Coherent Risk Measure on L 0 : NA Condition, Pricing and Dual Representation

The NA condition is one of the pillars supporting the classical theory of financial mathematics. We revisit this condition for financial market models where a dynamic risk-measure defined on L 0 is fixed to characterize the family of acceptable wealths that play the role of non negative financial positions. We provide in this setting a new version of the fundamental theorem of asset pricing and we deduce a dual characterization of the super-hedging prices (called risk-hedging prices) of a European option. Moreover, we show that the set of all risk-hedging prices is closed under NA. At last, we provide a dual representation of the risk-measure on L 0 under some conditions.
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Abstract

This thesis presents four problems in pricing and optimization in financial mathematics. The first three problems are completely solved and the fourth one is in progress. In the first part, we consider the hedging problem in presence of dynamic risk measures defined on the space L 0 of random variables. In particular, we provide a no arbitrage (NA) condition under which the risk-hedging price is attained. Moreover, we show that under NA, the set of all risk-hedging prices is closed. We then prove a version of Fundamental Theorem of Asset Pricing and a dual characterization of the risk-hedging prices of a European option. At last, we provide an example where the dual representation of the risk-measure on L 0 is possible. In the second part, we solve a classical problem of characterizing the prices of European options in financial market models with transaction costs. In the Kabanov model, it is well known that the infimum super-hedging price is presented via a dual characterization through Consistent Price Systems (CPS) under some appropriate NA condition, see the book [START_REF] Kabanov | Markets with transaction costs. Mathematical Theory[END_REF]. However, it is difficult to characterize CPS given the only attempt proposed in [START_REF] Löhne | An algorithm for calculating the set of superhedging portfolios in markets with transaction costs[END_REF] for finite probability spaces. In this work, we shall tackle directly the primal problem of super-hedging. To do so, we first prove a general version of Dynamic Programming Principle (DPP) for conditional essential infimum. We then introduce a weak NA condition under which the DPP is implementable. The interesting feature of this approach is that it works also for non-convex financial market models. In the third part, we apply the theoretical result established in the second part by providing an algorithm to compute the super-hedging prices in practice. In particular, we prove the efficiency of the algorithm using the idea of (random) epiconvergence. Moreover, the exact prices will be deduced for the case of proportional transaction cost and the case of fixed cost.

In the last part, we present our current progress on the problem of portfolio optimization under credit risk constraints. Our problem fits into the framework of optimal control under stochastic target pathwise constraints. We then follow the idea in [START_REF] Bouchard | Optimal control under stochastic target constraints[END_REF] to characterize the value function as a viscosity solution to a PDE. Our next step is to provide a condition for the uniqueness of our PDE and a numerical scheme to compute the value function.

Chapter 1 Introduction générale

Donner un juste prix pour un actif financier ξ a été l'une des principales tâches des mathématiques financières. Il existe de nombreuses notions de prix, y compris, mais sans s'y limiter, le prix viable, le prix de sur-réplication, le prix d'indifférence, voir le livre [START_REF] Bouchard | Fundamentals and advanced techniques in derivatives hedging[END_REF] pour une brève introduction. Dans cette thèse, nous considérons principalement les prix de sur-réplication des options européennes, c'est-à-dire des produit financiers qui paient un montant aléatoire ξ à maturité T > 0.

Avant de donner le prix d'un actif, nous devons d'abord définir le marché financier sous-jacent. Nous appelons un marché financier marché sans friction s'il permet aux participants d'acheter et de vendre librement les différents actifs, sans coûts de transaction ni les taxes. En temps discret, nous travaillons généralement sur un espace de probabilité complet (Ω, F, P ) muni d'une filtration F := (F t ) 0≤t≤T telle que F T = F. En finance, la filtration F peut être interprétée comme le flux d'informations. On note L 0 (R d , F t ) l'espace des variables aléatoires F t -mesurables ayant des valeurs dans R d . Nous considérons un processus de prix S := (S t ) 0≤t≤T tel que S t ∈ L 0 (R d , F t ). Un processus (θ t ) 0≤t≤T est une stratégies financières si θ t ∈ L 0 (R d , F t ). θ i t-1 représente le nombre de stocks investissant dans l'actif S i t pendant la période [t, t+1]. Nous en déduisons ensuite au temps t la valeur V x,θ t d'un portefeuille en utilisant la stratégie θ et en partant du capital initial x ∈ R:

V x,θ t := x + t u=1 θ u-1 (S u -S u-1 ) = x + t u=1 θ u-1 ∆S u .
où l'on note ab le produit scalaire de vecteurs a at b. Considérons maintenant un actif contingent ξ qui est une variable aléatoire dans L 0 (R, F T ) et dénotons l'ensemble des stratégies par Θ. Nous définissons le prix de. sur-réplication de ξ comme suit: p(ξ) := inf p ∈ R : ∃ θ ∈ Θ s.t. V p,θ T ≥ ξ, p.s. . En théorie des mathématiques financières, le prix de sur-réplication peut être caractérisé en supposant une condition d'absence d'arbitrage (AOA). En particulier, nous nous restreignons au cas où aucun profit ne peut être réalisé avec une probabilité positive à partir de rien. En langage mathématique, un arbitrage opportunité est une stratégie financière θ satisfaisant: V 0,θ T ≥ 0, Pp.s. et P (V 0,θ T > 0) > 0.

AOA est vérifiée s'il n'y a pas d'opportunité d'arbitrage. Un résultat classique en mathématiques financières appelé Fundamental Theorem of Asset Pricing (FTAP) a été formalisé pour la première fois dans [START_REF] Harrison | Martingale and Arbitrage in Multiperiods Securities Markets[END_REF]. FTAP donne une caractérisation équivalente de AOA et l'existence de mesures de martingales. En particulier, on note M(S) l'ensemble des mesures de martingale, c'est-à-dire une collection de mesures de probabilité Q ∼ P tel que S est une Q-martingale. Étant donné l'ensemble des mesures de martingale équivalentes, nous sommes maintenant en mesure de en déduire la caractérisation duale du prix de sur-réplication.

Theorem 1.0.2 (Formulation duale). Supposons que NA est vérifiée pour que par FTAP, M(S) ̸ = ∅, on a

p(ξ) = sup Q∈M(S) E Q [ξ].
où E Q dénote l'espérance sous Q.

De plus, si nous supposons que tous les actifs contingents sont replicables ou que le marché est complet, c'est-à-dire pour tout ξ, il existe (p, θ) ∈ R × Θ tel que, V p,θ T = ξ P -p.s., on obtient le deuxième FTAP.

Theorem 1.0.3 (Le deuxième FTAP). Supposons que M(S) ̸ = ∅. Puis le marché est complet si et seulement si M(S) est un singleton.

Le marché complet est une propriété souhaitable non seulement en théorie mais aussi en pratique. Les praticiens qui étudient le prix de sur-réplication supposent souvent que le marché est complet de sorte que le prix de surréplication pour ξ peut être calculé par E Q (ξ), où Q est l'unique mesure de martingale équivalente dans M(S). E Q (ξ) peut être évalué en utilisant des méthodes de Monte Carlo ou par des méthodes pour les EDPs paraboliques, voir par exemple les livres [START_REF] Bouchard | Fundamentals and advanced techniques in derivatives hedging[END_REF] ou [START_REF] Gobet | Monte-Carlo methods and stochastic processes: from linear to non-linear[END_REF].

Dans de nombreux cas intéressants, marché complet n'est plus satisfait et le prix de sur-réplication devient désormais impossible à calculer lors de l'utilisation de la caractérisation duale. Cela motive le besoin d'un cadre alternatif pour calculer les prix de sur-réplication. Dans les travaux récents [START_REF] Carassus | Pricing without no-arbitrage condition in discrete-time[END_REF], au lieu de supposer AOA depuis le début, les auteurs ont abordé directement le problème de la sur-réplication dans un marché sans friction. Ils ont proposé une condition faible de non-arbitrage appelée absence de profit instantané (API) qui est l'exigence minimale pour que le prix de surréplication soit fini. Un marché satisfait à la condition API si le prix de la sur-réplication pour le payoff nul est identique à zéro, c'est-à-dire p(0) = 0. API est strictement plus faible que AOA, donc l'ensemble des mesures de martingale équivalentes peut être vide par le premier FTAP. Par conséquent, nous appellerons ce cadre alternatif valorisation sans mesure de martingale.

Dans cette thèse, nous adoptons API comme point de départ et nous le développerons dans deux directions. D'abord, dans la définition du prix de sur-réplication, la contrainte presque sûre est maintenant remplacée par ρ(V p,θ Tξ) ≤ 0 pour une certaine mesure de risque ρ. Deuxièmement, nous travaillons avec des marchés financiers où les coûts de transaction sont encourus chaque fois que nous achetons ou vendons des actifs risqués. Les matériaux du chapitre 3, du chapitre 4 et du chapitre 5 sont basés sur la publication et les prépublications suivantes. i) Coherent risk measure on L 0 : NA condition, Pricing and Dual representation, with Lépinette E. IJTAF. 2021.

ii) Dynamic programming principle and computable prices in financial market models with transaction costs, with Lépinette E. Preprint. 2022.

iii) Limits theorems for super-hedging prices in general models with transaction costs, with Lépinette E. Preprint. 2022.

Chapter 2

General introduction 2.1 Motivation

How to determine a fair price for a financial asset ξ has been one of the main task in financial mathematics. There are many notions of price including but not limited to viable price, super-hedging price, indifference price, see the book [START_REF] Bouchard | Fundamentals and advanced techniques in derivatives hedging[END_REF] for a brief introduction. In this thesis, we consider mainly the super-hedging prices of European options, i.e. financial derivatives that pay a random amount ξ at maturity T > 0.

Before giving price for an asset, we first need to define the underlying financial market. We call a financial market frictionless if it allows participants to buy and sell different assets freely, without trading restriction nor price impact or taxes. In discrete-time setting, we usually work on a complete probability space (Ω, F, P ) and a filtration F := (F t ) 0≤t≤T such that F T = F. In finance, the filtration F can be interpreted as the flow of information. We denote by L 0 (R d , F t ) the set of R d -valued F t -measurable random variables. We consider a price process S := (S t ) 0≤t≤T such that S t ∈ L 0 (R d , F t ). A process (θ t ) 0≤t≤T -1 is trading strategy if θ t ∈ L 0 (R d , F t ). θ i t-1 represents the number of shares investing in the asset S i t during the period [t, t + 1]. We then deduce the value V x,θ t at time t of a portfolio using trading strategy θ and starting from initial capital x ∈ R:

V x,θ t := x + t u=1 θ u-1 (S u -S u-1 ) = x + t u=1 θ u-1 ∆S u .
where we use the notation ab as the scalar product of two vectors a and b. Now, consider a contingent claim ξ which is a random variable belongs to L 0 (R, F T ) and denote the set of trading strategies as Θ, we now define the super-hedging price of ξ as: p(ξ) := inf p ∈ R : ∃ θ ∈ Θ s.t. V p,θ T ≥ ξ, a.s. . In theory of financial mathematics, the super-hedging price can be characterized assuming some no arbitrage (NA) condition holds true. In particular, we restrict ourselves to the case where no profit can be made with positive probability starting from nothing. In mathematical language, an arbitrage opportunity is a financial strategy θ satisfying: V 0,θ T ≥ 0, Pa.s. and P (V 0,θ T > 0) > 0.

NA holds if there is no arbitrage opportunity. A classical result in financial mathematics called Fundamental Theorem of Asset Pricing (FTAP) was first formalised in [START_REF] Harrison | Martingale and Arbitrage in Multiperiods Securities Markets[END_REF]. FTAP gives an equivalent characterization of NA and the existence of martingale measures. In particular, we denote the set of martingale measures as M(S) which is the collection of measure Q ∼ P such that under Q, S is a martingale. Theorem 2.1.1 (The first FTAP). The following are equivalent: 1) NA holds.

2) M(S) ̸ = ∅.

Given the set of equivalent martingale measures, we are now able to deduce the dual characterization of super-hedging price: Theorem 2.1.2 (Dual formulation). Suppose that NA holds so that by FTAP, M(S) ̸ = ∅, we then have

p(ξ) = sup Q∈M(S) E Q [ξ].
where E Q denotes the expectation under probability measure Q.

Moreover, if we suppose that all contingent claims are replicable or the market is complete, i.e. for any ξ, there exists (p, θ) ∈ R × Θ such that V p,θ T = ξ P -a.s., we get the second FTAP.

Theorem 2.1.3 (The second FTAP). Assume that M(S) ̸ = ∅. Then, the market is complete if and only if M(S) is a singleton.

Market completeness is a desirable property not only in theory but also in practice. Practitioners who study super-hedging price often assume the market is complete so that the super-hedging price for ξ can be computed as E Q (ξ), where Q is the unique equivalent martingale measure in M(S). E Q (ξ) can be evaluated using Monte Carlo methods or by methods for parabolic PDEs, see for examples the books [START_REF] Bouchard | Fundamentals and advanced techniques in derivatives hedging[END_REF] or [START_REF] Gobet | Monte-Carlo methods and stochastic processes: from linear to non-linear[END_REF].

In many interesting cases, market completeness fails to hold and superhedging price now becomes infeasible to compute when using dual characterization. This motivates the need for an alternative framework in order to compute super-hedging prices. In the recent work [START_REF] Carassus | Pricing without no-arbitrage condition in discrete-time[END_REF], instead of assuming NA from the beginning, the authors tackled directly the super-hedging problem in frictionless market. They proposed a weak no arbitrage condition called Absence of Instantaneous Profit (AIP) which is the minimal requirement for the super-hedging price to be finite. A market satisfies AIP condition if the super-hedging price for the zero payoff is identical to zero, i.e. p(0) = 0. AIP is strictly weaker than NA, hence the set of equivalent martingale measures can be empty by the first FTAP. As a result, we shall call this alternative framework pricing without martingale measure.

In this thesis, we adopt AIP as our starting point and we will develop it in two directions. Firstly, we consider the case where a possibility of mishedge is allowed. In particular, in the definition of super-hedging price, the almost sure constraint is now replaced by ρ(V p,θ T ξ) ≤ 0 for some risk measure ρ. Secondly, we work with financial markets where transaction costs are triggered whenever we buy or sell risky assets. In the remaining part of this chapter, we shall discuss briefly our main contributions. The materials of Chapter 3, Chapter 4 and Chapter 5 are based on the following publication and pre-publications. i) Coherent risk measure on L 0 : NA condition, Pricing and Dual representation, with Lépinette E. IJTAF. 2021.

ii) Dynamic programming principle and computable prices in financial market models with transaction costs, with Lépinette E. Preprint. 2022.

iii) Limits theorems for super-hedging prices in general models with transaction costs, with Lépinette E. Preprint. 2022.

2.2 Coherent risk measure on L 0 : NA condition, Pricing and Dual representation

We consider a dynamic coherent risk-measure X → (ρ t (X)) t≤T defined on the space L 0 (R, F T ), R = [-∞, ∞]. In this paper, the risk-measure is constructed from its closed acceptance sets (A t ) t≤T of acceptable financial positions A t at time t ≤ T . We suppose that A t is a closed convex cone. We then define

Dom A t := {X ∈ L 0 (R, F T ) : A X t ̸ = ∅}, A X t := {C t ∈ L 0 (R, F t )| X + C t ∈ A t }.
We recall the definition the conditional essential infimum of a random variable, see [START_REF] Carassus | Pricing without no-arbitrage condition in discrete-time[END_REF] for a short proof of the existence. Proposition 2.2.1 (Conditional essential infimum). Let H and F be complete σ-algebras such that H ⊆ F and let Γ = (γ i ) i∈I be a family of real-valued F-measurable random variables. There exists a unique (up to a P -negligible set) random variable γ H ∈ L 0 (R, H), denoted by ess inf H Γ, which satisfies the following properties 1) For every i ∈ I, γ H ≤ γ i a.s.

2) If ζ ∈ L 0 (R, H) satisfies ζ ≤ γ i a.s. for all i ∈ I, then ζ ≤ γ H a.s.

For X ∈ L 0 (R, F T ), we define ρ t (X) = ess inf Ft A X t if X ∈ Dom A t and we consider its extension to the whole space L 0 (R, F T ) by [START_REF] Lépinette | Super-hedging a European option with a coherent risk-measure and without no-arbitrage condition[END_REF]. For X ∈ L 0 (R, F T ), ρ t (X) may be infinite and ρ t (X) ∈ R a.s. if and only if X ∈ Dom A t . We are interested in the super-hedging problem in the presence of the (random) risk measure ρ t . Precisely, we consider the oneperiod risk-hedging problem Definition 2.2.2. A payoff h t+1 ∈ L 0 (R, F t+1 ) is said to be risk-hedged at time t if there exists P t ∈ L 0 (R, F t ) and a strategy θ t in L 0 (R d , F t ) such that P t + θ t ∆S t+1h t+1 is acceptable at time t.

In that case, we say that P t is a risk-hedging price. Let P t (h t+1 ) be the set of all risk-hedging prices P t ∈ L 0 (R, F t ) at time t. The minimal risk-hedging price of the contingent claim h t+1 at time t is defined as

P * t := ess inf θt∈L 0 (R d ,Ft) P t (h t+1 ). ( 2 

.2.1)

Some contributions:

1. We introduce a no-arbitrage condition (NA) under which the minimal risk-hedging price of the contingent claim is attained. The result is extended to multi-period framework using the idea of Consistent risk measure.

2. We prove a version of the Fundamental Theorem of Asset Pricing in presence of a risk-measure ρ t . In particular, we prove that the set of all risk-hedging prices is closed under NA, it then suffices to apply Hahn-Banach theorem. Moreover, a dual characterization of the risk-hedging prices of a European option follows.

3. We provide a dual representation of the risk-measure on L 0 under some conditions. This result is an extension to the dual representation of risk measure on L ∞ in the literature.

Dynamic programming principle and computable prices in financial market models with transaction costs

We consider a financial market where transaction costs are charged when the agents buy or sell risky assets. The typical case is a model defined by a bond whose discounted price is S 1 = 1 and d -1 risky assets that may be traded at some bid and ask discounted prices S b and S a , respectively, when selling or buying. Our general model is defined via a set-valued process (G t ) T t=0 adapted to the filtration (F t ) T t=0 . Precisely, we suppose that for all [START_REF] Molchanov | Theory of Random Sets[END_REF]), where B(R d ) is the Borel σ-algebra on R d and d ≥ 1 is the number of assets. G t is usually called solvency set in the literature. In the classical approach of models with transaction costs, the analogs of FTAP and hedging theorem are proposed, see the book [START_REF] Kabanov | Markets with transaction costs. Mathematical Theory[END_REF] for a comprehensive treatment. In this thesis, we use an alternative approach called cost value process.

t ≤ T , G t is F t -measurable in the sense of the graph Graph(G t ) = {(ω, x) : x ∈ G t (ω)} that belongs to F t ⊗ B(R d ) (see
We suppose that G t (ω) is closed for every ω ∈ Ω and

G t (ω) + R d + ⊆ G t (ω), for all t ≤ T . The cost value process C = (C t ) T t=0 associated to G is defined as: C t (z) = inf{α ∈ R : αe 1 -z ∈ G t } = min{α ∈ R : αe 1 -z ∈ G t }, z ∈ R d .
A portfolio process is a stochastic process (V t ) T t=-1 where V -1 ∈ Re 1 is the initial endowment expressed in cash that we may convert immediately into V 0 ∈ R d at time t = 0. By definition, we suppose that

∆V t = V t -V t-1 ∈ -G t , a.s., t = 0, • • • , T.
This means that any position V t-1 = V t +(-∆V t ) may be changed into the new position V t , letting aside the residual part (-∆V t ) that can be liquidated without any debt. Let ξ ∈ L 0 (R d , F T ) be a contingent claim. Our goal is to characterize the set of all portfolio processes (V t ) T t=-1 such that V T = ξ. We are mainly interested by the infimum cost one needs to hedge ξ, i.e. the infimum value of the initial capitals V -1 e 1 ∈ R among the portfolios (V t ) T t=-1 replicating ξ.

Some contributions:

1. We first provide a dynamic programming principle in a very general setting in discrete time. In particular, the dynamic programming is stated using the notion of conditional essential supremum.

2. Secondly, we propose some weak no-arbitrage conditions under which it is possible to implement the dynamic programming principle. In particular, we show that under this NA condition, the infimum hedging cost defined as conditional essential infimum coincides with ω-wise infimum. This result is interesting given the only attempt in [START_REF] Löhne | An algorithm for calculating the set of superhedging portfolios in markets with transaction costs[END_REF] which is proposed for finite probability space.

Limit theorems for the super-hedging prices in general models with transaction costs

This project developes the numerical methods for the theoretical results in the second project.

In particular, we consider the market where for each time t there is a family of F t -measurable random variables the following holds: (α m t ) m≥1 such that S t+1 ∈ {α m t : m ≥ 1} a.s. and that P (S t+1 = α m t |F t ) > 0 a.s. for all m ≥ 1. We aim to estimate ess sup Ft f (S t+1 ) via a sequence of random variables {b i t+1 , i ≥ 1}, b i t+1 ∈ L 0 (R d , F t+1 ) which are independent and identically distributed conditional on F t (notation F t -i.i.d.) in the following sense:

P b i t+1 ∈ B|F t = P b j t+1 ∈ B|F t , a.s., i, j ≥ 1, P j∈J b j t+1 ∈ B j F t = j∈J P b j t+1 ∈ B j F t , a.s.
for all finite set J ⊂ N, and Borel sets B, B j , j ∈ J. Moreover, we also require b i t+1 ∈ {α n t , n ≥ 1} a.s. and P (b i t+1 = α n t |F t ) > 0 a.s. for all n, i ≥ 1. This is a first attempt to approximate the conditional essential supremum and is related to our super-hedging problem.

Some contributions

Using the idea of convergence of epigraph (epiconvergence), we establish some results:

1. For the first goal, we prove the validity of the approximation of F t conditional essential supremum via a sequence of F t -i.i.d. random variables. In particular, we prove that:

max i≤m f (b i t+1 ) =: θ m t → θ t := ess sup Ft (S t+1 ), a.s.
as m → ∞. Subsequently, using this convergence result, we then prove the convergence almost surely of the sequence of randomized superhedging costs to the desired one. Finally, the result is extended to multi-period period by the help of Dynamic Programming Principle.

2. We give the prices for models with proportional and fixed costs. We consider here the Multinomial price process.

Portfolio optimization under credit risk constraints

Consider a financial market model defined on a stochastic basis (Ω, (F t ) t∈[0,T ] , P ) satisfying the usual assumptions. We denote by S 0 the risk-free asset of the market and we suppose without loss of generality that S 0 = 1 so that the risk-free interest rate is r 0 = 0. In the following, we consider at any time t ∈ [0, T ] a firm characterized by it debts (D r ) r∈[t,T ] and its asset (A r ) r∈[t,T ] so that the equity is given by (E r ) r∈[t,T ] such that E = (A -D) + . We suppose that D satisfies the SDE:

dD u = r u D u du -K u du, u ∈ [t, T ], (2.5.2)
where r ≥ 0 is the debt interest rate (interpreted as a risk premium since r 0 = 0) and K u is the amount of the firm reimbursement per unit of time.

We suppose that K u := k u D u for some process k. Asset A of the firm satisfies by assumption A r = θ 0 r S 0 r + θ r S r where θ 0 and θ are quantities invested in asset S 0 and some risky assets S = (S 1 , • • • , S d ), d ≥ 1, held by the firm. We suppose the following self-financing condition:

dA r = θ r dS r -c r dr, r ∈ [t, T ], (2.5.3)
where c is a process such that c ≥ K. We interpret c t -K t as the amount of dividends distributed at time t. We only consider admissible strategies θ such that A r ≥ κ θ for all r ∈ [t, T ], for some κ θ ∈ R. Liquidation value of the asset firm at time u ≥ t is defined as L u := A u -D u so that we have E = L + . Note that the dynamics of L is :

dL u = θ u dS u -d u du -r u D u du, u ∈ [t, T ], (2.5.4) 
where d t = c tk t D t is the amount of dividends. The dynamics above shows that the liquidation value of the firm's financial position is naturally controlled by the investment strategy θ but it is adversely impacted by the dividends d ≥ 0 paid to the share holders and by the credit risk premium r as well. Taking into account a possible default, the payoff delivered to the credit holders is as the Merton model:

h D T (r) := T t k u D u du + [A T ] + ∧ D T
The goals of this project is to first find a fair value for the risk premium r.

And then, given this fair credit risk premium and a utility function U we solve the following utility maximization problem:

V (t, x, y) := sup θ,c J 0 (t, x, y, θ, c) := E U T t d u du + L x,y,θ,c T (r) (2.5.5)
where θ and c = (d t , k t ) are progressively measurable process and satisfy the pathwise constraints: i) Self-financing constraint: A s ≥ 0 a.s. for all t ≤ s ≤ T .

ii) Fair price condition (Market pricing or MP condition):

E h D T (r)|(D t , L t ) = (x, y) = x.
Some contributions and future works 1. We prove that in a complete market such that S is a martingale, there exists a unique fair price satisfying MP condition: E(h D T (r)|F t ) = D t . This result guarantees that the problem 2.5.5 is well-defined.

2. Translate the problem 2.5.5 into a regular form of optimal control problem with stochastic pathwise constraints. Then, we establish a Dynamic Programming Principle for our problem.

3. We show that the value function should be interpreted as a viscosity solution of a HJB equation with state constraints, see the work in [START_REF] Bouchard | Optimal control under stochastic target constraints[END_REF]. Our next goal is to provide a condition for uniqueness and a numerical scheme to compute the value function V .

Measurable selection theorems

In the following chapters, whenever we use the phrase measurable selection argument, we refer to the Theorem below. For a (lengthy) proof, see the book [START_REF] Dellacherie | Probabilités et Potentiel[END_REF].

Theorem 2.6.1 (Measurable selection). Let (Ω, F, P ) be a complete probability space E be a Polish space equipped with a Borel sigma-algebra E and let Γ ∈ F ⊗ E. Then, the projection π Ω Γ of Γ onto Ω belongs to F, and there exists an E-valued random variables ξ such that ξ(ω) ∈ Γ ω for all non-empty ω-sections Γ ω of Γ.

We also include here a universal measurable selection called Jankov-von Neumann theorem which will appear in Chapter 6 and Chapter 7. To do so, we first recall the definition of analytic sets and upper semianalytic function, see the books [START_REF] Bertsekas | Stochastic optimal control: the discrete-time case[END_REF] or [START_REF] Dellacherie | Probabilités et Potentiel[END_REF] for a detailed analysis. Definition 2.6.2. A subset of a Polish space X is analytic, if either it is empty or a continuous image of a Polish space. A function g : X → R is upper semianalytic (usa) if the set {x ∈ X : g(x) > c} is analytic for every c ∈ R. A function g : X → R is lower semianalytic (lsa) if the set {x ∈ X : g(x) < c} is analytic for every c ∈ R. Definition 2.6.3. Let (Ω, F) be a measurable space. We denote F P be the completion of F with respect to probability measure P . The universal completion of F is the σ-algebra defined as the intersection of F P for all probability measures P on (Ω, F). A function g : X → R is universally measurable if the set {x ∈ X : g(x) > c} belongs to the universal completion of F for every c ∈ R. Theorem 2.6.4 (Jankov-von Neumann theorem). Let X and Y be Polish spaces, and A an analytic subset of X × Y . There exists a universally measurable function φ :

π X A → Y such that Graph(φ) ⊂ A.
Theorem 2.6.5. Let X and Y be Polish spaces, A an analytic subset of X × Y and f : X × Y → R an upper semianalytic function. We define

f * : π X (A) → R by f * (x) := sup y∈Ax f (x, y).
Then, for every ϵ > 0, there exists a universal measurable function φ ϵ : π X (A) → Y such that Graph(φ ϵ ) ⊂ A and for all x ∈ π X (A):

f (x, φ ϵ (x)) ≥ f * (x) -ϵ, if f * (x) < ∞, f (x, φ ϵ (x)) ≥ ϵ -1 , if f * (x) = ∞.

Introduction

The NA condition originates from the work of Black and Scholes [START_REF] Black | The pricing of options and corporate liabilities[END_REF] and Merton [START_REF] Merton | The theory of rational option pricing[END_REF]. In these articles, the risky asset is modeled by a geometric Brownian motion. The NA condition means the absence of arbitrage opportunities, i.e. a nonzero terminal portfolio value can not be acceptable if it starts from the zero initial endowment. A financial position in the classical arbitrage theory is acceptable if it is non negative almost surely. In our work, the new con-tribution is that we consider a larger class of acceptable positions which are defined from a risk-measure. The NA condition is characterized through the famous Fundamental Theorem of Asset Pricing (FTAP) for a variety of financial models. Essentially, NA is equivalent to the existence of a so-called risk-neutral probability measure, under which the price process is a martingale. In discrete-time, the well known FTAP theorem has been proved by Dalang, Morton and Willinger [START_REF] Dalang | Equivalent martingale measures and no-arbitrage in stochastic securities market models[END_REF]. We may also mention the papers [START_REF] Jacod | Local martingales and the fundamental asset pricing theorems in the discrete-time case[END_REF], [START_REF] Kabanov | No arbitrage and equivalent martingale measures: an elementary proof of the Harrison-Pliska theorem[END_REF], [START_REF] Kabanov | A Teachers' note on no-arbitrage criteria[END_REF], [START_REF] Rogers | Equivalent martingale measures and no-arbitrage[END_REF], [START_REF] Ross | The arbitrage theory of capital asset pricing[END_REF]. In continuous time, the formulation of the FTAP theorem is only possible once continuous-time self-financing portfolios are defined, see the seminal work of Black and Scholes [START_REF] Black | The pricing of options and corporate liabilities[END_REF]. This gave rise to an extensive development of the stochastic calculus, e.g. for semi-martingales [START_REF] Harrison | Martingales and stochastic integrals in the theory of continuous trading[END_REF], making possible formulation of several versions of the FTAP theorem as given in [START_REF] Delbaen | A general version of the fundamental theorem of asset pricing[END_REF], [START_REF] Delbaen | The fundamental theorem of asset pricing for unbounded stochastic processes[END_REF], [START_REF] Delbaen | The no-arbitrage condition under a change of numéraire[END_REF], [START_REF] Delbaen | The mathematics of arbitrage[END_REF] and [START_REF] Guasoni | The fundamental theorem of asset pricing for continuous processes under small transaction costs[END_REF].

The main contribution of the FTAP theorems is the link between the concept of arbitrage and the pricing technique which is deduced. It is now very well known that the super-hedging prices of a European claim are dually identified through the risk-neutral probability measures characterizing the NA condition. We may notice that the NA condition has been suitably chosen in the models of consideration in such a way that the set of all attainable claims is closed, see [START_REF] Kabanov | Markets with transaction costs. Mathematical Theory[END_REF]Theorem 2.1.1]. This allows one to apply the Hahn-Banach separation theorem, see [START_REF] Schachermayer | A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time[END_REF], and obtain dual elements that characterize the super-hedging prices. This is also the case for financial models with proportional transaction costs, see [55, Section 3] and the references mentioned therein.

The growing use of risk-measures in the context of the Basel banking supervision naturally calls into question the definition of the super-hedging condition which is commonly accepted in the usual literature. Recall that a portfolio process (V t ) t∈[0,T ] super-replicates a contingent claim h T at the horizon date T > 0 means that V T ≥ h T a.s.. In practice, this inequality remains difficult to achieve and practitioners accept to take a moderate risk, choosing for example α ∈ (0, 1) small enough so that P (V Th T ≥ 0) ≥ 1α is close to 1. This is the case when considering the Value At Risk measure, see [START_REF] Jorion | Value at Risk: the new benchmark for managing financial risk[END_REF], and we say that [START_REF] Acciao | Dynamics convex risk measures[END_REF], [START_REF] Delbaen | Coherent risk measures[END_REF], [START_REF] Delbaen | Coherent risk measures on general probability spaces[END_REF], [START_REF] Detlefsen | Conditional and dynamic convex risk measures[END_REF], [START_REF] Fölmer | Convex risk measures and the dynamics of their penalty functions[END_REF] and [START_REF] Denis | Consistent price systems and arbitrage opportunities of the second kind in models with transaction costs[END_REF] for frictionless markets and [START_REF] Ararat | Set-valued shortfall and divergence risk measures[END_REF], [START_REF] Tahar | Vector valued coherent risk measure processes[END_REF], [START_REF] Feinstein | Time consistency of dynamic risk measures in markets with transaction costs[END_REF], [START_REF] Jouini | Vector-valued measure of risk[END_REF] for conic models. The acceptable positions play the role of the almost surely non negative random variables and allow one to take risk controlled by the risk measure we choose. Moreover, by considering a larger family of acceptable positions, the hedging prices may be lowered as shown in [START_REF] Pergamenshchikov | Limit theorem for Leland's strategy[END_REF] for the Black and Scholes models with proportional transaction costs, see also the discussion in [START_REF] Lépinette | Conditional cores and conditional convex hulls of random sets[END_REF].

V T -h T is acceptable. More generally, V T -h T is said acceptable for a risk-measure ρ if ρ(V T -h T ) ≤ 0, see
Pricing with a coherent risk-measure has been explored and developed by Cherny in two major papers [START_REF] Cherny | Pricing and hedging European options with discrete-time coherent risk[END_REF] and [START_REF] Cherny | Pricing with coherent risk[END_REF] for coherent risk-measures defined on the space of bounded random variables. Cherny supposes that the riskmeasure ρ (or equivalently the utility measure u = -ρ) is defined by a weakly compact determining set D of equivalent probability measures, i.e. such that ρ(X) = sup Q∈D E Q (-X) for any X ∈ L ∞ . This representation automatically holds for coherent risk-measures defined on L ∞ . This motivates the choice of Cherny to suppose such a representation for the risk-measures he considers on L 0 as he claims that it is hopeless to axiomatize the notion of a risk measure on L 0 and then to obtain the corresponding representation theorem, see [START_REF] Cherny | Pricing with coherent risk[END_REF].

Actually, the recent paper [START_REF] Lépinette | Super-hedging a European option with a coherent risk-measure and without no-arbitrage condition[END_REF] proposes an axiomatic construction of a dynamic coherent risk-measure on L 0 from the set of all acceptable positions. We consider such a dynamic risk-measure and we define the discrete-time portfolio processes as the processes (V t ) t≤T adapted to a filtration (F t ) t≤T such that V t + θ t ∆S t+1 -V t+1 is acceptable at time t for some F t -measurable strategy θ t ∈ L 0 (R d , F t ). This is a generalization of the classical definition where, usually, acceptable means non negative so that V t + θ t ∆S t+1 ≥ V t+1 almost surely. We then introduce a no-arbitrage condition we call NA as in the classical literature and we show that it coincides with the usual NA condition if the acceptable positions are the non negative random variables. This NA condition allows one to dually characterize the super-hedging prices, at least when ρ is time-consistent. One of our main contribution is a version of the Fundamental Theorem of Asset Pricing in presence of a risk-measure.

Similarly, Cherny proposes in his papers [START_REF] Cherny | Pricing and hedging European options with discrete-time coherent risk[END_REF] and [START_REF] Cherny | Pricing with coherent risk[END_REF] a no-arbitrage condition No Good Deal (NGD) which is the key point to define the super-hedging prices. The approach is a priori slightly different: The NGD condition holds if there is no bounded claim X attainable from the zero initial capital such that ρ(X) < 0. In our setting, the NA condition is formulated from the minimal price super-hedging the zero claim, which is supposed to be non negative under NA. Clearly, there is a link between the NA and the NGD condition as ρ(X) appears to be a possible super-hedging price for the zero claim. Actually, the NGD and the NA conditions are equivalent in the setting of Cherny, see Corollary 3.4.16. Although, in our paper we do not need to suppose the existence of a priori given probability measure representing the risk-measure. This is why the proof of the FTAP theorem we formulate is more challenging as we cannot directly use an immediate compactness argument as done in [START_REF] Cherny | Pricing with coherent risk[END_REF] to obtain a risk-neutral probability measure. We then deduce a dual representation of the super-hedging prices in the case where the risk-measure is time-consistent. Under NA, we show that the set of all risk-hedging prices is closed. At last, we formulate a dual representation for a risk-measure defined on the whole set L 0 , which is also a new contribution.

Framework

In discrete-time, we consider a stochastic basis (Ω, F := (F t ) T t=0 , P) where the complete1 σ-algebra F t represents the information of the market available at time t. For any t ≤ T , L 0 (R d , F t ), d ≥ 1, is the space of all R d -valued random variables which are F t -measurable, and endowed with the topology of convergence in probability. Similarly,

L p (R d , F t ), p ∈ [1, ∞) (resp. p = ∞)
, is the normed space of all R d -valued random variables which are F tmeasurable and admit a moment of order p under the probability measure P (resp. bounded). In particular,

L p (R + , F t ) = {X ∈ L p (R, F t )|X ≥ 0} and L p (R -, F t ) = -L p (R + , F t ) when p = 0 or p ∈ [1, ∞].
All equalities and inequalities between random variables are understood to hold everywhere on Ω up to a negligible set. If A t is a set-valued mapping (i.e. a random set of R d ), we denote by L 0 (A t , F t ) the set of all F t -measurable random variables X t such that X t ∈ A t a.s.. We say that X t ∈ L 0 (A t , F t ) is a measurable selection of A t . In our paper, a random set A t is said F t -measurable if it is graph-measurable, see [START_REF] Molchanov | Theory of Random Sets[END_REF], i.e.

Graph A t = {(ω, x) ∈ Ω × R d : x ∈ A t (ω)} ∈ F t ⊗ B(R d ).
We consider a dynamic coherent risk-measure X → (ρ t (X)) t≤T defined on the space

L 0 (R, F T ), R = [-∞, ∞].
Precisely, we consider the risk-measure of [START_REF] Lépinette | Super-hedging a European option with a coherent risk-measure and without no-arbitrage condition[END_REF], where an extension to the whole space L 0 (R, F T ) is proposed. Recall that, in this paper, the risk-measure is constructed from its closed acceptance sets (A t ) t≤T of acceptable financial positions A t at time t ≤ T . We suppose that A t is a closed convex cone. In the following, we use the conventions:

0 × (±∞) = 0, (0, ∞) × (±∞) = {±∞}, R + (±∞) = ±∞, ∞ -∞ = -∞ + ∞ = +∞.
For X ∈ L 0 (R, F T ), ρ t (X) may be infinite and ρ t (X) ∈ R a.s. if and only if X ∈ Dom A t where

Dom A t := {X ∈ L 0 (R, F T ) : A X t ̸ = ∅}, A X t := {C t ∈ L 0 (R, F t )| X + C t ∈ A t }. Actually, we have ρ t (X) = ess inf Ft A X t if X ∈ Dom A t .
Recall that the following properties hold (see [START_REF] Lépinette | Super-hedging a European option with a coherent risk-measure and without no-arbitrage condition[END_REF]): Proposition 3.2.1. The risk-measure ρ t satisfies the following properties:

Normalization:

ρ t (0) = 0; Monotonicity: ρ t (X) ≥ ρ t (X ′ ) whatever X, X ′ ∈ L 0 (R, F T ) s.t. X ≤ X ′ ; Cash invariance: ρ t (X + m t ) = ρ t (X) -m t if m t ∈ L 0 (R, F t ), and X ∈ L 0 (R, F T ); Subadditivity: ρ t (X + X ′ ) ≤ ρ t (X) + ρ t (X ′ ) if X, X ′ ∈ L 0 (R, F T ) ; Positive homogeneity: ρ t (k t X) = k t ρ t (X) if k t ∈ L 0 (R + , F t ), X ∈ L 0 (R, F T ).
Moreover, ρ t is lower semi-continuous i.e., if X n → X a.s., then ρ t (X) ≤ lim inf n ρ t (X n ) a.s., and we have

A t = {X ∈ Dom A t | ρ t (X) ≤ 0}. (3.2.1)
In the following, we define A t,u := A t ∩ L 0 (R, F u ) for u ∈ [t, T ]. Let (S t ) t≤T be a process describing the discounted prices of d risky assets such that S t ∈ L 0 (R d + , F t ) for any t ≥ 0. A contingent claim with maturity date t + 1 is defined by a real-valued F t+1 -measurable random variable h t+1 . In the paper [START_REF] Lépinette | Super-hedging a European option with a coherent risk-measure and without no-arbitrage condition[END_REF], the super-hedging problem for the payoff h t+1 is solved with respect to the dynamic risk-measure (ρ t ) t≤T . Precisely:

Definition 3.2.2. A payoff h t+1 ∈ L 0 (R, F t+1
) is said to be risk-hedged at time t if there exists P t ∈ L 0 (R, F t ) and a strategy θ t in L 0 (R d , F t ) such that P t + θ t ∆S t+1h t+1 is acceptable at time t. In that case, we say that P t is a risk-hedging price.

Let P t (h t+1 ) be the set of all risk-hedging prices P t ∈ L 0 (R, F t ) at time t as in Definition 3.2.2. In the following, we suppose that P t (h t+1 ) ̸ = ∅. This is the case if there exist a t , b t ∈ L 0 (R, F t ) such that h t+1 ≤ a t S t+1 + b t . This inequality trivially holds for European call and put options. Definition 3.2.3. The minimal risk-hedging price of the contingent claim h t+1 at time t is defined as

P * t := ess inf θt∈L 0 (R d ,Ft) P t (h t+1 ). (3.2.2)
Note that the minimal risk-hedging price P * t of h t+1 is not necessarily a price, i.e. it is not necessarily an element of P t (h t+1 ) if this set is not closed. One contribution of our paper is to study a no-arbitrage condition under which P * t ∈ P t (h t+1 ). Starting from the contingent claim h T at time T , we recursively define

P * T := h T , P * t := ess inf θt∈L 0 (R d ,Ft) P t (P * t+1 ),
where P * t+1 may be interpreted as a contingent claim h t+1 . The interesting question is whether P * t is actually a price, i.e. an element of P t (P * t+1 ), or equivalently whether P t (P * t+1 ) is closed. In the classical setting, recall that closedness is obtained under the NA condition. Definition 3.2.4. A stochastic process (V t ) t≤T adapted to (F t ) t≤T , starting from an initial endowment V 0 is a portfolio process if, for all t ≤ T -1, there exists θ t ∈ L 0 (R d , F t ) such that V t + θ t ∆S t+1 -V t+1 is acceptable at time t. Moreover, we say that it super-hedges the payoff

h T ∈ L 0 ([-∞, ∞], F T ) if V T ≥ h T a.s.. Note that V T -1 +θ T -1 ∆S T -V T is supposed to be acceptable at time T -1. Therefore, V T ≥ h T implies that V T -1 + θ T -1 ∆S T -h T is acceptable at time T -1.
In the following, we actually set

V T = h T where h T ∈ L 0 (R, F T ) is a European claim. Notice that, if P *
T -1 = -∞ on some non null set, then, the one step pricing procedure of [START_REF] Lépinette | Super-hedging a European option with a coherent risk-measure and without no-arbitrage condition[END_REF] may be applied as the risk-measure is defined on L 0 ([-∞, ∞], F T ). Actually, this is trivial to super hedges

P * T -1 = -∞ by P * T -2 = -∞.
This means that the backward procedure of [START_REF] Lépinette | Super-hedging a European option with a coherent risk-measure and without no-arbitrage condition[END_REF] may be applied without any no-arbitrage condition. Let us now recall this procedure.

