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Abstract (English)

Quantum metrology is an auspicious discipline of quantum information which is
currently witnessing a surge of experimental breakthroughs and theoretical devel-
opments. The main goal of quantum metrology is to estimate unknown parameters
as accurately as possible. By using quantum resources as probes, it is possible to
attain a measurement precision that would be otherwise impossible using the best
classical strategies. For example, with respect to the task of phase estimation, the
maximum precision (the Heisenberg limit) is a quadratic gain in precision with re-
spect to the best classical strategies. Of course, quantum metrology is not the sole
quantum technology currently undergoing advances. The theme of this thesis is
exploring how quantum metrology can be enhanced with other quantum techniques
when appropriate, namely: graph states, error correction and cryptography.

Graph states are an incredibly useful and versatile resource in quantum infor-
mation. We aid in determining the full extent of the applicability of graph states by
quantifying their practicality for the quantum metrology task of phase estimation.
In particular, the utility of a graph state can be characterised in terms of the shape
of the corresponding graph. From this, we devise a method to transform any graph
state into a larger graph state (named a bundled graph state) which approximately
saturates the Heisenberg limit. Additionally, we show that graph states are a ro-
bust resource against the effects of noise, namely dephasing and a small number of
erasures, and that the quantum Cramér-Rao bound can be saturated with a simple
measurement strategy.

Noise is one of the biggest obstacles for quantum metrology that limits its achiev-
able precision and sensitivity. It has been showed that if the environmental noise
is distinguishable from the dynamics of the quantum metrology task, then frequent
applications of error correction can be used to combat the effects of noise. In prac-
tise however, the required frequency of error correction to maintain Heisenberg-like
precision is unobtainable for current quantum technologies. We explore the limita-
tions of error correction enhanced quantum metrology by taking into consideration
technological constraints and impediments, from which, we establish the regime in
which the Heisenberg limit can be maintained in the presence of noise.

Fully implementing a quantum metrology problem is technologically demanding:
entangled quantum states must be generated and measured with high fidelity. One
solution, in the instance where one lacks all of the necessary quantum hardware,
is to delegate a task to a third party. In doing so, several security issues naturally
arise because of the possibility of interference of a malicious adversary. We address
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these issues by developing the notion of a cryptographic framework for quantum
metrology. We show that the precision of the quantum metrology problem can be
directly related to the soundness of an employed cryptographic protocol. Addition-
ally, we develop cryptographic protocols for a variety of cryptographically motivated
settings, namely: quantum metrology over an unsecured quantum channel and quan-
tum metrology with a task delegated to an untrusted party.

Quantum sensing networks have been gaining interest in the quantum metrology
community over the past few years. They are a natural choice for spatially dis-
tributed problems and multiparameter problems. The three proposed techniques,
graph states, error correction and cryptography, are a natural fit to be immersed
in quantum sensing network. Graph states are an well-known candidate for the de-
scription of a quantum network, error correction can be used to mitigate the effects
of a noisy quantum channel, and the cryptographic framework of quantum metrol-
ogy can be used to add a sense of security. Combining these works formally is a
future perspective.
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Résumé (Français)

La métrologie quantique est une discipline prometteuse de l’information quantique
qui connaît actuellement une vague de percées expérimentales et de développe-
ments théoriques. L’objectif principal de la métrologie quantique est d’estimer des
paramètres inconnus aussi précisément que possible. En utilisant des ressources
quantiques comme sondes, il est possible d’atteindre une précision de mesure qui
serait autrement impossible en utilisant les meilleures stratégies classiques. Par
exemple, en ce qui concerne la tâche d’estimation de la phase, la précision maxi-
male (la limite d’Heisenberg) est un gain de précision quadratique par rapport aux
meilleures stratégies classiques. Bien entendu, la métrologie quantique n’est pas la
seule technologie quantique qui connaît actuellement des avancées. Le thème de
cette thèse est l’exploration de la manière dont la métrologie quantique peut être
améliorée par d’autres techniques quantiques lorsque cela est approprié, à savoir :
les états graphiques, la correction d’erreurs et la cryptographie.

Les états de graphes sont une ressource incroyablement utile et polyvalente dans
l’information quantique. Nous aidons à déterminer l’étendue de l’applicabilité des
états de graphes en quantifiant leur utilité pour la tâche de métrologie quantique
de l’estimation de phase. En particulier, l’utilité d’un état de graphe peut être car-
actérisée en fonction de la forme du graphe correspondant. À partir de là, nous
concevons une méthode pour transformer tout état de graphe en un état de graphe
plus grand (appelé "bundled graph states") qui sature approximativement la lim-
ite de Heisenberg. En outre, nous montrons que les états de graphe constituent
une ressource robuste contre les effets du bruit (le déphasage et un petit nombre
d’effacements) et que la limite quantique de Cramér-Rao peut être saturée par une
simple stratégie de mesure.

Le bruit issu de l’environnement est l’un des principaux obstacles à la métrologie
quantique, qui limite la précision et la sensibilité qu’elle peut atteindre. Il a été
démontré que si le bruit environnemental peut être distingué de la dynamique de la
tâche de métrologie quantique, des applications fréquentes de correction d’erreurs
peuvent être utilisées pour combattre les effets du bruit. En pratique, cependant,
la fréquence de correction d’erreurs requise pour maintenir une précision de type
Heisenberg est impossible à atteindre pour les technologies quantiques actuelles.
Nous explorons les limites de la métrologie quantique améliorée par la correction
d’erreurs en prenant en compte les contraintes et les obstacles technologiques, à
partir desquels nous établissons le régime dans lequel la limite d’Heisenberg peut
être maintenue en présence de bruit.
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La mise en œuvre complète d’un problème de métrologie quantique est tech-
nologiquement exigeante : des états quantiques intriqués doivent être générés et
mesurés avec une grande fidélité. Une solution, dans le cas où l’on ne dispose pas
de tout le matériel quantique nécessaire, consiste à déléguer une tâche à un tiers.
Ce faisant, plusieurs problèmes de sécurité se posent naturellement en raison de la
possibilité d’interférence d’un adversaire malveillant. Nous abordons ces questions
en développant la notion de cadre cryptographique pour la métrologie quantique.
Nous montrons que la précision du problème de la métrologie quantique peut être
directement liée à la solidité d’un protocole cryptographique employé. En outre,
nous développons des protocoles cryptographiques pour une variété de paramètres
motivés par la cryptographie, à savoir : la métrologie quantique sur un canal quan-
tique non sécurisé et la métrologie quantique avec une tâche déléguée à une partie
non fiable.

Les réseaux de détection quantique ont suscité un intérêt croissant dans la com-
munauté de la métrologie quantique au cours des dernières années. Ils constituent
un choix naturel pour les problèmes distribués dans l’espace et les problèmes mul-
tiparamètres. Les trois techniques proposées, les états de graphes, la correction
d’erreurs et la cryptographie, s’intègrent naturellement dans les réseaux de détection
quantique. Les états de graphes sont un candidat bien connu pour la description
d’un réseau quantique, la correction d’erreurs peut être utilisée pour atténuer les
effets d’un canal quantique bruyant et le cadre cryptographique de la métrologie
quantique peut être utilisé pour ajouter un sentiment de sécurité. La combinaison
formelle de ces travaux est une perspective future.
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1
Introduction

1.1 Quantum Technologies

The advent of quantum theory has completely revolutionized modern physics. The
underlying dynamics are perplexing and counter intuitive - e.g. depending on the
circumstance, electrons exhibit wave-like or particle-like behaviour [DG28] - and has
since changed our perspective of the universe at the microscopic level.

Those who are not shocked when they first come across quantum theory
cannot possibly have understood it.

-Niels Bohr

Erwin Schrödinger received a Nobel prize in 1933 for his work establishing the
basis of quantum mechanics and atomic theory. Be that as it may, nearly twenty
years later in 1953, he begins a lecture in Dublin with a humorous forewarning that
the contents of the lecture may seem ‘lunatic’ [Bit96]. Clearly said in jest, there is
inherent truth in this statement. Quantum theory allows for dynamics which are not
observed at the macroscopic level, and as a result are difficult to envisage. The most
prominent of which are: entanglement and superposition. Quantum entanglement
is a term coined to indicate non-classical correlations between quantum systems.
When a single constituent of an entangled quantum system is measured, the effects
propagate amongst the complete system. Quantum superposition is the principle
that any configuration of superposed quantum states is also an allowable quantum
state.

The first theoretical prototypes of quantum computers were pioneered in the
1980’s [Ben80; Fey82; Deu85]; this was the beginning of the quantum information
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Chapter 1. Introduction

zeitgeist. Such a computer would be compromised of microscopic objects subjected
to the realm of quantum mechanics. In particular, a two level quantum system, such
as the spin of an electron, is characterized as a quantum version of the traditional
binary bit - usually abbreviated to qubit. By virtue of quantum mechanical effects,
such as entanglement and superposition, a quantum computer can greatly outper-
form the abilities of a classical (i.e. inherently not-quantum) computer [Pre12]. For
example, Shor’s algorithm (an algorithm designed to be carried out on quantum
computers) can find the prime factorization of large numbers in a small amount of
time [Sho94]; a task which is extremely difficult for the world’s most state of the art
supercomputer. In 2019, Google demonstrated that their 53 qubit quantum com-
puter could execute a sampling task in 200 seconds [Aru+19]. Even though IBM
showed that this task could be executed by a classical computer in two and a half
days [Ped+19], it quickly converges to an impossible problem for a classical com-
puter as the number of qubits increase incrementally. Practically, we are entering
the era where classical computers cannot compete.

Quantum computing is not the unique technology proposed as an advantageous
version of its classical analogue. For the past few decades, academic and government
institutions, and even some companies such as Google and IBM, have increased their
investment and support in the quest of designing quantum technologies [DM03]. In
China, satellites are being used for long distance quantum key distribution [Lia+17].
In Europe, a rudimentary version of a quantum internet is in development [Kim08;
WEH18]. Quantum technologies are often divided into four categories depending
on their scope: quantum computation, quantum simulation, quantum communica-
tion, and quantum metrology and sensing [Ací+18]. The focal point of this thesis is
quantum metrology and sensing technologies enhanced by other quantum informa-
tion techniques, namely graph states (computation and communication), quantum
error correction (computation) and quantum cryptography (communication).

Quantum metrology and sensing is a relatively new and auspicious type of quan-
tum technology [Par09; TA14; DRC17], in which quantum phenomena are ex-
ploited to accurately estimate physical parameters with a precision which can-
not matched with the best classical strategies [Cav81]. Since the publication of
Quantum-enhanced measurements: beating the standard quantum limit [GLM04] by
Giovannetti, Lloyd and Maccone, there has been a surge of interest in the field.
Current research is flourishing at a theoretical and experimental level.
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Chapter 1. Introduction

1.2 Metrology: From Classical To Quantum

Metrology, the science of measurement and precision, is often not discussed and reg-
ularly misunderstood as meteorology (the science of weather). Be that as it may,
metrology plays a critical role in the advancement of science. Scientific theories are
tested by observing a physical processes predicted by said theory; in physics and
chemistry this step is often carried out by performing a measurement. As the ac-
curacy of technology improves, more theories are put to the test. In 2016, LIGO
(in collaboration with VIRGO) announced successful observations of gravitational
waves12 [Abb+16], a phenomenon predicted by Einstein’s theory of general rela-
tivity. In 2021, the standard model for particle physics was put under scrutiny
after Fermilab released their measurement results of the anomalous magnetic dipole
moment of the muon [Abi+21], in which the measured value was different than
the predicted value by the current theory. In a similar vein to its importance to
science, metrology is an unsung hero of engineering, architecture and design. A
chair/table/house/bridge in which the lengths are measured up to the nearest tenth
of millimeter is more reliable and safe than a counterpart in which the lengths are
measured up to the nearest centimeter.

Alas, most physical parameters of interest cannot be associated with a direct
measurement process. A more accurate description is to say such a parameter is
estimated. The underlying tool of constructing an estimate is still a measurement
of a related (measurable) quantity. In the LIGO experiment, the gravitational wave
introduced a relative phase in the light source. A relative phase is not a directly
measurable quantity, instead the phase was estimated from the observed interfer-
ence pattern. Formally, estimation theory is the branch of statistics which estab-
lishes techniques and the mathematical formalism pertaining to estimating unknown
parameters from measured empirical data [Kay93; Cox06]. It is the principal math-
ematics of metrology.

There are two major philosophies of estimation theory: the Bayesian approach
and the frequentist approach. The Bayesian approach is used for stochastic param-
eters and the frequentist approach is used for deterministic parameters. This thesis

1The experiment is currently being upgraded to use squeezed light which will allow for an even
more accurate measurement [Aas+13].

2A Michelson interferometer with arms which spanned four kilometers in length was used in
the experiment, and the achieved precision was comparable to measuring the distance from Earth
to the nearest star (besides the sun) with an uncertainty smaller than the width of a human hair
[LIG17].
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focuses uniquely on the frequentist approach to quantum metrology3. With suffi-
cient measurement data, the frequency of observations will begin to mimic the true
probability distribution, hence the name ‘frequentist’. In principle, a deterministic
parameter can be estimated to any degree of precision with a sufficiently large set
of empirical data. The precision of an estimate is denoted by the mean-squared
error. Within the frequentist framework, this is ultimately bounded by the recipro-
cal of the Fisher information - a measure of how much information the measurable
data contains about the unknown data [Fis25; Kul97]. This bound is called the
Cramér-Rao bound [Cra46; Rad45].

Estimation theory was formally adapted to realm of quantum information in the
latter half of the 20th century by Helstrom [Hel67; Hel68; Hel69] and Holevo [Hol73;
Hol82]. The established terminology to describe quantum parameter estimation is
difficult to misconstrue; as the rhetorical tradition dictates, existing terminology is
preceded by the word quantum, for example quantum Cramér-Rao bound, quantum
Fisher information, et cetera [BC94; Hay05]. In quantum parameter estimation
problems, an unknown parameter is encoded into a quantum probe by a physical
interaction. As a result of quantum phenomena, quantum parameter estimation
problems can attain a precision impossible to a purely classical system [Cav81;
BS84]. An experimental quantum advantage has been reported using optical systems
[Oka+08; Kac+10; Xia+11], atomic systems [Mey+01; Tay+08; Fac+16; Cha+18;
Die+19] and superconducting circuits [Wan+19].

Phase estimation is the canonical problem of quantummetrology [HB93; GLM04;
TA14]. An unknown phase is encoded in an n qubit highly entangled GHZ state, and
a simple measurement strategy can be implemented to estimate the unknown phase
such that the mean squared error scales as 1/n2. This notion of precision (where the
quantum Cramér-Rao bound is saturated) is referred to as the Heisenberg limit : the
ultimate limit of precision enabled by quantum mechanics [GLM06]. With respect to
phase estimation, the Heisenberg limit is a quadratic advantage over the analogous
scenario sans non-classical correlations (i.e. the n qubits are not entangled). Here
the mean-squared error is dictated by the central limit theorem and scales as 1/n,
this notion of precision is commonly referred to as the standard quantum limit,
classical limit or the shot-noise limit.

The applicability of quantum metrology spans a number of domains. These in-
clude, but are not limited to, magnetometry [Tay+08; Was+10; Sew+12; BCK15;
Raz+19], thermometry [Neu+13; Toy+13; Cor+15], gravimetry [Qva+18; Kri+18],
spectroscopy [Mey+01; Lei+04; Kir+11; DSM16; Sha+18], imaging [LGB02; Bar+15;

3A summary of Bayesian estimation theory is provided in Chapter 3 for completeness.
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Gen16] and clock synchronization [GLM01; App+09; Lud+15; Sch+17]. Quan-
tum metrology is particularly appealing for biology and medicine [Peñ+12; Sch+14;
TB16; MO18], where probing a sample is often destructive in nature, and so the
non-classical correlations of quantum systems may lead to a reduction in the number
of probes required whilst still attaining a required precision.

1.3 Motivation

The overarching theme of this thesis is the incorporation of other quantum infor-
mation techniques within the usual quantum metrology framework. Specifically, we
explore the immersion of graph states [SM20], quantum error correction [She+21],
and quantum cryptography [SMK21; SM]. All of these technologies offer a unique
functionality to the standard quantum metrology problem with respect to different
circumstances.

Firstly, in the case of graph states, having an multi-purposeful resource is very
desirable for the realm of quantum technologies, as focusing on a specific class of
quantum states will greatly facilitate the design and implementation of quantum
hardware. Graph states [HEB04] come to mind as a potential ‘super resource’,
as they are used for many tasks in quantum computation [SW01; RBB03] and
quantum communication [MS08; MMG19; HPE19]. In this context then, it is a
natural question to ask which graph states are an efficient resource for quantum
metrology [SM20].

Secondly, we consider the utility of error correction. One of the biggest obsta-
cles for early generations quantum hardware will be its susceptibility to quantum
noise. It is known that said noise imposes many challenge for quantum metrology
[EdMD11a; EdMD11b; DKG12; KD13]. It has been shown that quantum error cor-
rection can be used to completely mitigate the effects of noise [DCS17; Zho+18].
Unfortunately, the necessary frequency of error correction is impossible for current
quantum hardware [Cra+16; Ofe+16]. Thus, it is important to determine the utility
of quantum error correction in a real world scenario [She+21].

Finally, we consider a cryptographic framework. Another obstacle for the early
generations of quantum hardware is the lack of ‘all-in-one’ devices. Because quan-
tum metrology is technologically demanding, one solution is to delegate some of
the difficult tasks to a third party with more computational power. In this event,
quantum information will have to be transmitted through a quantum channel. This
raises several security issues, as quantum channels can be intercepted by malicious
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adversaries. It is critical to properly adapt the parameter estimation problem in
such a cryptographic setting as many of the standard assumptions, namely having
an unbiased estimator, may not necessarily be true [SMK21]. An equally important
task is to create cryptographic protocols which do not interfere with the underlying
quantum metrology problem, but provide a sense of privacy and security [SMK21;
SM].

Formally, multiple parties communicating through a quantum channel is known
as a quantum network [CDP09]. Quantum networks have been proposed as a re-
source for spatially separated quantum metrology and multiparameter quantum
metrology [Kóm+14; Kóm+16; Eld+18; Ge+18; PKD18; ZZS18; Qia+19; Rub+20;
Guo+20]. The quantum technologies discussed in this thesis (graph states, error
correction and cryptography) all fit in naturally within the framework of quantum
networks. A future perspective is to combine these works in interesting and useful
ways. Currently, we are combining the cryptographically themed results to establish
a notion of a secure quantum sensing network.

1.4 Thesis Outline

The subsequent chapters of this thesis are partitioned into two preliminary chapters,
three research chapters and a discussion chapter. The research chapters provide in-
sight on the projects I worked on during my PhD in a pedagogical fashion. Following
the main chapters are three appendices, which contain proofs omitted from the main
text due to length or complexity.

The preliminary chapters equip the reader with the necessary definitions and
mathematical tools to comprehend the subsequent research chapters. Chapter 2
acts a crash course on the mathematics of quantum mechanics specific to quantum
information. Key concepts such as quantum states, entanglement and quantum
measurements are explained. Chapter 3 overviews the foundations of the parameter
estimation problem and its adaptation to the realm of quantum information. The
canonical example of a highly entangled quantum state used for phase estimation
is explored in this chapter and it is regularly used as a comparison in the research
chapters.

Chapter 4 is based on the work Graph states as a resource for quantum metrol-
ogy [SM20]. We characterize the use of graph states for quantum metrology by
linking the quantum Fisher information to the shape of the corresponding graph.
We construct a class of graph states which approximately achieve the Heisenberg
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limit for phase estimation and are thus a practical resource for quantum metrology.
We name this class of graph states bundled graph states, as many vertices in the
corresponding graph are in bundles which are permutation invariant. We also show
that the Heisenberg limit can maintain a quantum advantage in the presence of
noise and that the Cramér-Rao bound can be saturated with a simple measurement
strategy.

Chapter 5 is based on the work Practical limits of error correction for quan-
tum metrology [She+21]. We analyze the effectiveness of a realistic quantum error
correction scheme to mitigate the impact of noise for quantum metrology. This is ac-
complished by incorporating impediments an implementation of an error correction
code may face, such as a delay in any error correction operations, noisy ancillary
qubits and imperfect operations. We outline the circumstances in which the Heisen-
berg limit may be recovered. Even though this work focuses on a specific error
correction code (the parity check code), we hypothesize that other error correction
strategies encounter the same limitations.

Chapter 6 is based on the work A Cryptographic approach to Quantum Metrol-
ogy [SMK21] as well as Quantum Metrology with Delegated Tasks [SM]. We provide
a rigorous framework of the functionality of quantum metrology problems in a cryp-
tographically motivated setting. By integrating an appropriate cryptographic proto-
col, the functionality of the parameter estimation scheme is mostly unchanged. We
show that the added bias and additional uncertainty in the cryptographic framework
can be bounded in terms of the soundness of the protocol. We establish protocols
for a variety of possible settings, such as exchanging information over an unsecured
quantum channel [SMK21], and delegating a portion of the quantum metrology
scheme to an untrusted party [SM].

Chapter 7 is a discussion chapter; the key ideas from the main research chapters
are summarized and future perspectives are listed. Insight on a current project is
given, where the core concept is an amalgamation of quantum networks and the
cryptographic framework for quantum metrology to devise a notion of a secure
quantum sensing network.
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2
Mathematical Foundations of

Quantum Information

Quantum theory is an extensive area of physics with a rich mathematical history.
The majority of its subtleties are beyond the scope of this thesis. This chapter is
intended to familiarize the reader with the underlying mathematics of the subsequent
chapters. See [GS18] for a broader overview of quantum mechanics, and [NC02] for
a more detailed analysis of quantum information.

As Deepak Chopra taught us, quantum physics means anything can hap-
pen at any time for no reason!

-Professor Farnsworth

2.1 Quantum States

2.1.1 Qubits

The bit is the primitive building block of information theory. It can be thought of as
a physical switch, or any object subjected to a binary state: 0 or 1, yes or no, on or
off, et cetera. The quantum bit, commonly referred to as a qubit, is the analogous
primitive building block of quantum information. Just as a bit can be in the states
0 and 1, a qubit can be in the states |0〉 and |1〉1. Unlike a classical bit, the state of

1The notation |�〉, known as Dirac notation or bra-ket notation, is ubiquitously used in quantum
mechanics to describe quantum states.
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|0〉

|1〉

|+〉

|−〉

|+i〉

|−i〉

|ψ〉

φ

θ

Figure 2.1: The Bloch sphere is a geometric representation of single qubit quantum
states. A point on the surface of the sphere with polar angle θ and azimuthal angle
φ represents the quantum state |ψ〉 = cos(θ/2) |0〉+ eiφ sin(θ/2) |1〉.

a qubit can be any linear combination of |0〉 and |1〉:

α |0〉+ β |1〉 (2.1)

with α and β being complex numbers subjected to |α|2 + |β|2 = 1. This is the
superposition principle, which asserts that any linear combination of valid quantum
states is also a valid quantum state.

Just as a bit can be thought of as a physical object, so can a qubit. There
exists a variety of physical implementations to realize a qubit, for example, the
spin of an electron [Chi+06; Dut+07], the direction of current in a superconducting
circuit [Wen17] or the polarization of a photon [Str+07]. Having said that, in this
thesis (unless it is otherwise stated) a quantum state should be thought of as a
mathematical element of a Hilbert space H, formally one writes |ψ〉 ∈ H. For a
qubit, H is a two dimensional space, hence {|0〉 , |1〉} corresponds to an orthonormal
basis. This is not the sole basis representation for qubits; other commonly used
bases are {|+〉 , |−〉}, where |±〉 = 1√

2

(
|0〉 ± |1〉

)
and {|+i〉 , |−i〉}, where |±i〉 =

1√
2

(
|0〉± i |1〉

)
. For any orthonormal basis {|x〉 , |y〉}, the inner product of quantum

states |ψ〉 = α |x〉+ β |y〉 and |φ〉 = γ |x〉+ δ |y〉 is defined to be

〈φ|ψ〉 = 〈ψ|φ〉∗ = αγ∗ + βδ∗, (2.2)
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where an asterisk is used to signify the complex conjugate.
The 2-dimensional Hilbert space of a qubit naturally generalizes to d-dimensional

spaces. These quantum states are commonly known as qudits and can be represented
via

d−1∑
k=0

αk |k〉 , (2.3)

where
∑d−1

k=0 |αk|2 = 1 and {|0〉 , . . . , |d− 1〉} forms a basis for said Hilbert space.
Even though the results presented throughout this thesis are derived with respect to
systems composed of qubits, the techniques presented (quantum metrology, graph
states, error correction and cryptography) have higher dimensional forms, and thus
the results presented can be generalized to systems composed of qudits.

2.1.2 Multiple Qubits And Quantum Entanglement

A bipartite quantum system composed of |ψA〉 ∈ HA and |ψB〉 ∈ HB is represented
via

|ψAB〉 = |ψA〉 |ψB〉 ∈ HAB = HA ⊗HB. (2.4)

The above quantum states are called separable, as the composite system is (by
construction) a product of quantum states each belonging to a separate Hilbert
space. By the superposition principle, the composite Hilbert space HAB = HA⊗HB

also contains superpositions of separable quantum states. The two-qubit quantum
state

1√
2

(
|0〉A |0〉B + |1〉A |1〉B

)
(2.5)

cannot be written as a product of two one-qubit quantum states. In other words,
each qubit in the composite system cannot be described independently from one
another. This property is better known as entanglement and is a peculiarity unique
to quantum mechanics. Quantum entanglement is the root of the well-known
(and frequently misinterpreted in popular media2) Schrödinger’s thought experi-
ment [Sch35]. In the thought experiment, a hypothetical cat is placed in a box with
a radioactive source and a flask of poison. The poison is released upon detecting that
the radioactive source has decayed: killing the cat. The premise is that the nature
of the cat is entangled with the radioactive source. When the state of the source
evolves to a superposition of ‘not-decayed’ and ‘decayed’, the cat would ultimately

2If someone has forgotten whether or not they have food in their fridge, their fridge is not in a
macroscopic superposition of ‘empty’ and ‘full’. Instead, they are a simply a forgetful person.
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evolve to be in a macroscopic superposition of ‘alive’ and ‘dead’.

Figure 2.2: It is worth stressing that quantum properties such as superposition and
entanglement are theoretically possible at a macroscopic level, but are not observed
[Zur06]. Ergo, quantum effects are difficult to visualize. Illustration by Zach Wein-
ersmith, Saturday Morning Breakfast Cereal: Quantum-2 (2019), see [Wei19] in the
bibliography for the source details.

In general, a quantum state |ψ〉 in the composite Hilbert space
⊗n

k=1HAk is
called separable if and only if there exists |ψAk〉 ∈ HAk for all k such that

|ψ〉 =
n⊗
k=1

|ψAk〉 , (2.6)

otherwise it is entangled. For example, the n qubit Greenberger–Horne–Zeilinger
(GHZ) state

|ψGHZ〉 =
1√
2

(
|0〉⊗n + |1〉⊗n

)
, (2.7)

is a highly entangled state with many practical applications, including quantum
metrology. GHZ states are the canonical resource for the quantum metrology prob-
lem of phase estimation [GLM04; TA14]. The utility of a GHZ state is frequently
referenced in this thesis and used as a benchmark in Chapter 4 and Chapter 5.

Although quantum entanglement was originally coined as spooky by Einstein
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[EPR35], it has since been shown to be a valuable resource for the field of quantum
information. Numerous quantum-based protocols (e.g. superdense coding [BW92],
teleportation [Ben+93]) are contingent on the non-classical correlations of entan-
gled quantum states. Quantum metrology is no different: entanglement3 allows for
estimation strategies to surpass the limits of classical statistics [GLM04; GLM06;
GLM11; TA14].

2.1.3 Mixed States

It is often practical to consider statistical ensembles of quantum states {(pi, |ψi〉)},
where pi is the probability of the system being in the quantum state |ψi〉. This
abstraction is useful to incorporate stochastic processes and classical randomness
into the description of a quantum system. Mathematically this is represented as a
linear and positive semi-definite4 operator

ρ =
∑
i

pi |ψi〉〈ψi| , (2.8)

which is often referred to as a density operator, density matrix or (most commonly)
a mixed state. Because the set {pi} represents a set of classical probabilities, we
must have that

∑
i pi = 1, from which it follows that all mixed states have unit

trace Tr ρ = 1. The purity of a mixed state is a measure on the classical randomness
present in a quantum system and defined by Tr ρ2. For a general mixed state 0 ≤
Tr ρ2 ≤ 1, and the upper-bound is saturated if and only if there is no inherent
classical randomness present, i.e. the system is in a definite quantum state - more
commonly referred to as a pure state. Density operator formalism is predominantly
used in this thesis and, depending on the context, may signify a general mixed state
or specifically a pure state.

When dealing with composite systems, ρAB ∈ HA ⊗HB, it can be beneficial to
describe a subsystem when one does not have access to the other systems, e.g. A
does not have access to B. This is better known as a reduced density operator and
can be computed via the partial-trace

ρA = TrB ρAB =
∑
k

〈bk|ρAB|bk〉 , (2.9)

3In continuous variable systems, non-classical correlations can also be achieved through a process
called squeezing [Lvo15]. Squeezing is not the same as entanglement, but also leads to a quantum
advantage for metrology problems [Cav81; DJK15; Sch17].

4ρ is positive semi-definite if 〈φ|ρ|φ〉 ≥ 0 ∀ |φ〉 ∈ H.
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where {|bk〉} is any orthonormal basis of HB. If a composite system is an entan-
gled pure quantum state, then the reduced density operator is guaranteed to be a
mixed state with purity less than one. Therefore, by discarding a portion of a com-
posite quantum system, one introduces classical randomness into the non-discarded
systems.

The opposite is similarly true, in that it can be beneficial to extend the Hilbert
space of a mixed state to a composite system in which it is a pure state. This is
known as a purification process. If ρA =

∑
i pi |ψi〉〈ψi| ∈ HA and HB is an auxiliary

Hilbert space with orthonormal basis {|φi〉}, then the pure state

|ΨAB〉 =
∑
i

√
pi |ψi〉 |φi〉 (2.10)

is a purification of ρA because TrB |ΨAB〉〈ΨAB| = ρA. The purification is not unique.

2.1.4 Vector And Matrix Representation

Up until now, pure states have been represented as an abstract mathematical el-
ement of a Hilbert space, and general mixed states as a linear and non-negative
operator acting on said Hilbert space. For the most part of this thesis, this ab-
stract representation is sufficient. However, some of the mathematical derivations in
Appendix B make use of an alternative representation using vectors and matrices.

The vector representation of a pure qubit state is a two dimensional5 column
vector

α |0〉+ β |1〉 ←→

(
α

β

)
, (2.11)

and the representation of the corresponding dual is a two-dimensional row vector

α∗ 〈0|+ β∗ 〈1| ←→
(
α∗ β∗

)
. (2.12)

Combining the above, the mixed state {(p1, α |0〉 + β |1〉), (p2, γ |0〉 + δ |1〉)} is rep-
resented with the matrix

p1

(
α

β

)(
α∗ β∗

)
+ p2

(
γ

δ

)(
γ∗ δ∗

)
=

(
p1|α|2 + p2|γ|2 p1αβ

∗ + p2γδ
∗

p1α
∗β + p2γ

∗δ p1|β|2 + p2|δ|2

)
. (2.13)

5This representation extends to qudits, where the vectors are d dimensional objects.
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2.2 Quantum Operations

Operator formalism in quantum mechanics is used to describe transformations to
quantum states6. At the most general level, a quantum operator Γ is a linear map
from an input Hilbert space H1 to an output Hilbert space H2

Γ : H1 → H2

ρ→ Γ(ρ).
(2.14)

It is demanded that Γ has two properties. The first is for Γ(ρ) to have unit-trace
(for it to qualify as a quantum state); this is known as being trace-preserving. The
second is for Γ(ρ) to be positive semi-definite, and more so, if a partial trace is taken,
then the remaining subsystem is also positive semi-definite; this is known as being
completely positive. If Γ satisfies both properties, it is called a completely positive
trace-preserving (CPTP) map. A CPTP map can be written in the form

Γ(ρ) =
∑
j

AjρA
†
j, (2.15)

where {Aj} are known as Kraus operators [HK69] which satisfy
∑

j AjA
†
j = I.

