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If we shadows have offended,  

Think but this, and all is mended, 

That you have but slumbered here 

While these visions did appear. 

And this weak and idle theme, 

No more yielding but a dream, 

Gentles, do not reprehend: 

If you pardon, we will mend: 

And, as I am an honest Puck, 

If we have unearned luck 

Now to 'scape the serpent's tongue, 

We will make amends ere long; 

Else the Puck a liar call; 

So, good night unto you all. 

Give me your hands, if we be friends, 

And Robin shall restore amends. 

 

Robin Goodfellow, In: A Midsummer Night’s Dream  

(Shakespeare, 1595) 
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Chapitre 1 General Introduction 

Impacts of climate changes on species distribution: a glance at the past, a 

gaze at the present and a glimpse at the future 

A glance at the past 

Climate is one of the most important forces determining species distribution (Woodward 1987, Davis 

and Shaw 2001, Dawe and Boutin 2016). As the Earth experienced many cycles of warming and cooling 

events (i.e. glacial-interglacial cycles), some species have gone extinct, while others have gone throw 

similar cycles of range expansion and contraction (Bateman et al. 2016, Nogués-Bravo et al. 2018, 

Williams and Blois 2018) on both land (e.g. (Svenning et al. 2008, Diniz-Filho et al. 2016, Palma et al. 

2017) and in the oceans (Bellwood et al. 2017). It has been suggested that Milankovitch climate 

oscillations are the main cause for these cyclic changes in species distribution, coined “orbitally forced 

species' range dynamics” (ORD) by Dynesius & Janssen (2000), which repetitions led to the 

geographical patterns in species diversity, species' range sizes, polyploidy, and the degree of 

specialization and dispersability of organisms we observe on Earth (Janssen & Dynesius 2001). 

Patterns of range shift and migration following past climate changes varied among taxa. Range 

shifts in terrestrial species in response to climate warming are intuitively expected to take place 

poleward in latitude and upward along elevation gradients, following a gradient of temperature 

changes. Although it seems to have been the case for many (if not most of the) species (e.g. (Dawe and 

Boutin 2016, Williams and Blois 2018), some have shown multidirectional range shifts (Bateman et al. 

2016). Since the last glacial maximum (LGM) event (from around 26,000 ybp to 19,000 ybp – (Clark et 

al. 2009), some species from the Norther Hemisphere have experimented a complete range shift (e.g. 

Picea spp. – (Davis and Shaw 2001), with the retraction of the south range border and the expansion 

of the north border, literally migrating their range distribution northward. Other species have radiated 

from glacial refugia or cryptic refugia, almost only expanding their range (e.g., Ixodes ricinus and Fagus 
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sylvatica – (Svenning et al. 2008, Porretta et al. 2013). The location of those refugia is also variable 

according to the species in question. Particularly in Europe, it has been long accepted that southern 

zones on the continent were important glacial refugia for a multitude of taxa (Taberlet et al. 1998, 

Hewitt 1999, Tzedakis et al. 2013), but northern refugia seem to have also played an important role in 

the maintenance of viable populations of certain species (Stewart and Lister 2001, Svenning et al. 2008, 

Schmitt and Varga 2012, Kühne et al. 2017, Quinzin et al. 2017) (Figure 1.1). To make matters even 

more interesting, some species have also survived in ‘refugia within refugia’, where populations were 

isolated within one or more of those refugial zones (Gómez and Lunt 2007, Abellán and Svenning 

2014). 

  

Figure 1.1. Two complementary hypothesised refugia (“R”) in Europe and post glaciation range shifts (arrows): 

(a) the classical (Hewitt, 1999) Mediterranean refugia versus (b) the northern refugia hypothesis. Modified 

from Schmitt & Varga (2012). 

Past range shifts have had important consequences for the evolution of species and the current 

biodiversity patterns (Dynesius and Jansson 2000, Jansson and Dynesius 2002). Rapid changes in the 

distribution of species, like those observed in the post-Pleistocene expansion, has led to changes in 
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population demography and the contact between previously isolated populations, which in turn has 

left genetic imprints on those populations. The scientific literature is full of examples of present 

population genetic structure and phylogeography highly influenced by post-Pleistocene range 

dynamics (Schmitt 2007). Phylogeographic investigations of current widely distributed species in 

Europe have shown that many of those species have survived the LGM in isolated populations 

distributed over the three main Mediterranean peninsulas: the so-called main glacial refugia of the 

Iberian, Italian and Balkan peninsulas (Hewitt 1999, Tzedakis et al. 2013). Brito (2005), for example, 

reconstructed the phylogeny of the tawny owl (Strix aluco) based on mitochondrial DNA (mtDNA) and 

has found three well-supported lineages in Europe that coincides with the Iberian, Italian and Balkans 

peninsulas. The species is a non-migratory bird, with highly sedentary adults and juveniles that disperse 

only within a few kilometres of the natal nesting sites (Coles & Petty, 1997 in Brito, 2005). Other 

species, however, have maintained connected populations during the last glacial period. That seems 

to be the case for the castor bean tick I. ricinus (Porreta et al., 2013), a very generalist ectoparasite. In 

this study, genetic analysis based on nuclear and mtDNA sequences coupled with Species Distribution 

Models (SDMs) and fossil records of the host species suggests that I. ricinus persisted in interconnected 

populations that did not experience prolonged isolation, leaving negligible genetic traces of range 

expansion. Those two examples are extremes cases where the biology of the focal species had either 

make it very susceptible to isolation due to extreme climate conditions (and leading to the strong 

differentiation of lineages), or seemingly not or too little affected by the climate conditions during and 

after the LGM. Some species still may have experienced complex dynamics during the LGM that can 

also be traced by phylogeographical investigations. García et al. (2020) have identified two endemic 

Mediterranean lineages and three related continental lineages of the vole species Microtus arvalis, 

suggesting that the source of the northward range expansion of this species was not the 

Mediterranean populations but probably more continental and northern populations outside the 

Mediterranean zone. In any case, it is clear that past climate fluctuations have influenced the 

contemporary genetic structure of species. 



15 
 

A gaze at the present and a glimpse at the future 

The global mean annual surface temperature has increased by about 0.72°C during the 20th century 

and is projected to rise from 1.0°C to 3.7°C on average according to the different Representative 

Concentration Pathway (RCP) scenario used by the Intergovernmental Panel on Climate Change (IPCC, 

2013 technical summary of the Working Group I – Stocker et al., 2014). This mean annual temperature 

rise will be accompanied by changes in other climate variables (such as the mean annual precipitation) 

as well as more frequent and severe extreme climatic events such as repeated and prolonged 

heatwaves and droughts, not mentioning the expected loss of coastal areas due to sea level rise. Those 

projections of future climatic changes in such a small window of time will lead to the redistribution of 

the species able to keep track (i.e. migrate) of those changes. Depending on the species tolerance to 

such changes, species will have to move, adapt, or face extinction (Berg et al. 2010). Species range 

shifts are already observed and have been documented across many taxa (Pecl et al. 2017, Lenoir et 

al. 2020), such as: birds (Virkkala and Lehikoinen 2017, Freeman et al. 2018); mammals (Mallory and 

Boyce 2018); insects (Marshall et al. 2020); acarians (Jore et al. 2011); plants (Lenoir et al. 2008, 

Lamprecht et al. 2018, Geppert et al. 2020); diverse marine species (Pinsky et al. 2013); and many 

others (see Lenoir et al. 2020 for a quantitative synthesis). Noteworthy, data shows that marine species 

are better at tracking isotherm shifts under contemporary climate change, and move towards the pole 

six times faster than terrestrial species (Lenoir et al. 2020). 

Changes in species distribution may also induce complex changes throughout the range with 

potential range disjunctions. For instance, Kuhn et al. (2016) projected the future distribution of 25 

submountainous forest plants under future climate change and argued that range disjunction is a likely 

consequence of changes in the species distribution as climate warms up. This is not a surprising result 

considering what is known of species redistribution during the LGM, a period during which some 

species had discontinuous and isolated populations across the Mediterranean refugia. Following this 

parallel to species past distribution changes, it is also expected that some populations will persist in 
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refugia or microrefugia with favourable microclimate under future macroclimate change (Kuhn et al. 

2016, Quinzin et al. 2017, García et al. 2020). 

Whatever the scenario, species range shifts have also the potential to impact species evolution 

(Garnier and Lewis 2016). A species’ range expansion dynamic is well known for changing the 

frequencies of genes among populations at the leading edge (Edmonds et al. 2004, Excoffier et al. 

2009). The rapid population growth observed in expanding populations at the leading edge of a shifting 

range can lead to high frequencies of previous rare alleles and the fixation of a new combination of 

alleles or new mutations (Slatkin 1996, Excoffier and Ray 2008). For instance, Klopfstein et al. (2006) 

coined the term ‘surfing’ to describe this process since those rare alleles or new mutations would ‘surf’ 

on the wave of the expanding range. Although not in a climate-changing context, the same general 

principle was also investigated by Carson & Templeton (1984) and Slatkin (1996) as the funder-flush 

theory (or effect). This process can lead to a reduction of the genetic diversity at the leading edge 

(Excoffier et al. 2009, Neve et al. 2009) and a consequent differentiation of the expanding population 

from the founder one. (Garnier and Lewis 2016) simulated a population experiencing a range shift 

under different scenarii of climate change velocity. They concluded that low velocities of climate 

changes do not reduce the genetic diversity at the leading edge. Since the expansion is not rapid 

enough, the range boundaries between expansion waves still allow the spatial mix of genetic 

components within the populations (Figure 1.2). On the other hand, a high climate change velocity, and 

consequently a rapid range expansion dynamic, can reduce gene diversity. This response was even 

more pronounced when the reduction in range size due to range retraction dynamics at the trailing 

edge was taken into account (i.e., local extinction or extirpation events at the trailing edge due to 

deteriorating conditions in macroclimate). The disjunction of a species’ ranges under climate change 

and the persistence of isolated populations within microclimatically suitable habitats is another 

potentially important factor for the evolutionary processes at play (Figure 1.3). Isolated populations are 

more vulnerable to stochastic environmental and demographic effects (Baguette et al. 2013), 

inbreeding depression (Charlesworth & Willis 2009), and genetic drift. This can be particularly 
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important to species that are currently narrowly distributed, such as mountain endemics. Overall, 

changes in species’ distribution due to climate changes are almost certain to impact the species genetic 

structure and evolution.  

 

Figure 1.2. Schematic representation of the models from Garnier & Lewis (2016) of population differentiation in 

response to range shifts. Gradual changes in climate and consequent gradual expansion of the species’ range (a) 

would not have important impacts in the gene diversity across populations on the leading edge. When climate is 

changing with high speed in comparison to the spreading speed of the species (b), an erosion of the genetic 

diversity will be observed on the leading edge (red broken line) compared to populations in the core of the 

ancient distribution. This effect will be more intense when coupled with a reduction of the trailing edge.  
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Figure 1.3. Schematic representation of range disjunction as a consequence of climate warming. In the present 

climate conditions (a), the species has a continuous range. Climate warming makes lowland and central areas 

unsuitable to the species and the range shift in both latitude and altitude causes a disjunction on the species 

range (b), possibly leading to the isolation of certain populations. Extracted from Kuhn et al. (2016). 

Linking Species Distribution Models and Populations Genetics 

Species distribution models (SDMs) are widely implemented in ecology, biogeography, and 

conservation biology (Guisan and Thuiller 2005, Grimmett et al. 2020). Most SDMs’ applications 

include one or a combination of the following: (i) supporting conservation planning (Hannah et al. 

2007, Guisan et al. 2013); (ii) forecasting or hindcasting species distribution changes in response to 

climate change (Thuiller et al. 2008, Alkishe et al. 2017); (iii) simulating the spread of invasive alien 

species (Guisan et al. 2014, Hattab et al. 2017); and (iv) investigating biogeographic and evolutionary 

hypotheses (Svenning et al. 2008, Ives and Helmus 2011). While a vast set of modelling techniques are 

available, most rely on correlative approaches between species presence (and absence or pseudo-

absence) data and contemporary environmental variables (Guisan et al., 2017). 

 SDMs have long been employed to understand shifts in species distribution in response to 

climate changes. The general approach is to calibrate a model using current climatic conditions as 
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predictor variables of the contemporary data on species distribution (occurrence data, presence-

absence observations or abundance data). The set of predictor variables is supposed to capture the 

bioclimatic realized niche (Meier et al., 2011; Maiorano et al. 2012) of the species so that one can use 

it to interpolate the species distribution across space and potentially over time when time series are 

available. By comparing the projected distributions among different time periods, a researcher can 

estimate how a species’ range has shifted in the past or will shift in the future (Svenning et al. 2008, 

Alkishe et al. 2017). Some major assumptions underlying SDMs need to be observed: i. the climatic 

niche of the focal species remains stable over the investigated time period (i.e. no adaptation to new 

conditions); ii. the species is already in equilibrium with the current conditions across its range (i.e. no 

range filling under stable conditions), and; iii. all populations belonging to the same species share the 

same climatic niche and will respond identically to climate change (Wiens et al. 2009). Recently, 

different methods were conceived to deal with those assumptions. 

 Given the correlative nature of SDMs, it’s hard to deal with the first assumption of niche 

stability over time, especially if time series on the focal species distribution are missing. The second 

assumption could be dealt with by carefully choosing the data used to calibrate the model. Hattab et 

al. (2017) have proposed a method to differentiate environmental from dispersal-limited absences 

within the spatial extent of the occupied range. Their method was conceived to deal with the non-

equilibrium distribution of invasive alien species with their environment within the invaded range, 

especially so during the early introduction phase. Although developed for invasive alien species, 

nothing in the described methods prevents it from been extrapolated to contexts other than biological 

invasion. Although not relaxing the assumption of equilibrium, by separating environmental from 

dispersal-limited absences, it would be possible to better predict the potential niche of the focal 

species without the ‘noise’ of absences that relate directly to dispersal limitations and which tend to 

blur the signal in SDMs if ones aim at capturing the potential niche and not the realized niche.  
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 Concerning the third assumption, even though local adaptation to local climatic conditions has 

already been demonstrated (Pelini et al. 2009, Wasof et al. 2013, Peterson et al. 2018), it is still open 

to debate how local adaptation may impact SDMs’ performances (Pearman et al. 2010, Chardon et al. 

2020, Collart et al. 2020). Theoretically, if distinct genetic groups within the same species respond 

differently to the same climatic variables, modelling those genetic units independently could provide 

more reliable predictions of the species response as a whole (Pearman et al. 2010, Peterson et al. 2018, 

Smith et al. 2018). In this context, some recent studies have already explored the contribution to model 

performance when incorporating intra-specific genetic variation into SDMs (Palma et al. 2017, Smith 

et al. 2018, Lecocq et al. 2019, Boyer et al. 2020, Chardon et al. 2020, Collart et al. 2020), with different 

results and conclusions. Most of those recent studies followed the same general three steps 

procedure: i. occurrence data from a given species was split according to an intra-specific level of 

genetic organisation (normally a phylogeographic lineage); ii. an SDM model was calibrated for each 

genetic unit, and; iii. the resulting models were assembled and performances were compared to the 

(traditional) species-level SDM. For example, Palma et al. (2017) compared SDMs calibrated at the 

lineage levels of two rodent species in the Andes to models of the species as a whole, finding that the 

assembled lineage models had a similar to better performance than the species-level model. By 

contrast, Lecocq et al. (2019) applied a similar approach to bumblebee species in the West-Palearctic 

but found that those lineage-based models did not increase model performance. Collart et al. (2020) 

went a step further by estimating model performances of SDMs calibrated at the intraspecific level 

with a small number of occurrences. This is particularly important because genetically-based SDMs 

normally has a reduced number of occurrences in comparison with the species level (whole) model. 

They observed that the combined intra-specific models predicted larger ranges than the species-level 

model. The authors finally suggest that, given the difficulties of model calibration and evaluation from 

small datasets, models should be performed at the species level unless niche divergence between 

intra-specific units is observed. 



21 
 

 Going in another (complementary) direction, some studies have applied SDMs to test whether 

intraspecific levels of organisation (lineages or populations) display different fundamental niches (e.g. 

(Cooper et al. 2010, Schulte et al. 2012, Wasof et al. 2015, Gutiérrez-Rodríguez et al. 2017, Meynard 

et al. 2017). Those studies followed a general protocol similar to the three steps one mentioned 

described above. First, the occurrences of a given species or assemblage of species were split according 

to the geographic location of those occurrences or the genetic structure and phylogeography of the 

focal species. Next, the climatic niche of those different groups was modelled and compared. 

According to the observed differences in the climatic niche, the authors of the different above-

mentioned studies concluded for the species niche conservation or divergence between geographic 

locations or genetic groups. This is a valid approach to observe differences in the climatic response of 

populations, but it is hard to make inferences on the evolutionary bases of those differences. If niche 

divergence has its bases in the evolutionary history of the species, then it is expected that at least some 

of the alleles in those populations are under selection from climatic variables, i.e. it should not be the 

consequence of plasticity or a simple geographic coincidence (occurrences from different geographic 

zones will most probably show different response curves to the same climatic variables). True niche 

divergence (i.e. adaptation) can be tested quantitatively by different means, like transplantation 

(Wright et al. 2006, Pelini et al. 2009, Yousefi et al. 2017) or controlled laboratory experiments (Wei et 

al. 2017, Sandoval-Castillo et al. 2020). There are also different methods to identify candidate genes 

under selection and to directly correlate allele frequencies to environment variables, such as Bayescan 

(Foll and Gaggiotti 2008), Bayenv (Coop et al. 2010, Günther and Coop 2013), and pcadapt (Privé et al. 

2020), among others. However, very few studies that applied SDMs to test niche divergence went this 

step further to test whether the observed differences really correspond to selection and adaptation: a 

very challenging task. Diniz-Filho et al. (2016) applied a linear regressive approach to test the influence 

of changes in the climatic environment on the spatial dependency of allele frequencies from 

microsatellite loci of the tree Eugenia dysenterica in the Brazilian ‘Cerrado’. Although they found 

significant results, no further investigation was conducted to verify whether this significance was due 
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to selective pressures and whether it represents true niche differentiation between populations. Yet, 

coupling SDMs, investigation of alleles under selection, and population genetic structure can be a 

simple indirect measure of selective pressures and niche divergence. 

 Considering the conclusions and perspectives of the different studies working on the inclusion 

of genetic information into SDMs, it is clear that more investigations are needed to get a better 

understanding of the intra-specific variability and how this can be used to better inform SDMs and thus 

refine future predictions on biodiversity redistribution. This is one of the main objectives of this thesis, 

which will be detailed at the end of this chapter. 

Studied Species 

Four model species were studied: the two forest herbs Geum urbanum (wood avens) and Oxalis 

acetosella (wood sorrel); the tree Fagus sylvatica (European beech); and the tick I. ricinus (castor bean 

tick). Those are forest-dwelling species widely distributed in Europe, but with contrasting levels of 

forest specialization and different reproduction strategies. 

Geum urbanum is an ancient hexaploid (2n = 42) (Jordan et al. 2018), perennial, and generalist 

herbaceous plant species, commonly occurring in gardens and disturbed habitats (Endels et al. 2004) 

as well as in forests, especially along forest roads and tracks. The species is native to Europe, North 

Africa and West Asia, and is considered invasive in parts of North America, and East Asia (Figure 1.4). 

Geum urbanum has hermaphrodite flowers that can be pollinated by insects. Yet, the species is 

considered to be chiefly self-pollinated (Arens et al. 2004, Schmidt et al. 2009). Due to its common 

self-pollination abilities, it was supposed by Arens et al. (2004) that gene flow will depend mainly on 

seed dispersal. Fruits of G. urbanum have burrs adapted to adhesive dispersion (epizoochory) and so 

could be dispersed by small mammals and birds. Over most of its European range, G. urbanum occupies 

the same geographical area as G. rivale, although the two species are normally partially separated by 

ecological optimum, flowering times, and pollinators (Taylor 1997). Nonetheless, the two species may 

hybridise and produce fertile descendants (Taylor, 1997). 
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Few previous studies have aimed to understand the influence of landscape features on the 

spatial genetic structure of G. urbanum across relatively small spatial extents (Vandepitte et al. 2007, 

Schmidt et al. 2009) but, as far as I am aware, no study to date has tried to disentangle the species’ 

population genetic structure across its entire geographical range. Recently, our research team 

(EDYSAN, UMR CNRS 7058) has been involved in the Woodnet BiodivERsA project (BiodivERsA 2016), 

a landscape genetic study comparing the influence of the history of land uses in contrasting landscape 

windows in French Britany and Picardy. Within that research framework, I co-supervised the 2019’s 

Master 2 Internship of Nicolas Duhamel. Previous studies showed weak (Schmidt et al. 2009) to no 

(Vandepitte et al., 2007) correlation between landscape features and genetic diversity between G. 

urbanum populations. In our current project, we have found a weak genetic structure inside each of 

the studied landscape windows and no correlation between individual genetic distance and the 

presence of hedgerows. On the other hand, this study has demonstrated that, on a localised 

geographic scale, past land uses are more important for inter-patch gene flow than the current 

landscape structure (unpublished results, but see chapter 5: General Discussion). From those results, 

it seems that populations of G. urbanum are mainly structured by the history of those populations and 

not much influenced by present-day gene flow. 
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Figure 1.4. The distribution range of Geum urbanum including its native Eurasian range (green) and the invaded 

zones in North America and East Asia (red). Adapted from Plants of the World online, Royal Botanic Garden, UK 

(http://www.plantsoftheworldonline.org/about). 

Oxalis acetosella is a diploid (2n = 22), perennial and cosmopolitan species, widely distributed 

across Eurasia (Marks 1956). The species has a broad geographical distribution (Figure 1.5) but is a more 

specialized species than G. urbanum, chiefly occurring in undisturbed forest habitats and less 

commonly found in disturbed systems. The species has a pronounced clonal growth, forming local 

patches in the forest understorey. Flowers are solitary and hermaphrodites, and can be either 

chasmogamous (i.e., open flowers that potentially allow cross-pollination) or cleistogamous (i.e., 

closed flowers where self-pollination occurs) (Berg and Redbo‐torstensson 1998, Berg 2000). Fruits 

from both flower types are capsules containing a variable number of seeds (Redbo-Torstensson and 

Berg 1995, Berg 2000), which are dispersed by autochory when the fruit explodes. One recent study 

has investigated the phylogeny of the genus Oxalis as a whole (Aoki et al. 2019), which recognizes the 

Eurasian population of O. acetosella as a monophyletic group closely related to the East-Asian species: 
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O. griffithii, occurring in China, India, Bhutan, and Nepal, and O. nipponica occurring in Japan. Hitherto, 

no other work has investigated the population genetics nor the phylogeography of this species. 

 

Figure 1.5. The distribution range of Oxalis acetosella in its native range (Eurasia). Adapted from Plants of the 

World online, Royal Botanic Garden, UK (http://www.plantsoftheworldonline.org/about). 

Fagus sylvatica is one of the most thoroughly investigated forest trees in Europe (Demesure et 

al. 1996, Magri 2008, Svenning et al. 2008) because of its wide distribution in Europe (Figure 1.6) and 

most likely its economic importance (Durrant et al. 2016). Because of its economic value, F. sylvatica 

has been introduced outside its natural continuous range, where the populations are now considered 

as naturalised (Caudullo et al. 2017), such as in Scotland, Ireland, along the coasts of Norway, and along 

the coasts of the Baltic sea (see Figure 1.6). It is a monoecious species with a life span of about 300 

years and a late reproduction stage (40-50 years old) (Packham et al. 2012). Fagus sylvatica is a wind-

pollinated species and seeds are dispersed by vertebrates like squirrels, woodpigeons, and 

woodpeckers (Durrant et al., 2016). In most parts of the south-eastern species range, it occurs in 
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sympatry with the oriental beech (F. orientalis), a closely related taxon within the Fagus genre. There 

has been some debate whether European beech and oriental beech are two subspecies of F. sylvatica 

(F. sylvatica spp. sylvatica and F. sylvatica spp. orientalis) or two separate species (F. sylvatica and F. 

orientalis) (Papageorgiou et al. 2008, Packham et al. 2012). In regions where the two groups overlap, 

there is frequent hybridization and some intermediate types have been documented (Dorren et al. 

2005). The species phylogeny based on morphology and molecular variation of two sequences of the 

nuclear internal transcribed spacer (ITS1 and ITS2) has indicated that there is only one species of Fagus 

(i.e. Fagus sylvatica) in Europe and Asia Minor (Denk et al. 2002). Since it is not the objective of the 

present thesis to investigate the intraspecific phylogeny of the genus Fagus, I will accept that all Fagus 

in the studied zone are from the same species, as suggested by Packham et al. (2012). 

The genetic structure of F. sylvatica is well studied (Demesure et al. 1996, Denk et al. 2002, 

Magri et al. 2006). Demesure et al. (1996) have identified that most of the populations on the centre 

of the species distribution zone share the same haplotype of 10 chloroplast genetic markers, with other 

10 haplotypes dispersed around the edges of the species range. Denk et al. (2002) have observed a 

much more structured pattern, with clades frequently corresponding to subtypes restricted to certain 

geographic zones. Finally, Magri et al. (2006) identified 9 lineages across the species range based on 

isozymes. The lineages identified by Magri et al. (2006) are somewhat coincident with the geographic 

distribution of haplotypes from Demesure et al. (1996), with a dominant lineage (#1) occupying almost 

exclusively the centre of the species distribution, and other lineages occurring in the peripheric regions 

generally situated at the edge of the species range (Figure 1.7). 
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Figure 1.6. The distribution range of Fagus sylvatica spp sylvatica (yellow zones) and Fagus sylvatica spp 

orientalis (dark green zones). The light green dots represent isolated populations of F. sylvatica and blue 

triangles populations introduced and naturalised according to Euforgen 

(http://www.euforgen.org/species/fagus-sylvatica/ - Caudullo et al., 2017). 

 

 

Figure 1.7. The distribution of the nine lineages of Fagus sylvatica based on isozymes. Modified from Figure 6 

of Magri et al. (2006). 
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Finally, I. ricinus is a generalist ectoparasite species and the most widespread tick species in 

Europe (Figure 1.8), easily found in and near forested areas. It is an important vector of multiple tick-

borne diseases, including: i. the bacteria Borrelia burgdorferi sensu lato, responsible for the Lyme 

borreliosis, which is the most prevalent tick-borne disease in temperate Europe (ECDC, 2015); ii. 

arboviruses (genus Flavivirus) causing tick-borne encephalitis (TBE) and louping-ill disease (LI); iii. the 

protozoan Babesia microti, responsible for the babesiosis; and iv. the 

bacterium Candidatus Neoehrlichia mikurensis, responsible for neoehrlichiosis, an emerging tick-

borne pathogen (Welinder-Olsson et al. 2010, Portillo et al. 2018). Recent studies have demonstrated 

that the range of I. ricinus is already shifting northward and to higher elevations (Lindgren and 

Gustafson 2001a, Jore et al. 2011, Hvidsten et al. 2020) and those shifts are expected to continue in 

the near future (Medlock et al. 2013, Alkishe et al. 2017). 

 

Figure 1.8. The distribution range of Ixodes ricinus in its native range (Eurasia). Adapted from the European 

Centre for Disease Prevention and Control – ECDC (January 2020). 
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Structure and aims of the thesis 

The main objective of this thesis is to investigate some of the intersections between the research fields 

of SDMs and the spatial distribution of genetic variation in a climate change context. From this main 

objective, three more specific aims were established: 

I. Determining the population structure and phylogeography of the study species for which 

the phylogeographic structure is unknown at the European scale, i.e. for three of the 

model species: Oxalis acetosella, Geum urbanum, and Ixodes ricinus; 

II. Investigating some of the ways by which SDMs may help to understand the current genetic 

structure of the model species;  

III. Investigating the usefulness and effectiveness of incorporating genetic information into 

SDMs. 

Considering that the chosen model species do not have the same level of available genetic 

information, the starting point of the analysis varied according to each model species. For O. 

acetosella, the first step was to identify candidate genetic markers for the population genetics analysis. 

Investigations of G. urbanum and I. ricinus started at the population genetics point. Fagus sylvatica 

already has an established phylogeographic structure (Magri et al., 2006), and the geographic 

distribution of lineages was directly used to validate the incorporation of intraspecific genetic 

information into SDMs. At the beginning of each chapter, I will present a schematic representation of 

the different levels of analysis and the model species being used (Figure 1.9). 

The thesis consists of four additional chapters after this introduction chapter as follows: 

Chapter 2: Investigation of candidate loci for O. acetosella and population genetics analysis of G. 

urbanum and I. ricinus. For I. ricinus, the study has been published in the journal Ticks and Tick-borne 

Diseases in 2020, and the published version is thus provided in the thesis manuscript. 
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Chapter 3: Attempt to go beyond the mere comparison of projected distributions from SDMs and the 

spatial genetic structure of species. I will apply correlative and regressive methods to investigate the 

role of past climate changes moulding the observed present genetic structure and allele frequencies 

across populations of G. urbanum and I. ricinus. 

Chapter 4: Assessment of the putative benefits, in terms of model performance, to add genetic 

information into SDMs. For this goal, I will compare the results of genetically-informed SDMs versus 

traditional SDMs for I. ricinus and F. sylvatica during both contemporary and past climate conditions. 

This chapter corresponds to a standalone manuscript submitted to Global Ecology and Biogeography 

(October 28th 2020) and which is currently under review in this scientific journal. The manuscript is 

presented here, in this fourth chapter. Beside changing the placement and cross-references of figures 

and tables to better reading, the manuscript is presented as submitted. Since data from G. urbanum 

was not available by the time of the draft production, the species is not included in this study. 

Chapter 5: Attempt to synthesise the main results of the thesis and discuss the limitations and 

perspectives in face of those results.  
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Figure 1.9. Schematic representation of the thesis. In the second chapter, I will present the genetics analyses for 

Oxalis acetosella, Ixodes ricinus, and Geum urbanum. In the third chapter, I will apply species distribution models 

(SDMs) to better understand the observed genetic structure of the model species. In the fourth chapter, I will 

investigate the gain in SDMs’ performances by the inclusion of genetic information. In this fourth chapter, I will 

compare genetically-informed SDMs against traditional (whole-species) SDMs for I. ricinus and Fagus sylvatica. 

Source of photos: I. ricinus: https://alchetron.com/Ixodes-ricinus; G. urbanum: 

https://en.wikipedia.org/wiki/Geum_urbanum; O. acetosella and F. sylvatica: personal collection from Dr. 

Jonathan Lenoir. 

 
 

 

  

https://alchetron.com/Ixodes-ricinus
https://en.wikipedia.org/wiki/Geum_urbanum
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Chapitre 2 Population Genetics of three forest-dwelling species 
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Introduction 

Population genetics may help to understand and describe the present and past ecological dynamics 

such as (but not limited to) migration and gene flow (Rousset 1997), cryptic genetic variation (Vial et 

al. 2006), and local adaptation (McCoy 2008). In case of disease ecology, population genetics may also 

help to inform predictions about future risks of pathogen spread between populations (Kozakiewicz et 

al. 2018). Population genetics approaches such as individual genetic clustering and assignment 

methods help identify genetic units and genetic discontinuities that could be linked to the geographical 

distribution of those populations. Considering the main objectives of this PhD thesis (see Chapter 1: 

General Introduction), understanding the genetic structure at the spatial extent of the entire species 

range is the first step towards incorporating the genetic information into species distribution models 

(SDMs). 

Three of the four model species were investigated in terms of population genetics: the two 

forest herbs Geum urbanum and Oxalis acetosella as well as the tick Ixodes ricinus. Those are forest-

dwelling species widely distributed across Europe, but with contrasting levels of forest specialization 

(see Chapter 1: General Introduction). 

The main objective of this chapter was to characterize the genetic structure of the three model 

species and infer the intraspecific genetic dynamics. I hypothesized that the two herbaceous plant 

species occurring in temperate forests in Europe should show a contrasting population structure, as a 

result of their contrasting levels of habitat specialization and dispersal abilities, with a stronger genetic 

structure observed between populations of O. acetosella across Europe as opposed to G. urbanum for 

which I assumed a lower genetic structure. Concerning the genetic structure of I. ricinus, besides its 

environmental exigence and its occurrence mainly in forested areas, I expected that a generalist 

ectoparasite should show a week to no genetic structure. 

In this first chapter, I will first explore the results found for the two herbaceous plant species 

(O. acetosella and G. urbanum), before presenting the results for I. ricinus which have been recently 
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published in the scientific journal Ticks and Tick-borne Diseases and under the title “Strong genetic 

structure among populations of the tick Ixodes ricinus across its range” (Poli et al. 2020). All 

Supplementary Informations cited in the article are presented in Appendix 1. 
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Investigating loci variation in Oxalis acetosella 

Considering that no genetic marker was available for O. acetosella, the first step was to identify loci 

that would allow characterising the population genetic structure and the phylogeography of this model 

species. Three different types of traditional genetic markers were investigated during my PhD thesis. 

Sampling 

Samples were collected from most of the species’ European distribution range (Figure 2.1). Sampling 

took place during two consecutive years, in 2017 (green triangles in Figure 2.1) and in 2018 (black dots 

in Figure 2.1). The 2017’s samples were used to test the variability of existing genetic markers and to 

characterize Single Nucleotide Polymorphisms, while 2018’s samples were intended for the population 

genetics analysis per se. Sampling during the year 2017 followed a flexible protocol, with the only 

constraint being that samples had to belong to different patches of O. acetosella to avoid clones. The 

2018 sampling campaign followed a more constrained protocol. First, all sampled locations were 

collected at a minimum of five meters from each other. From each individual in a given location, 

between three to five leaves were collected, and only “healthy” leaves were used in the following 

analysis (no signs of infection by fungus and no signs of herbivory). All sampled locations were 

georeferenced by GPS. Leaves from each sample were stored in individual paper envelopes (one 

envelope for each a group of leaves from one individual) and air-dried. Samples were collected by 

colleagues around Europe after a call on Twitter, by using mailing lists of colleagues and throughout 

scientific meetings during 2018. All volunteers received a detailed and illustrated sampling protocol 

(https://jonathanlenoir.wordpress.com/2018/05/). After receiving samples, all individual leaves were 

verified before storage. In the year 2018, 348 individuals were sampled across 30 different populations 

(from 5 to 22 individuals sampled per population, mean = 11.6). 

 

https://jonathanlenoir.wordpress.com/2018/05/
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DNA extraction 

The DNA extraction methods used differed between the two sampling years. For the 2017’s samples, 

DNA was extracted with the E.Z.N.A Plant DNA Kit (Omega Bio-tek), following the supplied protocol. 

For the 2018’s samples, DNA was extracted with the DNeasy 96 Plant Kit (Qiagen). As usual for DNA 

extraction from plants, DNA was always treated with RNAse in the first steps of the extraction protocol. 

Existing genetic markers variability 

Microsatellites variability 

First, I searched the scientific literature for variable loci from related species. A set of twelve 

polymorphic microsatellites loci has been developed for a North American species from the Oxalis 

genus, namely O. montana (Tsyusko et al. 2007). However, based on results from colleagues from the 

Leibniz Centre of Agricultural Landscape, Müncheberg (Dr. Naaf, personal communication), those loci 

were not amplified in O. acetosella. (Weising and Gardner 1999) have characterized a set of 10 

microsatellites from the tobacco chloroplast genome (CCMPs) and were successfully amplified in a vast 

diversity of non-related Angiosperm families, including representatives from both monocots and dicots 

(Actinidiaceae, Brassicaceae, Fabaceae, Rosaceae, Myrtaceae, Poaceae, and Agavaceae). I tested the 

application of those microsatellites for population genetics of O. acetosella in Europe by verifying the 

presence of variation within samples from North Germany, Finland, North and South France, Czech 

Republic, West Romania, and South Sweden. Seven out of ten of those microsatellites were amplified 

with the primers designed by Weising and Gardner (1990) (CCMP-2 to CCMP-7, and CCMP-10). The 

multiplex PCR followed the protocol of Weising and Gardner (1990). The PCR products were migrated 

in 2% Agarose gel for 45 min at 100V and in 40% Acrylamide gel for 40 min at 200V, followed by a 20 

min migration at 135V (Figure 2.2a). The CCMP 4 locus was the only one that seemed to vary across 

individuals, and only in the Agarose gel (Figure 2.2b). After this preliminary analysis, it was decided not 

to follow up with those uninformative markers. 
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Figure 2.1. Sampling locations for Oxalis acetosella from 2017 (green triangles) and 2018 (black dots). Only IDs 

of the 2018’s samples are shown. Differences in size of dots represent differences in the number of individuals 

sampled per site during the 2018 campaign (5-22). The light brown colour in the background represents the 

species distribution range across the study region (Kwescience, Plants of the World online, 2020 - 

http://www.plantsoftheworldonline.org/ ). 

Nuclear and Chloroplast sequences variability 

I investigated the variability of one nuclear and one chloroplast sequence among the same populations 

described in the previous section: the internal transcribed spacer (ITS) region of the nuclear sequence 

of the ribosomal RNA gene and the non-coding chloroplast sequence petA-psbJ. Although ribosomal 

sequences are normally applied to resolve phylogenies of higher than family taxonomic levels, the ITS 
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region is considered to evolve rapidly (White et al. 1990) and may be used at the species level (Grivet 

and Petit 2002, Rosselló et al. 2007, Jin et al. 2016). Non-coding chloroplast sequences have different 

levels of variation (Shaw et al. 2005) and have been frequently applied to phylogeography and 

population genetics at the intraspecific level (Yang et al. 2017, Sánchez‐del Pino et al. 2020). We tested 

the variability of the ITS sequence described by White et al. (1990) and the chloroplast sequence petA-

psbJ described by (Shaw et al. 2007) in analysing two individuals of each region for which we have 

data, i.e., North Germany, Finland, South France, Czech Republic, West Romania, and South Sweden. 

Amplification protocols followed White et al. (1990) and Shaw et al. (2007) for ITS and petA-psbJ, 

respectively. Sequencing was conducted in an Applied Biosystems 3130 XL 16 capillary sequencer at 

the “Institut Génétique & Développement de Rennes” (IGDR UMR 6290 CNRS – UR1). Base correction 

and sequences aligning were conducted in CodonCode Aligner version 8.0.1. (CodonCode 

Corporation). 

Results for the two sequences were again discouraging. No variation was observed in the ITS 

locus. Aside from one sample from South France, no variation was observed for the petA-psbJ locus. 

We checked the Genbank for the sequence from the one varying sample and it coincides with deposed 

sequences from the close-related species, O. montana. 
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Figure 2.2. Genetic variation explored in Oxalis acetosella. Migration of the ten microsatellite loci characterized 

by Weising and Gardner (1990). In (a) the ten loci were migrated in Agarose gel. In (b) detail of the locus CCMP-

4 in Acrylamide gel (left) and Agarose gel (right). The CCPM-4 locus showed no variation when PCR products 

migrated in Acrylamide gel but seemed to have at least two alleles when PCR products migrated in Agarose gel. 