We define P * T = h T =: h and let us consider the set P t (P * t+1 ) of all prices p t at time t allowing one to start a portfolio strategy θ t ∈ L 0 (R d , F t ) such that p t + θ t ∆S t+1 = P * t+1 + a t,t+1 where a t,t+1 ∈ L 0 (R, F t ) is an acceptable position at time t. This is a generalization of the classical super-hedging inequality p t + θ t ∆S t+1 ≥ P * t+1 . We have

P t (P * t+1 ) = {θ t S t + ρ t (θ t S t+1 -P * t+1 ) : θ t ∈ L 0 (R d , F t )} + L 0 (R d + , F t ),
and, recursively, we define:

P * t = ess inf θt∈L 0 (R d ,Ft) P t (P * t+1 ).
In [START_REF] Lépinette | Super-hedging a European option with a coherent risk-measure and without no-arbitrage condition[END_REF], a jointly measurable version of the random function g t that appears above in the characterization of P t (P * t+1 ), i.e.

g h t (ω, x) := xS t + ρ t (xS t+1 -P * t+1 ), (3.2.3) 
is constructed in the one-dimensional case. With the same arguments, we may obtain a jointly measurable version of g h t (ω, x) := xS t +ρ t (xS t+1 -P * t+1 ) if x ∈ R d . Moreover, by similar arguments, we also show that

P * t = inf x∈R d g h t (x). Let V be a portfolio process with V T = h T = h. By definition, we have that ρ T -1 (V T -1 + θ T -1 ∆S T -h T ) ≤ 0. We deduce that V T -1 ≥ P *
T -1 and, by induction, we get that V t ≥ P * t for all t ≤ T , since V t is a risk-hedging price for V t+1 ≥ P * t+1 at time t + 1. In particular, V t ∈ P t (P * t+1 ) ̸ = ∅ for all t ∈ T -1.

No-arbitrage and pricing with risk-measures

An instantaneous profit is the possibility to super-replicate the zero contingent claim at a negative price, see [START_REF] Baptiste | Pricing without martingale measure[END_REF].

Definition 3.3.1. Absence of Instantaneous Profit (AIP) holds if, for any t ≤ T , P t (0) ∩ L 0 (R -, F t ) = {0}. (3.3.4)
It is clear that AIP holds at time T since P T (0) = L 0 (R + , F T ). We now formulate characterizations of the AIP condition in the multi-dimensional setting. We denote by S(0, 1) the set of all z ∈ R d such that |z| = 1. We present our first result: Theorem 3.3.2. The following statements are equivalent: 1. AIP holds between time t -1 and t.

2. ρ t-1 (x∆S t ) ≥ 0, for any x ∈ R d , a.s..

3. ρ t-1 (z∆S t ) ≥ 0, for any z ∈ S(0, 1), a.s..

Let x

t-1 ∈ L 0 (R d , F t-1 ). If x t-1 ∆S t is acceptable on some non null set F t-1 ∈ F t-1 , then ρ t-1 (x t-1 ∆S t ) = 0 on F t-1 .
Proof. 1 ⇐⇒ 2. Consider h t = 0 under AIP. As

P * t-1 = inf x∈R d g 0 t-1 (x) ≥ 0, we deduce that, for all x ∈ R d , g 0 t-1 (x) = xS t-1 + ρ t-1 (xS t ) = ρ t-1 (x∆S t ) ≥ 0. The equivalence 2 ⇐⇒ 3 is clear by homogeneity. Let us show that 2 =⇒ 4. Suppose that x t-1 ∆S t is acceptable on F t-1 , i.e. ρ t-1 (x t-1 ∆S t ) ≤ 0 on F t-1 . Then, by 2, we have ρ t-1 (x t-1 ∆S t ) = 0 on F t-1 . Let us show that 4 implies 2. Consider the set F t-1 = {ρ t-1 (x t-1 ∆S t ) < 0} ∈ F t-1 . Then, x t-1 ∆S t is acceptable on F t-1 hence by 4, ρ t-1 (x t-1 ∆S t ) = 0 on F t-1 , which implies that P (F t-1 ) = 0. Therefore, ρ t-1 (x t-1 ∆S t ) ≥ 0 a.s..
In the following, we consider a contingent claim h t ∈ L 0 (R, F t ) and a jointly measurable version (see [START_REF] Lépinette | Super-hedging a European option with a coherent risk-measure and without no-arbitrage condition[END_REF]) of the random function

g t-1 (ω, x) := xS t-1 (ω) + ρ t-1 (xS t -h t )(ω) (3.3.5)
which is associated to h t . We then introduce two types of no-arbitrage conditions we comment below.

Definition 3.3.3. We say that the Symmetric Risk Neutral condition SRN holds at time t if, almost surely, for any z t ∈ L 0 (S(0, 1), F t ), ρ t (z t ∆S t+1 ) = 0 if and only if ρ t (-z t ∆S t+1 ) = 0. We say that SRN holds if it holds at any time.

Observe that the SRN condition means that a zero cost position z t is risk-neutral if and only if -z t is risk neutral. Definition 3.3.4. We say that the no-arbitrage NA condition holds at time t when both conditions AIP and SRN hold at time t. We say that NA holds if it holds at any time.

Note that the NA condition depends on the risk-measure. In the usual case where ρ t (X) =ess inf Ft X or, equivalently, there is no risk measure in the sense that the acceptable positions are the non-negative random variables, then the NA condition above coincides with the usual one as claimed in the following new result, see the proof in Appendix: Proposition 3.3.5. Suppose that the risk-measure is ρ t (X) =ess inf Ft X. Then, the NA condition coincides with the classical NA condition of frictionless models, i.e. it is equivalent to the existence of a risk-neutral probability measure.

We recall that a function f : Ω × R d → R is an F t -normal integrand, if its epigraph is F t -measurable and closed. Since the probability space is complete, we know by [START_REF] Rockafellar | Variational analysis[END_REF]Corollary 14.34] that it is equivalent to suppose that f (ω, x) is F t ⊗ B(R d )-measurable and lower semi-continuous (l.s.c.) in x. Moreover, by [START_REF] Rockafellar | Variational analysis[END_REF]Theorem 14.37], we have:

Proposition 3.3.6. If f is an F t -normal integrand, inf y∈R d f (ω, y) is F t - measurable and {(ω, x) ∈ Ω × R d : f (ω, x) = inf y∈R d f (ω, y)} ∈ F t ⊗ B(R d ) is a measurable closed set.
As we may choose a jointly measurable version of g t (ω, x) when the payoff is h t+1 = 0, we consider a jointly measurable version of ρ t (ω, x) := ρ t (x∆S t+1 ) i.e. ρ t (ω, x) is F t ⊗ B(R d )-measurable. Then, ρ t is an F t -normal integrand. By Proposition 3.3.6, the set Γ t = {z : ρ t (z∆S t+1 ) = inf y∈S(0,1) ρ t (y∆S t+1 )} is F t -measurable. Moreover, each ω-section of Γ t is non empty since ρ t is l.s.c. and S(0, 1) is compact. Therefore, by a measurable selection argument, we may select z t ∈ L 0 (S(0, 1), F t ) such that ρ(z t ∆S t+1 ) = inf z∈S(0,1) ρ t (z∆S t+1 ) a.s.. Our first contribution is to show that, under NA, infimum super-hedging prices are minimal prices. To do so, we need the following new results which are proved in Appendix.

Theorem 3.3.7. Suppose that AIP holds and consider z t-1 ∈ L 0 (S(0, 1), F t-1 ). Then, on the set F t-1 = {ρ t-1 (z t-1 ∆S t ) = 0} ∩ {ρ t-1 (-z t-1 ∆S t ) = 0}, the random mapping x → g t-1 (ω, x) given by (3.3.5) is a.s. constant on the line Rz t-1 , i.e. g t-1 (ω, x 1 ) = g t-1 (ω, x 2 ) for all x 1 , x 2 ∈ Rz t-1 (ω) and ω ∈ F t-1 .

Theorem 3.3.8. Let h t ∈ L 0 (R, F t ) be a payoff such that ρ t-1 (h t ) < ∞ a.s..Consider the random function g t-1 associated to h t given by (3.3.5). For any z t-1 ∈ L 0 (S(0, 1), F t-1 ), consider the random set

F t-1 = {ρ t-1 (z t-1 ∆S t ) > 0} ∩ {ρ t-1 (-z t-1 ∆S t ) > 0}.
We have:

lim |r|→∞ g t-1 (ω, rz t-1 ) = +∞, ∀ω ∈ F t-1 .
hence g t-1 admits a minimum on the line Rz t-1 when ω ∈ F t-1 .

Corollary 3.3.9. Let h t ∈ L 0 (R, F t ) be s.t. ρ t-1 (h t ) < ∞ and ρ t-1 (-h t ) < ∞ a.s.. Consider the function g t-1 associated to h t given by (3.3.5). Suppose that z t-1 ∈ L 0 (S(0, 1), F t-1 ) is such that

ρ t-1 (z t-1 ∆S t ) = inf z∈S(0,1) ρ t (z∆S t ).
Then, on the set

F t-1 = {ρ t-1 (z t-1 ∆S t ) > 0} ∩ {ρ t-1 (-z t-1 ∆S t ) > 0}, the random function g t-1 admits a minimum.
The following theorem is our first main contribution and shows that the set of all risk-hedging prices is closed under NA: Theorem 3.3.10. Suppose that N A holds at time t ≤ T and consider a payoff h t+1 ∈ L 0 (R, F t+1 ) such that |ρ t (h t+1 )| + |ρ t (-h t+1 )| < ∞ a.s.. Then, the minimal risk-hedging price P * t for the payoff h t+1 is a price.

Notice that the proof of the theorem above (see Appendix) provides the existence of an optimal hedging strategy θ * t ∈ L 0 (R, F t ) such that

P * t = g t (θ * t ) = θ * t S t + ρ t (θ * t S t+1 -h t+1 ) ∈ P t (h t+1 ).
In the following, we say that a payoff h t+1 is not freely attainable at time t if it satisfies ρ t (-h t+1 ) > 0 a.s. and |ρ t (h t+1 )| + |ρ t (-h t+1 )| < ∞ a.s.. Note that if ρ t (-h t+1 ) > 0, then it is not possible to get the payoff h t+1 from nothing when writing 0 = h t+1 + (-h t+1 ) and letting aside (-h t+1 ) since the latter is not acceptable. Notice that, if ρ t (X) =ess inf Ft (X) as in the usual case, ρ t (-h t+1 ) > 0 means that ess sup Ft (h t+1 ) > 0 and recall that h t+1 is acceptable if h t+1 ≥ 0 a.s.. The following theorem gives an interpretation of the NA condition. Precisely, NA means that the price of any no freely attainable and acceptable payoff is strictly positive. In the usual case, a no freely attainable and acceptable payoff is a non negative payoff which does not vanish on a non null F t -measurable set.

We then have a new financial interpretation of the NA condition, as proved in Appendix: Observe that, if (ρ t ) t≤T is time-consistent, we may show by induction that ρ t (-ρ t+s (•)) = ρ t (•) for any t ≤ T and s ≥ 0 such that s + t ≤ T . In the following, we introduce another possible definition for the risk-hedging prices in the multi-period model, where the risk is only measured at time t.

Definition 3.4.3. The contingent claim h T ∈ L 0 (R, F T ) is said directly risk- hedged at time t ≤ T -1 if there exists a (direct) price P t ∈ L 0 (R, F t ) and a strategy (θ u ) T -1 u=t such that that P t + t≤u≤T -1 θ u ∆S u+1 -h T is acceptable at time t.
The set of all direct risk-hedging prices at time t is then given by

Pt (h T ) = ρ t t≤u≤T -1 θ u ∆S u+1 -h T : θ u ∈ L 0 (R d , F u ) + L 0 (R, F t ).
and the infimum direct risk-hedging price is

P * t (h T ) := ess inf (θu) T -1 u=t Pt (h T ).
Remark 3.4.4. A hedging strategy which is admissible at each step is a strategy that is considered as admissible because of the updated information and the updated risk-measure as well. Indeed, at each step, the acceptable positions are estimated through the time dependent risk-measure ρ t and the information F t . On the other hand, a direct-hedge is only obtained at time 0 from the initial preferences we have on the acceptable positions, i.e. from ρ 0 and without information but F 0 . It is intuitively natural to prefer a strategy which is admissible at each step as this is coherent with the choice of a dynamic risk measure to take into account a change in time of preferences and information.

The following result is proved in [START_REF] Lépinette | Super-hedging a European option with a coherent risk-measure and without no-arbitrage condition[END_REF] and shows that the direct infimum risk-hedging prices may coincide with the infimum prices derived from the step by step backward procedure developed before, i.e. such that

P * t (h T ) = ess inf θt∈L 0 (R,Ft) P t (P * t+1 (h T )),
where P * T (h T ) = h T . Theorem 3.4.5. Suppose that the dynamic risk-measure (ρ t ) t≤T is timeconsistent. Then, P * t (h T ) = P * t (h T ) for any t ≤ T -1. Moreover, the direct infimum risk-hedging prices are direct prices if and only if the infimum prices of the backward procedure are prices. Corollary 3.4.6. Suppose that the dynamic risk-measure (ρ t ) t≤T is timeconsistent. Then, Pt (h T ) = P t (h T ) for all t ≤ T .

Dual representation

As mentioned by Cherny [15, Theorem 2.2] and shown in [START_REF] Delbaen | Coherent risk measures on general probability spaces[END_REF], any timeconsistent risk-measure ρ t at time t, restricted to the set of all bounded random variables, is characterized by a family D t of absolutely continuous probability measures such that ρ t (X) = ess sup Q∈Dt E Q (-X|F t ). In the following, we consider the risk-measure ρ on L 0 as defined in this paper. The goal is to understand whether it is possible to get a dual characterization of ρ on the whole set L 0 , at least under some conditions. For X ∈ L 0 , we define

E Q (-X|F t ) as E Q (-X|F t ) = E Q (X -|F t ) -E Q (X + |F t ) with the convention ∞ -∞ = ∞.
We say that a random variable X is F t -bounded from above if X ≤ c t a.s. for some c t ∈ L 0 (R + , F t ). The proofs of the following new contributions are postponed in Appendix. They provide a dual representation of the risk-measure. Proposition 3.4.7. Let (ρ t ) t=0,••• ,T be the coherent risk-measure as defined in Section 3.2. Then, there exists a family D t of absolutely continuous probability measures such that, for every F t -bounded from above random variable X, we have:

ρ t (X) = ess sup Q∈Dt E Q (-X|F t ). (3.4.7) 
Unfortunately, it is unrealistic to expect that (3.4.7) may be extended in general from L ∞ to L 0 , as mentioned by Cherny, [START_REF] Cherny | Pricing with coherent risk[END_REF]. The main problem is about the non negatives random variables as we shall see in the proof of the next proposition. Before, let us see a trivial example where we may meet some difficulties for non negative random variables.

Example 3.4.8. We consider Ω = [0, 1] equipped with the Borel σ-algebra and the Lebesgue measure P . The random variable X(ω) = ω -1 1 (0,1] (ω) is non negative hence acceptable. Let us define the acceptable positions as the closure in L 0 of the random variables Z such that E P (Z) = E P (Z + ) -E P (Z -) ≥ 0. We then define ρ on L 0 as in Section 2, see [START_REF] Lépinette | Super-hedging a European option with a coherent risk-measure and without no-arbitrage condition[END_REF]. As E P (X) = ∞, we deduce that Z α := Xα is acceptable for all α > 0 if (3.4.7) holds. On the other hand,

P (Z α < 0) = 1 -α -1 tends to 1 as α → ∞, which is unrealistic if Z α is acceptable.
Consider Q ∈ D 0 and Y = dQ/dP . Suppose that P (Y > 1) > 0. We then choose α < 0 and β > 0 such that αP (Y > 1) + βP (Y ≤ 1) = 0. Then, X = α1 {Y >1} + β1 {Y ≤1} is acceptable as E P (X) = 0. Therefore, by (3.4

.7), E Q (X) ≥ 0. Actually, E Q (X) = E P (XY ) = E P (αY 1 {Y >1} + βY 1 {Y ≤1} ) ≤ E P (X) = 0 and E Q (X) = 0 if and only if αY 1 {Y >1} +βY 1 {Y ≤1} = X.
In that case Y = 1 on {Y > 1} hence a contradiction. We deduce that Y ≤ 1 a.s.. At last, since Y ≤ 1 a.s., we deduce that Y = 1 a.s.. We then deduce that D 0 = {P }. Also, as another example, consider X(ω) = ω -1 1 (0,α) (ω)+(ω-1) -1 1 (α,1) (ω), ω ∈ Ω. Since E P (X) = ∞ -∞ = ∞, we deduce that X is acceptable. Nevertheless, P (X < 0) = 1α tends to 1 as α → 0, which is clearly unrealistic.

In the following, we denote by A ∞,+ t the set of all acceptable positions at time t which are F t -bounded from above. Proposition 3.4.9. Suppose that A t is the closure of A ∞,+ t + L 0 (R + , F T ) in L 0 and assume that, for some fixed ε > 0, A ∞,+ t contains all the random variables Z which are F t -bounded from above and satisfy P (Z < 0) ≤ ε. Let (ρ t ) t=0,••• ,T be the coherent risk-measure as defined in Section 3.2. Then, there exists a family D t of absolutely continuous probability measures such that we have.

ρ t (X) = ess sup Q∈Dt E Q (-X|F t ), ∀X ∈ L 0 . (3.4.8)
The proof of the proposition above (see Appendix) shows that (3.4.8) holds as soon as it holds for any acceptable position which is the sum of an F t -bounded position plus a non negative one. By Proposition 3.4.7, (3.4.8) holds for any F t -bounded position. Therefore, the difficulty in proving (3.4.8) stems from the non negative random variables.

FTAP and dual description of the risk-hedging prices

We consider the set of all attainable claims R T t between t and T , when starting from the zero initial endowment, i.e.

R t,T :=

T u=t+1 θ u-1 ∆S u : θ u ∈ L 0 (R d , F u ), u ≥ t .
We observe that Pt (0) = (A t,T -R t,T ) ∩ L 0 (R, F t ). In the following, we consider the sets Z t,T := R t,T -A t,T and the sets

A 0 t,T = {X ∈ L 0 (R, F T ) : ρ t (X) = ρ t (-X) = 0}.
Remark 3.4.10. Note that A 0 t,T = A t,T ∩ (-A t,T ). Indeed, first observe that A 0 t,T ⊆ A t,T ∩ (-A t,T ). Reciprocally, if x t,T ∈ A t,T ∩ (-A t,T ), we have:

0 = ρ t (x t,T -x t,T ) ≤ ρ t (x t,T ) + ρ t (-x t,T ) ≤ 0.
This implies ρ t (x t,T ) = ρ t (-x t,T ) = 0 hence x t,T ∈ A 0 t,T . The set Z t,T is the family of all claims that are attainable up to an acceptable position at time t since every attainable claim r t,T ∈ R T t may be written as r t,T = (r t,T -a t,T )+a t,T where a t,T ∈ A t,T is let aside and r t,T -a t,T ∈ Z t,T .

We now formulate intermediate new results that we need to prove the FTAP theorem, which is the first contribution of this section. Theorem 3.4.11. Assume that the risk measure is time-consistent. Suppose that R t,T ∩ A t,T = A 0 t,T . Then, AIP holds and Z t,T is closed in L 0 for every t ≤ T -1.

Theorem 3.4.12. Suppose that the risk-measure is time-consistent. Suppose that NA holds and A t,T ∩ L 0 (R -, F T ) = {0}, for every t ≤ T . Then, we have Z t,T ∩ L 0 (R + , F T ) = {0} and R t,T ∩ A t,T = A 0 t,T for every t. Theorem 3.4.13 (FTAP). Suppose that the risk-measure is time-consistent and A t,T ∩L 0 (R -, F T ) = {0} for every t ≤ T . Then, the following statements are equivalent:

1) NA 2) R t,T ∩ A t,T = A 0 t,T , for every t ≤ T . 3) R 0,T ∩ A 0,T = A 0 0,T . 4) Z t,T ∩ A t,T = A 0 t,T , for every t ≤ T . 5) Z 0,T ∩ A 0,T = A 0 0,T . 6) Z 0,T ∩ A 0,T = A 0 0,T and Z 0,T is closed in L 0 . 7) For all t ≤ T -1, there exists Q = Q t ∼ P with dQ/dP ∈ L ∞ ((0, ∞), F T ) such that (S u ) T u=t is a Q-martingale and, for all t ≤ T -1, for all X such that E Q (X -|F t ) < ∞ a.s., ρ t (X) ≥ -E Q (X|F t ).
Moreover, for all x ∈ A t,T \ A 0 t,T , there exists such a

Q = Q t x such that P(E Q (x|F t ) ̸ = 0) > 0.
The following result is the second main contribution of this section. It provides a dual description of the payoffs that can be super-hedged under NA. To do so, we denote by Q e t (and Q e = Q e 0 ) the set of equivalent martingale measures Q that satisfies ρ t (X) ≥ -E Q (X|F t ), for all X such that E Q (X -|F t ) < ∞ a.s.. We have Q e t ̸ = ∅ under NA. We restrict the payoffs to the class L S (R, F T ) of random variables h T ∈ L 0 (R, F T ) satisfying:

|h T | ≤ c 0 + d i=1 c i S i T , P -a.s.
for some constants c 0 , ..., c d that may depend on h T .

Theorem 3.4.14. Suppose that the risk-measure is time-consistent and we have A t,T ∩ L 0 (R -, F T ) = {0} for every t ≤ T . Consider the following sets:

Γ 0,T := Z 0,T ∩ L S (R, F T ), Θ 0,T := h T ∈ L S (R, F T ), sup Q∈Q e E Q (h T ) ≤ 0 .
Then, under the NA condition, Γ 0,T = Θ 0,T and the minimal risk-hedging price P * 0 (h T ) of any contingent claim h T ∈ L S (R, F T ) is given by

P * 0 (h T ) = sup Q∈Q e E Q (h T ).

Comparison with the No Good Deal condition

We recall that the No Good Deal condition (NGD) of Cherny [START_REF] Cherny | Pricing with coherent risk[END_REF] may be rephrased in our setting as follows:

Definition 3.4.15. The NGD condition holds at any time t ≤ T if there is no X t,T ∈ R t,T such that ρ t (X t,T ) < 0 on a non null set.

In the setting of Cherny, we suppose that

ρ t (X) = ess sup Q t ∈Dt E Q t (-X), (3.4.9)
where D t is a weakly compact subset of L 1 with respect to the σ(L 1 , L ∞ ) topology and we use the definition

E Q t (-X) = E Q t (X -) -E Q t (X + ) with the convention ∞ -∞ = +∞.
Adapting [START_REF] Cherny | Pricing with coherent risk[END_REF]Theorem 3.4], we immediately get the following:

Corollary 3.4.16. Suppose that the risk-measure is given by (3.4.9). Then, the NA condition and the NGD condition are equivalent to the existence of a probability measure Q t ∈ D t such that the price process (S u ) T u=t is a Q tmartingale for all t ≤ T -1.

Appendix: Proofs.

Proof of Theorem 3.3.5.

Proof. We know that the existence of a risk-neutral probability measure Q ∼ P implies AIP. Moreover, suppose that ρ t (z∆S t+1 ) = 0 on F t ∈ F t where z ∈ S(0, 1). Then, by definition of ρ t , 1 Ft z∆S t+1 ≥ 0. As E Q (1 Ft z∆S t+1 ) = 0, we deduce that 1 Ft z∆S t+1 = 0 hence ρ t (-z∆S t+1 ) = 0 on F t . By symmetry, we deduce that SRN holds.

Reciprocally, suppose that AIP and SRN conditions hold. Let

θ t ∈ L 0 (R d , F t ) such that θ t ∆S t+1 ≥ 0 a.s.. Let us write θ t = r t z t where r t ∈ L 0 (R, F t ) and z t ∈ L 0 (S(0, 1), F t ). On the set F t = {r t > 0}, z t ∆S t+1 ≥ 0 hence ess inf Ft (z t ∆S t+1 ) ≥ 0. By the AIP condition, ρ t (z t ∆S t+1 ) ≥ 0. We deduce that ess inf Ft (z t ∆S t+1 ) = 0 = ρ t (z∆S t+1 ).
Under SRN, we deduce that ρ t (-z∆S t+1 ) = 0 hence z∆S t+1 ≥ 0 so that z t ∆S t+1 = 0. By a similar reasoning on the set F t = {r t < 0}, we also get that z t ∆S t+1 = 0 hence θ t ∆S t+1 = 0. We then conclude by [55, Condition (g), p. 73, Section 2.1.1].

Proof of Theorem 3.3.7.

Proof. If λ t-1 ∈ L 0 (R, F t ), g t-1 (λ t-1 z t-1 ∆S t ) = |λ t-1 |g t-1 (ϵ t-1 z t-1 ∆S t ) for some ϵ t-1 ∈ L 0 ({-1, 1}, F t-1 ). We deduce that g t-1 (λ t-1 z t-1 ∆S t ) = 0 on F t-1 . Recall that g t-1 (λ t-1 z t-1 ) = ρ t-1 (λ t-1 z t-1 ∆S t -h t ) by Cash invariance.
Using the triangular inequality, we then deduce on F t-1 that

g t-1 (0) = ρ t-1 (-h t ) ≤ ρ t-1 (-λ t-1 z t-1 ∆S t ) + ρ t-1 (λ t-1 z t-1 ∆S t -h t ) ≤ g t-1 (λ t-1 z t-1 ).
Similarly, we have

g t-1 (λ t-1 z t-1 ) ≤ ρ t-1 (λ t-1 z t-1 ∆S t ) + ρ t-1 (-h t ) = ρ t-1 (-h t ).
We deduce that g t-1 (λ t-1 z t-1 ) = g t-1 (0) and this implies that g t-1 is a constant on the line Rz t-1 . Indeed, on the contrary case, the

F t-1 -measurable set Γ t-1 (ω) = {α ∈ R : g t-1 (αz t-1 ) ̸ = g t-1 (z t-1 )} is non empty on the non null set G t-1 = {ω ∈ Ω : Γ t-1 (ω) ̸ = ∅} ∈ F t-1 .
We then deduce a measurable selection zt ∈ L 0 (R d , F t-1 ) such that zt = α t z t and α t ∈ Γ t-1 on the set G t-1 and we put zt = z t on the complimentary set Ω \ G t-1 . By the first part above, we deduce that g t-1 (z t ) = g t-1 (z t ) a.s., which contradicts the fact that

α t ∈ Γ t-1 on F t-1 .
Proof of Theorem 3.3.8.

Proof.

If λ t-1 ∈ L 0 (R, F t ), g t-1 (λ t-1 z t-1 ∆S t ) = |λ t-1 |g t-1 (ϵ t-1 z t-1 ∆S t ), where ϵ t-1 ∈ L 0 ({-1, 1}, F t-1 ) . Moreover, g t-1 (ϵ t-1 z t-1 ∆S t ) > 0 on F t-1 .
By sub-additivity, we deduce that

|λ t-1 |g t-1 (ϵ t-1 z t-1 ∆S t ) ≤ ρ t-1 (h t ) + g t-1 (λ t-1 z t-1 ). As |λ t-1 | goes to +∞, we conclude that g t-1 (λ t-1 z t-1 ) tends to +∞ on F t-1 . Now, let us suppose that there is a non null set G t-1 of F t-1 such that g t-1 (ω, rz t-1 ) does not converge to +∞ if r → ∞ when ω ∈ G t-1 . Note that ω ∈ G t-1 if and only if there exists m(ω) ∈ R such that, for all n ≥ 1, there exists r n (ω) ≥ n such that g t-1 (ω, r n (ω)) ≤ m(ω). Consider the following set Γ t-1 (ω) = {(m, (r n ) ∞ n=1 ) ∈ R × R N : r n ≥ n and g t (ω, r n ) ≤ m, ∀n ≥ 1}.
The Borel σ-algebra B(R N ) is defined as the smallest topology on R N such that the projection mappings

P n : (r j ) ∞ j=1 → r n , n ≥ 1, are continuous. Therefore, we deduce that Γ t-1 is F t-1 -measurable. As Γ t-1 is non empty on G t-1 , we deduce a F t-1 -measurable selection (m, (r n ) ∞ n=1 ) of Γ t-1 on G t-1 that we extend to the whole space Ω by m(ω) = +∞ and r n (ω) = n, if ω ∈ Ω \ G t-1 . Since the F t-1 -measurable sequence (r n ) ∞
n=1 converges a.s. to +∞, we deduce that lim n→+∞ g t-1 (r n z t-1 ) = +∞ on G t-1 by the first part of the proof. This is in contradiction with the property

g t (ω, r n (ω)) ≤ m(ω), for all n ≥ 1, if ω ∈ G t-1 .
Similarly, by symmetry, we may also prove that lim r→-∞ g t-1 (rz t-1 ) = +∞ on F t . As g t-1 is l.s.c., we finally deduce that g t-1 achieves a minimum on Rz t-1 .

Proof of Corollary 3.3.9.

Proof. For any z ∈ S(0, 1), we have ρ t-1 (z∆S t ) > 0 and ρ t-1 (-z∆S t ) > 0 by definition of F t-1 and z t-1 . By Theorem 3.3.8, there exists r t-1 ∈ L 0 (R + , F t-1 ) such that inf r∈R g t-1 (rz t-1 ) = g t-1 (r t-1 z t-1 ). Notice that, by definition, we have g t-1 (r t-1 z t-1 ) ≤ g t-1 (0) = ρ t-1 (-h t ). On the set {r t-1 > 0}, this is equivalent to

r t-1 z t-1 S t-1 + ρ t-1 z t-1 S t - h t r t-1 ≤ ρ t-1 (-h t ), r t-1 z t-1 S t-1 + ρ t-1 (z t-1 S t ) + ρ t-1 z t-1 S t - h t r t-1 -ρ t-1 (z t-1 S t ) ≤ ρ t-1 (-h t ).
We observe that:

ρ t-1 z t-1 S t - h t r t-1 -ρ t-1 (z t-1 S t ) ≥ - 1 r t-1 ρ t-1 (h t ). Therefore, r t-1 (z t-1 S t-1 + ρ t-1 (z t-1 S t )) ≤ ρ t-1 (-h t ) + ρ t-1 (h t ), i.e. r t-1 ≤ ρ t-1 (-h t ) + ρ t-1 (h t ) ρ t-1 (z t-1 ∆S t ) .
Similarly, on the set {r t-1 < 0}, we deduce that:

-r t-1 ≤ ρ t-1 (-h t ) + ρ t-1 (h t ) ρ t-1 (-z t-1 ∆S t ) .
We finally deduce that, in any case, we have:

|r t-1 | ≤ max |ρ t-1 (-h t ) + ρ t-1 (h t )| ρ t-1 (z t-1 ∆S t ) , |ρ t-1 (-h t ) + ρ t-1 (h t )| ρ t-1 (-z t-1 ∆S t ) = M t-1 < ∞, on F t-1 . At last, we deduce that for each ω ∈ F t-1 : inf x∈R d g t-1 (x) = inf r∈[-M t-1 ,M t-1 ] inf z∈S(0,1) g t-1 (rz) = inf x∈ B(0,M t-1 ) g t-1 (x),
where B(0, M t-1 ) is the closed ball of radius M t-1 and centered at the origin. Since B(0, M t-1 ) is compact and g t-1 is l.s.c., we deduce that g t-1 admits a minimum on B(0, M t-1 ). By Proposition 3.3.6, observe that there exists a measurable version of an argmin, using a measurable selection argument.

Proof of Theorem 3.3.10.

Proof. Suppose first that d = 2. Since ρ t is l.s.c., there exists z t ∈ L 0 (S(0, 1), F t ) such that inf z∈S(0,1) ρ t (z∆S t+1 ) = ρ t (z t ∆S t+1 ). By Corollary 3.3.9 and under SRN, g t attains a minimum on

R 2 when ω ∈ F t = {ρ t (z t ∆S t+1 ) > 0} ∈ F t . Let us now suppose that ω ∈ F c t = {ρ t (z t ∆S t+1 ) = ρ t (-z t ∆S t+1 ) = 0}
. We consider a line that is parallel to the line Rz t . For any

z 1 , z 2 ∈ L 0 (R d , F t ) on that line such that z 1 -z 2 = r t z t ∈ Rz t , r t ∈ L 0 (R, F t ), we have: g t (z 1 ) = ρ t ((z 2 + r t z t )∆S t+1 -h t+1 ) ≤ ρ t (z 2 ∆S t+1 -h t+1 ) + ρ t (r t z t ∆S t+1 ) = g t (z 2 )
By symmetry, we also have:

g t (z 2 ) ≤ g t (z 1 ), hence g t (z 1 ) = g t (z 2 )
. Therefore, g t is constant on any line which is parallel to Rz t . Moreover,

{(ω, z ⊥ t ) ∈ Ω × R 2 : z ⊥ t z t (ω) = 0} ∈ F t ⊗ B(R 2 ).
By measurable selection argument, we may choose

z ⊥ t ∈ L 0 (S(0, 1), F t ) such that the line Rz ⊥ t is orthogonal to Rz t . Since d = 2, for any x ∈ R 2 , there exist λ ∈ R such that x -λz ⊥ t ∈ Rz t .
We then deduce from above that:

inf x∈R 2 g t (x) = inf λ∈R g t (λz ⊥ t ).
On the set {ρ t (z ⊥ t ∆S t+1 ) = 0}, we get that inf λ∈R g t (λz ⊥ t ) = g t (0) by Proposition 3.3.7. On the other hand, on the set {ρ t (z ⊥ t ∆S t+1 ) > 0}, we get that lim |λ|→∞ g t (λz ⊥ t ) = +∞ by Proposition 3.3.8 and SRN, hence g t achieves a minimum on the line Rz ⊥ t . Let us now prove the d-dimensional case by induction. Recall that there exists z t ∈ L 0 (S(0, 1), F t ) such that ρ t (z t ∆S t+1 ) = inf z∈S(0,1) ρ t (z∆S t+1 ). On F t = {ρ t (z t ∆S t+1 ) > 0}, by Corollary 3.3.9 and SRN, g t attains a minimum on R d . On F c t = {ρ t (z t ∆S t+1 ) = 0}, consider a hyperplane I d-1 which is orthogonal to Rz t and admits an orthonormal basis (z 1 , z 2 , ..., z d-1 ) such that for each ω ∈ Ω, ẑ = (z t , z 1 , ..., z d-1 ) is an orthonormal basis for R d . Note that each z i can be chosen in L 0 (S(0, 1), F t ). Indeed, similarly to the case d = 2, we first choose z 1 ∈ L 0 (S(0, 1), F t ) orthogonal to z t . Recursively, for i ∈ {2, ..., d -1}, we have:

{(ω, z i ) ∈ Ω × R d : z i z j (ω) = 0 for all j = 0, ..., i -1} ∈ F t ⊗ B(R d ).
By measurable selection argument, we then choose z i ∈ L 0 (S(0, 1), F t ). We denote by M t the matrix such that ẑi = M t e i , for every i ≥ 1, where

e i = (0, • • • , 1, • • • , 0) ∈ R d .
We recall the change of variable x = M t x where x and x are the coordinates of an arbitrary vector of R d in the basis (e i ) i≥1 and (ẑ i ) i≥1 respectively. The ith column vector of M t coincides with ẑi expressed in the basis (e i ) i≥1 , hence each entry of M t belongs to L 0 (R, F t ) and so do the components of M -1 t . We then define the adapted processes Su = M ′ t S u , for u = t, t + 1. We have:

g t (x) = ρ t (x∆S t+1 -h t+1 ) = ρ t (x∆ St+1 -h t+1 ).
We observe that Su=t,t+1 forms a new market model which also satisfies the NA condition between t and t + 1. Indeed, for any z ∈ S(0, 1), we have:

ρ t (z∆ St+1 ) = ρ t (zM ′ t ∆S t+1 ),
hence ρ t (z∆ St+1 ) = 0 implies that ρ t (-zM ′ t ∆S t+1 ) = 0 by the NA condition satisfied in the market formed by S which, in turn, implies ρ t (-z∆ St+1 ) = 0.

Fix ω and, for any x ∈ R d , consider the orthogonal projection x of x onto I d-1 . We then have g t (x) = g t (x). For x ∈ I d-1 , we denote x = M -1 t x, we have:

x∆S t+1 = x∆ St+1 := d i=1 xi ∆ Si t+1 = d i=2 xi ∆ Si t+1 ,
since the first coordinate of x equals 0 in the new basis. We deduce that:

inf x∈R d g t (x) = inf x∈I d-1 ρ t (x∆S t+1 -h t+1 ) = inf x∈R d-1 ρ t d i=2 xi ∆ Si t+1 -h t+1
This means that we have reduced the optimization problem to a market with only d -1 assets defined by ( S2 , ..., Sd ). As it satisfies the NA condition, we deduce that inf x∈R d g t (x) is attained by induction.

Proof of Theorem 3.3.11.

Proof. Suppose that NA holds. By Theorem 3.3.10, there is z t ∈ L 0 (S(0, 1), F t ) and r t ∈ L 0 (R, F t ) such that P * t = ρ t (r t z t ∆S t+1h t+1 ). Suppose that ρ t (z t ∆S t+1 ) and ρ t (-z t ∆S t+1 ) are both equal to 0. Then, the function g t associated to h t+1 , see (3.3.5), is constant on the line Rz t by Theorem 3.3.7. Therefore, P * t = g t (0) = ρ t (-h t+1 ) > 0. Otherwise, under NA, ρ t (z t ∆S t+1 ) > 0 and ρ t (-z t ∆S t+1 ) > 0. Using triangular inequalities, and the assumption ρ t (h t+1 ) ≤ 0, we then deduce that:

P * t = r t z t S t + ρ t (r t z t S t+1 -h t+1 ), = ρ t (-h t+1 )1 {rt=0} + r t ρ t z t ∆S t+1 - h t+1 r t 1 {rt>0} -r t ρ t -z t ∆S t+1 + h t+1 r t 1 {rt<0} , ≥ ρ t (-h t+1 )1 {rt=0} + r t ρ t (z t ∆S t+1 ) 1 {rt>0} -r t ρ t (-z t ∆S t+1 ) 1 {rt<0} , > 0.
For the reverse implication, let us prove first that AIP holds. We fix h t+1 such that ρ t (-h t+1 ) > 0 and ρ t (h t+1 ) ≤ 0. So, with the function g t associated to h t+1 , see (3.3.5), we have

P * t = P * t (h t+1 ) = inf x∈R g t (x)
> 0 by assumption and g t (rz) > 0 for all r ∈ R and z ∈ S(0, 1). Let us show that the set {zS t + ρ t (zS t+1 ) < 0} is empty for all z ∈ S(0, 1) a.s.. In the contrary case, by measurable selection, we may construct z t ∈ L 0 (R d , F t ) such that we have P(z t S t + ρ t (z t S t+1 ) < 0) > 0. We then define

r t := - ρ t (-h t+1 ) ρ t (z t ∆S t+1 ) 1 {ρt(zt∆S t+1 )<0} ≥ 0.
We have

g t (r t z t ) = r t z t S t + ρ t (r t z t S t+1 -h t+1 ), ≤ r t z t S t + ρ t (r t z t S t+1 ) + ρ t (-h t+1 ), ≤ r t ρ t (z t ∆S t+1 ) + ρ t (-h t+1 ), ≤ ρ t (-h t+1 )1 {ρt(zt∆S t+1 )≥0}.
Therefore, P * t ≤ 0 on the set {ρ t (z t ∆S t+1 ) < 0} in contradiction with P * t > 0.

Let us show that ρ t (-z∆S t+1 ) = 0 if ρ t (z∆S t+1 ) = 0 for any z ∈ S(0, 1). Otherwise, by measurable selection argument, there exists z t ∈ L 0 (S(0, 1),

F t ) such that Λ t := {ρ t (z t ∆S t+1 ) = 0} ∩ {ρ t (-z t ∆S t+1 ) > 0} satisfies P(Λ t ) > 0. If h t+1 = z t ∆S t+1 , then ρ t (-h t+1 ) = ρ t (-z t ∆S t+1 ) > 0 on Λ t . On the complimentary set, we fix h t+1 = γ t > 0, γ t ∈ L 0 ((0, ∞), F t ).
It follows that ρ t (-h t+1 ) > 0. Moreover, ρ t (h t+1 ) = ρ t (z t ∆S t+1 ) = 0 on Λ t and, otherwise, ρ t (h t+1 ) = -γ t < 0. Therefore, ρ t (h t+1 ) ≤ 0. We deduce that P * t (h t+1 ) > 0, by assumption. On the other hand, if r ≥ 1, and ω ∈ Λ t ,

P * t (h t+1 ) ≤ ρ t (rz t ∆S t+1 -z t ∆S t+1 ) = (r -1)ρ t (z t ∆S t+1 ) = 0.
It follows that P * t (h t+1 ) ≤ 0 on Λ t , i.e. a contradiction. We conclude that ρ t (z∆S t+1 ) = 0 if and only if ρ t (-z∆S t+1 ) = 0 for any z ∈ S(0, 1).

At last, it is clear that

P * t (h t+1 ) ≤ g t (0) = ρ t (-h t+1 ). Moreover, for all x ∈ R d , 0 ≤ ρ t (x∆S t+1 ) ≤ ρ t (x∆S t+1 -h t+1 ) + ρ t (h t+1 ).
Taking the infimum in the r.h.s. of this inequality, we get that 0 ≤ P * t (h t+1 ) + ρ t (h t+1 ) and we may conclude.

Proof of Theorem 3.4.7.

Proof. By [START_REF] Acciao | Dynamics convex risk measures[END_REF], [START_REF] Delbaen | Coherent risk measures on general probability spaces[END_REF], there exists

D t such that (3.4.7) holds if X ∈ L ∞ . By homogeneity, it is clear that (3.4.7) still holds if X is F t -bounded, i.e. |X| ≤ c t where c t ∈ L 0 (R + , F t ). Let us show that (3.4.7) still holds for any random variable X such that X ≤ c t a.s. for some c t ∈ L 0 (R + , F t ). Let us first suppose that X is acceptable. Let us define X M = X1 {X≥-M } for any M > 0. Then, X M is F t -bounded a.s.. As X M = X -X1 {X<-M } and -X1 {X<-M } ≥ 0, then X M is acceptable i.e. ρ t (X M ) ≤ 0. By (3.4.7), we deduce that E Q (X M |F t ) ≥ 0 for all Q ∈ D t . Thus, E Q ((X M ) + |F t ) ≥ E Q ((X M ) -|F t ) and, as M → ∞, we get that c t ≥ E Q (X + |F t ) ≥ E Q (X -|F t ) hence ∞ > E Q (X|F t ) ≥ 0. More generally, for any X such that X ≤ c t for some c t ∈ L 0 (R + , F t ), ρ t (X)+X is acceptable hence ρ t (X) ≥ E Q (-X|F t ) for any Q ∈ D t . We deduce that the inequality ρ t (X) ≥ ess sup Q∈Dt E Q (-X|F t ) holds.
For the reverse inequality, note that the random variable

γ M = ess sup Q∈Dt E Q (-X|F t ) + X M ∈ [-c t + X M , X M ] is F t -bounded hence (3.4.7
) holds for γ M , as seen above. Moreover, we have

E Q (-γ M |F t ) ≤ E Q (X|F t ) -X M = E Q (X1 X<-M |F t ) ≤ 0. We deduce by (3.4.7) that ρ t-1 (γ M ) ≤ 0. Using the Cash invariance property, we deduce that ρ t-1 (X M ) ≤ ess sup Q∈Dt E Q (-X|F t ). As lim M →∞ X M = X, we then deduce that ρ t-1 (X) ≤ lim inf M →∞ ρ t-1 (X M ) ≤ ess sup Q∈Dt E Q (-X|F t
) so that we may conclude that the equality (3.4.7) holds for any random variable that are F t -bounded form above.

