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Résumé (en français)

En statistique, l’hypothèse des variétés suppose que les données observées se répartis-

sent autour de structures de faible dimension, appelées variétés. Ce postulat permet

d’expliquer pourquoi les algorithmes d’apprentissage fonctionnent bien même sur des

données en grande dimension, et est naturellement satisfait pour de nombreux jeux

de données issus de la vie réelle.

Nous présentons dans cette thèse quelques contributions aux problèmes d’estimation

de deux quantités sous cette hypothèse : la densité de la distribution sous-jacente, et le

reach de son support. Pour l’estimation du reach, nous élaborons des stratégies basées

sur des invariants géométriques, avec d’une part la fonction de défaut de convexité, et

d’autre part, des mesures de distortion métrique, desquels nous obtenons des vitesses

de convergence optimales au sens minimax. Concernant l’estimation de la densité,

nous proposons deux approches : l’une s’appuyant sur l’étude fréquentiste d’un esti-

mateur à noyaux, et une approche bayésienne non-paramétrique se reposant sur des

mélanges de gaussiennes. Nous montrons que ces deux méthodes sont optimales et

adaptatives en la régularité de la densité.

Enfin, nous examinons le comportement de certaines mesures de centralité dans

des graphes aléatoires géométriques, l’étude duquel, bien que sans lien avec l’hypothèse

des variétés, a des implications méthodologiques et théoriques qui peuvent être in-

téressantes dans tout cadre statistique.

Mots clés

Statistique non-paramétrique, statistique en grande dimension, apprentissage sur

variété, inférence géométrique, estimation de densité, théorie minimax, estimation

adaptative, estimation du reach, inférence bayésienne, mesure de centralité, pro-

fondeur statistique
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Abstract

In high-dimensional statistics, the manifold hypothesis presumes that the data lie near

low-dimensional structures, called manifolds. This assumption helps explain why

machine learning algorithms work so well on high-dimensional data, and is satisfied

for many real-life data sets.

We present in this thesis some contributions regarding the estimation of two quan-

tities in this framework: the density of the underlying distribution, and the reach of its

support. For the problem of reach estimation, we suggest different strategies based

on important geometric invariants — namely the convexity defect functions, and

measures of metric distortions — from which we derive minimax-optimal rates of con-

vergence. Regarding the problem of density estimation, we propose two approaches:

one relying on the frequentist study of a kernel density estimator, and a Bayesian non-

parametric approach based on location-scale mixtures of Gaussians. Both methods

are shown to be optimal in most settings, and adaptive to the smoothness of the density.

Lastly, we examine the behavior of some centrality measures in random geomet-

ric graph, the study of which, although unrelated to the manifold hypothesis, bears

methodological and theoretical implications that can be of interest in any statistical

framework.

Keywords

Nonparametric statistics, high-dimensional statistics, manifold learning, manifold

hypothesis, geometric inference, density estimation, minimax theory, adaptive estima-

tion, reach estimation, Bayesian inference, centrality measure, data depth
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Chapter 1

General introduction

The present thesis tackles a few problems in nonparametric statistics formulated under

the manifold hypothesis, meaning that the data is assumed to lay on or near sub-

manifolds of the Euclidean space. More precisely, we aim at presenting contributions

regarding the estimation of two quantities: the density of the underlying probability

distribution, and the reach of its support. We will also discuss the behavior of centrality

measures in random geometric graphs, the study of which, although unrelated to our

manifold framework, bears general, methodological purposes that can transversally

apply to most statistical frameworks.

Section 1.1 seeks to motivate the research that has been carried out in the past

few years during the preparation of this thesis, and is designed to be understandable

without specific mathematical knowledge. Section 1.2 introduces more precisely the

statistical setting in which this work takes place. The main contributions are reviewed

in Section 1.3. They are stated in a non-rigorous fashion and we refer to the men-

tionned chapters for precise definitions and results. The overall organisation of the

manuscript is summarized in Section 1.4.
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CHAPTER 1. INTRODUCTION

1.1 The manifold hypothesis

Modern applications of statistical learning often revolves around high-dimensional

data sets1, whether they be genomic data [MPRR04], images [BDSS21], texts [DGK02],

high-resolution time series [PVI+16], etc. This raises challenges not only in term of

computational resources, but also in term of designing efficient algorithms with solid,

established guarantees. Unfortunately, the performance of such algorithms should,

from a theoretical point of view, deteriorate as the number of dimensions grows large.

This phenomenon is widely known as the curse of dimensionality [VF05], and stems

from the degenerated geometric behavior of high-dimensional spaces: the volume

of the balls plummets and collapses toward their boundaries, Gaussian distributions

become heavy-tailed, etc — see for instance [Gir21, Chap. 1]. And yet, current al-

gorithms, and sometimes even the simplest ones, manage to performs very well on

high-dimensional data, highlighting an indisputable gap between the empirical perfor-

mance bounds of such algorithms and their theoretical counterparts.

Let’s take a very simple example to illustrate our point. In 1998, researchers LeCun

et al. [LBBH98] created the MNIST data set from the preexisting (but unfit to statistical

analysis) NIST data set. The new data set consisted of 60000 pictures of handwritten

digits normalized to 28x28-pixels, grayscale images, as shown in Figure 1.1.

Figure 1.1 – Examples taken from the MNIST data set. Since the image are grayscale,

the dimension D of the data is their number of pixels, which is D = 28 × 28 = 784.

Source: [LBBH98, Fig 4].

[LBBH98] then proceeded to test a number of different machine learning classi-

fication algorithms on this data set, aiming at automatically recognizing the digits
1The dimension of a piece of data is the number of parameters that describe it. For instance, the

dimension of an image is its number of pixels (if it is a grayscale image) or three times its number of pixels

(if it is a RGB image).

2



CHAPTER 1. INTRODUCTION

from their handwritten forms. Among the methods that served as a baseline for com-

paring the efficiencies of the algorithms, a k-nearest neighbors classification (k-NN)

was performed. The k-NN algorithm is a very simple procedure that classifies a data

point by a majority vote among its k-nearest neighbors in the data. This method is

particularly interesting because it does not require any training to classify new data,

and because very precise performance bounds are known for this method, see for

instance [Sam12]. The last reference shows that, under mild assumptions, the optimal

classifying accuracy of k-NN under n observations is n−4/(4+D) (up to a constant), with

D being the dimension of the data. Let us do a quick numerical application with the

MNIST data set:

n−4/(4+D) = 1.057... for n = 60000 and D = 784.

The macroscopic value of n−4/(4+D) indicates that the k-NN classifier should perform

poorly under such circumstances. This, however, comes in contradiction with the

95% accuracy observed by [LBBH98] for the same classifier. The theoretical number of

observation n inferred from the bound n−4/(4+D) that we would need to get as close as

a 5% misclassification rate would be

ntheo ≈ (100/5)(4+784)/4 = 20197 ≈ 10256,

which, we can all agree, seems fairly larger than 60000 (and is an utterly unrealistic

number for the size of a data set). In the other direction, one could wonder what

would be the theoretical dimension of a data set of size 60000 that could achieve a

misclassification rate of 5% with a k-NN classifier. That dimension is

Dtheo ≈
4 log(60000)
log(100/5)

− 4 = 10.690... ≈ 11, (1.1)

which is very far below the actual dimension D = 784. This motivates the following as-

sertion: the MNIST data, although living in a space of large dimension, is concentrated

near a low-dimensional subset of the ambient space. The dimension of that subset

will be called the intrinsic dimension of the data: it is the dimension that effectively

plays a part in the performance of the algorithms, and can be seen as the number of

implicit parameters that govern the data set. Regarding MNIST data set, [PZA+21] have

estimated its intrinsic dimension using the method of [LB04]. They found the intrinsic

dimension to lie between 7 and 13 depending on the tuning of some hyperparameter;

our (improper) estimate (1.1) of the intrinsic dimension appears to fall exactly within

that range.

Because we want to conduct an analysis in this framework, we need to add some

structure to the underlying subset around which the data is gathered. The idea of

assuming that this structure might be linear has been popular for a while, with the

3



CHAPTER 1. INTRODUCTION

rise of linear dimensionality reduction technics such as PCA [WEG87], or the study

of linear models such as that single index models [HJS01], or multi-indices models

[CHM11]. Going non-linear was thus only the next logical step. In the early 2000,

the groundbreaking publications of [TSL00] and [RS00], which described a non-linear

methods (Isomap and Local Linear Embedding) for reducing the dimensionality of

the data, paved the way for the development of manifold learning, whose funding

assumption is

MH The data lie near a smooth, low-dimensional structure: a manifold.

We will refer to Assumption (MH) as the manifold hypothesis. Ever since, many

other non-linear dimensionality reduction methods have seen the light of the day —

see for instance Laplacian Eigenmap [BN03], Maximum Variance Unfolding [WS06a],

Uniform Manifold Approximation and Projection [MHM18] — see Figure 1.2 for a use

of UMAP on the MNIST data set. All these technics came with an impressive number

Figure 1.2 – UMAP representation of the MNIST data set. Each point in

the graph represent one handwritten digit from the data set (see Figure 1.1),

with the color standing for its value. The fact that this data set can be

represented on a space of dimension two with a good inter-class separa-

tion certainly doesn’t disprove the manifold hypothesis in this case. Source:

https://umap-learn.readthedocs.io/en/latest/densmap_demo.html.

of real-life applications, ranging, just to mention a few, from cosmology [BM21] (see

Figure 1.3), seismology [KLM+20], to biology, with low-dimensional mapping of either

cell trajectories [CSQ+19] or protein trajectories [VDL+21], or to medical science, with

tumoral cells segmentation [XY15].

Let us finally mention that the manifold hypothesis is readily satisfied for a number

of data set because of the geometric nature of the data itself. This concerns for instance

low-dimensional data sets such as 3D point clouds of real-life objects like body scans

4



CHAPTER 1. INTRODUCTION

[Cot12], other space located-data such that locations of markers at the surface of cells

[KPS14] — see Figure (1.4, Left) — or high-dimensional data in the case of sounds, texts

[BN01], or images [DG05], see for instance Figure (1.4, Right) for a visual example.

Figure 1.3 – Uncovering the one-dimensional structure of 1000 high-resolution spectra

of quasars with the Sequencer. Source: [BM21, Fig 4].

Figure 1.4 – (Left) Point cloud obtained using single-molecule localization microscopy.

Each dot represent the location of a protein at the surface of a cell. Source: [KPS14,

Fig 1]. (Right) Data from the COIL-20 data set [NNM96]. Although high-dimensional,

the data can be parametrized by the angle from which the picture is taken, and can

therefore be faithfully represented on a submanifold of dimension 1. Source: [SJF14,

Fig 3].

1.2 Structural assumptions

Statistical model Let us start with a few notations. For any closed subset K ⊂ RD,

and any δ > 0, we define the δ-offset of K to be the set of all points of RD that are at

distance less than δ from K for the Euclidean distance, namely

Kδ ∶= {x ∈ RD ∣ d(x,K) ⩽ δ} = ⋃
z∈K

B(z, δ),

where x ↦ d(x,K) is the distance function to K, and where B(z, δ) denotes the Eu-

clidean open ball of center z and radius δ. If K has Hausdorff dimension d ∈ {1, . . . ,D},

we let µK be the restriction to K of the Hausdorff d-dimensional measure on RD (see

5



CHAPTER 1. INTRODUCTION

[Fed69, Sec 2.10.2] for precise definitions regarding the Hausdorff dimension and mea-

sures). In particular, if K is an open subset of RD (such as Kδ), then µK is simply the

restriction to K of the Lebesgue measure on RD.

We consider an-sample of iid random variablesX1, . . . ,Xn drawn from a probability

distribution P on RD. This distribution P will be always assume to satisfy one of the

following assumptions, which are the formal counterparts of (MH):

MH-0 There exists a closed submanifold M ⊂ RD such that P ≪ µM ;

MH-δ There exists a closed submanifold M ⊂ RD such that P ≪ µMδ .

The symbol ≪ stands for absolute continuity of measures. The case (MH-0) corre-

sponds to the ideal case where the data X1, . . . ,Xn lie exactly on the submanifold M

and is very convenient as far as mathematical analysis is concerned, while the case

(MH-δ) encompasses the more realistic situation where the data lie δ-close to M and is

thus particularly applicable to real-life situations when the observations can be noisy.

See Figure 1.5 for a visual representation of this situation. Note that in this framework,

the submanifoldM is unknown, so that its knowledge cannot be used in any estimation

procedure.

This model naturally comes with numerous statistical challenges: since now the

underlying distribution exhibit a rich geometric structure, it could seem particu-

larly relevant to estimate its main features. In Section 1.1, we already briefly men-

tioned the problem of estimating the intrinsic dimension as tackled in [LB04], see also

[FSA07, KRW16]. We could as well be interested in estimating the homology of the sup-

port [NSW08, BRS+12], its persistent homology [CGLM14], its boundary [AC20, AAL21],

the geodesic length [TSL00, ACC20] or the support itself [GPPVW12a, AL19, Div21a].

The minimax setting Most of the time, we will adopt a minimax perspective. This

means the following: given a quantity of interest θ(P ) ∈ Θ for some parameter space

Θ, given a loss ` ∶ Θ ×Θ → R+ that quantifies the accuracy of estimators, and given a

model Σ of probability distributions that fulfils either (MH-0) or (MH-δ), we want to

find an estimator θ̂ ∶= θ̂(X1, . . . ,Xn) such that its worst case risk on Σ,

sup
P ∈Σ

EP⊗n[`(θ̂, θ(P ))],

is as small as possible. By that, we mean that we require the worst case risk to decrease,

as n grows large, at least as fast as the minimax risk, which is simply defined as the best

worst case risk on Σ:

inf
θ̃

sup
P ∈Σ

EP⊗n[`(θ̃, θ(P ))],

6



CHAPTER 1. INTRODUCTION

Figure 1.5 – Examples of synthetic data generated from distributions fulfilling either

(MH-0) with intrinsic dimension 1 (Top Left) and 2 (Bottom Left) or (MH-δ) with

dimension 1 and δ = 0.3 (Top Right) and dimension 2 and δ = 0.5 (Bottom Right).

where the infimum is taken over all measurable estimators θ̃ of θ(P ). The general

strategy will be like this: first, we bound from above the worst case risk of our estimator

θ̂. Then, we bound the minimax risk from below, using classical two-points or multiple-

points argument [Yu97, Tsy08]. If the two bounds decrease with n at the same speed,

our job is done.

Reach constraints Designing a relevant statistical model Σ is usually not an easy task.

We want Σ to be general enough so that it covers a wide array of possibilities and yields

estimators that are not too specifically subordinated to its features while being not too

vast either so that doing statistical inference on Σ is not trivially impossible (meaning

that the minimax risk is not bounded away from zero). To address that last issue we

need in particular to discard from our models probability measures that are supported

on manifolds that are too irregular, with the idea that no amount of observations will

ever be able to account for that irregularity if the latter is not constrained. For this

matter, we use the notion of reach as introduced by [Fed59], which is defined for any

7



CHAPTER 1. INTRODUCTION

closed subset A ⊂ RD as

rch(A) ∶= sup{r ⩾ 0 ∣ ∀x ∈ Ar, ∃!a ∈ A, d(x,A) = ∥x − a∥} .

The reach will encapsulate the regularity of a submanifold M on two aspects: first, it

will measure how curved it is on a local level, and second, it will measure how close it

is from self-intersecting. See Figure 1.6 for a visual interpretation of the situation.

Figure 1.6 – A toy-example of point cloud X1, . . . ,Xn (Top Left) with three different

kinds of interpolating manifolds. A reach constraint will tend to discard the last two

(Bottom Left and Bottom Right) from the model.

Restraining the reach in our statistical models turns out to be unavoidable, with

many quantities becoming statistically intractable without the presence of such a

constraint. We show for instance in Chapter 4 (Theorem 4.2.10), that estimating the

density in a pointwise fashion is impossible without constraining the reach. See for

instance [AL19] for other impossibility results regarding the estimation of the support,

tangent spaces and curvatures in unconstrained models.

In what follows, we will consider, under either (MH-0) or (MH-δ), models of proba-

bility measures Σd
k such that any P ∈ Σd

k typically fulfils these three conditions:

i) Its associated submanifold M is of dimension d;

ii) The reach of M is bounded from below by some constant;

iii) M is of regularity Ck.

We refer to Chapters 2 to 5 for precise definitions of such models. Their definitions vary

8
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slightly from one chapter to another, but we will use one notation in this introduction

for the sake of clarity.

1.3 Our results

In the remaining parts of this introduction, we will use the symbols ≈, ≲ and ≳ to denote

equalities or inequalities up to constants and poly-log terms in n.

1.3.1 Estimating the reach of a submanifold

Because the reach is such an important quantity in our geometric framework, it may

seem relevant to be able to estimate it. To our knowledge, little has been done regarding

that matter. In their pioneering work, [AKC+19] show that, under (MH-0),

n−
1
d ≲ inf

r̂ch
sup
P ∈Σd3

EP⊗n[∣r̂ch − rch(M)∣] ≲ n−
2

3d−1 . (1.2)

The estimator they proposed is based on an alternative definition of the reach, found in

[Fed59, Thm 4.18]. Its rate of convergence is only optimal for d = 1, and leaves the door

open for improvement in finding optimal estimators for arbitrary intrinsic dimensions

and for support regularity k ⩾ 4.

Contribution 1 Inspired by this challenge, we partly tackle this problem in

▷ [BHHS22] Clément Berenfeld, John Harvey, Marc Hoffmann, and Krishnan Shankar.

Estimating the reach of a manifold via its convexity defect function. Discrete &

Computational Geometry, 67(2):403– 438, 2022,

by achieving the bounds (Theorems 2.2 and 2.35)

n−
k−2
d ≲ inf

r̂ch
sup
P ∈Σd

k

EP⊗n[∣r̂ch − rch(M)∣] ≲
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n−
1
d for k = 3,

n−
k
2d for k ⩾ 4.

under (MH-0) or under (MH-δ) provided that δ ≲ n−k/d. The lower-bound is a gener-

alization of the lower-bound (1.2) for k ⩾ 4, while the upper-bound is a substantial

improvement of the upper-bound (1.2). The strategy is to take advantage of an elegant

reformulation of the reach found in [AKC+19]:

rch(M) = min{curv(M),wfs(M)} ,

where curv(M) is the minimal curvature radius of M , and wfs(M), is the weak feature

size of M , a crucial geometric invariant introduced in [CL04]. The paired estimation of

this two quantities go through the exploitation of fine properties of the convexity defect

9
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function of M , as introduced in [ALS13]. The convexity defect function t ↦ hM(t)
quantifies how far M is from being convex at scale t > 0, and captures many geometric

features of M . For instance, we show (Proposition 2.12) that curv(M) appears in the

development of hM around zero:

hM(t) = t2

2 curv(M)
+O(t4∧k).

We also show (Corollary 2.14), that t = wfs(M) is a discontinuity point for hM whenever

wfs(M) < curv(M), see Figure 1.7 for an illustration of that phenomenon. These two

properties makes the reach of M computable from its convexity defect function alone

and enable a plug-in strategy for the estimation of the reach.

Figure 1.7 – (Left) A curve M and (Right) its convexity defect function hM(t), which,

since wfs(M) < curv(M) in this diagram, presents a discontinuity at t = wfs(M).

Contribution 2 This last method however suffers two limitations. First, it fails at be-

ing optimal as soon as k ⩾ 5: this is because the estimator of curv(M) derived from the

convexity defect function is suboptimal. Second, it relies on an estimator of the weak

feature size, and this quantity is shown in Theorem 3.6 to be untractable statistically,

making this approach less powerful. We circumvent these two disadvantages in

▷ [ABL22] Eddie Aamari, Clément Berenfeld, and Clément Levrard. Optimal reach

estimation via metric learning. In revision, arXiv preprint arXiv:2207.06074, 2022,

by replacing the curvature estimator by an estimator stemming from the second fun-

damental form estimator of [AL19], and by proposing a new surrogate scale in place

of the week feature size. This new scale, coined the spherical distortion radius (Defi-

nition 3.13) and inspired by the work of [BLW19] and [CFM21], still carries important

geometrical content regarding the geometry of the support. In short, this quantity

10
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compare how the intrinsic distance over the support relates to the spherical distances,

see Figure 1.8 for an illustration. The resulting estimator satisfies (Theorem 3.34)

n−
k−2
d ≲ inf

r̂ch
sup
P ∈Σd

k

EP⊗n[∣r̂ch − rch(M)∣] ≲ n−
k−2
d

under (MH-0) or under (MH-δ) provided that δ ≲ n−k/d. This puts an end to the quest

of an optimal estimation procedure for the reach.

Figure 1.8 – (Left) Diagram of a submanifold M (a curve). In blue is the shortest path

between two points x and y. In green (resp. grey) is the cercle portion of radius r0

(resp. r1) going through x and y. The spherical distortion radius sdr∆(M) find the

biggest r such that dM(x, y) ⩽ dS(r)(x, y), for all x, y ∈ M that are ∆-apart. (Right)

Plot of ∆ ↦ sdr∆(M). We show (Proposition 3.14 and Theorem 3.22) that the SDR

interpolates smoothly between the reach and the weak feature size of M .

Along the way, we also provide with optimal estimation bounds for the maximal

curvature (Theorem 3.11), for the intrinsic metric (Theorems 3.25 and 3.28) and for the

spherical distortion radius (Theorem 3.31). The optimality at each step of the process

make our result adaptive to whether the value of the reach stems from a high curvarture

(curv(M) < wfs(M)) or a bottleneck effect (curv(M) < wfs(M)). On a submodel where

the bottleneck effect predominates, we show that the same estimator automatically

achieves the rate

n−
k
d ≲ inf

r̂ch
sup
P ∈Σd

k

EP⊗n[∣r̂ch − rch(M)∣] ≲ n−
k
d .

1.3.2 Manifold density estimation

Density estimation is perhaps one of the most fundamental problems in nonpara-

metric statistics. The stake is to find data-driven estimators of the underlying density

from which the data is sampled, and to do it in a way that is optimal with respect

to the regularity of the density. The practical purposes of density estimation are

extremely diverse, ranging from descriptive and predictive analysis on spatial data
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[Bit90, DNHTY14, And09] passing by a number of statistical learning tasks such as clas-

sification [CZ05], clustering [HG07], anomaly detection [RLSMG08], etc. See Figure 1.9

for a qualitative analysis of the density of a real-life data set in a manifold framework.

Figure 1.9 – Scatter plots of extreme wind measurements at the airport of Carrasco,

Montevideo Uruguay during the hot season (Left) and the cold season (Right). The

data lives on the cylinder S1 ×R because the first coordinate (the orientation of the

wind) is periodic. In dotted lines are represented the level sets of the estimated densi-

ties, highlighting some crucial difference in the distributions of the winds between

hot and cold seasons. Source: [CFM22, Fig 7].

As a long-established problem, density estimation has been studied in large and

breadth in the multivariate, Euclidean case where the underlying probability distri-

bution is absolutely continuous with respect the Lebesgue measure of the ambiant

space RD. Minimax estimators have been constructed for various regularity classes

in this setting, see for instance textbooks [Tsy08, GN16], and adaptive procedures

have been derived [LMS97, Low97, LMR17, BBM99, GL08, GN10], meaning that we

can find estimators that do not depend on the underlying regularity of the density, but

perform just as good as if they did. If the density is of regularity β0 > 0, the minimax

of estimation under reasonable losses has been shown to be n−β0/(2β0+D). This rate

is reminiscent of the rate that we studied in Section 1.1, and suffers indeed from the

curse of dimensionality, by becoming extremely slow as D grows large. That’s enough

to motivate an approach under the manifold hypothesis.

However, and surprisingly enough, little has been done in a manifold framework.

Some estimation procedures exist in an abstract manifold setting [Hen90, Pel05]

with sometimes involved adaptation results [KNP12], but these constructions always

strongly rely on knowing the manifold perfectly, through the use of Fourier bases,

needlet bases, volume density functions, etc.

12
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Only recently have we seen the rise of results regarding density estimation in a

framework where the supporting submanifold is unknown, see for instance [OG09,

BS17] and the many new and exciting developments in the noiseless [WW20, Div21b,

TY22] or noisy setting [HP21, CMG22], just to cite a few.

Contribution 3 We define in

▷ [BH21] Clément Berenfeld and Marc Hoffmann. Density estimation on an un-

known submanifold. Electronic Journal of Statistics, 15(1):2179–2223, 2021,

a new statistical model Σd
k,β0

on top of Σd
k by asking that the underlying density be

β0-Hölder in a sense defined in Chapter 4, Definition 4.2.9. For a pointwise loss, we

find that, under (MH-0),

n
− β0

2β0+d ≲ inf
f̂(x0)

sup
P ∈Σd

k,β0

EP⊗n[∣f̂(x0) − f(x0)∣] ≲ n
− β0

2β0+d , (1.3)

provided that β0 ⩽ k − 1, see Theorems 4.3.1 and 4.3.2. Notice that the ambient dimen-

sion D has been replaced by the intrinsic dimension d in the minimax rate, recovering

the classical rate of estimating density in Rd, and thus curbing the curse of dimen-

sionality. This rate in achieved by a kernel estimator in the spirit of [Pel05, OG09] and

only depends on the intrinsic dimension d, see Figure 1.10 for numerical study of the

empirical perfomence of our estimator.

Figure 1.10 – (Left) A 2-dimensional submanifold in R3. It is endowed with a β0-

Hölder density with β0 = 2, from which (Middle) a point cloud is sampled. (Right)

The loss of the estimator is computed repeatedly for various value of n, and the

averaged losses are represented in a double log10-scale, highlighting the rate found

in (1.3).

A particular care has been given to the situation where the data is intrinsically

one-dimensional. In this case, we build an estimator (Theorem 4.3.3) relying on an

estimation of geodesic distances which achieves the rate (1.3) without the need of the

constraint β0 ⩽ k − 1.
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Finally, using Lepski’s method [LMS97] together with an estimator of the intrinsic

dimension d̂ yields a fully data-driven bandwidth ĥ and an estimator which achieves

the rates of (1.3) adaptively in d and β, see Theorem 4.3.4.

Contribution 4 Another method considered in this manuscript is a Bayesian take on

density estimation. The general idea behind Bayesian inference is to endow the space

of probability measures on RD with some carefully chosen prior II, and to update the

prior, through the Bayes rule, as new data are observed. The updated prior is called the

posterior distribution and is denoted II(⋅ ∣X1, . . . ,Xn). We will be interested in the con-

centration rates of the posterior distribution: it is the speed at which II(⋅ ∣X1, . . . ,Xn)
concentrates around P0 when the observations are sampled iid from P0.

As in the frequentist world, Bayesian density estimation has been extensively stud-

ied in a Euclidean setting. From the trailblaizing [Fer83] and [EW95], different methods

have been proposed, such as using mixtures of Gaussians [GVDV07, KRVDV10, STG13],

of Betas [Rou10], Gaussian processes [vdVvZ08], wavelet expansions [RR12], etc. And

like before, the manifold case has received only little attention. We mention the

existence of a Bayesian theory for abstract manifold developed in [CKP14] with con-

centration rates derived for density estimation, and the recent work of [MLD20] who

tackle the problem by using mixture of Fisher-Gaussian kernels, but with no proven

concentration rates.

We adress the problem of Bayesian density estimation in

▷ [BRR22] Clément Berenfeld, Paul Rosa, and Judith Rousseau. Estimating a density

near an unknown manifold: a Bayesian nonparametric approach. In revision,

ArXiv preprint arXiv:2205.15717, 2022.

by, first, introducing a new kind of priors that belong to the family of hybrid location-

scale mixtures of Gaussians. These priors are flexible enough so that they can catch

even very singular distributions (Theorem 5.3.7), while inheriting from the good con-

traction rates of the hybrid location-scale mixtures [NR17]. See Figure 1.11 for an

illustration of the efficiency of these priors.

To quantify the rate of convergence on our family of priors, we build a model of den-

sities under (MH-δ) that are informally β0-Hölder along the submanifold and β⊥-Hölder

normal to the manifold, see Definitions 5.2.1 and 5.2.3. Such a model encompasses in

particular the real-life situation when a β0-Hölder signal on the submanifold is blurred
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Figure 1.11 – (Left) 500 points drawn from an even mixture of uniform distributions

on two circles with a noise of size δ = 0.05 and (Right) 500 points sampled from the

(approximated) posterior distribution of our model. An asset of our method is that it

can handle finite mixtures of manifold-supported probability distributions, therefore

managing to capture densities supported on intricate geometric structures.

by an additive noise of regularity β⊥. We obtain the concentration rate (Theorem 5.3.2)

II(∥f − f0∥1 ⩾ εn ∣X1, . . . ,Xn)→ 0 in P⊗n
0 − prob.

with εn ≈
1

√
nδ

D
α0−α⊥

∨ n−
β

2β+D ,

where β is the effective regularity, defined through D
β = d

β0
+ D−d

β⊥
, and where α0 = β/β0

and α⊥ = β/β⊥. For δ not too small, this is the minimax rate for density estimation in a

anisotropic setting. In particular, when the noise is assumed to be much more regular

than the underlying β0-Hölder density, the contraction rates become

εn
≈ÐÐÐ→

β⊥→∞

1√
nδd

∨ n−
β0

2β0+d ,

which, provided that δ is not too small, is the minimax rate we found in (1.3) in a

frequentist, noiseless setting. One of the strengths of this result is that our method does

not depend on the knowledge of the regularities β0 and β⊥, neither on the underlying

manifold M , its dimension d, or the width of density δ: the estimation is adaptive in

these parameters.

1.3.3 Beyond density estimation

Density is a special case of a depth, a standard notion in multivariate analysis used as a

mean to order multi-dimensional spaces — which typically lack unequivocal orderings

as opposed to the real line — in a way that takes into account the underlying probability

distribution. Typical depths includes the celebrated half-space depth [Tuk75], sim-

plicial depths [Oja83], lens depths [KVL17, CFGM20], see [LSS06] for other notion of
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depths. The density, also coined the likelihood depth [FM99], is a wonderful descriptor

but its intrinsic locality makes it, as a depth, fail at taking into account some global

features of the probability distribution.

Contribution 5 Noticing that the density can be realized asymptotically as the rescaled

degree of the vertices of a neighborhood graph built on top of the data, one could

wonder what other kind of depths could emanate from taking large sample limits of

other features of such graphs. This is the topic of

▷ [AACB21] Eddie Aamari, Ery Arias-Castro, and Clément Berenfeld. From graph

centrality to data depth. In revision, arXiv preprint arXiv:2105.03122, 2021,

which aims at studying the asymptotic behavior of centrality measures [BE06] (to

which the degree belongs) in random geometric graphs. The focus is made on two well-

known notions of centrality, the H-index [Hir05] and the coreness [Sei83]. We prove

that they converge (Theorems 6.3.5 and 6.4.12) towards their asymptotic counterparts,

called the continuous H-index and coreness. The latter forms a spectrum of new depths

which interpolate between the very local likelihood depth and the much more global

continuous coreness. See Figure 1.12 for an illustration of this result.
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Figure 1.12 – (Top Left) A density function f on R2 and (Bottom Right) its associated

continuum coreness. In between are displayed the centralities (iterated H-indices

and coreness) computed in the neighborhood graph built on top of n = 20000 points

sampled from f , showing a clear interpolation between f and its continuum coreness.
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1.4 Organization of the manuscript

The rest of the manuscript is organized in chapters, whose content is taken from the

aforementioned articles, written in the course of this thesis. The chapters, which are

summarized below, are functioning individually and are fully independent notation-

wise, and can therein be read in no particular order — although we might suggest that

Chapter 2 be read before Chapter 3, and Chapter 4 before Chapter 5. There might be

slight redundancies from one chapter to the others, for which we apologize in advance.

Chapter 2 is based on [BHHS22]. It focuses on the problem of estimating the reach

of a submanifold through the analysis of its convexity defect function. Non-asymptotic

rates of estimation are derived on generic Ck models, and are shown to be optimal in

the very particular case of k = 3 and k = 4, but not for k ⩾ 5.

Chapter 3 is based on [ABL22] and bridges the gap left by the previous chapter by

exhibiting a minimax optimal estimator of the reach under any smoothness assump-

tion. It revolves around a new notion of geometric scale involving metric distortion.

Rates of convergence are derived for this new scale and, in the process, we obtain new

bounds for geodesic length estimation.

Chapter 4 is based on [BH21], and tackle the problem of estimating a density that

is singularly supported on a submanifold, in a pointwise fashion. We recover the usual

minimax rate of estimating Hölder densities and we provide an adaptive kernel-based

estimator with a data-driven bandwidth selection procedure.

Chapter 5 is based on [BRR22] and lays some theoretical grounds for Bayesian

analysis of density supported near submanifolds. We define a new notion of regularity

for such densities and study the posterior contraction rates on these regularity classes

for a new kind of hybrid location-scale Dirichlet process mixtures of Gaussians.

Chapter 6 is based on [AACB21]. It studies the large-sample limits of well-known

centrality measures in neighborhood graphs, with a focus on the H-index and the

coreness.
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Chapter 2

Reach estimation via the convexity
defect function

The reach of a submanifold is a crucial regularity parameter for manifold learning and

geometric inference from point clouds. This chapter relates the reach of a submani-

fold to its convexity defect function. Using the stability properties of convexity defect

functions, we propose an estimator for the reach, based on a plug-in of an estimator of

the support. A uniform expected loss bound over a Ck model is found. Lower bounds

for the minimax rate for estimating the reach over these models are also provided. The

estimator almost achieves these rates in the C3 and Ck cases, with a gap given by a

logarithmic factor. This chapter has been published in [BHHS22].
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2.1 Introduction

2.1.1 Motivation

The reach of a submanifold M ⊆ RD is a geometric invariant which measures how

tightly the submanifold folds in on itself. Dating back to Federer [Fed59], it encodes

both local curvature conditions as well as global ‘bottlenecks’ arising from two regions

of the manifold that are far apart in the manifold’s intrinsic metric but are close in the

ambient Euclidean metric. The reach is a key regularity parameter in the estimation of

other geometric information. Methods and algorithms from topological data analysis

often use the reach as a ‘tuning parameter’. The correctness of their results depends on

setting this parameter correctly.

Statistical inference from point clouds has become an active area. In a probabilistic

framework, a reach condition, meaning that the reach of the submanifold under study

is bounded below, is usually necessary in order to obtain minimax inference results in

manifold learning. These include: homology inference [NSW08, BRS+12], curvature

[AL19], reach estimation itself [AKC+19] as well as manifold estimation [GPPVW12a,

KRW16, AL19]. In this context, there is a risk of algorithms being applied as ‘black

boxes’ without attention to their underlying assumptions. Efficient reach estimation

would be a vital addition to this field, providing a so-called sanity test of other results.

In this direction, Aamari, Kim et al. paved the way: in [AKC+19], under some

specific assumptions, an estimator of the reach has been proposed and studied when

the observation is an n-sample of a smooth probability distribution supported on

an unknown d-dimensional submanifold M of a Euclidean space RD together with

the tangent spaces at each sampled point. For certain types of C3-regularity models,

the estimator, based on a representation of the reach in terms of points of M and its

tangent spaces (Theorem 4.18 in [Fed59]) achieves the rate n−2/(3d−1). A lower bound

for the minimax rate of convergence is given by n−1/d. In the special case when the

reach of M is attained at a bottleneck, the algorithm in [AKC+19] achieves this rate.

However, in general, one does not know whether this condition is satisfied a priori.

In this paper, we continue the study of reach estimation by taking a completely

different route: we use the relationship between the reach of a submanifold of RD

and its convexity defect function. This function was introduced by Attali, Lieutier and

Salinas in [ALS13] and measures how far a (bounded) subset X ⊆ RD is from being

convex at a given scale. It is a powerful geometric tool that has other applications such

as manifold reconstruction, see the recent work by Divol [Div21a]. By establishing

certain new quantitative properties of the convexity defect function of a submanifold

M ⊆RD that relate to both its curvature and bottleneck properties, we show that the
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convexity defect function can be used to compute the reach of a submanifold. From

this we obtain a method which transforms an estimator of M, along with information

on its error, into a new estimator of the reach.

The recent results of Aamari and Levrard in [AL19] provide an estimator of M

which is optimal, to within logarithmic terms. Transforming this into an estimator

of the reach, we obtain new convergence results over general Ck-regularity models

(k ⩾ 3). These rates improve upon the previous work of [AKC+19]. By establishing lower

bounds for the minimax rates of convergence, we prove that our results are optimal up

to logarithmic terms in the cases k = 3 and k = 4.

2.1.2 Main results

We present here one of several possible definitions of the reach. Given a submanifold

M ⊆RD, consider its δ-offset given by the open set Mδ ⊆RD, where

Mδ = ⋃
p∈M

Bδ(p).

Here Bδ(p) denotes the open Euclidean ball centered at p with radius δ. For small

enough δ (a uniform choice for such δ exists in general only when M is compact), one

has has the property that for all y ∈Mδ ∖M, there is a unique straight line from y to a

point in M realizing the distance from y to M. In other words, the metric projection

π∶ Mδ →M is well defined.

Definition 2.1 (Federer [Fed59]). The reach of a submanifold M is

sup{δ ⩾ 0∶The nearest point projection π∶ Mδ →M is well defined} .

We denote the reach by R(M) or simply R when the context is clear.

Other equivalent characterizations of the reach exist. For example, in Section

2.4.1 below, we use the characterization from Theorem 4.18 in [Fed59]. More recently

Theorem 1 in [BLW19] defined the reach in terms of the metric distortion.

Our main results are obtained for a statistical model which imposes certain stan-

dard regularity conditions on the manifolds being considered, requires that they are

compact and connected, and also imposes conditions on the distributions being con-

sidered which have support on those manifolds. The set of distributions satisfying

these constraints on Ck manifolds is denoted in the results below by Pk and these

constraints are elaborated upon in Sections 2.3 and 2.6.

Theorem 2.2. For d-dimensional submanifolds of regularity Ck with k ⩾ 3, and for

sufficiently large n, there exists an estimator R̂ explicitly constructed in Section 2.6 below
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that satisfies

sup
P ∈Pk

EP⊗n[∣R̂ −R∣] ⩽ C

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

( log(n)
n − 1

)
1/d

k = 3

( log(n)
n − 1

)
k/(2d)

k ⩾ 4,

where R̂ denotes an estimator of the reach R = R(M) constructed from an n-sample

(X1, . . . ,Xn) of independent random variables with common distribution P ∈ Pk. The

quantity C > 0 depends on d, k and the regularity parameters that define the class Pk

and the notation EP⊗n[⋅] refers to the expectation operator under the distribution P⊗n

of the n-sample (X1, . . . ,Xn).

We also provide a lower bound for the minimax convergence rate. In case k = 3,4,

our estimators are almost optimal, with a gap given by a log(n) factor.

Theorem 2.3. For certain values of the regularity parameters (depending only on d and

k), then

inf
R̂

sup
P ∈Pk

EP⊗n[∣R̂ −R∣] ⩾ cn−(k−2)/d,

where the infimum is taken over all the estimators R̂ = R̂(X1, . . . ,Xn) and c > 0 depends

on d, k and the regularity parameters.

These results are of an entirely theoretical nature. The question of practical imple-

mentation remains, although it is not of primary interest for the paper. Starting from a

point cloud X1, . . . ,Xn, one may implement the following protocol:

• Estimate M from the data X1, . . . ,Xn by the best available manifold reconstruc-

tion method M̂, or, indeed, by any other method.