2.2.1 Pauli And Clifford Operators

The three Pauli operators, X, Y and Z, are conceivably the most widely used
operators in the field quantum information. The Pauli operators are Hermitian and
involutory operators which act on single qubit quantum states, and along with the
identity map, form a group. Listed are the bra-ket and matrix representations of

6In this thesis, quantum states are viewed as the variables, this is known as the Schrödinger
picture. There is another formulation in which the operators act as the variables, better known as
the Heisenberg picture [GS18].
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the Pauli operators:

X = |0〉〈1|+ |1〉〈0| →

(
0 1

1 0

)
(2.16)

Y = −i |0〉〈1|+ i |1〉〈0| →

(
0 −i
i 0

)
(2.17)

Z = |0〉〈0| − |1〉〈1| →

(
1 0

0 −1

)
. (2.18)

The Pauli group {I, X, Y, Z} is a basis for all 2× 2 complex matrices, and thus
a single qubit quantum state can be expressed as

ρ =
1

2

(
I + Tr(Xρ)X + Tr(Y ρ)Y + Tr(Zρ)Z

)
. (2.19)

In general, defining the mth degree Pauli group to be Pm = {I, X, Y, Z}⊗m, a
quantum system composed of m qubits can be expressed as

ρ =
1

2m

∑
P∈Pm

Tr(Pρ)P. (2.20)

Another class of operators which are well known is the Clifford group. The
Clifford group is an important set of unitary operators in the realm of quantum
computing and quantum algorithms, as they were shown to be efficiently simulated
with a classical computer [Got98]. Mathematically, the Clifford group of degree m,
denoted Cm, is the set of unitary operators which normalize Pm (up to a phase of
±1), thus ∀C ∈ Cm and ∀P ∈ Pm

CPC† ∈ ±Pm. (2.21)

The set of local Clifford operations C1 can be decomposed as a sequence of a Pauli
operations or a π/4 phase shift e±i

π
4
P (with P ∈ {X, Y, Z}). Evidently, C1 is much

simpler to implement than an arbitrary local unitary [NWD14]. For this reason,
all but one of the cryptographic protocols we devise in Chapter 6 consist solely of
local Clifford operations.
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|+i〉

|−〉

|−i〉

|+〉

(a) Unitary evolution.

|+i〉

|−〉

|−i〉

|+〉

(b) Environmental decoherence.

Figure 2.3: Visual representation of the dynamics of a single qubit (initialized in the
|+〉 state) is governed by the master equation dρ(t)

dt
= − i

~ [ω
2
Z, ρ(t)] + γ

(
(Xρ(t)X −

ρ(t)
)
. The evolution of the qubit traces a path in theX−Y plane of the Bloch sphere.

In (a) the environmental term is ignored (γ = 0) and the qubit forever oscillates
between |+〉 and |−〉 with frequency ω. In (b) the decoherence term (γ 6= 0) causes
the qubit to eventually decohere to the maximally mixed state (the center of the
Bloch sphere).

2.2.2 Dynamics

The parameter encoding mechanism is the predominant element in a quantum
metrology problem. Formally, this is a physical process which influences the evo-
lution of a quantum state. In a closed and isolated system with a Hamiltonian H,
the evolution of a quantum state ρ is governed by the Schrödinger equation [Sch26;
GS18]

dρ(t)

dt
= − i

~
[H, ρ(t)]. (2.22)

As a result, the evolution is described as a unitary transformation

ρ(t) = Ut−t0ρ(t0)U †t−t0 , (2.23)

where Uτ = e−
i
~Hτ .

It is worth noting that closed and isolated systems do not emulate reality and
are effectively a fantasy for experimentalists and engineers. Real world quantum
technologies are plagued with noise (the subject of Chapter 5) due to interac-
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tions with the environment [Gar91; BP+02]. As a result, information is lost to the
surroundings, causing decoherence, dephasing, losses and fluctuations. There is no
explicit equation which governs the evolution of a quantum system for a general en-
vironmental interaction. However, with some assumptions (namely that the system
and environment are weakly-coupled and the interaction is time-independent) then
one can model evolution by modifying the Schrödinger equation [BP+02]

ρ̇(t) = − i
~

[H, ρ(t)] + L
(
ρ(t)

)
, (2.24)

where the super-operator L is better known as the Liouvillian. It was demonstrated
that for the evolution to yield a valid transformation (CPTP), the Liouvillian will
take on the form [Lin76]

L
(
ρ(t)

)
=

d2−1∑
j=1

γj
[
Lkρ(t)L†k −

1

2

{
ρ(t), LkL

†
k

}]
, (2.25)

where d is the dimension of the Hilbert space, γj are non-negative decay rates,
and L1, . . . , Ld2−1 are Lindblad operators. This equation is often referred to as the
Lindblad master equation.

The contrast between the Schrödinger equation and the Linblad master equation
is depicted in Fig. (2.3). When a single qubit pure state is governed solely by unitary
dynamics, it perpetually oscillates between pure states. But, when the system is
coupled to the environment, the qubit spirals towards the maximally mixed state.

2.3 Quantum Measurements

The principal goal of quantum metrology is to use a quantum system to estimate
the value a physical unknown parameter. With this in mind, it is crucial to extract
physical information from a quantum system; in the language of quantum mechanics,
this is done by measuring an observable [Von18]. Formally, a (finite) observable O
is a linear and Hermitian (O = O†) operator. By the spectral value theorem, O can
be decomposed into a set of projectors {Pi} satisfying PiPj = Piδi,j and

∑
i Pi = I

along with a corresponding set of real-values eigenvalues {oi} such that O =
∑

i oiPi.
Here, the index i signifies different measurement outcomes. If the quantum state ρ is
measured, then outcome i is observed with probability Tr(Piρ) and the expectation
value of O is 〈O〉 =

∑
i oi Tr(Piρ) = Tr(Oρ). This is the simplest description of a
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Chapter 2. Mathematical Foundations of Quantum Information

Figure 2.4: The Stern-Gerlach experiment [GS22] is an early prototype for a quan-
tum measurement. A beam of silver (Ag) atoms is sent through an inhomogeneous
magnetic field towards a detector screen. Initially, the spin of the silver atoms are
in arbitrary superpositions of |↑〉 and |↓〉. Classical physics predicts that the silver
atoms would be detected along the length of the detector screen. Instead, the silver
atoms were detected in two bunches, one bunch of spin |↑〉 atoms and one bunch of
spin |↓〉 atoms.

quantum measurement, and is called a projection-valued measurement (PVM).
A quantum measurement can be further generalized by abandoning the notion

that measurement outcomes are orthogonal. This abstraction is called a positive-
operator-valued measure (POVM) [NC02; Jac14]. A POVM is designed to ac-
company any allowable measurement statistics, bearing in mind that the post-
measurement state is ambiguous (see the next subsection). A POVM can be de-
scribed by a set of positive semi-definite operators {Mm} which satisfy the com-
pleteness relationship

∑
mMm = I. The outcome m is observed with probability

Tr(Mmρ). Comparable to the purification of mixed states, Eq. (2.10), it has been
shown that a POVM can always be obtained from a PVM acting on a higher di-
mensional space [NC02].

In this thesis we focus on single parameter quantum metrology problems. Al-
though many of the results naturally generalize to multiparameter problems, it is
important to be cognisant of the incompatibility of simultaneous measurements in
the multiparameter setting. Specifically, if two observables, A and B, do not com-
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mute
[A,B] 6= 0, (2.26)

then measuring A and then B is different than measuring B then A. In fact, this is
one of the major reasons why the cryptographic protocols outlined in Chapter 6
can be deemed secure. The incompatibility of simultaneous measurements gives rise
to the famous Heisenberg uncertainty principle [Rob29]

∆2A∆2B ≥ 1

4

∣∣ 〈[A,B]〉
∣∣2, (2.27)

where ∆2A = 〈A2〉 − 〈A〉2 is the variance of an observable.

2.3.1 Collapse Of The Wave Function

After a measurement is performed the quantum state undergoes a non-unitary trans-
formation, more commonly referred to as the ‘collapse of the wave function’7. If a
PVM is performed on the state ρ and outcome i is observed, then

ρ→ PiρPi
Tr(Piρ)

. (2.28)

The post-measurement state is drastically more complex when considering a general
POVM. As mentioned, the post-measurement state is ambiguous, this is in con-
sequence to the POVM elements {Mm} not having a unique Kraus decomposition
[HK69], as a multitude of measurement schemes may result in the same measurement
statistics [Jac14]. A Kraus decomposition of Mm is a product of an (not necessarily
self-adjoint) operator with its conjugate transpose, i.e for each Mm there exists an
Am such that Mm = AmA

†
m. The set {Am} are the measurement operators which

define a physical process which corresponds with the POVM. For a specific set of
measurement operators, if outcome m is observed, then

ρ→ AmρA
†
m

Tr(Mmρ)
. (2.29)

By comparing Eq. (2.28) and Eq. (2.29), one can interpret a PVM as a special case
of a POVM when the set of measurement operators are all projectors.

7The collapse of the wave function, a postulate of the Copenhagen interpretation, is arguably
the most widely used model for quantum measurements. It is important to note though, to date,
the dynamics of quantum measurements are still debated [Zeh70; Sch05].
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2.4 Distance Measures

Quantum states are elements of a Hilbert space, so it is natural to consider the
proximity of quantum states. Distance measures can be useful, as quantum states
which are close to one another can be expected to behave similarly under appropriate
transformations. Distance measures, namely the trace-distance and fidelity, play a
crucial role in Chapter 6, where the quantum states in question are bounded with
respect to the above measures, from which, their utility for quantum metrology can
be gauged.

2.4.1 Trace Distance

The trace distance, denoted by D , between quantum states ρ and σ can be calculated
using

D
(
ρ, σ
)

=
1

2
Tr |ρ− σ|, (2.30)

where |A| =
√
A†A. An alternative definition of the trace distance can be expressed

in terms of POVMs. Let {Mm} be a POVM, in which outcome m is witnessed with
probabilities pm = Tr(Mmρ) and qm = Tr(Mmσ). The trace distance is equivalently
defined via

D
(
ρ, σ
)

= max
{Mm}

(1

2

∑
m

|pm − qm|
)
, (2.31)

where the maximization is taken over all POVMs. The contents of the brackets on
the right-hand side of the above equation is in fact the definition of the trace distance
between probability distributions {pm} and {qm} [NC02]. The second expression
listed to compute the trace distance between quantum states is certainly impractical
to calculate, however it does provide an insightful inequality: for any POVM {Mm},
it follows that

1

2

∑
m

|Tr
(
Mm(ρ− σ)

)
| ≤ D

(
ρ, σ
)
. (2.32)

The trace distance is contractive under a CPTP map E , that is

D
(
E(ρ), E(σ)

)
≤ D

(
ρ, σ
)
. (2.33)
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2.4.2 Fidelity

The fidelity between quantum states is perhaps the most renowned measure of close-
ness in quantum information, even though it is not a metric in the mathematical
sense. The fidelity, denoted with F , between quantum states ρ and σ can be com-
puted using

F
(
ρ, σ
)

=
(

Tr
√√

ρσ
√
ρ
)2

, (2.34)

which greatly simplifies to F
(
ρ, σ
)

= Tr(ρσ) when either ρ or σ is a pure state.
Note that this version of the fidelity is the square of what is defined in [NC02]. The
fidelity and trace distance are related by the Fuchs–van de Graaf inequalities [FV99]

1−
√

F
(
ρ, σ
)
≤ D

(
ρ, σ
)
≤
√

1−F
(
ρ, σ
)
. (2.35)
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3
Estimation Theory

Estimation theory is the mathematical language of metrology. Statistical error in
classical estimation theory is ultimately constrained by the central limit theorem.
Quantum metrology overcomes this limitation thanks to quantum entanglement.
With the vast number of applications and straightforward proof of principle, it
is unsurprising that quantum metrology is witnessing a boon of theoretical and
experimental developments [GLM11; DRC17; Pir+18].

This chapter is divided into three sections. The first section summarizes impor-
tant concepts from classical estimation theory [Kay93; Cox06; She03; Ric06; Poo13].
The second section is devoted to the analogous concepts of quantum estimation the-
ory formalized by Helstrom [Hel67; Hel68; Hel69] and Holevo [Hol73; Hol82]. The
final section examines example applications of quantum metrology (phase estima-
tion and amplitude estimation) to put into perspective the mathematical tools and
concepts introduced throughout the first two sections. For a quantum information
perspective on quantum metrology see [TA14]. For a more mathematical rigorous
review of quantum metrology and quantum estimation theory see [SJS17]. For more
information on estimation theory and statistical inference see [Kay93; Cox06].

An experiment is a question which science poses to Nature and a mea-
surement is the recording of Nature’s answer.

-Max Planck

3.1 Classical Estimation Theory

In an abstract sense, the scientific and mathematical knowledge of humankind is
reflected in the mathematical models used to describe the contents of the universe:
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planetary orbits, bacterial growth in a petri dish, even social constructs like fi-
nancial trends. These models, are not fabricated haphazardly, instead they are a
manifestation of a multitude of observations and tested by making predictions. As
our efficiency of gathering and interpreting data increases, so do the mathematical
models, and in turn our understanding of the universe. For example, the theory
of gravity has evolved along with the capabilities of telescopes; from Galilean and
Newtonian gravity to Einstein’s theory of general relativity to the (currently uncon-
firmed) theory of dark matter and dark energy.

Estimation theory is a branch of statistics at the heart of mathematical mod-
elling. It addresses the question: ‘What is the most efficient way of extracting infor-
mation from a set of data?’. This seemingly simple question is difficult to answer.
Typically, the variables used to describe a mathematical model can be partitioned
in two categories

1. observables - an attribute which can be inherently measured (e.g. position and
speed).

2. latent parameters - an attribute which cannot be inherently measured, (e.g.
strength of an electromagnetic field).

The parameter estimation problem is concerned with the extent at which collected
data (observables) can be used to estimate the unknown latent parameters [She03].
With respect to the listed examples, one could observe the dynamics of a charged
particle to estimate the strength of an electromagnetic field.

Formally, observed data x = {x1, . . . , xN} is treated as a realisation of N inde-
pendent and identically distributed (iid) random variables X. A probably density
function p(X|θ) dictates the distribution of observed data, where θ is a latent pa-
rameter. The goal of the parameter estimation problem is to construct an estimator
θ̂(x), which should be interpreted as a function whose input is the collected data x

and outputs an estimate of θ. The explicit dependence on x is sometimes dropped
for clarity, θ̂(x) → θ̂. Estimators are subjected to two conditions. The first condi-
tion is that the expected estimate is the true value of the parameter, this is known
as having an unbiased estimator

〈θ̂〉 =

∫
p(x|θ)θ̂(x)dx = θ. (3.1)

The integral equation is used for observed data which can take on a continuum of
values, it is interchangeable with a sum in the discrete case. The second condition is
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that an estimator tends towards the correct value as the amount of data increases,
this is known as being consistent

lim
N→∞

θ̂ = θ. (3.2)

An estimator is a manifestation of random variables, and is thus also a random
variable, hence, statistical moments such as mean and variance are well-defined.

The statistical inference process adopted to the parameter estimation problem is
dependent on the nature of the latent variable: deterministic or stochastic. Usually,
a frequentist inference approach is taken for deterministic parameters and a Bayesian
inference approach is taken for stochastic parameters [Li+18]. Mathematically, these
two approaches vary greatly, the primary differences are listed in Tab. (3.1), but
they are not mutually exclusive. The subsequent chapters of this thesis employ
the frequentist approach, and therefore the frequentist approach is summarized in
greater detail in this chapter. That being said, the Bayesian approach has been
adapted to the realm of quantum information [Hol82; TWC11], and has been gaining
traction in the community [Ber+09; GM13; JD15; WG16; RD20]. Specifically, to
circumvent problems of the frequentist approach: i) lack of a priori knowledge [KD10;
Dem11] and ii) inaccuracies with limited resources [RD20]. Even though it is not
applied to the research presented in this thesis, for the sake of completeness, a brief
summary of the Bayesian approach used in classical parameter estimation problems
and its adaptation to quantum parameter estimation problems is included in this
chapter.

Frequentist Approach Bayesian Approach

Parameter(s) Deterministic Stochastic

Figure of Merit Mean squared error Cost function

Optimization Local Global

Table 3.1: The main differences between the frequentist approach and Bayesian
approach for statistical inference. This is a broad perspective and the statistical
inference approaches are not restricted by this table.
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3.1.1 The Frequentist Approach

The frequentist approach is typically used when θ is deterministic (sometimes called
static). As N → ∞ the frequency of collected data tends to reflect the probability
density function, hence the etymology. Therefore with a sufficient amount of col-
lected data, the unknown parameter can be estimated to any desired precision. The
figure of merit used by the frequentist approach is the mean-squared error (MSE)

∆2θ̂ = 〈(θ̂ − θ)2〉 =

∫
p(x|θ)

(
θ̂(x)− θ

)2
dx, (3.3)

in which the aim is to find an estimator which minimizes the above equation. Be-
cause the estimator is assumed to be unbiased, the MSE is equal to the variance,
which is often a more significant statistical quantity.

The first controversy of the the frequentist approach arises due to the fact that
an optimal estimator (one where Eq. (3.3) is minimized) is potentially dependent
on θ. Some estimators may be optimal for specific values of θ (local), whereas
an estimator which is optimal for all values of θ (global) can only be worse than
ones which are locally optimized. At first glance, this appears counter intuitive
because a locally optimized estimator requires exact knowledge of θ, which defeats
the purpose of parameter estimation. However, it is reasonable to assume that a
priori approximate knowledge θ ≈ θ0 is often known because of theory or previous
estimates. In the absence of a priori knowledge, one can construct a locally efficient
estimator by increasing N . To do so, a fraction of the results are first used to obtain
a local approximation θ0, and the remaining are used within the locally optimized
estimator. Unfortunately, the frequentist approach does not provide a method on
bounding N such that the local regime can be assured; thus the saturation of an
optimal estimator may not be possible without the ability to infinitely increase N .

3.1.2 Cramér-Rao Bound And Fisher Information

The Cramér-Rao Bound (CRB) is an inequality which assigns a lower bound to the
MSE of unbiased estimators [Cra46], the derivation of which is straightforward. The
unbiased condition, Eq. (3.1), can be re-written as∫

p(x|θ)
(
θ̂(x)− θ

)
dx = 0, (3.4)
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from which it follows that

0 =
∂

∂θ

∫
p(x|θ)

(
θ̂(x)− θ

)
dx

=

∫
∂p(x|θ)
∂θ

(
θ̂(x)− θ

)
dx−

∫
p(x|θ)dx

=

∫
p(x|θ)∂ ln p(x|θ)

∂θ

(
θ̂(x)− θ

)
dx− 1.

(3.5)

Using the Cauchy–Schwarz inequality∣∣∣∣ ∫ f(x)g(x)dx

∣∣∣∣2 ≤ (∫ f(x)2dx

)
·
(∫

g(x)2dx

)
, (3.6)

with x → x, f(x) →
√
p(x|θ)∂ ln p(x|θ)

∂θ
and g(x) →

√
p(x|θ)

(
θ̂(x) − θ

)
, Eq. (3.5) is

transformed into the inequality

1 ≤
(∫

p(x|θ)
(
θ̂(x)− θ

)2
dx

)
·
(∫

p(x|θ)
(∂ ln p(x|θ)

∂θ

)2

dx

)
. (3.7)

The above can be manipulated to obtain the CRB

∆2θ̂ ≥ 1

I
(
p(x|θ)

) , (3.8)

where

I
(
p(x|θ)

)
=

∫
p(x|θ)

(∂ ln p(x|θ)
∂θ

)2

dx

=

∫
1

p(x|θ)

(∂p(x|θ)
∂θ

)2

dx

= −
∫
p(x|θ)∂

2 ln p(x|θ)
∂θ2

dx

(3.9)

is the Fisher Information (FI), where three equivalent (assuming that p is twice
differentiable) expressions given. The FI is a non-negative and additive quantity.
Because x is N independent realisations of the random variable X, the CRB can be
equivalently expressed as

∆2θ̂ ≥ 1

NI
(
p(X|θ)

) . (3.10)

The above form of the CRB reflects the limitations of central limit theorem: as
N → ∞ the sample average will take on a normal distribution with a variance of
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O
(
N−1

)
.

The FI is often interpreted as a measure of how much information about an
unknown parameter can be extracted from a probability density function [Fis25]. In
particular, θ can be learned perfectly when I → ∞, and conversely no information
can be learned about θ when I = 0. In fact, when viewing probability density
functions as points on a manifold (parameterized by θ), the FI is a Riemannian
metric between neighbouring probability density functions p(X|θ) and p(X|θ + δθ)

[Nie13]. Similarly, the statistical angle1 between probability density functions

D
(
p1(x), p2(x)

)
= arccos

∫ √
p1(x)p2(x)dx, (3.11)

can be expressed as [BCR86]

D
(
p(X|θ), p(X|θ + δθ)

)
=

1

2

√
I
(
p(X|θ)

)
δθ +O

(
δθ2
)
. (3.12)

Hence, a probability density function with a high FI will deviate more upon small
perturbations δθ than the opposing case of a probability density function with a
small FI.

The Cauchy-Schwarz inequality, Eq. (3.6), is saturated if

|f(x)|
|g(x)|

=

∫
f(x)2dx∫
g(x)2dx

(3.13)

Therefore an estimator which saturates the CRB for all θ (global) satisfies

∂ ln p(x|θ)
∂θ

= I
(
x|θ
)(
θ̂(x)− θ

)
. (3.14)

An estimator which saturated the CRB is said to be efficient. The above expression
can be equivalently written as

p(x|θ) = exp

(∫
I
(
x|θ
)(
θ̂(x)− θ

)
dθ

)
= exp

(
∂J
(
x|θ)
∂θ

(
θ̂(x)− θ

)
+ J

(
x|θ) + c(x)

)
,

(3.15)

where J
(
x|θ
)
is a function which satisfies

∂2J
(
x|θ
)

∂θ2
= I

(
x|θ
)
and c(x) is an arbitrary

function independent of θ, both of which are chosen such that the unbiased condition,
1This is the classical version of the Bures angle [Woo81].
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Figure 3.1: The FI for a normal distribution p(X|µ, σ) = 1√
2πσ

e−
1
2

(x−µ
σ

)2 . Regardless
of whether µ or σ is the latent parameter, the FI is exclusively dependent on the
standard deviation of the normal distribution. This is logical because it is more dif-
ficult to interpret data with a larger standard deviation; which is in accordance with
the interpretation of the FI being a measure of extractable information. One could
equally consider the scenario in which both µ and σ are unknown parameters. Here
multiparameter parameter estimation techniques are needed - which are discussed
in a latter part of this chapter.

Eq. (3.1), is satisfied. This general expression for a probability density function can
correspond to a multitude of well-known distributions in statistics with exponential
tendencies: Gaussian, Bernoulli, Poisson, et cetera. It should be stressed that an
efficient global estimator does not necessarily exist, further it may encounter the
earlier stated problem of having a dependence on θ. A locally (approximately)
efficient estimator can be constructed with prior knowledge that θ ≈ θ0 by re-
arranging Eq. (3.14)

θ̂Local = θ0 +
1

I
(
x|θ0

) ∂ ln p(x|θ)
∂θ

∣∣∣∣
θ→θ0

. (3.16)

Unfortunately, the locally approximate estimator is ultimately constrained by ones
prior knowledge, as shifting θ0 → θ0 + δθ0 will similarly shift Eq. (3.16) by O(δθ0).
Furthermore, the locally approximate estimator may be ill defined on certain do-
mains, for example one of circular symmetry (such as the problem of phase estima-
tion which is discussed in a later section of this chapter).
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(b) N = 100

Figure 3.2: Likelihood function for a biased coin where pH is an unknown probability
of the coin toss resulting in heads. The maximum likelihood estimation strategy
outputs p̂H = # Heads

N
. The estimate is sensitive to small fluctuations in the observed

data for small N (a), but becomes more robust to fluctuations as N increases (b).

3.1.3 Maximum Likelihood Estimation

The likelihood function L(θ|x) = p(x|θ) is a goodness of fit between a model and the
sampled data. It should be understood that the likelihood function is not a proba-
bility density function; the observed data x is held fixed and the latent parameter θ
is considered a variable. The intuition is simplistic: if L(θ1|x) > L(θ2|x), then it is
more likely that the true value of θ is θ1 rather than θ2. This is the principal idea of
maximum likelihood estimation [BW88]. The maximum likelihood estimator, θ̂ML,
outputs the value of θ which maximizes L(θ|x)

θ̂ML(x) = argmax
θ

L(θ|x) = argmax
θ

lnL(θ|x). (3.17)

Because p(x|θ) is a joint probability density function of N independent probability
density functions, p(x|θ) =

∏N
j=1 p(xj|θ), it is often simpler to maximize the log of

the likelihood function, lnL(θ|x), sometimes shortened to the log-likelihood.
One controversy with maximum likelihood estimation is that θ̂ML does not gen-

erally satisfy the unbiased condition, Eq. (3.1). Specifically, for small N , where the
estimator is much more susceptive to statistical outliers within the collected data.
However, as N →∞ the estimator becomes more unbiased, 〈θ̂ML〉 → θ. The sensi-
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tivity of the maximum likelihood estimator to small fluctuations in x is illustrated
in Fig. (3.2). Additionally, the MSE of the maximum likelihood estimator tends
to saturate the CRB as it becomes more unbiased [Kay93; Van00]. It is important
to remark that there is no general formula to determine an appropriate value of
N . However, within the framework of quantum metrology, unknown parameters are
encoded into quantum resources; because of the abundance of these resources the
issue of small N is often ignored.

3.1.4 Example: Biased Coin

Consider a biased coin, which when flipped results in heads with an unknown prob-
ability pH and tails with probability 1 − pH . For the sake of creating a locally
optimized estimator, previous coin tosses suggest that the bias is pH ≈ pH,0. The
FI of a single flip is easy to compute

Icoin =
1

pH

(∂pH
∂pH

)2

+
1

1− pH

(∂(1− pH)

∂pH

)2

=
1

pH(1− pH)
, (3.18)

thus the CRB imposes that the MSE of an unbiased estimator using N outcomes is
bounded by

∆2p̂H ≥
pH(1− pH)

N
. (3.19)

To remain somewhat general, the data collected is from N coin tosses, h of which
resulted in heads and N−h of which resulted in tails, which occurs with probability(
N
h

)
phH(1− pH)N−h. Using the locally optimized estimation strategy, Eq. (3.16), the

estimator is

p̂LocalH = pH,0 +
1

NIcoin
∂ ln phH(1− pH)N−h

∂pH

∣∣∣∣
pH→pH,0

=
h

N
, (3.20)

which is unbiased because

〈p̂LocalH 〉 =
N∑
h=0

(
N

h

)
phH(1− pH)N−h

h

N
= pH . (3.21)

Furthermore, the estimator is efficient because it saturates the CRB

∆2p̂LocalH =
N∑
h=0

(
N

h

)
phH(1− pH)N−h

( h
N
− pH)2 =

pH(1− pH)

N
=

1

NIcoin
. (3.22)
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Despite the fact that the estimator was initially constructed using a local ap-
proximation, the estimator is independent of pH,0, and is thus globally optimized.
In addition, the same estimator is realized using the maximum likelihood estima-
tion strategy, see Fig. (3.2). The biased coin exemplifies the underlying nature of
the frequentist approach: as N increases, the quantity h

N
converges to the quan-

tity pH , from which the (albeit simple) probability density function can be reverse
engineered.

3.1.5 The Bayesian Approach

The Bayesian approach is typically used to estimate unknown parameters which are
stochastic. In other words, the latent parameters are themselves a random variable
and have an intrinsic probability distribution p(θ) - which should to be confused
with p(x|θ). Therefore, the observed data x is dependent on specific realisations of
θ. Consequently, a well-constructed estimator within the Bayesian approach aims
to minimize the MSE for all values (global) of θ, and not subjected to local values
like the frequentist approach. To achieve this, the Bayesian approach minimizes the
average of a cost function C(θ̂, θ) [Kay93; TB07]

〈C(θ̂, θ)〉 =

∫
p(θ)

(∫
p(x|θ)

(
C(θ̂(x), θ)dx

)
dθ. (3.23)

In principle, a cost function is a generalisation of the MSE for the frequentist ap-
proach. It is a function which decreases as θ̂ approaches θ. The MSE is an example
of a cost function, so too is the absolute error C = |θ̂ − θ|. Different cost functions
are tailored to specific probability density functions to take advantage of specific
symmetries or properties.

By merging the two probability distributions, the average cost can be interpreted
as an average over the simultaneous realisations of X and θ. According to Bayes’
theorem (hence the name of this approach), the joint probability distribution can
be interpreted in two ways

p(x, θ) = p(x|θ)p(θ) = p(θ|x)p(x), (3.24)

thus the average cost can be written as

〈C(θ̂, θ)〉 =

∫
p(x)

(∫
dθp(θ|x)C(θ̂(x), θ)dθ

)
dx. (3.25)
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The average cost can then be minimized through standard optimization techniques,
i.e by solving the equation

∂

∂θ̂

∫
p(θ|x)C(θ̂(x), θ)dθ = 0, (3.26)

where the quantity p(θ|x) can be computed using Bayes’ theorem

p(θ|x) =
p(x|θ)p(θ)
p(x)

=
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

. (3.27)

A priori knowledge of p(θ) is needed to evaluate Eq. (3.26), which is why the
Bayesian approach is often used in tandem with adaptive techniques. The estimator
continually outputs a new probability density function p(θ) based on the previous
density function and collected data, and as the number of repetitions increases it
will converge towards the correct value. There are precision bounds similar to the
CRB within the Bayesian framework, but they are dependent on the cost function
[BMZ87]. More information about Bayesian inference can be found in [TB07].

3.2 Quantum Estimation Theory

In the quantum setting, the foundations of the parameter estimation problem re-
mains mostly unchanged from the classical setting [Hel69; Hol82]. An unknown
parameter θ governs an n qubit quantum state ρθ, the individual qubits can be
measured with respect to a PVM M , and the measurement outcomes m1, . . . ,mn

are used to construct an estimate θ̂2. The main difference from the classical setting
is that the measurement outcomes (analogous to x) are not necessarily independent
from each other because of entanglement. As a result, estimates can be made with
a super-classical precision known as the Heisenberg limit.

A quantum parameter estimation problem can be viewed as a two step process.
The first is the ‘prepare, encode and measure’ step, which is inherently quantum
by construction and depicted in Fig. (3.3). The second is the statistical inference
step, which is uniquely classical, thus the techniques discussed in the the previous
section can be applied. Therefore, using a frequentist approach with an unbiased

2The assumptions that the qubits are acted on independently and identically (both the encoding
and the measurement) are unnecessary and impose a limit on the most general framework of a
quantum parameter estimation scheme, see Fig. (3.3). These assumptions are introduced to provide
a natural extension from a classical framework to a quantum framework.
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(a) Phase estimation. (b) General framework.

Figure 3.3: Diagrams of the prepare, encode and measure segment of a quantum
parameter estimation problem. (a) The canonical example of quantum metrology
is phase estimation [GLM06], in which a phase θ is independently and identically
encoded into each of the n qubits of ρ through a unitary Uθ. Each of the qubits are
individually measured in accordance with a PVM M . (b) A more general frame-
work involves θ being encoded through a general CPTP map Λθ, which does not
necessarily act identically on the n qubits. Additionally, the PVM M is replaced
by a POVM M. The generalized setting depicted in (b) is allowable in the realm
of quantum mechanics, but unlike the problem of phase estimation, it is difficult
to compare to classical setting. Further, highly entangling operations and measure-
ments are not feasible for current quantum technologies [CL01], so it is often more
practical to consider the simplistic setting of phase estimation as a benchmark for
quantum metrology.

estimator, if the quantum portion is repeated ν times, the MSE is bounded by a
quantum version of the CRB, otherwise known as the quantum Cramér-Rao bound
(QCRB)

∆2θ̂ ≥ 1

νI(ρθ,M)
≥ 1

νQ(ρθ)
, (3.28)

whereQ is the quantum Fisher information (QFI), which is the FI maximized over all
POVM’sM [BC94]. Evidently, the goal of finding an optimal estimator θ̂ naturally
divides into a classical goal and a quantum goal. The classical goal is to devise an
optimal estimation technique, e.g. a locally optimized estimator or the maximum
likelihood estimator, whilst the quantum goal is to find an optimal combination
of initialized states ρ and POVM M. For the task of phase estimation, this the
QCRB can be saturated using highly entangled states, such as the GHZ state or
NOON states, and a local measurement strategy [GLM04]. In general, the QFI is a
highly non-linear equation, and there is no universal optimization strategy which is
applicable to an arbitrary encoding Λθ. There are different mathematical techniques

33



Chapter 3. Estimation Theory

to approximately solve this optimization problem [GG13; Koc+20; MBE21].
The quantum metrology schematics in Fig. (3.3) are idealized settings. In reality,

it is much more complicated: environmental decoherence occurs in simultaneity
with the parameter encoding, resulting in noisy measurement statistics and added
uncertainty [EdMD11a; EdMD11b; DKG12]. More so, quantum technologies are not
perfect, and an error may be introduced in either the quantum state preparation
step or quantum measurement step. This more realistic noisy scenario is explored
in greater detail in Chapter 5.

