtrusiveness (mapped to C3): The ADR assessment process 

should be flexible and tolerant to interruptions by tasks directly related with patient treatment. 

Thus, an important feature would be the ability to easily recover from such interruptions. 

Practically, this can be interpreted as the need to “save” the ADR assessment workflow and 

continue later. In addition, clinicians stressed that the patient’s treatment should not be 

disrupted. Thus, the designed process should be as unobtrusive as possible, minimizing “alerts”/ 

“warnings”. 

G2 | Balance between assessment depth and speed (mapped to C1 and C5): As the 

clinician’s time is valuable, the platform should enable both “in depth” assessment capabilities, 

while also supporting a “quick look” which could provide rigorous information. Although the 

information provided this way would obviously be more superficial than an “in depth” 

assessment, it could still provide value for clinicians. 
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G3 | Semantic enhancement (mapped to C1, C2 and C5): Since the expression of the 

drug and condition of interest can be ambiguous (e.g. active substances, trade names, synonyms 

etc., could be used as drug terms), the overall process should be supported by curated standard 

terminologies and lexicons (e.g. with automatic synonym matching) to accelerate and facilitate 

information search and synthesis. 

G4 | Heterogeneous data synthesis (mapped to C4 and C5): Clinicians identified the 

need to synthesize various and heterogeneous data sources (e.g. scientific literature, drug-

information databases, clinical trial information, SRS data, observational healthcare databases, 

etc.). Overloading the end-user with incomprehensible data was identified as a major risk and, 

thus, the need for knowledge-based analytics emerged. 

G5 | Data sharing (mapped to C2): The need to share data to further elaborate on the 

collected ADR information and assessment results was also identified. Moreover, the value of 

data provenance was highlighted, especially for the process of reporting assessment outcomes 

to regulatory organizations.  

G6 | Follow-up monitoring over time (mapped to C4): Typically, an ADR assessment 

produces a report with the conclusion and the supporting evidence. However, the time 

dimension is critical in PV, especially regarding new marketed drugs. Thus, a follow-up 

mechanism for monitoring potential ADRs over time is important and is currently missing. 

The main information processing workflow supported by the proposed platform (Figure 

15) that was defined based on the abovementioned challenges and user goals is organized in 5 

steps. These steps are summarized next, describing the use of the KE methods that are 

applicable in each case: 

Step 1 | Definition of “ADR assessment scenario”: When the user launches an ADR 

assessment, the platform shall support the definition of the drug and the condition of interest by 

automatic suggestions of synonyms and relevant terms obtained from reference terminologies, 

e.g. the Anatomical Therapeutic Chemical (ATC) classification for drugs, and the Medical 

Dictionary for Regulatory Activities (MedDRA®) and the International Classification of 

Diseases (ICD) for the conditions of interest. The use of such well-defined knowledge structures 

expands the search space, enables the semantic normalization of the overall process, prevents 

ambiguities, and facilitates automatic information interlinking in the next analysis steps. 
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Step 2 | Browse/analyse raw data from each data source: Each raw data source has its 

own characteristics. For example, SRS data could be used for disproportionality analysis, while 

EHR data could be explored through observational healthcare data analytics (Kass-Hout et al., 

2016). KE approaches will be exploited for the analysis of each data source, e.g. text mining 

techniques can be used to extract and semantically annotate information from unstructured data 

sources such as the literature or social media. Thus, the end-user can browse or analyse the 

respective data source in a dedicated workspace, providing suitable features and analysis 

capabilities.  

Step 3 | Combine analysis results from raw data sources: The results/analysis outcome 

obtained from each data source workspace shall be integrated in one common processing realm, 

where all the analysis results could be integrated, compared and evaluated by the end-user. 

Knowledge integration is based on semantic annotations produced in the previous steps and the 

use of Linked Data standards. Moreover, semantic reasoning can be applied to further elicitate 

knowledge from the already extracted analysis results. 

Step 4 | Produce a consolidating assessment report: The overall analysis outcome shall 

be generated as a consolidated report, facilitating further analysis in collaboration with other 

clinicians, or even reporting to PV regulatory agencies. The produced report shall be available 

in both human-readable (e.g. in text form as a pdf document) and machine-readable (e.g. an 

RDF document) formats. Knowledge dissemination approaches can be used to facilitate the 

respective information exchange in a way that could promote the automatic reuse of this 

information. For example, the recently developed OpenPVSignal model (Natsiavas et al., 

2018a) could be used in this regard, to enable compliance with the FAIR data principles 

(Wilkinson et al., 2016). 

Step 5 | Launch follow-up monitoring: The end-user can launch a monitoring follow-up 

process, in order to receive potentially new information regarding the assessed ADR from the 

available data sources. This process would notify the end-user based on his/her notification 

preferences to avoid over-alerting. Ontology models such as the Time Ontology (Cox et al., 

2017) and the PROV-O Ontology (Gil et al., 2013) can be used to enrich the obtained 

information with semantically enhanced time and provenance annotations, and thus, facilitate 

further processing/reasoning regarding the time aspects and the origin of the information 

collected regarding the ADR under assessment. 
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It should be noted that the presented workflow defines an independent BP, which can 

be adapted to each organizational context. Furthermore, in each assessment process, the end-

user may decide the time spent on each BP step, either selecting to use the automatically 

retrieved information, drill-down to investigate further or manually curate the produced 

outcomes, and save or share his/her work with others at any time. 

 Discussion 

Drug safety is an important issue in the clinical environment. Among the common tasks 

that are routinely performed in PV centres/departments in hospitals is the collection and review 

of all the available data for a potential ADR of interest. However, there is a lack of 

comprehensive tools to support PV activities, specifically tailored for use at the point of care. 

For example, a clinician may ask for a timely evaluation of the respective patient case after a 

new drug administration, and the PV centre/department shall provide a documented answer 

with a medical advice about the case, after assessing the eventuality of an ADR (Koutkias et 

al., 2017). To respond to this challenge, currently available sources of information about the 

drug–event pair have to be searched by PV experts separately and in many cases without using 

appropriate support tools.  

To address this need, we are currently developing a Web-based, knowledge-intensive 

platform aiming to support the assessment of potential ADRs, experienced during routine 

patient treatment. In the current paper, we presented the entailed challenges and the goals for 

such a development from the user perspective. We also presented the platform’s main 

information processing workflow (Figure 15). Its design relies on exploiting various KE-based 

methods, employed in each step of the workflow.  

In particular, the use of Linked Data and Semantic Web technologies provides the 

following key benefits:  

Information linking can be improved and automated by reducing the need for manual 

data exploration and discovery as data could be automatically retrieved. 

Rich semantics enhance information processing capabilities, which are typically limited 

in the PV domain to statistical measures of disproportionality. The already established statistical 

methods could be combined with semantically-enhanced knowledge sources to improve 

outcomes via automatic reasoning capabilities (e.g. regarding causality assessment). 
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Evidence can be strengthened through the knowledge-intensive, concurrent exploitation 

of multiple data sources, eliminating false positive findings (Koutkias and Jaulent, 2015). 

KE-based automatic information linking enables the use of provenance information to 

annotate the generated analysis outcomes. This is important as full supporting evidence shall 

be explicitly available, e.g. when reporting results to regulatory organizations.  

Despite the abovementioned benefits, the implementation of KE-oriented techniques 

entails complex challenges, both in methodological and technical terms, e.g.: 

 Automatic reasoning capabilities based on the Description Logic defined semantics are 

one of the most prominent features of Semantic Web technologies. However, 

“reasoners” require significant computational resources and their efficient use in large 

datasets remains a challenge. 

 Various reference knowledge sources (e.g. terminologies/thesauri/vocabularies) are 

available and can be applicable in the scope of this work. However, since these sources 

are constantly evolving and refined, their alignment is a complex task as it can lead to 

semantic inconsistencies. 

 Integrating all the collected evidence under one unified knowledge model can be very 

challenging. This process engages many heterogeneous data sources, which could be 

available via standard data exchange interface or not. For example, using proprietary 

EHRs to retrieve observational healthcare data would typically require specific interface 

implementations. 

To this end, besides the ultimate goal of delivering a robust and evaluated ADR 

assessment platform, our mid-term goals are: (a) the design of a unifying semantic model 

enabling the integration of heterogeneous data sources in one information processing realm, 

and (b) the modelling of ADRs in one ontological model, facilitating advanced reasoning 

operations upon the collected information. 

 Conclusions 

There is a clear need for comprehensive tools to support PV activities at the point of 

care. The proposed platform aims to support the assessment of potential ADRs in routine 

clinical practice, relying on the concurrent exploitation of multiple data sources for appropriate 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

149 
 

evidence. This entails the analysis of the acquired data, the aggregation of the obtained 

evidence, and the support of follow-up ADR monitoring over time in a systematic and user-

friendly way. In this paper, we presented the main challenges and the goals from the end-user 

perspective for such a development, identified during the “user requirements analysis” phase 

of our development. We also presented the main elements of the platform design, i.e. its main 

information processing workflow, and illustrated the use of KE as the platform’s main technical 

paradigm. Our work contributed to the development of a learning health system for active, post-

marketing drug safety surveillance at the point of care. 
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4.2. Beyond the paper: User goals refined and challenges identified 

regarding the integration in the clinical environment 

As explained in the Methodology subsection, the main outcomes of the thesis were 

iteratively refined. To this end, the final list of the identified UGs is summarized in Table 8, 

also taking into account the analysis regarding BPs, presented in “Regulatory context and 

Management aspects”. Furthermore, the challenges of integrating systems based on 

“intelligent” technical paradigms are discussed in this subsection. 
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Table 8: Finalized list of User Goals 

ID Title Description Reference to BPs 

UG1 
Use of drug synonyms should be 

encouraged 

Retrieval of drug information either by using the active substance, empirical or 

commercial name should be supported 

All BPs are relevant, but 

this feature would be 

especially usefull for BP5, 

BP6 were complex queries 

are formed 

UG2 
Graphical components with conceptual 

hierarchy should be applied 

Conceptual levels/hierarchies and concept groupings provided by well-defined encodings 

(e.g. MedDRA and WHO-ATC levels), could facilitate the formulation of search queries 

by users in a more succinct way, exploiting the semantics provided by the respective 

encodings as part of the User Interface. 