Each well was loaded with the PCR product for one individual from North Germany, Finland, North and South 

France, Czech Republic, West Romania, and South Sweden. 

 

Single Nucleotide Polymorphism Characterisation of Oxalis acetosella 

Considering the results of the investigation on the variability of published markers for O. acetosella, 

we included the species in the joint project ‘ASSETS: 2nd phase of BASC flagship project’. This project 

(a) 

(b) 
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includes the SNP characterisation of multiple species and is integrated by the UMR ‘Ecologie et Santé 

des Ecosystèmes’ (INRAE – Agrocampus Ouest), Université Paris Saclay and the INRAE institute of 

Grignon. The project was intended to identify SNP bi-allelic loci in multiple species, following the 

pipeline described by (Delord et al. 2018). This method is a multispecies approach that allows the 

characterisation of high-quality SNPs. The pipeline is similar to traditional RAD-seq and de novo 

assembly: pooled DNA from individuals from each species are digested with a chosen restriction 

enzyme, DNA fragments are tagged according to the species pool, and the final library is sequenced. 

Delord et al. (2017) proposed a bioinformatics pipeline using the Stacks software (Catchen et al. 2011) 

and Python scripts to further select SNPs based on: i. coverage, position and polymorphism (first filter); 

ii. specificities of flanking regions to favour primers design (second filter); and iii. an almost redundant 

third step of filtering reads based on the presence of polymorphism in the flanking regions to assure 

unique SNP candidates (third filter). 

Library preparation and sequencing 

For the library preparation, 10 samples from different populations from the 2017 campaign were 

pooled. To be included in the pool, a sample should have a minimum DNA concentration and quality. 

Only samples with DNA concentration superior to 20 ng/µl were selected. DNA quality, as measured 

from the absorbance ratios of 260nm/280nm and 260nm/230nm, was frequently low. Only samples 

that had a 260/280 ratio superior to 1.5 and a 260/230 ratio superior to 1.2 were selected. Absorbance 

was measured on a multimode lector Infinite® M1000 (Tecan) at the Regional Resource Centre of 

Molecular Biology (CRRBM, Amiens France). After this filter, two samples from North Germany, 

Romania, Finland and Sweden as well as one sample from South France and Belgium were selected. 

Although some of the selected samples did not rank on the top DNA concentration and/or quality, this 

was thought to be the best compromise between population representativeness (and, by 

consequence, DNA variability) and DNA concentration and quality. Individual samples were 
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concentrated in a speed vacuum and concentration was normalized to 46 ng/µl, which was the final 

concentration of the pool, with 260/280 and 260/230 ratios of 1.7 and 1.45, respectively. 

The pool of samples was then digested with the PstI restriction enzyme. The enzyme recognises the 

sequence 5’CTGCAG and cleaves the guanine-adenine bond. For the Delord pipeline, an excessive 

number of digested fragments from one particular species can, theoretically, impact the read depth of 

the other species. Oxalis acetosella has a genome size of 6.2 Gb (Grime and Mowforth 1982) and the 

GC (Guanine and Cytosine) content, albeit unknown, was estimated to reach ~40% based on the results 

of (Biswas and Sarkar 1970) for O. corniculata. The restriction enzyme PstI was than chosen because 

of the intermediate number of fragments (Parchman et al. 2018). In addition to O. acetosella, the final 

species pool was composed of six other species, including three invertebrates and three vertebrates. 

All the digestion steps, multispecies library preparation, and sequencing were conducted at 

the MGX sequencing platform (Montpellier, France). Sequencing was conducted by SBS (Sequencing 

By Synthesis), which consists of the sequential incorporation and detection of nucleotides. All 

sequencing steps were conducted on NovaSeq 6000 sequencer. A preliminary bioinformatic step was 

conducted by MGX consisting of filtering off reads with low quality and demultilplexing. At the end of 

this step, more than 14,000,000 reads of O. acetosella were kept for further analysis, representing 4% 

of the total reads for the seven species in the species pool. 

Bioinformatics treatment and candidate SNP selection 

Bioinformatics treatments were conducted by the UMR Ecologie et Santé des Ecosystèmes (INRAE-

Agrocampus Ouest). De novo assembling was conducted in Stacks and SNP candidates were filtered 

according to the bash/Python script from Delord et al. (2017), at which point 1224 candidates bi-allelic 

sequences were selected and received as a .fasta file. All sequences where the polymorphism was 

situated at less than 52 bases from the extremities were excluded from further analyses. Next BLAST 

was queried for similarities and any sequence with a query cover of 100% were also excluded. From 

the 524 remaining sequences, 192 were randomly selected for validation. 
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SNP genotyping 

Genotyping was also conducted at the MGX sequencing platform. All of the 348 samples from 2018 

(Figure 2.1 black dots) were sent for genotyping of the 192 SNPs selected in the previous step. DNA 

concentration from our samples was very variable, from 10 ng/µl to more than 200 ng/µl. Samples 

with less than 40 ng/µl were first amplified by Whole Genome Amplification (WGA), and all samples 

were then normalised to that concentration. Genotyping was conducted in a Biomark HD System 

(Fluidigm) and KASPar assays. The KASPar method is a KBiosciences competitive allele-specific PCR 

amplification. A PCR mix containing two allele-specific forward primers and one common reverse 

primer was carried out. Each forward primer had a 5’ tail sequence homologous to universal secondary 

oligos labelled with a fluorophore (FAM or HEX). If a particular locus is homozygous, only one 

fluorescent signal is generated. Bi-allelic loci generate both fluorescent signals. The system allows the 

genotyping of 96 samples × 96 markers in a unique run. For each group of 96 candidate SNPs, 95 (plus 

a negative control) were genotyped. For this first investigation, two runs of 96 loci were tested over 

95 samples. 

The results were as disappointing as it could be. Figures 2.3 and 2.4 show the allele calls for 

the two aforementioned runs. Each column is a candidate SNP and each row is a sample. When a 

sample is homozygote for a particular locus, it will show as a red or green dot (depending on the allele 

for which it is homozygote). If a sample is heterozygote for a locus, it will show a blue dot. Most of the 

loci from the first run (Figure 2.3) showed no variation, while most of the loci of the second run (Figure 

2.4) were not even amplified. Concerning this second run, the few amplified loci are most probably 

artefacts. There are two main explanations for those results. First, DNA quality could be the main 

source of errors. The 2018 samples were stored in paper envelopes at room temperature for around a 

year before extraction, which probably contributed to DNA degradation. It was, nonetheless, possible 

to amplify the petA-psbJ sequence from a selection of those samples following the same protocol 

applied to the samples from 2017. Another possible reason for the results is if something went wrong 
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during the bioinformatics step, although for the moment this possibility could not be verified. The next 

step is to try to validate those SNPs with a small number of the best quality samples, but those results 

will not be available soon. 

 

Figure 2.3. Allele call for the first run of 96 SNP loci for 95 samples of O. acetosella and one negative control 

(black dots). For a particular locus, samples may be homozygote for one allele (red or green dots) or heterozygote 

(blue dots). Most of the loci showed no variation across samples, with very few loci exhibiting one to three of the 

rare alleles. 
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Figure 2.4. Allele call for the second run of 96 SNP loci for 95 samples of O. acetosella and one negative control 

(black dots). For a particular locus, samples may be homozygote for one allele (red or green dots) or heterozygote 

(blue dots). Almost no loci were amplified, and the few loci that seem to have been amplified are most probably 

artefacts and it seems that they are homozygote for the same allele in all samples.   
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Population genetic structure of Geum urbanum 

Material and Methods 

Sampling 

Analysed samples were collected from most of the species’ European distribution range (Figure 2.5) 

during 2018. All sampled individuals were collected a minimum of five meters from each other. From 

each individual in a given location between three to five leaves were collected, and only “healthy” 

leaves were used in the following analysis (no signs of infection by fungus and no signs of herbivory). 

All sampled locations were georeferenced with a GPS. Leaves from each sample were stored in 

individual paper envelopes (one envelope for each a group of leaves from one individual) and air-dried. 

Samples were collected by colleagues around Europe after a call on Twitter, by using mailing lists of 

colleagues and throughout scientific meetings during 2018. All volunteers received a detailed and 

illustrated sampling protocol (https://jonathanlenoir.wordpress.com/2018/05/). After receiving 

samples, all individual leaves were verified before storage. 

https://jonathanlenoir.wordpress.com/2018/05/
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Figure 2.5. Sampling locations and IDs for Geum. urbanum. Differences in size of the points represents differences 

in the number of individuals per site (5-17). In green, the distribution range of the species, that cover all of the 

study area (Kwescience, Plants of the World online, 2020 - http://www.plantsoftheworldonline.org/). 

DNA extraction and genotyping 

DNA was extracted at Genoscreen (Lille, France) following the protocol from the kit NucleoSpin Plant 

II (Macherey-Nagel). Six microsatellites loci were genotyped in two multiplex, with fluorescent dyes 

added to the forward primer: i. WGU2-28 (HEX), WGU6-5 (FAM), and WGU6-7 (NED); ii. WGU2-10 

(FAM), WGU2-48 (HEX), and WGU6-1 (NED) (Arens et al. 2004). PCR was performed in 20 µl reaction 

volumes containing 10 µl of mix FastStart Taq DNA polymerase (Roche), 0.8 µl of each pair of primers, 
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and 1.5 µl of DNA extract. The PCR program was the same as described in Arens et al. (2004): 95 °C for 

15 min; followed by 35 cycles of 94 °C for 30 s, 57 °C for 90 s, and 72 °C for 90 s; followed by a final 

elongation step at 72 °C for 10 min. Fragments were separated in an Applied Biosystems 3130 XL 16 

capillary sequencer at the ‘Institut Génétique & Développement de Rennes’ (IGDR UMR 6290 CNRS – 

UR1). The scoring of microsatellites was performed in a semi-automated way using GENEMAPPER v4.0. 

First, a panel was created for each locus. Next, all chromatographs were loaded in GENEMAPPER and an 

automatic analysis was performed using default parameters. Samples with good quality scores were 

selected to automatically generate bins for each locus. Another analysis was performed and bins were 

adjusted based on the results. Then, all picks were manually verified and, whenever needed, allele 

sizes were manually corrected. Finally, all samples with ambiguous pick sizes or with no amplification 

for at least one loci were excluded from further analysis. The final data set was composed of 302 

samples from 27 populations without any missing data.  

Clustering analysis and population differentiation 

A Bayesian analysis was performed in STRUCTURE (Pritchard et al. 2000), with parameter K (i.e., the 

optimal number of genetic clusters) varying from 1 to 15. Ten repetitions of an admixture model with 

the population of origin as prior and 80,000 MCMC iterations with the burning of 20,000 iterations 

were run for each value of K. The results were analysed with Structure Harvester (Earl and vonHoldt 

2012). The best K value for the optimal number of clusters was identified by comparing the estimates 

of log probabilities of the data (i.e. ln[Pr(X|K)]) for each K value as well as Evanno's delta K method 

(Evanno et al. 2005). Janes et al. (2017) have pointed out that this method frequently identifies a K = 

2 when data has ‘a representative number of markers’. This is not the case in this analysis, since only 

six microsatellites loci were presented in the data. Nonetheless, besides being one of the most widely 

applied methods to analyse results from STRUCTURE, results from Evanno’s method should be regarded 

with care. The final value of K was chosed based on the combination of Evanno’s method and 

qualitative analysis of the ln[Pr(X|K)] distribution and the genetic structure for all values of K from 1 to 

15. 
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For each population, the number of alleles, allelic richness (Ar), observed heterozygosity (Ho), 

gene diversity (He), and the inbreeding coefficient (Fis) were estimated in the diveRsity R package 

(Keenan et al., 2013). Allelic richness is calculated in the diveRsity package using 1000 re-sampling with 

a n equal to the smallest sample size across population (n = 5 in this case). 

Isolation by distance (IBD) was tested at a global level and inside of each main genetic clusters 

identified by STRUCTURE. Pairwise FST values were estimated with the package ‘hierfstat’ (Goudet & 

Jombart, 2018) in R (R Core Team, 2019) as the Weir and Cockerham unbiased parameter 𝜃 (Weir and 

Cockerham 1984). Since the 27 sampled locations are distributed across a large continental extent, 

pairwise geographical distances were calculated with the ‘geosphere’ package (Hijmans, 2017) in R (R 

Core Team, 2019) to account for the curvature of the Earth. The strength of the IDB was evaluated as 

the relationship between 𝜃/(1 − 𝜃) and the natural logarithm of the geographic distance as described 

by Rousset (1997). The significance of the IBD pattern was assessed by Mantel tests as implemented 

in the ‘ade4’ package (Dray and Dufour 2007) in R (R Core Team, 2019), with default parameters. 

Spatial patterns of population differentiation were also analysed as a spatial variation of the 

expected heterozygosity and by a principal coordinate analysis (PcoA) (Legendre and Legendre 1998) 

on a pairwise distance matrix of 𝜃 values (and not 𝜃/(1 − 𝜃)). The spatial pattern of 𝜃 as measured by 

the first axis of the PCoA was compared to that of the expected heterozygosity by means of a Spearman 

rank correlation test. 

Results 

Clustering analysis with STRUCTURE was not conclusive about the value of K. The Evanno's delta K 

method and the probabilities ln P(X|K) suggest two genetic clusters (Figure 2.6). Based on the 

probabilities of assignment for a K = 2 (Figure 2.7), the STRUCTURE results indicates the genetic proximity 

between populations from the same regions, notably the similar probabilities of the Southern cluster 

composed of most of the Czech Republic, the Austrian populations, Italy and Southern France 

populations that differentiate itself from the Northern cluster composed of all Scandinavian 
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populations and those from the United Kingdom and Ireland. This pattern can also be clearly identified 

when considering a K from 3 to 4 (Figure 2.8). When considering a K = 5 or greater, this differentiation 

between the two groups is less clear and the pattern is no more perceivable after a K = 6 or greater 

(Figure 2.8). Interestingly, the Estonian population (EST_1) and one of the Czech Republican populations 

(CZE_9) were most of the time placed close to the geographically more distant clusters (Figure 2.7 and 

Figure 2.8). As the value of K becomes more important, the genetic similarity between the two Alpine 

populations (ITA_1 and AUT_1) becomes evident (Figure 2.8). 

 

Figure 2.6. Probabilities ln P(X|K) (points) and delta K (crosses, Evanno et al., 2005) for each value of K. 
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Figure 2.7. Probabilities of assignment to each of the two genetic clusters (K = 2) inferred from STRUCTURE for 

Geum urbanum in European populations. (a) Individual probabilities of assignment. (b) Geographic distribution. 

The pie charts in (b) in each population represents the overall probabilities for that population to be assigned to 

one of the two clusters (light green: northern cluster; light orange: southern cluster). 
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Table 2-1. Basic statistics for each population of Geum. urbanum. N, number of samples. Ar, Allelic richness. Ho, 

observed heterozygosity. He, gene diversity. Fis, inbreeding coefficient. 

  N Ar Ho He Fis 

ITA_1 15 2.12 0.26 0.42 0.3867 

EST_1 10 1.5 0.22 0.18 -0.2037 

AUT_1 15 2.23 0.36 0.42 0.1519 

AUT_2 12 3.21 0.33 0.6 0.4462 

CZE_5 6 3.01 0.36 0.56 0.358 

CZE_4 8 2.45 0.15 0.43 0.6637 

CZE_2 8 2.91 0.29 0.61 0.5254 

CZE_8 6 3.03 0.22 0.63 0.6471 

CZE_3 9 3.34 0.39 0.63 0.3874 

FRA_3 17 3.04 0.36 0.59 0.3866 

CZE_6 9 2.78 0.35 0.54 0.3436 

BEL_1 15 2.27 0.24 0.39 0.372 

LVA_1 14 3.67 0.51 0.64 0.2037 

DEU_1 13 2.66 0.26 0.53 0.5149 

IRL_1 13 2.89 0.36 0.6 0.4052 

FIN_1 12 2.66 0.44 0.51 0.1213 

SWE_3 15 3.26 0.32 0.66 0.5129 

SWE_2 15 2.33 0.4 0.44 0.0985 

SWE_1 14 2.86 0.2 0.59 0.6566 

NOR_3 14 1.98 0.19 0.3 0.3554 

SCT_1 14 2.87 0.35 0.52 0.3311 

NOR_4 7 2.16 0.21 0.37 0.4247 

FRA_1 9 2.24 0.28 0.38 0.2722 

CZE_9 7 2.2 0.29 0.43 0.328 

NOR_1 5 1.88 0.23 0.29 0.2045 

GBR_1 10 2.09 0.28 0.39 0.2672 

NOR_2 10 1.38 0.13 0.18 0.2727 

 

This pattern of general differentiation between Northern and Southern populations can also 

be observed on the first principal plan of the PCoA (Figure 2.9 and Figure 2.10a). The first axis of the 

PCoA based on the distance matrix of pairwise 𝜃 follows a somewhat north-south gradient, sub-

grouping the 27 populations in a way similar, even though not identical, to that of STRUCTURE. However, 

this spatial pattern was not reproduced by the distribution of the expected heterozygosity, although 

the Czech Republic cluster can yet be identified (Figure 2.10b). The two spatial patterns were actually 

negatively correlated (ρ = -0.4027, p = 0.0373). 
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With few exceptions, values of He and FIS were relatively high across populations (Table 2-1). 

Concerning the last, a notable exception was the Estonian population EST_1, the only population to 

exhibit important negative values of FIS. Allelic richness was generally lower in the populations assigned 

to the Northern cluster, besides having more samples per population, on average. 

A pattern of IBD is observed in the global analyse across all sampled populations (Mantel r = 

0.1964, p = 0.006). A relatively strong signature of IBD was observed in the Southern group (K=2, 

Mantel r = 0.4659, p = 0.022), but no such pattern was observed in the Northern group (Mantel r = -

0.1113, p = 0.740). This intra-group analysis was repeated with the exclusion of the two geographically 

isolated populations in each group (EST_1 in the Southern group, and CZE_9 in the Northern group). 

This time, no significance was observed in neither of the two groups (Southern: Mantel r = 0.2840, p = 

0.122; Northern: Mantel r = -0.1144, p = 0.744). As an exercise to better understand the 

equilibrium/drift dynamics across the European continent, the Northern group was again tested 

against IBD, this time including the Estonian population EST_1 considering its geographic proximity to 

the remaining populations within this genetic cluster. Again, no significance was observed, but the 

slope of the regression became slightly positive (Mantel r = 0.0606, p = 0.391). 
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Figure 2.8. Genetic structure of Geum urbanum populations: population probabilities of assignment for each 

value of K from 3 (upper graphic) to 8 (lower graphic). Until K = 5, there is a general differentiation between the 

Northern populations (all populations on the left of LVA_1) and Southern populations (on the right of LVA_1). 

This pattern becomes less clear with K values of 6 or greater. For all values of K, populations from Czech Republic 

seem to form a somewhat concise group (with the exception of CZE_9), as do populations from Scandinavia, 

United Kingdom and Ireland. As the value of K becomes more important, the genetic similarity between the two 

Alpine populations (ITA_1 and AUT_1) becomes evident. 
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Figure 2.9. Biplot of the two first coordinates of the PCoA. The first coordinates differentiate Northern (right side) 

from Southern populations (left side) of Geum. urbanum. The results of the PCoA are very similar to those from 

STRUCTURE (Figs. 3 and 4). As for the STRUCTURE results, populations EST_1 and CZE_9, situated at the geographic 

North and South of the study area, respectively, are grouped with populations from the opposite geographic 

zone. 

 

Figure 2.10. Spatial patterns of the first principal coordinates of the PCoA based on the pairwise values of 𝜃 (a) 

and the expected heterozygosity calculated for each population of G. urbanum (b). The PCoA pattern in (a) closely 

reproduces the results from STRUCTURE (note the high and low values of CZE_9 and EST_1, respectively), while 

expected heterozygosity has no clear spatial pattern and is inversely correlated to the first PCoA coordinate (ρ = 

-0.4027, p = 0.0373). A Gabriel graph was draw to better represent the two-dimensions geographic relationship 

between populations.  
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Discussion 

Despite being a generalist species with a high dispersal ability, G. urbanum shows a marked population 

structure across its European range. Two spatially explicit genetic groups were identified both by 

Bayesian clustering approach (STRUCTURE) and multidimensional scaling (PCoA), which generally 

coincides with a geographic north/south gradient. A finer genetic structure becomes more evident 

when we analyse in more details the results obtained when increasing the values of possible K genetic 

clusters and the continuous variation of the first PCoA axis.  

Within the Northern cluster, populations from the United Kingdom and Scandinavia – 

particularly those from Norway – seem to be closely related besides the presence of the North Sea. A 

possible reason for this proximity is that birds migrating from one region to the other could carry seeds 

attached to their feathers. Migratory birds are well known to disperse a vast range of taxon across long 

distances (Coughlan et al., 2017), including crustaceans (Rachalewski et al., 2013), acarians (Røed et 

al., 2016), snails (van Leeuwen & van der Velde, 2012), and, of course, plants (Mellado and Zamora 

2014, Green 2016). Seeds of G. urbanum are reported to be highly viable, with rates of germination 

higher than 70% in variable temperature and radiation conditions in laboratory (Taylor 1997), and the 

periodic exchange of few seeds between the two regions could be enough to ensure the observed 

genetic proximity. 

The Italian and the Southernmost Austrian populations (AUT_1) were particularly close to each 

other, which was brought to light by both STRUCTURE and the PCoA analysis. Both populations are 

situated in the Alpine regions, and it is possible that the mountain chain represents a somewhat 

important barrier to the gene flow with the two other closest populations, notably the one in South 

France (FRA_3) and the one in North Austria (AUT_2). 

In face of the results of the global genetic structure of the European populations of G. 

urbanum, it was surprising that one of the Czech Republic and the Estonian populations (CZE_9 and 

EST_1, respectively) were grouped together with populations from distant geographic regions. The two 
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populations were amplified on the same plate but were genotyped in different runs. During the pick 

assignment step of the microsatellite genotyping, no particularity was observed, as picks were in 

general clearly identifiable. This leads to the conclusion that the observed genetic pattern is not a 

methodological artefact during the lab analyses. Analysed sample sizes were of n = 9 (CZE_9) and n = 

12 (EST_1). It is possible, although unlikely, that the observed pattern is simply due to chance. Another 

possible explanation is the human factor: seeds could be transported from one region to another by 

human activities. But in that case and considering the geographical extent of the study area, a mixed 

pattern would most probably be observed between other populations. At this point, it is hard to find 

a clear explanation for the genetic relationship of those two populations within the global genetic 

structure across the studied region. 

Although populations close to each other in the geographic space tended to show similar 

values of gene diversity, no global clear pattern was identified across all populations. In general, gene 

diversity was high, with a mean of 0.4752 and a median of 0.5100. Relatively high values were also 

observed by Schmidt et al. (2009) in Germany and Switzerland (not investigated in the present study), 

although the values they found were smaller than the one we observed here. Again, the Estonian 

population (EST_1) was a remarkable exception, where gene diversity was the lowest (0.19), which 

was also identified by Schmidt et al. (2009). The relatively high levels of FIS suggests a high level of 

inbreeding, which might be linked to the common self-pollinating strategy of G. urbanum. 

An IBD pattern was observed across Europe, but this pattern tends to disappear when analysed 

separately within each of the two identified genetic groups. At first glance, this global pattern suggests 

that, at the European scale, the populations are in equilibrium under dispersal and genetic drift 

(Slatkin, 1993), but investigating the within group patterns of IBD may tell a different history. No IBD 

pattern was observed within the Northern cluster and the weak IDB pattern found for the Southern 

cluster was not statistically significant when removing the Estonian population (EST_1). The within 

cluster absence of IBD could be explained by the species preferred self-pollination strategy. Self-
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fertilizing species tend to experience a weaker selection pressure due to its reduced Effective 

Population Size Ne (Hartfield et al. 2017). In this sense, local selective pressures would be less 

important to population differentiation. Also, the genetic drift tends to be more important in self-

fertilizing species (Nordborg and Donnelly 1997). Although many ecological and evolutionary processes 

may influence spatial genetic patterns, if the increase in the genetic drift is strong enough to overcome 

gene flow, it is expected that no IBD pattern will be observed (Slatkin, 1993). The within cluster 

patterns also suggest that some populations are somewhat isolated from other populations from 

within the same genetic cluster. That seems to be the case, for example, for the population NOR_2 in 

the Northern group. The second coordinate from the PCoA analysis places this population as very 

isolated from the remaining populations in the cluster. When considering multiple values of K, the 

STRUCTURE analysis also differentiates this population. It is also the second population with the lowest 

level of gene diversity, behind the Estonian population. Those results suggest that geography (physical 

barriers), ecology (impeding abiotic conditions in-between populations), or history (colonisation time 

or even contribution of hybrids of G. urbanum X rivale on the overall local population genetics) could 

contribute to explain the isolation of certain populations that can’t be acknowledged with the methods 

presented here. The ecological factors potentially contributing to the observed genetic structure will 

be further explored in the next chapter. 

Finally, since there is no evident physical geographic barrier between the Northern and Southern 

clusters we identified for G. urbanum, the continental genetic structure in two distinct clusters could 

be explained by a post-Pleistocene northward expansion. Founder-flush theory (Slatkin, 1996) 

preconizes that a rapidly growing founding population would experience a relaxed selection due to 

reduced ecological pressure, and so genetic drift and recombination could fix different alleles or new 

combination of alleles from the original population. Founder events have been proposed to decrease 

the genetic diversity of populations (Nei et al. 1975), and allelic richness was generally lower in the 

Northern populations. Again, this hypothesis of a post-Pleistocene expansion explaining the 

continental genetic structure of G. urbanum will be further explored in the next chapter.  



Contents lists available at ScienceDirect 

Ticks and Tick-borne Diseases 

journal homepage: www.elsevier.com/locate/ttbdis 

Original article 

Strong genetic structure among populations of the tick Ixodes ricinus across 
its range 
Pedro Polia,*, Jonathan Lenoira, Olivier Plantardb, Steffen Ehrmannc, Knut H. Røedd,  
Hans Petter Leinaase, Marcus Panningf, Annie Guillera 

a Université de Picardie Jules Verne, UMR « Ecologie et Dynamique des Systèmes Anthropisés » (EDYSAN, UMR 7058 CNRS), 33 Rue Saint Leu, 80000 Amiens CEDEX 1, 
France 
b BIOEPAR, INRAE, Oniris, 44307, Nantes, France 
c German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany 
d Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, N-0033, Oslo, Norway 
e Department of Biosciences, University of Oslo, Box 1066 Blindern, N-0316 Oslo, Norway 
f Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str, 11 79104, Freiburg, Germany  

A R T I C L E  I N F O   

Keywords: 
Gene flow 
Infection risks 
Range shift 

A B S T R A C T   

Ixodes ricinus is the most common and widely distributed tick species in Europe, responsible for several zoonotic 
diseases, including Lyme borreliosis. Population genetics of disease vectors is a useful tool for understanding the 
spread of pathogens and infection risks. Despite the threat to the public health due to the climate-driven dis
tribution changes of I. ricinus, the genetic structure of tick populations, though essential for understanding 
epidemiology, remains unclear. Previous studies have demonstrated weak to no apparent spatial pattern of 
genetic differentiation between European populations. Here, we analysed the population genetic structure of 497 
individuals from 28 tick populations sampled from 20 countries across Europe, the Middle-East, and northern 
Africa. We analysed 125 SNPs loci after quality control. We ran Bayesian and multivariate hierarchical clustering 
analyses to identify and describe clusters of genetically related individuals. Both clustering methods support the 
identification of three spatially-structured clusters. Individuals from the south and north-western parts of Eurasia 
form a separated cluster from northern European populations, while central European populations are a mix 
between the two groups. Our findings have important implications for understanding the dispersal processes that 
shape the spread of zoonotic diseases under anthropogenic global changes.   

1. Introduction 

Ixodes ricinus (Acari, Ixodidae) is the most widespread tick species 
occurring across Europe and an important vector of multiple tick-borne 
diseases, both to humans and livestock. Commonly reported pathogens 
transmitted by I. ricinus include: bacterium Borrelia burgdorferisensu 
lato, responsible for the Lyme borreliosis, which is the most prevalent 
tick-borne disease in temperate Europe (ECDC, 2015); arboviruses 
(genus Flavivirus) causing tick-borne encephalitis (TBE) and louping-ill 
(LI); the protozoan Babesia microti, responsible for the babesiosis; and 
the bacterium Neoehrlichia mikurensis, responsible for neoehrlichiosis, 
an emerging tick-borne pathogen (Portillo et al., 2018; Welinder-Olsson 
et al., 2010). 

The current climate-driven redistribution of hematophagous ar
thropods such as ticks and mosquitoes may lead to severe challenges to 

public health and husbandry, by carrying a wide range of vector-borne 
diseases to new areas (Dantas-Torres, 2015; Pecl et al., 2017). For in
stance, many studies have demonstrated that the range of I. ricinusis 
already shifting northward and to higher elevations (e.g. Hvidsten 
et al., 2020; Jore et al., 2011; Lindgren and Gustafson, 2001) and those 
shifts are expected to continue in the future (Alkishe et al., 2017;  
Medlock et al., 2013). 

Despite the threats of emerging infectious diseases following the 
redistribution of I. ricinus, little is known about the genetic structure of 
tick populations across the entire species range. Population genetic 
differentiation and spatial structuring can, however, impact the vector 
fitness and distribution, and therefore disease transmission (Blanchong 
et al., 2016; Wonham et al., 2006). Population genetics approaches 
such as individual genetic clustering and assignment methods enable 
inference on migrants (exchange of genes between populations) and the 
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risk of pathogen spread between populations (Kozakiewicz et al., 2018). 
For example, Lang and Blanchong (2012) applied clustering and dis
tance-based methods to assess gene flow and disease spread risk be
tween populations of white-tailed deer in the USA. Similarly, Van Zee 
et al. (2015) identified different genetic clusters between the southern 
and northern range of the tick Ixodes scapularis while the prevalence of 
borreliosis is known to be lower in the southern range. The authors 
suggest that this pattern of spatial genetic structure might be linked to 
differences in questing behaviour as ticks from the northern range 
would be more likely to bite humans. Differences in several life history 
traits of I. ricinus – such as the temperature at which nymphs begin to 
quest – have been reported along a latitudinal gradient (Gilbert et al., 
2014), suggesting a spatially explicit phenotypic plasticity or adapta
tion. Yet, such basic knowledge about the distribution of genetic var
iation in I. ricinus and the migration processes involved in disease 
transmission remain largely unknown, albeit being essential to design 
better vector control strategies (Araya-Anchetta et al., 2015; Gooding, 
1996; Tabachnick and Black, 1995). 

The genetic structure of parasites’ populations is known to be in
fluenced by the distribution of the hosts (Kempf et al., 2009; Wessels 
et al., 2019). In general, it is assumed that generalist parasites relying 
on a wide range of hosts tend to show weak or no genetic structure, as 
shown in many studies on various parasite species (e.g. Archie and 
Ezenwa, 2011; Wessels et al., 2019). The tick species I. ricinus is a 
generalist ectoparasite infesting a wide range of hosts, such as reptiles, 
mammals, and birds (Casati et al., 2008; Norte et al., 2012). It has been 
proposed that tick abundance and population genetic structure are 
dependent on the species’ biology (such as reproduction strategies and 
life cycle), but also on the host distribution and behaviour (Kempf et al., 
2011; McCoy et al., 2001; Rizzoli et al., 2009; Norte et al., 2012). Large 
ungulates, such as deer, bovidae, and wild boar may be highly efficient 
carriers of ticks for long distances, as long as there are no severe bar
riers to their migration (Handeland et al., 2013; Kriz et al., 2014). By 
contrast, transportation of ticks by migrating birds seems to be less 
efficient across contiguous landmasses (Hasle et al., 2009; Røed et al., 
2016). Based on these findings, it is expected that I. ricinus populations 
should show a weak spatial genetic structure. 

Regarding previous works on population structure and dispersal of I. 
ricinus, Noureddine et al. (2011) found a clear differentiation between 
European and African populations using sequences from three nuclear 
and three mitochondrial markers. Regarding the results from that study, 
it was later suggested by Estrada-Peña et al. (2014) that those northern 
African samples could correspond to Ixodes inopinatus, a sibling species 
of the I. ricinus complex within the Ixodes subgenus. Considering only 
European populations, some studies showed weak to no differentiation, 
but an extensive genetic diversity was observed within each local po
pulation (Casati et al., 2008; Noureddine et al., 2011; Porretta et al., 
2013; Carpi et al., 2016). Other investigations analysing the frequency 
of mitochondrial haplotypes showed a marked phylogeographical 
structure in northern Europe, notably when considering populations 
from the north of the UK (Scotland) and Scandinavia (Al-Khafaji et al., 
2019; Dinnis et al., 2014; Røed et al., 2016). Although none of the 
mitochondrial haplotypes was exclusive to any of those populations, 
their frequencies varied significantly between populations from dif
ferent regions. Interestingly, the British clade identified by Røed et al. 
(2016) coincides with the occurrence of a particular subtype of the 
louping-ill virus, which is closely related to other Irish and Spanish 
subtypes. Other studies focusing on the genetic structure of I. ricinus 
populations were based on microsatellite loci (Kempf et al., 2009,  
2011). Microsatellite variations have led to the identification of sig
nificant levels of genetic structure at different spatial scales, deviation 
from panmixia in I. ricinus populations likely due to assortative mating 
and patterns of host use (see Araya-Anchetta et al., 2015 for a review). 
However, those studies have also assessed patterns of genetic variation 
from localised samples that cover only a subset of the species range and 
thus likely do not capture the entire species genetic structure at the 

continental level. 
Here, we aim to elucidate the population genetic structure of the 

tick I. ricinus based on single nucleotide polymorphisms (SNPs). To the 
best of our knowledge, no other study on the population genetic 
structure of I. ricinus throughout the Eurasian continent was based on 
the variation detected by this type of marker. Although generally 
having a weaker mutation rate than microsatellites, SNPs offers the 
possibility of building a larger range of markers and have been sug
gested to be more reliable markers for population genetic studies 
(Helyar et al., 2011; Smouse, 2010). Our main objective is to describe 
the genetic structure of I. ricinus populations to infer the geographical 
and environmental factors shaping this structure. Particularly we hy
pothesized that (i) I. ricinus from the western parts of Europe might 
have genetic similarities to the Great Britain lineage (Røed et al., 2016) 
while (ii) there should be a pronounced genetic differentiation between 
ticks south and north of the extensive mountain areas covering central 
Europe (i.e., the Eastern Alps, the Western Alps, the Carpathian 
Mountains, and the Balkan Mountains). 

2. Materials and methods 

2.1. Sampling 

A total of 28 tick populations from 20 countries were sampled 
covering most of the species’ range, including populations close to the 
northern (Norwegian, Sweden, Ireland, and England) and southern 
(Iran, Spain, and northern Africa) range limit of I. ricinus (Fig. 1). 
Samples were collected by flagging inside or near forest fragments from 
the ground vegetation and were preserved in alcohol. A significant 
subset of the sampled populations we used, covering 8 regions across 
Europe (southern and northern France; Belgium; western and eastern 
German; southern and central Sweden; and northern Estonia), origi
nated from a single project (smallFOREST, BiodivERsA 2010–2011 
Joint call: https://www.biodiversa.org/491/download) and was sam
pled by the same person during the same year 2013 (See Ehrmann et al., 
2017 for details). The remaining samples were collected for different 
projects (for details on those projects see Røed et al., 2016 for the 
Norwegian samples and Noureddine et al., 2011 for the remaining 
samples). The coordinates of the sampled populations are provided in 
Table S1 (see Supporting information). Aside from smallFOREST sam
ples, sampling dates varied among the sampled populations (Table S1). 

Ticks sampled for those projects were identified at the laboratory 
using standard morphological keys provided in Babos (1964); Hillyard 
(1996), or Pérez-Eid (2007). As most samples we used were identified 
before the description of I. inopinatus (Estrada-Peña et al., 2014) and 
considering that it was impossible to re-evaluate the identification of 
samples based on morphological features, we conducted an a posteriori 
evaluation of the potential presence of I. inopinatusamong our samples. 
To fulfil this aim, northern African I. inopinatussamples analysed by  
Noureddine et al. (2011) were included in the present study. 

2.2. DNA extraction and SNP genotyping 

Since ticks and DNA samples analysed in this study had different 
origins and therefore different storage methods, three different methods 
were used to ensure DNA extraction. Ticks were either: (i) frozen and 
crushed with a pestle in individual tubes before extracting DNA using 
DNeasyTM Tissue Kit (Qiagen); (ii) disrupted using a Tissue Lyser 
(Qiagen) before DNA extraction using the Wizard Genomics DNA 
Purification Kit (Promega, USA); or (iii) crushed with Lysing matrix H 
(MP Biomedicals, Santa Ana, USA) before extracting DNA with MagNA 
Pure LC Total Nucleic Acid Isolation Kit (Roche, Basel, Switzerland). 

We genotyped 192 SNPs as described by Quillery et al. (2014). The 
list of SNPs, variant basis, and primers are presented in Table S2. All 
samples were amplified by whole genome amplification (WGA) before 
genotyping. The PEP-PCR WGA kit (LGC-Biosearch Technologies) was 
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used for whole genome amplification of each sample. The WGA pro
tocol associated with KASP genotyping has already been tested by  
Quillery et al. (2014) and showed a reduced number of "no-call" data 
(missing values) during genotyping. The WGA and genotyping steps 
were subcontracted by the GENTYANE platform (INRA, Clermont-Fer
rand, France: http://gentyane.clermont.inra.fr/). The GENTYANE 
platform is an INRAE (French National Research Institute for Agri
culture, Food and Environment) research facility located in Clermont- 
Ferrand (France) which offers sequencing and genotyping services. 
Genotyping was conducted in a Biomark HD System (Fluidigm) and 
KASPar assays. The KASPar method is a KBiosciences competitive al
lele-specific PCR amplification. A PCR mix containing two allele-spe
cific forward primers and one common reverse primer was carried out. 
Each forward primer had a 5′ tail sequence homologous to universal 
secondary oligos labelled with a fluorophore (FAM or HEX). If a par
ticular locus is homozygous, only one fluorescent signal is generated. 
Bi-allelic loci generate both fluorescent signals. 

2.3. Quality control 

Data was filtered after genotyping and before statistical analysis. 
First, all invariant SNPs were removed. After this first filtering step, all 
individuals with more than 20 % of non-amplified sites (missing data) 
were removed. Finally, all remaining SNPs with more than 20 % 
missing data were also removed. The remaining dataset consisted of 
both individuals and SNPs with less than 20 % missing data. After 
quality control steps, 125 SNP loci and 497 individuals were kept for 
further analyses. 