3.2.1 Inferring An Estimate From An Observable

A simple frequentist estimation strategy used in quantum metrology is to construct
an estimator for the expectation value of an observable O and infer the value of
the latent parameter from this estimate [TA14]. Assuming that O is chosen appro-
priately, the expectation value 〈O〉 = Tr(Oρθ) will be a function of θ, denoted by
f(θ) = Tr(Oρθ). An estimate of f(θ), f̂ , can be inverted to obtain θ̂ = f−1(f̂).
The estimator f̂ is designed using the frequentist philosophy: with sufficient data
ν � 1, the frequency of the measurement results will mimic the true probability den-
sity function. Denote the eigenvalues of O as {λj} with corresponding eigenvectors
{|φj〉}

O =
∑
j

λj |φj〉〈φj| . (3.29)

The state ρθ is measured with respect to the eigenbasis of O. The results are
recorded as m1, . . . ,mν : if the kth measurement results in |φj〉, then mk = λj and
the maximum likelihood estimate can be written as

f̂ =
1

ν

ν∑
k=1

mk. (3.30)

This is an unbiased estimate because

E(f̂) =
1

ν

ν∑
k=1

E(mk) =
1

ν

ν∑
k=1

∑
j

λj Tr(ρθ |φj〉〈φj|) =
1

ν

ν∑
k=1

〈O〉 = 〈O〉 , (3.31)

and the MSE is proportional to the variance of O

∆2f̂ =
∆2O

ν
=

Tr(O2ρθ)− Tr(Oρθ)
2

ν
. (3.32)
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An issue with this estimation technique is that f(θ) is not necessarily an invert-
ible function, and thus f̂ = f−1(f̂) may be ambiguous. That is of course, unless one
has a priori knowledge of θ ≈ θ0 such that one can properly define a local inverse
in the region surrounding f(θ0). Assuming this is true and that the MSE is small,
∆2f̂ � 1, then by the central limit theorem f̂ fluctuates close to 〈O〉, validating the
first order Taylor approximation

θ̂ = f−1(f̂) ≈ f−1(〈O〉) +
∂f−1(f̂)

∂f̂

∣∣∣
f̂→〈O〉

(f̂ − 〈O〉) = θ +
1

∂〈O〉
∂θ

(f̂ − 〈O〉). (3.33)

It follows from the above approximation that the estimator θ̂ is unbiased and has
MSE

∆2θ̂ =
∆2f̂

|∂〈O〉
∂θ
|2

=
∆2O

ν|∂〈O〉
∂θ
|2
. (3.34)

Figure 3.4: Graphical calculation of the MSE ∆2θ̂ using the error propagation for-
mula. The solid red curve depicts θ̂ = f−1(f̂), which at the point f̂ → 〈O〉 has a
tangent with angle α, therefore, ∆θ̂

∆f̂
= | tanα| = |∂〈O〉

∂θ
|−1.

Eq. (3.34) is the error propagation formula, which quantifies the amount that θ̂
fluctuates around θ in terms of the fluctuations of f̂ around 〈O〉 [Ku+66]. A geomet-

35



Chapter 3. Estimation Theory

ric intuition of the formula is depicted in Fig. (3.4). The term in the denominator
|∂〈O〉
∂θ
|2 encapsulates the difficulty of inverting a function when there is uncertainty.

The effects of uncertainty are amplified near a local maxima or minima, but diminish
as |∂〈O〉

∂θ
| → ∞.

3.2.2 Quantum Fisher Information

Using the semantics of quantum information theory, the explicit expression for the
FI with respect to a POVMM with outcomes {Em} can be written as

I(ρθ,M) =

∫ (
Tr(Emρ̇θ)

)2

Tr(Emρθ)
dm, (3.35)

where the notation �̇ = ∂�
∂θ

is used for conciseness. Just as the FI is interpreted as an
information measure, so too is the QFI [BG00]. Eq. (3.12) suggests that the POVM
which maximizes the distinguishability between the probability density functions
associated to ρθ and ρθ+δθ will similarly maximize the FI. This is a principle idea
behind the derivation of the closed form expression of the QFI [BC94].

The derivation begins by defining the superoperator

Rρθ(O) =
1

2
(ρθO +Oρθ), (3.36)

whose inverse3 is
R−1
ρθ

(O) =
∑
j,k

2

λj + λk
Ojk |j〉〈k| , (3.37)

where ρθ =
∑

j λj |j〉〈j| is the orthonormal expansion of ρθ and Ojk = 〈j|O|k〉. A
property of R is that for any Hermitian A and B, Tr

(
AB
)

= Re
[

Tr
(
ρθAR−1

ρθ
(B)
)]
,

from which it follows that the FI can be written as

I(ρθ,M) =

∫ Re
[

Tr
(
ρθEmR−1

ρθ
(ρ̇θ)

)]2
Tr(Emρθ)

dm

≤
∫ ∣∣Tr

(
ρθEmR−1

ρθ
(ρ̇θ)

)∣∣2
Tr(Emρθ)

dm

=

∫ ∣∣Tr
(√

ρθ
√
Em
√
EmR−1

ρθ
(ρ̇θ)
√
ρθ
)∣∣2

Tr(Emρθ)
dm.

(3.38)

3The inverse R−1ρθ (O) is not always well defined for all O, however the quantity used in the
derivation of the QFI, R−1ρθ (ρ̇θ), always converges to a well-defined Hermitian operator.
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The final step in the derivation uses the Cauchy-Schwarz inequality |Tr
(
A†B

)
|2 ≤

Tr
(
AA†

)
Tr
(
BB†

)
with A =

√
Em
√
ρθ and B =

√
EmR−1

ρθ
(ρ̇θ)
√
ρθ,

I(ρθ,M) ≤
∫

Tr
(
EmR−1

ρθ
(ρ̇θ)ρθR−1

ρθ
(ρ̇θ)

)
dm

= Tr
(
R−1
ρθ

(ρ̇θ)ρθR−1
ρθ

(ρ̇θ)
)

= Q(ρθ).

(3.39)

The Hermitian operator R−1
ρθ

(ρ̇θ) is the symmetric logarithmic derivative. The
QCRB can be saturated by settingM to be the measurement in the eigenbasis of
R−1
ρθ

(ρ̇θ) [BC94; Luo00; Mat02]. Unfortunately, but not surprisingly, such a mea-
surement is encumbered by the usual quandary of the frequentist approach: the
measurement basis is dependent on θ4. Furthermore, this measurement strategy is
very sophisticated and out of reach for current technologies [CL01]. Fortunately,
this is not the unique measurement strategy which saturates the QCRB [GLM04].
As mentioned, the quantum goal of parameter estimation problems is to determine
feasible measurement schemes which best saturate the QCRB.

A closed form expression for the QFI can be derived using the definition of
R−1
ρθ

(ρ̇θ), Eq. (3.37),

Q(ρθ) =
∑
j

λ̇2
j

λj
+ 2

∑
j,k

(λj − λk)2

λj + λk
|
〈
j̇
∣∣k〉 |2. (3.40)

The first sum is reminiscent of the classical FI and quantifies the amount of ex-
tractable information from the eigenvalues {λj}. Whilst the second sum accounts for
quantum effects such as superposition and entanglement and quantifies the amount
of extractable information from the quantum states {|j〉}. To a certain extent, the
classical term is limited to ‘amplitudes’, while the quantum term has access to ‘am-
plitudes’ and ‘phases’. As such, the quantum term is significantly more influential
than the classical term, this is reinforced by the convexity property of the QFI
[AR15]

Q
(
pρ1 + (1− p)ρ2

)
≤ pQ(ρ1) + (1− p)Q(ρ2). (3.41)

For the special case of pure states ρθ = |ψθ〉〈ψθ|, the expression is much more aesthet-
ically pleasing. It follows from ρ2

θ = ρθ that ρ̇θ = ρθρ̇θ+ρ̇θρθ and thusR−1
ρθ

(ρ̇θ) = 2ρ̇θ.

4Similar to how a locally optimized estimator, Eq. (3.16), approximately saturates the CRB,
measuring in the eigenbasis of R−1ρθ (ρ̇θ)|θ→θ0 approximately saturates the QCRB.
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Figure 3.5: The length of the chord between |ψθ〉 and |ψθ+δθ〉 is 2 sin dA
2
. For small

dA, the length of the chord is approximately equal to the length of the geodesic,
ds ≈ 2 sin dA

2
≈ dA. This idea generalizes to higher dimensional abstract surfaces

CPn as well as their interior points (mixed states).

The QFI simplifies greatly to

Q(|ψθ〉) = 4 Tr
(
ρθρ̇

2
θ

)
= 4
(
〈ψ̇θ|ψ̇θ〉 − | 〈ψ̇θ|ψθ〉 |2

)
. (3.42)

In fact, it was shown that a similar expression holds for arbitrary mixed states
[EdMD11b]

Q(ρθ) = min
|Ψθ〉

4
(
〈Ψ̇θ|Ψ̇θ〉 − | 〈Ψ̇θ|Ψθ〉 |2

)
, (3.43)

where the minimization is taken over all possible purifications, Eq. (2.10), of ρθ.

3.2.3 Geometric Perspectives Of The QFI

The representation introduced in Chapter 2 is that a quantum state |ψ〉 can be
thought of as a vector which is an element of a Hilbert space H. An alternative
to this is a geometric representation, where n qubit quantum states are thought to
be elements of the complex projective space CPn [Woo81; PS96; GKM05]. Pure
states reside on the surface of this Riemannian manifold and mixed states in the
interior, the n = 1 case is the well-known Bloch sphere portrayed in Fig. (2.1). CPn

is equipped with an infinitesimal metric called the Fubini-Study metric ds2, which
is called the Bures metric [Bur69; SZ03] when it is extended to include the interior.
Such a metric allows one to compare neighbouring quantum states ρθ and ρθ+δθ,
analogous to the FI metric for (classical) statistical manifolds, it can be shown that
ds2 = 1

4
Q(ρθ)δθ

2 [Fac+10; SK20].
The Bures angle dA is the angle between the rays of ρ1 and ρ2, explicitly [Ama16;
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BŻ17]
dA(ρ1, ρ2) = arccos

√
F (ρ1, ρ2), (3.44)

where F is the fidelity, Eq. (2.34). For neighbouring quantum states, the Bures
angle can be approximated two different ways. The first way is by using a first order
Taylor expansion

dA(ρθ, ρθ+δθ) =

√
2− 2

√
F (ρθ, ρθ+δθ) +O(δθ2). (3.45)

The second is a geometric approximation using the Bures metric (and by extension
the QFI), the intuition of which is given in Fig. (3.5)

dA(ρθ, ρθ+δθ) = ds+O(δθ2) =
1

2

√
Q(ρθ, ρθ+δθ)δθ +O(δθ2). (3.46)

A new expression for the QFI is obtained by merging the two equations [SK20]

Q(ρθ) = lim
δθ→0

8
1−

√
F (ρθ, ρθ+δθ)

δθ2
, (3.47)

which can be useful to derive analytic bounds for the QFI and other information
theoretic quantities [Suz19; TAD20]. A corollary of Eq. (3.47) is the concavity of
the QFI under CPTP maps E

Q
(
E(ρθ)

)
≤ Q

(
ρθ
)
, (3.48)

which follows from the monotonicity of the fidelity F
(
E(ρ1), E(ρ2)

)
≥ F

(
ρ1, ρ2

)
.

If E is thought of as an interaction with an environment (Chapter 5) or a mali-
cious adversary (Chapter 6), then the concavity of the QFI can be understood as
information about θ being lost to these outside sources.

3.2.4 Ultimate Precision: The Heisenberg Limit

To recapitulate: the CRB is a bound on the MSE by optimizing over estimation
strategies, and the QCRB extends the bound by optimizing over measurement strate-
gies. The next natural extension is to optimize over initialized quantum states, to
find the true limit of precision attainable through quantum mechanics. The upper
bound for which is referred to as the Heisenberg Limit (HL) [YMK86; HB93].

Originally, the HL was derived within the framework of phase estimation. In the
phase estimation problem, a phase θ is encoded into each qubit of an n qubit pure
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state |ψ〉 by a unitary Uθ = e−iθH , where the Hamiltonian H acts independently and
identically on all n qubits. The QFI can be calculated to be

Q = 4
(
〈ψ|H2|ψ〉 − | 〈ψ|H|ψ〉 |2

)
= 4∆2H. (3.49)

The etymology of the term ‘Heisenberg limit’ stems from the fact that the QCRB
(with ν = 1) can be manipulated to mimic the the Heisenberg uncertainty principle

∆2θ̂∆2H ≥ 1

4
. (3.50)

The QFI for phase estimation can be maximized by setting |ψ〉 to be a highly
entangled state, such as the GHZ state for qubit systems or the NOON state for
photonic systems, which results in Q = n2. Hence, the ultimate allowable precision
by quantum mechanics (the HL) is

∆2θ̂HL =
1

νn2
. (3.51)

The HL offers a quadratic improvement compared to the standard quantum limit
(SQL), where the |ψ〉 is limited to separable states

∆2θ̂SQL =
1

νn
. (3.52)

The SQL is also referred to as the classical limit or the shot-noise limit [XWK87].
For qubit (and qudit) systems5, entanglement is a crucial resource for quantum

metrology [PS09; Pez+18]. In fact, the quadratic tendencies of the QFI of a quantum
state for phase estimation can be bounded with respect to the geometric measure
of entanglement G6 [Aug+16]

Q(ρθ) ≤ n+ 8n2
√
G(ρθ). (3.53)

It is worth stressing that entanglement may be a necessary condition to surpass the
SQL but it is not a sufficient condition [HGS10; Osz+16]. Additionally, the bounds
in Eq. (3.51) and Eq. (3.52) are exclusive to the problem of phase estimation with
an iid encoding. The QFI can surpass n2 for non-linear H [Lui04; Boi+07; CS08;

5For CV systems a quantum advantage can be achieved with squeezing [YMK86; OH10].
6The geometric measure of entanglement for a pure state |ψ〉 is G(|ψ〉) = 1−max|φ〉 | 〈φ|ψ〉 |2,

where |φ〉 is maximized over all fully separable states. The definition is extended to mixed states
by finding the convex roof of the geometric measure of entanglement over all possible statistical
ensembles [WG03].
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Bra+18], and scenarios can be devised in which entanglement is not a necessary
resource [Til+10].

3.2.5 Bayesian Approach To Quantum Metrology

In the quantum version of the frequentist approach, the MSE is minimized by opti-
mizing over all possible POVM’s and input quantum states. The quantum version of
the Bayesian approach [Hol82; JD15; RKD18] is enhanced in an analogous fashion.
As the estimator is updated adaptively, so too can the initialized quantum state as
well as choice of POVM.

For parameter estimation problems which exhibit periodicity, such as phase es-
timation, the circular cost function

C◦(θ̂, θ) = 4 sin2
( θ̂ − θ

2

)
(3.54)

is a natural choice as a figure of merit [Dem11; DJK15], and converges to the MSE
as θ̂ approaches θ. If the initial choice of input quantum state and POVM are
ρθ = Uθρ0U

†
θ and

∫
Emdm respectively, then the average cost is

〈C◦〉 =

∫
p(θ)

(∫
Tr(ρθEm)C◦(θ̂(m), θ)dm

)
dθ, (3.55)

which is invariant when replacing the POVM {Em} with a covariant POVM {Eθ̂}
[Hol82; DBE98; Chi+04; CDS05]

Eθ̂ = Uθ̂ΣU
†
θ̂

(3.56)

and Σ is the positive-semi definite operator defined for a specific θ̂

Σ =

∫
U †
θ̂(m)

EmUθ̂(m)dm. (3.57)

This re-parametrization allows the average cost to be expressed as

〈C◦〉 =

∫ ∫
p(θ) Tr(ρθEθ̂)C◦(θ̂, θ)dθ̂dθ

=

∫
p(θ) Tr(ρθΣ)4 sin2 θ

2
dθ.

(3.58)

By optimizing the above expression, the initialized quantum state ρ0 and POVM
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characterized by Σ can be updated adaptively [DBE98; CDS05].
As mentioned, the Bayesian statistical inference approach addresses the issues

inherent to the frequentist approach: lack of a priori knowledge [KD10; Dem11] and
limited resources [RD20]. The work presented in the subsequent chapters exclusively
focus on the frequentist approach, as such, an interesting future perspective would
be to generalize some of the findings to the Bayesian approach. Specifically in
Chapter 6, where the estimation process is adapted in some capacity to account
for the cryptographic framework.

3.2.6 Multiple Parameters

In the interest of simplicity, this chapter introduced the problem of parameter es-
timation with a single unknown parameter. The problem naturally generalizes to
include multiple latent parameters θ → θ = {θ1, . . . , θm}, where the goal extends to
devising estimators for each parameter θ̂(x) → θ̂(x) = {θ̂1(x), . . . , θ̂m(x)}. There
are two major quandaries which arise in the multiparameter setting. First, the
parameters may be statistically dependent on one another, which adds ambiguity
when trying to interpret the observed data x. Second, it is not always possible to
simultaneously construct an efficient estimator for each unknown parameter.

Within the frequentist inference framework, assuming that each estimator satis-
fies the unbiased estimator constraint, E(θ̂) = θ, the generalization of the QCRB is
the matrix equation [YL73; HK74; TWC11]

Cov(θ) ≥ 1

ν
I−1(θ) ≥ 1

ν
Q−1(θ), (3.59)

where Cov(θ) is the covariance matrix with entries Cov(θ)i,j = 〈(θ̂i − θi)(θ̂j − θj)〉,
I(θ) is the FI matrix

I(θ)i,j =

∫
p(x|θ)

(∂ ln p(x|θ)

∂θi

)(∂ ln p(x|θ)

∂θj

)
dx, (3.60)

and Q(θ) is the QFI matrix

Q(θ)i,j = Tr
(
R−1
ρθ

(∂ρθ
∂θi

)
ρθR−1

ρθ

(∂ρθ
∂θj

))
. (3.61)

The diagonal elements of an invertible positive semi-definite matrixM satisfyMi,i ≥
1/Mi,i, and equality holds for each i when M is diagonal. Hence, when the m pa-
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rameters are statistically independent from each other, Eq. (3.59) reduces to the
QCRB for each individual parameter θi. Multiparameter estimation sustains addi-
tional complications in the quantum context with respect to optimizing quantum
states and measurements. The superoperator R−1

ρθ

(
∂ρθ
∂θi

)
is the symmetric logarith-

mic derivative with respect to θi, and measuring in all of these bases will saturate
the QCRB. However, these measurements may not be compatible and thus cannot
be realized in simultaneity [Vid+14; Cro+14; RJD16].

Despite the additional complexity of simultaneously estimating multiple parame-
ters, multiparameter quantum metrology is an active research topic [SBD16; Nic+18;
AFD19; RD20; MBE21]. With respect to phase estimation, when the phase encoding
unitaries do not commute, it is more efficient to estimate them in simultaneity rather
than independently [BD16]; when the encoding unitaries do commute, one can de-
vise a simultaneous estimation strategy which is at least as efficient as estimating the
phases independently [Hum+13]. Multiparameter quantum metrology is a natural
framework for eigenvalue estimation of higher dimensional unitaries [Fuj01; Bal04;
Ber+15; BD16] and for spatially distributed estimation problems [Eld+18; Ge+18;
PKD18; ZZS18; Rub+20; Guo+20]. The subsequent research chapters focus on the
single parameter setting. Nonetheless, the mathematical techniques and derivations
can easily be adapted to the multiple parameter setting. Formally addressing these
generalizations is a future perspective of the works presented.

3.3 Example Applications Of Quantum Metrology

The final section of this chapter explores well-known applications of quantum metrol-
ogy where the concepts and tools that were introduced are put into practise. The
examples chosen, phase estimation and amplitude estimation, have a simple math-
ematical formalism and highlight the novelty of a quantum parameter estimation
problem. Specifically, phase estimation, which is indisputably the canonical usage of
quantum metrology [Cav81; GLM04], clearly showcases the advantages a quantum
system can provide. Additionally, phase estimation is the core problem of Chap-
ter 4 and Chapter 5. The example of amplitude estimation, although not present
in the subsequent research chapters, is included to showcase a simple usage which
is not phase estimation.
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Figure 3.6: Schematic of a Mach-Zehnder interferometer. A photonic source is fired
onto a 50:50 beam splitter, which reflects a photon with 50% probability (path
a), otherwise the photon is transmitted (path b). A phase shift of θ is introduced
uniquely on path a, after the paths interfere via a second beam splitter. The quan-
tum state is measured with photon-counters, whose outcomes j are dependent on
the relative phase θ.

3.3.1 Phase Estimation (Photonic Interferometry)

Phase estimation is a benchmarking problem for quantum metrology [HB93]. It
encapsulates a variety of applications for quantum sensors, notably magnetometry
[Tay+08; Was+10; Sew+12; BCK15; Raz+19], frequency estimation for optome-
chanical sensors [ZYL16; DPD19; Tsa13], spectroscopy [Mey+01; Lei+04; Kir+11;
DSM16; Sha+18] and unitary tomography [SHF13; OTT19]. The premise of phase
estimation is simple, yet the results are an elegant display of a quantum advantage.
A relative phase is encoded into a quantum system via a physical interaction, and
using highly entangled states and a simple measurement strategy, the QCRB can
be saturated to attain the HL [GLM06].

For photonic sources, a relative phase can be introduced using a Mach-Zehnder
interferometer [ZAT00], depicted in Fig. 3.6. A photonic quantum state passes
through a 50:50 beam splitter, in which photons are either transmitted or reflected,
both with probability of one half, where reflection induces a phase shift of π/2
[Dow08]. After passing through the first beam splitter, a single photon will be in a
superposition of the two possible modes, labelled by the respective paths |a〉 and |b〉.
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Since photons are indistinguishable particles, it is customary to write an n photon
quantum state as

|ψ〉 =
n∑
k=0

αk |k, n− k〉 , (3.62)

where the notation |k, n− k〉 denotes the quantum state with k photons in mode
|a〉 and n − k photons in mode |b〉. The path-dependent phase shift is represented
by the unitary

Uθ = exp

(
−iθ

2

(
|a〉〈a| − |b〉〈b|

))⊗n
, (3.63)

thus
Uθ |k, n− k〉 = e−i

2k−n
2

θ |k, n− k〉 . (3.64)

After the phase shifts, the two paths interfere by passing through a second beam
splitter. This causes the detection probabilities to be dependent on θ, from which
the statistics can be used to generate an estimate θ̂. The precision of the estimate
is ultimately bounded by the QFI

Q(|ψ〉) =
n∑
k=0

|αk|2(2k−n)2−
( n∑
k=0

|αk|2(2k−n)
)2

= 4
n∑
k=0

|αk|2k2−4
( n∑
k=0

|αk|2k
)2

.

(3.65)
Suppose that the source of photons is uncorrelated such that the quantum state

after passing through the first beam splitter is

|ψ〉sep =
1√
2n

(
|a〉+ |b〉

)⊗n
=

n∑
k=0

√
2−n
(
n

k

)
|k, n− k〉 . (3.66)

Using Eq. (3.65), the QFI can be computed to be equal to the SQL, Qsep = n. In
contrast, if the quantum state is initialized in the NOON state [Dow08; Mat+16;
ZC18]

|ψ〉ent =
1√
2

(
|n, 0〉+ |0, n〉

)
, (3.67)

then the HL is attained7, Qent = n2. The QCRB can be saturated using the pre-
viously described method of inferring an estimate from an observable. The chosen
observable is the parity of the detected photons in detector a, labelledDa in, Fig. 3.6,

Oparity =
n∑
k=0

(−1)k |k, n− k〉〈k, n− k| . (3.68)

7This has been experimentally accomplished using n = 4 photons [Nag+07]
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Assuming no dark counts, if Da detects j photons, Db is fixed to n − j photons,
hence the parity of Db could have equally been considered. After intercepting the
second beam splitter, the quantum state (up to a global phase) is

|ψθ〉ent =
1√
2n

n∑
k=0

√(
n

k

)(
e−inθ/2in−k + einθ/2ik

)
|k, n− k〉

=
1√
2n−1

n∑
k=0

√(
n

k

)
cos
(nθ

2
+
π

4
(2k − n)

)
|k, n− k〉 ,

(3.69)

from which it can be computed that

〈O〉ent = cos
(
nθ − πn

2

)
. (3.70)

If the prepare and measure protocol is repeated ν times, the MSE of the estimator
is

∆2θ̂ent =
∆2Oent

ν
∣∣∂〈O〉ent

∂θ

∣∣2 =
1

νn2
, (3.71)

thus the QCRB is saturated with a simple measurement strategy. This example
highlights the achievability of a quantum advantage, but simultaneously the locality
of the frequentist approach. The periodicity of 〈O〉ent implies that a priori knowledge
of θ is required to an order of 2π/n. If θ is completely unknown, a frequentist
approach can still be employed using varying n = 2m, where successive rounds of
estimation are used to estimate the mth (binary) digit of θ [Kit95].

In this example, a relative phase is encoded using a photonic source by means
of a Mach-Zehnder interferometer. Notably though, analogous results are obtained
using spin systems [TA14]. In fact, the NOON state, Eq. (3.67), can be interpreted
as a GHZ state

|GHZ〉 =
1√
2

(|0〉⊗n + |1〉⊗n), (3.72)

which when used for phase estimation, similarly saturates the HL.

3.3.2 Amplitude Estimation (Thermometry)

After phase estimation, the next obvious example of a quantum metrology problem
is amplitude estimation. A well-known example of amplitude estimation is quantum
thermometry [Cor+15; DS18; MSC19], where the unknown parameter in question is
temperature. Temperature is a seemingly intuitive notion ever present in our daily
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lives, and measuring this quantity may appear trivial. For every day objects, an
infra-red thermometer converts infra-red radiation into a voltage which is converted
into a temperature. This is done extremely quickly and accurately. Even so, in the
‘very cold’ regime near zero Kelvin, measuring temperature is a complicated task,
but very necessary for modern technologies such as superconductors.

Even though experimental implementations of quantum thermometry differ greatly
[Neu+13; Toy+13; Kuc+13], the underlying principle is straightforward [MSC19].
An N level system interacts with an external source at temperature T . Eventually,
the collective ensemble of the system and the bath will reach thermal equilibrium,
and the state of the system is given by the Gibbs ensemble

ρT =
1

Z
e
− H
kBT , (3.73)

where kB is the Boltzmann constant, H is the system Hamiltonian

H =
N∑
k=1

εk |εk〉〈εk| (3.74)

with energy eigenvalues εk and eigenstates |εk〉, and Z = Tr e
− H
kBT is the partition

function. Within the standard convention of setting kB = 1, the derivative of the
quantum system with respect to temperature is

ρ̇T =
H

T 2
ρT −

〈H〉
T 2

ρT =
1

2T 2

(
(H − 〈H〉)ρT + ρt(H − 〈H〉)

)
. (3.75)

From which it is clear that the symmetric logarithmic derivative is

R−1
ρT

(ρ̇T ) =
1

T 2
(H − 〈H〉), (3.76)

therefore

Q(ρT ) = Tr
(
R−1
ρT

(ρ̇T )ρTR−1
ρT

(ρ̇T )
)

=
1

T 4
Tr
(
(H − 〈H〉)2ρT

)
=

∆2H

T 4
. (3.77)

In fact, the heat capacity
∂ 〈H〉
∂T

=
∆2H

T 2
(3.78)
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is directly proportional to the QFI [Phi84], hence the QCRB can be re-written as

∆2T̂ ≥ 1

νQ
=

∆2H

ν|∂〈H〉
∂T
|2
. (3.79)

Which suggests that the QCRB can be saturated by using the previously described
estimation strategy of inferring the temperature from an observable, Eq. (3.34). In
this instance the observable is the energy of the system [JLM11], H, which may not
be surprising because of how intertwined energy and temperature are as quantities
within the realm of statistical mechanics8.

Analogous to a GHZ state or NOON state being the optimal probe for phase
estimation, Eq. (3.77) can be maximized to find the optimal probe for thermometry.
The solution is an effective two level system with a single eigenstate having an energy
of ε− and N − 1 eigenstates having a degenerate energy of ε+, the relative error of
such a probe is ∆2T̂ /T 2 = O(1/ logN) [Cor+15; MSC19]. Note that the information
presented in this example holds only for fully thermalized systems, which may be
a time consuming process. The analysis is significantly more complex for partially
thermalized systems [Cor+15].

8On a macroscopic scale, temperature is an average quantity of a system composed of many
many particles. This definition is somewhat ambiguous on a microscopic scale. In Eq. (3.75),
temperature can be interpreted as a variable which governs the probability of the quantum system
occupying a specific energy eigenstate.
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4
Graph States as a Resource

for Quantum Metrology

It is obviously very desirable to have an easy to implement quantum resource with
a large span of applications. One class of quantum states which satisfies these cri-
teria are graph states: a versatile resource for quantum computation and quantum
communication. In this chapter, to help determine the full extent of the applicabil-
ity of qubit graph states, we explore their practicality for the quantum metrology
problem of phase estimation. Before beginning this work, it had been shown that
cluster states (a subset of graph states) are an efficient resource for certain quantum
metrology problems, namely with a non-local parameter encoding scheme [RJ09] or
after undergoing local rotations [Fri+17]. We consider the standard (local) phase
estimation problem and are able to quantify the effectiveness of a general graph
state based on the shape of the corresponding graph [SM20]. Since our work has
been published, others have explored the practicality of continuous variable graph
states for quantum metrology [WF20].

4.1 Graph States

Graph theory [Wes+01] is a rich and diverse branch of mathematics. A graph is
a structure used to model pairwise relationships with respect to a set of elements.
A graph is devised of two types of elements: i) a set of vertices (or nodes) which
are connected with ii) edges1. Graphs are a customary tool in mathematics - they

1This is the simplest description of a graph. More general graphs can have edges with assigned
weights and/or a direction. These extra parameters are unnecessary for the scope of our work.
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are the standard representation of the popular travelling salesmen problem and
minimum colouring problem, for example. Outside of mathematics, graph theory is
a tool to model all sorts of relations. In computer science, it can model the flow of
information, where vertices are websites and an edge a hyperlink from one website
to another. In animal biology, a vertex could signify a geographical region and the
edges denote migration patterns for a species. With the broad scope of utility and
existing research surrounding graph theory, it is unsurprising that it is used in the
field of quantum information [HEB04].

Graph states are an incredible useful resource in quantum information [Hei+06].
In the language of graph theory, quantum systems (qubits, qudits, CV states) are
the vertices and entangling operations are the edges. These quantum states have
a wide range of applications, including, but not limited to, cryptography [MS08;
Qia+12], verification [MK20], quantum networks [PWD18; MMG19; HPE19], t-
designs [Mez+18] and error correction [SW01]. Marginally more complex graphs,
where the vertices are either a quantum system, a quantum operation or a quantum
measurement, is the foundation of measurement based quantum computing [RB01;
RBB03; Van+06]. In terms of implementation, graph states have been experimen-
tally constructed using trapped ions [Bar+11; Lan+13], superconducting circuits
[Son+17; Gon+19], squeezed states of light [Yok+13; CMP14] and photons [Lu+07;
Gu+19; RBE19].

4.1.1 Graphical Representation

Formally, a graph is a set of vertices V = {v1, . . . , vn} and edges E = {e1, . . . , em},
where each edge ej = (vj1 , vj2) is a length-2 tuple of two vertices. The graph is
denoted by G = (V,E). In quantum information, the set of vertices correspond to
quantum systems (for this work these are qubits) and the edges correspond to an
entangling operation. Each qubit is prepared in the |+〉 state, and a controlled-Z
operation is performed on the ith and jth qubit if (vi, vj) ∈ E. As an example,
consider a 3 qubit star graph state, Fig. (4.1b), where the first qubit is the central
qubit. The bra-ket representation of this quantum state is

|G〉 = CZ(1,2)CZ(1,3) |+ + +〉

=
1√
8

(
|000〉+ |001〉+ |010〉+ |011〉+ |100〉 − |101〉 − |110〉+ |111〉

)
.

(4.1)

Other graphical nomenclature used is this chapter is ‘neighbourhood’ and ‘iso-
lated vertex’. The neighbourhood of a vertex v, denoted as N(v), is the set of
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(a) Complete graph. (b) Star graph. (c) Cyclic graph. (d) Lattice graph.

