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1.1 Motivation
A wide range of systems in the field of fluid mechanics exhibit complex dynamics. The com-
plexity pertains to spatial and temporal features originating from instabilities, nonlinearities,
or turbulence which span a range from small to large scales. This is especially the case in
flows involving high Reynolds number, compressibility, or combustion, to cite just a few. For
example, the flow in the wake of a circular cylinder, for a range of Reynolds number, exhibits
different flow regimes characterized by small and large scale vortical structures, as shown in
Fig. 1.1. In these flow cases, very fine spatial and temporal discretizations are required for the
adequate resolution and propagation of the flow states. One of the ways to study the complex
underlying physical phenomena is provided by the numerical analysis of associated full-scale
models governing the flow dynamics. Generally, a detailed analysis of the flow features de-
mands the availability of highly resolved spatio-temporal data. The discretized systems for
complex problems can often have a huge number of degrees of freedom, e.g. Re9/4 for di-
rect numerical simulations. Also, the growing requirement for improved accuracy requires the
inclusion of more details in the modeling stage, which inevitably leads to larger-scale, more
complex models of dynamical systems (Benner et al., 2015).

Over the past few decades, the analysis of more and more complex flow systems has been
made possible by the advancements in numerical simulation and experimental measurement
tools. However, the analysis of complex fluid flows poses the challenge of handling large
data representing the high-dimensional nonlinear dynamics. In these large-scale settings, the
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2 Introduction

Figure 1.1: Visualization of laminar and turbulent vortex streets in the wake of a circular
cylinder, over a wide range of Reynolds numbers. The flow features vortices which are shed in
pairs, alternately from each side of the rear surface of the cylinder, when the wake starts to
oscillate at Re > 35, forming a Kármán vortex street. As Re increases (Re > 200), the wake
becomes more complex and turbulent, but the vortices can still be detected in the form of
coherent structures. For even higher values of Re, the vortex street starts to degenerate into
a turbulent wake with unstable vortices splitting into smaller ones and vanishing downstream.
The visualizations are from Williamson (1996).

challenge appears in the form of high computational cost, which often hinders the use of high-
fidelity tools in applications where repeated realizations of the system are required. These
applications include real-time control (Bergmann and Cordier, 2008a), multidisciplinary opti-
mization (MDO) (LeGresley and Alonso, 2000), and uncertainty quantification (UQ) (Mathelin
et al., 2005), for example, which are driven by the ever-increasing push towards improving sys-
tem performance. To alleviate this computational burden, it is of key interest to develop
and study approaches that seek to reduce the size and cost of computational models
while minimizing the loss of physical fidelity. Specifically, one of the key requirements for
closed-loop control is the possibility to robustly predict the state of a fluid system and fore-
cast its evolution. This is the main motivation for deriving reduced, low-dimensional, efficient
models that are computationally tractable and accurate.

Reduced-order modeling has been demonstrated as a viable approach to mitigate the issue
of high computational cost as it offers the potential to simulate physical and dynamical sys-
tems with substantially increased computational efficiency without sacrificing accuracy (Alfio
Quarteroni, 2014). Reduced-order modeling is a rapidly growing field, offering advantage in
terms of facilitating the real-time turn-around of computational results. Over the years, a large
variety of reduced-order modeling methodologies have been proposed to address the reduction
of degrees of freedom of the dynamics of a system. These methods are mostly centered on
physics-based approach, such as, projection-based models. However, there is a more recent
growing attention on non-intrusive approaches in which empirical models are derived from the
input-output data, such as, subspace identification and neural networks. The main objective
of this work, therefore, is to develop methodologies for reduced-order modeling in
order to enable the dynamical prediction of fluid flow states.
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1.2 From physical to latent space
Even though at first glance, the analysis of flow systems may seem daunting, it has been
observed that similar spatial flow features – like the von Kármán vortex street and Kelvin-
Helmholtz instability – emerge across a wide range of flow geometries or over a wide range
of flow parameters. These features are often visually recognizable even under the presence of
perturbations in the flow. The occurrence of these similar prominent features across a range
of flows indicates the existence of common underlying phenomena that capture the essence
of the flow (Taira, Brunton, et al., 2017). The modal decomposition techniques are used to
mathematically extract these underlying flow features based on some energetic or dynamical
criteria. Modal decomposition provides modes, which are the spatial features of the flow,
and modal coefficients, which are the associated characteristic values representing the energy
content levels or growth rates and frequencies. The modes enable the realization of a low-
dimensional latent space coordinate system (reduced basis) from a high-dimensional physical
space. The reduced basis in the selected coordinate system allows a low-order approximation,
with as few degrees of freedom as possible, of the flow dynamics in terms of its dominant
components.

Several modal decomposition methods have been employed in literature for the purpose
of analyzing a wide range of fluid flows. Each method is unique in terms of extraction of
the modal structures which highlight different aspects of the flow field. Based on the inputs
used for obtaining the modes, the modal decomposition methods are classified into two main
groups (Taira, Brunton, et al., 2017). One of the categories, the data-based methods, uses
flow-field data from numerical simulations or experiments to obtain the modes and does not
necessitate the knowledge of the laws governing the dynamics. It includes methods like proper
orthogonal decomposition (POD) (Holmes et al., 2012) and dynamic mode decomposition
(DMD) (Schmid, 2010). In contrast to the data-based methods, the other category of operator-
based methods uses the operator describing the state dynamics to obtain the modes. It includes
methods like Koopman analysis (Mezić, 2013), global linear stability analysis (Theofilis, 2011),
and resolvent analysis (Schmid et al., 2002). The first operator-based method rigorously
connects DMD to nonlinear dynamical systems while the latter two techniques provide the
growth or decay characteristics of perturbations with respect to a given base or mean flow. It
must be acknowledged that these methods are constrained by the accuracy of the information
provided. In this work, the data-based modal decomposition methods are considered.

In the context of fluid dynamics, POD analysis was first introduced by Lumley (1967) as
a method for extracting and analyzing coherent structures in experimental turbulent flows,
and was later used for analyzing numerical simulations of turbulent flows (Podvin and Lumley,
1998; Wang, Akhtar, et al., 2012). The relationship between spatial and temporal structures
was investigated by Aubry (1991), who presented a variant of the decomposition, referred to as
bi-orthogonal decomposition (BOD), which focused on the temporal structures of the modes.
A snapshot POD variant was proposed by Sirovich (1987) to compute both the spatial and
temporal components of the decomposition. Subsequently, a link between POD and an eigen-
decomposition method known as singular value decomposition (SVD) enabled the formulation
of a discrete dataset in terms of a simple matrix factorization, as demonstrated by Kunisch and
Volkwein (1999). The eigendecomposition method is in contrast to the formulations based on
statistics or dynamical system theory, such as the relation between POD symmetry and ergodic-
ity reviewed by Berkooz (1992), or the hierarchy of low-dimensional Galerkin models presented
by Noack, Afanasiev, et al. (2003). Owing to the simple matrix factorization framework, POD
is a popular tool for analyzing experimental and numerical fluid mechanics. Typical applica-
tions of POD include the identification of coherent structures from experimental data (Delville,
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1994), flow control (Bergmann and Cordier, 2008b; Brunton and Noack, 2015), reduced-order
modeling (Deane et al., 1991), and data-driven identification of nonlinear systems (Brunton,
Proctor, et al., 2016b; Loiseau and Brunton, 2018). Excellent reviews on POD can be found
in Holmes et al. (2012), and Chapter 3 of Cordier and Bergmann (2008a).

DMD is another decomposition method which, unlike POD, extracts the dynamic modes
along with the associated growth rates and frequencies from the flow field data. This decom-
position originates from the Koopman theory, which permits the study of a finite dimensional
nonlinear system by mapping it onto an infinite dimensional linear one (Brunton, Brunton,
et al., 2016). The extraction of finite dimensional approximations of such Koopman (linear)
dynamical system from the data for reduced-order modeling applications was performed by
Rowley, Mezić, et al. (2009) and Schmid (2010). The connection of the Koopman framework
to the DMD has been reviewed by Mezić (2013) and an extensive overview of the DMD and
its application is given by Kutz, Brunton, et al. (2016).

In the manuscript, both the modal decomposition methods (POD and DMD) have been
introduced and subsequent development of the data-driven reduced-order modeling has been
performed in the latent space provided by POD modes.

1.3 Reduced-order modeling in latent space
As already highlighted in Sec. 1.1, obtaining low-dimensional and computationally tractable
models as an alternative to the more accurate but computationally intractable high-fidelity
models is crucial for the successful implementation in applications requiring repeated real-
izations of the dynamical system. The field of model reduction encompasses a broad set
of mathematical methods which use the reduced basis obtained from modal decomposition
techniques to generate and evaluate these low dimensional models known as reduced-order
models (ROMs) (Noack, Morzyński, et al., 2011; Mendonça et al., 2019). The possibility to
obtain approximations of the high-fidelity dynamics with low computational times has led both
the industry and the scientific community to investigate ROMs. Specifically, projection-based
reduced-order modeling is the most common approach of flow estimation in the flow control
community. The low number of degrees of freedom of ROMs makes the classical control tech-
niques feasible. However, the complexity of the models used in practical applications means
that numerical packages for creating and computing these models are not readily available.

ROMs are fundamentally characterized by the reduced basis that defines them. As a conse-
quence, the choice of the projection method to represent the dynamics has direct implications
on the success of the subsequent modeling and control strategy. Some of the commonly used
projection methods for constructing ROMs are POD method (Berkooz et al., 1993), DMD
method (Tissot et al., 2014), reduced basis method (Peterson, 1989; Ito and Ravindran, 2001;
Haasdonk and Ohlberger, 2008), cross Gramian method (Baur and Benner, 2008; Himpe and
Ohlberger, 2014), piecewise tangential interpolation method (Baur, Beattie, et al., 2011), ma-
trix interpolation method (Degroote et al., 2010; Panzer et al., 2010), approximate balancing
method (Chiu, 1996), and balanced truncation method (Gugercin and Antoulas, 2004; Lall
et al., 2002; Mehrmann and Stykel, 2005). In this work, the data-driven projection method of
POD has been used for constructing ROMs for fluid dynamics problems. The methods based
on POD and its variants have been applied successfully to numerous research fields includ-
ing fluid flow control (Kunisch, Volkwein, and Xie, 2004; Bergmann, Cordier, and Brancher,
2005b; Hoepffner et al., 2006; Bagheri et al., 2009; Barbagallo et al., 2009; Ahuja and Rowley,
2010) and data assimilation (Qiu and Chou, 2006; Cao et al., 2007; Dimitriu and Apreutesei,
2007).
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The reduced-order models are divided into two categories based on their dependency on
governing equations (Frangos et al., 2010) – physics-based intrusive ROM and purely data-
driven non-intrusive ROM. In this work, ROMs belonging to both these categories have
been introduced and analyzed.

1.3.1 Intrusive reduced-order modeling
By construction, intrusive ROM is dependent on governing equations. In this manuscript,
ROM belonging to this category is derived using a method combining POD and Galerkin
projection. Among the various reduced-order modeling techniques, this approach has attracted
considerable attention for applications in fluid flow analysis. The POD-Galerkin ROM reduces
the number of degrees of freedom required to numerically solve the Navier-Stokes equations
by introducing spatial basis functions which are specifically adapted to the system. This is
unlike the finite volume, finite difference, finite element, or spectral methods that are used to
solve the Navier-Stokes equations, where the basis functions typically have little connection
with the problem being solved and thus require many functions to represent the solution. As
the POD modes are generated for a specific flow, an accurate model of that flow is obtained
using only a small number of modes. The model is able to retain, to a large extent, the
physical characteristics from the original system and it can be used for prediction of the flow
behavior. This POD-Galerkin procedure was first introduced by Aubry et al. (1988) where it
was used to derive low-order dynamical system of a turbulent shear flow. Subsequently, this
modeling approach has been applied to several flow configurations such as turbulent mixing
layer (Ukeiley et al., 2001), and turbulent cylinder wake (Noack and Eckelmann, 1994). All
the POD-Galerkin systems that have been investigated in the literature exhibit a polynomial
form of either a quadratic (Rajaee et al., 1994) or cubic (Aubry et al., 1988) order depending
on the approach to building the model (Rempfer, 1996).

The POD-Galerkin ROM gives the evolution of the time varying coefficients of the POD
modes. Usually, a number of modes in the order of 100–102 are used to approximate the
original flow state. This leads to a drastic reduction in the number of degrees of freedom
retained as compared to the original number of grid points (106–109). Several techniques
have been presented in existing literature for the identification of the parameters of the ROMs
approximating the temporal dynamics of the projection coefficients; particularly applicable in
experimental investigations where only limited data is available. The identification of ROM
parameters from the knowledge of uncorrelated samples of temporal POD coefficients and
their time derivatives obtained from an experimental database was performed by Perret et al.
(2006). Autoregressive (AR) (Jeong and Bienkiewicz, 1997) or autoregressive moving average
(ARMA) (Kho et al., 2002) models have also been used to construct ROMs based on POD
analysis of pressure fluctuations. An approach based on using flow visualizations for obtaining
ROMs in order to develop a closed-loop control strategy was presented by Park et al. (2004).

In this work, the linear regression approaches, namely of ordinary least squares (OLS) algo-
rithm (Press et al., 1993), sparse identification of nonlinear dynamics (SINDy) algorithm (Brun-
ton, Proctor, et al., 2016a), and least angle regression (LARS) algorithm (Efron, Hastie, et al.,
2004), have been applied for the identification of polynomial coefficients of the POD-Galerkin
ROM. A bootstrap method (Efron, 1979) is used to quantify the uncertainty associated with
these system identification methods.

The intrusive ROM usually suffers with the issue of instability (Schlegel and Noack, 2015;
Östh et al., 2014). The instability arises due to the truncation of the POD basis used in
the development of POD-Galerkin ROM. The truncated modal basis often fails to capture the
small-scale dynamics and the predictive ability of the ROMs is thus limited. In order to alleviate
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it, high order modes must be taken into account in the POD-Galerkin approach, even if their
combined energy content is low, in order to improve the long-term stability and accuracy of the
model. Inspired by the successes in RANS and LES methods, empirical dissipation terms can be
added to ROMs to account for the high order modes and ensure model stability (Iollo, Lanteri,
et al., 2000; Östh et al., 2014). Other methods for ensuring numerical stability have also been
proposed in the literature. A stable symmetrical inner product that guarantees certain stability
bounds for the linearized compressible Euler equations was proposed by Kalashnikova and
Barone (2010). A stabilization method for the POD-Galerkin ROM involving the calculation
of POD for both the function and gradient values (POD inH1) was proposed by Iollo, Dervieux,
et al. (2000). A regularization method to replace the POD modes of the nonlinear terms by
their Helmholtz filtered counterparts for strongly-stiff systems was proposed by Sabetghadam
and Jafarpour (2012). Bond and Daniel (2008) introduced a set of linear constraints for
projection matrix to guarantee a stable ROM.

In this work, the POD-Galerkin ROM has been augmented with modal eddy viscosity
(Protas et al., 2015) for stabilization. The calibration of the parameters associated with the
nonlinear terms in the closure term is performed using data assimilation (Kutz, 2013; Asch
et al., 2016). The data assimilation tool provides an optimal weighted mean between the
measurement data and forecast obtained from a prescribed model. This can be extended
to tune the parameters and improve the predictive ability of the model. In this work, the
dual ensemble Kalman filter (Dual-EnKF) method (Moradkhani et al., 2005) has been used in
which both the state variables and model parameters are estimated simultaneously for given
erroneous forcing data (input) and observations (output). In essence, the Dual-EnKF uses
the ensemble of model trajectories in an interactive parameter-state space and provides the
confidence interval of the parameter-state estimation. This framework also allows to take into
account the multiplicative nature of errors in the forcing data and observation by assembling
the parameter adaptation in the state evolution and forecasting system (Young, 2002).

After the identification of the full set of parameters, i.e. both the polynomial coefficients
and the stabilizing term parameters, of the POD-Galerkin ROM, the ensemble Kalman filter
(EnKF) algorithm (Evensen, 1994) is used to assimilate the model output and observations in
order to provide dynamical state estimation.

1.3.2 Non-intrusive reduced-order modeling
Unlike the POD-Galerkin ROM, non-intrusive ROMs (NIROMs) require no knowledge of the
physical system. One of the motivations for developing NIROMs is that, in most cases, the
source code describing the physical model has to be modified in order to generate the reduced
order model and these modifications can be complex, especially in legacy codes, or may not
be possible if the source code is not available. In this regards, several NIROMs have been
proposed in the literature pertaining to various fields. An approach for reduced-order modeling
based on neural networks was introduced by Noack, Morzyński, et al. (2011). A neural network
is a form of machine learning method which is capable of approximating an arbitrary function
using observed data. The neural network based reduced-order models has been applied in
several fluid dynamics applications (Peña et al., 2012; Casenave et al., 2015; Hesthaven and
Ubbiali, 2018; Pawar et al., 2019; Wang, Hesthaven, et al., 2019). A neural network derived
from simulation of a cylinder wake flow was used by Gillies (1998) for controlling a self-excited
cylinder wake oscillations. This empirical model of the modal response of the wake to external
forcing was then used to design a closed-loop control algorithm. A non-intrusive POD-ROM
for aerodynamic shape optimization was developed by Iuliano and Quagliarella (2013). A
NIROM framework based on POD and radial basis function (RBF) and the discrete empirical
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interpolation method (DEIM) algorithm using artificial neural network (ANN) was proposed
by Winter and Breitsamter (2014) and Guenot et al. (2013). A kernel method based on
both support vector machines (SVMs) and a vectorial kernel greedy algorithm was proposed
by Wirtz and Haasdonk (2012). A NIROM based on constrained POD (CPOD) and Kriging
interpolation method was proposed by Xiao et al. (2010). A non-intrusive method for the
polynomial chaos representation to extract a set of optimal basis functions from a coarser
mesh and use it to perform finer mesh analysis was presented by Raisee et al. (2015).

In this work, in order to bypass the Galerkin projection step in the derivation of POD-
ROM, a novel artificial neural network (ANN) framework – named NN-ROM for deep neural
network reduced-order model – has been presented in the form of a NIROM method combining
two recently presented strategies. The first strategy is based on the parametrized framework
presented by Wang, Hesthaven, et al. (2019) in which the DNN approximates the map between
the time and parameter values as input and the POD projection coefficients as output. The
second strategy is based on the multistep configuration of the DNN presented by Pawar et
al. (2019) where the values of the states at previous time steps are used to obtain the time
evolution of the POD projection coefficients. Additionally, as this NIROM framework provides
sequential estimates of the dynamics, it can be considered as a forward model in the data
assimilation paradigm of EnKF while assimilating the estimates and observations.

1.4 Contributions and outline of the thesis
The novel contributions of the thesis are listed here:

1. A comprehensive evaluation of the performance of the linear regression methods used to
identify the coefficients of the polynomial terms in the POD-ROM has been undertaken
in a probabilistic framework. For this, a bootstrap resampling method has been used to
obtain the probability distributions and confidence intervals associated with the identified
coefficients.

2. A simultaneous state and parameter estimation in a data assimilation paradigm has been
implemented for the estimation of the parameters associated with the closure term in
the POD-ROM. This utilizes the Dual-EnKF algorithm which seamlessly integrates the
model output and measurements for the data-driven parameter estimation.

3. A neural network based non-intrusive ROM framework has been developed for the time
series prediction of transient dynamics of the POD modes. The multistep, residual-
based, parameterized neural network framework is augmented with EnKF to provide
long-term dynamical predictions with an improved accuracy.

The outline of the manuscript along with chapter-wise keywords is listed in Tab. 1.1 and
the schematic of the dynamical modeling and reconstruction approach is shown in Fig. 1.2. As
discussed in Sec. 1.2 and Sec. 1.3, the workflow involves a sequence of three main operations.
First, the model order reduction is performed using high-fidelity snapshots in the physical
space and data-based modal decomposition to extract the reduced basis in the latent space.
Next, the reduced-order model in terms of the latent space variables is identified using either
an intrusive or non-intrusive approach. Lastly, the identified model is used to obtain future
estimates of the latent space variables which, in turn, can be used to provide high-fidelity
reconstructions in the physical space.

The contents of the subsequent chapters in the manuscript are briefly presented here. In
Chap. 2, the data-based modal decomposition techniques, namely POD and DMD, used to
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Table 1.1: Outline of the manuscript.

Chapter Keywords
1 Introduction –
2 Reduced-order modeling POD, DMD, Galerkin projection, POD-ROM, eddy

viscosity stabilization
3 Data-driven dynamical system
identification

OLS, SINDy, LARS, Kalman filter, EnKF, Dual-EnKF,
artificial neural network, non-intrusive ROM

4 System identification by linear
regression models

OLS, SINDy, LARS, noise filtering, system identification,
bootstrap estimation

5 Improving POD-ROM using
the Dual Ensemble Kalman
filter

SINDy, EnKF, Dual-EnKF, stabilization parameter
identification, long-term flow prediction

6 Predicting transient dynamics
using non-intrusive ROM

deep neural network, non-intrusive ROM, EnKF, long-term
flow prediction

7 Conclusion and future work –

extract the reduced bases from high-dimensional nonlinear flow data are described. A discussion
comparing the applicability of both the techniques for model reduction is also presented and
the POD-based Galerkin projection is selected for subsequent development of the ROM. The
derivation is performed by the projection of the incompressible Navier-Stokes equations on the
modes resulting from POD. An eddy viscosity model is introduced for closure and stabilization
of the ROM.

In Chap. 3, we introduce different methods considered in this manuscript for the iden-
tification of flow dynamics from data. The methods used for data-driven identification of
the POD-based ROM are classified into two categories as interpretable, closed-form grey-box
functions or surrogate black-box functions. For the grey-box approach, different methods,
namely OLS, SINDy, and LARS, are introduced as regression tools for the identification of the
quadratic dynamical evolution component of the POD-ROM. For the nonlinear parameters in
the POD-ROM, data assimilation algorithms, in general, and Dual-EnKF, in particular, are
introduced. For the black-box approach, a non-intrusive ROM framework based on deep neu-
ral network, which is capable of providing iterative predictions of the dynamical component
of POD, is presented. This approach is formulated as a combination of two strategies. The
first strategy approximates the map between the time and parameter values as inputs and the
POD coefficients as outputs. The second strategy uses the values of the states at previous
time steps to predict the time evolution of the residuals of the solution.

In Chap. 4, we use linear regression methods such as OLS, SINDy, and LARS to identify
the dynamics of the systems. We also show that a bootstrap method can be used to eval-
uate the dependence of the identified parameters on the snapshots retained in the database.
This probabilistic framework is developed for toy models which mimic the POD-ROM without
the nonlinear residual term. Different preprocessing tools to handle noisy data and assemble
matrices in the linear system are discussed. The probability distributions and confidence in-
tervals associated with the learned parameters are obtained using the circular block bootstrap
resampling technique.

In Chap. 5, an eddy viscosity closure term is incorporated in the POD-ROM for a proper
description of the energy dissipation mechanism and the Dual-EnKF algorithm is used to iden-
tify the corresponding nonlinear parameters. The data assimilation framework is demonstrated
for the identification of Lorenz-63 system and a simulated flow around a circular cylinder at
a low Reynolds number. The application is also extended to experimental cylinder wake flow
at higher Reynold numbers and a Mach 0.9 turbulent jet. The sequential data assimilation
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Figure 1.2: Schematic of dynamical modeling and reconstruction approach. The chapters
corresponding to the entities are also indicated.

technique is used to recover the dynamics of the full state in a long time horizon.
In Chap. 6, the limitations of the POD-ROM in terms of satisfying the linearity assumption

and requirement of an a priori knowledge of the model are addressed by using a neural network
based non-intrusive ROM (NN-ROM). The consideration of memory effect by the NN-ROM is
demonstrated for Lorenz-63 system. Next, the NN-ROM is constructed on a parameter space to
extrapolate the full-scale dynamics of a numerical cylinder wake flow at low Reynolds number.
Lastly, the sequential NN-ROM is combined with the EnKF data assimilation algorithm to
enable long-term predictions of the dynamics of a cylinder wake flow at high Reynolds number.

Finally, Chap. 7 summarizes the most important results and proposes some perspectives
for future work.
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This chapter discusses some of the most widely used model reduction techniques used in the
field of fluid mechanics which will serve as a foundation for the development of dynamical
estimation approaches in the subsequent chapters. In Sec. 2.1, two modal analysis methods,
namely proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are
described. The modal decomposition methods provide a reduced basis for the representation
of high-dimensional nonlinear flow systems. The applicability of both the methods for model
reduction is also compared. A POD-based method, which has been proven to be one of the
most efficient model reduction techniques, is considered next for dimensionality reduction. In
Sec. 2.2, a dynamic reduced model formulated by Galerkin projection of the incompressible
Navier-Stokes equations on to the modes resulting from POD is discussed. To tackle the issue
of stability associated with this method, a model closure is also introduced.

2.1 Modal analysis
Fluid flow applications involve a wide range of strongly interacting spatial and temporal scales
arising from instabilities, nonlinearities, and turbulence. In the past few decades, rapid ad-
vancements in numerical simulation and experimental measurement techniques have led to
the availability of large-scale high-fidelity flow field data. In order to study the fluid flows
and develop models to capture their dynamical behavior, it is imperative to compress the vast

11
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amount of data to a low-dimensional form. The analysis of these flows is performed by ex-
tracting physically important features, or modes, from high-resolution spatio-temporal data
that capture the intricate physics.

Analysis of flow data has shown that the high-dimensional dynamics are composed of
low-dimensional features that are commonly shared by a wide range of flows (Taira, Hemati,
et al., 2020). In other words, there exist key underlying spatial features that represent the
most important aspects of the flow physics. The identification of an effective low-dimensional
coordinate system, or reduced basis, for capturing the energetically and dynamically dominant
flow mechanisms is performed by modal decomposition (Taira, Brunton, et al., 2017). The
decomposition results in spatial features called modes and corresponding characteristic values,
representing either the energy content levels or growth rates and frequencies.

The modes can be determined either from the flow field data or directly from the governing
equations. The former is referred as data-based technique, which only requires flow field data as
input and does not necessitate an a priori knowledge of the flow dynamics. The latter, referred
as operator-based technique, requires a more theoretical framework or a knowledge of the
discrete operators of Navier–Stokes equations. In this work, data-based modal decomposition
methods has been considered. A method to determine energetically optimal set of modes to
represent the data, called proper orthogonal decomposition (POD), is discussed in Sec. 2.1.1.
Another data-based method which captures dynamic modes with the associated growth rates
and frequencies using a linear approximation to nonlinear dynamics, called dynamic mode
decomposition (DMD), is discussed in Sec. 2.1.2. A justification to opt for POD for reduced-
order modeling in the subsequent developments in this thesis is also given towards the end of
the section.

2.1.1 Proper Orthogonal Decomposition (POD)
POD has been introduced in the fluid mechanics community by Lumley (1967) in the late
1960s as a mean to identify, in a deterministic manner, the large-scale structures present in
turbulent flows. POD is a data-based method and therefore only requires the flow field data,
which can be associated with linear or nonlinear dynamics. POD extracts modes which are
optimal in terms of the mean square of the field variable under observation. In other words,
it provides an objective algorithm to decompose a set of data into a minimal number of basis
functions which capture as much “energy”1 as possible (Cordier and Bergmann, 2008a).

Let us consider a field q(χ, t) which can be composed of either scalar (e.g. pressure,
temperature) or vectorial (e.g. velocity, vorticity) elements. Here, χ is a vector representing
the relevant spatial coordinates and t is a scalar time. Let q′(χ, t) be the fluctuating component
which is obtained by subtracting the temporal mean q(χ) from the field q,

q′(χ, t) = q(χ, t)− q(χ). (2.1)

The goal is to decompose the random field q′(χ, t) into a set of deterministic spatial functions
modulated by time coefficients, i.e.

q′(χ, t) =
+∞∑

i=1
ai(t)Φi(χ), (2.2)

where, Φi and ai represent the POD (spatial) modes and the modal coefficients, respectively.
1Energy is defined in terms of a given inner product, see App. B.8 for the definition of an inner

product and (2.3) for the one used.
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The decomposition (2.2) can be performed using different spectral methods, e.g. using
the standard Fourier decomposition. In the POD framework, we seek the “proper” or optimal
basis functions Φi such that the projection of the field q′ on the first K spatial function Φi

is maximized2 on average, irrespective of the value of K. In order to rigorously define the
projection, we introduce an inner product and its induced norm. Let qI and qII be two given
fields defined in a spatial domain, the spatial inner product is defined as

〈
qI(χ, t), qII(χ, t)

〉
Ω

:=
∫

Ω

qI(χ, t) · qII(χ, t) dχ, (2.3)

where the dot represents the Euclidean inner product. The induced norm is
∥∥qI∥∥

Ω =
√
〈qI, qI〉Ω.

We now assume that the field q′ is defined on discrete times tk (k = 1, . . . , Nt) where Nt

is the number of temporal snapshots. The corresponding POD maximization problem is given
as

max
{Φi}Ki=1

Nt∑

j=1

∥∥ΠPODq
′(χ, tj)

∥∥2
Ω , (2.4a)

subject to

‖Φk‖2Ω = 1 k = 1, · · · ,K, (2.4b)

where ΠPOD is the orthogonal projector on the space spanned by the first K functions Φi, i.e.

ΠPODq
′(χ, tj) =

K∑

k=1

〈
q′(χ, tj),Φk(χ)

〉
Ω Φk(χ).

Since ΠPOD is an orthogonal projector, the maximization problem (2.4) is equivalent to the
minimization problem given by

min
{Φi}Ki=1

Nt∑

j=1

∥∥q′(χ, tj)−ΠPODq
′(χ, tj)

∥∥2
Ω . (2.5)

This means that for any subspace of size K, POD optimizes the averaged residual with respect
to the norm (2.3). It can be shown (see Cordier and Bergmann, 2008a, for instance) that the
POD modes are energetically optimal for the norm (2.3). In that sense, POD allows the
representation of a signal using a minimum number of modes, opening the opportunity of
reduced-order modeling. The constrained maximization problem (2.4) can be solved with
classical Lagrange multipliers (Volkwein, 2013). Hereafter, we introduce the solution in terms
of correlation matrix.

The data obtained from experiments or numerical simulations are always finite-dimensional.
Consequently, the field q′(χ, tj) is considered to be defined at discrete spatial points χj
(j = 1, . . . , Nχ) where Nχ is the number of spatial grid points. The fluctuating component
of the field in (2.1) can be re-written in the discrete space as

q′(χj , tk) = q(χj , tk)− q(χj), j = 1, . . . , Nχ, k = 1, . . . , Nt. (2.6)

Here, q′(χj , tk) ∈ RNc×1, where Nc is the number of components of the input data (e.g. Nc =

2This maximization problem is directly linked to the Eckart-Young theorem (see App. B.13.6).
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2 for a two-dimensional velocity field, Nc = 1 for a pressure field). Let’s denote the individual
component of q′ as q′m with m = 1, . . . , Nc. We also introduce Ns = Nχ×Nc as the number
of spatial points saved per time snapshot.

The ensemble of snapshots q′(χ, tk) ∈ RNs×1 is summarized into a snapshot matrix X as

X =
[
q′(χ, t1) q′(χ, t2) · · · q′(χ, tNt)

]
∈ RNs×Nt . (2.7)

To visualize the elements of the matrix X, we consider an example of a two-component vector
field given as q′ = (q′1, q′2) in a two-dimensional Cartesian grid in the χ = (x, y) plane. The
expanded form of (2.7) can then be written as

X =




q′1(x1, y1, t1) q′1(x1, y1, t2) . . . . . . q′1(x1, y1, tNt)
...

... . . . . . . ...
q′1(xNx , yNy , t1) q′1(xNx , yNy , t2) . . . . . . q′1(xNx , yNy , tNt)
q′2(x1, y1, t1) q′2(x1, y1, t2) . . . . . . q′2(x1, y1, tNt)

...
... . . . . . . ...

q′2(xNx , yNy , t1) q′2(xNx , yNy , t2) . . . . . . q′2(xNx , yNy , tNt)




, (2.8)

where Nx and Ny are the number of grid points in the example along the x and y directions,
respectively. The total number of spatial grid points is given as Nχ = Nx×Ny. Consequently,
the number of rows in the snapshot matrix for vector field with two components (Nc = 2) is
Ns = Nχ×Nc = 2Nχ. If the vector field has more than two components, the data is stacked
as additional rows in the matrix X, such that the total number of rows becomes 3Nχ for a
three-component vector field, and so on.

In addition to some randomness, turbulence is also known to be partially driven by some
coherence and order. This order is observed through the spatial correlation between the time
series q′(χj , t) for each component of q′ at each spatial grid point χj . Correlation provides a
metric to identify the regions where the flow is synchronized and the velocity fluctuations are
correlated. The spatial covariance matrix3 Cs is computed using the snapshot matrix4 X as5

Cs = 1
Nt − 1XX

> ∈ RNs×Ns , (2.9)

3An element (Cs)αβ corresponding to the α-th row and β-th column of Cs is given as

(Cs)αβ = 1
Nt − 1

Nt∑

k=1
q′m(α)(χi(α), tk)q′n(β)(χj(β), tk),

m(α) = dα/Nχe, n(β) = dβ/Nχe, i(α) = α− (m− 1)Nχ, j(β) = β − (n− 1)Nχ,

where d·e is the ceiling function. Along the diagonal, we have α = β (implying m = n and i = j) such
that the elements correspond to the variances of q′m(χi, t) while the off-diagonal terms represent the
covariances. The covariance matrix is symmetric.

4For simplicity, we have considered the field data to be placed on a uniform grid. For this reason,
we do not take into account the quadrature rule to describe the effect of the volume integral present
in the spatial inner product (2.3). This is equivalent to replacing the spatial inner product (2.3)
with an Euclidean inner product in RNs . In general, the cell volume needs to be included in the
formulation to represent the spatial inner product. The covariance matrix should therefore be written
as Cs = XWX>/(Nt−1) whereW holds the weights of the spatial quadrature. With our assumption,
the orthonormality relation (2.10) is given by Φ>Φ = INs and not Φ>WΦ = INs as expected.

5We decide to keep the factor 1/(Nt−1) in the definition of the covariance matrix. We could have
also removed the factor and lumped it into the eigenvalue λi as in Taira, Brunton, et al. (2017).
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Figure 2.1: Schematic of the classical POD method. A truncated series of n ≤ Ns modes is
depicted.

where > represents the matrix transpose.
It can be shown that the optimal basis vectors Φi are obtained from the eigenvectors

of the covariance matrix Cs (Lumley, 1967). This can be understood intuitively: in the
proper orthogonal basis, the variance along each axis (basis vector) is maximized and, as a
consequence, the covariance between the axes (given by the off-diagonal terms of Cs) should
ideally be zero. This means that the otherwise dense covariance matrix Cs reduces to a
Ns × Ns diagonal matrix. Now, recalling that Cs is symmetric, we can conclude that its
eigenvectors form an orthonormal basis in which the matrix Cs is orthogonally diagonalizable
(see App. B.11 for normal matrices). Therefore, the optimized basis to express the data is
simply the set of eigenvectors of the covariance matrix. The POD modes are then orthonormal,
i.e. the basis functions satisfy

〈Φi(χ),Φj(χ)〉Ω = δij =
{

1, if i = j ;
0, if i 6= j.

(2.10)

The fact that the modes are orthonormal allows the modal coefficients ai to be solely dependent
on the modes Φi. This becomes evident by taking the Euclidean inner product of both sides
of (2.2) with Φi, and integrating over the spatial domain. We finally get an expression for ai
as

ai(t) =
〈
q′(χ, t),Φi(χ)

〉
Ω , (2.11)

where the orthonormality property of the modes (2.10) is used. Formally, the covariance matrix
Cs is diagonalized as6

Cs = ΦΛΦ−1 = ΦΛΦ>, (2.12)

where the columns of Φ ∈ RNs×Ns are the eigenvectors of Cs, i.e.

Φ =



| | |

Φ1 Φ2 . . . ΦNs

| | |


 . (2.13)

In the second equality of (2.12), we use the fact that as Cs is symmetric, the eigenvectors
are orthonormal, which makes Φ an orthogonal matrix such that Φ−1 = Φ>. The matrix
Λ = Diag (λ1, . . . , λNs) is assembled such that an eigenvalue λi corresponds to an eigenvector
given by the i-th column of Φ. By convention, the eigenvalues are arranged in descending

6The links between eigenvalue decomposition and the Singular Value Decomposition (SVD) are
discussed in App. B.13.5 or in Taira, Brunton, et al. (2017, Sec. II).
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order such that λ1 ≥ λ2 ≥ . . . ≥ λNs ≥ 0. In terms of practical model reduction, it is desirable
that this decrease is sufficiently fast in order to have the possibility to conserve only a few
modes.

As described by (2.2), the basic idea of the POD is to decompose the original fluctuations
into a sum of contributions from the individual modes. As a consequence, the original dataset
matrix X of the fluctuating field can be represented as a sum of projected data A along the
proper orthogonal basis Φ. We therefore get X = ΦA, where

A =




a1(t1) a1(t2) . . . a1(tNt)
a2(t1) a2(t2) . . . a2(tNt)

...
... . . . ...

aNs(t1) aNs(t2) . . . aNs(tNt)


 ∈ RNs×Nt . (2.14)

The rows of the projected data matrix7 A are the temporal coefficients ai(t) corresponding
to a mode Φi represented by the i-th column of Φ. Consequently, in the finite-dimensional
space, the columns of X representing the snapshot of the field at each time instant can be
expressed as

q′(χ, t) ≈
Ns∑

i=1
Φi(χ)ai(t), (2.15)

where Φi(χ) ∈ RNs×1 is the basis vector corresponding to the i-th mode (i-th column of
Φ) and ai(t) ∈ R1×Nt is the corresponding projection coefficient (i-th row of A). A discrete
counterpart to the continuous form (2.11) can be formulated for obtaining the projection
coefficients ai. The original dataset can be projected on the modes Φ as8

A = Φ>X. (2.16)

An element Aik of the matrix A, representing the projection of the data measured at time tk
on mode Φi, is given as

Aik = ai(tk) = Φi(χ)>q′(χ, tk) (2.17)

=
Ns∑

j=1
(Φi)m(j) (χn(j))q′m(j)(χn(j), tk), where m(j) = dj/Nχe. (2.18)

Here m(j) ∈ [1, Nc] indicates the component of the fluctuation vector, and n(j) = j −
(m(j)− 1)Nχ ∈ [1, Nχ] is the spatial coordinate index. By extension of the notations used for
the components of the fluctuations q′, we denote the m-th component of Φi(χ) as (Φi)m (χ)
with m = 1, . . . , Nc. A schematic of the POD method is shown in Fig. 2.1.

The importance of the POD basis can be understood from the fact that the eigenvectors
give an idea of how the fluctuations q′ are correlated. In a proper orthogonal basis, the
correlation is not given by the off-diagonal terms of the covariance matrix as this matrix is

7An important property of the matrix of projected data A is that its covariance matrix CA is given
by the eigenvalue matrix Λ. It can be proved as

CA = 1
Nt − 1AA

> = 1
Nt − 1(Φ>X)(Φ>X)> = 1

Nt − 1Φ>XX>Φ = Φ>CΦ = Φ>(ΦΛΦ>)Φ = Λ.

8This decomposition can be obtained by multiplying both sides of X = ΦA with Φ> and using the
orthogonality property Φ>Φ = INs .
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diagonal. The correlation is implicit in the directions of the eigenvectors. The projected
coefficients ai in (2.16) are specifically constructed to be uncorrelated so that each coefficient
can be interpreted as a variation of one independent mode of fluctuation. In fluid dynamics,
the POD method is applied with the same idea to obtain modes that can be linked to an
independent coherent structure responsible for the fluctuating field. But, for turbulent data,
the connection between the POD modes and the physical coherent structures is far from trivial.

Furthermore, the eigenvalues rank the correlation with respect to the variance of the data.
In fluid dynamics, if the fluctuations q′ are obtained from velocity measurements, and if the
inner product (2.3) is used, this corresponds to a ranking based on the turbulent kinetic energy
(TKE) of the velocity fluctuations. The individual eigenvalues λi therefore represent the TKE
associated with the i-th mode and are ordered in the matrix Λ based on their contribution
to the total TKE. The total TKE is given as 1

2
∑Ns

i=1 λi. Based on this relationship between
the eigenvalues and TKE, we introduce an energetic criterion to determine the number of
modes that are necessary to sufficiently capture the flow dynamics. The criterion, known as
relative information content or RIC (Bergmann and Cordier, 2008b), gives the indication of
the fraction of total energy that is represented by an ensemble of first n modes. By definition,
we have

RIC (n) =
n∑

i=1
λi

/
Ns∑

i=1
λi ∀n ≤ Ns, (2.19)

where RIC(n) ∈ (0, 1].

2.1.1.1 Snapshot POD

So far in the discussion, we have considered the decomposition into deterministic spatial modes
and stochastic time coefficients. However, the decomposition can also be done into determin-
istic temporal modes and stochastic spatial coefficients. This is possible as the POD equation
(2.2) is symmetric in the variables t and χ. An alternate method to evaluate POD modes,
called snapshot POD, was first introduced by Sirovich (1987). The two POD problems can be
linked easily (see App. B.13.5).

The method begins with the same snapshot matrix X ∈ RNs×Nt defined in (2.8) and
consists of constructing a temporal correlation matrix as

Ct = 1
Ns − 1X

>X ∈ RNt×Nt . (2.20)

The eigendecomposition of Ct gives the eigenvectors9 At ∈ RNt×Nt and eigenvalues10 Λ ∈
RNt×Nt as

Ct = AtΛA−1
t . (2.21)

The spatial coefficients Φt can be obtained by projecting the fluctuation data matrix X on
the temporal basis At as

Φt = XA>t ∈ RNs×Nt . (2.22)

9Since Ct is symmetric, At is orthogonal, i.e. A−1
t = A>t (see App. B.11).

10By considering the SVD of X, it can be shown easily (see App. B.13.5) that the matrices X>X
and XX> share the same eigenvalues. Therefore, we use the same notation Λ for the eigenvalues
of Ct. We remind that the matrix Λ = Diag (λ1, . . . , λNt) is assembled such that an eigenvalue λi
corresponds to a temporal mode given by the i-th column of At. By convention, the eigenvalues are
arranged in descending order such that λ1 ≥ λ2 ≥ . . . ≥ λNt ≥ 0.
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The matrix Φt contains the Nt spatial coefficients (equivalent to the spatial modes of the
direct method), ordered energetically along the columns.

The spatial coefficients and temporal modes of the snapshot POD obtained so far differ
from the spatial modes and temporal coefficients of the direct method by a multiplicative
factor. The spatial modes Φ in the direct method are orthonormal as they originate from
the eigendecomposition of the symmetric correlation matrix Cs. On the other hand, the
spatial modes Φt in the snapshot POD are not orthonormal as Φt is not obtained directly
from eigendecomposition but derived through projection (2.22). In order to match the results
obtained from both the methods, the spatial coefficients of the snapshot POD are normalized
as

Φi = 1√
Ns − 1

1√
λi
XAt,i ∈ RNs×1, i = 1, . . . , Nt, (2.23)

which gives the columns of Φ, written in matrix form as11

Φ = 1√
Ns − 1

XAtΛ−1/2 ∈ RNs×Nt . (2.24)

This way, the matrix Φ is equivalent to the spatial modes of the direct method12. Finally, the
temporal coefficients of the direct method are obtained by using (2.24), i.e.

A = Φ>X ∈ RNt×Nt . (2.25)

In most practical cases, especially in fluid dynamics, the data involves planar or volumetric
measurements of quantities like velocity and pressure. The number of measurement points
in such cases are very large as compared to the number of snapshots, i.e. Ns � Nt. This
makes the correlation matrix Ct smaller and much more convenient to store. Subsequently
the eigendecomposition is faster to perform (Rowley and Dawson, 2017). The snapshot POD
method is therefore preferred in the studies involving PIV and CFD datasets, and the direct
method is preferred for measurements involving limited number of single-point probes with
high temporal resolution.

Demo 2.1: POD of numerical 2D-cylinder wake flow dataset

The snapshot POD method is applied to a cylinder wake flow at a Reynolds number, based
on the diameter, of Re = 100. Refer App. A for details regarding the numerical simulation.
The snapshot matrix X is constructed from Nt = 1000 snapshots, extracted from a post-
transient time range of t ∈ [150, 250] and consisting of Nc = 2 components of velocity
fluctuations.

The contribution of the first few dominant modes to the TKE is shown in Fig. 2.2. For
this type of very simple dynamics, characterized by strong convective phenomena, the POD

11The POD basis functions are then represented as linear combinations of the snapshots. Therefore,
all the properties of the snapshots that can be written as linear and homogeneous equations pass
directly to the POD basis functions. See Sec. 2.2.1.2 for the applications to incompressibility and to
the boundary conditions.

12Indeed, we have:

Φ>Φ = 1
Ns − 1Λ−1 (XAt)> (XAt) = 1

Ns − 1Λ−1A>tX
>XAt = INt .
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modes clearly appear in pairs. The eigenvalue problem is almost degenerate. It can be seen
that the first and second modes dominate the spectrum. The relative energy content of
the first ten modes is RIC (n = 10) = 0.9999. Therefore, we can expect that these modes
can accurately reproduce the flow dynamics (at least in the energetic sense), consequently
forming a low-dimensional basis. The low-dimensionality can be attributed to the simplicity
of the coherent vortical structures that are even visually identifiable in the snapshots. In
the case of high Reynolds number, a higher number of modes will be required to have a
sufficiently good approximation of the TKE. In addition, the interpretation of the modes
may be more difficult. Nonetheless, as we have n� Nt, this example offers an insight into
the huge computational advantage that we obtain with the dimensionality reduction using
POD modal decomposition.
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Figure 2.3: Time evolution of the temporal POD coefficients aPOD
i for i = 1, . . . , 8 corre-

sponding to the most energetic modes for the 2D-cylinder wake flow at Re = 100.

To distinctly identify the modal decomposition performed using the POD method, we
introduce the “POD” superscript. The most dominant temporal coefficients are plotted in
Fig. 2.3. The temporal modes still appear in pairs of same amplitude, one being shifted
in time from the other. The amplitude of the temporal coefficients aPOD

i for the first pair
(aPOD

1 , aPOD
2 ) is greater by an order of magnitude when compared with the next pair of
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modes (aPOD
3 , aPOD

4 ). For the subsequent pairs of modes, the amplitude keeps reducing
subsequently, consistent with the energy spectrum shown in Fig. 2.2. We also clearly observe
that the temporal frequency of the modes increases with the POD index.

The spatial modes are shown in Fig. 2.4. As the cylinder wake is dominated by vortical
features, structures resembling the vortices appear in the spatial modes as well. The spatial
mode pairs are shifted spatially as a result of the convective nature of the flow. The
first spatial mode pair (ΦPOD

1 and ΦPOD
2 ) depicts the dynamical vortex shedding and their

downstream convection. The subsequent modes (ΦPOD
3 and ΦPOD

4 ) correspond to smaller
scale structures which are attributed to the manifestation of the separated shear layers along
the sides of the cylinder and their longitudinal expansion further downstream.

Figure 2.4: Spatial POD modes ΦPOD
i , i = 1, 2, 3, 4 (from left to right) for the streamwise

(top) and vertical (bottom) velocity fluctuations for the 2D-cylinder wake flow at Re = 100.

2.1.1.2 Limitations of POD

The POD method was introduced in the field of fluid dynamics with the idea that the modes
would be able to directly represent the coherent structures in the flow. However, this is not
true in general for most of the cases. Recall from (2.12) that the spatial modes are essentially
a measure of the correlation of the state variables, represented in terms of the fluctuating
field q′, between different spatial grid points. Even though the individual zones of correla-
tion may represent coherent structures, the complete flow is composed of the contribution of
several modes (2.2). In the case of turbulent flows, the zones of correlation appear randomly
as a manifestation of the randomness associated with turbulence (Weiss, 2019). Therefore,
depending on the problem, the modes may capture more than just the coherent structures.

POD is optimal in the energetic sense but is generally not complete13. This can be ex-
plained by the limited resolution accuracy of the modes (Noack, Morzyński, et al., 2011). In
fluid flow applications, due to the existence of grid-based discretization of the Navier-Stokes
equation, the number of spatial modes is tied to the grid. Increasing the resolution accuracy
requires the increase of grid resolution which is not always feasible. This also results from the
fact that POD is based on a second-order correlation (2.9) and that the higher-order correla-
tions are ignored. Moreover, the calculated modes have in general very restricted applicability
outside the parameter space (e.g. Reynolds number) and configuration (e.g. transients, actu-

13Mathematically, a set of orthogonal bases Φi is termed complete in the closed domain Ω if, for
every piecewise continuous function q′ defined in the domain, the squared error ‖q′ −

∑n
i=1 aiΦi‖

2
2

converges to zero as n→∞.
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ation) of the considered datasets. These limitations need to be considered when developing
methods that rely on the POD method for the modal decomposition of datasets. Such meth-
ods have been proposed in Bergmann and Cordier (2008a) for flow control applications. POD
mode interpolation methods on Grassman manifolds have been developed in Amsallem and
Farhat (2011).

Despite these few limitations, the POD optimality may be useful for constructing reduced-
order models (ROM) of fluid dynamics. In Sec. 2.2, POD modes will be used to construct
Galerkin projection based ROM for incompressible fluid flows.

2.1.2 Dynamic Mode Decomposition (DMD)
DMD is another data-based method for modal decomposition. The DMD originated from the
work of Schmid (2010) in the fluid dynamics community as a method to decompose flows into
modes that are representative of the dynamics. DMD modes are spatially correlated and are
associated with a given frequency. This is in contrast to the POD modes which are based on
energetic optimality of the data and are therefore not distinctly defined in terms of spectral
properties.

The method relies on the time-resolved snapshots q(χ, tk) ∈ RNs , or qk (k = 1, . . . , Nt)
for simplicity, obtained from a dynamical system14. Mathematically, DMD can be thought of
as a regression of data on locally linear dynamics. In other words, we search A ∈ RNs×Ns , a
linear operator for all pairs of measurements, given as

qk+1 ≈ Aqk. (2.30)

The goal of the DMD algorithm is to determine the matrix A that optimally fits the trajectory
qk for k = 1, . . . , Nt − 1 such that the least-square error

∥∥qk+1 −Aqk
∥∥

2 is minimized. To
arrive at the optimally constructed matrix A, we begin with arranging the snapshots into two
data matrices given as

X =
[
q1 q2 · · · qNt−1

]
∈ RNs×(Nt−1), (2.31)

X ′ =
[
q2 q3 · · · qNt

]
∈ RNs×(Nt−1). (2.32)

14Let q(t) be the solution of the continuous dynamical system defined as

dq

dt
= Aq. (2.26)

The solution is given by

q(t) = exp (At) q(0) = Φ exp(Ωt)Φ−1q(0) = Φ exp(Ωt)b, (2.27)

where Φ and Ω (diagonal) are the eigenvectors and eigenvalues matrices of the matrix A (see
App. B.12.2). The vector b can be interpreted as the coordinates of q(0) in the eigenvector basis.
Given a continuous dynamical system (2.26), it is always possible to define a discrete-time system
sampled at every ∆t in time:

qk+1 ≈ Aqk, where (2.28)

A = exp (A∆t) . (2.29)
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The matrices can be used to re-write the locally linear approximation (2.30) as

X ′ ≈ AX. (2.33)

The matrix A is obtained as
A = X ′X+, (2.34)

where
+

represents the Moore-Penrose pseudoinverse (see App. B.13). Singular value de-
composition (SVD) gives a computationally efficient method to obtain the pseudoinverse (see
App. B.14). The SVD of X gives

X = UΣV H =
[
U r U rem

] [Σr 0
0 Σrem

] [
V H
r

V H
rem

]
≈ U rΣrV

H
r , (2.35)

where

• U ∈ RNs×Ns is the matrix with columns of left-singular vectors,

• Σ ∈ RNs×(Nt−1) is the diagonal matrix of singular values, i.e. Σ = Diag (σ1, · · · , σp, 0, · · · , 0)
with p = min (Ns, Nt − 1) and σ1 ≥ σ2 ≥ · · · ≥ σp,

• V H ∈ R(Nt−1)×(Nt−1) is the complex conjugate transpose of matrix V with columns of
right-singular vectors.

The vectors in U are the POD modes (see Sec. 2.1.1). A low dimensional representation of
the data matrix can be obtained by choosing a truncation value r ≤ min(Ns, Nt − 1) for the
singular values. With truncation, we get U r ∈ RNs×r, Σr ∈ Rr×r, and V H

r ∈ Rr×(Nt−1).
The remainder matrices are U rem ∈ RNs×(Ns−r), Σrem ∈ R(Ns−r)×(Nt−r−1), and V H

rem ∈
R(Nt−r−1)×(Nt−1). This SVD reduction is useful in flows with low-dimensional structures where
the number of singular values in Σ decreases sharply to zero, leaving just limited number r
of dominant modes (see App. B.13.3). We also note that the singular vectors are unitary
(orthonormal in the real space, see App. B.9.2), i.e. UHU = INs and V HV = INt−1.

An approximation Â of the matrix A can now be obtained from (2.34) by introducing the
pseudoinverse of X determined via the SVD:

A ≈ Â = X ′V rΣ−1
r U

H
r , (2.36)

where Â ∈ RNs×Ns . An eigendecomposition of Â gives the dynamic modes and associated
eigenvalues of the system. In many cases, the data matrixX is high-dimensional with Ns � 1.
Computationally, this makes it difficult to represent or decompose the matrix Â of size RNs×Ns .
The dimensionality of the problem can be reduced by projecting15 the matrix Â on the low-
rank subspace of size r spanned by the POD modes. The most-dominant POD modes are
already stored in the columns of U r. Starting from the evolution of the state given by

qk+1 = Âqk, (2.37)

15After projection, we obtain the matrix UH
r ÂU r that is similar to the matrix Â since U r is unitary.

As a consequence of this similarity transformation, Â and UH
r ÂU r share the same eigenelements (see

App. B.10).
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we obtain the state evolution in the projected space (qk = U rq̃k) as

q̃k+1 = UH
r ÂU rq̃k (2.38)

= UH
rX

′V rΣ−1
r q̃k = Ãq̃k, (2.39)

where
Ã = UH

rX
′V rΣ−1

r ∈ Rr×r. (2.40)

The most significant modes of the full-dimensional operator A are reconstructed using Ã. The
eigendecomposition of Ã is performed as

ÃW = WΛ−1, (2.41)

where W ∈ Rr×r is a matrix with the i-th column corresponding to the eigenvector wi, and
the diagonal matrix Λ ∈ Rr×r contains the corresponding eigenvalue λi.

Finally, the eigenvector Φ of Â (the DMD modes) can be determined from the eigende-
composition (2.41) of Ã. The dynamic mode corresponding to the i-th column of the matrix
Φ (i = 1, · · · , r) is given as

Φi = X ′V rΣ−1
r wi, forλi 6= 0. (2.42)

These modes are known as exact DMD modes because it was proved in Tu et al. (2014) that
these are exact eigenvectors of the matrix A. This expression differs from the formula

Φi = U rwi, (2.43)

used in Schmid (2010). The expressions (2.42) and (2.43) tend to converge if the matrices X
and X ′ have the same column spaces. The modes given by (2.43) are referred as projected
DMD modes. If λi = 0 then the expression (2.42) may be used if Φi = X ′V rΣ−1

r wi 6= 0.
Otherwise, the projected DMD formulation (2.43) Φi = U rwi should be used.

The low-rank approximations of the eigenvalues and DMD modes can be used to forecast
the future states of the dynamical system. The approximate solution is given as

q(t) ≈
r∑

i=1
Φi exp(ωit)bi = Φ exp(Ωt)b, (2.44)

where

• ωi = ln(λi)/∆t is the i-th complex eigenvalue of the matrix A introduced in (2.29). Ω
is diagonal and equal to Diag (ω1, · · · , ωr) ∈ Rr×r. We define the growth rate αi and
frequency βi for each DMD mode i as

αi = ln (| λi |)
∆t and βi = arg (λi)

∆t . (2.45)

• bi is the i-th element of the vector b ∈ Rr×1 which contains the initial amplitude of all
the modes. To obtain b, we consider (2.44) at t = t1 = 0 which gives q1 = Φb. The
initial amplitudes are then given as

b = Φ+q1, (2.46)

where Φ+ is the Moore-Penrose pseudoinverse as Φ is generally not a square matrix.
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The pseudoinverse gives a best-fit solution b in the least-squares sense.

Demo 2.2: DMD of numerical 2D-cylinder wake flow dataset

The DMD method is applied to the 2D-cylinder wake flow described in App. A. A set of
Nt = 1000 snapshots, with Nc = 2 components of velocity fluctuations, is selected from
a post-transient time range of t ∈ [150, 250]. The velocity fields are first transformed
into vorticity fields and then arranged in matrices X and X ′. The DMD modes Φi are
obtained from (2.43) along with the associated eigenvalues from (2.41) that determine
a low-dimensional dynamical system governing how the mode amplitudes evolve in time.
The spectrum of complex eigenvalues is shown in Fig. 2.5. Unlike POD, the temporal
mean is not subtracted from the snapshot ensemble. The first mode represents the steady
background mode. It is the most energetic mode and typically has eigenvalue λ ≈ 1, with
zero imaginary part. The background and 8 harmonic modes are shown in Fig. 2.6. The
background mode resembles, but is not exactly the same as, the mean of the data set.
For the dataset containing the snapshots from the limit cycle (characterized by a periodic
shedding of vortices), the spectrum appears well-ordered; all the modes in Fig. 2.5 lie on
the unit circle. Looking at first two harmonics, labeled 2 and 3 in Fig. 2.6, we observe
that the first harmonic is symmetric in vorticity about the horizontal axis while the second
harmonic is antisymmetric. Thus, the former corresponds to the large-scale convection of
fluid structures in the wake, and the latter corresponds to the periodic shedding of vortices
from the top and bottom surfaces. The DMD modes look similar to POD modes as POD
gives a harmonic decomposition so that the modal amplitudes are approximately sinusoidal
in time at harmonic frequencies of the dominant vortex shedding. In fact, in the regime of
limit cycle, the POD modes are similar to the complex (oscillatory) DMD modes up to a
complex multiplicative factor (Chen, Tu, et al., 2012).
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Figure 2.5: Spectral distribution of the
complex eigenvalues Λ for 2D-cylinder
wake flow at Re = 100. The dashed line
represents a unit circle which indicates the
region inside of which the modes decay and
outside of which the modes grow.
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Figure 2.6: Real component of the spatial DMD modes R[ΦDMD
i ] calculated using vorticity

fields of 2D-cylinder wake flow at Re = 100.

2.1.2.1 Limitations of DMD

The DMD method relies on SVD to extract correlated patterns in the data. As SVD is invariant
to unitary transformations16, the SVD-based approaches are sensitive to the alignment of the
data and are unable to efficiently handle invariances in the data (Brunton and Kutz, 2019). In
other words, translational, rotational or scaling invariances of the low-rank objects embedded in
the data are not well captured by DMD. Also, the transient dynamics are not well characterized
by DMD (Kutz, Brunton, et al., 2016). A potential strategy to handle the invariances and
transient behaviors is offered by multiresolution DMD (Kutz, Fu, et al., 2016).

2.1.2.2 DMD versus POD for reduced-order modeling

So far, two complementary decomposition techniques have been considered: the proper orthog-
onal decomposition (POD) based on the time-averaged spatial correlation matrix gathered from
the snapshots, and the dynamic mode decomposition (DMD) extracting a low-dimensional evo-
lution matrix from the time-resolved data sequence. The POD modes are designed to contain
the largest amount of energy with any given number of modes, whereas the DMD modes give
the energy of the fluctuations at distinct frequencies. As we have seen, both POD and DMD
methods have certain limitations, which can often be mitigated by incorporating some specific
strategies. Therefore, the choice boils down to the specific aspects of the given problem (Kutz,
2013).

From the perspective of applications involving the use of modal decomposition methods
to construct reduced-order model (ROM), the two approaches have been extensively studied

16Unitary transformation is a transformation which preserves the inner product. SVD is fundamen-
tally geometric (see App. B.13.4), which implies that, except for the unitary transformation, the results
of SVD depend on the transformation of the coordinate system in which the data is represented.
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and compared in the literature (see Tissot, 2014, for instance). The POD method preserves
the nonlinear dynamics by projecting the governing equations onto the low-dimensional modes,
while the DMD method builds the Koopman operator that approximates the nonlinear dynamics
without the need of a governing equation. Both methods are able to capture the frequency of
pressure fluctuations in flow past square cylinder and cavity (Seid et al., 2012). However, the
reconstruction using the DMD method shows a time shift and a more pronounced amplitude
deviation in some cases. The discrepancy of DMD to fully describe the fluctuations has been
attributed to the fact that while the POD modes oscillate at multiple frequencies, a DMD
mode oscillates at a single frequency. The applications on shallow water equations (Bistrian
and Navon, 2014) and porous media flow (Bao and Gildin, 2017) show that while the standard
DMD-ROM method is less expensive with respect to the numerical implementation costs,
the POD-ROM provides higher precision. Therefore, for the subsequent implementation of
the system identification methods, we opt for a relatively more precise POD-ROM over the
standard DMD-ROM. Some of the limitations of the POD method will be addressed during
the construction of the ROM.

2.2 Reduced-order modeling
Formulating a reduced-order model (ROM) is a crucial step in the pursuit of model-based
control for fluid flow configurations. This model serves as a way to simplify the Navier-Stokes
(N-S) equations into a minimal set of ordinary differential equations (ODEs) which are more
manageable. The model-reduction methods are classified as either projection or non-projection
methods (Antoulas, 2005). The first group is most widely used in fluid mechanics and within
it, the Galerkin projection approach (Cordier and Bergmann, 2008b) is the most popular. In
this work, ROM obtained from projection of the N-S equations onto a POD basis is considered.

2.2.1 Galerkin projection of Navier-Stokes equation
In this section, we present the Galerkin method for incompressible flow. The method ap-
proximately solves an initial boundary value problem which is formulated in Sec. 2.2.1.1. The
Galerkin system, which gives the evolution equation for the mode amplitudes, is then described
in Sec. 2.2.1.2.

2.2.1.1 Problem formulation

The incompressible, viscous flow is described in a finite steady domain Ω with Cartesian coor-
dinates χ = (x, y, z) and time t. The velocity field is represented in terms of its space- and
time-dependent components as u(χ, t) = (ux(χ, t), uy(χ, t), uz(χ, t)) and the pressure field
is represented as p(χ, t).

The flow is kinematically characterized by a characteristic length L and a characteristic
velocity U . For a Newtonian fluid, density ρ and dynamic viscosity µ are constant. Hereafter,
we assume that all the variables have been non-dimensionalized with L, U , ρ and µ. The flow
is characterized by the Reynolds number Re = ρUL/µ, or its reciprocal ν := 1/Re. The flow
obeys mass and momentum balance given by the continuity and N-S equation as

∇·u = 0, (2.47a)
∂tu+ (u · ∇)u = −∇p+ ν∇2u. (2.47b)
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As the focus of the current work is on system identification, the external volumetric forces
are not considered in the right-hand side of the momentum equation (2.47b). Refer Noack,
Morzyński, et al. (2011) for a more general formulation.

Next, an initial condition at t = 0 and a boundary condition on the domain boundary ∂Ω
in the time interval t ∈ [0, T ] are defined which allow an unique solution of the initial and
boundary value problem (IBVP) (2.47). These conditions are given as

u(χ, 0) = uIC(χ) ∀χ ∈ Ω, (2.48)
u(χ, t) = uBC(χ) ∀χ ∈ ∂Ω, t ∈ [0, T ]. (2.49)

We assume uIC = uBC for χ ∈ ∂Ω. Pressure is typically considered as a Lagrange multiplier
of (2.47a). It can be computed from the velocity field by taking the divergence of (2.47b)
and, with the help of (2.47a), obtaining the Poisson equation as

∇2p = −(∇u)> : ∇u, (2.50)

where : represents the dyadic product17. A Robin boundary condition for p is obtained from the
product of (2.47b) and the wall normal n. This boundary condition and the Poisson equation
uniquely define p up to an arbitrary constant. As the constant does not affect the velocity
field, we can consider the residual N (u) as a nonlinear function of only the velocity field, given
as

N (u) := ∂tu+ (u · ∇)u+∇p− ν∇2u. (2.51)

The formulation applies to low-Mach number incompressible flows of Newtonian fluids in steady
domains.