2.4. Cluster analysis and genetic structure 

Two complementary clustering methods were used to access the 
genetic structure of I. ricinus populations. First, we investigated the 
genetic clustering by performing a discriminant analysis of principal 
components (DAPC, Jombart et al., 2010) with the package ‘adegenet’ 
(Jombart, 2008) in R (R Core Team, 2019). The optimal k number of 
clusters was identified by the k-means algorithm using the find.cluster() 
function based on BIC values. A maximum of 28 clusters was allowed, 
i.e. the total number of sampled populations. Next we performed a 
Bayesian analysis in STRUCTURE (Pritchard et al., 2000) with the 
parameter K, i.e. the optimal number of clusters, varying from 1 to 10, 
according to the results from the DAPC. We used a non-admixture 
model with the sampling locations as prior. Twenty repetitions of 
80,000 MCMC iterations with a burning length of 20,000 iterations 
were run for each value of K. The results were analysed with Structure 
Harvester (Earl and vonHoldt, 2012). The best K value for the optimal 
number of clusters was identified by comparing the estimates of log 
probabilities of the data (i.e. ln[Pr(X|K)]) for each K value as well as 
Evanno's delta K method (Evanno et al., 2005). Pritchard et al. (2007) 
suggested aiming for the smallest value of K that captures most of the 
genetic structure in the data. Assigning probabilities for individuals and 
populations across repetitions were then averaged in CLUMPP 
(Jakobsson and Rosenberg, 2007). We applied a hierarchical clustering 
analysis (e.g. Vähä et al., 2007) in each identified cluster to detect more 
refined patterns of genetic structure. Hierarchical analysis in STRUC
TURE was realised with ten repetitions and the same other parameters 
as the first round of analysis. We realised a similar analysis for each 
cluster identified by DAPC. 

Fig. 1. Distribution of the sampled populations of Ixodes ricinus across its putative range. The range of I. ricinus is displayed in dark orange on the map and was 
adapted from the European Centre for Disease Prevention and Control – ECDC (January 2019). The size of each blue dot on the map is proportional to the sample size 
of each sampled population. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

P. Poli, et al.   Ticks and Tick-borne Diseases 11 (2020) 101509

3

http://gentyane.clermont.inra.fr/


To test our data for isolation by distance (IBD), pairwise FST values 
were estimated with the package ‘hierfstat’ (Goudet and Jombart, 2018) 
in R (R Core Team, 2019) as Weir and Cockerham unbiased parameter θ 
(Weir and Cockerham, 1984). The IBD pattern was first tested across all 
pairs of Eurasian samples and second only between pairs of samples 
collected during the same year to avoid potential biases due to temporal 
variability in dispersal and genetic structure. Those corresponded to 
samples from southern and northern France, Belgium, western and 
eastern German, northern Estonia, southern and central Sweden, a total 
of 8 samples (28 pairs). Since the 25 Eurasian samples are distributed 
across a large continental extent, pairwise geographical distances were 
calculated with the ‘geosphere’ package (Hijmans, 2017) in R (R Core 
Team, 2019) to account for the curvature of the Earth. The strength of 
the IDB was evaluated as the relationship between /(1 ) and the 
natural logarithm of the geographic distance as described by Rousset 
(1997). In a two dimensions population, the slope parameter b of the 
linear regression = +a bD/(1 ) Geo is inversely proportional to the 
average neighbourhood size =Nb b1/ , and =b D1/(4 )e

2 , where De is 
the sub-population density and σ2 is the averaged square axial distances 
between adults and their parents and σ is half the average adult-parent 
distance (Séré et al., 2017). In this case, a proxy of dispersal can be 
calculated as Deb2 * (4 ) (Manangwa et al., 2019). The population 
density was calculated as =D N S/e e , where S is the smallest distance 
between sites considered and included in the IBD analysis. We used 
NeEstimator version 2.1 to calculate effective population sizes (Ne) by 
applying two different methods, one based on linkage disequilibrium 
and another based on molecular co-ancestry (Do et al., 2014). We 
calculated the mean of Ne estimated with these two methods after the 
exclusion of ‘infinity’ results. The obtained mean value was weighted by 
the number of times one of the two methods generated a non-infinity 
value. The significance of the IBD pattern was assessed by Mantel tests 
as implemented in the ‘vegan’ package (Oksanen et al., 2019) in R (R 
Core Team, 2019). 

2.5. Genetic diversity 

For each locus, we estimated the observed heterozygosity (Ho), the 
gene diversity (Hs), and Wright’s fixation indices FIS, FST, and FIT. 
Wright’s statistics measure inbreeding in three levels of population 
structure: FIS is the inbreeding coefficient of individuals relative to 
subpopulations; FST is the inbreeding coefficient of subpopulations re
lative to populations; and FIT is a measure of the inbreeding of in
dividuals relative to populations. All metrics were calculated with the 
package ‘hierfstat’ (Goudet and Jombart, 2018) in R (R Core Team, 
2019). A Monte-Carlo permutation test (999 replicates) was conducted 
to test for the significance of the differences of mean gene diversity and 
FIS values over loci between pairs of genetic clusters identified. For each 
replicate, individuals were randomly assigned to one genetic cluster 
and the simulated statistics were calculated. We ran the randtest() 
function from the ‘ade4’ package (Dray and Dufour, 2007) to access the 
significance of the observed differences. 

To investigate null alleles and possible Wahlund effect on genotype 
frequencies, we followed the procedure proposed by De Meeûs (2018). 
According to that study, the presence of null alleles could be identified 
by a suit of comparisons of FIS, FST, and the number of missing data. In 
case of null alleles, we would observe: (i) a high positive correlation 
between FIS and FST; (ii) high variation of both FIS and FST across loci; 
(iii) FIS standard errors (StrdErrFIS) much bigger than FST standard 
errors (StrdErrFst); and (iv) FIS values mainly explained by the presence 
of missing data. For the Wahlund effect, the correlation between FIS and 
FST should approximate zero, a small variation of FST and a moderate 
variation of FIS should be observed across loci, FIS standard errors 
(StrdErrFIS) should be higher than FST standard errors (StrdErrFst) and 
no or rare missing data should be obtained. To test those relations, 
values of FIS, FST, StrdErrFst, and StrdErrFIS were calculated in the 
FSTAT software version 2.9.4 (Goudet, 2003), the latter values 

calculated by Jackknife. The Spearman’s rank correlation test was ap
plied to test for correlations. Finally, De Meeûs (2018) suggested a 
linear regression between FIS and missing data to quantify, using the R2 

value, the contribution of missing data in FIS values. Because the 
Wahlund effect can produce between-locus dependencies, we also 
tested linkage disequilibrium for each pair of loci by using G-based tests 
implemented in FSTAT 2.9.4. Since p-values from each test are not 
independent, we applied the procedure described by Benjamini and 
Yekutieli (2001) to calculate the false discovery rate (FDR) and correct 
p-values. 

3. Results 

3.1. Clustering analysis, genetic differentiation and isolation by distance 

The DAPC analysis identified two possibilities for the number of 
clusters, one suggesting three different genetic clusters and the other 
suggesting four genetic clusters (the BIC difference is 0.842 between 
K = 3 and K = 4, Fig. S1). Choosing K = 4 clusters created two over
lapping groups, while K = 3 grouped individuals into 3 well-separated 
clusters (Fig. 2). Hence, we decided to set the number of clusters to K = 
3 with the DAPC approach. Bayesian analysis performed with STRUC
TURE also identified a K = 3 differentiated genetic clusters (Figs. 2b 
and S2) whose compositions are very similar to the three clusters re
tained with the DAPC approach. In both analyses, northern African 
(yellow colour in Figs. 2 and 3) and Eurasian populations (the other 
colours) were highly differentiated. Two main groups were identified 
within Eurasia, one corresponding mainly to northern and continental 
middle European populations (grey colour in Figs. 2 and 3), the other 
corresponding mainly to southern and western populations in Eurasia 
(blue colour in Figs. 2 and 3). The DAPC approach separated northern 
African populations from Eurasian ones along the first axis, while 
Eurasian clusters were mostly separated along the second axis (Fig. 2a). 
Regarding clustering analyses with STRUCTURE, individual prob
abilities of different K values ranging from 2 to 10, excepted for K = 3 
which is already depicted in Fig. 2b, are presented in the Supporting 
information (see Fig. S3). 

Finer genetic structure was identified from our hierarchical analyses 
(Figs. S4 and S5). These analyses, either carried out with DAPC (Fig. S4) 
or the STRUCTURE approach (Fig. S5), were able to isolate Iran and/or 
Turkey from the other sampled sites within the southern Eurasian 
cluster. Atlantic sites (Spain, southern and western France, Ireland, and 
England) were further isolated from the remaining sites in this group 
(Italy, Romania, Hungry, and Slovakia). The northern European sites 
showed a more admixture structure, and separation in further clusters 
varied between the DAPC and STRUCTURE approaches (see the 
‘Hierarchical analysis’ section in the Supplementary Information for 
more details). 

A pattern of isolation by distance (IBD) was observed across all 
sampled populations (Mantel r = 0.726, p  <   0.001). Restricting the 
IBD analysis to the set of sites sampled during the same year, we found 
an even stronger pattern of IDB (Mantel r = 0.870, p < 0.0001, Fig. 4). 
In the latter case, the coefficient estimate of the slope parameter (b) in 
the regression was b = 0.01 with a 95 % confidence interval (CI) 
ranging from 0.007 to 0.013. Neighbourhood size (Nb) reached 
Nb = 99 individuals, on average (95 % CI = [71–140]), and im
migration rate (Nem) was estimated to reach Nem = 16 (95 % CI = 
[11–22]) individuals per generation and subpopulation. 

We found a mean effective population size of 62 individuals. The 
closest sampled sites were North France and Belgium, separated 119 km 
from one another. We found surface and population densities to reach, 
on average, S2 = 11.3 km2 and De = 5.4 individuals/m2, respectively. 
We found the dispersal rate to reach, on average, 76 km/generation 
(95 % CI = [65–90]). 
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3.2. Genetic diversity 

The observed heterozygosity (Ho), gene diversity (Hs), and FIS were 
highly variable across loci (Table S3). The observed FST values were, 
however, more constant than FIS ones. For most loci, gene diversity was 
higher than the observed heterozygosity. Consequently, the overall 
gene diversity across all loci was significantly higher than the observed 
heterozygosity (Wilcox Signed-Rank Test, V = 6959, p < 0.0001). The 
mean gene diversity per sampled population was still higher than the 
observed heterozygosity (Wilcox Signed-Rank Test, V = 406, 
p < 0.0001) and mean FIS was always positive. Mean values of observed 
heterozygosity, gene diversity, and FIS for each population are shown in 
Fig. S6 (Supporting information). The highest mean gene diversity and 
FIS values over loci were identified in the southern Eurasian cluster 
(Hs = 0.355, FIS = 0.275), followed by the northern European cluster 
(Hs = 0.340, FIS = 0.2708) and the cluster from northern Africa 
(Hs = 0.171, FIS = 0.191) (Fig. 5). The Monte-Carlo test showed a 
significant difference in gene diversity values for all pairs of clusters 
(p =  0.001 for all three comparisons), but none for FIS values (p =  
0.199 and 0.239 when comparing northern Africa to the northern 
European cluster and northern Africa to the southern Eurasian cluster, 
respectively; while p = 0.644 when comparing the southern Eurasian 
cluster to the northern European cluster). Populations from northern 
Africa showed a high deficit in heterozygosity, of which 71 out of 125 
loci with Hs values of zero. 

After p-value correction (Benjamini and Yekutieli, 2001), no pair of 

locus showed significance values of linkage disequilibrium. No corre
lation was found between FIS and FST (ρ = -0.0206, p =  0.8198) and 
missing data were positively correlated to FIS values (ρ = 0.5804, p  <   
0.001). The linear regression of FIS against the number of missing data 
estimated an adjusted R2 of 0.19, suggesting that around one-fifth of FIS 

variance is explained by the number of missing data. Finally, StrdErrFIS 
was around 4 times bigger than StrdErrFst (0.033 and 0.008, respec
tively). 

4. Discussion 

We investigated the genetic structure of populations from the tick I. 
ricinus in much of its range, i.e. in Eurasia and in northern Africa. In 
addition to a strong and expected divergence between northern African 
and Eurasian populations, the two Eurasian genetic clusters described 
here showed clear spatial patterns. The isolation by distance patterns 
we found, either throughout the entire dataset or restricted to samples 
from the same period, suggest an association between the genetic 
structure of I. ricinus populations and the geographical location of these 
populations. Hierarchical analyses confirmed the genetic affinity be
tween western European populations, from the UK and Ireland in the 
north to Spain in the south, supporting our first hypothesis regarding 
genetic similarities in western continental Europe and the British Isles. 
Also consistent with our second hypothesis stating a genetic signature 
of central European mountains, we found a clear differentiation be
tween populations from southern Eurasia and populations from 

Fig. 2. Cluster assignment analysis results based on either the DAPC scatter plot of individual memberships for K = 3 (a) or the STRUCTURE individual membership 
probabilities for K = 3 as described by Evanno et al. (2005) (b).The sampled populations are coded as follows: MAR: Morocco; DZA: Algeria; TUN: Tunisia; ESP: 
Spain; IRN: Iran; TUR: Turkey; FRA-W: West France; IRL: Ireland; FRA-S: South France; GBR-BP: England Blue Pool; GBR-BR: England Bristol; ITA-D: Italy Do
modossola; ITA-V: Italy Varese; ROU: Romania; HUN: Hungary; SVK: Slovakia; MDA: Moldavia; FRA-N: North France; DEU-W: West Germany; BEL: Belgium; EST-S: 
South Estonia: DEU-E: East Germany; DEU-S: South Germany; SWE-S: South Sweden; SWE-C: Central Sweden; NOR-So: Norway Søgne; NOR-Gr: Norway 
Grønnsundfjellet; EST-N: North Estonia. Coordinates of sampled populations are presented in Table S1. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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northern Europe. Indication of migration of individuals between the 
two clusters is suggested by the different degrees of affinity from central 
Europe with one cluster or another (e.g. in Romania, Hungary, 
Slovakia, and Moldova). 

Ixodes ricinus and I. inopinatus have recently been suggested to be 
sympatric both in northern Africa (Younsi et al., 2020) and in Europe 
(Estrada-Peña et al., 2014; Chitimia-Dobler et al., 2018). Our results are 
clear concerning the genetic identity of northern African samples. Ac
cording to the results from both the DAPC and STRUCTURE analysis, 
there is no possibility of any individuals from those populations to 
belong to any other genetic clusters. Also, no individual from Eurasia 
had any probability of identity with the northern African cluster. 
Converging results of both analyses indicate with a great deal of cer
titude that: (i) all samples from northern Africa belong to the same 
species and have the same ancestry; (ii) no sample from northern Africa 
share ancestry with those from Eurasia. Northern African samples were 

also a particular case as more than half loci were monomorphic across 
all three populations, which was not found in Eurasian populations. 
Again, it is important to note that individuals from the three northern 
African populations analysed here were identified before the descrip
tion of I. inopinatus (Estrada-Peña et al., 2014). If I. inopinatus was 
present in the Eurasian samples, we would expect at least small prob
abilities of identity of Eurasian samples with the northern African 
cluster, which was not the case. The clear-cut genetic differentiation we 
obtained between Eurasian and northern African populations strongly 
suggests that all the individuals from the three northern African po
pulations analysed here correspond to I. inopinatus. Those results also 
illustrate the potential of using some of the SNPs analysed here to 
differentiate at a molecular level the two Ixodes species. 

Two previous studies covering a large spatial extent of I. ricinus’ 
range (Noureddine et al., 2011; Porretta et al., 2013) did not find such a 
clear geographical structure between Eurasian populations. Several 

Fig. 3. Distribution of the relative importance of each cluster on each sampled population (see Fig. 2 for the groups which colors are matching). Results are provided 
for both the DAPC (a) and the STRUCTURE (b) analysis. 
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reasons may explain this difference. First, a somewhat reduced number 
of individuals per population (sometimes a single individual per po
pulation in Noureddine et al., 2011) may explain a lack of spatially 
structured signal in former studies. Second, those former studies were 
based on mitochondrial and nuclear sequences. This said, a marked 

genetic differentiation into two distinctive clades has already been re
ported (Dinnis et al., 2014; Røed et al., 2016), suggesting a split in I. 
ricinus populations between northern continental Europe and Great 
Britain. Our results confirm and extend this pattern to most of the 
Eurasian range of the species by suggesting that Scandinavian popula
tions are genetically closer to the populations from the north-eastern 
continental parts of Europe. Although there is a certain degree of gene 
flow between the two clusters, the north vs. south-eastern exchange 
may be hampered by mountain areas in central Europe. This reinforces 
the argument that large animals efficiently maintain high gene flow 
between tick populations across contiguous and permeable landscapes, 
while intense transportation by birds, during spring and autumn mi
gration across sea or mountains (Hasle et al., 2009; Røed et al., 2016), 
may not be as sufficient to break down boundaries between established 
genetic entities. 

Surprisingly, we found a close genetic affinity between all Atlantic 
samples (i.e. Ireland, England, western and southern France, and Spain) 
and the geographically separated populations from Turkey and Iran. 
This genetic affinity among distant populations in Eurasia was sup
ported by the two different clustering methods we used (DAPC and 
STRUCTURE). Besides these results, the refined hierarchical analyses 
isolated Iran and Turkey in their particular clusters in the first (DAPC) 
and second (STRUCTURE) round of hierarchical clustering analyses. 
This suggests that an east-west transport of ticks across southern 
Eurasia must be sufficient to maintain a genetically identifiable cluster 
across this extensive area. Interestingly, louping-Ill like viruses are also 
known from Greece and Turkey (Gao et al., 1993; Marin et al., 1995), 
which might further support our findings and a link between tick 
lineages and Flavivirus, although the causation is not known. 

Since migratory birds carry I. ricinus across long distances, different 
migratory routes could also contribute to the north-south genetic dif
ferentiation we observed (Hasle et al., 2009; Røed et al., 2016). How
ever, birds mainly carry larvae and nymphs. Since surviving rates be
tween development states are low, the overall reproductive success of 
ticks transported by birds is likely smaller than that of adult ticks car
ried by large mammals. This may explain the maintenance of genetic 
differentiation e.g. between the UK and Norway despite massive 
transport of ticks larvae in both directions (Røed et al., 2016). 

Regarding the population structure observed within samples, the 
deviation from Hardy-Weinberg equilibrium we found is in agreement 
with previous studies on population genetics of I. ricinus based on SNPs 
(Quillery et al., 2014) and microsatellites (Kempf et al., 2009, 2011;  
Røed et al., 2006), as well as other tick species (Dharmarajan et al., 
2011). Possible causes of the observed deviation from the Hardy- 
Weinberg equilibrium are assortative mating (or assortative pairing), 
Wahlund effect, or errors in the genotyping. A tendency of mating be
tween phenotypically or genetically similar individuals may effectively 
increase the inbreeding and thus heterozygote deficiency within po
pulations (Jiang et al., 2013). Kempf et al. (2009) suggested that as
sortative mating might occur in I. ricinus, mostly via host selection 
(Kempf et al., 2011). Inbreeding in ticks could be a result of host in
festation by related individuals, which leads to high breeding success of 
sibling groups (Araya-Anchetta et al., 2015). The highly aggregated egg 
masses in I. ricinus (1000–3000 eggs) and the limited active dispersal of 
larvae and nymphs may lead to a high likelihood of mating between 
related individuals and thus inbreeding. Finally, the parasite-host re
lationship specificities could also play an important role in establishing 
or maintaining population structure in I. ricinus. If different host po
pulations are present locally and exhibit behaviours favouring mating 
within (and not between) each host population, this may induce a 
Wahlund effect and explains the heterozygote deficiency observed. The 
existence of such a host population behaviour has been characterized in 
I. uriae, a tick associated with sea birds (Mccoy et al., 2001) but also 
suggested in I. ricinus (Kempf et al., 2009, 2011). Even though we did 
not conceive this study to test for such a hypothesis, our results support 
at least partially non-random mating in I. ricinus populations and the 

Fig. 4. Isolation by distance between all Eurasian samples. Red triangles re
present the pair of samples from the same year: South and North France, 
Belgium, West and East German, North Estonia, South and Central Sweden. The 
regression line (plain line), 95 % confidence interval (CI) calculated by boot
strap (dashed lines), Mantel test significance and regression equation corre
sponds only to red triangles pairs of samples are also shown. Black points 
correspond to all other pairs of samples not used for further IBD analysis. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 5. Values of gene diversity (a) and FIS (b) for each of the three genetic 
clusters identified by DAPC. Yellow: northern Africa cluster; Blue: southern 
Eurasia; Grey: northern Europe. Permutation test (Monte-Carlo test, 999 re
plicates) between all pairs of clusters was significant for gene diversity (p = 
0.001) but no significance was identified for FIS. Eurasian clusters show a more 
pronounced heterozygote excess than the northern African one. A variation of 
FIS values across loci was observed in the three clusters, even though this var
iation was much larger in the northern African cluster. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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consequent Wahlund effect. Dharmarajan et al. (2011) facing a similar 
result for the American species I. texanus showed that subdivided 
breeding groups and high variance in individual reproductive success 
can correctly explain Hardy-Weinberg equilibrium deviation. 

It is widely acknowledged that more or less isolated populations 
could develop particular adaptations in response to environmental 
differences between habitats. Nonetheless, very few studies to date 
have clearly observed phenotypic variations among I. ricinus popula
tions from different geographical origins. In Estrada-Peña et al. (1996,  
1998), differences in cuticular hydrocarbon composition among Eur
opean populations of I. ricinus were observed according to the geo
graphical origin of those populations. Interestingly, the multivariate 
phenotypic analysis presented in those studies showed a somewhat si
milar pattern to our hierarchical genetic clustering analysis, notably 
concerning what the authors call ‘peripheral populations’. Aside from 
chemical differentiation, behavioural differences between ticks’ popu
lations have also been documented, such as mismatches in questing 
peaks (Schulz et al., 2014) and questing responses to temperature 
(Gilbert et al., 2014; Tomkins et al., 2014). In controlled conditions,  
Gilbert et al. (2014) and Tomkins et al. (2014) showed that I. ricinus 
nymphs from cooler climates begin questing at lower temperatures than 
nymphs from warmer climates. They also start questing sooner when 
the temperature was kept constant. In any case, local adaptations could 
impact the spatial redistribution of the species range in response to 
changes in abiotic conditions. In a global changing context, such con
sequences could be explored by environmental niche modelling to 
identify areas of potential future expansion. It remains to be in
vestigated if the different clusters we identified here could pose dif
ferent threats for human health and the potential risk of tick-borne 
disease transmission to humans. 

Our findings on isolation by distance suggest small population 
densities and large dispersal distances among the sampled populations. 
The large dispersal distance is not a surprising result since ticks can 
parasitize highly mobile species. In a changing climate context, this 
result indicates that ticks could easily colonize new suitable habitats 
outside the current limits of the species geographical range in a few 
generations. 

Despite being a generalist ectoparasite, our results highlight geo
graphically distinct and genetically structured populations in I. ricinus. 
More research on host preference and dispersal capacity is needed to 
better understand those patterns. The differentiation of Eurasian po
pulations into two geographically distinct clusters (northern Europe vs. 
southern Eurasia) could have important implications for the redis
tribution of I. ricinus in response to anthropogenic climate change. Ticks 
from a given genetic cluster could be more or less prone to increase in 
abundance in some regions. Combining tick and pathogen population 
genetics with knowledge on host distribution could help in the early 
detection of the spread of tick-borne diseases and thus improve the 
responsiveness of public authorities to limit major public health con
cerns. 
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Chapitre 3 Towards better understanding population genetic 

structure: contribution of species distribution models 
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Introduction 

Population genetic differentiation may originate from many different evolutionary processes, such as 

migration and gene flow, genetic drift, funding effects, as well as natural selection (Slatkin 1993, Pearse 

and Crandall 2004, Holsinger and Weir 2009). Understanding the genetic structure of populations and 

which of those individual processes (or combination of processes) influence the observed patterns has 

been one of the main goals of population genetics since its inception (Wright 1931, Pritchard et al. 

2000, Bradburd et al. 2018). Observed genetic structures may be the result of the presence of a more 

or less impervious physical barrier to gene flow, and therefore could be accessed by correlating 

landscape features to metrics inferred from population genetics (Manel and Holderegger 2013). 

Genetic structure is also the result of the evolutionary history of populations. For instance, past 

climatic oscillations are considered to be an important cause of population differentiation (Hewitt 

2000, 2004, Schmitt 2007). In the European context, the post-glacial expansion of many taxa has 

contributed to the genetic variation observed between populations of the same taxa (Magri et al. 2006, 

Niedziałkowska et al. 2011, Pedreschi et al. 2019). 

Species Distribution Models (SDMs) are widely used in ecology to serve a multitude of 

applications. Among others, SDMs were applied to infer changes in habitat suitability from past to 

present conditions, allowing to better understand how species shifted their ranges following past 

climate changes (Svenning et al. 2008, 2011, Roces-Díaz et al. 2018). When coupled with genetic data, 

SDMs have also allowed to test several hypotheses that relate to the evolutionary history at the species 

and population levels, such as: (i) the degree of gene flow between populations located in glacial 

refugia during the Last Glacial Maximum (LGM) (Porretta et al. 2013, Wren and Burke 2019); (ii) 

population range expansion and lineage divergence (Diniz-Filho et al. 2016, Palma et al. 2017); (iii) the 

identification of past climatic refugia (Assis et al. 2016); and (iv) niche conservatism (Gutiérrez-

Rodríguez et al. 2017, Meynard et al. 2017). 
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This third chapter aims at detecting how historical and contemporary bioclimatic conditions 

contribute to the genetic divergence and the genetic structure of two of the models species explored 

in chapter 2, i.e. the tick Ixodes ricinus and the herbaceous plant Geum urbanum. Considering the 

former results of the population genetics’ analyses indicating that both species are structured in two 

genetic clusters mainly separated by latitude, i.e. a Northern cluster and a Southern cluster (see 

chapter 2), I hypothesised that the observed present genetic patterns of populations are the 

consequences of the species’ range expansion dynamics since the LGM. In this case, contemporary 

climatic conditions (1970-2000) would have a minor influence on the overall spatial genetic structure 

of the two studied species, while changes in climatic conditions since the LGM should matter to explain 

the overall spatial genetic structure of the two studied species. To test those hypotheses for each of 

the two studied species I used SDMs to predict past and present habitat suitability as well as changes 

in habitat suitability, and then I applied a combination of correlative and regression methods to: (i) 

identify candidate loci under selection by bioclimatic variables and changes in habitat suitability; (ii) 

investigate the influence of habitat suitability on population structure in the near present and changes 

in habitat suitability compared to the LGM;  and (iii) directly test the influence of the changes in habitat 

suitability on the spatial structuring of populations as inferred previously in chapter 2. 
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Material and Methods 

Species Distribution Models 

To test whether allele frequencies for each locus is related to contemporary or past climatic conditions 

and thus potentially under bioclimatic selection, we used SDMs to predict habitat suitability conditions 

during both the 1970-2000 period, as a surrogate for contemporary climate, and the LGM. Once 

habitat suitability values were projected across the study region of Europe at both periods and for both 

studied species, we extracted those values for each of the sampled populations to study the 

relationship between allele frequencies of each locus and habitat suitability conditions. 

Present and past projections for Ixodes ricinus 

The potential distribution of I. ricinus was calibrated under bioclimatic conditions during the period 

1970-2000 as a function of five non co-linear bioclimatic variables, namely: (i) annual mean 

temperature (BIO 1); (ii) mean diurnal temperature range (BIO 2); (iii) isothermality (BIO 3: BIO 

2/temperature annual range); (iv) temperature seasonality (BIO 4); and (v) mean annual precipitation 

(BIO 12). All bioclimatic variables were downloaded from the WorldClim 2 database (Fick and Hijmans 

2017, - https://www.worldclim.org/data/index.html) at 5 arc-minute resolution (about 8.5 km²) and 

are representative of long-term bioclimatic conditions. 

Occurrence data for I. ricinus were extracted from Poli et al. (2020), GBIF (GBIF.org, 2020), and 

VectorMap (http://vectormap.si.edu/). A total of 2,171 occurrences were kept for further analysis 

(Figure 3.1a). Four algorithms implemented in the biomod2 R package (Thuiler et al., 2020) were 

applied to model the potential distribution of I. ricinus during the period 1970-2000: (i) generalized 

linear models (GLMs); (ii) generalized boosted regression models (GBMs); (iii) generalized additive 

models (GAMs); and (iv) random forests (RFs). Each time, we used the default parameters. Ten 

separate datasets composed of all 2,171 occurrences and the same number of pseudo-absences or 

background data were built, each one with a different random selection of pseudo-absences drawn 

within a convex-hull around all occurrences. I decided to not search for pseudo-absences outside this 

https://www.worldclim.org/data/index.html
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convex-hull as a way to limit the study area based on the actual spatial distribution of the species. The 

choice of the number of pseudo-absences is controversial (Barbet-Massin et al., 2012; Liu et al., 2019). 

According to Barbet-Massin et al. (2012) and Liu et al. (2019), model accuracy tends to be improved 

with a higher number of pseudo-absences for regression techniques (GLM, GAM), although this gain 

was modest in Barbet-Massin et al. (2012). The inverse pattern was observed for the Random Forest 

technique in both Barbet-Massin et al. (2012) and Liu et al. (2019), with and non-negligible lost in 

model accuracy with higher numbers of pseudo-absences. Considering those results and the fact that 

it was not the goal of this work to evaluate consequences of different techniques of pseudo-absence 

selection on the model performance, I decided for a same number of pseudo-absences as there were 

occurrences. Even if this choice could let to a loss in model accuracy for the regression techniques, it 

seems this loss would be less important than the gain in the Random Forest technique. For each of the 

original ten datasets, ten repetitions of the algorithms were run, each time setting aside 70% of the 

data for model calibration and the rest for an independent model validation. This results in a total of 

40 models per dataset (4 algorithms × 10 repetitions). Those 40 models were assembled by weighting 

coefficient estimates based on true skill statistic (TSS) values, resulting in ten assembled models. 

Finally, a contemporary or near present distribution raster was built with the mean of the probabilities 

values from each of the 10 assembled projections based on bioclimatic conditions during 1970-2000. 

To evaluate the performance of the 10 assembled models, the area under the receiver operator curve 

(AUC), TSS and the continuous Boyce index (CBI – Hirzel et al. 2006) were calculated. Both AUC and 

TSS values were calculated using the biomod2 package, and CBI values were calculated with the 

ecospat R package (Broenniman et al., 2020). 

Based on each of the ten assembled models for the period 1970-2000, the potential 

distribution of I. ricinus was hindcasted during the LGM, about 20,000 ybp. I used the same bioclimatic 

variables at the same spatial resolution as those used for model calibration were downloaded from 

the WorldClim 1.4 database https://www.worldclim.org/data/v1.4/paleo1.4.html - Hijmans et al., 

2005) for the three global circulation models (GCMs) that are available in the WorldClim database: 

https://www.worldclim.org/data/v1.4/paleo1.4.html
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CCSM4; MIROC-ESM; and MPI-ESM-P. Three LGM potential distributions were projected based on each 

of those GCMs and a raster for the LGM was built from the mean values of the 30 LGM projections (10 

repetitions x 3 GCMs). 

Present and past projections for Geum urbanum 

The general approach for modelling G. urbanum distribution during both the 1970-2000 period and 

the LGM period was the same as the one described for I. ricinus. The two differences concern the 

choice of bioclimatic variables and the selection of occurrences. Five bioclimatic variables were kept: 

(i) annual mean temperature (BIO 1); (ii) temperature seasonality (BIO 4); (iii) precipitation seasonality 

(BIO 15); (iv) precipitation of the wettest quarter (BIO16); and (v) precipitation of the driest quarter 

(BIO 12). It is important to notice that the potential distribution of G. urbanum is a rough 

approximation, since no soil projection (such as pH or texture) are available for the LGM period. Hence, 

the modelled distribution of G. urbanum reflects only the abiotic niche of the species based on the 

aforementioned bioclimatic variables without the aim to produce a precise and realistic map of G. 

urbanum distribution across Europe. 

Occurrence data for G. urbanum consisted of the populations studied in chapter 1 (Figure 2.5) 

and occurrences extracted from GBIF (GBIF, 2020). Occurrences from GBIF were highly concentrated 

in West Europe, notably in Great Britain, France, and through West Germany. This initial set of 

occurrences was subject to a cleaning procedure to reduce biases due to oversampling effort in some 

regions over the studied area of Europe. More specifically, only one occurrence per spatial grid cell of 

about 45 km² was retained. After this spatial thinning procedure, 1,274 occurrences were kept for 

further analysis (Figure 3.1b). All the remaining steps followed the same approach as described for I. 

ricinus. 
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Figure 3.1. Occurrences used for model calibration and validation during the 1970-2000 period for both Ixodes 

ricinus (a) and Geum urbanum (b). A total of 2,171 occurrences were used for I. ricinus, and 1,274 for G. urbanum. 

The points in red represent the location of the populations of I. ricinus and G. urbanum (25 and 27 populations, 

respectively) analysed in chapter 2. 

For each of the two studied species, the predicted habitat suitability values during both 1970-

2000 (𝑃𝑆) and the LGM (𝐿𝐺𝑀𝑆) were extracted for each of the sampled populations for which genetic 

analyses have been carried out (see Figure 3.1). From these two habitat suitability values per sampled 

population, we computed the difference as follows: ∆𝑆 = 𝑃𝑆 − 𝐿𝐺𝑀𝑆. Positive values of ∆𝑆 indicate 

(a) 

(b) 
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that habitat suitability conditions were more favourable during 1970-2000 than it was during the LGM, 

while negative values indicate the opposite. 

 

Influence of climate change on the spatial genetic structure of Ixodes ricinus and Geum urbanum 

To better understand the role of bioclimatic factors on the population genetic structure presented in 

chapter 2 (sections ‘Population Genetic Structure of Geum urbanum’ and ‘Published article: Strong 

genetic structure among populations of the tick Ixodes ricinus across its range’), I conducted a series of 

regressive and correlative analysis. Those analysis were based either on the allele frequencies across 

the 25 and 27 sampled populations for I. ricinus and G. urbanum, respectively, or on the probabilities 

of assignement of each of those populations to one of the two genetic cluster identified for each 

species (Figure 3.2).  
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Figure 3.2. Schematic relationship of the different analyses carried out in this third chapter. Four main groups of 

analyses were conducted for both Ixodes ricinus and Geum urbanum: I. Candidate loci under selection were 

identified by correlational and regression methods that only take into account differences in allele frequencies 

across populations without testing potential links with bioclimatic variables or habitat suitability conditions; II. 

the relationship between allele frequencies and bioclimatic variables or habitat suitability values were 

investigated by correlation approaches (bioclimatic variables and habitat suitability) and ordinary least square 

regression (OLS) with habitat suitability only as the independent variable; III. the influence of habitat suitability 

values on the spatial structure of allele frequencies were investigated by autocorrelation analysis and regression 

analysis; and IV. the probabilities of assignment of populations to one of the two genetic clusters of each species 

(as inferred in chapter 2) will be regressed on the habitat suitability values during 1970-2000 as well as on the 

changes in habitat suitability values since the LGM. Green colours correspond to analysis with bioclimatic 

variables and habitat suitability values, and blue colours to spatial autocorrelation analysis. 

 

Identifying candidate loci under selection 

The first step of the analyses (box I in Figure 3.2) consisted in the identification of candidate loci under 

selection independently of environmental conditions. The methods described in this section take only 

genetic variables as input (multilocus genotypes of populations allele frequencies), and thus do not 

make direct inference of the influence of environmental variables and genetic differentiation between 
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populations. This first set of methods in the analytical workflow presented in the box I of Figure 3.2 

aims at measuring population differentiation (Günther & Coop, 2018) as consistently different allele 

frequencies of certain loci across populations. It thus serves here as an exploratory step to detect 

candidate loci under selection before testing potentially significant relationships between 

environmental conditions and allele frequencies, i.e. candidate loci under abiotic selection. Although 

there are several methods available in the scientific literature for identifying candidate loci under 

selection, some of them were developped for particular types of genetic markers, notably for bi-allelic 

SNPs as those of I. ricinus. Hence, I will describe next the chosen methods for each of the two model 

species, according to the genetic marker used in the population genetic structure analysis presented 

previously in chapter 2. 

For I. ricinus, two methods developed specifically for bi-allelic marker like SNPs were applied. 

The first is the multivariate method implemented in the R package ‘pcadapt’ (Privé et al. 2020). This 

method applies a five steps analysis comprising: (i) the normalisation of the allele frequencies; (ii) the 

computation of a Principal Component Analysis (PCA) on the normalised allele frequencies; (iii) a 

multiple linear regression linking the allele frequencies of each locus to the coordinates of the PCA; (iv) 

the calculation of the Mahalanobis distance D on the z-scores of the previous regressions; and (v) the 

calculation a p-value for each locus by comparing the distances D for each locus to a chi-square 

distribution. The normalisation procedure follows (Patterson et al. 2006), where the allele frequency 

𝐺𝑖𝑗  of the sample 𝑖 at locus 𝑗 is transformed by the function: 

𝐺𝑖𝑗̂ =
𝐺𝑖𝑗

√(2 × 𝑝𝑗(1 − 𝑝𝑗))

   

where 𝑝𝑗  denotes the frequency of the allele less frequent. After running those analyses, it is 

recommended to apply a p-value correction to control for the false discovery rate (FDR) (Luu et al., 

2016). I applied the procedure described by (Benjamini and Yekutieli 2001) in R. The second method 

applied to identify candidate loci under selection was the Bayenv method (Coop et al. 2010, Günther 

and Coop 2013). Bayenv is a Bayesian approach developed for identifying loci under selection and to 
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test the correlation between allele frequencies and environmental variables. The correlative approach 

of Bayenv is described in the next section. This method has the advantage of accounting for differences 

in sample size across populations and the intrinsic correlation in allele frequencies between 

populations (due to genetic drift and migration), and is reported to be more powerful and less error-

prone than most of the available methods for identifying loci under selection (Lotterhos and Whitlock 

2014). The first step in this method is to build a covariance matrix of allele frequencies across 

populations. This covariance matrix is then used as a null-model of the expected allele frequencies 

across populations. The posterior probabilities inferences under these models are performed using a 

Markov Chain Monte Carlo (MCMC) and are expressed as the Bayes factor (BF). Other than the 

correlation between allele frequencies and environmental variables, this method also calculates a 

population differentiation statistic for each locus independent of environmental variables, termed XTX. 

Extreme values of XTX indicate selection pressure over one loci.  

Since the population genetics analyses for G. urbanum were based on multiallelic 

microsatellite loci, the two methods discussed above, i.e. the pcadapt and Bayenv method, could not 

be applied. Instead, I investigated loci under selection with BayeScan v.2.1 (Foll and Gaggiotti 2008). 

The program is also based on the differences in allele frequencies across populations to identify 

candidate loci under selection. BayeScan estimates the posterior probability by a MCMC approach of 

a neutral model where a particular locus is not under selection and an alternative model where it is. 