All 

UG3 

Well-defined unambiguous concepts 

should be used based on widely accepted 

thesauri, dictionaries and medical 

ontologies 

The use of well-defined terms is expected to enhance the formulation of queries by 

reducing semantic ambiguity and to improve access to pertinent well-standardized data 

sources. 

All BPs are relevant, but 

this feature would be 

especially usefull for BP5, 

BP6 were complex queries 

are formed 

UG4 

A multitude of data sources should be 

used, including but not restricted on 

ICSRs 

Both well-established sources (i.e. sources widely used in everyday practice), as well as 

emerging sources that are being thoroughly researched for their potential merit in drug 

safety studies should be used  

BP2, BP3, BP4, BP5, BP6, 

BP7 

UG5 
Statistical evaluation of possible signals 

and computational causality assessement 

The use of statistical metrics based on disproportionality analysis techniques is the main 

approach for the detection and the ensuing prioritization of potential safety signals and 

these should be heavily employed.  

BP3, BP4, BP5, BP7 

UG6 
Exploit the special characteristics 

provided by each data source 

Each data source provides data of different types with different features, exploitable in 

terms of drug safety signal investigation. For example, while DA statistics (e.g. PRR, ROR 

etc.) might be extremely useful in ICSR databases, these metrics might be irrelevant for 

social media and therefore each data source’s special features should be taken into 

account. 

BP2, BP3, BP4, BP5, BP7 
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UG7 
Advanced visual analytics features 

should be integrated 

In addition to statistics-numerical data, visual aids could facilitate the in-depth 

investigation of potential safety signals 

BP2, BP3, BP4 

UG8 

Long term/”pausable” processes for 

investigating a drug-safety signal should 

be available 

A “save for now and resume later” feature is critical, because such processes are time-

consuming and laborious. Especially in the clinical environment where PV is not HCPs’ 

top priority, such a feature would be of the highest importance. 

BP2, BP3, BP4, BP5, BP6, 

BP7 

UG9 
Capability for long term monitoring of a 

signal should be provided 

Many safety signals may entail the investigation of longitudinal studies or the long-term 

monitoring of a drug and thus they could span long periods of time. By the same token, 

analysis of clinical trials or the provision of clinical services are also considered lengthy 

processes.  

BP3, BP4, BP5, BP6 

UG10 
Investigation “scenarios” should be 

identified as the main usage paradigm 

Albeit the proven value of direct searches for signal detection, the formulation of 

investigation scenarios could be even more beneficiary due to the deeper analysis with 

enhanced capabilities that they offer. Notwithstanding, a certain “quick 

search/investigation” feature can be also included. 

BP2, BP3, BP4, BP5, BP6, 

BP7 

UG11 Role-Based Access control for the users 

This control can enable simultaneous analysis of multiple PV signals. Users can create, 

edit or delete scenarios, depending on the specific permissions granted to each one of 

them. Furthermore, collaboration and teamwork can be encouraged and thus mistakes can 

be prevented 

All 

UG12 
Comprehensive report generation from 

each investigation scenario 

An investigation scenario report would be very useful in order to disseminate the 

investigation results to other clinical experts or other stakeholders (e.g. regulatory agencies 

etc.). 

BP2, BP3, BP4, BP5, BP6, 

BP7 

UG13 
Access to information for each individual 

patient case 

Due to inter-patient variability, the investigation of suspected ADRs demands access to as 

much detailed information available. This could pertain for example, to the genetic profile 

of a patient affected by an ADR during clinical trials or to the original form of ICSRs that 

document a signal. 

BP2, BP4, BP5, BP7 

UG14 
Ability to trace back to original raw data 

source 

Reliability can be assessed or proven only if the exact origin of data can be traced, a 

feature which might also be important for medical data-sharing. 

BP4, BP5 



NATSIAVAS, Pantelis – Thèse de doctorat - 2020 

155 
 

UG15 User-friendliness 
Tackling crucial challenges from the clinical setting, such as clinicians’cramped schedule, 

or underestimation of PV due to the higher priority of other clinical procedures 

All 

UG16 Data protection and privacy 
Compliance with the regulatory framework and the stringent legalities (e.g. the General 

Data Protection Regulation GDPR) 

All 

UG17 Extensibility and adaptability 

Being versatile with new potential pharmacovigilance data sources and operational in 

distinct environments (different hospitals, CROs, etc.), irrespective of the computer 

infrastructure used (e.g. Electronic Medical Record), or the procedures applied 

All 

UG18 Interoperability 
Data generated (e.g. the consolidated reports) must be computationally exploitable  by 

other information systems as well. 

BP2, BP5, BP7 

The following diagram qualitatively depicts the relationship of the UGs with the respective BPs. While it is clearly evident that non-clinical 

BPs (i.e. BP5, BP6, BP7) support the biggest portion of UGs, it is also clear that a lot of UGs are related with clinically relevant BPs (BP1 – BP4). 

Given the current low adoption of PV processes in the clinical context, this finding also implies that the integration of suchlike IT tools could 

provide value for every day clinical practice. 
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Figure 16: Relationship between User Goals and Business Processes 
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Advanced IT tools and ISs are expected to drive the process of shifting PV activities 

from a traditional, passive paradigm depending on SRSs to the paradigm of “Active 

Pharmacovigilance” leveraging information from all available data sources, also as part of 

everyday clinical practice in order to investigate or prevent potential ADRs. However, until 

now, the adoption of such digital approaches by PV stakeholders has been hampered due to 

significant limitations that are gradually coming to the forefront. The hurdles of adopting IS in 

PV activities focusing on the clinical context are elucidated (at least partly) by the identified 

UGs, however, they can be generalized referring to the adoption of ISs in the healthcare domain 

as a whole, beyond PV. 

 Fragmented medical datasets: Typically the available datasets in a hospital refer to 

mostly unstructured, incomplete, semantically unaligned, and “siloed” data among the 

various departments of a healthcare facility e.g. hospital (White, 2014). Moreover, 

when external datasets are available, they most frequently lack formal and 

computationally exploitable semantics. This special and semantic fragmentation of the 

available datasets prevents their aggregation; in principle their integration could be 

significantly facilitated by KE approaches (e.g. via the Linked Data paradigm and the 

use of Semantic Web technologies). 

 Inherent technical pitfalls of ISs:  

o Versatility is a huge issue because in the case of ML most algorithms operate 

within very specific scenarios albeit the real-life demands of clinical operations 

entail managing a multitude of heterogeneous sources, including “dirty” or 

incomplete data. Increasing versatility of “intelligent” algorithms is not a trivial 

thing but it could be facilitated by research networks where “real-world” data 

would be used to validate algorithms under development (e.g. following the 

OHDSI initiative model59). 

o Validity is also another major concern that has to be addressed considering that, 

typically, tools/methods etc. are systematically validated and regulated in the 

healthcare context (e.g. via processes including clinical trials and well-defined 

Risk Management approaches). Hence, the open availability of these IT tools 

(e.g. “intelligent” algorithms) could facilitate their wide validation (Yu et al., 

2018).  

                                                 
59 https://www.ohdsi.org  

https://www.ohdsi.org/
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o Interpretability is a very important issue regarding the application of ISs in the 

healthcare as many times, especially ML algorithms, are viewed as a “black-

box” which hides the reasoning process producing the outcomes/results. While 

this might be considered as a benefit for other purposes or domains, it is not 

acceptable in the healthcare setting, where providing a clear explanation on why 

an IS provides an outcome is essential. 

 Usability: User-friendliness significantly affects ISs’ adoption in and out of the clinical 

setting. The pace at which doctors interact with patients and other clinical scientists is 

gruelling so any ISs should generate outputs rapidly, with precision, in a concise, 

reproducible, and validated way (Sanchez-pinto et al., 2018). To this end, a key issue 

identified is the need to minimize necessary user interactions which might be 

disrupting, as even in critical systems, alert fatigue can significantly reduce acceptance. 

Furthermore, focusing on the use of ISs, a major ergonomics issue is raised: How 

should an end user interact with (semi)automatic “intelligent” software processes (e.g. 

an ML algorithm or formally stated knowledge structures)? 

 Legal issues: Legal, ethics and regulation issues also should be identified as an 

important factor regarding the acceptance of ISs in the healthcare. For instance, liability 

of clinical scientists in cases of malpractice are vague, therefore the legal framework 

should be elucidated, and potentially regulated as it could disrupt the processes of 

diagnosis, patient stratification, therapy and beyond (Yu et al., 2018). Obviously, these 

considerations overlap with ethics issues. For example, the concept of consent, one of 

the main legal and ethical cornerstones, needs to be adapted as getting the concept of a 

patient to process his/her data using ML or KE methods when he/she does not really 

understand how these algorithms work, is pointless and ethically questionable. 

