Adèle Weber Zendrera 
  
Nataliya Sokolovska 
  
Hédi A Soula 
  
Robust structure measures of metabolic networks that predict prokaryotic optimal growth temperature

Keywords: Bacterial Diversity metadatabase BCAA: Branched chain amino acids BMI: Body Mass Index cDNA: Complementary Deoxyribonucleic Acid Chisq: Likelihood ratio Chi square value Inflammatory bowel disease ImP: Imidazole propionate Metabolic networks reconstruction, Directed graphs, Graph topology, Correlation with environment

) stated that the structure of prokaryotic metabolic networks represented as undirected graphs, is correlated to their living environment. Although metabolic networks are naturally directed graphs, they are still usually analysed as undirected graphs.

Results:

) used only a fraction of all available enzymes from the genome and taking into account all the enzymes we fail to reproduce the main results. Therefore, we introduce three robust measures on directed representations of graphs, which lead to similar results regardless of the method of network reconstruction. We show that the size of the largest strongly connected component, the flow hierarchy and the Laplacian spectrum are strongly correlated to the environmental conditions.

Conclusions:

We found a significant negative correlation between the size of the largest strongly connected component (a cycle) and the optimal growth temperature of the considered prokaryotes. This relationship holds true for the spectrum, high temperature being associated with lower eigenvalues. The hierarchy flow shows a negative correlation with optimal growth temperature. This suggests that the dynamical properties of the network are dependant on environmental factors.
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Introduction

For a number of years, obesity and its associated comorbidities such as type 2 diabetes mellitus have steadily increased in the worldwide population, impacting cardiovascular, musculoskeletal and endocrine health and increasing premature mortality in the affected populations 1 . These diseases are particularly complex and multifactorial, showing a great need for patient stratification (division into groups) in order to increase treatment efficacy and take steps towards personalised medicine.

A great number of published results point to the involvement of the gut microbiota, the microbes inhabiting your gut, in those diseases [2][3][4][5] . Some specific metabolites and functional mechanisms involved have been discovered (short-chain fatty acids, trimethylamine N-oxide, imidazole propionate, ...) 2 , but much is still unexplored.

The advent of new generation sequencing and big data analysis has allowed major advances in biology and medicine, accompanied by the development of new fields such as bioinformatics and systems biology. In particular, networks (where objects are connected through links) and other mathematical and computer science approaches have been applied to model metabolism-the set of all chemical reactions in an organism.

It is in this context that the present thesis is placed, on the boundary between statistical bioinformatics and fundamental biology. My main objective is to contribute to uncovering metabolic functions of the gut microbiota involved in type 2 diabetes and obesity. To do so, I will be using systems biology approaches: working with public databases, genomics and metagenomics, I will be modelling gut microbiota metabolism with metabolic networks, and studying their structure through graph theory, machine learning (embeddings, clustering, classification, neural networks, and so on) and statistical inferences to pinpoint metabolic properties that may be involved in the clinical phenotypes of the diseases.

From a technical point of view, I propose novel metabolic network structural properties, and new applications of measures such as the scope of a metabolic network (the set of metabolites and enzymes that are producible from a set of input metabolites), coupled with machine learning approaches.

The thesis is separated in three parts, the first two are dedicated to prokaryotic metabolic network structure analysis with the aim to predict environmental variables of a species' habitat (optimal growth temperature, habitat type, oxygen tolerance), so as to test and validate the approach on simpler models. The genomic and environmental data are retrieved from public databases. Finally, in the third part, I apply insights from the previous two parts to analyse the gut microbiota in regard to host clinical phenotypes, which could be considered as the environmental variables of the previous works. A stratification of patients based on gut microbiota metabolism is presented, successfully discriminating severity of diabetes in an obesity cohort. This last analysis is performed on metagenomic and clinical data produced and managed by our lab (NutriOmics).

The results presented in my manuscript have already been published in academic journals-or are about to be submitted; this is the case for the third chapter.

Biological context

My work places itself in an effort to make sense of complex metabolic diseases-such as obesity and type 2 diabetes, and how the gut microbiota (the microbes inhabiting the gut) can interact with the host and impact such diseases. In order to achieve this, I will be studying metabolism, especially that of the gut microbiota.

In this section, an introduction to metabolism will be provided, followed by a description of obesity and type 2 diabetes to establish clinical context.

Metabolism: a brief introduction

Metabolism is the set of all chemical reactions that are needed for the correct functioning of life. Thousands of reactions are interwoven in a complex web inside or even across cells, meticulously controlled by the action of genes and proteins, to enable growth, maintenance, and interaction with the environment.

Under normal conditions of temperature and pressure, most reactions would be so slow that they would not be compatible with life. Therefore, almost all metabolic reactions are accelerated by a catalyst. A catalyst is a substance that greatly accelerates (catalyses) chemical reactions without being consumed by them. In cells, this role is undertaken by catalytic proteins called enzymes 6 . Proteins in general are macromolecules composed of molecular units called amino acids, that perform a large variety of critical roles in the cell, such as structuring cells, transporting molecules, regulating gene expression, responding to cell signaling, and as we just mentioned, catalysing reactions. A chemical reaction takes a set of input molecules, referred to as substrates of the reaction, that will be transformed into other molecules, called products of the reaction. Figure 1a shows a simple gas reaction between sulfur dioxide SO 2 and dioxygen O 2 , the substrates that form sulfur trioxide SO 3 , the product. The equation of the reactions shown in Figure 1b is the same as the one in a, but much quicker through the addition of a catalyst (nitric oxide, NO). It will create an intermediate catalyst-substrate complex (nitrogen dioxide, NO 2 ) before finally forming the product, and releasing the catalyst in its initial state. The quantities of each molecule for a given reaction are based on the law of conservation of mass, and are called stoichiometry. In the example of Figure 1a, two SO 2 and a single O 2 make a total of two sulfur atoms and six oxygen atoms. The reaction produces two SO 3 molecules, which also amounts to two sulfur atoms and six oxygen atoms: the mass is conserved.

Metabolism is divided in two parts: catabolism and anabolism. Catabolism is the set of degradative chemical reactions that break down molecules to harvest energy or building blocks for anabolism. In humans, digestion is a part of catabolism, where for example proteins will be degraded into amino acids (its building blocks), lipids into fatty acids and glycerol, and carbohydrates into simple sugars which will release energy through the production of energy-rich adenosine triphosphate (ATP) 7 .

Anabolism is the set of generative chemical reactions that will synthesize (build) complex organic molecules from their smaller units. These reactions usually require energy to happen 7 .

Any intermediate or end product of metabolism is referred to as a metabolite.

Chemical reactions are tightly interconnected, where products of some reactions are the substrates of others. Thus, sets of consecutive reactions are traditionally grouped in what is called a metabolic pathway. They usually have a main biological function, like Glycolysis (see Figure 9a), which converts glucose into pyruvate through a series of intermediate reactions, while producing high-energy ATP molecules. However, it has been proved that pathways are not isolated, and are in constant interaction with each other 8 .

Metabolism has been studied for centuries. In the XIII th century, prominent Arab scientist, physician and philosopher Ibn al-Nafis is said to have stated the earliest concept of metabolism in his work The Treatise of Kamil on the Prophet's Biography (1260 A.D.): "Both the body and its parts are in a continuous state of dissolution and nourishment, so they are inevitably undergoing permanent change." 9 Controlled experiments on metabolism have been recorded in the XVII th century with Santorio Santorio, who weighed himself after various activities and created the concept of "insensible perspiration", which he thought to be responsible for the loss of the food he consumed 9,10 . He is considered to be one of the founders of metabolic balance studies 10 .

A more molecular oriented approach appeared in the XIX th century, introduced in, for example, works of Louis Pasteur on fermentation 11 , and finally more extensively in the XX th century with the creation of biochemistry from the biology and chemistry fields, as well as molecular biology, that followed major discoveries in metabolism and metabolic pathways 12,13 . These more modern approaches involve analysis of the role of molecules and reactions in a biochemistry wet-lab. Now, in the XXI st century, the advent of high-throughput and next-generation sequencing technologies, accompanied by corresponding bioinformatics methods, has also revolutionised life sciences, and brought new scientific fields such as systems biology. Bioinformatics and systems biology allow a more holistic approach to study organisms, in order to understand the complex larger picture, complementing a more traditional biochemical wet-lab approach.

It is in this context that this thesis is written, which will cover the modelisation of metabolism through metabolic networks.

Obesity

Obesity is defined by the World Health Organisation (WHO) as an accumulation of excess body fat that may impair health 1 . Since 1975, the worldwide prevalence of obesity has nearly tripled, with 13% of adults being obese in 2016 (11% men and 15% women), and has now become one of the major epidemics of modern times, and a key hurdle to tackle in public health plans 1 .

Obesity results from an energy imbalance between consumed and expended calories. It is influenced by genetic and environmental factors, such as socio-economic status, diet, physical activity, and the gut microbiota (see section 1.2 for the latter) 5,14 .

The most accurate ways to measure body fat-such as underwater weighing, computer tomography (CT) scan, and dual-energy X-ray absorptiometry (DEXA)-are not readily available to primary care physicians. Body fat is therefore approximated by easily implemented estimates: body mass index (BMI), which is calculated by dividing body weight by height squared (kg/m 2 ), and waist circumference (cm) 15 . These approximations have limitations, for example, BMI does not work as well with athletic people, as muscle weight is interpreted as body fat, and it is also influenced by other factors such as ethnicity (BMI cut-offs are modified for Asian populations) 16 . However, because of its ease of use, it is widely enforced on a day-to-day basis.

Table 1 shows the BMI cut-offs defined by the WHO to determine weight range, with obesity (class I) having a BMI superior to 30 kg/m 2 , severe obesity (class II) starting at 35 kg/m 2 , and extreme or morbid obesity (class III) at 40 kg/m 2 .

Table 1 -Body mass index (BMI) classification defined by the World Health Organisation, adapted from an NHLBI report (1998) 17 . Disease risk relative to normal weight and waist circumference, for type 2 diabetes, hypertension and cardiovascular diseases. Classification applied to non-Asian groups.

BMI cut-offs (kg/m 2 )

associated with disease than in the hips and lower extremities 22,23 . This shows why a waist circumference measure is often needed in conjunction with BMI to predict comorbidities (see table 1).

Type 2 diabetes mellitus

One of the main obesity-related comorbidities is type 2 diabetes mellitus.

Diabetes is a group of metabolic diseases, characterised by chronic fasting hyperglycemia due to defects in insulin sensitivity and/or insulin secretion by pancreatic islets 24 .

Similarly to obesity, diabetes mellitus has also become an epidemic of modern times, afflicting almost half a billion (463 million people, 9.3% of adults) worldwide in 2019, and representing 10% of global health expenditure 25 .

Long-term complications include blindness, kidney failure, neuropathy, and amputation risks 26 . Diabetes can be divided into mainly three categories: type 1 diabetes, type 2 diabetes, and gestational diabetes. Type 1 diabetes-or insulin-dependent diabetes-is usually diagnosed when young, and is an auto-immune defect in insulin production by pancreatic β-cells, leading to an absolute insulin deficiency. The more widespread type 2 diabetes-or non-insulin-dependent diabetes-, amounting to approximately 90% of cases 25 , is due to an impairment in insulin sensitivity and an inadequate insulin secretion 26 . Finally, gestational diabetes is a hyperglycemia developed during pregnancy.

Type 2 diabetes may have a long asymptomatic period that still presents sufficient hyperglycemia to induce functional changes in target tissues and complications. It is estimated that 30 to 80% of diabetes cases (depending on the country) go undiagnosed 27 .

Causes may be varied for this form of diabetes, though specificities remain unknown 26 .

Table 2 shows the diagnosis criteria proposed by the WHO in 2019 for diabetes.

Much like with obesity, several factors influence the development of type 2 diabetes: age, genetic and epigenetic factors, and also various environmental ones (diet, circadian rhythm disruptions, socio-economic factors…) 5,26 . Among them, obesity is its strongest risk factor 26,28 . 27 .

Diagnostic test Diabetes diagnostic cut-offs

Fasting plasma glucose ≥ 7.0 mmol/L (126 mg/dl) More recently, the gut microbiota and more precisely its alterations has also been linked to obesity and type 2 diabetes. The gut microbiota and its association to disease will be presented in depth in the next section.

The human gut microbiota

One of the main objects of study of this thesis, intricately linked to several diseases as well as normal function of human health, is the gut microbiota. In the present section, several aspects of the gut microbiota will be described, from composition, function and methods of study to association to disease and classification (enterotypes).

Gut microbiota composition

In the human body, there are around 10 13 human cells. However, there are also just as many microorganisms inhabiting its external and internal surfaces, such as the gastrointestinal tract, mouth, vagina, and skin, with the majority found in the gastrointestinal tract 29 . These microorganisms come from the three domains of life -Bacteria, Eukaryotes, and Archaea-, as well as viruses, though Bacteria greatly outnumber the others, especially in the gut 30 .

The collective human gut microbiota is composed of 15k to 36k bacterial species (depending on the definition of species) and at least 1800 genera 31 , with a single person harboring between 200 and more than 1000 species 30,32 . They are predominantly constituted by phyla Firmicutes and Bacteroidetes (around 65 and 30%, respectively, see figure 2), and in a minor value by phyla Actinobacteria, Proteobacteria, Fusobacteria and Verrucomicrobia [33][34][35] . Archaea are usually methanogens, viruses are usually phages (bacterial viruses), and Eukaryotes are predominantly yeasts 36 . This composition can vary over time and space, as one travels along the gastrointestinal tract and conditions such as pH differ 33 , with the stomach having 10 3 -10 4 bacteria/mL of content and the colon having around 10 11 bacteria/mL of colon content 29 .

Figure 2 -Human gut bacterial composition, adapted from Yang et al (2009) 34 . Firmicutes form around 65% of gut bacteria, Bacteroidetes 30% and other phyla to 5%.

The gut microbiota is affected by different factors throughout an individual's life. From the first colonization right after birth, influenced by the method of birth delivery 37 , the composition stabilizes at around 3 years old to resemble adults' gut microbiota 38 , and is modulated throughout life by diet (early infant diet as well as in adult life) 38 , exposure to antibiotics and drugs with short and long-term effects 39,40 , and other environmental factors 33,38,41 .

Major functions of the gut microbiota

The gut microbiota lives in a beneficial symbiotic relationship with the human host, each participant having useful functional roles towards the other. The major functions of the gut microbiota are in regard to nutrient and drug metabolisms, protection against pathogens and immunomodulation, and integrity and structure of the gut.

For nutrient metabolism, the gut microbiota is able to degrade dietary components that humans are unable to digest, thereby producing metabolites that can be processed by the host.

One of the most well-studied examples is the fermentation by bacteria in the colon of dietary fibers and starches, as well as proteins and peptides, that are non-digestible or escape digestion and absorption in the small intestine. They produce gases and short chain fatty acids (SCFA) such as acetate, propionate and butyrate predominantly, but also formate, valerate and others 42 . Butyrate is known to be the primary provider of energy for colonocytes, and acetate and propionate can be substrates for gluconeogenesis and lipogenesis in the liver 36 .

Furthermore, SCFAs can also regulate size and function of colonic immune cells and protect against colitis 43 . SCFAs can also prevent the accumulation of toxic by-products 44 , and influence gut hormone production which improves glucose metabolism 36,45,46 , showing some of the many beneficial functions associated with SCFAs. Other known microbial metabolites useful to the host include imidazole propionate (ImP), branched chain amino acids (BCAA), and trimethylamine (TMA) later metabolised into Trimethylamine N-oxide (TMAO) by the host's liver. These metabolites are often increased in metabolic diseases 2,47,48 .

The gut microbiota also participates in lipid metabolism 49 , it is involved in the synthesis of vitamins K and B-which are not producible by humans- 50 , and is implicated in the breakdown of numerous polyphenols, found in food, into useful compounds for the host 33 .

In regard to drug metabolism, many studies have shown that the gut microbiota can have a profound impact in how a drug is metabolised 33,51 . For example, a bacterial enzyme causes some of the side effects of common colon cancer drug CPT-11, by reactivating the drug in the gut 52 , and anti-inflammatory drug sulfasalazine, used in inflammatory bowel disease (IBD), can be metabolised by the gut microbiota into a non-active form 53 .

The gut microbiota can also protect against pathogenic strains overgrowth, for example by triggering immunoglobulin A 54 , and collaborate with the human's immune systems so as to tolerate beneficial bacteria and fight pathogenic infections (immunomodulation) 33 .

Finally, it also takes an integral part in the structure and correct function of the gastrointestinal tract. Antibiotic-treated mice -which causes a depleted microbiotapresented delayed gut motility and inhibited contractions of colon muscles, as well as reduced levels of bile acids and serotonin 55 . Germ-free pigs have also been found to have reduced crypt depth and increased villus length, with regional variations depending on position in the gastrointestinal tract 56 .

Gut microbiota and disease

A major role is played by the gut microbiota in the normal homeostasis of the gut, and that is why its dysbiosis-alterations to the gut microbiota-is often associated with disease, such as IBD 57 , hypertension 58 , coeliac disease 59 , but also chronic kidney disease 60 , depression 61 and Parkinson's disease 62 .

In particular, gut microbiota dysbiosis has also been associated with metabolic diseases such as obesity and type 2 diabetes mellitus. Among the first discoveries in the early 2000s, valuable insight was revealed from mouse models, where it was found that the gut microbiota affects energy retrieval from diet and energy storage in the host 63 : conventional mice had 42% more total body fat than germ-free mice, despite germ-free mice consuming 29% more.

Transferring the gut microbiota of the conventional mice into the germ-free ones restored the effects to resemble conventional mice fat regulation behaviours. In another study, the transfer of genetically obese mice (ob/ob) gut microbiota increased even more the body fat than the transfer of lean mice gut microbiota 64 .

In terms of microbiota composition, a study in humans from 2018 shows that there is a significant difference between obese patients' gut microbiotas when compared to healthy volunteers 65 . Several studies have observed a lower Bacteroidetes:Firmicutes ratio being associated to obesity 64,66,67 , however numerous contradicting studies exist as well 65,68,69 , suggesting that such a ratio may not be the best tool or the best level of taxonomy to analyse.

Regardless, multiple papers point towards the importance and even protective effect of microbiota species diversity towards obesity 70,71 .

An observation of the microbial gene richness in several cohorts with obese patients shows a bimodal distribution, forming a population of high gene count (HGC) and low gene count (LGC) (illustrated in figure 3).

LGC is associated with more insulin resistance (type 2 diabetes), dyslipidemia, more marked overall adiposity, and more pronounced low-grade inflammation when compared with the HGC population, as well as an altered microbiota composition 3,4,72 . Adapted from our lab's 2013 paper 72 .

In the same way, multiple papers have proven the links between the gut microbiota and type 2 diabetes mellitus.

In mice, a 2007 study shows that bacterial lipopolysaccharide (LPS) is increased in the plasma under high-fat diet and triggers low-grade inflammation and insulin resistance, inducing obesity and diabetes. Also, the gut microbiota is modified to increase LPS-producing bacteria. Infusion of LPS in mice replicated the effects observed under high-fat diet 73 . In another study, the same group shows that by changing the gut microbiota through antibiotics in genetically obese ob/ob mice and high-fat-fed mice, the associated metabolic diseases were reduced [START_REF] Cani | Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice[END_REF] .

In humans, patients with type 2 diabetes present less butyrate-producing bacteria and more opportunistic pathogens when compared to healthy controls [START_REF] Qin | A metagenome-wide association study of gut microbiota in type 2 diabetes[END_REF] , as well as decreased microbial diversity in prediabetic [START_REF] Allin | Aberrant intestinal microbiota in individuals with prediabetes[END_REF] and diabetic [START_REF] Larsen | Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults[END_REF] patients. Type 2 diabetic patients have been shown to have less butyrate-producing Clostridiales, and more of the non-butyrate-producing Clostridiales in two independent cohorts of distinct geographical origins [START_REF] Qin | A metagenome-wide association study of gut microbiota in type 2 diabetes[END_REF][START_REF] Karlsson | Gut metagenome in European women with normal, impaired and diabetic glucose control[END_REF] , with butyrate being known to have beneficial effects on insulin sensitivity in mice [START_REF] Gao | Butyrate improves insulin sensitivity and increases energy expenditure in mice[END_REF] .

This evokes back to the idea that a rich and diverse gut microbiota is associated with health.

The links between metabolic diseases and the gut microbiota is well established, with even some causational relationships identified in mice. However, causation as well as functional and mechanistic insights are yet to be well described in humans [START_REF] Khan | Microbial Modulation of Insulin Sensitivity[END_REF] . They are of particular importance for potential personalised diagnosis, stratification and therapies.

Some therapies have already started to be developed with different strategies, with the most well-known ones being dietary supplements such as probiotics, prebiotics and synbiotics 36 .

Probiotics are living beneficial microbial species that can be directly administered to the host.

Prebiotics are composed of non-digestible foods that can stimulate beneficial gut microorganisms. Synbiotics are a combination of the two others. Prebiotics and probiotics have shown promising results in mice towards obesity and diabetes, but results in humans are less clear 36 . There are also more practical pharmacological questions that must be carefully considered, such as whether microbial species in probiotics achieve correct implementation in the gut 36 , but gut microbiota-based therapies are one of the current major treatment candidate research avenues, as far as I know.

The complexity of metabolic diseases, and in particular of their phenotypes, supports the need for patient stratification (division into groups), to ensure the most adapted responses to symptoms and disease. Figure 3 already shows efforts made in this direction, where two groups of patients are formed based on their gut microbiota gene counts 3,4,72 . In chapter III, we will contribute to stratification by proposing a clustering technique based on gut microbiota metabolism, therefore relying on function rather than abundance (such as the enterotype, described in section 1.2.5), and that will discriminate between patients depending on severity of diabetes.

Current methods of study of the gut microbiota

As mentioned before, the composition of the gut microbiota may vary along the gastrointestinal tract, and thus the duodenal microbiota may not be the same as the jejunal or colonic ones. However, it is not possible to have access to such microbiota without intrusive sampling methods such as biopsies, which is hard to justify in case of healthy controls, especially in humans. Some methods are being developed (to use during endoscopies, or based on edible intelligent capsules that retrieve intestinal samples, etc), but when they are not intrusive, they are very often extremely expensive [START_REF] Tang | Current Sampling Methods for Gut Microbiota: A Call for More Precise Devices[END_REF] . There is, however, a very innocuous and non-intrusive method, consisting in accessing fecal microbiota with stool samples as a proxy for gut microbiota, which is usually used.