2.2.1.2 Galerkin system

The Galerkin method approximates the solution of the IBVP formulated in Sec. 2.2.1.1 as

uGal(χ, t) = Φ0(χ) +
NGal∑

i=1
ai(t)Φi(χ), (2.52)

da(t)
dt = fGal(a; t). (2.53)

Here, uGal is an approximation of the velocity field u in terms of the base flow Φ0 and
an expansion using spatial modes Φi and the corresponding temporal coefficients ai, for all
i = 1, . . . , NGal. In (2.53), a system of ODEs for the evolution of the temporal coefficients
a(t) := [a1(t), . . . , aNGal(t)]> is obtained through the propagators fGal := [fGal

1 , . . . , fGal
NGal

]>.
For simplicity, we define a0 = 1 and rewrite (2.52) as

uGal(χ, t) =
NGal∑

i=0
ai(t)Φi(χ). (2.54)

This ansatz is compatible with the weak solution of the N-S equation (Noack, Morzyński,
et al., 2011). This property is used to obtain the Galerkin projection. The residual (2.51) is

17Let A and B be two matrices, then A : B :=
∑

i

∑

j

AijBji.
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projected on the subspace spanned by the NGal expansion modes Φi as
〈
Φi,N (uGal)

〉
Ω

= 0, i = 1, . . . , NGal. (2.55)

We briefly mention some of the properties of the Galerkin expansion (2.52) before per-
forming the projection (2.55). Firstly, the modes satisfy the incompressibility criterion, i.e.

∇·Φi = 0, i = 1, . . . , NGal, (2.56)

and are orthonormal, such that

〈Φi,Φj〉Ω = δij , ∀ i, j ∈ {1, . . . , NGal}. (2.57)

Secondly, the orthonormality allows to determine the mode amplitudes for a given velocity field
u by minimizing the residual

∥∥u(χ, t)− uGal(χ, t)
∥∥

Ω, which gives

ai(t) = 〈u(χ, t)−Φ0(χ),Φi(χ)〉Ω , i = 1, . . . , NGal. (2.58)

We note that the mode amplitude ai is independent of NGal as it is not influenced by the or-
thogonal residual

∑+∞
i=NGal+1 ai(t)Φi(χ). Lastly, the boundary condition (2.49) is incorporated

as
Φ0(χ) = uBC(χ), and Φi(χ) = 0, i = 1, . . . , NGal, ∀χ ∈ ∂Ω. (2.59)

Consolidating these properties, the Galerkin projection of each term of the residual in (2.55)
is performed individually on the reduced basis space as follows:

1. The local acceleration term yields

〈
Φi, ∂tu

Gal
〉

Ω
=
〈

Φi, ∂t

NGal∑

j=0
ajΦj

〉

Ω

=
NGal∑

j=1
ȧj 〈Φi,Φj〉Ω︸ ︷︷ ︸

δij

= ȧi, (2.60)

since ȧ0 = 0 and the modes are orthonormal.

2. The convective term yields

〈
Φi,−(uGal · ∇)uGal

〉
Ω

=
〈

Φi,−





NGal∑

j=0
ajΦj


 · ∇



(
NGal∑

k=0
akΦk

)〉

Ω

=
NGal∑

j=0

NGal∑

k=0
qcijkajak,

(2.61)

where the coefficient qcijk of the quadratic term is defined as

qcijk = −〈Φi,Φj · ∇Φk〉Ω . (2.62)

3. The viscous term yields

〈
Φi, ν∇2uGal

〉
Ω

=
〈

Φi, ν∇2



NGal∑

j=0
ajΦj



〉

Ω

= ν

NGal∑

j=0
lνijaj , (2.63)
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where the coefficient lνij of the linear term is defined and transformed using Green’s first
identity as

lνij =
〈
Φi,∇2Φj

〉
Ω = −〈∇Φi,∇Φj〉Ω + [Φi∇Φj ]∂Ω, (2.64)

where the second term in the summation is the surface integral which is defined as

[Φi∇Φj ]∂Ω =
∮

∂Ω

Φi∇Φj · dΓ =
∮

∂Ω

Φi(∇Φj · n) dΓ, (2.65)

where ∂Ω is the boundary region of Ω, n is the outward pointing unit normal of surface
element dΓ, and dΓ is the oriented surface element. Note that the surface integral
vanishes for Dirichlet boundary condition as Φi = 0 at the domain boundary.

4. For the pressure term, we first assume that pressure can be represented in a pseudo-
quadratic Galerkin ansatz as

pGal(χ, t) =
NGal∑

i=0

NGal∑

j=0
ai(t)aj(t)pij(χ), (2.66)

where the partial pressures pij satisfies the Poisson equation in (2.50) as

∇2pij = −(∇Φi)> : ∇Φj . (2.67)

The pressure term yields

〈
Φi,−∇pGal

〉
Ω

=
〈

Φi,−∇



NGal∑

j=0

NGal∑

k=0
ajakpjk



〉

Ω

=
NGal∑

j=0

NGal∑

k=0
qpijkajak, (2.68)

where the coefficient qpijk of the quadratic term is defined as

qpijk = −〈Φi,∇pjk〉Ω (2.69)
= 〈(∇·Φi)pjk〉Ω − [Φipjk]∂Ω (2.70)
= −[Φipjk]∂Ω, (2.71)

where we have used the Green’s first identity and the incompressibility criterion of (2.56).
This term is zero along rigid walls as the surface integral vanishes due to Dirichlet
boundary conditions, and under periodic boundary conditions.

Finally, using the results of Galerkin projection for individual terms, the weak form in (2.55)
can be expanded to yield a Galerkin system as

ȧi︸︷︷︸
Local

acceleration
term

= ν

NGal∑

j=0
lνijaj

︸ ︷︷ ︸
Viscous

term

+
NGal∑

j,k=0
qcijkajak

︸ ︷︷ ︸
Convective

term

+
NGal∑

j,k=0
qpijkajak

︸ ︷︷ ︸
Pressure

term

, ∀ i = 0, 1, . . . , NGal. (2.72)

For dynamical analysis purpose, we exclude the mode a0 = 1 associated with the base flow
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and re-write the Galerkin system as

ȧi = Ci +
NGal∑

j=1
Lijaj +

NGal∑

j=1

NGal∑

k=j
Qijkajak, ∀ i = 1, . . . , NGal, (2.73)

where Ci := νlνi0 + qci00 + qpi00 are the constant terms, Lij := νlνij + qcij0 + qci0j + qpij0 + qpi0j
are the coefficients of the linear terms, and Qijk are the coefficients of the quadratic terms.
Note that the summation in last term of (2.73) is different from the corresponding term in
(2.72). As we have ajak = akaj for the quadratic terms, the coefficients can be represented
once in the equation instead of separately for ajak and akaj . Therefore, the quadratic term
coefficients are given as

Qijk :=
{
qcijj + qpijj if j = k

qcijk + qcikj + qpijk + qpikj if j 6= k
. (2.74)

These polynomial coefficients are collected in a parameter vector given as

θ := [ · · · Ci · · · Lij · · · Qijk · · · ]> ∈ RNθ×1, (2.75)

where Nθ = NGal ×Nθi , and

Nθi = 1 +NGal + NGal(NGal + 1)
2 , (2.76)

is the number of parameters in the evolution model for the i-th mode with the corresponding
coefficients θi := [Ci Li1 · · · LiNGal Qi11 · · · QiNGalNGal ]> ∈ RNθi×1.

2.2.2 POD reduced-order model (POD-ROM)
The Galerkin system given by (2.73) provides a way to construct a low-dimensional model
using modes that span a subspace in which the dynamics is sufficiently well resolved. The
performance of the Galerkin method is sensitive to the choice of the expansion modes. Mathe-
matically, the Hilbert space of square-integrable solenoidal vector fields guarantees the existence
of a complete orthonormal system18 (Simader and Sohr, 1992). This property was exploited
successfully for simple flow configurations. However, the method poses severe analytical and
numerical challenges for turbulent flows.

In contrast, the choice of the mode Φ0 corresponding to the base flow in (2.52) is not
critical. The base mode is considered as either a steady solution of the N-S equations or the
mean flow. In practice, both alternatives satisfy the incompressibility criterion (2.47a) and
boundary condition (2.49). In this work, the mean field u(χ) is considered for the base mode
(Cordier, El Majd, et al., 2010). This quantity is easily accessible from the experimental and
numerical data.

The POD Galerkin reduced-order model (POD-ROM) is introduced as a problem-oriented
empirical ansatz. By construction, POD-ROM is able to resolve the coherent structures and
the associated nonlinearities. This makes the model suitable for applications to flow control
which is generally effected by influencing the coherent structures (Bergmann, Cordier, and
Brancher, 2005a; Bergmann and Cordier, 2008a). However, the POD model fails in general
to resolve the turbulent dissipation and the stabilizing base flow variations. Periodic flows are

18The completeness of an orthonormal system implies that an arbitrary accuracy of (2.52) is achiev-
able by increasing the number of modes NGal.
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fully resolved by 4 to 10 modes (Deane et al., 1991; Noack, Afanasiev, et al., 2003; Noack,
Papas, et al., 2005). Transitional flows may need O(103) modes to resolve 90% of turbulent
kinetic energy. Fully turbulent flows may, in contrast, require O(Re9/4) modes (Landau and
Lifshitz, 1987). The computational cost of using a Galerkin system scales in O(N3

Gal) due
to the quadratic term. This can inhibit the practicality of Galerkin system for O(102) or
more number of modes when compared to the cost of discretized Navier-Stokes solvers which
increases linearly with the number of grid points. The Galerkin approximation truncated to
NGal modes therefore gives a significant residual δu,

u(χ, t) = u(χ) +
NGal∑

i=1
ai(t)ΦPOD

i (χ) + δu(χ, t), (2.77)

where

δu(χ, t) =
+∞∑

i=NGal+1
ai(t)ΦPOD

i (χ), (2.78)

and ΦPOD
i is the spatial mode obtained from POD.

Using the ansatz (2.78) for the residual term δu leads to an additional term Ri(a;θs, t)
in the Galerkin system (2.73),




ȧROM
i (t) = fGal

i (t) = fi(aROM;θi, t) +Ri(aROM;θs, t)

aROM
i (0) =

〈
u(χ, 0)− u(χ),ΦPOD

i (χ)
〉

Ω

,∀ i = 1, . . . , NGal. (2.79)

The superscript ROM is introduced to distinguish the solutions of the POD-ROM from the
temporal coefficients determined by POD that are denoted by POD. fGal

i is the propagator
in (2.53), which is the sum of the polynomial function fi accounting for the NGal dominant
modes,

fi(aROM;θi, t) = Ci +
NGal∑

j=1
Lija

ROM
j (t) +

NGal∑

j=1

NGal∑

k=j
Qijka

ROM
j (t)aROM

k (t), (2.80)

and a residual term Ri(aROM;θs, t) accounting for the higher modes, where θs is a vector of
the closure parameters. Here, we have replaced the spatial modes Φi in the expansion (2.52)
with the POD modes ΦPOD

i and NGal is the number of POD modes kept in the Galerkin
projection. For later reference, unless mentioned specifically, the modes and modal coefficients
denoted as Φi and ai will represent those obtained either from the snapshot POD or from the
integration of the POD-ROM. The residual term Ri reads

Ri(aROM;θs, t) =
+∞∑

j=NGal+1
Lija

ROM
j (t) +

+∞∑

j=NGal+1

+∞∑

k=j
Qijka

ROM
j (t)aROM

k (t). (2.81)

The coefficients Ci, Lij and Qijk can be consequently represented as functions of the spatial
eigenfunctions Φi following the definitions in Sec. 2.2.1. Introducing compact notations, the
propagator (2.53) can be represented as fGal

i = fi(a;θi, t) +Ri(a;θs, t) and all the model
parameters can be assembled in a vector Θ = [θ θs]> ∈ RNΘ×1, where NΘ is the sum of the
number of elements in θ and θs.

In practice, the energetic criterion given by (2.19) is used to determine the value of NGal
based on the flow dynamics requirement. The quality of estimation can be evaluated using a



32 Reduced-order modeling

normalized mean square error which is given as

NMSE = 1
Nt

Nt∑

k=1

[∥∥aPOD(tk)− aROM(tk)
∥∥2

2
‖aPOD(tk)‖22

]
, (2.82)

where a(tk) = {ai(tk)}i=1,...,NGal is a vector of temporal POD coefficients at the k-th time
step.

Demo 2.3: Galerkin POD-ROM of the numerical 2D-cylinder wake flow dataset

For the flow past a cylinder at Re = 100, the POD-ROM is obtained by the Galerkin
projection of the Navier-Stokes equations onto the POD modes (see Sec. 2.2.1.2). It has
been shown that ROM with about 6 modes is accurate over short time for simple flow
configuration (Deane et al., 1991). The coefficients Ci, Lij and Qijk for the constant,
linear, and quadratic terms are visualized in Fig. 2.7 after normalization. Here, NGal = 10
modes have been chosen, fixing the number of coefficients for each mode to Nθi = 66. We
see that the modes are mostly harmonically related, with the dominant contribution from
linear terms.

We observe that the Galerkin system is able to approximate the oscillations of the mode
amplitude over a finite time horizon, see Fig. 2.8. The results are almost indistinguishable
for the first mode and the main characteristics of the long-term behavior are reproduced
for the higher modes. However, we observe discrepancies in the amplitude for the higher
modes. The NMSE over the range of Nt = 1000 is 0.047, indicating that the POD-ROM
remains bounded over the long integration interval. The modal energy spectrum obtained
from the POD Galerkin system behaves similarly as the POD modes as shown in Fig. 2.9.
There is a good agreement for the main harmonic contributions from the mode pair a1, a2
while small deviations are observed in the higher harmonics which represent less than 5% in
total TKE.
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Figure 2.7: Normalized values of the parameter vector θ of POD-ROM (2.79) with Ri = 0.
The size and color of the circles correspond to the magnitude of the coefficients.
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i = 1, . . . , 10 of exact POD modes and
the modes obtained from the POD-ROM
system.

2.2.3 Limitations of POD-ROM
For general control-oriented problems, the POD Galerkin method is often unable to yield
robust models. The reason is either the incompleteness of the POD modes, or the intentional
truncation of the number of modes performed in order to reduce the dimension of the problem.

Even though the POD modes are optimal in L2 sense, the corresponding Galerkin system
may fail to fully resolve the Navier-Stokes equation due to the lack of completeness of the
POD modes in the Hilbert space of square integrable vector fields L2(Ω) (Kutz, 2013).

To counter the truncation effect, the Galerkin projection on any orthonormal basis is usually
supplied with calibrated corrections of the constant and linear terms (Galletti et al., 2004) or
for the quadratic terms (Cordier, El Majd, et al., 2010). These corrections can also account for
the pressure term or general ill-conditioning of the constant, linear, and quadratic terms. The
Galerkin models have been constructed for wide range of flow configurations but additional care
is needed for robust estimation. For a stable system, POD-ROM is supported with auxiliary
model that accounts for the unresolved sub-scale turbulence. The POD modes also often need
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to be augmented with additional modes for the base flow variations. These so-called shift
modes (Bergmann and Cordier, 2008a, for instance) are not included in the current work as
only post-transient states has been considered.

2.2.4 Stabilization of POD-ROM
The model reduction effected by the truncation in (2.79) leads to a ROM which, in general,
is not sufficiently accurate to estimate the long-term dynamics correctly. As discussed, this
truncation is equivalent to keeping only the most energetic modes that are associated with
the large coherent structures. The viscous dissipation in turbulent flows takes place at small
scales that are represented by low energy modes and are therefore not taken into account. As
a consequence, the contribution of the viscous dissipation terms are neglected and the solution
of (2.79) may diverge and/or drift in time as the leading ROM is not able to dissipate enough
energy. To account for the error introduced by the truncation in the POD-ROM, various
stabilization methods are used (Bergmann, Bruneau, et al., 2009).

The focus of stabilization is on the residual Ri(a;θs, t) component of the propagator
(2.79), including the identification of the closure parameters θs. The residual accounts for the
interaction between the resolved modes and the unresolved modes. The flow can be mentally
divided on spectral basis into coherent structures with characteristic dominant frequency ωc,
base flow variations at low frequencies ω � ωc, and small-scale turbulent fluctuations at high
frequencies ω � ωc. Generally, the first NGal modes represent the low to dominant frequencies
ω . ωc and the residual describes the high frequencies ω � ωc. The linear term of the residual
(2.81) contributes to higher frequencies while the quadratic term in (2.81) contributes to the
whole frequency spectrum (Noack, Morzyński, et al., 2011).

2.2.4.1 Modal constant eddy viscosity

One of the classes of stabilization methods is based on the use of eddy viscosity to close the
ROM (Aubry et al., 1988). The eddy viscosity can be thought of as a subscale turbulence
representation of the POD, trying to introduce the dissipative effect by changing the param-
eters on which the model depends. In the context of fluid flows, the parameter is the global
dimensionless viscosity ν which is augmented with “modal eddy viscosity” νTi (Protas et al.,
2015) following the idea of Boussinesq’s turbulent viscosity. The residual (2.81) is modified as

Ri(a;θs, t) = νTi

NGal∑

j=1
Lijaj(t). (2.83)

This yields the growth rate associated with the residual term to be Di = νTi Lii. A convenient
way is to consider νTi = νc as a constant viscosity acting in the same way on all the modes. This
approach is known as the Heisenberg model (Podvin and Lumley, 1998). A more established
approach is to consider νTi as a function of the mode number i to make the viscous dissipation
vary for each POD mode. One such approach is to represent νTi as a function of the relative
mode number (i/NGal) (see Rempfer and Fasel, 1994; Rempfer, 1996). This closure was
recently generalized by Pyta and Abel (2017) as

νTi = νc

(
i

NGal

)α
, (2.84)
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where νc ∈ R and α ∈ R are the closure coefficient and the associated exponent, respectively.
These values are together represented as stabilization parameter vector θs := [νc α]>. This
ansatz works well with small-bandwidth dynamics such as laminar and transitional flows.

2.2.4.2 Modal nonlinear eddy viscosity – FTT closure formalism

The propagator (2.79) often diverges for broadband turbulence (Noack, Morzyński, et al.,
2011) due to the non-physical representation of the nonlinear energy cascade for Ri = 0. A
finite-time thermodynamics (FTT) formalism (Noack, Schlegel, et al., 2008) yields a nonlinear
eddy viscosity model which tries to match the energy transfer rates of the accurate dynamical
system. The propagator residual obtained from the power balance (Östh et al., 2014) is
represented as

Ri(a;θs, t) = νTi

√
K(t)
K∞

NGal∑

j=1
Lijaj(t). (2.85)

where K(t) is the turbulent kinetic energy (TKE) of the fluctuation u′(χ, t) := u(χ, t)−u(χ)
and is given as

K(t) := 1
2
∥∥u′
∥∥2

Ω ≈
NGal∑

i=1
Ki(t), (2.86)

with Ki(t) quantifying the energy content of each modal component u[i](χ, t) = ai(t)Φi(χ)
as

Ki(t) := 1
2

∥∥∥u[i]
∥∥∥

2

Ω
= 1

2a
2
i (t), (2.87)

using the orthonormality of the modes. The total TKE K∞ is defined as

K∞ =
NGal∑

i=1

λi
2 , (2.88)

where λi are the POD eigenvalues. This formulation takes into consideration the fluctua-
tion levels for the broadband turbulence and leads to a higher damping when the fluctua-
tions are high (K(t)/K∞ > 1) as compared to the linear subscale turbulence representa-
tion in Sec. 2.2.4.1. The parameter vector θs for the closure coefficients takes the form
θs := [νT1 νT2 . . . νTNGal

]>. The nonlinear eddy viscosity has been demonstrated to guarantee
bounded Galerkin solutions (Cordier, Noack, et al., 2013).
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The polynomial coefficients θ of POD-ROM are generally calibrated using least-square method
(Perret et al., 2006; Cordier, El Majd, et al., 2010) such that the coefficients aROM

i are as
close as possible to aPOD

i . The calibration can also be supplemented with sparse identification,
leveraging the fact that most physical systems have only a few nonlinear terms in the dynamics
(Brunton, Proctor, et al., 2016a). Different regression methods to identify dynamical systems
that are linear in parameters are discussed in Sec. 3.1.

Additionally, data-driven system identification approaches can potentially serve as tools
for calibration. The identification methods considered in this work can be classified into two
different types of classes depending on the point of view kept:

• data-assimilation method (Kutz, 2013) introduced in Sec. 3.2 and applied in Chap. 5,
which combines the measurement data and the results from a prescribed model to
improve the predictive power of the model, and

• regression via neural network (Brunton, Noack, and Koumoutsakos, 2019) introduced
in Sec. 3.3 and applied in Chap. 6, which identifies or corrects nonlinear systems using
deep neural networks.

If the original number of modes is not large enough to provide appropriate dissipation, these
methods are able to stabilize the model by allowing the representation of the inter-modal
dependence through the residual terms or surrogate models.
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The identification of physical laws from simulation or experimental data can be critical to appli-
cations where governing equations are unknown. Attempts towards the automated data-driven
inference of dynamical systems have been actively made since several decades (Crutchfield and
McNamara, 1987). In practical applications, it is often possible to obtain the data by measure-
ment of the time evolution of different observables. A natural question that follows is whether
these time-series data can be used to extract the dynamical system from which the data is
obtained. In some cases, it is possible to derive physical laws from first principals using data
as well as some a priori knowledge of the system (white-box modelling). However, in cases
with high-dimensional and/or unknown physics, the derivation remains a challenge.

There has been substantial research focused towards automating the process of data-driven
model discovery (Montáns et al., 2019). Data-driven identification methods can be grouped
into two categories: i) methods that provide interpretable closed-form grey-box functions for
the dynamics as ordinary and partial differential equations, and ii) methods that accurately
reproduce the observed dynamical features at the cost of interpretability using black-box func-
tions (e.g. neural networks). In the grey-box approach, a specific model is assumed for the
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data with known physics, while in the black-box approach, models seek accurate predictions.
System identification using these data-driven approaches has emerged as a viable alternative
to expert knowledge and first-principles derivations. Novel approaches belonging to both these
classes are introduced in this chapter and explored in the subsequent chapters.

For systems exhibiting linear dynamics, methods like eigensystem realization algorithm
(ERA) (Juang and Pappa, 1985) and dynamic mode decomposition (DMD) (Rowley, Mezić,
et al., 2009; Schmid, 2010) have been used for model extraction using time series data. For
nonlinear systems, the same has been effected with black-box approaches, using methods like
nonlinear autoregressive models with moving average and exogenous input (NARMAX) (Chen
and Billings, 1989), equation-free algorithms (Kevrekidis and Samaey, 2009), and neural net-
works (González-García et al., 1998). For extracting physical laws in the form of ODEs without
any prior knowledge about physics or kinematics, Schmidt and Lipson (2009) proposed a sym-
bolic regression approach based on genetic programming, providing momentum conservation
laws from experimental data.

Often, a combination of first-principle structure determination and empirical parameter
estimation is employed for data-driven identification. Following Ockham’s principle “All things
being equal, the simplest solution tends to be the best one”, we search for reduced-order
models. In Sec. 3.1, different regression methods is discussed to identify dynamical systems
that are linear in parameters. As a starting point, the structure of the system is considered
to be same as that obtained from the Galerkin projection of the incompressible Navier-Stokes
equation onto the POD modes. For this reason, we search for quadratic dynamical evolution
models. The use of a pre-defined library based on the known understanding of physics saves
from the task of simultaneously identifying the model structure and parameters. For the given
model structure, the unknown parameters θ of (2.79) are identified from limited and potentially
noisy data.

For nonlinear parameter estimation, data assimilation tools are used. In Sec. 3.2, Kalman
filter and its variants are introduced. The Kalman filter, a recursive data-processing algorithm,
is the most commonly used sequential data assimilation technique. For linear dynamical mod-
els with Gaussian uncertainties, an optimal estimation is obtained. In fluid mechanics, the
dynamics is non-linear and very often of very large size. For this reason, we have used an
Ensemble Kalman filter method (EnKF) which, via a Monte Carlo approach, estimates the
corrections to be made to the state of the system and its parameters according to observations
(Moradkhani et al., 2005).

Finally, a black-box approach based on a deep neural network is discussed in Sec. 3.3. We
introduce a non-intrusive model reduction method as a new modular approach for supervised
learning of the dynamics. The objective is to determine a regression model to iteratively
predict the POD coefficients. For this purpose, we present a method based on a multistep,
residual-based, parametrized deep neural network.
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3.1 Linear regression models
As shown in Sec. 2.2.2, the incompressible Navier-Stokes equations may be represented by the
following POD-based reduced-order model1:





ȧi(t) = fi(a(t);θi) +Ri(a(t);θs)

ai(0) = a?i (0)
,∀i = 1, . . . , NGal, (3.1)

where a?i (0) are known initial conditions determined, for instance, by projecting the reference
solution onto the POD modes. The propagator fi is a quadratic model in ai given by

fi(a(t);θi) = Ci +
NGal∑

j=1
Lijaj(t) +

NGal∑

j=1

NGal∑

k=j
Qijkaj(t)ak(t). (3.2)

The residual term Ri can be formulated in terms of different expressions, as detailed in
Sec. 2.2.4. For a simpler presentation, Ri = 0 is considered, i.e. the closure parameters
θs that define the residual Ri are not determined using the regression tool in this section.
It is equivalent to assuming that long-term stable models can be obtained by resolving the
dynamics sufficiently well with the retained NGal POD modes. However, note that in scenarios
where Ri is defined by a linear model, the identification of the parameters θs can also be
performed simultaneously using the treatment discussed in this section.

Given a set of Nt samples of quantities aPOD
i , i.e. the reference data at discrete times

tk, the objective is to determine the dynamical parameters θi in (3.2). The linear propagator
(3.2) is rewritten as

ȧi(tk) = fi(a(tk);θi) =
Nθi∑

j=1
Πj(a(tk)) (θi)j + εi(tk), (3.3)

where i = 1, . . . , NGal and k = 1, . . . , Nt. The different terms are introduced in (3.3) as:

• Πj with j = 1, · · · , Nθi , the set of monomials2 of the quadratic functions in a(tk) where
Nθi is the number of coefficients of θi given by (2.76),

• (θi)j , the j-th component of θi, and

• εi(tk), the error term that adds numerical "noise" to the linear relationship.

The expression (3.3) can be rewritten in matrix form as3

yi = Xβi + εi i = 1, . . . , NGal. (3.4)

1In this chapter, the notations are simplified by dropping the superscript ROM in (2.80). A restric-
tion is made to only consider the case of autonomous dynamical systems for which the propagator does
not depend explicitly on time.

21 constant term: Π1(a(tk)) = 1; NGal linear terms: Π2(a(tk)) = a1(tk), · · · , ΠNGal+1(a(tk)) =
aNGal(tk); NGal(NGal + 1)/2 quadratic terms: ΠNGal+2(a(tk)) = a1(tk)a1(tk), · · · , ΠNθi

(a(tk)) =
aNGal(tk)aNGal(tk)

3A choice is made here to stick to the traditional notations of statistical learning (see Sec. 3.2 of
Hastie et al., 2009, for instance). Hence, X is clearly different than the one defined in Chap. 2.
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Assuming that the time derivatives ȧi can be determined from the coefficients ai, yi is defined
as the vector of the time derivatives ȧi(tk) of the i-th modal coefficient,

yi := ȧi = [ȧi(t1) ȧi(t2) . . . ȧi(tNt)]> ∈ RNt×1. (3.5)

X is the so-called design matrix4 defined for j, k = 1, . . . , NGal as

X :=




1 · · · aj(t1) · · · aj(t1)ak(t1) · · ·
... . . . ... . . . ... . . .
1 · · · aj(tNt) · · · aj(tNt)ak(tNt) · · ·


 ∈ RNt×Nθi , (3.6)

where each row corresponds to the vector of quadratic monomials in terms of a(tk). The
vector of unknown parameters is given by

βi := θi = [Ci · · · Lij · · · Qijk · · · ]> ∈ RNθi×1 ∀ j, k = 1, . . . , NGal. (3.7)

Finally, the error term is defined as

εi := [εi(t1) εi(t2) . . . εi(tNt)]> ∈ RNt×1. (3.8)

The key point to note is that the system (3.4) is linear in terms of parameters. yi is a
vector of observed values or dependent variables. The columns of X are known as regressors,
explanatory variables or independent variables. βi is the vector of regression coefficients and
εi is the error term or sometimes noise. In order to simplify the presentation, the index i is
dropped from (3.4) which gives the general linear model considered in this section as

y = Xβ + ε. (3.9)

Details on linear regression models are given in App. C. For consistency, the number of unknown
parameters is also referred as Nθ instead of Nθi .

3.1.1 Ordinary least-squares (OLS) method
In Perret et al. (2006), a least mean-squares estimation procedure is used to determine the
solution of (3.9). The coefficients β obtained by OLS correspond to the minimization of the
error term given by5

ε = ‖ε‖22 = ‖y −Xβ‖22 . (3.10)

The minimization6 of the error function leads to the normal equation (X>X)β = X>y. After
inverting X>X, an estimation of β is obtained. A disadvantage of this approach is that the
condition number of X>X is square of the condition number of X. Hence, the problem
may quickly become ill-conditioned which can lead to an increase in the number of iterations
required for the inversion and limits the accuracy of the solution.

These limitations are overcome by using singular value decomposition (SVD) which is
theoretically equivalent to the direct solution. The SVD (see App. B.13) is performed on the

4In order to have a unique solution for the linear system (3.4), the case with Nt > Nθi is considered
so that there are more temporal data than parameters to identify.

5Some penalization term can also be added, see Sec. 3.1.2 for `1-regularization and Cordier, El
Majd, et al. (2010) for Tikhonov regularization.

6OLS, along with penalized least squares, is presented in more general terms in App. C.2.
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matrix X which gives
X = UΣV>. (3.11)

Here, U ∈ RNt×Nθ and V ∈ RNθ×Nθ are orthogonal matrices such that U>U = V>V = INθ .
Σ ∈ RNθ×Nθ is the diagonal matrix of singular values σi, arranged such that σ1 ≥ σ2 ≥ . . . ≥
σNθ ≥ 0. The solution for the OLS problem (3.10) is given as (Press et al., 1993)

β̂ =
Nθ∑

n=1

1
σn
U>:,nyV :,n, (3.12)

whereU :,n and V :,n represent the n-th columns of the matricesU and V for all n = 1, . . . , Nθ.
If σn � 0, the value of 1/σn can be set to zero. This corresponds to adding a zero multiple of
any linear combination of basis functions that are degenerate in the fit. Determining the cut-off
index nc, after which all the singular values are neglected, amounts to empirically determining
the rank of the matrix X. For this, hard- and soft-thresholding methods are often used (see
App. B.15).

The variance in the estimate of β̂j , the j-th component of β̂, is given (Press et al., 1993)
as

Var
(
β̂j

)
=

Nθ∑

n=1

1
σ2
n

[
(V :,n)j

]2
=

Nθ∑

n=1

(
Vjn
σn

)2
∀ j = 1, . . . , Nθ. (3.13)

The SVD approach is numerically robust and helps to eliminate the roundoff error by monitoring
the singular values. The quality of estimation is dependent largely on the number of samples
Nt used. It must be sufficiently high to ensure good statistical convergence. A pseudo-code
of the implementation of the linear system solver with threshold SVD is given in App. B.15.

Typically, the data is noisy and calculating the time derivative ȧi directly from the raw
data can be problematic. The conventional finite-difference approximations will greatly amplify
any noise present in the data. Therefore, the numerical derivative is obtained using a total-
variation regularization method introduced by Chartrand (2011). This method allows the
differentiation of nonsmooth and discontinuous time-signal data, which is often encountered,
with adjustments in regularization parameters.

3.1.2 Sparse identification with SINDy
The sparse identification of nonlinear dynamics (SINDy) algorithm (Brunton, Proctor, et al.,
2016a) is a data-driven regression method that can be used as an alternative to OLS for
identifying the model (3.9). Like the previous method, the algorithm enables the discovery
of a low-order model based on time-series data of observed values and regressors. However,
in the current context, the SINDy algorithm seeks a sparse vector β satisfying (3.9). The
motivation behind the sparse regression approach is the understanding that physical systems
in general have only a few nonlinear terms active in the dynamics, accounting for a significantly
low number of overall terms in the basis functions. This results in a model (3.9) with a sparse
representation of y in the space of high-dimensional basis functions given by X.

The active terms in the model are obtained by penalizing the number of terms in the
dynamics by convex `1-regularization7

β̂LASSO = arg min
β

(
‖Xβ − y‖22 + λ ‖β‖1

)
, (3.14)

7See App. B.3.3 for the definition of the 1-norm. Other equivalent expressions of LASSO are given
in App. C.3.
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where λ > 0 is a sparsity promoting parameter. This parameter is selected heuristically to give
the right trade-off between minimizing the residual given by the first term on the right-hand
side of (3.14) while keeping the space of the permissible basis functions sparse with the second
term. This way the model is interpretable and avoids overfitting. A least absolute selection
and shrinkage operator (LASSO) algorithm introduced by Tibshirani (1996) can be used to
solve (3.14). However, it may be computationally expensive for large datasets. Alternatively,
a sequentially hard-thresholded least-squares algorithm is proposed in Brunton, Proctor, et al.
(2016a). In this algorithm, a least squares approximation of β is iteratively thresholded against
a sparsification knob λ > 0. Let k ≥ 0 be the iteration index, the steps of the algorithm are
given as8

β̂
0

= X+y, (3.15a)
Sk = {1 ≤ j ≤ Nθ | |β̂kj | ≥ λ}, (3.15b)

β̂
k+1

= arg min
β∈RNθ | supp(β)⊆Sk

‖Xβ − y‖22 . (3.15c)

Before starting the iterations, the coefficient vector is initialized as β̂
0
in (3.15a) by using

the Moore-Penrose pseudoinverse X+ (see App. B.14). Then the iterations begin and the
set of coefficients Sk with magnitude greater than the threshold λ are identified in (3.15b).
Lastly, the coefficients in the support set defined by Sk are updated with the solution of the
minimization problem (3.15c). The stopping criteria is defined as Sk+1 = Sk, i.e. no further
update in the set of retained coefficients takes place. It has been shown in Zhang and Schaeffer
(2019) that the SINDy algorithm converges in at most Nθ steps and that it approximates the
local minimizers of9

min
β

(
‖Xβ − y‖22 + λ2 ‖β‖0

)
, (3.16)

where `0-regularization is used.
The SINDy algorithm is a popular tool for estimating a linear regression model, and even

discovering physics from data (Silva et al., 2020), but it has some constraints. Firstly, the
linear regression solution is not unique when the number of coefficients exceeds the num-
ber of observations (Nθ > Nt) (see Tibshirani, 2013). Secondly, the SINDy algorithm is
customized according to the least squares formulation and does not readily accommodate ex-
tensions including incorporation of additional constraints, or nonlinear parameter estimation
(Champion et al., 2020). For this reason, Zheng et al. (2018) introduced the sparse relaxed
regularized regression (SR3) approach that extends the optimization formulation by including
additional structure, robustness to outliers, and nonlinear parameter estimation. SR3 intro-
duces an additional relaxation parameter to deal with nonconvex problems that is encountered
when Nθ > Rank(X). Finally, the regularization method may impose a strong bias in the
distribution of the identified parameters. For example, the least-squares method corresponds
to a Gaussian prior and a strong regularization may push the learned coefficients away from the
values that give a best-fit model and towards the values conforming to the prior distribution.
Therefore, an extra unbiasing step can be performed after the least-squares regularization to
remove the bias from the identified nonzero coefficients (Silva et al., 2020).

8See App. B.3.4 for the definition of the support set.
9See App. B.3.4 for the definition of the 0-norm.
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3.1.3 Sparse identification with LARS
The constraints of SINDy are addressed by using a Least Angle Regression (LARS) algorithm
proposed by Efron, Hastie, et al. (2004); the additional “S” refers to the LASSO variant of
the basic least angle regression (LAR) method, see Hastie et al. (2009). The LAR algorithm
performs model regression in piecewise linear forward steps, accumulating at each step one
explanatory coefficient which contributes to the active term in the basis function space. The
name LAR reflects the mechanism of taking each of these steps along the equiangular direction
between the identified explanatory variables. This allows smooth blending of the new variables
instead of introducing them discontinuously as it is done in the classical forward stepwise
regression. Simple modifications can be introduced in the LAR procedure to produce efficient
LASSO solutions along the piecewise linear equiangular paths, resulting in the LARS algorithm.

3.1.3.1 LARS algorithm

The LARS algorithm gives all possible LASSO estimates for a given problem, the so-called
LASSO path. A set of solutions is obtained, parameterized by the level of sparsity that is
considered sufficient or desirable for the application. If the sequence of solutions is required
to correspond to the regularization path of LASSO, it is necessary to allow the variables to
be removed from the active set when any coefficient goes to zero (see below). The steps in
the LARS procedure are given as follows10 (see Sec. 3.4.4 Hastie et al., 2009) where k is the
index of the algorithm:

Step 0 : Initialization: iteration k = 0

a) Standardize the outputs y and the columns of X (the predictors) with the ex-
ception of the first column (intercept) to have zero mean and unit variance (see
Sec. 3.1.3.2 and App. C.1 for the procedure of standardization). Set the first
column of X i.e. X0 with unit entries.

b) All the components β̂j (j = 0, · · · , p) of β̂ are initialized to zero (β̂ = 0).

c) The residual is set to r0 = y.

d) The active set A0 is empty (A0 = ∅).

Step 1 : Iteration k = 1

a) Find j1, the column of X that is the most correlated with the residual r0, i.e.

j1 = arg max
j=0,··· ,p

〈Xj , r0〉, (3.17)

where 〈·, ·〉 represents the Euclidean inner product.

b) The coefficient β̂j1 corresponding to Xj1 enters the active set A1 (A1 = {β̂j1}).

c) The coefficient β̂j1 is updated following

β̂j1(α) = β̂j1 + α 〈Xj1 , r0〉︸ ︷︷ ︸
δ1

(3.18)

10Note that Xj is the j-th column of the matrix X (where j = 0, · · · , p).
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where α is the step size11 in the least angle direction δ1, see the general definition
(3.21). It corresponds to moving β̂j1 in the direction of δ1 until another candidate
term, say Xj2 , has the same value of correlation with the current residual as Xj1 .

d) The residual is updated using (3.22).

Step 2 : Iteration k

a) Find jk the column of X, that is the most correlated with the residual rk−1, i.e.

jk = arg max
j=0,··· ,p

〈Xj , rk−1〉. (3.19)

b) Update the active set: Ak = Ak−1 ∪
{
β̂jk

}
.

c) The coefficient vector then evolves as

β̂Ak(α) = β̂Ak−1 + αδk, (3.20)

where the direction of update for the current step is given as

δk = (X>Ak−1XAk−1)−1X>Ak−1rk−1 ∈ RNθ×1. (3.21)

Updates are performed in the direction δk until another candidate has the same
correlation with the current residual. Note that the update XAkδk ∈ RNt×1 of
the fit vector makes the smallest and equal angle with each predictor in the active
set Ak, hence the name “least angle” (Hastie et al., 2009).

d) The residual is updated as:

rk = y −XAk β̂Ak ∈ RNt×1. (3.22)

Step 3 : (LASSO modification) If at the k-th step, any coefficient already in the active set Ak
reaches zero, then the term is dropped from the active set and the current least angle
direction δk is recomputed.

Step 4 : Continue the steps until all the Nθ predictors have been entered. The full least-squares
solution is reached after min(Nt − 1, Nθ) steps.

The LARS algorithm is extremely efficient with the entire sequence of steps requiring
O(N3

θ + NtN
2
θ ) computations for Nθ < Nt variables, same as the cost of a least squares fit

using Nθ variables (Efron, Hastie, et al., 2004). The LASSO modification enables the solution
to problems with Nt � Nθ. The LARS algorithm has been shown to be able to handle cases
where there are less observations than the variables Nt � Nθ (Efron, Hastie, et al., 2004). In
such cases, the LARS terminates at the saturated least squares fit after Nt − 1 variables have
been accumulated in the active set (the “−1” is because the data is centered as described in
Sec. 3.1.3.2 and App. C.1).

3.1.3.2 Standardized regression

Standardized regression is a method where the underlying variables are standardized prior to
performing the least squares multiple regression analysis. To perform standardized regression

11Remarkably, one can determine an analytical expression of α to quickly jump to the next point on
the regularization path where the active set changes.
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using (3.9), the vector y ∈ RNt and the columns Xj = X:,j ∈ RNt of matrix X (here
j = 1, . . . , Nθ) are transformed as standardized variables (or z-scores) ̂ defined as

ŷ = y − y 1Nt
σ(y) , and X̂

j
= Xj −Xj 1Nt

σ(Xj)
, ∀j = 2, . . . , Nθ, (3.23)

where 1Nt is the all-ones vector of size Nt. Note that the column with unit entries X1 = 1Nt
is not transformed. The mean and standard deviation of y are given as

y = 1
Nt

Nt∑

k=1
yk, and σ(y) =

√√√√ 1
Nt

Nt∑

k=1
(yk − y)2. (3.24)

The mean and standard deviation of the columns Xj of X ∈ RNt×Nθ are given as

X
j = 1

Nt

Nt∑

k=1
Xk,j , and σ(Xj) =

√√√√ 1
Nt

Nt∑

k=1
(Xk,j −A

j)2 ∀ j = 2, . . . , Nθ. (3.25)

A regression carried out on the standardized variables produces standardized coefficients β̂.
Standardization is performed in order to scale the different explanatory variables in y and

X. This is especially important in the regression with X involving polynomial and interaction
terms which lead to orders of magnitude difference between the regressors. The differences in
scale obscure the statistical significance of model terms and may produce imprecise coefficients,
thus making it difficult to identify the correct model. Standardizing offers a way to reduce the
multicollinearity produced by the higher-order terms.

As the LARS method performs regression by accumulating explanatory coefficients that
have the highest correlation with the residual (see Sec. 3.1.3.1), standardization facilitates the
identification of the regressor that has the largest impact on the dependent variable. It is the
regressor with the highest absolute value of the corresponding coefficient. A typical deviation
of that regressor from its mean produces the largest effect, as compared to the effects produced
by similar deviations of the other regressors.

We must note that the coefficients β̂ are not invariant to the standardization. In order
to retrieve the unstandardized result y, the original mean and standard deviation used while
performing the standardized regression are used. The unstandardized result y is obtained as

y = ŷ σ(y) + y 1Nt , (3.26)

where
ŷ = X̂ β̂ and X̂ = [X̂

1
X̂

2
. . . X̂

Nt ]. (3.27)

3.1.3.3 Model selection criteria

The LASSO estimator (3.14) is characterized by the tuning parameter λ > 0. This hyper-
parameter controls the trade-off between the fit (accuracy) and complexity (sparsity) of the
statistical model, also known as the bias-variance trade-off. The objective of regularization
is to control the complexity of the fitted model. As λ increases, the model complexity is
reduced through shrinkage – from least regularized LASSO (λ = 0) corresponding to OLS to
most regularized LASSO (λ = ∞) corresponding to a constant fit. The model complexity
can be quantitatively estimated in terms of the effective degrees of freedom df (λ) for a given
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regularization parameter λ. The evolution of df (λ) can be used to select the optimal λ in the
LASSO estimator. However, due to the nonlinear nature of LASSO, no explicit expression of
df (λ) exists.

The LARS algorithm presented in Sec. 3.1.3.1 performs regression with piece-wise linear
updates in the current equiangular direction. The model complexity evolves as the active set
of coefficients (Ak) updates with the LARS steps. The LARS step (k) can be considered as a
metaparameter controlling the model complexity. Following Zou et al. (2007), the degrees of
freedom of LARS equals the number of nonzero coefficients in the active set at the k-th step,
which gives

df (λ) = E[|Ak|], (3.28)

where |Ak| is the size of the active set. We have d̂f (λ) = |Ak| as the unbiased estimator of
df (λ).

Unlike the SINDy algorithm where the regularization parameter is selected heuristically, in
the LARS algorithm, an information criterion is used to adaptively select an optimal value of
the regularization parameter. An information criterion is a measure of the quality of a statistical
model based on the level of fit (quantified in terms of the mean squared error) and complexity (a
penalty for parameter identification using the sample data). The Akaike information criterion
(AIC) (Akaike, 1974) and the Bayesian information criterion (BIC) (Schwarz, 1978) are two
of the most used information criteria for model selection. Using the information criteria, the
optimal regularization parameter (λopt) for the LASSO model is given as (Zou et al., 2007)

λopt = arg min
λ

‖Xβ − y‖22
σ2 + wNt d̂f (λ), (3.29)

where σ2 = var(y). The penalty factor is wNt = 2 for AIC and wNt = ln(Nt) for BIC. The
LARS model efficiently solves the LASSO estimation problem for all λ with the cost of a single
least square fit. Therefore, the optimal λopt can be immediately obtained once the entire
LASSO solution path is solved by the LARS algorithm.

Although the information-criterion based model selection is fast, it must be noted that
the method relies on the estimation of the degrees of freedom df (λ), on the availability of
large sample sizes (Nt � 1), and on a correct selection of the basis functions X. AIC relies
on the asymptotic approximation and may not be appropriate for finite data set. The BIC
relies on the assumption of i.i.d.12 random variable and normal distribution of the model er-
rors. In regression, AIC has been shown to be asymptotically optimal for selecting the model
with the least-mean squared error under the assumption that the set of basis functions X
does not contain the true model (Yang, 2005). In this work, we implement the AIC for the
LASSO estimation with LARS using the LassoLarsIC function from the scikit-learn pack-
age (Buitinck et al., 2013).
The LARS method is illustrated in Sec. 4.4 on different test cases.

In the next section, the data-driven techniques based on data assimilation are discussed.

12i.e. independent and identically distributed
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3.2 Data assimilation (DA) methods
In Sec. 3.1, we considered the case where the identification is equivalent to a regression model
which is linear in parameters. This is a simplification because in the general case, the residual
term Ri may involve parameters associated with nonlinear terms, like (2.84). In order to
identify the full set of model parameters Θ = [θ θs]>, we propose to use data assimilation
methods.

Data assimilation (DA) is a generic methodology which combines heterogeneous observa-
tions with the underlying dynamical principles, governing the system under consideration, to
estimate the states and/or physical quantities parameterizing the dynamics in an optimal way.
Starting from a background solution (from model) and incoming imperfect information (from
observations), an optimal estimation of the unknowns of the system is performed which takes
into account the respective statistical confidences of the two complimentary, but incomplete
and inaccurate, sources of information.

For the subsequent discussion, we assume that a nonlinear, time-discrete model for the
dynamics of interest is available as

qk =Mk:k−1(qk−1,Θk) + ηk. (3.30)

Here, k = 1, . . . , Nt is the time index with Nt being the total number of time steps. The
propagation of the state qk−1 ∈ RNs , whereNs is the dimension of the state vector after spatial
discretization, is performed from time tk−1 to tk by a nonlinear functionMk:k−1 : RNs → RNs .
The model also depends on the model parameters vector Θk ∈ RNp at time tk, where Np is
the number of model parameters. For simplicity, we have considered the full vector Θ here
but a partial set of parameters may also be considered without loss of generality. The term
ηk ∈ RNs is the model error of the true (unknown) process at time tk. The error is represented
here as a stochastic additive term and accounts for the cumulative errors in the parameters,
the numerical scheme used for integrating the model (3.30), and the unresolved scales. The
objective of the assimilation is to estimate qtk, the true (unobservable) state.

For the observations, we denote the time index j to highlight the difference of the obser-
vation instances from the time steps tk of the model state. The observation time steps tk(j)
are a subset of the model integration steps (see Fig. 3.1) with j = 1, . . . , No

t ; No
t ≤ Nt being

the total number of time steps at which the measurements are available. In the special case
where the observations are available at all the model integration steps, we have No

t = Nt

and tk(j) = tk. The noisy discrete time observations of the state qk(j) are represented as the
components of the observation vector yoj ∈ RNo . The superscript “o” is used to differentiate
the imperfect (noisy) observations from the actual (noise-free) observations yj . The relation
between the observations and the state is given as

yoj = Hj(qj) + εoj , (3.31)

where Hj : RNs → RNo denotes the observation function, which is nonlinear in general. Also,
similar to the model error, we have the term εoj ∈ RNo as the additive observation error.
The error accounts for the instrument error, deficiencies in the observation operator, and the
representation error arising from unresolved scales.

In several problems, the amount of available observation is not sufficient to fully describe
the dynamical system (No � Ns). In such cases, the state estimation cannot fully rely on
the data-driven approaches and a state evolution model becomes essential to fill the spatial
and temporal gaps in the observations (Carrassi et al., 2018). The DA methods are designed
to achieve the best use of the observational data and obtain an efficient merger of data and
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Figure 3.1: Time discretization of the interval [t0, tNt ] into Nt + 1 nodes where the model
states in the vector qk = q(χ, tk) are defined. The measurement vectors yj are available at
time steps tk(j) where j = 1, . . . , Nt,o.

model.
The DA methods are classically categorized either as variational DA or as sequential DA,

also known as “filtering” or “probabilistic” DA (Asch et al., 2016). The goal of both methods
is to seek an optimal solution in a given sense. In the variational approach, the solution
minimizes a suitable cost function, and in the sequential approach, the solution is the one with
the minimum variance. In certain special cases, both approaches reach the same solution. The
sequential approach can be computationally expensive due to its statistical nature but provide
rich information in terms of the average solution and its probability distribution. The two may
also be combined into an hybrid approach which takes the advantage of the robustness of
variational approach, and the information-rich solution of the statistical approach (Asch et al.,
2016). However, the combined approach is highly problem dependent and can be nontrivial
and computationally expensive to implement.

In this work, the statistical approaches based on one of the most well-known and often-
used toolbox for stochastic estimation, the Kalman filter, will be discussed and implemented.
In Sec. 3.2.1, the data assimilation is first introduced as a filtering problem and then the
Kalman filter (KF) algorithm, used to optimally fit the model trajectory to the observations,
is discussed. However, the KF assumes the uncertainties in the stochastic model states,
parameters, observations and prior to be Gaussian distributed, and requires the model and
observation operators to be linear. For handling models following non-Gaussian statistics
and/or nonlinear operators, the ensemble Kalman filter (EnKF) is discussed in Sec. 3.2.2.
This framework is further extended for parametrized models in Sec. 3.2.3 by considering the
Dual-EnKF algorithm for joint estimation of the model state and parameters.

3.2.1 Kalman filter (KF)
The Kalman filter (KF) is a very well-known statistical method named after Rudolph E. Kalman
who developed an algorithm to obtain recursive solution to the time-dependent discrete-data
linear filtering problems (Kalman, 1960). A filtering problem is characterized by sequential
processing, in which the observations are utilized chronologically as they become available.
The filtering solution at a given time step tk (0 ≤ k ≤ Nt) is obtained by sequentially updating
the solution up to the same time tk. The solution thus accounts for all the observations before
tk.

We consider a dynamical system and seek to estimate the sequence of true states qtk at
discrete times tk when the observations yk are available. A sequential DA scheme is set up
to optimally fit an initially unconstrained model trajectory to the observations taking their
respective uncertainties into consideration. We address the statistical DA approach from a
Bayesian point of view and discuss the KF algorithm in detail.
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3.2.1.1 Bayesian formulation of the state estimation problem

The complimentary sets of information from the model and data need to be combined to
obtain a state estimation. We note that, both the model (3.30) and observations (3.31) are
random due to the additive stochastic errors. Therefore, they can be described in terms of
probability density functions (pdfs). The two sources of information are combined using the
Bayesian formulation which offers a natural framework to approach the statistical DA problem.
Hereafter, we follow Evensen’s approach (Evensen, 2009) and present a mathematically and
statistically consistent formulation of the combined parameter and state estimation.

In the Bayesian formulation, the output of the estimation process is given by the posterior
distribution

p(q,Θ |y) = p(y | q,Θ)p(q,Θ)
p(y) . (3.32)

The posterior distribution gives the joint pdf of the random variables in the form of the
unknown state q and parameter Θ conditioned on the observations y. The components of
the Bayesian inference on the right-hand side of (3.32) are: i) p(y | q,Θ), the likelihood of
the data conditioned to the model state and parameters, i.e. what would be the observation if
the true state and parameters were known, ii) p(q,Θ), the joint prior pdf that describes the
state and parameters before the assimilation, and iii) p(y), the marginal distribution of the
observation. The marginal distribution is independent of the model and only contributes as a
normalization constant. The posterior distribution (3.32) is therefore more commonly written
in terms of the product of the likelihood and prior distributions

p(q,Θ |y) ∝ p(y | q,Θ)p(q,Θ). (3.33)

Generally, the dynamical model is supported with initial and boundary conditions. We
consider them as random variables and define the pdfs p(q0) and p(qb) for the estimates of
the initial condition q0 and the boundary condition p(qb). Similarly, we define the pdf of the
estimate of the parameters Θ as p(Θ). The prior pdf p(q,Θ) is then rewritten as

p(q,Θ, q0, qb) = p(q,Θ | q0, qb)p(q0)p(qb) = p(q |Θ, q0, qb)p(q0)p(qb)p(Θ). (3.34)

Then (3.33) is rewritten as

p(q,Θ, q0, qb |y) ∝ p(q |Θ, q0, qb)p(q0)p(qb)p(Θ)p(y | q,Θ), (3.35)

where it has been assumed that the model and observational sequences, and the initial and
boundary conditions are independent in time and also mutually uncorrelated. Here the pdf
p(q |Θ, q0, qb) gives the prior density of the model solution for given parameters, and initial
and boundary conditions.

In practice, the model state and observations are discretized in time. The state at the
specific time intervals is given as qk(χ) = q(χ, tk) for all k = 0, . . . , Nt with the corresponding
boundary condition qb,k. For the state evolution from time tk−1 to tk, we assume that the
model follows a first-order Markov process13 and gives the pdf as p(qk | qk−1,Θ, qb,k). The

13A random process {X(t), t ∈ T} is called a first-order Markov process if for any t0 < t1 < . . . < tk,
the conditional probability of X(tk) for given values of X(t0), X(t1), . . . , X(tk−1) depends only on
X(tk−1), i.e. p(X(tk) |X(tk−1), X(tk−2), . . . , X(t0)) = p(X(tk) |X(tk−1)).
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joint pdf for the model states {qk}Ntk=1 and parameters Θ in (3.34) is rewritten as14

p({qk}Ntk=1,Θ, q0, qb) ∝ p(q0)p(qb)p(Θ)
Nt∏

k=1
p(qk | qk−1,Θ, qb). (3.36)

Similarly, as shown in Fig. 3.1, the discrete measurements yj are collected at times tk(j), where
the observation indices j = 1, . . . , Nt,o are such that {tk(j)} ⊆ {tk} and 0 < k(1) < . . . <
k(Nt,o) < Nt. The measurement errors are assumed to be uncorrelated in time. The likelihood
pdf of the observations {yj}

Nt,o
j=1 is then given as

p({yj}
Nt,o
j=1 | {qk}

Nt
k=1,Θ) =

Nt,o∏

j=1
p(yj | qk(j),Θ). (3.37)

Finally, the discrete formulation of the Bayes’ theorem is obtained by substituting (3.36) and
(3.37) in (3.35) as

p({qk}Ntk=1,Θ, q0, qb | {yj}
Nt,o
j=1 ) ∝ p(q0)p(qb)p(Θ)

Nt∏

k=1
p(qk | qk−1,Θ, qb)

Nt,o∏

j=1
p(yj | qk(j),Θ).

(3.38)
For a model following a first-order Markov process, the sequential processing of the observations
is performed by rewriting the Bayesian formulation (3.38) as

p({qk}Ntk=1,Θ, q0, qb | {yj}
Nt,o
j=1 ) ∝ p(q0)p(qb)p(Θ)

k(1)∏

k=1
p(qk | qk−1,Θ, qb)p(y1 | qk(1),Θ) . . .

k(Nt,o)∏

k=k(Nt,o−1)+1

p(qk | qk−1,Θ, qb)p(yNt,o | qk(Nt,o),Θ)
Nt∏

k=k(Nt,o)+1

p(qk | qk−1,Θ, qb).

(3.39)

This expression can be evaluated sequentially in time to obtain an expression identical to the
one obtained by the direct evaluation of (3.38). After the first observation (y1), we have:

p({qk}
k(1)
k=1,Θ, q0, qb |y1) ∝ p(q0)p(qb)p(Θ)

k(1)∏

k=1
p(qk | qk−1,Θ, qb)p(y1 | qk(1),Θ). (3.40)

After n observations (n = 2, . . . , Nt,o), we have:

p({qk}
k(n)
k=1 ,Θ, q0, qb | {yj}nj=1) ∝ p({qk}

k(n−1)
k=1 ,Θ, q0, qb | {yj}n−1

j=1 )
k(n)∏

k=k(n−1)+1

p(qk | qk−1,Θ, qb)p(yn | qk(n),Θ),
(3.41)

14To simplify the notation, we write p({qk}Ntk=1,Θ, q0, qb) = p(q1, · · · , qNt ,Θ, q0, qb).
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and

p({qk}Ntk=1,Θ, q0, qb | {yj}
Nt,o
j=1 ) ∝ p({qk}

i(Nt,o)
k=1 ,Θ, q0, qb | {yj}

Nt,o
j=1 )

Nt∏

k=k(Nt,o)+1

p(qk | qk−1,Θ, qb).
(3.42)

These equations show that the joint conditional pdf of the model solution in the time interval
[t1, tk(n)] (n = 2, . . . , Nt,o) is obtained using the prior information from the previous time
interval [t1, tk(n−1)] and the observation yn. This is the most general formulation of the state
and parameter estimation problem using Bayesian statistics. It states that as long as the state
model is a first order Markov process and the observation errors remain uncorrelated in time,
a recursive formulation of processing the observations sequentially can be used for the Bayes’
theorem. It has been claimed that for many DA problems, the sequential procedure is better
posed than processing all the observations simultaneously as is done in variational formulations
(Evensen, 2009).

3.2.1.2 Filtering problem

We now return to the filtering problem and discuss it in terms of the conditional distributions.
In the subsequent discussion, we omit the distributions for the initial and boundary condi-
tions. The task of filtering is to use the available posterior at the (n− 1)-th observation time
step p(qk(n−1),Θ | {yj}n−1

j=1 ) to find the forecast distribution p(qk(n),Θ | {yj}n−1
j=1 ), and the

analysis distribution p(qk(n),Θ | {yj}nj=1). From the Markov process assumption, the forecast
distribution is obtained as (see Wikle and Berliner, 2007)

p(qk(n),Θ | {yj}n−1
j=1 ) = p(Θ)

∫
p(qk(n) | qk(n)−1,Θ)p(qk(n)−1,Θ | {yj}n−1

j=1 ) dqk(n)−1.

(3.43)
This forecast is used to obtain the analysis distribution by Bayes’ rule as

p(qk(n),Θ | {yj}nj=1) = p(qk(n),Θ |yn, {yj}n−1
j=1 )

∝ p(yn | qk(n),Θ)p(qk(n),Θ | {yj}n−1
j=1 ).

(3.44)

The sequential alternating forecast and analysis is performed each time new observation is
available at the discrete time steps tk(n) with n = 1, . . . , Nt,o.

From the Bayesian point of view, DA leads to a complete knowledge of the posterior pdf, i.e.
the conditional distribution of the state given the observations. Even though it is true that
the pdf describes the probability of all possible states of the system, it is virtually impossible
to determine the complete distribution and it does not make good targets for the estimation
algorithm (Carrassi et al., 2018). So we seek instead an estimate of the statistical parameters
of the distribution, such as its mean and/or variance (Evensen, 2009). Several statistical
methods have been developed to give the optimal estimates, e.g. the minimum variance (MV)
estimator provides the conditional mean of the states subject to the observations, and the
maximum a posteriori (MAP) estimator provides the mode15 of the conditional distribution.

Although the Bayesian approach is appealing, the large dimensions that are generally
encountered in fluid flow problems make its application intractable. The problem dimension

15The mode is the peak of the distribution and gives the most probable state.
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impacts the possibility to define and evolve the pdfs. In order to combat the computational
challenge, it is a common practice to assume the uncertainties in each stochastic information
– model states, parameters, observations and prior – to be Gaussian distributed. The Gaussian
hypothesis leads to major simplification as it allows the pdfs to be generalized in terms of the
mean and covariance matrices.

3.2.1.3 Kalman filter algorithm

The Kalman filter (KF) approach solves the state estimation problem introduced in Sec. 3.2.1.1
for the case of linear model operators and Gaussian error distributions (Carrassi et al., 2018).
In the following, the model parameters are considered as fixed and, as such, only the state
estimation is performed. We consider the state model given by the linear counterpart of (3.30)
as16

qk = Mk:k−1qk−1 + ηk, ηk ∼ N (0,Qk). (3.45)

Mk:k−1 ∈ RNs×Ns is the linear model operator that maps the evolution of the state in time
and gives the distribution p(qk | qk−1). The model error ηk is assumed to be uncorrelated in
time and Gaussian distributed with zero mean and a time-dependent noise covariance matrix
Qk ∈ RNs×Ns . Similarly, the observation is given by the linear counterpart of (3.31) as

yok = Hkqk + εok, εok ∼ N (0,Rk). (3.46)

Here we have assumed, for simple notations and without loss of generality, that the observations
are available at all the model integration steps, allowing the usage of the same time index k
for both the variables. Hk ∈ RNo×Ns is the linear observation operator that maps the states
to the measurements and gives the distribution p(yk | qk). Similar to the model error, the
observation error εok is assumed to be uncorrelated in time and Gaussian distributed with zero
mean and a time-dependent noise covariance matrix Rk ∈ RNo×No . Typically, it is assumed
that the model and observation noises are independent and mutually uncorrelated.

Now we introduce the conditional expectations for the forecast and analysis as qfk ≡
E[qtk|{yj}

k−1
j=1 ] and qak ≡ E[qtk|{yj}kj=1], respectively. By extension, the conditional forecast

and analysis error covariances are given by

P f
k = E[(qtk − q

f
k)(qtk − q

f
k)>|{yj}k−1

j=1 ] ∈ RNs×Ns , (3.47)

and
P a
k = E[(qtk − qak)(qtk − qak)>|{yj}kj=1] ∈ RNs×Ns . (3.48)

It can be shown (see Wikle and Berliner, 2007, section 3.1) that the forecast distribution
can be obtained as

qk|{yj}k−1
j=1 ∼ N (qfk ,P

f
k), (3.49)

where the mean is given as

qfk = E[qtk|{yj}k−1
j=1 ] = E[E[qtk|qk−1]|{yj}k−1

j=1 ]

= E[Mk:k−1q
t
k−1|{yj}k−1

j=1 ] = Mk:k−1q
a
k−1,

(3.50)

16The symbol “∼” is read as “is distributed as”. The notation N (µ,Σ) refers to a multivariate
Gaussian (or normal) distribution with mean µ and covariance Σ.
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k
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Figure 3.2: Kalman Filter algorithm. The initialization is made with the analysed state.

and the variance is given as

P f
k = var(qtk|{yj}k−1

j=1) = E[var(qtk|qk−1)|{yj}k−1
j=1 ] + var(E[qtk|qk−1]|{yj}k−1

j=1)

= E[Qk|{yj}k−1
j=1 ] + var(Mk:k−1q

t
k−1|{yj}k−1

j=1) = Qk +Mk:k−1P
a
k−1M

>
k:k−1.

(3.51)

The posterior distribution of qk|{yj}kj=1 is derived in App. E. The analysis follows a normal
distribution with the mean and variance given by

qak = (H>kR−1
k Hk + (P f

k)−1)−1(H>kR−1
k yk + P f

kq
f
k)

= qfk +Kk(yk −Hkq
f
k),

(3.52)

and

P a
k = (H>kR−1

k Hk + (P f
k)−1)−1

= (INs −KkHk)P f
k ,

(3.53)

where the Kalman gain is defined as

Kk = P f
kH
>
k(HkP

f
kH
>
k +Rk)−1 ∈ RNs×No . (3.54)

Therefore, from the model and observation operatorsMk:k−1 andHk, the covariance matrices
Qk andRk (k = 1, . . . , Nt), and from initial (background) information qa0 = qb, and P a

0 = P b,
the KF algorithm can be used to obtain sequential estimates of the state and associated
covariance matrices. The KF algorithm is given in Alg. 3.1 and represented schematically in
Fig. 3.2. The prediction-correction trajectory of the model state vector is shown in Fig. 3.3.