BayeScan was run with default parameters (100,000 MCMC iterations, with 50,000 burn-in), at the 

exception of the ‘Prior odds of neutral model’ parameter, which is the prior probability of a locus being 

under selection in the data set. The default value of 10 is the odds that in a ten loci dataset, one is 

under selection. BayeScan is considered to estimate a high number of false positives (Foll & Gaggiotti, 

2008; Lotterhos & Whitlock, 2014), particularly for species that have experienced recent range 

expansion. Lotterhos & Whitlock (2014), suggest that values from 100 to 10,000 to this parameter 

tends to reduce the number of false positives. Three runs of BayeScan were conducted setting this 

parameter to 100, 1,000 and 10,000. The program automatically reports a q-value as described in 
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Benjamini and Hochberg 1995). Loci were considered under selection with this method with a FDR of 

5% (q-value < 0.05). 

Allele frequency, bioclimatic variables, habitat suitability and habitat suitability changes 

The second group of analyses (Box II in Figure 3.2) consisted of investigating the individual influence 

of different environment variables on the allele frequencies across populations. The investigated 

environment variable were: (i) each of the bioclimatic variables used to calibrate the SDMs for each 

species (period 1970-2000); (ii) the predicted habitat suitability values during both 1970-2000 (𝑃𝑆) 

from the individual SDMs; and (iii) the changes in habitat suitability from the LGM (∆𝑆). Those analyses 

were conducted by a correlation analysis in Bayenv (for I. ricinus) and by a regression analysis for both 

species, as described below. 

 First, and only for I. ricinus, Bayenv was used to identify correlations between the 

environmental variables and allele frequencies. The method does not allow the test of multiple 

variables at the same time, so each of the environment variables (bioclimatic variables, 𝑃𝑆, and ∆𝑆) 

were tested separately. In addition to the Bayes factor (BF) estimate, the method also calculates the 

Spearman’s ρ correlation coefficient for comparison. Since SNPs with high BF may be affected by 

outliers, it is advised to compare BF values to ρ values. If high BF values are also supported by high ρ 

values, the signal is considered to be robust (Günther & Coop, 2018). In any case, a BF value between 

3 and 10 is generally considered as substantial evidence for the alternative hypothesis (in the present 

study, the correlation, either positive or negative, between allele frequencies and one environmental 

variable), while a BF higher than 10 is considered strong evidence for the alternative hypothesis (Kass 

and Raftery 1995, Wetzels et al. 2011). All loci that had a BF value higher than 3 were considered as 

significantly correlated to the focal environmental variable. For both the covariance matrix estimation 

and the environmental correlation, 10,000 iterations were run in Bayenv. Finally, for all the significant 

loci identified across the different methods, a BLAST query was conducted on the sequences 
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encompassing the variable base (i.e., the SNP context) to search for possible genes that could be linked 

to adaptation to climatic conditions. 

Next, and for both species, I ran a separate linear regression model for each allele of each 

locus, with the focal allele frequency being the response variable and 𝑃𝑆 and ∆𝑆 being the two 

explanatory variables, such that 𝑓𝑖𝑗 ~ 𝑃𝑆 + ∆𝑆, where 𝑓𝑖𝑗 is the frequency of the allele 𝑖 at locus 𝑗. For 

I. ricinus, the frequency of one allele being equal to 1 minus the frequency of the other allele (cf. bi-

allelic SNPs), only one allele per locus was regressed. This regression approach helps to identify how 

changes in habitat suitability conditions between the LGM and 1970-2000 influence allele frequencies 

across populations, given a sufficient number of generations for this influence to express itself on allele 

frequencies. In other words, it helps identifying potential loci under bioclimatic selection. Next, I ran 

separate linear models of each allele of each locus, but this time with each bioclimatic variable used 

to calibrate the SDMs as explanatory variables one at a time, such as 𝑓𝑖𝑗~ 𝐵𝑖𝑜𝑛, where 𝐵𝑖𝑜𝑛 is one 

focal bioclimatic variable. Noteworthy, allele frequencies may exhibit a spatial pattern (cf. the next 

section on Morans’ I correlograms). For instance, given IBD, there is a general tendency for 

neighbouring populations to exhibit somewhat similar allele frequencies, i.e., a positive spatial 

autocorrelation signal. To account for this potential bias in the linear regression analyses, residuals of 

each regression were tested for spatial autocorrelation by the Moran’s I test implemented in the R 

package spdep package (lm.morantest) (Bivand et al., 2013). Whenever this test was significant (i.e., 

spatial autocorrelation is present in the residuals), a simultaneous autoregressive (SAR) lagged model 

was applied. For both the Moran’s I test and the SAR lagged model, a list of weights of connections 

between populations was built based on a Gabriel graph. In this sense, regression results were 

compared to results from existing methods (detailed hereafter) for the identification of loci under 

abiotic selection, according to the type of genetic marker under analyse. 

For both species, the mean frequencies of the alleles significantly correlated with 𝑃𝑆 and ∆𝑆 

were compared between genetic clusters. If the genetic structure described in chapter 2 are a 
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consequence of a post-Pleistocene range expansion for the two studied species, I expect a significant 

difference in the allele frequencies between the Northern and Southern clusters of the alleles 

correlated with the change in habitat suitability conditions between the LGM and the 1970-2000 

period, i.e. ∆𝑆. In the other hand, if the observed genetic structure is a consequence of near present 

climatic conditions, a significant difference in allele frequencies between the two clusters should be 

observed for the alleles correlated with 𝑃𝑆. If the climatic conditions have no influence in the genetic 

structure of the studied populations (neither during the LGM nor during 1970-2000), then no 

significance should be observed. To test the differences in allele frequencies between the two clusters 

as described above, I applied a Mann-Whitney rank test. 

 

Influence of habitat suitability on the spatial autocorrelation of alleles of Ixodes ricinus and Geum 

urbanum 

In this third group of analysis (see Box III in Figure 3.2), I investigated the influence of habitat suitability 

on the spatial structure of allele frequencies for the two focal species. First, I used Moran’s I 

correlograms to analyse the spatial structure of allele frequencies across the studied populations of I. 

ricinus and G. urbanum. As described above, the SNP markers of I. ricinus are bi-allelic (and therefore 

the frequency of the allele p is equal to 1-q), thus only one allele per locus was investigated. The 

frequency of all each individual microsatellite allele was investigated in the case of G. urbanum. The 

number of distance classes 𝑘 to compute a Moran’s I correlogram is a delicate choice and represents 

a compromise between the resolution and the power of the test statistics (Legendre & Legendre, 

1998). Although a higher number of distance classes will allow to analyse spatial autocorrelation signals 

at a much finer spatial resolution, the number of population pairs or connections in a given distance 

class will be reduced, hence reducing the statistical power of the analysis. It is also important that 

distance classes have a similar number of connections so that the standard error of the Moran’s I is 

comparable among classes (Diniz-Filho et al., 2016). In the present study, for both I. ricinus and G. 



82 
 

urbanum, eight distance classes were kept, eight being the maximum number of distance classes after 

which the number of connections became unbalanced between distance classes. Distances were 

chosen so that the number of connections was approximately constant among classes: aside from the 

first class, all classes had the same number of connections, for both species. In addition to analysing 

the spatial autocorrelation of the allele frequencies for each locus separately, using eight distance 

classes each time, the amount of spatial structure was also summarised across distance classes by the 

Sum of Squares of Moran’s I ∑𝐼𝑘
2 (Kissling and Carl 2007, Diniz-Filho et al. 2016), where 𝑘 corresponds 

to each distance class. Moran’s I were computed with the spdep R package (Bivand et al., 2013). 

The influence of both the contemporary period (1970-2000) and historical changes in habitat 

suitability over the spatial structure of allele frequencies was then investigated on the basis of the 

Moran’s I in each of the eight distance classes. Moran’s I were regressed on the variation of allele 

frequencies as a function of 𝑃𝑆 and ∆𝑆 (the coefficient estimate of the slope of the regression described 

at the beginning of this section), and two strictly genetic variables: divergence estimated for each locus 

(FST) for the bi-allelic SNPs of I. ricinus, or the number of populations in which an allele occurs for the 

microsatellites of G. urbanum. A similar approach has been applied by Diniz-Filho et al. (2016) for 

disentangling the observed spatial genetic structure of a tropical tree based on microsatellite loci. The 

regressions were constructed in the form 𝐼𝑑 =  𝛽𝑃𝑆 + 𝛽∆𝑆 + 𝐺, where 𝐼𝑑 is the Moran’s I across loci 

in the distance class 𝑑, 𝛽 is the coefficient estimate of the slope of the regression of allele frequencies 

and the habitat suitability measures, and 𝐺 is the genetic variable according to the type of molecular 

marker (SNP or microsatellite). The same independent variable was also used in a regression of the 

sum of squares of Moran’s I, a synthetic measure of the spatial autocorrelation in allele frequencies. 

AIC values of the complete model and of models with only a combination of the independent variables 

were compared. If the contemporary habitat suitability or the change in habitat suitability since the 

LGM are important variables defining the spatial autocorrelation structure, the 𝛽 coefficients should 

be significant. 
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Habitat suitability and genetic structure 

To directly test the influence of habitat suitability (both past and present) on the genetic structure 

identified previously (chapter 2) by STRUCTURE (I. ricinus and G. urbanum), DAPC (I. ricinus) and PCoA 

(G. ubanum), I regressed the populations’ probabilities of assignment to one of the two clusters against 

𝑃𝑆 and ∆𝑆 (see Box IV in Figure 3.2). The STRUCTURE analysis pipeline with Structure Harvester already 

give an average probability of assignment for each population, while multivariate methods calculate 

values for at least two principal components (axes). Also, the DAPC method calculates probabilities of 

assignment for each multilocus genotypes (individuals) instead of populations, and thus I calculated 

population probabilities as the average of the individual probabilities within each population. For the 

multivariate methods, I conducted the regression analysis with values from the first principal 

components as dependent variables. Residuals from the linear regressions were tested for spatial 

autocorrelation using Moran’s I tests implemented in the spdep R package (Bivand et al., 2013) and 

using the same eight distance classes as described above. 

Finally, I applied a cophenetic approach to compare visually how environmental distances 

(habitat suitability) among populations are related to genetic distances. I used the Ward’s hierarchical 

clustering method to construct dendrograms based either: (i) on the distance of present habitat 

suitability (𝑃𝑆); (ii) on the distance of changes in habitat suitability (∆𝑆); (iii)  on the genetic distances 

among sampled populations using the unbiased parameter 𝜃 (Weir and Cockerham, 1984). A 

cophenetic correlation (Sokal and Rohlf 1962) between all possible pairs of dendrograms was then 

calculated to assess how similar the genetic and the habitat suitability dendrograms are. A cophenetic 

correlation coefficient is a measure of how well a dendrogram represents original distance matrix, or 

how similar two dendrograms are with each other. This last approach helps understanding qualitatively 

how changes in habitat suitability mimic the overall genetic structure of populations observed for both 

species. All the hierarchical clustering analyses were implemented in R with the stats package.  
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Results 

Species Distribution Models 

For both studied species (G. urbanum & I. ricinus), model performances ranked from good to excellent. 

AUC values ranged from 0.956 to 0.960 for I. ricinus and from 0.876 to 0.888 for G. urbanum. Similarly, 

TSS values varied from 0.771 to 0.777 for the former and from 0.557 to 0.597 for the later. Finally, CBI 

values ranged from 0.925 to 0.991 for I. ricinus and were more variable across runs for G. urbanum, 

ranging from 0.721 to 0.907. For both studied species, SDMs showed a shift in habitat suitability 

conditions from a south-western distribution during the LGM to a central-northern distribution during 

1970-2000 (Figure 3.3 and Figure 3.4). The projected distribution of I. ricinus during 1970-2000 (Figure 

3.3a) is more or less similar to the present species distribution (see Figure 1.8 of the chapter 1). The 

projected distribution of G. urbanum (Figure 3.4a) seems, however, more narrowly distributed across 

Europe than the present species distribution, probably as a result of the biased spatial occurrence 

distribution and the lack of important abiotic variables, such as edaphic parameters.  
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Figure 3.3. Predicted habitat suitability values (0-1) for Ixodes ricinus during 1970-2000 (a) and the LGM (b). 
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Figure 3.4. Predicted habitat suitability values (0-1) for Geum urbanum during 1970-2000 (a) and the LGM (b). 
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Candidate loci under selection 

For I. ricinus, the Bayenv analysis identified 6 loci as outliers, with high values of the XTX indices (greater 

than 25.5, Table 3-1). This is a much smaller number of outliers than the 18 loci identified by pcadapt, 

even after p-values correction. For G. urbanum, only one locus was identified as an outlier by BayeScan 

(WGU228, q-value = 0.0020), when the ‘Prior odds of neutral model’ parameter was set to 1,000 or 

10,000. Setting this parameter to 100 suggests 3 loci under selection: WGU228 (q-value < 0.0001); 

WGU210 (q-value = 0.0078); and WGU248 (q-value = 0.0023). 

Allele frequencies as a function of habitat suitability and habitat suitability changes 

When considering the correlations with environmental variables, there was a remarkable coincidence 

on the loci varying significantly with environmental variables for I. ricinus across the different 

approaches I used: the pcadapt; Bayenv and the regressions of allele frequencies on habitat suitability 

on 1970-2000 (𝑃𝑆) and the difference in habitat suitability to the LGM (∆𝑆). Eleven loci were 

significantly correlated to environmental variables according to the Bayenv approach (Table 3-1 and 

Figure 3.6). The BIO 12 bioclimatic variable (annual precipitation) was the only variable not significantly 

correlated with allele frequencies according to Bayenv. More important, ∆𝑆 was correlated to 5 of the 

previous loci according to Bayenv, and had a significant influence on nineteen out of the 125 SNP loci 

according to the regression approach (Figure 3.5). All the loci potentially under selection according to 

the two previous methods also responded significantly to ∆𝑆. Habitat suitability conditions during 

1970-2000 or 𝑃𝑆, on the other hand, showed very different influence over loci. Bayenv did not identify 

any loci correlated to 𝑃𝑆, and the regression analysis identified a significant influence on 23 loci, from 

which only three were identified by the other methods. After a BLAST query on the SNP context of the 

loci potentially under selection, six of them were found (Table 3-1), with the query cover varying from 

93% to 100%. Allele frequencies of five of those loci varied significantly with ∆𝑆, and only one was also 

correlated to the mean annual temperature (BIO 1) according to both Bayenv. The sixth loci only 

showed a significant relationship to 𝑃𝑆. Finally, the frequencies of the loci positively correlated with 
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the change in habitat suitability or ∆𝑆 were significantly higher in the Northern populations than in the 

Southern populations (Mann-Whitney rank test, p = 0.0002), while no such difference in allele 

frequencies between both clusters was observed when looking at allele frequencies of the loci 

positively correlated with habitat suitability conditions during 1970-2000 or 𝑃𝑆 (Mann-Whitney rank 

test, p = 0.6165) (Figure 3.7). For G. urbanum, the frequencies of seventeen alleles varied significantly 

with 𝑃𝑆, ∆𝑆, or one of the five bioclimatic variables used to build the SDMs (Table 3-2). As for I. ricinus, 

the mean frequencies of the alleles positively correlated with ∆𝑆 were higher in the Northern 

populations, but this represented only 6 alleles.  

 

Figure 3.5. Variation in the allele frequencies of two of the SNP loci significantly correlated to ∆𝑆 for I. ricinus. 

The letter after the locus name correspond to the nucleic acid base of the plotted allele, ‘G’ for guanine and “T” 

for thymine. The relation is inversed for the other allele. 
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Figure 3.6. SNP loci of I. ricinus potentially under selection according to Bayenv, pcadapt and the regression of 

allele frequencies on changes in habitat suitability from the LGM to the period 1970-2000 (a), and loci correlated 

to four bioclimatic variables (BIO 1, BIO 2, BIO 3, and BIO 4) according to the Bayenv approach (b). 

  

 

Figure 3.7. Frequencies of the 19 alleles from the 125 bi-allelic SNPs of I. ricinus positive and significantly 

correlated with changes in habitat suitability ∆𝑆 from the LGM to the contemporary conditions (period 1970-

2000) (a) and with contemporary habitat suitability (𝑃𝑆) in the two Northern (violet) and Southern (yellow) 

genetic clusters (Mann-Whitney rank test, p = 0.0002 (a) and p = 0.6165 (b)).  

 

  

*** (a) (b) 
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Spatial autocorrelation and influence of habitat suitability 

For I. ricinus, Moran’s I correlogram exhibited a significant autocorrelation signal in the first two 

distance classes (0 to 800 km) for about 21% of the investigated loci. More precisely, 27 loci showed a 

significant positive signal in at least one of the two first distance classes, with 17 and 18 loci in the first 

and second distance class, respectively, of which 8 loci showed significant positive autocorrelation in 

both classes. The mean values of Moran’s I across loci tended to gradually decrease after the second 

distance class (Figure 3.8), although the number of loci that showed a significant signal per distance 

class tended to increase continuously after the sixth distance class. This was almost exclusively due to 

the increase in the number of loci having significantly negative Moran’s I values in the last distance 

classes (Figure 3.9), indicating a negative autocorrelation signal of allele frequencies between distant 

populations. 

For G. urbanum, most of the significant autocorrelation values were observed in the second, 

third (12 out of 89 alleles in both classes) and eighth distance classes (9 out of 89 alleles) (Figure 3.10). 

This increase in the number of alleles showing significant Morans’ I values in the last distance classes 

was, again, almost exclusively due to the increase in the number of significantly negative values (Figure 

3.11), indicating a negative autocorrelation signal of allele frequencies between distant populations. 

For both species, habitat suitability conditions during 1970-2000 did not affect Moran’s I values across 

distance classes nor the sum of squares of Moran’s I values. Actually, AIC values of the models including 

𝑃𝑆 were always higher and regression coefficient values were always smaller than the models without 

this variable. This way, the regression results presented here does not take into account the present 

habitat suitability (𝑃𝑆). For I. ricinus, regression coefficients varied greatly between distance classes, 

from 0.07 in the last distance class to 0.23 in the sixth distance class. FST was highly significant in the 

first, second, sixth, and seventh distance classes (values of p varying from <0.0001 to 0.0077), while ∆𝑆 

was only significant in the sixth distance class. The sum of squares of Moran’s I varied significantly with 

FST (p < 0.0001) and ∆𝑆 (p = 0.0204), and the adjusted R² of the regression was 0.3422. For G. urbanum, 
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regression coefficients varied from 0.01 in the third distance class to 0.13 in the first distance class. 

The number of populations in which the allele was present was the most important variable, being 

significant in the first, second, seventh, and eighth distance classes (values of p from 0.0002 to 0.0331), 

while ∆𝑆 was only significant in the first distance. The sum of squares of Moran’s I values varied 

significantly with the number of populations in which the allele was present (p < 0.0001) and with ∆𝑆 

(p = 0.0102), and the adjusted R² was 0.3859. 
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Figure 3.8. Moran’s I values for 125 SNP loci (a) across 25 populations of I. ricinus in Eurasia. Grey lines in (b) 

show only the loci that exhibited no autocorrelation signal in the eight distance classes; blue lines in (c) show 

only the loci that exhibited a positive and significant autocorrelation signal in the first distance class (0-500 km); 

red lines in (d) show the loci that exhibited a negative and significant autocorrelation signal in the first distance 

class. Triangles indicate a significance at 5% (p < 0.05) for one particular locus in one distance class. 

 

 

(a) (b) 

(c) (d) 
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Figure 3.9. Number of significant Moran’s I values in each of the eight distance classes based on the correlograms 

of allele frequencies for 125 bi-allelic SNPs across the 25 sampled populations of I. ricinus. Blue triangles and the 

blue line show the number of significantly negative Moran’s I values while black dots and the black line show the 

number of significant Moran’s I values being either positive or negative. The number of significant values of 

Moran’s I increases rapidly after the sixth distance class, mostly due to significant negative values, while the first 

distance classes are dominated by significantly positive values. 
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Figure 3.10. Moran’s I values for 89 microsatellites alleles (a) across 27 populations of G. urbanum in Europe. 

Grey lines in (b) show only the loci that exhibited no autocorrelation signal in the eight distance classes; blue 

lines in (c) show only the loci that exhibited a positive and significant autocorrelation signal in the first distance 

class (0-412 km); red lines in (c) show the loci that exhibited a negative and significant autocorrelation signal in 

the first distance class. Triangles indicate a significance at 5% (p < 0.05) for one particular locus in one distance 

class. 

(c) (d) 

(b) (a) 
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Figure 3.11. Number of significant Moran’s I values in each of the eight distance classes based on the 

correlograms of allele frequencies for the 89 microsatellites investigated across the 27 sampled populations of 

G. urbanum. Blue triangles and the blue line show the number of significantly negative Moran’I values while black 

dots and the black line show the total number of significant Moran’s I values being either positive or negative. 

The number of significant values of Moran’s I reach the maximum at the second and third distance classes. 

 

Genetic structure as a function of habitat suitability 

For both species, no autocorrelation was observed in the residuals of the multiple regressions of 

population probabilities of assignment (or principal coordinates) and habitat suitability, and thus I kept 

the ordinary least square regressions. For I. ricinus, probabilities of assignment from Structure had a 

significant relationship with ∆𝑆 (p < 0.0001), but none with 𝑃𝑆 (p = 0.1460), with an adjusted R² of 

0.5153. Similar results were observed for the within populations mean individual probabilities 

coordinates from the DAPS (∆𝑆 p-value < 0.0001; 𝑃𝑆 p-value = 0.1780; adjusted R² = 0.5224). 

 For G. urbanum, habitat suitability during 1970-2000 and changes in habitat suitability 

between the LGM and 1970-2000 had no significant influence over the populations probabilities of 

assignment from Structure (∆𝑆 p-value = 0.418; 𝑃𝑆 p-value = 0.3880), and the adjusted regression 

coefficient was surprisingly small (R² = 0.0881). The regression of the first principal coordinates of the 

PCoA, on the other hand, showed a significant influence of ∆𝑆 (p = 0.0227) and no significance of 𝑃𝑆 (p 

= 0.6741), with an adjusted R² of 0.3147. 
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Hierarchical clustering analysis 

The topologies of hierarchical clustering dendrograms constructed from genetic or habitat suitability 

distances (Figure 3.12 and Figure 3.13) closely mirrors the overall genetic structure identified for both 

species (see sections ‘Published article: Strong genetic structure among populations of the tick Ixodes 

ricinus across its range’ and ‘Population Genetic Structure of Geum urbanum’ for I. ricinus and G. 

urbanum, respectively). For I. ricinus, the genetic dendrogram clearly separates the Eurasian 

populations into two genetic branches, corresponding to the Southern and Northern clusters identified 

by both STRUCTURE and DAPC methods. For G. urbanum, the genetic dendrogram reproduces nearly 

exactly the genetic structure inferred from both STRUCTURE and PCoA analyses. Two particular 

differences are worth noticing: the Belgium population BEL_1 that was previously placed in the 

Southern cluster belong now to the Northern cluster, and the Latvian population LVA_1 that was 

situated in the Northern cluster belongs now to the Southern one. 

The dendrogram based on habitat suitability during 1970-2000 (𝑃𝑆) does not reflect the genetic 

structure of I. ricinus (Figure 3.12). On the other hand, the dendrogram based on the changes in habitat 

suitability since the LGM better mirrors the genetic structure of I. ricinus, grouping together 

geographically distant but genetically close populations, e.g. the group formed by the Iranian (IRN), 

the Southern France (FRA-S), the Turkish (TUR) and the Italian (ITA-V) populations, and the marked 

proximity between the Western France (FRA-W) and Spanish (ESP) populations. The cophenetic 

correlation (Table 3-3) between the ∆𝑆 and the genetic dendrogram was higher (0.4492) than the one 

estimated between 𝑃𝑆 and the genetic dendrograms (0.0960). 

For G. urbanum, similar to the results for I. ricinus, the dendrogram based on habitat suitability during 

1970-2000 (𝑃𝑆) did not reproduce the global structure found with genetic distances, while the 

dendrogram based on ∆𝑆 distances group populations from the Northern and Southern clusters more 

closely (Figure 3.13). Two notable exceptions are the Norwegian and Estonian populations (NOR_4 and 

EST_1). It seems that the spatial location where those populations are found nowadays have 
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experienced similar changes in habitat suitability since the LGM, which are not mimicked by the genetic 

distance between those populations. Again, the cophenetic correlation (Table 3-3) between the ∆𝑆 

and the genetic dendrograms was higher than the one estimated between 𝑃𝑆 and the genetic 

dendrograms (0.6763 and 0.3476, respectively). 
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Figure 3.12. Dendrograms based on the Ward’s 

hierarchical clustering method on the genetic 

distances (a), changes in habitat suitability distances 

from the LGM to the present time (b), and the present 

habitat suitability distances (c) between populations 

of I. ricinus. Light blue: Northern genetic cluster. Light 

grey: Southern genetic cluster. 
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Figure 3.13. Dendrograms based on the Ward’s 

hierarchical clustering method on the genetic 

distances (a), changes in habitat suitability distances 

from the LGM to the present time (b), and the present 

habitat suitability distances (c) between populations 

of G. urbanum.  Light green: Northern genetic cluster. 

Light orange: Southern genetic cluster. 
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Table 3-1 (cont.). SNP loci of I. ricinus exhibiting a significant relationship between allele frequencies across 25 populations showing: the Bayes Factor (BF) from the correlation 

analysis with Bayenv in columns ∆𝑠, BIO 1, BIO 2, BIO 3, and BIO 4; the XTX statistic from Bayenv for the loci showing the 5% highest values; the p-values from the linear 

regression with present habitat suitability 𝑃𝑠 and the differences in habitat suitability between present and LGM climatic conditions ∆𝑠; and, the candidate loci under selection 

according to the pcadapt method. Results of the BLAST query for those loci are shown in the last four columns. The two p-values in bold are the results of the lagged models.  

Locus 

Significance tests 
GenBank records 

pcadapt 

Bayenv Regressions 

XTX ∆S Bio1 Bio2 Bio3 Bio4 PS ∆S Species Gene Locus 
Query 

cover 

X133049 <0.0001 25.50 4.43 5.47 5.47    0.001     

X336267    3.97 3.97 4.61   0.043     

X230247 <0.0001 26.52 4.22 4.53 4.53 9.39   0.002     

X283680 <0.0001 27.49 5.18 6.01 6.01 9.54   0.001     

X234508 <0.0001 33.02 17.35 7.91 7.91    0.022 
I. 

scapularis 

G protein-coupled 

receptor kinase 1 

XM_0299

70359.1 
96% 

X81758 <0.0001   3.65 3.65 12.98   0.002     

X296275 <0.0001 29.61 10.98 8.59 8.59 4.95   0.044     

X221603 0.0009 25.78     8.71  0.037     

X117944 0.0009     4.44 20.38 0.003 0.001     

X450975 0.0003      3.27 0.002 0.004     

X374382      8.48  0.049 0.034     

X198227        0.017      

X251320        0.003      

https://www.ncbi.nlm.nih.gov/nucleotide/XM_029970359.1?report=genbank&log$=nuclalign&blast_rank=1&RID=UNE4FXD6013
https://www.ncbi.nlm.nih.gov/nucleotide/XM_029970359.1?report=genbank&log$=nuclalign&blast_rank=1&RID=UNE4FXD6013
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Table 3-1 (cont.). SNP loci of I. ricinus exhibiting a significant relationship between allele frequencies across 25 populations showing: the Bayes Factor (BF) from the 

correlation analysis with Bayenv in columns ∆𝑠, BIO 1, BIO 2, BIO 3, and BIO 4; the XTX statistic from Bayenv for the loci showing the 5% highest values; the p-values from 

the linear regression with present habitat suitability 𝑃𝑠 and the differences in habitat suitability between present and LGM climatic conditions ∆𝑠; and, the candidate loci 

under selection according to the pcadapt method. Results of the BLAST query for those loci are shown in the last four columns. The two p-values in bold are the results of 

the lagged models.  

Locus 

Significance tests 
GenBank records 

pcadapt 

Bayenv Regressions 

XTX ∆S Bio1 Bio2 Bio3 Bio4 PS ∆S Species Gene Locus 
Query 

cover 

X225377        0.012      

X380487        0.006 0.008 
I. 

scapularis 
Uncharacterized 

XM_0299

90341.1 
98% 

X105385        0.007 0.016     

X77668 <0.0001       0.007 0.001 
I. 

scapularis 
Uncharacterized 

XM_0299

88614.1 
100% 

X399212        0.040      

X233961        0.015      

X145634        0.019      

X307361        0.018  
I. 

scapularis 
FRAS-1 

XM_0299

84399.1 
98% 

X287805 0.0019       0.035 0.034     

X116335        0.010      

https://www.ncbi.nlm.nih.gov/nucleotide/XM_029990341.1?report=genbank&log$=nuclalign&blast_rank=1&RID=UNE4FXD6013
https://www.ncbi.nlm.nih.gov/nucleotide/XM_029990341.1?report=genbank&log$=nuclalign&blast_rank=1&RID=UNE4FXD6013
https://www.ncbi.nlm.nih.gov/nucleotide/XM_029988614.1?report=genbank&log$=nuclalign&blast_rank=1&RID=UNE4FXD6013
https://www.ncbi.nlm.nih.gov/nucleotide/XM_029988614.1?report=genbank&log$=nuclalign&blast_rank=1&RID=UNE4FXD6013
https://www.ncbi.nlm.nih.gov/nucleotide/XM_029984399.1?report=genbank&log$=nuclalign&blast_rank=1&RID=UNE4FXD6013
https://www.ncbi.nlm.nih.gov/nucleotide/XM_029984399.1?report=genbank&log$=nuclalign&blast_rank=1&RID=UNE4FXD6013
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Table 3-1 (cont.). SNP loci of I. ricinus exhibiting a significant relationship between allele frequencies across 25 populations showing: the Bayes Factor (BF) from the 

correlation analysis with Bayenv in columns ∆𝑠, BIO 1, BIO 2, BIO 3, and BIO 4; the XTX statistic from Bayenv for the loci showing the 5% highest values; the p-values from 

the linear regression with present habitat suitability 𝑃𝑠 and the differences in habitat suitability between present and LGM climatic conditions ∆𝑠; and, the candidate loci 

under selection according to the pcadapt method. Results of the BLAST query for those loci are shown in the last four columns. The two p-values in bold are the results of 

the lagged models.  

Locus 

Significance tests 
GenBank records 

pcadapt 

Bayenv Regressions 

XTX ∆S Bio1 Bio2 Bio3 Bio4 PS ∆S Species Gene Locus 
Query 

cover 

X60684        0.025 0.014     

X313057        0.012  
I. 

scapularis 

Putative nuclease 

HARBI1 

XM_0299

67969.1 
93% 

X214684        0.006 0.002     

X487540        0.024      

X84140 0.0077       0.028      

X446758        0.006      

X200386        0.003      

X783090        0.011      

X225801        0.013      

X93695 0.0086        0.004 
I. 

scapularis 
Neprilysin-2 

XM_0299

76277.1 
96% 

X292025         0.015     

https://www.ncbi.nlm.nih.gov/nucleotide/XM_029967969.1?report=genbank&log$=nuclalign&blast_rank=1&RID=UNE4FXD6013
https://www.ncbi.nlm.nih.gov/nucleotide/XM_029967969.1?report=genbank&log$=nuclalign&blast_rank=1&RID=UNE4FXD6013
https://www.ncbi.nlm.nih.gov/nucleotide/XM_029976277.1?report=genbank&log$=nuclalign&blast_rank=1&RID=UNE4FXD6013
https://www.ncbi.nlm.nih.gov/nucleotide/XM_029976277.1?report=genbank&log$=nuclalign&blast_rank=1&RID=UNE4FXD6013
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Table 3-1 (cont.). SNP loci of I. ricinus exhibiting a significant relationship between allele frequencies across 25 populations showing: the Bayes Factor (BF) from the 

correlation analysis with Bayenv in columns ∆𝑠, BIO 1, BIO 2, BIO 3, and BIO 4; the XTX statistic from Bayenv for the loci showing the 5% highest values; the p-values from 

the linear regression with present habitat suitability 𝑃𝑠 and the differences in habitat suitability between present and LGM climatic conditions ∆𝑠; and, the candidate loci 

under selection according to the pcadapt method. Results of the BLAST query for those loci are shown in the last four columns. The two p-values in bold are the results of 

the lagged models.  

Locus 

Significance tests 
GenBank records 

pcadapt 

Bayenv Regressions 

XTX ∆S Bio1 Bio2 Bio3 Bio4 PS ∆S Species Gene Locus 
Query 

cover 

X1133 <0.0001             

X32551 0.0042             

X208593 <0.0001             

X320000 <0.0001             

X751588 0.0003             
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Table 3-2. Significant values of the simple regressions of allele frequencies of six microsatellite loci of G. urbanum 

as a function of the five bioclimatic variables used to calibrate the SDMs, present habitat suitability (𝑃𝑆), and 

changes in habitat suitability from the LGM to the present (∆𝑆). Values in bold are from the lagged models. 

Allele Bio1 Bio8 Bio12 Bio15 Bio18 𝑃𝑆 ∆𝑆 

WGU210_201      0.0384  

WGU210_225 0.0065   0.0032  0.0002 0.0012 

WGU210_237   0.0000  0.0004   

WGU228_174  0.0167     0.0031 

WGU228_180  0.0319     0.0018 

WGU248_204   0.0011  0.0039   

WGU61_195       0.0074 

WGU65_216   0.0010  0.0110   

WGU65_234 0.0228     0.0001 0.0001 

WGU65_246 0.0048       

WGU67_162 0.0162   0.0082  0.0051  

WGU67_174  0.0160     0.0025 

WGU67_177 0.0169     0.0061 0.0028 

WGU67_180  0.0211     0.0378 

WGU67_183      0.0486 0.0356 

WGU67_204  0.0206 0.0030  0.0278   

WGU67_219 0.0017             
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Table 3-3. Cophenetic correlations between dendrograms of genetic (ϴ), changes in habitat suitability from the 

LGM to the present (∆𝑆), and present habitat suitability (𝑃𝑆) for Ixodes ricinus (upper triangle) and Geum urbanum 

(lower triangle). 

G. urbanum I. ricinus ϴ ∆𝑆 𝑃𝑆 

ϴ  0.4492 0.0960 

∆S 0.6763  0.2373 

PS 0.3476 0.5758   

 

 

Discussion 

Coupling habitat suitability predictions from SDMs with genetic data on both allele frequencies and 

probabilities of assignment to a given cluster allowed to identify alleles under selection and improve 

our understanding of the potential drivers underlying the current spatial genetic structure of two 

forest-dwelling species widely distributed in Europe: the castor tick Ixodes ricinus and the wood avens 

Geum urbanum. Besides the differences in the biology of the two studied species and the type of 

genetic markers employed to disentangle their genetic structure, the results suggest that the genetic 

structure of both species across Europe is likely very much influenced by the post-LGM expansion 

dynamics, as I initially assumed. Habitat suitability conditions during the contemporary period of 1970-

2000 seem to be of much less importance to explain the current spatial genetic structure of I. ricinus 

and G. urbanum. 

For both species, SDMs’ predictions indicate a northward range shift from the main southern 

refugia, chiefly located across the Italian peninsula, around the Black Sea as well as in south-western 

France and the north of the Iberian Peninsula. For I. ricinus, the distribution projected during the LGM 

match and support a former study on the past distribution of I. ricinus (Porreta et al., 2013). During the 

LGM, the species range was probably restricted to the southern limits of its current range, from the 

north of the Iberian Peninsula to the south-eastern coasts of the Black Sea, with some other favourable 
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and more cryptic glacial refugia located slightly to the north at the foothill of the French Alps. For G. 

urbanum, we are not aware of any previous work projecting the species distribution during the LGM. 

As for I. ricinus, predictions also suggest that G. urbanum was restricted to the southern limits of its 

current range during the LGM, with four main glacial refugia located in south-western France, the 

Italian peninsula, the north of the Balkan peninsula and on the eastern side of the Black Sea. 

The genetic structure observed for both species, indicating a Northern and a Southern cluster, 

seem to be largely influenced by long-term climatic changes since the LGM. Probabilities of assignment 

for I. ricinus populations are strongly correlated with changes in habitat suitability between the LGM 

and 1970-2000, irrespective of the clustering method used to generate the probabilities of assignment 

(STRUCTURE and DAPC). This interpretation of a potentially strong influence of past climate changes 

since the LGM is less obvious for G. urbanum, since the assignment probabilities from STRUCTURE do 

not seem to correlate with the change in habitat suitability conditions since the LGM. There is however, 

for G. urbanum, a significant influence of the deep-time change in habitat suitability conditions over 

the coordinates from the first principal components of the PCoA. The matching topologies of the 

Ward’s dendrograms are another strong indication that the genetic differentiation between the two 

clusters is (at least partially) a result of the post-LGM expansion dynamic. For both species, the 

dendrogram based on habitat suitability differences between 1970-2000 and the LGM reproduced 

with a high level of fidelity the topology of the dendrogram based on the pairwise genetic distances. 

Those dendrograms differentiated from one another mostly inside the two main clusters, as there are 

of course other variables than the change in habitat suitability conditions between 1970-200 and the 

LGM that may influence the local and regional gene flow. Particularly for I. ricinus, this analysis has 

brought to light one of the probable main reasons for the close genetic proximity between 

geographically very distant populations, notably the genetic proximity between the group of the 

Iranian and Turkish (IRN and TUR) populations and the group of the Southern French and Italian (FRA-

S and ITA-V) populations. Porreta et al. (2013) have already claimed that populations across Southern 
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Europe during the LGM may have formed a connected metapopulation, and the results presented here 

support that claim.  

Population differentiation can generally be well explained through gradients of (or barriers for) 

gene flow, drift, directional selection, or a combination of each of these processes (Slatkin 1996, 

Rieseberg et al. 2002, Friesen et al. 2007, Hofer et al. 2009). Range expansion is considered an 

important cause of population differentiation. Slatkin (1996) argued that, after the founding event, i.e. 

after a sample of a small number of individuals from a parental population has already established, the 

rapid growth of that founding population will relax genetic drift and selection will cause the fixation of 

low-frequency alleles or the combination of alleles. Although the methods applied here do not aim at 

precisely disentangling selection from gene flow (and even less the role of founding effects in 

population differentiation), the spatial genetic patterns obtained clearly suggest that the bioclimatic 

changes between the LGM and 1970-2000, and as a consequence, the expansion of both species after 

the Pleistocene, may be in part responsible for the partitioning of populations into a Northern vs. a 

Southern genetic cluster. 

