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Introduction

Why cannot we write the entire 24
volumes of the Encyclopedia Brittanica
on the head of a pin?

There’s Plenty of Room at the Bottom
(1959)

Richard P. Feynman

Modern electronics has grown rapidly in the last 5 decades, due to the downscaling of
CMOS technological nodes to small dimensions, towards 3 nm and beyond[1]. Until now, this
downscaling roughly followed Moore’s Law, which states that the density of transistors doubles
every 18 to 24 months[2]. However, further scaling is reaching physical limits, in particular
because of an increase of power leakage as the devices size shrinks[3]. The information and
telecommunications industry based on electronics could consume up to 1/5th of the world total
energy production by 2025[4]. To lower this power consumption, it is in particular necessary
to develop non-volatile devices, without static energy consumption[5].

Spintronics
In this context, Spintronics is an expanding scientific and technological field, which does not
only make use of the charge but also of the electron spin. The birth of spintronics is usually
considered to be the pioneering work done by Albert Fert and Peter Grünberg on Giant Magne-
toresistance (GMR), for which they were jointly awarded the Nobel prize in Physics in 2007[6,
7]. GMR is observed when two magnetic layers are sandwiched between a non magnetic layer.
In this case, the total resistance of the stack depends on the relative magnetization directions
of the two magnetic layers. The resistance difference between the parallel and anti-parallel
states is large. The GMR value can for instance reach up to 40% in Co/Cu multilayers[8]. It
was later shown that even higher magnetoresistances could be obtained, up to 1800% at 4K[9]
and 604% at room temperature[10], by replacing the non magnetic layer by an insulating layer.
This type of magnetoresistance, originally discovered by Jullière in 1975[11], is called Tunneling
Magnetoresistance (TMR)[12, 13]. The TMR mechanism involves electrons moving through an
insulating barrier between magnetic layers, resulting in a dependance the resistance on the ori-
entation of the magnetization orientations of the electrodes. Beyond the fundamental interest
associated to the discovery of spin transport phenomena, this finding allowed the development
of new generations of GMR and TMR read-heads for magnetic hard disks drives (HDD), thus
enabling to increase the data storage density from 2000 bits/sq.in. (IBM 350 RAMAC disk,
1956) to 1 Terabits/sq.in. (Seagate, 2012)[14, 15]. Spintronics has thus already delivered large
scale commercial applications.
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Introduction

Figure 1: (a) GMR head for hard disk, consisting of a writing element followed by the GMR
read sensor. (b) Principle of the magnetic random access memory in the basic cross point
architecture. Taken from Ref[16]

Spintronics gave birth to several potential memory and logic applications, ranging from
Magnetic Random Access Memories (MRAM)[17], Domain wall MRAMs[18], Domain Wall
Logic[19–21], to MESO[22] and FESO[23]. Among these concepts, MRAMs have become a
commercial memory product[24], while GMR and nowadays TMR are being used for memory
and sensor applications[17, 25]. For microelectronics, the advantage of spintronics over the
CMOS technology is the non-volatility, i.e., the data retention without any power consump-
tion. Indeed, the data can be stored almost indefinitely within the magnetization states of
nanomagnets. Hence, spintronics could lead to the next generation of low power, ultra-fast and
high density nanoelectronic devices.

Domain Wall Motion
Ferromagnetic and ferrimagnetic materials are composed of different regions of homogeneous
magnetization, called magnetic domains. The boundary between these domains are called mag-
netic Domain Walls (DWs). A way to manipulate the magnetization of spintronics nanoelements
is to control the motion of these DWs.

For instance, in magnetic thin films in which the magnetization is perpendicular to the
film plane, the magnetization within the DWs rotates by 180° from on side of the DW to
another[26–28]. Such magnetic textures are very interesting features of magnetic materials, as
they can be moved with the help of magnetic fields[29–31] and/or currents[32–34]. Current-
induced DW motion by spin transfer torque was predicted theoretically by Berger in 1978[35].
It has since been a major focus in spintronics, in particular during the last two decades, for the
development of applications such as racetrack memories[36, 37], DW Magnetic Random Access
Memories[18] and DW based logic devices[19–21, 38]. While one of the major goals of MRAM is
at the moment to replace DRAM thanks to its low-power, high speed and non-volatility[17], the
development of racetrack memories might lead to possible replacement candidates for HDDs,
while DW based logic could constitute a possible replacement of traditional transistors for logic
functions.

Spin transfer Torques (STT)[39, 40] and Spin Orbit Torques (SOT)[41] are the two mech-
anisms for current-induced DW motion. In the case of the STT acting on a DW, the charge
current gets spin polarized by the local magnetization through the s-d interaction[39, 42]. This
incoming spin-polarized current then transfers its angular momentum onto the local magnetic
moments of the DW, thus leading to the DW motion[40, 43]. On the other hand, SOTs require
a heavy metal layer adjacent to the ferromagnetic layer, to generate a spin polarized current by
spin-hall effect[44–46] and by Rashba effect[47, 48]. The spin current generated in the heavy

2
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Figure 2: (a) Concept of the Racetrack memory where the information is coded onto magnetic
domains[36] (b) Domain Wall based logic circuit showing cascading with 10 NAND and 11 NOT
gates[38]

metal accumulates and diffuses into the ferromagnetic layer, resulting in the generation of spin
orbit torques to drive the DW motion[49–53].

Ferrimagnetic Domain Wall Motion
Although DW motion has been mainly studied in ferromagnetic materials, there has been
recently a growing interest towards ferrimagnetic materials for DW motion. A ferrimagnetic
material is made up of two sub-lattices with magnetic moments pointing in opposite directions,
one of the sublattice possessing a higher magnetization than the other one. This results to a
net magnetization which is significantly lower than that of ferromagnets. As the sub-lattices of
a ferrimagnet is made up of different elements or atoms, a lower net angular momentum is also
present here. The lower magnetization and the angular momentum are key factors to improve
the DW velocity. Indeed, the STTs and SOTs become more efficient as they act on a smaller
magnetization[40, 43].

In some ferrimagnetic materials, the magnetization and the angular momentum can be con-
trolled and reduced to points where the magnetic moment and/or the angular momentum of the
two sub-lattice fully compensate each other, either by changing the temperature of the sample
or by tailoring the composition of the material[54]. These points are called the Magnetic Com-
pensation Point (MCP) and the Angular Momentum Compensation Point (ACP)[55, 56]. Such
compensated ferrimagnets are very interesting to study as they represent an intermediate case
between anti-ferromagnets and ferromagnets. They can be used to study the spin dynamics and
transport in anti-ferromagnetically coupled systems which is of interest of Antiferromagnetic
spintronics[57]. Indeed, such ferrimagnets offer a significant advantage over anti-ferromagnets,
as ferrimagnets have a finite Zeeman coupling which allow them to be more easily manipulated
by magnetic fields, like spin textures such as DWs and skyrmions. It also has in principle a
finite spin polarization which enables the polarization and detection of spin currents which are
crucial for the study of spin dynamics.

Recent works have shown that at the ACP the precessional torque is negligible, resulting
in very large DW velocities[58–60] and very fast and efficient magnetization switching[61, 62].
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Figure 3: Schematic illustration of magnetization and angular momentum. The light red (blue)
arrow represents the magnetization and dark red (blue) represents the angular momentum of
sub-lattice A(B). The light and dark purple arrows represents the net magnetization and angular
momentum

Most experiments up to now have been done using SOTs, which have dominated the scientific
activity concerning DWs during the last decade [50, 52], as efficiency of STT were found quite
disappointing. Recent experiments relies on rare-earth-based ferrimagnets, such as GdCo [58,
59], TbCo[63, 64], TmYIG[65] and BiYIG[66]. However, the current densities necessary for DW
propagation remain high in these systems, or require the assistance of an external in-plane field
for DW propagation. Some of these materials are insulating ferrimagnets which complexify the
electrical readout. Also, the use of rare-earth materials is both costly from an ecological point
of view, and critical from a geo-strategic point of view [67].

In this thesis, I chose to focus on DW manipulation in Rare-earth free ferrimagnetic nitride
thin films, an alternative to the present class of Rare-earth based ferrimagnetic materials more
widely studied in spintronics. This thesis is divided into five chapters. Chapter 1 is an intro-
duction to ferrimagnetic materials and to the fundamental concepts related to current induced
DW motion. Among the rare-earth free ferrimagnetic nitrides, we chose to start with Mn4N,
which is made up of cheap and abundant elements. In chapter 2 we will present the growth
and characterization of Mn4N on MgO and SrTiO3 substrates, which will highlight the unique
properties of these materials. It will be followed by the study of current-induced DW motion
in Mn4N. Chapter 3 concerns the growth and characterization of Mn4−xNixN and Mn4−xCoxN.
The substitution of Co and Ni leads to the compensation points in the Mn4N thin films. Chap-
ters 4 focuses on the current driven DW dynamics in these Mn4−xNixN thin films. Lastly, we
will examine spin orbit coupling (SOC)-related phenomena in Mn4N. Chapter 5 features some
preliminary works, on SOT switching in Mn4N and on DW based logic devices.
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Chapter

Ferrimagnetic materials for
Spintronics 1
In this chapter, we will review the basics of ferrimagnetic materials and nanomagnetism[27, 68–
70] which are relevant to the experimental results presented in this thesis. Section 1.1 focuses
on ferrimagnetic materials. In section 1.2 we will discuss about different types of magnetic
anisotropy in a magnetic material. Section 1.3 we will review the micromagnetic energies in a
magnetic system followed by section 1.4 in which we will touch upon look into spin polarization.
Lastly, we will discuss the magnetization dynamics in section 1.5.

1.1 Ferrimagnetic Materials
Ferrimagnets are a type of magnetic materials which manifests ferromagnetism and anti-
ferromagnetism simultaneously. These materials have two or more sub-lattices which indi-
vidually behaves ferromagnetically. However, the interaction between these sub-lattices makes
them favour an anti-parallel magnetic alignment. This unbalanced anti-parallel magnetic align-
ment leads to a small net magnetization[71]. Due to their low damping, ferrimagnetic garnets
have been used for spin wave[72] and ferrites for microwave applications[73]. Ferrimagnets have
been mainly used for for their low magnetization and treated as smaller ferromagnets.

Figure 1.1: Three types of magnetic alignment. (a) A simple ferromagnet where spins align
in the same direction. (b) A simple antiferromagnet with anti-parallel alignment with net zero
magnetization (c) Ferrimagnet with anti-parallel alignment with non-zero net magnetization
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Chapter 1. Ferrimagnetic materials for Spintronics

1.1.1 Origin of the exchange interaction
Exchange interaction is the interaction between identical particles, in this case neighbouring
spins. To understand the origin of the exchange interaction using quantum mechanical consid-
erations, we use a simple two electron system to illustrate the mechanism of the interaction that
can take place between the atomic moments and lead to their spacial alignment. We assume
that there is no spin orbit coupling or very weak spin orbit coupling and hence the Hamiltonian
is spin-independent. As this Hamiltonian is spin independent, the standard quantum mechan-
ical procedure can be used to separate the spacial ψ and the spin χ variables, which is given
as:-

Ψ(r1, r2, s1, s2) = ψ(r1, r2)χ(s1, s2) (1.1)
The orbital eigen functions are the solutions of the orbital Schrodingers equation.

Hψ = − ~
2m

(∇2
1 +∇2

2) + V (r1, r2)ψ = Eψ (1.2)

where, ~ is the reduced Planck constant, m is the mass of the particle and V is the potential
energy respectively. The Hamiltonian being spin-independent leads to the orbital eigenfunctions
and the corresponding energy states also being spin independent. However, Pauli’s exclusion
principle introduces spin dependence into seemingly spin-independent problem in the case of
fermions, which in this case is electrons.

For two electrons, the exclusion principle requires the total wavefunction to be anti-symmetric
[69]. The wavefunction is divided into two parts, the orbital and the spin parts, which
means that if the orbital wavefunction is symmetric then the spin wavefunction must be anti-
symmetric. Since spin can have only two possible sz states, the spin wavefunction is a linear
combination of any four two-spin states. Out of the four states, only one is anti-symmetric and
has a total spin S = 0. This is known as the singlet state. The other three combinations of the
spin states are symmetric and are called triplet states. These states have a total non-zero spin
S = 1. Therefore the symmetric spin wavefunctions must be combined with the anti-symmetric
wavefunctions for the exclusion principle to be satisfied. Depending on the relative orienta-
tion of the two spins of the two particles, the orbital eigenfunctions of our spin-independent
Hamiltonian and the associated energies should be different. This is the origin of the exchange
interaction - the energy of a system is a function of the mutual orientation of the spins of
the two particles. The approximate representation of this effective interaction of the magnetic
moments i and j having spins Si and Sj is given in the following Hamiltonian:

Ĥspin = −JijSi · Sj (1.3)
Here, J is the exchange integral or the exchange constant and represents the energy dif-

ference between the parallel and the anti-parallel spin states. Sij represents the spin angular
momenta of the atoms (or ions) constituting the solid. The effective magnetic field, known as
the exchange field, acting on spin i is the sum of the nearest neighbouring terms same as the
two particle system.

BE(i) ∝ ΣJijSj (1.4)
This interaction is due to the overlap of the neighbouring atomic orbitals and hence it has a

very short range and acts as an effective field. This magnetic interaction was first analyzed by
Werner Heisenberg and therefore this term and the model is known as the Heisenberg Hamil-
tonian and the Heisenberg Model respectively. When the exchange integral is positive for a

6



Chapter 1. Ferrimagnetic materials for Spintronics

given atomic configuration (J > 0), the neighbouring spins will tend to align in parallel which
leads to a phenomenon called ferromagnetism. When the exchange integral is negative (J <
0), the spins will tend to oppose each other and the resulting structure is known as the antifer-
romagnetic. When the exchange integral is negative and there are two different types of ions
in the crystal (for example Fe2+ and Fe3+ in Fe3O4 each having different magnetic moments),
the opposing spins do not necessarily cancel each other out as in the anti-ferromagnetic case,
but produce a spontaneous moment equal in magnitude to the difference of the two opposing
spin sub-lattices. This phenomenon is called ferrimagnetism. Anti-ferromagnetism on the other
hand is a case, where the opposing spins are equal in magnitude. This inter-atomic magnetic
ordering leads to magnetic substances which are of high significance for many fields of today’s
technology, including the emerging field of spintronics.

1.1.2 Spin configurations in a Ferrimagnet
The exchange interaction is the cause of magnetic ordering in a solid and this exchange interac-
tion does not necessarily lead to ferromagnetic ordering always as seen above. Moreover, a solid
can be composed of different chemical elements which could have different magnetic properties.
In principle, adjacent atomic spins of different magnitude can be aligned in different ways to
satisfy the local many-spin exchange interactions. Typically such a complex ordering is found
in oxides. Here, we will illustrate this phenomenon using a classical ferrimagnet - magnetite.

Fe3O4 or FeO · Fe2O3 is called magnetite which contains two ferric ions, Fe3+, with the spin
quantum number s = 5/2 and orbital magnetic moment L = 0 and one ferrous ion, Fe2+ with
s=2. If all of the three moments µi were to align, then one would expect a total moment of 14, µ
= gµΣsi = 2µB(5/2 + 5/2 + 2) = 14µB, with µB the Bohr magneton. However, experimentally
it has been found to be µ ≈ 4µB. It can be explained if the ferric ions were aligned anti-parallel
to the ferrous ion and the total moment is dominated by the ferrous ion. To summarise, in
a ferrimagnet there can be two of more sub-lattices with different magnetic strengths which
are aligned anti-parallel to each other. In ferrimagnetic oxides, the exchange interaction is
mediated by the orbitals of oxygen which is the so called indirect exchange or superexchange
which often leads to the anti-parallel alignment of the spins. The negative exchange integral,
J<0, represents antiferromagnetic and J>0, represents a ferromagnetic coupling. If we assume
all the pairwise exchange interactions are, Jaa, Jbb and Jab < 0. The exchange fields acting on
the spins in the two sub-lattices are

Ba = −γaMa − γabMb, Bb = −γbMb −−γbaMa (1.5)
where all three exchange constants are positive (by reciprocity = γa,b = γb,a). The associated

total energy is then given by

U = −1

2
(Ma ·Ba +Mb ·Bb) =

1

2
γaM

2
b +

1

2
γbM

2
a + γabMa ·Mb (1.6)

Therefore, the energy is minimum for the two sub-lattices when Ma is antiparallel to Mb.

1.1.3 Compensation points
Ferrimagnets like its ferromagnetic counterparts have a Curie temperature where the mag-
netization originating from the exchange interaction vanishes as a result of strong thermal
fluctuations. As the different sub-lattice of a ferrimagnet can be made up of different elements,
these sub-lattices could have different temperature evolution of their magnetization. Therefore,
in some special cases, the magnetization of sub-lattice can cancel each other with a zero net
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Figure 1.2: Schematic of three different temperature evolutions of the magnetization on site
A and B and of the total magnetization of the ferrimagnet.

magnetization at a specific temperature. This point before the Curie temperature is known as
the compensation temperature. Furthermore, since the gyromagnetic ratios of the sub-lattices
are different, there is also a net zero angular momentum temperature. Ferrimagnets can also
be manipulated to reach these MCP and ACP by varying the concentration of elements in ma-
terial at a given temperature as well. Temperature evolution of different types of ferrimagnets
have been shown in Fig.1.2 with the red(blue) line showing the magnetization from sub-lattice
A(B). The purple lines shows the net magnetization of the ferrimagnets. The magnetization
reaches zero before the Curie temperature in Fig.1.2(a) with the magnetization sub-lattice A
higher before the MCP and higher magnetization in sub-lattice B after the MCP. The mag-
netization remains higher in sub-lattice A until the Curie temperature in Fig.1.2 (b) with the
net magnetization pointing towards the magnetic moment of sub-lattice A and vice-versa in
Fig.1.2 (c). This ability to reach the MCP and ACP makes these special types of ferrimagnets
very interesting to study and also useful for spintronics.

1.2 Magnetic Anisotropy
Magnetization in a microscopic ferromagnetic domain usually lie along one easy axis. Due to
time reversal symmetry, a certain magnetic distribution M should have the same energy as the
state with reversed magnetization along the same axis M (negative direction). This phenomenon
is given by the the anisotropy energy Ea which is given by:

Ea = Ksin2θ (1.7)
Where θ is the angle between the direction of M and the easy axis, K is the anisotropy

constant. In this context, we shall look into the magnetic state of a ferromagnetic domain.
Magnetic anisotropy is at the core of the traditional magnetic memories. Perpendicular mag-
netic anisotropy(PMA) is an anisotropy where the easy axis of the magnetization lies out of
the plane from the thin film.

1.2.1 Crystal Anisotropy
It has been found that the spin in the ferromagnets saturate fully in a certain direction and
require a very high external fields to fully saturate in other directions. This happens due to
the crystallographic structure of the material, which determines a preferred direction of the
magnetization vector out of all directions. When this happens, the material is said to have
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magnetic anisotropy. Hence, the anisotropy due to the crystal structure is known as Crystal
Anisotropy. The lattice structural anisotropy induces an anisotropy for the magnetization due
to the spin-orbit coupling. In the case of the atomic orbitals of spherical symmetry, the orbital
angular momentum is zero thus making the spin-orbit coupling to be zero.

ESO = γSOL · S = 0 (1.8)
In the above case, the electron is free to take any orientation in space. In the case of non-zero

LZ , which means having a non-spherical charge distribution would lead to preferred direction
of the orbitals. If the spin magnetic moment is non-zero, it will lead to magnetic anisotropy.
In the uniaxial case, the anisotropy energy UK is at first order:

UK = K(m2
x +m2

y) = Ksin2θ = −Kcos2θ + const (1.9)
where, θ is the angle made by the magnetization with the z direction. For K > 0, the

energy of the system is lowered for the magnetization aligned with the z axis. For K < 0, the
ferromagnet is said to be of easy plane type. In the case of ferromagnetic CoFeB, the crystalline
anisotropy is very low while in the case of ferrimagnetic Mn4N thin films, crystal anisotropy is
very high.

1.2.2 Shape Anisotropy
A ferromagnetic sample responds to an external magnetic field by getting magnetized much
easier along the longer direction than the shorter one. This effect gives rise to shape ansiotropy
which is magnetostatic in nature. It can be understood by perceiving that at the sample surface,
the magnetic field lines prefer to close up.

divB ≡ div(H + 4πM) = 0 (1.10)
As the M is a finite quantity in the film and zero outside, the divergence is large at the

surface if the normal to the surface component of the magnetization is non zero. Magnetic poles
are produced due to this divergence, which produces a magnetic field called the demagnetizing
field Hd.

divH = −4πdivM (1.11)
This demagnetizing field acts to oppose the magnetization (hence the name is derived),

and is proportional to the strength of the magnetization. It is often expressed through the
demagnetizing factor Nd. Nd is a tensor and is function of the geometry of the sample only. Nd

is generally represented by a symmetric 3 × 3 tensor.
In the case of a homogeneous magnetization and taking the system shape of a system as an

ellipsoid, the energy of the dipolar interaction can be derived which acts on the magnetization.

Ushape = −µ0

2
·M ·Hd (1.12)

where Hd is given as −Nd ·M . In the case of ferromagnetic thin films, the demagnetizing
energy density is given by:

Ushape = −µ0

2
M2

s sin
2θ (1.13)

where θ is the angle between z direction and the magnetization. Here, the demagnetizing
tensor is a diagonal with only one zero which is equal to 1 along the z direction.
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1.2.3 Interfacial Anisotropy
Interfacial anisotropy as the name suggests originates from the interface of the magnetic layer.
This form of anisotropy generally provides PMA in the case of CoFeB/MgO system. The
main contributors of interfacial ansiotropy are the symmetry breaking of the crystal structure,
elastic stress due to lattice distortion and hybridization of the Co(Fe)-3d orbitals with the 0-pz
orbitals[74–76]. Interfacial anisotropy hence, competes with the demagnetizing energy and its
contribution is divided by the thickness of the ferromagnetic layer (Ki/tFM). In order to have
a stable PMA in ferromagnetic thin films, the interfacial anisotropy has to be higher than the
shape anisotropy. Therefore ferromagnetic thin films are made as thin as possible to have PMA.

1.3 Micromagnetic energies and Domain Walls
As seen in the section 1.1.1, the exchange interaction in a ferromagnet or ferrimagnet aligns
the spins locally. This makes the material magnetized, however, this macroscopic ferromagnets
can also have no net magnetic moment. This state is known as the demagnetized state which
was first stated by Weiss as arising from a division of the sample into microscopic regions,
or domains which have varying magnetic orientations. It was first described by Landau and
Lifshitz[77] in 1935. In order to understand the nature of this phenomenon and length scale
involved one must consider the full energy landscape for a given sample case. We will discuss
in short about the six different contributions to the total energy. The total energy could be
given as:-

U = Uex + Uk + Ume + Ums + Ui + UZeeman (1.14)

The first term in Eq.1.3 represents the Exchange energy which acts to align the neighbouring
spins in parallel, with the spin in one direction and for small spin-to-spin rotations. It can be
expanded into:-

Uex ∼ −cosθij ∼
(
∂θ

∂x

2)
(1.15)

The second term comes from the Magnetocrystalline anisotropy which acts to align the mag-
netization along the preferred directions of the material, and in the case of uniaxial anisotropy
it is given by:-

Uk ∼ −cos2θ (1.16)
The third term is the Magnetoelastic anisotropy which affects the magnetization in response

to stress present in the material, and in the simplest uniaxial case is given as:

Ume ∼ cos2θ (1.17)
The fourth term comes from the Magnetostatic or shape anisotropy which is the interaction

of the magnetization with its self-field, or demagnetizing field and it is mainly due to discon-
tinuities in M normal to surfaces or to its volumic charges. It is proportional to M2

s and gets
minimised when the net magnetization is zero. Hence, this term is the main reason behind the
formation of ferromagnetic domains.

Ums ∼ cos2θ (1.18)
The fifth term here is interfacial anisotropy which has an unidirectional bias from the

interface spins. By neglecting energy contributions from canting spins on both sides of the
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interface.

Ui ∼ −cosθ (1.19)
The last term here comes from the Zeeman energy which represents the preference of the

magnetization to be parallel to an external magnetic field, it given by:-

UZeeman ∼ −cosθ (1.20)
Note that θ used in the above mentioned terms is generally different angle for every term

except when the anisotropy axes coincides. These qualitative arguments for some limiting
cases are used only to illustrate the procedure for finding the microscopic spin distributions.
Minimization of the total energy with respect to the magnetization direction (θ) gives the
equilibrium spin distribution, which reflects all interactions in the system. Here, we will not
attempt to see the non-equilibrium spin distributions and use these arguments to estimate the
length scales for the multi-domain states to occur.

Here, we consider a ferromagnet with uniaxial anisotropy where the magnetization vectors
of the adjacent domains are anti-parallel to each other. As the magnetization vectors are anti-
parallel to each other, there is in fact an a 180° transition from one direction to another. This
transition region which separates two domains are called domain walls. In the case of strips
with PMA, there can be two different kinds of DWs; Bloch DWs and Néel DWs. Here we will
focus more on the Bloch DWs where the spin rotate in the plane parallel to the magnetization
inside the domains, it was given in the honour of Bloch who first spoke about this transition[78].
If this transition occurs within one lattice spacing in the material, there would be no increase
in the anisotropy energy. However in that case, the change in exchange energy for on spin pair
would be

∆Uex = −2JS2cosθij = JS2 (1.21)
In this scenario, if J = 4× 10−21 Joules, ∆Uex/a2 ≈ 0.25J/m3. In order to minimize this

relatively large energy, the rotation has to be shared with a large number of spins with θ ≈
π/N . Here N is the number of spins in the DW. For a large N , the cosine can be expanded to
yield

∆Uex = −2J2S2cosθij = JS2
( π
N

)2
(1.22)

Here, assuming all the N spins are rotated by the same angle, the DW energy density can
be hence given by

εex = H
∆Uex
a2

= JS2 π

N

2

(1.23)

where a is the lattice spacing (one spin per lattice unit). It can be clearly seen that the
energy is reduced by extending the wall.

The anisotropy energy, on the other hand increases in proportion to N as

εk ≈ NKa (1.24)
where sin2θ ≈ 1 is assumed and K is the anistropy energy density (in J/m3). The combined

total exchange and anisotropy energy is then given as

εex + εk ≈ JS2 π2

Na2
+NKa (1.25)
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Minimizing with respect to N yields

Na ≡ tdw = π

√
JS2

Ka
= π

√
A

K
(1.26)

where A ≡ JS2/a ≈ 10−11 J/m is the exchange stiffness constant. Hence for a soft fer-
romagnet with a K ∼ 103 J/m3 the characteristic DW thickness is ∼ 100 nm and for hard
ferromagnets, the tdw can be as small as 10 nm.

Figure 1.3: Schematic of the domain wall structures in thin films with PMA (a) Néel domain
wall (b) Bloch domain wall. Adapted from [79]

In the case of thin films, as realized by Néel [80], the standard Bloch walls do not hold up
if the film thickness becomes comparable to the wall width. Here, the wall has lower energy
when the spins of the wall are rotating in the perpendicular plane, using an in-plane rotation
instead of the standard Bloch wall. Néel had estimated the transition thickness using a very
simple argument where the wall is approximated as an elliptical cylinder of W and height D.
The demagnetizing factor for this cylinder with vertical magnetization vector direction is given
as NBloch = W/(W +D). Here, if the W becomes larger than the D, the demagnetising energy
increases and hence the wall flips into a Néel wall. The demagnetizing factor for this kind of
wall is then given as NNel = D/(W +D), which is smaller than NBloch when W > D. Hence, in
thin films, the DWs are scaled with the exchange length of the stray field ∆d =

√
A/Kd along

with the exchange length of the anisotropy energy and the film thickness.

1.4 Spin Polarization
The magnetic effects described until now derives from the complicated band structures of
ferromagnetic and ferrimagnetic materials. The band structure of magnetic materials gives rise
to its magnetism and spin polarization. When a current flows through a magnetic material,
the spins of the flowing electrons (of s character) are aligned to the magnetization due to the
exchange interaction between the s orbitals and the d orbitals and interatomic hybridization[70,
81]. This total magnetization depends on the band splitting at the fermi level of the magnetic
materials.

In the picture of band theory, the two requirements for spontaneous magnetization are
the exchange interaction and the density of states at the Fermi level. A simplified model of a
transition metal band is shown in Fig.1.4. Here the Fermi level crosses the d band (3d) in a way
that spin up states are fully occupied while the spin down states are only partially filled. The
s states (4s) have a negligible splitting in the equilibrium state. This occurs as the exchange
splitting not only splits the 3d band but also pushes the spin up state well below the Fermi
level. As the d electrons have a higher effective mass, they are considered to be localised and
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Figure 1.4: Spin dependence of the density of states for S and d bands in 3d transition metals,
for (a) a normal metal and (b) a ferromagnetic metal. S band are quasi parabolic bands, typical
of a free electron behaviour, while d bands are more localized at the Fermi level EF .

give rise to the spontaneous magnetism while the s electrons having lower effective mass and
high mobility are considered to be de-localised, and responsible for carrying the current.

The total magnetization then simply originates from the difference of the spin populations
between the up and down states below the Fermi level. The amount of splitting of the d band
determines the kind of ferromagnet. Fe has lesser d band splitting than Ni or Co and hence it
is considered to be a weak ferromagnet while Ni and Co are strong ferromagnets due to higher
d band splitting[70]. The electrical conduction on the other hand depends on the conduction
electrons close to the Fermi level EF . This leads to separate channels for conduction of the two
populations of spin states. In the case of ferromagnets, the two populations are unbalanced
which leads to conduction mainly through one spin state or the other. From Fig.1.4, as the
spin up state is completely filled, conduction occurs through this channel and is considered to
be majority carriers whereas the electrons scatter more due to the presence of unfilled state
in the spin down state which leads to lower conduction of this spin channel. This unbalanced
conduction σ leads to spin polarization which is given as[82]

P =
σ↑ − σ↓
σ↑ + σ↓

(1.27)

where σ↑ and σ↓ are conductivity for spin up and spin down, respectively. The spin po-
larization for ferromagnetic CoFeB is P=0.65[83] and Fe4N is P=0.59[84]. For non magnetic
materials P = 0, whereas for half metallic ferromagnets P = 1 where the conduction only takes
place purely with one spin state present at the Fermi level[85]. We have also demonstrated a
high spin polarization in ferrimagnetic Mn4N[86] in this thesis which will be discussed later in
Chapter 2.

1.5 Magnetization Dynamics
The magnetization dynamics is described by the Landau-Lifshitz Gilbert (LLG) equation which
gives the time evolution of the magnetization in a magnetic media[77, 87].

∂m

∂t
= γ0Heff ×m+ αm× ∂m

∂t
(1.28)

Here, m is the unit vector of the local magnetization(M/Ms), γ0 = µ0γ where γ is the
gyromagnetic ratio, µ0 is the vacuum permeability and α is the dimensionless damping factor.
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Heff is the effective field which includes all the micromagnetic energies and is given by

Heff = − 1

µ0Ms

δEtotal
δm

(1.29)

Figure 1.5: Schematic of the magnetization precession around the effective field.

The terms in the LLG equation can be considered to be torques when the system is per-
turbed, meaning when the magnetization and the effective fields are varied. In order to conserve
the energy, the first term describes the precession of the magnetization around the effective field.
The angular velocity of this precession is proportional to the effective field and the gyromagnetic
ratio γ0. The second represents a torque perpendicular to the precession of the magnetization
and forces the magnetization to align with the effective field towards an equilibrium position.
This term is dissipative in nature and is proportional to the damping factor α. The LLG equa-
tion is extended for modelling the different torques induced by magnetic fields and currents.

1.5.1 Spin Transfer Torques
Berger theoretically predicted that a current induces a drag force to a 180° DW by tilting it[35].
This effect was later explained by Slonczewski[39] as the STT where the exchange interaction
between the conduction s electrons and the local d electrons induce an effective field Hsd.

Figure 1.6: Spin transfer torques on perpendicular anisotropy nanostrips (a) Adiabatic spin
transfer torque (b) Non-adiabatic spin transfer torque. Adapted from Ref[88]

When these electrons move through a magnetic gradient such as a DW, the spin polarization
of the conduction electrons becomes misaligned with that of the local magnetic moment. This
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misalignment between the local magnetic moment and the spin density causes a torque to
the local magnetic moment[40, 43]. The effective field induces two different types of torques;
i) the adiabatic torque leading to spin precession around the effective field Hsd and a non-
adiabatic torque leading to spin relaxation towards the Hsd direction. The adiabatic and the
non-adiabatic torques are then added into the LLG equation[89, 90] and as per the formalism
given by Thiaville et al[40], it is given as

ΓAdiabatic = −(µ · ∇) ·m (1.30a)

ΓNon−Adiabatic = βm× (−µ · ∇) ·m (1.30b)
Here β is the non-adiabatic factor and µ is the spin drift velocity which is a vector in the

direction of the flow of electron. It is given as

µ =
gµB
2e

P

Ms

J (1.31)

with P being the spin polarization, Ms is the saturation magnetization and J is the current
density vector.

1.5.2 Spin Orbit Torques
The spin polarization from the magnetic material is responsible for the STT. In the case of
SOTs, the spin polarization is generated via a heavy metal layer next to the magnetic layer or
through the interface between the heavy metal or an oxide layer and the magnetic layer. Here,
the spin current is generated in the heavy metal layer due to the spin Hall effect[44–46] (SHE)
and/or at the interface through Rashba-Edelstein[47, 48] effect. These spin polarized current
then acts as an effective field and exerts its torques onto the magnetic layer which allows for
the motion of the DWs.