Once samples are collected, the next step is to analyse them. Conventional culture-based techniques have proved to be inappropriate as a generic avenue of study, not only because of the difficulty of isolation and culture of up to 80% of microbiota species-most of them being anaerobic- [START_REF] Lagier | The Rebirth of Culture in Microbiology through the Example of Culturomics To Study Human Gut Microbiota[END_REF] , but also because of how time-consuming they are.

With the advent of high-throughput sequencing technologies, there have been multiple

strategies to study the microbiota based on next-generation sequencing (NGS). One of them is to limit analysis to bacterial composition, by identifying species with their 16S rRNA (RNA in a subunit of the prokaryotic ribosome), which is highly conserved but has few very variable regions, which are specific to bacterial species [START_REF] Panek | Methodology challenges in studying human gut microbiota -effects of collection, storage, DNA extraction and next generation sequencing technologies[END_REF] .

Another one is to sequence all genes found in a stool sample, called metagenomic sequencing, which are then mapped to a reference gene catalog to directly identify and work with genes, or to profile species [START_REF] Li | An integrated catalog of reference genes in the human gut microbiome[END_REF] . Some species-identification techniques have been developed to work with whole-genome sequencing without having to check reference genomes, such as species identification based on correlative gene abundances across multiple samples 85 . Such a technique allows for discovery of unknown species that do not exist in reference genome databases or that cannot be cultivated [START_REF] Parks | Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life[END_REF] . However, these species have yet to be identified.

Genomics and metagenomics are not the only "-omics" information that can be collected (see Figure 4). In the same way, there are techniques that allow collection and identification in a large scale of transcriptome (the pool of RNA molecules transcribed from DNA, studied by transcriptomics), proteome (pool of proteins, studied by proteomics), metabolome (pool of metabolites, studied by metabolomics), and so on. These "-omics" allow the analysis of other aspects of organisms, complementing the overall knowledge to have a holistic image of a given organism. This can be applied for a single organism, such as the human host, bacteria, etc., and when it is studied in a community of organisms such as the gut microbiota, we speak Figure 4 -Gut microbiota multi-omics overview, inspired by a Nature portfolio article [START_REF]How microbiome multi-omics can bolster human health[END_REF] .

about meta-omics, such as metaproteomics, metatranscriptomics, and so on, as shown in Figure 4.

The present work will focus on metagenomics, as I am limited by the available data, complemented by modelisations of prokaryotes from various environments based on public databases as proof of concept.

The gut microbiota enterotypes

Another way of understanding the gut microbiota is to divide it into three-and even four-states called enterotypes, based on the premise that the gut microbiota composition varies in a stratified way [START_REF] Arumugam | Enterotypes of the human gut microbiome[END_REF] . Enterotypes can also be understood as a way of stratifying patients. This classification, first proposed by the Human Microbiome Project consortium in 2011 [START_REF] Arumugam | Enterotypes of the human gut microbiome[END_REF] , is at a lower level than the phylum (Firmicutes, Bacteroidetes…) that we previously talked about: the genus. The three enterotypes are Prevotella, Ruminococcus, and Bacteroides-the latter having recently been further subdivided into Bacteroides 1 and Bacteroides 2 [START_REF] Ding | Dynamics and associations of microbial community types across the human body[END_REF][START_REF] Vandeputte | Quantitative microbiome profiling links gut community variation to microbial load[END_REF][START_REF] Vieira-Silva | Quantitative microbiome profiling disentangles inflammation-and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses[END_REF] . Ruminococcus genus belongs to phylum Firmicutes, and the others are Bacteroidetes. The enterotypes are named after the predominant genuses, but are actually characterised by a complex configuration of multiple taxa [START_REF] Arumugam | Enterotypes of the human gut microbiome[END_REF][START_REF] Ding | Dynamics and associations of microbial community types across the human body[END_REF] .

Multiple techniques have been used to determine enterotypes. The initial data is metagenomic, mapped onto reference microbe genomes so as to obtain a list of taxa and their frequency per patient [START_REF] Arumugam | Enterotypes of the human gut microbiome[END_REF][START_REF] Holmes | Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics[END_REF] . A clustering is then performed. The first paper which coined the term enterotypes applied a multidimensional unsupervised learning (partitioning around medoids) and principal component analysis to identify three clusters, and later trained decision trees based on the clusters to predict enterotypes for new data points [START_REF] Arumugam | Enterotypes of the human gut microbiome[END_REF] . Not much later, a study [START_REF] Holmes | Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics[END_REF] addressed the problems in the use of standard clustering techniques to analyse metagenomics data. Indeed, metagenomics data is fundamentally discrete, even though often normalised into relative abundances, and may appear noisy-due to differences in sample sizes-and sparse. To tackle this, they proposed a Dirichlet multinomial mixtures generative model that can be used to find the clusters. In this framework, it was possible to assess more rigorously the optimal number of clusters, which they found to be four.

In observational studies, traditional diets have been found to be associated with a Prevotella enterotype, and western diets with Bacteroides enterotype [START_REF] Wu | Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes[END_REF] . Replacing a western diet with a high fiber one for 10 days in a dietary intervention study changed the gut microbiota composition within 24 hours, but not enough to change the enterotype from Bacteroides to Prevotella, showing a certain long-term stability in the enterotypes [START_REF] Wu | Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes[END_REF] . However, enterotypes are not immutable, as they can change due to environmental factors (diet, surgery, …): a study found that after bariatric surgery, most Bacteroides 2 patients switched to Bacteroides 1.

Enterotype Bacteroides 2, characterised by low microbial cell counts and gene richness, is more prevalent in loose stools, and is associated with systemic and intestinal inflammation, as well as BMI 3,[START_REF] Vandeputte | Quantitative microbiome profiling links gut community variation to microbial load[END_REF][START_REF] Vieira-Silva | Quantitative microbiome profiling disentangles inflammation-and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses[END_REF][START_REF] Vieira-Silva | Statin therapy is associated with lower prevalence of gut microbiota dysbiosis[END_REF] . Bacteroides 2 is thus considered as a dysbiotic enterotype.

Over the years, some papers have presented some doubts on the concept of enterotypes,

showing for example that in a clinical cohort, although the majority of patients fit correctly with an enterotype profile, others belonged in a more intermediate one [START_REF] Huse | A Core Human Microbiome as Viewed through 16S rRNA Sequence Clusters[END_REF] , pointing to a not so discrete separation of fecal microbiotas. Inconsistencies in clustering techniques and the number of enterotypes is another debate [START_REF] Cheng | Stereotypes About Enterotype: the Old and New Ideas[END_REF] , as some studies have found an optimal number at two (Bacteroides and Prevotella) [START_REF] Wu | Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes[END_REF] , the initial number being three [START_REF] Arumugam | Enterotypes of the human gut microbiome[END_REF] , and more recent papers with an updated protocol finding four [START_REF] Arumugam | Enterotypes of the human gut microbiome[END_REF] . Other problems relate to the variability due to initial training data for the clusters definition [START_REF] Costea | Enterotypes in the landscape of gut microbial community composition[END_REF] . Some efforts are being made in order to find a unified protocol that accounts for the different challenges [START_REF] Costea | Enterotypes in the landscape of gut microbial community composition[END_REF] .

The enterotype is entirely based on species abundances. In chapter III, I will propose my own gut microbiota stratification based on metabolic function rather than species abundance, as functions can be redundant in different species, and the scale is therefore more precise. It can be considered as a functionally based enterotype.

Networks: an overview

My method of choice to model and study metabolism will be through a classic mathematical model: networks, also called graphs. I will be studying network structure all along this thesis. This section will introduce networks and graph theory, as well as the major biological networks and their properties.

Definitions from graph theory

Networks or graphs are mathematical representations of the relationships between objects.

The two terms will be used interchangeably throughout this manuscript. A graph is composed of a set of nodes or vertices, connected by edges/links/lines/arcs (see figure 5 and figure 6). Graph theory is the mathematical field that studies graphs, and that is applied in a wide variety of disciplines. Nodes and edges can therefore take a multitude of meanings. 5b), airline connections (cities are connected by airplane flights), and many more.

In the biology and biomedical fields, nodes can represent DNA, proteins, metabolites, drugs, organisms, and so on, and edges can represent relationships such as interactions, co-localisation, and others (see figure 5c for a protein-protein interaction network).

A graph G is mathematically defined as G = (V, E) where V is the set of vertices and E the set of edges. The graph G = (V, E) in figure 6a, would be defined by:

V = {1, 2, 3, 4, 5} ; E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {4, 5}}
The edges may be directed (see figure 6b) or undirected (see figure 6a) depending on whether the link between two vertices is asymmetric or symmetric. In a directed graph, edges (also called arcs) are represented with arrows going from vertices i to j, and are therefore defined as a set of ordered pairs of nodes as follows: There exist a variety of general network topological (structural) properties used to describe the networks in graph theory. Some of the most common ones are:

E = {(i, j) | i, j ∈ V}.
-The degree k of a node i: the total number of edges connected to node i. In a directed graph, one can distinguish the in-degree (number of arcs pointing towards i) and out-degree (number of arcs pointing away from i). The total degree in a directed graph is the sum of the in-and out-degrees.

-The degree distribution P(k): probability distribution of the degrees over the network. It is defined as the fraction of nodes in the network with degree k:

with the total number of nodes, and n k the number of nodes with degree k.

-The graph density D: ratio between the number of edges------and the number of possible edges if the graph was fully connected E max , with E max defined as:

And thus, for undirected graphs:

For directed graphs, E max should be multiplied by 2 to account for the two possible directions of arcs.

A graph is dense if the number of edges is close to the maximal number of possible edges, and it is sparse if the opposite is true.

N.B. In chapter I, I use the edge density, which is defined as the total number of edges over the total number of nodes.

-Centrality measures rank nodes with respect to their importance. As importance can be measured differently, there are many ways of defining centrality (degree centrality, betweenness centrality, closeness centrality, etc). As an example, betweenness centrality is defined as the number of times a node is in the shortest path between two nodes.

-Clustering coefficient C i of a node i: it measures whether the neighbouring nodes to i are closely connected, their tendency to cluster together. It is defined as the number of edges between node i neighbours divided by the total possible connections between the neighbours.

For undirected networks:

where N i is the set of node i neighbours (nodes connected to node i), and E is the set of edges of graph G.

As previously noted, in the case of directed networks, the denominator is multiplied by 2. The average clustering coefficient over all nodes is also commonly used to account for the overall level of clustering in the network.

Laplacian matrix and its spectrum

One of the aims of this thesis is to introduce more computer-based approaches in the study of metabolic graphs and biology. It is in this context that the Laplacian matrix-a matrix representation of a graph-will be discussed in chapter I, and also briefly in chapter III with spectral clustering. This matrix can have many properties of interest: in particular, spectral analysis can be performed.

In order to introduce the Laplacian, one must define the adjacency matrix, which is another form of graph representation. The adjacency matrix , of size , is defined as:

for simple graphs, directed or undirected. will be symmetric if the graph is undirected, and asymmetric if the graph is directed (a ij will then take value 1 if ). a ij can be continuous in the case of weighted graphs, where a weight is associated to each edge.

The Laplacian matrix of simple graphs is then defined as L = D -A, where A is the adjacency matrix and D is a diagonal matrix of node degrees, meaning that it is also of size , and values of d ij are null when i ≠ j and are the degree when i = j. In the case of directed graphs, the degree can be the in-degree or out-degree. L is positive and semi-definite, which means that the eigenvalues of the Laplacian are all nonnegative and real.

An eigenvector of a square matrix M is any non-null vector where:

where λ is a scalar known as the eigenvalue. There are at most as many eigenvalues as the size of M. The set of eigenvalues of a graph can be called the spectrum, which is the sorted union of the spectra of its connected components (groups of nodes that are connected).

The Laplacian largest eigenvalue is always at most twice the maximum degree of the nodes in the graph. The analysis of the Laplacian spectrum can give rich information about the graph [START_REF] Spielman | Spectral graph theory[END_REF] , such as the ability to find and study distinct connected components, which is the basis of spectral clustering (employed in chapter III). Indeed, there are as many eigenvalues at 0 as connected components in the graph.

Another commonly used form of the Laplacian in spectral graph theory is the symmetric normalised Laplacian, established as follows:

where D is the degree matrix previously mentioned and L is the unnormalised Laplacian matrix. Some of the properties of its eigenvalues is that its second smallest eigenvalue is less or equal to 1 when the graph is not complete (all nodes connected to all nodes), and that all normalised Laplacian eigenvalues lie between 0 and 2, with the largest eigenvalue being equal to 2 if and only if a connected component of the graph is bipartite (see definition of bipartite network in section 1.4.1) and contains more than one node 100 . I will be using the normalised Laplacian in chapter I, as a novel approach to study metabolic networks in regard to environmental features.

Biological networks

Networks are frequently used in many biological settings to mathematically model and study complex biological systems. This approach enables a holistic way to categorise systems and their interactions, and it has enabled the discovery of similarities between different complex systems, showing common organisational mechanisms 101 . Some of the most well known biological network types are described below.

-Gene Regulatory Networks: as the name indicates, this kind of network models gene expression regulation. Nodes can be genes (or parts of genes), proteins -transcription factors-, or messengers, and the edges are usually directed and denote regulation.

These networks can be used to simply study the structure of the network 102 , responses to environment 103 , development 104 , and many other applications.

-Protein Protein Interaction (PPI) Networks: these networks describe the coordination of different proteins into protein complexes that enable cell processes. In many cases, though a majority of protein sequences are known, their function is not fully unraveled. PPI networks usually have proteins as nodes, and edges as predicted or well-known physical interactions, and are undirected (see Figure 5c). This kind of network has many applications, such as the identification of essential proteins 105 , for drug target detection 106 , functional role and subcellular localisation search 107 , and more.

-Signal Transduction Networks: These networks represent signal transduction, which implies production and degradation of molecules, chemical reactions, receptor binding, chemical modifications such as phosphorylation and methylation, and so on, which will ensure transmission of a signal that will end in an appropriate cell response. They are often directed, with nodes representing different biomolecules connected by reactions, and are related to PPI and metabolic networks. These networks allow for a broader understanding of signal transduction, and are useful in studying cancer and mutations as it often affects the biological effects of the transduction, as well as the effect of therapies 108 .

-Metabolic Networks: These networks model metabolism, the set of all chemical reactions. They are usually directed, with nodes representing metabolites, reactions or both, and the arcs representing chemical reactions, or that the products of a reaction are the substrates of another. They will be described extensively in section 1.4, as they are one of the main topics of the present thesis.

-Phylogenetic trees and networks: These are particular networks showing evolutionary relationships between species, and are the basis for phylogeny. They are represented with directed acyclic graphs, meaning that the edges are directed and do not form loops, and often with a root (a node with an in-degree of 0) in the case of trees.

The previous networks are the most well-known biological network types, but many other biological networks exist, such as brain neural networks, gene co-expression networks, ecological networks, species co-abundance networks, and more. Most of them share some topological features, often found in real-world large networks. One of them is that the degree distribution follows a power-law:

with Networks that have this characteristic are called scale-free networks, which was first presented in 1999 by Barabási and Albert, with an application to the world wide web 109 , but it has also been used in PPI and metabolic networks 105,110 . The scale-free degree distribution of a Saccharomyces cerevisiae PPI network is shown below on figure 7 in triangles, following a power law, to be compared to the black dotted degree distribution of a random network of the same size which follows more of a Poisson distribution 111 . Scale-free networks, therefore, have a large number of low-degree nodes, and interestingly, a few nodes with a big number of connections (called hubs), which paint a very inhomogeneous structure.

In their 1999 paper, Barabási and Albert provide two main reasons for the scale-free structure 109 . First, most networks grow by adding new nodes that link to the already existing nodes. Secondly, there is a preferential attachment property, where in most real networks, a node has a higher probability of linkage to a node that already has a large number of connections. Another property found in multiple biological networks is the small world property. It refers to the average path length-average of the minimal number of edges that separate two given nodes-that is said to be "small" when compared to the network size. Mathematically, it has to be of the same order of magnitude as log(n) or smaller. The term was coined because of Stanley Milgram's 1967 psychology small-world experiment, where he found that two random people could be connected with an average of 6 social connections in the United States, which illustrates well the idiom "it's a small world" 112 . Though a number of methodological criticisms can be made on his experiment, the small world network property has been found in social networks 113 , and other fields, as well as biological networks such as brain neural networks, metabolic networks 110 , genetic networks 114 , and PPI networks 107 .

Notably, this property allows for quick transfer of information in the network through the hubs.

The final general network property suggests that many biological networks have a hierarchically modular structure. Several papers have shown that the average clustering coefficient takes a significantly higher value when compared to a random network with the same degree distribution 101,115,116 , which means that networks are highly clustered.

Furthermore, the average clustering coefficient for nodes of degree k C(k) seems to follow in metabolic networks 115 , which indicates a hierarchical structure, as when the degree increases, the clustering coefficient decreases. Therefore, nodes with low degrees form densely clustered modules, which are then linked by a few nodes with high degrees (hubs), as shown in Figure 8. This was identified in metabolic networks 115 , PPI networks 101,107 (where we have ), and also in regulatory networks 117 .

These generic network properties are proposed to have been favoured to increase robustness of the network during evolution. Among them, the hierarchical and modular structure, which limits connections between hubs, could reduce propagation of deleterious perturbations, as the neighbours of the affected node would mostly have low degrees 117 . Biological networks are extremely robust against random perturbations, but fragile against perturbations touching their highly connected hubs, which have indeed been found to be essential in a S. cerevisiae PPI network 105 , and other cellular networks 118 . The emergence of the hierarchical structure through duplication and repurposing of existing modules is reminiscent of already known nature-occurring processes such as gene duplication 115 , and is proposed to be one of the main evolutionary models for PPI networks (genome duplication-divergence evolutionary model) 119 , though other mechanisms such as horizontal transfer have more recently been favoured 120 .

Finally, in a more practical way, I would like to mention the advantage of network modelling and studying its properties. One of the main advantages of using networks is simply the integration and visualisation of information globally 121 . On another hand, considering graph properties, some of the most commonly studied properties are measures of centrality, or hub detection, that allow identification of nodes of interest or essential nodes (eg. metabolites of interest, essential genes, etc 122 ). Another one is the identification of subgroups (clusters or modules) which are very intra-connected and less inter-connected (as seen on Figure 8), and that can be identified with the clustering coefficient or more complex techniques, and determine species community clusters or potential drug targets with gene regulatory networks 115,123 .

Network analysis can reveal many additional insights that traditional biology approaches can't, particularly through the use of simple or more complex network properties. It is in this context that chapter I will compare different network properties and introduce new ones, so as to predict optimal growth temperature in prokaryotes.

Metabolic networks 1.4.1 Definitions and metabolic network representations

The networks that will be used in this thesis will be metabolic networks. Metabolic networks model metabolism, the set of all chemical reactions. They are one of the oldest biological networks, as metabolic pathways naturally take the form of networks (see Figure 9a andb). Metabolism can therefore be represented by a bipartite graph (Figure 10d). They are defined as networks with two different sets of nodes (metabolites and reactions/enzymes in this case), with edges linking the two sets of nodes together, but with no edges among each node group.

In a bipartite metabolic network, substrates are linked to reactions, which are, in their turn, linked to products. This gives much more information as to which metabolite belongs to which reaction (contrary to metabolite networks and reaction networks) 129 . Another more informational representation of a metabolic network is a hypergraph (Figure 10c).

Hypergraphs are graphs where edges-called hyperedges-can link more than two nodes.

Nodes can represent metabolites and hyperedges, reactions 130 . They are more complex networks, and the theory is not as developed as for classical networks. Therefore, bipartite graphs are usually prefered over hypergraphs. Chapter I will present metabolite-based graphs, and chapter II and III bipartite graphs.

Metabolic description has a high complexity. To perfectly model it, one would have to account for stoichiometry, metabolite concentrations, kinetic parameters, regulatory interactions, as well as transportations, interactions with environment, compartmentalisation, and others. It is very difficult to model it while accounting for everything, especially at the organism level. Studies therefore mainly focus on a more static approach of metabolic networks, though lately, some of them have tried to overcome the major hurdles to model the metabolic dynamics 131 . Two major avenues have been undertaken in static metabolic network analyses: one focusing on network structure, and the other one on fluxes (they are both described in detail in section 1.4.3).

The choice of the network representation can favour certain aspects of the metabolic processes when compared to others, which highlights its importance. The simpler representations (reaction and metabolite networks) are useful in network topological analysis as many algorithms do not account for the bipartite node sets. Note that currency metabolites have to be removed to avoid biologically meaningless shortcuts (this will be further detailed in the next section) 132 . In biomass fluxes studies, a more accurate bipartite representation may be needed.

Metabolic network reconstructions

The first organism-level metabolic reconstruction was performed in 1999 for bacteria

Haemophilus influenzae 133 , and ever since, genome-scale metabolic models (GEM) have been established as one of the prominent systems biology modelisation approaches.

Modern sequencing techniques have allowed the development of multiple databases describing biochemical information. Some of the most well-known ones are the Kyoto Encyclopedia of Genes and Genomes (KEGG) 134 , BioCyc 135 , MetaCyc 136 , EcoCyc 137 , the Human Metabolic Atlas 138 , and more.

These databases also offer access to genome metabolic networks, but while some of them such as EcoCyc (database specialised for Escherichia coli K-12) are extensively human-curated, others such as KEGG and BioCyc-though they cover many organisms-are not 132 .

There exists a variety of reconstruction protocols, more or less human curated, to build genome metabolic networks, and especially GEMs, which is most often used as a term that does encompass human refinement, often with a view to use in flux analyses that need particularly complete models.

However, most of these protocols have a common starting point which is based on genome sequencing and genome annotation, accessible in the previously presented databases.

Genome annotation is often achieved using comparative genomics, and also complemented with data from the literature. In KEGG or BioCyc, genes are annotated with the encoded enzymes. Enzymes-or actually enzyme-catalysed reactions-are identified by Enzyme Commission (EC numbers) of the form x.x.x.x (x being numbers), which classify enzymes on the basis of the catalysed reactions.