• Compute hM̂ (Definition 2.10) and derive R̂ thanks to Definition 2.33.

The only inputs are M̂ and the regularity parameters that define the class Pk. It is a

common practice in statistics to assume some prior knowledge of the class in order to

constrain the problem. However, the quantities Cd,k,Rmin
and C in Theorem 2.34 are

unknown, which creates difficulties in deriving the accuracy of the estimator R̂ and, for

example, calculating a confidence interval. This is common to every minimax result

and could in practice be treated by estimating the variance of the estimator via any

conventional computational method such as the bootstrap [ET94]. A more detailed

discussion lies outside the scope of the present paper.

2.1.3 Organization of the paper
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The paper is divided into two halves: a first half that is mainly geometric in flavor

and a second half which employs mainly statistical techniques. To that end Sections

2.2, 2.3 and 2.4 describe the geometric setting of this paper in some detail, Section 2.5

discusses the approximation of the reach in a deterministic setting, while Sections 2.6

and 2.7 are devoted to showing that the new algorithm proposed to estimate the reach

achieves the rates stated in Theorem 2.2 and to the proof of the lower bound for the

minimax rate stated in Theorem 2.3.

Section 2.2: We elaborate on the geometry of the reach. We recall a dichotomy

due to Aamari, Kim et al. [AKC+19] in Theorem 2.4 and we study in particular the

distinction between global reach or weak feature size in Definition 2.5 and the local

reach in Definition 2.6, according to the terminology of [AKC+19]. This is not apparent

in the classical Definition 2.1 of Federer.

Section 2.3: A geometrical framework is given for studying reach estimation. We

describe precisely a class CkRmin,L
of submanifolds, following Aamari and Levrard [AL19].

Manifolds M in this class admit a local parametrization at all points p ∈ M by the

tangent space TpM, which is the inverse of the projection to the tangent space and

satisfies certain Ck bounds.

Section 2.4: This section is devoted to the study of the convexity defect function hM
of M as introduced in [ALS13] and its properties. We show how the local reach can

be calculated from the values of hM near the origin in Proposition 2.12 and how the

weak feature size (the global reach) appears as a discontinuity point of hM whenever

it is smaller than the local reach. This is done by proving an upper bound on hM in

Proposition 2.13. Proposition 2.12 and 2.13 are central to the results of the paper.

Section 2.5: When we attempt to estimate the reach in later sections, we will not

know M exactly. Instead, we will know it up to some statistical error coming from

an estimator. Propositions 2.24 and 2.26 give approximations of the local reach and

the weak feature size, respectively, calculated from some proxy M̃. The errors of the

approximations are given in terms of the Hausdorff distance H(M,M̃).

Section 2.6: Building on the definitions in Section 2.3, a statistical framework is

described within which we study reach estimation in a minimax setting. This defines

a class Pk of admissible distributions P over their support M, the submanifold of

interest, which belongs to the class CkRmin,L
. To apply the results of the previous section,

we may use the Aamari–Levrard estimator [AL19] M̂ of M from a sample (X1, . . . ,Xn)
as the proxy M̃ for M. This estimator is almost optimal over the class Pk. This yields

estimators of the local reach and finally of the reach R(M) in Section 2.6. We then

prove the upper bounds announced in Theorem 2.2 above in Theorems 2.31–2.34.

Section 2.7: Using the classical Le Cam testing argument we obtain minimax lower

bounds as announced in Theorem 2.3.
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2.2 Geometry of the reach

The reach of a submanifold M, which we will denote by R(M), or simply R, is an

unusual invariant. Definition 2.1 conceals what is almost a dichotomy – the reach of a

submanifold can be realised in two very different ways. This is made precise by the

following result.

Theorem 2.4. [AKC+19, Theorem 3.4] Let M ⊆ RD be a compact submanifold with

reach R(M) > 0. At least one of the following two assertions holds.

• (Global case) M has a bottleneck, that is, there exist q1, q2 ∈M such that (q1+q2)/2 ∈
Med(M) and ∥q1 − q2∥ = 2R(M).

• (Local case) There exists q0 ∈M and an arc-length parametrized geodesic γ such

that γ(0) = q0 and ∥γ′′(0)∥ = 1/R(M).

Here,Med(M) is the medial axis of M, that subset of RD on which the nearest point

projection on M is ill-defined, namely

Med(M) = {z ∈ RD ∣ ∃p, q ∈M, p ≠ q, d(z, p) = d(z, q) = d(z,M)} .

We say that the result above is only ‘almost’ a dichotomy because it is possible for

both conditions to hold simultaneously. The curve γ could be one half of a circle with

radius R(M) joining q1 and q2, for example, in which case the term ‘bottleneck’ might

be considered a misnomer, or the points q1 and q2 might not lie on γ at all, so that the

two assertions hold completely independently.

This situation invites us to consider two separate invariants. One, the weak feature

size, Rwfs, is a widely studied invariant encoding large scale information such as bot-

tlenecks. The second, which we will call the local reach, R`, following [AKC+19], will

encode curvature information. Theorem 2.4 states that the minimum of these two

invariants is the reach,

R = min{R`,Rwfs} .

Note that, in Riemannian geometry, the local reach is referred to as the focal radius

of M, while the reach itself is often referred to as the normal injectivity radius of M.

2.2.1 The weak feature size

The weak feature size is defined in terms of critical points of the distance function from

M (in the sense of Grove and Shiohama; see for instance [Gro94], p. 360).

Consider the function, dM ∶ RD → R defined by dM(y) = infp∈M ∥y − p∥. Note that

M = d−1
M(0). Following [ALS13], let ΓM(y) = {x ∈M ∶ dM(y,M) = ∥x − y∥}, i.e., those x

in M realizing the distance between y and M. Then we define a generalized gradient as

∇M(y) ∶= y −Center(ΓM(y))
dM(y,M)

,
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where Center(σ) is defined as the center of the smallest (Euclidean) ball enclosing the

bounded subset σ ⊆RD. This generalized gradient ∇M for dM coincides with the usual

gradient where dM is differentiable. We say that a point y ∈RD ∖M is a critical point

of dM if ∇M(y) = 0.

For example, if y is the midpoint of a chord the endpoints of which meet the

submanifold perpendicularly, then from y there are two shortest paths to M which

travel in opposite directions. It follows that y is a critical point.

Definition 2.5. Given a submanifold M of RD let C denote the set of critical points of

the distance function dM. The weak feature size, denoted Rwfs(M) or simply Rwfs, is

then defined as Rwfs ∶= inf {dM(y)∶ y ∈ C}.

By Theorem 2.4, if the reach is realised globally then the first critical point will be

the midpoint of a shortest chord which meets M perpendicularly at both ends, and so

the weak feature size is equal to the reach.

2.2.2 The local reach

In the local case, Theorem 2.4 tells us that the reach is determined by the maximum

value of ∥γ′′∥ over all arc-length parametrised geodesics γ. This can be formulated more

concisely by considering instead the second fundamental form, II, which measures how

the submanifold M curves in the ambient Euclidean space RD. We refer the reader to

a standard text in Riemannian geometry such as [DCFF92] for a precise definition of

the second fundamental form. Informally, the second fundamental form is defined

as follows. For a pair of vector fields tangent to M, the (Euclidean) derivative of one

with respect to the other is not usually tangent to M. In fact, the tangential component

is the Levi–Civita connection of the induced (Riemannian) metric on M. The normal,

or perpendicular, component yields a symmetric, bilinear form, namely, the second

fundamental form, denoted by IIp. In particular, if the norm of IIp is small then M is

nearly flat near p and if the norm is large then it is an area of high curvature.

Definition 2.6. Given a submanifold M of RD let IIp denote the second fundamental

form at p ∈M. The local reach of M, denoted R`(M) or simply R` is the quantity

R` = inf
p∈M

{ 1

∥IIp∥op
} .

We use the term ‘local reach’ here to reflect the fact that this quantity is generated

entirely by the local geometry. In differential geometry literature the local reach is

referred to as the focal radius of the submanifold.
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2.3 Geometrical framework

We define a class of manifolds which are suitable for the task of reach estimation. This

class is the same as that considered by Aamari and Levrard [AL19] for other problems

in minimax geometric inference. The class is that of Ck submanifolds, but with some

additional regularity requirements. These guarantee the existence of a Taylor expansion

of the embedding of the submanifold with bounded co-efficients, as well as a uniform

lower bound on the reach.

Definition 2.7. (see [AL19]) For two fixed natural numbers d < D and for some k ⩾
3, Rmin > 0, and L = (L⊥, L3, . . . , Lk), we let CkRmin,L

denote the set of d-dimensional,

compact, connected submanifolds M of RD such that:

(i) R(M) ⩾ Rmin;

(ii) For all p ∈M, there exists a local one-to-one parametrization ψp of the form:

ψp∶BTpM(0, r) ⊆ TpM→M,

v ↦ p + v +Np(v)

for some r ⩾ 1
4L⊥

, with Np ∈ Ck(BTpM(0, r),RD) such that

Np(0) = 0, d0Np = 0, ∥d2
vNp∥op

⩽ L⊥,

for all ∥v∥ ⩽ 1
4L⊥

;

(iii) The differentials divNp satisfy ∥divNp∥op
⩽ Li for all 3 ⩽ i ⩽ k and ∥v∥ ⩽ 1

4L⊥
.

We define subclasses of CkRmin,L
as follows, using the gapR`−Rwfs between the weak

feature size and the local reach. For fixed values of Rmin and L, we define

Mk
0 = {M ∈ CkRmin,L

∣Rwfs(M) ⩾ R`(M)}

and

Mk
α = {M ∈ CkRmin,L

∣Rwfs(M) ⩽ R`(M) − α} , α > 0.

Note that

CkRmin,L
= ∪α⩾0Mk

α.

Manifolds in CkRmin,L
admit a second parametrization, one that represents the man-

ifold locally as the graph of a function over the tangent space so that the first non-zero

term in the Taylor expansion is of degree two and is given by the second fundamental

form. These parametrizations in general satisfy weaker bounds than L. The degree k

Taylor polynomial then gives an algebraic approximation of the manifold, which will

be very useful in later calculations. The following lemma from [AL19] describes the

Taylor expansion of a local parametrization at every point p ∈M.
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Lemma 2.8. [AL19, Lemma 2] Let k ⩾ 3, M ∈ CkRmin,L
and r = 1

4 min{Rmin, L
−1
⊥ }. Then

for all p ∈ M there is a local one-to-one parametrization around p, Φp ∶ U → M, for

some U ⊂ TpM, which contains B(p, r) ∩M in its image, satisfies prTpM ○Φp(v) = v on

its domain, and takes the form

Φp(v) = p + v +
1

2
T2(v⊗2) + 1

6
T3(v⊗3) + . . . + 1

(k − 1)!
Tk−1(v⊗(k−1)) +Rk(v),

where ∥Rk(v)∥ ⩽ C∥v∥k. Furthermore T2 = IIp and ∥Ti∥op ⩽ L′i, where L′i and C depends

on d, k, Rmin and L, and the terms T2, . . . , Tk−1,Rk are all normal to TpM.

Definition 2.9. We call the degree j truncation of the parametrization Φp given in

Lemma 2.8 the approximation of degree j to M around p and write it

Φj
p(v) = p + v +

1

2
T2(v⊗2) + 1

6
T3(v⊗3) + . . . + 1

j!
Tj(v⊗j).

2.4 Convexity defect functions

The convexity defect function, originally introduced by Attali, Lieutier and Salinas

[ALS13], measures how far a subset X ⊆RD is from being convex at scale t. The goal of

this section is to establish a relationship between the convexity defect function and

the reach. The definition is valid for any compact subset of RD. In this section we will

principally consider the case of a closed submanifold M as before, but in the sequel

we will need to know that this function can be defined in greater generality.

We recall the definition. Given a compact subset σ ⊆X, it is contained in a smallest

enclosing closed ball in RD. We define Rad(σ) to be the radius of this ball. We denote

by Hull(σ) the convex hull of σ in RD. Then we define the convex hull of X at scale t to

be the following subset of RD:

Hull(X, t) = ⋃
σ⊆X

Rad(σ)⩽t

Hull(σ).

For two compact subsets A and B of RD, we define the asymmetric distance H(A∣B) =
supa∈A d(a,B) so that H(A,B) = max{H(A∣B),H(B∣A)} is the symmetric Hausdorff

distance.

Definition 2.10. Given a compact subsetX ⊆RD, we define the convexity defect function

hX ∶R⩾0 →R⩾0 by hX(t) =H(Hull(X, t),X) =H(Hull(X, t) ∣X).

We recall here from [ALS13] some useful properties of hX.

1. hX(0) = 0.

2. hX is non-decreasing on the interval [0,Rad(X)] and constant thereafter.
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Figure 2.1 – The convex hull at scale t, Hull(X, t) (in blue), of a curve X (in black).

Enclosed between the dotted curves is the minimal tubular neighborhood around X

that contains Hull(X, t) — its width is the convexity defect function hX(t).

3. If X̃ ⊆RD satisfies H(X, X̃) < ε, where H is the Hausdorff distance, then hX̃(t −
ε) − 2ε ⩽ hX(t) ⩽ hX̃(t + ε) + 2ε for any t ⩾ ε.

4. hX(t) ⩽ t for all t ⩾ 0. Moreover, hX(t0) = t0 if and only if t0 is a critical value of

the distance function, dX.

5. If the reach, R = R(X) > 0, then on [0,R) the function hX(t) is bounded above

by a quarter-circle of radius R centered on (0,R). In other words, hX(t) ⩽ R −√
R2 − t2 for t ∈ [0,R).

From item 4 and the definition of the weak feature size in terms of critical points of

the distance function, the following proposition is immediate.

Proposition 2.11. If M is a submanifold of RD then Rwfs = inf {t > 0∶hM(t) = t}.

We can also relate the local reach to the convexity defect function with the following

proposition, which we will prove in Section 2.4.2.

Proposition 2.12. Let k ⩾ 4. There exists a constant C (depending on Rmin,L, d and

k) such that, for any sufficiently small non-negative real t, t ⩽ tRmin,L,d,k, and any

M ∈ CkRmin,L
, we have

∣hM(t) − t2

2R`
∣ ⩽ Ct4.

In case k = 3, there exists a constant C ′ (depending on Rmin,L, d) such that, for any

sufficiently small non-negative real t, t ⩽ tRmin,L,d, and any M ∈ CkRmin,L
, we have

∣hM(t) − t2

2R`
∣ ⩽ C ′t3.
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We will write, somewhat informally,

R` = 1/h′′M(0).

The function hM is not actually twice differentiable; h′′M(0) here is a ‘pointwise second

derivative’. Since R = min{R`,Rwfs}, these two propositions show how the convexity

defect function yields the reach.

Proposition 2.12 will be proven in Section 2.4.2, but first we need to refine the upper

bound given in item 5 of the properties of hX given after Definition 2.10 for the case

where X is a submanifold.

2.4.1 Upper bounds on the convexity defect function

The two aspects of the reach relate to the convexity defect function in quite different

ways, which naturally leads one to wonder which aspect of the reach is responsible for

item 5 of the properties of hX given after Definition 2.10. In this subsection we improve

the upper bound by increasing the radius of the bounding circle from R to R`, though

the bound still only holds on the interval [0,R) (compare with Lemma 12 in [ALS13]).

See Figure 2.2 for an illustation.

Proposition 2.13. If M ∈ CkRmin,L
and R = R(M) is its reach, then on [0,R) the function

hM(t) is bounded above by a quarter-circle of radius R` centered on (0,R`). In other

words, hM(t) ⩽ R` −
√
R2
` − t2.

Figure 2.2 – A curve X (left) and its convexity defect function hX(t) (right), which is

below the quarter-circle of radius R` for t < R(X) = Rwfs. Since Rwfs < R`, we observe

a discontinuity at t = Rwfs.

For submanifolds in the classMk
0 (where Rwfs ⩾ R`), this result does not have any

content. However, for manifolds inMk
α i.e., manifolds for which Rwfs ⩽ R` −α for some

α > 0, the bound is sharper, with the following consequence.
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Corollary 2.14. If M ∈Mk
α for some α > 0, then hM is discontinuous at R(M).

Proof. Since α > 0, we have R(M) = Rwfs < R`. For t < Rwfs the bound hM(t) ⩽
R` −

√
R2
` − t2 from Proposition 2.13 holds. On the other hand, for t = Rwfs we have

hM(t) = t. Therefore the one-sided limit limt↗Rwfs
hM(t) < hM(Rwfs) and the function

is discontinuous.

The proof of Proposition 2.13 will require a few steps. We can focus our attention on

the local reach by paying attention to sets of the form M′ =M ∩B(z, r), where z ∈RD,

0 < r < R(M) and B(z, r) is a closed ball. Lemma 2.15 will show that subsets of this

type have no bottlenecks. We would expect, then, that the reach of such a subset is

generated by the local geometry. Lemma 2.18 quantifies this point: the reach of M′ is

determined by the behaviour of the second fundamental form on M′. The principal

point of difficulty here relates to the boundary of the sets M′. The proposition then

follows from the fact that hM(t) can be bounded using the functions hM′(t) and so the

bound is in fact determined by the second fundamental form, i.e. by R` in particular.

Lemma 2.15. Let A ⊆ RD be a compact set. Let 0 < s < R(A), z ∈ RD, and A′ =
A ∩B(z, s), where B is a closed ball. If A′ ≠ ∅, then A′ cannot have any bottlenecks, i.e.

there is no pair p, q ∈ A′ with ∥p − q∥ = 2R(A′) and (p + q)/2 ∈Med(A′).

Proof. Suppose for a contradiction that a bottleneck exists. Then it is a chord of length

2R(A′). Since diamA′ ⩽ 2s we obtain that 2R(A′) ⩽ 2s < 2R(A) ⩽ 2R(A′), the last

inequality holding by [AL15, Lemma 5].

We now consider the case where A =M, a submanifold, and consider the intersec-

tions M′. Our goal is to find the reach of the intersections, M′, in order to bound hM′

and hence hM. We will use the following characterisation of the reach due to Federer

[Fed59]
1

R(A)
= sup
p,q∈A

2d(q − p,CpA)
∥q − p∥2

,

where CpA is the tangent cone at p, which Federer showed always exists for a set of

positive reach. This quotient can be related to the second fundamental form as follows

(cf. [AKC+19, Lemma 3.3]; and also work of Lytchak [Lyt04] for more general results).

Lemma 2.16. Let k ⩾ 3 and M ∈ CkRmin,L
. Let M′ = M ∩B(z, r), where z ∈ RD, 0 < r <

R(M) and B is a closed ball. Then, provided M′ contains more than a single point, for

any p ∈M′ the norm of the second fundamental form is given by

∥IIp∥op = lim sup
q→p
q∈M′

2d(q − p,CpM′)
∥q − p∥2

,

where CpM′ is the tangent cone at p in M′. In particular, 1/R(M′) ⩾ supp∈M′ ∥IIp∥op.
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Proof. We claim that ∂M′ is a Ck submanifold of M. Consider the distance function to

the central point z ∈RD, say f(y) = d(z, y). This function is smooth on RD ∖ z and its

pull-back f ∣M is Ck on M ∖ z. For any p ∈ ∂M′, f(p) = r. Note that r is a critical value of

f ∣M precisely when the distance sphere ∂B(z, r) is tangent to M at some p ∈M.

However, this cannot happen for r < R(M). This is because r is less than the

focal radius at p and so M must lie in the exterior of B(z, r). This in turn implies that

M′ = {p} which contradicts the assumption that it is not a singleton. Therefore, r is

a regular value of the Ck function f on M and the pre-image ∂M′ is an embedded

submanifold without boundary, as claimed.

As a consequence, M′ is an embedded submanifold of M of full dimension with

boundary. The tangent cone in RD, CpM′, is given by TpM for p in the interior of M′

and by a half-space of TpM for p ∈ ∂M′, namely

CpM
′ = TpM ∩ {u ∣ ⟨p − z, u⟩ ⩽ 0} ,

where z is the center of the ball containing M′. We now consider some other point

q ∈M′, q ≠ p, and show that the projection of q to TpM lies in CpM′. Suppose p ∈ ∂M′ ⊆
∂B. Consider the affine hyperplane HD−1 through p perpendicular to the line pz. Since

q ∈ B, q lies on the same side of H as z and therefore the projection of q to TpM lies in

CpM
′. If p ∉ ∂M′ then TpM = CpM′ and so this statement automatically holds.

Let us assume now that q is close to p, satisfying ∥q − p∥ ⩽ 1
4 min{Rmin, (L⊥)−1}, so

that the projection of q to CpM′ satisfies the conclusion of Lemma 2.8. In particular, if

v is the projection of q onto TpM, we may write

q − p = v + 1
2 IIp(v, v) +R3(v),

where the remainderR3(v) is of order O(∥v∥3). Therefore

d(q − p,CpM′) = ∥1
2 IIp(v, v) +R3(v)∥ .

We can then calculate the Federer quotient,

2d(q − p,CpM′)
∥q − p∥2

=
∥IIp(v, v) + 2R3(v)∥

∥v∥2 + ∥1
2 IIp(v, v) +R3(v)∥

2

= 1
∥v∥2

∥IIp(v,v)+2R3(v)∥ +
1
4 ∥IIp(v, v) + 2R3(v)∥

.

As q → p we see that v → 0. In order to compute the lim sup, we may assume that a

sequence of points qi is chosen such that ∥IIp(vi, vi)∥ is maximized. Then, since all

terms in the denominator go to zero except the ratio ∥vi∥2

∥IIp(vi,vi)∥ , we have

lim sup
q→p
q∈M′

2d(q − p,CpM′)
∥q − p∥2

= lim
i→∞

∥IIp(vi, vi)∥
∥vi∥2

.
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We would like to claim that

lim
i→∞

∥IIp(vi, vi)∥
∥vi∥2

= ∥IIp∥op,

but recall that p may lie on the boundary of M′ and so we must check that a suitable

sequence of points qi ∈ M′ can be found. Since CpM′ is a half-space and IIp is a

symmetric, bilinear form, there is some unit vector w ∈ CpM′ so that ∥IIp(w,w)∥ =
∥IIp∥op. Then we can choose a sequence qi ∈M′ so that the projections of the qi are tivi,

where the vi are unit vectors in CpM′ such that vi → w and the ti are positive numbers

with ti → 0. The existence of such a sequence is equivalent to the fact that w ∈ CpM′.

The final statement then follows from

∥IIp∥op = lim sup
q→p
q∈M′

2d(q − p,CpM′)
∥q − p∥2

⩽ sup
p,q∈M′

2d(q − p,CpM′)
∥q − p∥2

= 1

R(M′)
.

Remark 2.17. The regularity assumption of k ⩾ 3 in the previous lemma may possibly be

improved to k ⩾ 2. This stems from the assumption in Lemma 2.8 which in turn derives

from the regularity assumption in [AL19, Lemma 2]. However, this is not needed in the

sequel so we do not pursue this further.

Lemma 2.18. Let k ⩾ 3 and M ∈ CkRmin,L
. Let M′ = M ∩B(z, r), where z ∈ RD, 0 < r <

R(M) and B is a closed ball. Then, provided M′ contains more than a single point, we

have 1/R(M′) = supp∈M′ ∥IIp∥op.

Proof. We have already shown in Lemma 2.16 that 1/R(M′) ⩾ supp∈M′ ∥IIp∥op. By

Lemma 2.15, M′ does not contain any bottlenecks. It follows that the reach is attained

in one of two ways and we examine each case.

Case 1: The reach of M′ is attained by a pair of points q, r ∈M′ but ∥q − r∥ < 2R(M′).

In this case we apply [AKC+19, Lemma 3.2] to obtain, in M′, an arc of a circle of radius

R equal to the reach of M′. Note that that lemma is stated for manifolds, but in fact the

proof only requires a set of positive reach. Then, for any point p on the reach-attaining

arc, we obtain that
1

R(M′)
⩽ ∥IIp∥op ⩽ sup

s∈M′

∥IIs∥.

Case 2: The reach of M′ is attained at a single point, say p, in M′. It follows, using

Lemma 2.16 that

1

R(M′)
= lim sup

q→p
q∈M′

2d(q − p,CpM′)
∥q − p∥2

= ∥IIp∥op ⩽ sup
s∈M′

∥IIs∥op.

Combining the two cases, then, we also have that

1

R(M′)
⩽ sup
s∈M′

∥IIs∥op

completing the proof.
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Proof of Proposition 2.13. Let M′ =M∩B(z, r), where z ∈RD, 0 < r < R(M) andB is a

closed ball. Recall that on [0,R(M′)) we have

hM′(t) ⩽ R(M′) −
√
R(M′)2 − t2.

By Lemma 2.18, if M′ is not a single point we have

1

R`
= sup
s∈M

∥IIs∥op ⩾ sup
s∈M′

∥IIs∥op =
1

R(M′)
,

and this entails the bound hM′(t) ⩽ R` −
√
R2
` − t2 on [0,R(M′)). If M′ is a point then

hM′(t) = 0 for all t and so the same bound holds.

Recalling that R(M′) ⩾ R(M) for every M′ with Rad(M′) < R(M), we have, for

0 < t ⩽ r < R(M),

sup
M′=M∩B(z,r)

hM′(t) ⩽ R` −
√
R2
` − t2.

Now for every σ ⊂M with Rad(σ) ⩽ t ⩽ r, there is some M′ =M ∩B(z, r) with σ ⊂M′

and it follows that

hM(t) ⩽ sup
M′=M∩B(z,r)

hM′(t).

Setting t = r and combining the two inequalities, we have, for 0 < t < R(M),

hM(t) ⩽ R` −
√
R2
` − t2.

2.4.2 The convexity defect function near zero

We have seen in the previous section how, for M ⊆ RD a compact submanifold, the

function hM on [0,R) obeys an upper bound determined by R`. We now study hM in

greater detail in a neighborhood of zero to obtain a Taylor polynomial, identifying R`
as the reciprocal of the ‘pointwise second derivative’, 1/h′′M(0). More formally, we prove

Proposition 2.12, which states that, for any sufficiently small t,

∣hM(t) − t2

2R`
∣ ⩽ Ctk∧4.

Once more, we approach hM by considering sets M′, which are the intersection of

M with small closed balls.

We introduce a new function hloc
M′(p, r1, r2; t), which contains information on the

convexity ofM′. Lemma 2.19 shows howhM can be determined from all thehloc
M′(p, r1, r2; t).

Recall from Lemma 2.8 that such sets M′ can be written as the graphs of functions over

TpM and that these functions have Taylor expansions.

Lemma 2.21 will set a lower bound on hloc for the degree 3 approximation to M

around p, which Lemma 2.23 translates to a lower bound on hloc
M′(p, r1, r2; t) itself.

Varying M′ we obtain a lower bound on hM(t) for small t, which we combine with the

upper bound from Proposition 2.13 to prove the result.
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Lemma 2.19. Let B denote a closed ball, then, for any compact set X ⊂ RD and any

r1, r2, t > 0 satisfying r1 ⩾ 3t and r2 ⩾ t + r1, we have

hX(t) = sup
p∈M

hloc
X (p, r1, r2; t)

where

hloc
X (p, r1, r2; t) = h( ⋃

σ⊆X∩B(p,r1)
Radσ⩽t

Hullσ ∣X ∩B(p, r2)).

Proof. We have immediately, for any p ∈X and any r1, t > 0

hX(t) =H( ⋃
σ⊆X

Radσ⩽t

Hullσ∣X) ⩾H( ⋃
σ⊆X∩B(p,r1)

Radσ⩽t

Hullσ∣X)

and so all that is necessary is to check that

H( ⋃
σ⊆X∩B(p,r1)

Radσ⩽t

Hullσ∣X) =H( ⋃
σ⊆X∩B(p,r1)

Radσ⩽t

Hullσ∣X ∩B(p, r2)) = hloc
X (p, r1, r2; t).

Let the asymmetric distance

h( ⋃
σ⊆X∩B(p,r1)

Radσ⩽t

Hullσ∣X)

be realized by the data σ ⊆ X ∩ B(p, r1), y ∈ Hullσ, p′ ∈ X. We have d(p′, y) ⩽ t and

d(y, p) ⩽ r1 so that d(p′, p) ⩽ r1 + t ⩽ r2. For the converse, just notice that if p′ ∈ X and

σ ⊂X, then, for any y ∈ Hullσ

σ ⊂ B(p′, d(p′, y) + 2 Rad(σ))

yielding for the optimal data σ, y, p′ the inclusion σ ⊂ B(p,3t).

For a bilinear map S ∶Rd×Rd →RD−d and a trilinear map T ∶Rd×Rd×Rd →RD−d,

we denote

M(S,T ) = {(v,S(v⊗2) + T (v⊗3)) ∣ v ∈Rd} ⊆RD

which is a C∞ submanifold of RD of dimension d.

By setting S and T to be the coefficients of Φ3
p, the approximation of degree 3 to a

manifold M around p ∈M (see Definition 2.9), we can easily see that, near p, M(S,T )
is Hausdorff close to M. This assumes that p = 0 and that TpM is the subspace spanned

by the first d co-ordinates. This assumption, which is used in the statement of the

lemma below, is for convenience only. For each p ∈M there is an isometry of RD which

causes it to be satisfied.
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Lemma 2.20. Let M ∈ CkRmin,L
. Suppose that p = 0 ∈M and TpM =Rd ⊆RD.

If k ⩾ 4, we have, for s ⩽ s1 with s1 depending only on Rmin,L, k, d,

H (M ∩B(0, s),M(S,T ) ∩B(0, s)) ⩽ Cs4,

where S and T are obtained from the degree 3 approximation Φ3
0 given in Definition 2.9

by S = 1
2d2

0Φ3
0 = II0, T = 1

6d3
0Φ3

0 and the constant C = CRmin,L,k,d.

When k = 3 we can use the degree 2 approximation Φ2
0 and pick T ≡ 0, to obtain

H (M ∩B(0, s),M(S,0) ∩B(0, s)) ⩽ C ′s3

Proof. Let us initially take s1 = min{Rmin, L
−1
⊥ }/4. Then for any point q ∈M ∩B(0, s), if

v = prT0M(q) then

q = Φ0(v) = v + S(v⊗2) + T (v⊗3) +R(v),

where Φ0 is the expansion given in Lemma 2.8 and ∥R(v)∥ ⩽ L′4
24 ∥v∥

4, unless k = 3. In

case k = 3, if we wish to control the remainder we can only use the degree 2 polynomial

approximation Φ2
0.

It is therefore clear that, for the point q = Φ0(v) ∈M ∩B(0, s), there is a correspond-

ing point Φ3
0(v) ∈M(S,T ) within the required distance and, conversely, for any point

Φ3
0(v) ∈M(S,T ) ∩B(0, s), there is a corresponding point Φ0(v) ∈ M. The constant C

may be chosen to be C = L′4
24 .

However, the corresponding point is not guaranteed to lie in the ball B(0, s). In the

next paragraph we establish that there is a vector v′ very close to v, so that Φ3
0(v′) or

Φ0(v′), as appropriate, will be sufficiently close.

Let us continue to assume k ⩾ 4, since the case k = 3 is essentially identical. We first

consider the possibility that ∥Φ3
0(v)∥ ⩽ s but ∥Φ0(v)∥ > s . It is clear that, for sufficiently

small s, ∥Φ0(v)∥2 ⩽ s2 +C0s
6, where C0 depends on Rmin, L⊥, L3 and L4. It follows that

∥Φ0(v)∥ ⩽ s + C1s
5. Consider now a vector v′ = (1 − λ)v, with λ ≈ 0, chosen so that

∥Φ0(v′)∥ = s. For small enough s we have λ ⩽ C2s
4. It follows immediately that Φ0(v′)

lies within C3s
4 of Φ0(v), and hence within Cs4 of Φ3

0(v).

The case where ∥Φ0(v)∥ ⩽ s but ∥Φ3
0(v)∥ > s is dealt with similarly.

The utility of M(S,T ) is that, since it is algebraic, we can compute explicit bounds

for hloc
X , where X =M(S,T ).

Lemma 2.21. Let r1 ⩽ r2 ⩽ 131/4

2 ∥T ∥−1/2
op , and let X = M(S,T ). Then for any t ⩽

min (1
2∥S∥

−1
op,

2√
13
r1) we have

hloc
X (0, r1, r2; t) ⩾ (t − 1

2
t5∥T ∥2

op)
2

∥S∥op ⩾ t2∥S∥op − t6∥S∥op∥T ∥2
op.
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Proof. Let v be a unit norm vector in Rd such that ∥S(v⊗2)∥ = ∥S∥op, and let z ⩽
min(1

2∥S∥
−1
op,

2√
13
r1). Note that the upper bound on r1 gives a third upper bound for z,

namely z ⩽ 13−1/4∥T ∥−1/2
op ⩽ ∥T ∥−1/2

op . We set

p1 = (zv,S((zv)⊗2)) + T ((zv)⊗3))) and p2 = (−zv,S((−zv)⊗2) + T ((−zv)⊗3))

and denote the two-point set containing them by σ = {p1, p2}. In order to use σ to

bound hloc
X we must (1) check σ ⊆X∩B(0, r1), (2) find the radius of σ and (3) determine

H (Hullσ∣X ∩B(0, r2)).

Firstly, since σ ⊆M(S,T ), it is enough to show that ∥p1∥2, ∥p2∥2 ⩽ r2
1. Using all three

bounds on z, we can check

∥p1∥2, ∥p2∥2 ⩽ z2 + z4∥S∥2
op + 2z5∥S∥op∥T ∥op + z6∥T ∥2

op

⩽ 2z2 + 2z3∥S∥op + z4∥S∥2
op by z∥T ∥1/2

op < 1

⩽ 13

4
z2 by z∥S∥op ⩽

1

2

⩽ r2
1 by z ⩽ 2√

13
r1.

Secondly, we obtain the radius as

Radσ = 1

2

√
(2z)2 + (2z3∥T (v⊗3)∥)2

= z
√

1 + z4∥T (v⊗3)∥2

⩽ z (1 + 1

2
z4∥T ∥2

op) since
√

1 + x ⩽ 1 + 1

2
x for x ⩾ 0

= z + 1

2
z5∥T ∥2

op.

Thirdly, we place a lower bound onH (Hullσ∣X ∩B(0, r2)). Let q = 1
2(p1+p2) ∈ Hullσ.

For any p = (w,S(w⊗2) + T (w⊗3)) ∈X satisfying ∥w∥ ⩽ r2, we have

d(q, p)2 = ∥w∥2 + ∥S(w⊗2) + T (w⊗3) − z2S(v⊗2)∥2

⩾ z4∥S∥2
op + ∥w∥2(1 − 2z2∥S∥2

op − 2z2r2∥S∥op∥T ∥op).

Since z∥S∥op ⩽ 1/2 we have 2z2∥S∥2
op ⩽ 1

2 . The same condition also allows us to see that

2z2r2∥S∥op∥T ∥op ⩽ zr2∥T ∥op ⩽ 1
2 . It follows that

d(q, p)2 ⩾ z4∥S∥2
op = d(q,0)2

from which we obtain the bound h (Hullσ∣X ∩B(0, r2)) ⩾ z2∥S∥op.

These three calculations yield hloc
X (0, r1, r2; z + 1

2z
5∥T ∥2

op) ⩾ z2∥S∥op. Now we may

reparametrize the argument by setting t = z+ 1
2z

5∥T ∥2
op. Obviously t ⩾ z so we can invert

to obtain z = t − 1
2z

5∥T ∥2
op ⩾ t − 1

2 t
5∥T ∥2

op and so hloc
X (0, r1, r2; t) ⩾ (t − 1

2 t
5∥T ∥2

op)2∥S∥op ⩾
(t2 − t6∥T ∥2

op)∥S∥op. If the bounds given in the statement hold for t , then they will also

hold for the smaller value z and so the result is proved.
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We are now in a position to convert this bound for an algebraic approximation to

M into one for the small patch of M itself.

We need a stability result first.

Lemma 2.22. Let X,Y be two subset of RD and let r1, r2, t > 0. Then, if p ∈ X ∩Y and

h(X ∩B(p, r2),Y ∩B(p, r2)) ⩽ ε , we have

hloc
X (0, r1, r2; t) ⩽ hloc

Y (p, r1 + ε, r2; t + ε) + 2ε.

Proof. This is a straightforward adaptation of the proof of Lemma 5 in [ALS13]. Indeed

let σ ⊂ X ∩ B(p, r1) be such that Radσ ⩽ t. Let ξ = Y ∩ B(p, r2) ∩ σε. Since h(X ∩
B(p, r2),Y∩B(p, r2)) ⩽ ε, ξ is not empty and satisfies h(ξ, σ) ⩽ ε. Thus ξ ⊂Y∩B(p, r1+ε),

and furthermore, by Lemma 16 in [ALS13], we have Rad ξ ⩽ t + ε. We conclude using

that

Hullσ ⊂ Hull(ξε) = (Hull ξ)ε

⊂ (Y ∩B(p, r2))h
loc
Y (p,r1+ε,r2;t+ε)+ε

⊂ (X ∩B(p, r2))h
loc
Y (p,r1+ε,r2;t+ε)+2ε.

Lemma 2.23. Let k ⩾ 4. There exists s2 > 0 depending only on Rmin,L, k, d such that for

any r2 ⩽ s2 and for any r1, t ⩾ 0 such that

C0r
4
2 ⩽ t ⩽

2√
13
r1

for some constant C0 depending on Rmin,L, k, d, we have, for all M ∈ CkRmin,L
and all

p ∈M,

hloc
M (p, r1, r2; t) ⩾ 1

2
t2∥IIp∥op −Cr4

2

where C is a constant depending on Rmin,L, k, d.

In case k = 3, we have, for all M ∈ CkRmin,L
and all p ∈M,

hloc
M (p, r1, r2; t) ⩾ 1

2
t2∥IIp∥op −C ′r3

2

where C ′ is a constant depending on Rmin,L, d.

Proof. By applying an isometry of RD, we may assume that p = 0 and that TpM =
Rd ⊆ RD. The result will then follow from Lemmata 2.20 and 2.21 in addition to the

Hausdorff stability property for hloc (Lemma 2.22). Take r2 > 0 smaller than s1 (from

Lemma 2.20) and than 131/4

2L′3
1/2 (from Lemma 2.21). In the case k ⩾ 4, where Φp is the

expansion described in Lemma 2.8, S = 1
2d2

0Φp = IIp, T = 1
6d3

0Φp and C0 is the constant

from the statement of Lemma 2.20, we have
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hloc
M (0, r1, r2; t) ⩾ hloc

M(S,T ) (0, r1 −C0s
4, r2; t −C0r

4
2) − 2C0r

4
2

⩾ (t −C0r
4
2)

2 ∥S∥op − (t −C0r
4
2)

6 ∥S∥op∥T ∥2
op − 2C0r

4
2

⩾ 1

2
∥IIp∥opt

2 −Cr4
2.

where C depends only on Rmin,L, d, k. The first inequality only holds if C0r
4
2 ⩽ t. In

the case k = 3 the result is obtained similarly.

We conclude with the proof of Proposition 2.12.