Figure 1.7: Illustration of the current induced effective fields HAnti−damping and HField−like
acting on the magnetization. Adapted from[52]

In the case of SHE, a pure charge current is converted into spin current in heavy metals
which have a large spin orbit coupling (SOC). This conversion is the result of different relativistic
scattering mechanism due to the SOC. In heavy metals such as Pt, W or Ta, the scattering
of the electrons is spin dependent which accumulates the electrons with opposite spins at the
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opposite edges of the film. The torque generated from the SHE is known as the damping-like
torque and has the similar direction as the non adiabatic torque. It can be added into the LLG
equation as:

Γad = γ0
|g|µB
2e

θSHE
Mst

[m× (m× σ)] (1.32)

where, t is the thickness of the magnetic material, θSHE is the spin Hall angle which is the
conversion rate of a charge current into a spin current and σ is the polarization direction of the
spin current.

Now, moving to the other SOT originating from the Rashba effect which is called field-like
torque. It has a similar direction as the adiabatic torque. It is given as

ΓR = γ0
αRP

µ0µBMse
[m× σ] (1.33)

Here, αR is the Rashba coefficient which is the strength of the Rashba SOC.

1.5.3 Spin Transfer Torque in Ferrimagnets
In the case of materials with multiple sub-lattices, the LLG equation has to be modified con-
sidering the magnetic moments and the angular momentum of the different sub-lattices. Here,
we shall see how the LLG equation evolves in a two sub-lattice ferrimagnetic system[55, 60,
91]. The magnetic moment of the two sub-lattices will be represented as “1” and “2”. Here,
we have to also take into account the inter-layer exchange coupling between the sub-lattices
Jex whose energy is added to the energy of the effective field of the magnetization Heff [60, 92,
93]. Assuming a strong inter-layer coupling, which means that the magnetic moments of the
two sub-lattices m1 and m2 are always anti-parallel to each other unless a very high external
field of more than a few Tesla is applied, we can have two separate LLG equations for the two
sub-lattices which are given as:

[LLG1]δt ~m1 = −γ01 ~m1 × ~H1 + α1 ~m1 × δt ~m1 − (~µ1 · ~∇) + β1 ~m1 × (~µ1 · ~∇) (1.34a)

[LLG2]δt ~m2 = −γ02 ~m2 × ~H2 + α2 ~m2 × δt ~m2 − (~µ2 · ~∇) + β2 ~m2 × (~µ2 · ~∇) (1.34b)

Here, the ~H1 and ~H2 of the two sub-lattices are similar to Eq.1.29. As we expect a very
low disturbance between the magnetic moments of the two sub-lattices due to high inter-layer
exchange coupling, we can consider ~m1 = ~m2. It therefore gives an effective net magnetization
of Ms = M1 - M2. Hence, we can take m = m1 = −m2 as previously done[60, 91]. By adding
the sub-equations in Eq.1.34, we can obtain an LLG equation showing the effective dynamics
of the magnetic material.(
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γ02

)
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From Eq.1.35, the effective parameters of the materials could be obtained in order to ease
these calculations[94].

~Heff = − 1

µ0Ms

δE

δ~m

γ0eff =
Ms

Ls

aeff =
Lα
Ls

βeff =
β1P1 + β2P2

Peff
(1.36)

Peff = P1 − P2

µeff = γ0eff
~
2e

1

µ0Ms

PeffJ

Here, Ls ≡
(
M1

γ01
− M2

γ02

)
is the net angular momentum while Lα ≡

(
α1
M1

γ01
+ α2

M2

γ02

)
.

Now, we shall rewrite the LLG equation in terms of the angular momentum Ls and taking
Lα ≡ αLs:

δt ~m =
1

Ls
(~m× δmE + Lα ~m× δt ~m+ Γ) (1.37)

where, Γ is the STT term. It can then expanded and re-written into:

δt ~m =
Ls

L2
s + L2

α

(~m× δmE + Γ) +
Lα

L2
s + L2

α

~m× (~m× δmE + Γ) (1.38)

In Eq.1.38, the two components of the dynamics of magnetization are emphasised[60]. Hence
using this, the STT term then can be written as:

ΓSTT = −(Lsµ · ∇)~m+ ~m× (βLsµ · ∇)~m (1.39)
Where β is the non-adiabatic parameter and Lsµ is given as:

Lsµ =
PeffJ~

2e
eJ . (1.40)

with JeJ is the current density and Peff is the effective spin polarization. Using these equations,
the DW velocity in the steady regime can be given as:

v =
β

Lα
Lsµ (1.41)

The DW velocity in the precessional regime is given as:

v =
Ls + Lαβ

L2
s + L2

α

Lsµ (1.42)

According to the above mentioned equations, we can see that αeff diverges close to the
angular momentum compensation points which results in an instantaneous alignment of the
magnetization to the effective local field[60, 95]. The instantaneous alignment is also the result
of the negligible precessional torque applied to the magnetization. The divergence of αeff has
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been shown experimentally by ferromagnetic resonance measurement in an all-optical pump and
probe technique[55]. In Chapter 4, we will demonstrate how the change of angular momentum
and the net magnetization affects the DW velocities in ferrimagnetic Mn4−xNixN.

Summary
This chapter has led the foundation for understanding theoretically the following experimental
chapters, in particular, the peculiar case of ferrimagnetic materials, the different micromagnetic
energy terms involved in defining a magnetic configuration and the different current induced
torque. The next chapter focuses on Mn4N.
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Chapter

A Brief History of Mn4N 2
If time travel is possible, where are all
the tourists from the future?

Black Holes and Baby Universes and
Other Essays (1993)

Stephen Hawking

In this chapter, we will introduce the magnetic nitrides, and present their main properties
and advantages. The first section deals with the classification of the anti-perovskite nitrides.
It is then followed by the introduction to the Mn4N compound in section 2.5, which describes
structural and magnetic characterization of Mn4N samples grown on MgO and SrTiO3 sub-
strates. These results, which have been actually obtained during the PhD work of Dr. Toshiki
Gushi, are the basis of my PhD topic. The section 2.6 will focus on the current-induced DW
dynamics on Mn4N grown on SrTiO3 substrate, a study made by Dr. Toshiki Gushi, to which
I contributed.

2.1 Nitrides
Nitrides are a class of compounds containing nitrogen with an oxidation state of -3. The nitride
ion(N3−) is strongly attracted to metal cations, hence forming metallic nitrides[96]. Nitrides
are similar to carbides wherein they come in the category of refractory metals, which have a
very high melting point and are chemically stable. This property of nitrides derives from having
a high lattice energy, which is the energy required to form a crystal from the gaseous state. It
also makes the nitrides very hard materials with cubic Boron Nitride[97], Titanium Nitride[98–
100] and Silicon Nitride[101, 102] being used for hard coatings and as cutting materials[99,
100]. Nitride compounds generally have a wide bandgap and are commonly either insulators or
semi-conductors. One of the most prominent nitride semi-conductors is GaN, which is used in
light emitting diodes to produce blue lights, and which has lead to the Nobel prize in physics
in 2014[103]. Nitrides can be formed from a large group of elements from the periodic table.
Here, we will look deeper into nitrides formed with transition metals. These compounds have
indeed a wide range of properties and applications.

The largest group of nitrides is made using transition metals, which leads to interstitial

19



Chapter 2. A Brief History of Mn4N

nitrides. In such compounds the Nitrogen could either be interstitial, in between the atoms,
holes or well placed in the crystal structures. The general formulas for such compounds are
given as AN, A2N or A4N1. Such compounds are generally inert, they have high melting points
and are very hard in nature, with a metallic lustre. In these compounds the stability and the
properties depend upon the crystal structure and also on the amount of Nitrogen in the system.
Transition metals Fe, Co, Mn and Ni forms magnetic nitrides. However, these magnetic nitrides
are not very stable, and generally decompose into substitute elements or compounds. One such
example is Fe2N, which decomposes at 200°C[104, 105]. The stability of such nitrides depend
on the stoichiometry and the crystal structure. In the next section, we will look into magnetic
nitrides having an anti-perovskite crystal structure.

2.2 Ferromagnetic Nitride Family
Let us focus on magnetic nitrides possessing an anti-perovskite crystal structure. A typical anti-
perovskite material has a general formula ABX3, where the A and B are the two anions and X is
the cation. In this structure, the cation sits at the body centre of the crystal lattice, the anions
being at the corner sites and the face-centered sites. For metallic magnetic nitrides, the chemical
formula is M3AB, with M being either Mn, Ni, Co or Fe, and A being for instance Mn[106, 107],
Ni[107, 108], Sn(Tin)[106], Zn(Zinc)[106] or Ga(Galium)[109, 110], among many other elements
which could be a part of this crystal structure. Here, B represents the cation which could be
either N(Nitrogen) forming nitrides, C(Carbon)[107] forming carbides or B(Boron). It should
be noted that bulk Manganese Nitride alloys with Cu (Copper), Zn and Ga[109] have been
studied for their high negative thermal expansion, which is due to their non-collinear magnetic
structure[111]. In this structure, the face-centered atoms are well coupled to the body centre
atom, making it chemically very stable.

Figure 2.1: Schematic of the anti-perovskite crystal structure showing the anions at the corner
sites and at the face-centered sites, and the cation at the body centre.

Anti-perovskite magnetic nitrides can either have a single magnetic element (represented as
A4N) as both the anions or alloys with two different elements with different compositions gen-
erally represented as A4−xBxN with A and B representing the two different magnetic elements.

The anti-perovskite magnetic nitride family, which has been previously studied by our group
in Tsukuba, mainly consists of Fe4N[84, 112, 113], Ni4N[114], Co4N[115, 116], Mn4N[117–

1A represents a transition metal
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Figure 2.2: Anti-perovskite magnetic nitride family.

120] and their alloys[121–124]. Mn4N is a ferrimagnet, while Ni4N was found to be paramag-
netic[125]. These material family is shown in Fig 2.1. Here, the Fe, Co, Ni and Mn atoms
occupy both the corner and the face-centered sites.

We will first discuss the ferromagnetic nitrides in this family. The magnetic moment of
the corner and face-centered atoms point in the same direction, thereby making the materials
ferromagnetic. The magnetic moment of the corner sites are higher than that of the face-
centered sites, as they are more localised. On the contrary the face-centered atoms are well
hybridized with the N atom and itinerant in nature. The hybridization between the 2p orbitals
of the Nitrogen atom and 3d orbitals of the metal atoms is the source of an electronic transport
dominated by the face-centered atoms[113, 126–129]. This anti-perovskite structure with the
N atom also enhances the magnetization in such magnetic nitrides. This increase is clearly
observed when compared with other nitrides such as Fe2N[105], FeN[130, 131], Mn2N[104], and
MnN[132], which is anti-ferromagnetic. Overall, the amount of N does not only dictate the crys-
tal structure, but also whether the compound is magnetic or a normal metal, as analysed from
the computational data[104]. Also, nitrogen expands the crystal structure in these compounds
with respect to similar anti-perovskite carbides[107, 133].

As mentioned earlier, other elements could be substituted in these base compounds to form
alloys. At first, we look at the substitution in these base ferromagnetic nitrides with other
magnetic elements. Co is substituted in Fe4N to form Fe4−xCoxN[121]. In this compound, the
Co and the Fe atoms occupy randomly corner sites or face-centered sites. The increase of Co
leads to a decrease of the net magnetic moment of the system. Similarly to the case of Co
substitution, Ni substitution in Fe4N forms Fe4−xNixN, the increase of the Ni concentration
leading to a decrease of the saturation magnetization[125]. When Fe is substituted by Mn in
Fe4N, the magnetization decreases as the Mn concentration increases, and eventually a tran-
sition from a ferromagnetic to ferrimagnetic[123] material occurs. It was also shown that the
spin polarization changes from negative to positive as the Mn concentration is increased[124].
From theoretical calculations it was shown that among Mn, Ni and Co; Mn occupies preferen-
tially the Fe II site, while Ni and Co are rather found in the Fe I site[134]. Recently, we have
demonstrated that the substitution of Mn atoms in ferrimagnetic Mn4N by Indium leads to a
ferrimagnetic to ferromagnetic transition in Mn4−xInxN at room temperature[135].
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2.3 Ferrimagnetic Nitrides
Anti-perovskite based ferrimagnetic nitrides basically comes from the anti-ferromagnetic cou-
pling of the magnetic moments between the sub-lattices shown in Fig.2.3. In the case of Mn4N,
the corner sites and the face-centered sites are occupied by Mn atoms, with N at the centre.
Using this as the base system, other ferrimagnetic alloys can be derived. Substitution of Mn
with Ni, Co and Fe results in the formation of Mn4−xNixN[119, 129, 136], Mn4−xCoxN[137, 138],
MnxFe4−xN[123, 124] and Mn4−xInxN[135]. Using these substitutions and by finely tuning the
concentration of the substituent, it is possible to reach the magnetic and angular momentum
compensation points at room temperature. This ability to reach the compensation points has
been demonstrated using Mn4−xNixN and Mn4−xCoxN, which will be discussed in more depth
in chapters 3 and 4.

Figure 2.3: Anti-ferromagnetic structure of Mn4N, with blue atoms corresponding to Mn site
I corner atoms, orange atoms to the Mn site II face-centered atoms, and the red atom to the
Nitrogen atom in the centre. The arrows represent the magnetic moment, where Mn I and Mn
II atoms are anti-ferromagnetically coupled.

2.4 Paramagnetic and Anti-ferromagnetic Nitrides
Mn3NiN is a non-collinear anti-ferromagnetic material with an anti-perovskite crystal struc-
ture[139]. In this system, the Ni atoms are occupying the corner sites, while the face-centered
sites are occupied by the Mn atoms. This system shows a transition from paramagnetism to
anti-ferromagnetism below 260 K[139, 140]. A perfectly cubic crystal structure of Mn3NiN is
antiferromagnetic, however a compressive stress or tensile strain allows this system to have
some magnetic moment[141]. Even though this system is ternary, it is often compared to
and has similar properties to non-collinear anti-ferromagnetic metallic binary alloys, such as
Mn3Sn[142], Mn3Pt[143] and Mn3Si[142]. A giant piezomagnetism has also been demonstrated
in Mn3NiN[144].

Ni4N is an interesting material in this class of compounds, as there are different reports
showing it to be either ferromagnetic or paramagnetic. Ni4N has two different phases, the
Ni4N-I phase which is magnetic, and the Ni4N-II phase which is non-magnetic[145]. The ex-
istence of such phases have also been confirmed by theoretical calculations[146]. Ni4N grown
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Figure 2.4: Anti-ferromagnetic cubic Mn3NiN. The blue atoms are Nickel atoms, the red are
Mn atoms and the green are Nitrogen atom. Taken from Boldrin et al.[144]

epitaxially by our group in Tsukuba has been shown to be paramagnetic[125]. It has how-
ever been shown previously that Ni4N is ferromagnetic at room temperature[147]. Using polar
neutron reflectometry it was confirmed in a recent study that Ni4N is indeed paramagnetic at
room temperature and becomes ferromagnetic around 15 K[148]. The presence of two differ-
ent magnetic phases in Ni4N particularly depends on the growth parameters and conditions.
Mn3CuN is a material with similar properties. Cu fills the corner sites, the Mn atoms being at
the face-centered sites. This material has been shown to have a giant magnetostriction at low
temperatures[149, 150] along with having a ferromagnetic transition below 143 K[107, 151]. It
has also been predicted to have an anti-ferromagnetic spin ordering.

2.5 Mn4N
Mn4N is a metallic ferrimagnet with an anti-perovskite crystal structure, as shown in Fig.
2.3. The two different sub-lattices are anti-ferromagnetically coupled in this system[106, 108,
152]. The magnetic study of Mn4N was first performed by Guillard and Wyart et al in 1946,
Wiener and Berger in 1955 [153], Juza et al[154] in 1957 , Takei et al[152] in 1960 followed by
Mekata[106] in 1962 using polarized neutron diffraction. The Mn corner atoms have a magnetic
moment of 3.85 µB and the Mn face-centered atoms have a very low magnetic moment of -0.9
µB[106, 108, 152]. The low magnetic moment of the Mn face-centered atoms are due to their
hybridization with the N atom located at the centre. Taking the magnetic moments into
account, it was later showed by Fruchart et al[108] using group theory that Mn4N could have
three different non-collinear magnetic ordering, two anti-ferromagnetic and one ferrimagnetic
mode as shown in Fig. 2.5. Bulk samples of Mn4N have (111) magnetic anisotropy [108, 152,
155–158], where the crystal structure is cubic. However, in the case of thin films the magnetic
orientation changes from (111) to (001), because of the appearance of a perpendicular magnetic
anisotropy (PMA)[117, 118, 120, 159–162]. This PMA is the result of the in-plane tensile stress
acting on the crystal structure, which changes from a cubic to a tetragonal phase[117, 120].
In a recent study, the correlation between the amount of N and in-plane tensile strain was
demonstrated[163]. The PMA in Mn4N thin films thus simply originates from the crystalline
anisotropy.

In these studies, the growth of Mn4N has been done by diffusing the elements in a solid phase,
using grinding and annealing methods which resulted in a powder form of the material[106,
152]. From the 1990s, films of Mn4N have been grown using several different methods such as
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Figure 2.5: Schematic showing the three different magnetic ordering obtained in Mn4N from
group theory (a) ferrimagnetic mode, (b) and (c) pure Anti-ferromagnetic modes (Taken from
Fruchart et al [108])

dc reactive sputtering[158–161, 163, 164], rf sputtering[165], pulsed lased deposition[166] and
MBE[117, 118, 156, 167], on a range of different substrates such as glass[164, 168], MgO[117,
120, 158, 161, 163, 169, 170], SrTiO3(001)[117, 118, 120], LaAlO3 LAO (100)[120], (LaAlO3)0.3
(Sr2TaAlO6)0.7 LSAT (001)[171], Si[159, 160], SiC[156, 169], GaN[156, 169] and Sapphire[169].
Mn4N is very stable thermally, with a relatively high Curie temperature around 740K [108,
157].

The saturation magnetization of Mn4N varies somewhat from 50 kA/m to 200 kA/m, de-
pending on the method of growth, growth parameters, thicknesses and type of substrate used.
In general, the value of the magnetization of Mn4N in a thin film of 10 - 30 nm is around
80-100 kA/m at room temperature[118, 123, 155, 161]. The perpendicular anisotropy values
are similar in most of the samples, with a high value of 1.1 × 105 J/m3 [117, 118, 122]. The
anisotropy field and the coercive field varies with different growth mechanisms. The anisotropy
field is typically higher than 2.5 T and have been seen to be upto 4 T which comes from the
quality of thin films and the coercive field ranges from 0.15 - 0.6 T[117, 118, 122] which depends
on the external defects and pinning sites of the thin films.

From the band structure calculations, the electronic properties of Mn4N were first calculated
by Matar et al[126], which shed light on its metallic behaviour more thoroughly and demon-
strated that the transport occurs through Mn II face-centered atoms[126, 127, 129]. Mn4N has
a high resistivity, around 180 µΩcm at room temperature[118]. A drastic decrease in resistivity
has also been observed in Mn4N with the decrease in the temperature[172, 173]. A high residual
resistivity ratio (RRR) of 11 has been obtained in Mn4N. This value is comparable to that of
anti-ferromagnetic Mn3Sn RRR = 15[174], highligthing an important role of the phonons in
these compounds. Mn4N has also a negative Anomalous Hall angle of around -2% [117, 118,
167, 172, 173]. In the next section, we will focus on the growth and characterization of Mn4N
thin films by molecular beam epitaxy (MBE) on MgO and SrTiO3 substrates.
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2.5.1 Growth of Mn4N on MgO/SrTiO3 Substrates
In this part we will show a comparison between 10 nm thick Mn4N grown by MBE either
on MgO(001) or on SrTiO3(001) substrates. With the help of structural characterizations,
magneto-transport measurements, vibrating sample magnetometer (VSM) and magnetic imag-
ing techniques, we will highlight the influence of the substrate on the magnetic properties.

Figure 2.6: Sketch of the MBE growth of Mn4N on MgO and SrTiO3 (001) oriented substrates,
at 450°C, in a RF N2 environment, with the sputtering of SiO2 as capping layer to prevent
oxidation

10 nm thick Mn4N layers were deposited on MgO and SrTiO3 (001)-oriented substrates at
450°C. The MBE growth chamber used for the deposition is equipped with an ion-pump (10−7

Pa), with a Mn Knudsen cell and in presence a radio-frequency (RF) N2 plasma. In order to
prevent oxidation of the thin films, a 3 nm layer of SiO2 was deposited by sputtering of a SiO2

target by Ar plasma.

2.5.2 Structural Characterization
20 keV reflection high-energy electron diffraction (RHEED) and X-ray diffraction (XRD) with
Cu Kα radiation were used to characterize the crystalline quality of the grown Mn4N layers.
The RHEED was performed in-situ, in the growth chamber, after the deposition of the Mn4N,
while the XRD was performed ex-situ after the deposition of the capping layer.

The results of the XRD characterization are presented in Fig. 2.7. Fig. 2.7 (a) and (b)
show the out-of-plane (ω - 2Θ) and (c) and (e) show the in-plane XRD and RHEED patterns,
as inset, for deposits on the MgO and SrTiO3 substrates, respectively. XRD peaks of Mn4N 002
on MgO are well separated and can be easily distinguished in both out-of-plane and in-plane
plots. On the other hand, XRD peak of Mn4N 004 is used to extract the structural information
and quality, as the SrTiO3 peaks are very close to the Mn4N 002 peaks for this substrate. ω -
scan rocking curves are shown in Fig.2.7 (e) Mn4N 002 on MgO and (f) Mn4N 004 on SrTiO3.
Both the Mn4N 002 on MgO and 004 on SrTiO3 have a very good Lorentzian shapes. The width
of these curves differ, indicating a better structural quality of Mn4N/SrTiO3, with a narrower
rocking curve than for Mn4N/MgO. Importantly the rocking curve of the Mn4N/SrTiO3 shows
a remarkable value of 0.14 degree at FWHM. Similar rocking curves have been observed for thin
films of Fe4N[122]. Streaky RHEED patterns were observed, which is a common aspect on these
c oriented Mn4N 001 and 002 thin films[175]. The 00n peaks in the XRD pattern in addition
to the super-lattice RHEED reflections (alternating brighter and darker lines) demonstrate a
good long-range ordering and the presence of N atom at the body centre of the fcc-Mn lattice.

Hence, the XRD and RHEED patterns confirm an epitaxial growth of the thin films. The
a and c lattice constants were also extracted from the in-plane and the out-of-plane XRD
measurements, respectively. Using the lattice constants, the lattice mismatch is given by Eq.
2.1 is calculated for both the Mn4N/MgO and Mn4N/SrTiO3. The lattice misfit percentage for
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Figure 2.7: XRD patterns of Mn4N/MgO (a,c,e) and Mn4N/SrTiO3 (b,d,f) thin films . (a,
b) show the out-of-plane XRD patterns. The blue arrows point to the peaks indicative of (001)
oriented Mn4N. Inset: thin film stack. (c, d) shows the in-plane XRD patterns. The incidence
angle for this measurement was set at ω = 0.4°, with the scattering vector along [100]. The
insets show the RHEED images taken along the [100] direction of each substrate. (e, f) shows
the ω-scan rocking curves for Mn4n 002 on MgO and Mn4N 004 on SrTiO3 substrates. The
black curve represents the raw data while the red curve shows the Lorentzian fitting.
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MgO is -7.6%, while that of SrTiO3 is -0.4%. This clearly shows that the lattice constant of
Mn4N matches and relaxes very well with the SrTiO3 substrate.

f = (afilm − asub)/asub (2.1)
Additional X-ray Reflectometry (XRR) measurements were also performed on these samples.

From the fitting of the XRR data, the accurate thickness values of these magnetic thin films
were extracted, with 8.4 nm for Mn4N/MgO and 9.4 nm for Mn4N/SrTiO3 sample.

Figure 2.8: Transmission Electron Microscope micrograph showing the crystal structure and
the interface between the Mn4N layer and the SrTiO3 substrate.

Transmission electron microscopy (TEM) was performed on the Mn4N/SrTiO3 is shown in
Fig.2.8. The TEM and analysis was performed by Dr. Hanako Okuno of LEMMA group in CEA
Grenoble. The TEM micrographs of Mn4N/SrTiO3 demonstrate a very good epitaxial growth,
a very well defined and clean interface with the SrTiO3 substrate. Due to the remarkable
lattice matching, the Mn4N layer possesses no obvious defects, such as twins or dislocations.
Nonetheless, the existence of misfit dislocations due to the high lattice mismatch with MgO
has been observed by Shen et al by TEM images[166].

The XRD profiles demonstrate an epitaxial crystalline growth of Mn4N/MgO and Mn4N/SrTiO3,
with a much superior quality for Mn4N/SrTiO3 system. TEM images, confirms these results,
where no obvious defect could observed. It is also observed that Mn4N/SrTiO3 has a much
smoother interface, originating from the good lattice matching between Mn4N and SrTiO3 and
the Ti terminated SrTiO3 surface.

2.5.3 Magnetic reversal under field
In order to compare the magnetic reversal and magneto-transport properties of Mn4N/MgO
and Mn4N/SrTiO3, VSM-SQUID, Anomalous Hall Effect (AHE) and transport measurements
were performed on these thin films.

As seen in Fig.2.9 (a) and (b), magneto-transport measurements were performed on these
films in the Van der Pauw configuration. These curves exhibit a Magnon-magnetoresistance
(MMR) signal, corresponding to the contribution of magnons to the resistivity. This magne-
toresistance allows the quantitative measurement of magnetization reversal in thin films with
perpendicular magnetization[176, 177]. These MMR curves are usually observed on samples
which have a high coercivity, as the signal is usually too small in low coercivity materials. The
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Figure 2.9: Measurements obtained in thin films of Mn4N/MgO and Mn4N/SrTiO3. (a,c,e)
corresponds to MgO and (b,d,f) corresponds to SrTiO3, with (a, b) longitudinal resistance vs ap-
plied magnetic field, (c, d) AHE hysteresis loops, and (e ,f) out-of-plane (red) and in-plane(blue)
magnetization hysteresis curves.
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extracted resistivities of the thin films are 187 µΩcm for the MgO substrate and 181 µΩcm for
the SrTiO3 substrate at room temperature.

After changing the measurement configuration from the longitudinal configuration to a Hall
(i.e., transverse) configuration, AHE measurements have been performed. These AHE plots
are shown in Fig.2.9 (c, d). From the hysteresis loops, we observe a much sharper switching
in the case of Mn4N on SrTiO3 than on MgO. Mn4N on SrTiO3 shows full remanence at zero
field. The coercivity for the Mn4N/MgO loop is 0.44 T, which is slightly higher than that of
0.26 T obtained for Mn4N/SrTiO3. These coercivities are higher than those found for most
classical spintronics ferromagnets based on Co or Fe. This is due to the small saturation
magnetization which reduces the Zeeman energy with respect to the anisotropy energy. The
AHE measurements confirm the negative Anomalous Hall angle in Mn4N. The transverse and
longitudinal resistivity values obtained from the AHE and the Van der Pauw measurements
at saturation allow extracting a very high AHE angle of (-2%), which is similar to previously
reported values[167, 172].

The magnetic hysteresis loops of Mn4N on MgO and SrTiO3 are shown in Fig. 2.9 (e) and
(f). Here, the red and blue curves represent the out-of-plane and in-plane measurements. The
measurements were performed using a VSM-SQUID setup, with a maximum applicable field of
6 T. The out-of-plane hysteresis curves show a saturation magnetization of 118 kA/m for Mn4N
on MgO and 105 kA/m for Mn4N on SrTiO3 substrates. From the in-plane measurement, an
anisotropy field µ0Hk of 4 T was estimated for Mn4N/SrTiO3. The uniaxial anisotropy constant
KU of 1.1 × 105J/m3 is calculated from the integration of the area between the in-plane and
out-of-plane magnetization curves while taking into account the demagnetization energy. The
demagnetization energy is very small in this case, as the saturation magnetization is very small.

The Van der Pauw measurements exhibit loops dominated by the MMR, which is indicative
of a strong perpendicular anisotropy. The AHE curve of Mn4N/MgO shows a smooth reversal
under field, while that of SrTiO3 has a sharper switching and full remanence at zero field. The
VSM and magneto-transport measurements show that the magnetic properties are almost alike
hence indicating that the thin films grown on separate substrate are intrinsically alike. The
structural characterizations suggest that the increased disorder in films grown on MgO could
be the reason for the higher coercivity and slanted AHE curve.

2.5.4 Macroscopic Magnetic Characterization
In this subsection, the magnetic domain patterns in Mn4N layers grown on MgO and SrTiO3

are examined using MFM and/or MOKE microscopy. Theoretically, the equilibrium domain
width depends on the balance between the dipolar and DW energies (

√
AKU). The DW width

in Mn4N was calculated to be around 37 nm using Eq. 2.2.

DWwidth = π

√
A

KU

(2.2)

where A is the exchange stiffness constant, which can be taken as 15 pJ/m (as estimated
from the Curie temperature)[178], and KU is the anisotropy constant. Using the analytical
model described in ref.[179], the theoretical equilibrium domain width for a 10 nm thin Mn4N
layer can be estimated to be in the km range. Due to the small saturation magnetization
in Mn4N, the demagnetizing field is indeed almost negligible, so that creating small domains
would lead to a DW energy increase without real gain in terms of demagnetizing field energy.
For this reason, in Mn4N, the real domain width and their shape depend on DW pinning on
extrinsic defects, rather than on the competition between DW energy and demagnetizing field
[180].

29



Chapter 2. A Brief History of Mn4N

The domain patterns of Mn4N layer were observed by MFM for Mn4N/MgO samples, and
by MOKE microscopy for Mn4N/SrTiO3 samples, as shown in Fig.2.10 (a) and (b). These
images were obtained in the as-deposited state, before the application of any magnetic field,
which can be considered to be close to the equilibrium state.

Figure 2.10: (a) MFM image of a Mn4N/MgO sample and (b) MOKE image of a
Mn4N/SrTiO3 sample, both in the as-deposited state. (c) Magnetization curve illustrating the
partial reversal process, monitored by anomalous Hall effect, in the Mn4N/SrTiO3 sample. The
red dot corresponds to the final magnetization state, used for (e). (d) MFM image of the
Mn4N/MgO sample after partial reversal and (e) MOKE image of the Mn4N/SrTiO3.

The mean domain period (DP ) is the total distance between two opposite domains is esti-
mated using the two-dimensional fast Fourier transformation method[181]. The DP was derived
by Kaplan and Gehrier [182] and it is given in following Eq. 2.3.

Dp = 1.91 t exp
πD0

t
(2.3)

where t is the thickness of the thin film, D0 = γw/µ0M2 is the characteristic length of the
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material determined by the DW energy γw, and the saturation magnetization Ms. The domains
for Mn4N/MgO are small with aDp of 0.28 µm, far from the equilibrium domain width, and with
very rough DWs. This is indicative of a strong disorder which has been seen from TEM images
in ref[166], and thus of the presence of crystallographic defects. In contrast, Mn4N/SrTiO3

samples have two orders of magnitude larger domains, with a value of Dp as least as large as 20
µm, and with smooth and rounded DWs. This is coherent with the higher crystalline quality
of Mn4N/SrTiO3 thin films. Note that this is a very high value, even though similar domain
sizes have been reported for ultrathin CoFeB(1.1 nm)/MgO(1 nm) and Pt(2.4 nm)/Co(0.27
nm) films with Dp values of 14 and 6 µm obtained after thermal demagnetization[181, 183],
these are rather rare values.

MOKE images of Fig.2.10 (d) and (e) confirm the presence of very few nucleation sites during
reversal for the SrTiO3 system in contrast to the MgO one, and shows that the magnetization
switching occurs by scarce nucleation and easy propagation, which is consistent with the sharp
switching seen in the square AHE hysteresis loop, while for MgO magnetization reversal occurs
rather by nucleation than propagation.

Overall, the significant differences between the hysteresis loops, domain size and domain
widths for the two systems arise from the crystalline quality of the different films. It is clear
from above shown structural and magnetic characterizations that Mn4N/SrTiO3 have much
better properties as compared to Mn4N/MgO. Such a crystallographic ordering in combination
with a high perpendicular magnetic anisotropy and a small saturation magnetization makes it
a perfect candidate for the study of DW motion.

2.6 Current Induced Domain Wall Dynamics in
Mn4N/SrTiO3

In this section, we now focus on the current-induced DW dynamics in this Mn4N/SrTiO3. The
low saturation magnetization, high PMA and smooth, large domains with low pinning indeed
makes it an ideal candidate for current-induced DW motion. The velocity of the DW mainly
depends on the saturation magnetization, spin polarization, damping factor (α) and on the
non-adiabatic β factor. Let us see how these parameters will play a role in Mn4N/SrTiO3.

2.6.1 Sample preparation and setup
For the study of current induced DW motion, a new 10 nm Mn4N/SrTiO3 thin film was grown
by MBE as shown in sec.2.5.1. A saturation magnetization of 71 kA/m was measured for
this sample. Similar AHE angle of -2% and a longitudinal resistance of 178 µΩcm at room
temperature was also measured as shown in section2.5.3. The AHE curve along with the
MOKE microscopy image are shown in Fig.2.11.