In KEGG, genes are even identified with K numbers (KEGG Orthology numbers), which determine orthologous genes with common functions, meaning that these K numbers group genes from different species that come from a single gene from a common ancestor.

Orthologous genes therefore have a similar sequence, and thus, often a common gene function. Other orthologous gene databases include the well-known Clusters of Orthologous Groups (COG) database 139 . Gene orthology is one of the main building blocks of comparative genomics. K numbers are the ones that are associated with EC numbers.

By further consulting the databases, one can find the biochemical information of the catalysed reactions through the EC numbers, and fetch the substrates and products and similar reaction information. This information already allows for a metabolic network reconstruction.

The quality of the reconstruction strongly depends on the quality of the database, especially in terms of genome annotation and also species-bias 140 . In biology, there are favoured traditional organism models that are extensively studied: Escherichia coli K-12 for prokaryotic (Bacteria + Archaea) models, Saccharomyces cerevisiae for unicellular Eukaryotes and yeasts, Arabidopsis thaliana for plants, Caenorhabditis elegans and Drosophila melanogaster for invertebrates, and mice (Mus musculus) for vertebrates. E.

coli's genome and functions have been analysed in depth, leading to the creation of an E.

coli-specific database (EcoCyc) of high quality and accuracy, with multiple links to experimental evidence 137 . This is however not the case for most other species in the databases 140 . Furthermore, databases are often biased towards microbes and plants, having worse information for other eukaryotes 140 . Even among microbes, bacteria phylogenetically close to E. coli will have much more detailed annotations due to their closeness than other species such as some archaeal species, living in inhospitable and extreme environments, which makes isolation and study of such species and their phylogenetically-related "cousins" much more difficult 140 .

A habitual practice in metabolic network reconstruction is to omit currency metabolites.

There is no clear consensus on which metabolites are considered to be currency, though they often include electron carriers and molecules in charge of transferring common functional groups (phosphate groups, amino groups, methyl groups…) 111 . Metabolic networks are however known to keep a scale-free structure with 110 and without 124 currency metabolites.

The ubiquity of these metabolites is one of the reasons why they are not biologically informative and can be omitted 111 . The analysis from Jeong et al (2000) 110 evaluates the path length between two nodes in 43 metabolic networks, and finds an average path length of around 3 steps. As Ma and Zeng (2003) 124 explain, this is surprising knowing how long biological pathways can be (see Figure 9a). This is actually explained by the currency metabolites (encircled in the mathematical graph representation of Figure 9b), as they are used in multiple reactions and therefore artificially short-circuit path length between glucose and pyruvate to be only 2 (dotted arrow in Figure 9a): The graph theory path length calculation only takes into account the bold metabolites to establish the 2 steps. Obviously, this does not hold any meaning in a biological sense, as all substrates are needed in a reaction. This is, therefore, another intuition to currency metabolite removal, especially suitable for the network topology studies.

Additional frequent GEM reconstruction steps include-or combine-gap filling, verification and addition of stoichiometry, transport reaction, spontaneous reactions and others, as well as some manual curation tools (corrections, additions and deletions), in order to be ready for use In the following sections we will first talk about constraint-based methods (see Figure 11b), that try to model reaction fluxes in the metabolism, with constraint-based techniques such as FBA. Though the models are static, they account for stoichiometry on top of graph structure, and can be extended to dynamic models if kinetic parameters are involved.

Next, we will talk about the simplest conception of metabolic networks, studying topology with graph theory to derive metabolic properties (see Figure 11a).

Constraint-based methods and flux dynamics: focus on Flux Balance Analysis

The most well-known constraint-based approach is Flux Balance Analysis (FBA), which studies metabolic networks through the fluxes of biomass at steady-state. To start applying FBA, one must have a complete (without gaps) and curated metabolic networks, with stoichiometry information. This curation is often done manually. As the only requirement to study the fluxes is stoichiometry, FBA has been easily extended to genome-scale metabolic models.

In FBA, reactions will be mathematically represented with a matrix of stoichiometric coefficients S of size n c ×n r , with n c the number of unique metabolic compounds in the network and n r the number of reactions. Stoichiometric coefficients will be negative for substrates of a reaction, positive for products and zero for non-participating compounds, therefore S is a sparse matrix.

Fluxes of each reaction will be represented by vector v, of length n r .

Finally, compound concentrations will be given by vector x, of length n c .

As previously mentioned, FBA is known as a constraint-based modelling technique, and the first constraint to be imposed is flux balance-a steady-state of input and output biomass-through the following equation:

x = S • v = 0
As metabolic networks usually have more reactions than compounds, the set of linear equations given by the previous matrix equation has more variables than equations, and thus there is more than a single solution to the equation.

Other constraints can then be added, such as upper and lower bounds to values of individual variables (fluxes, concentrations, …) based on biological knowledge, and physical and chemical properties (thermodynamics) 153 , by experimentally measuring fluxes, enzyme capacity, or some other strategy. Another type of constraint that can be added is another balance, but instead of balancing mass, balance another conserved quantity such as energy or redox potential 153 . The solution space will now be reduced (see figure 12, (1) and ( 2)). Now that constraints have been applied, FBA will try to solve the equation by defining an objective function to optimise. This objective function will be based on a biological objective relevant to the case that is being studied, which is often defined as biomass production. The objective function Z is defined as:

Z = c T • v
where c is the vector of coefficients that establishes how much each reaction contributes to the objective function. By maximising or minimising Z within the constrained space, an optimal solution is found for v (see figure 12 (3)).

There exist a variety of FBA tools to help implementation. Among them COBRA toolbox 155 , FASIMU 156 , and OptFlux 157 are available.

FBA has many applications: deepen metabolism knowledge, study gene deletion consequences 158 , analyse organism growth in different media 159 , find drug targets 160 , and more. FBA has been shown to make some good phenotypic predictions, experimentally confirmed.

However, as mentioned before, it has no kinetic information, and cannot predict metabolite concentrations. Furthermore, it can only evaluate fluxes at steady state. Predictions may therefore lack in accuracy 154 . Finally, it is important to point out that this technique uses many strong hypotheses in order to function (steady state, biomass optimisation…).

Other constraint-based methods exist. Elementary flux modes (EFM) are flux vectors that satisfy the steady-state and thermodynamic constraints, but that also can't be decomposed into simpler flux vectors. They have been said to be a formal definition of a metabolic pathway, with the biological definition being as follows: "Minimal set of enzymes that could operate at steady state with all irreversible reactions proceeding in the appropriate direction" 161 , with the removal of one of the enzymes causing it to fail 140 . Any metabolic steady state can be decomposed into EFMs, but that is very computationally expensive for most GEMs, as there is a combinatorial explosion when network size increases. Multiple strategies are being proposed to overcome this problem [162][163][164] .

Another technique is called method of minimization of metabolic adjustment (MOMA),

which is an extension of FBA for predicting flux distributions for gene knockouts 165 . There is also metabolic flux analysis (MFA), which also assumes steady-state, but simplifies the network by removing reactions, so that a few experimental extracellular measures are able to determine the remaining fluxes in the model 166 .

FBA and other constraint-based flux balance models such as MFA can even be extended to dynamic analyses (dFBA, dMFA), analyses over time, which can integrate kinetic parameters and metabolite concentrations. There are two main approaches for dFBA 167 . The first one conceives time as discrete. The main hypothesis is that steady-state is conserved intracellularly, based on the fact that experimentally, steady-state is often reached in seconds or minutes from the perturbations 166,168 . Thus, if sampling is done at a time-scale greater than the transient condition, the models can be at steady states in a time series. At each time point, growth constant will be estimated to evaluate exchange rates, which will be used to constrain the next time point steady-state model 169 . This has successfully been applied on multiple occasions to optimise citrate production in Yarrowia lipolytica 170 or to evaluate the performance of shikimic acid production from glucose in an Escherichia coli strain 171 . The second approach generalises the first one, accounting for all the time interval, by optimising a global objective function through non-linear programming, though this increases complexity and applicability to larger networks 167 . New ways of considering dynamics are still being created, so as to improve dynamic modelling in the future 131 .

Topological analyses of metabolic networks: focus on the scope

The other main avenue most seen in systems biology takes the simplest approach to metabolic modelling, through graphs in their static form, without stoichiometry or dynamics added (see Figure 11a), but also with less strong hypotheses such as steady state and so on. This is the direction that will be taken in the present thesis in all chapters.

The main goal behind it is to understand the relationships between network topology and metabolic functions. Topology can not only provide information into metabolic capabilities, it can also find links with the organism's environment, placing it into an ecological context and their evolutionary adaptation.

As mentioned in section 1.3.3, metabolic networks have been found to have a large-scale structure that is scale-free, small world, and hierarchical while modular, showing high robustness against internal defects and environmental fluctuations 110 .

In a less general view of topology, Takemoto et al (2007) 128 showed that 113 prokaryotes growing at different optimal temperatures had different graph properties -edge density, clustering coefficient, exponent of the degree distribution power law, and subgraph motif concentrations-that correlated with said temperatures, indicating a possible evolutionary role of environmental temperature in shaping metabolic networks. This paper will be further discussed in chapter I.

Borenstein et al (2008) 126 , coined the concept of seed set, which is the set of metabolites that are exogenously acquired and needed to produce all other metabolites in the network. They identify them based on the concept of strongly connected components (a group of nodes that can access all other members of the group through directed arcs), which can be understood as cycles. Each strongly connected component will give rise to a seed compound.

The authors analysed it for 478 species, and were able to confirm with biological knowledge the accuracy of their seed sets, analyse how different environments affect the exogenous needs, how these seed sets evolve in phylogenetic trees, and they were even able to reconstruct a phylogenetic tree based on them.

In the same manner, other scientific groups have reported differences between domains of life related to average path length 124 , clustering coefficient, degree distribution measures and others 172 , and more complex connectivity motifs for bacteria living in unpredictable environments when compared to other bacteria 173 .

One of the problems of many network topology measures is their lack of biological interpretability. In chapters II and III of the present thesis, I have therefore focused on a network measure that though it does not add stoichiometry and is entirely based on topology, it does give certain properties of metabolic networks that are not present in classical graph theory. It is the fact that reactions need all substrates to produce products, thus a single arrow between a metabolite and reaction is not actually enough to go through the reaction. The measure is called the scope, which is based on network expansion. substrates that are already in the expanded network, which will also add the products. In this example, both A and B are seed compounds, thus reaction 1 can be added, along with products D and E, but that is not the case for reaction 2 which also needs substrate C. In the same manner, downstream reaction cannot be added as F is not in the expanded network. The set of compounds and reactions in the resulting network is called the scope of the seed compounds.

Introduced by Handorf, Ebenhöh and Heinrich in 2004 174 -2005 175 , network expansion starts with one or more initial metabolites forming the seed compounds (in orange in Figure 13.

Reactions will be added sequentially if all substrates are already present in the expanding network, therefore also adding the products (in yellow in Figure 13). Expansion will continue until all reactions are added or until no other reaction can.

The scope of these seed compounds will then consist of all nodes (metabolites and reactions) that are part of the expanded network (in yellow and orange in Figure 13).

This measure accounts for the sequential nature of biological reactions, and can account for pathway redundancy. Computationally, it can also be much quicker than techniques such as FBA 176 .

The scope can allow for structural analysis comparison between species, showing for example that they have a hierarchical structure, as scopes can be composed of sub-scopes,

giving a new way to envision metabolic networks 177 .

It can also be used to functionally characterise organisms, which is the specific use that will be applied in chapter II and III. In 2009, Ebenhöh and Handorf 178 evaluated the scope size for a number of different carbon sources established as distinct seed mediums, in 447 KEGG species. They called it the carbon utilisation spectra, and used it to determine carbon sources with small scope sizes and large scope sizes. They then used the Jaccard distance between the organisms to clusterise the species, thus studying taxonomy, and to predict oxygen tolerance. This is similar to what will be presented in chapter II and III, where I will also be using machine learning techniques to stratify species/patients in order to predict environmental and taxonomic variables. However, I will not be basing them on scope size with different input seed media. Rather, I will directly be using the presence/absence of metabolites in the scope for a single input medium.

The scope has many other applications. It has been derived to study mutant viabilities 179 , to find the minimal seed set to produce a set of target metabolites 180 , and can also be particularly useful to study interactions between organisms, for example in the case of plant-pathogen by studying the changes in biosynthetic capabilities when merging the plant-pathogen networks 181 , or also in community interactions in the gut microbiota, where Frioux et al (2018) present a tool based on the scope to find the minimal number of microbial cooperation processes to perform a given function 182 .

In the case of the gut microbiota, multiple organisms interact, which means that modelling of the community must include multiple species. The next section will address this particular extension of metabolic networks and GEMs and its specific challenges, in constraint-based cases as well as topologically-based.

Gut microbiota metabolic network analyses

The gut microbiota is a microbial community, where species are often dependent on one another, interacting between themselves and the environment, and in the case of the gut microbiota, also the host. This means that one species may not be able to produce metabolites without the help of other species. We have previously described SCFAs, which illustrate this in relationship to the host: bacteria digest dietary fibers that the host cannot digest, producing SCFA that are needed by the host.

In the same way, microbes can also be in competition, have different growth rates, have different compositions depending on location, and so on, denoting the complexity of the microbial community ecosystem, and in our case, the gut microbiota ecosystem 183 . Not only are interactions complex between organisms, but as we have also seen, so is metabolism within a single organism. This exacerbates even more the difficulty of modelling the gut microbiota.

Therefore, many challenges have to be overcome in the extension of single-organism metabolic networks to communities, and their subsequent analysis. This problem is well-described by Biggs et defining "receptor" species (consuming metabolites) and "effector" species (producing metabolites). They then evaluate metabolite production with an organism-level optimisation of biomass. Finally, they perform an iterative multi-level optimisation of the species' relative carbohydrate uptake, which optimises biomass at the community-level too. One of the added constraints is the relative abundance of each species. They show that their method allows the modelling of communities and the prediction of output metabolites through the example of five gut microbiota species GEMs, and their production of amino acids and SCFAs in vitro and in vivo.

There are also examples of mixed approaches combining compartmentalisation as well as non-compartmentalisation.

Frioux et al (2018) 182 use an approach that is not based on FBA but rather on topology, where they present the tool Miscoto, which is able to select a sub-community of organisms that optimises a given function in a microbiota. The host can also be considered in the metabolic network as a compartment. The algorithm will start without boundaries, with a community as a single entity, and will use the scope to maximise producibility of target host metabolites.

Compartments will then be considered, where there will be a minimisation step to limit the number of organisms needed to produce the targets, based on redundancy of production. The final sub-community will be chosen under a parsimony assumption for metabolite exchanges between organisms (minimal exchanges).

However, there may be some limitations in the use of compartmentalisation, especially in FBA 183 . Firstly, it may restrict the type of analyses to perform. Secondly, in the case of constraint-based analysis, the balanced growth assumption does not account for any type of metabolite accumulation or degradation in the environment. They are often difficult to expand to a bigger scale. Also, the approaches usually do not consider changes in species abundance.

Finally, there are general issues in GEMs as well that have been previously mentioned, since annotation quality may vary, and there are many gut species that are still partially or completely unknown-what is informally referred to as "dark matter" of the gut microbiota.

In contrast to compartmentalised approaches, one can consider an unbounded, "enzyme soup" 186 , also called "gene soup" or mixed-bag 187 approach, where the gut microbiota is considered as a single entity where every species has access to all metabolites from the others, creating some kind of supra-organism. The species identification step can, therefore, be overlooked, and the metagenome can be considered as if it was a single genome. The enzyme soup method can be very useful, especially as it does not need as much prior community species information and can therefore be applied to less well-known systems. It is however also dependent on gene annotation, and is not as biologically accurate as a compartmentalised approach 183 .

Other modelling strategies exist, such as extensions of dynamic analyses to communities and so on, with their own set of pros and cons.

An optimal protocol of action in community modelling has yet to be determined, and it usually depends on the aim of the analysis.

In the gut microbiota community analysis that will be presented in chapter III of the present thesis, I have chosen to use an approach resembling the one from Greenblum et al (2012) 127 , where I will model the community with an enzyme-soup approach and use a topology-based protocol with the scope, that I will contrast to clinical parameters of the hosts.

Thesis objectives and outline

As previously mentioned, the gut microbiota takes a vital place in human health and disease.

In the case of SCFAs, their exchanges and effects have been-and still are-extensively analysed, making it one of the few examples where the specific mechanistic interaction between gut microbiota and human host is well-known. Some of the most classical exploratory approaches in human gut microbiota directly use statistical models and correlations on metagenomic and species abundance data 3,59,72,[START_REF] Karlsson | Gut metagenome in European women with normal, impaired and diabetic glucose control[END_REF] . However, the specific functional role in a metabolic level is much harder to come by, and even harder with causality [START_REF] Khan | Microbial Modulation of Insulin Sensitivity[END_REF] .

The main objective of this thesis is to contribute to the identification of metabolic mechanisms involved in the interaction between host and gut microbiota, by using systems biology approaches developed for "-omics" data, and based on metabolic network models, machine learning techniques, and statistical inferences. This has been achieved by testing on available public data and also our lab's clinical cohorts with metabolic diseases.

In particular, I use a topology-based approach to study metabolic network properties in regard to its environment-the host. I am not limiting my analysis to statistical analysis, as I also apply other powerful computer science algorithms to complement classical biological approaches with machine learning techniques: embeddings (such as the scope), classification and clustering techniques, as well as neural network models. These methods enable patient or species stratification and pertinent pathway identification. Specifically, the metabolic scope allows access to metabolites and pathways of interest to shed light on metabolic mechanisms involved in species-environment or host interactions, while still reducing dimensionality: it can be considered as an interpretable graph embedding.

The present thesis is divided into three parts, with each one being the object of a publication or prospective submission in the case of chapter III.

The first two chapters present as a proof of concept the analysis of microbial metabolic network structure. The prokaryotic metabolic structural properties will be confronted to environmental variables (e.g. growth temperature, habitat, and oxygen tolerance) to detect correlations and eventually classify them.

Based on the insights from the previous chapters, the third chapter will focus on gut microbiota metabolic networks (instead of single organisms), and confront them to host clinical phenotypes (instead of environmental variables), in order to also detect correlations and stratify the patients. The data will come from two clinical cohorts of severely obese patients from our lab Nutriomics.

Finally, a discussion and perspectives section will end this thesis, followed by the list of references.

The present thesis also contributes the code used for each publication: it is publicly accessible on GitHub, the links can be found at the end of each chapter. 
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My contribution was two-fold:

• Replicate their results more than ten years later, with more species to balance temperature classes.

• With a different metabolic reconstruction approach that includes more enzymes, the main results are lost. We therefore introduce novel network structural properties that robustly correlate with temperature in both reconstruction approaches, and that work for directed graphs, which is more representative of metabolism. Mainly, the size of the largest strongly connected component and the normalised Laplacian spectrum negatively correlate with optimal growth temperature, and the flow hierarchy positively correlates with it.

In particular, the use of the Laplacian spectrum in this manner in metabolic networks has not been previously performed to the best of my knowledge, and reveals underlying structural motifs.

Background

All living organisms rely on chemical reactions to exist, and the set of these life-sustaining chemical transformations is defined as metabolism. Because these reactions are mostly catalysed-accelerated-by enzymes, the transformation of organic molecules (substrates) into other chemicals (products) can directly be mapped by the enzyme set.

*Correspondence: adela@nicoweb.com Sorbonne University, INSERM, NutriOmics F75013, France., 91, blvd. de l'Hôpital, 75013 Paris, France

The development of metabolic databases such as KEGG [1] linking enzymes to their reaction pairsubstrates/products-allows us to explore the structure of metabolism in general, and to investigate the structures of the metabolic graphs of particular organisms [2].

Flow is an inherent concept of metabolic reactions, going from substrates to products which then become substrates for other reactions. Directed graphs are therefore a natural way to model enzymes and chemical reactions [3]. The metabolic network of an organism is defined as the whole set of metabolic pathways. Since such a network is a (directed) graph, the elements of graph the- ory can be applied to study its properties. Understanding network topologies and their physical, chemical, and biological constraints is critical to decipher the function and evolution of cellular networks [4].

We focus on a metabolite-centered representation where the nodes of a graph are metabolites, and they are connected if an enzymatic reaction converting one metabolite into another exists. It is then simple to create metabolic networks that describe all chemical reactions of one or multiple organism(s) as a graph. Figure 1 provides an example of the topology of a directed graph for a bacterium. In a directed graph, some nodes are end-points (shown in blue), and some nodes are starting-points (in yellow). To keep our flow analogy in play, starting points compounds will be an input (e.g. from the medium) whereas end points are 'final' products of the complete pathways.

Recent studies take two main directions in the analysis of metabolic networks. The first one heavily relies on graph structural measures such as degree distribution, clustering coefficient, path length, and centrality [5-7]. The second venue of research is based on the analysis of biomass dynamics inherent to metabolic networks, by trying to predict steady-state flux distributions. Various constraint-based techniques exist to solve this problem, e.g., flux balance techniques (FBA) [8].

It was reported by several studies (e.g., [9-12]) that the compounds of metabolic networks, the flow of substrates and products, and the overall pathway organisation are correlated to environmental variables and to phenotypical traits. The aim of these studies was to discover similarities and differences in the structural and functional properties of various organisms. It was noticed [9] that evolutionary changes in metabolic networks are mostly due to adaptation to changing conditions. So, Takemoto et al. [11] made an attempt to explore correlations between several structural properties of metabolic networks (such as edge density, power law degree exponent, clustering coefficient, and subgraph concentration) for 113 prokaryotes to their optimal growth temperature. Ideally, metabolic networks require complex representations such as hypergraphs, since reactions in metabolic networks convert multiple reaction inputs into multiple outputs using other components [13, 14]. However, a reduced representation and algorithms on graphs can facilitate the analysis by addressing the fundamental biological concepts.

A number of graph theory approaches were proposed to study relations between the structure of metabolic networks and the environment. So, Borenstein et al. [10] stated that species whose environment are highlypredictable tend to have smaller sets of compounds that are exogenously acquired than those who live in variable conditions.

The network topology determines network functions [15], and the topology of a metabolic network is important in predicting the viability of mutant strains.