The KF algorithm is only optimal when the assumptions of Gaussian statistics and linear
operators are valid. However, when the models are non-Gaussian and/or the operators are
nonlinear, the mean value and error covariances are not sufficient to describe the pdfs and
matrices entering the estimation problem. Consequently, the forecast and analysis distributions
given by (3.43) and (3.44) cannot be obtained explicitly. The KF is no longer optimal and
can easily fail the estimation process. Moreover, the direct use of the KF approach for high
dimensional systems is delicate, if not impossible (inversion of very large matrices for example).
These limitations necessitate the use of another approach for the DA problem. A traditional
approach is to use tangent linear models for local linearization of the nonlinear evolution
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Algorithm 3.1: KF algorithm
Input: For k = 1, . . . , Nt: linearized forward model M k:k−1, model error

covariance Qk, linearized observation operator Hj, observation error
covariance Rj.
For j = 1, . . . , Nt,o: noisy observations {yoj}.

Output: Updated model states {qak}, ∀k = 1, . . . , Nt

begin
1: Initialize with estimates for {qa0} and {P a

0} and j = 1
for k ← 1 to Nt do

2: Project the state forward
qfk = M k:k−1q

a
k−1

3: Project the error covariance ahead
P f
k = Qk +M k:k−1P

a
k−1M

>
k:k−1

if j ≤ Nt,o and tk = tk(j) then
4: Compute the Kalman gain

Kk = P f
kH
>
k(HkP

f
kH
>
k +Rk)−1

5: Update the estimate with measurement
qak = qfk +Kk(yok(j) −Hkq

f
k)

6: Update the error covariance
P a
k = (INs −KkHk)P f

k

7: j ← j + 1
else

8: Skip the state update
qak ← qfk

Figure 3.3: Schematic of the KF data assimilation method. The dashed line represents the
trajectory of the state vector propagated by the model from one time step to the next. The
corrections of the propagated values obtained at the observation times is indicated by black
arrows.

and observation operators. However, this method, known as extended Kalman filter in the
sequential case, works well only when the problem is moderately nonlinear and non-Gaussian.
Alternatively, Monte Carlo (MC) based sequential assimilation methods have been developed to
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deal with the nonlinearities and non-Gaussian statistics. The ensemble Kalman filter (EnKF)
is one such approach (Evensen, 1994) where the pdf is described by an ensemble of time-
dependent states. In the subsequent sections, EnKF and its extension will be discussed.

3.2.2 Ensemble Kalman filter (EnKF)
The ensemble Kalman filter (EnKF) uses the Monte Carlo (MC) method to empirically rep-
resent the statistical characteristics of the estimator while still retaining the nonlinear forward
model (3.30) for the state evolution. In particular, the covariance matrix of forecast error P f

k

is not derived from the covariance matrix of analysis error P a
k−1, but rather estimated from

the propagation of a finite ensemble of samples (particles) generated using a forced random
walk of the parameters of interest.

The EnKF can be seen as a reduced-order KF as it only handles first two moments (mean
and covariance) of the error statistics which loosely mimics the Gaussian filter. Generally,
due to this truncation of statistics, the EnKF does not solve the Bayesian filtering problem.
However, EnKF has been shown to provide a good approximate algorithm to the filtering
problem.

In this section, the following nonlinear, time-discrete model of the dynamical system and
the observation equation are considered




qtk =Mk:k−1(qk−1) + ηk, ηk ∼ N (0,Qk),

yok = Hk(qk) + εok, εok ∼ N (0,Rk).
(3.55)

The model parameters Θ are not considered because they are assumed to be known in this
section. The model error ηk and observation error εok are assumed to be unbiased and mutually
and temporally uncorrelated. The EnKF is performed sequentially by following a forecast-
analysis (or prediction-correction) scheme.

3.2.2.1 Forecast step

During the prediction step, an ensemble of forecasted states is constructed by propagating
each of the Ne members (particles) of the ensemble with the evolution model in (3.55). Each
particle in the state-space evolves independently as

q
f,(n)
k =Mk:k−1(qa,(n)

k−1 ) + η(n)
k , η

(n)
k ∼ N (0,Qk), (3.56)

where n = 1, . . . , Ne is the sample index. The vector qf,(n)
k represents the n-th member

of the ensemble of forecast states at the instant tk and η(n)
k is the associated model error.

Note that in the cases where no model error is assumed, the samples are evolved without the
additive noise term in (3.56). The vector qa,(n)

k−1 is the corresponding member of the ensemble
of corrected (analyzed) states at a previous time tk−1. The forecast error covariance matrix
P f
k can be estimated empirically. The unbiased empirical estimator for P f

k , P
f,e
k is obtained

as

P f,e
k = 1

Ne − 1

Ne∑

n=1
(qf,(n)
k − qfk)(qf,(n)

k − qfk)>, (3.57)
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where the empirical mean qfk of the ensemble of forecast state is obtained as

qfk = 1
Ne

Ne∑

n=1
q
f,(n)
k . (3.58)

To avoid the phenomena of coalescence of the ensemble members, it is essential to perturb
the observations for each member (data randomization). We will also empirically estimate the
covariance matrix of the observation error used to obtain the Kalman gain. This way, the error
statistics is continually updated to guarantee sufficient diffusion of the ensemble members and
avoid divergence of the algorithm. The random observations are built to be centered around
the actual observation with covariance Rk and given as

y
o,(n)
k = yok + εo,(n)

k , ε
o,(n)
k ∼ N (0,Rk). (3.59)

The vector yo,(n)
k represents the n-th member of the observation ensemble at the instant tk

and εo,(n)
k denotes the associated perturbation. The unbiased (zero-mean) empirical estimator

Re
k of the observation error covariance matrix is given as

Re
k = E[εo,(n)

k (εo,(n)
k )>] = 1

Ne − 1

Ne∑

n=1
ε
o,(n)
k (εo,(n)

k )>. (3.60)

As the number of MC elements tends to infinity, the empirical estimator Re
k tends to the

full-rank observation error covariance matrix Rk. In practice, the estimation Re
k is used to

counter the computational cost of using the full-rank matrix.

3.2.2.2 Analysis step

The correction step consists of updating each member available from the ensemble of forecasted
states using the actual observation. For this, a linear correction is applied as follows

q
a,(n)
k = q

f,(n)
k +Ke

k(y
o,(n)
k − yf,(n)

k )

= q
f,(n)
k +Ke

k(yok + εo,(n)
k −Hk(q

f,(n)
k )).

(3.61)

The vector qa,(n)
k represents the n-th member of the ensemble of analyzed state at the instant

tk. To mimic the Kalman gain of KF given by (3.54), the ensemble Kalman gain Ke
k is

expressed in terms of the ensemble covariances as follows

Ke
k = P f,e

k H
>
k(HkP

f,e
k H

>
k +Rk)−1. (3.62)

This terminates the analysis step. We note that the linearized evolution model has not been
used in the algorithm which makes it useful in a significantly nonlinear regime.

Though not necessary for the algorithm, the availability of the ensemble of analyzed states
q
a,(n)
k makes it possible to obtain the corresponding unbiased empirical estimator of the cor-

relation matrix as

P a,e
k = 1

Ne − 1

Ne∑

n=1
(qa,(n)
k − qak)(q

a,(n)
k − qak)>. (3.63)



3.2 Data assimilation (DA) methods 57

where qak is the empirical mean over the ensemble of analyzed states, given as

qak = 1
Ne

Ne∑

n=1
q
a,(n)
k . (3.64)

This can be used as an optional diagnostic in the scheme.

3.2.2.3 Kalman gain for nonlinear observation operator

We notice that the Kalman gain (3.62) requires the tangent linear modelHk of the observation
operator Hk for the terms P f,e

k H
>
k and HkP

f,e
k H

>
k. In principle, it is therefore necessary to

determine Hk at each time step k, which is expensive. However, these two terms can be
estimated by using the full nonlinear observation operator (Asch et al., 2016). For this, the
following assumption – called the secant method – is made

Hk(q
f,(n)
k − qfk) ' yf,(n)

k − yfk , (3.65)

where

y
f,(n)
k = Hk(q

f,(n)
k ), and yfk = 1

Ne

Ne∑

n=1
y
f,(n)
k . (3.66)

The approximation (3.65) can now be used to replace the nonlinear operator in the expression
for the Kalman gain. The term P f,e

k H
>
k is given in terms of its sample estimate P f,e

qy,k, a
cross-covariance of the forecast state qf,(n)

k and forecast observation yf,(n)
k ,

P f,e
k H

>
k = 1

Ne − 1

Ne∑

n=1
(qf,(n)
k − qfk)[Hk(q

f,(n)
k − qfk)]>

' 1
Ne − 1

Ne∑

n=1
(qf,(n)
k − qfk)(yf,(n)

k − yfk)> := P f,e
qy,k.

(3.67)

Similarly, the term HkP
f,e
k H

>
k is given in terms of its sample estimate P f,e

yy,k, a covariance of
the forecast observation yf,(n)

k ,

HkP
f,e
k H

>
k = 1

Ne − 1

Ne∑

n=1
[Hk(q

f,(n)
k − qfk)][Hk(q

f,(n)
k − qfk)]>

' 1
Ne − 1

Ne∑

n=1
(yf,(n)

k − yfk)(yf,(n)
k − yfk)> := P f,e

yy,k.

(3.68)

Substituting the terms from (3.67) and (3.68) in (3.62) gives a fully ensemble based Kalman
gain as

Ke
k = P f,e

qy,k(P
f,e
yy,k +Re

k)−1. (3.69)

When the number of measurements is greater than the number of ensemble members, the
inverse term in the calculation of the Kalman gain may become singular. In this case, a
pseudo-inverse based on the singular value decomposition can be employed. However, the
advantage of this representation particularly resides in the fact that both the linearization
and the calculation of the covariance matrix of the prediction error are not required, therefore
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Figure 3.4: Schematic of the EnKF data assimilation method. The filled symbols represent the
mean values and the hollow circles represent the ensemble members; the ensemble set itself is
indicated by the shaded region around the respective mean values of the analyzed (red) and
forecast (blue) states. The dashed lines represent the trajectories of the particles in the state
ensemble propagated by the model from one time step to the next (e.g.Mk:k−1 propagates the
state from tk−1 to tk). The corrections of the propagated values obtained at the observation
times is indicated by black arrows.

resulting in a considerable reduction in the computation cost and requirement of storage space.
The EnKF algorithm is given in Alg. 3.2 and the prediction-correction trajectory of the model
state vector is shown in Fig. 3.4.

3.2.3 Dual-ensemble Kalman filter (Dual-EnKF)
In this section, we extend the previous EnKF framework by considering the case of a param-
eterized model given by (3.30). If the true model parameters Θ are known, then the results
presented in Sec. 3.2.2 can be applied immediately for the state estimation. On the other
hand, in practice, we frequently encounter cases where the parameters are unknown or im-
precise. Then the goal of DA is to estimate both the state variables qk and the parameters
Θk given random observation yok. One approach is the joint estimation where the state and
parameter vectors are concatenated into a single joint state vector in a step known as state
augmentation. The drawback of such strategy is that, by increasing the number of unknowns
(i.e. a combination of model states and parameters), the degree of freedom in the system
increases and makes the estimation unstable and intractable, especially in the nonlinear dy-
namical model. Another possible approach is the dual estimation where at each iteration the
filtering is alternatively applied to estimate the state and the parameters. More precisely, in
the first stage, a correction of the model parameters is obtained from the analyzed state at the
previous time state, and in the second stage, the new state is evaluated from the corrected pa-
rameters. This sequential double prediction-correction scheme, formally known as Dual-EnKF
(Moradkhani et al., 2005), is based on the mechanism of evolution of the traditional EnKF.
The Dual-EnKF algorithm is discussed in the following section.

3.2.3.1 Prediction-correction of the parameters vector

For the extension of the EnKF to the dual estimation problem, the parameters Θk are treated
as random variables, in the same way as it was done for the state qk. Samples of the prediction
(forecast) parameters are generated from the available (analyzed) parameters Θa,(n)

k by adding
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Algorithm 3.2: Stochastic EnKF algorithm
Input: For k = 1, . . . , Nt: forward modelMk:k−1, observation operator Hk,

observation error covariance Rk.
For j = 1, . . . , Nt,o: noisy observations {yoj}.

Output: Updated model states {qa,(n)
k }, ∀k = 1, . . . , Nt

begin
1: Initialize the ensemble of analyses {qa,(n)

0 } ; n = 1, . . . , Ne, and j = 1
for k ← 1 to Nt do

2: Compute the ensemble forecast; n = 1, . . . , Ne

q
f,(n)
k =Mk:k−1(qa,(n)

k−1 )
if j ≤ Nt,o and tk = tk(j) then

3: Draw a statistically consistent observation set; n = 1, . . . , Ne

y
o,(n)
k = yok(j) + εo,(n)

k , ε
o,(n)
k ∼ N (0,Rk)

4: (Optional) Compute the estimated observation error covariance

Re
k = 1

Ne − 1

Ne∑

n=1

ε
o,(n)
k (εo,(n)

k )>

5: Compute the model counterparts of the observation set;
n = 1, . . . , Ne

y
f,(n)
k = Hk(qf,(n)

k )
6: Compute the ensemble means

qfk = 1
Ne

Ne∑

n=1

q
f,(n)
k ; yfk = 1

Ne

Ne∑

n=1

y
f,(n)
k

7: Compute the estimated forecast error covariances

P f,e
qy,k = 1

Ne − 1

Ne∑

n=1

(qf,(n)
k − qfk)(y

f,(n)
k − yfk)

>

P f,e
yy,k = 1

Ne − 1

Ne∑

n=1

(yf,(n)
k − yfk)(y

f,(n)
k − yfk)

>

8: Compute the Kalman gain
Ke

k = P f,e
qy,k(P

f,e
yy,k +Rk)−1, or

Ke
k = P f,e

qy,k(P
f,e
yy,k +Re

k)−1

9: Update the ensemble; n = 1, . . . , Ne

q
a,(n)
k = q

f,(n)
k +Ke

k(y
o,(n)
k − yf,(n)

k )
10: j ← j + 1

else
11: Skip the ensemble update

q
a,(n)
k ← q

f,(n)
k
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an artificial random walk, i.e.

Θf,(n)
k = Θa,(n)

k−1 + ξ(n)
k , ξ

(n)
k ∼ N (0,Ck), (3.70)

where n = 1, . . . , Ne. The additive random perturbation ξ(n)
k is Gaussian distributed with

zero mean and covariance Ck. However, as the random perturbation is not governed by any
physical law, it poses the challenges of over-dispersion of the parameter samples and the loss of
information during the propagation of ensemble, even when the parameters are considered to
be fixed. We then follow the work of Moradkhani et al. (2005) and introduce kernel smoothing
and shrinkage to tackle the loss of information and over-diffused posteriors. The parameter
forecast (3.70) is modified to give

Θf,(n)
k = sΘa,(n)

k−1 + (1− s)Θa
k−1 + ξ(n)

k , ξ
(n)
k ∼ N (0, h2Ck), (3.71)

where

Θa
k−1 = 1

Ne

Ne∑

n=1
Θa,(n)
k−1 . (3.72)

Here h is the smoothing or variance reducing parameter and s is the shrinkage parameter.
The two parameters are related as h =

√
1− s2, with s = (3δ − 1)/(2δ) where δ ∈ (0, 1] is a

constant.

The subsequent steps focus on updating the predicted ensemble of parameters by assimi-
lating the observations similar to the state update of EnKF. For this, the ensemble of predicted
state is first obtained by using the predicted parameters for the modelMk:k−1 as

q
f,(n)
k =Mk:k−1(qa,(n)

k−1 ,Θ
f,(n)
k ). (3.73)

The ensemble of predicted states is used to obtain the ensemble of forecast observations using
the observation operator Hk as

y
f,(n)
k = Hk(q

f,(n)
k ). (3.74)

Now, similar to the EnKF algorithm, an ensemble of random observations is built centered
around the actual observation yok using an additive noise as

y
o,(n)
k = yok + εo,(n)

k , (3.75)

with the observation error covariance matrix given as

Re
k = 1

Ne − 1

Ne∑

n=1
ε
o,(n)
k (εo,(n)

k )>. (3.76)

Given the random observations, the update of the predicted ensemble of parameters Θf,(n)
k is

obtained by the Kalman analysis step which reads as

Θa,(n)
k = Θf,(n)

k +KΘ,e
k (yo,(n)

k − yf,(n)
k ). (3.77)

The expression for the Kalman gain of the parameter update KΘ,e
k follows the definition of

EnKF (3.69) and is represented in terms of the error covariances as

KΘ,e
k = P f,e

Θy,k(P
f,e
yy,k +Re

k)−1. (3.78)
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The unbiased estimators of the observation correlation matrix P f,e
yy,k and cross-correlation

matrix between the observation and parameters P f,e
θy,k are obtained as

P f,e
yy,k = 1

Ne − 1

Ne∑

n=1
(yf,(n)

k − yfk)(yf,(n)
k − yfk)>, (3.79)

and

P f,e
θy,k = 1

Ne − 1

Ne∑

n=1
(Θf,(n)

k −Θf
k)(yf,(n)

k − yfk)>, (3.80)

where the mean values over the ensemble are obtained as

yfk = 1
Ne

Ne∑

n=1
y
f,(n)
k , and Θf

k = 1
Ne

Ne∑

n=1
Θf,(n)
k . (3.81)

This terminates the parameter update part of the dual estimation algorithm.

3.2.3.2 Prediction-correction of the state variable

Once the predicted parameters have been updated, the second filter is implemented to estimate
the state variable at the instant tk by considering the parameters Θa,(n)

k as fixed. In other
words, the parameters just corrected by the first filter are trusted. The following prediction-
correction steps are identical to the classical EnKF. In the first step, the predicted ensemble of
states is built starting from the ensemble of known (analyzed) states at the instant tk−1 and
the corrected ensemble of parameters at the instant tk to give

q
f,(n)
k =Mk:k−1(qa,(n)

k−1 ,Θ
a,(n)
k ). (3.82)

For the second time, the forecast ensemble of observations is obtained as

y
f,(n)
k = Hk(q

f,(n)
k ). (3.83)

At this stage, the observations are again considered as random variables and the covariance
matrix of the observation error used to obtain the Kalman gain is also empirically estimated.
Next, the update of the predicted ensemble of the state is realized by Kalman approach as

q
a,(n)
k = q

f,(n)
k +Ke

k(y
o,(n)
k − yf,(n)

k ). (3.84)

The Kalman gain for correcting the state trajectories is given in terms of the error covariances
as

Ke
k = P f,e

qy,k(P
f,e
yy,k +Re

k)−1. (3.85)

In this expression, P f,e
qy,k and P f,e

yy,k denote the unbiased empirical estimators of the cross-
correlation matrix between the state and the observations, and the correlation matrix between
the observations, respectively. They are explicitly given as

P f,e
yy,k = 1

Ne − 1

Ne∑

n=1
(yf,(n)

k − yfk)(yf,(n)
k − yfk)>, (3.86)
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Figure 3.5: Schematic of the Dual-EnKF data assimilation method. Refer to the caption of
Fig. 3.4 for details. Apart from the state vectors, the dashed lines here also represent the
propagation of the parameter ensemble from one time step to the next. The use of analyzed
parameter in the state forecast at the current time step is also indicated by black arrows.

and

P f,e
qy,k = 1

Ne − 1

Ne∑

n=1
(qf,(n)
k − qfk)(yf,(n)

k − yfk)>, (3.87)

where the mean values over the ensemble are calculated as

yfk = 1
Ne

Ne∑

n=1
y
f,(n)
k , and qfk = 1

Ne

Ne∑

n=1
q
f,(n)
k . (3.88)

This terminates the state update part of the dual estimation algorithm.
This double prediction-correction scheme is sequentially repeated over time. Note that the

step of prediction-correction of the system state can precede the operation on the parameters
without consequence on the quality of the estimation. We can now return to the POD-ROM
and present the use of the Dual-EnKF method to correctly identify the model parameters. In
the DA problem, the temporal coefficients aROM

i (tk) form the state vector qk. The POD-
ROM in (2.79) serves as the dynamical modelMk:k−1 with the full parameters Θ = [θ θs]>.
The initial background condition qb is same as the POD temporal coefficients. Finally, the
observations vector yok can be built, say, using velocity measurements in the computational
domain. The Dual-EnKF algorithm is given in Alg. 3.3 and the prediction-correction trajectory
of the model state and parameters vector is shown in Fig. 3.5.
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Algorithm 3.3: Dual-EnKF algorithm
Input: For k = 1, . . . , Nt: forward modelMk:k−1, observation operator Hk,

observation error covariance Rk.
For j = 1, . . . , Nt,o: noisy observations {yoj}.

Output: Updated model parameters {Θa,(n)
k } and states {qa,(n)

k },
∀k = 1, . . . , Nt

begin
1: Initialize the ensemble of analyses {Θa,(n)

0 } and {qa,(n)
0 } ; n = 1, . . . , Ne,

and j = 1
for k ← 1 to Nt do

2: Compute the parameter forecast; n = 1, . . . , Ne

Θf,(n)
k = sΘa,(n)

k−1 + (1− s)Θa

k−1 + ξ(n)
k , ξ

(n)
k ∼ N (0, h2Ck)

if j ≤ Nt,o and tk = tk(j) then
3: Draw a statistically consistent observation set; n = 1, . . . , Ne

y
o,(n)
k = yok(j) + εo,(n)

k , ε
o,(n)
k ∼ N (0,Rk)

Re
k = 1

Ne − 1

Ne∑

n=1

ε
o,(n)
k (εo,(n)

k )>

4: Compute the model counterparts of the observation set;
n = 1, . . . , Ne

q
f,(n)
k =Mk:k−1(qa,(n)

k−1 ,Θ
f,(n)
k )

y
f,(n)
k = Hk(qf,(n)

k )
5: Update the parameter ensemble; n = 1, . . . , Ne

KΘ,e
k = P f,e

Θy,k(P
f,e
yy,k +Re

k)−1

Θa,(n)
k = Θf,(n)

k +KΘ,e
k (yo,(n)

k − yf,(n)
k )

else
6: Skip the parameter ensemble update

Θa,(n)
k ← Θf,(n)

k

7: Compute the state ensemble forecast using the updated parameter;
n = 1, . . . , Ne

q
f,(n)
k =Mk:k−1(qa,(n)

k−1 ,Θ
a,(n)
k )

if j ≤ Nt,o and tk = tk(j) then
8: Compute the model counterparts of the observation set;

n = 1, . . . , Ne

y
f,(n)
k = Hk(qf,(n)

k )
9: Update the state ensemble; n = 1, . . . , Ne

Ke
k = P f,e

qy,k(P
f,e
yy,k +Re

k)−1

q
a,(n)
k = q

f,(n)
k +Ke

k(y
o,(n)
k − yf,(n)

k )
10: j ← j + 1

else
11: Skip the state ensemble update

q
a,(n)
k ← q

f,(n)
k
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3.3 Deep neural network modeling
Model reduction by Galerkin projection of the Navier-Stokes equations onto a POD basis (see
Sec. 2.1) has the advantage to be strongly connected to the governing equations issued from
physical modeling, facilitating the model interpretation. However, this method is intrusive,
requiring human expertise to develop models from a working simulation. Also, as discussed
in Sec. 2.2.3, models obtained from the modal decomposition methods are often not robust
when applied to control-oriented problems. This lack of robustness is mainly caused by the
fact that the entire envelope of the flow dynamics cannot be captured accurately by a few
dominant spatial modes. For this reason, there is a need to develop a non-intrusive model,
i.e. a dynamical model that can be derived solely from data, without any prior information
of the underlying physics (Casenave et al., 2015). In the following, this model will be used
to approximate the POD reduced-order model and extended for problems involving parametric
flow conditions. Optionally, the framework will be extended to reproduce the dynamics over
the control parameter domain, by using a database containing information for different values
of the control parameter.

In the recent past, machine learning (ML) algorithms have been used to develop non-
intrusive approaches for dimensionality reduction and reduced-order modeling of different
physical systems. Brunton and Kutz (2019) gives a broad discussion on the application of
data-driven methods for dynamical systems with limited or no access to the full-order model
operators. With advances in simulation capabilities and experimental techniques, fluid dynam-
ics is becoming a data-rich field, which is amenable to ML algorithms. A recent review article
by Brunton, Noack, and Koumoutsakos (2019) gives a comprehensive overview of the applica-
tion of machine learning to fluid mechanics problems. Several studies have been performed to
apply data-driven techniques in the prediction of dynamical systems. San and Maulik (2018)
recently proposed a supervised machine learning framework for the closure and stabilization
of a highly truncated POD-ROM. A multistep neural network was recently proposed by Raissi
et al. (2018). This method combines classical multistep time-stepping schemes with nonlinear
function approximators, namely deep neural networks (DNN), for the identification of nonlinear
dynamical systems. The constraint of limited data was addressed by physics-informed neural
network (PINN), first presented by Raissi et al. (2019), where the ML based approach uses a
neural network augmented with the knowledge of the governing equations. For data organized
as sequence, the long short-term memory (LSTM) variant of the recurrent neural network
(RNN) has been used to model the temporal dynamics of turbulence in a ROM framework
(Mohan and Gaitonde, 2018).

In this study, to bypass the Galerkin projection step used in POD-ROM, deep neural
network (DNN) is used to derive a regression model. A DNN is an artificial neural network
(ANN) with multiple layers between the input and output layers. ANN is a class of machine
learning methods that mathematically represents the biological neural networks. In simple
terms, an ANN can be used to model a nonlinear mapping from desired set of features to the
corresponding targets. For the training phase of the ANN, it is necessary to have at disposal
a sufficiently large amount of data governed by the underlying governing equations. After
learning, the artificial neural network is described by a set of transfer functions which replicate
the mean behavior (in a given sense) of the underlying dynamics to which the input features
belonged. ANNs have been used, for example, as regression models to identify non-intrusive
ROM of the nonlinear Poisson and steady-state incompressible Navier-Stokes equations in
Hesthaven and Ubbiali (2018). Unlike reduced-order models based on Galerkin projection,
an ANN is not physically interpretable. However, the ANN construction allows to represent
nonlinear relationships that cannot be expressed explicitly in functional form. This minimizes
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the model uncertainties in the forward simulations. The development of robust non-intrusive
ROM based on ANN is an active field of research (Lui and Wolf, 2019; Wang, Hesthaven,
et al., 2019).

In this manuscript, two strategies, recently presented in the literature, are combined to
develop a non-intrusive ROM based on neural networks. The first strategy corresponds to
the case where the DNN approximates the map between the time and parameter values as
inputs and the projection coefficients obtained from the projection of the high-fidelity model
on a low-dimensional space as outputs (Wang, Hesthaven, et al., 2019). The second strategy
corresponds to a DNN architecture which uses the values of the states at previous time steps
to predict the time evolution of the residuals of the solution (Pawar et al., 2019). The current
algorithm – named NN-ROM for Deep Neural Network Reduced-Order Model – is therefore
presented as an alternative to the Galerkin projection based POD-ROM for estimating the
projection coefficients directly from the information of the time, parameter and past coefficient
values.

In the next sections, the main elements of the NN-ROM are presented. In Sec. 3.3.1, the
regression method that employs a multistep, residual-based, parametrized DNN approach for
the iterative prediction of the POD coefficients is presented. The training of the DNN model
and its subsequent use for prediction are discussed in Sec. 3.3.2.

3.3.1 Regression via neural network
Previous studies (Chen, Rubanova, et al., 2018, for instance) have demonstrated that deep
neural networks (DNNs) are capable of approximating nonlinear dynamical systems. This
motivates the use of a surrogate model obtained by DNN as an alternative to the POD-ROM
(2.79). In the literature, different strategies have already been proposed to iteratively predict
the temporal dynamics of POD coefficients via a DNN. In this manuscript, the multistep,
residual-based and parametrized approaches of Wang, Hesthaven, et al. (2019) and Pawar
et al. (2019) have been combined.

With the multistep approach (Raissi et al., 2018), the aim is to use the evolution of a set
of POD coefficients observed at several previous time steps to predict a future state of the
system. This approach is similar to classical multistep family of time-stepping schemes from
numerical analysis (e.g. Adams-Bashforth, Adams Moulton, BDF). The use of multiple steps
allows to incorporate the memory effects in learning the temporal dynamics and helps to tackle
nonlinear dynamical features.

In the residual approach (Qin et al., 2019; San, Maulik, and Ahmed, 2019), instead of the
solution trajectory given by the sequential POD coefficients (a(tk),a(tk+1), . . .), their incre-
ments, given in terms of the residuals r(tk+1) = a(tk+1)− a(tk), are used to train the DNN
model. Although both formulations are mathematically equivalent, this simple transformation
has been shown to yield relatively more stable and accurate results.

Finally, in the parametrized approach, some parameter value defining the flow configuration
is also introduced as input of the DNN model to estimate POD coefficients at new values of
the parameter. The POD method leads to an orthogonal basis that approximately spans
the state solution space of the model for a specific parameter configuration. A deviation
from the reference parametric configuration requires the construction of new bases since the
original ROM is in general no longer accurate. However, if states depend continuously on flow
parameters, the POD basis determined for one parameter configuration can approximate the
solution space in a local vicinity of the parameter (Moosavi et al., 2015).

Before proceeding with the regression setup, it is noteworthy that the DNN approach
classically includes an offline and an online stage. In the offline stage, the regression model
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is trained in a supervised learning paradigm by using high-fidelity POD data. The objective
is to determine approximate maps between the inputs (past projection coefficients, time, and
parameter value) and residuals (with respect to the projection coefficients) at the subsequent
time steps. In the online stage, the learned regression models are rapidly evaluated to obtain
the predictions (projection coefficients for the new sets of inputs).

Combining the above concepts, the DNN model fNN can be introduced, which maps the
available sequence of input features i.e. time steps tk, parameters µj , and POD coefficients
aPOD(tk) to the target given in terms of the residuals r(tk+1) = aPOD(tk+1)−aPOD(tk). Let
W and b be the weights and biases of the model, the discrete form of fNN is given by

r(tk+1;µj) = fNN
(
aPOD(tk−p+1;µj), . . . ,aPOD(tk;µj);W , b

)
+ εk+1,

for p = 1, . . . , NTrain
t − 1, k = p− 1, . . . , NTrain

t − 2 and j = 1, . . . , NTrain
p ,

(3.89)

where εk+1 is the modeling error at time step k + 1. After training (offline) the DNN, the
learned weights and biases (W ∗ and b∗) are used (online) to predict sequentially the temporal
dynamics as

aNN(tk+1;µj) = aNN(tk;µj) + fNN(aNN(tk−p+1;µj), . . . ,aNN(tk;µj);W ∗, b∗),

for p = 1, . . . , NPred
t − 1, k = p− 1, . . . , NPred

t − 1 and j = 1, . . . , NPred
p .

(3.90)

In (3.89) and (3.90), the superscripts “Train” and “Pred” are used to distinguish the variables
pertaining to the training and prediction regimes. Here, aNN(tk;µj) ∈ RNr×1 represents
the POD projection coefficients obtained from the DNN framework at time instant tk for the
parameters µj ∈ RNµ×1 characterizing the dynamics. aPOD(tk;µj) ∈ RNr×1 represents the
coefficients obtained from high-fidelity dataset used to train the DNN model. The model
here is trained using data from NTrain

t time steps and used to predict the evolution for NPred
t

time steps. Nr is the number of modes considered in the reduced space (similar to NGal in
the Galerkin method (2.52)). Nµ is the number of parameters characterizing the dynamics,
e.g. Nµ = 2 in a forced convection problem which can be uniquely defined by a Reynolds
number and a Prandtl number, µ = [Re Pr ]>, as parameters. NTrain

p is the number of
parameter configurations available for training, e.g. {(Re1,Pr1), . . . , (ReNTrain

p
,PrNTrain

p
)}.

NPred
p is similarly defined as the number of target parameter configurations for prediction.

The multistep model permits the use of the coefficient values from previous p time steps
before the time instant tk to estimate the values at the next time step tk+1.

The input and output data are arranged in matrices that will be referred during the sub-
sequent training of the regression model. The computed POD coefficients aPOD

i (tk;µj), for
all i = 1, . . . , Nr; k = 0, . . . , NTrain

t and j = 1, . . . , NTrain
p , are used to define the matrix of
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input features A ∈ R(NTrain
t −p)NTrain

p ×(Nr×p+Nµ+1) given as

A =




tp µ>1 ãPOD(tp−1;µ1)>
tp+1 µ>1 ãPOD(tp;µ1)>
...

...
...

tNTrain
t −1 µ>1 ãPOD(tNTrain

t −2;µ1)>
...

...
...

tk+1 µ>j ãPOD(tk;µj)>
...

...
...

tNTrain
t −1 µ>

NTrain
p

ãPOD(tNTrain
t −2;µNTrain

p
)>




, (3.91)

where µj = [µ1,j µ2,j . . . µNµ,j]> is the parameter vector and ãPOD ∈ R(Nr×p)×1 is the
vector of POD coefficients spanning a time lag interval of [tk−p+1, tk] i.e.

ãPOD(tk;µj) = [aPOD
1 (tk−p+1;µj) aPOD

2 (tk−p+1;µj) · · · aPOD
Nr (tk−p+1;µj)

· · · aPOD
i (tk′ ;µj) · · · aPOD

Nr (tk;µj)]>.
(3.92)

In addition, we introduce R the matrix of residuals ri(tk+1;µj) = aPOD
i (tk+1;µj) −

aPOD
i (tk;µj) as

R =




r1(tp;µ1) r2(tp;µ1) · · · rNr(tp;µ1)
r1(tp+1;µ1) r2(tp+1;µ1) · · · rNr(tp+1;µ1)

...
... . . . ...

r1(tNTrain
t −1;µ1) r2(tNTrain

t −1;µ1) · · · rNr(tNTrain
t −1;µ1)

...
... . . . ...

r1(tk+1;µj) r2(tk+1;µj) · · · rNr(tk+1;µj)
...

... . . . ...
r1(tNTrain

t −1;µNTrain
p

) r2(tNTrain
t −1;µNTrain

p
) · · · rNr(tNTrain

t −1;µNTrain
p

)




. (3.93)

The regression problem (3.89) can be rewritten as

R ≈ R̂ = fNN(A;W , b) ∈ R(NTrain
t −p)NTrain

p ×Nr , (3.94)

where we denote the output of the neural network as R̂ in order to distinguish it from
R. Each row of the input features in the matrix A, i.e. current time instant, relevant
parameters, and available POD coefficients at previous p time steps, corresponds to the
target row in the matrix R.

The DNN model (3.90) can be considered as a one-step numerical integrator equiv-
alent to the POD-ROM (2.79). Note that this integrator is “exact” in time (i.e. no
temporal errors with respect to discretization, order of approximation, etc.) in the
sense that the only error appears from the neural network approximation of the model
operators defining the governing equations. This framework provides an equation-free
or non-intrusive regression modeling alternative to the Galerkin projection based POD-
ROM. It presents the advantage to be purely data-driven which enables the reduction of
the uncertainties associated with the model-form.
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Figure 3.6: DNN architecture of the non-intrusive ROM fNN. In the regression model, the
training data (offline stage) consist of the time (t), parameters (µ) and POD modal coefficients
(aPOD(t;µ)) as inputs, and the residuals (r(t;µ)) as outputs. The DNN contains L−2 hidden
layers each with n[l] hidden units. For simplicity, only one node is shown for each input and
output in vector form and the corresponding actual number of nodes is indicated within square
brackets. For the hidden layers, σ is the activation function associated with each unit.

3.3.2 DNN ROM training and prediction
This section provides a brief introduction to the backpropagation algorithm which is a
supervised learning method for DNN frameworks. The principle of the backpropagation
approach is to model a given function by modifying internal weightings of input signals
to produce an expected output signal. The system is trained using a supervised learning
method, where the error between the system’s output and a known expected output
is presented to the system and used to optimize its internal state using gradient-based
methods. The trained model is used to recursively obtain sequential updates of the
state of the dynamical system. The training is performed using the open-source machine
learning library TensorFlow (Abadi et al., 2016).

The principle steps of the backpropagation algorithm are described. The construction
of the deep neural network and the initialization of the training variables are discussed
in Sec. 3.3.2.1. The propagation of the input features through the neural network and
the objective function used for the optimization of the training variables are considered
in Sec. 3.3.2.2. The backward propagation of the objective function through the neural
network for the gradient calculation is discussed in Sec. 3.3.2.3. A gradient descent-based
optimization algorithm used to update the training variables is presented in Sec. 3.3.2.4.
Finally, the application of the feedforward network as a model for online predictions is
described in Sec. 3.3.2.5.

3.3.2.1 DNN architecture and initialization

Backpropagation requires a network structure with one or more densely connected layers,
i.e. each layer is fully connected to the next layer. Such a DNN architecture used for the
offline training is shown in Fig. 3.6. This neural network consists of L layers composed
of predefined number of nodes (also called neurons). The first layer is called the input
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++

Figure 3.7: Illustration of the sequence of operations performed by a generic neural network
node p ∈ [1, n[l]] in the hidden layer l ∈ [2, L−1] of a DNN. This network consists of two units
connected in series - one unit receives the weighted inputs and applies the bias, and the next
one applies the activation function and produces an output. The rectified linear unit (ReLU)
used as the activation function σ is shown in the inset.

layer, with n[1] = (Nr × p) + Nµ + 1 nodes which correspond to the current time
instant tk ∈ R1, the relevant parameter characterizing the dynamics µj ∈ RNµ×1, and
the available POD coefficients at previous p time steps aPOD(tk′ ;µj) ∈ RNr×1, for all
k′ = k − p + 1, . . . , k. The last layer is called the output layer, with n[L] = Nr nodes
corresponding to the target residual vector r(tk′ ;µj) ∈ RNr×1. The remaining (L− 2)
layers are called hidden layers, each one consisting of n[l] hidden units (l = 2, . . . , L−1).
Note that the number of nodes n[1] and n[L] in the input and output layers are assigned
vis-à-vis the number of columns in the input feature matrix A (3.91) and the target
residual matrix R (3.93), respectively.

The offline training is carried out by minimizing the error between the inputs and
targets to determine a set of best regression parameters of the DNN model. This
procedure is also known as supervised learning where pairs of inputs and targets are
utilized for gradient based optimization. The best regression parameters obtained from
optimization are the linear weightsW [l] and biases b[l] associated with the neural network
nodes in the hidden layers. The weights are a set of coefficients associated with the inputs
that are combined at a node. These weights either amplify or dampen the input and
thereby assign the significance to the input with respect to the output that the DNN
is trying to learn. In addition, the nodes have a bias for each input to the node. The
product of the inputs and weights, also known as weighted node inputs, and the bias
are summed. The result is passed through a node’s predefined activation function (σ)
to obtain the node output. The sequence of operations pertaining to a generic node in
the hidden layer, accepting a input vector x[l−1] ∈ Rn[l−1]×1, is given as

z[l]
p =

n[l−1]∑

q=1

W [l]
p,qx

[l−1]
q + b[l]

p , (3.95)

x[l]
p = σ(z[l]

p ). (3.96)

This sequence is also illustrated in Fig. 3.7. Here, the weight associated with an input
x

[l−1]
q from the node q ∈ [1, n[l−1]] in the layer l−1 to the node p ∈ [1, n[l]] in the layer l is

denoted as W [l]
p,q. The corresponding bias associated with the node is simply represented
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as b[l]
p . The weights and biases pertaining to each hidden layer can be stored in dictionaries

asW := {W [2], . . . ,W [L−1]}, withW [l] ∈ Rn[l]×n[l−1] , and b := {b[2], . . . , b[L−1]}, with
b[l] ∈ Rn[l]×1, which together form the model training variables Θ := {W , b}. The
affine transformation in (3.95) can also be rewritten in matrix form as

z[l] = W [l]x[l−1] + b[l]. (3.97)

The subsequent activation x[l] = σ(z[l]) is applied element-wise. Note that the out-
put of the last layer does not pass through the activation function, thus x[L] = z[L].
Learning the weights and biases of the nodes enables the DNN to capture the underlying
relationship between the targets and inputs in the training dataset. These parameters
will be used later to predict targets for inputs that do not belong to the training set.

An activation function is a fixed, nonlinear function applied to the output of the
linear transformation (3.97). The activation function is key to the functioning of a DNN,
as without it, the sole linear transformations in (3.95) would render the whole neural
network replaceable by an equivalent linear function in terms of the inputs. In this work,
the rectified linear unit (ReLU) is used. This function has been successfully implemented
in modern neural networks. The ReLU is defined by the nonlinear transformation σ(z) =
max{0, z} as depicted in Fig. 3.7. This unit corresponds to a piecewise linear function
with two linear pieces. After Goodfellow et al. (2016), these units are easy to optimize
with gradient-based methods because of their similarity with linear functions. Indeed,
the only difference between a linear unit and a ReLU is that the latter outputs zero
across half its domain. This makes the gradients through the unit remain large as
the derivative of the rectifying operation is equal to 1 where the unit is active. The
gradients are also consistent as the second derivative of the rectifying operation is 0
almost everywhere. Therefore, like linear models, the rectified unit provides gradient
direction far more useful for learning than it would be with other activation functions
that may introduce second-order effects. Although the ReLU function is not differentiable
at z = 0, the gradient algorithm still performs sufficiently well as the learning algorithm
does not aim to determine the local minimum of the cost function, but rather to reduce
its value significantly. It has also been shown that piece-wise linear units can compute
highly complex and structured functions (Montúfar et al., 2014), thus enabling ReLU as
a universal function approximator.

The DNN training algorithm is usually iterative in nature and thus requires the
specification of the initial value of the training variables from where iterations can start.
Moreover, most algorithms are strongly affected by the choice of initialization. The
initial point can determine whether the algorithm converges or not and the speed of
convergence if it does (Goodfellow et al., 2016). One heuristic is to initialize the weights
of a fully connected layer with n[l−1] inputs and n[l] outputs by sampling each weight
from a uniform distribution given as

W [l]
p,q ∼ U

(
−
√

6
n[l−1] + n[l] ,

√
6

n[l−1] + n[l]

)
. (3.98)

This method known as normalized initialization was suggested by Glorot and Bengio
(2010). This initialization is designed to compromise between the goal of initializing all
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layers to have the same activation variance and the goal of initializing all layers to have
the same gradient variance. On the other hand, the bias may be assigned such as to
avoid causing too much saturation (functions becoming flat) at initialization, causing
complete loss of gradient through the saturated units. For this reason, the bias of a
ReLU hidden unit is generally set to a small value, such as 0.1 rather than 0.

Also as part of initializing the inputs for training, a scaling of the features is performed.
As the input is made of non-homogeneous features, i.e. time t, parameters µ and
POD coefficients aPOD(t), the individual scale and distribution can be different for each
variable. Differences in the scales across input variables may increase the difficulty
to train the DNN. For instance, large values in the input can result in a model that
learns corresponding large weight values. Such a model with large weight values is often
unstable. It may lead to poor performance during learning and sensitivity to input values,
hence resulting in higher generalization17 error. Therefore, it is recommended to scale
the input and output variables before training the neural network. Normalization is one
of the ways of rescaling the data from the original range, so that all values are within the
range of 0 and 1. Normalization requires the knowledge of the minimum and maximum
of the observable values in the input. The row-wise normalization of input matrix (3.91)
is performed as

A:,i ←
A:,i −min(A:,i)

max(A:,i)−min(A:,i)
, (3.99)

to obtain the normalized input features. The application of normalization has been
demonstrated to accelerate the training (Ioffe and Szegedy, 2015).

3.3.2.2 Forward propagation

The forward propagation calculates the output residual values R̂ from the DNN by
propagating the input features A forward through the hidden layers. The feedforward
network defines the mapping fNN(Θ) : A → R̂ in (3.94), where Θ = {W , b} is the
dictionary of training variables of the DNN. There are no feedback connections in which
the information flows from the outputs of the model back into itself. During the training,
forward propagation generates the predictions that are compared with the actual residuals
R in order to tune the training variables Θ.

In the supervised learning paradigm, the forward propagation can also be seen as
a mapping of the training variables Θ to a loss function L(R̂,R) associated with an
input-target training pair (A,R). The loss is generally formulated using small subsets
of the input features and target data called minibatch. These minibatches are disjoint
subsets of the training dataset that are randomly selected. From the input features
matrixA defined in (3.91), we introduce the minibatches {A(j) ∈ RNb×(Nr×p+Nµ+1) | j =
1, . . . , Nmb}, which are subsets of A of size Nb < (NTrain

t − p)NTrain
p . Here, Nmb is

the total number of minibatches. Similarly, the corresponding minibatches of output
{R(j) ∈ RNb×Nr | j = 1, . . . , Nmb} are also drawn from the target matrix R defined
in (3.93). Training on minibatches increases the number of optimization steps by a
factor of Nmb. However, it has been shown that most optimization algorithms converge
much faster in terms of the overall computation time, if the approximate estimates of

17i.e. expected value of the error on a new input
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the gradient are rapidly computed over minibatches, as compared to when the exact
gradients are computed over the entire training set (Goodfellow et al., 2016).

In neural networks, the loss function is often defined as the mean squared error be-
tween the DNN prediction and the training values. At the end of the forward propagation,
the loss function is evaluated over a given minibatch j as

L(R̂
(j)
,R(j)) = E[‖R̂

(j)
−R(j)‖2]

= 1
2Nb

Nr∑

i=1

Nb∑

k=1

(R̂(j)
k,i −R

(j)
k,i)

2, ∀j = 1, . . . , Nmb.
(3.100)

This standard loss function forms one part of the objective function. The other part cor-
responds to a regularization factor defined in terms of the norm of the training variables
as

Ω(W ) = 1
2w
>w = 1

2

L∑

l=1

n[l−1]∑

q=1

n[l]∑

p=1

(W [l]
p,q)2, (3.101)

where w is the vector of all the weights contained in the dictionary W .
Using the loss function (3.100) along with the penalty (3.101), the L2 regularized

cost function (or objective function) associated with the minibatch j is obtained as

C(j) = L(R̂
(j)
,R(j)) + λΩ(W ), ∀j = 1, . . . , Nmb. (3.102)

Here, λ ∈ [0,∞) is an hyperparameter that weights the relative contribution of the
norm penalty term with respect to the standard loss function. The regularization is
introduced to the objective function in order to reduce the generalization error of the
learning algorithm. Setting λ = 0 results in no regularization while increasing the value
of λ corresponds to an increase in regularization. During training, the backpropagation
algorithm (see Sec. 3.3.2.3) minimizes C(j) by decreasing both the loss function and a
measure of the size of the training variables. Note that the penalty Ω is only a function
of the weight and that the biases are left unregularized. Unlike the weight which specifies
the interaction between two variables, the bias only controls a single variable. Hence,
ignoring the bias does not induce much variance in the objective function. The weight-
based regularization attempts to limit the influence of irrelevant connections on the
network’s predictions by penalizing large weights that do not have a large contribution
in the reduction of the cost function.

The algorithm for forward propagation of j-th minibatch and cost function compu-
tation is outlined in Alg. 3.4. This forward propagation routine is part of the main loop
which iterates over the minibatches obtained from the training set. The iteration over
all the minibatches constitutes one training epoch. The total number of training epochs
Nepochs is defined by the user and is sufficiently large in order to reach convergence.

3.3.2.3 Backpropagation

The backpropagation algorithm (Rumelhart et al., 1986) allows the information from
the scalar cost function C(j), obtained from the forward propagation, to flow backwards
through the network in order to compute the gradients with respect to the training
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Algorithm 3.4: Forward propagation and cost function computation
Input: For j = 1, . . . , Nmb: input to process A(j), target output R(j).

For l = 2, . . . , L: weight matrices W [l], bias parameters b[l].
Hyperparameter for regularization λ.

Output: For j = 1, . . . , Nmb: model prediction R̂(j), cost function C(j).
1: Initialize input layer: x[1] = A(j)

Propagate the information forward through the hidden layers:
for l← 2 to L− 1 do

2: z[l] = W [l]x[l−1] + b[l]

3: x[l] = σ(z[l])
Compute prediction at output layer:

4: x[L] ← z[L] = W [L]x[L−1] + b[L]

5: R̂
(j)

= x[L]

Compute cost function:
6: C(j) = L(R̂

(j)
,R(j)) + λΩ(W )

variables, ∇W [l]C(j) and ∇b[l]C(j). The gradients are subsequently used in a gradient-
based optimization (see Sec. 3.3.2.4) to update the weights and biases, such that the
corresponding model output R̂(j) minimizes the cost function with respect to the target
R(j).

For the output layer (l = L), the gradient of the cost function (3.102) with respect
to the weight gives

∇W [L]C(j) = ∇z[L]C(j) · ∇W [L]z[L] + λ∇W [L]Ω(W )
= ∇z[L]C(j) · (x[L−1])> + λ∇W [L]Ω(W ),

(3.103)

where (3.97) has been used to evaluate the gradient ∇W [L]z[L]. Using (3.100) and
(3.102), the gradient of the cost function with respect to the neural network output is
given as

∇z[L]C(j) = ∇
R̂

(j)C(j) = ∇
R̂

(j)L(R̂
(j)
,R(j)) = 1

Nb

(R̂
(j)
−R(j)). (3.104)

Similarly, the gradient of the cost function with the bias for the output layer is given as

∇b[L]C(j) = ∇z[L]C(j) · ∇b[L]z[L] = ∇z[L]C(j), (3.105)

since ∇b[l]z[l] = 1n[l] from (3.97).
Next, the gradient of the cost function for the output layer ∇z[L]C(j) is propagated

backwards recursively through the hidden layers, from l = L− 1 to l = 2. For a generic
layer in the sequence l = L − 1, L − 2, . . . , 2, the gradient of the cost function with
respect to the layer input is calculated as

∇x[l]C(j) = ∇z[l+1]C(j) · ∇x[l]z[l+1] = (W [l+1])> · ∇z[l+1]C(j), (3.106)
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using (3.97). This gradient on the layer’s input is converted into a gradient on the layer’s
output z[l] as

∇z[l]C(j) = ∇x[l]C(j) · ∇z[l]x[l] = ∇x[l]C(j) � σ′(z[l]), (3.107)

where σ′(z[l]) is the derivative of the activation function. Here, � represents the
Hadamard or element-wise product. These gradients can now be used to evaluate the
cost function gradients with respect to the training variables associated with the layer l.
Using (3.102), the weight gradient is given as

∇W [l]C(j) = ∇z[l]C(j) · ∇W [l]z[l] + λ∇W [l]Ω(W )
= ∇z[l]C(j) · (x[l−1])> + λ∇W [l]Ω(W ),

(3.108)

and the bias gradient is given as

∇b[l]C(j) = ∇z[l]C(j) · ∇b[l]z[l] = ∇z[l]C(j). (3.109)

Given the neural network output R̂(j) and the form of the cost function C(j), the general
DNN model can be optimized using methods based on gradient descent. Referring
(3.106) and (3.107), it can be seen how the recursive definition of ∇z[l]C(j) propagates
the information back from the cost function.

The algorithm for backpropagation of the cost function associated with j-th mini-
batch is outlined in Alg. 3.5. The schematic of the sequence of operations in the forward
pass and backpropagation pass for a minibatch is shown in Fig. 3.8.

Algorithm 3.5: Backpropagation
Input: For j = 1, . . . , Nmb: cost function C(j), target output R(j).

For l = 2, . . . , L: node data z[l], x[l], weight matrices W [l].
Output: For j = 1, . . . , Nmb: training variable gradients ∇WC(j), ∇bC(j).
Gradient on output layer:

1: ∇z[L]C(j) = ∇
R̂

(j)L(R̂
(j)
,R(j))

2: ∇W [L]C(j) = ∇z[L]C(j) · (x[L−1])> + λ∇W [L]Ω(W )
3: ∇b[L]C(j) = ∇z[L]C(j)

Backropagate the gradients:
for l← L− 1 to 2 do

Propagate gradient w.r.t. next lower-level hidden layer’s pre-activation
variable:

4: ∇x[l]C(j) = (W [l+1])> · ∇z[l+1]C(j)

Convert gradient into a gradient on post-activation variable:
5: ∇z[l]C(j) = ∇x[l]C(j) � σ′(z[l])

Compute gradients on weights and biases:
6: ∇W [l]C(j) = ∇z[l]C(j) · (x[l−1])> + λ∇W [l]Ω(W )
7: ∇b[l]C(j) = ∇z[l]C(j)
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Figure 3.8: Illustration of the sequence of operations in the feedforward and backward prop-
agation steps in a DNN framework. The forward computation from the inputs to the cost
function is indicated by blue arrows. The backpropagation of the cost function through the
layers is indicated by red arrows. The gradient of the cost function with respect to the training
variables is calculated at each layer and used for subsequent gradient-based optimization.

3.3.2.4 Gradient descent optimization

To update the training variables (weights and biases) of the DNN model, the gradients
computed from the minibatches of input data (see Sec. 3.3.2.3) are exploited via a gra-
dient descent approach. In this work, the adaptive learning rate optimization algorithm
known as Adam (Kingma and Ba, 2014) is used. Contrary to gradient descent optimiz-
ers, which adapt the weights with a fixed learning rate across all parameters, adaptive
optimizers have more flexibility built-in. The algorithms of this class address the high
sensitivity of the cost function to some directions in the space of training variables by
altering the learning rate throughout the course of training (Goodfellow et al., 2016).
The learning rate used for gradient descent is one of the hyperparameters that has a very
significant impact on the model performance. The Adam algorithm therefore identifies
the directions of high sensitivity in the space of training variables and automatically
adapts the learning rates. The algorithm for the optimization of the training variables,
which are collectively referred as θ (for either θ ←W or θ ← b), is outlined in Alg. 3.6.

The performance of the optimization algorithm over the course of the training epochs
is monitored by plotting an error metric evaluated for a validation dataset that the
training algorithm does not observe. The validation dataset is constructed by splitting
the available input features and targets into disjoint subsets, one of size NTrain

t ×NTrain
p ,

which has been used to train the model variables, and another of size NVal
t ×NVal

p used
for validation18. The validation set is used to estimate the generalization error during
training, allowing the training hyperparameters to be updated accordingly. The model

18A third disjoint subset of size NTest
t ×NTest

p , called the test set, is also drawn from the available
input features and targets. This set is used for estimating the generalization error after all hyperparam-
eter optimization is complete. Usually the splitting is done such that 70% of the available data is used
for learning the model, which is a combination of training (55% of total) and validation (15% of total)
datasets. The remaining 30% is used for testing the trained model.
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Algorithm 3.6: Adam optimization
Input: For j = 1, . . . , Nmb: gradients ∇θ[l]C(j).

For l = 2, . . . , L: initial values θ[l].
Hyperparameters (default value): learning rate α (1.0× 10−3),

exponential decay rates for first and second moment estimates –
β1 (0.9), β2 (0.999),
constant for numerical stabilization ε (1.0× 10−8),
maximum number of iterations Nepochs.

Output: For l = 2, . . . , L: updated training variables θ[l].
1: Initialize first and second moment variables: s = 0, r = 0
2: Initialize iteration step: n = 0

Parameter update:
while n < Nepochs do

for l← 2 to L do
Average gradient over minibatches:

3: g ← 1
Nmb

∑Nmb
j=1 ∇θ[l]C(j)

Update biased first moment estimate:
4: s← β1s+ (1− β1)g

Update biased second moment estimate:
5: r ← β2r + (1− β2)g � g

Correct bias in first moment:
6: ŝ← s(1− βn1 )−1

Correct bias in second moment:
7: r̂ ← r(1− βn2 )−1

Compute update step size (element-wise operations):
8: ∆θ[l] = −αŝ(

√
r̂ + ε)−1

Apply update:
9: θ[l] ← θ[l] + ∆θ[l]

10: n← n+ 1

is evaluated throughout the training epochs to obtain the validation set estimates as

aVal,NN(tk+1;µj) = aVal,POD(tk;µj)+
fNN(aVal,POD(tk−p+1;µj), . . . ,aVal,POD(tk;µj);W ∗, b∗),

for p = 1, . . . , NVal
t − 1, k = p− 1, . . . , NVal

t − 1 and j = 1, . . . , NVal
p .

(3.110)

The number of time lag steps p is the same as the one used during training and
fNN(W ∗, b∗) is the DNN model with trained weights and biases. Here, aVal,POD(tk;µj) ∈
RNr×1 is the validation subset of the POD coefficients dataset, separate from the training
dataset, and aVal,NN(tk+1;µj) is the NN estimation. In this work, the root-mean-square
error (RMSEVal) is used to gauge the performance of the optimization algorithm. The
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validation error is given as

RMSEVal =

√√√√√ 1
NVal
t NVal

p

NVal
t −1∑

k=0

NVal
p∑

j=1

∥∥aVal,NN(tk;µj)− aVal,POD(tk;µj)
∥∥2

2 (3.111)

where the estimation from (3.110) is used. This value is usually compared with the
training error RMSETrain which is also evaluated during the course of the training for the
training dataset. The comparison determines if the model is underfitting or overfitting.
Underfitting occurs when the model is not able to obtain a sufficiently low training error
value on the training set, while overfitting occurs when the gap between the training
error and test error is too large. The difference between the two errors is monitored.
This difference is used to tune the regularization coefficient in (3.102) and the model
hyperparameters. The objective is to obtain a model with sufficiently low generalization
error at the end of the offline training stage.

3.3.2.5 Prediction using the DNN model

The trained DNN model fNN can be used to obtain online predictions of the POD
coefficients using (3.90). This online vision is outlined in Fig. 3.9. As the DNN model
is trained using the residuals r(tk;µj) as target, the model output during prediction is
also in terms of the residual. This residual is converted to the estimates of the POD
coefficients at the next time step tk+1 by adding it to the coefficient vector at time step
tk, already available as an input feature, as follows

aNN(tk+1;µj) = aNN(tk;µj) + r(tk;µj). (3.112)

The prediction of the dynamics at subsequent time steps (tp, . . . , tNPred
t −1) is obtained

by recursive feedback of the output POD coefficients to the input sequence of p time
lag steps. Note that during prediction, the sequence of data at the first p time steps
(t0, . . . , tp−1) must be provided as input.

To summarize, the various steps in the online and offline stages of the non-intrusive,
DNN-based ROM approach are shown in Fig. 3.10. The whole framework is based on
an encoder-decoder approach to transfer data from the high-fidelity space to a reduced-
order space and vice-versa. The encoder step is used to construct the time series of POD
coefficients from the snapshot data using (2.11). The decoder step is used to construct
the field at any time t by inverse transform (2.15).

The main advantage of the non-intrusive ROM framework is that it does not require
information about the governing equations constituting the full order model. However,
as the non-intrusive ROM framework is generated solely from the snapshot data re-
constructed onto a reduced POD-spanned space, it may still suffer from fundamental
challenges of traditional POD-Galerkin models. One way to mitigate this lack of accu-
racy is to merge this framework into a data assimilation algorithm. The ability of the
DNN framework to take the memory effect into account in order to predict the future
state of the system makes it amenable to be used as a forecast model in sequential data
assimilation algorithms discussed in Sec. 3.2, replacing the Galerkin projection based
ROM. This gives a possibility to provide an optimal estimation of the dynamical system,
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+

Figure 3.9: DNN architecture of the non-intrusive ROM in the online stage. The learned
forward model fNN(W ∗, b∗) is used to obtain the sequential prediction of the POD coefficients
aNN(t;µ).

+

Figure 3.10: Nonintrusive ROM framework.

by taking into consideration the statistical confidences of both the model outputs and
the observations, and nudging the ROM solution towards the true dynamics.
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In Sec. 3.1, different strategies - namely ordinary least-squares (OLS), sparse identifi-
cation of nonlinear dynamics (SINDy), and least angle regression (LARS) – have been
introduced with the purpose of identifying the coefficients of reduced-order models from
limited data only. The implementation of such methods when considering either numer-
ical or experimental data is, however, far from straightforward. The available data are
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generally incomplete or corrupted by noises from different sources leading to numerical
problems. In order to alleviate these difficulties, it is necessary to invest time in prepar-
ing the data that will be used in the regression methods. For this reason, we begin this
chapter by introducing some useful numerical tools such as low-pass filtering for noise
suppression and total-variation regularization for numerical differentiation. The perfor-
mance of the system identification methods considered in this work is then compared and
evaluated in a probabilistic framework using the bootstrap method. This method can
be used to quantify the uncertainty associated with a given estimator, a feature which
is not readily available with other methods such as cross-validation. Three toy models
are then considered: i) a three-dimensional linear system, ii) the Lorenz-63 model, and
iii) the Lorenz-96 model. These three test cases are considered to be representatives of
dynamics with increasing level of complexity.

The current chapter is organized as follows. The numerical tools that are necessary
to prepare the noisy data are discussed in detail in Sec. 4.1. In Sec. 4.2, the bootstrap
method is reviewed. The three toy models are then presented in Sec. 4.3. Finally, the
performance of the different identification strategies to recover the parameters of the
model equation is compared and discussed in Sec. 4.4. Some conclusions are drawn in
Sec. 4.5.

4.1 Data preparation of noisy data
Throughout this chapter, we consider systems for which the dynamics can be repre-
sented by governing equations consisting of a second-order polynomial. The POD-ROM
discussed in Sec. 2.2.2 entered in this class when the nonlinear residual term is not con-
sidered. In the following, we treat the case of a linear regression model of the type (3.4),
i.e.

ȧi = Aθi ∀ i = 1, . . . , Ns, (4.1)
where Ns is the size of the state vector a(t) = {ai(t)}Nsi=1. The definitions1 of A ∈
RNt×Nθi , ȧi ∈ RNt×1, and θi ∈ RNθi×1 follow from Sec. 3.1. Here, the objective is
to estimate the matrix θ ∈ RNθi×Ns , i.e. the model parameter matrix with column
vectors θi, such that the residual (3.10) is minimized. As mentioned in the introduction
and discussed in the previous chapter, numerical difficulties occur when solving such
linear problems with the presence of noise in the dataset. The data collection are in
general corrupted by noise from different sources depending on, for instance, whether
the data have been obtained experimentally or from a numerical simulation. It is also
common to consider the noise as white and Gaussian, which can sometimes be a too
crude assumption. For this reason, it is therefore necessary to have, at disposal, tools
which may allow the identification process to be less sensitive to the signal-to-noise
ratios.

4.1.1 Low-pass filter
Rare events contained in the time series (e.g. outliers) may cause the estimation to
become statistically biased. To minimize the effect of these outliers, a solution is to use

1In Sec. 3.1, the matrix A is denoted byX to fit the notations generally used in statistical learning.
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digital filtering. Before assembling the matrix of basis functions A in the POD-ROM
(4.1), the signal a(t) can be filtered using a low-pass filter (Sagara et al., 1991). A
low-pass (LP) filter passes low-frequency signals and reduces the amplitude of signals
with frequencies higher than the cutoff frequency (fc). It was shown in Sagara et al.
(1991) that the identification of parameters is not very sensitive to the cutoff frequency.
If the filter is designed so that its pass-band matches that of the system closely, the noise
effects are sufficiently reduced and the least-squares identification is able to perform well
in the presence of low measurement noise.
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Figure 4.1: (a) Bode plot showing the 5-th order Butterworth LP filter response. The cut-off
frequency fc = 3.65 Hz is indicated by the red dot. (b) Output of LP filter applied to noisy
trajectory obtained by applying high level noise (η = 10%) to the state a1(t) (reference signal)
of a example three-dimensional linear system (Sec. 4.3.1).

A 5-th order digital Butterworth filter (Parks and Burrus, 1987) has been used later
in this work. The Butterworth filter is a type of digital infinite impulse response (IIR)
filter2 which is designed in the continuous-time domain and discretized by bilinear trans-
formation.