Proof. Suppose that Z = X + ϵ + where X is F t -bounded from above and acceptable and ϵ + ≥ 0 a.s.. Then, D t exists by Proposition 3.4.7 and, for all

Q ∈ D t , E Q (Z|F t ) ≥ E Q (X|F t ) ≥ 0.
As ρ t (Z) + Z admits the same form than Z, we deduce that ρ t (Z) + Z admits non negative conditional expectations under

Q ∈ D t . Therefore, ρ t (Z) ≥ E Q (-Z|F t ) for all Z ∈ D t hence ρ t (Z) ≥ ess sup Q∈Dt E Q (-Z|F t ), at least when ρ t (Z) > -∞. Oth- erwise, when ρ t (Z) = -∞, Z α = -α + Z is acceptable for all α > 0, hence E Q (Z α |F t ) ≥ 0, i.e. E Q (Z|F t ) ≥ α for all α > 0. It follows that E Q (Z -|F t ) -E Q (Z + |F t ) ≤ -α and finally, as α → ∞, we deduce that ρ t (Z) = ess sup Q∈Dt E Q (-Z|F t ) = -∞.
Consider an acceptable position Z. Then, by assumption,

Z = lim sup n Z n where Z n is of the form Z n = X n +ϵ + n with ϵ + n ≥ 0 a.s. and X n is F t -bounded from above. Note that sup k≤n≤m X n is still F t -bounded from above for all m ≥ k ≥ 1. Since sup n≥k Z n ≥ sup k≤n≤m Z n ≥ sup k≤n≤m X n , for all m ≥ k, we deduce that sup n≥k Z n is of the form X k + ϵ +
k where X k is F t -bounded from above and acceptable while ϵ + k ≥ 0 a.s.. It follows that any acceptable position is of the form Z = lim ↓ Z n where Z n is of the form Z n = X n +ϵ + n and X n is F t -bounded from above and acceptable while ϵ + n ≥ 0 a.s.. As Z ≤ Z n , we deduce that ρ t (Z) ≥ ρ t (Z n ) ≥ ess sup Q∈Dt E Q (-Z n |F t ) by virtue of the inequality we have shown in the first part. As (-Z n ) is non decreasing we finally deduce that ρ

t (Z) ≥ E Q (-Z|F t ) for any Q ∈ D t , when n → ∞. It follows that ρ t (Z) ≥ ess sup Q∈Dt E Q (-Z|F t ).
Moreover, suppose that (3.4.8) holds for any acceptable position Z n of the form Z n = X n + ϵ + n where X n is F t -bounded from above and acceptable and ϵ + n ≥ 0 a.s.. By lower semi-continuity,

ρ t (Z) ≤ lim inf n ρ t (Z n ) = lim inf n ess sup Q∈Dt E Q (-Z n |F t ). As Z ≤ Z n , E Q (-Z n |F t ) ≤ E Q (-Z|F t )
, and we deduce the inequality

ρ t (Z) ≤ ess sup Q∈Dt E Q (-Z|F t ).
We then conclude that (3.4.8) holds for every acceptable position Z and, finally, for every X ∈ L 0 as ρ t (X) + X is acceptable.

It remains to show that (3.4.8) holds for

Z = X+ϵ + ∈ A ∞,+ t +L 0 (R + , F T ). To get it, it is sufficient to prove that ρ t (Z) ≤ ess sup Q∈Dt E Q (-Z|F t ). Let us define Z n = X + ϵ + 1 {ϵ + ≤n} + α n 1 {ϵ + >n} ∈ A ∞,+ t where α n > 0 is chosen large enough in such a way that P (α n < ϵ + ) < ε. Then, (α n -ϵ + )1 {ϵ + >n} is acceptable by hypothesis for P ((α n -ϵ + )1 {ϵ + >n} < 0) ≤ P (α n < ϵ + ) < ε. Since Z n → Z a.s., we deduce that ρ t (Z) ≤ lim inf n ρ t (Z n ). Recall that ρ t (Z n ) = sup Q∈Dt E Q (-Z n |F t ) by Proposition 3.4.7. Hence, ρ t (Z n ) ≤ ess sup Q∈Dt E Q (-Z|F t ) + ess sup Q∈Dt E Q (Z -Z n |F t ). Moreover, since Z n -Z is F t -bounded from above, we have ess sup Q∈Dt E Q (Z -Z n |F t ) = ρ t (Z n -Z) = ρ t ((α n -ϵ + )1 {ϵ + >n }) ≤ 0.
We then deduce that ρ t (Z) ≤ ess sup Q∈Dt E Q (-Z|F t ) and the conclusion follows.

Proof of Theorem 3.4.11.

Proof. Consider θ t ∈ L 0 (R d , F t ). By Theorem 3.3.2, it suffices to show that ρ t (θ t ∆S t+1 ) ≥ 0 a.s.. Otherwise, the set Λ t = {ρ t (θ t ∆S t+1 ) < 0} admits a positive probability and θ t ∆S t+1 1 Λt ∈ R t,T ∩ A t,T = A 0 t,T . It follows that ρ t (θ t ∆S t+1 1 Λt ) = 0 hence a contradiction. Therefore, AIP holds.
Let us show that Z t,T ⊆ Z t,T . In the one step model, let us suppose that

γ n = θ n T -1 ∆S T -ϵ n T -1,T ∈ Z T -1,T converges to γ ∞ ∈ L 0 (R, F T ) in probability. We suppose that ϵ n T -1,T ∈ A T -1,T . We need to show that γ ∞ ∈ Z T -1,T . On the F T -1 -measurable set Λ T -1 := {lim inf n |θ n T -1 | < ∞}, by [55, Lemma 2.1.2], we may assume w.l.o.g. that θ n T -1 is convergent to some θ ∞ T -1 hence ϵ n T -1,T is also convergent and, finally, γ ∞ 1 Λ T -1 ∈ Z T -1,T . Otherwise, on Ω \ Λ T -1 , we use the normalized sequences, θn T -1 := θ n T -1 /(|θ n T -1 | + 1), εn T -1,T := ϵ n T -1,T /(|θ n T -1 | + 1).
By [55, Lemma 2.1.2], we may assume that a.s. θn

T -1 → θ∞ T -1 , εn T -1,T → ε∞ T -1,T and θ∞ T -1 ∆S T -ε∞ T -1,T = 0 a.s.. Note that | θ∞ T -1 | = 1 a.s.. As θ∞ T -1 ∆S T is acceptable (ϵ ∞ T -1,T ∈ A T -1,T ) then θ∞ T -1 ∆S T ∈ A 0 t,T
by assumption. We follow the recursive arguments on the dimension of [START_REF] Kabanov | A Teachers' note on no-arbitrage criteria[END_REF].

Since | θ∞ T -1 | = 1, there exists a partition of Ω \ Λ T -1 into d disjoint subsets G i T -1 ∈ F T -1 such that θ∞,i T -1 ̸ = 0 on G i T -1 . Define on G i T -1 , θn T -1 := θ n T -1 -β n T -1 θ∞ T -1
where

β n T -1 := θ n,i T -1 / θ∞,i T -1 . Observe that γ n = θn T -1 ∆S T -εn T -1,T where the position εn T -1,T = ϵ n T -1,T -β n T -1 θ∞ T -1 ∆S T is acceptable since ± θ∞ T -1 ∆S T are acceptable. As θn,i T -1 = 0 on G i T -1 , we repeat the entire procedure on each G i T -1 with the new expression γ n = θn T -1 ∆S T -εn T -1,T such

that the number of components of θn

T -1 is reduced by one. We then conclude by recursion on the number of non-zero components since the conclusion is trivial if all the coordinates vanish.

We now show the result in the multi-step models by induction. Fix some s ∈ {t, . . . , T -1}. We show that Z T s+1 ⊆ Z T s+1 implies the same property for s instead of s + 1.

Since AIP holds, we get that

Z T s+1 ∩ L 0 (R + , F s+1 ) = {0} hence Z T s+1 ⊆ Z T s+1 implies that Z T s+1 ∩ L 1 (R + , F s+1 ) = {0}. Using the Hahn-Banach sep- aration theorem in L 1 , we deduce Q (s+1) ≪ P with dQ (s+1) dP ∈ L ∞ such that ρ s+1 := E P ( dQ (s+1) dP |F s+1 ) = 1 a.s., (S u ) u≥s+1 is a martingale under Q (s+1) and E Q (a s+1,T |F s+1 ) ≥ 0 for all a s+1,T ∈ A s+1,T such that E Q (|a s+1,T ||F s+1 ) < ∞ a.s.. Suppose that γ n = T u=s+1 θ n u-1 ∆S u -ϵ n s,T ∈ Z s,T converges to γ ∞ ∈ L 0 (R, F T ).
We suppose that ϵ n s,T ∈ A s,T . By Lemma 3.4.2, ϵ n s,T = ϵ n s,s+1 + ϵ n s+1,T , where ϵ n s,s+1 ∈ A s,s+1 and ϵ n s+1,T ∈ A s+1,T . As before, on the

F s -measurable set Λ s := {lim inf n |θ n s | < ∞}, we may assume w.l.o.g. that θ n s converges to θ ∞ s . Therefore, on Λ s , T u=s+2 θ n u-1 ∆S u -ϵ n s,T = γ n -θ n s ∆S s+1 → γ ∞ -θ ∞ s ∆S s+1 .
On the subset Λs+1 := {lim inf n |ϵ n s,s+1 | = ∞} ∩ Λ s ∈ F s+1 , we use the normalization procedure as previously, i.e. we divide by |ϵ n s,s+1 |, up to a subsequence, and, by the induction hypothesis, we obtain that

T u=s+2 θn u-1 ∆S u -εs+1,T = εs,s+1 ,
where εs+1,T ∈ A s+1,T and εs,s+1 ∈ A s,s+1 satisfies |ε s,s+1 | = 1 a.s.. Moreover, by assumption, we may show that

E Q (s+1) T u=s+2 θn u-1 ∆S u |F s+1 = 0. Moreover, still by assumption, E Q (s+1) (ε s+1,T |F s+1 ) ≥ 0. We deduce that εs,s+1 = E Q (s+1) (ε s,s+1 |F s+1 ) ≤ 0. Therefore, εs,s+1 = -1 hence ρ s (ε s,s+1 ) = ρ s (-1) = 1,
which is in contradiction with ρ s (ε s,s+1 ) ≤ 0. Therefore, we may suppose, on Λ s , that ϵ n s,s+1 converges a.s. to some ϵ s,s+1 ∈ A s,s+1 . By the induction hypothesis, we then deduce that T u=s+2 θ n u-1 ∆S uϵ n s+1,T also converges to an element of Z T s+1 and we conclude that γ ∞ 1 Λs ∈ Z T s . On Ω \ Λ s , we use the normalisation procedure as before, and deduce the equality

T u=s+1 θ∞ u-1 ∆S u -ε∞ s,T = 0 a.s.
for some θ∞ 

u ∈ L 0 (R, F u ), u ∈
s ∆S s+1 ) ≤ ρ s (ε ∞ s,s+1
) ≤ 0 hence θ∞ s ∆S s+1 ∈ A 0 s,T by the assumption. Using the one step arguments based on the elimination of non-zero components of the sequence θ n s , we may replace θ n s by θn s such that θn s converges. We then repeat the same arguments on the set Λ s to conclude that γ ∞ 1 Ω\Λs ∈ Z T s . Proof of Theorem 3.4.12.

Proof. Let us consider W t,T ∈ R t,T ∩ A t,T Then, W t,T is of the form:

W t,T = T s=t+1 θ s-1 ∆S s = T s=t+1 a s-1,s , where θ s-1 ∈ L 0 (R, F s-1 ) and a s-1,s ∈ A s-1,s , for all s = t + 1, • • • , T . It follows that: θ t ∆S t+1 -a t,t+1 + T s=t+2 (θ s-1 ∆S s -a s-1,s ) = 0.
(3.5.10) Therefore, p t = θ t ∆S t+1a t,t+1 is a (direct) price at time s = t + 1 for the zero claim. Under AIP condition, we get that θ t ∆S t+1 ≥ a t,t+1 hence ρ t (θ t ∆S t+1 ) ≤ 0. As ρ t (θ t ∆S t+1 ) ≥ 0 by AIP, ρ t (θ t ∆S t+1 ) = 0 and, by SRN, we get that ρ t (θ t ∆S t+1 ) = ρ t (-θ t ∆S t+1 ) = 0. We then deduce that -p t ∈ A t,T ∩ L 0 (R -, F T ) = {0} hence p t = 0 and θ t ∆S t+1 = a t,t+1 ∈ A 0 t,T . The equality (3.5.10) may be rewritten as:

θ t+1 ∆S t+2 -a t+1,t+2 + T s=t+3 (θ s-1 ∆S s -a s-1,s ) = 0. (3.5.11)
By induction, we finally deduce that θ s ∆S t+1 = a s,s+1 ∈ A 0 s,s+1 for all s ≥ t. By Remark 3.4.10, we have W t,T ∈ A 0 t,T . Consider now ϵ + T ∈ Z t,T ∩L 0 (R + , F T ). We may write ϵ + T = r t,T -a t,T where r t,T ∈ R t,T and a t,T ∈ A t,T . We get that r t,T = a t,T + ϵ

+ T ∈ R t,T ∩ A t,T = A 0 t,T hence -r t,T ∈ A t,T . It follows that -ϵ + T ∈ A t,T ∩ L 0 (R -, F T ) = {0}. Proof of Theorem 3.4.13.
Proof. Suppose that 1) holds. By Theorem 3.4.12, we deduce that 3) holds. Note that 2) and 3) are equivalent since the risk measure is time-consistent. Suppose that 3) holds. Since -A t,T ⊆ Z t,T , it follows that A 0 t,T ⊆ Z t,T ∩A t,T . Reciprocally, consider x t,T = W t,Ta t,T ∈ Z t,T ∩ A t,T , where W t,T ∈ R t,T and a t,T ∈ A t,T , then W t,T ∈ A t,T hence W t,T ∈ A 0 t,T by 2). It follows that x t,T ∈ (-A t,T ) and we conclude that Z t,T ∩ A t,T = A 0 t,T . Moreover, by Theorem 3.4.11, Z t,T is closed in probability hence 4) holds. Note that 4) and 5) are equivalent since the risk measure is time-consistent.

Assume that 4) holds. The existence of Q in 7) holds by standard arguments based on the Hahn-Banach separation theorem. In particular, NA holds under P ′ such that P ′ ∼ P . We suppose w.l.o.g that S t is integrable under P for every t.

If x ∈ L 1 (R, F T ) ∩ (A t,T \ A 0 t,T ), x / ∈ Z t,T ∩ L 1 (R, F T ). By the Hahn-Banach separation theorem, there exists p x ∈ L ∞ (R, F T ) and c ∈ R such that E(p x X) < c < E(xp x ), ∀X ∈ Z t,T . As Z t,T is a cone, we get that E(p x X) ≤ 0 for all X ∈ Z t,T and since -L 0 (R + , F T ) ⊆ Z t,T ,
we deduce that p x ≥ 0 a.s.. With X = 0, we get that E(xp x ) > 0 and, as R t,T is a vector space, E(p x X) = 0 for all X ∈ R t,T . As P (p x > 0) > 0, we may renormalize and suppose that

||p x || ∞ = 1. Let us consider the family G = (Γ x ) x∈I where I = L 1 (R, F T ) ∩ (A t,T \ A 0 t,T ) and Γ x = {p x > 0}. For any Γ ∈ F T such that P (Γ) > 0, x = 1 Γ ∈ I since A t,T ∩ L 0 (R -, F T ) = {0}. Therefore, E(xp x ) = E(1 Γ p x ) > 0 implies that P (Γ x ∩ Γ) > 0. By Lemma 2.1.3 in [55], we deduce a countable family (x i ) ∞ i=1 of I such that Ω = ∞ i=1 Γ x i . We define p = ∞ i=1 2 -i p x i .
We have p > 0 a.s and we renormalize p such that p ∈ L ∞ (R + , F T ) and E P (p) = 1. We define Q ∼ P such that dQ/dP = p.

We have E(pX) = 0 for all X ∈ R t,T . Therefore, with

F u-1 ∈ F u-1 , 1 F u-1 ∆S u ∈ R t,T if u ≥ t + 1, so E Q (1 F u-1 ∆S u ) = 0. This implies that E Q (∆S u |F u-1 ) = 0, i.e (S u ) T u=t is a Q-martingale. Moreover, by the construction of Q above, for all x ∈ A t,T ∩ L 1 (R, F T ),
we have E Q (x|F t ) ≥ 0. By truncature and homogeneity, we may extend this property to every

x such that E(|x||F t ) < ∞ a.s. since x/(1 + E(|x||F t )) is integrable. Finally, this also holds if E Q (x -|F t ) < ∞ a.s.. At last, since ρ t (X) + X ∈ A t,T , we may conclude that ρ t (X) ≥ -E Q (X|F t ), for all X such that E Q (X -|F t ) < ∞ a.s.. If x ∈ A t,T \ A 0 t,T , it suffices to consider the probability measure Q x = 1 2 (Q + Q) where Q is defined by its density d Q/dP = p x . Indeed, since E Q(x) > 0 and E Q (x) ≥ 0, this implies that E Qx (x) > 0 hence P(E Qx (x|F t ) ̸ = 0) > 0.
Assume that 7) holds. For some martingale measure

Q ∼ P we have ρ t (θ t ∆S t+1 ) ≥ -E Q (θ t ∆S t+1 |F t ) = 0, hence AIP holds. If ρ t (θ t ∆S t+1 ) = 0 on some non null set Λ t , we have ρ t (θ t ∆S t+1 1 Λt ) = 0. This implies θ t ∆S t+1 1 Λt is acceptable. Moreover, if θ t ∆S t+1 1 Λt / ∈ A 0 t,T , E Qx (θ t ∆S t+1 1 Λt |F t ) ̸ = 0 by 7)
, which yields contradiction . Therefore, ρ t (θ t ∆S t+1 ) = ρ t (-θ t ∆S t+1 ) = 0 on Λ t , i.e. SRN holds, and we deduce that 1) holds. Note that 5) and 6) are equivalent by Theorem 3.4.11.

Proof of Theorem 3.4.14.

Proof. By Theorems 3.4.11 and 3.4.13, we know that Γ 0,T is closed in probability. For any h T ∈ Γ 0,T , there exists

T t=0 θ t-1 ∆S t ∈ R 0,T such that ρ 0 T t=0 θ t-1 ∆S t -h T ≤ 0. Since, h T ∈ L S ,
we suppose w.l.o.g that S T and h T are integrable under P .

Set γ t := t t=0 θ t-1 ∆S th T for every t ≤ T . For any Q ∈ Q e ̸ = ∅, we have:

|γ T | ≤ T -1 t=0 θ t-1 ∆S t + |θ T -1 ||∆S T | + |h T |, hence: E Q (|γ T ||F T -1 ) ≤ T -1 t=0 θ t-1 ∆S t + |θ T -1 |E Q (|∆S T ||F T -1 ) + E Q (|h T ||F T -1 ) < ∞ a.s..
By Statement 7) of Theorem 3.4.13 and the martingale property, we deduce that:

ρ T -1 (γ T ) ≥ -E Q (γ T -1 |F T -1 ).
(3.5.12)

At time T -2, by time-consistency of the risk measure and (3.5.12), we get that

ρ T -2 (γ T ) = ρ T -2 (-ρ T -1 (γ T )) ≥ ρ T -2 (E Q (γ T -1 |F T -1 )).
Moreover,

E Q (|E Q (γ T -1 |F T -1 )||F T -2 ) ≤ E Q (|γ T -1 ||F T -2
) and

E Q (|γ T -1 ||F T -2 ) ≤ T -2 t=0 θ t-1 ∆S t + |θ T -2 |E Q (|∆S T -1 ||F T -2 ) +E Q (|h T ||F T -2 ) < ∞ a.s..
We deduce by Statement 7) of Theorem 3.4.13 that

ρ T -2 (E Q (γ T -1 |F T -1 )) ≥ -E Q (γ T -1 |F T -2 ).
By the martingale property, we finally deduce that

ρ T -2 (γ T ) ≥ -E Q (γ T -2 |F T -2 ).
Recursively, we finally obtain:

0 ≥ ρ 0 T t=0 θ t-1 ∆S t -h T ≥ -E Q (γ 1 |F 0 ) ≥ -E Q (θ 0 ∆S 1 -h T ) ≥ E Q (h T ).
(3.5.13)

This implies Γ 0,T ⊂ Θ 0,T . Reciprocally, assume that there is ĥT

∈ Θ 0,T \Γ 0,T . Since ĥT ∈ L S (R, F T ), ĥT is integrable under Q ∈ Q e . Moreover, since Γ 0,T is closed in probability, Γ0,T := Γ 0,T ∩ L 1 Q (R, F T ) is closed in L 1 . By the Hahn-Banach separation theorem, as ĥT / ∈ Γ0,T , we deduce the existence of Y ∈ L ∞ (R, F T ) such that: sup X∈ Γ0,T E Q (Y X) < E Q (Y ĥT ).
Let H be the density Q w.r.t P , i.e. H = dQ/dP . We have:

sup

X∈ Γ0,T E(HY X) < E(HY ĥT ).
Since Γ0,T is a cone, we deduce that E(HY X) ≤ 0 for all X ∈ Γ0,T . Moreover, E(HY ĥT ) > 0, HY ≥ 0 a.s. and E(HY ) > 0. Therefore, we deduce that Ĥ := HY /E(HY ) defines the density of a probability measure Q ∈ Q a .

We define H ϵ := ϵH + (1ϵ) Ĥ. Since E( Ĥĥ T ) > 0, we may choose ϵ ∈ (0, 1) small enough so that E(H ϵ ĥT ) > 0. Since H ϵ defines the density of a probability measure

Q ϵ ∈ Q e , we should have E Q ϵ ĥT = E(H ϵ ĥT ) ≤ 0,
as ĥT ∈ Θ 0,T . This yields a contradiction. We conclude that Γ 0,T = Θ 0,T . At last, P 0 is a super-hedging price for h T if and only if h T -P 0 ∈ Γ 0,T . By the first part, we deduce that

P * 0 ≥ sup Q∈Q e E Q (h T ). Suppose there exists ϵ > 0 such that P * 0 -ϵ ≥ sup Q∈Q e E Q (h T ). Then, (h T -P * 0 + ϵ) ∈ Θ 0,T . Since Θ 0,T = Γ 0,T , there exists W 0,T ∈ R 0,T such that ρ 0 (W 0,T -h T + P * 0 -ϵ) ≤ 0. This implies that P * 0 -ϵ ≥ ρ 0 (W 0,T -h T ). Since ρ 0 (W 0,T -h T )
is a superhedging price for h T , we also deduce that ρ 0 (W 0,Th T ) ≥ P * 0 which yields a contradiction. We conclude that

P * 0 = sup Q∈Q e E Q (h T ).

Introduction

The problem of characterizing the set of all possible prices hedging a European claim has been extensively studied in the literature under classical no-arbitrage conditions. In discrete-time and without transaction costs, a dual characterization is deduced through dual elements, the equivalent martingale measures, whose existence characterizes the well known no-arbitrage condition NA, see the FTAP theorem of [START_REF] Dalang | Equivalent martingale measures and no-arbitrage in stochastic securities market models[END_REF]. In continuous time, similar characterizations are obtained under the NFLVR condition of Delbaen and Schachermayer [START_REF] Delbaen | A general version of the fundamental theorem of asset pricing[END_REF], [START_REF] Delbaen | The fundamental theorem of asset pricing for unbounded stochastic processes[END_REF] for instance. The Black and Scholes model [START_REF] Black | The pricing of options and corporate liabilities[END_REF] is the canonical example of complete market in mathematical finance such that the equivalent probability measure is unique. The advantage of this simple model is that hedging prices are explicitly given. Unfortunately, for incomplete market models, it is difficult to establish numerical procedures to estimate the super-hedging prices from the dual characterization. This is why it is usual to specify a particular martingale measure, see [START_REF] Schweizer | On the minimal martingale measure and the Föllmer-Schweizer decomposition[END_REF], [START_REF] Fritelli | The minimal entropy martingale measure and the valuation problem in incomplete markets[END_REF] and [START_REF] Jeanblanc | Minimal f q -martingale measures for exponential Lévy processes[END_REF].

In presence of transaction costs, the financial market is a priori incomplete and computing the infimum super-hedging prices remains a challenge. In the Kabanov model with transaction costs [START_REF] Kabanov | Markets with transaction costs. Mathematical Theory[END_REF], the main result is a dual characterization [START_REF] Kabanov | Markets with transaction costs. Mathematical Theory[END_REF][Theorem 3.3] through the so-called consistent price systems (CPS) that characterize various kinds of no-arbitrage conditions for these models, see [START_REF] Kabanov | Markets with transaction costs. Mathematical Theory[END_REF][Section 3.2]. Unfortunately, it is difficult to characterize the consistent price systems and deduce a numerical estimation of the prices. A first attempt (and the only one) is proposed in [START_REF] Löhne | An algorithm for calculating the set of superhedging portfolios in markets with transaction costs[END_REF] for finite probability space. More generally, vector optimization methods are proposed for risk measures as in [START_REF] Meimanjanov | Computation of systemic risk measures: a mixed-integer linear programming approach[END_REF] still for finite probability spaces. Also, various asymptotic results are obtained for small transaction costs by Schachermayer [START_REF] Schachermayer | The asymptotic theory of transaction costs[END_REF], [START_REF] Guasoni | The fundamental theorem of asset pricing for continuous processes under small transaction costs[END_REF] and others [START_REF] Kabanov | Mean square error for the Leland-Lott hedging strategy: convex pay-off[END_REF], [START_REF] Pergamenshchikov | Approximate hedging problem with transaction costs in stochastic volatility markets[END_REF], still for conic models.

For non conic models, in the presence of an order book for instance, more generally with convex cost, or with fixed costs, few results are available in the literature. Well known papers such as [START_REF] Jouini | Arbitrage and viability in securities with fixed trading costs[END_REF], [START_REF] Pennanen | Hedging of claims with physical delivery under convex transaction costs[END_REF], [START_REF] Penannen | Existence of solutions in non-convex dynamic programming and optimal investment[END_REF] , [START_REF] Lépinette | Arbitrage theory for non convex financial market models[END_REF], [START_REF] Lépinette | General financial market model defined by a liquidation value process[END_REF] only formulate characterizations of the super-hedging prices. The very question we aim to address in this paper is how to numerically compute the infimum super-hedging cost of a European claim.

To do so, we first provide a dynamic programming principle in a very general setting in discrete time, see Theorem 4.3.1. Notice that we do not need any no-arbitrage condition to formulate it. Secondly, we propose some conditions under which it is possible to implement the dynamic programming principle. Actually, we shall see that we only need to have an insight on the conditional supports of the increments of the process describing the financial market, mainly the price and volume process.

Our main results are formulated under some weak non-arbitrage conditions such that the minimal super-hedging costs are non negative for non negative payoffs, as in [START_REF] Carassus | Pricing without no-arbitrage condition in discrete-time[END_REF], [START_REF] Baptiste | Pricing without martingale measure[END_REF]. These conditions avoid the unrealistic case of infinitely negative prices. The main problem is how to compute an essential supremum and an essential infimum. We show that they may coincide with pointwise supremum and infimum respectively. This is sufficient to compute backwardly the hedging costs as solutions to pointwise (random) optimization problem.

The paper is organized as follows. The financial market is defined by a cost process, which is not necessarily convex, as described in Section 4.2. Then, the dynamic programming principle is established in Section 4.3, see Theorem 4.3.1. The last Section 4.4 is devoted to the implementation of the dynamic programming principle. Precisely, we formulate results that ensure the propagation of the lower semicontinuity to the minimal hedging cost at any time, e.g. with respect to the spot price, see Theorem 4.4.5, Corollary 4.4.9, Theorem 4.4.15, Theorem 4.4.17 and Theorem 4.4.27. In Subsection 4.4.3, fixed costs models are considered. Theorem 4.4.21 also states the propagation of the lower semicontinuity that allows to numerically compute the minimal hedging cost backwardly. It is formulated under a no-arbitrage condition on the enlarged market only composed of linear transaction costs in the spirit of [START_REF] Lépinette | Arbitrage theory for non convex financial market models[END_REF] but also [START_REF] Penannen | Existence of solutions in non-convex dynamic programming and optimal investment[END_REF] in the context of utility maximization.

Financial market model defined by a cost process

We consider a stochastic basis in discrete-time (Ω, (F t ) T t=0 , P ) where the filtration (F t ) T t=0 is complete, i.e. F 0 contains the negligible sets for P . By convention, we also define

F -1 := F 0 . If A is a random subset of R d , d ≥ 1,
we denote by L 0 (A, R d ) the family of (equivalence classes of) all random variables X (defined up to a negligible set) such that X(ω) ∈ A(ω), P (ω) a.s. It is well known that, if A(ω) ̸ = ∅ P(ω) a.s. and if A is graph-measurable, see [START_REF] Molchanov | Theory of Random Sets[END_REF], then L 0 (A, R d ) ̸ = ∅. When using this property, we refer it by saying by measurable selection arguments, as it is usual to do when claiming the existence of X ∈ L 0 (R, F) such that X ∈ A a.s.. We also adopt the following notations. We denote by intA the interior of any A ⊆ R d and clA is its closure. The positive dual of A is defined as A * := {x ∈ R d : ax ≥ 0, ∀a ∈ A} where ax designates the Euclidean scalar product of R d . At last, if r ≥ 0, we denote by B(0, r) ⊆ R d the closed ball of all x ∈ R d such that the norm satisfies |x| ≤ r.

We consider a financial market where transaction costs are charged when the agents buy or sell risky assets. The typical case is a model defined by a bond whose discounted price is S 1 = 1 and d -1 risky assets that may be traded at some bid and ask discounted prices S b and S a , respectively, when selling or buying. We refer the readers to the huge literature on models with transactions costs, in particular see [START_REF] Kabanov | Markets with transaction costs. Mathematical Theory[END_REF].

Our general model is defined by a set-valued process (G t ) T t=0 adapted to the filtration (F t ) T t=0 . Precisely, we suppose that for all

t ≤ T , G t is F t - measurable in the sense of the graph Graph(G t ) = {(ω, x) : x ∈ G t (ω)} that belongs to F t ⊗ B(R d ), where B(R d ) is the Borel σ-algebra on R d and d ≥ 1 is the number of assets.
We suppose that G t (ω) is closed for every ω ∈ Ω and

G t (ω) + R d + ⊆ G t (ω), for all t ≤ T . The cost value process C = (C t ) T t=0 associated to G is defined as: C t (z) = inf{α ∈ R : αe 1 -z ∈ G t } = min{α ∈ R : αe 1 -z ∈ G t }, z ∈ R d .
We suppose that the right hand side in the definition above is non empty a.s. and -e 1 does not belong to G t a.s. where

e 1 = (1, 0, • • • , 0) ∈ R d . Moreover, by assumption, C t (z)e 1 -z ∈ G t a.s. for all z ∈ R d . Note that C t (z)
is the minimal amount of cash one needs to get the financial position z ∈ R d at time t. In particular, we suppose that C t (0) = 0.

Similarly, we may define the liquidation value process L = ( L t ) T t=0 associated to G as:

L t (z) := sup {α ∈ R : z -αe 1 ∈ G t } , z ∈ R d .
We observe that L t (z) = -C t (-z) and G t = {z ∈ R d : L t (z) ≥ 0} so that our model is equivalently defined by L or C. Note that G t is closed if and only if L t (z) is upper semicontinuous (u.s.c.) in z, see [START_REF] Lépinette | Arbitrage theory for non convex financial market models[END_REF], or equivalently C t (z) is lower semicontinuous (l.s.c.) in z. Naturally, C t (z) = C t (S t , z) depends on the available quantities and prices for the risky assets, described by an exogenous vector-valued F t -measurable random variable S t of R m + , m ≥ d, and on the quantities z ∈ R d to be traded. Here, we suppose that m ≥ d as an asset may be described by several prices and quantities offered by the market, e.g. bid and ask prices, or several pair of bid and ask prices of an order book and the associated quantities offered by the market.

In the following, we suppose the following assumptions on the cost process C. For any t ≤ T , the cost function C t is a lower-semi continuous Borel

function defined on R m × R d such that C t (s, 0) = 0, ∀s ∈ R m + , C t (s, x + λe 1 ) = C t (s, x) + λ, λ ∈ R, x ∈ R d , s ∈ R m + (cash invariance), C T (s, x 2 ) ≥ C T (s, x 1 ), ∀x 1 , x 2 s.t. x 2 -x 1 ∈ R d + (C T is increasing w.r.t. R d + ), |C t (s, x)| ≤ h t (s, x),
where h t is a deterministic continuous function. Note that C T is increasing w.r.t. R d + is equivalent to G T + R d + ⊆ G T .
Moreover, if δ is an increasing bijection from [0, +∞] to [0, +∞] such that δ(0) = 0 and δ(∞) = ∞, we say that C t is positively super δ-homogeneous if the following property holds:

C t (s, λx) ≥ δ(λ)C t (s, x), ∀λ ≥ 1, s ∈ R m + , x ∈ R d .
A classical case is when δ(x) = x and the positive homogeneous property holds, e.g. for models with proportional transaction costs, as the solvency set process G is a positive cone, see [START_REF] Kabanov | Markets with transaction costs. Mathematical Theory[END_REF]. More generally, if C t (s, x) is convex in x and C t (s, 0) = 0, it is clear that C t is positively super δ-homogeneous with δ(x) = x. Actually, in our definition, the domain of validity λ ≥ 1 may be replaced by λ ≥ r where r > 0 is arbitrarily chosen. In that case, all the results we formulate in this paper are still valid. We now present a typical model that satisfies our assumptions: Example 4.2.1 (Order book). Suppose that the financial market is defined by an order book. In that case, we define S t , at any time t, as

S t = ((S b,i,j t , S a,i,j t ), (N b,i,j t , N a,i,j t )) i=1,••• ,d,j=1,••• ,k ,
where k is the order book's depth and, for each i = 1, • • • , d, S b,i,j t , S a,i,j t are the bid and ask prices for asset i in the j-th line of the order book and (N b,i,j t , N a,i,j t ) ∈ (0, ∞) 2 are the available quantities for these bid and ask prices. We suppose that N b,i,k t = N a,i,k t = +∞ so that the market is somehow liquid. By definition of the order book, we have

S b,i,1 t > S b,i,2 t > • • • > S b,i,k t and S a,i,1 t < S a,i,2 t < • • • < S a,i,k t .
We then define the cost function as

C t (x) = x 1 + d i=2 C i t (x i ), x = (x 1 , • • • , x d ) ∈ R d .
With the convention j r=1 = 0 if j = 0, we consider the cumulated quantities Q a,i,j t := j r=1 N a,i,r t , j = 0, • • • , k, the same for Q b,i,j t . We have:

C i t (y) = j r=1 N a,i,r t S a,i,r t + (y -Q a,i,j t )S a,i,j+1 t , if Q a,i,j t < y ≤ Q a,i,j+1 t , C i t (y) = - j r=1 N b,i,r t S b,i,r t + (y + Q b,i,j t )S b,i,j+1 t , if -Q b,i,j+1 t < y ≤ -Q b,i,j t .
Note that the first expression of C i t (z) above corresponds to the case where we buy y > 0 units of asset i. The second expression is C i t (y) = -L i t (-y) when y < 0 so that -C i t (y) is the liquidation value of the position -y, i.e. by selling the quantity -y > 0 at the bid prices. We observe that C i t (y) is a convex function in y satisfying the cash invariance, such that C i t (0) = 0 and, at last, we show that C i t is positively super homogeneous as defined above. To do so, we first consider y > 0 and we show that

C i t (λy) ≥ λC i t (y) for λ > 1 by induction on the interval ]Q a,i,j t , Q a,i,j+1 t ] that contains y. For j = 1, C i t (y) = S a,i,1 t y and C i t (λy) = C i t (Q a,i,j λ t ) + (λy -Q a,i,j λ t )S a,i,j λ +1 t where j λ is such that λy ∈]Q a,i,j λ t , Q a,i,j λ +1 t ]. As S a,i,1 t is the smallest ask price, we get that C i t (Q a,i,j λ t ) ≥ Q a,i,j λ t S a,i,1 t and (y -Q a,i,j λ t )S a,i,j λ +1 t ≥ (λy -Q a,i,j λ t )S a,i,1 t
. We deduce that C i t (λy) ≥ λyS a,i,1 t hence C i t (λy) ≥ λC i t (y). More generally, if y ∈ ]Q a,i,j t , Q a,i,j+1 t ], λy > λQ a,i,j t hence C t (λy) ≥ C t (λQ a,i,j t ) + (λy -λQ a,i,j t )S a,i, j t

where j is such that Q a,i, j t < λQ a,i,j t ≤ Q a,i, j+1 t . Indeed, the extra quantity λy -λQ a,i,j t is bought at a price larger than or equal to the maximal ask price S a,i, j t when buying the quantity λQ a,i,j t . As λQ a,i,j t > Q a,i,j t , we deduce that j ≥ j + 1. Using the induction hypothesis, we have C i t (λQ a,i,j t ) ≥ λC i t (Q a,i,j t ) and we deduce that y). Therefore, we also get that C i t (λy) ≥ λC i t (y) for λ > 1 and y < 0. We finally conclude that the cost process C satisfies the conditions we impose above. In particular, notice that C t (s, z) is continuous in (s, z). △ A portfolio process is by definition a stochastic process (V t ) T t=-1 where V -1 ∈ Re 1 is the initial endowment expressed in cash that we may convert immediately into V 0 ∈ R d at time t = 0. By definition, we suppose that

C i t (λy) ≥ λC i t (Q a,i,j t ) + (λy -λQ a,i,j t )S a,i,j+1 t = λC i t (y). By the same reasoning, L i t (λy) ≤ λ L i t (y) if y > 0 with L i t (y) = -C i t (-
∆V t = V t -V t-1 ∈ -G t , a.s., t = 0, • • • , T.
This means that any position V t-1 = V t +(-∆V t ) may be changed into the new position V t , letting aside the residual part (-∆V t ) that can be liquidated without any debt, i.e. L t (-∆V t ) ≥ 0.

Dynamic programming principle for pricing

Let ξ ∈ L 0 (R d , F T ) be a contingent claim. Our goal is to characterize the set of all portfolio processes (V t ) T t=-1 such that V T = ξ, as defined in the last section. We are mainly interested by the infimum cost one needs to hedge ξ, i.e. the infimum value of the initial capitals V -1 e 1 ∈ R among the portfolios (V t ) T t=-1 replicating ξ.

In the following, we use the notation z = (z1 , z 2 , ..., z d ) ∈ R d and we denote z (2) = (z 2 , ..., z d ). We shall heavily use the notion of F t -measurable conditional essential supremum (resp. infimum) of a family of random variables, i.e. the smallest (resp. largest) F t -measurable random variable that dominates (resp. is dominated by) the family with respect to the natural order between [-∞, ∞]-valued random variables, i.e. X ≤ Y if P (X ≤ Y ) = 1, see [55, Section 5.3.1].

The one step hedging problem

Recall that V T -1 ≥ G T V T by definition of a portfolio process. Then, the hedging problem

V T = ξ 1 is equivalent at time T -1 to: L T (V T -1 -ξ) ≥ 0 ⇐⇒ V 1 T -1 ≥ ξ 1 -L T ((0, V (2) 
T -1 )), ⇐⇒ V 1 T -1 ≥ ess sup F T -1 ξ 1 -L T ((0, V (2) 
T -1 -ξ (2) )) , ⇐⇒ V 1 T -1 ≥ ess sup F T -1 ξ 1 + C T ((0, ξ (2) -V (2) 
T -1 )) , ⇐⇒ V 1 T -1 ≥ F ξ T -1 (V (2) 
T -1 ),

where

F ξ T -1 (y) := ess sup F T -1 ξ 1 + C T ((0, ξ (2) -y)) . (4.3.1)
By virtue of Proposition 4.5.7 in Appendix, we may suppose that 

F ξ T -1 (ω, y) is jointly F T -1 ⊗ B(R d-1 )-measurable, l.

The multi-step hedging problem

We denote by P t (ξ) the set of all portfolio processes starting at time t ≤ T that replicates ξ at the terminal date T :

R t (ξ) := (V s ) T s=t , -∆V s ∈ L 0 (G s , F s ), ∀s ≥ t + 1, V T = ξ .
The set of replicating prices of ξ at time t is

P t (ξ) := V t = (V 1 t , V (2) 
t ) : (V s ) T s=t ∈ R t (ξ) .
The infimum replicating cost is then defined as:

c t (ξ) := ess inf Ft {C t (V t ), V t ∈ P t (ξ)} .
By the previous section, we know that V T -1 ∈ P T -1 (ξ) if and only if

V 1 T -1 ≥ ess sup F T -1 ξ 1 + C T (0, ξ (2) -V (2) 
T -1 ) a.s.

Similarly, V T -2 ∈ R T -2 (ξ) if and only if there exists V

T -1 ∈ L 0 (R d-1 , F T -1 ) such that V 1 T -2 ≥ ess sup F T -2 ess sup F T -1 ξ 1 + C T (0, ξ (2) -V (2) 
T -1 ) + C T -1 (0, V (2) 
T -1 -V (2) 
T -2 ) .

By the tower property satisfied by the conditional essential supremum, we deduce that

V T -2 ∈ R T -2 (ξ) if and only if there is V (2) T -1 ∈ L 0 (R d-1 , F T -1 ) such that V 1 T -2 ≥ ess sup F T -2 ξ 1 + C T (0, ξ (2) -V (2) 
T -1 ) + C T -1 (0, V (2) 
T -1 -V

T -2 ) .

Recursively, we get that V t ∈ P t (ξ) if and only if, for some andV (2) T = ξ (2) , we have

V (2) s ∈ L 0 (R d-1 , F s ), s = t + 1, • • • , T -1,
V 1 t ≥ ess sup Ft ξ 1 + T s=t+1 C s (0, V (2) s -V (2) 
s-1 ) .