To perform the DW motion experiments, 1 and 2 µm wide wires were fabricated by electron-
beam lithography and Ar ion milling etching (cf. Appendix B). Each device had 20 wires in
parallel and were 10 or 20 µm long. At the end of the wires, they converged into square pads
on both sides to ease DW nucleation. Using optical lithography, 100 nm of Titanium-Gold-
Titanium was deposited on top of the pads for improving electrical contacts to the sample.

Once fabricated, the samples were set in the polar MOKE microscopy setup, in order to
perform the imaging of the magnetic domains. Here, the two magnetization directions are seen
as either white or black contrast (cf. AppendixA).

A coil is placed under the sample holder, and connected to a power supply (voltage gen-
erator). The power supply provides microsecond long, high current pulses (∼ several 100 A)
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Figure 2.11: (a) AHE hysteresis curve of a Mn4N/SrTiO3, showing a smooth reversal and
a AHE angle of -2.18 for a resistivity of 178 µΩcm (b) MOKE microscopy image showing the
domain pattern of a Mn4N/SrTiO3 sample, in a partially reversed state, the black contrast
indicating the reversed domain.

Figure 2.12: Schematic of the domain wall motion setup, showing the microwires in blue, and
in yellow the contact pads connected to the pulse generator and to the oscilloscope.[184]
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allowing to generate magnetic field pulses up-to 1 T. These field pulses are used to saturate the
magnetization of the sample in one direction or the other. By varying the size and amplitude
of the pulse, it is possible to nucleate the DWs at the edge of the wires. In order to move
the DWs using currents, ultra-short (0.5-5 ns) current pulses are injected into the device using
voltage source (up-to 80V). The intensity of the current pulse is extracted from the voltage
pulse measured across the 50 ohm terminator of the oscilloscope in series with the circuit. The
devices are also designed to be around 50 - 100 Ω, in order to match the output impedance
of the voltage generator. The sample is glued to the sample holder using wax. The circuit is
composed of 4 contact lines and SMA connectors adapted to high frequency signals.

2.6.2 Measurement and Analysis
For the DW motion measurements, the domains are first nucleated at the edges of the wires
using the field pulses. The right nucleation regime is found by varying the amplitude and pulse
width of the magnetic field pulses at the vicinity of the coercive field. After the nucleation
of the domains, the DWs are moved along the wires by the application of current pulses of
varying amplitudes and pulse widths. The pulse width was varied between 0.9 - 5 ns. For a
given current pulse amplitude, a certain pulse width and a number of pulses are set, so that
the DWs remain in the wires. The DWs are then repeatedly moved back and forth multiple
times, in order to average the DW velocity. The black contrast in the differential Kerr images
shown in Fig.2.13 represent the displacement of the DW during the application of the current
pulses. The DWs are repeatedly moved back and forward in order to improve the statistics.

Figure 2.13: (a) Domain nucleation at the edges of the 1 µm wide wires by application of
perpendicular field pulses. (b) Domain wall motion after application of current pulses. (c)
Shape of the current pulse measured using the oscilloscope. The blue dots are the raw data
points, and the orange line is the fit of the pulse shape. From the fitting the amplitude and
FWHM of the pulse are extracted.

The images are saved and put through imageJ software for analysis[185]. The displacements
of the DWs for a given amplitude, pulse width and number of pulses are computed and averaged.
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The averaged displacement is then used to calculate the DW velocity at a given current density,
by this Eq.2.4,

VDW =
∆X

tpulsen
(2.4)

where, ∆X is the averaged DW displacement, tpulse is the pulse width and n is the number
of applied pulses. The current density is calculated by analyzing the pulse shape stored in
the oscilloscope. The pulse amplitude is used for current density calculation whereas the pulse
width is used for the calculating the velocity. The applied current is estimated by dividing the
voltage amplitude by 50 Ω which is then converted into current density by dividing it by the
total section of the microwires. Fig.2.14 shows the extracted DW velocity plotted against the
current density, for both the 1 and 2 µm wide wires.

Figure 2.14: Current density vs DW velocity of 1 (red) and 2 (blue) µm wide wires.

From the Fig.2.14, we observe a low threshold current density of 3 × 1011 A/m2 for both
1 and 2 µm for wide wires when applying 1 ns current pulses. This threshold current density
is less than that of previously reported values for permalloy nanowires[33, 186–188], Co/Ni
nanowires[189] and SOT driven Pt/Co nanowires[190].

At low current densities, as DWs are pinned by defects, the velocities change exponentially
with the current density, in the so called creep regime[191]. Above a current density of J =
0.85 × 1012 A/m2 the DW velocity varies linearly with J. Similar curves are observed for 1 µm
and 2 µm wires curves. At the end of the linear regime, we achieve a very high DW velocity
around 900 m/s at J = 1.3 × 1012 A/m2. At this point the velocity of the 2 µm wide wires
seems to be saturating. By applying pulses of current density higher than J = 1.3 × 1012

A/m2, domains were nucleating everywhere in wires. This is a result of heating the nanowire
close to its Curie temperature at 740 K or that the thermal energy becomes high enough to
overcome the nucleation barrier.

The DWs shown here move in the direction of the flow of electrons which is consistent with
the STT driven DW motion. All of the measurements were performed at room temperature
without any SOT layer. Hence, we do not expect to have any interfacial DMI[192, 193] or
SOTs[190] in Mn4N/SrTiO3. These results were a milestone for STT driven DW motion in
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systems with PMA. These velocities are higher than what has been obtained in ferromagnetic
materials with the highest DW velocities, from 400 m/s in Co/Pt system[190] (using SOT)
to 750 m/s in anti-ferromagnetically coupled system with SAF[92] (using SOT + Exchange
torque). These results are in line with DW motion with other ferrimagnetic materials such as
GdFeCo[59](using SOT) showing a velocity of 1250 m/s, but at 260 K (close to the ACP). The
exceptionally high DW velocity obtained in Mn4N with STT and its analytical modelling are
explored in the next section.

2.6.3 Dynamics and analytical model
The analytical modelling and subsequent micromagnetic simulations were performed by Dr.
Jose Peña Garcia, at the Néel Institute, to understand our experimental observations. The
process and results are shown in this section, and in the following one. In order to explore the
high current-induced DW velocity achieved in Mn4N/SrTiO3 thin films, an analytical expression
of the STT can be considered in the adiabatic limit. The 1D model describes the main features
of the DW velocity under a spin-polarized current, in a perfect nanowire with out-of-plane
anisotropy[194, 195]. Following the description given by Thiaville et al.[40], the magnetization
dynamics is governed by a modified LLG equation in which the effect of the spin-polarized
current is taken into account by introducing an additional term.

∂m

∂t
= γ0Heff ×m+ αm× ∂m

∂t
− (µ · ∇)m+ βm× [(µ · ∇)m] (2.5)

Here, m is the unit vector of the local magnetization, γ0 = γµ0 where γ is the gyromagnetic
ratio and µ0 the vacuum permeability. Heff is the effective micromagnetic field, α is the
Gilbert damping parameter, µ is the spin drift velocity, which is along the flow of electrons and
given as µ = gµB

2eMs

PJ , where g is the Landé factor, µB is the Bohr magneton, e is the electron
charge, and Ms is the saturation magnetization of the thin film. Finally, β is the non-adiabatic
term, representing a second-order term of the STT.

In the case of ferrimagnetic materials, the LLG equation has to be modified by taking
into account the two different Landé factors of the two sub-lattices. However, as the orbital
moment of Mn is close to zero, the Landé factors of both the Mn sub-lattices (close to 2) are
very similar in this context. As the variation in the temperature in this system does not lead
to compensation in Mn4N/SrTiO3, we have explained our results by taking an assumption that
the DW dynamics is similar to that of a ferromagnetic system near room temperature[119].

In the adiabatic limit (β = 0) of the current driven DW dynamics, the DWs can move
continuously only when their magnetization can start to precess, in order to align itself with the
incoming spin-polarized electrons. In order for this to happen, the DW energy has to overcome
the anisotropy energy KD, which is the energy required to change the DWs from the Bloch to
the Néel configuration. In the case of a thin film with perpendicular magnetization, KD is given
as KD = |Kx −Ky|. For a thin strip of thickness t and width w, the DW can be modelled as
an ellipse, and the two demagnetizing factors can be approximated as Kx ≈ 1

2
µ0M

2
s (

t

t+ π∆
)

and Ky ≈ 1

2
µ0M

2
s (

t

t+ w
)[43]. Using the 1 µm device width and a 10 nm thickness, KD is

calculated to be approximately 1.1 × 103 J/m3. This value is much lower than that of similar
permalloy nanowires, in which KD ≈ 0.5 × 106 J/m3. The DWs can overcome this energy
barrier and start to precess only after the application of a certain current density, called the
threshold critical current density Jc[52, 191].

35



Chapter 2. A Brief History of Mn4N

Jc =
2e

~P
∆(ϕ)KD (2.6)

where, ~ is the reduced planck’s constant, P is the spin polarization of the conduction
electrons, ∆(ϕ) is the DW width as a function of its tilt angle, i.e., the angle between the
centre of the DW and the DW plane. The experimental material parameters for Mn4N/SrTiO3

being Ms = 71 kA/m, Ku = 0.11 × 106 J/m3, and taking A = 10 pJ/m and P = 0.8, the
critical current density is expected to be Jc ≈ 1.9 × 1010 A/m2. Here the value of the exchange
stiffness (A) was not measured but extrapolated from the Curie temperature of similar nitrides
[178]. According to this calculation, Jc for Mn4N is thus much lower than that of permalloy
strips with in-plane magnetization (Jc ≈ 1013 A/m2)[52]. It is however, comparable to that of
ferrimagnetic TbFeCo strips with out of plane magnetization[196, 197].

In our experiments, the DW motion occurs at current densities much higher than Jc, so
that adiabatic torques alone can perfectly explain the observed DW velocity. When J � Jc,
the adiabatic torque-driven velocity is given as:

v ≈ 1

1 + α2

√
µ2 − µ2

c (2.7)

where, µc is the spin drift velocity at the critical current density. In the case of a small Jc
in systems with PMA, the velocity can be written:

v ≈ 1

1 + α2
|µ| = 1

1 + α2

gµB
2eMs

PJ (2.8)

The damping factor of Mn4N was estimated using time-resolved Kerr spectroscopy by Dr.
Shinji Isogami at the National Institute for Material Science, in Tsukuba. It is a technique
which is used to measure ultrafast magnetization dynamics in magnetic materials[198]. A
damping factor of α = 0.15 was obtained from this measurement. Introducing the damping
factor in Eq.2.8, we can see that it has a negligible impact on the velocity. The mobility
v/J is proportional to the ratio of the spin polarization and of the spontaneous magnetization
(P/Ms). The spin polarization then becomes the only free parameter for the linear fitting.
Using the proposed fitting in this regime, one obtains a very high polarization value, around
P = 0.8 (± 0.1), close to the polarization of the density of states obtained using first-principle
calculations[199]. This analysis shows that the high DW velocity observed in Mn4N is due to
the low saturation magnetization and high spin polarization, in conjunction of the low DW
pinning obtained on SrTiO3 substrates.

2.6.4 Micromagnetic modelling
In order to confirm the results of the 1 D model, micromagnetic simulations were performed
using the finite difference Mumax3 software[200]. A defect free strip of 6000×120×10 nm3 with
a cell size of 2.5×2.5×10 nm3 was used for zero-temperature simulations. To study the influence
of the quality factor Q = 2Ku

µ0M2
s

on the DW motion, the Ms was set at 1 kA/m while tuning the
Ku. For the simulations, the parameters were set as Ms = 71 kA/m, Ku = 0.16 × 106 J/m3,
A = 10 pJ/m, P = 0.7, α = 0.15 and β = 0.

In the first step of the simulation, the DW configuration was set at equilibrium, in absence of
spin-polarized current. After this, a current was applied along the positive x-axis, generating an
adiabatic torque which resulted in the DW motion. A post-step function was used to make the
simulation box "follow" the DW motion. The velocity of the DW was calculated from the DW
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position as function of the time. An additional time of 25 ns was computed after the current
was switched off to ensure that all transient effects are damped out. Lastly, the influence of
the cell size, damping parameter, DW width, non-adiabatic torque and the geometry were also
tested. It was concluded from these tests that these parameters do not strongly affect the DW
motion in the precessional regime.

Fig. 2.15 shows a comparison between the DW velocities obtained from simulations done
on an in-plane system (Ms = 1400 kA/m, Ku = 9.75 × 105 J/m3 and Q = 0.79) and an out-
of-plane system(Ms = 1400 kA/m, Ku = 1.95 × 106 J/m3 and Q = 1.51). In the case of Q
= 1.51, we see an overall agreement with the 1D model. The critical current density obtained
here is around 10 u ≈ 2 × 1010 A/m2. Therefore, the DWs start to move linearly at very low
current densities. There are however some slight differences from the 1D model which appear
at lower values of µ (inset Fig. 2.15). At this point the DW moves discontinuously due to
extrinsic effects, nonetheless the DWs could be displaced by the application of current density
higher than Jc.

There are also some deviations from the linear regime which are observed for higher values
of J . These deviations are attributed to DW asymmetry. In the case of Q < 1, for in-plane
magnetized systems, there is a higher dipolar cost in bringing the magnetization out-of-plane
and into precession. This translates into a higher critical current density (300 u ≈ 8 × 1012

A/m2), as expected from Eq.2.6. Hence, the linear regime is expected to occur at much higher
current densities.

Figure 2.15: Plots from micromagnetic simulations showing the DW velocity as a function of
the spin-polarized current density, for two different values of Q; Q = 1.51 (black squares) and
Q = 0.79 (red dots). The red solid line represents the 1D model velocity from Eq.2.6.3. The
inset shows the details for small values of the spin-drift velocity for Q = 1.51.
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Influence of the damping factor and of the non-adiabatic torque on the current
induced domain wall motion

Until now, we have neglected the non-adiabatic torque in PMA systems. The non-adiabatic
term is used to explain the DW velocity in the case of in-plane magnetized permalloy below the
intrinsic Jc. However, we have been able to explain the high DW velocity obtained in Mn4N
with adiabatic torque alone. Analytically, the non-adiabatic torque results in the steady regime
in the velocity v = β

α
µ below the critical current density Jc, while in the precessional regime

an additional term of αβ
1+α2 in included[43]. In the case of Mn4N, the values of α = 0.15 is thus

much smaller than 1 whereas β should be in similar range as α[201]. Hence, the non-adiabatic
term contribution should be negligible with respect to the adiabatic torque[201, 202].

Micromagnetic simulations were performed to justify our choice to neglect the contribution
of the non-adiabatic torque, by considering the cases β = 2α and β = 0.5α with α = 0.15.
With the non-adiabatic torque, the DW velocity moves in a steady regime until it reaches the
Walker limit given as:

µW = µc
α

|β − α|
(2.9)

As shown in Fig.2.16, when neglecting the non-adiabatic term, the Walker spin-drift velocity
coincides with the critical spin-drift velocity. As stated previously, the DW velocity starts to
evolve linearly with J after Jc, in the precessional regime. At this point, the DW mobility is
independent of the non-adiabatic β factor, as shown in Fig. 2.17.

Figure 2.16: Results of micromagnetic simulations showing the DW velocity as a function of
the spin-polarized current for different values of β; β = 2.5 α (red circles), β = 0.5 α (blue
triangles) and β = 0 (black squares) for low current densities close to the critical current density

From these results, we can conclude that the non-adiabatic torque is not crucial to explain
the high velocity obtained experimentally. Additionally the non-adiabatic regime is very well
hidden below Jc, behind the thermally activated regime.

The Gilbert damping, on the other hand, plays a crucial role in DW motion. In order to
study the impact of the Gilbert damping on the DW motion, micromagnetic simulations have
been performed using α = 0.03 and α = 0.3, as shown in Fig. 2.18. These values are either
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Figure 2.17: Results of micromagnetic simulations showing the DW velocity as a function of
the spin-polarized current for different values of β; β = 2.5 α (red circles), β = 0.5 α (blue
triangles) and β = 0 (black squares) for high current densities, showing a linear behaviour in
the precessional regime. The red solid line shows the 1D velocity from Eq.2.6.3.

Figure 2.18: Results of micromagnetic simulations showing the DW velocity as a function of
the spin-polarized current for different values of α; α = 0.3 (black squares) and α = 0.03 (red
circles) The solid lines represents the 1D velocity from Eq. 2.6.3
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bigger or smaller than the experimentally determined value of α = 0.15. From both curves we
observe that the velocity at the maximum current density is only 6% different. The inset shows
that the larger damping results in a larger µc, however it is negligible in our case.

Damping and Non-adiabatic torque in the particular case of α = β

Until now we have looked into the evolution of the DW motion in the steady regime below
the Walker breakdown, and at higher current densities in the precessional regime. We have
been able to reproduce our experimental DW velocities by simulating the precessional motion
and assuming that the precessional velocity was equal to the spin-drift velocity. Nonetheless,
according to the prediction of the 1D model, when the Gilbert damping and the non-adiabatic
torque compensate each other (i.e., where α = β), the Walker spin-drift velocity becomes infi-
nite (Eq. 2.6.3). In such case, the velocity in the steady state regime is equal to the spin drift
velocity for any applied current density. In order to check this effect in Mn4N, micromagnetic
simulations mimicking a PMA strip with Q = 1.51 and α=β=0.03 were performed. The re-
sults of these simulations are shown in Fig. 2.19(a) along with the comparison with the case
with no non-adiabatic torque (β=0). From this it can be observed that the velocities do not
vary substantially in between the two cases. Nonetheless, the DW moves as expected in the
precessional regime when β=0, while it moves in the steady flow regime in the case of α=β.
This is confirmed by the temporal evolution of the averaged x- and y- components of the DW
magnetization, which are shown in Fig. 2.19(b,c). It is however very difficult to distinguish
between the cases when the non-adiabatic torque and the Gilbert damping are balanced and un-
balanced here. Nonetheless, note that this case of α=β has been demonstrated experimentally
in (GaMn)As[202, 203], so we cannot completely exclude it.

Figure 2.19: Results of micromagnetic simulations showing (a): the DW velocity as a function
of the spin-drift velocity for β=0 and α=β=0.03. (b,c) Temporal evolution of the averaged x-
and y- DW magnetic components for α=β=0.03 (b) and β=0 (c) for µ=50 m/s.
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2.6.5 Absence of Dzyaloshinskii-Moriya Interaction and Chiral Néel
walls

In this section, we will focus on field driven DW motion in Mn4N/SrTiO3 to confirm the DW
configuration and show the absence of DMI in this system. The chiral Néel structure of DWs are
generally stabilized by DMI. These DWs can then be moved by using SOTs either by SHE or the
Rashba-Edelstein effect[50, 52, 190]. Field driven DW motion measurements were performed
to investigate the nature of the DWs in our system.

Figure 2.20: Differential Kerr images (white contrast) showing the domain displacement
driven by the out-of-plane magnetic-field pulse. The amplitude of the field pulse was around
400 mT, with a 30 ns pulse width. Result in absence (a) and presence (b) of an in-plane field
Bx 150 mT

For this measurement, a bubble domain is nucleated in a first step using out-of-plane mag-
netic field pulses on 10 nm layer of Mn4N/SrTiO3. In a second step, in the presence of a
longitudinal in-plane field Bx, the DWs were moved with out-of-plane magnetic field pulses.
This measurement was performed while increasing the longitudinal magnetic field in-plane.

Figure 2.21: Plot showing the Domain Wall velocity as a function of the applied, continuous,
in-plane field Bx. Black points show velocities for up/down domain walls and red points for
down/up domain walls
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This method is often used to quantify the DMI field in systems which have chiral Néel
DWs. In the presence of chiral Néel DWs, there is an asymmetry in the velocity curve with the
minima of the curve indicating the effective DMI field. This shift in the minima arises when
the in-plane field totally compensates the DMI field[204–206].

Fig.2.21 shows the evolution of the DW velocity with the in-plane field in both orientations
of Bx field. The DW velocity increases with the in-plane field value. The symmetry of the
velocity curves confirms the absence of DMI and the Bloch nature of DWs in Mn4N/SrTiO3.

Summary
In this chapter, we have focused on the growth, and on the resulting structural and magnetic
properties of Mn4N. We have also studied the current induced DW dynamics in this system,
demonstrating that Mn4N is an exceptional candidate for DW-based applications, and that it
is possible to reach high DW velocities using pure STT in ferrimagnets with low Ms. Here are
the main points to remind :

Nitrides are a large family of compounds including several magnetic nitrides.

Mn4N samples have been grown on MgO and SrTiO3 substrates. Structural and magnetic
characterization show that the growth on SrTiO3 is far superior than that on MgO, which
can be attributed to the very small lattice mismatch between Mn4N and SrTiO3.

DW motion measurements were performed in microwires nanofabricated from 10 nm
Mn4N/SrTiO3 thin films, using MOKE microscopy. A very high DW velocity of more
than 900 m/s was observed at room temperature.

DWs move in the direction of the electron flow, pointing to STT as driving mechanism.
The absence of DMI and of a heavy metal layer excludes SOT as the underlying DW
driving mechanism.

High DW velocity can be explained using an analytical modelling taking into account
only the adiabatic torques.

Micromagnetic simulations confirm this assumption.

The high DW velocity in Mn4N/SrTiO3 is thus found to be due to the high spin polar-
ization and to the low Ms, in conjunction of low DW pinning.

In the next chapter, we will focus on the effect of substitution in this system, to get closer
to the magnetic and angular momentum compensation points.
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Substitution in Mn4N 3
After studying the growth, structural and magnetic properties of Mn4N grown on SrTiO3

and MgO in chapter 2 along with demonstrating DW motion dynamics in Mn4N on SrTiO3

substrate; In this chapter, we will discuss about substitution in Mn4N with Ni and Co atoms.
We will first start with the growth of the Mn4−xNixN and Mn4−xCoxN in section 3.2. In section
3.3 we will then compare the structural XRD characterization of both of these compounds. In
the following section we will discuss the magnetic properties of these compounds with the help
of Magnetization and AHE characterizations. We will also shed some light on the interesting
results magnetic orientation of these compounds obtained using XAS and XMCD measurements
and analysis in section 3.4 Note that I personally made the the study concerning substitution
with Ni which will be shown in chapter 4. The results presented on substitution with Ni were
led by Taro Komori. I collaborated to the part concerning substitution with Co, lead by Taro
Komori and Haruka Mitarai.

3.1 Mn4−xNixN and Mn4−xCoxN
In the case of Mn4N, Juza et al[207] were the first who attempted to reach the compensation
point with the replacement of Mn with Ni, Cr and Fe. Mekata also attempted to replace some
of the Mn atoms in the Mn4N system with In and Sn [106]. They had obtained the MC at
appropriate composition ratios and temperature. The ability to tune the compensation points
is very interesting in controlling and manipulating the magnetic properties of the materials.
A plethora of different effects could be studied not only at the compensation points but also
before and after them. AHE[56], AMR and SMR[208], DW dynamics[58, 59] and the damping
factor[55, 56] are some of the effects which have been studied in such ferrimagnets. Here, we will
discuss about Mn substitution in Mn4N with Ni and Co magnetic atoms. As the compensation
points were achieved with the substitution with non-magnetic In and Sn in Mn4N, we expect the
MC to be attained at room temperature much easily when doped with magnetic elements such
as Ni and Co. The achievement of room temperature compensation point is very fascinating
as it enables the material to be used in applications such as magnetic memories.
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Figure 3.1: Schematic of the anti-perovskite crystal structure of (a) Mn4−xNixN with Ni
concentration x = 0.1 [136] and (b) Mn4−xCoxN with Co concentration x = 0.25 [138]

3.2 Growth of Mn4−xNixN and Mn4−xCoxN
10 nm thick layers of Mn4−xNixN with two Ni concentrations of x = 0.1 and x = 0.25 were grown
by MBE on SrTiO3 (001) substrate at 450°C using high temperature Mn and Ni Knudsen cells
and a RF-N plasma source. After the growth, the thin films were capped with 2-3 nm thick
layer of Ti in-situ to prevent from oxidation of the magnetic layers.

Figure 3.2: Schematic of the MBE growth process for (a) Mn4−xNixN (b) Mn4−xCoxN

For Mn4−xCoxN, 30 nm thick layers were grown with Co on SrTiO3 substrate with the Co
concentration set at x = 0, 0.2, 0.4, 0.6, 0.7, 0.9, 1.0, 1.1, 1.2, and 1.3. These samples were
also grown at 450°C using high temperature Knudsen cells of Mn and Co and a RF-N plasma
source. 2-4 nm thick layer SiO2 was used to cap the magnetic layer in-situ to prevent oxidation.

In both the cases, the SrTiO3 substrates were cleaned by a buffer NH4F-HF solution to
obtain a TiO2 terminated surface for the growth of the magnetic layer. The deposition rates of
the Mn and Co were independently controlled by the crucible temperature for their respective
Knudsen cells. The capping layers were deposited using RF-sputtering method.
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3.3 Structural Characterization

Mn4−xNixN

RHEED characterization was performed on these thin films right before the deposition of a
capping layer on the SrTiO3 (100) plane. After capping the sample, in-plane (φ − 2θχ) and
out-of-plane (ω−2θ) XRD characterizations were performed. A XRR characterization was also
done to obtain the thicknesses of these thin films.

Figure 3.3: XRD spectra of Mn3.9Ni0.1N (a,c,e) and Mn3.75Ni0.25N thin films grown on SrTiO3.
(a,b) are out-of-plane XRD patterns (c,d) shows an enlarged spectra closer to 2θ = 46. (e,f)
in-plane XRD patterns with insets showing the RHEED patterns taken along the SrTiO3[100]
azimuth. The white arrows portray the lattice diffraction. Taken from Komori et al. [136]

Fig.3.3 (a) and (b) shows the out-of-plane XRD profiles of Mn3.9Ni0.1N and Mn3.75-Ni0.25N
thin films. In both the plots, the black arrows show the SrTiO3 peaks while the blue arrows
show the Mn4−xNixN peaks. Since there is a very good lattice matching between the SrTiO3

substrate and the Mn4−xNixN thin films, the SrTiO3 peaks are overlapped with the Mn4−xNixN
peaks. However, the Mn4−xNixN appears at a slightly larger angle than the cubic SrTiO3 and
can be identified clearly when seen in the enlarged profiles of Fig.3.3 (c) and (d). The presence
of the satellite peaks is also observed in these plots. The peaks of the Mn4−xNixN along with
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the satellite peaks are missing from the in-plane XRD profiles with only some Mn-O peaks
which are observed next to the SrTiO3 (200) peaks. The clear observation of Laue Fringe
patterns along with the super-lattice diffraction peaks for 100 are good indication of a very
good epitaxial crystalline structure. Both the XRD and RHEED patterns confirm a very good
crystalline quality of these thin films. The lattice constants of Mn4−xNixN were determined by
the out-of-plane and in-plane XRD profiles with a c<a relation. Assuming that the SrTiO3 is
perfectly cubic, this relation suggests the presence of an in-plane tensile stress related to the
perpendicular magnetic anisotropy in these thin films. The sharp diffraction peaks along with
the Kikuchi lines obtained in the RHEED patterns suggest a highly c-axis oriented epitaxial
films. The superlattice diffraction which are denoted by the white arrows in the RHEED images
are attributed to the Nitrogen atoms correctly located at the centre.

Mn4−xCoxN

Similar RHEED, XRD and XRR measurements were performed with the Mn4−xCoxN thin films.
Fig.3.4 shows the out of plane XRD profiles with the RHEED images in the inset. In the case
of Mn4−xCoxN, the peaks are slightly more shifted from the SrTiO3 (001,002 and 004) peaks
than in Mn4−xNixN. Therefore, the peaks are more clearly observed. The diffraction peaks and
streaky RHEED patterns from samples of Co concentration x = 0 - 0.4 confirmed the epitaxial
growth of the thin films. The Kikuchi lines observed in thin films of x = 0 - 0.4 composition
indicates a very good crystalline quality. The superlattice diffraction in the RHEED patterns
which is indicative of the Nitrogen body centre are shown with the white arrows for samples
with Co concentration x 6 0.9. However, as the Co concentration was increased the XRD
peaks of Mn4−xCoxN were decreasing, indicating a degradation of the crystalline quality. The
RHEED patterns were blurred and the Mn4−xCoxN (004) diffraction peaks were not observed
for x = 1.2. The in-plane lattice constant (a) along with the out-of plane lattice constant
(c) decreased as the concentration was increased from x = 0 - 0.13. For lattice parameter a
it decreased from 0.389 to 0.384 and for lattice parameter c it decreased from 0.386 to 0.381.
However, this decrease in the lattice parameter still kept the in-plane mismatch between SrTiO3

and Mn4−xCoxN similar (c/a ∼ 0.99).
XRD characterization of Mn4−xNixN and Mn4−xCoxN point towards an epitaxial growth of

the thin films in 100 direction. There is however some peaks indicating the presence of some Mn
related oxides which is inevitable. The XRD profiles along with the RHEED patterns confirm
an exceptional crystalline quality of these thin films.

3.4 Magnetic Characterization
VSM-SQUID measurements, AHE measurements, X-ray Absorption Spectroscopy (XAS) and
X-ray Magnetic Circular Dichroism (XMCD) were performed on the Mn4−xNixN and Mn4−xCoxN
thin films to obtain their magnetic properties.

Magnetization and AHE characterization

Mn4−xNixN

VSM-SQUID measurements were performed on the two Mn3.9Ni0.1N and Mn3.75Ni0.25N thin
films. The magnetization hysteresis loops are shown in Fig.3.5 with (a) Ni concentration of 0.1
and (b) Ni concentration of 0.25. Magnetization values of 47 kA/m for the Ni concentration of
0.1 and 29 kA/m for Ni concentration 0.25 were obtained from these curves.
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Figure 3.4: Out-of-plane XRD profiles of Mn4−xCoxN along the [100] azimuthal direction with
the RHEED patterns in inset. The black triangles indicate the diffraction peaks of Mn4−xCoxN
and SrTiO3 while the white arrows indicate the superlattice diffraction in the RHEED images.
Taken from Mitarai et al [138]

The hysteresis loops present a sharp switching behaviour indicating a very good PMA which
is a result of the very good lattice matching. The magnetization is observed to be decreasing
with the increase of Ni concentration in Mn4N.

Fig.3.6 shows the AHE curves of (black) Mn4N, (red) Mn3.9Ni0.1N and (blue) Mn3.75Ni0.25N.
From the AHE curves we observe the real difference between the two thin films with Ni con-
centrations. The change of the AHE angle from negative to positive is clearly observed from
these curves. This change signifies the crossing of the magnetic compensation point which has
been shown in TbCo[63] and CoGd[62]. Therefore, it can be inferred that there could be a
point with the Ni substitution where the net magnetization becomes zero.

Mn4−xCoxN

The M-H loops of the Mn4−xCoxN thin films of different Co concentrations were measured
using a VSM. Figure 3.7 shows the M-H loops of the Mn4−xCoxN thin films with different Co
concentration. We observe nice square hysteresis loops for smaller Co concentrations and then
as the Co concentration increases, this square hysteresis changes. However, it still retains the
PMA at Co concentration of x=1.2.

The saturation magnetization obtained from the hysteresis loops in Fig.3.7 are plotted
in Fig.3.8 as a function of the Co concentration in Mn4−xCoxN. From this curve, we clearly

47



Chapter 3. Substitution in Mn4N

Figure 3.5: Out-of-plane M-H loops of (a) Mn3.9Ni0.1N and (b) Mn3.75Ni0.25N thin films grown
on SrTiO3 substrates. Taken from Komori et al [136]

Figure 3.6: Out-of-plane AHE loops of (black) Mn4N, (red) Mn3.9Ni0.1N and (blue)
Mn3.75Ni0.25N thin films grown on SrTiO3 substrates.

observe a decrease of the magnetization when Co concentration increases. The lowest saturation
magnetization is observed at Co concentration x = 1.0 after which the saturation magnetization
starts to increase again sharply. This trend signifies that the MCP has been crossed. However,
it must be noted that the saturation magnetization values may not be very accurate because
of multiple factors. One of these factors is the presence of antiphase boundaries (APBs) which
could affect the saturation magnetization and lead to either larger or lower values as shown
in the case of epitaxially grown Fe3O4 thin films[209, 210]. APBs are a common phenomenon
observed for thin films grown by MBE where the growth process starts with the nucleation of
islands and then closed layers. When changing from the islands to uniform layers, the layers
gets divided into different domains or phases. The boundary between the different phases are
known as APBs. There could be different exchange interaction between the spins of the two
phases which lead to either an increase or decrease in the saturation magnetization. In the
case of ferrimagnetic Mn4−xCoxN, as the saturation magnetization is already very low, such
APBs could be play big role in determining the values of the saturation magnetization. Along
with this, the presence of MnO peaks are observed by XRD could also vary the real value
of the saturation magnetization. Another possibility is the presence of some ferromagnetic
contamination in the SrTiO3 substrate which is seen as an increase in the total saturation
magnetization of the samples[211]. These saturation magnetization values are very small and
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Figure 3.7: Out-of-plane M-H loop of Mn4−xCoxN thin films for a Co concentration varying
from x=0 to x=1.3. Taken from Mitarai et al. [138]

hence it is indeed very difficult to obtain extremely accurate values from the VSM.

