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Abstract

This thesis presents four problems in pricing and optimization in financial
mathematics. The first three problems are completely solved and the fourth
one is in progress.

In the first part, we consider the hedging problem in presence of dynamic
risk measures defined on the space L° of random variables. In particular, we
provide a no arbitrage (NA) condition under which the risk-hedging price
is attained. Moreover, we show that under NA, the set of all risk-hedging
prices is closed. We then prove a version of Fundamental Theorem of Asset
Pricing and a dual characterization of the risk-hedging prices of a European
option. At last, we provide an example where the dual representation of the
risk-measure on L° is possible.

In the second part, we solve a classical problem of characterizing the prices
of European options in financial market models with transaction costs. In
the Kabanov model, it is well known that the infimum super-hedging price
is presented via a dual characterization through Consistent Price Systems
(CPS) under some appropriate NA condition, see the book [55]. However,
it is difficult to characterize CPS given the only attempt proposed in [68]
for finite probability spaces. In this work, we shall tackle directly the primal
problem of super-hedging. To do so, we first prove a general version of Dy-
namic Programming Principle (DPP) for conditional essential infimum. We
then introduce a weak NA condition under which the DPP is implementable.
The interesting feature of this approach is that it works also for non-convex
financial market models.

In the third part, we apply the theoretical result established in the second
part by providing an algorithm to compute the super-hedging prices in prac-
tice. In particular, we prove the efficiency of the algorithm using the idea of
(random) epiconvergence. Moreover, the ezact prices will be deduced for the
case of proportional transaction cost and the case of fixed cost.



In the last part, we present our current progress on the problem of portfolio
optimization under credit risk constraints. Our problem fits into the frame-
work of optimal control under stochastic target pathwise constraints. We
then follow the idea in [10] to characterize the value function as a viscosity
solution to a PDE. Our next step is to provide a condition for the uniqueness
of our PDE and a numerical scheme to compute the value function.



Contents

1 Introduction générale 13
2 General introduction 17
2.1 Motivation . . . . . . .. 17

2.2 Coherent risk measure on L°: NA condition, Pricing and Dual
representation . . . . .. ... Lo 20

2.3 Dynamic programming principle and computable prices in fi-
nancial market models with transaction costs . . . . . . . . .. 21

2.4 Limit theorems for the super-hedging prices in general models
with transaction costs . . . . . .. ... ... ... 22
2.5 Portfolio optimization under credit risk constraints . . . . . . 23
2.6 Measurable selection theorems . . . . . . . .. ... ... ... 25

3 Coherent Risk Measure on L°: NA Condition, Pricing and

Dual Representation 27
3.1 Introduction . . . . . .. . ... ... 27
3.2 Framework. . . . . . . . . ... 30
3.3  No-arbitrage and pricing with risk-measures . . . . . . . . .. 33
3.4 FTAP and dual representation for time-consistent risk mea-
SUTES. v v v v v e e e e e e e e e e e e e e 37
3.4.1 Dual representation . . . . . ... ..., 38
3.4.2 FTAP and dual description of the risk-hedging prices . 40
3.4.3 Comparison with the No Good Deal condition . . . . . 42
3.5 Appendix: Proofs. . . .. ... ... 43
4 Dynamic programming principle and computable prices in
financial market models with transaction costs 59
4.1 Introduction . . . . . . . . . ... 59



4.2  Financial market model defined by a cost process . . . . . ..
4.3 Dynamic programming principle for pricing . . . . . . . . . ..
4.3.1 The one step hedging problem . . . . .. .. ... ...
4.3.2  The multi-step hedging problem . . . . . .. . .. ...

66

4.4 Computational feasibility of the dynamic programming principle 68

4.4.1 Computational feasibility for convex costs . . . . . ..

4.4.2 Computational feasibility under strong AIP no-arbitrage

condition . . . . . ...

4.4.3 The case of fixed transaction costs . . . ... ... ..
4.4.4 Computational feasibility under a weaker SAIP no-

arbitrage condition . . . . .. ... ... L.

4.5 Appendix . . ...

4.5.1 Normal integrands . . . . ... ... .. ... .. ...

4.5.2 Continuous set-valued functions . . . . . ... .. ...

4.5.3 Auxiliary results . . . . ...

69

Limit theorems for the super-hedging prices in general mod-

els with transaction costs
5.1 Introduction . . . . . . . ... ... ...
5.2 Themodel . . . . . . . . ..
5.3 Numerical schemes . . . . ... .. ... ... ... ......
5.3.1 The one period model . . . . . ... ... ...
5.3.2 Multi-period framework . . . . ... ... ... ...
5.4 Model with one risky asset and piecewise linear costs . . . . .
5.5 Examples . .. ... o
5.5.1 Market model with proportional transaction costs . . .
5.5.2 Market model with fixed cost . . .. .. ... ... ..
5.6 Limit theorem for convex markets . . . . . . . ... ... ...
5.7 Appendix . . . . ...

Portfolio optimization under credit risk constraints
6.1 Themodel . . . . .. .. ... ... .. ...
6.2 Valuation of the risk premium under risk-neutral measure . . .
6.3 Optimization problem for the firm . . . . . . . . ... ... ..
6.3.1 Dynamic Programming Principle for optimal control
under pathwise constraint . . . . .. .. .. ... ...
6.3.2 PDE characterization of the value function . . . . . . .

10



7 Future perspectives
7.1 No arbitrage of the first kind and market viability
7.2 Super-hedging cost under model uncertainty . . .

11






Chapter 1

Introduction générale

Donner un juste priz pour un actif financier £ a été I'une des principales
taches des mathématiques financieres. Il existe de nombreuses notions de
prix, y compris, mais sans s’y limiter, le priz viable, le prix de sur-réplication,
le priz d’indifférence, voir le livre [9] pour une bréve introduction. Dans
cette these, nous considérons principalement les prix de sur-réplication des
options européennes, c¢’est-a-dire des produit financiers qui paient un montant
aléatoire £ a maturité 7' > 0.

Avant de donner le prix d’un actif, nous devons d’abord définir le marché
financier sous-jacent. Nous appelons un marché financier marché sans fric-
tion s’il permet aux participants d’acheter et de vendre librement les différents
actifs, sans couts de transaction ni les taxes. En temps discret, nous travail-
lons généralement sur un espace de probabilité complet (€2, F, P) muni d’une
filtration F := (F;)o<t<r telle que Fr = F. En finance, la filtration F peut
étre interprétée comme le flux d’informations. On note L°(RY, F;) I'espace
des variables aléatoires F;-mesurables ayant des valeurs dans R%. Nous con-
sidérons un processus de prix S := (S;)o<i<r tel que S; € L°(RY, F;). Un
processus (6;)o<i<7 est une stratégies financiéres si 6; € LO(RY, F). 0,
représente le nombre de stocks investissant dans I'actif S} pendant la période
[t,t+1]. Nous en déduisons ensuite au temps ¢ la valeur Vf’e d’un portefeuille
en utilisant la stratégie 6 et en partant du capital initial € R

t t
Vi i= a4+ 0,1(Su— Sumt) =z + Y0, 1AS,.
u=1

u=1
ol l'on note ab le produit scalaire de vecteurs a at b. Considérons main-
tenant un actif contingent £ qui est une variable aléatoire dans L°(R, Fr)
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et dénotons l'ensemble des stratégies par ©. Nous définissons le prix de.
sur-réplication de £ comme suit:

p(§) = inf {p eR: 30 €0s.t. fo’e > &, p.s.}.

En théorie des mathématiques financieres, le prix de sur-réplication peut étre
caractérisé en supposant une condition d’absence d’arbitrage (AOA). En
particulier, nous nous restreignons au cas ou aucun profit ne peut étre réalisé
avec une probabilité positive a partir de rien. En langage mathématique, un
arbitrage opportunité est une stratégie financiere 6 satisfaisant:

V2’ >0, P—ps. et P(VY? >0) > 0.

AOA est vérifiée s’il n’y a pas d’opportunité d’arbitrage. Un résultat clas-
sique en mathématiques financieres appelé Fundamental Theorem of Asset
Pricing (FTAP) a été formalisé pour la premiere fois dans [43]. FTAP donne
une caractérisation équivalente de AOA et I'existence de mesures de martin-
gales. En particulier, on note M(S) 'ensemble des mesures de martingale,
¢’est-a-dire une collection de mesures de probabilité ) ~ P tel que S est une
(-martingale.

Theorem 1.0.1 (Le premier FTAP). Les suivants sont équivalentes:
1) AOA est vérifiée,
2) M(S) #0.

Etant donné l'’ensemble des mesures de martingale équivalentes, nous
sommes maintenant en mesure de en déduire la caractérisation duale du
prix de sur-réplication.

Theorem 1.0.2 (Formulation duale). Supposons que NA est vérifiée pour
que par FTAP, M(S) # 0, on a

p(§) = sup Eg[¢].
QEM(S)

ot Eg dénote l'espérance sous Q).

De plus, si nous supposons que tous les actifs contingents sont replicables
ou que le marché est complet, c’est-a-dire pour tout &, il existe (p,6) € R x O
tel que, fo’g = ¢ P-p.s., on obtient le deuxieme FTAP.

14



Theorem 1.0.3 (Le deuxieme FTAP). Supposons que M(S) # 0. Puis le
marché est complet si et seulement si M(S) est un singleton.

Le marché complet est une propriété souhaitable non seulement en théorie
mais aussi en pratique. Les praticiens qui étudient le prix de sur-réplication
supposent souvent que le marché est complet de sorte que le prix de sur-
réplication pour £ peut étre calculé par Eg(§), ou () est I'unique mesure de
martingale équivalente dans M(S). Eg(§) peut étre évalué en utilisant des
méthodes de Monte Carlo ou par des méthodes pour les EDPs paraboliques,
voir par exemple les livres [9] ou [37].

Dans de nombreux cas intéressants, marché complet n’est plus satisfait
et le prix de sur-réplication devient désormais impossible a calculer lors de
I'utilisation de la caractérisation duale. Cela motive le besoin d’'un cadre
alternatif pour calculer les prix de sur-réplication. Dans les travaux récents
[17], au lieu de supposer AOA depuis le début, les auteurs ont abordé di-
rectement le probleme de la sur-réplication dans un marché sans friction.
IlIs ont proposé une condition faible de non-arbitrage appelée absence de
profit instantané (API) qui est I'exigence minimale pour que le prix de sur-
réplication soit fini. Un marché satisfait a la condition APIT si le prix de la
sur-réplication pour le payoff nul est identique a zéro, c’est-a-dire p(0) = 0.
APT est strictement plus faible que AOA, donc I'ensemble des mesures de
martingale équivalentes peut étre vide par le premier FTAP. Par conséquent,
nous appellerons ce cadre alternatif valorisation sans mesure de martingale.

Dans cette these, nous adoptons API comme point de départ et nous
le développerons dans deux directions. D’abord, dans la définition du prix
de sur-réplication, la contrainte presque stire est maintenant remplacée par
p(Vrﬁ’e — &) < 0 pour une certaine mesure de risque p. Deuxiéemement, nous
travaillons avec des marchés financiers ou les cotts de transaction sont en-
courus chaque fois que nous achetons ou vendons des actifs risqués. Les
matériaux du chapitre 3, du chapitre 4 et du chapitre 5 sont basés sur la
publication et les prépublications suivantes.

i) Coherent risk measure on L% NA condition, Pricing and Dual repre-
sentation, with Lépinette E. IJTAF. 2021.

ii) Dynamic programming principle and computable prices in financial
market models with transaction costs, with Lépinette E. Preprint. 2022.

iii) Limits theorems for super-hedging prices in general models with trans-
action costs, with Lépinette E. Preprint. 2022.

15






Chapter 2

General introduction

2.1 Motivation

How to determine a fair price for a financial asset ¢ has been one of the main
task in financial mathematics. There are many notions of price including
but not limited to wiable price, super-hedging price, indifference price, see
the book [9] for a brief introduction. In this thesis, we consider mainly the
super-hedging prices of European options, i.e. financial derivatives that pay
a random amount & at maturity T > 0.

Before giving price for an asset, we first need to define the underlying
financial market. We call a financial market frictionless if it allows partici-
pants to buy and sell different assets freely, without trading restriction nor
price impact or taxes. In discrete-time setting, we usually work on a complete
probability space (€2, F, P) and a filtration F := (F;)o<t<7 such that Fr = F.
In finance, the filtration F can be interpreted as the flow of information. We
denote by L°(R%, F;) the set of R%valued F;-measurable random variables.
We consider a price process S := (S;)o<i<r such that S; € LO(R4, F). A
process (6;)o<i<7_1 is trading strategy if 6, € L°(R?, F;). 0!, represents the
number of shares investing in the asset S; during the period [t,t + 1]. We
then deduce the value Vt””’a at time t of a portfolio using trading strategy 6
and starting from initial capital x € R:

t t
VA= o) 0, 1(Su— Suct) =2+ Y0, 1AS,

u=1 u=1

where we use the notation ab as the scalar product of two vectors a and b.

17



Now, consider a contingent claim ¢ which is a random variable belongs to
L°(R, Fr) and denote the set of trading strategies as ©, we now define the
super-hedging price of £ as:

p(§) := inf {p eR: d0€0Os.t. fo’e > &, a.s.} :

In theory of financial mathematics, the super-hedging price can be character-
ized assuming some no arbitrage (NA) condition holds true. In particular,
we restrict ourselves to the case where no profit can be made with positive
probability starting from nothing. In mathematical language, an arbitrage
opportunity is a financial strategy 6 satisfying:

V¥ >0, P—as. and P(V? > 0) > 0.

NA holds if there is no arbitrage opportunity. A classical result in financial
mathematics called Fundamental Theorem of Asset Pricing (FTAP) was first
formalised in [43]. FTAP gives an equivalent characterization of NA and
the existence of martingale measures. In particular, we denote the set of
martingale measures as M (S) which is the collection of measure @) ~ P such
that under @), S is a martingale.

Theorem 2.1.1 (The first FTAP). The following are equivalent:
1) NA holds.
2) M(S) # 0.

Given the set of equivalent martingale measures, we are now able to
deduce the dual characterization of super-hedging price:

Theorem 2.1.2 (Dual formulation). Suppose that NA holds so that by
FTAP, M(S) # (), we then have

p(§) = sup Egl].
QEM(S)

where E¢ denotes the expectation under probability measure ().

Moreover, if we suppose that all contingent claims are replicable or the
market is complete, i.e. for any &, there exists (p,0) € R x © such that
Vr_,f’f’e = ¢ P-a.s., we get the second FTAP.

18



Theorem 2.1.3 (The second FTAP). Assume that M(S) # 0. Then, the
market is complete if and only if M(S) is a singleton.

Market completeness is a desirable property not only in theory but also
in practice. Practitioners who study super-hedging price often assume the
market is complete so that the super-hedging price for ¢ can be computed as
Eg(€), where @ is the unique equivalent martingale measure in M(S). Eg(&)
can be evaluated using Monte Carlo methods or by methods for parabolic
PDEs, see for examples the books [9] or [37].

In many interesting cases, market completeness fails to hold and super-
hedging price now becomes infeasible to compute when using dual charac-
terization. This motivates the need for an alternative framework in order
to compute super-hedging prices. In the recent work [17], instead of assum-
ing NA from the beginning, the authors tackled directly the super-hedging
problem in frictionless market. They proposed a weak no arbitrage con-
dition called Absence of Instantaneous Profit (AIP) which is the minimal
requirement for the super-hedging price to be finite. A market satisfies AIP
condition if the super-hedging price for the zero payoft is identical to zero,
i.e. p(0) = 0. AIP is strictly weaker than INA, hence the set of equivalent
martingale measures can be empty by the first FTAP. As a result, we shall
call this alternative framework pricing without martingale measure.

In this thesis, we adopt AIP as our starting point and we will develop it in
two directions. Firstly, we consider the case where a possibility of mishedge
is allowed. In particular, in the definition of super-hedging price, the almost
sure constraint is now replaced by p(fo’a — &) < 0 for some risk measure
p. Secondly, we work with financial markets where transaction costs are
triggered whenever we buy or sell risky assets. In the remaining part of this
chapter, we shall discuss briefly our main contributions. The materials of
Chapter 3, Chapter 4 and Chapter 5 are based on the following publication
and pre-publications.

i) Coherent risk measure on L% NA condition, Pricing and Dual repre-
sentation, with Lépinette E. IJTAF. 2021.

ii) Dynamic programming principle and computable prices in financial
market models with transaction costs, with Lépinette E. Preprint. 2022.

iii) Limits theorems for super-hedging prices in general models with trans-
action costs, with Lépinette E. Preprint. 2022.
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2.2 Coherent risk measure on L': NA condi-
tion, Pricing and Dual representation

We consider a dynamic coherent risk-measure X +— (pi(X))i<r defined on
the space L°(R,Fr), R = [~o0,00]. In this paper, the risk-measure is
constructed from its closed acceptance sets (A;):<r of acceptable financial
positions A; at time ¢t < T. We suppose that A; is a closed convex cone. We
then define

Dom A, = {X e L°R,Fr): AS # 0},
AY = {C,e L°R, F)| X +C, € A}

We recall the definition the conditional essential infimum of a random
variable, see [17] for a short proof of the existence.

Proposition 2.2.1 (Conditional essential infimum). Let H and F be com-
plete o-algebras such that H C F and let ' = (7;):er be a family of real-valued
F-measurable random variables. There exists a unique (up to a P-negligible
set) random variable vy € L°(R,H), denoted by ess infy, I', which satisfies
the following properties

1) For everyi € I, vy <7; a.s.
2) If ¢ € L°(R,H) satisfies ( <; a.s. for alli € I, then ¢ < vy a.s.

For X € LR, Fr), we define p,(X) = essinfr, AY if X € Dom A,
and we consider its extension to the whole space L°(R,Fr) by [67]. For
X € LR, Fr), p(X) may be infinite and p;(X) € R a.s. if and only
if X € Dom.A;. We are interested in the super-hedging problem in the
presence of the (random) risk measure p;. Precisely, we consider the one-
period risk-hedging problem

Definition 2.2.2. A payoff hir1 € L°(R, Fii1) is said to be risk-hedged at
time t if there exists P, € L°(R, F;) and a strategy 0; in L°(R%, F,) such that
P+ 0;AS;.1 — hy 1 is acceptable at time t.

In that case, we say that P, is a risk-hedging price. Let P;(h;y1) be the set
of all risk-hedging prices P; € L°(R, F;) at time ¢. The minimal risk-hedging
price of the contingent claim h;,; at time t is defined as

P} = eteeLsf(ri{B,fft)thtH)‘ (2.2.1)
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Some contributions:

1. We introduce a no-arbitrage condition (NA) under which the minimal
risk-hedging price of the contingent claim is attained. The result is
extended to multi-period framework using the idea of Consistent risk
measure.

2. We prove a version of the Fundamental Theorem of Asset Pricing in
presence of a risk-measure p;. In particular, we prove that the set of all
risk-hedging prices is closed under NA| it then suffices to apply Hahn-
Banach theorem. Moreover, a dual characterization of the risk-hedging
prices of a European option follows.

3. We provide a dual representation of the risk-measure on L° under some
conditions. This result is an extension to the dual representation of risk
measure on L in the literature.

2.3 Dynamic programming principle and com-
putable prices in financial market models
with transaction costs

We consider a financial market where transaction costs are charged when the
agents buy or sell risky assets. The typical case is a model defined by a bond
whose discounted price is S* = 1 and d — 1 risky assets that may be traded
at some bid and ask discounted prices S® and S¢, respectively, when selling
or buying. Our general model is defined via a set-valued process (G;)7_,
adapted to the filtration (F;)Z_,. Precisely, we suppose that for all t < T, G,
is Fy-measurable in the sense of the graph Graph(Gy) = {(w,z) : = € G¢(w)}
that belongs to F; ® B(R?) (see [70]), where B(R?) is the Borel o-algebra on
R? and d > 1 is the number of assets. G, is usually called solvency set in
the literature. In the classical approach of models with transaction costs, the
analogs of FTAP and hedging theorem are proposed, see the book [55] for
a comprehensive treatment. In this thesis, we use an alternative approach
called cost value process.

We suppose that G(w) is closed for every w €  and Gy(w) + R% C
Gi(w), for all t < T. The cost value process C = (C;)L, associated to G is
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defined as:
Ci(z) =inf{la € R: ae;—2 € Gy} =min{a € R: ae;—2 € Gy}, z€ R

A portfolio process is a stochastic process (V;)L._; where V_; € Re; is the
initial endowment expressed in cash that we may convert immediately into
Vo € R? at time ¢ = 0. By definition, we suppose that

AV, =V, — Vi1 € -Gy, as., t=0,---,T.

This means that any position V;_; = V;+(—AV;) may be changed into the
new position V;, letting aside the residual part (—AV;) that can be liquidated
without any debt. Let & € L°(R%, Fr) be a contingent claim. Our goal is
to characterize the set of all portfolio processes (V;)L__, such that Vy = €.
We are mainly interested by the infimum cost one needs to hedge &, i.e. the
infimum value of the initial capitals V_je; € R among the portfolios (V;)__,
replicating &.

Some contributions:

1. We first provide a dynamic programming principle in a very general
setting in discrete time. In particular, the dynamic programming is
stated using the notion of conditional essential supremum.

2. Secondly, we propose some weak no-arbitrage conditions under which
it is possible to implement the dynamic programming principle. In
particular, we show that under this NA condition, the infimum hedg-
ing cost defined as conditional essential infimum coincides with w-wise
infimum. This result is interesting given the only attempt in [68] which
is proposed for finite probability space.

2.4 Limit theorems for the super-hedging prices
in general models with transaction costs

This project developes the numerical methods for the theoretical results in
the second project.

In particular, we consider the market where for each time t there is a
family of Fi-measurable random variables the following holds: (a}"),,>1 such
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that Siy1 € {of* © m > 1} as. and that P(Siy1 = of*|F:) > 0 as. for
all m > 1. We aim to estimate ess supy, f(S¢+1) via a sequence of ran-
dom variables {bi_,,i > 1}, bi,, € L°(R?, F;11) which are independent and
identically distributed conditional on F; (notation F3-i.i.d.) in the following
sense:

P[b,, € B|F] =P, € B|F], as.,ij>1,

(o €5} 15] =TT P s 515]

jeJ jed

P

for all finite set J C N, and Borel sets B, B;, j € J. Moreover, we also require
bi, € {a,n > 1} as. and P(bl,, = af|F;) > 0 a.s. for all n,s > 1. This
is a first attempt to approximate the conditional essential supremum and is
related to our super-hedging problem.

Some contributions

Using the idea of convergence of epigraph (epiconvergence), we establish
some results:

1. For the first goal, we prove the validity of the approximation of JF;
conditional essential supremum via a sequence of F;-i.i.d. random vari-
ables. In particular, we prove that:

max f(bi 1) =: 0" — 0, := ess supg, (Si41), as.

as m — 0o. Subsequently, using this convergence result, we then prove
the convergence almost surely of the sequence of randomized super-
hedging costs to the desired one. Finally, the result is extended to
multi-period period by the help of Dynamic Programming Principle.

2. We give the prices for models with proportional and fixed costs. We

consider here the Multinomial price process.

2.5 Portfolio optimization under credit risk
constraints

Consider a financial market model defined on a stochastic basis (€2, (F):cjo,r], P)
satisfying the usual assumptions. We denote by S the risk-free asset of the
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market and we suppose without loss of generality that S° = 1 so that the
risk-free interest rate is 7 = 0. In the following, we consider at any time
t € 0,7 a firm characterized by it debts (D, )¢, and its asset (A,)qcp 1) S0
that the equity is given by (£, ).ci,r) such that E = (A — D)*. We suppose
that D satisfies the SDE:

dD, = ryDydu — K,du, wu € [t,T], (2.5.2)

where r > 0 is the debt interest rate (interpreted as a risk premium since
r® = 0) and K, is the amount of the firm reimbursement per unit of time.
We suppose that K, := k, D, for some process k. Asset A of the firm satisfies
by assumption A, = 0°S° + 0,.S, where §° and 6 are quantities invested in
asset S and some risky assets S = (S, -+, Sq), d > 1, held by the firm. We
suppose the following self-financing condition:

dA, = 6,dS, —c.dr, relt,T], (2.5.3)

where ¢ is a process such that ¢ > K. We interpret ¢; — K; as the amount
of dividends distributed at time t. We only consider admissible strategies 6
such that A, > x? for all r € [t,T], for some x? € R. Liquidation value of
the asset firm at time w > t is defined as L, := A, — D, so that we have
E = L*. Note that the dynamics of L is :

dL, = 0,dS, — d,du — r,Dydu, u € [t,T], (2.5.4)

where d; = ¢; — k;D; is the amount of dividends. The dynamics above
shows that the liquidation value of the firm’s financial position is naturally
controlled by the investment strategy # but it is adversely impacted by the
dividends d > 0 paid to the share holders and by the credit risk premium r
as well. Taking into account a possible default, the payoff delivered to the
credit holders is as the Merton model:

T
hE(r) := / k,D.du + [A7]" A Dp
t

The goals of this project is to first find a fair value for the risk premium r.
And then, given this fair credit risk premium and a utility function U we
solve the following utility maximization problem:

T
Vit = sw 0.0 = B (U [ duus 15700 ) ) 255)
t

0,c
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where 6 and ¢ = (d;, k;) are progressively measurable process and satisfy the
pathwise constraints:

i) Self-financing constraint: Ay > 0 a.s. forallt < s < T.
ii) Fair price condition (Market pricing or MP condition):

E (hR(r)|(Dy, L) = (w,y)) = =.

Some contributions and future works

1. We prove that in a complete market such that S is a martingale, there
exists a unique fair price satisfying MP condition: E(hZ(r)|F;) = D;.
This result guarantees that the problem 2.5.5 is well-defined.

2. Translate the problem 2.5.5 into a regular form of optimal control
problem with stochastic pathwise constraints. Then, we establish a
Dynamic Programming Principle for our problem.

3. We show that the value function should be interpreted as a viscosity
solution of a HJB equation with state constraints, see the work in [10].
Our next goal is to provide a condition for uniqueness and a numerical
scheme to compute the value function V.

2.6 Measurable selection theorems

In the following chapters, whenever we use the phrase measurable selection
argument, we refer to the Theorem below. For a (lengthy) proof, see the
book [27].

Theorem 2.6.1 (Measurable selection). Let (2, F, P) be a complete proba-
bility space E be a Polish space equipped with a Borel sigma-algebra € and
letI' € F®E. Then, the projection mol' of I' onto ) belongs to F, and there
exists an E-valued random variables £ such that {(w) € T, for all non-empty
w-sections I',, of .

We also include here a universal measurable selection called Jankov-von
Neumann theorem which will appear in Chapter 6 and Chapter 7. To do so,
we first recall the definition of analytic sets and upper semianalytic function,
see the books [8] or [27] for a detailed analysis.
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Definition 2.6.2. A subset of a Polish space X is analytic, if either it is
empty or a continuous image of a Polish space. A function g : X — R
is upper semianalytic (usa) if the set {x € X : g(xz) > c} is analytic for
every ¢ € R. A function g : X — R is lower semianalytic (Isa) if the set
{r € X :g(z) < ¢} is analytic for every c € R.

Definition 2.6.3. Let (2, F) be a measurable space. We denote F¥ be the
completion of F with respect to probability measure P. The universal comple-
tion of F is the o-algebra defined as the intersection of F¥ for all probability
measures P on (Q, F). A function g : X — R is universally measurable if
the set {x € X : g(x) > ¢} belongs to the universal completion of F for every
ceR.

Theorem 2.6.4 (Jankov-von Neumann theorem). Let X and Y be Polish
spaces, and A an analytic subset of X x Y. There exists a universally mea-
surable function ¢ : TxA —'Y such that Graph(y) C A.

Theorem 2.6.5. Let X and Y be Polish spaces, A an analytic subset of
X XY and f : X XY — R an upper semianalytic function. We define
ffimx(A) =R by

f(@) == sup f(z,y).

yEA,

Then, for every ¢ > 0, there exists a universal measurable function ¢° :
wx(A) = Y such that Graph(¢) C A and for all v € mx(A):

[, ¢(x)) = [*(2) — € if [7(x) < o0,
f($7¢€(x)) > 6_17 if f*(:B) = 0.
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Chapter 3

Coherent Risk Measure on L':
NA Condition, Pricing and
Dual Representation

Abstract

The NA condition is one of the pillars supporting the classical
theory of financial mathematics. We revisit this condition for financial
market models where a dynamic risk-measure defined on LV is fixed
to characterize the family of acceptable wealths that play the role of
non negative financial positions. We provide in this setting a new
version of the fundamental theorem of asset pricing and we deduce a
dual characterization of the super-hedging prices (called risk-hedging
prices) of a European option. Moreover, we show that the set of all
risk-hedging prices is closed under NA. At last, we provide a dual
representation of the risk-measure on L? under some conditions.

3.1 Introduction

The NA condition originates from the work of Black and Scholes [7] and Mer-
ton [69]. In these articles, the risky asset is modeled by a geometric Brownian
motion. The NA condition means the absence of arbitrage opportunities, i.e.
a nonzero terminal portfolio value can not be acceptable if it starts from the
zero initial endowment. A financial position in the classical arbitrage theory
is acceptable if it is non negative almost surely. In our work, the new con-
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tribution is that we consider a larger class of acceptable positions which are
defined from a risk-measure.

The NA condition is characterized through the famous Fundamental The-
orem of Asset Pricing (FTAP) for a variety of financial models. Essentially,
NA is equivalent to the existence of a so-called risk-neutral probability mea-
sure, under which the price process is a martingale. In discrete-time, the
well known FTAP theorem has been proved by Dalang, Morton and Will-
inger [20]. We may also mention the papers [49], [52], [54], [77], [78]. In
continuous time, the formulation of the FTAP theorem is only possible once
continuous-time self-financing portfolios are defined, see the seminal work of
Black and Scholes [7]. This gave rise to an extensive development of the
stochastic calculus, e.g. for semi-martingales [44], making possible formula-
tion of several versions of the FTAP theorem as given in [21], [22], [23], [24]
and [40].

The main contribution of the FTAP theorems is the link between the
concept of arbitrage and the pricing technique which is deduced. It is now
very well known that the super-hedging prices of a European claim are du-
ally identified through the risk-neutral probability measures characterizing
the NA condition. We may notice that the NA condition has been suitably
chosen in the models of consideration in such a way that the set of all at-
tainable claims is closed, see [55, Theorem 2.1.1]. This allows one to apply
the Hahn-Banach separation theorem, see [81], and obtain dual elements that
characterize the super-hedging prices. This is also the case for financial mod-
els with proportional transaction costs, see [55, Section 3] and the references
mentioned therein.

The growing use of risk-measures in the context of the Basel banking
supervision naturally calls into question the definition of the super-hedging
condition which is commonly accepted in the usual literature. Recall that
a portfolio process (V;)ico,r] super-replicates a contingent claim Ay at the
horizon date T' > 0 means that V; > hy a.s.. In practice, this inequality
remains difficult to achieve and practitioners accept to take a moderate risk,
choosing for example a € (0, 1) small enough so that P(Vr—hy > 0) > 1—«
is close to 1. This is the case when considering the Value At Risk measure,
see [50], and we say that Vi —hy is acceptable. More generally, Vi —hy is said
acceptable for a risk-measure p if p(Vy — hy) <0, see [2], [25], [26], [29],[33]
and [30] for frictionless markets and [3], [6], [32], [51] for conic models. The
acceptable positions play the role of the almost surely non negative random
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variables and allow one to take risk controlled by the risk measure we choose.
Moreover, by considering a larger family of acceptable positions, the hedging
prices may be lowered as shown in [71] for the Black and Scholes models with
proportional transaction costs, see also the discussion in [63].

Pricing with a coherent risk-measure has been explored and developed by
Cherny in two major papers [14] and [15] for coherent risk-measures defined
on the space of bounded random variables. Cherny supposes that the risk-
measure p (or equivalently the utility measure u = —p) is defined by a weakly
compact determining set D of equivalent probability measures, i.e. such that
p(X) = supgep Eq(—X) for any X € L. This representation automatically
holds for coherent risk-measures defined on L>°. This motivates the choice of
Cherny to suppose such a representation for the risk-measures he considers on
L° as he claims that it is hopeless to axiomatize the notion of a risk measure
on L° and then to obtain the corresponding representation theorem, see [15].

Actually, the recent paper [67] proposes an axiomatic construction of a
dynamic coherent risk-measure on L° from the set of all acceptable positions.
We consider such a dynamic risk-measure and we define the discrete-time
portfolio processes as the processes (V;);<r adapted to a filtration (F;)i<r
such that V; +0;AS; 1 — Vi1 is acceptable at time ¢ for some F;-measurable
strategy 6, € L°(R%, F;). This is a generalization of the classical definition
where, usually, acceptable means non negative so that V; + 6,AS, .1 > V4
almost surely. We then introduce a no-arbitrage condition we call NA as
in the classical literature and we show that it coincides with the usual NA
condition if the acceptable positions are the non negative random variables.
This NA condition allows one to dually characterize the super-hedging prices,
at least when p is time-consistent. One of our main contribution is a version
of the Fundamental Theorem of Asset Pricing in presence of a risk-measure.

Similarly, Cherny proposes in his papers [14] and [15] a no-arbitrage condi-
tion No Good Deal (NGD) which is the key point to define the super-hedging
prices. The approach is a priori slightly different: The NGD condition holds
if there is no bounded claim X attainable from the zero initial capital such
that p(X) < 0. In our setting, the NA condition is formulated from the
minimal price super-hedging the zero claim, which is supposed to be non
negative under NA. Clearly, there is a link between the NA and the NGD
condition as p(X) appears to be a possible super-hedging price for the zero
claim. Actually, the NGD and the NA conditions are equivalent in the set-
ting of Cherny, see Corollary 3.4.16. Although, in our paper we do not need
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to suppose the existence of a priori given probability measure representing
the risk-measure. This is why the proof of the FTAP theorem we formulate
is more challenging as we cannot directly use an immediate compactness ar-
gument as done in [15] to obtain a risk-neutral probability measure. We then
deduce a dual representation of the super-hedging prices in the case where
the risk-measure is time-consistent. Under NA, we show that the set of all
risk-hedging prices is closed. At last, we formulate a dual representation for
a risk-measure defined on the whole set L, which is also a new contribution.

3.2 Framework

In discrete-time, we consider a stochastic basis (Q, F := (F;)L,, P) where the
complete ! o-algebra F, represents the information of the market available
at time t. For any t < T, L°(R%, F;), d > 1, is the space of all R%-valued
random variables which are F;-measurable, and endowed with the topology
of convergence in probability. Similarly, LP(R?, F;), p € [1,00) (resp. p =
00), is the normed space of all R%valued random variables which are F;-
measurable and admit a moment of order p under the probability measure
P (resp. bounded). In particular, LP(R,F;) = {X € LP(R,F)|X > 0}
and LP(R_, F;) = —LP(R,, F;) when p =0 or p € [1,00]. All equalities and
inequalities between random variables are understood to hold everywhere on
Q up to a negligible set. If A, is a set-valued mapping (i.e. a random set of
RY), we denote by L°(A;, F;) the set of all F;-measurable random variables
X; such that X; € A; a.s.. We say that X; € LY(4;, F;) is a measurable
selection of A;. In our paper, a random set A; is said F;-measurable if it is
graph-measurable, see [70], i.e.

Graph A, = {(w,7) € QA x R*: z € A (w)} € F; ® B(RY).

We consider a dynamic coherent risk-measure X — (p(X) )< defined on
the space L°(R, Fr), R = [—00, 00]. Precisely, we consider the risk-measure
of [67], where an extension to the whole space L°(R, Fr) is proposed. Recall
that, in this paper, the risk-measure is constructed from its closed acceptance
sets (A;)i<r of acceptable financial positions A; at time ¢ < 7T. We suppose
that A; is a closed convex cone. In the following, we use the conventions:

!This means that the o-algebra contains the negligible sets so that an equality between
two random variables is understood up to a negligible set.
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0% (£o0) =0, (0,00) X (Foo) = {£o0},
R+ (£00) = £0o0, 00— 00 = —00+ 00 = +00.

For X € L°(R,Fr), p:(X) may be infinite and p;(X) € R a.s. if and
only if X € Dom A; where

Dom A, = {X e LR, Fr): A* #0},
AY = {C, e "R, F)| X +C, € A}

Actually, we have p;(X) = ess infz, AY if X € DomA;. Recall that the
following properties hold (see [67]):

Proposition 3.2.1. The risk-measure p; satisfies the following properties:
Normalization: p(0) = 0;
Monotonicity: p(X) > ps(X') whatever X, X' € LO(R, Fr) s.t. X < X/;
Cash invariance: pe(X +my) = p(X) —my if my € L°(R, Fy), and
X € L°(R, Fr);
Subadditivity: p,(X + X') < po(X) + p(X') if X, X' € L°(R, Fr) ;
Positive homogeneity: p(kiX) = kipe(X) if by € L°(Ry, F), X €
L°(R, Fr).
Moreover, p; is lower semi-continuous i.e., if X,, = X a.s., then p,(X) <
liminf, p;(X,) a.s., and we have

Ay ={X € Dom A, | p,(X) < 0}. (3.2.1)

In the following, we define A;, = A; N L°(R,F,) for u € [t,T]. Let
(S¢)t< be a process describing the discounted prices of d risky assets such
that S; € LO(R%, F,) for any ¢ > 0. A contingent claim with maturity date
t + 1 is defined by a real-valued JF;,;-measurable random variable h;. ;. In
the paper [67], the super-hedging problem for the payoff h;,; is solved with
respect to the dynamic risk-measure (p;)i<r. Precisely:

Definition 3.2.2. A payoff hi.1 € L°(R, Fiy1) is said to be risk-hedged at
time t if there exists P, € L°(R, F;) and a strategy 0, in L°(R%, F;) such that
P+ 0,AS; 1 — hyyq is acceptable at time t. In that case, we say that P, is a
risk-hedging price.
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Let P;(hsy1) be the set of all risk-hedging prices P, € L°(R, F;) at time ¢
as in Definition 3.2.2. In the following, we suppose that P;(h;y1) # (0. This
is the case if there exist a;, by € L°(R, F;) such that hyyq < a;Spq + by. This
inequality trivially holds for European call and put options.