Metabolic networks are known to be extremely heterogeneous, and two networks of two different organisms are quite different [16]. At the same time, the metabolic networks were shown to be robust in the sense that elimination of several central nodes does not modify the functions of the networks [16]. A graph-based method to identify all minimal reaction sets in a metabolic network was considered in [17].

Our main motivation is to explore the structure of directed metabolic graphs of bacteria, and to relate it to phenotypes. In our experiments, we consider prokaryotic optimal growth temperature as a phenotype. In this article, our contribution is:

• We reconstruct metabolic networks for species considered by [11] in addition to several species that will increase the number of species in the growth temperature classes which were represented by too few species. • We build and explore undirected and directed metabolic graphs; including all KEGG enzymes for the species or only those found in the so-called KEGG pathways. • We propose to apply robust measures on directed complex graphs, namely largest strongly connected component, flux hierarchy and Laplacian spectrum, and we relate these measures to the environmental conditions. • In our experiments, we have confirmed the results of [11], and we discuss the newly introduced metrics.

Results

Confirmation of the state-of-the art results of Takemoto et al. (2007)

In the study conducted by [11], undirected substrate graphs were constructed using KEGG metabolic pathways for 113 prokaryotes from four different growth temperature classes (hyperthermophiles, thermophiles, mesophiles, and psychrophiles). They considered several properties of undirected graphs, and analysed the correlation between the graph properties and the optimal growth temperatures of the organisms. We implemented and tested three measures from their study: edge density, maximum likelihood estimate of degree exponent, and average clustering coefficient. Since more than ten years have gone by, the databases have evolved significantly. We focused on directed graphs, and we reconstructed the metabolic networks without using pathways directly (see Methods). We obtained graphs for 100 out of the 113 species, filtering out nodes in such a way that we had metabolic reactions from known pathways only. We also added 128 additional species.

There are two main differences between our experiments and the ones from [11]. We use more species in our experiments, and we consider directed graphs. We still confirm most of the results from [11].

We apply a linear regression to estimate relation between the number of nodes in a metabolic network and the optimal growth temperature and deduce Pearson's correlation. We consider a correlation between the number of nodes and the optimal growth temperature, a correlation between edge density and optimal growth temperature, a correlation between degree exponent and optimal growth temperature, and a correlation of average clustering coefficient and optimal growth temperature. All these measures are applied to undirected substrate graphs without ubiquitous metabolites, to be as close to [11]a s possible. As we can see from Fig. 2 (green lines), there is a significant negative correlation between the number of nodes and the temperature shown on Fig. 2a, anda negative correlation between edge density and the temperature illustrated on Fig. 2b. As shown on Fig. 2ca n d d, we find a significant positive correlation for the degree exponent estimate, and significant negative correlation for the average clustering coefficient with the optimal growth temperature of the species.

In general, we discovered the same tendencies as [11].

Undirected graphs reconstructed from all enzymes and the impacts on graph properties

Here we compare the influence of taking all KEGG enzymes for a species with enzymes in known KEGG pathways only. Our method to build the metabolic graphs is different from [11] in that we consider all reactions that can be deduced from the species genes, and not only enzymes involved in known pathways. We have, therefore, found additional enzymes for all species. On Fig. 2a, we notice a strong bias related to the number of nodes in respect to the growth temperature. Hence, ideally, graph properties are to be normalised by the number of nodes. Fig. 2 Impact of additional enzymes: a the Pearson's correlation between the number of nodes and the optimal growth temperature; b the correlation between the edge density and the optimal growth temperature; c the correlation between the degree exponent and the optimal growth temperature; and d the correlation of the average clustering coefficient and the optimal growth temperature. All these measures are applied on undirected substrate graphs without ubiquitous metabolites

We wish to analyse the impact of the additional reactions. We observe a complete loss of the tendencies, what is shown in blue on Fig. 2b, c andd. All the correlations are inverted, albeit with lower correlations except for the average clustering coefficient, which has a stronger correlation than what [11]found.

We found a significant positive correlation between the proportion of enzymes that are not in a pathway and optimal growth temperature (Pearson's r = 0.26, data not shown), meaning that more new enzymes-edges-are added for thermophiles than non-thermophiles, adding more edges and therefore likely causing the correlation inversions.

When removing up to 40% of random nodes in the graphs with all enzymes, the trends stay significantly correlated. This means that the pathway enzymes are specific and greatly modify the graph structure.

These differences could be due to a bias in KEGG pathways for hyperthermophiles, that could have less annotated and curated pathways than its more well-studied counterparts, and thus more enzymes not associated to pathways. Another hypothesis is that this difference could be explained by noise, since the number of nodes for hyperthermophiles is the smallest.

Robust directed measures to analyse cycles of metabolic networks

We focus on directed metabolic networks, and we are interested in finding relevant measures on directed graphs that can explain correlation with environmental variables such as optimal growth temperature. We propose robust measures to analyse substrate graphs.

We considered two measures to study cycles in networks, the size of the largest strongly connected component which corresponds to the biggest cycle in a graph, and the flow hierarchy (see Methods). The flow hierarchy is defined as the number of nodes in a component that is not a part of the largest strongly connected component. So, the two explored measures are closely related.

A ss h o w ni nF i g .3, we found a significant negative Pearson's correlation between the size of the largest strongly connected component, normalised by the number of nodes, and the optimal growth temperature. We have also observed a significant positive Pearson's correlation between the node normalised flow hierarchy and the optimal growth temperature. These tendencies have been found for substrate graphs built with all enzymes and for substrate graphs with enzymes in known pathways: these measures are consistent in both cases, with similar correlations thus becoming robust measures to analyse correlation between metabolic network structure and environmental conditions. We consider that these measures are potentially more relevant to describe metabolic networks as they reflect directed graphs properties.

Metabolic network Laplacian eigenvalues

We tested another directed network structural property to study connectivity. A temperature class network yields different graph structural properties related to connectivity, but the underlying description of these graphs is a compound flow. These properties are associated to the 'speed' of reactions and can be assessed using the spectrum of the network [18].

More precisely, for each species' graph we computed the adjacency matrix containing all recorded compounds among all species yielding a matrix A of dimensions 3194 × 3194. We compute the Laplacian matrix L and extract its spectra (the ordered from high to low list of eigenvalues of L). These values must be comprised within the interval [ 0, 2]. For example, for a star graph with n vertices, the eigenvalues are 0, 1 (with multiplicity n -2) and 2, and for the cycle on n vertices the eigenvalues are 1 -cos 2πk n for 0 ≤ k < n. We computed this spectrum for each species, and estimated the average within the same temperature group (see values in Additional file 2). The results are shown on Fig. 4. The results illustrate clearly that for a temperature class structuration, a higher temperature is associated with lower eigenvalues.

In Fig. 4 we can see steps that can be observed at value 1 and 0. Eigenvalues of 0 have a multiplicity equal to the number of connected components in the graph, but also since we computed the adjacency matrices as the union of all compounds for all species, eigenvalues of 0 also reflect nodes that do not actually exist in a given graph but exist in another (Fig. 2a shows that the largest networks have a maximum of around 1500 nodes whilst Fig. 4 shows 3200 eigenvalues). These non-existent nodes are therefore consideredasisolatednodesandcountedasaconnected component, having an eigenvalue of 0.

On the other hand, eigenvalues of value 1 with eigenvectors summing to 0 correspond to a particular network pattern :

Fig. 3 Robust measures on directed graphs: a Pearson's correlation between the node normalised size of the largest strongly connected component and the optimal growth temperature; and b Pearson's correlation between the node normalised hierarchy flow and the optimal growth temperature. These measures were applied to directed substrate graphs for all 228 species, without ubiquitous metabolites Source nodes are nodes without predecessors (in-degree of 0).

Discussion

We have observed that prokaryotic metabolic network properties can correlate with environmental phenotypes, namely with the optimal growth temperature in our study.

First of all, we confirmed the results of [11]t h a t dates more than ten years back: a negative correlation between edge density and optimal growth temperature and between average clustering coefficient and optimal growth temperature, and a positive correlation between maximum likelihood estimate of degree exponent and optimal growth temperature. This clearly shows the robustness of the data from the KEGG database, even though some data has been modified, and some new data has been added. On another hand, the results of our experiments also illustrate the validity of the results of [11]. Although the amount of species in our experiments is doubled compared to the number of prokaryotic species in [11], the trends are still the same.

These results hold for a particular subset of known metabolic data of the species. We consider important to take all available data (enzymes) into account. However, in the case where all enzymes associated to the species in KEGG are taken into account, these results do not hold anymore: they change sign of the correlation. The origins of these inversions are still unclear, but we believe that it could be due to biases in KEGG for non-mesophilic species (especially for thermophilic species).

We believe a directed network representation is more a p p r o p r i a t et om o d e lm e t a b o l i s m ,s ow el o o k e df o r directed topological properties that were robust for the different reconstruction protocols. We tested directed graph structural properties related to cycles (largest strongly connected component and flow hierarchy) and to connectivity and flow (Laplacian spectrum).

We found that when there are less nodes involved in the largest strongly connected component (cycle), it is linked to higher optimal growth temperatures, and there are more nodes outside of the cycle that are still part of the weakly connected component, which is the measure of hierarchy flow. When more nodes are involved in the largest strongly connected component, it is linked to lower optimal growth temperatures, and there are less nodes outside the cycle that are still part of the weakly connected component. This is valid no matter if all enzymes are considered or only pathway enzymes.

We explored the most common nodes of the largest strongly connected components, and we found several metabolites such as L-glutamate and L-glutamine (found in 213 out of 228 species), pyruvate (found in 213 from 228 species), phosphoenolpyruvate (209/228), carbamate (208/228) and some others which are molecules involved in the most basic cell metabolism, and that may imply the primordial and basic functions of these metabolic cycles.

Amino acid substitutions are reported to be more deleterious for thermophiles than non-thermophiles [19], implying less variability in enzymes, thus less enzymes, explaining the negative correlation between the number of nodes in our graphs and optimal growth temperature (Fig. 2a). We can hypothesize that for this very reason, the set of core enzymes and metabolites of the metabolism, which could be represented by the largest strongly connected component, also represents a smaller fraction of nodes because of the greater evolutionary pressure given by temperature. Consequently, as the fraction of nodes in the largest strongly connected component is smaller for thermophiles, the fraction of nodes for the flow hierarchy is larger.

On another hand, we see that Laplacian eigenvalues are higher for prokaryotes that preferentially grow in colder environments, showing more particular patterns of connectivity and flow in their networks.

Other directed graph topological properties were tested, with some having significant correlations with optimal growth temperature for both reconstructions, such as the fraction of nodes with an in-degree of 0 (startingpoint nodes, input metabolites) or the fraction with an out-degree of 0 (end-point nodes, output metabolites), having both positive correlations with temperature (data not shown), or also the number of some of the triads among the 16 possible triads in a directed network also show significant correlations, positive and negative (data not shown). All of this shows the clear link between the immediate environment and the metabolism of a given species, and can be looked into in different contexts and environments.

To integrate directed graphs and bring it a step further, an interesting future research avenue would be to study the differences, or complementarities between community graphs and single organism graphs, as well as differences in their largest strongly connected components and other directed structural properties.

An important point has to however be made on the direction of chemical reactions. In this work, we fixed the directions of reactions as found in the KEGG database. However, there might be some chemical reactions happening in the opposite direction than the one fixed in KEGG. We believe that it may be interesting to infer directionality of reactions, since homeostasis is extremely important for organisms, and it is regulated, e.g., by enzymes. There is a need to study this problem, for example through thermodynamics, and it would be promising to study the flux of our graphs, in particular from observational data to investigate the dynamics of the biomass.

Conclusions

We have reproduced the results of [11], and we state that the results mostly hold even with the evolution of the KEGG database, and even while significantly increasing the number of species in the data set. We have found a positive correlation between the degree exponent estimate and optimal growth temperature, and a negative correlation between the edge density and the temperature and between average clustering coefficient and the temperature.

We have noticed that when we include all KEGG enzymes we could find for a species into metabolic networks, and not only the enzymes from KEGG pathways, the results do not hold anymore.

We propose three directed graph measures, namely, the size of the largest strongly connected component, the flow h i e r a r c h y ,a n dt h eL a p l a c i a ns p e c t r u m .W eh a v es h o w n that these measures are robust for all considered graphs, and they correlate respectively negatively, positively and negatively to the optimal growth temperature. In all our experiments, we have observed strong links between environmental phenotypes and graph structure.

We have also developed a pipeline to reconstruct metabolic networks taking into account all enzymes. We compared the results of our pipeline to the state-of-theart results of [11], and we can state that our pipeline yields very reasonable results.

We are currently investigating how robust the metabolic networks are against structural modifications. Finding causal directions from purely observational data is another open challenge.

Methods

Prokaryotic species

Our data set contains 228 prokaryotic species where 100 species are from the databased used by [11]. We decided to increase the number of species in our experiments, since the number of bacteria in three growth temperature classes was too small (1 psychrophile, 9 hyperthermophiles, and 9 thermophiles). We added 52 species from the Bacterial Diversity metadatabase (BacDive) [20], chosen according to their growth temperature class. We also added 76 mesophilic species from the Human Pan-Microbe Communities (HPMC) database [21]. We obtained the following distribution over four growth temperature classes (from hot to cold): 19 hyperthermophiles (HT), 35 thermophiles (T), 158 mesophiles (M), and 16 psychrophiles (P). Mesophiles are the most well-studied species, thus biasing databases towards these species and explaining the temperature distribution of our species. Hyperthermophilic species are species whose optimal temperature is above 80 o C, thermophilic species are ones with the optimal temperature between 50 o Ca n d7 0 o C, mesophilic species live in the range between 20 o Ca n d 45 o C, and psychrophilic species prefer an environment between -20 o Cand10 o C.

Metabolic network reconstruction

T h e r ee x i s tan u m b e ro fw a y st op r o d u c em e t a b o l i c networks from chemical reactions. The nodes of such a metabolic reconstruction can be metabolites (small molecules, substrates, and products of the enzymes), or enzymes. We have built directed and undirected substrate graphs which are metabolite-centered graphs where each substrate is a node and is linked to each product of a metabolic reaction for a given species. Therefore, edges are enzymatic reactions linking substrates to products. Figure 5 sketches a metabolic reaction, a directed graph, and an undirected metabolic network.

To build the metabolic graphs, we downloaded Ensembl or GenBank cDNA FASTA files for the 228 species. Figure 6 shows the reconstruction procedure. We retrieved gene labels from the FASTA files, see Fig. 6a. We then consulted the Kyoto Encyclopedia of Genes and Genomes (KEGG, [22]) database. With the KEGG code for a species and the gene labels, we found the species gene entries, and we extracted all enzyme commission codes (ECs) if the codes were found in complete form, i.e., no hyphen was present in the code. This step is s h o w no nF i g .6b. We then extracted all substrates and p r o d u c t sf r o mt h eK E G Ge n z y m ee n t r i e s( F i g .6c), and we built directed and undirected substrate graphs, which is illustrated by Fig. 6d ande. We excluded 13 species out of the 113 species from [11] because we could not find gene names in the cDNA FASTA files, or the gene names did not match to the KEGG species code, or the species entry (and code) in KEGG simply did not exist anymore.

A common practice in metabolic network reconstruction is to exclude ubiquitous metabolites to make the network more relevant biologically, and because of the great impact on network structure. There is no strict consensus on ubiquitous metabolites, however, the metabolites used as carriers for transferring electrons and common functional groups are regarded as ubiquitous metabolites [23].

Similarly to [11], we defined 13 ubiquitous metabolites: Note that in [11] they directly downloaded the metabolic pathways of the prokaryotes from the KEGG which are curated networks and are, therefore, different from the networks found with the full enzyme set of the prokaryotes. In order to replicate as accurately as possible their results, we also built graphs without enzymes that do not have an associated KEGG pathway (without PATHWAY field in the KEGG enzyme entry).

Indeed, our main objective is to assess bacterial metabolic systems without any a priori knowledge, and therefore keep as much information as possible, which is why we keep all enzymes that can be deduced from the genome. This means that we have kept most inorganic compounds and generic reactions. We therefore may have less metabolic information regarding some nodes when considering generic reactions, but also more information as more data from the database is considered and as all substrates and products are included (pathways sometimes only show the main reactants and not all of them).

For the directed reconstructed graphs, the default direction of the KEGG reaction was used, which is the direction of the catalytic reaction (substrates and products are specified). It is the direction in which the flow of biomass is expected.

Our networks were reconstructed on April 2019, a description of the species and the networks can be found in Additional file 1.

Optimal growth temperatures

For the species also considered by [11], we got the optimal growth temperatures from the supplementary material provided with their article. The data originally came from the Prokaryotic Growth Temperature Database (PGTdb) [24]. The access to the PGTdb was not available since we started performing our experiments and later, so, the optimal growth temperature and the growth temperature classes for the rest of the species were taken from the BacDive database [20]. For the species whose optimal growth temperature was given as an interval in the Bac-Dive database, we used the average value of the interval. For the species from the Human Pan-Microbe Communities (HPMC) database, the optimal growth temperature was fixed to 37°C.

Measures on directed and undirected graphs Edge density for undirected graphs

Here we use the definition provided in [11]f o rt h ee d g e density for an undirected graph: 

where E is the total number of edges, and N is the total number of nodes.

Maximum likelihood estimate of degree exponent

We follow the definition given by [11]. We assume that the degree distribution P(k) of our graph follows a power law k -γ . The number of connections k of a node is called degree of a node, and the degree distribution is the degrees of nodes over the whole graph. An estimate via maximum likelihood of the degree exponent γ is as follows:

γ = 1 + N × N i=1 ln k i k min -1 , ( 2 ) 
where N isthenumberofnodesinthenetwork,k i is the degree of node i and k min is the smallest degree in the metabolic network. We do not take into account nodes with null degrees for this measure.

Average clustering coefficient

Here we have used an approximation of the average clustering coefficient. The local clustering coefficient of a node i in an undirected graph G is defined as:

C i = M i M possible , ( 3 ) 
where M i is the number of triangles formed by a node and two of its neighbours, and M possible is the number of all possible triangles that could be formed with this node's neighbourhood. The average clustering coefficient corresponds to an average value of local clustering coefficients over all nodes. The approximation we have applied is the one proposed by [25] where the action of choosing a node at random and checking whether its two random neighbours are connected is repeated n times (we have taken n = 1000).

The average clustering coefficient C then becomes:

C = M n , ( 4 ) 
where M i st h en u m b e ro ft r i a n g l e sf o u n d ,a n dn is the number of trials.

Node-normalised size of the largest strongly connected component

The largest strongly connected component corresponds to the largest partition of path equivalent nodes in a directed graph. Path equivalence is the property of having apa t hfr omnodev to node w,andapa t hfr omw to v in agivengraphG [26]. Therefore, the node-normalised size of the largest strongly connected component is the number of nodes of the largest strongly connected component divided by the number of nodes. Note that applying this definition, the strongly connected components are cycles. An example of the largest strongly connected component for Desulfurococcus amylolyticus 1221n is shown on Fig. 7.

The number of nodes in the largest strongly connected component might be small compared to the number of all nodes in a graph (in the example it is 6 out of 340 nodes).

Node-normalised hierarchy flow

A weakly connected component is also a property of directed graphs. It is defined as a group of nodes where each node v and w are connected via an undirected path.

We have defined the concept of flow hierarchy as the number of nodes that do not participate in the largest strongly connected component. Hierarchy flow can therefore be deduced from the subtraction of the strongly connected component from the weakly connected component. To be precise, we take the largest strongly connected component and the weakly connected component containing it, and we then divide the remainder nodes by the number of nodes in the graph (normalization). This procedure is Fig. 8 The largest strongly connected component and the weakly connected component of a graph: an intuition behind the measures drafted on Fig. 8, and can be observed in the example of Desulfurococcus amylolyticus 1221n in Fig. 7.

Laplacian matrix and spectrum

We collected the set of all compounds described in the different graphs to create a standardized adjacency matrix A for each species indexed by these vertices A xy = 1ifa directed edge exists from x to y.Byconstruction,A is not usually symmetric. We compute the Laplacian matrix L also indexed by the vertices whose sum over the columns are equal to zero and L xy =-A xy if x = y.W ec o mputed the spectrum -the list of eigenvalues-of L and ordered it by highest to lowest. We computed the average of this sorted vector for all species within a temperature class.

3 Chapter II: Functional prediction of environmental variables using metabolic networks

In this chapter, I will also try to find links between prokaryotic metabolic network structure and taxonomy as well as three environmental variables: growth temperature, habitat and oxygen tolerance. By deriving all prokaryotic species bipartite metabolic networks from the KEGG database, the scope will be evaluated, and a random forest classification and deep learning model will show that the scope is an excellent predictor of the environmental variables, while still giving specific and interpretable metabolic information linked to the variables. We will be using the scope with a union of bacterial growth media metabolites, and predict the environmental variables with machine learning approaches.

Publication: Weber Zendrera, A., Sokolovska, N. & Soula, H. A. Functional prediction of environmental variables using metabolic networks. Sci Rep 11, 12192 (2021). 189 My contribution is three-fold:

• Directed bipartite metabolic networks built with my basic automatic approach for all prokaryotic species from KEGG (5000+ species), and retrieval of multiple environmental features from various public databases.

• Show that the scope is an efficient embedding able to visualise taxonomy and accurately predict temperature classes, habitat types and oxygen tolerance types through random forest classifiers, and growth temperature through an artificial neural network.

• As the scope is interpretable-we have access to the metabolites and reactions in it-, it is possible to pinpoint the metabolic molecules in the scope (and thereby their pathway) that are of particular importance in the discrimination of the groups in the classification. Therefore, we have access to key metabolic features that other graph theory and embedding approaches lack.