Figure 4.1: Graphical representation of frequently used graphs in quantum infor-
mation. (a) A complete graph (or fully connected graph) is where each vertex is
connected to every other vertex; Ea = {(vi, vj) ∀vi, vj ∈ Va}. (b) A star graph is
where there is a central vertex which forms an edge with all of the other vertices;
Eb = {(v1, vj) ∀j ≥ 2}. (c) A cyclic graph is where the vertices are connected
by a ring like series of edges; Ec = {(vj, vj+1)}. (d) A lattice graph is where the
vertices are arranged in an array. By using only single qubit Clifford operations,
the complete graph state (a) and star graph state (b) can be transformed into the
(all important) GHZ state using local Clifford operations. A cyclic graph (c) is one
of the simplest models for a chain of quantum repeaters [AK17]. A lattice graph
state (d) wrapped around itself to form a torus is the basic structure of topological
quantum error correcting codes [BM06; BM07]. All four graphs could be used to
represent a quantum network with varying complexities and purposes.

vertices which are connected to v: N(v) = {u ∈ V | (u, v) ∈ E}. A vertex w is said
to be isolated if it has an empty neighbourhood: |N(w)| = 0.

4.1.2 Stabilizer Representation

Graph states belong to a larger family of quantum states called stabilizer states.
The (general) stabilizer formalism does not have a graphical and illustrative ana-
logue, instead, it is built upon mathematical symmetries and elegance. Stabilizer
formalism, originally developed for quantum error correction [Got97] and adapted
for measurement based quantum computing [RB01], is efficiently simulated [AG04]
and verifiable [PLM18; MK20] due to the fact that the underlying structure is sym-
metries arising from the Pauli group. The set of stabilizer states is closed under local
Clifford operations, and a large number of stabilizer states are highly entangled.

A quantum state |ψ〉 is said to be stabilized by an operator S if S |ψ〉 = |ψ〉.
An n qubit quantum state |ψ〉 is a stabilizer state if it is stabilized by n non-
identity stabilizing operators g1, . . . , gn which i) all commute, ii) are multiplicatively
independent and iii) are elements of the Pauli group ±Pn [GMC17]. The bra-ket
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representation of a stabilizer state is

|ψ〉〈ψ| = 1

2n

n∏
j=1

(
I + gj

)
=

1

2n

∑
S∈S

S, (4.2)

where S is the stabilizer group of |ψ〉. Each S ∈ S stabilises |ψ〉 and is multi-
plicatively generated by g1, . . . , gn (hence the name generators). The generators
are not necessarily unique, but the corresponding stabilizer group is unique. For
example, the stabilizer group of the 3 qubit GHZ state, Eq. (2.7), can be written
as 〈X1X2X3, Z1Z2, Z2Z3〉 or as 〈X1X2X3,−Y1Y2X3,−X1Y2Y3〉 (here the subscripts
indicates which qubit a Pauli operator is acting on.

It is easy to verify that for all 1 ≤ j ≤ n, operators of the form

gj = Xj

⊗
k∈N(j)

Zk, (4.3)

stabilize a graph state with neighbourhoods N(1), . . . , N(n). This follows from

XjCZ(l,m)Xj =


ZlCZ(l,m) if j = m

ZmCZ(l,m) if j = l

CZ(l,m) otherwise

, (4.4)

thus

Xj

⊗
k∈N(j)

Zk |G〉 =
( ⊗
k∈N(j)

Zk

)( ∏
(l,m)∈E

XjCZ(l,m)Xj

)
Xj |+〉⊗n

=
( ⊗
k∈N(j)

Zk

)2( ∏
(l,m)∈E

CZ(l,m)

)
|+〉⊗n

= |G〉 .

(4.5)

The operators of the form Eq. (4.3) all commute and are multiplicatively indepen-
dent, and hence correspond to the stabilizer group for a graph state. The stabilizer
representation of the graph state from Eq. (4.1) is

|ψ〉〈ψ| = 1

8

(
I +X1Z2Z3

)(
I + Z1X2

)(
I + Z1X3

)
. (4.6)

In fact, every stabilizer state can be transformed to a (not necessarily unique) graph
state [Sch01] by constructing a locally acting Clifford operator C ∈ C⊗n1 which maps
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the generators for a stabilizer state to generators of the form in Eq. (4.3).
Because all non-identity Pauli operators have a trace of zero, it follows that for

any Pauli operator Q and stabilizer state |ψ〉 with stabilizer group S

〈ψ|Q|ψ〉 =


1 if Q ∈ S
−1 if −Q ∈ S
0 otherwise

. (4.7)

4.2 Graph States For Phase Estimation

In order to gauge the practicality of graph states for quantum metrology, we restrict
the problem to phase estimation. As discussed in Chapter 3, phase estimation is
versatile in its applications and the expression for the QFI is much more manageable
than the general expression. Having said that, it is still not obvious which quantum
states achieve a quantum advantage when it comes to phase estimation. Of course,
for qubit systems, entanglement is a required resource to surpass the SQL. However,
entanglement does not guarantee Heisenberg-like scaling; it was shown in [Osz+16]
that, on average, a randomly selected entangled quantum state would not attain
a quantum advantage (even with the allowance of local unitary transformations).
Notably though, it was shown in the same study that most symmetric states2 are (up
to local unitary transformations) an efficient resource for phase estimation. It is no
surprise that the standard resources for phase estimation are highly symmetric, eg.
the GHZ state [GLM04; GLM06], half-Dicke state [TA14] and spin squeezed states
[Gro12; ZD14]. A sensible conclusion is that entanglement paired with symmetry
makes for an efficient resource for phase estimation.

The canonical phase estimation problem encodes an unknown phase θ through
a unitary of the form

Uθ = e−iθ
∑n
j=1Hi =

(
e−iθH

)⊗n
, (4.8)

where Hj = H ∀j are locally acting Hermitian operators. In [SM20], we set H =
1
2
X, as this choice leads to an easily described class of states which approximately

saturate the HL. That being said, the solutions and results can be generalized to
any Hermitian generator by rotating beneficial graph states appropriately. Using

2Symmetric states, sometimes called permutation invariant states, are a class of quantum states
which remain unchanged when any number of subsystems are swapped with one another.
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Eq. (3.42), the QFI of an n qubit graph state |G〉 is

Q(G) =
n∑

i,j=1

(
〈G|XiXj|G〉 − 〈G|Xi|G〉〈G|Xj|G〉

)
. (4.9)

This equation can be evaluated using the trace property of stabilizer states, Eq. (4.7),
and the stabilizer group of graph states. For a graph without any isolated vertices
〈G|Xi|G〉 = 0 for all j. The quantity XiXj stabilizes |G〉 if and only if the neigh-
bourhood of the ith qubit is equal to the neighbourhood of the jth qubit. By
construction, the negation, −XiXj, never stabilizes |G〉. Therefore, the QFI of a
graph state |G〉 with no isolated vertices is equal to the number of ordered pairs
(i, j) such that N(i) = N(j). For the sake of a mathematical expression

Q(G) =
n∑

i,j=1

δN(i),N(j), (4.10)

where δx,y is the Kronecker delta which evaluates to 1 if x = y and 0 otherwise.
One can conclude that the graph states, although not totally symmetric states, still
require a form of internal symmetry (i.e pairs of qubits with equal neighbourhoods)
to attain a quantum advantage.

As an example, all of the external vertices of a n qubit star graph state, Fig. (4.1b),
have the same neighbourhood (the central vertex). Thus, the QFI is Q(Gstar) =

(n− 1)2 + 1, which is approximately equal to the HL. This is unsurprising as it is a
highly symmetric state. Conversely, an n qubit cyclic graph state, Fig. (4.1c), may
appear to be highly symmetric at a graphical level (rotational symmetry), it does
not have any permutation symmetries. An n qubit lattice graph state, Fig. (4.1d),
similarly does not have any permutations and also is limited by the SQL. This is
in accordance with [Fri+17], where it is stated that unmodified cluster states are
not good resources for quantum metrology. Note that this does not contradict the
results of [RJ09], where an unconventional parameter encoding scheme is used.

Because of the choice of Hi = 1
2
Xi, many highly symmetric states do not achieve

a quantum advantage. For example, the complete graph, Fig. (4.1a), is invariant
under any permutation and achieves the SQL. However, using the alternative choice
for the unitary encoding Hi = 1

2
Yi, the the QFI of the complete graph is the HL

and the QFI of the star graph is the SQL. This alternative choice Hamiltonian also
leads to an alternative, but more complicated, topological expression: the QFI is
equal to the number of ordered pairs (i, j) such that N(i) ∪ {i} = N(j) ∪ {j}. The
problem concerning the choice of the encoding Hamiltonian vanishes by allowing
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for local transformations before the parameter is encoded. With this assumption,
a graph state (or more generally, a stabilizer state) |ψ〉 is a practical resource for
phase estimation if there exists a C ∈ C⊗n1 such that C |ψ〉 is a graph state whose
corresponding graph has many pairs of vertices with identical neighbourhoods. Log-
ically, the final possibility to examine is when the encoding Hamiltonian is set to
Hi = 1

2
Zi. However a quick computation leads to the conclusion that this choise

leads to a QFI equal to the SQL of Q = n for any graph state.

4.2.1 Generalization To Stabilizer States

The QFI of a graph state was computed by finding the overlap of the Pauli operators
of ±Xi and ±XiXj with the stabilizer group. This argument is not unique to graph
states and can be made for any stabilizer state, further it can be reverse engineered
to determine the number of stabilizer states which achieve a desired level of QFI.

Begin by defining the sets

A = {X1X2, X1X3, . . . , X1Xn}, (4.11)

and
Bk = {Q1 . . . Qk|Qj ∈ {Y, Z} ∀1 ≤ j ≤ k}, (4.12)

where k > 1. The set A is ordered such that if a group is generated with the first
k− 1 elements, it will contain all operators of the form XiXj with 1 ≤ i, j ≤ k (and
i 6= j). Each b ∈ Bk will commute with all elements of said group. We do not allow
Qj = I as then there exists a b ∈ Bk which anti-commutes with certain operators.

Next construct the stabilizer group

S = 〈a1, . . . ak−1, b, bg1, . . . , bgn−k〉, (4.13)

where a1, . . . , ak−1 are all unique operators from the set A, b ∈ Bk and g1, . . . , gn−k
act exclusively on the final n−k qubits of the quantum state and are the generators
for an n−k qubit stabilizer state. By construction, S does not contain any stabilizer
of the form ±Xi or −XiXj. Therefore, similar to a graph state with no isolated
vertices, the QFI is equal to the number of stabilizers of the form XiXj, which is k2

by construction. To determine a bound on the number of stabilizers states which
achieve a QFI of n2−ε, labelled via Ñ(n; ε), we count the total number of possible
stabilizer groups which is of the form of Eq. (4.13) with k ≥ n1−ε/2. Mathematically,
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one obtains
Ñ(n; ε) ≥

∑
k≥n1−ε/2

(
n− 1

k − 1

)
2ksn−k, (4.14)

where sm is the number of m qubit stabilizer states [AG04]

sm = 2m
m−1∏
j=0

(2n−j + 1). (4.15)

It is quite apparent that Ñ(n; ε) � sn for small ε. This is because of a few
different factors. The first is that most quantum states do not saturate the HL
[Osz+16]. The second is that the bound in question is restricted to the problem of
phase estimation via the specific unitary encoding with Hi = 1

2
Xi. Third, to sim-

plify the mathematics, it was demanded that operators of the form ±Xj or −XjXk

were not in the stabilizer group; discrediting some stabilizer states which would still
achieve the necessary QFI. In retrospect, a tighter bound could have been achieved
by allowing for other encoding operations and a more concrete mathematical anal-
ysis.

4.3 Bundled Graph States

As it was formerly mentioned, graph states are a resource with many applications.
It would be very desirable and convenient if a specific graph state with a specific
application was also a practical resource for quantum metrology. Evidently from
Eq. (4.10) and the previously mentioned examples, most graph states are not a
good resource for quantum metrology, at least not before undergoing some sort of
transformation [Fri+17]. In order to capitalize on graph states which are multi-
purpose, we provide a recipe to transform any graph into a (larger) graph which is
practical for quantum metrology. The new graph maintains the underlying structure
of the old graph and can still be used for the original purpose.

We name the new constructed graph a bundled graph state, as the construction
process involves replacing individual qubits by a bundle of qubits with identical
neighbourhoods in order to maximize the QFI.
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Vertex
Quantity n1 = 3 n2 = 4 n3 = 3

Figure 4.2: Transforming a k = 3 vertex graph into a n = 10 vertex bundled graph.
The QFI of the corresponding bundled graph state (in this specific example) is
Q = n2

1 + n2
2 + n2

3 ≈ n1.5.

4.3.1 Construction

The recipe transforms a smaller graph G = (V,E) with k vertices (none of which
are isolated) into a larger graph Gbundled = (V ′, E ′) with n ≥ k vertices.

1. Begin with any k qubit graph state G = (V,E) with no isolated vertices.

2. Vertex vi is replaced with ni vertices, labelled v
(1)
i , . . . , v

(ni)
i , with

∑k
i=1 ni = n.

3. If (vi, vj) ∈ E then (v
(a)
i , v

(b)
j ) ∈ E ′ ∀a, b.

The resulting graph Gbundled = (V ′, E ′) has vertices

V ′ = {v(1)
1 , . . . , v

(n1)
1 , . . . , v

(1)
k , . . . , v

(nk)
k } (4.16)

and edges
E ′ = {(v(a)

i , v
(b)
j ) ∀a, b | (vi, vj) ∈ E}. (4.17)

The constructed bundled graph has many vertices with identical neighbourhoods:
N(v

(a)
i ) = N(v

(b)
i ) ∀i, a, b. The above recipe is depicted in Fig. (4.2), in which an

n = 10 vertex bundled graph from a smaller k = 3 vertex graph.
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The QFI of a bundled graph state satisfies

Q(Gbundled) ≥
k∑
i=1

n2
i ≥

n2

k
= n2−logn k. (4.18)

If k � n, the resulting bundled graph approximately saturates the HL and the
underlying structure of the graph state is preserved. Needless to say, the QFI is still
dependent on the shape of the original graph. For example, a bundled cyclic graph
state, where each of the k bundles contains an equal number of n/k qubits has a
QFI

Q(Gcyclic,bundled) =
n2

k
. (4.19)

A bundled star graph, built in the same manner, has a QFI

Q(Gstar,bundled) = n2
(
1− 1

k

)2
+
n2

k
. (4.20)

Unsurprisingly, Q(Gstar,bundled) ≥ Q(Gcyclic,bundled), this is due to the fact that the
underlying structure of the star graph state contained symmetries, whereas the
cyclic graph state did not. Nevertheless, both the bundled star graph state and the
bundled cyclic graph state have a Heisenberg-like QFI.

4.4 Robustness

An important criteria for quantum states to possess to be a practical resource for
quantum metrology is robustness against noise. Environmental noise is the primary
obstacle for current quantum metrology technologies [EdMD11b; DKG12; Tsa13].
This topic, along with error correction based noise mitigation strategies is explored
in much more detail in Chapter 5. In this chapter, a different approach to noise
is taken: which is pinpointing resources which have a naturally built-in robustness.
Two noise models are explored: i) iid dephasing, and ii) a finite number of erasures.
These two noise models are frequently used in other noisy phase estimation problems
[DKG12; KD13]. In particular, the GHZ state is famously fragile against the effects
of loss and becomes useless for quantum metrology in a lossy environment [KD13].
We subject the graph states to the noise models to having the unknown parameter θ
encoded. The QFI calculations for noisy graph states can be found inAppendix A.

As expected, the shape of a graph greatly influences the severity of the noise on
the corresponding graph state. Without loss of generality, we again only consider
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graphs which have no isolated vertices. To bound the QFI as elegantly as possible,
we partition the vertices of a graph G = (V,E) into disjoint subsets U1, U2, . . . , Ul, . . .

such that
⋃
l Ul = V . The vertices are partitioned in accordance to commonly shared

neighbourhoods, hence, if vi ∈ Ua and vj ∈ Ub, then N(vi) = N(vj) if a = b and
N(vi) 6= N(vj) if a 6= b. We write that |Ul| = ul and the shared neighbourhood of
Ul is Ml with |Ml| = ml.

(a) Effects of iid dephasing. (b) Effects of erasures.

HL k = 6 (star) k = 6 (cyclic)
SQL k = 10 (star) k = 10 (cyclic)

k = 15 (star) k = 15 (cyclic)

Figure 4.3: Robustness of an n = 120 qubit bundled star graph states and bundled
cyclic graph states subjected to (a) iid dephasing and (b) e ≤ 5 erasures. In both
scenarios, the bundled graphs have k equal size bundles of n/k qubits. After being
subjected to iid dephasing (a), lognQ decreases linearly for small p. This is expected
from Eq. (4.23), and ultimately, a quantum advantage is maintained. To gauge the
effects of erasures (b), the quantity logn−eQ is plotted, where Q̄ is the average QFI
of the bundled graph state after e erasures - it is necessary to take the average
prior to the logarithm to avoid the problem of logn 0. Because bundled star graph
states have an enormous amount of symmetry, a single erasure (regardless of where
it occurs) will cause the QFI to fall below the SQL. In contrast, the bundled cyclic
graph are more resilient to noise and can maintain an advantage after a small number
of erasures; furthermore, the amount of qubits which are (on average) affected by
the erasures decrease as k increases.
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4.4.1 IID Dephasing

After being subjected to iid dephasing, each qubit has probability p of being de-
phased with respect to the Z operator. Define Z~j to be the Pauli operator which
applies Z to all qubits indexed in ~j with |~j| = j. Post iid dephasing, an n qubit
graph state |G〉 is mapped to

|G〉 →
∑
~j

pj(1− p)n−jZ~j |G〉〈G|Z~j, (4.21)

which has a QFI of

Q(Gdephasing) ≥
∑
l

(
(1− 2p)2u2

l + 4p(1− p)ul
)(

1− (2p(1− p) + 1/2)ml
)

≥ (1− 2p)2
(
1− (2p(1− p) + 1/2)m

)
Q(G),

(4.22)

where m = minlml. The quantity (2p(1−p) + 1/2)m is approximately zero for large
enough m and small enough3 p, using this approximation in tandem with the QFI
of a bundled graph state Eq. (4.18),

Q(Gdephasing
bundled ) ≥ (1− 2p)2n

2

k
= n2−logn k− 4

n
p+O(p2). (4.23)

Therefore, for small p, bundled graph states retain a quantum advantage for phase
estimation. This is shown in Fig. (4.3a), where the QFI of bundled star graph states
and bundled cyclic graph states surpass the SQL for p ≤ 0.25.

4.4.2 Erasures

A qubit becomes unusable after undergoing erasure, to model this the erased qubits
are traced out

|G〉 → Tr~e |G〉〈G| , (4.24)

where ~e indexes which qubits are erased. This maps the above state into an equally
weighted mixed state4

2−|L~e|
∑
~j⊆L~e

Z~j |G〉〈G|Z~j, (4.25)

3(2p(1− p) + 1/2)m < 0.006 for m ≥ 10 and p ≤ 0.05.
4The mixed state in Eq. (4.25) is left as an n qubit state for clarity. The traced out systems

are equivalent to maximally mixed states, I/2, which are irrelevant with respect to the QFI.
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where L~e is the set of vertices corresponding to the traced out qubits as well as their
neighbourhoods and the sum is taken over all possible subsets of L~e, denoted with
~j ⊆ L~e. As a consequence, the QFI is extremely dependent on the shape of the
graph. In general

Q(Gerasures ~e) =
∑
l

hl(~e), (4.26)

where

hl(~e) =


u2
l if Ml * L~e and Ul * L~e

ul if Ml * L~e and Ul ⊆ L~e

0 otherwise

. (4.27)

An interpretation, is that the ‘noise’ produced by an erasure effects all the similar
qubits and propagates to the shared neighbourhood. Therefore, bundled graphs
which were constructed from graphs that did not originally possess much symmetry
are more robust against erasures then bundled graphs constructed from graphs with
preexisting symmetries. This is witnessed in Fig. (4.3b), in which bundled cyclic
graphs of varying size maintain a quantum advantage up to e = 3 erasures, in
contrast, the QFI of the analogous bundled star graphs is below the SQL after a
single erasure.

A possible method to circumvent erasure errors is to construct graph states with
two types of qubits. One type would be used for metrology but prone to noise (e.g.
the spin of an electron), and the other type is more naturally robust to noise but
not used for metrology (e.g. the spin of a neutron). By constructing a hybrid graph
state one could reduce the propagation of noise caused by the erasure of a sensing
qubit. Graphically, this transformation can be described as adding a ‘naturally
robust’ vertex in the center of each edge. If the naturally robust qubits are immune
to erasures, the size of L~e would reduce drastically resulting in a higher QFI (on
average).

4.5 Saturating The QCRB

Another important criteria for a quantum state to have in order to qualify as a
practical resource for quantum metrology is the existence of a simple measurement
scheme to saturate the QCRB. For a graph state with no isolated vertices, |G〉,
this can be executed by measuring in the basis of a stabilizer, SM , which consists
entirely of Y and Z operators. Observe that the expected value of the observable
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(with respect to the phase encoded graph state) is

〈SM〉 = 〈G|U †θSMUθ |G〉
= 〈G| (U †θ )2SM |G〉
= 〈G| (U †θ )2 |G〉

=
∞∑
j=0

(iθ)j

j!
〈G|

( n∑
i=1

Xi

)j
|G〉

(4.28)

For a graph state with no isolated vertices, the second order term is proportional to
the QFI. Because the expectation value of an observable is real valued, the sum of
all odd terms must be zero. Hence the above simplifies to

〈SM〉 = 1− θ2

2
Q(G) +O(θ4). (4.29)

Using the error propagation formula, the variance of the estimate scales as

∆2SM
|∂θ 〈SM〉 |2

=
θ2Q(G) +O(θ4)

θ2Q(G)2 +O(θ4)
=

1

Q(G)
+O(θ2) ≈ 1

Q(G)
. (4.30)

The above approximation is only valid when the phase being estimated is very
small, θ ≈ 0, fortunately this is naturally the regime explored for phase estimation.
If the unknown phase is large, but it is known up to approximation because of a pre-
existing model or another estimate, then the quantum state can be first transformed
by local unitary operations such that the effective phase is small.

The condition that a graph state has a stabilizer SM which only consists of Y
and Z operators is necessary for SMUθ = U †θSM . Such a stabilizer is not guaranteed
to exist and depends on the shape of the graph. For example, it always exists for
bundled star graph states5, but for bundled star graph states, it exists only when
k = 0 mod 46. If the graph state does not have such a stabilizer, a solution can
be remedied using an ancillary qubit. Let SM be the stabilizer with as many Y

or Z operators, in any index which there is not Y or Z operator, entangle the
corresponding qubit to the new ancillary qubit with a controlled-Z operation. This
will form an n+ 1 qubit graph state where the stabilizer gn+1SM consists of entirely
of Y and Z operators, thus the new graph, which would have a very similar structure
to the original graph, can approximately saturate the QCRB with a simple single

5Take the product of the generator of a central qubit and a generator of an external qubit.
6Divide the bundles into sequences of four. Take the product of a generator from the two central

bundles from each group of four.
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qubit measurement scheme.

4.6 Quantum Sensing Networks

An immediate application for graph states with respect to parameter estimation
problems and metrology is quantum sensing networks [Kóm+14; Kóm+16; Eld+18;
Ge+18; PKD18; ZZS18; Qia+19; Rub+20; Guo+20]. A quantum network is col-
lection of nodes and edges, where the nodes have some quantum functionality and
an edge represent some form of connection between a pair of nodes, this can be
either entanglement of a quantum channel [Kim08; Van12; Sch+16; WEH18]. This
is a much more general framework than the graph state framework, nonetheless the
similarities between the two simplify the adaptation of a graph state into a quantum
network [MMG19; HPE19]. A quantum sensing network is a quantum network de-
signed for quantum parameter estimation. Quantum sensing networks come in two
flavours depending on the functionality of the nodes and edges.

(a) Type 1 Quantum Sensing Network. (b) Type 2 Quantum Sensing Network.

Figure 4.4: There are two main descriptions for quantum sensing networks. The first
type (a) of quantum sensing networks aligns with the description of a graph state,
where a node represents a qubit and an edge represents an entangling operation.
This type of quantum network is a popular framework for multiparameter quantum
problems [PKD18; Rub+20], as each node can encode a different unknown parameter
θj. The second type (b) of quantum sensing networks resembles the usual description
of quantum networks [Van12], where an edge represents a quantum channel between
two nodes. In particular, not all nodes are created equal and serve different purposes.
In this schematic the central square nodes distribute quantum states to the exterior
triangle nodes where an unknown parameter is encoded, the encoded quantum states
are then returned to a central node to be measured.
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The first type of quantum sensing networks is when the nodes represent a quan-
tum state the edges represent a form of entanglement, depicted in Fig. (4.4a). Ev-
idently, graph states are a subset of possible quantum sensing networks. Quantum
sensing networks, with a suitable choice for entangling operations and initialized
quantum states, have been shown to be an effective resource for multiparameter
quantum metrology problems [PKD18; Rub+20]. Graph states are no exception,
and thus a future natural direction for this work is to formally classify utility of
graph states for quantum metrology in the multiparameter setting. Likely, the most
efficient graphs will resemble bundled graph states where a different parameter is
encoded into a different bundle.

The second type of quantum sensing networks is when the nodes have differ-
ent technological functionality and edges represent a quantum channel, depicted in
Fig. (4.4b). For example, the authors of [Kóm+14; Kóm+16] construct a quan-
tum network where a central node is much more powerful technologically than the
exterior nodes. There, the central node prepares quantum states, which are then
distributed to exterior nodes where a local phase is encoded, after which the encoded
quantum state is returned to the central node to be measured. A current project
of mine is combining the results from this chapter and the cryptographic protocols
outlined in Chapter 6 to devise a notion of a secure quantum sensing network for
phase estimation problems.

4.7 Discussion

To recapitulate, graph states are applicable to many disciplines of quantum infor-
mation and can be implemented with different technologies. In our work [SM20], we
showed that quantum metrology problems can be added to the versatility of graph
states. This was done by constructing a class of graph states, called bundled graph
states, which have a Heisenberg-like QFI with respect to phase estimation. By de-
sign, bundled graph states can have any desired underlying structure, making them
multi purposeful.

In addition to the Heisenberg-like QFI, graph states are robust against iid de-
phasing and (conditional on the shape of the graph) a small number of erasures.
As a comparison, the GHZ state is similarly robust against dephasing but cannot
tolerate a single erasure [TA14]. Even though we explored specific error models,
we expect similar robustness results in other settings. For example errors during
or after the parameter encoding, or a spatially correlated noise model [JCH14], in
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which vertices (or bundle of vertices) of a graph is subjected to different error rates.
Lastly, a simple measurement scheme is presented to approximately saturate

the QCRB. Even though this can always be done in theory by measuring in the
basis of the symmetric logarithmic derivative [BC94], doing so is unfeasible for real
world quantum technologies. The measurement scheme we present uses local Pauli
measurements, which is realizable for real world quantum technologies [Wal+12].

There are a number of exciting future perspectives for graph states and quantum
metrology. One direction is to explore more general scenarios, such as metrology
problems other than phase estimation or phase estimation with non-local parameter
encoding unitaries [Lui04]. Another direction is to adapt the underlying structure
of a graph state to that of a quantum sensing network [Kóm+14; Kóm+16; Eld+18;
Ge+18; PKD18; ZZS18; Qia+19; Rub+20; Guo+20]. Likely, the most efficient
graph states to adapt to a quantum sensing network problem is bundled graph
states. This is because the inherent symmetries which boost their utility for quantum
metrology remains unchanged in a multiparameter setting. Of course, this needs to
be shown formally and may not be so straightforward to devise a measurement
scheme with compatible measurements.
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5
Limits of Error Correction

for Quantum Metrology

Noise is the greatest obstacle for quantum metrology that limits the achievable pre-
cision and sensitivity [EdMD11a; EdMD11b; DKG12]. As a noisy system evolves in
time, it becomes more and more difficult to distinguish the effects of the encoding
Hamiltonian and the effects of noise [Haa+16]. A proposed solution to mitigate the
effects of noise is to repeatedly perform quantum error correction [Kes+14; Dür+14;
Arr+14; LYO15]. Recently, it has been shown that if the encoding Hamiltonian and
the environmental noise satisfy an orthogonality condition, then the HL may be
recovered indefinitely [DCS17; Zho+18]. This euphonic conclusion has the added
caveat that the assumed frequency of which error correction is performed is infinite.
Needless to say, this is an impractical assumption for current quantum technolo-
gies, where the rate of implementable error correction is on a similar time scale to
the dephasing rates of spin qubits [Cra+16; Ofe+16] and superconducting qubits
[Dut+07; Tam+14].

In this chapter, we determine the limitations of error correction enhanced quan-
tum metrology by accounting for imperfections of near term quantum technologies.
These include a non-infinitesimal wait time between applications of error correction,
noisy ancillary qubits and imperfect error correction operations. The work done in
[Kes+14] makes similar assumptions, however higher order error terms are ignored,
which is equally presumptuous as infinitely frequent applications of error correction.
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5.1 Environmental Noise And Errors

Quantum systems are extremely sensitive to small perturbations. These perturba-
tions can arise from interactions with external degrees of freedom, e.g. an electron
getting excited by an incident photon, or from the finite precision in which quantum
operations and control can be performed. These interactions alter the evolution of a
quantum system in an undesirable fashion, where the final quantum state is not the
targeted quantum state in an idealistic scenario. This is perhaps the biggest hurdle
in creating quantum technologies [SÁ16], to such an extent that many have come
to accept the current inevitability of errors and search for problems which may be
solved with noisy intermediate-scale quantum (NISQ) technologies [Pre18; TM20;
Bha+21].

The standard nomenclature for ‘interactions with external degrees of freedom’ is
environmental noise. Models for open quantum systems subject to environmental
noise comes in many flavours [Gar91; BP+02; Cle+10] and ultimately depend on the
type of quantum technology. Photonic systems are prone to lossy effects [WCW14],
whereas spin systems are prone to decoherence effects [Zur06]. Similarly, the con-
sequences of noise is model dependent, but in principle entanglement in composite
systems is lost, and the likely reason why quantum effects are not observed at a
macroscopic scale [Sch05; Zur06].

5.1.1 Noisy Quantum Metrology

In the past decade, the effects of noise on quantum metrology problems have been
well established [EdMD11a; EdMD11b; DKG12; Cha+13; Tsa13; KD13; JCH14;
Kol14; DJK15; Haa+16]. Optical systems are prone to loss and diffusion [Lee+09;
Dem+09; KSD11; Zha+13; DJK15], while atomic systems are prone to dephasing
and decoherence [SC07; BS13; MFD14; ZYL14]. In principle, as a noisy system
evolves in time, it becomes more difficult to extract information about the encoded
unknown parameter(s), and as a consequence of lost entanglement, the sensitivity
is limited to that achievable by classical approaches [CHP12].

The canonical example of a noisy quantum metrology scheme involves n qubits
governed by two interactions. The first is a signal ω which causes a detuning in each
of the qubits, represented by H = ~ω

2

∑n
m=1 Zm. The second, an interaction with

the environment which causes dephasing with rate γ in the X direction. Lastly, the
qubit evolves in accordance to its natural resonance frequency, which is assumed to
be known to a high degree of precision. In the rotating reference frame, where the
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ω/γ = 100

ω/γ = 1

ω/γ = 1/100

Figure 5.1: Normalized QFI Q/(nt)2 after an n = 10 qubit GHZ state is used for
phase estimation in the presence of environmental decoherence, Eq. (5.1). Regardless
of the signal-to-noise ratio, ω/γ, the QFI tends to zero around 2γt ≈ 1.

natural frequency of the qubit is suppressed, the Lindbladian master equation can
be written as [RH12]

dρ

dt
= − i

~
[H, ρ] + γ

n∑
m=1

(XmρXm − ρ). (5.1)

After time t the QFI of the system can be computed (see Appendix B) to be

Qnoisy = n2t2
(

1−
(
2− 4

3n

)
γt
)

+O(t4). (5.2)

In the short time limit, where the first two non-zero terms of the Taylor expansion
dominate the behaviour of the QFI, the HL is lost once the quantity 2γt becomes
large. This is true regardless of the value of ω, as depicted in Fig. (5.1). This is not
a practical time scale for quantum metrology [Hue+97], specifically in the interest
of small values of ω where it is necessary for the system to evolve for a long enough
time to distinguish between the effects of the signal and imperfections of real world
measurement technologies.