Definition 3.2.3. The minimal risk-hedging price of the contingent claim
hiv1 at time t is defined as

P = inf  P,(h . 3.2.2
t Hteesos(EI{g,}'t) t( t+1) ( )

Note that the minimal risk-hedging price P, of h;;1 is not necessarily a
price, i.e. it is not necessarily an element of P;(h,1) if this set is not closed.
One contribution of our paper is to study a no-arbitrage condition under
which PF € Py(hyi1)-

Starting from the contingent claim hp at time T, we recursively define

P:i=hy, P = eteeLsg(%{gfft)Pt(Rs+1),

where P;,; may be interpreted as a contingent claim h;y;. The interesting
question is whether P} is actually a price, i.e. an element of P(F;,,), or
equivalently whether P,(Py,) is closed. In the classical setting, recall that
closedness is obtained under the NA condition.

Definition 3.2.4. A stochastic process (V;)i<r adapted to (F;)i<r, starting
from an initial endowment Vjy is a portfolio process if, for allt < T —1, there
exists 0; € L°(RY, F;) such that V; + 0,AS;,1 — Viy1 is acceptable at time t.
Moreover, we say that it super-hedges the payoff hy € L°([—o0,00], Fr) if
VT > hT a.s..

Note that Vy_1+607_1ASt— V7 is supposed to be acceptable at time 7—1.
Therefore, Vi > hp implies that Vip_q1 4+ 07_1ASr — hy is acceptable at time
T — 1. In the following, we actually set Vp = hp where hy € L°(R, Fr) is
a Buropean claim. Notice that, if P;_; = —oo on some non null set, then,
the one step pricing procedure of [67] may be applied as the risk-measure is
defined on L°([—o0, 00, Fr). Actually, this is trivial to super hedges Pj_, =
—o0 by Pj_, = —oo. This means that the backward procedure of [67] may be
applied without any no-arbitrage condition. Let us now recall this procedure.
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We define P; = hp =: h and let us consider the set P;(FP;,,) of all prices
p; at time t allowing one to start a portfolio strategy 6; € L°(R?, F;) such
that p; + 0;ASp11 = Pl + arey1 where ageq € L°(R, F) is an acceptable
position at time ¢. This is a generalization of the classical super-hedging
inequality p; + 6;AS; 1 > P}, ;. We have

Pu(Pyy) = {0:S: + pe(0:Se1 — Pyy) < 0 € LY(RY, Fy)} + LY(RY, ),
and, recursively, we define:

P = ‘essinf PJ(P",).
E T e to R H(Pi)
In [67], a jointly measurable version of the random function g; that appears
above in the characterization of P,(FP},,), i.e.

9?(‘% x) := xS + pe(xSiy1 — Pry), (3.2.3)

is constructed in the one-dimensional case. With the same arguments, we

may obtain a jointly measurable version of g/ (w, z) := xSi+pi(vSi1— P}y if

r € R% Moreover, by similar arguments, we also show that P} = infd gl ().
zeR

Let V' be a portfolio process with Vi = hy = h. By definition, we have
that pr_1(Vr—1 + 07_1ASr — hy) < 0. We deduce that Vy_y > P;_, and,
by induction, we get that V, > FP; for all ¢ < T, since V; is a risk-hedging
price for Vi1 > P}, at time ¢ + 1. In particular, V; € Py(P),;) # 0 for all
teT —1.

3.3 No-arbitrage and pricing with risk-measures

An instantaneous profit is the possibility to super-replicate the zero contin-
gent claim at a negative price, see [5].

Definition 3.3.1. Absence of Instantaneous Profit (AIP) holds if, for any
E<T,
P,(0) N L°(R_, F,) = {0}. (3.3.4)

It is clear that AIP holds at time T since Pr(0) = LRy, Fr). We now
formulate characterizations of the AIP condition in the multi-dimensional
setting. We denote by S(0,1) the set of all z € R? such that |[z| = 1. We
present our first result:
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Theorem 3.3.2. The following statements are equivalent:

1. AIP holds between time t — 1 and t.
2. pi_1(xzAS;) >0, for any x € R4, a.s..
3. pi—1(2AS;) >0, for any z € S(0,1), a.s..

4. Let xy_q € LO(Rd,Ft_l). If x;_1AS; is acceptable on some non null set
F, 1 € Fiq, then py_q1(x;1AS;) =0 on Fy_;.

Proof. 1 <= 2. Consider hy = 0 under AIP. As P, = inf g2 1 (x) >0, we
zeR

deduce that, for all z € RY, ¢° () = 2S;_1 + pi_1(xS;) = pi_1(zAS;) > 0.
The equivalence 2 <= 3 is clear by homogeneity. Let us show that 2 — 4.
Suppose that x; 1 AS; is acceptable on Fi_1, i.e. p_1(x;—1AS;) <0on Fy_;.
Then, by 2, we have p;_1(x;_1AS;) = 0 on F;_;. Let us show that 4 implies
2. Consider the set Fy_1 = {p;_1(z;-1AS;) < 0} € Fi—y. Then, x;,_1AS,
is acceptable on F;_; hence by 4, p;_1(z;-1AS;) = 0 on F;_;, which implies
that P(F,_1) = 0. Therefore, p;_1(z;_1AS;) > 0 a.s.. O

In the following, we consider a contingent claim h; € L°(R,F;) and a
jointly measurable version (see [67]) of the random function

Gi—1(w, z) == xSy (w) + pr_1 (xS — hy) (w) (3.3.5)

which is associated to h;. We then introduce two types of no-arbitrage con-
ditions we comment below.

Definition 3.3.3. We say that the Symmetric Risk Neutral condition SRN
holds at time t if, almost surely, for any z, € L°(S(0,1), F), pi(2¢ASi1) =0
if and only if p(—2zASi 1) = 0. We say that SRN holds if it holds at any

time.

Observe that the SRN condition means that a zero cost position z; is
risk-neutral if and only if —z; is risk neutral.

Definition 3.3.4. We say that the no-arbitrage NA condition holds at time
t when both conditions AIP and SRN hold at time t. We say that NA holds
iof it holds at any time.
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Note that the NA condition depends on the risk-measure. In the usual
case where p,(X) = —essinfz, X or, equivalently, there is no risk measure
in the sense that the acceptable positions are the non-negative random vari-
ables, then the NA condition above coincides with the usual one as claimed
in the following new result, see the proof in Appendix:

Proposition 3.3.5. Suppose that the risk-measure is p,(X) = —ess infz, X.
Then, the NA condition coincides with the classical NA condition of friction-
less models, i.e. it is equivalent to the existence of a risk-neutral probability
measure.

We recall that a function f : © x RY — R is an F,-normal integrand,
if its epigraph is F;-measurable and closed. Since the probability space is
complete, we know by [76, Corollary 14.34] that it is equivalent to suppose
that f(w,z) is F; ® B(RY)-measurable and lower semi-continuous (1.s.c.) in
x. Moreover, by [76, Theorem 14.37], we have:

Proposition 3.3.6. If f is an Fi-normal integrand, inf cga f(w,y) is Fi-
measurable and {(w,z) € A x R?: f(w,z) = inf,cra f(w,y)} € F, ® B(RY)

1s a measurable closed set.

As we may choose a jointly measurable version of g;(w, z) when the payoff
is hyy 1 = 0, we consider a jointly measurable version of p;(w, x) := py(xAS11)
ie. pi(w,z)is F; @ B(RY)-measurable. Then, p; is an F;-normal integrand.
By Proposition 3.3.6, the set I'y = {2z : pi(2AS;41) = infyes0,1) pe(yASi41)}
is Fi-measurable. Moreover, each w-section of I'; is non empty since p; is 1.s.c.
and S(0,1) is compact. Therefore, by a measurable selection argument, we
may select z; € L(S(0,1), F;) such that p(2;AS;41) = inf,es(0.1) pr(2ASk1)
a.s..

Our first contribution is to show that, under NA, infimum super-hedging
prices are minimal prices. To do so, we need the following new results which
are proved in Appendix.

Theorem 3.3.7. Suppose that AIP holds and consider z_, € L°(S(0,1), F;_1).
Then, on the set Fy_1 = {pi—1(2:-1AS;) = 0} N {pr_1(—2_1AS;) = 0}, the
random mapping x — gi—1(w, ) given by (3.3.5) is a.s. constant on the line
Rz 1, ie. gi1(w,z1) = gi_1(w, x2) for all x1,29 € Rz (w) and w € Fy_4.
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Theorem 3.3.8. Let hy € L°(R,F;) be a payoff such that p;_1 (hy) < oo
a.s..Consider the random function g,y associated to hy given by (3.53.5). For
any 21 € L°(S(0,1), F;_1), consider the random set

Ft—l = {pt_l(zt_lASt) > 0} N {Pt—l(—zt—lASt) > 0}
We have:

lim g1 (w,r2i-1) = 400, Yw € Fy_;.

|r|—o0
hence g;—1 admits a minimum on the line Rz, when w € F,_4.

Corollary 3.3.9. Let hy € L°(R, F;) be s.t. pi_1 (hs) < 00 and ps_1 (—hy) <
o0 a.s.. Consider the function g;_1 associated to hy given by (3.5.5). Suppose
that 21 € L°(S(0,1), F;_1) is such that

pt—l(zt—lASt) = Zeisfzg 1y pt(ZASt)-

Then, on the set F;_y = {pi—1(2:-1AS;) > 0} N {pr_1(—2-1AS;) > 0}, the
random function g;—1 admits a minimum.

The following theorem is our first main contribution and shows that the
set of all risk-hedging prices is closed under NA:

Theorem 3.3.10. Suppose that NA holds at time t < T and consider a
payoff hiv1 € LO(R, Fyy1) such that |py(hev1)| + |pe(—hi1)| < oo a.s.. Then,
the minimal risk-hedging price P} for the payoff hiy1 is a price.

Notice that the proof of the theorem above (see Appendix) provides the
existence of an optimal hedging strategy 07 € L°(R, F;) such that

PP = g4(0f) = 07S; + pe(07 St11 — higr) € Pi(hisr)-

In the following, we say that a payoff h;y1 is not freely attainable at time
t if it satisfies pi(—hi1) > 0 a.s. and |pi(hegr)] + |pe(—hir1)| < oo a.s.. Note
that if p,(—hsr1) > 0, then it is not possible to get the payoff h;; from
nothing when writing 0 = h;y 1 + (—hiy1) and letting aside (—hyy 1) since
the latter is not acceptable. Notice that, if p,(X) = —ess infx,(X) as in the
usual case, pi(—hs41) > 0 means that ess supz, (hs41) > 0 and recall that hy iy
is acceptable if Ay > 0 a.s.. The following theorem gives an interpretation
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of the NA condition. Precisely, NA means that the price of any no freely
attainable and acceptable payoff is strictly positive. In the usual case, a no
freely attainable and acceptable payoff is a non negative payoff which does
not vanish on a non null F-measurable set.

We then have a new financial interpretation of the NA condition, as
proved in Appendix:

Theorem 3.3.11. The NA condition holds at time t < T if and only if the
infinimum risk-hedging price Pf of any no freely attainable and acceptable
payoff hyyq1 at time t is strictly positive. Moreover, under NA, the infimum
risk-hedging price P} of any contingent claim hyy, € L°(RY, Fiy1) satisfies

Pt(—ht+1) > Pt* > —Pt(ht+1)-

3.4 FTAP and dual representation for time-
consistent risk measures.

Definition 3.4.1. A dynamic risk-measure (p;)i<r is said time-consistent
if pri(X) = pea(Y) implies p(X) = p(Y) for X,Y € LR, Fr) and
t <T —1 (see Section 5 in [29]).

The following result is very well known, see [2].

Lemma 3.4.2. A dynamic risk-measure (p;)i<r 1S time-consistent if and
only if its family of acceptable sets (Ay)i<r satisfies

At7T - At,tJrl + At+1,T, Vit S T—1. (346)

Observe that, if (p;)<r is time-consistent, we may show by induction that
pir(=pirs()) = pi(+) for any t < T and s > 0 such that s +¢ < T. In the
following, we introduce another possible definition for the risk-hedging prices
in the multi-period model, where the risk is only measured at time t.

Definition 3.4.3. The contingent claim hr € L°(R, Fr) is said directly risk-
hedged at time t < T — 1 if there exists a (direct) price P, € L°(R,F;) and

a strategy (0,)12} such that that P, + Y. 0,AS.41 — hp is acceptable at
t<u<T-1
time t.
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The set of all direct risk-hedging prices at time ¢ is then given by

Pi(hy) = {pt ( > 0.AS — hT> = LO(Rd,Fu)} + L°(R, F7).

t<u<T—1

and the infimum direct risk-hedging price is

P (hr) = ess inf Py(hr).
(Ou)aze

Remark 3.4.4. A hedging strategy which is admissible at each step is a
strateqy that is considered as admissible because of the updated information
and the updated risk-measure as well. Indeed, at each step, the acceptable
positions are estimated through the time dependent risk-measure p; and the
information F;. On the other hand, a direct-hedge is only obtained at time O
from the initial preferences we have on the acceptable positions, i.e. from pg
and without information but Fy. It is intuitively natural to prefer a strategy
which is admaissible at each step as this is coherent with the choice of a dy-
namic risk measure to take into account a change in time of preferences and
information.

The following result is proved in [67] and shows that the direct infimum
risk-hedging prices may coincide with the infimum prices derived from the
step by step backward procedure developed before, i.e. such that

Fi(hr) = essinf PP (hr)),

where Pj*w(hT) = hT.

Theorem 3.4.5. Suppose that the dynamic risk-measure (pi)i<r is time-
consistent. Then, P} (hr) = Py (hy) for anyt <T — 1. Moreover, the direct
infimum risk-hedging prices are direct prices if and only if the infimum prices
of the backward procedure are prices.

Corollary 3.4.6. Suppose that the dynamic risk-measure (pt)i<r is time-
consistent. Then, Py(hy) = Py(hr) for allt <T.

3.4.1 Dual representation

As mentioned by Cherny [15, Theorem 2.2] and shown in [26], any time-
consistent risk-measure p; at time ¢, restricted to the set of all bounded
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random variables, is characterized by a family D, of absolutely continuous
probability measures such that p,(X) = ess supgep, Fo(—X|F;). In the
following, we consider the risk-measure p on L° as defined in this paper. The
goal is to understand whether it is possible to get a dual characterization
of p on the whole set LY, at least under some conditions. For X € LY,
we define Eg(—X|F;) as Eq(—X|F:) = Eq(X~|F) — E(XT|F:) with the
convention oo — oo = oo. We say that a random variable X is F;-bounded
from above if X < ¢; as. for some ¢; € L°(R,,F;). The proofs of the
following new contributions are postponed in Appendix. They provide a
dual representation of the risk-measure.

Proposition 3.4.7. Let (pi)i—o... 7 be the coherent risk-measure as defined
in Section 3.2. Then, there exists a family D; of absolutely continuous prob-
ability measures such that, for every F;-bounded from above random variable
X, we have:

pi(X) = ess supgep, Lo(—X|F). (3.4.7)

Unfortunately, it is unrealistic to expect that (3.4.7) may be extended in
general from L™ to LY, as mentioned by Cherny, [15]. The main problem is
about the non negatives random variables as we shall see in the proof of the
next proposition. Before, let us see a trivial example where we may meet
some difficulties for non negative random variables.

Example 3.4.8. We consider Q = [0, 1] equipped with the Borel o-algebra
and the Lebesque measure P. The random variable X(w) = w1 1j(w)
1s non negative hence acceptable. Let us define the acceptable positions as
the closure in LY of the random wvariables Z such that Ep(Z) = Ep(Z7") —
Ep(Z7) > 0. We then define p on LY as in Section 2, see [67]. As Ep(X) =
00, we deduce that Z, := X — « is acceptable for all o > 0 if (3.4.7) holds.
On the other hand, P(Z, < 0) =1 —a~! tends to 1 as a — oo, which is
unrealistic if Z, 1s acceptable.

Consider Q € Dy and Y = dQ/dP. Suppose that P(Y > 1) > 0. We
then choose a < 0 and 8 > 0 such that aP(Y > 1)+ SP(Y < 1) =0. Then,
X = algys1y + Blyy<yy is acceptable as Ep(X) = 0. Therefore, by (3.4.7),
Eqg(X) > 0. Actually,

EQ(X) = EP(XY) = Ep(OéYl{y>1} + ﬂYl{ySl}) S EP(X) =0
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and Eqg(X) = 0 if and only if oY 1ys1y +BY 1yy<1y = X. In that case Y =1
on {Y > 1} hence a contradiction. We deduce that Y <1 a.s.. At last, since
Y <1 a.s., we deduce that Y =1 a.s.. We then deduce that Dy = {P}.

Also, as another example, consider X (w) = w™ 1 q)(w)+(w—1) 101 (w),
w e Q. Since Ep(X) = 00—00 = 00, we deduce that X is acceptable. Never-
theless, P(X <0) =1—« tends to 1 as a — 0, which is clearly unrealistic.

In the following, we denote by A" the set of all acceptable positions at
time t which are F;-bounded from above.

Proposition 3.4.9. Suppose that A, is the closure of A7"" + LO(RY, Fr)
in L and assume that, for some fized e > 0, A>T contains all the random
variables Z which are Fi-bounded from above and satisfy P(Z < 0) < e.
Let (pt)i—o,... 7 be the coherent risk-measure as defined in Section 3.2. Then,
there exists a family D, of absolutely continuous probability measures such
that we have.

pi(X) = ess supgep, Bo(—X|F), VX e L. (3.4.8)

The proof of the proposition above (see Appendix) shows that (3.4.8)
holds as soon as it holds for any acceptable position which is the sum of an
Fi-bounded position plus a non negative one. By Proposition 3.4.7, (3.4.8)
holds for any F;-bounded position. Therefore, the difficulty in proving (3.4.8)
stems from the non negative random variables.

3.4.2 FTAP and dual description of the risk-hedging
prices

We consider the set of all attainable claims R} between ¢ and T, when
starting from the zero initial endowment, i.e.

T
Riq = { Z 0,1AS, : 0, € L°(R%, F,), u> t}.

u=t+1

We observe that P;(0) = (A;r — Rer) N L°(R, F). In the following, we
consider the sets Z,p := Ryp — A1 and the sets

A= {X € LNR.Fr): pi(X) = pi(—X) = 0}.
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Remark 3.4.10. Note that AgT = AN (—Ar). Indeed, first observe that
.A?,T C AN (—=Air). Reciprocally, if xyr € Apr N (—Air), we have:
0= pi(xir —211) < pil@er) + pr(—2e7) < 0.

This implies py(xrr) = pi(—xe7) = 0 hence xy 1 € A?’T.

The set Z, p is the family of all claims that are attainable up to an accept-
able position at time t since every attainable claim ry7 € RI may be written
asryr = (rer—agr)+ar where ayp € Ay p is let aside and ryp—ayr € 2y 7.

We now formulate intermediate new results that we need to prove the
FTAP theorem, which is the first contribution of this section.

Theorem 3.4.11. Assume that the risk measure is time-consistent. Suppose
that Ryr VA = Alp . Then, AIP holds and 2,1 is closed in L° for every
t<T—1.

Theorem 3.4.12. Suppose that the risk-measure is time-consistent. Suppose
that NA holds and A7 N L°(R_, Fr) = {0}, for everyt < T . Then, we
have Z, 7 N LY (R4, Fr) = {0} and Ryr N Ayr = A?’T for every t.

Theorem 3.4.13 (FTAP). Suppose that the risk-measure is time-consistent
and A, 7NLY(R_, Fr) = {0} for everyt < T. Then, the following statements
are equivalent:

1) NA

2) Rix N Air = A?’T, for every t <T.

3) Ror NAor = A)r.

4) Zir N Avr = Alyp, for every t <T.

5) Zor N Aoy =AY 1.

6) Zor N Ao = Ag’T and Zyr is closed in L°.

7) Forallt < T—1, there exists Q = Q' ~ P with dQ/dP € L*((0,00), Fr)
such that (S,)L_, is a Q-martingale and, for allt < T — 1, for all X

u=t

such that Eg(X™|F) < 0o a.s., p(X) > —Eq(X|F).

Moreover, for allz € Ayp\ A} p, there exists such a Q = Q% such that
P(Eq(xl 7)) £ 0) > 0.
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The following result is the second main contribution of this section. It
provides a dual description of the payoffs that can be super-hedged under
NA. To do so, we denote by Qf (and Q¢ = QF) the set of equivalent mar-
tingale measures ) that satisfies p(X) > —Eq(X|F), for all X such that
Eq(X™|F) < oo a.s.. We have QF # () under NA. We restrict the payoffs to
the class Lg(R, Fr) of random variables hy € L°(R, Fr) satisfying:

d
|hy| < &+ Z 'Sk, P—a.s.

i=1
for some constants c°, ..., ¢? that may depend on hp.

Theorem 3.4.14. Suppose that the risk-measure is time-consistent and we
have Ay N L°(R_, Fr) = {0} for every t <T. Consider the following sets:

F07T = ZO,T N Ls(R, fT),

@O,T = {hT < LS(R, .FT>, sup EQ(hT) < 0} .
QeQe

Then, under the NA condition, I'or = ©gr and the minimal risk-hedging
price Py(hr) of any contingent claim hr € Lg(R, Fr) is given by

Pék(hT) = Sup EQ(hT)
QeQse

3.4.3 Comparison with the No Good Deal condition

We recall that the No Good Deal condition (NGD) of Cherny [15] may be
rephrased in our setting as follows:

Definition 3.4.15. The NGD condition holds at any time t < T if there is
no Xy r € R such that p(X,r) <0 on a non null set.

In the setting of Cherny, we suppose that
pi(X) = ess supgiep, Fot(—X), (3.4.9)

where D; is a weakly compact subset of L' with respect to the o(L!, L>)
topology and we use the definition Egi(—X) = Eg:(X ™) — Egt(X ™) with
the convention oo — oo = +00. Adapting [15, Theorem 3.4], we immediately
get the following:
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Corollary 3.4.16. Suppose that the risk-measure is given by (3.4.9). Then,
the NA condition and the NGD condition are equivalent to the existence of
a probability measure Q' € Dy such that the price process (S,)I_, is a Q'-
martingale for all t <T — 1.

3.5 Appendix: Proofs.

Proof of Theorem 3.3.5.

Proof. We know that the existence of a risk-neutral probability measure () ~
P implies AIP. Moreover, suppose that p;(2AS;11) = 0 on F, € F, where z €
S(0,1). Then, by definition of p;, 152AS:41 > 0. As Eg(1p2AS:41) = 0,
we deduce that 152AS8;,; = 0 hence py(—2AS;,1) = 0 on F,. By symmetry,
we deduce that SRN holds.

Reciprocally, suppose that AIP and SRN conditions hold. Let 6, €
LO(Rd,Ft) such that 6;AS;,; > 0 a.s.. Let us write 6; = r;z; where r, €
L°(R, F;) and 2 € L°(S(0,1), F;). On the set F; = {r; > 0}, 2AS;41 >0
hence ess infz,(2;AS;41) > 0. By the AIP condition, p;(z;AS;41) > 0. We
deduce that ess infz, (2:ASi+1) = 0 = p(2AS;1). Under SRN, we deduce
that pi(—2AS;+1) = 0 hence zAS;y; > 0 so that z,AS;.; = 0. By a sim-
ilar reasoning on the set F;, = {r; < 0}, we also get that zAS;.; = 0
hence 0;AS;;; = 0. We then conclude by [55, Condition (g), p. 73, Section
2.1.1]. O

Proof of Theorem 3.3.7.

Proof. Tt \i_1 € LR, Fp), gr—1(Ne—126-1AS;) = | N_1|ge1(€r—121AS;) for
some ¢y € LO({—1,1},F,_1). We deduce that g; 1(N\_12:-1AS;) = 0 on
F,_1. Recall that g;_1(A—121-1) = pr—1(M—12e-1AS; —hy) by Cash invariance.
Using the triangular inequality, we then deduce on F;_; that

Gt-1(0) = pr1(=he) < poa(=N12e-1A88) + pro1(M—120-1 A8 — hy)
< g1 M1zieq).

Similarly, we have

gtfl(/\tflztfl) < ptfl()\tflztflASt) + ptfl(_ht) = ptfl(_ht)

We deduce that g;—1(A¢—12¢-1) = ¢¢+—1(0) and this implies that g, ; is a con-
stant on the line Rz;_;. Indeed, on the contrary case, the F;_;-measurable
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set I'v1(w) = {a € R gi1(azi1) # gi—1(2:-1)} is non empty on the
non null set Gy = {w € Q: [y q(w) # 0} € F,_1. We then deduce a
measurable selection z; € LO(Rd, Fi—1) such that z; = ayz; and o € T'y_1 on
the set G;_; and we put Z; = z; on the complimentary set 2\ G;_;. By the
first part above, we deduce that ¢, 1(Z) = ¢;_1(2) a.s., which contradicts
the fact that oy € I';_1 on F;_;. O

Proof of Theorem 3.3.8.

Proof. If \—1 € LO(R,]-}), gt71<)\tflzt71ASt) = ‘)\t—1|9t—1(€t712t71ASt)7
where ¢;,_; € L°({—1,1}, F;_1) . Moreover, g; 1(€;_12;_1AS;) > 0 on Fy_;.
By sub-additivity, we deduce that

\Ae—1]gr—1(€—12e-1A88) < proa(he) + ge—1(Ne126-1).

As |A\—1]| goes to +oo, we conclude that g;—1(A\_12;_1) tends to +o00 on F;_;.

Now, let us suppose that there is a non null set G;_; of F;_; such that
gi—1(w,rzi—1) does not converge to +oo if r — oo when w € G4_;. Note that
w € Gy if and only if there exists m(w) € R such that, for all n > 1, there
exists 7, (w) > n such that g;—1(w, r,(w)) < m(w). Consider the following set

D1 (W) = {(m, (r)521) € R RY: 1y > mand gy(w,r,) < m, Yn > 13,

The Borel o-algebra B(RY) is defined as the smallest topology on RN such
that the projection mappings P" : (Tj);-)il — 1, n > 1, are continuous.
Therefore, we deduce that I';_; is F;_j;-measurable. As I';_; is non empty
on Gy_1, we deduce a F;_j-measurable selection (m, (r,)22 ;) of I';_; on Gy_;
that we extend to the whole space Q2 by m(w) = +oo and r,(w) = n, if
w € Q\ Gi_y. Since the F;_j-measurable sequence (7,)3% ; converges a.s. to
+00, we deduce that lim, 1 gi—1(rn2-1) = +00 on G;_1 by the first part
of the proof. This is in contradiction with the property g;(w, r,(w)) < m(w),
forallmn > 1,if w e Gy_1.

Similarly, by symmetry, we may also prove that lim, , . g;—1(rz;—1) =
+oo on F;. As g;_4 is Ls.c., we finally deduce that g, ; achieves a minimum
on Rz _1. ]

Proof of Corollary 3.3.9.

Proof. For any z € S(0,1), we have p;_1(zAS;) > 0 and p;_1(—2zAS;) >
0 by definition of F,_; and z,_;. By Theorem 3.3.8, there exists r;_; €
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L°(R,, F;_1) such that inf,er gs—1(72:—1) = ¢s—1(r+_12¢_1). Notice that, by
definition, we have g;_1(r—12¢-1) < ¢:-1(0) = p;—1(—hy). On the set {r,_; >
0}, this is equivalent to

h
Ti—1 (Zt—lst—l + Pi—1 (Zt—lst - r—t)) < pr—1(—hy),

t—1

h
Ti—1 (Zt—lst—l + pt—l(zt—lst) + pi—1 (Zt—lst - T—t> - Ptl(ztlst)> < ptfl(_ht)'
t—1
We observe that:
h 1
Pi—1 (Ztlst — —t) — pr—1(2e-15) > ———pe—1(he).
Ti—1 Ti—1

Therefore, Tt—l(Zt—lst—l + pt—l(zt—lst)) < pt—l(_ht) + ,Ot—l(ht)> Le.

pe—1(—he) + p_1(hy)
Pt—l(zt—lASt) .

Similarly, on the set {r;_; < 0}, we deduce that:

Ti—1 <

pi—1(=h¢) + pe—1(hy)
pt—l(_zt—lASt) '

—Tri_1 <

We finally deduce that, in any case, we have:

_1(—h _1(h _1(—h _1(h
1] < max (’pt 1(=he) + pra( t)\7 |pe—1(—he) 4 pr—a( t)\) — M, | < oo,
Pt—l(zt—lASt) pt—1<_zt—1ASt)
on F;_;. At last, we deduce that for each w € F}_1:
inf g,_ = inf inf _ = inf _ ,
xleangt 1(1:) TE[*J\/fltljl,Mtfl]Ze}gl%Ovl)gt I(TZ) zEB(IOI,le_ﬂgt 1(55)

where B(0, M;_;) is the closed ball of radius M;_; and centered at the origin.
Since B(0, M;_,) is compact and g;_; is L.s.c., we deduce that g,_; admits a
minimum on B(0, M;_;). By Proposition 3.3.6, observe that there exists a
measurable version of an argmin, using a measurable selection argument. [

Proof of Theorem 3.3.10.
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Proof. Suppose first that d = 2. Since p; is l.s.c., there exists z; € L°(S(0,1), F;)
such that inf.cg(01) pt(2ASi41) = pe(2:AS¢41). By Corollary 3.3.9 and under
SRN, g; attains a minimum on R? when w € Fy = {p;(2;AS;41) > 0} € F;.

Let us now suppose that w € Ff = {p(2;AS11) = pi(—2:AS41) = 0},
We consider a line that is parallel to the line Rz;. For any 2y, 2, € L°(RY, F;)
on that line such that z; — 20 = r;2; € Rz, rp € L°(R, F;), we have:

gi(z1) = pe((22 + reze) ASiy1 — )
< pi(22ASi11 — higr) + pe(1e2eASi41) = gi(22)

By symmetry, we also have: g;(z2) < ¢4(z1), hence g;(21) = g4(22). Therefore,
g¢ is constant on any line which is parallel to Rz;. Moreover,

{(w,z5) € Ax R?: 2} 2 (w) =0} € F, ® B(R?).

By measurable selection argument, we may choose z;* € L°(S(0, 1), F;) such
that the line Rz;" is orthogonal to Rz;. Since d = 2, for any = € R?, there
exist A € R such that 2 — A\z;- € Rz;. We then deduce from above that:

. . L
000 = i)

On the set {p;(z;-ASi11) = 0}, we get that infyer g:(A2i5) = ¢:(0) by
Proposition 3.3.7. On the other hand, on the set {p;(z;"AS;11) > 0}, we
get that lim|ye0 g:(A2;) = +00 by Proposition 3.3.8 and SRN, hence g
achieves a minimum on the line Rz;".

Let us now prove the d-dimensional case by induction. Recall that there
exists z; € L°(S(0,1), F;) such that p;(2:ASi1) = infLes0,1) pe(2ASi41). On
F, = {p:(2:AS;41) > 0}, by Corollary 3.3.9 and SRN, ¢; attains a minimum
on RY. On Ff = {py(2AS;11) = 0}, consider a hyperplane I; ; which
is orthogonal to Rz; and admits an orthonormal basis (z1, 29, ..., 24_1) such
that for each w € Q, 2 = (2, 21,..., 24_1) is an orthonormal basis for R
Note that each z; can be chosen in L°(S(0, 1), F;). Indeed, similarly to the
case d = 2, we first choose 2; € L°(S(0, 1), F;) orthogonal to z;. Recursively,
for i € {2,...,d — 1}, we have:

{(w,2) € QxR : ziz5(w) =0 for all j =0,....,i — 1} € F, @ B(RY).

By measurable selection argument, we then choose z; € LY(S(0,1), F;). We
denote by M, the matrix such that z; = M,e;, for every ¢« > 1, where ¢; =
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(0,---,1,---,0) € R We recall the change of variable z = M;& where x
and 7 are the coordinates of an arbitrary vector of R? in the basis (€;)i>1 and
(Zi)i>1 respectively. The ith column vector of M, coincides with 2; expressed
in the basis (e;);>1, hence each entry of M; belongs to L°(R, F;) and so do

the components of M;*. We then define the adapted processes S, = M!S,
foru=t,t+ 1. We have:

gt(fﬂ) = pt(xASt+1 - ht+1) = pt(iAng - ht+1).

We observe that S’uzwﬂ forms a new market model which also satisfies the
NA condition between t and t + 1. Indeed, for any z € S(0, 1), we have:

pt(ZAgt—H) = pe(2M{AS; 1),

hence pt(zAStH) = 0 implies that p;(—zM/AS;;1) = 0 by the NA condition
satisfied in the market formed by S which, in turn, implies p;(—2AS; 1) = 0.

Fix w and, for any x € R, consider the orthogonal projection z of 2 onto
Iy 1. We then have g;(z) = ¢;(Z). For # € I;_;, we denote & = M, 'z, we
have:

d d
EAS 1 = Ay =Y #'AS}, =Y #'AS,
i=1 i=2
since the first coordinate of  equals 0 in the new basis. We deduce that:

d
inf gi(x) = inf p(xASi1 — hip) = Aeiﬁfflpt (Z jiASZH — ht+1>

zeR4 z€lg_1 -
=2

This means that we have reduced the optimization problem to a market with
only d — 1 assets defined by (S?,...,S9). As it satisfies the NA condition, we
deduce that inf,cga g;(x) is attained by induction. O

Proof of Theorem 3.3.11.

Proof. Suppose that NA holds. By Theorem 3.3.10, there is z; € L°(S(0, 1), F;)
and 7, € L°(R,F;) such that P} = p;(r;zzAS;1 — hir1). Suppose that
pi(z:ASi11) and py(—2,AS;11) are both equal to 0. Then, the function
g associated to hyi1, see (3.3.5), is constant on the line Rz, by Theorem
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3.3.7. Therefore, P} = ¢(0) = pi(—hs1) > 0. Otherwise, under NA,
pr(z:ASi11) > 0 and pi(—2AS;+1) > 0. Using triangular inequalities, and
the assumption p;(hi1) < 0, we then deduce that:

Py = 128+ pi(rizeSie — hesa),

h
= Pt(_ht+1)1{n:0} + TPt (ZtASt—H - ;H) 1{T’t>0}
t

h
—Ttpt <_ZtASt+1 + ;_H) Liri<oy
t

> pt(—htﬂ)l{n:o} + TP (ZtASt—i-l) 1{rt>0} — TPt (_ZtASt—H) 1{7"t<0}7
> 0.

For the reverse implication, let us prove first that AIP holds. We fix h; 4
such that p;(—hs1) > 0 and p;(hir1) < 0. So, with the function g, associated
to hit1, see (3.3.5), we have P} = P/ (hyy1) = inggt(;v) > 0 by assumption

(S
and g;(rz) > 0 for all » € R and z € S(0,1). Let us show that the set
{28 + pi(2Si41) < 0} is empty for all z € S(0,1) a.s.. In the contrary case,

by measurable selection, we may construct z; € LY(R¢, F;) such that we have
P(2:S; + pi(2:Si41) < 0) > 0. We then define

pe(—hit1)
T AS) > 0.
Tt pt(ZtASt—‘rl) {pt(2¢AS141)<0} =
We have
Ge(reze) = 1420Se + pe(rezeSigr — his),

rezeSy + pe(1120Se1) + po(—hisa),
Tepe(2eAS1) + pe(—hesr),

Pt(—he11) 1 (28,41)>0).

INIAIA

Therefore, P < 0 on the set {p:(2:AS;+1) < 0} in contradiction with P > 0.

Let us show that p;(—zASi1) = 0 if pi(2ASi41) = 0 for any z €
S(0,1). Otherwise, by measurable selection argument, there exists z; €
L°(S(0,1), F;) such that A; := {ps(2:ASi11) = 0} N {pe(—2:ASei1) > 0}
satisfies P(Ay) > 0. If hyy1 = 2,ASi41, then py(—hiy1) = po(—2AS141) > 0
on As. On the complimentary set, we fix by = v > 0, ¢ € L°((0,00), F7).
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It follows that p;(—hir1) > 0. Moreover, py(hir1) = pi(20ASi1) = 0 on Ay
and, otherwise, py(hiy1) = —y < 0. Therefore, py(hiy1) < 0. We deduce
that P*(hir1) > 0, by assumption. On the other hand, if » > 1, and w € Ay,

Pl (hiy1) < pe(rzeASipr — 22ASi41) = (r — 1) pe(2eASi 1) = 0.

It follows that P;(hir1) < 0 on A4, ie. a contradiction. We conclude that
pt(zAS;11) = 0 if and only if p;(—2zAS;1) = 0 for any z € S(0, 1).

At last, it is clear that P} (hi1) < g:(0) = pi(—hss1). Moreover, for all
r € R0 < py(xASiy1) < pi(xAS;i1 — hyy1) + pi(heyr). Taking the infimum
in the r.h.s. of this inequality, we get that 0 < P/ (hiy1) + pi(hes1) and we
may conclude. O

Proof of Theorem 3.4.7.