For I. ricinus in particular, it is noteworthy that alleles significantly correlated to changes in 

habitat suitability since the LGM are more frequent within the Northern genetic cluster than the 

Southern one. This suggests a selection pressure over those loci as a consequence of the evolutionary 

history at least partially independent from the Southern cluster. From the results of this study, this 

hypothesis seems to be true. The identification of loci under bioclimatic selection is not a simple task, 

as both the sampling design and the shared history between populations may contribute to the 

observed patterns in allele frequencies (Excoffier et al. 2009, Hancock et al. 2011). Here, I applied 

different but complementary methods to identify those loci and confirms those identifications 

throughout the prisms of the different methods I used. The results across those different methods are 

in agreement for some loci, which reinforces the conclusion that those loci are indeed under 

bioclimatic selection pressure. More precisely, since most of those loci were significantly related to 
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both bioclimatic variables and changes in the overall bioclimatic niche, it is plausible to suppose that 

the population across the species’ range are under different selection pressures. While a founder-flush 

effect (Slatkin, 1996) is almost certain, it is likely that population differentiation is also a result of a 

directional selection. Acknowledging those phenomena is of importance to forecast the future 

dynamics of species, especially so for vector species like I. ricinus, which can carry a lot of diseases of 

potential threat for human health. In fact, the range of I. ricinus is already shifting rapidly northward 

in latitude and upward in elevations (Lindgren and Gustafson 2001b, Jore et al. 2011, Hvidsten et al. 

2020). These recent evidence of contemporary range shift, coupled with what appears to be a 

directional selective pressure during past climate changes, might lead to the fixation of new 

combination of alleles in populations at the leading edge of the shifting range, which could represent 

new challenges for the human society.  

For G. urbanum, some of the alleles exhibited a significant relation with the investigated 

bioclimatic variables and changes in habitat suitability since the LGM, but they represent a very small 

proportion of the allelic richness of each locus, varying from 10% to 40% of the total alleles in each 

locus. The higher proportion was found in the WGU228 locus (two significant alleles out of 5). 

Interestingly this locus was identified as under selection by BayecScan in the three levels of prior odds. 

Although those results suggest that these loci are under some kind of selection pressure, it is hard to 

be confident in this at this point. 

Another particularity of G. urbanum is the high genetic homogeneity of the Northern cluster, 

as demonstrated by the analysis of multiple values of K in STRUCTURE, the lack of correlation between 

genetic and geographic distance, and the seemingly lack of influence of habitat suitability within the 

genetic cluster. Regarding those results, it is possible that those populations have differentiated from 

the Southern populations early on during the northward post-LGM expansion dynamic and since then 

they did not experience important pressures for differentiation other than genetic drift, as discussed 

in Chapter 2. In any case, it seems that habitat suitability changes since the LGM or habitat suitability 
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conditions during 1970-2000 are not enough to explain the within clusters pattern observed for G. 

urbanum. 

To conclude, coupling habitat suitability predictions from SDMs with genetic data on both 

allele frequencies and probabilities of assignment to a given cluster has helped to enlighten some of 

the mechanisms behind the observed patterns of genetic structure at the European extent. The results 

from both genetic and spatial analysis strongly suggests that the range expansion dynamic from 

southern main glacial refugia in Europe is the main cause of the observed differentiation between a 

Northern and a Southern cluster. At regional and local scales, other factors not regarded here may be 

influencing the population differentiation. Finally, the quality of the information provided from the 

present approach seem to depend on the species biology, but also on the type of genetic markers used 

in the population genetics analyses.  
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Chapitre 4 Chapter 4: Genetically-informed Species Distribution 

Models 
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Presentation  

In the two previous Chapters, I explored the population genetic structure of three of the fours model 

species (Chapter 2) and one approach of applying SDMs to validate hypothesis of the process behind 

the observed genetic patterns (Chapter 3). In this fourth Chapter, I explore how species-only SDMs 

may be improved by informing the models of the species’ population genetic structure or 

phylogeography. Two of the four model species were used in this analysis, the tick I. ricinus and the 

tree F. sylvatica, for which the phylogeography has already been extensively explored by Magri et al. 

(2006, 2008). This chapter corresponds to an article entitled ‘How does incorporating genetic 

information improve species distribution models?’, submitted to the journal Global Ecology and 

Biogeography in October 28th 2020. At the time of this manuscript writing, the article was yet under 

review. For this reason, the article is appended here almost as submitted, including the reference list, 

and only changing the placement and cross-references of figures and tables for better reading. 

Supplementary Information cited this Chapter are presented in the Appendix 2. 
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Submitted article: How does incorporating genetic information improve 

species distribution models? 

Poli, P., Lenoir, J., Guiller, A. Submited to Global Ecology and Biogeography. 

Introduction 

Species distribution models (SDMs) are widely implemented in ecology, biogeography, and 

conservation biology (Guisan & Thuiller, 2005; Grimmett, Whitsed and Horta, 2020). Most SDMs’ 

applications include one or a combination of the following: (i) supporting conservation planning 

(Hannah et al., 2007; Guisan et al., 2013); (ii) forecasting or hindcasting species distribution changes in 

response to climate change (Thuiller et al., 2008; Alkishe et al., 2017); (iii) simulating the spread of 

invasive alien species (Guisan et al., 2014; Hattab et al., 2017); and (iv) investigating biogeographic and 

evolutionary hypotheses (Svenning et al., 2008; Ives & Helmus, 2011). While a vast set of modelling 

techniques are available, most rely on correlative approaches between species presence (and absence 

or pseudo-absence) data and contemporary environmental variables (Guisan et al., 2017). During the 

last two decades, many studies investigated how analytical decisions may affect the performance of 

correlative SDMs, such as the relative proportion of presence vs. absence data (i.e. prevalence) 

(Pearson et al., 2007; Liu et al., 2018), the resampling strategy (Braunisch et al., 2008; Mainali et al., 

2015), the set of predictor variables used for model building (Araújo et al., 2019), the model selection 

strategy, and the performance of different algorithms (Hallgren et al., 2019). 

More recently, some attention has been given to the incorporation of intra-specific variation into 

correlative SDMs (Pearman et al., 2010; Smith et al., 2018). Incorporating genetic information into 

correlative SDMs may especially help address concerns in case of low degree of niche conservatism 

between distant populations (Cooper et al., 2010; Schulte et al., 2012; Wasof et al., 2013), or large 

genetic divergence among lineages due to local adaptation (Cooper et al., 2011; Meynard et al., 2017).  

When distinct genetic groups respond differently to environmental variables, modelling those genetic 
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units independently could theoretically provide more reliable predictions of the species response as a 

whole (Pearman et al., 2010; Peterson et al., 2018; Smith et al., 2018). Based on those premises, a few 

studies have arrived at better predictions when modelling lineages independently (Palma et al., 2017; 

Lecocq et al., 2019; Chardon et al., 2020). For two rodent species in the Andes, Palma et al. (2017) used 

SDMs to model each species individually as well as individual lineages separately for each species. They 

showed that stacking all individual lineage models performed either similar or better, depending on 

the study species, than using the traditional SDM approach of modelling the species as a whole. Lecocq 

et al. (2019) also investigated the performance of individual lineage models compared to a whole 

species model for three bumblebee species in the West-Palaearctic. The authors concluded that 

assembling individual lineage-based models does not increase model performance, whatever the 

metric used. Overall and as far as we know, all studies comparing a combined set of lineage-specific 

SDMs, hereafter genetically-informed SDMs, against traditional SDMs do not provide a crystal clear 

answer regarding the performance of genetically-informed models over traditional whole species 

models. 

Here, we aim at investigating further this question of whether or not informing SDMs with genetic 

information (phylogeography or population genetic structure) could improve model performance over 

traditional approaches (i.e., modelling all occurrences as one homogeneous single unit). We 

constructed both genetically-informed and traditional SDMs for two widespread European species for 

which there is a clear genetic structure published in the scientific literature: common beech Fagus 

sylvatica (Magri et al., 2006) and the castor bean tick Ixodes ricinus (Poli et al., 2020). For F. sylvatica, 

we could also rely on accurate pollen and macrofossil distribution data from the Mid-Holocene period 

to test the predictive performances of both modelling approaches during a time period that was 

warmer than the present-day climate for Europe and thus a good candidate period for anticipating the 

potential future distribution of F. sylvatica. We hypothesized that the overall species distribution 

predicted from an assemblage of genetically-informed models would better predict the entire 
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potential distribution of the focal species than a traditional SDM approach and perform better at 

identifying past occurrences during the Mid-Holocene warm period for F. sylvatica.  

 

Material and Methods 

All the data preparation steps and statistical analyses described in the following subsections were 

conducted in R (R Core Team, 2019), using the following suite of packages: raster (Hijmans, 2020); rgdal 

(Bivand et al., 2020); sp (Pabesma & Bivand, 2005); biomod2 (Thuiller et al., 2020); usdm (Naimi et al., 

2014); ade4 (Dray & Dufour, 2007); and viridis (Garnier, 2018). All maps and spatial information 

displayed in the figures were projected using the Lambert azimuthal equal-area (LAEA) Europe 

(EPSG:3035) projection system and all raster layers (e.g. bioclimatic variables and model predictions) 

were set to a spatial resolution of 5 arc-minutes (about 9.3 by 9.3 km at the equator) as a compromise 

between spatial accuracy and computational power. 

Study species and genetic data 

Here, we focused on Fagus sylvatica L. (1753) and Ixodes ricinus L. (1758) which are two widely 

distributed species in Europe. Both studied species have detailed published records on phylogeography 

or genetic structure, thus allowing us to build SDMs with genetic information at the intra-species level. 

The phylogeography of F. sylvatica was investigated by Magri et al. (2006), where nine lineages were 

identified based on isozyme data. The population genetic structure of I. ricinus was recently 

investigated by Poli et al. (2020), where two well distinct Eurasian genetic clusters were identified (one 

Northern and the other Southern of Eurasia). Besides, thanks to pollen and macrofossil data, F. 

sylvatica is a good candidate species to validate our models against empirical data of its past 

distribution during the Mid-Holocene period (~6000 ybp). 

 

 



115 
 
 

Distribution data for Fagus sylvatica 

Current occurrence data for F. sylvatica were extracted from both Magri et al. (2006) and the EU-Forest 

dataset (Mauri et al. 2017). Spatial locations of occurrence data from Magri et al. (2006) are already 

assigned to particular lineages (n = 9) based on isozyme data. Some of the lineages identified in Magri 

et al. (2006) rely on small sample sizes. More specifically, lineages #3 and #6 had six and five 

occurrences, respectively, and thus were excluded from further analysis. Lineages #2, #4, and #5 were 

grouped as they form a monophyletic group, as were lineages #7, #8, and #9 belonging to another 

monophyletic group. These two monophyletic groups (lineage #245 and lineage #789), as well as 

lineage #1, are hereafter referred to as ‘lineages’ for simplicity. To increase the number of occurrence 

data for each of these three lineages, we first extracted all spatial locations from the EU-Forest dataset 

where F. sylvatica is occurring in Europe (n = 35,862). To assign each of these occurrences from the 

EU-Forest dataset to a particular lineage, we relied on the spatial proximity between occurrence data 

in the EU-Forest dataset and occurrence data in Magri et al. (2006) with an identified lineage 

membership (#1, #245, #789) (Fig. S1). First, we build a circular buffer of 100 km around the spatial 

location of each lineage-labelled occurrence in Magri et al. (2006). The buffer size was optimized to 

maximize the number of occurrences for each lineage while minimizing overlap among neighbouring 

lineages. Then, all overlapping circular buffers of a particular lineage were dissolved. Whenever the 

spatial location of an EU-Forest occurrence for F. sylvatica fell exclusively inside the buffer area of a 

given lineage, it was assigned to that particular lineage (Fig. S1). Spatial locations of occurrence data 

from the EU-Forest dataset falling within several overlapping lineages’ buffer zone or outside of all 

three lineage buffers were excluded (Fig. S1). After resampling, the final set of present-day occurrences 

for F. sylvatica reached 1,140, including 609, 281, and 239 occurrences for lineages #1, #245, and #789, 

respectively (Fig. S2a). 

Because the EU-Forest dataset is a quasi-exhaustive survey of all European tree species co-occurring 

within a given forest plot, the fact that the name of a given tree species is not recorded within the focal 
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plot is interpreted as an absence data. Moreover, F. sylvatica is a non-cryptic and easily identifiable 

tree species. Hence, the inferred absences from locations where the species was not recorded in the 

EU-Forest dataset can be considered as true absences, and not pseudo-absences or background data. 

From this absence dataset (n = 214,716), we randomly selected as many absences as the total number 

of occurrences we used for F. sylvatica (n = 1,140), such that the prevalence of the total set of 

presence-absence data is 0.5 as suggested by Barbet-Massin et al. (2012). 

Historical data on F. sylvatica distribution during the Mid-Holocene period was extracted from the 

European pollen database (EPD; http://www.europeanpollendatabase.net/) for the period between 

5000 and 7000 ybp. Pollen data from the EPD was combined with that available in Magri et al. (2006). 

A great variation in the abundance of pollen records dated between 5000 and 7000 ybp was observed 

between sites recorded in the EPD (from 1 to 709 records per site per time). Since the species is wind-

pollinated, the presence of pollen in a site at a certain time may not necessarily reflect past occupancy 

of that particular site. Yet, a greater amount or abundance of pollen data within a site increases the 

chances that this site, or a neighbouring location, was effectively occupied by F. sylvatica. To account 

for this possible artefact, we only retained sites where a given threshold of pollen records of F. sylvatica 

dated at the same period (between 5000 and 7000 ybp) was observed. Two thresholds of pollen record 

distribution were considered: the first quartile (minimum of 4 pollen records) and the medium 

(minimum of 37 pollen records). After this filtering, a total of 246 grid cells (n = 145 when using the 

median instead of the first quartile) contained a sufficient amount of pollen records among sites dated 

between 5000 and 7000 ybp to consider that F. sylvatica was present during the Mid-Holocene period 

in that particular cell. Macrofossil data (e.g. charcoal) from the same period were also extracted from 

Magri et al. (2006) as well as from Lafontaine et al. (2014).  A total of 19 grid cells contained 

macrofossils of F. sylvatica from the Mid-Holocene period across the study area. 

 

 

http://www.europeanpollendatabase.net/
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Distribution data for Ixodes ricinus 

Current occurrence data for I. ricinus were extracted from Poli et al. (2020), GBIF (GBIF.org, 2020), and 

VectorMap (http://vectormap.si.edu/). Similar to Magri et al. (2006) for F. sylvatica, occurrence data 

used in Poli et al. (2020) (n = 497) were already assigned to particular genetic clusters: the northern vs. 

southern Eurasian clusters. Occurrence data extracted from GBIF (n = 2,929) and VectorMap (n = 880) 

were assigned to one of the two Eurasian clusters according to the geographic locations of 

occurrences. First, we build an interpolation map of probabilities of assignment to a given genetic 

cluster based on Poli et al. (2020) (Fig. S3). Occurrence data falling within a high probability zone for 

one cluster (>50%) were assigned to that cluster. A total of 2,171 occurrences, including 884 and 1287 

occurrences for the southern and northern cluster, respectively, were kept for further analysis (Fig. 

S2b). An equal number of pseudo-absences or background data were randomly selected within a 

convex-hull around all occurrences. 

Bioclimatic variables 

To build both traditional and genetically-informed SDMs, we relied on several bioclimatic variables as 

predictor variables. We first downloaded contemporary bioclimatic variables at 5 arc-minute 

resolution representative of long-term conditions during 1970-2000 from the WorldClim 2 database 

(Fick & Hijmans, 2017 - https://www.worldclim.org/data/index.html). For each of the two studied 

species, bioclimatic variables used as predictor variables in our models were selected based on 

knowledge from the scientific literature (Durrant et al., 2016; Svenning et al., 2011; Alkishe et al., 

2017). We excluded collinear variables based on the results of the variance inflation factor (VIF), using 

the vifcor function from the R package usdm (Naimi et al., 2014). Bioclimatic variables kept as 

predictors in our SDMs are shown in Table 4-1. The same set of bioclimatic variables used to model F. 

sylvatica was downloaded for the Mid-Holocene period (~6000 ybp) from the WorldClim 1.4 database 

(https://www.worldclim.org/data/v1.4/paleo1.4.html - Hijmans et al., 2005). The bioclimatic layers 

http://vectormap.si.edu/
https://www.worldclim.org/data/index.html
https://www.worldclim.org/data/v1.4/paleo1.4.html
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from the nine global circulation models (GCMs) of the Mid-Holocene period available in WorldClim 1.4 

were used to predict the probability of occurrence of F. sylvatica during the Mid-Holocene period. 

Model calibration during present-day climate 

For each species and each lineage (F. sylvatica) or genetic cluster (I. ricinus), we build a presence-

absence dataset composed of all current occurrences assigned to that particular lineage (or genetic 

cluster) plus the same number of absences (F. sylvatica) or pseudo-absences (I. ricinus) randomly 

assigned to each lineage (or genetic cluster) from the total pool of absences (or pseudo-absences) 

described above. Two ‘whole-species’ or ‘total’ datasets were also created, one for each species, 

corresponding to the combination of occurrences from all intra-species level entities belonging to a 

given species and all the available absences (F. sylvatica) or pseudo-absences (I. ricinus). Those last two 

datasets were used to build traditional SDMs, without incorporating any intra-species level 

information, being either lineages or genetic clusters. In total, four and three presence-absence 

datasets, with a prevalence of 0.5 each time, were constructed for F. sylvatica (Lineage #1, Lineage 

#245, Lineage #789, and whole-species dataset) and I. ricinus (Southern cluster, Northern cluster, and 

whole-species dataset), respectively. For each of those seven datasets, 30% of presence-absence data 

were set aside and kept for the final external validation step once ensemble models were generated 

(see next section on model validation and comparison during present-day climate), while the 

remaining 70% of presence-absence data were used for model calibration. Since absences (F. sylvatica) 

and pseudo-absences (I. ricinus) of each lineage and genetic cluster, respectively, were randomly 

sampled/assigned from the total pool of absences (F. sylvatica) or pseudo-absences (I. ricinus), we 

repeated this process 20 times, building a total of 140 datasets, all with a prevalence of 0.5, but 

different combinations of absences/pseudo-absences, each time keeping 70% of data for model 

calibration and 30% for the final external validation step. 

For each of the above-mentioned 140 calibration datasets, we related the presence-absence 

data to the set of selected bioclimatic variables (predictors). Note that the set of predictors used at the 
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species level was identical at the intra-species level. We used four algorithms implemented in the 

biomod2 R package (Thuiler et al., 2020) to model the ‘current’ (1970-2000) potential distribution of 

each lineage, genetic cluster, or whole-species level: generalized linear models (GLMs); generalized 

boosted regression models (GBMs); generalized additive models (GAMs); and random forests (RFs). 

Each time, we used the default parameters. For each of the 140 calibration dataset and each of the 

four algorithms, we ran 10 repetitions by further setting aside, randomly, 70% of the presence-absence 

data for algorithm-specific calibration and the remaining 30% for algorithm-specific validation, which 

makes 1,400 different calibration-validation datasets per algorithm and thus 5,600 models. To assess 

the models’ performance, we computed the true skill statistic (TSS), and all predicted probabilities of 

occurrence greater than 0.5 were transformed into presences while probability values lower or equal 

to 0.5 were transformed into absences. A fixed value for the threshold was necessary for comparing 

different runs. A threshold of 0.5 was chosen after previous modelling with subsets of the presence-

absence dataset that suggested this to be the value that maximized The TSS values. For each of the 

140 original calibration datasets, the forty models we calibrated (4 algorithms by 10 repetitions) were 

subsequently assembled in an ensemble model by weighting coefficient estimates based on TSS values. 

Mind that the 140 original calibration datasets we used here included 80 (4 × 20) and 60 (3 × 20) original 

calibration datasets for F. sylvatica and I. ricinus, respectively. 
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Table 4-1. Bioclimatic Variables from WorldClim (Hijmans et al., 2005) used for building SDMs for each species. 

Bioclimatic 
Variable 

Description F. sylvatica I. ricinus 

Bio1 Annual Mean Temperature X X 

Bio2 
Mean Diurnal Range (Mean of 

monthly (max temp - min temp)) 
 X 

Bio3 Isothermality (BIO2/BIO7) (* 100)  X 

Bio4 
Temperature Seasonality 
(standard deviation *100) 

X X 

Bio12 Annual Precipitation X X 

Bio14 Precipitation of Driest Month X  

Bio15 
Precipitation Seasonality 
(Coefficient of Variation) 

X  

Bio18 Precipitation of Warmest Quarter X  

Bio19 Precipitation of Coldest Quarter X  

 

 

Model validation and comparison during present-day climate 

To construct a genetically-informed SDM for a given study species, we combined predictions obtained 

from all ensemble models across all lineages or genetic groups of the focal species into an ensemble 

probability map. More specifically, we overlaid all three (two) predicted probability of occurrence of 

the three (two) lineages (genetic clusters) of F. sylvatica (I. ricinus), and kept only the maximum value, 

as proposed by Lecocq et al. (2019). This layer of lineage-specific maximum probability of occurrences 

representing the main outcome of a genetically-informed SDM was then compared with the 
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corresponding layer of predicted probability of occurrences of the traditional or control SDM based on 

the whole-species dataset without distinguishing between lineages or genetic groups. 

Table 4-2. Discrimination metrics used to access model performance. TP: True positives. FN: False negatives. TN: 

True negatives. FP: False positives. po: proportion of agreement. pe: expected proportion of agreement. 

Metric Definition References 

Sensitivity TP/(TP+FN) Fielding and Bell (1997) 

Specificity TN/(TN+FP) Fielding and Bell (1997) 

True Skill Statistics (TSS) Sensitivity+Specificity-1 Allouche et al. (2006) 

AUC 
Area Under the Receiver 

Operating Characteristic curve 
Lobo et al. (2007) 

Sørensen's similarity index 2TP/(FN+2TP+FP) Leroy et al. (2018) 

Overprediction Rate (OPR) FP/(TP+FP) Marcia Barbosa et al. (2013) 

 

For a fair comparison of model performances between genetically-informed and traditional 

SDMs, we generated six different but complementary discrimination metrics (Table 4-2). There is a 

vast literature available about the limits, applications, and information provided by these different 

discrimination metrics used to assess SDMs’ performances (Fielding & Bell, 1997; Liu et al., 2009; Liu 

et al., 2011; Leroy et al., 2018; Shabani et al., 2018). Transformations of the predicted probabilities of 

occurrence into presence-absence for both the genetically-informed and traditional SDMs were based 

on a threshold of 0.5. We used the set of observed presence-absence data from the 140 validation 

datasets that we set aside earlier to compute confusion matrices. For each of the 20 random iterations 

used to generate the 140 validation datasets, we combined the three lineages of F. sylvatica and the 

two genetic clusters of I. ricinus into a single dataset to compute all the metrics of model performance 

for the genetically-informed and traditional SDM approach. This led to a total of 20 values for each 

metric and each type of SDM (traditional vs. genetically-informed SDM). We ran a Mann-Whitney rank 
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test to assess the significance of the difference between the two SDM approaches across the 20 

repetitions. 

Model evaluation and comparison during the Mid-Holocene period 

Based on the ensemble models that we calibrated for F. sylvatica during the present-day climate, we 

hindcasted the potential distribution of F. sylvatica during the Mid-Holocene period (about 6,000 ybp) 

using all nine GCMs for each of the three lineages separately as well as at the species level. This resulted 

in a total of 36 raster layers, including 27 (9 × 3) layers at the lineage level and nine layers at the species 

level. For each grid cell and each lineage separately, as well as at the species level, we then averaged 

probabilities of occurrences (i.e. habitat suitability values) across the nine GCMs. Similar to the 

maximum lineage projection described above, we kept only the maximum probability of occurrence 

among the three studied lineages of F. sylvatica as the outcome of the genetically-informed SDM. To 

evaluate and compare the model performances to hindcast the species’ past distribution between 

traditional and genetically-informed SDMs, we extracted all the predicted probability of occurrences 

across all grid cells that contain pollen records or macrofossils. We then applied two complementary 

approaches to test for potential differences in the potential distribution of F. sylvatica during the Mid-

Holocene period between the two studied SDM approaches (traditional vs. genetically-informed). First, 

a Mann-Whitney rank test was used to compare the distribution of probability (habitat suitability) 

values of each cell where pollen or macrofossil records occurred (presence-only test). Then, as a 

second and more quantitative approach to account for the abundance of pollen records in each grid 

cell, we extracted the total (sum), mean, median, and maximum abundance of pollen records per grid 

cell. For each of these four summary statistics, we regressed pollen abundance (log-transformed) 

against the probability of occurrence, separately for each of the two studied SDM approaches, using a 

linear modelling approach: 𝑌 =  𝛽0 + 𝛽1𝑋, where 𝑌 is the log-transformed pollen abundance, 𝛽0 is the 

intercept, 𝛽1 in the slope of the regression, and 𝑋 is the predicted species probability of occurrence. 

We tested for statistical differences in the slope estimate between the genetically-informed and 



123 
 
 

traditional SDM approach by using a randomization procedure. Probabilities of occurrence in each of 

the grid cells where pollen records occurred were randomly assigned to either the traditional or 

genetically-informed SDM approach. Next, for each of the two randomly assigned SDM approaches, 

we applied the same linear model as the one mentioned above for empirical data. Last, the randomized 

slope coefficient estimate 𝛽1 from the traditional SDM approach was subtracted from the genetically-

informed approach and this randomized difference stored. This process was repeated a thousand 

times, creating a simulated distribution of the randomized differences in the slope coefficient estimate 

between both SDM approaches. The observed difference in the slope coefficient estimate between 

the two SDM approaches was then compared to the random distribution of 1,000 randomized 

difference in the slope coefficient estimate to compute a non-parametric p-value. We decide for the 

regression approach descried above to avoid adding more uncertainty to the analysis  as would be the 

case of a transformation of pollen occurrences to a presence-absence data since even though sites 

with a great abundance in pollen of F. sylvatic represent most probably real presences, the absence of 

pollen records does suggest a real absence of the species.  

Results 

Model comparison and validation during the present-day climate (Fagus sylvatica & Ixodes ricinus) 

For both species (F. sylvatica & I. ricinus) and both modelling approaches (traditional vs. genetically-

informed SDMs), predictive performances under the present-day climate ranked from good to 

excellent (Figure 4.1 and Table S1). We found high AUC values, ranging from 0.90 to 0.93 for F. sylvatica 

and from 0.80 to 0.84 for I. ricinus. Similarly, TSS values were relatively high and ranged between 0.60 

and 0.71 for F. sylvatica and between 0.60 and 0.68. for I. ricinus. In all individual models, the RFs 

algorithm outperformed the other three algorithms, followed by GAMs and GBMs, while GLMs were 

always the less performant modelling algorithm (Fig. S4). In general, we found similar distribution 

patterns between both modelling approaches and for both studied species, matching with the known 
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present-day distribution of both species (Figure 4.2). Noteworthy, probability values tended to be 

higher for genetically-informed than for traditional SDMs. 

For I. ricinus, neither AUC nor TSS values differed between the two modelling approaches, 

whereas for F. sylvatica, TSS values were higher when using the traditional over the genetically-

informed SDM approach (Figure 4.1). We found similar Sørensen values between the two modelling 

approaches for both species. Noteworthy, for both species, the genetically-informed SDM approach 

reached systematically higher sensitivity and OPR values, but systematically lower specificity values 

than the traditional SDM approach. 

 

Figure 4.1. Comparison of the resulting values of the six discrimination metrics used across 20 repetitions for (a) 

Fagus sylvatica and (b) Ixodes ricinus. Light grey: traditional species distribution model (SDM) approach. Dark 

grey: genetically-informed SDM approach. Significances are indicated by asterisks (***: p < 0.001; **: 0.001 < p 

< 0.01; *: 0.01 < p < 0.05).  

Model evaluation and comparison during the Mid-Holocene period for Fagus sylvatica 

Predicted probabilities of occurrence during the Mid-Holocene period at locations where pollen data 

occurred were higher for the genetically-informed SDM approach than the traditional one for both the 

first quartile and the median threshold (Mann-Whitney, p = 0.010 and p = 0.004 respectively, Figure 

4.3a and S5). Although predicted probabilities of occurrence from the genetically-informed SDM 

approach tended to be higher than the traditional one at locations where macrofossils (i.e. charcoal) 
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were found, the average difference was not significant (Mann-Whitney, p = 0.359, Figure 4.3b). 

Irrespective of the summary statistic used (mean, median, sum, or maximum abundance of pollen per 

grid cell), we found a stronger relationship between pollen abundance (log-transformed) and the 

probability of occurrence of F. sylvatica during the Mid-Holocene period when using the genetically-

informed SDM approach (R2 ranging from 0.36 to 0.42) than when using the traditional one (R2 ranging 

from 0.21 to 0.26) (Figure 4.4 and Fig. S6). The slope coefficient estimates for the genetically-informed 

SDM approach were always higher (p < 0.05) than for the traditional SDM approach (Fig. S7 and Table 

S2).  Note that increasing the threshold to the median value (37 or more pollen records) instead of the 

first quartile did not change the main findings (Figs. S8-S9 and table S2). Noteworthy, the genetically-

informed SDM approach showed a much better match with pollen data in the Balkans, Italy, around 

the Dead Sea, and the northern Iberian regions than the traditional SDM approach (Figure 4.5 and 

Figure 4.6). 
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Figure 4.2. Predictions of the probability of presence or habitat suitability for Fagus sylatica (a, b) and Ixodes 

ricinus (c, d) during present day climate (1970-2000) using both the traditional species distribution model (SDM) 

approach (left) and the genetically-informed SDM approach (right). 
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Figure 4.3. Distribution of the probabilities of presence of Fagus sylvatica during the Mid-Holocene period at 

spatial locations where fossil records of F. sylvatica from the Mid Holocene period have been found for pollen 

(first quartile threshold, n>=4 pollen records per site and time) (a) and macrofossil (charcoal) (b) records. Light 

grey: traditional species distribution model (SDM) approach. Dark grey: genetically-informed SDM approach. 

Stars display the significance level based on a Mann-Whitney test of difference between the two SDM 

approaches (*, p = 0.010). 

 

Figure 4.4. Linear regression relating the mean pollen abundance (log-transformed) with a threshold of 4 pollen 

records (first quartile) across sites co-occurring in the same grid cell as a function of the probability of occurrence 

or habitat suitability according to the traditional species distribution model (SDM) approach (a) and the 

genetically-informed SDM approach (b) for F. sylvatica. For results based on summary statistics other than the 

mean per grid cell (e.g. median or maximum abundance per grid cell), please refer to S4. Note also that these 

results are based on the first quartile across all pollen records as a threshold to exclude locations with very limited 

pollen abundance. For results using a more restrictive threshold (median value), please refer to S6. 
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Figure 4.5. Fossil records and probability distributions during the Mid Holocene period for Fagus sylvatica. 

Probability of occurrence or habitat suitability values are based on the traditional species distribution model 

(SDM). Yellow triangles: macrofossil records. Green asterisks: pollen records. 
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Figure 4.6. Fossil records and probability distributions during the Mid Holocene period for Fagus sylvatica. 

Probability values are based on the genetically-informed species distribution model (SDM). Yellow triangles: 

macrofossil records. Green asterisks: pollen records. The genetically-informed SDM approach was capable to 

assign higher (> 0.5) probability values than the traditional SDM approach (Figure 4.5), most notably at the 

southern edge of the species distribution (see zooming windows), coinciding with locations where fossil records 

occur. 

 

Discussion 

Our findings suggest that genetically-informed SDMs tend to increase the probability to detect 

potentially suitable sites and thus potential cryptic refugia for the focal species at locations where 

traditional SDMs fail to do so. Albeit the well-known and widely used metrics of SDMs’ performances 

(i.e. AUC) did not differ between the traditional and genetically-informed SDM approaches, ranging 

from good to excellent in both cases, our genetically-informed SDMs were able to systematically 

identify suitable habitats otherwise neglected by the traditional SDM approach, as shown by the higher 

sensitivity values we found for both Fagus sylvatica and Ixodes ricinus. However, the genetically-
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informed SDM approach also tended to overestimate the rate of predicted occurrences at locations 

where in fact absences (for F. sylvatica) or pseudo-absences (for I. ricinus) have been recorded, as 

translated by the higher OPR values. Similarly, traditional SDMs performed better at identifying 

absences or pseudo-absences, as shown by the higher specificity values. These discrepancies observed 

between the two approaches when using metrics focusing more specifically on the models’ ability to 

correctly predict either the occurrences (e.g. sensitivity and OPR) or the absences (e.g. specificity) 

almost disappeared when using metrics combining the models’ ability to correctly predict occurrences 

and absences simultaneously (e.g. AUC, TSS, and Sørensen). Although the tendency for a model to 

underestimate absences (low specificity values) or overestimate occurrences (high OPR values) may 

seem like bad news at first sight, one needs to interpret these performance metrics in light of the 

quality, reliability, or trustworthiness of the data used as “field observations” to validate model 

predictions (see Box 1 in De Kort et al., 2020). Indeed, although it may seem obvious and 

straightforward to trust a record of species occurrence from field observations, it is not as obvious with 

absence records from field observations, and even less so for pseudo-absences or background data 

(Lobo et al., 2010; De Kort et al., 2020). There are several important reasons for not necessarily trusting 

an absence record, even from field observations (Lobo et al., 2010). For instance, even an expert 

taxonomist may simply overlook the focal species that is occurring at a given location, either because 

it is an inconspicuous species or because it is not the right phenological window to observe the species. 

Those are typically referred to as methodological absences. Finally, even if an absence record observed 

in the field is real and not a methodological artefact, it is difficult to attribute this absence to 

environmental limitations only (environmental absences), as other contingencies may explain it in the 

field (contingent absences sensu Lobo et al., 2010), such as biotic interactions, historical factors, 

habitat fragmentation or simply dispersal limitations (Hattab et al. 2017). Hence, one needs to keep in 

mind the high uncertainty around absence records (Lobo et al., 2010) when interpreting model 

performance metrics partly relying on “observed” absences. Confirmed absences from repeated field 

observations are required to generate synthetic metrics (e.g. TSS) of model performance that are 
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trustworthy and unlikely to underestimate the model’s ability to detect a potentially suitable site. For 

that reason, one cannot rely on one single metric of model performance to compare SDM outputs. 

Instead, it is of utmost importance to multiply the complementary metrics (e.g. sensitivity and 

specificity) to get a better understanding of the weaknesses and strengths of a given model. 

Independent model evaluation for Fagus sylvatica 

Focusing on F. sylvatica for which we have extensive knowledge of its past distribution thanks to pollen 

and macrofossil data, we were able to evaluate the ability of our genetically-informed SDM approach 

to accurately predict the potential occurrence of F. sylvatica during the Mid-Holocene period and 

compare it to the control situation of using traditional SDMs. The genetically-informed SDM approach 

showed better performances than traditional SDMs one to identify suitable habitat during the Mid 

Holocene period. This was demonstrated by the higher habitat suitability values extracted from the 

genetically-informed SDM at locations where pollen records were found as well as by the higher 

proportion of variance in pollen abundance that is explained by the habitat suitability predicted from 

the genetically-informed SDM. In fact, the magnitude of the positive relationship between pollen 

abundance and habitat suitability was much stronger when using the genetically-informed SDM 

approach, suggesting that this approach performs better at predicting the potential distribution of F. 

sylvatica during the Mid-Holocene period.   

Both the genetically-informed and traditional SDM approach assigned higher probabilities of 

occurrence in the core of the predicted species past distribution. Nonetheless, the genetically-

informed SDM approach was able to correctly identify suitable habitats at the southern limits of F. 

Sylvatica past distribution, around the Dead Sea, the Balkans, the Italian Peninsula, the northern part 

of the Iberian Peninsula, and south-western France. Most of those regions were not identified as highly 

suitable by the traditional SDM approach. Unfortunately, not much macrofossil data was available to 

confirm the overall tendency that genetically-informed SDMs are better at predicting the potential 

distribution of the focal species than traditional SDMs. Indeed, the non-significant signal in the 
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difference between the two modelling approaches as measured by macrofossil records is most likely 

due to the small sample size (n = 19). In any case, our findings suggest that combining lineage-specific 

models could help identify cryptic refugia (i.e., zones with high probabilities of occurrence) otherwise 

missed by traditional SDMs. 

Implications for forecasting species redistribution under future climate change 

According to our findings, the genetically-informed SDM approach has the potential to increase the 

reliability of future scenarios of biodiversity redistribution by increasing the model’s abilities to detect 

potentially suitable areas, which also means a potential for reducing omission errors (i.e. false 

negative: predicting a future absence where it will be a presence). However, similar to the principle of 

communicating vessels, while reducing omission errors, the genetically-informed SDM approach also 

has the potential to increase commission errors (i.e. false positive: predicting a future occurrence 

where it will be an absence) in comparison with a more traditional SDM approach. Reducing omission 

errors at the expense of commission errors has the advantage to limit the risk of missing future suitable 

areas. For instance, for predicting the distribution of rare and endemic species with limited dispersal 

abilities, it has been demonstrated that reducing omission errors is of greater importance than 

reducing commission errors (Pearson et al., 2007; Liu et al., 2016). In those cases, SDMs’ future 

forecasts could benefit from incorporating the genetic structure of those species. 

Problems in the SDMs’ performances to predict species’ range margins have already been pointed out 

in the scientific literature (Braunisch et al., 2008; Vale et al., 2014). For both F. sylvatica and I. ricinus, 

traditional SDMs tended to underestimate suitable regions at the range margins in comparison with 

genetically-informed SDMs. This has important implications for the forecasts of future biodiversity 

redistribution given population dynamics at range margins.  

While some pioneer studies have already suggested that incorporating genetic information into SDMs 

improve model performance (Palma et al., 2017; Chardon et al., 2020), others have suggested that it 

does not improve model accuracy (Lecocq et al., 2019), thus reopening the debate on whether 
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incorporating genetic information into SDMs can improve our understanding of species distribution. 

Noteworthy, all these studies mainly focused on visual inspections from predicted maps to make 

comparisons of model performances or used general metrics of model performances (e.g. Palma et al., 

2017) systematically relying on presence-only data (Chardon et al., 2020) to validate their models and 

draw their conclusions, which may limit our abilities to evaluate the performance of genetically-

informed SDMs. As far as we are aware, no study before ours has specifically tested the ability of 

genetically-informed SDMs to better explain the abundance of pollen found in the fossil records, 

providing truly independent evidence that genetically-informed SDMs outperform traditional SDMs in 

their abilities to detect potential refugia. Here, showed that genetically-informed SDMs can 

outperform traditional SDMs in identifying potentially suitable habitat of a given species.  

Limits of the genetically-informed SDM approach 

Aside from the obvious limitation related to the availability of genetic data at the infra-species level, it 

is important to note that the genetically-informed SDM approach we propose here is probably not 

applicable across all species. Both our studied species have a geographically explicit genetic structure 

or phylogeography. In such cases, modelling individual genetic units serves as a method for 

dismembering the dataset in geographical subunits coherent with the species life-history, ecology, and 

possibly local adaptation. In cases where the target species does not show a spatially explicit genetic 

structure, modelling and assembling individual genetic groups may not necessarily have an advantage 

over traditional SDM methods. 