Proof of Proposition 2.12. By taking

t ⩽ 1

4
s2 ∧ (44C0)−1/3

(from Lemma 2.23), and setting r1 = 3t and r2 = 4t, we have that

C0r
4
2 ⩽ t ⩽

2√
13
r1 and t + r1 ⩽ r2

so that the hypotheses of both 2.19 and 2.23 hold. It is now immediate that if k ⩾ 4

hM(t) = sup
p∈M

hloc
M (p, r1, r2; t)

⩾ sup
p∈M

(1

2
∥IIp∥opt

2 −Cr4
2)

= t2

2R`
− 44Ct4

where C is a constant depending on Rmin,L, d, k, while if k = 3

hM(t) ⩾ 1

2R`
t2 −C ′t3,

where C ′ is a constant depending on Rmin,L. On the other hand, Proposition 2.13

provides an upper bound which will hold for all t < Rmin:

hM(t) ⩽ R` −
√
R2
` − t2 ⩽

t2

2R`
+ t4

2R3
`

⩽ t2

2R`
+ t4

2R3
min

.

2.5 Approximating the reach

Recall item 3 of the properties of hX given after Definition 2.10 which guarantees that

the convexity defect function is stable with respect to perturbations of the manifold
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which are small in the Hausdorff distance. This allows one to approximate the reach of

a submanifold M ⊆RD from a nearby subset M̃.

Given a submanifold M and another subset M̃ (not necessarily a manifold) so that

H(M,M̃) < ε, we can calculate the convexity defect function hM̃. This can then be used

to approximate R` = (h′′M(0))−1 and Rwfs = inf {t∶hM(t) = t, t > 0}. We can approximate

the local reach via

h′′M(0) ≈ 2
hM̃(∆)

∆2

for some choice of step size ∆. Proposition 2.12 gives the following bound on the error.

Proposition 2.24. Let M ∈ CkRmin,L
. Let 0 < ε < ∆ < 1 be such that ε +∆ is small enough

to satisfy the hypotheses constraining the variable t in Proposition 2.12. Let M̃ ⊆RD be

such that H(M,M̃) < ε.
Then

• If k ⩾ 4, ∣h′′M(0) − 2
hM̃(∆)

∆2 ∣ ⩽ Aε∆−2 +B∆2 and, in particular, if ∆ = ε1/4,

∣h′′M(0) − 2
hM̃(∆)

∆2
∣ ⩽ (A +B)ε1/2

• If k = 3, ∣h′′M(0) − 2
hM̃(∆)

∆2 ∣ ⩽ Aε∆−2 +B∆ and, in particular, if ∆ = ε1/3,

∣h′′M(0) − 2
hM̃(∆)

∆2
∣ ⩽ (A +B)ε1/3

where the constants A and B depend only on Rmin,L.

Proof. Set κ = h′′M(0) and κ̃ = 2
hM̃(∆)

∆2 . Comparing M to M̃, we obtain from stability

that

2
hM(∆ − ε) − 2ε

∆2
⩽ κ̃ ⩽ 2

hM(∆ + ε) + 2ε

∆2
.

In the case k ⩾ 4, Proposition 2.12 states that ∣hM(t) − κ
2 t

2∣ ⩽ Ct4, for some constant

C depending only on Rmin,L. It follows that

κ(∆ − ε)2 − 2C(∆ − ε)4 − 4ε

∆2
⩽ κ̃ ⩽ κ(∆ + ε)2 + 2C(∆ + ε)4 + 4ε

∆2
.

Expanding and using that ε,∆ < 1, we obtain

∣κ − κ̃∣ ⩽ 2C∆2 + (3κ + 30C + 4)ε∆−2.

Similarly, in the case k = 3, we obtain

∣κ − κ̃∣ ⩽ 2C ′∆ + (3κ + 14C ′ + 4)ε∆−2
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whereC ′ is again a constant depending only onRmin,L. Since κ ⩽ 1/Rmin, the constants

may be chosen to beA = max{3/Rmin+30C+4,3/Rmin+14C ′+4} andB = max{2C,2C ′}.

They depend only on Rmin,L.

Now set ∆ = εp and seek the p yielding the fastest rate of convergence of the error

bound to zero. Since the exponent in the first term increases with respect to p while

that in the second decreases, the fastest rate is obtained by requiring the two exponents

to be equal, so that p = 1/4 for k ⩾ 4 and p = 1/3 for k = 3.

At the weak feature size the convexity defect function satisfies hM(t) = t. The stabil-

ity given by item 3 of the properties of hX given after Definition 2.10 guarantees that the

graph of hM̃ lies close to that of hM, but this alone cannot be used to approximate the

first intersection of the graph of hM with the diagonal. The graph of hM could approach

the diagonal very slowly before intersecting it, so that the error in approximating an

intersection time based on the graph of hM̃ is not necessarily small.

However, we are only interested in approximating the weak feature size if it yields

the reach, i.e. whenRwfs < R`. Corollary 2.14 guarantees the existence of a discontinuity

in hM at Rwfs; in this case the function hM must jump at Rwfs from being bounded

above by a quarter circle of radius R` to intersecting the diagonal. This feature makes

it possible to bound the error in an approximation. We begin with a simple lemma.

Lemma 2.25. Fix R > 0. Let the intersection points of the line y = x − 6ε and the quarter-

circle y = R −
√
R2 − x2 be (x0, y0) and (x1, y1). Then there is some ε0, which depends

only on R, so that for 0 < ε < ε0 the bounds x0 ⩽ 25
4 ε and x1 ⩾ R − ε

4 hold.

Proof. The equation x − 6ε = R −
√
R2 − x2 can be rearranged to give the quadratic

2x2 − (2R + 12ε)x + (36ε + 12R)ε = 0 with solutions

x =
2R + 12ε ±

√
(2R − 12ε)2 − 288ε2

4
.

For sufficiently small values of ε, we have the bound

2R − 13ε ⩽ 2R − 12ε − 288ε2

4R − 24ε
⩽
√

(2R − 12ε)2 − 288ε2

so that the solutions x0 and x1 are bounded by

x0 ⩽
2R + 12ε − (2R − 13ε)

4
= 25

4
ε

x1 ⩾
2R + 12ε + (2R − 13ε)

4
= R − ε

4
.

It is clear from the proof that for any δ > 0 there is an ε > 0 so that the bounds can

be taken to be (6 + δ)ε and R` − δε. It is sufficient to proceed with δ = 1/4 and so we will

do so.
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Proposition 2.26. Let M be such that R(M) > Rmin and let ε < 2
9Rmin be a positive

number small enough that the conclusion of Lemma 2.25 holds for R = Rmin. Let

M̃ ⊆RD be such that H(M,M̃) < ε.
Now suppose further that M is such that R` − Rwfs > 9

4ε. Then the value r =
inf {t ⩾ 22

4 ε ∶ hM̃(t) ⩾ t − 3ε} satisfies the bound ∣Rwfs − r∣ ⩽ ε.

Proof. We first claim that r ⩽ Rwfs + ε. To see this, suppose that Rwfs + ε < r. Then, by

the definition of r, either Rwfs + ε < 22
4 ε, which by the assumption on ε cannot happen,

or hM̃(Rwfs + ε) < Rwfs − 2ε in which case Rwfs = hM(Rwfs) ⩽ hM̃(Rwfs + ε) + 2ε < Rwfs,

which is a contradiction.

Now let us seek a lower bound for r, which relies on the fact that R = Rwfs. Note

that hM(r + ε) ⩾ hM̃(r) − 2ε ⩾ r − 5ε. If the additional inequality

r − 5ε ⩾ R` −
√
R2
` − (r + ε)2,

holds, so that hM(r + ε) > R` −
√
R2
` − (r + ε)2, then by Proposition 2.13 we would have

r + ε > R = Rwfs, providing the required lower bound r ⩾ Rwfs − ε and completing the

proof. By Lemma 2.25, this additional inequality holds whenever

25

4
ε ⩽ r + ε ⩽ R` −

ε

4
.

The first bound is true by the definition of r. The second follows from the upper bound

for r and the gap between Rwfs and R`: r ⩽ Rwfs + ε ⩽ R` − 5
4ε.

2.6 Minimax rates for reach estimators: Upper bounds

Every submanifold has a natural uniform probability distribution given by its volume

measure. We consider probability distributions with density bounded above and below

with respect to this volume measure. Recall the class of manifolds CkRmin,L
studied by

[AL19]: d-dimensional compact, connected, submanifolds of RD with a lower bound

on the reach and admitting a local parametrization with bounded terms in the Taylor

expansion (see Definition 2.7).

Definition 2.27. For k ⩾ 3, Rmin > 0, L = (L⊥, L3, . . . , Lk) and 0 < fmin ⩽ fmax < ∞, we

let PkRmin,L
(fmin, fmax) denote the set of distributions P supported on some M ∈ CkRmin,L

which are absolutely continuous with respect to the volume measure µM, with density f

taking values µM-a.s. in [fmin, fmax].

This will be abbreviated by Pk where there is no ambiguity. We define the submod-

els Pkα to be those distributions supported on elements ofMk
α (the classes defined in

Section 2.3). These submodels are such that Pk = ∪α⩾0Pkα.

41



CHAPTER 2. REACH I

The following lemma shows that the uniform lower bound, fmin, on the density of

elements of Pk provides an upper bound Rmax for both R` and Rwfs, which we will use

in our estimators later in the section.

Lemma 2.28. There existsRmax depending on d, fmin,Rmin so that, if P ∈ Pk has support

M, then R`,Rwfs ⩽ Rmax.

Proof. Due to the relationship between curvature and volume, we have, by Point (3)

on [Alm86, p. 2] that R` ⩽ (volM/ωd)1/d ⩽ (fminωd)−1/d, where ωd is the volume of the

d-dimensional sphere of radius 1.

Furthermore, Aamari and Levrard have shown [AL18, Lemma 2.2] that for some

constant C depending only on dimension, diam(M) ⩽ C(d)f−1
minR

1−d
min. Since Rwfs ⩽

1
2 diam(M) we have Rwfs ⩽ 1

2C(d)f−1
minR

1−d
min. Setting

Rmax ∶= max{(fminωd)−1/d,
1

2
C(d)f−1

minR
1−d
min},

we have the result.

In [AL19] the authors construct an estimator M̂ out of polynomial patches, from a

sample (X1, . . . ,Xn) of random variables with common distribution P ∈ Pk, supported

on a submanifold M ∈ CkRmin,L
. That estimator has the following convergence property.

(Note that the T ∗i referred to below are i-linear maps from TpM to RD which are the

ith order terms in the Taylor expansion of the submanifold discussed in Section 2.3.)

Theorem 2.29 (Theorem 6 in [AL19]). Let k ⩾ 3. Set

θ = (Cd,k
log(n)f2

max

(n − 1)f3
min

)
1/d

for Cd,k large enough. If n is large enough so that 0 < θ ⩽ 1
8 min{Rmin, L

−1
⊥ } and θ−1 ⩾

Cd,k,Rmin,L ⩾ sup2⩽i⩽k ∣T ∗i ∣op, then with probability at least 1 − 2( 1
n)

k
d , we have

H(M̂,M) ⩽ C⋆ θk

for some C⋆ > 0. In particular, for n large enough,

sup
P ∈Pk

EP⊗n[H(M̂,M)] ⩽ C ( log(n)
n − 1

)
k/d

,

where C = Cd,k,Rmin,L,fmin,fmax .

Note that the estimator is dependent on the value of θ ≈ n−1/d to within logarithmic

terms, which serves as a bandwidth. The convergence rate of this estimator is very

close to the currently established lower bound for estimating the reach R, which is

n−k/d; see Theorem 2.35 in Section 2.7 below.
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2.6.1 Estimating the local reach

Definition 2.30. We define an estimator forR`(M), the local reach of a submanifold M,

by

R̂` = min{(2
hM̂(∆)

∆2
)
−1
,Rmax}

where M̂ is the Aamari–Levrard estimator of M as discussed at the beginning of Section

2.6 above, ε = C⋆θk as in Theorem 2.29, ∆ = ε1/3 if k = 3, or ∆ = ε1/4 if k ⩾ 4, and Rmax is

as in Lemma 2.28.

Theorem 2.31. Let k ⩾ 3, let θ be as in Theorem 2.29 and set ε = C⋆θk. Then with

probability at least 1 − 2( 1
n)

k
d , we have

∣R̂` −R`∣ ⩽ Cd,k,Rmin,L,fmin
ε1/3,

and, where k ⩾ 4, the exponent is ε1/2. Moreover, for n large enough, we have

sup
P ∈Pk

EP⊗n[∣R̂` −R`∣] ⩽ C ( log(n)
n − 1

)
k
3d

,

or, for k ⩾ 4, C ( log(n)
n−1 )

k
2d , where C = Cd,k,Rmin,L,fmin,fmax .

A glance at the proof shows that we actually control ∣R̂−1
` −R`−1∣ rather than ∣R̂`−R`∣.

This has no impact since R` ⩽ Rmax is uniformly bounded and we do not seek fine

control on C. Changing the parametrization R ↦ 1/R in our statistical problem and

estimating 1/R instead of R would enable us to remove the projection onto [0,Rmax]
that we use to define R̂`.

Proof. By construction, R̂` ⩽ Rmax, and it is also clear that

∣ 1

R̂`
− 1

R`
∣ ⩽ ∣2

hM̂(∆)
∆2

− 1

R`
∣.

We derive

∣R̂` −R`∣ = R̂`R`∣
1

R̂`
− 1

R`
∣ ⩽ R2

max∣2
hM̂(∆)

∆2
− 1

R`
∣.

The first statement of Theorem 2.31 is then a straightforward consequence of Proposi-

tion 2.24 together with Theorem 2.29. Next, we have

EP⊗n[∣R̂` −R`∣]

⩽ Cd,k,Rmin,fmin,Lε
1/3 + 2RmaxP

⊗n(∣R̂` −R`∣ > Cd,k,Rmin,fmin,Lε
1/3)

⩽ Cd,k,Rmin,fmin,Lε
1/3 + 4Rmaxn

−k/d
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thanks to the first part of Theorem 2.31. This term is of order (logn/n)k/3d. For k ⩾ 4,

we have the improvement to the exponent ε1/2 and the order becomes (logn/n)k/2d,

which establishes the second part of the theorem for all values of k ⩾ 3 and completes

the proof.

For k = 3,4, then, the constructed estimator is optimal up to a log(n) factor as

follows from Theorem 2.35 below.

2.6.2 Estimating the global reach

By the earlier discussion, it is not possible to give a convergence guarantee when

estimating the weak feature size, i.e. the first positive critical value of dM. However, in

the case where R = Rwfs, that is, when Rwfs < R`, this is possible. Accordingly, we now

define an estimator for Rwfs and hence an estimator for the reach itself.

Definition 2.32. We define an estimator forRwfs, the weak feature size of a submanifold

M, by

R̂wfs = min{inf {t ∈R ∶ 22
4 ε < t, hM̂(t) ⩾ t − 3ε},Rmax} ,

where M̂ is the Aamari–Levrard estimator of M as discussed at the beginning of Section

2.6 above, ε = C⋆θk as in Theorem 2.29 and Rmax is as in Lemma 2.28.

Our estimator for the reach is then the lesser of the two individual estimators.

Definition 2.33. LetC⋆, θ be as in Theorem 2.29 and set ε = C⋆θk. We define an estimator

for R(M), the reach of a submanifold M, by

R̂ = min{R̂wfs, R̂`} .

Note that we could just as well use R̂` in place ofRmax to cap the value of R̂wfs, since

we do not analyse the error in the case R̂` < R̂wfs. However, Definition 2.32 appears

more natural as a stand-alone estimator of Rwfs.

Theorem 2.34. Let k ⩾ 3, let C⋆, θ be as in Theorem 2.29, and set ε = C⋆ θk, with ε such

that 22
4 ε < min(Rmin,1), which is always satisfied for large enough n ⩾ 1. Then with

probability at least 1 − 4n−k/d, we have

∣R̂ −R∣ ⩽ Cd,k,Rmin,Lε
1/3,

and, where k ⩾ 4, the exponent is ε1/2. In particular, for n large enough,

sup
P ∈Pk

EP⊗n[∣R̂ −R∣] ⩽ C ( log(n)
n − 1

)
k
3d

,

or, for k ⩾ 4, C ( log(n)
n−1 )

k
2d , where C = Cd,k,τmin,L,fmin,fmax .
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Proof. We will prove the result in three steps. In Step 1 we provide a bound in the case

R̂` < R̂wfs which holds with high probability. Then in Step 2 we provide a bound in

the complementary case R̂` ⩾ R̂wfs. Finally, in Step 3, we combine the two bounds,

proving the first statement, and use it to obtain the bound on the expected loss. In the

following, we use the letters C and C ′ to denote positive numbers that do not depend

on n and that may vary at each occurence.

Step 1). We have

∣R̂ −R∣1{R̂`<R̂wfs} = ∣R̂` −min(R`,Rwfs)∣1{R̂`<R̂wfs}

⩽ ∣R̂` −R`∣ + ∣R̂` −Rwfs∣1(Rwfs<R`)1{R̂`<R̂wfs}

⩽ 2∣R̂` −R`∣ + ∣R` −Rwfs∣1(Rwfs<R`)1{R̂`<R̂wfs}

by triangle inequality. For C1,C2 > 0, introduce the events

Ω1 = {∣R̂` −R`∣ ⩽ C1ε
1/3} and Ω2 = {H(M̂,M) ⩽ ε} .

On {R̂` < R̂wfs}, we have

∀t ∈ [22
4 ε, R̂`] ∶ hM̂(t) < t − 3ε,

therefore, on {R̂` < R̂wfs} ∩Ω1, we infer that

for all t ∈ [22
4 ε,R` −C1ε

1/3] ∶ hM̂(t) < t − 3ε.

By item 3 of the properties of the convexity defect function given after Definition 2.10,

on Ω2, we have

hM̂(t) ⩾ hM(t − ε) − 2ε.

Putting the last two estimates together, we obtain on {R̂` < R̂wfs} ∩Ω1 ∩Ω2 the bound

∀t ∈ [22
4 ε,R` −C1ε

1/3] ∶ hM(t − ε) < t − 3ε + 2ε

or equivalently

∀t ∈ [(22
4 − 1)ε,R` −C1ε

1/3 − ε] ∶ hM(t) < t.

Therefore hM(t) < t for t ⩽ R` −C1ε
1/3 − ε and this implies in turn

Rwfs ⩾ R` −C1ε
1/3 − ε.

We have thus proved

∣R` −Rwfs∣1(Rwfs<R`)1{R̂`<R̂wfs}1Ω1∩Ω2 ⩽ (C1ε
1/3 + ε) ⩽ Cε1/3.

Finally

∣R̂ −R∣1{R̂`<R̂wfs}1Ω1∩Ω2 ⩽ Cε
1/3.
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Step 2). We have

∣R̂ −R∣1{R̂`⩾R̂wfs} ⩽ T1 + T2 + T3,

with

T1 = ∣R̂wfs −Rwfs∣1(Rwfs+
9
4 ε<R`)

1{R̂`⩾R̂wfs},

T2 = ∣R̂wfs −Rwfs∣1(Rwfs⩽R`<Rwfs+
9
4 ε
)1{R̂`⩾R̂wfs},

T3 = ∣R̂wfs −R`∣1(R`<Rwfs)1{R̂`⩾R̂wfs}.

By Proposition 2.26, we have T1 ⩽ ε on Ω2. We turn to the term T2. We have

hM̂(R̂wfs) ⩾ R̂wfs − 3ε

on {R̂` ⩾ R̂wfs} by construction. Thanks to item 3 of the properties of the convexity

defect function given after Definition 2.10, we also have

hM̂(R̂wfs) ⩽ hM(R̂wfs + ε) + 2ε on Ω2

therefore

R̂wfs − 5ε ⩽ hM(R̂wfs + ε)

holds true on {R̂` ⩾ R̂wfs} ∩Ω2. Introduce now the event

Ω3 = {R̂wfs + ε < Rwfs} .

By Proposition 2.13, it follows that

R̂wfs − 5ε ⩽ R` −
√
R2
` − (R̂wfs + ε)2

on {R̂` ⩾ R̂wfs}∩Ω2 ∩Ω3. Solving this inequality whenR` > R̂wfs + ε yields R̂wfs ⩾ R` −Cε
for some C > 0 that depends on R` only. Otherwise, R` − ε ⩽ R̂wfs directly. Replacing C

by max{1,C}, we infer

R`−Cε ⩽ R̂wfs ⩽ R̂` ⩽ R` +C1ε
1/3

on {R̂` ⩾ R̂wfs} ∩Ω1 ∩Ω2 ∩Ω3 hence ∣R̂wfs −R`∣ ⩽ Cε1/3 on that event. Combining this

estimate with the condition ∣R` −Rwfs∣ ⩽ 9
4ε in the definition of T2 implies

∣R̂wfs −Rwfs∣ ⩽ Cε1/3 + 9
4ε.

We have thus proved

T21⋂3
i=1 Ωi

⩽ Cε1/3 + 9
4ε ⩽ C

′ε1/3.

On the complementary event Ωc
3 = {R̂wfs + ε ⩾ Rwfs}, we have, on the one hand

Rwfs − R̂wfs ⩽ ε.
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But on the other hand, on {R̂` ⩾ R̂wfs} ∩Ω1, we have

R̂wfs −Rwfs ⩽ R̂` −Rwfs

⩽ R` −Rwfs +C1ε
1/3

⩽ 9
4ε +C1ε

1/3 ⩽ Cε1/3

thanks to the condition ∣R`−Rwfs∣ ⩽ 9
4ε in the definition of T2. Combining these bounds,

we obtain

T2(1 − 1Ω3)1Ω1 ⩽ Cε
1/3.

Putting together this estimate and the bound T21⋂3
i=1 Ωi

⩽ Cε1/3 we established previ-

ously, we derive

T21Ω1∩Ω2 ⩽ Cε
1/3.

We finally turn to the term T3. On {R̂wfs ⩾ R`} intersected with {R̂` ⩾ R̂wfs} ∩ Ω1, we

have

0 < R` ⩽ R̂wfs ⩽ R̂` ⩽ R` +C1ε
1/3

which yields the estimate

∣R̂wfs −R`∣ ⩽ C1ε
1/3 on {R̂wfs ⩾ R`} ∩ {R̂` ⩾ R̂wfs} ∩Ω1.

Alternatively, on the complementary event {R̂wfs < R`} intersected with {R̂` ⩾ R̂wfs}∩Ω2

we have R̂wfs − 5ε ⩽ R` −
√
R2
` − (R̂wfs + ε)2 in the same way as for the term T2, provided

R̂wfs + ε < R`. This implies R̂wfs ⩾ R`−Cε. Otherwise R̂wfs + ε ⩾ R` holds true. In any

event, we obtain −Cε ⩽ R̂wfs −R`. Since R̂wfs −R` ⩽ C1ε
1/3 on Ω1, we conclude

∣R̂wfs −R`∣ ⩽ ε +C1ε
1/3 ⩽ Cε1/3 on {R̂wfs < R`} ∩ {R̂` ⩾ R̂wfs} ∩Ω1 ∩Ω2.

Combining these two bounds for ∣R̂wfs −R`∣, we finally derive

T31Ω1∩Ω2 ⩽ Cε
1/3.

Putting together our successive estimates for T1, T2 and T3, we have proved

∣R̂ −R∣1{R̂`⩾R̂wfs}1Ω1∩Ω2 ⩽ ε + 2Cε1/3 ⩽ C ′ε1/3.

Step 3). Combining Step 1) and Step 2) yields

∣R̂ −R∣1Ω1∩Ω2 ⩽ Cε
1/3.

By Theorem 2.31, we have P⊗n(Ω1) ⩾ 1 − 2n−k/d as soon as C1 ⩾ Cd,k,Rmin,fmin,L. By

Theorem 2.29, we have P⊗n(Ω2) ⩾ 1−2n−k/d. The first estimate in Theorem 2.34 follows

for k ⩾ 3. The improvement in the case k = 4 is done in exactly the same way and we

omit it.
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Finally, integrating, we obtain

EP⊗n[∣R̂ −R∣] ⩽ Cε1/3 + 2Rmax(P⊗n(Ωc
1) + P⊗n(Ωc

2))

⩽ Cε1/3 + 4Rmaxn
−k/d ⩽ C ′ε1/3

and the second statement of Theorem 2.34 is proved for k ⩾ 3. The improvement in the

case k = 4 follows in similar fashion.

2.7 Minimax rates for reach estimators: Lower bounds

We fix Rmin, L, k, fmin and fmax and recall the classes Pkα which were defined in Section

2.6, parametrized by the gapα ⩽ R`−Rwfs. These sub-models are such thatPk = ∪α⩾0Pkα.

Theorem 2.35. If fmin is small enough and fmax, L are large enough (depending on

Rmin, and on α for the second statement), then we have the following lower bounds on

the reach estimation problem

lim inf
n→∞

n(k−2)/d inf
R̂

sup
P ∈Pk0

EP⊗n[∣R̂ −R∣] ⩾ C0 > 0 and

lim inf
n→∞

nk/d inf
R̂

sup
P ∈Pkα

EP⊗n[∣R̂ −R∣] ⩾ Cα > 0 ∀α > 0

with C0 depending on Rmin and Cα depending on Rmin and α.

In particular, the minimax rate on the whole model Pk is of order n−
k−2
d . To show

the latter proposition, we will make use of Le Cam’s Lemma, restated in our context.

Lemma 2.36 (Le Cam Lemma, [Yu97]). For any two P1, P2 ∈ P , where P is a model of

manifold-supported probability measures, we have

inf
R̂

sup
P ∈P

EP⊗n[∣R̂ −R∣] ⩾ 1

2
∣R1 −R2∣(1 −TV(P1, P2))n,

where TV denotes the total variation distance between measures and R1 (respectively

R2) denotes the reach of the support of P1 (resp P2).

Therefore, one needs to compute the total variation distance between two given

manifold-supported measures. When these measures are uniform over their support,

we have the following convenient formula.

Lemma 2.37. Let M1,M2 be two compact d-dimensional submanifolds of RD and let

P1, P2 be the uniform distributions over M1 and M2. Then we have

TV(P1, P2) =
Hd(M2 ∖M1)

volM2
if volM2 ⩾ volM1,

whereHd denotes the d-dimensional Hausdorff measure on RD.
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Proof. First note that P1 and P2 are absolutely continuous with respect to Hd with

densities 1
volM1

1M1 and 1
volM2

1M2 respectively. Therefore, we have the following chain

of equalities.

TV(P1, P2)

= 1

2
∫ ∣ 1

volM1
1M1 −

1

volM2
1M2 ∣dH

d

= H
d(M1 ∖M2)
2 volM1

+ H
d(M2 ∖M1)
2 volM2

+ 1

2
Hd(M1 ∩M2) (

1

volM1
− 1

volM2
)

= 1

2
{1 + H

d(M2 ∖M1) −Hd(M1 ∩M2)
volM2

}

= H
d(M2 ∖M1)

volM2
.

Before proving Theorem 2.35 we need to introduce the following technical result:

Lemma 2.38. Let Φ ∶ Rd → R be a smooth function and let M = {(v,Φ(v)) ∣ v ∈ Rd} ⊆
Rd+1 be its graph. The second fundamental form of M at the point x = (v,Φ(v)) ∈M is

given by

IIx(u,w) = d2Φ(v)[pr(u),pr(w)]√
1 + ∥∇Φ(v)∥2

, for all u,w ∈ TxM

where pr is the linear projection to Rd ⊆ Rd+1.

Proof. We define Ψ ∶ v ∈ Rd ↦ (v,Φ(v)) ∈ Rd+1 so that M is the image of Rd through the

diffeomorphism Ψ. Let x ∈M and let v ∈ Rd be such that x = Ψ(v). The tangent space

TxM is given by TxM = {dΨ(v)[h] = (h, ⟨h,∇Φ(v)⟩) ∣ h ∈ Rd}, so that a normal vector

field on M is given by

n(x) =
⎛
⎝
− ∇Φ(v)√

1 + ∥∇Φ(v)∥2
,

1√
1 + ∥∇Φ(v)∥2

⎞
⎠
∈ Rd+1.

For u ∈ TxM , where h = pru, we have

dn(x)[u] =
⎛
⎝
− HΦ(v)h√

1 + ∥∇Φ(v)∥2
,0

⎞
⎠
− ⟨HΦ(v)h,∇Φ(v)⟩

1 + ∥∇Φ(v)∥2
n(x),

where HΦ denotes the Hessian of Φ. Now for w ∈ TxM and η = prw, we have

IIx(u,w) = −⟨dn(x)[u],w⟩ = ⟨
⎛
⎝

HΦ(v)h√
1 + ∥∇Φ(v)∥2

,0
⎞
⎠
, (η, ⟨η,∇Φ(v)⟩)⟩

= ⟨ HΦ(v)h√
1 + ∥∇Φ(v)∥2

, η⟩ = d2Φ(v)[h, η]√
1 + ∥∇Φ(v)∥2

concluding the proof.
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We are now ready to prove Theorem 2.35.

Proof of Theorem 2.35. Step 1: The case of Pk0 . Let M be the d-dimensional sphere in

Rd+1 of radius r centered at −red+1, where ed+1 = (0, . . . ,0,1). We choose r to be such

that r ⩾ 2Rmin. Since M is smooth, there exists L∗ ∈ Rk−2 (depending on r) such that

M ∈ Ckr,L∗ and thus the uniform probability P on M is in Pkr,L∗(a∗, a∗) (see Definition

2.27) with a∗ = (rdsd)−1 and sd being the volume of the unit d-dimensional sphere.

Let us now perturb M to Mγ , as illustrated in Figure 2.3. Define for any γ > 0

Φγ ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Rd+1 → Rd+1

z ↦ z + γkΨ(z/γ)ed+1,

where Ψ(z) = ψ(∥z∥) and where ψ ∶ R→ R is a smooth, even, non-trivial, positive map

supported on [−1,1], decreasing on [0,1], and with φ′′(0) < 0. The above map is a global

diffeomorphism as soon as γk−1∥dΨ∥op,∞ < 1. Moreover, we have ∥dΦγ − ID∥op,∞ =
γk−1∥dΨ∥op,∞ and ∥djΦγ∥op,∞ ⩽ γk−j∥djΨ∥, so that, provided ∥dkΨ∥ is chosen small

enough (depending on r) and that γ is small enough (depending again on r), then we

can apply Proposition A.5 from the supplementary material in [AL19] to show that the

submanifold Mγ = Φγ(M) is in Ckr/2,2L∗ .

Figure 2.3 – The submanifolds M and Mγ used in the proof of the first part of the

lower bound.

Then we have

volMγ = ∫
Mγ

d volMγ(x) = ∫
M

∣det dΦγ(z)∣d volM(z).
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Since det dΦγ(z) = 1 + γk−1⟨ed+1,∇Ψ(z/γ)⟩ with ⟨ed+1,∇Ψ(z/γ)⟩ ⩾ 0 (because ⟨z, ed+1⟩ ⩽
0), it follows that volM ⩽ volMγ and that volMγ ⩽ 2 volM for γ small enough (depend-

ing again on r) so that the uniform distribution Pγ on Mγ is in Pkr/2,2L∗(a
∗/2, a∗). If we

assume that 2L∗ ⩽ L, fmin ⩽ a∗/2 and a∗ ⩽ fmax (which we do from now on) then we

immediately have P ∈ Pk0 and Pγ ∈ Pk0 , provided that Rwfs(Mγ) ⩾ R`(Mγ). We claim

that the latter inequality holds.

Around 0, simple geometrical considerations show that Mγ can be viewed as the

graph of the function

ξγ ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Rd → R

v ↦
√
r2 − ∥v∥2 − r + γkψ ( rγ

√
2 − 2

√
1 − ∥v∥2/r2) .

Writing ξγ(v) = ζγ(∥v∥) with ζγ ∶ R→ R, a series of computations shows that

ζ ′′γ (0) = −
1

r
+ rγk−2ψ′′(0).

Setting c = −ψ′′(0) > 0 (which depends on r) we have, using Lemma 2.38,

R`(Mγ) ⩽
1

∣ζ ′′γ (0)∣
= 1

1
r + crγk−2

⩽ r − 1

2
cr2γk−2

as soon as cr2γk−2 ⩽ 1. Now let us turn to the control ofRwfs(Mγ). We will show that the

distance between any pair of bottleneck points is bounded below by 2r. Let (x, y) ∈Mγ

be a pair of bottleneck points. First notice that x and y cannot lie simultaneously

in B(0, γ) because Mγ ∩ B(0, γ) can be seen as a graph. If x, y ∈ Mγ ∖ B(0, γ), then

d(x, y) = 2r necessarily. If, say, x ∈ B(0, γ) and y ∈Mγ ∖B(0, γ), then the open segment

(x, y) cross M at a single point z ∈M . Therefore, we have that d(x, y) = d(x, z) + d(z, y).

But now since [x, y] is normal to Mγ at point y, we know that [z, y] is a diameter of M

so that d(z, y) = 2r and thus d(x, y) ⩾ 2r. We have shown that Rwfs(Mγ) ⩾ r ⩾ R`(Mγ)
for γ small enough and thus Mγ ∈Mk

0 and Pγ ∈ Pk0 .

Now, by Lemma 2.37, we have that TV(P,Pγ) = Hd(Mγ ∖M)/volMγ ⩽ Cγd for

some constant C depending on r. Applying now Le Cam’s Lemma (Lemma 4.A.4) and

noting that R(M) −R(Mγ) ⩾ cr2γk−2, we obtain

inf
R̂

sup
P ∈Pk0

EP⊗n[∣R̂ −R∣] ⩾ 1

2
cr2γk−2 × (1 −Cγd)n.

Setting γ = 1/(Cn)1/d, we know that for n large enough (depending on r), we have

inf
R̂

sup
P ∈Pk0

EP⊗n[∣R̂ −R∣] ⩾ 1

8
cr2(Cn)−(k−2)/d.

Set r to be equal to 2Rmin and the first statement of Theorem 2.35 follows.
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Step 2: The case of Pkα. We next turn to the second part of the theorem. We fix α > 0 and

construct a manifold M ∈ Ck as follows. We consider the two parallel disks B(0,2r) ⊆
Rd ⊆ Rd+1 andB(2red+1,2r) ⊆ 2red+1+Rd ⊆ Rd+1, with r ⩾ 2Rmin, and link them together

so that M satisfies the following:

• M is a smooth submanifold of Rd+1,

• M has reach r, and (0,2red+1) is a reach attaining pair,

• R`(M) ⩾ r + α.

See Figure 2.4 for a schematic notion of such M , visualized with d = 1.

Figure 2.4 – The submanifolds M and Mγ used in the proof of the second part of

the lower bound.

Furthermore, we know that there exists L∗ (depending on r and α) such that M ∈
Ckr,L∗ and P ∈ Pkr,L∗(a∗, a∗) where a∗ = 1/volM and where P is the uniform probability

over M . We again consider the map

Φγ ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Rd+1 → Rd+1

z ↦ z + γkΨ(z/γ)ed+1.

Similarly to the first part of the theorem, for γ small enough (depending on α and r),

we know that Mγ = Φγ(M) is a smooth submanifold in Ckr/2,2L∗ and that the uniform

distribution Pγ over Mγ lies in Pkr/2,2L∗(a
∗/2, a∗). Again, assuming that L ⩾ 2L∗, fmin ⩽

a∗/2 and fmax ⩾ 2a∗, we have that P ∈ Pkα and, furthermore, that Pγ ∈ Pkα, provided that

R`(Mγ) ⩾ Rwfs(Mγ) + α. We claim that the latter inequality holds.

Since Ψ is maximal at 0, we know that (γkψ(0)ed+1,2red+1) is still a bottleneck pair,

and thus Rwfs(Mγ) ⩽ r − cγk where we set c = −2ψ(0) (depending on α and r). For

the curvature, notice that it is unchanged outside of B(0, γ) and that Mγ is just the

graph of v ↦ γkΨ(v/γ) within this ball. Using Lemma 2.38, we thus have R`(Mγ) ⩾
min{(r + α), (Cγk−2)−1}, with C depending on α and r, so that R`(Mγ) ⩾ Rwfs(Mγ) +α
for γ small enough (depending on α and r), and therefore Mγ ∈Mk

α and Pγ ∈ Pkα.
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Using Lemma 2.37, we have that TV(P,Pγ) =Hd(Mγ ∖M)/volMγ ⩽ δγd for some

constant δ depending on r. Applying now Le Cam’s Lemma (Lemma 4.A.4) and noticing

that R(M) −R(Mγ) ⩾ cγk, we get

inf
R̂

sup
P ∈Pk0

EP⊗n[∣R̂ −R∣] ⩾ 1

2
cγk × (1 − δγd)n.

Setting γ = 1/(δn)1/d, we know that for n large enough (depending on r and α), we have

inf
R̂

sup
P ∈Pk0

EP⊗n[∣R̂ −R∣] ⩾ 1

8
c(δn)−k/d.

Setting r = 2Rmin yields the result completing the proof of Theorem 2.35.
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Chapter 3

Reach estimation via metric
learning

We study the estimation of the reach, an ubiquitous regularity parameter in manifold

estimation and geometric data analysis. Given an i.i.d. sample over an unknown

d-dimensional Ck-smooth submanifold of RD, we provide optimal nonasymptotic

bounds for the estimation of its reach. We build upon a formulation of the reach in

terms of maximal curvature on one hand, and geodesic metric distortion on the other

hand. The derived rates are adaptive, with rates depending on whether the reach of M

arises from curvature or from a bottleneck structure. In the process, we derive optimal

geodesic metric estimation bounds. This chapter is the result of the collaboration

[ABL22], in revision.

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.1 Geometric Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.2 Reach and Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.3 Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.4 Contribution and Outline . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.5 General Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Geometric and Statistical Model . . . . . . . . . . . . . . . . . . . . . . 59
3.3 Reach and Related Quantities . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Characterizations and Relaxations of the Reach . . . . . . . . . . 61

3.3.2 Reach of Submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.3 Plug-in Methods for Reach Estimation . . . . . . . . . . . . . . . 64

3.4 Spherical Distortion Radius . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.1 Motivation and Definition . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.2 Stability Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Optimal Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.1 Unsupervised Distance Metric Learning . . . . . . . . . . . . . . 73

55



CHAPTER 3. REACH II

3.5.2 An optimal Approach of Metric Estimation . . . . . . . . . . . . . 75

3.6 Optimal Reach Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.6.1 Optimal Spherical Distortion Radius Estimation . . . . . . . . . 77

3.6.2 Optimal Reach Estimation . . . . . . . . . . . . . . . . . . . . . . . 79

3.7 Conclusion and Further Prospects . . . . . . . . . . . . . . . . . . . . 80

3.1 Introduction

3.1.1 Geometric Inference

Topological data analysis and geometric methods now constitute a standard toolbox

in statistics and machine learning [Was18, CM21]. In this family of methods, data

Xn ∶= {X1, . . . ,Xn} are usually seen as point clouds in high dimension, for which

complex structural correlations give rise to an underlying structure that is neither

full-dimensional, nor even linear. Dealing with non-linearity is very well understood

through the prism of non-parametric regression. However, in absence of distinguished

“covariate” and “response” variables (i.e. coordinates), regression does not make sense

anymore. Hence, one needs to adopt a more global and coordinate-free approach: data

are naturally viewed as lying on a submanifold M ⊂ RD of dimension d≪D, where d

corresponds to its true number of degrees of freedom.

This approach opens the way to the estimation of numerous geometric and topo-

logical quantities to describe data. Central to it is the manifold itself [GPPVW12b,

GPPVW12a, KZ15, FILN19, Div21a, AS21, PS22], where error is most commonly mea-

sured in Hausdorff distance. Among many others, let us also mention the homol-

ogy [BRS+12], persistent homology [CGLM14], differential quantities [AL19], intrinsic

metric [ACC20] and regularity [AKC+19].