Figure 3.8: Saturation magnetization as a function of the Co concentration. Taken from
Mitarai et al [138]
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Fig.3.9 shows the out-of-plane AHE loops of the Mn4−xCoxN thin films with the different Co
concentrations. The shape of the these hysteresis loops are more clearer than the M-H loops.
This effect could be attributed to the fact that it is a magneto-transport measurement and the
effect of the Mn oxides does not reflect in the AHE measurements. It is also important to note
that the AHE hysteresis loops are saturated under 1 T. It can inferred from this observation
that the role of the APBs are minimal as in the case of high APBs interaction, the saturation
occurs at much higher magnetic field than usual in the case of Fe3O4 thin films[209].

Figure 3.9: Out-of-plane AHE (ρAHE) hysteresis loops of Mn4−xCoxN thin films. Taken from
Mitarai et al [138]

The sign reversal of the AHE from negative to positive is observed between x = 1.1 and 1.2
which signifies the crossing of the MCP as seen before in the case of Mn4−xNixN. Hence, with
the help of the AHE and M-H hysteresis loops, it is established that the MCP lies somewhere
between x=1.1 to x=1.2.

By studying the AHE curves of Mn4−xNixN and Mn4−xCoxN, we can clearly observe the
change in the sign of the AHE indicating crossing the MCP. Hence, this validates that MCP
could be achieved by the substitution of the Mn atoms by both Ni and Co at room temperature
in Mn4N.

XAS and XMCD characterization

The XAS and XMCD measurements and characterizations for the Mn4−xNixN and Mn4−x-CoxN
were performed by Taro Komori and Haruka Mitarai from University of Tsukuba. XAS and
XMCD were performed at the twin APPLE-II undulator beamline BL-16A of Photon Factory
in Japan [212]. For the measurements, a magnetic field of ± 3 T (for Mn4−xNixN), ± 5 T (for
Mn4−xCoxN) and circularly polarized x rays with left and right polarization were applied at an
angle of 54.7° for Mn4−xNixN and 54.7°[213] for Mn4−xCoxN to plane of the thin films. The
x-ray polarization was switched at every energy point with a 10 Hz frequency at every energy
point with while using five kicker magnets. The energy of the incident soft x rays was adjusted
to include the L2 and L3 absorption edges of Mn, Ni and Co atoms. The XAS spectra were
obtained at room temperature in the total electron yield (TEY) mode and the total fluorescence
yield mode at the Mn L2,3, Ni L2,3 and Co L2,3 absorption edges respectively for the Mn4−xNixN
and Mn4−xCoxN thin films.
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Mn4−xNixN

Fig.3.10 shows the XAS (top) and the XMCD (bottom) spectra of Ni atoms in Mn3.9Ni0.1N (a)
and Mn3.75Ni0.25N thin films. Sharp peaks of Ni are observed in the XAS spectra at the L3 edge
between 852-853 eV and at the L2 edge at 870 eV for both Mn3.9Ni0.1N and Mn3.75Ni0.25N.

Figure 3.10: XAS (top) and XMCD (bottom) spectra of (a) Mn3.9Ni0.1N and (b) Mn3.75Co0.25N
thin films at the L2,3 absorption edges for Ni. Taken from Komori et al [136]

These XAS peaks at the L3 and L2 absorption edges mean that the Ni atom is replacing the
Mn site I atoms in Mn4N as they have exactly the same behaviour in the case of Fe4−xNixN [114,
134, 214]. The XMCD spectra for Ni shows the reversed peaks between the L2,3 edges. This is
attributed to opposite direction of the Ni magnetic moments in Mn3.9Ni0.1N and Mn3.75Ni0.25N.

Figure 3.11: XAS (top) and XMCD (bottom) spectra of (a) Mn3.9Ni0.1N and (b) Mn3.75Co0.25N
thin films at the L2,3 absorption edges for Mn. Taken from Komori et al. [136]

Therefore, before the compensation point the magnetic moment of the Ni atoms point in the
direction opposite to the net magnetization. After the compensation point, they point towards
the net magnetization.

The XAS (top) and XMCD (bottom) spectra of the Mn L2,3 absorption edges are shown
in Fig. 3.11 (a) for Mn3.9Ni0.1N and (b) for Mn3.75Ni0.25N. Shoulder peaks are also observed
in the Mn XAS spectra for both the thin films. Additional satellite peaks are also observed in
the spectra, which are attributed Mn related oxides and have been also observed in MnFe2O4
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[215]. These MnO peaks are also visible in the XRD profiles, which could be a reason for these
satellite peaks.

Unlike the XMCD peaks of Ni, the XMCD peaks of Mn are relatively more complex. The
signs of the XMCD peaks are positive, then negative and then again positive around the L3

edge when going from low to high photon energy in the case of Mn3.9Ni0.1N. This superposition
of spectra having different signs signifies that the magnetic moments of the Mn(I) and Mn(II)
are anti-parallel to each other. Such peaks are representative of the fact that the transition
metal at the site I is localised and that the site II correspond to the itinerant states which have
been shown in the case of Fe4N and Mn4N[113, 137]. Similarly, the XMCD spectra shown here
are with the α and β peaks denoting the localised and itinerant states with opposite signs.

Figure 3.12: Schematic of the Anti-perovskite crystal structure of (a) Mn3.9Ni0.1N and (b)
Mn3.75Ni0.25N.

In the case of Mn3.9Ni0.1N, the broader β peak near 642 eV originates from Mn (II) site
atoms. This broader peak is the result of the hybridization between the Mn (II) 3d and N 2p
orbitals. In comparison, the sharp α peaks comes from the Mn(I) atom with its less hybridiza-
tion with the N atom. The XMCD spectra of Mn3.75Ni0.25N shows negative, then positive and
negative again peak which is exactly opposite to that of Mn3.9Ni0.1N. These opposite peaks are
attributed to the reversal of the magnetization between the two thin films at both the sites I
and II. This behaviour of the XMCD spectra have been reported close to the compensation
temperatures for other ferrimagnets as well [114, 216]. It is interesting to note that the sign
of the XMCD spectra of Ni is exactly opposite to that of the α peaks, demonstrating that the
Ni always aligns anti-parallel to magnetic moment of the Mn site I atoms in this range of Ni
concentration.

Mn4−xCoxN

Fig.3.13 shows the XAS and XMCD spectra of the Mn atoms at the L2,3 absorption edges for (a)
Mn3.8Co0.2N ,(b) Mn3.2Co0.8N and (c) Mn2.7Co1.3N thin films. There are very slight differences
between the three XAS spectra for Mn. In contrast, there is a big difference observed in the
three XMCD spectra.

In the case of Mn3.8Co0.2N, the signs of the XMCD signal around the L3 absorption edge
goes from positive, then negative and then positive again when going from the low photon to
high photon energy. For Mn3.2Co0.8N, it is reversed and goes from negative, then positive and
then negative again. Fascinatingly, for Mn2.7Co1.3N, it reverses again and goes from positive,
then negative and then positive again. This superposition of spectra with opposite peaks
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Figure 3.13: XAS (top) and XMCD (bottom) spectra of (a) Mn3.8Co0.2N, (b) Mn3.2Co0.8N
and (c) Mn2.7Co1.3N thin films at the L2,3 absorption edges for Mn. In the XMCD spectra the
sharp α and the broad β peaks originate from the Mn site I and Mn site II atoms. Taken from
Mitarai et al. [138]

demonstrates that the Mn site I and Mn site II atoms have an anti-parallel alignment. Here
the sharp α peaks again correspond to the localised Mn site I atoms and the broader β peaks
correspond to the Mn site II Nitrogen hybridized sites. In this anti-perovskite crystal structure,
the corner site I atoms are localised while the face-centered site II atoms are itinerant in nature,
which has been demonstrated by XMCD measurements and first principle calculations as well
in Fe4N [113] and in Mn4N [137]. These results suggests that the magnetic moments of the Mn
site I and Mn site II have been reversed between Co concentration of x=0.2 and 0.8, and again
between x = 0.8 and 1.3.

Fig.3.14 shows the XAS and the XMCD spectra of Co at the L2,3 absorption edges for (a)
Mn3.8Co0.2N ,(b) Mn3.2Co0.8N and (c) Mn2.7Co1.3N thin films. For the Co XAS absorption
peaks, there is slight difference between the three films. In the XMCD spectra the A and A’
peaks represent the Co site I atoms at the two L2,3 edges. It is similar to what has been shown
in the previous work Ito et al [137]. The sign of the Co A-A’ peaks are reversing between the
Co concentrations of x = 0.2 and 0.8. It means that the the magnetic moments of the Mn I, Mn
II and Co I are reversing the magnetic moment direction between Co concentration of x = 0.2
and 0.8. It is therefore indicative of crossing the MCP which means that the there should be
the MCP, which means that there should MCP somewhere between Co concentration x = 0.2
and 0.8. This point is however not seen through the M-H loops as a very finer control of the Co
concentration could be required to reach this compensation point. We also do not see a change
in the direction of the AHE angle between these points which is an indicator of the crossing of
MCP which can be seen in the case of Mn4−xNixN. A more in-depth study of the AHE effect
in this Mn4−xCoxN system is thus required to understand the behaviour of the AHE.

The XMCD spectrum of Mn2.7Co1.3N is very different from that of Mn3.8Co0.2N and Mn3.2Co0.8N
in Fig. 3.14. In this case, we observe an additional B and B’ peaks along with the A and A’
peaks near the L3,2 absorption edges. There is therefore an overlap between two sets of com-
ponents in the XMCD signal.

It is striking to observe the reversal of A(A’) peaks between Co concentration x = 0.8 and
1.3. This shows that the magnetic moment of the Co site I atoms are reversed between these
two compositions. Here, the peak position of B and B’ are slightly shifted from that of the A
and A’ peaks, signalling that they are similar to the α and β peaks seen in the XMCD spectra
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Figure 3.14: XAS (top) and XMCD (bottom) spectra of (a) Mn3.8Co0.2N, (b) Mn3.2Co0.8N
and (c) Mn2.7Co1.3N thin films at the L2,3 absorption edges for Co. Taken from Mitarai et al.
[138]

of Mn. These peaks are attributed to the Co site II atoms similar to the case of Mn site II
atoms. Therefore, in the case of Mn2.7Co1.3N the Co is also replacing the Mn site II atoms and
occupying their positions. The magnetic moment of the Co site II atoms are now aligned with
the Mn site II atoms. This is evident when the B and B’ peaks are compared to the α peaks
in the XMCD spectra of Mn.

Figure 3.15: Schematic of the Anti-perovskite crystal structure of (a) Mn3.75Co0.25N (b)
Mn3.25Co0.75N and (c) Mn2.75Co1.25N. Taken from Mitarai et al [138]

Overall, we observe a change in the sign of the α, β and A,A’,B,B’ between Co concentration
of x = 0.8 and 1.3. This is attributed to a crossing of the MCP between these two compositions.
This is well confirmed with AHE and M-H curves which are shown in Fig.3.8 and 3.9. From
these results it could be inferred that after crossing the MCP, the Co atoms occupies either the
Mn site I or site II randomly. One would expect that at x = 1, the Co completely occupies
all the corner sites (site I). However, the α peak in the XMCD for Mn shows that there is still
Mn atoms remaining at the corner site. Fig. 3.15 shows a simplified illustration of the anti-
perovskite crystal structure of Mn4−xCoxN for different Co concentrations. It illustrates how
the Co is being substituted into this system. When x = 0.2, the sum of the magnetic moments
from Mn(I) is higher than that of the sum of Mn(II) and Co(I), hence the magnetization points
in the direction of Mn(I). At x = 0.8, the sum of the magnetic moments of Co(I) and Mn(II) is

54



Chapter 3. Substitution in Mn4N

higher than that of the sum of the remaining Mn(I) making the magnetization point towards
Mn(II). At x = 1.3, the sum of the magnetic moments of Co(II) and Mn(I) atoms is higher
than the sum of the magnetic moments of Co(I) and Mn (II) thus making the magnetization
point in the direction of Mn(I) again. As mentioned earlier, it should be also noted that the
possibility of Co atoms completely filling the corner sites cannot be fully ruled out.

XAS and XMCD study of the Mn4−xNixN thin films were performed. From the XAS of
the Mn L2,3 edges, shoulder peaks were observed which were 2 eV higher than the main Mn
peaks. We have attributed these shoulder peaks to the orbital hybridization of the Mn site II
atoms with the N body centre atoms. This becomes more clear when the we study the XMCD
α and β peaks. However, such shoulder peaks in the XAS were not observed for the Ni atoms
for both Mn3.9Ni0.1N and Mn3.75Ni0.25N thin films. This is a confirmation that the Ni atoms
preferentially occupy the site I in these thin films both before and after MCP. From the XMCD
study of the Mn3.8Co0.2N, Mn3.2Co0.8N and Mn2.7Co1.3N thin films it was observed that the
sign of all the magnetic moments reversed between Co concentration of x= 0.2 and 0.8 and
then again between x = 0.8 and 1.3. Hence, it points to the presence of presumably two MCP
at room temperature. This effect is very significant and be very beneficial for applications as
it gives a wide window near the compensation point to utilise the unique properties near the
compensation points.

Summary
10 nm thick Mn3.9Ni0.1N and Mn3.75Ni0.25N thin films and 30 nm thick Mn4−xCoxN thin
films with Co concentrations ranging from x = 0 to 1.3 were grown on SrTiO3 substrates
using MBE at 450°C.

Out-of-plane and in-plane XRD profiles along with super-lattice RHEED pattern con-
firmed a very nice and epitaxial growth of the Mn4−xNixN and Mn4−xCoxN thin films.
The lattice constant of these thin films were estimated using the peaks obtained from
XRD.

In the case of Mn4−xNixN, the saturation magnetization decreases with the increase of
Ni concentration. The change of sign of the AHE from negative to positive between x =
0.1 to 0.25 confirmed that the MCP lies somewhere between these points.

From the XMCD spectra of Mn of , α (sharper, from site I) and β (broader, from site
II) absorption peaks showed the anti-parallel alignment between the Mn(I) and Mn(II)
atoms for Mn3.9Ni0.1N. The sign of the peak in the case of Ni XMCD spectra confirmed the
Ni magnetic moment direction to be pointing towards that of Mn(II). This additionally
confirms that the Ni atoms have occupied the Mn I sites. The signs of the α and β
peaks were reversed along with that of the Ni peak in the case of Mn3.75Ni0.25N, thereby
confirming that the MCP has been crossed and that the net magnetization now points in
the direction of Mn(II).

For Mn4−xCoxN, the saturation magnetization inherently decreased with an increase in
the Co concentration. It is followed then by a sharp rise corresponding to the presence
of a MCP near Co concentration of x = 1.1. The reversal of the AHE sign from negative
to positive after x = 1.1 confirmed the presence of the MCP around this concentration.

XAS and XMCD measurements were performed on thin films of Mn4−xCoxN with Co
concentrations x = 0.2, 0.8 and 1.3. From the Mn XMCD spectra a reversal of the α and
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β peaks was observed between x = 0.2 and 0.8. A reversal of the A and A’ peaks from
the Co XMCD spectra was also observed. This reversal of sign confirms the presence of
a MCP between the x = 0.2 and 0.8.

A reversal of sign of the α and β peaks was also observed between x= 0.8 and 1.3 for the
Mn XMCD spectra. In the case of the Co XMCD spectra, a combination of the A-A’ and
B-B’ peaks were observed. The B-B’ peaks represents the presence of Co in the Mn site
II as well. Hence, at this concentration, the Co atoms also occupied site II. A reversal
of the Co A-A’ peaks was also observed in x = 1.3. The reversal of the Co A-A’ peaks
along with the reversal of the Mn α and β peaks confirms the presence of another MCP
between x = 0.8 and 1.3. This is also visible in the M-H loops and in the change of sign
of the AHE angle from negative to positive.

In chapter 2 we had demonstrated that the Mn4N grown on SrTiO3 substrate has better
properties than when it is grown on MgO substrate. In this chapter, we have shown that
Mn4−xNixN and Mn4−xCoxN have the capability of reaching the compensation points at room
temperature with substitution of the Mn atoms. In the next chapter, we will focus on the
current induced DW motion on Mn4−xNixN/SrTiO3 system.
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Chapter

Current Induced Domain
Wall Dynamics in Ni
substituted Mn4N 4

There are two possible outcomes: if the
result confirms the hypothesis, then
you’ve made a measurement. If the
result is contrary to the hypothesis,
then you’ve made a discovery.

Enrico Fermi

In chapter 2, we focused on the current-induced DW dynamics in Mn4N. In chapter 3, we
showed that the MCP could be achieved at room temperature by the substitution of Mn atoms
in Mn4N with Ni and Co atoms where we had estimated that the MCP should lie between
the Ni concentration of x= 0.1 and x =0.25. In this chapter, we will focus on current-induced
DW dynamics in Mn4−xNixN/SrTiO3 system, close to the MCP. The section 4.1 will firstly
describe how the compensation points could be achieved in Mn4−xNixN. It is then followed
by section 4.2 which focuses on the growth and structural characterization of Mn4−xNixN thin
films on SrTiO3 with a wide range of Ni concentration from x=0 to x=0.3. We will then
study the global magnetization and transport properties of the Mn4−xNixN thin films, before
focusing on the current induced DW motion in Mn4−xNixN thin films. We will then describe
the analytical modelling of the DW dynamics in the anti-ferromagnetically coupled Mn4−xNixN
thin films. Lastly, in section 4.6, we will focus on ab-intio calculations that allow us to explain
our experimental data for Mn4−xNixN thin films before and after the MCP.

4.1 Reaching the compensation points
In several ferrimagnetic compounds, the magnetic and the angular momentum compensation
can be achieved by changing either the temperature or the composition of the materials[55, 56,
64]. As mentioned before, this ability of ferrimagnets have made it an active field of research
in recent years to study the current induced DW dynamics[58, 59, 63]. Previous experiments
have demonstrated that close to the MCP and ACP, large SOT-driven DW velocities could be
obtained in ferrimagnets deposited on heavy metals [59, 63]. The ferrimagnets used for those
experiments are however made up of rare-earth and critical elements, the two mostly studied
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materials being GdCo[59, 62],TbCo[63], GdFeCo[58] and TbFeCo[217].
As seen in chapter 2, we have demonstrated in the rare-earth-free ferrimagnet Mn4N[86]

high DW velocities, reaching more than 900 m/s. With the help of the asymmetric bubble
expansion method[206], we have shown that neither bulk or interfacial DMI exists which led us
to believe that the DWs are driven by STT. In order to reach closer to the compensation point
in this system, Ni can be substituted into the Mn4N. Ni atoms occupy the Mn corner sites and
leads to a reduction of the magnetization. In chapter 3 we have demonstrated that the MCP
in this system should lie somewhere between Ni concentration of x = 0.1 and 0.25[119, 136].

Fig.4.1 shows the normalised magnetization as function of the temperature of Mn4N, Mn3.9Ni0.1N
and Mn3.75Ni0.25N thin films. The magnetization increases for Mn4N and Mn3.9Ni0.1N thin films,
while for Mn3.75Ni0.25N it decreases as the temperature is reduced and brought closer to 5 K.
The important thing to note here is that in all of the three cases, changing the temperature
does not make the system to reach the MCP, even though in the case of Mn3.75Ni0.25N decreases
a lot. Hence, MCP cannot be reached at any temperature. However, changing the concentra-
tion allows crossing the MCP between Mn3.9Ni0.1N and Mn3.75Ni0.25N[136]. Therefore, a fine
adjustment of the Ni composition in these thin films is needed in order to reach and study DW
motion at the vicinity of the compensation points.

Figure 4.1: Normalised magnetization as a function of temperature for (black) Mn4N, (red)
Mn3.9Ni0.1N and (blue) Mn3.75Ni0.25N. Measurement was performed while applying a field with
Field Cooling.

4.2 Growth and Structural Characterization
For this study, 10 and 30 nm thick layers of Mn4−xNixN with Ni concentrations ranging from x
= 0.05 to 0.3 were fabricated, using molecular beam epitaxy at 450°C on 300 µm thick SrTiO3

(001) substrates. The Mn and Ni were obtained from the solid sources of high temperature
Knudsen cells while N was incorporated by using a RF-N plasma source. The growth conditions
were optimised to be around 1 nm/min with a N2 gas flow rate of 0.9 cm3/min at 4.1 × 10−3

Pa chamber pressure. To prevent oxidation of the thin films, a 3 nm layer of SiO2 was also
deposited in-situ on top of the thin films, using a sputtering gun and an Ar plasma gun.

Scanning transmission electron microscopy (STEM), RHEED, XRD measurements were
performed to check the crystalline quality of the Mn4−xNixN thin films. Additional XRR
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Figure 4.2: (a) High resolution STEM image of a 30 nm Mn3.75Ni0.25N thin film deposited on
a SrTiO3 substrate. (b) HAADF-STEM image of the full thin film with the capping layer of 3
nm of SiO2 and the associated EDX elemental map of Mn (c), O (d) and Ni (e).

measurements were also performed to confirm the thickness of the thin films. The character-
ization and analysis by cross sectional Scanning Transmission Electron Microscopy (STEM)
and energy-dispersive X-ray(EDX) was performed by Dr. Hanako Okuno. Fig.4.2 (a) shows
the high resolution STEM image of a 30 nm Mn3.75Ni0.25N layer grown on a SrTiO3 substrate.
It demonstrates a highly ordered crystalline structure, with a negligible density of defects. A
smooth interface between the Mn3.75Ni0.25N and SrTiO3 substrate can also be observed from
this image, resulting from a very good lattice matching between the materials. The high-angle
annular dark field scanning transmission electron microscopy (HAADF-STEM) image of the
full stack with the SiO2 capping, along with the elemental maps of Mn, O and Ni obtained by
EDX are shown in Fig.4.2 (b-e). They show that the Ni is very well and uniformly distributed
throughout the thin film. The oxygen is well concentrated in the substrate and the capping
layer. However, there is small layer containing oxygen near the interface between Mn3.75Ni0.25N
and the capping SiO2 layer. This Mn-oxide layer has probably to be considered as magnetic
dead layer. Its thickness can be obtained from the XRR measurements. XRD peaks for such
Mn-oxide peaks were observed earlier in the case of Mn4−xNixN thin films (cf. Fig.3.3 of chapter
3.

The growth technique and parameters are similar to our previously grown thin films of
Mn4−xNixN [119, 136]. The STEM images are a testimony of the flawless crystalline quality of
these epitaxially grown thin films.

4.3 Magnetization and Transport Measurements
In order to obtain the saturation magnetization of these films, M-H loops were measured using
a VSM-SQUID setup at room temperature. Fig.4.3 shows the saturation magnetization as
a function of the Ni concentration. As demonstrated earlier in chapter 3, the magnetization
in Mn4−xNixN thin films points towards the magnetic moment of Mn site (I) atoms before
the MCP and it points towards that of Mn site (II) after the MCP. Therefore the saturation
magnetization is shown in a similar way with with the positive saturation magnetization values
denoting the thin films before the MCP while negative values denoting the thin films after the
MCP in Fig.4.3. Corresponding AHE measurements were performed to estimate whether the
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thin films had composition before or after the MCP with negative AHE angle[118, 161, 167]
attributed to compositions before the MCP while positive AHE angle[119, 136, 138] attributed
to compositions after the MCP as shown in Fig. 4.4.

Figure 4.3: Saturation magnetization as a function of the Ni concentration. The filled symbols
represent the magnetization before the compensation point, while the open symbols represent the
magnetization after the compensation point. The gray shaded area shows the spread of the
observed deviation of the Ni content x at the compensation point with respect to the nominal
value. The dotted line represents the magnetization obtained analytically.

In agreement with our previous results[119, 136], the saturation magnetization is observed
to be decreasing when increasing the Ni concentration. There is a change in the direction of
the saturation magnetization between x = 0.15 and 0.2. There is a difference in the saturation
magnetization observed for x = 0.15 and 0.25 in the 10 and 30 nm thin films. This could be
the result of a small deviation of the targeted Ni content, or of the presence of the dead layer.

AHE curves were measured for the Mn4−xNixN thin films, by patterning them into Hall
crosses and also by using the Van der Pauw method on blanket layers. Fig.4.4 shows the AHE
curves with Ni concentrations (x=0, 0.15, 0.2 and 0.25). The sharp magnetization switching
in all the samples is indicative of the retention of the large PMA after patterning. The sign of
the Anomalous Hall angle changes between x = 0.15 and 0.25 indicates that the MCP is close
to the analytically obtained value of x ≈ 0.18.

Our previous XMCD measurements shown in chapter 3 confirmed that the Ni atoms are oc-
cupying the Mn I site, with the magnetic moment pointing towards that of Mn site II atoms[136].
Thus, by increasing the Ni concentration in the system, the saturation magnetization is expected
to decrease. After a certain concentration, the sum of the magnetic moments of the Mn site II
atoms and Ni site I gets higher than that of the sum of the magnetic moments of the Mn site
I atoms. This reverses the saturation magnetization, which then points towards the magnetic
moment of the Mn site II atoms, as shown in Fig. 4.5.

The MCP is also estimated to be around Ni concentration of x = 0.18 using analytical
calculation using the magnetic moment values obtained though neutron diffraction studies[108,
152], which only corresponds to 3.6% of Ni content. It is interesting to note here that only a
very small amount of Ni is actually required to reach the MCP at room temperature.
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Figure 4.4: Anomalous hall effect curves measured for thin films with different Ni concentra-
tions (x= 0 (10 nm), 0.15 (10nm), 0.2 (10 nm), 0.25 (10 nm) and 0.25 (30 nm)) The sign
of the Anomalous Hall angle changes from negative to positive when crossing the compensation
point between x = 0.15 and 0.2. It is also representative of the change of the direction of the
net saturation magnetization. The corresponding Ms values of these thin films are shown in the
legend.

Figure 4.5: Anti-perovskite crystal structure of (a) Mn4N, (b) Mn3.88Ni0.12N and (c)
Mn3.75Ni0.25N, showing the Ni atoms occupying the corner sites and the direction of the sponta-
neous magnetization reversing after the magnetic compensation point. The blue atoms represent
Mn site I atoms, orange Mn site II atoms, green Ni site I atoms and red shows the nitrogen
atom at the body centre.
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4.4 Current induced domain wall motion
To study the current induced DW dynamics, 1 µm wide microwires were fabricated using
standard e-beam lithography and Ar ion milling (cf. Appendix B). The complete image of the
device is shown in Fig.4.6 (a). The DW dynamics was studied using MOKE microscopy, with
the help of differential imaging in order to enhance the magnetic contrast.

Figure 4.6: (a) Image of a device used for the study of the domain wall motion. 20 parallel 1
µm wide 20 µm long wires are shown in the image, along with the contact pads from where the
DWs injected. (b) Differential polar MOKE images showing the displacement of the domain
walls after the application of a negative (left) and a positive (right) current pulses. The white
arrows indicate the direction of the motion of domain walls. The device shown here is fabricated
on a sample before the compensation point, and the domain walls move in the direction of flow
of electrons.

Out-of-plane magnetic field pulses close to the coercive field of the sample were used to
nucleate reversed domains in the nucleation pads and to inject them onto the edges of the
multiwires. The DWs were then displaced by the injection of 1-5 ns long current pulses. The
shape of the pulses were captured and stored using an oscilloscope. Fig.4.6 (b) are examples of
differential MOKE images with black and white contrasts, with displacement of the DWs in the
opposite direction for the application of opposite current pulses. As expected, the DWs move in
the same direction for a given current polarity. The DW displacements from the different wires
were averaged to obtain a precise estimation of the DW velocity. The mean DW velocity is
thus obtained by dividing the averaged displacements by the averaged full width half maxima
of the pulse widths, taking into account the number of pulses applied. This procedure was
performed for all the Mn4−xNixN thin films. For each of the thin films, the DW motion was
studied as a function of the current densities. The mean velocities expressed as a function of
the current densities, for thin films of different Ni concentrations are shown in Fig.4.7. Here,
the velocity curves are shown with respect to the saturation magnetization since it is the key
parameter. There was some dispersion found in the nominal compositions which led us to show
the velocity with the saturation magnetization rather than the nominal composition.

Current-induced DW velocities below/above the compensation points are shown as posi-
tive/negative. As the Ni concentration is increased, the saturation magnetization decreases
and the DW velocities are observed to be increasing, with a maximum of 2000 m/s at J = 1.17
× 1012 A/m2, before the compensation point at 22 kA/m.

Before compensation, a general trend of increase of DW mobility (dv/dj) is observed when
getting closer to the MCP (i.e., as the saturation magnetization decreases). Until this point,
the DW motion direction is that of the flow of electrons. Intriguingly, after crossing the MCP
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Figure 4.7: Domain wall velocity plotted against the current density for Mn4−xNixn thin films
for Ni concentrations on both sides of the compensation point. Here Ms = 71 kA/m (maroon
curve) corresponds to pure Mn4N with x = 0 (Taken from Gushi et al[86]). The filled/open
symbols correspond to Ni concentrations below/above the compensation point. The direction of
the domain wall motion changes after crossing the magnetic compensation point.

the DW motion direction is reversed, the DW moving in the direction opposite to the flow of
electrons. A very large DW velocity approaching 3000 m/s at J = 1.26 × 1012 A/m2 is obtained
for a Ni concentration of x = 0.25 (Ms = -20 kA/m). After the MCP, the DW mobility starts
to decrease, with the increase of the saturation magnetization, and eventually reaches similar
values to those observed in Mn4N.

The increase in of the DW velocity close to the compensation point and the subsequent
decrease is very similar to that observed for DWs in several ferrimagnetic materials[58, 62, 63].
From Fig.4.7, it can be seen that the threshold current density at which the DWs start to move
is very low in these thin films. The lowest threshold current density is close to 0.1 × 1012

A/m2, and is observed for a Ni concentration of x = 0.2 (Ms = 22 kA/m). The DW velocity
obtained from the different thin films follow a similar trend starting with the thermally assisted
regime followed by the linear regime corresponding the precessional motion of the DW motion
driven by STT[191]. Close to the compensation point in the case of Ni concentrations of x =
0.2 (Ms = 22 kA/m) and 0.25 (Ms = -20 kA/m), the thermally assisted regime is extended and
the linear appears to start very late as compared to the pure Mn4N thin film. The threshold
current density is also smaller in both samples than for Mn4N, indicating a very low pinning
in these thin films. These threshold current density values are comparable to other metallic
ferrimagnets with TbFeCo[196], × 1012 A/m2 for GdCo[62]. It is however much lower than
ferrimagnetic insulators such as TmYIG[65] and BiYIG[66].

The DW velocities obtained in these Mn4−xNixN thin films are the highest DW velocities
observed until now using STT at room temperature, without the application of an in-plane
field.
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4.5 Analytical Modelling of the two sub-lattice system
In order to explain these results, and in particular the high DW velocities and the reversal
of the DW motion direction, one can use the collective coordinate q − φ model[58, 60]. The
q− φ was expanded into a ferrimagnetic system with the two sub-lattices "1" and "2" using the
effective parameters from the two sub-lattices.

The two sub-lattices of Mn4N are composed of the same atomic species with two different
Mn (I) and Mn (II) atoms. In the case of Mn4−xNixN, the amount of Ni atoms replacing the
Mn site I corner atoms are at most 5%. As there is no precise measurement of the individual
gyromagnetic factors γ, and because of the very small Ni concentration, we will for the sake of
simplicity assume that γ1 = γ2. This implies that the MCP and the ACP points coincide in this
Mn4−xNixN system. Furthermore, due to the strong anti-ferromagnetic coupling in this system
we have considered that the damping factors of both the sub-lattices are equals (α1,α2) α1 =
α2. Taking this into account in the two sub-lattice model, the DW velocity is in the asymptotic
limit of the precessional regime, well above the critical current density(JC), and given by

v =
LS + Lαβ

L2
S + L2

α

LSu (4.1)

where LSu = PJh/(2e)eJ , JeJ is the current density, P=P1 - P2 is the effective spin polar-
ization from the two sub-lattices, α is the Gilbert damping parameter, β is the non-adiabatic
contribution to the STT, Ls = (M1 - M2)/γ is the angular momentum density and Lα =
(α/γ)(M1 + M2).

Figure 4.8: Domain wall velocity versus net magnetization Ms, measured at J = 1 × 1012

A/m2 (blue circles and squares) compared with the best fit obtained using the q− φ model from
Eq. 4.5.

In Fig.4.8, the experimental DW velocities at J = 1 × 1012 A/m2 from Fig.4.7 are plotted
against the saturation magnetization; Ms = (M1 - M2) = γLs. The best fit of the experimental
data by Eq. 4.5 is obtained for P = 0.65, α = 0.013 and β = 0.002. The fit is shown in Fig.4.8
as a red line. Now, taking the q−φ model into consideration, the DW motion direction reversal
is expected to occur at Ls = -βLα, just below the ACP. Indeed, in the Fig.4.7 curve, the velocity
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vanishes just below the experimental MCP. This result validates our assumption that γ1 = γ2,
and therefore that the MCP and the ACP coincide in this system.

These results show that the large STT driven DW velocity is due to the mobility increase
when approaching the ACP, together with the large spin polarization of the conduction electrons
in this system. The reversal of the DW motion direction is also predicted by the analytical
q − φ model. It assumes that the sign of the spin polarization P does not change with the
angular momentum density Ls. The reversal of the DW motion direction is therefore related
to the relative change of the net spin polarization with respect to the angular momentum after
crossing the ACP. In other words, after crossing the ACP, the spin polarization P acts as an
effective negative spin polarization.