In the following, for

u ≤ T -1, ξ u-1 ∈ L 0 (R d , F u-1
), and ξ ∈ L 0 (R d , F T ), we introduce the sets

Π T u (ξ u-1 , ξ) := {ξ (2) u-1 } × Π T -1 s=u L 0 (R d-1 , F s ) × {ξ (2) } of all families (V (2) 
s ) t+1 s=u-1 such that V

(2)

u-1 = ξ (2) u-1 , V (2) 
s ∈ L 0 (R d-1 , F s ) for all s = u, • • • , T -1 and V (2) T = ξ (2) . We set Π T u (ξ) := Π T u (0, ξ) = Π T u (ξ u-1 , ξ) when ξ (2) u-1 = 0. When u = T , we set Π T T (ξ T -1 , ξ) := {ξ (2) 
T -1 } × {ξ (2) }. Therefore, the infimum replicating cost at time 0 is given by

c 0 (ξ) = ess inf F 0 V 2 ∈Π T 0 (ξ) ess sup F 0 ξ 1 + T s=0 C s (0, V 2 s -V 2 s-1 ) . For 0 ≤ t ≤ T and V t-1 ∈ L 0 (R d , F t ), we define γ ξ t (V t-1
) as:

γ ξ t (V t-1 ) := ess inf Ft V (2) ∈Π T t (V t-1 ,ξ) ess sup Ft ξ 1 + T s=t C s (0, V (2) s -V (2) 
s-1 ) .

Note that γ ξ t (V t-1 ) is the infimum cost to replicate the payoff ξ when starting from the initial risky position (0, V

t-1 ) at time t. Observe that γ ξ t (V t-1 ) does not depend on the first component V 1 t-1 . Moreover,

γ ξ T (V T -1 ) = ξ 1 + C T (0, ξ (2) -V (2) 
T -1 ). As

G T + R d + ⊆ G T , we also observe that γ ξ T (V T -1 ) ≥ γ 0 T (V T -1
). At last, observe that c 0 (ξ) = γ ξ 0 (0). Therefore, the main goal of our paper is to study the random functions (γ ξ t ) t=0,1,••• ,T and to propose conditions under which it is possible to compute them backwardly so that we may estimate c 0 (ξ). The main contribution of this section is the following:

Theorem 4.3.1 (Dynamic Programming Principle). For any 0 ≤ t ≤ T -1 and V t-1 ∈ L 0 (R d , F t-1 ), we have γ ξ t (V t-1 ) = ess inf Ft Vt∈L 0 (R d ,Ft) ess sup Ft C t (0, V (2) t -V (2) 
t-1 ) + γ ξ t+1 (V t ) . (4.3.2)
Proof. We denote the right hand side of (4.3.2) by γξ t (V t-1 ). We first verify (4.3.2) for t

= T -1. Recall that γ ξ T (V T -1 ) = ξ 1 + C T (0, ξ (2) -V (2) 
T -1 ) if V T -1 belongs to L 0 (R d , F T -1 ). It is clear that (4.3.2) holds for t = T -1 by definition of γ ξ T -1 (V T -1 )
. By induction, let us show that (4.3.2) holds at time t if this holds at time t + 1. Let us define

f t (V t-1 , V t ) := ess sup Ft C t (0, V (2) t -V (2) t-1 ) + γ ξ t+1 (V t ) , t ≤ T -1.
We observe that the collection of random variables

Γ t = {f t (V t-1 , V t ) : V t ∈ L 0 (R d , F t )} is directed downward, i.e. if f j t = f t (V t-1 , V j t ) ∈ Γ t , j = 1, 2, then there exists f t ∈ Γ t such that f t ≤ f 1 t ∧ f 2 t .
Indeed, to see it, it suffices to consider

f t = f t (V t-1 , V t ) where V t = V 1 t 1 {f 1 t ≤f 2 t } + V 2 t 1 {f 1 t >f 2 t } . Therefore, there exists a sequence (V n t ) n≥1 ∈ L 0 (R d , F t ) such that γξ t (V t-1 ) = inf n f t (V t-1 , V n t ), see [55, Section 5.3.1]. We deduce for any ϵ > 0, the existence of Ṽt ∈ L 0 (R d , F t ) such that γξ t (V t-1 ) + ϵ ≥ f t (V (2) 
t-1 , Ṽ

t ). Similarly, by forward iteration, using the induction hypothesis γ ξ r ( Ṽr-1 ) = γξ r ( Ṽr-1 ), r ≥ t + 1, we obtain the existence of Ṽr ∈ L 0 (R d , F r ) such that γ ξ r ( Ṽr-1 )

+ ϵ ≥ f r ( Ṽ (2) r-1 , Ṽ (2) r ), for all r = t + 1, • • • , T -1. With Ṽt-1 = V t-1 and ṼT = ξ, we deduce that γξ t (V t-1 ) + ϵT ≥ ess sup Ft ξ 1 + T s=t C s (0, Ṽ (2) 
s - Ṽ (2) s-1 ) ≥ γ ξ t (V t-1 ).
As ϵ goes to 0, we conclude that γξ t (V t-1 ) ≥ γ ξ t (V t-1 ) . The reverse inequality is easily obtained by induction and using the assumption that γξ r and γ ξ t coincide if r ≥ t with the tower property. The conclusion follows.

Computational feasibility of the dynamic programming principle

As the term C t (0, V

t -V (2) 
t-1 ) in (4.3.2) is F t -measurable, it is sufficient to consider the conditional supremum θ ξ t (V t ) := ess sup Ft γ ξ t+1 (V t ) to compute the essential supremum of (4.3.2). In the following, we shall use the following notations:

D ξ t (V t-1 , V t ) = C t ((0, V (2) t 
-V

(2)

t-1 )) + θ ξ t (V t ), (4.4.3) 
D ξ t (S t , V t-1 , V t ) = C t (S t , (0, V (2) t 
-V

(2)

t-1 )) + θ ξ t (S t , V t ). (4.4.4)
The second notation is used when we stress the dependence on S t .

Computational feasibility for convex costs

The following first result ensures the propagation of the lower semicontinuity and convexity of the random function γ ξ t+1 to γ ξ t as we shall see in Theorem 4.4.5. This is a crucial property to compute pointwise the essential infimum in (4.3.2). Proposition 4.4.1. Suppose that there exists a random F t+1 -measurable lower semi-continuous function γξ t+1 defined on R d such that γ ξ t+1 (V t ) = γξ t+1 (V t ) for all V t ∈ L 0 (R d , F t ). Then, there exists a random F t -measurable lower semi-continuous function θξ t defined on R d such that

θ ξ t (V t ) = θξ t (V t ) for all V t ∈ L 0 (R d , F t ). Moreover, the random function y → θξ t (y) is a.s. convex if y → γξ t+1 (y) is a.s. convex.
Proof. We consider the random function

f (z) = z 1 + γξ t+1 ((0, z (2) )) = z 1 + f ((0, z (2) )), z ∈ R d .
We have

γ ξ t+1 (V t ) = f ((0, V (2) 
t )) so it suffices to apply Proposition 4.5.7. In order to numerically compute the minimal costs, we need to impose the finiteness of γ ξ t (V t-1 ), i.e. γ ξ t (V t-1 ) > -∞, at any time t, and for all V t-1 ∈ L 0 (R d , F t-1 ). This is why we introduce the following condition: Definition 4.4.2. We say that the financial market satisfies the Absence of Early Profit condition (AEP) if, at any time t ≤ T , and for all 1.) Let us comment the condition AEP. Suppose that AEP does not hold, i.e. there is

V t ∈ L 0 (R d , F t ), γ 0 t (V t ) > -∞ a.s..
V t ∈ L 0 (R d , F t ) such that Λ t = {γ 0 t (V t ) = -∞} satisfies P (Λ t ) > 0.
Any arbitrarily chosen amount of cash -n < 0 allows to hedge the zero payoff at time t on Λ t when starting from the initial position (0, V 2 t ) by definition of γ 0 t (V t ) = -∞. Then, at time t, we may obtain an arbitrarily large profit on Λ t as follows: We write 0 = ((0, V 2 t )ne 1 ) 1 Λt + a n t-1 where

a n t-1 = (ne 1 -(0, V 2 t
)) 1 Λt . The position (0, V 2 t )ne 1 allows to get the zero claim at time T . Moreover, L t (a n t-1 ) = n1 Λt + L t ((0, V 2 t ))1 Λt tends to +∞ as n → ∞ on Λ t , i.e. it is possible to make an early profit at time t, as large as possible.

2.) If

ξ ∈ L 0 (R d + , F T ), then γ ξ t (V t-1 ) ≥ γ 0 t (V t-1 ) > -∞ under AEP. 3.
) Under Assumptions 4 and 5 below, condition AEP holds by Lemma 4.5.22. △ Assumption 1. The payoff ξ is hedgeable, i.e. there exists a portfolio process

(V ξ u ) T u=0 such that ξ = V ξ T . Lemma 4.4.4. Under Assumption 1, γ ξ t (V t-1 ) < ∞ for all V t-1 ∈ L 0 (R d , F t ). Proof. We observe that the amount of capital α t = C t (V ξ t -(0, V (2) 
t-1 )) allows one to get the position

V ξ t -(0, V (2) 
t-1 ). Therefore, starting from the initial position (0, V

t-1 ), the capital C t (V ξ t -(0, V (2) 
t-1 )) is enough to get V ξ t and then ξ at time T since V ξ T = ξ. We then deduce that

γ ξ t (V t-1 ) ≤ α t ≤ h t (S t , V ξ t -(0, V (2) 
t-1 )) < ∞.

The following theorem states that convexity and lower semicontinuity propagates backwardly from γ ξ t+1 to γ ξ t . Theorem 4.4.5. Suppose that Assumption 1 and condition AEP hold. Suppose that there exists a random

F t+1 -normal convex integrand γξ t+1 defined on R d such that γ ξ t+1 (V t ) = γξ t+1 (V t ) for all V t ∈ L 0 (R d , F t ).
Suppose that the cost function C t (s, z) is convex in z. Then, there exists a random F tnormal convex integrand γξ t defined on R d such that γ ξ t (V t-1 ) = γξ t (V t-1 ) for all V t-1 ∈ L 0 (R d , F t ) and we have:

γξ t (v t-1 ) = inf y∈R d C t (0, y (2) -v (2) 
t-1 ) + θξ t (y) ,

where θξ t is given by Proposition 4.4.1. In particular, γξ t (ω, .) ∈ R a.s. thus continuous a.s.

Proof. By Proposition 4.4.1, we deduce that θ ξ t (V t ) = θξ t (V t ) a.s. for every

V t ∈ L 0 (R d , F t ) where θξ t is an F t -normal convex integrand. Therefore, Dt (v t-1 , v t ) := C t (0, v (2) t -v (2) t-1 ) + θξ t (v t ) is an F t -normal integrand, convex in (v t-1 , v t )
. By Lemma 4.5.5, we have γξ

t (V t-1 ) = γ ξ t (V t-1 ) a.s. for any V t-1 ∈ L 0 (R d , F t ).
We claim that the function defined by γξ 

t (v t-1 ) is F t ⊗ B(R d )-measurable. Indeed,
(V T -1 ) = ξ 1 + C T (0, ξ (2) -V (2) 
T -1 )) is l.s.c. and convex in V T -1 , we deduce that Theorem 4.4.5 applies backwardly step by step. In particular, it is possible to compute γ ξ t (v t-1 ) at any time t as a ω-wise infimum. △

In the following, we consider conditions under which it is possible to compute ω-wise the essential supremum θ ξ t . The main ingredient is the knowledge of the conditional support supp Ft S t+1 of S t+1 knowing F t . Recall that supp Ft S t+1 is the smallest F t -measurable random closed set that contains S t+1 (ω) a.s., see [START_REF] Mansour | Conditional interior and conditional closure of a random sets[END_REF]. 

Assumption 2. For each t ≤ T -1,
defined on R m × R d such that γ ξ t+1 (V t ) = γξ t+1 (S t+1 , V t ) for all V t ∈ L 0 (R d , F t ). Then, θ ξ t (V t ) = sup z∈supp F t S t+1 γξ t+1 (z, V t ). Moreover, under
Assumption 2, there exists a function θξ

t (s, v) defined on (s, v) ∈ R m × R d , which is l.s.c. in v, such that θ ξ t (V t ) = θξ t (S t , V t ) for all V t ∈ L 0 (R d , F t )
and we have:

θξ t (s, v) := sup m γξ t+1 (α m (s), v) (s, v) ∈ R m × R d . At last, θξ t (s, v) is l.s.c. in (s, v) if the functions (α m ) m≥1 are continuous and, if γξ t+1 (s, v) is convex in v, then θξ t (s, v) is convex in v.
Proof. 

defined on R m × R d such that γ ξ t+1 (V t ) = γξ t+1 (S t+1 , V t ) for all V t ∈ L 0 (R d , F t ).
Then, under Assumption 3 , there exists a Borel function θξ

t (s, v) defined on (s, v) ∈ R m × R d such that θ ξ t (V t ) = θξ t (S t , V t ) for all V t ∈ L 0 (R d , F t )
and we have:

θξ t (s, v) := sup m γξ t+1 (α m (s), v) (s, v) ∈ R m × R d .
Proof. 

(s, v) is convex in v. Then, γ ξ t (V t-1 ) = γξ t (S t , V t-1 ) where γξ t (s, v) is an F t -normal integrand, convex in v. Moreover, γξ t (s, v) = inf y∈R d C t (s, (0, y (2) -v (2) )) + sup m γξ t+1 (α m (s), y) .
Proof. Under our assumptions, 

θ ξ t (V t ) = θξ t (S t , V t ) for all V t ∈ L 0 (R d , F t )
(s, v) is convex in v if γξ t+1 (s, v) is. As C t (s, y) is also convex in y, we deduce that D ξ t (y, v) = C t (s, (0, y (2) -v (2)
)) + θξ t (s, y) is convex in (y, v). Now, by arguing similarly to the proof of Theorem 4.4.5, under AEP, γξ t (v t-1 ) is a real-valued convex function a.s.

Computational feasibility under strong AIP noarbitrage condition

The results of Section 4.4.1 are not a priori sufficient to compute backwardly θ ξ t-1 as we need γ ξ t (s, v) be l.s.c. in s, see Proposition 4.4.7. This is why, we introduce the following conditions. Assumption 4. The payoff function ξ is of the form ξ = g(S T ), where g ∈ R d

+ is continuous. Moreover, ξ is hedgeable, i.e. there exists a portfolio process (V ξ u ) T u=0 such that ξ = V ξ T . Assumption 5. The conditional support is such that supp Ft S t+1 = ϕ t (S t ) where ϕ t is a set-valued lower hemicontinuous function, see Definition 4.5.11, with compact values such that ϕ t (S t ) ⊆ B(0, R t (S t )) where R t is a continuous function on R m .

Note that under Assumption 2, ϕ t (S t ) = cl{α m (S t ) : m ≥ 1} defines a set-valued lower hemicontinuous function if the functions (α m ) m≥1 are continuous, see Lemma 4.5.15. Definition 4.4.10. We say that the condition AIP holds at time t if the minimal cost c t (0) = γ 0 t (0) of the European zero claim ξ = 0 is 0 at time t ≤ T . We say that AIP holds if AIP holds at any time.

The condition AIP has been introduced for the first time in the paper [START_REF] Baptiste | Pricing without martingale measure[END_REF]. This is a weak no-arbitrage condition which is clearly satisfied in the real financial markets i.e. the price of a non negative payoff is non negative. Lemma 4.4.11. Suppose that the cost functions are either sub-additive or super-additive. Then, AIP implies AEP.

Proof. We prove it in the case where the cost function is sub-additive, the supper-additive case is similar. Suppose that AIP holds and C t (s, v) is subadditive in v. For any V t , Ṽt ∈ L 0 (R d , F t ), we have:

D 0 t (S t , V t , Ṽt ) = C t (S t , Ṽt -V t ) + θ 0 t (S t , Ṽt ), ≥ C t (S t , Ṽt ) + θ 0 t (S t , Ṽt ) -C t (S t , V t ), = D 0 t (S t , 0, Ṽt ) -C t (S t , V t ). Under AIP, D 0 t (S t , 0, Ṽt ) ≥ 0 hence D 0 t (S t , V t , Ṽt ) ≥ -C t (S t , V t ). We deduce that γ 0 t (V t ) = ess inf Ṽt D 0 t (S t , V t , Ṽt ) ≥ -C t (S t , V t ) > -∞.
Definition 4.4.12. We say that the condition SAIP (Strong AIP condition) holds at time t if AIP holds at time t and, for any Z t ∈ L 0 (R d , F t ), we have D 0 t (S t , 0, Z t ) = 0 if and only if Z

(2) t = 0 a.s.. We say that SAIP holds if SAIP holds at any time.

Recall that D 0 t (S t , 0, Z t ) is given by (4.4.4) and it is the minimal cost expressed in cash that is needed at time t to hedge the zero payoff when we start from the initial strategy

V t = (θ 0 t (Z t ), Z (2) 
t ), initial value of a portfolio process (V u ) t≤u≤T such that V T = 0. Therefore, the condition SAIP states that the minimal cost of the zero payoff is 0 at time t and this minimal cost is only attained by the zero strategy V t = 0. This is intuitively clear as soon as any non null transaction implies positive costs.

The following proposition shows that the classical Robust No Arbitrage NA r ([55, Chapter 3 ]) used to characterize the super hedging prices in the Kabanov model with proportional transaction costs is stronger than the SAIP condition.

Proposition 4.4.13. Suppose that int G * t ̸ = ∅ for any t ≤ T . Then, NA r implies SAIP.

Proof. Recall that NA r is equivalent to the existence of a martingale (K s ) s≤T such that

K s ∈ int G * s , [55, Theorem 3.2.1]. Consider Z T -1 ∈ L 0 (R d , F T -1 ). As D T -1 (0, Z T -1 ) = D T -1 (0, (0, Z (2) 
T -1 )), we may suppose that Z T -1 = (0, Z

T -1 ). By the definition of C u , there exists gu ∈ L 0 (G u , F u ), u = T -1, T , such that:

C T -1 ((0, Z (2) 
T -1 ))e 1 -g T -1 = (0, Z (2) 
T -1 ) C T ((0, -Z (2) 
T -1 ))e 1 -gT = (0, -Z

T -1 ).

Adding these equalities, we get that D

T -1 (0, Z T -1 )e 1 = g T -1 + g T for some g T ∈ L 0 (G T , F T ), see (4.4.3). So, we get that K T D T -1 (0, Z T -1 )e 1 ≥ K T g T -1
and, taking the generalized conditional expectation w.r.t

F T -1 , we deduce that K T -1 D T -1 (0, Z T -1 )e 1 ≥ K T -1 g T -1 ≥ 0. Since K T -1 e 1 = K 1 T -1 > 0, AIP holds at time T -1. Moreover, g T -1 ̸ = 0 a.s. as soon as Z (2) T -1 ̸ = 0. Since K T -1 ∈ int G *
T -1 , we finally deduce that

K T -1 D 0 T -1 (S t , 0, Z T -1 )e 1 ≥ K T -1 g T -1 > 0 as soon as Z (2) 
T -1 ̸ = 0, which means that SAIP holds at time T -1.

Suppose that we have already shown SAIP for s ≥ t + 1. For a given

Z t ∈ L 0 (R d , F t ), we consider g t ∈ L 0 (G t , F t ) such that C t ((0, Z (2) t ))e 1 -g t = (0, Z (2) 
t ).

(4.4.5)

Since AIP holds at time t + 1, by Lemma 4.4.11, we have γ t+1 (Z t ) > -∞ under AEP. Since the family

{D 0 t+1 (Z t , Z t+1 ), Z t+1 ∈ L 0 (R d , F t+1 )} is directed downward, we deduce the existence of a sequence Z n t+1 ∈ L 0 (R d , F t+1 ), n ∈ N such that γ 0 t+1 (Z t ) = ess inf Z t+1 ∈L 0 (R d ,F t+1 ) D 0 t+1 (Z t , Z t+1 ) = inf n D 0 t+1 (Z t , Z n t+1 ) > -∞ a.s.
We deduce that, for any ϵ > 0, there exists

Z ϵ t+1 ∈ L 0 (R d , F t+1 ) such that γ 0 t+1 (Z t ) + ϵ ≥ D 0 t+1 (Z t , Z ϵ t+1
). Proceeding forward with the induction hypothesis, we construct a sequence

g ϵ s ∈ L 0 (G s , F s ), s ≥ t + 1, such that (D 0 t (0, Z t ) + ϵT )e 1 = g t + T s=t+1 g ϵ s .
Therefore, multiplying by K T ∈ G * T and then taking the (generalized) conditional expectation knowing F T -1 , we get that

K T (D 0 t (0, Z t ) + ϵT )e 1 ≥ K T g t + T -1 s=t+1 g ϵ s , K T -1 (D 0 t (0, Z t ) + ϵT )e 1 ≥ K T -1 g t + T -1 s=t+1 g ϵ s .
By successive iterations, we finally get that K t (D 0 t (0, Z t ) + ϵT )e 1 ≥ K t g t . Since g t does not depend on ϵ, see its definition in (4.4.5), we deduce as ϵ → 0, that K t D 0 t (0, Z t )e 1 ≥ K t g t ≥ 0 and K t D 0 t (0, Z t )e 1 > 0 if g t ̸ = 0 when Z (2) t ̸ = 0. Therefore, SAIP holds at time t and we may conclude.

The following result is the last main contribution of this section: It states that the minimal cost function γ ξ t is a l.s.c. function of S t and V t-1 , i.e. γ ξ t inherits from the lower-semicontinuity of γ ξ t+1 , under Assumption 4 and 5, if SAIP holds as we shall see. We introduce the notation

S d-1 (0, 1) = {z ∈ R d : z 1 = 0 and |z| = 1}.
The following Lemma will be used in our next Theorem. Proof. We define g(x) := clf (x)1 O c (x) + f (x)1 O (x). As clf ≤ f and O is open, we deduce that g is l.s.c. and g ≤ f . By definition of clf , we have g ≤ clf . This implies that f (x) ≤ clf (x) ≤ f (x) for any x ∈ O. The conclusion follows.

Theorem 4.4.15. Suppose that C t is positively super δ-homogeneous. Suppose that there exists a F t+1 -normal integrand γξ t+1 defined on To obtain φt , first observe that

Ω × R m × R d such that γ ξ t+1 (V t ) = γξ t+1 (S t+1 , V t ) for all V t ∈ L 0 (R d , F t ).
D ξ t (s, v t-1 , v t ) = C t (s, (0, v (2) 
t -v (2) 
γ ξ t (V t-1 ) ≤ D ξ t (s, v t-1 , 0) hence we get that γ ξ t (V t-1 ) = γξ t (S t , V t-1 ) where γξ t (s, v t-1 ) = inf vt∈Kt(s,v t-1 ) D ξ t (s, v t-1 , v t ) and K t (s, v t-1 ) = v t ∈ R d : D ξ t (s, v t-1 , v t ) ≤ D ξ t (s, v t-1 , 0) . Since C T is increasing w.r.t. R d + , we deduce that D ξ t (s, v t-1 , v t ) ≥ D 0 t (s, v t-1 , v t ). Moreover, D 0 t (s, v t-1 , v t ) = C t (s, (0, v (2) 
t -v

(2)

t-1 ))+θ 0 t (s, v t ) ≥ C t (s, (0, -v (2) 
t-1 ))+D 0 t (s, 0, v t ) in the case where C t is super-additive and, if C t is sub-additive, we have

D 0 t (s, v t-1 , v t ) = C t (s, (0, v (2) 
t -v

(2)

t-1 ))+θ 0 t (s, v t ) ≥ -C t (s, (0, v (2) 
t-1 ))+D 0 t (s, 0, v t ).

As C t is dominated by a continuous function by hypothesis, we get that The following result asserts that the SAIP condition and the condition inf z∈S d-1 (0,1) D 0 t (S t , 0, z) > 0, both with AIP, are actually equivalent. Theorem 4.4.16. Assume that Assumption 4 holds. Suppose that either Assumption 5 holds or the cost functions C t (s, z) are convex in z. Suppose that the cost functions C t (s, z) are l.s.c. in (s, z) and C t (s, z) are either superadditive or sub-additive, for any t ≤ T . Then, the following statements are equivalent:

D 0 t (s, v t-1 , v t ) ≥ ht (s, v t-1 ) + D 0 t (s, 0, v t )
1.) SAIP.

2.) AIP holds and inf z∈S d-1 (0,1) D 0 t (S t , 0, z) > 0 a.s.. Proof. Let us show that 1.) implies 2.). Suppose first that Assumption 5 holds. As

γ 0 T (Z T ) = C T (0, -Z (2) 
T ) is F T -normal integrand, we deduce by Proposition 4.4.1 that

θ 0 T -1 (Z T -1 ) is F T -1 -normal integrand. Therefore, the function D 0 T -1 (S T -1 , Z T -2 , Z T -1 ) is F T -1 -normal integrand.
Then by lowersemicontinuity on the compact set S d-1 (0, 1) and by a measurable selection argument, there exists ẐT-1 At last, if the cost functions are convex, recall that AEP holds by Lemma 4.4.11. Then, it suffices to apply Theorem 4.4.5 and Proposition 4.4.1 to deduce that for fixed S t ∈ L 0 (R d , F t ), D 0 t (S t , 0, z) is F t -normal integrand as a function of z so that we may conclude similarly.

∈ L 0 (R d , F T -1 ) such that inf z∈S d-1 (0,1) D 0 T -1 (S T -1 , 0, z) = D 0 T -1 (S T -1 , 0, ẐT -1 ) 
T -2 (Z T -2 ) is F T -1 - normal integrand. Therefore, D 0 T -2 (S T -2 , Z T -3 , Z T -2 ) is F T -2 -
Let us show that 2.) implies 1.) Suppose that D 0 t (S t , 0, Z t ) = 0 for some Z t ∈ L 0 (R d \ {0}, F t ). By Lemma 4.5.20,

D 0 t (S t , 0, Z t ) ≥ δ(|Z t |)D 0 t (S t , 0, Z t /|Z t |) ≥ δ(|Z t |) inf z∈S d-1 (0,1) D 0 t (S t , 0, z) > 0.
This yields a contradiction hence the conclusion follows under Assumption 5.

We then conclude that, under SAIP, the dynamic programming principle allows to compute γξ t backwardly so that it is possible to deduce the minimal hedging price c 0 (ξ) = γ ξ 0 (0).

Theorem 4.4.17. Assume that Assumption 4 and Assumption 5 hold. Suppose that the cost functions are normal integrands and either super-additive of sub-additive. Then, under the condition SAIP, there exists F t -normal integrand γξ t defined on Ω×R m ×R m such that, for all V t-1 ∈ L 0 (R d , F t-1 ), we have γ ξ t (V t-1 ) = γξ t (S t , V t-1 ). Moreover, the dynamic programming principle 4.3.2 is computable ω-wise as:

γ ξ t (S t , V t-1 ) = inf y∈R C t (S t , (0, y (2) -V (2) t-1 )) + sup s∈ϕt(St) γ ξ t+1 (s, y) ,
where ϕ t (S t ) = supp Ft S t+1 . Also, the infimum hedging cost of ξ at any time t is reached, i.e. γ ξ t (V t-1 ) is a mimimal cost.

The case of fixed transaction costs

In the case of fixed costs, the cost functions C t , t ≤ T , are not convex in general. Moreover, C t is a priori positively lower homogeneous, i.e. for any λ ≥ 1, C t (λz) ≤ λC t (z). Then, C t does not satisfy the assumptions we impose in this paper. Nevertheless, we shall see in this section that we may also implement the dynamic programming principle under a robust SAIP condition imposed on the enlarged market with only proportional transaction costs.

To do so, recall that for a l.s.c. function g, the horizon function (see [76, Section 3.C]) g ∞ of g is defined as:

g ∞ (y) := lim inf α→∞ g(αy) α .
Recall that g ∞ is positively homogeneous and l.s.c. in y. We then define the horizon cost function as

Ĉt (s, y) = C ∞ t (s, y) = lim inf α→∞ C t (s, αy) α . (4.4.7)
The liquidation value associated to the cost function Ĉt is then given by ˆ L t (s, y) = lim sup α→∞ L t (s, αy) α .

Note that in the case where Ĉt (s, y)

= lim α→∞ C t (s, αy) α , then ˆ L t = L ∞ t . Moreover, if Ĉt is subadditive, we deduce that Ĝt (ω) := {z : ˆ L t (S t (ω), z) ≥ 0}
is an F t -measurable random positive closed cone. We then deduce that the enlarged market defined by the solvency sets ( Ĝt ) t∈[0,T ] corresponds to a model with proportional transaction costs, as defined in [55, Section 3]. The cash invariance property propagates from C t to Ĉt . In that case, we may verify that ˆ L t (s, z) = max{α ∈ R : zαe 1 ∈ Ĝt } and similarly, we have Ĉt (s, z) = min{α ∈ R : αe 1z ∈ Ĝt }. We then deduce the following: Lemma 4.4.18. Suppose that C t is cash invariant. Then, G t ⊆ Ĝt if and only if Ĉt (S t , z) ≤ C t (S t , z) for any z a.s.. Proof. First suppose that G t ⊆ Ĝt . As C t (S t , z)e 1z ∈ G t , then we get that C t (S t , z)e 1z ∈ Ĝt . Therefore, we deduce that

Ĉt (s, z) = min{α ∈ R : αe 1 -z ∈ Ĝt } ≤ C t (S t , z). Reciprocally, if Ĉt ≤ C t , then ˆ L t ≥ L t hence G t ⊆ Ĝt .
Note that in [START_REF] Lépinette | Arbitrage theory for non convex financial market models[END_REF], such an enlarged model ( Ĝt ) t∈[0,T ] is studied and ˆ L t is the liquidation value of the closed conic hull K t of G t , i.e. Ĝt = K t .

Example 4.4.19. The market is composed of one bond whose price is B t = 1 and d -1 risky assets, d ≥ 2, whose prices are described by a family of bid and ask prices and fixed costs S = ((S b,i , S a,i , c i )) i=2,••• ,d . In the following, we denote by s = ((s b,i , s a,i , c i )) i=2,••• ,d any element of R 3(d-1) . We consider the fixed costs model defined by the following liquidation process:

L t (s, y) := y 1 + d i=2 L i t (s b,i , s a,i , c i , y i ), (s, y) ∈ R 3(d-1) × R d , L i t (s b,i , s a,i , c i , y i ) := y i s b,i -c i t + 1 y i >0 + y i s a,i -c i t 1 y i <0 .
Note that the (c i ) i=2,••• ,d are interpreted as fixed costs while (s b,i , s a,i ) i=2,••• ,d are bid and ask prices for the risky assets. We may of course generalize this model to an order book with several bid and ask prices for each asset, as in Example 4.2.1. Recall that by definition C t (s, y) = -L t (s, -y) and we may verify that C t (s, y) is l.s.c. in every (s, y) such that

(c i ) i=2,••• ,d ∈ R d-1 + .
To see it, it suffices to observe that L i t (s, y) is continuous at each point (s, y) such that y ̸ = 0. At last, if y = 0, L t (s, y) = 0 and lim inf r→s,y→0 L t (r, y) ≤ 0 since c i t ≥ 0. Therefore, L i t is u.s.c. Moreover, C t (s, y) subadditive in y. A direct computation yields that ˆ L t (s, y)

= y 1 + d i=2 ˆ L i t (s b,i , s a,i , y i ) where ˆ L i t (s b,i , s a,i , y i ) = (y i ) + s b,i -(y i ) -s a,i . Note that ˆ L t = L ∞ t and we have Ĉt (s, y) = y 1 + d i=2
Ĉi t (s b,i , s a,i , y i ) where Ĉi t (s b,i , s a,i , y i ) = (y i ) + s a,i -(y i ) -s b,i . Observe that ˆ L t and Ĉt are continuous in (s, y). Moreover, Ĉt ≤ C t and Ĉt is super δ-homogeneous with δ(x) = x. △

In the following, we adapt the notations of Section 4.3 to the enlarged model ( Ĝt ) t∈[0,T ] as follows: We set γT (S T , V T -1 ) = g 1 (S T ) + ĈT (S T , (0, g (2) (S T ) -V

T -1 )), and we define recursively

θξ t (V t ) := ess sup Ft γξ t+1 (V t ), Dξ t (S t , V t-1 , V t ) := Ĉt (S t , (0, V (2) t -V (2) 
t-1 )) + θξ t (S t , V t ). Definition 4.4.20. We say that the robust no-arbitrage condition RSAIP holds at time t if the SAIP condition holds at time t for the enlarged model ( Ĝt ) t∈[0,T ] . We say that RSAIP holds if it holds at any time.

Theorem 4.4.21. Suppose that the enlarged market satisfies Ĉt ≤ C t , Ĉ is super δ-homogeneous and is either sub-additive or super-additive. Suppose that there exists an F t+1 -normal integrand γξ t+1 defined on R m ×R d such that γ ξ t+1 (V t ) = γξ t+1 (S t+1 , V t ) for all V t ∈ L 0 (R d , F t ). Assume that Assumption 4 and Assumption 5 hold. Suppose that the cost function C t (s, z) is an F tnormal integrand and C t is either super-additive or sub-additive. Then, if inf z∈S d-1 (0,1) D0 t (S t , 0, z) > 0, γ ξ t (V t-1 ) = γξ t (S t , V t-1 ) where γξ t (s, v t-1 ) is an F t -normal integrand.

Proof. As Ĉt (x) ≤ C t (x), we deduce by induction that D0 t (s, 0, v t ) ≤ D 0 t (s, 0, v t ). We adapt the main arguments of the proof of Theorem 4.4.15. Recall that

D 0 t (s, v t-1 , v t ) ≥ ht (s, v t-1 ) + D 0 t (s, 0, v t )
where ht is a continuous function. By Lemma 4.5.20, we have for |v t | ≥ 1,

D 0 t (s, 0, v t ) ≥ D0 t (s, 0, v t ) ≥ δ(|v t |) D0 t (s, 0, v t /|v t |) ≥ δ(|v t |) inf z∈S d-1 (0,1) D0 t (s, 0, z).
Therefore, we also get that γξ t (s, v t-1 ) = inf vt∈Kt(s,v t-1 ) D ξ t (s, v t-1 , v t ) where K t (s, v t-1 ) ⊆ ϕ t (s, v t-1 ) := Bt (0, r t (s, v t-1 ) + 1) and

r t (s, v t-1 ) := δ -1 λ t (s, v t-1 ) i t (s) , i t (s) := inf z∈S d-1 (0,1) D0 t (s, 0, z), λ t (s, v t-1 ) = | ht (s, v t-1 )| + ĥξ t (s, v t-1 ).
Applying Theorem 4.4.15 by induction to the enlarged market, we deduce that D0

t (s, 0, z) is l.s.c. in (s, z), see the proof of Theorem 4.4.15. We then conclude as in the proof of Theorem 4.4.15.

Remark 4.4.22. Recall that the condition inf z∈S d-1 (0,1) D0 t (S t , 0, z) > 0 we impose in the theorem above holds under the RSAIP condition by Theorem 4.4.16. For a fixed costs model, this means that SAIP holds for the enlarged market, a priori without fixed cost. Moreover, the other conditions we impose are also satisfied in the fixed costs model of Example 4.4.19. △

Computational feasibility under a weaker SAIP no-arbitrage condition

In this section, we consider a no-arbitrage condition called LAIP, weaker than SAIP, but still sufficient to deduce that the essential infimum in the dynamic programming principle (4.3.1) is a pointwise infimum so that it can be numerically computed.

Lemma 4.4.23. Suppose that C t is sub-additive for any t ≤ T . Then, for any payoff ξ ∈ L 0 (R d , F T ), the function D ξ t defined by (4.4.3) satisfies the following inequality:

D ξ t (V t-1 + Vt-1 , V t + Vt ) ≤ D ξ t (V t-1 , V t ) + D 0 t ( Vt-1 , Vt ).
Proof. By definition with the sub-additivity of C T , we have:

γ ξ T (V T -1 + VT-1 ) = ξ 1 + C T ((0, ξ (2) -V (2) 
T -1 - V (2) T -1 )), = ξ 1 + C T ((0, -V (2) T -1 )) + C T ((0, - V (2) T -1 )), ≤ γ ξ T (V T -1 ) + γ 0 T ( VT-1 ).
We deduce that

θ ξ T -1 (V T -1 + VT-1 ) ≤ θ ξ T -1 (V T -1 ) + θ 0 T -1 ( VT-1 ) and, since D ξ T -1 (V T -2 , V T -1 ) = C T -1 ((0, V T -1 -V T -2 )) + θ ξ T (V T -1
), we get that:

D ξ T -1 (V T -2 + V2-1 , V T -1 + VT-1 ) ≤ D ξ T -1 (V T -2 , V T -1 ) + D 0 T -1 ( VT-2 , VT-1 ).
Taking the essential infimum with respect to V T -1 and VT-1 , we get that

γ ξ T -1 (V T -2 + VT-2 ) ≤ γ ξ T -1 (V T -2 ) + γ 0 T -1 ( VT-2 ).
We may pursue by induction and conclude.

We now introduce the LAIP condition. By Proposition 4.5.7, we may suppose that the function D 0 t (y, z) defined by (4.4.3) is l.s.c. in (y, z) and it is F t ⊗ B(R d ) ⊗ B(R d ) measurable w.r.t. (ω, y, z). Note that, under AIP, the family of random variables

N t := Z t ∈ L 0 (R d , F t ), Z 1 t = 0, D 0 t (0, Z t ) = 0 coincides with Z t ∈ L 0 (R d , F t ), Z 1 t = 0, D 0 t (0, Z t ) ≤ 0 .
Therefore, by lower semicontinuity, N t is a closed subset of L 0 (R d , F t ). Moreover, N t is F t -decomposable, see [55, Section 5.4]. Therefore, by [55, Proposition 5.4.3], there exists an F t -measurable random set N t such that N t = L 0 (N t , F t ). Definition 4.4.24. We say that the condition LAIP (Linear AIP condition) holds at time t if AIP holds at time t and N t is a linear vector space, or equivalently N t is a.s. a linear subspace of R d . We say that LAIP holds if LAIP holds at any time.

Note that if N t = {0}, then SAIP, AIP and LAIP are equivalent. In general, SAIP implies LAIP. The following result gives a financial interpretation of LAIP. If LAIP holds, the cost to hedge the zero payoff from an initial risky position

Z t = V (2) t ∈ L 0 (R d-1 , F t )
is zero if and only if the cost is also zero for the position -Z t . This symmetric property is related to the SRN condition in Chapter 3. Lemma 4.4.25. Suppose that C t is sub-additive and is positively super δhomogeneous, for any t ≤ T . The following statements are equivalent:

1.) LAIP holds.

2.) AIP holds and, if

Z t ∈ L 0 (R d , F t ), then D 0 t (0, Z t ) = 0 if and only if D 0 t (0, -Z t ) = 0, t ≤ T .
Proof. The implication 1.) =⇒ 2.) is immediate. Reciprocally, suppose that 2.) holds. Let us show that N t is stable under addition. We consider Z 1 t , Z 2 t ∈ N t . By Proposition 4.4.23, we get under AIP that

0 ≤ D 0 t (0, Z 1 t + Z 2 t ) ≤ D 0 t (0, Z 1 t ) + D 0 t (0, Z 2 t ) ≤ 0.
We deduce that Z 1 t + Z 2 t ∈ N t . By induction, we then deduce that for any integer n, nN t ⊆ N t . Moreover, by Lemma 4.5.20, if λ t ∈ L 0 ((0, 1], F t ),

D 0 t (0, V t ) = D 0 t (0, λ t (λ t ) -1 V t ) ≥ δ((λ t ) -1 )D 0 t (0, λ t V t ) ≥ 0. So V t ∈ N t implies that λ t V t ∈ N t if λ t ∈ L 0 ((0, 1], F t ).
Finally, as NN t ⊆ N t , λ t V t ∈ N t for every λ t ≥ 0. Moreover, N t is symmetric by assumption. The conclusion follows.

In the following, let us consider N ⊥ t := {z ∈ R d : zx = 0, ∀x ∈ N t }, the random F t -measurable linear subspace orthogonal to N t . Lemma 4.4.26. Suppose that C t is sub-additive and LAIP holds. Then, for all V t-1 ∈ L 0 (R d , F t ), there exists

V 2 t ∈ L 0 (N ⊥ t , F t ) such that D ξ t (V t-1 , V t ) = D ξ t (V t-1 , V 2 t ) a.s..
Proof. By a measurable selection argument, it is possible to decompose any

V t ∈ L 0 (R d , F t ) into V t = V 1 t + V 2 t , where V 1 t ∈ L 0 (N t , F t ), V 2 t ∈ L 0 (N ⊥ t , F t )
. By Lemma 4.4.23, we have

D ξ t (V t-1 , V t ) ≤ D ξ t (V t-1 , V 2 t ) + D 0 t (0, V 1 t ) = D ξ t (V t-1 , V 2 t ).
On the other hand, as

V 2 t = V t -V 1 t and -V 1 t ∈ N t under LAIP, we also have D ξ t (V t-1 , V 2 t ) ≤ D ξ t (V t-1 , V t ) + D 0 t (0, -V 1 t ) = D ξ t (V t-1 , V t ).
The conclusion follows.

In the following, we assume the following condition.

Assumption 6. For any t ≤ T , |C t ((0, x (2) ))| < ht (x), where ht is a random function ht : (ω, x) ∈ Ω×R d → ht (ω, x) ∈ R which is F t ⊗B(R d )-measurable and continuous a.s. in x.

Note that the condition above holds under our initial hypothesis with ht (x) = h t (S t , x) but, here, we do not stress a dependence of C t on S t . 

D ξ t (V t-1 , V t ) = ess inf Ft Vt∈L 0 (N ⊥ t ,Ft) D ξ t (V t-1 , V t ).
Since N ⊥ t is an F t -measurable random closed set, by Proposition 4.5.7 and Lemma 4.5.5, we have

ess inf Ft Vt∈L 0 (N ⊥ t ,Ft) D ξ t (V t-1 , V t ) = inf y∈N ⊥ t D ξ t (V t-1 , y).
On ω : N ⊥ t (ω) = {0} ∈ F t , we have γ ξ t (V t-1 ) = D ξ t (V t-1 , 0). On the complementary set, N ⊥ t ̸ = {0} ∈ F t , under LAIP, we have inf z∈Mt D 0 t (0, z) > 0, where M t = N ⊥ t ∩ S d-1 (0, 1) ̸ = ∅. We now adapt the notations and the main arguments in the proof of Theorem 4.4.15 with V t ∈ N ⊥ t . In our case, we use Assumption 6 in order to dominate the cost function by a continuous function. By Lemma 4.5.20, for all v t ∈ N ⊥ t , we may suppose w.l.o.g. that v 1 t = 0 and we get that

D 0 t (0, v t ) ≥ δ(|v t |)D 0 t (0, v t /|v t |) ≥ δ(|v t |) inf z∈Mt D 0 t (0, z).
Moreover, by Assumption 6, we have:

D t (v t-1 , 0) = C t ((0, v (2) 
t-1 )) + θ ξ t (0) ≤ ht (v t-1 ) + θ ξ t (0). Therefore, we deduce that γξ t (v t-1 ) = inf vt∈ϕt(v t-1 ) D ξ t (v t-1 , v t )
where ϕ is the set-valued mapping ϕ t (v t-1 ) := Bt (0, r t (v t-1 ) + 1) and

r t (v t-1 ) := δ -1 λ t (v t-1 ) i t , i t := inf z∈Mt D 0 t (0, z), λ t (v t-1 ) = ht (v t-1 ) + ht (v t-1 ) + θ ξ t (0). By Corollary 4.5.3, i t > 0 is F t -measurable while λ t (ω, v t-1 ) is F t ⊗ B(R d )- measurable and continuous in v t-1 . Therefore, r t (ω, v t-1 ) is F t ⊗ B(R d )-
measurable and continuous in v t-1 . We deduce that Bt (0, r t (v t-1 )) is a continuous set-valued mapping by Corollary 4.5.14. We then conclude by Proposition 4.5.17.