3.1.2 Reach and Regularity

Similarly to functional estimation, the theoretical study of nonparametric geometric

problems naturally comes with regularity conditions. By far, the most ubiquitous

regularity and scale parameter in this context is the reach. First introduced by H.

Federer’s seminal paper [Fed59] on geometric measure theory, the reach rch(K) ∈ R+

of a set K ⊂ RD measures how far K is from being convex [ALS13]. It hence provides a

typical scale at which it shares most of the properties of a convex set. These properties

include – among others – uniqueness of the projection map, contractibility of balls,

and explicit formulas for the volume of thickenings (see [Fed59]). When K = M is a

submanifold, the reach also assesses quantitatively how it deviates from its tangent

spaces. Therefore, the reach also provides an upper bound on curvature (that is, a

bound in C2) and a minimal scale of possible quasi self-intersections [AL19].
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For all these reasons, the reach practically appears in all geometric inference

methods as a natural scale parameter, which either drives a bandwidth used in a

localization method [GPPVW12b, AKC+19], a minimal regularity scale in a minimax

study [KZ15], or a signal part in a signal-to-noise ratio [GPPVW12a, FILN19, AS21].

See [AKC+19] for more examples of its use. On the estimation side, the reach has

already been studied under several angles.

• The formulation of rch(M) in terms of deviation to tangent spaces from [Fed59,

Theorem 4.18] has been put to use through a plugin in [AL19]. The authors

derived non-matching upper and lower bounds for the estimation of rch(M) over

C3 submanifolds. In addition to being suboptimal, the method of [AL19] requires

the knowledge of tangent spaces, and is very sensitive to uncertainty on them

(see [AL19, Section 6]).

• Extending the minimax study of [AL19], [BHHS22] took advantage of the so-

called convexity defect function introduced by [ALS13] to propose another plugin

strategy, with rates obtained over more general Ck-smooth manifold classes.

Despite still deriving non-matching upper and lower bounds, [BHHS22] managed

to exhibit two different estimation rates, depending on whether the reach testifies

of a high curvature zone (the so-called local case, with slow rates) or of a narrow

bottleneck structure (global case, with faster rates). In this work, the derived rates

are only suboptimal when the reach is achieved by curvature.

• More recently, [BLW19, Theorem 1] gave a new formulation of the reach in terms

of geodesic distortion. Informally, they showed that rch(K) is the largest radius

r ⩾ 0 for which the geodesic distance dK is smaller than the geodesic distance

dS(r) on a Euclidean ball of radius r. Based on this purely metric statement,

[CFM21] proposed to plug-in a nearest-neighbor graph distance of the data in

this formulation. This method provides a consistent estimator under very weak

assumptions. Unfortunately, it fails to take advantage of high order regularity,

when the reach is achieved by curvature (again).

With this analysis of possible estimation flaws in mind, this article proposes a two-step

method. In short, we decouple the estimation of the local and global reaches [AKC+19],

and estimate them separately via max-curvature estimation and geodesic distance

estimation respectively.

3.1.3 Metric Learning

In the data analysis area, metric learning refers to the problem of finding a distance d̂

over the space of observations Xn ×Xn that is relevant for a given task at stake [YJ06,

SGH21]. For instance, in a supervised framework where one is provided with tuples of
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allegedly similar or dissimilar observations, the goal is to find a distance that is small

on the similar tuples and large on the dissimilar ones. There is a wide range of exist-

ing methods in the literature, ranging from parametric (LSI [XJRN02], MCML [GR05],

LDML [GVS09] among others) to nonparametric (DMLMJ [NMDB17], kernel meth-

ods [KT03, CKTK10], to cite a few).

In an unsupervised setting, metric learning aims at finding a metric that takes into

account the underlying geometry of the data. That is, it amounts to estimating of

shortest path (or geodesic) distance. Often, this is done via a dimension reduction

technique: any low-dimensional embedding of the data gives rise to a new distance

over the data in the embedded space. Existing algorithms include PCA, t-SNE [HR02],

MDS [CC08], Isomap [TSL00], or MVU [ACP13]. See [SGH21] for a thorough overview

of the field.

Astonishingly, despite the variety of existing methods, we are not aware of any

general minimax study of geodesic metric learning. Though, two major theoretical

references seem to stand out:

• In [TSAY19], the authors use a neighborhood graph to estimate distances and

derive convergence rates in the C2 case, but only for nearby points.

• In [ACC20], estimation rates of geodesic distances are derived in the C2 case using

a reconstructing mesh. Lower bounds are also obtained, but in a fixed-design

setting only.

We propose a simple plugin method, and show that estimating the geodesic metric

is no harder than estimating the manifold itself in Hausdorff distance. This general

strategy is also supported by a matching minimax lower bound.

3.1.4 Contribution and Outline

This article deals with the framework where data lies on an unknown d-dimensional

Ck-submanifold of RD (Section 3.2). The main contribution consists of nearly-tight

minimax bounds for reach estimation (Section 3.6). Along the way, three major building

blocks, interesting in their own rights, are developed thoroughly:

• Section 3.3: We propose a general plug-in strategy for estimating the reach of a

manifold. It is based on curvature estimation on one hand, and on the estimation

of an intermediate scale (framed between the reach and the weak feature size)

on the other hand.

• Section 3.4: We define the so-called spherical distortion radius at scale δ > 0 and

study its estimation. From the metric characterization of the reach from [BLW19],

we notice that this purely metric quantity can be used to play the role of an
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intermediate scale for reach estimation. We show that its stability properties

make it well-suited to play the role of the intermediate scale of Section 3.3.

• Section 3.5: We propose a general plugin strategy for metric learning, and derive

optimal geodesic metric estimation upper and lower bounds.

The proofs and the most technical points are deferred to the Appendix.

3.1.5 General Notation

In what follows, RD (D ⩾ 2) is endowed with the Euclidean norm ∥⋅∥. The closed ball of

radius r ⩾ 0 centered at x ∈ RD is denoted by B(x, r). If x ∈ T ⊂ RD is a linear subspace,

we write BT (x, r) ∶= T ∩ B(x, r) for the same ball in T . Throughout, c◻, c′◻,C◻,C
′
◻ ⩾ 0

denote generic constants that depend on ◻, and that shall change from line to line

to shorten notation. Similarly, universal constants shall generically be denoted by

c, c′,C,C ′ ⩾ 0.

3.2 Geometric and Statistical Model

Let us first present the models in which we will work throughout. As will be defined

and discussed at length in Section 3.3.1, we let rch(K) denote the reach of a subset

K ⊂ RD of the Euclidean space.

Building upon the standard regression setup, the following class is a good analog of

Hölder classes of order k ⩾ 2, that is well adapted to submanifolds for stability reasons

(see [AL19, Proposition 1]). Here, the analogy is to be understood as TpM being the

(local) covariate space, and Ψp being the regression function.

Definition 3.1 ([AL19, Definition 1]). Let k ⩾ 2, rchmin > 0, and L = (L2, L3, . . . , Lk).

We let Ckrchmin,L
denote the set of d-dimensional compact connected submanifolds M

of RD with rch(M) ⩾ rchmin, such that for all p ∈ M , there exists a local one-to-one

parametrization Ψp of the form:

Ψp∶BTpM (0, r)Ð→M

v z→ p + v +Np(v)

for some r ⩾ 1
4L2

, with Np ∈ Ck (BTpM (0, r) ,RD) such that for all ∥v∥ ⩽ 1
4L2

,

Np(0) = 0, d0Np = 0, and ∥djvNp∥op
⩽ Lj for all j ∈ {2, . . . , k} ,

where djvNp stands for the jth differential of Np at v, and ∥⋅∥op for the Euclidean operator

norm over tensors.
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As explained in [AL19, Section 2.2], radii 1/(4L2) in local parametrizations have

only been chosen for convenience. For k = 2, the existence of parametrizations Ψp is

always guaranteed as soon as rchmin > 0 and L2 ⩾ 2/ rchmin (see [AL19, Lemma 1]).

Definition 3.2. We let Pkrchmin,L
(fmin, fmax) denote the set of Borel probability distribu-

tions P on RD satisfying:

• Its support M ∶= supp(P ) belongs to Ckrchmin,L
;

• It has a density f with respect to the volume measure on M , such that

fmin ⩽ f(x) ⩽ fmax for all x ∈M.

On the estimation side, the uniform smoothness of the parametrizations in Def-

inition 3.1 allows for estimation of the manifold via local polynomial fitting around

sample points in the models Pkrchmin,L
(fmin, fmax). Recall that the Hausdorff distance

between two compact subsets K,K ′ ⊂ RD is defined by

dH(K,K ′) ∶= max{sup
x∈K

d(x,K ′), sup
x′∈K′

d(x′,K)} , (3.1)

where for all u ∈ RD,

d(u,K) ∶= min
x∈K

∥x − u∥ (3.2)

stands for the distance function toK. The estimation rates over the models of Definition

3.2 have been studied in [AL19]. A key result that we will use is the following.

Theorem 3.3 ([AL19, Theorem 6]). There exists an estimator M̂ such that for n large

enough,

sup
P ∈Pk

rchmin,L
(fmin,fmax)

EPn[dH(M̂,M)] ⩽ Cd,k,rchmin,L,fmin,fmax ( logn

n
)
k/d

,

where in the supremum, M stands for supp(P ).

This rate is minimax optimal up to logn factors [AL19, Theorem 7]. It can be

achieved by a local polynomial patch estimator M̂ (see (3.7) below) that we will use

as a preliminary step towards reach estimation. Let us also mention here that these

fitted local polynomials also allow for estimation of differential quantities of M , such

as tangent spaces and curvature at sample points, with (minimax) convergence rates

of order O(n−(k−1)/d) and O(n−(k−2)/d) respectively (see [AL19, Theorems 2 to 5]). This

fact will be of key importance in Section 3.3.3, where estimating the maximal curvature

of M will allow to estimate the so-called “local reach”.
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3.3 Reach and Related Quantities

3.3.1 Characterizations and Relaxations of the Reach

LetK be a compact subset of RD. Following the original definition of [Fed59], the reach

of K, denoted by rch(K), may be thought of as the largest radius of a neighborhood of

K onto which the projection map πK onto K is well-defined. More formally, define the

medial axis of K by

Med(K) ∶= {u ∈ RD ∣ ∃x1 ≠ x2 ∈K ∥u − x1∥ = ∥u − x2∥ = d(u,K)} .

The reach of K is then defined as the smallest distance between K and Med(K).

Definition 3.4. For all closed K ⊂ RD, the reach of K is defined by

rch(K) ∶= min
x∈K

d(x,Med(K)) = inf
u∈Med(K)

d(u,K).

Note that in full generality, the medial axis might not be a closed set, so that the

infimum in Definition 3.4 may not be attained (for instance in the case where K is one-

dimensional with a sharp edge). From a topological viewpoint, a key property of sets

with positive reach is that the projection onto K induces continuous retractions from

the offset Kr ∶= {u ∈ RD ∣ d(u,K) ⩽ r} onto K, whenever r < rch(K) [Fed59, Theorem

4.8]. This property is at the core of topologically consistent reconstruction procedures

such as that of [BG14].

Sets with positive reach can also been thought of as generalizations of convex

sets, characterized by the smoothness of their distance function. Indeed, based on

the remark that x↦ d(x,K) is C1 on RD ∖K whenever K is convex, [CSW95] define r-

proximally-smooth sets as the setsK such that d(⋅,K) is C1 over {u ∈ RD ∣ 0 < d(u,K) < r}.

Interestingly, for subsets of RD, r-proximally smooth sets are exactly sets with reach

rch(K) ⩾ r [PRT00], so that the reach may be alternatively defined in terms of gradients

of the distance function. To this aim, following [CL05], a generalized gradient function

can be defined over RD ∖K. For all x ∈ RD ∖K, we write

∇d(x,K) ∶= x − cK(x)
d(x,K)

, (3.3)

where cK(x) is the center of the smallest enclosing ball of the set πK({x}) of nearest

neighbors of x on K. Since cK(x) = πK(x) whenever x ∉ Med(K), the medial axis can

actually be characterized as

Med(K) = {x ∈ RD ∖K ∣ ∥∇d(x,K)∥ < 1} ,

and the reach as

rch(K) = sup{r > 0 ∣ 0 < d(x,K) < r⇒ ∥∇d(x,K)∥ = 1} .
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This characterization of the reach allows for a straightforward relaxation. Namely, for

a parameter µ ∈ [0,1], the seminal paper [CCSL09] introduces the so-called µ-medial

axis as being

Medµ(K) ∶= {x ∈ RD ∖K ∣ ∥∇d(x,K)∥ ⩽ µ} ,

and the µ-reach as

rchµ(K) ∶= inf
u∈Medµ(K)

d(u,K). (3.4)

It is clear that for all µ < 1, rch(K) ⩽ rchµ(K), with rch(K) corresponding to the

limit rch1−(K). Furthermore, this relaxation of the reach still yields enough regu-

larity guarantees that the offsets Kr = {u ∈ RD ∣ d(u,K) ⩽ r} are isotopic for all r ∈
(0, rchµ(K)) [CCSL09, Lemma 2.1]. Hence, the condition that rchµ(K) > 0 conveys

enough regularity properties for many topological estimators to work [CCSM11].

Through this lens, the largest radius that ensures the topological stability of the

offsets is the 0-reach, also called weak-feature size,

wfs(K) ∶= inf
u∈Med0(K)

d(u,K), (3.5)

that is the distance from K to the set of critical points of d(⋅,K). As detailed in the

following section, the weak-feature size plays a special role in the case where K is a

manifold. Here come a few elementary properties of the weak feature size that we will

use later on.

Proposition 3.5. Let K ⊂ RD be compact.

(i) If K is a closed submanifold of RD, then wfs(K) < +∞;

(ii) If wfs(K) < +∞, then for all µ ∈ [0,1),

rch(K) ⩽ rchµ(K) ⩽ wfs(K) ⩽
√

D

2(D + 1)
diam(K).

A proof is given in Section 3.A.1. Proposition 3.5 thus ensures that wfs(M) is uni-

formly bounded over the classes Ckrchmin,L
introduced in Section 3.2. Since wfs(K) and

rchµ(K) both measure a typical scale for topological stability, estimating them from

sample could be of practical interest for topological inference. Unfortunately, the

following negative result shows that this estimation problem is intractable, even over a

well-behaved model of closed Ck-submanifolds such as Pkrchmin,L
(fmin, fmax).

Theorem 3.6. Assume that fmin ⩽ cd,k/ rchdmin, fmax ⩾ Cd,k/ rchdmin, and Lj ⩾ Cd,k/ rchj−1
min

for all j ∈ {2, . . . , k}. Then there exists c̃d,k > 0 such that for all n ⩾ 1 and µ ∈ [0,1),

inf
r̂µ

sup
P ∈Pk

rchmin,L
(fmin,fmax)

EP⊗n [∣r̂µ − rchµ(M)∣] ⩾ c̃d,k rchmin > 0,

where r̂µ ranges among all the possible estimators based on n samples.
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An intuition behind Theorem 3.6 is that for all µ < 1, the µ-medial axis is an un-

stable structure. For certain manifolds M0 ∈ Ckrchmin,L
, one can find arbitrarily small

perturbations of M0 whose µ-medial axes remain at a fixed Hausdorff distance from

Medµ(M0). See the proof of Theorem 3.6 in Section 3.A.2 for a precise statement of this

intuition.

Despite the fact that rch(K) = rch1−(K), this negative result indicates that we

cannot leverage µ-reach estimation to obtain quantitative bounds for reach estimation.

We shall hence turn towards other reach-related quantities. In fact, the particular case

whereK =M is a manifold offers us several other characterizations of the reach, which

suggest other estimation strategies.

3.3.2 Reach of Submanifolds

In what follows, M stands for a d-dimensional closed submanifold of RD. Note

that [Fed59, Remarks 4.20 and 4.21] and [BLW19] assert that a closed submanifold

with positive reach is at least of regularity C1,1, so that geodesics and tangent spaces

are always defined in the usual differential sense. For the manifold case, the intu-

ition of rch(M) as a generalized convexity parameter is further backed by [Fed59,

Theorem 4.8]. Indeed, the inequality ⟨x − πC(x), πC(x) − c⟩ ⩾ 0 valid for all c ∈ C and

x ∈ RD whenever C is convex, translates to ⟨x − πM(x), πM(x) − y⟩ ⩾ −∥πM(x) − y∥2∥x −
πM(x)∥/(2 rch(M)) being valid for all y ∈ RD and x ∈ RD such that d(x,M) < rch(M).

This leads to the following characterization of the reach, in the manifold case.

Theorem 3.7 ([Fed59, Theorem 4.18]). For a submanifold M ⊂ RD without boundary,

rch(M) = inf
p≠q∈M

∥p − q∥2

2d(q − p, TpM)
,

where TpM denotes the tangent space of M at p.

This result provides a natural plugin estimator, proposed by [AKC+19], which con-

sists in replacingM andTpM by suitable estimators of them. A key result from [AKC+19]

is a description of how the infimum in Theorem 3.7 is achieved, possibly asymptotically.

Theorem 3.8 ([AKC+19, Theorem 3.4]). Let M ⊂ RD be a compact C2 submanifold

without boundary. Then,

rch(M) = wfs(M) ∧R`(M),

where denoting by IIp ∶ TpM × TpM → TpM
⊥ the second fundamental form of M at

p ∈M ,

R`(M) ∶= min
p∈M

∥ IIp ∥−1
op

stands for the minimal curvature radius of M .
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This result conveys the following intuition in the manifold case: the infimum in the

right-hand side of Theorem 3.7 may be attained:

• Local case: Asymptotically, for pairs of points (p, q) converging to a maximal

curvature point in some direction, so that rch(M) = R`(M).

• Global case: For a pair of points (p, q) belonging to parallel areas of M , forming a

bottleneck zone, so that rch(M) = wfs(M).

This local/global dichotomy of the reach may also be retrieved in the recent characteri-

zation given by [BLW19] in terms of metric distortion.

Theorem 3.9 ([BLW19, Theorem 1]). Let K ⊂ RD be a closed subset. Then

rch(K) = sup{r > 0 ∣ ∀p, q ∈K, ∥p − q∥ < 2r⇒ dK(p, q) ⩽ 2r arcsin(∥p − q∥
2r

)} ,

where dK ∶K ×K → R̄+ stands for the shortest-path (or geodesic) distance on K.

Recall that, for all p, q ∈ K, the distance dK(p, q) is the infimum of the length of

all the continuous path in K between p and q. As will be detailed in Section 3.4, the

above result allows to characterize the reach in terms of metric distortion with respect

to metrics on spheres of radii r. In the same spirit as Theorem 3.8, when K =M is a

submanifold, the configurations of (p, q, r) in the supremum of Theorem 3.9 are limited

by the same two local and global layouts:

• Local case: When p and q tend to a maximal curvature point in some direction,

the geodesic distance dK behaves like that of a sphere of radius R`(M) at this

point in this direction.

• Global case: When p and q are in parallel areas, their geodesic distance must be

larger than the spherical distance of radius ∥p − q∥/2.

3.3.3 Plug-in Methods for Reach Estimation

The characterizations of the reach given in Section 3.3.2 all lead to their associate

plug-in estimators:

• Studying a C3 model similar to P3
rchmin,L

(fmin, fmax), [AKC+19] took advantage

of the characterization with tangent spaces (Theorem 3.7) to conceive a reach

estimator that converges at rateO(n−2/(3d−1)) in the local case (rch(M) = R`(M)),

and O(n−1/d) in the global case (rch(M) = wfs(M)).

• Based on the metric distortion characterization of Theorem 3.9, [CFM21] propose

a reach estimator that is consistent whenever M has positive reach.
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In light of Theorem 3.8, differences of convergence rates between the local and global

case are to be expected. To quantify this intuition, [BHHS22] introduces subclasses of

the model Pkrchmin,L
(fmin, fmax), parametrized by the gap between R`(M) and wfs(M).

They obtain the following lower bounds.

Theorem 3.10 ([BHHS22, Theorem 7.1] and [AKC+19, Proposition 2.9]). Letα ∈ R, k ⩾ 2,

and write

Pkrchmin,L,α
(fmin, fmax) ∶= {P ∈ Pkrchmin,L

(fmin, fmax) ∣ R`(M) ⩾ wfs(M) + α} ,

where M denotes supp(P ). Then, for all rchmin > 0 there exists small enough fmin and

large enough fmax, L such that

inf
r̂ch

sup
P ∈Pk

rchmin,L,α
(fmin,fmax)

E ∣r̂ch − rch(M)∣ ⩾ crchmin,d,k (
1

n
)
(k−2)/d

, if α ⩽ 0,

inf
r̂ch

sup
P ∈Pk

rchmin,L,α
(fmin,fmax)

E ∣r̂ch − rch(M)∣ ⩾ crchmin,d,k,α ( 1

n
)
k/d

, if α > 0.

These bounds indicate that estimating the reach is at least as hard as estimating

the curvature in the local case (rch(M) = R`(M)), and at least as hard as estimating the

manifold in the global case (rch(M) = wfs(M)). We will prove in Section 3.6 that these

rates are in fact minimax optimal up to logn factors. This means that reducing reach

estimation to curvature and manifold estimation is a good way to go, as it leads to

optimal rates. To do so, following the idea behind Theorem 3.8, estimating R`(M) – or

some notion of local reach – and wfs(M) – or some notion of global reach – separately

seems a sensible approach.

Local Reach Estimation For (max-)curvature estimation, the strategy that we adopt

follows from the polynomial patches estimator proposed in [AL19]. Given a localization

bandwidth h > 0, and a parameter t > 0, for all i ∈ {1, . . . , n}, we let π̂i ∶ RD → RD be an

orthogonal projector of rank d and T̂(j)
i ∶ (RD)⊗j → RD be symmetric tensors solutions

of the least squares problem

min
π

max2⩽j⩽k−1 ∥T(j)∥
1
j−1 ⩽t

P
(i)
n−1

⎡⎢⎢⎢⎢⎣

XXXXXXXXXXX
x − π(x) −

k−1

∑
j=2

T(j)(π(x)⊗j)
XXXXXXXXXXX

2

1B(0,h)(x)
⎤⎥⎥⎥⎥⎦
, (3.6)

where P (i)
n−1 ∶=

1
n−1 ∑p≠i δXp−Xi denotes the empirical measure centered at point Xi. Fol-

lowing [AL19, Section 3], if h is taken to be of order Θ ((logn/n)1/d), that t is chosen such

that tkh ⩽ 1, and that T̂i ∶= Im(π̂i) denotes the image of π̂i – which is a d-dimensional

vector space by construction –, then the local patches

Ψ̂i∶BT̂i(0,7h/8)Ð→ RD

v z→Xi + v +
k−1

∑
j=2

T̂(j)
i (v⊗j) (3.7)
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are local O(hk) approximations of M whenever n is large enough. Furthermore, for

v ∈ BT̂i(0, h/4), we can estimate the curvature tensor at πM(Ψ̂i(v)) via the second

derivative of Ψ̂i at v, expressed in local coordinates around Ψ̂i(v) given by a basis of

Im(dvΨ̂i). To summarize, for all v ∈ BT̂i(0, h/4), (3.7) provides a d-dimensional space

T̂i,v ∶= Im(dvΨ̂i), as well as a symmetric bilinear map

T̂(2)
i,v ∶ T̂i,v × T̂i,v → T̂ ⊥i,v,

that is provably close to IIπM (Ψ̂i(v)). The precise definition of T̂(2)
i,v is given in Section

3.A.3. A minimal curvature radius (i.e. maximal curvature) estimator may then be

computed as the minimal curvature radius of all the polynomial patches around

sample points, that is

R̂` ∶= min
1⩽i⩽n

min
v∈BT̂i(0,h/4)

∥T̂(2)
i,v ∥

−1
op. (3.8)

Provided M is uniformly well approximated by⋃ni=1 Ψ̂i(BT̂i(0, h/4)), the convergence

rate of R̂` towards R`(M) will follow from uniform curvature bounds, similar to the

pointwise ones from [AL19, Theorem 4]. We are able to prove the following.

Theorem 3.11. Let k ⩾ 3 and P ∈ Pkrchmin,L
(fmin, fmax). Write h = (Cd,k f

2
max logn

f3
minn

)
1/d

.

Then for n large enough, with probability larger than 1 − 2n−k/d, we have

∣R̂` −R`(M)∣ ⩽ Cd,k,L,rchmin
R2
`(M)

√
fmax

fmin
hk−2.

We refer to Section 3.A.3 for a proof of this result. In particular, the estimator R̂`
achieves the rate of the lower bound from Theorem 3.10 in the case where rch(M) =
R`(M) (i.e. α ⩽ 0), up to logn factors.

Global Reach Estimation To complete the construction of an estimator of rch(M),

building an estimator of wfs(M) could be a possibility. However, Theorem 3.6 shows

that building an estimator of the weak feature size with a uniform convergence rates

over Pkrchmin,L
(fmin, fmax) is hopeless. Nonetheless, it is important to note that a uni-

form estimation rate of wfs(M) overPk is not necessary to obtain uniform convergence

rate for rch(M). Indeed, an estimator ŵfs of wfs(M) that exhibits an optimal uniform

convergence rate whenever wfs(M) ⩽ R`(M), and that is provably larger than R`(M)
otherwise, is enough to build an optimal reach estimator when combined with R̂`. This

is the case, for instance, of the weak feature size estimator of [BHHS22] based on the

so-called convexity defect function.

Based on this remark, we adopt a more general strategy, by seeking for an interme-

diate geometric scale θ(M) (or feature size) such that for all M ∈ Ckrchmin,L
,

rch(M) ⩽ θ(M) ⩽ wfs(M).
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In such a case, Theorem 3.8 extends trivially, with wfs(M) replaced by θ(M).

Proposition 3.12. Assume that θ ∶ C2
rchmin

→ R+ is such that rch(M) ⩽ θ(M) ⩽ wfs(M)
for all M ∈ C2

rchmin
. Then,

rch(M) = θ(M) ∧R`(M).

Given such an intermediate scale parameter of interest θ(M), and assuming that a

consistent estimator θ̂ of θ(M) is available, one can naturally consider the plugin r̂ch ∶=
R̂` ∧ θ̂. For free, Proposition 3.12 yields that θ(M)1R`(M)>rch(M) = rch(M)1R`(M)>rch(M),

so that

∣ rch(M) − r̂ch∣ ⩽ ∣R̂` −R`(M)∣1R`(M)⩽rch(M) + ∣θ̂ − θ(M)∣1R`(M)>rch(M), (3.9)

as soon as ∣R`(M)−R̂`∣+∣θ(M)−θ̂∣ ⩽ ∣R`(M)−θ(M)∣. In addition, such a quantity would

provide a local scale that is of interest for further topological inference, as exposed in

Section 3.3.1.

According to Theorem 3.6, taking θ(M) to be related to the medial axis characteri-

zation of the reach – such as the µ-reach, or the λ-reach defined in [CL05]) – is likely

to lead to an unsolvable statistical problem, because of the inherent instability of the

medial axis. Hence, we rather build upon the metric distortion characterization of the

reach given by Theorem 3.9, and provide a better-behaved intermediate scale θ(M):

the spherical distortion radius.

3.4 Spherical Distortion Radius

3.4.1 Motivation and Definition

Based on Theorem 3.9, we now build a geometrically stable feature size that measures

the maximum radius (or scale) at which the geodesic distance can be compared to the

corresponding spherical distance. To be more precise, for x, y ∈ RD and r > 0, we define

the spherical distance dS(r)(x, y) – or great-circle distance – as the distance between x

and y when seen as both lying on a sphere of radius r. That is,

dS(r)(x, y) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2r arcsin ( ∥x−y∥
2r ) if ∥x − y∥ ⩽ 2r,

+∞ otherwise

Note that the map r ↦ dS(r)(x, y) is decreasing on [∥x − y∥/2,∞) and that

dS(r)(x, y) =
1

2
π∥x − y∥ for r = ∥x − y∥

2
and dS(r)(x, y)ÐÐÐ→

r→∞
∥x − y∥.

Then, Theorem 3.9 can be rewritten as

rch(K) = sup{r > 0 ∣ ∀x, y ∈K, ∥x − y∥ < 2r⇒ dK(x, y) ⩽ dS(r)(x, y)} .
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It should be noted that dS(r) is not formally a distance on K (unless K is a subset of a

sphere of radius r), but this is of little importance in what follows.

Based on the same idea that motivates the introduction of the µ-reach, we intend

to discard curvature effects to obtain some notion of global reach. In the metric

characterization of the reach from Theorem 3.9, this can be done by the supremum

restricting to points that are not too close.

Definition 3.13. Let K be a compact subset of RD, d a distance on K and δ > 0. The

spherical distortion radius of the metric space (K,d) at scale δ is defined by

sdrδ(K,d) ∶= sup{r > 0 ∣ ∀x, y ∈K, δ ⩽ ∥x − y∥ < 2r ⇒ d(x, y) ⩽ dS(r)(x, y)} .

In words, the spherical distortion radius at scale δ > 0 is the largest radius r for

which the distance d is bounded above by the spherical distance at radius r, when

restricted to points that are at least δ-apart for the Euclidean distance.

K

x

y

dS(r1)(x, y)

dS(r0)(x, y)

dK(x, y)

Figure 3.1 – A curve K in the plane. In blue is the shortest path between two points x

and y, whose length is dK(x, y). In green (resp. grey) is the circle portion of radius r0

(resp. r1) going through x and y. The layout is chosen so that r0 ⩽ r1 and dS(r1)(x, y) ⩽
dK(x, y) ⩽ dS(r0)(x, y).

By construction, sdrδ(K,d) ⩾ δ/2 for all δ > 0. Furthermore, whenever δ is strictly

greater than diamK, then no pairs of points in x, y ∈ K satisfies ∥x − y∥ ⩾ δ so that

sdrδ(K) = +∞. On the other hand, if δ = 0, then the spherical distortion radius of

(K,dK), coincides with the reach of K (Theorem 3.9). In fact, Proposition 3.14 below

confirms that the spherical distortion radius interpolates between the reach and the

weak feature size.

Proposition 3.14. For all closed K ⊂ RD and all metric d on K, the map δ ↦ sdrδ(K,d)
is non-decreasing. Furthermore, for d = dK ,

rch(K) ⩽ sdrδ(K,dK) ⩽ wfs(K) for all 0 ⩽ δ ⩽
√

2(D + 1)
D

wfs(K).

A proof of Proposition 3.14 is given in Appendix 3.B.1.

Example 3.15. As a toy example, let us study the spherical distortion radius of the wedge

shapeKα = L1 ∪L2 where L1 and L2 are two half-line originated from a common point
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z ∈ RD (see Figure 3.2). We let α ∈ (0, π) be the angle between these two lines. In this

context, we have rch(Kα) = 0, and it is easy to see that wfs(Kα) = ∞. Furthermore,

the usual interpolations between the reach and the weak feature size exhibit a very

degenerate behavior in the presence of an angular configuration such as this one, with

for instance

rchµ(Kα) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if µ ⩾ sin(α/2),

∞ if µ < sin(α/2).

On the contrary, we show hereafter that the spherical distortion radius interpolates

non-trivially between rch(Kα) and wfs(Kα) in this case, giving rise to a new family of

relevant characteristic scales even for non-smooth subsets Kα.

To see this, take x ∈ L1 and y ∈ L2, and denote by a ∶= ∥x − z∥ and b ∶= ∥y − z∥. The

intrinsic distance dKα(x, y) is given by a + b while ∥x − y∥2 = a2 + b2 − 2ab cos(α). Now

the solution of the minimization problem

min{a2 + b2 − 2ab cos(α) ∣ a + b = dKα(x, y)}

is given by a = b = dKα(x, y)/2 and equals d2
Kα

(x, y) sin2(α/2). The spherical distortion

radius of Kα at scale δ is thus the largest r such that

δ

sin(α/2)
⩽ 2r arcsin( δ

2r
) . (3.10)

Since the right-hand side above ranges between δ and δπ/2, we distinguish two cases:

• If sin(α/2) < 2/π, then no r can fulfill (3.10). Hence, sdrδ(Kα,dKα) = δ/2.

• Otherwise sin(α/2) ⩾ 2/π, in which case the largest r is given by the equality

ϕ(2r/δ) = 1/ sin(α/2), where ϕ(u) ∶= uarcsin(1/u) is a bijection between [1,∞)
and (1, π/2].

All in all, it holds

sdrδ(Kα,dKα) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

δ/2 if α < α∗
(δ/2)ϕ−1(1/ sin(α/2)) if α ⩾ α∗

where α∗ = 2 arcsin(2/π) < π/2. Note that compared to rchµ(Kα), there is no disconti-

nuity in sdrδ(Kα,dKα) as α varies.

Example 3.15 above carries the intuition that the spherical distortion radius seems

somehow stable with respect to Hausdorff perturbations, contrary to the µ-reach. We

quantify this intuition in the following section.
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(a) (b)

Figure 3.2 – (a) Diagram of Kα = L1 ∪L2 with an angle α between the two half-lines.

The shortest path between x and y is drawn in blue. In dashed the µ-medial axis

for µ > sin(α/2), showing in particular that rchµ(Kα) = 0 in this case. (b) Plot of the

function α ↦ sdrδ(Kα,dKα), which operates a smooth interpolation between δ/2 and

∞.

3.4.2 Stability Properties

In this section, we will be comparing different metric spaces on subsets of RD. Let

K and K ′ be two subsets of RD, endowed with distances d and d′ respectively. We

intend to prove that sdrδ(K,d) and sdrδ(K ′,d′) are close whenever (K,d) and (K ′,d′)
are close, and that (K,d) has good properties. The notion of proximity between K and

K ′ will be measured in Hausdorff distance (see (3.1)). It remains to define a notion of

proximity between d and d′, which is called the mutual distortion.

Definition 3.16. Let (K,d) and (K ′,d′) be two metric subspaces of RD. The metric

distortion of d′ relative to d at scale δ > 0 is

Dδ(d′∣d) ∶= sup
x′,y′∈K′

∥x′−y′∥⩾δ

d′(x′, y′)
d(prK({x′}),prK({y′}))

.

where prK is the (possibly multivalued) closest-point projection onto K for the ambient

Euclidean distance, and where

d(prK({x′}),prK({y′})) ∶= inf {d(x, y) ∣ x ∈ prK({x′}), y ∈ prK({y′})} .

We adopt the convention Dδ(d′∣d) = 0 if δ > diam(K ′). The mutual distortion of d and d′

is then defined as

Dδ(d,d′) ∶= max{Dδ(d′∣d),Dδ(d∣d′)} .

The mutual distortion defined above allows to compare distances on different

spaces, while taking into account their respective embeddings in RD. A small distortion

Dδ(d,d′) means that, if a, b ∈ K and x, y ∈ K ′ are two couples of points that are δ-

separated and such that x and a, and y and b are respectively close to each other,
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then d(a, b) and d′(x, y) should be close as well. This definition of mutual distortion

between metric subspaces of RD is related to the existing notion metric distortion of

an embedding. See for instance [Bou85] or more recently [CVvL18] which deals with

distortion measures in a statistical framework. It is nonetheless significantly different,

in particular because the usual notion of distortion is invariant through re-scaling of

either d or d′. In our framework, invariance with respect to scaling is an undesirable

property, since we want to estimate the reach, which is itself a scale factor (or feature

size).

Remark 3.17. When K = K ′, the mutual distortion can be seen as the bi-Lipschitz

coefficient of Id ∶ (K,d)→ (K,d′) at scale δ, meaning that for all x, y ∈K

∥x − y∥ ⩾ δ ⇒ 1

L
d′(x, y) ⩽ d(x, y) ⩽ Ld′(x, y),

where L = Dδ(d,d′). In particular, a mutual distortion that is close to 1 means that

(K,d) is quasi-isometric to (K,d′), at scale δ.

If the two subspaces K and K ′ are too far apart, then it makes no sense to compare

two distances d and d′ defined on them, and one could expect the mutual distortion to

explode. This is will typically the case when dH(K,K ′) ⩾ δ.

It is clear from the definition that using the notion of relative metric distortion

defined above, the spherical distortion radius of K may be expressed as

sdrδ(K,d) = sup{r > 0 ∣ Dδ(d∣dS(r)) ⩽ 1} .

This point supports the idea that the relative metric distortion we defined is a suitable

notion of proximity to assess stability of the spherical distortion radius, as exposed by

the following proposition.

Proposition 3.18. Let δ0 > 0 and ε, ν > 0. Assume that both dH(K ′,K) ⩽ ε and

Dδ0(d′∣d) ⩽ 1 + ν. Define

ξ(r) ∶= 384(1 + π)r
4

δ4
0

for all r ⩾ 0.

Then, for all δ ⩾ δ0, letting Υ ∶= (δν) ∨ ε and r1 ∶= sdrδ+2ε(K ′,d′), if ξ(r1)Υ < r1, then

sdrδ(K,d) ⩽ sdrδ+2ε(K ′,d′) + ξ(r1)Υ.

A proof of Proposition 3.18 is given in Appendix 3.B.2. Note that the condition

dH(K ′,K) ⩽ ε may be relaxed via dH(K ′∣K) ⩽ ε, where dH(K ′∣K) ∶= supx∈K′ d(x,K).

Also, under the assumptions of Proposition 3.18, let us remark that if sdrδ+2ε(K ′,d′) is

finite, then so is sdrδ(K,d) with sdrδ(K,d) ⩽ 2 sdrδ+2ε(K ′,d′).

Proposition 3.18 can be symmetrized to get the following two-sided control.
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Corollary 3.19. Let 0 < δ0 < δ1 and ε, ν > 0. Assume that both dH(K ′,K) ⩽ ε and

Dδ0(d′,d) ⩽ 1 + ν. Then, for any δ ∈ (δ0 + 2ε, δ1 − 2ε), it holds

sdrδ−2ε(K,d) − ξ0Υ ⩽ sdrδ(K ′,d′) ⩽ sdrδ+2ε(K,d) + ξ0Υ

with ξ0 ∶= ξ(2 sdrδ1(K,d)) and Υ ∶= (νδ) ∨ ε, provided that ξ0Υ ⩽ 2 sdrδ1(K,d).

Corollary 3.19 is proven in Appendix 3.B.2. It ensures that the spherical distortion

radius enjoys an interleaving property. That is the SDR of (K,d) at scale δ may be

framed by the SDR of an approximation (K ′,d′) at scales δ ± ε. This interleaving

property is a common thread with the µ-reach (see, e.g., [CCSL09, Theorem 3.4]) and

the λ-reach ([CL05, Theorem 3]), that is not enough to ensure consistent estimation.

In fact, for the two aforementioned quantities, consistency may be proved with the

additional assumption of µ ↦ rchµ(K) (resp. λ ↦ λ-reach) are continuous at the

targeted µ (resp. λ).

As opposed to the µ-reach the λ-reach, the SDR is also stable with respect to its the

scale parameter δ. Next, we prove that δ ↦ sdrδ(K,d) is continuous over a fixed range

(0,∆∗) under mild structural assumptions on (K,d). These assumptions will be easily

checked in the model Ckrchmin,L
, hence ensuring consistency of the subsequent reach

estimator.

Assumption 3.20. We say that K ⊂ RD is spreadable if there exist ∆0 > 0, ε0 > 0, and

C0 > 0 such that for all x, y ∈K such that ∥x − y∥ ⩽ ∆0 and all ε ⩽ ε0, there exists a point

a ∈K such that either

• ∥a − y∥ ⩽ ε and ∥x − a∥ ⩾ ∥x − y∥ +C0ε, or

• ∥a − x∥ ⩽ ε and ∥y − a∥ ⩾ ∥x − y∥ +C0ε.