Data availability statement 

Pollen records extracted from the European Pollen Database can be accessed are from Figshare with 

the following link: https://figshare.com/s/a4560da2e568e87cb6ac. Upon acceptance, a public DOI 

will be reserved and replace the above link.  

https://figshare.com/s/a4560da2e568e87cb6ac


134 
 
 

References 

Alkishe, A.A., Peterson, A.T. & Samy, A.M. (2017) Climate change influences on the potential 
geographic distribution of the disease vector tick Ixodes ricinus. PLOS ONE, 12, e0189092. 

Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: 
prevalence, kappa and the true skill statistic (TSS): Assessing the accuracy of distribution 
models. Journal of Applied Ecology, 43, 1223–1232. 

Araújo, M.B., Anderson, R.P., Márcia Barbosa, A., Beale, C.M., Dormann, C.F., Early, R., Garcia, …, 
Rahbek, C. (2019) Standards for distribution models in biodiversity assessments. Science 
Advances, 5, eaat4858. 

Bivand, R., Keitt, T. & Rowlingson, B. (2020). rgdal: Bindings for the 'Geospatial' Data Abstraction 
Library. R package version 1.5-10. https://CRAN.R-project.org/package=rgdal 

Braunisch, V., Bollmann, K., Graf, R.F. & Hirzel, A.H. (2008) Living on the edge—Modelling habitat 
suitability for species at the edge of their fundamental niche. Ecological Modelling, 214, 153–
167. 

Chardon, N.I., Pironon, S., Peterson, M.L. & Doak, D.F. (2020) Incorporating intraspecific variation 
into species distribution models improves distribution predictions, but cannot predict species 
traits for a wide‐spread plant species. Ecography, 43, 60–74. 

Cooper, N., Freckleton, R.P. & Jetz, W. (2011) Phylogenetic conservatism of environmental niches in 
mammals. Proceedings of the Royal Society B: Biological Sciences, 278, 2384–2391. 

Cooper, N., Jetz, W. & Freckleton, R.P. (2010) Phylogenetic comparative approaches for studying 
niche conservatism: Comparative approaches for niche conservatism. Journal of Evolutionary 
Biology, 23, 2529–2539. 

De Kort, H., Baguette, M., Lenoir, J. & Stevens, V.M. (2020) Toward reliable habitat suitability and 
accessibility models in an era of multiple environmental stressors. Ecology and Evolution. 

Dray, S. & Dufour, A. (2007). The ade4 Package: Implementing the Duality Diagram for Ecologists. 
Journal of Statistical Software, 22(4), 1-20. doi: 10.18637/jss.v022.i04 

Houston Durrant, T., de Rigo, D., Caudullo, G. (2016) Fagus sylvatica and other beeches in Europe: 
distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., 
Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publication 
Office of the European Union, Luxembourg 

Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1‐km spatial resolution climate surfaces for global 
land areas. International Journal of Climatology, 37, 4302–4315. 

Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in 
conservation presence/absence models. Environmental Conservation, 24, 38–49. 

Grimmett, L., Whitsed, R. & Horta, A. (2020) Presence-only species distribution models are sensitive 
to sample prevalence: Evaluating models using spatial prediction stability and accuracy 
metrics. Ecological Modelling, 431, 109194. 

Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat 
models. Ecology Letters, 8, 993–1009. 

Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I.T., …, 
Buckley, Y.M. (2013) Predicting species distributions for conservation decisions. Ecology 
Letters, 16, 1424–1435. 

Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. (2014) Unifying niche shift 
studies: insights from biological invasions. Trends in Ecology & Evolution, 29, 260–269. 

Guisan, A., Thuiller, W., Zimmermann, N. (2017). Habitat suitability and distribution models with 
applications in R. Cambridge, Cambridge University Press. 

Hallgren, W., Santana, F., Low-Choy, S., Zhao, Y. & Mackey, B. (2019) Species distribution models can 
be highly sensitive to algorithm configuration. Ecological Modelling, 408, 108719. 



135 
 
 

Hannah, L., Midgley, G., Andelman, S., Araújo, M., Hughes, G., Martinez-Meyer, E., Pearson, R. & 
Williams, P. (2007) Protected area needs in a changing climate. Frontiers in Ecology and the 
Environment, 5, 131–138. 

Hattab, T., Garzón-López, C.X., Ewald, M., Skowronek, S., Aerts, R., Horen, H., …, Lenoir, J. (2017) A 
unified framework to model the potential and realized distributions of invasive species within 
the invaded range. Diversity and Distributions, 23, 806–819. 

Hijmans, R. (2020). raster: Geographic Data Analysis and Modeling. R package version 3.1-5. 
https://CRAN.R-project.org/package=raster 

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution 
interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 
1965–1978. 

Ives, A.R. & Helmus, M.R. (2011) Generalized linear mixed models for phylogenetic analyses of 
community structure. Ecological Monographs, 81, 511–525. 

de Lafontaine, G., Amasifuen Guerra, C.A., Ducousso, A. & Petit, R.J. (2014) Cryptic no more: soil 
macrofossils uncover Pleistocene forest microrefugia within a periglacial desert. New 
Phytologist, 204, 715–729. 

Lecocq, T., Harpke, A., Rasmont, P. & Schweiger, O. (2019) Integrating intraspecific differentiation in 
species distribution models: Consequences on projections of current and future climatically 
suitable areas of species. Diversity and Distributions, 25, 1088–1100. 

Leroy, B., Delsol, R., Hugueny, B., Meynard, C.N., Barhoumi, C., Barbet-Massin, M. & Bellard, C. (2018) 
Without quality presence-absence data, discrimination metrics such as TSS can be misleading 
measures of model performance. Journal of Biogeography, 45, 1994–2002. 

Liu, C., Newell, G. & White, M. (2018) The effect of sample size on the accuracy of species 
distribution models: considering both presences and pseudo-absences or background sites. 
Ecography, 42, 535–548. 

Liu, C., Newell, G. & White, M. (2016) On the selection of thresholds for predicting species 
occurrence with presence-only data. Ecology and Evolution, 6, 337–348. 

Liu, C., White, M. & Newell, G. (2011) Measuring and comparing the accuracy of species distribution 
models with presence-absence data. Ecography, 34, 232–243. 

Liu, Canran, White, M. & Newell, G. (2009) Measuring the accuracy of species distribution models: a 
review. 8. 

Lobo, J.M., Jiménez-Valverde, A. & Hortal, J. (2010) The uncertain nature of absences and their 
importance in species distribution modelling. Ecography, 33, 103–114. 

Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2007) AUC: a misleading measure of the performance of 
predictive distribution models. Global Ecology and Biogeography, 17, 145–151. 

Magri, D., Vendramin, G.G., Comps, B., Dupanloup, I., Geburek, T., Gomory, D., Latalowa, M., Litt, T., 
Paule, L., Roure, J.M., Tantau, I., van der Knaap, W.O., Petit, R.J. & de Beaulieu, J.-L. (2006) A 
new scenario for the Quaternary history of European beech populations: palaeobotanical 
evidence and genetic consequences. New Phytologist, 171, 199–221. 

Mainali, K.P., Warren, D.L., Dhileepan, K., McConnachie, A., Strathie, L., Hassan, G., Karki, D., 
Shrestha, B.B. & Parmesan, C. (2015) Projecting future expansion of invasive species: 
comparing and improving methodologies for species distribution modeling. Global Change 
Biology, 21, 4464–4480. 

Marcia Barbosa, M. A., Real, R., Muñoz, A.-R. & Brown, J.A. (2013) New measures for assessing model 
equilibrium and prediction mismatch in species distribution models. Diversity and 
Distributions, 19, 1333–1338. 

Mauri, A., Strona, G. & San-Miguel-Ayanz, J. (2017) EU-Forest, a high-resolution tree occurrence 
dataset for Europe. Scientific Data, 4. 

Meynard, C.N., Gay, P.-E., Lecoq, M., Foucart, A., Piou, C. & Chapuis, M.-P. (2017) Climate-driven 
geographic distribution of the desert locust during recession periods: Subspecies’ niche 



136 
 
 

differentiation and relative risks under scenarios of climate change. Global Change Biology, 
23, 4739–4749. 

Naimi, B., Na, H. Groen, T.A., Skidmore, A.K. & Toxopeus, A.G. (2014). Where is positional uncertainty 
a problem for species distribution modelling. Ecography, 37, 191-203. doi:10.1111/j.1600-
0587.2013.00205.x 

Pebesma, E.J. & Bivand, R. (2005). Classes and methods for spatial data in R. R News 5 (2), 
https://cran.r-project.org/doc/Rnews/. 

Palma, R.E., Gutiérrez-Tapia, P., González, J.F., Boric-Bargetto, D. & Torres-Pérez, F. (2017) 
Mountaintops phylogeography: A case study using small mammals from the Andes and the 
coast of central Chile. PLOS ONE, 12, e0180231. 

Pearman, P.B., D’Amen, M., Graham, C.H., Thuiller, W. & Zimmermann, N.E. (2010) Within-taxon 
niche structure: niche conservatism, divergence and predicted effects of climate change. 
Ecography, 33, 990–1003. 

Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Townsend Peterson, A. (2007) Predicting species 
distributions from small numbers of occurrence records: a test case using cryptic geckos in 
Madagascar: Predicting species distributions with low sample sizes. Journal of Biogeography, 
34, 102–117. 

Peterson, M.L., Doak, D.F. & Morris, W.F. (2018) Incorporating local adaptation into forecasts of 
species’ distribution and abundance under climate change. Global Change Biology, 25, 775–
793. 

Poli, P., Lenoir, J., Plantard, O., Ehrmann, S., Røed, K.H., Leinaas, H.P., Panning, M. & Guiller, A. (2020) 
Strong genetic structure among populations of the tick Ixodes ricinus across its range. Ticks 
and Tick-borne Diseases, 11, 101509. 

Schulte, U., Hochkirch, A., Lötters, S., Rödder, D., Schweiger, S., Weimann, T. & Veith, M. (2012) 
Cryptic niche conservatism among evolutionary lineages of an invasive lizard: Intraspecific 
niche conservatism. Global Ecology and Biogeography, 21, 198–211. 

Shabani, F., Kumar, L. & Ahmadi, M. (2018) Assessing Accuracy Methods of Species Distribution 
Models: AUC, Specificity, Sensitivity and the True Skill Statistic. 13. 

Simon Garnier (2018). viridis: Default Color Maps from 'matplotlib'. R package version 0.5.1. 
https://CRAN.R-project.org/package=viridis 

Smith, A.B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H.-H. & Warren, D. (2018) Niche Estimation 
Above and Below the Species Level. Trends in Ecology & Evolution, 34, 260–273. 

Svenning, J.-C., Normand, S. & Kageyama, M. (2008) Glacial refugia of temperate trees in Europe: 
insights from species distribution modelling. Journal of Ecology, 96, 1117–1127. 

Thuiller, W., Albert, C., Araújo, M.B., Berry, P.M., Cabeza, M., Guisan, A., …, Zimmermann, N.E. (2008) 
Predicting global change impacts on plant species’ distributions: Future challenges. 
Perspectives in Plant Ecology, Evolution and Systematics, 9, 137–152. 

Thuiller, W., Georges, D., Engler,R. & Breiner, F. (2020). biomod2: Ensemble Platform for Species 
Distribution Modeling. R package version 3.4.12. 

Václavík, T. & Meentemeyer, R.K. (2012) Equilibrium or not? Modelling potential distribution of 
invasive species in different stages of invasion: Equilibrium and invasive species distribution 
models. Diversity and Distributions, 18, 73–83. 

Vale, C.G., Tarroso, P. & Brito, J.C. (2014) Predicting species distribution at range margins: testing the 
effects of study area extent, resolution and threshold selection in the Sahara-Sahel transition 
zone. Diversity and Distributions, 20, 20–33. 

Wasof, S., Lenoir, J., Gallet-Moron, E., Jamoneau, A., Brunet, J., Cousins, S.A.O., De Frenne, P., 
Diekmann, M., Hermy, M., Kolb, A., Liira, J., Verheyen, K., Wulf, M. & Decocq, G. (2013) 
Ecological niche shifts of understorey plants along a latitudinal gradient of temperate forests 
in north-western Europe: Species’ realized-niche shifts across latitude. Global Ecology and 
Biogeography, 22, 1130–1140. 



137 
 
 

Zimmermann, N.E., Edwards, T.C., Graham, C.H., Pearman, P.B. & Svenning, J.-C. (2010) New trends 
in species distribution modelling. Ecography, 33, 985–989. 

 

  



138 
 
 

Chapitre 5 General Discussion 

 

In this thesis I explored some of the advantages of coupling SDMs and genetic information at 

intraspecific level. Among the four model species originally meant to develop the research, it was 

possible to accomplish all of the thesis objectives with three of them: Ixodes ricinus, Geum urbanum 

and Fagus sylvatica. Oxalis acetosella was the only one for which phylogeographic or population 

genetics analyses could not be carried. The main reason for incorporating both O. acetosella and Geum 

urbanum on the thesis was their contrasting level of specialization (specialist vs. generalist), mode of 

reproduction (mix of cross-fertilisation and self-fertilisation vs. preferably self-fertiliser), and mode of 

dispersion (autochory vs. adhesive dispersion). Those different life-strategies have the potential to 

generate different patterns of genetic structure (Vandepitte et al. 2007, Schmidt et al. 2009, Aoki et 

al. 2019), and could have allowed for a deeper investigation of the benefits and limitations of the 

intersections between SDMs and population genetics. I was able nonetheless to compare the other 

answer the main questions of this thesis.  

 By analysing dynamics of gene flow, genetic variability, and spatial structuring of populations 

at different temporal and spatial scales, phylogeography and population genetics -  in a broad 

definition - helps to examine how historical process and microevolutionary processes as natural 

selection, genetic drift and migration, shape genetic variation through time and space in order to 

postulate hypothesis about the evolution of a given species. By correlating one species distribution 

and environmental variables, SDMs allows to project the species’ niche into the geographic space. In 

this thesis, I showed that SDMs can be applied to test hypothesis from population genetics, and that 

genetic units clustering and phylogeographic analysis may help improve SDM projections (Figure 5.1).  
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Figure 5.1. Schematic organisation of the contributions of coupling the information about the spatial genetic 

variability of a species and SDMs to understand its evolutionary history, as developed in this thesis. Population 

genetics and phylogeography helps to design hypothesis concerning the evolution of species, while SDMs may 

be applied to test those hypotheses. Conversely, the distribution of the genetic variation within a species may 

improve the niche projections over space and time.  

 

Contributions of species distribution models to understand the evolutionary 

history of species 

Species distribution models (SDMs) have great potential to improve our understanding of some of the 

mechanisms behind the observed patterns of genetic structure among populations. Considering Ixodes 

ricinus and Geum urbanum, it provided support to the hypothesis that post-glacial expansion dynamics 

are a main driving force that shaped current population genetic structure. As summarised in chapter 3 

for two of our studied species, SDMs allowed: (i) the identification of particular loci (or alleles) under 

bioclimatic selection and potentially responding to changes in habitat quality since the last glacial 

maximum (LGM); (ii) the confirmation of a within group differentiation; and (iii) the discussion of 

hypotheses underlying the evolution of those species. 
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Applying SDMs to test hypotheses of gene flow 

Regarding G. urbanum, albeit an isolation by distance (IBD) pattern was detected throughout 

the whole study area of Europe, the IBD pattern was neither observed in the Northern cluster nor in 

the Southern genetic cluster. My first hypothesis was that the separation of a Northern and a Southern 

cluster as a result of range expansion after the LGM was responsible for the contrast of a continental 

IBD pattern and absence of the same pattern within clusters. This hypothesis would roughly 

correspond to one of the assumptions that Slatkin (1993) advanced to explain a similar case of spatial 

genetic differentiation at global versus regional scales where the global IBD pattern was simply the 

result of recent colonisation by one of two genetic groups he investigated. The genetic data analysed 

in chapter 1 alone did not allow to test this hypothesis, but applying the regression analysed of genetic 

differentiation as a function of changes in habitat suitability helped a lot. When the species’ genetic 

structure was tested against changes in habitat suitability according to contemporary and LGM 

projections, it became clear that range expansion alone cannot explain the observed (lack of) IBD, and 

that other factors are in play.  Previous landscape genetics studies focusing on G. urbanum did not find 

any IBD pattern between populations across relatively restricted (regional) geographical extents 

(Vandepitte et al. 2007, Schmidt et al. 2009), suggesting an important degree of isolation between 

populations, especially when those results are compared with the high levels of inbreeding measured 

by FIS across all those studies. The species mode of fertilisation could explain those results since gene 

exchange is mainly occurring from dispersed seeds. In this respect, the IBD pattern observed at the 

continental scale of Europe could be a remnant imprint of an older range expansion dynamic. As 

highlighted in the introduction of this thesis, our research team (EDYSAN, UMR CNRS 7058) is 

conducting, within the framework of the Woodnet BiodivERsA and the FORHAIE projects, a landscape 

genetic study comparing the influence of different land uses between contrasting landscape windows 

in France (Figure 5.2) to test if it affects the genetic structure of different taxa, including G. urbanum. 

Although covering a regional extent, the preliminary results from those projects seem to agree with 
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the idea that populations are structured by past gene flow. Bayesian coalescent-based methods (Beerli 

and Felsenstein 2001, Wilson & Rannala 2003) performed to unravel historical from contemporary 

effects of gene flows on genetic structure of populations suggests that G. urbanum responds to habitat 

fragmentation with a delay of several generations (Figure 5.3a, adapted from Guiller et al., 

unpublished). The clustering analysis using the Bayesian method implemented in STRUCTURE also shows 

that even populations from two landscape windows close to each other (around 27 km) still exhibit 

strong isolation (Figure 5.3b). Hence, considering those previous studies and the results of the coupled 

analyse of SDM and the genetic structure of the species presented in chapter 3, the continental IBD 

pattern found in chapter 2 could correspond to a genetic imprint of a ‘historical’ meta-population 

dynamics. In this sense, IBD is not only a matter of the geographical extent being covered (Slatkin 1993) 

but also a matter of time.  
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Figure 5.2. Arial photograph of the intensively managed openfield landscape window (OT) (a) and the low 

managed bocage landscape window (BT) (b) investigated in the Woodnet and FORHAIE projects, showing the 

studied forest patches (dark green) located in North of France (orange dot).  
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Figure 5.3. Genetic analyses of Geum urbanum occurring across two contrasting landscape windows (OT: 

Openfield Thiérache; BT: Bocage Thiérache) of 25 km2 each in the Thièrache region (Picardy, Hauts-de-France) 

(source: Woodnet and FORHAIE projects) (modified from Guiller, et al., unpublished). In (a) is shown the 

comparison of historical (dark grey) vs contemporary (light grey) gene flow as estimated in Migrate v4 (Beerli & 

Falsenstein, 2001) and BAYESASS 1·3 (Wilson & Rannala, 2003) (** p = 0.0037). In (b) the individual assignment 

probabilities to one of the two clusters identified in STRUCTURE (Pritchard et al., 2000). The two clusters in (b) 

coincides with populations (fragments) from each of the two landscape windows.  

 

Perspectives for integrating population genetics into species distribution 

models 

The scientific literature focusing on the interface between population genetics and niche modelling 

suggests that modelling independently genetically differentiated populations (or lineages) could 

provide more reliable predictions of the species response as a whole (Pearman et al. 2010, Peterson 

et al. 2018, Smith et al. 2018, Boyer et al. 2020). As discussed in chapter 4, this general hypothesis may 

not be true in all cases. Nonetheless, incorporating a species genetic structure into SDMs gives 

important information about niche differentiation among different lineages belonging to the same 

species (Palma et al. 2017) and thus about the species niche conservatism hypothesis (Gutiérrez-

Rodríguez et al. 2017, Meynard et al. 2017).  

(a) (b) 
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Collart et al. (2020) pointed out that splitting the occurrence data at the infra-species level and 

calibrating separated SDMs is not advisable unless there is solid evidence of niche divergence between 

intraspecific groups. Niche divergence is frequently only evaluated by comparing the response curves 

to climatic variables within each group. However, if presence-absence data or presence-only data for 

two lineages are geographically separated, there is no doubt that the response curves (the modelled 

niche) of those individualized lineages will be different. To the best of my knowledge, all the published 

studies that applied the ‘lineage-modelling’ approach dealt with geographically separated units. Yet, 

the geographic isolation of populations and lineages may be the result of barriers to gene flow and 

genetic drift, and not necessarily the result of changes in the potential niche due to local adaptation. 

In other words, differences in the response curves of intraspecific genetic units (lineages, genetic 

clusters or populations) may not represent the fundamental niche of those groups. One way of 

assessing niche divergence as a consequence of the species evolution is to investigate the differences 

in allele frequencies of genes correlated to climatic variables between the infra-species genetic groups 

(lineages or genetic clusters). Significant differences in allele frequencies of those genes would be a 

strong argument of niche differentiation as a consequence of divergent evolution between those 

groups and not a geographic coincidence or a demographic effect. 

True niche differentiation seems to be the case for I. ricinus. All the loci identified as being 

under potential bioclimatic selection by three complementary methods also responded significantly to 

habitat suitability changes since the LGM. In this sense, it was possible to identify that at least some of 

those loci participate on important physiological and cytological functions. At least one SNP loci seems 

to be under strong selection (X234508), as it was identified by all applied methods and was correlated 

to two important bioclimatic variables (mean annual temperature and mean diurnal temperature 

range). The Bayes factor for the correlation between allele frequencies across and changes in habitat 

suitability between from the LGM to the period 1970-2000 was also the strongest among those 

correlations. After the Blast query, this SNP was target as part of the coding region of a G-protein-
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coupled kinase 1. The family of transmembrane G-protein-coupled receptor mediate cellular response 

to various stimuli. Among others, they respond to changes in light and presence of odorants and 

hormones (Bockaert 1999, Gurevich & Gurevich 2019). Although I could not find any article on the role 

of this receptor in Ixodes species (nor on Acarians in general), it is possible that the protein is engaged 

in similar roles. In any case, the strong selection signal could represent a gain in fitness linked to one 

allele in populations from one of the two clusters, or at least a strong imprint of the species evolution 

in Europe. Another interesting case was the loci X313057, whose allele frequencies were varied 

significantly with the near present habitat suitability. The locus is associated with the production of 

mRNA for the putative nuclease HARBI1. In ants, this protein under expressed in conditions of cold 

stress (Tonione et al. 2020), and it is thus possible that it have the same role in Ixodes species. It is 

important to note though that this locus was not identified as under selection by any of the applied 

methods, and this significant response could be a false positive. Since the genome of I. ricinus is not 

entirely known, it was not possible to identify the physiological role of all the loci supposedly under 

selection. According to those results, it is likely that niche differences between populations of I. ricinus, 

as measured by SDM, are the result of directional selection. Coupling SDMs and analysis of the 

distribution of allele frequencies in loci under selection could be an important tool to identify truly 

niche divergence.  

Modelling invasive species and range expansion 

Modelling the distribution of invasive alien species is a typical case for which the equilibrium 

assumption of SDMs is violated, notably in the early stages of the invasion (Zimmermann et al. 2010). 

The equilibrium assumption violation could lead to an underestimation of the potential range of the 

invading species (Václavík & Meentemeyer 2012) or, in other words, a reduction in the number of 

commission errors at the expense or omission errors. It is intuitive to suppose that the increase in the 

number of omission errors could be more pronounced at the edge of the environmental space 

potentially available for the species. In this case, informing SDMs of the genetic structure of the target 
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invasive alien species could reduce omission errors and lead to more accurate and reliable predictions 

of the invasion risk, which is especially relevant for early detection. An interesting case study would be 

G. urbanum.  It would be clarifying to study niche divergence between the native and the invaded 

range of the species. Population genetics and phylogeographic analysis can help identify the origin of 

invasive populations in the native range, while SDMs coupled with the genetic analyses can help 

identify niche divergence between native and invasive “entities”. Bringing together those two methods 

could allow to better understand how the species range expansion (in the invaded range) are 

influencing the genetic differentiation of the two groups (native vs. invasive) and eventually justify 

modelling independently the future distribution of those entities.  

Another case where the equilibrium assumption is violated is when species are shifting their 

range to track the isotherms that are also shifting due to climate change. As demonstrated by Garnier 

and Lewis (2016), this disequilibrium dynamic will be amplified the faster the climate is changing, 

because species might be unable to keep track of the high-speed pace at which isotherms are moving. 

This mismatch is likely to be, even more problematic when the expansion dynamic at the leading edge 

is accompanied by a concomitant contraction dynamic at the trailing edge. According to (Alkishe et al. 

2017), this is exactly the case for I. ricinus, for which the spatial extent of suitable habitat is expected 

to increase at the northern range limit of the species distribution while it is expected to reduce at the 

southern range limit. In this scenario and considering the literature on species range expansion (Slatkin 

1996, Excoffier & Ray 2008, Excoffier et al. 2009, Neve et al. 2009, Garnier & Lewis 2016), it is expected 

that rare alleles, a new combination of alleles, and new mutations become fixed in the populations 

located at the leading edge, possibly leading to a more pronounced niche divergence between 

populations simple due to demographic dynamics. In this case, genetically-based SDMs could better 

predict the species’ future potential distribution. This could be one of the reasons why the genetically 

informed SDMs of I. ricinus showed a better performance than those of F. sylvatica in the calibration 

period. Since the mean response to the bioclimatic variables is truly different between the two I. ricinus 
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genetic clusters, modelling each cluster individually can bring into light the finer response of each 

cluster. The assembled model than reflects the individual bioclimatic niche of each of those genetic 

units.  

General limits 

One important limitation of many of the analyses in chapters 3 and 4 are related to the model 

calibration itself. The pipeline analysis described in chapter 3 was mainly based on the differences in 

habitat suitability between two geological times. Projecting the focal species distributions in time is, 

therefore, a precondition to this approach. In this case, the main limitation is that some important 

variables defining a species niche may not be available for both periods. Since the performance of SDM 

is dependent on the choice of the proper predictor variables (Araújo et al. 2019), the lack of adequate 

data could negatively impact the model projections, leading to unrealistic probabilities of occurrence. 

The magnitude of this negative impact is proportional to the importance of the missing variable to the 

species niche, and so will be the reliability of the comparisons between projected habitat suitability 

and population genetics metrics. 

Another relevant limitation of the results presented in this thesis concerns the distribution of 

occurrences and their assignment to one particular genetic unit. As previously mentioned, splitting 

occurrences into infra-specific genetic groups leads to a smaller dataset compared to the species level 

(Stockwell and Peterson 2002, Collart et al. 2020), potentially leading to model overfitting (Breiner et 

al. 2015) and loss in model accuracy (Wisz et al. 2008). In chapter 4, I have circumvented this issue by 

assigning presences from public databases to one of the analysed genetic groups by geographic 

proximity. This method is only possible in cases where the focal species has a geographically explicit 

genetic structure. This issue becomes more relevant when applying the pipeline presented in chapter 

3 since all the analyses were based on allele frequencies across populations, which are not available in 

public databases. Recently, Breiner et al. (2015, 2018) developed a set of techniques called Ensembles 

of Small Models (ESMs) to address the issue of small datasets, but the performance of those 
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techniques, when employed in infra-specific genetic groups, was put into question by the results of 

Collart et al. (2020).  Of course, the best way to truly address the problem of small datasets in 

intraspecific genetically informed SDMs is to augment the number of sampled populations in the study 

range, but then the cost of genetic analysis becomes another relevant issue. In this sense, sampling 

should be carefully planned, specifically to test the hypothesis that can be addressed by coupling 

SDMs, population genetics, and phylogeography such as (but not limited to) niche differentiation 

between lineages, evolution consequences of range expansion, and intraspecific responses to climate 

change. Sampling design should search for the best compromise between the number of samples per 

site and the total number of sampled locations. It is also important to sample the species range in as 

much regular grid as possible. The uniform distribution of samples would provide higher level of 

certitude of the geographical discontinuities between genetic entities (groups or lineages), possibly 

allowing higher confidence when assigning occurrences from public databases to one of those genetic 

units. 

 

Conclusion 

Habitat suitability models aim at projecting in the geographical space some of the dimensions of the 

ecological space (i.e. the niche) of a certain level of biological organisation (population, species, clades, 

communities, etc.). The results of my thesis do suggest that the research fields of SDMs and population 

genetics (and phylogeography) can benefit each other almost reciprocally, by helping to identify allele 

under bioclimatic selection and validate hypotheses of genetic differentiation as a result of climate 

changes (chapter 3), or by informing SDMs (chapter 4) with the species genetic structure so that it can, 

in some cases, help improve model performance and the identification of cryptic suitable habitat. 

Further investigation is nonetheless needed to determine exactly how and when to incorporate this 

genetic information into SDMs. There are two questions of utmost importance concerning the 

geographical distribution and the niche divergence of intraspecific groups. Most of the studies that 



149 
 
 

investigated the incorporation of the species genetic structure into SDMs dealt with somewhat 

geographically well separated genetic groups, including the species we analysed here. In this sense, 

species that show genetic population divergence in the same geographic extent could be good models 

to understand the limits of incorporating genetic information into SDMs. The question of niche 

divergence between genetic groups belonging to the same species should also be investigated more 

specifically, since an absence of niche divergence should preclude the use of lineage-based SDMs, 

simply because modelling individual intraspecific groups would represent a more complex model 

without any biological relevance. In this sense, I would advocate for deeper research about the 

concomitant application of the whole species SDM and the investigation of genetic variation between 

populations (or any other level of organisation) in candidate loci under pressure selection from the 

environmental variables used in model calibration. 
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Figures Index 

Figure 1.1. Two complementary hypothesised refugia (“R”) in Europe and post glaciation range shifts 

(arrows): (a) the classical (Hewitt, 1999) Mediterranean refugia versus (b) the northern refugia 

hypothesis. Modified from Schmitt & Varga (2012). ............................................................................ 13 

Figure 1.2. Schematic representation of the models from Garnier & Lewis (2016) of population 

differentiation in response to range shifts. Gradual changes in climate and consequent gradual 

expansion of the species’ range (a) would not have important impacts in the gene diversity across 

populations on the leading edge. When climate is changing with high speed in comparison to the 

spreading speed of the species (b), an erosion of the genetic diversity will be observed on the leading 

edge (red broken line) compared to populations in the core of the ancient distribution. This effect will 

be more intense when coupled with a reduction of the trailing edge. ................................................ 17 

Figure 1.3. Schematic representation of range disjunction as a consequence of climate warming. In the 

present climate conditions (a), the species has a continuous range. Climate warming makes lowland 

and central areas unsuitable to the species and the range shift in both latitude and altitude causes a 

disjunction on the species range (b), possibly leading to the isolation of certain populations. Extracted 

from Kuhn et al. (2016). ........................................................................................................................ 18 

Figure 1.4. The distribution range of Geum urbanum including its native Eurasian range (green) and the 

invaded zones in North America and East Asia (red). Adapted from Plants of the World online, Royal 

Botanic Garden, UK (http://www.plantsoftheworldonline.org/about). ............................................... 24 

Figure 1.5. The distribution range of Oxalis acetosella in its native range (Eurasia). Adapted from Plants 

of the World online, Royal Botanic Garden, UK (http://www.plantsoftheworldonline.org/about). .... 25 

Figure 1.6. The distribution range of Fagus sylvatica spp sylvatica (yellow zones) and Fagus sylvatica 

spp orientalis (dark green zones). The light green dots represent isolated populations of F. sylvatica 

and blue triangles populations introduced and naturalised according to Euforgen 

(http://www.euforgen.org/species/fagus-sylvatica/ - Caudullo et al., 2017). ..................................... 27 

Figure 1.7. The distribution of the nine lineages of Fagus sylvatica based on isozymes. Modified from 

Figure 6 of Magri et al. (2006). .............................................................................................................. 27 

Figure 1.8. The distribution range of Ixodes ricinus in its native range (Eurasia). Adapted from the 

European Centre for Disease Prevention and Control – ECDC (January 2020). .................................... 28 

Figure 1.9. Schematic representation of the thesis. In the second chapter, I will present the genetics 

analyses for Oxalis acetosella, Ixodes ricinus, and Geum urbanum. In the third chapter, I will apply 

species distribution models (SDMs) to better understand the observed genetic structure of the model 

species. In the fourth chapter, I will investigate the gain in SDMs’ performances by the inclusion of 

genetic information. In this fourth chapter, I will compare genetically-informed SDMs against 

traditional (whole-species) SDMs for I. ricinus and Fagus sylvatica. Source of photos: I. ricinus: 

https://alchetron.com/Ixodes-ricinus; G. urbanum: https://en.wikipedia.org/wiki/Geum_urbanum; O. 

acetosella and F. sylvatica: personal collection from Dr. Jonathan Lenoir. .......................................... 31 

Figure 2.1. Sampling locations for Oxalis acetosella from 2017 (green triangles) and 2018 (black dots). 

Only IDs of the 2018’s samples are shown. Differences in size of dots represent differences in the 
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number of individuals sampled per site during the 2018 campaign (5-22). The light brown colour in the 

background represents the species distribution range across the study region (Kwescience, Plants of 

the World online, 2020 - http://www.plantsoftheworldonline.org/ ). ................................................. 37 

Figure 2.2. Genetic variation explored in Oxalis acetosella. Migration of the ten microsatellite loci 

characterized by Weising and Gardner (1990). In (a) the ten loci were migrated in Agarose gel. In (b) 

detail of the locus CCMP-4 in Acrylamide gel (left) and Agarose gel (right). The CCPM-4 locus showed 

no variation when PCR products migrated in Acrylamide gel but seemed to have at least two alleles 

when PCR products migrated in Agarose gel. Each well was loaded with the PCR product for one 

individual from North Germany, Finland, North and South France, Czech Republic, West Romania, and 

South Sweden. ....................................................................................................................................... 39 

Figure 2.3. Allele call for the first run of 96 SNP loci for 95 samples of O. acetosella and one negative 

control (black dots). For a particular locus, samples may be homozygote for one allele (red or green 

dots) or heterozygote (blue dots). Most of the loci showed no variation across samples, with very few 

loci exhibiting one to three of the rare alleles. ..................................................................................... 43 

Figure 2.4. Allele call for the second run of 96 SNP loci for 95 samples of O. acetosella and one negative 

control (black dots). For a particular locus, samples may be homozygote for one allele (red or green 

dots) or heterozygote (blue dots). Almost no loci were amplified, and the few loci that seem to have 

been amplified are most probably artefacts and it seems that they are homozygote for the same allele 

in all samples. ........................................................................................................................................ 44 

Figure 2.5. Sampling locations and IDs for Geum. urbanum. Differences in size of the points represents 

differences in the number of individuals per site (5-17). In green, the distribution range of the species, 

that cover all of the study area (Kwescience, Plants of the World online, 2020 - 

http://www.plantsoftheworldonline.org/). .......................................................................................... 46 

Figure 2.6. Probabilities ln P(X|K) (points) and delta K (crosses, Evanno et al., 2005) for each value of 

K. ............................................................................................................................................................ 49 

Figure 2.7. Probabilities of assignment to each of the two genetic clusters (K = 2) inferred from 

STRUCTURE for Geum urbanum in European populations. (a) Individual probabilities of assignment. (b) 

Geographic distribution. The pie charts in (b) in each population represents the overall probabilities 

for that population to be assigned to one of the two clusters (light green: northern cluster; light orange: 
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Figure 2.8. Genetic structure of Geum urbanum populations: population probabilities of assignment 

for each value of K from 3 (upper graphic) to 8 (lower graphic). Until K = 5, there is a general 

differentiation between the Northern populations (all populations on the left of LVA_1) and Southern 

populations (on the right of LVA_1). This pattern becomes less clear with K values of 6 or greater. For 

all values of K, populations from Czech Republic seem to form a somewhat concise group (with the 

exception of CZE_9), as do populations from Scandinavia, United Kingdom and Ireland. As the value of 

K becomes more important, the genetic similarity between the two Alpine populations (ITA_1 and 
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Résumé détaillé en Français 

Introduction 

Le climat est l'une des forces les plus importantes qui déterminent la répartition des espèces. Alors 

que la Terre a subi de nombreux cycles de réchauffement et de refroidissement, certaines espèces se 

sont éteintes, tandis que d'autres ont connu des cycles similaires d'expansion et de contraction de leur 

aire de répartition. Les changements d'aires de répartition passés ont eu des conséquences 

importantes sur l'évolution des espèces, en Europe notamment. Ainsi, la littérature scientifique 

rapporte de nombreux exemples de structure génétique et phylogéographique des populations 

actuelles fortement influencées par la dynamique post-pléistocène.  

Selon le GIEC (Groupe d'experts intergouvernemental sur l'évolution du climat), la 

température moyenne à la surface du globe a augmenté d'environ 0,72°C au cours du XXe siècle, et 

cette progression devrait se poursuivre dans le XXIème siècle avec des valeurs moyennes attendues 

oscillant entre 1,0°C et 3,7°C selon les scénarii du RCP (Representative Concentration Pathway ou 

scénarios de trajectoire du forçage radiative). Cette hausse de température s'accompagnera de 

variations d'autres variables climatiques (telles que les précipitations annuelles moyennes) et de la 

perte d'habitats terrestres par l'élévation du niveau de la mer. Ces dérèglements climatiques dans une 

si petite fenêtre temporelle conduiront à la redistribution des espèces capables de « suivre » (c'est-à-

dire migrer) de tels changements. Selon la tolérance de l'espèce aux conditions changeantes de 

l’environnement, elle devra se déplacer, s'adapter localement ou s’éteindre inexorablement. 

Les différents scénarii de changement d'aire de répartition peuvent avoir un impact sur 

l'évolution des espèces. L'expansion de l'aire de répartition d'une espèce est bien connue pour 

modifier les fréquences des gènes dans les populations en limite d’expansion. La croissance rapide 

observée dans de telles populations peut avoir pour conséquence l’augmentation de la fréquence 

d’allèle « rares » et la fixation de nouvelles combinaisons d'allèles ou de nouvelles mutations. 
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Les modèles de répartition des espèces (MDS) sont largement utilisés en écologie, en 

biogéographie et en biologie de la conservation. L'approche générale consiste à calibrer un modèle 

avec les variables climatiques contemporaines censées capturer la niche des espèces et projeter leur 

distribution dans le temps et/ou l'espace. La comparaison des distributions projetées à différentes 

époques peut ainsi nous renseigner sur la façon dont l'aire de répartition d'une espèce s'est déplacée 

dans le passé ou se déplacera dans le futur. Même si l'adaptation locale aux conditions climatiques a 

déjà été montrée pour de nombreux organismes, on peut encore débattre de la manière dont 

l'adaptation locale peut influer sur les performances des MDS. Théoriquement, si des groupes 

génétiques distincts réagissent différemment aux mêmes variables climatiques, la modélisation 

indépendante de ces unités génétiques peut fournir des prévisions plus fiables que celles fournies par 

l’entité « espèce » seulement. Dans ce contexte, certaines études récentes incorporant la variation 

génétique intraspécifique dans les MDS ont pu estimer le rôle de cette information dans la 

performance des modèles. Au vu des résultats, conclusions, et perspectives contrastés obtenus après 

intégration de la composante génétique dans les MDS, il est clair que des recherches supplémentaires 

sont nécessaires. C'est l'un des principaux objectifs de ce travail de thèse.   