The designed filter and its application to a noisy arbitrary signal with an additive noise
of 10% is shown in Fig. 4.1. Plotting the filter’s output signal (Vout) against different
values of input frequency f gives the frequency response curve or Bode magnitude plot
function. The Bode plot shows the frequency response of the filter relative to the cutoff
frequency point fc. The response is nearly flat for low frequencies in the passband
(f < fc) and all of the input signal is passed directly to the output with a unity gain
Vout/Vin = 1. After this cutoff frequency point, the response of the 5-th order filter
rolls-off at −30 dB/octave. Any high frequency signal applied to the low pass filter
in the stopband (f ≥ fc) is significantly attenuated. Butterworth filters are optimal in
the sense of having a maximally flat amplitude response with a quick roll-off around the
cutoff frequency, which improves with increasing order.

This cutoff frequency is defined as the frequency point where the output signal is
attenuated to 70.7% of the input signal value or a gain of −3 dB of the input. This

2The infinite impulse response (IIR) filter is a class of digital filters in which the impulse response
never decays exactly to zero as the time elapses. This is in contrast to the finite impulse response (FIR)
filter class in which the response falls exactly to zero in a finite time period. The IIR filters are, in
general, more efficient in terms of implementation in order to meet a specific requirement of passband,
stopband, and/or roll-off as compared to FIR filters of same order.
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corresponds to an attenuation of input power by a factor of 1/2 and that of the amplitude
by a factor of 1/

√
2. The gain of the filter, expressed in decibels, is a function of the

ratio of output value (Vout) and its corresponding input value (Vin). It is given as:

Gain = 20 log10

(
Vout

Vin

)
, Vin > 0. (4.2)

In the context of the model parameter identification problem from noisy data, we use
the LP digital filter to pre-filter the sampled time series data. A recursive identification
algorithm is then used to estimate the system parameters from the filtered input-output
sampled data.

4.1.2 Numerical differentiation of noisy data
Computing the derivative of functions specified by data is another component of the
model parameter identification problem which needs to be addressed. In the case of
POD-ROM, the time derivative ȧi(t) is needed in order to assemble the left-hand side
of the system described by (4.1). The standard finite difference approximations of the
derivatives are computationally inexpensive and work well with smooth data sequences
(e.g. data obtained from toy models). However, in the presence of noise in the data, the
derivatives are greatly amplified. In addition, there are cases where denoising the data
using digital filters presented in Sec. 4.1.1 may not be sufficient.

The total-variation regularization based differentiation method, hereafter known as
TVreg, was proposed by Chartrand (2011) specifically to handle the derivatives of func-
tions specified by noisy data. The principle is to regularize the differentiation process
in order to avoid the noise amplification. The derivative of a function f(t) on [0, T ] is
given as

f ′(t) = arg min
u(t)

F (u) = α

∫ T

0
|u′(t)| dt+ 1

2

∫ T

0
|Au(t)− f(t)| dt. (4.3)

Here, u′(t) represents the derivative with respect to t, and A is the antidifferentiation3

operator such that Au(t) =
∫ T

0 u(t) dt. The first term on the right-hand side of (4.3)
is a regularization term which penalizes any irregularity in u(t), while the second term
is a data fidelity term which penalizes any discrepancy between Au(t) and f(t). The
regularization parameter α controls the relative significance of the two terms in the
estimation of the minimizer. Usually, a higher value of α increases the regularization
strength and improves conditioning. The value can be fixed by using the discrepancy
principle (see Chartrand, 2011) but it requires the knowledge of the noise variance in
the signal f which is not always known and can only be estimated. In the subsequent
applications of TVreg, we opt to select α heuristically.

As an example, a comparison of the result of TVreg differentiation with the fourth-
order accurate finite difference scheme is shown in Fig. 4.2 for the arbitrary noise signal
used in Fig. 4.1. The result using the TVreg scheme has been obtained after selecting

3Antidifferentiation is not strictly equivalent to integration. Antidifferentiation is purely defined as
the process of finding a function whose derivative is given. Integration, in the sense of Riemann, is
roughly defined as the limit of sum of rectangles under a curve.
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Figure 4.2: Time derivative of the component a1(t) of a three-dimensional linear system. a1
is the same as in Fig. 4.1. (Top) Time evolution of signal a1(t) without (reference) and with
10% noise. (Bottom) Time evolution of derivative ȧ1(t) of the noisy signal obtained using
TVreg differentiation compared with that of the reference and noisy signal, both obtained using
fourth-order accurate finite difference (FD).

the value of the regularization parameter as α = 10. We observe that the derivatives
calculated using the finite difference method is amplified by the presence of noise in the
signal while the regularized derivative accurately estimates the derivative.

4.2 Bootstrap method
In order to have a critical evaluation of the different identification methods by linear
regression models, we would like to associate uncertainties to each estimator. For this,
a probabilistic framework such as the one offered by the bootstrap method is necessary.

4.2.1 Motivation
The system identification methods proposed in Sec. 3.1 give estimations of the param-
eters assuming a full knowledge of the system. In such cases, a fixed model setup
(dynamical model, parameters, boundary and initial conditions, geometries, etc.) pro-
duces unique outputs. However, we often encounter uncertainty of varying extents in
physical processes. Model structure is one of the contributors to the uncertainty. The
model structural uncertainty is attributed to numerical errors, incomplete representations
of all the physical processes important to the state being simulated, nonrepresentative
model formulations due to an incomplete understanding of the physics involved, and/or
overrepresentation of some rare events during sampling. In the context of POD-ROM,
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the calculation of the POD modes on limited sample size inhibits the true knowledge of
the full low-dimensional manifold and introduces uncertainties when the model is used
for estimation. With very few exceptions, it is often not possible to make highly accurate
estimations using such models. Therefore, a measure of the uncertainties is required in
order to characterize the estimators. For this purpose, we introduce a statistical method
of bootstrapping where we estimate the properties of an estimator (e.g. variance) by
evaluating the said properties over samples drawn from an approximating distribution.

4.2.2 Bootstrap principle
The bootstrap method4, first introduced in5 Efron (1979), is a general approach for
statistical inference of the distribution of an estimator or interested variable by resampling
the data from random independent observations. The method is based on the plug-in
principle which states that a feature of a given distribution (e.g. the expected value, the
variance, a quantile) that cannot be computed exactly can be approximated by the same
feature of the empirical distribution6 of a sample of observations drawn from the given
distribution. In this work, we use bootstrapping to derive the probabilistic estimate and
confidence intervals of the unknown parameters of the POD-ROM identified using the
system identification methods.

Let7 X = (X1, . . . , Xn) and x = (x1, . . . , xn) denote the random sample and its
observed realization, respectively (see App. D.1). The random variables Xi (for all
i = 1, . . . , n) are i.i.d.8 and have for cumulative distribution function, the unknown
function F , i.e. Xi ∼ F . The problem we wish to solve with the bootstrap approach is
the following. How to estimate a parameter of interest say, θ = T (F ), on the basis of
the observation x? If the feature of interest is, for example, the mean of the distribution
of a univariate population, we have T (F ) = E[X] =

∫
x dF (x). A common estimate

of θ is the plug-in estimate given as θ̂ = T (F̂ ) where F̂ is the empirical distribution (see
App. D.3). For example, the estimator of the mean of the population is given as the

sample mean θ̂ =
∫
x dF̂ (x) =

n∑

i=1

xi/n.

In statistical inference, we are usually interested in estimating the sampling distribu-
tion of a random variableR, possibly depending on bothX and the unknown distribution
F , i.e. R(X, F ). For example, we can have R(X, F ) = T (F̂ ) − T (F ) = θ̂ − θ. The
bootstrap provides an approximation of the sampling distribution of R(X, F ) based on

4The use of the term bootstrap derives from the phrase “to pull oneself up by one’s bootstraps”,
widely thought to be based on the 18th century book “The Surprising Adventures of Baron Munchausen”
by Rudolph Erich Raspe: “The Baron had fallen to the bottom of a deep lake. Just when it looked like
all was lost, he thought to pick himself up by his own bootstraps.”.

5The International Prize in Statistics has been awarded in 2018 to Bradley Efron, professor of
statistics and biomedical data science at Stanford University, in recognition of the "bootstrap" method.

6In statistics, an empirical distribution function is the distribution function associated with the
measure of a sample i.e. a random measure arising from a realization of a sequence of random variables.
A formal definition is given in App. D.3.

7In the following, we use the classical notations of bootstrap methods. The differences with the
notations used in the previous chapters may be obvious depending on the context.

8Independent and identically distributed random variable
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the empirical distribution function F̂ of the observed data x. Knowing F̂ , we draw from
it, a random sample of size n called bootstrap sample i.e. X∗ = (X∗1 , . . . , X∗n) and
x∗ = (x∗1, . . . , x∗n) where X∗i ∼ F̂ for i = 1, . . . , n. The values of X∗ are selected with
replacement from the set {x1, . . . , xn}. This way a permutation distribution of the orig-
inal observations is not obtained. By the bootstrap principle, the sampling distribution
of R(X, F ) is approximated by R∗ = R(X∗, F̂ ).

The bootstrap algorithm begins by generating a large number of independent boot-
strap samples x∗(j) (for j = 1, . . . , Nb), each of size n. For each bootstrap sample, the
statistic of interest is then computed. These values are used to estimate the sampling
distribution of the statistics of interest (see below). Bootstrapping exploits the following
central analogy: “The population is to the sample as the sample is to the bootstrap
samples”. The estimation error may be made arbitrarily small by increasing Nb. It must
be noted that for realistic sample sizes n, the number of potential bootstrap samples Nb

is very large9. For this reason, considering all the possible combinations may not be pos-
sible. The limitation of the number of bootstrap samples therefore has the consequence
of introducing estimation errors.

Bootstrap bias and standard error
Here, we give useful measures of statistical errors of the estimators θ̂, namely the bias
and the standard error. The bootstrap algorithm presented before may be adapted to
give estimates of these values.

The bias is the difference between the expected value of θ̂ and the quantity θ being
estimated. We consider the quantity R(X, F ) = T (F̂ )−T (F ) = θ̂− θ. The bias of θ̂,
BF (θ̂), is the expectation of R(X, F ) which is given as

BF (θ̂) = EF [θ̂ − θ] = EF [θ̂]− θ. (4.4)

The bootstrap estimate of bias is defined to be the estimate B̂F̂ that we obtain by
substituting F̂ for F in (4.4), i.e.

B̂F̂ (θ̂∗) = EF̂ [θ̂∗]− θ̂. (4.5)

This estimate may be approximated by Monte Carlo simulation. Hence, we generate
Nb independent bootstrap samples x∗(j) (j = 1, . . . , Nb) and evaluate the bootstrap
replications θ̂∗(j). The bootstrap estimate of bias based on the Nb replications is obtained
as

B̂∗(θ̂∗) = θ
∗ − θ̂, (4.6)

where the bootstrap expectation is approximated by the average

θ
∗ = 1

Nb

Nb∑

j=1

θ̂∗(j). (4.7)

9The number of unique bootstrap samples for a dataset with n observations is Nb = 2n−1Cn−1.
This number increases exponentially with n. Stirling’s formula (n ! ∼

√
2πn

(n
e

)n
) gives as approxi-

mation Nb ∼ (nπ)−
1
2 22n−1. It can be shown that Nb ∼ 10n/2.
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The standard error of the parameter estimate θ̂ = T (F̂ ) is given as

SEF (θ̂) =
√

var(θ̂) =
√
EF [(θ̂ − θ)2]. (4.8)

Following the same logic as for the bias (substitution of F̂ for F ), we define the bootstrap
estimate of the standard error as

ŜE F̂ (θ̂∗) =
√

var(θ̂∗) =
√
EF̂ [(θ̂∗ − θ̂)2]. (4.9)

The corresponding simulated bootstrap estimate is obtained as

ŜE
∗
(θ̂∗) =

√√√√ 1
Nb − 1

Nb∑

j=1

(θ̂∗(j) − θ∗)2. (4.10)

The standard error is generally corrected by multiplying the right-hand side of (4.10)
with

√
n/(n− 1). We note that as the number of bootstrap sample increases, the

bootstrap estimates approach the theoretical values

lim
Nb→∞

B̂∗(θ̂∗) = B̂F̂ (θ̂∗), and lim
Nb→∞

ŜE
∗
(θ̂∗) = ŜE F̂ (θ̂∗). (4.11)

Bootstrap confidence interval
One of the key applications of the bootstrap method is to produce automatically good
confidence intervals of the parameter estimates of the desired statistics R(X, F ). A
confidence interval (CI) is defined as the interval between the lower and upper bounds of
a parameter estimate at a prespecified confidence level (e.g. 95% confidence interval).
When the value of Nb is large, it turns out that most bootstrap statistics are asymp-
totically normally distributed, i.e. the estimator θ̂ = T (F̂ ) tends to follow a normal
distribution with mean θ = T (F ) and standard deviation ŜE F̂ (θ̂∗) (see Fox, 2015). We
have

R(X, F ) = θ̂ − θ
ŜE F̂ (θ̂∗)

∼ N (0, 1). (4.12)

The 100(1− a)% confidence interval for θ based on the normal-theory intervals is given
as

θ = θ̂ ± za/2ŜE
∗
(θ̂∗), (4.13)

where za/2 is the unit-normal value with a probability a/2 to the right. Results pre-
sented by Efron and Tibshirani (1994) suggest that basing bootstrap confidence intervals
on Nb = 1000 bootstrap samples generally provides sufficiently accurate results. The
method however uses the tails of the distribution of R(X, F ) which requires large value
of Nb to be well described. Also, the method is only applicable to parameters that shift
according to shift in their distribution, i.e. location parameters such as mean, median or
sample percentile.

To overcome these issues, the accelerated bias-corrected percentile (BCa) method
(Efron, 1987) is used. Thereafter, we follow the presentation of Fox (2015). As before,
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the goal is to obtain a 100(1− a)% confidence interval for θ using the sample estimate
θ̂ and the bootstrap estimates θ̂∗(j). The BCa method corrects for bias and skewness of
the bootstrap estimates by using a bias-correction Z and an acceleration factor A. The
bias-correction is given as

Z = Φ−1
[

1
Nb

Nb
#
j=1

(θ̂∗(j) < θ̂)
]
, (4.14)

where Φ−1 is the inverse of the standard normal cumulative distribution function10 and
#(θ̂∗(j) < θ̂)/Nb is the proportion of bootstrap estimates below the estimate θ̂. If
the bootstrap sampling distribution is symmetric and the estimate θ̂ is unbiased, the
proportion is approximately equal to 0.5 and the correction Z is approximately equal to
zero. Next, the acceleration factor is estimated through a jackknife resampling (also
known as “leave one out” resampling), which involves generating n replicates of the
original sample by omitting one observation for each replicate. These are known as
jackknife replicates; the i-th replicate θ̂(−i) (for all i = 1, . . . , n) represents the value of
θ̂ when the i-th observation is left out from the sample. Let θ be the average of the
jackknife replicates, i.e. θ :=

∑n
i=1 θ̂(−i)/n. The acceleration factor is given as

A =
∑n

i=1(θ̂(−i) − θ)3

6
(∑n

i=1(θ̂(−i) − θ)2
)3/2 . (4.15)

Using the correction factors Z and A, we compute

A1,2 = Φ
(
Z +

Z ∓ za/2
1− A(Z ∓ za/2)

)
. (4.16)

The values A1 and A2 are used to locate the endpoints of the percentile confidence
interval as [θ̂∗(j1), θ̂∗(j2)], with the indices given by the products j1,2 = NbA1,2 (rounded
or interpolated to obtain an integer value). In this work, the conf_int function from
the arch toolbox (Sheppard et al., 2020) is used to obtain the BCa confidence intervals.

In Demo. 4.1, a demonstration of the bootstrap method introduced previously is given
for the simple case of linear regression.

10The inverse function (also known as quantile function) of the standard normal cumulative distri-
bution gives the value x of the distribution function corresponding to a probability value 0 < p < 1

x = Φ−1(p) = {x : Φ(x) = p}, where p = Φ(x) = 1√
2π

∫ x

−∞
exp(−t2/2) dt.

For example, Φ−1(p = 0.975) = 1.96.
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Demo 4.1: Bootstrapping regression models

The bootstrapping procedures presented in the previous section are extended to linear
regression models. The objective is to study the uncertainty (e.g. variance, mean-
square error or confidence interval) of the fitted parameters. To simplify the presenta-
tion, we consider the case of one response variable yk ∈ R and one regressor xk ∈ R,
i.e.

yk = β0 + β1xk.

The extension to the Ns-vector of regressors xk is immediate.
The most straightforward approach is to collect the response-variable value yk and

regressor xk as the observations zk, which gives

zk := [yk, xk]> ∈ R2, ∀ k = 1, . . . , n.

After obtaining the regression coefficients θ̂ = [β̂0, β̂1], the predicted value is given
by

ŷk = β̂0 + β̂1xk.

The residuals of the fitted regression model are also obtained as εk = yk − ŷk.

To bootstrap the regression model, there are two approaches (Fox, 2015): i)
treating the regressor xk as random and selecting bootstrap samples directly from
the observations zk, also called paired bootstrap, and ii) treating the regressor as
fixed and resampling the residual εk, also called residual bootstrap. A disadvantage of
fixed regressor is that the procedure implicitly assumes that the regression model fit
to the data is correct and that the errors are identically distributed. On its side, the
paired bootstrap might lead to a bad result especially in the presence of influential
observations (some xk very far away from the others).

In this demonstration, we apply a slightly modified form of the paired bootstrap
where the regressor is fixed to its sample value x = {x1, . . . , xn}. The objective is to
show the influence of the number of bootstrap samples Nb on the estimation of θ.

We perform four separate bootstrap regressions with different numbers of sam-
ples Nb = 1, 10, 100, 1000. The bootstrap samples are selected from yk as y∗(j) =
{y∗(j)1 , . . . , y

∗(j)
n } for all j = 1, . . . , Nb. The bootstrapped y∗(j) are regressed on the

fixed x to obtain the bootstrap regression coefficients θ̂∗(j). In case of least-squares
regression, for example, the coefficients are estimated as θ̂∗(j) = (x>x)−1x>y∗(j) for
all j = 1, . . . , Nb. The resampled bootstrap coefficients θ̂∗(j) are then used to obtain
the bootstrap CI. For qualitative assessment, the relative sum of squares (RSS) is
calculated as

RSS =

n∑
k=1

(yk − ŷk)2

n∑
k=1

y2
k

.
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We perform regression on noisy data generated by the model yk = β0 +β1xk +ηk,
where the coefficients are assigned as θ = [β0, β1] = [15, 1.5]. ηk is a random uniformly
distributed additive noise, where ηk ∈ U{−15, 15} is added to all the samples as
noise, and ηk ∈ U{−50, 50} is added to half of the samples as outliers. The fitted
coefficients of the regression model and some bootstrapping performance criteria are
given in Tab. 4.1. We observe that the values of the coefficients obtained for Nb = 1
are incorrect, thus highlighting the poor identifiability due to the presence of outliers
(or rare events) in y∗(j) when the random observations are used for regression without
bootstrapping. As the number of bootstrap samples increases, the coefficients tend
towards the true value. The CI is calculated using the BCa method which gives an
asymmetric lower and upper bound to the mean bootstrap fitted coefficient value. We
observe that the 95% CI has a small range for Nb = 10 which can be attributed to
lower number of samples which may not be sufficient to identify the full distribution
of the parameters. However, as Nb increases, the CI range increases and the upper
and lower bounds stabilize for Nb = 100 and Nb = 1000. A minor improvement in the
RSS is observed as Nb increases, resulting from the improvement in the identification
of the coefficients.

Table 4.1: Bootstrap fitted regression parameters, 95% confidence intervals (CI), and relative
sum of squares (RSS) corresponding to different number of bootstrap samples Nb.

Nb = 1 Nb = 10 Nb = 100 Nb = 1000
β̂0 β̂1 β̂0 β̂1 β̂0 β̂1 β̂0 β̂1

θ
∗ 13.57 1.53 13.83 1.52 14.87 1.51 15.04 1.51
CI – – (12.64,17.34) (1.49,1.53) (11.13,18.29) (1.46,1.57) (11.32,18.64) (1.44,1.58)

RSS 0.04413 0.04415 0.04409 0.04409
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Figure 4.3: Result of bootstrapped linear regression fit for noisy observations using Nb = 1
and 1000 samples compared with the true solution. A magnified view in the inset figure
shows the difference in the results of two regressed models.
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Figure 4.4: Stochastic description of the linear model parameters obtained from bootstrap-
ping noisy observations with Nb = 1000 samples. (a) The unbiased bootstrap estimation
βi
∗ for i = 1, 2 (black solid line) are shown along with the bootstrap estimates (dotted

bars), the Gaussian model approximation of the probability density of the parameter esti-
mates (dashed black thick line), and the endpoints of the BCa confidence interval (red). (b)
Normalized joint probability of the reduced centered coefficients (the contours correspond
to values from 0.04 to 0.2 at increments of 0.02).

The results obtained with the regressed models for Nb = 1 and Nb = 1000 are
shown in Fig. 4.3. The bootstrap fitted model is able to predict the true yk, which
follows from the close proximity of the true θ and identified θ

∗ coefficients. The
distributions of the bootstrapped regression coefficients obtained for Nb = 1000 are
shown in Fig. 4.4 along with the percentile CI determined with the BCa method. The
joint probability distribution of the coefficients gives an indication of the covariation
between the bootstrap estimates of β0 and β1; the contours of joint pdf11 indicate a
clear negative correlation.

4.2.3 Block bootstrap
We now bring our attention to the objective of obtaining the statistics associated with
the POD-ROM formulated as a system of linear equations (4.1). Here, the target ȧi and
regressor A are constructed from the time-series data of the temporal POD coefficients
ai(tk). However, the ordinary bootstrap method discussed in Sec. 4.2.2 is appropriate
only for a sample of i.i.d. observations. This hypothesis does not account for the inherent
order which exists in a time series data and which can be mathematically represented by
an autocorrelation function. Therefore, modifications to the previous bootstrap method
must be made so that the resampling of the data preserve the time series dependency
structure within a pseudo-sample.

An extensive review of the bootstrap methods for dependent data has been given
by Kreiss and Paparoditis (2011). Out of the group of bootstrap procedures in the
time domain, the block bootstrap procedure proposed by Hall (1985) has been shown to

11The joint probability distribution is obtained by calculating the bivariate histogram bin counts (for
bin edges between -4 and 3.8 with an interval of 0.6 in each direction β0 and β1). The pdf estimate is
given as the bin value vi = ci/(N Ai) for each i-th bin where ci is the number of elements in the bin,
Ai is the bin area calculated using bin widths in each direction, and N is the number of elements in
the input data.
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correctly approximate the distribution of the statistics of interest (e.g. mean and variance)
which can also be an estimator of some parameter. The block bootstrap method is a
widely used bootstrap method in the domain of time series and is the method employed
in the current work. In block bootstrap, the original time-series data is divided into
Nb blocks of observations, each block with N` consecutive data points (also known as
the block length). The bootstrap sample is constructed by randomly sampling the Nb

blocks with replacement and concatenating them into a series of observations. In this
way, a strong correlation is obtained within a block as compared to a relatively weaker
correlation between the blocks.

4.2.3.1 Block bootstrap method

Different block bootstrap methods have been proposed in the literature in the context of
bootstrapping time series data. These different methods attempt to reproduce different
aspects of the dependence structure of the observed data in the resampled data. The
most commonly used block bootstrap methods are:

• the moving block bootstrap (MBB), see Kunsch (1989);

• the nonoverlapping block bootstrap (NBB), see Carlstein (1986);

• the circular block bootstrap (CBB), see Politis and Romano (1992);

• the stationary bootstrap (SB), see Politis and Romano (1994).

All of these methods except SB use nonrandom i.e. constant block length. These
bootstrap methods have been extensively discussed and compared by Lahiri (1999). It
has been shown12 that in terms of the mean-squared error (MSE) of a block bootstrap
estimator, the MBB and the CBB estimators outperform the NBB estimators, which in
turn outperform the SB estimators. We will subsequently describe the MBB and the
CBB but first we briefly discuss the generalized block bootstrap.

We haveXn = {X1, . . . , Xn} as the available observations. Let 1 < N` < n denote
the block length for the block bootstrap methods. Given the time seriesXn, we define a
new time series {Yn,i}i≥1 by periodic extension, where for i ≥ 1, we have Yn,i = Xk when
i = mn+k for m ≥ 0 (period index) and 1 ≤ k ≤ n (see Fig. 4.6). The blocks of length
N` based on the new time series {Yn,i} are defined as B(j) = {Yn,i, . . . , Yn,(i+N`−1)},
j ≥ 1. The different variants of block bootstrap methods are obtained by resampling
from the subcollection of blocks {B(j) : j ≥ 1}.

In the MBB method, the blocks are resampled with replacement from the subcol-
lection {B(j) : j = 1, . . . , Nmbb} of overlapping blocks, where Nmbb = n − N` + 1, as
illustrated in Fig. 4.5. Let I1, . . . , INmbb , be the conditionally i.i.d. random variables with
the discrete uniform distribution on {1, . . . , Nmbb}, i.e. the conditional probability13 of

12All the four methods have the same amount of bias asymptotically. However, the leading terms
in the variance part are not the same for all methods. The first-order terms in the expansions for the
variances of the MBB and the CBB estimators are identical, making them equivalent in the MSE sense.
In terms of the variance, the NBB estimators have an asymptotic efficiency of 2/3 compared to the
corresponding MBB or CBB estimators. The variances of the SB estimators are always at least twice
as large as the variances of the corresponding NBB estimators and at least three times as large as those
of the MBB and CBB estimators.

13Here and in the next paragraph, we use P∗ to denote the conditional probability.
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Figure 4.5: Collection of overlapping moving blocks {B(j) : j = 1, . . . , Nmbb} for MBB.

Figure 4.6: Periodically extended time series {Yn,i}i≥1 obtained from the observations Xn =
{X1, . . . , Xn} for CBB.

each element is P∗(I1 = j) = 1/Nmbb for 1 ≤ j ≤ Nmbb. Then the resampled blocks are
drawn from B(j) to give the blocks of MBB as {B∗(I1), . . . ,B∗(INmbb )}. The bootstrap
sample contains NmbbN` elements (i.e. Nmbb blocks of length N`) which are arranged
in the sequence X∗(I1)

1 , . . . , X
∗(I1)
N`

, X
∗(I2)
1 , . . . , X

∗(I2)
N`

, . . . , X
∗(INmbb )
N`

.
In the CBB method, the blocks are resampled with replacement from the subcollec-

tion {B(j) : j = 1, . . . , n} of overlapping blocks. Therefore, in contrast to the MBB,
the CBB uses elements from the periodically extended time series {Yn,i}i≥1 beyond Yn,n,
as illustrated in Fig. 4.6. Let I1, . . . , INcbb , where Ncbb ≥ 1 is the number of blocks of
observed time series, be the conditionally i.i.d. random variables with the conditional
probability P∗(I1 = j) = 1/n, j = {1, . . . , n}. Then the blocks of CBB drawn from
B(j) are obtained as B∗(I1), . . . ,B∗(INcbb ) with the elements X∗(I1)

1 , . . . , X
∗(INcbb )
NcbbN`

.
The MBB resampling scheme has an undesirable boundary effect as it assigns lesser

weights to the observations at the start and end of the time series as compared to the
observations in the middle of the dataset (Lahiri, 1999). Since there are no observations
beyond the dataset, additional blocks cannot be defined to mitigate these boundary
effects. In this work, the block booststrap method with CBB resampling scheme is
used to obtain the estimates and confidence intervals of the unknown parameters of the
POD-ROM (see Sec. 4.2.2). Precisely, the CircularBlockBootstrap function from
the arch toolbox (Sheppard et al., 2020) is used for CBB resampling using blocks of
the same length with end-to-start wrap around.

4.2.3.2 Block length

The performance of the block bootstrap method crucially depends on the choice of the
block lengthN`. IfN` is large, then there may be very few unique blocks available to form
bootstrap samples. On the other hand, if N` is small, the observations in different blocks
may not be independent and the i.i.d. bootstrapping of the blocks cannot be performed.
The idea is then to select a block length large enough, so that the observations more
than N` time steps apart are nearly independent, while the correlation between the
observations less than N` time steps apart is retained. It should be noted that even for a
properly chosen N`, the correlation between the observations in the block bootstrapped
sample will be less than that in the original sample as the blocks are independent from
each other.
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Figure 4.7: Optimal block length estimation for the CBB resampling of the state a1(t) of the
Lorenz-63 system. The red dot at τ = 1.42 corresponds to the optimal block length N` = 143.
For visual reference, the block size indicated by the dashed line is shown for the state dynamics
in the inset figure.

A novel methodology for automatic selection of the block length was proposed by
Politis and White (2004). For the selection, we look at the problem of approximating the
sampling distribution of the sample mean X = (1/n)

∑n
t=1Xt as both the population

mean µ and population autocovariance sequence R(τ) are unknown. The autocovariance
sequence is given as

R(τ) = 1
n− τ

n−τ∑

t=1

(Xt −X)(Xt+τ −X), ∀ 0 < τ < n. (4.17)

The normalized autocorrelation can be obtained as R̂(τ) = R(τ)/σ2
n, where σ2

n =
var(
√
nX) = R(0) + 2

∑n
τ=1(1− τ/n)R(τ) is the sample variance. As the distribution

of X is asymptotically normal, i.e. √n(X − µ) converges to N (0, σ2
∞) as n −→ ∞,

estimating the variance σ2
∞ =

∑∞
τ=−∞R(τ) is important. The optimal (expected) block

length is obtained when the mean square error of the CBB estimates of σ2
∞ is minimized.

The formal derivation of the block length can be found in Politis and White (2004)
with some corrections done by Patton et al. (2009). This block length selection method is
implemented in the optimal_block_length function from the arch toolbox (Sheppard
et al., 2020), which has been used in this work. The application of the above steps to
the time series of the state a1(t) as obtained in the Lorenz system studied in Sec. 4.3.2
is shown in Fig. 4.7. The optimal block length for the CBB resampling of the time series
is obtained as N` = 143. It can be seen that for this value of N`, the autocorrelation
is zero which implies that the blocks of consecutive data of size N` will be mutually
uncorrelated. In case of multivariate time series (e.g. a(t)), we obtain block lengths
N

(i)
` for each of the i = 1, . . . , Ns states. Here, the state-wise maximum block length

is used for CBB resampling of all the components of the multivariate time series as the
block-wise standard deviation does not change with the excess block length (Flyvbjerg
and Petersen, 1989).
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4.3 Toy models
In this section, we describe the three toy models used to evaluate the performances of
the system identification methods introduced in Sec. 3.1. The toy models conform to
the formulation of POD-ROM without the nonlinear residual term, given by (4.1).

4.3.1 Toy model 1: Three-dimensional linear system
A three-dimensional linear system offers a simple dynamics which helps to establish the
capabilities of the different system identification strategies. The dynamics is obtained
from the solution of a system of Ns = 3 linear homogeneous ordinary differential equa-
tions (ODEs) of the form





ȧ1(t) = −σa1(t)− ρa2(t),
ȧ2(t) = ρa1(t)− σa2(t),
ȧ3(t) = −βa3(t),

(4.18)

where the parameters are [σ ρ β] = [0.1 2.0 0.3] and the initial state is given as a0 =
[a1(0) a2(0) a3(0)]> = [2 2 1]>. As we are interested in second order dynamical system,
the polynomial library A is constructed14 with polynomials up to second order in terms
of a. The number of parameters, associated with each state evolution equation, is
Nθi = 10. We observe from (4.18) that for this linear system, the parameter matrix
θ ∈ RNθi×Ns is sparse; the only nonzero elements are L1 1 = L2 2 = −σ, L1 2 = −ρ,
L2 1 = ρ, and L3 3 = −β. The state dynamics is obtained by integrating the system of
ODEs using the LSODA integrator15. The evolution of the state trajectories is shown in
Fig. 4.8.

4.3.2 Toy model 2: Lorenz-63 system
The second test case considered is the very familiar Lorenz-63 nonlinear system. This
system was developed to describe the phenomenon of natural convection in a rectangular
cavity with a heated lower wall. It leads to a quadratic system with Ns = 3 ODEs in
terms of a of the form





ȧ1(t) = σ(a2(t)− a1(t)),
ȧ2(t) = a1(t)(ρ− a3(t))− a2(t),
ȧ3(t) = a1(t)a2(t)− βa3(t).

(4.19)

For the assigned parameter values of [σ ρ β] = [10 28 8/3], the Lorenz system exhibits
a chaotic dynamics characterized by a limit cycle and a strange attractor as shown

14This is not necessary in this case since we know that the dynamical system to be identified is linear.
Considering a general case allows us to test the efficiency of the identification methods to evaluate a
sparse representation.

15LSODA (Petzold, 1983) differs from the solver LSODE (Livermore Solver for Ordinary Differential
Equations) on which it is based in that it switches automatically between stiff (BDF) and non-stiff
(Adams) methods. It uses the non-stiff method initially, and dynamically monitors data in order to
decide which method to use. The LSODA integrator is provided by the FORTRAN library ODEPACK
and is accessible through the solve_ivp function of scipy.
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Figure 4.8: Trajectories of the states ai(t) (i = 1, 2, 3) of a three-dimensional linear system.
The initial state a(0) is indicated by a red dot in the trajectory of the combined evolution
(right panel).
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Figure 4.9: Trajectories of the states ai(t) (i = 1, 2, 3) of the Lorenz-63 system.

in Fig. 4.9. The initial state is set as a0 = [a1(0) a2(0) a3(0)]> = [−8 7 27]>. The
quadratic polynomial library A is used. The parameter matrix θ is sparse.

4.3.3 Toy model 3: Lorenz-96 system

To evaluate the performance of the identification strategies for systems with higher di-
mensions, the Lorenz-96 system is considered. This system of ODEs describes a single
scalar quantity as it evolves on a circular array of sites, undergoing forcing, dissipation,
and advection. It was initially introduced as a test problem for numerical weather pre-
diction. The dynamical system corresponding to the classical Ns dimensional Lorenz-96
system is given as

ȧi(t) = (ai+1(t)− ai−2(t))ai−1(t)− ai(t) + F, ∀ i = 1, . . . , Ns, (4.20)



96 System identification by linear regression models

0 10 20

t

-5

0

5

10

a
1
(t

)

0 10 20

t

-5

0

5

10

a
2
(t

)
0 10 20

t

-5

0

5

10

a
3
(t

)

-5

0

-5

5

10

a
3
(t

)

10

0

a2(t)

5

a1(t)

50 10-5

Figure 4.10: Trajectories of the first three states ai(t) (i = 1, 2, 3) of the Lorenz-96 system of
dimension Ns = 10.

where it is assumed that Ns ≥ 4, a−1(t) = aNs−1(t), a0(t) = aNs(t), and aNs+1(t) =
a1(t). This system belongs to a class of problems with a single bifurcation parameter
(rescaled forcing term F ). The forcing parameter is set as F = 8 which is known to
cause chaotic behavior as shown in Fig. 4.10. The initial condition is a(0) = 0Ns×1
with the last element perturbed such that aNs(0) = 0.01. The number of states Ns can
be varied to obtain models of different dimensions. Similar to the previous test cases,
we consider a quadratic polynomial library A with a sparse parameter matrix θ for the
system identification.

4.3.4 Artificial noise
In order to simulate physical processes, additive noise is introduced to the numerical
solution of the dynamical systems discussed above. The noise is defined by noise level
η ≥ 0, and a sequence of uniformly distributed random numbers εu(t) ∼ U{−1, 1} of
the same length as the signal. In the following, the state variable ai(t) is modified as

ai(t)← ai(t) + ηεu(t)∆ai, ∀ i = 1, . . . , Ns, (4.21)

where ∆ai = max(ai(t))−min(ai(t)) is the range of the time signal over the period of
observation. Noise levels of η = 0% (no noise), 5% (low), and 10% (high) have been
considered in this work.

4.4 Results
In this section, the result of system identification of the dynamical systems (Sec. 4.3)
with different noise levels η = 0%, 5% and 10% will be evaluated. The identification
is performed using the system identification methods discussed in Sec. 3.1 and the
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numerical tools discussed in Sec. 4.1. Initially, the three regression methods – OLS,
SINDy, and LARS – are used to identify the three-dimensional linear system (Sec. 4.4.2)
and their relative performance is assessed. In the subsequent sections, the SINDy and
LARS methods are applied to the chaotic systems of Lorenz-63 (Sec. 4.4.3) and Lorenz-
96 (Sec. 4.4.4).

4.4.1 Training and testing datasets
As a common practice in the statistical system identification approach, the time series
data are usually split into two separate sets, known as the training and testing sets, before
performing the regression. The multivariate datasetX = [a1 a2 . . . aNs ] ∈ RNt×Ns with
the elements Xk,j = aj(tk), is split in order to form a training set

XTrain = {Xk,:}
NTrain
t

k=1 ∈ RNTrain
t ×Ns , (4.22)

where NTrain
t is the number of data snapshots assigned to the training set, and a testing

set
XTest = {Xk,:}Ntk=NTrain

t +1 ∈ RNTest
t ×Ns , (4.23)

where NTest
t = Nt − NTrain

t is the remaining number of data snapshots in the original
dataset. We note that the time series are not shuffled and the order of the time sequence
is maintained in both the subsets.

We use the training dataset XTrain in the system identification step to fit the re-
gression model. This requires an alteration of the model such that A ∈ RNTrain

t ×Nθi

and ȧi ∈ RNTrain
t ×1 correspond to the data in the training dataset. The testing dataset

XTest is used to evaluate the fit of the regressed model. The training and testing sets
are vital to ensure that the model does not overfit to the data used for the identification
and is able to generalize well to new data. A prediction aPred(t) is obtained by inte-
grating the trained model in the time window [tNTrain

t +1, tNt ] using a(tNTrain
t +1) as the

initial condition. To evaluate the performance of the system identification methods, the
prediction error between aTest(t) and aPred(t) is obtained by calculating the normalized
mean square error corresponding to each state variable and averaging over the states,

EPred = 1
Ns

Ns∑

i=1

√√√√√
‖aTest

i (t)− aPred
i (t)‖2

2∥∥∥aTest
i (t)− aTest

i

∥∥∥
2

2

, (4.24)

where aTest
i is the temporal mean state vector of the reference test data. The prediction

error quantifies the ability of the learned model to predict the dynamics when it is supplied
with a new dataset outside the training set. In this work, for sufficiently large datasets
(Nt & 1000), we consider NTrain

t = b0.7Ntc.

4.4.2 Toy model 1: Three-dimensional linear system
The dataset for the three-dimensional linear system is generated by integrating the system
of ordinary differential equations (4.18) using the LSODA integrator (Petzold, 1983).
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The dataset consists of Nt = 3000 discrete snapshots at regular time steps ∆t =
0.01. As discussed in Sec. 4.4.1, the dataset is divided into training and testing sets
with NTrain

t = 2100 and NTest
t = 900 snapshots, respectively. We perform system

identification on the original dataset (without noise, η = 0%) and two additional datasets
obtained by introducing additive noise of levels η = 5% and 10% using (4.21). For the
dataset without noise, the system (4.1) is constructed by using the time series a(t) to
assemble the matrix of basis functions A, and by utilizing the fourth-order accurate
finite difference scheme to obtain the time derivatives ȧi(t). On the other hand, for the
datasets with noise, the noisy time series a(t) are first passed through a LP filter (see
Sec. 4.1.1) to remove the high-frequency contribution of the noise. The filtered time
series are then used to assemble the matrix A, while the TVreg differentiation method,
described in Sec. 4.1.2, is employed to obtain ȧi(t) directly from the noisy data. The LP
filter and TVreg differentiation contribute to minimizing the influence of the non-physical
artefacts introduced in the system (4.18) by the noise. These techniques are of great
help for recovering the true but unknown underlying dynamics (fitting the systematic
component rather than the noise). Also, for the identification by LARS, we use the
standardized form of the time derivative vector and basis function matrix, ̂̇ai(t) and
Â respectively, to identify the corresponding parameters θ̂i (see Sec. 3.1.3.2). The
parameters are not invariant to the standardization and are therefore not equivalent to
the true parameters θi. However, θi can be retrieved from θ̂i with the help of the
transformation (3.26).

As discussed in Sec. 4.2.3, the circular block bootstrap (CBB) method is used to
identify the model parameters in a probabilistic framework. The training dataset is
used to obtain blocks of consecutive data points. The block length N` is obtained
automatically using spectral estimation, as discussed in Sec. 4.2.3. The blocks are
resampled with replacement to obtain Ncbb = 1000 bootstrap samples. The system
(4.1) is identified for each of the Ncbb samples. The learned parameters θi are obtained
as the mean over the sample estimates.

The scaled color representation of the true and learned parameter matrix θ are shown
in Fig. 4.11 for the OLS, SINDy and LARS identification methods. For the dataset
without noise (η = 0%), we observe that the coefficients obtained from the three
system identification methods replicate the true sparse parameter matrix. As the noise
level increases (η = 5% and 10%), additional nonzero coefficients enter the parameter
matrix apart from the ones appearing in the true system. This behavior will be discussed
in the next paragraph. The BCa method described in Sec. 4.2.2 can be used to obtain
the confidence interval (CI) of the empirical distribution of the bootstrap parameter
estimates. As an example, the 95% CI of the coefficients obtained from LARS for the
dataset corresponding to the noise level η = 10% is shown in Fig. 4.12. We observe
that the mean values are not centered with respect to the CI which is common when
the percentile based BCa estimation of the CI is applied to skewed distributions. The
distributions of some selected significant nonzero coefficients (L1 1, L2 2 and L3 3) are
visually presented with the aid of box plots in Fig. 4.13. The plot indicates that the
distribution of the bootstrap estimates is skewed (non-Gaussian), e.g. considering the
coefficient L3 3 estimated for the dataset corresponding to the noise level η = 5% for
SINDy and LARS. This type of non-normal distribution necessitates the use of the bias
corrected methods like BCa to estimate correctly the CI.
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Figure 4.11: Scaled color representation of the true (a), and learned (b) parameters for the
three-dimensional linear system. In (b), we compare the results obtained by OLS, SINDy and
LARS identification methods. Each row corresponds to the parameter vector θi consisting of
the coefficients of the model for ȧi(t), where i = 1, 2, 3. Note that the standardized parameters
are plotted for the LARS results. The negative and positive parameter values are indicated by
blue and red, respectively, and fade to white as the value tends to zero.
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Figure 4.12: Scaled color representation of the (standardized) learned parameters from LARS
for the three-dimensional linear system with additive noise η = 10% . The values correspond
to the bootstrap mean of the parameters along with the difference from the lower (subscript)
and upper (superscript) bounds of the 95% confidence interval obtained from the BCa method.

For the noisy datasets, the OLS method yields a sparse parameter matrix which is
close to the true one. In contrast, a penalized least-squares (PLS) method (see App. C.2)
introduces non-zero values for parameters that should be zero. This difference in the
results can be attributed to the regression principles of OLS and PLS methods. Using
OLS, we estimate the coefficients of the linear model by minimizing (3.10), the squared
difference from the target ȧi(t). On the other hand, PLS consists of solving a minimiza-
tion problem which includes a penalty term constraining the coefficients. Considering an
example of ridge regression, the PLS solution for a smooth finite dimensional problem is
given by (C.24); re-written in terms of the relevant variables as

θi = (A>A+ λINθi )
−1A>ȧi. (4.25)

In (4.25), if λ = 0, the OLS solution is obtained which is an unbiased estimator (specifi-
cally minimum-variance linear unbiased estimator) according to Gauss–Markov theorem.
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Figure 4.13: Box plots of the learned coefficients by OLS, SINDy and LARS along with the
true value (dashed horizontal line) for the three-dimensional linear system with noise levels
η = 0%, 5% and 10%. The standardized coefficients obtained from LARS are indicated as ̂ .
The central line, represented in red, of the blue box indicates the median value. The bottom
and top edges of the blue box indicate the 25th and 75th percentiles, respectively. The whiskers
extend to the most extreme data points without considering outliers. The outliers are plotted
individually using the “+” symbol.

On the other hand, a nonzero term λINθi introduces a bias in the PLS solution which
leads to a difference between the estimator’s expected value and the true value of the
parameter being estimated. A trade-off between bias and variance is obtained by ma-
nipulating λ. Despite the unbiased estimation, the OLS is not preferred as it is not
guaranteed to give a lower value of the loss function (3.10) as compared to PLS. More-
over, it risks overfitting the target values. The optimal prediction accuracy is obtained
by using a nonzero λ which introduces bias to reduce variance. Another class of PLS
methods based on L1 regularization offer many of the beneficial properties of the ridge re-
gression, but yields sparse models that are more easily interpreted (Hastie et al., 2009).
In this thesis, the L1 regularization based methods of SINDy (Sec. 3.1.2) and LARS
(Sec. 3.1.3) are used. As already discussed, these PLS methods are able to solve the
linear systems when the number of unknown parameters exceeds the number of target
values Nθ > Nt. In such settings, the OLS is ill-posed as the associated optimization
problem has infinitely many solutions.

The performance of the bootstrap estimate of the parameters can be investigated
in the training and testing windows. For the study in the training window [t1, tNTrain

t
],

samples of the parameter matrix θ are drawn from a uniform distribution over the 95%
confidence interval obtained from the BCa method. We generate in this wayNProp = 200
sets of parameters which are used to propagate an initial state in the training window.
As a result, we obtain a series of equiprobable trajectories in the phase space. The range
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Figure 4.14: Bootstrap analysis of the time evolution of the state a1(t) for different regression
methods (OLS, SINDy, and LARS). Case of the three-dimensional linear system with an additive
noise (η = 10%). The two columns correspond to the propagation in the training window (left),
and the prediction in the testing window (right). The gray shaded area represents the region
between the minimum and maximum values of the evolution of the state obtained by integrating
200 bootstrap dynamical models. The dashed red line corresponds to the dynamics in the
training and testing windows, respectively. The solid blue line corresponds to the dynamics for
the mean bootstrap parameters in the training and testing windows, respectively.

of the propagated trajectories is shown by the shaded region in the training window
in Fig. 4.14. For the three system identification methods considered, we observe that
the state propagation remains bounded and correlated to the dynamics of the training
data over the time span of the training window. The mean bootstrap estimate of the
parameter is also used to propagate the states in the training window as shown in
Fig. 4.14. The goodness of fit of this trajectory aProp

i (t) to the training data aTrain
i (t)

is evaluated using the averaged normalized root mean square error EProp (propagation
error). This quantity is calculated in the same way as the prediction error (4.24) i.e.

EProp = 1
Ns

Ns∑

i=1

√√√√√√

∥∥∥aTrain
i (t)− aProp

i (t)
∥∥∥

2

2∥∥∥aTrain
i (t)− aTrain

i

∥∥∥
2

2

. (4.26)

In the testing window [tNTrain
t +1, tNt ], the states trajectory is obtained by integrating

the model with the mean bootstrap estimate of the parameter from the initial state
aTest(tNTrain

t +1). The prediction error EPred is then calculated. The predicted trajectories
obtained from integration of the learned model using the three system identification
methods is shown in the testing window in Fig. 4.14. We observe that the prediction using
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the bootstrap estimation of the parameters closely follows the expected time evolution
of the reference state. Let R2 denote the coefficient of determination i.e. the proportion
of total variation of the test data explained by the learned model. For the prediction
trajectory, this quantity is given as

R2 = 1− 1
Ns

Ns∑

i=1



∑Nt

k=t
NTrain
t +1

(aTest
i (tk)− aPred

i (tk))2

∑Nt
k=t

NTest
t +1

(aTest
i (tk)− aTrain

i )2


 . (4.27)

The value of R2 provides a measure of the strength of the relationship between the
test data and the dynamics replicated by the model based on the parameters learned in
the training window. By definition, R2 ranges from 0 to 1. In general, the higher the
value of R2, the better the model explains all the variability of the test data around its
mean. It must be noted that R2 cannot determine whether the predictions are biased
and therefore serve only as an intuitive measure of the goodness of fit.

The performance metrics EProp, EPred and R2 in the training and testing windows are
listed in Tab. 4.2 for the noise levels η = 0%, 5% and 10%. In the training window, the
performance of the three identification methods is almost identical, yielding the same
order of magnitude for EProp. Also, the errors corresponding to the noisy data are higher
than that for the data without noise. In terms of actual value of the error, the OLS
method marginally outperforms the SINDy method while the LARS method yields the
least accurate results amongst the three.

In the testing window, for the data without noise, the magnitudes of EPred corre-
sponding to the SINDy and LARS methods are lower than that for the OLS method.
However, for the LARS method, the values of EPred obtained for the noisy data are higher
than those corresponding to the OLS and SINDy methods. This behavior is typical of
cases where the LARS method is used to identify dynamics where the amplitude decays
or grows in time. Indeed, as the LARS method relies on standardization of the target
vector and the basis function matrix (see Sec. 3.1.3.2), the prediction in the testing
window requires to be unstandardized using the statistics of the training dataset. For
decaying or growing dynamics, the variance σ2 evolves with time. The use of the variance
obtained in the training window to rescale the results in the testing window then leads
to the bias. We also observe in Fig. 4.14 the influence of the standardization in the form
of a small phase difference in the prediction for LARS. The R2 scores corresponding to
the different noise levels are approximately equal for the three identification methods.
The R2 values closer to 1 for η = 0% and 5% indicate that the predicted trajectories are
able to explain the variability of the dynamics in the testing window. The lower R2 score
for η = 10% indicates the influence of the noise on the biased bootstrap estimation of
the coefficient values; the learned model, however, is still able to predict the dynamics
in the testing window as shown in Fig. 4.14.

The computational costs associated with the three methods are compared in the
training window for 100 bootstrap samples and η = 0%. The total elapsed time and the
number of bootstrap samples per second are reported in Tab. 4.3. It is observed that
OLS is one order of magnitude slower than the SINDy and LARS identification. This
is attributed to the cost of calculation of the SVD (3.11) for OLS which has the com-
putational complexity of O(min(NtN

2
θi
, NθiN

2
t )) which is higher than the complexity
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Table 4.2: Performance of the system identification methods (OLS, SINDy, and LARS) for the
three-dimensional linear system with noise levels η = 0%, 5% and 10%.

η
OLS SINDy LARS

EProp EPred R2 EProp EPred R2 EProp EPred R2

0% 0.0037 0.0496 1.0000 0.0060 0.0024 1.0000 0.0093 0.0102 0.9998
5% 0.1892 0.7622 0.9032 0.1902 0.7039 0.9122 0.3645 1.1924 0.9064
10% 0.2395 0.8999 0.6685 0.2366 0.8675 0.6961 0.3003 0.9970 0.6876

Table 4.3: Total elapsed time and number of bootstrap samples per second for the three-
dimensional linear system in the training window (100 bootstrap samples and η = 0%).

OLS SINDy LARS
Elapsed time (s) 11.486 0.926 1.102
Bootstrap samples per second 8.619 106.926 89.845

associated with the iterative convex optimization based methods of SINDy and LARS.
The higher cost associated with OLS makes it computationally intractable for the prob-
lems with higher dimensions or higher number of samples.

In the subsequent examples, due to the higher costs associated with the OLS method,
we only discuss the system identification using the SINDy and LARS methods.

4.4.3 Toy model 2: Lorenz-63 system
In this section, the relative performance of the SINDy and LARS based system identi-
fication methods are assessed for the Lorenz-63 system in chaotic regime. The dataset
used for the identification is generated by integrating the system of ordinary differential
equations (4.19). The hyperparameters associated with the data generation and boot-
strap estimation are assigned the same values as in the case of the three-dimensional
linear system discussed in Sec. 4.4.2. For the LARS algorithm, the AIC model selection
criteria and LARS solution path is demonstrated in Demo. 4.2.

Demo 4.2: LARS identification of Lorenz-63 system

The selection of λopt for the LASSO model fit of the Lorenz-63 system using LARS
with AIC is shown in Fig. 4.15. The regularization parameter λ is updated along with
the iterations of LARS and λopt corresponding to the minimum value of AIC is used
in the LASSO fit. We observe that the AIC increases with the increasing noise levels.
This can be attributed to the higher contribution to the residual term, i.e. the first
term on the right-hand side of (3.29), due to perturbation in the dataset. The AIC
obtained from the datasets corresponding to different bootstrap samples Ξ∗(j) also
varies but the selection of λopt remains bounded within the same order of magnitude.
Fig. 4.16 shows the stepwise algorithm of LARS used to trace out the LASSO solution
path. LARS computes a path solution only for each kink in the path which can be
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seen in the LASSO path as addition or deletion of the parameters from the active set.
The LASSO path is able to identify the parameters in the active set that correspond
to the ones in the true dynamical model. We observe that for higher noise level, more
number of LARS updates are performed and additional nonzero coefficients apart from
the ones in the true model remain the identified active set. However, the dominant
coefficients still correspond to the ones in the true model.
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Figure 4.15: Plot of AIC against the regularization parameter λ for LASSO estimator of
the dynamics of state a1(t) of the Lorenz-63 system. AIC is compared for datasets with
different noise levels η for an arbitrarily selected bootstrap sample j = 1000 (left), and
different bootstrap samples (denoted by index j) for the dataset with noise level η = 10%
(right). The dashed vertical lines indicate the values of λ corresponding to the minimum
AIC.
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Figure 4.16: LARS solution path of the coefficients θ1,j plotted against the normalized
coefficients θ̃1,j =

∑
j |θ1,j |/max(

∑
j |θ1,j |) for LASSO estimator of the dynamics of state

a1(t) of the Lorenz-63 system with different noise levels: η = 0% (left) and η = 10%
(right). The dotted vertical lines indicate the locations where the parameters are added or
removed from the active set. The dashed vertical line represents the location corresponding
to the LASSO model fit obtained with LARS using AIC.

The scaled color representation of the true and learned parameter matrix θ are shown
in Fig. 4.17. For the case without noise (η = 0%), the SINDy and LARS methods lead to
a parameter structure matrix equivalent to that of the true parameters. However, for the
case with noise, both identification methods introduce nonzero values in the parameter
matrix for the coefficients which are zero valued in the true parameter matrix. The
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Figure 4.17: Scaled color representation of the true (a), and learned (b) parameters for the
Lorenz-63 system. In (b), we compare the results obtained by SINDy and LARS identification
methods. Refer to the caption of Fig. 4.11 for a detailed description.
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Figure 4.18: Box plots of the learned coefficients by SINDy and LARS along with the true
value (dashed horizontal line) for the Lorenz-63 system with noise levels η = 0%, 5% and 10%.
Refer to the caption of Fig. 4.13 for a detailed description.

parameter matrix obtained using the SINDy method is sparser than the one obtained
using the LARS method. As we will see, the prediction of the dynamics using the
learned parameters from both methods are comparable in terms of the error metrics.
The distribution of some selected significant nonzero coefficients (L1 2, L3 3 and Q2 1 3)
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Figure 4.19: Bootstrap analysis of the time evolution of the state a1(t) for different regression
methods (SINDy and LARS). Case of the Lorenz-63 system with an additive noise (η = 10%).
Refer the caption of Fig. 4.14 for a detailed description.

are visually presented with the aid of box plots in Fig. 4.18. The parameter estimates
corresponding to the three noise levels are close to the true values.

The performance of the bootstrap estimates of the parameters is investigated in the
training and testing windows in the same way as in Sec. 4.4.2. The propagation and
prediction trajectories corresponding to the noise level η = 10% are shown in Fig. 4.19.
As the system is chaotic, propagated trajectories start deviating from the training data
at around t = 0.5. The range of the trajectories shows that the propagation remains
bounded for the coefficients selected from within the bounds of the BCa CI. The tra-
jectory of the dynamics obtained from the model using the mean bootstrap parameter
estimates shows that the learned model is able to replicate the dynamics of the Lorenz-63
attractor. Moreover, the comparison of the predicted trajectory with the test data shows
that the learned model gives a sufficiently accurate estimation of the state for a short
time span outside the training window and is able to replicate the attractor dynamics.

The performance metrics in the training and testing windows for the propagated and
predicted trajectories corresponding to the datasets with noise levels η = 0%, 5%, 10%
are listed in Tab. 4.4. The errors EProp and EPred for the propagation and prediction are
comparable for both the LARS and SINDy methods. The R2 score corresponding to the
different noise levels is approximately equal and very close to the value of 1 for the two
identification methods which indicates that the predicted trajectories are able to explain
the variability of the dynamics in the testing window.

The computational times associated with the application of the two system identifi-
cation methods using 100 bootstrap samples are compared in Tab. 4.5 for the no noise
case (η = 0%). The estimation using the LARS method is observed to be slower than
that using the SINDy method by a factor of 3 for the Lorenz-63 system.
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Table 4.4: Performance of the system identification methods (SINDy and LARS) for the
Lorenz-63 system with noise levels η = 0%, 5% and 10%.

η
SINDy LARS

EProp EPred R2 EProp EPred R2

0% 1.3248 1.0904 1.0000 1.3770 1.3797 0.9995
5% 1.3962 1.4650 0.9735 1.3614 1.4971 0.9639
10% 1.4437 1.4428 0.9502 1.3786 1.4898 0.9391

Table 4.5: Total elapsed time and number of bootstrap samples per second for the Lorenz-63
system in the training window (100 bootstrap samples and η = 0%).

SINDy LARS
Elapsed time (s) 0.897 2.835
Bootstrap samples per second 110.409 34.924

4.4.4 Toy model 3: Lorenz-96 system
In this section, the relative performance of the SINDy and LARS based system identi-
fication methods are assessed for the Lorenz-96 system in chaotic regime. The dataset
for a 10 dimensional Lorenz-96 system (Ns = 10) is generated by integrating the sys-
tem of ordinary differential equations (4.20). The hyperparameters associated with the
data generation and bootstrap estimation are kept the same as in the case of the three-
dimensional linear system presented in Sec. 4.4.2.

The scaled color representation of the true and learned parameter matrix θ are shown
in Fig. 4.20. For the case without noise (η = 0%), the SINDy and LARS methods find a
parameter matrix structure very similar to the true solution16. However, for the case with
noise, both identification methods introduce nonzero values in the parameter matrix for
the coefficients which are zero valued in the true parameter matrix. Contrary to the case
of the Lorenz-63 system analyzed in Sec. 4.4.3, the parameter matrix obtained using the
LARS method is observed to be sparser than the one obtained using the SINDy method.
The additional nonzero values introduced by SINDy for the noisy data affect the sparse
structure of the linear coefficients Lij (i = 1, . . . , Ns and j = i, . . . , Ns). On the
other hand, the parameter matrix obtained for the noisy data using the LARS method
retains the same structure as the true parameter matrix with the additional nonzero
values mostly assigned to the quadratic coefficients Qijk (i = 1, . . . , Ns, j = i, . . . , Ns,
and k = j, . . . , Ns). The distribution of some selected significant nonzero coefficients
(L1 1, L9 9 and Q5 3 4) are visually presented with the aid of box plots in Fig. 4.21. The
parameter estimates corresponding to the three noise levels are close to the true values.

The performance of the bootstrap estimates of the parameters is investigated in
the training and testing windows in the same way as in Sec. 4.4.2. The propagation
and prediction trajectories corresponding to η = 10% are shown in Fig. 4.22. Similar
to the Lorenz-63 system, the propagated trajectories start deviating from the training
data at around t = 0.5. The range of the trajectories shows that the propagation
remains bounded for the coefficients selected from within the bounds of the BCa CI.

16Note that for the LARS method, the constant terms corresponding to Ci = F , where F is the
forcing parameter in (4.20), appear equal to zero due to the standardization before identification.
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Figure 4.20: Scaled color representation of the true (a), and learned (b) parameters for the
Lorenz-96 system (Ns = 10). In (b), we compare the results obtained by SINDy and LARS
identification methods. Refer the caption of Fig. 4.11 for a detailed description.

Table 4.6: Performance of the system identification methods (SINDy and LARS) for the
Lorenz-96 system (Ns = 10) with noise levels η = 0%, 5% and 10%.

η
SINDy LARS

EProp EPred R2 EProp EPred R2

0% 1.1074 0.6121 1.0000 1.2152 1.2729 0.9860
5% 1.2334 0.9813 0.9335 1.3322 1.3326 0.9636
10% 1.0902 1.0247 0.8523 1.3662 1.3489 0.9213

The trajectory of the dynamics obtained from the model using the mean bootstrap
parameter estimates shows that the learned model is able to replicate the true reference
dynamics. Moreover, the comparison of the predicted trajectory with the test data shows
that the learned model gives a sufficiently accurate estimation of the state for a short
time span outside the training window. In this example, the estimation obtained from
the LARS method replicates the attractor dynamics for a longer time span than that
obtained from the SINDy method.

The performance metrics in the training and testing windows for the propagated
and predicted trajectories are listed in Tab. 4.6 for the noise levels η = 0%, 5% and
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Figure 4.21: Box plots of the learned coefficients by SINDy and LARS along with the true
value (dashed horizontal line) for the Lorenz-96 (Ns = 10) system with noise levels η = 0%,
5% and 10%. Refer the caption of Fig. 4.13 for a detailed description.
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Figure 4.22: Bootstrap analysis of the time evolution of the state a1(t) for different regression
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10%. The errors EProp and EPred for the propagation and prediction are comparable
for both the LARS and SINDy methods. The error values associated with LARS are
slightly higher than those associated with SINDy. The R2 score corresponding to the
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Table 4.7: Total elapsed time and number of bootstrap samples per second for the Lorenz-96
system in the training window (Ns = 10, 100 bootstrap samples and η = 0%).

SINDy LARS
Elapsed time (s) 87.326 27.983
Bootstrap samples per second 1.134 3.538

different noise levels is very close to the value of 1 for the two identification methods.
For noisy data, the R2 score corresponding to the LARS method is higher than that
corresponding to the SINDy method. This result indicates that the predicted trajectory
using the estimated parameters from the LARS method is able to better explain the
variability of the dynamics in the testing window.

The computational times associated with the two identification methods are com-
pared in Tab. 4.7 for 100 bootstrap samples and η = 0%. Unlike the Lorenz-63 system,
the estimation of the Lorenz-96 system using the LARS method is observed to be faster
by a factor of 3 than that using the SINDy method. This suggests that for a high-
dimensional system, the LARS method is computationally more efficient than the SINDy
method.

4.5 Conclusion
The uncertainties of three system identification methods (namely OLS, SINDy and
LARS) have been quantified in a probabilistic framework provided by the bootstrap
method. Toy models – that mimic POD-ROM without the nonlinear residual term –
have been considered for the evaluation of the identification methods. In particular, the
performance of the three identification methods in handling noisy and imperfect data to
recover the model parameters vector has been examined. Preprocessing steps consisting
of a low-pass filtering and a total-variation numerical differentiation method have also
been introduced.

The use of the circular block bootstrap resampling technique allows to estimate for
the three toy models the distribution and the confidence intervals associated with the
learned coefficients of interest. The OLS identification method is found to be compar-
atively accurate but computationally expensive. The SINDy and LARS identification
methods exhibit a comparable performance in terms of the error metrics when applied to
problems with chaotic dynamics. However, the SINDy method has been observed to be
computationally more efficient than the LARS method for a low-dimensional identifica-
tion problem, while the LARS method is more efficient for a high-dimensional problem.
We also note that the LARS algorithm has an advantage over the SINDy algorithm in
terms of the tuning of the regularization parameter. Indeed, unlike SINDy, the LARS
algorithm uses the information criterion to select the regularization parameter that op-
timally balances parsimony and accuracy.