There are a number of proposed strategies to mitigate the effects of noise. A
passive approach is to engineer the noise model so that is better suited for quantum
metrology. For example, non-Markovian noise models1 can be tailored to outper-

1A Non-Markovian noise model is one which does not use the Born-Markov [Kol20] approxima-
tion to formulate the master equation.
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form standard Markovian noise models [CHP12; Ber13]. Similarly, decoherence free
subspaces (where qubit dephasing is not independent) outperform the standard un-
correlated depashing noise models [Dor12]. A more active approach is to monitor the
effects of the environment using continuous measurements [Cle+10; PH16; Alb+18;
Ros+20].

Quantum control is a very promising technique to suppress the effects of noise on
quantum metrology [Sek+17]. Broadly speaking, the quantum system is occasion-
ally modified, and if done appropriately can reduce the impact of noise. [Zhe+15]
proposes feedback to based off of a coupled to a cavity or reservoir to ‘reverse’ the
effects of noise. Dynamical decoupling protocols [Ron+11; SÁS12; SSD16] apply
a sequence of unitary operation in rapid succession can cancel out the effects of
noise. Signal amplification in optical systems can be used to mitigate the effects of
loss [Cav81; Ou12; Fra+21]. This chapter focuses on incorporating quantum error
correction as a means of control.

5.2 Quantum Error Correction

The fragility of quantum systems is a major obstacle for quantum computing [Unr95;
RH96]. Suppose each quantum operation has a small probability of being done
incorrectly: ε� 1; embedding an error in the quantum system. Then the probability
that no errors occur after N operations is (1− ε)N , which will decrease to zero as N
increases. Quantum error correction [DMN13] is a vital tool developed to combat the
effects of noise and actualize fault tolerant quantum computing [Pre98]. Using clever
encoding schemes, in which quantum states are encoded into larger systems (often
called ‘logical’ quantum states), the effects of environmental decoherence can be
reduced substantially enough such that arbitrarily long protocols and computations
can be fulfilled.

The no-cloning theorem2 [WZ82] and the collapse of the wave-function are the
predominant reasons as to why classical error correction techniques cannot be seam-
lessly integrated into a quantum framework. Furthermore, qubits are susceptible to
bit flips and phase flips, for which there is no classical analogue for the latter. De-
spite the challenges and constraints, primitive error correction models and protocols
were established in the 1990’s [Sho95; Ste96a; Ste96b; CS96; Ben+96; Got96; Got97;
Kit97]. In the last two and half decades, the field of quantum error correction has

2It is impossible to create an independent and identical copy of an arbitrary unknown quantum
state.
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flourished. Nowadays, a range of error correction protocols exist, such as topological
codes [Kit97; BM06; BM07], permutation invariant codes [PR04; Ouy14; OSM19]
and approximate codes [Leu+97; SW02]; each with their own advantages and dis-
advantages. In addition, quantum error correction has been experimentally demon-
strated using different resources, such as spin qubits [Dut+07; Tam+14; Cra+16],
continuous variable optical systems [Aok+09] and superconducting circuits [Ree+12;
Ofe+16].

5.2.1 Example: Bit-Flip Code

A bit-flip error, denoted by E , maps the quantum state |0〉 to the quantum state |1〉
and vice versa. If p is the probability of a bit-flip error, then

E(ρ) = (1− p)ρ+ pXρX. (5.3)

The three qubit bit-flip code [Got97] is a rudimentary error correcting code designed
to correct a single bit-flip error. The physical states |0〉 and |1〉 are encoded3 into
three qubit logical states |0L〉 = |000〉 and |1L〉 = |111〉 respectively, and in general,

|ψ〉 = α |0〉+ β |1〉 → |ψL〉 = α |0L〉+ β |1L〉 . (5.4)

Each of the three qubits physical qubits are independently susceptible to a bit-flip
error

E(|ψL〉〈ψL|) =

(1− p)3 |ψL〉〈ψL|
+p(1− p)2

(
X1 |ψL〉〈ψL|X1 +X2 |ψL〉〈ψL|X2 +X3 |ψL〉〈ψL|X3

)
+p2(1− p)

(
X1X2 |ψL〉〈ψL|X1X2 +X1X3 |ψL〉〈ψL|X1X3 +X2X3 |ψL〉〈ψL|X2X3

)
+p3X1X2X3 |ψL〉〈ψL|X1X2X3,

(5.5)

equivalently, there is a probability: (1 − p)3 of no errors occurring, 3p(1 − p)2 of
exactly one error occurring, 3p2(1 − p) of exactly two errors occurring, or p3 of
exactly three errors occurring. Assuming that p is small, it is far more likely that 0

or 1 errors occur than 2 or 3 errors occur. Thus, by comparing the parity of the three
qubits (which can be done using non-destructive and entangled measurements), one

3The encoding can be implemented with two ancillary |0〉 states and controlled-X operations.

70



Chapter 5. Limits of Error Correction for Quantum Metrology

can apply a ‘majority-is-correct’ correction rule, and (with high probability) recover
the quantum state4. Formally, this measurement is better known as a syndrome
measurement or syndrome diagnosis, the measurement results are better known as
error syndromes and the correction rule is better known as a recovery operation. The
error syndromes and recovery operations of the bit-flip code are listed in Table (5.1).

Error Syndrome Recovery Operation

|000〉〈000|+ |111〉〈111| I

|100〉〈100|+ |011〉〈011| X1

|010〉〈010|+ |101〉〈101| X2

|001〉〈001|+ |110〉〈110| X3

Table 5.1: The error syndromes and corresponding recovery operations for the bit-
flip code.

The bit-flip code, is not ‘technically’ an error correction code, because, although
it can correct bit-flip errors, it cannot correct any error, for example phase-flips. One
can correct a single phase-flip using a similarly constructed phase-flip code [Got97].
Notably the 9-qubit code is constructed by superimposing the phase-flip and bit-flip
code, which can correct any single qubit error [Sho95]. It was later shown that
any single qubit error can be corrected using a more compact code of five qubits
[Laf+96].

5.3 Error Correction Enhanced Quantum Metrology

It was shown in [Kes+14] that repeated applications of error correction can be used
to significantly increase the sensitivity of a quantum probe for quantum metrology.
Since then, the extent of error correction enhanced quantum metrology has been
well explored5: the general limitations have been established [Dür+14; Arr+14;
LYO15; DCS17; Zho+18; ZJ20], and codes have been engineered for specific scenar-
ios [Her+15; MB17; LC18; Lay+19; ZPJ20; Wan+21]. Error correction enhanced

4The quantum state is recovered if zero or one errors occurred, but not if two or zero errors
occurred. If p� 1, the former scenario is much more likely.

5As it happens, the converse setting of using mathematical techniques of quantum metrology
for quantum error correction has also been explored in [KD21], where QFI bounds were used to
provide a proof of the approximate Eastin-Knill Theorem.
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magnetometry has been experimentally realized in [Und+16], where the sensing time
exceeded the natural dephasing times of the spin qubits.

For general Markovian noise, quantum error correction can be used to correct
errors which can be distinguished from the Hamiltonian which encodes the signal
(transverse noise). When the signal Hamiltonian and environmental noise commute
(parallel noise), error correction cannot be used. Parallel noise can be corrected
for non-Markovian noise models [LC18; Lay+19] or using continuous measurements
[Alb+18].

5.3.1 Theoretical Limitations: Recovering The HL

Recall from Chapter 2 that the dynamics of a general Markovian noise model are
governed by the master equation

ρ̇(t) = − i
~

[H, ρ(t)] +
d2−1∑
j=1

γj
[
Lkρ(t)L†k −

1

2

{
ρ(t), LkL

†
k

}]
, (5.6)

L1, . . . , Ld2−1 are Lindblad operators. It follows that, for a small time τ , the evolu-
tion can be written as

ρ(t+ τ) = ρ(t)− i

~
[H, ρ(t)]τ +

d2−1∑
j=1

γj
[
Lkρ(t)L†k −

1

2

{
ρ(t), LkL

†
k

}]
τ +O(τ 2). (5.7)

It was shown in [DCS17; Zho+18] that for a general transverse noise model, an
error correction code can be constructed, which when applied, will not interrupt the
encoding Hamiltonian, i.e

ρ(t)− i

~
[H, ρ(t)]τ (5.8)

and correct first order errors, i.e

d2−1∑
j=1

γj
[
Lkρ(t)L†k −

1

2

{
ρ(t), LkL

†
k

}]
τ. (5.9)

The distinguishable criteria (transverse noise) is called Hamiltonian-not-in-Linblad
span in [Zho+18], because the necessity condition is rephrased as

H /∈ span{I, Lj, L†j, L
†
jLk}, (5.10)

72



Chapter 5. Limits of Error Correction for Quantum Metrology

where the span is taken over all subscripts j and k. It is demonstrated that, if the
frequency at which error correction is performed is fast enough such that the higher
order evolution terms are negligible, O(τ 2) → 0, then the HL can be maintained
indefinitely.

5.3.2 Practical Limitations: Current Quantum Technologies

Unfortunately, the mathematical assumption of arbitrarily fast error correction does
not coincide with current quantum technologies. In fact, higher order error terms
should not be ignored whatsoever, reason being that current error correction rates
scale similarly to current dephasing rates [Dut+07; Sch+11; Tam+14; Cra+16;
Ofe+16]. The experimental realization of error correction enhanced quantummetrol-
ogy [Und+16] had a wait time between periods of error correction of 20µs (or 50kHz)
- comparable to the reported decoherence rate of 30kHz. This experiment used a
single NV center as a sensor and performed two applications of error correction.

Even supposing that the higher order terms O(τ 2) in Eq.(5.7) are negligible
compared to the first order approximation, the argument in itself falls short of
expectations. If t is the sensing time, and τ is the time between applications of error
correction; the assumption of τ being arbitrarily small is equivalent with the number
of rounds of error correction, t/τ , being arbitrarily large. Although the higher order
evolution term is negligible after a single round of error correction, which in turn
adds a negligible amount of uncertainty to the final quantum state, this does not
necessarily imply that the total uncertainty added to the quantum state after t/τ
rounds is also negligible.

Furthermore, current quantum error correction technologies are not perfect. An-
cillary qubits are also encumbered to the effects of noise. Syndrome diagnosis and
recovery operations cannot be implemented with perfect fidelity. These imperfec-
tions will hinder the utility of the quantum state for quantum metrology.

5.4 Our Model

A more pragmatic approach for error correction enhanced quantum metrology is to
make no assumptions regarding the time between applications of error correction
and draw conclusions from an exact solution. It should be noted that the noise
models in [DCS17; Zho+18] are completely general. Inevitably, obtaining an exact
solution for an arbitrary noise model is infeasible, which is why we use a relevant
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Figure 5.2: Schematic of our error correction enhanced quantum metrology model.
The input state, ρin, is initialized as an n + 1 qubit GHZ state composed of n
sensing qubits and one ancillary qubit. The sensing qubits are influenced by a
signal ω and dephasing γ. The parity check code, denoted by C, is repeatedly applied
after a given time τ to mitigate the effects of dephasing. The final quantum state
used for parameter estimation, ρout, undergoes t/τ rounds of error correction. The
scheme can easily be generalized; allowing for arbitrary input states, error correction
strategies and more ancillary qubits.

noise model: dephasing in a direction orthogonal to the signal, see Eq. (5.1).
Similarly, we make use of a realizable error correction code: a parity check

code [HBD09; FGV15; Rof+18]. A parity check code makes use of an ancillary
qubit which is less sensitive to environmental interactions (and thus less noisy).
For example, the experiment in [Und+16] used an electron spin for sensing and
a nuclear spin as the ancillary qubit. In each application of error correction, the
syndrome diagnosis outputs the parity between individual sensing qubits and the
ancillary qubit. The subsequent recovery operation will correct any qubits which
demonstrated a difference in parity by applying an X operation.

In our model, exhibited in Fig. (5.2), the quantum state is initialized as an
n + 1 qubit GHZ state, where n qubits are used for sensing and the remaining one
qubit (which is more resistant to environmental noise) acts as an ancilla for error
correction. The sensing qubits are influenced by a signal ω and dephasing with rate
γ. The sensing qubits evolve per Eq. (5.1) for time τ , after which the parity check
code is applied; the procedure is then repeated t/τ times where t is the total sensing.
Without loss of generality, it is assumed that t/τ is an integer. The set-up is similar
to that of [Kes+14], however the authors disregard higher order error terms, which
is similarly presumptuous to assuming an arbitrarily small τ .
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To augment the reality of our model, we account for other hindrances current
error correction technologies are burdened by: noisy ancilla and imperfect syndrome
diagnosis. The noisy ancilla is subjected to a dephasing rate ξ, which changes the
master equation to

dρ

dt
= − i

~
[H, ρ] + γ

n∑
m=1

(XmρXm − ρ) + ξ(Xn+1ρXn+1 − ρ), (5.11)

where the ancillary qubit is indexed by the subscript n + 1. Imperfect syndrome
diagnosis is simulated by assuming that the syndrome diagnosis is incorrect with
probability p, which results in an unnecessary recovery operation (or lack thereof).

5.5 Results

A completely general result for the final quantum state after t/τ rounds of error
correction with a noisy ancilla and imperfect syndrome diagnosis is derived in Ap-
pendix B. The general solution is quite complicated and difficult to analyse. For
clarity, each subcase is analysed individually: i) ideal error correction (ξ = 0, p = 0),
ii) noisy ancilla (ξ 6= 0, p = 0), and iii) imperfect syndrome diagnosis (ξ = 0, p 6= 0).

5.5.1 Ideal Error Correction

In the ideal error correction scenario (noiseless ancilla and perfect error correction),
after t/τ rounds of error correction, the final quantum state can be expressed as a
bipartite mixed state

ρ =
1 + rnt/τ

2
|ψ+〉〈ψ+|+

1− rnt/τ

2
|ψ−〉〈ψ−| , (5.12)

where
|ψ±〉 =

1√
2

(
|0〉⊗n+1 ± einφt/τ |1〉⊗n+1 ), (5.13)

and
re±iφ = e−γτ

(
cos(∆τ) +

γ ± iω
∆

sin(∆τ)
)
, (5.14)

with ∆ =
√
ω2 − γ2. There is no mathematical issue when ω2 < γ2, in this regime

the trigonometric functions are replaced by the corresponding hyperbolic functions
(as per their definition). Because the quantum state is evaluated immediately after
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ω/γ = 20 No QECC
ω/γ = 1/20 t = 103τ

t = 106τ

Figure 5.3: Plot of Q/τ 2 for an n = 25 qubit GHZ state after undergoing repeated
error correction with (a) ideal error correction, (b) a noisy ancilla (ξ/γ = 10−4),
and (c) imperfect syndrome diagnosis (p = 0.01), with total sensing times t/τ =
103, 106. The characteristics of a noisy state without the inclusion of a quantum
error correction code (QECC) after sensing time t = τ is also displayed. As the
total sensing time t increases, the necessary rate at which error correction is needed
to maintain the HL increases. Hence the reason why the curve with t = 106τ begins
to decrease before the curve with t = 103τ , which similarly begins to decrease before
the curve without the application of the error correction code. The curves are cutoff
when Q/τ 2 = 1 for clarity purposes. Additionally, we illustrate the corresponding
normalized QFI curves, Q/(nt)2, in plots (d), (e) and (f) respectively, to emphasize
the deviation from the HL.

the t/τth application of error correction, a mixture of GHZ-like states is obtained.
Assuming that γτ > 0 and ω 6= 0, it follows that

r2 = e−2γτ
(
1 +

γ

∆
sin(2∆τ) +

2γ2

∆2
sin2(∆τ)

)
< e−2γτ

(
1 + sinh(2γτ) + sinh2(γτ)

)
= 1,

(5.15)
consequently, the quantum state becomes more mixed (and less useful for quantum
metrology) once the quantity nt/τ becomes very large.
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ω/γ = 20 γt = 100
ω/γ = 1/20 γt = 1000

γt = 10000

Figure 5.4: An alternative perspective on illustrating the tendencies of Q/τ 2 for
an n = 25 qubit GHZ state after repeated applications of error correction. Here,
the total sensing time γt is held constant and deviations from the linear curve on
the log-log plot represent the QFI tending away from the HL and towards a QFI of
zero. The same scenarios are plotted: (a) ideal error correction, (b) a noisy ancilla
(ξ/γ = 10−4), and (c) imperfect syndrome diagnosis (p = 0.01). Without any error
correction, the QFI after total sensing times γt = 100, 1000, 10000 is effectively zero.
Note that the three values chosen for the total sensing time, γt, deviate less than
the values chosen in Fig. (5.3). This choice was intentional to properly illustrate the
scenario of imperfect syndrome diagnosis. Regardless, the curves display here have
an analogous curve with similar tendencies displayed in Fig. (5.3).

The QFI of the quantum state in Eq. (5.12) can be written in the form

Q1 = n2t2r2nt/τf, (5.16)

where for small times τ ,
f = 1− 2γτ +O(τ 2). (5.17)

It is immediately clear that a Heisenberg level of precision is obtained if two condi-
tions are met. The first being that 2γτ � 1; it was derived in [DCS17; Zho+18] and
is equivalent to the constraint for noisy metrology without quantum error correction,
Eq. (5.2). The second condition is r2nt/τ ≈ 1, which suggests that the HL cannot be
maintained indefinitely in a noisy environment (because r2 < 1) and that the QFI
will eventually tend to zero. For small τ we have

r2nt/τ = 1− 4

3
n(ωτ)2γt+O(τ 3), (5.18)
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meaning the second condition can be written as 4
3
nω2τ 2γt� 1. This condition goes

unnoticed in [DCS17; Zho+18] because it is of second order with respect to τ .
Both of these conditions are illustrated in Fig. (5.3a), Fig. (5.3d) and Fig. (5.4a),

where the QFI of an n = 25 qubit GHZ state is plotted. In the regime ω2 � γ2

(ω/γ = 20), the HL of precision is lost once r2nt/τ begins to tend to zero.
For each value of r there is a critical value which the exponent will take such

that the QFI will begin to rapidly converge to zero. Hence the difference in values
of γτ for when the curves with ω/γ = 20 in Fig. (5.3a), Fig. (5.3d) and Fig. (5.4a)
deviate from the HL.

In the regime ω2 � γ2 (ω/γ = 1/20), the HL level of precision is lost once
γτ ≈ 10−2, regardless of if t = 103τ or t = 106τ . The stark contrast in the families
of curves (ω2 � γ2 versus ω2 � γ2) is due to larger deviations from the ideal case
when ω2 � γ2. Information about ω is stored in the relative phase, nφt/τ , and if
an error does occur between applications of error correction, the phase will deviate
further from the ideal case. Thus, each round of error correction introduces a small
amount of variance to the phase which scales with the magnitude of ω.

In the noisy scenario without error correction, the optimal sensing time (which
maximizes the QFI) is topt ≈ 1/(nγ) [Cha+13]. The analogous quantity for the error
correction enhanced setting can be computed by first realizing that ∂f

∂t
= O(τ)2,

therefore the optimal sensing time is obtained by (approximately) maximizing the
quantity t2r2nt/τ . The resulting optimal sensing time is

topt =
1

2
3
nγω2τ 2 +O(τ 3)

. (5.19)

As expected, topt increases as τ decreases, and decreases as n increases. The depen-
dence on ω is linked to the effective variance in the phase of the quantum state.

5.5.2 Noisy Ancilla

The inclusion of the noisy ancilla alters the QFI to be

Q2 = n2t2r2nt/τ (f − gξ) +O(ξ2), (5.20)

where g is bounded by (2

3
− 7γτ

)
t ≤ g +O(τ 2) ≤ 5

2
(t+ τ), (5.21)
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which can be interpreted as another necessary condition to obtain a Heisenberg-like
scaling: ξt � 1. This is not very surprising, since error correction will becomes
less effective as time increases, and ultimately become ineffectual once the ancilla
decoheres, t ≈ 1/ξ. The new condition is displayed in Fig. (5.3b) and Fig. (5.3e), in
which the ancillary qubit is set to have a dephasing rate 10000 times weaker than the
sensing qubits. The noisy ancilla causes the HL to be lost sooner when compared to
the case with a noiseless ancilla. The impact is more pronounced for the curve with
ω/γ = 1/20 and t = 106τ , where the loss of the HL is strictly due to ξt becoming
too large instead of γτ . In Fig. (5.4b), where the total sensing time is static (and
thus ξt is a constant), the QFI curve with γt = 10000 is noticeable shifted when
compared to the same curve with ideal error correction in Fig. (5.4a). The problem
of noisy ancillary qubits can be overcome by occasionally re-initializing the ancillary
qubit (before it becomes too noisy) using an additional layer of error correction.

5.5.3 Imperfect Syndrome Diagnosis

The second hindrance explored is the inclusion of imperfect syndrome diagnosis due
to flaws in the error correction hardware. To model this, for each instance of error
correction, there is a probability p that the parity measurement between a sensing
qubit and the ancillary qubit is incorrect. Hence, if there is a difference parity,
then no error correction is performed with probability p. Similarly, if there is no
difference in parity (and no correction is needed), there is also a probability p that
an unnecessary correction is performed. An unnecessary correction (or lack thereof)
will subject the quantum state to additional noise. Furthermore, each round of error
correction introduces a small amount of variance to the quantum state due to the
imperfect hardware, which will grow as the number of rounds of error correction
increases. With the inclusion of imperfect syndrome diagnosis, the QFI is

Q3 = n2t2(rq)2nt/τh, (5.22)

with
q2nt/τ = 1− 4p(1− p)ω2tτ +O(τ 2), (5.23)

and
h = (1− 2p)2f + 4p

(1− p
n

+ 1− 2p
)τ
t

+O(τ 2). (5.24)

The inclusion of imperfect syndrome diagnosis makes the true HL unattainable;
Q → n2t2(1 − 2p)2 as τ → 0. The multiplicative factor (1 − 2p)2 is a result of the
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added uncertainty from each application of error correction. The exponential term
in Eq. (5.22), (rq)2nt/τ , must be approximately equal to 1 to achieve Heisenberg-like
precision. This is a more strict version of r2nt/τ ≈ 1, and is again due to deviations
in the relative phase, which are amplified by the imperfect syndrome diasgnosis.
This stronger condition can be seen in Fig. (5.3c), Fig. (5.3f) and Fig. (5.4c), in
which the probability of faulty syndrome diagnosis is 1%. The additional condition
of q2nt/τ ≈ 1 is more pronounced in the regime where ω2 � γ2. The upper bound
of precision is displayed in Fig. (5.3f); as γτ → 0, Q/(nt)2 → (1− 2p)2 ≈ 0.96.

5.5.4 Fisher Information

Given that the achievable precision of a metrology problem is also constrained by
the estimation strategy, a more practical figure of merit is the Fisher information
with respect to implementable estimation strategies. Consider measuring the output
quantum state, Eq. (5.12), in the basis spanned by {|α+〉 , |α−〉}⊗(n+1), in which

|α±〉 =
1√
2

(|0〉 ± eiα |1〉), (5.25)

and reverse engineering the measurement results to estimate ω. Because of the sym-
metry of ρ, one only needs to consider the projectors Ej = |α+〉〈α+|⊗n+1−j |α−〉〈α−|⊗j,
where

Tr
(
Ejρ

)
=

1 + (−1)jR cos
(
θ − α

)
2n+1

, (5.26)

with R = rnt/τ and θ = nφt/τ . The Fisher information of this estimation strategy
is

I =
∑
j

Tr
(
Ej ρ̇

)2

Tr
(
Ejρ

) =

(
Ṙ cos

(
θ − α

)
−Rθ̇ sin

(
θ − α

))2

1−R2 cos
(
θ − α

) , (5.27)

where the notation �̇ = ∂ω� is used for conciseness. If α is chosen such that
cos(θ − α) ≈ 0, then this estimation strategy approximately saturates the QFI

I = Q+O(τ 2). (5.28)

Of course, this requires exact knowledge of ω to implement perfectly, which defeats
the purpose of quantum metrology. However, this could be implemented with a high
degree of precision using an adaptive estimation strategy [GM05; Fuj06; Wis+09;
PJ17]. On a similar note, saturating the QCRB requires that the value of γ is
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precisely known. Any uncertainty in the noise model will naturally translate to
uncertainty in the estimation of ω. Alternatively, if γ is unknown, one can consider
estimating both ω and γ in simultaneity, i.e. consider the setting as a multiparameter
quantum metrology problem.

5.5.5 QFI And Entanglement

In Chapter 3 a relationship between the geometric measure of entanglement G and
the QFI is given by [Aug+16]

Q(ρθ) ≤ n+ 8n2
√
G(ρθ). (5.29)

This is an inequality and not an equality because entanglement is a necessary con-
dition and not a sufficient condition [Osz+16]. However, the relationship between
QFI and entanglement is much more pronounced for quantum states of the form

ρ =
1 +R

2
|ψ+〉〈ψ+|+

1−R
2
|ψ−〉〈ψ−| , (5.30)

with
|ψ±〉 =

1√
2

(
|0〉⊗N ± eiθ |1〉⊗N

)
. (5.31)

Hence, ρ is a highly entangled pure state when R = 1 and a mixture of two separable
states when R = 0. Using the recipe for rank-2 mixed symmetric mixed states in
[Das+16], the geometric measure of entanglement for the above quantum state is

G(ρ) =
1

2
(1−

√
1−R2). (5.32)

Therefore, the ‘quantum part’ of the QFI can be written

R2θ̇2 = 4G(1−G)θ̇2. (5.33)

This result, albeit interesting, is mostly a bi-product of the fact that the initialized
quantum state was a maximally entangled GHZ state. It is not surprising that the
deterioration of the entanglement and the loss of the HL are dependent on the same
quantity R2. In fact, many quantities which measure some aspect of ‘quantum-ness’
are similarly dependent, such as purity

Tr ρ2 =
1 +R2

2
, (5.34)
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γτ = 1
ξτ = 0.002
p = 0.06

γτ = 1
ξτ = 0
p = 0.001

γτ = 0.1
ξτ = 0
p = 0.001

Figure 5.5: Normalized QFI in the small signal regime ω/γ = 0.01. Today’s
quantum technologies (γ−1 = τ = 10−6s, ξ−1 = 5 × 10−4s, p = 0.06) [Dut+07;
Tam+14] suggest a QFI of ∼ 20% of the HL can be attained for sensing times
t = 101τ . With improved error correction hardware and a noiseless ancilla, this
can be sustained for a sensing time t = 103τ . The QFI is significantly improved
when the rate of error correction is increased by a factor of ten.

and Von Neumann entropy

− Tr ρ log ρ = −1 +R

2
log
(1 +R

2

)
− 1−R

2
log
(1−R

2

)
. (5.35)

5.6 Current Technologies

In [Dut+07; Tam+14], the electron spin of a nitrogen-vacancy center is entangled
to carbon-13 nuclear spins. The nuclear spins act as ancillary qubits, and error
correction is performed on the electron spin using the parity check code. The re-
ported dephasing rates are γ−1 ∼ 10−6s and ξ−1 ∼ 5 × 10−4s. The error correction
is being performed on a comparable timescale of τ ∼ 10−6s, with infidelity reported
at p = 0.06 [Tam+14]. In Fig. (5.5), this data is used to benchmark the abilities
of current error correction technologies as a means of enhancing the precision of a
noisy quantum metrology scheme in the regime ω2 � γ2. Because the error correc-
tion rate is similar to the dephasing rate, the HL is unattainable. This is still the
case with better hardware: p = 0.001 and ξ = 0 (the latter is justified by regularly
re-initializing the ancilla). Notably, if the error correction rate increases by a factor
of ten, the achievable QFI is 80% of the HL for a total sensing time of t = 105τ . This
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greatly outclasses the precision achieved in current experiments [Tay+08; Was+10;
Raz+19]. Although this result is promising, it is important to realize that experi-
ments are hindered by more than what is considered in Fig. (5.5), such as parallel
noise, imperfect gate fidelity when applying the recovery operations and flaws in the
quantum state initialization.

5.7 Other Noise Mitigation Strategies

In striving for an exact solution, it was necessary to consider a specific noise model
and a specific error correction protocol. Whereas [DCS17; Zho+18] make no as-
sumptions regarding the noise model. Although a completely general result is more
satisfying, it is unfeasible with our methods. Nevertheless, our model and math-
ematical methodology are easy to adapt. One can substitute any combination of
noise model and error correction strategy in place of iid dephasing and the parity
check code respectively. In fact, repeated error correction can be forgone entirely
and replaced with a suitable quantum control technique [Sek+17], such as dynamical
decoupling [Ron+11; SSD16] or reservoir engineering [SW10; Zhe+15].

We conjecture that, just as with discrete applications of the parity check code,
for any noise mitigation strategy, the QFI will depend on term similar to r2nt/τ : one
which suggests that there exist a critical time where the QFI begins to tend to zero.
In fact, using the n qubit bit flip code [Got97] yields the results

Q = n2t2r2nt/τf +O(τ
n−1
2 ). (5.36)

Hence, for large n the QFI using the bit flip code is effectively the same as if
one utilizes the parity check code. The reasoning supporting the aforementioned
conjecture is that any errors which occur will cause the relative phase to deviate from
the ideal value, and the deviation will remain even after performing a correction.
Thus, after each round of error correction, the variance in the phase will increase,
which propagates to an increase in variance in the eventual estimate of ω. This
conjecture is easily extended to any realistic noise model; as one expects the relative
phase to deviate from the ideal value after performing error correction, regardless
of the noise model.

We are not suggesting that the parity check code is the most efficient noise miti-
gation strategy (for transverse noise) at retaining the HL. For example, an adaptive
parameter estimation [GM05; Fuj06; Wis+09; PJ17] could be used to supplement
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the parity check code by incorporating an unitary operation which approximately
corrects the deviations in the relative phase. This strategy is more difficult to im-
plement, as the unitary rotations would be quite small and unlikely to be accurately
realizable with current quantum hardware. Indisputably, as quantum technologies
continue to improve, and the frequency at which these noise mitigation tools can be
applied increases, so too does our ability to maintain the HL for increased sensing
times.

5.8 Discussion

Our analysis is in agreement with previous results [DCS17; Zho+18], which suggests
that the inequality 2γτ � 1 is crucial for an error correction enhanced quantum
metrology scheme to maintain a Heisenberg-like scaling. However, the findings in
[DCS17; Zho+18] are based on the assumption that higher order terms are negli-
gible, O(τ 2) → 0, and as a result, Heisenberg-like scaling can be maintained per-
manently with repeated applications of (arbitrarily fast) error correction. This is
not in accordance with today’s quantum technologies, as the rate at which error
correction can be performed is on a similar order of magnitude to the dephasing
rate of physical qubits [Dut+07; Sch+11; Tam+14; Cra+16; Ofe+16]. When the
assumption O(τ 2) → 0 is discarded, a second necessary condition to maintain the
Heisenberg-like scaling emerges, r2nt/τ ≈ 1→ 4

3
nω2τ 2γt� 1.

Whenever an error occurs, it causes the phase to deviate from the ideal value of
nωt, which is why the HL cannot be maintained indefinitely. That being said, in
practise, no quantum metrology requires indefinite sensing time. For spin quibts, a
more appropriate upper bound could be the relaxation time, which is typically a few
orders of magnitude larger than the dephasing time [Wan+17]. With the limitations
of current technologies, Fig. (5.5), this may as well be indefinite.

We specifically analyse the effects of repeated applications of error correction for
the specific case when the probe state is initialized in an n qubit GHZ state. A
logical generalization is to expand the results to a broader scope of initial states;
such as squeezed states [Gro12; ZD14], symmetric states [TA14], or bundled graph
states (Chapter 4). It is possible that these quantum states (which do not achieve
the true HL, but do achieve a quantum advantage and Heisenberg-like scaling) are
more robust to the effects of noise and can maintain a quantum advantage for a
longer total sensing time when enhanced by error correction.

Further, we chose to analyse a dephasing noise model, something which is more
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applicable to atomic systems [SC07; BS13; MFD14; ZYL14]. A future perspective
is to consider noise models more relevant to optical systems, such as loss and phase
diffusion [Lee+09; Dem+09; KSD11; Zha+13; DJK15]. Error correction codes for
continuous variable systems are typically more complex [PZ98; SM05; ZPJ20]; it is
not obvious how our results translate to these systems, if at all.
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6
Quantum Cryptography for

Quantum Metrology

Quantum channels are likely to be the most vulnerable aspect of quantum commu-
nication protocols. Without proper cryptographic precautions, a malicious adver-
sary can intercept the information being sent through a quantum channel while the
honest parties remain none the wiser. As quantum network sensing and spatially
distributed schemes become increasingly popular [Kóm+14; PKD18; Rub+20], it is
important to verify which techniques from quantum cryptography are compatible
with quantum metrology.