 Information security: ISs outcomes heavily depend on datasets, either in order to train 

ML algorithms or to construct computationally exploitable Knowledge Structures (e.g. 

ontologies). Thus, major issues are raised regarding data-based biases and potentially 

malicious data management. Besides technical issues, it is clear that data security 

defects might directly endanger patient safety, therefore, the need for a “Patient Safety 

Cybersecurity Framework” is clearly identified. Such a framework would map 

technical information security threats to patient safety threats and focus on mitigating 

the latter via a systematic Risk Management approach. 
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Figure 17. Combination of symbolic and non-symbolic AI technical paradigms along with the 

use of emerging data sources to tackle the goals of PV goals and challenges. 

Based on a White Paper produced by Oracle emphasizing on the data challenges in PV 

(Corporation), over 60% of the PV stakeholders deploy or plan to deploy ISs. In order to 

overcome the above challenges, both technical and procedural advances are required. In terms 

of technical approaches, many of the above challenges are imposed by the hype of using “black-

box” based ML algorithms (non-symbolic AI) which provide no clear explanation of the 

reasoning process producing the respective outcome. We argue that KE based approaches 

(symbolic AI) should be more heavily employed and alternative schemes like hybrid 

intelligence (Computational Architectures Integrating Neural And Symbolic Processes, 1994) 

should also be investigated. Regarding the procedural issues, the need to move beyond data 

science to clinically related validation schemes is emphasized (Hauben et al., 2018). 

Furthermore, it is also evident that organizations need to prepare before adopting ISs in the 

everyday practice (e.g. data preparation)(Bates et al., 2020a). Especially regarding the 

information security challenges, a threat analysis or gap analysis (Rasmussen et al., 2018) 

should be conducted prior to the deployment of ISs in order to mitigate potential risks. 

Furthermore, the barriers and facilitators of IT systems in healthcare should also be taken into 

account (Natsiavas et al., 2018b). 
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In conclusion, we argue that the use of ISs in healthcare is moving towards the “trough 

of disillusionment” in terms of the Gartner hype cycle, with some prominent examples showing 

great promise without confirming it in real-world healthcare practice (How IBM Watson 

Overpromised and Underdelivered on AI Health Care - IEEE Spectrum). It should be noted 

that this steep disillusionment curve can also be attributed to issues which might not be directly 

related with technical or organizational issues. For example, ethics are a crucial factor affecting 

each step of the process, heavily affecting the legal context. Indicatively, while preserving 

patient privacy is widely accepted as a principle of utmost importance, its ethical impact 

becomes debatable when it hinders data processing which could potentially save lives. To this 

end, balancing benefits and risks of data processing in terms of ethics is crucial. 

However, given the ISs advancement pace, their wide adoption in other domains and 

their huge potential benefits, their future use in healthcare, including for PV purposes, seems 

certain, in spite of the barriers and the lack of their current adoption. The development of ISs 

and their potential benefits and risks could be considered in analogy with the challenges 

imposed by the development of drugs in the 20th century. While the process of drug 

development changed the overall healthcare setting and the medical practice, it has also caused 

severe tragedies (Paine, 2017). Therefore, in order to avoid decisions which might lead to 

tragedies, the above challenges should be clearly identified and elaborated to maximize ISs 

adoption rate and their positive impact in the healthcare processes.  
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5. Redefining Active Pharmacovigilance in the context of 

the Learning Healthcare System paradigm 

Based on the BPs and the UGs identified in the previous chapters, it became clear that 

a paradigm shift of currently applied drug safety processes should be applied, moving towards 

the integration of “intelligent” computational approaches and “real-world” data sources. The 

need to focus on a new “delivery science” focusing on the implementation of “intelligent” 

technical paradigms in the context of real-world healthcare processes is also discussed by a 

recent high profile paper (Li et al., 2020). 

More specifically, providing hospitals with better IT infrastructures to support them in 

data collection and analysis, and interconnecting them via information exchange networks with 

other domains which are not strictly clinical (e.g. social services or primary care, research, drug 

development, lifestyle data sources etc.) could offer bidirectional benefits and also support 

policy decision making (Sittig and Singh, 2020). These benefits refer to healthcare processes 

as a whole, including drug safety and PV.  

Focusing on recent developments regarding drugs development and the required safety 

procedures, COVID-19 led to a world-wide active pursue of a drug (European Medicines 

Agency, 2020) or a vaccine. In this context, myriads of technical solutions were proposed as 

part of an endless catalogue of worldwide or national initiatives aiming to produce or consume 

“big data”: from mobile apps aiming to provide diagnosis hints (Oliver et al., 2020) and 

blockchains used to enhance biological sample management, to multi-billion corporations 

(typically competitors) actively joining forces in order to provide computational infrastructure 

aiming to facilitate contact tracing (Oliver et al., 2020).  

As humanity moves away from the first shock and its initial response to this global 

disaster affecting each aspect of every-day life from work practices to school (Vogel, 2020), it 

becomes obvious that while advanced technical solutions could be very important, their impact 

without an overall paradigm shift is questionable (Sharma et al., 2018)(Bhavnani et al., 

2016)(Moerenhout et al., 2018)(Covid-19 has blown apart the myth of Silicon Valley 

innovation | MIT Technology Review). Under huge social pressure for an immediate drug 

development, new strategies regarding the development of potential new drugs/vaccines (or 

repurposing old ones) are proposed (Corey et al., 2020)(European Medicines Agency, 2020), 
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also emphasizing the need for thorough safety testing along with quick drug development 

(Jiang, 2020) and the need for better coordination in the data collection processes (Sittig and 

Singh, 2020). For example, the ACTIV (Accelerating COVID-19 Therapeutic Interventions 

and Vaccines) public-private partnership aims to align industry, government, and academia and 

their individual strengths moving towards collaborative platforms for conducting harmonized, 

randomized controlled vaccine efficacy trials for several candidate vaccines in parallel, so as 

to accelerate the licensure and distribution of multiple vaccine platforms and vaccines to protect 

against COVID-19 (Corey et al., 2020). 

Furthermore, COVID-19 pandemic clearly highlights the need for data management 

transparency regarding drug safety, as vague data management practices fail to provide the 

necessary scientific validation and verification capabilities. This lack of data management 

transparency not only led to the retraction of prominent scientific publications but even worse, 

it also led to critical clinical trials disruption based on non-thoroughly-validated evidence 

(Piller, 2020).  

In this new era of drug development and safety management where technologies will 

inevitably play a prominent role, we argue that moving towards “Learning Healthcare System” 

(LHS) and “Active Pharmacovigilance” (AP) paradigms could provide important benefits, for 

both patient safety and healthcare but also cost management, as it could facilitate quicker and 

better insights based on real-world data. While the administrative, financial and regulatory 

challenges should not be underestimated, we hold that such an approach could significantly 

improve the time and the overall cost burden of drug development leading to safer new drugs 

quicker.  

5.1. The Learning Healthcare System paradigm 

Currently, widely adopted CPGs play a crucial role towards the standardization and 

quality management of the clinical treatment procedures. Despite the undoubtable value of 

defining and adopting CPGs, the process of forming them can be very time consuming as it 

typically depends on a group of experts who thoroughly review the respective literature and 

other evidence to produce generally applicable CPGs. Typically, these CPGs are mostly based 

on clinical trial data and to not take into account “real-world” evidence. Inevitably, these 

“generally applicable” CPGs do not take under consideration the specific treatment process 
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context (e.g. special localized characteristics applying in a given country/region, features or 

problems regarding the specific healthcare service provider organization, patient’s detailed 

profile etc.). Furthermore, the gaps of the overall translation of research achievements to 

clinical practice, including their inclusion in CPGs, also lead to huge delays regarding the 

adoption of potentially clinically useful practices (Morris et al., 2011). Therefore, ‘‘care that 

is important is often not delivered, and care that is delivered is often not important” (Institute 

of Medicine and Roundtable on Value and Science-Driven Health Care, 2015). 

The LHS paradigm argues that healthcare systems need to become more agile, inclusive 

and learn from technical and research practice much faster than they currently do. The United 

States Institute of Medicine defines the LHS as the vision of a healthcare system “. . . in which 

progress in science, informatics, and care culture align to generate new knowledge as an 

ongoing, natural by-product of the care experience, and seamlessly refine and deliver best 

practices for continuous improvement in health and healthcare” ((IOM) Medicine, 2011). To 

this end, an alternative (or complementary) definition of LHS is the following: “a learning 

healthcare system is one that is designed to generate and apply the best evidence for the 

collaborative healthcare choices of each patient and provider; to drive the process of discovery 

as a natural outgrowth of patient care; and to ensure innovation, quality, safety, and value in 

health care” (Institute of Medicine, 2007).   

A key concept for LHS is the idea of “patient centred medicine” where citizens are 

identified as (a) data producers, (b) service co-creators and (c) service consumers. The main 

policy axes typically defined in the context of LHS vision are: (a) fast adoption of research 

achievements in routine clinical practice; (b) culture change among various stakeholders; and 

(c) collaboration of patients and physicians to produce evidence. It should be noted that LHS 

vision emphasizes on the patient participation on the overall decision-making in order to 

personalize care plans instead of delivering a standard treatment designed for the “average 

person” moving towards the precision medicine vision.  