Note that the theorem above states that, under LAIP, γ ξ t (V t-1 ) is a lowersemicontinuous function of V t-1 . Therefore, by Lemma 4.5.5, γ ξ t (V t-1 ) may be computed pointwise as

γ ξ t (V t-1 ) = inf y∈R d C t ((0, y (2) -V (2) 
t-1 )) + θ ξ t (y) . Moreover, the infimum is reached so that γ ξ t (V t-1 ) is a minimal cost. Let F be a complete σ-algebra. We say that the function

Appendix

(ω, x) ∈ Ω × R k → f (ω, x) ∈ R is an F-normal integrand if f is F ⊗ B(R k )- measurable and lower semi-continuous in x. If Z ∈ L 0 (R k , F), we use the notation f (Z) : ω → f (Z(ω)) = f (ω, Z(ω)). If f is F ⊗ B(R k )-measurable then f (Z) ∈ L 0 (R k , F).
By [START_REF] Rockafellar | Variational analysis[END_REF]Theorem 14.37], we have:

Proposition 4.5.2. If f is an F-normal integrand, inf y∈R d f (ω, y) is F- measurable and {(ω, x) ∈ Ω × R d : f (ω, x) = inf y∈R d f (ω, y)} ∈ F ⊗ B(R d ) is a measurable closed set. Corollary 4.5.3. For any F normal integrand f : Ω × R d → R and any F-measurable random set A, let p(ω) = inf x∈A f (ω, x). Then the function p : Ω → R is F-measurable. Proof. Let us define δ A(ω) (x) = +∞ if x / ∈ A(ω) and δ A(ω) (x) = 0 otherwise. Then, the function g(ω, x) := f (ω, x) + δ A(ω) (x) is an F-normal integrand
since A is closed and F-measurable. Moreover, we observe that p(ω) = inf x∈A(ω) g(ω, x). The conclusion follows from Proposition 4.5.2.

Corollary 4.5.4. If f is an F-normal integrand, and if K is an F-measurable set-valued compact set, then inf y∈K(ω) f (ω, y) is F-measurable. Moreover, M (ω) = {x ∈ K(ω) : f (ω, x) = inf y∈K(ω) f (ω, y)} ∈ F ⊗ B(R d ) is a non- empty F-measurable closed set. In particular, inf y∈K(ω) f (ω, y) = f (ω, y) for all y ∈ L 0 (M, F) ̸ = ∅.
Proof. It suffices to extend the function f to R d by setting f = +∞ on R d \K(ω) so that f is still l.s.c. on R d . Then, we may apply Proposition 4.5.2. Notice that M (ω) ̸ = ∅ a.s. by compactness argument so that L 0 (M, F) ̸ = ∅ by a measurable selection argument. ✷

In the following, we use the abuse of notation f (y) = f (ω, y) for any

f : Ω × R d → R.
Lemma 4.5.5. For any F normal integrand f : Ω × R d → R such that f is bounded below a.s. by a random variable, and any non-empty F-measurable closed set A, we have:

ess inf F f (a), a ∈ L 0 (A, F) = inf a∈A f (a) a.s.
Proof. We first prove that

ess inf F f (a), a ∈ L 0 (A, F) ≤ inf a∈A f (a).
Recall that f is F-normal integrand and inf a∈A f (a) is F-measurable by Corollary 4.5.3. Therefore, the set

{(ω, a) : a ∈ A(ω), inf x∈A f (x) ≤ f (a) < inf x∈A f (x) + 1/n}
is F-measurable and has non-empty ω sections for each n ∈ N. By measurable selection argument, we deduce

a n ∈ L 0 (A, F) such that inf a∈A f (a) ≤ f (a n ) < inf a∈A f (a) + 1/n. This implies that lim n f (a n ) = inf a∈A f (a). Therefore, inf a∈A f (a) = inf n f (a n ) ≥ ess inf F f (a), a ∈ L 0 (A, F) .
For the reversed inequality, for each a ∈ L 0 (A, F), f (a) ≥ inf a∈A f (a) and, since inf a∈A f (a) is F-measurable by Corollary 4.5.3, we deduce by definition of conditional essential infimum that

ess inf F f (a), a ∈ L 0 (A, F) ≥ inf a∈A f (a) a.s..
We recall a result from [START_REF] Baptiste | Pricing without martingale measure[END_REF] which characterizes a conditional essential supremum as a pointwise supremum on a random set. Let H and F be two complete sub-σ-algebras of F T such that H ⊆ F. The conditional support of X ∈ L 0 (R d , F) with respect to H is the smallest H-graph measurable random set supp H X containing the singleton {X} a.s., see [START_REF] Baptiste | Pricing without martingale measure[END_REF].

Proposition 4.5.6. Let h : Ω×R k → R be a H⊗B(R k )-measurable function which is l.s.c. in x. Then, for all X ∈ L 0 (R k , F), ess sup H h(X) = sup x∈supp H X h(x) a.s. Proposition 4.5.7. Fix ξ 1 ∈ L 0 (R, F) and d ≥ 2. Let us consider a random function f : Ω × R d → R that satisfies f (z) = z 1 + f (0, z (2) ), for any z = (z 1 , z (2) ) ∈ R d . Suppose that z → f (z) is l.s.c. a.s.. Then, there exists a F t-1 ⊗ B(R d-1 )-measurable random function F * t-1 (ω, y) such that, for any Y t-1 ∈ L 0 (R d-1 , F t-1 ), F * t-1 (Y t-1 ) = ess sup F t-1 ξ 1 + f (0, Y t-1 ) =: F ξ 1 ,f t-1 (Y t-1 ), a.s.
Moreover, F * t-1 (ω, y) is l.s.c. in y and if, in addition, y ∈ R d-1 → f (0, y) is a.s. convex, then y → F * t-1 (ω, y) is a.s. convex.

Proof. Consider the family of random variables:

Λ t-1 = (x t-1 , y t-1 ) ∈ L 0 (R d , F t-1 ) : f (-x t-1 , y t-1 ) ≤ -ξ 1 = (x t-1 , y t-1 ) ∈ L 0 (R d , F t-1 ) : x t-1 ≥ F ξ 1 ,f t-1 (y t-1 ) . Notice that Λ t-1 is closed in L 0 since f is l.s.c.. Moreover, Λ t-1 is F t-1 - decomposable, i.e. g 1 t-1 1 A t-1 + g 2 t-1 1 A c t-1 ∈ Λ t-1 if g 1 t-1 and g 2 t-1 belong to Λ t-1 and A t-1 ∈ F t-1 . By [63, Corollary 2.5], there exists an F t-1 -measurable random closed set Γ t-1 such that Λ t-1 = L 0 (Γ t-1 , F t-1 )
. Moreover, there is a Castaing representation, i.e. a countable family (z n t-1

) n≥1 ∈ Λ t-1 such that Γ t-1 (ω) = cl{z n t-1 (ω) : n ≥ 1}, ω ∈ Ω.
We define

F * t-1 (ω, y) := inf{x ∈ R : (x, y) ∈ Γ t-1 (ω)}.
We claim that

F * t-1 (ω, y) = inf x ∈ Q : (x, y) ∈ Γ t-1 (ω) . Indeed, first we have F * t-1 (ω, y) ≤ inf x ∈ Q : (x, y) ∈ Γ t-1 (ω) .
Moreover, in the case where F * t-1 (ω, y) > -∞, for every ϵ > 0, there exist x ∈ R such that (x, y) ∈ Γ t-1 and

F * t-1 (ω, y) + ϵ ≥ x. Choose x ∈ Q ∩ [x, x + ϵ].
Observe that (x, y) ∈ Γ t-1 as the y-sections of Λ t-1 are upper sets. We then have:

F * t-1 (ω, y) + 2ϵ ≥ x + ϵ ≥ x, F * t-1 (ω, y) ≥ x -2ϵ ≥ inf x ∈ Q : (x, y) ∈ Γ t-1 (ω) -2ϵ.
Since ϵ is arbitrary chosen, we conclude that

F * t-1 (ω, y) = inf x ∈ Q : (x, y) ∈ Γ t-1 (ω) .
Notice that when F * t-1 (ω, y) = -∞, then we may choose x → -∞ so that we also have x → -∞ and we conclude similary. We then deduce that

F * t-1 (ω, y) is F t-1 ⊗ B(R d-1
)-measurable. Indeed, for every c < +∞, we have:

(ω, y) :

F * t-1 (ω, y) ≥ c = x∈Q (ω, y) : x1 (ω,x,y)∈GraphΓ t-1 ≥ c1 (ω,x,y)∈GraphΓ t-1 .
Since Γ t-1 is graph-measurable, (ω, y) :

F * t-1 (ω, y) ≥ c ∈ F t-1 ⊗ B(R d-1 ). We then conclude that F * t-1 is F t-1 ⊗ B(R d-1 )-measurable. Moreover, if f t is convex, Γ t-1
is convex a.s. and we deduce that F * t-1 (ω, y) is convex in y a.s. Consider a sequence y n ∈ R d-1 which converges to y and let us denote

β n := F * t-1 (ω, y n ). We have (β n , y n ) ∈ Γ t-1 if β n > -∞. If inf n β n = -∞, then, up to a subsequence, F * t-1 (ω, y) -1 > β n for n large enough, hence (F * t-1 (ω, y) -1, y n ) ∈ Γ t-1 ( 
ω) since the y n -sections of Γ t-1 are upper sets. As n → ∞, we deduce that (F * t-1 (ω, y) -1, y) ∈ Γ t-1 (ω), which contradicts the definition of

F * t-1 . Moreover it is trivial that F * t-1 (ω, y) ≤ lim inf n β n if lim inf n β n = ∞. Otherwise, β ∞ := lim inf n β n < ∞ and (β ∞ , y) ∈ Γ t-1 since Γ t-1 is closed. It follows that F * t-1 (ω, y) ≤ β ∞ = lim inf n β n by the definition of F * t-1 . We conclude that F * t-1 (ω, x) is l.s.c. in x. We show that F ξ 1 ,f t-1 (Y t-1 ) = F * t-1 (Y t-1 ) a.s. for all Y t-1 ∈ L 0 (R d-1 , F t-1
). We first restrict Ω to the F t-1 -measurable set {ω : Γ t-1 (ω) ̸ = ∅}. We may then consider a measurable selection (x t-1 , ỹt-1 )

∈ Γ t-1 ̸ = ∅ a.s.. By definition, we have xt-1 ≥ F * t-1 (ỹ t-1
). We deduce that F * t-1 (ỹ t-1 ) < ∞ a.s. We define:

Y t-1 = ỹt-1 1 F * t-1 (Y t-1 )=∞ + Y t-1 1 F * t-1 (Y t-1
)<∞ . Then:

F * t-1 ( Y t-1 ) = F * t-1 (ỹ t-1 )1 F * t-1 (Y t-1 )=∞ + F * t-1 (Y t-1 )1 F * t-1 (Y t-1 )<∞ .
Observe that on the set

{F * t-1 (Y t-1 ) < ∞}, (F * t-1 ( Y t-1 ), Y t-1 ) ∈ Γ t-1 a.s. since Γ t-1 is closed. Therefore, (F * t-1 ( Y t-1 ), Y t-1 ) ∈ Λ t-1 = L 0 (Γ t-1 , F t-1
) and we deduce that

F * t-1 ( Y t-1 ) ≥ F ξ 1 ,f t-1 ( Y t-1 ) a.s.. We conclude that on the set {F * t-1 (Y t-1 ) < ∞}, F * t-1 (Y t-1 ) ≥ F ξ 1 ,f t-1 (Y t-1
) while the inequality is trivial on the complementary set. On the other hand, let us define

X t-1 = F ξ 1 ,f t-1 (Y t-1 )1 F ξ 1 ,f t-1 (Y t-1 )<∞ + F ξ 1 ,f t-1 (ỹ t-1 )1 F ξ 1 ,f t-1 (Y t-1 )=∞ , Y t-1 = Y t-1 1 F ξ 1 ,f t-1 (Y t-1 )<∞ + ỹt-1 1 F ξ 1 ,f t-1 (Y t-1 )=∞ . Observe that ( X t-1 , Y t-1 ) ∈ Λ t-1 hence F * t-1 ( Y t-1 ) ≤ X t-1 by definition of F * t-1 . Then, F * t-1 (Y t-1 ) ≤ X t-1 = F ξ 1 ,f t-1 (Y t-1 ) on {F ξ 1 ,f t-1 (Y t-1 ) < ∞}.
The inequality is trivial on the complementary set so that we may conclude.

On the set {ω : Γ t-1 (ω) = ∅}, we have

F * t-1 (Y t-1 ) = +∞. Moreover, if F ξ 1 ,f t-1 (Y t-1 ) < ∞, we deduce that (F ξ 1 ,f t-1 (Y t-1 ), Y t-1 ) ∈ Γ t-1 = ∅ since ξ 1 +f (0, Y t-1 ) ≤ F ξ 1 ,f t-1 (Y t-1
). This is a contradiction hence F ξ 1 ,f t-1 (Y t-1 ) = +∞ and the conclusion follows. ✷ Lemma 4.5.8. Suppose that Assumption 2 holds and consider an F t-1normal integrand γ t : (ω, s, y) : Ω × R m × R d → γ t (ω, s, y). Then, for any V t-1 ∈ L 0 (R d , F t-1 ), we have:

ess sup F t-1 γ t (S t , V t-1 ) = sup s∈supp F t-1 S t γ t (s, V t-1 ) = sup m≥1 γ t (α m t-1 (S t-1 ), V t-1 ).
Proof. As (ω, s) → γ t (ω, s, V t-1 (ω)) is an F t-1 -normal integrand under our assumptions, the first equality holds by Theorem 4.5.6. It remains to observe that, if s ∈ supp F t-1 S t , then s = lim m α m t-1 (S t-1 ) for a subsequence and, by lower semicontinuity, we deduce that

γ t (s, V t-1 ) ≤ lim inf m γ ξ t (α m t-1 (S t-1 )), V t-1 ) ≤ sup m≥1 γ ξ t (α m t-1 (S t-1 )), V t-1 ). It follows that sup s∈supp F t-1 S t γ t (s, V t-1 ) ≤ sup m≥1 γ t (α m t-1 (S t-1 ), V t-1
) and, finally, the equality holds. ✷

Continuous set-valued functions

For two topological vector spaces X, Y , consider a set-valued function ϕ : X ↠ Y . We recall the definition of hemicontinuous set-valued mappings as formulated in [START_REF] Aliprantis | Infinite Dimensional Analysis : A Hitchhicker's Guide, Grundlehren der Mathematischen Wissenschaften[END_REF].

As P (Γ m t |F t-1 )) > 0 by assumption, we get that ess sup F t-1 f (S t ) ≥ f (α m t-1 ) a.s. for any m ≥ 1 so that the reverse inequality holds.

Lemma 4.5.20. Let D 0 given by (4.4.3) with ξ = 0. Suppose that C is positively super δ-homogeneous. For any t ≤ T , and any

λ t ∈ L 0 ([1, ∞), F t ), we have D 0 t (λ t V t-1 , λ t V t ) ≥ δ(λ t )D 0 t (V t-1 , V t ) and γ 0 t (λ t V t-1 ) ≥ δ(λ t )γ 0 t (V t-1 ) for all (V t-1 , V t ) ∈ L 0 (R d , F t ) × L 0 (R d , F t ).
Proof. For t = T , we have by assumption:

γ 0 T (λ T V T -1 ) = C T ((0, -λ T V (2) T -1 ) ≥ δ(λ T )C T ((0, -V (2) 
T -1 ) = δ(λ T )γ 0 T (V T -1 ).
We deduce that

θ 0 T -1 (λ T -1 V T -1 ) = ess sup F T -1 γ 0 T (λ T -1 V T -1 ), ≥ δ(λ T -1 ) ess sup F T -1 γ 0 T (V T -1 ), ≥ δ(λ T -1 )θ 0 T -1 (V T -1 ).
As we also have

C T -1 ((0, λ T -1 V (2) 
T -1 -λ T -1 V (2) 
T -2 )) ≥ δ(λ T -1 )C T -1 ((0, V (2) 
T -1 -V (2) 
T -2 )), we deduce that

D T -1 (λ T -1 V T -2 , λ T -1 V T -1 ) = C T -1 ((0, λ T -1 V (2) T -1 -λ T -1 V (2) T -2 )) + θ 0 T -1 (λ T -1 V T -1 ), ≥ δ(λ T -1 )C T -1 ((0, V (2) 
T -1 -V (2) T -2 )) + δ(λ T -1 )θ 0 T -1 (V T -1 ), ≥ δ(λ T -1 )D T -1 (V T -2 , V T -1 ). Therefore, as λ T -1 ≥ 1, γ 0 T -1 (λ T -1 V T -2 ) = ess inf V T -1 ∈L 0 (R d ,F T -1 ) D T -1 (λ T -1 V T -2 , λ T -1 V T -1 ), ≥ δ(λ T -1 ) ess inf V T -1 ∈L 0 (R d ,F T -1 ) D T -1 (V T -2 , V T -1 ), ≥ δ(λ T -1 )γ 0 T -1 (V T -2 ).
We then conclude by induction.

Lemma 4.5.21. Suppose that Assumption 4 and Assumption 5 hold. For every t ≤ T , there exists a continuous function ĥt ≥ 0 such that the function D ξ t given by (4.4.4) satisfies

|D ξ t (s, v t-1 , 0)| ≤ ĥξ t (s, v t-1 ). Proof. Recall that γ ξ T (V T ) = g 1 (S T ) + C T (S T , (0, g 2 (S T ) -V (2) 
T )). By assumption on C T and g, we deduce that γ ξ T (V T ) ≤ f T (S T , V T ) where f T is continuous. Therefore, by Proposition 4.5.6,

θ ξ T -1 (V T -1 ) = ess sup F T -1 γ ξ T (V T -1 ) ≤ ess sup F T -1 f T (S T , V T -1 ), ≤ sup z∈supp F T -1 S T f T (z, V T -1 ) ≤ sup z∈ B(0,R T -1 (S T -1 )) f T (z, V T -1 ).
As R T -1 is continuous, we deduce by Corollary 4.5.14 and Proposition 4.5.16 that θξ

T -1 (S T -1 , V T -1 ) = sup z∈ B(0,R T -1 (S T -1 )) f T (z, V T -1 ) is a continuous func- tion in (S T -1 , V T -1 ). Recall that C T -1 (S T -1 , (0, -V (2) T -1 ) ≤ h T -1 (S T -1 , V T -1 ) where h T -1 is continuous. As D ξ T -1 (S T -1 , V T -1 , 0) = C T -1 (S T -1 , (0, -V (2) 
T -1 ) + θ ξ T -1 (V T -1 ), we deduce that D ξ T -1 (S T -1 , V T -1 , 0) ≤ ĥξ T -1 (S T -1 , V T -1 ) where ĥξ T -1 is given by ĥξ T -1 (S T -1 , V T -1 ) = θξ T -1 (S T -1 , V T -1 ) + h T -1 (S T -1 , V T -1 ), i.e. ĥξ T -1 is continuous. Since γ ξ T -1 (S T -1 , V T -1 ) ≤ D ξ T -1 (S T -1 , V T -1 , 0), we deduce that γ ξ T -1 (S T -1 , V T -1 ) ≤ ĥξ T -1 (S T -1 , V T -1 ) = f T -1 (S T -1 , V T -1
) and we may proceed by induction to conclude. ✷ Following the same arguments, we also deduce the following:

Lemma 4.5.22. Suppose that Assumption 4 and Assumption 5 hold. For every t ≤ T , there exists a continuous function ht such that γ ξ t (V t ) ≥ ht (S t , V t ).

The interesting question is how to implement the FTAP theorem and deduce numerical estimation of the prices. Few attempts have been achieved in that direction, e.g. [START_REF] Löhne | An algorithm for calculating the set of superhedging portfolios in markets with transaction costs[END_REF] in the case of a finite probability space. The general case is difficult as we have first to identify the dual elements, i.e. the consistent price systems, which are martingales evolving in the positive duals of the solvency cones. The second step is to propose a numerical procedure to evaluate the possible super-hedging prices. There is no such a numerical method in the literature. Moreover, if the transaction costs are non linear, there is a priori no dual elements characterizing the no-arbitrage condition.

The methods we develop in this paper are based on Chapter 4 where the super-hedging prices are characterized for a large class of transaction cost models which are not necessary linear. In Chapter 4, the results are merely theoretical, we do not provide algorithms to compute the super-hedging costs in practice. In this Chapter, we address this problem. To be more precise, we consider financial markets with transaction costs defined by a cost process (C t ) 0≤t≤T depending on traded volumes and a process (S t ) 0≤t≤T that includes the asset prices. We shall consider the case of countably infinite t-conditional supports for S t+1 where an exact characterization of the super-hedging costs is given. The randomized procedure we propose is based on the simulation of conditionally identically distributed random variables which share the same conditional support as the price process (S t ) 0≤t≤T . We formulate a limit theorem, see Theorem 5.3.15, that proves the efficiency of our method.

This Chapter is organized as follows. In Section 5.3, we describe the numerical scheme and the main convergence theorems. We present in Section 5.4 the special case of a model with one risky asset and a piecewise cost process (C t ) 0≤t≤T . In Section 5.5, we also give the exact solution of the superhedging cost in the models with proportional costs and with and without fixed cost. Finally, in Section 5.6, we prove a limit theorem for a sequence of financial markets defined by convex cost processes.

The model

Let ξ ∈ L 0 (R d , F T ) be a contingent claim. Our goal is to characterize the set of all self-financing portfolio processes (V t ) T t=-1 such that V T = ξ. We use the same notations and definitions in Chapter 4. For convenience, we recall the following result from Chapter 4: Proposition 5.2.1 (Dynamic Programming Principle). For any 0 ≤ t ≤ T -1 and V t-1 ∈ L 0 (R d , F t-1 ), we have

γ ξ t (V t-1 ) = ess inf Ft Vt∈L 0 (R d ,Ft) ess sup Ft C t (0, V (2) t -V (2) 
t-1 ) + γ ξ t+1 (V t ) . (5.2.1)

Assumption 7. The payoff ξ is hedgeable, i.e. there exists a portfolio process (V ξ u ) T u=0 such that ξ = V ξ T . We briefly recall here the defition of some important functions:

θ ξ t (V t ) := ess sup Ft γ ξ t+1 (V t ) and D ξ t (V t-1 , V t ) = C t ((0, V (2) t -V (2) 
t-1 )) + θ ξ t (V t ), (5.2.2)

D ξ t (S t , V t-1 , V t ) = C t (S t , (0, V (2) t 
-V

(2)

t-1 )) + θ ξ t (S t , V t ). (5.2.3)
The second notation is used when we stress the dependence on S t . Observe that

γ ξ t (V t-1 ) = ess inf Ft Vt∈L 0 (R d ,Ft) D ξ t (V t-1 , V t ).
In order to numerically compute the minimal costs, we need to impose the finiteness of γ ξ t (V t-1 ), i.e. γ ξ t (V t-1 ) > -∞ a.s., at any time t and for all V t-1 ∈ L 0 (R d , F t-1 ). This is why, we recall the following condition, see Chapter 4: Definition 5.2.2. We say that the financial market satisfies the Absence of Early Profit condition (AEP) if, at any time t ≤ T , and for all V t ∈ L 0 (R d , F t ), γ 0 t (V t ) > -∞ a.s..

Numerical schemes

In the following, we suppose the following assumptions on the cost process C. For any t ≤ T , the cost function C t is a lower-semi continuous Borel function defined on

R k × R d such that C t (s, 0) = 0, ∀s ∈ R k + , C t (s, x + λe 1 ) = C t (s, x) + λ, λ ∈ R, x ∈ R d , s ∈ R k + (cash invariance), C T (s, x 2 ) ≥ C T (s, x 1 ), ∀x 1 , x 2 s.t. x 2 -x 1 ∈ R d + (C T is increasing w.r.t. R d + ). Note that C T is increasing w.r.t. R d + is equivalent to G T + R d + ⊆ G T .
Moreover, for some a ≥ 0, we say that C t is a-super homogeneous if the following property holds:

C t (s, λx) ≥ λC t (s, x), ∀λ ≥ a, s ∈ R k + , x ∈ R d .

The one period model

In this section, we consider two complete sub σ-algebras F t and F t+1 such that F t ⊂ F t+1 ⊂ F and an adapted price process (S s ) s=t,t+1 satisfying the following assumption.

Assumption 8. Suppose that there is a family of F t -measurable random variables (α m t ) m≥1 such that S t+1 ∈ {α m t : m ≥ 1} a.s. and suppose that P (S t+1 = α m t |F t ) > 0 a.s. for all m ≥ 1. Moreover, we suppose that there exists continuous functions on R m , that we still denote by α m t with an abuse of notation, such that α m t = α m t (S t ).

In Chapter 4, we have shown the following: 

i t+1 , i ≥ 1}, b i t+1 ∈ L 0 (R k , F t+1
), are said independent and identically distributed conditionally to F t (for short F t -i.i.d.) if, for all finite set J ⊂ N, and Borel sets B, B j , j ∈ J:

P b i t+1 ∈ B|F t = P b j t+1 ∈ B|F t , a.s. ∀i, j ≥ 1, P j∈J b j t+1 ∈ B j F t = j∈J P b j t+1 ∈ B j F t , a.s.. Lemma 5.3.3. Consider a family of F t -i.i.d. random variables b i t+1 , i ≥ 1 and θ t ∈ L 0 (R m , F t ). Let f j : R k × R m → R, j = 1, • • • , n be n ≥ 1 measurable functions such that E |f j (b 1 t+1 , θ t )||F t < ∞ a.s. (resp. f j is
non negative), for all j ≤ n. Then, for any finite set J ⊂ N of cardinality n, we have:

E f k (b i t+1 , θ t )|F t = E f k (b j t+1 , θ t )|F t , a.s., i, j, k ≥ 1, E j∈J f j (b j t+1 , θ t ) F t = j∈J E f j (b j t+1 , θ t ) F t , a.s..
Proof. We prove the result by induction on n. Suppose that f j = 1 D j where

D j = B j × A j and B j ∈ B(R k ), A j ∈ B(R m ).
Then, the claim holds by definition of the F t -i.i.d. random variables for all n ≥ 1 and the F tmeasurability of θ t . By the monotone class argument, this holds for any

D 1 ∈ B(R k )⊗B(R m ) if n = 1. If n > 1,
we expand the product in the second claim and we use the induction hypothesis. Then, we repeat the arguments for

D 2 ∈ B(R k ) ⊗ B(R m
) and so on. By linearity, and the induction argument after having expanding the product, we also deduce that the claim holds when

f j = n h=1 c j h 1 C j h and for any c j h ∈ R, C j h ∈ B(R k ) ⊗ B(R m ), h ≥ 1.
By standard increasing approximations, we conclude in the case where f j ≥ 0. Otherwise, we write f j = (f j ) + -(f j ) -. In particular, we get that

E |f j (b i t+1 , θ t )||F t = E |f j (b 1 t+1 , θ t )||F t < ∞, a.s.
in the case where E |f j (b 

:= max i≤m f (b i t+1 ).
The following holds:

θ m t → θ t , a.s. as m → ∞.
In particular, sup m θ m t = θ t a.s.

Proof. We may suppose w.l.o.g. that θ t < ∞. Indeed, we may consider g(θ t ) and the sequence (g(θ m t )) m≥1 where g is a bounded strictly increasing continuous function in the contrary case. By Lemma 5.3.1, we get that ess sup Ft f (b 1 t+1 ) = sup m≥1 f (α m t ) = θ t a.s. For any ϵ > 0, we deduce by assumption that

P [θ t -θ m t > ϵ|F t ] = P [θ t -max i≤m f (b i t+1 ) > ϵ|F t ] = P [θ t -f (b i t+1 ) > ϵ, ∀i ≤ m|F t ] = E m i=1 1 {θt-f (b i t+1 )>ϵ} F t , a.s.
. By Lemma 5.3.3, we deduce that

P [θ t -θ m t > ϵ|F t ] = P [θ t -f (b 1 t+1 ) > ϵ|F t ] m = P [ess sup Ft f (b 1 t+1 ) -f (b 1 t+1 ) > ϵ|F t ] m , a.s. We claim that P [ess sup Ft f (b 1 t+1 ) -f (b 1 t+1 ) > ϵ|F t ] < 1 a.s. Indeed, assume on the contrary that P [ess sup Ft f (b 1 t+1 ) -f (b 1 t+1 ) > ϵ|F t ] = 1 on some non null set Λ t ∈ F t .
In other words, we have

E 1 {ess sup F t f (b 1 t+1 )>f (b 1 t+1 )+ϵ} F t 1 Λt = 1 Λt .
Taking the expectation, we deduce that:

E 1 {ess sup F t f (b 1 t+1 )>f (b 1 t+1 )+ϵ} 1 Λt = E [1 Λt ] We then deduce that 1 {ess sup F t f (b 1 t+1 )>f (b 1 t+1 )+ϵ} 1 Λt = 1 Λt a.s. We now define θt := ess sup Ft f (b 1 t+1 )1 Ω\Λt + (ess sup Ft f (b 1 t+1 ) -ϵ)1 Λt .
Observe that θt is F tmeasurable and θt ≥ f (b 1 t+1 ) a.s. However, θt < ess sup Ft f (b 1 t+1 ) on the non null set Λ t , in contradiction with the definition of the conditional essential supremum. Therefore,

lim m→∞ P [θ t -θ m t > ϵ|F t ] = 0, a.s.
Finally, by the dominated convergence theorem, we have

lim m→∞ P [θ t -θ m t > ϵ] = lim m→∞ E E[1 {θt-θ m t >ϵ} |F t ] = E lim m→∞ E[1 {θt-θ m t >ϵ} |F t ] = 0.
Hence θ m t increasingly tends to θ t in probability, i.e. sup m θ m t = θ t a.s..

Assumption 9.

The payoff function ξ is of the form ξ = g(S T ), where g ∈ R k + is continuous. Moreover, ξ is hedgeable, i.e. there exists a portfolio process (V ξ u ) T u=-1 such that ξ = V ξ T .

We recall two weak no-arbitrage conditions introduced in Chapter 4:

Definition 5.3.5. We say that the condition AIP holds at time t if the minimal cost c t (0) = γ 0 t (0) of the European zero claim ξ = 0 is 0 at time t ≤ T . We say that AIP holds if AIP holds at any time.

The following condition is more technical. Definition 5.3.6. We say that the condition SAIP (Strong AIP condition) holds at time t if AIP holds at time t and, for any

Z t ∈ L 0 (R d , F t ), we have D 0 t (S t , 0, Z t ) = 0 if and only if Z (2) t 
= 0 a.s.. We say that SAIP holds if SAIP holds at any time.

We now introduce the sequence of functions which is defined recursively as follows:

γξ T (s, v T -1 ) := ξ 1 + C T (s, (0, ξ (2) -v (2) 
T -1 )), v t-1 , ξ ∈ R d , s ∈ R k , θξ t (s, v t ) := sup m γξ t+1 (α m t (s), v t ), t ≤ T -1, v t ∈ R d , Dξ t (s, v t-1 , v t ) := θξ t (s, v t ) + C t (s, (v (2) 
t -v (2) 
t-1 )),

γξ t (s, v t-1 ) := cl inf vt∈R d Dξ t (s, v t-1 , v t ) . (5.3.4) 
Here, the notation cl(f ) designates the l.s.c. regularization of f . In this paper, we will impose later in the sequel a condition under which we have γξ t (s, v t-1 ) := inf vt∈R d Dξ t (s, v t-1 , v t ). The introduction of the functions above is motivated by the following result proved in Chapter 4.

Theorem 5.3.7. Suppose that either AIP holds and C t (s, .) is convex for fixed s or SAIP holds. Then, we have γ ξ t (S t , V t ) = γξ t (S t , V t ) a.s. and, also,

θ ξ t (S t , V t ) = θξ t (S t , V t ) a.s. and D ξ t (S t , V t-1 , V t ) = Dξ t (S t , V t-1 , V t ) for any V t-1 , V t ∈ L 0 (R d , F t ). Moreover, γξ t (s, v) is l.s.c. on R k × R d and convex in v when C t (s, .) is convex.
Recall that the family of F t -measurable random variables (α n t (S t )) n≥1 is defined in Assumption 8. We now consider an F t -i.i.d. sample of random variables {b i t+1 , i ≥ 1} that satisfies P [b 1 t+1 = α n t (S t )|F t ] > 0 a.s. for all n ≥ 1 and b 1 t+1 ∈ {α n t (S t ), n ≥ 1} a.s. Now, let us define the (random) functions

Dξ T (s, x, y) := γξ T (s, y), Dξ t (s, x, y) := C t (s, (0, y (2) -x (2) )) + γξ t+1 (s, y), Dn T (ω, x, y) := Dξ T (s, x, y) Dn t (ω, x, y) := max i≤n Dξ t (b i t+1 (ω), x, y). (5.3.5) 
Since γξ t+1 (s, x) is l.s.c. in s, it is Borel in s for fixed x. Then, by Lemma 5.3.4, we deduce that:

lim n→∞ max i≤n γξ t+1 (b i t+1 (ω), y) = sup n γξ t+1 (α n t (S t (ω)), y) = θξ t (S t (ω), y), a.s.
In particular, lim n→∞ Dn t (ω, x, y) = Dξ t (S t (ω), x, y). We now investigate the question whether inf y∈R d Dn t (ω, x, y) converge a.s.(ω) to inf y∈R d Dξ t (ω, x, y) as n → ∞. To do so, we first recall the definition of epi-convergence, see [START_REF] Molchanov | Theory of Random Sets[END_REF]Chapter 3] or [START_REF] Rockafellar | Variational analysis[END_REF]Chapter 7]. In the following, the notation B(x, r) designates the closed ball of R d , where d ≥ 1 depends on the context, centered a point x ∈ R d and of radius r ≥ 0. Definition 5.3.8. Let f n : R k → R, n ≥ 1, be a sequence of functions. The epi-limit inferior li e f n and epi-limit superior ls e f n of (f n ) n≥1 are defined as:

li e [(f n ) n≥1 ](u) := sup k≥1 lim inf n→∞ inf v∈B(u,1/k) f n (v), ls e [(f n ) n≥1 ](u) := sup k≥1 lim sup n→∞ inf v∈B(u,1/k) f n (v). The sequence (f n ) n≥1 is said to be epi-convergent at point u if li e [(f n ) n≥1 ](u) = ls e [(f n ) n≥1 ](u).
We also introduce the definition of almost sure epi-convergence for random functions.

Definition 5.3.9. If (f n ) n≥1 , is a sequence of functions f n : Ω × R k → R such that f n is F t ⊗B(R d
)-measurable for each n, we say that f n epi-converges to f almost surely (notation f n epi -→ f a.s.) if, for any ω outside a P -null set, and for all u:

li e [(f n (ω, •)) n≥1 ](u) = ls e [(f n (ω, •)) n≥1 ](u) = f (ω, u).
Theorem 5.3.10. Suppose that AIP holds and C t (s, y) is convex in y. We then have Dn t (ω, ., .) ∨ -C t (S t (ω), (0, x (2) ))

epi -→ Dξ t (S t (ω), ., .) a.s.(ω), as n → ∞.

Suppose that for any t, we have 

C t (s, v 1 t ) ≥ C t (s, v 2 t ) if v 1 t ≥ R d + v 2 t .
li e [( Ln t (ω, •, •) n≥1 )](x, y) = ls e [( Ln t (ω, •, •) n≥1 )](x, y) = sup n Ln t (ω, x, y). 
We now prove that there exists a negligible set H such that for any ω ∈ Ω\H and x, y ∈ R d × R d the following holds:

sup n Ln t (ω, x, y) = Dξ t (ω, x, y). (5.3.6) 
By assumption on (C t ) t≥0 , we get by induction that

θ ξ t (V t ) ≥ θ 0 t (V t ) a.s. for any V t ∈ L 0 (R d , F t ). We deduce that D ξ t (V t-1 , V t ) ≥ -C t (S t (ω), (0, V (2) 
t-1 )) for any for any V t-1 , V t ∈ L 0 (R d , F t ). Indeed, under AIP, D 0 t (0, V t ) ≥ 0 a.s. hence

D ξ t (V t-1 , V t ) = θ ξ t (V t ) + C t (S t , (0, V (2) t - 
V (2) 
t-1 )) ≥ θ ξ t (V t ) + C t (S t , (0, V (2) 
t )) -C t (S t , (0, V (2) 
t-1 )), (by subadditivity)

≥ θ 0 t (V t ) + C t (S t , (0, V (2) 
t )) -C t (S t , (0, V

t-1 )) ≥ D 0 t (0, V t ) -C t (S t , (0, V (2) 
t-1 )) ≥ -C t (S t , (0, V (2) 
t-1 )), a.s.

for any

V t-1 , V t ∈ L 0 (R d , F t ).
prove sup n Dn t (ω, x, y) = Dξ t (S t (ω), x, y) for all x, y and ω outside a negligible set. By the definition of γξ t and θξ t , we can show by induction an by Lemma 5.3.11 that the mappings y → θξ t (s, y) and y → γξ t (s, y) are decreasing with respect to R d + . Recall the definition of N (x, y), we also denote H := ∪ y∈Q d N (x, y) ∪ M and claim that for any ω ∈ Ω \ H, sup n γξ t+1 (b n t+1 (ω), y) = θξ t (S t (ω), y), for all y ∈ R d . Indeed, fix some y ∈ R d and a sequence (y k ) k≥1 in Q d such that y k → y and y k ≥ R d + y. By lower semicontinuity and the discussion above, we have for any ω ∈ Ω \ H:

θξ t (S t (ω), y) ≤ lim inf k θξ t (S t (ω), y k ) ≤ θξ t (S t (ω), y), and sup n γξ t+1 (b n t+1 (ω), y) ≤ lim inf k sup n γξ t+1 (b n t+1 (ω), y k ) ≤ sup n γξ t+1 (b n t+1 (ω), y).
Then, we have

θξ t (S t (ω), y) = lim inf k θξ t (S t (ω), y k ), sup n γξ t+1 (b n t+1 (ω), y) = lim inf k sup n γξ t+1 (b n t+1 (ω), y k ).
Moreover, by the definition of H, we have sup n γξ t+1 (b n t+1 (ω), y k ) = θξ t (S t (ω), y k ) for any ω ∈ Ω \ H. We then deduce that sup n γξ t+1 (b n t+1 (ω), y) = θξ t (S t (ω), y) for any ω ∈ Ω \ H. At last, by the definition of Dξ t and Dn t , we conclude that sup n Dn t (ω, x, y) = Dξ t (S t (ω), x, y) for any x, y and ω ∈ Ω \ H. In the Proof of Theorem 5.3.10, we have used the following result: Lemma 5.3.11. Let f : R k → R be a function such that f that is non increasing with respect to the partial order ≥ R k + . Consider cl(f ) the lower semicontinuous regularization of f . Then, cl(f ) is non increasing w.r.t. the partial order ≥ R k + . Proof. From [76, Lemma 1.7], we have the following representation of the l.s.c. closure:

cl(f )(x) = lim inf y→x f (x) = min α ∈ R : ∃(x n ) n≥1 , x n → x, lim n f (x n ) = α . Consider x 1 , x 2 ∈ R d such that x 1 ≥ R d + x 2 and a sequence (x n ) n≥1 such that x n → x 2 and f (x n ) → cl(f )(x 2 ) as n → ∞. Observe that x n + x 1 -x 2 → x 1 as n → ∞. We then have f (x n + x 1 -x 2 ) ≤ f (x n ) by our hypothesis. We deduce that cl(f )(x 1 ) ≤ lim inf n f (x n + x 1 -x 2 ) ≤ lim n f (x n ) = cl(f )(x 2 ).
Definition 5.3.12. We say that a set-valued mapping 

K t : R k + × R d ↠
(s, v 1 t ) ≥ C t (s, v 2 t ) for any v 1 t , v 2 t ∈ R d such that v 1 ≥ R d + v 2 .
Then, we have:

lim n→∞ inf y∈Kt(St(ω),x) Dn t (ω, x, y) = inf y∈Kt(St(ω),x) Dξ t (S t (ω), x , y), ∀x, y, a.s. (5.3.8) 
Moreover, for each fixed

x t ∈ L 0 (R d , F t ) such that the random set K t (S t , x t ) is F t -measurable, there exists a sequence (ŷ n t+1 ) n≥1 of L 0 (R d , F t+1 ) such that ŷn t+1 ∈ arg min Kt(St,xt) ( Dn t (ω, x t , .
)) a.s. and ŷn t+1 → ŷ0 t+1 ∈ L 0 (R d , F t+1 ) along a random F t+1 -measurable subsequence where ŷ0 t+1 ∈ arg min( Dξ t (S t , x t , .)). In the case where C t (s, y) is convex in y, the same conclusion holds if we replace Dn t (ω, x, y) by Dn t (ω, x, y) ∨ -C t (S t (ω), (0, x (2) )) . Moreover, in that case, if K t (S t , x t ) is also convex, for fixed

x t ∈ L 0 (R d , F t ) such that the random set K t (S t , x t ) is F t -measurable, ŷn t = E(ŷ n t+1 |F t ) ∈ K t (S t , x t ) a.
s. and converges a.s. to ŷ0 t = E(ŷ 0 t+1 |F t ) ∈ arg min( Dξ t (S t , x t , .)).

Proof. We prove the claim in the first case, the second case is deduced similarly using Theorem 5.3.10. Consider the negligible set H in the proof of Theorem 5.3.10 such that Dn t (ω, x, y) ≤ Dξ t (ω, x, y), for all x, y and for any ω ∈ Ω \ H and n ≥ 1. We then have:

lim n→∞ inf y∈Kt(St(ω),x) Dn t (ω, x, y) ≤ inf y∈Kt(St(ω),x) Dξ t (S t (ω), x, y), ∀x, (5.3.9) 
for any ω ∈ Ω \ H. We now establish the reversed inequality. Since each Dn t is an F-normal integrand, then by [START_REF] Rockafellar | Variational analysis[END_REF]Theorem 13.37], we deduce that inf y∈Kt(St(ω),x) Dn t (ω, x, y) is almost surely attained at some ŷn t (ω, x). In other words, we have ŷn t (ω, x) ∈ arg min Kt(St(ω),x) ( Dn t (ω, x, .)) for any ω outside a negligible set N such that H ⊂ N .