Assumption 3.20 requires that every point y of K may be locally pushed away from

any (close enough) point x ∈K. In particular, this means that K is nowhere discrete.

In the manifold case, this pushing may be carried out using the exponential map (see

Proposition 3.30).

Assumption 3.21. We say that (K,d) is sub-Euclidean if there exist C1 > 0 and ∆1 > 0

such that for all x, y ∈K such that ∥x − y∥ ⩽ ∆1, we have d(x, y) ⩽ C1∥x − y∥.

Assumption 3.21 requires that the distance locally compares with the ambient

Euclidean distance. This essentially means that the identity map (K,d) → (K, ∥⋅∥)
is locally Lipschitz. Such an assumption is automatically fulfilled whenever K has

positive reach and d = dK (see [Fed59]), with explicit constants in the manifold case

(see Proposition 3.30) Whenever these two conditions are met, the spherical distortion

radius of (K,d) can be proved to be locally Lipschitz in δ.
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Theorem 3.22. Assume that the metric space (K,d) fulfills Assumptions 3.20 and 3.21.

Then δ ↦ sdrδ(K,d) is locally Lipschitz on (0,∆∗) where

∆∗ ∶= min{∆0,∆1, sup{δ ⩾ 0 ∣ sdrδ(K,d) <∞}} .

More precisely, for all 0 < δ0 < δ1 < ∆∗, the map δ ↦ sdrδ(K,d) is L0-Lipschitz on [δ0, δ1]
with

L0 ∶=
192r3

1

C0δ3
0

(C1 + π
r1

δ0
) ,

where r1 ∶= sdrδ1(K,d).

A proof of Theorem 3.22 can be found in Appendix 3.B.2. Not only does it ensure

that the spherical distortion radius at scale δ is continuous with respect to δ, that is

enough to guarantee consistency, but it also allows to control its variation via an explicit

local Lipschitz constant. Combined with Corollary 3.19, this allows to convert a bound

between (K,d) and (K ′,d′) in terms of Hausdorff distance and metric distortion into

a bound on the SDR’s at scale δ.

Theorem 3.23. Let (K,d) fulfill Assumptions 3.20 and 3.21, and let (K ′,d′) be such that

dH(K,K ′) ⩽ ε and Dδ0(d,d′) ⩽ 1 + ν for some δ0 < ∆∗. Then, for all δ1 ∈ (δ0,∆
∗) and

δ ∈ (δ0 + 2ε, δ1 − 2ε), provided that ξ0Υ ⩽ 2 sdrδ1(K,d), we have

∣sdrδ(K,d) − sdrδ(K ′,d′)∣ ⩽ ζ0Υ,

with Υ = (δν) ∨ ε and ζ0 = ξ0 + 2L0, where ξ0 is defined in Corollary 3.19, L0 is defined in

Theorem 3.22.

We refer to Appendix 3.B.2 for a proof of this result and to Figure 3.3 for a diagram of

the scales at play. Note that the constant ζ0 only depends on δ0 and features of (K,d),

that the assumptions are required on (K,d) only, and that the constraint on ε depends

only on (K,d) as well.

The estimation of K is a now well-understood in the manifold case (see [AL19]). To

obtain guarantees on the estimation of sdrδ(K,dK), it hence remains to investigate the

estimation of dK . This is the aim of the following section.

3.5 Optimal Metric Learning

3.5.1 Unsupervised Distance Metric Learning

As explained in the introduction, various learning tasks lead to the problem of estima-

tion the shortest-pat distance dK , via an estimator d̂ on a sample of K ⊂ RD. Though,
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δ0 δ0 + ε δ1 − ε δ1 ∆∗

δ

δ

sdrδ(K, d)
sdrδ(K

′, d′)

≤ ζ0Υ

Figure 3.3 – Plot of δ ↦ sdrδ for (K,d) and (K ′, d′) in the context of Theorem 3.23. On

the interval (δ0 + ε, δ1 − ε), the two functions do not differ of more than ζ0Υ. Even

though (K ′, d′) might not be well-behaved, the regularity of δ ↦ sdrδ(K,d) (Theorem

3.22) is sufficient to insure stability.

there is no canonical choice of loss for measuring the proximity of d̂ to dK . One could

consider for instance the empirical sup-loss

`n(d̂∣dK) ∶= sup
x≠y∈Xn

∣1 − d̂(x, y)
dK(x, y)

∣ ,

or the global sup-loss

`∞(d̂∣dK) ∶= sup
x≠y∈K

∣1 − d̂(x, y)
dK(x, y)

∣ .

It might seem counter-intuitive to ask an estimator d̂ of dK ∶ K ×K → R+ to be

defined on the whole set K ×K, while the this domain is unknown. It actually is easy

to extend any metric estimator to the whole space RD × RD. Indeed, given such a

metric estimation procedure d̂n ∶ Xn ×Xn → R+ that outputs a distance d̂n[Xn](x, y)
between any pair of points of Xn, we can define d̃n(x, y) ∶= d̂n+2[Xn, x, y](x, y) for all

(x, y) ∈ RD × RD. Informally this means that one can treat any given tuple of points

(x, y) as actual data points in the estimation process, and that we are only interested in

the behavior of the later when x and y are in fact from K.

The losses `n and `∞ are naturally multiplicative, in particular because the usual

notions of distortions are multiplicative by nature (see Section 3.4). Indeed, the sup-

loss `∞(d̂∣dK) being smaller than ν means that

∀x, y ∈K, (1 − ν)dK(x, y) ⩽ d̂(x, y) ⩽ (1 + ν)dK(x, y),

which is the usual way to quantify if the intrinsic metric is well-estimated. See for

instance [TSL00, ACC20]. When ν is small, it yields that (K, d̂) is quasi-isometric to

(K,dK).

Remark 3.24. We emphasize the fact that the global sup-loss `∞ and the mutual metric

distortion Dδ from Definition 3.16 are different in essence. Indeed, while the mutual
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metric distortion Dδ allows to compare different metrics on different subsets of RD,

the sup-loss `∞ compares two distances defined on the same subset.

However, the global sup-loss and the mutual distortion metric may be related as fol-

lows. ConsiderK endowed with either d̂ or dK . Denote by D0+(dK , d̂) ∶= limδ→0 Dδ(dK , d̂).

Then, straightforward computation entails

`∞(d̂∣dK) + 1 ⩽ D0+(dK , d̂) ⩽ (1 − `∞(d̂∣dK))−1
+ .

Hence, the global sup-loss `∞(d̂∣dK) is somehow an additive counterpart to the mutual

distortion D0+(d̂,dK) in the case where K =K ′. That is, when the support of the two

metrics coincide in Definition 3.16, as already noticed in Remark 3.17.

When K =M is a C2 submanifold of RD of dimension d with reach bounded below,

methods using neighborhood graphs such as Isomap provably estimate dM at rate

O(n−2/3d) [ACLG19]. As we will show in Theorem 3.28, this rate is far from being

optimal. To date, the best minimax lower bound in this setting is due to [ACC20], who

obtain a rate of order Ω(n−2/d) in the particular case of a deterministic design on C2

submanifolds. Actually, we can extend the result of [ACC20] to our random design

setting, and to general Ck submanifolds with k ⩾ 2.

Theorem 3.25. Assume that fmin ⩽ cd,k/ rchdmin and fmax ⩾ Cd,k/ rchdmin, and Lj ⩾
Cd,k/ rchj−1

min for all j ∈ {2, . . . , k}. Then for n large enough,

inf
d̂

sup
P ∈Pk

rchmin,L
(fmin,fmax)

EP⊗n[`∞(d̂∣dM)] ⩾ c̃d,k,rchmin
( 1

n
)
k/d

,

where the infimum is taken over all measurable estimator d̂ of dM based on n samples.

This theorem is proved in Appendix 3.C.1. As we shall prove shortly in Section 3.5.2,

this lower-bound can be provided with a matching upper-bound up to logn factors

(Theorem 3.27), and is thus optimal.

3.5.2 An optimal Approach of Metric Estimation

The existing unsupervised methods for metric learning are known to either have no

theoretical guarantees, or to have a sub-optimal rate for estimating the intrinsic metric.

As stated before, Isomap reaches a rate of n−2/3d, which is very far from the theoretical

lower-bound n−k/d shown in Theorem 3.25. Other methods, such as taking the shortest

path distance over a Delaunay triangulation [ACC20], are shown to attain a precision of

n−2/d which is optimal for C2-model but not for k ⩾ 3. We propose here a fairly general

approach that can output a family of minimax-optimal metric estimators. It relies on

the following bound.
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Proposition 3.26. Let K ⊂ RD be a set of positive reach rch(K) > 0, and K ′ ⊂ RD be any

set such that dH(K ′,K) < ε ⩽ rch(K)/2. Then,

`∞(d(K′)ε ∣dK) ⩽ 2ε

rch(K)
,

where we recall that (K ′)ε = {u ∈ RD ∣ d(u,K ′) ⩽ ε}, so that K ⊂ (K ′)ε.

Proposition 3.26 is proved in Appendix 3.C.2. It asserts that estimating geodesic

distances of sets of positive reach is never harder than estimating the sets themselves

in Hausdorff distance. Beyond the framework of closed manifold developed here, note

that for the convex case rch(K) =∞, dK coincides with the Euclidean metric, so that

estimating dK becomes trivial.

A significant consequence of Proposition 3.26 is that we can derive a consistent

estimator of the intrinsic distance from any consistent estimator of the support, and

with the same rate of convergence. In what follows, we write

dmax ∶=
5d

ωdfmin rchd−1
min

, (3.11)

where ωd is the volume of the d-dimensional unit ball. In Lemma 3.C.2, the length

dmax is proved to be an upper bound on the geodesic diameter of the supports of any

distribution in the model Pkrchmin,L
(fmin, fmax).

Theorem 3.27. Let k ⩾ 2 and let M̂ be an estimator satisfying

sup
P ∈Pk

rchmin,L
(fmin,fmax)

P⊗n(dH(M̂,M) ⩾ εn) ⩽ ηn,

for some positive sequences εn and ηn converging to 0. Then the metric estimator

d̂(x, y) ∶= dmax ∧ d(M̂x,y)εn (x, y) with M̂x,y ∶= M̂ ∪ {x, y} ,

which is defined for all x, y ∈ RD, satisfies

sup
P ∈Pk

rchmin,L
(fmin,fmax)

EP⊗n[`∞(d̂∣dM)] ⩽ 2

rchmin
εn + (1 + dmax

εn
)ηn.

Theorem 3.27 is proved in Appendix 3.C.2. A particular advantage of this result

is that it does not require the estimator M̂ to have any geometric structure, nor to

be regular in any sense. This contrasts sharply with [ACC20], which extensively uses

the structural properties of the intermediate estimator M̂ . Theorem 3.27 is much

more versatile, since here, M̂ could just as easily be anything as a point cloud, a

metric graph, a triangulation, or a union of polynomial patches. For instance, taking
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M̂ = {X1, . . . ,Xn} to be the observed data, we can take εn = C(logn/n)1/d for C large

enough yields ηn ⩽ ε2
n so that

sup
P ∈P2

rchmin,L
(fmin,fmax)

EP⊗n[`∞(d̂∣dM)] ⩽ Crchmin,d,fmin
( logn

n
)

1/d
,

which is faster than the known rate of order O(n−2/3d) for Isomap (see for instance

[ACC20, Eq (1.2)]). Now, taking M̂ to be a minimax optimal estimator of M for the

Hausdorff loss — as that of [AL19], for instance — and εn = C(logn/n)k/d for some large

constant C > 0 yields ηn ⩽ ε2
n (see Lemma 3.A.4), and a metric estimator d̂ that achieves

the following rate.

Theorem 3.28. Let d̂ be the estimator described in Theorem 3.27 built on top of M̂

described in Lemma 3.A.4. Then for n large enough,

sup
P ∈Pk

rchmin,L
(fmin,fmax)

EP⊗n[`∞(d̂∣dM)] ⩽ Crchmin,d,fmax,fmin,L,k (
logn

n
)
k/d

.

In virtue of Theorem 3.25, this rate is minimax optimal up to logn factors.

3.6 Optimal Reach Estimation

3.6.1 Optimal Spherical Distortion Radius Estimation

Interesting as it is in its own right, we now investigate the estimation rates of the

spherical distortion radius at scale δ > 0. To obtain a minimax lower bound, we simply

note that sdrδ(M,dM) coincides with rch(M) whenever rch(M) = wfs(M) (Proposi-

tion 3.14). Hence, any lower bound for the estimation of rch(M) on a model over

which rch(M) = wfs(M) yields a lower bound for the estimation of sdrδ(M,dM). In

application of Theorem 3.10 with α ⩾ 0, this immediately gives the following lower

bound.

Theorem 3.29. Assume that fmin ⩽ cd,k/ rchdmin and fmax ⩾ Cd,k/ rchdmin, and Lj ⩾
Cd,k/ rchj−1

min for all j ∈ {2, . . . , k}. Then for n large enough, for all δ ∈ (0, rchmin),

inf
ŝdrδ

sup
P ∈Pk

rchmin,L
(fmin,fmax)

EP⊗[∣ŝdrδ − sdrδ(M,dM)∣] ⩾ c̃rchmin,d,kn
−k/d.

where the infimum is taken over all measurable estimators ŝdrδ of sdrδ(M,dM) based

on n samples.

It turns out that this bound is optimal. To exhibit an estimator that achieves

this rate, we take advantage of the Hausdorff and metric stability of the spherical

distortion radius shown in Theorem 3.23. In order to apply it, we first need to check

that Assumptions 3.20 and 3.21 are fulfilled for every manifolds in our models Ckrchmin,L
.
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Proposition 3.30. Let M ⊂ RD be a submanifold with bounded reach rch(M) > 0. Then

M satisfies Assumptions 3.20 and 3.21 with parameters

ε0 = rch(M)/4, ∆0 = rch(M), C0 = 3/16, ∆1 = rch(M)/2 and C1 = 2.

Proposition 3.30 is proven in Appendix 3.D. In the vein of Theorem 3.27, and using

the stability of the spherical distortion radius with respect to the pair (K,d), we can

now build an estimator of sdrδ(M,dM) in a plug-in fashion over Ck submanifolds.

Recall that when M is in Ckrchmin,L
, and δ ∈ (0,

√
2(D + 1)/Dwfs(M)), then according to

Propositions 3.14 and 3.5, and to Lemma 3.C.2,

0 < rchmin ⩽ rch(M) ⩽ sdrδ(M,dM) ⩽ wfs(M) ⩽
√

D

2(D + 1)
diam(M) ⩽ smax <∞,

where smax ∶=
√
D/(2(D + 1))dmax, with dmax being the constant introduced in (3.11).

Theorem 3.31. Given k ⩾ 2, let M̂ be an estimator satisfying

sup
P ∈Pk

rchmin,L
(fmin,fmax)

P⊗n(dH(M,M̂) ⩾ εn) ⩽ ηn

for some positive sequences εn, ηn converging to 0. Then, for any δ ∈ (0, rchmin), the

estimator ŝdrδ ∶= sdrδ(M̂, d̂) ∧ smax, where d̂ is defined in Theorem 3.27, satisfies

sup
P ∈Pk

rchmin,L
(fmin,fmax)

EP⊗n ∣ŝdrδ − sdrδ(M,dM)∣ ⩽ C (s4
max

δ4
εn + smaxηn) .

We refer to Appendix 3.D for a proof of this result.

Remark 3.32. In place of d̂ = dM̂εn , one could actually plug any estimator d̂ of the

metric intoTheorem 3.31. In light of the stability result of Theorem 3.23, as long as d̂

satisfies

sup
P ∈Pk

P⊗n (Dδ(d̂,dM) ⩾ 1 + εn
δ
) ⩽ ηn,

the conclusion of Theorem 3.31 would still hold. This comes in handy, especially if one

wants to input a computationally efficient distance estimator, such as shortest-path

distance on a neigbhorhood graph [TSL00] or on Delaunay triangulations [ACC20].

Again, taking M̂ to be a minimax optimal estimator for the Hausdorff loss [AL19]

outputs an estimator ŝdrδ of the spherical distortion radius satisfying

Theorem 3.33. For all δ ∈ (0, rchmin), with the construction of ŝdrδ above, we have that

for n large enough,

sup
P ∈Pk

rchmin,L
(fmin,fmax)

EP⊗n ∣ŝdrδ − sdrδ(M,dM)∣ ⩽ Crchmin,d,fmax,fmin,L,k
1

δ4
( logn

n
)
k/d

,

and this rate is optimal in regard of Theorem 3.29.
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Note the presence of the factor 1/δ4 in the bound, which makes the rate diverge

as δ → 0. This blowup is to be expected for the following reason. As δ goes to 0, the

spherical distortion radius goes to the reach rch(M) (Proposition 3.14). Since the

estimation of rch(M) cannot be faster than n−(k−2)/d (Theorem 3.10), the estimation

rate of sdrδ(M,dM) must deteriorate in some way as δ → 0.

3.6.2 Optimal Reach Estimation

In light of Proposition 3.12 and (3.9), it only remains to combine the maximal curvature

estimator and the spherical distortion radius estimator to obtain an estimator of the

reach. Naely, we let M̂ be the minimax-Hausdorff estimator of Lemma 3.A.4. According

to the very same Lemma 3.A.4, there exists crchmin,d,fmax,fmin,L,k > 0 such that denoting

by

εn ∶= crchmin,d,fmax,fmin,L,k (
logn

n
)
k/d

, (3.12)

there holds

sup
P ∈Pk

rchmin,L
(fmin,fmax)

P⊗n(dH(M̂,M) ⩾ εn) ⩽ ε2
n. (3.13)

We also let d̂ be the estimator of the intrinsic distance of Theorem 3.27 from M̂ and εn.

We let ŝdrδ ∶= sdrδ(M̂, d̂) ∧ smax for some δ ∈ (0, rchmin) as in Theorem 3.31. Finally, we

write

r̂ch ∶= R̂` ∧ ŝdrδ.

The following Theorem 3.34 is a straightforward consequence of Theorems 3.11 and

3.31, inserted in the plugin strategy of Proposition 3.12 and (3.9).

Theorem 3.34. The estimator r̂ch described above with δ = rchmin /2 satisfies

sup
P ∈Pk

rchmin,L
(fmin,fmax)

EP⊗n ∣r̂ch − rch(M)∣ ⩽ Crchmin,d,fmax,fmin,L,k (
logn

n
)
(k−2)/d

,

and, for all α > 0,

sup
P ∈Pk

rchmin,L,α
(fmin,fmax)

EP⊗n ∣r̂ch − rch(M)∣ ⩽ Crchmin,d,fmax,fmin,L,k,α ( logn

n
)
k/d

.

As a conclusion, Theorems 3.10 and 3.34 assert that r̂ch is minimax optimal, and

that its rate of convergence adapts to whether rch(M) is attained by curvature (yielding

the slower rate O(n−(k−2)/d)) or by a bottleneck (yielding the faster rate rate O(n−k/d)).

The computation of r̂ch depends explicitly on the parameters of the models at two

levels. First, in tuning the value of εn as in (3.12). Second, in choosing δ ∈ (0, rchmin).

These two dependencies may be circumvented by picking

ε̃n = logn( logn

n
)
k/d

,
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and δn = 1/ logn. Then, for n large enough, both (3.13) and δn ∈ (0, rchmin) will be

fulfilled. The price to pay for this way-around to calibration of constants limits to

multiplicative logn factors in the upper-bound of Theorem 3.34.

3.7 Conclusion and Further Prospects

We developed a general strategy for estimating the reach of a manifold M . It relies on

two independent plugins, accountable for the estimation of the minimal curvature

radiusR`(M) and any another set-defined feature size θ(M) that lie between the reach

and the weak feature size. We then introduced and studied the spherical distortion

radius, the estimation of which reduces to geodesic distance estimation, itself reducing

to set estimation in Hausdorff distance. All the derived results are minimax optimal, as

testified by associated matching lower bounds up to logn factors.

Geometrically, one should note that this overall method relies heavily on the lo-

cal/global dichotomy of the reach for closed submanifolds [AKC+19]. Hence, it still

remains unclear how to extend it to manifolds with boundary, even though their curva-

ture and spherical distortion radius are likely to be estimated in a similar way [AAL21].

On the statistical side, a major extension of the results would consist in allow-

ing for additive noise. Recent works obtained Hausdorff estimation rates for the

support [FILN19, AS21, PS22] in such a noisy setting, so that the estimation of the

spherical distortion radius inherits the same rates straightforwardly. In the same spirit

as the iterated local polynomial fitting of [AS21], we expect that the same method could

likewise lead to maximal curvature estimation.

Finally, since the main goal of this work was of minimax nature, we did not focus on

the algorithmic properties of our estimators. As they stand, R̂` and ŝdr both require to

compute a supremum over the union of continuous patches M̂ , which is computation-

ally prohibitive. Actually, one can easily show that taking the same supremum over a

discretization of M̂ at scaleO(n−β/d) – i.e. O(nβ) points in total – yields estimation rates

of order O(n−(β∧(k−2))/d) for R`(M), and O(n−(β∧k)/d) for sdrδ(M,dM). This suggests

a possible estimation-computation tradeoff which one could take advantage of. Yet,

this is not a fully satisfactory solution, as sdrδ still requires to compute costly geodesic

distances on a high-dimensional set. More globally, the quest for computationally

efficient – yet optimal – geometric estimators in high dimensions is still in its infancy.
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3.A Proofs of Section 3.3

3.A.1 Comparing Reaches, Weak Feature Size and Diameter

This Section is devoted to the Proof of Proposition 3.5, which goes as follows.

Proof of Proposition 3.5. For (i), recall that no closed compact submanifold can be

contractible [Hat02, Theorem 3.26]. Furthermore, [Fed59, Theorem 4.8] and [CCSL09,

Lemma 2.1] combined together yield that Kr is isotopic to K for all r < wfs(K). On

the other hand whenever r > Rad(K) where Rad(K) is the radius of the smallest ball

enclosingK,Kr is star-shaped with respect to any point of the non-empty intersection

∩x∈MB(x, r). We conclude that wfs(K) ⩽ Rad(K), Since Rad(K) < ∞ because K is

compact, we obtain wfs(K) <∞.

For (ii), the first two inequalities come from the definition of rchµ(K) (see (3.4)).

The rightmost comes Jung’s Theorem [Fed69, Theorem 2.10.41], which asserts that

Rad(K) ⩽
√

D
2(D+1) diam(K), and the fact that wfs(K) ⩽ Rad(K) whenever wfs(K) is

finite (same argument as for (i)).
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3.A.2 Minimax Lower Bound for µ-Reach Estimation

This Section is devoted to the proof of Theorem 3.6. It builds upon the possible

discontinuities of the map M ↦ Medµ(M) in Hausdorff distance. The exhibition of

such a discontinuity can be done in dimension d = 1 and D = 2, and can then be

generalized to arbitrary 1 ⩽ d <D by using symmetry and rotation arguments.

The building block of the construction is the following arc of curve. For all α ∈
(0, π/4], write Rα ∶= 1/ sin(α). Let also Cα ∶ [0,1] → R+ be defined as Cα(t) ∶= Rα −√
R2
α − t2, which graph is an arc of circle of radius Rα and aperture α (see Figure 3.A.1).

To be able to glue up smoothly α-turns like Cα with straight lines, we smooth it as

follows.

Lemma 3.A.1. There exists Gα ∶ [0,1]→ R+ infinitely differentiable such that:

1. G(`)
α (0) = 0 for all ` ⩾ 0;

2. Gα(1) = Cα(1), G′
α(1) = C′α(1) and G(`)

α (1) = 0 for all ` ⩾ 2;

3. ∥G(`)
α ∥∞ ⩽ C`/Rα for all ` ⩾ 1;

4. Gα(t) < Cα(t) for all t ∈ (0,1);

5. Gα is convex.

See Figure 3.A.1 for a diagram of such a Gα. Let us first comment on the require-

ments on Gα. Items 1 and 2 say that Gα is a Ck interpolation between the two tangent

lines of two points of Cα who are α-apart in term of polar coordinate. Item 3 says that

the graph of Gα, once rescaled by 1/Rα, will be bounded in Ck-norm for all k. Items 4

and 5 ensure well-behavior of the medial axes of our future construct (see Figure 3.A.2).

α

Rα

Cα
Gα

10

Aα

t∗α

Figure 3.A.1 – Construction for Lemma 3.A.1: curves associated to Cα, Aα, and Gα.
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Proof of Lemma 3.A.1. The following construction applies to general convex functions,

although we restrict it to Gα for simplicity. Consider the piecewise linear map Aα given

by the tangent lines of Cα at t = 0 and t = 1. That is, define Aα(t) for all t ∈ R by

Aα(t) ∶=max{Cα(0) + C′α(0)t,Cα(1) + (t − 1)C′α(1)}

=max{0,Cα(1) + (t − 1)C′α(1)} .

As Cα is strictly convex, Aα < Cα on R ∖ {0,1}. We also denote by t∗α the (unique) point

of non-differentiability of Aα, that is

t∗α ∶= 1 − Cα(1)
C′α(1)

= Rα tan(α/2).

Note by now that for all α ∈ (0, π/4), 1/2 ⩽ t∗α ⩽ 2 −
√

2 ⩽ 6/10. Given h > 0 to be chosen

later, writeKh(t) ∶= h−1K(t/h), where K(t) ∶= c0 exp(−1/(1− t2))1∣t∣<1 is a non-negative

C∞ kernel, and c0 is chosen so that ∫RK = 1. Finally, consider the convolution

Gα(t) ∶= ∫
R
Kh(x)Aα(t − x)dx.

By smoothness of Kh and non-negativity of both Kh and Aα, Gα =Kh ∗Aα is infinitely

differentiable and non-negative. Also, since Aα is convex and Kh non-negative, Gα is

convex (Item 5). Furthermore, one easily checks that outside the interval [t∗α −h, t∗α +h],

Gα coincides withAα. Hence, if h ⩽ 1/4, we have [t∗α−h, t∗α+h] ⊂ [1/2−1/4,6/10+1/4] =
[1/4,17/20], so that Items 1 and 2 holds directly.

To check that Gα < Cα on (0,1), fix t ∈ (0,1). If t ∉ [t∗α − h, t∗α + h], Gα(t) = Aα(t) <
Cα(t) by construction. If t ∈ [t∗α − h, t∗α + h], we have Gα(t) ⩽ Gα(t∗α + h) = hC′α(1). But

on the other hand, Cα(t) ⩾ Cα(t∗∗ − h) > Cα(1/4). Hence, we do have Gα(t) < Cα(t) as

soon as h ⩽ 1/100, since Cα(1/4)/C′α(1) > 1/100 for all α ∈ (0, π/4). This yields Item 4.

Finally, letting h = h0 = 1/100, we obtain for all ` ⩾ 1 and t ∈ [0,1],

∣G(`)
α (t)∣ = ∣K(`)

h ∗ Cα(t)∣ ⩽ ∥K(`)
h ∥∞∥Cα∥∞ ⩽ C`Cα(1) ⩽ C`/Rα,

which yields Item 3 and concludes the proof.

Given R > 0, we now let Gα,R be the curve obtained by dilating homogeneously

the graph of Gα by a scale factor R/Rα. We extend the construction of these smooth

α-turns for α ∈ (π/4, π]: for this, we glue two Gα/2,R or four Gα/4,R to define Gα,R.

Proposition 3.A.2. Assume that for all j ∈ {2, . . . , k}, Lj ⩾ Cd,k/ rchj−1
min for Cd,k > 0 large

enough. Then for all µ ∈ [0,1) and ε > 0 small enough, there exist M,M ′ ∈ Ckrchmin,L
such

that:

• ∣ rchµ(M) − rchµ(M ′)∣ ⩾ cd,k rchmin ;

• c′d,k rchdmin ⩽ vold(M) ∧ vold(M ′) ⩽ vold(M) ∨ vold(M ′) ⩽ C ′′
d,k rchdmin;
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• vold(M △M ′) ⩽ C ′′′
d,k rchdmin ε .

Proof of Proposition 3.A.2. For small enough (and arbitrarily small) ε > 0, we let α ∈
[0, π] be such that sin((α + ε)/2)2 = 1 − µ2. Such an α always exists since µ2 < 1. Given

∆,R0,R1 > 0 to be chosen later, we glue smooth turns from Lemma 3.A.1 with straight

lines to create a Ck closed curve in R2, as shown in Figure 3.A.2. Then, we obtain a Ck

closed d-dimensional submanifold Mα of Rd+1, with a symmetry of revolution with

respect to the horizontal axis of Figure 3.A.2.

Gα/2,R0
Gα/2,R0 Gπ/2,R1

Gπ/2,R1

Gα,R0

Mα

Med(Mα)

Medµ(Mα)
∆

Gα/2,R0
Gα/2,R0 Gπ/2,R1

Gπ/2,R1

Gα,R0

R0R0

∆

Figure 3.A.2 – Construction of Mα in the proof of Proposition 3.A.2.

By construction, if ∆ ⩾ 8R0, thenMα has local parametrizations on top of its tangent

spaces (see Definition 3.1) with Lj ⩽ Cd,k/(∆ ∧R0 ∧R1)j−1 for all j ⩾ 2, and has volume

vold(Mα) ⩽ Cd,k(∆ ∨R0 ∨R1)d and vold(Mα) ⩾ cd,k(∆ ∧R0 ∧R1)d.

We now examine the structure of the medial axis and the reach of Mα. If u ∈
Med(Mα) is a point on the medial axis, rotational symmetry yields that two of its

projections points must lie either:

• In a plane containing its horizontal axis of symmetry (i.e. Figure 3.A.2). As a

result, its distance to Mα cannot be smaller than the smallest reach of each of its

parts Gπ/2,R1
,Gα/2,R0

and Gα,R0 , so that d(u,Mα) ⩾ cd,kR0 ∧R1.

• In a d-plane orthogonal to the horizontal axis. By rotational invariance, this forces

u to be on this axis of symmetry. As a result, d(u,Mα) ⩾ ∆/2 − 3R0 ⩾ cd,k∆ since

∆ ⩾ 8R0.

In all, we get rch(Mα) ⩾ cd,k(∆ ∧R0 ∧R1).
We now examine the µ-reach of Mα. By definition, if u ∈ Medµ(Mα) has two

nearest neighbors x, y ∈ Mα, the angle between (u − x) and (u − y) must be at most

2 arcsin(
√

1 − µ2). As a result, a single branch of Mα between the two arcs of Gα/2,R0
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cannot not generate any point of the µ-medial axis, since α has been chosen so

that α < 2 arcsin(
√

1 − µ2). Hence, for ∆,R1 large enough compared to R0, we have

rchµ(Mα) ⩾ c′d,k(∆ ∧R1).

Finally, we build M ′
α from Mα by bumping the curve near Gα,R0 as shown in Fig-

ure 3.A.3 (while still preserving the radial symmetry as before). The manifold M ′
α

satisfies the same regularity conditions at Mα. Furthermore, Mα and M ′
α only differ on

a set of volume vold(Mα△M ′
α) ⩽ Cd,k(∆ ∨R1)d−1(R0ε).

α
ε

Gε,R0

Gε,R0

Gε,R0
Gε,R0

R0 ≤ 4R0ε

u0

Gα,R0

x0

y0

Figure 3.A.3 – Local bump of M ′

α for Proposition 3.A.2, in the boxed area of Fig-

ure 3.A.2.

With this extra bump, we create a point u0 ∈ Med(M ′
α) that has two nearest neigh-

bors x0, y0 ∈ M ′
α at distance R0, with angle between (u0 − x0) and (u0 − y0) equal to

α′ = α + ε, which satisfies sin(α′/2)2 = 1 − µ2. As a result, u0 ∈ Medµ(M ′
α), so that

rchµ(M ′
α) ⩽ ∥u0 − y0∥ = R0. In particular, we have

∣ rchµ(Mα) − rchµ(M ′
α)∣ ⩾ c′d,k(∆ ∧R1) −R0.

The proof is hence complete by settingM =Mα andM ′ =M ′
α, withR1 = ∆ = R0/c′d,k

and R0 = rchmin /cd,k for small enough cd,k, c′d,k > 0.

Proof of Theorem 3.6. From Proposition 3.A.2, for ε > 0 small enough, take M,M ′ ∈
Ckrchmin,L

such that ∣ rchµ(M) − rchµ(M ′)∣ ⩾ cd,k rchmin , c′d,k rchdmin ⩽ vold(M),vold(M ′) ⩽
Cd,k rchdmin, and vold(M △M ′) ⩽ C ′

d,k rchdmin ε . Let us denote by P and P ′ the uniform

distributions over M and M ′ respectively. Elementary calculations directly yield that

TV(P,P ′) ⩽ vold(M △M ′)
vold(M) ∨ vold(M ′)

⩽ C ′′
d,kε.

Furthermore, since c′d,k rchdmin ⩽ vold(M)∧ vold(M ′) ⩽ vold(M)∨ vold(M ′) ⩽ Cd,k rchdmin,

we obtain that P,P ′ ∈ Pkrchmin,L
(fmin, fmax) as soon as fmin ⩽ 1/(Cd,k rchdmin) and fmax ⩾

1/(c′d,k rchdmin). As a result, for all n ⩾ 1, Le Cam’s Lemma [Yu97] yields

inf
r̂µ

sup
P ∈Pk

rchmin,L
(fmin,fmax)

EP⊗n [∣r̂µ − rchµ(M)∣]

⩾ 1

2
∣ rchµ(M) − rchµ(M ′)∣(1 −TV(P,P ′))n

⩾ cd,k rchmin(1 − ε)n.
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As this construction is valid for all ε > 0 small enough, we obtain the result by letting ε

tend to zero.

3.A.3 Maximal Curvature Estimation

This section is devoted to the proof of Theorem 3.11. It is based on a careful investi-

gation of the local polynomial fitting procedure described in [AL19]. First, recall that

from [AL19, Lemma 2], ifM ∈ Ckrchmin,L
, y ∈M and y′ ∈ B (y, L2∧rchmin

4
)∩M , we may write

y′ − y = π∗y(y′ − y) +T(2),∗
y (π∗y(y′ − y)⊗2) +⋯ +T(k−1),∗

y (π∗y(y′ − y)⊗k−1)

+R(k)
y (y′ − y), (3.14)

where π∗y ∶= πTyM , T(j),∗
y are j-multilinear maps from TyM to RD, and R(k)

y satisfies

∥R(k)
y (y′ − y)∥ ⩽ Ctk−1

∗ ∥y′ − y∥k ,

where t∗ = max2⩽j⩽k,y∈M ∥T (j),∗
y ∥

1
j−1
op ⩽ Ck,d,rchmin,L. As assessed by [AL19, Lemma 2], the

polynomial decomposition expressed in (3.14) allows to recover the curvature tensor

via IIyM = T(2),∗
y . Following [AL19], we estimate this curvature tensor via the second

term of the polynomial decomposition provided by local fit to data points (3.6). To this

aim, a slight adaptation of [AL19, Lemma 3] is needed, that allows to translate quality

of approximation in terms of Hausdorff distance to guarantees on the monomial terms.

Lemma 3.A.3. Set h0 = (τmin ∧ L−1
2 )/8 and h ⩽ h0. Let M ∈ Ckτmin,L, x0 = y0 + z0, with

y0 ∈M and ∥z0∥ ⩽ σ ⩽ h/4. Denote by π∗y0
the orthogonal projection onto Ty0M , and by

T(2),∗
y0 ,⋯,T(k−1),∗

y0 the multilinear maps given by (3.14).

Let x = y + z be such that y ∈M , ∥z∥ ⩽ σ ⩽ h/4 and x ∈ B(x0, h). We also let π be an

orthogonal projection, and T(2),⋯,T(k−1) be multilinear maps that satisfy

( max
2⩽j⩽k−1

∥T(j)∥
1
j−1
op ) ∨ t∗ ⩽ t,

th ⩽ 1

4
,

for some t ⩾ 0. Then it holds

x − x0 − π(x − x0) −
k−1

∑
j=2

T(j)(π(x − x0)⊗j) =
k

∑
j=1

T(j),′
y0

(π∗y0
(y − y0)⊗j) + R(k)

y0
(x − x0),

where T(j),′
y0 are j-linear maps, and ∥R(k)

y0 (x − x0)∥ ⩽ C (σ + hk(tk−1
∗ + tkh)), where C

depends on d, k, rchmin, L2,. . ., Lk. Moreover, we have

T(1),′
y0 = (π∗y0

− π),
T(2),′
y0 = (π∗y0

− π) ○T(2),∗
y0 + (T(2),∗

y0 ○ π∗y0
−T(2) ○ π),

and, if π = π∗y0
and T(j) = T(j),∗

y0 for all j ∈ {2,⋯, k − 1}, then T(j),′
y0 = 0 for all j ∈ {1,⋯, k}.
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The proof of Lemma 3.A.3 is deferred to Section 3.A.4. To ensure that our local

curvature estimators allow to approximate the maximal curvature of M , we have to

ensure that the sample covers M well enough. That is the aim of the following Lemma.

Lemma 3.A.4 ([AL19, Appendix, Lemma B.7 & Section 5.1.4]). LetP ∈ Pkrchmin,L
(fmin, fmax).

Write Xn for an i.i.d. n-sample drawn from P . Let h = (Cd,k f
2
max

f3
min

logn
n )

1/d
, for Cd,k

large enough. Then, for n large enough so that h ⩽ rchmin /4, with probability at least

1 − 2 ( 1
n
)2k/d

, it holds

dH (M,Xn) ⩽ h/4,

dH(M,M̂) ⩽ Cd,k,rchmin,L(t
∗)k−1

⎛
⎜
⎝
f

2+ d
2k

max logn

f
3+ d

2k
min n

⎞
⎟
⎠

k/d

,

where M̂ denotes the union of local polynomial patches

M̂ ∶=
n

⋃
i=1

Ψ̂i (BT̂i(0,7h/8))

defined by (3.6) and (3.7), and t∗ = maxy∈M,2⩽j⩽k ∥T
(j),∗
y ∥

1
j−1
op ⩽ Ck,d,rchmin,L as in Lemma 3.A.3.

Equipped with these two lemmas, we are in position to prove Theorem 3.11.

Proof of Theorem 3.11. Based on Lemma 3.A.4, forh = (Cd,k f
2
max logn

f3
minn

)
1
d

, given i ∈ {1, . . . , n},

we denote by Ψ̂i the polynomial estimator around Xi defined by

Ψ̂i(v) ∶=Xi + v +
k−1

∑
j=2

T̂(j)
i (v⊗j),

for all v ∈ T̂i. Setting

M̂ ∶=
n

⋃
i=1

Ψ̂i (BT̂i(0,7h/8)) ,

we have that with probability larger than 1 − 2 ( 1
n
)

2k
d ,

dH(M̂,M) ⩽ Cd,k,rchmin,L(t∗)
k−1

⎛
⎜
⎝
f

2+ d
2k

max logn

f
3+ d

2k
min n

⎞
⎟
⎠

k
d

∶= ε1, (3.15)

for n large enough, according to Lemma 3.A.4. In what follows we settle on the proba-

bility event of Lemma 3.A.4. In particular, denoting by

t̂ = max
1⩽i⩽n

max
2⩽j⩽k−1

∥T̂(j)
i ∥

1
j−1
op ,

note that [AL19, Section 5.1.2] ensures that t̂∨ t∗ ⩽ t ⩽ 1/(4h), for some fixed t, provided

n is large enough.
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We let i ∈ {1, . . . , n}, v ∈ BT̂i(0, h/4), and intend to approximate IIπM (Ψ̂i(v)). To do so,

we consider the following polynomial expansion centered at v: for u ∈ BT̂i(0, h/4),

Ψ̂i(v + u) − Ψ̂i(v) = u +
k−1

∑
j=2

jT̂(j)
i (v⊗j−1 ⊗ u) +

k−1

∑
j=2

k−1

∑
r=j

(r
j
)T̂(r)

i (v⊗r−j ⊗ u⊗j) . (3.16)

First we deduce from (3.16) an estimate for the tangent space at πM(Xi + v), as well as

a coordinate system. Namely, we let

Ĵi,v ∶ T̂i Ð→ Ĵi,v(T̂i)

uz→ u +
k−1

∑
j=2

jT̂(j)
i (v⊗j−1 ⊗ u) .