In the case of temperature class prediction, I show that tungsten metabolism is specific to warmer species, and that glutathione metabolism is more specific to colder species, which is concordant with literature. In this manuscript, we propose a novel approach to assess relationships between environment and metabolic networks. We used a comprehensive dataset of more than 5000 prokaryotic species from which we derived the metabolic networks. We compute the scope from the reconstructed graphs, which is the set of all metabolites and reactions that can potentially be synthesized when provided with external metabolites. We show using machine learning techniques that the scope is an excellent predictor of taxonomic and environmental variables, namely growth temperature, oxygen tolerance, and habitat. In the literature, metabolites and pathways are rarely used to discriminate species. We make use of the scope underlying structure-metabolites and pathways-to construct the predictive models, giving additional information on the important metabolic pathways needed to discriminate the species, which is often absent in other metabolic network properties. For example, in the particular case of growth temperature, glutathione biosynthesis pathways are specific to species growing in cold environments, whereas tungsten metabolism is specific to species in warm environments, as was hinted in current literature. From a machine learning perspective, the scope is able to reduce the dimension of our data, and can thus be considered as an interpretable graph embedding.

The rise of sequencing and high-throughput technologies has opened a new era of information and characterisation of previously unknown species. Different techniques have emerged alongside it, to make sense of this new knowledge. Through the use of large metabolic databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) 1 , it is possible to have access to genomic, enzymatic, and metabolic information, and deduce some complex interactions happening inside the organisms. In this context, metabolic networks have been used to study the set of all chemical reactions of organisms in a holistic manner, providing insights into its underlying structure and the different adaptations of these organisms to their environment.

Networks or graphs are mathematical structures linking objects-nodes-with edges. In the case of metabolic networks, multiple representations can be adopted. Among the most accurate, there is one with metabolites and enzymes as nodes, in which each substrate of a reaction will be linked to the catalysing enzyme, which is in turn linked to the products of the reaction. This is the representation we used when reconstructing our metabolic networks.

In recent years, two main avenues of research have been undertaken to study metabolic networks. The first one studies metabolism structure and properties through network topological measures, such as degree distribution [2][3][4] , average path length [2][3][4] , network motifs 3 , and clustering coefficient 3 . The second one relies on the analysis of the fluxes of biomass in metabolism and their dynamics. Various constraint-based methods that try to predict steady-state flux distributions exist, such as Flux Balance Analysis (FBA) 5 . The constraint-based approaches need complete and curated knowledge of fluxes, together with reconstructed state-of-the-art metabolic networks, as it is done, e.g., in ModelSEED 6 . In this paper, we instead follow the first research direction, and are only interested in topological metrics for graph comparison.

Several studies reveal that different metabolic network topological measures-metabolism structural properties-are related to different environmental variables, such as optimal growth temperature 7,8 , oxygen levels 9 , and the type of habitat 10 . However, details on the specific metabolic pathways and mechanisms governing the evolution and adaptation to environment of the organisms are not always considered.

In 2005, Handorf, Ebenhöh, and Heinrich presented the concept of scope of a metabolic network 11 . It is based on the concept of network expansion. Starting from seed metabolites from the environment, the network expands if the substrates of the reactions are present in the expanding network, thereby producing its products. This goes on until the network can no longer expand. The scope of the metabolic network is the set of all metabolites and reactions in the resulting network (see Fig. 1b). This network topological measure has the advantage of taking into account the fact that enzymes need all of their substrates to catalyse a reaction and not only one, which is a property specific to metabolic networks that generic graph theory measures do not consider, while also compressing the dimension of our data, and relying purely on network topology. Additionally, it can handle pathway redundancy, depending on the input seed metabolites given to the network.

Generally, graph embeddings in computational biology are based on different strategies (random walk based, deep learning based and factorization based) 12 , and are rarely biologically interpretable 12,13 . In contrast, the scope can be considered as an interpretable graph embedding, since the nodes in the scope can still be understood from a metabolic viewpoint, and are mechanistically related.

In this study we analyse the scopes of a very large dataset of 5610 prokaryotic metabolic networks that we have derived from KEGG. Crossing with other databases, we assess the relationship between the scope and several environment features. In order to detect this relationship, we use machine learning approaches to predict different evolutionary and environmental conditions (taxonomy, growth temperature, habitat, and oxygen tolerance) from their scope. Importantly, as the scope can be considered as an interpretable embedding of our metabolic networks, it will allow us to gain insights into the metabolic processes associated with the different environmental variables. Starting from seed metabolites (orange), the network expands if the substrates of the reactions are present in the expanding network, thereby producing its products. This is the case for reaction 1, which uses A and B to produce D and E, but not for reaction 2, as C is missing. The scope of the metabolic network is the set of all metabolites and reactions in the resulting network (yellow and orange). (c) Matrix of nodes in scope per species. In yellow, nodes that are in the scope, in purple the nodes that are out of the scope. Nodes that are in or out of the scope for all species have been removed. Species are sorted in taxonomic order, and 578 nodes are sorted by number of species with node in the scope

Results

Scope of metabolic networks. The metabolism of living organisms can be described with metabolic networks. In this study, the directed metabolic networks of 301 archaea and 5309 bacteria were derived from KEGG database, with nodes as metabolites and reactions, and edges linking substrates to reaction and reaction to products (see "Methods").

In the field of systems biology, it is necessary to focus on the complex interactions within an organism and with its environment to be able to understand the complete system. Previous works have shown the strong associations between evolutionary and environmental variables and the underlying topology of the metabolic networks of different organisms [7][8][9] . However, these approaches do not provide any information on the affected metabolic functions.

To counter this issue, we have chosen to use the scope of a metabolic network, introduced in 2005 by Handorf, Ebenhöh, and Heinrich 11 . We have described the concept on Fig. 1b. This network topological property is specific to metabolic networks, and it is defined as the metabolites and reactions (yellow and orange on the figure) which can recursively be reached from a set of seed compounds (orange). Indeed, starting from the seed compounds, only enzymes with substrates among them will be considered, producing some metabolites which will also be in the scope, and this will go on until no further enzyme and metabolite can be reached (see "Methods"). This approach is purely topological, identifying metabolites that can potentially be produced from a set of seed metabolites, and does not rely on biomass fluxes. We would like to emphasize that our main interest here is the interaction between potential metabolic functions described in the scope with other taxonomical and environmental parameters (temperature, habitat and oxygen). We are not interested in the many other properties obtained from classical metabolic networks, e.g., their flux properties and/or biomass optimization. Such information would limit the number of prokaryotic species we are able to use.

The union of the metabolites of three chemically-defined growth mediums used to grow a mesophilic species 14 , a psychrophilic species 15 and a hyperthermophilic species 16 are fixed as the seed compounds. A thermophilic medium 17 was already included, since the union is used as seed for all species. The single medium-the union of mediums-as seed compounds for the scope allows us to extract discriminating properties between the metabolic networks while mitigating potential species-based bias. We built a matrix of nodes in scope per species, removing the nodes that are in the scope for all species or out of the scope for all species, that is shown on Fig. 1c.

For a union of all nodes of all species (6554 nodes), we obtained 578 nodes in the scope, showing that the seed compounds chosen are in fact rather restrictive, and that the dimension of our data is significantly reduced. However, Fig. 1c also reveals the big variability of the scope for each species, with different patterns and also different sizes of the nodes in the scope. As the species in the matrix are sorted taxonomically, blocks of species having similar scopes are usually very close in the tree of life or are even different strains of the same species.

In order to visualise and to explore the data, we used a t-distributed Stochastic Neighbor Embedding (t-SNE), and plotted our scope per species matrix in two dimensions. The species are characterized by: clades (Fig. 2a), habitat (Fig. 2b), oxygen tolerance (Fig. 2c), and temperature class (Fig. 2d).

The t-SNE visualisation constructs a two-dimensional map that reveals structure at different scales. The method was reported to identify well local dependencies of high-dimensional data, as well as to capture global data structure such as relationships between several clusters. It clearly illustrates the clusters corresponding to all our taxonomic and environmental variables, particularly the clades (Fig. 2a), habitat (Fig. 2b), and oxygen tolerance (Fig. 2c). The results of the growth temperature class (Fig. 2d) are not so clear for lower temperatures (psychrophilic and mesophilic species).

Our results demonstrate the practical utility and very reasonable predictive performance of the scope, since even though the method reduces the data dimensionality drastically, the embedding still carries sufficient information to visualise (in our case, the environmental adaptation), and to explain it.

To investigate whether the scope is able to predict the environmental variables and provide us with additional insights into the functional metabolism, we applied other machine learning approaches, described below.

Growth temperature analysis.

We have growth temperature data for 3392 species out of 5610, illustrated on Fig. 1a.

Growth temperature class prediction. First, we train a random forest model to predict the growth temperature classes. Growth temperature can be divided into four temperature classes, from hot to cold, we obtained: 76 hyperthermophiles (HT), 188 thermophiles (T), 2910 mesophiles (M), and 218 psychrophiles (P) (see further details in "Methods"). In order to balance the classes, we both reduced the number of mesophiles to 300 to be on par with the other classes and weighted the objective functions according to sizes in groups.

Then, we executed a 300-fold cross-validation on 1000-tree random forests. For each fold, we randomly chose the 300 mesophiles (for more details, see "Methods").

The average maximal tree depth was 24, resulting in a model with an average F-measure of 0.78 ± 0.04 . The normalised average confusion matrix over the 300-fold cross-validation is presented on Fig. 3a. The accuracy values per class are between 0.69 and 0.91. The most confusions occur between mesophiles and psychrophiles, with psychrophiles being predicted as mesophiles in 25% of cases, and mesophiles being predicted as psychrophiles in 16%.

To identify the metabolic compounds and reactions differentiating the temperature classes, for each model estimated in the cross-validation, we selected the 50 most predictive nodes according to the Gini impurity criterion. Figure 3b shows the percentage of models that have common nodes among the 50 most predictive. There are 17 nodes common to at least 90% of models, the percentage of models sharing the same nodes decreases rapidly afterwards, with only 50% of models having node 50, and the union of 50 most useful nodes across all cross-validation models amounts to almost 160 nodes. These results display how the number of important compounds and reactions needed to distinguish the temperature classes is fairly lower than 50, with the rest of nodes being rather inconsistent. We developed and tested another approach, based on sliding masks, that leads to similar results (Supplementary Figure S1 in the supplementary data).

For each subset of 50 most predictive nodes, we also considered in which metabolic pathways these nodes appeared, by consulting the KEGG database 1 . In the table on Fig. 3d, we show these metabolic pathways, along with the average number of nodes from these 50 most important nodes, across the cross-validation. We observe that several pathways refer to amino acid metabolism and other basic metabolic pathways (pyruvate metabolism, glutathione metabolism, etc.). These findings support that temperature class differences rely on basic cell functions.

To identify which nodes and pathways are specific to each temperature class, we selected the 17 nodes common to at least 90% of models, and checked the proportion of species that have these nodes in each temperature class, which is shown on the barplot of Fig. 3c. This figure reveals that some nodes, such as Pyridoxal 5'-phosphate synthase (glutamine hydrolysing) (4.3.3.6_1), ABC-type tungstate transporter (7.3.2.6), and Tungstate (C20679) are more specific to species from warm habitats (hyperthermophiles and thermophiles), while others (Glutathione disulfide (C00127), Gamma-L-Glutamyl-L-cysteine (C00669), Glutamate-cysteine ligase (6.3.2.2), Glutathione synthase (6.3.2.3), ...) are clearly more specific to species from colder habitats (mesophiles and psychrophiles).

We explored the KEGG pathways of these specific nodes. The glutathione metabolism pathway (5 nodes: 6.3.2.2, C00669, 6.3.2.3, C00127, 1.8.1.7) is associated to species living in cold temperatures, and 2 nodes associated to warm temperatures belong to tungstate metabolism.

Growth temperature prediction. A feed-forward artificial neural network was trained in order to predict growth temperature directly (see "Methods"). In this analysis we also randomly selected 300 mesophiles and weighted the mean square objective function in order to balance the temperature distribution.

Fig. 3e displays a plot of the real growth temperature values versus the predicted ones. With an R 2 = 77.09% , our neural network exhibits a rather accurate prediction of the growth temperature, even with the reduced dimension that the scope entails.

Habitat and oxygen tolerance. We applied the predictive analysis also to other environmental variables, namely, to habitat and oxygen tolerance. We explore the habitat, a simplified variable consisting of a "Symbiont" class with 554 bacteria living in a host, an "Environment" class, with 395 free-living bacteria, and a "Mixed" class, with 235 bacteria that can live in a host or freely in the environment (see "Methods"). These nodes are ones found in more than 90% of cross validated models (b). X.X.X.X codes (X a number) are Enzyme Commission (EC) numbers that are associated with enzymes. We appended "_0", "_1" to EC numbers to designate different reactions catalysed by the same enzyme. CXXXXX are KEGG database C numbers, associated with metabolites. (d) KEGG pathways of the most predictive nodes, and the associated average number of pathway nodes per cross-validation fold, among 50 most predictive nodes. We only show pathways with more than 3 nodes. (e) Neural network growth temperature prediction. R 2 = 77.09% . In orange, y = x .

HT hyperthermophiles, T thermophiles, M mesophiles, P psychrophiles

We also use the oxygen tolerance information, where we have 917 prokaryotes in the "Aerobe" class, 782 in "Facultative", and 532 in the "Anaerobe" class (see "Methods").

In the same way as for growth temperature classes, we built a 300-fold cross-validated weighted model for each environmental variable. The results are shown on Fig. 4.

For the habitat, the average maximal tree depth was 28, with an average F-measure of 0.80 ± 0.03 . For the oxygen tolerance, it was 31 and 0.86 ± 0.02 respectively. Confusion matrices show reasonable results per class for oxygen tolerance (Fig. 4c), and also for habitat (Fig. 4a), with values higher than 80%. However, the exception is the "Mixed" habitat class, with accuracy of 42%, where 24% of species are misclassified as "Symbiont" and 34% as "Environment". This problem is likely related to the definition of the "Mixed" class.

We identified the nodes of interest for the classification of the habitat and the oxygen tolerance, by choosing the 50 most predictive nodes in each fold of the cross-validation. On Fig. 4b andd, we present the percentage of models per node in the union of 50 most predictive nodes across cross-validation, for habitat and oxygen tolerance respectively. Compared to Fig. 3b, there are more nodes that are highly shared (27 nodes shared by more than 90% of cross-validation models for habitat, and 35 nodes for oxygen tolerance, whereas temperature classes had 17), meaning that the random forest needs more nodes to distinguish the different classes.

We identified the pathways to which the most important nodes belong to, and we found that the most important KEGG pathways for the habitat are aminoacid metabolism pathways (Alanine, aspartate and glutamate metabolism, Glycine, serine and threonine metabolism, Cysteine and methionine metabolism), followed by Methane metabolism and Nitrogen metabolism. For the oxygen tolerance, the pathways with the most chosen nodes are Glutathione metabolism, Carbon fixation pathways in prokaryotes, Alanine, aspartate and glutamate metabolism, and also Citrate cycle (TCA cycle).

Although we noticed that some pathways are recurrently present, since the corresponding nodes are selected frequently, some pathways, on the contrary, are specific to particular environmental variables.

Discussion

This study introduces metabolic networks on a wide-scale of 5610 prokaryotic organisms, and discusses how it is possible to infer environmental and taxonomical information from the topology of the network.

The topological analysis of the networks presented is based on the scope of metabolic networks from the union of four chemically-defined mediums. The scope can be understood as an interpretable embedding with strict constraints, due to the rules of the scope expansion. As demonstrated by our t-SNE projections and the results of the predictive analysis, although the scope significantly reduces data dimension, the reduced data still carries sufficient information to reasonably predict the environmental and taxonomical variables: the taxonomical classification, growth temperature values and classes, habitat, and oxygen tolerance.

An important remark is that the scope is able to provide us with metabolic information helpful for the prediction of the environmental classes, and at the same time be interpretable. Predicting temperature classes, we identified a pathway that is prevalent in species from cold habitats -Glutathione metabolism-, and nodes prevalent in species from hot habitats are involved in tungstate metabolism.

In the case of tungstate metabolism, metabolite tungstate (C20679), and consequently ABC-type tungstate transporter (7.3.2.6), were identified as very specific to species from hot environments, especially hyperthermophiles (Fig. 3c). Tungsten is found present in higher concentrations in specific environments such as hydrothermal vents and hot-springs, compared to the open ocean. This finding is consistent with the knowledge about the environment where thermophilic and hyperthermophilic species live in 18 . Some hyperthermophilic archaea are even vitally dependent on tungsten 18 .

Glutathione (GSH) metabolism was also found to be a pathway of interest containing 5 nodes specific to cold species: glutamate-cysteine ligase (6.3.2.2), gamma-l-Glutamyl-l-cysteine (C00669), glutathione synthase (6.3.2.3), glutathione disulfide (C00127), and glutathione-disulfide reductase (1.8.1.7). These nodes constitute two glutathione biosynthesis subpathways. In the first one, Glutamate-cysteine ligase (6.3.2.2) takes aminoacids l-glutamate and l-cysteine and makes gamma-l-Glutamyl-l-cysteine (C00669). Glutathione synthase (6.3.2.3) then catalyses the reaction that transforms gamma-l-Glutamyl-l-cysteine (C00669) and glycine into glutathione.

The second glutathione biosynthesis subpathway takes glutathione disulfide (GSSG, C00127) and reduces it to glutathione, with the glutathione-disulfide reductase (1.8.1.7).

These two subpathways are not present in hyperthermophilic bacteria and archaea, with none of the species having the genes encoding the enzymes of the first one, and only 2 hyperthermophilic archaea out of 65 having the gene for the enzyme in the second subpathway (Fig. 3c).

For thermophilic species, few species have the enzymes of the first subpathway, even though the first enzyme (6.3.2.2) is slightly more prevalent in the bacterial graphs (16% of thermophilic bacteria, 5% of thermophilic archaea). The second subpathway enzyme is present in respectively 13% and 3% of thermophilic archaea and bacteria.

Multiple hyperthermophilic archaea are reported to miss glutathione (GSH and GSSG forms) in cell extracts as well as glutathione synthetase genes 19,20 , generally preferring other intracellular thiols to respond to oxidative stress, such as coenzyme A (CoA) 21,22 . Indeed, CoA has been shown to be more stable than glutathione at high temperatures 22 , and may therefore exhibit a functional role equivalent to glutathione in thermophilic and hyperthermophilic organisms 21 , explaining glutathione specificity for colder temperatures in our models. In the case of hyperthermophilic bacteria, the absence of glutathione is not as clearly shown in the state-of-the-art as for hyperthermophilic archaea, however, Hummel, Lancaster and Crane 21 do hypothesize this, pointing to future work focused on bacteria. Our results would, therefore, bring confirmation, going in the same direction.

On another hand, glutathione is synthesized in almost all gram-negative bacteria, but it is more diversified for gram-positive bacteria 23 . It is known to be absent in some gram-positive bacteria of anaerobic or microaerophilic sources 23 , which also supports the results we found in the case of oxygen tolerance, where glutathione metabolism pathway was found to be the most important pathway to distinguish oxygen tolerance classes.

However, it is important to keep in mind that although the number of prokaryotic species studied is high, as they were taken from the complete list of species of the KEGG database, they have the same biases found in the database: a very low number of extremophiles when compared to mesophiles, a bigger number of bacteria studied than archaea, as well as some very well studied species, where multiple strains are considered, compared to less studied species. We handled this problem by subsampling mesophiles in the growth temperature analysis.

Another important remark is that the scope is a property completely based on topology, which allows its ease of use on a wide range of species, but it ignores stoichiometry and biomass dynamics. It is also strongly dependent on the input metabolites and the completeness of our networks, which greatly impacts the size of the scope. However, the results found still give sufficient information and, as we have just mentioned, are corroborated by what is found in literature.

For the sake of completeness, we tested whether the presence or absence of enzymes could also accurately predict the growth temperature using similar methods. This approach is akin to a classical differential genomics analysis without going through the network derivation and scope evaluation (albeit using only enzymes and not the whole genome, where some genes may not be annotated or code for an enzyme). In Supplementary Figure S2 of the supplementary material, we show that it displays similar prediction accuracies compared to our approach despite being of higher complexity. Moreover, our scope analysis adds comparable functional metabolic information thanks to the connectivity information, possible redundancy of pathways, and also as it is observed on the same medium. This explains why the enzymes and pathways of interest found by the random forest models for these two cases are different (see supplementary information).

In this work, we have mainly focused on a generic medium for our scope, built on different species examples from each temperature class. As it happens, it also encompasses the various oxygen tolerance classes. As a potential research avenue, it would be interesting to also test a medium based on the different habitat classes, even though it is not a trivial task, as even a single habitat class may display a large variability.

Overall, our results suggest that large scale datasets of prokaryotic species can be compared using interpretable embedding that also reduces dimensionality. Our use of the scope of metabolic networks provided key metabolites and pathways that are characteristic to environmental pressure that have somewhat been validated (or at least hinted) by wet lab experiments. This works can be extended-using other databases-to different environmental aspects and other prokaryotic communities. Our work suggests that this can be a powerful embedding tool to bridge the gap between metabolic processes and environmental impact.

Methods

The Python code reproducing our results, as well as the networks and metadata is publicly available on GitHub.

Data set. All information on the species was extracted from the databases in November-December 2019.

Our data set contains 5610 prokaryotic species from KEGG database 1 . This represents almost all prokaryotic species in the database as of November 2019. Among these, 301 are archaea and 5309 are bacteria. We obtained further taxonomic information from the National Center for Biotechnology Information (NCBI) Taxonomy database 24 .

A synthesis of the data set and the associated metadata can be found on Fig. 1a.

Growth temperature. We obtained the growth temperature values for 3392 species (190 archaea and 3202 bacteria). The temperature information originates from BacDive database 25 . Among the 3392 species with available temperature, only 693 have optimal growth temperature. For the 2699 species left, we found temperature values at which the species grow, but they are not necessarily the optimal ones. When several temperature values or an interval were given for a species, the mean of the values was taken.

Using the growth temperature, we divided our species into four temperature classes. We considered hyperthermophilic species as species whose optimal growth temperature is above 80 o C , thermophilic species with the optimal temperature between 45 o C and 80 o C , mesophilic species living in the temperature range between 25 o C and 45 o C , and psychrophilic species with an environment inferior to 25 o C . We obtained 76 hyperthermophiles (HT), 188 thermophiles (T), 2910 mesophiles (M), and 218 psychrophiles (P).

Habitat information.

We extracted the habitat information from the FusionDB database 26 , which stores functional data and metadata for 1374 bacteria. This database divides habitats into the following categories: 'Fresh water' , 'Marine' , 'Soil' , 'Other' , 'Human' , 'Host' , and 'Multi' (a combination of the others). These categories may be further detailed with the specific habitat where the species has been found.