Les modèles biologiques étudiés 

Quatre espèces modèles ont été étudiées : les deux plantes forestières Geum urbanum (benoîte 

commune) et Oxalis acetosella (oseille des bois) ; l'arbre Fagus sylvatica (hêtre européen) ; et la tique 

Ixodes ricinus (tique du mouton). Il s'agit d'espèces forestières largement répandues en Europe, mais 

présentant des niveaux de spécialisation écologique, des capacités de dispersion et des stratégies de 

reproduction différents. 
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Objectifs 

L'objectif principal de cette thèse est d'étudier certaines des intersections entre les MDS et la 

génétique des populations dans un contexte de changement climatique. A partir de cet objectif 

principal, trois autres ont été établis : 

I. Déterminer la structure des populations et la phylogéographie des espèces dont la structure 

phylogéographique est inconnue à l'échelle européenne, soit pour trois des espèces modèles 

: Oxalis acetosella, Geum urbanum, et Ixodes ricinus ; 

II. Étudier par quels moyens les MDS peuvent aider à comprendre la structure génétique actuelle 

des espèces modèles ; et, 

III. Étudier l'efficacité de l'intégration de l'information génétique pour améliorer les MDS. 

Étant donné que les espèces modèles retenues dans ce travail ne disposaient pas du même niveau 

d'information génétique, le point de départ de l'analyse a varié selon chaque espèce. Pour Oxalis 

acetosella, la première étape a consisté à identifier des marqueurs génétiques candidats nécessaires à 

l’analyse de la structure génétique des populations.  Présents chez Geum urbanum et Ixodes ricinus, 

les premières étapes du travail pour ces deux espèces ont porté directement sur la structure de leurs 

populations. Quant à Fagus sylvatica, la connaissance préalable de sa structure phylogéographique 

(Magri et al., 2006) m’a permis d’utiliser directement la répartition géographique des lignées pour 

valider l'incorporation d'informations génétiques intraspécifiques dans les MDS. 

Recherche de marqueurs génétiques variables pour Oxalis acetosella 

Les échantillons de l’oseille des analysés ont été prélevés de manière à couvrir l’aire de répartition de 

l'espèce en Europe. L'échantillonnage a eu lieu au cours deux années consécutives, en 2017 et 2018. 

Après avoir réceptionné les échantillons, toutes les feuilles individuelles ont été vérifiées avant d'être 

stockées. En 2018, 348 individus ont ainsi été échantillonnés dans 30 populations différentes (de 5 à 

22 individus par population, moyenne = 11,6). 
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Pour mener à bien cette analyse génétique, j’ai dans un premier temps recherché dans la 

littérature des loci variables d'espèces apparentées. Deux séries de loci microsatellites ont été testées 

(Weising & Gardner, 1990 ; Tsyusko, 2004), mais malheureusement un seul locus était polymorphe. 

Dans un second temps, j'ai étudié la variabilité d'une séquence nucléaire et d'une séquence 

chloroplastique parmi les mêmes populations décrites dans la section précédente : la région ITS 

(internal transcribed spacer) de la séquence nucléaire du gène de l'ARN ribosomal et la séquence 

chloroplastique non codante petA-psbJ. Les résultats issus de cette analyse de séquences ont été à 

nouveau décourageants. Aucune variation n'a effectivement été observée au locus ITS. De la même 

façon, a l'exception d'un échantillon du sud-ouest de la France, aucune variation n'a été enregistrée 

au locus petA-psbJ. 

Compte tenu de l’absence de marqueurs disponibles et variables chez O. acetosella, j'ai intégré 

le projet ASSETS - '2nd phase of BASC flagship' to identify SNP bi-allelic loci – dont le bout est 

d’identifier des marqueur SNP dans différentes espèces. Pour la préparation de la bibliothèque pour 

le RAD-seq, 10 échantillons provenant de différentes populations de la campagne 2017 ont été poolés. 

Ce pool  a ensuite été digéré avec l'enzyme de restriction PstI. Le séquençage a été réalisé par SBS 

(Sequencing By Synthesis), méthode qui consiste en l'incorporation séquentielle et la détection de 

nucléotides. Toutes les étapes du séquençage ont été réalisées sur le séquenceur NovaSeq 6000. Une 

étape bioinformatique préliminaire a été réalisée, consistant à filtrer les « lectures » (reads) de faible 

qualité. À l'issue de cette étape, plus de 14 000 000 lectures d'O. acetosella ont été conservées pour 

une analyse plus approfondie. L'assemblage de novo a été effectué dans STACKS et les SNP candidats 

ont été filtrés selon le script bash/Python de Delord et al. (2017), ce qui a permis de sélectionner 1224 

séquences bi-alléliques. Toutes les séquences dont le polymorphisme était situé à moins de 52 bases 

des extrémités ont été exclues de l'analyse. Après un BLAST permettant d’estimer le pourcentage 

similitudes entre les séquences candidats et la bibliothèque de la GenBank, toute les séquences dont 

la couverture de recherche était de 100 % ont également été exclues. Sur les 524 séquences restantes, 
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192 ont été sélectionnées au hasard pour être validées. Ces 192 SNPs ont permis de génotyper les 

individus des populations échantillonnés en 2018. Contre toute attente, les résultats ont là encore été 

très décevants. En effet, la plupart des loci n'ont montré aucune variation ou n'ont même pas pu être 

amplifiés. Malgré tout, ces SNP sont actuellement en cours de validation sur la base d’un petit nombre 

d’individus sélectionnés pour leur meilleure qualité d’ADN ; ces résultats ne sont pour l’heure pas 

encore disponibles. 

Structure génétique des populations du Geum urbanum 

Échantillonnage 

Les échantillons analysés ont été recueillis en 2018 sur l’ensemble de l’aire de répartition de l'espèce 

en Europe. Tous les individus échantillonnés ont été prélevés à au moins cinq mètres les uns des autres. 

Tous les lieux échantillonnés ont été géoréférencés à l'aide d'un GPS. Les feuilles de chaque échantillon 

ont été stockées dans des enveloppes en papier individuelles (une enveloppe pour chaque groupe de 

feuilles d'un individu) et séchées à l'air libre. 

Génotypage des microsatellites 

Six loci microsatellites ont été génotypés en deux multiplex, avec des colorants fluorescents ajoutés à 

l'amorce avant : (i) WGU2-28 (HEX), WGU6-5 (FAM), et WGU6-7 (NED) ; (ii) WGU2-10 (FAM), WGU2-

48 (HEX), et WGU6-1 (NED) (Arens et al., 2004). Le génotypage des microsatellites a été effectuée de 

manière semi-automatisée à l'aide de GENEMAPPER v4.0. Tous les échantillons présentant des tailles 

de pic ambiguës ou sans amplification pour au moins un loci ont été exclus des analyses. Le jeu de 

données final était composé de 302 échantillons issus de 27 populations Analyse de regroupement et 

différenciation de la population. 

Une analyse bayésienne a été effectuée avec le logiciel STRUCTURE, en utilisant le paramètre 

K (c'est-à-dire le nombre optimal de groupes génétiques) variant de 1 à 15. Pour chaque population, 
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le nombre d'allèles, la richesse allélique (Ar), l'hétérozygotie observée (Ho), la diversité génétique (He) 

et le coefficient de consanguinité (Fis) ont été estimés. L'isolement par distance (IBD) a été testé au 

niveau continental et à l'intérieur de chaque groupe génétique principal identifié par STRUCTURE par 

la corrélation entre les valeurs de FST et la distance génétique entre paires de population. Les patrons 

spatiaux de différenciation des populations ont également été caractérisés au moyen d’une analyse de 

la variation spatiale de l'hétérozygotie attendue, ainsi que par une analyse des coordonnées 

principales (PcoA) sur une matrice de distance génétique estimée par paire de populations (  

Résultats et discussion 

La méthode « delta K » d'Evanno et les probabilités ln P(X|K) suggèrent deux groupes génétiques 

distincts. Sur la base des probabilités d’assignation pour K = 2, les résultats de STRUCTURE montrent 

une plus grande proximité génétique entre populations issues de mêmes régions géographiques, 

notamment entre celles du groupe « Sud » - composé de la plupart des populations de la République 

tchèque, de l'Autriche, de l'Italie et du sud de la France ; et entre celles du groupe « Nord », composé 

de toutes les populations scandinaves, du Royaume-Uni et d’Irlande. Ce patron de différenciation 

générale entre les populations du Nord et du Sud a également été observé sur le premier plan principal 

de la PCoA. Les IBD ont été observés dans l'analyse globale de toutes les populations, mais aucun IBD 

n'a été obtenu au sein de chacun de ces groupes génétiques Nord vs Sud. 

Bien qu'étant une espèce généraliste avec une grande capacité de dispersion, G. urbanum 

présente une structure de populations marquée dans toute son aire de répartition européenne. En 

l’absence s de barrière géographique physique évidente entre les groupes Nord et Sud, la structure 

génétique continentale en deux groupes distincts pourrait s'expliquer par une expansion post-

pléistocène vers le nord. La théorie de la chasse aux fondateurs (« Founder-flush theory », Slatkin, 

1996) préconise qu'une population fondatrice en croissance rapide connaîtrait une sélection relâchée 
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en raison d'une pression écologique réduite, et donc que la dérive et la recombinaison génétiques 

pourraient fixer des allèles différents ou une nouvelle combinaison d'allèles de la population d'origine. 

Génétique des populations de la tique Ixodes ricinus 

Échantillonnage 

Au total, 28 populations de tiques de 20 pays différents ont été échantillonnées, couvrant la majeure 

partie de l'aire de répartition de l'espèce, y compris des populations proches de la limite nord 

(Norvège, Suède, Irlande et Angleterre) et sud (Iran, Espagne et Afrique du Nord) de l'aire de 

répartition de I. ricinus. 

Génotypage SNP et Contrôle de qualité 

J'ai génotypé 192 SNPs comme décrit par Quillery et al. (2014). Tous les échantillons ont été amplifiés 

par amplification du génome entier (WGA) avant le génotypage. Le génotypage a été effectué par un 

système Biomark HD (Fluidigm) et des tests KASPar. Tous les SNP invariants ont été supprimés. En 

outre, tous les individus et loci présentant plus de 20 % de sites non amplifiés (données manquantes) 

ont été éliminés de l’analse. Après contrôle de qualité, 125 loci SNP et 497 individus ont été conservés 

pour des analyses ultérieures. 

Structure génétique 

Deux méthodes complémentaires de clustering ont été utilisées pour caractériser la structure 

génétique des populations d'I. ricinus, en l’occurrence la méthode DAPC (Analyse Discriminante des 

Composantes Principales) et l’approche d’inférence bayésienne implémentée dans STRUCTURE. Dans 

ce cas, le paramètre K, c'est-à-dire le nombre optimal de clusters, variait de 1 à 10 selon les résultats 

issus de la DAPC. Les paramètres de l'analyse STRUCTURE étaient les mêmes que ceux décrits pour G. 

urbanum. 
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Résultats et Discussion 

L'analyse DAPC a identifié deux niveaux de structuration génétique, l’un suggérant l’existence de trois 

groupes génétiques différents, l'autre identifiant quatre groupes génétiques. La typologie en 4 clusters 

montre deux groupes se superposant, tandis que celle en 3 clusters montrent 3 groupes de génotypes 

multilocus bien distincts. Nous avons donc décidé de fixer le nombre de groupes à K = 3 avec l'approche 

DAPC. L'analyse bayésienne effectuée avec STRUCTURE a également identifié K = 3 groupes 

génétiquement homogènes dont les compositions sont très similaires aux trois groupes issus de 

l’approche DAPC. Dans les deux analyses, les populations nord-africaines et eurasiennes sont très 

différenciées. 

Les résultats convergents des analyses DAPC et STRUCTURE indiquent avec beaucoup de 

certitude que : (i) tous les échantillons d'Afrique du Nord appartiennent à la même espèce et ont la 

même ascendance ; (ii) aucun échantillon d'Eurasie ne partage d'ascendance avec ceux d'Afrique du 

Nord. Bien qu'étant un ectoparasite généraliste, nos résultats mettent en évidence des populations 

géographiquement distinctes et génétiquement structurées chez I. ricinus. Des recherches 

supplémentaires sur la préférence de l'hôte et la capacité de dispersion sont nécessaires pour mieux 

comprendre ces patrons génétiques. La différenciation des populations eurasiennes en deux groupes 

géographiquement distincts (Europe du Nord et Eurasie du Sud) pourrait avoir des implications 

importantes pour la redistribution d'I. ricinus en réponse au changement climatique anthropique. 

 

Vers une meilleure compréhension de la structure génétique des 
populations : contribution des modèles de distribution des espèces 

Projections actuelles et passées de I. ricinus 

La distribution potentielle d'I. ricinus a été calibrée dans des conditions bioclimatiques au cours de la 

période 1970-2000, en fonction de cinq variables bioclimatiques non colinéaires, à savoir : la 
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température moyenne annuelle ; l'amplitude thermique diurne moyenne ; l'isothermie ; la saisonnalité 

de la température ; et les précipitations annuelles moyennes. Toutes les variables bioclimatiques ont 

été téléchargées à partir de la base de données WorldClim 2 (Fick & Hijmans, 2017). Les données sur 

la présence de I. ricinus ont été extraites de Poli et al. (2020), GBIF, et VectorMap. 

Projections actuelles et passées de G. urbanum 

L'approche générale pour la modélisation de la distribution potentielle actuelle et passée de G. 

urbanum était la même que celle décrite pour I. ricinus, avec des différences dans les variables 

bioclimatiques conservées et la sélection des occurrences. Cinq variables bioclimatiques ont été 

maintenues : la température moyenne annuelle, la saisonnalité de la température, la saisonnalité des 

précipitations, les précipitations du trimestre le plus humide et les précipitations du trimestre le plus 

sec. 

Changements dans l'adéquation de l'habitat, les loci sous sélection et la structure 

génétique 

Pour chaque espèce, les valeurs d'adéquation de l'habitat pendant la période 1970-2000 (𝑃𝑆) et le LGM 

(𝐿𝐺𝑀𝑆) ont été extraites pour toutes les cellules de la grille où les populations des espèces focales se 

trouvaient dans le présent. De ces deux probabilités d'adéquation, il a été possible d'extraire les 

différences entre les deux périodes  ∆𝑆 = 𝑃𝑆 − 𝐿𝐺𝑀𝑆. Des valeurs positives de ∆𝑆 indiquent des 

conditions d'adéquation de l'habitat plus favorables depuis le LGM jusqu’à la période 1970-2000, 

tandis que des valeurs négatives signent un habitat moins favorable pendant la période contemporaine 

de 1970-2000 qu'il ne l'était au cours du LGM. 

J'ai testé l'influence de ∆𝑆 sur la structure génétique par un modèle de régression linéaire avec 

les probabilités d'assignation comme variable dépendante et ∆𝑆 comme variable indépendante. J'ai 

également identifié des loci sous sélection en utilisant une combinaison des méthodes - Bayenv, 

pcadapt et Bayescan. 
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Résultats et Discussion 

Pour les deux espèces étudiées (G. urbanum & I. ricinus), les performances du modèle ont été classées 

de bonnes à excellentes. Pour les deux espèces, les MDS ont montré un changement dans l'adéquation 

de l'habitat, passant d'une répartition sud-ouest pendant le LGM à une répartition centre-nord dans 

les conditions actuelles. 

Six loci identifiés comme étant potentiellement sélectionnés montrent des allèles variant de 

façon significative avec ∆𝑆. Ces allèles corrélés avec ∆𝑆 étaient en outre plus fréquents dans le cluster 

nord. Enfin, les probabilités d’assignation de la population variaient significativement avec ∆𝑆 pour I. 

ricinus. 

L'application des modèles de distribution des espèces a permis de mieux comprendre la 

structure génétique spatiale de deux espèces forestières largement répandues en Europe, la tique du 

mouton Ixodes ricinus et la benoîte commune Geum urbanum. Outre les différences dans la biologie 

des deux espèces et le type de marqueurs génétiques utilisés pour démêler leur structure génétique, 

les résultats obtenus suggèrent que la structure génétique continentale des deux espèces est 

probablement très influencée par l'expansion post-LGM de ses aires de répartition, comme le prévoit 

ma première hypothèse. L'adéquation actuelle de l'habitat semble avoir beaucoup moins d'importance 

pour la différenciation de la population de l'espèce modèle. À l'échelle continentale, les résultats des 

analyses génétiques et spatiales suggèrent fortement que l'expansion de l'aire de répartition des 

refuges du sud de l'Europe est la principale cause de la structure actuelle observée entre les groupes 

Nord et Sud. À l'échelle régionale et à l’échelle locale, d'autres facteurs non pris en compte ici peuvent 

influencer la différenciation des populations. Enfin, la qualité des informations fournies par l'approche 

présentée semble dépendre de la biologie de l'espèce, mais aussi du type de marqueurs génétiques 

utilisés dans les analyses de génétique des populations. 
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Comment l'intégration de l'information génétique améliore-t-elle 
les modèles de distribution des espèces ? 

Dans cette partie, j'ai tenté de savoir si le fait d’informer les MDS de données génétiques 

(phylogéographie ou structure génétique des populations) pouvait ou non améliorer les performances 

des modèles par rapport aux approches traditionnelles, en me concentrant tout particulièrement sur 

Fagus sylvatica et Ixodes ricinus. Les données sur la présence actuelle de F. sylvatica ont été extraites 

de Magri et al. (2006) et de l'ensemble de données EU-Forest (Mauri et al., 2017), tandis que les 

données sur la présence actuelle d'I. ricinus ont été extraites de Poli et al. (2020), GBIF et VectorMap. 

Deux "espèces entières" ont été créées, une pour chaque espèce, correspondant à la combinaison des 

occurrences de toutes les entités intraspécifiques appartenant à une espèce donnée et de toutes les 

absences (F. sylvatica) ou pseudo-absences (I. ricinus) disponibles. Ces deux ensembles de données 

ont été utilisés pour construire les MDS traditionnels, sans intégrer aucune information au niveau 

intraspécifique, qu'il s'agisse de lignées ou de groupes génétiques. Au total, quatre et trois ensembles 

de données de présence-absence, avec une prévalence de 0,5 à chaque fois, ont été construits pour F. 

sylvatica (lignée n°1, lignée n°245, lignée n°789 et ensemble de données de l'espèce) et I. ricinus 

(groupe sud, groupe nord et ensemble de données de l'espèce), respectivement. 

Sur la base des modèles à l’échelle de l’espèce que nous avons calibrés pour F. sylvatica dans 

le contexte du climat actuel, nous avons fait une estimation rétrospective de la distribution potentielle 

de F. sylvatica pendant la période de l'Holocène moyen (environ 6 000 ybp) pour chacune des trois 

lignées séparément ainsi qu’à l’échelle de l’espèce. Pour évaluer et comparer les performances des 

modèles MDS traditionnels et génétiquement informés, lesquels permettent de projeter 

rétrospectivement la répartition passée de l'espèce, nous avons extrait toutes les probabilités 

d'occurrence prédites par les modèles dans toutes les cellules de la grille qui contiennent des 

enregistrements de pollen ou des macrofossiles. 
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Résultats et Discussion 

Pour les deux espèces (F. sylvatica & I. ricinus) et les deux approches de modélisation (MDS 

traditionnelle vs. MDS génétiquement modifiée), les performances prédictives dans le climat actuel 

ont été classées de bonnes à excellentes. Les probabilités d'occurrence prévues au cours de la période 

de l'Holocène aux endroits où les données polliniques ont été recueillies étaient plus élevées pour 

l'approche MDS génétiquement informée que pour l'approche traditionnelle, à la fois pour le premier 

quartile et le seuil médian (Mann-Whitney, p = 0,010 et p = 0,004 respectivement). J'ai également 

constaté une relation plus forte entre l'abondance du pollen (log-transformé) et la probabilité 

d'occurrence de F. sylvatica au cours de la période de l'Holocène moyen avec l'approche MDS 

génétiquement modifiée (R² allant de 0,36 à 0,42) comparativement à l'approche traditionnelle (R² 

allant de 0,21 à 0,26). D'après les résultats, l'approche MDS génétiquement informée produit des 

scénarios futurs plus fiables de redistribution de biodiversité, elle permet en outre d’augmenter les 

capacités du modèle à détecter les zones potentiellement appropriées, ce qui signifie également un 

potentiel de réduction des erreurs d'omission (c'est-à-dire de faux négatif : prévoir une future absence 

là où elle sera une présence). 

Conclusion 

Les modèles de distribution des espèces projettent dans l'espace géographique certaines des 

dimensions de l'espace écologique (c'est-à-dire la niche) de tout niveau d'organisation biologique 

(population, espèces, clades, communautés, etc.). La combinaison des MDS avec la génétique des 

populations et la phylogéographie aide à comprendre l'évolution de ces différents niveaux 

taxonomiqudes, en permettant une corrélation à la fois quantitative et qualitative des changements 

de l'adéquation de l'habitat aux changements de la structure génétique du groupe focal. En même 

temps, informer les MDS de la structure génétique des espèces peut, dans certains cas, aider à 

améliorer la performance du modèle ou l'identification d'un habitat cryptique approprié. Des 



179 
 
 

recherches supplémentaires sont néanmoins nécessaires pour déterminer exactement comment et 

quand incorporer ces informations génétiques dans les modèles. 
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and Tick-Borne Dis. 

Pedro Poli, Jonathan Lenoir, Olivier Dr. Plantard, Steffen Ehrmann, Knut H. Røed, Hans Petter Leinaas,  

Marcus Panning, Annie Guiller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



181 
 

Materials and Methods 

Table S1. Sample coordinates. The Reference column indicates from which source samples were 

made available. PC = Personal collection. 

Sample locality Code Longitude Latitude 
Number of 

samples 

Sample 

Date 
Reference 

Morocco MAR 4221933.21 1519759.51 10 
Before 

2010 

Dr. Plantard, 

PC 

Algeria DZA 4165854.78 1520079.18 8 
Before 

2010 

Dr. Plantard, 

PC 

Tunisia TUN 4287083.09 1370080.62 13 
Before 

2010 

Dr. Plantard, 

PC 

Spain ESP 3292343.37 2302053.84 19 
Before 

2010 

Dr. Plantard, 

PC 

Iran IRA 7920535.19 2511813.36 13 
Before 

2010 

Dr. Plantard, 

PC 

Turkey Istambul TUR 5907775.11 2200447.26 9 
Before 

2010 

Dr. Plantard, 

PC 

North France FRA-N 3872010.67 2994279.45 40 2013 
Erhmann et 

al., 2018 

West France FRA-W 3465235.38 2853298.78 15 2016 
Dr. Degeilh, 

PC 

South France FRA-S 3593881.21 2296634.56 17 2013 
Erhmann et 

al., 2018 

Ireland IRL 3013710.61 3385835.15 20 
Before 

2010 

Dr. Plantard, 

PC 

England Blue 

Pool 
GBR-BP 3470079.25 3130233.33 19 

Before 

2010 

Dr. Plantard, 

PC 

England Bristol GBR-BR 3450947.31 3224484.53 19 
Before 

2010 

Dr. Plantard, 

PC 

Italy 

Domodossola 
ITA-D 4188665.99 2556599.15 11 

Before 

2010 

Dr. Plantard, 

PC 

Italy Varese ITA-V 4229419.76 2523525.45 10 
Before 

2010 

Dr. Plantard, 

PC 

Romania ROU 5643875.12 2813096.13 9 
Before 

2010 

Dr. Plantard, 

PC 

Hungary HUN 5064737.95 2796444.23 18 
Before 

2010 

Dr. Plantard, 

PC 
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Sample locality Code Longitude Latitude 
Number of 

samples 

Sample 

Date 
Reference 

Slovakia SVK 5008087.64 2900574.08 13 
Before 

2010 

Dr. Plantard, 

PC 

Moldavia MDA 5711169.6 2856440.17 10 
Before 

2010 

Dr. Plantard, 

PC 

West Germany DEU-W 4257417.83 3352915.67 24 2013 
Erhmann et 

al., 2018 

East Germany DEU-E 4462732.5 3348531.08 38 2013 
Erhmann et 

al., 2018 

South Gemany DEU-S 4440340.3 2784710.43 14 2013 
Dr. Plantard, 

PC 

Belgium BEL 3924610.12 3095109.35 18 2013 
Erhmann et 

al., 2018 

North Estonia EST-N 5186688.83 4032319.73 49 2013 
Erhmann et 

al., 2018 

South Estonia EST-S 5313297.86 3950296.69 14 
Before 

2010 

Dr. Plantard, 

PC 

South Swqeen SWE-S 4533959.53 3622513.31 20 2013 
Erhmann et 

al., 2018 

Central Sweden SWE-C 4720133.45 4047795.89 19 2013 
Erhmann et 

al., 2018 

Norway West NOR-W 4186225.49 3886420.36 15 2006 
Dr. Leinaas, 

PC 

Norway East NOR-E 4389275.28 4003811.98 13 2006 
Dr. Leinaas, 

PC 
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Table S2. List of SNPs, variant basis and primers used in the study (from Quillery et al., 2014) 

locus variant Primer1-specific to allele1 Primer2-specific to allele2 Primer3-common to both alleles 

1133 T/C GCTTGGCCACTTCCACTGCTTT GCTTGGCCACTTCCACTGCTTC ACAACAGAGAAGGCAGCCCACA 

3705 A/C AGCATGGCGCACTGTGAAAGCTC AGCATGGCGCACTGTGAAAGCTA TCCTAGTCGGCTGGCTGGAG 

6283 T/C AATGAGGCGTCAGTGACAGCATAAC AATGAGGCGTCAGTGACAGCATAAT CGTGACGTCAAGGCAGAATGCTAT 

6363 A/G TCGTCCTCCGTCACGTAGCCG TCGTCCTCCGTCACGTAGCCA CCATTGAACCCTGGTGGGTCATCA 

10041 A/G GTTGTTCCCTTGGCAGACG GTTGTTCCCTTGGCAGACA AACATACCCGAGACTGTCAAC 

19998 A/G CAGAAGTGGAGATTGTTGCGTGTG CAGAAGTGGAGATTGTTGCGTGTA TACATACATTGAGCATCGACCAA 

21130 C/T GCTGCTGCAACCGGTTTATCTTC GCTGCTGCAACCGGTTTATCTTT AGGCACGTAGATCACGAGAATTATTTC 

30736 C/G GCTAGGTGACGAGGACTGGACG GCTAGGTGACGAGGACTGGACC GTTGTTCCACCTTTCGCAGGAGAT 

31200 A/G CGTTCAGGTTGACCGAGAAGTAA GTTCAGGTTGACCGAGAAGTAG GCCTCTCGTTACTGTCGTATC 

32114 C/T GACTAATCACCAGGAAATCCATTCTGC GACTAATCACCAGGAAATCCATTCTGT GGCTATACTCGGACGTATGTTGA 

32551 T/C TTCGGTGGCAACAGCTCGTCCATC TTCGGTGGCAACAGCTCGTCCATT CCAGCCTCATAGCCGAGCACCA 

34502 G/A CGGATTCGAACCAGTTATCAATGGG CGGATTCGAACCAGTTATCAATGGA GCCTCTCTAGAAAACAGTTGCTCTC 

42351 A/G CTTGTAGGAATGGAGGTCATCTTCG CTTGTAGGAATGGAGGTCATCTTCA CTTCTGTGTCGCAGGTGGCATCAT 

57206 C/G GCACTATGAGCCATCGAAGCCAAG GCACTATGAGCCATCGAAGCCAAC ACGTGACAACACTTACACGGCATTTC 

60684 C/T TGCACATAGTCGCGCAATACGTTC TGCACATAGTCGCGCAATACGTTT CGAGCCGTTGCAACCGATCCG 

61606 G/A ACATAGGACATCTCAAGGTCATTCG ACATAGGACATCTCAAGGTCATTCA GAAGAAACCGAGGATGAGTGTCATG 

66390 C/T GCCGAACAGCCGTGCAACCC GCCGAACAGCCGTGCAACCT TCGCTGCTGTATACCCATTG 
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locus variant Primer1-specific to allele1 Primer2-specific to allele2 Primer3-common to both alleles 

68328 G/C CAGGCAGTTTGCGGTTCACAG CAGGCAGTTTGCGGTTCACAC TAGAGGTTTCCCAAGTATTTATCGTA 

68391 A/G CAGCGTCAAGTTGTGGTGTT CAGCGTCAAGTTGTGGTGTC GCATCGCGTGACATTAGTTACA 

72226 G/A GAGGTTCCTGACATGCAGGAAACG GAGGTTCCTGACATGCAGGAAACA GCTCTGCAGATGCAAGTTCCAA 

77668 G/A GGAACGTCGTGACAGCCGTAG GGAACGTCGTGACAGCCGTAA GGATGGCTTCGAGTTGGACTACTA 

78934 G/C AAAGAAGCGTTTCCCGGTCG AAAGAAGCGTTTCCCGGTCC TCTGGCAAAGCAAGCACTCACC 

81501 T/C GTCCTTTCGAAGGTGTATGCATTC GTCCTTTCGAAGGTGTATGCATTT ACGATGCTAGTTTGTCAAATAGTG 

81758 G/A ACAAATCTGAAGCAGGCGCGAAAG ACAAATCTGAAGCAGGCGCGAAAA AGGACGTCGCCGAGTCGTAGAT 

87199 T/C GCTGGATTGCGTCGTCGCCT GCTGGATTGCGTCGTCGCCC CGGCTCTGGCCAGGACCTGATG 

93695 G/A GTCCTAGCCGCTGTCCCGTG GTCCTAGCCGCTGTCCCGTA CTGGGACAAACTCTTTCTCGAAGTG 

96296 G/A GCATAAGCAAACTTCAAAGCTTCCACG GCATAAGCAAACTTCAAAGCTTCCACA ACGAGGCGGCTCTCATGTACCA 

105385 T/G CCGCGAGCATTTTTGCCACATG CCGCGAGCATTTTTGCCACATT TTGACGTCACGACCTATTTGACGAA 

113142 A/T GAGCTCATAGTCCTGAAGACCACA GAGCTCATAGTCCTGAAGACCACT TTACGTTGGTCACTATGGGAACGCT 

114791 G/C CGCTGCTAGCAGACGGGAGG CGCTGCTAGCAGACGGGAGC GAGAGCGTACACGATTTGCCACGA 

116335 A/C GTGCGTCGAATGTCCAGGTTTATCC GTGCGTCGAATGTCCAGGTTTATCA CAAGTTGCGCAAGAGGTGGCAAA 

125671 C/T GTCTGCTTCTGCTATGCTCTGTTTC GTCTGCTTCTGCTATGCTCTGTTTT AGCGTCTGCTGCGGAACATCGTA 

129322 T/A CAAGGCAGCGCAGTTCTGACACT CAAGGCAGCGCAGTTCTGACACA ATCTGCGTAGCATAAGCCGTGCC 

133049 G/A ACGGGTCGTACAGCGACAAGAG ACGGGTCGTACAGCGACAAGAA CGAACATTACAAACGCCGCAAGAGG 

137096 T/G GTGAATGGCAATGCCAGAGTGTAT GTGAATGGCAATGCCAGAGTGTAG CTCGGTATTCTGCGGAGCACAA 

143089 G/A GGCACAGGATTTGCTGGTTATAGAGG GGCACAGGATTTGCTGGTTATAGAGA GGTGCTATGTGTACCTCACGCC 

144259 C/T GTTGAGTGTCGTGTCCTTCGCC GTTGAGTGTCGTGTCCTTCGCT AACAGCTCCTCGTAGACTGCGTAC 
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locus variant Primer1-specific to allele1 Primer2-specific to allele2 Primer3-common to both alleles 

145634 C/T CGGACGCGTGGACGTGACTC CGGACGCGTGGACGTGACTT TGGTGACCGTGTGTTGCGCAG 

150669 T/C TGTGCACAAGATGATTCCATAATT TGTGCACAAGATGATTCCATAATC GTCATCGGTGATTGTGTCAGTTTAT 

155043 G/A GAATGTGATCGTGGGAGAAGATATAGG GAATGTGATCGTGGGAGAAGATATAGA GCTGTGGAAGCTAAGTGCTCGTTG 

159151 C/G AGACAACGTACGCGCGATTTCAC AGACAACGTACGCGCGATTTCAG TGCTAACTGCCAGCGCGTGG 

166766 A/G ATCGACCGGCTGGCTGGCTA ATCGACCGGCTGGCTGGCTG GCCTGTTCTTCTGTAAGTCGCTCTA 

167418 T/A TGTCCGATACCTGCCTCCAATTTGTT TGTCCGATACCTGCCTCCAATTTGTA TTACCTCCACCGGGTGTCCCAT 

175115 T/C ATGGCAGTGTCAAGAAGGCCAAGT ATGGCAGTGTCAAGAAGGCCAAGC CAATGGCAGTGTCAAGGTCGATCTC 

176991 C/A AGAAGCTAGACGCAGAGTTAGGGC AGAAGCTAGACGCAGAGTTAGGGA AGGAAGAGTCCAATGTGTGCGCAA 

180239 G/T GTCCTGTGCTGTTGCCGCCG GTCCTGTGCTGTTGCCGCCT TGTTCCTGGACGCAAGTCACG 

189207 T/A TGGGCGTTGCAGTAATGCAACAGTT TGGGCGTTGCAGTAATGCAACAGTA TCTAAGGCTCCTGGTGTAAGCACACG 

197784 C/T GTTCATTAGAAGCTGTCAGTTGACTC GTTCATTAGAAGCTGTCAGTTGACTT CAGTGGCGTAACACGAGAAACTAG 

198227 C/T GACAACATCCAGGGCGAGTTCTAC GACAACATCCAGGGCGAGTTCTAT TTGCTATAACCAGTCTTCGACGC 

205578 G/A GATGTAGCCCCAGATATACTCAAAG GATGTAGCCCCAGATATACTCAAAA ACAGGTACTAAACCAATTTCGGC 

207995 A/C CGAGGTAAGATTGCCACTTATCTTTCC CGAGGTAAGATTGCCACTTATCTTTCA ACCACCTGCCAGTGTTCGACGAT 

208593 C/G GGTCTGGTGCCTGGAAAGTGC GGTCTGGTGCCTGGAAAGTGG GGACGCAGTAAACAGAGCAGTCATA 

209761 C/T ACATCATAAGTCACGTGGCCTGAC ACATCATAAGTCACGTGGCCTGAT ACGCCGTGACGTCTCCTGAT 

210654 T/C GTGATTCTGCTGGTGATCTTTGTGATC GTGATTCTGCTGGTGATCTTTGTGATT AGCACGCCCAACAAGATCAACGG 

212829 C/G GGCATCTGAACGACATCGTCCACC GGCATCTGAACGACATCGTCCACG CGTGTGTCAGGAATGAGAGATAATC 

214684 T/C GTAACGCCGTCACACGGTAAGAC GTAACGCCGTCACACGGTAAGAT CTGTCTGATCCAGGCTTTACGCAA 

221603 T/C AGTCGATCATACCTTACTGCTGTGT AGTCGATCATACCTTACTGCTGTGC TTCGCGAGTCCGAGTTGCACAGA 



186 
 

locus variant Primer1-specific to allele1 Primer2-specific to allele2 Primer3-common to both alleles 

224277 C/A ACAGCTAGGAGCAAAGTCCAGTTCCC ACAGCTAGGAGCAAAGTCCAGTTCCA CTATTCCCCTTTCGATCGAACATCGG 

225377 G/A TAAAGAGTCGCCTTGGGGAATCTGG TAAAGAGTCGCCTTGGGGAATCTGA CACGGACAACAACATTGAACGAG 

230247 T/G GTTTCCAGCTCGCGGTCGATT GTTTCCAGCTCGCGGTCGATG GACTGCGTAGAGTGCGCTTTTCAA 

233961 A/C GTCATGCATTTGACAAACTTTGTTA GTCATGCATTTGACAAACTTTGTTC GACACTACTAGGGCCTCAATCAA 

234508 C/T TGCTGTCGCTACGCTCGACC TGCTGTCGCTACGCTCGACT GAGAGCAGCTCCTGGGAGTCCTTG 

236290 T/C GATGCAATATGTTTACTGGATTCGC GATGCAATATGTTTACTGGATTCGT TAGAAATCGGGGCCCCAACGG 

243436 T/C CTTGTGCCTGGCGTCATCTGT CTTGTGCCTGGCGTCATCTGC AGGCCCGTGCTCGCTCG 

251320 T/A AGGATCACGTTATACGAAGGCAAGT AGGATCACGTTATACGAAGGCAAGA CAAGGATGACAGCACCGGTACGA 

255757 T/G TTCATCGGCGTATCCTTTGAGCGAT TTCATCGGCGTATCCTTTGAGCGAG ATGATGGCGACGTAGAGGTAGTTCA 

259770 C/G ACCCTTTTTGAAAGATGAACGTTGTC ACCCTTTTTGAAAGATGAACGTTGTG CGTTGCTCAAAGTCAAATGCCAGTG 

281206 T/G GACACTACTAGGGCCTCAATCAAGCAT GACACTACTAGGGCCTCAATCAAGCAG CAGTCATGCATTTGACAAACTTTG 

283680 T/A GGCGAAACCTTTGAAGCGTTCTTCAT GGCGAAACCTTTGAAGCGTTCTTCAA GACAGCGTGATGACTGTTCTTGTG 

287805 T/G CTGCCGCCTGTAATTCCCGACT CTGCCGCCTGTAATTCCCGACG TAGGTTCACGACACGAGGTTGATTC 

292025 C/T AACGCCGTGAAAGCCGCGAAC AACGCCGTGAAAGCCGCGAAT GCACACCGTACATCACCGAAGCC 

296275 C/A CTGCGTAGAGTGCGCTTTTCAAGGTC CTGCGTAGAGTGCGCTTTTCAAGGTA TCGTTTGGTTTCCAGCTCGCGGT 

298125 A/G TTTGTTCAGTTGTCAGAGGTGGCAGTA TTTGTTCAGTTGTCAGAGGTGGCAGTG CCTTGTGGCATGCTCCAGTGATTC 

299627 C/T GGTATCCGCTCGCTCGATATGTATATC GGTATCCGCTCGCTCGATATGTATATT CGTGTGCAGCTATCCAAAGACTCG 

300752 T/G AGATGCTGAACTGTCAGATGACGAAT AGATGCTGAACTGTCAGATGACGAAG ACCACTGTAGTTGTGTCTCGCTCTG 

303781 C/G CTCCAATTAGCTTCAAATGAATGTTC CTCCAATTAGCTTCAAATGAATGTTG CTTGGTTAGTTTCTGCTGGCGTTTTC 

305888 C/A GTTTCCTCCACGCAGAGCGAAAGA GTTTCCTCCACGCAGAGCGAAAGC CATGCGCTTCGCACTGTCG 
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locus variant Primer1-specific to allele1 Primer2-specific to allele2 Primer3-common to both alleles 