Following the results obtained in this chapter, the linear regression method will be
used in the subsequent chapter to initialize the POD-ROMs corresponding to different
test cases.
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The identification of POD-ROMs by linear regression models (see Chap. 4) leads in gen-
eral to a dynamical system with imperfect long-time predictability. As already discussed,
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one of the main reasons is the truncation error introduced by neglecting the high-order
modes in the POD expansion. Another reason is the imperfect identification of the
model parameters due to numerical errors inherent to the chosen identification method
or due to limited available data. Typically, the temporal coefficients can experience an
amplitude growth and/or loss of the phase information due to the incomplete or improper
description of the energy dissipation mechanism in the model, resulting in large error in
the estimated dynamics. At this stage, the quadratic structure of the POD-ROM may
lead to numerical instabilities of the model causing the dynamics to diverge in finite time.
In this chapter, as a possible cure to the model prediction problem, the residual term
of the POD-ROM associated with the high-order modes is first modeled, thanks to a
linear eddy viscosity term parameterized with a vector θs. Secondly, the Dual Ensemble
Kalman filter (hereafter Dual-EnKF), introduced and detailed in Sec. 3.2.3, is used to
simultaneously correct the estimated state and predict the vector θs thanks to assimila-
tion of observations into the model. As a demonstration, three test cases are considered.
In Sec. 5.1, the Lorenz-63 system is first considered as a toy model to analyze the per-
formance of the Dual-EnKF method to recover both the state and the coefficients of the
model equation. We investigate the influence of different parameters, such as the noise
levels or the dimension of the observation data set. In Sec. 5.2, the case of a simulated
flow around a circular cylinder at a low Reynolds number is considered. A POD-ROM
with a linear eddy viscosity residual term given by (2.83) is first built. The Dual-EnKF
algorithm is then applied to estimate the values of the eddy viscosity directly from the
data. In Sec. 5.3 and Sec. 5.4, the same methodology is applied to an experimental
cylinder wake flow at two different Reynolds numbers. Finally, the case of a Mach 0.9
turbulent jet is considered in Sec. 5.5. In this last example, which follows the work of
Kerhervé et al. (2012), a twenty degree of freedom POD-ROM is constructed to predict,
over a long-term horizon, the dynamics of the acoustically-important flow motions. The
main outcomes of the chapter are finally drawn in Sec. 5.6.

5.1 Validation of Dual-EnKF method for the
Lorenz-63 system

The Lorenz-63 oscillator introduced in Sec. 4.3 is considered again as a toy model to
investigate this time the performance of the Dual-EnKF to simultaneously recover the
state of the system and the model coefficients. The results presented in this section are
largely inspired by the work of Bourgois et al. (2011).

5.1.1 Reference and observation data setup
We rewrite the system of ordinary differential equations (4.19) defining the Lorenz-63
system as 




ȧ1(t) = σ(a2(t)− a1(t)),
ȧ2(t) = a1(t)(ρ− a3(t))− a2(t),
ȧ3(t) = a1(t)a2(t)− βa3(t),

(5.1)

with the state vector a(t) = [a1(t) a2(t) a3(t)]> of lengthNs = 3 and the true parameter
vector θt = [σ ρ β]> = [10 28 8/3]> of length Nb = 3. As a true solution, (5.1) is
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solved using the time marching scheme LSODA with initial condition a0 = [1 − 1 25]>.
This results in a state evolving at the discrete time steps tk denoted ai,k = ai(tk), where
i = 1, . . . , Ns and k = 1, . . . , Nt, with a regular step size of ∆t = 0.002. To simulate the
presence of model errors at the time instants tk, a time-dependent Gaussian distributed
noise ηk is added to the true solution, leading to, hereafter, the “reference” solution
aref :

aRef
i,k ← ai,k + ηi,k, ∀ i = 1, . . . , Ns. (5.2)

Here ηk ∼ N (0,Qk) ∈ RNs×1 is Gaussian distributed with zero mean and a covariance
matrix Qk ∈ RNs×Ns .

Next, we assume a series of observations, denoted as ao
i,k, obtained from the true

solution ai,k perturbed by a Gaussian distributed noise εk ∼ N (0,Rk). The noise
εk ∈ No × 1 simulates the measurement errors characterized by the corresponding co-
variance matrixRk ∈ RNo×No , where No is the number of components in the observation
vector ao

k. In the following, full (No = Ns) and partial (No < Ns) observation will be
considered. A total number of Nt,o = 100 observations are sampled at regularly spaced
time intervals with a step size of ∆to = 100∆t.

5.1.2 Objective of the assimilation and initial guess
In the following, the performance of the Dual-EnKF algorithm to simultaneously predict
the state trajectory and to recover the model parameter vector θt when starting with an
incorrect initial guess is investigated. In Sec. 5.1.3, the influence of different levels of
model and observation covariance matrices (Qk and Rk) on the estimation is discussed.
The values of the elements forming the two covariance matrices can be seen as the
degree of confidence associated with the model and observations which shows up in the
weights associated with the correction step of the states and parameters in the Dual-
EnKF algorithm. Next, the influence of different ensemble sizes is discussed in Sec. 5.1.4.
Note that the time evolution of the parameters is not presented in these two sections
as the focus is on the influence of hyperparameters on the quality of prediction of the
Dual-EnKF algorithm. Lastly, the influence of partial observation in the state space is
discussed in Sec. 5.1.5.

As discussed in Sec. 3.2.3, the Dual-EnKF propagates, in time, an ensemble of state
and parameter vectors from which the estimated state and parameter vector at each time
steps are obtained via means of the ensembles. At the start of the assimilation process,
ensembles of Ne members are thus initiated for the state and parameter vectors. The
initial ensemble state {aa,(n)

0 }n=1,··· ,Ne is randomly selected from a normal distribution
N (a0,Q0 = I3) while the initial ensemble parameter vector {θa,(n)

0 }n=1,··· ,Ne is randomly
selected from a normal distribution N (θ0,C0 = I3). During the assimilation process,
the parameter covariance matrix Ck is maintained equal to 0.001I3.

5.1.3 Influence of model and observation errors
As a first instance, we consider all the components of the state vector ak as observables
such that the size of the observation vector is No = Ns = 3. To study the influence of
varying the covariance error levels on the estimation, we choose four pairs of model and
observation covariance matrices as listed in Tab. 5.1; each matrix pair being identified
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Table 5.1: Test cases with varying model and
observation errors. Ne = 100.

Qk Rk

A-I 0.01I3 0.01I3
A-II I3 0.01I3
A-III 0.01I3 I3
A-IV I3 I3

Table 5.2: Tests cases with varying ensemble
sizes and Q = 0.01I3, R = 0.01I3.

Ne

B-I 10
B-II 50
B-III 100
B-IV 200

with a label from A-I to A-IV. The ensemble size is fixed as Ne = 100 which is sufficiently
high to ensure that enough members are available in the ensemble set to represent the
distribution of the unknown variable (state or parameter) during the assimilation period.
This relatively favorable data assimilation setup allows to gauge the impact of the model
and observation error levels on the quality of the estimation. As Nt,o = 100 observations
are available, the Dual-EnKF assimilation involves NIter = 100 iterations in which both
the state estimation and the model parameters are predicted and updated sequentially
as described by Alg. 3.2.

As a metric of the estimation quality, we introduce the time-dependent mean square
error (hereafter MSE) over the assimilation period defined with respect to the reference
solution as,

MSE(tk) = 1
Ns

1
Ne

Ns∑

i=1

Ne∑

n=1

(aa,(n)
i,k − aRef

i,k )2, (5.3)

where aa,(n)
i,k is the i-th element of the n-th analyzed state vector aa,(n)

k at the time
instant tk.

The time evolution of the MSE over the assimilation window for the different test
cases considered in Tab. 5.1 is reported in Fig. 5.1 (left).
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Figure 5.1: Influence on the MSE of varying model and observation noises with fixed ensemble
size Ne = 100 (left) and varying ensemble size with constant Q = 0.01I3 and R = 0.01I3
(right).

In the test case A-I, the low level error covariance matrices Qk = 0.01I3 and Rk =
0.01I3 correspond to a situation with good confidence in both the dynamical model and
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the observations. As a result, the Dual-EnKF algorithm is able to update the state to
match the reference trajectory within about 5 iterations, as can be seen from the error
metric value dropping and stabilizing at MSE ≈ 7.5× 10−3.

In the test case A-II, the covariance matrices Qk = I3 and Rk = 0.01I3 correspond
to a case with a lower confidence in the dynamical model. For these covariance matrices,
the ratio of the error levels of the state and the observations is equal to 100, which
signifies a large Kalman gain, and therefore a larger weight associated with the correction
of the estimates. As a consequence, the error metric drops to a low stable level of
MSE ≈ 1.0× 10−2 from the first iteration onwards. As the model error level here
is higher than in the previous test case, the members of the state ensemble resulting
from the covariance matrix span a larger domain in the state space, which improves the
estimation. The estimation error however increases by an order of 10 as compared to
the test case A-I due to the low confidence in the model estimates.

In the test case A-III, the covariance matrices Qk = 0.01I3 and Rk = I3 correspond
to a case with low confidence in the observations. In this case, the ratio of the state
and observation error levels is 0.01, which leads to a low magnitude of the Kalman gain.
Therefore, the observations are less reliable and weakly modify the current estimate.
Also, while not reported here, the span of the state ensemble members is very limited
due to the low level of model noise. As a result, the error metric stabilizes slowly after
approximately 20 iterations to a relatively high value of MSE ≈ 2.0× 10−1.

Finally, in the test case A-IV, the high level covariance matrices Qk = I3 and Rk =
I3 correspond to a case with low confidence in the dynamical model and the observations.
This results in a higher value of the estimation error after convergence of MSE ≈
6.3× 10−1 as compared to the previous tests. However, as the ensemble members are
spread over a larger span, owing to the higher covariance levels, the performance in
terms of the rate of convergence remains comparable, with the error metric dropping to
a stable value in around 10 iterations.

As preliminary conclusion, the model and observation error covariance matrices are
found to influence the predictability and accuracy of the estimation. Care must therefore
be taken while setting up these matrices in order to accurately represent the model and
observation errors and to seek remedies if the Dual-EnKF estimation diverges.

5.1.4 Influence of ensemble size
The influence of the ensemble size of the state and parameter forecasts on the Dual-
EnKF estimation is now investigated. In this regard, we consider four different values
of ensemble sizes ranging from 10 to 200 as listed in Tab. 5.2 and labeled from B-I to
B-IV.

The influence of the size of the ensemble on the quality of the estimation can be
observed from the evolution of the error metric MSE in Fig. 5.1 (right). In each test
case, the covariance matrices associated with the model and the observations have been
assigned to Qk = 0.01I3 and Rk = 0.01I3 (test case A-I) which was found in Sec. 5.1.3
to correspond to the minimum estimation error across the test cases considered.

For the test case with Ne = 10, we observe that even though the MSE value drops
to a low value as soon as the assimilation starts, it shows relatively high fluctuations
instead to converging to a stable value. This effect can be attributed to the low number
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of members in the forecast ensemble which leads to a weak exploration of the state
space. For the test cases with Ne = 50, 100 and 200, we observe from the mean MSE
values that the performances are similar with respect to the quality of estimation but
the fluctuations are comparatively negligible. The Dual-EnKF filter is able to rapidly
converge to a low error level of the order of 1.0× 10−3 when the ensemble size is
sufficiently large.

The ensemble size has been shown to have some significant impact on the accuracy
of the Dual-EnKF estimation. It should be noted that the selection of the ensemble
size is generally dependent on the problem. When too small, it may lead to a false
representation of the domain of forecast variables with respect to the true values. In
contrast, when too large, it may render the iterations computationally intractable.

5.1.5 Influence of partial observation
We now investigate the influence of partial observations on the Dual-EnKF estimation,
i.e. the scenarios where, instead of assuming that the full state vector ao(t) is known at
each time instant, only a subset of the component states are observable and available for
assimilation. As an example, we consider the case where only the state a1(t) is observed.

The estimation problem is set up with the model state and observation covariances
assigned as Qk = 0.01I3 and Rk = 0.01I3, and the ensemble size set to Ne = 100. To
begin the estimation with an initial guess which is well separated from the true value,
the state and parameter covariance matrices at t0 are assigned as Q0 = 100I3 and
C0 = 100I3. The evolution of the Lorenz-63 system corresponding to the cases with
full and partial observations is shown in Fig. 5.2a, and the respective evolution of the
model parameters θk is shown in Fig. 5.2b.

From the state evolution, we observe that when all the components of the state vector
are observed and used for the Dual-EnKF estimation, the analyzed state immediately
follows the reference trajectory aRef(t). This accurate estimation is attributed to the fast
convergence of the parameter to the true values θt, within approximately 10 iterations
as shown in Fig. 5.2b. When partial observation is considered, the true state trajectory
is still well recovered, even if more iterations are needed to make the parameter vector
converging towards the true values.

It is therefore found that when the parameters are constant in time and the number
of iterations NIter sufficiently large, the Dual-EnKF assimilation method estimates the
complete model space with partial observations.

5.1.6 Estimation of slow time-varying parameter
The case studied so far correspond to the classical Lorenz-63 system where the model
parameters vector θ is constant with time. In many practical situations, the system state
may however be better represented by a time-varying parameters model. Such situation
is familiar, for instance, in hydrological processes where climate change, afforestation,
urbanization or again seasonal variations can lead to time-variant hydrological model
parameters (Deng et al., 2016). Closer to the present context, one can imagine the case
where the Reynolds number of the flow is slowly varying in time and that we would like
to “track” the changes in this number thanks to limited flow data. While such a problem
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Figure 5.2: (a) Influence of the partial observation on the state estimation. Comparison is
made between the scenarios where all three state variables are observed (left), and where
only the component a1(t) is observed (right). (b) Influence of the partial observation on the
estimated parameter values. The true values of parameters θt = [10 28 8/3]> are shown by
dashed lines.

is out of the scope of the present work, it can also be demonstrated that the Dual-EnKF
performs well in the case of slowly-time-varying parameter models.

As demonstration, a new true solution of the Lorenz-63 system (5.1) is generated
assuming that the second coefficient of the parameter vector θ is slowly varying in time
according to,

ρ(t) = 2 sin(2πt/T ), ∀ t ∈ [0, T ] with T = 20. (5.4)
The estimation problem (full observation) is set up with the model state and observation
covariances assigned as Qk = 0.01I3 and Rk = 0.01I3, and the ensemble size set to
Ne = 100. For initialization, the state and parameter covariance matrices at t0 are
assigned as Q0 = 100I3 and C0 = 100I3. The evolution of the state a2(t) is shown in
Fig. 5.3a, and the respective evolution of the model parameters θk is shown in Fig. 5.3b.

From the state evolution, it can be seen that the assimilation method is able to
provide accurate estimations with respect to the reference trajectory. This is attributed
to the accurate estimation of the time varying parameter ρ(t). In the applications
where the transient dependence of the parameters is not known a priori, the Dual-EnKF
estimation is able to predict the slow time varying components.
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Figure 5.3: (a) Trajectory of the state a2(t) with time varying parameter. The maximized view
in the inset shows the ability of the assimilation method to correct the analyzed state aa2(t)
at the time steps where the observation ao

2(t) is available. (b) Estimated parameter values
with constant σ and β, and slowly time varying ρ(t). The true values of parameters θt(t) are
denoted by dashed lines.

5.2 Test case 1: Numerical cylinder wake flow at
ReD = 200

The effects of the Dual-EnKF tuning hyperparameters on the state and parameter iden-
tification were discussed for a simple toy model in Sec. 5.1. Proceeding further, the
case of a simulated cylinder wake flow at Re = 200 is considered. The objective is to
demonstrate the ability of the DA method to identify the closure parameters θs charac-
terizing the residual term Ri(a;θs, t), added in Sec. 2.2.4.1 to model in the POD-ROM
the interactions between the resolved and unresolved modes. Here, the flow dynam-
ics is essentially driven by quasi-periodic cycles of vortex shedding, but the number of
modes used to construct the POD-ROM is such that the model can be considered high-
dimensional compared to the Lorenz-63 system examined in the previous section. As a
first step, a POD-ROM in the form of (2.79) is identified using the sparse-identification
method SINDy detailed in Sec. 3.1.2. As discussed below, due to the “simple” dynam-
ics of the flow considered, the identified model gives already satisfying results in terms
of prediction of the states over few cycles of vortex shedding. For the purpose of the
current study, the identified model is therefore deteriorated in a second step such that it
can be recovered exactly by adding a residual term in the form discussed in Sec. 2.2.4.1.
In the third and final step, the Dual-EnKF is applied to identify the closure parameters
introduced to model the residual term and demonstrate some robustness with regards
to observation noise.

5.2.1 Identification of the POD-ROM
The numerical set-up, except for the Reynolds number, is similar to the one discussed in
App. A used to simulate a 2D cylinder wake flow at Re = 100. For the current purpose,
1000 snapshots (including streamwise and transverse velocity components) are obtained
with a time step of ∆t = 0.1 and used to build the POD basis. The energetic content,
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POD eigenvalues and relative information content, are reported in Fig. 5.4 as a function
of the mode number. As expected for a cylinder wake flow at low Reynolds numbers,
the eigenvalues appear in pairs. This characteristic is attributed to the convection of the
coherent structures which cannot be represented as a single mode (Rempfer and Fasel,
1994). The first ten modes, which together represent 99.91% of the overall energy,
are retained to build a reduced-order-model of the general form given by (2.79). The
number of modes considered in the following study is therefore fixed as NGal = 10.

The structure of the spatial modes Φx,POD
i (χ) (i = 1, 5, 9) corresponding to the

streamwise velocity fluctuations and the time evolution of the pairs of temporal POD
coefficients aPOD

i (i = 1, 2, i = 5, 6 and i = 9, 10) are shown in Fig. 5.5. The mode
Φx,POD

1 represents the coherent vortex-shedding structures and pairs with the mode
Φx,POD

2 (not shown) with similar structures but shifted in the streamwise advection
direction. The corresponding POD coefficients a1 and a2 are analogously shifted in time.
These two modes together are representative of the Kármán vortex-shedding mode and
contribute to 95.83% of the total energy. The eight subsequent modes correspond to
higher-order harmonic modes which together represent 4.08% of the total energy. These
modes can be associated with smaller scale structures attributed to the manifestation of
the separated shear layers along the sides of the cylinder and their longitudinal expansion
further downstream. From the evolution of the temporal coefficients, it can be observed
that the amplitude of the dynamics drops from the mode pairs (a1, a2) to (a5, a6) to
(a9, a10) which is consistent with the energy spectrum of Fig. 5.4. From the energy
spectrum, it can also be seen that the modes with indices i = 3, 4, 5, 6 have contributions
to the total energy in the same order of magnitude and, as such, exhibit mixed harmonics,
as observed in the temporal evolution of coefficients a5 and a6 in Fig. 5.5d. The first
10 modes together therefore exhibit a range of different features associated with the
vortex shedding, such as the large-amplitude low-frequency scales in the pair of the most
dominant modes or again mixed harmonics in the subsequent pairs of modes.

A reduced-order model of the form given by (2.79) is considered. It is recalled here
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Figure 5.5: (a,c,e) Spatial POD modes Φx,POD
i (i = 1, 5, 9) corresponding to the streamwise

velocity fluctuations. (b,d,f) Time evolution of the temporal POD coefficients aPOD
i (i =

1, 2, 5, 6, 9, 10) corresponding to the most energetic modes of the 2D-cylinder wake flow at
Re = 200.

for convenience,

ȧROM
i (t) = fi(aROM;θi, t)

= Ci +
NGal∑

j=1

Lija
ROM
j (t) +

NGal∑

j=1

NGal∑

k=j

Qijka
ROM
j (t)aROM

k (t). (5.5)

The identification is done using only the first 105 snapshots of the data collection (train-
ing dataset). The rest is used for testing the learned model. The parameters vectors
θi are identified using SINDy with λ = 1.0× 10−3 as sparsification parameter. The
POD-ROM thus identified is considered as a basis for further alteration (see Sec. 5.2.2).

Using the same representation as in Sec. 4.4, the identified parameters are shown
in Fig. 5.6(a). As expected and already discussed in the case of the cylinder wake
flow at Re = 100, the SINDy identification method provides a sparse solution with
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regards to the model coefficients. Close examination of this result and that of Fig. 5.5
shows that the temporal coefficients ai(t) (i = 1, 2, 7, 8, 9, 10) which exhibit quasi-
single harmonics, contribute only linearly to the ROM. On the other hand, the temporal
coefficients ai (i = 3, 4, 5, 6) which exhibit mixed harmonics, have contribution from
linear and quadratic terms as well.

Time evolution of the true temporal POD coefficients aTrain
i (t) = aPOD

i (t) (i =
1, 5, 9) in the training window, and that obtained from the integration of the identified
POD-ROM with aProp

i (0) = aPOD
i (0) as initial condition, can be seen in Fig. 5.6(b-

d)(left). The results show that the identified model is able to replicate the original
dynamics over a complete cycle of vortex shedding after which some deviations are
manifest. When testing the identified POD-ROM outside the training window, as shown
in Fig. 5.6(b-d)(right), similar conclusions can be drawn. While the identified POD-
ROM is not perfect, it can be used to predict, with sufficient accuracy, the evolution of
the state in a short time window corresponding, at least, to a complete cycle of vortex
shedding.

5.2.2 Deterioration of the POD-ROM
In what follows, it is assumed that the SINDy identification gives rise to a satisfactory
POD-ROM which would not require any stabilization. Therefore, to evaluate the ability
of the Dual-EnKF, a new POD-ROM is built based on the parameters Ci, Lij and Qijk

identified previously by SINDy. We consider

ȧROM
i (t) = Ci +

NGal∑

j=1

L′ija
ROM
j (t) +

NGal∑

j=1

NGal∑

k=j

Qijka
ROM
j (t)aROM

k (t), (5.6)

where the coefficients L′ij, associated with the linear terms, are now given as,

L′ij = 1
1 + ν̂i

T
Lij. (5.7)

The added viscosity term ν̂i
T is given by the modal constant eddy viscosity closure model

of (2.84),

ν̂i
T = ν̂c

(
i

NGal

)α̂
. (5.8)

While not shown here, the new model gives rise to significant errors in the prediction
and requires stabilization. One can show that adding to the model (5.6) a residual term
of the form,

Ri(a;θs, t) = νc

(
i

NGal

)α NGal∑

j=1

L′ijaj(t) and θs = [νc α]> (5.9)

the original model (5.5) is exactly recovered if and only if θs ≡ [ν̂c α̂]>. This math-
ematical trick allows to deteriorate arbitrarily, with a known parameter vector θ̂s, the
POD-ROM identified previously.
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Figure 5.6: (a) Scaled color representation of the parameters identified using SINDy for the
POD-ROM of a 2D-cylinder wake flow at Re = 200. (b,c,d) Evolution of coefficients ai(t)
(i = 1, 5, 9) in the training regime (left) and in the testing regime (right). True (dashed line)
and estimated (solid line) trajectories.
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In the following, we consider as model the POD-ROM (5.6) to which the residual term
given by (5.9) is added. The parameters are arbitrarily set as θ̂s = [ν̂c α̂]> = [2.3 0.4]>.
The Dual-EnKF method is then applied to recover the correct parameters vector θ̂s from
observations generated using the original snapshots perturbed by different noise levels.

5.2.3 Dual-EnKF estimation of stabilization parameters
In this section, the general set-up of the Dual-EnKF data assimilation algorithm is first
detailed. Then, its performance with regards to retrieving the stabilizing parameters θ̂s
is discussed.

Following the notations introduced in Sec. 3.2, the number of state elements in
the data-assimilation problem is Ns = NGal = 10. The model error is assumed to be
given by a Gaussian distribution η ∼ N (0,Q) with zero mean and covariance Q =
1.0× 10−5INs . The initial estimate of the state vector is considered as the same as the
temporal POD coefficient at t1 = 0, i.e. aDA(0) = aPOD(0), where the superscripts
“DA” and “POD” are used to distinguish the state vectors obtained from DA and POD.
As mentioned previously, the parameter vector is given as Θ = θs = [νc α]> (here
Np = 2). Its propagation follows the random walk given by (3.71) with a Gaussian
distributed additive perturbation ξ(n) ∼ N (0, h2C) with zero mean and covariance
C = 1.0INp . The estimated parameter vector is initialized as Θk = 0Np×1. Ensembles
with Ne = 200 members are considered. Finally, to test the robustness of the Dual-EnKF
method with regards to noise, uniformly distributed noises with different noise levels
(0%, 1% and 10%) are applied to the observations generated from the original data. For
the observation equation, the noise is assumed to be given by a Gaussian distribution
ε ∼ N (0,R) with zero mean and covariance R = ηINo , where the covariance level η
is representative of the noise level used to generate the observation, i.e. η = 1.0× 10−6

(a very low value, η � 1) for 0% noise, η = 0.01 for 1% noise and η = 0.1 for 10%
noise. Training is effected during 630 time units (corresponding to t = 63) during
which assimilation of new observations is realized every two time steps, and after which
the assimilation of new observations is stopped. In the subsequent sections, the DA
procedure will consider two forms of observations: i) the temporal POD coefficients
values (Sec. 5.2.3.1), and ii) point velocity “measurements” at few locations in the flow
field (Sec. 5.2.3.2).

5.2.3.1 DA with temporal POD coefficients as observation

The case where the full original temporal POD coefficients vector can be observed is
considered first. Referring to the observation equation (3.31), the observation vector is
given as yoj = aPOD(tj) ∈ RNo×1 (here No = Ns and j = 1, . . . , Nt,o).

Time evolution of the estimated parameters θs = [νc α]> during the course of DA
using observations for the three different noise levels are shown in Fig. 5.7. In the three
cases, the analyzed parameters during the assimilation regime tend towards the target
value of [ν̂c α̂] = [2.3 0.4]. The variance of the parameter ensemble (represented by the
gray shaded area) also reduces as the assimilation proceeds, hence resulting in a smaller
confidence interval at the end of the assimilation window. For the lower noise levels (0%
and 1%), the parameters at the end of the assimilation regime have values very close to
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Figure 5.7: Evolution of the stabilizing parameters θs = [νc α]> of the POD-ROM in the
assimilation regime corresponding to three noise levels of observations in the form of the
temporal POD coefficient. The gray shaded area shows the spread of the parameter ensemble.
The dashed lines represent the artificial perturbed values [ν̂c α̂] = [2.3 0.4]. Only the initial
100 iterations are shown in (a) and (b). The parameter values at the end of the assimilation
(630 iterations) are shown in the legend along with the lower and upper values of the ensemble
at that step.

the target value. For the case with 10% noise level, the difference between the estimated
and target values, as well as the confidence interval are larger. The Dual-EnKF algorithm
is therefore found to be able to assimilate the noisy observations and provide an estimate
for the stabilizing parameters.

The evolution of the temporal POD mode a5, considered here as an example as it
exhibits mixed harmonics, is shown in Fig. 5.8 during the course of DA for observations
with different noise levels. It is observed that the state estimation aDA

i (t) in the assimi-
lation regime corresponding to the lower noise levels (0% and 1%) is able to accurately
replicate the reference trajectory aPOD

i (t). However, for the state estimation correspond-
ing to 10% of noise level, the estimated value is not replicating the reference trajectory
initially. As the assimilation proceeds, the accuracy of the estimation improves, thanks
to the corresponding update of the parameter values as seen in Fig. 5.7c, thus correct-
ing the forward model. The figure also shows the forecast regime where the model is
integrated for N f

t = Nt/5 = 126 time steps with the estimated parameters determined
at the end of the assimilation regime. This long term forecast of the POD coefficient is
denoted as aROM−DA

i (t). The initial value for the forecast is the value of the temporal
POD coefficient at the end of the assimilation regime i.e. aPOD(tNt). The forecast is
compared with the corresponding trajectory obtained by integrating the artificially per-
turbed POD-ROM, aROM

i (t), and the reference trajectory aPOD
i (t). It can be seen that

the perturbed POD-ROM is unstable within approximately 20 time steps and gives an
inaccurate state estimate, while the stabilized POD-ROM provides an accurate forecast
for about 70 time steps. Again, a slightly higher deviation of the forecast from the
reference trajectory is observed for the 10% noise level than that corresponding to the
low noise levels (0% and 1%). Note that as the exact parameters θ̂s are not obtained
towards the end of the assimilation regime, the forecast aROM−DA

i (t) also starts deviating
from the reference trajectory over higher time steps for all the noise levels. However,
in the forecast window, observations can be introduced to correct the ROM estimates
at regular intervals. The time between two observations could be much larger than the
observation time step ∆to used during the DA, leading to a less expensive computational
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Figure 5.8: Evolution of the temporal POD coefficient a5(t) in the assimilation (left) and
forecast (right) regimes corresponding to three noise levels of observations in the form of the
temporal POD coefficient. The assimilated (aDA

5 (t)), forecast (aROM−DA
5 (t)) and artificially

perturbed ROM (aROM
5 (t)) trajectories are compared with the reference trajectory (aPOD

5 (t)).
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Figure 5.9: Time evolution of NRMSE in the assimilation (left) and forecast (right) regimes
corresponding to three noise levels of observations in the form of the temporal POD coefficient.

procedure. This approach will be illustrated in the next section.
So far, it has been seen that the Dual-EnKF DA algorithm can be used to obtain a

sufficiently accurate estimate of the temporal POD coefficients within the assimilation
regime, while the stabilized ROM can be used to obtain an accurate long term forecast.
The assimilation and forecast values of the POD coefficients ai(t) (i = 1, . . . , NGal),
can be used along with the known POD modes Φ(χ) to approximation by (2.2) the
flow field variables. The performance of the Dual-EnKF algorithm can be quantified in
terms of the normalized root-mean-square error (NRMSE). Here, the error is calculated
with respect to the streamwise velocity fluctuations u′x(χ, t) obtained from the snapshot
database using (2.1). The error NRMSE is defined as

NRMSE(t) =

√∑Nχ
`=1 (u′x(χ`, t)− ũ′x(χ`, t))

2

√∑Nχ
`=1 (u′x(χ`, t))

2
, (5.10)

where Nχ is the spatial degree of freedom and ũ′x(χ, t) represents the estimated velocity
obtained by either using the assimilated (aDA

i (t)) or forecast (aROM−DA
i (t)) temporal

POD coefficients. The time evolution of NRMSE is shown in Fig. 5.9. In the assimilation
regime, it can be seen that as the noise level in the observation increases, the estimation
error increases. For all the noise levels, the order of magnitude of the error practically
remains constant during the assimilation window. In the forecast regime, the errors
corresponding to different noise levels appear to have the same order of magnitude.
However, unlike in the assimilation regime, the error in the forecast regime increases with
time owing to the difference between the estimated and target values of the stabilizing
parameters.

5.2.3.2 DA with streamwise velocity measurements as observation

In this section, instead of taking the full temporal coefficient vector as observation, point
measurements of the streamwise velocity component at few locations will be considered.
Such consideration is motivated by what can be done in practice in an experimental
context. Time survey of the velocity at discrete points of the flow is easily accessible
in experiments, thanks to velocity probe measurements such as hot-wire anemometry
for example. Here, the observation vector in (3.31) is thus defined as the streamwise
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Figure 5.10: (a) Visual representation and coordinates of the probe locations for the streamwise
velocity component measurements in the flow-field. The flow field is illustrated with a contour
plot of the instantaneous streamwise velocity at t = 50. (b) Velocity fluctuation signals with
no noise (left) and 10% noise (right) obtained from the probe at location χ5.

velocity fluctuation, i.e. yoj = {u′x(χ`, tj)}No`=1, where No = 6 is the number of fictive
probes and χ` is the coordinate vector of the `-th probe. The fluctuating component
u′x(χ, t) is obtained after subtracting the averaged component. The location of the
probes in the flow-field and sample measurement signals are shown in Fig. 5.10. The
spatial POD mode at each probe location serves as the linear observation operator H
to map the temporal POD coefficients obtained from the forward model to the observed
velocity fluctuations. The observation model (3.31) can thus be reformulated as,

u′x(χ, tk) =




u′x(χ1, tk)
...

u′x(χNo , tk)


 =




Φx
1(χ1) · · · Φx

NGal
(χ1)

... . . . ...
Φx

1(χNo) · · · Φx
NGal

(χNo)




︸ ︷︷ ︸
H

a(tk), (5.11)

where Φx
i (χj) (i = 1, · · · , NGal) represents the streamwise component of the i-th spatial

POD mode of the velocity fluctuations at the probe location χj.
The evolution of the parameters θs during the course of DA using observations with

three different noise levels is shown in Fig. 5.11. Again, it is observed that for all three
noise levels, the analyzed parameters in the assimilation regime tend towards the target
artificial value of [ν̂c α̂] = [2.3 0.4]. We also observe a reduction of the variance of
the ensemble. For the lower noise levels (0% and 1%), the parameters at the end of
the assimilation regime have values very close to the target value, while for the 10%
noise level, the difference between the estimated and target values is larger. Like in
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Figure 5.11: Evolution of the stabilizing parameters θs = [νc α]> of the POD-ROM in the
assimilation regime corresponding to three noise levels of observations in the form of the
streamwise velocity fluctuations. Refer to the caption of Fig. 5.7 for a detailed description.

the previous section, the Dual-EnKF algorithm is able to assimilate the noisy velocity
fluctuation measurements and provide an estimate for the stabilizing parameters close
to the target value.

The evolution of the temporal POD mode a5(t) in the assimilation and forecast
regimes are shown in Fig. 5.12(left) and Fig. 5.12(right), respectively. During the assim-
ilation regime, the estimated coefficients aDA

i (t) correctly replicate the true trajectory.
For the 10% noise level, some small discrepancies are observed but the description re-
mains well acceptable. In the forecast window, we observe similar results than those
obtained when the full temporal coefficient vector was considered: the original trajectory
is well replicated over a short-term horizon.

The time-dependent NRMSE for this case is reported in Fig. 5.13. In the assimilation
regime, the estimation error corresponding to the 10% noise level is slightly higher than
for the other levels of noise but belong to the same order of magnitude. However, when
comparing the error for the noiseless data in Fig. 5.9, the use of observations in the form
of the temporal POD coefficient results in a relatively lower magnitude of error. In the
forecast regime, the error increases with time which is similar in trend as that observed
in the previous section in Fig. 5.9.

5.2.4 Intermediate outcomes
In this second test case, the Dual-EnKF has been shown to perform well to recover the
parameter vector driving a residual term added to the conventional POD-ROM to take
into account the energy dissipation. Another lesson learned is that, despite the good
performance of the Dual-EnKF for recovering this parameter vector, even small errors in
the estimate results in a corrected POD-ROM which can not be used for prediction over
long-term horizon. Assimilation of new observations needs to be maintained, at least at
regular time intervals when the model starts to drift from the original trajectory.

One way to obtain an accurate forecast over longer time range is to use the learned
stabilized model in conjunction with observations from the flow-field to correct the model
estimates using EnKF (see Sec. 3.2.2). As the model parameters have been corrected, we
can expect that the state estimate does not deviate from the reference trajectory within a
few time steps of integration. For this reason, the assimilation can be performed at larger
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Figure 5.12: Evolution of the temporal POD coefficient a5(t) in the assimilation (left) and
forecast (right) regimes corresponding to three noise levels of observations in the form of the
streamwise velocity fluctuations. Refer to the caption of Fig. 5.8 for a detailed description.
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Figure 5.13: Time evolution of NRMSE in the assimilation (left) and forecast (right) regimes
corresponding to three noise levels of observations in the form of the streamwise velocity
fluctuations.
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Figure 5.14: Time evolution of the temporal POD coefficient aDA
5 (t) obtained from EnKF

assimilation of the observations (streamwise velocity fluctuations) compared with the reference
trajectory aPOD

5 (t). The model parameters of the stabilized POD-ROM are used. The black
dotted lines indicate the instants when the observations are assimilated.

time interval as compared to that used in the Dual-EnKF algorithm. As an illustration,
Fig. 5.14 shows the long-term forecast obtained from the EnKF assimilation of observa-
tions. It is noted that as the forecast window is short, the demonstration is performed
on a dataset which belongs to the assimilation window (i.e. t = 0 corresponds to the
start of the assimilation window) to have a possibility to demonstrate the performance
of the proposed framework over a long time range. Also, for this specific case where the
dynamics is periodic, the generality of the results is not lost. For the assimilation, the
observations are considered to be available at a time step of ∆to = 50∆t = 5 (the time
step used in Dual-EnKF was ∆to = 2∆t). It is observed that the state estimated from
the time integration of the model follows the reference trajectory in the interval between
two observations. Moreover, the EnKF algorithm is able to update the prediction when
observation is available, thus ensuring that the model forecast does not deviate much
from the reference trajectory. This also offers a reduction in the computational cost as
the assimilation is performed over significantly large time intervals.
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Figure 5.15: Normalized vorticity field at a time instant t = 100 s obtained from the PIV
measurements (a), and reconstructed using the 10 most energetic POD modes (b) for the
cylinder wake flow at Re = 1.5× 104. The PIV measurement field in the near-wake region is
depicted by the green box.

5.3 Test case 2: Experimental cylinder wake flow at
ReD = 1.5× 104

The Dual-EnKF data assimilation technique is now applied to experimental data obtained
for a cylinder wake flow at two different Reynolds numbers. The available data, obtained
from Particle Image Velocimetry (PIV), are necessarily limited both in terms of spatial
and temporal resolution, and are corrupted with unknown measurement noise. The
objective here is therefore to demonstrate that the analysis framework discussed so far
can accommodate these limitations.

5.3.1 Snapshot dataset
The dataset were obtained from the experimental work performed by Benard et al.
(2010). The experimental setup is briefly described in this section.

The cylinder wake flow was experimentally studied in an open Eiffel-type wind tunnel.
The cylinder, which spans the entire test section, has a diameter of D = 40 mm and
an aspect ratio of L/D = 7.5. The upstream velocity in the measurement section
was set as U∞ = 5.6 m/s, giving a Reynolds number based on the cylinder diameter of
Re = 1.5× 104. The Reynolds number is therefore an order of magnitude lower than the
critical Reynolds number (Rec ∼ 2.0× 105, see Williamson 1996) at which turbulence
transition occurs in the detached shear layers. The flow over the cylinder remains in
the sub-critical regime with laminar boundary layer separation, while a wide turbulent
wake develops downstream. The natural frequency of the vortex shedding, obtained from
the post-processing of the available data, is equivalent to a Strouhal number, based on
the cylinder diameter and freestream velocity, of St = 0.18 (or a non-dimensional time
period of TsU∞/D = 5.39).

The two components of velocity in the near wake of the cylinder were measured with a
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particle image velocimetry (PIV) system consisting of a fast CCD camera (Photron, APX-
RS), a fast dual oscillator single-head laser (Quantronix, Darwin-Duo), a synchronization
unit (EG, R&D Vision) and an acquisition PC. The cylinder was illuminated in the mid-
span by a 1 mm thin laser sheet. The measurement field, shown in Fig. 5.15a, covers
the region defined by the bounds 0.2 < x/D < 4.8 and −2.8 < y/D < 2.8. A CCD
sensor of resolution 1024 × 1024 pixel2 was used. The acquisition was carried out at a
frequency of 1000 Hz, which corresponds to a non-dimensional time interval between two
consecutive snapshots of ∆tU∞/D = 0.14. This implies that, in theory, a shedding cycle
is discretized by about 38 instantaneous snapshots. The velocity vectors were obtained
using LaVision’s Davis software by computing cross-correlations with windows ranging in
size from 64×64 pixel2 to 16×16 pixel2 in the final pass, each with a 50% overlap. This
resulted in a uniform grid of size Ny ×Nx = 108× 89, i.e. Nχ = NxNy = 9612 nodes,
with a spatial resolution of ∆x = ∆y = 2.09 mm. The overall time sequence spans the
time range t ∈ [0, 1] s (i.e. 1001 snapshots), which is equivalent to tU∞/D ∈ [0, 140]
in terms of the non-dimensional variable.

5.3.2 Identification of the POD-ROM
The Nt = 1001 snapshots obtained from PIV measurements are used to determine
the POD basis. The relative information content (RIC ) are reported in Fig. 5.16 as
a function of the mode number. The convergence rate is quite slow and the first 43
modes contain about 90% of the total kinetic energy in the system. The first NGal = 10
modes, which together account for approximately 79% of the overall energy, are retained
to build a reduced-order model of the general form given by (2.79). The reconstructed
vorticity field using the NGal first modes is shown in Fig. 5.15b. Comparing with the
corresponding field obtained from the PIV measurements, it can be seen that while the
small scale structures are not resolved by the reconstruction, the large scale structures
are still well represented. Therefore, the reduced-order system based on the truncated
modes serves the objective of modeling the dynamics of the coherent structures, i.e. the
temporally persistent regions of concentrated vorticity.

The structure of the spatial modes Φx,POD
i (χ) (i = 1, 9) corresponding to the stream-

wise velocity fluctuations and the time evolution of the pairs of temporal POD coefficients
aPOD
i (i = 1, 2 and i = 9, 10) are shown in Fig. 5.17. Similarly to the cylinder wake

flow at low Reynolds number flow discussed in Sec. 5.2, the mode Φ1 represents the co-
herent vortex-shedding structures and pairs with the mode Φ2 (not shown) with similar
structures but shifted in the streamwise advection direction. The corresponding POD
coefficients a1 and a2 are also analogously shifted in time. The higher modes (n > 2)
represent subscale turbulence structures and exhibit non-periodic temporal dynamics. In
the current context, however, the mode structures contribute little to the reduced-order
system identification, and the focus will be on the temporal evolution of the modes.

Following the same approach as in the previous section, a reduced-order model with-
out the stabilization terms, is first calibrated. The identification is done using the first 700
snapshots (i.e. 70% of the total number of snapshots) which form the training dataset.
The remaining snapshots form the testing dataset used to evaluate the learned model.
The train-test split for the reduced-order model identification is illustrated in Fig. 5.18.
The parameters vectors θi are identified using the sparse-identification method SINDy
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Figure 5.17: (a,c) Spatial POD modes Φx,POD
i (i = 1, 9) corresponding to the streamwise

velocity fluctuations. (b,d) Time evolution of the temporal POD coefficients aPOD
i (i =

1, 2, 9, 10) corresponding to the most energetic modes of the cylinder wake flow at Re =
1.5× 104.

with λ = 1.0× 10−3 as sparsification parameter. The POD-ROM thus identified is
considered as a basis for further alteration (see Sec. 5.3.3).

Using the same representation as in Sec. 4.4, the identified parameters are shown in
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Fig. 5.19a. The SINDy identification method provides a sparse solution with regards to
the model coefficients. In terms of magnitude, the major contribution to the dynamics
is found to appear only from the constant and linear terms in the ROM.

The time evolution of the estimated POD coefficient aProp
i (t) (i = 1, 5 and 9)

obtained from the time integration of the identified POD-ROM in the training window,
with aProp

i (0) = aPOD
i (0) as initial condition, is reported in Fig. 5.19(b-d)(left). The

time evolution of the actual POD coefficients aPOD
i (t) is also reported for comparison.

The dominant mode a1(t) is predicted with a phase shift with respect to the actual
dynamics – Fig. 5.19b(left). This implies that the large scale structures associated with
the mode Φ1 are well represented by the reduced-order model albeit with a phase shift.
In contrast, the reduced-order model is unable to represent the high frequency dynamics
of the actual POD coefficients for the subsequent modes. This can be attributed to
the truncation of the POD modes to construct the reduced-order model which results
in the loss of information of the less energetic modes which are associated with the
higher frequency dynamics. When testing the identified POD-ROM outside the training
window, as shown in Fig. 5.19(b-d)(right), similar conclusions can be drawn.

5.3.3 Dual-EnKF estimation of stabilization parameters
While the identified POD-ROM is not perfect, it can, once again, serve as a first guess.
Similarly to the previous section, a modal constant eddy viscosity closure model given by
(2.84) is added to the identified model as residual term. The Dual-EnKF is then applied
to recover an estimation of the stabilizing parameter vector Θ = θs = [νc α]> and to
correct for drift in the estimated trajectories of the temporal coefficients.
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Figure 5.19: (a) Scaled color representation of the parameters identified using SINDy for the
POD-ROM of a cylinder wake flow at Re = 1.5× 104. (b,c,d) Evolution of coefficients ai(t)
(i = 1, 5, 9) in the training regime (left) and in the testing regime (right). True (dashed line)
and estimated (solid line) trajectories.
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Figure 5.20: Visual representation and coordinates of the probe locations for the streamwise
velocity component measurements used for parameter identification. The flow field is illustrated
with a contour plot of the instantaneous streamwise velocity at tU∞/D = 50.

The assimilation-forecast split of the dataset for the DA is illustrated in Fig. 5.18.
The 700 snapshots used to identify the ROM is split in 7 : 3 ratio, resulting in 490
snapshots allocated for the Dual-EnKF assimilation and 210 snapshots for the forecast
step which is used to validate the assimilated model. The subsequent 301 snapshots,
which are hidden from both the ROM calibration and DA steps, are used for evaluating
the performance of the final model.

Following the notations introduced in Sec. 3.2, the number of state elements in
the data-assimilation problem is Ns = NGal = 10. The model error is assumed to be
given by a Gaussian distribution η ∼ N (0,Q) with zero mean and covariance Q =
1.0× 10−3INs . The initial estimate of the state vector is given as aDA(0) = aPOD(0).
The propagation of the stabilizing parameters vector θs follows the random walk given
by (3.71) with a Gaussian distributed additive perturbation ξ(n) ∼ N (0, h2C) with zero
mean and covariance C = 1.0INp . The estimated parameter vector is initialized as
Θk = 0Np×1.

The data assimilation is performed using point measurements of the streamwise
velocity component at few locations in the flow field, motivated by the discussion in
Sec. 5.2.3.2. As before, the observation vector in (3.31) is defined accordingly as the
streamwise component of the velocity fluctuation, i.e. yoj = {u′x(χ`, tj)}No`=1, where
No = 6 is the number of fictive probes and χ` is the coordinate vector of the `-th probe.
The locations of the probes in the flow field are shown in Fig. 5.20. The observation
equation (5.11) maps the temporal POD coefficients obtained from the forward model to
the observed velocity fluctuations. For the assimilation, the noise is assumed to be given
by a Gaussian distribution ε ∼ N (0,R) with zero mean and covariance R = ηINo ,
where the covariance level η = 0.01 is representative of the observed streamwise velocity
fluctuation level of ∼ 1%.

The data assimilation is performed for different values of the ensemble sizes Ne to
verify the convergence of the identified parameters. To evaluate the performance of the
Dual-EnKF assimilation, the standard average normalized RMS error between the actual
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Table 5.3: Average NRMSE in the fore-
cast window for different values of ensem-
ble size Ne.

Ne Average NRMSE
10 1.5146
50 1.4784
100 1.4457
150 1.8391
200 1.5224
250 1.4215
400 1.7811

and estimated temporal coefficients is calculated in the forecast window as

Average NRMSE = 1
Nt

Nt∑

k=1

√∑Ns
i=1 (aDA

i (tk)− aPOD
i (tk))

2

∑Ns
i=1 (aPOD

i (tk))
2 . (5.12)

The values of the components in the stabilizing parameters vector θs is shown in Fig. 5.21
for different ensemble sizes. The corresponding values of the average NRMSE are given
in Tab. 5.3. It is observed that the parameter values converge to nearly the same order of
magnitude for ensemble sizes Ne > 10 and that the value of the error also remains of the
same order of magnitude. In the following, we choose for the ensemble size Ne = 250
to keep a good compromise between the number of elements and the error value.

The evolution of the parameters θs during the course of DA using streamwise velocity
measurements as observations is shown in Fig. 5.22. The analyzed parameters in the
assimilation window tend towards [νc α] = [2.49 5.28] and are accompanied with a
reduction of the variance of the ensemble.

The evolution of the POD coefficients a1(t) and a9(t) in the assimilation and forecast
windows are shown in Fig. 5.23. For the coefficient a1(t), the Dual-EnKF method is able
to assimilate the observations such that it follows the actual trajectory obtained from
POD in the assimilation window. For the coefficient a9(t), which exhibits high frequency
dynamics, the DA method initially fails to follow the actual trajectory but subsequently
improves during the course of assimilation. In the forecast window, for the coefficient
a1(t), the results obtained from both the initial ROM and the ROM with stabilization
parameters are comparable. However, for the coefficient a9(t), the dynamics obtained
from the ROM with stabilization parameters appears to be an improvement over the
results obtained from the initial ROM, especially in terms of replicating the harmonics.
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assimilation window for the modal constant closure and η = 1%. The gray shaded area shows
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5.3.4 Flow reconstruction using the ROM with stabilization
parameters

The performance of the initial ROM and the ROM with stabilizing terms obtained from
data assimilation will be discussed in this section for the test dataset. To obtain a
better prediction over longer time range, the learned stabilized ROM and regular new
observations are used in common to solve by EnKF (see Sec. 3.2.2) a data assimilation
problem in the test window. Assimilation of new observations is maintained at regular
time intervals when the model starts to drift from the original trajectory. To showcase
the independence of the assimilation method to the observations, a probe configuration
different from the one used during the Dual-EnKF assimilation will be used. The probe
locations for the streamwise velocity component measurements are shown in Fig. 5.24.

As the model parameters have been corrected in the assimilation window, in the test
window we observe that the state estimates do not diverge from the actual trajectory
within a few time steps of integration. Hence, the EnKF assimilation can be performed
at larger time interval as compared to that used in the Dual-EnKF algorithm. A sim-
ilar procedure was illustrated in Sec. 5.2.4 for the cylinder wake flow at low Reynolds
number. As an illustration, Fig. 5.25a shows the long-term prediction obtained from
the EnKF assimilation of observations in the test window. The observations are as-
similated from t0U∞/D = 98.4 (in non-dimensional form) at Nt,o = 4 time instants
shown by vertical dotted lines in Fig. 5.25a. The step size between two assimilations
is equal to ∆toU∞/D = 11.2 and corresponds to 80 times the acquisition step size
(∆tU∞/D = 0.14). This assimilation step size (∆to) approximately spans two cycles
of vortex shedding. It is observed that the POD coefficient estimated from the time
integration of the initial ROM starts to deviate from the actual trajectory towards the
end of the test window. In contrast, the assimilated trajectory of the coefficient esti-
mated from the stabilized ROM follows the actual trajectory in the interval between the
observations. The EnKF algorithm which updates the prediction when an observation
is available, ensures that the model prediction does not deviate much from the actual
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Figure 5.23: Evolution of the temporal POD coefficients a1(t) (a) and a9(t) (b) in the assimi-
lation (left) and forecast (right) windows after Dual-EnKF data assimilation using streamwise
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Figure 5.25: (a) Time evolution of the temporal POD coefficient aDA
1 (t) obtained from EnKF

assimilation of the observations (streamwise velocity fluctuations) in the test window. Com-
parison with the model estimates obtained from integrating the stabilized POD-ROM and the
actual trajectory aPOD

1 (t). The black vertical dotted lines indicate the instants when the ob-
servations are assimilated. (b) Time evolution of the error NRMSE of the vorticity fields with
respect to the vorticity calculated from the PIV measurements.

trajectory. To evaluate and compare the performance of the initial ROM and stabilized
and assimilated ROM in the test window, the vorticity field ωROM(χ, t) is reconstructed.
We then define the error NRMSE in terms of vorticity as

NRMSE(t) =

√∑Nχ
`=1 (ω(χ`, t)− ωPIV(χ`, t))2

∑Nχ
`=1 (ωPIV(χ`, t))2 , (5.13)

where Nχ is the spatial degree of freedom and ωPIV(χ, t) is the vorticity field obtained
from the PIV measurements. The time evolution of the error NRMSE is shown in
Fig. 5.25b. It is observed that the error corresponding to the vorticity field reproduction
using the stabilized and assimilated ROM is lower than that using the initial ROM,
resulting in a 4.6% lower average NRMSE over the testing window. The error also
remains bounded and reaches levels close to that obtained from the calculated POD
modes in the long-term. This highlights the improvement of reconstructions in the
physical space offered by the stabilized and assimilated ROM.

For a qualitative comparison, the reconstructed vorticity fields at an arbitrary time
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Figure 5.26: (a) Instantaneous vorticity fields at tU∞/D = 100 obtained using the veloc-
ity obtained from the PIV measurements (ωPIV(x, y; t)) and different reconstructions using
the POD coefficients (ωPOD(x, y; t)), the initial (ωROM(x, y; t)) and stabilized (ωDA(x, y; t))
ROMs. (b) Absolute error between the reconstructed vorticity fields using the initial and
stabilized ROMs and that using the POD coefficients.

instant t = 100 in the test window are shown in Fig. 5.26. The vorticity field obtained
from the stabilized and assimilated ROM exhibits an improvement over that obtained
using the initial ROM when compared with the reconstructed field from the POD modes.
The measured and reconstructed time evolution of the streamwise velocity component
and its power spectrum at a near-wake location are also compared in Fig. 5.27. The
reconstructed time evolution of the velocity component obtained from the stabilized
ROM follows closely the time evolution of that obtained from the POD modes. The
dominant frequency is given correctly by both the initial and stabilized ROM. However,
the amelioration of the ROM using the observations in the test window leads to a
better representation of the energy associated with the near-dominant frequencies by the
stabilized and assimilated ROM. Therefore, it can be inferred that the reconstruction
using the stabilized and assimilated ROM offers a definite improvement in the time and
frequency domains. The inclusion of the stabilizing parameters and the assimilation of
observations during the model integration provides a framework for robust long term
estimation of the flow dynamics.
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Figure 5.27: (a) Time evolution of the streamwise velocity component at a location
(x/D, y/D) = (0.5,−0.2) in the flow field. Comparisons of the velocity obtained from the PIV
measurements (uPIV

x (t)) and different reconstructions using the POD coefficients (uPOD
x (t)),

the initial ROM (uROM
x (t)) and the stabilized and assimilated ROM (uDA

x (t)). (b) Power
spectrum densities of the velocity measured using PIV and the reconstructed velocity signals
using the POD coefficients and the initial and stabilized ROMs. The peak frequencies of the
measured signal and that reconstructed from the stabilized ROM (which coincide here) are
indicated by dashed lines.
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5.4 Test case 3: Experimental cylinder wake flow at
ReD = 5.5× 104

To test the robustness of the proposed strategy with regards to an increase of the
Reynolds number, and indirectly to an increase of the number of degrees of freedom of
the flow itself, the same methodology is now applied to an experimental cylinder wake
flow at a Reynolds number equal to 5.5× 104. The experimental configuration is similar
to that described previously. Only the freestream velocity is different, now U∞ = 20.6
m/s.

The database, again, consists of Nt = 1001 snapshots obtained from the PIV mea-
surements. These snapshots are used to determine the POD basis. The relative in-
formation content (RIC ) is reported in Fig. 5.28 as a function of the mode number.
Comparing with the results of Fig. 5.16 at ReD = 1.5× 104, it can be observed that the
convergence rate is slower. This is well reflected in the first ten modes which together
account for only approximately 73% of the overall energy. In the following, these first
NGal = 10 modes are retained to build a reduced-order model of the general form given
by (2.79).

As in the previous test case, the database is split into two parts. The first 700
snapshots (i.e. 70% of the total number of snapshots) form the training dataset and
are used to calibrate an initial ROM without the residual term. The remaining part of
the database forms the testing dataset and is used to evaluate the learned model. The
sparse-identification method SINDy with λ = 1.0× 10−2 as sparsification parameter is
used to identify the parameters vector θ. Using the same representation as in Sec. 4.4,
the result of the identification in terms of parameters is shown in Fig. 5.29a. Similar to
the previous case, the SINDy identification method provides a sparse solution where the
major contribution to the dynamics is found to appear only from the constant and linear
terms of the ROM. Time history of the estimated POD coefficient aProp

1 (t) and aPred
1 (t)

in the training and testing windows as obtained from the integration of the identified
ROM are reported in Fig. 5.29b. The actual temporal trajectory of the POD coefficient
is also reported for comparison. The estimated coefficients are found well bounded over
time but a phase shift with respect to the actual dynamics is observed. Again, this
discrepancy can be mainly attributed to the truncation of the POD modes in the ROM
construction.

The modal constant eddy viscosity closure is then introduced. The identified ROM is
augmented with the residual term (5.9). The Dual-EnKF method is applied to identify
the parameter vector θS. The same observers than that used at ReD = 1.5× 104

are considered here. We can see in the testing window of Fig. 5.29b that the error
between the ROM estimates and the actual dynamics is an order of magnitude higher
than in the lower Reynolds number case. Hence, we heuristically fixed the covariances
corresponding to the model and observations errors at relatively higher levels. The model
error covariance is fixed as Q = 1.0× 101INs and the observation covariance is fixed as
R = 1.0INo . The ensemble size (Ne = 250) and the parameter propagation covariance
(C = 1.0INp) are assigned to the same values as in the previous case. The evolution
of the parameters θs during the course of DA is shown in Fig. 5.30. Once again, the
analyzed parameters vector in the assimilation window is found to converge to a fixed
value. This convergence is accompanied with a reduction of the ensemble variance.
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POD-ROM of a cylinder wake flow at Re = 5.5× 104. (b) Evolution of coefficients ai(t)
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At the end of the assimilation window, the parameters vector is found to take values
[νc α] = [0.26 2.58].

Estimation of the temporal coefficients over a long-time horizon is then undertaken
with a simple EnKF by following the same assimilation arrangement than in the previous
case (see Fig. 5.24 for the probes configuration). Following the same procedure as in
the previous section, the new observations are assimilated in the test window at time
steps spanning about two cycles of vortex shedding, giving an assimilation step size of
∆toU∞/D = 10.8, i.e. 21 times the acquisition step size, ∆tU∞/D = 0.51. The
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NRMSE shown in Fig. 5.31, the time evolution of the estimated streamwise velocity
component at farfield location in the wake represented in Fig. 5.32a, and the correspond-
ing frequency spectra plotted in Fig. 5.32b, indicate that the overall methodology holds
for this higher value of Reynolds number. In comparison with the error from the initial
ROM, we observe in Fig. 5.31 a higher error for the stabilized and assimilated ROM
in the middle span of the testing window. This indicates a limitation of the ROM to
provide accurate solutions for an arbitrary initial conditions, causing a deviation from
the reference trajectory (indicated by an increase in error at tU∞/D = 415). However,
the continued assimilation of new observations in the test window corrects the solution
trajectory. We note that the reference trajectory is accurately reproduced in the long-
term (from tU∞/D = 465 onwards). For the rest, similar conclusions as that drawn
for the lower Reynolds number can be made here. Improvement in the accuracy of the
estimated state is observed when observations are assimilated regularly thanks to the
EnKF. In terms of the frequency content, the dynamics of the original velocity field is
well replicated without the loss of phase information. At this stage, a remaining question
is the ability of the methodology to accurately predict a flow state when the dynamics
requires a larger number of modes (hence a larger number of model parameters) to be
kept in the construction of the reduced-order model. This point is addressed in the next
section where the case of a turbulent jet is considered.



146 Improving POD-ROM using the Dual Ensemble Kalman filter

380 400 420 440 460 480 500

tU1=D

0.4

0.6

0.8

1

1.2

u
x
=
U

1

Observation uPIV
x (t) uPOD

x (t) uROM
x (t) uDA

x (t)

(a)

102

Frequency (Hz)

-120

-100

-80

-60

-40

P
ow
er
/
fr
eq
u
en
cy
(d
B
/
H
z)

uPIVx (t) uPODx (t) uROMx (t) uDAx (t)

(b)

Figure 5.32: (a) Time evolution of the streamwise velocity component at a location
(x/D, y/D) = (4.8, 0.9) in the flow field. Comparisons of the velocity obtained from the PIV
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x (t)) and different reconstructions using the POD coefficients (uPOD
x (t)),

the initial ROM (uROM
x (t)) and the stabilized and assimilated ROM (uDA

x (t)). (b) Power
spectrum densities of the velocity measured using PIV and the reconstructed velocity signals
using the POD coefficients and the initial and stabilized ROMs. The peak frequencies of the
measured signal and that reconstructed from the stabilized ROM (which coincide here) are
indicated by dashed lines.
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5.5 Test case 4: Numerical Mach 0.9 turbulent jet
In this section, the case of a Mach 0.9 single-stream jet at Reynolds number 4.0× 105

is considered. The data was obtained from Large Eddy Simulation (LES) by Bogey and
Bailly (2006). Building on previous efforts to investigate noise mechanisms in turbulent
jets, Kerhervé et al. (2012) proposed a methodology to educe, from the overall turbulent
flow field, the sound-producing events associated with low-angle radiation. In the present
work, the Dual-EnKF is employed as a strategy to build a reduced-order dynamical
model for this flow configuration. For convenience, the coefficients of the POD-ROM
are identified thanks to a regularized L2 minimization procedure. A twenty degree-
of-freedom ROM is established as a first start. The identification scheme is found to
lead to a bounded ROM, but with estimated trajectories drifting from the true one. A
data-driven correction based on the Dual-EnKF is then applied to calibrate an empirical
non-linear eddy viscosity closure model added to the initial POD-ROM with the objective
to achieve “long-term” prediction of the acoustically-important flow motions. Details of
the methodology and the obtained results are extensively detailed in the next paper. The
results show that the assimilation strategy based on the Dual-EnKF is able to properly
replicate over a long-time horizon the dynamics of the original data thanks to a bounded
reduced-order model and observations collected over time. In this last test case, the
observation data were designed to replicate experimental conditions.



A data-driven low-order model of sound source dynamics in a
turbulent jet

N. Kumar 1 and F. Kerhervé 2 and L. Cordier 3

Abstract

Building on previous efforts dedicated to the eduction of flow motions associated with
low-angle sound emission from turbulent jets [25], the current paper proposes a strategy
for the reduced-order dynamical modelling of these motions. The technique is data-driven
and comprises (i) a dynamic Ansatz obtained by Galerkin projection of the Navier-Stokes
equations onto a set of POD orthonormal spatial basis functions coupled with (ii) a dual-
Kalman filter which allows long term prediction of the state and in line correction of the
model parameters. Instead of directly computing the coefficients of the model equation
driving the flow state, which is only possible when full flow information is available, the
coefficients are first identified thanks to a regularised L2 minimisation procedure. A twenty
degree-of-freedom reduced-order dynamical model (ROM) is then established. The identi-
fication scheme is found to produce bounded ROMs but with estimated trajectories drifting
from the true ones. A data-driven correction based on a dual-ensemble Kalman filter is
therefore implemented and an empirical non-linear eddy viscosity model is added to the
ROM to solve its inherent lack of stability. This correction allows the estimated state to
be corrected “on-line” when a measurement of the true state (here point velocity and far-
field pressure) is available, as well as to find the optimal set of parameters associated with
the eddy viscosity term. The described approach, though validated here using partial flow
information from a numerical simulation, has been designed from the perspective of im-
plementation in an experimental context.

1. Introduction

Description of turbulent flows using stochastic distribution of eddies has long been
served as a paradigm [27]. Since then, further experimental evidences of the role played
by well-coherent large structures in the dynamics have considerably changed this point
of view [15]. As far as jet flows are concerned, evidences that part of the noise radiated
is essentially driven by these large-scale well-coherent structures has led to a significant
progress in the understanding of noise generation and new methodologies for noise pre-
diction have been derived. Following the original works of Michalke [30], Jordan and co-
workers [21, 10] have proposed wavepackets Ansatz as the main source of jet noise. These
entities may be seen as a low-order description of jet flows. More generally, assumption
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that turbulent flows can thus be meaningfully reduced to simplified kinematics pushes for-
ward for low-dimensional modelling of their dynamics. However, where radiated noise is
of concern, it is essential that the low-dimensional model also satisfies the inhomogeneous
linear wave equation.

One of the key objectives of low-dimensional modelling is to obtain a dynamical model
with as few degrees of freedom as possible. Generally, this is also motivated by the need to
perform real-time sensing and control. The number of degrees of freedom is dictated by the
number of basis functions deemed necessary for an accurate estimation of the dynamics.
This raises a question regarding the selection of the basis functions that are best suited to
a given problem. The empirical eigenfunctions obtained by Proper Orthogonal Decompo-
sition (hereafter POD) are frequently used, largely on account of the optimality property
of this kind of decomposition in the sense of energy, and will also be used here. However,
rather than applying it to the full flow solution, here it is applied to the reduced complexity
sound-producing flow skeleton identified in a previous work [25]. This last work showed
that the number of modes necessary to capture a given percentage of fluctuation energy of
the acoustically-important coherent structures is an order of magnitude less than the num-
ber necessary to capture the same percentage of fluctuation energy of the full field. The
POD modes identified can thus be considered as acoustically-optimised and are somewhat
equivalent to the Most Observable Decomposition modes of Jordan et al. [22]. While the
kinematic features of the sound-producing flow skeleton identified were fully described in
Kerhervé et al. [25], here we seek a low-dimensional dynamical system driving the asso-
ciated motions.The conventional Galerkin projection method is employed here. Projec-
tion of the Navier-Stokes equations on a truncated POD basis results in a Galerkin system
which consists in a low-dimensional system of ordinary differential equations (ODE) with
a tractable limited rank. In the present case, the corresponding reduced-order model (POD-
ROM) is built with the first twenty POD modes. The linear combination of these modes
was found to reproduce the dynamics of the essential sound-producing flow motions. The
main difficulty resides in the calibration of the POD-ROM itself. By construction, this
methodology is known to result in unstable models; after a relatively short time horizon,
the estimated state drifts from the true trajectory and corrections are required to guarantee
not only the stability of the POD-ROM but also the requirement that the estimated state
converges towards the true value. Keeping only the lower POD modes in the truncation is
equivalent to conserving only the large-scale coherent structures associated with the pro-
duction of turbulent kinetic energy while omitting the small-scale fluctuations associated
with dissipation. The dissipation loss due to mode truncation is generally considered as
the main contributor to the lack of stability of the POD-ROM which therefore needs to
be amended. Common approaches fall into two classes of strategies. The first class is
closure model dependent and derives from the pioneering work of Aubry et al. [1] who
proposed to add dissipation terms to the POD-ROM in the form of an empirical “eddy vis-
cosity”. Strategies based on eddy viscosity have since been refined by numerous authors
considering either linear [36, 18, 38] or non-linear [14, 34, 37] additional terms. As the
Reynolds number increases, non-linear subscale turbulence models are found mandatory.
In such cases, Östh et al. [34] recently showed that only non-linear modal eddy viscosity
can guarantee stabilisation and robustness of the POD-ROM. Spectral eddy viscosity mod-

2



els, inspired by LES models, have also been proposed [8, 32, 39]. Energy conservation
concept has also been used to derived closure modelling strategies. This has been initially
proposed by Cazemier et al. [11] and do not require the specification of any free param-
eter. The second class of strategies is closure model free. The most recent strategies are
formulated as constrained optimisation problem resulting in POD-ROM where part of the
small scales are included [2]. In contrast to the first class, this type of strategy has the
benefit that it guarantees power balance in the low-dimensional space and does not require
a subgrid-turbulence model.