Proof. By [2], [26], there exists D; such that (3.4.7) holds if X € L*. By
homogeneity, it is clear that (3.4.7) still holds if X is F;-bounded, i.e. | X| < ¢;
where ¢; € L°(R,, F;). Let us show that (3.4.7) still holds for any random
variable X such that X < ¢ a.s. for some ¢; € L°(Ry,F;). Let us first
suppose that X is acceptable. Let us define XM = X lix>_n) for any
M > 0. Then, XM is Fi-bounded a.s.. As XM = X — X1y .y and
—Xlix<—ay > 0, then XM is acceptable ie. p(XM) < 0. By (3.4.7),
we deduce that Eg(XM|F) > 0 for all Q € D;. Thus, Eq((XM)"|F) >
Eq((XM)~|F;) and, as M — oo, we get that ¢, > Eg(X 1| F;) > Eo(X | F)
hence oo > Eq(X|F;) > 0. More generally, for any X such that X < ¢, for
some ¢; € LO(Ry, F), p(X)+X is acceptable hence p,(X) > Eo(—X|F;) for
any @ € D;. We deduce that the inequality p,(X) > ess supgep, Eq(—X|F)
holds.

For the reverse inequality, note that the random variable
YM = ess supgep, Eq(—X|F,) + XM € [—c + XM, XM

is Fi-bounded hence (3.4.7) holds for v, as seen above. Moreover, we have
Eq(—M|F) < Eg(X|F) — XM = Eg(X1x<_m|F) < 0. We deduce by
(3.4.7) that p;_1(v*) < 0. Using the Cash invariance property, we deduce
that p_1(XM) < ess supgep, Eo(—X|F;). As limpyoo XM = X, we then
deduce that p;,_1(X) < lIminfae pr—1(XM) < ess supgep, Eq(—X|F) so
that we may conclude that the equality (3.4.7) holds for any random variable
that are Fi-bounded form above. O
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Proof of Theorem 3.4.9.

Proof. Suppose that Z = X + ¢t where X is F;-bounded from above and
acceptable and ¢t > 0 a.s.. Then, D; exists by Proposition 3.4.7 and, for
all Q € Dy, Eg(Z|F) > Eo(X|F) > 0. As p(Z) + Z admits the same
form than Z, we deduce that p;(Z) + Z admits non negative conditional
expectations under @ € D;. Therefore, p(Z) > Eq(—Z|F;) for all Z € D,
hence p,(Z) > ess supgep, Eqo(—Z|F), at least when p,(Z) > —oo. Oth-
erwise, when p(Z) = —o0, Z, = —a + Z is acceptable for all « > 0,
hence Eq(Z,|F:) > 0, ie. Eg(Z|F,) > « for all @ > 0. It follows that
Eg(Z7|Fi) — Eg(ZT|F:) < —a and finally, as @« — oo, we deduce that
pi(Z) = ess supgep, Lo(—Z|F;) = —oo.

Consider an acceptable position Z. Then, by assumption, Z = lim sup,, Z"
where Z" is of the form Z" = X" +¢€ with ¢F > 0 a.s. and X" is Fi-bounded
from above. Note that sup,,,, X, is still Fi-bounded from above for all
m >k > 1. Since sup, sy Zn > SUPpcpcm Zn > SUDpcn<m Xn, for all m > k,
we deduce that supn>k_Zn is of the form X + e,j where X is Fy-bounded
from above and acceptable while e > 0 a.s.. It follows that any acceptable
position is of the form Z = lim | Z,, where Z, is of the form Z,, = X,,+¢€ and
X, is Fi-bounded from above and acceptable while ¢f > 0 a.s.. As Z < Z,,,
we deduce that p(Z) > pi(Zn) > ess supgep, £o(—2Zn|F;) by virtue of the
inequality we have shown in the first part. As (—Z,) is non decreasing we
finally deduce that p;(Z) > Eqg(—Z|F;) for any Q € D;, when n — oco. It
follows that p;(Z) > ess supgep, Eo(—Z|F1).

Moreover, suppose that (3.4.8) holds for any acceptable position Z, of
the form Z, = X,, + ¢} where X,, is F;-bounded from above and acceptable
and € > 0 a.s.. By lower semi-continuity,

pi(Z) <liminf p,(Z,) = lim inf ess supgep, Eq(—2Zn|F7).

As Z < Z,, Eo(—Z,|F) < Eg(—Z|F:), and we deduce the inequality
pi(Z) < ess supgep, Eg(—Z|F;). We then conclude that (3.4.8) holds for
every acceptable position Z and, finally, for every X € L° as p;(X) + X is
acceptable.

It remains to show that (3.4.8) holds for Z = X +et € AT +LO(R*, Fr).
To get it, it is sufficient to prove that p,(Z) < ess supgep, Fo(—Z|F:). Let
us define Z™ = X + 6+1{6+§n} + anlictsny € .Afo’Jr where «,, > 0 is chosen
large enough in such a way that P(a, <€) <e. Then, (a, — €")ljersny is
acceptable by hypothesis for P((a, — €")1et5py < 0) < Py, <€) <e.
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Since Z™ — Z a.s., we deduce that p;(Z) < liminf, p,(Z™). Recall that
pi(Z") = supgep, Eo(—Z"|F;) by Proposition 3.4.7. Hence,

pi(Z") < ess supgep, Eo(—Z|F;) + ess supgep, Eo(Z — Z"|F).
Moreover, since Z™ — Z is F;-bounded from above, we have
ess sUpgep, BolZ — Z'|F) = pi(2" = 2) = pul(an — €)1 2n}) < 0.

We then deduce that p,(Z) < ess supgep, Eo(—Z|F;) and the conclusion
follows. O

Proof of Theorem 3.4.11.

Proof. Consider 0; € L°(R%, ;). By Theorem 3.3.2, it suffices to show that
pe(0:AS;11) > 0 as.. Otherwise, the set Ay = {p;(0;AS;+1) < 0} admits a
positive probability and 0;AS;111y, € Ryr N Aipr = A?’T. It follows that
p(0:AS;111,,) = 0 hence a contradiction. Therefore, AIP holds.

Let us show that E C Z, 7. In the one step model, let us suppose that
Y =0} | ASp—e€p_| p € Zp_1p converges to 7> € L°(R, Fr) in probability.
We suppose that €17 € Ar_1 . We need to show that v € Zp_y .

On the Fp_j-measurable set Ar_; := {liminf, |0} ;| < oo}, by [55,
Lemma 2.1.2], we may assume w.l.o.g. that 07, is convergent to some 65° ,
hence €r_17 18 also convergent and, finally, v*1x,_, € Zr_1 7.

Otherwise, on Q \ Ar_1, we use the normalized sequences,

~%—1 =071 /(|07_4| + 1), €~¥_1,T = E’?—LT/(’H%—J +1).

By [55, Lemma 2.1.2], we may assume that a.s. 0%_, — 05° € 17 = €T 7
and 0% [ ASy — €717 = 0 as.. Note that 05| = 1 as.. As 6 | ASy is
acceptable (e, € Ar_ir) then 05 [ASy € A by assumption. We

follow the recursive arguments on the dimension of [54]. Since |65 | = 1,
there exists a partition of Q \ Ap_; into d disjoint subsets G% |, € Fr_;
such that 077" # 0 on G%._;. Define on Gy, 07y = 0p_y — B7 105,

where 7., = 05" /657" Observe that 7" = gn_ ASp — €y, where the
position &, 7 = €y 1 — Bf_107_1ASt is acceptable since £03° | ASy are
acceptable. As 07", = 0 on GY_, we repeat the entire procedure on each
G',_, with the new expression " = 0}_; ASp — &_,  such that the number
of components of 07._; is reduced by one. We then conclude by recursion on
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the number of non-zero components since the conclusion is trivial if all the
coordinates vanish.

We now show the result in the multi-step models by induction. Fix some
se{t,...,T—1}. We show that ZI, C ZT s+1 implies the same property for
s instead of s + 1.

Since ATP holds, we get that 27, N LO(Ry, Fur1) = {0} hence ZT | C
2T | implies that 27| N L' (R, Fop1) = {0}. Using the Hahn-Banach sep-
aration theorem in L', we deduce QY <« P with dQ(SH) € L™ such that
Pst1 = Ep(dQ(qH) | Fsi1) = 1 as., (Sy)usst1is a martmgale under Q¢+ and
Eg(ass17|Fsy1) > 0 for all agiyr € Asyr 1 such that Eg(|astr r||Fst1) < 00

s.. Suppose that

= Z On_1AS, — €57 € Zg 1 converges to 7> € L°(R, Fr).
u=s+1

We suppose that €, € A, r. By Lemma 3.4.2, €/7 = €, + €{,, p, Where
€esi1 € A 541 and €T € Agsi17. As before, on the Fy-measurable set
A := {liminf, |07] < co}, we may assume w.l.o.g. that 67 converges to 62°.
Therefore, on Aq,

T
>0 AS, — €y =" = 07AS e — ™ — 0°AS, .

u=s+2

On the subset Ay, := {liminf, €0 11| = 0o} M A, € Fyy, we use the
normalization procedure as previously, i.e. we divide by |} |, up to a
subsequence, and, by the induction hypothesis, we obtain that

T
< N N
Z 6)u—lASu — €s41,T = €s5,541,

u=s+2

where €417 € Agp1r and € 441 € A 511 satisfies |€ 11| = 1 a.s.. Moreover,
by assumption, we may show that

T
EQ(erl) ( Z éz_lASu’}-s+1> =0.

u=s+2

Moreover, still by assumption, Ege+n(€s11,7|Fer1) > 0. We deduce that
€57S+1 = EQ<5+1)(€573+1|‘/—'.5+1) S 0. Therefore, gs,s+1 = —1 hence ps(g&ﬁ_l) =
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ps(—1) = 1, which is in contradiction with ps(€;541) < 0. Therefore, we
may suppose, on A, that € ., converges a.s. to some 65 s+1 € Ass11. By

the induction hypothesis, we then deduce that Zu or2 Ou_1AS, —€gy 1 also
converges to an element of Z1, | and we conclude that 41, € ZI.

On Q\ A,, we use the normalisation procedure as before, and deduce the
equality

T
> 02 A8, — &% =0as.
u=s+1
for some #>° € L°(R, F,), u € {s,...,T — 1} and &% € Asr. By Lemma
3.4.2, we write €77 = €7 +€35, o where €5 € As s and €5 p € Asar.
Moreover, |62°] =1 a.s.. We deduce that:

0°AS 41 + Z 0 | AS, — &1 = €2, as..

u=s+2

Taking the conditional expectation knowing F.; under @ ¢+ we deduce
that €35, < 0°AS, 1. It follows that py(0°AS, 1) < ps(é €2%11) < 0 hence
9§°ASS+1 € AS,T by the assumption. Using the one step arguments based on
the elimination of non-zero components of the sequence 7, we may replace
07 by 52 such that HNQ converges. We then repeat the same arguments on the
set A to conclude that v*1g\s, € Z1. O

Proof of Theorem 3.4.12.

Proof. Let us consider Wy p € Ry p N A, p Then, W, r is of the form:

T T
Wt,T = E 98—1ASS - E As—1,s,
s=t+1 s=t+1

where 0,1 € LY(R, Fs_1) and a5 15 € As_15, for all s = ¢+ 1,--- | T. It
follows that:

T
A1 — agpsr + Y (o1 AS, —ae1,.) = 0. (3.5.10)

s=t+2

Therefore, py = 0;AS;11 — a 41 is a (direct) price at time s =t + 1 for
the zero claim. Under AIP condition, we get that 0;AS;y1 > a;;+1 hence
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pe(0:AS; 1) < 0. As pi(0;ASiy1) > 0 by AIP, pi(6;AS;11) = 0 and, by
SRN, we get that p;(0;ASi11) = pi(—0;AS;1) = 0. We then deduce that
—pr € Ay N LY(R_, Fr) = {0} hence p; = 0 and 6,AS; 11 = az411 € AgT.
The equality (3.5.10) may be rewritten as:

T
Qt+1ASt+2 — Q41,642 -+ Z (65_1ASS — as—l,s) =0. (3511)

s=t+3

By induction, we finally deduce that 0,AS;1 = as 41 € Ag}sﬂ for all s > t.
By Remark 3.4.10, we have W, 1 € A} ..

Consider now et € Z, pNLY (R, Fr). We may write €. =, 7—a, 7 where
rer € Rer and ayr € Ay We get that ror = ayr+ef € Ryr N Ay = .A?,T
hence —r;r € Ay r. It follows that —et. € A, N LO(R_, Fr) = {0}. O

Proof of Theorem 3.4.13.

Proof. Suppose that 1) holds. By Theorem 3.4.12, we deduce that 3) holds.
Note that 2) and 3) are equivalent since the risk measure is time-consistent.
Suppose that 3) holds. Since —A; 7 C Z,; 7, it follows that AgT C ZrNAir.
Reciprocally, consider xy 7 = Wypr —arr € Zi10 N Ay, where Wyr € Ryr
and a;r € Ay, then Wyr € A;p hence Wyr € .A?,T by 2). It follows
that 2,7 € (—A:;r) and we conclude that Z,7 N A7 = A?’T. Moreover, by
Theorem 3.4.11, Z; 1 is closed in probability hence 4) holds. Note that 4)
and 5) are equivalent since the risk measure is time-consistent.

Assume that 4) holds. The existence of @ in 7) holds by standard ar-
guments based on the Hahn-Banach separation theorem. In particular, NA
holds under P’ such that P’ ~ P. We suppose w.l.o.g that S; is integrable
under P for every t. If z € L'(R, Fr) N (Ayr \ AV ), © ¢ Z,7 0 LY (R, Fr).
By the Hahn-Banach separation theorem, there exists p, € L*(R, Fr) and
¢ € R such that E(p,X) < ¢ < E(xp,), VX € Z,r. As Z, 1 is a cone, we get
that E(p,X) <0 for all X € Z, 7 and since —L°(R, Fr) C Z; 7, we deduce
that p, > 0 a.s.. With X = 0, we get that E(zp,) > 0 and, as R; 7 is a
vector space, E(p,X) = 0for all X € R;7. As P(p, > 0) > 0, we may renor-
malize and suppose that ||p;||c = 1. Let us consider the family G = (I';)zer
where I = L'(R, Fr) N (Air \ AYp) and I'y = {p, > 0}. For any I' € Fy
such that P(T') > 0, = 1p € I since A7 N L°(R_, Fr) = {0}. Therefore,
E(zp,) = E(1rp,) > 0 implies that P(I', N T") > 0. By Lemma 2.1.3 in
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[55], we deduce a countable family (z;)5°; of I such that Q = (J;2, I',,. We
define p = > 77, 27'p,,. We have p > 0 a.s and we renormalize p such that
p € L*(Ry, Fr) and Ep(p) = 1. We define Q ~ P such that dQ/dP = p.
We have E(pX) = 0 for all X € R;r. Therefore, with F,_1 € F,_1,
g, \AS, € Ryp if u > t+1, so Eg(lp, ,AS,) = 0. This implies that
Eq(AS,|Fu—1) =0, i.e (S,)I_, is a Q-martingale.

Moreover, by the construction of @ above, for all z € A, N LY (R, Fr),
we have Eg(z|F;) > 0. By truncature and homogeneity, we may extend this
property to every x such that E(|z||F;) < oo a.s. since z/(1 + E(|z||F))
is integrable. Finally, this also holds if Eg(z7|F;) < oo a.s.. At last, since
pt(X) + X € Ayr, we may conclude that p(X) > —Eq(X|F), for all X
such that Eo(X~|F) < oo as.. If € Ap \ Afyp, it suffices to consider
the probability measure @), = %(Q + Q) where Q is defined by its density
d@/dP = p,. Indeed, since Es(z) > 0 and Eg(r) > 0, this implies that
Eg,(z) > 0 hence P(Eq, (z|F:) # 0) > 0.

Assume that 7) holds. For some martingale measure () ~ P we have
pt(0:ASi11) > —Eg(0:ASi41|F:) = 0, hence AIP holds. If py(6;ASi41) = 0
on some non null set A;, we have p,(0;AS;1115,) = 0. This implies 0;AS;, 114,
is acceptable. Moreover, if ;AS; 11, ¢ A}p, Eq,(0;ASi11a,|F:) # 0 by
7), which yields contradiction . Therefore, p;(6;AS;11) = pi(—0;AS; 1) =0
on Ay, i.e. SRN holds, and we deduce that 1) holds. Note that 5) and 6) are
equivalent by Theorem 3.4.11. O]

Proof of Theorem 3.4.14.

Proof. By Theorems 3.4.11 and 3.4.13, we know that I'g r is closed in prob-
ability. For any hy € T'gp, there exists Z,&T:o 0,-1AS; € Ror such that
0o <ZtT:0 0,1 AS; — hT> < 0. Since, hy € Lg, we suppose w.l.o.g that St

and hr are integrable under P.
Set v, 1= Zi:o 0,_1AS; — hy for every t < T. For any Q € Q° # (), we
have:

T-1
|rYT| < Z@t_lASt + |9T—1||AST| + ’hT|7
t=0
hence:
T-1
Eq(lyrl|[Fr-1) < Zet—lASt + 071 Eq(|AST||Fr-1) + Eq(|hr||Fr-1) < 00 as..
t=0
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By Statement 7) of Theorem 3.4.13 and the martingale property, we deduce
that:

pr-1(yr) 2 —Eq(yr-1|Fr—1). (3.5.12)
At time T — 2, by time-consistency of the risk measure and (3.5.12), we get
that
pr—2(vr) = pr—2(=pr-1(11)) = pr-2(Eq(yr—1|Fr-1)).
Moreover, Eq(|Eq(yr-1[Fr-1)|[Fr-2) < Eq(|yr-1|[Fr-2) and

T-2

Y 0iaAS,

=0
+Eq(|hr||Fr-2) < 0o ass..

Eq(lyr-1l|Fr—2) < + [0r 2| Eq(|AST_1|[Fr-2)

We deduce by Statement 7) of Theorem 3.4.13 that

pr—2(EQ(vr—1lFr-1)) = —Eq(yr—1|Fr—2).

By the martingale property, we finally deduce that pr_s(yr) > —Eqg(yr—2| Fr—2).
Recursively, we finally obtain:

T
ozm<ZﬁHA&—m>zf%wwmzf%wﬁ&—moz%mﬂ
t=0

(3.5.13)
This 1rnphes FQT C GO,T'

Reciprocally, assume that there is hy € ©¢ 1 \I'g 7. Since hr € Lg(R, Fr),
hr is integrable under @ € Q°. Moreover, since I'g 7 is closed in probability,
Lor :=TornN Lb(R7 Fr) is closed in L'. By the Hahn-Banach separation
theorem, as hr 7 fo,T, we deduce the existence of Y € L>(R, Fr) such that:

sup Eo(YX) < Eq(Yhr).
XGI:O’T

Let H be the density @ w.r.t P,i.e. H=dQ/dP. We have:

sup E(HYX) < E(HY hy).
XEfo,T
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Since fO,T is a cone, we deduce that F(HY X) < 0forall X € fO,T- Moreover,
E(HYhr) >0, HY > 0 a.s. and E(HY) > 0. Therefore, we deduce that

A

H := HY/E(HY) defines the density of a probability measure Q e Q.

We define H® := ¢H + (1 — €)H. Since E(Hhy) > 0, we may choose
¢ € (0,1) small enough so that E(Hhr) > 0. Since H¢ defines the density
of a probability measure Q¢ € Q°, we should have EQJLT = F(H EiLT) <0,
as fALT € ©p . This yields a contradiction. We conclude that I'g 7 = O 7.

At last, Py is a super-hedging price for hy if and only if hp — Py € T'o 7.
By the first part, we deduce that Py > supgc . Fqg(hr). Suppose there exists
€ > 0 such that P — e > supgege Eq(hr). Then, (hy — Py +¢) € O 7. Since
@O,T = F07T, there exists WO,T € RO,T such that PO(WO,T —hr + PJ — E) < 0.
This implies that Py — e > po(Wor — hr). Since po(Wor — hr) is a super-
hedging price for hy, we also deduce that po(Wor — hy) > P; which yields
a contradiction. We conclude that Py = supgege Fq(hr). O
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Chapter 4

Dynamic programming
principle and computable
prices in financial market
models with transaction costs

Abstract

How to compute (super) hedging costs in rather general financial
market models with transaction costs in discrete-time 7 Despite the
huge literature on this topic, most of results are characterizations of
the super-hedging prices while it remains difficult to deduce numerical
procedure to estimate them. We establish here a dynamic program-
ming principle and we prove that it is possible to implement it under
some conditions on the conditional supports of the price and volume
processes for a large class of market models including convex costs
such as order books but also non convex costs, e.g. fixed cost models.

4.1 Introduction

The problem of characterizing the set of all possible prices hedging a Eu-
ropean claim has been extensively studied in the literature under classical
no-arbitrage conditions. In discrete-time and without transaction costs, a
dual characterization is deduced through dual elements, the equivalent mar-
tingale measures, whose existence characterizes the well known no-arbitrage
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condition NA, see the FTAP theorem of [20]. In continuous time, similar
characterizations are obtained under the NFLVR condition of Delbaen and
Schachermayer [21], [22] for instance. The Black and Scholes model [7] is the
canonical example of complete market in mathematical finance such that the
equivalent probability measure is unique. The advantage of this simple model
is that hedging prices are explicitly given. Unfortunately, for incomplete mar-
ket models, it is difficult to establish numerical procedures to estimate the
super-hedging prices from the dual characterization. This is why it is usual
to specify a particular martingale measure, see [79], [36] and [47].

In presence of transaction costs, the financial market is a priori incomplete
and computing the infimum super-hedging prices remains a challenge. In the
Kabanov model with transaction costs [55], the main result is a dual char-
acterization [55][Theorem 3.3] through the so-called consistent price systems
(CPS) that characterize various kinds of no-arbitrage conditions for these
models, see [55][Section 3.2]. Unfortunately, it is difficult to characterize the
consistent price systems and deduce a numerical estimation of the prices.
A first attempt (and the only one) is proposed in [68] for finite probability
space. More generally, vector optimization methods are proposed for risk
measures as in [16] still for finite probability spaces. Also, various asymp-
totic results are obtained for small transaction costs by Schachermayer [80],
[40] and others [57], [72], still for conic models.

For non conic models, in the presence of an order book for instance, more
generally with convex cost, or with fixed costs, few results are available in
the literature. Well known papers such as [48], [74], [73] , [65], [66] only
formulate characterizations of the super-hedging prices. The very question
we aim to address in this paper is how to numerically compute the infimum
super-hedging cost of a European claim.

To do so, we first provide a dynamic programming principle in a very
general setting in discrete time, see Theorem 4.3.1. Notice that we do not
need any no-arbitrage condition to formulate it. Secondly, we propose some
conditions under which it is possible to implement the dynamic programming
principle. Actually, we shall see that we only need to have an insight on the
conditional supports of the increments of the process describing the financial
market, mainly the price and volume process.

Our main results are formulated under some weak non-arbitrage condi-
tions such that the minimal super-hedging costs are non negative for non
negative payoffs, as in [17], [5]. These conditions avoid the unrealistic case of
infinitely negative prices. The main problem is how to compute an essential
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supremum and an essential infimum. We show that they may coincide with
pointwise supremum and infimum respectively. This is sufficient to compute
backwardly the hedging costs as solutions to pointwise (random) optimiza-
tion problem.

The paper is organized as follows. The financial market is defined by
a cost process, which is not necessarily convex, as described in Section 4.2.
Then, the dynamic programming principle is established in Section 4.3, see
Theorem 4.3.1. The last Section 4.4 is devoted to the implementation of the
dynamic programming principle. Precisely, we formulate results that ensure
the propagation of the lower semicontinuity to the minimal hedging cost at
any time, e.g. with respect to the spot price, see Theorem 4.4.5, Corollary
4.4.9, Theorem 4.4.15, Theorem 4.4.17 and Theorem 4.4.27. In Subsection
4.4.3, fixed costs models are considered. Theorem 4.4.21 also states the
propagation of the lower semicontinuity that allows to numerically compute
the minimal hedging cost backwardly. It is formulated under a no-arbitrage
condition on the enlarged market only composed of linear transaction costs
in the spirit of [65] but also [73] in the context of utility maximization.

4.2 Financial market model defined by a cost
process

We consider a stochastic basis in discrete-time (€2, (F;){_,, P) where the fil-
tration (F;)L_, is complete, i.e. JFy contains the negligible sets for P. By
convention, we also define F_; := Fy. If A is a random subset of R%, d > 1,
we denote by L°(A, R%) the family of (equivalence classes of) all random vari-
ables X (defined up to a negligible set) such that X (w) € A(w), P(w) a.s. It
is well known that, if A(w) # 0 P(w) a.s. and if A is graph-measurable, see
[70], then L°(A,R%) # (. When using this property, we refer it by saying
by measurable selection arguments, as it is usual to do when claiming the
existence of X € L°(R,F) such that X € A a.s..

We also adopt the following notations. We denote by intA the interior
of any A C R? and clA is its closure. The positive dual of A is defined as
A*:={r e R%: ax >0, Va € A} where az designates the Euclidean scalar
product of RY. At last, if r > 0, we denote by B(0,7) C R? the closed ball
of all z € R? such that the norm satisfies |x| < 7.

We consider a financial market where transaction costs are charged when
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the agents buy or sell risky assets. The typical case is a model defined by a
bond whose discounted price is S! = 1 and d — 1 risky assets that may be
traded at some bid and ask discounted prices S® and S®, respectively, when
selling or buying. We refer the readers to the huge literature on models with
transactions costs, in particular see [55].

Our general model is defined by a set-valued process (G;)L, adapted to
the filtration (F;)7_,. Precisely, we suppose that for all ¢ < T, Gy is Fi-
measurable in the sense of the graph Graph(G;) = {(w,z) : = € Gi(w)}
that belongs to F; ® B(R?), where B(R?) is the Borel o-algebra on R? and
d > 1 is the number of assets.

We suppose that Gy(w) is closed for every w €  and Gy(w) + R% C
Gi(w), for all t < T. The cost value process C = (C;)L, associated to G is
defined as:

Ci(z) =inf{fa € R: ae;—2€ G} =minfa € R: ae;—2€ G}, z¢€R%

We suppose that the right hand side in the definition above is non empty a.s.
and —e; does not belong to Gy a.s. where e; = (1,0,---,0) € R% Moreover,
by assumption, C;(2)e; — 2z € Gy a.s. for all z € R%. Note that Cy(2) is the
minimal amount of cash one needs to get the financial position z € R? at
time ¢. In particular, we suppose that C;(0) = 0.

Similarly, we may define the liquidation value process L. = (L;)I_, associ-
ated to G as:

Li(z) :=sup{a € R:z—ae; € G}, zcR.

We observe that L;(z) = —C;(—2) and G; = {z € R?: Li(2) > 0} so that
our model is equivalently defined by L or C. Note that Gy is closed if and only
if L;(z) is upper semicontinuous (u.s.c.) in z, see [65], or equivalently C;(z)
is lower semicontinuous (l.s.c.) in z. Naturally, Ci(z) = C(S;, 2) depends
on the available quantities and prices for the risky assets, described by an
exogenous vector-valued F;-measurable random variable S; of R, m > d,
and on the quantities 2 € R? to be traded. Here, we suppose that m > d
as an asset may be described by several prices and quantities offered by the
market, e.g. bid and ask prices, or several pair of bid and ask prices of an

order book and the associated quantities offered by the market.

In the following, we suppose the following assumptions on the cost process
C. For any t < T, the cost function C; is a lower-semi continuous Borel
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function defined on R™ x R? such that

Ci(s,0) =0, Vs € RT,
Ci(s,z+ Xep) = Cy(s,z) + A\, A€ R, x € RY, s € R (cashinvariance),

Cr(s,xe) > Cp(s, 1), V1,29 s.b. 29 — 21 € Ri (Cris increasingw.r.t.Ri),
Ce(s, )| < (s, ),

where h; is a deterministic continuous function. Note that Cr is increasing
w.I.t. Ri is equivalent to G + Ri C Gr. Moreover, if § is an increasing
bijection from [0, +0o0] to [0, +oo] such that 6(0) = 0 and 6(c0) = oo, we say
that C, is positively super d-homogeneous if the following property holds:

Ci(s,Ax) > 6(N)Cy(s,2),VA > 1, s € RT, z € R™.

A classical case is when 0(x) = z and the positive homogeneous property
holds, e.g. for models with proportional transaction costs, as the solvency
set process G is a positive cone, see [55]. More generally, if C,(s, x) is convex
in x and Cy(s,0) = 0, it is clear that C, is positively super d-homogeneous
with §(z) = . Actually, in our definition, the domain of validity A > 1 may
be replaced by A > r where r > 0 is arbitrarily chosen. In that case, all the
results we formulate in this paper are still valid. We now present a typical
model that satisfies our assumptions:

Example 4.2.1 (Order book). Suppose that the financial market is defined
by an order book. In that case, we define .S;, at any time ¢, as

St = ((Sf’i’j’ Sgi’j% (Ntb’i’jy Nta’i’j))i:L-u =1, ks
where £ is the order book’s depth and, for each ¢+ = 1,--- ,d, Sf’i’j,Sf’i’j
are the bid and ask prices for asset ¢ in the j-th line of the order book and
(NP N& ) e (0,00)? are the available quantities for these bid and ask
prices. We suppose that Ntb ok — N K — 450 so that the market is somehow
liquid. By definition of the order book, we have S > " » ... 5 ghik
and S&0t < S0 <. < §%F We then define the cost function as

d
Cilx) =2'+) Ci(a'), x=(' - 2% eR"
=2
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With the convention Y7_, = 0if j = 0, we consider the cumulated quantities
Gl =3 NPT j =0, k, the same for Q7. We have:
. j . . L . o N

Cily) = S NPITSHT (- QUASIIT QI <y < Qo

r=1
J
i byi,r qbyi,r byi,j\ abyisj . byi,j byi,j
Cily) = _ZNt Sy (y + Q™) S, ]+17 if — @y 7 <y < =M.
r=1

Note that the first expression of Ci(z) above corresponds to the case where
we buy y > 0 units of asset 4. The second expression is Ci(y) = —Li(—y)
when y < 0 so that —Ci(y) is the liquidation value of the position —y, i.e.
by selling the quantity —y > 0 at the bid prices. We observe that Ci(y) is a
convex function in y satisfying the cash invariance, such that C{(0) = 0 and,
at last, we show that C is positively super homogeneous as defined above.

To do so, we first consider y > 0 and we show that Ci(\y) > ACi(y) for
A > 1 by induction on the interval Q"7 , Q¥"/*] that contains . For j = 1,
Ci(y) = 5;"'y and Ci(Ay) = CHQI™™) + (hy — Q") S7 " where j is
such that Ay €]Q¥"*, Q¥ As S»"! is the smallest ask price, we get that
CHQI™™) = Q™ Sp! and (y — QY™ Sy T > (hy — Q)57 We
deduce that C¢(Ay) > AyS»"" hence Ci(Ay) > ACi(y). More generally, if y €
QP QP Ay > AQ1™ hence () > C(AQY™) + (Ay — AQ™) 87
where j is such that Q7" < AQP"™’ < Q¥/*'. Indeed, the extra quantity
Ay — /\Q?’i’j is bought at a price larger than or equal to the maximal ask price
S&%7 when buying the quantity AQ%™. As AQ!"™ > Q"7 we deduce that
7 > j + 1. Using the induction hypothesis, we have C:(AQ{"™) > XCi Q")
and we deduce that

CiA\y) > ACHQP™) + (Ny — AQP™)SP T = XCi(y).

By the same reasoning, Li(\y) < ALi(y) if y > 0 with Li(y) = —Ci(~y).
Therefore, we also get that Ci(A\y) > ACi(y) for A > 1 and y < 0.

We finally conclude that the cost process C satisfies the conditions we
impose above. In particular, notice that Cy(s, z) is continuous in (s, z). A

A portfolio process is by definition a stochastic process (V;) | where
V_1 € Rey is the initial endowment expressed in cash that we may convert
immediately into V;, € R? at time ¢t = 0. By definition, we suppose that

AV,=V,— Vi, € -Gy, as., t=0,-- T
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This means that any position V;_; = V;+(—AV,) may be changed into the
new position V;, letting aside the residual part (—AV;) that can be liquidated
without any debt, i.e. L;(—AV;) > 0.

4.3 Dynamic programming principle for pric-
ing

Let £ € L°(RY, Fr) be a contingent claim. Our goal is to characterize the
set of all portfolio processes (V;)I__, such that V7 = &, as defined in the last
section. We are mainly interested by the infimum cost one needs to hedge &,
i.e. the infimum value of the initial capitals V_1e; € R among the portfolios
(V;)L | replicating &.

In the following, we use the notation z = (2!, 22,...,2¢) € R? and we
denote 2 = (2%, ..., 2%). We shall heavily use the notion of F;-measurable
conditional essential supremum (resp. infimum) of a family of random vari-
ables, i.e. the smallest (resp. largest) F;-measurable random variable that
dominates (resp. is dominated by) the family with respect to the natural or-
der between [—o0, oo]-valued random variables, i.e. X <Y if P(X <Y) =1,
see [b5, Section 5.3.1].

4.3.1 The one step hedging problem

Recall that Vp_; >@, Vr by definition of a portfolio process. Then, the
hedging problem V; = £ ! is equivalent at time T'— 1 to:

Er(Vii—€) >0 <= Vi, > —Lp((0,V2)),
= Vi Zesssupg, (68— Lr((0,V2) - €9))
= Vi Zesssupg, (€4 Cr((0,6® - V),
= Vi, > F’f‘—l(VIEZ—)l)7

where

'The problem Vi >, € is equivalent to our one if Gr + Gr € Gp. In general,
any Vr such that Vpr >q, £ may be changed into £ through an additional cost. So, the
formulation Vp = £ is chosen as we are interested in minimal costs.
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Fi y(y) = esssupg, , (& +Cr((0,6P —y))).  (431)

By virtue of Proposition 4.5.7 in Appendix, we may suppose that Ffﬂfl (w,y)
is jointly Fr_; ® B(R%!)-measurable, l.s.c. as a function of y and convex
if Cp(s,y) is convex in y. As Fr_; is supposed to be complete, we conclude
that F§_1 is an Fr_; normal integrand, see Definition 4.5.1 and [76].

4.3.2 The multi-step hedging problem

We denote by P;(§) the set of all portfolio processes starting at time t < T
that replicates ¢ at the terminal date T

={(Vo)L,, —AV, € LG, F,), Vs > t + 1,Vp = £}
The set of replicating prices of ¢ at time ¢ is
Pu&) = {Vi = (VL V) ()L, € R}
The infimum replicating cost is then defined as:
ci(&) :=essinfx {Cy(V}), V, € Py(§)}.

By the previous section, we know that Vy_y € Pr_1(€) if and only if

Vi_y > esssupg, | (f + Cp(0,€® :,(,2)1)> a.s.

Similarly, Vi_s € Ry_5(€) if and only if there exists V{2, € LO(RI!, Fr_,)
such that

Vi, > ess SUpz,. , (ess SUpz, . <€ + Cr(0,63 — ( )> + Cr_1(0, VT L VT(Q_)Q)) .
By the tower property satisfied by the conditional essential supremum, we
deduce that Vy_y € Ry_o(€) if and only if there is V,\”, € LO(R4, Fr_y)
such that

Vi o > ess SUpz,. (5 + Cr(0, ¢@ T 1) + Cr_1(0, VT(Q)1 VT(%)2)> )
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Recursively, we get that V; € P,(€) if and only if, for some Vi € LO(R41, F,),
s=t+1,---,T—1,and VT(,Q) = £ we have

T
V! > ess supg, (fl + Z C.(0,V® — Vﬁ%)) :

s=t+1

In the following, for u < T — 1, &1 € L°(RY, F,_1), and &€ € L°(RY, Fr),
we introduce the sets

I (€01, €) = (€2} x ML RS F) x {9}
of all families (Vi?)'*! | such that V.7, = ¢?. vi® e LOR !, F,) for all

s=u—1
s=u,---,T —1 and VT(2) = @ We set TI7(¢) := T12(0,¢) = 1L (&,_1,€)
when €%, = 0. When u = T, we set ITE(&p_1, &) := {€2,} x {€®}. There-

fore, the infimum replicating cost at time 0 is given by

T
co(§) = ess infx, ess supx, (fl + Z C,(0,V2 — Vf_l))

VZEIF (€) s=0

For 0 <t < T and V,_; € L°(R%, F,), we define ~*(V,_,) as:

T
VE(Viy) :=  essinfr, esssupg, (51 +3°C(0,V — vﬁ})).
V] (Vi1,€) s=t
Note that ’yf (Vi—1) is the infimum cost to replicate the payoff ¢ when
starting from the initial risky position (0,V,”]) at time . Observe that
Vf(‘/}_l) does not depend on the first component V' ;. Moreover,

W (Vr_y) = €1+ Cp(0,6@ — V2.