To this end, LHS paradigm also focuses on the use of “real-world” evidence based on 

data collected in daily clinical practice via EHRs. EHR data are constantly updated and they 

constitute an evolving source of information which can be used as the basis for population-

specific conclusions and knowledge, easier to use as they are already produced as part of the 

every-day clinical practice and more straight forward to integrate than knowledge produced via 

randomized controlled trials (Friedman et al., 2010a)(Budrionis and Bellika, 2016)(Friedman 
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et al., 2015a). Figure 18 depicts the information learning cycle envisioned as part of LHS 

paradigm (Friedman et al., 2017). 

 

Figure 18: Learning Healthcare System, information learning cycle (Friedman et al., 

2017)  

Some LHS initiatives around the globe are identified in (Friedman et al., 2017). 

Notably, the US Office of the National Coordinator for Health Information Technology (ONC) 

set the achievement of rapid learning as the pinnacle goal of its 5-year strategic plans of the 

last decade (Office of the National Coordinator for Health Information Technology (ONC), 

2011)(Office of the National Coordinator for Health Information Technology (ONC), 2015) 

and various initiatives take place in Europe (Eichler et al., 2018)(Keung et al., 

2015)(Harnessing the potential of real world data through a ‘learning healthcare system’ | 

European Medicines Agency).  

However, the reforms towards the application of LHS in real-world settings largely 

remains in theory (Budrionis and Bellika, 2016). This can be attributed to several special 

conditions applying in the healthcare domain, which could be summarized in the following 

non-exhaustive list: 

- the complexity and the heterogeneity of the legislation context and the overall health 

systems governance model (e.g. healthcare systems are sometimes governed on a 

federal and other times on a state or a country level) introduce many difficulties 

towards the application of standardized processes, guidelines or exemplar paradigms 
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of healthcare processes as they have to be “translated” towards the special 

circumstances applying in the local environment, a far from trivial process 

- the inherent complexity and need for independence and personalization of clinical 

practice inevitably requires subjective judgements in all the steps of the overall process, 

reducing the impact of guidelines, formalized or standardized processes and modern 

paradigms like LHS 

- the heterogeneity of the various reimbursement models (both public and private) 

introduce various setbacks as funding is a key issue defining priorities, and therefore 

budgets tend to define the applied processes based on cost management 

- the diversity of the various stakeholders’, their educational backgrounds and their 

priorities leading to contrasting budget requirements (e.g. managers focus on budgets, 

clinicians focus on health impact etc.) 

- the lack of technical interoperability between the various data holders, both in terms of 

syntactic and semantic interoperability 

These factors lead to a labyrinth of motives and processes where various stakeholders 

with different motives and ultimate goals are engaged. Thus far, the decisions taken are mostly 

driven by budget restrictions and requirements. In this context, the COVID-19 pandemic can 

be seen as a unique opportunity as it has clearly proven that quality healthcare services can be 

a significant factor for the overall economy (Suddenly, Public Health Officials Say Social 

Justice Matters More Than Social Distance - POLITICO), therefore aligning the typically 

contrasting motives of the various stakeholders, while also highlighting the fact that investing 

in the LHS will have significant benefits not only for public health, but also for the economy 

at large.  

5.2. The vision   

Information workflow in a typical health care system today is depicted in Figure 19 

(adapted from (Institute of Medicine and Committee on the Learning Health Care System in 

America, 2013)), highlighting the gap of translating research into clinical practice. Aligning 

typical PV activities in the context of this information workflow, evidence is typically using 

“passive” approaches produced via DA based on ICSRs analysis. It should be noted that the 

main input from patients regarding potential ADRs comes from the submission of ICSRs which 

is a very weak communication channel as ICSRs are heavily underreported. Therefore, while 
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a lot of effort is placed on reducing the time between the occurrence of first evidence and 

regulatory actions for drug safety, the translational gap is still there mainly due to lack of data, 

heavily affecting the overall process. 

 

Figure 19: Informational workflow of a typical healthcare system - adapted from 

(Institute of Medicine and Committee on the Learning Health Care System in America, 2013) 

Combining the two paradigms of LHS and AP, we propose an update on the main LHS 

information lifecycle, emphasizing on three concepts: (a) the need to disseminate the produced 

knowledge back to the community, (b) the need for transparency and (c) the need to adapt for 

personalized treatment. While these concepts have been elaborated to some extent in the 

context of LHS (Friedman et al., 2017), we highlight them as they are particularly important 

for AP.  

Focusing on “personalized” healthcare, the evaluation of whether somebody is healthy 

or not should also depend on their personal input or personal lifestyle data, moving beyond 

simple patient stratification/clustering towards a “patient-centric” healthcare model. Αs PV is 

mostly based on the calculation of a risk-benefit ratio, the definition of this ratio in the context 

of the proposed paradigm should be updated accordingly, adjusted to the new data sources used 

and their peculiarities, including personal patient opinion and individual information (e.g. 

patient genetic profile), leading to Patient-Centric Benefit-Risk Ratio (PCBRR). To this end, 
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information flow archetypes emphasizing on personalized care/treatment (e.g. Patient-

Reported Outcomes archetype) should be further adopted. It should be noted that while a 

personalized benefit-risk evaluation rationale has already been identified as a need and has 

already been discussed in context of certain research projects, however the practical outcomes 

to this end are not clear in terms of PV (Juhaeri, 2019). 

 

Figure 20: The AP-LHS cycle: The Learning Healthcare System information lifecycle 

adapted for Active Pharmacovigilance, emphasizing on the calculation of a Patient-centric 

Benefit Risk Ratio in parallel with the classic PV approaches 

As also shown in Figure 20, the definition and the iterative calculation of a Patient-

Centric Benefit-Risk Ratio (PCBRR) plays an important role as it is used in all parts of the 

respective AP-LHS cycle aiming to support personalized treatment. In current clinical practice, 

personal information is taken into account as part of the non-systematic and highly subjective 

HCP judgements. Supporting such information via a well-defined PCBRR could significantly 

improve clinical decision making. Defining or even proposing a calculation formula for 

PCBRR would require a thorough validation process, and as such, it is considered out of this 

thesis scope. However, PCBRR could be outlined via the following features: 

1. Should take into account DA approaches upon community data 
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Patient stratification approaches and statistical analysis approaches against well-

established data sources (e.g. ICSRs) and RWE (e.g. EHRs) should be part of the 

overall process. 

2. Should take into account personal clinically related data 

Personal lab tests and potentially genetic profile might be highly relevant to identify 

the potential risk that a drug might pose to a specific patient, for example based on 

pharmacogenomics information. 

3. Should take into account personal lifestyle data 

Food, movement, sleep patterns etc. are indicative examples of data which might 

influence a drug’s impact and also significantly interact with the overall patient 

quality of life and sense of “health”: as such, they might significantly impact the 

reporting process of potential ADRs. 

4. Should take into account personal patient preferences  

Patient preferences (food, lifestyle etc.) are of the utmost importance as they might 

significantly affect the overall sense of “health”, especially regarding psychological 

health. 

5. Should be specialized for specific ADRs 

The impact of personal preferences or objective data (e.g. lab tests) is expected to 

vary for each ADR, taking its specific characteristics into account (e.g. its MoA). 

Therefore, at least in principle, the PCBRR should be specialized for each ADR. 

6. The overall outcome should link to original information sources/raw data 

While providing an overall PCBRR for a specific ADR would be very valuable, 

providing a “black-box” index would not be enough. The PCBRR should also be 

defined based on clear attribution relationships/links which would increase the 

overall transparency and enable the interpretation of PCBRR outcome for each 

patient further supporting clinical decision making. Using a hypothetical example, 

while calculating that a patient might have a PCBRR corresponding to a specific 
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value for a given ADR (e.g. the value 0.8) would be valuable, this calculation would 

provide a lot more information if it could be linked with original information/raw 

data (e.g. the fact that a patient genotypic characteristic increased his/her PCBRR 

for 0.2). Providing such interpretation links would also be crucial for the adoption 

of PCBRR as end-users end-users are less likely to trust computational processes 

whose workings they do not understand. 

 

Figure 21: The Patient-Centric Benefit Risk Ratio – main information sources 

Based on the above, the AP could be defined as the ‘systematic “hot pursuit” of RWE 

in all possible data sources aiming to “learn” in order to support personalized clinical 

decision making based also on individual information, including patient as an actor of the 

actual decision process’. 

The vision of a patient-centric AP as part of a LHS information lifecycle is further 

analyzed in Table 9 where indicative real-world activities for each component of the LHS-AP 

information lifecycle are identified. As an indicative use case, we use the investigation of a 

new PV signal as part of a hospital’s PV department to support a clinical decision supporting 

an individual patient’s treatment. These processes could relatively easily be adjusted to support 

the investigation of potential new PV signals in general, as part of DSMOs. Furthermore, the 

relation of the presented lifecycle with the user roles, the BPs and the UGs identified in 

previous chapters is also depicted in Table 9. 
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Table 9: Interpretation of LHS-AP lifecycle components to real-world activities and their link with the identified user roles, BPs and UGs 

Lifecycle 

phase 

Application in the context of AP Exemplar information workflow User roles Busines 

Processes 

User 

Goals 

Learning from 

community 

A typical knowledge sharing practice among 

scientific communities today is the open (or via 

proprietary access schemes) publishing of data. 

Moving beyond this already established 

practice, another approach could be the 

formation of research or clinical “networks” 

which could enable the sharing of data (or 

analysis results) among trusted partners 

without requiring the open unconditional data 

publication. 