Until very recently, quantum metrology and quantum cryptography were non-
overlapping disciplines. Gradually, the idea of security has been introduced to
quantum metrology by considering scenarios involving unsecured quantum chan-
nels [Xie+18; HMM19], delegated measurements to an untrusted party [Tak+19b;
Oka+20; Yin+20], or unwanted eavesdroppers [Kas+21]. Although this direction
is new and exciting, the aforementioned references fail to quantify the effects a
malicious adversary poses to the quantum metrology problem, i.e the effects on
the estimate and its precision. This chapter addresses this problem by linking the
cryptographic notion of soundness to an overall uncertainty added to the quantum
resource, which propagates to the quantum metrology problem.

In addition to developing a toolbox for the merging of quantum cryptography
and quantum metrology, several cryptographic protocols are devised for a variety
of cryptographically motivated settings. Such as quantum metrology with an un-
secured quantum channel [SMK21] and quantum metrology with delegated tasks
[SM]. The protocols devised are completely private, meaning that even if a mali-
cious adversary intercepts the quantum data, they cannot interpret it, and maintain
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the integrity of the underlying metrology problem with no more than a quadratic
increase in the number of resources. More so, (most of) the protocols devised take
into account the limitations of real world quantum hardware and use nothing more
complex than local Clifford operations.

6.1 Quantum Cryptography

Cryptography is the practise and study of data security. For a long time, up until
the advent of the computer, cryptography was synonymous with encryption - a
method to cipher and decipher a message. Without knowledge of the cipher, an
adversary could not intercept and learn the contents of the message. Nowadays, in
the digital age, cryptography is much more than just encryption, yet the general
philosophy of data security remains. Sophisticated techniques are manufactured
for a range of tasks, such as sender/receiver authentication, secure data storage,
secure computation, et cetera. Cryptography is undeniably essential for safeguarding
confidential information and establishing trust between severs in the digital era.

Quantum cryptography is the natural generalization of cryptography where quan-
tum mechanical properties are allowed to be exploited. The quantum framework is
accompanied by advantages and disadvantages alike. It is advantageous as quantum
systems have built-in security aspects due to the no-cloning theorem and the col-
lapse of the wave function. It is disadvantageous in the fact that an adversary with
a quantum computer is much more powerful than an adversary with a classical com-
puter. For example, the modern (classical) RSA encryption scheme is based on the
difficulty of factoring large numbers efficiently [RSA78]; this encryption scheme can
be broken with Shor’s factoring algorithm1 [Sho94]. As such, quantum cryptography
differentiates from classical cryptography in the notion of security. A cryptographic
protocol is said to be computationally secure if it is immune to an adversary with
‘reasonable’ computational power and time. Whereas quantum cryptography proto-
cols opt for unconditionally security, which is to say that no assumptions are made
about the adversaries’ computational power and time.

The premise of the first formulation of quantum cryptography [Wie83] was sim-
ple but powerful: by randomly encoding the bit ‘0’ (‘1’) in either |0〉 (|1〉) or |+〉
(|−〉), then the value of the bit is completely concealed from a malicious adversary
if they are not aware of the preparation basis. This result stems from the uncer-

1No need for panic; Shor’s factoring algorithm is very much out of reach for modern quantum
technologies.
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tainty principle, Eq. (2.27), which has no classical analogue. This concept paved the
way to the famous BB84 protocol for quantum key distribution [BB84]. Since then
the applicability of quantum cryptography has thrived [BS16; Pir+20]; for exam-
ple: quantum money [Aar09; Boz+18], quantum coin flipping [Amb+04; Pap+14],
verification of quantum processes [Yin+13; GKK19; ZH19a] and blind quantum
computing [BFK09; Bar+12; FK17].

Just as (classical) cryptography is essential for confidentiality and trust in the
digital era, so too is quantum cryptography in the quantum era. This is the core
idea supporting the integration of quantum cryptography into a quantum metrol-
ogy problem. If the problem involves multiple parties or communication through
a quantum channel, then it is imperative to use quantum cryptography to certify
the results and maintain a notion of privacy. Otherwise, a malicious adversary who
intercepts an encoded quantum state can either bias the estimation result or esti-
mate the latent parameter themselves. However, the problem is not as simple as
using existing cryptographic protocols; in addition to adding security and privacy,
the cryptographic protocol must not interfere with the mechanisms of the quantum
metrology problem.

6.2 Cryptographic Figures Of Merit

There is no unique cardinal figure of merit for cryptographic protocols due to the
sheer vastness of quantum cryptography in both functionality and perspectives.
Ergo, a suitable figure of merit for a cryptographic protocol should be relevant to the
scope of the protocol and provide a method of comparison between similar protocols.
The protocols we devise for quantum metrology take inspiration from quantum
message authentication [Bar+02], so it is natural use the same figures of merit:
privacy and soundness. These are both commonly used for most cryptographic
protocols whose aim is to verify/authenticate/certify a process. Other than quantum
messages [Bar+02], examples include quantum state preparation [ZH19a; ZH19b]
and quantum computation [FK17]. Providentially, the soundness of a protocol can
be related to the additional bias and uncertainty of the quantum metrology problem.

6.2.1 Privacy

Privacy is a straightforward concept which quantifies the amount of information a
malicious eavesdropper can extract from a message (quantum or otherwise). The
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protocols outlined in this chapter are all completely private, this is to say that an
eavesdropper can extract no information. If an eavesdropper can access the quantum
state ρE, then this is achieved if

E(ρE) = I/d, (6.1)

where d is the dimension of ρE. Thus, a protocol is completely private when the
expected quantum state accessible to an eavesdropper is indistinguishable from the
maximally mixed state.

Having a completely private protocol is paramount for quantum metrology, as
this prevents an eavesdropper from learning anything about the unknown parameter
for themselves. This was overlooked in the first work which established the idea of
quantum metrology integrated into a cryptographic framework [HMM19], in the
appendix of [SMK21] we show that their protocol is not completely private and that
an eavesdropper can go completely undetected while learning performing parameter
estimation for themselves.

6.2.2 Soundness

For authentication schemes, the soundness of a cryptographic protocol is the stan-
dard figure of merit used to judge the security of a protocol [Bar+02]. In essence,
the soundness of a protocol quantifies the ability of a malicious adversary to alter
the quantum state whilst remaining undetected. The formal mathematical defini-
tion of soundness varies depending on the formulation of the cryptographic protocol
[Bar+02; FK17; ZH19a; Tak+19a], and is sometimes referred to as verifiability
[GKK19]. The version used in the work presented in this thesis uses a slightly
modified version of the definition presented in [Bar+02].

Authentication schemes have two outputs: a binary accept or reject clause as
well as a quantum output. The quantum output varies as per the protocol, in this
chapter, it will either be a quantum state or a measurement result. The protocols are
also equipped with ancillary qubits, which are constructed to have a deterministic
measurement outcome in an ideal scenario in which there is no malicious activity.
If the expected measurement result is observed, the outcome of ‘accept’ is assigned.
However, if an unexpected result is observed, then it must be the result of malicious
activity, and the outcome of ‘reject’ is assigned. For the sake of unconditional
security, no assumptions are made with respect to the computational power of a
malicious adversary. More so, it is assumed that a malicious adversary is completely
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familiar with the inner mechanisms of the protocol. In order to dissuade a malicious
adversary, the protocols are supported by a set of classical keys K, where each key
alters the protocol differently. Before implementing a protocol, a key is chosen at
random, and even if a malicious adversary may have access to the set of possible
keys, it is assumed that they do not have access to the random choice. If there are
multiple trusted parties who need access to the key, it is assumed that the key can
be shared securely. This can be accomplished through a secure classical channel or
quantum key distribution [BB84]. For all intents and purposes we assume that a
malicious adversary cannot access the (random) choice classical key.

The mathematical definition of soundness is a bound on the probability of wit-
nessing ‘accept’, while the quantum output, ρout is simultaneously far from the ideal
ρid. In [Bar+02], the protocol is constructed for ρid being a pure state, and the
‘distance’ is recorded in 1 − Tr(ρidρout). In [SM], the outputs are not necessarily
pure states, and we generalize the ‘distance’ as 1 −F (ρid, ρout). Both expressions
are equivalent in the event that ρid is a pure state. Mathematically, a protocol has
soundness δ if

1

|K|
∑
k∈K

pacc(k,Γ) ·
(

1−F
(
ρid, ρout(k,Γ)

))
≤ δ. (6.2)

Here, Γ represents any possible attack a malicious adversary may perform, and
k ∈ K is the specific key chosen. The probability of the protocol outputting ‘accept’,
pacc(k,Γ), and the output ρout(k,Γ) are dependent on both of these quantities. A
well designed protocol should be provide a sense of security for all malicious attacks,
thus Eq. (6.2) must hold for all Γ.

When it can be written that pacc(k,Γ) ≥ α, then Eq. (6.2) can be transformed
into the inequality

1− E
(
F
(
ρid, ρout

))
≤ δ

α
, (6.3)

where the dependence of ρout on the key k and the attack Γ has been omitted for clar-
ity. The quantity α is sometimes referred to as the statistical significance [ZH19a].
This alternative formulation permits more easily permits the use of other common
figures of merit which are intertwined with the soundness and statistical significance
[ZH19a; ZH19b]. More so, it will be shown that Eq. (6.3) can be manipulated to
determine the utility of ρout for quantum metrology. This is done by bounding the
trace distance, which can be found using the the Fuchs-van de Graaf inequalities
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[FV99], Eq. (2.35), and the arithmetic-quadratic mean inequality

E
(
D
(
ρid, ρout

))
≤
√

E
(
D
(
ρid, ρout

)2
)
≤
√

1− E
(
F
(
ρid, ρout

))
≤
√
δ

α
. (6.4)

6.3 Cryptographic Quantum Metrology

The first adaptation of a quantum metrology problem in a cryptographic framework
can be found in [Kóm+14]. In the article, an entangled state is distributed from
a central node to several exterior nodes, where a local phase is encoded and sent
back to the central node for phase estimation. The authors propose occasionally
distributing non-entangled decoy qubits throughout the sensing network. These
decoy qubits have a deterministic measurement and are used to detect and thwart
malicious activity. As this was not focal point of [Kóm+14], the ‘proof’ of security is
substandard, nonetheless the protocol was a good starting point for a cryptographic
framework of quantum metrology.

The concept was later picked up in [HMM19], where two honest parties wish
to perform phase estimation over an unsecured quantum channel. Alice sends a
non-encoded quantum state to Bob, who encodes a phase using a unitary, and sends
the quantum state back to Alice to be measured. The quantum states are sent
back and forth through an unsecured quantum channel. The authors of [HMM19]
suggest a simple protocol to prevent a malicious adversary from intercepting the
channel and tampering with the results. In each use of the quantum channel, Alice
randomly prepares one of four quantum states: either a decoy quantum state |0〉⊗n

or |1〉⊗n, which will not serve any utility for phase estimation, or a GHZ state
|ψ+〉 = 1√

2
(|0〉⊗n + |1〉⊗n) or |ψ−〉 = 1√

2
(|0〉⊗n− |1〉⊗n). Additionally, Bob will either

randomly encode the unknown phase θ, or a phase φ which maps |ψ±〉 to |ψ∓〉. Even
though this protocol is more sophisticated than what was presented in [Kóm+14], we
show in [SMK21] that it is vulnerable to a malicious attack which is undetectable by
Alice and Bob. Additionally, [HMM19] and many others who have since investigated
‘cryptographic quantum metrology’ [Xie+18; Tak+19b; Oka+20; Yin+20; Kas+21]
fail to elaborate on the ramifications on the underlying metrology problem.

In a cryptographic framework, many of the concepts from estimation theory
discussed in Chapter 3 have to be altered in some capacity. This is because there is
no guarantee that the resource used for the parameter estimation problem is the ideal
resource. To fit the language of statistics, the cryptographic framework of quantum
metrology injects uncertainty into the estimate. This additional uncertainty can
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be bounded by taking proper precautions and employing appropriate cryptographic
protocols. However, this uncertainty in the resource leads to ambiguity with respect
to the construction of an estimator; it is not immediately obvious how to select a
measurement or how to process the measurement data. Assuming that the additional
uncertainty is small, the most straightforward strategy is to process the data as
if it was the ideal resource. Evidently, the unbiased condition, Eq. (3.1), is not
necessarily satisfied. Since an unbiased estimator is integral to saturate the CRB,
the QFI would be a naive choice of a figure of merit for quantum metrology within a
cryptographic framework. Instead, we introduce the concept of integrity in [SMK21]
as a figure of merit. Integrity refers to the ability of a cryptographic protocol to
retain the quantum state and functionality in the presence of malicious adversaries.
In this chapter, the notation �′ is used to signify the quantity � in a cryptographic
framework. For example, θ̂ is an estimator with a MSE of ∆2θ̂ in an ideal framework
and θ̂′ is an estimator with a MSE of ∆2θ̂′ in the cryptographic framework. The
integrity of the cryptographic quantum metrology problem is measured in two ways,
the first is the added bias ∣∣E(θ̂′)− E(θ̂)

∣∣, (6.5)

and the second is the increase in the MSE∣∣∆2θ̂′ −∆2θ̂
∣∣. (6.6)

For simplicity, we restrict estimation strategies, in which the value of the unknown
parameter is inferred from expectation value of an observable O. The specific details
of this strategy can be found in Chapter 3.

6.3.1 Bounding The Integrity

As Fig. (6.1) suggests, a quantum metrology problem can be altered at many stages
of the estimation process by a malicious adversary: state preparation, parameter en-
coding, or the measurements. Because the measurement is the final ‘quantum step’
in the process before creating the estimate, the measurement statistics in the crypto-
graphic framework must resemble the measurement statistics in the ideal framework.
Otherwise, the estimate would not be practical.

Even though measurement results are a classical quantity, the measurement
statistics can always be written as a mixed state with no coherence terms, where
the amplitudes correspond to probabilities of witnessing a certain measurement out-
come. If the observable the estimate is being inferred from has an eigenbasis with
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(a) Quantum Metrology in an Ideal Framework.

(b) Quantum Metrology in a Cryptographic Framework.

Figure 6.1: Comparison between a quantum metrology problem in an ideal frame-
work (sans malicious adversary) and a cryptographic framework (potentially a ma-
licious adversary). In the ideal framework (a), a quantum state ρ is prepared, then
an unknown parameter is encoded into the quantum states through a CPTP map
ρθ = Λθ(ρ), finally a measurementM is performed on the encoded quantum state.
After ν repetitions, the measurement results are used to construct an estimate θ̂.
In the cryptographic framework (b), a malicious adversary can intercept and alter
the process at any step of the problem. For example, the state preparation can be
done by an untrusted source, or an unsecured quantum channel may be intercepted.
In fact, the subscript θ in the cryptographic framework is somewhat misleading as
there is no guarantee that either ρ′θ or σ′θ is dependent on θ. Additionally, the as-
sumption of an iid process is discarded in the cryptographic framework: ρ′ in the
first round may be different from the ρ′ in the second round (or any other round).
Note that this figure depicts a completely general cryptographic setting, while the
latter sections of this chapter explore specific cryptographic settings, in which it
will be clear how and when a malicious adversary may alter the quantum metrology
problem.

projectors {E}, then the corresponding measurement statistics of an encoded quan-
tum state ρθ is

M(ρθ) =
∑
E

EρθE. (6.7)

For example if |ψ〉 = α |0〉+β |1〉 is measured with respect to the computational basis,
then the measurement statistics areM(|ψ〉) = |α|2 |0〉〈0|+ |β|2 |1〉〈1|. Similarly, the
measurement statistics in a cryptographic framework can always be derived from an
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arbitrary (not necessarily encoded) quantum state ρ′θ. Mathematically, we demand
that

1

ν

ν∑
j=1

D
(
M(ρθ),M(ρ

′(j)
θ )
)
≤ ε� 1, (6.8)

where ρ′(j)θ is a quantum state which outputs the measurement statistics of the
jth round of the prepare, encode and measure portion of the quantum metrology
problem in the cryptographic framework. Eq. (6.3) and Eq. (6.4) suggests that this
can be achieved by implementing appropriate cryptographic protocols.

Suppose that the measurements are done in a secure fashion without malicious
interference. If the encoded quantum states in the cryptographic framework obey
the analogous restriction

1

ν

ν∑
j=1

D
(
ρθ, ρ

′(j)
θ

)
≤ ε� 1, (6.9)

then Eq. (6.8) will still hold because of the monotonicity of the trace distance,
Eq. (2.33),

D
(
M(ρθ),M(ρ

′(j)
θ )
)
≤ D

(
ρθ, ρ

′(j)
θ

)
. (6.10)

The same argument holds if the malicious interference is localised to the state prepa-
ration step in Fig. (6.1b). In fact, Eq. (6.9) was the imposed inequality in [SMK21],
however, we needed to generalize to Eq. (6.8) in [SM] because we explore the pos-
sibility of delegating the measurement step to an untrusted party. In either case,
the trace distance was chosen because of the relationship to distance of resulting
classical probability distributions, Eq. (2.32): if ε is small, then any measurement
will give rise to similar probability distributions [NC02].

To properly gauge the effects of a malicious adversary, we examine a specific
estimation strategy. We revisit that which was established in Chapter 3: inferring
an estimate from an observable. That is, the expectation value of the observable O
is estimated and then inverted. This strategy was chosen due to the mathematical
simplicity and for the fact that it can be used to saturate the HL. In the ideal
framework, this initial estimate is labelled f̂ . Specifically

f̂ =
1

ν

∑
j=1

mj, (6.11)

wheremj is the eigenvalue associated to the jth measurement result, where E(mj) =

Tr(Oρθ). This is equivalent to E(mj) = Tr
(
OM(ρθ)

)
. In the cryptographic frame-
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work, the analogous estimate is constructed

f̂ ′ =
1

ν

∑
j=1

m′j, (6.12)

where E(m′j) = Tr
(
OM(ρ

′(j)
θ )
)
, which is then inverted as if it were the ideal frame-

work. Assuming that ε is sufficiently small, the first order Taylor expansion of
f−1(f̂ ′)

θ̂′ = θ +
1

∂〈O〉
∂θ

(f̂ ′ − 〈O〉) (6.13)

provides a valid approximation even in the cryptographic framework. Here, 〈O〉 is
the expectation value with respect to the ideal framework, thus 〈O〉 = Tr(Oρθ).
Eq. (6.13) suggests that in the cryptographic framework, the added bias is bounded
by

∣∣E(θ̂′)− E(θ̂)
∣∣ =

1

|∂〈O〉
∂θ
|

∣∣E(f̂ ′)− E(f̂)
∣∣

=
1

ν|∂〈O〉
∂θ
|

∣∣ ν∑
j=1

Tr
(
OM(ρ

′(j)
θ )−OM(ρθ)

)∣∣
≤ 2o

ν|∂〈O〉
∂θ
|

ν∑
j=1

D
(
M(ρθ),M(ρ

′(j)
θ )
)

≤ 2oε

|∂〈O〉
∂θ
|
,

(6.14)

where o is the maximum magnitude of the eigenvalues of O. Recall from Chapter 3
that in the ideal framework

∆2f̂ =
Tr(O2ρθ)− Tr(Oρθ)

2

ν
=

Tr(Oρθ ⊗ ρθ)
ν

, (6.15)

where O = O2 ⊗ I−O ⊗O. Note that the maximum magnitude of the eigenvalues
of O is bounded below 2o2. In the cryptographic framework, the MSE is the sum of
the variance and the square of the bias

∆2f̂ ′ = E
(
(f̂ ′ − f)2

)
= E

(
f̂ ′ − E(f̂ ′)

)2
+
(
E(f̂ ′)− f

)2

≤ 1

ν2

ν∑
j=1

Tr
(
OM(ρ

′(j)
θ )⊗M(ρ

′(j)
θ )
)

+ 4o2ε2.

(6.16)
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It follows that the increase of the MSE is bounded by

∣∣∆2θ̂′ −∆2θ̂
∣∣ =

1

|∂〈O〉
∂θ
|2
∣∣∆2f̂ ′ −∆2f̂

∣∣
≤ 4o2

ν2|∂〈O〉
∂θ
|2

ν∑
j=1

D
(
M(ρθ)⊗M(ρθ),M(ρ

′(j)
θ )⊗M(ρ

′(j)
θ )
)

+
4o2ε2

|∂〈O〉
∂θ
|2

≤ 8o2ν−1ε+ 4o2ε2

|∂〈O〉
∂θ
|2

,

(6.17)

where the triangle inequality

D(ρ1⊗ ρ1, ρ2⊗ ρ2) ≤ D(ρ1⊗ ρ1, ρ1⊗ ρ2) + D(ρ1⊗ ρ2, ρ2⊗ ρ2) = 2D(ρ1, ρ2) (6.18)

is used in the derivation of Eq. (6.17).
Notice that as ν → ∞, the added bias in Eq. (6.14) does not vanish, and as a

consequence, neither does the increase in the MSE, Eq. (6.17). This is due to the
construction of the cryptographic framework, where Eq. (6.8) can be interpreted as
an average amount of uncertainty in the measurement statistics. If the uncertainty
in each round is constant, ε is of course independent of ν, which ultimately limits
the achievable precision of the quantum metrology problem. For the functionality
of said quantum metrology problem to be the same in the cryptographic framework
when compared to the ideal framework, ∆2θ̂′ must scale similarly to ∆2θ̂. This is
equivalent to the difference in the MSE scaling similarly to ∆2θ̂, which occurs when

ε2 ≤ ν−1. (6.19)

The factor of 4o2 is ignored as it is dependent on the metrology portion of the
problem whereas ε is dependent on the cryptographic portion of the problem. The
term 8o2ν−1ε term is ignored, as it is appropriately small if ε2 ≤ ν−1.

It follows from the equations for the added bias and difference in MSE, Eq. (6.14)
and Eq. (6.17) respectively, along with the relationship between trace distance and
soundness, Eq. (6.4), that if a cryptographic protocol has soundness δ and statistical
significance α, then the integrity of the quantum metrology problem is represented
by the added bias ∣∣E(θ̂′)− E(θ̂)

∣∣ ≤ 2o

|∂〈O〉
∂θ
|

√
δ

α
, (6.20)
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and the the increase in the MSE

∣∣∆2θ̂′ −∆2θ̂
∣∣ ≤ 4o2

|∂〈O〉
∂θ
|2
(
2ν−1

√
δ

α
+
δ

α

)
. (6.21)

More so, Eq. (6.19) suggests that the effective functionality is retained when

δ

α
≤ ν−1. (6.22)

It should be noted that the trace distance and soundness relationship, Eq. (6.4), and
the demanded proximity of the average measurement statistics, Eq. (6.8), are not
a function of the same quantities. The former is a function of the expected trace
distance while the latter is simply the trace distance. This is because a metrology
problem is designed for specific states, while it is atypical for a cryptography protocol
to have a precise output. Although these ideologies may seem to contrast with
each other, we propose two solutions to remedy the difference. The first is that the
measurement statistics of each round can be interpreted as the average measurement
statistics after implementing the protocol, from which the integrity relationships still
hold because of the strong convexity of trace distance [NC02]

D
(
ρid,E(ρout)

)
≤ E

(
D(ρid, ρout)

)
. (6.23)

The second, is that for sufficiently large ν, the law of large numbers dictates that
the proximity of the average measurement statistics will tend towards the expected
value

1

ν

ν∑
j=1

D(σθ, σ
′(j)
θ ) ≈ E

(
D(σθ, σ

′
θ)
)
. (6.24)

6.4 Quantum Metrology Over An Unsecured Quantum
Channel

The first cryptographic setting established in this chapter is when the quantum
metrology problem uses an unsecured quantum channel [SMK21]. In quantum sens-
ing networks, the quantum channels will likely be the most vulnerable to malicious
attacks [Kóm+14], so it important to include a cryptographic protocol to carry out
the metrology problem in a secure fashion. This was the basis of the work pre-
sented in [HMM19], however, as described above, the authors fail to create a secure
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protocol. To achieve a notion of security, the protocols presented in this section
take inspiration from quantum authentication schemes [Bar+02; BW16]. Quan-
tum authentication schemes are cryptographic protocols designed to send quantum
states across an unsecured quantum channel in a private and secure fashion, which
is precisely the nature of the task at hand.

6.4.1 The Protocols

Two protocols are presented for the task of quantum metrology over an unsecured
quantum channel: i) a modified version of the trap code [BGS13], and ii) a modified
version of the Clifford code [Aha+17]. From a functional stand point the two proto-
cols are nearly identical, however the encryption and decryption methods vary dras-
tically from a complexity standpoint and ease of implementation. The encryption
scheme for the trap code is restricted to locally acting Clifford operations, C ∈ C⊗m1 .
In contrast, the encryption scheme for the Clifford code is an arbitrary C ∈ Cm. As
expected, the Clifford code leads to a much stronger soundness statement, due to
the additional entanglement gained from the encryption.

In this setting, Alice and Bob are the trusted parties who wish to execute a
quantum metrology problem. They are separated by an unsecured quantum channel,
which may be intercepted by a malicious eavesdropper, labelled Eve. Note that
Alice and Bob share a secure classical channel to communicate classical information,
such as the choice of the random key. This is a standard assumption in quantum
cryptography.

To have the ability to detect Eve, Alice prepares an input state ρin, which is a
combination of the quantum state intended for the metrology problem ρid, as well
as t ancillary flag qubits. An example of an input state is depicted in Fig. (6.2a).
The flag qubits are all initialized in the state |0〉, and upon receipt Bob measured
the flag qubits in the computational basis. In an ideal setting, the measurement will
ubiquitously witness the result |0〉⊗t; any other result suggests that the quantum
channel was compromised. This deterministic measurement result aids in certifying
whether or not Eve tampered with the quantum channel.

After preparing the input state ρin, Alice encrypts it using a random Clifford
operation. The set from which the Clifford operation is chosen from is dependent
on the protocol. Upon receipt, Bob decrypts the quantum state by applying the
inverse operation applied by Alice. Bob then measures the ancillary flag qubits in
computational basis. If the expected measurement result |0〉⊗t is witnessed, Bob will
utilize the remaining qubits for the quantum metrology problem, otherwise they are
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(a) Initialized quantum state before using the unsecured quantum channel.

(b) Schematic of the protocols.

Figure 6.2: (a) Alice prepares the quantum state ρin, which is a combination of t
ancillary flag qubits (randomly positioned) as well as the quantum state ρ intended
for quantum metrology. The flag qubits are indexed at positions l1, l2, . . . , lt. (b)
Before utilizing the quantum channel, Alice and Bob randomly select a classical key
k. This classical key corresponds to the encryption operation (Ek) performed by
Alice, and the decryption operation (Dk = E†k) performed by Bob upon receipt. A
malicious eavesdropper, labeled Eve, has complete access to the quantum quantum
channel. Without loss of generality, Eve can perform any CPTP map Γ when
interacting with the channel. Bob encodes the unknown parameter into the portion
of the quantum state intended for quantum metrology. Finally, Bob measures the
qubits accordingly: the ancillary flag qubits in the computational basis, and the
metrology qubits in the appropriate basis to construct an estimate. If the flag
qubit measurement is an unexpected output, then a malicious adversary must have
tampered with the quantum channel.

discard the quantum state as Eve must have tampered with the quantum channel.
This process is illustrated in Fig. (6.2b).

Implementation Instructions:

1. Prior to using the quantum channel, Alice and Bob randomly select a key
k ∈ K, which is linked to an encryption operator Ek. Specific to trap code,
the key also contains information about a tuple ` = (l1, . . . , lt) of length t, this
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tuple contains the index locations of the ancillary flag qubits.

(a) For the trap code, Ek ∈ C⊗m1 .

(b) For the Clifford code, Ek ∈ Cm.

2. Alice creates the m = n+ t qubit state ρin by inserting t ancillary flag qubits
|0〉 at the positions indexed by `, and the remaining n qubit state ρ is the
quantum state designated for quantum metrology.

(a) For the trap code, it is important that ` is randomly chosen because the
encryption operation does not generate entanglement.

(b) For the Clifford code, ` can be static. This is because the encryption will
generate entanglement between the ancillary qubits and the rest of the
quantum state.

3. Alice encrypts the input state by applying the Clifford operator Ek and sends
the quantum state to Bob.

4. Upon receipt, Bob decrypts the quantum state by applying the inverse operator
E†k upon receipt.

5. Bob measures the ancillary flag qubits in the computational basis. The result
is accepted if |0〉〈0|⊗t is measured. The quantum state is discarded otherwise.

6. If the result is accepted, Bob continues with the quantum metrology problem
using the remaining qubits.

The random choice of encryption operation makes it impossible for Eve to extract
any information about ρin, meaning that protocols are completely private. To see
explicitly why, consider ρin in the Pauli basis

ρin =
1

2m

∑
P∈Pm

Tr(Pρin)P. (6.25)

Using the Clifford code, the expected quantum state available to Eve is

E(ρE) =
1

2m|Cm|
∑
C∈Cm

∑
P∈Pm

Tr(Pρin)CPC†. (6.26)

For every P 6= I, the Clifford group can be partitioned into pairs of operators
(Ca, Cb) such that CaPC†a = −CbPC†b , hence the only-non vanishing term is P = I,
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and thus Eve cannot distinguish the quantum state from the maximally mixed state.
For the trap code, the Pauli and Clifford operations can be decomposed into local
operations, C =

⊗m
j=1Cj and P =

⊗m
j=1 Pj. Here, the expected quantum state

available to Eve is

E(ρE) =
1

2m|C1|m
∑

C∈C⊗m1

∑
P∈Pm

Tr(Pρin)
m⊗
j=1

CjPjC
†
j . (6.27)

By the same intuition, the only non-vanishing term is when P is identically the
identity, and thus using the trap Code, Eve cannot distinguish the quantum state
from the maximally mixed state. Even though no information about the unknown
parameter with respect to the metrology problem is passed through the quantum
channel, as per Fig. (6.2b), having complete privacy is still important. The same
protocol can be used in the nearly identical setting where it is Alice who encodes the
unknown parameter. More so, it will be shown that the protocol can be extended
to a setting where Alice and Bob use the same quantum channel twice, similar to
the setting of [HMM19]. In either of these two settings, having a completely private
protocol prevents Eve from extracting information about the unknown parameter
in question.

Privacy is achieved as a consequence of randomly sampling Ek from a large set
of Clifford operations. For example, the set C⊗m1 has 24m elements. Although we
do not focus on the logistics of the classical channel in our protocol, it is important
to acknowledge that the size of the classical key required is quite large. As an
alternative, one can consider sampling Ek from a smaller set of O(m2m) unitary
operators, which approximately guarantees privacy [Hay+04]. Although in doing
so, other assumptions are needed, namely that Eve not having access to a quantum
memory [LL15].

A derivation for the soundness2 of the two protocols can be found in Ap-
pendix C, in which it is shown that the soundness of the trap code is δtrap = 3n

2t
, and

the soundness of the Clifford code is δCliff = 1
2t
. Eq. (6.22) states that the integrity

of the underlying metrology problem is maintained when δ
α
≤ ν−1. Equivalently,

the number of ancillary flag qubits required is ttrap ≥ 3nν
2α

for the trap code, and
tCliff ≥ log2

ν
α

using the Clifford code. In the ideal framework, the total number
of qubits is νn, in the cryptographic framework it is ν(n + t). This is a quadratic

2We derive the soundness with the assumption that the quantum state intended for quantum
metrology, ρid, is a pure state, because this greatly simplifies the derivation. This is a logical
assumption since pure states are superior resources for quantum metrology.
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increase in resources if using the trap code, and a log-linear increase in resources if
using the Clifford code.

6.4.2 Generalizations

Figure 6.3: In the extended version of the protocol, the unsecured quantum channel
is used twice. Alice sends the quantum state ρin to Bob to be encoded, after which
it is sent back to Alice. Because the quantum channel is used twice, the classical
key shared by Alice and Bob describes the encryption and decryption operation for
the first use of the quantum channel (Ek1 ,Dk1) and the second use of the quantum
channel (Ek2 ,Dk2).

The work in [HMM19] addresses the distribution of entangled resources over
quantum channels for quantum metrology, however, with a more restricted Bob,
so that the measurement is also left to Alice, requiring the state be sent back to
Alice once Bob has done the encoding. Both the trap code and Clifford code can be
easily adapted to this setting. To do so, Alice and Bob perform a second encryp-
tion operation before the second usage of the quantum channel. The generalization
of the protocol is illustrated in Fig. (6.3). Using two encryption operations is im-
perative for the success of the protocol; if it was just Alice who performed the
encryption and the decryption, then Eve could simply apply a unitary on the use of
the quantum channel, and its inverse on the second usage. This will not alter any
of the ancillary flag qubits but can bias the qubits intended for quantum metrology.
In Appendix C, the soundness of the generalized protocols are computed to be
δtrap = 9n

4t
and δCliff = 1

2t
.