Note that since th ⩽ 1/4, we have

∥Ĵi,v(u) − u∥ ⩽
k−1

∑
j=2

j ( th
4
)
j−1

∥u∥

⩽
⎛
⎝

∞
∑
j=1

j ( th
4
)
j−1

− 1
⎞
⎠
∥u∥

⩽
⎛
⎜
⎝

⎛
⎝

1

1 − th
4

⎞
⎠

2

− 1
⎞
⎟
⎠
∥u∥ ⩽ ∥u∥

2
,

so that Ĵi,v is full-rank. In what follows we write T̂i,v ∶= Im(Ĵi,v) and π̂i,v ∶= πT̂i,v . We now

may express (3.16) in terms of the coordinate system given by T̂i,v:

Ψ̂i(v + u) − Ψ̂i(v) = Ĵi,v(u) +
k−1

∑
j=2

T̃(j)
i,v (Ĵi,v(u)

⊗j), (3.17)

where the symmetric tensor of order j centered at v, T̃(j)
i,v , is defined by

T̃(j)
i,v (w

⊗j) ∶=
k−1

∑
r=j

(r
j
)T̂(r)

i (v⊗r−j ⊗ Ĵ−1
i,v (w)⊗j) ,

for w ∈ T̂i,v. As well, since th ⩽ 1
4 , we may write

∥T̃(j)
i,v ∥op

⩽
k−1

∑
r=j

(r
j
)(3/2)jtr−1 (h

4
)
r−j

⩽
⎛
⎝

∞
∑
r=j

(r
j
)( th

4
)
r−j⎞

⎠
(3/2)jtj−1

⩽
⎛
⎝

1

1 − th
4

⎞
⎠

j

(3/2)jtj−1 ⩽ (3/2)2jtj−1,

so that max2⩽j⩽k−1 ∥T̃
(j)
i,v ∥

1
j−1

op
⩽ t̃ ⩽ (3

2
)4
t.
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In particular, the bilinear form T̃(2)
i,v ∶ T̂i,v × T̂i,v → RD may be expressed by

T̃(2)
i,v (w

⊗2) ∶=
k−1

∑
j=2

(j
2
)T̂(j)

i (v⊗j−2 ⊗ Ĵ−1
i,v (w)⊗2)

for all w ∈ T̂i,v. Our second fundamental form estimator at πM(Ψ̂i(v)) is then defined

by

T̂(2)
i,v ∶ = T̃(2)

i,v ○ π̂i,v − π̂i,v ○ T̃
(2)
i,v ○ π̂i,v,

where with a slight abuse of notation, T ○ π(u) ∶= T(π(u)⊗2). Note that composition

with π̂i,v is performed to ensure that T̂(2)
i,v ranges into T̂ ⊥i,v.

Our final max-curvature estimator can now be defined as

R̂−1
` ∶= max

1⩽i⩽n
max

v∈BT̂i(h/4)
∥T̂(2)

i,v ∥op
.

First, we intend to show that, for a given v ∈ BT̂i(h/4), T̂(2)
i,v is close to IIy0 , for some y0 ∈

M . To do so, we let u ∈ BT̂i(0, h/4), x ∶= Ψ̂i(v + u), x0 ∶= Ψ̂i(v), and P̃ (r∶k−1)
i,v ∶= ∑k−1

j=r T̃
(j)
i,v .

Then, we have the decomposition

Ĵi,v(u) = π̂i,v(x − x0) −
k−1

∑
j=2

π̂i,v ○ T̃(j)
i,v (Ĵi,v(u)

⊗j)

= π̂i,v(x − x0) −
k−1

∑
j=2

π̂i,v ○ T̃(j)
i,v [(π̂i,v(x − x0) − π̂i,v ○ P̃ (2∶k−1)

i,v (Ĵi,v(u)))
⊗j

]

= π̂i,v(x − x0) +
k

∑
j=2

T(j),′′
i,v (π̂i,v(x − x0)⊗j) +R(k)

i,v (x − x0),

with T(2),′′
i,v = −π̂i,v ○T̃(2)

i,v , higher order tensors satisfying ∥T(j),′′
i,v ∥

op
⩽ Ck t̃j−1 ⩽ Cktj−1, and

remainder term ∥R(k)
i,v ∥ ⩽ Cktkhk+1. Plugging the above inequalities into (3.17) yields

x − x0 = π̂i,v(x − x0) +T(2)
i,v (π̂i,v(x − x0)⊗2) +

k

∑
j=3

T(j)
i,v (π̂i,v(x − x0)⊗j) +R(k),′

i,v (x − x0),

(3.18)

with T(2)
i,v = T̃(2)

i,v − π̂i,v ○ T̃
(2)
i,v , ∥T(j)

i,v ∥op
⩽ Cktj−1, and ∥R(k),′

i,v (x − x0)∥ ⩽ Cktkhk+1.

Then, according to Lemma 3.A.4, there exists y0 ∈ B(Xi,
8

7×4h) ∩ M such that

∥y0 − x0∥ ⩽ ε1, where ε1 is defined by (3.15). We further have

∥v − π̂i(y0 −Xi)∥ ⩽ ε1 + ∥Ψ̂i(v) − (Xi + v)∥

⩽ ε1 +
XXXXXXXXXXX

k−1

∑
j=2

T̂(j)
i (v⊗j)

XXXXXXXXXXX
⩽ ε1 + h/16

⩽ h/8,
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since t̂h ⩽ 1
4 , provided that ε1 ⩽ h/16 (satisfied for n large enough). Next, if z ∈ B (y0,

h
8
)∩

M , we have

∥π̂i(z −Xi) − v∥ ⩽ ∥π̂i(z − y0)∥ + ∥v − π̂i(y0 −Xi)∥

⩽ h/4,

so that, writing xz ∶= Ψ̂i(π̂i(z − Xi)), it holds ∥z − xz∥ ⩽ ε1 and (3.18) applies. Next,

provided Ckth < 1/4 and Ckt ⩾ t∗ (satisfied whenever n is large enough), Lemma 3.A.3

yields that

xz − x0 −
⎛
⎝
π̂i,v(xz − x0) +T(2)

i,v (π̂i,v(xz − x0)⊗2) +
k

∑
j=3

T(j)
i,v (π̂i,v(xz − x0)⊗j)

⎞
⎠

=
k

∑
j=1

T(j),′
i,v (π∗y(z − y0)⊗j) +R(k)

y0
(xz − x0),

so that
XXXXXXXXXXX

k

∑
j=1

T(j),′
i,v (π∗y(z − y0)⊗j)

XXXXXXXXXXX
= ∥R(k),′

i,v (xz − x0) −R(k)
y0

(xz − x0)∥ ⩽ Ck,d,rchmin,Lε1,

according to (3.18) and Lemma 3.A.3, since tkh ⩽ Ck,d,rchmin,L. Using the develop-

ment (3.16) and the inclusion BTy0M(0, h/16) ⊂ π∗y0
(B(y0, h/8) ∩M − y0) from [AL19,

Lemma 2] then entails

XXXXXXXXXXX

k

∑
j=1

T(j),′
i,v (π∗y0

(w)⊗j)
XXXXXXXXXXX
⩽ Ck,d,rchmin,Lε1,

for all w ∈ BTy0M(0, h/16). Proceeding as in [AL19, Proof of Theorem 2], we get

∥T(1),′
i,v ∥

op
⩽ Ck,d,rchmin,Lε1h

−1,

and ∥T(2),′
i,v ∥

op
⩽ Ck,d,rchmin,Lε1h

−2.

In turn, following [AL19, Proof of Theorem 4] entails

∥T̂(2)
i,v ○ π̂i,v −T(2),∗

y0
○ π∗y0

∥
op

⩽ Ck,d,rchmin,Lε1h
−2.

Since IIy0 = T(2),∗
y0 ([AL19, Lemma 2]), we deduce that

max
1⩽i⩽n

max
v∈BT̂j (0,h/4)

∥T̂(2)
i,v ○ π̂i,v∥op

⩽ max
y∈M

∥IIy∥op +Ck,d,rchmin,Lε1h
−2. (3.19)

Conversely, since X1,⋯,Xn is a (h/4)-covering of M onto the probability event de-

scribed in Lemma 3.A.4, we deduce that for all y ∈M , there exists i0 ∈ {1, . . . , n} such

that ∥Xi0 − y∥ ⩽ h/4. In particular, we have

v ∶= π̂i0,v(y −Xi0) ∈ BT̂i0 (0, h/4).
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Proceeding as above similarly leads to

∥T̂(2)
i0,v

○ π̂i0,v − IIy ○π∗y∥
op

⩽ Ck,d,rchmin,Lε1h
−2,

so that

max
y∈M

∥IIy∥op ⩽ max
1⩽i⩽n

max
v∈BT̂i(0,h/4)

∥T̂(2)
i,v ○ π̂i,v∥op

+Ck,d,rchmin,Lε1h
−2. (3.20)

Combining (3.19) and (3.20) yields that for n large enough,

∣R̂` −R`(M)∣ ⩽ R`(M)2Ck,d,rchmin,Lε1h
−2,

which concludes the proof.

3.A.4 Proof of Lemma 3.A.3

Proof of Lemma 3.A.3. We follow the proof of [AL19, Lemma 3]. Without loss of gener-

ality we take y0 = 0, so that ∥y∥ ⩽ 3h/2. Let z′ = z − z0, so that ∥z′∥ ⩽ h/2. We write

x − x0 − π(x − x0) −
k

∑
j=2

T(j)(π(x − x0)⊗j)

= y + z′ − π(y + z′) −
k

∑
j=2

T(j)((π(y) + π(z′))⊗j)

= y + z′ − π(y + z′) −
k

∑
j=2

⎡⎢⎢⎢⎣
T(j)(π(y)⊗j) +

j−1

∑
r=0

(j
r
)T(j) (π(y)⊗r ⊗ π(z′)⊗j−r)

⎤⎥⎥⎥⎦
.

Since, for any j ⩾ 2 and r ∈ {0, . . . , j − 1},

∥T(j) (π(y)⊗r ⊗ π(z′)⊗j−r)∥ ⩽ tj−1(3h/2)r(2σ)j−r

⩽ Ckσtj−1hj−1 ⩽ Ckσ,

we may write

x − x0 − π(x − x0) −
k

∑
j=2

T(j)(π(x − x0)⊗j)

= y − π(y) −
k

∑
j=2

T(j)(π(y)⊗j) +R(k),′(x − x0), (3.21)

where ∥R(k),′(x − x0)∥ ⩽ Ckσ. Next, (3.14) entails

y = π∗y0
(y) +T(2),∗

y0
(π∗y0

(y)⊗2) +⋯ +T(k−1),∗
y0

(π∗y0
(y)⊗k−1)

+R(k),′′
y0

(y),
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with ∥R(k),′′
y0 (y)∥ ⩽ Ck,d,rchmin,Lt

k−1
∗ hk. Denoting by

P ∗,(1∶k−1)
y0

(π∗y0
(y)) ∶= π∗y0

(y) +
k−1

∑
r=2

T(r),∗
y0

(π∗y0
(y)⊗r),

we deduce that

y − π(y) −
k

∑
j=2

T(j)(π(y)⊗j) =

P ∗,(1∶k−1)
y0

(π∗y0
(y)) +R(k),′′

y0
(y) − π (P ∗,(1∶k−1)

y0
(π∗y0

(y)) +R(k),′′
y0

(y))

−
k

∑
j=2

T(j) (π [(P ∗,(1∶k−1)
y0

(π∗y0
(y)) +R(k),′′

y0
(y))]

⊗j
) .

Note that

∥π(R(k),′′
y0

(y))∥ ⩽ ∥R(k),′′
y0

(y)∥ ⩽ Ck,d,rchmin,Lt
k−1
∗ hk.

Next, since ∥y∥ ⩽ 3h/2, it holds

∥P ∗,(1∶k−1)
y0

(π∗y0
(y))∥ ⩽

k−1

∑
r=1

tr−1
∗ (3h

2
)
r

⩽ 3h

2

1

1 − 3t∗h
2

⩽ 3h,

so that, for all j ∈ {2, . . . , k},

∥T(j) (π [(P ∗,(1∶k−1)
y0

(π∗y0
(y)) +R(k),′′

y0
(y))]

⊗j
) −T(j) (π [(P ∗,(1∶k−1)

y0
(π∗y0

(y)))]
⊗j

)∥

⩽ tj−1
j

∑
r=1

(j
r
)∥R(k),′′

y0
∥
r
(3h)j−r

⩽ Ck,d,rchmin,Lt
j−1hj max

1⩽r⩽j
t
(k−1)r
∗ h(k−1)r

⩽ Ck,d,rchmin,Lt
khk+1.

Thus, we may write

y − π(y) −
k

∑
j=2

T(j)(π(y)⊗j) = P ∗,(1∶k−1)
y0

(π∗y0
(y)) − π (P ∗,(1∶k−1)

y0
(π∗y0

(y)))

−
k

∑
j=2

T(j) (π [(P ∗,(1∶k−1)
y0

(π∗y0
(y)))]

⊗j
) +R(k),′′′

y0
(y),

where ∥R(k),′′′
y0 (y)∥ ⩽ Ck,d,rchmin,Lh

k(tk−1
∗ + tkh). At last, for j ∈ {2, . . . , k}, and r1,⋯, rj ∈

{1, . . . , k − 1} such that∑js=1 rs ⩾ k + 1, we have

∥T(j) (
j

⊗
s=1

π (T(rs),∗
y0

(π∗y0
(y)⊗rs)))∥ ⩽ tj−1

j

∏
s=1

trs−1
∗ hrs

⩽ (th)(∑
j
s=1 rs)−1

h ⩽ tkhk+1,
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where T(1),∗
y0 = π∗y0

, with a slight abuse of notation. Hence, it holds

y −π(y)−
k

∑
j=2

T(j)(π(y)⊗j) = (π∗y0
−π ○π∗y0

)(y)+T(2),∗
y0

(π∗y0
(y)⊗2)−π (T(2),∗

y0
(π∗(y)⊗2))

−T(2) ((π ○ π∗y0
(y))⊗2) +

k

∑
j=3

T(j),′
y0

(π∗y0
(y)⊗j) +R(k),′′′′

y0
(y),

where ∥R(k),′′′′
y0 (y)∥ ⩽ Ck,d,rchmin,Lh

k(tk−1
∗ + tkh). Plugging the above equation into (3.21)

gives the result.

3.B Proofs of Section 3.4

3.B.1 Comparing Reach, Weak Feature Size and Spherical Distortion Ra-
dius

Let us prove Proposition 3.14.

Proof of Proposition 3.14. The monotonicity follows trivially from the definition, and

since by [BLW19, Theorem 1], sdr0(K,dK) = rch(K,dK), there holds immediately that

sdrδ(K,dK) ⩾ rch(K) for any δ ⩾ 0. Now take δ ⩽
√

2(D + 1)/Dwfs(K), and take z a

critical point of K, so that z ∈ conv Γ where Γ ∶= {x ∈K ∣ ∥x − z∥ = d(z,K)}. Using Jung’s

theorem [Fed69, Theorem 2.10.41], there holds

diam(Γ) ⩾
√

2(D + 1)
D

Rad(Γ) =
√

2(D + 1)
D

d(z,K) ⩾
√

2(D + 1)
D

wfs(K) ⩾ δ

so that there exists two points x, y ∈ Γ such that ∥x − y∥ ⩾ δ. Furthermore, since the

interior of B(z,wfs(K)) contains no point of K, there holds

dK(x, y) ⩾ dS(wfs(K))(x, y) > dS(r)(x, y), for all r > wfs(K),

so that indeed sdrδ(K,dK) ⩽ wfs(K).

3.B.2 Stability Properties of the Spherical Distortion Radius

We now move to the proofs of the stability properties of the SDR. As a first step, we will

need the following lemma on geodesic distances over spheres.

Lemma 3.B.1. Let r, ε > 0 and take x, y, a, b ∈K such that ∥x − y∥ < 2r and

∥a − b∥ ⩽ (1 + Aε
r

) ∥x − y∥

for some A > 0. For all λ > 0, define

ζλ = max{ 192r3

∥a − b∥3
(λ +Aπ),4A} .
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Then, for all ζ ⩾ ζλ such that ζε ⩽ r, there holds

dS(r+ζε)(a, b) ⩽ dS(r)(x, y) − λε.

Proof of Lemma 3.B.1. Notice that, denoting by ρ = ∥x − y∥,

dS(r)(x, y) = 2r arcsin( ρ
2r

) = ρ × ϕ(2r/ρ) with ϕ(u) ∶= uarcsin(1/u).

The map ϕ is decreasing on [1,∞) and, using the development of

arcsin(u) =
∞
∑
n=0

(2n)!u2n+1/(22nn!2(2n + 1)),

we find that

ϕ′(u) = −
∞
∑
n=1

(2n)! × 2n

22nn!2(2n + 1)
1

u2n+1
⩽ − 1

3u3
.

Notice furthermore that, by assumption

2(r + ζε)
∥a − b∥

⩾ 2(r + ζε)
(1 +Aε/r)∥x − y∥

= 1 + ζε/r
1 +Aε/r

2r

∥x − y∥

⩾ (1 + ζε
2r

) 2r

∥x − y∥

where we used that A ⩽ ζ/4, ζε ⩽ r, and that (1 + u)/(1 + u/4) ⩾ 1 + u/2 for ∣u∣ ⩽ 2. Now,

as ϕ ⩽ π/2 and that ∣ϕ′∣ is decreasing, we can write

dS(r+ζε)(a, b) ⩽
Aε

r
∥x − y∥ϕ (2(r + ζε)/∥a − b∥) + ∥x − y∥ϕ (2(r + ζε)/∥a − b∥)

⩽ Aπε + dS(r)(x, y)

− ∥x − y∥ × ∣ϕ′∣ (2(r + ζε)
∥a − b∥

) × (2(r + ζε)
∥a − b∥

− 2r

∥x − y∥
)

⩽ dS(r)(x, y) +Aπε −
∥a − b∥3

3(2(r + ζε))3
ζε

⩽ dS(r)(x, y) + (Aπ − ∥a − b∥3

192r3
ζ) ε,

and using ζ ⩾ ζλ ends the proof.

We are now in position to prove Proposition 3.18 and Theorem 3.22.

Proof of Proposition 3.18. If r1 = ∞ there is nothing to show. Otherwise, notice that

because r1 ⩾ δ0/2 by definition, there holds that

ξ(R) ⩾ max{192R3

δ3
0

(1 + π2R

δ0
) , 8R

δ0
} ⩾ 1

for all R > r1. Now, since ξ(r1)Υ < r1, one can find R > r1 such that ξ(R)Υ < R. By

definition of r1, there exist x, y ∈ K ′ such that δ + 2ε ⩽ ∥x − y∥ < 2R and dS(R)(x, y) <
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d′(x, y). Now, let a, b ∈ K be two closest points (in Euclidean distance) from x and y

such that d(a, b) = d (prK({x}),prK({y}). Then

δ ⩽ ∥a − b∥ ⩽ ∥x − y∥ + 2ε < 2R + 2Υ ⩽ 2(R + ξ(R)Υ)

and

∥a − b∥ ⩽ ∥x − y∥ + 2ε ⩽ (1 + 2ΥR

δ0R
) ∥x − y∥.

We now can apply Lemma 3.B.1 with A = 2R/δ0 and λ = 1 to find that

d(a, b) ⩾ 1

1 + ν
d′(x, y)

> 1

1 + ν
dS(R)(x, y)

⩾ 1

1 + ν
(dS(R+ξ(R)Υ)(a, b) +Υ)

⩾ 1 +Υ/δ
1 + ν

dS(R+ξ(R)Υ)(a, b),

where the last inequality uses that dS(R+ξ(R)Υ)(a, b) ⩾ ∥a − b∥ ⩾ δ. At the end of the day,

since Υ ⩾ δν, we have d(a, b) > dS(R+ξ(R)Υ)(a, b), so that sdrδ(K,δ) < R + ξ(R)Υ. Taking

R to r1 yields the result.

Proof of Theorem 3.22. We take ε > 0 such that

ε < C0ε0, ε < (δ1 − δ0)/2, and ε < r0/L0,

and take δ ∈ [δ0, δ1−ε). We write rδ ∶= sdrδ(K,d) and rδ+ε ∶= sdrδ+ε(K,d) for short. Recall

that rδ ⩽ rδ+ε. Now take r ⩽ rδ+ε −L0ε, and two points x, y ∈K such that δ ⩽ ∥x − y∥ < 2r

(if there are none, then r ⩽ rδ automatically). If ∥x − y∥ ⩾ δ + ε, then d(x, y) ⩽ dS(r)(x, y)
because r ⩽ rδ+ε. If now ∥x − y∥ < δ + ε, since ∥x − y∥ ⩽ ∆0, we can use Assumption 3.20

and find a point a ∈ K such that ∥a − y∥ ⩽ ε/C0 and ∥x − a∥ ⩾ ∥x − y∥ + ε ⩾ δ + ε. Now,

since r +L0ε ⩽ rδ+ε, it holds d(x, a) ⩽ dS(r+L0ε)(x, a). Furthermore, notice that

∥x − a∥ ⩽ ∥x − y∥ + 1

C0
ε ⩽ (1 + r1ε

C0δ0r
) ∥x − y∥.

Using Assumption 3.21 and Lemma 3.B.1 with A = r1/(C0δ0) and λ = C1/C0, we find

d(x, y) ⩽ d(x, a) + d(a, y) ⩽ dS(r+L0ε)(x, a) +
C1

C0
ε ⩽ dS(r)(x, y),

so that in the end r ⩽ rδ. Taking r to rδ+ε − L0ε yields that rδ+ε ⩽ rδ + L0ε, ending the

proof.

Finally, Corollary 3.19 follows as a direct corollary of Proposition 3.18.
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Proof of Corollary 3.19. Since ξ0ε ⩽ 2 sdrδ1(K,d), the radius sdrδ1(K,d) is in partic-

ular finite so that, according to Proposition 3.18, sdrδ(K ′,d′) ⩽ 2 sdrδ1(K,d) and,

consequently, ξ1Υ ⩽ sdrδ(K ′,d′) and ξ2Υ ⩽ sdrδ+2ε(K,d), where ξ1 = ξ(sdrδ(K ′,d′))
and ξ2 = ξ(sdrδ+2ε(K,d)). Applying Proposition 3.18 twice – which is possible, since

Υ ⩾ ((δ − 2ε)ν) ∨ ε) –, we thus find

sdrδ−2ε(K,d) − ξ1Υ ⩽ sdrδ(K ′,d′) ⩽ sdrδ+2ε(K,d) + ξ2Υ,

and we conclude by noticing that both ξ1 and ξ2 are less than ξ0.

Proof of Theorem 3.23. Using Corollary 3.19 and Theorem 3.22, one find that

sdrδ(K ′,d′) ⩽ sdrδ+2ε(K,d) + ξ0Υ

⩽ sdrδ(K,d) + 2L0ε + ξ0Υ

⩽ sdrδ(K,d) + ζ0Υ,

and likewise for the lower bound.

3.C Proofs of Section 3.5

3.C.1 Minimax Lower Bound for Metric Learning

We now turn towards the proof of Theorem 3.25. It relies on an adaptation of the

classical Le Cam’s argument [Yu97] to the asymmetric loss `∞.

Lemma 3.C.1. Let x, y ∈ RD and let M0 and M1 be two submanifolds of RD such

that x, y ∈ M0 ∩M1 and the uniform distribution P0 (resp. P1) on M0 (resp. M1) is

in Pkrchmin,L
(fmin, fmax). Then if dM0(x, y) ⩽ dM1(x, y),

inf
d̂

sup
P ∈Pk

EP⊗n[`∞(d̂∣dM)] ⩾ 1

2
× ∣1 − dM0(x, y)

dM1(x, y)
∣ × (1 −TV(P⊗n

0 , P⊗n
1 )), (3.22)

Proof of Lemma 3.C.1. For brevity, we writeRn be the minimax risk appearing in the

left-hand side of (3.22). First, we write

Rn ⩾ inf
d̂

sup
P ∈{P0,P1}

EP⊗n[`∞(d̂∣dM)]

⩾ inf
d̂

sup
P ∈{P0,P1}

EP⊗n [∣1 − d̂(x, y)
dM(x, y)

∣]

⩾ 1

2
inf
d̂

{EP⊗n0
[∣1 − d̂(x, y)

dM0(x, y)
∣] +EP⊗n1

[∣1 − d̂(x, y)
dM1(x, y)

∣]}

⩾ 1

2
inf
d̂
EP⊗n0

[(∣1 − d̂(x, y)
dM0(x, y)

∣ + ∣1 − d̂(x, y)
dM1(x, y)

∣) × (1 ∧
dP⊗n

1

dP⊗n
0

)] .
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But now, using that dM0(x, y) ⩽ dM1(x, y), a simple computation shows that the func-

tional

δ ↦ ∣1 − δ

dM0(x, y)
∣ + ∣1 − δ

dM1(x, y)
∣

is minimal for δ = dM0(x, y) so that

Rn ⩾
1

2
EP⊗n0

[∣1 − dM0(x, y)
dM1(x, y)

∣ × (1 ∧
dP⊗n

1

dP⊗n
0

)]

= 1

2
× ∣1 − dM0(x, y)

dM1(x, y)
∣ × (1 −TV(P⊗n

0 , P⊗n
1 )),

which ends the proof.

Proof of Theorem 3.25. Without loss of generality, we set the analysis in Rd+1 ≃ Rd+1 ×
{0}D−(d+1) ⊂ RD.

Submanifolds Construction We let M0 ⊂ Rd+1 be a submanifold of Ck2 rchmin,L/2 such

that it contains the cylinder

{(s, z) ∈ R2 ×Rd−1 ∣ ∥s∥ = R and ∥z∥ ⩽ 3R} .

Such a manifold always exists as soon as R ⩾ 2 rchmin and Lj is large enough compared

to 1/Rj−1. For instance, one can design M0 as a hypersurface of revolution obtained

based on patches the interpolating curves of Lemma 3.A.1.

In what follows, we denote any x ∈ Rd+1 = Rd ×R as x = (w,h) ∈ Rd ×R. With this

notation, we define, for ε > 0 and c > 0 to be chosen later,

Φε(x) ∶= x + cεkK(w/ε)ed+1 where ed+1 = (0, . . . ,0,1) ∈ Rd+1,

where K(w) equals exp(−1/(1 − ∥w∥2)+) for ∥w∥ < 1 and 0 otherwise.

For ε ⩽ 1 and c small enough, Φε is a diffeomorphism of Rd+1 with derivative

bounded up to the order k. Using [AL19, Proposition A.4], we get thatMε ∶= Φε(M), the

image of M0 by Φε, belongs to Ckrchmin,L
provided that c is small enough (depending on

R) and ε ⩽ cR.

Locally around the apex (0,R) ∈ Rd+1, M0 can be seen as the graph of Ψ0(w) ∶=√
R2 −w2

1, defined on (−R,R) ×BRd−1(0,3R), while Mε is the graph of

Ψε(w) ∶= Ψ0(w) + cεkK(w/ε).

Finally, we let Ψ̄ε(w) ∶= (w,Ψε(w)) and similarly define Ψ̄0. We refer to Figure 3.C.1 for

a diagram of the situation.
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M0

R

Rd−1R

R

(a)

Mε

R

ε

εk

(b)

Figure 3.C.1 – (a) The cylindrical section ofM0 used in the proof of Theorem 3.25, and

(b) the perturbed submanifold Mε.

Shortest-Path Properties In this section, we seek to derive a lower bound on the

loss ∣1 − dM0(x, y)/dMε(x, y)∣, so as to apply Lemma 3.C.1. For this, we will consider

well-chosen x, y ∈M0 ∩Mε and derive a lower bound on dMε(x, y) − dM0(x, y).

We let ` < R, and we pick x ∶= Ψ̄0(−`e1) and y ∶= Ψ̄0(`e1) where e1 = (1,0, . . . ,0) ∈ Rd.

By construction, x and y belong to M0. Furthermore, provided that ` ⩾ ε, there holds

that x = Ψ̄ε(−`e1) and y = Ψ̄ε(`e1) so that x and y are also inMε. We let γε ∶ [−1,1]→Mε

be a shortest path in Mε between x and y, parametrized at constant speed. We denote

paths

wε ∶= aεe1 + bε ∶= prRd×{0}(γε),

where bε ∈ {0} ×Rd−1. We refer to Figure 3.C.2 for a diagram of the situation. Several

observations are in order.

• Since wε(±1) = ±`e1, we have aε(±1) = ±` and bε(±1) = 0. Also, because γε is a

minimizing path, aε is nondecreasing, and ∥bε∥∞ ⩽ ε (see Figure 3.C.2).

• Because γε has constant speed on [−1,1], there holds

∥γ′ε(t)∥ =
1

2
dMε(x, y) ∈ [A1`,A2`], for all t ∈ [−1,1], (3.23)

with A1,A2 depending on R only, uniformly on small ε.

• aε and bε are smooth and γε = Ψ̄ε(wε).

• Since Mε is symmetric with respect to {0} ×Rd, so should be the shortest path

between x and y. This entails in particular that bε is even and that aε is odd;

• As γε has constant speed and has a curvature bounded from above (as a shortest

path in a bounded-curvature space), the ratio ∥γ′′ε ∥/∥γ′ε∥2 is bounded in sup-norm
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γε(t)

aε(t)

bε(t)

Rd−1

R

ε

x y

(a)

Rd−1

R
x y

s1 s2

(b)

Figure 3.C.2 – (a) Top view of Mε and of one of the shortest path between x and y,

in blue. In light grey is represented the bump of size ε. (b) Same view of Mε as (a),

illustrating the fact that any shortest path must go from left to right (otherwise one

can construct a shorter path, through s1 in the figure) and cannot go outside the

shaded area (otherwise one can construct a shorter path, through s2 in the figure).

by a constant depending on R only. Therefore, there exists a constant B > 0

depending on R only such that, uniformly on ε small enough,

max{∥a′ε∥∞/`, ∥a′′ε ∥∞/`2, ∥b′ε∥∞/`, ∥b′′ε ∥∞/`2} ⩽ B. (3.24)

• By symmetry also, γε crosses the hyperplane {0} ×Rd orthogonally. As a conse-

quence ⟨γ′ε(0), ed+1⟩ = 0, b′ε(0) = 0 and

a′ε(0) = ∥w′
ε(0)∥ = ∥γ′ε(0)∥ ∈ [A1`,A2`] ,

where A1 and A2 were introduced in (3.23).

• Finally, using (3.24), we deduce that there exists C > 0 depending on R only such
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that for all t ∈ [−1,1],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣aε(t) − a′ε(0)t∣ ⩽ C`2t2,

∣a′ε(t) − a′ε(0)∣ ⩽ C`2t,

∣a′ε(t)aε(t) − a′ε(0)2t∣ ⩽ C`3t2,

∣bε(t) − bε(0)∣ ⩽ C`t.

(3.25)

Perturbative Expansion of the Geodesic Length We let γ0(t) ∶= Ψ̄0(aε(t)e1). Al-

though not constant-speed, monotonicity of aε implies that γ0 is the shortest path in

M0 between x and y, and we get, using (3.24) and (3.25), that for some constant A3

depending on R,
1

2
A1` ⩽ ∥γ′0(t)∥ ⩽ A3` if ` ⩽ A1

2C
, (3.26)

which we will assume henceforth. Furthermore, the velocity of γε writes

γ′ε = dΨ̄ε(wε)[w′
ε] = dΨ̄0(wε)[w′

ε] + cεk−1⟨∇K(wε/ε),w′
ε⟩ed+1

= w′
ε + ⟨∇Ψ0(wε),w′

ε⟩ed+1 + cεk−1⟨∇K(wε/ε),w′
ε⟩ed+1

= a′εe1 + b′ε + (⟨∇Ψ0(aε), a′ε⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=∇0

+ cεk−1⟨∇K(wε/ε),w′
ε⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=∇1

)ed+1,

where we used the fact that Ψ0 depends only on its first variable. We write the last

term as (∇0 +∇1)ed+1. Using that each three terms in the preceding development are

orthogonal, we obtain

∥γ′ε∥2 = a′2ε + ∥b′ε∥2 + (∇0 +∇1)2 = a′2ε +∇2
0

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
=∥γ′0∥2

+ ∥b′ε∥2 + 2∇0∇1 +∇2
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=Qε

, (3.27)

and it only remains to study the last three terms, denoted by Qε. First, notice that

using (3.24), one can find two constants D0 depending on R such that Qε ⩾ −D0ε
2`2.

Together with (3.26), this yields that Qε/∥γ′0∥2 ⩾ −1 for ε small enough (depending on

R). Likewise, we can show thatQε ⩽D1(`2+ `2ε2+ε4), for some constantD1 depending

on R. This again yields
Qε

∥γ′0∥2
⩽D2 if ε ⩽D3`, (3.28)

for some constants D2 and D3 depending on R only. All in all, we have that Qε/∥γ′0∥ ∈
[−1,D2]. Using that

√
1 + z ⩾

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + z if z ∈ [−1,0],

1 +D4z if z ∈ [0,D2], with D4 = 1
D2

(
√

1 +D2 − 1),

we can finally derive from (3.27) and (3.28) the following bound

∥γ′ε∥ = ∥γ′0∥

¿
ÁÁÀ1 + Qε

∥γ′0∥2
⩾ ∥γ′0∥ + τ(Qε)Qε, (3.29)
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where

τ(z) ∶= 2

A1`
1z<0 +

D4

A3`
1z⩾0,

and where we also used (3.26) to bound 1/∥γ′0∥. In particular, integrating (3.29) over

[−1,1] yields that

dMε(x, y) ⩾ dM0(x, y) + ∫
1

−1
τ(Qε)Qε.

To obtain a more explicit bound, let us now study Qε. For this, first rewrite ∇0 and

∇1 more explicitly as

∇0 = −
aεa

′
ε√

R2 − a2
ε

and ∇1 = −2cεk−2 K(wε/ε)
(1 − ∥wε/ε∥2)2

⟨wε,w′
ε⟩.

Hence, noticing that ⟨wε,w′
ε⟩ = aεa′ε + ⟨bε, b′ε⟩, one can write 2∇0∇1 as P0 + P1 with

⎧⎪⎪⎪⎨⎪⎪⎪⎩

P0 = εk−2(aεa′ε)2Tε

P1 = εk−2Tεaεa
′
ε⟨bε, b′ε⟩

with Tε ∶=
4cK(wε/ε)√

R2 − a2
ε(1 − ∥wε/ε∥2)2

.

For ` ⩽ A1/4C, condition (3.25) together with a′ε(0) ⩾ A1`/2 imply that

∥wε(t)∥ ⩾ ∣aε(t)∣ ⩾ ε for all ∣t∣ ⩾ tε with tε ∶=
4ε

A1`
,

so that in particular, Tε(t) = 0 for ∣t∣ ⩾ tε. Furthermore, notice that, provided that ` is

small before R, Tε is bounded by some constant E > 0 depending on R only. Using

again (3.25), we find that for ` ⩽ A2
1/8C, there holds

(a′εaε)2(t) ⩾ 1

2
a′ε(0)4t2 −C2`6t4 ⩾ 1

32
A4

1`
4t2, (3.30)

and ∣a′εaε∣(t) ⩽ a′ε(0)2∣t∣ +C`3t2 ⩽ 5A2
1`

2∣t∣ for all t ∈ [−1,1].

In particular, we find that

∫
1

−1
∣P1(t)∣dt ⩽ 5εk−2EA2

1`
2∥bε∥∞∥b′ε∥∞∫

tε

−tε
∣t∣dt

= 5εk−2EA2
1`

2∥bε∥∞∥b′ε∥∞t2ε
⩽ 80BE∥bε∥∞`2εk,

where we used (3.24) in the last inequality. On the other hand, letting t0 ∈ (−1,1) be a

time at which ∥bε(t0)∥ = ∥bε∥∞, notice that

∫
1

−1
∥b′ε∥2 = ∫

t0

−1
∥b′ε∥2 + ∫

1

t0
∥b′ε∥2

⩾ 1

1 + t0
∥∫

t0

−1
b′ε∥

2

+ 1

1 − t0
∥∫

1

t0
b′ε∥

2

= ( 1

1 + t0
+ 1

1 − t0
) ∥bε(t0)∥2 ⩾ 2∥bε∥2

∞.
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Integrating (3.27) and using that ∇2
1 ⩾ 0 thus yields

∫
1

−1
τ(Qε)Qε ⩾ 2∥bε∥∞ (τ1∥bε∥∞ − 40τ2BE`

2εk) + τ1ε
k−2∫

1

−1
(aεa′ε)2Tε. (3.31)

where τ1 is the smallest value of τ , and τ2 its greatest value. Now we distinguish on the

value of ∥bε(0)∥:

• If ∥bε(0)∥ ⩾ ε/2, then ∥bε∥∞ ⩾ ε/2 and for ε small enough, we get, noticing that the

last term in (3.31) is non-negative,

∫
1

−1
τ(Qε)Qε ⩾ cRε(ε/2 − ε/4)/` ⩾ cRε2/`.

• Otherwise, if ∥bε(0)∥ ⩽ ε/2, then, using (3.25), we find that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∥bε(t)∥ ⩽ 3ε/4,

∣aε(t)∣ ⩽ ε/2,
for all ∣t∣ ⩽ t∗ε with t∗ε ∶= min{ ε

4C`
,

ε

8A2`
,
2A2

C`
} .

For ε small before R, t∗ε is of the form t∗ε = Gε/` with G depending on R only.

Furthermore, notice that for ∣t∣ ⩽ t∗ε , there holds ∥wε(t)∥2 = ∣aε(t)∣2 + ∥bε(t)∥2 ⩽
13ε2/16. In particular, Tε is lower-bounded on [−t∗ε , t∗ε ] by a constantH depending

on R only. Noticing that t∗ε ⩽ tε, we can use the inequality in (3.30) to obtain

∫
1

−1
(aεa′ε)2Tε ⩾

1

32
A4

1`
4H ∫

t∗ε

−t∗ε
t2dt = 1

48
A4

1HG
3`ε3.

Finally, since z ↦ z(z − ν) is minimal on R+ at z = ν/2 with minimal value −ν2/4,

we find the bound

∫
1

−1
τ(Qε)Qε ⩾ cRεk+1 − c′R`3ε2k ⩾ cRεk+1,

provided that ε is small enough before R.

In both cases, we find that ∫
1
−1 τ(Qε)Qε ⩾ cRε

k+1. Now integrating (3.29) gives

dMε(x, y) ⩾ dM0(x, y) + c
′
Rε

k+1 > dM0(x, y).