Since 

K t (s, x) is compact, for any ω ∈ Ω \ N and x ∈ R d , there is a random subsequence {ŷ n k t (ω, x), k ≥ 1} of {ŷ n t (ω, x), n ≥ 1} converging to some ŷ0 t (ω, x) ∈ K t (S t (ω), x). Since Dn t (ω, ., .) epi - 
for any ω ∈ Ω \ N . As Dξ t (S t (ω), x, ŷ0 t (ω, x)) ≥ inf y∈Kt(St(ω),x) Dξ t (S t (ω), x, y), we deduce that for any ω ∈ Ω \ N :

lim inf k→∞ Dk t (ω, x, ŷk t (ω, x)) ≥ inf y∈Kt(St(ω),x) Dξ t (S t (ω), x, y). (5.3.11) 
We deduce from (5.3.9) and (5.3.11) and, finally (5.3.10), that lim inf

k→∞ Dk t (ω, x, ŷk t (ω, x)) = inf y∈Kt(St(ω),x) Dξ t (S t (ω), x, y) = Dξ t (S t (ω), x, ŷ0 t (ω, x))
We then deduce that ŷ0 t (ω, x) ∈ arg min Kt(St(ω),x) ( Dξ t (S t (ω), x, .)) for any ω ∈ Ω \ N , i.e. (5.3.8) 

Multi-period framework

In this section, we consider the multi-period setting t = 0, • • • , T . Our goal is to determine the infimum super-hedging cost of ξ := g(S T ) = (g 1 (S T ), g (2) (S T )) at time 0, where g : R k + → R d + is a deterministic continuous function. To do so, we apply the dynamic programming principle of Proposition 5.2.1 to recursively compute γ ξ t (V t-1 ) for t = 0, • • • , T . Moreover, since γ ξ 0 (0) = γξ 0 (S 0 , 0) under the weak no-arbitrage condition we suppose, it is then sufficient to compute γ0 (S 0 , V 0 ) for V 0 = 0. We work under the following assumption:

Assumption 10. For each t, suppose that there is a reachability set-valued mapping 

K t : R k + × R d ↠ R d such that K t (s, v t-
i t , i ∈ J t , t = 0, • • • , T } in R k×T generated by the following procedure: 1) b i 0 = S 0 for all i ∈ J 0 = N \ {0}. 2) For given t ≥ 0, we denote Ft = σ(b k u : k ∈ J u , u ≤ t)
where (b k u ) k∈Ju are the random variables constructed at time t. Then, for time t + 1, and for each i ∈ J t , we generate a sequence of i.i.d. random variables α j t+1 , j ≥ 1, independent of F t such that α j t+1 ∈ L 0 (Θ, F t+1 ) for each j. Moreover, supp Ft α j t+1 = Θ. We then define for each i ∈ J t and j ≥ 1, b i,j t+1 = α j t+1 b i t . Then, J t+1 = {(i, j) : i ∈ J t , j ≥ 1}.

To compute γξ 0 (S 0 , 0), we approximate γξ t (b i t , v t-1 ) by the randomization method considered in the last section that we extend to the multi-period setting.

We denote

n 1 = (n 1 u ) u=1,••• ,T a generic element in N T and, for t = 1, • • • , T , we define n t = (n t u ) u=t,••• ,T ∈ N T -t+1 . If b i t ∈ {α k t b j t-1 ; j ∈ J t-1 , k ≥ 1}, i ∈ J t , we set: θn T T -1 (b i T -1 , v T -1 ) := max m≤n T T γξ T (α m T b i T -1 , v T -1 ), θn t+1 t (b i t , v t ) := max m≤n t+1 t+1 γn t+2 t+1 (α m t+1 b i t , v t ), n t+2 = (n t+1 u ) u=t+2,••• ,T , t ≤ T -1, Dn t+1 t (b i t , v t-1 , v t ) := θn t+1 t (b i t , v t ) + C t (b i t , (0, v (2) 
t -v (2) 
t-1 )), t ≤ T -1, γn t+1 t (b i t , v t-1 ) := inf vt∈Kt(b i t ,v t-1 ) Dn t+1 t (b i t , v t-1 , v t ), t ≤ T -1.
Note that by assumption

γξ T (s, v T -1 ) := g 1 (s) + C T (s, (0, g 2 (s) -v (2) 
T -1 )). Therefore, γξ T is l.s.c. Since K t is an upper hemicontinuous compact setvalued mapping by assumption (see Lemma 4.4.14 

(S 0 , 0) = inf v 1 ∈K 0 (S 0 ,0) Dξ 0 (S 0 , 0, v 1 )
where K 0 (S 0 , 0) is a compact set-valued mapping. Moreover, since γξ t+1 (., v t ) is l.s.c. hence Borel, Theorem 5.3.14 applies when we replace S t by each random variable b i t ∈ α k t b j t-1 ; j ∈ J t-1 , k ≥ 1 . Precisely, in accordance with (5.3.5), we shall consider: 

Dn t+1 t+1 t (b i t , v t-1 , v t ) = sup n≤n s t+1 γξ t+1 (α n t b i t , v t ) + C t (α n t b i t , (0, v (2) 
t -v (2) 
t-1 )), t ≤ T -1, γn t+1 t+1 t (b i t , v t-1 ) := inf vt∈Kt(b i t ,v t-1 ) Dn t+1 t+1 t (b i t , v t-1 , v t ), t ≤ T -1,
n T →∞ γn T T -1 (b i T -1 , v T -2 ) = lim n T →∞ γn T T -1 (b i T -1 , v T -2 ) = γξ T -1 (b i T -1 , v T -2 )
Now, we suppose that sup

n t+2 ∈N T -t-1 γn t+2 t+1 (b i t+1 , v t ) = γξ t+1 (b i t+1 , v t ) for any b i t+1 ∈ {α k t+1 b j t ; j ∈ J t , k ≥ 1}.
We have by definition:

Dn t+1 t (b i t , (0, v (2) 
t -v (2) t-1 )) = θn t+1 t (b i t , v t ) + C t (b i t , (0, v (2) 
t -v (2) 
t-1 )) = max

m≤n t+1 t+1 γn t+2 t+1 (α m t b i t , v t ) + C t (b i t , (0, v (2) 
t -v (2) 
t-1 )),

n t+2 = (n t+1 u ) u=t+2,••• ,T .
Consider the directed set of all n t+1 ∈ N 

Dn t+1 t (b i t , v t-1 , v t ) = inf vt∈Kt(b i t ,v t-1 )
sup

n t+1 Dn t+1 t (b i t , v t-1 , v t ) = inf vt∈Kt(b i t ,v t-1 )
sup

n t+1 t+1 ∈N sup n t+2 Dn t+1 t (b i t , v t-1 , v t ) = inf vt∈Kt(b i t ,v t-1 )
sup

n t+1 t+1 ∈N sup n t+2 max m≤n t+1 t+1 γn t+2 t+1 (α m t+1 b i t , v t ) + C t (b i t , (0, v (2) 
t -v (2) 
t-1 )) = inf vt∈Kt(b i t ,v t-1 )
sup

n t+1 t+1 ∈N max m≤n t+1 t+1 sup n t+2 γn t+2 t+1 (α m t+1 b i t , v t ) + C t (b i t , (0, v (2) 
tv

(2)

t-1 )) = inf vt∈Kt(b i t ,v t-1 )
sup

n t+1 t+1 ∈N max m≤n t+1 t+1 γξ t+1 (α m t+1 b i t , v t ) + C t (b i t , (0, v (2) 
tv

(2)

t-1 )) = inf vt∈Kt(b i t ,v t-1 ) Dξ t (b i t , , v t-1 , v t ) = γξ t (b i t , v t-1 ).
To deduce the last two equalities, we use the definition of θξ t (b i t , , v t-1 , v t ) and Dξ t (b i t , , v t-1 , v t ), see (5.3.4) but also (5.3.7) in Remark 5.3.13. The conclusion follows by induction.

In the proof above, we have used the following lemma: Lemma 5.3.16 (Dini-Cartan). Consider a family of l.s.c. functions (f n ) n∈I , f n : R d → R such that for every finite set J ⊂ I, there is n 0 ∈ I with sup j∈J f j ≤ f n 0 . Consider a compact set G, then the following holds:

sup n inf x∈G f n (x) = inf x∈G sup n f n (x).
Proof. By considering an increasing homeomorphism from [-∞, +∞] onto [0, 1], we then restrict ourselves to the case sup n f n is bounded. It is clear that sup n inf x∈G f n (x) ≤ inf x∈G sup n f n (x) so that the inequality holds if the second term is -∞. For the reverse inequality, consider any a < inf x∈G sup n f n (x). For all x ∈ G, we have a < sup n f n (x). Then, there exists some k = k x such that a < f k (x). Note that the set O k := {x : a < f k (x)} is open since f k is l.s.c. By compactness argument, we deduce a finite covering of G by some O k i , j = 1, • • • , N . By our hypothesis, there exists n 0 such that a ≤

f k i (x) ≤ f n 0 (x), for all x ∈ G and i = 1, • • • , N hence we have a ≤ inf x∈G f n 0 (x) ≤ sup n inf x∈G f n (x).
Lemma 5.3.17. For all t , for all j ∈ J t+1 , consider b j t+1 = α k t+1 b i t where i ∈ J t and k ≥ 1. Then, b j t+1 ∈ {a n t b i t , n ≥ 1} a.s. and P [b j t+1 = a n t b i t |F t ] > 0 a.s. Moreover, {b j t+1 , j ∈ J t+1 } are F t -i.i.d. Proof. For all n ≥ 1, we have almost surely :

P b j t+1 = a n t b i t |F t = P α k t+1 b i t = a n t b i t |F t ≥ P α k t+1 = a n t |F t > 0.
The last statement follows directly from Lemma 5.3.3 as (α j t+1 ) j≥1 are F t -i.i.d. by assumption.

Model with one risky asset and piecewise linear costs

As we may observe in the previous section, the reachability set-valued mapping plays an important role in propagating the lower semicontinuity which, in turn, propagates the convergence property. We consider in this section a special case of convex cost functions and provide explicit expressions for the minimal super-hedging costs. In particular, under SAIP condition, we obtain an explicit expression of the reachability set K t (s, v t-1 ) when the payoff is of linear growth, i.e. ξ = (ξ 1 , ξ 2 ) ≤ R 2 + (aS T + b, c) for some a, b, c ∈ R + .

We suppose the market consists of one risk-free asset and one risky asset denoted by (S t ) 0≤t≤T . We impose the following assumption for the conditional support of the price and cost processes. Then the minimal hedging cost of the payoff ξ = (mS T +G, K), m, G, K ∈ R, is given by γξ t (S t , v t-1 ) = G+S t h t (v 2 t-1 ), where h t : R → R is a deterministic piecewise linear function.

Moreover, Dt (S t , v t , v t-1 ) = S t ht (v t , v t-1 ) for some deterministic piecewise linear function ht : R × R → R.

Proof. We first show by induction that, if γξ t+1 (S t+1 , v t ) = S t+1 ft+1 (v 2 t ) where ft+1 : R → R is a piecewise linear function, then γξ t (S t , v t-1 ) = S t ft (v 2 t-1 ) for some piecewise linear function ft : R → R. To do so, observe that:

θξ t (S t , v t ) = sup s∈{a n t St,n≥1} s ft+1 (v 2 t ) = max k d t S t ft+1 (v 2 t ), k u t S t ft+1 (v 2 t ) = S t max k d t ft+1 (v 2 t ), k u t ft+1 (v 2 t ) .
Since ft+1 is piecewise linear function by the hypothesis, we deduce that gt (v 

v 2 ∈R gt (v 2 t ) + Ct (v 2 t -v 2 t-1 ) is a piecewise linear function in v 2 t-1 . If the payoff is ξ = (mS T + G, K), then γξ T (S T , v T -1 ) = G + S T fT (v 2 T -1 ) where fT (v 2 T 1 ) := m + CT (K -v 2 T -1
) is a piecewise linear function by assumption on C T . We then argue by induction as previously done to deduce that

γ ξ t-1 (S t-1 , v t-2 ) = G + S t-1 ft-1 (v 2 t-2 ) for some piecewise linear function ft-1 . At last, since D ξ t (S t , v t , v t-1 ) = θt (S t , v t ) + C t (S t , (0, v (2) t -v (2) 
t-1 )), the conclusion on Dt follows.

The following is our main result of this section. It states the existence of the reachability set under SAIP.

Proposition 5.4.3. Suppose that the payoff ξ = (g 1 (S T ), g 2 (S T )) satisfies g 1 (S T ) ≤ aS T + b and g 2 (S T ) ≤ c for some a, b, c ∈ R + . We also suppose that C t (s, v 1 ) ≥ C t (s, v 2 ) whenever v 1 ≥ R 2 + v 2 and suppose that C t (s, .) is subadditive and 1-homogeneous.

Under the no-arbitrage condition SAIP, the reachability set K t (s, v t-1 ) is defined for every (s, v t-1 ) ∈ R × R and is explicitly given by:

K t (s, v t-1 ) = Bt (0, r t (s, v t-1 ) + 1)
where r t (s, v t-1 ) = sf t (v t-1 )/g t (s) and f t , g t are deterministic piecewise linear functions such that g t (s) > 0 for all s > 0.

Proof. We define ξ := (aS T + b, c) so that ξ ≤ R 2 + ξ. We show by induction that D0

t (s, v t-1 , v t ) ≤ Dξ t (s, v t-1 , v t ) ≤ Dξ t (s, v t-1 , v t )
. By the proof of Theorem 4.4.15 in Chapter 4, we get that

K t (s, v t-1 ) ⊆ v t : Dξ t (s, v t-1 , v t ) ≤ Dξ t (s, v t-1 , 0)
Moreover, by sub-additivity and 1-homogeneity. .

D0 t (s, v t-1 , v t ) = C t (s, (0, v 2 t -v (2) 
Note that by Proposition 5.4.2, f t : R → R and g t : R → R are deterministic piecewise linear functions. Moreover, we have g t (S t ) = S t inf z∈{-1,1} a t (z) for some deterministic piecewise linear function a t . Since SAIP holds, we deduce that inf z∈{-1,1} a t (z) > 0. We then define g t (s) := s inf z∈{-1,1} a t (z) > 0 for all s > 0. The conclusion follows.

Examples

In this section, we consider two classical examples. The first one corresponds to the market with proportional transaction cost and the second one is with fixed cost. We provide the explicit expression of the reachability set-valued mapping K t for the Put option. Then, as a by-product, the minimal superhedging cost for Put option is computed.

For a sake of simplicity, we consider the binomial market model, i.e. the price process satisfies supp Ft S t+1 = k d t S t , k u t S t , where k d t , k u t ∈ R + .

Market model with proportional transaction costs

We consider a particular case of section 5.4 where .5.13) for some deterministic coefficient ϵ t ∈ R + . By a direct computation, see Appendix, we obtain the following Proposition 5.5.1. If v t-1 ∈ R 2 , the following holds:

C t (S t , v) = v 1 + (1 + ϵ t )S t v 2 1 v 2 ≥0 + (1 -ϵ t )S t v 2 1 v 2 ≤0 . ( 5 
θ0 t-1 (S t-1 , v) = -(1 -ϵ t )k d t-1 S t-1 v 2 1 v 2 ≥0 -(1 + ϵ t )k u t-1 S t-1 v 2 1 v 2 ≤0 D0 t-1 (S t-1 , 0, v) = ((1 + ϵ t-1 )S t-1 -(1 -ϵ t )k d t-1 S t-1 )v 2 1 v 2 ≥0 + ((1 -ϵ t-1 )S t-1 -(1 + ϵ t )k u t-1 S t-1 )v 2 1 v 2 ≤0
Moreover, AIP t-1 holds if and only if: 

k d t-1 ≤ 1 + ϵ t-1 1 -ϵ t and k u t-1 ≥ 1 -ϵ t-1 1 + ϵ t . ( 5 
inf v 2 ∈{-1,1} D0 t-1 (S t-1 , 0, v) = S t-1 min (1 + ϵ t-1 ) -(1 -ϵ t )k d t-1 , (1 + ϵ t )k u t-1 -(1 -ϵ t-1 ) .
Proof. Recall that AIP t-1 holds if and only if D0 t-1 (S t-1 , 0, v) ≥ 0 for any v ∈ R d which is equivalent to (5.5.14). Moreover, suppose that SAIP t-1 holds. If k d t-1 = 1 + ϵ t-1 1ϵ t , D 0 t-1 (S t-1 , 0, v) = 0 for any v 2 > 0, i.e. SAIP t-1 fails. Similarly, we get that k u t-1 > (1ϵ t-1 )/(1 + ϵ t ). At last, suppose that the inequalities in (5.5.14) are strict. Since S t-1 > 0 a.s., inf

v 2 ∈{-1,1} D0 
t-1 (S t-1 , 0, v) > 0, a.s. so that SAIP t-1 holds by Theorem 4.4.16 in Chapter 4.

We apply the result above at time T and we proceed by induction, see Appendix, to deduce the following result at time T -2.

Proposition 5.5.2. Assume that 1 + ϵ T -1 ≤ (1 + ϵ T )k u T -1 and 1 -ϵ T -1 ≥ (1 -ϵ T )k d T -1 , we have: θ0 T -2 (S T -2 , z) = -(1 + ϵ T -1 )k d T -2 S T -2 z 2 1 z 2 ≥0 -(1 -ϵ T )k d T -1 k u T -2 S T -2 z 2 1 z 2 ≤0 , D0 T -2 (S T -2 , 0, z) = (1 + ϵ T -2 )S T -2 -(1 + ϵ T -1 )k d T -2 S T -2 ) z 2 1 z 2 ≥0 + (1 -ϵ T -2 )S T -2 -(1 -ϵ T )k d T -1 k u T -2 S T -2 z 2 1 z 2 ≤0 .
and AIP T -2 holds if and only if:

k d T -2 ≤ 1 + ϵ T -2 1 + ϵ T -1 and k u T -2 ≥ 1 -ϵ T -2 (1 -ϵ T )k d T -1 .
Moreover, SAIP T -2 holds if and only if the above inequalities are strict. Moreover, under SAIP T -2 , we have:

inf v 2 ∈{-1,1} D0 T -2 (S T -2 , 0, v) = S T -2 min ((1 + ϵ T -2 ) -(1 -ϵ T -1 )k d T -2 ), -((1 -ϵ T -2 ) -(1 + ϵ T )k d T -1 k u T -2 ) .
The assumptions of Proposition 5.5.2 are chosen for a sake of simplification. The computations for t < T -2 are similar. In particular, for a Put option with payoff (K -S T ) + , K > 0, we obtain a simple formula for the reachability set.

Lemma 5.5.3. Suppose that SAIP holds and ξ = (g(S T ), 0) where g is a continuous function bounded from above by a constant M ∈ R + . Then, there exists a reachability set K t (s, v t-1 ) = Bt (0, r t (s, v t-1 ) + 1), t ≤ T -1, closed ball of radius r t (s, v t-1 ) := λ t (s, v t-1 )/i t (s) where the functions

i t (s) := inf v 2 ∈{-1,1} D0 
t (s, 0, v), λ t (s, v t-1 ) := C t (s, (0, v 2 t-1 )) + M + C t (s, (0, -v 2 t-1 )), are explicitely given by Proposition 5.5.1 and Proposition 5.5.2. In particular, we have i t (s) > 0 for all s > 0.

We illustrate the results above by a numerical example. We consider the put option payoff g(S T ) := (K -S T ) + at time T = 2. We suppose that the proportional cost coefficients ϵ 1 = ϵ 2 = 0.02. We assume that SAIP condition holds and choose k d 2 = 0.9,

k u 2 = 1.1, k d 1 = 0.9, k u 1 = 1.2.
The price function at time t = 0 is presented in Figure 5.1.

for some deterministic constant c t > 0 representing the fixed cost we need to pay to obtain a non-null position.

In Chapter 4, we have introduced the horizon cost function defined as follows: In Chapter 4, we have proved the following theorem:

C ∞ t (
Theorem 5.5.5. Suppose that the condition RSAIP holds. Then, we have γ ξ t (S t , V t ) = γξ t (S t , V t ) a.s., θ ξ t (S t , V t ) = θξ t (S t , V t ) a.s. and, also, we have

D ξ t (S t , V t-1 , V t ) = Dξ t (S t , V t-1 , V t ) a.s. for any V t-1 , V t ∈ L 0 (R d , F t )
, where θξ t , Dξ t are given by (5.3.4).

As the horizon cost function coincides with the cost function (5.5.13) without fixed costs, the results stated in Propositions 5.5.14 and 5.5.2 allows us to characterize the reachability set-valued mapping K t for this market. In particular, since C t ≤ C ∞ t + c t , by a straightforward computation, we deduce a simple formula of K t for the Put option: Lemma 5.5.6. Suppose that ξ = (g(S T ), 0) where g is a continuous function bounded from above by M ∈ R + . Then, a reachability set K t (s, v t-1 ) is explicitly given at any time t ≤ T -1 by K t (s, v t-1 ) = Bt (0, r t (s, v t-1 ) + 1), closed ball of radius r t (s, v t-1 ) := λ t (s, v t-1 )/i t (s) where

i t (s) := inf v 2 ∈{-1,1} D 0,∞ t (s, 0, v), λ t (s, v t-1 ) := C ∞ t (s, (0, v 2 t-1 )) + M + C ∞ t (s, (0, -v 2 t-1 )) + T s=t c s ,
and D 0,∞ t is given in the model without fixed cost given by Proposition 5.5.1 or Proposition 5.5.2. In particular, we have i t (s) > 0 for all s > 0.

As a numerical example, we also consider the put option payoff (K -S T ) + at time T = 2. We consider the binomial tree model as previously. In the We define γξ,n

t : R d × R d → R recursively as follows: γξ,n T (s, v T -1 ) := γ ξ,n T (s, v T -1 ), θξ,n T -1 (s, v T -1 ) := max j≤J γξ,n T (ϕ j T -1 (s), v t-1 ), Dξ,n t (s, v t-1 , v t ) := θξ t (s, v t ) + C n t (s, v (2) 
t -v (2) 
t-1 ), γξ,n t (s, v t-1 ) := cl inf

vt∈R d Dξ,n t (s, v t-1 , v t ) .
Assumption 13. Suppose that for any t ≤ T -1, inf vt∈S d-1 (0,1) D0 t (s, 0, v t ) > 0 for all s ∈ R k + , so that there is a upper hemicontinuous reachability setvalued mapping K t (s, v t-1 ) for the super-hedging problem in the market defined by C t . Moreover, we suppose that K t is a universal reachability set in the sense that it satisfies for all n ≥ 1 and (s, v t-1 ):

γξ,n t (s, v t-1 ) = inf vt∈Kt(s,v t-1 )
Dξ,n t (s, v t-1 , v t ).

Remark 5.6.1. Consider the case where C, C n and S t satisfy the assumptions specified in section 5.4. Since C ≤ C n for all n ≥ 1 by assumption, we deduce that inf vt∈S d-1 (0,1) D0 t (s, 0, v t ) > 0 implies inf vt∈S d-1 (0,1) D0,n t (s, 0, v t ) > 0 for all n. By the proof of Proposition 5.4.3, it is sufficient to suppose that SAIP holds for the market defined by C. If we suppose that C t (s, v t ), C n t (s, v t ) are bounded above by |h t (s, v t )| for some continuous function h t , by the same argument as in Lemma 4.5.21 in Chapter 4, we deduce that the quantities D0 t (s, v t-1 , 0) and D0,n t (s, v t-1 , 0) are bounded above by a continuous function ĥt (s, v t-1 ). Hence, a universal reachability set exists as K t (s, v t-1 ) = B(0, r t (s, v t-1 ) + 1) where

r t (s, v t-1 ) = ĥt (s, v t-1 ) + |h t (s, v t-1 )| inf vt∈S d-1 (0,1) D0 t (s, 0, v t )
. 

Since
,n T -1 (s, .) = max j≤J γξ,n T (ϕ j (s), .) epi -→ max j∈J γξ T (ϕ j (s), .) = θξ T -1 (s, .), n → ∞. Since C n T -1 (s, .) ↓ C T -1 (s, .) and C T -1 (s, .
) is continuous, we deduce by the Dini theorem that the convergence is uniform on any compact subset K of R d . By [ 

Appendix

We recall from [START_REF] Rockafellar | Variational analysis[END_REF] the definiton of piecewise linear function: Definition 5.7.1. A mapping F : D → R m defined on a set D ∈ R n is piecewise linear on D if D is the union of finitely many polyhedral sets (P i ) i∈J such that, for all x ∈ P i , F (x) = A i x + B i , for some matrix A i ∈ R m×n and B i ∈ R m . A function f : R n → R is piecewise linear if it is a real-valued piecewise linear function on its domain.

We now provide the complement to Section 5.4. Recall that the model is defined by one risk-free asset and one risky asset denoted by S. The cost function is given by

C t (S t , v) = v 1 + S t Ct (v 2 ), (5.7.16) 
where Ct : R → R is a piecewise linear function. By Proposition 4.5.6 in Chapter 4, we have:

θ 0 T -1 (S T -1 , v) := ess sup F T -1 C T (S T , (0, -v 2 )) = sup s∈supp F T -1 S T C T (s, (0, -v 2 )) = sup s∈supp F T -1 S T -(1 + ϵ T )sv 2 1 v 2 ≤0 -(1 -ϵ T )sv 2 1 v 2 ≥0 = sup s∈[k d T -1 S T -1 ,k u T -1 S T -1 ] -(1 + ϵ T )sv 2 1 v 2 ≤0 -(1 -ϵ T )sv 2 1 v 2 ≥0 = max -(1 + ϵ T )k d T -1 S T -1 v 2 1 v 2 ≤0 -(1 -ϵ T )k d T -1 S T -1 v 2 1 v 2 ≥0 , -(1 + ϵ T )k u T -1 S T -1 v 2 1 v 2 ≤0 -(1 -ϵ T )k u T -1 S T -1 v 2 1 v 2 ≥0 = -(1 -ϵ T )k d T -1 S T -1 v 2 1 v 2 ≥0 -(1 + ϵ T )k u T -1 S T -1 v 2 1 v 2 ≤0 . and C T -1 (S T -1 , (0, v 2 -z 2 )) = (1 + ϵ T -1 )S T -1 v 2 1 v 2 -z 2 ≥0 + (1 -ϵ T -1 )S T -1 v 2 1 v 2 -z 2 ≤0 -(1 + ϵ T -1 )S T -1 z 2 1 v 2 -z 2 ≥0 + (1 -ϵ T -1 )S T -1 z 2 1 v 2 -z 2 ≤0 .
We then have:

D 0 T -1 (S T -1 , 0, v) = θ 0 T -1 (S T -1 , v) + C T -1 (S T -1 , (0, v 2 )) = ((1 + ϵ T -1 )S T -1 -(1 -ϵ T )k d T -1 S T -1 )v 2 1 v 2 ≥0 + ((1 -ϵ T -1 )S T -1 -(1 + ϵ T )k u T -1 S T -1 )v 2 1 v 2 ≤0
More generally:

D 0 T -1 (S T -1 , z, v) = θ 0 T -1 (S T -1 , v) + C T -1 (S T -1 , (0, v -z)) = (1 + ϵ T -1 )S T -1 v 2 1 v 2 -z 2 ≥0 + (1 -ϵ T -1 )S T -1 v 2 1 v 2 -z 2 ≤0 -(1 + ϵ T -1 )S T -1 z 2 1 v 2 -z 2 ≥0 + (1 -ϵ T -1 )S T -1 z 2 1 v 2 -z 2 ≤0 -(1 -ϵ T )k d T -1 S T -1 v 2 1 v 2 ≥0 -(1 + ϵ T )k u T -1 S T -1 v 2 1 v 2 ≤0 .
In the following, we assume that 1

+ ϵ T -1 ≤ (1 + ϵ T )k u T -1 and, also, that 1 -ϵ T -1 ≥ (1 -ϵ T )k d T -1 .
We shall use the usual convention that inf ∅ = ∞. We get that:

γ 0 T -1 (z) = inf v∈R 2 D 0 T -1 (S T -1 , z, v) = min i=1,••• ,4 D 0,i T -1 (S T -1 , z, v),
where:

D 0,1 T -1 = inf v 2 :v 2 ≥z 2 ,v 2 ≥0 (1 + ϵ T -1 )S T -1 (v 2 -z 2 ) -(1 -ϵ T )k d T -1 S T -1 v 2 = -(1 -ϵ T )k d T -1 S T -1 z 2 1 z 2 ≤0 -(1 + ϵ T -1 )S T -1 z 2 1 z 2 ≥0 . D 0,2 T -1 = inf v 2 :v 2 ≥z 2 ,v 2 ≤0 (1 + ϵ T -1 )S T -1 (v 2 -z 2 ) -(1 + ϵ T )k u T -1 S T -1 v 2 = ∞1 z 2 >0 -(1 + ϵ T -1 )S T -1 z 2 1 z 2 ≤0 . D 0,3 T -1 = inf v 2 :v 2 ≤z 2 ,v 2 ≥0 (1 -ϵ T -1 )S T -1 (v 2 -z 2 ) -(1 -ϵ T )k d T -1 S T -1 v 2 = ∞1 z 2 <0 -(1 -ϵ T -1 )S T -1 z 2 1 z 2 ≥0 . D 0,4 T -1 = inf v 2 :v 2 ≤z 2 ,v 2 ≤0 (1 -ϵ T -1 )S T -1 (v 2 -z 2 ) -(1 + ϵ T )k u T -1 S T -1 v 2 = -(1 -ϵ T -1 )S T -1 z 2 1 z≥0 -(1 + ϵ T )k u T -1 S T -1 z 2 1 z 2 ≤0 .
We deduce that

γ 0 T -1 (S T -1 , z) = inf v∈R 2 D 0 T -1 (S T -1 , z, v) = -(1 + ϵ T -1 )S T -1 z 2 1 z 2 ≥0 -(1 -ϵ T )k d T -1 S T -1 z 2 1 z 2 ≤0 . 125 
We now compute D 0 T -2 (S T -1 , 0, z). We have:

θ 0 T -2 (S T -2 , z) = ess sup F T -2 γ 0 T -1 (S T -1 , z) = sup s∈[k d T -2 S T -2 ,k u T -2 S T -2 ] γ 0 T -1 (s, z) = sup s∈[k d T -2 S T -2 ,k u T -2 S T -2 ] -(1 + ϵ T -1 )sz 2 1 z 2 ≥0 -(1 -ϵ T )k d T -1 sz 2 1 z 2 ≤0 = -(1 + ϵ T -1 )k d T -2 S T -2 z 2 1 z 2 ≥0 -(1 -ϵ T )k d T -1 k u T -2 S T -2 z 2 1 z 2 ≤0 .
and

D 0 T -2 (S T -2 , 0, z) = θ 0 T -2 (S T -2 , z) + C T -2 (S T -2 , (0, z 2 )) = -(1 + ϵ T -1 )k d T -2 S T -2 z 2 1 z 2 ≥0 -(1 -ϵ T )k d T -1 k u T -2 S T -2 z 2 1 z 2 ≤0 +(1 + ϵ T -2 )S T -2 z 2 1 z 2 ≥0 + (1 -ϵ T -2 )S T -2 z 2 1 z 2 ≤0 = (1 + ϵ T -2 )S T -2 -(1 + ϵ T -1 )k d T -2 S T -2 ) z 2 1 z 2 ≥0 + (1 -ϵ T -2 )S T -2 -(1 -ϵ T )k d T -1 k u T -2 S T -2 z 2 1 z 2 ≤0 .
We then get the following:

Proposition 5.7.2. AIP holds at time T -2 if and only if the following holds:

k d T -2 ≤ 1 + ϵ T -2 1 + ϵ T -1 and k u T -2 ≥ 1 -ϵ T -2 (1 -ϵ T )k d T -1 .
such that A r ≥ κ θ for all r ∈ [t, T ], for some κ θ ∈ R. Liquidation value of the asset firm at time u ≥ t is defined as L u := A u -D u so that we have E = L + . Note that the dynamics of L is :

dL u = θ u dS u -d u du -r u D u du, u ∈ [t, T ], (6.1.3) 
where d t = c tk t D t is the amount of dividends. The dynamics above shows that the liquidation value of the firm's financial position is naturally controlled by the investment strategy θ but it is adversely impacted by the dividends d ≥ 0 paid to the share holders and by the credit risk premium r as well. In particular, apart the risk provided by the risky asset S, there is a risk generated by the investment strategy θ such that an increase of the credit risk premium r may decrease the liquidation value L, which may leads to a bankruptcy when L = 0. From (6.1.2) and (6.1.1), suppose that E t ≥ 0, then we have:

A T ≥ D T ⇔ E t + T t θ u dS u - T t d u du ≥ T t r u D u du. (6.1.4) 
We suppose in the following that the credit risk premium and the reimbursement rate are constant denoted respectively r and k. Then, in the case where the inequality above holds, it also holds for r = 0. Moreover, as D is an increasing function of r, the inequality is violated as soon as r is large enough. Therefore, it is possible for the debt holders to deliberately make the firm insolvent by increasing the credit risk premium.

Valuation of the risk premium under riskneutral measure

In this section, we consider the problem of evaluation of the Fair Credit Risk Premium. We suppose that the market is complete and we shall restrict ourselves to strategies θ such that A ≥ 0. We suppose without loss of generality that P is the risk-neutral probability measure for S. Taking into account a possible default, the payoff delivered to the credit holders is as the Merton model:

h D T := T t kD u du + A T ∧ D T
and the payoff delivered to the equity holders is:

h E T := T t d u du + (A T -D T ) + .
Observe that, when A T ≥ 0, we have: Therefore, when A T ≥ 0, we deduce that: 

h D T + h E T = T t kD u du + T t d u du + A T = E t + D t + T t θ u dS u . ( 6 
h D T = h D T (r) = min A t + T t θ u dS u - T t d u du, D t + T t rD u du , (6.2.7) = min D t + L T + T t rD u du, D t + T t rD u du , h E T = h E T (r) = max T t d u du, E t + T t θ u dS u - T t rD u du . ( 6 
D u = D t e (r-k)(u-t) T t rD u (r)du = D t r e (r-k)(T -t) -1 r -k
with the convention (e X -1)/X = 1 if X = 0. We then conclude. 

= A t + T t θ u dS u - T t d u du, then the inequality h D T ≥ D t implies that A t + T t θ u dS u - T t d u du ≥ D t .
Otherwise, using (6.2.7), we deduce that

A t + T t θ u dS u - T t d u du ≥ h D T = D t + T r rD u du ≥ D t .
The reverse implication is trivial. Proof. We use the same notations as in the proof of Proposition 6.2.5 where the initial time is t instead of 0. Let us introduce random function

ϕ t : r ∈ R + → E(h D T (r)|F t ) -D t ,
where a regular version of the conditional probability measure P (•|F t ) is considered. We have

ϕ t (r) = E T t rD u (r)du - T t rD u (r)du -γ + |F t .
Note that the function δ(x) = x -(xγ) + is non decreasing and for x ≥ 0, |δ(x)| ≤ |γ|. As γ is conditionally integrable, we deduce by the dominated convergence theorem that ϕ t (∞) = E(γ|F t ). In particular, since we have E(γ|F t ) = E t -E T t d u du|F t , we get that ϕ t (∞) > 0 a.s.. Moreover, ϕ t (0) = -E(γ -|F t ) ≤ 0. Therefore, as r → ϕ t (r) is continuous a.s. and non decreasing, there exists r * = r * (ω) ∈ R + such that ϕ t (r * ) = 0. By continuity, we actually get that ϕ t = ϕ t (ω, r) is a normal integrand, see [START_REF] Rockafellar | Variational analysis[END_REF], so that ϕ t is F t ⊗ B(R)-measurable. Therefore, the set Γ t = {(ω, r) ∈ Ω × B(R) + : ϕ t (ω, r) = 0} belongs to F t ⊗ B(R). Since the ω-sections of Γ t are not empty, we deduce by a measurable selection argument the existence of r * ∈ L 0 (R + , F t ) such that ϕ t (r * ) = 0.

Suppose that there are distinct r 1 , r 2 ∈ L 0 (R + , F t ) such that ϕ t (r 1 ) = ϕ t (r 2 ) = 0. Then, the same holds for r 1 ∧ r 2 and r 1 ∨ r 2 so that we may assume without loss of generality that r 1 ≤ r 2 . Since δ is strictly increasing on (-∞, γ) and constant on [γ, ∞), we obtain that

δ T t r 1 D u (r 1 )du ≤ δ T t r 2 D u (r 2 )du
and, finally, the equality holds due to the assumption. Therefore, we necessarily have

T t r 2 D u (r 2 )du ≥ γ,
at least when r 1 and r 2 are distinct, since δ is strictly increasing on (-∞, γ). We deduce that ϕ t (r 2 ) ≥ E(γ|F t ) where E(γ|F t ) > 0 by assumption. This yields a contradiction. ✷ Note that, when ϕ t (0) = 0, then γ = L T ≥ 0 a.s. hence A T ≥ D T a.s. so that, by the proposition below, r * = 0 is the only risk premium satisfying ϕ t (r * ) = 0 under (MP).

Optimization problem for the firm

We consider a utility function U which is strictly concave, strictly increasing and of class C 1 . We consider the model of Section 6.1 and we assume that there is a unique risk neutral probability measure P , see Section 6.2. At time t ≤ T , L t ∈ L 0 (R, F t ) and D t ∈ L 0 (R, F t ) are given and we introduce the function J 0 (t, x, y, θ, c)

:= E U T t d u du + L θ,c T |(D t , L t ) = (x, y) , where L θ,c
T starts from the initial value L t at time t and D starts from the intial value D t . By Condition Z2 in [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF], we have

J 0 (t, x, y, θ, c) := E U T t d u du + L x,y, θ,c T (6.3.9)
where d is the dividend's plan of the firm, y = L t is the initial value of the liquidation value, x = D t is the initial value of the debt, and L x,y, θ,c T is defined by (6.1.3) with the initial values x, y at time t defining respectively D t and L t . Moreover, the control is c = (d, k) such that (M P ) holds, i.e.

E(h

D T (r)|(D t , L t ) = (x, y)) = E(h D T (r)) =
x where the process h D (r) in the last expectation is defined from the initial value x = D t . Here, we suppose that the reimbursement plan k is a real-valued constant. The constant credit risk prime r is real-valued constant given by Proposition 6.2.6.

We require that θS is a square integrable martingale on [t, T ] and θ0 , θ ≥ 0 is such that A T = A T ( θ) ≥ 0 a.s. This is equivalent to say that A u ≥ θu S u for every u ∈ [t, T ] and A T ≥ 0. So we impose that A u ≥ θu S u for every u ∈ [t, T ]. Here, for technical reason, we suppose that A u ≥ θu+ S u where θu+ is the right limit of θ. As A is continuous, this implies that θ0 u+ , θ0 u-≥ 0. It is enough for our purposes since t 0 θu dS u = t 0 θu+ dS u = t 0 θu-dS u as soon as S is continuous. In particular, if θ is an optimal strategy, this is also the case for θ+ . The goal of the problem is to maximize J 0 (t, x, y, z, θ, c) over all strategies θ and control c satisfying the constraints described previously. Remark 6.3.1. In the case where E T t d r dr|F t ) ≥ E t , we deduce by Proposition 6.2.5 that the condition E(h D T |F t ) = D t implies that we have E T t d r dr|F t = E t and the equality E(h D T (r)|F t ) = D t holds whatever the credit risk prime r since h D T does not depend on r. As the mapping r → L x,y, θ,c T in non increasing and U is increasing, the maximization leads to choose r = 0.

Let us introduce the more general function J(t, x, y, θ, c, r) defined as:

J(t, x, y, θ, c, r) := E U T t d u du + L x,y, θ,c T + x -h D T (r) (6.3.10) Lemma 6.3.2.
The initial maximization problem of (6.3.9) is equivalent to maximize J(t, x, y, θ, c, p) of (6.3.10) over all strategies θ such that A u ≥ θu+ S u for all u ≥ t, controls c and credit risk primes r ≥ 0, under the target constraint E(h D T (r)) ≥ x where h D T (r) is defined from the initial values x, y. Proof. Under the target constraint E(h D T (r)) ≥ x, x -E(h D T (r)) is necessarily non positive. Recall that E(h D T (r)|F t ) = ϕ t (r) + D t where ϕ t , given in the proof of Proposition 6.2.6, in non decreasing in r. Therefore, the mapping r → x -E(h D T (r)) is non increasing. Also, r → L T (r) is non increasing by (6.1.3). Therefore, it suffices to decrease r to increase J(t, x, y, θ, c, r). Precisely, we consider the smallest and unique r * such that E(h D T (r * )) = x, see proposition 6.2.6. ✷

We define U t as the collection of ν = ( θ, d, k, r) such that ( θ, d) are progressively measurable processes with values in R × R and k, r ∈ R + . We db t . It follows that the optimization problem reads as sup ν∈U t E[f (Z ν t,z (T ))], where we define

f (Z) := U (Z 3 + Z 6 ) + [Z 6 ] --Z 5
Recall that h D T = T t kD u du + A T ∧ D T and A = L + D. Therefore, the target constraint reads as g(Z ν t,z ) ≥ 0 a.s. where

g(Z) = g(X, Y ) = X 4 + (X 2 + Y ) ∧ X 2 -X 6 .

Dynamic Programming Principle for optimal control under pathwise constraint

Let us define the auxiliary value function:

w(t, x) := inf{y ∈ R : (t, x, y) ∈ D}
where the domain D is defined as D = {(t, z) : U t,z ̸ = ∅}. Recall that the set of admissible controls is now written as:

U t,z := ν : g(Z ν t,z (T )) ≥ 0 and Z ν,2 t,z (u) + Z ν,7 t,z (u) ≥ ν 1 u+ Z ν,1 t,z (u) ∀u ∈ [t, T ] a.s. .

We define Z ν t,z (u) for u < t as Z ν t,z (u) = 0. We denote by Q T the set of all rational numbers of [0, T ] completed with the terminal date T . We write Q T as Q T = (T n ) n≥0 with T 0 = T . By right continuity, we deduce that

U t,z := ν ∈ U t : g n (Z ν t,z (T n ), ν(T n +)) ≥ 0, ∀n ≥ 0 , (6.3.12) 
where (g n ) n≥0 are continuous functions such that y → g n (x, y) is non-decreasing and g n (0, u) = 0 for all n ≥ 0. Precisely, we have g 0 (x, y, u) = g(x, y) while

g n (z, u) = g 1 (z, u) = x 2 + y -u 1 x 1 . Lemma 6.3.3. For all t ∈ [t, T ], we have w(t, x) = +∞, if x 6 > x 2 , w(t, x) = -x 2 + (x 6 ) + , if x 6 ≤ x 2 .
Proof. We use the notation from above, i.e. z = (x, y) = (s t , db t , cd t , cr t , dr t , p t , l t ). If t = T , we have A T = A t = D t + L t = db t + y. Therefore, the constraint A ≥ θ+ S reads as y + db t ≥ θt+ S t , i.e. y ≥ θt+ x 1x 2 , θt = ν 1 t . We also have h D T = db t ∧ (db t + y) hence the target constraint is x 2 ∧ (x 2 + y) ≥ x 6 . Therefore, w(T, x) = +∞ if x 6 > x 2 . If x 6 ≤ x 2 , it suffices that y ≥ θt+ S tdb t and y ≥ x 6x 2 for some control θt . Choosing θt = 0, we deduce that w(T, x) = max(x 6x 2 , -x 2 ) = -x 2 + (x 6 ) + . If x 6 > x 2 , we get that w(t, x) = ∞ by the same reasoning. If x 6 ≤ x 2 , choose the control ν = 0 and we get that (t, x, y) ∈ D with y = -x 2 + (x 6 ) + hence w(t, x) ≤ -x 2 + (x 6 ) + . On the other hand, consider y such that (t, x, y) ∈ D. Then, from A u ≥ θu+ S u a.s. for all u ∈ [t, T ], we deduce that A t ≥ θt+ S t . On the other hand, the target constraint is We use the fact that A T ∧ D T ≤ A T a.s. and the expression of A T deduced from its dynamics (6.1.2) to deduce that

y + db t ≥ x 6 - T t θ u dS u + T t α u dW u .
Taking the expectation in both sides of the inequality above, one has y+db t ≥ x 6 . We then deduce, as in the case t = T , that w(t, x) ≥ -x 2 + (x 6 ) + . The conclusion follows.