Finally, another more active approach could be 

to actively pursue direct data collection, via 

communication with specific patient cohorts, 

depending also on the severity of the 

investigated issue. 

Openly available databases useful 

in terms of a PV signal 

investigation could include data 

provided via widely accepted ICSR 

databases (e.g. FAERS60, 

EudraVigilance61 or VigiBase62). 

An alternative would be the 

participation in research networks 

where either data or analysis 

results could be exchanged (e.g. 

the OHDSI research network63). 

Direct data collection could be 

done either remotely (via 

telephone, email or electronic 

surveys) or even by a follow-up 

clinical examination of the patient, 

depending on the size of the target 

IT scientist, 

Manager, 

PV expert 

BP5, BP7 UG4, 

UG6, 

UG18 

                                                 
60 https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard  
61 https://www.ema.europa.eu/en/human-regulatory/research-development/pharmacovigilance/eudravigilance  
62 https://www.who-umc.org/vigibase/vigibase/  
63 https://www.ohdsi.org/join-the-journey/research-network/  

https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard
https://www.ema.europa.eu/en/human-regulatory/research-development/pharmacovigilance/eudravigilance
https://www.who-umc.org/vigibase/vigibase/
https://www.ohdsi.org/join-the-journey/research-network/
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cohorts, the investigated issue and 

the capacity of the organization 

Furthermore, lifestyle data (either 

structured or unstructured) could 

be collected using widely used 

devices (e.g. mobile phones). 

Learning from 

patient 

Complementary to the process of learning from 

the community, identify personal relevant 

information is of high importance. 

Such information include patient lifestyle 

information, food habits, exercise habits, lab 

tests, pharmacogenomics information etc. 

This information could be collected via 

questionnaires or personal interviews, or even 

automatically collected using advanced IT 

tools (e.g. collecting data from mobile phones 

etc.). 

Personal information would be 

valuable in order to calculate the 

envisaged PCBRR and finally 

decide if a drug should be 

administered/stopped/rechalllenged 

etc. 

For example, deciding on whether 

a specific patient should continue 

taking a drug, could heavily 

depend on his/her genetic identity 

and the specific drug’s 

pharmacogenomic profile. 

Furthermore, the decision should 

also take into account personal 

preferences (e.g. how he feels 

about the potential ADRs). These 

data could significantly alter the 

respective clinical decision 

compared to community based 

benefit-risk ratio. 

 

Doctor BP1, BP2 UG13, 

UG16 
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D2K – Data to 

Knowledge 

D2K would include the combined processing 

of various data sources, either local/proprietary 

or openly available, on top of ICSR databases 

which are the main information source today. 

This expanded data space would include 

emerging and data sources primarily used for 

other purposes (e.g. EHRs, biochemical 

pathway databases, PGx data sources, social 

media, behavioral information sources etc.). 

Indicative related PV activities include the 

identification of potentially unknown PV 

signals, the analysis of already known PV 

signals, the identification of potential 

associations with clinically relevant values 

(e.g. lab test results) or patient characteristics 

(phenotype, social and demographic features 

etc.). Especially the personal data could be 

valuable in terms of calculating PCBRR. 

Practically, the inclusion of these new data 

sources would inevitably lead to the need for 

the development of new AI or Knowledge 

Engineering oriented computational 

approaches (e.g. Natural Language Processing 

algorithms, ontologies etc.), statistical tools 

and metrics and the development of specific 

guidelines (Zhuo et al., 2014)(Gagne et al., 

2012)(van Stekelenborg et al., 2019), 

extending the ones currently deployed to 

support ICSR databases analysis.  

A new PV signal would be 

investigated via the statistical 

analysis, i.e. DA, using available 

data sources: EHR data, openly 

accessible or proprietary ICSR 

databases, observational databases 

etc. 

Furthermore, via the investigation 

of the signal’s Mechanism of 

Action (MoA), suspicious 

biochemical pathways would be 

identified. The pathways would be 

further investigated using openly 

accessible pathway information 

databases (e.g. Reactome(Fabregat 

et al., 2018)) or PGx data sources 

(e.g. PharmGKB(Barbarino et al., 

2018)).  

Regarding the management of a 

patient per se, the PCBRR would 

be calculated using his/her own 

personal data along community 

based data and could practically 

affect clinical decision making. 

 

IT scientist, 

Doctor, PV 

expert 

BP1, BP2, 

BP3, BP5, 

BP7 

UG1, 

UG2, 

UG3, 

UG4, 

UG5, 

UG6, 

UG7, 

UG9, 

UG10 
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K2P – 

Knowledge to 

Performance 

K2P would refer to the production of data 

informed conclusions, based on the D2K 

phase. K2P would potentially include the 

elaboration of the outcomes of the D2K phase, 

in order to update the applied practices. 

For example, the locally applied CPGs could 

be updated based on the produced knowledge 

and potential inconsistencies should be early 

identified and resolved. Such a process could 

reflect special needs based on the respective 

clinical setting (e.g. the specific clinic, patient 

cohort etc.). 

Another approach could be to use an e-

Prescription warning system, providing alerts 

in order to prevent adverse reactions. These 

alerts could be based on a (semi)automatically 

updated rule base based on the mined 

knowledge and the patient’s personal 

characteristics. As part of this workflow, novel 

analytic approaches could also be used to 

inform the clinician’s decision making process 

(Lamy et al., 2017). 

Finally, the calculation of PCBRR could also 

significantly affect clinical decision making 

which is obviously related with “performance”. 

The D2K phase could identify 

novel features of the investigated 

PV signal, which could be used to 

update the respective drug 

administration/prescription 

practices. For example, a warning 

focusing on patients with specific 

phenotypic characteristics could be 

raised.  

Furthermore, measurable 

biochemical/genetic features which 

could be measured via lab tests 

could also be identified as relevant 

with the investigated PV signal, 

based on the use of 

biochemical/pathway information 

databases and also individual 

information (PCBRR calculation). 

Such an analysis could ultimately 

enhance the overall analysis of the 

specific PV signal via the use of 

these lab test values or identify the 

need to include these tests in future 

CPG updates. 

Manager, 

Doctor, 

Nurse, PV 

expert 

BP1, BP2, 

BP3, BP7 

UG9, 

UG10, 

UG12 
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P2D – 

Performance 

to Data 

Hopefully, adjustments in the overall applied 

practices would also lead to measurable 

performance improvements. To this end, 

specific Key Performance Indicators (KPIs) 

could be used to quantify and evaluate the 

improvement of the overall performance due to 

the updates of the applied practices. These 

KPIs could be based on standard DA metrics or 

even provide a simple comparative statistics 

environment to evaluate the potential impact of 

these approaches. 

Furthermore, the calculated data could also 

feed the next iteration of the LHS circle, 

providing input to the D2K part.  

Such KPIs in the case of a PV 

signal evaluation could include 

improved ADR reporting ratios 

using well-defined statistic metrics 

typically used for DA purposes 

(e.g. Reporting Odds Ratio – ROR, 

Proportional Reporting Ratio – 

PRR etc.). 

Regarding the use of these data as 

feed for the next LHS cycle 

iteration, as the application of a 

specific rule raising alerts for 

potential ADRs might improve 

metrics for a specific patient 

cohort, it could still worsen things 

for another cohort. This is crucial 

data/information which could be 

combined with other data sources 

and generate new knowledge as 

part of the following D2K step. 

Manager, 

PV Expert, 

IT Scientist 

BP3, BP7 UG7, 

UG12 

Disseminating 

back to 

community 

Communicating knowledge as it comes up 

needs to be done in a systematic and also an 

agile fashion. While the quality of the 

knowledge artifacts is of paramount 

importance, still, communicating non-validated 

knowledge might be crucial as it might 

facilitate its verification and it could also 

provide hints in various contexts.  

In the case of a PV signal 

investigation, early publishing of 

DA metrics (e.g. ROR) could be of 

high importance. As time goes by 

and new data come up, these 

metrics and potential conclusions 

should be updated accordingly, 

enriched with contextual 

IT 

professional, 

Manager 

BP7 UG16, 

UG18 
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Typically, scientific knowledge is disseminated 

via scientific journal publications, susceptible 

to various kinds of biases. In the PV context, it 

is sometimes also published via more informal 

communication channels (e.g. newsletters, web 

sites etc.). These communication channels need 

to be improved in terms of (a) time needed to 

publish data or conclusions, (b) enabling a 

systematic update of data in an iterative 

fashion as time goes by and the evidence get 

updated, and (c) highlight contextual 

information (e.g. special characteristics of the 

investigated patient cohort or the hospital 

producing the data etc.), while still ensuring 

quality. 

To this end, large “networks” of clinical or 

research institutions (among other 

communication means) might act as a 

bidirectional communication channel and more 

actively used in order to increase the produced 

knowledge’s value and also speed up its 

potential course to clinical practice. Finally, 

special care should be taken to include patients 

in this communication loop. 

information which provide insights 

for the specific datasets. 

Even when information is only 

providing first clues and are not 

enough to produce verified 

conclusions, their early 

communication might be very 

important as they could add up in 

the context of “network” of 

institutions and therefore provide a 

signal for more thorough 

investigation. 