As Gp + Ri C Gr, we also observe that 7§(VT,1) > (Vr_1). At last,
observe that ¢y(§) = 73(0). Therefore, the main goal of our paper is to study
the random functions (’yf )i=01,.. 7 and to propose conditions under which it
is possible to compute them backwardly so that we may estimate ¢o(§). The
main contribution of this section is the following:

Theorem 4.3.1 (Dynamic Programming Principle). For any 0 <t <T —1
and Vi_y € L°(R?, F,_1), we have

(Vi) = essintz, esssupg, (C(0, VP = V) +48,()) . (43.2)
V€LY (R4, Fy)
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Proof. We denote the right hand side of (4.3.2) by 45 (Vi_1). We first verify
(4.3.2) for t = T — 1. Recall that 75 (Vy_y) = €' + Cp(0,6? — VT(Q_)l) if
Vr_1 belongs to LY(RY, Fr_y). It is clear that (4.3.2) holds for t = T — 1
by definition of 75_,(Vy_1). By induction, let us show that (4.3.2) holds at
time ¢ if this holds at time ¢ + 1. Let us define

filVier, V) = ess supg, (G0, VP = Vi) 495, (V) 6 T = 1.
We observe that the collection of random variables
Iy ={fi(Vie1, Vi) : Vs € LO(Rdy}—t)}

is directed downward, i.e. if f/ = ft(V;,l,th) € Iy, 5 = 1,2, then there
exists f; € ['y such that f; < f!' A f2. Indeed, to see it, it suffices to consider
fr = fiVie1, Vi) where V, = Vi g2y + Vfl{ftl>ftz}. Therefore, there exists
a sequence (V/")n>1 € L°(R?, F,) such that 4°(V,_;) = inf, fi(Viea, Vi), see
[55, Section 5.3.1]. We deduce for any € > 0, the existence of V; € L°(R¢, F;)
such that 3°(Vi_y) 4 € > ft(V;(_Q%, \~/t(2)). Similarly, by forward iteration, using
the induction hypothesis 7¢(V,_1) = 75(V,_1), r > t + 1, we obtain the
existence of V, € LY(R%, F,) such that v(V,_1) + € > f,(V, Vi®), for all
r=t+1,---,T—1 WithV,_.; =V,_; and Vp = &, we deduce that

T
FE (Vi) + €T > ess supy, (gl +3C(0,V® ~ Vfﬁ)) > 45 (V).

s=t

As € goes to 0, we conclude that 45(V,_y) > 75(V,_1) . The reverse
inequality is easily obtained by induction and using the assumption that 75
and fyf coincide if » > t with the tower property. The conclusion follows. [

4.4 Computational feasibility of the dynamic
programming principle

The dynamic programming principle (4.3.2) allows to get 7*(V;_;) from the

cost function C; and from vf +1- In this section, our first main contribution is

to formulate some results allowing to compute w-wise the essential supremum
and the essential infimum of (4.3.2).
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As the term C,(0, V¥ — V%)) in (4.3.2) is F,-measurable, it is sufficient
to consider the conditional supremum

ef(vt) ‘= €8S SUpg, ’Yt§+1(Vt)

to compute the essential supremum of (4.3.2). In the following, we shall use
the following notations:

DE(Viy, Vi) = Co((0, VP — V) + 65(Va), (4.4.3)
DE(Sy, Vi1, Vi) = Ci(Ss, (0, V2 = Vi21)) + 65(Si, V). (4.4.4)

The second notation is used when we stress the dependence on 5.

4.4.1 Computational feasibility for convex costs

The following first result ensures the propagation of the lower semicontinuity
and convexity of the random function ”yf 41 to ~¢ as we shall see in Theorem

4.4.5. This is a crucial property to compute pointwise the essential infimum
in (4.3.2).

Proposition 4.4.1. Suppose that there exists a random F;ii-measurable
lower semi-continuous function f_yfﬂ defined on R such that fny(Vt) =
ﬁfﬂ(V}) for all V; € L°(R%, F;). Then, there exists a random F;-measurable
lower semi-continuous function 05 defined on RE such that 65(V;) = 65(V;)
for all V; € L°(R®, F,). Moreover, the random function y G_f(y) S a.s.
convex if y ﬁfﬂ(y) is a.s. conver.

Proof. We consider the random function
f(2) = 2" +350((0,2%) = 21 + £((0,2)), zeR”

We have 7%, (Vi) = £((0, Vt@))) so it suffices to apply Proposition 4.5.7. [

In order to numerically compute the minimal costs, we need to impose
the finiteness of 4*(Vi_1), i.e. 7f(Vi_y) > —oo, at any time ¢, and for all
Vi1 € L°%(R%, F;_1). This is why we introduce the following condition:

Definition 4.4.2. We say that the financial market satisfies the Absence
of Early Profit condition (AEP) if, at any time t < T, and for all V; €
LR, F), Y(V;) > —o0 a.s..
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Remark 4.4.3.

1.) Let us comment the condition AEP. Suppose that AEP does not hold, i.e.
there is V; € L°(R?, F;) such that A; = {1?(V;) = —oo} satisfies P(A;) > 0.
Any arbitrarily chosen amount of cash —n < 0 allows to hedge the zero
payoff at time ¢ on A; when starting from the initial position (0,V;?) by
definition of 7?(V;) = —oo. Then, at time ¢, we may obtain an arbitrarily
large profit on A; as follows: We write 0 = ((0,V,?) — ney) 1, + a}_; where
al’ ; = (ne; — (0,V;?)) 14,. The position (0, V,?) — ne; allows to get the zero
claim at time 7. Moreover, L(a? ;) = nly, + E:((0,V;?))1,, tends to o0 as
n — oo on Ay, i.e. it is possible to make an early profit at time ¢, as large as
possible.

2.) If € € LO(RY, Fr), then 75 (Vi_y) > ~9(V;i 1) > —oo under AEP.

3.) Under Assumptions 4 and 5 below, condition AEP holds by Lemma
4.5.22. A

Assumption 1. The payoff £ is hedgeable, i.e. there exists a portfolio process
(VOT_, such that &€ = V3.
Lemma 4.4.4. Under Assumption 1, v¢(Vi_1) < oo for allV,_, € L°(R?, F,).

Proof. We observe that the amount of capital oy = Cy(V;* — (0, V;(E%)) allows
one to get the position V}* — (0, Vt(_zb Therefore, starting from the initial
position (0, V;(_Q%), the capital Cy(V,* — (0, V;(_Qi)) is enough to get V¢ and then
¢ at time T since Vi = ¢. We then deduce that

Y (Vie1) < ay < (S, VE = (0,V,)) < o0.
]

The following theorem states that convexity and lower semicontinuity
propagates backwardly from fyf 1 to fyf.

Theorem 4.4.5. Suppose that Assumption 1 and condition AEP hold. Sup-
pose that there exists a random JFii1-normal conver integrand "ny defined
on R? such that Vfﬂ(‘/;) = ﬁfH(Vt) for all V; € L°(R%, F;). Suppose that
the cost function Cy(s, z) is convex in z. Then, there exists a random JF;-
normal convex integrand 3¢ defined on R® such that v*(Vi_1) = 7 (Vi_1) for
all Vi1 € L°(R4, F;) and we have:

(i) = inf (Cu0,y® = o) + 05 (w))

yeR4
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where éf 1s given by Proposition 4.4.1. In particular, ’7f(w, ) € R a.s. thus
continuous a.s.

Proof. By Proposition 4.4.1, we deduce that 65(V;) = 65(V;) a.s. for every
V, € LY(RY F;) where éf is an Fy-normal convex integrand. Therefore,
Di(vi_1,v;) = Ct(O,ngZ) — vﬁ)l) + éf(vt) is an Fi-normal integrand, convex
in (v,_1,v;). By Lemma 4.5.5, we have 35 (Vi) = +*(Vi_1) a.s. for any
Viq € LO(Rd,]:t).

We claim that the function defined by 3% (v,_;) is F; ® B(R%)-measurable.
Indeed, since D, is convex and admits finite values in R, we necessarily have
inf,,cra Di(vi_1, 1) = inf,, cqu Dy(v;_1,v;), the measurability then follows.
Next, we show that 55(w,-) € R a.s. First, 4 (w,-) > —oo a.s.. Otherwise,
by a measurable selection argument, we may find an F;-measurable selection
V,_1 such that —oo = 35(V,_1) = ~f(V;_1) on a non null set. This is in
contradiction with the AEP condition. Similarly, by Lemma 4.4.4, we deduce
that 7°(w,-) < 0o a.s.. Therefore, the random function 7;(w,-) only takes
finite values a.s.

We finally conclude that 75 (v;_;) is a real-valued random convex function.
In particular, ﬁf is continuous. O

Remark 4.4.6. Suppose that the cost functions C,(s, z), t < T, are convex
in z. Under Assumption 1, as 75 (Vr_y) = €' 4+ Cp(0,6® — VT(Q_)I)) is Ls.c.
and convex in Vr_;, we deduce that Theorem 4.4.5 applies backwardly step
by step. In particular, it is possible to compute 'yf (v,—1) at any time ¢ as a
w-wise infimum. A

In the following, we consider conditions under which it is possible to com-
pute w-wise the essential supremum Gf . The main ingredient is the knowl-
edge of the conditional support suppz, Si41 of S;11 knowing F;. Recall that
suppz,Si+1 is the smallest Fi-measurable random closed set that contains
Sii1(w) a.s., see [31].

Assumption 2. For eacht < T — 1, there exists a family of Borel functions
(af")m>1 defined on R™ such that suppz, Si11 admits the Castaing represen-
tation (" (S¢))m>1, i.e. Suppr,Sip1 = cl(a)*(St))m>1-

Proposition 4.4.7. Suppose that there exists a lower semi-continuous func-
tion 45, defined on R™ x R such that 7%, (Vi) = A5,1(Sis1, Vi) for all
V, € LR, F,). Then, 65(V;) = SUD € supp, 511 '?fﬂ(z, Vi). Moreover, under
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Assumption 2, there exists a function 0% (s,v) defined on (s,v) € R™ x R,
which, is Ls.c. in v, such that 05(V;) = 65(S,,V;) for all V, € LO(R%, F,) and
we have:

0; (s,v) == sup s, (m(s),v)  (s,v) € R™ x R~

At last, 65(s,v) is l.s.c. in (s,v) if the functions (Ctm)m>1 are continuous
and, if :yfﬂ(s,v) is convez in v, then 65(s,v) is convez in v.

Proof. The proof is immediate by Proposition 4.5.6 and Lemma 4.5.8. [

Assumption 3. For eacht < T — 1, there exists a family of Borel functions
(@) m>1 such that Syy1 € {af*(Sy) : m > 1} a.s. and P(Sy1 = o (Sy)|F) >
0 a.s. forallm>1.

Proposition 4.4.8. Suppose that there exists a Borel function &fﬂ defined
on R™ x R such that v¢, (Vi) = A5,1(Sis1, Vi) for all V; € LO(RY,F).
Then, under Assumption 3, there exists a Borel function éf(s,v) defined on
(s,v) € R™ x R? such that 65(V;) = 05(S,, V) for all V; € LO(R?, F,) and we
have:

0; (s,v) == sup s, 1 (m(s),v)  (s,v) € R™ x R

Proof. The proof is immediate by Lemma 4.5.19. Note that we do not sup-
pose that C; is convex to obtain this result. O

Corollary 4.4.9. Assume that the assumptions of Proposition 4.4.7 or Propo-
sition 4.4.8 hold and Condition AEP holds. Suppose that ﬁfﬂ(s, v) 18 convex

inv. Then, v£(Viey) = 35 (Sy, Vi_y) where 35 (s, v) is an Fy-normal integrand,
convez in v. Moreover,

35600 = i, (Culs, 0.5 = o)+ s an(9)0) ).
Proof. Under our assumptions, 6(V;) = 65(S,,V;) for all V; € L°(R?, F,)
where 05 (s,v) = sup,, 35,1 (am(s),v) by Proposition 4.4.7 or Proposition
4.4.8. As a supremum, 6:(s,v) is convex in v if ifﬂ(s,v) is. As Ci(s,v)
is also convex in y, we deduce that D(y,v) = Cy(s, (0,52 —v®@)) +65(s, 1)
is convex in (y,v). Now, by arguing similarly to the proof of Theorem 4.4.5,
under AEP, 3%(v,_1) is a real- valued convex function a.s. O
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4.4.2 Computational feasibility under strong AIP no-
arbitrage condition

The results of Section 4.4.1 are not a priori sufficient to compute backwardly
Gf_l as we need ’yf(s,v) be l.s.c. in s, see Proposition 4.4.7. This is why, we
introduce the following conditions.

Assumption 4. The payoff function & is of the form & = g(Sr), where
g € Ri 1s continuous. Moreover, £ is hedgeable, i.e. there exists a portfolio
process (VE)T_, such that &€ = V.

Assumption 5. The conditional support is such that suppz,Sii1 = ¢¢(St)
where ¢, is a set-valued lower hemicontinuous function, see Definition 4.5.11,
with compact values such that ¢,(S;) € B(0, R,(S,)) where R, is a continuous
function on R™.

Note that under Assumption 2, ¢;(S;) = cl{a,,(S:) : m > 1} defines a
set-valued lower hemicontinuous function if the functions (ay,)m>1 are con-
tinuous, see Lemma 4.5.15.

Definition 4.4.10. We say that the condition AIP holds at time t if the
minimal cost ¢;(0) = 72(0) of the European zero claim & = 0 is 0 at time
t <T. We say that AIP holds if AIP holds at any time.

The condition AIP has been introduced for the first time in the paper
[5]. This is a weak no-arbitrage condition which is clearly satisfied in the real
financial markets i.e. the price of a non negative payoff is non negative.

Lemma 4.4.11. Suppose that the cost functions are either sub-additive or
super-additive. Then, AIP implies AEP.

Proof. We prove it in the case where the cost function is sub-additive, the
supper-additive case is similar. Suppose that AIP holds and Cy(s,v) is sub-
additive in v. For any V;,V; € L°(R¢, F;), we have:
D?(Sta ‘/ta ‘z) = Ct<St7 ‘Z‘/ - ‘/t) + eg(sta ‘Zﬁ)?
Z Ct(StJ ‘715) + eg(sta ‘h/(;f) - Ct(St7 ‘/15)7
= D}(5:,0,V;) = Cy(S, V2)-

Under AIP, D?(S;,0, \N/t) > 0 hence DY(S,, Vi, f/t) > —Cy(St, Vi). We deduce
that 7 (V) = ess infy, DY(S;, Vi, Vi) > —Cy(S;, Vi) > —oc. O
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Definition 4.4.12. We say that the condition SAIP (Strong AIP condition)
holds at time t if AIP holds at time t and, for any Z; € L°(R%, F;), we have
DY(S;,0,Z;) = 0 if and only if Zt@) = 0 a.s.. We say that SAIP holds if
SAIP holds at any time.

Recall that D?(S;,0, Z;) is given by (4.4.4) and it is the minimal cost
expressed in cash that is needed at time ¢ to hedge the zero payoff when we
start from the initial strategy V; = (62(Z;), Zt(Q))7 initial value of a portfolio
process (Vi )i<u<r such that Vp = 0. Therefore, the condition SAIP states
that the minimal cost of the zero payoff is 0 at time ¢ and this minimal cost
is only attained by the zero strategy V; = 0. This is intuitively clear as soon
as any non null transaction implies positive costs.

The following proposition shows that the classical Robust No Arbitrage
NA" ([55, Chapter 3 |) used to characterize the super hedging prices in the
Kabanov model with proportional transaction costs is stronger than the SATP
condition.

Proposition 4.4.13. Suppose that int Gi # 0 for any t < T. Then, NA*
implies SAIP.

Proof. Recall that NA" is equivalent to the existence of a martingale (Kj)s<r
such that K, € int G¥, [55, Theorem 3.2.1]. Consider Zy_; € L°(R?, Fr_1).
As Dp_1(0, Zy—1) = Dp_1(0, (0, Zﬁl)), we may suppose that Zr_; = (0, Zﬁll).
By the definition of C,,, there exists g, € L°(Gy,F.), u = T — 1,T, such
that:

Cr_1((0, 27(“221))61 —gr—1 = (0, 27(“221)
Cr((0, —Zéz_)l))el —gr = (0, _Zé221)'

Adding these equalities, we get that Dr_1(0, Z7_1)e! = gr_; + gr for some
gr € L°(Gr, Fr), see (4.4.3). So, we get that KpDp_1(0, Zp_1)et > Krgr_y
and, taking the generalized conditional expectation w.r.t Fr_;, we deduce
that KT—IDT—1(07 ZT_1)61 Z KT—lgT—l 2 0. Since KT_161 = Kjl«_l > O, AIP
holds at time T"— 1. Moreover, gr_; # 0 a.s. as soon as Z?ll # (. Since
Kp_1 € int G}_,, we finally deduce that

K D5 (S;,0, Zr_1)et > Ky 1g7—1 >0

as soon as Z:(FQzl # (0, which means that SAIP holds at time 7" — 1.
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Suppose that we have already shown SAIP for s > ¢t 4+ 1. For a given
Zy € LO(RY, F,), we consider g; € L°(Gy, F;) such that

C(0,2))e' — g = (0, 27). (4.4.5)

Since AIP holds at time ¢+ 1, by Lemma 4.4.11, we have y;,1(Z;) > —oo un-
der AEP. Since the family {D?, | (Z;, Z111), Zi11 € L°(RY, Fiyq)} is directed
downward, we deduce the existence of a sequence 7}, € L(R?, Fi41), n € N
such that

7?+1(Zt) = €8S infzt+1eL0(Rd,ft+1) D?+1(Zta Zi1) = i%f D?H(Zt, Ztn+1) > —00 a.s.

We deduce that, for any € > 0, there exists Zf,; € L°(R? Fy41) such
that 7 1(Z) + € > DY, 1(Z;, Z,). Proceeding forward with the induction
hypothesis, we construct a sequence g¢ € L°(Gy, Fs),s >t + 1, such that

T
(D0, Z) +€T)e' =g+ > gt

s=t+1

Therefore, multiplying by K7 € G’ and then taking the (generalized) con-
ditional expectation knowing Fr_1, we get that

T-1
Kr(D{(0,2,) + €T)e' > Ky (gt + Z gé) )

s=t+1

T—1
KT—l(D?(Q Zy) + ET)€1 > Kr (gt + Z 9;) :

s=t+1

By successive iterations, we finally get that K;(D?(0, Z;) + €T)e! > K,g;.
Since g; does not depend on e, see its definition in (4.4.5), we deduce as
e — 0, that K;D%(0, Z;)e! > K;g; > 0 and K;D?(0, Z;)e! > 0 if g; # 0 when
Zt(z) # (0. Therefore, SAIP holds at time ¢ and we may conclude. O]

The following result is the last main contribution of this section: It states
that the minimal cost function vf is a l.s.c. function of S; and V,_4, i.e. 'yf
inherits from the lower-semicontinuity of ’yf 1, under Assumption 4 and 5, if
SAIP holds as we shall see. We introduce the notation

SH0,1) ={z € R?: 2! =0and|z| = 1}.

The following Lemma will be used in our next Theorem.
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Lemma 4.4.14. We denote clf the l.s.c. regularization of the function f :
R* — R (i.e. the greatest l.s.c. function dominated by f). Suppose that f
is I.s.c. on some open set O C R, then f(z) = clf(Z) for any T € O.

Proof. We define g(x) := clf(z)loc(x) + f(x)lo(x). As clf < f and O is
open, we deduce that g is l.s.c. and ¢ < f. By definition of clf, we have
g < clf. This implies that f(z) < clf(z) < f(z) for any z € O. The
conclusion follows. O]

Theorem 4.4.15. Suppose that C; is positively super d-homogeneous. Sup-
pose that there exists a Fiiq1-normal integrand ifﬂ defined on 2 x R™ x RY
such that ’ny(Vg) = ﬁerl(SHl, Vi) for all V, € LY(R%, F,). Assume that As-
sumption 4 and Assumption 5 hold. Suppose that the cost function Cy(s, z) is
Fi-normal integrand and C; is either super-additive or sub-additive. Then,
if infcga-1(0.1) DY (S, 0,2) > 0, VE(Vii1) = 35(Sy, Vie1) where 35(s,v_1) is
Fi-normal integrand.

Proof. Since 45,,(s,v) is Ls.c. in s, we deduce that 65(V;) = 65(S;, V;) by
Proposition 4.5.6, for all V; € L°(R%, ;), where by Assumption 5

Blss) = sup Hon(er0)
2€¢(St)

As ¢, is lower hemicontinuous by assumption, we deduce by [1, Lemma 17.29]
that 6(s,v) is Ls.c. in (s,v). Therefore, the function

DE(s,0-1,01) = Cu(s, (0,0 — o)) + 05 (s, )

is l.s.c. in (s,v;_1,v¢) by assumption on C;. By Lemma 4.5.5, we get that
e (Vi_1) = A5(Sy, Vie1) where 35 (s, v_1) = inf,,cga D5 (s, v,_1,v¢). The next
step is to show that 45 (s, v,_1) = inf,, 5, s 1) Dt (s, v,_1,v;) where ¢, is a set-
valued upper hemicontinuous function, see Definition 4.5.10, with compact
values. We then conclude that 3% (s, v,_1) is Ls.c. in (s,v,_1) by Proposition
4.5.17.

To obtain ¢, first observe that vf(Vi_y) < Df(s,v;_1,0) hence we get
that ’Yts(‘/t—l) = ’?tg(sb ‘/;5—1) where ’5/755(87 Ut—l) = infvtEKt(S,vt—l) Df(‘S? Ut—1, Ut)
and

Ki(s,v-1) = {vt e RY: Df(s,vt,l,vt) < Df(s,vt,l,O)}.
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Since Cr is increasing w.r.t. R%, we deduce that Dt(s,v_1,v;) > DY(s,v_1,04).
Moreover,

DY (s,00-1,00) = Culs, (0, 0" —v%h))+6) (s,01) > Cu(s, (0, —0,21))+D}(s,0,v1)
in the case where C; is super-additive and, if C; is sub-additive, we have
DY(s,vi-1,01) = Culs, (0,07 =0, 21))+6) (s, 01) = =Ci(s, (0,0%1))+D} (5,0, v,).

As C,; is dominated by a continuous function by hypothesis, we get that
DY(s,vs_1,v¢) > he(s,ve_1) + DY(s,0,v;) where h; is a continuous function.
Moreover, by Lemma 4.5.20, if |v;| > 1,

D) (s,0,v¢) > 8(|vs|)DY (5,0, v:/|ve]) > 0(|ve])  inf  DY(s,0,2). (4.4.6)

2€54-1(0,1)

By Lemma 4.5.21, | D% (s, ve_1,0)| < hé(s,v,_1) for some continuous func-
tion A5 > 0. Recall that inf, ¢ ga-1(0,1y) Df(St, 0, 2) > 0 a.s. by assumption. It
follows that K;(s,v;_1) C gEt(s, vi—1) := By(0,7,(s,v,-1) + 1) where

re(s,vp1) = 07 <%)

ir(s) = zesg{lf(o,l)D?(s’o’Z)’ Ai(s,vp-1) = |}~lt(5,Ut71)| + ilf(syvtfl)-

Since \; is continuous and i, is l.s.c. by Proposition 4.5.17, we deduce that
\¢/i; is w.s.c. on the open set O; := {(s,v,_1) € R™ x R* : i (s,v,1) >
0}. As 07! is continuous and increasing, we finally get that 7; is also
us.c. in (s,v,—1) € O;. By Lemma 4.5.12, we deduce that the func-
tion ¢, is upper hemicontinuous in (s,v,_1) € O,. Therefore, 'Sff (s,v-1) =
Inf,, 5, (5.0 1) Df(s,vt,l,vt) is L.s.c. on O; by Proposition 4.5.17. Observe
that (S, 2z) € Oy a.s. for all z € S(0,1) a.s. under our hypothesis.

Consider the mapping pf(s,vt_l) = inf,,cRa Df(s,vt_l,vt) and its l.s.c.
regularization cl(p$)(s,v,_1). Since D is F-normal integrand by our as-
sumption, we deduce by [76, Theorem 14.47] that cl(p$)(s, v;_;) is Fi-normal
integrand. Moreover, we know that on the open set O, if(s,vt_l) is Ls.c.
hence coincides with cl(pt)(s,v_1) by Lemma 4.4.14. Therefore, we deduce
that cl(p$)(Si, vi—1) = s (Si, v,—1) a.s.. The conclusion follows.

O
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The following result asserts that the SAIP condition and the condition
inf, ¢ ga-10,1) D (Si, 0, 2) > 0, both with AIP, are actually equivalent.

Theorem 4.4.16. Assume that Assumption 4 holds. Suppose that either
Assumption 5 holds or the cost functions Cy(s, z) are convex in z. Suppose
that the cost functions Cy(s, z) are L.s.c. in (s, z) and Cy(s, z) are either super-
additive or sub-additive, for any t < T. Then, the following statements are
equivalent:

1.) SAIP,

2.) AIP holds and inf,cgi-1(9 1) DP(S,0,2) > 0 a.s..

Proof. Let us show that 1.) implies 2.). Suppose first that Assumption 5
holds. As y2(Zr) = Cr(0, —Zg)) is Fr-normal integrand, we deduce by
Proposition 4.4.1 that 6% _,(Zr_1) is Fr_j-normal integrand. Therefore, the
function DY, (Sr_1, Zr_9, Z7_1) is Fr_1-normal integrand. Then by lower-
semicontinuity on the compact set S1(0,1) and by a measurable selection
argument, there exists Jp 1 € LY(RY, Fr_y) such that
inf D%,1(ST—1, 0, Z) == Dg"fl(ST—ly 0, ZAT—1>‘

2€54-1(0,1)
Moreover, DY_(Sr_1,0, Zr_1) > 0, i.e. inf,cga1(1) D¢_1(Sr_1,0,2) > 0
under SAIP. By Theorem 4.4.15, we deduce that v _,(Sy_1, Z7_5) is Fr_i-
normal integrand. By Proposition 4.4.1, we deduce that 69 ,(Z7_5) is Fr_i-
normal integrand. Therefore, D%_Q(ST_Q, Zp_3, Zp_9) is Fr_o-normal inte-
grand and, as previously, we deduce that inf,cga-1(91) D_y(S7—2,0,2) > 0
under SAIP. Then, we may proceed by induction by virtue of Theorem 4.4.15
and Proposition 4.4.1.

At last, if the cost functions are convex, recall that AEP holds by Lemma
4.4.11. Then, it suffices to apply Theorem 4.4.5 and Proposition 4.4.1 to
deduce that for fixed S; € LO(R%, F;), D?(S;,0, 2) is F-normal integrand as
a function of z so that we may conclude similarly.

Let us show that 2.) implies 1.) Suppose that DY(S;,0, Z;) = 0 for some
Zy € L°(R4\ {0}, 7). By Lemma 4.5.20,

DY(S;,0,Z;) > 6(|1Z:|)DY(S;,0, Z: /| Zs|) > 6(1Z:])  inf  DY(S;,0,2) > 0.

2€54-1(0,1)

This yields a contradiction hence the conclusion follows under Assumption

d. [l
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We then conclude that, under SAIP, the dynamic programming principle
allows to compute ’yf backwardly so that it is possible to deduce the minimal

hedging price ¢(&) = 75(0).

Theorem 4.4.17. Assume that Assumption 4 and Assumption 5 hold. Sup-
pose that the cost functions are normal integrands and either super-additive
of sub-additive. Then, under the condition SAIP, there exists F;-normal in-
tegrand if defined on Qx R™x R™ such that, for all Vi_, € L°(R?, F,_1), we
have 75(\4_1) = 75(5}, Vi—1). Moreover, the dynamic programming principle
4.3.2 18 computable w-wise as:

7 (Sr,Vier) = inf (ct(st,<o,y<2>—vffi>>+ sup vf+1(s,y)>,
ye s€¢¢(St)

where ¢(Sy) = suppz, Si41. Also, the infimum hedging cost of § at any time
t is reached, i.e. 4(V,_1) is a mimimal cost.

4.4.3 The case of fixed transaction costs

In the case of fixed costs, the cost functions C;, t < T, are not convex in
general. Moreover, C; is a priori positively lower homogeneous, i.e. for any
A > 1, C(Az) < ACy(2). Then, C; does not satisfy the assumptions we
impose in this paper. Nevertheless, we shall see in this section that we may
also implement the dynamic programming principle under a robust SAIP
condition imposed on the enlarged market with only proportional transaction
costs.

To do so, recall that for a l.s.c. function g, the horizon function (see [76,
Section 3.C]) ¢ of g is defined as:

9°°(y) := liminf g(&w.

a—o0 (6]

Recall that ¢* is positively homogeneous and l.s.c. in y. We then define the
horizon cost function as

Ci(s,y) = C°(s,y) = liminf M. (4.4.7)

a—0o0 «

The liquidation value associated to the cost function C, is then given by
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. L
Li(s,y) = limsup w.

a— 00

Ct(sa ay)

Note that in the case where @t(s, y) = lim, o0 , then I, = L.

Moreover, if C, is subadditive, we deduce that
Gy(w) == {z: Ly(Si(w),z) >0}

is an JF;-measurable random positive closed cone. We then deduce that the
enlarged market defined by the solvency sets (Gt)te[O,T] corresponds to a
model with proportional transaction costs, as defined in [55, Section 3]. The
cash invariance property propagates from C; to C;. In that case, we may
verify that L;(s,z) = max{o € R: z — ae; € G} and similarly, we have
Ci(s,2) = min{fo € R: ey — z € Gy}. We then deduce the following:

Lemma 4.4.18. Suppose that C; is cash invariant. Then, Gy C G, if and
only if Cy(Sy, z) < Cy(Sy, 2) for any z a.s..

Proof. First suppose that G, C G,. As Ci(Si, 2)er — z € Gy, then we get
that Cy(Sy, 2)e1 — z € Gy. Therefore, we deduce that

@t(s,z) =minfa € R: ae; —z € Gt} < Cy(Sy, 2).
Reciprocally, if Ct < G, then ﬁt > L; hence G; C Gt. O

Note that in [65], such an enlarged model (é't)te[[),T] is studied and L; is
the liquidation value of the closed conic hull K; of Gy, i.e. Gt =K.

Example 4.4.19. The market is composed of one bond whose price is B; = 1
and d — 1 risky assets, d > 2, whose prices are described by a family of bid
and ask prices and fixed costs S = ((S%, 5%, ¢%));=a.... 4. In the following, we
denote by s = ((s%%, 5%, ¢'));=s.... 4 any element of R3@~Y. We consider the
fixed costs model defined by the following liquidation process:

d
Li(s,y) = y'+ ) Ei(s" s, ¢\ y'), (s,y) € RMD xR,
i=2
i iooai 4 i i b i\ T i ayi i
Lt(sb’ st eyt = (y st — Ct) Lyiso+ (y s = Ct) Lyico-
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Note that the (c');—a... 4 are interpreted as fixed costs while (s%7, s%%);_5 .. 4
are bid and ask prices for the risky assets. We may of course generalize this
model to an order book with several bid and ask prices for each asset, as in
Example 4.2.1. Recall that by definition C,(s,y) = —L:(s, —y) and we may
verify that C;(s,y) is Ls.c. in every (s,y) such that (c')i=.. 4 € RE! To
see it, it suffices to observe that Li(s,y) is continuous at each point (s,y)
such that y # 0. At last, if y = 0, Li(s,y) = 0 and liminf, ., , o Li(r,y) <0
since ¢! > 0. Therefore, L! is u.s.c. Moreover, C;(s,y) subadditive in y. A
direct computation yields that ﬁt(s, y) =yt + Z?:Q ﬁz(sb’i, s y*) where

~ 1

(s, ™ y') = (y) "™ = (y) 7™
Note that L, = L and we have C, (s, y) = y' + 3.0, Ci(s", s%%, y) where
Ci(s™, s, y") = (y") Fs™ — (y') "™

Observe that I, and C, are continuous in (s,y). Moreover, C, < C, and C,
is super d-homogeneous with 6(x) =z. A

In the following, we adapt the notations of Section 4.3 to the enlarged
model (G¢)sepo,r] as follows: We set

37(S7, V1) = g (St) + Cr(Sr, (0, 9@ (S7) — V&),

and we define recursively

07 (Vi) = esssupg, 4;1(V2),
ﬁf(sﬁ ‘/t—l’ ‘/;f) = Ct(stv (07 ‘/15(2) - ‘/;(72%)) + ef(sh ‘/t)

Definition 4.4.20. We say that the robust no-arbitrage condition RSAIP
holds at time t if the SAIP condition holds at time t for the enlarged model
(Gi)icpor)- We say that RSAIP holds if it holds at any time.

Theorem 4.4.21. Suppose that the enlarged market satisfies C, <, C
is super d-homogeneous and is either sub-additive or super-additive. Suppose
that there exists an F;y1-normal integrand 7f+1 defined on R™ x R? such that
Vet (Vi) = 35.1(See1, Vi) for all Vi € YR, F,). Assume that Assumption
4 and Assumption 5 hold. Suppose that the cost function Cy(s,z) is an Fy-
normal integrand and C, is either super-additive or sub-additive. Then, if
inf,cga-100,1) DY(S,,0,2) > 0, 7 (Vi) = 35(Sy, Vie1) where 5 (s, v,_1) is an
Fi-normal integrand.
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Proof. As Cy(z) < Cy(z), we deduce by induction that D%(s,0,v;) < D%(s,0,v;).
We adapt the main arguments of the proof of Theorem 4.4.15. Recall that
DY(s,vs_1,v) > he(s,ve_1) + DY(s,0,v;) where h; is a continuous function.
By Lemma 4.5.20, we have for |v;| > 1,

DY(s,0,v) > ﬁ?(s,o,vt) > §(|vt|)Dg(s,O,vt/|vtD > 0(|vg])  inf D?(S,O,Z).

2€54-1(0,1)

Therefore, we also get thatﬂf(s,vt,l) = infy,cx,(sn_y) D5 (8,01, v;) Where
Ki(s,v-1)  &(s,v-1) := B(0,74(s,v-1) + 1) and

_ )\t(S Ut—1)
) = 0/
Tt(s,’l}t 1) ( 'it(S) )
i(s) = inf  DY(s,0,2), A(s,v-1) = |hu(s,v-1)| + 5 (s, v,—1).
2€54-1(0,1)

Applying Theorem 4.4.15 by induction to the enlarged market, we deduce
that DY(s,0,z2) is L.s.c. in (s,2), see the proof of Theorem 4.4.15. We then
conclude as in the proof of Theorem 4.4.15.

O

Remark 4.4.22. Recall that the condition inf.cga-1(01) D?(S, 0,2) > 0 we
impose in the theorem above holds under the RSAIP condition by Theorem
4.4.16. For a fixed costs model, this means that SAIP holds for the enlarged
market, a priori without fixed cost. Moreover, the other conditions we impose
are also satisfied in the fixed costs model of Example 4.4.19. A

4.4.4 Computational feasibility under a weaker SAIP
no-arbitrage condition

In this section, we consider a no-arbitrage condition called LAIP, weaker

than SAIP, but still sufficient to deduce that the essential infimum in the

dynamic programming principle (4.3.1) is a pointwise infimum so that it can
be numerically computed.

Lemma 4.4.23. Suppose that C; is sub-additive for any t < T. Then, for
any payoff € € LY(RY, Fr), the function DS defined by (4.4.3) satisfies the
following inequality:

Dtg(‘/;f—l + ‘_/%—17‘/2 + ‘_/t) S Dtg(‘/;f—la‘/t) + D?(‘Zﬁ—la‘_/t)
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Proof. By definition with the sub-additivity of Cp, we have:

7§(VT—1 + V) = &+ CT((07§(2) - VT(2—)1 - VT(“Q—)I))v
= &+ Cr((0, = V) + Cr((0, V),
< (Vo) + (Vo).

We deduce that 65_,(Vr_y 4+ Vi_1) < 65_,(Ve_1) + 6%, (Vr_1) and, since
D%—vil(Vsz, VT,1> = CTfl((O, VT,1 — VT72)) + Hé(VT,l), we get that:

Dé_l(VT—2 + Va1, Vp_1 + VT—1) < Dé_l(VT_z, Vr_1) + D%,l(VT_z, VT—1)~
Taking the essential infimum with respect to Vpr_; and Vir_1, we get that

Vo1 (Vs + Vo) <451 (Vo) + 771 (Vo).
We may pursue by induction and conclude. O]

We now introduce the LAIP condition. By Proposition 4.5.7, we may
suppose that the function DY(y, z) defined by (4.4.3) is Ls.c. in (y, z) and it
is F; ® B(R?) ® B(R?) measurable w.r.t. (w,v,2). Note that, under AIP, the
family of random variables N, := {Z, € L°(R%, F;), Z} =0, DY(0,Z;) =0}
coincides with {Z; € LO(R%, %), Z} =0, DY(0,Z;) < 0}. Therefore, by lower
semicontinuity, N; is a closed subset of L°(R%, F;). Moreover, N; is F;- de-
composable, see [55, Section 5.4]. Therefore, by [55, Proposition 5.4.3], there
exists an Fi-measurable random set Ny such that N = L°(Ny, F;).

Definition 4.4.24. We say that the condition LAIP (Linear AIP condition)
holds at time t if AIP holds at time t and N; is a linear vector space, or
equivalently N, is a.s. a linear subspace of RY. We say that LAIP holds if
LAIP holds at any time.

Note that if N; = {0}, then SAIP, AIP and LAIP are equivalent. In gen-
eral, SAIP implies LAIP. The following result gives a financial interpretation
of LAIP. If LAIP holds, the cost to hedge the zero payoff from an initial
risky position Z, = V,® € LO(R%!, F,) is zero if and only if the cost is also
zero for the position —Z;. This symmetric property is related to the SRN
condition in Chapter 3.

Lemma 4.4.25. Suppose that C; is sub-additive and is positively super o-
homogeneous, for any t < T. The following statements are equivalent:
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1.) LAIP holds.

2.) AIP holds and, if Z; € L°(R%, F;), then D?(0,Z;) = 0 if and only if
DY0,—Z,)=0,t<T.

Proof. The implication 1.) = 2.) is immediate. Reciprocally, suppose
that 2.) holds. Let us show that A is stable under addition. We consider
Z}, 72 € N;. By Proposition 4.4.23, we get under AIP that

0 < DY(0,Z} + Z2) < D(0, Z}) + D°(0, Z2) < 0.

We deduce that Z! + Z? € N;. By induction, we then deduce that for any
integer n, nN; C N;. Moreover, by Lemma 4.5.20, if \; € L°((0, 1], %),

DY(0,V;) = DP(0, Ae(A) ™' Ve) 2 6((A)~)DP(0, AVi) > 0.

So V; € N; implies that \;V; € N} if A\, € L°((0,1], F;). Finally, as NA; C A,
AV € N, for every A, > 0. Moreover, N; is symmetric by assumption. The
conclusion follows. O

In the following, let us consider Nt := {z € R%: 2z = 0, Vz € N}, the
random JF;-measurable linear subspace orthogonal to Nj.

Lemma 4.4.26. Suppose that C; is sub-additive and LAIP holds. Then, for
all Vi € L°(RY, F,), there exists V2 € L°(Ni-, F;) such that

D;(Vio1, Vi) = D; (Vie1, V) aes..
Proof. By a measurable selection argument, it is possible to decompose any
V; € LO(RY, Fy) into V; = Vi1 + V2 where V! € LO(Ny, ), V2 € LO(Ni, ).
By Lemma 4.4.23, we have
Di(Vie1, Vi) < Dj(Vier, Vi?) + DY(0,V)') = Di (Vier, V2).