In order to simplify the variable so as to focus on the hypothesis that free-living and non free-living species are metabolically different, we created an 'Environment' class, consisting of the free-living categories: 'Fresh water' , 'Marine' , 'Soil' categories and 'Multi' category combining the other three. The second class created was 'Symbiont' , consisting of 'Human' and 'Host' , representing the species living in other organisms. The last class was 'Mixed' , consisting of the 'Other' category, and the 'Multi' categories that combine a 'Symbiont' category and an 'Environment' one.

We obtained 554 bacteria in the 'Symbiont' class, 395 in the 'Environment' class, and 235 in the 'Mixed' class.

Oxygen tolerance information. We acquired the species' oxygen tolerance information from the Genomes OnLine Database (GOLD) 27 , completed with FusionDB database 26 . There are 6 different categories, from mandatory oxygen to mandatory lack of oxygen: 'Obligate aerobe' , ' Aerobe' , 'Microaerophilic' , 'Facultative' , ' Anaerobe' , 'Obligate anaerobe' . However, as classes 'Obligate aerobe' , 'Microaerophilic' , 'Obligate anaerobe' amount to only 8% of oxygen tolerance information, we removed them. We, therefore, have data for 2103 bacteria and 128 archaea, consisting of 917 ' Aerobe' , 782 'Facultative' , and 532 ' Anaerobe' .

Metabolic networks.

There exist a number of ways to produce metabolic networks from chemical reactions. The nodes of such a metabolic reconstruction can be metabolites (small molecules, substrates and products of the enzymes), or enzymes. The analysis in this paper is based on a representation using both metabolites and enzymes as nodes. There is a directed edge between substrates and the catalysing enzyme, and the catalysing enzyme is linked to each product.

In order to have a very extensive dataset and maintain database consistency, our networks were directly derived from the KEGG database 1 . We started with the first KEGG brite entry for each species. The brite entry lists gene names and the annotated enzyme commission (EC) codes for a given organism. From each entry we extracted all EC codes if they were found in complete form, i.e., no hyphen was present in the code. We then retrieved all Reaction Numbers (RN), found in the KEGG enzyme entries, consisting of the reactions catalysed by the enzymes. From the KEGG reaction entries, we extracted all substrates and products, and we built the directed edges between each substrate and each enzyme, and each enzyme and each product. Each reaction of a single enzyme was treated separately, with "_0", "_1" and so on after the enzyme name to differentiate them. Some ubiquitous metabolites present in a big number of reactions cause an important impact on a network structure. A common practice is to exclude them to make the network more relevant biologically. Indeed, very widely available and used currency metabolites such as water, ATP, ADP, and so on will greatly impact the structure in regard of network topological properties such as the path length (number of steps in a pathway) 4,28 . The average distance of the shortest paths between two metabolites is greatly shortened by the currency metabolites, since they are used in a great number of reactions, and, therefore, short circuit the actual relevant biochemical pathway when studying the network topology, making it difficult to obtain meaningful functional information. The ubiquity of these metabolites is another reason why they will not give us specific biological information, and are, therefore, commonly omitted 28 . Furthermore, removing these nodes does not separate the network into multiple subnetworks: the integrity of the network is kept for almost all reactions 28 .

There is no strict consensus on ubiquitous metabolites, but the metabolites used as electron carriers and other metabolites transferring common functional groups are usually considered as ubiquitous metabolites 29 . We used 14 ubiquitous metabolites 8 : H 2 O , ATP, ADP, NAD + , NADH, NADP + , NADPH, CO 2 , ammonia, sulfate, thioredoxin, phosphate, pyrophosphate ( PP i ), and H + . All of these metabolites do not appear in our graphs.

The default direction of the KEGG reaction was used to orient the edges, which is the direction of the catalytic reaction. It is the direction in which the flow of biomass is expected.

Scope of a metabolic network.

The scope of a metabolic network is based on the concept of network expansion 11 . It relies on the sequential nature of chemical reactions in the metabolism. The concept is illustrated in Fig. 1b.

The expansion starts from a set of seed compounds, a medium (Fig. 1b in orange), and incrementally goes through the metabolic network if the substrates of the following enzymes are present among the products of the previous enzymes. The expansion stops if there isn't any enzyme left with available substrates or if the whole network has been traversed.

The metabolites and enzymes of the expanded network form the scope of the network (Fig. 1b in orange and yellow). Hence, it represents the metabolic capacity of the species from the input medium.

The seed metabolites we used are metabolites from the union of four chemically-defined growth mediums used to grow a mesophilic species 14 , a psychrophilic species 15 and a hyperthermophilic species 16 respectively, so as to cover the diversity of our species. The thermophilic medium 17 is already included in the union of the three other mediums. The mesophilic and hyperthermophilic species mediums were found in MediaDB 30 , a database of chemically-defined growth conditions, as it enables easy deduction of metabolites in medium.

We evaluated which nodes are in the scope for each species, and built a binary matrix providing information whether the nodes are in/out of the scope for each species. The rows of this matrix are all species of the data set, and the columns are the nodes. Species were sorted per taxonomy. The nodes were sorted according to the number of species having nodes present in scope. The nodes found in or out of the scope for all species were removed.

The algorithm implemented is based on a Breadth First Search approach, starting at each metabolite from the growth mediums. Reactions are considered successively. A reaction will be in the scope if all its substrates are, resulting in all products of the reaction also in the scope. See the algorithm in the supplementary material.

t-SNE.

We visualised the data with a t-distributed Stochastic Neighbor Embedding (t-SNE) 31 in two dimen- sions. We computed the pairwise Jaccard distance between species using the nodes in scope per species. After comparing multiple values, we used a perplexity of 40, and coloured the species according to taxonomy, habitat, oxygen tolerance, and growth temperature classes (Fig. 2).

Random forest.

We built random forest classifiers 32 to predict the growth temperature classes, habitat, and oxygen tolerance. The classes in each model were weighted according to the observation frequencies of each class. We performed a 300-fold cross-validation in order to increase the stability of our results. 10% of the species for which we have environmental information were kept as a test data set, an unbiased evaluation of the model. The other species were divided into a 66% training data set and a 34% validation data, on which the model was trained and the model parameters adjusted. The criterion for the quality of split in the decision trees was the Gini impurity. Our optimal random forest models have 1000 trees.

In the case of temperature classes, mesophiles were reduced to 300 in order to further balance the growth temperature classes. For each model learned within the 300-fold cross-validation, 300 mesophiles were randomly chosen, and the data set was then divided into training, validation and test data sets.

Artificial neural networks.

In order to predict not only the growth temperature class, but also the growth temperature values, we built a feed-forward neural network.

We again selected 300 random mesophiles to reduce the temperature classes unbalance. 66% of species were used as the training data, and 34% for test. We normalised the growth temperature values (T) as follows:

T norm = T-T min
T max -T min . Our network has three layers: an input layer, with as many input neurons as the number of compounds, a hidden layer of size 1000, and an output layer with a single neuron, which returns the predicted growth temperature. The hidden layer takes as input a linear function of the weights and input values, coupled with a dropout of probability 0.2 to prevent overfitting 33 . The output neuron takes the output of the hidden layer, multiplies it by the weights, and applies a sigmoid function.

The weights are found by optimizing the mean squared loss with the Adam optimizer 34 . We developed our own mean squared loss function to account for the unbalanced temperature distribution. We applied a learning rate of 1e-4 for 250 epochs (cycles through the training set). All hyper-parameters such as the number of layers, 4 Chapter III: Gut microbiota metabolic reconstruction to assess severity of type 2 diabetes in obesity In this final chapter, I will be analysing clinical cohorts of obese patients. I will be applying a similar approach to that from the last chapter, but this time for gut microbiota metabolic networks instead of single species, and the environmental features will be clinical phenotypes. Microbiota metabolic networks will be derived from metagenomic data and represented as enzyme-soup directed bipartite metabolic networks. Much like in the second chapter, the scope will be evaluated, starting from the metabolites in the Dulbecco's Modified Eagle Medium (DMEM), and clusterisation of the scope will stratify patients into a more severe diabetic cluster and a less severe one. Thanks to the interpretability of the scope, microbial enzymes and pathways of interest will be identified as the most discriminative between the two clusters.

In the process of submission for publication: Weber Zendrera, A., et al. Gut microbiota metabolic reconstruction to assess severity of type 2 diabetes in obesity.

My contribution is multifold:

• I built directed metabolic networks from metagenomic data for all patients' gut microbiota (enzyme-soup, bipartite).

• Solely based on the scope, I was able to stratify the patients into two clusters with spectral clustering, that are actually associated to severe/less severe type 2 diabetes.

• Much like in the last chapter, the scope allows identification of metabolic nodes and pathways responsible for the classification into one or the other cluster. "D-Alanine metabolism" pathway, "Thiamine metabolism" pathway, and "Phenylalanine, tyrosine and tryptophan biosynthesis" pathway seem to be affected in the gut microbiota scope of the patients in the diabetes severity cluster.

Even more so when they are combined (in the case of the two last pathways). With further confirmation analyses, my approach could contribute to a new path to finding potential therapeutic targets.

• Comparison of the gut microbiota DMEM scopes with DMEM scopes from gut prokaryotes of the previous chapter. We find that the severity cluster is closest to Bacteroides and Parabacteroides species. As we directly compare the metabolism, we could interpret this as a functionally-based enterotype, relying on metabolites rather than the classic abundance-based enterotype that we have previously seen in section 1.2.5.

• The results are corroborated by replication in a similar but independent cohort, showing the robustness of the approach. , which are linked to other metabolites, products of the reactions. The scope will start with a set of molecules introduced into the network (orange), the molecules of Dulbecco's Modified Eagle Medium (DMEM) in this case. The scope will expand (yellow) in the network if all substrates of a reaction are already in the scope, therefore encompassing the products. In this example, this is the case for reaction 1, where A and B are in the medium, and so the scope will consist of metabolites A, B, D, and E, and reaction 1. This is not the case for reaction 2, since C is not in the scope, so it will not produce F and G. Since F is absent, E and F cannot expand the scope, so the final scope in our example is of size 5, with the composition previously described.

Bariatric cohort MetaCardis cohort

Demographic data

Sex ratio M/F n (%) 0 (0)/89 ( 100 In wheat colour, nodes that are in the scope, in red the nodes that are out of the scope. Nodes that are in or out of the scope for all patients are removed. Nodes sorted by number of patients with node in the scope. Patients are sorted per clusters via spectral clustering of the heatmap (cluster 0 line in black, cluster 1 line in turquoise). Diabetic status is annotated for each patient next to the cluster (in purple diabetic, in white non diabetic). Glycated hemoglobin (HbA1c) levels per cluster are shown in blue barplots on the right of the heatmap, with standard deviation error bars, with an n of 244 in cluster 0 and 70 in cluster 1. Blocks of nodes behaving in the same way belong to the same pathway. In magenta, they belong to KEGG's D-Alanine metabolism pathway. This pathway is more prevalent in cluster 0 than 1 with a p-value of 4.5×10 -6 ***, chi-square value of 21.0497, and 1 degree of freedom, when corrected for age, BMI, and gender. In green, they belong to KEGG's Phenylalanine, Tyrosine and Tryptophan biosynthesis. This pathway is more prevalent in cluster 0 than 1 with a p-value < 2×10 -16 ***, chi-square value of 163.674, and 1 degree of freedom, when corrected for age, BMI, and gender. In blue, they belong to KEGG's Thiamine metabolism pathway. This pathway is more prevalent in cluster 0 than 1 with a p-value < 2×10 -16 ***, chi-square value of 120.149, and 1 degree of freedom, when corrected for age, BMI, and gender.

In panel b, fraction of patients that take from 0 to 4 diabetic treatments, depending on whether they have the nodes in the scope identified from Phenylalanine, tyrosine and tryptophan biosynthesis pathway (FYW pathway), from Thiamine metabolism pathway (thiam), from both of them, or from none of them. * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001 

INTRODUCTION

Obesity, as defined by the World Health Organisation (WHO), is characterised by an accumulation of excess body fat that may impair health 1 . The worldwide prevalence of obesity nearly tripled between 1975 and 2016 1 , so that it now represents one of the major public health problems of modern times, being part of one of the WHO global action plans 2013-2020 2 . Obesity is usually defined by a body mass index (BMI) superior to 30 kg/m 2 , with class II (severe) obesity starting at 35 kg/m 2 , and class III (morbid) obesity at 40 kg/m 2 3 . Obesity is associated with an increased risk for a number of comorbidities such as type 2 diabetes mellitus (T2D), hypertension, dyslipidemia, coronary heart disease, osteoarthritis, and some cancers 3,4 . T2D, which is characterized by a chronic fasting hyperglycemia resulting from insulin resistance and/or insufficient insulin production by pancreatic islets 5 , has obesity as its strongest risk factor 6 . A myriad of genetic, lifestyle, socioeconomic and other environmental factors have been shown to be implicated in obesity and T2D predisposition and development 7,8 . More recently, the gut microbiota (GM) and notably its change in composition and function, sometimes named dysbiosis, has also been linked to both obesity [9][10][11] and T2D [12][13][14][15] . The GM is a community of microorganisms from all domains of life -but mostly comprised of Bacteria 16 -that inhabit the gastrointestinal tract. They have many beneficial roles for the host, among which are the protection against pathogens, digestion, drug metabolism, integrity of the gut barrier, immunomodulation and nutrient utilisation as well as vitamin production and synthesis 17 . However, the specific metabolic influence of the GM on the host remains mostly under-evaluated. The most studied metabolites produced by GM and then metabolised by the host are short chain fatty acids (SCFA). They are produced from non-digestible carbohydrates in the diet, that are then given to the host 18 . A few other examples of microbially-produced metabolites include imidazole propionate (ImP)-known to be increased in T2D by affecting insulin signaling 19,20 , branched chain amino acids (BCAA)-associated to multiple beneficial effects but also obesity and diabetes when levels are elevated 21 , and trimethylamine (TMA)-converted in the liver into TMAO and increased in multiple metabolic diseases 21 . Nevertheless, these networks of metabolites are complex and many metabolites of interest have yet to be identified. There is therefore a need to better decipher GM-derived metabolite exchanges that characterize the complexity of chronic disorders including metabolic diseases.

The large majority of bacterial species cannot be readily isolated and cultured in vitro under normal conditions 22 , and though it may be easier for human-associated species such as the ones from the GM 23 , it is still a challenge that is being actively worked on (intestine-on-a-chip 24 , etc). As such, the GM is most often studied with sequencing technologies and metagenomic sequencing in particular 23 , therefore reflecting community-level actions as a whole rather than specific species-level ones, which are very hard to disentangle. With the rise of high-throughput and sequencing technologies, different bioinformatic approaches have been developed to study metabolism in a systemic view. One of them is modelisation through metabolic networks, where by consulting extensive databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) 25 , one can deduce from a list of genes all annotated chemical reactions. It is then possible to represent metabolites and reactions as nodes (objects), and edges (arrows) that link substrates to the reaction and the reaction to the products (see figure 1). Recently, two main strategies have been undertaken to study metabolic networks. The first one studies the dynamics, the fluxes of biomass in metabolism, with techniques such as Flux Balance Analysis (FBA) 26 , that predict steady-state flux distributions by using constraints.

Though it has been used to study the GM 27 , this approach needs complete and curated bacterial metabolic networks, and faces many challenges when going from single organism genome-scale metabolic networks to modelisation of microbial communities, especially when having to scale up to a large number of species 28 . The second one directly studies the structure and properties of the network, giving insights into their ecology [29][30][31][32][33] . This technique has also been used in the case of GM metabolic networks, in particular to predict interspecies interactions and with the host from an already defined list of species 34,35 . However, modern genome identification tools 36,37 in metagenomics data often give incomplete genomes, and are far from being able to give exhaustive species lists, though they do give access to new uncultivated microorganism genomes 38 .

In the present work we focused on this second strategy in the study of metabolic networks, but staying at the community level, with a single network modelling the GM metabolism of a human being. This will enable us to characterise the GM by its metabolic functions, instead of by species. We will identify metabolic functions through the measure of the scope of a metabolic network. Introduced by Handorf et al in 2005 39 , the scope of a metabolic network is the set of potentially producible molecules and enzymes by the network for a given input medium. Starting from the molecules in the medium, the scope will sequentially advance in the network if all substrates of a reaction are present (see figure 1). In 2009, Ebenhöh and Handorf already used a method based on the scope size to functionally classify species in regard to taxonomy and oxygen tolerance 40 . We also previously applied a similar method directly based on the scope metabolites to study the metabolisms of a large dataset of prokaryotes that we used to predict different environmental features 30 .

As mentioned previously, metabolic diseases such as obesity and T2D interweave a multitude of factors, thereby inducing a plethora of phenotypes of great complexity, which underlines the need for patient stratification. Our efforts are in line with such an objective, basing our analyses on a novel use of the scope with machine learning approaches. In the present work, we built metabolic networks for each GM of the patients in a population with severe obesity. By clustering the patients on the basis of the scope, we show that our two clusters discriminate the severity of diabetic status in the population. Particularly, the use of the scope is able to highlight potentially altered pathways in patients groups. By comparing the GM scope to the species' scope from our previous study 30 , we show that the cluster linked to severe diabetes is closest to the scope of Bacteroides species, giving us what could be classified as a metabolite-based enterotype. Finally, these results are replicated in a completely independent cohort, showing its robustness.

RESULTS

Generating the metabolic networks and scopes

To study the complex interactions between the metabolism of the GM and the host disease, the GM metabolism was modelled with metabolic networks. From stool metagenomics data from different data sets of patients with obesity, we reconstructed a GM metabolic network for each patient (see Methods), where each substrate is linked to its enzyme, and each enzyme linked to its products. The adopted strategy to investigate the network properties in regard to clinical description of the patients was to use the scope of a metabolic network, introduced by Handorf, Ebenhöh, and Heinrich in 2005 39 . Starting from the molecules in the network from a given medium, Dulbecco's Modified Eagle Medium (DMEM) in this case, the scope will expand through the network if all substrates of an enzyme are present in the scope, thereby producing its products, until there no longer are any such enzymes or the end of the network is reached. The scope of a metabolic network will therefore be the set of all metabolites and enzymes that are potentially reachable from the input molecules from the medium. It is illustrated in figure 1. This network property is purely topological, it is not based on biomass fluxes nor stoichiometry, and is therefore able to be applied widely without the constraints commonly found in techniques such as Flux Balance Analysis 26 . Furthermore, this property is specific to metabolic networks, as it is based on the concepts of substrates and products, thus also giving us a sense of pathway redundancy.

Bariatric cohort scope clustering associated to severity of diabetes

Clinical and biological characteristics of 89 female patients with obesity that we will refer to as "bariatric cohort" are described in table 1. These patients were involved in a clinical bariatric surgery program at the Pitié-Salpêtrière hospital. They displayed severe obesity and at least one comorbidity with 21% of them having T2D, 27-28% dyslipidemia, and 37% high blood pressure. Detailed metabolic parameters are provided in table 1. The scope was evaluated for each patient's GM metabolic network, and the nodes (metabolites and enzymes) that were in or out of the scope for all patients were removed, as they were not informative to differentiate the patients. Nodes were sorted by prevalence in scope. In figure 2a, we show in the heatmap the presence or absence of nodes in the scope (columns) for each patient (rows). Yellow denotes the presence, and purple the absence. Based on this first heatmap, we applied a spectral clustering (see Methods), obtaining two clusters of 64 patients for cluster 0, and 25 patients for cluster 1. Patients in cluster 0 and 1 are sorted and indicated with black and turquoise lines respectively in figure 2a. The figure also shows diabetes status (red/white for patients with T2D or not respectively) and a barplot of HbA1c levels per cluster. We characterised the clusters by statistical analysis of different clinical variables, corrected with age and body mass index (BMI). We found that, when compared to cluster 0, patients in cluster 1 (figure 2a) were more frequently T2D (p-value (p-val) 1.4×10 -4 , likelihood ratio Chi square value (Chisq) 14.5008, and 1 degree of freedom (DF)), with more frequent diabetic treatment intake (p-val 1.5×10 -4 , Chisq 14.3341, DF 1) that included metformin intake (p-val 1.5×10 -4 , Chisq 14.3341, DF 1) and the use of GLP-1 analogs (p-val 7.1×10 -3 , Chisq 7.2457, DF 1). Despite increased prevalence of treatment, compared to cluster 0, subjects in cluster 1 had higher levels of HbA1c (barplot in figure 2a, p-val 3.6×10 -4 , F value (Fval) 13.8376, DF 1, DF residuals 85) and significantly higher fasting glycemia (p-val 3.2×10 -3 , Fval 9.2096, DF 1, DF residuals 85). These results support that cluster 1 groups subjects with a more severe diabetic phenotype metabolically.

Patients in severe diabetic cluster lack certain nodes in the scope from D-Alanine metabolism pathway, and Phenylalanine, Tyrosine and Tryptophan biosynthesis pathway

A main reason for our choice of the scope is that it is able to provide specific information on each of the metabolites and enzymes in the network. In the heatmap in figure 2a, it is possible to see that some blocks of nodes behave in the same way, being present or absent of the scope together. These nodes actually belong to the same pathway, and behave similarly because they are in sequential reactions. Hence, it is possible to identify the blocks of nodes that discriminate between the two patient clusters, and to identify their differentially affected pathways. Among the nodes identified, we notably focused on two blocks of nodes, belonging to D-Alanine metabolism pathway (in the future "D-Ala pathway", in magenta in figure 2), and Phenylalanine, Tyrosine and Tryptophan biosynthesis pathway (in the future "FYW pathway", in green in figure 2) in the KEGG database. Figure 2b shows the two pathways, the nodes in solid line denoting nodes in the scope, and metabolites in grey belonging to the DMEM given medium. These blocks of nodes are significantly more prevalent in cluster 0 than in cluster 1, because of the sequential nature of pathways: an upstream enzyme (in red in figure 2b) is absent from the microbiota metabolic networks from the patients in cluster 1, blocking the downstream expansion of the scope, therefore a larger number of nodes is absent in cluster 1 when compared to cluster 0. The enzymes of interest are serine-pyruvate transaminase for the D-Ala pathway, and fructose-6-phosphate phosphoketolase for the FYW pathway.