4.6 AB-initio calculations and analysis
In order to confirm the assumption that the spin polarization remains in the same direction
after crossing the ACP/MCP, ab-initio band structure calculations have been performed by Dr.
Ali Hallal from SPINTEC. These first principle calculations were performed in the framework
of Density Functional Theory (DFT) using spin polarized relativistic Korringa-Kohn-Rostoker
(SPR-KKR) and Vienna ab-initio simulation packages (VASP) [218–226]. VASP was used
for structure optimization, with the electron-core interactions being described by the projector
augmented wave method for the potentials and the exchange correlated energy calculated within
the Generalised Gradient Approximation (GGA) of the Perdew-Burke-Ernzerhof form[222, 223].
The cutoff energies for the plane wave basis set which were used to expand the Kohn-Sham
orbitals were 500 eV for all the calculations. Structural relaxations along with the total energy
calculations were performed while making sure that the Hellmann-Feynman forces acting on
ions were less than 10−2 N. The calculations for Mn4N were based on the perovskite crystal
structure (Pm3̄m space group). A bulk lattice constant of 3.74 Å was taken, with a collinear
configuration after full relaxation using a mesh of 44 × 44 × 44 Å−1 as shown in Fig. 4.5 (a).
The total calculated magnetic moment was found to be 1 µB (Mn I, 3.3 µB and Mn II, -0.8 µB)
along the [001] quantization axis, which is in good agreement with the previous calculations[163,
227]. The substitution of Ni in this system was tackled by using the supercell approach where
the Mn I was replaced by Ni in 1 × 1 × 4 and 1 × 1 × 8 unit cells for modelling the Ni
concentrations of x = 0.125 and 0.25. In order to verify the supercell approach, the effect of
the Ni substitution in Mn4−xNixN was calculated using the coherent potential approximation
(CPA) which is implemented in the SPR-KKR code[224–226].

Figure 4.9 (a) shows the total calculated magnetic moment as a function of the Ni con-
centration. One observes a similar trend of decrease of the magnetization with an increase in
the Ni concentration, followed by the MCP, which occurs at x = 0.15 using the SPR-KKR
approach (green) and at x = 0.17 using the VASP approach (orange). These calculated total
magnetic moments match very well with our experimental data, the experimental MCP being
at x = 0.18. The transport properties and spin polarization can be estimated from studying
the s-orbitals of materials which are responsible for electron transport. The s-orbital projected
density of states(PDOS) of the Mn(I) and Mn(II) atoms for Mn4N are presented in Fig.4.9
(b,c). The calculated polarization is "up"(towards the Mn(I) magnetic moment, also taken as
the global quantization axis here) at the Fermi level for both Mn(I) and Mn(II) atoms, with
the polarization of Mn(II) being one order of magnitude higher than that of Mn(I). This is an
evidence that in this system the electron transport is taking place through the Mn(II) atoms
rather than through the Mn(I) atoms.

Fig.4.9 (d,e,f) shows the s-orbital PDOS of Mn3.75Ni0.25N, whose concentration lies after the
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Figure 4.9: (a) Ab-initio calculations of the net magnetic moment as a function of the Ni
concentration showing that the MCP is at x=0.15 for the SPR-KKR CPA approach (green)
and at x= 0.17 for the VASP approach (orange) (b,c) s orbital PDOS of Mn(I) and Mn(II)
of Mn4N. (d,e,f) s-orbital PDOS of Ni(I), Mn(I) and Mn (II) atoms. Here, UP represents
the direction of the magnetic moment of Mn (I) and DOWN represents the direction of the
magnetic moment of Mn(II).

MCP. A closer look at the Fermi level unveils that the polarization in here also lies towards
the magnetic moment of Mn(I) for Ni, Mn(I) and Mn(II) atoms. Also, the PDOS is again one
order of magnitude higher for Mn(II) than for Mn(I) and Ni(I). Therefore, the transport is
dominated by electrons carrying spins parallel to the global quantization axis. The ab-initio
calculations show that the spin polarization direction remains in the direction of the magnetic
moment of Mn(I) before and after the ACP. Hence, these calculations allows explaining our
experimental results, in agreement with the predictions made by the q − φ model.

Summary
To sum up, current induced DW dynamics was investigated on ferrimagnetic Mn4−xNixN thin
films, while tuning the Ni concentration to reach the magnetic and angular momentum com-
pensation points.

10 and 30 nm thin layers of ferrimagnetic Mn4−xNixN were grown epitaxially on SrTiO3

substrates.

RHEED, XRD and STEM characterizations confirmed the good crystalline quality of
the samples. A smooth interface between the SrTiO3 substrate and Mn3.75Ni0.25N was
observed by STEM. An EDX characterization confirmed that Ni was uniformly and ho-
mogeneously present throughout the thin film.

The magnetization of the thin films decreased when increasing the Ni concentration, as
expected, and then changes direction after a certain Ni concentration.
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Figure 4.10: Sketch of the Bloch domain wall with the individual net magnetic moments, for
the thin film below (top) and above (bottom) the ACP. The orange arrow indicates the spin
polarization direction, which remains in the same direction both below and above the ACP. The
yellow arrow represents the direction of the electron flow. As the spin polarization direction
remains the same after the ACP, while the net angular momentum changes direction, the STT
drives the domain walls in the opposite direction above the ACP.

The switch of the AHE angle from negative to positive confirmed the crossing of the
MCP with increasing the Ni concentration. With the help of the AHE curves, of Ms

measurement and of an analytical calculation of the saturation magnetization, the MCP
was estimated to be around a Ni concentration x = 0.18.

With the increase in the Ni concentration towards the MCP, the DW velocities increase.
A velocity of more than 2000 m/s was obtained before the MCP.

After crossing the MCP, the DW motion direction was observed, along with a very high
DW velocity approaching 3000 m/s at the vicinity of the MCP.

Analytical model based on the collective coordinate approach (q−φ) can be used to predict
the high DW wall velocities, using a two sub-lattice model with effective parameters.

Two assumptions were taken for the analytical model; i) As both the sub-lattices contain
Mn atoms and the percentage of Ni in the system is very low, the magnetic and the
angular momentum compensation point was considered to be coinciding with an effective
gyromagnetic ratio γ = γ1 = γ2 ii) the spin polarization direction must remain constant
before and after the MCP.

The best fitting of the q−φ model was obtained which matched very well with the exper-
imental DW velocities confirming the first assumption of the MCP and ACP coinciding
in this system.

Ab-initio calculations were performed using the VASP and SPR-KKR approach for Mn4−xNixN
thin films. Both of these approaches confirmed the presence of a MCP for x = 0.15 and
0.17, which is very close to our experimentally obtained MCP concentration of x = 0.18.

The s-orbital PDOS shows that the electron transport is due to Mn (II) atoms, with a
one order higher DOS at the Fermi level in Mn4N. The spin polarization direction was
also observed towards the global quantization axis [001] (parallel to the magnetic moment
of Mn(I)).
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From the s-orbital PDOS of Mn3.75Ni0.25N it was observed that the DOS is one order of
magnitude higher at the Fermi level for Mn (II) than for Mn (I) and Ni(I). Interestingly,
the spin polarization direction also remained towards the global quantization axis [001].
This is a confirmation of our second assumption.

The results of the ab-initio calculations along with the predictions of the q − φ model
explain the high DW velocity and the reversal of the DW motion direction in these
Mn4−xNixN thin films.

In this chapter we have explained the effect of current on the DW dynamics of Mn4−xNixN.
Beyond the record velocities, We have shown a good convergence between the experimental
and the theoretical results, explaining how and why the dynamics changes before and after the
compensation points. In the next chapter, we will focus on the study of the Anomalous Hall
Effect on Mn4N and Mn4−xNixN thin films.
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Chapter

Perspectives for Mn4N 5
Anyone who has never made a mistake
has never tried anything new

Albert Einstein

This chapter will focus on perspectives involving Mn4N thin films. In section 5.1 we will
discuss on the study of SOT switching in Mn4N. The following section 5.2 will focus on the
study of DW based logic devices using Mn4N.

5.1 Spin orbit torque switching in Mn4N
Bilayers consisting of a heavy metal layer and a ferromagnetic layer combine several interesting
features which have made them the archetypal system for spinorbitronics. Their geometry
breaks the structural inversion symmetry, allowing the generation of SOTs generated by SHE
in the bulk of the heavy metals, and/or by the Rashba Edelstein effect at the interface. The large
spin orbit coupling of the heavy metals can also lead to a large interfacial Dzyaloshinskii-Moriya
interaction (DMI)[192, 228]. This leads to several interesting micromagnetic configurations such
as Néel domains[28, 206] or exotic spin textures such as skyrmions[193], merons[229], which can
be manipulated using SOTs[41, 50].

In this section, we will focus on the SOT driven magnetization switching. The SOT switch-
ing of ferromagnets was first demonstrated by Miron et al.[230] and Liu et al.[231]. In the
last decade, it has become a well studied phenomenon, even leading to the development of the
SOT-MRAM[232]. In SOT switching, the spin polarization of the electrons is achieved thanks
to the heavy metal layer and to its interface with the ferro or ferri magnetic thin film. It is
due to the interfacial Rashba-Edelstein effect[47, 48] and the bulk spin hall effect[44–46]. This
spin polarization leads to a spin accumulation at the interface, which diffuses into the magnetic
layer. This exerts two different torques on the magnetization, known as the Anti-damping and
the Field-like torques[41, 233]. These spin orbit torques can lead to the deterministic switching
of the magnetization, providing that a small in-plane magnetic field is applied to break the
symmetry[233].

Ferrimagnetic/heavy metals bilayers have been studied in the last few years, exhibiting
similar interfacial effects, and improved properties with respect to Ferromagnetic/heavy metals
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bilayers. In particular, faster DW motion[58, 66], smaller skyrmions[59] and SOT switching[62]
have been observed when using ferrimagnets. In the case of ferrimagnets, the magnetization
dynamics dominate over that of the ferromagnetic materials. This is due to the lower saturation
magnetization and faster dynamics close to the ACP. Zheng et al demonstrated field free switch-
ing with multi-layers of CoTb with different concentration resulting in gradient DMI[234]. It is
very interesting to note here that they not only demonstrated field free switching but also gra-
dient DMI which is another feature in case of ferrimagnets. In this context, Mn4N is perfectly
suitable for SOT switching with its fast dynamics at room temperature which has been demon-
strated by Gushi et al[86]. It also has the advantage of reaching the compensation points at
room temperature either by substitution by Ni or by Co, thus making it viable for technological
integration.

5.1.1 Growth and Characterization
In order to study the effects of the SOTs in heavy metal/ferrimagnetic Mn4N bilayers, Tungsten
(W) and Platinum (Pt) heavy metals deposited on top of the Mn4N layers are used both as
capping and SOT layer. 7 nm thick Mn4N layers were grown on SrTiO3 substrates at 450°C,
using the growth parameters shown in Appendix A. 5 nm thick W and 2 nm thick Pt layers
were then deposited on top of the Mn4N layers.

Figure 5.1: RHEED patterns of (a) W/Mn4N/SrTiO3 for the SrTiO3 (100) direction, with
blue arrows showing the super-lattice diffraction lines, thus confirming the epitaxial growth, and
(b) for the SrTiO3 (110) directions. Red arrows indicate Kikuchi lines, which are indicative of
kinks and steps on the SrTiO3 surface. (c) RHEED patterns of Pt/Mn4N for the SrTiO3 (100)
direction. The blue arrows indicate similar super-lattice patterns

Structural Characterization

Fig.5.1 shows the RHEED images taken after the growth of the 7 nm Mn4N layer and before
the deposition of the W layer. The Mn4N (001) reflections (streaks) are shown in Fig.5.1 (a)
and the SrTiO3 (100) reflections are shown in (b). The blue arrows point towards the supper-
lattice diffraction streaks which are attributed to the body centre Nitrogen atoms. These well
separated RHEED patterns, along with the superlattice diffraction patterns, are a confirmation
of a very good epitaxial growth of the thin films. However, the red arrows point towards satellite
patterns next to the main SrTiO3 diffraction lines. These are known as Kikuchi lines, and are
attributed to the roughness of the surface[235, 236]. The roughness in this system could be
coming from the roughness of the substrate. Another reason for the observation of these Kikuchi
lines could be that, the film being thin, the defects close to the substrate are revealed. Fig. 5.1
(c) shows the RHEED pattern of a Pt/Mn4N sample. These also have a similar superlattice
diffraction patterns indicated by the blue arrows.
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Magnetic Characterization

In this subsection, we will discuss the magnetic properties obtained from SQUID and magneto-
transport measurements before moving on to SOT switching in subsection 5.1.2.

Saturation magnetization

A SQUID setup was used to measure the M-H curves in these thin films, in order to extract
the saturation magnetization. Fig. 5.2 shows the M-H curves of the (a) W/Mn4N and (b)
Pt/Mn4N thin films. The M-H loops are not square hysteresis curves, the signal corresponding
to the sum of the contributions of two different phases. The reversal of the magnetically hard
phase can be seen at higher magnetic fields, while that of the soft phase appears near zero field.
Such a small coercivity seems to be coming from the artifacts.

Figure 5.2: M-H loops of (a) W/Mn4N and (b) Pt/Mn4N samples

The saturation magnetization extracted from these curves are 160 kA/m for the W/Mn4N
sample and the 105 kA/m for the Pt/Mn4N sample. Such saturation magnetization values
have been reported before Mn4N. However, they are much higher and hence differ from the
saturation magnetization values from our previous work[86, 129]. From the unusual shapes of
the saturation magnetization hysteresis curves, it becomes very clear that they are coming from
the soft phase artifacts. After removing the soft phase from the curves, saturation magnetization
of 60 ± 15 for W/Mn4N and 34 ± 5 for Pt/Mn4N were extracted. One possible explanation for
these artifacts and the soft phase could be presence of ferromagnetic impurities in the SrTiO3

substrate[211].

Magneto-transport measurement

Magneto-transport measurements were performed on the Pt/Mn4N and W/Mn4N samples using
the Van der Pauw method. These measurements were performed using a PPMS setup (cf.
Appendix A). Fig.5.3 (a) and (b) shows the AHE curves of the W/Mn4N and Pt/Mn4N thin
films. Both the AHE curves show a negative AHE angle similarly to what has been observed in
single Mn4N layers. An important point to note here is that the AHE curves are very different
from the M-H curves presented in Fig.5.2. The soft phase which can be seen in the M-H curves
are not present in these curves. Hence, we can observe the real coercivity of these 7 nm thin
films. These AHE curves therefore confirm the anomalous M-H curves are indeed coming from
artifacts possibly originating from the ferromagnetic contamination of the SrTiO3 substrate
[211].
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Figure 5.3: AHE curves of (a) W/Mn4N and (b) Pt/Mn4N. Longitudinal resistance curves of
(c) W/Mn4N and (d) Pt/Mn4N.

The coercivity of the W/Mn4N sample is much smaller (0.55 T) than that of the Pt/Mn4N
which (1.37 T). At this stage it is unclear why these coercivity are so different, as the thicknesses
of the Mn4N layers are the same (7nm). The deposits were made using the same growth
conditions, but not at the same time, which could for instance lead to variations in extrinsic
defects concentration. For thicknesses below 10 nm, it looks like the magnetic properties are
not always reproducible. Also, there might be different DMI and/or anisotropy interfacial
contributions, but this cannot be evidenced at this stage. The resistance for the Pt capped
sample seems to be much lower than that of W/Mn4N sample. This could be due to shunting
of the current through the Pt, as the resistivity of Pt is much lower than that of β-W and varies
between 25-100 µWcm[237, 238] in thin films.

The longitudinal resistances curves are plotted in Fig.5.3 (a) for W/Mn4N sample and (b)
for the Pt/Mn4N sample. In these curves, the asymmetric peaks correspond to the magneti-
zation switching and probably coming from AHE contribution from the contacts[239]. For the
W/Mn4N sample, we observe a slope at high field in these curves which is due to the contribu-
tion of magnons to the resistance, the MMR [239]. It is unclear for now why this contribution is
not observed in the Pt/Mn4N sample, it might be due to the electrical shunting by the Pt layer.
Indeed, the calculated average resistivity of the stacks are 398 µWcm for the W/Mn4N sample
and 113 µWcm for the Pt/Mn4N sample, which indicates that for the Pt/Mn4N sample the
Pt layer acts as an electrical shunt. Resistance variations at low fields could arise from AMR
[240, 241], DW resistance [241, 242], but one would expect this contribution to be even in field,
whereas here the low-field peaks are odd in field. This rather points towards a contribution of
the AHE to the resistance measurement, as previously observed in perpendicularly magnetized
system [239].

Overall, the magneto-transport measurements provide a clearer picture of the hysteresis
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than the M-H curves. The large resistivity value of W/Mn4N sample suggests that the W
could be in the β phase[243, 244]. Also, an increase of the resistivity of the Mn4N layer could
be due to the thickness decrease to 7 nm.

5.1.2 SOT switching measurement and Analysis
In this subsection, we will first briefly discuss the device fabrication. We will then present our
first results of SOT switching without an in-plane field, and then results on SOT switching
without and with an in-plane field.

Device Fabrication

Using ion beam lithography and Ar milling, 1, 2 and 3 µm wide and 10µm long microwires
and hall bar structures were fabricated (cf. Appendix B). A thick layer of around 100 nm of
Au-Ti was deposited on the big nucleation pads. This reduces the distance between the two
contacts hence we only get the resistance from the wires. The wires are designed in a way to
get closer to the 50 Ω output impedance to match the input impedance of the devices to the
output impedance of the voltage source to transmit high frequency signals. It is particularly
necessary here as in the case of W/Mn4N the resistivities are high.

SOT Switching without In-Plane Field

For detecting the SOT switching, we used the polar-MOKE microscopy setup shown in the
previous chapters 2 and 4 for DW motion. W/Mn4N sample was glued on the sample holder and
the microstrip (similar to those used for DW motion) devices were wirebonded and connected to
the power supply, with an oscilloscope to record the shape of the pulse. Out-of-plane magnetic
field pulses higher than the coercive field of 0.55 T were applied to saturate the magnetization
of the samples in one direction. After the saturation, current pulses with a pulse width of 1-3
ns were applied to the device.

Fig.5.4 shows the differential images of 3 µm wide and 10 µm long nanowires taken by MOKE
microscopy. The images on the left in Fig. 5.4 (a,c,e,g) have been taken after full saturation of
the magnetization, using out-of-plane magnetic field pulses. The white and the black indicates
the different magnetization directions, the white corresponding to a magnetization pointing up,
and the black pointing down. The images on the right in Fig.5.4 are taken after the application
of 2 current pulses with a pulse width of 2.98 ns and a current density between 0.9 - 0.95
× 1012 A/m2. No external fields were applied during the application of these current pulses.
The switching of the magnetization here is characterized by the change of the color from white
(black) to black (white). As seen in the images on the right, the magnetization seems to be
switching. However, the switching is only observed in the wires, and not on the whole structure.
This could be expected as the current density is higher only on the wires and not on the pads.

Now, let us look into the behaviour of the switching. The magnetization switching was only
observed at high current densities, above 0.8 × 1012 A/m2, and it was only observed for pulse
lengths of 2.8 ns or longer.

Two important observations can be made from these measurements.
1) It is possible to saturate in the up state, and then to switch to the down state, or the

contrary.
2) This switching occurs for either a positive or a negative current pulse, whatever the

initial magnetization direction. This suggests that the switching is not due to Oersted field,
but rather to Joule heating and/or spin torques.
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3) The switching occurs only once. Further application of pulses do not allow switching
it back and forth, neither with an opposite polarity current pulses, nor with higher current
densities or wider pulse widths.

Figure 5.4: Differential MOKE images of devices on W capped Mn4N thin films, fully saturated
(a,c,e,f), and after the application of a train of 2 positive and negative 3 ns pulses (b,d,f,h) The
white and black colour shows here again the direction of the magnetization.

However, if saturated again using a magnetic field, the switching using a current pulse
can be performed again. The origin of this behaviour is yet unclear, it suggests that the
magnetization state after saturating the magnetization in the up state or after switching from
down to up are different. The contrast seen in Fig.5.4 could correspond to a demagnetized
state, but the contrast remains large, close to that observed in between up and down domains.
Such a demagnetization could be expected in absence of an external in-plane field to break the
symmetry between the Anti-damping like SOT and the magnetization direction[41, 230, 245].

Although this experiment shows that a switching can be induced, it is not possible to
switch repeatedly back and forth, and the contributions of Joule heating and of spin torques
are unclear. Note that in the case of SOT switching without an external field, the symmetry
between the AD Torque and the magnetization state is not broken. The switching is then
usually random, even though it is possible to switch back and forth[41, 233]. The fact that we
do not retrieve this behaviour in these preliminary experiments is not clear for now. It could be
due to heating, to specificities of the STT and of SOTs in our devices. Some other phenomena
could come into play: for instance, Yang et al [246] demonstrated magnetic switching in a 5
µm ferrimagnetic Pt/GdFeCo bar with 10 ps electrical current pulse. The current density they
used for this switching is very high of 2 × 1013 A/m2. They claim that the switching is due to
heating effect in GdFeCo very similar to all-optical switching along with the SOC effect of Pt
with GdFeCo.

74



Chapter 5. Perspectives for Mn4N

SOT Switching with an In-Plane Field

The usual way to obtain a reproducible back-and-forth switching using SOTs is usually to apply
an additional in-plane field [230, 231]. To probe the effect of such a field in our system, an
additional in-plane oriented magnet was installed to provide a constant magnetic field. At first,
the device was fully saturated in one direction (up or down), as done previously, with the help
of out-of-plane magnetic field pulses higher than the coercive field of the sample.

Figure 5.5: Differential MOKE images of devices on W/Mn4N thin films (a) fully saturated
white contrast (b) black contrast in the wires after the application of a positive current pulse
and of a DC in-plane field (c) white contrast after application of a negative current pulse with
the same in-plane field

The saturated magnetization in one direction is seen as the white contrast in Fig.5.5 (a).
Now, in presence of an in-plane field, a train of 5 pulses were injected into the device, with a
delay of 1 ms between the pulses. Magnetization switching was observed for a current pulse
widths of 2 ns, a current density of 1 × 1012 A/m2, and an in-plane field of 75 mT. This can
be seen in Fig.5.5 (b) and (c) where the contrast first changes from white to black and then
to white again when current pulses with an opposite polarity were applied to the device. This
back and forth switching has been done more than 20 times using pulses. No DW motion was
observed in our measurements. This suggests that the switching occurs through semi-coherent
magnetization reversal rather than by nucleation and DW propagation. A partial switching
was observed in this system when a lower pulse width and a lower in-plane magnetic fields were
applied. However, no switching was observed below a current density of J = 0.85 × 1012 A/m2.
Another thing to note here is that that the switching was only observed when 3 or more pulses
were applied. A single shot switching with a single current pulse was not observed.

We did not have time yet to make a complete set of experiments that would allow a fruitful
analysis. In particular, we need to study the dependence of the switching with the current
polarity, the amplitude of the in-plane field, the number of pulses, their length, etc. We also
have to check for the reproducibility of the phenomenon and the endurance of these devices.
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Among the numerous questions opened by these first results are the role and amplitude of the
DMI, and the respective roles of the SOT and STT in this system.

To perform these experiments, we plan to use magnetotransport measurements in Hall
crosses[230], which are more convenient than MOKE measurements made here in nanowires
originally designed to study DW motion. Nonetheless, these results already show that Mn4N is
an interesting candidate for studying macrospin switching by SOTs. In particular the probable
SOT switching occurs here for current pulses as short as 2 ns, much shorter than those used in
other studies based on ferrimagnets (e.g. Pt/GdFeCo[247], Pt/CoGd[62]). However, Cai et al.
showed that the switching occurs around 0.4 ns for Pt/CoGd with a switching probability of
90% albeit almost using double the magnitude of the in-plane field as ours and similar current
density. These results can also be compared to a recent work on switching on a 20 nm thick
Pt/Mn4N system, where Bai et al[248] showed magnetization switching with a lower current
density and a lower in-plane field but a current pulse width of 0.5 ms. They claim this to be the
result of bulk like SOT in Mn4N which have been reported for other systems like CoTb[249].
It is also interesting to note that current driven magnetization switching was demonstrated
in non-collinear 111 oriented Mn4N by Isogami et al recently[158], where they observed the
magnetization switching by giving an in-plane current without any SOT layer. In this case, the
in-plane current provides a torque for the magnetization switching.

5.2 Domain-wall based logic devices
In this section, we will focus on DW-based logic devices. This work was done in collaboration
with Dr. Eline Raymenants and Dr. Van Dai Nguyen from IMEC, Belgium. Information can
be stored using magnetic domains, which can be moved by STT and/or SOT along a track[36].
These tracks can be made into arbitrary shapes which can enable performing logic operations.
Logic operations using DW motion has been first demonstrated by Allwood et al[19], where
they had demonstrated a ferromagnetic NOT gate operation and a shift register using field
driven DW motion using a specific shape of the DW track. Several DW-based logic concepts
have been proposed in the last two decades[21, 38, 250–254]. A review of DW-based logic
devices has been proposed by Raymenants et al. in Ref[255].

Figure 5.6: (a) Majority gate truth table (b) Schematic of the top view of the cross Spin
Torque Majority Gate devices showing the expected switching or absence of switching depending
on the inputs (Taken from Vaysset et al [256]) (c) 3D schematic of the cross STMG showing
the connected free layer with the MTJ pillars on the four corners of the cross. Taken from
Raymenants et al[255]

Here, we have focused on a concept proposed by Nikonov et al[250] called the Spin-Torque
Majority Gate (STMG). The majority gate works with three input and one output, instead of
the normal two inputs and 1 output which are being used. Fig.5.6 (a) shows the truth table
of a majority gate where X, Y and Z denote the three inputs. The output depends on the
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majority input with two cases. First, If all three inputs have the same input, the output would
be the same. Second, if two out of three inputs are the same; then the output will be the same
as the two similar inputs. Fig.5.6 (b) shows the top view of the schematic of how majority
can be implemented using MTJs and DW tracks. These crosses are made up of extended free
layer from the 4 MTJs which are shown here as the squares. Out of the four squares, the one
on the right is taken as the output, while the ones on the left are used as the input for the
majority gate. Here 0 and 1 are high and low resistance states, based on the direction of the
magnetization of the free layer. The idea here is to nucleate under the MTJ a DW, using a
high current density pulse through the MTJ [257]. This DW can then be moved by applying
current pulses from the different arms of the crosses. If only one DW moves, it will get pinned
at the cross. However, when the there are two or more DWs at the cross, they should propagate
towards the output MTJ. Once the combined DW reaches the output MTJ, it switches the free
layer, which can be then be read using using TMR.

Fig.5.6 (c) shows the 3D schematic of the cross shape with the MTJs on the edges of the
crosses. Any logic operation can be performed by using the inverters and three inputs of the
majority gates[258]. Other key features of this concepts are non-volatility through bi-stable
states, expected compact circuits, low power spin manipulation and continuous connections
through potential high speed and high density spintronic devices[256]. The STMG concept has
been studied extensively by simulations and have to shown to be working very well. However,
there has not been a full experimental demonstration of this concept yet.

As Mn4N exhibits a high efficiency for STT-induced DW motion, our goal was to develop
a STMG based on this material.

Figure 5.7: Differential MOKE images of device with different geometries: (a) cross (b) two
inputs (c) three inputs with curved tracks (d) three inputs with bigger output (e) flexible S shaped
track

In order to develop the first steps of a STMG, varying DW track shapes with different
number of inputs were designed with Dr. Eline Raymenants. These devices were then fabricated
on a 10 nm thick Mn4N layer capped with SiO2, with two contacts pads on either side of the
devices(cf. Appendix B). The MOKE microscopy setup was used to nucleate and move the
DWs in these devices similarly to what was shown in the chapter 2 and 4. Straight microwires
were also fabricated to measure the DW velocity. These devices are shown in Fig.5.7.

This preliminary study allowed us to get insights concerning the development of STMGs.
Designs have to be made keeping in mind resistance of the device so that enough current
density could be supplied to move the DWs in a reproducible way without adding up to any
heating effects. Therefore the lengths and width of the devices are very critical along with the
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shape. In the test geometry used here the current density was higher at the output cross as
compared to the input cross. This led to heating and nucleation of the DW along along with
edge of the output tracks. It also led to the breakdown of several devices. If the road towards
a full functional STMG remains long, these first results nonetheless show that it it possible to
manipulate DWs in Mn4N using complex geometries.

Figure 5.8: DW velocity curves of (a) STT driven 10 nm Mn4N (b)SOT driven SAF Taken
from the supplementary information of Raymenants et al.[253]

The velocities obtained from these devices were exactly similar to our previous work [86]
as shown in Fig.5.8 (a). This result also showcases the reproducibility of the DW velocity in
Mn4N. If we compare the DW velocity in Mn4N with the DW velocity in the SAF shown in
Fig.5.8 (b), similar velocities can be obtained in Mn4N for a five times lower current density.
Furthermore, Mn4N also provides a wide window of operation for the DW velocity in which the
DW moves in the flow regime. Overall, the study of these complex shaped tracks in Mn4N helped
us identifying the different challenges related to the design of the STMG, and showcased the
advantages of using ferrimagnetic Mn4N for such devices. Following these preliminary results,
new designs are under development at IMEC, with the aim of realizing the STMG functionality.

Summary
To summarize, in this chapter preliminary studies on SOT switching on Mn4N and DW based
logic devices was presented.

Possible SOT Switching without an in-plane field was observed on W/Mn4N when a
current pulses (pulse width of 3ns) higher than J = 0.8 × 1012 A/m2.

This switching was observed only once. The possible switching could be due to Joule
heating or sample being demagnetized.

Back and forth magnetization switching was observed when current pulses J ∼ 1 × 1012

A/m2 (pulse width of 2ns) were applied in the presence of in-plane fields Hx ∼ 75 mT.

Possible deterministic SOT switching was observed with the in-plane field. However,
further experiments are required to demonstrate this effect clearly and to explore the role
of SOT, STT and DMI in this system.
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Different shaped tracks were fabricated to study the STMG concept for DW logic. This
study has allowed us with helpful insights to design and develop such DW logic devices.

From this study we have got a better understanding of the STMG working concept and
have also showed that effectiveness of using ferrimagnets such as Mn4N for DW based
logic applications.

In this chapter, we have shown that indeed Mn4N could be used for and a lot of different
studies ranging from spin textures to switching and logic applications. With this we move on
to the conclusion of this thesis.
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The main results presented in this thesis are related to domain wall dynamics in Mn4N and
Mn4−xNixN thin films.

Chapter 1 focused on ferrimagnetic materials for spintronics, and introduced fundamental
mechanisms linked to the current induced domain wall motion in these systems. In chapter
2, an overview of Mn4N was presented, with a focus on the growth and characterization of
Mn4N samples deposited on MgO and SrTiO3 substrates. From this study it was discovered
that Mn4N grown on SrTiO3 is more preferable for domain wall motion, due to the presence
of large domains with a small density of pinning sites. This result can be attributed to the
good lattice matching between the SrTiO3 substrate and Mn4N. In the second part of chapter
2, we demonstrated very high domain wall velocities, of up to 900 m/s, in Mn4N/SrTiO3. This
can be explained with the help of micromagnetic simulations, by taking into account the low
saturation magnetization and the high spin polarization of this system.

In chapter 3, we established that Mn4N/SrTiO3 samples reach the compensation point at
room temperature using Mn substitution by Ni or Co. For Mn4−xNixN/SrTiO3, we showed
that the magnetic compensation point lies between a Ni concentration of x = 0.1 and x =
0.25. From the XMCD measurements, we determined that the Ni atoms replaced the Mn site I
corner atoms, with the magnetic moment of Ni pointing towards that of Mn site II face-centered
atoms. In the case of Mn4−xCoxN/SrTiO3, we observed the interesting possibility of having
two compensation points, the first one between Co concentrations x = 0.2 and x = 0.8, and
the second one between x = 0.8 and x = 1.3. This was observed by combining magnetization
saturation, AHE angle reversal and XMCD measurements. XMCD measurements showed that
the Co replaces the Mn site I atoms for Mn3.2Co0.8N which was expected. The net magnetization
points towards the magnetic moment of the Mn site I atoms. For Mn3.2Co0.8N, we observed
more Co atoms replacing the Mn site I atoms. Here, the net magnetization points towards the
magnetic moment of Mn site II atoms. Hence, indicating a compensation point between Co
concentrations of x = 0.2 and x = 0.8. Interestingly, in the case of Mn1.3Co2.7N we noticed that
Co atoms not only occupy the Mn corner site I atoms but also the Mn site II atoms, with the
magnetic moment in the direction of Mn site I. Here, the net magnetization is again towards
the magnetic moment of Mn site I atoms. Hence, from this we concluded that the there are
two compensation points, between Co concentrations of x = 0.2 and x= 0.8.

In chapter 4, Mn4−xNixN/SrTiO3 samples were fabricated with varying Ni concentrations,
in order to reach the compensation points at room temperature. Domain wall motion mea-
surements were then performed on these samples. Here, we achieved a very high domain wall
velocity of more than 2000 m/s just before the magnetic compensation point, and an even
higher velocity approaching 3000 m/s after the compensation point. A reversal of the domain
wall motion direction was also observed after the compensation point. To explain the high
domain wall velocities, an assumption was taken that in the case of Mn4−xNixN, the MCP
coincides with the ACP. Using this assumption, analytical calculations were performed. The
DW velocity obtained from these calculations were in agreement with our experimental results.
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It also indicated that the in order to have a reversal of the DW motion direction, the spin
polarization direction has to remain the same even after the crossing the MCP/ACP. Ab-initio
calculations were performed using VASP and SPRKKR approach. It was observed from both
the approaches that the MCP in Mn4−xNixN with Ni concentrations which were close to our
experimental results. From the s-orbital PDOS for Mn4−xNixN before and after the MCP, it
was confirmed that the spin polarization remains in the same direction before and after the
MCP. These calculations further justified our assumptions and helped explain the reversal of
DW motion after the MCP.