It should be noted that, including 

patients in the communication 

ecosystem is crucial as raising 

awareness among them, might (at 

least partly) mitigate the widely 

identified problem of ADE 

underreporting(Paudyal et al., 

2020) 

Transparency Transparency should be considered a concept 

that cuts through all the components of the 

envisioned AP information lifecycle, ensuring 

that all data supporting a hint or a conclusion 

Communicating data and the 

relevant processes applied in order 

to support the analysis of a PV 

signal is crucial as they could make 

a huge difference regarding the 

  UG14, 

UG16 
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could be accessible or adequately described in 

order to evaluate it. 

Beyond data, all the processes should also be 

transparently documented as they could 

significantly affect data quality. 

The need for transparency should be balanced 

using well elaborated legal and ethics 

frameworks, ensuring patient privacy (first of 

all) and considering also all potential 

information security threats. 

It should be highlighted that transparency is 

crucial for the overall acceptance of the 

respective computational methods, as 

clinicians, who ultimately take the 

responsibility for patient care, would not 

accept “black-box” approaches as they do not 

enable the clinical data interpretation end-users 

are less likely to trust algorithms whose 

workings they do not understand. 

credibility of the produced 

conclusions.  

In the case of a PV signal, 

published data could include 

carefully anonymized EHR data 

and references to other data 

sources which have been also used 

in the overall analysis process. In 

terms of the processes applied, the 

respective metrics should be 

clearly defined and also tools used 

for the analysis (e.g. software 

applications/packages etc.) should 

be referenced. 

Communicating PV signal or other 

drug safety information to patients 

needs to be done based on a risk-

benefit management approach in 

order to prevent false alerts which 

might cause irreversible 

impressions, ultimately leading to 

decreased patient adherence to 

medicine subscriptions. To this 

end, PCBRR should also be 

transparently related and clearly 

linked with original information 

sources/raw data to facilitate its 

interpretation. 
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5.3. Challenges and steps forward 

Even though the AP-LHS paradigm seems to be compatible with the UGs identified in 

this thesis, the challenges of the proposed paradigm shift should not be underestimated. To this 

end, we consider that the UGs and the BPs identified as part of this thesis could provide useful 

insights and facilitate the next steps toward attaining the vision of integrating AP as part of an 

LHS. Technically, we argue that the adoption of KE computational approaches and KE-based 

tools might be crucial for this vision as they could provide the technical infrastructure to support 

this vision. 

More specifically, the identified challenges can be summarized as follows: 

- Mentality change of the various stakeholders (doctors, nurses, patients, 

regulators, policy makers etc.) is necessary as they will have to adopt new tools 

and adapt to the respective operational processes updates. 

- Management commitment is a top priority in the proposed paradigm shift as the 

identified BPs will have to be updated to include the use of new IT tools and the 

exploitation of new data sources. Such a change will inevitably require 

adaptations in everyday work; management commitment is absolutely 

necessary to tackle potential resistance against that and mitigate the rising risks. 

- Funding is also a crucial parameter as investments on new infrastructures, i.e. 

IT enterprise systems, are required. The quantification of the return on this 

investment is far from trivial as this needs to be done on a, mostly, hypothetical 

base. 

- Biases are ubiquitous and affect decision making processes. As explained in 

(Bate et al., 2018) new data sources come with new kinds of biases. These could 

affect various parts of the overall data analysis and therefore introduce bias in 

various parts of the envisioned AP circle. For example, while DA statistical 

metrics (e.g. PRR, ROR etc.) might have been refined for SRSs, these need to 

be updated or even completely rejected for observational healthcare databases 

or social media. Moreover, results reporting could also be challenging, 

especially if AI and ML are involved (Callahan et al., 2020) (Bates et al., 

2020b).  
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- Interoperability is still an open technical and management issue (Shull, 2019), 

despite the vast development of standards, reference software implementations 

etc. While these initiatives can be considered (at least partially) successful, still 

the simple fact of retrieving the consolidated Personal Health Record of a patient 

or even a Patient Summary from another hospital cannot be considered standard 

practice, mainly due to legal issues and lack of trust between the various 

stakeholders. 

- Usability of IT systems, especially regarding “intelligent” systems engaged in 

clinical processes is clearly identified as a challenge and as a significant priority 

according to the UGs described in this thesis. Integrating various heterogeneous 

data sources increased the risk of having end-users overwhelmed by big data. 

Furthermore, issues like over-alerting for potential drug safety issues should 

also be highlighted in terms of integrating modern IT tools in clinical practice. 

- Information security could always be identified as a challenge when data 

sharing is involved and should be highlighted as data sharing is a crucial part of 

the proposed vision of AP acting as part of a wider LHS paradigm. 

While no silver bullets exist, certain measures things could facilitate tackling the above 

challenges. The main axes of steps forward, also depicted in Figure 22, could be summarized 

as follows: 

- Education and the dissemination of real-world success stories could play an 

important role in promoting the mentality update. 

- Collaborating networks between organizations trusting each other could be an 

important step to potentially increase clinical data exchange. Suchlike networks 

(e.g. the OHDSI research network) have worked successfully towards the use 

of multiple hospital data for observational studies, while still respecting legal 

and patient privacy requirements. 

- Updated operational/business models should be adopted focusing on both the 

operational as well as the funding/reimbursement aspects. For example, the 

adoption of finance models based on data sharing economy could facilitate the 

adoption of the proposed paradigm as they could potentially enhance 

management commitment and also provide new funding opportunities. 

Furthermore, operationally, new ways of work should be pursued (e.g. the 
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transparent and agile maintenance of “live CPGs” instead of the stiff CPG 

lifecycle applied today). 

- A Social Impact Analysis could be engaged in order to evaluate the overall risk-

benefit ratio based on each clinical setting’s special characteristics (e.g. type of 

patients, regulatory/legal context, security needs etc.). 

- A Patient Safety Cybersecurity Framework should be defined, engaging a 

thorough a threat analysis process aiming to translate potential technical 

information security threats to patient safety threats. Such a framework should 

be based on widely accepted ethics and technical security analysis frameworks. 

- Finally, engaging a robust Medical Technology Evaluation Framework in order 

to increase trust in the new IT tools is crucial. As explained in (Hauben et al., 

2018), engineers should move beyond proving the proposed tools’ value via 

data science, and proceed to concrete clinical evaluation of the respective IT 

tools (e.g. via a clinical trial style validation) in order to prove and quantify the 

proposed tool’s impact.  

 

Figure 22: The steps-forward towards the realization of the envisioned AP-LHS 

paradigm shift 

Furthermore, we argue that KE related computational approaches could provide 

solutions and facilitate tackling (at least partly) the identified technical challenges. For example, 

the Linked Data and the Semantic Web paradigms, i.e. the use of OWL/RDF ontologies, could 

enhance semantic interoperability. Furthermore, new data models enabling data space 
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expansion in a practical manner could be deployed, using ontologies (for example 

OpenPVSignal is an ontological model built in order to enable the integration of free-text PV 

signal information(Natsiavas et al., 2018a)). Similarly, ontological models could facilitate the 

integration of pharmacogenomics, pathway information, lifestyle information etc. 

More specifically, the advantages of focusing on KE approaches for each one of the 

three branches of the AP-LHS circle can be summarized as follows: 

- D2K: Data to Knowledge 

KE approaches can significantly facilitate integration of data from various data sources 

in a unified computationally exploitable format. Furthermore, knowledge extraction 

methods (e.g. NLP on real-life data or other source) could (semi)automatically feed the 

AP-LHS circle with the required Knowledge. 

- K2P: Knowledge to Performance 

Disseminating Knowledge in a timely and interoperable manner is crucial in order to 

improve Performance. To this end, representing Knowledge using well defined 

standards, ensuring both syntactic and semantic interoperability, could have a 

significant impact on how this Knowledge is integrated in IT tools to increase 

performance and also on how it is disseminated to stakeholders (e.g. HCPs). 

- P2D: Performance to Data 

Integrating data via multiple data sources in order to measure potential impact and 

integrate this quantified impact in the data used to feed the next cycle of AP-LHS 

paradigm. Moreover, Knowledge produced as part of the K2P branch might be 

integrated in the whole process via specific Knowledge models (e.g. unconfirmed PV 

signals might feed the D2K branch via OpenPVSignal model (Natsiavas et al., 2018a)). 

Finally, it should be highlighted that KE technical approaches could also enhance 

transparency, a horizontally dissecting aspect of the proposed vision which should be supported 

via specific organizational and technical measures in order to increase trust in the various 

component of the AP-LHS cycle. Indicatively, three technical approaches are presented, tightly 
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related with RDF/OWL technical stack and Linked Data/Semantic Web paradigms, i.e. among 

the most prominent KE-related technical paradigms: 

1. The application of FAIR principles (Wilkinson et al., 2016) has been identified 

as a key step towards transparent data management. Practically, applying FAIR 

principles can be very well supported by RDF/OWL semantic models (Natsiavas 

et al., 2018a). 

2. Data annotation using OWL/RDF semantic models using widely accepted 

reference terminologies/ontologies/thesauri could be crucial in terms of both 

technical and semantic interoperability but also transparency. This annotation 

could be supported also by NLP processes. 

3. Technical frameworks supporting data ownership and sharing could also play a 

prominent role. For example, SOLID framework64  enables data ownership and 

dynamic data sharing based also on RDF.  

It should be noted that the respective KE technologies referenced here are relatively 

mature e.g., Linked Data and Semantic Web related technical standards which are actively 

supported for the last 20 years. Furthermore, Knowledge extraction techniques (e.g. NLP) are 

actively investigated and have already been (at least partly) successful, also for drug safety 

purposes (Natsiavas et al., 2019b). Therefore, at least in principle, the core KE technologies are 

in place, ready to support the vision of AP-LHS.  