An alternative generalization is a multipartite setting, depicted in Fig. (6.4).
This would be a practical tool for any quantum sensing network problem [Kóm+14;
PKD18; Rub+20] with unsecured quantum channels. Here a central node N0 is
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Figure 6.4: Generalization to a multipartite framework, where a central node N0

distributes a portion of a quantum state amongst external nodes N1, . . . ,Nk (in
this illustration k = 4). This distribution is done through quantum channels, and
thus may be vulnerable to a malicious eavesdropper, whose (potential) interaction
is depicted with a red ring. To ensure a sense of security, the trusted nodes can
adopt the trap code since the decryption operations are all performed locally.

connected to external nodes N1, . . . ,Nk via quantum channels, which may be simul-
taneously intercepted by a malicious adversary. The central node sends a portion of
an entangled quantum state to each of the external nodes, after which the external
nodes encode a local parameter on their portion of the quantum state for a spatially
distributed quantum metrology scheme. The trap code can be adopted in this spa-
tially distributed and multipartite framework since the decryption operations are
local, and thus recover the same notions of privacy and soundness.

6.5 Quantum Metrology With Delegated Tasks

In the previous section, together the honest parties, Alice and Bob, had all of nec-
essary quantum technologies to fully carry out a quantum metrology problem. In
reality, fully implementing a quantum metrology problem is technologically demand-
ing. Entangled quantum states must be generated and measured with high fidelity.
The quantum internet [WEH18], and other asymmetric quantum networks, is a
possible solution where parties which lack the necessary hardware can delegate the
desired task to another party in the network. Of course, when delegating tasks,
it is important to be mindful of possible risks. Within the framework of quantum
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Figure 6.5: The different delegated quantum metrology scenarios addressed in the
section. A quantum metrology problem can be decomposed into three (quantum)
tasks: state preparation, parameter encoding and measurements. A red rectangle
with a ‘7’ indicates that the task is delegated to a third party, as opposed to a green
rectangle with a ‘X’ which indicates that the task is not delegated. In scenario 1,
state preparation is delegated and verification protocols [ZH19a; MK20] are used to
achieve a sense of security. In scenario 2, the measurements are delegated and we
devise an authentication based protocol to achieve a sense of security. Finally, in
scenario 3, the parameter encoding is delegated, and we discuss the impossibility of
constructing a computationally secure protocol for such a scenario.

metrology, a malicious third party could bias the estimation results or conduct the
estimate themselves. In this section, which is based off of work currently in prepa-
ration [SM], we propose cryptographic protocols to allow for delegating a portion of
the quantum metrology scheme to an untrusted third party. This is done by parti-
tioning a quantum metrology problem into three tasks: state preparation, parameter
encoding and measurements, and explore the repercussions when a specific task, or
a combination, is delegated. The different scenarios are summarized in Fig. (6.5).
There is an additional task of processing the measurement results and creating the
estimate, however we ignore this since it is inherently a classical computation.

6.5.1 Delegated State Preparation

The first scenario explored is when the task of quantum state preparation is dele-
gated to an untrusted party. In the absence of a proper cryptographic protocol, the
untrusted party could distribute any quantum state ρ′, which could be preemptively
biased to mask the true result of the parameter estimation. Because the metrology
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portion part of the problem has not yet come into effect, we can utilize one of the
many existing quantum state verification protocols [TM18; PLM18; MK20; Liu+19;
Tak+19a], which ensure that the quantum state prepared is the desired quantum
state.

Verification protocols are used to (as the name suggests) verify quantum states
[ZH19a; ZH19b]. Typically, this is done by requesting additional copies of the de-
sired quantum state and by measuring the additional copies in specific bases. The
measurement results are used to decide if the protocol is accepted or rejected. It
should be noted that most verification protocols are tailored for specific classes of
quantum states, such as graph states [MK20; Tak+19a] or Dicke states [Liu+19].
More general protocols tend to require significantly more resources to achieve the
same level of soundness for arbitrary quantum states [TM18; PLM18].

Of course, the soundness is dependent on the protocol chosen to be integrated
into the cryptographic quantum metrology framework. For the sake of an example,
consider the protocol outlined in [MK20]. The protocol is a verification protocol
for graph states (and can thus be used for the bundled graph states introduced
in Chapter 4), but naturally extends to all stabilizer states, including the GHZ
state. The protocol takes advantage of the deterministic measurement results when
a stabilizer state is measured in a basis of any of its stabilizers, Eq. (4.2). In
summary, the protocol requests N copies of the desired stabilizer state, all but one
(randomly selected) is measured with respect to an arbitrary stabilizer. The result
is accepted if the N − 1 measurements results all witness a +1 eigenvalue of their
respective stabilizer. The protocol achieves a soundness of δ = 1/N . Therefore, the
integrity of the underlying quantum metrology problem is maintained if

N ≥ ν

α
. (6.28)

After ν repetitions of the protocol, this translates to a quadratic increase in resources
compared to the ideal framework.

Quantum state verification uses several figures of merit (besides just soundness)
which are intertwined [ZH19a; ZH19b]. Specifically, the soundness is bounded for
a fixed N , however the characterisation introduced in [ZH19a] permits the op-
timization of N for a fixed δ and α. For qubit stabilizer states the answer is
N = 2(ln 2)−1δ−1 lnα−1. The bounds are different because the ‘worst case’ attack
which saturates the soundness for a fixed N is different than the ‘worst case’ attack
for a fixed δ.

105



Chapter 6. Quantum Cryptography for Quantum Metrology

6.5.2 Delegated Measurements

The second scenario we explore is the when the measurements are delegated to
an untrusted third party. A simplistic version of this scenario with an honest-but-
curious adversary has been explored [Tak+19b; Oka+20; Yin+20], where the authors
propose using a blind quantum computing protocol [BFK09] to achieve privacy by
masking the measurement results from an eavesdropper. However, blind quantum
computing is not sufficient to achieve unconditional security, where no assumptions
are made with respect to the adversary. For all intents and purposes, the untrusted
party may return arbitrary measurement results, and without proper cryptographic
precautions, the untrusted party can bias the estimate to their own accord. To
combat this, the protocol we propose takes inspiration from verified blind quantum
computing [Mor14; FK17] and the protocol proposed for quantum metrology over
an unsecured quantum channel.

Figure 6.6: Alice prepares the quantum state ρin, which is a combination of an
n for quantum metrology and t flag qubits. Before sending the quantum state
to Eve, Alice randomly permutes the flag qubits amongst the encoded qubits and
subsequently encrypts the quantum state by applying a random Pauli C. Without
loss of generality, the measurement result, x, returned by Eve will coincide with the
measurement statistics of M

(
Γ(Cπρinπ

†C†)
)
, where Γ is any CPTP map. Upon

receipt, Alice performs classical post-processing on x such that it can be properly
interpreted. This is represented as applying C† and π† onM

(
Γ(Cπρinπ

†C†)
)
.

Using the same nomenclature as the protocol for quantum metrology over an
unsecured quantum network: Alice is the trusted party who lacks the necessary
quantum hardware to execute quantum measurements, and Eve is the untrusted
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party who is delegated the measurements task. In a trusted setting, Alice sends
Eve an encoded quantum state ρθ, and the probability of Eve returning a specific
measurement result corresponds to the amplitudes of M(ρθ). In the untrusted
setting, Eve can return arbitrary measurement results, but without loss of generality,
they will correspond to the amplitudes of M(ρ′θ), where ρ′θ is an arbitrary and
not necessarily encoded quantum state. In addition, Eve can perform the correct
measurement, such that they can construct an estimate of θ for themselves and
send a biased or nonsensical results back to Alice. To attain a notion of security and
privacy, Alice employs the protocol illustrated in Fig. (6.6) and described below.

The protocol we outline is specific to the case when, in the ideal framework, Al-
ice would request Eve to measure each qubit respect to the basis of a (non-identity)
Pauli operator P . It can be adapted to other non-entangled measurements by ap-
propriately rotating the encryption operations. We focus on simple measurements
as the protocol is more tangible: it only requires local Clifford operations to en-
crypt the quantum state. It is also practical as feasible measurement strategies in
quantum metrology are typically with respect to the eigenbasis of a Pauli operator
because they are the simplest to implement.

Implementation Instructions:

1. Alice prepares the m = n + t qubit state ρin = ρθ ⊗ |0〉〈0|⊗t. Here, ρθ is the
n qubit encoded quantum state and |0〉〈0|⊗t is used ancillary flag qubits as
ancillary flag qubits because of their deterministic measurement outcome.

2. Alice encrypts ρin by first performing a permutation π and then applies a
random Clifford C ∈ C⊗m1 . The permutation will insert the flag qubits at
random positions so that Eve cannot distinguish between the encoded qubits
and flag.

3. Alice requests Eve to measure the quantum state in the basis of CπP⊗n ⊗
Z⊗tπ†C†, the measurement is represented by the mapM.

4. Eve returns a measurement result x, which are derived from the measurement
statisticsM

(
Γ(Cπρinπ

†C†)
)
, where Γ is any CPTP map.

5. Alice performs classical post-processing onm to obtain the measurement result
as if it had not been encrypted. With respect to the measurement statistics,
this is represented by applying π†C† toM

(
Γ(Cπρinπ

†C†)
)
.
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6. Alice accepts the measurement result if, after post-processing, the measure-
ment results of the t flag qubits coincide with the expected result of |0〉〈0|⊗t.
Otherwise, Alice rejects the measurement results as Eve must have acted ma-
liciously.

The reason the protocol is designed3 for measuring with respect to an eigenbasis
of a Pauli operator P⊗n, is because regardless of the encryption C, the requested
measurement is an random string of Pauli operators, and Eve cannot decipher which
measurements coincide with qubits for quantum metrology and which measurement
results coincide with ancillary flag qubits. As a result, the protocol is completely
private

E(ρE) = I/2m, (6.29)

where the above privacy statement can be shown using the same logic as the pri-
vacy of the trap code for quantum metrology over an unsecured quantum channel,
Eq. (6.27).

In Appendix C, we show that the soundness of this protocol is bounded below
the soundness of the trap code for quantum metrology over an unsecured quantum
channel, and thus δ = 3n

2t
. Therefore, the integrity of the underlying quantum

metrology problem is maintained if 3n
2αt
≤ ν−1. Equivalently, the number of ancillary

flag qubits required is t ≥ 3nν
2α

. Thus, the cryptographic framework requires a
quadratic increase in the number of resources to maintain the same level of precision
as the ideal framework.

6.5.3 Delegated Parameter Encoding

The final scenario considered is when the task of parameter encoding is delegated to
an untrusted third party. From a verification perspective, the goal is to assure that
some output state ρout is close to the ideal encoded state ρθ with high probability.
Unsurprisingly, this is an impossible task from an information theoretic standpoint
without having perfect knowledge of θ, which would entirely defeat the purpose
of quantum metrology. The impossibility of this task stems from the fact that an
adversary can manipulate the lack of information about θ to their advantage. For
example, an adversary can introduce a slight bias Λθ+δθ, encode a different parameter
altogether Λϕ, encode θ into a different quantum state ρ̃, or do nothing at all I.

3To adapt the protocol to more complex measurements, the encryption on the requested mea-
surement basis would have to mimic the actions of an arbitrary Clifford operation on a Pauli
operator.

108



Chapter 6. Quantum Cryptography for Quantum Metrology

Furthermore, there is no way of guaranteeing that an adversary acts identically
each round.

Suppose that the information theoretic standpoint is abandoned and the abilities
of the adversary are greatly limited to either applying Λθ or the identity I. If one
has a priori knowledge that θ ≈ θ0, a loose ‘accept’ criteria is for the estimate to be
within some range of θ0. This ‘protocol’ can still be manipulated by an adversary if
they learn the range of acceptance: I is applied a small number of times such that
the expected estimate falls within the acceptance range despite the added bias.

Finally, if the adversary is further hindered by assuming that they cannot access
any sort of classical information - such as an a priori approximation θ ≈ θ0, or the
acceptance range of the aforementioned protocol - then one can continue on with
the quantum metrology scheme. This is because in this specific setting, the effective
encoding map is now the CPTP map

ρ→ (1− p)Λθ(ρ) + pρ, (6.30)

where p is the effective probability that the adversary does nothing, and hence
applies Λθ with effective probability 1− p. Here, the metrology problem of estimat-
ing θ has evolved into the multiparameter problem [RJD16] of estimating θ and p.
However, in making these assumptions, we have ventured out of the realm of cryp-
tographic quantum metrology and into a fusion of quantum channel tomography
[BPP08] and quantum metrology.

6.6 Discussion

The work presented in this chapter is a novel approach to immerse a general quantum
metrology problem in a cryptographic framework. By demanding the final measure-
ment statistics used to construct an estimate are close to that of the ideal framework
(sans malicious adversary), the cryptographic notion of soundness can be related to
the integrity of the quantum metrology problem. Within the frequentist approach,
in an ideal framework, the estimate converges to the true value as ν → ∞, so any
added uncertainty as a result of the cryptographic framework, ε, will be the factor
which limits the precision in the cryptographic framework. The ‘cryptographic un-
certainty’ was presented as a result of the interference of a (potentially) malicious
adversary, but in reality, the integrity statements hold for any resource satisfying
Eq, (6.8). For example, the uncertainty caused by faulty quantum hardware or
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environmental noise.
The soundness of the protocols are derived for unconditional security, i.e no as-

sumptions about the adversary are made. Of course, by discarding this assumption
and limiting the abilities of an adversary (for example, only local Clifford opera-
tions, etc), the soundness bounds can be greatly improved, thus reducing the num-
ber of ancillary flag qubits to maintain the functionality of the underlying quantum
metrology. Additionally, the protocols are designed for qubit systems, which natu-
rally generalize to qudit systems, however, the protocols do not easily translate to
a continuous variable quantum system; properly deriving the analogous results is a
future perspective of this work.

From a cryptographic standpoint, there are numerous ways to broaden the per-
spective of quantum metrology in a cryptographic framework. For example, the un-
trusted parties in the delegated task framework can be replaced by untrusted devices
to attain a notion of device independent [MY98; Xu+14] quantum metrology. Alter-
natively, the notions of cryptography introduced can be further abstracted [MR11]
to attain a notion of quantum metrology in an abstract cryptographic framework.

At first glance of the integrity statements throughout this chapter, the statis-
tical significance α may seem like an undesirable quantity and counter-intuitive to
the unconditional security assumptions. However, a bound on the trace distance
cannot be made in any other way. Consider the problem of performing quantum
metrology over an unsecured quantum channel, if a malicious party replaces the
quantum state by the maximally mixed state, then (regardless of the protocol) the
measurement results of the ‘flag qubits’ will result in accept with a very small but
non-zero probability. In this example, the quantum state then used for quantum
metrology would be useless. Formally, the statistical significance parameter α used
throughout quantum authentication and verification [ZH19a; ZH19b] is identical to
the notion of confidence level 1 − α used in traditional statistics. In which, α is a
pre-decided upon value related to the probability of rejecting the null-hypothesis, or
in this case the outcome of the protocol.

The two protocols presented for quantum metrology over an unsecured quantum
channel differ in practicability and efficiency. Although the Clifford code is more
efficient, the required entanglement is highly impractical. In contrast the trap code is
only slightly more demanding than non-secure versions, requiring only local Clifford
operations for encryption. For the task of delegated measurements, we designed a
protocol analogous to the trap code. We could have additionally made an analogous
protocol to the Clifford code for the same task, however this would require Alice
requesting highly entangled measurements to be performed, which seems more out
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of reach than a highly entangled unitary operation. These protocols can also be
made somewhat robust to noise by tweaking acceptance parameters [UM20].

In Fig. (6.5), three scenarios for quantum metrology with delegated tasks are pre-
sented. Separately, we show that the task of state preparation and measurements
can be delegated to an untrusted third party if reinforced with a proper crypto-
graphic protocol. The natural question to ponder is if both tasks can be delegated
to a third party, where the trusted party, Alice, can only perform the encoding map
Λθ and a set of encryption operations. At first glance, this seems possible by fusing
the verification protocol of [MK20] and the protocol presented for delegated mea-
surements. A local Clifford encryption guarantees absolute privacy and soundness
is easily derived for the case when Λθ = I. As the nature of Λθ should have little
to no impact on the soundness, it ought to follow that a similar derivation can be
performed for any CPTP encoding Λθ. A future perspective is to prove and verify
this claim.
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7
Remarks

La volonté trouve, la liberté choisit. Trouver et choisir, c’est penser.

-Victor Hugo

Quantum metrology is a promising discipline of quantum information; it has
a broad scope of applications in a variety of scientific fields and is currently wit-
nessing an abundance experimental and theoretical developments. The objective
of quantum metrology is to use quantum probes to estimate unknown parameters
as accurately as possible. By capitalizing on quantum properties, it is possible to
achieve a precision which is unobtainable using the best classical strategies. This
thesis explored how other quantum techniques can be appropriately incorporated
within the realm of quantum metrology. Specifically, the utility of graph states, the
limitations of quantum error correction, and the consequences of a cryptographic
framework. Within each scenario, the idealized ‘Heisenberg limit precision’ is used
as a figure of merit.

The work in this thesis is uniquely theoretical, even so, the general philoso-
phy was to be relevant and applicable to the first generations of quantum hard-
ware. Graph states can be constructed using only control-Z operations and the QFI
of graph states can be approximately saturated using single qubit measurements
(Chapter 4). The error correction protocol in Chapter 5 is currently realizable
[Dut+07; Tam+14; Wal+14]. Most of the cryptographic protocols presented in
Chapter 6 use local encryption/decryption operations and use local measurements
on ancillary qubits. One concern may be that the noise models are ‘too idealized’
and the adversarial tools are ‘too abstract’, and in general these will be dependent
on the quantum hardware. In reply, the models presented in this thesis are a base-
line and can be straightforwardly adapted to better describe the desired setting -
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as any experimental setup will be extremely dependent on the implementation and
the available technologies.

Another general philosophy we strove to maintain was a sense of generality from
the perspective of quantum metrology. However, an arbitrary parameter encoding
map Λθ is quite vague and the equations pertaining to parameter estimation are
highly non-linear, making it difficult to draw conclusions from the most general
situation. Instead, we often used the frequentist approach to phase estimation as
a baseline example. This example, is canonical with quantum metrology and has
several applications [HB93; Par09; GLM11]. Nonetheless, many of the mathematical
tools and derivations can be adapted to specific Λθ. In particular with respect to
Chapter 4, if Λθ = e−iθG, then the QFI can be defined as a relationship between
the stabilizer group of the initialized quantum state and the expansion of G and G2.
As hypothesized in Chapter 5, similar results for the limitations of error correction
are likely obtained regardless of Λθ, note that it is necessary to implement an error
correction protocol that does not interfere with Λθ.

Similarly, most of the mathematical tools and results can be adapted to the
multiparameter quantum metrology. The main difficulty, incompatibility of simul-
taneous measurements [RJD16], is a standard across the multiparameter framework
and not inherent to any of the settings we explored. Although not explicitly proven,
if there does exists a set of compatible measurements, then the integrity of the esti-
mate for each parameter in a cryptographic framework will be of the form Eq. (6.14)
and Eq. (6.17). The reason being that an equivalent derivation would follow from
a secondary (compatible) measurement (and all subsequent measurements) because
of the definition of the trace distance. A future perspective is to formally address
this question.

Aside from the brief summary of Bayesian statistical interference in Chapter 3,
this thesis is void of the Bayesian approach to quantum metrology [Hol82; JD15;
RKD18]. Because the work of Chapter 4 is heavily influenced by the QFI, which
is not used in the Bayesian approach, it is unclear if the shape of a graph can be re-
lated to the practicality of the corresponding graph state for phase estimation using
a Bayesian approach. With respect to Chapter 6, it is impossible to gauge the in-
tegrity of a Bayesian quantum metrology problem within a cryptographic framework
without first specifying a cost function, Eq. (3.23), and estimation strategy.
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7.1 Summary Of Results And Future Perspectives

7.1.1 Chapter 4

In Chapter 4, we demonstrate that graph states - in conjunction with their ex-
isting versatility - are a useful resource for quantum metrology. This is done by
constructing a class of graph states, named bundled graph states, which possess a
large amount of internal symmetry, and in consequence can approximately saturate
the Heisenberg limit. More so, graph states are robust against dephasing noise and
a small number of erasures, and the QFI can be approximately saturated with a
simple measurement scheme. The robustness against a small number of erasures
is compelling as the standard resource for phase estimation, GHZ states, lose all
functionality after a single erasure [TA14].

By construction, bundled graph states are a natural resource for multiparam-
eter metrology, specifically in the context of quantum sensing networks [Kóm+14;
Eld+18; PKD18; Rub+20]. Each bundle can be subjected to independent parameter
encoding schemes. The robustness derivations can be generalized for noise models
which are bundle dependent, and a compatible measurement scheme arises from the
fact that not all parameters are encoded into each qubit.

7.1.2 Chapter 5

The limitations of error correction enhanced quantum metrology is outlined in
Chapter 5. In contrast to previous results, which state that the Heisenberg limit
can be permanently achieved if the signal and noise are orthogonal [DCS17; Zho+18],
we show that when hardware limitations are accounted for, the Heisenberg limit is
eventually lost. As expected, if the frequency of error correction is high enough, the
Heisenberg limit is achieved for a serviceable duration of time. Even though the
focus is a single error correction protocol, we conjecture that the results translate
to any error correction protocol or noise mitigation strategy, as small deviations of
the phase caused by noise cannot be perfectly corrected. Eventually these small
deviations accumulate enough such that the quantum state is useless for quantum
metrology.
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7.1.3 Chapter 6

In the presence of a (potential) malicious adversary, many notions of estimation the-
ory have to be altered in some capacity. This is simply because there is no guarantee
of having access to the ideal resource, leading to ambiguity in the construction of
an estimator. In Chapter 6, we formalize the consequences of quantum metrology
within a cryptographic framework. The idea is to use the same estimation strategy
as if there was no malicious adversary, and if an appropriate protocol is used to
detect any malicious alterations, then the soundness of said protocol can be linked
to the integrity of the quantum metrology problem. Integrity is a concept used in
quantum cryptography, which quantifies the ability to retain the functionality of the
underlying process, in this case the underlying process is quantum metrology, and
so we decided that the integrity will encapsulate any added bias and the difference
in precision.

Additionally, in Chapter 6, we constructed several cryptographic protocols for
cryptographic quantum metrology. The cryptographic protocols are each motivated
by the absence of the necessary quantum hardware to fully execute the quantum
metrology task, forcing interactions with a third party. For example, protocols to
transmit quantum information across an unsecured quantum channel, and protocols
to guarantee security when a task, either quantum state verification or quantum
measurements, are performed by an untrusted party. It goes without saying that it
is impossible to delegate the task of parameter encoding to an untrusted party, as
this defeats the purpose of quantum metrology.

The immersion of quantum cryptography into quantum metrology is a novel
area of research, and as such there are several future perspectives. Just as the first
generations of quantum technologies will be limited in abilities, so too will be the
abilities of a malicious adversary. In our work, in order to fulfill a notion of com-
putational security, no assumptions about the malicious adversaries are made. By
limiting the possible attacks a malicious adversary can perform (as one expects), an
improved notion of cryptographic soundness is achieved. One concern of the quan-
tum cryptography protocols presented in Chapter 6 is the dependence on noiseless
quantum operations, this restriction can be loosened by tweaking acceptance param-
eters [UM20]. Lastly, a possible future research direction is to consider continuous
variable resources, because it is not obvious if the analogous protocols will satisfy
the same soundness inequalities.
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7.2 Secure Sensing Networks

An ongoing project of mine is to adopt quantum sensing networks [Kóm+14; Eld+18;
Ge+18; PKD18; ZZS18; Rub+20; Guo+20] into the realm of quantum metrology
in a cryptographic framework. This is a logical next step in the direction of cryp-
tography and quantum metrology, as there exists a plethora of secure multipartite
protocols across quantum networks [Pap+12; Hua+19] and the foundation intro-
duced in Chapter 6 is easily adapted to the network setting. Additionally, the
authors of [Kóm+14], who proposed a clock synchronization scheme across a quan-
tum network, are the first to consider the security aspect of a quantum metrology
problem.

The idea is straightforward: there is a central node who has the ability to pre-
pare highly entangled quantum states, qubits are then distributed throughout the
network for a multiparameter quantum metrology problem. We introduce two types
of malicious adversaries: the first are eavesdroppers who can interact with the quan-
tum channels, and the second are some of the exterior nodes of the network who
may behave maliciously. By adapting the protocols introduced in [SMK21; SM] to
the network setting, we establish the concept of a secure quantum sensing network.

In addition to the cryptographic notions of soundness, privacy and integrity, the
notion of anonymity is introduced to quantum sensing networks [Unn+19]. We de-
fine anonymity within quantum sensing networks to mean that the local parameters
cannot be estimated from the measurement results, only a global parameter, for
example, an average of the parameters. For example, the total power consumption
of all appliances may be transmitted to a power supplier, but not the consumption
of individual appliances. In some sense, anonymity is a form of privacy.
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Somewhere, something incredible is waiting to be known.

-Carl Sagan
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A
Robustness of Graph States

Subjected to Noise

Recall that a graph G = (V,E) is divided into disjoint subsets U1, U2, . . . , Ul, . . .

such that
⋃
l Ul = V . The vertices are partitioned in accordance to commonly

shared neighbourhoods, hence, if vi ∈ Ua and vj ∈ Ub, then N(vi) = N(vj) if a = b

and N(vi) 6= N(vj) if a 6= b. We write that |Ul| = ul and the shared neighbourhood
of Ul is Ml with |Ml| = ml.

In both proofs, sums are taken over all possible combinations of qubits, indexed
by vectors. When these vectors are summed, it is taken modulo 2. For example if
~j = {1, 1, 0} and ~k = {1, 0, 1}, then ~j + ~k = {0, 1, 1}.

A.1 Robustness Against IID Dephasing

After a graph state undergoes iid dephasing, it can be expressed as∑
~j

pj(1− p)n−jZ~j |G〉〈G|Z~j. (A.1)

Conveniently, the above quantum state is already expressed as a sum of orthog-
onal pure states, computing the QFI is then a straightforward use of the general
expression

Q(Gdephasing) =
1

2

∑
~j,~k

(λ~j − λ~k)2

λ~j + λ~k

∣∣ 〈G|Z~j∑
i

XiZ~k |G〉
∣∣2, (A.2)
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where λ~j = λj = pj(1 − p)n−j. The only non-vanishing terms in the sum occurs
when ~j + ~k = Ml for some l. We divide ~k into three disjoint parts, a qubits with a
flipped phase from the set Ul, b qubits with a flipped phase from Ml, and c qubits
from the remaining qubits

Q(Gdephasing) =
1

2

∑
l

∑
~k

(λ~k+Ml
− λ~k)2

λ~k+Ml
+ λ~k

∣∣ 〈G|Z~k+Ml

∑
i

XiZ~k |G〉
∣∣2

=
1

2

∑
l

ul∑
a=0

ml∑
b=0

n−ul−ml∑
c=0

(λa−b+c+ml − λa+b+c)
2

λa−b+c+ml + λa+b+c

(ul − 2a)2

=
∑
l

flgl,

(A.3)

where
fl = u2

l (1− 2p)2 + 4ulp(1− p) ≥ u2
l (1− 2p)2, (A.4)

and

gh =
1

2

ml∑
j=0

(
ml

j

)(
pml−j(1− p)j − pj(1− p)ml−j

)2

pml−j(1− p)j + pj(1− p)ml−j

≥ 1−
(
2p(1− p) + 1/2

)ml
≥ 1−

(
2p(1− p) + 1/2

)m
,

(A.5)

where m = minlml. Combining the bounds of fl and gl with the fact that
∑

l u
2
l =

Q(G), one obtains

Q(Gdephasing) ≥ (1− 2p)2
(

1−
(
2p(1− p) + 1/2

)m)Q(G). (A.6)

A.2 Robustness Against Finite Erasures

We return to the stabilizer representation to obtain a useful closed form expression
for a graph state ~G subjected to erasures indexed by ~e

|G〉 → Tr~e |G〉〈G| =
1

2n

∑
S∈S

Tr~e S. (A.7)
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Recall that the stabilizer group S can be generated by generators gi = Xi

⊗
j∈N(i) Zj.

Therefore each stabilizer S can be written in the form

S = ga11 g
a2
2 . . . gann , (A.8)

where aj ∈ {0, 1}. Thus, Tr~e S vanishes under two conditions. The first is if ax = 1

for any x indexed by ~e. The second is if
∑

j∈N(x) aj ≡ 1 mod 2 for any x indexed
~e. Define the set L~e to be set of erased qubits and their neighbourhoods

L~e =
⋃
x∈~e

{x} ∪N(x). (A.9)

Define Z̃ to be the set of all possible combination of Z operators indexed by a subset
of L~e

Z̃ = {Z~j | ~j ⊆ L~e}. (A.10)

Any stabilizer S which is traced out, i.e Tr~e S = 0, will commute with half of Pauli
operators in Z̃ and anti-commute with the other half. Any stabilizer which is not
traced out will commute with all of the operators. From which it follows that, the
quantum state after going erasures indexed by ~e can be expressed as

2−|L~e|
∑
~j∈L~e

Z~j |G〉〈G|Z~j. (A.11)

As it was noted in the main text, the above mixed state is left as n qubit state
for clarity. The traced out systems are equivalent to maximally mixed states, I/2,
which are irrelevant with respect to the QFI.

The quantum state in Eq. (A.11) is written as a sum of orthonormal pure states.
The QFI is thus

Q(Gerasures ~e) =
1

2

∑
~j,~k

(λ~j − λ~k)2

λ~j + λ~k

∣∣ 〈G|Z~j∑
i

XiZ~k |G〉
∣∣2

=
1

2

∑
l

∑
~k

(λ~k+Ml
− λ~k)2

λ~k+Ml
+ λ~k

∣∣ 〈G|Z~k+Ml

∑
i

XiZ~k |G〉
∣∣2, (A.12)

where 2−|L~e| if ~j ⊆ L~e and 0 otherwise. It follows then that λ~k+Ml
− λ~k = 0 if

~k,~k + Ml ⊆ L~e. Regardless of ~k, this only occurs if Ml ⊆ L~e. If Ml * L~e, the sum
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over ~k depends on if Ul ⊆ L~e or Ul * L~e

Q(Gerasures ~e) =
∑
l

hl(~e), (A.13)

where

hl(~e) =


u2
l if Ml * L~e and Ul * L~e

ul if Ml * L~e and Ul ⊆ L~e

0 otherwise

. (A.14)
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B
QFI of a Noisy GHZ State

B.1 Solving The Master Equation

The dynamics of Chapter 5 are governed by the master equation

dρ

dt
= − i

~
[H, ρ] + γ

n∑
m=1

(XmρXm − ρ), (B.1)

with H = ~ω
2

∑n
m=1 Zm. In this appendix, we derive the solutions to the dynamics,

as well as the modified version in which error correction is incorporated. Without
loss of generality, it can be assumed that the solution is of the form

ρ =
∑
j,k

αj,k |j〉〈k| , (B.2)

where j, k ∈ {0, 1}⊗n are bit strings of length n. As such, one approach to solving
the master equation, Eq. (B.1), is to view it a system of linear differential equations
with respect to the amplitudes αj,k. Because, the quantum state is initialized in a
GHZ state, the only non-zero amplitudes are those of the form αj,j or αj,j̄, where
|j̄〉 = X⊗n |j〉. Furthermore, the system of differential equation can be divided into
two independent equations

d~a

dt
= A~a, (B.3)

d~b

dt
= B~b, (B.4)
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where ~a (~b) is a vector of size 2n containing all of the amplitudes of the form αj,j
(αj,j̄), and

A =
n−1∑
m=0

(
1 0

0 1

)⊗m
⊗

(
−γ γ

γ −γ

)
⊗

(
1 0

0 1

)⊗n−m−1

, (B.5)

B =
n−1∑
m=0

(
1 0

0 1

)⊗m
⊗

(
−iω − γ γ

γ iω − γ

)
⊗

(
1 0

0 1

)⊗n−m−1

. (B.6)

Both and A and B are time-independent, therefore the solutions are given by the
corresponding matrix exponential: ~a = eAt~a0 and ~b = eBt~b0 (here ~a0 and ~b0 are the
initial amplitude vectors), where

eAt = e−nγt

(
cosh(γt) sinh(γt)

sinh(γt) cosh(γt)

)⊗n
= e−nγt

(
cγ sγ
sγ cγ

)⊗n
, (B.7)

and

eBt = e−nγt

(
cos(∆t)− i ω

∆
sin(∆t) γ

∆
sin(∆t)

γ
∆

sin(∆t) cos(∆t) + i ω
∆

sin(∆t)

)⊗n
= e−nγt

(
x− y

y x+

)⊗n
,

(B.8)
with ∆ =

√
ω2 − γ2. Because this is a solution with complex solutions, there

are no issues when γ2 > ω2, this maps the usual trigonometric functions (cos and
sin) to their hyperbolic counterparts (cosh and sinh). The notation - cγ = cosh(γt),
sγ = sinh(γt), y = γ

∆
sin(∆t) and x± = cos(∆t)±i ω

∆
sin(∆t) - is used for conciseness.