Scope on an independent cohort shows comparable findings

To replicate our results, we evaluated the scope on a similar cohort chosen to resemble the first one, a subset of the MetaCardis cohort (see table 1), encompassing 314 French patients with severe obesity (BMI > 35 kg/m 2 ).

We applied the spectral clustering, obtaining the two scope clusters shown in figure 3a. As before, nodes present or absent for all patients were removed, and nodes were sorted by prevalence in scope. This time, wheat colour denotes presence in the scope, and red absence. Discriminating blocks of nodes were identified, and among them, we find once again D-Ala pathway (magenta in figure), and FYW pathway (green in figure), with the same faulty enzymes, but also another very clear discriminating pathway which is Thiamine metabolism pathway (in the future referred to as "Thiamine pathway", blue in figure), for which cluster 1 metabolic network does not have upstream enzyme aminopyrimidine aminohydrolase. D-Ala pathway is not as visibly discriminating of the two clusters as the two other pathways, but it remains significantly less prevalent in cluster 1 (p-val 4.5×10 -6 , Chisq 21.0497, DF 1, corrected for age, BMI, and gender). Therefore, the same results are found in the completely independent analysis of another cohort, showing the robustness of our approach. We also analysed different diabetes associated clinical variables, correcting for age, BMI and gender. We once again found subjects in cluster 1 to be T2D more frequently (p-val 2.6×10 -3 , Chisq 9.0695, DF 1), with a higher prevalence of diabetic treatment intake (p-val 4.9×10 -4 , Chisq 12.1417, DF 1), and among them, increased metformin intake (p-val 8.3×10 -6 , Chisq 19.8785, DF 1), and yet higher levels of HbA1c (p-val 7.9×10 -3 , Fval 7.189, DF 1, DF residuals 309) and fasting glycemia (p-val 1.3×10 -2 , Fval 6.2456, DF 1, DF residuals 306), and also less prediabetic patients (p-val 4.2×10 -3 , Chisq 8.2155, DF 1). These once again point to a more severe phenotype for cluster 1. Figure 3b shows the fraction of patients that take different numbers of diabetic treatments, grouped by whether patients have the blocks of nodes belonging to the FYW pathway, Thiamine pathway, both of them, or none of them. Patients with none of the pathways (profile b) more often take diabetic treatments than patients with both of the pathways or FYW pathway (profiles a, p-val 2.0×10 -4 , Chisq 19.6469, DF 3), whereas patients with only Thiamine pathway seem to have an in between profile (profile ab). These findings support that profile b-absence of both pathways-are associated to a more severe diabetic phenotype.

Gut microbiota scopes in severe diabetic cluster are most similar to Bacteroides and Parabacteroides gut species scopes. In the present work, we modelled the gut microbiota as a single entity, not accounting for the species-level. Therefore, we next sought to find the most similar gut microbiota species to the gut microbiota from our patients in terms of scope, and therefore characterise the microbiota by species or genus, much like enterotypes. To do that, we retrieved prokaryotic species from a public database. In previous work 30 , we had already derived metabolic networks for all prokaryotic species from the KEGG database. Cross-checking with a human GM database GMrepo 41 , we only kept GM species, and applied the scope with the DMEM medium (see Methods). We then evaluated the Jaccard distance (1 -Jaccard index, see Methods) between the scopes of each species and each patient. Figure 4a andb show the top 15 metabolically closest species to each cluster, for the bariatric and MetaCardis cohorts respectively. In all clusters the metabolically closest species are of Bacteroides and Parabacteroides genus. However, cluster 1, the severe diabetic cluster, exhibits stronger metabolic similarity, with smaller average distances than the 15 species from cluster 0, and smallest distances to all Bacteroides and Parabacteroides. Cluster 0 shows more diversity of genus, and less reproducibility between the two cohorts, with smaller distances to Enterobacter cloacae than some Bacteroides in the bariatric cohort, and to Klebsiella in the MetaCardis cohort. The Klebsiella species presented are not traditionally found in normal GMs, though Klebsiella oxytoca has been found in some Crohn's disease patients' gut 42 , and Klebsiella pneumoniae has also been detected in fecal samples in some cases 43 . Nevertheless, as what is compared are metabolic distances, our results do not imply presence of Klebsiella infections in the patients, only scope similarity between the GM of patients in cluster 0 and said species. Figure 4c shows with a different approach the difference of distances with the patients' GM between clusters, regarding the Bacteroides and Parabacteroides species in the top 15 rankings in figure 4a andb. For each patient, the mean of the Jaccard distance over the species was evaluated, and the boxplot was evaluated per cluster and cohort. The distances are significantly smaller in cluster 0 than in cluster 1, in both cohorts. Thus, figure 4c confirms that cluster 1 GMs display a stronger signature of Bacteroides/Parabacteroides. It could be considered as a metabolite-based enterotype, as we find similarity to a main genus through metabolism and not through species abundance as a classic enterotype does.

DISCUSSION

With the scope of GM metabolic network based on DMEM, we have shown in this work that it is possible to stratify patients on their metabolic diabetic severity profile. With a spectral clustering of the scope, we have found two patient clusters. Our cluster 1 is associated to T2D and severity of diabetes phenotypes, and this result has been replicated in a completely independent cohort, showing the robustness of our approach. The interest of the scope is that it also gives us metabolic information based on the sequential nature of metabolism, and can therefore exhibit the pathways that are functional and those that are not, accounting for pathway redundancy, for a given medium. Thus, we found pathways that were differentially in and out of the scope for our two clusters, because of a faulty upstream enzyme in one of the clusters' networks and not the other's. The overall same pathways were identified in the two cohorts: D-Ala pathway (serine-pyruvate transaminase), FYW pathway (fructose-6-phosphate phosphoketolase), and Thiamine pathway (aminopyrimidine aminohydrolase). The D-Ala metabolism pathway is perturbed because of the absence in cluster 1 GMs of Serine-pyruvate transaminase, blocking downstream pathway access to the scope. This enzyme takes L-Serine and pyruvate and produces L-Alanine and hydroxypyruvate (figure 2b). No studies were found on the specific role of this enzyme and its downstream pathways in the GM. However, this enzyme has been studied in mammals under diabetic conditions. Hydroxypyruvate has been found to significantly alter pancreatic islets in diabetic mice models 44 . Interestingly, hydroxypyruvate can also be produced by D-aminoacid oxidase (DAO) from D-serine 44 . DAO can be inhibited by benzoic acid, which is predominantly derived from the GM 45 . Hydroxypyruvate-to-D-serine ratios have been found to be lower in humans with impaired glucose tolerance when compared to humans with T2D and normal glucose tolerance, suggesting some derivation of hydroxypyruvate from D-serine. 44 In the same work, with mice models for T2D, the authors state that modifications in the GM would cause a decrease in benzoate, which in turn would increase DAO activity, and hydroxypyruvate levels, and also emphasize the potential importance of hydroxypyruvate biosynthesis pathways 44 . On another note, the enzyme has also been studied in rat livers. There are two pathways for the catabolism of serine in gluconeogenesis. The first one converts serine to pyruvate through serine dehydratase, and the second one is as we have seen serine-pyruvate transaminase 46 . In a rat model, the serine dehydratase pathway was shown to be favoured under starvation and diabetes 47 . In the intestinal tract, free D-aminoacids have a predominantly microbial origin. The microbiota also induces the production of DAO by the host's intestinal cells. One of the byproducts of DAO oxidation is H 2 O 2 , which has antimicrobial properties, and modifies the microbiota composition. Thus, DAO and D-aminoacids play a role in host-microbe interactions and homeostasis 48 , and it is possible to see that there could indeed be a link between serine-pyruvate transaminase and T2D.

In the case of FYW biosynthesis pathway, the enzyme of interest Fructose-6-phosphate phosphoketolase is faulty in cluster 1 patients. This enzyme is well known, as it is specific to Bifidobacterium's "bifid shunt", which is a unique fermentation pathway to metabolise Fructose-6-phosphate that is absent in other GM species [49][50][51] . The Bifidobacterium genus has been found to be lowered in T2D 52,53 and in obese 54 patients' GMs when compared to healthy individuals. Bifidobacterium administered as prebiotics were able to control low-level inflammation in obese mice 55 , and lowered glucose and increased insulin and sensitivity expression in diabetic mice 56,57 . Overall, Bifidobacterium seem to be associated with a healthier phenotype. The absence of the enzyme in the network models -and therefore the bacteria-in patients in cluster 1 seems to validate the metabolic severity that we have identified with our approach.

Finally, for the Thiamine (vitamin B1) metabolism pathway, the enzyme of interest is aminopyrimidine aminohydrolase/thiaminase II, which is an enzyme of bacterial origin long believed to be involved in thiamine degradation, but that actually belongs to a thiamine salvage pathway 58 . Thiamine is a B vitamin that cannot be biosynthesized by humans, and must thus be retrieved exogenously (diet, GM, ...) 59 . Thiamine deficiency in the host can lead to diabetic complications and obesity and other obesity-related metabolic disorders, and it has been shown to be prevented by high dose thiamine therapy 60,61 . Indeed, plasma thiamine levels are decreased by 75% in diabetic patients when compared to healthy ones 62 , and the demand for thiamine has been postulated to increase in the case of diabetes 63 . Thiamine-responsive megaloblastic anemia syndrome (TRMA), characterised by diabetes, megaloblastic anemia, and sensorineural deafness, is caused by gene mutation of a high-affinity thiamine transporter Thtr-1 64 . T2D has even been linked to the chromosome where the Thtr-1 gene is found 61 . Furthermore, metformin monotherapy has been shown to fail in 21% of T2D patients after 5 years 65 , and that thiamine biosynthesis is enriched in patients that keep responding to the treatment 66 . Though we have not found any work linking our particular bacterial enzyme to the host's diabetes, these findings certainly point toward how a possible perturbation of one of the thiamine biosynthesis pathways (salvage pathway) in the GM could be linked to diabetes severity as found in our cluster 1.

Our analyses even show how a combination of disturbed FYW and Thiamine metabolism pathways have more metabolic consequences than each on their own in the MetaCardis cohort.

Furthermore, the comparison of our GM scopes-GM as a whole-and the scopes of prokaryotic species found in the GM shows largest functional resemblance between our severity cluster and Bacteroides/Parabacteroides species, when compared with the other cluster, and in the given DMEM medium. which could be considered as a metabolite-based Bacteroides enterotype. This enterotype is more informative than a classic enterotype that only gives species names, as it is functionally based, and gives us potentially affected pathways.

Though the scope only gives us potentially producible nodes and depends on the given medium, the DMEM medium seems to give good results. DMEM is a limited medium, but has also been used as a scope medium for the human GM in another work 35 , and also to grow GM species to study microbiota-gut interactions 67,68 , making it a plausible medium.

Finally, it is important to point out that antidiabetic treatments and especially metformin are known to alter the GM 69,70 . Especially in our very medically monitored cohorts, it is very hard to disentangle antidiabetic treatment effects from diabetic severity, as patients with severe diabetes are the most medicated. However, our results show that the severity cluster does not only have metformin-medicated patients. Our results must therefore be considered with all of this in mind.

METHODS

Test and replication cohorts

Our results are based on the study of two independent cohorts. The first cohort, the bariatric cohort, is composed of 89 severely obese female patients, about to undergo bariatric surgery. The second cohort will be used as a replication cohort, and is a subset of the MetaCardis cohort, composed of french patients with a BMI > 35kg/m 2 . In both cases, clinical, anthropometric and biological evaluations were obtained and are described in table 1, as well as feces, for which a metagenomic analysis was performed.

Metabolic network reconstruction

There exist multiple representations for metabolic networks. The nodes can be only metabolites, only enzymes, or a combination of both. In this case, we chose to represent the networks with metabolites and enzymes as nodes, where each substrate of a reaction will be linked with a directed edge to its enzyme, and the enzyme to the products. Starting from the functional orthologous gene (K numbers in KEGG Orthology (KO) database) abundance per patient table, genes that were not associated to prokaryotes were filtered out. We then introduced a threshold in order to binarize the table into under-abundant genes that will be removed and sufficiently abundant genes, so as to have a differentiating list of genes per patient. After multiple tests, we chose an abundance of 3×10 -5 , which brought the most discriminating results when comparing different network topological features with clinical factors (see Supplementary). By consulting the KEGG database with the K numbers, it is possible to get the list of annotated enzymes of each gene (EC numbers), and for each enzyme, the reactions catalysed, with the substrates and products. We will thus build the metabolic network by creating a directed edge from substrates to enzyme and from enzyme to products. We treated different reactions separately, by creating multiple nodes for a single enzyme if it catalyses multiple reactions. We used the default direction of the KEGG reaction in the database to orient the edges, as it is the direction of the catalytic reaction, in which the flow of biomass is expected. Some currency metabolites such as water, ATP, ADP and so on, present in a large number of reactions, have a great impact on network structure without actually bringing valuable biological information. It is a common practice to omit them from the networks 71 . There is no strict consensus on the list of molecules to remove, but electron carriers and other molecules transferring common functional groups are often included 72 . We considered currency metabolites the following list of molecules: H 2 0, ATP, ADP, NAD + , NADH, NADP + , NADPH, CO 2 , ammonia, sulfate, thioredoxin, phosphate, pyrophosphate (PP i ), and H + . They have been removed from our networks. The networks of the KEGG prokaryotic species, used in figure 4, were built in a similar fashion 30 .

Scope of a metabolic network

The scope of a metabolic network is based on the concept of network expansion 39 . Starting from a set of seed compounds from a medium, the scope will expand through the network if all substrates of a reaction are already in the scope, thereby also including the products of the reaction, and so on until the network expansion is no longer possible. The concept is illustrated in figure 1. The scope therefore encompasses all metabolites and enzymes potentially synthesized from a set of molecules given as input 39 . In the present work, the medium used was Dulbecco's Modified Eagle Medium (DMEM), a basal growth medium commonly used for mammalian cells (among which are intestinal cells), which has already been used as a scope medium 35 for the human gut microbiota, and also to grow gut microbiota species to study microbiota-gut interactions 67,68 . We evaluated the scope based on the DMEM for each patient, and built a matrix of nodes in the scope per patient, where we removed nodes that were in or out of the scope for all patients.

Spectral clustering

From the scope per patient matrix, we will establish similarity between the scopes of the patients through the Jaccard index: 𝐽(𝐴, 𝐵) =

Discussion and perspectives

The work done during this thesis has shown links between metabolic structure and an organism's or community's environment, and novel approaches to establish them. Indeed, the analyses presented here do not focus on metabolic networks themselves and their associated structure: they focus on the relationships with the environment, and how the environment may have contributed to shape-and be shaped by-metabolism. When compared to other techniques, I have chosen to stay at the static metabolic network level, but without applying strong hypotheses such as steady-state of fluxes that is employed in FBA and other constraint-based approaches, nor applying stoichiometry, and in comparison to other gut microbiota studies, I have chosen to study metabolic function rather than species abundance.

By staying on a more basic level, our analysis protocol is quicker and is able to be applied on a wider scale. Furthermore, I have mixed metabolic properties with statistical analyses and also machine learning techniques such as t-SNE visualisations, random forest classifications, neural network predictions, and spectral clustering.

Chapter I has presented new metrics for directed graphs that correlate with temperature, as well as shown how it might be of interest in some approaches that all enzymes associated with an organism are considered in the reconstruction, since the KEGG pathways do not show all metabolites involved in reactions and does not show all reactions. Our new metrics are robust to the choice of reconstruction. To the best of my knowledge, these metrics are very rarely used. They are the normalised size of the largest strongly connected component, the normalised hierarchy flow, and particularly, the normalised Laplacian spectrum. The first two respectively translate into the largest cycle in the graph, and the nodes that are not in the cycle but are still connected to it, so they give information on connexion in the graph and how much one can go from a given node to another. The Laplacian spectrum gives a measure of flow information and network motifs.

Chapter II and III have focused on the measure of the scope, showing that it is a powerful embedding technique able to distinguish species or patients only based on metabolism, while still being interpretable: it gives distinct metabolic information on what distinguishes the clusters and classes we have found. The scope has displayed its capacity in revealing metabolic function, and is key to my contribution to discovery and confirmation of metabolites and pathways of interest involved in type 2 diabetes and obesity. In chapter III, I have therefore found that the "D-Alanine metabolism" pathway, the "Phenylalalnine, tyrosine and tryptophan biosynthesis" pathway, and the "Thiamine metabolism" pathway are affected in patients belonging to the more severe diabetic cluster, due to the affected enzymes serine-pyruvate transaminase, fructose-6-phosphate phosphoketolase, and aminopyrimidine aminohydrolase respectively. These discoveries are well-known in literature for some of them (fructose-6-phosphate phosphoketolase, see Discussion in chapter III), but have not been previously studied for the others, and could initiate future research as targets of interest. In the same way, in chapter II it has shown the nodes of interest and their respective pathways that are associated to, for example, growth temperature classes, with tungsten metabolism pathway being specific to warm species and glutathione biosynthesis to colder species.

One should however keep in mind that the scope strongly depends on the initial input seed compounds/medium. The chosen scope mediums are common to all species or patients in order to be able to compare them. The one for prokaryotes was the union of four growth media for four species with different temperature classes, and the one for patients is DMEM, that has been used in other occasions for the same application 182 , and in labs to grow certain gut microbiota species 190,191 . It would be interesting in the future to test out other input metabolites to see if other functional pathways of interest can be revealed, and also towards other applications.

It is important to mention that our analyses are based on genomics or metagenomics data. We do not have transcriptomics information that would tell us which genes are actually expressed, or metabolomics that would tell us which metabolites are present and in which quantities. Thus, metabolic information that is discovered in this kind of analysis remains strictly potential, and should be confirmed with complementary analyses. The complementary data is however not always available, as is the case with the data collected from KEGG or our clinical data, and would thus have to be generated.

There are numerous limits to my network reconstruction approach that must be kept in mind.

As mentioned in the introduction, there are plenty of network reconstruction procedures combining different database information, gap filling and manual curation by compiling the literature. My network reconstruction approach is in contrast completely automated, but remains at the most basic level: it is entirely based on the KEGG database, derived from the different entries that are annotated for genes or KOs, to finally compile reaction and metabolite information and build the edges (details in the Methods section of each chapter). Moreover, we assume direction of all reactions as the annotated direction in KEGG reaction entries, and though we can expect some form of flow of biomass in the direction annotated by KEGG, this may not be the case for all of them. Also, spontaneous reactions and other types of reactions that may not be annotated under EC numbers have not been added to the networks.

There have been, however, numerous advantages in the use of such an approach. First would be the automation, as no manual curation step is involved. This allows for a more widespread and quicker application of the reconstruction, as I was able to apply it to more than 5000 species in chapter II. Secondly, all information for all species comes from a single database, and therefore has the same kind of database bias for all species. Thirdly, it is a straight-forward way of working with the metagenomics data, as the genes are already annotated with KEGG's KOs/K numbers, and since species identification is not trivial (see section 1.2.4), there is no specific literature to consult for added manual notation. However, even when considering these points, many previously named upgrades would improve the protocol and should be tackled in the future.

While accounting for these limits is important and must be worked upon, the results still show sufficient accuracy and reproducibility to give a measure of confidence in the results and in the metabolic models.

Another point to discuss in my reconstruction protocol is the gut microbiota network reconstruction. I have chosen to model it with an enzyme soup metabolic network, which means there is a single network for all species in a single microbiota. This bypasses a meta-network modelisation of compartmentalisation, which would be more biologically accurate. However, as species identification is not an easy task, resolving to remaining at the gene/functional level could actually bring more information than going to the species level. In the same way, an enterotype based on function rather than species abundance as proposed in chapter III could bring more precise information. Indeed, functional redundancy across (Figure II.1c, III.2a and III.3a) are not randomly sorted as in a differential genomics approach, they are sorted in decreasing order by presence in scope. This, as mentioned in chapter III, sorts them into blocks of nodes that behave together and that usually belong to the same pathways. This kind of sorting can aid in the spectral clustering that is later performed in chapter III.

On another note, as presented in chapter III, it is also possible to compare the scopes of patients' gut microbiota networks and the scopes from species reconstructed in chapter II that inhabit the gut. These results show that we can determine the species that resemble the most metabolically the metabolism from the gut microbiota. This does not actually provide definite evidence that these species are present in the given gut microbiota, but it is a possibility, or that maybe a species close to the studied one could potentially be involved. The collaboration between species can impact the structure of the gut microbiota, which implies that it would be very hard to find perfect matches in these comparisons. However, the findings in chapter III suggest that the cluster of patients with more severe diabetes has a similar scope to Bacteroides and Parabacteroides species. As we have seen in section 1.2.5, enterotype Bacteroides 2 is associated to dysbiotic phenotypes 3,[START_REF] Vandeputte | Quantitative microbiome profiling links gut community variation to microbial load[END_REF][START_REF] Vieira-Silva | Quantitative microbiome profiling disentangles inflammation-and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses[END_REF] , which supports that this comparison approach could potentially become a new way of stratifying into enterotypes. The advantage of this approach is that it is not based on species abundance, but solely on metabolic function, which is why we introduce the term of metabolite-based enterotype in chapter III.

I have performed additional initial analyses to compare my approach to that of classic enterotypes. I proceeded in the exact same way as what is introduced in chapter III with our lab's entire french MetaCardis cohort [START_REF] Vieira-Silva | Statin therapy is associated with lower prevalence of gut microbiota dysbiosis[END_REF]192 , composed of 894 patients with a variety of cardiometabolic diseases or healthy control subjects. I reconstructed the gut microbiota metabolic network, evaluated the DMEM scope, and applied a spectral clustering with four clusters, this time, to compare to the classic enterotypes.

Figure 14 shows the proportion of patients with a given enterotype in each of our four clusters. I found that the clusters are significantly associated to the enterotypes, and that cluster 0 has a the greatest proportion of Bacteroides 2 patients (Figure 14a), cluster 1 of Bacteroides 1 (Figure 14b), cluster 2 of Prevotella (Figure 14c), and cluster 3 of Ruminococcus (Figure 14d), with particularly striking results for Bacteroides 2 and Prevotella, but not as clear for the other two. I then applied the comparison between KEGG gut microbiota species scopes and the patients' scopes, which is presented in figure 15. Cluster 0 patients are on average very similar (small Jaccard distances) to Bacteroides and Parabacteroides species (Figure 15a), which could correspond to the patients in clusters 1 in chapter III, and which also corresponds to the Bacteroides 2 enterotype which is mainly found in this cluster (Figure 14a). Cluster 2 (Figure 15c) also seems to have a strong species pattern with close similarities, and even a Prevotella species. Clusters 1 and 3 (Figure 15b andd) have higher distance values, and have the first 6-7 Klebsiella species in common, though in the case of cluster 1, the next species are all Bacteroides, which coincides with the Bacteroides 1 enterotype determined in Figure 14b.