Chapter 5 focused on the some of the ongoing work related to Mn4N. In the first part, we
showed a preliminary study showing possible SOT switching on Mn4N/W sample, with and
without an external in-plane field. In the following part, we showed preliminary work done
on the realization of STMG concept using Mn4N. Devices with different shapes and different
number of inputs and outputs were fabricated on Mn4N/SrTiO3 and studied using MOKE
microscopy. By showing the possibility to displace DWs in complex wire shapes, this study lays
the first bricks towards the development of a STMG in Mn4N.

Contributions
During the course of my joint PhD program between Université Grenoble Alpes and University
of Tsukuba, I have studied and performed various systems and experimental techniques, in
three different Institutions, namely SPINTEC and Institut Néel in Grenoble, and University
of Tsukuba. I have learnt thin films growth techniques by MBE, along with XRD and XRR
measurements, at University of Tsukuba, on Mn4N and Mn4−xNixN. I have performed the
optimization of Mn4−xNixN thin films to reach the compensation point. I have been trained
on the MBE setup by Taro Komori, Taku Hirose, Haruka Mitarai and Prof. Takashi Suemasu.
The growth is an essential part of this thesis, involved in all Chapters 2,3,4 and 5. I have
been trained on MOKE microscopy by Dr. Jose Peña Garcia, Dr. Jan Vogel and Dr. Stefania
Pizzini at Institut Néel. I have performed the imaging of the domains for DW motion which is
shown in Chapter 4 and 5. I have been trained on Nanofabrication by Dr. Laurent Vila and
other staff at the clean room at SPINTEC and performed the device fabrication for domain wall
motion and magneto-transport measurements shown in chapter 2,4 and 5. I have been trained
to perform the magneto-transport measurements by Dr. Laurent Vila and Dr. Jean-Philippe
Attané at SPINTEC. I have performed the magneto-transport measurements of the Mn4N and
Mn4−xNixN thin films and of the devices shown in Chapter 2, 3, 4 and 5. I have also performed
measurements using VSM, trained by Isabelle Joumard of SPINTEC, and SQUID, trained by
Jean-Francois Jacquot of CEA.

Apart from this, I discussed the micromagnetic simulations performed by Dr. Jose Peña
Garcia. The growth of the thin films in Chapter 2 were performed by Dr. Toshiki Gushi and
were part of his PhD. I participated to the measurements and to the results discussion.

The band structure and transport characteristics in Mn4N and Mn4−xNixN have been ob-
tained in collaboration with Dr. Ali Hallal and Prof. Mairbek Chshiev of SPINTEC, who per-
formed the ab-initio calculations. The Mn4−xCoxN thin films were grown by Haruka Mitarai,
and the subsequent XMCD measurements were performed by Haruka Mitarai, Taro Komori
and Prof. Takashi Suemasu. Although I was not able to perform the XMCD measurements
myself, I participated to the interpretation of the experimental results.

Finally, the MFM microscopy on W/Mn4N samples was performed in collaboration with
Dr. Van Tuong Pham, with discussions with Dr. Olivier Boulle and Dr. Stefania Pizzini to
study the presence of skyrmions in this system.
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The devices for DW logic were designed by Dr. Eline Raymenants of Imec in Belgium and
Dr. Van Dai Nguyen. Discussions with Dr. Kevin Garello helped to move forward with the
study of SOT Switching in W/Mn4N.

Dr. Laurent Vila, Dr. Jean-Philippe Attané, Prof. Takashi Suemasu, Dr. Stefania Pizzini
and other colleagues and researchers at SPINTEC, Institut Néel and University of Tsukuba
have immensely helped and guided me in this endeavour. The various studies, experimen-
tal techniques and numerous discussions during my PhD have benefited me in advancing my
knowledge in experimental physics.

Output of this work
Several parts of this thesis have already been published:

The part of the work presented in Chapter 2 about Domain wall motion in Mn4N has
been published in ACS Nano Letters[86].

The study of Mn4−xCoxN showing two different compensation points which is presented
in Chapter 3 has been published in published in Physical Review Materials[138].

The work on current induced domain wall motion presented in Chapter 4 has been pub-
lished in ACS Nano Letters[129].

I also took part, as co-author, to several studies that are not detailed in this thesis:

I have helped Dr. Eline Raymenants in the design, nanofabrication and testing of new
tracks for DW logic. This work was part of the main work published in IEEE International
Electronic Devices Meeting (IEDM) 2021[255].

I have taken part in discussions on the results and analysis of the effect of doping in
Mn4N and its subsequent Ferrimagnetic to Ferromagnetic transition. This work has been
published in Journal of Physics D: Applied Physics[135].

Apart from this, I have performed with Taro Komori AHE measurements on Mn4N and
Mn4−xNixN thin films. From our analysis to de-convolute the different interactions contributing
to the AHE, it appears that the reason for the high AHE angle in Mn4N and Mn4−xNixN of
2%, and of the reversal of the AHE angle at low temperatures, is the role of phonons in this
system. Results from ab-initio calculations matches well with our experimental results. This
work is still in progress.

I have also been part of an ongoing study on the presence of skyrmions in W/Mn4N and
Pt/Mn4N with Dr. Van Tuong, Dr. Olivier Boulle and Dr. Stefania Pizzini.

Outlook
I hope that the work presented in this thesis has showcased the fascinating properties of Mn4N,
Mn4−xNixN and Mn4−xCoxN. We have shown domain wall velocities comparable to those ob-
tained in SOT systems, whereas there is here only STT, at room temperature and without the
need for an external in-plane field. We have also shown that Mn4N could be used as poten-
tial candidate for DW logic and SOT switching. There are several other potential spintronics
applications where the fast dynamics of Mn4N could be used or prove to be highly beneficial.
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Conclusion

The absence of rare-earth is also an asset for the integration with what could become the next
generation of greener and cheaper alternatives or complements to the CMOS technology.

Nonetheless, in order to justify as a potential candidate in spintronics, this material must
be implemented in MTJs. MTJs have indeed become the backbone of spintronics, from sensors
to STT oscillators and MRAMs. Hence, there is a continuous effort towards the improvement
of MTJs, with a focus on the materials used for the magnetic layers and the tunneling bar-
rier[17]. In this context, ferrimagnets can be an interesting choice to develop MTJs, as their
much lower magnetization could reduce the stray fields and hence could allow a higher density
of devices. Also, the lower magnetization and faster dynamics[259] could help lowering the
switching current densities. For instance, Kaiser et al[260] had demonstrated a high negative
TMR of -90% using ferrimagnetic CoFe/CoFe-Gd for the free layers. In regards to Rare-earth
free nitrides, Narahara et al[84] had demonstrated a MTJ structure using a ferromagnetic
Fe4N/MgO/Fe4N stack. Here, Fe4N has the same anti-perovskite crystal structure as Mn4N.
Mn4N being a ferrimagnet with an anti-perovskite crystal structure, it is worth trying to de-
velop Mn4N based MTJs. Ultrafast spin dynamics[129], high spin polarization[86], PMA from
crystalline anisotropy along with high thermal stability[118] makes Mn4N a suitable candidate,
which could be used in MTJs both as a free layer and reference layer.

If MTJs based on Mn4N are realized, they can be applied to Spin Torque Nano Oscillators
(STNO) as well. STNOs are nanoscale pillars made of MTJs[261]. In the case of STNOs, the
spin polarized current is used to induce oscillations of the magnetization of the free layer, rather
than magnetization switching. The oscillation frequencies depend on the properties of the free
layer and could range from hundreds of MHz to several tens of GHz. These oscillations can
then be converted into voltage signals using the MTJs magneto-resistance.

In this context, Mn4N could be used as the oscillating free layer in STNOs. Mn4N has
an estimated resonant frequency higher than 70 GHz at zero field. This high resonant fre-
quency originates from the large anisotropy of Mn4N and from a small saturation magnetiza-
tion. Present STNOs can go up to tens of GHz frequency range. However, it was demonstrated
by Tsunegi et al[262] that by using a layer of MnGa under the oscillator layer, the frequency
could be increased to up to 70 GHz at 2 T. Similarly, it was shown that in the optical mode
the MnGa could reach up to sub-THz 150 GHz due to its large anisotropy[263]. With Mn4N
as the oscillating layer, we can reach this sub-THz regime at zero field. The present state of
the art in telecommunications industry is the 5G technology, which operates with a bandwidth
up to 54 GHz. Using Mn4N could help increasing the frequency of operation upto 100 GHz,
enabling the next generation of devices in the telecommunication industry with much faster
data transfer rates.

With the potential to be used in spintronics for DW or SOT devices, STT-MRAM, SOT-
MRAM or oscillators, Mn4N could become the next years a new member of the magnetic
materials family for spintronics.

83



Acknowledgement

Firstly, I am extremely indebted to my parents who have supported and guided me in life to
follow my passion. Without their never-ending support, this PhD would not have been possible.
You have been a pillar of my constant support. I thank you very much for everything.

I am very fortunate to having worked with fantastic team of supervisors at University of
Grenoble, France and University of Tsukuba, Japan. My experiences and learnings in last 3
years have helped me appreciate the hardships and become more patient and adjusting. I would
like to express my sincere gratitude towards my supervisor Laurent who helped and guided me
in both my day to day work and personally. I will always cherish our time profoundly at the
lab and outside at various meetings and conferences. I deeply thank Jean-philippe for being
the guiding light and steer me in the right direction in my PhD whenever I felt a bit lost. I am
thankful to you for patiently teaching me the art of skiing in the beautiful French Alps. Last
but not the least, I am extremely grateful to Prof. Suemasu for immense help in the lab and
making my life in Japan feel like a walk in the park. I am still looking forward to playing table
tennis with you when I return to Japan.

I would like to immensely thank Stefania Pizzini for her expert guidance and support with
the measurements at Institut Neel and key teachings of the subject matter. My PhD would
not have been completed without your help and guidance. I also want to thank Jan Vogel for
his impeccable insights and guidance for the PhD work.

Special thanks to Mair and Ali for their help with the computational work and sharing their
insights without which our work could not have been well explained. I would also like to thank
Asst. Prof. Toko for not only helping and guiding me at the lab at University of Tsukuba, but
also showing me the spiciest Ramen shop there.

I would like to thank Olivier and Tuong for their advice and guidance on the study of
skyrmions. I want to thank Dai and Eline for helping with the development of domain wall
based logic devices. It was also amazing to share the office with Eline and have stimulating
discussions.

Words are going to fall short for thanking my fellow labmates with whom I have had fantastic
discussions and spent wonderful time in the last 4 years. I want to thank Jose and Aymen for
helping me whenever I was stuck at the MOKE setup at Insitut Neel and our long coffee sessions
discussing physics, life and more. I would love to thank Paul and Nicolas for helping me settle
in the lab upon arrival and having infinite interesting discourse. I wish to thank Yu Fu for
being like an older sister to me and having amazing lunch-time conversations and also for the
delicious hot pots. I want to thank Maxen for all the discussions and setups during the covid
times and after work as well. I would love to thank Sara for being an amazing friend and for
countless discussions. I want to thank Cecile for helping me at the magneto-transport setups
and providing me guidance. I want to thank Ryuhei for being there whenever I needed any
support and having amazing chats both in and outside the lab. I would also like to thank
Salvatore, Paolo and Aurelie for having very good times both in and outside the lab. I would
also especially like to thank Ariel who has been so kind to me and have always helped out in

84



Acknowledgement

the lab. This PhD would not have been completed without your crucial help.
Now coming to my fellow labmates at Tsukuba, I would like to firstly thank Taro who

helped, guided and supervised me throughout my stay in Tsukuba. I want to thank Taku and
Haruka for helping me at the lab and having great discussions and conversations at lunch. I
want to thank Yudai and Xi for really helping me learn all the bureaucracy and culture in
Japan. I want to thank Takuma for being a great friend and having interesting conversations.
I would also like to say thanks to all the other students in the Suemasu lab, all of you were very
kind, inviting and helpful to me. I will always remember our ski trip, gyoza party and trips to
Ramen shops. Lastly, I wish to thank Toshiki who gave great insights and advice on my PhD
work which helped me extensively.

I want to thank Ahmed and Philippe from the rf group with whom I had amazing brain-
storming sessions and discussions. They helped me understand the working of STNOs and
Neural networks. I want to thank Lucian, Gilles and Olivier for being part of my CSI. They
have been very kind to me and have always given me great advice. I want to thank Marco,
Daniel, Alvaro, Olivier, Stefan and Nuno from MRAM group for having amazing times in
Grenoble. I want to thank Rafael, Micheal, Laura, Kaushik, Arijit and Kevin for having great
discussions and having a good time in SPINTEC and Grenoble. I want to specially thank my
friends in Grenoble Louis, Namanu, Sameer, Ranjana, Valid, Martin and Lucila for being there
after work and supporting me through the PhD. I particularly want to thank Mahima who
supported me throughout my writing process and helped me push through the end.

I would really like to thank Liliana, Prof. Mangin, Prof. Otani, Prof. Mitani, Prof. Kuroda,
Prof. Yanagihara, Prof. Ohno and Stefania for being a part of my jury committee. I thank
them for being very thorough and asking very interesting questions to me for my PhD.

I thank IDEX for the funding of my PHD (IDEX-DOMINO) in France and University of
Tsukuba for the funding in Japan.

85



Bibliography

1. Mocuta, A. et al. Enabling CMOS Scaling Towards 3nm and Beyond in 2018 IEEE
Symposium on VLSI Technology 2018 IEEE Symposium on VLSI Technology (IEEE,
Honolulu, HI, June 2018), 147–148.

2. Moore, G. E. Cramming more components onto integrated circuits. 38, 6 (1965).
3. Sánchez-Sinencio, E. & Andreas G, A. Low-voltage/low-power integrated circuits and

systems: low-voltage mixed-signal circuits. Wiley-IEEE Press 4 (1999).
4. Vidal, J. ’Tsunami of data’ could consume one fifth of global electricity by 2025 Climate

Home News. Section: Energy. https://www.climatechangenews.com/2017/12/11/
tsunami-data-consume-one-fifth-global-electricity-2025/ (2021).

5. Beyond CMOS - IEEE International Roadmap for Devices and Systems (IEEE, 2018).
6. Baibich, M. N. et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices.

Physical Review Letters 61, 2472–2475 (Nov. 21, 1988).
7. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in

layered magnetic structures with antiferromagnetic interlayer exchange. Physical Review
B 39, 4828–4830 (Mar. 1, 1989).

8. Youssef, J. B. et al. Correlation of GMR with texture and interfacial roughness in opti-
mized rf sputtering deposited Co/Cu multilayers. Journal of Magnetism and Magnetic
Materials 165, 288–291 (Jan. 1997).

9. Bowen, M. et al. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling
experiments. Applied Physics Letters 82, 233–235 (Jan. 13, 2003).

10. Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion
in CoFeBMgOCoFeB pseudo-spin-valves annealed at high temperature. Applied Physics
Letters 93, 082508 (Aug. 25, 2008).

11. Julliere, M. Tunneling between ferromagnetic films. Physics Letters A 54, 225–226 (Sept.
1975).

12. Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/AlzO3/Fejunction.
Journal of Magnetism and Magnetic Materials, 4 (1995).

13. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large Magnetoresistance
at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions. Physical Review
Letters 74, 3273–3276 (Apr. 17, 1995).

14. Seagate reaches One Terabit per Square Inch Milestone in Hard Drive Storage with
New Technology Demonstration | News Archive | Seagate Seagate.com. https://www.
seagate.com/in/en/news/news-archive/terabit-milestone-storage-seagate-
master-pr/ (2022).

15. 2014: HDD areal density reaches 1 terabit/sq. in. | The Storage Engine | Computer His-
tory Museum computerhistory.org. https://www.computerhistory.org/storageengine/
hdd-areal-density-reaches-1-terabit-sq-in/ (2022).

16. Chappert, C., Fert, A. & Nguyen, F. V. The emergence of spin electronics in data storage.
NANOSCIENCE AND TECHNOLOGY 6, 11 (2009).

17. Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics in-
dustry. Nature Electronics 3, 446–459 (Aug. 2020).

86

https://www.climatechangenews.com/2017/12/11/tsunami-data-consume-one-fifth-global-electricity-2025/
https://www.climatechangenews.com/2017/12/11/tsunami-data-consume-one-fifth-global-electricity-2025/
https://www.seagate.com/in/en/news/news-archive/terabit-milestone-storage-seagate-master-pr/
https://www.seagate.com/in/en/news/news-archive/terabit-milestone-storage-seagate-master-pr/
https://www.seagate.com/in/en/news/news-archive/terabit-milestone-storage-seagate-master-pr/
https://www.computerhistory.org/storageengine/hdd-areal-density-reaches-1-terabit-sq-in/
https://www.computerhistory.org/storageengine/hdd-areal-density-reaches-1-terabit-sq-in/


Bibliography

18. Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials.
Nature Materials 11, 372–381 (May 2012).

19. Allwood, D. A. Submicrometer Ferromagnetic NOT Gate and Shift Register. Science
296, 2003–2006 (June 14, 2002).

20. Currivan, J. A., Youngman Jang, Mascaro, M. D., Baldo, M. A. & Ross, C. A. Low Energy
Magnetic Domain Wall Logic in Short, Narrow, Ferromagnetic Wires. IEEE Magnetics
Letters 3, 3000104–3000104 (2012).

21. Currivan-Incorvia, J. A. et al. Logic circuit prototypes for three-terminal magnetic tunnel
junctions with mobile domain walls. Nature Communications 7, 10275 (Apr. 2016).

22. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spinorbit logic. Nature
565, 35–42 (Jan. 2019).

23. Noël, P. et al. Non-volatile electric control of spincharge conversion in a SrTiO3 Rashba
system. Nature 580, 483–486 (Apr. 23, 2020).

24. Samsung Electronics Starts Commercial Shipment of eMRAM Product Based on 28nm
FD-SOI Process https://news.samsung.com/global/samsung-electronics-starts-
commercial-shipment-of-emram-product-based-on-28nm-fd-soi-process (2022).

25. Zhu, J.-G. & Park, C. Magnetic tunnel junctions. Materials Today 9, 36–45 (Nov. 2006).
26. LaBonte, A. E. TwoDimensional BlochType Domain Walls in Ferromagnetic Films. Jour-

nal of Applied Physics 40, 2450–2458 (May 1969).
27. Hubert, A. & Schäfer, R. Magnetic domains: the analysis of magnetic microstructures

696 pp. (Springer, Berlin ; New York, 1998).
28. Coey, J. M. D. Louis Néel: Retrospective (invited). Journal of Applied Physics 93, 8224–

8229 (May 15, 2003).
29. Ono, T. et al. Propagation of a Magnetic Domain Wall in a Submicrometer Magnetic

Wire. Science 284, 468–470 (Apr. 16, 1999).
30. Beach, G. S. D., Nistor, C., Knutson, C., Tsoi, M. & Erskine, J. L. Dynamics of field-

driven domain-wall propagation in ferromagnetic nanowires. Nature Materials 4, 741–
744 (Oct. 2005).

31. Fukumoto, K. et al. Dynamics of Magnetic Domain Wall Motion after Nucleation: De-
pendence on the Wall Energy. Physical Review Letters 96, 097204 (Mar. 9, 2006).

32. Tsoi, M., Fontana, R. E. & Parkin, S. S. P. Magnetic domain wall motion triggered by
an electric current. Applied Physics Letters 83, 2617–2619 (Sept. 29, 2003).

33. Yamaguchi, A. et al. Real-Space Observation of Current-Driven Domain Wall Motion in
Submicron Magnetic Wires. Physical Review Letters 92, 077205 (Feb. 19, 2004).

34. Kläui, M. et al. Controlled and Reproducible Domain Wall Displacement by Current
Pulses Injected into Ferromagnetic Ring Structures. Physical Review Letters 94, 106601
(Mar. 15, 2005).

35. Berger, L. Low-field magnetoresistance and domain drag in ferromagnets. Journal of
Applied Physics 49, 2156–2161 (Mar. 1978).

36. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic Domain-Wall Racetrack Memory.
Science, 190–194 (Nov. 4, 2008).

37. Parkin, S. & Yang, S.-H. Memory on the racetrack. Nature Nanotechnology 10, 195–198
(Mar. 2015).

38. Luo, Z. et al. Current-driven magnetic domain-wall logic. Nature 579, 214–218 (Mar.
2020).

39. Slonczewski, J. Current-driven excitation of magnetic multilayers. Journal of Magnetism
and Magnetic Materials 159, L1–L7 (June 1996).

40. Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of
current-driven domain wall motion in patterned nanowires. Europhysics Letters (EPL)
69, 990–996 (Mar. 2005).

87

https://news.samsung.com/global/samsung-electronics-starts-commercial-shipment-of-emram-product-based-on-28nm-fd-soi-process
https://news.samsung.com/global/samsung-electronics-starts-commercial-shipment-of-emram-product-based-on-28nm-fd-soi-process


Bibliography

41. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferro-
magnetic systems. Reviews of Modern Physics 91, 035004 (Sept. 9, 2019).

42. Freitas, P. P. & Berger, L. Observation of s d exchange force between domain walls and
electric current in very thin Permalloy films. Journal of Applied Physics 57, 1266–1269
(Feb. 15, 1985).

43. Mougin, A., Cormier, M., Adam, J. P., Metaxas, P. J. & Ferré, J. Domain wall mobility,
stability and Walker breakdown in magnetic nanowires. Europhysics Letters (EPL) 78,
57007 (June 2007).

44. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the Spin
Hall Effect in Semiconductors. Science 306, 1910–1913 (Dec. 10, 2004).

45. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental Observation of
the Spin-Hall Effect in a Two-Dimensional Spin-Orbit Coupled Semiconductor System.
Physical Review Letters 94, 047204 (Feb. 4, 2005).

46. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall
effects. Reviews of Modern Physics 87, 1213–1260 (Oct. 27, 2015).

47. Meier, L. et al. Measurement of Rashba and Dresselhaus spinorbit magnetic fields. Nature
Physics 3, 650–654 (Sept. 2007).

48. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for
Rashba spinorbit coupling. Nature Materials 14, 871–882 (Sept. 2015).

49. Khvalkovskiy, A. V. et al. High Domain Wall Velocities due to Spin Currents Perpendic-
ular to the Plane. Physical Review Letters 102, 067206 (Feb. 13, 2009).

50. Mihai Miron, I. et al. Current-driven spin torque induced by the Rashba effect in a
ferromagnetic metal layer. Nature Materials 9, 230–234 (Mar. 2010).

51. Haazen, P. P. J. et al. Domain wall depinning governed by the spin Hall effect. Nature
Materials 12, 299–303 (Apr. 2013).

52. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dy-
namics of chiral ferromagnetic domain walls. Nature Materials 12, 611–616 (July 2013).

53. Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain
walls. Nature Nanotechnology 8, 527–533 (July 2013).

54. Imai, M. et al. Observation of gyromagnetic reversal. Applied Physics Letters 113, 052402
(July 30, 2018).

55. Stanciu, C. D. et al. Ultrafast spin dynamics across compensation points in ferrimagnetic
GdFeCo : The role of angular momentum compensation. Physical Review B 73, 220402
(June 12, 2006).

56. Binder, M. et al. Magnetization dynamics of the ferrimagnet CoGd near the compensation
of magnetization and angular momentum. Physical Review B 74, 134404 (Oct. 9, 2006).

57. Baltz, V. et al. Antiferromagnetic spintronics. Reviews of Modern Physics 90, 015005
(Feb. 15, 2018).

58. Kim, K.-J. et al. Fast domain wall motion in the vicinity of the angular momentum
compensation temperature of ferrimagnets. Nature Materials 16, 1187–1192 (Dec. 2017).

59. Caretta, L. et al. Fast current-driven domain walls and small skyrmions in a compensated
ferrimagnet. Nature Nanotechnology 13, 1154–1160 (Dec. 2018).

60. Haltz, E., Krishnia, S., Berges, L., Mougin, A. & Sampaio, J. Domain wall dynamics
in antiferromagnetically coupled double-lattice systems. Physical Review B 103, 014444
(Jan. 27, 2021).

61. Han, J. et al. Room-Temperature Spin-Orbit Torque Switching Induced by a Topological
Insulator. Physical Review Letters 119, 077702 (Aug. 18, 2017).

62. Cai, K. et al. Ultrafast and energy-efficient spinorbit torque switching in compensated
ferrimagnets. Nature Electronics 3, 37–42 (Jan. 2020).

88



Bibliography

63. Siddiqui, S. A., Han, J., Finley, J. T., Ross, C. A. & Liu, L. Current-Induced Domain Wall
Motion in a Compensated Ferrimagnet. Physical Review Letters 121, 057701 (July 30,
2018).

64. Je, S.-G. et al. Spin-orbit torque-induced switching in ferrimagnetic alloys: Experiments
and modeling. Applied Physics Letters 112, 062401 (Feb. 5, 2018).

65. Avci, C. O. et al. Interface-driven chiral magnetism and current-driven domain walls in
insulating magnetic garnets. Nature Nanotechnology 14, 561–566 (June 2019).

66. Caretta, L. et al. Relativistic kinematics of a magnetic soliton. Science 370, 1438–1442
(Dec. 18, 2020).

67. Palomino, A. et al. Evaluating critical metals contained in spintronic memory with a
particular focus on Pt substitution for improved sustainability. Sustainable Materials
and Technologies 28, e00270 (July 2021).

68. Concepts in spin electronics (ed Maekawa, S.) Series on semiconductor science and tech-
nology 13 (Oxford University Press, Oxford ; New York, 2006). 398 pp.

69. Korenivski, V. & Slonczewski, J. Introduction to Spintronics (KTH-Physics, Stockholm,
Mar. 13, 2007).

70. Coey, J. M. D. Magnetism and Magnetic Materials (Cambridge University Press, 2009).
71. Néel, L. Antiferromagnetism and Ferrimagnetism. Proceedings of the Physical Society.

Section A 65, 18 (1952).
72. Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG magnonics. Journal of Physics D:

Applied Physics 43, 264002 (July 7, 2010).
73. Dionne, G. A review of ferrites for microwave applications. Proceedings of the IEEE 63,

777–789 (1975).
74. Rodmacq, B., Auffret, S., Dieny, B., Monso, S. & Boyer, P. Crossovers from in-plane to

perpendicular anisotropy in magnetic tunnel junctions as a function of the barrier degree
of oxidation. Journal of Applied Physics 93, 7513–7515 (May 15, 2003).

75. Ikeda, S. et al. A perpendicular-anisotropy CoFeBMgO magnetic tunnel junction. Nature
Materials 9, 721–724 (Sept. 2010).

76. Peng, S. et al. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metal-
lic capping layer structures. Scientific Reports 5, 18173 (Dec. 2015).

77. Landau, L. & Lifshitz, E. in, 153–169 (Phys. Z. Sowjetunion 8, 1935).
78. Bloch, F. in Zur Theorie des Austauschproblems und der Remanenzerscheinung der Fer-

romagnetika: Probleme des Atomkernbaues (ed Bloch, F.) 295–335 (Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1932).

79. Fong, X. et al. Spin-Transfer Torque Devices for Logic and Memory: Prospects and
Perspectives. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 35, 1–22 (Jan. 2016).

80. Néel, L. Energie des parois de Bloch dans les couches minces. C. R. Acad. Sci. Paris
241, 533–536 (1958).

81. Ralph, D. & Stiles, M. Spin transfer torques. Journal of Magnetism and Magnetic Ma-
terials 320, 1190–1216 (Apr. 2008).

82. Marrows, C. H. Spin-polarised currents and magnetic domain walls. Advances in Physics
54, 585–713 (Dec. 2005).

83. Huang, S. X., Chen, T. Y. & Chien, C. L. Spin polarization of amorphous CoFeB deter-
mined by point-contact Andreev reflection. Applied Physics Letters 92, 242509 (June 16,
2008).

84. Narahara, A., Ito, K. & Suemasu, T. Growth of ferromagnetic Fe4N epitaxial layers and
a-axis-oriented Fe4N/MgO/Fe magnetic tunnel junction on MgO(001) substrates using
molecular beam epitaxy. Journal of Crystal Growth 311, 1616–1619 (Mar. 2009).

89



Bibliography

85. De Groot, R. A., Mueller, F. M., Engen, P. G. v. & Buschow, K. H. J. New Class of
Materials: Half-Metallic Ferromagnets. Physical Review Letters 50, 2024–2027 (June 20,
1983).

86. Gushi, T. et al. Large Current Driven Domain Wall Mobility and Gate Tuning of Co-
ercivity in Ferrimagnetic Mn 4 N Thin Films. Nano Letters 19, 8716–8723 (Dec. 11,
2019).

87. Gilbert, T. Classics in Magnetics A Phenomenological Theory of Damping in Ferromag-
netic Materials. IEEE Transactions on Magnetics 40, 3443–3449 (Nov. 2004).

88. Emori, S. Magnetic Domain Walls Driven by Interfacial Phenomena PhD thesis (Mas-
sachusetts Institute of Technology, 2014).

89. Zhang, S. & Li, Z. Roles of Nonequilibrium Conduction Electrons on the Magnetization
Dynamics of Ferromagnets. Physical Review Letters 93, 127204 (Sept. 17, 2004).

90. Tatara, G. & Kohno, H. Theory of Current-Driven Domain Wall Motion: Spin Transfer
versus Momentum Transfer. Physical Review Letters 92, 086601 (Feb. 26, 2004).

91. Wangsness, R. K. Sublattice Effects in Magnetic Resonance. Physical Review 91, 1085–
1091 (Sept. 1, 1953).

92. Yang, S.-H., Ryu, K.-S. & Parkin, S. Domain-wall velocities of up to 750 m s1 driven
by exchange-coupling torque in synthetic antiferromagnets. Nature Nanotechnology 10,
221–226 (Mar. 2015).

93. Okuno, T. et al. Spin-transfer torques for domain wall motion in antiferromagnetically
coupled ferrimagnets. Nature Electronics 2, 389–393 (Sept. 2019).

94. Haltz, E. Domain wall dynamics driven by spin-current in ferrimagnetic alloys PhD
thesis (2019).

95. Kobayashi, T., Hayashi, H., Fujiwara, Y. & Shiomi, S. Damping parameter and wall
velocity of RE-TM films. IEEE Transactions on Magnetics 41, 2848–2850 (Oct. 2005).

96. Atkins, P. et al. Shriver and Atkins’ Inorganic chemistry 5th ed. (Oxford University
Press, W. H. Freeman and Company, 41 Madison Avenue, New York, NY 10010, 2010).

97. Doll, G. L. et al. Intercalation of hexagonal boron nitride with potassium. Journal of
Applied Physics 66, 2554–2558 (Sept. 15, 1989).

98. Stone, D. S., Yoder, K. B. & Sproul, W. D. Hardness and elastic modulus of TiN based
on continuous indentation technique and new correlation. Journal of Vacuum Science &
Technology A: Vacuum, Surfaces, and Films 9, 2543–2547 (July 1991).

99. Oyama, S. T. The chemistry of Transition Metal Nitrides and Carbides (Springer Inter-
national Publishing, 1996).

100. Pierson, H. O. Handbook of Refractory Carbides and Nitrides (William Andrew Inc.,
1996).

101. Carlson, O. N. The N-Si (Nitrogen-Silicon) system. Bulletin of Alloy Phase Diagrams
11, 569–573 (Dec. 1990).

102. Riley, F. L. Silicon Nitride and Related Materials. Journal of the American Ceramic
Society 83, 245–265 (Dec. 21, 2004).

103. The Nobel Prize in Physics 2014 NobelPrize.org. https : / / www . nobelprize . org /
prizes/physics/2014/press-release/ (2022).

104. Jain, A. et al. Commentary: The Materials Project: A materials genome approach to
accelerating materials innovation. APL Materials 1, 011002 (July 2013).

105. Bykov, M. et al. Fe-N system at high pressure reveals a compound featuring polymeric
nitrogen chains. Nature Communications 9, 2756 (Dec. 2018).

106. Mekata, M. Magnetic Study on Mn4N and its Related Compounds. Journal of the Phys-
ical Society of Japan 17, 796–803 (1962).

90

https://www.nobelprize.org/prizes/physics/2014/press-release/
https://www.nobelprize.org/prizes/physics/2014/press-release/


Bibliography

107. Fruchart, D. & Bertaut, E. F. Magnetic Studies of the Metallic Perovskite-Type Com-
pounds of Manganese. Journal of the Physical Society of Japan 44 (Mar. 1978).

108. Fruchart, D., Givord, D., Convert, P., l’Heritier, P. & Senateur, J. P. The non-collinear
component in the magnetic structure of Mn 4 N. Journal of Physics F: Metal Physics 9,
2431–2437 (Dec. 1979).

109. Matsunami, D., Fujita, A., Takenaka, K. & Kano, M. Giant barocaloric effect enhanced
by the frustration of the antiferromagnetic phase in Mn3GaN. Nature Materials 14, 73–
78 (Jan. 2015).

110. Zemen, J. et al. Frustrated magnetism and caloric effects in Mn-based antiperovskite
nitrides: Ab initio theory. Physical Review B 95, 184438 (May 31, 2017).

111. Takenaka, K. & Takagi, H. Giant negative thermal expansion in Ge-doped anti-perovskite
manganese nitrides. Applied Physics Letters 87, 261902 (Dec. 26, 2005).