Finally, (3.23) yields dMε(x, y) ⩾ 2A2` and letting ` ∶= (1∨D−1
3 )ε, which we can from (3.28),

finally gives

∣1 − dM0(x, y)
dMε(x, y)

∣ ⩾ cRεk. (3.32)

Concluding with Le Cam’s lemma We apply Lemma 3.C.1 with M0 and M1 ∶=Mε for

ε properly chosen. Their volumes are bounded from above and below by something

depending on R and d only, so that the uniform distribution on M0 and Mε are in

Pkrchmin,L
(fmin, fmax) provided that fmin and fmax are respectively small enough and
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large enough compared to 1/Rd. Finally, we set R = 2 rchmin and ε = (Crchmin,dn)−1/d.

For n large enough so that all previous controls are verified, Lemma 3.C.1 finally yields

inf
d̂

sup
P ∈Pk

EP⊗n[`∞(d̂∣dM)] ⩾ 1

2
crchmin

εk(1 −Crchmin,dnε
d) ⩾ crchmin,d,kn

−k/d,

where the total variation was bounded using [BHHS22, Lemma 7].

3.C.2 Plug-in Estimation for Metric Learning

We start by giving the proof of Proposition 3.26.

Proof of Proposition 3.26. Let x, y ∈ K. Notice that, since K ⊂ (K ′)ε, there holds triv-

ially that d(K′)ε(x, y) ⩽ dK(x, y). For the converse inequality, let γ ∶ [0,1] → RD be

a continuous path in (K ′)ε between x and y. Since ε < rch(K)/2 the closest-point

projection onK is well-defined on (K ′)ε ⊂K2ε and we can consider γ0 = prK ○γ, which

is a continuous path in K. For any subdivision 0 = t0 < t1 < ⋅ ⋅ ⋅ < tk = 1, there holds

k−1

∑
i=0

∥γ0(ti+1) − γ0(ti)∥ ⩽
rch(K)

rch(K) − 2ε

k−1

∑
i=0

∥γ(ti+1) − γ(ti)∥

where we used the fact that prK is rch(K)/(rch(K)− 2ε)-Lipschitz onK2ε [Fed59, Thm

4.8 (8)]. Taking the supremum over all subdivision yields

dK(x, y) ⩽ L(γ0) ⩽
rch(K)

rch(K) − 2ε
L(γ)

and then taking the infimum on all continuous path γ finally gives

d(K′)ε(x, y) ⩾ (1 − 2ε

rch(K)
)dK(x, y)

ending the proof.

To prove Theorem 3.27, an intermediate result that bounds the intrinsic diameters

of the supports in our statistical model is needed.

Lemma 3.C.2. For any P ∈ Pkrchmin,L
(fmin, fmax), if M = supp(P ), then

sup
x,y∈M

dM(x, y) ⩽ dmax.

where dmax is defined in Theorem 3.27.

Proof of Lemma 3.C.2. We let x1, . . . , xN be a rchmin /4-packing of M . We let x, y ∈ M ,

and G be the neighborhood graph built on top of x, y, x1, . . . , xN with connectivity ra-

dius rchmin /2. Using [NSW08, Theorem 6.3], denoting z0 = x, z1, . . . , zk = y the shortest

path between x and y in G, there holds

dM(x, y) ⩽
k−1

∑
i=0

dM(zi, zi+1) ⩽
k−1

∑
i=0

2∥zi − zi+1∥ ⩽ k rchmin .
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But now k ⩽ N − 1 and

N ⩽ vold(M)
minx∈M vold(M ∩B(x, rchmin /4))

⩽ vold(M)
(1 − 1/82)d/2 ωd rchdmin /4d

,

where we used [NSW08, Lemma 5.3]. Noticing that vold(M) ⩽ 1/fmin, we easily con-

clude.

We are now in position to prove Theorem 3.27.

Proof of Theorem 3.27. We letAn ∶= {dH(M̂,M) ⩽ εn} denote the event where M̂ is εn-

precise in Hausdorff distance, and we take x, y ∈M . On the eventAn, for n large enough

such that εn ⩽ rchmin /2, Proposition 3.26 applies to K ′ = M̂ ∪ {x, y} and, together with

Lemma 3.C.2, yields

∣1 − d̂(x, y)
dM(x, y)

∣ ⩽ 2εn
rchmin

.

OnAcn, we distinguish whether ∥x−y∥ ⩽ εn or not. If so, then d̂(x, y) = ∥x−y∥ ⩽ dM(x, y).

In the other case, dM(x, y) ⩾ ∥x − y∥ ⩾ εn and d(x, y) ⩽ dmax so that, in any case

∣1 − d̂(x, y)
dM(x, y)

∣ ⩽ 1 + d̂(x, y)
dM(x, y)

⩽ 1 + dmax

εn
,

for n large enough such that εn ⩽ dmax. Patching these two bounds together yields

EP⊗n[`∞(d̂∣dM)] ⩽ 2εn
rchmin

P⊗n(An) + (1 + dmax

εn
)P⊗n(Acn),

ending the proof.

3.D Proofs of Section 3.6

We first prove that submanifolds of the model do fulfill Assumption 3.20 and Assump-

tion 3.21.

Proof of Proposition 3.30. Assumption 3.21 is a simple consequence of [NSW08, Propo-

sition 6.3] which yields fulfillment for ∆1 = rch(M)/2 and C1 = 2. For Assumption 3.20,

take x, y ∈M such that ∥x−y∥ ⩽ rch(M) and take ε < rch(M)/4. We consider a = expy(v),

where

v = −ε
prTyM(x − y)

∥prTyM(x − y)∥
.

Thanks to [Fed59, Theorem 4.8 (7)], there holds

∥prTyM(x − y)∥2 = ∥x − y∥2 − d2(x − y, TyM)

⩾ ∥x − y∥2 − ∥x − y∥4

4 rch2(M)

⩾ 3

4
∥x − y∥2,
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and

⟨v, y − x⟩ = ε
⟨x − y,prTyM(x − y)⟩

∥prTyM(x − y)∥
= ε∥prTyM(x − y)∥ ⩾ 1

2
ε∥x − y∥,

so that

∥x − y − v∥2 ⩾ ∥x − y∥2 + ε∥x − y∥ + ε2 ⩾ (∥x − y∥ + 1

2
ε)

2

,

and thus ∥x − y − v∥ ⩾ ∥x − y∥ + ε/2. But now ∥x − a∥ ⩾ ∥x − y − v∥ − ∥a − y − v∥ and

∥a − y − v∥ ⩽ 5ε2/4 rch(M) according to [AL19, Lemma 1]. All in all, we get that

∥x − a∥ ⩾ ∥x − y∥ + 1

2
ε − 5

4 rch(K)
ε2 ⩾ ∥x − y∥ + 3

16
ε,

ending the proof.

To prove Theorem 3.31, a bound on the metric distortion between our distance

estimator and dM is needed, that easily follows from Proposition 3.26.

Proposition 3.D.1. In the context of Proposition 3.26, we have that for all δ > 4ε,

Dδ(dK ,d(K′)ε) ⩽ 1 + 4ε

(δ − 4ε) ∧ rch(K)
.

Proof of Proposition 3.D.1. Proposition 3.26 already gives that Dδ(dK ∣d(K′)ε) ⩽ 1 +
2ε/ rch(K). For the other control, notice that for any two x, y ∈ (K ′)ε that are δ-apart

for the Euclidean distance, there holds denoting x0 = prK(x) and y0 = prK(y),

d(K′)ε(x, y) ⩽ 4ε + dK(x0, y0)

because the piecewise-defined path consisting of the segment [x,x0] of the (or a near-

minimizing) shortest-path between x0 and y0 in K, and of the segment [y0, y], is a

continuous path in (K ′)ε between x and y of length the RHS of the display above. Now

notice that

dK(x0, y0) ⩾ ∥x0 − y0∥ ⩾ δ − 4ε,

which immediately yields Dδ(d(K′)ε ∣dK) ⩽ 1 + 4ε
δ−4ε .

The rate of the plug-in SDR estimator follows straightforwardly.

Proof of Theorem 3.31. LetAn ∶= {dH(M,M̂) ⩽ εn}. On this event, we have Dδ(d̂,dM) ⩽
1 + 8εn/δ according to Proposition 3.D.1, so that applying Theorem 3.23 with δ0 = δ/2,

ε = εn and ν = 8εn/δ yields ∣ŝdrδ − sdrδ(M,dM)∣ ⩽ ζ0εn with ζ0 ⩽ Cs4
max/δ4. We conclude

that

EP⊗n ∣ŝdrδ − sdrδ(M,dM)∣ ⩽ ζ0εnP
⊗n(An) + 2smaxP

⊗n(Acn),

which ends the proof.
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Chapter 4

Pointwise density estimation on
submanifolds

In this chapter, we investigate density estimation from a n-sample in the Euclidean

space, when the data is supported by an unknown submanifold of possibly unknown

dimension. We study nonparametric kernel methods for pointwise loss, with data-

driven bandwidths that incorporate some learning of the geometry via a local dimen-

sion estimator. When the density has Hölder smoothness, our estimator achieves

an asymptotically minimax rate, provided that the underlying manifold is smooth

enough. Following Lepski’s principle, a bandwidth selection rule is shown to achieve

smoothness adaptation. Finally, a numerical implementation is conducted on some

case studies in order to confirm the practical feasibility of our estimators. This chapter

has been published in [BH21].
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4.1 Introduction

4.1.1 Motivation

Suppose we observe an n-sample (X1, . . . ,Xn) of size n distributed on an Euclidean

space RD according to some density function f . We wish to recover f at some ar-

bitrary point x0 ∈ RD nonparametrically. If the smoothness of f at x0 measured

in a strong sense is of order β – for instance by a Hölder condition or with a pre-

scribed number of derivatives – then the optimal (minimax) rate for recovering f(x0)
is of order n−β/(2β+D) and is achieved by kernel or projection methods, see e.g. the

classical textbooks [Sil86, DG85] or [Tsy08, Sec. 1.2-1.3]. Extension to data-driven

bandwidths [Bow84, Chi91] offers the possibly to adapt to unknown smoothness, see

[GL08, GL11, GL14] for a modern mathematical formulation. More generally, rec-

ommended reference on adaptive estimation is the textbook by [GN16]. In many

situations however, the dimension D of the ambient space is large, hitherto disqualify-

ing such methods for pratical applications. Opposite to the curse of dimensionality, a

broad guiding principle in practice is that the observations (X1, . . . ,Xn) actually live

on smaller dimensional structures and that the effective dimension of the problem is

smaller if one can take advantage of the geometry of the data [FMN16a]. This classical

paradigm probably goes back to a conjecture of [Sto82] that paved the way to the study

of the celebrated single-index model in nonparametric regression, where a structural

assumption is put in the form f(x) = g(⟨ϑ,x⟩), where ⟨⋅, ⋅⟩ is the scalar product on

RD, for some unknown univariate function g ∶ R → R and direction ϑ ∈ RD. Under

appropriate assumptions, the minimax rate of convergence for recovering f(x) with

smoothness β drops to n−β/(2β+1) and does not depend on the ambient dimension

D, see e.g. [GL07, LS14] and the references therein. Also, in the search for significant

variables, one postulates that f only depends on d <D coordinates, leading to the struc-

tural assumption f(x1, . . . , xD) = F (xi1 , . . . xid) for some unknown function F ∶ Rd → R
and {i1, . . . , id} ⊂ {1, . . . ,D}. In an analogous setting, the minimax rate of convergence

becomes n−β/(2β+d) and this is also of a smaller order of magnitude than n−β/(2β+D), see

[HL02] in the white noise model.

The next logical step is to assume that the data (X1, . . . ,Xn) live on a d-dimensional
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submanifold M of the ambient space RD. When the manifold is known prior to the

experiment, nonparametric density estimation dates back to [DG85] when M is the

circle, and on a homogeneous Riemannian manifold by [Hen90], see also [Pel05].

Several results are known for specific geometric structures like the sphere or the

torus involved in many applied situations: inverse problems for cosmological data

[KK02, KKL09, KPNP11], in geology [HWC87] or flow calculation in fluid mechanics

[ES00]. For genuine compact homogeneous Riemannian manifolds, a general setting

for smoothness adaptive density estimation and inference has recently been con-

sidered by [KNP12], or even in more abstract metric spaces in [CGK+20]. See also

[BKMP09, CKP14] and the references therein. A common strategy adapts conventional

nonparametric tools like projection or kernel methods to the underlying geometry,

via the spectral analysis of the Beltrami-Laplace operator on M . Under appropriate

assumptions, this leads to exact or approximate eigenbases (spherical harmonics for

the sphere, needlets and so on) or properly modified kernel methods, according to the

Riemannian metric on M .

If the submanifold M itself is unknown, getting closer in spirit to a dimension

reduction approach, the situation becomes drastically different: M hence its geometry

is unknown, and considered as a nuisance parameter. In order to recover the density

f at a given point x0 ∈ RD of the ambient space, one has to understand the minimal

geometry of M that must be learned from the data and how this geometry affects the

optimal reconstruction of f . This is the topic of the paper.

We consider in the paper a seemingly unusual framework where the support of

a distribution is unknown while the aim is to recover the density at a point x0 ∈ RD

which is known to be on the support. As mentioned above, this actually covers at least

two situations:

• The data are high-dimensional and it is reasonable to believe that they actually lie

on a smaller dimensional subset of the ambient space RD, which can be assumed

to be a submanifold. In that case, x0 can be seen as an extraneous observation X

from the density f (extracted for instance from the point cloud), and the analysis

can be implicitly performed conditional on X = x0;

• The data naturally lie on a submanifold, like a spheroid for geological application,

or a cell membrane in microbiology (see for instance [KPS14] who describe a

technique that yields such a point cloud). In this case, x0 can be seen as an

observationX like above, but there is also the situation where the statistician can

know whether or not a given point x0 is within the support (for instance a point

on a cell membrane, or a geographical location on the Earth surface) without

knowing the geometric features of the latter and without needing to estimate
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them.

4.1.2 Main results

We construct a class of compact smooth submanifolds of dimension d of the Euclidean

spaceRD, without boundaries, that constitute generic models for the unknown support

of the target density f that we wish to reconstruct. We further need a reach condition, a

somehow unavoidable notion in manifold reconstruction that goes back to [Fed59]:

it is a geometric invariant that quantifies both local curvature conditions and how

tightly the submanifold folds on itself. It is related to the scale at which the sampling

rate n can effectively recover the geometry of the submanifold, see Section 4.2.3 below.

We consider regular manifolds M with reach bounded below that satisfy the follow-

ing property: M admits a local parametrisation at every point x ∈ M by its tangent

space TxM , and this parametrisation is sufficiently regular. A natural candidate is

given by the exponential map expx ∶ TxM → M ⊂ RD. More specifically, for some

regularity parameter α ⩾ 0, we require a certain uniform bound for the (α + 1)-fold

differential of the exponential map to hold, quantifying in some sense the regularity of

the parametrisation in a minimax spirit, see Definition 4.2.4 below. Our approach is

close to that of [AL19, Def. 1] that consider arbitrary parametrisations among those

close to the inverse of the projection onto tangent spaces. Given a density function

f ∶M → [0,∞) with respect to the volume measure on M , we have a natural extension

of smoothness spaces on M by requiring that f ○ expx ∶ TxM → R is a smooth map in

any reasonable sense, see Section 4.2.2 below. This is line for instance with [Tri87] for

the characterisation of function spaces on a Riemannian manifold.

Our main result is that in order to reconstruct f(x0) efficiently at a point x0 ∈ RD

when f has smoothness β and lives on an unknown submanifold of smoothness α and

unknown dimension d <D, it is sufficient to consider estimators of the form

f̂h(x0) =
1

nhd̂(x0)

n

∑
i=1

K (x0 −Xi

h
) , x ∈ RD, (4.1)

where K ∶ RD → R is a certain kernel and d̂(x0) = d̂(x0,X1, . . . ,Xn) is an estimator

of the local dimension of the support of f in the vicinity of x based on a scaling esti-

mator as introduced in [FSA07]. We prove in Theorem 4.3.1 that following a classical

bias-variance trade-off for the bandwidth h, the rate n−α∧β/(2α∧β+d) is achievable for

pointwise and global loss when the dimension of M is d, irrespectively of the ambient

dimension D. In particular, it is noteworthy that in terms of manifold learning, only

the dimension of M needs to be estimated. When α ⩾ β, we also have a lower bound

(Theorem 4.3.2) showing that our result is asymptotically minimax optimal. Moreover,

by implementing Lepski’s principle [Lep92], we are able to construct a data driven
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bandwidth ĥ = ĥ(x0,X1 . . . ,Xn) that achieves in Theorem 4.3.4 the rate n−α∧β/(2α∧β+d)

up to a logarithmic term — unavoidable in the case of pointwise loss due to the Lepski-

Low phenomenon [Lep90, Low92]. When the dimension d is known, the estimator (4.1)

has already been investigated in squared-error norm in [OG09] for a fixed manifold M

and smoothness β = 2.

A remaining issue at this stage is to understand how the regularity of M can affect

the minimax rates of convergence for smooth functions, i.e. whenα ⩽ β. We only have a

partial answer to that question, when we restrict our attention to the one-dimensional

case d = 1. When M is known, [Pel05] studied estimators of the form

1

nhd

n

∑
i=1

1

ϑx0(Xi)
K (dM(x0,Xi)

h
) , (4.2)

where K ∶ R→ R is a radial kernel, dM is the intrinsic Riemannian distance on M and

the correction term ϑx0(Xi) is the volume density function on M [Bes78, p. 154] that

accounts for the value of the density of the volume measure atXi in normal coordinates

around x0, taking into account how the submanifold curves aroundXi. By establishing

in Lemma 4.3.9 that ϑx is constant (and identically equal to one) when d = 1, we have

another estimator by simply learning the geometry of M via its intrinsic distance dM
in (4.2). This can be done by efficiently estimating dM in dimension d = 1 thanks to

the Isomap method as coined by [TSL00]. Therefore, in the special case when the

dimension d of M is known and equal to 1, we are able to construct an estimator that

achieves in Theorem 4.3.3 the rate n−β/(2β+1), therefore establishing that in dimension

d = 1 at least, the regularity of the manifold M does not affect the minimax rate for

estimating f even when M is unknown. However, the volume density function ϑx0

is not constant as soon as d ⩾ 2 and obtaining a global picture in higher dimensions

remains an open and presumably challenging problem.

4.1.3 Organisation of the paper

In Section 4.2, we provide with all the necessary material and notation from classical

geometry for the unfamiliar reader. Section 4.2.1 together with the construction of

smoothness spaces – here Hölder spaces on a submanifold in Section 4.2.2. We elabo-

rate in particular on the reach of a subset of the Euclidean space in Section 4.2.3 and

construct a statistical model for sampling n data from a density f with regularity β

living on an unknown submanifold M of unknown dimension d and smoothness α in

an ambient space of dimensionD in Section 5.2. In this setting, we establish in Section

4.2.5 that a reach condition, i.e. assuming that the reach of M is bounded below, is

necessary in order to reconstruct d. This is stated precisely in Theorem 4.2.10.
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We give our main results in Section 4.3 and more specifically in Section 4.3.1. When

the dimension d and the smoothness parameters α of the unknown manifold M and

the smoothness β of f are known, Theorem 4.3.1 states the existence of an estimator

that achieves the rate n−α∧β/(2α∧β+d) in expected pointwise loss, and Theorem 4.3.2 es-

tablishes that a minimax lower bound is n−β/(2β+d). Theorem 4.3.3 shows the existence

of estimators in dimension d = 1 that achieve the rate n−β/(2β+1), which is therefore

minimax in that case. Theorem 4.3.4 states the existence of smoothness and dimen-

sion adaptive estimators, when α,β and d are unknown. Section 4.3.2 elaborates on

special kernels upon which the estimators that achieve the aforementioned results

are constructed, and their properties with respect to bias and variance analysis. The

underlying geometry ofM makes the usual orthogonality to non-constant polynomials

of a certain degree (the order of the kernel) irrelevant, and a specific construction must

be undertaken. Section 4.3.3 focuses on the case of one-dimensional submanifolds M

when d = 1, where we explicitly construct a kernel estimator that achieves the minimax

rate of convergence, revisiting the estimator (4.2) of [Pel05] and relying on the Isomap

algorithm. In Section 4.3.4, we implement Lepski’s algorithm on the bandwidth of our

kernel estimators, following [LMS97]; this achieves smoothness adaptation w.r.t. α ∧ β.

Finally, in Section 4.3.5, we build an estimator of the dimension d of M , following ideas

of [FSA07] and that enables us to obtain simultaneous adaptation w.r.t. α ∧ β and d by

plug-in.

Finally, numerical examples are developed in Section 4.4: we elaborate on examples

of non-isometric embeddings of the circle and the torus in dimension 1 and 2 and

explore in particular rates of convergence on Monte-Carlo simulations, illustrating how

effective Lepski’s method can be in that context. The proof are delayed until Appendix

4.A.

4.2 Manifold-supported probability distributions

4.2.1 Some material from geometry

We endow RD with its usual Euclidean product and norm, respectively denoted by ⟨⋅, ⋅⟩
and ∥ ⋅ ∥. We denote by B(x, r) the open ball of RD of center x and radius r. For any

subspace H ⊂ RD, we set BH(x, r) =H ∩B(x, r) for the open ball in H for the induced

norm.

We recall some basic notions of geometry of submanifolds of the Euclidean space

RD for the unfamiliar reader. We borrow material from the classical textbooks [GHL90]

and [Lee06]. In all the paper, we consider C∞ Riemannian manifolds (M,g) that we

informally call smooth, which is an abstract manifold M endowed with a C∞ altas
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[GHL90, Def 1.6 p.6] and a C∞ metric g [GHL90, Def 2.1 p.52]. Such a manifold can

always be embedded isometrically into some Euclidean space [GR70], meaning that

the pull-back of the canonical Euclidean metric coincides with the metric of the mani-

fold. When we consider a smooth submanifold M ⊂ RD, we mean that M is the image

through such an embedding of a smooth abstract Riemaniann manifold.

Since we quantitatively compare the smoothness of manifolds within a large class

of models, we need to pick a canonical parametrisation. For this reason, we consider

the exponential map [GHL90, Def 2.86 p.85]; for any smooth submanifold M ⊂ RD and

any x ∈M , it defines a smooth parametrisation

expx ∶ BTxM(0, ε)→M

of M around x, provided that ε is chosen small enough [GHL90, Cor 2.89 p.86]. The

supremum of all such ε is called the injectivity radius at x and is denoted injM(x).

When M is a closed subset of RD, the exponential maps are well defined on the whole

tangent spaces. This is (one side of) the Hopf-Rinow theorem [Lee06, Thm 6.13 p.108].

Given a submanifold M of dimension d, the volume measure of M , denoted by µM ,

is the restriction of the d-dimensional Hausdorff measure Hd to M , see [Fed69, Sec

2.10.2 p.171] for a definition. It can be shown [EG92, Ex D p.102] that this definition

coincides with the usual one of volume measure of a Riemaniann manifold: if ψ ∶M →
R is a continuous function with support in expx(BTxM(0, ε)) for ε smaller than injM(x),

we have

µM(ψ) = ∫
BTxM (0,ε)

ψ ○ expx(v)
√

det gx(v)dv,

with gxij(v) = ⟨d expx(v)[ei], d expx(v)[ej]⟩ and where (e1, . . . , ed) is an arbitrary or-

thonormal basis of TxM . We refer to [GHL90, Sec 3.H.1 and Sec 3.H.2] for further

details on the volume measure. The volume of M , denoted by volM , is simply µM(1).

It is finite when M is a compact submanifold of RD.

4.2.2 Hölder spaces on submanifolds

Let M be a smooth submanifold of RD and let ρ > 0. We say that a vector-valued

function ϕ ∶M → Rm with m ⩾ 1 is γ-Hölder with γ > 0 if for all x ∈M , the map

ϕ ○ expx ∶ BTxM(0, ρx)→ Rm where ρx = ρ ∧ injM(x) (4.3)

is γ-Hölder in the usual sense, namely

(i) ϕ ○ expx is k = ⌈γ − 1⌉-times differentiable;
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(ii) and verifies

∀v,w ∈ BTxM(0, ρ), ∥dk(ϕ ○ expx)(v) − dk(ϕ ○ expx)(w)∥op ⩽ R∥v −w∥δ

with δ = γ − k > 0 and for some R > 0.

We denote byHγ(M,Rm) the space of all such functions, and define for ϕ ∈Hγ(M,Rm)
the Hölder semi-norm

∣ϕ∣γ = sup
x∈M

sup
v,w∈BTxM (0,ρx)

∥dk(ϕ ○ expx)(v) − dk(ϕ ○ expx)(w)∥op

∥v −w∥δ
.

The characterisation of the smoothness of a function ϕ ∶M → Rm through the expo-

nential maps is a classical way to define functional spaces over Riemannian manifolds,

see for instance [Tri87].

Remark 4.2.1. The functional setHγ(M, ⋅) also depends on the parameter ρ, merely

introduced for a technical reason and dropped from the notation. When the manifold

M has a reach (defined in the next Section 4.2.3) bounded from below by τ > 0, a

natural choice for ρ is πτ , in light of the results of Proposition 4.2.6 below.

Remark 4.2.2. This definition of Hölder smoothness is also intrinsic, meaning that

it does not depend on the way M is embedded into RD. If indeed ψ ∶ N → M is an

isometry between N and M , then ∣ϕ∣γ = ∣ϕ ○ ψ∣γ for any ϕ ∶M → Rd and γ > 0.

4.2.3 The reach of a subset

One of the main concerns when dealing with observations sampled from a geometri-

cally structured probability measure is to determine the suitable scale at which one

should look at the data. Indeed, given finite-sized point cloud in RD, there are infinitely

many submanifolds that interpolate the point cloud, see Figure 4.2.1 for an illustra-

tion. A popular notion of regularity for a subset of the Euclidean space is the reach,

introduced by [Fed59].

Figure 4.2.1 – An arbitrary points cloud (Left) for D = 2, and two smooth one-

dimensional submanifolds passing through all its points (Middle, Right). A reach

condition tends to discard the Right manifold as a likely candidate among all

possible submanifolds the point cloud is sampled from.
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Definition 4.2.3. Let K be a compact subset of RD. The reach τK of K is the supremum

of all r ⩾ 0 such that the orthogonal projection prK on K is well-defined on the r-

neighbourhood Kr of K, namely

τK = sup{r ⩾ 0 ∣ ∀x ∈ RD, d(x,K) ⩽ r⇒ ∃!y ∈K, d(x,K) = ∥x − y∥} .

When M is a compact submanifold of RD, the reach τM quantifies two geometric

invariants: locally, it measures how curved the manifold is, and globally, it measures

how close it is to intersect itself (the so-called bottleneck effect). See Figure 4.2.2 for an

illustration of the phenomenon. A reach condition, meaning that the reach is bounded

below, is necessary in order to obtain minimax inference results in manifold learning.

These include: homology inference [NSW08, BRS+12], curvature [AL19] and reach

estimation itself [AKC+19] as well as manifold estimation [GPPVW12a, AL19].

Figure 4.2.2 – For the first manifold M (Left), the value of the reach τM comes

from its curvature. For the second one (Right), the reach is equal to τM because

it is close to self intersecting (a bottleneck effect). The blue area represents the

tubular neighbourhood over which the orthonormal projection on each manifold

is well-defined.

4.2.4 A statistical model for sampling on a unknown manifold

In the following, we fix a point x0 ∈ RD in the ambient space. See Section 4.1.1 for a

discussion on such a setting. Our statistical model is characterized by two quantities:

the regularity of its support and the regularity of the density defined on this support.

The support belongs to a class of submanifolds M , for which we need to fix some kind

of canonical parametrisation. This is what [AL19] propose by asking the support M to

admit a local parametrisation at all point x ∈M by TxM , and that this parametrisation

is close to being the inverse of the projection over this tangent space. We follow this

idea by imposing a constraint on the exponential map. In the following, we take τ > 0

and set ρ = πτ in the definition of the Hölder spaces of Section 4.2.2.

Definition 4.2.4. Let 1 ⩽ d < D be integers. We let Cd(τ) define the set of submanifolds

M of RD that contain x0 and satisfying the following properties:

(i) (Dimension) M is a smooth submanifold of dimension d without boundaries;
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(ii) (Compactness) M is compact;

(iii) (Reach condition) We have τM ⩾ τ .

For α ⩾ 1 and L > 0, we define Cd,α(τ,L) as the set of M ∈ Cd(τ) that fulfill the additional

condition:

(iv) The inclusion map ιM ∶M ↪ RD is (α + 1)-Hölder with ∣ιM ∣α+1 ⩽ L.

Remark 4.2.5. The definitions above endow our model with global constraints, even

though most of them can be stated in a local fashion, with properties of the support

holding in a neighbourhood of our candidate point x ∈ RD. This meets two expecta-

tions:

- staying close to the existing manifold setting in statistics, like in [AL19];

- allowing for further developments, like estimation in global losses, such as Lp-

norms, Wasserstein norms, or the sup-norm [WW20].

The reach condition τM ⩾ τ > 0 in (iii) is essential in estimating consistently a den-

sity at a point in our setting, as shown in Theorem 4.2.10 in Section 4.2.5. Furthermore,

a reach constraint enables one to benefit from several interesting geometric properties.

Proposition 4.2.6. Let M be a compact smooth submanifold of RD with τM ⩾ τ . Then

the injectivity radius injM is everywhere greater than πτ .

This result is a corollary of [AB06, Thm 1.3], as explained in [AL19, Lem A.1]. Pick

M ∈ Cd(τ). For any x ∈ M , the map v ↦ expx(v) − x is bounded above by πτ on

BTxM(0, πτ) , since for any v ∈ BTxM(0, πτ), we have ∥ expx(v) − x∥ ⩽ dM(expx(v), x) =
∥v∥, where dM is the intrinsic distance on M . This uniform bound along with the

Hölder condition (iv) allows one to obtain a uniform bound on the first derivatives of

the exponential map.

Lemma 4.2.7. For M ∈ Cd,α(τ,L), any x ∈M , and any 1 ⩽ j ⩽ ⌈α⌉, we have

sup
v∈BTxM (0,πτ/2)

∥dj expx(v)∥op ⩽ Lj ,

with Lj depending on d, τ , L and α only.

See Lemma 4.A.6 in the appendix for further details on the proof. In the light of this

result, the model of Definition 4.2.4 is thus quite close to the one proposed by [AL19].

Remark 4.2.8. There is no obvious equivalence between M having a reach greater than

τ , and M being Hölder, in particular because the reach is a global quantity, while the

Hölder smoothness property, as defined in Section 4.2.2, is a local feature. However,

having a reach greater than τ implies that ∥d2 expx(0)∥ ⩽ 2/τ , in light of Proposition

4.A.1. For this reason, we always have that the submanifold M is at least 2-Hölder.
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We are ready to define the class of density functions that we study, built upon

submanifolds in the class Cd(τ).

Definition 4.2.9. Let 1 ⩽ d ⩽ D − 1, α ⩾ 1, β > 0, τ > 0, L > 0, R > 0 and 0 ⩽ fmin < fmax.

We define Σd
α,β(τ,L, fmin, fmax,R), or Σd

α,β for short, as the set of probability measures P

on RD (endowed with its Borel σ-field) such that

(i) There exists MP ∈ Cd,α(τ,L) such that suppP =MP ;

(ii) There exists a version of the Radon-Nikodym derivative dP
dµMP

, denoted by fP , that

belongs toHβ(MP ,R);

(iii) This version satisfies fmin ⩽ fP ⩽ fmax and ∣fP ∣β ⩽ R.

Some remarks: 1) The support of any P ∈ Σd
α,β(τ,L, fmin, fmax,R) contains the can-

didate point x0 by construction, see Definition 4.2.4 where Cd,α(τ,L) is defined. 2)

Condition (i) discards the possibility that fP is zero on non-null subset of M ; in partic-

ular fP is non zero around x0 (but can be zero at x0 nonetheless). This ensures that x0

does not lie too far from the data. An alternate definition is to impose a condition like

P ≪ µM . This leads to the same results in the next sections, but with a slight ambiguity

in the choice of M . 3) The parameters in subscript or superscript (d,α, β) control the

rate of convergence of the estimation, while the parameters (τ,L, fmin, fmax,R) control

the pre-factor in the rates of convergence. For notational simplicity, we sometimes

omit them when no confusion can be made.

4.2.5 Choice of a loss function and the reach assumption

For P ∈ Σd
α,β and a n-sample (X1, . . . ,Xn) drawn from P , our goal is to recover the

value of fP (x0) thanks to an estimator f̂(x0) built on top of the data (X1, . . . ,Xn). We

measure the accuracy of estimation by the maximal expected risk or order p, for p ⩾ 1,

defined by

sup
P ∈Σd

α,β

EP⊗n[∣f̂(x0) − fP (x0)∣p]1/p

We look for an estimator with the smallest possible maximal risk as the number of

observations n goes to ∞. We first show that if we let τ = 0, i.e. if we do not impose a

reach condition, then it is impossible to estimate fP (x0) consistently as n→∞ for any

estimator, thus establishing that the reach assumption τ > 0 is unavoidable.

Theorem 4.2.10. In the setting of Definition 4.2.9, if we let τ = 0, the following lower

bound holds

inf
f̂(x)

sup
P ∈Σd

α,β

EP⊗n[∣f̂(x0) − fP (x0)∣p]1/p ⩾ 1

2
(fmax − fmin) > 0,

where the infimum is taken over all estimators f̂(x0) of fP (x0).
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The proof is given in Appendix 4.A.2. This result is in line with a reach condition τ >
0, a customary necessary condition in a minimax reconstruction in geometric inference,

when the manifold is unknown, see [NSW08, GPPVW12a, BRS+12, KRW16, AL19] and

the references therein.

4.3 Density estimation at a fixed point

Recall that we fix a point x0 ∈ RD where we wish to estimate fP . Throughout the

section, the symbols ≲ and ≳ denote inequalities up to a constant that, unless specified

otherwise, depends on the parameters d,α, β, τ,L, fmin, fmax,R and p. The expression

for n large enough means for n bigger than a constant that depends on the same

parameters.

4.3.1 Main results

Let D ⩾ 2, τ > 0, L > 0, R > 0, 0 ⩽ fmin < fmax and p ⩾ 1. Recall that we write Σd
α,β for

short for Σd
α,β(τ,L, fmin, fmax,R) as defined in Definition 4.2.9. The main results of this

section are the following.

Theorem 4.3.1 (Upper bound). For any 1 ⩽ d ⩽ D − 1, α ⩾ 1 and β > 0, there exists an

estimator f̂(x0) – explicitly constructed in Section 4.3.2 below – depending on α,β and

d, such that, for n large enough,

sup
P ∈Σd

α,β

EP⊗n[∣f̂(x0) − fP (x0)∣p]1/p ≲ n−α∧β/(2α∧β+d).

The estimator of Theorem 4.3.1 is a kernel density estimator that depends on α,β

and d through the choice of the kernel and its order (in a certain sense specified below),

together with its bandwidth. Its analysis is given in Section 4.3.2. The estimator is

indeed optimal in a minimax sense, as soon as α ⩾ β.

Theorem 4.3.2 (Lower bound). Let 1 ⩽ d ⩽D − 1, α ⩾ 1 and β > 0. If L and fmax are large

enough and if fmin is small enough (depending on τ ), then

lim inf
n→∞

nβ/(2β+d) inf
f̂(x0)

sup
P ∈Σd

α,β

EP⊗n[∣f̂(x0) − fP (x0)∣p]1/p ⩾ C∗ > 0

where C∗ only depends on τ and R.

See Appendix 4.A.3 for a proof. The rates from Theorem 4.3.1 and Theorem 4.3.2

agree, provided the underlying manifold M is regular enough, namely that α ⩾ β. This

probably covers most cases of interest in practice. However, when α < β the question

of optimality remains. We investigate in Section 4.3.3 below the simpler case d = 1 and

show that it is then possible to achieve the rate n−β/(2β+1), at the extra cost of learning

the geometry of M in a specific sense.

118



CHAPTER 4. POINTWISE DENSITY ESTIMATION

Theorem 4.3.3 (One-dimensional case). Let d = 1 and β > 0. Assume that fmin > 0.

Then there exists an estimator f̂1D(x0) – explicitly constructed in Section 4.3.3 below –

depending on β, such that, for any α ⩾ 1 and for n large enough,

sup
P ∈Σ1

α,β

EP⊗n[∣f̂1D(x0) − fP (x0)∣p]1/p ≲ n−β/(2β+1).

The estimator described in Theorem 4.3.1 and Theorem 4.3.3 requires the speci-

fication of α, β and d, that are usually unknown in practice. We can circumvent this

impediment by building an adaptative procedure with respect to these parameters.

In Section 4.3.4 we adapt to the smoothness parameters α and β by implementing

Lepski’s method [Lep92]; in Section 4.3.5, we adapt to d by plugging-in a dimension

estimator. We obtain the following result:

Theorem 4.3.4 (Adaptation). Let ` ⩾ 0. Assume that fmin > 0. Then, there exists an

estimator f̂adapt(x0) – explicitly constructed in Section 4.3.5 below – depending on ` such

that, for any α,β in [0, `] and any 1 ⩽ d ⩽D − 1, we have, for n large enough,

sup
P ∈Σd

α,β

EP⊗n[∣f̂adapt(x0) − fP (x0)∣p]1/p ≲ ( logn

n
)

α∧β
2α∧β+d

.

We were unable to obtain oracle inequalities in the spirit of the Goldenshluger-

Lepski method, see [GL08, GL11, GL14], due to the non-Euclidean character of the

support of fP : our route goes along the more classical approach of [LMS97]. Obtaining

oracle inequalities in this framework remain an open problem.

4.3.2 Kernel estimation

Classical nonparametric density estimation methods are based on kernel smoothing

[Par62, Sil86]. In this section, we combine kernel density estimation with the minimal

geometric features needed in order to recover efficiently their density. Since the intrin-

sic dimension d is not prone to change in this section, we further drop d in (most of)

the notation. The proofs of this section can be found in Appendix 4.A.4.

Let K ∶ RD → R be a smooth function vanishing outside the unit ball B(0,1). Given

an n-sample (X1, . . . ,Xn) drawn from a distribution P on RD, we are interested in the

behaviour of the kernel estimator

f̂h(x0) =
1

nhd

n

∑
j=1

K (Xi − x0

h
) , h > 0. (4.4)

Note that the normalisation here is hd and not hD as one would set for a classical kernel

estimator in RD. Our main result is that f̂h(x0) behaves well when P is supported on a
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d-dimensional submanifold of RD.

We need some notation. For P ∈ Σd
α,β , define

fh(P,x0) = EP⊗n[f̂h(x0)],

Bh(P,x0) = fh(P,x0) − fP (x0),

and

ξ̂h(P,x0) = f̂h(x0) − fh(P,x0),

that correspond respectively to the mean, bias and stochastic deviation of the estimator

f̂h(x0). We also introduce the quantity

Ω(h) =
√

2ω

nhd
+ ∥K∥∞

nhd
with ω = 4dζd∥K∥2

∞fmax,

where ζd is the volume of the unit ball in Rd. The quantity Ω(h) will prove to be

a good majorant of the stochastic deviations of f̂h(x0). The usual bias-stochastic

decomposition of f̂h(x) leads to

EP⊗n[∣f̂h(x0) − fP (x0)∣p]1/p ⩽ ∣Bh(P,x0)∣ + (EP⊗n[∣ξ̂h(P,x0)∣p])
1/p
. (4.5)

We study each term separately. The stochastic term can readily be bounded from

above.