Overall, there seems to be a certain degree of correspondence between our clusters (potentially metabolite-based enterotypes) and the classic enterotypes. However, cluster 3 and also the two clusters 0 from chapter III are not as clear-cut in the similarity to other species as the other clusters, which indicates that the gut microbiota of these patients has a particular structure, which could possibly be due to a greater mix and collaboration between species (since we know that the Bacteroides 2 enterotype is dysbiotic and with less species and gene richness). Another hypothesis is what was mentioned in section 1.2.5, that this cluster may be intermediary between the others, showing a more continuous gut microbiota than what is believed, or that there may be a more appropriate number of groups in the gut microbiota.

Complementary analyses would be needed to effectively evaluate whether this approach could be robustly exploited as an enterotype, especially in clinical settings.

On that note, there are a few immediate perspectives in sight for my thesis. The first one would be to complete the results on the analysis of the scope of the complete french MetaCardis cohort that I have just presented, and publish them.

The second one is the publication of the results presented in chapter III.

The third one, in a more general way, would be to enhance my network reconstruction protocols, accounting for spontaneous reactions, reaction reversibility, and so on, but in an automatic way, so as to still be able to apply them to a wide range of species or communities.

Finally, the choice of scope mediums we have made is unique for each analysis, in order to be able to have a common starting point for all species or patients. However, colleagues in the lab have been able to deduce nutritional information for each patient from a nutritional questionnaire, and if I am able to transform them into metabolites that can be found in the networks, I would be able to study the impact of different input mediums for the scope of the gut microbiota and find more accurate distinctions between patients and also towards impact in disease.

To conclude, the work in the present thesis shows various novel technical ways to study metabolic network structure and its relationship to environmental variables, relating to habitat or to clinical phenotypes. I have proposed new metrics giving insights into metabolism structure and new uses to existing ones, by presenting approaches based on the scope and machine learning to not only stratify patients or species, but also to give crucial interpretable metabolic information on the relationships between species and their environment, and gut microbiota and host metabolic diseases. This has allowed discovery of pathways and enzymes of interest, pivotal in the stratification that is proposed for the patients. There are ways in which the present work can be improved, but I have also shown the potential of functionally-based approaches when compared to species or gene abundance studies. My work opens new research avenues and possibilities for patient stratification, and pathways and metabolites of interest.
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 1 Figure 1 -Example of a reaction without (a) and with (b) a catalyst. 3D representation of molecules with atoms of conventional color: red for oxygen (O), yellow for sulfur (S), and blue for nitrogen (N).

Figure 3 -

 3 Figure 3 -Bimodal distribution of gene counts in MicroObes cohort, composed of 49 patients (38 obese and 11 overweight). HGC: high gene count, 27 patients, LGC: low gene count, 18 patients. Dotted line is the 480,000 threshold marking HGC and LGC groups.

Figure 5 -

 5 Figure 5 -Some examples of networks. (a) Road map network, linking intersections (the nodes) with roads (the edges), from Google Maps. (b) Social network, linking people (the nodes) with social relationships (the edges). (c) Biological network, protein-protein interaction network, adapted from da F. Costa et al (2007)[START_REF] Da | Complex networks: The key to systems biology[END_REF] , linking proteins (the nodes) depending on their physical interaction (the edges).

Figure 6 -

 6 Figure 6 -A network with five nodes and six edges. (a) Network with undirected edges G = (V, E) with V = {1, 2, 3, 4, 5} and E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {4, 5}}. (b) Network with directed edges G' = (V', E') with V' = {1, 2, 3, 4, 5} ; E' = {(2, 1), (1, 3), (3, 2), (2, 4), (3, 4), (4, 5)}.

Figure 7 -

 7 Figure 7 -Scale-free degree distribution of a Saccharomyces cerevisiae PPI network and of a random network of the same size, adapted from Altaf-Ul-Amin et al (2015) 111 . k the degree, P(k) the degree distribution.

Figure 8 -

 8 Figure 8 -Hierarchical network that is scale free and with an embedded modularity, adapted from Ravasz et al (2002) 115 . Hierarchical levels go from blue to green to red.

Figure 9 -

 9 Figure 9 -Glycolysis metabolic pathway (a) presented in a conventional biochemistry pathway representation, (b) in a mathematical metabolic network representation. Encircled metabolites are currency metabolites. Nodes are metabolic compounds and edges are reactions in both cases, but the traditional representation (a) has repeated nodes.Figure from

Figure 10 .

 10 Figure 10. For the same six reactions, four directed representations are pictured. The simplest representations are (a) metabolite-based networks and (b) reaction-based networks, where nodes are metabolites and reactions respectively. In (a), each substrate of a reaction points to each product. In (b), each reaction is linked to another if a product of the first is the substrate of the other. Though these approaches do lead to interesting results in multiple cases (linking graph properties to environmental variables, disease, revealing phylogeny, and much more) 125-128 , they have lost information that is due to the bipartite nature of metabolism 129 .

Figure 10 -

 10 Figure 10 -Directed metabolic network representation examples, inspired and adapted from Pearcy et al (2014) 130 . The six reactions in the grey box are represented with (a) a metabolite-based representation (nodes: metabolites, arcs: from each substrate to each product), (b) a reaction based representation (nodes: reactions, arcs: if a product is substrate to another reaction), (c) hypergraph representation (nodes: metabolites, hyperarcs: reactions), (d) bipartite graph (nodes: metabolites and reactions, arcs: from substrates to reaction, from reaction to products).

Reaction 1 :Reaction 9 :

 19 Glucose (+ ATP) → ADP (+ Glucose-6-P) ADP (+ Phosphoenolpyruvate) → Pyruvate (+ ATP)

  in constraint-based flux-balance models such as Flux Balance Analysis (FBA, see section1.4.3.1). Models are then usually validated by predicting experimental results141,142 . Some of the currently most well-known GEM reconstruction tools include RAVEN 2.0 143 , ModelSEED 144 , merlin 145 , CarveMe 146 , AuReMe 147 , and Pathway Tools 148 .To perform computations, metabolic networks (and other biological networks) are usually saved in an XML-based format called SBML, which stands for Systems Biology Markup Language 149 .1.4.3 Metabolic network analysis strategiesAs hinted throughout the last sections, the choice of metabolic representation and reconstruction protocol depends on what kind of analysis is to be performed on the networks.There are three main avenues in studying metabolic networks. Metabolism is composed of chemical reactions, and is thus inherently dynamic and changing at all times. Enzyme kinetics is a traditional biochemistry field where rates of chemical reactions are studied, revealing insights into catalytic mechanisms and metabolic roles. Characterising the configuration of fluxes through reactions in certain conditions would shed light on connections to phenotypes, and further down the line, potential therapies 150 . Ideally, one would directly develop mathematical kinetic models to access dynamic properties (what is presented in Figure11c). However, this is hampered by the lack of in vivo kinetic information, database inconsistencies, species specificity, and lack of standardisation in the available data 151 . Therefore, the other two avenues, static and more easily modelled, are more widespread (what is presented in Figure11a and b).

Figure 11 -

 11 Figure 11 -Metabolic network mathematical modeling strategies. (a) based on interactions, (b) based on constraints (network topology, stoichiometry, etc), (c) based on reaction mechanisms. Bottom line describes typical analysis results (hubs for (a), the cone of solution space for flux distribution (b), dynamics of component concentrations (c)).Figure from Stelling (2004) 152 .
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 12 Figure 12 -Concept of constraint-based modelling. Without constraints, the solution can be anywhere in the solution space (1). By adding constraints, the solution is limited to the space in yellow (2). Optimisation for the biological objective function will find the optimal solution of the fluxes in the constrained solution space (3).Figure inspired by Orth et al (2010) 154 .

Figure 13 -

 13 Figure 13 -Network expansion and scope definitions. Network expansion starts with one or more seed molecular compounds. The network will expand (yellow/orange) if a reaction has
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Fig. 1

 1 Fig. 1 Metabolic networks complexity. a Metabolic network of archaea Methanopyrus kandleri; b Zoom in the network of archaea Methanopyrus kandleri: metabolites without predecessors are shown in yellow, and metabolites without successors are shown in blue. The code C followed by 5 digits are compound codes in the KEGG database

Fig. 4

 4 Fig. 4 Averaged sorted eigenvalues of the Laplacian matrix of reaction graph for all groups. In insert a close-up for the first 90 eigenvalues

Fig. 5

 5 Fig. 5 Metabolic network representation: a enzymatic reaction, S1 and S2 the substrates, and P1 and P2 the products; b adirectedgraph representation; c an undirected graph representation

Fig. 6 Fig. 7

 67 Fig. 6 Our network reconstruction procedure. a Step 1: From cDNA fasta file, get gene labels, b Step 2: From KEGG gene entries, get EC codes, c Step 3: From KEGG enzyme entries, get substrates and products, d Step 4: Build graph and filter ubiquitous metabolites. Ubiquitous metabolites : H2O, ATP, ADP, NAD+, NADH, NADPH, NADP+, CO2, ammonia, sulfate, thioredoxin, phosphate, PPi, H+, e Final graph
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Figure 1 .

 1 Figure 1. (a) Data description. (b) Concept of scope of a metabolic network. Letters are metabolites and numbers are reactions.Starting from seed metabolites (orange), the network expands if the substrates of the reactions are present in the expanding network, thereby producing its products. This is the case for reaction 1, which uses A and B to produce D and E, but not for reaction 2, as C is missing. The scope of the metabolic network is the set of all metabolites and reactions in the resulting network (yellow and orange). (c) Matrix of nodes in scope per species. In yellow, nodes that are in the scope, in purple the nodes that are out of the scope. Nodes that are in or out of the scope for all species have been removed. Species are sorted in taxonomic order, and 578 nodes are sorted by number of species with node in the scope

Figure 2 .

 2 Figure 2. 2D t-SNE visualisation. Projection of the nodes in scope per species. The Jaccard distance and a perplexity of 40 were used. Each species has been coloured according to its clade (a), habitat (b), oxygen tolerance (c), and temperature class (d)

Figure 3 .

 3 Figure3. Growth temperature prediction. (a) Confusion matrix of a growth temperature class prediction using random forest, mean over 300-fold cross-validation. (b) Percentage of models including nodes identified as 50 most predictive nodes, among 300 models (300-fold cross-validation) to predict the growth temperature using the random forest classifier. The 50 most predictive nodes were found applying the Gini impurity to each model. (c) Proportion of species per temperature class having 17 most predictive common nodes in their scope. These nodes are ones found in more than 90% of cross validated models (b). X.X.X.X codes (X a number) are Enzyme Commission (EC) numbers that are associated with enzymes. We appended "_0", "_1" to EC numbers to designate different reactions catalysed by the same enzyme. CXXXXX are KEGG database C numbers, associated with metabolites. (d) KEGG pathways of the most predictive nodes, and the associated average number of pathway nodes per cross-validation fold, among 50 most predictive nodes. We only show pathways with more than 3 nodes. (e) Neural network growth temperature prediction. R 2 = 77.09% . In orange, y = x . HT hyperthermophiles, T thermophiles, M mesophiles, P psychrophiles

Habitat

  

Figure 4 .

 4 Figure 4. Prediction of habitat and oxygen tolerance using random forest. (a) Confusion matrix of a random forest habitat prediction, mean over 300-fold cross-validation. (b) Percentage of models (among 300 models obtained by 300-fold cross-validation) including nodes from the 50 most predictive ones, prediction of habitat using the random forest classifier. The 50 most predictive nodes were determined by the Gini impurity for each cross-validation model. (c) Normalised confusion matrix of a random forest oxygen tolerance prediction, mean over 300-fold cross-validation. (d) Percentage of models (300 models obtained by the cross-validation using the random forest) including nodes from the 50 most predictive ones, prediction of oxygen tolerance using the random forest classifier. The 50 most predictive nodes were determined by Gini impurity for each crossvalidation model.

Figure 1 -

 1 Figure 1 -Concept of scope of the metabolic network of a patient gut microbiota. The gut microbiotas of our cohorts are modelled as metabolic networks, where the metabolites (letters in circles in figure) substrate of reactions are linked to their respective enzymes (numbers in squares in figure), which are linked to other metabolites, products of the reactions. The scope will start with a set of molecules introduced into the network (orange), the molecules of Dulbecco's Modified Eagle Medium (DMEM) in this case. The scope will expand (yellow) in the network if all substrates of a reaction are already in the scope, therefore encompassing the products. In this example, this is the case for reaction 1, where A and B are in the medium, and so the scope will consist of metabolites A, B, D, and E, and reaction 1. This is not the case for reaction 2, since C is not in the scope, so it will not

Figure 2 -Figure 3 -

 23 Figure 2 -The scope reveals pathways associated to severity of diabetes. In panel a, heatmap of nodes (metabolites and enzymes) in scope per patient. In yellow, nodes that are in the scope, in purple the nodes that are out of the scope. Nodes that are in or out of the scope for all patients are removed. Nodes sorted by number of patients with node in the scope. Patients are sorted per clusters via spectral clustering of the heatmap (cluster 0 line in black, cluster 1 line in turquoise). Diabetic status is annotated for each patient next to the cluster (in red diabetic, in white non diabetic). Glycated hemoglobin (HbA1c) levels per cluster are shown in blue barplots on the right of the heatmap, with standard deviation error

Figure 4 -

 4 Figure 4 -Analysis of the Jaccard distances between patients' scope and the scope of gut microbiota species from a database (KEGG), for the MetaCardis and bariatric cohorts. a) Top 15 closest species per cluster in the bariatric cohort, when comparing mean Jaccard distance per cluster between the patients' scope and gut microbiota species scope. b) Top 15 closest species per cluster in the MetaCardis cohort, when comparing mean Jaccard distance per cluster between the patients' scope and gut microbiota species scope. c) Boxplot of the mean of the jaccard distance over the species in the top 15 closest species (from a and b) belonging to Bacteroides and Parabacteroides genus, per cluster and cohort. Species: Bacteroides caccae, Bacteroides cellulosilyticus, Bacteroides dorei HS1_L_1_B_010, Bacteroides dorei HS1_L_3_B_079, Bacteroides fragilis BOB25, Bacteroides intestinalis, Bacteroides ovatus, Bacteroides thetaiotaomicron 7330, Bacteroides vulgatus, Bacteroides xylanisolvens, Parabacteroides distasonis, Parabacteroides sp. CT06. Statistics, unadjusted: for the bariatric cohort, F-value of 90.071, degrees of freedom of 1, and 87 for residuals, and a significant p-value of 4.445×10 -15 ***. For the MetaCardis cohort, F-value of 95.356, degrees of freedom of 1, and 312 for the residuals, and a significant p-value inferior to 2.2×10 -16 ***. * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001.

Figure 14 -

 14 Figure 14 -Proportion of enterotypes per cluster for the 894 french MetaCardis patients. For enterotypes Bacteroides 2 (a), Bacteroides 1 (b), Prevotella (c) and Ruminococcus (d). The

Figure 15 -

 15 Figure 15 -Top 15 closest species per patient cluster, when comparing the scope, in the 894 french MetaCardis cohort. Mean Jaccard distance was evaluated per cluster between the patients' DMEM scope and the DMEM scope from gut microbiota species taken from the KEGG database.

  

  

  

  

Table 2 -

 2 World Health Organisation four recommended diagnostic tests for diabetes diagnosis in 2019. Adapted from WHO (2019)

  One can model the microbiota as a single entity, without any boundaries between the microbes, making all metabolites in the network accessible to all organisms. Otherwise, one can introduce boundaries, or lie in between these two solutions. Also, how should one

	model the host ?
	Then, in terms of curation for GEMs, how much should one focus on individual species-level
	curation? In the case of constraint-based techniques such as FBA, should optimisation be
	based on community or species by species? How can results be validated with experimental
	data? And what kind of insights will be gained from a given model structure?
	Multiple strategies have been undertaken to tackle gut microbiota modelling, with different

al (2015)'s review

183 

. The first challenge is closely linked to the analysis of Eukaryotes, which is compartmentalisation: how should the different species be modelled ? purposes. One of them is based on the study of interactions between species, which usually employs a compartmentalised approach.

Levy and Borenstein (2013) 

184 

apply a topology and compartment-based approach to determine ecological forces that govern the interaction between species. For example, species in a same community could compete for resources, or they could be part of the same community simply because they have the same nutritional requirements, and thus live in the same habitat. This kind of information is not as readily available in communities such as the gut microbiota, because of its more recent history. It is, however, possible to deduce it from genomic data with what is called reverse-ecology frameworks. The authors use species co-occurrence data and the seed set detection algorithm-presented in a previous article

126 

-on each species, to understand the underlying ecological forces structuring the microbiota, therefore contributing to reverse-ecology.

Another example with a constraint-based analysis is Shoaie et al (2015)'s work

185 

, where they study species cooperation in production of metabolites. They introduce the CASINO (Community And Systems-level INteractiveOptimization) toolbox, which separates the optimisation problem into two: a systems level one, constructing a community matrix

  Greenblum et al (2012) 127 use a topology-based approach on enzyme soup gut microbiota metabolic networks, and evaluate a variety of graph theory topological properties to examine differences between healthy and obese or with IBD patients.

	FBA has also been applied with this kind of metabolic network: Tobalina et al (2015) 188
	tested naphthalene-enriched soil communities in different conditions and predicted
	production of functions of interest, by building community metabolic networks with
	metaproteomic data.

Table 1 -

 1 Bioclinical characteristics of our bariatric and validation (MetaCardis) cohorts. All measures are done in fasting condition. mean±standard deviation [min-max]; BMI Body Mass Index; HbA1c glycated hemoglobin; Chol cholesterol; HDL High-density lipoprotein; LDL Low-density lipoprotein; CRP C-reactive protein; IL6 Interleukin 6; DXA Dual-energy X ray absorptiometry; OSA obstructive sleep apnea syndrome; CT computed tomography.
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We will then base a spectral clustering on the similarity matrix between patients obtained. This clustering technique uses the eigenvalues of the Laplcian of the similarity matrix to reduce dimensionality, and then applies a simpler clustering technique on this lower dimension data. The applied clustering in our case is a discretisation, which is less sensitive to initialisation than k-means (see scikit-learn Python library) 73 .
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ABSTRACT

Gut microbiota dysbiosis has been linked to obesity and its comorbidities. However, how this link is embodied in the metabolism is still an open question. Using an obesity cohort, we extract metagenomics data to compute the gut microbiota metabolic network. From them, we derive the so-called scope, the set of all reactions and metabolites which are potentially producible in a given medium. The scope serves as a new patient phenotype that enables us to cluster the cohort into two clusters associated with diabetic severity. The most discriminating metabolic pathways between clusters are D-Alanine metabolism, Phenylalanine, tyrosine and tryptophan biosynthesis and Thiamine metabolism pathways, where absence is strongly linked to diabetes severity. Using the scope we can finely identify bacterial species that are the closest metabolically to the one observed in patients. Patients associated with diabetes severity have a gut microbiota closer to those from Bacteroides and Parabacteroides species. All these results were validated on another independent cohort.

Patients scope comparison to gut microbiota species scope

In previous work 30 , we obtained the metabolic network for all prokaryotic species in the KEGG database. We consulted the human gut microbiota GMrepo 41 database to get a list of prokaryotes present in the gut, but we filtered out species present in less than 2% of samples in the database, as there were many outlier species that were not gut microbiota

Statistical information

Continuous variables were analysed with a linear regression adjusted on age and BMI, and also gender in the case of MetaCardis (the bariatric cohort only has female patients). An ANOVA F test was performed to determine significance. Categorical variables were analysed with a generalised linear regression (binomial regression), also adjusted for age, BMI, and in the case of MetaCardis also gender. An ANOVA likelihood ratio chi square was performed for the generalised linear models. Significance threshold of p-value was set to p-value < 0.05. Analyses were conducted on R.

Supplementary information

It will be available with the code at https://github.com/AWebZen/MetabolicScope_diabetes. different species could be avoided, on top of the different challenges linked to species identification.

In order to consult KEGG and build the gut microbiota networks, we must have a list of gene/KO names per patient's microbiota. As the initial metagenomics data I started with was a table of KO abundances per patient's microbiota, there is an initial step where I introduced a threshold in order to binarise the table and obtain the list of KOs per patient. In particular, as all patients' metagenomes were mapped to a same reference gene catalog [START_REF] Li | An integrated catalog of reference genes in the human gut microbiome[END_REF] , this threshold was of importance to increase distinction between patients. I tested multiple types of thresholds: removing the last x% of each threshold, removing abundances under a certain value, and a combination. I finally settled for the threshold with a fixed value, as since we are not considering species but genes, it can be assumed that what is not very abundant may not have as much of an impact as the more abundant genes. Another matter to consider is the choice of best threshold value. I ended up choosing the threshold that best show-cased the association between network properties and type 2 diabetic phenotypes (further details in the Supplementary data of chapter III).

Again, the clinical results have been found in two independent cohorts, showing that the approach is sufficiently robust. These are the main limits of my method, mainly relying on the reconstruction. Strong choices have been made in the approach, but it has allowed acute distinction, stratification and classification of the prokaryotic species and patients. Another point to discuss is the comparison between my protocol and differential abundance analysis. Why should one use metabolic networks and the scope instead of just comparing gene abundances or presence across samples ? In chapter II, I evaluated the random forest temperature class predictions from only the presence/absence of the enzymes, and showed that it yielded similarly accurate results. However, the Gini impurity did not provide the same enzymes nor pathways. Indeed, the differential genomics approach does not integrate metabolic information and especially about connectivity and possible pathway redundancy (meaning that if a pathway is not active, there may be another one with the same function).

The scope has this additional aspect as well as condensed information, which is why the scope can be considered as an embedding. Furthermore, the nodes in the scope matrices