The lesson from several of these studies is that while stability of the estimated POD-
ROM can be maintained, accurate tracking over long time horizon is generally not achiev-
able despite large efforts in the calibration procedure. In the present case, the calibration
technique of Perret et al. [35] combined with a Tikhonov regularisation [19], such as the
one proposed by Cordier et al. [13], is considered to obtain a stable dynamical system in
the first step. To improve the predictability of the POD-ROM over long time horizons, dif-
ferent strategies are then presented, among which a sequential data-assimilation technique
known as dual-ensemble Kalman filter (Dual-EnKF) is considered here. Thanks to the ad-
vancements in computational capabilities, Kalman filters have regained new interest in the
fluid mechanics community and have been used to develop data-driven simulations [24, 41]
or again to solve data-driven estimation problems [26]. Kalman filters have the ability to
improve the state estimation by assimilating available informations. Since in the present
paper the interest is essentially focused on low-angle sound emission, the acoustic pressure
being radiated downstream will be considered as observation.

The paper is organised as follows. In §2, the flow configuration and the main elements
of the database are described. Elaboration of a bounded reduced-order dynamical model is
then presented in §3 and its limitation to only provide short-term predictions is discussed in
§4. Strategies for long-term prediction are presented in detail in §5. Main characteristics of
the reconstructed spatio-temporal flow field dynamics associated with low angle radiation
over long a time horizon is addressed in §6. Conclusions and perspectives finally closes the
paper in §7.

2. Flow configuration and previous work

The flow under investigation is a Mach 0.9 single-stream jet with a Reynolds number
of 4×105, based on the jet diameter D and exit velocity U , obtained from Large Eddy
Simulation (LES) by Bogey and Bailly [6]. Details of the simulation as well as validation
of the flow and sound properties can be found in Bogey et al. [7] and Bogey and Bailly
[5, 6]. As mentioned in the introduction, here we focus on the flow dynamics responsible
for the noise being radiated downstream. In the work of Kerhervé et al. [25], a methodology
has been developed in order to educe the sound-producing events from the overall flow
field. The core idea is to use the radiated pressure field to filter out flow mechanisms
not involved in noise production. Linear Stochastic Estimation (hereafter LSE) was used
to reconstruct a time-resolved conditional space-time flow field associated with the low-
angle sound emission extracted from the overall radiated pressure field, thanks to an angle-
dependent wavenumber-frequency filter. Figure 1(a) shows the LES solution, while figure
1(b) shows, for the same time step: in zone ΩA, the low-angle component of the sound field,
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Figure 1: (a) Snapshot of vorticity and pressure fields of the LES solution. (b) Zone ΩA: snapshot of the low-
angle component of the LES sound field (obtained using a frequency-wavenumber filter); zone ΩF : snapshot
of pressure field associated with the sound-producing flow skeleton (this is a conditional field, computed
by LSE from the information in ΩA). (c) POD eigenspectrum (open symbols) and its convergence (solid
symbols) of LES velocity fields corresponding to the sub-region Ωrot

F of ΩF (see (a) and the zoom given in
figure 2). (d) POD eigenspectrum (open symbols) and its convergence (solid symbols) of the conditional field
presented in (b).
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Figure 2: Zoomed view of region ΩF , which is further broken down into rotational and irrotational regions,
respectively Ωrot

F and Ωirot
F .

and, in zone ΩF , the associated conditional pressure field (a conditional velocity field, not
shown, is also computed).

3. Elaboration of the dynamical system

3.1. Model equation
A reduced-order model describing the time evolution of the conditional field q̂, which

can be considered here as the high-fidelity system, is sought. The Petrov-Galerkin projec-
tion method is implemented with POD modes as the basis of projection and the Navier-
Stokes equations as the high-fidelity model equation. This results in a system of ordinary
differential equations (ODE) with finite dimension, which is in contrast to the Navier-
Stokes equations. Unfortunately, these models are known to be intrinsically unstable,
mainly due to mode truncation. For this reason, the calibration method elaborated by [13]
is implemented here and is described in the following sections.

3.1.1. Proper Orthogonal Decomposition
Let {u(x, tk)}k=1,··· ,Ns

be a set of Ns velocity snapshots equally spaced over a time
interval Ts with x ∈ Ωrot

F . The velocity field can be decomposed into an orthonormal basis
consisting of spatial basis functions and temporal coefficients {Φp

i (x), api (t)}i=1,··· ,Ns
, such

that the normalised mean-square projection of the basis functions on the velocity field is
maximised [29] and is given by,

u(x, t) =
Ns∑

i=1

api (t)Φ
p
i (x). (1)

When the “snapshot POD” method [40] is implemented, the maximisation problem leads
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to an eigenvalue problem which reads as,

Capi = λia
P
i , (2)

where the superscript p denotes temporal POD coefficients obtained from the high-fidelity
system (represented by the Ns velocity snapshots) and C ∈ RNs×Ns denotes a correlation
matrix, averaged over the spatial direction, whose elements can be expressed as,

Cij =
1

Ns

〈u(x, ti),u(x, tj)〉Ωrot
F

=
nc∑

k=1

∫∫

Ωrot
F

uk(x, ti)uk(x, tj)dx, (3)

with nc as the number of velocity components considered (here nc = 2). In practice, when
the eigenvalue problem (eq. 2) is solved, the calculated temporal POD coefficients are
normalised so that the variance of the coefficients corresponding to each mode is equal to
unity. Formally, these coefficients should be properly rescaled so that their variance is equal
to the corresponding eigenvalue. However, in what follows, this fully suits the numerical
constraints of linear regression problem.

In the following, the objective is to build a reduced-order model providing long-term
prediction. The overall database includes a total of NT = 19000 snapshots sampled at a
Strouhal number, based on the jet diameter, of StD = 3.9 (corresponding to a total duration
of tU/D = 4900). Here, the snapshot POD method, recalled previously, is applied to a set
of Ns = 4096 snapshots which has been randomly sampled from the full database. Solving
Eq.(2) results in Ns temporal POD modes, randomly sampled over time, which, when pro-
jected onto the initial randomly selected snapshots lead toNs spatial eigenfunctions Φi(x).
In order to build a ROM and to compare the estimated temporal POD modes over the full
duration of the database, the eigenfunctions are reprojected into u(x, t) to obtain a set of
Ns temporal POD functions sampled at the same rate as the velocity snapshots.

The POD eigenspectra obtained for the LES field and the conditional acoustically-
filtered velocity field are reported in Figure 1(c and d). While 20 modes suffice to recover
80% of the fluctuation energy for the conditional field, over 200 are required to retain the
same amount of energy for the LES field. As discussed in detail in Kerhervé et al. [25],
the acoustically-filtered field is found to comprise considerably lower degrees of freedom
which suggests that a low-rank model can be found to properly estimate its dynamics.

3.1.2. POD reduced-order model based on Galerkin projection
A Galerkin projection of the Navier-Stokes equations onto the POD basis defined pre-

viously is effected next. After manipulations, this leads to a set of ordinary differential
equations (ODEs) which reads as [20, 4, 13],

ȧPi (t) = Di +

Ngal∑

j=1

Lija
P
j (t) +

Ngal∑

j=1

Ngal∑

k=1

Qijka
P
j (t)aPk (t) +Ri(t) i = 1, · · · , Ngal, (4)

where yi =
(
Di, Li1, · · · , LiNgal , Qi11, · · · , QiNgalNgal

)> ∈ RNyi denotes a vector of un-
known real-valued coefficients, q̇ denotes the time derivative of q andRi denotes the resid-
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ual term which is read as,

Ri(t) =
Ns∑

j=Ngal+1

Lija
P
j (t) +

Ns∑

j=1

Ns∑

k=1

max(j,k)>Ngal+1

Qijka
P
j (t)aPk (t). (5)

As a first approximation, the case with Ri = 0 is considered, which is equivalent to ne-
glecting the convective and viscous terms associated with the unresolved modes i > Ngal.
The POD-reduced order model can consequently be written as,

ȧRi (t) = Di +

Ngal∑

j=1

Lija
R
j (t) +

Ngal∑

j=1

Ngal∑

k=j

Qijka
R
j (t)aRk (t) i = 1, · · · , Ngal, (6)

where aRi (t) denotes the i-th estimated temporal coefficient.
The coefficients Di, Lij and Qijk can be computed directly if the full flow information

is available, for instance from a sufficiently resolved numerical simulation. However, in
situations where only incomplete flow information is available, such as in an experiment
or in the case of an incomplete numerical data, the coefficients must be determined by
alternative means. This is discussed in §3.2.

Introducing,

aR(t) =
(
aR1 (t), · · · , aRNgal

(t)
)>

,

Eq.(4) can be rewritten as,
ȧRi (t) = fi(a

R(t),yi), (7)

where fi is the model equation for the i-th mode. The dynamical system (7) can be written
in a more compact form,

ȧR(t) = f
(
aR(t),y

)
, (8)

where f =
(
f1, · · · , fNgal

)> ∈ RNgal and y = (y1, · · · ,yNgal)
> ∈ RNy is the full set of

unknown coefficients, with Ny = NgalNyi .

In the following sections, this compact form is conserved for a discussion on the iden-
tification procedure of the coefficients vector yi.

3.2. Model identification
A number of studies have been performed with regards to the identification of model

coefficients. These methods differ based on the definition of the error to be minimised. An
intuitive choice is the error with respect to the time derivative of the temporal coefficients
since the objective of the reduced-order model is to predict as accurately as possible the
dynamics of the system. This has been initially proposed by Perret et al. [35] and revisited
by Cordier et al. [13] or more recently by Suzuki [42]. Here, the flow calibration method
of Cordier et al. [13] is presented.

Let e(y, t) be the error function defined by,

e(y, t) = ȧP (t)− f(aP (t),y), (9)
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The flow calibration procedure consists in minimising the cost functional I(y) = 〈||e(y, t)||22〉Ts ,
where || · ||2 denotes the L2 norm, and 〈·〉Ts a time-average operator defined as

< q(t) >Ts=
1

N

N∑

k=1

q(tk), (10)

where q(ti) denotes N discrete values of q equally distributed over the time period [0, Ts].
Equivalently, the functional I can then be written as,

I(y) =
1

N

N∑

k=1

Ngal∑

i=1

[
ȧPi (tk)− fi(aPi (tk),y)

]2
. (11)

Minimisation of I leads to the following linear system [13],

Ay = b with A ∈ RNy×Ny and b ∈ RNy , (12)

where,
A =

〈
E>(t)E(t)

〉
Ts

and b = −
〈
E>(t)e(0, t)

〉
Ts
. (13)

The time-dependent array, E(t) ∈ RNgal×Ny , is defined as

E(t)y = −f(aP (t),y). (14)

The minimisation procedure is therefore equivalent to solving the linear system given
in Eq.(12), where the unknown vector contains the coefficients of the dynamical system.
Note that this procedure is similar to that proposed by Perret et al. [35] except that here
the coefficients of the entire ODE system are calibrated in an one-shot procedure and is
computationally more efficient.

3.3. Regularisation of the solution
The linear system Eq.(12) is generally ill-conditioned. It can be easily inferred since the

term b on the right-hand side of the equation may be contaminated through e(0, t) = ȧP (t)
due to approximation errors associated with the numerical evaluation of time-derivatives of
the temporal POD coefficients. Here, a 2nd-order centered finite-difference scheme is used
for estimating these time derivatives.

As a remedy to solve the potentially ill-conditioned system, a regularisation procedure
is therefore needed. In this work, a Tikhonov regularisation of zero-th order is implemented
[19] . The basic idea of Tikhonov regularisation is to find a solution yρ of the linear system
Eq.(12) that minimises the residual ||Ayρ − b||2 without penalising too much the value of
||yρ||2. This is equivalent to minimising the following functional,

φρ(y) = ||Ay − b||2 + ρ||y||22, (15)

where ρ is a regularisation parameter to be determined.

8



To understand the influence of an ill-conditioned Eq.(12) on the solution of the lin-
ear system, the concept of filter factors is now introduced. To do so, the singular value
decomposition of A is considered, and can be read as,

A = UΣV > =

Ny∑

i=1

uiσiv
>
i , (16)

where U and V are orthogonal matrices containing left, ui, and right, vi, singular vectors,
and σi are the singular values of A arranged in decreasing order. The solution for y can
thus be written as

y =

Ny∑

i=1

hi
1

σi
u>i bvi with hi = 1 for i = 1, · · · , Ny. (17)

In this expression, some additional factors, hi, have been artificially introduced. When
these factors are fixed to unity, |u>i b| may not decrease sufficiently fast as compared to
|u>i b/σi| when σi becomes small. This can result in a solution with a large Euclidean norm
[19, 13]. To minimise the contribution of modes i associated with small σi in the summation
defined in Eq.(17), these components are “low-pass filtered” by modifying the value of hi.
Given a value of ρ, the solution of the linear system can be expressed by Eq.(17) with filter
factors equal to,

hi =
σ2
i

σ2
i + ρ2

. (18)

Different strategies may be used to determine the parameter ρ. In the present case, the
L-curve method described in Hansen [19] is used. This consists in an iterative procedure to
identify yρ = arg miny φρ which balances the values of the two residuals ||Ayρ − b||22 and
||yρ||22.

4. Bounded reduced-order model

4.1. Minimisation of cost functional I
As discussed previously, identification of the dynamical model given by Eq.(8) is equiv-

alent to solving the linear system Eq.(12). The matrix A and vector b are evaluated accord-
ing to Eq.(13). Performance of the minimisation procedure is evaluated in figure 3 where
the time derivative ȧPi of the POD temporal coefficients in comparison with that obtained
by the identified dynamical model f(aP (t),y) for the first and fourth POD modes are re-
ported. Identification of f is in good agreement with the original data and, as expected,
very similar results are observed without and with application of the Tikhonov regularisa-
tion. However, as we will see in the next section, the very small differences that do exist
between the two estimates have important consequences when the dynamical system is
integrated in time.

9



 0  10  20  30  40  50  60

d
a

1
/d

t

tU/D

original prediction

 0  10  20  30  40  50  60

d
a

1
/d

t

tU/D

original prediction

 0  10  20  30  40  50  60

d
a

4
/d

t

tU/D

original prediction

 0  10  20  30  40  50  60

d
a

4
/d

t

tU/D

original prediction

(a) (b)

Figure 3: Visual evaluation of error function e(y, t): comparison between (line with dots) time derivative of
POD temporal coefficient ȧPi (t) and (blue line) identified model fi(aP (t),y) for (top) mode 1 and (bottom)
mode 4. (a) Without and (b) with Tikhonov regularisation.

4.2. Short-term prediction
Once the coefficients Di, Lij and Qijk have been determined, temporal integration of

the dynamical system Eq.(4) is performed using a 4-th order Runge-Kutta scheme. The
initial condition at t = 0 corresponds to the initial sample of the data sequence considered
for the POD analysis. The time step used for the integration is equal to the time resolution
of the data described in §3.

Two solutions are obtained: one where the coefficients of the model are calibrated using
Tikhonov regularisation, and a second where no regularisation is used. Time histories of
the first temporal POD modes corresponding to both the solutions are shown in figure 4.
The dynamical system obtained without regularisation is unstable and diverges after 20
time units, whereas the other is stable. Both systems nonetheless provide good predictions
beyond a short time horizon. The stable system begins to drift from the trajectory described
by the original data after about six convective time units as illustrated in figures 4(c and
d). This result is not surprising as discussed in the introduction and reported by many
others. In the following sections, different strategies for long-term predictions will thus be
considered.
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Figure 4: Time histories of the first POD temporal coefficients obtained directly from POD (line with dots)
and predicted by the dynamical model (blue line) without (a,c) and with (b,d) Tikhonov regularisation. (top)
Time histories over 100 time units and (bottom) zoomed view over the first 7 time units.

5. Strategies for long-term predictions

5.1. Dependence of the initial condition and intrinsic stabilisation
It is of practical interest to establish if the identified dynamical system can provide cor-

rect predictions when the time integration is started at different points on the POD attractor.
As illustrated in figure 5, which shows the trajectories of estimated temporal coefficients
a1(t) obtained from initiating the time integration at different time instances with the true
value as initial condition, the dynamical model performs equally well. Furthermore, when
an initial condition which was not contained in the data set for the identification procedure
is used, as it is the case in figure 5(d), the model continues to provide correct prediction
over the short time horizon. This is of considerable importance because it implies that the
model coefficients identified from a given set of realisations (learning sequence) can be
re-employed to predict another sequence of realisations. Note that this remains valid only
if the matrix A and vector b continue to statistically well represent the new realisations. In
the present case, the results are an indication that A and b are sufficiently well estimated
and that a longer data sequence for learning would not have been necessary.

Since a correct prediction can be obtained for a short time duration by assimilating a
new initial condition, a basic procedure for long-term prediction is now evaluated. This
procedure consists in injecting new initial conditions every 6 time units. This procedure is
somewhat similar to the intrinsic stabilisation scheme proposed by Kalb and Deane [23].
The results are shown in figure 6 for the first POD temporal coefficient (similar results
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Figure 5: Time histories of the first POD temporal coefficients (line with dots) and its prediction (blue line)
obtained from different initial conditions.

are obtained for the higher modes). As expected , the long-term prediction is found to
be satisfactory. This procedure is however of limited practical interest. It requires tem-
poral POD coefficients to be estimated in order to provide a new initial condition. This
can only be obtained if velocity snapshots at the corresponding instants are available from
measurements. Also, measurement noise or, again, incoming perturbation may deteriorate
the prediction since the model is not designed to take into account such deviations from the
original trajectory. In the next section, we thus introduce additional correction to the model
in perspective of long-term prediction to take into account for such deviations.

5.2. Long-term prediction with data assimilation
Despite efforts to enable the calibration procedure to provide accurate estimates, the

low-order dynamical systems inherently drift from the true trajectory when integrated in
time if no correction is applied. As already mentioned, the model equation does not drive
the examined real flow system perfectly. Injecting periodically a new initial condition, as
performed previously, is the zero-th step of more advanced data assimilation technique.
Suzuki [42] recently proposed a data-driven approach where a proportional feedback term
is added to the model equation. When the gain of the feedback term is properly selected
– typically comparable to the magnitude of the linear coefficients Lij of the reduced-order
model Eq.(4) – the estimates are found to be sufficiently robust. This approach and the one
proposed previously, have a disadvantage in terms of the requirement of a perfect knowl-
edge of the real trajectory of the state vector. In practice, it may not be possible to have
an easy on-line access to this quantity. In contrast, the user may be able to instantaneously
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Figure 6: Time histories of the first POD temporal coefficients (line with dots) and its prediction (blue line)
obtained by intrinsic stabilisation. Vertical arrows indicate the time steps where the initial condition is updated
by observing the original POD coefficient.

access the “observable” quantities such as radiated pressure or, again, velocity at given
locations. Among the range of sequential data assimilation techniques used, for example,
in meteorology for long-term weather prediction, here we introduce the Ensemble Kalman
filter (EnKF), detailed in Appendix A. The latter is an extended version of the more con-
ventional Kalman filter (KF) and is appropriate for systems described by non-linear model
equation. Unlike the KF, the EnKF may be interpreted as a framework providing statisti-
cally suboptimal estimate of the underlying system state for given noisy and/or inaccurate
observations. The EnKF generates an analysis ensemble, that is, an ensemble of model
states that reflects both an estimate of the true state (through its mean) and the uncertainty
of this estimate (through its spread). This probabilistic approach allows to deal with non-
linear model equations and the final estimated state vector may be seen as a higher order
linearisation of the true state. Like the KF, a recursive resolution is employed. At each
time step, a model equation is first used to generate an a priori (or forecast) background
ensemble of estimated states and then the available observations are assimilated to build
the a posteriori (or analysis) ensemble thanks to an optimal filter. Extensive details on the
EnKF can be find in the literature (see Evensen [17] for a thorough review). Its implemen-
tation thus requires a model equation of the system state, which is provided here by the
reduced-order model of Eq.(8), and an observation equation relating the state vector and
the available measurements. For the observation equation, here we propose to start with
a fictive velocity sensor located at (x/D, y/D) = (3, 0.5) and a fictive pressure sensor in
Ωrot
F located at (x/D, y/D) = (7, 2.5) for local surveys of the velocity and the radiated

pressure (hereafter referred to u(t) and p(t) respectively). This choice is motivated from
a perspective of practical implementation. The observation equation can thus be read, in a
discrete form, as,

z(tk) = HaR(tk) with z(tk) =

[
u(tk)
p(tk)

]
∈ R2. (19)

Here matrix H ∈ R2×Ngal maps the estimated state vector aR(t) to the available observa-
tion vector z(t). Its first row contains the values of the spatial eigenfunctions, calculated
a priori, at the sensor location. For the mapping between the estimated temporal POD
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coefficients and the pressure in the radiated field, we propose the use of a linear stochastic
estimate of the pressure field, which can be written as,

p̃(t+ τac) =

Ngal∑

i=1

αia
R
i (t), (20)

where {αi}i=1,...,Ngal
defines a set of coefficients which minimises ||p(t) − p̃(t)||22 in the

L2 norm sense. The time-delay τac introduced in the last expression takes the acoustic
propagation time into account. This quantity needs to be optimised but we will not discuss
this point here. The second row of the observation matrix H contains the values of the
coefficients αi. Finally, the non-linear discrete system considered for application of the
EnKF may thus be read as,

{
aR(tk) = F

(
aR(tk−1),y

)
+ uk

z(tk) = HaR(tk) + vk
(21)

where uk and vk are white zero-mean uncorrelated process and observation noise respec-
tively with known covariance matrices. These noise components are introduced to take into
account the errors in the model equations and errors in the measurements. These can also
be interpreted as levels of trust in both the model and the available observations. Here, the
time-discrete form of the model equation used in the implementation of the EnKF is ob-
tained by applying a 4-th order Runge-Kutta scheme to Eq.(8). The white Gaussian noises
are initialised identically as N (0, 0.01INgal) and the size of the state ensemble is fixed as
500.

Results obtained using this framework are illustrated in figure 7 for the first temporal
POD coefficient. The top part of the figure shows the predictive variable z(t) obtained with
the observation equation of Eq.(21), allowing for measurement noise, while the bottom part
shows the time history of the estimated first POD coefficient. In contrast to the intrinsic
stabilization or feedback procedures discussed above, here it is important to point out that
the values of the true temporal POD coefficients have not been used. Only the observations
are assimilated. Comparing with the results obtained without assimilation, as shown in
figure 5, here the time history of the temporal POD coefficient is well recovered over a long
time duration while the assimilation procedure is maintained. The error of reconstruction is
found to increase slightly with the mode number. In order to increase the level of accuracy
of the prediction, additional fictive sensors can be used for observation. Figure 8 shows the
results of assimilation procedure for the first four temporal POD coefficients with velocity
sensors distributed along the mixing layer axis (y/D = 0.5) between x/D = 2 and x/D =
6.5 at a step of 0.5D. The estimates obtained without assimilation are also reported for
comparison. As illustrated, time histories of the temporal coefficients are well reproduced
with very small discrepancies. While the trajectory estimated without assimilation rapidly
drifts from the correct one, that estimated with the EnKF fits well with the original data,
thanks to only a limited number of observations and a stable model equation.

5.3. Dual parameters and state estimation
As mentioned in the introduction, the typically observed drift of POD-ROMs is believed

to be due to the omission of the residual term Ri in Eq.(4). Empirical subscale linear and
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Figure 7: (Bottom part) Time histories of the first POD temporal coefficient (line with dots) and its prediction
using the EnKF (blue line). (Top part) Time histories of the observations and their estimates through 19 used
for assimilation.

non-linear models have been proposed for this term in the literature [34]. The modal linear
eddy viscosity model proposed by Östh et al. [34] is considered here, mainly in order to
demonstrate the potential of the assimilation scheme detailed below. The residual term in
Eq.(4) is hence written as,

Ri(t) = νti

Ngal∑

j=1

Lija
R
j (t). (22)

Traditionally, νti can be obtained by solution matching [14] or a modal power balance [33].
In this study, the time-independent unknown parameter vector θ = (νt1, · · · , νtNgal

)> is esti-
mated simultaneously with the state of the system.

While the EnKF presented previously offers the potential of online correction of the
state estimate, it does not allow an improvement of the model itself through, for example,
the parameters vector θ. Therefore, here we introduce a dual state-parameter prediction
technique based on EnKF, known as Dual-EnKF, as proposed initially by Moradkhani et al.
[31]. The Dual-EnKF requires separate state-space representation for the state and param-
eters through two parallel filters. The equation of evolution for the parameter vector is set
up artificially assuming a random walk with a zero-mean white Gaussian noises, hereafter
w. At each time step, the usual EnKF described in Appendix A is applied twice: firstly
to update the parameter vector, and secondly to update the state vector using the analy-
sis parameter vector. This dual approach is generally found to outperform joint Kalman
filters where state and parameters are updated at the same time step, by overcoming two
limitations [3]. The first one is that in a joint approach, the number of parameters that can
be estimated is restricted to the number of measurements available. The second is that if
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Figure 8: Time histories of the first four POD temporal coefficients (line with dots) and that of their estimates
without (red dashed line) and with (blue line) data assimilation using the ensemble Kalman filter of Eq.(21).
The observation vector includes far-field pressure sensor and longitudinal velocity sensors along the shear
layer axis.

the sensitivity matrix of the state-to-output equations is ill-conditioned, the joint estimation
results in deteriorated accuracy for parameter estimation. Finally, the non-linear discrete
system considered here can be read as,




θk = θk−1 + wk

aR(θk; tk) = F
(
aR(θk, tk−1),y

)
+ uk

z(tk) = HaR(θk; tk) + vk

. (23)

Demonstration of the Dual-EnKF applied on standard Lorenz model equation in order
to recover the coefficients of the model equation is discussed in Appendix A. For the
present purpose, the white Gaussian noises are initialised as u0 = v0 = N (0, 0.01INgal)
and w0 = N (0, INgal). An ensemble of 500 members is chosen and is found to give sat-
isfactory results. Note that the same observation vector as that used in §5.2 is considered.
The parameter vector θ is initialised with null values. The entire time sequence is divided
into a learning sequence of duration 265 time units during which the observations are as-
similated at each time step, followed by a validation sequence during which observations
are considered to be available at only every 50 time steps (with a corresponding time inter-
val of ∆tzU/D ≈ 13).

The value of νt1 over the learning window is reported in figure 9. The shaded area cor-
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Figure 9: Time evolution of the estimated νt1 parameter of Eq.(22) obtained with Dual-EnKF. (a) Close view
of the first 50 time units, (b) Complete view of the full learning sequence.
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Figure 10: (a,b and c) Evolution of the first estimated parameters during the assimilation window. (d) Values
of the parameter vector at the end of the assimilation window with (red line) mean value of θ.

.

responds to the variance in the ensemble members (or confidence interval) while the black
line represents the ensemble mean, i.e. the estimated parameter value. The variance of the
ensemble is arbitrarily initialised to be large. The parameter value is found to converge
smoothly in a given region of the parameter space towards a solution with negligible vari-
ance or, in other words, uncertainty. Similar results are obtained for the other parameters
as reported in figure 10(a-c). Time evolution of the temporal coefficient a1(t) during the
learning window is reported in figure 11(a). The error between the reference and estimated
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trajectories can be quantified with the help of normalised root-mean-square error (hereafter
NRMSE) defined as the error between the state estimate and the state reference given by,

NRMSE(t) =

√√√√
∑Ngal

i=1 [aPi (t)− aRi (t)]
2

∑Ngal
i=1 [aPi (t)]

2
. (24)

As shown in figure 11(b), the NRMSE remains low during the learning window. At the end
of the learning window, as mentioned previously, the observations are then assimilated only
every 13 time units. Time evolution of the estimated coefficient a1(t) and NRMSE after the
learning window is reported in figure 12(a and b). The NRMSE only slightly increases and
the reference trajectory for a1(t) is well recovered. Similar results are obtained for other
modes, as illustrated in figure 13 where estimated trajectories for a2(t), a4(t), a6(t) and
a10(t) are shown. Also, while not shown here, the NRMSE is found to slightly increase with
the mode number but the estimation remains satisfactory. Additionally, though not shown
here, it was observed that if the assimilation of new observations is stopped, the estimated
trajectories remain bounded but the reference dynamics is lost as observed initially in §4.2.
At this stage, this raises the question of the reliability of POD-ROMs to provide long-term
prediction without correction of the estimate thanks, for example, to assimilation of new
observations.

6. Reconstruction of the spatio-temporal flow field dynamics associated with low-
frequency sound emission

In this last part, we test the degree to which the corrected ROM can reproduce the dy-
namics of the reference spatio-temporal flow field associated with sound-producing mech-
anisms.

First, an unrolled phase portrait over a long time horizon using the first two estimated
temporal POD coefficients is reported in figure 14. The phase portrait is found to be well-
bounded, thanks to stabilization of the dynamical system, and to properly follow the orig-
inal trajectory. Using the distance defined by d(t) =

√
a1(t)2 + a2(t)2 to identify the

location of a point along the phase portrait with coordinates (a1(t), a2(t)) at any time, the
trajectory described by the portrait may be seen as an orbit with center close to coordinate
(0,0) and essentially bounded. However, the trajectory is found to jump intermittently to
another orbit characterised by a larger diameter. The phase portrait shown in figure 14 is
coloured in red when the diameter of the trajectory is above a given threshold to highlight
these intermittent jumps. These jumps are connected to the sound producing intermittent
events discussed by Cavalieri et al. [9] and highlighted in Kerhervé et al. [25] for the present
data.

The full space-time velocity flow field can be obtained by combining the spatial POD
eigenfunction extracted from the original LES data with the estimated temporal POD coef-
ficients. A quantitative evaluation of the error in the flow estimate is provided by compar-
ing the centerline velocity spectra at two different stations downstream of the exit nozzle
for the original and estimated reduced-order flows, as illustrated in figure 15 using the
temporal coefficients estimated with the Dual-EnKF previously discussed. The overall fre-
quency content below StD ∼ 1 of the reference data is well reproduced. Above StD ∼ 1,

18



-3

-2

-1

 0

 1

 2

 3

 4

 0  20  40  60  80  100  120

a
0
1
(t

)

tU/D

original observation DualEnKF  

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  20  40  60  80  100  120

N
R

M
S

E

tU/D

observation DualEnKF  

(b)

Figure 11: Time evolution in the learning window of (top) the first temporal POD coefficient estimated
using the Dual-EnKF scheme and (b) the associated root-mean-squre error defined in Eq.(24). The red dots
indicate the time instants at which the observations have been assimilated. (Black square dots) Orignal POD
coefficient and (blue line) coefficient estimated with Dual-EnKF.

the discrepancies with the reference data are observed due to, firstly, the POD truncation
and, secondly, the higher discrepancies observed in the higher modes between the refer-
ence and estimated temporal coefficients (see figure 13). Spurious frequency peaks are
observed for the estimated field. These peaks are harmonics of the low frequency peak
around StD ≈ 0.08 which is exactly the frequency associated with the time interval of the
assimilation of new observations (∆tzU/D = 13). Another estimation was effected with
assimilation at time intervals ∆tzU/D = 4. The same frequency spectra for the estimated
field are also plotted in figure 15. The spurious frequency peaks have almost disappeared,
with only one peak close to StD ≈ 0.25, which is again the frequency associated with the
time interval of assimilation. In conclusion, the energy content of the dominated coherent
structures of interest is well reproduced by the low-order modelling framework.

7. Conclusion

A data-driven strategy for the elaboration of POD reduced-order models capable of pre-
dicting flow states over a long-time horizon is proposed. The methodology combines (i)
a regularised least-square identification of the coefficients of the POD-ROM, (ii) a modal
linear eddy viscosity model parametrised with an unknown parameters vector to mimic the
high-order modes, and (iii) a sequential data assimilation technique known as the dual-
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Figure 12: Time evolution in the testing window of (top) the first temporal POD coefficient estimated using
the dual-EnKF scheme and (b) the associated root-mean-squre error defined in Eq.(24) . The learning window
ends at tU/D = 265, beyond which observations are assimilated every 13 time units. Refer the caption of
figure 11 for more information.
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Figure 13: Time evolution in the testing window of different temporal POD coefficients: (a) a2(t), (b) a4(t),
(c) a6(t) and (d) a10(t). Refer the caption of figure 11 for more information.
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Figure 15: Energy spectrum of the fluctuating axial velocity component at a point located along the jet
centerline at (a) x/D = 2 and (b) x/D = 8 for the LES and modelled fields using the long-term prediction
procedure.

21



ensemble Kalman filter (Dual-EnKF). The latter is used to sequentially propagate and up-
date the estimated state and to discover, simultaneously, the parameter vector of the residual
term by assimilating observations at regular time steps. A Mach 0.9 turbulent jet, simulated
using Large Eddy Simulation by Bogey and Bailly [6], is considered as a test case. The
present work follows that of Kerhervé et al. [25] who proposed a methodology to educe
the flow motions associated with sound-producing events and responsible for low-angle
sound radiation. The data-driven strategy is applied here with the objective to build a low-
order dynamical system of these specific motions. A twenty mode POD-ROM is therefore
identified and used in combination with the Dual-EnKF to recover the dynamics of the
sound-producing flow motions over long time horizon using only a limited number of ob-
servations. The types of observation have been chosen to mimic what can be replicated
in experiments such as, for instance, point velocity and far-field pressure measurements.
The regularised identification procedure allows to obtain a bounded dynamical system but
displays a behaviour where the trajectory drifts from the true one beyond initial few time
steps. However, when combined with the Dual-EnKF, the trajectory of the estimation is
corrected and is observed to be replicating the trajectory of the true state, albeit with small
errors. As proposals for improvements in the current strategy, further investigation into the
selection of the observation vector, the estimation of the model and error covariances, or
the identification of reduced-order models which are non-linear in the coefficients can be
carried out.
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Appendix A. Ensemble and dual-Ensemble Kalman filters

Appendix A.1. Ensemble Kalman filter
The main elements of the implementation of the dual-Ensemble Kalman filter for state

and parameters estimation are detailed here, following the original formulation of Evensen
[16] and Moradkhani et al. [31]. Here, the dimension of the state space is denoted as n
while the true state of the system at time tk is denoted as xk ∈ Rn. Note that for practi-
cal implementation, the time is discretised, which justifies the subscript notation. Let the
dynamics of the system be described by a non-linear operator M(xk, θ) where θ forms
a vector of time-invariant parameters of dimention nb. In addition, the dimension of the
observation space is considered as no while the observation vector at time tk is denoted by
yk ∈ Rno . Here, we consider the case where the observation and state vectors are related
through yk = H(xk), where H denotes either a linear or non-linear operator. Kalman
filtering is a two steps procedure, alternating forecast and analysis of the system state. In
the following, the forecast and analysis of the state at time tk are denoted by xfk and xak
respectively. In the sequential procedure, the dynamical model M is first used to evolve
the state estimate forward in time, forming the forecast estimate xfk . When an observation
is available, a correction of xfk is effected to generate the analysis estimate xak such that the
mean-square error between the predictionH(xfk) and the observation yk is minimised.

When the dynamics of the state is described by a linear model, the linear Kalman filter
(KF) offers a statistically optimal estimate of the underlying system state for given noisy
observations and model. The generalisation to non-linear system is offered by the Extended
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Kalman filter (EKF) which requires the Jacobian of the dynamics matrix. This filter mimics
the classical Kalman filter by propagating a matrix (the surrogate covariance) that is analo-
gous to the error covariance in the linear case. Another approach belonging to the category
of particle filters which is widely used in weather forecasting, which involves high order
non-linear models and the initial states that are uncertain, is the ensemble Kalman filter
(EnKF). While the KF uses a single state estimate, the EnKF uses a statistical sample of
state estimates, called an ensemble. It is a suboptimal estimator based on Monte Carlo or
ensemble generations where the approximation of the forecast state error covariance ma-
trix is made by propagating an ensemble of model states using the updated states (ensemble
members) from the previous time step. In contrast to the standard Kalman filter, the propa-
gation of covariance matrices is not necessary. This results in a reduction of computational
cost, albeit with the inclusion of an additional cost in terms of maintaining the ensemble
members throughout the time marching.

Let the discrete-time non-linear system be expressed as,




xk =M(xk−1, θ) + ηk−1

yk = H(xk) + εk
ηk ∼ N (0,ΣMk )
εk ∼ N (0,ΣHk )

, (A.1)

where ηk ∈ Rn and εk ∈ Rno are white, zero-mean, uncorrelated process and observation
noises respectively with known covariance matrices ΣMk and Σ y

k . The EnKF propagates
ensembles of state vectors in parallel such that each state vector represents one realisation
of generated model replicates. In the following, ensembles at a time instant tk are denoted
as Xk with superscripts f or a for forecast and analysis respectively. These ensembles are
formed with nq replicates of the state vector, x

(i)
k ,

Xk = (x
(1)
k , · · · ,x(nq)

k ).

For a given ensemble, the state estimate, hereafter xk, must be interpreted as the most
expected value of the ensemble:

xk =
1

nq

nq∑

i=1

x
(i)
k . (A.2)

The EnKF uses the standard KF equations to propagate the members of the ensembles.
The forecast ensemble members are first obtained by propagating the analysis ensemble
through the non-linear dynamics,

x
f,(i)
k =M(x

a,(i)
k−1 , θ) + η

(i)
k , with η

(i)
k = N (0,ΣMk ). (A.3)

A linear correction according to the standard KF is then used to update the members of the
forecast ensemble as

x
a,(i)
k = x̂

f,(i)
k +Kk

(
y

(i)
k − ŷ

(i)
k

)
, (A.4)

where ŷ
(i)
k denotes the predicted variable given by,

ŷ
(i)
k = H(x

f,(i)
k ), (A.5)

26



and y
(i)
k denotes the replicate members of the observation vector yk generated by,

y
(i)
k = yk + ε

(i)
k with ε

(i)
k = N (0,ΣHk ). (A.6)

The Kalman gain Kk is computed as,

Kk = Σ xy,f
k

[
Σ yy
k + ΣHk

]−1
,

where Σ yy
k denotes the forecast error covariance matrix of the prediction ensemble given

by,

Σ yy
k =

1

nq − 1

nq∑

i=1

ŷ
(i)
k

(
ŷ

(i)
k

)>
,

and Σ xy,f
k denotes the forecast cross-covariance matrix between the forecast ensemble x

f,(i)
k

and prediction ŷ
(i)
k given by,

Σ yy
k =

1

nq − 1

nq∑

i=1

x
f,(i)
k

(
ŷ

(i)
k

)>
.

In contrast to the Kalman filter, propagation of the covariance matrices is not necessary,
which results in in a reduction of computational cost. A key of the EnKF however resides
in the perturbation of the forcing and observation data by adding noise. The noise variances
must be representatives of the uncertainty in these data.

Appendix A.2. Dual-Ensemble Kalman filter
When there is no guarantee that the model parameters will be constant in time or when

the values chosen for these parameters represent only an initial guess, a simultaneous state-
parameter estimation may be necessary. An extension of the EnKF to state-parameter es-
timation, known as Dual-EnKF, has been proposed by Moradkhani et al. [31]. The pa-
rameters are treated similarly as the state variables except for the time evolution, which is
assumed to follow a random walk such that,

θ
f,(i)
k+1 = θ

a,(i)
k + τ ik. (A.7)

Let θk denote the ensemble of parameter members θ(i)k at time tk, with superscripts a or f
for analysis and forecast estimates respectively, and with associated covariance Σ θ

k . This
artificial evolution is however known to result in an over-dispersion of parameter members
leading to a loss of continuity between two consecutive time steps [12]. This flaw can be
corrected thanks to kernel smoothing with location shrinkage [43, 28] where the individual
ensemble members are drawn from a truncated multivariate normal distribution (TMVN),

θ
f,(i)
k = TMVN(aθ

a,(i)
k−1 + (1− a)θ

a

k, h
2Σ θ,a

k ) (A.8)

where h2 = 1 − a2, a = (3δ − 1)/2δ and δ ∈ R is the smoothing parameter, typically
between 0.95 and 0.99 [28] . In the Dual-EnKF, the standard EnKF equations are first
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applied to update the parameters ensemble and to obtain the analysis parameter estimate
accordingly: 




θ
f,(i)
k = TMVN(aθ

a,(i)
k−1 + (1− a)θ

a

k, h
2Σ θ,f

k )

x
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ŷ
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k
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k + ΣHk

]

. (A.9)

For the same time step, the EnKF equations are then applied to update the state variables
taking into account the updated parameters ensemble according to,





x
f,(i)
k =M(x

a,(i)
k−1 , θ

a,(i)
k )

ŷ
(i)
k = H(x

f,(i)
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x
a,(i)
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f,(i)
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k = Σ xy,f
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Σ yy
k + ΣHk

]
. (A.10)

It is noteworthy that, theoretically, the two previous steps in the sequence can be performed
in reverse order.

To illustrate the capability of the Dual-EnKF technique to recover both the state variable
and the model’s parameter vector, we apply the framework to the Lorenz-63 model,





ẋ1 = σ(x2 − x1)
ẋ2 = x1(ρ− x3)− x2

ẋ3 = x1x2 − βx3

, (A.11)

where x = (x1, x2, x3)> denotes the three-dimensional state vector and θ = (σ, β, ρ)>

denotes the parameter vector. This model equations give a non-linear dynamical system.
For θ = (10, 8/3, 28), the system is known to converge towards a chaotic solution known
as strange attractor. The initial condition considered here is x(t = 0) = x0 = (5, 5, 5)>.
The model Eq.(A.11) can easily be rewritten in the general form given in Eq.(A.1). In
the present case, the operator H is defined as the identity matrix. The parameter vector
θ is initialised with incorrect values such that θ0 = (8/3, 28, 10)>, and random noise is
introduced in the initial condition x0. Observations are assimilated until t∗ = 30. During
this learning sequence, the parameter vector is updated. At the end of the sequence, the
last value obtained for the parameter vector is conserved and time integration is maintained
for the state variable up to t∗ = 40. To test the procedure with regards to observation
noise, two cases are considered: (case A) Σ y = 0.01I3 and (case B) Σ y = I3. Results of
the estimation procedure for the state and parameter vectors are reported in figure A.16.
Due to incorrect initial parameter vector and initial condition, discrepancies between the
true and estimated trajectories of the state variables are observed for the two cases in the
first time steps. The estimated state trajectory and the parameter vector are then rapidly
corrected and fast convergence towards the true system is observed. Even with large noisy
observations, as shown in figure A.16(b), the system’s trajectory is well recovered when
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Figure A.16: Results of the dual state-parameter ensemble Kalman filter applied to the Lorenz-63 model
equation with observation noise covariance (a) Σy = 0.01I3 and (b) Σy = I3. Left column: Time history
of (black) true and (red) estimated state variables. Right column: Time history of the estimated parameters
through the learning sequence. The learning sequence stops at t = 30.

observations are assimilated, thanks to the Dual-EnKF. When the assimilation is stopped,
the estimated state’s trajectory remains well estimated over duration which decreases as the
observation noise level increases due to small errors in the parameter vector but continue
to exhibit similar dynamics.
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5.6 Conclusion
In this chapter, we considered the sequential data assimilation technique known as the
Dual Ensemble Kalman Filter or Dual-EnKF (see the presentation in Sec. 3.2.3) as a
cure to the inherent drift of ROM obtained from limited data. Through different test
cases, it was demonstrated that such assimilation technique can be used for both long-
term prediction and calibration of model parameters. In the present case, the constant,
linear and quadratic coefficients of a POD-ROM are first identified thanks to the sparse
identification method SINDy and used as a first guess model equation. A modal linear
eddy viscosity model is then added to the POD-ROM as a residual term to mimic the
high-order modes. This closure is parameterized with an unknown parameters vector.
This modified POD-ROM then serves as the model equation in the Dual-EnKF algorithm
to propagate in time the estimated state and to discover, simultaneously, the unknown
parameter vector by assimilating sequentially new observations. Influence of the model
and observation covariances, or of the size of the ensemble, on the estimation error
were first examined. For this parametric investigation, the standard Lorenz-63 system
was considered. The results show that the mean square error is primarily dependent on
the ratio of the observation and model covariance levels. Moreover, the Dual-EnKF is
found to be able to recover both the state evolution and the model parameters, even
in the presence of noisy observations, as soon as special attention is paid on the choice
of the initial covariance levels. The overall methodology is then replicated for different
test cases with increasing number of degrees of freedom, such as a numerical cylinder
wake flow at Reynolds number of 200, an experimental cylinder wake flow at Reynolds
numbers equal to 1.5× 104 and 5.5× 104, and finally a numerical Mach 0.9 turbulent
jet at Reynolds number of 4.0× 105. For all these test cases, the original dataset, formed
by velocity snapshots, is conventionally split into training and testing parts. The training
part is used to identify an initial POD-ROM and to discover the parameters vector of its
residual term. The testing part is then used to evaluate the learning POD-ROM in terms
of mean square error and frequency content. For all the test cases, the sequential data
assimilation technique is found to properly recover the dynamics of the full state, even in
a long term horizon, with acceptable errors as soon as new observations are assimilated
regularly.

The current strategy has however at least two severe limitations. The first one relates
with the form of the reduced-order model given by (3.2) which is linear in coefficients.
All the identification procedures discussed previously are only applicable for such linear
problems. If the reduced-order model do not satisfy anymore this property, new identifi-
cation strategies are therefore required. The second limitation is that an a priori model
is mandatory. Again, it is not sure that a ROM of the form given by (3.2) is appropriate
in the general case. To leverage these two limitations, the next chapter discusses the
use of neural-networks to discover a surrogate model based only on data.
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The reduced-order models implemented so far have been derived from the Galerkin
projection of the high-fidelity Navier-Stokes equations onto the reduced space spanned
by the POD modes, refer Sec. 2.2.2. In this projection-based approach, formally classified
as an intrusive method, the reduced (POD) coefficients are determined by solving the
system of reduced-order equations. However, as seen in Chap. 5 and in literature (Aubry
et al., 1988; Iollo, Lanteri, et al., 2000), the intrusive method lacks an a priori guarantee
of stability and requires modeling of the unresolved modes in some alternate way to
achieve numerical stability.
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On the other hand, a non-intrusive reduced-order model bypasses the Galerkin pro-
jection in order to obtain approximate maps between a set of parameter values and the
reduced coefficients of the high-fidelity solution in low-dimensional space. In this work,
this is realized by regression models based on artificial neural networks (ANN). The later
are trained using high-fidelity data in a supervised learning paradigm during an offline
stage. The learned ANN can then be used in an online stage to propagate the estimates
of states in time. In this regard, the deep neural network-based data-driven method
described in Sec. 3.3 provides a multistep, residual-based and parametrized framework
for reduced-order modeling. This serves as a black-box alternative to the system identi-
fication methods discussed in the previous chapters.

In this chapter, the neural network-based non-intrusive ROM presented in Sec. 3.3.1,
hereafter called NN-ROM, is applied for time series prediction of POD modal coefficients.
In Sec. 6.1, the ability of the multistep, residual-based NN-ROM framework to take
into consideration the memory effect is demonstrated over the Lorenz-63 dynamical
system. In Sec. 6.2, the NN-ROM is constructed on a parameter space, characterizing
different numerical cylinder wake flows obtained at different Reynolds numbers, and
used to interpolate and extrapolate the dynamics corresponding to a Reynolds number
not provided during the training. Also, the sequential NN-ROM is augmented with the
EnKF data assimilation algorithm to provide long-term predictions. In Sec. 6.3, the EnKF
augmented NN-ROM is applied to obtain predictions of the dynamics of a cylinder wake
flow at high Reynolds number. Finally, concluding remarks are given in Sec. 6.4.

6.1 Validation using a toy model
Before implementing the proposed framework on fluid flow applications, the capability
of NN-ROM to model nonlinear dynamical systems is demonstrated using a toy model.
Specifically, the NN-ROM will be trained and evaluated for the highly nonlinear and
chaotic Lorenz-63 system.

6.1.1 Training and model-evaluation dataset
The equations along with the parameter values and initial condition introduced in Sec. 4.3
are used to obtain the discrete state evolution data. The size of the state vector is
Nr = 3. For learning NN-ROM, the data is generated in the time range t = [0, 20]
with a time step of 0.01, giving Nt = 2001 snapshots. The dataset is split such that
state evolution corresponding to the initial 85% of the time steps is used for training, i.e.
NTrain
t = 1700, and the remaining data is used for validation, i.e. NVal

t = 301. At the
end of the learning stage, the performance of the trained model is evaluated based on
the reproduction capability with respect to the full solution trajectory, i.e. NTest

t = 2001.
Note that as only the ability of the neural network framework to provide state es-

timates is evaluated in this section, the toy model defined by a single parameter set is
considered, i.e. NTrain

p = 1. As such, the parametrized framework of NN-ROM will not
be evaluated in this section.
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6.1.2 Hyperparameter selection
Training NN-ROM, which is constructed as a feedforward network (see Sec. 3.3.2.2),
requires making some design decisions. The performance of the NN-ROM is largely
dictated by the selection of hyperparameters used for defining the architecture and the
optimization of the neural network. The architecture is defined by the number of hidden
layers, the connection between the consecutive layers, and the number of hidden units
in each layer. The output of the hidden layer is governed by the choice of the activation
function. The gradient-based learning also requires choosing the optimizer and the cost
function.

Finding an optimal set of hyperparameters which minimizes the loss function over
a hyperparameter space is a challenging task given the substantial number of free pa-
rameters involved. Manual search is one of the the most widely used hyperparameter
optimization methods. In this work, the hyperparameters have been selected heuristically
by monitoring the influence of the assigned values on model performance ‘on the fly’.
More sophisticated methods for hyperparameter selection are random search (Bergstra
and Bengio, 2012) and Bayesian optimization (Brochu et al., 2010). However, follow-
ing Goodfellow et al. (2016), general guidelines can be formulated. The effect of key
hyperparameters on the performance of the NN-ROM are listed below:

1. Number of layers (L): Increasing L augments the model’s capacity to represent
more complex functions with a simultaneous increase in the computational cost of
training.
� In this example, the network is constructed with L = 7 layers, which includes
the input and output layers and 5 hidden layers.

2. Number of units in each layer (n[l]): Increasing n[l] has the similar effect as L
on the representation ability of the model. The number of units in the input and
output layers is fixed for a problem based on the size of the feature and target.
Note that for a large value of either L or n[l], the model has a chance of overfitting
the training data.
� In this example, the number of units in the input layer is n[1] = Nrp+1 = 3p+1,
where p is the number of past input steps defining the multistep framework (see
Sec. 3.3.1). Note that the ‘+1’ unit corresponds to the time variable and no
additional units are assigned for parameters as the training is performed using
data belonging to the solution set corresponding to the same parameters. The
size of the hidden layers is assigned to n[l=2,...,6] = 128 units. The output layer
contains n[7] = Nr = 3 units.

3. Activation function (σ): The output of the hidden units is dictated by the activa-
tion function. The function σ must be chosen such that the layers do not saturate,
i.e. the gradients of the cost function do not become very flat and remain large
enough to guide the learning algorithm.
� In this example, the widely used and easy to optimize rectified linear unit
(ReLU) is used as the activation function (see Sec. 3.3.2.1).

4. Size of minibatch (Nb): The stability and speed of the learning algorithm are gen-
erally optimized by dividing the input features (here, time and state evolution) and
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the target into subsets, the training being made on these minibatches. Minibatches
typically contain two to several hundred samples, although for large models the
choice may be constrained by computational resources.
� In this example, the minibatches are randomly selected disjoint subsets of the
training data of size Nb = 501.

5. Number of minibatches (Nmb): The number of minibatches dictates the number
of updates of the training variables during each training epoch. The number is
fixed by monitoring the learning curve. A higher value of Nmb may lead the model
to overfit the training data.
� In this example, Nmb = 10 is used.

6. Learning rate (α): The success of the gradient-based optimization depends on the
choice of the learning rate. A small α slows down the computation while a large
α may lead to overshooting the local minima of the cost function. The value of α
is fixed by monitoring the learning curve.
� In this example, the learning rate α = 0.001 is used.

7. Regularization parameter (λ): The generalization error of the NN-ROM is tuned
by the regularization parameter in the cost function. A lower value of λ may make
the model more prone to overfit to the training data, while a higher λ may cause
the weights of the neural network to vanish, severely underfitting the training data.
The value of λ is fixed by monitoring the learning curve.
� In this example, the regularization parameter λ = 1.0× 10−5 is used.

8. Number of training epochs (NEpochs): The number of training epochs is related to
the learning rate. As NEpochs increases, the model transforms from underfitting,
to optimal, and to potentially overfitting the training data. The value of NEpochs
is fixed by monitoring the learning curve.
� In this example, the model is trained over NEpochs = 20000 cycles.

The choice of these hyperparameters is summarized in Tab. 6.1.

Table 6.1: Hyperparameters of NN-ROM for the Lorenz-63 system.

DNN architecture (p = 1, 5, 10) Training data Minibatch Optimization parameters
n[1] n[2,...,6] n[7] σ NTrain

t NTrain
p Nb Nmb α λ NEpochs

3p+ 1 128 3 ReLU 1700 1 501 10 1.0× 10−3 1.0× 10−5 20000

6.1.3 Online training
Once the hyperparameters are assigned, the training variables of NN-ROM (weights
and biases) are optimized over the NEpochs training epochs using the Adam algorithm
(see Sec. 3.3.2.4). One training epoch involves the evaluation of the gradients of the
cost function (3.102) for each minibatch by backpropagation (see Sec. 3.3.2.3). The
deep neural network utilizes high-capacity architecture which, due to a large number
of training variables, are susceptible to overfitting even when sufficient training data is
available. This behavior of the model is monitored during the course of training using
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Figure 6.1: Evolution of the training and validation errors during the training epochs of NN-
ROM for the Lorenz-63 system (p = 10). The error evolution in the last 100 epochs is also
shown in the inset.

the learning curves which are plots of the error metric (3.111) calculated for the training
set (RMSETrain) and the validation set (RMSEVal) as a function of the training epochs.

In order to demonstrate the influence of the number of past time steps p in the input
on the performance of NN-ROM, three values of p are considered, namely p = 1, 5, 10.
The learning curves for the training of NN-ROM for the Lorenz-63 system with p = 10
is shown in Fig. 6.1. Similar curves are obtained for other values of p. It is observed
that the error for the validation set drops consistently with the corresponding decrease
in the error for the training set. This implies that the hyperparameters selected for
designing and training the neural network lead to a NN-ROM with a low generalization
error, i.e. the model neither underfits not overfits the data used for training. Note that
the noisy learning curve is common to the stochastic gradient-descent methods which
can be attributed to the frequent updates of the training variables, allowing the model
to avoid local minima and hence, an early convergence.

6.1.4 Offline prediction
To elucidate the multistep, residual-based framework of the neural network, the learned
NN-ROM models, corresponding to the three values of p in the input training data, are
used to obtain the estimation of the state trajectories aNN(t) of the Lorenz-63 system
using the forward model (3.90). The comparison of the estimated trajectories with the
reference solution trajectories is shown in Fig. 6.2. The Lorenz system has a chaotic
behavior. Hence, a small error in the estimated state of the system can lead to a larger
error in the subsequent time steps. The time period for which the reproduced trajectory
is the same as the reference trajectory varies for different values of p. In general, the
inclusion of temporal history of the state of the system in the input to NN-ROM, i.e.
p > 1, leads to an improved estimation where the reference trajectory is followed over a
longer time span.
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Figure 6.2: Evolution of the states a(t) of the Lorenz-63 system obtained from the trained
NN-ROM in the testing window corresponding to different numbers of past input steps (p)
and compared with the true reference trajectories.
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Table 6.2: Time averaged NRMSE in the testing window corresponding to different numbers
of past input steps (p) for the Lorenz-63 system.

p = 1 p = 5 p = 10 p = 100
Average NRMSE 0.7524 0.5481 0.4905 0.6282

The performance of NN-ROM is quantified in terms of the normalized root-mean-
square error (NRMSE). Here, the NRMSE is calculated with respect to the reference
solution aRef(t), which is the solution obtained from the numerical integration of the
Lorenz-63 system, as

NRMSE(t) =

√∑Nr
i=1(aNN

i (t)− aRef
i (t))2

√∑Nr
i=1(aRef

i (t))2
, (6.1)

where Nr = 3. The averaged NRMSE over the testing time span is given in Tab. 6.2 for
the three values of p. An extreme case where p = 100 time steps has been considered
is also included to observe the effect of a long time past window on the accuracy of
the estimation. It is observed that the estimation is more accurate for the cases with
p > 1. This result encourages to take the memory effect into account in the input
of NN-ROM for a more accurate reproduction of the transient dynamics. The effect
is however not monotonous (i.e. higher number of time steps p does not correspond
necessary to a lower value of error), as indicated by the higher value of estimation error
corresponding to p = 100 as compared to p = 10. This is exacerbated by the sensitivity
of the Lorenz-63 system to the state space, i.e. featuring a positive Lyapunov exponent.
The number of past time steps (p) is thus a hyperparameter which can be optimized
to obtain a sufficiently accurate estimation framework. However, in the subsequent test
cases, this parameter has been selected heuristically.

6.2 Test case 1: Parametrized reconstruction of a
cylinder wake flow

In the previous section, the multistep, residual-based framework of NN-ROM has been
evaluated for a toy dynamical model. In this section, we focus on the parametrized
framework of the non-intrusive NN-ROM. For this, we evaluate the reconstruction of
a cylinder wake flow dynamics obtained numerically at low Reynolds numbers (Re ∈
[100, 210]).

6.2.1 Training and testing dataset
Numerical simulations are performed using the same setup as described in App. A for
a set of nine, non-equally spaced Reynolds numbers, namely ReSet = {100, 110, 120,
130, 140, 160, 170, 190, 210}. From the post-transient, periodic vortex shedding regime,
1001 snapshots of two-component velocity fields are sampled for each Reynolds number
in the time span t ∈ [0, 100] with time step of ∆t = 0.1.
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Table 6.3: Values of the Reynolds number (Re) considered in the training and testing sets for
the two cases representing the interpolation and extrapolation problem.

Problem Training parameter set Test parameter
Case-I Interpolation {100, 110, 120, 130, 140, 170, 190} 160
Case-E Extrapolation {100, 110, 120, 130, 140, 160, 170, 190} 210

Snapshot POD of the fluctuating velocity flow fields is performed to obtain the re-
duced basis. The detail for building the POD basis is the same as discussed in Sec. 5.2.1.
For the set of Reynolds numbers considered, similar eigenspectra with paired modes are
obtained. In each case, the most dominant, first Nr = 10 modes are preserved for
reduced-order modeling, which together represent more than ∼ 99.95% of the total en-
ergy of the respective flows. The input features and targets for training the NN-ROM
are subsets of the calculated temporal POD coefficients aPOD(tk;µj), where µj ∈ ReSet
is the parameter characterizing the dynamics. The POD modes ΦPOD(χ;µj) are also
conserved for reconstruction of the flow fields.

To evaluate the performance of the NN-ROM for parametric estimation, interpolation
and extrapolation problems have been considered. These problems are denoted as Case-I
and Case-E, respectively. The corresponding training-testing split of parameters is given
in Tab. 6.3. The POD coefficients corresponding to several unique Reynold numbers
constitute the training set and are used to learn the NN-ROM. For the interpolation
problem (Case-I), NTrain

p = 7 parameters are considered in the training set. In this
case, the test parameter is chosen as Re = 160 such that it lies within the range of
Reynold numbers considered in the training parameter set. On the other hand, for the
extrapolation problem (Case-E), NTrain

p = 8 parameters are considered in the training
set. Here, the selected test parameter (Re = 210) lies outside the range of the training
parameter set. In both cases, data (i.e. POD coefficients) from the initial 501 time
steps for each parameter is used for learning, out of which NTrain

t = 425 snapshots is
used for training and NVal

t = 76 snapshots is used for validation of the learned model.

6.2.2 NN-ROM architecture and optimization
The NN-ROM is constructed in a similar manner as for the toy model considered in
Sec. 6.1. The hyperparameters associated with the construction and training of the
neural network are assigned manually. The major difference appears in the input layer
as, apart from the units for time tk (for all k = 1, . . . , NTrain

t ) and POD coefficient
aPOD(tk;µj), the input feature set contains an additional unit for the parameters µj (for
all j = 1, . . . , NTrain

p ). Note that here µ is scalar, i.e. only the Reynolds number is the
parameter. The total number of units in the input layer is therefore n[1] = Nrp + 2 =
10p + 2. The same DNN architecture and optimization parameters have been used for
learning the model for both the interpolation and extrapolation problems. The number
of units in the hidden layers is fixed as 256 to accommodate large range of dynamics
exhibited by the POD coefficients. In this demonstration, history of POD coefficients
from previous p = 5 time steps is used in the input feature set. A summary of the
hyperparameters is given in Tab. 6.4. Refer to Sec. 6.1.2 for a brief discussion on the
influence of each hyperparameter on the performance of NN-ROM.
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(a) Case-I - Interpolation problem
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(b) Case-E - Extrapolation problem

Figure 6.3: Evolution of the training and validation errors during the learning epochs of NN-
ROMs. (a) interpolation, and (b) extrapolation problems for the numerical cylinder wake flow.
The error evolution in the last 100 epochs is also shown in the inset.

Table 6.4: Hyperparameters of NN-ROM for the numerical cylinder wake flow. Note that
NTrain
p = 7 for Case-I and NTrain

p = 8 for Case-E.

DNN architecture (p = 5) Training data Minibatch Optimization parameters
n[1] n[2,...,6] n[7] σ NTrain

t NTrain
p Nb Nmb α λ Nepochs

10p+ 2 256 10 ReLU 501 7 or 8 501 50 1.0× 10−3 1.0× 10−5 20000

The training variables of the NN-ROM with the assigned hyperparameters are op-
timized over the training epochs using the Adam algorithm. The learning curves for
the training stage is shown in Fig. 6.3. For both the interpolation and extrapolation
problems, the RMSE for training and validation sets are observed to decrease with the
number of epochs, as expected. After 104 epochs, the RMSE is found acceptable.
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Figure 6.4: Prediction by NN-ROM of the temporal POD coefficients a1(t) and a10(t) for the
test dataset of the cylinder wake flow at Re = 160 for the interpolation problem (a), and
Re = 210 for the extrapolation problem (b). Comparison with the reference trajectory.

6.2.3 Estimation of POD coefficients using trained NN-ROM
The trained NN-ROM is used to obtain with the forward model (3.90) the estimates
of the POD coefficients aNN(tk;µj) for the interpolation and extrapolation problems.
The comparison of the trajectories of the coefficients a1(t) and a10(t) with the reference
trajectory obtained from POD is shown in Fig. 6.4. It is observed that NN-ROM is able to
provide fairly accurate estimates of the dynamics of the POD coefficients corresponding
to Re = 160 for the interpolation problem (Case-I) and Re = 210 for the extrapolation
problem (Case-E). In Case-I, both the amplitude and phase behavior of the coefficients
are preserved for a long time span. On the other hand, the extrapolated estimation of
the POD coefficient in Case-E is accurate in a smaller time span. A noticeable phase
difference is observed between the predicted and reference trajectories over longer time
span. However, NN-ROM performs well in capturing the amplitude for a long time span
for all Nr = 10 POD coefficients for both the testing sets.