On the other hand, as V;* =V, — V;! and —V;! € N, under LAIP, we also
have

D; (Vi1 V) < D§(Vier, Vi) + DP(0, =V;') = D} (Viey, V3).
The conclusion follows. O

In the following, we assume the following condition.
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Assumption 6. For anyt < T,7|Ct((0,x(2)))| < hy(), where hy is a random
function hy : (w,x) € QxR+ hy(w, x) € R which is F,@ B(RY)-measurable
and continuous a.s. in x.

~ Note that the condition above holds under our initial hypothesis with
hi(x) = hy(S;, ) but, here, we do not stress a dependence of C; on S;.

Theorem 4.4.27. Suppose that there exists an F;i1-normal integrand func-
tion :yfﬂ defined on R®. Assume that Assumption 6 holds. Suppose that the
cost function Cy(z) is an Fy-normal integrand and C; is sub-additive, posi-
tively super §-homogeneous. If LAIP holds, then 75(\4_1) = ﬁf(\/;_l) where
35 (vi_1) is an F,-normal integrand

Proof. By Lemma 4.4.26, we get that

essinfz, D5(Vi_1,V;}) = essinfr, D5(Vi_1, V).
V,eLO(R4,Fy) VAELO(NG . )

Since Ni- is an F;-measurable random closed set, by Proposition 4.5.7 and
Lemma 4.5.5, we have
essinfr, DS(Viy, Vi) = inf DS(Vi_y,y).
V:€LO(N{,Fy) yeNy

On {w: N} (w) ={0}} € F, we have V£ (Vi_1) = D5(V,_1,0). On the com-
plementary set, {N;- # {0} } € F;, under LAIP, we have inf.c;, D} (0, z) > 0,
where M; = Nt N .S471(0,1) # 0. We now adapt the notations and the main
arguments in the proof of Theorem 4.4.15 with V; € N}. In our case, we
use Assumption 6 in order to dominate the cost function by a continuous
function. By Lemma 4.5.20, for all v; € Ni, we may suppose w.l.o.g. that
v} = 0 and we get that

D;(0,v) = 6(|oi[) DY (0, v/ vr]) = 6([wr]) inf D(0, 2).

Moreover, by Assumption 6, we have:
Dy(v1-1,0) = Co((0,0,%1)) + 65 (0) < he(vi-a) + 67(0).

Therefore, we deduce that 7¢ (V1) = infyeg, () Dt (vi_1,v;) where ¢ is
the set-valued mapping ¢;(v;_1) := B(0,r(v;—1) + 1) and

it = Zien]\f/} .D?(O7 Z), At(vt_l) = ;Lt(vt—l) + Bt(vt_l) + 65(0)
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By Corollary 4.5.3, i; > 0 is F;-measurable while A\ (w,v;_1) is F; @ B(R?)-
measurable and continuous in v;_;. Therefore, ri(w,v;_1) is F; @ B(RY)-
measurable and continuous in v;_;. We deduce that B;(0,7¢(v;_1)) is a
continuous set-valued mapping by Corollary 4.5.14. We then conclude by
Proposition 4.5.17. O

Note that the theorem above states that, under LAIP, ’yf(Vt',l) is a lower-
semicontinuous function of V,_;. Therefore, by Lemma 4.5.5, v5(V;_1) may
be computed pointwise as 75 (V;_1) = inf,cga (Ct((O,y(Q) Ve + 9§(y)> :

Moreover, the infimum is reached so that vF(V;_;) is a minimal cost.

4.5 Appendix

4.5.1 Normal integrands

Definition 4.5.1. Let F be a complete o-algebra. We say that the function
(w,7) € AxRF — f(w,z) € R is an F-normal integrand if f is F @ B(R¥)-
measurable and lower semi-continuous in x. If Z € LY(R*, F), we use the
notation f(Z):ww f(Z(w)) = f(w,Z(w)). If f is F @ B(R*)-measurable
then f(Z) € L°(RF, F).

By [76, Theorem 14.37], we have:

Proposition 4.5.2. If f is an F-normal integrand, inf,cga f(w,y) is F-
measurable and {(w,z) € X x R : f(w,z) = inf,cga f(w,y)} € F @ B(RY)

1s a measurable closed set.

Corollary 4.5.3. For any F normal integrand f : Q x R* = R and any
F-measurable random set A, let p(w) = infyea f(w,x). Then the function
p: Q) — R is F-measurable.

Proof. Let us define 6,)(z) = 400 if ¢ A(w) and da¢)(z) = 0 otherwise.
Then, the function g(w,z) := f(w, ) + da@w)(x) is an F-normal integrand
since A is closed and F-measurable. Moreover, we observe that p(w) =
inf e () g(w, z). The conclusion follows from Proposition 4.5.2. O]

Corollary 4.5.4. If f is an F-normal integrand, and if K is an F-measurable
set-valued compact set, then infyci ) f(w,y) is F-measurable. Moreover,
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Mw) ={z € K(w) : f(w,z) = infyerw) f(w,y)} € F @ BRY) is a non-
empty F-measurable closed set. In particular, infyc ) f(w,y) = f(w,y) for
ally € L°(M,F) # 0.

Proof. Tt suffices to extend the function f to R? by setting f = 4+00 on
R\ K (w) so that f isstill L.s.c. on R%. Then, we may apply Proposition 4.5.2.
Notice that M(w) # @ a.s. by compactness argument so that L°(M, F) # ()
by a measurable selection argument. O

In the following, we use the abuse of notation f(y) = f(w,y) for any
f:QxRY— R.

Lemma 4.5.5. For any F normal integrand f : Q x R — R such that f is
bounded below a.s. by a random variable, and any non-empty F-measurable
closed set A, we have:

ess infr { f(a), a € L°(A, F)} = inf f(a) a.s.

a€A

Proof. We first prove that
ess inf;{f(a),a € LD(A,}")} < inf f(a).

a€A

Recall that f is F-normal integrand and inf,c4 f(a) is F-measurable by
Corollary 4.5.3. Therefore, the set

{(w,0) 0 € A(w), inf f(z) < f(a) < inf f(2) +1/n}

is F-measurable and has non-empty w sections for each n € N. By measur-
able selection argument, we deduce a” € L°(A, F) such that

: < Fla™) < ;
inf f(a) < f(a") < in f(a) + 1/n.
This implies that lim,, f(a") = inf,c4 f(a). Therefore,
ingf(a) =inf f(a") > essinfr {f(a),a € L°(A, F)}.
ac n
For the reversed inequality, for each a € LY(A, F), f(a) > inf,c4 f(a) and,

since inf,c 4 f(a) is F-measurable by Corollary 4.5.3, we deduce by definition
of conditional essential infimum that

ess infr { f(a),a € L°(A, F)} > inf f(a) as..

acA
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We recall a result from [5] which characterizes a conditional essential
supremum as a pointwise supremum on a random set. Let H and F be two
complete sub-o-algebras of Fr such that H C F. The conditional support
of X € LY(RY, F) with respect to H is the smallest H-graph measurable
random set supp; X containing the singleton {X} a.s., see [5].

Proposition 4.5.6. Let h : QxR*¥ — R be a HQB(RF)-measurable function
which is l.s.c. in x. Then, for all X € L°(RF, F),

esssupy h(X)= sup h(z) a.s.

rEsuppy X

Proposition 4.5.7. Fiz ' € L°(R, F) and d > 2. Let us consider a random
function f : Q x RY — R that satisfies f(z) = 2' 4+ f(0,22)), for any
z = (24, 2™) € R Suppose that z +— f(2) is L.s.c. a.s.. Then, there exists

a Fi_1 @ B(R*Y-measurable random function F} |(w,y) such that, for any
Y, € LO(RY Fiy),

Fr (Y1) =esssupy,_, (€14 £(0,Yi1)) = F{ (Yio1), as.

Moreover, F} |(w,y) is l.s.c. iny and if, in addition, y € R* — f(0,y) is
a.s. convez, then y— F; | (w,y) is a.s. convet.

Proof. Consider the family of random variables:

Aor = {1, 1) € LYREFoy) « f—am1, ym1) < =€
= {1, 1) € PR, Froy) sy > thiif(ytfl)}-

Notice that A, ; is closed in L° since f is l.s.c.. Moreover, A, ; is Fy_i-
decomposable, i.e. g/ 14, , + g7 1ac € Ay if g/, and g7 | belong to
Ay—y and Ay € F;_1. By [63, Corollary 2.5], there exists an F;_j-measurable
random closed set I',_; such that A;,_; = LO(Ft,l, Fi—1). Moreover, there is
a Castaing representation, i.e. a countable family (2}" ;),>1 € A1 such that

g (w) =cl{z]" (w) :n > 1}, w € Q. We define
F ((w,y)=inf{z e R: (z,y) € ['_1(w)}.

We claim that Fy" | (w,y) = inf{z € Q : (z,y) € I'_1(w)}. Indeed, first
we have F;  (w,y) < inf{z € Q : (z,y) € T's_1(w)}. Moreover, in the
case where F}" |(w,y) > —oo, for every € > 0, there exist + € R such that
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(x,y) € Ity and F} | (w,y)+¢€ > x. Choose T € QN [z, x + ¢€]. Observe that
(Z,y) € I';_; as the y-sections of A;_; are upper sets. We then have:

Ff j(w,y)+2e>0+¢€>17,
Ff(wy) >F—2e>inf{z €Q: (2,y) € Tioy(w)} — 2e.

Since € is arbitrary chosen, we conclude that

Ff (wy)=inf{z € Q: (z,y) € [\1(w)}.

Notice that when F} | (w,y) = —o0, then we may choose © — —o0 so that we
also have & — —oo and we conclude similary. We then deduce that F}* | (w,y)
is F;_1 ® B(R*1)-measurable. Indeed, for every ¢ < 400, we have:

{(M,y) : E*—1<w7 y) 2 C} = m {(Wa y) : xl(w,a:,y)EGrapth_l 2 Cl(w,x,y)EGrapth_l}-
zeQ

Since I';_; is graph-measurable, {(w,y) : F;" | (w,y) > ¢} € Fug @ BRY?).
We then conclude that Fy | is 7,1 ® B(R*!)-measurable. Moreover, if f; is
convex, I';_; is convex a.s. and we deduce that F}* |(w,y) is convex in y a.s.

Consider a sequence y" € R4~! which converges to y and let us denote
p" = F} {(w,y"). We have (5", y") € I'y_1 if B > —o0. If inf, f" = —o0,
then, up to a subsequence, F; |(w,y) — 1 > g™ for n large enough, hence
(FY (w,y) — 1,y") € I'y_1(w) since the y™-sections of I';_; are upper sets.
As n — oo, we deduce that (F} ;(w,y) — 1,y) € I'i_1(w), which contradicts
the definition of F}* ;. Moreover it is trivial that F}* |(w,y) < liminf, " if
liminf, 8" = co. Otherwise, > := liminf,, f" < co and (5%, y) € I';_; since
[, is closed. It follows that F}* | (w,y) < 5 = liminf, 5" by the definition
of F}* ;. We conclude that F}" |(w,z) is l.s.c. in z.

We show that F& i (Y, ) = Ff (Y1) a.s. for all Y;_; € LORE, F,_y).
We first restrict Q to the F;_j-measurable set {w : Ty 1(w) # 0}. We
may then consider a measurable selection (Z;_1,79;_1) € I'y_1 # 0 a.s.. By
definition, we have ;1 > F{" (§:—1). We deduce that F} |(7;-1) < oo a.s.
We define:

Vi1 = Go-1lrr i moo + Vi1l (vioy)<oo-
Then:
Fr oy (Yer) = Fy(U-10)1r  (vii)=oe T F1(Yie1)1mr | (vil ) <oo-
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Observe that on the set {F} ,(Y;—1) < oo}, (Ftil(ﬁ_l),ﬁ_l) € I as.
since I',_; is closed. Therefore, (Ftil(ﬁ,l),ﬁ,l) € Ny = LO(Ty 1, Fi1)
and we deduce that Fy (Y, 1) > Ff_l’lf(ﬁ_l) a.s.. We conclude that on the
set {F} (Y1) < oo}, FY (Vi) > Ff_l’lf(Y}_l) while the inequality is trivial
on the complementary set. On the other hand, let us define

X = FE{vion OO"‘thjif(Z?t—l)l

1 1
Fi (Vi< Fi (Vio)=o00’

Yioi = Y41 o T U1l

1 1 ¢ .
Fif (vioa)< FE (Yio1)=00

Observe that ()A(t_l,?t_l) € A;_; hence Ft*_l(ﬁ_l) < )?t_l by definition
of Ff,. Then, Fy (Y, 1) < X, 1 = FS/(Yiy) on {F£ (Y, 1) < oo} The
inequality is trivial on the complementary set so that we may conclude.

On the set {w : Ty_1(w) = 0}, we have F} |(Y;_1) = +00. Moreover,
it F$/(Yi_1) < oo, we deduce that (F&{(Y,_;),Y;1) € Ty = 0 since
€14 £(0,Y,1) < FE (Y,_1). This is a contradiction hence F& 3/ (Y,_1) = +o0
and the conclusion follows. O

Lemma 4.5.8. Suppose that Assumption 2 holds and consider an F;_1-
normal integrand v; : (w,s,y) : Q@ x R™ x RY = ~(w,s,y). Then, for
any Vi_y € L°(RY, F,_1), we have:
€SS SUpPg, . %(St, ‘/2—1) = sup ’Yt(S, ‘/}—1) = sup %(04?11(51;—1)7 Vt—1)-
SESUPPF, 3, m2>1

Proof. As (w,s) — v(w,s,Vi_1(w)) is an F;_j-normal integrand under
our assumptions, the first equality holds by Theorem 4.5.6. It remains to
observe that, if s € suppz,_ Sy, then s = lim,, oj” ,(S;—1) for a subsequence
and, by lower semicontinuity, we deduce that

(s, Vi) < liminf 5f (074 (S1), Vi) < sup 5 (074 (Si1), Vi)

It follows that SUDsesuppy, s, V(8 Vie1) < supp,sq (@i (Si-1), Vi-1) and,
finally, the equality holds. O

4.5.2 Continuous set-valued functions

For two topological vector spaces X,Y, consider a set-valued function ¢ :
X — Y. We recall the definition of hemicontinuous set-valued mappings as
formulated in [1].
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Definition 4.5.9. We say that ¢ is lower hemicontinuous at v if for
every open set U C'Y such that ¢(x) NU # ), there exits a neighborhood V
of x such that z € V implies ¢p(x) N U # 0.

Definition 4.5.10. We say that ¢ is upper hemicontinuous at x if for
every open set U C Y such that ¢(x) C U, there is a neighborhood V' of x
such that z € V implies ¢(z) C U.

Definition 4.5.11. We say that ¢ is continuous at x if it s both upper
and lower hemicontinuous at x. It is continuous if it is continuous at any
point.

Lemma 4.5.12. Let f :_Rk — R be an upper semicontinuous function.
Then, the mapping x — B(0, f(x)) is upper hemicontinuous in the sense of
definition 4.5.10.

Proof. The upper hemicontinuity is simple to check. Indeed, consider an
open set in U C RF¥, such that ¢(z) = B(0, f(z)) C U. We may suppose
that U is bounded w.l.o.g. and we deduce € > 0 such that B(0, f(z)+¢) C U.
By upper semicontinuity, there exists an open set V' containing x such that
z € V implies f(z) < f(x) + € hence ¢(z) C U. O

Lemma 4.5.13. Let f :_Rk — Ry be a lower semicontinuous function.
Then, the mapping x — B(0, f(z)) is lower hemicontinuous in the sense of
definition 4.5.9.

Proof. For any ball B(y,r) € R*, we have B(0, f(x)) N B(y,r) # 0 if and
only if f(x)+r > |y|. We also have f(x)—e+r > |y| for some small € > 0. As
f is Ls.c., we deduce that f(z) > f(x) — e for every z in some neighborhood
V of x. This implies that f(z) +7 > |y|, i.e. B(0,f(x)) N B(y,r) # O for
every z € V. The conclusion follows. O

Corollary 4.5.14. Let [ : RF — R be a continuous function. Then, the
mapping x — B(0, f(z)) is continuous in the sense of definition 4.5.11.

Lemma 4.5.15. Consider the set-valued mapping o : R™ — R™ defined by
a(s) = cl{a™(s),m € N} where (a'™),,>1 are continuous functions. Then, «
15 lower hemicontinuous.

Proof. Consider w € € and some open set U € R%. We have a;(w, 2) NU # ()
if and only if there is m € N such that of"(w,z) € U. Since o)*(w,.) is
continuous, we deduce that there exists an open neighborhood V' of z such
that a)*(w,z) € U for any € V. The conclusion follows. O
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We recall a result from [1][Theorem 17.31].

Proposition 4.5.16. Let ¢ : R¥ — R™ be a continuous set-valued map-
ping with nonempty compact values and suppose that f : RF x R™ — R
is continuous. Then, the function m(x) = inf ey f(x,y) and the function
M (z) = supye g, f(2,y) are continuous.

Proposition 4.5.17. Let ¢ : R* — R™ be an upper hemicontinous set-
valued mapping with nonempty compact values and suppose that f : RF x
R™ — R is lower semicontinuous. Then, the function m(x) = inf ey f(2,y)
15 l.s.c.

Proof. We have m(x) = — sup,c,(,) 9(7,y) where g = —f is upper semi-
continuous. By [1][Lemma 17.30], the mapping x — sup, ey, 9(z,y) is upper
semicontinuous hence m is l.s.c. O

Lemma 4.5.18. Let O be an open subset of R¥, if v: O — R is Ls.c. and
v > g on O for some l.s.c. function g : R¥ — R. Then, there exists a l.s.c.
function 7 : R¥ — R such that v =~ on O.

Proof. It suffices to consider ¥ = y1p + glg\o. O

4.5.3 Auxiliary results

Lemma 4.5.19. Suppose that there is a family of F;_1-measurable random
variables (" )m>1 such that Sy € {af*, : m > 1} a.s. and suppose that
P(S; = o™ (| Fi-1) > 0 a.s. for allm > 1. Then, for any F;_1-measurable
random function f:Q x R* - R,

ess supz, | f(Sy) = sup f(o”,).

m>1

Proof. It is clear that ess supz, | f(S:) < sup,,>; f(ai",) a.s. since Sy belongs
to {aj”, : m > 1} and sup,,>; f(o",) is F;_1-measurable by assumption.
On the other hand, consider I'}* := {S; € o/} € F;. We have:

esssupy, , f(S))lrp = f(Si)lrp = f(a)”y)1rp ass.
Taking the conditional expectation, we get that

E(ess supg, | f(Si)lrp|Fio1) = E(f (o) 1rp|Fio1) as.,
ess supz, | F(SOP(TF 1)) = faf,) P(TPIF 1) aus.
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As P(I'f"|Fi—1)) > 0 by assumption, we get that ess supz,_, f(S¢) > f(aj*;)
a.s. for any m > 1 so that the reverse inequality holds. O

Lemma 4.5.20. Let D° given by (4.4.3) with & = 0. Suppose that C is
positively super 6-homogeneous. For anyt < T, and any \; € L°([1,00), F1),
we have DY(MVi—1, MVy) > 0(A) DP(Vier, Vi) and ) (AVie1) > 6(Ae)y7 (Vi)
for all (Vi_1,V;) € L°(RY, F;) x L°(R4, F).

Proof. For t =T, we have by assumption:
VA V1) = Cr((0, =ArVi2)) > () Cr((0, = Vi) = (A (Via).
We deduce that

09 (Ap_1Vr_1) = ess Supg,._, Y Ar-1Vro1),
> §(Ar_1)esssupg, | Y9(Vro1),
> 6(Ar—1)07_ (V).

As we also have
Croa((0, A1 Vi = Mroa Vi) = 67— 1)Croa (0, Vi) = Vi),
we deduce that
Dy (A1 Vr_o, Ap 1 V1)
= Cr_1((0, )‘Tflvi(‘i)l — )\TAVT(ZJQ)) + 609 (A1 V1),

S(Ag—1)Crr (0, V2, = ViD)) + 6(Ar—1)09_, (Vi)
5()\T—1)DT—1(VT—27 VT—1)-

Therefore, as Ap_1 > 1,

AV

79“71()\T71VT72) = €SS inVT,leLO(Rd,fT,l) DT71<)\T71VT727 )\T71VT71)7
> 0(Ap—1)ess ianT_leLO(Rd,]'—T—l) Dp_1(Vr—2, Vp_1),
> (1)1 (Vra).
We then conclude by induction. O]

Lemma 4.5.21. Suppose that Assumption 4 and Assumption 5 hold. For
every t < T, there exists a continuous function hy > 0 such that the function
Dy given by (4.4.4) satisfies | D (s, vi_1,0)| < hi(s,vi-1).
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Proof. Recall that 75(Vy) = ¢'(St) + Cr(Sr, (0, ¢*(Sr) — VT(Q))). By
assumption on Cr and ¢, we deduce that 7§(VT) < fr(St, Vr) where fr is
continuous. Therefore, by Proposition 4.5.6,

9%_1(VT_1) = esssupg, | %gp(VT_l) <esssupg, , fr(Sr, Vr-1),
< sup fr(z, V1) < sup fr(z,Vr_1).
z€suppr,, | ST 2€B(0,Rr—1(S7-1))

As Rr_1 is continuous, we deduce by Corollary 4.5.14 and Proposition 4.5.16
that 65_,(Sr_1, V1) = SUDc B(0.Ry_ (Sr_1)) J7 (2, Vr—1) is a continuous func-

tion in (ST—la VT—I)' Recall that CT—I(ST—b (0, —V7(~2_)1> S hT—l(ST—b VT—l)

where hp_q is continuous. As
DS (Sr—1.Vi—1,0) = Cr_y (Sp—1, (0, =V32)) + 05, (Vir_y),

we deduce that D%_l(ST_l, Vr_1,0) < Bg_l(ST_l, Vr_1) where ibgw_l is given
by hS  (Sr-1,Vioo1) = 05 (Sr—1, Veo1) + hp 1 (Sp_1, Vioy), ie. S is
continuous. Since yé_l(ST,l, Vi) < D%_I(ST,l, Vr_1,0), we deduce that
7§“71(ST717VT71) < ibéT,l(STfl,VTq) = fr—1(Sr-1,Vr—1) and we may pro-
ceed by induction to conclude. O

Following the same arguments, we also deduce the following:

Lemma 4.5.22. Suppose that Assumption 4 and Assumption 5 hold. For ev-
eryt < T, there exists a continuous function hy such that 4% (V) > hy(S,, V;).
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Chapter 5

Limit theorems for the
super-hedging prices in general
models with transaction costs

Abstract

We propose numerical methods that provide estimations of super-
hedging prices of European claims in financial market models with
transaction costs. The transaction costs we consider are functions
of the traded volumes and prices. Contrarily to the usual models of
the literature, the transaction costs are not necessary proportional
to the traded volumes, neither convex. The particular case of fixed
cost is also considered. Limit theorem are established and allow to
numerically compute the infimum super-hedging prices.

5.1 Introduction

Computing the super-hedging prices of a European option in presence of
transaction costs is a difficult task. Indeed, the classical results of the litera-
ture focus on linear transaction costs and only dual characterizations of the
super-hedging prices are formulated, see the FTAP theorems (Fundamental
Theorem of Asset Pricing) by [40], [39], [55] among others. These results are
formulated under rather strong no-arbitrage conditions (see [41], [30]) and
the super-hedging prices are estimated through dual characterizations based
on the so-called consistent price systems, see [13], [28].
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The interesting question is how to implement the FTAP theorem and
deduce numerical estimation of the prices. Few attempts have been achieved
in that direction, e.g. [68] in the case of a finite probability space. The
general case is difficult as we have first to identify the dual elements, i.e. the
consistent price systems, which are martingales evolving in the positive duals
of the solvency cones. The second step is to propose a numerical procedure
to evaluate the possible super-hedging prices. There is no such a numerical
method in the literature. Moreover, if the transaction costs are non linear,
there is a priori no dual elements characterizing the no-arbitrage condition.

The methods we develop in this paper are based on Chapter 4 where the
super-hedging prices are characterized for a large class of transaction cost
models which are not necessary linear. In Chapter 4, the results are merely
theoretical, we do not provide algorithms to compute the super-hedging costs
in practice. In this Chapter, we address this problem. To be more precise,
we consider financial markets with transaction costs defined by a cost process
(Ct)o<t<r depending on traded volumes and a process (S;)o<¢<r that includes
the asset prices. We shall consider the case of countably infinite ¢-conditional
supports for Sy where an exact characterization of the super-hedging costs
is given. The randomized procedure we propose is based on the simulation of
conditionally identically distributed random variables which share the same
conditional support as the price process (Si)o<i<r. We formulate a limit
theorem, see Theorem 5.3.15, that proves the efficiency of our method.

This Chapter is organized as follows. In Section 5.3, we describe the
numerical scheme and the main convergence theorems. We present in Section
5.4 the special case of a model with one risky asset and a piecewise cost
process (Cy)o<i<r. In Section 5.5, we also give the exact solution of the super-
hedging cost in the models with proportional costs and with and without
fixed cost. Finally, in Section 5.6, we prove a limit theorem for a sequence of
financial markets defined by convex cost processes.

5.2 The model

Let £ € L°(RY, Fr) be a contingent claim. Our goal is to characterize the
set of all self-financing portfolio processes (V;)I_ | such that Vy = £. We use
the same notations and definitions in Chapter 4. For convenience, we recall
the following result from Chapter 4:
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Proposition 5.2.1 (Dynamic Programming Principle). For any 0 < ¢t <
T —1 and V,_; € L° (R, F;_1), we have

AE(Vie) = essinfr, ess Sup, <Ct(0, ‘/;(2) — Vt(ﬂ) + Vfﬂ(‘/})) . (5.2.1)
VieLO(R4,Fy)

Assumption 7. The payoff & is hedgeable, i.e. there exists a portfolio process
(VO such that &€ = Vj.

We briefly recall here the defition of some important functions:

6 (Vi) = ess supz, 75,1 (V7)

and

DE(Vier, Vi) = Ci((0, V2 = V&) + 65 (V)), (5.2.2)
DE(Sy, Vi1, Vi) = Cy(Sy, (0, V;® — V) 4+ 65(S,, V3). (5.2.3)

The second notation is used when we stress the dependence on S;. Observe

that v+ (Vi_1) = essinfr, D(V,_1, V).
VtELO(Rd,ft)

In order to numerically compute the minimal costs, we need to impose
the finiteness of 4*(V,_1), i.e. 75(Vi1) > —oo a.s., at any time ¢ and for
all V;_y € L°(R%, F,_1). This is why, we recall the following condition, see
Chapter 4:

Definition 5.2.2. We say that the financial market satisfies the Absence
of Farly Profit condition (AEP) if, at any time t < T, and for all V; €
L'RYF), (Vi) > —00 a.s..

5.3 Numerical schemes

In the following, we suppose the following assumptions on the cost process C.
For any t < T', the cost function C; is a lower-semi continuous Borel function
defined on R*¥ x R? such that

Ci(s,0) =0, Vs € R,
Ci(s, 7+ Aey) = Cy(s,z) + A\, A € R, z € R%, s € RE (cash invariance),

Cr(s,z9) > Cr(s,x1), Va1, 29 s.t. 22 — 71 € R (Crisincreasing w.r.t. RY).
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Note that Cr is increasing w.r.t. Ri is equivalent to G + Ri C Gr.
Moreover, for some a > 0, we say that C; is a- super homogeneous if the
following property holds:

Ci(s,A\x) > ACy(s,x),VA > a, s € R’i, r € R%

5.3.1 The one period model

In this section, we consider two complete sub o-algebras F; and F;;; such
that F; C Fiy1 C F and an adapted price process (Ss)s—t++1 satisfying the
following assumption.

Assumption 8. Suppose that there is a family of F;-measurable random
variables (a)")m>1 such that Sipq € {af* : m > 1} a.s. and suppose that
P(Si11 = a)"|Ft) > 0 a.s. for allm > 1. Moreover, we suppose that there
exists continuous functions on R™, that we still denote by o} with an abuse
of notation, such that aj* = aj*(S;).

In Chapter 4, we have shown the following:

Lemma 5.3.1. Suppose that Assumption 8 holds. Then, for any Borel func-
tion f : RY — R, we have

ess supg, f(Sp1) = su>13 f(eq"), as..
m>

Definition 5.3.2. The random variables {b,,,,i > 1}, bi., € LO(R*, Fi11),
are said independent and identically distributed conditionally to F; (for short
Fi-i.i.d.) if, for all finite set J C N, and Borel sets B, B;,j € J:

Plbi,, € BlF] =P [b{H € B|F], as. Vi,j > 1,

P [ﬂ {bl1 € B} |E] = HP [bl1 € Bi| R, as..
el

jeJ

Lemma 5.3.3. Consider a family of Fi-i.i.d. random variables b}, ,, i > 1
and 0; € LO(R™ F). Let fi : RExR™ - R, j =1,---,nben > 1
measurable functions such that E [|fI(b},,,0)||F:] < oo a.s. (resp. f7 is
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non negative), for all j < n. Then, for any finite set J C N of cardinality n,
we have:

E [fk<b;+179t)’]:t} =FE [fk(bi—&-l?et)‘ft] , a.S., iajak Z 17

117000 \E] =TI E[f¥..00]|F], as.

jedJ jed

E

Proof. We prove the result by induction on n. Suppose that f/ =1 p,; where
D; = B; x A; and B; € B(RF),A; € B(R™). Then, the claim holds
by definition of the F;-i.i.d. random variables for all n > 1 and the F;-
measurability of ;. By the monotone class argument, this holds for any
Dy € BRF)®@B(R™)if n = 1. If n > 1, we expand the product in the second
claim and we use the induction hypothesis. Then, we repeat the arguments
for D, € B(R*) ® B(R™) and so on. By linearity, and the induction argu-
ment after having expanding the product, we also deduce that the claim holds
when f7 =37, Ciblc,{ and for any ¢, € R,C} € B(R*) @ B(R™),h > 1. By
standard increasing approximations, we conclude in the case where f7 > 0.
Otherwise, we write f7 = (f7)™ — (f7)~. In particular, we get that

E []f](b;+1,9t)\\ft} =F |:|f](b%+1,0t)”./t‘t] < 00, a.s.
in the case where E [| f7(b},,,6,)||F;] < oo. O

Lemma 5.3.4. Consider a Borel function f : R* — R and a family of
Fi-t.i.d. random variables (bﬁl)mzl with values in RF and F,1-measurable.
Suppose that there exists Fi-measurable random variables (af )p>1 such that
bty € {a,n > 1} a.s. and P(b7, = of|Fy) > 0 a.s. for all n,m > 1.

Let us define 0; := sup,,~, f(af") = ess supg, f(Si+1) (by Lemma 5.5.1)
and 0" := maxi<,, f(bi,,). The following holds:

0" — 6, a.s. as m — o0.
In particular, sup,, 0" = 0; a.s.

Proof. We may suppose w.l.o.g. that 6; < oco. Indeed, we may consider
g(0;) and the sequence (g(0}"))m>1 where g is a bounded strictly increasing
continuous function in the contrary case. By Lemma 5.3.1, we get that
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ess supy, f(bi11) = sup,,>; f(aj") = 6, a.s. For any ¢ > 0, we deduce by
assumption that

Plo, = 07" > e|F,] = P[0, — max f(bi,) > €| 7]
= P[0, — f(bi+1) > ¢,Vi < m|F]

=E Hl{ot—f(biﬂ)x}‘]:t] , &.S..
i=1

By Lemma 5.3.3, we deduce that

Ploy — 07" > €| Fi] = P[0, — f(byy1) > e 7)™
= Pless sups, F(81y1) — F(BLyy) > elF™, as.
We claim that Pless supyz, f(by,) — f(biy;) > €lF] < 1 as. Indeed,

assume on the contrary that Pless supz, f(by ;) — f(by,) > €/F] = 1 on
some non null set A; € F;. In other words, we have

E [1{655 supz, f(btl+1)>f(btl+1)+5}“/—-.’{| 1At = 1At'

Taking the expectation, we deduce that:

E |:1{ess Supr, f(bt1+1)>f(b%+1)+e}1/\ti| =F [1At]

YVe then deduce that 1y sup, F(bly1)>F(bly1)+el 1p, = 1a, as. We nov&i define
0, := ess supy, f(by1)1a\a, + (ess supz, f(by) —€)1a,. Observe that 6, is Fy-
measurable and 6, > f(b}, ) a.s. However, 0, < ess supg, f(b;,) on the non

null set A;, in contradiction with the definition of the conditional essential
supremum. Therefore,

lim P[0 — 07" > ¢|F] =0, as.

m—00

Finally, by the dominated convergence theorem, we have

lim Pl6,— 6" >¢ = lim B [E[ly, o>l 7]
= E ugréo E[l{et—9r>e}|ftﬂ
= 0.

Hence 6} increasingly tends to 6, in probability, i.e. sup,, 6;" = 0, a.s.. [
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Assumption 9. The payoff function & is of the form & = g(Sr), where
g € R’i 18 continuous. Moreover, £ is hedgeable, i.e. there exists a portfolio
process (VE)T__| such that € = V5.

We recall two weak no-arbitrage conditions introduced in Chapter 4:

Definition 5.3.5. We say that the condition AIP holds at time t if the
minimal cost c;(0) = 7(0) of the European zero claim & = 0 is 0 at time
t <T. We say that AIP holds if AIP holds at any time.

The following condition is more technical.

Definition 5.3.6. We say that the condition SAIP (Strong AIP condition)
holds at time t if AIP holds at time t and, for any Z; € L°(RY, F;), we have
DY(S;,0,Z;) = 0 if and only if Zt@) = 0 a.s.. We say that SAIP holds if
SAIP holds at any time.

We now introduce the sequence of functions which is defined recursively
as follows:

ﬁ%(57UT71> = 61 + CT<S> (075(2) - 05“221))7 vtflaf € Rd7 s € Rk?
éf(&”t) = sup&fﬂ(a?(s),w), 1<T— 17 v € Rd7

DE(s, 001, 0;) == 65 (s,0) + Cu(s, (0 — o)),

’yf(s,vt,l) =cl ( inf Df(s,vtl,vt)) . (5.3.4)

Vt ERd

Here, the notation cl(f) designates the l.s.c. regularization of f. In this
paper, we will impose later in the sequel a condition under which we have
’yf(s, V1) = inf,,cRa Df(s, Vi1, V).

The introduction of the functions above is motivated by the following
result proved in Chapter 4.

Theorem 5.3.7. Suppose that either AIP holds and Cy(s,.) is convex for
fized s or SAIP holds. Then, we have ~*(S,, Vi) = :yf(St, Vi) a.s. and, also,
Qf(St,Vt) = éf(St,V}) a.s. and Df(St,Vt,l,Vt) = Df(St,Vt,l,V;) for any
Vi1, V, € LO(R®, F,). Moreover, 3¢ (s,v) is l.s.c. on R¥ x R and convez in

v when Cy(s,.) is conve.
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Recall that the family of F;-measurable random variables (o (S;))n>1 is
defined in Assumption 8. We now consider an F;-i.i.d. sample of random
variables {bj_,,i > 1} that satisfies P[b},, = a}'(S;)|F;] > 0 a.s. foralln > 1
and by, € {a?(S¢),n > 1} a.s. Now, let us define the (random) functions

Di(s,z,y) = A3(s,y),
DE(S ry) = Ci(s, (0,y® =) + 45, (s, ),
Di(w,z,y) = Di(s,z,y)
D} w,x,y) = rznglxl_)f(biﬂ(w),x,y). (5.3.5)

Since ifﬂ(s,x) is l.s.c. in s, it is Borel in s for fixed . Then, by Lemma
5.3.4, we deduce that:

lim. r{l@;lxvm(bm( w),y) = sup e (07 (Se(w)), y) = 65 (Sh(w), y), as.
In particular, lim, . D} (w,z,y) = D5(S(w),z,y). We now investigate the
question whether inf,cgs Dj'(w,z,y) converge a.s.(w) to inf,cga D (w, z,y)
as n — o0o. To do so, we first recall the definition of epi-convergence, see [70,
Chapter 3] or [76, Chapter 7]. In the following, the notation B(z,r) desig-
nates the closed ball of RY, where d > 1 depends on the context, centered a
point z € R? and of radius r > 0.

Definition 5.3.8. Let f, : R* — R, n > 1, be a sequence of functions.
The epi-limit inferior li. f,, and epi-limit superior 1s.f, of (fu)n>1 are
defined as:

li.|(fr)n>1](w) := supliminf inf n(v),
(o)) = suplimind _inf £, (1)

Ise|( fr)n>1](w) := sup limsu inf (V).
[(fn)n=1](w) suplimsup  inf 1/k)f( )

The sequence (fn)n>1 is said to be epi-convergent at point u if

he[(fn)nzl} (u) = 156[(fn>n21] (u)

We also introduce the definition of almost sure epi-convergence for ran-
dom functions.
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Definition 5.3.9. If (f,)n>1, 95 a sequence of functions f, : @ x RF — R
such that f, is F;@B(RY)-measurable for each n, we say that f, epi-converges

to f almost surely (notation f, P of a.s.) if, for any w outside a P-null set,

and for all w: lie[(fn(w; -))nz1](u) = Ise[(fu(w; -))nz1l(u) = flw,w).

Theorem 5.3.10. Suppose that AIP holds and Cy(s,y) is conver iny. We

then have D' (w, .,.) V (—C¢(Si(w), (0,2?))) AiuN DY(S,(w),.,.) a.s.(w), as
n — oo.

Suppose that for any t, we have Cy(s,v}) > Cy(s,v?) if v} > >R v?. Then,

DMw,.,.) — Pl L DE(S(w), ., .) as..

