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Foreword
Machine learning has become ubiquitous in everyday life. As a consequence, research and
engineering in image recognition, text generation, recommender systems or data privacy – among
the many sectors impacted – have experienced a deep transformation. Its broad adoption
has also revolutionized numerous scientific fields, from physics to chemistry, computer science,
mathematics, biology, bringing game-changing tools for data analysis and predictions.
Due to this important number of applications, it is now a priority to obtain more computationally
and memory efficient algorithms. Indeed, machine learning architectures and algorithms becoming
increasingly complex and large, a stark rise in computational demand is observed, challenging
Moore’s law (number of transistors in a dense integrated circuit doubling every two years). To
palliate that, areas of research for efficient machine learning algorithms have emerged, focusing
on improving three main aspects: the computational complexity (the scaling of the number of
required operations with respect to the dataset size and dimension), the memory footprint, and
their compatibility with the hardware (e.g. neural networks being "GPU-friendly").
In this thesis, we will leverage randomness at different stages within algorithms to improve
their computational and memory efficiency. We will start by using a new optical hardware,
with applications ranging from kernel methods to the training of deep neural networks. We will
demonstrate how to perform optical random features that can scale better and be more energy
efficient than GPUs. We will then show how a combination of the optical hardware and new
training methods of deep neural networks, can lead to improving their security, by making them
adversarially robust or differentially private, at a very small cost in natural accuracy contrary to
standard defenses. We will also demonstrate how to accelerate and scale-up reservoir computing
(a random recurrent neural network) by studying this method through the lens of random features.
We will finish by studying sliced optimal transport by the means of the PAC-Bayesian framework,
leading to a learning of the distribution of slices that is theoretically grounded.
More precisely, we will start by introducing the thesis in Chapter 1 and develop the technical
background in Chapter 2.
In Chapter 3, we will explore random features for kernel approximation in the recurrent case
(i.e. reservoir computing) and compute their recurrent kernel limit, corresponding to reservoirs
with an infinite number of neurons. We will then introduce structured reservoir computing (by
replacing the random matrices with structured transforms) to speed-up and reduce the memory
footprint of reservoir computing. We will compare the regimes where recurrent kernels and
structured reservoir computing are more computationally efficient than reservoir computing and
prove their prediction capability on chaotic times-series prediction.
In Chapter 4, we will introduce optical random features, performed by an Optical Processing
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Unit (OPU) and compute their kernel limit as a function of their exponent. We will demonstrate
in which regime it is advantageous to use an OPU compared to a GPU for random matrix
multiplication, as well as identify where the memory bottleneck of the GPU is. We will finish by
showing in which regimes optical random features are more energy efficient than when performed
on a GPU and show their prediction capabilities on standard benchmarks.
Motivated by the need of alternative training methods to backpropagation (of which the backward
is sequential, i.e. updating the layers of the neural network one after the other), Direct Feedback
Alignment (DFA) was introduced recently to unlock the parallel update of the weights thanks to
a modification of the backpropagation update by incorporating a random projection of the error
signal. This therefore allows bypassing non-differentiable layers. On the other side, the OPU is a
physical process performing a random matrix multiplication with unknown weights, and is as a
consequence non-differentiable. Building on these two key elements, we will show in Chapter 5,
that placing the OPU before the classifier of a neural network, and updating the weights using
DFA yields adversarial robustness by design. We will demonstrate the robustness on standard
attacks for neural networks trained from scratch. When the neural network is already trained and
robust (models taken from Robustbench), we will introduce ROPUST, a build-in block composed
of the OPU, and placed just before the classifier. We show here that fine-tuning already robust
models yields an increase of robustness at no cost of natural accuracy.
In Chapter 6, we will combine the OPU and DFA in another fashion. We will choose to perform
the random matrix multiplication in the DFA update of the weights optically. By doing so, a small
noise due to the measurement process of the camera of the OPU is added to the multiplication.
We will show this yields a differentially private neural network, where, as expected, the amount of
privacy is proportional to the variance of the noise. We derive the differential privacy parameters
and show on standard benchmarks that our differentially private neural networks trained with
DFA are much more robust to this noise compared to backpropagation-trained ones.
Relying on random projections, the Sliced-Wasserstein distance is a computationally efficient
alternative to the Wasserstein distance. It consists in projecting into one dimension the dis-
tributions to compare using random projections, and exploiting the analytical formula of the
Wasserstein distance for univariate distributions. On the other side, the PAC-Bayesian framework
provides generalization bounds for classifiers sampled from a distribution. These bounds can
be used to find an optimal distribution of parameters in a theoretically grounded fashion. In
Chapter 7, we will combine the power of PAC-Bayesian bounds for optimizing the distribution of
slices of Sliced-Wasserstein distances in a data-dependent way. This optimized distribution will
benefit from generalization guarantees given by the PAC-Bayes bound and we will demonstrate
this on numerical experiments including generative modelling.
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Résumé
Dans cette thèse, nous tirerons parti de l’usage de l’aléatoire dans différents aspects de l’appren-
tissage automatique. Nous commençerons par montrer le lien entre le calcul par réservoir et les
noyaux récurrents sous le prisme des caractéristiques aléatoires, et introduirons les transformées
structurées afin d’améliorer la complexité computationnelle du calcul par réservoir. Par la suite,
nous montrerons comment tirer parti de calculs optiques afin de mettre à l’échelle les caractéris-
tiques aléatoires pour l’approximation de noyaux, à bas coût énergétique. Nous continuerons par
montrer comment combiner le Processeur de Calcul Optique avec des méthodes d’entraînement
alternatives à la rétropropagation du gradient tel que l’alignement par retour direct, afin de rendre
adversariallement robuste des réseaux de neurones entraînés depuis le début ou d’augmenter la
robustesse des défenses les plus robustes. Par ailleurs, nous entraînerons un réseau de neurones de
façon optique et tirerons parti du bruit expérimental afin de démontrer comment cela induit une
confidentialité différentielle. Nous finirons par utiliser les bornes PAC-Bayésiennes afin d’optimiser
la distribution des projections aléatoires de la distance de Sliced-Wasserstein, tout en s’appuyant
sur des fondations théoriques.

Mots clés : caractéristiques aléatoires, calcul optique, méthodes à noyau, calcul à réservoir,
retour par alignement direct, robustesse adversarialle, confidentialité différentielle, transport
optimal.
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Abstract
In this thesis, we will leverage the use of randomness in multiple aspects of machine learning. We
will start by showing the link between reservoir computing and recurrent kernels through the lens
of random features, and introduce structured transforms to improve the computational complexity
of reservoir computing. We will then show how optical computing can help scaling-up random
features for kernel approximation, at a low energy cost. We will continue by showing how to
combine the Optical Processing Unit with training methods alternative to backpropagation such
as Direct Feedback Alignment, to make adversarially robust networks trained from the beginning,
or improve the robustness of state-of-the-art defenses. We will also train optically a neural
network and show how the experimental noise yields differential privacy. We will finish by using
PAC-Bayesian bounds to optimize the distribution of random projections of Sliced-Wasserstein
distances while being theoretically grounded.

Keywords : random features, optical computing, kernel methods, reservoir computing, direct
feedback alignment, adversarial robustness, differential privacy, optimal transport.
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Notations

Dα(P ||Q) Renyi α-divergence between probability distributions P and Q

0 d-dimensional vector with all components equal to 0

1 d-dimensional vector with all components equal to 1

∇xf Gradient of the function f with respect to the variable x

x ∼ µ x is a sample drawn from the probability distribution µ

Λ(a, b) Laplace distribution with location parameter a and scale parameter b

δx Dirac measure with mass on x

⟨x,y⟩H Inner product between x and y in the space H

Ex Expectation over the random variable x

N Set of natural numbers

P Probability

R Set of real numbers

Sd−1 Unit Sphere on Rd, Sd−1 = {θ ∈ Rd : ∥θ∥ = 1}

Id Identity matrix of size d× d

CN (µ,Σ) Complex Gaussian distribution with mean µ and covariance matrix Σ

N (µ,Σ) Gaussian distribution with mean µ and covariance matrix Σ

P(X ) Set of probability distributions supported on X

Pp(X ) Set of probability distributions supported on X with finite p-th moment

Det(A) Determinant of the matrix A

Tr(A) Trace of the matrix A
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Chapter 1
Introduction

1.1 A short story of machine learning

Since the internet era began, numerical data has become increasingly present in our daily lives,
and extracting information from it has raised many challenges. This motivated considerable
efforts in research and engineering, where developing efficient and accurate algorithms, but also
the hardware accelerating them, and appropriate building infrastructure (data-centers, power
stations) became crucial. Due to the potential outcomes, the research on hardware components
has grown at a impressive pace. The speed of technological progress in the last 50 years can
be illustrated by Moore’s law (see Figure 1.1) which observes that the number of transistors
in integrated circuits (or grossly computing power) doubles every two years. However, at some
point, the size of these transistors will reach the quantum limit, incorporating undesired effects
in the transport of electrons [Powell, 2008]. Such a limit may slow down this incredible pace,
and would require technological breakthroughs – certainly beyond silicon-based hardware – to
maintain it.
On the other hand, along these more powerful chips, hardware-compatible algorithms were
developed, and more specifically compatible with Graphical Processing Units (GPUs). Such
algorithms include convolutions, backpropagation, matrix multiplication-based algorithms, or
more generally algorithms composed of parallelizable computations. This compatibility drastically
increased the pace of research and engineering in machine learning.
Nowadays, neural networks and backpropagation are used in the majority of large-scale applica-
tions of modern machine learning [LeCun, 2015], often combined with convolutional (for images)
or attention layers (for images or text). This success is mainly due to the fact that they allow
optimization of very complex and highly non-convex functions, reduced to matrix multiplication
and gradient-descent based algorithms, with very accessible programming packages such as
Pytorch [Paszke, 2019].
Modern machine learning breakthroughs. Most of the answers to highly complex modern
problems usually require huge neural networks architectures with billion-scale parameters. The
first widely publicized victory of AI/ML in games was Deep blue [Campbell, 2002], which beat
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Chapter 1. Introduction

Figure 1.1 – Moore’s law is the observation that the number of transistors on microchips
roughly doubles every two years. This figure is a semi-log plot of the number of transistors versus
the year of introduction of the processor. Source : Our world in data.

chess champions, followed by reinforcement learning-based algorithms beating experts in various
games such as Go or Shogi [Silver, 2016 ; Silver, 2018]. Then the research focused on drastically
improving accuracy on the protein folding problem [Jumper, 2021], the manipulation of plasma
in Tokamaks [Degrave, 2022] and helped solving many problems for big physics instruments such
as LIGO [George, 2018] or the CERN [Arpaia, 2021].
On another hand, Natural Language Processing went through a revolution during the past five
years (as of mid-2022) with Bert [Devlin, 2018], GPT-2 [Radford, 2019] and GPT-3 [Brown, 2020],
these models requiring billions of parameters and relying on transformers architectures. Images
can also be created by entering a simple prompt with DALL-E [Ramesh, 2021 ; Ramesh, 2022].
All of these accomplishments mainly rely on big engineering issues to solve, but also on a huge
computational power hardly available to public research laboratories. One of the expected benefits
of more efficient algorithms and hardware is to make accessible these important topics to a wider
range of researchers.
Hardware limitations. Due to this increasing demand in computational power, it is our role, as
researchers, to develop more efficient algorithms, as well as novel hardware that can handle these
huge computations, instead of just stacking an increasing number of GPUs (which relies on specia-
lized engineering). In this thesis we will dedicate a three chapters focusing on optical computing
for machine learning applications. Optical computing relies on light to perform computations
and has the advantage to allow high-dimensional computations at a very low energy cost.

2
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1.2. Outline of the thesis

Security of systems. Due to the stark increase in the use of these models in critical applications,
guaranteeing their security and privacy is now crucial. Indeed, as these systems handle sensitive
information about users, any leakage could lead to dramatic consequences. That’s why, in 2020,
the US Bureau of Census used differential privacy when providing their data to avoid recovering
information about users [Hawes, 2020]. Regarding private companies, Apple is using privacy as a
selling feature for advertising their products (even if they don’t communicate the level of privacy
they provide). This had economical implications, as part of users information was blocked to
companies using their devices, such as Meta, inducing a loss of 10 billion USD 1. On another
hand, protecting predictive systems against adversarial attacks – i.e. attacks that can fool the
algorithm – is critical. For example, it can be used against self-driving cars which could lead to
critical accidents [Eykholt, 2018].
In this thesis, we will modestly try to provide solutions to these challenges by leveraging
randomness in machine learning models. As it can be incorporated at different steps within
the learning algorithm, it will yield various desirable features. For instance, random reservoir
computers allow the prediction on chaotic time-series at a very low computational cost compared
to standard algorithms, and we will improve this cost at no loss in accuracy. When it is possible,
randomness will be generated by an Optical Processing Unit, allowing the multiplication by a
random matrix at scale unreachable by a GPU and at a lower energy consumption. We will
demonstrate that this randomness generated optically can improve the security of a neural
network, either being its robustness or privacy. We will also use Direct Feedback Alignment, an
alternative training method to backpropagation that relies on a random projection of the final
error at the end of the neural network. This method unlocks its backward pass, i.e. it allows the
parallel update of weights. As this could lead to significant speed-ups in very large architectures,
it is a method that we will study and take advantage of. We will finish by exploiting sliced
optimal transport, a cheap but efficient alternative to standard optimal transport that relies on
random projections, by providing some theoretical guarantees and improvements of this method.

1.2 Outline of the thesis

In Chapter 2, we will start by introducing mathematical and algorithmic concepts required to
understand the themes studied thorough this thesis. As randomness will be studied under very
different scopes, many technical elements will be introduced. We will also develop briefly works
with minor contributions as they also study randomness and fit in the theme of this thesis.
In Chapter 3, we will develop methods to make more efficient Reservoir Computing (RC)
approaches for chaotic times-series prediction. By identifying RC with recurrent random features,
we will compute its infinite-width limit, namely a Recurrent Kernel, and compute convergence
rates of the reservoir towards it. We will then introduce Structured Reservoir Computing, by
leveraging the reduced computational cost of structured transforms to replace the random matrix
of the reservoir and scale up Reservoir Computing approaches. We will then compute in which
regime one has to replace Reservoir Computing by either Structured Reservoir Computing

1. https ://www.nytimes.com/2022/02/03/technology/apple-privacy-changes-meta.html

3



Chapter 1. Introduction

or Recurrent Kernels. We will finish by demonstrating the efficiency of our approaches on a
multi-dimensional chaotic time-series. This chapter is based on 1 :

• [Dong, 2020] Jonathan Dong∗, Ruben Ohana∗, Mushegh Rafayelyan, and Florent Krzakala.
"Reservoir computing meets recurrent kernels and structured transforms." Advances in
Neural Information Processing Systems 33 (NeurIPS 2020 - Oral Presentation) : 16785-
16796.

In Chapter 4, we will perform the multiplication of the data by a random matrix, using a novel
optical hardware – the Optical Processing Unit (OPU) – which uses light scattering through
a diffusive medium. This will allow us to perform random features with the absolute value
square element-wise non-linearity (due to the intensity measurement on the camera). We will
compute the analytical kernel limit for arbitrary exponents of the feature map, making close
links with polynomial kernels. Due to the optical nature of the operation, the allowed input
and output dimensions of the random matrix can be of the order of millions. We will therefore
compare speed of operation and power consumption with a GPU and show in which regimes the
OPU outperforms it. We will finish by testing our optical random features on standard machine
learning benchmarks to demonstrate their capabilities. This chapter is inspired from :

• [Ohana, 2020] Ruben Ohana, Jonas Wacker, Jonathan Dong, Sébastien Marmin, Florent
Krzakala, Maurizio Filippone, and Laurent Daudet. "Kernel computations from large-
scale random features obtained by optical processing units." International Conference on
Acoustics, Speech and Signal Processing (ICASSP 2020).

In Chapter 5, we will propose a new building block as an adversarial defense. This block is
placed before the classifier of a neural network, and is composed of the Optical Processing Unit.
Because the latter is non-differentiable, we will have to bypass it in the training step using an
alternative training method to backpropagation, named Direct Feedback Alignment. We will
demonstrate that our building block yields adversarial robustness against standard white-box,
black-box and transfer attacks. We will then incorporate it in state-of-the-art robust models
and just fine-tune the classifier. This will yield an increase in robustness, at no cost in natural
accuracy. This chapter is inspired from :

• [Cappelli, 2021a] Alessandro Cappelli∗, Ruben Ohana∗, Julien Launay, Laurent Meunier,
Iacopo Poli, and Florent Krzakala. "Adversarial robustness by design through analog
computing and synthetic gradients." International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2022).

• [Cappelli, 2021b] Alessandro Cappelli, Julien Launay, Laurent Meunier, Ruben Ohana, and
Iacopo Poli. "Ropust : Improving robustness through fine-tuning with photonic processors
and synthetic gradients." arXiv preprint arXiv :2108.04217 (2021).

In Chapter 6, we will use the Optical Processing Unit to perform the random matrix multiplication
of Direct Feedback Alignment during the training step of a neural network. Because it is a physical
measurement, we will assume the projection to be corrupted by Gaussian noise – due to the

1. The ∗ denotes equal contribution.
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1.3. Papers not included in this thesis

photon shot-noise on the camera – which will make the neural network differentially privatewhere
the level of privacy depends on the variance of the noise. We will compute the Differential Privacy
parameters and then show on standard benchmarks that our methods yields differential privacy
at a very small cost in accuracy compared to backpropagation trained networks.

• [Ohana, 2021] Ruben Ohana∗, Hamlet Medina∗, Julien Launay∗, Alessandro Cappelli,
Iacopo Poli, Liva Ralaivola, and Alain Rakotomamonjy. "Photonic Differential Privacy
with Direct Feedback Alignment." Advances in Neural Information Processing Systems 34
(NeurIPS 2021).

In Chapter 7, we will use the PAC-Bayesian framework to learn the distribution of random
projections of Sliced-Wasserstein distances. Usually, this framework provides generalization
bounds for the empirical risk of a classifier, and we will adapt it for Sliced-Wasserstein distances.
The latter is a distance between probability distributions and depends on slices, usually sampled
uniformly on the sphere. We will compute PAC-Bayesian bounds for these distances, which we
will use to optimize the distribution of slices, to make these distances more discriminant. We will
use a toy model to show a link with the distributional Sliced-Wasserstein distance and provide
numerical experiments showing better generalization capabilities of our new distances. This
Chapter is based on :

• [Ohana, 2022] Ruben Ohana∗, Kimia Nadjahi∗, Alain Rakotomamonjy, Liva Ralaivola.
"Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein distances."
arXiv preprint arXiv :2206.03230 (2022).

1.3 Papers not included in this thesis

Theory of Direct Feedback Alignment. In this paper, we study the teacher-student setup,
where we train the student network with (Direct) Feedback Alignment. We show that we first
observe an alignment of the weights with the feedback matrix, followed by some loss in alignment
to align with the teacher weights, going into the loss landscape of the network favoring alignment
in both. The main results will be briefly developed in Section 2.3.1.1, which is based on :

• [Refinetti, 2021] Maria Refinetti∗, Stéphane d’Ascoli∗, Ruben Ohana, and Sebastian
Goldt. "Align, then memorise : the dynamics of learning with feedback alignment." In
International Conference on Machine Learning (ICML 2021), pp. 8925-8935. PMLR, 2021.

Complex-to-real random features. In this paper, we show that sampling complex random
features for polynomial kernel approximation, then taking only the real part of the estimator,
yields lower variance than real random features. The main results will be briefly developed in
Section 2.2.4, which is based on :

• [Wacker, 2022a] Jonas Wacker, Ruben Ohana, and Maurizio Filippone. "Complex-to-Real
Random Features for Polynomial Kernels." arXiv preprint arXiv :2202.02031 (2022).
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1.4 Publications and personnal contributions

• [Ohana, 2020] R. Ohana, J. Wacker, J. Dong, S. Marmin, F. Krzakala, M. Filippone, L.
Daudet. Kernel computations from large-scale random features obtained by optical processing
units. IEEE ICASSP 2020.
This works computes and studies the kernel limit of optical random features performed
by Optical Processing Units. Personal contributions : development of the idea about the
arbitrary exponent of the feature maps, computations of kernel limits and convergence rates,
supervising experiments, writing of the paper .

• [Dong, 2020] J. Dong∗, R. Ohana∗, M. Rafayelyan, F. Krzakala. Reservoir Computing
meets Recurrent Kernels and Structured Transforms. NeurIPS 2020 (Oral Presentation).
This work studies the kernel limit of Reservoir Computing and introduces Recurrent Kernels
and Structured Reservoir Computing, improving the computational complexity. Personal
contributions : development of the recurrent kernel limit idea, computation of the convergence
rates, supervising numerical experiments, writing of the paper .

• [Cappelli, 2021a] A. Cappelli∗, R. Ohana∗, J. Launay, L. Meunier, I. Poli, F. Krzakala.
Adversarial Robustness by Design through Analog Computing and Synthetic Gradients.
IEEE ICASSP 2022.
This work studies the Optical Processing Unit as a adversarial defense against standard
white-box, black-box and transfer attacks. Personal contributions : initial idea about the
defense, preliminary white-box numerical experiments, black-box numerical results, writing
of the paper .

• [Cappelli, 2021b] A. Cappelli, J. Launay, L. Meunier, R. Ohana, I. Poli. ROPUST : Im-
proving Robustness through Fine-tuning with Photonic Processors and Synthetic Gradients.
https://arxiv.org/abs/2108.04217.
This paper studies the Optical Processing Unit as an adversarial defense for improving
robustness of state-of-the-art robust models. Personal contributions : initial idea about the
defense, analysis of experimental results.

• [Refinetti, 2021] M. Refinetti∗, S. d’Ascoli∗, R. Ohana, S. Goldt. Align, then memorise :
the dynamics of learning with feedback alignment. ICML 2021.
This paper studies the dynamics of learning with Direct Feedback Alignment algorithms.
Personal contributions : original toy modelling for understanding alignment in DFA.

• [Ohana, 2021] R. Ohana∗, H. Ruiz∗, J. Launay∗, A. Cappelli, I. Poli, L. Ralaivola, A.
Rakotomamonjy. Photonic Differential Privacy with Direct Feedback Alignment. NeurIPS
2021.
This paper studies the differentially private mechanism induced by training a neural net-
work with Direct Feedback Alignment performed by a Optical Processing Unit. Personal
contributions : developing the linear OPU which triggered the initial ideas of this work,
computation of the DP parameters of the model and of the main proposition, supervising
numerical results, writing of the paper .

• [Ohana, 2022] R. Ohana∗, K. Nadjahi∗, A. Rakotomamonjy, L. Ralaivola. Shedding a PAC-
Bayesian Light on Adaptive Sliced-Wasserstein Distances. https://arxiv.org/abs/2206.03230.
This paper uses the PAC-Bayesian framework to learn the distribution of slices of Sliced-
Wasserstein distances while being theoretically grounded. Personal contributions : develop-
ment of the scheme of proof and of the main theorem, struggling on p = 2 unbounded case
and realizing it is too hard and may require new mathematical tools, development of the
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link with the von-Mises Fisher distribution, numerical experiments on the generalization
properties, writing part of the code, writing of the paper .

• [Wacker, 2022b] J. Wacker, R. Ohana, M. Filippone. Complex-to-Real Random Features
for Polynomial Kernels. https://arxiv.org/abs/2202.02031.
This paper introduces a new Complex-to-Real random feature for polynomial kernel approxi-
mation. Personal contributions : variance computations about the intuition behind these
RFs, paper review.

• [Hesslow, 2021] D. Hesslow, A. Cappelli, I. Carron, L. Daudet, R. Lafargue, K. Müller, R.
Ohana, G. Pariente, I. Poli. Photonic co-processors in HPC : using LightOn OPUs for
Randomized Numerical Linear Algebra. Hot Chips 2021.
This papers demonstrates that Randomized Numerical Linear Algebra can be performed
using the OPU. Personal contribution : development of the linear OPU .

• [Brossollet, 2021] The LightOn team. LightOn Optical Processing Unit : Scaling-up AI and
HPC with a Non von Neumann co-processor. https://arxiv.org/abs/2107.11814.
This paper introduces the Optical Processing Unit. Personal contribution : development of
new algorithms for the Optical Processing Unit thorough the thesis.

Patents

[Poli, 2021] I. Poli, J. Launay, K. Müller, G. Pariente, I. Carron, L. Daudet, R. Ohana, D.
Hesslow. Method and System for Machine Learning using Optical Data. US 2021/0287079 A1.
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Chapter 2
Technical Background

2.1 General machine learning principles

Machine learning can be divided in 3 main classes of problems : supervised learning (we have
access to labels and data), unsupervised learning (unlabeled data) and reinforcement learning
(an agent has a task or an environment to learn and solve). We will in this section develop the
supervised learning setting, which is the one we will set ourselves in this thesis.
Let us give an informal example. If an user is building an application to automatically classify
pictures of cats and dogs, the prediction model will be trained on already labeled data. Once
it the training is performed, the model will be able to classify a new picture of a cat or a dog
provided by the user. Behind this prediction is the process of learning a function (i.e. the model)
mapping the new image to its class. This function learned on labeled data is in general highly
complex and non-linear.
More formally, we will consider the data space to be X ⊂ Rd, and the label space to be
Y ∈ {−1,+1} for (two class) classification or Y ⊆ R for regression. We will assume that the
training set S = {(xi, yi)}ni=1 is sampled i.i.d. from a probability measure ρ on X × Y.
The predictor f is chosen by a training algorithm from an hypothesis class, a set of functions
from X to Y, in order to minimize the error on the training set S, called the empirical risk :

R̂(f, ℓ,S) = 1
n

n∑
i=1

ℓ(f(xi), yi), (2.1)

where ℓ : Y × Y → R is a loss function which measures the quality of the prediction (or
discrepancy) of f(x) with respect to the true label y. Popular choices of ℓ include the ℓ2-loss
ℓ(y, f(x)) = (y − f(x))2 for regression (used in linear regression and deep neural networks) or
the hinge loss ℓ(y, f(x)) = max(0, 1− yf(x)) used in Support Vector Machines.
The goal of empirical risk minimization is to generalize on unseen data of the test set, by hoping
that our function f minimizes the expected risk (or population risk) on the joint distribution ρ :

R(f, ℓ) = Ex,y[ℓ(f(x), y)] =
∫

X ×Y
ℓ(f(x), y)dρ(x, y), (2.2)
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which is expressed as the expectation over the joint distribution ρ. One can notice that the
empirical risk is an unbiased estimator of the expected risk, i.e., R(f, ℓ) = Ex,y[R̂(f, ℓ,S)].
One of the goals of researchers and machine learning engineers is to wisely chose the hypothesis
class, the training method and the inductive bias, considering the type of data.

2.1.1 Linear regression

In the following, we will denote by X = (x1, . . . ,xn)⊤ ∈ Rn×d the data matrix, i.e., the
concatenation of the training points and Y ∈ Rn the concatenation of the labels, i.e. Y =
(y1, . . . , yn)⊤.
The simplest class of functions to learn is the class of linear functions, i.e. f : x→ x⊤β, which
is parametrized by β ∈ Rd. These parameters are usually learned by choosing the ℓ2-loss (the
method is called the Ordinary least squares). We want to find β̂ that minimizes the empirical
risk defined in Equation 2.1 :

β̂ = arg min
β

R̂(β,S) = 1
n

arg min
β

n∑
i=1

(yi − x⊤
i β)2 (2.3)

= arg min
β
∥Y −Xβ∥22. (2.4)

This choice is motivated by some properties and assumptions such as linearity, homoscedasticity,
independence of errors and of the data points.
Equation 2.4 can be solved analytically and has two equivalent solutions (if the columns of X

are linearly independent) given by :

β̂ = (X⊤X)−1X⊤Y = X⊤(XX⊤)−1Y . (2.5)

Once the above solution is computed on the train set, predicting the label Ytest of test points
assembled in the matrix Xtest, we have to compute :

Ytest = Xtestβ̂ (2.6)
= Xtest(X⊤X)−1X⊤Y = XtestX

⊤(X⊤X)−1Y . (2.7)

2.1.2 Ridge regression

Ridge Regression (or Tikhonov regularization) is a method used for solving ill-posed
problems which is usually the case in high-dimensional problems. It consists in restraining
the parameters that are learned into high-dimensional balls of bounded radius. It consists in
modifying Equation 2.4 by adding a regularization term in the ERM formulation :

β̂ = arg min
β

∥Y −Xβ∥22 + λ∥β∥22, (2.8)
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with λ ≥ 0. This is solved by :

β̂ = X⊤(XX⊤ + λIn)−1Y (2.9)
= (X⊤X + λId)−1X⊤Y . (2.10)

An interesting remark here is that these two solutions have different computational complexities,
and one is to use in favor of the other depending the regime we are in. The inversion of an
n × n matrix has a computational cost of O(n3). In knowledge of that, Equation 2.9 has a
computational complexity of O(n3) coming from computing and inverting the n×n matrix XX⊤

and a memory cost of O(n2 + nd) for storing XX⊤ and X. On the other hand, Equation 2.10
has a computational complexity of O(d3) for comuting and inverting X⊤X and a memory cost
of O(d2 + nd). Comparing these complexities, we can deduce that we should solve linear (ridge)
regression using Equation 2.9 when n < d and Equation 2.10 when d < n.

2.2 Kernel methods and random features

2.2.1 Kernel methods

Informally, kernel methods are non-parametric approaches to learning. Essentially, a kernel is a
function measuring a (possibly non-linear) correlation between two points x,x′ ∈ Rd. A specificity
of kernels is that they can be expressed as the inner product of feature maps φ : Rd → H in a
possibly infinite-dimensional Hilbert space H, i.e. k(x,x′) = ⟨φ(x),φ(x′)⟩H. Kernel methods
enable the use of linear methods in the non-linear feature space H. The most famous kernel
function is the Gaussian kernel k(x,x′) = exp

(
−∥x−x′∥2

2σ2

)
.

We need to introduce the following notions to introduce kernel methods more formally.

Definition 2.2.1 (Inner product [Schölkopf, 2002]). Let H be a vector space over R. A function
⟨·, ·⟩H : H×H → R is said to be an inner product on H if

1. ⟨α1f1 + α2f2, g⟩H = α1 ⟨f1, g⟩H + α2 ⟨f2, g⟩H,

2. ⟨f, g⟩H = ⟨g, f⟩H,

3. ⟨f, f⟩H ≥ 0 and ⟨f, f⟩H = 0 if and only if f = 0.

A norm is defined using the inner product as ∥f∥H :=
√
⟨f, f⟩H.

Definition 2.2.2 (Hilbert space). A Hilbert space is a space on which a real or complex inner
product space is defined, that is also a complete metric space (it contains the limits of all Cauchy
sequences of it points) with respect to the distance function induced by the inner product.

Definition 2.2.3 (Kernel function). Let X be a non-empty set. A function k : X × X → R is
called a kernel if there exists an R-Hilbert space H and a map φ : X → H such that ∀x,x′ ∈ X ,

k(x,x′) :=
〈
φ(x),φ(x′)

〉
H . (2.11)

Definition 2.2.4 (Reproducing Kernel Hilbert Space (RKHS) [Scholkopf, 2002]). Let X be a
non-empty set and H a Hilbert space of functions f : X → R. Then H is called a reproducing
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kernel Hilbert space endowed with the dot product ⟨·, ·⟩H if there exists a function k : X ×X → R
with the following properties,

1. k has the reproducing property, i.e. ⟨f, k(x, ·)⟩H = f(x) ∀f ∈ H.
In particular, ⟨k(x, ·), k(x′, ·)⟩H = k(x,x′).

2. k spans H, i.e. H = span{k(x, ·)|x ∈ X} where X denotes the completion of the set X.

Theorem 2.2.5 (Representer theorem [Scholkopf, 2002]). Let Ω : [0,∞) → R be a strictly
monotonic increasing function, X be a set and R̂ defined in Equation 2.1. Consider a positive-
definite positive kernel k : X × X → R with a corresponding RKHS H. Then each minimizer
f∗ ∈ H of the regularized risk

f∗ = arg min
f∈H

R̂(f, ℓ,S) + Ω(∥f∥H), (2.12)

admits a representation of the following form,

f(·) =
n∑
i=1

αik(xi, ·), (2.13)

with ∀i = 1, ..., n αi ∈ R.

The representer theorem is very useful in practice because it drastically reduces the computational
cost of the problem. Indeed, in most machine learning problems, the minimization would be
over infinite dimensional spaces H which is not possible to solve a on computer with finite
memory and precision. Fortunately, the representer theorem allow us to reduce the possibly
infinite dimensional problem on H into a n-dimensional minimization problem on the αi’s, which
can be performed using standard machine learning algorithms.
This n-dimensional minimization problem is solvable through linear regression leading to a O(n3)
computational complexity and a O(n2 + nd) memory complexity which scales badly when the
number of points becomes high. For instance, let’s take the MNIST [LeCun, 1990] database with
a training set of 50000 points. A kernel matrix to be stored in memory scales quadratically with
the number of points, would contain 500002 = 2.5× 109 elements . This has to be multiplied by
the precision of the storage, which in float32 (single-precision floating point format) requires 32
bits per element. Thus, this would require 80 GB of storage, which is not reasonable as it would
not fit in the memory of modern GPUs.

2.2.2 Random features

Random features have been developed in [Rahimi, 2008] to overcome this issue. This celebrated
technique introduces a random mapping ϕ : Rd → RD such that the kernel is approximated
in expectation. It was first developed for approximating the Gaussian kernel and relies on the
following Bochner’s theorem :

Theorem 2.2.6 (Bochner’s Theorem [Bochner, 1933]). Let x,x′ ∈ X . A continuous kernel
k(x,x′) = k(x − x′) on X ∈ Rd is positive definite if and only if k(x − x′) is the Fourier
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transform of a non-negative measure. Therefore, with proper scaling, p(w) is a proper probability
distribution :

k(x− x′) =
∫

X
ejw

⊤(x−x′) p(w)dw = Ew[ejw⊤xejw
⊤x′ ], (2.14)

where here j2 = −1.

Therefore by sampling w from p(w), the Fourier transform of the translation-invariant kernel,
the kernel k can be approximated. This kernel, which is exactly the inner product of feature
maps φ in an Hilbert space H, is thus approximated in expectation by the inner product of
random feature maps ϕ in a chosen dimension D :

k(x,x′) =
〈
φ(x),φ(x′)

〉
H ≈ ϕ(x)⊤ϕ(x′), (2.15)

with ϕ(x) = 1√
D

[f(w⊤
1 x), ..., f(w⊤

Dx)]⊤ ∈ RD and random vectors w1, ...,wD ∈ Rd. Depending
on the non-linearity f and the distribution of {wi}Di=1, we can approximate different kernel
functions. For example, Random Fourier Features defined by :

ϕ(x) = 1√
D

[cos(w⊤
1 x), ..., cos(w⊤

Dx), sin(w⊤
1 x), ..., sin(w⊤

Dx)]⊤ ∈ R2D, (2.16)

approximate any translation-invariant (i.e. kernels such that k(x,y) = k(x− y) and k(0) = 1).
If w1, ...,wD ∼ N (0, σ−2Id), then the Gaussian kernel is approximated. The most popular
non-linearities with their associated kernel are presented in Table 2.1 and can also be found in
[Liao, 2018]. Note that we can also write Equation 2.16 in matrix form, i.e. ϕ(x) = 1√

D
f(Wx).

f(·) Associated kernel k(x,x′)

Erf(·) 2
π arcsin

(
2⟨x,x′⟩√

(1+2∥x∥2)(1+2∥x′∥2)

)
RFFs : [cos(·), sin(·)] exp

(
−∥x−x′∥2

2

)
= exp

(
−∥x∥2+∥x′∥2−2⟨x,x′⟩

2

)
Sign(·) 2

π arcsin
(

⟨x,x′⟩
∥x∥∥x′∥

)
Heaviside(·) 1

2 −
1

2π arccos
(

⟨x,x′⟩
∥x∥∥x′∥

)
ReLU(·) 1

2π

(
⟨x,x′⟩ arccos(− ⟨x,x′⟩

∥x∥∥x′∥) + ∥x∥∥x′∥
√

1−
(

⟨x,x′⟩
∥x∥∥x′∥

)2
)

Table 2.1 – Table of point-wise non-linearities f and their approximated kernels. For any x,x′ ∈
Rd the kernel k(x,x′) is the limit when D goes to infinity of ⟨ϕ(x),ϕ(x′)⟩ = ⟨ 1

D ⟨f(Wx), f(Wx′)⟩
with W ∈ RD×d an i.i.d. standard random matrix.

Kernel Ridge Regression. A power of kernel methods is to combine them with Ridge Regression.
This allows to performs the regression is a possibly infinite-dimensional space H. Indeed, by
transforming the data points using a feature map φ ∈ H, and looking at the solutions of linear
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regression, one obtains :

Ytest = Ψ∗Ψ⊤(ΨΨ⊤ + λIn)−1Y = K∗(K + λIn)−1Y , (2.17)

where Ψ∗ = (φ(x∗
1), . . . ,φ(x∗

m))⊤, Ψ = (φ(x1), . . . ,φ(xn))⊤, K = ΨΨ⊤ ∈ Rn×n, and K∗ =
Ψ∗Ψ⊤ ∈ Rm×n and the stared elements are for the m elements of the test set. The elements of
these matrices are (K)ij = ⟨φ(xi),φ(xj)⟩H. As in linear regression, the computational complexity
here is of O(n3) and one has to store the kernel matrix yielding a memory complexity of O(n2).
On the other hand, the RF-based approximation turns a kernel-based model into a linear model
with a new set of nonlinear features Φ = (ϕ(x1), ...,ϕ(xn))⊤ ∈ Rn×D, i.e.

Ytest = Φ∗(Φ⊤Φ + λID)−1Φ⊤Y . (2.18)

This approximates the solution with the exact kernel function, but it yields a computation
complexity of O(D3) to optimize the linear model and a memory complexity of O(D2). Therefore,
when D > n, the user would therefore prefer to use standard kernel methods and when D < n,
it is preferable on a complexity point of view, to use the random features method. Therefore,
computing random features comes the main computational bottleneck.

Kernel methods Random features
Computational complexity O(n3) O(D3)

Memory complexity O(n2) O(D2)

Table 2.2 – Computational and memory complexities for Kernel Ridge regression using kernel
methods or Random features. n is the number of training points, d their dimension and D the
number of random features.

2.2.3 Orthogonal random features

The Walsh-Hadamard matrix is an orthogonal matrix (H⊤
p Hp = Ip) defined recursively as :

H0 = 1 and Hp = 1√
2

[
Hp−1 Hp−1

Hp−1 −Hp−1

]

It is therefore only defined in a square matrix form for dimensions d = 2p that are power of 2 (it
can actually be defined for any arbitrary dimension d using simple tricks).
Thanks to the structure of this matrix, the computational complexity of its multiplication
with a vector can be reduced from O(n2) to O(n logn) by using a divide-and-conquer strategy
[Fino, 1976].
Fastfood [Le, 2013] was the first acceleration technique of random features based on Hadamard
matrices. It consists in replacing the Gaussian random matrix with the following transform :

WFF =
√
d

σ
SHGΠHB ∈ Rd×d, (2.19)
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where Π ∈ {0, 1}d×d is a permutation matrix and H is the Walsh-Hadamard matrix developed
above. S,G and B are all diagonal random matrices where B has random {±1} entries, G has
random Gaussian entries and S is a random scaling matrix. Here, σ is a parameter playing the
equivalent role of a standard deviation of a Gaussian random variable. The coefficients of S,G,B
are computed once and then stored, using O(d) in memory because they are diagonal matrices.
Orthogonal Random features [Choromanski, 2017a] are a simpler transform and consist
in replacing the Gaussian random matrix by a product of Hadamard matrices H and diagonal
Rademacher distributed matrices Di, giving the following structured transform :

WORF =
√
d

σ

s∏
i=1

HDi , (2.20)

where in standard applications, s = 3.
These transforms were first introduced to reduce the computational cost and memory footprint
of random features approximation for kernel methods due to the cheap cost of the Hadamard
matrix. However, their theoretical analysis and convergence properties toward their kernel limit
is much more involved because the produced random features are not statistically independent.
Therefore, standard convergence bounds such as Bernstein or Chernoff are not usable. However,
recently, [Cherapanamjeri, 2022], succeeded to compute convergence rates when the activation is
Lipschitz, justifying their empirical success. As it will be seen in Chapter 3, convergence rates of
structured transforms are empirically the same as standard random features.

2.2.4 Minor contribution : Complex-to-Real (CtR) random features for poly-
nomial kernel approximation

This section is an extract of [Wacker, 2022b].
A particularly important class of kernels are polynomial kernels k(x,y) = (γx⊤y + ν)p for some
inputs x,y ∈ Rd, where γ, ν ≥ 0 and p ∈ N. Their feature maps can be constructed explicitly
and consist of interactions of the dimensions of x (or y respectively) up to order p, and are thus
finite-dimensional. One could thus hope to avoid the scalability bottleneck of kernel methods
by using explicit feature maps of the polynomial kernel in a parametric model. However, such
hopes are dampened since the dimension of these feature maps scales as O(dp), which makes
their construction practically infeasible as soon as d or p are moderately large.
In this section, we propose novel Complex-to-Real (CtR) polynomial random features that leverage
intermediate complex projections to yield low-variance kernel estimates. The resulting features
are real-valued and can be used inside any downstream task without requiring the model to
handle complex data, e.g., as a drop-in replacement of the widely known random Fourier features
[Rahimi, 2007].
We derive the variances of CtR random features using Gaussian and Rademacher projections in
closed form and prove under which conditions they yield lower-variance kernel estimates than
comparable random features in the literature that use only real-valued random projections.
More formally, recall that p ∈ N is the degree of the polynomial kernel and D ∈ N is the
projection dimension of the polynomial random features. We generate p×D i.i.d. random weights
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wi,ℓ ∈ Cd satisfying E[wi,ℓwi,ℓ
⊤] = Id for i ∈ {1, . . . , p}, ℓ ∈ {1, . . . , D}, where Id is the identity

matrix of size d. Real-valued example distributions p(wi,ℓ) that satisfy this property are the
Gaussian distribution N (0, Id) as well as the Rademacher distribution, i.e., the elements of wi,ℓ

are independently sampled from the uniform distribution over {1,−1}. Their complex-valued
analogs are the complex Gaussian distribution CN (0, Id) and the uniform distribution over
{1,−1, i,−i} with i :=

√
−1.