Practically, in order to quantify the impact of a potential application of the presented 

AP-LHS vision, a research project emphasizing on its pilot application in real-world conditions 

could be outlined. Such a project would focus on the following three axes:  

(a) identify and quantify the gaps towards the AP-LHS vision in localized settings 

While this is (at least partially) covered in the current thesis, the gaps identified and the 

respective user goals need to be analyzed in greater detail and prioritized based on the 

local characteristics of the respective pilot sites. To this end, various pilot sites should 

be taken into account in order to produce generalizable results. As a whole, the 

application of AP-LHS paradigm could be evaluated in terms of operational benefits 

                                                 
64 https://solid.mit.edu/: While SOLID is not built aiming specifically for health-related information management, 

it could very well support such data management schemes. 

https://solid.mit.edu/
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using a Care Delivery Value Chain (CDVC) based model (Porter and Olmsted Teisberg, 

2006). 

(b) provide the necessary technical toolkit to support it  

While in principle the technologies exist, still tools aiming to support AP need to be 

built emphasizing on end-user usability. These tools, need to aim at covering the 

respective gaps and prioritize features based on the local needs of each site. Usability 

should be identified as a first class priority, hence, the barriers towards the adoption of 

the respective tools could be evaluated against FITT framework (Ammenwerth et al., 

2006) and/or other Health Technology Assessment (HTA) methodological tools (Vis et 

al., 2020) 

(c) create the necessary methodological tools 

Definition, calculation and validation of the respective metrics (e.g. community wide 

KPIs, or Patient-Centric Benefit-Risk Ratio – PCBRR) is far from trivial. Therefore, 

special provision should be taken on how these metrics will be designed and validated, 

applying a “clinical trial” rationale, carefully evaluating each technical or operational 

intervention. For example, the application of PCBRR should be compared with 

advanced DA based algorithms (e.g. VigiRank (Caster et al., 2017)) in order to quantify 

the potential benefits.  
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6. Future work paths 

As this thesis evolved, a number of future work paths were identified and actively 

investigated. These mostly refer to non-yet validated technical work which requires more time 

and goes beyond the scope of this PhD. More specifically, two technical work paths (i.e. (a) the 

building of a knowledge graph upon the OpenPVSignal model, and (b) the building of an 

ontology aiming to support Systems Pharmacology), were elaborated as we argue that they 

could provide significant value in the integration of AP vision in the clinical environment. As 

such, we highlight them as two clear future work paths that could highlight how to use KE 

approaches in order to bring AP in real-world applications. 

6.1. OpenPVSignal Knowledge Graph 

PV signal information is typically published by DSMOs after being thoroughly 

investigated by expert groups who combine information from relevant data sources and 

possibly from different countries (e.g. scientific literature, clinical trials, similar drugs’ safety 

information etc.) in order to provide insights into the signal “strength” and what could 

potentially be the causal relationship between the drug and respective adverse effect. Obviously, 

this information is invaluable for drug safety activities in all stages of a drug life-cycle. 

PV signal reports are typically, published in a free text “unstructured” format (e.g. in 

pdf files, web pages, newsletters etc.) describing the implicated drug/drugs characteristic, the 

respective adverse effect and reports for patients affected by the specific ADR, potentially 

including a statistical analysis supporting the need for specific signal investigation. They also 

refer to a potential “mechanism of action” which could explain the ADR and any other 

information that could be relevant, either “strengthening” or “weakening” the signal.  

Since the current textual format of PV signals cannot by processed automatically, drug 

safety experts have to review the relevant PV sources manually, a laborious and potentially 

error prone process. As such information/data could play a significant role in drug safety 

activities, we argue that their publication in a format compliant with the FAIR principles could 

enable their systematic reuse, including (semi)automatic processing and reasoning. To address 

this issue, we have recently developed and published OpenPVSignal (Natsiavas et al., 2018a), 

to facilitate the normalization, dissemination, interlinking and verification of ADR signal 
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information in a FAIR compliant manner, based on Semantic Web and Linked Data paradigms 

also enabling automatic reasoning upon the OpenPVSignal model and Web Ontology Language 

(OWL) semantics. 

To this end, we have started the development of an OpenPVSignal-based Knowledge 

Graph, modelling the PV signal information reports, produced by WHO-UMC as part of their 

bi-monthly newsletter for the last ten years (between 2011-2019)65. WHO-UMC PV signal 

reports are based on the individual case safety reports (ICSCRs) collected in VigiBase and they 

are manually elaborated by expert groups66, providing one of the most valuable data sources 

for PV signal information. We argue that publishing these PV signal reports in a FAIR 

compliant manner, while also supporting automatic reasoning upon them via the semantics of 

the OpenPVSignal model per se and the semantics provided by OWL, could significantly 

increase the value of this already highly valuable information. 

The quality of finally produced KG was the main concern during the “transformation” 

or “mapping” process of the respective PV signal information from their original unstructured 

free-text format to an OWL based KG. Therefore, it has been decided that the overall process 

should be based on well-established KE approaches and engage at least two persons, also 

evaluating its completeness and quality independently. To this end, the KG construction 

methodology is not based on automatic processes which could be used in principal, e.g. Natural 

Language Processing techniques, but rather on a tedious work conducted manually. 

                                                 
65 https://www.who.int/medicines/publications/newsletter/en/ 
66 https://www.who-umc.org/research-scientific-development/signal-detection/signal-detection-at-umc/ 

https://www.who.int/medicines/publications/newsletter/en/
https://www.who-umc.org/research-scientific-development/signal-detection/signal-detection-at-umc/
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Figure 23: Overall rationale - Upper part corresponds to the building of the Knowledge 

Graph (ABox) presented in the paper, bottom part corresponds to the Ontology part (TBox) 

(out of this paper's scope) 

Along the lines of modern Ontology Engineering approaches (e.g. the NeOn 

methodology (Suárez-Figueroa et al., 2012) and the SAMOD methodology (Peroni, 2017) the 

construction of the presented OpenPVSignal KG is currently done by (a) an “Ontology 

Engineer (OE)” with Medical Informatics background and one of the OpenPVSignal model 

implementers, and (b) by a Pharmacologist acting as a “Domain Expert” (DE) regarding PV. 

More specifically, the methodology applied can be summarized in the following two 

main steps: 

 Step 1 - Construction 

Initially, the free-text PV signal information has been converted to a structured RDF 

format based on the OpenPVSignal ontological model, using the Protege tool (Musen and 

Protégé Team, 2015). This step was conducted by the DE, in order to gain both qualitative and 

quantitative insights into the raw data as a whole.  Based on the qualitative insights gained, a 

set of minor modifications on the OpenPVSignal ontology was proposed by the DE and 

implemented by the OE. It should be noted that in order to validate the overall process of the 

RDF KG construction, this has been checked as an independent process per se. More 

specifically, 10 random free-text signal reports (out of a total of 107) have been converted to 

RDF independently by the OE and compared against the respective conversions produced by 
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the DE. While such a conversion process inevitably includes subjective decisions, these were 

only minor and were mostly resolved via discussion, including both DE and OE  

 S2 - Quality control 

The quality control of the produced KG is based on two pillars: 

(a) Technical validation 

Based on the insights provided via Step 1, the DE provided a list of simple validation 

checks focusing on the “Completion” of the KG and potential “Error detection”. These rules 

are further elaborated and implemented as SPARQL queries and disjoint axioms by the OE, 

and are run as tests upon the produced RDF data in order to validate the presented KG in line 

with established KE approaches (Paulheim, 2016; Peroni, 2017). Furthermore, graph-based 

metrics as defined in OntoQA methodology (Poli et al., 2010) have also been used to quantify 

and evaluate the produced KG characteristics. 

(b) Qualitative evaluation 

Each of the signals transformed in OpenPVSignal format by the DE, has also been 

validated by the OE, both in terms of running the technical validation tests, but also in terms of 

comparing the produced RDF with the original PV signal reports, to cross check for potential 

errors or biases. To this end, the produced KG was also verified for interlinking with other 

terminologies/ontologies of the field, i.e. MedDRA and ATC. 

While the building process of OpenPVSignal KG is currently a work in progress and 

will not be completed in the context of this PhD, it is highly relevant with the presented vision 

of the joint AP-LHS paradigms. More specifically, such a KG could significantly contribute to 

the expansion of data space used for PV, enabling the “automatic” integration of a high-quality 

PV signal information in relevant IT tools and, as such, could be an important technical asset.  

6.2. Systems Pharmacology 

As identified in the Systematic Review presented in State of the Art, PV in the clinical 

environment could be significantly improved via the engagement of emerging data sources, 

including information on the pharmacological Mechanism of Action (MoA). Biochemical, 
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genetic, pathway information and pharmacogenomics data sources are part of this emerging 

data sources ecosystem. As the analysis of personal biochemical and genetic profiles is 

becoming cheaper and part of an overall “Personalized Medicine” vision, exploiting such data 

sources in the context of PV, combined with other clinically relevant data (e.g. lab test results) 

would support the “Personalized Pharmacovigilance” paradigm. To this end, Systems 

Pharmacology (SP) could be the knowledge link, providing the means to integrate 

heterogeneous data of variant granularity, via models which could be useful for computational 

purposes. 