Proof. We first consider the case where AIP holds and Cy(s,y) is convex in
y. Let us define Ls(w,z,y) == DMw,z,y) V (—Ci(Se(w), (0,2?))). Observe
that L}(w,x,y) is Ls.c. in (z,y) as a maximum of two l.s.c. functions. As

the sequence (L),>; is also non decreasing, we deduce by [76, Proposition
7.4], that for any w:

Bie[(LF (@, 7 Dzl @) = Bel(LF (@, Jnz0)(2,y) = sup L (w, 2,y).

We now prove that there exists a negligible set H such that for any w € Q\ H
and z,y € R? x R? the following holds:

sup Lf'(w, ,y) = Df (w, z,y). (5.3.6)

By assumption on (Cy)s0, we get by induction that 65(V;) > 69(V;) a.s. for
any V; € L%(R%, F,). We deduce that D5(V,_1,V;) > —Cy(S,(w), (0, V,2))
for any for any V;_1,V; € L(RY, F,). Indeed, under AIP, D?(0,V;) > 0 a.s.
hence
Df(Vir, Vi) = 05 (Vi) + Co(Si, (0, V2 = V2
> 05 (Ve) + ColSh, (0, V) = Co(St, (0, V%)), (by subadditivity)
> 0)(Vi) + Cu(Si, (0, V) = Ci(S,, (0, V)
> DY(0, V) = Cu(Sh, (0, V) = =Cul(S;, (0, V), aus

for any V;_1,V; € LY(R%, F).
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We now deduce that D$(S(w), z,y) > —C, (Si(w), (0,2@)) for every z,y
a.s.(w). Indeed, suppose on the contrary that the F;-measurable set

Ft(w) = {(:L‘,y) € Rd X Rd : [)tg(St(w):xay) < —Ct (St(CU), (O,:L’(Q)))}

is non-empty on the non-null set G; := {w : I';(w) # 0}. We then deduce a
measurable selection (V;_1, V;) € LO%(RY, F;) x L°(RY, F;) such that we have
Df(St, Vi, Vii) < —Cy(Sy, (0, Vt(ﬁ)) on G, and we extend to the whole space
by putting V;_; = 0 = V; on the complementary set Q \ G;. Moreover, by
Theorem 5.5.5, we then deduce that Df(V;,z) < —Cy(Sy, (O,Vt(ﬂ) on the
non-null set Gy, which is a contradiction.

Similarly, under AEP and Assumption 1, we have that D$(V,_,V,) € R
a.s. for any V,_1,V, € LO(Rd,ft), see Chapter 4. Then, by a measurable
selection argument, using the fact that Df(Vt,l,Vt) = Df(St,V},l,Vt) a.s.,
we deduce that D¢ (S,(w), 2, y) € R for any z, y, for any w outside a negligible
set.

By Lemma 5.3.4, L (w,z,y) — D(Si(w),z,y) V (—=Cy(Si(w), (0, 2?))
as n — oo for any w outside a negligible set N(z,y). Moreover, by the
discussion above, we deduce a negligible set M such that for any w € Q\ M,
we have Df(Si(w),z,y) > —Ci(Sy(w), (0,2?)) and D5(S,(w),z,y) € R for
any x,y. We set H := U,cqaN(z,y) UM, we claim that for any w € Q\ H,
sup,, L' (w, z,y) = D (Sy(w), z,y) for all z,5 € R?. Indeed, by the definition
of H, we deduce that (5.3.6) holds for any y € Q%. Now, since D?(S;(w), ., .)
is convex and takes values in R, it is continuous for any w € Q\ H. Moreover,
we claim that sup,, L7 (w, z,y) < oo for any z,y € R% and w € Q\ H. Indeed,
by lower semicontinuity, we have:

sup L (w, x,7y) < limkinf sup L (w, Tx, Yi)

for any sequence 4, v, € Q¢ such that x;, — z and y;, — y. Moreover, by the
definition of H and the continuity of D¢ (S(w), ., .) for any w € Q\ H, we have
lim infy, sup,, L' (w, 2k, yp) = liminfy, D (Sy(w), 25, y) = D5(Sy(w), z,y) € R.
We deduce that sup,, L7 (w,z,y) € R for any z,y € RY, and w € Q\ H.
Moreover, sup,, L*(w, .,.) also convex as a supremum of convex functions, it
is then also continuous. We then deduce by continuity that (5.3.6) holds for
any y € RY.

Now, we consider the second case where Ci(s,v}) > Cy(s,v?) for any
v}, v? € RY such that v} >ga 7. Similarly to the first case, we only need to
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prove sup,, DI'(w, z,y) = D5(Si(w), z, ) for all z, y and w outside a negligible

set. By the definition of ’yf and Of, we can show by induction an by Lemma
5.3.11 that the mappings y — 65(s,y) and y — A°(s,y) are decreasing with
respect to Ri.

Recall the definition of N(x,y), we also denote H := UycqaN(z,y) UM
and claim that for any w € Q\ H, sup, 7%, , (b7, (w), y) = 0;(Si(w),y), for
all y € R Indeed, fix some y € R? and a sequence (yi)r>1 in Q7 such that
Y — y and y; ZR‘i y. By lower semicontinuity and the discussion above, we
have for any w € Q \ H:

0; (Su(w), y) < lim inf 0 (Si(w), u) < 6;(Se(w), ), and
SUD F 1 (B (@), y) < limyinf sup 37, (b (@), ) < $UD 37y (0 (@), ):
Then, we have
0; (Si(w),y) = lim inf 0 (Si(w), yk),
sup Fen (O (w)y) = lim inf sup Tt (041 (@), ).
Moreover, by the definition of H, we have sup,, 3%, , (b7, , (W), y) = 0 (Si(w), yx)
for any w € 2\ H. We then deduce that sup,, ’yfﬂ(bgﬂ(w), y) = 05(Sy(w), y)

for any w € Q\ H. At last, by the definition of Df and D7, we conclude that
sup,, Dw, z,y) = D5(Si(w), z,y) for any z,y and w € Q\ H. O

In the Proof of Theorem 5.3.10, we have used the following result:

Lemma 5.3.11. Let f : R¥ — R be a function such that f that is non
increasing with respect to the partial order ZRE - Consider cl(f) the lower

semicontinuous reqularization of f. Then, cl(f) is non increasing w.r.t. the
partial order ZRE -

Proof. From [76, Lemma 1.7], we have the following representation of the
l.s.c. closure:

cl(f)(x) = liminf f(z) = min {a eR: I(xn)n>1, Tp — o, lim f(z,) = oz} :

Yy—x

Consider z', z* € R? such that z' ZRd z? and a sequence (z,),>1 such that
r, — x? and f(x,) — cl(f)(x?) as n — oo. Observe that x, + 2! — 2% — 2!
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as n — oo. We then have f(z, + 2! — 2?) < f(z,) by our hypothesis. We
deduce that

cd(f)(zh) < limninff(xn +a!t —2?) < liin f(z,) = cl(f)(2?).
U

Definition 5.3.12. We say that a set-valued mapping K; : R’i x R? — R4
1s a reachability set at time t < T for the super-hedging problem if K; has
compact set values and satisfies:

A ~  mf DS
yleI}{d t( t(w)7x7y) yEKt%IS}t(w),x) t( t(w)7x7y)7 a.8

Moreover, we suppose that K;(s,x) is upper hemicontinuous in (s, ).

Remark 5.3.13. By Chapter /, under SAIP, the determining set Ki(s,x)
is constructed for s = Sy(w) as a closed ball B(0,7,(s,x) + 1), where r4(s, )
1s an u.s.c. function. We shall see later in the model with one risky asset
how to characterize K;(s,x) explicitely for every (s,x) € R x R such that
K,(s,x) is compact for all (s,x) and upper hemicontinuous. Moreover, By
[1, Lemma 17.29], the upper hemicontinuity of K implies that

A(s,v-1) == inf D5 (s, vi_1, ;). (5.3.7)

v ER4

Theorem 5.3.14. Suppose that SAIP holds and Cy(s,v}) > Ci(s,v?) for any
v}, v? € RY such that v! >ga v Then, we have:

n m}CO = Dtn ('L"%.) == 1nl Dt St w ,.’I;, 9 Vx, a.s
Y Kt (St (UJ),Z‘) ( y> yeKt(St(,()) l) ( ( ) y) y7

Moreover, for each fized x; € L°(R®, F;) such that the random set K(Sy, x;)
is Fy-measurable, there exists a sequence (11 )n>1 of LO(RY, Fii1) such that
i € argming, s, ., (Df(w, ) a.s. and iy — Gy € LORY, Fiia)
along a random Fyy1-measurable subsequence where §y, € arg min(DS(Sy, 2, ).

In the case where Cy(s,y) is convex in y, the same conclusion holds if
we replace D (w, x,y) by D (w,z,y) V (—Ci(Si(w), (0,22)))). Moreover, in
that case, if Ki(S,x;) is also convez, for fizred x; € L°(RY, F;) such that the
random set K,(Sy, x;) is Fi-measurable, 7 = E(y7.|F) € Ki(Si, z¢) a.s.
and converges a.s. to §? = E(§?,|F;) € argmin(D; (S, 4, .)).

106



Proof. We prove the claim in the first case, the second case is deduced simi-
larly using Theorem 5.3.10.

~ Consider the negligible set H in the proof of Theorem 5.3.10 such that
DMw, x,y) < Dt (w, z,y), for all 2,y and for any w € Q\ H and n > 1. We
then have:

lim inf D w,x,y) < inf  Df(Sy(w),z,y), Vi, (5.3.9)

n—00 yeK¢(St(w),r) T yeK(Si(w),x)

for any w € Q \ H. We now establish the reversed inequality. Since each
D} is an F-normal integrand, then by [76, Theorem 13.37], we deduce that

inf e, (8, (w),2) Df(w, x,y) is almost surely attained at some g7 (w, ). In other
words, we have J;'(w, z) € argming, s, (). (D (W, ,.)) for any w outside a
negligible set NV such that H C N.

Since Ky(s,z) is compact, for any w € Q\ N and = € RY, there is a
random subsequence {7;"*(w,z),k > 1} of {§}(w,z),n > 1} converging to
some §0(w,z) € K;(Sy(w),x). Since D(w,.,.) =5 DE(Sy(.),.,.) a.s.(w) by
Theorem 5.3.10, we deduce by [76, Proposition 7.2] that:

lim inf DF(w, z, §F(w, 2)) > D5(Sy(w), z, 30 (w, ) (5.3.10)

—00

for any w € Q\ N. As D} (Sy(w), z, 3 (w, ) > inf ek, (s,w)a) Di (Si(w), 2,y),

we deduce that for any w € Q \ N:
) =

inf  Df(Sy(w),z,y). (5.3.11)

liminf D¥(w, z, §F (w, x
koo ¢ ( i ) YEK(St(w),x)

We deduce from (5.3.9) and (5.3.11) and, finally (5.3.10), that

liminf DF(w, z, 9 (w, z)) = inf  Df(Sy(w),z,y) = D5(Sy(w), x, 40 (w, z))
k—o0 YEK (St (w),x)

We then deduce that 99 (w,r) € arg minKt(St(w)jz)(ﬁf(St(w), z,.)) for any
we N\ N, ie (5.3.8) holds. Using the definition of the reachability set-
valued mapping K;, we conclude that 99 (w, z) € arg min(ﬁf(St(w), x,.)) out-
side a negligeable set.

Recall that infex,(s,w) ) Df (W, ¥4, y) is Fyry1-measurable. Therefore, by
a measurable selection argument, we may deduce the existence of g%, €
LO(RY, Fii1) such that D (w, z¢, G4 1) = Infye k(s (w),z0) Di(w, 2, y) and g4 €
Ki(S;, v¢) as.. By [55, Lemma 2.1.2], we may suppose that g7, € K;(S;, x;)
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is convergent for some random subsequence towards a F;,,-measurable limit
G.1 € Ki(Sy, 2;). Moreover, by the first step 47, , € arg minKt(Shwt)([)f(St, T, .)).
If K;(St, x¢) is Fi-measurable, consider a Castaing representation (2}"),,>1
of Ki(Si,x¢). The generalized conditional expectation E(y;,,|F;) exists as
Ui € Ki(S, x¢) is Fi-bounded. Note that g7, ; may be approximated by a
sequence of F; i-measurable random variables in the set {2 : m > 1}. We
deduce that E(g;|F:) € Ki(Sy, z¢) if K¢(Sy, xy) is convex. It is clear that
E(yp1|F:) converges to E(g7, | F:) € Ki(Sy, x).
When the cost function is convex, D?(w, z;,y) is convex. Using the Jensen
inequality for conditional expectations, we get that

Df(Sus 2, BGRalF)) < B (DSt i)l F) |

< FE ( infd Df(St,xt,y)l]:t> )

yeR:
< infd Df(St, T, y)

B yeR

The last inequality holds since inf cga Df(St, xy,y) is Fi-measurable. This
implies that E(g?,,|F;) € argmin(D; (S, 24, .)).
O

5.3.2 Multi-period framework

In this section, we consider the multi-period setting ¢t = 0,--- ,T. Our goal is
to determine the infimum super-hedging cost of £ := ¢(Sr) = (¢'(Sr), 9@ (Sr))
at time 0, where g : RE — R< is a deterministic continuous function. To
do so, we apply the dynamic programming principle of Proposition 5.2.1
to recursively compute 4 (Viy) for t = 0,--- ,T. Moreover, since fyg 0) =
’yg(So, 0) under the weak no-arbitrage condition we suppose, it is then suf-
ficient to compute Jy(So, Vo) for Vo = 0. We work under the following as-
sumption:

Assumption 10. For each t, suppose that there is a reachability set-valued
mapping K; : Ri x RY — RY such that K(s,v;_1) is a compact upper
hemicontinuous set-valued mapping, i.e.

inf D¢ s,x,y) = inf DS $,T,Y), a.s..
JCR4 i ) YK (s.2) hl y)
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For simplicity, we consider the model where the price process satisfies
suppz, (Se41) = {awSe: a, €0}, t <T —1,

such that P[Siy1 = aiS|F] > 0 a.s. for all a; € ©, where © = {a},n >
1} is a deterministic sequence of positive numbers. Consider a sequence
of random variables {bi,i € J;, t = 0,---, T} in R¥T generated by the
following procedure:

1) by = Sy for all i € J, = N\ {0}.

2) For given t > 0, we denote F; = o(b* : k € J,,u < t) where (0¥)es,
are the random variables constructed at time ¢. Then, for time ¢ + 1, and
for each i € .J;, we generate a sequence of i.i.d. random variables o 1
j > 1, independent of F; such that a{ 11 € LY(©, Fiiq) for each j. Moreover,
suppr, aj,, = ©. We then define for each i € J; and j > 1, b7, = o, bi.
Then, Ji.1 ={(i,j): i € J;, j > 1}.

To compute ﬁg (Sp,0), we approximate o (b%,v,_1) by the randomization
method considered in the last section that we extend to the multi-period
setting.

We denote n! = (nl),—1.. 7 a generic element in N” and, fort = 1,--- , T,
we define n! = (n)—.. 7 € NTTHUIEbi € {alb] 3§ € J1, k> 1}, 0 € J,,
we set:

Aéil(bgf—l?val) = max ﬁg(@?bér—uwfl),

mgng
BB 0y) = max AR (b o), 0t = (ot <T-1
P (b, ve) = I?a?il Ve (b o), 07 = (0 )umpyo, s £ < ’
mxny g
ﬁ?tﬂ(biwt—hvt) = éft+l(bi7 ) + Ct(bi, (0, U§2) - Ug)l))a t<T-1,
A Ohoe) = b DY (0o w), 6 < T - L

v €K (bl ,ve—1)

Note that by assumption
T (s, 0r-1) 1= g'(5) + Cr(s, (0,9°(s) = v5,)).

Therefore, ’ﬁ is l.s.c. Since K; is an upper hemicontinuous compact set-
valued mapping by assumption (see Lemma 4.4.14 and Theorem 4.4.15 in
Chapter 4), and D" is Ls.c. by induction, 47 (bi, v,_1) is Ls.c. in bi and
v;—1 by [1, Lemma 17.29].

The following theorem is our main contribution of this section. We use
the convention that n' — oo, n' € NT | if and only if n} — oo,Vi =1,---,T.
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Theorem 5.3.15. Suppose that Assumption 10 holds and suppose that C;
satisfies Ci(s,vy) = Ci(s, vf) whenever v' >ga vf. Then:

lim 42 (So,0) = 75(So,0), a.s..

nl—oco

Proof. By Remark 5.3.13, Assumption 10 implies that

7(S0,0) = inf  D§(Sp,0,v;)

v1€K0(50,0)

where K(Sp,0) is a compact set-valued mapping. Moreover, since 45, (., v;)
is I.s.c. hence Borel, Theorem 5.3.14 applies when we replace S; by each
random variable b} € {afb]_; j € Jy_1,k > 1}. Precisely, in accordance with
(5.3.5), we shall consider:

t+1

Dy (b v, 1) = sup 7f+1(a?bi,vt) + Cy(aj'by, (Oavt@) - Ug)ﬁ)’t <T-1,

nIng
nttl . _nit! i
3 (b, vq) = inf D" (b v, ve), E ST — 14
thKz(b%,Utfl)
ottt .
sup 5, (b, ver) = 35 (0, vi-1), £ ST =1, by Theorem5.3.14. (53.12)
t+1
g

We now prove by induction that limpi_,. 42 (So,0) = 45(Ss, 0) a.s. Observe
that, at time T—1, n” =: n” € N and 42, (b%-_,, vr_1) and 32, (b_,, vp_1)
coincide. So, by Theorem 5.3.14, we have

im AR (b m A (B ~€ i

lim A7, (b g, vr—2) = Hm 57 (b7, v7-2) = Y51 (bp_y, v7—2)
Now, we suppose that supyocyr-i-1 AR (b, i) = Ae (B, ) for any
bi,, € {af bl; j € J;, k> 1}. We have by definition:

At g 2 2 Antt+l 14 i 2 2
D (01, (0,07 — 0i)) = 02 (B, v) + Cu(bl, (0,0 — vf?))
~ntt2, myi 3 2 2
- m%}_(‘_l ’7t+1 (at bt? Ut) + Ct(bta (07 Ui ) - vt(—)l))v

SN

= (ni+1)u:t+2,~-- T

Consider the directed set of all n'*! € N~ endowed with the partial
order n'*! > m'*! if and only if n‘™' > m!*! forall t+1 < i < T. By
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construction and by induction, it is easy to check that (ﬁ{‘)ne Nit+17) 1S in-
creasing, i.e. D® > D™ whenever n > m. Also, we may show by induction
that D*(b,.) is Ls.c. for all n. By Lemma 5.3.16 that allows us to exchange
the supremum and infimum in the following first equality, plus the induction
hypothesis, we deduce that

sup ;! (bi, Vp_1) = sup inf ﬁft+1(bi, Vg1, V)

ntt1 ntt1 ’l}tGKt(bt,’Ut 1)

= inf sup D (b, vy, vy)
’UteKt(bt,”Ut 1) nt+1

TR
—  imf sup sup DR (B v, )
ve €K (bl ve—1) nii}GN nt+2

= inf Sup sup | max 'Yt+1 (at+1bt7vt)
vteKt(b;,vt,l)niﬂeNntJrz m<n 1

£ b (0,0 vﬂ)))

= inf Sup - max SUP 'Yt+1 at+1bt7vt)
UtEKt(b%,Ut_l) t+1eNm<l’lt+1

+ Ct(biv (Oavt Ut 1 ))

= inf Sup ~ max +1 (aft1bp,vr)
v €Ky (b}, ve—1) t+16Nm<nt_,'_1

+Ct(bi7<oavt( ) Ut 1))

= inf Df( 55 Ut— 1,1),5) tg(biavt—l)'
”UtEKt(b%,’Utfl)

To deduce the last two equalities, we use the definition of éf(bi, ,Ug_1,v;) and
Db, vi_1, 1), see (5.3.4) but also (5.3.7) in Remark 5.3.13. The conclusion
follows by induction. ]

In the proof above, we have used the following lemma:

Lemma 5.3.16 (Dini-Cartan). Consider a family of l.s.c. functions (fn)ner,
fo : R — R such that for every finite set J C I, there is ng € I with
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sup;e; fj < foo- Consider a compact set G, then the following holds:

sup inf fu(x) = inf sup f,(2).
Proof. By considering an increasing homeomorphism from [—oo, 400] onto
0, 1], we then restrict ourselves to the case sup,, f,, is bounded. It is clear that
sup,, infyeq fu(z) < infieqsup, fn(x) so that the inequality holds if the sec-
ond term is —oo. For the reverse inequality, consider any a < inf,cq sup,, fn(x).
For all x € G, we have a < sup,, f,(z). Then, there exists some k = k,
such that a < fi(x). Note that the set Op = {z : a < fi(x)} is open
since fi is l.s.c. By compactness argument, we deduce a finite covering of
G by some Oy, 7 = 1,---,N. By our hypothesis, there exists ny such
that a < fi,(z) < fy,(x), for all 2 € G and ¢ = 1,--- , N hence we have
a < infieq fo,(x) < sup, inf.cq fu(x). O

Lemma 5.3.17. For all t , for all j € Ji41, consider b{H = af bl where
i€ Jy and k> 1. Then, b],, € {a}bj,n > 1} a.s. and P[b],, = a}'bj|F;] > 0
a.s. Moreover, {b},,j € Ji41} are Fy-i.i.d.

Proof. For all n > 1, we have almost surely :
P b, = apbj|F] = P [af, b] = albl|F] > P af,, = a}|F] > 0.

The last statement follows directly from Lemma 5.3.3 as (afﬂ)jzl are Fi-i.i.d.
by assumption.
O

5.4 Model with one risky asset and piecewise
linear costs

As we may observe in the previous section, the reachability set-valued map-
ping plays an important role in propagating the lower semicontinuity which,
in turn, propagates the convergence property. We consider in this section a
special case of convex cost functions and provide explicit expressions for the
minimal super-hedging costs. In particular, under SAIP condition, we obtain
an explicit expression of the reachability set K;(s,v;_1) when the payoff is of
linear growth, i.e. & = (£1,&2) <mz (aSr +b,c) for some a,b,c € Ry.
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We suppose the market consists of one risk-free asset and one risky asset
denoted by (S;)o<i<r. We impose the following assumption for the condi-
tional support of the price and cost processes.

Assumption 11. The price process satisfies Sy € {a}Sy,n > 1} where
the sequence (al'),>1 is deterministic and satisfies ai = min, a? = ki > 0,
a? = max, af = k' € Ry, where ki, k* are deterministic. The cost process
Cy is given by Cy(Sy, (x,v,)) = 24+ S,Cy(v2_ ) for some deterministic piecewise

linear function C; : R — R.
We recall the AEP condition

Definition 5.4.1. We say that the financial market satisfies the Absence
of Farly Profit condition (AEP) if, at any time t < T, and for all V; €
LR, F), (V;) > —o0 a.s..

By Lemma 4.4.11 in Chapter 4, AIP implies AEP if the cost function
C; is either sub-additive or super-additive. Moreover, by Theorem 4.4.5 in
Chapter 4, AEP implies that :yf(St, .) > —oo a.s. This property will be used
in the proof of the following result.

Proposition 5.4.2. Suppose that Condition AEP and Assumption 11 hold.
Then the minimal hedging cost of the payoff ¢ = (mSr+G, K), m,G, K € R,
is given by 35 (Sy, vi_1) = G+ Sihy(v2_,), where hy : R — R is a deterministic
piecewise linear function.

Moreover, [Dt(St,vt,vt,l) = Stﬁt(vt,vt,l) for some deterministic piece-
wise linear function hy : R x R — R.

Proof. We first show by induction that, if f?f 1 (Sig1, ) = Si ftﬂ(vf) where
fie1 : R — R is a piecewise linear function, then 55 (S, v_1) = S;f;(v2_,) for
some piecewise linear function f; : R — R. To do so, observe that:

0; (S, v) = sup (Sﬁﬂ(vf)) = max {k‘fstftﬂ(vf), katf;H(Uf)}

se{alS¢,n>1}

= Sy masc { ki o (0F), K Foa (07)}

Since ftﬂ is piecewise linear function by the hypothesis, we deduce that
Gi(v?) = max{klfi11(v?), k¥ fri1(v?)} is also piecewise linear by [76, Propo-
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sition 3.55]. Therefore,

95 (S = inf Dj(S = inf
¥ (St ve-1) = inf DSy, ve-, ) = inf

=50t (d(0f) + Culv} =)

<9~f(5t, 'Ut) + Ct(St7 Ut2 - ’Ut2—1))

By [76, Proposition 3.55], we also deduce that g (v?) + Cy(v? — v? ) is a
piecewise linear function in (vZ,v? ;). Moreover, under AEP, we know that
if(St,vt_l) > —o0 a.s.. Therefore, by [76, Proposition 3.55],

) = int (5:07) + Cilef —o2y))

is a piecewise linear function in v? ;.

If the payoff is £ = (mSy + G, K), then 35.(S, vr_1) = G + St fr(v3_,)
where fT(v%l) = m+Cp(K —vZ_,) is a piecewise linear function by assump-
tion on Cp. We then argue by induction as previously done to deduce that
Ve (Si—1,vi—2) = G+ Si_y fi_1(v? ;) for some piecewise linear function f,_;.

At last, since D5(Sy, vy, vi-1) = 0,(S;,v,) + Ci(Sy, (O,vt(2) — vg)l)), the
conclusion on D, follows. O

The following is our main result of this section. It states the existence of
the reachability set under SAIP.

Proposition 5.4.3. Suppose that the payoff ¢ = (g'(St),¢*(St)) satisfies
g*(S7) < aSr + b and g*(St) < ¢ for some a,b,c € Ry. We also suppose
that Cy(s,vt) > Cyi(s,v?) whenever v' ZR2 v? and suppose that Cy(s,.) is
subadditive and 1-homogeneous.

Under the no-arbitrage condition SAIP, the reachability set K;(s,vi_1) is
defined for every (s,v;_1) € R x R and is explicitly given by:

Ki(s,v_1) = Bt(oﬂ“t(& V1) + 1)

where ri(s,v_1) = sfi(vi_1)/g:(8) and f;, g, are deterministic piecewise linear
functions such that g,(s) > 0 for all s > 0.

Proof. We define € := (aSt + b,¢) so that & <Rz €. We show by induc-

tion that DO(s,v_1,v,) < D5(s,v,-1,0;) < [)f(s,vt_l,vt). By the proof of
Theorem 4.4.15 in Chapter 4, we get that

Kt(S;Ut—l) C {Ut : Ef(s,vt_l,vt) < Df(savt—l)o)}
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Moreover, by sub-additivity and 1-homogeneity.

DY (s, vi-1,0) = Cu(s, (0,07 — v2))) + 67 (s,0) > —Cy(s, (0,7 1)) + Df(s,0,v,)
D?(S,O,vt) > \vt|l~??(s,0,vt/]vt|) > vy r{ni?l} Df(s,(),z), Vo |vg| > 1.
ze1—1,

We deduce that K;(Sy, v;_1) € B(0, r:(Ss, v;_1)+1), where the radius r,(S;, v;_1)
is given by

ro(Syve1) = [)f(St,Ut_l,O) + Cy(Sy, (0,07 1)) _. Sife(viy)
b e minze{_m} D?(St, O, Z) . gt(St) .

Note that by Proposition 5.4.2, f; : R — R and g, : R — R are determin-
istic piecewise linear functions. Moreover, we have g,(S;) = Syinf.cq_1,1y a:(2)
for some deterministic piecewise linear function a;. Since SAIP holds, we de-
duce that inf.c;_y 1y a¢(2) > 0. We then define g;(s) := sinf.c{_113 a;(z) >0
for all s > 0. The conclusion follows. O]

5.5 Examples

In this section, we consider two classical examples. The first one corresponds
to the market with proportional transaction cost and the second one is with
fixed cost. We provide the explicit expression of the reachability set-valued
mapping K; for the Put option. Then, as a by-product, the minimal super-
hedging cost for Put option is computed.

For a sake of simplicity, we consider the binomial market model, i.e. the
price process satisfies suppz, Siy1 = {kat, kt“St}, where k4, k' € R

5.5.1 Market model with proportional transaction costs

We consider a particular case of section 5.4 where
Ct(Sty U) = Ul + (1 + Et)StU21v220 + (1 - Et)St’U21v2§0. (5513)

for some deterministic coefficient ¢, € Ry. By a direct computation, see
Appendix, we obtain the following
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Proposition 5.5.1. If v,_, € R?, the following holds:

ég_l(St—la U) = —(1 — Et)ktd_lst—l'lﬁlqﬂzo — (1 + Et)k?zl_lst_11)21v2§0
D?_I(St,l, O, U) = ((1 + et,l)St,l — (1 — €t>kg_lst,1)’l]2lv220
+ ((1 — Et—l)St—l — (1 + Et)kg_lst—l)UQ]-'uZSO

Moreover, AIP;_1 holds if and only if:

1 _ 1—¢€_
ki, < +_€t Land B, > —— L
1 €t 1+€t

(5.5.14)

Moreover, SAIP, 1 holds if and only if the above inequalities are strict. If
AIP;_1 holds, we then deduce that:

2ei{rif1 N DY (S,_1,0,v) = S;_; min {1+ e1) — (1—e)kiy,
(14 ek, — (1—a )}

Proof. Recall that AIP,_; holds if and only if DY |(S;_1,0,v) > 0 for any
v € R? which is equivalent to (5.5.14). Moreover, suppose that SAIP;_;

1+ e
holds. Tf kL, — ——“=L DO (S, | 0,0) = 0 for any 2 > 0, i.e. SATP,

t
fails. Similarly, we get that k)" | > (1 —¢;-1)/(1 + €). At last, suppose that
the inequalities in (5.5.14) are strict. Since S;—1 > 0 a.s.,

Uzei{n_fl,l} DY (S,_1,0,v) >0, a.s.

so that SAIP, 1 holds by Theorem 4.4.16 in Chapter 4. m

We apply the result above at time 7" and we proceed by induction, see
Appendix, to deduce the following result at time T — 2.

Proposition 5.5.2. Assume that 1 + ey < (1 +ep)k% | and 1 —ep_1 >
(1 — er)k%_,, we have:
D%fz(ST,Q, 0, Z) = ((1 + GT,Q)ST,Q — (1 + ET,1>/{Z§£725T,2)) 221Z220

+ ((]_ — ET_Q)ST_Q — (]_ — ET)kJ%_lk?%_QST_Q) 2212’2S0‘
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and AIPr_o holds if and only if:

1 _ 1 —epr_
+ €9 andk:%_zz €72

< — === —_—
=2 = 1 + €ET_1 (1 — ET)k%,l

Moreover, SAIPr_o holds if and only if the above inequalities are strict.
Moreover, under SAIPr_o, we have:

vzei{rifl 1} Df._5(S7-2,0,v) = Sy_5min {((L+erz) = (1= er-1)kry),
—((1—er_9)—(1+ ET)kélle%LZ)}‘

The assumptions of Proposition 5.5.2 are chosen for a sake of simplifica-
tion. The computations for ¢ < T'— 2 are similar. In particular, for a Put
option with payoff (K — Sy)*, K > 0, we obtain a simple formula for the
reachability set.

Lemma 5.5.3. Suppose that SAIP holds and & = (g(St),0) where g is a
continuous function bounded from above by a constant M € R.. Then, there
exists a reachability set Ki(s,vi—1) = By(0,r¢(s,vi—1) + 1), t <T — 1, closed
ball of radius (s, vi—1) := M\(s,v-1)/11(s) where the functions

. o . NO

ir(s) = 7J2€1{rif1’1} Dy (s,0,v),

)‘t(sv Ut—l) = Ct(s7 (07 Utz—l)) + M + Ct(s7 (07 _’Ut2—1))>

are explicitely given by Proposition 5.5.1 and Proposition 5.5.2. In particular,
we have i(s) > 0 for all s > 0.

We illustrate the results above by a numerical example. We consider the
put option payoff g(S7) := (K — Sr)* at time 7' = 2. We suppose that the
proportional cost coefficients €; = €5 = 0.02. We assume that SAIP condition
holds and choose k¢ = 0.9, k% = 1.1, k{ = 0.9, k* = 1.2. The price function
at time ¢ = 0 is presented in Figure 5.1.
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Figure 5.1: Price of Put option

We also visualize the ratio of put option to asset price Sy

Ratio (price put)/(asset price) with proprortional cost
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Figure 5.2: Ratio Put option/Asset Price

5.5.2 Market model with fixed cost

In this section, we recall a financial market model in presence of both propor-
tional and fixed costs modeled by the following liquidation and cost functions:

Ly (S, vp) == Utl + (vf(l —€)S; — Ct>+1vt>0 + (Utz(l +€)S; — ¢t) Ly <o
Ct<St7vt) = _Lt(Sta _'Ut)-
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for some deterministic constant ¢; > 0 representing the fixed cost we need to
pay to obtain a non-null position.

In Chapter 4, we have introduced the horizon cost function defined as
follows:

C{°(s,y) := liminf M.

a—00 (6]

(5.5.15)

Definition 5.5.4. We say that the robust no-arbitrage condition RSAIP
holds at time t if the SAIP condition holds at time t for the enlarged model
defined by C°. We say that RSAIP holds if it holds at any time.

In Chapter 4, we have proved the following theorem:

Theorem 5. 5 5. Suppose that the condition RSAIP holds. Then, we have
’yt (St,Vt) = (St,Vt) a.s., Gé(St,Vt) = 9 (S, Vi) a.s. and, also, we have

(St,V} 1, V) = (St,Vt Vi) a.s. for any Vi,V € L° (Rd Fi), where
0%, D5 are given by (5 3.4).

As the horizon cost function coincides with the cost function (5.5.13)
without fixed costs, the results stated in Propositions 5.5.14 and 5.5.2 allows
us to characterize the reachability set-valued mapping K; for this market. In
particular, since C; < C° 4 ¢4, by a straightforward computation, we deduce
a simple formula of K; for the Put option:

Lemma 5.5.6. Suppose that & = (g(St),0) where g is a continuous function
bounded from above by M € R.,. Then, a reachability set K,(s,v,_1) is
explicitly given at any time t < T — 1 by K(s,v;_1) = By(0,7¢(s,v;_1) + 1),
closed ball of radius ri(s,vi_1) := M\(8,v,-1)/1,(s) where

ir(s) == inf DP®(s,0,v),

vZe{-1,1}

Ae(s,vim1) = (s, (0,07,)) + M + C(s, (0, —vfy)) + ch,

and D?’oo s given in the model without fized cost given by Proposition 5.5.1
or Proposition 5.5.2. In particular, we have i;(s) > 0 for all s > 0.

As a numerical example, we also consider the put option payoff (K —Sz)*
at time 7' = 2. We consider the binomial tree model as previously. In the
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case where the conditional support suppgz,S; is countable, we can use the
randomized method established in section 5.3.

We use the same parameters as in Section 5.5.1 and we consider fixed
costs ¢; = cg = 0.8. The price function is illustrated in Figure 5.3.

price Put
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Figure 5.3: Price of put option with fixed costs.

We also visualize the ratio of put price to asset price S
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Figure 5.4: Ratio price of put to asset price with fixed costs.

We also compare the price of put option with and without fixed costs.
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Figure 5.5: Price difference between two cases

5.6 Limit theorem for convex markets

In the literature, there is few results providing limit theorems for financial
market models with transaction costs, see [38] and [4], but also [56] and [46]
without transaction costs. In this section, we consider a sequence of markets
defined by convex cost functions {C}'(S;,z),n > 1} such that CP(S;,x) |
Cy(Sy, ) as n — oo for some convex function C;. We associate to each C}" a
dynamic programming scheme deduced by our general analysis:

V%H(ST, Vi1
Qf’n (St; (%
D™ (Sy, Vie1, Vi
%g,n (S, Vi

gl(ST) + C?’(STa (07 9(2)(ST) - VT—l))v
€S8 Sup}'t ’Ytg—]—nl(st-l—la W)v
07" (S0, Vi) + C Sk, (0, VP = V),

-1
= essinfg Df’n(St,Vt_l,Vt).
Vt€L0(Rd,]:t)

~— O~ O~

Assumption 12. We suppose that suppz, Siy1 = ¢¢(S:) = conv{e; (St), ...07 (Si) }

where gzﬁ{ :R? — RY, j < J, are piecewise linear mappings in the sense of
Definition 5.7.1.
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We define 47" : R? x R? — R recursively as follows:

?:gr’n(& UT—1) = %Ep’n(SWT—l),

071 (s, vr) i= max 33" (671 (5), ve),
Df’n(sv Vt—1, Ut) = 55(87 Ut) + C?(S7 U§2) - vlgz)l)’

ﬁf’"(s,vt_l) =cl ( inf Df’”(s,vt_l,vt)) :

Ve GRd

Assumption 13. Suppose that for anyt < T —1, inf,,cga1(01) D} (s,0,v,) >
0 for all s € R’fH so that there is a upper hemicontinuous reachability set-
valued mapping K;(s,v,_1) for the super-hedging problem in the market de-
fined by C;. Moreover, we suppose that K; is a universal reachability set
in the sense that it satisfies for alln > 1 and (s,v;_1):

F" (s, v) = inf o DE(s, veog, ).
thKt(syUt—l)

Remark 5.6.1. Consider the case where C, C" and S; satisfy the assump-
tions specified in section 5.4. Since C < C" for alln > 1 by assumption, we
deduce that inf,, cga-1(9 1) DV(s,0,v;) > 0 implies inf,,cga-100,1) DY"(5,0,v,) >
0 for all n. By the proof of Proposition 5.4.3, it is sufficient to suppose that
SAIP holds for the market defined by C. If we suppose that Cy(s,v;), CP (s, vy)
are bounded above by |hi(s,v;)| for some continuous function hy, by the same
argument as in Lemma 4.5.21 in Chapter 4, we deduce that the quantities
D%(s,v,_1,0) and D{""(s,v,_1,0) are bounded above by a continuous func-
tion hy(s,v,_1). Hence, a universal reachability set ewists as Ky(s,v;_) =

B(0,7¢(s,v,-1) + 1) where

ri(s, vy1) = iLt(S,Utfl) + e (5, v-1)]
y Ut—1) — ~ .
' ' infv,geSal—l(O,l) D?(Sa 0, Ut)

Since ry is u.s.c., we deduce by Lemma that K, is upper hemicontinuous.