We define a polynomial random feature ϕ : Rd → CD as

Φ(x) := 1√
D

[
(
p∏
i=1

w⊤
i,1x), . . . , (

p∏
i=1

w⊤
i,Dx)

]⊤

, (2.21)

and let k̂(x,y) := Φ(x)⊤Φ(y) ∈ C be the approximate kernel for two inputs x,y ∈ Rd, which is
unbiased because

E
[
k̂(x,y)

]
= 1
D

D∑
ℓ=1

p∏
i=1

x⊤E[wi,ℓwi,ℓ
⊤]y = (x⊤y)p.

In the following, we show how to convert complex polynomial random features into real-valued
CtR ones. Let ΦC : Rd → CD be a complex polynomial random feature and k̂C(x,y) =
ΦC(x)⊤ΦC(y) the approximate kernel defined previously, where we make the use of complex
projections explicit through the subscript C. Let Re{·} and Im{·} denote the real and imaginary
parts of a complex vector. k̂C(x,y) is generally complex-valued and can hence be written as
k̂C(x,y) = Re{k̂C(x,y)}+ i · Im{k̂C(x,y)}.
As shown previously, k̂C(x,y) is unbiased and thus E[k̂C(x,y)] = k(x,y) + 0 · i. From this it
follows that E[Re{k̂C(x,y)}] = k(x,y) and E[Im{k̂C(x,y)}] = 0 through the linearity of the
expectation.
We define k̂CtR(x,y) := Re{k̂C(x,y)} to be our novel kernel estimate which, by expanding the
real part of ΦC(x)⊤ΦC(y), can be written as

k̂CtR(x,y) := Re{ΦC(x)}⊤Re{ΦC(y)}+ Im{ΦC(x)}⊤Im{ΦC(y)}.

Note that Re{ΦC(x)}, Im{ΦC(x)} ∈ RD, which allows us to define a 2D-dimensional real-valued
polynomial random feature

ΦCtR(x) :=
(
Re{ΦC(x)1}, . . . ,Re{ΦC(x)D}, Im{ΦC(x)1}, . . . , Im{ΦC(x)D}

)⊤ ∈ R2D, (2.22)

for which we have
ΦCtR(x)⊤ΦCtR(y) = Re{k̂C(x,y)} = k̂CtR(x,y). (2.23)

We call ΦCtR a Complex-to-Real (CtR) polynomial random feature and summarize its construction
in Algorithm (1).
We provide the following theorems showing the variance reduction for Rademacher and Gaussian
sampling and that are proven in [Wacker, 2022b]. In the following, V[·] denotes the variance.
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Algorithm 1 Complex-to-Real (CtR) Random Features
Input : Datapoint x ∈ Rd
Choose projection dimension D ∈ N, degree p ∈ N
Sample {Wi}pi=1 with Wi ∈ CD×d independently according to one of these random features :

• Gaussian : (Wi)ℓ,k
i.i.d.∼ CN (0, 1)

• Rademacher : (Wi)ℓ,k
i.i.d.∼ Unif({1,−1, i,−i})

Compute ΦC(x) := (W1x⊙ · · · ⊙Wpx)/
√
D

Return :
ΦCtR(x) := (Re{ΦC(x)1}, . . . ,Re{ΦC(x)D}, Im{ΦC(x)1}, . . . , Im{ΦC(x)D})⊤ ∈ R2D

Theorem 2.2.7 (CtR-Rademacher advantage). Let a := ∑d
i=1

∑d
j ̸=i xixjyiyj and b(j) :=

∥x∥2j ∥y∥2j − (∑d
i=1 x

2
i y

2
i )j ≥ 0. Then V[k̂R(x,y)]− V[k̂CtR(x,y)] yields

1
2D

p∑
k=2

k−1∑
j=0

(
p

k

)(
k

j

)
b(j) ap−j ≥ 0 if a ≥ 0.

Furthermore, CtR-Rademacher sketches achieve the lowest possible variance for k̂CtR(x,y) =
Re{ΦC(x)⊤ΦC(y)} with ΦC being defined through Equation 2.21.

Theorem 2.2.8 (CtR-Gaussian advantage). For any x,y ∈ Rd, V[k̂R(x,y)] − V[k̂CtR(x,y)]
yields

1
2D

p−1∑
k=0

(
p

k

)
(2k − 1)(x⊤y)2k

(
∥x∥2 ∥y∥2

)p−k
≥ 0.

Thus, regardless of the input data, ΦCtR should be preferred over ΦR when using Gaussian
polynomial random features. The advantage again increases with p.
In [Wacker, 2022b], the CtR feature map was also combined with Orthogonal random features
and the TensorSRHT algorithm in order to lower its computational complexity.

2.3 Deep neural networks and training methods

Deep neural networks. During the process of learning a function minimizing the empirical
risk, we could simply parameterize the function by a neural network. This function will be the
combination of composed functions and matrix multiplication.
Forward pass. In a model with L layers of neurons, ℓ ∈ {1, . . . , L} is the index of the ℓ-th layer,
Wℓ ∈ Rnℓ×nℓ−1 the weight matrix between layers ℓ− 1 and ℓ, ϕℓ the activation function of the
neurons, and hℓ their activations. The forward pass for a pair (x, y) writes as :

∀ℓ ∈ {1, . . . , L} : zℓ = Wℓhℓ−1,hℓ = ϕℓ(zℓ), (2.24)

where h0
.= x is the data and ŷ

.= hL = ϕL(zL) is the predicted output. The network is trained
by defining a loss function L, measuring the discrepancy between the true label y and ŷ.
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2.3. Deep neural networks and training methods

Before a feedforward network, inductive bias can be incorporated such as convolutional layers
[Lecun, 1998](made for extracting patterns in images) or attention layers [Bahdanau, 2014 ;
Vaswani, 2017](which can extract any correlation between dimensions of the datapoints, and
they can be seen as a generalization of convolutions).
Training methods. We will now develop how to optimize the neural network. The standard
method is backpropagation (BP), but as will we show, new more biologically realist methods
such as Direct Feedback Alignment (DFA) have been developed.

Proposition 2.3.1 (Chain rule). If a variable z depends on a variable y which itself depends on
a variable x, then the derivative of z with respect to x can be expressed thanks to the chain rule :

dz

dx
= dz

dy
.
dy

dx
. (2.25)

Backpropagation. To update a weight matrix Wℓ for minimizing the loss L at the end of
the network, we should go into the direction of the loss minimized by this weight. The stepsize
is called the learning rate η. With backpropagation [Rumelhart, 1986], the weight updates are
computed using the chain rule of derivatives (see Proposition 2.3.1), yielding a change δWℓ of
the weights of layer ℓ between two iterations :

δWℓ = −η ∂L
∂Wℓ

= −η ∂L
∂hℓ

∂hℓ
∂zℓ

∂zℓ
∂Wℓ

(2.26)

= −η[((Wℓ+1)⊤δzℓ+1)⊙ ϕ′
ℓ(zℓ)](hℓ−1)⊤, (2.27)

where δzℓ = ∂L
∂zℓ

, ϕ′
ℓ is the derivative of ϕℓ, ⊙ is the Hadamard product, and L(ŷ,y) is the

prediction loss.

2.3.1 (Direct) Feedback Alignment

DFA is a biologically inspired alternative to backpropagation with an asymmetric backward
pass. For ease of notation, we introduce it for fully connected networks but it also generalizes
to transformers and other architectures [Launay, 2020a]. It has been theoretically studied in
[Lillicrap, 2016 ; Refinetti, 2021].

Feedback Alignment replaces the weight matrix (Wℓ+1)⊤ by a random matrix Bℓ of the same
dimensions. This is supposed to be more biologically plausible, as supported in [Lillicrap, 2014 ;
Lillicrap, 2016] because neurons in the brain are not supposed to memorize the information that
go forward and transmit it backward ; they rather send random signals to learn.

δWFA
ℓ = −η[(Bℓδzℓ+1)⊙ ϕ′

ℓ(zℓ)](hℓ−1)⊤, δzℓ+1 = ∂L
∂zℓ+1

. (2.28)

Direct Feedback Alignment replaces the gradient signal (Wℓ+1)⊤δzℓ+1 with a random
projection of the derivative of the loss with respect to the pre-activations δzL of the last layer.
For losses L commonly used in classification and regression, such as the squared loss or the
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cross-entropy loss, this will amount to a random projection of the error e ∝ ŷ − y. With a
fixed random matrix Bℓ of appropriate shape drawn at initialization of the learning process, the
parameter update of DFA is :

δWDFA
ℓ = −η[(Bℓe)⊙ ϕ′

ℓ(zℓ)](hℓ−1)⊤, e = ∂L
∂zL

. (2.29)

Backpropagation vs DFA training. Learning using backpropagation consists in iteratively
applying the forward pass Equation 2.24 on batches of training examples and then applying back-
propagation updates Equation 2.27. Training with DFA consists in replacing the backpropagation
updates by DFA ones Equation 2.29. An interesting feature of DFA is the parallelization of the
training step, where all the random projections of the error can be done at the same time, as
illustrated in Figure 2.1. Indeed, updating the weights of layer ℓ does not depend on the weights
of layer ℓ+ 1 to be updated.

Figure 2.1 – Schematic comparison of backpropagation and Direct Feedback Alignment. The
two approaches differ in how the loss impacts each layer of the model. While in backpropagation,
the loss is propagated sequentially backwards, in DFA, it directly acts on each layer after random
projection.

2.3.1.1 Minor contribution : align then memorize, the dynamics of learning with
(Direct) Feedback Alignment

This section is an extract of [Refinetti, 2021].
Despite relying on random feedback weights for the backward pass, DFA successfully trains state-
of-the-art models such as Transformers [Launay, 2020a]. On the other hand, it notoriously fails
to train convolutional networks. An understanding of the inner workings of DFA to explain these
diverging results remains elusive. Here, we propose a theory of feedback alignment algorithms.
We first show that learning in shallow networks proceeds in two steps : an alignment phase,
where the model adapts its weights to align the approximate gradient with the true gradient of
the loss function, is followed by a memorisation phase, where the model focuses on fitting the
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2.3. Deep neural networks and training methods

data. This two-step process has a degeneracy breaking effect : out of all the low-loss solutions in
the landscape, a network trained with DFA naturally converges to the solution which maximises
gradient alignment.

Related Work. [Lillicrap, 2016] gave a first theoretical characterisation of feedback alignment
by arguing that for two-layer linear networks, FA works because the transpose of the second layer
of weights W2 tends to align with the random feedback matrix B1 during training. This weight
alignment (WA) leads the weight updates of FA to align with those of BP, leading to gradient
alignment (GA) and thus to successful learning. [Frenkel, 2019] extended this analysis to the
deep linear case for a variant of DFA called “Direct Random Target Projection” (DRTP), under
the restrictive assumption of training on a single data point. [Nøkland, 2016a] also introduced a
layerwise alignment criterion to describe DFA in the deep nonlinear setup, under the assumption
of constant update directions for each data point.
We begin with an exact description of DFA dynamics in shallow non-linear networks. Here we
consider a high-dimensional scalar regression task where the inputs x ∈ Rd are sampled i.i.d.
from the standard normal distribution. We focus on the classic teacher-student setup, where the
labels y ∈ R are given by the outputs of a “teacher” network with random weights [Gardner, 1989 ;
Seung, 1992 ; Watkin, 1993 ; Engel, 2001 ; Zdeborová, 2016]. In this section, we let the input
dimension d → ∞, while both teacher and student are two-layer networks with K,M ∼ O(1)
hidden nodes.
We consider sigmoidal, g(x) = erf (x/√

2), and ReLU activation functions, g(x) = max(0, x). We
asses the student’s performance on the task through its the generalisation error, or test error :

εg(θ, θ̃) ≡ 1
2E [ŷ − y]2 ≡ 1

2E[e2], (2.30)

where the expectation E is taken over the inputs for a given teacher and student networks with
parameters θ̃ = (M,W̃1,W̃2, g) and θ = (K,W1,W2, g). Learning a target function such as the
teacher is a widely studied setup in the theory of neural networks [Zhong, 2017 ; Advani, 2020 ;
Tian, 2017 ; Du, 2018 ; Soltanolkotabi, 2018 ; Aubin, 2018 ; Saxe, 2018 ; Baity-Jesi, 2018 ; Goldt,
2019 ; Ghorbani, 2019 ; Yoshida, 2019 ; Bahri, 2020 ; Gabrié, 2020].

An analytical theory for DFA dynamics To better understand DFA, we study its dynamics
in the limit of infinite training data where a previously unseen sample (x, y) is used to compute
the DFA weight updates of Equation 2.29 at every step. This “online learning” or “one-shot/single-
pass” limit of SGD has been widely studied in recent and classical works on vanilla BP [Kinzel,
1990 ; Biehl, 1995 ; Saad, 1995a ; Saad, 1995b ; Saad, 2009 ; Zhong, 2017 ; Brutzkus, 2017 ; Mei,
2018 ; Rotskoff, 2018 ; Chizat, 2018 ; Sirignano, 2019].
We work in the regime where the input dimension d → ∞, while M and K are finite. The
test error Equation 2.30, i.e. a function of the student and teacher parameters involving a
high-dimensional average over inputs, can be simply expressed in terms of a finite number of
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Figure 2.2 – (a) Theory gives exact prediction for the learning dynamics. We plot
learning curves for BP and DFA obtained from (i) a single simulation (solid lines), (ii) integration
of the ODEs for BP dynamics [Biehl, 1995 ; Saad, 1995a] (orange dots), (iii) integration of the
ODEs for DFA derived here (blue dots). Insets : Teacher second-layer weights (red) as well as
the degenerate solutions (light red) together with the feedback vector F1 (green) and the student
second-layer weights v (blue) at three different times during training with DFA. Parameters :
d = 500,K = M = 2, η = 0.1, σ0 = 10−2 (the standard deviation of initialized weights).
(b) Align-then-Memorise process. Alignment (cosine similarity) between the student’s second
layer weights and the feedback vector. In the align phase, the alignment increases, and reaches
its maximal value when the test loss reaches the plateau. Then it decreases in the memorization
phase, as the student recovers the teacher weights.
(c) The degeneracy breaking mechanism. There are multiple degenerate global minima in
the optimisation landscape : they are related through a discrete symmetry transformation of the
weights that leaves the student’s output unchanged. DFA chooses the solution which maximises
the alignment with the feedback vector.

“order parameters” Q = (Qkl), R = (Rkm), T = (Tmn),

lim
d→∞

εg(θ, θ̃) = εg(Q,R, T,W2,W̃2), (2.31)

where
Qkl=W k

1 W
l
1

d
, Rkm=W k

1 W̃
m
1

d
, Tmn= W̃m

1 W̃n
1

d
, (2.32)

as well as second layer weights W̃m
2 and W k

2 [Saad, 1995a ; Saad, 1995b ; Biehl, 1995 ; Engel, 2001].
Intuitively, Rkm quantifies the similarity between the weights of the student’s kth hidden unit and
the teacher’s mth hidden unit. The self-overlap of the kth and lth student nodes is given by Qkl,
and likewise Tmn gives the (static) self-overlap of teacher nodes. In seminal work, [Saad, 1995a]
and [Biehl, 1995] obtained a closed set of ordinary differential equations (ODEs) for the time
evolution of the order parameters Q and R. Our first main contribution is to extend their approach
to the DFA setup (not developed here, see [Refinetti, 2021] for the exact computations), obtaining
a set of ODEs that predicts the test error of a student trained using DFA (see Equation 2.29)
at all times. The accuracy of the predictions from the ODEs is demonstrated in Figure 2.2 (a),
where the comparison between a single simulation of training a two-layer net with BP (orange)
and DFA (blue) and theoretical predictions yield perfect agreement.
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Sigmoidal networks learn through “degeneracy breaking”. The test loss of a sigmoidal
student trained on a teacher with the same number of neurons as herself (K = M) contains
several global minima, which all correspond to fixed points of the ODEs (see Section A.7 of
[Refinetti, 2021]). Among these is a student with exactly the same weights as her teacher. The
symmetry erf(z) = −erf(−z) induces a student with weights {W̃1,W̃2} to have the same test
error as a sigmoidal student with weights {−W̃1,−W̃2}. Thus, as illustrated in Figure 2.2 (c),
the problem of learning a teacher has various degenerate solutions. A student trained with vanilla
BP converges to any one of these solutions, depending on the initial conditions.

Alignment phase A student trained using DFA has to fulfil the same objective (zero test
error), with an additional constraint : her second-layer weights W2 need to align with the
feedback vector B1 to ensure the first-layer weights are updated in the direction that minimises
the test error. And indeed, an analysis of the ODEs (see Section B of [Refinetti, 2021]) reveals
that in the early phase of training, Ẇ2 ∼ B1 and so W2 grows in the direction of the feedback
vector B2 resulting in an increasing overlap between W2 and B1. In this alignment phase of
learning, shown in Figure 2.2 (b), W2 becomes perfectly aligned with B1. DFA has perfectly
recovered the weight updates for W1 of BP, but the second layer has lost its expressivity (it is
simply aligned to the random feedback vector).

Memorisation phase The expressivity of the student is restored in the memorisation phase
of learning, where the second layer weights move away from B1 and towards the global minimum
of the test error that maintains the highest overlap with the feedback vector. In other words,
students solve this constrained optimisation problem by consistently converging to the global
minimum of the test loss that simultaneously maximises the overlap between W2 and B1, and
thus between the DFA gradient and the BP gradient. For DFA, the global minima of the test
loss are not equivalent, this “degeneracy breaking” is illustrated in Figure 2.2 (c).
In [Refinetti, 2021], we also identify a key quantity underlying alignment in deep linear networks :
the conditioning of the alignment matrices. The latter enables a detailed understanding of the
impact of data structure on alignment, and suggests a simple explanation for the well-known
failure of DFA to train convolutional neural networks. Numerical experiments on MNIST and
CIFAR-10 clearly demonstrate degeneracy breaking in deep non-linear networks and show the
align-then-memorize process occurs sequentially from the bottom layers of the network to the top.

2.4 Optical Processing Units

2.4.1 Optical random features

Increasing the number of random features D for kernel approximation can quickly become
expensive since there the complexity of constructing a random feature is O(ndD). This issue led
to the development of a new optical hardware, leveraging million-scale projection.
The principle of the random projections performed by the Optical Processing Unit (OPU) is
based on the use of a heterogeneous material that scatters the light going through it, see
Figure 2.3 for the experimental setup. The data vector x ∈ Rd is encoded into light using a
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digital micromirror device (DMD), which is an ensemble of millions of micro-mirrors which
can be turned on and off. This encoded light then passes through the heterogeneous medium,
performing the random matrix multiplication. As demonstrated in [Liutkus, 2014], light going
through the scattering medium follows many extremely complex paths, that depend on refractive
index inhomogeneities at random positions. For a fixed scattering medium, the resulting process
is still linear, deterministic, and reproducible. Reproducibility is important as all our data vectors
need to be multiplied by the same realisation of the random matrix.

Figure 2.3 – Experimental setup of the Optical Processing Unit. The data vector is encoded in
the coherent light from a laser using a DMD. Light then goes through a scattering medium and
a speckle pattern is measured by a camera.

After going through the "random" medium, we observe a speckle figure on the camera, where the
light intensity at each point is modelled by a sum of the components of x weighted by random
coefficients. See [Brossollet, 2021 ; Poli, 2021] for more details. Measuring the intensity of light
induces a non-linear transformation of this sum, leading to :

Proposition 2.4.1. Given a data vector x ∈ Rd, the random feature map performed by the
Optical Processing Unit is :

ϕ(x) = 1√
D
|Ux|2 ∈ RD, (2.33)

where U ∈ CD×d is a complex Gaussian random matrix whose elements Ui,j ∼ CN (0, 1), the
variance being set to one without loss of generality, and depends on a multiplicative factor
combining laser power and attenuation of the optical system. We will name these RFs optical
random features.

As this feature map is generated optically and then treated numerically on the computer, the
exponent of the feature map can be changed and any mathematical operation can be performed
at the top of Equation 2.33.
Linear transform. In the flavour of optical holography [Yamaguchi, 2006], a digital holographic
operation can be performed, allowing to get rid of the non-linearity. This technique was developed
in the framework of this thesis, but is confidential and briefly discussed in the patent [Poli, 2021].
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This yields the following operation :

ϕ(x) = 1√
D

U′x, (2.34)

where U′ ∈ RD×d is a real Gaussian random matrix whose elements U′
i,j ∼ N (0, 1), the variance

being set to one without loss of generality.
As seen on Figure 2.3, the input light bounces on an ensemble of micro-mirrors, which are either
on or off, encoding a 0 or a 1. It means that in practice, the data has to be encoded in binary,
possible thanks to the following encoding methods :

• Thresholding : we can set a threshold value t where if xi > t with i = 1, ...d, it is set to
1, otherwise, set to 0.

• Learned threshold : the threshold value can be seen as a parameter to learn via cross-
validation

• Training an auto-encoder : An auto-encoder (AE) can be trained where the binarization
is in the latent space. We would just have to train the AE and extract the encoder part to
binarize our data. The binarization would therefore be data-dependent.

• Bit-plan encoding : in the case of the linear transform of Equation 2.34, we can chose a
number of bits for encoding our data. Because images are usually encoded in 8 bits, we can
keep the full information of the image easily.

• Using reinforce algorithm : one can incorporate the OPU inside an AE and bypass it
using the REINFORCE algorithm [Kozyrskiy, 2021] to learn a binarization for it.

2.5 Security of systems

Open source packages facilitated the wide adoption of machine learning algorithms, and many
companies adopted a transformation of their prediction systems. However, these systems can be
the target of attackers, who may either fool the systems or retrieve information about the data.
Indeed, machine learning systems can even be the weakest link to attack in the security chain
whose vulnerability can compromise the whole infrastructure.
These weaknesses have led to new research topics in machine learning, either in defending the
algorithm against fooling attacks (adversarial robustness) or protecting the information about
users in the dataset, i.e. yielding privacy (differential privacy). In the following, we will develop
some basics concepts.

2.5.1 Adversarial robustness

The philosophy of adversarial attacks is to find a data (and architecture) dependent perturbation
δ, and that will fool the neural network (represented by the function fθ) to attack. It aims at
maximizing the loss ℓ with a perturbation added to the data, without being visible by the human
eye, implying to restrict the magnitude of this perturbation. In practice, this is performed using
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gradient ascent on the perturbation, or more formally, it aims at solving :

δ = arg max
∥δ∥≤ε

ℓ(fθ(x + δ), y). (2.35)

White-box attacks suppose the attacker has a full knowledge of the model and its parameters,
and can therefore generate adversarial example using gradient-based methods.
Fast-gradient sign method (FGSM) [Goodfellow, 2015] is the simplest method to attack a network
with parameters θ. It simply consists in computing the gradient of the loss function and adding
to the attacked image its sign times a perturbation ε. The adversarially perturbed example x̃ of
an input x associated to a label y is computed as :

x̃ = x + δ = x + ε.sign(∇xℓ(fθ(x), y)). (2.36)

Projected Gradient Descent (PGD) [Madry, 2018a] is an extension of FGSM where the adversarial
example is iteratively optimized (iterations denoted by t) with the following equation :

xt+1 = ΠB∞(x,ε)
[
xt + α.sign

(
∇xℓ(fθ(xt), y)

)]
, (2.37)

where ΠB∞(x,ε) is the orthogonal projection on B∞(x, ε) := {x′ : ∥x′ − x∥∞ ≤ ε} and x0 = x.
The quantity ε is the strength of the perturbation and α the equivalent of a learning rate.
Black-box attacks are more realistic settings, where the attacker does not have access to
information about the neural networks to attack. For instance, if the attacker wants to attack a
road sign recognition system of a self-driving car, the algorithm is unknown, but good adversarial
examples can still fool the car [Ren, 2019 ; Kumar, 2020]. This could be critical in the real-world.
In practice, the goal of black-box attacks is to perform estimation of the gradient of the network
with respect to queries.
Natural evolution strategy (NES) [Wierstra, 2014 ; Ilyas, 2018a] are black-box attacks crafted for
query limited attacks. It consists in efficiently estimating the gradient of the loss with respect to
the input x :

δ = ∇xℓ(x, y) ≃ ∇xEu∼N (x,σ2I) [ℓ(u, y)]

≃ 1
σN

N∑
i=1

giℓ(x + σgi, y),

where y is the true label, gi are standard Gaussian random vectors and N the sample size of the
Monte-Carlo estimation.
Bandit attacks [Ilyas, 2018b] are an extension of NES attacks, taking advantage of gradients
correlations for close pixels and between gradient steps.
Parsimonious attacks [Moon, 2019a] propose an efficient discrete surrogate to the optimization
problem for attacking the network which does not require estimating the gradient. The attacks
becomes free of first order update of the hyperparameters to tune and is stated as a combinatorial
problem to solve. These attacks are known to be more efficient than NES and Bandits attacks.
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Transfer attacks. When the attacker have access to limited number of queries to the system
to attack and doesn’t know its parameters, a transfer attack can be used to fool it. The latter
consists in building a network onto which the attackers creates optimal perturbations using a
white-box attack such as PGD. Then, these perturbations are transferred to the network to
attack in order to fool it.
Adversarial training [Madry, 2018a] is an adversarial defense, i.e. a way to make our
algorithm robust to adversarial attacks. The principle is to first learn a perturbation on our
network using FGSM or PGD attacks, and then train our network on an attacked training set.
Formally, it consists in solving on a training set S :

min
θ

1
|S|

∑
x,y∈S

max
∥δ∥≤ε

ℓ(fθ(x + δ), y). (2.38)

This is efficient for making our network robust against standard attacks. However, there is a trade-
off with the accuracy. The more robust the network, the less accurate are its predictions. This is
why a lot of new adversarial methods have emerged, and have been gathered on Robustbench 1

[Croce, 2020a], aiming at standardizing the evaluation of a defense on an ensemble of attacks
named AutoAttack [Croce, 2020c].

2.5.2 Differential privacy

Differential privacy (DP) is a framework used to protect the privacy of individuals gathered in a
dataset. It is not an algorithm in itself, but rather a property that multiple methods can achieve,
and this property mathematical quantifies the privacy risk.
By setting a privacy loss parameter, i.e. a maximum level of privacy loss allowed, DP aims at
manipulating the dataset or the algorithm processing it in order to achieve this level of privacy,
while maintaining the utility/accuracy on the dataset. DP is robust against a variety of privacy
attacks, but is also transparent, meaning it has the ability to share statistics about the dataset
without affecting every individual’s privacy. This opens the path for the sharing of sensitive data
that could not be shared previously, such as medical or financial data.
However, these benefits come with several challenges. The decrease in accuracy can be larger
for small datasets than for larger ones, and this decrease is hard to bypass since there is the
existence of a privacy/accuracy trade-off to take into account. Nevertheless, it started to grow in
popularity, from the private (Facebook, Amazon, Uber, Apple) to the public sector (U.S. Census
Bureau) where it was used to protect sensitive data against potential privacy attacks.
In practice, Differential Privacy is created by introducing noise – that can be perceived as random
information – in the system (at the data level, or the algorithm one) so it becomes increasingly
difficult to tell if a specific individual’s information was used or not. This lead to a less accurate
prediction, that is approximately the same as the true value.
Informal Example. To better understand the logic behind Differential Privacy, let us give an
informal example. Let’s suppose you want to share the average salary among 100 employees.

1. https ://robustbench.github.io/
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You can query to the system and obtain the average salary without revealing information about
individual employees. Now, let’s say you get rid of the information of an individual and get
the average salary about the 99 others. Then, by simple algebra, you could deduct the missing
individual’s salary.
Now, let’s imagine the information is shared using a differentially private query system. When a
malicious actors queries the database, the algorithm return the truth (i.e. the average salary)
plus some random noise (different realization of the noise at each query). Now, if the malicious
actor knew everything about the 99 other employees, he/she can’t be sure about the missing
individual’s salary, whose privacy is protected. In this case, it allowed us to release statistics
about a dataset without sharing private information about single individuals.
Mathematical framework. Let’s develop more formally the mathematical framework of
Differential Privacy by introducing some useful definitions :

Definition 2.5.1 (Neighboring datasets). Let {X j}Nj=1 (e.g. X j = Rd) be a domain and
D .= ∪Nj=1X j. D,D′ ∈ D are neighboring datasets if they differ from one element. This is
denoted by D ∼ D′.

Definition 2.5.2 (ε-DP [Dwork, 2006b]). A randomized algorithm A : D → Range(A) satisfies
ε-differential privacy (ε-DP) if for any neighboring datasets D,D′ ∈ D and O ⊆ Im(A),

P[A(D) ∈ O] ≤ eεP[A(D′) ∈ O]. (2.39)

A mechanism that satisfies the ε-DP definition is the addition of Laplace noise, called the Laplace
mechanism, which allows the release of a noisy answer to an arbitrary query to the algorithm
computing a function f , and is defined as followed :

Lε,f
.= f(x) + Λ

(
0, ∆1,f

ε

)
, (2.40)

where Λ is the Laplace distribution and ∆p,f is the ℓp-sensitivity of the algorithm f defined as :

Definition 2.5.3 (ℓp-sensitivity). Let D and D′ be neighboring datasets. Then the ℓp-sensitivity
of a function f is defined as

∆p,f
.= max
D,D′
∥f(D)− f(D′)∥p . (2.41)

If f and g are ε1 and ε2-DP respectively, then the basic composition theorem [Mironov, 2017]
states that the simultaneous release of f(D) and g(D) is (ε1 + ε2)-DP. A relaxation of ε-DP
allows a δ additive term in the defining inequality :

Definition 2.5.4 ((ε, δ)-differential privacy [Dwork, 2008]). Let ε, δ > 0. Let A : D → Range(A)
be a randomized algorithm, where Range(A) is the range of D through A. A is (ε, δ)-differentially
private, or (ε, δ)-DP, if for all neighboring datasets D,D′ ∈ D and for all sets O ∈ Im A, the
following inequality holds :

P[A(D) ∈ O] ≤ eε P[A(D′) ∈ O] + δ,
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where the probability relates to the randomness of A.

An interpretation is that it is ε-DP, excepted with probability δ. However, as it is explained in
[Mironov, 2017], it is qualitatively different than pure ε-DP (unless of course δ = 0).
The definition of (ε, δ)-DP was initially proposed to capture privacy guarantees to the Gaussian
mechanism :

Definition 2.5.5 (Gaussian mechanism [Mironov, 2019]). Let D and D′ be neighboring dataset.
Then the Gaussian mechanism is defined as

Mσf(x) = f(x) +N (0, σ2I). (2.42)

An elementary analysis shows that the Gaussian mechanism does not meet ε-DP for any ε. Instead,
it satisfies a continuum of incomparable (ε, δ)-DP guarantees, for all ε < 1 and σ >

√
2 ln 1.25

δ
∆2,f

ε .
[Mironov, 2017] proposed an alternative notion of differential privacy based on Rényi α-divergences
and established a connection between their definition and the (ε, δ)-differential privacy of
Definition 2.5.4. Rényi-based Differential Privacy is captured by the following :

Definition 2.5.6 (Rényi α-divergence [Rényi, 1961]). For two probability distributions P and Q
defined over R, the Rényi divergence of order α > 1 is given by :

Dα (P∥Q) .= 1
α− 1 logEx∼Q

(
P (x)
Q(x)

)α
. (2.43)

Definition 2.5.7 ((α, ε)-Rényi differential privacy [Mironov, 2017]). Let ε > 0 and α > 1. A
randomized algorithm A is (α, ε)-Rényi differential private or (α, ε)-RDP, if for any neighboring
datasets D,D′ ∈ D,

Dα
(
A(D)∥A(D′)

)
≤ ε.

Theorem 2.5.8 (Composition of RDP mechanisms [Mironov, 2017]). Let {Mi}ki=1 be a set of
mechanisms, each satisfying (α, εi)-RDP. Then their combination is (α,∑i εi)-RDP.

Going from RDP to the Differential Privacy of Definition 2.5.4 is made possible by the following
theorem (see also [Asoodeh, 2020 ; Balle, 2018 ; Wang, 2019]) :

Theorem 2.5.9 (Converting RDP parameters to DP parameters [Mironov, 2017]). An (α, ε)-
RDP mechanism is

(
ε+ log 1/δ

α−1 , δ
)
-DP for all δ ∈ (0, 1).

2.6 PAC-Bayes Bounds

This section is based on the excellent introduction to PAC-Bayes bounds of [Alquier, 2021]. Let
us place ourselves in the supervised setting where, typically, we have data and :

1. we fix a set of predictors (linear predictors for linear regression for instance).

2. we learn a good predictor from this set (by using the least-square method for instance).
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Informally, Probably Approximately Correct Bayes bounds, or PAC-Bayes bounds, will allow us
to define and study randomized or aggregated predictors. To do so, we will replace 2. by either
2′. defining weights on the predictors and make a majority vote using them, or by 2′′. drawing a
predictor from a yet to be chosen probability distribution.

2.6.1 Supervised learning setting

More formally, let us recall the supervised setting, where we rely on :

• data, or observations : ((x1, y1), ..., (xn, yn) are assumed i.i.d samples from a probability
distribution p on (X × Y).

• a predictor, that is a measurable function f : X → Y.

• a set of predictors that is fixed, indexed by a parameter set Θ : {fθ,θ ∈ Θ}. For instance,
in linear regression, fθ(x) = θ⊤x for X = Θ = Rd.

• a loss function, which is measurable ℓ : Y2 → [0,+∞) with ℓ(y, y) = 0. In this section, we
will assume it bounded, i.e. 0 ≤ ℓ ≤ C even if recent works don’t make this assumption
[Haddouche, 2021].

• the generalization error/risk of a predictor (keeping only the dependency on f) :

R(f) = E(x,y)∼p[ℓ(f(x), y)].

As we will only consider predictors in {fθ,θ ∈ Θ}, we will write R(θ) := R(fθ). This
function is not accessible as it depends on the unknown probability distribution p.

• the empirical risk :

R̂(θ) = 1
n

n∑
i=1

ℓ(fθ(xi), yi) := 1
n

n∑
i=1

ℓi(θ),

which satisfies : ES [R̂(θ)] = R(θ) where S = [(x1, y1), ..., (xn, yn)].

• an estimator that is a function : θ̂ : ∪∞
n=1(X × Y)n → Θ. The most famous example is the

Empirical Risk Minimizer (ERM) :

θ̂ERM = arg min
θ∈Θ

R̂(θ).

2.6.2 PAC bounds

Ultimately, we would like to minimize R and not R̂, but we have only access to the latter. The
ERM strategy is therefore motivated by the hope that these two functions are not too different,
such that minimizing R̂ induces a minimization of R. The following simple PAC bound provides
a first guarantee :

Theorem 2.6.1. Assume that card(Θ) = M < +∞. For any ε ∈ (0, 1),

PS

(
∀θ ∈ Θ,R(θ) ≤ R̂(θ) + C

√
log M

ε

2n

)
≥ 1− ε.
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This Theorem motivates the Empirical risk Minimization, as the ERM will satisfy :

PS

(
R(θ̂ERM) ≤ inf

θ∈Θ

[
R̂(θ) + C

√
log M

ε

2n

])
≥ 1− ε.

This Theorem means that with large probability R(θ̂ERM) is approximately equal to the value
that is minimized on the empirical risk. The goal of PAC bounds, is to quantify to which
extent this is true. We can notice that this is correct only if log(M)/n is small, meaning that
M < exp(n).

Proof. As the loss is bounded, we can apply Markov inequality on PS(R(θ) − R̂(θ) > s) and
then use Hoeffding’s inequality on the exponential term. After a minimization over s, we need a
bound that perform uniformly over all θ ∈ Θ, which implies the use of an union bound over
the M elements of Θ (since its cardinal is finite). This is the final bound. See [Alquier, 2021] for
a more detailed proof.

2.6.3 PAC-Bayes bounds

Informally, PAC-Bayes bounds are a generalization of the union bound argument, which will
allow to deal with any parameter sets Θ : finite or infinite, continuous... As a consequence, we
will have to change the notion of an estimator.

Definition 2.6.2. Let P(Θ) be the set of all probability distributions on Θ. A data-dependent
probability measure is a function :

ρ̂ :
∞⋃
n=1

(X × Y)n → P(Θ),

with suitable measurability conditions.

This will change how we will handle our predictors, as now they are defined over a data-dependent
probability distribution ρ̂. To build the predictor, we can draw a random parameter θ̃ ∼ ρ̂. This
yields a "randomized estimator". Then, we can incorporate it in an average of predictors, defining
a new predictor : fρ̂(·) = Eθ∼ρ̂[fθ(·)] called the aggregated predictor with weights ρ̂.
Therefore, with PAC-Bayes bounds, we will extend the union bound argument to infinite,
uncountable sets Θ. But one may ask : what will become the log(M) term, coming from the
union bound, of Theorem 2.6.1 ? In general, this term will be replaced by the Kullback-Leibler
divergence between ρ̂ and a fixed probability measure π on Θ.

Definition 2.6.3. Given two probability measures µ and ν in P(Θ). The Kullback-Leibler (KL)
divergence between µ and ν is defined by :

KL(µ∥ν) =
∫

log
(dµ

dν (θ)
)

dµ(θ) ∈ [0,+∞],

if µ has a density dµ
dν with respect to ν, and KL(µ∥ν) = +∞ otherwise.
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In the following, we will fix a probability measure π ∈ P(Θ), called the prior. The first PAC-
Bayesian bound is Catoni’s bound :

Theorem 2.6.4 (Catoni’s bound [Catoni, 2003]). For any λ > 0, for any ε ∈ (0, 1),

PS

(
∀ρ ∈ P(Θ),Eθ∼ρ[R(θ)] ≤ Eθ∼ρ[R̂(θ)] + λC2

8n +
KL(ρ∥π) + log 1

ε

λ

)
≥ 1− ε.

With such a bound, the goal is to find the distribution ρ that minimizes the right hand side, i.e. :

ρ̂λ = arg min
ρ∈P(Θ)

Eθ∼ρ[R̂(θ)] + KL(ρ∥π)
λ

. (2.44)

It turns out that we know the answer to this minimization problem :

Corollary 2.6.5. The Gibbs posterior is the minimizer of Equation 2.44 and has the following
expression :

ρ̂λ(dθ) = e−λR̂(θ)π(dθ)
Eβ∼π[e−λR̂(β)]

. (2.45)

In practice, sampling from the Gibbs posterior is intractable, and we will therefore have to use
other schemes to find a distribution ρ that minimizes this bound.
The goal of PAC-Bayesian bounds is to become more specific depending on our problem : what
is our estimator ? A linear function ? A neural network ? Is our loss bounded ? What are the
constraints of the parameter space Θ ? As we will see in Chapter 7, we can optimize this bound
to find an optimal ρ̂, while being theoretically grounded thanks the PAC-Bayesian framework.

2.7 (Sliced) Optimal transport

The first to formulate the Optimal Transport framework was [Monge, 1781], who aimed at solving
the problem of moving earth from one place to another, with the least effort. Some issues of
the Monge formulation were resolved centuries later in [Kantorovitch, 1958]. Mathematically,
this boils down to move a probability mass from one distribution to another, with the least cost.
This cost is represented by a cost function c, operating as follow : let µ ∈ P(X ) be the source
distribution and ν ∈ P(Y) the target distribution where we assume X ⊆ Rd and Y ⊆ Rd for
simplicity (in general, they have to be Polish spaces). Then, c : X × Y → R+ ∪ {+∞} is the
function that for any (x,y) ∈ X ×Y return the cost of transporting x to y. It is typically chosen
to evaluate how different/far x and y are from each other, i.e. the smaller c(x,y), the closer x

and y are.

2.7.1 Wasserstein distances

Wasserstein distances are distances for comparing two distributions by solving a transport
problem. They have become more and more popular in generative modelling with for example
Wasserstein Generative Adversarial Networks [Arjovsky, 2017] which learn the underlying data
distribution, allowing for the generation of new samples.
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2.7. (Sliced) Optimal transport

In the following, we will assume, without loss of generality, that the compared distributions are
supported on the same space, i.e. X = Y.

Definition 2.7.1 ([Peyré, 2019]). Let X be a Polish space equipped with a distance c and
p ∈ [1,+∞). The Wasserstein distance of order p is defined for any µ, ν ∈ P(X ) as

Wp(µ, ν) =
(

inf
π∈Π(µ,ν)

∫
X ×Y

c(x,y)pdπ(x,y)
) 1

p

,

with Π(µ, ν) = {π ∈ P(X ×Y) : for any measurable sets A ⊂ X ,B ⊂ Y, π(A×Y) = µ(A), π(X ×
B) = ν(B)} the set of transport plans.

Let us now define the set Pp(X ) of probability measures on X with their p-th moment finite :

Pp(X ) =
{
µ ∈ P(X ) :

∫
X
c(x0,x)pdµ(x) < +∞, for some x0 ∈ X

}
.

Then Wp is a metric on Pp(X ) [Villani, 2008].
In some cases, the Wasserstein distribution has an analytical formula. This is the case when both
distributions are Gaussian (see [Peyré, 2019] for the mathematical expression) or univariate.

Proposition 2.7.2 (Wasserstein distance for univariate distributions). Let µ, ν ∈ Pp(R), and
denote by F−1

µ and F−1
ν the quantile functions of µ and ν respectively. Then

Wp
p(µ, ν) =

∫ 1

0
|F−1
µ (t)− F−1

ν (t)|pdt. (2.46)

Practical aspects. In practice, we only have access to empirical distributions, i.e. samples
from the real distributions. These empirical distributions are defined as µn = 1

n

∑n
i=1 δxi and

νn = 1
n

∑n
i=1 δyi with {xi}ni=1 ∼ µ and {yi}ni=1 ∼ ν, and δz the Dirac distribution centered in z.

In the case of univariate empirical distributions, i.e. µn, νn ∈ Pp(R) , the Wasserstein distance
has the following expression :

Wp
p(µn, νn) = 1

n

n∑
i=1
|x(i) − y(i)|p. (2.47)

where x(1) ≤ ... ≤ x(n) and y(1) ≤ ... ≤ y(n) are sorted samples.
In the univariate case, the problem is easy to solve as the sorting step takes O(n log(n)) of
computational complexity. However, in the multi-dimensional case, computing the Wasserstein
distances aims at finding an optimal transport plan π, which is a permutation matrix matching
the samples of µn to the ones of νn. In practice, this problem is solved using linear programming,
having a O(n3 log(n)) worst case computational complexity [Peyré, 2019]. This is why there is a
need to make the computation of this distance much faster.
The first algorithm aiming at performing optimal transport in high-dimension at a reduced
computational cost is the Sinkhorn algorithm [Cuturi, 2013], a form of regularized optimal
transport which adds a entropy penalty term to the computation of the Wasserstein distance.
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Another method is the computation of the Sliced-Wasserstein distance, which takes advantage of
the analytical expression of the Wasserstein distance for univariate distributions.