Lemma 6.3.4. D is an upper set in y.

Proof. Consider (t, x, y) ∈ D. We aim to show that (t, x, ỹ) ∈ D if ỹ ≥ y. First, we observe that by changing (t, x, y) into (t, x, ỹ), we do not change X ν t,z = X ν t,x , i.e. X ν t,(x,y) = X ν t,(x,ỹ) = X ν t,x . Indeed, X ν t,x does not depend on Y ν t,(x,y) . On the other hand, Y ν t,(x,y) only depends on y and X ν t,x . This implies that the process -(ỹy) + Y ν t,(x,ỹ) satisfies the same SDE as Y t,(x,y) . We then deduce by uniqueness that Y ν t,(x,ỹ) = Y t,(x,y) + ỹy. Therefore, if ỹ ≥ y, we get that Y ν t,(x,ỹ) ≥ Y t,(x,y) . As g(x, y) is increasing in y, we deduce that g(X ν t,x , Y ν t,(x,ỹ) ) ≥ g(X ν t,x , Y ν t,(x,y) ) ≥ 0 a.s. Moreover, we have

A ν t,(x,ỹ)
= L ν t,(x,ỹ) + D ν t,(x,ỹ) = Y ν t,(x,ỹ) + X ν,2 t,x ≥ Y ν t,(x,y) + X ν,2 t,x = A ν t,(x,y) ≥ θ + S.

We then deduce that (t, x, ỹ) ∈ D.

Since the elements of Ω are path, we can define the stopped process ω r := (ω t∧r ) t≤T and the shifted process T s (ω) := ω . → ω s+.ω s . We also define concatenation operator: g : R + × Ω × Ω → Ω, g t (s, ω, ω) = ω t 1 [0,s) (t) + (ω t-s + ω s )1 [s,T ] (t) we then have g t (s, ω s . , T s (ω)) = ω t so that ν(ω) = ν(g(s, ω s . , T s (ω))) for any s. Here, we have used the notation ω s = W s (ω). We deduce the following weak version of Dynamic Programming Principle. Theorem 6.3.10. Fix (t, z) ∈ int(D) and let {θ ν , ν ∈ U } be a family of stopping times with values in [t, T ]. Then,

V (t, z) ≤ sup ν∈Ut,z E f * (Z ν t,z (θ ν ))1 θ ν =T + V * (θ ν , Z ν t,z (θ ν ))1 θ ν <T V (t, z) ≥ sup ν∈Ut,z E f * (Z ν t,z (θ ν ))1 θ ν =T + V * (θ ν , Z ν t,z (θ ν ))1 θ ν <T
where V * and V * are respectively denote the u.s.c. and l.s.c. envelope of V defined as: In the following, we use the fact that Z ν t,z (r) = h(t, z, ν, r, W r ) for some measurable function h. In particular, we have for any stopping time θ valued in [t, T ], Z ν t,z (θ)(ω) = h(t, z, ν(ω), θ(ω), W θ (ω)) and, by the flow property, we also deduce that Z ν t,z (T ) = Z ν θ,Z ν t,z (θ) (T ) = h(θ, Z ν t,z (θ), ν, T, W ) = h(θ, Z ν t,z (θ), ν(g(θ, W θ , T θ )), T, g(θ, W θ , T θ )), a.s.

By (6.3.13), we then deduce that E f (Z ν t,z (T )) F θ = γ(θ, Z ν t,z (θ), W θ )) for some Borel measurable mapping γ defined by γ(t ′ , z ′ , ω) = E f • h(t ′ , z ′ , ν(g(t ′ , ω t ′ , W )), T, g(t ′ , ω t ′ , W )) for all t ′ ≥ t, z ′ ∈ R d , ω ∈ C([0, T ], R).

Note that for u ≥ t ′ , g u (t ′ , ω t ′ , W ) = W u , we then have

h(t ′ , z ′ , ν(g(t ′ , ω t ′ , W )), T, g(t ′ , ω t ′ , W )) = Z ν•g(t ′ ,ω t ′ ,W ) t ′ ,z ′ (T )(W ) = Z ν(W ) t ′ ,z ′ (T )(W ).
We deduce that E f (Z ν t,z (T )) F θ = Ef (Z ν t ′ ,z ′ (T )) with (t ′ , z ′ ) = (θ, Z ν t,z (θ)). Therefore, E f (Z ν t,z (T )) F θ = J(θ, Z ν t,z (θ), ν). Moreover, ν ∈ U t ′ ,z ′ ̸ = ∅ for almost every (t ′ , z ′ ) in the support of (θ, Z ν t,z (θ)). The proof in [82, Theorem 3.1] implies the property (θ, Z ν t,z (θ)) ∈ D a.s.. As J ≤ V ≤ V * and J(T, .) = f , it follows that E f (Z ν t,z (T )) = E J(θ, Z ν t,z (θ), ν) ≤ E V * (θ, Z ν t,z (θ))1 θ<T + f (Z ν t,z (T ))1 θ=T . 2. The second inequality If V (t, z) = ∞, there is nothing to prove. Suppose that V (t, z) < ∞, then for any ϵ > 0, by Lemma 6.3.6, there is a universally measurable mapping νϵ : R + × R 7 ∋ (t, z) → νϵ (t, z) ∈ U t,z such that J(t, z, ν ϵ (t, z)) ≥ V (t, z)ϵ. Moreover, it follows from [START_REF] Black | The pricing of options and corporate liabilities[END_REF]Lemma 7.27] that, for any probability measure m defined on R + × R 7 , there exists a Borel mapping νϵ m : R + × R 7 ∋ (t, z) → νϵ m (t, z) ∈ U t,z such that J(t, z, νϵ (t, z)) ≥ V (t, z)-ϵ ≥ V * (t, z)-ϵ m-a.e.(t, z). We now fix ν 1 ∈ U t 0 ,z 0 for some (t 0 , z 0 ) ∈ int(D) and θ be a stopping time with values in [t 0 , T ]. Let m be the distribution of (θ, Z ν 1 t 0 ,z 0 (θ)). By Theorem 6.3.7, we deduce that (θ, Z ν 1 t 0 ,z 0 (θ)) ∈ D P -a.s.. Moreover, we have: νϵ m (θ, Z ν 1 t 0 ,z 0 (θ)) ∈ U θ,Z ν 1 t 0 ,z 0 , J(θ, Z ν 1 t 0 ,z 0 , νϵ m (θ, Z ν 1 t 0 ,z 0 (θ))) ≥ V * (θ, Z ν 1 t 0 ,z 0 (θ))ϵ, a.s. Now, by [82, Lemma 2.1], there exists ν ϵ 2 ∈ U such that: ν ϵ 2 (ω, t)1 [θ(ω),T ] (t) := ν ϵ m (θ(ω), Z ν 1 t 0 ,z 0 (θ(ω)))1 [θ(ω),T ] (t), (dP × dt)(ω, t) a.e.

We then define the concatenated control ν ϵ := ν 1 1 [t 0 ,θ) + ν ϵ 2 1 [θ,T ] . We claim that ν ϵ ∈ U t 0 ,z 0 . To do so, we first observe by the flow property and the causality condition (resp. Z3 and Z4 in [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF]) that : This implies that g(Z ν ϵ t 0 ,z 0 (T )) ≥ 0 a.s. Moreover, on the set {T n ≥ θ}, we also have

Z ν ϵ t 0 ,z 0 (T ) = Z ν ϵ
Z ν ϵ t 0 ,z 0 (T n ) = Z ν ϵ 2 θ,Z ν 1 t 0 ,z 0 (θ) (T n ) = Z ν ϵ m (θ,Z ν 1 t 0 ,z 0 (θ)) θ,Z ν 1 t 0 ,z 0 (θ) 
(T n ) a.s. and, moreover, ν ϵ (T n +) = ν ϵ 2 (T n +) = ν ϵ m (θ, Z ν 1 t 0 ,z 0 (θ))(T n +). On the set {T n < θ}, we have Z ν ϵ t 0 ,z 0 (T n ) = Z ν 1 t 0 ,z 0 (T n ) a.s. and v ϵ (T n +) = ν 1 (T n +). We then deduce that g n (Z ν ϵ t 0 ,z 0 (T n ), ν ϵ (T n +)) ≥ 0 a.s. for all n ≥ 1. We conclude that ν ϵ ∈ U t 0 ,z 0 . As in Step 1, we have E f (Z ν ϵ t 0 ,z 0 (T ))

F θ = E f (Z ν ϵ 2 θ,Z ν 1 t 0 ,z 0 (θ) (T )) F θ = J(θ, Z ν 1 t 0 ,z 0 (θ), ν ϵ 2 )
= J θ, Z ν 1 t 0 ,z 0 (θ), νϵ m (θ, Z ν 1 t 0 ,z 0 (θ)) ≥ V * (θ, Z ν 1 t 0 ,z 0 (θ))ϵ, a.s. We finally deduce that: V (t 0 , z 0 ) ≥ E E f (Z ν ϵ t 0 ,z 0 (T )) F θ ≥ E V * (θ, Z ν 1 t 0 ,z 0 (θ))1 θ<T + f * (Z ν 1 t 0 ,z 0 (T ))1 θ=Tϵ Since ϵ is arbitrarily chosen, the second inequality follows.

PDE characterization of the value function

In this section, we provide the PDE characterization for the problem 6.3.11. We shall follow the main lines of [START_REF] Bouchard | Optimal control under stochastic target constraints[END_REF].

With z = (x, y) we introduce

µ X (u, z) =         0 (u 4 -u 3 )x 2 u 2 u 3 x 2 u 4 x 2 0         , σ X (u, z) =         x 1 σ(u, x 1 ) 0 0 0 0 u 5         , µ Y (u, z) = -u 4 x 2 -u 2 , σ Y (u, z) = u 1 x 1 σ(u, x 1 ).
and µ Z (u, z) = µ X (u, z) µ Y (u, z) , σ Z (u, z) = σ X (u, z) σ Y (u, z) .

For each fixed u and a smooth function φ, we consider the operator L u Z defined for each u:

L u Z φ := ∂ t φ + µ Z ∇φ + 1 2 Tr σ Z σ T Z D 2 φ .
The Hamiltonian H is given by H u (u, z, q, A) := -⟨µ Z (u, z), q⟩ -1 2 Tr(σ Z (u, z)σ T Z (u, z)A) H(u, z, q, A) := inf u∈Cz H u (u, z, q, A), where C z = {u ∈ R 5 : z 2 +z 7 > u 1 z 1 } and H u φ(t, z) := H u (t, z, Dφ(t, z), D 2 φ(t, z)) and similarly for Hφ(t, z).

Consider a real-valued function f , we define the lower semicontinuous envelope f * (respectively, upper semicontinuous f * ) of a function f as: We denote by H * φ(t, z), H * φ(t, z) the l.s.c. (respectively, u.s.c.) envelope of Hφ(t, z).

In the following, the expression around z means in a neighborhood of z where we adopt the notation z = (x, y). We recall the notaions in [START_REF] Bouchard | Optimal control under stochastic target constraints[END_REF]: W * (t, x) := ϕ ∈ C 1,2 ([0, T ] × R 6 ) : ϕw > (ϕw)(t, x) = 0 around (t, x) W * (t, x) := ϕ ∈ C 1,2 ([0, T ] × R 6 ) : ϕw < (ϕw)(t, x) = 0 around (t, x) N u (t, z, q) := σ Y (t, z, u)σ X (t, z, u) T q, N δ (t, z, q) := {u ∈ C z : |N u (t, z, q)| ≤ δ} , U δ,γ (t, z, ϕ) := {u ∈ N δ (t, x, y, ∇ϕ(t, x)) : µ Y (t, z, u) -L u X ϕ(t, x) ≥ γ} , F ϕ δ,γ (t, z, q, A) := inf ν∈U δ,γ (t,z,ϕ)

-µ Z (t, z, u) T q -Tr (σ Z σ T Z )(t, z, u)A F ϕ * (t, z, q, A) := lim sup (t ′ ,z ′ ,q ′ ,A ′ )→(t,z,q,A) (δ,γ)→(0,0) F ϕ δ,γ (t ′ , z ′ , q ′ , A ′ ) Lemma 6.3.11. Consider u 0 ∈ N 0 (t 0 , z 0 , ψ(t 0 , x 0 )) where z 0 = (x 0 , y 0 ) is such that x 0 > 0 and ψ is a locally Lipschitz function with values in [0, T ] × R 7 . Then, there exits a neighborhood O of (t 0 , z 0 ) and a locally Lipschitz map ν defined on O such that ν(t 0 , z 0 ) = u 0 and ν(t, z) ∈ N 0 (t, z, ψ(t, z)) for all (t, z) ∈ O.

Proof. We have by definition:

N 0 (t, z, ψ(t, x)) = u ∈ R 5 : σ Y (t, z, u) = σ X (t, z, u) T ψ(t, x) = u ∈ R 5 : u 1 x 1 σ(t, x 1 ) = x 1 σ(t, x 1 )ψ 1 (t, x) + u 5 ψ 6 (t, x) = u ∈ R 5 : u T Ψ(t, x) = x 1 σ(t, x 1 )ψ 1 (t, x) ,

where Ψ(t, x) = (x 1 σ(t, x 1 ), 0, 0, 0, -ψ 6 (t, x)) T ∈ R 5 . Notice that, if x 0 > 0, we may suppose that |Ψ(t, x)| > 0 in a neighborhood of (t 0 , z 0 ). It follows that ν ∈ N 0 (t, z, ψ(t, x)) if and only if u = u(t, x) = γ(t, x) + Ψ ⊥ where Ψ ⊥ is any vector such that (Ψ ⊥ ) T Ψ(t, x) = 0 and γ(t, x) = x 1 σ(t, x 1 )ψ 1 (t, x)

Ψ(t, x) |Ψ(t, x)| 2 .
We observe that γ is locally Lipschitz as a product of locally Lipschitz (and bounded) functions. Since u 0 ∈ N 0 (t 0 , z 0 , ψ(t 0 , x 0 )), we have u 0 = γ(t 0 , x 0 ) + w 0 where w 0 is orthogonal to Ψ(t 0 , x 0 ). Let us define û(t, x) = γ(t, x)+g(t, x) where g(t, x) = w 0 -(w T 0 Ψ(t, x))

Ψ(t, x) |Ψ(t, x)| 2 .
Since g(t, x) T Ψ(t, x) = 0, û(t, x) ∈ N 0 (t, z, ψ(t, x)) for all (t, x, z) in a neighborhood of (t 0 , z 0 ) such that |Ψ(t, x)| > 0. Moreover, when (t, x) → (t 0 , x 0 ), g(t, x) → w 0 -(w T 0 Ψ(t 0 , x 0 )) Ψ(t 0 ,x 0 ) |Ψ(t 0 ,x 0 )| 2 = g(t 0 , x 0 ) = w 0 as w T 0 Ψ(t 0 , x 0 ) = 0. Since g(t, x) is also locally Lipschitz around (t 0 , z 0 ), the conclusion follows. Lemma 6.3.12. We have F ϕ * (t, z, q, A) = lim sup (t ′ ,z ′ ,q ′ ,A ′ )→(t,z,q,A) γ→0 F ϕ 0,γ (t ′ , z ′ , q ′ , A ′ ).

Proof. Recall that by definition F ϕ * (t, z, q, A) = lim r→0 sup (δ,γ,t ′ ,z ′ ,q ′ ,A ′ )∈Br(0,0,t,z,q,A)

F ϕ δ,γ (t ′ , z ′ , q ′ , A ′ ), where B r (δ, γ, t, z, q, A) designates the ball of center (0, 0, t, z, q, A) and radius r > 0. Since sup (δ,γ,t ′ ,z ′ ,q ′ ,A ′ )∈Br(0,0,t,z,q,A) F ϕ δ,γ (t ′ , z ′ , q ′ , A ′ ) ≥ F ϕ 0,γ (t ′ , z ′ , q ′ , A ′ ), for all (γ, t ′ , z ′ , q ′ , A ′ ) ∈ B r (0, t, z, q, A), we deduce that F ϕ * (t, z, q, A) ≥ lim sup (t ′ ,z ′ ,q ′ ,A ′ )→(t,z,q,A) γ→0 F ϕ 0,γ (t ′ , z ′ , q ′ , A ′ ).

On the other hand, for all δ ≥ 0 and γ ′ ≥ γ, we have the inclusion U 0,γ ′ (t, z, ϕ) ⊆ U δ,γ (t, z, ϕ). It follows that for all (t ′ , z ′ , q ′ , A ′ ), δ ≥ 0 and γ ′ ≥ γ, we have F ϕ 0,γ ′ (t ′ , z ′ , q ′ , A ′ ) ≥ F ϕ δ,γ ′ (t ′ , z ′ , q ′ , A ′ ). Therefore, lim sup (t ′ ,z ′ ,q ′ ,A ′ )→(t,z,q,A) γ→0 F ϕ 0,γ (t ′ , z ′ , q ′ , A ′ ) ≥ F ϕ * (t, z, q, A).

The conclusion follows. ✷

We use the following notations in [START_REF] Bouchard | Optimal control under stochastic target constraints[END_REF]: Proof. We split the proof into several steps.

1) Supersolution inequality on int p (D). Consider some (t 0 , x 0 ) ∈ int p (D) and let φ be a smooth function such that V *φ > (V *φ)(t 0 , z 0 ) = 0. We will argue using contradiction by assuming that (-∂ t φ + H * φ)(t 0 , z 0 ) < 0.

As H * ≥ H, we get that (-∂ t φ + Hφ)(t 0 , z 0 ) < 0 and, by definition of H, there exists û ∈ C z 0 such that(-∂ t φ + H ûφ)(t 0 , z 0 ) < 0. This implies that -L û Z φ(t 0 , z 0 ) < 0. By the continuity of φ, w and the coefficients µ Z , σ Z , we deduce that L û Z φ(t, z) > 0 for every (t, z) in an open ball B of center (t 0 , z 0 ) such that cl(B) ⊆ int p (D). Moreover, since g 1 (., û) is continuous and g 1 (z 0 , û) > 0, we may suppose w.l.o.g. that g 1 (z, û) > 0 for any (t, z) ∈ B.

By definition of V * , there exists a sequence (t n , z n ) ∈ B such that (t n , z n ) converges to (t 0 , z 0 ) and V * (t 0 , z 0 ) = lim n→∞ V (t n , z n ). Consider the process Ẑn (t) := Z û tn,zn (t), t ≥ t n and let us define with the convention inf ∅ = T :

θ n := inf t ∈ [t n , T ] : (t, Ẑn (t)) / ∈ B .
Since (t n , z n ) ∈ B, we deduce that θ n ∈ (t n , T ], in particular θ n > t n a.s.. Choose ϵ > 0 such that t 0 < Tϵ and replace θ n by θ n ∧ (Tϵ). We may suppose w.l.o.g. that B := (t 0ϵ, t 0 + ϵ) × O for some bounded open neighborhood O of z 0 . Moreover, we can also choose ϵ and O such that cl(B) ⊂ int p (D).

We have by continuity (θ n , Ẑn (θ n )) ∈ cl(B) ⊆ int p D and g 1 ( Ẑn (t), û) ≥ 0 for all t ∈ [t n , θ n ]. By Lemma 6.3.9, we deduce the existence of ν n ∈ U tn,zn such that ν n = û on [t n , θ n ). Let us define Z n = Z ν n tn,zn . We then have Z n = Ẑn on [t n , θ n ] by continuity of the trajectories. We apply Itô's Lemma for M t = φ(θ n ∧t, Z n (θ n ∧t)), t ∈ [t n , T ] to deduce that M t = φ(t n , z n )-N t +P t where It follows that N t ≥ φ(t n , z n ) -M t . Since, ∇φ(r, Ẑn (r)) is bounded for any r ∈ [t n , θ n ∧ t], we get that N is a martingale, the following holds:

N t = -
φ(t n , z n ) ≤ E [φ(θ n , Z n (θ n ))] .
We denote U the set of all utility functions U : Ω × R + → R ∪ {-∞} such that U (., x) is F T -measurable and bounded from below, and, for every x > 0, U (ω, .) is continuous, strictly increasing and concave for a.s. ω. We say that the market is viability if for every utility function U ∈ U such that sup θ∈Θ E U + (V 1,θ T ) < ∞, there exists a strategy θ * ∈ Θ such that:

E U + (V 1,θ * T ) = sup θ∈Θ E U + (V 1,θ T )
The following Theorem in [START_REF] Fontana | Arbitrage concepts under trading restrictions in discrete-time financial markets[END_REF] gives an economic interpretation of NA 1 . Roughly speaking, it states that NA 1 is equivalent to the solvability of utility optimization problems. In [START_REF] Fontana | Arbitrage concepts under trading restrictions in discrete-time financial markets[END_REF], the authors also show that NA 1 condition is sufficient to give a dual characterization for the super-hedging price of the payoff ξ ∈ L 0 (R + , F T ). Definition 7.1.3. An adapted stochastic process Z = (Z t ) t=0,...,T such that Z t > 0 a.s. for all t and Z 0 = 1 is said to be a supermartingale deflator if ZV 1,θ is a supermartingale, for all θ ∈ Θ. The set of all supermartingale deflators is denoted by D. In [START_REF] Fontana | Arbitrage concepts under trading restrictions in discrete-time financial markets[END_REF], the authors state that under conic trading restrictions (Θ t is a cone for any t), no classical arbitrage holds if and only if there are no arbitrage of the first kind. We have seen in Chapter 3, our NA condition in the presence of risk measure (AIP + SRN) is a generalization of NA 1 . Indeed, if Θ t = R d , we showed by Theorem 3.3.5 in Chapter 3 that when the risk measure ρ t (X) = ess inf Ft X, the classical NA and our NA conditions coincide. Moreover, the equivalence between NA 1 and our NA was established in Theorem 3.3.5.

Our next step is to understand the meaning of NA 1 in financial market models with transaction costs. Then, we wish to relate it to market viability and the set of supermartingale deflators in the spirit of Theorems 7.1.2 and 7.1.4. Moreover, one possible development is to extend the concepts of our weak NA conditions (AIP, SAIP, LAIP) introduced in Chapter 4 to a continuous time setting.

Super-hedging cost under model uncertainty

The aim of this section is to discuss the pricing problem when there are model uncertainty and transaction costs. In particular, we consider a dynamic programming approach, which is a direct extension to [START_REF] Carassus | The robust superreplication problem: a dynamic approach[END_REF]. To do so, we first need to recall the multi-prior setting introduced in [START_REF] Bouchard | Arbitrage and duality in nondominated discrete-time models[END_REF]. Given a measurable space (Ω, A), we denote by B(Ω) the set of all probability measures on A. If Ω is a topological space, B(Ω) denotes its Borel σ-algebra. We always endow B(Ω) with the topology of weak convergence, it is well known that B(Ω) is Polish whenever Ω is Polish. Given a family of measure P ⊂ B(Ω), a subset A ⊂ Ω is called P-polar if A ⊂ A ′ for some A ′ ∈ A satisfying P (A ′ ) = 0 for all P ∈ P, and a property is said to hold P-quasi surely or P-q.s. if it holds outside a P-polar set.

Let T ∈ N be the time horizon and let Ω 1 be the Polish space. For t = {1, ..., T }, let Ω t be the t-fold Cartesian product, with the convention that Ω 0 is a singleton, i.e. Ω t = Ω 1 × ... × Ω 1 (t times).

We denote by F t the universal completion of B(Ω t ) and write (Ω, F) for (Ω T , F T ). For each t ∈ {1, ..., T } and ω t ∈ Ω t we are given a nonempty convex set P t (ω t ) ∈ B(Ω 1 ) of probability measures. One financial interpretation for this set-up is that at time t, when realizes ω t , an agent faces model risk in the market, where a possible model represented by a probability measure P ∈ P t (ω t ). We assume that for each t:

Graph(P t ) := (ω t , P ) : ω t ∈ Ω t , P ∈ P t (ω t ) ⊆ Ω t × B(Ω 1 )

Our key of observation is that for any stochastic process (V t ) T t=1 , it is a portfolio process if and only if V t-1 -V t ∈ G t , P-q.s. or equivalently the following holds:

V 1 T -1 ≥ ξ 1 + C T (0, (ξ (2) -V (2) 
T -1 )), Pq.s.

V 1 t-1 ≥ V 1 t + C t (0, (V (2) t -V (2) 
t-1 )), Pq.s., ∀ t ≤ T -1.

Recursively, we deduce that:

V 1 0 ≥ T -1 t=1 C t ((0, X (2) 
t -X

t-1 )) + ξ 1 + C T ((0, ξ (2) -X

T -1 )), Pq.s. (7.2.1)

And the problem of finding c 0 (ξ) amounts to minimize over all (V t ) 0≤t≤T -1 such that V 0 satisfies 7.2.1. To do so, a natural idea is to establish a dynamic programming principle. We already established in Chapter 4 a dynamic programming principle for the mono-prior case, i.e. P is a singleton. In [START_REF] Carassus | The robust superreplication problem: a dynamic approach[END_REF] and [START_REF] Bouchard | Arbitrage and duality in nondominated discrete-time models[END_REF], the authors claimed a dynamic programming principle for the market without frictions, i.e. C t (x) = S t x for some Borel measurable price process (S t ) 0≤t≤T . The following dynamic programming procedure is a straightforward combination of the ideas from Chapter 4 and [START_REF] Carassus | The robust superreplication problem: a dynamic approach[END_REF].

DPP:

γ ξ T (ω T , y) := ξ 1 (ω T ) + C T (ω T , (0, ξ 2 (ω T )y (2) )), θ ξ t (ω t , y) := inf z ∈ R, z ≥ γ ξ t+1 ((ω t , .), y), P t (ω t )q.s. , t ≤ T -1, D ξ t (ω t , x, y) := C t (ω t , (0, y (2)x (2) )) + θ ξ t (ω t , y), t ≤ T -1, γ ξ t (ω t , x) := inf y∈R d D ξ t (ω t , x, y)), t ≤ T -1.

One of the main goals is to find an appropriate no arbitrage condition such that γ ξ t (ω 0 , 0) = c 0 (ξ). To do so, we first need to overcome some measurability issues, for example, the function γ ξ t : Ω t × R d → R in DPP is not upper semianalytic for free. In [START_REF] Carassus | The robust superreplication problem: a dynamic approach[END_REF] and [START_REF] Bouchard | Arbitrage and duality in nondominated discrete-time models[END_REF], the authors use a classical no arbitrage condition to claim the validity of the dynamic programming principle for the frictionless markets. Furthermore, we want to know whether it is possible to compute γ ξ t when the cost process C t depends on some Borel measurable price process S t . In other words, we want to answers the computability question in the same fashion as Chapter 4 but in multi-prior setting.
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 101 Le premier FTAP). Les suivants sont équivalentes: 1) AOA est vérifiée, 2) M(S) ̸ = ∅.

  s.c. as a function of y and convex if C T (s, y) is convex in y. As F T -1 is supposed to be complete, we conclude that F ξ T -1 is an F T -1 normal integrand, see Definition 4.5.1 and [76].

Lemma 4 . 4 . 14 .

 4414 We denote clf the l.s.c. regularization of the function f : R k → R ( i.e. the greatest l.s.c. function dominated by f ). Suppose that f is l.s.c. on some open set O ⊂ R k , then f (x) = clf (x) for any x ∈ O.

  . Moreover, D 0 T -1 (S T -1 , 0, ẐT-1 ) > 0, i.e. inf z∈S d-1 (0,1) D 0 T -1 (S T -1 , 0, z) > 0 under SAIP. By Theorem 4.4.15, we deduce that γ 0 T -1 (S T -1 , Z T -2 ) is F T -1normal integrand. By Proposition 4.4.1, we deduce that θ 0

  normal integrand and, as previously, we deduce that inf z∈S d-1 (0,1) D 0 T -2 (S T -2 , 0, z) > 0 under SAIP. Then, we may proceed by induction by virtue of Theorem 4.4.15 and Proposition 4.4.1.

4. 5 . 1

 51 Normal integrands Definition 4.5.1.

Lemma 5 . 3 . 1 .

 531 Suppose that Assumption 8 holds. Then, for any Borel function f : R d → R, we have ess sup Ft f (S t+1 ) = sup m≥1 f (α m t ), a.s.. Definition 5.3.2. The random variables {b

  t , v t-1 ) = γξ t (b i t , v t-1 ), t ≤ T -1, by Theorem 5.3.14.(5.3.12)We now prove by induction that lim n 1 →∞ γn 1 0 (S 0 , 0) = γξ 0 (S 0 , 0) a.s. Observe that, at time T -1, n T =:n T ∈ N and γn T T -1 (b i T -1 , v T -1 ) and γn T T -1 (b i T -1 , vT -1 ) coincide. So, by Theorem 5.3.14, we have lim

  u du + A T ∧ D T ≥ x 6 + T t α u dW u = P α t,z 6 (T ).

V

  * (t, z) := sup{v * (t, z) : v * ≤ V and, v * l.s.c.}, V * (t, z) := inf{v * (t, z) : v * ≥ V and, v * u.s.c.}, f * and f * are defined analogously.Proof. 1. We show the first inequality. For any stopping time θ with value in [t, T ]:E f (Z ν t,z (T )) = E E f (Z ν t,z (T )) F θBy the strong Markov property, we know thatT θ = T θ(•) (•) is a Brownian motion independent of F θ .Recall that, for any F θ -measurable random variable η, T θ (.) and η are independent and, for any Borel-measurable function h, we have E[h(T θ , η)|F θ ] = ϕ h (η) a.s. where ϕ h (x) = E[h(W, x)]. (6.3.13)

  int p (D) := (t, x, y) ∈ [0, T ) × R 7 : y > w(t, x)∂ Z D := ∂D ∩ ([0, T ) × R 7 ) = (t, x, y) ∈ [0, T ) × R 7 : y = w(t, x) ∂ T D := ∂D ∩ ([0, T ) × R 7 ) = (t, x, y) ∈ {T } × R 7 : y ≥ w(t, x) ∂ p D := ∂ Z D ∪ ∂ T D.Theorem 6.3.13. The value function is a solution to the following PDE in viscosity sense:1. V * is a viscosity supersolution on cl(D) of:(-∂ t φ + H * φ)(t, x, y) ≥ 0 if (t, x, y) ∈ int p (D) ∀ϕ ∈ W * (t, x), (-∂ t φ + F ϕ * φ(t, x, y)) ≥ 0 if (t, x, y) ∈ ∂ Z D, φ(T, x, y) ≥ f * (x, y) if (t, x, y) ∈ ∂ T D, y > w(T, x), H * φ(T, x, y) < ∞ 2. V * is a viscosity subsolution on cl(D) of (-∂ t φ + H * φ)(t, x, y) ≤ 0 if (t, x, y) ∈ int p (D) ∪ ∂ Z (D)φ(T, x, y) ≤ f * (x, y) if (t, x, y) ∈ ∂ T D, H * φ(T, x, y) > -∞

  θn∧t tn σ Z (u, Ẑn (u))∇φ(u, Ẑn (u))dW u , P t = θn∧t tn L ν Z φ(u, Ẑn (u))du ≥ 0.

Theorem 7 . 1 . 2 .

 712 The following are equivalent:1) NA 1 holds, 2) Market is viability.

Theorem 7 . 1 . 4 .

 714 The following are equivalent:1) NA 1 holds, 2) D ̸ = ∅.Moreover, suppose that NA 1 holds and let ξ ∈ L 0 (R d , F T ), thenp(ξ) = sup Z∈D E[Z T ξ].

  Theorem 3.3.11. The NA condition holds at time t ≤ T if and only if the infinimum risk-hedging price P * t of any no freely attainable and acceptable payoff h t+1 at time t is strictly positive. Moreover, under NA, the infimum risk-hedging price P * t of any contingent claim h t+1 ∈ L 0 (R d , F t+1 ) satisfies

	ρ t (-h t+1 ) ≥ P * t ≥ -ρ t (h t+1 ).	
	3.4 FTAP and dual representation for time-
	consistent risk measures.	
	Definition 3.4.1. A dynamic risk-measure (ρ t ) t≤T is said time-consistent
	if ρ t+1 (X) = ρ t+1 (Y ) implies ρ t (X) = ρ t (Y ) for X, Y ∈ L 0 (R, F T ) and
	t ≤ T -1 (see Section 5 in [29]).	
	The following result is very well known, see [2].	
	Lemma 3.4.2. A dynamic risk-measure (ρ t ) t≤T is time-consistent if and
	only if its family of acceptable sets (A t ) t≤T satisfies	
	A t,T = A t,t+1 + A t+1,T , ∀t ≤ T -1.	(3.4.6)

  since Dt is convex and admits finite values in R, we necessarily haveinf vt∈R d Dt (v t-1 , v t ) = inf vt∈Q d Dt (v t-1 , v t ), the measurability then follows. Next, we show that γξ Otherwise, by a measurable selection argument, we may find anF t -measurable selection V t-1 such that -∞ = γξ t (V t-1 ) = γ ξ t (V t-1) on a non null set. This is in contradiction with the AEP condition. Similarly, by Lemma 4.4.4, we deduce that γξ

t (ω, •) ∈ R a.s. First, γξ t (ω, •) > -∞ a.s.. t (ω, •) < ∞ a.s..

Therefore, the random function γξ t (ω, •) only takes finite values a.s. We finally conclude that γξ t (v t-1 ) is a real-valued random convex function. In particular, γξ t is continuous. Remark 4.4.6. Suppose that the cost functions C t (s, z), t ≤ T , are convex in z. Under Assumption 1, as γ ξ T

  there exists a family of Borel functions (α m t ) m≥1 defined on R m such that supp Ft S t+1 admits the Castaing representation (α m t (S t )) m≥1 , i.e. supp Ft S t+1 = cl(α m t (S t )) m≥1 .

	Proposition 4.4.7. Suppose that there exists a lower semi-continuous func-
	tion γξ t+1

  The proof is immediate by Proposition 4.5.6 and Lemma 4.5.8. Assumption 3. For each t ≤ T -1, there exists a family of Borel functions (α m t ) m≥1 such that S t+1 ∈ {α m t (S t ) : m ≥ 1} a.s. and P(S t+1 = α m t (S t )|F t ) > 0 a.s. for all m ≥ 1. Proposition 4.4.8. Suppose that there exists a Borel function γξ t+1

  The proof is immediate by Lemma 4.5.19. Note that we do not suppose that C t is convex to obtain this result. Assume that the assumptions of Proposition 4.4.7 or Proposition 4.4.8 hold and Condition AEP holds. Suppose that γξ t+1

	Corollary 4.4.9.

  Assume that Assumption 4 and Assumption 5 hold. Suppose that the cost function C t (s, z) is F t -normal integrand and C t is either super-additive or sub-additive. Then, if inf z∈S d-1 (0,1) D 0

t (S t , 0, z) > 0, γ ξ t (V t-1 ) = γξ t (S t , V t-1 ) where γξ t (s, v t-1 ) is F t -normal integrand. Proof. Since γξ t+1 (s, v) is l.s.c. in s, we deduce that θ ξ t (V t ) = θξ t (S t , V t ) by Proposition 4.5.6, for all V t ∈ L 0 (R d , F t ),

where by Assumption 5 θξ t (s, v) = sup z∈ϕt(St) γξ t+1 (z, v). As ϕ t is lower hemicontinuous by assumption, we deduce by [1, Lemma 17.29] that θξ t (s, v) is l.s.c. in (s, v). Therefore, the function

  , v t ) where φt is a setvalued upper hemicontinuous function, see Definition 4.5.10, with compact values. We then conclude that γξ

t-1 )) + θξ t (s, v t ) is l.s.c. in (s, v t-1 , v t ) by assumption on C t . By Lemma 4.5.5, we get that

γ ξ t (V t-1 ) = γξ t (S t , V t-1 ) where γξ t (s, v t-1 ) = inf vt∈R d D ξ t (s, v t-1 , v t ). The next step is to show that γξ t (s, v t-1 ) = inf vt∈ φt(s,vt-1) D ξ t (s, v t-1 t (s, v t-1 ) is l.s.c. in (s, v t-1

) by Proposition 4.5.17.

  where ht is a continuous function. Moreover, byLemma 4.5.20, if |v t | ≥ 1, ) = inf vt∈ φt(s,vt-1) D ξ t (s, v t-1 , v t ) is l.s.c. on O t by Proposition 4.5.17. Observe that (S t , z) ∈ O t a.s. for all z ∈ S(0, 1) a.s. under our hypothesis.

	D 0 t (s, 0, v Consider the mapping p ξ t (s, v t-1 ) := inf vt∈R d D ξ t (s, v t-1 , v t ) and its l.s.c. regularization cl(p ξ t )(s, v t-1 ). Since D ξ t is F t -normal integrand by our as-sumption, we deduce by [76, Theorem 14.47] that cl(p ξ t )(s, v t-1 ) is F t -normal
	integrand. Moreover, we know that on the open set O t , γξ t (s, v t-1 ) is l.s.c. hence coincides with cl(p ξ t )(s, v t-1 ) by Lemma 4.4.14. Therefore, we deduce that cl(p ξ t )(S t , v t-1 ) = γξ

t ) ≥ δ(|v t |)D 0 t (s, 0, v t /|v t |) ≥ δ(|v t |) inf z∈S d-1 (0,1) D 0 t (s, 0, z). (4.4.6) By Lemma 4.5.21, |D ξ t (s, v t-1 , 0)| ≤ ĥξ t (s, v t-1

) for some continuous function ĥξ t ≥ 0. Recall that inf z∈S d-1 (0,1) D 0 t (S t , 0, z) > 0 a.s. by assumption. It follows that K t (s, v t-1 ) ⊆ φt (s, v t-1 ) := Bt (0, r t (s, v t-1 ) + 1) where

r t (s, v t-1 ) := δ -1 λ t (s, v t-1 ) i t (s) , i t (s) := inf z∈S d-1 (0,1) D 0 t (s, 0, z), λ t (s, v t-1 ) = | ht (s, v t-1 )| + ĥξ t (s, v t-1 ).

Since λ t is continuous and i t is l.s.c. by Proposition 4.5.17, we deduce that λ t /i t is u.s.c. on the open set

O t := {(s, v t-1 ) ∈ R m × R d : i t (s, v t-1 ) > 0}.

As δ -1 is continuous and increasing, we finally get that r t is also u.s.c. in (s, v t-1 ) ∈ O t . By Lemma 4.5.12, we deduce that the function φt is upper hemicontinuous in (s, v t-1 ) ∈ O t . Therefore, γξ t (s, v t-1 t (S t , v t-1 ) a.s.. The conclusion follows.

  Theorem 4.4.27. Suppose that there exists an F t+1 -normal integrand function γξ t+1 defined on R d . Assume that Assumption 6 holds. Suppose that the cost function C t (z) is an F t -normal integrand and C t is sub-additive, positively super δ-homogeneous. If LAIP holds, then γ ξ t (V t-1 ) = γξ t (V t-1 ) where γξ t (v t-1 ) is an F t -normal integrand Proof. By Lemma 4.4.26, we get that ess inf Ft Vt∈L 0 (R d ,Ft)

  Let us define θ t := sup m≥1 f (α m t ) = ess sup Ft f (S t+1 ) (by Lemma 5.3.1) and θ m t

	Suppose that there exists F t -measurable random variables (α n t ) n≥1 such that b m t+1 ∈ {α n

1 t+1 , θ t )||F t < ∞. Lemma 5.3.4. Consider a Borel function f : R k → R and a family of F t -i.i.d. random variables (b m t+1 ) m≥1 with values in R k and F t+1 -measurable. t , n ≥ 1} a.s. and P (b m t+1 = α n t |F t ) > 0 a.s. for all n, m ≥ 1.

  Then, Dn

t (ω, ., .) epi -→ Dξ t (S t (ω), ., .) a.s.. Proof. We first consider the case where AIP holds and C t (s, y) is convex in y. Let us define Lξ t (ω, x, y) := Dn t (ω, x, y) ∨ -C t (S t (ω), (0, x (2) )) . Observe that Ln t (ω, x, y) is l.s.c. in (x, y) as a maximum of two l.s.c. functions. As the sequence ( Ln t ) n≥1 is also non decreasing, we deduce by [76, Proposition 7.4], that for any ω:

  R d is a reachability set at time t ≤ T for the super-hedging problem if K t has compact set values and satisfies:

	inf y∈R d	Dξ t (S t (ω), x, y) =	y∈Kt(St(ω),x) inf	Dξ

t (S t (ω), x, y), a.s.. Moreover, we suppose that K t (s, x) is upper hemicontinuous in (s, x).

Remark 5.3.13. By Chapter 4, under SAIP, the determining set K t (s, x) is constructed for s = S t (ω) as a closed ball B(0, r t (s, x) + 1), where r t (s, x) is an u.s.c. function. We shall see later in the model with one risky asset how to characterize K t (s, x) explicitely for every (s, x) ∈ R × R such that K t (s, x) is compact for all (s, x) and upper hemicontinuous. Moreover, By

[

1, Lemma 17.29], the upper hemicontinuity of K implies that γξ t (s, v t-1 ) := inf vt∈R d Dξ t (s, v t-1 , v t ). (5.3.7) Theorem 5.3.14. Suppose that SAIP holds and C t

  holds. Using the definition of the reachability setvalued mapping K t , we conclude that ŷ0 (S t , x t ) a.s.. By[START_REF] Kabanov | Markets with transaction costs. Mathematical Theory[END_REF], Lemma 2.1.2], we may suppose that ŷn t+1 ∈ K t (S t , x t ) is convergent for some random subsequence towards a F t+1 -measurable limit ŷ0 t+1 ∈ K t (S t , x t ). Moreover, by the first step ŷ0 t+1 ∈ arg min Kt(St,xt) ( Dξ t (S t , x t , .)). If K t (S t , x t ) is F t -measurable, consider a Castaing representation (z m t ) m≥1 of K t (S t , x t ). The generalized conditional expectation E(ŷ n t+1 |F t ) exists as ŷn t+1 ∈ K t (S t , x t ) is F t -bounded. Note that ŷn t+1 may be approximated by a sequence of F t+1 -measurable random variables in the set {z m t : m ≥ 1}. We deduce that E(ŷ n t+1 |F t ) ∈ K t (S t , x t ) if K t (S t , x t ) is convex. It is clear that E(ŷ n t+1 |F t ) converges to E(ŷ 0 t+1 |F t ) ∈ K t (S t , x t ). When the cost function is convex, Dn t (ω, x t , y) is convex. Using the Jensen inequality for conditional expectations, we get that Dξ

		out-
	side a negligeable set.	
	Recall that inf y∈Kt(St(ω),xt)	Dn t (ω, x t , y) is F t+1 -measurable. Therefore, by
	a measurable selection argument, we may deduce the existence of ŷn t+1 ∈ L 0 (R d , F t+1 ) such that Dn t (ω, x t , ŷn t+1 ) = inf y∈Kt(St(ω),xt) Dn t (ω, x t , y) and ŷn t+1 ∈
	K t	

t (ω, x) ∈ arg min( Dξ t (S t (ω), x, .)) t (S t , x t , E(ŷ 0 t+1 |F t )) ≤ E Dξ t (S t , x t , ŷ0 t+1 )|F t , ≤ E inf y∈R d Dξ t (S t , x t , y)|F t , ≤ inf y∈R d Dξ t (S t , x t , y). The last inequality holds since inf y∈R d Dξ t (S t , x t , y) is F t -measurable. This implies that E(ŷ 0 t+1 |F t ) ∈ arg min( Dξ t (S t , x t , .)).