The performance of NN-ROM is quantified in terms of the normalized root-mean-
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Table 6.5: Time averaged NRMSE for the test parameter for the interpolation (Case-I) and
extrapolation (Case-E) problems for the numerical cylinder wake flow.

Case-I Case-E
Average NRMSE 0.4401 0.9827

square error (NRMSE). Here, the NRMSE is calculated with respect to the POD coef-
ficients aPOD(t) using (6.1). The time averaged value of NRMSE is given in Tab. 6.5.
The NN-ROM provides more accurate estimates for the interpolation problem as com-
pared to the extrapolation problem. This implies that the estimation benefits when the
test parameter lies within the range of the parameter space used for training. However,
the error in both the cases remain of the same order of magnitude as the evolution
remains bounded over a long time range.

With the NN-ROM framework, the estimation of the POD coefficients has been
obtained by bypassing the computation of the reduced system through Galerkin projec-
tion. The non-intrusive nature of the NN-ROM and the lack of system of equations that
needs to be solved for estimating the solution makes it an attractive alternative to the
POD-ROM implementation.

The proposed parametrized framework has been shown to provide fairly accurate short-
term estimates for the interpolated and extrapolated parameters outside the training
set. However, a phase shift is observed over the long time range for the extrapolation
problem. The observable deviation between the estimated and reference dynamics can
be a result of the limited number of parameters (NTrain

p = 8) available for training the
NN-ROM. However, the predictions in a short time span and the overall preservation
of the amplitude encourage the use of data assimilation algorithms as demonstrated in
Sec. 5.2.4 to modify the predicted trajectory over long term estimation. This approach
is demonstrated in the next section for flow field reconstruction over a long time range.

6.2.4 Flow field reconstruction using EnKF augmented
NN-ROM estimation

In this section, we introduce an ensemble Kalman filter (EnKF) augmented version of the
NN-ROM method presented in Sec. 6.3.1. Hereafter, this method is referenced as NN-
ROM-DA. In the following, we comparatively analyze the performance of the standard
NN-ROM and the NN-ROM-DA method in the case of the extrapolation problem (Case-
E) at Re = 210.

First, the flow field is reconstructed from the NN-ROM estimates. The extrapolated
POD coefficients obtained by NN-ROM and the spatial POD modes at Re = 210 are
combined to reconstruct with (2.15) the two-component velocity fields. In Fig. 6.5, the
time evolution of the estimated streamwise component of velocity uNN

x (t) at locations in
the near-wake and farfield region are compared with the corresponding reference velocities
obtained from the numerical simulation uDNS

x (t). The estimated velocity accurately
captures the initial dynamics over a short time span but a phase shift is observed over
longer time range.
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Figure 6.5: Time evolution of the streamwise velocity component at near-wake (a), and farfield
(b) locations in the flow field, comparing the trajectory obtained from the numerical simulation
(uDNS
x (t)) with the reconstructions using the POD coefficients obtained from the NN-ROM

(uNN
x (t)) for the cylinder wake flow at Re = 210.

Next, the NN-ROM-DA estimates used to obtain an improved reconstruction of the
flow field is considered. The introduced formulation is briefly described before present-
ing the results. As already discussed, the sequential state evolution provided by the
NN-ROM (3.90) is a viable alternative to the POD-ROM as a forward model. The
estimates provided by the imperfect learned NN-ROM can be combined with heteroge-
neous observations in the data assimilation paradigm (see Sec. 3.2). Specifically, the
learned NN-ROM can be used as the forward model (3.56) in the EnKF framework. This
dynamical model is given as

af,(n)(tk+1;µj) = aa,(n)(tk;µj) + fNN({aa,(n)(tl;µj)}kl=k−p+1;W , b) + η(n)
k+1, (6.2)

where n = 1, . . . , Ne is the index of the sample in the ensemble. The superscripts
‘f ’ and ‘a’ represent the forecast and analyzed POD coefficients. η(n)

k+1 ∼ N (0,Qk+1)
is the Gaussian representation of the model error with zero mean and time-dependent
covariance Qk+1. Using the EnKF algorithm given by Alg. 3.2, the state estimates
trajectory can be updated sequentially whenever observations are available.

The same measurement configuration (number of probes and location) as discussed in
Sec. 5.2.3.2 and shown in Fig. 5.10 is used to obtain observations of streamwise velocity
component at fixed intervals. The observations are assimilated at time steps of size
∆to = 80∆t = 8, i.e. 80 times larger than the simulation time step. This corresponds to
performing 9 equispaced assimilations in the span of the long time range window defined
over 800 time steps. The time evolution of the POD coefficient a1(t) using the NN-
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Figure 6.6: Time evolution of the POD coefficient a1(t) (a), and the streamwise velocity
components at near-wake (b) and farfield (c) locations in the flow field. For (a), a comparison
is made with the POD coefficients. For (b) and (c), we compare the trajectory obtained
from the numerical simulation (uDNS

x (t)) with the reconstructions using the POD coefficients
obtained from the NN-ROM-DA (uNN−DA

x (t)). Case of the cylinder wake flow at Re = 210.

ROM-DA formulation is compared with the values obtained directly from the snapshots
in Fig. 6.6a. The plots show that the estimated trajectory of the POD coefficient
obtained using NN-ROM-DA follows the reference trajectory more accurately over a
longer time range as compared to the estimate obtained from NN-ROM (see Fig. 6.4b).
The estimated streamwise component of velocity uNN−DA

x (t) at locations in the near-
wake and farfield region are also compared with the corresponding reference velocities
obtained from the numerical simulation uDNS

x (t) in Fig. 6.6b and Fig. 6.6c. Comparing
with the results shown in Fig. 6.5, it can be observed that after each observation step,
the assimilation procedure improves the accuracy of the trajectories in the time span
between the observations.

In order to quantify the performance of the different approaches, the normalized
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Table 6.6: Time averaged NRMSE of the velocity magnitude |u| for the extrapolation problem
corresponding to Re = 210.

POD NN-ROM NN-ROM-DA
Average NRMSE 4.836× 10−3 1.545× 10−1 8.307× 10−2

root-mean-square error of the velocity magnitude |u| with respect to the DNS values is
calculated over the prediction time span. This error is defined as

NRMSE(t) =

√∑Nχ
i=1(|uNN(χi, t)| − |uDNS(χi, t)|)2

√∑Nχ
i=1(|uDNS(χi, t)|)2

. (6.3)

In Tab. 6.6, the averaged NRMSE over the testing time window obtained for the NN-
ROM and NN-ROM-DA methods are compared to the results obtained directly by POD.
The error corresponding to the NN-ROM-DA is one order of magnitude higher than the
error corresponding to the POD estimation but lower than the error corresponding to NN-
ROM (i.e. without assimilation). These values imply that a more accurate estimation is
obtained from NN-ROM-DA than NN-ROM in the testing time span. It highlights the
benefit of augmenting NN-ROM with data assimilation.

6.3 Test case 2: Long-term estimation of an
experimental cylinder wake flow

In this section, we consider a cylinder wake flow configuration at high Reynolds number.
This configuration is much more challenging in terms of dynamical complexity than the
low Reynolds number wake considered in Sec. 6.2. Thereafter, as we have already done in
Sec. 6.2.4, we combine sequential updates obtained by NN-ROM and data assimilation.

6.3.1 NN-ROM setup and estimation
The case of the cylinder wake flow at Re = 1.5× 104 introduced in Sec. 5.3 is considered.
POD is performed on the snapshots of velocity field obtained using PIV as discussed in
Sec. 5.3.2. The most dominant Nr = 10 modes, which represent 79% of total energy,
are preserved for reduced-order modeling.

The initial 701 (over 1001) time steps of the POD coefficients are used for learning
NN-ROM. The time series is split such that the data belonging to the first NTrain

t = 595
snapshots is used for training and that belonging to the next NVal

t = 106 snapshots
is used for validation of the learned model. The summary of the manually assigned
hyperparameters associated with the construction and training of the neural network
is given in Tab. 6.7. The NN-ROM is based on using the history of POD coefficients
from previous p = 10 time steps in the input feature set. Note that as the dataset
is characterized by a single parameter, the unit in the input layer corresponding to
parameters in the feature set is dropped. The details regarding the rest of the setup and
optimization of the model are the same as the ones discussed in Sec. 6.1.2.
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Figure 6.7: Evolution of the temporal POD coefficients ai(t) (i = 1, 4, 7, 10) for the testing
dataset for the cylinder wake flow at Re = 1.5× 104. The results are obtained from the
NN-ROM and compared with the reference trajectory.

Table 6.7: Hyperparameters of the NN-ROM for the cylinder wake flow at Re = 1.5× 104.

DNN architecture (p = 10) Training data Minibatch Optimization parameters
n[1] n[2,...,6] n[7] σ NTrain

t NTrain
p Nb Nmb α λ NEpochs

10p+ 1 256 10 ReLU 595 1 401 10 1.0× 10−3 1.0× 10−2 20000

The learned NN-ROM is then used to obtain estimates of the POD coefficients. Due
to limited size of data, the testing is performed on the whole time range of POD coef-
ficients, NTest

t = 1001. The evolution of the temporal POD coefficients for the testing
dataset is shown in Fig. 6.7. Overall, the amplitudes of the estimated coefficients remain
consistent with respect to the reference trajectory and the evolution remains bounded
over the full testing time span. It is observed that in the short-term, the trajectory of
the POD coefficients estimated from NN-ROM follows the reference trajectory of the
POD coefficients directly obtained from the snapshots. However, the trajectories start
to deviate after about the first 20 time units.

6.3.2 EnKF augmented NN-ROM estimation
The NN-ROM learned in Sec. 6.3.1 is augmented with EnKF data assimilation. The
reader is referred to the discussion of the previous test case (see Sec. 6.2.4) for a
brief discussion on the NN-ROM-DA formulation. The same measurement configuration
(number of probes and location) as discussed in Sec. 5.3.4 and shown in Fig. 5.24 is
used to obtain observations of streamwise velocity component at fixed intervals.
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Figure 6.8: Time evolution of the NRMSE with respect to the velocity magnitude in the
testing window for the NN-ROM, NN-ROM-DA and DA estimates. Comparison with the results
obtained with the POD coefficients. Cylinder wake flow configuration at Re = 1.5× 104.

Before discussing the results in detail, the performance of the non-intrusive NN-
ROM-DA approach is briefly compared with the intrusive data assimilation approach
of Chap. 5. This is done by evaluating for the estimated data the normalized root-
mean-square given by (6.3) in the same time window (t ∈ [97.9, 140.0]) as the one
used in assimilation (see Sec. 5.3). In Fig. 6.8, we compare the errors obtained from
the NN-ROM, NN-ROM-DA and DA estimates with those obtained from the calculated
POD coefficients. Initially, the error magnitudes for the NN-ROM-DA and DA estimates
are observed to be the same. Then, for a convective time approximately equal to 100,
the error corresponding to the NN-ROM-DA estimates increases sharply. However, the
magnitude stays bounded and remains of the same order as that of the DA estimates.
The key observation is that a more accurate estimate is obtained from NN-ROM-DA
which implies that NN-ROM benefits from the EnKF augmented approach.

Next, an additional hyperparameter, pDA, is introduced which is defined as the num-
ber of consecutive observations used in assimilation. The justification of this multistep
assimilation approach is to augment the capability of the NN-ROM to take into consid-
eration the memory effect of the temporal dynamics. In this case study, two values of
pDA are considered, namely pDA = 1, which corresponds to the classical single update
method, and pDA = 5. Note that both are smaller than the number of time steps passed
as the input to NN-ROM, p = 10.

For the DA augmented approach, the observations are assimilated at time steps of
size ∆toU∞/D = 28.1. This value is 200 times larger than the PIV acquisition step size
and spans 5 cycles of vortex shedding (refer to Sec. 5.3.4 for a detailed discussion). This
equates to performing 4 steps of equispaced assimilations over the estimation window
(1001 time steps).

The time evolution of the temporal POD coefficients obtained by NN-ROM-DA
for the two values of consecutive assimilations pDA = 1 and pDA = 5 is shown in
Fig. 6.9 and Fig. 6.10, respectively. The plots show that the estimated trajectories of
the POD coefficients obtained using NN-ROM-DA follow the reference trajectories more
accurately as compared to the estimates obtained from NN-ROM (see Fig. 6.7). As
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Figure 6.9: Same comparison as in Fig. 6.7 but for the evolution obtained from NN-ROM-DA
with pDA = 1 consecutive assimilation.
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Figure 6.10: Same comparison as in Fig. 6.7 but for the evolution obtained from NN-ROM-DA
with pDA = 5 consecutive assimilations.
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Figure 6.11: Time evolution of NRMSE in the testing window for the POD coefficients ob-
tained from NN-ROM and NN-ROM-DA with pDA = 1 and 5. Cylinder wake flow configuration
at Re = 1.5× 104. The time averaged NRMSE values over the testing window are indicated
by horizontal dashed lines. The dotted lines represent the time steps at which the observations
are initiated for the two NN-ROM-DA frameworks.

observed, after each observation step, the EnKF assimilation procedure improves the
accuracy of the trajectories in the time span between the observations. Moreover, a
slight improvement in accuracy can be observed when multiple consecutive observations
are available (pDA = 5) as compared to when only single observation is available at each
assimilation step (pDA = 1). This indicates that the NN-ROM estimates benefit from the
greater number of assimilated states available in the memory for forward propagation.
In Fig. 6.11, the NRMSE defined by (6.1) is compared for the NN-ROM (i.e. without
assimilation) and for the NN-ROM-DA with pDA = 1 and 5. It is observed that a more
accurate estimation is obtained from NN-ROM-DA than NN-ROM in the majority of the
testing time span. The corresponding average errors are also lower.

The estimated POD coefficients are used to reconstruct the two-component velocity
fields. In Fig. 6.12, the time evolution of the streamwise components of velocity, obtained
from the NN-ROM estimates (uNN

x (t)) and the NN-ROM-DA estimates (uNN−DA
x (t)),

are compared at a location in the flow field with the reference trajectories determined
from the calculated POD coefficients (uPOD

x (t)) and the PIV experiments (uPIV
x (t)).

Owing to the more accurate estimation of the POD coefficients, the corresponding
reconstruction of the velocity is also more accurate for the estimates from NN-ROM-DA
as compared to those obtained from NN-ROM. Moreover, the phase shift observed in
the time span between the assimilation steps is minimized when multiple consecutive
observations are used to nudge the estimated trajectory towards the reference trajectory.
To gauge the performance in frequency domain, the power spectra of the reconstructed
velocity signals using POD, NN-ROM and NN-ROM-DA (with pDA = 5) are compared
in Fig. 6.13 with that using the signal obtained from experiment. It is observed that
the peak frequency of the signal obtained from experiments (0.18 Hz) is captured by
the estimated dynamics using NN-ROM-DA (0.1874 Hz). In Fig. 6.14, we represent the
temporal evolution of the normalized root-mean-square error defined in (6.3) as obtained
from NN-ROM and NN-ROM-DA on the one hand, and the coefficients determined by
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Figure 6.12: Time evolution of the streamwise velocity components at a location (x/D, y/D) =
(4.8, 0.9) in the flow field. Comparison of the trajectory obtained from the PIV measurements
with the reconstructions using the POD coefficients determined from the NN-ROM and NN-
ROM-DA with pDA = 1 (a), and pDA = 5 (b). Cylinder wake flow configuration at Re =
1.5× 104.

POD on the other hand. Again, the NN-ROM-DA estimates show an improvement over
the NN-ROM estimates. Indeed, the reconstructions obtained from NN-ROM-DA have
the same order of magnitude of error as those obtained from the direct reconstruction
using POD modes. A summary of the averaged NRMSE values for the predictions in
latent space and the reconstructions in physical space is given in Tab. 6.8. In the latent
space, the use of NN-ROM-DA (with pDA = 5) leads to a 35% reduction in the error
value as compared to NN-ROM. A corresponding reduction of 32% and 21% in the
averaged error values are obtained in the physical space, respectively for the streamwise
velocity measurement at a location in the farfield wake and the velocity magnitude. The
lower error magnitudes obtained by NN-ROM-DA demonstrate the interest of coupling
non-intrusive models determined by neural networks to the data assimilation framework.
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Figure 6.13: Power spectrum densities of the velocity at a location (x/D, y/D) = (4.8, 0.9)
in the flow field. Comparison of the results obtained from PIV measurements and the re-
constructed velocity signals using the POD coefficients determined from the NN-ROM and
NN-ROM-DA with pDA = 5. Cylinder wake flow configuration at Re = 1.5× 104. The peak
frequencies of the measured signal and that reconstructed from the augmented ROM are in-
dicated by vertical dashed lines.
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Figure 6.14: Time evolution of NRMSE in the testing window for the velocity magnitude
calculated from the POD coefficients obtained from the reference values and those determined
from the NN-ROM and NN-ROM-DA with pDA = 1 and 5. Cylinder wake flow configuration
at Re = 1.5× 104. The time averaged NRMSE values over the testing window are indicated
by horizontal dashed lines. The dotted lines represent the time steps at which the observations
are initiated for the two NN-ROM-DA frameworks.

6.4 Conclusion
The neural network-based, data-driven reduced-order model (NN-ROM) presented in
Sec. 3.3 was considered in this chapter as a surrogate, non-intrusive alternative to the
intrusive POD-Galerkin ROM. Through applications to a toy model and two fluid flow
cases, it was demonstrated that NN-ROM offers a viable replacement as a forward model
to provide long-term prediction. The whole framework can be considered in an offline-
online paradigm. In the offline stage, NN-ROM is trained on variables in the latent space,
namely the POD coefficients. These are obtained by projecting a large amount of high-
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Table 6.8: Time averaged NRMSE values in the testing window corresponding to the POD
coefficients a, the streamwise velocity component ux at location (x/D, y/D) = (4.8, 0.9),
and the full-field velocity magnitude |u| for the cylinder wake flow at Re = 1.5× 104.

Average NRMSE
POD NN-ROM NN-ROM-DA

NRMSE(t;x,xRef) =
√

(x− xRef)2/(xRef)2

x xRef pDA = 1 pDA = 5
aNN, aNN−DA aPOD – 1.3234 1.0009 0.8625

uPOD
x , uNN

x , uNN−DA
x uPIV

x 0.1332 0.2765 0.2203 0.1886
|uPOD|, |uNN|, |uNN−DA| |uPIV| 0.2973 0.6573 0.5516 0.5196

fidelity snapshots onto the reduced space. In the online stage, the trained NN-ROM is
rapidly evaluated to obtain the future state of the latent space variables. These variables
are used for reconstruction in the physical space, thus returning predicted high-fidelity
flow field.

The NN-ROM is designed such that it learns on residual targets, i.e. the difference
of the state of interest between two consecutive time steps, rather than the value of the
future state itself. The model takes into account the memory effect by considering a
sequential input of fixed length (p) of the latent variable in order to provide estimates
at subsequent time steps. Influence of the inclusion of temporal history of the dynamics
on the performance of NN-ROM was evaluated for the standard Lorenz-63 system. The
results show that an increase in the time period for which the trajectory of true solution
is followed by the NN-ROM estimates is observed with the increase in the length of the
temporal history data.

In the parametrized framework of NN-ROM, parameters characterizing the dynamics
are included in the input feature set while training with the objective to enhance the
generalization of the model to provide estimation for configurations outside the training
data. The performance of this framework was evaluated for the reconstruction of cylin-
der wake flow dynamics at low Reynolds number. Data from simulations at 9 Reynolds
numbers in the range Re ∈ [100, 210] is considered and divided into training and testing
subsets based on the parameter. The trained model was evaluated to provide estima-
tion of the dynamics corresponding to two parameters - one lying within the range of
parameters used for training (interpolation problem) and one outside the range of the
training parameter set (extrapolation problem). For the interpolation problem, NN-ROM
provides a sufficiently accurate estimate of the dynamics over a long time range. On
the other hand, for the extrapolation problem, NN-ROM gives a sufficiently accurate
initial estimate of the dynamics but a phase shift is observed in the long-term prediction.
However, the state trajectories remain bounded and the amplitude matches that of the
reference trajectory.

In order to ensure accurate long-term predictions, NN-ROM is augmented with an
Ensemble Kalman Filter (EnKF) algorithm introduced in Sec. 3.2.2. The ability of NN-
ROM to provide sequential updates makes it amenable to be used as a forecast model
in the EnKF algorithm. The performance of NN-ROM augmented with EnKF (NN-
ROM-DA) is evaluated for reconstruction of the flow field. NN-ROM-DA is found to be
effective in mitigating the observed phase shift over a long time span and consequently,
an improvement in the estimation is observed overall.



200 Predicting transient dynamics using non-intrusive ROM

The performance of NN-ROM-DA is evaluated on experimental cylinder wake flow
data at Re = 1.5× 104. Observations in the form of streamwise velocity components are
used to improve the accuracy of NN-ROM estimates. The results show a more accurate
long-term prediction of dynamics in both the latent and physical space as compared to
NN-ROM. Moreover, using multiple consecutive assimilations (pDA > 1) has been shown
to further improve the long-term predictions.
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Conclusion and future work

The main objective of this thesis was to address the challenge of high computational costs
posed by full-scale numerical models. Specifically, strategies for reduced-order modeling
of high-dimensional estimation problems in fluid dynamics have been developed.

An estimation methodology, in which reduced-order models (ROMs) are extracted
from numerical simulations or experimental measurements and are subsequently used
as estimator to predict the temporal evolution of the system dynamics, has been em-
ployed to investigate the performance of the data-driven reduced-order modeling frame-
works belonging to two categories – intrusive and nonintrusive. These frameworks have
been demonstrated to provide tools that combine the fidelity and robustness of a high-
dimensional representation of dynamical systems with the computational efficiency of
a low-order approximator in terms of latent space variables, i.e. the temporal modal
coefficients.

In the pursuit of this objective, several interesting aspects of the estimation frame-
work have been investigated and novel approaches for model parameter identification and
surrogate modeling were proposed. The intrusive and nonintrusive reduced-order mod-
eling approaches were successfully applied to the estimation of the temporal dynamics
of the latent space variables and reconstruction of high-dimensional flow fields.

7.1 Intrusive framework
The data-based method involving the identification of a ROM obtained from the Galerkin
projection of the incompressible Navier-Stokes equations on the proper orthogonal de-
composition (POD) modes has been considered. For dataset which sufficiently represents
the typical variations of a system, the intrusive POD-ROM provides estimates which are
valid within this range. In order to account for the inaccuracy introduced in the model
due to reduction of the dimension, an additive modal eddy viscosity term is introduced
for stabilization. This model serves as a low-order approximation of the full-scale system
governing the dynamics.

The coefficients of the polynomial terms have been identified using linear regres-
sion method. Using toy models, three system identification methods – namely, ordinary
least squares (OLS), sparse identification of nonlinear dynamics (SINDy), and least an-
gle regression (LARS) – have been evaluated in a probabilistic framework provided by
the bootstrap method. The OLS identification method was found to be accurate but

201
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computationally expensive for problems with high degrees of freedom. The SINDy and
LARS identification methods exhibited comparable performances in terms of accuracy
of the estimates. However, upon comparing the elapsed time for the parameter iden-
tification, it was concluded that the SINDy method is computationally more efficient
for identification problems involving low degrees of freedom, while the LARS method is
more efficient for the problems involving high degrees of freedom.

Next, the identification of the parameters associated with the modal eddy viscosity
terms, crucial for the stabilization of the POD-ROM, has been performed in a data
assimilation paradigm. The dual ensemble Kalman filter (Dual-EnKF) algorithm, which
seamlessly integrates the model output and measurements, was used for the data-driven
parameter estimation. Assuming that the source of the forecast errors is known, this
sequential data assimilation technique is able to alternately update the model param-
eters and provide long-term predictions. The influence of the model and observation
covariances and the size of the ensemble, on the estimation error was examined for a toy
model. it was found that the accuracy of the estimation depends primarily on the ratio
of the observation and model covariance levels which is fixed by the problem. It was also
observed that accurate estimates with a low error level of the order of 1.0× 10−3 were
obtained for sufficiently large ensemble sizes. Given an appropriate choice of the initial
covariance levels, the algorithm was also able to recover both the state evolution and
the model parameters even in the presence of noisy observations. In numerical and ex-
perimental cylinder wake applications, an operational ensemble forecast-analysis system
which produces substantially improved flow state information was demonstrated. The
inclusion of the stabilizing parameters and the assimilation of observations during the
model integration was found to provide a framework for robust long term estimation.
When the estimated POD coefficients were used for the reconstruction of the vorticity
fields, more accurate results were obtained using the stabilized and assimilated ROM as
compared to the initial ROM, with a reduction of 4.6% in the error metric. The dynam-
ics of the original velocity field in terms of frequency content was also well replicated
without loss in the phase information.

In problems where the prediction of long-term evolution based on the stabilized
reduced-order models was found to be unstable, it was overcome by introducing a feed-
back system using EnKF algorithm. For all the test cases, this sequential data assim-
ilation technique was able to successfully capture the full state dynamics using regular
assimilation of new observations. Nonetheless, it must be noted that the more accu-
rate prediction of the next step provided by the stabilized POD-ROM helps in relaxing
the model error covariance levels and suppressing the accumulated errors. Thus, such
improvement of the POD-ROM is a prerequisite for accurate data-driven simulations of
unsteady flows.

7.2 Nonintrusive framework
A novel framework based on deep neural network (DNN) has been developed as a sur-
rogate, nonintrusive reduced-order modeling approach to bypass the Galerkin projection
step used to obtain the intrusive POD-ROM. The nonintrusive ROM, referred as NN-
ROM, operated in an offline-online paradigm to estimate the temporal POD coefficients.
During training, the NN-ROM allows to take into account the memory effect in the form



7.3 Recommendations for future work 203

of temporal sequence as input features, and to consider residuals between two consec-
utive time steps as output targets. The performance of the NN-ROM was assessed by
implementing it as a forward model to obtain long-term estimates for toy model and
fluid flow problems.

For the standard Lorenz-63 system, it was observed that the NN-ROM estimator
was able to accurately predict the dynamics over a longer time range as the length of
the temporal history data in the input increased. However, the reduction in estimation
error was not monotonous for this example featuring a positive Lyapunov exponent. The
number of past time steps is therefore treated as a hyperparameter which has been
selected heuristically in this thesis.

Next, parameters characterizing the flow problems were included in the input features
of the NN-ROM and the trained model was used to estimate the dynamics corresponding
to the configurations lying outside the parameter set used for training. Data from
numerical cylinder wake flow at low Reynolds number in the range of Re ∈ [100, 210]
was considered to evaluate the performance of the parametrized framework. For the
interpolation problem, the model provided sufficiently accurate estimate of the dynamics
over a long time range. On the other hand, for the extrapolation problem, only the
initial estimate was found to be accurate and a phase shift was observed in the long-
term prediction. As a remedy, the NN-ROM estimates were augmented with flow field
observations using the ensemble Kalman filter (EnKF) algorithm, where the trained NN-
ROM served as a forecast model in the data assimilation paradigm. It was observed that
the NN-ROM augmented with EnKF, referred as NN-ROM-DA, was able to mitigate
the observed phase-shift and therefore improve the accuracy of long-term predictions,
evident from a decrease of 45% in the error metric as compared to the initial NN-ROM
estimation.

Lastly, the performance of the NN-ROM-DA framework was evaluated for a high
Reynolds number experimental cylinder wake flow problem. A similar improvement as
the numerical case was observed in the long-term prediction of the dynamics. Moreover,
using multiple consecutive assimilations, a decrease of 21% in the error metric was
observed as compared to the initial NN-ROM estimation.

In conclusion, the multistep, residual-based, parametrized neural network framework
which is augmented with EnKF can be employed as a sufficiently robust approach to
provide accurate long-term dynamical predictions.

7.3 Recommendations for future work
In this work, relatively low-order models, i.e. degrees of freedom less than or equal to
20, have been considered. This allowed to concentrate on the development, testing, and
evaluation of the different reduced-order modeling strategies rather than dealing with the
model complexities. The discussions in Chap. 5 and Chap. 6 provided valuable insights
into the performance of the intrusive and nonintrusive methods in applications involving
a range of dynamical systems.

A natural extension of the current work is to use the data-based ROM identification in
operational forecasting and in applications requiring repeated realizations of the system
such as real-time control, multidisciplinary optimization, and uncertainty quantification.
Working in a practical setup would provide an opportunity to assess the feasibility and
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to gain a deeper insight into the capabilities of the data-based reduced-order modeling
frameworks.

In terms of data assimilation, a more intricate representation of the errors and error
covariances is required for application to more complex problems. The amplitudes of
the model and observation error covariance define the weights given to the background
(model forecasts) and the observations which consequently impact the accuracy of the
estimation. Also, the consideration of the type and availability of the observational
data, the nonlinear observation operators, representativity and instrument errors will be
important while assimilating real observations.

A comparative study of the parameter estimation methods proposed in this work
must be performed against other data-driven calibration techniques (Brunton, Noack,
and Koumoutsakos, 2019). This would allow an evaluation of the cost effectiveness of
the current method with respect to the currently used modeling alternatives.

Except for the parametrized NN-ROM, it was assumed that the reduced-order models
are applicable only within the operating range of the snapshot dataset used to build the
model. Robustness analysis of the models must be performed in order to have a detailed
knowledge of the range of validity of the reduced-order model, i.e. to understand if the
identified model will still be able to provide accurate estimates if the parameters like
Reynolds number vary between specified minimum and maximum values. This can be
challenging as, in governing nonlinear PDEs, the change of physical parameters results
in a change in the spatial distribution of the solution which the initial POD modes may
not be able to approximate. One of the scenarios in which the robustness analysis can
be beneficial is when uncertainties are introduced in terms of time varying parameter
disturbances, which in turn affect the estimation of the POD coefficients.

Lastly, it is acknowledged that the performance of the parametric framework of
NN-ROM was tested with the limited available parametrized dataset and needs to be
further evaluated with datasets involving more number of parameters and those obtained
from experiments. Also, for NN-ROM architecture and optimization, more sophisticated
methods like random search (Bergstra and Bengio, 2012) and Bayesian optimization
(Brochu et al., 2010) should be introduced to tune the model hyperparameters according
to the problem.
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Numerical simulation of 2D-cylinder
wake flow

Contents
A.1 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 206

A.3 Validation of results of flow at ReD = 100 . . . . . . . . . . . . . 206

In the fluid dynamics community, a large body of literature exists in which the two-
dimensional incompressible viscous flow past a circular cylinder has been chosen to illus-
trate modal decomposition (Bagheri, 2013) and model identification techniques (Noack,
Afanasiev, et al., 2003; Brunton, Proctor, et al., 2016b; Rowley and Dawson, 2017).
Owing to its simple dynamics, this particular set-up has been used extensively in this
work as a benchmark dynamical system to illustrate the model identification strategies.
In this appendix, the details of the numerical simulation are discussed.

A.1 Mesh
The numerical simulation is performed using a finite-element based incompressible Navier-
Stokes equations solver written in FreeFem++ (Hecht, 2013). The computational do-
main along with the dimensions and boundary conditions is shown in Fig. A.1. All the
dimensions have been parameterized with the diameter of the cylinder D, here set to
one.

For the purpose of mesh size control, the domain is divided into sub-domains and
the automatic mesh generation offered by the buildmesh command in FreeFem++ is
used. The mesh has 10263 vertices and 20360 triangles. See Fig. A.2.
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Figure A.1: Schematic of the computational domain and boundary conditions for the 2D-
cylinder wake flow simulation.

Figure A.2: Finite-element discretization of the domain obtained from FreeFem++.

A.2 Boundary conditions
The schematic representation of the boundary conditions for the 2D cylinder flow domain
is shown in Fig. A.1. At the inlet, we consider a uniform flow in the x-direction. Here,
ub = 1. On the upper and lower walls and the cylinder surface, we have no-slip boundary
conditions. The free outflow condition is used at the outlet. In FreeFem + +, this
condition is implicitly applied.

A.3 Validation of results of flow at ReD = 100
To solve the space discretized Navier-Stokes equations, an optimized Newton method is
used. This approach is a variant of the classical Newton method for which the nonlinear
term is discretized semi-implicitly. The velocity and pressure variables are discretized
using P2 and P1 finite element spaces, respectively. After convergence of the iterative
procedure, the pressure field is such that the resulting velocity is divergence free. A
sample of the vorticity field at t = 150 is shown in Fig. A.3.
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Table A.1: Post-transient parameters of 2D-cylinder wake flow at Re = 100

Cd Cl,max ∆p St

Simulation 1.36 0.3354 0.9307 0.168
Bounds (Muddada and Patnaik, 2010) 1.28–1.41 – – 0.160–0.170

Figure A.3: Vorticity field obtained from the numerical simulation of 2D-cylinder wake flow at
Re = 100 at the instant t = 150.
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Figure A.4: (a) Time evolution of drag coefficient (Cd), lift coefficient (Cl), and pressure drop
across the cylinder’s leading and trailing surfaces (∆p). (b) Power spectral density of the Cl
evolution in the post-transient stable vortex shedding window. The dotted line indicates the
peak frequency.

The Reynolds number of the numerical simulation is set to Re = 100, based on the
cylinder diameter D, the free-stream velocity ub, and the kinematic viscosity ν. This
Reynolds number is well above the critical Reynolds number (Rec = 48) for the onset
of the two-dimensional vortex shedding (Zebib, 1987) and below the critical Reynolds
number (Rec = 188) for the onset of three-dimensional instabilities (Zhang, Fey, et al.,
1995).

The snapshots are taken in a time range of t = [150, 250] after all initial disturbances
have been damped. The simulation generates Nt = 1000 snapshots at a sampling
frequency of fs = 10 Hz. The snapshots contain the information of the two components
of the fluctuating velocity vector u′ = [u′x, u′y]>. The number of degrees of freedom for
the problem (size of the discretized state variables) is Ns = 81772. The time evolution
of the drag and lift coefficient are shown in Fig. A.4a. From the evolution, it is observed
that after the initial transient phase, the periodic vortex shedding is observed from
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t = 100 onward. This implies that the snapshots will represent the dynamics of the
post-transient stable vortex shedding.

For validation, the post-transient values of mean drag coefficient Cd and the Strouhal
number St are compared with the range reported in (Muddada and Patnaik, 2010). The
values of maximum lift coefficient Cl,max and mean pressure drop ∆p are also obtained.
The power spectral density of the post-transient Cl evolution is obtained, as shown in
Fig. A.4b, and the value of the peak frequency f is used to calculate the Strouhal number
St = fD/ub, where ub = 1 and D = 1. The values are reported in Tab. A.1. It is
observed that the values of Cd and St lie within the bounds reported in the literature.
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B.1 Dot product
Let x and y be two column vectors in Rn. The dot product is defined as

x · y = x>y =
n∑

i=1

xiyi ∈ R.

B.2 Outer product
Let x ∈ Rn and y ∈ Rm be two column vectors. Their outer product is defined as
yx> = A where

(A)ij = yixj with 1 ≤ i ≤ m, and 1 ≤ j ≤ n.



B.3 Vector norm 211

B.3 Vector norm

B.3.1 Definition
Given a vector space V over a field K (real numbers R or complex numbers C), a norm
on V is a non negative-valued function p : V → R+ with the following properties:

For all a ∈ K and all u,v ∈ V ,

1. p(u+ v) ≤ p(u) + p(v) (triangle inequality).

2. p(au) = |a| p(u) (absolutely homogeneous or absolutely scalable).

3. if p(u) = 0 then u = 0 (positive definite).

The norm of a vector u ∈ V is usually denoted by p(u) = ‖u‖.

A seminorm on V is a function p : V → R+ with only the properties 1 and 2 above.

B.3.2 Equivalent norms
Suppose that p and q are two norms (or seminorms) on a vector space V . Then p and
q are called equivalent, if there exists two real constants c and C with c > 0 such that
for every vector v ∈ V , we have

cq(v) ≤ p(v) ≤ Cq(v).

In a finite-dimensional space, any tow norms are equivalent but this is not true in infinite-
dimensional spaces.

B.3.3 p-norm (p ≥ 1)
Let p ≥ 1 be a real number. The p-norm (also called `p-norm) of vector x =
(x1, . . . , xn) ∈ Rn is

‖x‖p :=
( n∑

i=1

|xi|p
)1/p

.

For p = 1, we get the Taxicab norm or Manhattan norm ‖x‖1 :=
n∑

i=1

|xi|. It can be

viewed as counting the number of blocks you would have to walk on a n-dimensional
grid. For p = 2, we get the Euclidean norm ‖x‖2 :=

√
x2

1 + · · ·+ x2
n. As p approaches

∞, the p-norm approaches the infinity norm or maximum norm: ‖x‖∞ := max
i
|xi|.

The norm is a measure of length. All these norms are equivalent, since

‖x‖∞ ≤ ‖x‖p ≤ n
1
p‖x‖∞.
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B.3.4 0-norm
Let x ∈ Rn and define the support set of x as the set of indices corresponding to its
nonzero elements, i.e.

supp(x) := {j ∈ {1, 2, · · · , n} | xj 6= 0} .

The `0 penalty of x measures the number of nonzero elements in the vector and is
defined as:

‖x‖0 := Card (supp(x)) .

The vector x is called s-sparse if it has at most s nonzero elements, thus ‖x‖0 ≤ s.

B.4 Matrix norm
B.4.1 Definition
Let Km×n be the vector space of all matrices of size m× n with entries in the field K
(real numbers R or complex numbers C). A matrix norm is a function ‖ ·‖ : Km×n → R
that must satisfy the following properties:

• ‖αA‖ = |α|‖A‖ (absolutely homogeneous)

• ‖A+B‖ ≤ ‖A‖+ ‖B‖ (sub-additive or triangle inequality)

• ‖A‖ ≥ 0 (positive-valued)

• ‖A‖ = 0 ⇐⇒ A = 0m,n (definite)

for all scalars α ∈ K and for all matrices A,B ∈ Km×n.
Additionally, in the case of square matrices (m = n), some (but not all) matrix norms

satisfy the additional property given by

‖AB‖ ≤ ‖A‖‖B‖.

A matrix norm that satisfies this additional property is called a submultiplicative norm.

B.4.2 Matrix norms induced by vector norms
Let ‖ · ‖ be a vector norm for both spaces Km and Kn. The induced norm on the space
Km×n of all m× n matrices is defined as follows:

‖A‖ = sup {‖Ax‖ : x ∈ Kn with ‖x‖ = 1}

= sup
{
‖Ax‖
‖x‖

: x ∈ Kn with x 6= 0
}
.

If the p-norm for vectors (1 ≤ p ≤ ∞) is used (see Sec. B.3), then

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

.
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In the special cases of p = 1, 2,∞, the induced matrix norms can be computed as

‖A‖1 = max
1≤j≤n

m∑

i=1

|aij|,

which is simply the maximum absolute column sum of the matrix;

‖A‖∞ = max
1≤i≤m

n∑

j=1

|aij|,

which is simply the maximum absolute row sum of the matrix;

‖A‖2 = σmax(A),

where σmax(A) represents the largest singular value of matrixA. The following inequality
holds:

‖A‖2 = σmax(A) ≤ ‖A‖F =
(

m∑

i=1

n∑

j=1

|aij|2
) 1

2

,

where ‖A‖F is the Frobenius norm.

B.4.3 "Entrywise" matrix norms
The Frobenius norm or the Hilbert–Schmidt norm is defined as:

‖A‖F =

√√√√
m∑

i=1

n∑

j=1

|aij|2 =
√

trace
(
AHA

)
=

√√√√
min{m,n}∑

i=1

σ2
i (A),

where σi(A) are the singular values of A.

B.5 Injectivity, surjectivity and bijection
Let f be a function mapping the domain X to the codomain Y , i.e. f : X → Y .

B.5.1 Injective function
By definition, the function f is said to be injective, if

∀x1,x2 ∈ X, f(x1) = f(x2)⇒ x1 = x2,

or, using the contrapositive, if

∀x1,x2 ∈ X, x1 6= x2 ⇒ f(x1) 6= f(x2).

An injective function (also known as injection, or one-to-one function) is a function that
maps distinct elements of its domain to distinct elements of its codomain. In other
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words, every element of the function’s codomain is the image of at most one element of
its domain.

B.5.2 Surjective function
By definition, the function f is said to be surjective, if

∀y ∈ Y, ∃x ∈ X, f(x) = y.

A surjective function is also known as surjection, or onto function. It is not required that
x be unique; the function f may map one or more elements of X to the same element
of Y .

B.5.3 Bijective function
By definition, the function f is a bijection, bijective function, one-to-one correspondence,
or invertible function, if f is a one-to-one (injective) and onto (surjective) mapping of a
set X to a set Y . In other words, each element of X is paired with exactly one element
of Y , and each element of Y is paired with exactly one element of X. There are no
unpaired elements.

B.6 Basis
Let V be a vector space over a field K (real numbers R or complex numbers C). A
subset B of V is a basis if it satisfies the two conditions:

1. the linear independence property, i.e. for every finite subset {v1, . . . ,vn} of B:

if c1v1 + · · ·+ cnvn = 0, for some c1, . . . , cn ∈ K then c1 = · · · = cn = 0;

2. the spanning property, i.e. for every vector v in V , one can write:

v = c1v1 + · · ·+ cnvn with c1, . . . , cn ∈ K and v1, . . . ,vn ∈ B.

The scalars ci are called the coordinates of the vector v with respect to the basis
B. By the first property, the coordinates are uniquely determined. The dimension of a
subspace is the largest number of vectors in the subspace that are linearly independent.

B.7 Range space, Null space and Rank

B.7.1 Definitions
Let A ∈ Rn×m be an arbitrary matrix, we can associate to A the linear map f : Rn →
Rm such that x 7→ Ax where x ∈ Rn. For f to be an injective function, it is necessary
that n ≤ m and that the columns of A be linearly independent. If the columns are not
linearly independent, then there exists z ∈ Rn such that Az = 0. Due to the linearity,
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there are an infinite number of vectors that map to zero. This set of vectors is called
the null space of A and is denoted

N (A) = {x ∈ Rn | Ax = 0} .

Due to the linearity of the mapping, N (A) is a subspace.

Now consider the range of f . The range

R (A) = {Ax | x ∈ Rn} .

is the set of vectors mapped to Rm by x 7→ Ax. For an arbitrary x ∈ Rn, y = Ax
is a linear combination of the columns of A. The range of A is then the span of the
columns of A:

R (A) = Span (a1,a2, · · · ,an) .

The column-rank is the dimension of R (A) and the row-rank is the dimension of
R
(
A>
)
. The column-rank of a matrix is equal to its row-rank and is called the rank

of the matrix. A matrix is said to have full rank if Rank (A) = min (m,n). f is an
injective function if m ≥ n and A has full rank. In that case, we have

Ax = Ay ⇒ x = y.

For f to be a surjective function, the column rank must be m. A square matrix is
full rank if and only if f is a bijective function. Such a matrix is called non singular. For
a non singular matrix, there exists a unique inverse. A square matrix with rank less than
its size is called singular.

B.7.2 Fundamental theorem of linear algebra
The fundamental theorem of linear algebra states that for a matrix A ∈ Rm×n, we have:

dim (R (A)) + dim (N (A)) = n.

B.8 Inner product
B.8.1 Definition
Let V be a vector space over the field K (real numbers R or complex numbers C). The
map

〈·, ·〉 : V × V → K

is called an inner product, if the following conditions (1), (2) and (3) are satisfied for all
vectors x,y, z ∈ V and all scalars a ∈ K:

1. Linearity in the first argument:

〈ax,y〉 = a〈x,y〉
〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉
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2. Hermitian symmetry:
〈x,y〉 = 〈y,x〉H.

3. Positive-definite:
〈x,x〉 > 0, if x 6= 0

Assuming (1) holds, condition (3) will hold if and only if conditions (4) and (5) below
hold:

4. Positive semi-definite or nonnegative-definite:

〈x,x〉 ≥ 0

5. Definite condition
〈x,x〉 = 0⇒ x = 0

Conditions (1) through (5) are satisfied by every inner product. Inner product spaces
are normed vector spaces for the norm defined by ‖x‖ =

√
〈x,x〉.

B.8.2 Examples
B.8.2.1 Euclidean vector space

A common special case of the inner product is the dot product defined in Sec. B.1. Rn

with the dot product defines the Euclidean vector space:

〈

x1
...
xn


 ,



y1
...
yn



〉

Rn

:= x>y =
n∑

i=1

xiyi = x1y1 + · · ·+ xnyn.

B.8.2.2 Inner product with respect to matrix

Let A ∈ Cn×n be any Hermitian positive-definite1 matrix. The inner product with
respect to A of x ∈ Cn and y ∈ Cn is given by

〈x,y〉A := yHAx =
(
xHAy

)H
.

The inner product can be used to define a norm

‖x‖A =
√
〈x,x〉A,

which is called the A-norm. When A = I, this is just the 2-norm.

A is an Hermitian positive semidefinite matrix if and only if it can be decomposed
as a product

A = MHM .

1A is said to be positive-definite if the scalar zHAz is strictly positive for every non-zero column
vector z of n complex numbers.
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With that in mind, the A inner product can be written:

〈x,y〉A = yHAx = yHMHMx = (My)H (Mx) = 〈My,Mx〉Cn .

In terms of norm, we obtain:

‖x‖A =
√
〈x,x〉A =

√
〈Mx,Mx〉Cn = ‖Mx‖Cn .

B.9 Orthogonality and orthonormality
B.9.1 Definition
Two vectors, x and y, in an inner product space, V , are orthogonal if their inner prod-
uct 〈x,y〉 = 0. We denote this relation x ⊥ y. These vectors are A-orthogonal if
〈x,y〉A = 0.

Let 〈·, ·〉 be the inner product defined over V . A set of vectors {u1,u2, . . . ,un} ∈ V
is called orthonormal if and only if

〈ui,uj〉 = δij, ∀i, j

where δij is the Kronecker delta. A-orthonormality is defined by extension with the
A-inner product. Every orthonormal set of vectors is linearly independent.

B.9.2 Unitary/orthogonal matrices
B.9.2.1 Definition

A ∈ Cn×n is unitary, if
AHA = AAH = In.

By extension, if A ∈ Rn×n, we define an orthogonal matrix as:

A>A = AA> = In.

The columns and rows of A are orthonormal for the usual inner product.

B.9.2.2 Properties

If A is a unitary matrix, then the following hold:

P1 : Let x and y be two complex vectors, multiplication by A preserves their inner
product, i.e. 〈Ax,Ay〉 = 〈x,y〉. See C6 for the consequence.

P2 : A is normal (see Sec. B.11 for the definition and properties) : AHA = AAH.
See P3 and C7 for the consequence.

P3 : A is diagonalizable and its eigenvectors form an orthonormal basis, i.e. A has a
decomposition of the form

A = UΛUH
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where U is unitary, and Λ is diagonal and unitary. A is similar to the diagonal
matrix Λ.

P4 : |det(A)| = 1. See C7 for the consequence in terms of eigenvalues of A.

B.9.2.3 Equivalent conditions

If A ∈ Cn×n, then the following conditions are equivalent:

C1 : A is unitary.

C2 : AH is unitary.

C3 : A is invertible with A−1 = AH.

C4 : The columns of A form an orthonormal basis of Cn with respect to the usual inner
product, i.e. AHA = In.

C5 : The rows of A form an orthonormal basis of Cn with respect to the usual inner
product, i.e. AAH = In.

C6 : A is an isometry with respect to the usual norm, i.e. ‖Ax‖2 = ‖x‖2 for all

x ∈ Cn, where ‖x‖2 =

√√√√
n∑

i=1

|xi|2. Orthogonal matrices A are often called

rotations or reflections.

C7 : A is a normal matrix (equivalently, there is an orthonormal basis formed by eigen-
vectors of A). Since |det(A)| = 1 (see P4), then the eigenvalues of A lie on the
unit circle.

B.9.3 Gram-Schmidt orthogonalization process
B.9.3.1 Theorem

If {v1, . . . ,vn} is a linearly independent set of vectors in an inner-product space V , then
there exists an orthonormal set {e1, . . . , en} of vectors in V such that

Span (v1,v2, · · · ,vn) = Span (e1, e2, · · · , en) .

B.9.3.2 Gram-Schmidt algorithm

Let proju (v) be the operator that projects the vector v orthogonally onto the line
spanned by vector u. This projection operator is defined by

proju (v) = 〈u,v〉
〈u,u〉

u.



B.9 Orthogonality and orthonormality 219

If u = 0, we define proj0 (v) := 0 i.e. , the projection map is the zero map, sending
every vector to the zero vector. The Gram–Schmidt process then works as follows:

uk = vk −
k−1∑

j=1

projuj (vk), ek = uk
‖uk‖

k = 1, · · · , n. (B.1)

The calculation of the sequence u1, · · · ,un is known as Gram–Schmidt orthogonal-
ization, while the calculation of the sequence e1, · · · , en is known as Gram–Schmidt
orthonormalization as the vectors are normalized. This algorithm is numerically unstable
leading to loss of orthogonality through rounding errors. The Gram–Schmidt process can
be stabilized by a small modification. In this version, sometimes referred to as modified
Gram-Schmidt, uk is computed iteratively as:

u
(1)
k = vk − proju1 (vk),
u

(2)
k = u

(1)
k − proju2 (u(1)

k ),
...

u
(k−2)
k = u

(k−3)
k − projuk−2

(u(k−3)
k ),

u
(k−1)
k = u

(k−2)
k − projuk−1

(u(k−2)
k ),

uk = u
(k−1)
k

‖u(k−1)
k ‖

B.9.4 The QR matrix factorization
B.9.4.1 Definition

Let A ∈ Cm×n be a matrix with m ≥ n. A may be decomposed as the product of an
m ×m unitary matrix Q (QHQ = QQH = I) and an m × n upper triangular matrix
R. As the bottom m− n rows of an m× n upper triangular matrix consist entirely of
zeros, it is often useful to partition R, or both R and Q:

A = QR = Q

[
R1
0

]
=
[
Q1,Q2

] [R1
0

]
= Q1R1,

where R1 is an n× n upper triangular matrix, 0 is an (m− n)× n zero matrix, Q1 is
m× n, Q2 is m× (m− n), and Q1 and Q2 both have orthogonal columns. Q1R1 is
called the thin QR factorization of A or reduced QR factorization. If A is of full rank
n and we require that the diagonal elements of R1 are positive then R1 and Q1 are
unique, but in general Q2 is not.

B.9.4.2 Computing the QR decomposition

There are several methods for computing the QR decomposition, such as by means of
the Gram–Schmidt process, Householder transformations, or Givens rotations. Each has
a number of advantages and disadvantages.
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B.9.4.3 Use of QR for solving a linear system

Let A ∈ Rm×n be a matrix, we consider the linear problem Ax = b. Compared to the
direct matrix inverse, solutions using QR decomposition are more numerically stable due
to their reduced condition numbers.

To find the solution x̂ to the overdetermined (m ≥ n) problem Ax = b which
minimizes the norm ‖Ax̂ − b‖, first find the QR factorization of A (A = QR). The
solution can then be expressed as x̂ = R1

−1 (Q1
>b
)
, where Q1 is an m × n matrix

containing the first n columns of the full orthonormal basis Q and where R1 is a square
m×m right triangular matrix.

To solve the underdetermined m < n linear problem, first find the QR factorization
of the transpose of A, i.e. AT = QR. Q is orthogonal and R =

[
R1
0

]
where R1 is as

before, and the zero matrix has dimension (n−m)×m. After some algebra, it can be
shown that a solution to the linear problem can be expressed as:

x = Q

[(
R1
>)−1

b
0

]

where one may either find
(
R1
>)−1 by Gaussian elimination or compute

(
R1
>)−1

b
directly by forward substitution. The latter technique enjoys greater numerical accuracy
and lower computations.

B.9.5 Orthogonal complement
If S is a subset of a Hilbert space H, the set of vectors orthogonal to S, called the
orthogonal complement of S, is defined as

S⊥ = {x ∈ H | 〈x, s〉 = 0, ∀s ∈ S} .

S⊥ is a closed subset of H. Every x ∈ H can then be written uniquely as x = s+ s⊥,
with s ∈ S and s⊥ ∈ S⊥.

B.10 Matrix similarity
In linear algebra, two n-by-n matrices A and B are called similar if there exists an
invertible n-by-n matrix P such that:

B = P−1AP .

Similar matrices represent the same linear map under two (possibly) different bases,
with P being the change of basis matrix. A transformation A 7→ P−1AP is called a
similarity transformation or conjugation of the matrix A. The matrices A and B share
the same eigenvalues (see Sec. B.12).
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B.11 Normal matrix
Let A be a complex matrix. A is normal, if and only if, we have:

AHA = AAH.

The spectral theorem states that a matrix A is normal if and only if there exists a
diagonal matrix Λ and a unitary matrix U such that A = UΛUH. Since U−1 = UH,
the matrix A is similar (see Sec. B.10) to a diagonal matrix Λ. Since U is unitary, the
eigenvectors of A form an orthonormal basis for the usual inner product.

A symmetric matrix C ∈ Rn×n is a special case of normal matrix. As a consequence
C is necessarily orthogonally diagonalizable. This implies that there always exists an
orthogonal matrix S ∈ Rn×n (i.e. S>S = In) such that S−1CS is diagonal. The
columns of the matrix S correspond to the eigenvectors of C (see Sec. B.12).

B.12 Eigenvalue Decomposition
B.12.1 Definition
Let A ∈ Cn×n be an arbitrary square matrix. vi ∈ Cn and λi ∈ C are eigenvectors/-
values if:

AV = V Λ,

with V = (v1, v2, . . . ,vn) ∈ Cn×n and Λ = diag (λ1, λ2, . . . , λn).

If A has n linearly independent eigenvectors vi then A can be factorized as:

A = V ΛV −1 eigendecomposition of A.

This is equivalent to say that A and Λ are similar (see Sec. B.10) with Λ a diagonal
matrix. The eigenvectors capture the directions in which vectors can grow or shrink (see
Fig. B.1).

B.12.2 Application to linear dynamical system
The eigenvalue decomposition is extremely useful to describe the long-term evolution of
linear dynamical systems: ẋ = Ax. Indeed, we have:

x (t) = exp (A t) x (t0) ,
= V exp (Λ t) V −1 x (t0)

=
n∑

k=1

vk exp (λk t) bk,

where

• b = V −1 x (t0) i.e. x (t0) in the eigenvector basis

• Re(λk): growth rate (> 0) ; decay rate (< 0)



222 Elements of linear algebra

c Ac

A2 c A3 c

Figure B.1: Successive applications of the matrix A =
(

1.2 0.4
0.5 0.5

)
to a set of unit norm initial

conditions defined by C = {ci | ‖ci‖2 = 1}.

• Im(λk): frequency

• System stable if Re(λk) < 0 ∀k.

B.13 Singular Value Decomposition

B.13.1 Definition
Let A ∈ Cm×n be an arbitrary matrix. We note AH the Hermitian or complex conjugate
transpose matrix of A (AH = A>). If A is real, then AH = A>.

The Singular Value Decomposition or SVD is a generalization of the eigenvalue
decomposition to non-square matrices. Every matrix A can be decomposed as:

A = UΣV H (B.2)

where

• U ∈ Cm×m is the unitary2 matrix (UHU = UUH = Im) with columns of left-
singular vectors ui, i.e. U = (u1,u2, · · · ,um).

• Σ ∈ Rm×n is the diagonal matrix of singular values, i.e.

Σ = Diag (σ1, σ2, · · · , σp, 0, · · · , 0)

2If A is real then U is orthogonal, i.e. U>U = UU> = Im.
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with p = min (m,n). The SVD is not unique but it is always possible to choose
the decomposition so that the singular values σi are in descending order, i.e.

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0

where r the rank of A is the number of non-zero singular values (r ≤ p =
min (m,n)).

• V H ∈ Cn×n is the unitary matrix (V HV = V V H = In) with columns of right-
singular vectors vi, i.e. V = (v1,v2, · · · ,vn).

The range of A is given by R (A) = Span (u1,u2, · · · ,ur) and the null space of
A by N (A) = Span (vr+1, · · · ,vn) .

B.13.2 Examples

B.13.2.1 Case n > m i.e. p = m

We consider the SVD decomposition of A = UΣV H where A has more columns than
rows (n > m). The case where n� m is called “short/fat” matrix.

A =
(
u1 · · · um

)




σ1
. . .

. . .
. . .

σm

∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · · · · 0
... ...
... ...
... ...
0 · · · · · · 0







v1
H

...

...
vm

H

vm+1
H

...

...
vn

H




B.13.2.2 Case m > n i.e. p = n

We consider the SVD decomposition of A = UΣV H where A has more rows than
columns (m > n). The case where m� n is called “tall/skinny” matrix.
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A =
(
u1 · · · un un+1 · · · um

)




σ1
. . .

. . .
. . .

σn

0 · · · · · · · · · 0
... ...
... ...
0 · · · · · · · · · 0







v1
H

...

...

...

...

...

...
vn

H




.

B.13.3 Truncated SVD approximations: Dyadic expansion
If r = rank(A), then the SVD of A ∈ Cm×n can be written as

A =
(
Um×r Um×(m−r)

)( Σr×r 0
0 0

)(
V n×r V n×(n−r)

)H

A = Um×rΣr×rV
H
n×r

i.e.
A = σ1 u1v1

H + σ2 u2v2
H + · · ·+ σr urvr

H.

If we truncate this expansion to k < r terms, then

Ak = U kΣkV
H
k = σ1 u1v1

H + σ2 u2v2
H + · · ·+ σk ukvk

H.

The matrix Ak is an approximation of A. The quality of the approximation is evaluated
by Eckart Young’s theorem (see Sec. B.13.6).

B.13.4 Geometric interpretation
The SVD factorization maps the sphere S of radius one in Rn onto an ellipsoid in Rm.
Non zero singular values are simply the lengths of the semi-axes of this ellipsoid. When
n = m, the SVD can be interpreted as a succession of three consecutive moves: an
initial rotation V H, a scaling Σ along the coordinate axes, and a final rotation U (see
Fig. B.2).

The relation

Avi = UΣV Hvi = UΣei = σiui i = 1, · · · , r

shows that A maps input vi to output ui with amplification σi. We deduce from it that
• the columns ui, i = 1, · · · , r define an orthonormal basis of A,

• the columns vi, i = 1, · · · , r define an orthonormal basis of AH, and
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A

𝑉𝐻

Figure B.2: Geometric interpretation of SVD.

• the singular values σi indicate amplification factors.

B.13.5 Links between SVD and eigenvalue problems
The SVD and the eigenvalue problems are directly linked. Some algebraic manipulations
thus allow to connect the “classical” POD and “snapshot” POD approaches.

• Classical POD (Lumley, 1967)

AAH =
(
UΣV H) (V ΣHUH) = UΣV HV︸ ︷︷ ︸

In

ΣHUH

= UΣ2UH = UΛUH

=⇒
(
AAH)U = UΣ2 = UΛ, i.e. the columns of U are the eigenvectors of

AAH ∈ Cm×m.

• Snapshot POD (Sirovich, 1987)

AHA =
(
V ΣHUH) (UΣV H) = V ΣHUHU︸ ︷︷ ︸

Im

ΣV H

= V Σ2V H

= V ΛV H

=⇒
(
AHA

)
V = V Σ2 = V Λ, i.e. the columns of V are the eigenvectors of

AHA ∈ Cn×n.

• Singular values

σi =
√
λi(AHA) =

√
λi(AAH) i = 1, · · · , r
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B.13.6 Low rank approximation: Eckart-Young theorem
Let A ∈ Cm×n, the objective is to determine Ak ∈ Cm×n such that rank(Ak) =
k < rank(A). Ak is found as the solution that minimizes the Frobenius norm (see the
definition in Sec. B.4.3) of the error A−Ak. The Eckart-Young theorem states that

min
rank (X)≤ k

‖A−X‖F = ‖A−Ak‖F =

√√√√
r∑

i=k+1

σ2
i (A)

with
Ak = U

(
Σk 0
0 0

)
V H = σ1u1v1

H + σ2u2v2
H + · · ·+ σkukvk

H.

This theorem establishes a relationship between the rank k of the approximation,
and the singular values of A.

B.14 Moore-Penrose inverse
The Moore-Penrose inverseA+ of a matrixA is the most widely known generalization of
the inverse matrix. The term pseudoinverse is often used to indicate the Moore-Penrose
inverse. The pseudoinverse is defined and unique for all matrices whose entries are real
or complex numbers. It can be computed using the singular value decomposition.

B.14.1 Definition
Let K be the fields of real numbers R or complex numbers C. The vector space of
m× n matrices over K is denoted by Km×n.

For A ∈ Km×n, a pseudoinverse of A is defined as a matrix A+ ∈ Km×n satisfying
all of the following four criteria, known as the Moore-Penrose conditions:

1. AA+A = A
AA+ need not be the general identity matrix, but it maps all column vectors of
A to themselves;

2. A+AA+ = A+

3.
(
AA+)H = AA+

AA+ is Hermitian;

4.
(
A+A

)H = A+A
A+A is also Hermitian.

B.14.2 Left and right inverse
A+ exists for any matrix A, but, when the latter has full rank (i.e. the rank of A is
min (m,n), then A+ can be expressed as a simple algebraic formula.
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In particular, when A has linearly independent columns (and thus matrix AHA is
invertible), A+ can be computed as

A+ =
(
AHA

)−1
AH.

This particular pseudoinverse constitutes a left inverse, since, in this case, A+A = I.
When A has linearly independent rows (matrix AAH is invertible), A+ can be

computed as
A+ = AH (AAH)−1

.

This is a right inverse, as AA+ = I.

B.14.3 Pseudoinverse by SVD
A computationally simple and accurate way to compute the pseudoinverse is by using
the SVD. If A = UΣV H is the singular value decomposition of A, then

A+ = V Σ+UH.

For a rectangular diagonal matrix such as Σ, we get the pseudoinverse by taking the
reciprocal of each non-zero element on the diagonal, leaving the zeros in place, and then
transposing the matrix. In numerical computation, only elements larger than some small
tolerance are taken to be nonzero, and the others are replaced by zeros. For example,
in the MATLAB, GNU Octave, or NumPy function pinv, the tolerance is taken to be
t = ε ·max (m,n) ·max (Σ), where ε is the machine precision.

B.15 Thresholded SVD
The thresholded SVD approach is classically used to solve a linear system of equations
Ax = b when the matrixA is numerically ill-conditioned (presence of noise for example)
and may cause round-off error (Gavish and Donoho, 2014). This method relies on the
use of the SVD decomposition of A = UΣV>. The principle is to determine x by only
keeping the singular triplets (σ,u,v) with singular values larger than a given positive
threshold which is dictated by the value of threshold level τ fixed a priori. This is
equivalent to empirically searching for the rank of the matrix A, and to use a pseudo-
inverse approach for determining x. In the algorithms, a difference is made between
hard-thresholding and soft-thresholding (see Murphy, 2012, p. 433).

Let Σ+, the matrix of filtered singular values3, be defined as Σ+ = Diag((σi)+). In
hard-thresholding, the filter function fh is defined as

fh(σi; τ) = (σi)+ =
{
σi, if σi > τ

0, otherwise
,

3This matrix should not be confused with Σ+ defined in Sec. B.14.3.
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𝜎𝑖

𝑓𝑠(𝜎𝑖; 𝜏)

𝜏

(a) Soft thresholding.

𝜎𝑖

𝑓ℎ(𝜎𝑖; 𝜏)

𝜏

(b) Hard thresholding.

Figure B.3: Comparison between soft thresholding and hard thresholding. The flat region is
the interval [−τ ; τ ].

whereas in soft-thresholding, the filter function fs is defined as

fs(σi; τ) = (σi)+ =
{
σi − τ, if σi > τ

0, otherwise
.