2.7.2 Sliced-Wasserstein distance

The Sliced-Wasserstein distance was introduced in [Rabin, 2012 ; Bonneel, 2015] and takes
advantage of the expression of the Wasserstein distance for univariate distributions of Equation
2.46, which has a appealing computational cost. Informally, we will project the data distribution
into one dimension with a random projection (or slice), yielding an univariate distribution. We
will then use the formula of the Wasserstein distance between univariate distributions and average
this over many slices. A more formal definition is :

Definition 2.7.3 (Sliced-Wasserstein distance (SW)). Let X ∈ Rd, p ∈ [1,+∞) and denote
the d-dimensional unit sphere by Sd−1 = {θ ∈ Rd : ∥θ∥2 = 1}. For any θ ∈ Sd−1, denote by
θ⋆ : X → R the linear form given by θ⋆(x) = ⟨θ,x⟩. The Sliced-Wasserstein distance of order p
is defined for any µ, ν ∈ Pp(X ) as

SWp
p(µ, ν) =

∫
Sd−1

Wp
p(θ⋆♯µ, θ⋆♯ ν)dσ(θ) = Eθ∼σ[Wp

p(θ⋆♯µ, θ⋆♯ ν)], (2.48)

where σ is the uniform distribution on Sd−1, and for any θ ∈ Sd−1, θ⋆♯ = (θ⋆)♯ denotes the push-
forward operator associated to θ⋆, i.e. θ♯µ(A) = µ(θ−1(A)) with µ−1(A) = {x ∈ X : θ(x) ∈ A}.

The Sliced-Wasserstein distance measures the dissimilarity between µ and ν by projecting them
into one dimension using the slices θ ∈ Sd−1 and averaging theses dissimilarities over all slices.
In practice, we perform a Monte-Carlo sampling of the integral over Sd−1 to approximate the
distance : we will draw L ∈ N∗ samples i.i.d. from σ, denoted by {θl}Ll=1 :

SWp
p,L(µ, ν) = 1

L

L∑
l=1

Wp
p(θ⋆l♯µ, θ⋆l♯ν) (2.49)

where here the Wasserstein distance has an analytical solution of Equation 2.46.
With real data, we only have access to empirical distributions, leading to the following expression :

SWp
p,L(µn, νn) = 1

L

1
n

L∑
l=1

n∑
i=1
|⟨θl,xγl(i)⟩ − ⟨θl,yτl(i)⟩|

p (2.50)

where γl and τl are the sorting permutations of the points projected by θl. This approximation
methods benefits from a reduced computational complexity of O(Ldn+ Ln log(n)) compared to
the Wasserstein distance thanks to the simple projecting and sorting operations.
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Chapter 3
Reservoir Computing meets Recurrent Kernels
and Structured Transforms

This chapter is based on [Dong, 2020].

Reservoir Computing is a class of simple yet efficient Recurrent Neural Networks where internal
weights are fixed at random and only a linear output layer is trained. In the large size limit,
such random neural networks have a deep connection with kernel methods. Our contributions
are threefold : a) We rigorously establish the recurrent kernel limit of Reservoir Computing
and prove its convergence. b) We test our models on chaotic time series prediction, a classic
but challenging benchmark in Reservoir Computing, and show how the Recurrent Kernel is
competitive and computationally efficient when the number of data points remains moderate. c)
When the number of samples is too large, we leverage the success of structured Random Features
for kernel approximation by introducing Structured Reservoir Computing. The two proposed
methods, Recurrent Kernel and Structured Reservoir Computing, turn out to be much faster
and more memory-efficient than conventional Reservoir Computing.

3.1 Introduction

Understanding Neural networks in general, and how to train Recurrent Neural Networks (RNNs)
in particular, remains a central question in modern machine learning. Indeed, backpropagation
in recurrent architectures faces the problem of exploding or vanishing gradients [Pascanu, 2013 ;
Salehinejad, 2017], reducing the effectiveness of gradient-based optimization algorithms. While
there exist very powerful and complex RNNs for modern machine learning tasks, interesting
questions still remain regarding simpler ones. In particular, Reservoir Computing (RC) is a class
of simple but efficient Recurrent Neural Networks introduced in [Jaeger, 2001] with the Echo-
State Network, where internal weights are fixed randomly and only a last linear layer is trained
[Verstraeten, 2007]. As the training reduces to a well-understood linear regression, Reservoir
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Computing enables us to investigate separately the complexity of neuron activations in RNNs.
With a few hyperparameters, we can tune the dynamics of the reservoir from stable to chaotic and
performances are increased when RC operates close to the chaotic regime [Lukoševičius, 2009].
Despite its simplicity, Reservoir Computing is not fully efficient : computational and memory
costs grow quadratically with the number of neurons. To tackle this issue, efficient computation
schemes have been proposed based on sparse weight matrices [Lukoševičius, 2009]. Moreover,
there is an active community developing novel hardware solutions for energy-efficient, low-latency
RC [Pathak, 2018]. Based on dedicated electronics [Antonik, 2015 ; Wang, 2015 ; Zhang, 2015 ; Jin,
2017], optical computing [Larger, 2012 ; Duport, 2012 ; Van der Sande, Dong, 2018 ; Dong, 2019],
or other original physical designs [Tanaka, 2019], they leverage the robustness and flexibility of
RC. Reservoir Computing has already been used in a variety of tasks, such as speech recognition
and robotics [Lukoševičius, 2012] but also combined with Random Convolutional Neural Networks
for image recognition [Tong, 2018] and Reinforcement Learning [Chang, 2020]. A very promising
application today is chaotic time series prediction, where the RC dynamics close to chaos may
prove a very important asset [Pathak, 2018]. Reservoir Computing also represents an important
model in computational neuroscience, as parallels can be drawn with specific regions of the brain
behaving like a set of randomly-connected neurons [Hinaut, 2013].
As RC embeds input data in a high-dimensional reservoir, it has already been linked with kernel
methods [Lukoševičius, 2009], but merely as an interesting interpretation for discussion. In our
opinion, this point of view has not been exploited to its full potential yet. A study derived the
explicit formula of the corresponding recurrent kernel associated with RC [Hermans, 2012], this
important result meaning the infinite-width limit of RC is a deterministic Recurrent Kernel (RK).
Still, no theoretical study of convergence towards this limit has been conducted previously and
the computational complexity of Recurrent Kernels has not been derived yet.
In this work, we draw the link between RC and the rich literature on Random Features for
kernel approximation [Rahimi, 2008 ; Rahimi, 2009 ; Rudi, 2017b ; Carratino, 2018 ; Liu, 2020] .
To accelerate and scale-up the computation of Random Features, one can use optical implemen-
tations [Saade, 2016b ; Ohana, 2020] or structured transforms [Le, 2013 ; Yu, 2016], providing
a very efficient method for kernel approximation. Structured transforms such as the Fourier
or Hadamard transforms can be computed in O(n logn) complexity and, coupled with random
diagonal matrices, they can replace the dense random matrix used in Random Features.
Finally, we note that Reservoir Computing can be unrolled through time and interpreted as
a multilayer perceptron. The theoretical study of such randomized neural networks through
the lens of kernel methods has attracted a lot of attention recently [Jacot, 2018 ; Mei, 2019 ;
Gallicchio, 2020], which provides a further motivation to our work. Some parallels were already
drawn between Recurrent Neural Networks and kernel methods [Liang, 2019 ; Chen, 2019], but
they do not tackle the high-dimensional random case of Reservoir Computing.

Main contributions — In this chapter, our goal is to bridge the gap between the considerable
amount of results on kernels methods, random features — structured or not — and Reservoir
Computing.
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First, we rigorously prove the convergence of Reservoir Computing towards Recurrent Kernels
provided standard assumptions and derive convergence rates in O(1/

√
N), with N being the

number of neurons. We then numerically show convergence is achieved in a large variety of cases
and does not occur in practice only when the activation function is unbounded (for instance with
ReLU).
When the number of training points is large, the complexity of RK grows ; this is a common
drawback of kernel methods. To circumvent this issue, we propose to accelerate conventional
Reservoir Computing by replacing the dense random weight matrix with a structured transform.
In practice, Structured Reservoir Computing (SRC) allows to scale to very large reservoir sizes
easily, as it is faster and more memory-efficient than conventional Reservoir Computing, without
compromising performance.
These techniques are tested on chaotic time series prediction, and they all present comparable
results in the large-dimensional setting. We also derive the computational complexities of each
algorithm and detail how Recurrent Kernels can be implemented efficiently. In the end, the
two acceleration techniques we propose are faster than Reservoir Computing and can tackle
equally complex tasks. A public repository is available at https://github.com/rubenohana/
Reservoir-computing-kernels.

3.2 Recurrent Kernels and Structured Reservoir Computing

Here, we briefly describe the main concepts used in this paper. We recall the definition of
Reservoir Computing and Random Features, define Recurrent Kernels (RKs) and introduce
Structured Reservoir Computing (SRC).
Reservoir Computing (RC) as a Recurrent Neural Network receives a sequential input
i(t) ∈ Rd, for t ∈ N. We denote by x(t) ∈ RN the state of the reservoir, N being the number of
neurons in the reservoir. Its dynamics is given by the following recurrent equation :

x(t+1) = 1√
N
f
(
Wr x(t) + Wi i(t)

)
, (3.1)

where Wr ∈ RN×N and Wi ∈ RN×d are respectively the reservoir and input weight matrices.
They are fixed and random : each weight is drawn according to an i.i.d. Gaussian distribution
with variances σ2

r and σ2
i , respectively. Finally, f is an element-wise non-linearity, typically a

hyperbolic tangent. To refine the control of the reservoir dynamics, it is possible to add a random
bias and a leak rate. In the following, we will keep the minimal formalism of Equation 3.1 for
conciseness.
We use the reservoir to learn how to predict a given output o(t) ∈ Rc for example. The output
predicted by the network ô(t) is obtained after a final layer :

ô(t) = Wo x(t). (3.2)

Since only these output weights Wo ∈ Rc×N are trained, the optimization problem boils down to
linear regression. Training is typically not a limiting factor in RC, in sharp contrast with other
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neural network architectures. The expressivity and power of Reservoir Computing rather lies in
the high-dimensional non-linear dynamics of the reservoir.
Kernel methods are non-parametric approaches to learning. Essentially, a kernel is a function
measuring a correlation between two points u,v ∈ Rp. A specificity of kernels is that they can
be expressed as the inner product of feature maps φ : Rp → H in a possibly infinite-dimensional
Hilbert space H, i.e. k(u,v) = ⟨φ(u),φ(v)⟩H. Kernel methods enable the use of linear methods
in the non-linear feature space H. Famous examples of kernel functions are the Gaussian kernel
k(u,v) = exp

(
−∥u−v∥2

2σ2

)
or the arcsine kernel k(u,v) = 2

π arcsin ⟨u,v⟩
∥u∥∥v∥ . When the dataset

becomes large, it is expensive to numerically compute the kernels between all pairs of data points.
Random Features have been developed in [Rahimi, 2008] to overcome this issue. This celebrated
technique introduces a random mapping ϕ : Rp → RN such that the kernel is approximated in
expectation :

k(u,v) = ⟨φ(u),φ(v)⟩H ≈ ⟨ϕ(u),ϕ(v)⟩RN , (3.3)

with ϕ(u) = 1√
N

[f(⟨w1,u⟩), ..., f(⟨wN ,u⟩)]⊤ ∈ RN and random vectors w1, ...,wN ∈ Rp. De-
pending on f and the distribution of {wi}Ni=1, we can approximate different kernel functions.
There are two major classes of kernel functions : translation-invariant (TI) kernels and rotation-
invariant (RI) kernels. In our study, we will consider TI kernels of the form k(u,v) = k(∥u−v∥22)
and RI kernels of the form k(u,v) = k(⟨u,v⟩). Both can be approximated using Random Features
[Rahimi, 2008 ; Kar, 2012]. For example, Random Fourier Features (RFFs) defined by :

ϕ(u) = 1√
N

[cos(⟨w1,u⟩), ..., cos(⟨wN ,u⟩), sin(⟨w1,u⟩), ..., sin(⟨wN ,u⟩)]⊤, (3.4)

approximate any TI kernel (provided k(0) = 1). For example, when w1, ...,wN ∼ N (0, σ−2Ip),
we approximate the Gaussian kernel. A detailed taxonomy of Random Features can be found
in [Liao, 2018] and more details about kernel methods and random features can be found in
Section 2.2.
Random Features can be more computationally efficient than kernel methods, when their number
N is smaller than the number of data points n. For this particular reason, Random Features are
a method of choice to implement large-scale kernel-based methods.
Link with Reservoir Computing. It is straightforward to notice that reservoir iterations
of Equation 3.1 can be interpreted as a Random Feature embedding of a vector [x(t), i(t)] (of
dimension p = N + d), multiplied by W = [Wr,Wi]. This means the inner product between two
reservoirs x(t), y(t) driven respectively by two inputs i(t) and j(t) converges to a deterministic
kernel as N tends to infinity :

⟨x(t+1),y(t+1)⟩ ≈ k([x(t), i(t)], [y(t), j(t)]). (3.5)

As explained previously, this kernel depends on the choice of f and the distribution of Wr and
Wi.
By denoting l(t) = σ2

i ⟨i(t), j(t)⟩ and ∆(t) = σ2
i ∥i(t) − j(t)∥2, TI and RI kernels are then of the
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form :

k([x(t), i(t)], [y(t), j(t)]) = k(σ2
r ⟨x(t),y(t)⟩+ l(t)) (RI) (3.6)

= k(σ2
r∥x(t) − y(t)∥2 + ∆(t)) (TI). (3.7)

The Recurrent Kernel limit. Looking at Equations 3.6 and 3.7, we notice the kernel at time t
depends on approximations of kernels at previous times in a recursive manner. Here, we introduce
Recurrent Kernels to remove the dependence in x(t) and y(t).
We suppose for the sake of simplicity x(0) = y(0) = 0. We define RI recurrent kernels as :k1

(
l(0)
)

= k
(
l(0)
)

kt+1
(
l(t), ..., l(0)

)
= k

(
σ2
rkt

(
l(t−1), ..., l(0)

)
+ l(t)

)
, for t ∈ N∗ .

(3.8)

Similarly for TI recurrent kernels with Random Fourier Features, exploiting the property in
Equation 3.4 that ∥x(t)∥2 = ∥y(t)∥2 = 1 :

k1
(
∆(0)

)
= k

(
∆(0)

)
kt+1

(
∆(t), ...,∆(0)

)
= k

(
σ2
r

(
2− 2kt

(
∆(t−1), ...,∆(0)

))
+ ∆(t)

)
, for t ∈ N∗ .

(3.9)

These Recurrent Kernel definitions describe hypothetical asymptotic limits of large-dimensional
Reservoir Computing, interpreted as recurrent Random Features. We will study in Section 3.3.1
the convergence towards this limit.
Structured Reservoir Computing. In the Random Features literature, it is common to use
structured transforms to speed-up computations of random matrix multiplications [Le, 2013 ;
Yu, 2016]. They have also been introduced for trained architectures, with Deep [Moczulski, 2015]
and Recurrent Neural Networks [Arjovsky, 2016].
We propose to replace the dense random weight matrices W = [Wr,Wi] by a succession of
Hadamard matrices H (structured orthonormal matrices composed of ±1/√p components) and
diagonal random matrices Di for i = 1, 2, 3 sampled from an i.i.d. Rademacher distribution
[Yu, 2016] :

W =
√
p

σ
HD1HD2HD3. (3.10)

We use the Hadamard transform for its simplicity and the availability of high-performance
libraries in [Thomas, 2018]. This structured transform provides the two main properties of a
dense random matrix : mixing the activations of neurons (Hadamard transform) and randomness
(diagonal matrices).

3.3 Convergence theorem and computational complexity

3.3.1 Convergence rates

Our first main result is a convergence theorem of Reservoir Computing to its kernel limit. We
use Bernstein’s concentration inequality in our recurrent setting. Several assumptions will be
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necessary :

• The kernel function k is Lipschitz-continuous with constant L, i.e. |k(a)− k(b)| ≤ L|a− b|.

• The random matrices Wr and Wi are resampled for each t to obtain uncorrelated reservoir
updates : x(t+1) = 1√

N
f(Wr

(t)x(t) + Wi
(t)i(t)). This assumption is required for our theoretical

proof of convergence, but we show convergence is reached numerically even without redrawing
the weight matrices, which is standard in Reservoir Computing (in Figure 3.1).

• The function f is bounded by a constant κ almost surely, i.e. |f(Wr
(t)x(t) + Wi

(t)i(t))| ≤ κ.

Theorem 3.3.1. (Rotation-invariant kernels) For the RI recurrent kernel defined in Equation 3.8,
under the assumptions detailed above, and with Λ = σ2

rL. For all t ∈ N, the following inequality
is satisfied for any δ > 0 with probability at least 1− 2(t+ 1)δ :

∣∣∣⟨x(t+1),y(t+1)⟩ − kt+1(l(t), ..., l(0))
∣∣∣ ≤ 1− Λt+1

1− Λ Θ(N) if Λ ̸= 1 (3.11)

≤ (t+ 1)Θ(N) if Λ = 1 (3.12)

with Θ(N) = 4κ2 log 1
δ

3N + 2κ2
√

2 log 1
δ

N .

Proof. We use the following Proposition (Theorem 3 of [Boucheron, 2003] restated in Proposition
1 of [Rudi, 2017b]) :

Proposition 3.3.2. (Bernstein inequality for a sum of random variables). Let X1, ..., XN be
a sequence of i.i.d. random variables on R with zero mean. If there exist R,S ∈ R such that
|Xi| ≤ R almost everywhere and E[X2

i ] ≤ S for i ∈ {1, ..., N}, then for any δ > 0 the following
holds with probability at least 1− 2δ :

∣∣∣∣∣ 1
N

N∑
i=1

Xi

∣∣∣∣∣ ≤ 2R log 1
δ

3N +

√
2S log 1

δ

N
. (3.13)

Under the assumptions, Proposition 3.3.2 yields with probability greater than 1− 2δ :

∣∣∣⟨x(t+1),y(t+1)⟩ − k([x(t), i(t)], [y(t), j(t)])
∣∣∣ ≤ 4κ2 log 1

δ

3N + 2κ2

√
2 log 1

δ

N
= Θ(N). (3.14)

It means the larger the reservoir, the more Random Features N we sample, and the more the
inner product of reservoir states concentrates towards its expectation value, at a rate O(1/

√
N).

We now apply this inequality recursively to complete the proof, based on the observation
that both Equations 3.11 and 3.12 are equivalent to :

∣∣∣⟨x(t+1),y(t+1)⟩ − kt+1(l(t), ..., l(0))
∣∣∣ ≤

(1 + Λ + Λ2 + ...+ Λt)Θ(N).
For t = 0, provided x(0) = y(0) = 0, we have, according to Equation 3.14, with probability at
least 1− 2δ : ∣∣∣⟨x(1),y(1)⟩ − k1(l(0))

∣∣∣ ≤ Θ(N). (3.15)
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3.3. Convergence theorem and computational complexity

For any time t ∈ N∗, let us assume the following event At is true with probability P(At) ≥ 1−2tδ :

∣∣∣⟨x(t),y(t)⟩ − kt(l(t−1), ..., l(0))
∣∣∣ ≤ (1 + . . .+ Λt−1)Θ(N). (3.16)

Using the Lipschitz-continuity of k, this inequality is equivalent to :∣∣∣k(σ2
r ⟨x(t),y(t)⟩+ l(t))− k(σ2

rkt(l(t−1), ..., l(0)) + l(t))
∣∣∣ ≤ (Λ + . . .+ Λt)Θ(N). (3.17)

With Equation 3.14, the following event Bt is true with probability P(Bt) ≥ 1− 2δ :∣∣∣∣⟨x(t+1),y(t+1)⟩ − k
(
σ2
r ⟨x(t),y(t)⟩+ l(t)

)∣∣∣∣ ≤ Θ(N). (3.18)

Summing Equations 3.17 and 3.18, with the triangular inequality and a union bound, the following
event At+1 is true with probability P(At+1) ≥ P(Bt ∩ At) = P(Bt) + P(At) − P(Bt ∪ At) ≥
1− 2δ + 1− 2tδ − 1 ≥ 1− 2(t+ 1)δ :∣∣∣⟨x(t+1),y(t+1)⟩ − kt+1(l(t), ..., l(0))

∣∣∣ ≤ (1 + . . .+ Λt)Θ(N). (3.19)

A statement and proof of a similar convergence bound for TI recurrent kernels is provided in
Appendix 3.6.1.

3.3.2 Numerical study of convergence

The previous theoretical study required three important assumptions that may not be valid for
Reservoir Computing in practice. Moreover, there is still no rigorous proof on the convergence
of Structured Random Features in the non-recurrent case due to the difficulty to deal with
correlations between them. Thus, we numerically investigate whether convergence of RC and
SRC towards the Recurrent Kernel limit is achieved in practice.
In Figure 3.1, we numerically compute the Mean-Squared Error (MSE) between the inner
products obtained with a Recurrent Kernel and RC/SRC for different number of neurons in the
reservoir. We generate 50 i.i.d. Gaussian input time series i

(t)
k of length T , for k = 1, . . . , 50 and

t = 0, . . . , T − 1. Each time series is fed into 50 reservoirs that share the same random weights,
for RC and SRC. We compute the MSE between inner products of pairs of final reservoir states
⟨x(T )

k ,x
(T )
l ⟩ and the deterministic limit obtained directly with kT (i(T−1)

k , i
(T−1)
l , . . . , i

(0)
k , i

(0)
l ), for

all k, l = 1, . . . , 50. The computation is vectorized to be efficiently implemented on a GPU. Three
different activation functions, the rectified linear unit (ReLU), the error function (Erf), and
Random Fourier Features defined in Equation 3.4, have been tested with different variances of
the reservoir weights. The larger the reservoir weights, the more unstable the reservoir dynamics
becomes.
Nonetheless, convergence is achieved in a large variety of settings, even when the assumptions of
the previous theorem are not satisfied. For example, the ReLU non-linearity is not bounded and
converges when σ2

r ≥ 1. It is interesting to notice even for a large variance σ2
r = 4 do Reservoir
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Figure 3.1 – Convergence of Reservoir Computing towards its Recurrent Kernel limit for
different variances of the reservoir weights σ2

r (columns), activation functions (lines : ReLU, Erf,
RFFs) and times, for RC (solid lines) and SRC (dashed lines). We observe that for the two
bounded activation functions (Erf and RFFs), RC always converge towards the RK limit even
at large times t. For ReLU, RC converges when σ2

r = 0.25 and 1, and diverges as t increases
when σ2

r = 4. We also observe that SRC always yields equal or faster convergence than RC. The
MSE decreases with an O(1/N) scaling, which is consistent with the convergence rates derived
in Theorem 3.3.1.

Computing and Structured Reservoir Computing converge towards the RK limit for the second
and third activation functions. This behavior has been consistently observed with any bounded
f .
On the other hand, Structured Reservoir Computing seems to always converge faster than
Reservoir Computing. We thus confirm in the recurrent case the intriguing effectiveness of
Structured Random Features [Choromanski, 2017b], that may originate from the orthogonality
of the matrix Wr in SRC.
As a final remark, weight matrices in Figure 3.1 were not redrawn as supposed in Section 3.3.1.
This assumption was necessary as correlations are often difficult to take into account in a
theoretical setting. This is important for Reservoir Computing as it would be unrealistically slow
to draw new random matrices at each time step.
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3.3. Convergence theorem and computational complexity

3.3.3 When to use Recurrent Kernels or Structured Reservoir Computing ?

The two proposed alternatives to Reservoir Computing, Recurrent Kernels and Structured
Reservoir Computing, are computationally efficient. To understand which algorithm to use for
chaotic system prediction, we need to focus on the limiting operation in the whole pipeline of
Reservoir Computing, the recurrent iterations. They correspond to Equation 3.1 for RC/SRC and
Equations 3.8 and 3.9 for RK. We have a time series of dimension d, that we split into train/test
datasets of lengths n and m respectively. The exact computational and memory complexities of
each step are described in Table 3.1.
Forward : In both Reservoir Computing and Structured Reservoir Computing, Equation 3.1
needs to be repeated as many times as the length of the time series. For Reservoir Computing, it
requires a multiplication by a dense N ×N matrix, the associated complexity scales as O(N2).
On the other hand, Structured Reservoir Computing uses a succession of Hadamard and diagonal
matrix multiplications, reducing the complexity per iteration to O(N logN).
Recurrent Kernels need to recurrently compute Equations 3.8 and 3.9 for all pairs of input points.
For chaotic time series prediction, this corresponds to a n× n kernel matrix for training, and
another kernel matrix of size n ×m for testing. To keep computation manageable, we use a
well-known property in Reservoir Computing, called the Echo-State Property : the reservoir state
should not depend on the initialization of the network, i.e. the reservoir needs to have a finite
memory τ . This property is important in Reservoir Computing and has been studied extensively
[Jaeger, 2001 ; Schrauwen, 2009 ; Wainrib, 2016 ; Inubushi, 2017]. Transposed in the Recurrent
Kernel setting, it means we can fix the number of iterations of Equations 3.8 and 3.9 to τ , by
using a sliding window to construct shorter time series if necessary. A preliminary numerical
study of the stability of Recurrent Kernels is presented in Appendix 3.6.4.
Training requires, after a forward pass on the training dataset, to solve an n×N linear system
for RC/SRC and a n × n linear system for RK. It is important to note SRC and RK do not
accelerate this linear training step. We will use Ridge Regression with regularization parameter
α to learn Wo.
Prediction in Reservoir Computing and Structured Reservoir Computing only requires the
computation of reservoir states and multiplication by the learned output weights. Recurrent
Kernels need to compute a new kernel matrix for every pair (ir, jq) with ir in the training set
and jq in the testing set. Note that the prediction step includes a forward pass on the test set,
followed by a linear model.

Reservoir Computing Structured Reservoir Computing Recurrent Kernel
Forward O(nN2) O(nN logN) O(n2τ)
Training O(nN2 +N3) O(nN2 +N3) O(n3)

Prediction O(mN2) O(mN logN) O(mnτ)
Memory O(nN +N2) O(nN) O(n2 +mn)

Table 3.1 – Computational and memory complexity of the three algorithms. SRC accelerates the
forward pass and decreases memory complexity compared to conventional RC. The complexity
of RK depends on the number of training and testing points and is advantageous when n≪ N .
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Algorithm 2 Recurrent Kernel algorithm
Result : Predictions ô(t) ∈ Rc×m.
Input : A train set {i(t)

r }nr=1 ∈ Rτ×d with outputs o ∈ Rc×n, a test set {j(t)
q }mq=1 ∈ Rτ×d.

Training : Initialize an n× n kernel matrix G(0) = 0.
for t = 0, . . . , τ − 1 do

Compute (G(t+1))rs = kt+1(i(t)
r , i

(t)
s , . . . , i

(0)
r , i

(0)
s ) using Eq. (3.8) or (3.9) and (G(t))rs.

end for
Compute the output weights Wo ∈ Rc×n that minimize ∥o−WoG(τ)∥22 + α∥Wo∥22
Prediction : Initialize an n×m kernel matrix K(0) = 0.
for t = 1, . . . , τ do

Compute (K(t+1))rq = kt+1(i(t)
r , j

(t)
q , . . . , i

(0)
r , j

(0)
q ) using Eq. (3.8) or (3.9) and (K(t))rq.

end for
Compute the predicted outputs ô(t) = WoK(τ).

3.4 Chaotic time series prediction

Chaotic time series prediction is a task arising in many different fields such as fluid dynamics,
financial or weather forecasts. By definition, it is difficult to predict their future evolution
since initially small differences get amplified exponentially. Recurrent Neural Networks and in
particular Reservoir Computing represent very powerful tools to solve this task [Antonik, 2018 ;
Vlachas, 2019].
The Kuramoto-Sivashinsky (KS) chaotic system is defined by a fourth-order partial derivative
equation in space and time [Kuramoto, 1978 ; Sivashinsky, 1977]. We use a discretized version from
a publicly available code [Vlachas, 2019] with input dimension d = 100. Time is normalized by
the Lyapunov exponent λ = 0.043 which defines the characteristic time of exponential divergence
of a chaotic system, i.e. |δx(t)| ≈ eλt|δx(0)|.
KS data points i(0), . . . , i(t−1) are fed to the algorithm. The output in Equation 3.2 for Reservoir
Computing consists here in predicting the next state of the system : ô(t) = i(t). This prediction
is then used for updating the reservoir state in Equation 3.1, the algorithm outputs the next
prediction ô(t+1), and we repeat this operation. Thus, Reservoir Computing defines a trained
autonomous dynamical system that one wants to be synchronized with the chaotic time series
[Antonik, 2018].
The hyperparameters are found with a grid search, and the same set is used for RC, SRC, and
RK to demonstrate their equivalence. To improve the performance of the final algorithm, we
also add a random bias and use a concatenation of the reservoir state and the current input for
prediction, replacing Equation 3.2 by ôt = Wo[x(t), i(t)].
Prediction performance is presented in Figure 3.2. RC and SRC are trained on n = 70,000
training points and RK on a sub-sampling of 7,000 of these training points, due to memory
constraints. The testing dataset length was set at 2,000. The sizes N in Reservoir Computing
and Structured Reservoir Computing are chosen so the dimension p = N + d in Equation 3.10
is a power of two for the multiplication by Hadamard matrix. Linear regression is solved using
Cholesky decomposition.
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Figure 3.2 – (a) Comparison of different algorithms for the prediction of the Kuramoto-
Sivashinsky dataset. True output (top), predictions of RC/SRC/RK (left) and differences with
the true output (right), with reservoirs in RC/SRC of size N = 3,996. We observe that each
technique is able to predict up to a few characteristic times. (b) Mean-Squared Error as a function
of the prediction time for RC (full lines), SRC (dashed lines), and RK (black). For all the
reservoir sizes considered, the performances of RC and SRC are very close and they converge for
large dimensions to the RK limit.

The predictions in Figure 3.2 show that all three algorithms are able to predict up to a few
characteristic times. Since the prediction performance varies quite significantly between different
realizations, we also display the Mean-Squared Error (MSE) of each algorithm, as a function
of the prediction time and averaged over 10 realizations. We normalize each curve by the MSE
between two independent KS systems.
We observe a decrease in the MSE when the size of the reservoir increases, meaning a larger
reservoir yields better predictions. Performances are equivalent between RC and SRC, and they
converge towards the RK performance for large reservoir sizes. Hence, this means RC, SRC, and
RK can seamlessly replace one another in practical applications.
Timing benchmark. Several steps in the Reservoir Computing pipeline need to be assessed
separately, as described in 3.3.3. We present the timings on a training set of length n = 10, 000
and testing length of m = 2, 000 in Table 3.2 for all three algorithms.
The forward pass, i.e. computing the recurrent iterations of each algorithm, is considered separately
from the linear regression for training, to emphasize the cost of this important step. In RC, the
most expensive operation is the dense matrix multiplication ; the GPU memory was not large
enough to store the square weight matrix for the two largest reservoir sizes. With Structured
Reservoir Computing, this forward pass becomes very efficient even at large sizes, and memory
is not an issue anymore. We observe that the forward pass complexity becomes approximately
constant until dimension ∼ 105. On the other hand, Recurrent Kernels iterations are very fast,
as we only need to compute element-wise operations in a kernel matrix.
Prediction requires a forward pass and then is performed with autonomous dynamics as presented
on Figure 3.2 where Equation 3.2 is repeated 600 times. For Recurrent Kernels, prediction
remains slow, and this drawback is exacerbated by the autonomous dynamics strategy in time
series prediction, that requires successive prediction steps.
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This shows that SRC is a very efficient way to scale-up Reservoir Computing to large sizes
and reach the asymptotic limit of performance. On the other hand, the deterministic Recurrent
Kernels are surprisingly fast to iterate, at the cost of a relatively slow prediction when the number
of training samples n is large.

N = 1,948 N = 3,996 N = 8,092 N = 16,284 N = 32,668
RC 2.6/0.02/1.9 3.1/0.05/4.6 10.4/0.16/15.4 Mem. Err. Mem. Err.
SRC 3.3/0.02/1.6 3.4/0.05/2.7 3.5/0.16/3.7 3.6/0.57/6.8 3.6/2.57/13.0
RK 0.7/0.09/23.0

Table 3.2 – Timing (Forward/Train/Predict, in seconds) for a KS prediction task as a function
of N . We observe that Recurrent Kernels are surprisingly fast, except for prediction. Structured
Reservoir Computing reduces drastically the speed of the forward pass at large sizes and is more
memory-efficient than Reservoir Computing. Experiments were run on an NVIDIA V100 16GB.

3.5 Conclusion

In this work, we strengthened the connection between Reservoir Computing and kernel methods
based on theoretical and numerical results, and showed how efficient implementations of Recurrent
Kernels can be competitive with standard RC for chaotic time series prediction. Future lines
of work include a deeper study of stability and the extension to different recurrent networks
topologies. We deeply think this connection between random RNNs and kernel methods will
open up future research on this important topic in machine learning.
We additionally introduced Structured Reservoir Computing, an acceleration technique of Reser-
voir Computing using fast Hadamard transforms. With only a simple change of the reservoir
weights, we are able to speed up and reduce the memory cost of Reservoir Computing and
therefore reach very large network sizes. We believe Structured Reservoir Computing offers a
promising alternative to conventional Reservoir Computing, replacing it whenever large reservoir
sizes are required.

44



3.6. Appendix

3.6 Appendix

3.6.1 Convergence rate for translation-invariant kernels

Theorem 3.6.1. (Rotation-invariant kernels) For the RI recurrent kernel defined in Equation 3.9,
under the assumptions detailed above, and with Λ = 2σ2

rL (note the factor 2 compared to Theorem
3.3.1). For all t ∈ N, the following inequality is satisfied for any δ > 0 with probability at least
1− 2(t+ 1)δ :

∣∣∣⟨x(t+1),y(t+1)⟩ − kt+1(∆(t), ...,∆(0))
∣∣∣ ≤ 1− Λt+1

1− Λ Θ(N) if Λ ̸= 1 (3.20)

≤ (t+ 1)Θ(N) if Λ = 1 (3.21)

with Θ(N) = 4κ2 log 1
δ

3N + 2κ2
√

2 log 1
δ

N .

Proof. Under the assumptions, Proposition 3.3.2 yields with probability greater than 1− 2δ :

∣∣∣⟨x(t+1),y(t+1)⟩ − k([x(t), i(t)], [y(t), j(t)])
∣∣∣ ≤ 4κ2 log 1

δ

3N + 2κ2

√
2 log 1

δ

N
= Θ(N). (3.22)

It means the larger the reservoir, the more Random Features N we sample, and the more the
inner product of reservoir states concentrates towards its expectation value, at a rate O(1/

√
N).

We now apply this inequality recursively to complete the proof, based on the observation
that both Equations 3.11 and 3.12 are equivalent to :

∣∣∣⟨x(t+1),y(t+1)⟩ − kt+1(∆(t), ...,∆(0))
∣∣∣ ≤

(1 + Λ + Λ2 + ...+ Λt)Θ(N).
For t = 0, provided x(0) = y(0) = 0, we have, according to Equation 3.14, with probability at
least 1− 2δ : ∣∣∣⟨x(1),y(1)⟩ − k1(∆(0))

∣∣∣ ≤ Θ(N). (3.23)

For any time t ∈ N∗, let us assume the following event At is true with probability P(At) ≥ 1−2tδ :

∣∣∣⟨x(t),y(t)⟩ − kt(∆(t−1), ...,∆(0))
∣∣∣ ≤ (1 + . . .+ Λt−1)Θ(N). (3.24)

Using the Lipschitz-continuity of k, this inequality is equivalent to :∣∣∣k(2σ2
r (1− ⟨x(t),y(t)⟩) + ∆(t))− k(2σ2

r (1− kt(∆(t−1), ...,∆(0))) + ∆(t))
∣∣∣ ≤ (Λ + . . .+ Λt)Θ(N).

(3.25)
With Equation 3.14, the following event Bt is true with probability P(Bt) ≥ 1− 2δ :∣∣∣∣⟨x(t+1),y(t+1)⟩ − k

(
2σ2

r (1− ⟨x(t),y(t)⟩) + ∆(t))∣∣∣∣ ≤ Θ(N). (3.26)

Summing Equations 3.25 and 3.26, with the triangular inequality and a union bound, the following
event At+1 is true with probability P(At+1) ≥ P(Bt ∩ At) = P(Bt) + P(At) − P(Bt ∪ At) ≥
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1− 2δ + 1− 2tδ − 1 = 1− 2(t+ 1)δ :∣∣∣⟨x(t+1),y(t+1)⟩ − kt+1(∆(t), ...,∆(0))
∣∣∣ ≤ (1 + . . .+ Λt)Θ(N). (3.27)

3.6.2 Explicit Recurrent Kernel formulas

We have defined so far the general formulas of RI and TI Recurrent Kernels in Equations 3.8
and 3.9. We will give now their explicit formulas for specific activation functions that one may
encounter in Reservoir Computing.
Two reservoirs x(t) and y(t) are driven by two respective input time series i(t) and j(t). They
obey Equation 3.1 and in the infinite-size limit, their inner product converges towards an explicit
Recurrent Kernel. In practice, one needs to compute the inner products for each pair of input
time series, from the training or testing sets, that we concatenate to construct a kernel matrix.
A list of different activation functions and their associated kernels is provided in Table 3.3.
Without recurrence, it is always possible to write the corresponding kernel as an integral that
one may evaluate :

k(u,v) =
∫
dwρ(w)f(⟨w,u⟩)f(⟨w,v⟩); (3.28)

where ρ(w) is the distribution of the weights, usually an i.i.d. Gaussian distribution. However, in
all the cases presented here, k(u,v) happens to contain inner products ⟨u,v⟩, which makes it
possible to define the corresponding Recurrent Kernel.
In our case, u(t) = [σrx(t), σii

(t)] and v(t) = [σry(t), σij
(t)] so that :

⟨u(t),v(t)⟩ = σ2
r ⟨x(t),y(t)⟩+ σ2

i ⟨i(t), j(t)⟩ → σ2
rkt(l(t−1), . . . , l(0)) + l(t) (3.29)

when the reservoir size N →∞. Similarly, ∥u(t)∥2 = ⟨u(t),u(t)⟩ and ∥v(t)∥2 are symmetric inner
products that can similarly be expressed as in Equation 3.29. Hence, the Recurrent Kernel
formulas are derived from the previous one by noting that :

lim
N→∞

⟨x(t+1),y(t+1)⟩ = kt+1(l(t), . . . , l(0)) ≡ k(u(t),v(t)). (3.30)

Analytic formulas in more general cases may not exist and they would need to be replaced by
successive integrals. In this work, we restricted ourselves to functions described in Table 1 with
simple analytic formulas, to speed up the RK computation. For instance, the error function is very
close but not equal to the hyperbolic tangent in our implementations of Reservoir Computing,
and performance in practice is very similar.
The successive integrals can still be explicitly defined. Equation 3.28 describes the asymptotic
kernel limit for any arbitrary (u,v). To define recurrent kernels, we need to express it as a
function of ⟨u,v⟩, ∥u∥2, and ∥v∥2 only. This is possible thanks to the invariance by rotation of
the Gaussian distribution of w. Without loss of generality, we can thus assume that u = ∥u∥e1

and v = ∥v∥(cos θe1 + sin θe2) with e1 and e2 the first two vectors of the canonical basis and
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f(·) Associated kernel k(u, v)

Erf(·) 2
π arcsin

(
2⟨u,v⟩√

(1+2∥u∥2)(1+2∥v∥2)

)
RFFs : [cos(·), sin(·)] exp

(
−∥u−v∥2

2

)
= exp

(
−∥u∥2+∥v∥2−2⟨u,v⟩

2

)
Sign(·) 2

π arcsin
(

⟨u,v⟩
∥u∥∥v∥

)
Heaviside(·) 1

2 −
1

2π arccos
(

⟨u,v⟩
∥u∥∥v∥

)
ReLU(·) 1

2π

(
⟨u,v⟩ arccos(− ⟨u,v⟩

∥u∥∥v∥) + ∥u∥∥v∥
√

1−
(

⟨u,v⟩
∥u∥∥v∥

)2
)

Table 3.3 – Table of point-wise non-linearities f and their approximated kernels. For any
u,v ∈ Rp the kernel k(u,v) is the limit when N goes to infinity of 1

N ⟨f(Wu), f(Wv)⟩ with
W ∈ RN×p an i.i.d. normal random matrix. In the case of Reservoir Computing, we have
u = u(t) = [σrx(t), σii

(t)] and v = v(t) = [σry(t), σij
(t)]. We observe that in this table, all kernel

formulas depend only on ⟨u,v⟩, ∥u∥, and ∥v∥, which makes it possible to easily derive the
Recurrent Kernel equations.

θ = ⟨u,v⟩/(∥u∥∥v∥) (which is a function of the three quantities of interest). The multidimensional
integral boils down to a two dimensional integral :

k(u,v) =
∫ ∫

dw1dw2ρ(w1)ρ(w2)f(w1∥u∥)f(∥v∥(w1 cos θ + w2 sin θ)), (3.31)

where w1 and w2 are Gaussian random variables, projections of w on e1 and e2. Hence it is
possible to iterate Recurrent Kernels numerically, that are the large-size limit of any Reservoir
Computing algorithm for every activation function f . Each component of the square kernel
matrix would require the evaluation of this two-dimensional integral, it may be possible to use
tabular values to speed up computation.

3.6.3 Numerical study of the independence hypothesis

One assumption for the previous convergence theorems states the weight matrices Wr and Wi

have to be redrawn at each iteration. This independence hypothesis is required in Equations 3.18
and 3.26, to ensure that x(t) and y(t) are uncorrelated with the weight matrices. This is necessary
in the theoretical study to properly define the expectations and ensure the i.i.d. requirement for
the random variables in the Bernstein inequality.
However, this assumption is unrealistic for practical Reservoir Computing. Resampling weight
matrices at each timestep is computationally demanding and output weights would depend on
the realization of these random matrices : one would need to keep the same random matrices in
memory for testing.
However, in Figure 3.3, we investigate the convergence with and without redrawing weights at
each iteration, and this independence hypothesis does not seem to be necessary : convergence
is still achieved with fixed weight matrices. We show the Mean-Squared Error ∥K1 −K2∥22/n2
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Figure 3.3 – Mean-Squared error between the kernel matrix obtained with RC/SRC with the
asymptotic kernel limit, with and without resampling the random matrices at each iteration, to
test the independence hypothesis of the theorem. 50× 50 kernel matrices have been generated
for all pairs of 50 random input time series of length 10. Several activation functions and their
corresponding recurrent kernels are presented here. We observe that the hypothesis does not
seem to be necessary since RC and SRC without resampling also converge to the RK limit at
sensibly the same speed.

between the kernel matrix K1 from the explicit RK formula and K̂2 the one obtained with
RC and SRC, with and without redrawing the random matrices at every timestep. Each kernel
matrix is of size 50× 50, as we use n = 50 random i.i.d Gaussian input time series of dimension
50 and time length 10. Each curve is an average over 10 realizations and the reservoir scale is set
to σ2

r = 0.25 to ensure stability.
We confirm the observation from Figure 3.1 that the larger the reservoir dimension, the closer
we are from the RK asymptotic limit. This is valid for several activation functions, the ones
presented in Table 3.3. We also confirm that SRC generally converges faster than RC.
Convergence is still achieved when resampling the weights at each iteration, and speed of
convergence is not significantly different than for the fixed random matrix case. Thus convergence
seems to be much more robust in practice, and this may call for further theoretical studies.