307361 T/C GCGGTATTTTCGGTCAGGC GCGGTATTTTCGGTCAGGT GACAAATGTTCGTCGTTCTCAACAG 

313057 A/C AATAGCGGCCAGCAGTTCCTCATA AATAGCGGCCAGCAGTTCCTCATC CGAATCCGATAGTGCCGTGAGAGA 

320000 A/C CAAATTTCGTGTTCGTCCATGGCGTGA CAAATTTCGTGTTCGTCCATGGCGTGC CGTGACTTGACGTGACGTGCCA 

329834 T/G TAGAAAGCCGGCCCGGATCTT TAGAAAGCCGGCCCGGATCTG CTTTCCCAGTTCAAGCACTCTTTTAG 

333882 T/C GCTCCTCCATGTCTTGTCGTCGTTTCT GCTCCTCCATGTCTTGTCGTCGTTTCC CACGGTGGCAGCGGGAA 

336267 G/T GCGTTGTCTGTACATCCGCCAT GCGTTGTCTGTACATCCGCCAG GAGCGCAGCGGATACTCTGTTCA 

339272 A/G CCGCACCGGCTTTTACGACA CCGCACCGGCTTTTACGACG TCTCGTCGCTGGAGGCGTCAT 

340581 C/T CTGAACCCAACGTTGGCTGAACT CTGAACCCAACGTTGGCTGAACC ACTGAGTGGTTCTAGTAACGATGGCT 

356074 G/A AAGTATGGGGGAACCCGTGTGA AAGTATGGGGGAACCCGTGTGG TAGGAGTTGGAACACTGCGACG 

356395 G/A CATTTGCGATAGGTCGATCACGATATG CATTTGCGATAGGTCGATCACGATATA CCGACTTCCGACGCATGTAAAATG 

371093 A/G AGCGATGGCGTCTACCAGCGGA AGCGATGGCGTCTACCAGCGGG TTCTGGACTAGCAGCGAGCGAC 

374382 T/C CATGCTTTGTCAACTTTCGAGAT CATGCTTTGTCAACTTTCGAGAC TTATGCTGTCAGCTGAGTCCCG 

376474 T/C AGGTGGCCACTCTGACATGGATC AGGTGGCCACTCTGACATGGATT TGTAGAGTGTAGATGCCAGCTTCCTC 

380487 C/T CAGCCGTTCGACGGGATC CAGCCGTTCGACGGGATT TCGCTCGTGTCCCTCGTGT 

393248 T/G CTGCATGTCTTGGCGTCTGATGTCTTCT CTGCATGTCTTGGCGTCTGATGTCTTCG GGTTCACTGGCCAAACGCTCCTCTAC 

399212 A/G GTTCAATGGGGCTTCTGCTATCA GTTCAATGGGGCTTCTGCTATCG GCGTGAATTCAACGTTCGCTAAG 

411541 G/A AGTCGTTGTGGGCGCGCATGGG AGTCGTTGTGGGCGCGCATGGA GTCAGGCTGTTCGGCTTGACGTATG 

419658 T/G TGTCCTCGTACGTGCTCGTTGTGACT TGTCCTCGTACGTGCTCGTTGTGACG AGCAGATGGCCTGGTAGCGGTCC 

428503 G/A CATGCAGGATACCGTGTGAGTTCAG CATGCAGGATACCGTGTGAGTTCAA GATGCTGTGCGCGTTGGACTG 
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locus variant Primer1-specific to allele1 Primer2-specific to allele2 Primer3-common to both alleles 

438644 A/G GCACTGCAAACACCTCTGCTCAAGTATG GCACTGCAAACACCTCTGCTCAAGTATA 

CTATGAATGCTCTTGCTAGCAGGCTTT

A 

441042 A/G GAATTCCAAACGCGGTTCATAAACCACG GAATTCCAAACGCGGTTCATAAACCACA 

TCGAAGATAGTGTGCTCAATGGCGGTT

A 

446758 T/A 

TTGTTGCGAACATAGAGTACAGAGGAGC

A 

TTGTTGCGAACATAGAGTACAGAGGAGC

T GCTACAACGTGGGAATTGCCGAGGA 

450975 T/G TGCGGTTACGCAGTCGAAGCTATT TGCGGTTACGCAGTCGAAGCTATG ATGGGCACTCAAGGTGCGCACG 

465604 A/T CCTAAACGTCTCGGCGCTAATA CCTAAACGTCTCGGCGCTAATT AACTAAGACCACATTCCCGACATTG 

465892 G/A CCCACTGACGAGCGTGCTGAAGA CCCACTGACGAGCGTGCTGAAGG CATGCTCTTTCCTGTTGTCCGGTTCA 

468480 A/G CATAACGCTGAATTATCTTCGCCGACTA CATAACGCTGAATTATCTTCGCCGACTG GTAAGGGGCCCACAAGCCTGG 

480915 A/G CTAATTCTCGTTCTACTGCCGCATG CTAATTCTCGTTCTACTGCCGCATA GGACACATCTCAGAACCAGATTG 

487540 T/C CACGGGAACGACGGGCACT CACGGGAACGACGGGCACC GGCACGTGAAGCTCCGAGATTTCAT 

493429 A/G TAGTGGGTTCGCTGAAGAACTACAAGAA TAGTGGGTTCGCTGAAGAACTACAAGAG CGCGCAGCTTTCTGAAGTAGTTGT 

552113 T/A TCATAGTTGGTTCACAGGCGACCT TCATAGTTGGTTCACAGGCGACCA GTTCTGGACTAAGTATGATTCGCTCCA 

558063 A/G CAGCTCCTGGGAGTCCTTGAGA CAGCTCCTGGGAGTCCTTGAGG AGTGGCTGCTGTCGCTACGCT 

561492 T/C ATCTTGCGACTGCTCGAT ATCTTGCGACTGCTCGAC TTCTCGCCCAGGAATGCCAT 

580716 T/C TCGGCGTTCAGCAGGCTTGAC TCGGCGTTCAGCAGGCTTGAT GCACCAGACCGCCGGCGA 

583125 T/G TGTTCTGAGGAAATGAGATGACTGTT TGTTCTGAGGAAATGAGATGACTGTG CAACACACGTCAACAGCAACAT 

585284 T/A GCTTCAGTTATCAGCTGTAAACCTA GCTTCAGTTATCAGCTGTAAACCTT TTCGGTAATGCGTGTATTACTCA 

585318 A/G GTACATCACCGAAGCCGAACAG GTACATCACCGAAGCCGAACAA TTAGCCGCAACGCCGTGAAA 
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locus variant Primer1-specific to allele1 Primer2-specific to allele2 Primer3-common to both alleles 

589219 C/T ATGCCGCACGTGCTTGAGGTC ATGCCGCACGTGCTTGAGGTT 

CAAGAAACGGCAACAGCGGACAATGAA

C 

627150 A/C CAATACAGCGGTATTTGCACTA CAATACAGCGGTATTTGCACTC CAATGGAGCAGACGCATCT 

751708 G/A TTGAAGCACAGCTCTTAGAGAAGG TTGAAGCACAGCTCTTAGAGAAGA GACTCCGTCAGCTGGTTTATG 

754496 C/G GCCTCGGCGTCGGAACTCG GCCTCGGCGTCGGAACTCC TGGCTGAAACCAGGGACCTCAA 

761047 G/A CAACATGGACGTTTTCAAGATTGCCA CAACATGGACGTTTTCAAGATTGCCG GAGCCTCGCTCAGCACGGAA 

763022 T/C CACAAAGGGCACGATTTCCTCT CACAAAGGGCACGATTTCCTCC AGATGAGTCTGCCATCGTGTCT 

764527 T/A GGGCGTTGCAGTAATGCAACAGTA GGGCGTTGCAGTAATGCAACAGTT AAGGCTCCTGGTGTAAGCACACG 

767569 A/G AAACACACCTTGAACTCAGCCTCA AAACACACCTTGAACTCAGCCTCG GGACGACAGCTATCAACATTAGCC 

768618 C/G GAACAATTCAAAACCATGATTGAAACAC GAACAATTCAAAACCATGATTGAAACAG TACACTCCCAAGTGAGTTGATGC 

771828 T/C GATCCAAAGTGATCATGCCGATAGT GATCCAAAGTGATCATGCCGATAGC ATATCACAGTATCACGTCACGG 

775381 A/G TGTGCAGCTATCCAAAGACTCGG TGTGCAGCTATCCAAAGACTCGA ATGGTATCCGCTCGCTCGATATGT 

777961 C/G CTCAGCACAAGTGAATGTCAAG CTCAGCACAAGTGAATGTCAAC GGGCATTTGTAAGCATCTTATCGC 

781023 G/T 

GGCTCTATGTAGAACCAAAGATAAGTGA

G 

GGCTCTATGTAGAACCAAAGATAAGTGA

T ATTCTGCGGCTTCAACGAATCA 

783090 G/A ACCCGTACAGCAAACCACTACG ACCCGTACAGCAAACCACTACA CGACTGATTTCTCGCAACCCA 

792422 T/C TGCCACGGTAGTTTTGCTTAGT TGCCACGGTAGTTTTGCTTAGC ATGTTCCACGAGGCCCGTTG 

43247 C/T AGTAGACTTAAAGGCCACGCTCGAC AGTAGACTTAAAGGCCACGCTCGAT CCTTATATTCTCTGTCAGCGTAAG 

84140 T/C CAATCGAAATCGTGACCAATGGGATTC CAATCGAAATCGTGACCAATGGGATTT ACCAAGTGCCGCGCAAAGCAT 

117944 C/T CGAATTCGAAGGCGGAGATCCTC CGAATTCGAAGGCGGAGATCCTT CGGCTTGGCGAAGCGACG 
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locus variant Primer1-specific to allele1 Primer2-specific to allele2 Primer3-common to both alleles 

316915 T/G CGCTTCGCCGAGCACTCG CGCTTCGCCGAGCACTCT ACCGGTTGTGCTACGCGTAGGT 

197588 T/G CAAGCGCATCCCCATTCTGATCTT CAAGCGCATCCCCATTCTGATCTG CTTAGAAAGGCAAGACCTCCTTCA 

2932 C/T CTCCTACGAGGGGTGCCTGT CTCCTACGAGGGGTGCCTGC TTGTGACGTTCCTCGTGCTCCCT 

112567 C/T GCTCATGCGCATTGGAAGC GCTCATGCGCATTGGAAGT TTGCACGTACTACGTGCCTCTG 

207179 T/C CGCACGGAGATGGCATTCCTC CGCACGGAGATGGCATTCCTT ACACGATCTTCGGCGAGAACGTCA 

165428 G/C GTCCGCCACGTCGGTTCCAGAG GTCCGCCACGTCGGTTCCAGAC AAGCGGGGCTCTGCTTCCGCCT 

109194 C/T AGGCCCACAACTCCACTCTTC AGGCCCACAACTCCACTCTTT TACGGTAGCTATGTAACAGACACTA 

139650 C/T TACGACGGCACCGAGATC TACGACGGCACCGAGATT ATCTCCGGCGAGGCGTACA 

56083 T/C CCAGGCGCTCCTCCTCGGTC CCAGGCGCTCCTCCTCGGTT CGCCGGAGTTGGCCCAGGA 

143860 A/G ACAGGTACACGAACGATCGCAGAA ACAGGTACACGAACGATCGCAGAG TGCGTTCGTGCTTGTGTCATGT 

152555 A/G GCTCCAGGACAACCGTTTACCTCA GCTCCAGGACAACCGTTTACCTCG ATGGAAACATCGCTACACATGG 

51899 A/G GAGGTGTACGAGTGTCACTCGAAG GAGGTGTACGAGTGTCACTCGAAA GTATCTAGGAGGCTCGGGCGAAA 

225801 C/T GACTTCTGACATTTGATAGAATGCTC GACTTCTGACATTTGATAGAATGCTT TGCGGGTCAGCCATCTTACAAGTA 

190468 G/A TGAACGAAGCTGAGAGGCGCTATGA TGAACGAAGCTGAGAGGCGCTATGG TACGCCCAGACACTCTTGTTCAGT 

31277 C/G ATCATAGACCAACTCGCCTGCATC ATCATAGACCAACTCGCCTGCATG GATTCTGGAAGACAGCTTTTTCGC 

455987 G/C AATGTACGCGACGTACGCACAAG AATGTACGCGACGTACGCACAAC GGATTTCCGAGAGAAGCCATTTTCAG 

27147 T/G CGCAATTGTGACACCACTAG GCGCAATTGTGACACCACTAT CGGCTTTTGATACTCCCATCA 

751588 G/T CCGCATTTCTTCACTGCTGTTTGAAAG CCGCATTTCTTCACTGCTGTTTGAAAT TCGCAAATCCTGGCGCGGTAA 

313642 T/A GTGCAGTTGGCAATGGAGGTGA GTGCAGTTGGCAATGGAGGTGT CCGGACAACTGAAGGTGGTGC 

182969 G/A AAGACGCACTTGCCCTGGAAACATG AAGACGCACTTGCCCTGGAAACATA GGTCTGAGTCTTGGTTGTGTCGCAT 
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locus variant Primer1-specific to allele1 Primer2-specific to allele2 Primer3-common to both alleles 

186625 A/G GAGGAGCTGCGATGCAGAAGTGGTA GAGGAGCTGCGATGCAGAAGTGGTG ATGCTGATGACGCAACGCTGACTTC 

191703 A/G CCGCCGTCTTTGCAGCCTCA CCGCCGTCTTTGCAGCCTCG GGGGCCCCGATTTCTAGAAC 

438440 A/G GTTGAGCGCATGCGCAGGGAA GTTGAGCGCATGCGCAGGGAG ACTCCCTGACGTAGCCTTCGTAGGA 

82163 T/C TAAGGCTTCCAGGTGACTTC CTAAGGCTTCCAGGTGACTTT GGTGTGTTGCTTCTATATTG 

788521 C/T ACCCGAACTTTGCAGGCCAT ACCCGAACTTTGCAGGCCAC AATGAACGACCGAGCGAATCCAGA 

233756 C/G TCTACAAACCAGGCGGTTGTAAGC TCTACAAACCAGGCGGTTGTAAGG TCTGTTTGGGACTCCTTCCACCG 

201653 G/A GCAGTCATCAAACGTGATTTCGTCCG GCAGTCATCAAACGTGATTTCGTCCA AAATTGGAGAGATCACTTGACCCGC 

259800 C/G CGTGTGCCTCGCTGGCATC CGTGTGCCTCGCTGGCATG GCGCATTCCAGAGGCTTCC 

370147 C/T GACACCCTAGCAAAGCAAAGCGTTCTC GACACCCTAGCAAAGCAAAGCGTTCTT TTTCGTTCACGGCTCCCGCAA 

153000 G/A CCTACCTGCTTCCAACATTCTTTAGG CCTACCTGCTTCCAACATTCTTTAGA TGCACATTAGGTCAGAGATGCGGA 

500950 A/T CCACAACTCATCGCACCGAAGACT CCACAACTCATCGCACCGAAGACA AGACGATTATTCGGCTGTGACACATT 

170547 C/G GGTGAATACGCGTCGCGTGAGTC GGTGAATACGCGTCGCGTGAGTG GTGACCTTTGGTAGGACGGCAGC 

466967 C/G GAATATTTATGATGTGACCACGGCAAAC GAATATTTATGATGTGACCACGGCAAAG AACGCCCTGCCGCATAGTCC 

246408 T/C GGAAACAGTTATAACTATCTAGAACT GGAAACAGTTATAACTATCTAGAACC CACACCGAGAAATCAGACGTACC 

5630 G/A CAGCAAGCAGAGAACGTCGTCGATG CAGCAAGCAGAGAACGTCGTCGATA TTCAGGGTGAGACCGTCGGC 

561563 A/G TGAAGGATCTCGTACACAATACACAG TGAAGGATCTCGTACACAATACACAA CGAGTACTTCACGACCACGCA 

338495 T/C GGTTCTCGAAGCCGCGTTTC GGTTCTCGAAGCCGCGTTTT TCTGCAGCTGCTGTAGAGTCCTG 

166887 A/G TCGGCCGCCAGCAGCGTCA CGGCCGCCAGCAGCGTCG CCCGTCGGGAGCAATGCAG 

766292 T/C TGCCGAAGCTGGGTTTCGT TGCCGAAGCTGGGTTTCGC CTGGGCTGCTCCGAGGACTA 

176206 G/T ACTGCGATTGAAGTGCGTCCCG ACTGCGATTGAAGTGCGTCCCT ATCCTCTTGAAATTTGCTGCGGGTG 
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locus variant Primer1-specific to allele1 Primer2-specific to allele2 Primer3-common to both alleles 

245496 T/C TTCCAGCGTGCACCGTACC TTCCAGCGTGCACCGTACT GAAAATGCAATTTTTGTGAGCCT 

199727 T/A GGCTTCTTGTCTCGTTATTATCGT GGCTTCTTGTCTCGTTATTATCGA CAGTGCCACTTTATGTGAGTTG 

524153 G/A CTCTATCAAACGATGTGCTACTGTGA CTCTATCAAACGATGTGCTACTGTGG 

ACTAATTCATTGTAACCCATTTCACGA

T 

54140 A/G GGTAGACACAATCTGCTCATAATGG GGTAGACACAATCTGCTCATAATGA ATGACTGTTACAATCTTTTGAATGC 

18708 A/G CTCCGCGTGTATGCGAGTGAA CTCCGCGTGTATGCGAGTGAG GGCGCGTATCATCCCAGAGC 

546612 G/C TTTCCCGCGCAGGCCGCTAG TTTCCCGCGCAGGCCGCTAC TCAAGGCCAACGGCGCGCA 

523859 C/A CTGGACCTGTGCTACCGTGAGTCC CTGGACCTGTGCTACCGTGAGTCA GCTCAGGATGTCGTACGCGCGG 

160279 A/T ATCAGCAGCGCACACGCTCA ATCAGCAGCGCACACGCTCT CGTCGACGGGCGATCGTGA 

624322 A/G TATCAGCTAAAGCCTCCTTCTCAGTCA TATCAGCTAAAGCCTCCTTCTCAGTCG GAACTGAAGCACCAGCGCCT 

410904 C/G GTCAGAGTAAGGATCTGCTAGATACCG GTCAGAGTAAGGATCTGCTAGATACCC TAAGAAGGTTGGCCCGAATTTGTGAA 

71660 C/A GAAATTAGAATGGTACCTGGATTACC GAAATTAGAATGGTACCTGGATTACA CCTTTGGGGTGCGCTTATGTAAT 

87165 G/A GAATCCACGTGTCAGAGCCCTGG GAATCCACGTGTCAGAGCCCTGA GGTTGTATTTACAACTGACTCCTCGG 

61479 A/G GGCTAATCCTGCTTCTTGGCCTT GGCTAATCCTGCTTCTTGGCCTC CGATCCTGAAATCGAGCAAAGCC 

571455 T/A GTTCTGCCAGCAATTCTATCACT GTTCTGCCAGCAATTCTATCACA GGATGGATGCAAAGTGATATTTTAG 

270863 C/T GCAATTATAGGATCTCCGTAAACTCT GCAATTATAGGATCTCCGTAAACTCC CCTTTTTACGGACACTCACTTTCCTG 

185472 C/G ATTCGCCAGACCACTTGGATTCTC ATTCGCCAGACCACTTGGATTCTG CGTTTTCAATGAGTCTTGATTCTCG 

200386 T/C GATGGAATTAGGTACGGTCATTTCAT GATGGAATTAGGTACGGTCATTTCAC GTTCAGCGCATACTATGACTGACAA 

40367 A/G CACATGTGGCAAGCATTCAA CACATGTGGCAAGCATTCAG GCAGCAACGTTTGCTTCAGA 

494898 T/C AGCGTTGCACGCCATACATTCTCT AGCGTTGCACGCCATACATTCTCC TCCACAGGGTCACGTGACGCA 
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locus variant Primer1-specific to allele1 Primer2-specific to allele2 Primer3-common to both alleles 

14134 C/T CATACATTCCCTGAATACCTAGAGC CATACATTCCCTGAATACCTAGAGT ATTAGCCAAGCGCCCCG 

361495 T/G ATAACACAGGCAGACATTGGAGGCAG ATAACACAGGCAGACATTGGAGGCAT GCTCACATGCATTGAAACTGATGTC 
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Results 

Table S3. Basic statistics per locus. 

Locus 
Observed 

heterozygosity 
Gene diversity Fst Fis 

1133 0.1101 0.2324 -0.0040 0.5262 

31200 0.4319 0.467 0.0629 0.075 

66390 0.1269 0.291 0.0539 0.5639 

129322 0.0700 0.0873 0.0061 0.1974 

159151 0.2649 0.3446 0.1504 0.2312 

198227 0.5741 0.4987 -0.0093 -0.1512 

221603 0.2760 0.3557 0.0932 0.2243 

251320 0.1778 0.3271 0.1478 0.4564 

298125 0.5543 0.4636 0.0127 -0.1956 

329834 0.0918 0.2123 -0.0187 0.5675 

374382 0.176 0.4705 0.0317 0.626 

3705 0.1782 0.4146 0.0673 0.5704 

32114 0.0759 0.1787 -0.0022 0.5753 

68328 0.2477 0.3736 0.0396 0.3369 

93695 0.2975 0.4519 0.0335 0.3418 

133049 0.1991 0.3770 0.1375 0.4718 

255757 0.2072 0.2468 0.2394 0.1604 

299627 0.1109 0.2400 -0.0107 0.5381 

376474 0.2141 0.3006 0.0491 0.288 

6283 0.3140 0.4164 0.0634 0.2459 

32551 0.262 0.343 0.0092 0.2361 

96296 0.2678 0.3734 0.2144 0.2829 

137096 0.5322 0.4652 0.0382 -0.1438 

207995 0.8246 0.45 0.0726 -0.8323 
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Locus 
Observed 

heterozygosity 
Gene diversity Fst Fis 

225377 0.2191 0.3855 0.097 0.4316 

259770 0.1676 0.2408 0.0235 0.3041 

300752 0.4814 0.3724 0.1811 -0.2928 

336267 0.2115 0.2254 0.0116 0.0618 

380487 0.3168 0.4498 0.0807 0.2957 

6363 0.3144 0.4011 0.1326 0.2162 

34502 0.1219 0.3181 0.0031 0.6166 

105385 0.3326 0.3783 0.0686 0.1208 

143089 0.7837 0.4849 0.0132 -0.6163 

208593 0.1799 0.2333 0.0843 0.2288 

230247 0.2052 0.3581 0.223 0.427 

281206 0.2277 0.3757 0.2359 0.394 

303781 0.1121 0.2912 -0.027 0.6152 

339272 0.1745 0.1785 0.0237 0.0222 

393248 0.0722 0.1882 -0.0019 0.6163 

176991 0.1966 0.3406 0.029 0.4228 

144259 0.1649 0.2687 0.0127 0.3863 

113142 0.2391 0.3714 0.2421 0.3563 

77668 0.4137 0.4424 0.0191 0.0648 

42351 0.128 0.1783 0.439 0.2821 

10041 0.1733 0.4534 0.0484 0.6178 

399212 0.0839 0.3201 0.1127 0.7377 

340581 0.0682 0.0911 0.0379 0.2513 

305888 0.1105 0.1722 0.0151 0.3583 

283680 0.6714 0.4485 0.0759 -0.497 

233961 0.2212 0.3625 0.2481 0.3898 
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Locus 
Observed 

heterozygosity 
Gene diversity Fst Fis 

209761 0.0828 0.3481 0.0662 0.7621 

180239 0.094 0.151 0.0109 0.3773 

145634 0.3787 0.4585 0.018 0.1741 

114791 0.2429 0.3708 0.0262 0.3449 

57206 0.1859 0.3233 0.0253 0.425 

19998 0.0914 0.1196 0.0199 0.2359 

411541 0.227 0.3092 0.0348 0.2658 

356074 0.2633 0.3343 0.0754 0.2123 

307361 0.0887 0.1801 0.0333 0.5074 

287805 0.0435 0.0744 0.0317 0.4154 

234508 0.2516 0.3103 0.059 0.1891 

210654 0.228 0.2674 0.4378 0.1475 

189207 0.1252 0.3037 0.0042 0.5879 

150669 0.2338 0.4764 0.0025 0.5092 

116335 0.1823 0.3998 0.0415 0.544 

81501 0.2806 0.4505 0.101 0.377 

60684 0.2221 0.442 0.0547 0.4974 

21130 0.1723 0.412 0.0976 0.5818 

356395 0.3341 0.4604 0.0791 0.2745 

313057 0.1085 0.388 0.0497 0.7203 

292025 0.1001 0.1208 -0.0134 0.1714 

236290 0.0798 0.1775 -0.0126 0.5505 

212829 0.2648 0.4684 0.0637 0.4347 

197784 0.3144 0.2259 0.1932 -0.392 

155043 0.1033 0.1762 0.5208 0.4136 

125671 0.3398 0.4652 0.0539 0.2695 
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Locus 
Observed 

heterozygosity 
Gene diversity Fst Fis 

81758 0.1436 0.2886 0.1153 0.5023 

61606 0.2479 0.3716 0.2166 0.3331 

428503 0.3744 0.395 0.0206 0.0521 

320000 0.2643 0.2579 0.1614 -0.0248 

296275 0.1384 0.3744 0.2015 0.6303 

243436 0.1853 0.2832 0.3311 0.3455 

214684 0.2222 0.4963 -0.0018 0.5522 

438644 0.1799 0.4129 0.149 0.5644 

487540 0.0981 0.1404 0.288 0.3014 

767569 0.1635 0.2148 0.0246 0.2389 

165428 0.211 0.2398 0.0199 0.1199 

191703 0.1966 0.3729 0.2489 0.4729 

153000 0.0919 0.4793 0.0403 0.8082 

166887 0.1921 0.3481 0.0653 0.4483 

441042 0.3243 0.4491 0.0996 0.2777 

84140 0.1825 0.3554 0.0587 0.4865 

438440 0.0944 0.1089 0.1972 0.1325 

766292 0.738 0.4745 0.0398 -0.5553 

523859 0.3518 0.4397 0.1064 0.1999 

270863 0.0571 0.23 0.0146 0.7516 

446758 0.0327 0.1022 0.0336 0.6802 

552113 0.144 0.219 0.0062 0.3423 

627150 0.1918 0.4255 0.074 0.5491 

117944 0.8044 0.4649 0.0642 -0.7304 

139650 0.2503 0.2708 0.1388 0.0757 

176206 0.3211 0.5036 -0.0175 0.3624 
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Locus 
Observed 

heterozygosity 
Gene diversity Fst Fis 

185472 0.1899 0.3965 0.0348 0.5211 

450975 0.2154 0.3343 0.1091 0.3557 

558063 0.2358 0.2929 0.0731 0.195 

751708 0.0754 0.1006 -0.026 0.2506 

775381 0.0911 0.2703 -0.0258 0.6629 

27147 0.1022 0.3726 0.0636 0.7257 

200386 0.1562 0.4361 0.1004 0.6418 

777961 0.0977 0.3904 0.1195 0.7499 

754496 0.3408 0.4748 0.051 0.2822 

561492 0.0813 0.3268 0.0409 0.7512 

465604 0.0536 0.2293 0.0085 0.7664 

410904 0.1761 0.2763 -0.0034 0.3628 

199727 0.1067 0.4443 -0.0179 0.7599 

751588 0.1149 0.3961 0.0719 0.7099 

152555 0.1713 0.4355 0.058 0.6067 

2932 0.0525 0.0604 0.0063 0.1315 

781023 0.1682 0.4324 0.0954 0.6109 

761047 0.1318 0.173 -0.0271 0.2378 

580716 0.316 0.3822 0.0479 0.1731 

465892 0.113 0.1621 -0.0162 0.3033 

5630 0.7425 0.4783 0.0441 -0.5525 

313642 0.1283 0.1442 0.0071 0.1102 

783090 0.2976 0.3471 0.0268 0.1426 

763022 0.1247 0.302 0.0606 0.5872 

583125 0.534 0.4398 0.097 -0.2141 

468480 0.3318 0.4527 0.0932 0.267 
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Locus 
Observed 

heterozygosity 
Gene diversity Fst Fis 

14134 0.1556 0.345 0.0144 0.549 

259800 0.125 0.1671 0.0074 0.2517 

182969 0.2349 0.2092 0.005 -0.1228 

225801 0.1255 0.254 0.3865 0.5058 

792422 0.402 0.4864 -0.0019 0.1736 

764527 0.1107 0.2841 0.0287 0.6103 

585284 0.1384 0.2335 -0.0063 0.4072 

480915 0.0849 0.2483 0.032 0.6581 

338495 0.2448 0.3455 0.0157 0.2915 

186625 0.5284 0.4536 0.0852 -0.1649 
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Figure S1. Discriminant analysis of principal component (DAPC) of Ixodes ricinus based on 497 

individuals using 125 SNPs. A. BIC values as a function of the number of clusters k. The difference in 

BIC values between k = 3 and k = 4 is 0.842. B. Scatterplot of individuals on the two principal 

components of DAPC. The graph represents the individuals as dots and the groups as inertia ellipses. 

Two of the clusters overlap, while when k = 3 we identify 3 well separated groups (figure 3). Red : North 

African cluster; yellow : only individuals from southern Eurasian cluster; green : only individuals from 

the Northern European cluster; blue: admixture cluster with mainly individuals from the northern 

European cluster in fugure 3. 

A A 
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Figure S2. Probabilities ln P(X|K) for each level of hierarchical analysis. First round of analysis: a); 

Second round: b) southern Eurasian cluster and c) northern European clusters; Third round: d) 

Southern European cluster without Iran, e) Central Sweden, Norwegian West and East and North 

Estonia, f) Moldavia, North France, West German, Belgium, South Estonia, East German, South 

German and South Sweden; Forth round: g) Atlantic samples (Spain, South and West France, Ireland 

and England, h) South-west samples (Italy, Romania, Slovakia and Hungary), i) and i): fourth round of 

analysis. Details of each level of Hierarchical analysis are present in the corresponding session.   
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Figure S3. STRUCTURE Individual probabilities for each value of K from 2 to 10. 
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Hierarchical analysis 

Finer genetic structure was identified from hierarchical analysis (Figure S6 and S7 for STRUCTURE 

and DAPC analysis, respectively). The southern Eurasian cluster was further separated into two 

differentiated clusters, irrespective of the approach used (STRUCTURE or DAPC). The STRUCTURE 

approach separated Iran from the remaining samples, while the DAPC approach assigned most 

individuals from both Iran and Turkey samples to the same cluster (violet). The northern European 

cluster was further separated into two to three clusters depending on the methods, DAPC and 

STRUCTURE, respectively. Clusters identified by the DAPC approach were distributed almost equally 

among the different sampled locations. Of the three clusters identified by STRUCTURE, the orange and 

green ones showed a clear affinity to certain sample locations, while the grey cluster was represented 

in all sampled locations. No further structure was identified for the African cluster in both methods. 

The DAPC’s third round of analysis was unable to identify further genetic structure in the 

northern European cluster. It did however identify two groups inside the southern Eurasian cluster 

(without Turkey and Iran as a result of previous analyse). It appears that individuals from Spain, 

Western France and Ireland were mainly assigned to one (light blue) cluster. No other cluster was 

identified by the DAPC approach regarding refined hierarchical analysis. The STRUCTURE’s third round 

of analysis was able to identify a K = 4 in the southern European cluster. Individuals from Turkey were 

assigned to an exclusive cluster (grey). Individuals from south-western Europe and from Italy were 

mainly assigned to one cluster (orange), while those from Spain, West France and Ireland were 

grouped in a different cluster (blue). The fourth cluster (green) was distributed across all sampling 

locations with few individuals (11 out of 179) exhibiting more than 50% of assigning probability. In the 

northern European cluster, for this third round of hierarchical analysis, individuals were regrouped 

according to population probabilities of the two almost exclusive clusters from last step, green and 

orange ones. From this third round until the last one, Evanno’s method (Evanno et al. 2005) always 

identified two clusters, but the analyses of ln[Pr(X|K)] was not clear in identifying those clusters (Figure 

SX). Also, individual probabilities of inside those K = 2 clusters show very mixed populations. The results 
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for those subsequent rounds with a K = 2 are presented in Supplementary Information (figure SXX). We 

did a fourth and last round of hierarchical analysis for the two main southern Eurasian clusters 

identified in the previous round: (i) one cluster composed of Spain, West and South France, Ireland and 

England samples and (ii) the other cluster composed of Italy, Romania, Hungary and Slovakia. For the 

first one, Evanno’s method identified K = 6, but the analysis of ln[Pr(X|K)] does not indicate any 

structure. For the later, both methods clearly identified a K = 7 structuring. In both cases, clusters are 

mainly distributed in all sample sites and very rarely a single individual had ~100% probability of being 

assigned to a particular cluster. The exceptions were individuals from West France and Ireland for which 

probability values to be assigned to the same cluster reached one.  
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Figure S4. DAPC Hierarchical analysis. Each column corresponds to one level of analysis. 
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Figure S5. STRUCTURE Hierarchical analysis. Each column corresponds to one level of analysis.  
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Figure S6. Mean gene diversity, observed heterozygosity, and Fis per population. Mean population 

gene diversity was always greater than the observed heterozygosity and Fis was always positive. 
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Appendix 2: Supplementary Information for the submitted article: 

How does incorporating genetic information improve species 

distribution models?  

Supporting Information for: 

 

How does incorporating genetic information improve species 

distribution models? 

 

Pedro Poli, Annie Guiller, Jonathan Lenoir 
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Materials and Methods 

 

 

 

Fig. S1. Schematic representation of presence selection from the European Forest database for Fagus 

sylvatica. First we built and dissolve buffers around each presence points from Magri et al. (2006) for 

which lineages were already assigned (a.). Whenever a presence from the database was situated 

exclusively inside a buffer of one lineage, that presence was assigned for the corresponding lineage 

(b). In this representation, the three points identified as A were assigned to the blue lineages, while 

points B were assigned to the red one. Points C were situated outside all buffer zones, and were not 

incorporated to the final dataset. Points D were situated in the interface of the buffer zones of both 

lineages, and so were also excluded from the final dataset.   
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Fig. S2. Presences of each genetic unit of Fagus sylvatica (a) and Ixodes ricinus (b) used to build genetic-

based and traditional species distribution models (SDMs). 
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Fig. S3. Probabilities of assignment to one of two genetic clusters identified in Poli et al. (2020) 

according to STRUCTURE (Pritchard et al., 2000) results. In figure a we reproduce figure 3b from Poli et 

al. (2020). In figure b the population probabilities were interpolated to assign a cluster identity for each 

presence point from GBIF and Vector Map. The probabilities in the interpolated map are for 

assignment to the southern cluster: higher probabilities represent zones most likely occupied by 

individuals from the southern cluster while small probabilities represent zones most likely occupied by 

the northern cluster. 
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Results 

 

 

Fig. S4. AUC values for each algorithm across 20 repetitions of each one of the models for F. sylvatica: 

complete model, lineages #1, #245, and # 789. 
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Fig. S5. Distribution of the probabilities of presence of Fagus sylvatica during the Mid-Holocene period 

at spatial locations where pollen records of F. sylvatica from the Mid Holocene period have been found 

(median threshold, n>=37 pollen records per site and time). Light grey: traditional species distribution 

model (SDM) approach. Dark grey: genetically-informed SDM approach. Stars display the significance 

level based on a Mann-Whitney test of difference between the two SDM approaches (**, p = 0.004). 
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Fig. S6. Linear Regression of the logarithm of the sum (a), median (b) and maximum (c) of pollen 

abundance per grid cell (log-transformed) with a threshold of 4 pollen records (first quartile) as a 

function of the probability of occurrence according to the traditional SDM approach (first column) and 

the genetically-informed approach (second column). 
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Fig. S7. Differences in the slope of the regressions of the pollen abundance as a function of the 

probability of occurrence from the traditional and genetic-based SDM approaches were tested by a 

1000 permutations. Here, the histograms of the simulated differences are presented for the mean (a), 

sum (b), median (c) and maximum (c) of the pollen abundance per grid cell with a threshold of 4 pollen 

records (first quartile), and the red line indicates the observed difference. For all metrics, p-values were 

smaller than 0.01 (but see Table S2 for details on the significance p-values). 
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Fig. S8. Linear Regression of the logarithm of the mean (a), sum (b), medium (c) and maximum (d) of 

pollen abundance per grid cell with a threshold of 37 pollen records (medium) as a function of the 

probability of occurrence according to the traditional SDM approach (first column) and the genetically-

informed approach (second column). 
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Fig. S9. Differences in the slope of the regressions of the pollen abundance as a function of the 

probability of occurrence from the traditional and genetic-based SDM approaches were tested by a 

1000 permutations. Here, the histograms of the simulated differences are presented for the mean (a), 

sum (b), median (c) and maximum (d) of the pollen abundance per grid cell with a threshold of 30 

pollen records (median), and the red line indicates the observed difference. For all metrics, p-values 

were smaller than 0.05 (but see Table S2 for details on the significance p-values). 
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Table S1. Values (mean±sd) for the six metrics applied to the evaluation of model performance for 

both traditional and genetically-informed approaches. Significance of the Mann-Whitney test is 

represented by asterisks: ***: p<0.001; **:0.001<<0.01; *:0.01<p<0.05. 

  

Species Metric Traditional SDM 
Genetic-based 

SDM 
Significance 

Ixodes ricinus 

AUC 0.9173±0.0079 0.9133±0.0092  

Sørensen 0.8439±0.0092 0.839±0.008  

Sensitivity 0.8907±0.0108 0.9584±0.0095 *** 

Specificity 0.7811±0.0172 0.6759±0.0195 *** 

TSS 0.6718±0.0205 0.6343±0.0202  

OPR 0.1982±0.0126 0.2538±0.0114 * 

Fagus sylvatica 

AUC 0.8263±0.01 0.8215±0.0109  

Sørensen 0.8325±0.0091 0.8348±0.0075  

Sensitivity 0.8873±0.0107 0.9081±0.0108 *** 

Specificity 0.7555±0.0204 0.7324±0.0184 *** 

TSS 0.6427±0.0213 0.6405±0.0179 ** 

OPR 0.2158±0.0141 0.2274±0.0117 *** 

 

 

  



 
 

219 
 

 

Table S2. Significance values of the statistical tests comparing pollen abundance of F. sylvatica on the 

Mid-Holocene period and probability of occurrence according to the traditional and the genetic-based 

SDM approaches. The permutation test was applied to test the difference in the slope of the regression 

of the logarithm of the abundance of pollen as a function of the probability of occurrence between the 

two approaches. Two threshold of abundance across records per grid cell and time were considered: 

the first quartile (n>=4) and the medium (n>=30). Four metrics of pollen abundance across sites on a 

grid cell were considered: mean, sum (total), median and maximum.  

 

  Mean Sum Median Max 

First quartile (n>=4) <0.001 0.007 0.002 0.002 

Median (n>=30) 0.038 0.032 0.044 0.025 
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