Theorem 5.6.2. Suppose that the functions ¢{ : Rﬁ — Rﬁ, Jj < J satisfy
Assumption 12. Suppose that Assumption 13 holds. Then, for any t <
T — 1 and for any v,—1 € RY, lim,_,0 &f’"(s,vt_l) = if(s,vt_l). Moreover,
SAIP condition holds for the markets defined by C" and lim,,_,, vf’"(St, Vi) =
v£(S4, Vi) a.s. asn — oo for any V, € LO(RY, F,) and t < T.
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Proof. We first observe that if ™ is convex in (s, v;_1) for any n. We now prove
that Df’"(s, Vi1, ) LN f)f(s, Vi_1,.). Indeed, by the definition of 1%" we have
that 35" (s,.) 4 35(s,.). Since 75(s,.) is convex and takes values in R, it is
continuous. We deduce by [76, Proposition 7.4(c)] that 57" (s, .) 2, F(s,.).
Moreover, by convexity and by assumption, we get that

é%ﬁl(S;UT—l) = 1}13}(’7%”( %_1(8),'1%_1),
53—1(3=UT—1) = T?ff?%(d)j(s)avt—l)‘

Under Assumption 12 holds, the mapping (s,v_1) — (¢;(s),vi—1) is piece-
wise linear in the sense of Definition 5.7.1. Since, ’y%” is convex, we deduce
by [76, Exercies 2.20] that 75" (¢;(.),.) is jointly convex. Moreover, since we
have lim, o 77" (9;(s), .) 4 ’y%(qu( ),.), for any j < J, we deduce by [76,
Proposition 7.48] that:

é%ﬁl(S, ) m<aX7T (¢j($)> ) ﬂ) max:yg‘(qu(s)’ ) = ég’—l(sa ')7 n — o0.
J<J jeJ

Since C%._,(s,.) | Cr_1(s,.) and Cr_4(s,.) is continuous, we deduce by the
Dini theorem that the convergence is uniform on any compact subset K of R
By [76, Theomrem 7.14], we deduce that C}_,(s,.) converges continuously
to Cr_1(s,.) in the sense that C}_;(s,2") — Cr_i(s,x) whenever 2" — z.
We then deduce by [76, Theorem 7.46] that

D%ﬁl(S,UT_g,.) o D%nl(s Vr— 2,.), n — oQ.

Suppose that lim,, s DS (s, v,.) £ E4 fol(s, vy, .) and, by induction, let

us show that lim, ., D" (s V-1, ) E4 DS (s,v1,.). Since Kyii(s,.) is
compact, we deduce that 7t+1( )4 7t+1( .). Since ﬁfﬂ(s, .) is convex and

takes real values, it is also continuous. We deduce by [76, Proposition 7.4]

that lim,, . 757 (s, .) E4 4.1(s,.). As in the case t = T — 1, we deduce by

induction that lim, .o D5"(s,v_1,.) & Di(s,v,_1,.).

At last, since inf,, cga-1(9 1) D?(S,O,Ut) > 0, SAIP holds for the market
deﬁned by C;, see Theorem 4.4.16 in Chapter 4. By Theorem 5.5.5, we
have 5 (S, Vi) = 75(S,, V;) as. for any V, € L°(R% F,). Moreover, since
DY"(5,0,v,) > DY(s,0,v;), we deduce that SAIP also holds for market de-
fined by CP and, similarly, we have "(S;,V;) = ~5"(S;,V;) a.s. for any
V, e LO(Rd, F3). The conclusion follows. O
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5.7 Appendix

We recall from [76] the definiton of piecewise linear function:

Definition 5.7.1. A mapping ' : D — R™ defined on a set D € R" is
piecewise linear on D if D is the union of finitely many polyhedral sets (P;)ics
such that, for all x € P;, F(x) = Ajxz + By, for some matriz A; € R™*" and
B; € R™. A function f : R® — R is piecewise linear if it is a real-valued
piecewise linear function on its domain.

We now provide the complement to Section 5.4. Recall that the model
is defined by one risk-free asset and one risky asset denoted by S. The cost
function is given by

Ct<St,'U) = ’Ul -+ Stét(vz), (5716)

where C; : R — R is a piecewise linear function. By Proposition 4.5.6 in
Chapter 4, we have:

05 (Sr_1,v) := ess supz,._, Cr(St, (0, —?)) = sup Cr(s, (0, —v?))

SESUPPr, St

= sup (—(1+ er)sv’Liecy — (1 — er)sv°1,25)
SESUPP]:TilsT

= sup (—(1+ er)sv’Liecg — (1 — er)sv°1,25)
s€lk$_ Sr_1,k%_1S7_1]

=max { — (14 ep)kf_1Sr_10Le<o — (1 — )k Sr_1v° 1,250,
- (1 + ET)k%_lsT—IQﬂlyQSO — (1 — ET)]C%_IST_1U2]_U2ZO}
= —(1 —ep)k? 1 Sr 1071250 — (1 + ep)E%_ S7_19* 120
and
CT—l(ST—la (0, v — 22))
= (1+ 6T—1)ST—1U217JLZ220 + (1 - ET—l)ST—IUQ]-v?szSO
—(1+ er—1)Sr_12°1y2 250 + (1 — er_1)Sr_12° 12,2

We then have:

DY (S7-1,0,v) = 03_,(Sr-1,v) + Cr_1(Sr—1, (0,0%))
= ((1+er—1)Sr—1 — (1 — er)kg_1 Sr—1)v° L2
+ (1= er1)Sr1 — (1 + ep)kf_1 Sr-1)v? L2
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More generally:

Dy, (Sr-1,2,0) = 07 1(S7-1,v) + Cr_1(Sr_1, (0,0 — 2))

(]_ + €T—1)ST—1U21v27z220 + (1 — ET—I)ST—1U21v27z2§O
—(1+ er—1)Sr—12°1y2_s250 + (1 — ep_1)Sr_12° 1,229
—(1 - GT)k(ji«_IST_ﬂ}QlU?ZO — (1 + ET)k:%—lsT—IUQ]-vQSO-
In the following, we assume that 1 +er_1 < (1 + er)k¥_, and, also, that

1—ep_1 > (1 —er)k$_,. We shall use the usual convention that inf () = co.
We get that:

7%—1(Z> = ignfg D%_1<ST71,Z,U) = ,min4D’[1)“7i1(ST*1727v)7

=1,

where

D%il = U2:U2i1’zl§v2>0 ((1 -+ €T_1)ST_1(U2 - 22) — (]. — eT)k%flST_lvz)
= —(1 - eT)k%_lsT_lz’lezgo — (1 + 6T—1>ST—1Z212220-

D%zl - u24v2i2£v2<0 ((1 + 6T_1>ST_1(UQ B 22) B (1 + ET)k%—IST—l?}Q)
= OO]_Z2>0 — (1 + GT_l)ST_l,ZQlZQS().

DY’ = U2'v2irzl£v2>0 (1= er—1)Sr_1(v* — 2%) — (1 — ep)k§_1 Sr_10?)
= 00122<0 — (1 - GT—I)ST—1Z21z220'

D%il = inf ((1 - GT_l)ST_l(U2 - 22) - (1 + eT)k%,lST_lvz)

v2:92<22 12<0
= _(1 - ET_1)ST_1221220 - (1 + GT)k%,lsT_lzzlﬂgo.
We deduce that
V9_1(Sr-1,2) = inf DY_,(Sp_1,2,v)

veER?2
=—(1+ €T—1)ST—1221Z220 - (1- ET)k(ji“_lsT—1221z2§0-
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We now compute D% _,(Sr_1,0,2). We have:

0%—2(ST—27 Z)

0
= esssupz. , Yp_,(S7-1,2)

= sup V1 (s, 2)
s€[kd_,S7_2,k%_,ST_2]
= sup (—(1 4 er—1)s2”L,250 — (1 — er)kf_152°1,2<0)

s€[kd_,Sr_o,k% ,Sr_2]

== —(1 + ET_1)]{?%_QST_22212220 — (1 — ET)k%_lk%_QST_QZ2132§0.
and

D_5(S7-2,0, 2)

= 07_5(Sr-2,2) + Cr_s(Sr9,(0,2%))

= —(L4er—1)kf 5Sr—22"1o250 — (1 — er)k_ 1k 591221249
+(1+ €T_2)ST_22212220 +(1- eT_g)ST_2z2122§0

= ((1 +er 9)Sro— (1+ eT,l)k%QST,Q)) 2*1,259
+ (1 — er—2)Sr—2 — (1 — er)k_1 K} _»S7—2) 2*1,20.

We then get the following:

Proposition 5.7.2. AIP holds at time T — 2 if and only if the following
holds:

14 er_s 1 —ep_s
B < — === and k%, > —————=
=2 =7 + €1 =2 = (1 — ET)]C%_I
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Chapter 6

Portfolio optimization under
credit risk constraints

6.1 The model

Consider a financial market model defined on a stochastic basis (€2, (F):cjo,17, P)
satisfying the usual assumptions. We denote by S the risk-free asset of the
market and we suppose without loss of generality that S° = 1 so that the
risk-free interest rate is r® = 0. In the following, we consider at any time

t € [0, 7] a firm characterized by it debts (D;.),cp,r) and its asset (A, ) ey, 1] S0
that the equity is given by (£, ),cr) such that £ = (A — D)*. We suppose
that D satisfies the SDE:

dD, = r Dydu — K,du, wu € [t,T], (6.1.1)

where r > 0 is the debt interest rate (interpreted as a risk premium since
r® = 0) and K, is the amount of the firm reimbursement per unit of time.
We suppose that K, := k, D, for some process k. Asset A of the firm satisfies
by assumption A, = 0°S° + 0,.S, where §° and 6 are quantities invested in
asset S and some risky assets S = (Si,--+,Sy), d > 1, held by the firm. In
this model, we suppose that §° > 0 and §# > 0 and d = 1. We suppose the
following self-financing condition:

dA, = 0,dS, —c.dr, relt, T, (6.1.2)

where c is a cash process such that ¢ > K. We interpret ¢; — K; as the amount
of dividends distributed at time t. We only consider admissible strategies 6
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such that A, > x? for all r € [t,T], for some x? € R. Liquidation value of
the asset firm at time w > t is defined as L, := A, — D, so that we have
E = L*. Note that the dynamics of L is :

dL, = 0,dS, — d,du — r,Dy,du, u € [t,T], (6.1.3)

where d; = ¢; — k;D; is the amount of dividends. The dynamics above
shows that the liquidation value of the firm’s financial position is naturally
controlled by the investment strategy # but it is adversely impacted by the
dividends d > 0 paid to the share holders and by the credit risk premium r
as well. In particular, apart the risk provided by the risky asset S, there is
a risk generated by the investment strategy 6 such that an increase of the
credit risk premium r may decrease the liquidation value L, which may leads
to a bankruptcy when L = 0.

From (6.1.2) and (6.1.1), suppose that E; > 0, then we have:

T T T
Ar > Dr & E, + / 0,dS, — / d,du > / ryDydu. (6.1.4)
t t t

We suppose in the following that the credit risk premium and the reim-
bursement rate are constant denoted respectively r» and k. Then, in the case
where the inequality above holds, it also holds for » = 0. Moreover, as D
is an increasing function of r, the inequality is violated as soon as r is large
enough. Therefore, it is possible for the debt holders to deliberately make
the firm insolvent by increasing the credit risk premium.

6.2 Valuation of the risk premium under risk-
neutral measure

In this section, we consider the problem of evaluation of the Fair Credit Risk
Premium. We suppose that the market is complete and we shall restrict our-
selves to strategies 6 such that A > 0. We suppose without loss of generality
that P is the risk-neutral probability measure for S. Taking into account a
possible default, the payoff delivered to the credit holders is as the Merton
model:

T
hD = / k’DudU + AT A DT
t

128



and the payoff delivered to the equity holders is:

T
hE ::/ dydu + (Ap — Dy)*.
t

Observe that, when Ar > 0, we have:
T T
hE + hE = / k:Dudu+/ dydu + Ar
t t

T
t
Lemma 6.2.1. Suppose that the process N : r > ftr 0.dS, is a P-martingale

on [t,T] and Ar > 0. Then, E(hR|F;) = D, and E(LE|F,) = E, if and only
if E(hR|F;) = Dy. This condition is called market pricing (MP) at time t.

Proof. By (6.2.5), we deduce that E(hR|F,) + E(hE|F,) = D; + E;.
This equality implies that E(h2|F;) = D; and E(h%|F;) = E; as soon as

We recall that for all s > ¢:

As = At—i—/ GudSu—/ dudu—/ kD, du,
t t t

D, = D,+ / (r — k)Dydu.
¢
It follows that

T T T
Ar > Dy <— A +/ 0,.dS, — / rD,du > Dy —I—/ d,du,
t t t

T T T
— L —I—/ 0,dS,, —/ d,du 2/ rD,du. (6.2.6)
t t t

Therefore, when A7 > 0, we deduce that:
T T T
h2 = h2(r) = min (At + / 0,dS, — / dydu, Dy + / rDudu) (6.2.7)
t t t

T T
= min (Dt + Ly +/ rD,du, D, +/ TDudu> ,
t t

T T T
hE = KE(r) = max dydu, By + 0,dS, — rD,du | . 6.2.8)
T T
t t t
Note that (6.2.8) also holds when A < 0.
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Lemma 6.2.2. The function r — ftT rD,(r)du is increasing on [0,00) and
ftT rDy(r)du > 0. Moreover, ftT rDy(r)du = 0 if and only if r = 0.

Proof. By a direct computation, we have:

Du — Dte(rfk)(uft)

T D,r (er=R)(T—t) _ 1
/ Dy (r)du = all )
t

r—=k
with the convention (eX —1)/X =1 if X = 0. We then conclude. O
Lemma 6.2.3. Suppose that Ap > 0 a.s.. The condition h2(r) > D; holds

a.s. if and only if A, + j;T 0,dS, — j;T dydu > D, a.s. and, under this
condition, (MP) holds at time t if and only if r = 0.

Proof. Suppose that h? > D,. We use (6.2.7) to deduce that hZ =
Ay + ftT 0,dS, — ftT d.du, then the inequality h2 > D, implies that A; +
ftT 0,dS, — ftT d.,du > D;. Otherwise, using (6.2.7), we deduce that

T T T
A +/ 0.dS, —/ dydu > h2 = D, +/ rDydu > D,.
t t T

The reverse implication is trivial. At last, under this last condition, since
h2(r) > D, and (MP) means that Eq(hZ(r)|F;) = D;, we deduce that (MP)
holds if and only if h2(r) = D; or equivalently » = 0. O

Remark 6.2.4. Let us suppose that the inequality h2 (0) = Dy is not satisfied
a.s. Therefore, P(h2(0) < D;) > 0. Since h2(0) < D; a.s., we deduce that
Eq(RR(0)|F) < Dy on a non null set. Therefore, it is necessary to increase
the credit risk premium r for Condition (MP) to be satisfied.

The following result says that, if the dividend plan d is too large, then
the firm faces a bankruptcy at time 7T'.

Proposition 6.2.5. Suppose that N : r > ftT 0,dS, is a P-martingale on
[t,T]. Suppose that Ap >0 a.s. and L; > 0. Suppose that E <ftT der|}'t) >
E; on a non null set A, € F;,. Then, on Ay, E (h?(r)]}"t) > D; a.s. if and
only if we have E (ftT d,,dr\]-"t) =F, and Ly = Ar — Dy <0, i.e.

T T T
Et—i-/ QUdSu—/ dudug/ rD,du, a.s.
t t t
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Under the equivalent conditions above, we then have E(h2(r)|F;) = D; on
A;. Moreover, hY does not depend on r and E(hZ2(r)|F;) = D;.

Proof. By (6.2.8), Eqg(h2(r)|F;) > Dy if and only if

T
E(L7|F) < E ( / rDudu|.E)
t

or, equivalently, if

T + T
t t

T T T
v =1L +/ 0,.dS, — / dydu = Lt + / rD,du.
t t t

Note that the first equality above comes from (6.1.3) and v does not depend
on r. Since z > x, we deduce that

E ((/tT rDydu — 7> |}}> > E </tT rDudu\]-“t> _ E(|F).

Since Ly = L = E, and E <ftT dudu|]:t) > E,, then we deduce that
E(y|F) < 0. It follows that E(hR(r)|F,) > D, if and only if F(y|F;) = 0,
ie. B <ftT dudu|}"t> = F,, and

E <(/tTrDudu—fy)+|}"t> ~—E (/tTrDudu|}"t> .

Therefore, E(h2(r)|F;) > D, if and only if E(y|F;) = 0 and

where

_l’_

+

T T
(/ rDudu - ’Y) - / TDudu -7
t t

as the difference between the 1.h.s. and the r.h.s. of the equality above is
non negative with a zero expectation. This implies that

T
7§/ rD,du, a.s,
0
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ie. Ly = Ar — Dy < 0 a.s. Reciprocally, if Ax < Dy, by (6.2.8) we get that

T
R2(r) = Ap+ / kD,du,
t
T T
t t

Therefore, h2(r) does not depend on 7 and satisfies E(hZ(r)|F;) = D;. O

Proposition 6.2.6. Suppose that N : r — ftT 0.,dS, is a P-martingale on
[t,T]. Suppose that E <LT drdr]}"t> < E; a.s. and Ar > 0 a.s. There exists
a unique credit prime r* € L°(R.y, F;) such that (MP) holds.

Proof. We use the same notations as in the proof of Proposition 6.2.5
where the initial time is ¢ instead of 0. Let us introduce random function

¢r 11 € Ry = E(hy (r)|F,) — Dy,

where a regular version of the conditional probability measure P(:|F;) is
considered. We have

bu(r) = E (/tT rDa(r)du — </tT rDy(r)du — 7)+ |;rt) |

Note that the function §(z) =  — (x — )" is non decreasing and for x > 0,
|0(z)| < |v|. As ~ is conditionally integrable, we deduce by the dominated
convergence theorem that ¢,(00) = E(y|F;). In particular, since we have
E(y|F) = E,— FE (ftT dudu|]:t), we get that ¢(c0) > 0 a.s.. Moreover,
¢:(0) = —E(y~|F) < 0. Therefore, as r — ¢;(r) is continuous a.s. and
non decreasing, there exists r* = r*(w) € R" such that ¢;(r*) = 0. By
continuity, we actually get that ¢, = ¢;(w,r) is a normal integrand, see
[76], so that ¢; is F; ® B(R)-measurable. Therefore, the set I'y = {(w,r) €
Qx BR); : ¢(w,r) =0} belongs to F; @ B(R). Since the w-sections of I'y
are not empty, we deduce by a measurable selection argument the existence
of r* € L°(R., F;) such that ¢;(r*) = 0.

Suppose that there are distinct 71,7y € L°(Ry, F;) such that ¢y(ry) =
¢¢(re) = 0. Then, the same holds for 71 A ry and r; V 79 so that we may
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assume without loss of generality that r; < ry. Since ¢ is strictly increasing
on (—o0,7) and constant on [y, 00), we obtain that

([ ) nDrie) <6 ( | ) raDar)d)

and, finally, the equality holds due to the assumption. Therefore, we neces-
sarily have

T
/ ro Dy (r2)du > 7,
t

at least when r; and 7o are distinct, since ¢ is strictly increasing on (—o0, 7).
We deduce that ¢;(re) > E(v|F:) where E(v|F;) > 0 by assumption. This
yields a contradiction. O

Note that, when ¢;(0) = 0, then v = Ly > 0 a.s. hence Ay > Dy a.s.
so that, by the proposition below, r* = 0 is the only risk premium satisfying
¢¢(r*) = 0 under (MP).

6.3 Optimization problem for the firm

We consider a utility function U which is strictly concave, strictly increasing
and of class C'. We consider the model of Section 6.1 and we assume that
there is a unique risk neutral probability measure P, see Section 6.2. At time
t<T, L € L°R,F) and D, € L°(R,F;) are given and we introduce the

function JO(t,z,y,6,¢) == E <U (ftT dydu + L?C> |(Dy, L) = (q;,y)), where

L?’c starts from the initial value L; at time ¢ and D starts from the intial
value D;. By Condition Z2 in [82], we have

T A
Jo(t,x,y,0,c) = E (U </ dydu + L%’y’e’c)> (6.3.9)
t

where d is the dividend’s plan of the firm, y = L, is the initial value of

the liquidation value, z = D; is the initial value of the debt, and L&** is
defined by (6.1.3) with the initial values x,y at time ¢ defining respectively
D, and L;. Moreover, the control is ¢ = (d, k) such that (M P) holds, i.e.
EhR(r)|(Dy, Ly) = (z,y)) = E(hR(r)) = 2 where the process hP(r) in the
last expectation is defined from the initial value z = D;. Here, we suppose
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that the reimbursement plan k is a real-valued constant. The constant credit
risk prime r is real-valued constant given by Proposition 6.2.6.

We require that S is a square integrable martingale on [¢, T and 6°,0 > 0
is such that Ay = Ap(f) > 0 a.s. This is equivalent to say that A, > 0.,5.,
for every u € [t,T] and Ar > 0. So we impose that A, > 0,8, for every
u € [t,T]. Here, for technical reason, we suppose that A4, > 9u+S where 6,
is the right limit of 6. As A is continuous, this 1mphes that Hu + 00 >0. It
is enough for our purposes since fo 0,dS, = fo 0, dS, = fo 0,_dS, as soon
as S is continuous. In particular, if 6 is an optimal strategy, this is also the
case for 0+ The goal of the problem is to maximize J°(¢, z, v, z, 0, c) over all
strategies 6 and control ¢ satisfying the constraints described previously.

Remark 6.3.1. In the case where E <ftT drdr|.7-"t)) > FE;, we deduce by
Proposition 6.2.5 that the condition E(h2|F,) = D; implies that we have
E (ftT drdr|]-"t> = E; and the equality E(hZ(r)|F;) = D; holds whatever
the credit risk prime r since h¥ does not depend on r. As the mapping

r— L7V in non increasing and U is increasing, the mazimization leads to
choose r = 0.

Let us introduce the more general function J(t,x,y, f,c, ) defined as:

T .
J(t,x,y,0,c,r):=F (U (/ d,du + L%y’e’c> +z— h?(r)) (6.3.10)
t

Lemma 6.3.2. The initial mazimization problem of (6.5. 9) 15 equivalent to
mazimize J(t,x,y,0,¢,p) of (6.3.10) over all strategies 0 such that A, >
0 wiSu for all w > t, controls ¢ and credit risk primes r > 0, under the target
constraint E(h2(r)) > x where h2(r) is defined from the initial values x,y.

Proof. Under the target constraint E(hZ(r)) > z, x — E(hE(r)) is neces-
sarily non positive. Recall that E(h2(r)|F;) = ¢:(r) + D, where ¢,, given in
the proof of Proposition 6.2.6, in non decreasing in r. Therefore, the map-
ping r — x — E(hE(r)) is non increasing. Also, r — Lz(r) is non increasing
by (6.1.3). Therefore, it suffices to decrease r to increase J(t, z,y,0, ¢, 7).
Precisely, we consider the smallest and unique r* such that E(hZ(r*)) = ,
see proposition 6.2.6. O

We define U as the collection of v = (6, d, k,r) such that (6,d) are pro-
gressively measurable processes with values in R x R and k,r» € R,. We
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aim to solve the following stochastic target problem:
V(t,z) :=sup {J(t,x, y,0,c, r),v= (é, c,r) € thyz}
where U, , is given by:
U, :={vel, E(hR(r)) >z, A, > 0,5, Vu>tas}

Following the idea in [10], we add an extra control to the initial problem
so that we may rewrite the problem. To be precise, let A be the set of
F-progressively measurable real-valued square integrable process. To each
a € A, we associate a controlled process:

Pf(r) == +/ a, dW,, relt,T).
t
Instead of considering the controls (0,c¢,r) such that E(RR(r)) > z, we

then work with the controls (6, ¢, r, o) such that g(h2(r), P2(T)) > 0 where
9(Z, P) = Z — P. Therefore, the equivalent problem is to solve:

~

max J(t,z,y,0, ¢, ) (6.3.11)

0,c,r,a

under the stochastic target constraint g(hf(r), Pf,(T)) > 0. To see it, we
observe that h2(r) is square integrable so that we may apply the predictable
representation theorem.

In the following, we suppose that the price S of the risky asset starts from
an initial point s at time ¢ and satisfies the dynamics:

Ss(r)=s +/ Sts(u)o(u, Ses(u))dW,, relt, T,
t
where W is a 1-dimensional standard Brownian motion and o is a positive
Lipschitz function defined on [0,7] x R such that ¢ is uniformly bounded

from below and above by positive constants. We deduce that the liquidation
process L satisfies:

Lu:y+/ éUSt7s(v)a(v,St7s(v))dWU—/ dvdv—/ rD,dv,
t t t
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Note that D, = ze"®®=1 if 4 € [t, T and by direct computation, we get:

T
hY =z + / rDydu + min(Ly, 0)
t

xrt(e(r—kz)(T—t) _ 1)
r—k

Here, we use the convention that (eX —1)/X =1 if X = 0.

In the following, we use the notations of [10]. Precisely, let U* be the set
of all controls v = (0,d, k,r, o) = (V')i=1,..5 where we require 6,d, k,r > 0.
We define the state process Z;, = (Z;7)i=1,.6 = (X{.,Y}",) where X}, =
(X{ D)i=1...6 takes values in RS while Y2, € R. They are defined as follows:

= x + min(Ly,0) +

77777 t,z) Ttz
-----

for z = (x,y) = (84, dby, cdy, cry, e, 1) and v € [t,T],
thjle(“) =5 + /v o (u, Xt”’z(u), V) AWy,
t
XP2w) =dbe+ [ pk (X7 (), va)du,
XpP(o) = cdi+ | (XY (u), v)du,
Xpd) = et [ (X2 (), m)d,
XZ’ZS(U) =dr; +

XUS(0) = py + / 08 (X (), 1) AW,
t

where 0% (u,z,v) = 2lo(u,2'), ie. X{% = S, pk(z,v) = (V! — 1%)a? ie.
X2 =D, pk(z,v) =12 le. X[2(v) = cdy + [ dudu, pi(z,v) = 1322, ie.
X/H(w) = ery + [ kDydu, pi(z,v) = via?, ie. X772 (v) = dr, + [ rD,du,
oS (z,v) =10 le. X[ = p, + Py At last,

V(o) =y + / oy (2. (), 1) VY, + / iy (20 (), ).
t t

with oy (u, 2, v) = V' 2'o(u, 2'), py (2,v) = —v'2* =12, ie. Y}, = L. For our

problem, we are interested in the case where c¢d; = c¢ry = dr; = 0 and p, =
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db,. Tt follows that the optimization problem reads as sup,q,. E[f(Z;.(T))],
where we define

f(Z2) =02+ 2%+ 25 - 7z°

Recall that hY = ftT kD,du+Ar ANDp and A = L+ D. Therefore, the target
constraint reads as g(Z;,) > 0 a.s. where

9(Z2)=g(X,Y)= X"+ (X?+Y)ANX? - X6

6.3.1 Dynamic Programming Principle for optimal con-
trol under pathwise constraint

Let us define the auxiliary value function:
w(t,z) :=inf{y e R: (¢t,2,y) € D}

where the domain D is defined as D = {(¢, 2) : Us . # 0}. Recall that the set

of admissible controls is now written as:
U, = {v:9(Z/ (T)) > 0and Z02 ) + Z0T () > ve, Z0) (u) Yu € [t,T) as.}

We define Z}_(u) for u < t as Z},(u) = 0. We denote by Q" the set of
all rational numbers of [0, 7] completed with the terminal date 7. We write
QT as QT = (T,,) >0 with Ty = T'. By right continuity, we deduce that

U, ={velU: g (2 (T,),v(T,+)) >0, Vn >0}, (6.3.12)

where (¢g"),>0 are continuous functions such that y — ¢"(z, y) is non-decreasing

and ¢"(0, u) = 0 for all n > 0. Precisely, we have ¢°(z,y,u) = g(x,y) while

g"(z,u) = g'(z,u) = 2> + y — ulzl.

Lemma 6.3.3. For allt € [t,T], we have

w(t,r) = +oo, ifa®>a2?
w(t,r) = —a?+ (2%, ifa2® <a2?

Proof. We use the notation from above, i.e. z = (x,y) = (s, dby, cdy, cry, dry, py, 1y).
Ift=1T, we have Ar = A, = Dy + L; = db; + y. Therefore the constraint
A> 9+S reads as y + db; > 9t+St, ie y> 9t+:1: —z? Qt = v}. We also have
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hE = db; A (db; + y) hence the target constraint is 22 A (z* +y) > 2°. There-
fore, w(T,x) = +oo if 28 > 22. If 5 < 22, it suffices that y > 6,5, — db,
and y > 2% — 22 for some control ;. Choosing 6; = 0, we deduce that
w(T,r) = max(z® — 22, —2?) = —2* + (29)T.

If 25 > 22, we get that w(t,z) = oo by the same reasoning. If 2° < 22,
choose the control v = 0 and we get that (¢,z,y) € D with y = —22 + (2°)*
hence w(t,z) < —z? + (2°)*. On the other hand, consider y such that
(t,z,y) € D. Then, from A, > 0,5, a.s. for all u € [t,T], we deduce that
A > éHSt. On the other hand, the target constraint is

T T
hE = / kyDydu + Ar N Dp > 2%+ / a, dW,, = tofzﬁi <T>
t t

We use the fact that Ar A Dy < Ar a.s. and the expression of Ay deduced
from its dynamics (6.1.2) to deduce that

T T
y + db, > 25 — / 0,dS,, + / adW,.
t t

Taking the expectation in both sides of the inequality above, one has y+db; >
25 We then deduce, as in the case t = T, that w(t,z) > —2% + (2°)*. The
conclusion follows. O

Lemma 6.3.4. D is an upper set in y.

Proof. Consider (t,x,y) € D. We aim to show that (¢,z,7) € D if § > y.
First, we observe that by changing (¢, z,y) into (¢,z,7), we do not change
Xy, = X{,, le Xt”’(x’y) = X;f(m) = X/,. Indeed, X}, does not depend on
Yt'j(z’y). On the other hand, Ytl,/(x,y) only depends on y and X} . This implies
that the process —(y — y) + Y;”(Z,y) satisfies the same SDE as Y} (,,). We
then deduce by uniqueness that Y, - =Y, ,) + 7 —y. Therefore, if y > y,

t,(2,9)
we get that Y/, o > Yiy). As g(x,y) is increasing in y, we deduce that
g(Xy

t,:c’Y;V ) Zg(XV

v
) tar Ve ) > 0 a.s. Moreover, we have

NEED)

A + Do) = Vi) + X0

= Li(ag) T Dt (e

> Y + Xt = Al 1y 2 045,

z,7)

We then deduce that (¢, z,7) € D. O
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Lemma 6.3.5. We have:
(D) = {(t,z,y) € [0,T] x R x R: y > w(t,x)}.

Proof. Consider (t,z,y) such that y > w(t,z). Then, w(t,z) < oo and, for
any € > 0, y+¢ > w(t, ) implies that y-+e > ¢ for some ¢ such that (¢,z,9) €
D. As D is an upper set in y, we deduce that (t,z,y +¢€) € D. As e — 0,
we deduce that (¢,z,y) € cl(D). Reciprocally, consider (¢,z,y) € cl(D). We
have (t,z,y) = lim, o0 (tn, Tn, yn) where (t,,2,,y,) € D. This implies that

Yn > w(ty, T,) by definition of w. In particular, w(t,,z,) = —z2+(x%)T < oo
for all n > 1 hence 28 < 22. As n — oo, we deduce that x® < z? and
y > —a? 4 (2" = w(t,x). The conclusion follows. O

We recall the famous assumption Z5 in [82], whichs holds in our model.
Assumption Z5: For any u < T', the map:
(t,z,v) € Ry x R x U Z{ (u)
is Borel measurable.
Lemma 6.3.6. Suppose that Assumption Z5 holds. Then, the set
B:={(t,z,v) e Ry xR" xU"': veU,.}

15 Borel-measurable. In particular, it is analytically measurable. Moreover,
for each € > 0, there exists an universally measurable map ¢ : R x RT — U
such that 0°(t, 2) € Uy, and

J(t, z, v (t, 2)) > V(t, ) e, if V(t,2) < o0,
J(t, 2,05, 2)) > et if V(t, 2) = oo.

Proof. We first recall that the set
B= {(t,z,v) eRe xR xU: veU}

is closed, see for example the proof of [10, Lemma A.1]. Therefore, Bis a
Borel set. By (6.3.12), we have B = N,>1B" N B where

B"={(t,z,v) e Ry xR xU": ¢"(Z} (T,,),v(T,+)) > 0} .
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The projection mapping v — v(T') is Borel-measurable for all fixed T' € [0, T7.
Therefore, for fixed n > 1, the mapping

visv(T,+) = 77P_r}nooy(Tn +1/m)
is also Borel-measurable. Using Assumption Z5, we then deduce that the
mapping (t,z,v) = (Z¢_(T,),v(T,+)) is Borel-measurable for every n > 1
hence so does (t, z,v) — ¢g"(Z{ (1,,), v(T,+)) since the function g" is continu-
ous. We then conclude that B is Borel-measurable, hence a priori analytically
measurable.

By the Fubini theorem, we also deduce that J : Ry x R x Y — R
defined as J(t,z,v) = E[f(Z{,(T))] is Borel-measurable. In particular, it is
upper semianalytic. By [7, Theorem 7.50|, we now deduce the existence of
the desired v¢(t, 2). O

Theorem 6.3.7. Let 6 be a stopping time with values in [t,T], z € R, and
v eUt. The following equivalence holds:

There exists v € Uy, such that v =1 on [t,0] if and only if, for all u € [t, 0],
9" (2} ,(u),v(ut)) >0, a.s. and (0,2} ,(0)) € D a.s..

Proof. We first suppose that v = © on [t,0]. Then, if u € [t, 6], we have
9" (Z¢ . (u), v(ut)) = g"(Z] (u),v(u+)) > 0, since v € Uy.. Moreover, fol-
lowing the proof of [82, Theorem 3.1], we may show that (0, Z;.(¢)) € D
a.s. Indeed, it suffices to follow the same arguments if we replace, for every
n > 0, the terminal date T by T,, V 6.

Reciprocally, using the ideas of [82, Theorem 3.1] and recall the set B
defined in Lemma 6.3.6, we first construct a Borel-measurable mapping ¢
such that (¢, 2/, ¢(t',2")) € B p a.s. where p is the distribution of (6, Z¢_(0)).
Therefore, we consider the control of the form ¢(6, Z;,(¢)) and by [82, A.2],
we deduce some v' € U such that v'(w,u) = ¢(A(w), Z;.(0)(w))(w,u) for all
u > 0(w). We then define ¥ the concatenation between v and v', see [82].
By the flow property, we then get that, for all n > 0,

FZLTNV 00TV 1) = (25 4 ) (TaV 0), (T, V 64))

- 9"(Zg 20 0)(Tu V ), (T, V 04))
= gn(Zg,lzgz(e)(Tn V0), v (T, V 0+)).
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By assumption on ¢, g"(th,)S;’zl)(Tn Vi), ot )T, Vt+)) >0 as. for
all n > 0 and g a.s. (¥,2'). Taking the conditional expectation knowing
(0,27 .(0)), we deduce that the following chain of equalities:

E(1
< { (zgzy (9)(Tnv6),V1(Tn\/9+))>0}>
—E (1 ,

( {gn(ZZ,(ﬁgZZtg;)(g))(Tnvem(e,zzz(9>)<Tnv9+>>>>o}>
— ;L !/ /
B /[O,T]Xw b (1{gn<zjif;’z )(Tnvt'>,¢(t',z’>(Tnvtf+>>>o}) pldt’, d)
=1.

We then deduce that ¢"( g 77,
g"(ZZz(Tn Vo), 0(T,Vo+)) > 0 a.s.

On the other hand, g"(Z} (T, A9)) = g"(Z;.(T, A)) > 0 by assumption
as U and v coincide on [t,0]. We then conclude that o € Uy ..

0 (TuV0), v (T,VO+)) > 0 a.s. and finally,

O
Remark 6.3.8. If v € U, ., then 2* + 27 > v (t+)z!
We then deduce the following:

Lemma 6.3.9. For any (t,z,y) € [0,T) x R® x R, v € U* and (¢, T|-valued
stopping time 6, we have:

LIf Yy, (0) > w(0, Xy, ,(0)) and g (X7, (w), Y, (), v(ut)) = 0,
for all w € [t,0], then there exists a control v € Uy ., such that v = U on
t,6).

2. If there exists a control v € Uy, such that v = U on [t ,9), then
my? > w(, Xy, ,(0) and g' (X7, ,(u), Y, (w), v(ut)) > 0, for all

el

We are now in a position to prove the Dynamic Programming Principle.
Suppose w.l.o.g. that we work with the space Q@ = C([0,7],R) equipped
with a Wiener measure P. The corresponding Brownian motion is W(w) =
(wi)t>0, and the filtration F := {F;, ¢t > 0} is the P-augmentation of the
right-continuous filtration generated by W.

)
.
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Since the elements of () are path, we can define the stopped process
w" := (wiar)i<r and the shifted process Ts(w) 1= w. — wsy. — ws. We also
define concatenation operator:

T

g R xQxQ=Q, g(s,w,0) = wilie(t) + (s + ws) 15 1(2)

we then have g;(s,w®, Ts(w)) = w; so that v(w) = v(g(s,w?, Ts(w))) for any
s. Here, we have used the notation w® = W#*(w). We deduce the following
weak version of Dynamic Programming Principle.