3.6.4 Stability of Reservoir Computing and Recurrent Kernels

As the reservoir is itself a dynamical system, it can be stable (differences in initial conditions
vanish with time) or chaotic (differences in initial conditions explode exponentially). This is linked
with the Echo-State Property, extensively studied for Reservoir Computing. It states that two
reservoirs initialized differently need to converge to the same trajectory, provided they share the
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same weights (at each time step if weights are resampled). This property is important so that the
reservoir state after a large enough time τ does not depend on the arbitrary reservoir initialization.
Stability or chaos can be tuned depending on a set of hyperparameters. An important one is
the scale of the reservoir weights : when small, initial differences get damped exponentially with
time, whereas they may explode if reservoir weights are large.
We verify this Echo-State Property here for Reservoir Computing. In Figure 3.4 we present
the squared distance ∥x(t)

1 − x
(t)
2 ∥2 as a function of time t between two randomly initialized

reservoirs x1 and x2, for the same input time series from the Kuramoto-Sivashinsky dataset. A
normalization factor has been added to normalize this distance to 1 at t = 0 and each curve is
an average over 100 realizations. The activation is the error function, the input scale is set to a
small value σ2

i = 0.01, and we vary the reservoir scale σ2
r . For σ2

r = 0.49 and 1, dynamics are
stable and the two reservoir states converge quite quickly to the same trajectory. When σ2

r = 2.25,
dynamics becomes chaotic and the two reservoirs follow very different dynamics due to their
different initial conditions.
Recurrent Kernels may also present this transition from stability to chaos. Moreover, this stability
property is important for Recurrent Kernels in practice. RKs need to be iterated a certain number
of times, and thanks to stability this number of iterations can be reduced to the finite memory τ
and not on the full length of the time series. This change reduces considerably the computational
costs.
We thus also investigate numerically the stability of Recurrent Kernels, i.e. how they depend on
the initial conditions. In Figure 3.4, we present the normalized difference between two kernel
matrices ∥K(t)

1 −K
(t)
2 ∥22 as a function of time, for two recurrent kernels K1 and K2 initialized

with a matrix full of ones or of zeros, and fed with the same input time series, for the arcsine
Recurrent Kernel corresponding to the erf activation function. We observe that Recurrent Kernels
are in general a lot more stable than Reservoir Computing. This characteristic may be interesting
to investigate further.
We may now draw an interesting parallel between this study and, as we unroll the Recurrent Neural
Network through time, multilayer perceptrons with random weights, linked with compositional
kernels. They correspond to our case, i(t) = 0 for t ≥ 1 and i(0) ∈ Rd is the time-independent
input. This stability property corresponds to a final layer that does not depend on i(0), and
as such information does not flow in the deep network. Hence, whereas it is advantageous in
Reservoir Computing to be stable, it may be detrimental for deep neural networks.

3.6.5 Implementation details for Reservoir Computing

Several tweaks are useful to improve the performance of Reservoir Computing for time series
prediction. We used the erf activation function as it is the closest from the hyperbolic tangent
already used in Reservoir Computing, that still possess a simple Recurrent Kernel formula.
First, we add a random additive bias b ∈ RN sampled from an i.i.d. normal distribution N (0, σ2

b ).
The variance of this bias vector σ2

b is a hyperparameter to tune, like the variance of the reservoir
or input weights. This bias helps to diversify the neuron activations in the reservoir. Hence, the
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Figure 3.4 – Stability analysis of Reservoir Computing and Recurrent Kernels. We compute
the normalized square distance between two reservoirs or recurrent kernels fed with the same
input time series and different initializations. For RK or RC when σ2

r ≤ 1 we see that trajectories
converge to a single one after some time. This means that initial conditions are forgotten after a
number of iterations. On the other hand, when σ2

r = 2.25 for Reservoir Computing, the reservoir
is in a chaotic regime and always depend on initial conditions. It is interesting to observe that
Recurrent Kernels are generally more stable than RC.

reservoir update equation becomes :

x(t+1) = 1√
N
f
(
Wr x(t) + Wi i(t) + b

)
. (3.32)

As stated previously, we concatenate the reservoir state with the last value of the time series we
have received. Information about the past is still encoded in the reservoir, but with this simple
change, the reservoir is rather used to compute perturbations on the current value, and does not
have to reconstruct the whole spatial profile. We add a renormalization hyperparameter r for
this concatenation, in order to control the weight of the reservoir versus current input.
A hyperparameter search was performed, for a total of 5 hyperparameters (the reservoir scale,
input scale, bias scale, the previous concatenation factor, regularization constant). Since there
is a large number of hyperparameters to tune, we perform it on one hyperparameter at a time,
going through the set of parameters several times. The final set of hyperparameters of Figure 3.2
is {σi, σr, σb, r, α} = {0.4, 0.9, 0.4, 1.1, 10−2}.
For completeness, we give here the exact definition of the Mean-Squared Error of Figure 3.2.
The target output O(t) ∈ Rd for t = 1, . . . , Tpred corresponds to the next states of the chaotic
systems, and for each t, we evaluate the MSE between O(t) and the prediction of the algorithm
ô(t), which is simply ∥O(t)− ô(t)∥2/d.

3.6.6 Implementation details for Recurrent Kernels

We also used a Recurrent Kernel to perform chaotic time series prediction. We chose an arcsine
rotation-invariant kernel, the asymptotic limit of a reservoir with error function activations. We
use the principle described in Section 3.6.2, with the addition of a random Gaussian bias that
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Figure 3.5 – How to use Recurrent Kernels for time series prediction. In Reservoir Computing,
the input is continuously fed to the reservoir and all the reservoir states for every timestep t are
stored for training. With Recurrent Kernels, we construct n small windows of the time series of
length τ and compute scalar products between each pair using τ iteration of Equation 3.8 or 3.9.

corresponds to adding a constant dimension to the vector u(t) = [σrx(t), σii
(t), σb].

Additionally, we have introduced for Reservoir Computing a concatenation step we need to
reproduce with Recurrent Kernels. In RC, we concatenate the reservoir and the current input
before computing the prediction. The corresponding operation for Recurrent Kernels is the
addition of a linear kernel computed from all pairs of input points : K+

kl = ⟨i(t)
k , i

(t)
l ⟩. This kernel

matrix K+ is added to the Recurrent Kernel after the iterations and before the linear model for
prediction.
We also expand more on the process of generating the input data for Recurrent Kernels. In
time series prediction, each reservoir state (neglecting a warm-up phase) is used during training
to learn output weights to predict the future states of the system. Since there are n training
examples, this corresponds to an n×n kernel matrix. In the Recurrent Kernel setting, we train a
linear model on the final kernel matrix. We thus construct n time series of length τ = 50 for each
time step of the training data (neglecting the effect of edges), where the length τ is determined
by the stability of the Recurrent Kernel. This process is depicted in Figure 3.5.

3.6.7 Recursive vs non-recursive prediction

Following previous strategies developed for chaotic time series prediction with Reservoir, RC,
SRC, and RK algorithms were trained only to perform next-time-step prediction. To predict
further in the future, this prediction is then fed back into the algorithm to iterate further in
time. As explained previously, this defines an autonomous dynamical system that should be
synchronized with the chaotic time series if training is successful.
Another possible strategy would be to use a given reservoir state to predict Tpred time steps
in the future. The output dimension c = d Tpred is larger and the learning task becomes more
difficult.
We show here the usefulness of this strategy based on autonomous dynamics. In Figure 3.6, we
show the performance of Reservoir Computing prediction on the Kuramoto-Sivashinsky dataset,
with and without recursive prediction. With recursive prediction (left), this corresponds to the
strategy already presented in Figure 3.2, and it is not surprising that prediction up to at least
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2 Lyapunov exponents is possible. Without recursive prediction (right), the algorithm has a
much harder time to predict the future of the chaotic system. Instead, after a short while, it only
returns the average value of the time series.
Note that the same hyperparameters were used in both cases. While it may be possible to improve
the performance of the direct prediction strategy, by increasing the size of the reservoir or playing
with regularization parameter, but we show here the simplicity and effectiveness of the recursive
prediction strategy.

Figure 3.6 – Comparison of recursive and non-recursive prediction. We see that with recursive
prediction (left), Reservoir Computing is able to predict quite precisely up to at least 2 characte-
ristic times. On the other hand, without recursive prediction, Reservoir Computing quickly has a
hard time to guess the future of the KS system and outputs its mean for long prediction times.
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Chapter 4
Optical Random Features and their Kernel
Limit

This chapter is based on [Ohana, 2020].

Approximating kernel functions with random features (RFs) has been a successful application
of random projections for nonparametric estimation. However, performing random projections
presents computational challenges for large-scale problems. Recently, a new optical hardware
called Optical Processing Unit (OPU) has been developed for fast and energy-efficient computation
of large-scale RFs in the analog domain. More specifically, the OPU performs the multiplication
of input vectors by a large random matrix with complex-valued i.i.d. Gaussian entries, followed
by the application of an element-wise squared absolute value operation – this last nonlinearity
being intrinsic to the sensing process. In this Chapter, we show that this operation results in a
dot-product kernel that has connections to the polynomial kernel, and we extend this computation
to arbitrary powers of the feature map. Experiments demonstrate that the OPU kernel and its
RF approximation achieve competitive performance in applications using kernel ridge regression
and transfer learning for image classification. Crucially, thanks to the use of the OPU, these
results are obtained with time and energy savings.

4.1 Introduction

Kernel methods represent a successful class of Machine Learning models, achieving state-of-
the-art performance on a variety of tasks with theoretical guarantees [Schölkopf, 2002 ; Rudi,
2017a ; Caponnetto, 2007]. Applying kernel methods to large-scale problems, however, poses
computational challenges, and this has motivated a variety of contributions to develop them at
scale ; see, e.g., [Rudi, 2017a ; Smola, 2000 ; Zhang, 2013 ; Rudi, 2015 ; Cutajar, 2017].
Consider a supervised learning task, and let {x1, . . . ,xn} be a set of n inputs with xi ∈ Rd

associated with a set of labels {t1, . . . , tn}. In kernel methods, it is possible to establish a mapping
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between inputs and labels by first mapping the inputs to a high-dimensional (possibly infinite
dimensional) Hilbert space H using a nonlinear feature map φ : Rd → H, and then to apply
the model to the transformed data. What characterizes these methods is that the mapping φ(·)
does not need to be specified and can be implicitly defined by choosing a kernel function k(·, ·).
While kernel methods offer a flexible class of models, they do not scale well with the number n
of data points in the training set, as one needs to store and perform algebraic operations with
the kernel matrix K, whose entries are Kij = k(xi,xj), and which require O(n2) storage and
O(n3) operations.
In a series of celebrated papers [Rahimi, 2008 ; Rahimi, 2009], Rahimi and Recht have proposed
approximation techniques of the kernel function using random features (RFs), which are based
on random projections of the original features followed by the application of a nonlinear transfor-
mation. In practice, the kernel function is approximated by means of the scalar product between
finite-dimensional random maps ϕ : Rd → RD :

k(xi,xj) = ⟨φ(xi),φ(xj)⟩H ≈ ϕ(xi)⊤ϕ(xj). (4.1)

The RF-based approximation turns a kernel-based model into a linear model with a new set of
nonlinear features ϕ(x) ; as a result, the computational complexity is reduced from O(n3) to
O(ndD) to construct the random features and O(D3) to optimize the linear model, where D is
the RF dimension and n the number of data points. Furthermore, there is no need to allocate
the kernel matrix, reducing the storage from O(n2) to O(nD) +O(D2). Unless approximation
strategies to compute random features are used, e.g., [Le, 2013], computing RFs is one of the
main computational bottlenecks. More details about kernel methods and random features can be
found in Section 2.2.
A completely different approach was pioneered in Saade et al. [Saade, 2016a], where the random
projections are instead made via an analog optical device – the Optical Processing Unit (OPU)
– that performs these random projections literally at the speed of light and without having to
store the random matrix in memory. Their results demonstrate that the OPU makes a significant
contribution towards making kernel methods more practical for large-scale applications with the
potential to drastically decrease computation time and memory, as well as power consumption.
The OPU has also been applied to other frameworks like reservoir computing [Dong, 2018 ;
Dong, 2019] and anomaly detection [Keriven, 2018].
Building on the milestone work of [Saade, 2016a], the goal of the present contribution is threefold :
a) we derive in full generality the kernel to which the dot product computed by the OPU RFs
converges, generalizing the earlier computation of [Saade, 2016a] to a larger class of kernels ; b)
we present new examples and a benchmark of applications for the kernel of the OPU ; and c) we
give a detailed comparison of the running time and energy consumption between the OPU and a
last generation GPU.
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4.2 The Optical Processing Unit

The principle of the random projections performed by the Optical Processing Unit (OPU) is
based on the use of a heterogeneous material that scatters the light that goes through it, see
Figure 4.1 for the experimental setup. The data vector x ∈ Rd is encoded into light using a
digital micromirror device (DMD). This encoded light then passes through the heterogeneous
medium, performing the random matrix multiplication. As discussed in [Liutkus, 2014], light
going through the scattering medium follows many extremely complex paths, that depend on
refractive index inhomogeneities at random positions. For a fixed scattering medium, the resulting
process is still linear, deterministic, and reproducible. Reproducibility is important as all our
data vectors need to be multiplied by the same realisation of the random matrix.
After going through the "random" medium, we observe a speckle figure on the camera, where the
light intensity at each point is modelled by a sum of the components of x weighted by random
coefficients. Measuring the intensity of light induces a non-linear transformation of this sum,
leading to :

Proposition 4.2.1. Given a data vector x ∈ Rd, the random feature map performed by the
Optical Processing Unit is :

ϕ(x) = 1√
D
|Ux|2, (4.2)

where U ∈ CD×d is a complex Gaussian random matrix whose elements Ui,j ∼ CN (0, 1), the
variance being set to one without loss of generality, and depends on a multiplicative factor
combining laser power and attenuation of the optical system. We will name these RFs optical
random features.

More details about the OPU are given in Section 2.4.

Figure 4.1 – Experimental setup of the Optical Processing Unit (modified with permission
from [Saade, 2016a]). The data vector is encoded in the coherent light from a laser using a DMD.
Light then goes through a scattering medium and a speckle pattern is measured by a camera.
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4.3 Computing the kernel

When we map two data points x,y ∈ Rd into a feature space of dimension D using the optical
RFs of Equation 4.2, we have to compute the following to obtain the associated kernel k2 :

k2(x,y) ≈ ϕ(x)⊤ϕ(y) = 1
D

D∑
j=1
|x⊤u(j)|2|y⊤u(j)|2 (4.3)

D→+∞=
∫
|x⊤u|2|y⊤u|2µ(u)du, (4.4)

with u = [u(1), . . . ,u(D)]⊤ and u(j) ∈ Rd,∀j ∈ {1, .., D}.

Theorem 4.3.1. The kernel k2 approximated by the dot product of optical random features of
Equation 4.2 is given by :

k2(x,y) = ∥x∥2 ∥y∥2 +
(
x⊤y

)2
, (4.5)

where the norm is the l2 norm.

Proof. By rotational invariance of the complex Gaussian distribution, we can fix x = ∥x∥ e1

and y = ∥y∥ (e1 cos θ + e2 sin θ), with θ being the angle between x and y, e1 and e2 being two
orthonormal vectors. Letting ei

⊤u = ui ∼ CN (0, 1), i = 1, 2 and u∗
1 be the complex conjugate of

u1, we obtain :

k2(x,y) = ∥x∥2 ∥y∥2
∫
|u1|2|u1 cos θ + u2 sin θ|2dµ(u)

= ∥x∥2 ∥y∥2
∫ (
|u1|4 cos2 θ + |u1|2|u2|2 sin2 θ + 2|u1|2Re(u∗

1u2) cos θ sin θ
)

dµ(u1)dµ(u2).

By a parity argument, the third term in the integral vanishes, and the remaining ones can be
explicitly computed, yielding :

k2(x,y) = ∥x∥2 ∥y∥2 (1 + cos2 θ) = ∥x∥2 ∥y∥2 +
(
x⊤y

)2
.

Two extended versions of the proof are presented in Appendix 4.5.1.

Numerically, one can change the exponent of the feature map to m ∈ R+, which, using notations
of Equation 4.2, becomes :

ϕ(x) = 1√
D
|Ux|m. (4.6)

Theorem 4.3.2. When the exponent m is even, i.e. m = 2s, ∀s ∈ N, the dot product of feature
maps of Equation 4.6 tends to the kernel k2s (for D →∞) :

k2s(x,y) = ∥x∥m ∥y∥m
s∑
i=0

(s!)2
(
s

i

)2 (
x⊤y

)2i
∥x∥2i ∥y∥2i

. (4.7)

The proof is given in Appendix 4.5.3. Moreover, a generalization ∀m ∈ R+ can be established.
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Equation 4.7 is connected to the polynomial kernel [Schölkopf, 2002] defined as :

(ν + x⊤y)p =
p∑
i=0

(
p

i

)
νp−i(x⊤y

)i
, (4.8)

with ν ≥ 0 and p ∈ N the order of the kernel. For ν = 0 the kernel is called homogeneous. For
ν > 0 the polynomial kernel consists of a sum of lower order homogeneous polynomial kernels
up to order p. It can be seen as having richer feature vectors including all lower-order kernel
features. For optical RFs raised to the power of s ∈ N we have a sum of homogeneous polynomial
kernels taken to even orders up to m = 2s.
Since x⊤y = ∥x∥ ∥y∥ cos θ, the kernel scales with ∥x∥i ∥y∥i, which is characteristic to any
homogeneous polynomial kernel. It is easy to extend this relation to the inhomogeneous polynomial
kernel by appending a bias to the input vectors, i.e. x′⊤y′ = ν+x⊤y when x′ = (

√
ν,x1, ...,xd)⊤

and y′ = (
√
ν,y1, ...,yd)⊤. A practical drawback of this approach is that increasing the power

of the optical RFs also increases their variance. Thus, convergence requires higher projection
dimensions. Although high dimensional projections can be computed easily using the OPU,
solving models on top of them poses other challenges that require special treatment [Rudi, 2017a]
(e.g. Ridge Regression scales cubically with D). Therefore, we did not include these cases in the
experiments in the next section and leave them for future research.

4.4 Experiments
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Figure 4.2 – Ridge Regression test error on Fashion-MNIST for different RFs and projection
dimensions D. Horizontal lines show the test error using the true kernel. Standard deviations for
different seeds are negligibly small and not shown in the plot. Plot (a) compares optical RFs of
degree m = 2 to RBF Fourier RFs. Higher degree optical RFs are left out for better readability.
The more slowly converging optical RFs for m = 4 are added for larger D in plot (b).

In this section, we assess the usefulness of optical RFs for different settings and datasets. The
model of our choice in each case is Ridge Regression. OPU experiments were performed remotely
on the OPU prototype "Vulcain", running in the LightOn Cloud with library LightOnOPU v1.0.2.
Since the current version only supports binary input data we decide to binarize inputs for all
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experiments using a threshold binarizer (see Appendix 4.5.5). The code of the experiments is
publicly available 1.

4.4.1 Optical random features for Fashion-MNIST

We compare optical RFs (simulated as well as physical) to an RBF Fourier Features baseline for
different projection dimensions D on Fashion-MNIST. We use individually optimized hyperpa-
rameters for all RFs that are found for D = 104 using an extensive grid search on a held-out
validation set. The same hyperparameters are also used for the precise kernel limit. Figure 4.2
shows how the overall classification error decreases as D increases. Part (b) shows that simulated
optical RFs for m = 2 and RBF Fourier RFs reach the respective kernel test score at D = 105.
Simulated optical RFs for m = 4 converge more slowly but outperform m = 2 features from
D = 2× 104. They perform similarly well as RBF Fourier RFs at D = 105. The performance gap
between m = 2 and m = 4 also increases for the real optical RFs with increasing D. This gap
is larger than for the simulated optical RFs due to an increase in regularization for the m = 2
features that was needed to add numerical stability when solving linear systems for large D.
The real OPU loses around 1.5% accuracy for m = 2 and 1.0% for m = 4 for D = 105, which is
due slightly suboptimal hyperparameters to improve numerical stability for large dimensions.
Moreover, there is a small additional loss due to the quantization of the analog signal when the
OPU camera records the visual projection.

4.4.2 Transfer learning on CIFAR-10

Architecture ResNet34 AlexNet VGG16
Layer L1 L2 L3 Final MP1 MP2 Final MP4 MP5 Final

Dimension d 4 096 2 048 1 024 512 576 192 9 216 2 048 512 25 088
Sim. Opt. RFs 30.4 24.7 28.9 11.6 38.1 41.9 19.6 20.7 29.8 15.2 (12.9)
Optical RFs 31.1 25.7 29.7 12.3 39.2 42.6 20.8 21.5 30.2 16.4

RBF Four. RFs 30.1 25.2 30.0 12.3 39.4 41.9 19.1 20.7 30.1 14.8 (13.0)
No RFs 31.3 26.7 33.5 14.7 44.6 48.8 19.6 22.5 34.8 13.3

Table 4.1 – Test errors (in %) on CIFAR-10 using D = 104 RFs for each kernel (except linear).
Features were extracted from intermediate layers when using the original input size (32x32). Final
convolutional layers were used with upscaled inputs (224x224). L(i) refers to the ith ResNet34
layer and MP(i) to the ith MaxPool layer of VGG16/AlexNet. Values for the kernel limit are
shown in parenthesis (last column).

An interesting use case for the OPU is transfer learning for image classification. For this purpose
we extract a diverse set of features from the CIFAR-10 image classification dataset using
three different convolutional neural networks (ResNet34 [He, 2015], AlexNet [Krizhevsky, 2012]
and VGG16 [Simonyan, 2014a]). The networks were pretrained on the well-known ImageNet
classification benchmark [Russakovsky, 2015]. For transfer learning, we can either fine-tune these
networks and therefore the convolutional features to the data at hand, or we can directly apply a

1. https://github.com/joneswack/opu-kernel-experiments
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classifier on them assuming that they generalize well enough to the data. The latter case requires
much less computational resources while still producing considerable performance gains over the
use of the original features. This light-weight approach can be carried out on a CPU in a short
amount of time where the classification error can be improved with RFs.
We compare Optical RFs and RBF Fourier RFs to a simple baseline that directly works with the
provided convolutional features (no RFs). Table 4.1 shows the test errors achieved on CIFAR-10.
Each column corresponds to convolutional features extracted from a specific layer of one of the
three networks.
Since the projection dimension D = 104 was left constant throughout the experiments, it can be
observed that RFs perform particularly well compared to a linear kernel when D ≫ d where d is
the input dimension. For the opposite case D ≪ d the lower dimensional projection leads to an
increasing test error. This effect can be observed in particular in the last column where the test
error of the RF approximation is higher than without RFs. The contrary can be achieved with
large enough D as indicated by the values for the true kernel in parenthesis.
A big drawback here is that the computation of sufficiently large dimensional RFs may be very
costly, especially when d is large as well. This is a regime where the OPU outperforms CPU and
GPU by a large margin (see Figure 4.3) since its computation time is invariant to d and D.
In general, the simulated as well as the physical optical RFs yield similar performances as the
RBF Fourier RFs on the provided convolutional data.
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Figure 4.3 – Time and energy spent for computing a matrix multiplication (n,D) × (D,D).
The batchsize n is 3000 (solid line) or 1000 (dotted). The curves cross each other at the same D
independent from n. We verified more precisely that time and energy are linear with n for both
OPU and GPU (experiments were run on a NVIDIA P100).

4.4.3 Projection time and energy consumption

The main advantage of the OPU compared to a traditional CPU/GPU setup is that the OPU
takes a constant time for computing RFs of arbitrary dimension D (up to D = 106 on current
hardware) for a single input. Moreover, its power consumption stays below 30 W independently
of the workload. Figure 4.3 shows the computation time and the energy consumption over time
for GPU and OPU for different projection dimensions D. In both cases, the time and energy
spending do not include matrix building and loading. For the GPU, only the calls to the PyTorch
function torch.matmul are measured and energy consumption is the integration over time of
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power values given by the nvidia-smi command.
For the OPU, the energy consumption is constant w.r.t. D and equal to 45 Joules (30 W multiplied
by 1.5 seconds). The GPU computation time and energy consumption are monotonically increasing
except for an irregular energy development between D = 45 000 and D = 56 000. This exact
irregularity was observed throughout all simulations we performed and can most likely be
attributed to an optimization routine that the GPU carries out internally. The GPU consumes
more than 10 times as much energy as the OPU for D = 58 000 (GPU memory limit). The
GPU starts to use more energy than the OPU from D = 18 000. The exact crossover points may
change in future hardware versions. The relevant point we make here is that the OPU has a
better scalability in D with respect to computation time and energy consumption.

Conclusion

The increasing size of available data and the benefit of working in high-dimensional spaces led to
an emerging need for dedicated hardware. GPUs have been used with great success to accelerate
algebraic computations for kernel methods and deep learning. Yet, they rely on finite memory,
consume large amounts of energy and are very expensive.
In contrast, the OPU is a scalable memory-less hardware with reduced power consumption. In
this Chapter, we showed that optical RFs are useful in their natural form and can be modified to
yield more flexible kernels. In the future, algorithms should be developed to deal with large-scale
RFs, and other classes of kernels and applications should be obtained using optical RFs.

4.5 Appendix

4.5.1 Main proof of Theorem 4.3.1

Proof. Thanks to the rotational invariance of the complex Gaussian random vectors u(k), we
can fix x = ∥x∥e1 and y = ∥y∥(cos θe1 + sin θe2). θ represents the angle between x and y and
cos(θ) = x⊤y

∥x∥∥y∥ . Let ei
⊤u = ui ∼ CN (0, 1), i = 1, 2.

Thus the kernel function becomes :

k2(x,y) = ∥x∥2∥y∥2
∫
|u1|2|u1 cos θ + u2 sin θ|2µ(u)du. (4.9)

We then expand the quadratic forms and compute the resulting Gaussian integrals :

1
∥x∥2∥y∥2

k2(x,y) =
∫
|u1|2|u1 cos θ + u2 sin θ|2 1

π2 e
− ∥u∥2

2 du

=
∫
|u1|2|u1 cos θ + u2 sin θ|2 1

π2 e
− (|u1|2+|u2|2)

2 du

=
∫ (
|u1|4 cos2 θ + |u1|2|u2|2 sin2 θ + 2|u1|2Re(u1u2) cos θ sin θ

)
1
π2 e

− |u1|2+|u2|2
2 du.
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The third term in the parenthesis is odd in u2, so the integral of this term vanishes. Let’s remark
that if u ∼ CN (0, σ2) then Im(u),Re(u) ∼ N (0, σ∗2 = 1

2σ
2). The two other terms can be

computed easily using the moments of the Gaussian distributions (the moment of order 2 of a
complex Gaussian random variable is 2Γ(2)σ∗2 = 2σ∗2, the moment of order 4 is 22Γ(3)σ∗4 = 8σ∗4

where σ∗2 is the variance of the real and the imaginary part of u1,2) .

k2(x,y) = 8σ∗4 cos2 θ + 4σ∗4 sin2 θ

= 4σ∗4∥x∥2∥y∥2(2 cos2 θ + sin2 θ)
= 4σ∗4∥x∥2∥y∥2(1 + cos2 θ)
= 4σ∗4∥x∥2∥y∥2 + 4σ∗4(x⊤y

)2
= ∥x∥2∥y∥2(1 + cos2 θ) if σ∗2 = 1

2 .

4.5.2 Alternative proof of Theorem 4.3.1

The following is an alternative derivation of Theorem 4.3.1 that breaks the complex random
projection into its real and imaginary parts.

Proof. We can rewrite Equation 4.2 as :

ϕ(x) = 1√
D
|Ux|2 = 1√

D

(
(Ax)2 + (Bx)2

)
, (4.10)

where A,B ∈ RD×d are the real and imaginary parts of the complex matrix u ∈ CD×d. The
elements of A and B are i.i.d. draws from a zero-centered Gaussian distribution with variance
σ∗2.
Now we rewrite the kernel as :

k2(x,y) = E
[
|Ux|2|Uy|2

]
= E

[((
a⊤x

)2 +
(
b⊤x

)2)((
a⊤y

)2 +
(
b⊤y

)2)]
= E

[(
a⊤x

)2(
a⊤y

)2]+ E
[(

b⊤x
)2(

b⊤y
)2]+ E

[(
a⊤x

)2(
b⊤y

)2]+ E
[(

b⊤x
)2(

a⊤y
)2]

= 2
(
E
[(

a⊤x
)2(

a⊤y
)2]︸ ︷︷ ︸

(1)

+E
[(

a⊤x
)2(

b⊤y
)2]︸ ︷︷ ︸

(2)

)
. (4.11)

Term (1) in Equation 4.11 can be seen as the expectation of the product of two quadratic forms
E
[
Q1(a)Q2(a)

]
where Q1(a) = a⊤xx⊤a and Q2(a) = a⊤yy⊤a. Expectations of products of

quadratic forms in normal random variables are well-studied by (Magnus, 1978) 2 and others.
Using their result, we can immediately solve Term (1) :

2. The moments of products of quadratic forms in normal variables, Jan R. Magnus, statistica neerlandica, Vol.
32, 1978
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E
[(

a⊤x
)2(

a⊤y
)2]︸ ︷︷ ︸

(1)

= σ∗4
(

tr{xx⊤} tr{yy⊤}+ 2 tr{xx⊤yy⊤}
)

= σ∗4
(
∥x∥2 ∥y∥2 + 2

(
x⊤y

)2)
.

(4.12)
Term (2) is easy to solve :

E
[(

a⊤x
)2(

b⊤y
)2]︸ ︷︷ ︸

(2)

= E
[(

a⊤x
)2]E[(b⊤y

)2] =
(
x⊤E

[
aa⊤

]
x
)(

y⊤E
[
bb⊤

]
y
)

= σ∗4 ∥x∥2 ∥y∥2 .

(4.13)
Inserting both terms into Equation 4.11 yields the desired kernel equation.

Although higher degree kernels can be derived in this manner as well, we proceed with the
previous method for the following derivations.

4.5.3 Proof of Theorem 4.3.2 : even exponents

If we use the same reasoning as in the proof of Appendix 4.5.1, when the optical random feature
is given as in Equation 4.6, i.e. ϕ(x) = 1√

D
|Ux|m, we obtain :

k2s(x,y) =
∫
|x⊤u|m|y⊤u|mµ(u)du

=
∫
∥x∥m∥y∥m|u1|m|u1 cos θ + u2 sin θ|mµ(u)du

= ∥x∥m∥y∥m
∫
|u1|m|u1 cos θ + u2 sin θ|mµ(u)du.

Now we focus on the term A = |u1 cos θ + u2 sin θ|2s (with m = 2s) as we focus on even powers :

A = (u1 cos θ + u2 sin θ)s(u1 cos θ + u2 sin θ)s

=
( s∑
j=0

(
s

j

)
(u1 cos θ)j(u2 sin θ)s−j

)( s∑
i=0

(
s

i

)
(u1 cos θ)i(u2 sin θ)s−i

)

=
∑
i

∑
j

(
s

j

)(
s

i

)
uj1u

i
1u
s−j
2 us−i2 (cos θ)i+j(sin θ)2s−i−j .

One can notice that E[A] = ∑
i

∑
j

(s
j

)(s
i

)
E[uj1ui1u

s−j
2 us−i2 ] has its cross terms equal to 0 : when

i ≠ j, the expectation inside the sum is equal to zero because u1 and u2 are i.i.d (their correlation
is then equal to 0) or we can see this by rotational invariance (any complex random variable
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with a phase uniform between 0 and 2π has a mean equal to zero). Therefore we obtain :

E[A] =
s∑
i=0

(
s

i

)2

|u1|2i| cos θ|2i|u2|2(s−i)| sin θ|2(s−i).

Using the computation of E[A], we can therefore deduce the analytical formula for the kernel :

k2s(x,y)
∥x∥m∥y∥m

=
∫
|u1|2s

s∑
i=0

(
s

i

)2

|u1|2i| cos θ|2i|u2|2(s−i)| sin θ|2(s−i)µ(u)du

=
s∑
i=0

(
s

i

)2

E
[
|u1|2(s+i)| cos θ|2i

]
E
[
|u2|2(s−i)| sin θ|2(s−i)

]

=
s∑
i=0

(
s

i

)2

| cos θ|2i 2s+iσ∗2(s+i) Γ(s+ i+ 1) | sin θ|2(s−i) 2s−iσ∗2(s−i) Γ(s− i+ 1)

=
s∑
i=0

(
s

i

)2

22sσ∗4s | cos θ|2i | sin θ|2(s−i)Γ(s+ i+ 1) Γ(s− i+ 1).

We can simplify this formula, by noticing that sin2 θ = 1− cos2 θ. The latter formula becomes :

k2s(x,y)
∥x∥m∥y∥m

=
s∑
i=0

(
s

i

)2

| cos θ|2i (1− cos2 θ)(s−i) 22sσ∗4s Γ(s+ i+ 1) Γ(s− i+ 1).

The new term can be expanded using a binomial expansion : (1− cos2 θ)(s−i) = ∑s−i
t=0(− cos2 θ)t,

leading to

k2s(x,y)
∥x∥m∥y∥m

=
s∑
i=0

s−i∑
t=0

(
s

i

)2

(s+ i)!(s− i)!
(
s− i
t

)
(−1)t cos2(i+t) θ.

Using the change of variable a = i+ t and keeping i = i, we obtain :

k2s(x,y)
∥x∥m∥y∥m

=
s∑

a=0

[ a∑
i=0

(
s

i

)2

(s+ i)!(s− i)!
(
s− i
a− i

)
(−1)a−i

]
cos2a θ.

We focus on the term between the brackets that we will call Ta :

Ta =
a∑
i=0

s!2
(s− i)!2i!2 (s+ i)!(s− i)! (s− i)!

(a− i)!(s− a)! (−1)a−i

=
a∑
i=0

(s!)2 (s+ i)!
(i!)2(a− i)!(s− a)! (−1)a−i

= (s!)2
(
s

a

)
(−1)a

a∑
i=0

(
a

i

)(
s+ i

i

)
(−1)i.

Using the upper negation (
(a
b

)
= (−1)b

(b−a−1
b

)
) so here

(s+i
i

)
=
(i−i−s−1

i

)
(−1)i =

(−s−1
i

)
(−1)i
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leads to

Ta = (s!)2
(
s

a

)
(−1)a

a∑
i=0

(
a

i

)(
−s− 1

i

)
(4.14)

= (s!)2
(
s

a

)
(−1)a

a∑
i=0

(
a

i

)(
−s− 1
−s− 1− i

)
. (4.15)

Now we can use the Vandermonde identity ∑n
i=0

(a
i

)( b
n−i
)

=
(a+b
n

)
, yielding :

Ta = (s!)2
(
s

a

)
(−1)a

(
a− s− 1
−s− 1

)
= (s!)2

(
s

a

)
(−1)a

(
a− s− 1

a

)
(4.16)

= (s!)2
(
s

a

)(
s

a

)
= (s!)2

(
s

a

)2

. (4.17)

where in the last line we used again the upper negation formula.
This leads to the desired result for m = 2s

k2s(x,y) = ∥x∥m∥y∥m
s∑
i=0

(s!)2
(
s

i

)2

cos2i θ.

4.5.4 Convergence properties

For simplicity, we will consider random variables sampled from the normal distribution and not
the complex normal one. We will be using the following lemma for proving the convergence in
probability of the estimator of the kernel generated using optical random features toward the
real kernel :

Lemma 4.5.1. (Bernstein-type inequality [Vershynin, 2018]) Let X1, ..., XD be independent
centered sub-exponential random variables, and let a = (a1, ..., aD) ∈ RD . Then, for every t ≥ 0,
we have :

P
{∣∣∣∣ D∑

i=1
aiXi

∣∣∣∣ ≥ t} ≤ 2 exp
[
− cmin

(
t2

K2∥a∥22
,

t

K∥a∥∞

)]
(4.18)

with c an absolute constant and K = maxi ∥Xi∥ψ1 (∥Xi∥ψ1 = supp≥1 p
−1(E|X|p)1/p being the

sub-exponential norm of Xi).

Let’s start with the case when the exponent is m = 1.
We know that E[ϕ(x)ϕ(y)] = k1(x,y) so we can obtain centered random variables by doing :

ϕ(x)⊤ϕ(y)− k1(x,y) = ϕ(x)⊤ϕ(y)− E[ϕ(x)⊤ϕ(y)] (4.19)

= 1
D

D∑
i=1

[
|x⊤u(i)| |y⊤u(i)| − k1(x,y)

]
(4.20)

≥
D∑
i=1

aiXi, (4.21)
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where we have ai = 1
D and Xi := |x⊤V(i)y| − k1(x,y) (with V(i) = u(i)u(i)⊤).

The matrix V(i) has elements behaving sub-exponentially as it is the inner product of two
sub-Gaussian vectors. Moreover, we have Xi = |∑j,k xjV

(i)
jk yk| − k1(x,y), so by using lemma

4.5.1, we can deduce that the sum of independent sub-exponential random variables (here the
V

(i)
jk ) is still sub-exponential. So we can conclude that Xi is a centered sub-exponential random

variable.
By applying the Bernstein-type inequality of lemma 4.5.1, we obtain for the feature map of
exponent 1 :

P
{∣∣∣∣ϕ(x)⊤ϕ(y)− k1(x,y)

∣∣∣∣ ≥ t} ≤ 2 exp
[
− cmin

(
t2D

K2 ,
tD

K

)]
, (4.22)

So the convergence of the estimator toward the kernel k1 is sub-exponential.

Now for the more general case when m > 1, we have ϕ(x) = 1√
D
|ux|m so we can introduce the

quantity Wi(x,y) = |x⊤V (i)y| (which has a sub-exponential behavior) such that :

P
{ 1
D

D∑
i=1

Wi(x,y)m − km(x,y) ≥ t
}

= P
{ 1
D

D∑
i=1

Wi(x,y)m ≥ t+ km(x,y)
}

(4.23)

= P
{ D∑
i=1

Wi(x,y)m ≥ Dt+Dkm(x,y)
}

(4.24)

≤ P
{ D∑
i=1

Wi(x,y)m ≥ Dt+ km(x,y)
}

(as D ≥ 1)

(4.25)

≤ D P
{
W1(x,y) ≥ (Dt+ km(x,y))1/m

}
(Union bound)

(4.26)

≤ D P
{
W1(x,y) ≥ (Dt)1/m + km(x,y)1/m

}
(as m > 1).

(4.27)

Now we can use the following Lyapunov inequality. For 0 < s < t we have :

(E|X|s)1/s ≤ (E|X|t)1/t.

However we know that km(x,y)1/m = E[|x⊤V(i)y|m]1/m and k1 = E[|x⊤V(i)y|], ∀i ∈ {1, . . . , D},
so using Lyapunov inequality we can deduce that for m > 1, km(x,y)1/m > k1(x,y).
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Using that result, we can bound Equation 4.27 as follows :

P
{ 1
D

D∑
i=1

Wi(x,y)m − km(x,y) ≥ t
}
≤ D P

{
W1(x,y) ≥ (Dt)1/m + km(x,y)1/m

}
(4.28)

≤ D P
{
W1(x,y) ≥ (Dt)1/m + k1(x,y)

}
(4.29)

≤ D P
{
W1(x,y)− k1(x,y) ≥ (Dt)1/m

}
. (4.30)

Using the fact that W1 is sub-exponential and its expectation is k1, then W1 − k1(x,y) is a
centered random variable. It follows as a conclusion :

P
{ 1
D

D∑
i=1
|x⊤V(i)y|m − km(x,y) ≥ t

}
≤ D exp(−C(Dt)1/m), (4.31)

with C being a positive absolute constant. It is not a tight bound but it gives us a behavior in
the scaling of the tails which approximately corresponds to exp(−(Dt)1/m).
We can conclude for these convergence rates that the higher the exponent m of the feature map
is, the slower is the convergence of the estimator toward the real kernel. It has been noticed
experimentally in Figure 4.2 where the convergence of the estimator toward the real kernel for
exponent m = 4 is slower than the one for m = 2.

4.5.5 Extended experimental description

Data encoding. The current version of the OPU only supports binary inputs. There are different
ways to obtain a binary encoding of the data. We apply a simple threshold binarizer to each
feature j of a datapoint xi :

T (xij) =

1 if xij > θ,

0 otherwise.
(4.32)

The optimal threshold θ is determined for every dataset individually such that it maximizes the
accuracy on a held-out validation set. Despite the drastic reduction from 32-bit floating point
precision to 2 bits, the generalization error drops only by a small amount. The drop is bigger for
the convolutional features than for the Fashion-MNIST data.
Hyperparameter search. We carry out an extensive hyperparameter search for every dataset
(including each convolutional feature set). The hyperparameters are optimized for every kernel
individually using its random feature approximation at D = 104. A thorough hyperparameter
search for every feature dimension as well as for the full kernels would be too expensive. Therefore,
the hyperparameters are kept the same for different degrees of kernel approximation.
The optimal set of hyperparameters was found with a grid-search on a held-out validation set.
For every kernel, we optimized the feature scale as well as the regularization strength alpha.
For the linear and the OPU kernel a bias term that can be appended to the original features
was added. For the RBF kernel the third hyperparameter dimension is the gamma/lengthscale
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parameter.
The scale and alpha parameters are optimized on a log10-scale that depends on each kernel. The
gamma parameter is optimized on a log2-scale for Fashion-MNIST ; for each convolutional feature
set it is found by trying out all values around the maximum non-zero decimal position of the
heuristic γ = 1/d where d is the original feature dimension. The bias parameter is determined on
a log-scale depending on the degree of the kernel.
Figure 4.4 shows an example hyperparameter grid for simulated optical RFs of degree 2 applied
to Fashion-MNIST. Brighter colors correspond to higher validation scores.
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Figure 4.4 – Example hyperparameter grid for simulated optical RFs of degree 2 applied to
Fashion-MNIST. It is easy to see that the upper triangular part of each grid matrix is a result of
over-regularization (α is too large compared to the respective feature scale). Increasing the bias
too much also leads to a degrading performance. The optimal hyperparameters are found in the
lower-triangular part of one of the hyperparameter grids.