B.2 QFI Without Error Correction

In the case without error correction, one can simply use the solutions of the differ-
ential equations, Eq. (B.7) and Eq. (B.8). The quantum state at time t is given
by

ρ =
1

2

∑
j

λj,+ |ψj,+〉〈ψj,+|+ λj,− |ψj,−〉〈ψj,−| , (B.9)

with
λj,± = e−nγt

sj ± rj
2

, (B.10)
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and
|ψj,±〉 =

1√
2

(
e−iθj/2 |j〉 ± e+iθj/2 |j̄〉

)
. (B.11)

The factor of 1/2 in front of the sum is to avoid double counting, because λj,± = λj̄,±
and |ψj,±〉 =

∣∣ψj̄,±〉. The eigenvalues and eigenvectors are parameterized by

sj = cn−hjγ shjγ + chjγ s
n−hj
γ , (B.12)

rje
±iθj = x

hj
± y

n−hj + x
n−hj
∓ yhj , (B.13)

where hj is the Hamming weight (number of 1’s) of j. Using the general formula for
the QFI, one obtains

Qnoisy =
1

2

∑
j

(
λ̇2
j,+

λj,+
+
λ̇2
j,−

λj,−
+ 2

(λj,+ − λj,−)2

λj,+ + λj,−

(∣∣ 〈ψj,+|ψ̇j,−〉 ∣∣2 +
∣∣ 〈ψj,−|ψ̇j,+〉 ∣∣2))

=
e−nγt

2

∑
j

sj ṙ
2
j

s2
j − r2

j

+
r2
j

sj
θ̇2
j

= n2t2
(

1−
(
2− 4

3n

)
γt
)

+O
(
t4
)
,

(B.14)

where the notation �̇ = ∂ω� for clarity and the factor of 1/2 in front of the sum is
again used to avoid double counting.

B.3 QFI Using The Parity Check Code

The overall dynamics are modified upon inclusion of error correction. The system
evolves in accordance to the master equation, Eq. (B.1), for time τ , after which an
error correction operation is performed. This process is repeated until the total time
t has passed (it is assumed that t/τ is an integer).

To incorporate the parity check code into the dynamics, the evolution of the
ancillary qubit (indexed by m = n+ 1), which is subjected to dephasing with a rate
of ξ, must be tracked. The matrix solutions of this altered system are

eAτ = e−(nγ+ξ)τ

(
cγ sγ
sγ cγ

)⊗n
⊗

(
cξ sξ
sξ cξ

)
, (B.15)
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and

eBτ = e−(nγ+ξ)τ

(
x− y

y x+

)⊗n
⊗

(
cξ sξ
sξ cξ

)
, (B.16)

where cξ = cosh(ξτ) and sξ = sinh(ξτ). Note that the other variables - cγ, sγ, y and
x± - are in terms of τ here (not t).

When using the parity check code, a correction is made on a sensing qubit if it has
a different parity than the ancillary qubit. Imperfect syndrome diagnosis is simulated
by adding a probability that the syndrome diagnosis outputs an incorrect result with
probability p. The overall dynamics of the error correction can be translated into
the matrix language

E =

(
1− p 1− p
p p

)⊗n
⊗

(
1 0

0 0

)
+

(
p p

1− p 1− p

)⊗n
⊗

(
0 0

0 1

)
. (B.17)

Combing everything, the amplitudes after time t, and therefore t/τ applications
of the parity check code, is

~a =
(
EeAτ

)t/τ
~a0 = e−ξt

((
1− p 1− p
p p

)⊗n
⊗

(
cξ sξ
0 0

)

+

(
p p

1− p 1− p

)⊗n
⊗

(
0 0

sξ cξ

))t/τ

~a0,

(B.18)

and

~b =
(
EeBτ

)t/τ~b0 = rnt/τe−ξt

((
(1− p)e−iφ (1− p)eiφ

pe−iφ peiφ

)⊗n
⊗

(
cξ sξ
0 0

)

+

(
pe−iφ peiφ

(1− p)e−iφ (1− p)eiφ

)⊗n
⊗

(
0 0

sξ cξ

))t/τ

~b0,

(B.19)
with

re±iφ = e−γτ (x± + y) = e−γτ
(

cos(∆τ) +
γ ± iω

∆
sin(∆τ)

)
. (B.20)

It easy to show using Eq. (B.18) that the final amplitude corresponding to the
outer product |j0〉〈j0| is equal to (1−p)n−hj phj

2
, and similarly the amplitude corre-

sponding to the outer product |j̄1〉〈j̄1| is also equal to (1−p)n−hj phj
2

- here hj is the
Hamming weight of the bit string of the sensing qubits, and does not include the
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ancillary qubit. The solution to Eq. (B.19) is more complex. After the first round of
error correction (and each subsequent round), the amplitude corresponding to the
outer product |j0〉〈j̄1| is of the form (1−p)n−hj phjRe−iθ

2
, and the amplitude correspond-

ing to the outer product |j̄1〉〈j0| is of the form (1−p)n−hj phjReiθ
2

. By translating the
problem to a recurrence relation between Re−iθ and Reiθ, the problem becomes(
Re−iθ

Re+iθ

)
= rnt/τe−ξt

(
cξq− sξq+

sξq− cξq+

)N (
υ−
υ+

)

= rnt/τe−ξt

(
µ+µ

N
− − µ−µN+
µ+ − µ−

(
1 0

0 1

)
+
µN+ − µN−
µ+ − µ−

(
cξq− sξq+

sξq− cξq+

))(
υ−
υ+

)
,

(B.21)
with N(nt/τ − 1), and

q± = (1− p)e±iφ + pe∓iφ, (B.22)

µ± = cξ cosφ±
√
q+q−s2

ξ − (1− 2p)2c2
ξ sin2 φ, (B.23)

υ± = cξe
±inφ + sξe

∓inφ. (B.24)

In the general setting, with a noisy ancilla and imperfect error correction, the
quantum state after time t can be written as

ρ =
∑
j

λj,+ |ψj,+〉〈ψj,+|+ λj,− |ψj,−〉〈ψj,−| , (B.25)

where
λj,± = (1− p)n−hjphj 1±R

2
, (B.26)

and
|ψj,±〉 =

1√
2

(
e−iθ/2 |j0〉 ± e+iθ/2 |j̄1〉

)
. (B.27)

From which, the QFI can be computed

Q =
∑
j

(
λ̇2
j,+

λj,+
+
λ̇2
j,−

λj,−
+ 2

(λj,+ − λj,−)2

λj,+ + λj,−

(∣∣ 〈ψj,+|ψ̇j,−〉 ∣∣2 +
∣∣ 〈ψj,−|ψ̇j,+〉 ∣∣2))

=
Ṙ2

1−R2
+R2θ̇2.

(B.28)
The various sub-cases are explored in the following subsections.
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B.3.1 Ideal Error Correction

The simplest case is when ξ = 0 and p = 0. In this scenario Re±iθ =
(
re±iφ

)nt/τ .
The QFI simplifies greatly, it can be written in the form

Q1 = n2t2r2nt/τf, (B.29)

where

f =
1

τ 2

( 1

1− r2nt/τ

ṙ2

r2
+ φ̇2

)
= 1− 2γτ +

7γ2τ 2

3
+

4γτ 2

3nt
+O

(
τ 3
)
, (B.30)

and
r2nt/τ = 1− 4

3
ntγω2τ 2 +O

(
τ 3
)
. (B.31)

B.3.2 Noisy Ancilla

The second case has a noisy ancillary qubit (ξ 6= 0). The analytic expression for
Re±iθ is quite complicated; to gauge the effects of the noise a Taylor expansion is
performed

Re±iθ = (1− ξt)
(
re±iφ

)nt/τ
+ ξτ

sin(ntφ/τ)

sin(nφ)

(
re∓iφ

)n
+O

(
ξ2
)
. (B.32)

Which leads to a QFI of

Q2 = n2t2r2nt/τ (f − gξ) +O
(
ξ2
)
, (B.33)

where

g =
(nωt(1 + 3 cos(2nωt)

)
+ (n2ω2t2 − 2) sin(2nωt)

n3ω3t3
+ 2
)
t

+
2
(
nωt cos(nωt)− sin(nωt)

)2

n2ω2t2
τ

+
((4nωt− 2n3ω3t3) cos(2nωt)− (2− 5n2ω2t2) sin(2nωt)

n3ω3t3
− 4
)
γtτ +O

(
τ 2
)
.

(B.34)
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To simplify analysis, the following inequalities are used:

2

3
≤
nωt

(
1 + 3 cos(2nωt)

)
+ (n2ω2t2 − 2) sin(2nωt)

n3ω3t3
+ 2 ≤ 5

2
, (B.35)

0 ≤
2
(
nωt cos(nωt)− sin(nωt)

)2

n2ω2t2
≤ 5

2
, (B.36)

−7 ≤ (4nωt− 2n3ω3t3) cos(2nωt)− (2− 5n2ω2t2) sin(2nωt)

n3ω3t3
− 4 ≤ 0, (B.37)

from which it follows that(2

3
− 7γτ

)
t ≤ g +O

(
τ 2
)
≤ 5

2
(t+ τ). (B.38)

B.3.3 Imperfect Error Correction

The third case has imperfect syndrome diagnosis (p 6= 0). It is straightforward to
show

Re±iθ =
(
re±iφ

)nt/τ(
q±e

∓iφ)n(t/τ−1)
. (B.39)

Which leads to a QFI of
Q3 = n2t2(rq)2nt/τh, (B.40)

with q2 = q+q−, which also satisfies

q2nt/τ = 1− 4p(1− p)ω2tτ +O
(
τ 2
)
, (B.41)

and
h = (1− 2p)2f + 4p

(1− p
n

+ 1− 2p
)τ
t

+O
(
τ 2
)
. (B.42)

B.4 QFI Using The Generalized Bit Flip Code

The generalized bit flip code [Got97] does not use an ancillary qubit, instead a global
stabilizer measurement is made. The correction made maps the outer product |j〉〈j|
to |0〉〈0|⊗n if hj < n/2 and |1〉〈1|⊗n if hj > n/2 (it is assumed that n is odd to avoid
complications when hj = n/2), it similarly maps |j〉〈j̄| to |0〉〈1|⊗n if hj < n/2 and
|1〉〈0|⊗n if hj > n/2. This transformation can (just as with the parity check code)
be represented as a matrix E, where E(j,k) is defined to be the entry of E in the jth
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row and kth column

E(j,k) =


1, if hj = 0 and hk < n

2

1, if hj = n and hk > n
2

0, otherwise

. (B.43)

Using the same methodology as the parity check code (the main difference being
that there is no ancillary qubit), the amplitudes of the final quantum state are given
by

~a =
(
EeAτ

)t/τ
~a0, (B.44)

and,
~b =

(
EeBτ

)t/τ
~b0. (B.45)

The solution of ~a is trivial; the only non-zero entries are the first and last, both
of which are equal to 1/2. The solution for ~b is more complicated, but the only
significant terms of the matrix are the four corner entries. By discarding the other
entries, a reduced version of the problem is obtained

~b′ =

(
η− ζ+

ζ− η+

)t/τ (
1/2

1/2

)
(B.46)

where the first and second entry of ~b′ corresponds to the amplitudes of |0〉〈1|⊗n and
|1〉〈0|⊗n respectively, and

η± = e−nγτ
bn/2c∑
m=0

(
n

m

)
xn−m± ym, (B.47)

ζ± = e−nγτ
bn/2c∑
m=0

(
n

m

)
xm±y

n−m, (B.48)

and additionally, η± + ζ± =
(
re±iφ

)n. Because ζ± ∈ O(τ n+1
2

)
, it follows that(

η− ζ+

ζ− η+

)t/τ

=

(
rne−niφ 0

0 rne+niφ

)t/τ

+O
(
(τ

n−1
2

)
. (B.49)

Therefore, for large n the final quantum state in this scenario is very similar to the
final quantum state using the parity check code (with a noiseless ancilla and perfect
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error correction). Mathematically, it is equivalent up to O
(
τ
n−1
2

)
. Thus, the QFI is

similarly equivalent up to the same order.
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C
Soundness Proofs

C.1 Recurring Mathematical Tools

Before introducing the derivations of the soundness proofs, some frequently recurring
tools present in (most of) the proofs are explained here for the sake of organization.

C.1.1 Twirling Lemmas

The first type recurring tool used in the soundness proofs in this Appendix are
Clifford twirling lemmas. The Pauli twirling lemma states [Dan+09] that for any m
qubit quantum state ρ and Pauli operators Q,Q′ ∈ Pm, with Q 6= Q′∑

P∈Pm

PQPρPQ′P = 0. (C.1)

The reason is that because Q 6= Q′, Pm can be divided into four equal sets. One set
of operators which commutes with both Q and Q′, one set which commutes Q and
anti-commutes with Q′, one set which anti-commutes with Q and commutes with
Q′, and one set which anti-commutes with both Q and Q′. All four of these are
equal in size, from which it follows that the above sum is zero.

The proof of the Clifford twirling lemma [Dan+09] is slightly more involved,
but the statement is similar: for any m qubit quantum state ρ and Pauli operators
Q,Q′ ∈ Pm, with Q 6= Q′ ∑

C∈Cm

CQC†ρCQ′C† = 0. (C.2)
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The basis of the proof is similar: for any Q and Q′ which are not equal and neither
of which is the identity, the operators of the Clifford group can be partitioned into
sets of four Ca, Cb, Cc, Cd where

CaQC
†
a = CbQC

†
b = −CcQC†c = −CdQC†d, (C.3)

and
CaQ

′C†a = −CbQ′C†b = CcQ
′C†c = −CdQ′C†d. (C.4)

When either one of Q or Q′ is the identity, the idea is still true except the cor-
responding relationship, Eq. (C.3) or Eq. (C.4), is no longer true by definition,
CIC† = I.

A corollary of the Clifford twirling lemma is that the results still holds when the
sum is restricted to locally acting Clifford operators∑

C∈C⊗m1

CQC†ρCQ′C† = 0. (C.5)

This is apparent when ρ is written as a sum over the Pauli group P , and all operators
are decomposed into locally acting operators

∑
C∈C⊗m1

CQC†ρCQ′C† =
1

2m
Tr(Pρ)

∑
P∈Pm

m⊗
j=1

( ∑
Cj∈C1

CjQjC
†
jPCjQ

′
jC
†
j

)
. (C.6)

Because Q 6= Q′ there exists a j such that Qj 6= Q′j, the Clifford twirling lemma
dictates ∑

Cj∈C1

CjQjC
†
jPjCjQ

′
jC
†
j = 0, (C.7)

and thus the whole sum is zero, proving the locally acting Clifford twirling lemma.
Note that Pj not being a quantum state is irrelevant to the proof of the Clifford
twirl.

C.1.2 CPTP Representation Of A Malicious Attack

Another recurring mathematical tool used in the soundness proofs is to represent
an arbitrary attack as a CPTP map Γ, which can be expanded in terms of a Kraus
decomposition {Aα}

ρ→ Γ(ρ) =
∑
α

AαρA
†
α, (C.8)
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where
∑

αAαA
†
α = I. Next, a m dimensional Kraus operator can be written with

respect to the Pauli basis
Aα =

∑
P∈Pm

aα,PP, (C.9)

where aα,P = 2−m Tr(PAα). Therefore, in the Pauli representation, the action of Γ

is
Γ(ρ) =

∑
α

∑
P,Q

aα,Pa
∗
α,QPρQ, (C.10)

where the asterisk denotes the complex conjugate. The completeness relationship
reads ∑

α

∑
P∈Pm

|aα,P |2 = 1. (C.11)

C.2 Unsecured Quantum Channel

For this protocol, we assume that the ideal output state ρid1 is a pure state. This
is logical assumption since pure states are superior candidates as a resource for
quantum metrology. In doing so, the fidelity component of the soundness is equal
to trace, greatly simplifying the expression

1

|K|
∑
k∈K

pacc(k,Γ) ·
(

1−F
(
ρid, ρout(k,Γ)

))
=

1

|K|
∑
k∈K

pacc(k,Γ) ·
(

1− Tr
(
ρidρout(k,Γ)

))
=

1

|K|
∑
k∈K

Tr
(

Πacc(k)ρf (k,Γ)
)
,

(C.12)

where ρf (k,Γ) is understood as the final ensemble of both ancillary flag qubits and
the qubits intended for quantum metrology, and Πacc(k) projects the ancillary flag
qubits onto the ‘accept state’, and the qubits intended for quantum metrology onto
I− ρid.

1We make this assumption for both the single use of the quantum channel, and the double use
of the quantum channel.
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C.2.1 Trap Code (Single Use)

When using the trap code, there are a total of
∣∣K∣∣ =

∣∣C⊗m1

∣∣(m
t

)
possible classical

keys; describing both the choices k and `. The projector Πacc(k) depends only on
the choice of ` and is independent of the choice of encryption operation C. But for
all intents and purposes, it can be expressed as Πacc(`) = π(`)Ππ(`)† where π(`) is
the permutation corresponding to the random placement of the flag qubits and

Π = (I− ρ)⊗ |0〉〈0|⊗t . (C.13)

Upon receipt and decryption by Bob, the quantum state for a specific key k and
attack Γ is

ρf (k,Γ) = C†Γ
(
Cρin,`C

†)C, (C.14)

where ρin,` = π(`)ρ⊗ |0〉〈0|⊗t π(`)†. Thus the soundness is a bound on the quantity

1(
m
t

)
|C1|m

∑
`

∑
C∈C⊗m1

Tr
(

Ππ(`)†ρf (k,Γ)π(`)
)
. (C.15)

Because of the linearity of the trace, the sum over C can be brought into the trace,
which is simplified by expanding Γ into a Kraus decomposition and the locally acting
Clifford twirling lemma∑

C∈C⊗m1

ρf (k,Γ) =
∑

C∈C⊗m1

∑
α

C†AαCρin,`C
†A†αC

=
∑

C∈C⊗m1

∑
α

∑
P1,P2∈Pm

aα,P1a
∗
α,P2

C†P1Cρin,`C
†P2C

=
∑

C∈C⊗m1

∑
α

∑
P∈Pm

|aα,P |2C†PCρin,`C†PC.

(C.16)

The next simplification uses the fact that the single qubit Clifford group C1 maps any
non-identity Pauli into an equal distribution over the set {±X,±Y,±Z}. It then
follows that if P has d(P ) non-identity terms, then CPC† is a similar Pauli operator
P̃ (with a phase of ±1). Specifically, P̃ has the same number of non-identity terms
which are indexed by the same positions as the non-identity terms of P . The notion
of ‘similarity’ is denoted using ∼, for example I⊗X ∼ I⊗ Y ∼ I⊗ Z. Thus,

1

|C1|m
∑

C∈C⊗m1

ρf (k,Γ) =
∑
α

∑
P∈Pm

|aα,P |2

3d(P )

∑
P̃∼P

P̃ ρin,`P̃ . (C.17)
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Combining everything thus far

1

|K|
∑
k∈K

Tr
(

Πacc(k)ρf (k,Γ)
)

=
1(
m
t

)∑
`

∑
α

∑
P∈Pm

|aα,P |2

3d(P )

∑
P̃∼P

Tr
(

Ππ(`)†P̃ π(`)ρ⊗ |0〉〈0|⊗t π(`)†P̃ π(`)
)
.

(C.18)

If d(P ) = 0, then P is identically the identity and the trace is zero. For any d(P ) > 0

and s ≤ d(P ), there are
(
m−d(P )
t−s

)
permutations ` where the non-identity terms of

P interact with s trap qubits. The only P̃ which results in a non-zero trace is the
unique possibility of Z acting on all the s trap qubits. Additionally, when d(P ) ≤ t

and s = d(P ) the trace is identically zero, since the Pauli is uniquely acting on the
qubits intended for quantum metrology. Otherwise, the trace onto the first n qubits
can be bounded by 1. Hence,

1

|K|
∑
k∈K

Tr
(

Πacc(k)ρf (k,Γ)
)
≤
∑
α

∑
P∈Pm

|aα,P |2
smax∑
s=0

1

3s

(
m−d(P )
t−s

)(
m
t

)
=

1(
m
t

) m∑
r=1

cr

smax∑
s=0

1

3s

(
m−r
t−s

)(
m
t

) .

(C.19)

where d(P ) has been replaced by r as it is no longer dependent on a specific Pauli
P , smax = r−1 if r ≤ t and smax = t otherwise, and cr is the sum of all |aα,P |2 with r
total non-identity indices spanned by P . The completeness relationship, Eq. (C.11),
guarantees that cr ≤ 1. Using the upper bound for cr and swapping the sums of s
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and r, the inequality becomes

1

|K|
∑
k∈K

Tr
(

Πacc(k)ρf (k,Γ)
)
≤ 1(

m
t

) t∑
s=0

(1

3

)s m∑
r=s+1

(
m− r
t− s

)

=
1(
m
t

) t∑
s=0

(1

3

)s( m− s
t− s+ 1

)

=
m− t
t+ 1

t∑
s=0

(1

3

)s (t+ 1)!(m− s)!
(t− s+ 1)!m!

=
m− t
t+ 1

+
m− t
t+ 1

t∑
s=1

(1

3

)s s−1∏
j=0

t+ 1− j
m− j

≤ m− t
t+ 1

+
m− t
t+ 1

t∑
s=1

(1

3

)s(t+ 1

m

)s
≤ 3

2

m− t
t

.

(C.20)

C.2.2 Clifford Code (Single Use)

Using the Clifford code, the key is solely dependent on the choice of C ∈ Cm. The
projector Πacc(k) = (I− ρ)⊗ |0〉〈0|⊗t is independent from this choice.

The derivation begins in a similar fashion to that of the trap code, where the
output quantum state is simplified using the Clifford twirling lemma∑

C∈C⊗m1

ρf (C,Γ) =
∑
C∈Cm

∑
α

∑
P∈Pm

|aα,P |2C†PCρinC†PC. (C.21)

However, in this case the above can be further simplified as the Clifford group maps
any non-identity Pauli uniformly to all other non-identity Pauli operators (up to a
phase of ±1)

1

|Cm|
∑
C∈Cm

C†PCρC†PC =
1

|Pm| − 1

∑
P ′ 6=I∈Pm

P ′ρP ′ =
1

4m − 1
(2mI− ρ). (C.22)

Denoting a =
∑

α |aα,I|2, the expected final state is

1

|Cm|
∑
C∈Cm

ρf (C,Γ) = aρin +
1− a

4m − 1
(2mI− ρin), (C.23)
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from which it follows that

1

|K|
∑
k∈K

Tr
(

Πacc(k)ρf (k,Γ)
)

=
(
a− 1− a

4m − 1

)
Tr
(
Πρin

)
+2m

1− a
4m − 1

Tr
(
Π
)
. (C.24)

The first trace is null because Tr
(
(I − ρ)ρ

)
= 0 and the second trace is equal to

2m−t − 1, hence

1

|K|
∑
k∈K

Tr
(

Πacc(k)ρf (k,Γ)
)
≤ 2m(2m−t − 1)

4m − 1
≤ 2m · 2m−t

4m
≤ 2−t. (C.25)

C.2.3 Trap Code (Double Use)

In the double use of the quantum channel, depicted in Fig. (6.3), a malicious eaves-
dropper can interact with the quantum channel twice. These interactions can both
be represented as CPTP maps, Γ1 and Γ2. For the trap code, the set of keys is
now comprised of the random placement of the flags `, and two Clifford operations
C1, C2 ∈ C⊗m1 . The projector Πacc(k) is once again of the form π(`)Ππ(`)†, with the
change that Π projects onto the encoded quantum state (which is still assumed to
be a pure state)

Π = (I− Λθ(ρ))⊗ |0〉〈0|⊗t (C.26)

After undergoing the final decryption by Alice, the final quantum state for a
specific key k and attacks Γ1 and Γ2 is given by

ρf (k,Γ) = C†2Γ2

(
C2Λ

(`)
θ

(
C†1Γ2

(
C1ρin,`C

†
1

)
C1

)
C†2
)
C2, (C.27)

where Λ
(`)
θ is the parameter encoding operation which only acts on the qubits in-

tended for quantum metrology, if σ is an m dimensional quantum state then

Λ
(`)
θ (σ) = π(`)

(
Λθ ⊗ I

)(
π(`)†σπ(`)

)
π(`)†, (C.28)

where the identity term in the above equation represents the identity channel acting
on the final t qubits. Using the same techniques used in the trap code (single use)
proof, the sum over C1 and C2 can be brought into the trace. By representing Γ1

and Γ2 using Kraus decomposition {Aα} and {Bβ} respectively, and further reducing
these operators in the Pauli basis, the sum over C1 and C2 is greatly simplified thanks
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to the local Clifford twirling lemmas∑
C1,C2∈C⊗m1

ρf (k,Γ)

=
∑

C1,C2∈C⊗m1

∑
α,β

∑
P,Q∈Pm

|aα,P |2|bβ,Q|2C†2QC2Λ
(`)
θ

(
C†1PC1ρin,`C

†
1PC1

)
C†2QC2,

(C.29)

where aα,P = Tr(AαP ) and bβ,Q = Tr(BβQ), which satisfy the completeness rela-
tionships

∑
α,P |aα,P |2 =

∑
β,Q |bβ,Q|2 = 1. This is once again simplified using the

notation of similar Pauli operators

1

|C1|2m
∑

C1,C2∈C⊗m1

ρf (Γ) =
∑
α,β

∑
P,Q∈Pm

|aα,P |2|bβ,Q|2

3d(P )+d(Q)

∑
P̃∼P
Q̃∼Q

Q̃Λ
(`)
θ

(
P̃ ρin,`P̃

)
Q̃. (C.30)

Combining everything thus far

1

|K|
∑
k∈K

Tr
(

Πacc(k)ρf (k,Γ)
)

=
1(
m
t

)∑
`

∑
α,β

∑
P,Q∈Pm

|aα,P |2|bβ,Q|2

3d(P )+d(Q)

∑
P̃∼P
Q̃∼Q

Tr
(

Ππ(`)Q̃Λ
(`)
θ

(
P̃ ρin,`P̃

)
Q̃π(`)†

)
.

(C.31)

To simplify the above expression, we use a slightly different argument to the protocol
for the single use case. This time we define r to be the number of non-identity indices
spanned by P or Q. For example the total number of non-identity indices spanned
by P = I⊗X⊗Z and Q = I⊗X⊗ I is r = 2. Again, for any s ≤ r, there are

(
m−r
t−s

)
permutations of the trap qubits where the non-identity indices spanned by P or Q
interact with s trap qubits. The number of P̃ and Q̃ which results in an accepted
outcome is less than (5

9
)s · 3d(P )+d(Q). This is because when the non-identity terms

of P̃ and Q̃ do not overlap, the only accepted Pauli is Z (which is 1/3 < 5/9 of the
possibilities), however, when there is overlap at said index, the Pauli’s which are
accepted are ZZ, XX, Y Y , XY and Y X (which is 5/9 of the possibilities). The
orthogonal compliment portion of the projector Π is again equal to zero when all
of the r non-identity terms interact with the trap qubits. Mathematically, in this
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version of the protocol, we obtain

1

|K|
∑
k∈K

Tr
(
Πacc(k)ρf (k,Γ)

)
≤
∑
α,β

∑
P,Q

|aα,P |2|bβ,Q|2
smax∑
s=0

(5

9

)s (m−r
t−s

)(
m
t

)
=

m∑
r=0

cr

smax∑
s=0

(5

9

)s (m−r
t−s

)(
m
t

) ,

(C.32)

once again smax = r−1 for r ≤ t and smax = t otherwise, and here cr ≤ 1 is the sum
of all |aα,P |2|bβ,Q|2 with r total non-identity indices spanned by P and Q. Using the
upper bound for cr and swapping the sums of s and r we obtain

1

|K|
∑
k∈K

Tr
(
Πacc(k)ρf (k,Γ)

)
≤ 1(

m
t

) t∑
s=0

(5

9

)s m∑
r=s+1

(
m− r
t− s

)

=
1(
m
t

) t∑
s=0

(5

9
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t− s+ 1

)

=
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t+ 1
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(t− s+ 1)!m!

=
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t+ 1
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t+ 1
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+
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t+ 1
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)s(t+ 1
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)s
≤ 9

4

m− t
t+ 1

≤ 9

4

m− t
t
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(C.33)

C.2.4 Clifford Code (Double Use)

In the double use of the quantum channel, the soundness derivation for the Clifford
code is very similar to the proof in the single use case. Simplification using the
Clifford twirling lemma leads to the expression∑

C1,C2∈Cm

ρf (k,Γ)

=
∑

C1,C2∈Cm

∑
α,β

∑
P,Q∈Pm

|aα,P |2|bβ,Q|2C†2QC2Λθ

(
C†1PC1ρinC

†
1PC1

)
C†2QC2,

(C.34)
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where it is understood that Λθ acts exclusively on the first n qubits. Define a =∑
α |aα,I|2 and b =

∑
β |aβ,I|2. Using the same logic introduced in the single use case,

the expected final state is

1

|K|
∑
k∈K

ρf (k,Γ)

=
(
ab− a(1− b) + b(1− a)

4m − 1
+

(1− a)(1− b)
(4m − 1)2

)
Λθ

(
ρin
)

+
(1− a)b+ a(1− b)

4m − 1
2mI.

(C.35)

Because
max

0≤a,b≤1

(
(1− a)b+ a(1− b)

)
= 1, (C.36)

it follows that

1

|K|
∑
k∈K

Tr
(
Πacc(k)ρf (k,Γ)

)
=

(1− a)b+ a(1− b)
4m − 1

2m(2m−t − 1) ≤ 1

2t
. (C.37)

C.3 Delegated Measurements

After post-processing, the measurement result Alice receives stems from the mea-
surement statistics of

π†C†M
(
ρ̃ = Γ(Cπρinπ

†C†)
)
Cπ, (C.38)

where M corresponds to measuring the quantum states in the basis of C(P⊗n ⊗
Z⊗t)C†. IfMid is the measurement with respect to the basis of P⊗n ⊗ Z⊗t, then

M(σ) = CπMid(π†C†σCπ)π†C†, (C.39)

and thus, after post-processing, the measurement result Alice receives stems from
the measurement statistics of

Mid
(
π†C†Γ(Cπρinπ

†C†)Cπ
)
. (C.40)

Suppose that Alice accepts measurement results, then the remaining measure-
ment statistics will be of the form M̄id(ρout(k,Γ), where M̄id is restricted to the
measurement results of the n qubits for quantum metrology. The fidelity term in
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the soundness is bounded

F
(
M̄id

(
ρid
)
,M̄id

(
ρout(k,Γ)

))
≥ F

(
ρid, ρout(k,Γ)

)
= Tr

(
ρidρout(k,Γ)

)
, (C.41)

due to the monotonicity of the fidelity. Thus, the soundness is again bounded by
the quantity

1

|K|
∑
k∈K

pacc(k,Γ) ·
(

1−F
(
M1(ρid),M1(ρout(k,Γ))

))
≤ 1

|K|
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k∈K

pacc(k,Γ) ·
(

1− Tr
(
ρidρout(k,Γ)

))
=

1

|K|
∑
k∈K

Tr
(

Πacc(k)ρf (k,Γ)
)
.

(C.42)

The same notation is used here as in Eq. (C.12), where

ρf (k,Γ) = π†C†Γ(Cπρinπ
†C†)Cπ (C.43)

is understood as the ensemble of both ancillary flag qubits and the qubits intended
for quantum metrology from which the measurement statistics are derived from, and

Πacc(k) = Π = (I− ρid)⊗ |0〉〈0|⊗t (C.44)

projects the ancillary flag qubits onto the ‘accept state’, and the qubits intended
for quantum metrology onto I− ρid. More specifically, this combination of ρf (k,Γ)

and Πacc(k) is equivalent to that of the soundness derivaiton for the single use of
the trap code over a quantum channel, and thus the same techniques mathematical
techniques can be applied to find that the soundness is bounded by 3n

2t
.
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