SP is defined as “a hybrid, multi-scale modelling approach that seeks to combine 

systems or network-based structures with basic principles of pharmacokinetics  and 

pharmacodynamics (PK/PD)” (Mager and Kimko, 2016). The SP paradigm refers to the use of 

multi-scale models, i.e. from low-level biochemical information regarding the behaviour of 

molecular structures, to more abstract information potentially regarding PK/PD behaviour of 

the drug, or even its phenotypic results. These models are typically based on mathematics, 

systems or network-based principles, employing pharmacokinetics and pharmacodynamics 

and/or also empirical or experimental knowledge. The ultimate goal of SP is to facilitate the in-

silico application of algorithmic approaches for enabling computational simulations regarding 

drug effects. Such simulations could significantly reduce necessary time, costs and patient risks, 

and therefore play a major role in several drug development or drug safety related scenarios 

(Knight-Schrijver et al., 2016) (e.g. investigation or prediction of PV signals, drug repurposing 

etc.). For example, SP models have been used to describe complex patterns of drug action (i.e. 

synergy, oscillatory behaviour) and disease progression (i.e. episodic disorders) (Danhof, 

2016).  It should be noted that PV has been identified as a prominent application of SP 

modelling approaches (Zhichkin et al., 2012) (Huang et al., 2011), also under the prism of 

enabling mechanism-based drug safety evaluations (Sinha et al., 2016) . 

In this context, several computational approaches emerge as prominent paradigms in the 

SP realm (e.g. Discrete Dynamic Modelling – DDM (Steinway et al., 2016), enhanced 

Pharmacodynamics – ePD  (Bouhaddou and Birtwistle, 2016), Physiological Control Systems 

– PCS (Khoo et al., 2016) etc.). Most of these models are related with detailed mathematical 

representations of biochemical processes, typically using differential equations approximating 
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a PK/PD behaviour, and to this end, the use of term Quantitative Systems Pharmacology (QSP) 

is widely used, sometimes interchangeably with the term SP67. 

One of the most neglected formal modelling approaches in the context of SP concerns 

the use of State-based models (originating from Control Systems Theory (CST), like State 

Machines (SMs) or Automata. SM models are often considered a sub-domain of CST but rather 

than using the concept of transfer functions, SMs are defined upon states and transitions. In a 

system modeled using SMs, each new input potentially leads the system to another state via a 

transition. In general, the transitions between the various states depend on the system’s last n 

states and the last y inputs, having n=1 and y=1 in the simple case. SM models are usually 

represented using transition tables or graphs (states are represented with circles and transitions 

are represented using arrows). Finite State Machines (FSMs), Deterministic State Machines 

(DSMs), Non-Deterministic State Machines (NDSMs), Fuzzy State Machines (FuSMs), Timed 

State Machines (TSMs) and Probabilistic State Machines (PSMs) are widely used of SM 

subtypes. A similar modelling paradigm (frequently considered as a subcategory of SMs) is the 

Markov Model (MM), defined as a stochastic model describing a network of potential system 

states, in which the probability of the system to reach a specific state depends on the previous 

system states. 

We argue that State-based models (SBMs) enable the representation of transitions based 

on probabilistic approaches and the use of time as a principal modelling dimension, and, 

therefore fit in the context of real-world applications regarding PV or pharmacology in general. 

Indeed, as the concepts of state, input and transition fit with the general paradigm of the 

administration of a drug acting as a triggering event (input) causing a biochemical turbulence 

(transition) leading to a new biochemical (or physiological) state. Typically, these sequences 

of various “states” in pharmacology and biology are referred to as “pathway information” and 

have been used to elucidate drugs’ MoA among other use cases. SBMs (e.g. SMs and MMs) 

have a huge advantage compared to typical QSP computational models, as they do not 

necessarily depend on quantitatively models (e.g. differential equations) which are very 

difficult to produce and validate, while they could still include them as part of the overall states 

transition model. SBMs could use such well-defined mathematical models (when available) but 

could also be used to exploit non-quantitative or empirical expert knowledge regarding the 

                                                 
67 In this manuscript, we explicitly and on purpose avoid the use of term Quantitative Systems Pharmacology as 

we consider it a subdomain of SP. 
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behavior of biological systems. Since most of the well-validated domain knowledge in 

pharmacology and biology (i.e. PK/PD behavior of a drug) cannot be quantified in detail and 

validated (or at least it is very hard to do so as it heavily depends on wet biology approaches), 

the use of such models in the context of SP is invaluable. As most of the prominent drug 

information data sources (e.g. DrugBank (Wishart et al., 2018), PharmGKB (Barbarino et al., 

2018) and others) describe various aspects of the drugs’ MoA without providing a detailed 

mathematical description,  SBMs could be used to model such knowledge and use it in well-

defined algorithms, without the need for quantifying the respective biochemical processes.  

Furthermore, we argue that Semantic Web technologies and Ontologies used as the 

technological infrastructure to exploit these models could also provide significant 

computational advantages, especially regarding data integration and automatic reasoning 

capabilities.   

Consolidating the above, such a model could probably be useful in the context of various 

applications, beyond drug safety or PV. However, PV is a good choice for an exemplar 

application of such a data model due to its high clinical importance and the existence of data 

evidence from multiple (and potentially heterogeneous) data sources. 

To this end, we have started working on the so-called States Pharmacology Ontology 

(SPO) as a practical way to integrate the respective data sources in one KG and investigate the 

respective computational advantages. SPO enables the representation the main SBMs concepts 

and models in a systematic manner, thus facilitating the combination of Description Logics 

(DL) and SBMs in one computational framework. The ultimate goal would be to build a KG, 

based (at least partly) on SPO to combine the power of DL reasoning with the SM modelling 

to identify potential ADRs on a personalized basis, based on personal data (e.g. lab tests, genetic 

profile etc.) and also the ADR mechanism of action information. To this end, pathway 

information including Pharmacogenomics (i.e. information provided by PharmGKB) will be 

used as the primary data source used to instantiate the produced KG due to the following 

reasons:  (a) it provides pathway information in an OWL format i.e. BioPax (Demir et al., 2010), 

and most importantly, (b) it provides a clear link with clinically applied guidelines, i.e. the ones 

elaborated by Clinical Pharmacogenetics Implementation Consortium (CPIC) (Relling and 

Klein, 2011). It should be noted that the value of PGx for clinical purposes has already been 
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identified and research initiatives like eMERGE network68 already plan to develop CDSS based 

on PGx information (Herr et al., 2019) (Gottesman et al., 2013). In this context, ontological and 

automatic reasoning approaches have already been investigated to some extent, identifying both 

advantages and practical challenges (Samwald et al., 2015). 

The process of SPO development is currently a work in progress and, similarly with the 

OpenPVSignal KG, it will not be completed in the context of this PhD. However, we argue that 

this is highly relevant to this thesis as the building of such an ontology could interlink PV in 

the clinical environment with the MoA information, via personal lab test values, thus enabling 

the building of KGs and the reasoning upon them.  

 

 

                                                 
68 https://www.genome.gov/Funded-Programs-Projects/Electronic-Medical-Records-and-Genomics-Network-

eMERGE  

https://www.genome.gov/Funded-Programs-Projects/Electronic-Medical-Records-and-Genomics-Network-eMERGE
https://www.genome.gov/Funded-Programs-Projects/Electronic-Medical-Records-and-Genomics-Network-eMERGE
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7. Conclusion 

In this final section, the thesis contents and its main contributions are briefly 

summarized.  

A “design thinking” based methodology was applied in the context of the PVClinical 

project in order to investigate the potential impact that KE computational methods could have 

on the revision of the PV processes in the clinical environment. More specifically, in the 

PVClinical project, a web platform is developed aiming to facilitate the investigation of 

potential PV signals, using KE as its main technical paradigm. While the technical 

developments of the platform development are considered to be out of scope for the current 

thesis, a number of objectives were identified regarding the revision and clear definition of AP 

and the impact the KE computational approaches could have on that. Finally, two technical 

pathways of work were actively investigated, outlining two future research paths in terms of 

employing ontologies to build KGs which could support DS and AP purposes. 

Summarizing the contribution of the presented thesis, the following key points could be 

highlighted: 

 A detailed qualitative and quantitative analysis of the research trends of the last 

decade regarding the use of KE for DS purposes has been depicted via a thorough 

Systematic and Mapping Review of the respective scientific literature. 

 Based on this Systematic Review, research gaps have been highlighted 

 A set of BPs related with the PV has been defined and elaborated, taking into 

account the legal and regulatory context 

 A set of UGs were identified based on the respective BPs and the input from 

HCPs and PV experts 

 AP was redefined as part of a wider LHS paradigm, based on the latest technical 

developments 

 PCBRR was outlined in terms of data sources which could be used to support a 

personalized PV approach in the context of the proposed AP-LHS paradigm. 

In conclusion, we argue that this new paradigm (and potentially the elaboration of the 

intermediate outcomes of this thesis, i.e. the identified BPs and UGs) could bring significant 
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benefits to the following aspects and therefore it should be actively investigated in terms of 

policy making: 

 Healthcare quality would definitely be improved as the proposed adoption of LHS 

principles and technical measures could reduce the research gap and provide benefits 

regarding drug safety among other domains 

 Drug development processes would be accelerated and their costs could be reduced as 

the availability of “real-world” data would significantly increase, facilitating the “in-

silico” clinical trials rationale via observational health studies 

 Healthcare cost effect is not easily estimated. However, given the huge cost of ADRs 

in today’s modus operandi, we argue that the investment of adopting new technologies 

and adapting operational processes should be beneficiary. 
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