Solvers for linear systems in Ridge Regression. Ridge Regression can be solved either in its
primal or dual form. In either case the solution is found by solving a linear system of equations of
the form Ax = b. In the primal form we have A =

(
ϕ(x)⊤ϕ(x) +αI

)
and b = ϕ(x)⊤y, whereas

in the dual form A =
(
K + αI

)
and b = y. ϕ(x) is the random projection of the training data.

y are the one-hot encoded regression labels (+1 is used for the positive and −1 for the negative
class). K is the n-by-n kernel matrix for the training data.
Solving the linear system has computational complexity O(D3) or O(n3) for the primal and dual
form respectively. D is the projection dimension and n the number of datapoints.
Cholesky solvers turned out to work well for primal linear systems up to D = 104. For higher
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Chapter 4. Optical Random Features and their Kernel Limit

dimensions as well as for the dual form (computation of exact kernels) we used the conjugate
gradients method.
For the computation of large matrix products as well as conjugate gradients, we developed a
memory-efficient method that makes use of multiple GPUs in order to compute partial results.
This way stochastic methods were avoided and exact solutions for the linear systems could be
obtained.
One issue that arose during the experiments is that solving linear systems for optical RFs using
GPUs worsened the conditioning of the matrix A due to numerical issues. A workaround was to
increase α which led to slightly worse test errors.
In practice, we therefore recommend stochastic gradient descent based algorithms that optimize
a quadratic regression loss. These allow to work with large-dimensional features while requiring
much less memory and giving more numerical stability. Our method is only intended for theoretical
comparison and should be used when exact results are needed.

68



Chapter 5
Adversarial Robustness by Design using OPUs
and Direct Feedback Alignment
This chapter is based on [Cappelli, 2021a ; Cappelli, 2021b].

Robustness to adversarial attacks is typically obtained through expensive adversarial training
with Projected Gradient Descent or using more expensive and complex training schemes. In
this chapter, we introduce a new defense mechanism against adversarial attacks, represented as
a simple defense block relying on the use of the Optical Processing Unit, and a training step
performed with Direct Feedback Alignment. This defense block is placed just before the classifier
of the neural network to defend. In the first part of this chapter, we show that training from
scratch a network protected by our defense yields robustness against standard white-box, black-
box and transfer attacks. In the second part, we introduce ROPUST, our defense block placed
in already robust pre-trained models to further increase their robustness, at no cost in natural
accuracy. We test our method on nine different models against four attacks in RobustBench,
consistently improving over state-of-the-art performance. In both cases, we perform ablation
studies of our defense and demonstrate that phase retrieval attacks are inefficient against it.

5.1 Introduction

Neural networks are sensitive to small, imperceptible to humans, perturbations of their inputs
that can cause state-of-the-art classifiers to completely fail [Goodfellow, 2015]. As deep learning
models are deployed in real-world applications, guaranteeing their robustness to malicious actors
becomes increasingly important : for instance, an adversarial image could evade automated
content filtering on social networks [Garcelon, 2020]. Adversarial examples therefore threaten the
safety and reliability of machine learning models deployed in the wild but because of the sheer
number of attack and defense scenarios, true real-world robustness can however be difficult to
evaluate [Bubeck, 2019].
Adversarial attacks can be carried out in different frameworks : in the white-box setting, the
attacker has full access to the model, while black-box attacks only rely on queries. It is also
possible to craft an attack on a different model and transfer it to the model targeted [Papernot,
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2016]. On another hand, standardized benchmarks, such as RobustBench [Croce, 2020a] using
AutoAttack [Croce, 2020d], have helped better evaluate progress in the field.
The development of defense-specific attacks is also crucial [Tramèr, 2019]. There is no universal
defense, and state-of-the-art techniques often come with a large computational cost, as well as
reduced natural accuracy [Tsipras, 2019]. To date, one of the most effective defense and basic
techniques remains adversarial training with Projected Gradient Descent (PGD) [Madry, 2018b].
A more advanced adversarial training of a model can be resource-consuming, but fortunately,
robust networks pre-trained with PGD are now widely available.
Some of these defenses rely on obfuscated gradients : the model is designed so that the gradients
are unsuitable for attacks, for instance by using non-differentiable layers. However, attackers
can choose to alter the network structure, using Backward Pass Differentiable Approximation
(BPDA) [Athalye, 2018a], replacing obfuscating layers with well-behaved approximations. Fur-
thermore, approaches relying on obfuscation do not generally provide robustness against transfer
and black-box attacks.
In this Chapter, we start by expanding the idea of obfuscated gradients to obfuscated parameters :
we physically implement a fixed random projection followed by a non-linearity using the Optical
Processing Unit (OPU), where only the distribution of the random matrix entries is known and
not their values. The defense is showed on Figure 5.1. Even though retrieval is possible, the
computational cost becomes quickly prohibitive with increasing dimension, and is limited in
precision [Gupta, 2019b ; Gupta, 2020b]. To train layers below our non-differentiable defense, we
draw inspiration from Direct Feedback Alignment (DFA) [Nøkland, 2016d] and bypass it in the
backward pass. We use a random mapping of the global error to train the layer below the OPU,
while the layers further downstream perform backpropagation (BP) from this synthetic gradient
signal. This comes at no natural accuracy cost.
By training our network from scratch, we find our defense is robust by design against white-box
attacks : BPDA is ineffective against obfuscated parameters, and attackers are forced to rely on
DFA to attack the network. We develop such DFA attacks, and find them much less effective
than BP-based attacks on BP-trained networks, confirming results from [Akrout, 2019a].
We also test models incorporating our defense against black-box and transfer attacks, and find
that they are more robust than their vanilla counterparts. As parameter obfuscation alone cannot
explain robustness in these settings, we perform an ablation study to identify the mechanism
responsible for it. For black-box attacks, the combination of binarization and random projection
given by the optical co-processor gives a clear contribution to robustness. For transfer attacks,
we find the training method itself produces more robust features. Overall, our hybrid training
method in conjunction with our optical layer provide a complete defense.
Motivated by the use of pre-trained robust models as a solid foundation for developing simple
and widely applicable defenses that further enhance their robustness, we introduce in a second
part, ROPUST, a drop-in replacement for the classifier of already robust models by replacing it
with the defense block studied in the first part.
We evaluate extensively our method against AutoAttack on nine different models in RobustBench,
and consistently improve robust accuracies over the state-of-the-art (Section 5.7 and Figure 5.11).
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Figure 5.1 – A convolutional neural network with an Optical Processing Unit (OPU), our
analog defense layer against adversarial attacks. All together, the unknown parameters of the
analog operation, the binarization, and the hybrid training method based on Direct Feedback
Alignment (DFA) form a defense against white-box, black-box, and transfer attacks.

We perform an ablation study, in Section 5.8, and find that the robustness of our defense against
white-box attacks comes from both parameter obfuscation and DFA. Surprisingly, we also discover
that simply retraining the classifier of a robust model on natural data increases its robustness to
square attacks, a phenomenon that warrants further study. Finally, in Section 5.9, we develop a
phase retrieval attack targeting specifically the parameter obfuscation of our defense, and show
that even against state-of-the art phase retrieval techniques, ROPUST achieves fair robustness.

Contributions of the first part. Our study extends gradient obfuscation defenses, introducing
a defense based on obfuscation of parameters : this obfuscation is guaranteed by the physical
implementation of the defensive layer using the Optical Processing Unit. In the process of
evaluating it against black-box and transfer attacks, we find that additional robustness components
arise from the binarization and the hybrid training method we use to bypass our non-differentiable
defense. In summary :

• We introduce a defense by obfuscated parameters (Section 5.2), implemented by an optical
co-processor and develop a hybrid training method inspired by DFA to train models
incorporating our defense. This defense comes at no cost in natural accuracy, and no
computational cost as all relevant computations are off-loaded to the optical co-processor.

• Our defense is robust by design against FGSM and PGD white-box attacks (Section 5.3.1).
To perform white-box attacks against our defense, we introduce hybrid DFA attacks able
to bypass our obfuscation, in the spirit of BPDA. However, these are way less effective in
creating compelling adversarial examples.

• We find our defense robust against a variety of black-box attacks (NES, bandits and
parsimonious). In particular, our defense is significantly more resistant to parsimonious
attacks, the strongest of the three evaluated (Section 5.3.2.1). Our defense also provides
robustness against transfer attacks (Section 5.3.2.2).

• Since parameters obfuscation cannot explain black-box and transfer robustness, we perform
an ablation study to understand the underlying mechanism (Section 5.4). We show that all
the elements of our defense are necessary to get robustness to black-box attacks. Surprisingly,
for transfer attacks, we find that our training method alone brings robustness.
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We perform all experimental benchmarks on CIFAR-10, and CIFAR-100 [Krizhevsky, 2009b].
White-box and transfer of attacks results are obtained with a real optical co-processor as a
defense whereas for black-box attacks, a simulated OPU is used for convenience.
Contributions of the second part. We propose to simplify and extend the applicability of the
defense previously presented and introduce ROPUST, an universally and easily applicable drop-in
replacement for classifiers of already robust models. In contrast with the first part, it leverages
pre-trained robust models, and achieves state-of-the-art performance. The main contributions
are :

• Simple, universal, and state-of-the-art. ROPUST can be dropped-in to supplement
any robust pre-trained model, replacing its classifier. Fine-tuning the ROPUST classifier
is fast and does not require additional changes to the model architecture. This enables
any existing architecture and adversarial countermeasure to leverage ROPUST to gain
additional robustness, at limited cost. We evaluate on RobustBench, across 9 pre-trained
models, against AutoAttack sampling from a pool of 4 attacks. We achieve state-of-the-art
performance on the leaderboard, and, in light of our results, we suggest the extension of
RobustBench to include obfuscation-based methods.

• The Square attack mystery. Performing an ablation study on Square attack [Andriush-
chenko, 2019], we find that simply retraining from scratch the classifier of a robust model
on natural data increases its robustness against it. This phenomenon remains unexplained
and occurs even when the original fully connected classification layer is retrained, without
using our ROPUST module.

• Phase retrieval attacks. Drawing inspiration from the field of phase retrieval, we
introduce a new kind of attack against defenses relying on parameter obfuscation, phase
retrieval attacks. These attacks assume the attacker leverage phase retrieval techniques to
retrieve the obfuscated parameters in full, and we show that ROPUST remains robust even
against state-of-the-art retrieval methods.

5.2 Preliminaries

5.2.1 Adversarial attacks and defenses

White-box attacks. White-box attacks are adversarial attacks where the attacker is assumed
to have full access to the model, including its parameters. In this case, the attacker usually
computes a gradient attack (e.g. FGSM [Goodfellow, 2015], PGD [Kurakin, 2016 ; Madry, 2018b],
or Carlini & Wagner [Carlini, 2017]). These attacks are often fast, effective, and easy to compute.
Some defenses obfuscate the gradients to neutralize these attacks : however, it is often possible to
build a differentiable approximation (BPDA) to perform gradient-based attacks [Athalye, 2018a],
and black-box attacks entirely elude such defenses. In our work, we focus on FGSM and PGD
for white-box scenarios (see Figure 5.3).
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Black-box attacks. The black-box setting assumes that the attacker has only limited access
to the network : for instance, only the label, or the logits for a given input are known. There exist
two main categories of black-box attacks. On one hand, gradient estimation attacks [Chen, 2017 ;
Ilyas, 2018a ; Ilyas, 2018b] aim to estimate the gradient of the loss with respect to the input to
mimic gradient-based attacks. On the other hand, adversarial attacks are transferable [Papernot,
2016] : an attack effective on a given network is likely to also fool another network. More recently,
black-box methods based on optimisation tools derived from genetic algorithms [Meunier, 2019 ;
Andriushchenko, 2019] and combinatorial optimization [Moon, 2019b] have been introduced. We
evaluate our defense against NES and bandits, two gradient-estimation attacks, and parsimonious
black-box methods, as well as transfer of attacks.

Defenses Historically, the first defense proposed against attacks was adversarial training [Good-
fellow, 2015 ; Madry, 2018b] (i.e. training the neural network through a min-max optimization
framework) thus including adversarial robustness as an explicit training objective. Despite its
simplicity and lack of theoretical guarantees, adversarial training is still one of the most effective
defense against adversarial examples. Theoretically proven defenses also exist, such as randomi-
zed smoothing [Lecuyer, 2018 ; Cohen, 2019 ; Pinot, 2019 ; Alexandre Araujo, 2020] or convex
relaxation [Wong, 2018a ; Wong, 2018b]. In the literature, numerous defenses do not evaluate
their models on attacks adapted to the defense [Tramer, 2020] : especially in the case of gradient
obfuscation [Athalye, 2018a], which can result in a false sense of security. In contrast, we evaluate
our defense in a wide range of scenarios, and introduce new DFA-based white-box attacks. We also
drive a thorough and rigorous ablation study, to better understand the mechanisms underlying
the robustness of our defense.
Finally, defense techniques often demand extra computations and reduce natural accuracy. Ins-
tead, our defense computations are offloaded to the optical co-processor and the decrease in
natural accuracy is minimal, in contrast with adversarial training. More details about adversarial
attacks and defenses are given in Section 2.5.1.

5.2.2 The defense

Optical Processing Units. Optical Processing Units (OPU) are photonic co-processors
dedicated to efficient large-scale random projections. Assuming an input vector x, the OPU
computes the following operation using light scattering through a diffusive medium :

y = |Ux|2, (5.1)

with U a fixed complex Gaussian random matrix of size up to 106 × 106, which entries are not
readily known. In the following, we sometimes refer to U as the transmission matrix (TM). The
input x is binary (1 bit – 0/1) and the output y is quantized in 8-bit. While it is possible to
simulate an OPU and implement our defense on GPU, this comes with two significant drawbacks :
(1) part of our defense relies on U being obfuscated to the attacker, which is not possible to
guarantee on a GPU ; (2) at large sizes, storing U in GPU memory is costly [Ohana, 2020]. More
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details about the OPU are given in Section 2.4.

Figure 5.2 – The non-differentiable defense layer is bypassed in the backward path by using a
random mapping of the error as a synthetic gradient. This signal is then used in the backpropa-
gation update of the previous layers.

Retrieval of the matrix is possible [Gupta, 2019b ; Gupta, 2020b] with direct access to the OPU,
but it is computationally expensive for large enough dimensions and relative errors can be as high
as 30%. The fastest known method [Gupta, 2020b] for the retrieval of a matrix U ∈ CM×N relies
on the multilateration of anchor signals and has O(MN logN) time complexity (we develop an
attack scenario based on this method in Section 5.9). For N ∼ 104 and M ∼ 105, retrieval with
relative error of 32.0% takes 72 minutes. If we wanted to recover the same matrix with a relative
error of 8.0%, we would need 19 hours, as decreasing the relative error has a quadratic cost – see
Section 5.4.3 in the supplementary for details. The optical system can scale up to N,M ∼ 106 :
at these dimensions the random matrix alone takes about 8 TB to store, making memory the
main constraint in the retrieval. Finally, it is also easily possible to change the entries of the
matrix of the optical system to another draw from the same probability distribution. To adapt to
this new random matrix, only the classifier has to be fine-tuned : this enables a defense strategy
where the random matrix is regularly resampled, preventing malicious actors from having enough
time to recover the it.
Accordingly, our defense effectively achieves parameter obfuscation, preventing attackers from
building a differentiable approximation that can be used to reliably generate adversarial examples.
In our work we use an actual optical co-processor for white-box and transfer attacks, and a
simulated one for black-box. Note that while we simulate input binarization, we don’t simulate
output quantization to 8 bits, as we find this quantization to be of little influence.

Direct Feedback Alignment. Because the fixed random parameters implemented by the
OPU are unknown, it is impossible to backpropagate through it. We bypass this limitation by
training layers upstream of the OPU using Direct Feedback Alignment (DFA) [Nøkland, 2016b].
DFA is an alternative to backpropagation, capable of scaling to modern deep learning tasks and
architectures [Launay, 2020a], relying on a random projection of the error as the teaching signal.
In a fully connected network, at layer ℓ out of L, neglecting biases, with Wℓ its weight matrix, fℓ its
non-linearity, and hℓ its activations, the forward pass can be written as aℓ = Wℓhℓ−1,hℓ = fℓ(aℓ).
h0 = x is the input data, and hL = f(aL) = ŷ are the predictions. A task-specific cost function
L(ŷ,y) is computed to quantify the quality of the predictions with respect to the targets y. The
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weight updates are obtained through the chain-rule of derivatives :

δWℓ = − ∂L
∂Wℓ

= −[(WT
ℓ+1δaℓ+1)⊙ f ′

ℓ(aℓ)]hTℓ−1, δaℓ = ∂L
∂aℓ

, (5.2)

where ⊙ is the Hadamard product. With DFA, the gradient signal WT
ℓ+1δaℓ+1 of the (ℓ+ 1)-th

layer is replaced with a random projection of the gradient of the loss at the top layer δay –which
is the error e = ŷ − y for commonly used losses, such as cross-entropy or mean squared error :

δWℓ = −[(Bℓδay)⊙ f ′
ℓ(aℓ)]hTℓ−1, δay = ∂L

∂ay
. (5.3)

Learning with DFA is enabled by an alignment process, wherein the forward weights learn a
configuration enabling DFA to approximate BP updates [Refinetti, 2021]. More details about
DFA are given in Section 2.3.

5.3 Experimental results on networks trained from scratch

We place our defense after the convolutional layers of a VGG-16 architecture [Simonyan, 2014b]
that we will train from scratch. We call this network VGG-OPU. The specific hyperparameters
of our model are precised in Section 5.4.3 . The training is performed with the hybrid BP-DFA
algorithm discussed in the Section 5.2.2, and shown in Figure 5.1. The code of DFA is taken
from [Launay, 2020a]. We consider the CIFAR-10 and CIFAR-100 datasets.
We attack our models using only images that were correctly classified, with the exception of
white-box attacks, where we use the full datasets. All the attacks are untargeted : we aim to
change the classification without any specific target label. Finally, the loss used for computing
the attacks is the cross-entropy between the output of the classifier for a given input and its
label : l(x, y) = − log pθ(y|x). As we consider untargeted attacks, we aim to maximize it.

5.3.1 White-box attacks

We first consider white-box attacks : the attacker has full knowledge of the model and its
parameters, and can craft adversarial examples by gradient-based methods. We show that our
parameter obfuscation approach makes these attacks significantly less effective, forcing them to
rely on imprecise gradient approximations based on DFA or BPDA.
FGSM attacks [Goodfellow, 2015]. We perform the simplest attacks, namely Fast Gradient
Sign Method which consists in building the perturbation with the sign of the gradient of the loss.
PGD attacks [Madry, 2018a]. We perform PGD attacks, where the adversarial example x is
iteratively optimized with :

xt+1 = ΠB∞(x,ϵ)
[
xt + αsign

(
∇xl(xt, y)

)]
,

where ΠB∞(x,ϵ) is the orthogonal projection on B∞(x, ϵ) := {x′ : ∥x′ − x∥∞ ≤ ϵ} and x0 = x.
The quantity ϵ is the strength of the perturbation. As FGSM is weaker than PGD, we will focus
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on PGD in this section, and even though FGSM results are presented on Figure 5.3.
To attack networks despite our non-differentiable defense, we either use our hybrid training
method to generate attack gradients by skipping our defense, or consider building a BPDA of
our defense : the sign function is approximated by a tanh, and the unknown random weights are
approximated by another set of random weights.
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Figure 5.3 – Notation : <model> ← <attack gradients>. For example VGG ← BP means that
a VGG-16 is attacked with gradients computed with backpropagation. The VGG-OPU model is
again more robust than the VGG-16 baseline. BPDA fails again to produce better attacks than
our hybrid training method.

0 0.01 0.02 0.03 0.04 0.05
Perturbation 

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

CIFAR-10  PGD attack
VGG-16  BP
VGG-OPU  DFA
VGG-OPU  BPDA

0 0.01 0.02 0.03 0.04 0.05
Perturbation 

CIFAR-100  PGD attack

Figure 5.4 – Notation : <model> ← <attack gradients>. For example VGG ← BP means that
a VGG-16 is attacked with gradients computed with backpropagation. The VGG-OPU model is
systematically more robust than the VGG-16 baseline. The failure of BPDA to produce better
attacks than our hybrid training method (here abbreviated DFA) confirms that parameters
obfuscation enables robustness to white-box attacks by design.

Results Results are shown for FGSM on Figure 5.3 and for PGD on Figure 5.4. We find the
VGG-OPU model incorporating our defense performs better than the VGG-16 baseline for any
value of ϵ, with gains in accuracy under attack ranging from 20% to 40%. For the largest values
of ϵ considered, while the accuracy of the baseline goes to zero, the VGG-OPU model is still
performing better than a random guess. These results also show that our obfuscated parameters
approach cannot be fooled by a simple BPDA like obfuscated gradients can be : BPDA is here
ineffective at finding better attacks than simply bypassing our defense with DFA. Finally, we
note the increased robustness does not come at a natural accuracy cost (ϵ = 0).
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5.3.2 Black-box attacks

If the obfuscated parameters approach provides robustness by design against white-box attacks,
black-box approaches should be not affected, since they do not require knowledge of the weights.
However, we find our defense still brings robustness against such attacks.

5.3.2.1 NES, bandits, and parsimonious attacks

Background To further test the robustness of our defense, we perform strong black-box
attacks : NES [Ilyas, 2018b], bandits [Ilyas, 2018b], and parsimonious attacks [Moon, 2019a].
NES and bandits attacks consist in efficiently estimating the gradient of the loss with regards to
the input x :

∇xl(x, y) ≃ ∇xEn∼N (x,σ2I) [l(n, y)]

≃ 1
σN

N∑
i=1

δil(x + σδi, y),

where y is the true label, δi are standard Gaussian random variables and N the sample size of
the Monte-Carlo estimation. Bandits attacks are an extension of NES attacks, taking advantage
of gradients correlations for close pixels and between gradient steps. To ensure we are not robust
only against gradient estimation-based black-box attacks, we also consider parsimonious attacks.
This attack is different in nature from the previous two, as it is inspired by combinatorial
optimization. It is worth mentioning that this attack is not very sensible to hyperparameters
choice [Moon, 2019a]. Parsimonious attacks are also significantly stronger, outperforming NES
and bandits approaches.
We measure the Cumulative Success Rates (CSR) in terms of elapsed queries budget. We fix a
maximum budget of 15000 queries to the classifier for black-box attacks. This budget is sufficient
to reach a plateau in the success rate of the attacks, and to achieve 100% success rate with
parsimonious attacks on an undefended baseline. We select attack hyperparameters obtaining
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Figure 5.5 – Cumulative success rate with respect to the number of queries for different black-
box attacks on the CIFAR-10 and CIFAR-100 datasets, on a VGG-16 (dashed lines) and a
VGG-OPU with a simulated OPU (plain lines). The architectures with our defense perform on
par or better than the baseline. The parsimonious attack has the highest success rate, that with
our defense drops by 0.3 on CIFAR-10 and 0.2 on CIFAR-100.
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the best success rates, as described in Section 5.4.3.

Results Results are shown in Figure 5.5. For the gradient-estimation attacks (NES and bandits),
our defense improves robustness with respect to the baseline by decreasing the CSR respectively
by 5% and 10 % for the largest budget on CIFAR-10. On CIFAR-100, the improvement in
robustness is minimal, of the order of 1% for both attacks. However, our defense shows significant
improvement against parsimonious attacks (that largely outperform both NES and bandits),
reducing the CSR by 30% on CIFAR-10 and by 24% CIFAR-100. Overall, the best attack on
Vanilla VGG reaches 100% CSR on both datasets whereas the best attack on a VGG with our
defense reaches only 70% on CIFAR-10 and 76% on CIFAR-100.

5.3.2.2 Transfer attacks

Background Finally, we test the robustness of our defense against transfer attacks. In this
scenario, attacks are crafted on a separate source network built by the attacker, similar to the
target network. This is a form of black-box attack that does not require queries to the target
network.
To evaluate transfer attacks, we first create a test set of well classified samples common to both
the source and target network. We then perform attacks on a VGG-16 model on this dataset
using FGSM and PGD attacks, building a collection of adversarial examples to transfer to other
networks – FGSM results are presented in Figure 5.6.
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Figure 5.6 – Accuracy on a common well-classified set under transfer attacks of increasing
strength. Even for FGSM attacks both VGG-OPU networks are more robust than the baseline.
Once again we observe a trade-off between robustness and natural accuracy with our defense.
Higher/lower accuracies are ∼ 85%/80% for CIFAR-10 and ∼ 72%/68% for CIFAR-100. The
baseline VGG-16 was trained to reach the higher accuracy.

The target networks are a vanilla VGG-16 trained with backpropagation, and a VGG-OPU
optimized as follows : we first train a vanilla VGG-16 with our hybrid training method and then
place our OPU defense after the trained convolutional stack, finetuning only the classifier layer.
We also study two different VGG-OPU models, with identical architectures, but different overall
natural accuracy to evaluate if there exists a robustness-accuracy trade-off.

Results The results of this study are shown in Figure 5.6 and 5.7. The VGG-OPU network
performs better against transfer attacks for all perturbation strength values. On CIFAR-10,
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Figure 5.7 – Accuracy on a common well-classified set under transfer attacks of increasing
strength. Both VGG-OPU networks are more robust than the baseline, and we observe a trade-
off between robustness and natural accuracy with our defense. Higher/lower accuracies are
∼ 85%/80% for CIFAR10 and ∼ 72%/68% for CIFAR100. The baseline VGG-16 was trained to
reach the higher accuracy.

we find our defense to provide significant robustness to transfer, between +15% and +45%
of robustness on the well classified evaluation dataset. This gain is smaller on CIFAR-100,
between +3% and +10% robustness, where the transfer attack is overall less effective. In either
case, we find that there exists an accuracy-robustness trade-off : at the cost of 5% of natural
accuracy, robustness can be increased. This makes the defense customizable, allowing to trade
some accuracy for robustness.

5.4 Beyond obfuscated parameters : understanding black-box
and transfer robustness

While obfuscated parameters provide robustness by design against white-box attacks, their
use alone cannot explain robustness in black-box and transfer scenarios. We perform ablation
studies in these two scenarios to understand the increased robustness. We dissect our defense into
three different parts : the hybrid training method involving Direct Feedback Alignment (DFA),
the binarization before the optical transform (BIN), and the non-linear random projection of
Equation 5.1 performed by the OPU (RP). We denote the Optical Processing Unit (OPU)
as the combination of BIN + RP. All the models considered are trained to reach similar test
accuracy on CIFAR-10 using the hybrid BP-DFA training, to avoid any robustness-accuracy
trade-off effect.

5.4.1 Black-box attacks

We first consider an ablation study on a black-box gradient-estimation bandits attacks, in
Figure 5.8.
We notice that DFA alone does not provide robustness against gradient-estimation black-box
attacks, but adding either a binary layer (BIN) or a random projection (RP) improves robustness
by around 5%. The most striking contribution to the robustness comes from combining the
binary layer and the random projection, i.e. the OPU layer, which drops the CSR by 20%, at no
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Figure 5.8 – Ablation study on the bandits and the parsimonious attack. The robustness of
our defense comes from the binarization and random projection steps. In particular, it’s the
combination of these two mechanisms that leads to a significant increase in robustness.

cost in natural accuracy. The failure of DFA to provide robustness against gradient-estimation
black-box attack is not surprising : as a training method, it approximates backpropagation
with some added noise to the gradients – this is of little effect to the end model in terms of
robustness to gradient-estimation attacks. Conversely, the use of a binarization layer and of
random projection change the optimization landscape of the model. In particular, the binary
layer makes this landscape harder to navigate, even for a black-box optimization method.
We then consider an ablation study on parsimonious attacks, as they are based on combinatorial
optimization instead of gradient-estimation. The results are shown in Figure 5.8. We find that
the random projection almost doesn’t contribute to the robustness. However, binarization has a
much stronger effect, decreasing the asymptotic CSR by 20%. Used in conjunction, the random
projection and the binarization decrease the CSR by 40%. Overall, this confirms that the
combination of all the elements of our defense is necessary to obtain black-box robustness.

5.4.2 Transfer attacks

To complete our ablation study, we seek to understand the source of the robustness against
transfer attacks. Results are plotted in Figure 5.9. Surprisingly, at variance with our results on
classic black-box attacks, the hybrid training method alone is responsible for the robustness
against transfer attacks. In fact, the model with hybrid training and OPU is less robust than
the model with hybrid training alone. Nevertheless, we find that the robust features learned by
hybrid training are transferable : when fine-tuning a classifier including our optical defense on
said features, we find we conserve their robustness. We hypothesize that hybrid training with
DFA builds features that find a different optimum in the loss landscape than features derived
from BP. Accordingly, attacks on features learned by BP transfer poorly to these DFA features.

5.4.3 Experimental details

Description of our VGG models. The baseline architecture we use is a Vanilla VGG-16.
The convolutional stack and the classifier are based on https://github.com/chengyangfu/
pytorch-vgg-cifar10 (configuration D with batchnorm). For CIFAR-100 we simply modify the
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Figure 5.9 – Ablation study of robustness to transfer attacks. All of the architectures are trained
to reach similar accuracy with the BP-DFA algorithm. DFA, a VGG-16 trained with BP-DFA
is robust on its own : this proves that the hybrid training algorithm is providing robustness
against transfer-attacks. Adding a binary layer is not detrimental to the robustness while adding
a random projection decreases it. Adding a binary layer before the random projections achieves
a compromise. Finally, we show how it is possible to fine-tune a classifier with an OPU on top of
the robust features learned by DFA with no loss in robustness and natural accuracy.

last linear layer to adapt to the higher number of classes.
The Vanilla VGG-16 has three fully connected (fc) layers after the convolutional stack of sizes :
fc1 : 512 − 512, fc2 : 512 − 512, fc3 : 512 − classes (classes = 10 for CIFAR-10 and 100 for
CIFAR-100). The VGG-OPU shares the same convolutional stack of the vanilla VGG-16 ; it
has however a simulated or real OPU (binary layer followed by a nonlinear random projection)
instead of fc2. We have used OPU input size 512 and output size 8000 for white-box attacks,
input size 1024 and output size 8000 for transfer attacks and the ablations study, finally input
size 2000 and output size 10000 for black-box attacks. Further details on the hyperparameters
used to train the models (e.g. learning rate, weight decay) can be found in the code.
Adversarial attacks hyperparameters White-box attacks were performed on images normali-
zed in [−1, 1]. To create adversarial attack with PGD we used 50 iterations with α = 0.01 step
size. The PGD and FGSM attacks for transfer experiments have been created using the same
parameters.
Black-box attacks in the following were performed on images normalized in [0, 1].
NES attacks were performed using the cross-entropy loss on the L∞ ball of radius 8/256. The
maximum number of queries is 15000, the number of samples to estimate the gradients is 50 and
the size of a batch 1024. We vary the standard deviation σ at values [0.05, 0.1, 0.5, 1]. We keep
the attack with the σ yielding the best Cumulative Success Rate for each model on each dataset.
Bandits attacks were also performed using the cross-entropy loss on the L∞ ball of radius 8/256.
The maximum number of queries is 15000 and the number of gradient iterations is kept to 1. We
vary the standard deviation σ at values [0.1, 0.5, 1]. The online learning rate is set at 0.1, the
exploration at 0.1 and the prior size at 16.
Parsimonious attacks were performed with ϵ = 8/256, the number of iterations in local search is
1, the initial block size is 4, the size of a batch is 64 and no hierarchical evaluation was performed.
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Retrieval of obfuscated parameters. In the following we provide practical information about
the retrieval of the OPU matrix.

Setting With direct access to the host system and the optical co-processor, it is possible to
use phase retrieval techniques to retrieve the transmission matrix of the co-processor and hence
the obfuscated parameters.

Setup The timings mentioned in this Chapter are obtained on a server with a dual CPU setup,
with Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz. Implementing the same algorithm on GPU
has only a marginal effect on performance.

Limitations The complexity scales linearly with the output size, O(n logn) with the input
size n, and quadratically with the relative error, that is reducing the relative error by half costs
a 4× increase in execution time. However, the main limit of the retrieval algorithm is in terms of
memory use and co-processor abilities : to recover a transmission matrix with 103 rows/columns,
we need to project and process a matrix with 105 rows/columns (the calibration signal). First,
this procedure rapidly requires large amounts of RAM. Moreover, given the limit of input and
output size of the optical system at 106, the impossibility to increase the calibration signals
further limits the achievable precision of the retrieval.
Finally, it is possible to change the transmission matrix of the optical system, simply by changing
some characteristics of the input light (e.g. the wavelength).

5.5 ROPUST : improving robustness of already robust models

5.5.1 Related work

Attacks. Adversarial attacks have been framed in a variety of settings : white-box, where the
attacker is assumed to have unlimited access to the model, including its parameters (e.g. FGSM
[Goodfellow, 2015], PGD [Madry, 2018b ; Kurakin, 2016], Carlini & Wagner [Carlini, 2017]) ;
black-box, assuming only limited access to the network for the attacker, such as the label or logits
for a given input, with methods attempting to estimate the gradients [Chen, 2017 ; Ilyas, 2018a ;
Ilyas, 2018b], or more recently derived from genetic algorithms [Andriushchenko, 2019 ; Meunier,
2019] and combinatorial optimization [Moon, 2019a] ; transfer attacks, where an attack is crafted
on a similar model that is accessible to the attacker, and then applied to the target network
[Papernot, 2016]. Automated schemes, such as AutoAttack [Croce, 2020d], have been proposed
to autonomously select which attack to perform against a given network, and to automatically
tune its hyperparameters.

Defenses. Adversarial training adds adversarial robustness as an explicit training objective
[Goodfellow, 2015 ; Madry, 2018b], by incorporating adversarial examples during the training.
This has been, and still is, one of the most effective defense against attacks. Repository of
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pre-trained robust models have been compiled, such as the RobustBench Model Zoo 1. Conversely,
theoretically grounded defenses have been proposed [Lecuyer, 2018 ; Cohen, 2019 ; Alexandre
Araujo, 2020 ; Pinot, 2019 ; Wong, 2018b ; Wong, 2018a], but these fail to match the clean
accuracy of state-of-the-art networks, making robustness a trade-off with performance. Many
empirical defenses have been criticized for providing a false sense of security [Athalye, 2018b ;
Tramèr, 2019], by not evaluating on attacks adapted to the defense.

Obfuscation. Gradient obfuscation, through the use of a non-differentiable activation function,
has been proposed as a way to protect against white-box attacks [Papernot, 2017]. However,
gradient obfuscation can be easily bypassed by Backward Pass Differentiable Approximation
(BPDA) [Athalye, 2018b], where the defense is replaced by an approximated and differentiable
version. Parameter obfuscation has been proposed with dedicated photonic co-processor in the
first part, enforced by the physical properties of said co-processor. However, by itself, this kind
of defense falls short of adversarial training.

Fine-tuning and analog computing. Previous work introduced adversarial fine-tuning
[Jeddi, 2020] : fine-tuning a non-robust model with an adversarial objective. In this work instead
we fine-tune a robust model without adversarial training. Additionally, it was shown that
robustness improves transfer performance [Salman, 2020] and that robustness transfers across
datasets [Shafahi, 2020]. The advantage of non-ideal analog computations in terms of robustness
has been investigated in the context of NVM crossbars [Roy, 2020], while we here focus on a
photonic technology, readily available to perform computations at scale.

5.6 Methods

5.6.1 Automated adversarial attacks

We evaluate our model against the four attacks implemented in RobustBench : APGD-CE and
APGD-T [Croce, 2020d], Square attack [Andriushchenko, 2019], and Fast Adaptive Boundary
(FAB) attack [Croce, 2020b]. APGD-CE is a standard PGD where the step size is tuned using
the loss trend information, squeezing the best performance out of a limited iterations budget.
APGD-T, on top of the step size schedule, substitutes the cross-entropy loss with the Difference
of Logits Ratio (DLR) loss, reducing the risk of vanishing gradients. Square attack is based on a
random search. Random updates δ are sampled from an attack-norm dependent distribution at
each iteration : if they improve the objective function they are kept, otherwise they are discarded.
FAB attack aims at finding adversarial samples with minimal distortion with respect to the
attack point. With respect to PGD, it does not need to be restarted and it achieves fast good
quality results. In RobustBench, using AutoAttack, given a batch of samples, these are first
attacked with APGD-CE. Then, the samples that were successfully attacked are discarded, and
the remaining ones are attacked with APGD-T. This procedure continues with Square and FAB
attack.

1. Accessible at : https://github.com/RobustBench/robustbench.
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Figure 5.10 – ROPUST replaces the classifier of already robust models, enhancing
their adversarial robustness. Only the ROPUST classifier needs fine-tuning ; the convolutional
stack is frozen. Convolutional features first go through a fully-connected layer, before binarization
for use in the Optical Processing Unit (OPU). The OPU performs a non-linear random projection,
with fixed unknown parameters. A fully-connected layer is then used to obtain a prediction from
the output of the OPU. Direct Feedback Alignment is used to train the layer underneath the
OPU.

5.6.2 Our defense

ROPUST To enhance the adversarial robustness of pretrained robust models, we propose
to replace their classifier with the ROPUST module (Figure 5.10), studied in the first part
for networks trained from scratch. We use robust models from the RobustBench model zoo,
extracting and freezing their convolutional stack. The robust convolutional features go through a
fully connected layer and a binarization step (a sign function), preparing them for the OPU. The
OPU then performs a non-linear random projection, with fixed unknown parameters. Lastly, the
predictions are obtained through a final fully-connected layer. While the convolutional layers are
frozen, we train the ROPUST module on natural data using DFA to bypass the non-differentiable
photonic hardware.

Attacking ROPUST. While we could use DFA to attack ROPUST, previous work has shown
that methods devoid of weight transport are not effective in generating compelling adversarial
examples [Akrout, 2019b]. Therefore, we instead use backward pass differentiable approximation
(BPDA) when attacking our defense. For BPDA, we need to find a good differentiable relaxation
to non-differentiable layers. For the binarization function, we simply use the derivative of tanh in
the backward pass, while we approximate the transpose of the obfuscated parameters with a
different fixed random matrix drawn at initialization of the module. More specifically, we consider
the expression for the forward pass of the ROPUST module :

y = softmax(W3|U sign(W1x)|2). (5.4)

In the backward pass, we substitute UT (that we do not have access to) with a different fixed
random matrix R, in a setup similar to Feedback Alignment [Lillicrap, 2014]. We also relax the
sign function derivative to the derivative of tanh.
We present empirical results on RobustBench in the following Section 5.7. We then ablate the
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Figure 5.11 – ROPUST systematically improves the test accuracy of already robust
models. Transfer refers to the performance when attacks are generated on the base model and
transferred to the ROPUST model. Models from the RobustBench model zoo : Hendrycks et al.,
2019 [Hendrycks, 2019], Sehwag et al., 2021 [Sehwag, 2021], Wu et al., 2020 [Wu, 2020], Zhang et
al., 2020 [Zhang, 2020], Wong et al., 2020 [Wong, 2020], Ding et al., 2020 [Ding, 2020], Carmon
et al., 2019 [Carmon, 2019], Gowal et al., 2020 [Gowal, 2020].

components of our defense in Section 5.8, demonstrating its holistic nature, and we finally create
a phase retrieval attack to challenge parameter obfuscation in Section 5.9.

5.7 Evaluating ROPUST on RobustBench

All of the attacks are performed on CIFAR-10 [Krizhevsky, 2009a], using a differentiable backward
pass approximation [Athalye, 2018b] as explained in Section 5.6.2. For our experiments, we use
OPU input size 512 and output size 8000. We use the Adam optimizer [Kingma, 2014], with
learning rate 0.001, for 10 epochs. The process typically takes as little as 10 minutes on a single
NVIDIA V100 GPU.
We show our results on nine different models in RobustBench in Figure 5.11. The performance of
the original pretrained models from the RobustBench leaderboard is reported as Base. ROPUST
represents the same models equipped with our defense. Finally, Transfer indicates the performance
of attacks created on the original model and transferred to fool the ROPUST defense. For all
models considered, ROPUST improves the robustness significantly, even under transfer.
For transfer, we also tested crafting the attacks on the Base model while using the loss of the
ROPUST model for the learning rate schedule of APGD. We also tried to use the predictions
of ROPUST, instead of the base model, to remove the samples that were successfully attacked
from the next stage of the ensemble ; however, these modifications did not improve transfer
performance. Finally, we remark the robustness increase typically comes at no cost in natural
accuracy ; i.e. it is roughly the same for Base and ROPUST models as shown in Figure 5.12.
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Figure 5.12 – Our ROPUST defense comes at no cost in natural accuracy. In some
cases, natural accuracy is even improved. The model from Zhang, 2020 [Zhang, 2020] is an
isolated exception. Base models from the RobustBench model zoo : Hendrycks et al., 2019
[Hendrycks, 2019], Sehwag et al., 2021 [Sehwag, 2021], Wu et al., 2020 [Wu, 2020], Zhang et al.,
2020 [Zhang, 2020], Wong et al., 2020 [Wong, 2020], Ding et al., 2020 [Ding, 2020], Carmon et
al., 2019 [Carmon, 2019], Gowal et al., 2020 [Gowal, 2020].

5.8 Understanding ROPUST : an ablation study

We use the model from [Wong, 2020] available in the RobustBench model zoo to perform our
ablation studies. It consists in a PreAct ResNet-18 [He, 2016], pretrained with a "revisited" FGSM
of increased effectiveness.

Holistic defense. We conduct an ablation study by removing a single component of our
defense at a time in simulation : binarization, DFA, parameter obfuscation, and non-linearity |.|2

of the random projection. To remove DFA, we also remove the binarization step and train the
ROPUST module with backpropagation, since we have access to the transpose of the transmission
matrix in the simulated setting of the ablation study. We show the results in Figure 5.13 : we
see that removing the non-linearity |.|2 and the binarization does not have an effect, with the
robustness given by parameter obfuscation and DFA, as expected. However, note that |.|2 is
central to preventing trivial phase retrieval, and is hence a key component of our defense.

Robustness to Square attack While the ablation study on the APGD attack is able to
pinpoint the exact sources of robustness for a white-box attack, the same study on the black-box
Square attack has surprising results. Indeed, as shown in Figure 5.14, no element of the ROPUST
mechanism can be linked to robustness against Square attack. Interestingly, we found an identical
behaviour when retraining the standard fully connected classification layer from scratch on
natural (non perturbed) data, shown in the same Figure 5.14 under the Defense-free label.
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Figure 5.13 – Removing either parameter obfuscation or DFA from our defense
causes a large drop in accuracy. This confirms the intuition that robustness is given by
the inability to efficiently generate attacks in a white-box settings when the parameters are
obfuscated, and that DFA is capable of generating partially robust features. We note that even
though the non-linearity |.|2 does not contribute to robustness, it is key to obfuscation, preventing
trivial retrieval. Transfer performance does not change much when removing components of the
defense. While the Base model is not ablated, we leave its performance as a term of comparison.