Theorem 6.3.10. Fiz (t,z) € int(D) and let {0",v € U} be a family of
stopping times with values in [t,T|. Then,

V(t,2) < sup B [f*(Z0.(6") Lovg + V' (6", Z!.(6")) Lover]

vEUY
V(t,2) > sup B [f(Z0.(0") oo + Val0", Z0.(0")) Tovct]

lleut,z

where V* and V., are respectively denote the u.s.c. and l.s.c. envelope of V
defined as:

Vi(t, z) := sup{u.(t, 2) : v* < Vand, v, ls.c.},
V*(t, z) :==inf{v*(t,2z) : v* > Vand, v* us.c.},

f* and f. are defined analogously.

Proof. 1. We show the first inequality. For any stopping time 6 with value
in [¢,T7:

E[f(Z[.(T)] = E [E[/(Z].(T))|Fo]]

By the strong Markov property, we know that Ty = Tp((+) is a Brownian
motion independent of Fy. Recall that, for any Fy-measurable random vari-

able n, Ty(.) and 7 are independent and, for any Borel-measurable function
h, we have E[h(Ty,n)|Fs] = ¢"(n) a.s. where

" (z) = E[W(W,x)]. (6.3.13)
In the following, we use the fact that Zy (r) = h(t, z,v,7, W") for some

measurable function h. In particular, we have for any stopping time 6 valued
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in [¢,T), Z;.(0)(w) = h(t, z,v(w), O(w), W?(w)) and, by the flow property, we
also deduce that

Zty,z(T) = ZQV,ZZZ(G)(T) = h(07Zgz(9)7va7 W)
= N(0,2;.(0),v(g(0,W* Ty)), T, g(6, W’ Ty)), as.

By (6.3.13), we then deduce that E [f(Zy,(T))|Fs] = (8, Z7.(6), W?)) for
some Borel measurable mapping v defined by

’Y(t/7 Z,7 w) = E <f o h(t/7 Zl? V(g<t,7 wt/? W))7 T7 g(t/7 wt/? W)))
forall >t 2/ € R%,w e C([0,T],R).
Note that for u > t, g,(t',w", W) = W,, we then have
At 2 (gt " W), Ty gt o, W) = 2200 MUT) W) = Z 5T (W),

= Ly

We deduce that E [f(Z,(T))|Fo] = Ef(Z};,(T)) with (¢, 2') = (6, Z¢.(6)).
Therefore, E [f(Z¢.(T))|Fo] = J(0,Z;.(0),v). Moreover, v € Uy . # 0 for
almost every (t',2') in the support of (6, Z}_(0)). The proof in [82, Theorem
3.1] implies the property (0, Z;,(¢)) € D a.s.. As J <V < V*and J(T,.) =
f, it follows that

Ef(Z;(T)] = E[J0,2:.00),v)] < E[V*(0, Z;.(0)lo<r + f(Z.(T))Lo-7] -

2. The second inequality

If V(t, z) = oo, there is nothing to prove. Suppose that V (¢, z) < oo, then
for any € > 0, by Lemma 6.3.6, there is a universally measurable mapping
¢ iRy x RT3 (¢, 2) = 0°(t, 2) € Uy, such that J(t,z,v°(t, 2)) > V(¢ 2) —e.
Moreover, it follows from [7, Lemma 7.27] that, for any probability measure
m defined on R, x R, there exists a Borel mapping 7¢, : R; xR" > (¢, 2) —
v, (t,2) € Uy, such that J(t,2,0°(t, 2)) > V(t, z)—e > V.(t,2)—e m-a.e.(, z).
We now fix vy € U, ,, for some (¢, zp) € int(D) and 6 be a stopping time
with values in [tg, T]. Let m be the distribution of (0, Z;*, (¢)). By Theorem

to,20
6.3.7, we deduce that (0, Z; , (¢)) € D P-a.s.. Moreover, we have:

(0)) € Uy g, (0, 2320, 700, 227, (0))) = Val0, 212, (0)) — €, as.

t0,207 “m t0,20

~E 141
Vm(67 Zt(),Z()

Now, by [82, Lemma 2.1], there exists v§ € U such that:

V;(w, t)l[g(w)’ﬂ(t) = yfn(@(w), ZtVO{ZO(H(w)))l[g(w),T] (t), (dP X dt)(w,t) a.ce.
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We then define the concatenated control v¢ := 11y, ¢ + V5l . We claim
that v € Uy, .,. To do so, we first observe by the flow property and the
causality condition (resp. Z3 and Z4 in [82]) that :

: : : s V(0.2 )
v v v _ > _ 0,20
ZioaoT) = 2y ze 00T = Zozn 0)T) = ZoSgn o)1)= Zy g 0" (1)

This implies that g(Z

to,20
Ve _ Y5
also have Zy _ (T,,) = Z‘),ZZ},ZO (9)(

v (To+) = vs(To+) = ve, (0, Z;*

to,20

(T)) > 0 a.s. Moreover, on the set {T,, > 0}, we

T,) @70 OF

0,247 - (0)

(0)(T,,+). On the set {T,, < 8}, we have

T,) a.s. and, moreover,

zy (To) = Z . (T,) as. and v(T,+) = v1(T,+). We then deduce that
9(Z¢ (1), v (Th+)) = 0 as. for all n > 1. We conclude that v € U, ..

As in Step 1, we have

E[f(Z}.,(T)|Fo] = E | f (Zfz:g,zo

o (M) Fo| =70, 2.0, v5)

=J(0,2.,00),05,0, 2., (0)))
> V(0,2 (0)) — ¢, as.

t0,20

We finally deduce that:
V(to,20) = E [E [f(Z}.,(T))| Fo]]
> EV.(0, Zy) . (0) o< + fo(Zi) o (T))lp=r] — €

Since € is arbitrarily chosen, the second inequality follows.

6.3.2 PDE characterization of the value function

In this section, we provide the PDE characterization for the problem 6.3.11.
We shall follow the main lines of [10].

With z = (z,y) we introduce

0 vlo(u,x!)]
(ut — u3)z? 0
u? 0
MX(U7Z) = udr? >JX(U> Z) = 0 )
utz? 0
py (u, 2) = —utz® —u?, oy(u,2) = v'a'o(u,z").
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and puz(u, z) = [“X(“’ 2)}, oz(u, z) = {"XW’Z)}.

py (u, z) oy (u, 2)
For each fixed u and a smooth function ¢, we consider the operator LY
defined for each u:

1
L0 = 0w+ puzVe + §Tr [Oza'gDQQO} .

The Hamiltonian H is given by

H(u, 2,0, A) == — (uz(u,2),4) — 5 Tr(oz(u, 2)ok(u, 2)4)

H(u,z,q,A) := incf H"(u,z,q,A),
uelyz

where C, = {u € R®: 22+27 > u'z'} and HUp(t,2) := H"(t, z, Dp(t, z), D*¢(t, 2))
and similarly for Hep(t, 2).

Consider a real-valued function f, we define the lower semicontinuous
envelope f, (respectively, upper semicontinuous f*) of a function f as:

fo(Z) = hgn_}%lff(x) :=1lim inf f(z)=sup inf f(z),

0}0 zeB(Z,0) §>0 z€B(%,0)
f*(z) :==limsup f(x) :=lim sup f(x)=inf sup f(z).
T—T 640 z€B(z,0) >0 z€B(z,0)

We denote by H,p(t,z), H*p(t, z) the Ls.c. (respectively, u.s.c.) envelope of
Ho(t, z).

In the following, the expression around z means in a neighborhood of z
where we adopt the notation z = (z,y). We recall the notaions in [10]:

Wit z) = {p€C"?*([0,T] xR°): ¢ —w> (¢ —w)(t,z) =0 around (¢,z)}
W, (t,z) = {¢€C(0,T] xR%): ¢ —w < (¢ —w)(t,x) =0 around (¢, ) }
Nu(t Z, Q) = O'y(t,Z,U) _JX(ta Z?“)TQa
Ns(t,z,q) == {ueC,: |[N“(t,z,q)] <4},
Usy(t2,0) = {ueNs(t,z,y, Vo(t,z)) : py(t,z,u) = Lxo(t,x) 2},
Ff (t Z, 4, ) = inf {_/JJZ@’ Z, U’)Tq —Tr [(Uzgg)@, 25 U)A] }
7 veUs ~(t,2,0)
F™(t,2,q,A) = lim sup Ffw(t’,z',q',A')
t',2',q' \A")—(t,2,q,A) ’
(6,7)—(0,0)
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Lemma 6.3.11. Consider ug € Ny(to, 20, % (to, To)) where zo = (o, y0) 18
such that xo > 0 and v is a locally Lipschitz function with values in [0,T] X
R™. Then, there exits a neighborhood O of (ty,20) and a locally Lipschitz
map v defined on O such that U(ty, z9) = uo and v(t, z) € No(t, z,¢(t, z)) for
all (t,2) € O.

Proof. We have by definition:

No(t, z,0(t,x)) = {u €eR”: oy(t,z,u) = ox(t, z,u)Tw(t,:L’)}
= {ueR’: u'alo(t,z") =alo(t,a" ) (t, ) + YOt 2) }
= {ueR’: W Y(t,z) =a'o(t,a" W' (t,2)},

where U(t,z) = (z'o(t,2'),0,0,0, —%(¢, )T € R5. Notice that, if zg > 0,
we may suppose that |W(¢,z)| > 0 in a neighborhood of (ty, zp). It follows
that v € Ny(t, 2,9 (t, 2)) if and only if u = u(t,z) = (¢, ) + ¥+ where ¥t
is any vector such that ()T (¢, 2) = 0 and

At 2) = ot 2 ) (b 7)o D)

We observe that « is locally Lipschitz as a product of locally Lipschitz (and
bounded) functions. Since uy € Ny(to, 20, ¥ (to, o)), we have ug = y(to, o) +
wo where wy is orthogonal to W(tg, ). Let us define u(t, x) = (¢, x)+g(t, x)
where

U(t, )
W (t,2)]*

Since g(t, )"V (t,x) = 0, u(t,x) € No(t, z,%(t, x)) for all (¢,z,2) in a neigh-
borhood of (%o, 29) such that |¥U(¢,z)| > 0. Moreover, when (¢,z) — (tg, zo),
g(t,z) — wo — (w{@(to,xo))% = g(to,x0) = wo as wl ¥(ty,z9) = 0.
Since ¢(t, z) is also locally Lipschitz around (to, zo), the conclusion follows.

g(t, ZL') = Wo — (w(q)\D(t?m))

Lemma 6.3.12. We have

Fo(t,2,q,A) = lim sup F(fv(t’,z',q',A').
(t',2!,q' \A") = (t,2,q,A)
P

Proof. Recall that by definition

Fo*(t,z,q, A) = lim sup ny(t', 2 q,A),
TA)O (67’77t/7z/7q/7A/)€BT(0707t7z7q7A) 7
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where B,.(6,7,1t, z, q, A) designates the ball of center (0,0, ¢, z, ¢, A) and radius
7 > 0. SInce SUP(s . 4 .4 ANE B (0,04,.0,A) Ffw(t’,z’,q’,A’) > F(fv(t’,z’,q’,A’),
for all (v,t',2',¢',A’) € B,(0,t,2,q,A), we deduce that

Fo*(t,2,q,A) > lim sup F(fv(t’,z',q',A').
(t',2',q' J A" )= (t,2,q,A)
Yy

On the other hand, for all § > 0 and 7/ > 7, we have the inclusion
Up(t,z,0) C Us(t,2z,¢). It follows that for all (¢/,2,¢',A"), § > 0 and
~' > ~, we have

F$7,<t/,zl,ql,Al) Z Ffv,(t’,z’,q’,A’).
Therefore,

lim sup Fgfﬁ/(t’,z',q’,A') > F%(t,2,q, A).
(t',2",q' \ A" )= (t,2,q,A)
Y

The conclusion follows. O

We use the following notations in [10]:
int,(D) := {(t,z,y) € [0,T) x R : y > w(t,z)}
9,D:=0DN([0,T)xR") ={(t,z,y) €[0,T) xR": y=w(t,z)}
OrD:=0DN([0,T) xR ={(t,z,y) e {T} xR": y>w(t,z)}
8pD = azD U 8TD
Theorem 6.3.13. The value function is a solution to the following PDE in

viscosity sense:
1. V. is a viscosity supersolution on cl(D) of:

(=Owp + H*p)(t,z,y) 20 if (t,x,y) € inty(D)
Vo € WH(t,x), (=0 + F*o(t,z,y)) >0 if (t,x,y) € 94D,

o(T,z,y) > folz,y) if (t,z,y) € OrD
y>w(T,z), H (T, x,y) < oo

2. V* is a viscosity subsolution on cl(D) of

(=0 + Hop)(t,z,y) <0 if (t,x,y) € int,(D) U 9z(D)
o(T,z,y) < f*(x,y) if (t,x,y) €0rD, Hop(T,z,y) > —00
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Proof. We split the proof into several steps.

1) Supersolution inequality on int,(D).

Consider some (tg, o) € int,(D) and let ¢ be a smooth function such
that V. — ¢ > (Vi — ¢)(t0,20) = 0. We will argue using contradiction by
assuming that (=0, + H*p)(to, 20) < 0.

As H* > H, we get that (—0p + Hp)(to, 20) < 0 and, by definition of
H, there exists @ € C,, such that(—09d,p + H%p)(to, 20) < 0. This implies
that —L%(to, 20) < 0. By the continuity of ¢, w and the coefficients uz, 0z,
we deduce that LL¢(t,2) > 0 for every (t,z) in an open ball B of center
(to, 20) such that cl(B) C int,(D). Moreover, since g'(.,) is continuous and
g% (20, 1) > 0, we may suppose w.l.o.g. that g'(z,4) > 0 for any (¢,2) € B.

By definition of V, there exists a sequence (t,, z,) € B such that (¢,, z,)
converges to (tg, zg) and Vi(tg, z0) = lim,, o V(t,, 2,). Consider the process
Zn(t) = Z! . (t), t > t, and let us define with the convention inf () = T"

6, = inf {t €[t T): (t,2"(t)) ¢ B}.

Since (t,,2,) € B, we deduce that 6, € (t,,T], in particular 6, > t,
a.s.. Choose ¢ > 0 such that ¢y < T — € and replace 6, by 0, A (T — €).
We may suppose w.l.o.g. that B := (ty — €,to + €) x O for some bounded
open neighborhood O of zy. Moreover, we can also choose € and O such that
cl(B) C int,(D).

We have by continuity (6, Z"(6,,)) € cl(B) C int,D and g*(Z"(t), ) > 0
for all t € [t,,0,]. By Lemma 6.3.9, we deduce the existence of v € U, .,
such that v = @ on [t,,0,). Let us define Z" = Z}" . We then have

Z" = Z" on [tn, 0] by continuity of the trajectories. We apply 1t6’s Lemma
for My = @ (0, Nt, Z™(0,AL)), t € [tn, T] to deduce that M; = p(t,, z2,)—Ni+ P,
where

On AL . R
Moo= = [ ontu, 27 Viplu, 2 )b,
tn

Ot R
P, = / o(u, 2" (u))du > 0.
tn

It follows that Ny > @(t,, 2,) — M;. Since, Vi(r, Z"(r)) is bounded for any
r € [tn, 0, At], we get that N is a martingale, the following holds:

(tn 2n) < E[p(On, Z"(00))] -
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We define a subset K of cl(B) as follows:
K =1ty — €ty + € x 00 U {ty+ €} x cl(O) C cl(B).

By continuity we deduce that (6,,2"(6,)) € K a.s.. We then deduce
that there exists d := ming (Vi — ¢) > 0 does not depend on n such that the
following holds

P(tn; zn) < E (0, Z"(00))] < EVi(On, 27(00))] — 0. (6.3.14)

Now, as @(tn, 2n) =V (tn, 2n) — ©(to, 20) — Vi(to, 20) = 0, in the inequality
(6.3.14), we may replace @(t,,2,) by V(t,,z,) and 0 by 6/2 for n large
enough. This yields a contradiction by the first inequality in Theorem 6.3.10
since B [V.(0,, Z2"(0,))] > V (tn, 2,) as long as 6, < T.

2) Supersolution inequality on 0, D:

For (to, z0) € 07D, we suppose that there exists a function ¢ € W*(to, o)
such that (=0 4+ F? ©)(to, xo,y0) < 0. We denote by O a closed neighbor-
hood of (to, o) such that ¢ —w > (¢ — w)(ty,20) = 0 on O. By Lemma
6.3.12, we deduce that

lim sup inf  (—=L%p(t, 2)) <O0. (6.3.15)
(t,z)%(tg,zo) UGUOV’Y(IS,Z,(;S)
Y

This implies that Uy (¢, z, ¢) # 0 for every point (¢, z) in a neighborhood
O of (tg,20). In particular, Ny(to, 20, Vi(to,20)) # 0. We deduce from
(6.3.15) the existence of v > 0 small enough and a compact neighborhood
O of (to, 20) such that, for every (¢,2) € O, infyecyy_(t,2,6) (—L50(t, 2)) < 0.
Therefore, there exists Dy, .,) € Uo(to, 20, @) such that —,C;(to’z(’)go(to, 2p) <
0. Moreover, by Lemma 6.3.11, that there exists a Lipschitz map 7, ..
defined on a neighborhood Oy, ., € O of (to, 20) such that D, ., (r,a) €
No(r,a, V(r,a)) for all (r,a) € Oy ., and Py, ) (to, 20) = Ditg,zg)- Since
— L2 (tg, 20) < 0 and By, o is continuous, we may reduce Oy, ., so that
—E;tO’ZO)(T’a)Lp(T, a) < 0 for all (r,a) € Oy ,. As 1020 € Uy (to, 20, ), We
also have py (g, 2, 2{10%)) — £9X(t0’z°)qb(t0,zo) > ~. Still by continuity, we
may also suppose that iy (t, 2, U, 20\ (t, 2)) — L0 4L, 2) > 0 for all (t,2) €
Oy.2- Note that we may also shrink Oy, ., further so that (¢, 2) € O, ., with
z = (z,y) implies (¢,z) € O.
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We claim that there is a Lipschitz function defined on [0, T x R” such that
n(t, 2) = Dy 2 (t, 2) for every (t, z) € Oy, 5,. Indeed, without loss of generality,
we suppose that Oy, ., is closed and convex. Consider the projection 7 onto
Oyy.2- In Hilbert spaces, we know that 7 is 1-Lipschitz. We then define
1 := D4y, © T so that n is Lipschitz on [0, 7] x R.

Consider a sequence (t,, z,), in a bounded open set B C Oy, ,, N int,D
such that (t,,2,) — (to,20) and V (¢, 2,) — Vi(to, 20). Since g' and n are
continuous, g'(zp, n(to, 20)) > 0 by definition of Ny(to, 20, Vé(to, 20)), we may
suppose w.l.o.g. that g'(z,n(t, 2)) > 0 for any (¢,2) € B.

Let Z™ = (X", Y™),, be the process defined on [t,,T] as the unique solu-
tion to the equation:

Az = oz(t, 27, n(t, Z0)) AW 4 pz(t, Z0n(t, Z0))dt,  Z7 = 2,

By Lipschitz property of the o7 and pyz, Z™ is uniquely defined. It is clear
that Z" = Z”" where 0"(w,t) = n(t, Z(w)). We define the following stop-
ping time:

O, :=inf{t € [t,,T]: (t,Z2"(t)) ¢ B}.

We replace 6, by 0, A (to + €) where € is small enough so that tg+¢ < T and
we may suppose that 6,, € (t,,to + €.

We now apply the Ito formula for ¢. Knowing that we have the equality
ox(t,z,v)IVo(t,xr) = oy(t,y,v) for all (¢, 2) such that v € Ny(¢, z, Vo(t, 2)),
and L0 ¢(t,2) < py(t, 2, D(to,20)(t, 2)) for all (t,2) € Oy ., we then get
the following;:

On
(00, X"(00)) = S(tu, ) + / ox (6, X7 (1), DP)V (2, X" (1))dW,
" - 0
T / 2 o(t, X" (1))t
On
< Oltnza) [ o (070,57,

971
RS SO
0
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Therefore, we have

Y™0n) = ¢(0n, X7 (0n)) + yn — O(tn, Tn)
Z (¢(0n7 XZL (en)) - w(Qn, XZ; (071)))
Fw (O, X[ (00)) + Yn — O(tn, Tn)-

Now, we suppose w.l.o.g. that B has the form B = (to — ¢,tg +€) x O
for some open set O € R”. We define the compact set K := [tg — €, 1o + €] X
00 U {ty + €} x cl(O) C cl(B).

By the definition of W*(#o, xo), we deduce that there is a positive constant
r such that ¢ — w > k on K, where the compact set K is the image of
K under the projection mapping (t,z,y) — (t,z). Moreover, recall that
by construction and continuity, (6,, X} (6,)) € K as. and lim,, o0 (Y —
O(tn, n)) = yo — ¢(to, o)) = Yo — w(to,z9) = 0. Therefore, for n large
enough, we have Y"(0,,) > w(6,, Z} (6,,)). Moreover, since g'(Z"(t), ;") > 0
for any t € [t,,,6,), by Lemma 6.3.9, we deduce the existence of v™ € U, .,
such that v = 0" on [t,,6,). We define Z" = Zy" . so that Zn = Z" on
[tn, 0] by continuity of both processes.

Now, by a similar argument as in the first case, we then deduce that
EVi(0,,2"(0,))] =06 > E[p(0,, Z™(0,))] for some 6 > 0 does not depend on
n. We then proceed to conclude.

3) Subsolution property:

Let ¢ be a smooth function and (g, ) € int, DUJ;D such that V*—¢ <
(V*—p)(to, 20) = 0. We assume that the subsolution property does not holds
at (to, z0) for ¢:

—8tg0 + H*QO(to, Z(]) >0

This implies that for all u € C,, we have —L%(to,29) > 0. Moreover, by
continuity of the coefficients, we can find ¢ > 0 and a bounded open set
O € R7 such that —L%p(t,z) > 0 for every u € C,, and for every (t,z) €
O = (to—€,to+€) x O, to+e < T. Consider a sequence (t,, z,) be a sequence
in ONint, D such that (t,, z,) — (to, 20) and V (¢, 2,) = V*(to, 20). For each
n, there exists v,, € Uy, ., since (t,,2,) € D. We then set Z"(t) := Z;", (t).
We define 6,, as:

0, :=inf{t € [t,,T): (t,Z2"(t)) ¢ ON (int,D UIzD)}
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By a similar argument as in the case Supersolution inequality on int,(D), we
deduce that E [V*(0,,2™(0,))] < E [¢(0n, Z"(0,))].

By Theorem 6.3.7, we then deduce that (s, Z"(s)) € int,D U 0z D for all
s € [t,, T) so that (0, 2"(0,)) € K := [to — €,t9 + €] x IO U {tg+ €} x cl(O)
by continuity. By Ito lemma, we obtain:

‘P(tm Zn) > E[‘P(env Zn(en)] > E[V*<9nv Zn(en))] +¢

where —( = maxg(V* — ¢) < 0 does not depend on n. Since (¢ —
V)(tn, zn) — (¢ — V*)(to, 20), then for n large enough similar to the case
supersolution, we get the contradiction to 6.3.10.

4) Terminal condition, supersolution:

We consider zy = (z9,¥0) and a test function ¢ such that yo > w(xg, T)
and (T, x) is a strict minimum of Vi, — ¢ on cl(D). We also suppose that
V(T 20) — (T, 20) = 0.

We argue by contradiction by first supposing that Vi(7T', z9) < fi(z0). By
lower semicontinuity, we deduce that there are some 7,77 > 0 such that ¢ <
fe—mnon {T} x B,(20)) Necl(D). Let (t,, zn)n be a sequence in int,(D) such
that V(t,, z,) — Vi(to, 20) and (¢, 2,) — (T, 29). We cosider the modified
test function @ := ¢ — (T' — t)/2. We observe that (T} z) is also the strict
minimum of V, — ¢.

Since —0,p = —Op — 1/2(T —t)~V2, H*o(T, 20) = H*@(T, 2p) < oo and
(T —t)~Y2 — 0o when t — T, we can choose r > 0 and % € C,, such that
—L% < 0 on a bounded open set O C cl(D). We suppose w.l.o.g. that O
is of the form O := [T — r,T) x B,(z). Since ¢g'(.,4) is continuous and
g% (20, 1) > 0, we also suppose w.l.o.g. that g'(z,4) > 0 on cl(O).

Since w is continuous, we can choose r small enough such that cl(O) C
{(t,z) e Dy >w(t,x)+r/2} CD. Set Z" := Z _ , where @ is a constant

control in U . We consider the stopping time 6,, defined as:
0, :=1inf{t € [t,,T]: (t,Z2"(t)) ¢ O}

From Lemma 6.3.9, we deduce that there exists a control " € U, ., such
that 0" = @ on [t,, 0,). Weset Z" := Z;", , since —L% < 0 on O, we deduce
from Ito’s Lemma that:

B(tn, 20) < E[@(0n, Z27(00))]
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By the definition of 2y, we can choose some ¢ > 0 such that V, —{ > ¢ on
the compact set 00 = [T —r,T] x 0B, (20) U{T} x B,(z) does not contain
(T, z0). On the set {6, < T}, we have, @(0,,2"(0,)) < Vi(0n, Z2™(0,)) — C,
where ¢ 1= ming_,.7)x98, (z) (Vs — @) > 0. Moreover, recall the definition of
1, we deduce that:

@(tna Zn) < E [(f*(Zn(en)) - 77)107L:T + (V*(em Zn(en)) - §)10n<T]

By sending n — 0o, we deduce a contradition with Theorem 6.3.10.

5) Terminal condition, subsolution:

We consider zg = (0, %) and a test function ¢ such that yo > w(zo, T')
and (7', xg) is a strict maximum of V* — ¢ on cl(D). We also suppose that
V*(T, z9) — (T, 20) = 0 and H.p(T, z9) > —o0.

We argue by contradiction by first supposing that V*(T', 29) > f*(20),
by upper semicontinuity, we deduce that there are some 7,17 > 0 such that
> f*—non ({T} x B,(2))Ncl(D). Let (t,, zn)n be a sequence in int, (D)
such that V(t,,z,) — Vi(to,20) and (tn,2,) — (T, 20). We consider the
modified test function @ := ¢ + (T — )/2. We observe that (T, z) is also
the strict maximum of V, — ¢.

Since —0;p = —Owp + 1/2(T —t)"/2 and (T — )42 — oo when t — T,
we can choose r > 0 such that for all u € C,,, —L£% > 0 on the set O :=
[T —r,T) x B.(20). Without loss of generality, we suppose that (¢,.z,) € O
for all n. For each n, there exists v, € U, ,, since (t,.2,) € D. We now set
Z" = Z,", . We define 0, as:

0, = inf{t € [t,,T]: (t,2"(t)) ¢ O}

By Theorem 6.3.7, we then deduce that (s, Z™(s)) € D for all s € [t,,T] so
that (6, 2"(0)) € 00 := [T —r,T] x 0B, (2) U{T} x B,(20). We deduce from
Itd’s Lemma that:

Ptn; 2n) = E[p(On, 2™ (0n))]-

On the set {0, < T}, we have, ¢(0,,2™(0,)) > V*(0,, Z2"(0,)) — ¢, where
C := MaX[p_r7)x0B, () (V* — ¢) > 0. Moreover, recall the definition of 1, we
deduce that:

‘ﬁ(tna Zn) > E [(f*(Zn(en)) - 77) 16n:T + (V*(em Zn(9n>> - C)197L<T] :

By sending n — 0o, we deduce a contradition with Theorem 6.3.10.
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Chapter 7

Future perspectives

The main texts of this thesis is to discuss some new pricing techniques in
financial markets with transaction costs or in the presence of risk measures.
In this chapter, we will elaborate some ideas for future researches.

7.1 No arbitrage of the first kind and market
viability

Consider a market defined by a price process S := (S;)o<i<T, see the classical
setting in Chapter 2. We recall the definition of Vtm’e, the value of a portfolio
at time ¢ using trading strategy 6 and starting from initial capital x. In this
section, we say that a trading strategy 0 is admussible if th’g > 0 a.s. for
all t. We denote by ©,4,, the set of all admissible trading strategies. In this
section, we suppose that market participants also face trading restrictions so

.....

consider the family of trading strategies © defined by © := 0,9, N O..
We now recall the definition of the super-hedging price of £ as:

p(§) := inf {p eR: d0€0Os.t. fo’a > &, a.s.}.

We consider the following notion of arbitrage, see [58], [34] or [35] or [53]:

Definition 7.1.1. A random variable £ € L°(R,, Fr) with P(£¢ > 0) > 0 is
an arbitrage of the first kind if p(§) = 0. No arbitrage of the first kind (NA;)
holds if, for every & € L°(Ry, Fr), p(§) = 0 implies that £ =0 a.s.
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We denote U the set of all utility functions U : 2 x Ry — R U {—o0}
such that U(., x) is Fr-measurable and bounded from below, and, for every
x >0, U(w,.) is continuous, strictly increasing and concave for a.s. w. We
say that the market is viability if for every utility function U € U such that

SUppeco £ (U*(Vﬁ%) < 00, there exists a strategy 6* € © such that:
E <U+(v;ﬁ*)) — sup E (U*(V,}’a)>
9e0

The following Theorem in [34] gives an economic interpretation of NA;.
Roughly speaking, it states that NA; is equivalent to the solvability of utility
optimization problems.

Theorem 7.1.2. The following are equivalent:
1) NA; holds,
2) Market is viability.

In [34], the authors also show that NA; condition is sufficient to give a
dual characterization for the super-hedging price of the payoff ¢ € L°(R,, Fr).

Definition 7.1.3. An adapted stochastic process Z = (Zi)i—o.... v such that
Zy > 0 a.s. for allt and Zy = 1 is said to be a supermartingale deflator if

ZV1Y9 is a supermartingale, for all € ©. The set of all supermartingale
deflators is denoted by D.

Theorem 7.1.4. The following are equivalent:
1) NA; holds,
2) D #.
Moreover, suppose that NA; holds and let £ € L°(RY, Fr), then

p(§) = sup E[Zrg].

zZeD

In [34], the authors state that under conic trading restrictions (©; is a cone
for any t), no classical arbitrage holds if and only if there are no arbitrage of
the first kind. We have seen in Chapter 3, our NA condition in the presence of
risk measure (AIP 4+ SRN) is a generalization of NA;. Indeed, if ©; = R?, we
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showed by Theorem 3.3.5 in Chapter 3 that when the risk measure p;(X) =
—ess infx, X, the classical NA and our NA conditions coincide. Moreover,
the equivalence between NA; and our NA was established in Theorem 3.3.5.

Our next step is to understand the meaning of NA; in financial market
models with transaction costs. Then, we wish to relate it to market viabil-
ity and the set of supermartingale deflators in the spirit of Theorems 7.1.2
and 7.1.4. Moreover, one possible development is to extend the concepts of
our weak NA conditions (AIP, SAIP, LAIP) introduced in Chapter 4 to a
continuous time setting.

7.2 Super-hedging cost under model uncer-
tainty

The aim of this section is to discuss the pricing problem when there are model
uncertainty and transaction costs. In particular, we consider a dynamic
programming approach, which is a direct extension to [19]. To do so, we first
need to recall the multi-prior setting introduced in [12].

Given a measurable space (€2, A), we denote by B(2) the set of all prob-
ability measures on A. If Q is a topological space, B(2) denotes its Borel
o-algebra. We always endow B({2) with the topology of weak convergence,
it is well known that 2B((2) is Polish whenever  is Polish. Given a family
of measure P C B(2), a subset A C Q) is called P-polar if A C A’ for some
A" € A satisfying P(A’) = 0 for all P € P, and a property is said to hold
P-quasi surely or P-q.s. if it holds outside a P-polar set.

Let T' € N be the time horizon and let €2; be the Polish space. For
t ={1,...,T}, let Q be the t-fold Cartesian product, with the convention
that €2y is a singleton, i.e.

Qt = Ql X ... X Ql (t times).

We denote by F; the universal completion of B(€Q') and write (2, F) for
(QT, Fr). Foreacht € {1,...,T} and w' € QF we are given a nonempty convex
set Py(w') € B(£1) of probability measures. One financial interpretation for
this set-up is that at time ¢, when realizes w’, an agent faces model risk in
the market, where a possible model represented by a probability measure
P € Py(w"). We assume that for each ¢:

Graph(P;) := {(W', P) : w' € Q", P € P,(w")} C Q x B()
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is an analytic set in sense of Definition 2.6.2. This assumption is sufficient
to invoke the Jankov-von Neumann theorem (see Chapter 2) to deduce the
existence of a universally measurable selector kernel P, : Q2 — B(€;) such

that Py(w') € Py(w') for all w' € QF. We can then define P the set of
probability measures on €2 by Fubini’s theorem, i.e:

P:={P®..®Pr_1, P()€P(),t=0,1,...T — 1}

In the following, for a fixed o-algebra A, we denote L°(R¢, A) the set of
A-measurable random variables valued in R?.

We now consider a general set-up for models with transaction costs. For
each trading date ¢, we consider the Borel-measurable random set G, : Qf —
R, it represents the positions that are solvent. We suppose that G (w?!) is
closed for every w' € Qf and that G¢(w') + RL C Gy(w'), for all ¢ < T. Now,
the cost value process C = (C;)L_, associated to G is defined wi-wise as:

Ci(wh 2) =inf{la € R: ae;—z € Gy(w')} = min{a € R: ae;—2z € Gy(w')}.

It is simple to verify that C;(w?,.) is a lower semicontinuous and C; is
Borel as a function of (w', z). We consider the super-hedging problem for a
random payoff £ € LO(R?, Fr). We denote by R;(£) the set of all portfolio
processes starting at time ¢t < T' that replicates £ at the terminal date T'. In
particular, R;(&) is defined as follows:

—{ O, € Ay )—AVSEGSP—q.s,VSEt—I—l,VT:f,P—q.s.}
where A;(F) is a stochastic process starting from ¢ defined as follows:
F):={(0,),: 0, € LR, F,) forallt <s<T}.
The set of replicating prices of ¢ at time ¢ is given by:
H(&) = {Vi = (V' V) e R F) - (W)L, € Ril9)} -
The infimum replicating cost is then defined as:

co(§) = inf {Co(Vo), Vo € Ho(§)}

V()GR
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Our key of observation is that for any stochastic process (V;)L,, it is a
portfolio process if and only if V;_; — V; € Gy, P-q.s. or equivalently the
following holds:

Vi > & 4 Cr(0,(6® — V), P —qs.
VL > VG0, (VP = VD)), P —qs, VE<T - 1.

Recursively, we deduce that:

T-1
Vo >3 C(0, X7 = X)) + €1+ Cr((0,6® - X)), P~ s, (7.2.1)
t=1

And the problem of finding ¢¢(£) amounts to minimize over all (V;)o<t<r—1
such that Vj satisfies 7.2.1. To do so, a natural idea is to establish a dynamic
programming principle. We already established in Chapter 4 a dynamic pro-
gramming principle for the mono-prior case, i.e. P is a singleton. In [19] and
[12], the authors claimed a dynamic programming principle for the market
without frictions, i.e. Cy(x) = Syz for some Borel measurable price process
(St)o<t<r. The following dynamic programming procedure is a straightfor-
ward combination of the ideas from Chapter 4 and [19].

DPP:

Y (whoy) = W) + O, (0,£(W) —y@)),
0% (w',y) := inf {z ER, 2>, (W), y), Pilw) — q.s.} < T —1,
Di(w', z,y) = Cy(w', (0,y® — 2®)) + 0f (W', y), t < T — 1,
A (wh @) == inf DfW' x,y)), t <T —1.
yeRd

One of the main goals is to find an appropriate no arbitrage condition such
that 7% (w?,0) = ¢o(€). To do so, we first need to overcome some measurability
issues, for example, the function yf : O x R — R in DPP is not upper
semianalytic for free. In [19] and [12], the authors use a classical no arbitrage
condition to claim the validity of the dynamic programming principle for the
frictionless markets. Furthermore, we want to know whether it is possible to
compute wf when the cost process C; depends on some Borel measurable price
process S;. In other words, we want to answers the computability question
in the same fashion as Chapter 4 but in multi-prior setting.
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RESUME

Cette thése présente quatre problémes d'évaluation et d'optimisation en mathématiques
financieres. Dans la premiére partie, nous considérons le probleme de couverture en
présence de mesures de risque dynamiques définies sur I'espace général des variables
aléatoires. Dans la seconde partie, nous résolvons un probléme classique de
caractérisation des prix des options européennes dans des modéles de marchés
financiers avec colts de transaction. Dans la troisieme partie, nous appliquons le résultat
théorique établi dans la deuxieme partie en fournissant un algorithme pour calculer les
prix de sur-réplication en pratique. En particulier, les prix exacts seront déduits pour le
cas du coUlt de transaction proportionnel et le cas du cout fixe. Dans la derniere partie,
nous présentons nos avancées actuelles sur le probleme d'optimisation de portefeuille
sous contrainte de risque de crédit.

MOTS CLES

Marchés avec colts de transactions, ensembles aléatoires, non arbitrage, sur-réplication.

ABSTRACT

This thesis presents four problems of pricing and optimization in financial mathematics. In
the first part, we consider a hedging problem in the presence of dynamic risk measures
defined on the general space of random variables. In the second part, we resolve a
classical pricing problem for European options in financial markets with transaction costs.
In the third part, we apply the theory established in the second part by providing an
algorithm to calculate the super-hedging prices in practice. In particular, the exact prices
can be deduced for the cases of proportional and fixed transaction costs. In the last part,
we present some recent advances for the portfolio optimization problem under credit risk
constraint.
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Markets with transaction costs, random sets, no arbitrage, super-hedging.