112. Ito, K., Lee, G. H. & Suemasu, T. Epitaxial growth of ferromagnetic Fe 4 N thin films
on SrTiO 3 (001) substrates by molecular beam epitaxy. Journal of Physics: Conference
Series 266, 012091 (Jan. 1, 2011).

113. Ito, K. et al. Local electronic states of Fe 4 N films revealed by x-ray absorption spec-
troscopy and x-ray magnetic circular dichroism. Journal of Applied Physics 117, 193906
(May 21, 2015).

114. Takata, F. et al. Preferred site occupation of 3 d atoms in Ni x F e 4 x N ( x = 1
and 3) films revealed by x-ray absorption spectroscopy and magnetic circular dichroism.
Physical Review Materials 2, 024407 (Feb. 23, 2018).

115. Ito, K., Harada, K., Toko, K., Akinaga, H. & Suemasu, T. Epitaxial growth and mag-
netic characterization of ferromagnetic Co4N thin films on SrTiO3(001) substrates by
molecular beam epitaxy. Journal of Crystal Growth 336, 40–43 (Dec. 2011).

116. Ito, K. et al. X-ray magnetic circular dichroism of ferromagnetic Co 4 N epitaxial films
on SrTiO 3 (001) substrates grown by molecular beam epitaxy. Applied Physics Letters
99, 252501 (Dec. 19, 2011).

117. Yasutomi, Y., Ito, K., Sanai, T., Toko, K. & Suemasu, T. Perpendicular magnetic
anisotropy of Mn 4 N films on MgO(001) and SrTiO 3 (001) substrates. Journal of
Applied Physics 115, 17A935 (May 7, 2014).

118. Gushi, T. et al. Millimeter-sized magnetic domains in perpendicularly magnetized ferri-
magnetic Mn 4 N thin films grown on SrTiO 3. Japanese Journal of Applied Physics 57,
120310 (Dec. 1, 2018).

119. Komori, T., Anzai, A., Gushi, T., Toko, K. & Suemasu, T. Molecular beam epitaxy
growth of Mn4Ni N thin films on MgO(0 0 1) substrates and their magnetic properties.
Journal of Crystal Growth 507, 163–167 (Feb. 2019).

120. Hirose, T. et al. Strong correlation between uniaxial magnetic anisotropic constant and
in-plane tensile strain in Mn 4 N epitaxial films. AIP Advances 10, 025117 (Feb. 1, 2020).

121. Sanai, T., Ito, K., Toko, K. & Suemasu, T. Epitaxial growth of ferromagnetic CoxFe4xN
thin films on SrTiO3 (001) and magneticproperties. Journal of Crystal Growth 378, 342–
346 (Sept. 2013).

122. Ito, K. et al. Perpendicular magnetic anisotropy in Co x Mn 4 x N ( x = 0 and 0.2)
epitaxial films and possibility of tetragonal Mn 4 N phase. AIP Advances 6, 056201 (May
2016).

123. Anzai, A., Takata, F., Gushi, T., Toko, K. & Suemasu, T. Epitaxial growth and magnetic
properties of Fe 4 x Mn x N thin films grown on MgO(0 0 1) substrates by molecular
beam epitaxy. Journal of Crystal Growth 489, 20–23 (May 2018).

124. Anzai, A. et al. Transition from minority to majority spin transport in iron-manganese
nitride Fe 4 x Mn x N films with increasing x. Journal of Applied Physics 124, 123905
(Sept. 28, 2018).

91



Bibliography

125. Takata, F. et al. Epitaxial growth and magnetic properties of Ni x Fe 4- x N ( x = 0,
1, 3, and 4) films on SrTiO 3 (001) substrates. Journal of Applied Physics 120, 083907
(Aug. 28, 2016).

126. Matar, S., Mohn, P., Demazeau, G. & Siberchicot, B. The calculated electronic and
magnetic structures of Fe4N and Mn 4N. Journal de Physique 49, 1761–1768 (1988).

127. Tagawa, Y. & Motizuki, K. Electronic band structures and magnetism of intermetallic
manganese compounds Mn 4 X (X identical to N, C). Journal of Physics: Condensed
Matter 3, 1753–1761 (Mar. 25, 1991).

128. Kokado, S., Fujima, N., Harigaya, K., Shimizu, H. & Sakuma, A. Theoretical analysis of
highly spin-polarized transport in the iron nitride Fe 4 N. Physical Review B 73, 172410
(May 17, 2006).

129. Ghosh, S. et al. Current-Driven Domain Wall Dynamics in Ferrimagnetic Nickel-Doped
Mn 4 N Films: Very Large Domain Wall Velocities and Reversal of Motion Direction
across the Magnetic Compensation Point. Nano Letters 21, 2580–2587 (Mar. 24, 2021).

130. Jiang, E.-y., Sun, C.-q., Li, J.-e. & Liu, Y.-g. The structures and magnetic properties of
FeN films prepared by the facing targets sputtering method. Journal of Applied Physics
65, 1659–1663 (Feb. 15, 1989).

131. Wang, X., Zheng, W., Tian, H., Yu, S. & Wang, L. Effect of substrate temperature
and bias voltage on DC magnetron sputtered FeN thin films. Journal of Magnetism and
Magnetic Materials 283, 282–290 (Dec. 2004).

132. Suzuki, K. et al. Crystal structure and magnetic properties of the compound MnN.
Journal of Alloys and Compounds 306, 66–71 (June 2000).

133. Coey, J. & Smith, P. Magnetic nitrides. Journal of Magnetism and Magnetic Materials
200, 405–424 (Oct. 1999).

134. Monachesi, P., Björkman, T., Gasche, T. & Eriksson, O. Electronic structure and mag-
netic properties of Mn, Co, and Ni substitution of Fe in Fe 4 N. Physical Review B 88,
054420 (Aug. 26, 2013).

135. Yasuda, T. et al. Ferrimagneticferromagnetic phase transition in Mn 4 N films favored
by non-magnetic In doping. Journal of Physics D: Applied Physics 55, 115003 (Mar. 17,
2022).

136. Komori, T. et al. Magnetic reversal in rare-earth free Mn 4 x Ni x N epitaxial films below
and above Ni composition needed for magnetic compensation around room temperature.
Journal of Applied Physics 127, 043903 (Jan. 31, 2020).

137. Ito, K. et al. Manipulation of saturation magnetization and perpendicular magnetic
anisotropy in epitaxial C o x M n 4 x N films with ferrimagnetic compensation. Physical
Review B 101, 104401 (Mar. 2, 2020).

138. Mitarai, H. et al. Magnetic compensation at two different composition ratios in rare-
earth-free Mn 4 x Co x N ferrimagnetic films. Physical Review Materials 4, 094401
(Sept. 8, 2020).

139. Fruchart, D., Bertaut, E. F., Madar, R., Lorthioir, G. & Fruchart, R. Structure magne-
tique et rotation de spin de Mn3NiN. Solid State Communications 9, 1793–1797 (1971).

140. Boldrin, D. et al. Multisite Exchange-Enhanced Barocaloric Response in Mn 3 NiN.
Physical Review X 8, 041035 (Nov. 28, 2018).

141. Boldrin, D. et al. The Biaxial Strain Dependence of Magnetic Order in Spin Frustrated
Mn 3 NiN Thin Films. Advanced Functional Materials 29, 1902502 (Oct. 2019).

142. Gurung, G., Ding-Fu, S., Tula R, P. & Evgeny Y, T. Anomalous Hall conductivity of
noncollinear magnetic antiperovskites. Phys. Rev. Materials 3, 044409 (Apr. 23, 2019).

143. Liu, Z. Q. et al. Electrical switching of the topological anomalous Hall effect in a non-
collinear antiferromagnet above room temperature. Nature Electronics 1, 172–177 (Mar.
2018).

92



Bibliography

144. Boldrin, D. et al. Giant Piezomagnetism in Mn 3 NiN. ACS Applied Materials & Interfaces
10, 18863–18868 (June 6, 2018).

145. Terao, P. N. Une Nouvelle Formede Nickel: Ni4N. Journal of the Physical Society of
Japan 15 (Feb. 1960).

146. Fang, C.-M., Koster, R. S., Li, W.-F. & van Huis, M. A. Predicted stability, structures,
and magnetism of 3d transition metal nitrides: the M4N phases. RSC Advances 4, 7885
(2014).

147. Linnik, A. I. et al. Magnetic properties and thermal modification of nanostructured films
of nickel nitrides. Technical Physics Letters 39, 143–146 (Feb. 2013).

148. Pandey, N., Gupta, M. & Stahn, J. Structure, Thermal Stability, and Magnetism of Ni
4 N Thin Films. physica status solidi (RRL) Rapid Research Letters 14, 2000294 (Oct.
2020).

149. Asano, K., Koyama, K. & Takenaka, K. Magnetostriction in Mn3CuN. Applied Physics
Letters 92, 161909 (Apr. 21, 2008).

150. Shimizu, T., Shibayama, T., Asano, K. & Takenaka, K. Giant magnetostriction in tetrag-
onally distorted antiperovskite manganese nitrides. Journal of Applied Physics 111,
07A903 (Apr. 2012).

151. Matsumoto, T. et al. Hall effect measurements of high-quality M n 3 CuN thin films and
the electronic structure. Physical Review B 96, 205153 (Nov. 29, 2017).

152. Takei, W. J., Shirane, G. & Frazer, B. C. Magnetic Structure of Mn 4 N. Physical Review
119, 122–126 (July 1, 1960).

153. Wiener, G. W. & Berger, J. A. Structure and Magnetic Properties of Some Transition
Metal Nitrides. JOM 7, 360–368 (Feb. 1955).

154. Juza, R. V., Puff, H. & Wagenknecht, F. Zur Kenntnis des Systems Mangan/Stickstoff.
Z. Electrochem 61, 804 (June 24, 1957).

155. Takei, W. J., Heikes, R. R. & Shirane, G. Magnetic Structure of Mn 4 N-Type Com-
pounds. Physical Review 125, 1893–1897 (Mar. 15, 1962).

156. Dhar, S., Brandt, O. & Ploog, K. H. Ferrimagnetic Mn4N(111) layers grown on 6H-
SiC(0001) and GaN(0001) by reactive molecular-beam epitaxy. Applied Physics Letters
86, 112504 (Mar. 14, 2005).

157. Li, C. et al. Fabrication and magnetic characteristic of ferrimagnetic bulk Mn4N. Journal
of Alloys and Compounds 457, 57–60 (June 2008).

158. Isogami, S., Rajamanickam, N., Kozuka, Y. & Takahashi, Y. K. Efficient current-driven
magnetization switching owing to isotropic magnetism in a highly symmetric 111-oriented
Mn 4 N epitaxial single layer. AIP Advances 11, 105314 (Oct. 1, 2021).

159. Nakagawa, S. & Naoe, M. Preparation and magnetic properties of Mn 4 N films by
reactive facing targets sputtering. Journal of Applied Physics 75, 6568–6570 (May 15,
1994).

160. Ching, K. M., Chang, W. D., Chin, T. S., Duh, J. G. & Ku, H. C. Anomalous perpen-
dicular magnetoanisotropy in Mn 4 N films on Si(100). Journal of Applied Physics 76,
6582–6584 (Nov. 15, 1994).

161. Kabara, K. & Tsunoda, M. Perpendicular magnetic anisotropy of Mn 4 N films fabricated
by reactive sputtering method. Journal of Applied Physics 117, 17B512 (May 7, 2015).

162. Suemasu, T., Vila, L. & Attané, J.-P. Present Status of Rare-earth Free Ferrimagnet Mn
4 N and Future Prospects of Mn 4 N-based Compensated Ferrimagnets. Journal of the
Physical Society of Japan 90, 081010 (Aug. 15, 2021).

163. Isogami, S., Masuda, K. & Miura, Y. Contributions of magnetic structure and nitrogen
to perpendicular magnetocrystalline anisotropy in antiperovskite M n 4 N. Physical
Review Materials 4, 014406 (Jan. 13, 2020).

93



Bibliography

164. Li, W. et al. Growth of Mn4N film with enhanced perpendicular magnetization on glass
substrate using MnO seed layer. Materials Letters 311, 131615 (Mar. 2022).

165. Ma, C. T., Hartnett, T. Q., Zhou, W., Balachandran, P. V. & Poon, S. J. Tunable mag-
netic skyrmions in ferrimagnetic Mn 4 N. Applied Physics Letters 119, 192406 (Nov. 8,
2021).

166. Shen, X. et al. Metallic transport and large anomalous Hall effect at room temperature in
ferrimagnetic Mn 4 N epitaxial thin film. Applied Physics Letters 105, 072410 (Aug. 18,
2014).

167. Meng, M. et al. Extrinsic anomalous Hall effect in epitaxial Mn 4 N films. Applied Physics
Letters 106, 032407 (Jan. 19, 2015).

168. Ching, K.-M., Chang, W.-D. & Chin, T.-S. Magnetic properties and structure of Mn4N
films on glass substrates. Journal of Alloys and Compounds 222, 184–187 (May 1995).

169. Zhang, Z. et al. Magnetic properties of MBE grown Mn 4 N on MgO, SiC, GaN and Al
2 O 3 substrates. AIP Advances 10, 015238 (Jan. 1, 2020).

170. Isogami, S., Masuda, K., Miura, Y., Rajamanickam, N. & Sakuraba, Y. Anomalous Hall
and Nernst effects in ferrimagnetic Mn 4 N films: Possible interpretations and prospects
for enhancement. Applied Physics Letters 118, 092407 (Mar. 1, 2021).

171. Hirose, T., Komori, T., Gushi, T., Toko, K. & Suemasu, T. Perpendicular magnetic
anisotropy in ferrimagnetic Mn4N films grown on (LaAlO3)0.3(Sr2TaAlO6)0.7(0 0 1)
substrates by molecular beam epitaxy. Journal of Crystal Growth 535, 125566 (Apr.
2020).

172. Kabara, K., Tsunoda, M. & Kokado, S. Magneto-transport properties of pseudo-single-
crystal Mn 4 N thin films. AIP Advances 7, 056416 (May 2017).

173. Zhang, Z., Shi, X., Liu, X., Chen, X. & Mi, W. Microstructure, magnetic and electronic
transport properties of reactively facing-target sputtered epitaxial Mn 4 N films. Journal
of Physics: Condensed Matter 34, 065802 (Feb. 9, 2022).

174. Ikhlas, M., Tomita, T. & Nakatsuji, S. Sample Quality Dependence of the Magnetic Prop-
erties in Non-Collinear Antiferromagnet Mn 3 Sn in Proceedings of the International
Conference on Strongly Correlated Electron Systems (SCES2019) Proceedings of the In-
ternational Conference on Strongly Correlated Electron Systems (SCES2019) (Journal
of the Physical Society of Japan, Okayama, Japan, Mar. 19, 2020).

175. Yang, H., Al-Brithen, H., Trifan, E., Ingram, D. C. & Smith, A. R. Crystalline phase
and orientation control of manganese nitride grown on MgO(001) by molecular beam
epitaxy. Journal of Applied Physics 91, 1053–1059 (Feb. 2002).

176. Mihai, A. P., Attané, J. P., Marty, A., Warin, P. & Samson, Y. Electron-magnon diffusion
and magnetization reversal detection in FePt thin films. Physical Review B 77, 060401
(Feb. 7, 2008).

177. Nguyen, V. D. et al. Detection of Domain-Wall Position and Magnetization Reversal
in Nanostructures Using the Magnon Contribution to the Resistivity. Physical Review
Letters 107, 136605 (Sept. 21, 2011).

178. Ito, K. et al. Magnetic domain walls in nanostrips of single-crystalline Fe 4 N(001) thin
films with fourfold in-plane magnetic anisotropy. Journal of Applied Physics 121, 243904
(June 28, 2017).

179. Gehanno, V., Samson, Y., Marty, A., Gilles, B. & Chamberod, A. Magnetic susceptibil-
ity and magnetic domain configuration as a function of the layer thickness in epitaxial
FePd(0 0 1) thin films ordered in the L10 structure. Journal of Magnetism and Magnetic
Materials, 26–40 (1997).

180. Attané, J. P. et al. Magnetic Domain Wall Propagation unto the Percolation Thresh-
old across a Pseudorectangular Disordered Lattice. Physical Review Letters 93, 257203
(Dec. 13, 2004).

94



Bibliography

181. Yamanouchi, M. et al. Domain Structure in CoFeB Thin Films With Perpendicular
Magnetic Anisotropy. IEEE Magnetics Letters 2, 3000304–3000304 (Dec. 2011).

182. Kaplan, B. & Gehring, G. The domain structure in ultrathin magnetic films. Journal of
Magnetism and Magnetic Materials 128, 111–116 (Nov. 1993).

183. Ando, F. et al. Modulation of the magnetic domain size induced by an electric field.
Applied Physics Letters 109, 022401 (July 11, 2016).

184. Gushi, T. Mn4N thin films for spintronics applications based on current-induced domain
wall motion PhD thesis (2019).

185. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of
image analysis. Nature Methods 9, 671–675 (July 2012).

186. Vernier, N., Allwood, D. A., Atkinson, D., Cooke, M. D. & Cowburn, R. P. Domain
wall propagation in magnetic nanowires by spin-polarized current injection. Europhysics
Letters (EPL) 65, 526–532 (Feb. 2004).

187. Yamaguchi, A. et al. Effect of Joule heating in current-driven domain wall motion. Applied
Physics Letters 86, 012511 (Jan. 3, 2005).

188. Yamaguchi, A., Yano, K., Tanigawa, H., Kasai, S. & Ono, T. Reduction of Threshold
Current Density for Current-Driven Domain Wall Motion using Shape Control. Japanese
Journal of Applied Physics 45, 3850–3853 (May 9, 2006).

189. Chiba, D. et al. Control of Multiple Magnetic Domain Walls by Current in a Co/Ni
Nano-Wire. Applied Physics Express 3, 073004 (July 2, 2010).

190. Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba
effect. Nature Materials 10, 419–423 (June 2011).

191. Metaxas, P. J. et al. Creep and Flow Regimes of Magnetic Domain-Wall Motion in
Ultrathin Pt / Co / Pt Films with Perpendicular Anisotropy. Physical Review Letters
99, 217208 (Nov. 21, 2007).

192. Fert, A. & Levy, P. M. Role of Anisotropic Exchange Interactions in Determining the
Properties of Spin-Glasses. Physical Review Letters 44, 1538–1541 (June 9, 1980).

193. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nature Nanotechnology 8,
152–156 (Mar. 2013).

194. Fukami, S., Suzuki, T., Ohshima, N., Nagahara, K. & Ishiwata, N. Micromagnetic anal-
ysis of current driven domain wall motion in nanostrips with perpendicular magnetic
anisotropy. Journal of Applied Physics 103, 07E718 (Apr. 2008).

195. Szambolics, H., Toussaint, J.-C., Marty, A., Miron, I. & Buda-Prejbeanu, L. Domain
wall motion in ferromagnetic systems with perpendicular magnetization. Journal of Mag-
netism and Magnetic Materials 321, 1912–1918 (July 2009).

196. Ngo, D.-T., Ikeda, K. & Awano, H. Direct Observation of Domain Wall Motion Induced
by Low-Current Density in TbFeCo Wires. Applied Physics Express 4, 093002 (Aug. 9,
2011).

197. Ngo, D.-T., Ikeda, K. & Awano, H. Modulation of domain wall dynamics in TbFeCo
single layer nanowire. Journal of Applied Physics 111, 083921 (Apr. 15, 2012).

198. Freeman, M. R. & Smyth, J. F. Picosecond time-resolved magnetization dynamics of
thin-film heads. Journal of Applied Physics 79, 5898 (1996).

199. Miao, M. S., Herwadkar, A. & Lambrecht, W. R. L. Electronic structure and magnetic
properties of Mn 3 Ga N precipitates in Ga 1 x Mn x N. Physical Review B 72, 033204
(July 15, 2005).

200. Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Advances 4, 107133
(Oct. 2014).

201. Boulle, O., Malinowski, G. & Kläui, M. Current-induced domain wall motion in nanoscale
ferromagnetic elements. Materials Science and Engineering: R: Reports 72, 159–187
(Sept. 2011).

95



Bibliography

202. Adam, J.-P. et al. Nonadiabatic spin-transfer torque in (Ga,Mn)As with perpendicular
anisotropy. Physical Review B 80, 193204 (Nov. 17, 2009).

203. Curiale, J., Lemaître, A., Ulysse, C., Faini, G. & Jeudy, V. Spin Drift Velocity, Polar-
ization, and Current-Driven Domain-Wall Motion in (Ga,Mn)(As,P). Physical Review
Letters 108, 076604 (Feb. 17, 2012).

204. Je, S.-G. et al. Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya
interaction. Physical Review B 88, 214401 (Dec. 2, 2013).

205. Hrabec, A. et al. Measuring and tailoring the Dzyaloshinskii-Moriya interaction in per-
pendicularly magnetized thin films. Physical Review B 90, 020402 (July 16, 2014).

206. Pizzini, S. et al. Chirality-Induced Asymmetric Magnetic Nucleation in Pt / Co / AlO
x Ultrathin Microstructures. Physical Review Letters 113, 047203 (July 23, 2014).

207. Juza, R. V., Deneke, K. & Puff, H. Ferrimagnetismus der Mischkristalle von Mn4N mit
Chrom, Eisen und Nickel. Z. Electrochem 65, 551 (Feb. 19, 1959).

208. Hirata, Y. et al. Correlation between compensation temperatures of magnetization and
angular momentum in GdFeCo ferrimagnets. Physical Review B 97, 220403 (June 12,
2018).

209. Margulies, D. T. et al. Origin of the Anomalous Magnetic Behavior in Single Crystal Fe
3 O 4 Films. Physical Review Letters 79, 5162–5165 (Dec. 22, 1997).

210. Hibma, T. et al. Anti-phase domains and magnetism in epitaxial magnetite layers. Jour-
nal of Applied Physics 85, 5291–5293 (Apr. 15, 1999).

211. Crandles, D. A., DesRoches, B. & Razavi, F. S. A search for defect related ferromagnetism
in SrTiO3. Journal of Applied Physics 108, 053908 (Sept. 2010).

212. Amemiya, K. et al. Fast polarization switching in the soft X-ray region at PF BL-16A.
Journal of Physics: Conference Series 425, 152015 (Mar. 22, 2013).

213. Stöhr, J. & König, H. Determination of Spin- and Orbital-Moment Anisotropies in Tran-
sition Metals by Angle-Dependent X-Ray Magnetic Circular Dichroism. Physical Review
Letters 75, 3748–3751 (Nov. 13, 1995).

214. Li, F., Yang, J., Xue, D. & Zhou, R. Mössbauer study of the (Fe 1 x Ni x ) 4 N
compounds (0 x 0.6). Applied Physics Letters 66, 2343–2345 (May 1995).

215. Kang, J.-S. et al. Soft x-ray absorption spectroscopy and magnetic circular dichroism
study of the valence and spin states in spinel Mn Fe 2 O 4. Physical Review B 77,
035121 (Jan. 17, 2008).

216. Ma, X. et al. Structural stability and magnetism of -Fe4N and CoFe3N compounds.
Journal of Alloys and Compounds 480, 475–480 (July 2009).

217. Awano, H. Investigation of domain wall motion in RE-TM magnetic wire towards a
current driven memory and logic. Journal of Magnetism and Magnetic Materials 383,
50–55 (June 2015).

218. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Physical Review
B 47, 558–561 (Jan. 1, 1993).

219. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals
and semiconductors using a plane-wave basis set. Computational Materials Science 6,
15–50 (July 1996).

220. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy cal-
culations using a plane-wave basis set. Physical Review B 54, 11169–11186 (Oct. 15,
1996).

221. Blöchl, P. E. Projector augmented-wave method. Physical Review B 50, 17953–17979
(Dec. 15, 1994).

222. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made
Simple. Physical Review Letters 77, 3865–3868 (Oct. 28, 1996).

96



Bibliography

223. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-
wave method. Physical Review B 59, 1758–1775 (Jan. 15, 1999).

224. Ebert, H., Ködderitzsch, D. & Minár, J. Calculating condensed matter properties us-
ing the KKR-Green’s function methodrecent developments and applications. Reports on
Progress in Physics 74, 096501 (Sept. 1, 2011).

225. Ebert, H., Braun, J., Ködderitzsch, D. & Mankovsky, S. Fully relativistic multiple scat-
tering calculations for general potentials. Physical Review B 93, 075145 (Feb. 23, 2016).

226. Ebert, H. The Munich SPR-KKR package
227. Meinert, M. Exchange interactions and Curie temperatures of the tetrametal nitrides Cr

4 N, Mn 4 N, Fe 4 N, Co 4 N, and Ni 4 N. Journal of Physics: Condensed Matter 28,
056006 (Feb. 10, 2016).

228. Mazurenko, V. V., Kvashnin, Y. O., Lichtenstein, A. I. & Katsnelson, M. I. A DMI Guide
to Magnets Micro-World. Journal of Experimental and Theoretical Physics 132, 506–516
(Apr. 2021).

229. Yu, X. Z. et al. Transformation between meron and skyrmion topological spin textures
in a chiral magnet. Nature 564, 95–98 (Dec. 2018).

230. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by
in-plane current injection. Nature 476, 189–193 (Aug. 2011).

231. Liu, L. et al. Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. Science
336, 555–558 (May 4, 2012).

232. Garello, K. et al. SOT-MRAM 300MM Integration for Low Power and Ultrafast Embed-
ded Memories in 2018 IEEE Symposium on VLSI Circuits 2018 IEEE Symposium on
VLSI Circuits (IEEE, Honolulu, HI, June 2018), 81–82.

233. Garello, K. et al. Symmetry and magnitude of spinorbit torques in ferromagnetic het-
erostructures. Nature Nanotechnology 8, 587–593 (Aug. 2013).

234. Zheng, Z. et al. Field-free spin-orbit torque-induced switching of perpendicular magne-
tization in a ferrimagnetic layer with a vertical composition gradient. Nature Communi-
cations 12, 4555 (Dec. 2021).

235. Nishikawa, S. & Kikuchi, S. Diffraction of cathode rays by mica. Nature 121, 1019–1020
(June 30, 1928).

236. Williams, D. B. & Carter, C. B. Transmission electron microscopy: a textbook for mate-
rials science 2nd ed. 4 pp. (Springer, New York, 2008).

237. Nguyen, M.-H., Ralph, D. C. & Buhrman, R. A. Spin Torque Study of the Spin Hall
Conductivity and Spin Diffusion Length in Platinum Thin Films with Varying Resistivity.
Physical Review Letters 116, 126601 (Mar. 24, 2016).

238. Dutta, S. et al. Thickness dependence of the resistivity of platinum-group metal thin
films. Journal of Applied Physics 122, 025107 (July 14, 2017).

239. Nguyen, V. D. et al. Asymmetric magnetoresistance of nanowires with perpendicular
anisotropy seen as a contribution from the contacts. Journal of Applied Physics 113,
183906 (May 14, 2013).

240. McGuire, T. & Potter, R. Anisotropic magnetoresistance in ferromagnetic 3d alloys.
IEEE Transactions on Magnetics 11, 1018–1038 (Apr. 7, 1975).

241. Viret, M. et al. Spin scattering in ferromagnetic thin films. Physical Review B 53, 8464–
8468 (Apr. 1, 1996).

242. Marrows, C. H. & Dalton, B. C. Spin Mixing and Spin-Current Asymmetry Measured
by Domain Wall Magnetoresistance. Physical Review Letters 92, 097206 (Mar. 4, 2004).

243. Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten.
Applied Physics Letters 101, 122404 (Sept. 17, 2012).

244. Vudya Sethu, K. K. et al. Optimization of Tungsten -Phase Window for Spin-Orbit-
Torque Magnetic Random-Access Memory. Physical Review Applied 16, 064009 (Dec. 3,
2021).

97



Bibliography

245. Onur Avci, C. et al. Magnetization switching of an MgO/Co/Pt layer by in-plane current
injection. Applied Physics Letters 100, 212404 (May 21, 2012).

246. Yang, Y. et al. Ultrafast magnetization reversal by picosecond electrical pulses. Science
Advances 3, e1603117 (Nov. 3, 2017).

247. Roschewsky, N. et al. Spin-orbit torques in ferrimagnetic GdFeCo alloys. Applied Physics
Letters 109, 112403 (Sept. 12, 2016).

248. Bai, H., Xu, T., Dong, Y., Zhou, H.-A. & Jiang, W. SpinTorque Switching in RareEarthFree
Compensated Ferrimagnet Mn4N Films. Advanced Electronic Materials (Nov. 12, 2021).

249. Yu, J. et al. Long spin coherence length and bulk-like spinorbit torque in ferrimagnetic
multilayers. Nature Materials 18, 29–34 (Jan. 2019).

250. Nikonov, D. E., Bourianoff, G. I. & Ghani, T. Proposal of a Spin Torque Majority Gate
Logic. IEEE Electron Device Letters 32, 1128–1130 (Aug. 2011).

251. Murapaka, C., Sethi, P., Goolaup, S. & Lew, W. S. Reconfigurable logic via gate con-
trolled domain wall trajectory in magnetic network structure. Scientific Reports 6, 20130
(Apr. 2016).

252. Raymenants, E. et al. Scaled spintronic logic device based on domain wall motion in mag-
netically interconnected tunnel junctions in 2018 IEEE International Electron Devices
Meeting (IEDM) 2018 IEEE International Electron Devices Meeting (IEDM) (IEEE,
San Francisco, CA, Dec. 2018), 36.4.1–36.4.4.

253. Raymenants, E. et al. Nanoscale domain wall devices with magnetic tunnel junction read
and write. Nature Electronics 4, 392–398 (June 2021).

254. Luo, Z. et al. Field- and Current-Driven Magnetic Domain-Wall Inverter and Diode.
Physical Review Applied 15, 034077 (Mar. 26, 2021).

255. Raymenants, E. et al. Magnetic domain walls: from physics to devices. 2021 IEEE In-
ternational Electron Devices Meeting (IEDM), 32.3.1–32.3.4 (2021).

256. Vaysset, A. et al. Toward error-free scaled spin torque majority gates. AIP Advances 6,
065304 (June 2016).

257. Ravelosona, D. et al. Domain Wall Creation in Nanostructures Driven by a Spin-Polarized
Current. Physical Review Letters 96, 186604 (May 10, 2006).

258. Akers, S. B. Synthesis of combinational logic using three-input majority gates in 3rd An-
nual Symposium on Switching Circuit Theory and Logical Design (SWCT 1962) 3rd An-
nual Symposium on Switching Circuit Theory and Logical Design (SWCT 1962) (IEEE,
Chicago, IL, USA, 1962), 149–158.

259. Kim, S. K. et al. Ferrimagnetic spintronics. Nature Materials 21, 24–34 (Jan. 2022).
260. Kaiser, C. & Parkin, S. S. P. High negative tunneling magnetoresistance in magnetic

tunnel junctions with a ferrimagnetic CoFeGd electrode and a CoFe interface layer.
Applied Physics Letters 88, 112511 (Mar. 13, 2006).

261. Tsunegi, S., Yakushiji, K., Fukushima, A., Yuasa, S. & Kubota, H. Microwave emission
power exceeding 10 W in spin torque vortex oscillator. Applied Physics Letters 109,
252402 (Dec. 19, 2016).

262. Tsunegi, S. et al. Spin torque diode effect of the magnetic tunnel junction with MnGa
free layer. Applied Physics Letters 112, 262408 (June 25, 2018).

263. Mizukami, S., Suzuki, K. Z. & Miura, Y. All-optical probe of sub-THz spin precession
in a L 1 0 MnGa nanolayer. Applied Physics Express 12, 043003 (Apr. 1, 2019).

264. Maksym, P. A. & Beeby, J. L. A THEORY of RHEED. Surface Science, 423–438 (1981).
265. Hasegawa, S. Characterization of Materials (Wiley, Oct. 15, 2002).
266. Yasaka, M. X-ray thin lm measurement techniques, 9 (2010).
267. Bragg, W. H. & Bragg, W. L. The reflection of X-rays by crystals. Proceedings of the

Royal Society A 88, 11 (Jan. 7, 1913).

98



Bibliography

268. Foner, S. Versatile and Sensitive Vibrating Sample Magnetometer. Review of Scientific
Instruments 30, 548–557 (July 1959).

269. Fagaly, R. L. Superconducting quantum interference device instruments and applications.
Review of Scientific Instruments 77, 101101 (Oct. 2006).

270. Josephson, B. D. Coupled Superconductors. Reviews of Modern Physics 36, 216–220
(Jan. 1, 1964).

271. Kerr, J. XLIII. On rotation of the plane of polarization by reflection from the pole of
a magnet. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 3, 321–343 (May 1877).

272. Nederpel, P. Q. J. & Martens, J. W. D. Magnetooptical ellipsometer. Review of Scientific
Instruments 56, 687–690 (May 1985).

273. Van der Pauw, L. A method of measuring the resistivity and Hall coefficient on lamellae
of arbitrary shape. Philips Technical Review 20, 220–224 (1958).

274. Van der Pauw, L. A Method of Measuring Specific Resistivity and Hall Effect of Discs
of Arbitary Shapes. Philips Res. Repts 13, 1–9 (Feb. 1958).

275. Okamoto, K. A new method for analysis of magnetic anisotropy in films using the spon-
taneous hall effect. Journal of Magnetism and Magnetic Materials 35, 353–355 (Mar.
1983).

276. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall
effect. Reviews of Modern Physics 82, 1539–1592 (May 13, 2010).