Figure 5.14 – Square attack can be evaded by simply retraining on natural data
the classifier of a robust model. We confirm the same result when retraining the standard
fully connected classification layer in the pretrained models in place of the ROPUST module
(Defense-free result in the chart on the right). While the Base model is not ablated, we leave its
performance as a term of comparison.

5.9 Phase retrieval attack

Our defense leverages parameter obfuscation to achieve robustness. Yet, however demanding, it is
still technically possible to recover the parameters through phase retrieval schemes [Gupta, 2019a ;
Gupta, 2020a]. To provide a thorough and fair evaluation of our attack, we study in this section
phase retrieval attacks. We first consider an idealized setting, and then confront this setting with
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Figure 5.15 – Simplified modelling of phase retrieval. The retrieved matrix U′ is modeled
as the linear interpolation between the real transmission matrix U and a random matrix R,
only for some columns selected by a mask. Varying the value of α and the percentage of masked
columns allows to modulate the knowledge of the attacker without running resource-hungry
phase retrieval algorithms.

a real-world phase retrieval algorithm from [Gupta, 2020a].

Ideal retrieval model. We build an idealized phase retrieval attack, where the attacker
knows a certain fraction of columns, up to a certain precision, schematized in Figure 5.15. To
smoothly vary the precision, we model the retrieved matrix U′ as a linear interpolation of the
real transmission matrix U and a completely different random matrix R :

U′ = αU + (1− α)R. (5.5)

In real phase retrieval, this model is valid for a certain fraction of columns of the transmission
matrix, and the remaining ones are modeled as independent random vectors. We can model this
with a Boolean mask matrix M, so our retrieval model in the end is :

U′ = αU⊙M + (1− α)R. (5.6)

In this setting, we vary the knowledge of the attacker from the minimum to the maximum by
varying α and the percentage of retrieved columns, and we show how the performance of our
defense changes in Figure 5.16. In this simplified model only a crude knowledge of the parameters
seems sufficient, given the sharp phase transition. We now need to chart where state-of-the-art
retrieval methods are on this graph to estimate their ability to break our defense.

Real-world retrieval performance. State-of-the-art phase retrieval methods seek to maxi-
mize output correlation, i.e. the correlation on y in Equation 5.1, in place of the correlation
with respect to the parameters of the transmission matrix, i.e. U in Equation 5.1. This leads to
a retrieved matrix that may well approximate the OPU outputs, but not the actual transmis-
sion matrix it implements. We find this is a significant limitation for attackers. In Figure 5.16,
following numerical experiments, we highlight with a white contour the operating region of a
state-of-the-art phase retrieval algorithm [Gupta, 2020a], showing that it can manage to only
partially reduce the robustness of ROPUST.
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Figure 5.16 – Performance of an APGD-CE attack with a retrieved matrix in place
of the, otherwise unknown, transpose of the transmission matrix. As expected, a better
knowledge of the transmission matrix, i.e. higher alpha and/or higher percentage of known
columns correlates with the success of the attack, with a sharp phase transition. At first glance,
it may seem that even a coarse-grained knowledge of the TM can help the attacker. However,
optical phase retrieval works on the output correlation only : accordingly, we find that even
state-of-the-art phase retrieval methods operates only in the white contoured region, where the
robustness is still greater than the Base models. We highlighted the accuracies achieved under
attack in this region in the heat-map.

5.10 Conclusion and outlooks

We introduced a new defense technique against white-box, black-box and transfer attacks, based
on the implementation of a neural network layer using an optical co-processor. Our method
incurs no additional computational cost at training time, and comes at no natural accuracy cost.
We evaluated our method in each setting on the CIFAR-10 and CIFAR-100 datasets, against
various attacks. In the white-box setting, our defense is robust by design thanks to parameter
obfuscation. We attempted to adapt white-box attacks to break this defense, testing two different
differentiable approximations, however both resulted in less convincing adversarial examples.
Furthermore, in the black-box setting, our defense improves robustness by 22% against the
strongest black-box attack that we tested. We also showed increased robustness to transfer of
attacks, and showed that there exists in this instance a robustness-accuracy trade-off.
To understand robustness to black-box and transfer of attacks, which cannot be explained by
obfuscation, we performed an ablation study of our defense. In black-box scenarios, we found
that the combined use of a random projection and binarization significantly strengthen our
defense, highlighting how the OPU is at the center-stage of our defense. In transfer of attacks,
surprisingly, we found that the hybrid training method we devised to train neural networks
incorporating our defense builds robust features, enabling our defense layer to be robust against
transfer of attacks. These findings motivate further studies on the loss landscape explored by
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alternative training methods. In essence, we find that every aspect of our strategy, from the analog
optical co-processor and its binarized input, to the hybrid training method we use, contribute in
different settings to building an all-around robust defense. In particular, while our defense can
be simulated, its physical implementation by an optical co-processor guarantees the parameters
remain obfuscated even if the host system is compromised – a unique feature.
Then, we used our defense as a drop-in module to enhance the adversarial robustness of pretrained
already robust models, which we named ROPUST. We thoroughly evaluated it on nine different
models in the standardized RobustBench benchmark, reaching and improving state-of-the-art
performance. In light of these results, we encourage to extend RobustBench to include parameter
obfuscation methods.
We performed an ablation study in the white-box setting, confirming our intuition and the results
from the first part : the robustness comes from the parameter obfuscation and from the hybrid
Backpropagation-DFA training algorithm. The non-linearity |.|2 on the random projection, while
not contributing to robustness on its own, is key to prevent trivial deobfuscation by hardening
ROPUST against phase retrieval. A similar study in the black-box setting was inconclusive.
However, it shed light on a phenomenon of increased robustness against Square attack when
retraining from scratch the classifier of robust architectures on natural data. This phenomenon
appears to be universal, i.e. independent of the structure of the classification module being
fine-tuned, warranting further study.
Finally, we developed a new kind of attack, phase retrieval attacks, specifically suited to parameter
obfuscation defense such as ours, and we tested their effectiveness. We found that the typical
precision regime of even state-of-the-art phase retrieval methods is not enough to completely
break ROPUST.
Future work could investigate how the robustness varies with the input and output size of the
ROPUST module, and if there are different parameter obfuscation trade-offs when such dimensions
change. The combination of ROPUST with other defense techniques, such as adversarial label-
smoothing [Goibert, 2019], could also be of interest to further increase robustness. By combining
beyond silicon hardware and beyond backpropagation training methods, our work highlights the
importance of considering solutions outside of the hardware lottery [Hooker, 2020].
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Chapter 6
Photonic Differential Privacy with Direct
Feedback Alignment

This chapter is based on [Ohana, 2021].

Optical Processing Units (OPUs) – low-power photonic chips dedicated to large scale
random projections – have been used in previous work to train deep neural networks
using Direct Feedback Alignment (DFA), an effective alternative to backpropagation.
Here, we demonstrate how to leverage the intrinsic noise of optical random projections
to build a differentially private DFA mechanism, making OPUs a solution of choice to
provide a private-by-design training. We provide a theoretical analysis of our adaptive
privacy mechanism, carefully measuring how the noise of optical random projections
propagates in the process and gives rise to provable Differential Privacy. Finally, we
conduct experiments demonstrating the ability of our learning procedure to achieve
solid end-task performance.

6.1 Introduction

The widespread use of machine learning models has created concern about their release in the
wild when trained on sensitive data such as health records or queries in data bases [Berger, 2019 ;
Johnson, 2018]. Such concern has motivated a abundant line of research around privacy-preserving
training of models. A popular technique to guarantee privacy is differential privacy (DP), that
works by injecting noise in an deterministic algorithm, making the contribution of a single data-
point hardly distinguishable from the added noise. Therefore it is impossible to infer information
on individuals from the aggregate.
While there are alternative methods to ensure privacy, such as knowledge distillation (e.g. PATE
[Papernot, 2018]), a simple and effective strategy is to use perturbed and quenched Stochastic
Gradient Descent (SGD) [Abadi, 2016] : the gradients are clipped before being aggregated and
then perturbed by some additive noise, finally they are used to update the parameters. The DP
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property comes at a cost of decreased utility. These biased and perturbed gradients provide a
noisy estimate of the update direction and decrease utility, i.e. end-task performance.
We revisit this strategy and develop a private-by-design learning algorithm, inspired by the
implementation of an alternative training algorithm, Direct Feedback Alignment [Nøkland, 2016c],
on Optical Processing Units [LightOn, 2020], photonic co-processors dedicated to large scale
random projections. The analog nature of the photonic co-processor implies the presence of noise,
and while this is usually minimized, in this case we propose to leverage it, and tame it to fulfill
our needs, i.e to control the level of privacy of the learning process. The main sources of noise in
Optical Processing Units can be modeled as additive Poisson noise on the output signal, and
approach a Gaussian distribution in the operating regime of the device. In particular, these
sources can be modulated through temperature control, in order to attain a desired privacy level.
Finally, we test our algorithm using the photonic hardware demonstrating solid performance on
the goal metrics. To summarize, our setting consists in OPUs performing the multiplication by a
fixed random matrix, with a different realization of additive noise for every random projection.

6.1.1 Related work

The amount of noise needed to guarantee differential privacy was first formalized in [Dwork, 2006a].
Later, a training algorithm that satisfied Renyi Differential Privacy was proposed in [Abadi, 2016].
This sparked a line of research in differential privacy for deep learning, investigating different
architecture and clipping or noise injection mechanisms [Abay, 2018 ; Ács, 2019]. The majority
of these works though rely on backpropagation. An original take was offered in [Lee, 2020],
that evaluated the privacy performance of Direct Feedback Alignment (DFA) [Nøkland, 2016c],
an alternative to backpropagation. While Lee et al. [Lee, 2020] basically extend the gradient
clipping/Gaussian mechanism approach to DFA, our work, while applied to the same DFA
setting, is motivated by a photonic implementation that naturally induces noise that we exploit
for differential privacy. As such, we provide a new DP framework together with its theoretical
analysis.

6.1.2 Motivations and contributions

We propose a hardware-based approach to Differential Privacy (DP), centered around a photonic
co-processor, the OPU. We use it to perform optical random projections for a differentially private
DFA training algorithm, leveraging noise intrinsic to the hardware to achieve privacy-by-design.
This is a significant departure from the classical view that such analog noise should be minimized,
instead leveraging it as a key feature of our approach. Our mechanism can be formalized through
the following (simplified) learning rule at layer ℓ :

δWℓ = −η [(Bℓe︸︷︷︸
scaled DFA learning signal

+
Gaussian hardware noise︷︸︸︷

g )⊙ ϕ′
ℓ(zℓ)](hℓ−1︸ ︷︷ ︸

neuron-wise clipped activations

)⊤. (6.1)

Photonic-inspired and tested. The OPU is used as both inspiration and an actual platform
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for our experiments. We demonstrate theoretically that the noise induced by the analog co-
processor makes the algorithm private by design, and we perform experiments on a real photonic
co-processor to show we achieve end-task performance competitive with DFA on GPU.
Differential Privacy beyond backpropagation. We extend previous work [Lee, 2020] on
DP with DFA both theoretically and empirically. We provide new theoretical elements for noise
injected on the DFA learning signal, a setting closer to our hardware implementation.
Theoretical contribution. Previous works on DP and DFA [Lee, 2020] proposes a straight-
forward extension of the DP-SGD paradigm to Direct Feedback Alignment. In our work, by
adding noise directly to the random projection in DFA, we study a different Gaussian mechanism
[Mironov, 2017] with a covariance matrix depending on the values of the activations of the
network. Therefore the theoretical analysis is more challenging than in [Lee, 2020]. We succeed
to upper bound the Rényi Divergence of our mechanism and deduce the (ε, δ)-DP parameters of
our setup.

6.2 Background

Formally the problem we study is the following : the analysis of the built-in Differential Privacy
thanks to the combination of DFA and OPUs to train deep architectures. Before proceeding, we
recall a minimal set of principles of DFA and Differential Privacy.
From here on {xi}Ni=1 are the training points belonging to Rd, {yi}Ni=1 the target labels belonging
to R. The aim of training a neural network is to find a function f : Rd → R that minimizes
the true L-risk EXY∼DL(f(X), Y ), where L : R× R→ R is a loss function and D a fixed (and
unknown) distribution over data and labels (and the (xi, yi) are independent realizations of
X,Y ), and to achieve that, the empirical risk 1

N

∑N
i=1 L(f(xi), yi) is minimized.

6.2.1 Learning with Direct Feedback Alignment (DFA)

DFA is a biologically inspired alternative to backpropagation with an asymmetric backward pass.
For ease of notation, we introduce it for fully connected networks but it generalizes to convolutional
networks, transformers and other architectures [Launay, 2020a]. It has been theoretically studied
in [Lillicrap, 2016 ; Refinetti, 2021]. Note that in the following, we incorporate the bias terms in
the weight matrices.
Forward pass. In a model with L layers of neurons, ℓ ∈ {1, . . . , L} is the index of the ℓ-th layer,
Wℓ ∈ Rnℓ×nℓ−1 the weight matrix between layers ℓ− 1 and ℓ, ϕℓ the activation function of the
neurons, and hℓ their activations. The forward pass for a pair (x, y) writes as :

∀ℓ ∈ {1, . . . , L} : zℓ = Wℓhℓ−1,hℓ = ϕℓ(zℓ), (6.2)

where h0 .= x and ŷ .= hL = ϕL(zL) is the predicted output.
Backpropagation update. With backpropagation [Rumelhart, 1986], leaving aside the specifics
of the optimizer used (learning rate, etc.), the weight updates are computed using the chain-rule
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Figure 6.1 – Schematic comparison of Backpropagation and Direct Feedback Alignment. The
two approaches differ in how the loss impacts each layer of the model. While in backpropagation,
the loss is propagated sequentially backwards, in DFA, it directly acts on each layer after random
projection.

of derivatives :

δWℓ = − ∂L
∂Wℓ

= −[((Wℓ+1)⊤δzℓ+1)⊙ ϕ′
ℓ(zℓ)](hℓ−1)⊤, δzℓ = ∂L

∂zℓ , (6.3)

where ϕ′
ℓ is the derivative of ϕℓ, ⊙ is the Hadamard product, and L(ŷ,y) is the prediction loss.

DFA update. DFA replaces the gradient signal (Wℓ+1)⊤δzℓ+1 with a random projection of
the derivative of the loss with respect to the pre-activations δzL of the last layer. For losses L
commonly used in classification and regression, such as the squared loss or the cross-entropy loss,
this will amount to a random projection of the error e ∝ ŷ− y. With a fixed random matrix Bℓ

of appropriate shape drawn at initialization of the learning process, the parameter update of
DFA is :

δWℓ = −[(Bℓe)⊙ ϕ′
ℓ(zℓ)](hℓ−1)⊤, e = ∂L

∂zL . (6.4)

Backpropagation vs DFA training. Learning using backpropagation consists in iteratively
applying the forward pass Equation 6.2 on batches of training examples and then applying back-
propagation updates Equation 6.3. Training with DFA consists in replacing the backpropagation
updates by DFA ones Equation 6.4. An interesting feature of DFA is the parallelization of the
training step, where all the random projections of the error can be done at the same time, as
shown in Figure 6.1. More details about DFA are given in Section 2.3.

6.2.2 Optical Processing Units

An Optical Processing Unit (OPU) 1 is a co-processor that multiplies an input vector x ∈ Rd

by a fixed random matrix B ∈ RD×d, harnessing the physical phenomenon of light scattering

1. Accessible through LightOn Cloud : https://cloud.lighton.ai.
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through a diffusive medium [LightOn, 2020]. The operation performed is :

p = Bx. (6.5)

If the coefficients of B are unknown, they are guaranteed to be (independently) distributed
according to a Gaussian distribution [LightOn, 2020 ; Ohana, 2020]. An additional interesting
characteristics of the OPU is its low energy consumption compared to GPUs for high-dimensional
matrix multiplication [Ohana, 2020].
A central feature we will rely on is that the measurement of the random projection Equation 6.5
may be corrupted by an additive zero-mean Gaussian random vector g, so as for an OPU to
provide access to p = Bx + g. If g is usually negligible, its variance can be modulated by
controlling the physical environment around the OPU. We take advantage of this feature to
enforce differential privacy. In the current versions of the OPUs, however, modulating the analog
noise at will is not easy, so we will simulate the noise numerically in the experiments. More
details about the OPU are given in Section 2.4.

6.2.3 Differential Privacy (DP)

Differential Privacy [Dwork, 2006a ; Dwork, 2008] sets a framework to analyze the privacy
guarantees of algorithms. It rests on the following core definitions.

Definition 6.2.1 (Neighboring datasets). Let {X j}Nj=1 (e.g. X j = Rd) be a domain and
D .= ∪Nj=1X j. D,D′ ∈ D are neighboring datasets if they differ from one element. This is
denoted by D ∼ D′.

Definition 6.2.2 ((ε, δ)-differential privacy [Dwork, 2008]). Let ε, δ > 0. Let A : D → RangeA
be a randomized algorithm, where RangeA is the range of D through A. A is (ε, δ)-differentially
private, or (ε, δ)-DP, if for all neighboring datasets D,D′ ∈ D and for all sets O ∈ Im A, the
following inequality holds :

P[A(D) ∈ O] ≤ eεP[A(D′) ∈ O] + δ,

where the probability relates to the randomness of A.

Mironov [Mironov, 2017] proposed an alternative notion of differential privacy based on Rényi
α-divergences and established a connection between their definition and the (ε, δ)-differential
privacy of Definition 6.2.2. Rényi-based Differential Privacy is captured by the following :

Definition 6.2.3 (Rényi α-divergence [Rényi, 1961]). For two probability distributions P and Q
defined over R, the Rényi divergence of order α > 1 is given by :

Dα (P∥Q) .= 1
α− 1 logEx∼Q

(
P (x)
Q(x)

)α
. (6.6)

Definition 6.2.4 ((α, ε)-Rényi differential privacy [Mironov, 2017]). Let ε > 0 and α > 1. A
randomized algorithm A is (α, ε)-Rényi differential private or (α, ε)-RDP, if for any neighboring
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datasets D,D′ ∈ D,
Dα
(
A(D)∥A(D′)

)
≤ ε.

Theorem 6.2.5 (Composition of RDP mechanisms [Mironov, 2017]). Let {Mi}ki=1 be a set of
mechanisms, each satisfying (α, εi)-RDP. Then their combination is (α,∑i εi)-RDP.

Going from RDP to the Differential Privacy of Definition 6.2.2 is made possible by the following
theorem (see also [Asoodeh, 2020 ; Balle, 2018 ; Wang, 2019]).

Theorem 6.2.6 (Converting RDP parameters to DP parameters [Mironov, 2017]). An (α, ε)-
RDP mechanism is

(
ε+ log 1/δ

α−1 , δ
)
-DP for all δ ∈ (0, 1).

For the theoretical analysis, we will need the following proposition, specific to the case of
multivariate Gaussian distributions, to obtain bounds on the Rényi divergence.

Proposition 6.2.7 (Rényi divergence for two multivariate Gaussian distributions [Pardo, 2018]).
The Rényi divergence for two multivariate Gaussian distributions with means µ1,µ2 and respective
covariances Σ1,Σ2 is given by :

Dα(N (µ1,Σ1)∥N (µ2,Σ2)) = α

2 (µ1 − µ2)⊤(αΣ2 + (1− α)Σ1)−1(µ1 − µ2)

− 1
2(α− 1) log

[det(αΣ2 + (1− α)Σ1)
(det Σ1)1−α(det Σ2)α

]
,

(6.7)

with det(Σ) the determinant of the matrix Σ. Note that (αΣ2 + (1− α)Σ1)−1 must be definite-
positive 2, otherwise the Rényi divergence is not defined and is equal to +∞.

Remark 6.2.8. A standard method to generate an (R)DP algorithm from a deterministic
function f : X → Rd is the Gaussian mechanism Mσ acting as Mσf(·) = f(·) + v where
v ∼ N (0, σ2Id). If f has ∆f - (or ℓ2-) sensitivity

∆f
.= max
D∼D′

∥f(D)− f(D′)∥2,

then Mσ is
(
α,

α∆2
f

2σ2

)
-RDP.

More details about Differential Privacy are given in Section 2.5.2.

6.3 Photonic Differential Privacy

This section explains how to use photonic devices to perform DFA and a theoretical analysis
showing how this combination entails photonic differential privacy.

2. Note that here α > 1 and the combination αΣ2 + (1 − α)Σ1 is not a convex combination ; extra-case must
be given to ensure that the resulting matrix is positive
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6.3.1 Clipping parameters

As usual in Differential Privacy, we will need to clip layers of the network during the backward
pass. Given a vector v ∈ Rd and positive constants c, s, ν, we define :

clipc(v) .= (sign(v1) ·min(c, |v1|), . . . , sign(vd) ·min(c, |vd|))⊤

scales(v) .= min(s, ∥v∥2) v
∥v∥2

offsetν(v) .= (v1 + ν, . . . , vd + ν)⊤

The weight update with clipping to be considered in place of Equation 6.4 is given by

δWℓ = − 1
m

m∑
i=1

(scalesℓ
(Bℓei) + gi)⊙ ϕ′(zℓi))clipcℓ

(offsetνℓ
(hℓi))⊤. (6.8)

For each layer ℓ, we set the sℓ, cℓ and νℓ parameters as follows :

cℓ
.= τmaxh√

nℓ
νℓ

.= τminh√
nℓ

sℓ
.= τB. (6.9)

These choices ensure that :

τminh ≤ ∥clipcℓ
(offsetνℓ

(hℓi))∥2 ≤ τmaxh

∥scalesℓ
(Bℓei)∥2 ≤ τB

Moreover, we require the derivatives of the each activation function ϕℓ are lower and upper
bounded by constants i.e. γminℓ ≤ |ϕ′

ℓ(t)| ≤ γmaxℓ for all scalars t. This is a reasonable
assumption for activation functions such as sigmoid, tanh, ReLU. . .

In the following, the quantities should all be considered clipped/scaled/offset as above and, for
sake of clarity, we drop the explicit mentions of these operations.

6.3.2 Photonic Direct Feedback Alignment is a natural Gaussian mechanism

Noise modulation. Mainly due to the photon shot noise of the measurement process [Konnik,
2014], Gaussian noise is naturally added to the random projection of Equation 6.5. This noise
is negligible for machine learning purposes, however it can be modulated through temperature
control yielding the following projection :

p = Bx +N (0, σ2ID), (6.10)

where ID is the identity matrix in dimension D. Note that this noise is truly random due to the
quantum nature of the photon shot noise. As previously stated, due to experimental constraints,
the noise will be simulated in the experiments of Section 6.4.
Building on that feature, we perform the random projection of DFA of Equation 6.4 using the
OPU. Since this equation is valid for any layer ℓ of the network, we allow ourselves, for sake
of clarity, to drop the layer indices and study the generic update (the quantities below are all
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Algorithm 3 Photonic DFA training
Require: training set S = {(xj , yj)}Nj=1, ϕℓ with bounded derivatives, scale parameters sℓ,

clipping thresholds νℓ and cℓ, stepsize η, noise scale σ, minibatch of size m, number of
iterations T .

Ensure: A performing DP model.
1: for ℓ = 1 to L do
2: Sample Bℓ ▷ Note : with OPUs, there is no explicit sampling of B
3: end for
4: for T iterations do
5: Create a minibatch S ⊂ {1, . . . , N} of size |S| = m (sampling without replacement)
6: for i ∈ S do
7: for ℓ = 1 to L− 1 do
8: zℓi = Wℓhℓ−1

i

9: hℓi = ϕℓ(zℓi)
10: end for
11: ŷi ← ϕℓ(Wℓhℓ−1

i )
12: end for
13: for ℓ = L to 1 do
14: Perform Bℓei with the OPU
15: Independently sample gℓ1, . . . , g

ℓ
m ∼ N (0, σ2Inℓ

)
16: Wℓ ←Wℓ − η

m

∑m
i=1((scalesℓ

(Bℓei) + gℓi )⊙ ϕ′
ℓ(zℓi) )clipcℓ

(offsetνℓ
(hℓi))⊤

17: end for
18: end for

clipped as in Section 6.3.1) :

δW = − 1
m

m∑
i=1

(Bei + gi)⊙ ϕ′(zi))h⊤
i (clipped quantities as in section 6.3.1) (6.11)

= − 1
m

m∑
i=1

(Bei ⊙ ϕ′(zi))h⊤
i + 1

m

m∑
i=1

(gi ⊙ ϕ′(zi))h⊤
i , (6.12)

where gi ∼ N (0, σ2Inℓ
) is the Gaussian noise added during the OPU process. As stated previously,

its variance σ2 can be modulated to obtain the desired value. The overall training procedure
with Photonic DFA (PDFA) is described in Algorithm 3.

6.3.3 Theoretical analysis of our method

In the following, the quantities in the DFA update of the weights are always clipped according to
Equation 6.11 and as before clipping/scale/offset operators are in force but dropped from the
text.
To demonstrate that our mechanism is Differentially Private, we will use the following reasoning :
the noise being added at the random projection level as in Equation 6.10, we can decompose
the update of the weights as a Gaussian mechanism as in Equation 6.12. We will compute the
covariance matrix of the Gaussian noise, which will depend on the data, which is in striking
contrast with the standard Gaussian mechanism [Abadi, 2016]. We will then use Proposition
6.2.7 to compute the upper bound the Rényi divergence. The Differential Privacy parameters
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will be obtained using Theorem 6.2.6.
In the following, we will consider the Gaussian mechanism applied to the columns of the weight
matrix. We consider this case for the following reasons : since our noise matrix has the same
realisation of the Gaussian noise (but multiplied by different scalars), it makes sense to consider
the Differential Privacy parameters of only columns of the weight matrix and then multiply
the Rényi divergence by the number of columns. If our noise was i.i.d. we could have used the
theorems from [Chanyaswad, 2018] to lower the Rényi divergence. Given the update equation of
the weights at layer ℓ in Equation 6.12, the update of column k of the weight of layer ℓ is the
following Gaussian mechanism :

1
m

m∑
i=1

((Bei)⊙ ϕ′(zi))hik + 1
m

m∑
i=1

(gi ⊙ ϕ′(zi))hik = fk(D) +N (0,Σk), (6.13)

where Σk = σ2

m2 diag(ak)2 and (ak)j =
√∑m

i=1(ϕ′
ijhik)2,∀j = 1, . . . , nℓ−1. Note that these

expressions are due to the inner product with hi. In the following, we will focus on column k

and we therefore drop the index k in the notation. Using the clipping of the quantities of interest
detailed in Equation 6.8, we can compute some useful bounds bounds on aj :√

m

nℓ
γminℓ τminh ≤ aj ≤

√
m

nℓ
γmaxℓ τmaxh . (6.14)

Proposition 6.3.1 (Sensitivity of Photonic DFA [Lee, 2020]). For neighboring datasets D and
D′ (i.e. differing from only one element), the sensitivity ∆ℓ

f of the function fk described in
Equation 6.12 at layer ℓ is given by :

∆ℓ
f = sup

D∼D′
∥f(D)− f(D′)∥2 ≤

2
m
∥(Bℓei)⊙ ϕ′

ℓ(zℓi))hℓ−1
ik ∥2 (6.15)

≤ 2
m
τBγ

max
ℓ

τmaxh√
nℓ
. (6.16)

The following proposition is our main theoretical result : we compute the ε parameter of Rényi
Differential Privacy.

Proposition 6.3.2 (Photonic Differential Privacy parameters). Given two probability distri-
butions P ∼ N (f(D),Σ) and Q ∼ N (f(D′),Σ′) corresponding to the Gaussian mechanisms
depicted in Equation 6.13 on neighboring datasets D and D′, the Rényi divergence of order α
between these mechanisms is :

Dα(P∥Q) ≤ 2α
m.σ2

(γmaxτmaxτB)2

(γminℓ τminh )2 + nℓ.α

2(α− 1) log
[

m(γminℓ τminh )2

(m+ 1)(γminℓ τminh )2 − (γmaxℓ τmaxh )2

]
= εPDFA. (6.17)

Our mechanism is therefore (α, TεPDFA)-RDP with T the number of training epochs. We can
deduce that the mechanism on the weight matrix with nℓ−1 columns is (α, TεPDFA)-RDP. Then
the mechanism of the whole network composed of L layers is (α,LTεPDFA)-RDP. We can then
convert our bound to DP parameters using Theorem 6.2.6 to obtain a (LTεPDFA + log 1/δ

α−1 , δ)-DP
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mechanism for all δ ∈ (0, 1).

Proof. In the following, the variables with a prime correspond to the ones built upon dataset
D′. According to Equation 6.13, the covariance matrices Σ and Σ′ are diagonal and any of their
weighted sum is diagonal, as well as their inverse. Moreover, the determinant of a diagonal matrix
is the product of its diagonal elements. Using these elements in Equation 6.7 yields :

Dα(P∥Q) =
nℓ∑
j=1

(
αm2

2σ2
(fj(D)− fj(D′))2

αa′2
j + (1− α)a2

j

− 1
2(α− 1) log

[(1− α)a2
j + αa′2

j

a
2(1−α)
j a′2α

j

])
.

Using the fact that we are studying neighboring datasets, the sums composing aj and a′
j differ

by only one element at element i = I. This implies that

αa′2
j + (1− α)a2

j = a2
j + α[(ϕ̃′

Ij h̃Ik)2 − (ϕ′
IjhIk)2)].

where ϕ̃′
Ij and h̃2

Ik are taken on the dataset D′. By choosing D and D′ such that [(ϕ̃′
Ij h̃Ik)2 −

(ϕ′
IjhIk)2)] ≥ 0 and some rearrangement, we can upper bound the Rényi divergence by :

Dα(P∥Q) ≤ α.m2

2σ2
∆2

f

(
√

m
nℓ
γminℓ τminh )2

+ α.nℓ
2(α− 1) log

[
m(γminℓ τminh )2

(m+ 1)(γminℓ τminh )2 − (γmaxℓ τmaxh )2

]
.

Using the bound on the sensitivity f computed in Equation 6.15, we obtain the desired εPDFA,
upper bound of the Rényi divergence. A more detailed proof is presented in Appendix 6.6.1.

Remark 6.3.3. We started by computing the RDP parameters on a column of the weight matrix
linking layers ℓ− 1 to ℓ then generalized it to the whole matrix. The passage from the vectorial to
the matrix case yields the same ε in the RDP mechanism, as concatenation is not a composition
mechanism. We can make the following analogy : the value of the Rényi divergence between two
Gaussian random variables with variance σ2 is the same as the one between two Gaussian vectors
of Covariance matrix σ2I (with suitable means).

Remark 6.3.4. This bound is not tight since it assumes that all the activations reach their
worst cases in all the layers for upper bounding. However, obtaining a tighter bound would be
very challenging since the values of the covariance matrices depend on the output of the neurons
of the Neural network, which are data and architecture dependent.
We believe tighter bounds could be obtained in much simpler cases. First we can notice that having
equal covariance matrices Σ and Σ′ would cancel the logarithm term. If additionally we assume
that all the activations saturate to their clipping values, then we would retrieve the formula of ε
in [Lee, 2020].
Owing to mini-batch training, we believe the privacy parameter could be further improve by
considering subsampling mechanism [Wang, 2019] and its properties. However, this would require
a novel theoretical framework adapted to our case and we leave it for future work.
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6.4 Experimental results

Figure 6.2 – Photonic training on Fashion-MNIST. Left : BP, DFA, and photonic DFA
(PDFA) training runs for various degrees of privacy. Dashed runs (- -) are non-private. Increasingly
transparent runs have increased noise, see Table 6.1 for details. PDFA is always very close to
DFA performance, and both are robust to noise. Right : gradient alignment (cosine similarity
between PDFA and BP gradients) for the second layer of the network, at varying degrees of
noise. Increasing noise degrades alignment, but alignment values remain high enough to support
learning.

In this section, we demonstrate that photonic training is robust to Gaussian mechanism, i.e.
adding noise as in Equation 6.8, delivering good end-task performance even under strong privacy
constraints. As detailed by our theoretical analysis, we focus on two specific mechanisms :

Clipping and offsetting the neurons with τmax
h√
nℓ

and τmin
h√
nℓ

to enforce τminh ≤ ∥hℓ∥2 ≤
τmaxh , as explained in section 6.3.1 ;

Adding noise g to Be, according to the clipping of Be with τB (||Be||2 ≤ τB) and the
scaling of g with σ (g ∼ N (0, σ2I)).

To make our results easy to interpret, we fix τB = 1, such that σ = 0.1 implies ||g||2 ≃ ||Be||2. At
σ = 0.01, this means that the noise is roughly 10% of the norm of the DFA learning signal. This
is in line with differentially-private setup using backpropagation, and is in fact more demanding
as our experimental setup makes it such that this is a lower bound on the noise.

Photonic DFA. We perform the random projection Be at the core of the DFA training step
using the OPU, a photonic co-processor. As the inputs of the OPU are binary, we ternarize the
error – although binarized DFA, known as Direct Random Target Propagation [Frenkel, 2021],
is possible, its performance is inferior. Ternarization is performed using a tunable threshold
t, such that values smaller than −t are set to -1, values larger than t are set to 1, and all in
between values are set to 0. We then project the positive part e+ of this vector using the OPU,
obtaining Be+, and then the negative part e−, obtaining Be−. Finally, we substract the two to
obtain the projection of the ternarized error, B(e+ − e−). This is in line with the setup proposed
in [Launay, 2020b]. We refer thereafter to DFA performed on a ternarized error on a GPU as
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ternarized DFA (TDFA), and to DFA performed optically with a ternarized error as photonic
DFA (PDFA).

Setting. We run our simulations on cloud servers with a single NVIDIA V100 GPU and an
OPU, for a total estimate of 75 GPU-hours. We perform our experiments on Fashion-MNIST
dataset [Xiao, 2017], reserving 10% of the data as validation, and reporting test accuracy on a
held-out set. We use a fully-connected network, with two hidden layers of size 512, with tanh
activation. Optimization is done over 15 epochs with SGD, using a batch size of 256, learning rate
of 0.01 and 0.9 momentum. For TDFA, we use a threshold of 0.15. Despite the fundamentally
different hardware platform, no specific hyperparameter tuning is necessary for the photonic
training : this demonstrates the reliability and robustness of our approach.

BP baseline. We also apply our DP mechanism to a network trained with backpropagation.
The clipping and offsetting of the activations’ neurons is unchanged, but we adapt the noise
element. We apply the noise on the derivative of the loss once at the top of the network. We also
lower the learning rate to 10−4 to stabilize runs.

σ non-private 0 0.01 0.03 0.05 0.1 0.2
τB 1

BP 88.33 75.22 70.71 71.47 71.27 70.28 66.78
DFA 86.80 84.20 84.04 84.15 83.70 83.06 81.66
TDFA 86.63 84.20 84.38 84.04 83.94 82.98 80.80
PDFA 85.85 84.00 83.79 83.69 83.36 82.63 80.94

Table 6.1 – Test accuracy on Fashion-MNIST with our DP mechanism. We find our
approach to be robust to increasing DP noise σ. In particular, photonic DFA results (PDFA) are
always within 1% of the corresponding DFA run.

Results. We fix τmax
h = 1 for all experiments, and consider a range of σ corresponding to

noise between 0-200% of the DFA training signal Be. We also compare to a non-private, vanilla
baseline. Results are reported in Table 6.1 and Figure 6.2.
We find our DFA-based approach to be remarkably robust to the addition of noise, providing
Differential Privacy, with a test accuracy hit contained within 3% of baseline for up to σ = 0.05
(i.e. noise 50% as large as the training signal). Most of the performance hit can actually be
attributed to the aggressive activation clipping, with noise having a limited effect. In comparison,
BP is far more sensitive to activation clipping and to our noise mechanism. However, our
method was devised for DFA and not BP, explaining the under-performance of BP. Finally,
photonic training achieves good test accuracy, always within 1% of the corresponding DFA run.
This demonstrates the validity of our approach, on a real photonic co-processor. We note that,
usually, demonstrations of neural networks with beyond silicon hardware are mostly limited to
simulations [Hughes, 2018 ; Guo, 2019], or that these demonstrations come with a significant
end-task performance penalty [Xu, 2021 ; Wetzstein, 2020]. Additional results with similar
conclusions on MNIST and CIFAR-10 are presented in Appendix 6.7.
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6.5 Conclusion and outlooks

We have investigated how the Gaussian measurement noise that goes with the use of the photonic
chips known as Optical Processor Units, can be taken advantage of to ensure a Differentially
Private Direct Feedback Alignment training algorithm for deep architectures. We theoretically
establish the features of the so-obtained Photonic Differential Privacy and we feature these
theoretical findings with compelling empirical results showing how adding noise does not decreases
the performance significantly.
At an age where both privacy-preserving training algorithms and energy-aware machine learning
procedures are a must, our contribution addresses both points through our photonic differential
privacy framework. As such we believe the holistic machine learning contribution we bring will
mostly bring positive impacts by reducing energy consumption when learning from large-scale
datasets and by keeping those datasets private. On the negative impact side, our DP approach
is heavily based on clipping, which is well-known to have negative effects on underrepresented
classes and groups [Bagdasaryan, 2019 ; Hooker, 2021] in a machine learning model.
We plan to extend the present work in two ways. First, we would like to refine the theoretical
analysis and exhibit privacy properties that are more in line with the observed privacy ; this
would give us theoretical grounds to help us set parameters such as the clipping thresholds or
the noise modulation. Second, we want to expand our training scenario and address wider ranges
of applications such as recommendation, federated learning, natural language processing. We
also plan to spend efforts so as to mitigate the effect of clipping on the fairness of our model
[Xu, 2020].

6.6 Appendix : complete proofs of Differential Privacy parame-
ters

6.6.1 Extended proof of Proposition 6.3.2

As a reminder, we would like to compute the Rényi divergence of the following Gaussian
mechanism, where all the quantities are clipped as in Equation 6.1 :

1
m

m∑
i=1

((Bei)⊙ ϕ′(zi))hik + 1
m

m∑
i=1

(gi ⊙ ϕ′(zi))hik = fk(D) +N (0,Σk), (6.18)

where Σk = σ2

m2 diag(ak)2 and (ak)j =
√∑m

i=1(ϕ′
ijhik)2,∀j = 1, . . . , nℓ−1. As explained in the

main text, we will focus on column k and will drop the k indices. The proposition we want to
prove is the following :

Proposition 6.3.2 (Photonic Differential Privacy parameters). Given two probability distri-
butions P ∼ N (f(D),Σ) and Q ∼ N (f(D′),Σ′) corresponding to the Gaussian mechanisms
depicted in Equation 6.18 on neighboring datasets D and D′, the Rényi divergence of order α
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between these mechanisms is :

Dα(P∥Q) ≤ 2.α
m.σ2

(γmaxτmaxτB)2

(γminℓ τminh )2 + nℓ.α

2(α− 1) log
[

m(γminℓ τminh )2

(m+ 1)(γminℓ τminh )2 − (γmaxℓ τmaxh )2

]
= εPDFA. (6.19)

Our mechanism is therefore (α, TεPDFA)-RDP with T the number of training epochs. We can
deduce that the mechanism on the weight matrix with nℓ−1 columns is (α, Tnℓ−1εPDFA)-RDP. Then
the mechanism of the whole network composed of L layers is (α,LTnℓ−1εPDFA)-RDP. We can then
convert our bound to DP parameters using Theorem 2 to obtain a (LTnℓ−1εPDFA + log 1/δ

α−1 , δ)-DP
mechanism for all δ ∈ (0, 1).

Proof. In the following, the variables with a prime correspond to the ones built upon dataset
D′. According to Equation 6.18, the covariance matrices Σ and Σ′ are diagonal and any of their
weighted sum is diagonal, as well as their inverse. Moreover, the determinant of a diagonal matrix
is the product of its diagonal elements. Using this in Equation 6.7 yields :

Dα(P∥Q) =
nℓ∑
j=1

(
αm2

2σ2
(fj(D)− fj(D′))2

αa′2
j + (1− α)a2

j

− 1
2(α− 1) log

[(1− α)a2
j + αa′2

j

a
2(1−α)
j a′2α

j

])
.

Using the fact that we are studying neighboring datasets, the sums composing aj and a′
j differ

by only one element at element i = I. This implies that

αa′2
j + (1− α)a2

j = α.
m∑
i=1

(ϕ̃′
ij h̃ik)2 + (1− α).

m∑
i=1

(ϕ′
ijhik)2

=
m∑
i=1

(ϕ′
ijhik)2 + α.(

m∑
i=1

(ϕ̃′
ij h̃ik)2 −

m∑
i=1

(ϕ′
ijhik)2)

= a2
j + α[(ϕ̃′

Ij h̃Ik)2 − (ϕ′
IjhIk)2)],

where ϕ̃′
Ij and h̃2

Ik are taken on dataset D′. Inserting this in the Rényi divergence yields :

Dα(P∥Q) =
nℓ∑
j=1

(
αm2

2σ2
(fj(D)− fj(D′))2

a2
j + α[(ϕ̃′

Ij h̃Ik)2 − (ϕ′
IjhIk)2)]

− 1
2(α− 1) log

[
a2
j + α[(ϕ̃′

Ij h̃Ik)2 − (ϕ′
IjhIk)2)]

a
2(1−α)
j a′2α

j

])
.

By choosing D and D′ such that [(ϕ̃′
Ij h̃Ik)2 − (ϕ′

IjhIk)2)] ≥ 0, the Rényi divergence is upper
bounded as follow :

Dα(P∥Q) ≤
nℓ∑
j=1

(
αm2

2σ2
(fj(D)− fj(D′))2

a2
j

− 1
2(α− 1) log

[
a2α
j

a′2α
j

])
.
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Noting that a2
j = ∑m

i=1(ϕ′
ijhik)2 + (ϕ̃′

Ij h̃Ik)2 − (ϕ̃′
Ij h̃Ik)2 = a′2

j − [(ϕ̃′
Ij h̃Ik)2 − (ϕ′

IjhIk)2] yields :

Dα(P∥Q) ≤
nℓ∑
j=1

(
αm2

2σ2
(fj(D)− fj(D′))2

a2
j

− α

2(α− 1) log
[
a2
j

a′2
j

])

≤
nℓ∑
j=1

(
αm2

2σ2
(fj(D)− fj(D′))2

a2
j

− α

2(α− 1) log
[
a′2
j − [(ϕ̃′

Ij h̃Ik)2 − (ϕ′
IjhIk)2]

a′2
j

])

≤
nℓ∑
j=1

(
αm2

2σ2
(fj(D)− fj(D′))2

a2
j

+ α

2(α− 1) log
[

a′2
j

a′2
j − [(ϕ̃′

Ij h̃Ik)2 − (ϕ′
IjhIk)2]

])

≤ αm2

2σ2
nℓ.∆2

f

m(γminℓ τminh )2 +
nℓ∑
j=1

α

2(α− 1) log
[

a′2
j

a′2
j − [(ϕ̃′

Ij h̃Ik)2 − (ϕ′
IjhIk)2]

]

≤ 2.α
m.σ2

(γmaxτmaxτB)2

(γminℓ τminh )2 + nℓ.α

2(α− 1) log
[

m(γminℓ τminh )2

(m+ 1)(γminℓ τminh )2 − (γmaxℓ τmaxh )2

]
= εPDFA,

where we used the upper bounds on the sensitivity ∆2
f and a′2

j . This is the result of Proposition
3.