Algorithm B.1: Thresholded SVD solution of a linear system of equations
Input: A ∈ Rm×n with m ≥ n, b ∈ Rm and threshold level τ ≥ 0
Output: Solution x ∈ Rn

U ,Σ,V> ← svd(A)
r ← 1
σMax ← τ ·Σ(1) ·max(size(A))
while r < min(m,n) and Σ(r) ≥ σMax do

r ← r + 1
z ← U>b
w(1 : r)← z(1 : r)/Σ+(1 : r)
x← V [w zeros(n− r)]>
return x
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In this appendix, we consider the general linear regression model given by

y = β0 +
p∑

j=1

xjβj (C.1)

where

• y is the dependent variable;

• xj, j = 1, · · · , p the p regressors;

• β0 the intercept or bias;

• βj, j = 1, · · · , p the p parameters.

All these quantities are real scalars. We consider that we have a set of training data
yi, (xj)i , i = 1, · · · , n. Let y ∈ Rn×1 be the n-vector of outputs in the training set,
and X ∈ Rn×p be the design matrix. This matrix can be defined in terms of its column
vectors,i.e.

Xj =




(xj)1
(xj)2...
(xj)n


 ∈ Rn (j = 1, · · · , p) and X =



| | |
X1 X2 . . . Xp

| | |


 ∈ Rn×p

(C.2)
or, in terms of its row vectors, here written in columns:
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Xi =




(x1)i
(x2)i...
(xp)i


 ∈ Rp (i = 1, · · · , n) and X =




— X1
> —

— X2
> —
...

— Xn
> —


 ∈ Rn×p. (C.3)

Each column vectorsXj represent the n training data of the j-th predictor, whereas
each row vector represent the p regressors for one particular training data i. Since we
have n training data, we deduce from (C.1) that:

yi = β0 +
p∑

j=1

(xj)i βj = β0 +Xi
>β (i = 1, · · · , n) where β =




β1
β2
...
βp


 ∈ Rp. (C.4)

If we now define an extended version of X and β as

Xe =



| | | |

1n X1 X2 . . . Xp

| | | |


 ∈ Rn×(p+1) and βe =




β0
β1
β2
...
βp



∈ Rp+1, (C.5)

then (C.4) simplifies as y = Xeβe.

C.1 Standardization, or mean removal and variance
scaling

Standardization of datasets is a common requirement for many machine learning esti-
mators. The objective of this section is to explain and to justify the standardization
procedure of the variables.

We define y ∈ R, the average of yi over the n training data. Starting from (C.4),
we deduce that

y = 1
n

n∑

i=1

yi = β0 +
p∑

j=1

[
1
n

n∑

i=1

(xj)i

]
βj (C.6)

= β0 +
p∑

j=1

xjβj (C.7)

= β0 +X>β (C.8)
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where

xj = 1
n

n∑

i=1

(xj)i and X =




x1
x2
...
xp


 ∈ Rp. (C.9)

From (C.8), we deduce that the estimated value of β0 is given by:

β̂0 = y −X>β. (C.10)

By inserting (C.10) into (C.4), we obtain:

yi − y =
(
Xi −X

)>
β (C.11)

where

Xi −X =




(x1)i − x1
(x2)i − x2

...
(xp)i − xp


 ∈ Rp.

Equation (C.11) is a modified version of the original problem (C.4) where we have
removed the mean of the dependent and independent variables, without changing the
unknowns. Starting from the solution β of (C.11), we can deduce the value of the
intercept by using (C.10).

Starting with the Penalized Least Squares (PLS), it is common in Statistical Learning
to introduce constraints that penalize the value of the coefficients for each regressor.
This value should not depend on the magnitude of each variable. For this reason, we
center and reduce, or standardize, the different variables. This is equivalent to introduce
score variables. If µ and σ are the mean and standard deviation of a variable x, the
standard score is defined as:

z = x− µ
σ

. (C.12)

Hence, we define the standard deviation of the output y as

σ(y) = 1
n

n∑

i=1

(yi − y)2 (C.13)

and the standard deviation of each regressor xj (j = 1, · · · , p) as

σ (xj) = 1
n

n∑

i=1

[
(xj)i − xj

]2
. (C.14)
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After standardization of the output and regressor variables, (C.11) becomes:

yi − y
σ(y) =




(x1)i − x1

σ (x1)
(x2)i − x2

σ (x2)
...

(xp)i − xp
σ (xp)




>

γ where γ =




γ1
γ2
...
γp


 ∈ Rp. (C.15)

The standardized coefficients obtained as solution of (C.15) are linked to the un-
standardized coefficients, solution of (C.11) by the relations:

γj = βj
σ (xj)
σ(y) j = 1, · · · , p. (C.16)

Standardizing variables before regression leads to:

1. no need for intercept,

2. the ability to rank the coefficient importance by the relative magnitude of post-
shrinkage coefficient estimates, facilitating the interpretability of coefficients.

C.2 Ordinary least-squares (OLS) and Penalized
least-squares (PLS)

In the language of optimization, OLS corresponds to the following optimization problem:

β̂OLS = arg min
β

‖Xβ − y‖2
2 = arg min

β
‖ε‖2

2 . (C.17)

The solution of (C.17) is given by

β̂OLS =
(
X>X

)−1
X>y = X

+
y, (C.18)

where + represents the Moore-Penrose pseudoinverse (see App. B.14). It is interesting
to note that OLS can also have a geometric interpretation, leading to find β̂ as the
solution of a successive orthogonalization algorithm (Alg. 3.1 of Hastie et al., 2009).
Least squares estimates are often not satisfying for two reasons:

1. their prediction accuracy associated to low bias and large variance,

2. the interpretability of the solution.

The OLS solution is also known to generate an over-fitting phenomenon. To avoid this,
one approach consists in penalizing the solution vector using so-called shrinking methods.
As a first example, we introduce the Ridge Regression or Penalized least-squares problem
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defined by:

β̂PLS = arg min
β




n∑

i=1

(
yi − β0 −

p∑

j=1

(xj)i βj

)2

+ λ

p∑

j=1

β2
j


 , (C.19)

= arg min
β

(
‖Xeβe − y‖

2
2 + λ ‖β‖2

2
)
, (C.20)

where λ is a hyperparameter. The intercept β0 is not introduced in the penalty term.
It can be shown (Hastie et al., 2009, p. 64) that penalizing the intercept would make
the procedure depending on the origin of the output. We also show in (C.11) that
by centering the data, we can separate the determination of the coefficient β in two
subproblems, β0 on one hand, and the remaining components, on the other hand. If we
assume that the centering has been done, then (C.19) is equivalent to

β̂PLS = arg min
β

(
‖Xβ − y‖2

2 + λ ‖β‖2
2
)
, (C.21)

where centered variables are used. An equivalent way to write the PLS problem is

β̂PLS = arg min
β

n∑

i=1

(
yi − β0 −

p∑

j=1

(xj)i βj

)2

, (C.22)

subject to
p∑

j=1

β2
j ≤ t (C.23)

There is a one-to-one correspondence between the parameter λ in (C.19) and t in (C.23).
We can show that the solution of (C.21) is given by:

β̂PLS =
(
X>X + λIp

)−1
X>y. (C.24)

As the value of λ increases, the solution becomes more robust to possible problems of
collinearity of the column vectors of the matrix X. To set the regularization parameter
λ, we can use generalized cross-validation technique (leave-one-out cross validation).

For simplicity, we can assume that X is composed of orthonormal variables, i.e.
X>X = I. It then follows that

β̂PLS = (I + λIp)−1X>y = ((1 + λ) Ip)−1X>y = 1
1 + λ

β̂OLS. (C.25)

This shows that the ridge estimator is simply a downweighted version of the OLS esti-
mator.

Some additional insight can be obtained by using the SVD decomposition of the
centered matrix X. The SVD of the n× p matrix X has the form (see App. B.13):

X = UΣV>. (C.26)
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Using this decomposition, we can write the least squares fitted vector as1

ŷOLS = Xβ̂OLS (C.27)
= X

(
X>X

)−1
X>y

= UU>y. (C.28)

Here U>y are the coordinates of y with respect to the orthonormal basis U . Similarly,
the ridge solution is given by

ŷPLS = Xβ̂PLS (C.29)
= X

(
X>X + λIp

)−1
X>y

=
p∑

j=1

uj
σ2
j

σ2
j + λ

uj
>y, (C.30)

where the uj are the columns of U . Since λ ≥ 0, we have σ2
j

σ2
j+λ ≤ 1. The effect of this

term is then to shrink the coordinates of y with respect to the orthonormal basis U .

C.3 Least Absolute Shrinkage and Selection
Operator (LASSO)

The LASSO estimate is defined as

β̂LASSO = arg min
β




n∑

i=1

(
yi − β0 −

p∑

j=1

(xj)i βj

)2

+ λ

p∑

j=1

|βj|


 , (C.31)

= arg min
β

(
n∑

i=1

(yi − 〈Xi,β〉)2 + λ

p∑

j=1

|βj|

)
, (C.32)

where Xi denotes the i-th row of X and 〈·, ·〉 represents the Euclidean inner product.
This last expression will be interesting for discussing LASSO in terms of geometry. An
equivalent form for the LASSO problem is

β̂LASSO = arg min
β

n∑

i=1

(
yi − β0 −

p∑

j=1

(xj)i βj

)2

, (C.33)

subject to
p∑

j=1

|βj| ≤ t (C.34)

Similarly as in App. C.2, we can re-parametrize the problem by standardizing the

1We assume in the last line that we applied the economy SVD. Hence, U , and possibly V>, are
now semi-unitary matrices, which means that only U>U = V>V = I.
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output and the regressors. We then arrive at

β̂LASSO = arg min
β

(
‖Xβ − y‖2

2 + λ ‖β‖1
)
, (C.35)

where X is now an n× p matrix.

If we assume that n = p and X is orthogonal, we can show that

β̂LASSO =
(
β̂OLS − λ

)
+

(C.36)

where (·)+ corresponds here to the soft-thresholding operator introduced in App. B.15.
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Most of the results presented in this appendix are from Taboga (2021).

D.1 Random variable
A random variable X is a function defined from a sample space Ω to a measurable space.
The value of X at a point ω ∈ Ω is the realization x = X(ω) of X.

D.2 Indicator function
For any given set A, the indicator function is defined as

1A(x) :=
{

1 if x ∈ A ,

0 if x /∈ A .
(D.1)

D.3 Empirical distribution

D.3.1 Definition
Let x = {x1, . . . , xn} be a sample of size n of a random variable X, where x1, · · · , xn
are the n observations from the sample. The empirical distribution F̂ is defined by giving
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the mass 1/n at each data point xi, i.e.

F̂ (x) = 1
n

n∑

i=1

1xi≤x(x) (D.2)

where 1xi≤x, the indicator function, is equal to 1 if xi ≤ x and 0 otherwise (see Sec. D.2).
In other words, the value of the empirical distribution function at a given point x is

obtained by:

1. counting the number of observations that are less than or equal to x;

2. dividing the number thus obtained by the total number of observations, so as to
obtain the proportion of observations that is less than or equal to x.

Suppose we observe a sample made of four observations: x = {x1, x2, x3, x4} where
x1 = 3, x2 = 2, x3 = 5, x4 = 2. We have:

F̂ (4) = 1
4

4∑

i=1

1xi≤4(4)

= 1
4

(
4∑

i=1

1x1≤4(4) +
4∑

i=1

1x2≤4(4) +
4∑

i=1

1x3≤4(4) +
4∑

i=1

1x4≤4(4)
)

= 1
4 (1 + 1 + 0 + 1)

= 3
4 .

(D.3)

D.3.2 Interpretation
The empirical distribution can be interpreted as the distribution function of a discrete
variable.

Let x(1), . . . , x(n) be the sample observations ordered from the smallest to the largest.
The empirical distribution function can be written as

F̂ (x) =





0 if x < x(1) ,
1
n

if x(1) ≤ x < x(2)
...
n−1
n

if x(n−1) ≤ x < x(n)

1 if x(n) ≤ x.

(D.4)

This is a function that is everywhere flat except at sample points, where it jumps
by 1

n
. It is the distribution function of a discrete random variable X that can take any

one of the values x(1),...,x(n) with probability 1/n. In other words, it is the distribution
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function of a discrete variable X having probability mass function given by

pX(x) =





1
n

if x = x(1)
1
n

if x = x(2)
...
1
n

if x = x(n)

0 otherwise.

(D.5)

D.3.3 Properties
D.3.3.1 Finite sample properties

When the n observations from the sample x1, . . . , xn are the realizations of n random
variables X1, . . . , Xn, then the value F̂ (x) taken by the empirical distribution at a given
point x can also be regarded as a random variable. Under the hypothesis that all the
random variables X1, . . . , Xn have the same distribution, the expected value and the
variance of F̂ (x) are given by:

E[F̂ (x)] = F (x),

Var
(
F̂ (x)

)
= 1
n
F (x) (1− F (x)) .

(D.6)

The empirical distribution function is then an unbiased estimator of the true distribution
function. Furthermore, its variance tends to zero as the sample size (n) becomes large.

D.3.3.2 Large sample properties

An immediate consequence of the previous results is that the empirical distribution
converges in mean-square to the true one, i.e.

F̂ (x) L2
−→ F (x) ∀x. (D.7)

It is also possible to prove a much stronger result, called Glivenko-Cantelli theorem
which states that not only F̂ (x) converges almost surely (a.s.) to F (x), but it also
converges uniformly, i.e.

sup
x
|F̂ (x)− F (x)| a.s.−−→ 0. (D.8)
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Bayesian inference of Gaussian
distributed data

Contents
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E.2 Multivariate state variable . . . . . . . . . . . . . . . . . . . . . . 242

The Bayes’ theorem1 gives the conditional distribution of the dynamic state of interest
q given the observed data y,

p(q |y) = p(y | q)p(q)
p(y) . (E.1)

Here q and y are fixed and observed quantities. We also introduce the stochastic
variables qt for the true unknown quantity and yo for the imperfect observations. It is
for these random variables that the conditional probability distributions is evaluated for
the given known quantities. In the subsequent sections, we follow the presentation of
Wikle and Berliner (2007) and derive the statistics of the posterior distribution p(q |y)
for the univariate and multivariate data following Gaussian (or normal) distributions.

E.1 Univariate state variable
We consider a Gaussian distributed univariate state variable qt ∼ N (µ, τ2) with mean
µ and standard deviation τ. Let yo = [yo1, . . . , yon]> be the n independent but noisy ob-
servations conditioned on the true value of the state qt such that the yoi |qt ∼ N (qt, σ2).

1Let X and Y be two random variables defined on a probability space. By definition of the condition
probability, we have p(x | y) = p(x, y)

p(y) where p(x, y) is the joint probability of having X = x and Y = y.

Similarly, we can write that p(y |x) = p(y, x)
p(x) . Hence, we have p(x, y) = p(x | y)p(y) = p(y |x)p(x),

from where we deduce the Bayes rule p(x | y) = p(y |x)p(x)
p(y) .
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Then, the likelihood distribution for the Gaussian distributed data is given as

p(yo | qt) =
n∏

i=1

1√
2πσ2

exp
[
−1

2

(
yoi − qt

σ

)2
]
∝ exp

[
−1

2

n∑

i=1

(
yoi − qt

σ

)2
]
. (E.2)

The Bayes’ rule gives the posterior distribution as

p(qt |yo) ∝ exp
[
−1

2

n∑

i=1

(
yoi − qt

σ

)2

− 1
2

(
qt − µ

τ

)2
]

∝ exp
[
−1

2

(
n

σ2 + 1
τ2

)(
qt
)2 +

(
n∑

i=1

yoi
σ2 + µ

τ2

)
qt

]
.

(E.3)

This is a product of two Gaussian distributions. It can be shown (by completing the
square) that the result is also Gaussian which is given as

qt|yo ∼ N

((
n

σ2 + 1
τ2

)−1
(

n∑

i=1

yoi
σ2 + µ

τ2

)
,

(
n

σ2 + 1
τ2

)−1
)
. (E.4)

The posterior mean is given as

E[qt|yo] = σ2τ2

σ2 + nτ2

(
n
yo

σ2 + µ

τ2

)

= wyy
o + wµµ,

(E.5)

where yo =
∑n

i=1 y
o
i /n is the mean of the observation sample, wy = (nτ2)/(σ2 + nτ2)

and wµ = σ2/(σ2 + nτ2). Note that wy + wµ = 1. The posterior mean is then a
weighted average of the prior mean (µ) and the natural, data based estimate of qt, yo.
We can show that the data model is generally the major controller of the posterior.

In data assimilation, we write (E.5) as

E[qt|yo] = µ+ nτ2

σ2 + nτ2 (yo − µ)

= µ+K(yo − µ),
(E.6)

where K = (nτ2)/(σ2 + nτ2) is the gain which adjusts the prior mean µ towards the
estimate yo. The posterior variance is given as

var(qt|yo) = (1−K)τ2, (E.7)

which uses the gain K to update the prior variance τ2.

E.2 Multivariate state variable
We now assume the state variable to be a m-dimensional vector with a prior distribution
qt ∼ N (µ,P ), where the mean µ and the covariance matrix P are known. Also, we
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have a n-dimensional observation vector conditioned on the state variables such that
yo|qt ∼ N (Hq,R), with the known observation matrix H ∈ Rn×m and covariance
matrix R. Similar to the univariate case, the posterior is Gaussian which follows the
mean and variance expression as in (E.4),

qt|yo ∼ N ((H>R−1H + P−1)−1(H>R−1yo + P−1µ)−1, (H>R−1H + P−1)−1).
(E.8)

The posterior mean may be rewritten as

E[qt|yo] = µ+K(y −Hµ), (E.9)

where K = PH>(R+HPH>)−1. The posterior covariance matrix is given as

var(qt|yo) = (Im −KH)P . (E.10)

The DA based on linear and Gaussian assumptions relies on (E.9) and (E.10) to correct
the prior (forecast) mean µ according to the gain K, which is a function of the forecast
and observation error matrices (i.e. P and R).
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Résumé étendu

La majorité des écoulements observés en pratique présentent une dynamique complexe.
Cette complexité se caractérisent par une variété de mécanismes d’échelles spatiales et
temporelles très variées provenant de divers instabilités et non-linéarités inhérentes à la
turbulence. La description et la prédiction de leur évolution spatio-temporelle néces-
site, par voie de conséquences, des discrétisations spatiales et temporelles très fines se
traduisant par des coûts de calcul souvent trop importants pour être exploités en pratique.
La présence d’une certaine organisation sous-jacente dans ces dynamiques complexes a,
néanmoins, motivé la représentation des écoulements turbulents dans un espace dit la-
tent de plus petite dimension nécessitant, par là même, des modèles à coût de calculs
réduit. Le défi a relevé est alors celui de découvrir, dans ce nouvel espace, un modèle
exploitable qui régisse la dynamique de l’écoulement en s’appuyant, éventuellement, sur
les équations de conservation mais également et avant tout sur des données issues de
mesures expérimentales et/ou de simulations numériques. Pour tenter d’y répondre, ce
travail de thèse présente des outils méthodologiques basés sur les développements récents
en matière d’assimilation de données et d’apprentissage automatique. La Fig. F.1 illustre
la démarche et les différentes étapes décrites dans les différents chapitres de cette thèse.
Le premier bloc méthodologique consiste à réduire la dimension du problème physique
étudié. Dans ce travail, l’espace latent est construit par la technique de décomposition
modale POD largement exploitée en mécanique des fluides. Dans un second bloc, deux
approches sont considérées pour identifier le modèle permettant de décrire la dynamique
de l’écoulement dans cet espace à plus faible dimension: (i) une approche intrusive dite
boite-grise où la structure du modèle est imposée et (ii) une approche non-intrusive
dite boite noire basée sur des réseaux de neurones profonds. Enfin, une fois le modèle
identifié, une prédiction au temps long est obtenue en corrigeant l’état estimé à l’aide
d’observations grâce à une approche par assimilation de données séquentielle effectuée
dans l’espace latent. Le retour dans l’espace physique est réalisé en projetant l’état
estimé sur la base modale identifiée initialement.

Modèles réduits basés sur la POD
Les systèmes fluides ont la plupart du temps une dynamique relativement complexe mais
dans laquelle il est possible d’identifier une structuration organisée. Cela se traduit, en-
tre autres, par la cohabitation de structures dites "cohérentes" à grandes échelles qui
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Figure F.1: Diagramme illustrant les différentes étapes méthodologiques du présent travail.
Les chapitres associés à chaque étape sont mentionnés.

pilotent la dynamique globale de l’écoulement et de structures à petites échelles partic-
ipant à la dissipation de l’énergie. C’est pourquoi une modélisation d’ordre-bas basée
sur les lois fondamentales de la physique constitue une démarche de modélisation en-
core aujourd’hui privilégiée. La dynamique de l’écoulement est alors décrite, non plus
dans l’espace physique réel, mais dans un espace à plus petite dimension, l’espace la-
tent. Cette représentation peut être obtenue en choisissant une base de projection dans
laquelle la dynamique sera décrite à partir d’un nombre limité de fonctions (ou modes).
Ce chapitre présente l’approche dite par projection de Galerkin: les équations de la
mécanique des fluides, représentées par les équations de Navier-Stokes et formant un
système d’équations différentielles partielles, sont projetées sur une base de fonctions de
faible dimension permettant d’aboutir à un système d’équations différentielles ordinaires
plus exploitable. Ce chapitre constitue donc la première brique du travail présenté consis-
tant à réduire la dimension du problème physique considéré. Cette réduction est obtenue
en projetant le système physique réel (ou haute-fidelité) dans un espace de plus petite
dimension (latent). La base de projection a pour objectif de représenter de manière pré-
cise la dynamique du système par un nombre minimal de fonctions (ou modes). Le choix,
non unique, de ces fonctions est lié à ce que l’on considère comme essentiel à modéliser
dans le système, ce que l’on peut donc assimiler à un problème d’optimisation. On note
U(χ, t) ∈ Rns×nt une matrice contenant un ensemble de réalisations (snapshots) du
système physique aux instants {tk = (k − 1)∆t}ntk=1 et aux points χ ∈ Rns . Dans le
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Figure F.2: Projection dans l’espace latent POD.

cas présent, on ne s’intéresse ici, au moins dans un premier temps, qu’aux méthodes de
décomposition de type linéaire. L’objectif est donc de décomposer la matrice U en une
somme de contributions de rang 1, qu’on appellera mode propre et ayant chacun une
structure spatial Φi(χ), une structure temporelle ai(t) et une amplitude λi. Ce que l’on
pourra encore écrire,

U(χ, t) =
rk(U)∑

i=1

λiΦi(χ)ar(t) (F.1)

Par convention, on notera que les fonctions spatiales et temporelles sont à norme (én-
ergie) unité. L’énergie contenue dans un mode donné est définie par le choix du produit
interne dans le temps et dans l’espace. La norme L2 est ici adoptée. Deux familles de
bases pour le choix de Φi(χ) peuvent être considérées: (i) des bases de fonctions données
a priori et (ii) des bases de fonctions obtenues a posteriori et guidées purement par les
données. Parmi la première famille on peut citer, à titre d’exemple, la décomposition
en série de Fourier, en ondelettes ou encore en polynômes de Tchebychev. Dans le cas
présent, l’hypothèse est faite qu’une base de projection construite a posteriori purement
à partir des données (expérimentales ou numériques) permet d’obtenir une représenta-
tion avec un nombre de modes plus faible. Dans le présent travail, la décomposition aux
valeurs propres (ou Proper Orthogonal Decomposition, POD) est considérée comme base
de projection. Cette méthode est actuellement la plus répandue dans la littérature pour
développer des modèles réduits en mécanique des fluides. Cela s’explique principalement
par le fait que, par construction, cette méthode extrait, de réalisations de l’écoulement,
une base orthonormale qui maximise la représentation en son contenu énergétique. La
section §2.1.1 rappelle les éléments fondamentaux de la POD ainsi que sa variante la
"snapshot POD" plus appropriée lorsque la base de données décrivant le problème haute-
fidélité est composée de snapshots temporelles en nombre réduit (nt << ns) comme se
sera le cas au cours de ce travail. La Fig. F.2 illustre la projection du système physique
dans l’espace latent POD. Une seconde méthode connue sous le nom de Dynamic Mode
Decomposition (DMD) est également présentée à la section §2.1.2 en complément. Si la
POD est optimale au sens de la représentation énergétique du système, la DMD déter-
mine les éléments des modes propres permettant de passer d’une réalisation à l’autre et
est donc intrinsèquement liée à la dynamique du système.

La projection des équations de Navier-Stokes incompressibles sur la base POD con-
duit à un système d’équations différentielles ordinaires pour les coefficients temporels
ai(t). Ainsi que détaillé en §2.2.2, chacun de ces coefficients peut être décrit par la
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forme polynomiale suivante,

ȧi(t) = Ci +
rk(U)∑

j=1

Lijaj(t) +
rk(U)∑

j=1

rk(U)∑

k=j

Qijkaj(t)ak(t), ∀ i = 1, . . . , rk(U), (F.2)

avec θ := [Ci . . . Lij . . . Qijk] un vecteur de paramètres. Un système de plus petite
dimension peut alors être obtenu et que l’on écrira sous la forme compacte suivante,

ȧi(t) = fi(ai(t); θ) +Ri(NGal;µ) ∀ i = 1, . . . , NGal (F.3)

Le premier membre du terme de droite faire apparaître l’approximation d’ordre bas
de ȧi(t) avec fi(ai(t); θ) obtenu par troncature à l’ordre NGal < rk(U). Le terme
Ri(NGal, µ) désigne quant à lui un résidu faisant suite à cette troncature. Cette approx-
imation est appelée modèle dynamique d’ordre-bas (ROM). Le terme de résidu peut être
vu comme un modèle de fermeture permettant de modéliser l’effet des modes élevés as-
sociés typiquement aux petites échelles de l’écoulement et responsables de la dissipation
d’énergie turbulente. La section §2.2.4 discute différents modèles de fermeture exprimés
sous la forme d’une fonction éventuellement non linéaire au regard d’un paramétre µ.

Dans le cas idéal, le vecteur de paramètres θ est obtenu implicitement depuis la
projection des équations fondamentales sur la base POD. En pratique, les données
disponibles sont, de manière générale, incomplètes et/ou bruitées si bien que ce vecteur
paramètre est inconnu et doit être identifié. L’identification de ce vecteur paramètre
et plus globalement l’identification d’un système d’équation décrivant la dynamique du
système à partir de données constitue l’objet du Chap. 3.

Méthodes d’identification purement guidées par les
données (Chap. 3)
La connaissance des équations fondamentales et des conditions aux limites n’est, en
général, pas systématique. En pratique, l’écoulement considéré peut être décrit par des
données chronologiques obtenues par des mesures issues d’expériences ou de simulations
et ce pour différentes grandeurs. La question qui vient immédiatement est celle de savoir
si ces données, typiquement spatio-temporelles, peuvent être utilisées pour extraire la
dynamique du système et découvrir les lois physiques qui la régissent. Dans le cas où
la dynamique du système est de très faible dimension, il est possible de dériver des
lois physiques à partir des équations fondamentales et des données. On parle alors de
modélisation boîte blanche ("white-box modeling"). En revanche, pour les écoulements
observés en pratique, leur dynamique est généralement décrite par un système à très
grande dimension et ce type de modélisation demeure un défi. Pour palier à cette diffi-
culté, nous avons vu au Chap. 2.2 que projeter le système d’étude dans un espace latent
dans lequel la dynamique est décrite par un problème à plus petite dimension est une
étape centrale. La problématique qui s’en suit est alors d’identifier cette dynamique. Les
méthodes d’identification guidées par les données peuvent typiquement être découpées en
deux grandes familles: (i) les méthodes dites boites grises pour lesquelles la dynamique
est décrite par un système d’équations avec une structure fixée a priori et (ii) les méth-
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odes dites boites noires qui cherche à reproduire de manière exacte la dynamique des
données au prix de l’interprétabilité du système d’équations identifié. Dans cette seconde
famille, nous citerons à titre d’exemple les réseaux de neurones sur lesquels nous revien-
drons plus loin. Ce chapitre est donc dédié à la présentation des outils méthodologiques
implémentés dans ce travail pour la modélisation, dans l’espace latent, de la dynamique
du système considéré.

Comme point de départ, nous avons considéré au Chap. 2.2 une structure du système
dynamique imposée par la projection des équations fondamentales sur une base POD. Le
modèle d’évolution se présente donc sous une forme quadratique. En l’absence de terme
de résidus dans l’équation (2.79), on notera que le modèle est, en revanche, linéaire en θ.
Différentes méthodes de regression sont ainsi présentées en §3.1 pour identifier des sys-
tèmes dynamiques linéaire au regard des paramètres. Comme discuté dans le Chap. 2.2,
les modèles réduits de type POD-ROM sont connus pour dériver à court-terme. Des
modèles de fermeture peuvent être utilisés pour maintenir l’état estimé dans un espace
borné. Ceux introduits dans le travail présent ont une forme éventuellement non-linéaire
au regard d’un paramètre µ à identifier. Les méthodes de regression linéaire ne sont
donc ici plus appropriées. Pour palier à cette difficulté, des variants du filtre de Kalman
sont introduits en §3.2. Ces derniers rentrent dans le cadre des méthodes d’assimilation
de données séquentielles. Le filtre de Kalman d’Ensemble est considéré en détails. Cette
méthode estime par le biais d’une approche de Monte Carlo les corrections à appliquer à
l’état prédit du système et aux paramètres du modèle (ici le vecteur étendu [θ;µ]) selon
les observations disponibles. Une équation d’observation reliant, à un instant donné, les
observations disponibles au vecteur d’état estimé est combinée à l’équation d’évolution
du système et un problème d’optimisation sous contrainte est résolu.

Enfin, pour s’affranchir d’une structure a priori du modèle réduit, une approche de
type boite-noire basée sur des réseaux de neurones profonds est présentée en §3.3. Cette
méthode, non-intrusive, permet d’apprendre la dynamique du système de manière super-
visée en recherchant, uniquement à partir des données, un modèle de régression capable
de prédire l’évolution temporelle des coefficients temporels POD.

Méthodes de regression linéaire
La modélisation par l’approche de type POD-Galerkin discutée au Chap. 2.2 rentre,

dans le cadre des méthodes dites boites grises. La structure du modèle réduit est dans
ce cas contrainte par la projection des équations de Navier-Stokes sur la base POD et est
pleinement connue une fois le vecteur de paramètres θ identifié. La détermination de θ
s’apparente à un problème de régression. Typiquement, le modèle réduit POD-Garlerkin
tel que présenté en §2.2.2 décrit certes une dynamique non-linéaire des modes propres
du système, mais est linéaire au regard du vecteur de paramètres θ. Aussi, le problème
de l’identification de ce paramètre revient à un problème de regression linéaire du type,

yi = Xβi + εi i = 1, . . . , NGal (F.4)

En supposant que les dérivées temporelles ˙ai(t) des fonctions propres ai(t) issues de la
POD appliquée aux données puissent être obtenues, yi est défini par le vecteur,

yi := ȧi = [ȧi(t1) ȧi(t2) . . . ȧi(tNt)]> ∈ RNt×1. (F.5)
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La matrice X est appelée design matrix et est définie pour j, k = 1, . . . , NGal par,

X :=




1 · · · aj(t1) · · · aj(t1)ak(t1) · · ·
... . . . ... . . . ... . . .
1 · · · aj(tNt) · · · aj(tNt)ak(tNt) · · ·


 ∈ RNt×Nθi , (F.6)

Le vecteur de paramètres inconnus est donné par,

βi := θi = [Ci · · · Lij · · · Qijk · · · ]> ∈ RNθi×1 ∀ j, k = 1, . . . , NGal. (F.7)

et εi désigne un terme d’erreur défini par,

εi := [εi(t1) εi(t2) . . . εi(tNt)]> ∈ RNt×1. (F.8)

Dans le language commun, yi est un vecteur de valeurs observées (ou variables dépen-
dantes). Les colonnes de X sont appelés variables explicatives (ou variables indépen-
dantes).

La première partie du chapitre présente trois méthodes de régression linéaire évaluées
dans ce travail. En §3.1.1, la procédure d’estimation par moindres carrées (OLS) est
présentée en détails. Un estimateur du vecteur β peut ainsi être obtenu comme solution
du problème de minimisation en norme `2 du terme d’erreur soit encore1

β̂ = arg min
β

(
‖y −Xβ‖2

2
)

(F.9)

On montre que cette minimisation est équivalente à la résolution d’un problème linéaire
bien souvent mal conditionné en raison de la taille deX. Cette difficulté est typiquement
soulevée grâce à une troncature de la décomposition aux valeurs propres X.

Lorsque la taille du vecteur de paramètres est relativement important (ce qui est
typiquement le cas pour un modèle réduit POD même avec un nombre de mode faible),
il peut être interessant de chercher une solution dite creuse. En §3.1.2, l’algorithme
SINDy ("sparse identification of nonlinear dynamics"), introduit par Brunton, Proctor,
et al. (2016a), est ainsi présenté. Ce dernier part de l’hypothèse que un système, même
complexe, présente en général un nombre limité seulement de termes non-linéaires actifs
dans sa dynamique. Dans l’espace de grande dimension formé par les fonctions de bases
et donné par X, cela signifie qu’une représentation creuse de y peut être obtenue. La
pénalisation du nombre de terme non nul dans le vecteur de paramètres inconnus peut
ainsi être obtenu au moyen d’une régularisation de type `1 convexe, soit encore,

β̂ = arg min
β

(
‖y −Xβ‖2

2 + λ ‖β‖1
)

(F.10)

avec λ un paramètre de parcimonie choisi de manière heuristique. La résolution de
cette minimisation peut être obtenue au moyen de l’algorithme LASSO. Dans Brunton,
Proctor, et al. (2016a), la résolution est faite de manière séquentielle . A chaque itéra-
tion, une approximation aux moindres carrées de β est "plafonnée" à un seuil λ > 0.
L’algorithme SINDy converge en, au plus, Nθ itérations et on montre que l’estimateur

1par mesure de simplification, l’indices i est désormais omis
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du vecteur inconnu est donné par le minimum local de,

min
β

(
‖y −Xβ‖2

2 + λ2 ‖β‖0
)

(F.11)

Bien que cet algorithme ait démontré un engouement certain comme méthode de ré-
gression linéaire, celui-ci présente deux limitations majeures. Dans un premier temps,
la solution n’est pas unique quand la dimension du vecteur inconnu excède le nombre
d’observations. Par ailleurs, l’algorithme est conçu pour une formulation aux moin-
dres carrées et est peu approprié si un terme de contrainte est ajouté ou encore pour
l’estimation non-linéaire. Afin de palier à ces limitations, l’algorithme LARS (Least An-
gle Regression) de Efron, Hastie, et al. (2004), particulièrement efficient dés lors que
Nt � Nθ, est ainsi discuté en §3.1.3.

Assimilation de données
Les modèles réduits de type POD-ROM sont connus pour dérivés au-delà d’un temps

court. Une première manière de faire pour maintenir le système prédit borné est d’utiliser
une méthode de régression avec régularisation. Une première difficulté apparait dés lors
que le modèle considéré n’est plus linéaire au regard du vecteur de paramètres inconnu,
ce qui est typiquement le cas lorsqu’un modèle de fermeture non-linéaire est utilisé pour
le terme de résidu Ri(NGal, µ) introduit précédemment. Par ailleurs, malgré l’effort ap-
porté pour identifier le système dynamique, l’expérience montre que leur évolution est
difficilement prédictible sur le temps long en raison du caractère chaotique des écoule-
ments turbulents considérés. Pour palier à ces deux difficultés, une extension du filtre de
Kalman, connue sous le nom de Kalman d’ensemble dual, comme méthode d’assimilation
de données séquentielles est introduite en §3.2 pour corriger simultanément l’état prédit
et certains paramètres du modèle réduit à partir d’observations du système. Ce type
de filtre utilise une représentation de Monte Carlo comme approximation des vecteurs
d’états et de paramètres sous forme d’ensembles. Ces deux ensembles sont définis à
l’aide de distributions normales gaussiennes autour de leur valeur moyenne respective
et de matrice de covariances données. A partir d’un ensemble d’états d’ébauches à
l’instant ti−1, un ensemble d’états d’ébauches à l’instant ti est construit par intégration
du modèle d’évolution (modèle réduit identifié au préalable sans terme de fermeture par
une méthode de régression linéaire). Une seconde phase, dite d’analyse, permet de cor-
riger l’ensemble des états estimés par un gain de Kalman calculé à partir d’une matrice
de covariance d’erreur de précision et de l’ensemble d’observations disponible à cet in-
stant. Le processus itératif est illustré Fig. F.3. En parallèle, l’ensemble des paramètres
d’ébauches est également propagé suivant une marche aléatoire puis analyser selon la
même procédure. Le filtre de Kalman d’ensemble peut être vu comme une estimation
suboptimale de l’état du système étant données des observations bruitées ou/et erronées.
Nous montrerons par la suite sur plusieurs cas tests que cet algorithme permet, après
un temps dit d’apprentissage, non seulement d’estimer le paramètre inconnu permettant
de décrire le modèle de fermeture, mais également de corriger sur le temps long l’état
estimé du système.

Réseaux de neurones profonds
La réduction de modèle par une projection de Galerkin des équations de Navier-
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Figure F.3: Illustration du filtre de Kalman d’ensemble. Les symboles pleins représentent les
valeurs moyennes des ensembles analysés qa (rouge) et prédits qf (bleu). Les lignes discontinues
représentent les trajectoires de chaque membre de l’ensemble propagés de manière séquentielle
à l’aide du modèle d’évolution. La phase d’analyse (correction) de l’état prédit à chaque
itération étant donné le vecteur d’observation yo est indiquée par une flèche.

Stokes sur une base POD a l’avantage d’être liée aux équations de conservation, fa-
cilitant l’interprétabilité du modèle. Cependant, cette méthode est intrusive au sens
où elle nécessite une expertise humaine pour le développement des modèles à partir de
données. De plus, les modèles obtenus à partir des méthodes modales sont, en général,
peu robustes dans les applications de type contrôle. Ce manque de robustesse est princi-
palement dû au fait que toute l’enveloppe de la dynamique de l’écoulement ne peut pas
être capturée avec précision par quelques modes spatiaux dominants. C’est pourquoi,
une approche non intrusive est également proposée dans le travail présent et par laquelle
un modèle dynamique peut être dérivé uniquement à partir de données, sans aucune
information préalable sur la physique sous-jacente. L’objectif est par ailleurs d’utiliser ce
modèle pour aproximer le modèle d’ordre réduit POD pour une condition d’écoulement
donnée (dépendance au nombre de Reynolds typiquement). Notons que le cadre pro-
posé ici peut être étendu pour reproduire la dynamique sur le domaine des paramètres de
contrôle, en utilisant une base de données contenant des informations pour différentes
valeurs de ces paramètre.

Dans ce travail, l’étape de projection de Galerkin est contournée au moyen de réseaux
de neurones profonds (DNN). Les DNN sont des réseaux de neurones artificiels (ANN)
pouvant être vu comme des modèles entrées-sorties composés de plusieurs couches in-
termédiaires. Un ANN est une classe de méthodes d’apprentissage machine qui imite,
mathématiquement, les réseaux de neurones biologiques et qui peuvent être utilisés
en tant que méthode de régression non-linéaire. A l’inverse d’un modèle POD-ROM
obtenue par projection de Galerkin, les ANN ne sont pas physiquement interprétables.
En revanche, ils permettent, par construction, de représenter des relations non-linéaires
qui ne peuvent pas être explicitées de manière formelle. Cette particularité permet en
particulier de minimiser les incertitudes du modèle durant la phase de prédiction.

Deux stratégies de DNN récemment présentées dans la littérature pour le développe-
ment de modèles ROM non intrusifs sont combinées ici. La première stratégie est celle
d’un DNN qui approxime les coefficients temporels POD, obtenus depuis les données,
comme une fonction du temps et des valeurs de paramètres (Wang, Hesthaven, et al.,
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+

Figure F.4: Architecture de l’algorithme NN-ROM.

2019). Cette stratégie est combinée avec celle employée pour les DNN utilisés pour
prédire l’évolution du résidu de la solution à partir des valeurs d’un état aux instants
passés (Pawar et al., 2019). L’architecture de l’algorithme, nommé NN-ROM, est
illustré Fig. F.4 et discuté en détails en §3.3.1.

Evaluation par technique de bootstrap des méthodes
de régression linéaire (Chap. 4)
Afin d’évaluer les performances des méthodes de régression linéaire discutées au Chap. 3,
différents cas tests sont ici considérés. La capacité de ces méthodes à identifier un modèle
dynamique réduit ayant une structure figée a priori à partir de données issus d’expériences
ou de simulations, donc incomplètes et éventuellement bruitées, est évaluée de manière
quantitative dans un cadre probabiliste grâce à la technique du bootstrap. Cette tech-
nique statistique fournit une approximation d’une distribution inconnue par une distri-
bution empirique obtenue par un processus de ré-échantillonnage. Son application aux
modèles de régression donne donc la distribution des erreurs de prédiction, soit encore
des intervalles de confiance sur des prévisions. Cette technique ainsi que sa variante dite
"par blocs circulaires" est décrite en détails en §4.2. Par ailleurs, afin de palier au bruit
qui corrompt éventuellement les données disponibles, une technique de différentiation
pour l’estimation de la dérivée temporelle des coefficients POD et une technique de
filtrage passe-bas sont introduites (§4.1). Ces deux outils sont employés systématique-
ment dans la suite du travail dés lors que les données considérées sont issues de mesures
expérimentales.

Les trois cas tests considérés ici sont les suivants: (i) un système linéaire de dimen-
sion 3, (ii) le système chaotic de Lorenz-63 de dimension 3 et enfin (iii) le modèle de
Lorenz-96. On fait l’approximation que ces trois cas donnent une bonne représenta-
tion de dynamiques de complexités croissantes (au moins en termes de dimension) des
écoulements auxquels on s’intéresse dans ce travail. Pour chacun des trois cas, le sys-
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tème d’équations décrivant la dynamique du système est connue et est donc utilisé pour
générer dans un premier temps une série de données temporelles discrètes auxquelles
sont ajoutées du bruit gaussien à moyenne nulle. L’effet du niveau de bruit est égale-
ment considéré en faisant varier le niveau de variance. Chacune des trois méthodes de
régression (OLS, SINDy et LARS) est ensuite appliquée de manière systématique pour
retrouver les paramètres du modèle. Notons par ailleurs que chaque jeu de données est
découpé en un jeu pour l’apprentissage utilisé pour identifier les paramètres du modèle,
et un jeu pour la validation de la prédiction.

En ce qui concerne l’identification des paramètres du modèle, la méthode par moin-
dres carrés (OLS) donne des résultats satisfaisants mais pour un coût de calcul, com-
parativement aux deux autres méthodes, plus grand. Les méthodes SINDy et LARS
montrent des performances comparables en termes d’erreur et ont l’avantage de donner
des solutions parcimonieuses. En revanche, la méthode LARS montre une sensibilité plus
faible vis à vis du bruit de mesure même dans le cas d’un système à grande dimension,
ce qui présente un intérêt tout particulier dans le cas de données expérimentales par
exemple. Pour les trois méthodes, les trajectoires des états estimés restent bornées en
phase de prédiction quelque soit le cas test considéré. En revanche, la trajectoire vraie
est correctement reproduite uniquement sur un temps court (deux ou trois lâchés tour-
billonnaires typiquement dans le cas de l’écoulement autour d’un cylindre). Les échelles
temporelles caractéristiques de l’évolution des systèmes étudiés sont bien retrouvées mais
un déphasage est observé. Ce dernier point indique clairement que l’identification seule
du modèle à partir de données chronologiques n’est pas suffisante pour une prédiction
sur le temps long et qu’une correction supplémentaire est nécessaire.

Amélioration des modèles réduits POD-ROM par
filtre de Kalman d’ensemble dual pour la prédiction
au temps long (Chap. 5)
Les efforts méthodologiques pour l’identification du modèle POD-ROM à partir de méth-
ode de régression ne sont bien souvent pas suffisantes pour une prédiction au temps long.
A minima, le modèle identifié reste borné. Cela est d’autant plus vrai et critique que
le système étudié est caractérisé par une dynamique nécessitant, même dans l’espace
latent, un nombre de modes en O(10) résultant en la détermination d’un vecteur de
paramètres inconnu de grande dimension. Notons, à ce stade, que pour des applica-
tions de type contrôle, une prédiction à temps court peut être souvent suffisante. Afin
d’améliorer la prédiction sur le temps long, l’intérêt du filtre de Kalman d’ensemble dual
comme méthode d’assimilation de données est démontré ici pour différents cas tests:
(1) un écoulement de sillage derrière un cylindre à nombre de Reynolds de 200 obtenu
par simulation numérique, (2) un écoulement de sillage derrière un cylindre à nombre de
Reynolds de 1, 5− 5, 5× 104 décrit par des snapshots PIV et enfin (3) un jet turbulent
à Mach 0,9. Pour ces trois configurations, le modèle POD-ROM identifié par une des
méthodes de régression vue dans le chapitre précédent constitue le point de départ. Un
terme de résidu, éventuellement non-linéaire au regard d’un vecteur de paramètres µ
inconnu, est ajouté au modèle. Le filtre de Kalman d’ensemble dual est ensuite appliqué
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Figure F.5: Cas test: Lorenz-96 de dimension 10. Représentation des coefficients du modèle
(a) vrais (b) estimés par les algorithmes (gauche) SINDy et (droite) LARS pour différents
niveaux η de bruit.

pour corriger l’estimation sur le temps long des coefficients temporels POD ainsi que
pour identifier, en parallèle, le vecteur µ.

Le modèle de Lorenz-63 est d’abord considéré pour mener une étude paramétrique
sur l’effet du bruit de mesure et d’observation. On montre en particulier que l’erreur
d’estimation dépend essentiellement du rapport de niveau entre les covariances du mod-
èle et d’observation. Pour démontrer le potentiel dual du filtre de Kalman, on définit le
vecteur de paramètres µ comme les paramètres du modèle de Lorenz standard. Lorsque
initialisé avec un vecteur µ erroné, on montre que le filtre de Kalman d’ensemble per-
met de faire converger ce vecteur vers la valeur vraie. Le nombre d’itérations nécessaire
pour la convergence dépend une nouvelle fois des matrices de covariance choisies pour
le modèle et les observations.

Pour les autres cas tests, les données d’origine, formées par des snapshots de vitesse,
sont classiquement découpées en un jeu pour l’apprentissage et un jeu de validation. Le
premier jeu est utilisé pour identifier un premier modèle POD-ROM grâce à l’algorithme
SINDy et pour identifier grâce au filtre de DualEnKF le vecteur de paramètres µ du
terme résiduel. Les résultats obtenus montre de nouveau que le vecteur de paramètres
converge vers une valeur finie avec une réduction de la covariance de l’ensemble au
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cours de la phase d’apprentissage. L’évaluation du modèle POD-ROM+Résidu pour
la prédiction sur le temps long est ensuite réalisée à l’aide du second jeu de données.
Une illustration des résultats obtenus est présentées Fig. F.6 pour le cas du cylindre.
L’erreur d’estimation quadratique moyenne et le contenu spectral des coefficients tem-
porels POD sont examinés. Pour tous les cas tests, des erreurs d’estimation acceptables
sont observées à condition que l’assimilation de nouvelles observations soient effectuées
à pas de temps réguliers. On note en particulier que la correction du terme de résidu
à travers l’estimation du vecteur de paramètre µ à la fin de la fenêtre d’apprentissage
permet d’assimiler les observations à des intervalles de temps plus grands qu’en l’absence
du terme de résidu. Dans le cas du cylindre par exemple (illustré Fig. F.6), l’intervalle
d’assimilation passe de 2 à 3 lâchers tourbillonnaires typiquement.
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Figure F.6: (a) Snapshot PIV pour le cas d’un écoulement autour d’un cylindre à nombre de
Reynolds 1, 5× 104 et localisation des points observations pour la procédure d’assimilation de
données. (b) Evolution temporelle de la composante de vitesse longitudinale pour un point
situé à 0,5D derrière le cylindre obtenue par mesure PIV (uPIV

x (t)) et reconstruite à partir des
coefficients temporels POD vrais (uPOD

x (t)), estimés par le modèle POD-ROM identifié par
SINDy (uROM

x (t)) et estimés par le modèle POD-ROM corrigé par assimilation d’observations
(uDA
x (t)). (b) Densités spectrales de puissances associées.
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Problem Training parameter set Test parameter
Case-I Interpolation {100, 110, 120, 130, 140, 170, 190} 160
Case-II Extrapolation {100, 110, 120, 130, 140, 160, 170, 190} 210

Table F.1: Valeurs du nombre de Reynolds (Re) retenus pour deux jeux d’apprentissage
pour confronter le NN-ROM à un problème d’interpolation et d’extrapolation respectivement.
Ecoulement autour d’un cylindre.

Méthode ROM non-intrusive basées sur les réseaux
de neurones profonds (Chap. 6)
Jusqu’ici, l’identification du modèle réduit s’est appuyé sur une forme quadratique con-
nue a priori trouvant sa justification dans la projection des équations de Navier-Stokes
sur une base POD (projection de Galerkin). Cette approche nécessite une expertise
humaine et peut donc être qualifiée de "intrusive". Dans cette dernière partie de la
thèse, nous nous proposons d’appliquer une approche dite "non-intrusive" dans laquelle
la dynamique de l’écoulement dans l’espace latent est représentée au moyen d’un réseau
de neurones profond acceptant comme paramètre d’entrée le nombre de Reynolds. Par
ailleurs, afin de prendre en compte un effet mémoire de la dynamique passée, le modèle
NN-ROM élaboré considère pour entrée les états estimés aux instants passés. L’objectif
est ici de démontrer au travers d’un cas test comme celui d’un écoulement autour d’un
cylindre, que l’algorithme discuté en Sec. 3.3.1 permet de reconstruire la dynamique
pour un nombre de Reynolds donné non disponible dans la base de données initiale. En
ce qui concerne les autres hyperparamètres, des règles bien établies dans la littérature
permettent d’éviter, à titre d’exemple, le surapprentissage.

Le modèle de Lorenz-63 est, au préalable, considéré pour valider l’algorithme et
étudier l’influence des hyperparamètres du modèle tel que le nombre de couche, le nom-
bre de neurones par couche, le nombre d’epoch ou encore le nombre d’instants passés pris
en compte. Les résultats montrent que ce dernier paramètre a une influence importante
et qu’une réduction d’autant plus significative de l’erreur d’estimation peut être obtenue
sur la fenêtre de prédiction que le nombre d’instants passés pris en compte est grand.
La dynamique estimée reste bornée au domaine de la dynamique vraie. En comparaison
des résultats obtenus pour l’approche POD-ROM discutée dans les chapitres précédent,
la dynamique du système est correctement reproduite sur une durée plus importante
dans le cas du NN-ROM. Au-delà de ce temps court, les échelles caractéristiques sont
retrouvés mais la trajectoire vraie n’est plus reproduite correctement comme dans le cas
du POD-ROM.

Une fois identifié l’influence de divers hyperparamètres du modèle, on se propose
de valider l’approche NN-ROM pour le cas d’un écoulement de cylindre. Pour cela, on
réalise dans un premier temps une base de données constituée de snapshots de vitesse
obtenues par simulations numériques pour différentes valeurs du nombre de Reynolds Re
compris entre 100 et 210. Pour chaque simulation, les 10 premiers modes POD les plus
énergétiques sont calculés et conservés. Le tableau F.1 précise les deux cas retenus pour
l’apprentissage du modèle NN-ROM et tester sa capacité à interpoler à Re = 160 et
extrapoler à Re = 210 respectivement la dynamique de l’écoulement. Les résultats mon-
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Figure F.7: Evolution of the temporal POD coefficients a1(t) and a10(t) for the testing dataset
for the cylinder wake flow at Re = 210 obtained from the NN-ROM and compared with the
reference trajectory. Note that data corresponding to this Re was part of the testing dataset
and not used during the learning of the NN-ROM.

trent que les dynamiques pour les nombres de Reynolds inclus dans la base de données
utilisées pour l’apprentissage sont recouvrées avec une erreur d’estimation négligeable
sans overfiting. La dynamique à Re = 160 est interpolée avec une erreur quadratique
moyenne acceptable. En revanche, un déphasage entre la trajectoire estimée et vraie est
observée pour les modes élevés. Pour le cas Re = 210 (extrapolation), l’erreur quadra-
tique moyenne reste acceptable mais l’évolution temporelle des coefficients POD (même
bas) n’est bien reproduite que sur un temps court suivi d’un déphasage qui s’opère sur
le temps long comme l’illustre la Fig. F.7. Une comparaison avec les résultats obtenus
par identification du modèle POD-ROM par régression linéaire indique que le déphasage
s’observe plus tardivement dans le cas du NN-ROM, suggérant qu’une prédiction au
temps long peut être obtenue par la technique du filtre de Kalman d’ensemble (EnKF)
grâce à l’assimilation d’observations en des instants plus éloignés. Ceci représente un
intérêt tout particulier pour de futurs implémentations dans un objectif de contrôle ou
encore de prédiction en "temps-réel" pour lesquelles les contraintes techniques peuvent
nécessiter une durée entre l’assimilation de nouvelles observations du même ordre de
grandeur que l’échelle caractéristique de l’écoulement étudié.

La robustesse de l’approche NN-ROM + Filtre EnKF au bruit de mesure est démon-
trée pour le cas de l’écoulement de cylindre à Re = 1, 4 × 105 considéré au Chap. 5
et pour lequel on dispose d’une base de données constituées de snapshots PIV. Comme
précédemment, les 10 premiers modes POD sont calculés et conservés pour constru-
ire le modèle NN-ROM. Le nombre d’instants passés considérés pour estimer l’instant
suivant est fixé à 10. L’apprentissage est réalisé sur 20000 epochs. Sans assimilation,
les résultats montrent une bonne prédictibilité sur un temps court des coefficients tem-
porels correspondant à environ 4 lâchers tourbillonnaires donc une nouvelle fois plus long
que le modèle POD-ROM. L’assimilation d’observations à ce même intervalle de temps
régulier permet de maintenir une prédiction sur le temps long et une d’erreur d’estimation
quadratique faible.
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Conclusion & Perspectives

Ce travail de thèse présente un cadre méthodologique pour la modélisation d’écoulements
guidée par les données. La modélisation est réalisée dans un espace latent de dimension
exploitable, plus faible que le problème initial décrit typiquement par les équations de
Navier-Stokes. L’approche par décomposition aux valeurs propres (POD) est ici em-
ployée mais d’autres bases de décomposition peuvent être envisagée pour extraire les
modes dominants de l’écoulement et ainsi construire l’espace latent. Dans cet espace
réduit, la dynamique de l’écoulement peut alors être décrite par celle des coefficients
temporels POD. Deux pistes sont ensuite privilégiées pour identifier un modèle décrivant
cette dynamique.

La première, dite intrusive, s’appuie sur les équations de la mécanique des fluides. Un
système d’équations différentielles ordinaires est dérivé par projection de Galerkin sur la
base POD. Un modèle, dit POD-ROM, de forme quadratique au regard des coefficients
temporels POD mais linéaire au regard de paramètres à identifier est obtenu. Trois
méthodes de régression linéaire (OLS, SINDy et LASSO) sont alors discutées et évaluées
dans un cadre probabiliste grâce à la méthode du bootstrap pour estimer les paramètres
du modèle uniquement à partir de données. Différents cas test sont considérés tel que
un modèle analytique 1D non-linéaire, le système de Lorenz ou encore le cas d’un écoule-
ment autour d’un cylindre. Les méthodes SINDy et LASSO conduisent à des solutions
parcimonieuses pour le vecteur de paramètres inconnu mais seule la seconde montre une
bonne robustesse au bruit présent dans les données. Afin d’obtenir une prédiction bornée
des coefficients temporels, une régularisation de la solution est introduite. Toutefois, les
trajectoires vraies ne sont bien reproduites que sur un temps court de l’ordre du temps
caractéristique des systèmes considérés. Afin d’améliorer la prédiction sur le temps long,
un terme de résidu pour modéliser les modes élevés non pris en compte dans le modèle
POD-ROM initial est d’abord ajouté. Le filtre de Kalman d’ensemble dual est alors
ensuite introduit pour identifier le paramètre inconnu du terme de résidu tout en cor-
rigeant le vecteur d’état grâce à l’assimilation d’observations éventuellement bruitées.
Cette technique d’assimilation de données séquentielle est particulièrement bien adaptée
aux applications expérimentales. L’approche combinée POD-ROM et filtre de Kalman
d’ensemble est ainsi démontrée dans le présent travail pour un écoulement de sillage der-
rière un cylindre en considérant à la fois des données issues de simulations numériques
mais également d’expérience.

La seconde piste, dite non-intrusive, fait appel aux réseaux de neurones profonds
pour identifier, directement dans les données disponibles, la dynamique réduite. Cette
approche, dénommée NN-ROM, constitute un changement complet de paradigme, au
prix de l’interprétabilité du modèle. Durant l’apprentissage du réseaux de neurones,
l’effet mémoire est maintenu grâce à la prise en compte des valeurs des coefficients
temporels aux instants passés. Par ailleurs, le résidu entre deux pas de temps consécu-
tifs est considéré comme valeur cible en sortie du réseau. Une nouvelle fois, différents
cas tests sont considérés pour évaluer la capacité du NN-ROM à estimer sur le temps
long la dynamique du système dans l’espace latent. Les résultats montrent notamment
que les trajectoires vraies sont correctement prédite sur un temps court plus long que
celui observé avec l’approche POD-ROM. En combinant le NN-ROM avec un filtre de
Kalman d’ensemble, des améliorations significatives sont observées. Enfin, l’approche
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est étendue au cadre paramétrique avec le problème d’interpolation et d’extrapolation
de la dynamique d’un écoulement autour d’un cylindre à des nombres de Reynolds non
disponibles dans la base de données initiale. L’extrapolation pour un régime correspon-
dant à un nombre de Reynolds en dehors de la gamme disponible dans les données
initiales constitue le cas présentant des erreurs d’estimation significatives mais qu’il est
possible de corriger grâce au filtre de Kalman d’ensemble. Au final, l’approche proposée
et étendue au cadre paramétrique présente une certaine robustesse aux bruits de mesures
pour l’estimation sur le temps long.

Une extension naturelle des travaux en cours consiste à utiliser l’identification ROM
guidée par les données à la prévision opérationnelle et aux applications telles que le
contrôle en temps réel, l’optimisation multidisciplinaire ou encore la quantification des
incertitudes. L’application expérimentale fournirait l’occasion d’évaluer plus largement
la faisabilité de ces approches mais également d’acquérir un aperçu plus approfondi de
leurs capacités à estimer des dynamiques réels.
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Résumé

Les modèles haute fidélité employés en Turbulence sont inutilisables lorsque des résolu-
tions multiples sont nécessaires, comme c’est le cas en optimisation ou en contrôle des
écoulements. La réduction de modèle a pour objectif de construire des modèles de di-
mension réduite (ROMs) afin d’approximer de manière précise la dynamique haute fidélité
sous-jacente. La méthode de réduction de modèle par projection de Galerkin, largement
utilisée, est intrusive car elle nécessite la connaissance des équations d’évolution et/ou
d’avoir accès au code source décrivant la physique. La réduction de modèle de type
intrusif est donc inadaptée aux problèmes présentant aucune ou une faible connaissance
du système physique. Dans ces cas, une alternative est offerte par les méthodes non
intrusives ou modélisations basées sur des données pour lesquelles les modèles réduits
sont appris à partir de séries temporelles obtenues par simulations numériques ou expéri-
ences. Dans cette thèse, des approches basées "données" de type intrusif et non intrusif
sont présentées pour prédire la dynamique d’écoulements.

Concernant les approches de type intrusif, un modèle réduit de dynamique basé sur la
Proper Orthogonal Decomposition (POD-ROM) est considéré. La méthode POD offre
l’avantage de préserver la dynamique non linéaire en projetant les équations d’état sur un
espace de faible dimension engendré par des modes optimaux. Dans un premier temps,
des méthodes de régression creuse issues de l’apprentissage statistique sont utilisées pour
identifier les inconnues linéaires du modèle réduit. Une méthode de bootstrap est ensuite
proposée pour quantifier de manière probabiliste les incertitudes associées aux méthodes
de régression. Dans un second temps, un modèle non linéaire de viscosité turbulente est
ajouté aux équations du modèle réduit. Ce modèle de Turbulence fournit une représen-
tation fermée basée sur la physique de la dynamique de l’écoulement. Finalement, les
paramètres du modèle de fermeture sont estimés à l’aide d’une approche de type Dual
Ensemble Kalman filter (Dual EnKF) qui intègre les sorties du modèle et des mesures,
tout en prenant en compte les incertitudes respectives.

Concernant les approches de type non intrusif, des modèles de régression basés sur
des réseaux de neurones (NN-ROM) sont considérés comme alternative de l’approche
POD-ROM. Cette méthode traite les limitations de l’approche POD-ROM – le manque
de garantie a priori de stabilité, et la nécessité de termes de fermeture pour prendre
en compte les modes non résolus – au prix de l’interprétabilité du modèle approché
résultant. Le modèle NN-ROM sert de méthode d’intégration temporelle des coefficients
de projection POD. Pour cela, un réseau de neurones paramétrisé, multi-pas est introduit
pour représenter les termes de résidus. Ce modèle est utilisé dans le cadre d’une méthode
d’assimilation de données (DA) afin d’améliorer la prédiction à long terme du modèle.

Les approches intrusive et non intrusive proposées sont appliquées sur un système
dynamique canonique (Lorenz), sur des données numériques issues de simulations à bas
nombre de Reynolds d’un écoulement de sillage et d’un jet à faible nombre de Mach, et
enfin sur des données expérimentales d’un écoulement de sillage.

Mots-clés : apprentissage automatique, modélisation réduite (ROM), modèle réduit non
intrusif, identification de système, modèle de régression linéaire, estimation bootstrap,
assimilation de données, réseaux de neurones profonds, dynamique des fluides



Abstract

High-fidelity models used for solving Turbulent flows are intractable in applications where
repeated realizations are required, such as for optimization or flow control. Model order
reduction aims to construct low-dimensional reduced-order models (ROMs) to accurately
approximate the underlying high-fidelity dynamics. The traditional Galerkin projection
model reduction is intrusive since it requires the knowledge of the governing equations
and/or to have access to the source code describing the physical model. Intrusive
model reduction is therefore not suited for problems with no or limited knowledge of the
physical system. In these cases, an alternative is offered by nonintrusive ROMs or pure
data-driven modelling where reduced models are learnt from time-series data obtained
from simulations or experiments. In this thesis, intrusive and nonintrusive data-driven
approaches of reduced-order modelling are presented for the dynamical prediction of fluid
flows.

For the intrusive approach, Proper Orthogonal Decomposition (POD) based ROM
(POD-ROM) is considered. The POD method offers the advantage of preserving the
nonlinear dynamics by projecting the governing equations onto low-dimensional optimal
modes. First, sparse regression methods issued from statistical learning are used to iden-
tify the linear unknowns of the ROM. A bootstrap method is then proposed to quantify
in a probabilistic framework the uncertainties associated with the regression methods.
Subsequently, the POD-ROM is augmented with a nonlinear eddy viscosity model that
provides an interpretable physics-based closed-form representation of the flow dynamics.
Finally, the closure term parameters are estimated with a Dual Ensemble Kalman filter
approach (Dual EnKF) which integrates the model outputs and measurements while
taking into account the respective uncertainties.

For the nonintrusive approach, regression models based on Neural Networks (NN-
ROM) are considered as an alternative to the POD-ROM. This method addresses the
limitations of POD-ROM – the lack of an a priori guarantee of stability, and requirement
of closure to account for the unresolved modes – at the cost of interpretability of the
resulting surrogate model. The derived NN-ROM serves as a time-stepping method for
the POD projection coefficients. A novel multistep, residual-based, parametrized neural
network is proposed. This framework is augmented with Data Assimilation (DA) to
provide accurate long-term dynamical predictions.

The proposed intrusive and nonintrusive approaches have been applied on a canonical
dynamical system (Lorenz), on numerical data from low Reynolds number simulations
of a cylinder wake flow and a low Mach number jet, and finally on experimental data of
a wake flow.

Keywords: machine learning, reduced-order modelling (ROM), nonintrusive ROM, sys-
tem identification, linear regression model, bootstrap estimation, data assimilation, deep
neural network, fluid dynamics
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