277. You, C.-Y., Sung, I. M. & Joe, B.-K. Analytic expression for the temperature of the
current-heated nanowire for the current-induced domain wall motion. Applied Physics
Letters 89, 222513 (Nov. 27, 2006).

278. Fangohr, H., Chernyshenko, D. S., Franchin, M., Fischbacher, T. & Meier, G. Joule
heating in nanowires. Physical Review B 84, 054437 (Aug. 11, 2011).

279. Jacob, K. & Rajitha, G. Thermodynamic properties of strontium titanates: Sr2TiO4,
Sr3Ti2O7, Sr4Ti3O10, and SrTiO3. The Journal of Chemical Thermodynamics 43, 51–
57 (Jan. 2011).

280. Muta, H., Kurosaki, K. & Yamanaka, S. Thermoelectric properties of reduced and La-
doped single-crystalline SrTiO3. Journal of Alloys and Compounds 392, 306–309 (Apr.
2005).

281. Popuri, S. R. et al. Glass-like thermal conductivity in SrTiO 3 thermoelectrics induced
by A-site vacancies. RSC Adv. 4, 33720–33723 (2014).

282. Martelli, V., Jiménez, J. L., Continentino, M., Baggio-Saitovitch, E. & Behnia, K. Ther-
mal Transport and Phonon Hydrodynamics in Strontium Titanate. Physical Review Let-
ters 120, 125901 (Mar. 22, 2018).

99



Appendices

100



Chapter

Growth and
Characterization Techniques A
A.1 Growth
In this section, we will present the crystal growth of our thin films using MBE. More details
about this growth process can be found in references[117, 122].

A.1.1 MBE growth of Mn4N and Mn4−xNixN thin films
The schematic of the MBE system used for the growth is shown in Fig.A.1. The MBE system
is divided into two chambers, the load lock chamber and the growth chamber. These chambers
are equipped with ultra high vacuum pumps: rotary pumps, an ion pump and a turbo molecular
pump. The growth chamber includes a Reflection High Energy Electron Diffraction (RHEED)
system, 3 Knudsen cells (K-cells) for the deposit of Mn, Ni and other metal, a sputtering source
for capping layers such as SiO2 or Ta, a RF-plasma gun with gas lines of N2 and Ar. The base
pressure in the growth chamber, of the order of 10−7 Pa, which is monitored by a nude ion
gauge and an inverted magnetron gauge. The growth procedure is also shown in Fig. A.1.

A.1.2 Substrates preparation
Two kinds of substrates have been used for this work, MgO(001) and SrTiO3(001) which were
bought from Furuuchi Chemicals, Japan. The dimensions of the substrates were 10×10×0.3
mm. The substrates were cleaned with acetone and methanol in an ultrasonic bath. The SrTiO3

substrates were also cleaned in de-ionized H2O after cleaning with acetone and methanol,
however the MgO substrates were not cleaned with water to prevent damaging them. The MgO
substrates were also annealed in the growth chamber before the growth at 600°C, to remove
any remaining organic impurities and also to improve the surface sites. SrTiO3 substrates were
also subjected to an acid treatment, to etch the top layer in order to obtain a Ti-terminated
surface. A buffer HF solution with a composition of 5% HF and 35%NH4F in weight ratio was
used for the etching. Some of the SrTiO3 substrates were also annealed for 30 minutes at 300°C
in the growth chamber before the growth.
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Figure A.1: Schematic of the Molecular Beam Epitaxy set-up

A.1.3 Deposition techniques
3 growth parameters are optimised before the deposition process: the nitrogen-flow condition,
the Mn and Ni deposition rates and the substrate temperature Ts. The electrically neutral
atoms of Nitrogen were supplied through the supply line into the chamber, where the RF
plasma gun excites the Nitrogen into a N2 plasma. The pressure and mass flow was optimized
to 0.1 MPa and 1 sccm using the regulator and mass flow controller, respectively. An ion
trapper set at 300 V is used to remove both the cations and anions, and the intensity of light
emission in an optical spectrometer is used to monitor the magnitude of the plasma in the
chamber. The RF input power, gas pressure at the nude ion gauge and the intensity of the
light emission at 336 nm wavelength are usually set at 105 W, 4.5 mPa and 2.3×103 counts per
3 ms, respectively.

The second set of parameters consists in the deposition rates of Mn and Ni, which are
controlled by the heating of the K-cells. To measure these rates, both Mn and Ni are grown in a
first step on Si substrates, after which their thickness is measured using XRR measurements. For
Mn, the cell temperature was kept around 835°C, which corresponds to a Mn rate of deposition
between 1 - 1.3 nm per minute. The temperature of the Ni cell was varied depending on the
chosen Ni concentration, starting from 1090°C for a Ni concentration of x = 0.05 to 1209°C for
a Ni concentration of x = 0.3. The third parameter, the substrate temperature, was maintained
at 450°C for all the samples, this growth temperature allows the diffusion of the nitrogen into
the lattice and the ordering of the crystal structure. In order to have an efficient heating of the
substrate, the substrates were kept on top of a Molybdenum sheet.

After the growth of the magnetic thin films, they were capped with SiO2 in-situ to prevent
oxidation. During the sputtering, Ar gas coming from a parallel gas line is let into the growth
chamber with a pressure of 0.095 Pa, monitored by an inverted magnetron gauge. The sput-
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tering gun excites the Ar+ plasma and sputters the target source to deposit SiO2 on top of the
grown layer.

A.2 Crystallographic Characterization Techniques
In this section, we will introduce the RHEED and XRD techniques which were used for the
crystallographic characterizations.

A.2.1 Reflection High Energy Electron Diffraction
In order to characterize the crystalline structure of the thin films in situ, a RHEED equip-
ment[264] is used inside the growth chamber of the MBE setup shown in Fig. A.1. It is based
on an electron beam of 10-100 kV to obtain an ultrashort wavelength and thus a high resolu-
tion. This electron beam is directed towards the sample surface with a grazing incident angle
of 0.2-0.3°, which is used to obtain a forward scattered diffraction patterns on a screen. The
focus, brightness and the contrast of the diffraction pattern are optimized by tuning the x-y
direction of the electron beam. The RHEED pattern and its shapes depend on the orientation
of the crystalline structure, of the quality of the crystalline structure and on the surface flat-
ness. RHEED patterns obtained in this work were taken by setting the accelerating voltage
of the electron beam at 20 kV. The electron beam is placed both along the SrTiO3[100] and
SrTiO3[111] direction by rotating the sample inside the growth chamber.

Figure A.2: Schematic of the RHEED. Taken from Ref.[265]

A.2.2 X-Ray Diffractometry
A Rigaku SmartLab setup has been used for the characterization of the samples used in this
thesis[266]. The incident X-rays are diffracted by the different layers of the crystalline structure,
in different directions that can be understood by considering Bragg’s law[267].

2dhklsinθ = nλ (A.1)
where dhkl is the distance between the each hkl plane in the crystal, θ is the incident

angle of the X-rays, n is the diffraction order, and λ is the wavelength of the incoming X-
rays. In this work, n-th diffraction peaks from the plane crystal(hkl) are denoted as crystal
nh nk nl, independently of the name of the plane. For example, the second diffraction peak
from Mn4N(001) phase is denoted as “Mn4N 002”. By changing the relative angle between
the substrate and the X-ray detector, different orientation axis can be selected, such as the
perpendicular to plane (2θ/ω) and the in-plane (2θψ/φ) axis. Mn4N[001], [100] and [110] axis
were usually chosen as they correspond to the fundamental crystalline orientations. From these
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measurements, the diffraction peaks, the crystalline quality and crystal type are identified.
To evaluate the orientation quality of the epitaxial films, ω rocking curve measurements were
also performed. By scanning the ω angle by tilting the sample at a fixed 2θ (corresponding
to diffraction peak such as Mn4N 002), the distribution of the crystalline orientations can be
qualitatively evaluated.

A.3 Magnetic Characterization Techniques
In this section, we will describe the main magnetization characterization used in this thesis:
VSM, SQUID and MOKE microscopy.

A.3.1 Vibrating Sample Magnetometer
A VSM setup has been used to measure quantitatively the magnetic properties of the samples,
such as their hysteresis curves and their saturation magnetizations[268]. In this setup, the mag-
netic field is swept in both the out-of-plane and in-plane orientations using an electromagnet.
The external magnetic field changes the orientation of the magnetization of the sample based
on the direction of the applied field. The sample is placed in a quartz sample holder, which is
kept in the electromagnet. The sample holder is connected to a piezoelectric transducer, which
converts a sinusoidal electrical signal into sinusoidal motion, thereby inducing a vibration of
the sample holder. The working principle of VSM is based on Faraday’s law of induction, where
an electromotive force is generated whenever there is a change in the magnetic flux in a coil.
Here, as the sample vibrates, it induces a change of flux and thus an e.m.f. in nearby pick
up coils. The voltages generated are captured using lock-in techniques. The induced e.m.f. is
directly proportional to the saturation magnetization of the sample. It is then converted into
magnetization values, a Ni sample is generally used as a reference for calibration.

Figure A.3: Schematic of the VSM setup.

A.3.2 Superconducting Quantum Interference Device
In a SQUID setup, the Josephson effect of superconductors is used to measure the magnetic
properties of the sample[269]. The Josephson effect is observed in superconductor/insulator/su-
perconductor junctions, also known as Josephson junctions. It was predicted by Josephson in
1962 that not only electrons but also cooper pairs can tunnel through the insulating junc-
tion[270]. The superconductors are separated by an insulating layer so that they have a “weak
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link”. For thicknesses around 2 nm, which are shorter than the coherence length of the super-
conductors, and current lower than a critical current Ic (which depends on the weak link), these
Cooper pairs can tunnel through the insulating layer without any voltage drop. This leads to a
current called the Josephson current, and a circuit containing one or more Josephson junctions
is very sensitive to the magnetic flux.

Figure A.4: Illustration of the Josephson junction and SQUID working principle. Taken from
Ref.[269]

Such a circuit can be made like a ring, with two Josephson junctions as shown in the
figureA.4 to form a SQUID. This system can be used to sense very small magnetic fields. By
applying a bias current Ib larger than Ic, a voltage drop across the loop Iloop can be detected.
When the sample is placed in the ring, its magnetic field penetrates the ring, resulting in
a screening current due to the Meissner effect, which tries to cancel the magnetic flux. The
current in the loop changes (Iloop = Φloop/Lloop), thereby enabling to measure the strength of the
magnetic field. Using this technique, very small magnetic field can be detected. Therefore, the
SQUID setup is perfectly suitable to measure ferrimagnetic samples with a small magnetization,
especially close to the compensation point.

A.3.3 Magneto-optic Kerr Effect microscopy
The Kerr effect was discovered in 1877[271]. This effect is used here to image the magnetic
domain structures. When a linearly polarized light is pointed towards a magnetic surface, the
reflected light is transformed in an elliptically polarized light. This rotation is of the polarization
of light is known as the Kerr rotation, and it depends on the direction of the magnetization of
the film[272]. Hence, this technique can be utilized to detect the changes in the magnetization
direction and obtain a hysteresis loop, or to obtain the 2D-domain configuration using optical
microscopy techniques. Depending on the relative direction of the magnetization with respect
to the incident light, we can distinguish between 3 types of configurations, which are shown in
the figure below.

The polar MOKE is generally used for perpendicularly magnetized films, while the longi-
tudinal and transverse MOKE are used for films with in-plane magnetization. The resolution
of the microscope is limited by the light wavelength (630 nm in our equipment) and has been
estimated to be around 500 nm. By using different objectives, the field of view can be changed
from several millimeters down to around 100 µm. Hence, this effect can then be used to im-
age large domains, or smaller stripe patterns, and it is widely used for domain wall motion
measurements.
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Figure A.5: Three types of MOKE configurations

A.3.4 Physical Property Measurement System
A PPMS is a setup which is used to measure the magnetic and electrical transport properties of
magnetic materials. The PPMS setup used in this work is a commercial setup from Quantum
Design. The maximum magnetic field which can obtained is ± 9 T, using a superconducting
magnet. The sample temperature could be varied from 1.8 K to 400 K. This system is equipped
with internal lockin-in amplifiers to perform resistivity measurements.

A.3.5 Anomalous Hall Effect
Magnetotransport measurements using AHE have been used in this thesis to obtain an accurate
switching of the magnetization for the different rare-earth free ferrimagnetic nitrides. The
resistivity (ρxx) and the AHE resitivtity (ρxy) have been obtained using both Van der pauw
method[273, 274] and also from patterned hall crosses using nanofabrication (cf. Appendix B).

Figure A.6: Van der pauw configurations for (a) Resistivity measurements (b) AHE measure-
ments

Fig.A.6 shows the Van der Pauw configurations for A.6 (a) resistivity and (b) transverse
AHE measurements. The four corners of the thin films are connected in the circuit by wire-
bonding. For the resistivity measurements, a current is injected into the thin films from point
a to b as shown in Fig.A.6 (a). while the voltage is measured from point c to d. The resistance
is calculated using taking the ratio of the Vcd and the current Iab which is defined as Rab,cd =
V cd/Iab. The other contacts combinationRac,bd is also measured to account for the asymmetries.
To extract the resistivity (ρxx) from the measured resistances, the following relationship is used
in the case of a roughly square sample.

e(−πtRab,cd/ρxx) + e(−πtRac,bd/ρxx) = 1 (A.2)
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Here, t is the thickness of the thin film. The circuit for the Hall configuration is shown in
Fig.A.6(b) in the case of Van der pauw and in Fig.A.7 for Hall cross. For Van der pauw setup,
a current is applied diagonally from one to the end of the sample while the voltage is measured
on the other diagonal points in the presence of external magnetic field. Fig.A.7 shows the
hall cross of measurement configuration where the magnetization M interacts with the external
magnetic field B and changes the direction of the magnetization.

Figure A.7: Illustration of a Hall cross showing the interaction of the external field (B) with
the magnetization of the thin film (M). The current is applied along the bar while the transverse
voltage is measured in the arms.

The transverse voltage in the case of Mn4N mainly depends on the Hall effect[275] and the
AHE[276]. The transverse voltage is then given as

Vxy = (R0 +RH
Bz

t
+RAHE0cosθ)Ix (A.3)

Where, R0 is the longitudinal resistive offset, RH is the hall coefficient and RAHE0 is the
coefficient of AHE. The AHE has a cosθ dependence with the highest AHE value when the
magnetization is perpendicular to the sample surface and and lowest when the magnetization
is in-plane of the sample surface. The second term of the equation is coming from the ordinary
hall effect which is proportional to the external magnetic field. However in the case of metals
like Mn4N, the ordinary hall effect is very low due to high carrier density. This contribution
has to be subtracted from the signal but in the case of Mn4N, it was found to be negligible as
compared to the high AHE.

107



Chapter

Nanofabrication B
In order to study domain wall motion in the studied thin films, and to perform magneto-
transport measurements, it is necessary to pattern the films into micro and nanostructures. In
this section, we will sum up the techniques and procedure for the fabrication of such devices.

B.1 Electron beam lithography
E-beam lithography is one of the most useful techniques in nanofabrication, with a resolution
possibly as low as ten of nanometers. A thin layer of electron sensitive resist is deposited on top
of the thin films. An electron beam of particular energy and current is then scanned on top of
the resist. This leads to a change in the solubility of the resist. The pattern is then developed
using a developer solvent. Depending on the type of resist used, the part where the e-beam has
been exposed either becomes more soluble (positive resist) to the developer or become harder
(negative resist). For the development of the microwires and hall bars used in this thesis, a
positive resist of PMMA is spin-coated onto the sample at 4000 rpm for 60s, followed by baking
at 180°C for 5 minutes. The electron beam insolation is then performed using a Jeol 6300 FS
e-beam nano-writer which works at a acceleration voltage of 100 keV. The developer solvent
of MIBK:IPA with a 1:3 ratio is used to remove the resist from exposed areas. A layer of Al
around 30 nm is then deposited on top of the sample. It is then followed by removal of the
resist by lift-off process in acetone overnight. After this process, a 30 nm layer is left on top of
thin film with the shape of the devices.

B.2 Ion Beam Etching
Ion beam etching (or ion milling) is a physical etching process, in which an excited Ar+ plasma
is created in the etching chamber and accelerated towards the sample using a bias voltage. This
creates a bombardment of the Ar ions onto the sample surface, thereby removing the atoms
from the thin film surface. It decreases the thin film thickness gradually. The etching process
often leaves a wall of material at the edge of the fabricated structure. Therefore, during the
etching process, the sample is usually tilted and then rotated to achieve an uniform etching.
The ion beam etching machine used here also has a secondary ion mass spectrometer(SIMS)
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Figure B.1: Schematic of the E-beam lithography process. (a) Mn4N thin film capped with SiO2

(b) Positive resist PMMA spin coated and baked at 180° for 5 minutes (c) E-Beam lithography
after development (d) Deposition of Al as the hard mask. (e) Removal of the PMMA resist
using a lift-off process.

in-situ, in order to monitor the etching. After this process, the magnetic film only remained
under the Al layer, which acts a protective layer.

Figure B.2: Schematic of the etching process. (a) Mn4N thin film capped with SiO2 with Al
hard mask on top (b) Removal of the Mn4N layer after the etching process with Mn4N layer
only under the Al (c) Removal of the Al hard mask

B.3 Optical Lithography
After the ion beam etching, the Al is then removed from the top of the devices using a diluted
solution of Tetramethylammonium Hydroxide which reacts only to the Al layer. After this, we
are only left with the central part of the devices, made of Mn4N with the SiO2 capping. To
connect the device electrically, gold pads are then made on top of the devices, using optical
lithography. A positive resist (AZ5214) is spin coated on the sample at 4000 rpm for 60s,
and baked for 90s at 100°C. A pre-made mask is placed between the UV light of a MJB4 UV
photolithography tool and the sample. After UV exposure during 30s, the sample is developed
in an AZ developer solution, to remove the exposed part of the resist. After this step, the
contact pads are deposited by evaporation, usually of around 60 nm of Titanium and Gold.
The metal is deposited on the whole sample, and followed by a lift-off in acetone overnight.
After this step, the contact metal is only left on the part where the UV light was exposed to.
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Figure B.3: Schematic of the optical lithography process. (a) Mn4N devices capped with SiO2

(b) Spin coating of positive resist (c) Exposure of UV light and development (d) Deposition of
the Ti-Au-Ti contacts and lift off process to remove the resist.

110



Chapter

Analytical modeling of
Joule Heating in Nanowires C
In this section, we will model the Joule heating effect in the nanowires by applying current
pulses. The purpose of this study is to have an idea about the temperature of the nanowires
and whether they reach the Curie temperature with the current density and pulse widths we
have used in our experiments. We have used a simple analytical expression given by You et
al.[277, 278]. This model takes into account that the nanowire is being heated by the current
pulses, and the heat is then dissipated by the substrate. The calculations are made using the
following assumptions i) The length L of the wire is infinite with respect to its thickness. ii)
The temperature of the wire is uniform throughout the wire. iii) Seen from the substrate, the
heat source is at the surface with the nanowire (z=0), as shown in Fig. C.1, and the heat can
only flow through the substrate. iv) the temperature of the wire is homogeneous, and equal to
that of the interface.

The Joule heating for a current density J is given as =RI2 = L(whJ)2/σWwh = L(wh)J2/σW .
Here, σW , w and h are the electrical conductivity, width and height of the nanowire. Consid-
ering the previously mentioned assumptions, the overall temperature profile can be given as
:-

T (t) =
whJ2

πµsσWρSCS

(
arcsinh

(
2
√
µSt

wG

)
− θ(t− tP )arcsinh

(
2
√
µS(t− tP )

wG

))
(C.1)

Here, µS is the diffusivity of the substrate given as µS = KS/ρS with KS the thermal
conductivity and ρS the density of the substrate. t is the time, tP is the pulse width, CS is
the specific heat capacity of the substrate and wG is the Gaussian width of the nanowire. The
width of the nanowire has been reduced to the Gaussian width as shown in Fig.C.1 (c). The
reason for the use of the Gaussian profile is the ease of calculation. wG = αw, here w is the
width of the nanowire while α is an adjustable parameter. The α parameter is estimated to be
∼ 0.5 when the t � w/µS [277]. Now, if we take t = tP , we can further reduce the equation
down to:

T (t) =
whJ2

πµsσWρSCS

(
arcsinh

(
2
√
µSt

wG

))
(C.2)

Here, we will use the above equation to calculate the Joule heating effect and compare
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Figure C.1: (a) Illustration of the nanowires showing the nanowire on top of the substrate, w
being the width and h the height of the nanowire. The nanowire is treated as the heat source,
the heat flowing towards the substrate. (b) Illustration showing the approximate scale of the
thin film with the substrate (c) Power density Gaussian profile of the nanowire. Figure taken
from You et al.[277]

Mn4N/SrTiO3 and Mn4−xNixN/SrTiO3 systems. For these calculations, the properties of
SrTiO3 were taken as (Specific heat capacity) CS = 536.31 J/K kg at 300 K[279], (Density) ρS
= 5120 kg/m3 and (Thermal Conductivity) KS = 11 W/mK at 300 K[280–282]. For Mn4N,
the resistivity is taken as 180 µΩcm (which is then converted into the conductivity)[86] and the
width of the wire is taken as wG = α w with α = 0.5 and w = 1µm.

Figure C.2: Mn4N temperature variations (a) Change in temperature plotted against current
density. Different curves indicate the current pulse widths (b) Change in temperature plotted
against the current pulse width, the different curves indicating the different current densities.
The green line represents the Curie temperature of Mn4N.

Fig.C.2 shows the variation of the temperature in Mn4N/SrTiO3 with Fig.C.2 (a) showing
the change in temperature plotted against current density due to the Joule heating and sub-
sequent heat flow into the SrTiO3. The different coloured curves demonstrates different pulse
width times from 0.2 ns to 2 ns. The green horizontal dotted line shows the Curie temperature
of Mn4N at 450 K. The 0 K here is taken as 300 K. In a similar way, Fig.C.2 (b) shows the
change in temperature against the current pulse width with the curves showing the different
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Figure C.3: Mn4−xNixN temperature variations (a) Change in temperature plotted against
current density. Different curves indicate the current pulse widths (b) Change in temperature
plotted against the current pulse width, the different curves indicating the different current
densities. The green line represents the Curie temperature of Mn4N.

current densities from 0.2 × 1012 A/m2 to 2 × 1012 A/m2. The curves obtained here suggests
that in our experiments of CIDWM in Mn4N, the Joule heating of the nanowires does not reach
the Curie temperature.

Fig. C.3 shows the temperature variations in Mn4−xNixN. For these calculations, we have
taken the resistivity of Mn3.85Ni0.15N thin film of 225 µΩcm while keeping the other parameters
the same. As the resistivity increases with Ni substitution, the Joule heating increases as well.
This in turn leads to reaching the Curie temperature with less current density and smaller pulse
widths.

Overall, these calculations are in inline with our experimental results and suggests that
heating of the nanowires does not reach the Curie temperature for the current densities and the
pulse widths used in Mn4−xNixN thin films as well. Even though we have not taken into account
the convection effect, heat dissipation from the atmosphere and an increase in the resistivity
due to Joule heating. Heat dissipation through the atmosphere should not be negligible and
hence, our results maybe an overestimation. Also, considering that the resistivity increases with
the heating, would result in less current to flow through the wire, which should in principle
decrease the heating.

We have used these calculations for the estimation of the Joule Heating in the nanowires.
However, we can also use these calculations to design new wires in order to reduce Joule Heating
so that higher current density pulses could be applied to the wires to reach even higher DW
velocities.

Fig.C.4 shows the temperature variations in Mn4N and Mn3.85Ni0.15N when the widths of
the nanowires are varied with 1.5 ns pulse widths (a) and (c); current density of 1.5 × 1012

A/m2 (b) and (d). For these calculations, only the width and the resistivity were varied while
keeping all of the other parameters the same. A pulse width of 1.5 ns and a current density of
1.5 × 1012 A/m2 were chosen as they are very high so we can estimate the heating for extreme
conditions. These curves indicate that the heating in the case of Mn4N is less than that of
Mn3.85Ni0.15N as the resistivity of Mn4N is lower. The more important observation here is that
the width of the wire does not play a key role in changing or reducing the heating effect. The
heating changed only marginally when the width is decreased from 1 µm to 300 nm. Only at
100 nm, we observe a big change in the heating. Next, we will look into how the thickness of
the wires affects the heating in Mn4N and Mn3.85Ni0.15N.

Fig.C.5 shows the comparison of the thickness on the temperature profile with similar
parameters as before, with w = 1 µm and α = 0.5. From these graphs, we see big dependence
of the temperature with the thickness. As the thickness decreases the Joule heating is hugely
reduced for both Mn4N and Mn3.85Ni0.15N nanowires. From the study of Joule heating, we have
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Figure C.4: Comparison of width on the temperature profile; Current density against change
in temperature with 1.5 ns pulse width for Mn4N (a) and Mn3.85Ni0.15N (c) Pulse width against
change in temperature with 1.5 × 1012 A/m2 current density for Mn4N. (b) and Mn3.85Ni0.15N
(d). The green line represents Curie temperature of Mn4N.

Figure C.5: Temperature variation as a function of the thickness; Change in temperature
plotted against current density with 1.5 ns pulse width for Mn4N (a) and Mn3.85Ni0.15N (c)
Change in temperature plotted against pulse width with 1.5 × 1012 A/m2 current density for
Mn4N. (b) and Mn3.85Ni0.15N (d). The green line represents the Curie temperature of Mn4N.
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shown that the heating does not exceed the Curie temperature while being in the experimental
parameters. It has also shown ways to reduce the heating effect in these systems with varying
the thickness of thin films. Therefore, in order to increase the current density to reach an even
high domain wall velocities, the thickness of the thin films could be reduced. Another way to
achieve the same is to decrease the width of the nanowires to 100 nm. However it would also
make it very difficult to observe the domains using MOKE microscopy.
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Summary 
 
The boundaries between magnetic domains are known as domain walls. The motion 
of these domain walls using magnetic fields or spin polarized currents has been one 
of the main focus of spintronics research in the last two decades. One mechanism 
leading to current induced domain wall motion is the spin transfer torque, where the 
spin polarized current is generated within the ferromagnetic layer and exerts a torque 
on the local magnetic moments of the domain walls. The other mechanism is the spin 
orbit torque, which is now widely used for the domain wall motion experiments, and 
where the spin polarized current is generated by an adjacent heavy metal layer. 
 
Recently, current-induced magnetization dynamics in ferrimagnets has become an 
active field of research. The magnetic and/or the angular momentum compensation 
can be achieved by either changing the temperature or by changing the composition 
of the materials. As the magnetization or the angular momentum that has to be 
reversed is small close to these points, previous reports on ferrimagnets have 
evidenced large domain wall velocities under action of spin orbit torques. In this 
manuscript we will focus on current-driven domain wall dynamics in an epitaxial rare-
earth free ferrimagnetic nitride, Manganese Nitride (Mn4N), using spin transfer 
torques. 
 
We show that epitaxially grown Mn4N thin films grown on SrTiO3 substrate have a very 
low magnetization and mm-scale domains with very low pinning. On this system, 
domain wall motion was studied by fabricating nanowires by standard e-beam 
lithography. Using magneto optic kerr measurements, we measured a high domain 
wall velocity of more than 900 m/s in Mn4N at J = 1.3 x 1012 A/m2, at room temperature, 
with only spin transfer torque. 
 
In order to reach the compensation point, different samples were grown epitaxially 
while increasing the doping Ni concentration. X-ray magnetic circular dichroism 
measurements showed that the Ni atoms preferentially occupy the site of Mn(I). Since 
the magnetic moment carried by the Ni atoms is anti-parallel to that of Mn(I), increasing 
the Ni content decreases the net magnetic moment. Beyond a critical Ni concentration, 
the net magnetization is then expected to be reversed. Using the values from neutron 
diffraction measurements, the expected magnetic compensation point lies around Ni 
atomic concentration of x = 0.18 which corresponds to 3.6% of Ni. The presence of 
the magnetic compensation point around this concentration is confirmed by x-ray 
magnetic circular dichroism and Anomalous Hall effect measurements. 
The domain wall velocity is found to increase as the Ni concentration gets closer to 
the angular momentum compensation point, with a velocity up to 2000 m/s before the 
compensation point and approaching 3000 m/s after crossing the compensation point. 
Interestingly it was also observed that the domain wall motion direction is reversed 
beyond the compensation point. In order to explain these results, we used the q–ϕ 
model, expanded to a ferrimagnetic system consisting of two sub-lattices, and using 
effective magnetic parameters for the two sub-lattices. If one assumes that the spin 
polarization does not change after the angular momentum compensation point, the 
domain wall motion reversal is therefore due to a relative change of orientation of the 
net spin polarization with respect to global magnetization. 



To confirm the validity of these assumptions, ab-initio calculations were performed, 
showing that the net magnetization is reversed at the Ni concentration x = 0.15, which 
match well with our experimental results. The simulations confirms that the conduction 
occurs through the Mn(II), and that the spin polarization remains in the same 
direction(Mn(I)) while the net magnetization direction is reversed. 
The studied materials, composed of abundant elements, and free of critical elements 
such as rare-earths and heavy metals, are thus promising candidates for sustainable 
spintronics applications. These results underline that despite the spintronics 
community has been focusing mostly on SOTs in the past decade, the STT remains 
an efficient way to drive domain walls. 
 

Résumé  

 
Les frontières entre les domaines magnétiques sont appelées parois de domaine. Le 
mouvement de ces parois à l'aide de champs magnétiques ou de courants polarisés 
en spin a été l'un des principaux axes de recherche en spintronique des deux 
dernières décennies. Un mécanisme conduisant au mouvement de paroi sous courant 
est le couple de transfert de spin, où le courant polarisé en spin est généré dans la 
couche ferromagnétique. L'autre mécanisme est le couple spin-orbite, aujourd’hui 
largement utilisé, et où le courant polarisé en spin est généré par une couche 
adjacente de matériau spin-orbite. 
Récemment, le contrôle de l'aimantation par injection de courant dans les matériaux 
ferrimagnétiques est devenu un important domaine de recherche. La compensation 
magnétique et/ou de moment cinétique peut être obtenue en modifiant la température 
ou en modifiant la composition des matériaux. Comme l'aimantation qui doit être 
renversée est faible près de ces points, des études récentes ont mis en évidence de 
grandes vitesses de paroi de domaine sous l'action de couples spin-orbite. Dans ce 
manuscrit, nous traitons de la propagation des parois de domaine sous l’effet d’un 
couple de transfert de spin dans un nitrure ferrimagnétique épitaxié, le nitrure de 
manganèse (Mn4N). 
Nous montrons que les couches minces de Mn4N développées par épitaxie sur un 
substrat de SrTiO3 ont une très faible aimantation, et des domaines à l'échelle 
millimétrique avec un ancrage très faible. Dans ce système, le mouvement des parois 
de domaine a été étudié en fabriquant des nanofils par lithographie. En utilisant des 
mesures d’effet Kerr magnéto-optiques, nous avons mesuré des vitesses de paroi de 
plus de 900 m/s dans Mn4N à J = 1.3 x 1012 A/m2, à température ambiante, et avec 
seulement un couple de transfert de spin. 
Afin d'atteindre le point de compensation, différents échantillons ont été épitaxiés en 
les dopant par du Ni. Des mesures de dichroïsme circulaire magnétique aux rayons X 
ont montré que les atomes de Ni occupent préférentiellement le site de Mn(I). Puisque 
le moment magnétique porté par les atomes de Ni est anti-parallèle à celui de Mn(I), 
l'augmentation de la teneur en Ni diminue le moment magnétique net. Au-delà d'une 
concentration critique en Ni, l'aimantation nette devrait alors s'inverser. En utilisant les 
valeurs des mesures de diffraction des neutrons, le point de compensation 
magnétique attendu se situe autour de 3.6 % de Ni. La présence du point de 
compensation magnétique autour de cette concentration est confirmée par des 
mesures de dichroïsme circulaire magnétique aux rayons X et d'effet Hall anormal. 
Les vitesses de la paroi augmentent à mesure que la concentration de Ni se rapproche 
du point de compensation, avec une vitesse allant jusqu'à 2000 m/s avant le point de 



compensation et approchant 3000 m/s après avoir traversé le point de compensation. 
Nous avons également observé une inversion de la direction du mouvement de la 
paroi au-delà du point de compensation. Afin d'expliquer ces résultats, nous avons 
utilisé le modèle q – ϕ. Si l'on suppose que la polarisation de spin ne change pas après 
le point de compensation du moment cinétique, l'inversion du mouvement de la paroi 
du domaine est due à un changement relatif d'orientation de la polarisation de spin 
nette par rapport à l'aimantation globale. 
Pour confirmer la validité de ces hypothèses, des calculs ab-initio ont été effectués, 
montrant que l'aimantation nette est inversée à la concentration de Ni x = 0.15, ce qui 
correspond bien à nos 
résultats expérimentaux. Les simulations confirment que la conduction se produit à 
travers le Mn(II), et qu’à la transition la polarisation du spin reste dans la même 
direction (Mn(I)) alors que la direction de l'aimantation nette est inversée. 
Les matériaux étudiés, composés d'éléments abondants, et exempts d'éléments 
critiques comme les terres rares et les métaux lourds, sont ainsi des candidats 
prometteurs pour des applications de spintronique durable. 
Bien que la communauté de la spintronique se soit principalement concentrée sur les 
SOT au cours de la dernière décennie, ces résultats soulignent que le STT reste un 
moyen efficace de contrôle des parois. 
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