Note that an alternative expression is :

Dα(P∥Q) ≤ αm

2σ2
nℓ.∆2

f

(γminℓ τminh )2 +
nℓ∑
j=1

α

2(α− 1) log
[

a′2
j

a′2
j − [(ϕ̃′

Ij h̃Ik)2 − (ϕ′
IjhIk)2]

]

= αm

2σ2
nℓ.∆2

f

(γminℓ τminh )2 +
nℓ∑
j=1

α

2(α− 1) log
[ ∑m

i=1(ϕ̃′
ij h̃ik)2∑m

i=1(ϕ̃′
ij h̃ik)2 − [(ϕ̃′

Ij h̃Ik)2 − (ϕ′
IjhIk)2]

]

= αm

2σ2
nℓ.∆2

f

(γminℓ τminh )2 +
nℓ∑
j=1

α

2(α− 1) log
[∑

i ̸=I(ϕ̃′
ij h̃ik)2 + (ϕ̃′

Ij h̃Ik)2∑
i ̸=I(ϕ̃′

ij h̃ik)2 + (ϕ′
IjhIk)2

]

≤ αm

2σ2
nℓ.∆2

f

(γminℓ τminh )2 + nℓ.α

2(α− 1) log
[∑

i ̸=I(ϕ̃′
ij h̃ik)2 + (γmaxℓ τmaxh )2∑

i ̸=I(ϕ̃′
ij h̃ik)2 + (γminℓ τminh )2

]

≤ αm

2σ2
nℓ.∆2

f

(γminℓ τminh )2 + nℓ.α

2(α− 1) log
[(m− 1).(γminℓ τminh )2 + (γmaxℓ τmaxh )2

(m− 1).(γminℓ τminh )2 + (γminℓ τminh )2

]

≤ αm

2σ2
nℓ.∆2

f

(γminℓ τminh )2 + nℓ.α

2(α− 1) log
[(m− 1).(γminℓ τminh )2 + (γmaxℓ τmaxh )2

m.(γminℓ τminh )2

]
≤ 2.α
m.σ2

(γmaxτmaxτB)2

(γminℓ τminh )2 + nℓ.α

2(α− 1) log
[
m− 1
m

+ (γmaxℓ τmaxh )2

m.(γminℓ τminh )2

]
.
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6.6.2 Equal covariance matrices

First, we can notice that when the covariance matrices are equal, i.e. Σ = Σ′ = σ2

m2 diag(ak)2,
the log-term in Equation 6.7 is equal to 0. Then, we have :

Dα(P∥Q) =
nℓ∑
j=1

αm2

2σ2
(fj(D)− fj(D′))2

a2
j

≤ nℓ.α.m

2σ2

nℓ∑
j=1

(fj(D)− fj(D′))2

(γminℓ τminh )2

≤ nℓ.α.m

2σ2
∆2

f

(γminℓ τminh )2

≤ 2α
mσ2

(τBγmaxℓ τmaxh )2

(γminℓ τminh )2

.= ε2.

6.6.3 Equal saturating covariance matrices

In this subsection, we will suppose that the covariance matrices are equal and saturating, i.e.
Σ = Σ′ = σ2

nℓ.m
(γℓτh)2I with γℓ = {γminℓ , γmaxℓ } and τh = {τminh , τmaxh }. Then we can start by

noticing that a2
j = a′2

j = m
nℓ
τ2
hγ

2
ℓ . In that case, the sensitivity of the function can be written as :

∆ℓ
f = sup

D∼D′
∥f(D)− f(D′)∥2 ≤

2
m

∥∥∥(Bℓei)⊙ ϕ′
ℓ(zℓi))hℓ−1

ik

∥∥∥
2

≤ 2
m
τBγℓ

τh√
nℓ
.

This implies that :

Dα(P∥Q) =
nℓ∑
j=1

αm2

2σ2
(fj(D)− fj(D′))2

a2
j

≤ nℓ.α.m

2σ2

nℓ∑
j=1

(fj(D)− fj(D′))2

(γℓτh)2

≤ nℓ.α.m

2σ2
∆2

f

(γℓτh)2

≤ 2α
mσ2

(τBγℓτh)2

(γℓτh)2 = 2α
mσ2 τ

2
B

.= ε3.

6.7 Appendix : additional numerical results on MNIST and
CIFAR-10

MNIST – We provide below results on MNIST, obtained with the same code, procedure, and
hyper-parameters as for the Fashion-MNIST experiments. These results are in line with Table 1
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of our paper, with photonic results always close to ternarized ones. We notice that this "default"
choice of hyper-parameters on MNIST results in ternarized DFA outperforming vanilla DFA. (We
only lightly tune hyperparameters on BP, to demonstrate that our approach does not require
any specific expensive fine-tuning search.)

σ non-private 0.01 0.05 0.1
τB 1

BP 97,94 62,63 58,42 48,33
DFA 96,36 92,99 92,68 92,45
TDFA 97,09 93,67 93,57 93,28
PDFA 96,95 93,60 93,57 93,12

Table 6.2 – Test accuracy on MNIST with our DP mechanism. We find our approach
to be robust to increasing DP noise σ. In particular, photonic DFA results (PDFA) are always
within 1% of the corresponding DFA run.

CIFAR-10 – We chose to use a pre-trained network on ImageNet and extract its trained
convolutional layers. Since these convolutions can be seen as feature extractors of the images
and are not re-trained, they do not need to be taken into account into the Differential Privacy
mechanism. We fine-tune only the fully-connected layers of the classifier using our Photonic
DFA+DP mechanism.
We choose this experiment to demonstrate the scalability of our scheme. We do not seek to
achieve state-of-the-art performance or to exhaustively explore the dynamics/impact of different
differentially private configuration (as we did with MNIST), but simply to show our scheme can
scale to such harder tasks.
We used a VGG16 network pre-trained on ImageNet. We leave the convolutions untouched, and
fine-tune the classifier layers (25088 –> 4096 –> 4096 –> 10) with differentially private photonic
training. We do not use any data augmentation, and simply resize the CIFAR-10 images to
224x224. We fine-tune for 15 epochs, using SGD with learning rate 5.10−3, momentum 0.9, and
batch size 256. Hyperparameters are kept identical across all methods and hardware. We obtain
results both in a vanilla (no DP) setting as a comparison baseline, and in a differentially private
setting yielding the following accuracies :
Vanilla (no differential privacy) : 83.17% (BP), 81.34% (DFA), 83.36% (TDFA).
DP (σ = 0.05, τf = 1) : 60.45% (BP), 79.68% (DFA), 79.33% (TDFA), 78.64% (PDFA).
We note that this result shows good scalability, with performance in line with our MNIST and
Fashion-MNIST results. Over all the experiments we have performed, the DFA algorithms seem
much more resilient to adding noise and clipping (i.e. the DP algorithmical modification) than
Backpropagation, which could open new research directions.
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Chapter 7
Shedding a PAC-Bayesian Light on Adaptive
Sliced-Wasserstein Distances

The Sliced-Wasserstein distance (SW) is a computationally efficient and theoretically
grounded alternative to the Wasserstein distance. Yet, the literature on its statistical
properties with respect to the distribution of slices, beyond the uniform measure,
is scarce. To bring new contributions to this line of research, we leverage the PAC-
Bayesian theory and the central observation that SW actually hinges on a slice-
distribution-dependent Gibbs risk, the kind of quantity PAC-Bayesian bounds have
been designed to characterize. We provide four types of results : i) PAC-Bayesian
generalization bounds that hold on what we refer as adaptive Sliced-Wasserstein
distances, i.e. distances defined with respect to any distribution of slices, ii) a procedure
to learn the distribution of slices that yields a maximally discriminative SW, by
optimizing our PAC-Bayesian bounds, iii) an insight on how the performance of the
so-called distributional Sliced-Wasserstein distance may be explained through our
theory, and iv) empirical illustrations of our findings.

7.1 Introduction

The Wasserstein distance is a metric between probability distributions and a key notion of the
optimal transport framework [Villani, 2009 ; Peyré, 2019]. Over the past years, it has received a
lot of attention from the machine learning community because of its theoretical grounding and
the increasing number of problems relying on the computation of distances between measures
[Solomon, 2014 ; Frogner, 2015 ; Montavon, 2016 ; Kolouri, 2017 ; Courty, 2016 ; Schmitz, 2018],
such as the learning of deep generative models [Arjovsky, 2017 ; Bousquet, 2017 ; Tolstikhin, 2017].
As the measures µ and ν are usually unknown, the Wasserstein distance W(µ, ν) is estimated
through an "empirical" version W(µn, νn), where µn

.= {x1, . . . ,xn} and νn
.= {y1, . . . ,yn} are

i.i.d. samples (w.l.o.g. samples will be assumed to have the same size) from µ and ν, respectively.
Due to its unfavorable O(n3 logn) computational complexity, the plain Wasserstein distance
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scales badly on large datasets ([Peyré, 2019]) and alternatives have been devised to overcome this
limitation, such as the Sinkhorn algorithm [Cuturi, 2013 ; Cuturi, 2016], multi-scale [Oberman,
2015] or sparse approximations approaches [Schmitzer, 2016].
The Sliced-Wasserstein distance (SW) [Rabin, 2012] is another computationally efficient alter-
native, which takes advantage of the closed-form and fast computation of the one-dimensional
Wasserstein distance. For d-dimensional (with d > 1) samples {x1, . . . ,xn} and {y1, . . . ,yn}, the
computation of SW(µn, νn) is done by uniformly sampling L so-called slices {θ1, . . . ,θL} and
averaging the L one-dimensional Wasserstein W({⟨θj ,x1⟩, . . . , ⟨θj ,xn⟩}, {⟨θj ,y1⟩, . . . , ⟨θj ,yn⟩})
for j = 1, . . . , L. SW has been analyzed theoretically [Nadjahi, 2019 ; Nadjahi, 2020b], refined to
gain additional efficiency [Nadjahi, 2021] or to handle nonlinear slices [Kolouri, 2019a ; Kolouri,
2020] and it has been successfully used in a variety of machine learning tasks [Bonneel, 2015 ;
Kolouri, 2016 ; Carriere, 2017 ; Liutkus, 2019 ; Deshpande, 2018 ; Kolouri, 2018 ; Kolouri, 2019b ;
Nadjahi, 2020a ; Bonet, 2021 ; Rakotomamonjy, 2021]. Another direction to improve SW consists
in adapting the slice distribution in a data-dependent manner such as max-SW [Deshpande, 2019]
which focuses on finding the unique slice θ⋆ (or equivalently, the Dirac measure δθ⋆) that maxi-
mizes the Sliced-Wasserstein distance, or Distributional SW (DSW) [Nguyen, 2021], which seeks
for a maximally discriminative distribution of slices on the unit sphere. A point untouched by
those works, which fall into the class of what we refer as adaptive Sliced-Wasserstein distances and
denote SW(·, ·; ρ) by overloading notation and making the dependence on the slice distribution
ρ clear, is the theoretical justification that the optimization procedures they each implement
indeed guarantees generalization on unseen data. We here provide such an argument, in the
form of a PAC-Bayesian bound, which covers all slice distributions, and connects the empirical
Sliced-Wasserstein distance SW(µn, νn; ρ) with its population counterpart SW(µ, ν; ρ).
Three key reasons make the PAC-Bayesian theory, introduced in [McAllester, 1999] (see [Ca-
toni, 2007 ; Alquier, 2021] for comprehensive reviews), particularly suited to characterize the
generalization properties of adaptive SW. First, from a general perspective, the literature shows
it allows the derivation of tight bounds converted into effective learning procedures [Ambroladze,
2007 ; Laviolette, 2006 ; Germain, 2009 ; Zantedeschi, 2021]. Second, PAC-Bayesian bounds deal
with the generalization ability of learned distributions ; while those distributions usually are on
spaces of predictors, the distributions ρ of interest in our case are the slice distributions. Lastly,
a key quantity of PAC-Bayesian results, which is optimized when learning procedures are derived
from bounds, is the empirical risk of the stochastic Gibbs predictor. The latter, when queried
for a prediction for some input data, samples a predictor according to ρ and then outputs its
prediction on the input data. As shown in the following, when the distribution ρ is the slice
distribution, the empirical risk of the Gibbs predictor exactly boils down to the empirical adaptive
SW(µn, νn; ρ) making the PAC-Bayesian theory the ideal framework to deal with SW. Slightly
more formally, our results reads as : with probability 1− δ, the following holds for all measures ρ
on the d-dimensional unit sphere,

SW(µ, ν; ρ) ≥ SW(µn, νn, ρ)− ε(n, ρ, δ),

for some (small) ε that will be made explicit in our main Theorem 7.3.1.
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Contributions and Outline. After recalling some essential notions in Section 7.2, we delve
into our contributions : i) a PAC-Bayesian bound for adaptive Sliced-Wasserstein distances
(Section 7.3), ii) a bound-optimizing procedure to train a maximally discriminative Sliced-
Wasserstein distances (Section 7.4), iii) an uncovered connection between our work and the
Distributional Sliced-Wasserstein distance of [Nguyen, 2021], bringing a piece to the missing
theoretical ground supporting the latter approach (Section 7.4), and iv) empirical illustrations
of the soundness of our theoretical results through experiments conducted both on toy and
real-world datasets (Section 7.5).

7.2 Background

Notations. Let N∗ .= N\{0} and d ∈ N∗. ∥ · ∥ denotes the Euclidean norm on Rd and ⟨·, ·⟩ the
dot product. For some space X ⊆ Rd, P(X) is the set of probability distributions supported on X
and Pq(X) the set of probability distributions supported on X with finite moment of order q. For
µ ∈ P(X), µn refers to the empirical measure supported on n ∈ N∗ i.i.d. samples {x1, . . . ,xn}
from µ : µn

.= n−1∑n
i=1 δxi , with δy the Dirac measure with mass on y — with a slight abuse of

notation µn may also be used to refer to the corresponding n-sample. For µ ∈ P(R), Fµ is the
cumulative distribution function of µ and F−1

µ its quantile function. U(X) denotes the uniform
distribution on X.

7.2.1 The Sliced-Wasserstein distance

Wasserstein Distance. Let p ∈ [1,+∞), µ, ν ∈ P(X) and Π(µ, ν) ⊂ P(X × X) the set of
distributions on X × X with marginals µ and ν. The Wasserstein distance of order p between µ

and ν is
Wp

p(µ, ν) .= inf
π∈Π(µ,ν)

∫
X×X
∥x− y∥pdπ(x,y). (7.1)

Wp has been shown to possess appealing theoretical properties, but suffers from important
computational limitations : solving Equation 7.1 may be costly, possibly suffering a worst-case
O(n3 logn) complexity.
Fortunately, the Wasserstein distance is particularly easy to compute when the distributions to
compare are univariate : for µ, ν ∈ P(R), there is a closed-form solution to Equation 7.1 given
by,

Wp
p(µ, ν) =

∫ 1

0
|F−1
µ (t)− F−1

ν (t)|pdt, Wp
p(µn, νn) = n−1

n∑
i=1
|x(i) − y(i)|p, (7.2)

with x(1) ≤ x(2) ≤ · · · ≤ x(n) and y(1) ≤ y(2) ≤ · · · ≤ y(n). Computing Wp(µn, νn) thus consists
in sorting the support points of µn and νn, which induces O(n logn) operations.
Sliced-Wasserstein Distance. SW defines a computationally efficient alternative to the
Wasserstein distance, by leveraging the analytical solution of Equation 7.2 of Wp

p(µn, νn) between
univariate distributions. Let Sd−1 .= {θ ∈ Rd : ∥θ∥ = 1} be the unit sphere in Rd and for
θ ∈ Sd−1, denote by θ∗ : Rd → R the linear map such that for x ∈ Rd, θ∗(x) .= ⟨θ,x⟩. Let
p ∈ [1,+∞), µ, ν ∈ P(X) (X ⊂ Rd), and ρ = U(Sd−1). The Sliced-Wasserstein distance of order p
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between µ, ν and based on ρ is defined as

SWp
p(µ, ν; ρ) .=

∫
Sd−1

Wp
p(θ∗

♯µ, θ
∗
♯ ν)dρ(θ), (7.3)

where for any measurable function f and ξ ∈ P(Rd), f♯ξ is the push-forward measure of ξ by
f : for any measurable set A in R, f♯ξ(A) .= ξ(f−1(A)) with f−1(A) .= {x ∈ Rd : f(x) ∈ A}. In
particular, θ∗

♯µn = n−1∑n
i=1 δ⟨θ,xi⟩ and θ∗

♯ νn = n−1∑n
i=1 δ⟨θ,xi⟩, so θ∗

♯µn, θ
∗
♯ νn are the empirical

measures of the data projected along θ, implying that Wp
p(θ∗

♯µn, θ
∗
♯ νn) has the analytical form

of Equation 7.2. The Expectation of Equation 7.3 is commonly estimated with a Monte Carlo
method and may provide significant speed-ups over the evaluation of Wp

p(µ, ν), thanks to the
fast computation of Wp

p(θ∗
♯µn, θ

∗
♯ νn) [Bonneel, 2015].

Adaptive Sliced-Wasserstein Distance. Recent works have argued that ρ = U(Sd−1)
is not necessarily the most relevant choice, and instead, proposed to adapt ρ to the data,
providing SWp

p(·, ·; ρ) with an actual degree of freedom ρ and motivating the term of adaptive
Sliced-Wasserstein distance. Specifically, [Deshpande, 2019] and [Nguyen, 2021] solve a tailored
optimization problem in ρ targetting a high discriminative power of ρ, in the sense that ρ puts
higher mass on the θ ∈ Sd−1 that maximize the separation of θ∗

♯µ and θ∗
♯ ν : the maximum Sliced-

Wasserstein distance (maxSW, [Deshpande, 2019]) and the distributional Sliced-Wasserstein
distance (DSW, [Nguyen, 2021]) are defined as

maxSW(µ, ν) .= SWp
p(µ, ν; ρ⋆maxSW(µ, ν)) and DSW(µ, ν) .= SWp

p(µ, ν; ρ⋆DSW(µ, ν)) (7.4)

where

ρ⋆maxSW(µ, ν) .= arg sup
δθ :θ∈Sd−1

SWp
p(µ, ν; δθ) (7.5a)

ρ⋆DSW(µ, ν) .= arg sup
ρ∈P(Sd−1)

SWp
p(µ, ν; ρ) s.t. Eθ,θ′∼ρ|θ⊤θ′| ≤ C, (7.5b)

where, in Equation 7.5b, θ and θ′ are independent and C > 0 is a hyperparameter. We have
decoupled the search for the maximizing arguments of Equation 7.5 and the maximum distances
of Equation 7.4 for reasons we clarify below.
In practice, maxSW(µn, νn) and DSW(µn, νn) are computed instead of Equation 7.4 (that relies
on the full measures µ and ν). While there exists statistical guarantees relating maxSW(µn, νn)
and maxSW(µ, ν) [Lin, 2021] (likewise for DSW [Nguyen, 2021]), there is no theoretical ar-
gument, to the best of our knowledge, on the test error entailed by the learned distribution
ρ⋆maxSW(µn, νn) considered on its own, outside the optimization procedure of Equation 7.4
and Equation 7.5a of maxSW — hence the aforementioned decoupling. Given new samples
{x′

1, . . . ,x
′
n} and {y′

1, . . . ,y
′
n} from µ and ν, with associated empirical distributions µ′

n and ν ′
n,

there is no guarantee for SWp
p(µ′

n, ν
′
n; ρ⋆maxSW(µn, νn)) to be high, or in other words, there is no

argument ensuring the discriminative power of ρ⋆maxSW(µn, νn). One way to palliate this lack of
theory and to go one step further than the maxSW and DSW cases, is to have at hand a general
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result relating SWp
p(µn, νn; ρ) and SWp

p(µ, ν; ρ), for any ρ ∈ P(Sd−1). This is precisely what we
bring in the following, in the form of a PAC-Bayesian generalization bound. More details about
(Sliced) Optimal Transport are given in Section 2.7.

7.2.2 PAC-Bayes essentials

We here recall the core ingredients of the PAC-Bayesian theory [McAllester, 1999 ; Alquier, 2021 ;
Catoni, 2007]. To this end, we take a little detour and consider a supervised learning setup :
S
.= {(x1, y1), . . . , (xn, yn)} is a training set of n i.i.d. pairs sampled from some unknown (and

fixed) distribution µ ∈ P(X ×Y), where X is the space of features and Y is the target space, e.g.
Y = {−1,+1}. Given a loss function ℓ : Y × Y → R+, the empirical ℓ-risk qℓ(S, f) of a predictor
f ∈ YX (= {f, f : X → Y}) is

qℓ(S, f) .= n−1
n∑
i=1

ℓ(f(xi), yi). (7.6)

PAC-Bayesian bounds provide statistical guarantees on the true ℓ-risk Rℓ(µ, ρ) of the Gibbs
predictor ρ ∈ P(YX ) which, as said before, computes a prediction for input x in two steps : i) it
samples f according to ρ and ii) it outputs f(x). Defining the empirical ℓ-risk rℓ(S, ρ) of ρ and
Rℓ(µ, ρ) as

rℓ(S, ρ) .= Ef∼ρ [qℓ(S, f)] (7.7)
Rℓ(µ, ρ) .= ES∼µnrℓ(S, ρ) = Ef∼ρE(x,y)∼µℓ(f(x), y). (7.8)

The following result from Catoni [Catoni, 2003 ; Alquier, 2021] epitomizes the nature of PAC-
Bayesian bounds :

Theorem 7.2.1 (Catoni’s bound [Catoni, 2003]). Fix a prior π ∈ P(YX ). ∀λ > 0, ∀δ ∈ (0, 1),

PS

[
∀ρ ∈ P(YX ), Rℓ(µ, ρ)− rℓ(S, ρ) ≤ λC2

8n +
KL(ρ||π) + log 1

δ

λ

]
≥ 1− δ,

where KL(ρ||ν) is the Kullback-Leibler divergence between ρ and π, KL(ρ||ν) .=
∫

log
(

dρ
dπ (θ)

)
ρ(dθ)

(defined if ρ has a density dρ/dπ with respect to π).

In the following, we will develop such type of bound for adaptive Sliced-Wasserstein distances.
More details about the PAC-Bayesian framework are given in Section 2.6.

7.3 PAC-Bayes Generalization Bounds for Adaptive
Sliced-Wasserstein

We introduce new results on the generalization properties of adaptive Sliced-Wasserstein distances
(all proofs are deferred to the Appendix). Specifically, we leverage the PAC-Bayes framework
to bound the error induced by the approximation of SWp

p(µ, ν; ρ) by SWp
p(µn, νn; ρ) for any
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ρ ∈ P(Sd−1). These results, which apply to specific settings directed by conditions on the
supports and the moments of µ and ν, are specializations of our generic following theorem :

Theorem 7.3.1. Let p ∈ [1,+∞) and µ, ν ∈ Pp(Rd). Assume there exists a constant φµ,ν,p
possibly depending on µ, ν and p, such that for θ ∈ Sd−1 and λ > 0,

E
[
exp

(
λ
{

Wp
p(θ∗

♯µn, θ
∗
♯ νn)− E[Wp

p(θ∗
♯µn, θ

∗
♯ νn)]

})]
≤ exp(λ2φµ,ν,pn

−1), (7.9)

where E is taken with respect to the support points of µn, νn. Additionally, assume there exists a
function ψµ,ν,p of n, possibly depending on µ, ν and p, such that

E|SWp
p(µn, νn; ρ)− SWp

p(µ, ν; ρ)| ≤ ψµ,ν,p(n). (7.10)

Let ρ0 ∈ P(Sd−1) and δ > 0. Then, with probability at least 1−δ, the following holds : ∀ρ ∈ P(Sd−1)

SWp
p(µn, νn; ρ) ≤ SWp

p(µ, ν; ρ) + λφµ,ν,p/n+ {KL(ρ||ρ0) + log(1/δ)}/λ+ ψµ,ν,p(n). (7.11)

Remark 7.3.2 (Elements of proof). This theorem is partly an instantiation of Theorem 7.2.1 and
the accompanying quantities of Equation 7.6, Equation 7.7 and Equation 7.8, where predictors
are here replaced by slices, and ρ and ρ0 are distributions on slices. The key observation stressed
out from the start can now be made formal : qℓ(S, f) of Equation 7.6 is here replaced by
SWp

p(µn, νn; δθ) for some θ ∈ Sd−1, and rℓ(S, ρ) of Equation 7.7 by Eθ∼ρSWp
p(µn, νn; δθ) =

SWp
p(µn, νn; ρ). Also, a key tool to obtain the desired results will be the use of (a refined version of)

McDiarmid [McDiarmid, 1989] inequality that can state concentration results on SWp
p(µn, νn; δθ)

(with respect to {xi}ni=1 and {yi}ni=1) — invoking bounded-difference properties.

Theorem 7.3.1 guarantees that the gap SWp
p(µn, νn; ρ)−SWp

p(µ, ν; ρ) is controlled by the moments
of Wp

p(θ∗
♯µn, θ

∗
♯ νn)−E[Wp

p(θ∗
♯µn, θ

∗
♯ νn)] for any θ ∈ Sd−1, the convergence rate of ESWp

p(µn, νn; ρ)
towards SWp

p(µ, ν; ρ), and the dissimilarity between ρ and ρ0. The bound Equation 7.11 has a
O(n− 1

2 ) convergence rate when λ = n
1
2 which is a standard rate in learning theory. However, as

in [Haddouche, 2021], we could parameterize λ = nα and perform an alternate optimization of
the bound over ρ and α.

Remark 7.3.3. Since this bound is for all ρ ∈ P(Sd−1), it is therefore valid for the distribution
ρ⋆maxSW of Equation 7.5a and ρ⋆DSW of Equation 7.5b computed by maxSW and DSW.

Our bound Equation 7.11 can be refined under various assumptions on the supports and moments
of µ and ν. We explore these assumptions and observe the entailed bounds : first we suppose
the supports are bounded (Section 7.3.1) ; then, we only assume µ, ν are sub-Gaussian or satisfy
a Bernstein-type moment condition (Section 7.3.2). We show in the next sections that φµ,ν,p
and ψµ,ν,p can be computed explicitly in each of the three settings so that Theorem 7.3.1 can be
specialized.
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7.3.1 Distributions supported on bounded domains

In our first setting, we study distributions with bounded supports, as formally stated in A1.

A1. µ, ν ∈ P(X) where X ⊂ Rd has a finite diameter ∆ = sup(x,x′)∈X2 ∥x− x′∥ < +∞.

Under A1, we can apply similar arguments as in the proof of McDiarmid’s inequality [McDiarmid,
1989] to derive φµ,ν,p. This yields Proposition 7.3.4, which can be seen as a particular instance of
[Weed, 2019, Proposition 20].

Proposition 7.3.4. Let p ∈ [1,+∞) and assume A1. Then, φµ,ν,p = ∆2p/4.

We emphasize that Proposition 7.3.4 follows from the proof of [Weed, 2019, Proposition 20],
which leverages McDiarmid’s inequality to establish a concentration bound for Wp

p(µ, µn) around
its expectation on any finite-dimensional compact spaces.
Next, we adapt the proof of [Manole, 2020, Lemma B.3] to compute the explicit form of ψµ,ν,p.

Proposition 7.3.5. Let p ∈ [1,+∞) and assume A1. There exists C(p) > 0 depending on p

such that
ψµ,ν,p(n) = C(p)∆p−1{SJ(µ; ρ) + SJ(ν; ρ)

}
n−1/2,

where for ξ ∈ {µ, ν}, SJ(ξ; ρ) =
∫
Sd−1

∫+∞
−∞

{
Fθ∗

♯
ξ(t)

(
1− Fθ∗

♯
ξ(t)

)}1/2dtdρ(θ).

Proposition 7.3.5 shows that the expected approximation error E|SWp
p(µn, νn; ρ)− SWp

p(µ, ν; ρ)|
decays at the rate n−1/2, provided that

{
SJ(µ; ρ) + SJ(ν; ρ)

}
< +∞. By [Bobkov, 2019, Section

3.1], this functional is indeed finite assuming A1.
Combining Propositions 7.3.4 and 7.3.5 makes it possible to specialize Theorem 7.3.1 to distribu-
tions supported on bounded domains. The resulting bound is given in Appendix 7.7.4.

7.3.2 Distributions supported on unbounded domains

We extend our analysis to distributions with unbounded supports. To handle this case, we
will assume additional constraints on the moments on µ, ν, which will allow the application of
generalized McDiarmid’s inqualities to derive φµ,ν,p. We consider the following two settings :
distributions are sub-Gaussian (A2) or satisfy a Bernstein-type moment condition (A3).
Before deriving φµ,ν,p for Sub-Gaussian distributions, let us formally recall their characterization.

Definition 7.3.6 (Sub-Gaussian distribution). Let µ ∈ P(Rd) and σ > 0. µ is a sub-Gaussian
distribution with variance proxy σ2 if for any θ ∈ Sd−1, for λ ∈ R,

∫
R exp(λt)d(θ∗

♯µ)(t) ≤
exp(λ2σ2/2).

A2. µ, ν ∈ P(Rd) are sub-Gaussian with respective variance proxies σ2, τ2 ; σ̂2 and τ̂2 are the
variance proxies of {µn}n∈N∗ , {νn}n∈N∗ (which exist almost surely [Mena, 2019, Lemma A.2]).

Under A2, we apply the generalized McDiarmid’s inequality for unbounded spaces with finite
sub-Gaussian diameter ([Kontorovich, 2014], recalled in the Appendix) to derive φµ,ν,1.

Proposition 7.3.7. Under A2, φµ,ν,1 = σ̂2 + τ̂2.
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Bounded supports (A1) Unbounded supports
Sub-Gaussianity (A2) Bernstein moments (A3)

φµ,ν,p Proposition 7.3.4 Proposition 7.3.7 Proposition 7.3.9
ψµ,ν,p Proposition 7.3.5 [Manole, 2020]

Table 7.1 – Overview of the explicit forms of φµ,ν,p and ψµ,ν,p under different assumptions.

We move on to our second setting for distributions with unbounded supports, which relaxes A2
by assuming a Bernstein-type moment condition instead, as described hereafter.

Definition 7.3.8 (Bernstein condition). Let σ2, b > 0 and µ ∈ P(Rd) ; µ is said to satisfy the
(σ2, b)-Bernstein condition if for any k ∈ N, k ≥ 2,

∫
Rd ∥x∥kdµ(x) ≤ σ2k!bk−2/2.

A3. Let µ, ν ∈ P(Rd) be two distributions satisfying the Bernstein condition with parameters
(σ2, b), (τ2, c) respectively.

Note that Definition 7.3.6 is strictly stronger than Definition 7.3.8 : if µ ∈ P(Rd) verifies the
(σ2, b)-Bernstein condition, then µ belongs to the class of heavy-tailed distributions called sub-
exponential distributions [Embrechts, 2013], which contains sub-Gaussian distributions. Hence,
assuming A3 leads to a larger class of distributions than A2. Under A3, one can explicitly compute
φµ,ν,1 by using a Bernstein-type McDiarmid’s inequality : the proof of [Lei, 2020, Corollary 5.2]
yields the next proposition.

Proposition 7.3.9. Assume A3 and let σ2
⋆ = max(σ2, τ2), b⋆ = max(b, c). Then, for λ > 0 s.t.

λ < (2b⋆)−1n, φµ,ν,1 = 2σ2
⋆n

−1(1− 2b⋆λn−1)−1.

The last ingredient to specify Theorem 7.3.1 under A2 and A3 is to derive ψµ,ν,p. Indeed, since the
supports of µ, ν are unbounded, the necessary condition for the finiteness of {SJ(µ; ρ)+SJ(ν; ρ)}
is not met, thus deteriorating the rate of convergence in Proposition 7.3.5. To overcome this issue,
we will use the rate recently established in [Manole, 2020], which holds true on A2 and A3 and
shows that ψµ,ν,p scales as n−1/2 log(n). Our final bound is obtained by plugging in Theorem 7.3.1
the explicit formula of ψµ,ν,1 and Propositions 7.3.7 and 7.3.9 : we present this result and its
detailed proof in Appendix 7.7.7.
We conclude this section by summarizing in Table 7.1 the setups for which we can explicitly
compute φµ,ν,p and ψµ,ν,p, thus yielding refined versions of our generic bound in Equation 7.11.
Note that on unbounded supports, we derived φµ,ν,p for p = 1 only : the generalized McDiarmid’s
inequalities leading to Propositions 7.3.7 and 7.3.9 can be applied if Wp

p is Lipschitz [Kontorovich,
2014 ; Lei, 2020], which is easily verified for p = 1 but not for p > 1. Hence, the derivation of
φµ,ν,p for p > 1 and µ, ν supported on unbounded domains requires different proof techniques.
We leave this problem for future work.

7.4 Applications

We develop a methodology to find the distribution in Sd−1 which optimizes our bounds in
Section 7.3 so that besides generalizing well to unseen data, SW based on that distribution is
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highly discriminative. We then connect our contributions to prior related work : we show that
our theoretical findings shed light on the Distributional Sliced-Wasserstein distance. In what
follows, σ = U(Sd−1).

7.4.1 Optimization of our bound

Optimizing Equation 7.11 boils down to maximizing the terms dependent on ρ (when λ is set to
n− 1

2 ), leading to the following problem :
ρ⋆(µn, νn) = arg sup

ρ∈P(Sd−1)
SWp

p(µn, νn; ρ)−KL( ρ||σ)/n1/2. (7.12)

Theorem 7.3.1 guarantees with high probability that solving Equation 7.12 results in the maximi-
zation of SWp

p(µ, ν; ρ) over ρ ∈ P(Sd−1). In that sense, and according to our theory, ρ⋆(µn, νn) has
an important discriminative power : our generalization bound implies that SWp

p(µ, ν; ρ⋆(µn, νn))
has a large value, even though ρ⋆ is learned from limited samples from µ, ν.
We propose to compute ρ⋆ as the solution of a parametric optimization problem, using gradient-
based optimization. The candidate solutions in Equation 7.12 are either parameterized as von
Mises-Fisher distributions, a class of distributions on Sd−1 (Definition 7.4.1) or as f♯σ, with f a
neural network. In the latter case, the KL divergence has no analytical form, and we approximate
it using [Ghimire, 2021]. Our final procedure is depicted in Algorithm 4.

Algorithm 4 PAC-SW : Adaptive SW via PAC-Bayes bound optimization
Input : empirical distributions (µn, νn), initialized distribution ρ(0), maximum number of
iterations T , learning rate η
for t← 1 to T do
L(µn, νn; ρ(t−1)) = SWp

p(µn, νn; ρ(t−1))−KL(ρ(t−1)||σ)/n1/2

ρ(t) = ρ(t−1) + η∇ρL(µn, νn; ρ(t−1))
end for
return ρ(T )

7.4.2 Theoretical insights on the Distributional Sliced-Wasserstein distance

We now use our theoretical findings to shed light on the practical performance of DSW, by
connecting our procedure with the optimization problem underlying DSW. To achieve this, we
study a specific instance of DSW, for which the optimization is performed over a family of
parametric distributions on Sd−1 called von Mises-Fisher distributions (vMF, Definition 7.4.1).
We demonstrate that in that case, the penalization term is equal, up to an affine transformation,
to the KL term in Equation 7.12. We rigorously prove this result, then give some intuition on
why the connection between DSW and our adaptive SW carries over when the search space is
parametrized by a neural network, as in [Nguyen, 2021].

Definition 7.4.1. The von Mises-Fisher distribution with mean direction m ∈ Sd−1 and
concentration parameter κ ∈ R∗

+, denoted by vMF(m, κ), is a distribution on Sd−1 whose
density is defined for θ ∈ Sd−1 by vMF(θ; m, κ) = Cd/2(κ) exp(κm⊤θ), where Cd/2(κ) =

116



7.5. Numerical experiments

κd/2−1/{(2π)d/2Id/2−1(κ)} and Id/2−1 is the modified Bessel function of the first kind at or-
der d/2− 1.

Intuitively, the higher κ, the more concentrated vMF(m, κ) is around m. Von Mises-Fisher
distributions have been successfully deployed in several statistical and machine learning problems
to effectively model spherical data [Hasnat, 2017 ; Kumar, 2018 ; Scott, 2021]. We propose
to use vMF to parameterize the search space of Equation 7.5b and Equation 7.12, i.e. the
argmax is over ρ ∈ {vMF(m, κ),m ∈ Sd−1, κ ∈ R∗

+}. The regularization in Equation 7.5b implies
Eθ,θ′∼vMF(m,κ)[θ⊤θ′] ≤ C. Since Eθ∼vMF(m,κ)[θ] = {Id/2(κ)/Id/2−1(κ)}m, one can show that
Eθ,θ′∼vMF(m,κ)[θ⊤θ′] = {Id/2(κ)/Id/2−1(κ)}2. On the other hand, by [Davidson, 2018],

KL(vMF(m, κ)||σ) = κId/2(κ)/Id/2−1(κ) + logCd/2(κ) + log
(
2πd/2/Γ(d/2)

)
. (7.13)

By Equation 7.13, the regularization term in Equation 7.12 is a function of the penalization in
DSW. In that sense, computing DSW boils down to optimizing our bound, up to some factors
depending on κ, d and n.
In the more general setting studied in [Nguyen, 2021], the derivation of an analytical expression
relating DSW and our strategy is difficult, since the candidate solutions are defined as f♯σ with
f being a deep neural network. Instead, we conjecture that computing DSW in that setup still
amounts to optimizing an incomplete version of our bound, based on the following argument :
the regularization in Equation 7.5b controls the concentration of the distribution over the slices
[Nguyen, 2021, Section 3.1] ; more precisely, the higher E|θ⊤θ′| with θ,θ′ i.i.d. from f♯σ, the
more concentrated f♯σ is around specific directions, so the higher KL(f♯σ||σ). We will conduct
an empirical analysis in Section 7.5 to verify our intuition.

7.5 Numerical experiments

We now conduct an empirical analysis to confirm our theoretical contributions and illustrate
their consequences in practice. We first validate Theorem 7.3.1 and its refinements, by studying
the influence of the terms appearing in the bound. Then, we compare DSW and Algorithm 4, to
confirm the connection drawn in Section 7.5.2. Finally, we demonstrate the discriminative power
of the distributions of slices learned by Algorithm 4 on both synthetic and real data. In particular,
we show our strategy can be leveraged to reduce the training time when training generative
models. All experiments were run on a GPU NVIDIA V100 32GB and are reproducible using
the code in https://github.com/rubenohana/PAC-Bayesian_Sliced-Wasserstein.

7.5.1 Empirical confirmation of our bounds

Our first set of experiments aims at confirming the theoretical bounds derived in Section 7.3.
We sample two sets of n i.i.d. samples from the same distribution µ ∈ P(Rd). To illustrate
our bound on both bounded and unbounded supports, we choose µ as a uniform or Gaussian
distribution. We approximate SWp

p(µn, νn; vMF(m, κ)) with m picked uniformly on Sd−1 and
κ > 0, by computing its Monte Carlo estimate over 1000 projection directions. Figure 7.1 plots
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(a) Uniform distribution
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(b) Gaussian distribution
Figure 7.1 – SWp

p(µn, νn; vMF(m, κ)) vs. n for µ = ν = U([0, 5]d) (7.1a) or N (0,Σd) (7.1b).
Results are averaged over 30 runs and shown on log-log scale, with their 10th-90th percentiles.

the approximation error (which here, reduces to SWp
p(µn, νn; vMF(m, κ)) since the two datasets

come from the same distribution) against n for different values of d and κ. We observe that the
error decays to 0 as n increases, and the convergence rate is slower as d and κ increase. This is
consistent with our theoretical analysis : the higher d, the larger the diameter (respectively, the
sub-Gaussian diameter) when µ is uniform (resp., Gaussian), so the larger φµ,ν,p (Propositions
7.3.4 and 7.3.7) ; the higher κ, the larger KL(vMF(m, κ)||σ).

7.5.2 Comparison with the Distributional Sliced-Wasserstein distance

Next, we illustrate the relation between DSW and PACSW, as established in Section 7.4.2, where
ρ is parameterized as a vMF distribution. Here, we compare µ = N (0,Σd) and ν = N (γ1,Σd),
with γ > 0, Σd ∈ Rd×d symmetric positive semi-definite set at random, and 0 (resp., 1) the vector
whose components are all equal to 0 (resp., 1). The higher γ, the more dissimilar µ and ν. We
sample n = 500 samples from µ and ν and compute ρ⋆DSW(µn, νn) and ρ⋆(µn, νn). The optimization
is performed on the space of vMF distributions, using Adam [Kingma, 2015] with its default
parameters. To analyze the generalization properties of adaptive SW, we sample m = 2000 test
points from µ, ν and compute SWp

p(µm, νm; ρ⋆DSW(µn, νn)) and SWp
p(µm, νm; ρ⋆(µn, νn)). Results

for different values of d and γ are reported in Figure 7.2, and confirm the generalization ability
of both ρ⋆(µn, νn) and ρ⋆DSW(µn, νn). Besides, we observe that while our strategy returns the
most discriminative distribution, since the values of SW are the highest, DSW follows closely.
This confirms the connection with DSW.

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0

10

20

30 DSW train
DSW test
DSW bound
PAC-SW train
PAC-SW test
PAC bound

(a) d = 5

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0

20

40

(b) d = 20
Figure 7.2 – Comparison of DSW and PAC-SW for µ = N (0,Σd) and ν = N (γ1,Σd). Results
are averaged over 10 runs and reported with their 10th-90th percentiles.
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7.5. Numerical experiments

Figure 7.3 – SWp
p(µn, νn; ρ) with (a-c) µ = N (0,Σd) and ν = (γ1,Σ2) and n = 1000 ; as a

function of γ, (d) classes 4 and 5 of Fashion-MNIST ; as a function of the number of training
points. ρ is learned on the train set, and we report values on the test set.