  [START_REF] Aliprantis | Infinite Dimensional Analysis : A Hitchhicker's Guide, Grundlehren der Mathematischen Wissenschaften[END_REF] ) is a compact upper hemicontinuous set-valued mapping, i.e.For simplicity, we consider the model where the price process satisfies supp Ft (S t+1 ) = {a t S t : a t ∈ Θ} , t ≤ T -1, such that P [S t+1 = a t S t |F t ] > 0 a.s. for all a t ∈ Θ, where Θ = {a n t , n ≥ 1} is a deterministic sequence of positive numbers. Consider a sequence of random variables {b

	inf y∈R d	Dξ t (s, x, y) = inf y∈Kt(s,x)	Dξ t (s, x, y), a.s..

  Lemma 17.29]. The following theorem is our main contribution of this section. We use the convention thatn 1 → ∞, n 1 ∈ N T , if and only if n 1 i → ∞, ∀i = 1, • • • , T .Theorem 5.3.15. Suppose that Assumption 10 holds and suppose that C t satisfies C t (s, v 1 t ) ≥ C t (s, v 2 t ) whenever v 1 ≥ R d

	and Theorem 4.4.15 in t , v t-1 ) is l.s.c. in b i (b i t and t . Then: γn t+1 t 0 (S 0 , 0), a.s.. is l.s.c. by induction, lim n 1 →∞ Dn t+1 t γn 1 0 (S 0 , 0) = γξ Proof. By Remark 5.3.13, Assumption 10 implies that Chapter 4), and v t-1 by [1, + v 2 γξ 0

  T -t endowed with the partial order n t+1 ≥ m t+1 if and only if n t+1

	construction and by induction, it is easy to check that ( Dn t ) n∈N [t+1,T ] is in-creasing, i.e. Dn t ≥ Dm t whenever n ≥ m. Also, we may show by induction that Dn t (b i t , .) is l.s.c. for all n. By Lemma 5.3.16 that allows us to exchange
	the supremum and infimum in the following first equality, plus the induction
	hypothesis, we deduce that	
	sup n t+1	γn t+1 t	(b i t , v t-1 ) = sup n t+1	inf vt∈Kt(b i t ,v t-1 )
				i	≥ m t+1 i	for all t + 1 ≤ i ≤ T . By

  The cost process C t is given by C t (S t , (x, v t )) = x+S t Ct (v 2 t-1 ) for some deterministic piecewise linear function Ct : R → R. Definition 5.4.1. We say that the financial market satisfies the Absence of Early Profit condition (AEP) if, at any time t ≤ T , and for allV t ∈ L 0 (R d , F t ), γ 0 t (V t ) > -∞a.s.. By Lemma 4.4.11 in Chapter 4, AIP implies AEP if the cost function C t is either sub-additive or super-additive. Moreover, by Theorem 4.4.5 in Chapter 4, AEP implies that γξ t (S t , .) > -∞ a.s. This property will be used in the proof of the following result. Suppose that Condition AEP and Assumption 11 hold.

	Assumption 11. The price process satisfies S t+1 ∈ {a n t S t , n ≥ 1} where the sequence (a n t ) n≥1 is deterministic and satisfies a 1 t = min n a n t = k d t ≥ 0, a 2 t = max n a n t = k u t ∈ R + , where k d t , k u t are deterministic. We recall the AEP condition
	Proposition 5.4.2.

  We deduce that K t (S t , v t-1 ) ⊆ B(0, r t (S t , v t-1 )+1), where the radius r t (S t , v t-1 )

		t-1 )) + θ0 t (s, v t ) ≥ -C t (s, (0, v 2 t-1 )) + D0 t (s, 0, v t )
	D0 t (s, 0, v t ) ≥ |v t | D0 t (s, 0, v t /|v t |) ≥ |v t | min z∈{-1,1}	D0 t (s, 0, z), ∀ |v t | ≥ 1.
	is given by			
	r t (S t , v t-1 ) :=	Dξ t (S t , v t-1 , 0) + C t (S t , (0, v 2 t-1 )) min z∈{-1,1} D0 t (S t , 0, z)	=:	S t f t (v 2 t-1 ) g t (S t )

  .5.14) Moreover, SAIP t-1 holds if and only if the above inequalities are strict. If AIP t-1 holds, we then deduce that:

  Definition 5.5.4. We say that the robust no-arbitrage condition RSAIP holds at time t if the SAIP condition holds at time t for the enlarged model defined by C ∞ t . We say that RSAIP holds if it holds at any time.

	s, y) := lim inf α→∞	C t (s, αy) α	.	(5.5.15)

  r t is u.s.c., we deduce by Lemma that K t is upper hemicontinuous. Suppose that Assumption 13 holds. Then, for any t ≤ T -1 and for any v t-1 ∈ R d , lim n→∞ γξ,n t (s, v t-1 ) = γξ t (s, v t-1 ). Moreover, SAIP condition holds for the markets defined by C n and lim n→∞ γ ξ,n t (S t , V t ) = γ ξ t (S t , V t ) a.s. as n → ∞ for any V t ∈ L 0 (R d , F t ) and t ≤ T .

	Proof. We first observe that γξ,n t that Dξ,n t (s, v t-1 , .) epi -→ Dξ t (s, v t-1 , .). Indeed, by the definition of γξ,n is convex in (s, v t-1 ) for any n. We now prove T we have that γξ,n T (s, .) ↓ γξ T (s, .). Since γξ T (s, .) is convex and takes values in R, it is continuous. We deduce by [76, Proposition 7.4(c)] that γξ,n T (s, .) epi -→ γξ T (s, .).
	Moreover, by convexity and by assumption, we get that
	θξ,n T -1 (s, v T -1 ) = max j≤J	γξ,n T (ϕ j T -1 (s), v t-1 ),
	θξ T -1 (s, v T -1 ) = max j≤J	γξ T (ϕ j (s), v t-1 ).
	Under Assumption 12 holds, the mapping (s, v t-1 ) → (ϕ j (s), v t-1 ) is piece-
	wise linear in the sense of Definition 5.7.1. Since, γξ,n T is convex, we deduce
	by [76, Exercies 2.20] that γξ,n T (ϕ j (.), .) is jointly convex. Moreover, since we have lim n→∞ γξ,n T (ϕ j (s), .) epi = γξ T (ϕ j (s), .), for any j ≤ J, we deduce by [76,
	Proposition 7.48] that:	
	θξ	
	Theorem 5.6.2. Suppose that the functions ϕ j t : R k + → R k + , j ≤ J satisfy
	Assumption 12. 122	

  76, Theomrem 7.14], we deduce that C n T -1 (s, .) converges continuously to C T -1 (s, .) in the sense that C n As in the case t = T -1, we deduce by induction that lim n→∞ Dξ,n At last, since inf vt∈S d-1 (0,1) D0 t (s, 0, v t ) > 0, SAIP holds for the market defined by C t , see Theorem 4.4.16 in Chapter 4. By Theorem 5.5.5, we have γξ t (S t , V t ) = γ ξ t (S t , V t ) a.s. for any V t ∈ L 0 (R d , F t ).

	We then deduce by [76, Theorem 7.46] that
		Dξ,n
	Suppose that lim n→∞	Dξ,n
			Since γξ t+1 (s, .) is convex and
	takes real values, it is also continuous. We deduce by [76, Proposition 7.4]
	that lim n→∞	γξ,n t+1 (s, .)
	Moreover, since t (s, 0, v t ), we deduce that SAIP also holds for market de-t (s, 0, v t ) ≥ D0 D0,n fined by C n t and, similarly, we have γξ,n t (S t , V t ) = γ ξ,n t (S t , V t ) a.s. for any
	V	

T -1 (s, x n ) → C T -1 (s, x) whenever x n → x. T -1 (s, v T -2 , .) epi -→ Dξ,n T -1 (s, v T -2 , .), n → ∞. t+1 (s, v t , .) epi = Dξ,n t+1 (s, v t ,

.) and, by induction, let us show that lim n→∞ Dξ,n t (s, v t-1 , .) epi = Dξ,n t (s, v t-1 , .). Since K t+1 (s, .) is compact, we deduce that γξ,n t+1 (s, .) ↓ γξ t+1 (s, .). epi = γξ t+1 (s, .). t (s, v t-1 , .) epi = Dξ t (s, v t-1 , .). t ∈ L 0 (R d , F t ). The conclusion follows. 123

  .2.5) Lemma 6.2.1. Suppose that the process N : r → r t θ u dS u is a P -martingale on [t, T ] and A T ≥ 0. Then, E(h D T |F t ) = D t and E(h E T |F t ) = E t if and only if E(h D T |F t ) = D t . This condition is called market pricing (MP) at time t. Proof. By (6.2.5), we deduce that E(h D T |F t ) + E(h E T |F t ) = D t + E t . This equality implies that E(h D

	It follows that				
	A T	d u du,
				t	
	T	T	T		
	⇐⇒ E t +	θ u dS u -	d u du ≥	rD u du.	(6.2.6)
	t	t	t		

T |F t ) = D t and E(h E T |F t ) = E t as soon as E(h D T |F t ) = D t . ✷

We recall that for all s ≥ t:

A s = A t + s t θ u dS u -s t d u du -s t kD u du, D s = D t + s t (rk)D u du. T ≥ D T ⇐⇒ A t + T t θ u dS u -T t rD u du ≥ D t +

  Lemma 6.2.3. Suppose that A T ≥ 0 a.s.. The condition h D T (r) ≥ D t holds a.s. if and only if A t + T t θ u dS u -T t d u du ≥ D t a.s. and, under this condition, (MP) holds at time t if and only if r = 0. Proof. Suppose that h D T ≥ D t . We use (6.2.7) to deduce that h D T

  Remark 6.2.4. Let us suppose that the inequality h D T (0) = D t is not satisfied a.s. Therefore, P (h D T (0) < D t ) > 0. Since h D T (0) ≤ D t a.s., we deduce that E Q (h D T (0)|F t ) < D t on a non null set. Therefore, it is necessary to increase the credit risk premium r for Condition (MP) to be satisfied.The following result says that, if the dividend plan d is too large, then the firm faces a bankruptcy at time T . Proposition 6.2.5. Suppose thatN : r → r t θ u dS u is a P -martingale on [t, T ]. Suppose that A T ≥ 0 a.s. and L t ≥ 0. Suppose that E T t d r dr|F t ≥ E t on a non null set Λ t ∈ F t . Then, on Λ t , E h D T (r)|F t ≥ D t a.s. if and only if we have E T t d r dr|F t = E t and L T = A T -D T ≤ 0, i.e. L T = A T -D T ≤ 0 a.s. Reciprocally, if A T ≤ D T , by(6.2.8) we get that Suppose that E T t d r dr|F t < E t a.s. and A T ≥ 0 a.s. There exists a unique credit prime r * ∈ L 0 (R + , F t ) such that (MP) holds.

	Under the equivalent conditions above, we then have E(h D T (r)|F t ) = D t on Λ t . Moreover, h D T does not depend on r and E(h D T (r)|F t ) = D t . Proof. By (6.2.8), E Q (h D T (r)|F t ) ≥ D t if and only if E(L -T |F t ) ≤ E T t T i.e. h D kD u du, T (r) = A T + t T T rD u du|F t = E t + D t + θ u dS u -d u du.
	or, equivalently, if						t	t
	T T (r) does not depend on r and satisfies E(h D + T Therefore, h D T (r)|F
		E	rD u du -γ			|F t ≤ E	rD u du|F t ,
		t							t
	where							
					T			
		γ = L t +			θ u dS u -	
				t				
									0,
	i.e. E	T t d u du|F t = E t , and			
		T							T
		E	rD u du -γ				rD u du|F t .
		t							t
	Therefore, E(h D T (r)|F t ) ≥ D t if and only if E(γ|F t ) = 0 and
				T				+	T
					rD u du -γ	=	rD u du -γ,
			t					t
	as the difference between the l.h.s. and the r.h.s. of the equality above is
	non negative with a zero expectation. This implies that
		E t +	t	T	θ u dS u -γ ≤	0	t T	T rD u du, a.s, d u du ≤ T t	rD u du, a.s.

At last, under this last condition, since h D T (r) ≥ D t and (MP) means that E Q (h D T (r)|F t ) = D t , we deduce that (MP) holds if and only if h D T (r) = D t or equivalently r = 0. ✷ T t d u du = L T + T t rD u du. Note that the first equality above comes from (6.1.3) and γ does not depend on r. Since x + ≥ x, we deduce that E T t rD u duγ + |F t ≥ E T t rD u du|F t -E(γ|F t ). Since L t = L + t = E t and E T t d u du|F t ≥ E t , then we deduce that E(γ|F t ) ≤ 0. It follows that E(h D T (r)|F t ) ≥ D t if and only if E(γ|F t ) = + |F t = E t ) = D t . ✷ Proposition 6.2.6. Suppose that N : r → r t θ u dS u is a P -martingale on [t, T ].

This means that the σ-algebra contains the negligible sets so that an equality between two random variables is understood up to a negligible set.

The problem V T ≥ G T ξ is equivalent to our one if G T + G T ⊆ G T . In general, any V T such that V T ≥ G T ξ may be changed into ξ through an additional cost. So, the formulation V T = ξ is chosen as we are interested in minimal costs.

The dynamic programming principle (4.3.2) allows to get γ ξ t (V t-1 ) from the cost function C t and from γ ξ t+1 . In this section, our first main contribution is to formulate some results allowing to compute ω-wise the essential supremum and the essential infimum of (4.3.2).
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Definition 4.5.9. We say that ϕ is lower hemicontinuous at x if for every open set U ⊂ Y such that ϕ(x) ∩ U ̸ = ∅, there exits a neighborhood V of x such that z ∈ V implies ϕ(x) ∩ U ̸ = ∅. Definition 4.5.10. We say that ϕ is upper hemicontinuous at x if for every open set U ⊂ Y such that ϕ(x) ⊆ U , there is a neighborhood V of x such that z ∈ V implies ϕ(z) ⊂ U . Definition 4.5.11. We say that ϕ is continuous at x if it is both upper and lower hemicontinuous at x. It is continuous if it is continuous at any point.

Lemma 4.5.12. Let f : R k → R + be an upper semicontinuous function. Then, the mapping x → B(0, f (x)) is upper hemicontinuous in the sense of definition 4.5.10.

Proof. The upper hemicontinuity is simple to check. Indeed, consider an open set in U ⊆ R k , such that ϕ(x) = B(0, f (x)) ⊂ U . We may suppose that U is bounded w.l.o.g. and we deduce ϵ > 0 such that B(0, f (x)+ϵ) ⊂ U . By upper semicontinuity, there exists an open set V containing x such that z ∈ V implies f (z) ≤ f (x) + ϵ hence ϕ(z) ⊆ U . Lemma 4.5.13. Let f : R k → R + be a lower semicontinuous function. Then, the mapping x → B(0, f (x)) is lower hemicontinuous in the sense of definition 4.5.9.

Proof. For any ball B(y, r) ∈ R k , we have B(0, f (x)) ∩ B(y, r) ̸ = ∅ if and only if f (x)+r > |y|. We also have f (x)-ϵ+r > |y| for some small ϵ > 0. As f is l.s.c., we deduce that f (z) ≥ f (x)ϵ for every z in some neighborhood V of x. This implies that f (z) + r > |y|, i.e. B(0, f (x)) ∩ B(y, r) ̸ = ∅ for every z ∈ V . The conclusion follows.

Corollary 4.5.14. Let f : R k → R + be a continuous function. Then, the mapping x → B(0, f (x)) is continuous in the sense of definition 4.5.11. Lemma 4.5.15. Consider the set-valued mapping α : R m ↠ R m defined by α(s) = cl{α m (s), m ∈ N} where (α m ) m≥1 are continuous functions. Then, α is lower hemicontinuous.

Proof. Consider ω ∈ Ω and some open set U ∈ R d . We have α t (ω, z) ∩ U ̸ = ∅ if and only if there is m ∈ N such that α m t (ω, z) ∈ U . Since α m t (ω, .) is continuous, we deduce that there exists an open neighborhood V of z such that α m t (ω, x) ∈ U for any x ∈ V . The conclusion follows.

We recall a result from [START_REF] Aliprantis | Infinite Dimensional Analysis : A Hitchhicker's Guide, Grundlehren der Mathematischen Wissenschaften[END_REF][ Theorem 17.31].

Proposition 4.5.16. Let ϕ : R k ↠ R m be a continuous set-valued mapping with nonempty compact values and suppose that f : R k × R m → R is continuous. Then, the function m(x) = inf y∈ϕ(x) f (x, y) and the function M (x) = sup y∈ϕ(x) f (x, y) are continuous.

Proposition 4.5.17. Let ϕ : R k ↠ R m be an upper hemicontinous setvalued mapping with nonempty compact values and suppose that f : R k × R m → R is lower semicontinuous. Then, the function m(x) = inf y∈ϕ(x) f (x, y) is l.s.c.

Proof. We have m(x) =sup y∈ϕ(x) g(x, y) where g = -f is upper semicontinuous. By [START_REF] Aliprantis | Infinite Dimensional Analysis : A Hitchhicker's Guide, Grundlehren der Mathematischen Wissenschaften[END_REF][ Lemma 17.30], the mapping x → sup y∈ϕ(x) g(x, y) is upper semicontinuous hence m is l.s.c. ✷ 

Auxiliary results

Lemma 4.5.19. Suppose that there is a family of F t-1 -measurable random variables (α m t-1 ) m≥1 such that S t ∈ {α m t-1 : m ≥ 1} a.s. and suppose that P (S t = α m t-1 |F t-1 ) > 0 a.s. for all m ≥ 1. Then, for any

We have:

s. Taking the conditional expectation, we get that

)) a.s.

Chapter 5

Limit theorems for the super-hedging prices in general models with transaction costs

Abstract

We propose numerical methods that provide estimations of superhedging prices of European claims in financial market models with transaction costs. The transaction costs we consider are functions of the traded volumes and prices. Contrarily to the usual models of the literature, the transaction costs are not necessary proportional to the traded volumes, neither convex. The particular case of fixed cost is also considered. Limit theorem are established and allow to numerically compute the infimum super-hedging prices.

Introduction

Computing the super-hedging prices of a European option in presence of transaction costs is a difficult task. Indeed, the classical results of the literature focus on linear transaction costs and only dual characterizations of the super-hedging prices are formulated, see the FTAP theorems (Fundamental Theorem of Asset Pricing) by [START_REF] Guasoni | The fundamental theorem of asset pricing for continuous processes under small transaction costs[END_REF], [START_REF] Guasoni | The fundamental theorem of asset pricing under transaction costs[END_REF], [START_REF] Kabanov | Markets with transaction costs. Mathematical Theory[END_REF] among others. These results are formulated under rather strong no-arbitrage conditions (see [START_REF] Guasoni | Consistent Price Systems and Face-Lifting Pricing under Transaction Costs[END_REF], [START_REF] Denis | Consistent price systems and arbitrage opportunities of the second kind in models with transaction costs[END_REF]) and the super-hedging prices are estimated through dual characterizations based on the so-called consistent price systems, see [START_REF] Campi | A super-replication theorem in Kabanov's model for transaction costs[END_REF], [START_REF] Vallière | Hedging of American options under transaction costs[END_REF].

We now deduce that Dξ t (S t (ω), x, y) ≥ -C t S t (ω), (0, x (2) ) for every x, y a.s.(ω). Indeed, suppose on the contrary that the F t -measurable set

) is non-empty on the non-null set G t := {ω : Γ t (ω) ̸ = ∅}. We then deduce a measurable selection ( Vt-1 , Vt )

t-1 )) on G t and we extend to the whole space by putting Vt-1 = 0 = Vt on the complementary set Ω \ G t . Moreover, by Theorem 5.5.5, we then deduce that D ξ t ( Vt , x) < -C t (S t , (0, V

t-1 ) on the non-null set G t , which is a contradiction.

Similarly, under AEP and Assumption 1, we have that satisfying the usual assumptions. We denote by S 0 the risk-free asset of the market and we suppose without loss of generality that S 0 = 1 so that the risk-free interest rate is r 0 = 0. In the following, we consider at any time t ∈ [0, T ] a firm characterized by it debts (D r ) r∈[t,T ] and its asset (A r ) r∈[t,T ] so that the equity is given by (E r ) r∈[t,T ] such that E = (A -D) + . We suppose that D satisfies the SDE:

where r ≥ 0 is the debt interest rate (interpreted as a risk premium since r 0 = 0) and K u is the amount of the firm reimbursement per unit of time.

We suppose that K u := k u D u for some process k. Asset A of the firm satisfies by assumption A r = θ 0 r S 0 r + θ r S r where θ 0 and θ are quantities invested in asset S 0 and some risky assets S = (S 1 , • • • , S d ), d ≥ 1, held by the firm. In this model, we suppose that θ 0 ≥ 0 and θ ≥ 0 and d = 1. We suppose the following self-financing condition:

where c is a cash process such that c ≥ K. We interpret c t -K t as the amount of dividends distributed at time t. We only consider admissible strategies θ aim to solve the following stochastic target problem:

where U t,z is given by:

Following the idea in [START_REF] Bouchard | Optimal control under stochastic target constraints[END_REF], we add an extra control to the initial problem so that we may rewrite the problem. To be precise, let A be the set of F-progressively measurable real-valued square integrable process. To each α ∈ A, we associate a controlled process:

Instead of considering the controls ( θ, c, r) such that E(h D T (r)) ≥ x, we then work with the controls ( θ, c, r, α) such that g(h D T (r), P α t,x (T )) ≥ 0 where g(Z, P ) = Z -P . Therefore, the equivalent problem is to solve: max θ,c,r,α J(t, x, y, θ, c, r, α) (6.3.11) under the stochastic target constraint g(h D T (r), P α t,x (T )) ≥ 0. To see it, we observe that h D T (r) is square integrable so that we may apply the predictable representation theorem.

In the following, we suppose that the price S of the risky asset starts from an initial point s at time t and satisfies the dynamics:

where W is a 1-dimensional standard Brownian motion and σ is a positive Lipschitz function defined on [0, T ] × R such that σ is uniformly bounded from below and above by positive constants. We deduce that the liquidation process L satisfies:

and by direct computation, we get:

Here, we use the convention that (e X -1)/X = 1 if X = 0.

In the following, we use the notations of [START_REF] Bouchard | Optimal control under stochastic target constraints[END_REF]. Precisely, let U t be the set of all controls ν = ( θ, d, k, r, α) = (ν i ) i=1,...,5 where we require θ, d, k, r ≥ 0. We define the state process

They are defined as follows: for z = (x, y) = (s t , db t , cd t , cr t , p t , l t ) and v ∈ [t, T ],

For our problem, we are interested in the case where cd t = cr t = dr t = 0 and p t = Lemma 6.3.5. We have:

Proof. Consider (t, x, y) such that y ≥ w(t, x). Then, w(t, x) < ∞ and, for any ϵ > 0, y+ϵ > w(t, x) implies that y+ϵ > ỹ for some ỹ such that (t, x, ỹ) ∈ D. As D is an upper set in y, we deduce that (t, x, y + ϵ) ∈ D. As ϵ → 0, we deduce that (t, x, y) ∈ cl(D). Reciprocally, consider (t, x, y) ∈ cl(D). We have (t, x, y) = lim n→∞ (t n , x n , y n ) where (t n , x n , y n ) ∈ D. This implies that

As n → ∞, we deduce that x 6 ≤ x 2 and y ≥ -x 2 + (x 6 ) + = w(t, x). The conclusion follows.

We recall the famous assumption Z5 in [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF], whichs holds in our model.

Assumption Z5: For any u ≤ T , the map:

is Borel measurable. Lemma 6.3.6. Suppose that Assumption Z5 holds. Then, the set

is Borel-measurable. In particular, it is analytically measurable. Moreover, for each ϵ > 0, there exists an universally measurable map νϵ : R + × R 7 → U such that νϵ (t, z) ∈ U t,z and

Proof. We first recall that the set

is closed, see for example the proof of [START_REF] Bouchard | Optimal control under stochastic target constraints[END_REF]Lemma A.1]. Therefore, B is a Borel set. By (6.3.12), we have B = ∩ n≥1 B n ∩ B where

The projection mapping ν → ν( T ) is Borel-measurable for all fixed T ∈ [0, T ]. Therefore, for fixed n ≥ 1, the mapping

is also Borel-measurable. Using Assumption Z5, we then deduce that the mapping (t, z, ν) → (Z ν t,z (T n ), ν(T n +)) is Borel-measurable for every n ≥ 1 hence so does (t, z, ν) → g n (Z ν t,z (T n ), ν(T n +)) since the function g n is continuous. We then conclude that B is Borel-measurable, hence a priori analytically measurable.

By the Fubini theorem, we also deduce that J : R

In particular, it is upper semianalytic. By [START_REF] Black | The pricing of options and corporate liabilities[END_REF]Theorem 7.50], we now deduce the existence of the desired ν ϵ (t, z). Theorem 6.3.7. Let θ be a stopping time with values in [t, T ], z ∈ R 7 , and ν ∈ U t . The following equivalence holds: There exists ν ∈ U t,z such that ν = ν on [t, θ] if and only if, for all u ∈ [t, θ], g 1 (Z ν t,z (u), ν(u+)) ≥ 0, a.s. and (θ, Z ν t,z (θ)) ∈ D a.s..

Proof. We first suppose that ν = ν on [t, θ]. Then, if u ∈ [t, θ], we have g 1 (Z ν t,z (u), ν(u+)) = g 1 (Z ν t,z (u), ν(u+)) ≥ 0, since ν ∈ U t,z . Moreover, following the proof of [82, Theorem 3.1], we may show that (θ, Z ν t,z (θ)) ∈ D a.s. Indeed, it suffices to follow the same arguments if we replace, for every n ≥ 0, the terminal date T by T n ∨ θ.

Reciprocally, using the ideas of [82, Theorem 3.1] and recall the set B defined in Lemma 6.3.6, we first construct a Borel-measurable mapping ϕ such that (t ′ , z ′ , ϕ(t ′ , z ′ )) ∈ B µ a.s. where µ is the distribution of (θ, Z ν t,z (θ)). Therefore, we consider the control of the form ϕ(θ, Z ν t,z (θ)) and by [82, A.2], we deduce some

) for all u ≥ θ(ω). We then define ν the concatenation between ν and ν 1 , see [START_REF] Soner | Dynamic programming for stochastic target problems and geometric flows[END_REF]. By the flow property, we then get that, for all n ≥ 0,

By assumption on ϕ, g n (Z

) ≥ 0 a.s. for all n ≥ 0 and µ a.s. (t ′ , z ′ ). Taking the conditional expectation knowing (θ, Z ν t,z (θ)), we deduce that the following chain of equalities:

We then deduce that

) ≥ 0 by assumption as ν and ν coincide on [t, θ]. We then conclude that ν ∈ U t,z . Remark 6.3.8. If ν ∈ U t,z , then z 2 + z 7 ≥ ν 1 (t+)z 1 .

We then deduce the following: Lemma 6.3.9. For any (t, x, y) ∈ [0, T ) × R 6 × R, ν ∈ U t and (t, T ]-valued stopping time θ, we have:

1. If Y ν t,x,y (θ) > w(θ, X ν t,x,y (θ)) and g 1 ((X ν t,x,y (u), Y ν t,x,y (u)), ν(u+)) ≥ 0, for all u ∈ [t, θ], then there exists a control ν ∈ U t,x,y such that ν = ν on [t, θ).

2. If there exists a control ν ∈ U t,x,y such that ν = ν on [t, θ), then Y ν t,x,y (θ) ≥ w(θ, X ν t,x,y (θ)) and g 1 ((X ν t,x,y (u), Y ν t,x,y (u)), ν(u+)) ≥ 0, for all u ∈ [t, θ].

We are now in a position to prove the Dynamic Programming Principle. Suppose w.l.o.g. that we work with the space Ω = C([0, T ], R) equipped with a Wiener measure P . The corresponding Brownian motion is W (ω) = (ω t ) t≥0 , and the filtration F := {F t , t ≥ 0} is the P -augmentation of the right-continuous filtration generated by W .

We define a subset K of cl(B) as follows:

By continuity we deduce that (θ n , Z n (θ n )) ∈ K a.s.. We then deduce that there exists δ := min K (V *φ) > 0 does not depend on n such that the following holds

Now, as φ(t n , z n ) -V (t n , z n ) → φ(t 0 , z 0 ) -V * (t 0 , z 0 ) = 0, in the inequality (6.3.14), we may replace φ(t n , z n ) by V (t n , z n ) and δ by δ/2 for n large enough. This yields a contradiction by the first inequality in Theorem 6.3.10 since

2) Supersolution inequality on ∂ Z D: For (t 0 , z 0 ) ∈ ∂ Z D, we suppose that there exists a function ϕ ∈ W * (t 0 , x 0 ) such that (-∂ t φ + F ϕ * φ)(t 0 , x 0 , y 0 ) < 0. We denote by Õ a closed neighborhood of (t 0 , x 0 ) such that ϕw > (ϕw)(t 0 , x 0 ) = 0 on Õ. By Lemma 6.3.12, we deduce that lim sup

This implies that U 0,γ (t, z, ϕ) ̸ = ∅ for every point (t, z) in a neighborhood O of (t 0 , z 0 ). In particular, N 0 (t 0 , z 0 , ∇ψ(t 0 , z 0 )) ̸ = ∅. We deduce from (6.3.15) the existence of γ > 0 small enough and a compact neighborhood O of (t 0 , z 0 ) such that, for every (t, z) ∈ O, inf u∈U 0,γ (t,z,ϕ) (-L u Z φ(t, z)) < 0. Therefore, there exists ν(t 0 ,z 0 ) ∈ U 0,γ (t 0 , z 0 , ϕ) such that -L ν(t 0 ,z 0 ) Z φ(t 0 , z 0 ) < 0. Moreover, by Lemma 6.3.11, that there exists a Lipschitz map ν(t 0 ,z 0 ) defined on a neighborhood O t 0 ,z 0 ⊆ O of (t 0 , z 0 ) such that ν(t 0 ,z 0 ) (r, a) ∈ N 0 (r, a, ∇φ(r, a)) for all (r, a) ∈ O t 0 ,z 0 and ν(t 0 ,z 0 ) (t 0 , z 0 ) = ν(t 0 ,z 0 ) . Since -L ν(t 0 ,z 0 ) Z φ(t 0 , z 0 ) < 0 and ν(t 0 ,z 0 ) is continuous, we may reduce O t 0 ,z 0 so that -L ν(t 0 ,z 0 ) (r,a) Z φ(r, a) < 0 for all (r, a) ∈ O t 0 ,z 0 . As ν(t 0 ,z 0 ) ∈ U 0,γ (t 0 , z 0 , ϕ), we also have µ Y (t 0 , z 0 , ν(t 0 ,z 0 ) ) -L ν(t 0 ,z 0 ) X ϕ(t 0 , z 0 ) ≥ γ. Still by continuity, we may also suppose that µ Y (t, z, ν(t 0 ,z 0 ) (t, z)) -L ν(t 0 ,z 0 ) X ϕ(t, z) > 0 for all (t, z) ∈ O t 0 ,z 0 . Note that we may also shrink O t 0 ,z 0 further so that (t, z) ∈ O t 0 ,z 0 with z = (x, y) implies (t, x) ∈ Õ.

We claim that there is a Lipschitz function defined on [0, T ]×R 7 such that η(t, z) = νt 0 ,z 0 (t, z) for every (t, z) ∈ O t 0 ,z 0 . Indeed, without loss of generality, we suppose that O t 0 ,z 0 is closed and convex. Consider the projection π onto O t 0 ,z 0 . In Hilbert spaces, we know that π is 1-Lipschitz. We then define

t 0 , z 0 ). Since g 1 and η are continuous, g 1 (z 0 , η(t 0 , z 0 )) > 0 by definition of N 0 (t 0 , z 0 , ∇ϕ(t 0 , z 0 )), we may suppose w.l.o.g. that g 1 (z, η(t, z)) > 0 for any (t, z) ∈ B.

Let Z n = (X n , Y n ) n be the process defined on [t n , T ] as the unique solution to the equation:

By Lipschitz property of the σ Z and µ Z , Z n is uniquely defined. It is clear that Z n = Z νn where νn (ω, t) = η(t, Z n t (ω)). We define the following stopping time:

We replace θ n by θ n ∧ (t 0 + ϵ) where ϵ is small enough so that t 0 + ϵ < T and we may suppose that θ n ∈ (t n , t 0 + ϵ].

We now apply the Ito formula for ϕ. Knowing that we have the equality σ X (t, x, ν) T ∇ϕ(t, x) = σ Y (t, y, ν) for all (t, z) such that ν ∈ N 0 (t, z, ∇φ(t, z)), and L ν(t 0 ,z 0 ) X ϕ(t, z) ≤ µ Y (t, z, ν(t 0 ,z 0 ) (t, z)) for all (t, z) ∈ O t 0 ,z 0 , we then get the following:

Therefore, we have

Now, we suppose w.l.o.g. that B has the form

By the definition of W * (t 0 , x 0 ), we deduce that there is a positive constant κ such that ϕw ≥ κ on K, where the compact set K is the image of K under the projection mapping (t, x, y) → (t, x). Moreover, recall that by construction and continuity, (θ n , X n tn (θ n )) ∈ K a.s. and lim n→∞ (y n -

. Moreover, since g 1 (Z n (t), νn t ) ≥ 0 for any t ∈ [t n , θ n ), by Lemma 6.3.9, we deduce the existence of ν n ∈ U tn,zn such that ν n = νn on [t n , θ n ). We define Ẑn = Z ν n tn,zn so that Ẑn = Z n on [t n , θ n ] by continuity of both processes. Now, by a similar argument as in the first case, we then deduce that

] for some δ > 0 does not depend on n. We then proceed to conclude.

3) Subsolution property:

Let φ be a smooth function and (t 0 , x 0 ) ∈ int p D∪∂ Z D such that V * -φ < (V * -φ)(t 0 , z 0 ) = 0. We assume that the subsolution property does not holds at (t 0 , z 0 ) for φ:

This implies that for all u ∈ C z 0 we have -L u Z φ(t 0 , z 0 ) > 0. Moreover, by continuity of the coefficients, we can find ϵ > 0 and a bounded open set O ∈ R 7 such that -L u Z φ(t, z) ≥ 0 for every u ∈ C z 0 and for every (t, z) ∈ O := (t 0 -ϵ, t 0 +ϵ)×O, t 0 +ϵ < T . Consider a sequence (t n , z n ) be a sequence in O ∩int p D such that (t n , z n ) → (t 0 , z 0 ) and V (t n , z n ) → V * (t 0 , z 0 ). For each n, there exists ν n ∈ U tn,zn since (t n , z n ) ∈ D. We then set Z n (t) := Z νn tn,zn (t). We define θ n as:

By a similar argument as in the case Supersolution inequality on int p (D), we deduce that

. By Theorem 6.3.7, we then deduce that (s,

by continuity. By Ito lemma, we obtain:

, then for n large enough similar to the case supersolution, we get the contradiction to 6.3.10.

4) Terminal condition, supersolution:

We consider z 0 = (x 0 , y 0 ) and a test function φ such that y 0 > w(x 0 , T ) and (T, x 0 ) is a strict minimum of V *φ on cl(D). We also suppose that

We argue by contradiction by first supposing that V * (T, z 0 ) < f * (z 0 ). By lower semicontinuity, we deduce that there are some r, η > 0 such that φ ≤ f *η on ({T } × B r (z 0 )) ∩ cl(D). Let (t n , z n ) n be a sequence in int p (D) such that V (t n , z n ) → V * (t 0 , z 0 ) and (t n , z n ) → (T, z 0 ). We cosider the modified test function φ := φ -(Tt) 1/2 . We observe that (T, z 0 ) is also the strict minimum of V *φ.

Since -∂ t φ = -∂ t φ -1/2(Tt) -1/2 , H * φ(T, z 0 ) = H * φ(T, z 0 ) < ∞ and (Tt) -1/2 → ∞ when t → T , we can choose r > 0 and ū ∈ C z 0 such that -L ū Z ≤ 0 on a bounded open set O ⊂ cl(D). We suppose w.l.o.g. that O is of the form O := [Tr, T ) × B r (z 0 ). Since g 1 (., ū) is continuous and g 1 (z 0 , ū) > 0, we also suppose w.l.o.g. that g 1 (z, ū) ≥ 0 on cl(O).

Since w is continuous, we can choose r small enough such that cl(O) ⊂ {(t, z) ∈ D : y ≥ w(t, x) + r/2} ⊂ D. Set Z n := Z ū tn,zn , where ū is a constant control in U tn . We consider the stopping time θ n defined as:

From Lemma 6.3.9, we deduce that there exists a control νn ∈ U tn,zn such that νn = ū on [t n , θ n ). We set Ẑn := Z ν n tz,zn , since -L ū Z ≤ 0 on O, we deduce from Itô's Lemma that:

By the definition of z 0 , we can choose some ζ > 0 such that V *ζ ≥ φ on the compact set ∂O := [Tr, T ] × ∂B r (z 0 ) ∪ {T } × Br (z 0 ) does not contain (T, z 0 ). On the set {θ n < T }, we have, φ(θ n , Z n (θ n )) ≤ V * (θ n , Z n (θ n ))ζ, where ζ := min [T -r,T ]×∂Br(z 0 ) (V *φ) > 0. Moreover, recall the definition of η, we deduce that:

By sending n → ∞, we deduce a contradition with Theorem 6.3.10.

5) Terminal condition, subsolution:

We consider z 0 = (x 0 , y 0 ) and a test function φ such that y 0 ≥ w(x 0 , T ) and (T, x 0 ) is a strict maximum of V *φ on cl(D). We also suppose that V * (T, z 0 )φ(T, z 0 ) = 0 and H * φ(T, z 0 ) > -∞.

We argue by contradiction by first supposing that V * (T, z 0 ) > f * (z 0 ), by upper semicontinuity, we deduce that there are some r, η > 0 such that φ ≥ f *η on ({T } × B r (z 0 )) ∩ cl(D). Let (t n , z n ) n be a sequence in int p (D) such that V (t n , z n ) → V * (t 0 , z 0 ) and (t n , z n ) → (T, z 0 ). We consider the modified test function φ := φ + (Tt) 1/2 . We observe that (T, z 0 ) is also the strict maximum of V *φ.

Since -∂ t φ = -∂ t φ + 1/2(Tt) -1/2 and (Tt) -1/2 → ∞ when t → T , we can choose r > 0 such that for all u ∈ C z 0 , -L u Z ≥ 0 on the set O := [Tr, T ) × B r (z 0 ). Without loss of generality, we suppose that (t n .z n ) ∈ O for all n. For each n, there exists ν n ∈ U tn,zn since (t n .z n ) ∈ D. We now set Z n := Z νn tn,zn . We define θ n as:

By Theorem 6.3.7, we then deduce that (s, Z n (s)) ∈ D for all s ∈ [t n , T ] so that (θ, Z n (θ)) ∈ ∂O := [Tr, T ] × ∂B r (z 0 ) ∪ {T } × Br (z 0 ). We deduce from Itô's Lemma that:

Moreover, recall the definition of η, we deduce that:

By sending n → ∞, we deduce a contradition with Theorem 6.3.10.

Chapter 7

Future perspectives

The main texts of this thesis is to discuss some new pricing techniques in financial markets with transaction costs or in the presence of risk measures.

In this chapter, we will elaborate some ideas for future researches.

No arbitrage of the first kind and market viability

Consider a market defined by a price process S := (S t ) 0≤t≤T , see the classical setting in Chapter 2. We recall the definition of V x,θ t , the value of a portfolio at time t using trading strategy θ and starting from initial capital x. In this section, we say that a trading strategy θ is admissible if V 1,θ t ≥ 0 a.s. for all t. We denote by Θ adm the set of all admissible trading strategies. In this section, we suppose that market participants also face trading restrictions so that θ ∈ Θ c for some predictable set-valued process Θ c := (Θ c,t ) t=1,...,T such that Θ c,t (ω) is a convex closed subset of R d for all (ω, t) ∈ Ω × {1, ..., T }. We consider the family of trading strategies Θ defined by Θ := Θ adm ∩ Θ c .

We now recall the definition of the super-hedging price of ξ as:

We consider the following notion of arbitrage, see [START_REF] Kardaras | Finitely additive probabilities and the fundamental theorem of asset pricing[END_REF], [START_REF] Fontana | Arbitrage concepts under trading restrictions in discrete-time financial markets[END_REF] or [START_REF] Fontana | Weak and strong no-arbitrage conditions for continuous financial markets[END_REF] or [START_REF] Kabanov | On local martingale deflators and market portfolios[END_REF]:

No arbitrage of the first kind (NA 1 ) holds if, for every ξ ∈ L 0 (R + , F T ), p(ξ) = 0 implies that ξ = 0 a.s.

is an analytic set in sense of Definition 2.6.2. This assumption is sufficient to invoke the Jankov-von Neumann theorem (see Chapter 2) to deduce the existence of a universally measurable selector kernel P t : Ω t → B(Ω 1 ) such that P t (ω t ) ∈ P t (ω t ) for all ω t ∈ Ω t . We can then define P the set of probability measures on Ω by Fubini's theorem, i.e:

In the following, for a fixed σ-algebra A, we denote L 0 (R d , A) the set of A-measurable random variables valued in R d . We now consider a general set-up for models with transaction costs. For each trading date t, we consider the Borel-measurable random set G t : Ω t ↠ R d , it represents the positions that are solvent. We suppose that G t (ω t ) is closed for every ω t ∈ Ω t and that G t (ω t ) + R d + ⊆ G t (ω t ), for all t ≤ T . Now, the cost value process C = (C t ) T t=0 associated to G is defined ω t -wise as:

It is simple to verify that C t (ω t , .) is a lower semicontinuous and C t is Borel as a function of (ω t , z). We consider the super-hedging problem for a random payoff ξ ∈ L 0 (R d , F T ). We denote by R t (ξ) the set of all portfolio processes starting at time t ≤ T that replicates ξ at the terminal date T . In particular, R t (ξ) is defined as follows: R t (ξ) := (V s ) T s=t ∈ A t (F), -∆V s ∈ G s Pq.s, ∀s ≥ t + 1, V T = ξ, Pq.s.

where A t (F) is a stochastic process starting from t defined as follows:

A t (F) := (θ s ) T s=t : θ s ∈ L 0 (R d , F s ) for all t ≤ s ≤ T .

The set of replicating prices of ξ at time t is given by:

The infimum replicating cost is then defined as:
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