7.5.3 Illustration of the generalization ability of Adaptive Sliced-Wasserstein
distances

Our goal is to verify the generalization ability of adaptive SW distances for evaluating the
distance between two data distributions with ρ parametrized as a neural network, as in Section
7.4.1. In each experiment, we learn the optimal distribution ρ for each algorithm on a training
set, and we observe how this learned distribution performs on a test set of the same size. We
consider 200 slices, the learning rate η is taken as the best (i.e. yielding the higher distance) out
of [10−3, 10−2, 10−1, 1]. Each run is averaged 10 times with standard deviations in shaded areas.
On Figure 7.3(a-c), we measure the distance between two Gaussians, as in Section 7.5.2. We can
observe that PACSW is always amongst the most discriminative distances. On Figure 7.3(d),
we measure the distance between 2 classes of the Fashion-MNIST dataset [Xiao, 2017] – classes
4 (coats) and 5 (sandals), d = 784, images rescaled between 0 and 1 – and vary the number of
training points. We observe on this plot that PACSW and DSW (λC = 10) return higher values
than maxSW and SW based on uniform sampling, which shows that they are able to better
discriminate data and generalize well.

7.5.4 Illustrating generalization properties on generative modelling

In this experiment, we illustrate the generalization properties of DSW, which is encompassed in
our theory and has been shown to be strongly linked to our distance in Section 7.4.2. We choose
to focus on DSW because it is more tractable than our distance in a large-scale setting, as it
uses a rough but computationally cheap approximation of the KL divergence.
The generalization properties are evaluated on a MNIST generative modelling context and we
compare the performance of a model trained using DSW as a loss, in the flavor of [Deshpande,
2018]. Usually, the distribution of slices is learned at every minibatch of data. However, we make
the hypothesis that if the learned distribution generalizes well to unseen datasets, then gradients
obtained from the distance between minibatches would still provide sufficient information to
learn the generative model. As a consequence, we evaluate the robustness and generalization
ability of the learned distribution using our PAC approach by learning it only every 10 or 50
minibatches (denoted by −10 or −50 resp.).
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Figure 7.4 – Evolution of the Wasserstein dis-
tance between a set of generated MNIST digits
and the true MNIST test set with respect to
training time.

For training the model, we followed the same
approach (architecture and optimizer) as the
one described in [Nguyen, 2021]. For each mini-
batch of size 512, the distribution ρ is learned
by optimizing 100 projections over 100 itera-
tions and the generative model is trained over
400 epochs. For a sake of comparison, we re-
port also results of a generative model trained
with maxSW.
Figure 7.4 shows the evolution of the Wasser-
stein distance (WD) between generated data
and the test set with respect to training time (measured after each epoch), for each distance and
different update rate of the distribution ρ. We can observe that classical DSW yields a WD of 29
after ∼ 104s. When learning ρ every 10 minibatch (DSW-10), we achieve similar a WD value with
half the running time. When further reducing the frequency update of ρ (DSW-50), we converge
faster but with a loss in quality of generation (WD ∼ 32). Our result on maxSW confirms our
theoretical analysis because in many learning problems, regularization is key to help generalize on
unseen data. Indeed, while using maxSW as a loss yields a reasonable performance, optimizing the
slice every 10 minibatches leads to a very unstable learning and worst performances. Examples
of generated digits are in Appendix 7.8.2.

7.6 Conclusion

This work addresses the question of the generalization properties of adaptive Sliced-Wasserstein
distances, i.e. Sliced-Wasserstein distances whose slice distribution may be different from the
classical uniform distribution. We introduce a generic PAC-Bayesian result that characterizes
these generalization abilities and refine it according to additional constraints on the moment and
support properties of the distributions µ and ν to be compared. We build a learning algorithm
from this theoretical findings, which essentially consists in optimizing the generic bound. When
run on toy models and generative modelling, our procedure shows to be effective, and to compare
favourably with the related maxSW and the Distributional Sliced-Wasserstein distances. As
it happens, we show that our theory provides clues on why the latter distance is effective in
practice. Extensions of this work would be to come up with other training algorithms of slice
distributions and to see how our theory could be extended to other sliced distances [Paty, 2019 ;
Nadjahi, 2020b].
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7.7 Appendix : postponed proofs for Section 7.3

7.7.1 Proof of Theorem 7.3.1

Theorem 7.3.1 is obtained by adapting standard results in the literature on PAC-Bayes bounds,
and can actually be seen as a particular case of Catoni’s bound [Catoni, 2003], which, to the
best of our knowledge, have never been studied in prior work. We provide the detailed proof for
completeness.
First, we recall Donsker and Varadhan’s variational formula, which plays a central role in the
PAC-Bayesian framework.

Lemma 7.7.1 (Donsker and Varadhan’s variational formula [Donsker, 1975]). Let θ be a set
equipped with a σ-algebra and π ∈ P(Θ). For any measurable, bounded function h : θ → R,

logEθ∼π
[
exp(h(θ))

]
= sup

ρ∈P(Θ)

[
Eθ∼ρ[h(θ)]−KL(ρ||π)

]
. (7.14)

Proof of Theorem 7.3.1. Let p ∈ [1,+∞) and µ, ν ∈ Pp(Rd). Assume there exists φµ,ν,p such
that for any θ ∈ Sd−1 and λ > 0,

Eµ,ν
[
exp

(
λ
{

Wp
p(θ∗

♯µn, θ
∗
♯ νn)− Eµ,ν [Wp

p(θ∗
♯µn, θ

∗
♯ νn)]

})]
≤ exp(λ2φµ,ν,pn

−1). (7.15)

Let ρ0 ∈ P(Sd−1). By taking the expectation of Equation 7.15 with respect to ρ0, then using
Fubini’s theorem to interchange the expectation over ρ0 and the one over µ, ν, we obtain

Eµ,νEθ∼ρ0

[
exp

(
λ
{
Wp

p(θ∗
♯µn, θ

∗
♯ νn)− Eµ,ν [Wp

p(θ∗
♯µn, θ

∗
♯ νn)]

})]
≤ exp(λ2φµ,ν,pn

−1). (7.16)

By definition of the Wasserstein distance between empirical, univariate distributions Equation 7.2,
one can prove that θ 7→ λ

{
Wp

p(θ∗
♯µn, θ

∗
♯ νn) − Eµ,ν [Wp

p(θ∗
♯µn, θ

∗
♯ νn)]

}
is a bounded real-valued

function on Sd−1. Therefore, we can apply LemmA7.7.1 to rewrite Equation 7.16 as follows.

Eµ,ν

[
exp

(
sup

ρ∈P(Θ)

[
Eθ∼ρ

[
λ
{

Wp
p(θ∗

♯µn, θ
∗
♯ νn)− Eµ,ν [Wp

p(θ∗
♯µn, θ

∗
♯ νn)]

}]
−KL(ρ||ρ0)

])]
≤ exp(λ2φµ,ν,pn

−1), (7.17)

which, using the linearity of the expectation along with the definition of SW Equation 7.3, is
equivalent to

Eµ,ν

[
exp

(
sup

ρ∈P(Θ)

[
λ
{

SWp
p(µn, νn; ρ)− Eµ,ν [SWp

p(µn, νn; ρ)]
}
−KL(ρ||ρ0)

])]
≤ exp(λ2φµ,ν,pn

−1),

or,

Eµ,ν

[
exp

(
sup

ρ∈P(Θ)

[
λ
{

SWp
p(µn, νn; ρ)− Eµ,ν [SWp

p(µn, νn; ρ)]
}
−KL(ρ||ρ0)

]
− λ2φµ,ν,pn

−1
)]
≤ 1.

(7.18)
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Let s > 0. By the Chernoff bound
(
P(X > a) = P(es.X ≥ es.a) ≤ E[et.X ]e−t.a

)
Pµ,ν

(
sup

ρ∈P(Θ)

[
λ
{

SWp
p(µn, νn; ρ)− Eµ,ν [SWp

p(µn, νn; ρ)]
}
−KL(ρ||ρ0)

]
− λ2φµ,ν,pn

−1 > s
)

≤ Eµ,ν

[
exp

(
sup

ρ∈P(Θ)

[
λ
{

SWp
p(µn, νn; ρ)− Eµ,ν [SWp

p(µn, νn; ρ)]
}
−KL(ρ||ρ0)

]
− λ2φµ,ν,pn

−1
)]

exp(−s)

≤ 1 · exp(−s) = exp(−s),

where the last inequality follows from Equation 7.18.
Let e−s = ε such that s = log(1/ε). Then,

Pµ,ν

(
∃ρ ∈ P(Sd−1), λ

{
SWp

p(µn, νn; ρ)−Eµ,ν [SWp
p(µn, νn; ρ)]

}
−KL(ρ||ρ0)−λ2φµ,ν,pn

−1 > log(1/ε)
)
≤ ε.

(7.19)
Taking the complement of Equation 7.19 and rearranging the terms yields

Pµ,ν

(
∀ρ ∈ P(Sd−1), SWp

p(µn, νn; ρ) < Eµ,ν [SWp
p(µn, νn; ρ)] + λ−1{KL(ρ||ρ0) + log(1/ε)

}
+ λφµ,ν,pn

−1
)

≥ 1− ε. (7.20)

Our final bound results from assuming there exists ψµ,ν,p(n) such that,

Eµ,ν |SWp
p(µn, νn; ρ)− SWp

p(µ, ν; ρ)| ≤ ψµ,ν,p(n). (7.21)

7.7.2 Proof of Proposition 7.3.4

To prove Proposition 7.3.4, we leverage a concentration result that appears in the proof of
McDiarmid’s inequality (recalled in Theorem 7.7.3), and which relies on the bounded differences
property (Definition 7.7.2).

Definition 7.7.2 (Bounded differences property). Let X ⊂ R, n ∈ N∗ and c = {ci}ni=1 ∈ Rn. A
mapping f : Xn → R is said to satisfy the c-bounded differences property if for i ∈ {1, . . . , n},
{xi}ni=1 ∈ Xn and x′

i ∈ X,

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci. (7.22)

Theorem 7.7.3 ([McDiarmid, 1989]). Let (xi)ni=1 be a sequence of n ∈ N∗ independent random
variables with xi valued in X ⊂ R for i ∈ {1, . . . , n}. Let c = {ci}ni=1 ∈ Rn and f : Xn → R
satisfying the c-bounded differences property. Then, for any λ > 0,

E
[
exp(λ{f − E[f ]})

]
≤ exp(λ2∥c∥2/8). (7.23)

The proof of Proposition 7.3.4 consists in applying Theorem 7.7.3 to the mapping (x1, . . . ,xn,

y1, . . . ,yn) 7→Wp
p(θ∗

♯µ, θ
∗
♯ ν), for any θ ∈ Sd−1. To this end, we show that the one-dimensional

Wasserstein distance satisfies the bounded differences property, assuming bounded supports.
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Lemma 7.7.4. Let X ⊂ R be a bounded set with diameter ∆ = sup(x,x′)∈X2 ∥x − x′∥ < +∞.
Then, the mapping f : R2n → R+ defined for {xi}ni=1, {yi}ni=1 ∈ Rn as

f(x1, . . . , xn, y1, . . . , yn) = Wp
p(µn, νn) (7.24)

satisfies the c-bounded differences property with ci = ∆p/n for i ∈ {1, . . . , n}.

Proof. For clarity purposes, we start by introducing some notations. Let n ∈ N∗ and denote
by µn, νn the empirical distributions supported over {xi}ni=1, {yi}ni=1 ∈ Rn respectively. For
i ∈ {1, . . . , n}, let x′

i ∈ R and µ′
n the empirical distribution supported on (x1, . . . , xi−1, x

′
i, xi+1,

. . . , xn) ∈ Rn. Let σ : {1, . . . , n} → {1, . . . , n} (respectively, σ′ : {1, . . . , n} → {1, . . . , n}) s.t. for
i ∈ {1, . . . , n}, xσ(i) (resp., x′

σ′(i)) is the i-th smallest value of {xi}ni=1 (resp., (x1, . . . , xi−1, x
′
i, xi+1,

. . . , xn)). By definition of the Wasserstein distance between univariate distributions Equation 7.2,

Wp
p(µn, νn)−Wp

p(µ′
n, νn) = 1

n

n∑
i=1
|xσ(i) − y(i)|p −

1
n

n∑
i=1
|x′
σ′(i) − y(i)|p (7.25)

≤ 1
n

n∑
i=1
|xσ′(i) − y(i)|p −

1
n

n∑
i=1
|x′
σ′(i) − y(i)|p (7.26)

≤ 1
n

(
|xσ′(i) − y(i)|p − |x′

σ′(i) − y(i)|p
)

(7.27)

≤ ∆p

n
. (7.28)

We can use the same arguments to prove that Wp
p(µ′

n, νn)−Wp
p(µn, νn) ≤ ∆p/n, hence

∣∣∣Wp
p(µn, νn)−Wp

p(µ′
n, νn)

∣∣∣ ≤ ∆p

n
. (7.29)

On the other hand, let y′
i ∈ R and ν ′

n the empirical distribution over (y1, . . . , yi−1, y
′
i, yi+1, . . . , yn).

Since the Wasserstein distance is symmetric,

∣∣∣Wp
p(µn, νn)−Wp

p(µn, ν ′
n)
∣∣∣ =

∣∣∣Wp
p(νn, µn)−Wp

p(ν ′
n, µn)

∣∣∣ ≤ ∆p

n
, (7.30)

where the last inequality results from Equation 7.29.

Remark 7.7.5. LemmA7.7.4 is a particular case of [Weed, 2019, Proposition 20], which es-
tablishes a concentration bound for Wp

p(µ, µn) around its expectation on any finite-dimensional
compact space by exploiting McDiarmid’s inequality along with the Kantorovich duality. We thus
use similar arguments to prove Proposition 7.3.4, except we leverage the closed-form expression
of one-dimensional Wasserstein distances instead of the dual formulation since we compare
univariate projected distributions. The corresponding proof was detailed for completeness.

Proof of Proposition 7.3.4. Let θ ∈ Sd−1. Assuming A1 implies that θ∗
♯µ, θ

∗
♯ ν are both supported

on a bounded domain, whose diameter is denoted by ∆θ and satisfies ∆θ < ∆. Hence, by
LemmA7.7.4, fθ : (x1, . . . ,xn,y1, . . . ,yn) 7→ Wp

p(θ∗
♯µn, θ

∗
♯ νn) satisfies the bounded differences
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property. We can then apply Theorem 7.7.3 to bound the moment-generating function of fθ−Efθ

as follows.

E
[
exp(λ{f − E[f ]})

]
≤ exp(λ2

2n∑
i=1

(∆p
θ/n)2/8) (7.31)

≤ exp(λ2∆2p
θ /(4n)) ≤ exp(λ2∆2p/(4n)), (7.32)

which concludes the proof.

7.7.3 Proof of Proposition 7.3.5

Recent work have bounded E|SWp(µn, νn; ρ) − SWp(µ, ν; ρ)| or E|SWp(µ, µn; ρ)| for specific
choices of ρ ∈ P(Sd−1) [Nadjahi, 2020b ; Manole, 2020 ; Nguyen, 2021 ; Lin, 2021]. These results
do not exactly correspond to what Theorem 7.3.1 requires, i.e. a bound on E|SWp

p(µn, νn; ρ)−
SWp

p(µ, ν; ρ)|. We bound the latter quantity in Proposition 7.3.5, by specifying the proof techniques
in [Manole, 2020] under A1, then generalizing a result in [Nadjahi, 2020b].

Lemma 7.7.6. Let p ∈ [1,+∞) and X ⊂ R a bounded set, with diameter denoted by ∆ < +∞.
Let µ, ν ∈ P(X) and denote by µn, νn the empirical distributions supported over n ∈ N∗ samples
i.i.d. from µ, ν respectively. Then,

E
∣∣Wp

p(µn, νn)−Wp
p(µ, ν)

∣∣ ≤ p∆p−1{J1(µ) + J1(ν)
}
n−1/2, (7.33)

where for ξ ∈ {µ, ν},

J1(ξ) =
∫ +∞

−∞

√
Fξ(x)

(
1− Fξ(x)

)
dx. (7.34)

Proof. Lemma 7.7.6 is obtained by adapting the techniques used in the proof of [Manole, 2020,
Lemma B.3]. We provide the detailed proof for completeness.
Starting from the definition of Wp

p(µn, νn) Equation 7.2, then using a Taylor expansion of
(x, y) 7→ |x− y|p around (x, y) = (F−1

µ (t), F−1
ν (t)), we obtain

Wp
p(µn, νn) =

∫ 1

0

∣∣F−1
µn

(t)− F−1
νn

(t)
∣∣pdt

=
∫ 1

0

∣∣F−1
µ (t)− F−1

ν (t)
∣∣pdt (7.35)

+
∫ 1

0
p sgn

(
F̃−1

µn
(t)− F̃−1

νn
(t)
)∣∣F̃−1

µn
(t)− F̃−1

νn
(t)
∣∣p−1{(F−1

µn
(t)− F−1

µ (t))− (F−1
νn

(t)− F−1
ν (t))

}
dt,

(7.36)

where sgn(·) denotes the sign function, F̃−1
µn

(t) a real number between F−1
µn

(t) and F−1
µ (t), and

F̃−1
νn

(t) a real number between F−1
νn

(t) and F−1
ν (t).
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By definition, Equation 7.35 is exactly Wp
p(µ, ν), so we obtain

|Wp
p(µn, νn)−Wp

p(µ, ν)|

=
∣∣∣ ∫ 1

0
p sgn

(
F̃−1

µn
(t)− F̃−1

νn
(t)
)∣∣F̃−1

µn
(t)− F̃−1

νn
(t)
∣∣p−1{(F−1

µn
(t)− F−1

µ (t))− (F−1
νn

(t)− F−1
ν (t))

}
dt
∣∣∣

≤ p
∫ 1

0

∣∣F̃−1
µn

(t)− F̃−1
νn

(t)
∣∣p−1

{∣∣F−1
µn

(t)− F−1
µ (t)

∣∣+
∣∣F−1

νn
(t)− F−1

ν (t)
∣∣}dt (7.37)

≤ p sup
t∈(0,1)

∣∣F̃−1
µn

(t)− F̃−1
νn

(t)
∣∣p−1

{
W1(µn, µ) + W1(νn, ν)

}
, (7.38)

where Equation 7.37 follows from the triangle inequality and Equation 7.38 results from the
definition of the Wasserstein distance of order 1 between univariate distributions.
We then bound supt∈(0,1)

∣∣F̃−1
µn

(t)− F̃−1
νn

(t)
∣∣p−1 from above. By the definition of F̃−1

µn
(t), F̃−1

νn
(t)

for t ∈ (0, 1), we distinguish the following four cases :
i) F̃−1

µn
(t) ≤ F−1

µn
(t), F̃−1

νn
(t) ≤ F−1

νn
(t),

ii) F̃−1
µn

(t) ≤ F−1
µ (t), F̃−1

νn
(t) ≤ F−1

ν (t),
iii) F̃−1

µn
(t) ≤ F−1

µn
(t), F̃−1

νn
(t) ≤ F−1

ν (t),
iv) F̃−1

µn
(t) ≤ F−1

µ (t), F̃−1
νn

(t) ≤ F−1
νn

(t).
Hence, using the definition of quantile functions and the fact that the supports of µ, ν are assumed
to be bounded, we obtain

sup
t∈(0,1)

∣∣F̃−1
µn

(t)− F̃−1
νn

(t)
∣∣p−1 ≤ ∆p−1. (7.39)

We conclude that,

|Wp
p(µn, νn)−Wp

p(µ, ν)| ≤ p∆p−1
{

W1(µn, µ) + W1(νn, ν)
}
. (7.40)

Our final result follows from [Bobkov, 2019, Theorem 3.2], which gives us

E[W1(µn, µ)] ≤ J1(µ)n−1/2, E[W1(νn, ν)] ≤ J1(ν)n−1/2. (7.41)

Note that since µ, ν are supported on a bounded domain, the moment of µ (or ν) of order k ∈ N∗

is finite, which implies that J1(µ), J1(ν) are both finite [Bobkov, 2019, Section 3.1].

Proof of Proposition 7.3.5. Let θ ∈ Sd−1. Under A1, one can easily prove that θ∗
♯µ, θ

∗
♯ ν are

supported on a bounded domain with diameter ∆θ ≤ ∆ < +∞. Therefore, by LemmA7.7.6,

E
∣∣Wp

p(θ∗
♯µn, θ

∗
♯ νn)−Wp

p(θ∗
♯µ, θ

∗
♯ ν)
∣∣ ≤ p∆p−1{J1(θ∗

♯µ) + J1(θ∗
♯ ν)
}
n−1/2. (7.42)

Next, we adapt the proof techniques in [Nadjahi, 2020b, Theorem 4] to establish the following
inequality : for any ρ ∈ P(Sd−1),

E|SWp
p(µn, νn; ρ)− SWp

p(µ, ν; ρ)| ≤
∫
Sd−1

E|Wp
p(θ∗

♯µn, θ
∗
♯ νn)−Wp

p(θ∗
♯µ, θ

∗
♯ ν)|dρ(θ). (7.43)
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Hence, by plugging Equation 7.42 in Equation 7.43, we conclude that

E|SWp
p(µn, νn; ρ)− SWp

p(µ, ν; ρ)| ≤ p∆p−1
(∫

Sd−1

{
J1(θ∗

♯µ) + J1(θ∗
♯ ν)
}
dρ(θ)

)
n−1/2. (7.44)

7.7.4 Final bound for bounded supports

By incorporating Propositions 7.3.4 and 7.3.5 in Theorem 7.3.1, we obtain the following result.
Corollary 7.7.7 corresponds to a specialization of our generic bound when considering distributions
with bounded supports.

Corollary 7.7.7. Let p ∈ [1,+∞) and assume A1. Let ρ0 ∈ P(Sd−1) and δ > 0. Then, with
probability at least 1− δ, for all ρ ∈ P(Sd−1) and λ > 0,

SWp
p(µn, νn; ρ) ≤ SWp

p(µ, ν; ρ) + {KL(ρ||ρ0) + log(1/δ)}λ−1

+ λ∆2p(4n)−1 + p∆p−1{SJ(µ) + SJ(ν)
}
n−1/2. (7.45)

7.7.5 Proof of Proposition 7.3.7

When the supports of the distributions are not bounded, LemmA7.7.4 does not hold true, thus
preventing the use of McDiarmid’s inequality. Hence, to compute φµ,ν,p, we may use extensions
of McDiarmid’s inequality which replace the finite-diameter constraint by conditions on the
moments of the distributions.
In particular, Proposition 7.3.7 follows from applying [Kontorovich, 2014, Theorem 1], a concen-
tration result based on the notion of sub-Gaussian diameter.

Definition 7.7.8 (Sub-Gaussian diameter [Kontorovich, 2014]). Let η be a distance function and
(X, η, µ) be the associated metric probability space. Consider a sequence of n ∈ N∗ independent
random variables (xi)ni=1 with xi distributed from µ for i ∈ {1, . . . , n}. Let Ξ(X) be the random
variable defined by

Ξ(X) = εη(X,x′), (7.46)

where X,x′ are two independent realizations from µ and ε is a random variable valued in {−1, 1}
s.t. p(ε = 1) = 1/2 and ε is independent from X,x′.
Additionally, suppose there exists σ > 0 s.t. for λ ∈ R, Eµ[exp(λX)] ≤ exp(σ2λ2/2). The
sub-Gaussian diameter of (X, η, µ), denoted by ∆SG(X), is defined as

∆SG(X) = σ
(
Ξ(X)

)
. (7.47)

Note that ∆SG ≤ ∆ [Kontorovich, 2014, Lemma 1], and a set with infinite diameter may have a
finite sub-Gaussian diameter. Hence, Theorem 7.7.9 relaxes the conditions of Theorem 7.7.3.

Theorem 7.7.9 (Theorem 1 [Kontorovich, 2014]). Let (X, ∥ · ∥1, µ) be a metric probability space
with X ⊂ Rd and ∥ · ∥1 the L1-norm. Consider a sequence of random variables (xi)ni=1 i.i.d. from
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µ. Let f : Xn → R s.t. f is 1-Lipschitz, i.e. for any (x,x′) ∈ Xn×Xn, |f(x)− f(x′)| ≤ ∥x−x′∥1.
Then, E[f ] < +∞ and for λ > 0,

E [exp(λ{f − E[f ]})] ≤ exp(λ2n∆SG(X)2/2). (7.48)

As discussed in [Kontorovich, 2014], the sub-Gaussian distributions on R are precisely those
for which ∆SG(R) < +∞. This allows the application of Theorem 7.7.9 under A2, which yields
Proposition 7.3.7.

Proof of Proposition 7.3.7. First, the Wasserstein distance between discrete, univariate distri-
butions is 1/n-Lipschitz. Indeed, consider µ′

n, ν
′
n supported over {x′

i}ni=1, {y′
i}ni=1 ∈ Rn ; then, by

definition,

W1(µ′
n, ν

′
n) = n−1

n∑
i=1
|x′

(i) − y
′
(i)| ≤ n

−1
n∑
i=1
|x′
i − y′

i|. (7.49)

Let θ ∈ Sd−1. Since µ, ν ∈ P(Rd) are assumed to be sub-Gaussian (by A2), then θ∗
♯µ, θ

∗
♯ ν are

sub-Gaussian distributions with respective variance proxies σ2, τ2 (Definition 7.3.6). Besides,
there exists almost surely σ̂2, τ̂2 s.t. θ∗

♯µn, θ
∗
♯ νn are sub-Gaussian [Mena, 2019, Lemma A.2].

Consider the metric probability space (R, ∥ · ∥1, ξn), with ξn ∈ {µn, νn}. By Definition 7.7.8 and
the properties of the sum of two sub-Gaussian distributions, ∆SG(R) =

√
2σ̂ if ξn = µn, and

∆SG(R) =
√

2τ̂ if ξn = ν.
Finally, let λ > 0. By applying Theorem 7.7.9 to fθ : X2n → R+ defined for {xi}ni=1, {yi}ni=1 ∈ Rn

by fθ(x1, . . . , xn, y1, . . . , yn) = nW1(θ∗
♯µn, θ

∗
♯ νn), which is 1-Lipschitz by Equation 7.49, we obtain

E
[
exp(λn−1{fθ − E[fθ]})

]
≤ exp

(
λ2n−1(σ̂2 + τ̂2)

)
, (7.50)

which concludes the proof.

7.7.6 Proof of Proposition 7.3.9

Proposition 7.3.9 results from the same arguments as in the proof of [Lei, 2020, Corollary 5.2].
The latter result is obtained by applying a generalized McDiarmid’s inequality, which we recall
in Theorem 7.7.10.

Theorem 7.7.10 (Bernstein-type McDiarmid’s inequality [Lei, 2020]). Let X ⊂ Rd and X =
(xi)ni=1 be a sequence of n ∈ N∗ random variables i.i.d. from µ ∈ P(X). Let f : Xn → R s.t. E|f | <
∞. For i ∈ {1, . . . , n}, let x′

i be an independent copy of xi and X ′
(i) = (x1, . . . ,xi−1,x

′
i,xi+1, . . . ,xn).

Assume that for i ∈ {1, . . . , n}, there exists ci,M > 0 such that for k ≥ 2,

E
[
f(X)− f(X ′

(i)) | X−i
]
≤ c2

i k!Mk−2/2, (7.51)
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where X−i = (x1, . . . ,xi−1,xi+1, . . . ,xn). Then, for λ > 0 s.t. λM < 1,

E
[
exp{λ(f − E[f ])}

]
≤ exp

(
λ2∥c∥2/{2(1− λM)}

)
. (7.52)

Proof of Proposition 7.3.9. Let θ ∈ Sd−1. For i ∈ {1, . . . , n}, let x′
i ∈ X ⊂ Rd and µ′

n the
empirical distribution supported on (x1, . . . ,xi−1,x

′
i,xi+1, . . . ,xn) ∈ Xn. Since W1 satisfies the

triangle inequality,

|W1(θ∗
♯µn, θ

∗
♯ νn)−W1(θ∗

♯µ
′
n, θ

∗
♯ νn)| ≤W1(θ∗

♯µn, θ
∗
♯µ

′
n) (7.53)

≤ n−1∥θ⊤(xi − x′
i)∥ (7.54)

≤ n−1∥xi − x′
i∥, (7.55)

where the last inequality follows from the Cauchy-Schwarz inequality and ∥θ∥ = 1.
Similarly, for i ∈ {1, . . . , n}, let y′

i ∈ X ⊂ Rd and denote ν ′
n the empirical distribution supported

on (y1, . . . ,yi−1,y
′
i,yi+1, . . . ,yn) ∈ Xn. By symmetry of W1 and Equation 7.55, we have

|W1(θ∗
♯µn, θ

∗
♯ νn)−W1(θ∗

♯µn, θ
∗
♯ ν

′
n)| = |W1(θ∗

♯ νn, θ
∗
♯µn)−W1(θ∗

♯ ν
′
n, θ

∗
♯µn)| (7.56)

≤ n−1∥yi − y′
i∥. (7.57)

We deduce from Equation 7.55, 7.57 and A3 that the mapping fθ : X2n → R+ defined by
fθ(x1, . . . ,xn,y1, . . . ,yn) = W1(θ∗

♯µn, θ
∗
♯ νn) satisfies the (σ2

⋆, b⋆)-Bernstein condition, with σ2
⋆ =

max(σ2, τ2), b⋆ = max(b, c).
A direct application of Theorem 7.7.10 to fθ gives the final result, i.e.

E
[
exp

(
λ{W1(θ∗

♯µn, θ
∗
♯ νn)− E[W1(θ∗

♯µn, θ
∗
♯ νn)]}

) ]
≤ exp

(
2σ2

⋆λ
2n−2(1− 2b⋆λn−1)−1

)
. (7.58)

7.7.7 Final bound for unbounded supports

Before deriving the specialization of Theorem 7.3.1 for distributions with unbounded supports, we
recall a useful bound on SWp

p(, ;π) with π = U(Sd−1) (Theorem 7.7.11), which can be generalized
for SW based on any ρ ∈ P(Sd−1) by adapting the proof techniques in [Manole, 2020].

Theorem 7.7.11 ([Manole, 2020]). Let p ≥ 1, q > 2p, s ≥ 1 and π = U(Sd−1). Denote
Pp,q(s) =

{
µ ∈ P(Rd) :

∫
Sd−1 Eµ[|θ⊤x|q]p/qdπ(θ) ≤ s

}
. Let µ, ν ∈ Pp,q(s). Then, there exists a

constant C(p, q) > 0 depending on p, q such that,

E|SWp
p(µn, νn;π)− SWp

p(µ, ν;π)| ≤ C(p, q)s log(n)1/2n−1/2. (7.59)

We show that under A2 or A3, the assumptions in Theorem 7.7.11 are satisfied, thus allowing its
application in these two settings. This yields Corollaries 7.7.12 and 7.7.13, which we state and
prove hereafter.
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Corollary 7.7.12. Assume A2 and let ρ ∈ P(Sd−1). Then, there exists C ′(p) > 0 such that,

E|SWp
p(µn, νn; ρ)− SWp

p(µ, ν; ρ)| ≤ C ′(p)(4σ2
⋆)p log(n)1/2n−1/2. (7.60)

Proof. Under A2, µ, ν are assumed to be sub-Gaussian, so the moments of θ∗
♯µ, θ

∗
♯ ν can be

bounded for any θ ∈ Sd−1 as follows : for any k ∈ N∗,

Eµ[|θ⊤x|2k] ≤ k!(4σ2)k, Eν [|θ⊤y|2k] ≤ k!(4τ2)k. (7.61)

We conclude that µ, ν ∈ Pp,2(p+1)(s) with s = {(p + 1)!}p/(2(p+1))(4σ2
⋆)p and σ2

⋆ = max(σ2, τ2).
The final result follows from applying Theorem 7.7.11.

Corollary 7.7.13. Assume A3 and let ρ ∈ P(Sd−1). Then, there exists C ′(p, q) > 0 such that,

E|SWp
p(µn, νn; ρ)− SWp

p(µ, ν; ρ)| ≤ C ′(p, q)σ2p/q
⋆ b

p(q−2)/q
⋆ log(n)1/2n−1/2, (7.62)

with σ2
⋆ = max(σ2, τ2) and b⋆ = max(b, c).

Proof. Under A3, the moments of µ, ν are bounded by the Bernstein condition. Therefore, using
the definition of the push-forward measures along with the Cauchy-Scharz inequality, we obtain
for any θ ∈ Sd−1 and k ∈ N∗,

Eµ[|θ⊤x|2k] ≤ σ2k!bk−2/2, Eν [|θ⊤y|2k] ≤ τ2k!ck−2/2. (7.63)

Let q > 2p. By Equation 7.63, µ, ν ∈ Pp,q(s) with s = (σ2
⋆q!/2)p/qbp(q−2)/q

⋆ . The application of
Theorem 7.7.11 concludes the proof.

We can finally provide the refined bounds under A2 and A3. On the one hand, incorporating
Proposition 7.3.7 and Corollary 7.7.12 in Theorem 7.3.1 gives us the next corollary.

Corollary 7.7.14. Assume A2. Let ρ0 ∈ P(Sd−1) and δ > 0. Then, with probability at least
1− δ, for all ρ ∈ P(Sd−1) and λ > 0, there exists C > 0 such that

SW1(µn, νn; ρ) ≤ SW1(µ, ν; ρ) + {KL(ρ||ρ0) + log(1/δ)}λ−1

+ λ(σ̂2 + τ̂2)n−1 + C max(σ2, τ2) log(n)1/2n−1/2. (7.64)

On the other hand, we leverage Proposition 7.3.9 and Corollary 7.7.13 to derive the specified
bound below.

Corollary 7.7.15. Assume A3 and denote σ2
⋆ = max(σ2, τ2), b⋆ = max(b, c). Let ρ0 ∈ P(Sd−1)

and δ > 0. Then, with probability at least 1− δ, for all ρ ∈ P(Sd−1) and λ > 0 s.t. λ < (2b⋆)−1n,
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for q > 2, there exists C(q) > 0 such that

SW1(µn, νn; ρ) ≤ SW1(µ, ν; ρ) + {KL(ρ||ρ0) + log(1/δ)}λ−1

+ 2λσ2
⋆(1− 2b⋆λn−1)−1n−2 + C(q)σ2/q

⋆ b
(q−2)/q
⋆ log(n)1/2n−1/2.

(7.65)

7.8 Appendix : additional details on our experiments

All our numerical experiments presented in Section 7.5 can be reproduced using the code we
provide in https://github.com/rubenohana/PAC-Bayesian_Sliced-Wasserstein.git.

7.8.1 Details on the algorithmic procedure

For clarity purposes, we specify Algorithm 4 in the case where the optimization is performed
over the space of von Mises-Fisher distributions (Definition 7.4.1). The corresponding procedure
is given in Algorithm 5.

Algorithm 5 PAC-Bayes bound optimization for vMF-based SW
Input :

Datasets : x1:n = (xi)ni=1, y1:n = (yi)ni=1
SW order, number of slices : p ∈ [1,+∞), nS ∈ N∗

Bound parameter : λ ∈ R∗
+

Number of iterations, learning rate : T ∈ N∗, η ∈ (0, 1)
Initialized parameters : (m(0), κ(0)) ∈ Sd−1 × R∗

+

Output : Final parameters : (m(T ), κ(T ))
procedure PAC-Bayes-SW

for t← 0 to T − 1 do
ρ(t) ← vMF(m(t), κ(t))
for k ← 1 to nS do

θ
(t)
k ∼ ρ(t) [Davidson, 2018, Algorithm 1]

end for
ρ

(t)
n ← n−1

S

∑n
k=1 δθ

(t)
k

L(x1:n, y1:n, ρ
(t), λ)← SWp

p(µn, νn; ρ(t)
n )− λ−1KL(ρ(t)||ρ(0))[

m(t+1)

κ(t+1)

]
←
[
m(t)

κ(t)

]
+ η

[
∇mL(x1:n, y1:n, ρ

(t), λ)
∇κL(x1:n, y1:n, ρ

(t), λ)

]
end for
return (m(T ), κ(T ))

end procedure

7.8.2 Additional results

Figure 7.5 displays additional qualitative results for the generative modelling experiment described
in Section 7.5.4. We observe that the images generated by DSW have a better quality than the
ones produced by maxSW, even if DSW is not optimized at every training iteration.
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Figure 7.5 – Examples of generated MNIST digits. From left to right : DSW, DSW-10, maxSW,
maxSW-10.
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Conclusion and perspectives

In this thesis, we demonstrated diverse advantages of incorporating randomness in machine
learning algorithms. In Chapter 3, we started by identifying reservoir computing with recurrent
random features and computed their infinite limit, namely recurrent kernels. This allowed for
more expressivity and a better scaling when a small number of points is available. We also
scaled-up reservoir computing with respect to the number of neurons, by introducing structured
transforms in the reservoir. We finished by proving the efficiency of our method on chaotic
time-series prediction yielding state-of-the-art prediction capabilities at reduced computational
and memory costs.
In Chapter 4, motivated by scaling up random transforms, we proposed to use an Optical
Processing Unit (OPU) to compute the random matrix multiplication. This allowed the use of
much larger input and output dimensions than GPUs. We computed the kernel limit of optical
random features for different exponents of the feature map and compared speed-ups and savings
in energy with a GPU.
We then introduced in Chapter 5 a new adversarial defense based on the parameter obfuscation
provided by the OPU and trained it using Direct Feedback Alignment. We showed this yields
adversarial robustness by design against white-box, black-box and transfer attacks when the
network is trained from scratch. In a second part, we leveraged state-of-the-art robust models
and improved their robustness by replacing their classifier with ROPUST. We benchmarked them
on Robustbench and showed the increase in robustness comes at a very little cost in natural
accuracy. We provided ablation studies and demonstrated that the whole defense block is required
for maximum robustness.
In Chapter 6, by performing the random projection of Direct feedback Alignment using the
OPU, we took into account the addition of experimental noise. We proved that this lead to
a differentially private neural network. We computed the differential privacy parameters of
the training algorithm and showed that, surprisingly, it held a good accuracy compared to
backpropagation as the privacy (or noise) increased.
In Chapter 7, we used the PAC-Bayesian framework to optimize the distribution of random
projections of Sliced-Wasserstein distances while being theoretically grounded. We computed the
PAC-Bayes bounds for different cases of data distributions and numerically demonstrated their
efficiency in maximizing the distance and in generative modelling.
To conclude this thesis, we showed that incorporating randomness at different parts of the
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machine learning algorithm can lead to speed-ups at a small loss in accuracy. Indeed, supervised
machine learning generally aims at finding good transformations of the data in a space where
they are linearly separable. It is not essential to obtain the exact transformation for a perfect
separation, but rather having an approximate separation at a smaller computational cost is often
enough. This also holds for having approximate gradients given by Direct Feedback Alignment
during the training of neural networks. On the other hand, as we have seen, adding randomness
can yield security to systems, let it be adversarial robustness or differential privacy. Usually,
adding this noise leads to a decrease of the accuracy of the neural network. However this decrease
is reduced in our case, and we suspect this is due to a Direct Feedback Alignment training of the
network. Indeed, as DFA leads to approximate backpropagation gradients, we can conjecture
that adding some noise to these gradients may be less damageable.
An important feature of DFA that wasn’t exploited in this thesis is the possible parallel update
of the weights of the network. Indeed, we only used DFA for bypassing non-differentiable layers.
In the case of very large models, this parallel update could lead to significant speed-ups in the
training. This research direction could also inspire new training algorithms, where the backward
pass is unlocked. One thing that is missing in the neural network literature is the unlocking of
the forward pass, i.e. performing the transformation of all the layers in parallel. This could lead
to even more efficient algorithms, and as a consequence the training and forward pass of machine
learning models would be significantly faster.
Another interesting research direction is the study of the average transport plan of the Sliced-
Wasserstein distance. Indeed, for each slice, we obtain a different matching/transport plan. Since
these slices are a Monte-Carlo sampling of the uniform distribution on the sphere, we can hope
that an infinite number of slices would yield an average transport plan. It would not be a
permutation matrix, but rather a doubly-stochastic one, in the flavor of the Sinkhorn algorithm.
Discovering a good heuristic for finding this average transport plan could yield another speed-up
as we would not have to perform the Monte-Carlo sampling of the integral over the Sphere, but
rather have an analytical formula.
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MOTS CLÉS

caractéristiques aléatoires, calcul optique, méthodes à noyau, calcul à réservoir, retour par alignement direct,

robustesse adversarialle, confidentialité différentielle, transport optimal.

RÉSUMÉ

Dans cette thèse, nous tirerons parti de l’usage de l’aléatoire dans différents aspects de l’apprentissage automatique.

Nous commençerons par montrer le lien entre le calcul par réservoir et les noyaux récurrents sous le prisme des ca-

ractéristiques aléatoires, et introduirons les transformées structurées afin d’améliorer la complexité computationnelle du

calcul par réservoir. Par la suite, nous montrerons comment tirer parti de calculs optiques afin de mettre à l’échelle les

caractéristiques aléatoires pour l’approximation de noyaux, à bas coût énergétique. Nous continuerons par montrer com-

ment combiner le Processeur de Calcul Optique avec des méthodes d’entraînement alternatives à la rétropropagation

du gradient tel que l’alignement par retour direct, afin de rendre adversariallement robuste des réseaux de neurones

entraînés depuis le début ou d’augmenter la robustesse des défenses les plus robustes. Par ailleurs, nous entraînerons

un réseau de neurones de façon optique et tirerons parti du bruit expérimental afin de démontrer comment cela induit

une confidentialité différentielle. Nous finirons par utiliser les bornes PAC-Bayésiennes afin d’optimiser la distribution des

projections aléatoires de la distance de Sliced-Wasserstein, tout en s’appuyant sur des fondations théoriques.

ABSTRACT

In this thesis, we will leverage the use of randomness in multiple aspects of machine learning. We will start by showing

the link between reservoir computing and recurrent kernels through the lens of random features, and introduce structured

transforms to improve the computational complexity of reservoir computing. We will then show how optical computing

can help scaling-up random features for kernel approximation, at a low energy cost. We will continue by showing how

to combine the Optical Processing Unit with training methods alternative to backpropagation such as Direct Feedback

Alignment, to make adversarially robust networks trained from the beginning, or improve the robustness of state-of-the-

art defenses. We will also train optically a neural network and show how the experimental noise yields differential privacy.

We will finish by using PAC-Bayesian bounds to optimize the distribution of random projections of Sliced-Wasserstein

distances while being theoretically grounded.

KEYWORDS

random features, optical computing, kernel methods, reservoir computing, direct feedback alignment, adver-

sarial robustness, differential privacy, optimal transport.
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