Proposition 4.3.5. Let p ⩾ 1. There exists a constant cp > 0 depending on p only such

that or any P ∈ Σd
α,β and any h < τ/2:

(EP⊗n[∣ξ̂h(P,x0)∣p])
1/p ⩽ cpΩ(h).

Now we turn to the bias term. We need certain properties for the kernel K. More

precisely, we assume that

Assumption 4.3.6. The kernel K verifies

(i) K is smooth and supported on the unit ball B(0,1);

(ii) For any d-dimensional subspace H of RD, we have ∫HK(v)dv = 1.

One way to obtain Assumption 4.3.6 is to set Λ(x) = exp ( − 1/(1 − ∥x∥2)) for x ∈
B(0,1) and Λ(x) = 0 otherwise. Since Λ is rotationally invariant, its integral is the same

over any d-subspace H of RD. Thus, with λd = ∫H0
Λ(v)dv where H0 = Rd × {0RD−d}, the

function K(x) = λ−1
d Λ(x) is a smooth kernel, supported on the unit ball of the ambient

space RD that satisfies Assumption 4.3.6. In the following, we pick an arbitrary kernel

K such that Assumption 4.3.6 is satisfied.
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Lemma 4.3.7. For P ∈ Σd
α,β and any h < τ/2, setting k = ⌈α ∧ β − 1⌉, we have

fh(P,x0) = f(x0) +
k

∑
j=1

hjGj(P,x0) +Rh(P,x0), (4.6)

with ∣Gj(P,x0)∣ ≲ 1 and ∣Rh(P,x0)∣ ≲ hα∧β .

The existence of such an expansion allows, by carefully choosing the kernel, to

cancel the intermediate terms. Starting from a kernel K satisfying Assumption 4.3.6,

we recursively define a sequence of smooth kernels (K(d,`))`⩾1, simply denoted byK(`)

in this section, with support in B(0,1) as follows (see Figure 4.3.1). For z ∈ RD, we put

⎧⎪⎪⎪⎨⎪⎪⎪⎩

K(1)(z) =K(z)

K(`+1)(z) = 21+d/`K(`)(21/`z) −K(`)(z) ∀` ⩾ 1.
(4.7)

A few remarks can be made: 1) In a classical kernel density estimation framework,

the integer ` − 1 plays the role of the order of the kernel. 2) The assumption that

K is compactly supported is seemingly quite strong. This is a way to make sure

that the support of x ↦ K ((x − x0)/h) is within the injectivity ball of the map expx0

for any h < πτ . 3) The construction of K is simply an example of a Richardson’s

extrapolation as coined by [Ric11]. 4) This construction somewhat differs from the

classical constructions than can be found in textbooks such as [Tsy08]. There is one

practical reason: we require that all the kernels satisfy Assumption 4.3.6; another reason

that appears to be more intrinsically related to our model: since the Euclidean distance

is only a second order approximation of the Riemannian distance on M , defining a

kernel through orthogonality relations with respect to a family of polynomials is not

sufficient in our framework.

Figure 4.3.1 – Plots of the kernel K(d,`) for d = 1 and ` = 1,2,3.

Proposition 4.3.8. Let ` be an integer greater than α and β, and let K(`) be the kernel

defined in (4.7) starting from a kernel K satisfying Assumption 4.3.6. Then, for any
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P ∈ Σd
α,β and any bandwidth h < τ/2, the estimator f̂h(x0) defined as in (4.4) using K(`)

is such that

∣Bh(P,x0)∣ ≲ hα∧β. (4.8)

Patching together Proposition 4.3.5 and Proposition 4.3.8 yields

sup
P ∈Σd

α,β

EP⊗n[∣f̂h(x0) − fP (x0)∣p]1/p ≲ Ω(h) + hα∧β,

for any h < τ/2. Therefore the estimator f̂(x0) = f̂h(x0) specified with h = n−1/(2α∧β+d)

indeed satisfies the conclusion of Theorem 4.3.1, for n large enough.

4.3.3 The special case of one-dimensional submanifolds

The gap we observe between the two rates in Theorem 4.3.1 and Theorem 4.3.2 leads to

the following question: does the regularity α ⩾ 1 of M have a genuine limiting effect in

the estimation of fP (x0), or does it rather reveal a weakness of the estimator described

in Section 4.3.2 ? We do not have a definitive answer to this question except for d = 1 i.e.

when M is a closed curve in an Euclidean space. We can then show that the parameter

α does not interfere at all with the density estimation. The proofs of this section can be

found in Appendix 4.A.5.

If d = 1, any submanifold M in C1(τ) is a closed smooth injective curve that can be

parametrized by a unit-speed path γM ∶ [0, LM ]→ RD with γM(0) = γM(LM) and with

LM = volM being the length of the curve. In that case, the volume density function is

trivial.

Lemma 4.3.9. For M ∈ C1(τ), for any x ∈M and any v ∈ TxM , we have det gx(v) = 1.

Thanks to Lemma 4.3.9, the estimator proposed by [Pel05] takes a simpler form,

which we will try to take advantage of. Indeed, in the representation (4.2) of [Pel05],

only dM remains unknown. We now show how to efficiently estimate dM thanks to

the Isomap method as coined by [TSL00]. The analysis of this algorithm essentially

comes from [BDSLT00] and is pursued in [ACLG19], but the bounds obtained there are

manifold dependent. We thus propose a slight modification of their proofs in order to

obtain uniform controls over C1(τ), and make use of the simplifications coming from

the dimension 1. Indeed, for d = 1, we have the following simple and explicit formula

for the intrinsic distance on M :

dM(γM(s), γM(t)) = ∣t − s∣ ∧ (LM − ∣t − s∣) ∀s, t ∈ [0, LM ].

The Isomap method can be described as follows: let ε > 0, and let Gε be the ε-

neighbourhood graph built upon the data (X1, . . . ,Xn) and x0 — namely, Gε = (V,E)

122



CHAPTER 4. POINTWISE DENSITY ESTIMATION

where V = (x0,X1, . . . ,Xn), and where E = {(y, z) ∈ V ∣ ∥y − z∥ ⩽ ε}. For a path in Gε
(meaning: a sequence of adjacent vertices) s = (p0, . . . , pm), we define its length as

Ls = ∥p1 − p0∥+ ⋅ ⋅ ⋅ + ∥pm − pm−1∥. The distance between x and a vertice y in the graph Gε
is then defined as

d̂ε(x, y) = min{Ls ∣ s path in Gε connecting x to y} , (4.9)

and we set this distance to∞ if x and y are not connected. We are now ready to describe

our estimators f̂1D(x0). For any h, ε > 0, we set

f̂1D
h (x0) =

1

nh

n

∑
i=1

K1D(d̂ε(x0,Xi)/h), (4.10)

for some kernel K1D ∶ R → R. Notice that the kernel K(1,`)(⋅) ∶ RD → R defined

in Section 4.3.2 starting from kernel K = λ−1
1 Λ can be put in the form K(1,`)(x) =

K(1,`)(∥x∥) withK(1,`)(⋅) denoting thus (with a slight abuse of notation) both functions

starting from either R or RD. We choose this kernel in the next statement.

Proposition 4.3.10. Assume that fmin > 0. The estimator defined in (4.10) above and

specified with K1D =K(1,`)(⋅) satisfies the following property: for any β ∈ [0, `] and any

α ⩾ 1, we have

sup
P ∈Σ1

α,β

EP⊗n[∣f̂1D
h (x0) − fP (x0)∣p]1/p ≲ ε

2

h2
+Ω(h) + hβ + 1

nh
,

with

ε = 32(p + 1)
fmin

× logn

n
,

for h < τ/4 and n large enough.

The proof of Theorem 4.3.3 readily follows from Proposition 4.3.10 using the esti-

mator f̂1D = f̂1D
h with h = n−1/(2β+1).

4.3.4 Smoothness adaptation

We implement Lepski’s algorithm, following closely [LMS97] in order to automatically

select the bandwidth from the data (X1, . . . ,Xn). We know from Section 4.3.2 that the

optimal bandwidth on Σd
α,β is of the form n−1/(2α∧β)+d. Hence, without prior knowledge

of the value of α and β, we can restrict our search for a bandwidth in a bounded interval

of the form [h−,1] discretized as follow

H = {2−j , for 0 ⩽ j ⩽ log2(1/h−)}

We pick

h− = (∥K∥∞
2ω

)
1/d

1

n1/d ;
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this bandwidth is always smaller than the optimal bandwidth n−1/(2α∧β+d) on Σd
α,β for

n large, and is such that Ω(h) ⩽ 2
√

2ω/(nhd) for all h ⩾ h−. For h, η ∈ H, we introduce

the following quantities:

λ(h) = 1 ∨
√

Θd log(1/h),

ψ(h, η) = Ω(h)λ(h) +Ω(η)λ(η) (4.11)

where Θ is a positive constant (to be specified). For h ∈ H we define the subset of

bandwidths H(h) = {η ∈ H, η ⩽ h} The selection rule for h is the following:

ĥ(x0) = max{h ∈ H ∣ ∀η ∈ H(h), ∣f̂h(x0) − f̂η(x0)∣ ⩽ ψ(h, η)} ,

and we finally consider the estimator

f̂(x0) = f̂ĥ(x0)(x0), (4.12)

where f̂h(x0) is defined at (4.4).

Proposition 4.3.11. Assume Θ > p. Let ` ∈ N, and let f̂(x0) be the estimator defined in

(4.12) using K(`) originated from a kernel K satisfying Assumption 4.3.6. Then, for any

α,β ⩽ `, we have, for n large enough

sup
P ∈Σd

α,β

EP⊗n[∣f̂(x0) − fP (x0)∣p]1/p ≲ ( logn

n
)
α∧β/(2α∧β+d)

.

The proof of Proposition 4.3.11 can be found in Appendix 4.A.6. Some remarks:

1) Proposition 4.3.11 provides us with a classical smoothness adaptation result in

the spirit of [LMS97]: the estimator f̂ has the same performance as the estimator

f̂h selected with the optimal bandwidth n−1/(2α∧β+d), up to a logarithmic factor on

each model Σd
α,β without the prior knowledge of α ∧ β over the range [0, `]. 2) The

extra logarithmic term is the unavoidable payment for the Lepski-Low phenomenon

[Lep90, Low92] when recovering a function in pointwise or in a uniform loss.

4.3.5 Simultaneous adaptation to smoothness and dimension

The estimators considered in Theorem 4.3.1 or Proposition 4.3.11 heavily rely on

the intrinsic dimension d through the choice a of kernel satisfying Assumption 4.3.6,

through the normalisation hd and either through the choice of an optimal bandwidth

h, or the selection procedure (4.11)-(4.12). We now show how to adapt to d considered

as an unknown and nuisance parameter. The proofs of this section can be found in

Appendix 4.A.7.
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We redefine all the quantities introduced before as now depending on d. Namely,

for h, η > 0, and a given family of kernel K(d; ⋅), we set

f̂h(d;x0) =
1

nhd

n

∑
i=1

K(d; (Xi − x0)/h).

Ω(d;h) =
√

2ωd
nhd

+ ∥K(d; ⋅)∥∞
nhd

with ωd = 4dζd∥K(d; ⋅)∥2
∞fmax,

λ(d;h) = 1 ∨
√

Θd log(1/h),

ψ(d;h, η) = v(d;h)λ(d;h) + v(d;η)λ(d;η),

h−d = (∥K(d; ⋅)∥∞/2ωd)1/dn1/d,

Hd = {2−j , for 0 ⩽ j ⩽ log2(1/h−d)} ,

where Θ is a constant. We also define

ĥ(d;x0) = max{h ∈ Hd ∣ ∀η ∈ Hd(h), ∣f̂h(d;x0) − f̂η(d;x0)∣ ⩽ ψ(d;h, η)} (4.13)

with Hd(h) = {η ∈ Hd, η ⩽ h}. We are now left with the choice of kernel family K(d; ⋅).

For any 1 ⩽ d ⩽D − 1 and h > 0, we define

K(1)(d;x) = λ−1
d Λ(x)

where Λ and λd have been introduced in Section 4.3.2. We then pick an integer ` ∈ N
and choose

K(d; ⋅) =K(d,`)(d; ⋅) (4.14)

where K(d,`)(d; ⋅) is defined by recursion in (4.7) starting from the kernel K(1)(d; ⋅).

We assume that we have an estimator d̂ of the dimension d of M with values in

{1, . . . ,D}. More precisely, we need the following property:

Assumption 4.3.12. For any 1 ⩽ d <D and all real numbers α,β ∈ [0, `], we have

sup
P ∈Σd

α,β

P⊗n (d̂ ≠ d) ≲ n−3p/2,

where p is the exponent of the loss function.

If we are given such a estimator of the dimension d, then we can built a estimator

that adapts to this parameter.

Proposition 4.3.13. Let f̂(x0) = f̂ĥ(d̂, x0) built with the kernel family (4.14), where d̂

is a estimator satisfying Assumption 4.3.12 and where ĥ = ĥ(d̂, x0) is defined at (4.13).

Then, for any 1 ⩽ d ⩽D − 1, and any α,β ⩽ `, we have, for n large enough

sup
P ∈Σd

α,β

EP⊗n[∣f̂(x0) − fP (x0)∣p]1/p ≲ ( logn

n
)
α∧β/(2α∧β+d)

.
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It only remains to show that there exists an estimator d̂ satisfying Assumption 4.3.12

to obtain Theorem 4.3.4.

There are various way to define such an estimator, see [FSA07] or even [KRW16]

where an estimator with super-exponential minimax rate on a wide class of probability

measures is constructed. For sake of completeness and simplicity, we will mildly adapt

the work of [FSA07] to our setting. The resulting estimator will behave well as soon as

we add the assumption that fmin > 0.

Definition 4.3.14. For a probability measure P , we write Pη = P (B(x0, η)) for any η > 0,

and P̂η = P̂n(B(x0, η)) where P̂n = n−1∑ni=1 δXi denotes the empirical measure of the

sample (X1, . . . ,Xn). Define

δ̂η = log2 P̂2η − log2 P̂η,

and set δ̂η = D when P̂η = 0. We define d̂η to be the closest integer of {1, . . . ,D} to δ̂η,

namely d̂η = ⌊δ̂η + 1/2⌋.

Proposition 4.3.15. Assume that fmin > 0. Then, for any 1 ⩽ d ⩽ D − 1, and any α ⩾ 1,

β > 0, the estimator d̂ = d̂η for η = n−1/(2D+2) verifies for n large enough

sup
P ∈Σd

α,β

P⊗n (d̂ ≠ d) ⩽ 4 exp (−2n1−(d+1)/(D+1)) .

4.4 Numerical illustration

In this section we propose a few simulations to illustrate the results presented above.

The goal is two-fold

• To highlight the rate obtained in Theorem 4.3.1 using estimator f̂h(x0), in the

case where β ⩽ α, on arbitrary submanifold and for a carefully chosen bandwidth

h;

• To show the computational feasability and performance of estimator f̂adapt(x0)
described in Section 4.3.4.

For the sake of visualisation and simplicity, we focus on two typical examples of sub-

manifold of RD, namely non-isometric embeddings of the flat circle T1 = R/Z and of

the flat torus T2 = T1 ×T1. In particular, these embeddings will be chosen in such way

that their images, as submanifolds of RD, are not homogeneous compact Riemannian

manifolds, so that the work of [KNP12] for instance cannot be of use here.

For a given embedding Φ ∶ N →M ⊂ RD where N is either T1 of T2, we construct

absolutely continuous probabilities on M by pushing forward probability densities
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of N w.r.t. their volume measure. Indeed, if Q = g ⋅ µN , the push-forward measure

P = Φ∗Q has density f with respect to µM given by

∀x ∈M, f(x) = g(Φ−1(x))
∣detdΦ(Φ−1(x))∣

(4.15)

where the determinant is taken in an orthonormal basis of TΦ−1(x)N and TxM , so that,

if Φ is chosen smooth enough, f has the same regularity as g. If Φ is an embedding of

T1, we simply have ∣detdΦ(y)∣ = ∥Φ′(y)∥ for all y ∈ T1. If now Φ maps T2 to M , we have

∣detdΦ(y)∣ =
√

det⟨dΦ(y)[ei], dΦ(y)[ej]⟩1⩽i,j⩽2

=
√

∥dΦ(y)[e1]∥2 ∥dΦ(y)[e2]∥2 − ⟨dΦ(y)[e1], dΦ(y)[e2]⟩2 (4.16)

where (e1, e2) is an orthonormal basis of R2 ≃ TyT2.

Strictly speaking, the probability measures P exhibited below are not elements of

the models Σd
α,β , but we know that they locally coincide with some P̃ ∈ Σd

α,β around

our candidate point x, meaning that

P∣B(x,r) = P̃∣B(x,r) for some r > 0.

This ensures that all the results displayed in Section 4.3 hold for P — see Remark 4.2.5

for a discussion on the local character of our setting.

4.4.1 Simulation on one-dimensional submanifolds

Let β ∈ N∗ and define the following function for v ∈ [−1/2,1/2]

gβ(v) = Cβ × (1 − (−2v)β)1[−1/2,0)(v) +Cβ (1 − (2v)β+1)1[0,1/2]. (4.17)

whereCβ is an explicit normalisation constant. The function gβ is positive and ∫
1

0 gβ(v)dt =
1; it defines a probability density over [-1/2,1/2]. Also, because the (β − 1)-th derivative

of gβ is 1-Lipschitz, but its β-derivative is discontinuous at v = 0, the function gβ is

β-Hölder but not (β + ε)-Hölder for any ε > 0. See Figure 4.4.1 for a few plots of the

functions gβ . We next consider the parametric curve

Φ ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

T1 → R2

t↦ (cos(2πv) + a cos(2πωv), sin(2πv) + a sin(2πωv)) .

Short computations show that Φ is indeed an embedding as soon as aω < 1, in which

case M = Φ(T1) is indeed a smooth compact submanifold of R2. For the rest of this

section, we set a = 1/8 and ω = 6. See Figure 4.4.2 for a plot of M with these parameters.

We are interested in estimating the density fβ with respect to dµM of the push-forward
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Figure 4.4.1 – Plots of the densities gβ for β = 2,4,8.

Figure 4.4.2 – Plot of the submanifold M (Left) for parameters a = 1/8 and ω = 6, and

500 points sampled independently from Φ∗gβ ⋅ µT1 for β = 3 (Right). The black cross

denotes the point x = Φ(0).

measure Pβ = Φ∗gβ ⋅ µT1 , at point x0 = (1 + a,0) ∈M . We use formula (4.15) to compute

fβ(x0): We have Φ−1(x0) = 0 and ∥Φ′(0)∥ = 2π(1 + aω) hence

fβ(x0) =
Cβ

2π(1 + aω)
at x0 = (1 + a,0).

Our aim here is to provide an empirical measure for the convergence of the risk

n↦ EPβ⊗n[∣f̂h(x0) − fβ(x0)∣p]1/p when h is tuned optimally (in an oracle way). We pick

p = 2. Our numerical procedure is detailed in Algorithm 1 below, and the numerical

results are presented in Figure 4.4.5.

4.4.2 Simulation on two-dimensional submanifolds

We consider a non-isometric embedding of the flat torus T2. We first construct a

density function. For and integer β ⩾ 1, define

Gβ ∶ (v, u) ∈ [−1/2,1/2]2 ↦ gβ(v)gβ(u) (4.18)
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Algorithm 1 MSE rate of convergence estimation

1: Provide integers β ⩾ 1 and ` ⩾ β.

2: Set a grid of increasing number of points n = (n1, . . . , nk) ∈ Nk and a number of

repetition N .

3: for ni ∈ n do

4: Sample ni points independently from Pβ ,

5: Compute f̂hi(x0) with kernel K(`) and bandwidth hi = n−1/(2β+1)
i ,

6: Compute the square error (f̂hi(x) − fβ(x))2,

7: Repeat the three previous steps N times,

8: Average the errors to get a Monte-Carlo approximation R̂(ni) of EPβ⊗ni [∣f̂h(x0)−
fβ(x0)∣2].

9: end for

10: Perform an Ordinary Least Square Linear Regression on the curve logni ↦
log R̂(ni).

11: return The coefficient of the linear regression.

where gβ is defined as in (4.17). Obviously, Gβ defines a density function on T2 that is

β-Hölder (but not (β + ε)-Hölder for any ε > 0).

Figure 4.4.3 – Plot of the probability density function Gβ for β = 3.

We next consider the parametric surface

Ψ ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T2 → R3

(v, u)↦

⎛
⎜⎜⎜⎜
⎝

(b + cos(2πv)) cos(2πu) + a sin(2πωv)

(b + cos(2πv)) sin(2πu) + a cos(2πωv)

sin(2πv) + a sin(2πωu)

⎞
⎟⎟⎟⎟
⎠
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for some a, b, ω ∈ R. In the remaining of the section, we set a = 1/8, b = 3 and ω = 5. We

show that Φ indeed defines an embedding. See Figure 4.4.4 for a plot of the submanifold

M = Ψ(T2). For an integer β ⩾ 1, we denote by Fβ the density of the push forward

measureQβ = Ψ∗Gβ ⋅µT2 with respect to the volume measure µM . Let x = (b+1, a,0) be

the image of 0 by Ψ. Simple calculations show that the differential of Ψ at 0 evaluated at

Figure 4.4.4 – Plot of the submanifold M (Left) for parameters a = 1/8, b = 3 and

ω = 6, and 500 points sampled independently from Ψ∗Gβ ⋅ µT2 with β = 3 (Right).

The black cross marks the point x.

e1 = (1,0) ∈ T0T2 and e2 = (0,1) ∈ T0T2 is equal to respectively dΨ(0)[e1] = 2π(aω,0,1)
and dΨ(0)[e2] = 2π(0, b + 1, aω). Hence formula (4.16) yields

detdΨ(0) = (2π)2 ((1 + a2ω2) ((b + 1)2 + a2ω2) − a2ω2)1/2
(4.19)

and we obtain

Fβ(x0) =
C2
β

4π2
((1 + a2ω2) ((b + 1)2 + a2ω2) − a2ω2)−

1
2 .

In the same way as in the previous section, we aim at providing an empirical

measure for the rate of convergence of the risk EPβ⊗n[∣f̂h(x0) − fβ(x0)∣2] when h is

suitably tuned with respect to n and β. This is done using again Algorithm 1. The

results are presented in Figure 4.4.5.

4.4.3 Adaptation

In this section we estimate a density when its regularity is unknown, contrary to the

previous simulation where the regularity parameter β is pugged in the bandwidth

choice n−1/(2β+d). This is performed using Lepski’s method presented in Section 4.3.4.

The rate is computed using Algorithm 1, for both the one-dimensional and the two-

dimensional synthetic datasets.

For the adaptive estimation on the two-dimensional manifold, we observe that the

corrective term detdΨ(0) computed in (4.19) results in a density Fβ(x0) that is quite

small, while the function ψ defined at (4.11) and used to tune the bandwidth soars

dramatically because of the retained value of ωd = 4dζd∥K(d,`)∥2
∞fmax, so that the values
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Figure 4.4.5 – Plot of the empirical mean square error (blue) for a density sup-

ported by a one-dimensional submanifold (Left) and two-dimensional submani-

fold (Right) with parameter β = 2. We use a log-regular grid n of 21 points ranging

from 100 to 104. Each experiment is repeated N = 500 times.

of f̂h(x0) and ψ(h, ⋅) (defined at (4.11)) are not of the same order anymore at this scale

(using maximum 106 observations). To circumvent this effect, we introduce a scaling

parameter λ as follows

Gβ,λ = v, u↦ λ2Gβ(λv,λu).

Like before, we consider the push-forward probability measure Ψ∗Gβ,λ ⋅ µT2 which has

density Fβ,λ with respect to µM . For λ = 4, we find that Fβ,λ(x0) is of order 1 for most

values of β, and we use the function ψnum(h, η) = Ωnum(h)λ(h) + Ωnum(η)λ(η) using

simply Ωnum(h) =
√

1/nhd. We have no theoretical guarantee that such a method will

work but we recover nonetheless the right rate in the estimation of the value of the

density, see Figure 4.4.6 for a plot of the estimated rate.

We find an empirical error with a relatively high dispersion, hence our choice to

represent the median of the squared error instead of the more traditional mean squared

error.
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Figure 4.4.6 – (Left) Plot of the empirical median square error for the one-

dimensional submanifold with β = 2. The bandwidth h is chosen adaptively

using Lepski’s method of order ` = 3 as in Section 4.3.4. We used a log-regular grid

n of 11 points ranging from 100 to 104 and each experience was repeated N = 500

times. (Right) Same experiment but for the two dimensional manifold, with a grid

ranging from 104 to 106 and N = 100 repetitions.
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4.A Appendix of Chapter 4

4.A.1 Additional results of geometry

We first state a few classical results that we will need in the upcoming proofs. We start

with a quantitative bound that links the reach to the curvature of a submanifold. We

denote by II the second fundamental form.

Proposition 4.A.1 (Prp. 6.1 in [NSW08]). Let M be a compact smooth submanifold of

RD. Then, for any x ∈M , we have ∥ IIx ∥op ⩽ 1/τM .

Since IIx is the differential of order two of the mapping expx at the 0 ∈ TxM , Propo-

sition 4.A.1 has several convenient implications. First, it gives a uniform lower bound

for the injectivity radii of M as stated in Proposition 4.2.6. Second, it also yields nice

bounds on how well the Euclidean distance on RD approximates the Riemannian

distance dM on M ×M .

Proposition 4.A.2. [NSW08, Prp. 6.3] For any compact submanifold M of RD and any

x, y ∈M such that ∥x − y∥ ⩽ τM/2, we have

∥x − y∥ ⩽ dM(x, y) ⩽ τM
⎛
⎝

1 −
√

1 − 2∥x − y∥
τM

⎞
⎠
.
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Proposition 4.A.2 allows in turn to compare the volume measureµM to the Lebesgue

measure on its tangent spaces.

Lemma 4.A.3. For any d-dimensional compact smooth submanifold M of RD, for any

x ∈M and any η ⩽ τM/2, we have

(1 − η2/6τ2
M)dζdηd ⩽ µM(B(x, η)) ⩽ {(1 + (ξ(η/τM)η)2/τ2

M)ξ(η/τM)}d ζdηd

where ξ(s) = (1 −
√

1 − 2s)/s and ζd is the volume of the unit Euclidean ball in Rd.

Proof. This result already appears in [Aam17, Lem III.23] but we prove it here to make

constants explicit. Let us denote by Leb the Lebesgue measure on TxM . Using [Aam17,

Prp III.22.v], we know that, as long as ξ(η/τM)η ⩽ τM (which holds if η ⩽ τM/2),

(1 − η2/6τ2)d Leb(BTxM(0, η)) ⩽ µM( expx(BTxM(0, η)))

⩽ µM( expx(BTxM(0, ξ(η/τM)η)))

⩽ (1 + (ξ(η/τM)η)2/τ2
M)d Leb(BTxM(0, ξ(η/τM)η)).

Thanks to Proposition 4.A.2, if η ⩽ τM/2, then expx (BTxM(0, η)) ⊂ M ∩ B(x, η) ⊂
expx (BTxM(0, ξ(η/τM)η)). These inclusions combined with the last inequalities yield

the result.

4.A.2 Proof of Theorem 4.2.10

We go along a classical line of arguments, thanks to a Bayesian two-point inequality by

means of Le Cam’s lemma [Yu97, Lem. 1], restated here in our context. For two proba-

bility measures P1, P2, we write TV(P1, P2) = supA ∣P1(A) − P2(A)∣ for their variational

distance and H2(P1, P2) = ∫ (
√
dP1 −

√
dP2)

2
for their (squared) Hellinger distance.

Lemma 4.A.4. (Le Cam) For any P1, P2 ∈ Σd
α,β , we have,

inf
f̂

sup
P ∈Σd

α,β

EP⊗n[∣f̂(x0) − fP (x0)∣p]1/p

⩾ 1

2
∣fP1(x0) − fP2(x0)∣ (1 −TV (P⊗n

1 , P⊗n
2 )) (4.20)

⩾ 1

2
∣fP1(x0) − fP2(x0)∣ (1 −

√
2 − 2(1 −H2(P1, P2)/2)n) .

Proof. The proof of (4.20) can be found in [Yu97, Lem. 1]. It only remains to see that

TV (P⊗n
1 , P⊗n

2 ) ⩽
√

2 − 2(1 −H2(P1, P2)/2)n. This comes from classical inequalities on

the Hellinger distance, see [Tsy08, Lem. 2.3 p.86] and [Tsy08, Prp.(i)-(iv) p.83].

Proof of Theorem 4.2.10. With no loss of generality, we pick x0 = 0. We work in Rd+1 ⊂
RD, and denote (e1, . . . , ed+1) the canonical basis of Rd+1. We consider a family of

submanifolds Mδ ⊂ Rd+1 such that

Mδ ⋂ {(z, t) ∈ Rd ×R ∣ ∥z∥ ⩽ 1} = O(δ) ∪O(−δ)
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where O(t) = {(z, t) ∣ z ∈ Rd, ∥z∥ ⩽ 1}. We do not give the construction explicitly, but

refer instead to Figure 4.A.1 for a diagram of such a manifold.

Figure 4.A.1 – Diagram of a candidate for Mδ.

We endow each Mδ with a density fδ such that

∀z ∈ O(δ), fδ(z) = fmax and ∀z ∈ O(−δ), fδ(z) = fmin

and we denote Qδ = fδdµMδ
. If fmin is small enough (due to the constraint vol suppP ⩽

1/fmin for any P ∈ Σd
α,β) we can always choose Mδ and fδ so that ∣ιMδ

∣α+1 ⩽ R/2 and

∣fδ ∣β ⩽ L/2.

Let now Φ ∶ Rd+1 → R be a smooth, positive, radial function with support in B(0,1)
with Φ(0) = 1. Because the exponential map smoothly depends on the metric, for any

h < 1, there exists δh ∈ (0, h) sufficiently small such that the push-forward measures of

Qδh through the mappings

Ψ+
h(z) = Id−δhΦ(z − δhed+1

h
) ed+1 and Ψ−

h(z) = Id+δhΦ(z + δhed+1

h
) ed+1

are both in Σd
α,β . We write N±

h = Ψ±
h(Mδh), P ±

h = (Ψ±
h)∗ (Qδh) and g±h for the continuous

version of the density dP ±
h /dµN±

h
. See Figure 4.A.2 for a diagram of N+

h and N−
h .

Using Lemma 4.A.4, we obtain

inf
f̂

sup
P ∈Σd

α,β

EP⊗n[∣f̂(0) − fP (0)∣p]1/p ⩾ 1

2
∣g+h(0) − g

−
h(0)∣ (1 − nTV (P+

h , P
−
h )) .

But now g+h(0) = fδh(δhed+1) × ∣detdΨ+
h(δhed+1)∣−1 = fmax and, likewise, g−h(0) = fmin. As

for the total variation distance, we have that TV (P +
h , P

−
h ) is equal to

P +
h (Ψ

+
h(hO(δh)) + P +

h (hO(−δh)) + P −
h (Ψ

−
h(hO(−δh)) + P −

h (hO(δh))

= 2 vol(hO(δh)) × (fmin + fmax) = 2ζdh
d (fmin + fmax)

where we recall that ζd is the volume of the d-dimensional unit-ball. Putting all the

estimates together, we conclude

inf
f̂

sup
P ∈Σd

α,β

EP⊗n[∣f̂(0) − fP (0)∣p]1/p ⩾ 1

2
(fmax − fmin) (1 − 2nζdh

d (fmin + fmax)) .

Letting h goes to 0 yields the result.
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Figure 4.A.2 – Diagram of manifolds N+

h (Left) and N−

h (right).

4.A.3 Proof of Theorem 4.3.2

Proof of Theorem 4.3.2. Suppose without loss of generality that x = 0 and consider a

smooth submanifold M of Rd+1 ⊂ RD that contains the disk BRd(0,1) ⊂ Rd × {0RD−d}
with reach greater than τ , see Figure 4.A.3 for a diagram of such an M . By smoothness

and compacity of M , there exists L∗ (depending on τ ) such that M ∈ Cd,α(τ,L∗). Let

P be the uniform probability measure over M , with density f ∶ x↦ 1/volM . We have

P ∈ Σd
α,β as long as L∗ ⩽ L and fmin ⩽ 1/volM ⩽ fmax an assumption we make from now

on. For 0 < δ ⩽ 1, let Pδ = fδ ⋅ dµM with

fδ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f(x) + δβG(x/δ) if x ∈ BRd(0, δ)

f(x) otherwise

withG ∶ Rd → R a smooth function with support inBRd(0,1) and such that ∫Rd G(y)dy =
0. We pick G such that fδ ∈ Fβ for small enough δ, depending on τ . Such a G can be

chosen to depend on R only.

For δ small enough (depending on τ ), we thus havePδ ∈ Σd
α,β as well. By Lemma 4.A.4,

we infer

inf
f̂

sup
P ∈Σd

α,β

EP⊗n[∣f̂(x) − fP (x)∣p]1/p ⩾ 1
2δ
β ∣G(0)∣ (1 −

√
2 − 2(1 −H2(P,Pδ))n)
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Figure 4.A.3 – Diagram of a candidate for M (Left) and of the densities f and fδ
around 0 (Right).

so that it remains to compute H2(P,Pδ). We have the following bound

H2(P,Pδ) = ∫
BRd(0,δ)

(1 −
√

1 + volMδβG(x/δ))2dx

⩽ ∫
BRd(0,δ)

(volM)2δ2βG2(x/δ)dx

⩽ (C ∨ 1)δ2β+d

with C = volM × ∫BRd(0,1)
G(z)2dz depending on τ and R only. Taking δ = (1/(C ∨

1)n)1/(2β+d) we obtain, for large enough n (depending on τ )

inf
f̂

sup
P ∈Σd

α,β

EP⊗n[∣f̂(x) − fP (x)∣p]1/p

⩾1
2
((C ∨ 1)n)−β/(2β+d)

√
2 − 2(1 − 1/n)n ⩾ C∗n−β/(2β+d),

with C∗ = (C ∨ 1)−1/2 depending on τ and R.

4.A.4 Proofs of Section 4.3.2

We set Kh(x) = h−dK(x/h) and start with bounding the variance of Kh(X − x0) when

X is distributed according to P ∈ Σd
α,β . Let first observe that

∣Kh(X − x0)∣ ⩽
∥K∥∞
hd

1BD(x0,h)(X) ⩽ ∥K∥∞
hd

(4.21)

Lemma 4.A.5. For any P ∈ Σd
α,β and for any h ⩽ τ/2,

VarP (Kh(X − x0)) ⩽
ω

hd
where ω = 4dζd∥K∥2

∞b.

with ζd being the volume of the unit ball in Rd.
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Proof. We have

VarP (Kh(X − x0)) ⩽ EP [Kh(X − x0)2] ⩽ ∥K∥2
∞

h2d
P (B(x0, h)) ⩽

4dζdfmax∥K∥2
∞

hd

where we used (4.21) and Lemma 4.A.3 with η = τ/2.

Using Bernstein inequality [BLM13, Thm. 2.10 p.37], for any P ∈ Σd
α,β and any t > 0,

we infer

P
⎛
⎝
∣ξ̂h(P,x)∣ ⩾

√
2ωt

nhd
+ ∥K∥∞t

nhd
⎞
⎠
⩽ 2e−t, (4.22)

where P is a short-hand notation for the distribution P⊗n of the n-sample X1, . . . ,Xn

taken under P . The bound (4.22) is the main ingredient needed to bound the Lp-norm

of the stochastic deviation of f̂h.

Proof of Proposition 4.3.5. We denote by u+ = max{u,0} the positive part of a real

number u. We start with

EP⊗n[∣ξ̂h(P,x0)∣p] ⩽ 2p−1 (Ω(h)p +EP⊗n[(∣ξ̂h(P,x0)∣ −Ω(h))p+]) .

The first term has the right order. For the second one, we make use of (4.22) to infer

EP⊗n[(∣ξ̂h(P,x0)∣ −Ω(h))p+]

= ∫
∞

0
P (∣ξ̂h(P,x0)∣ > Ω(h) + u)pup−1du

= pΩ(h)p∫
∞

0
P (∣ξ̂h(P,x0)∣ > Ω(h)(1 + u))up−1du

⩽ pΩ(h)p
⎛
⎝

1 + ∫
∞

1
P
⎛
⎝
∣ξ̂h(P,x0)∣ >

√
2ω(1 + u)
nhd

+ ∥K∥∞(1 + u)
nhd

⎞
⎠
up−1du

⎞
⎠

⩽ pΩ(h)p (1 + ∫
∞

1
2e−1−uup−1du)

⩽ pΩ(h)p(1 + Γ(p))

which ends the proof.

The proof of Lemma 4.3.7 partly relies on the following elementary lemma.

Lemma 4.A.6. Let γ ⩾ 0 be a real number and let g ∶ Rm → R for m ∈ N∗ satisfying that

∥g∥∞ ⩽ b and that the restriction of g to B(0, r) (denoting here the open ball in Rm) is

β-Hölder, meaning that

∀v,w ∈ B(0, r), ∥dkg(v) − dkg(w)∥op ⩽ A∥v −w∥δ

for some A > 0 with k = ⌈γ − 1⌉ and δ = γ − k. Then there exists a constant C (depending

on m,γ, r, b and A, and depending on m and γ when r =∞) such that, for all 1 ⩽ j ⩽ k,

sup
v∈B(0,r/2)

∥djg(v)∥op ⩽ Cb1−j/γAj/γ .
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Proof. Let v ∈ B(0, r/2). Since g is γ-Hölder on B(0, r), we know that there exists a

function Rv such that, for any z such that v + z ∈ B(0, r), we have

g(v + z) −
k

∑
j=0

1

j!
djg(v)[z⊗k] = Rv(z)

with ∣Rv(z)∣ ⩽ A∥z∥β/k!. Let h = (2bk!/A)1/γ , and z0 ∈ Rm be unit-norm. Pick a1, . . . , ak ∈
(0,1) all distincts and small enough such that hakz0 ∈ B(0, r/2) for all k (if r =∞, then

we can pick the ai independently from A, b and γ). Introducing the vectors of Rk

X = (hdg(v)[z0], . . . ,
hk

k!
dkg(v)[z⊗k0 ]) and

Y = (g(v + ha1z0) − g(v) −Rv(ha1z0), . . . , g(v + hakz0) − g(v) −Rv(hakz0))

we have Y = V X with V being the Vandermonde matrix associated with the real

numbers (a1, . . . , ak). The former being invertible, we have ∥X∥ ⩽ ∥V −1∥op∥Y ∥ and thus,

for any 1 ⩽ j ⩽ k

∣h
j

j!
djg(v)[z⊗k0 ]∣ ⩽ ∥V −1∥op (2b + A

k!
hγ) .

Substituing the value of h and noticing that the former inequality holds for every

unit-norm vector z0, we can conclude.

Proof of Lemma 4.3.7. We set Bh = B(x0, h). Since τ/2 is smaller than the injectivity

radius of expx0
(see Proposition 4.2.6) we can write

fh(P,x0) = ∫
Bh
Kh (p − x0) f(p)dµM(p)

= ∫
exp−1

x0
Bh
Kh(expx0

v − x0)f(expx0
v)ζ(v)dv (4.23)

with ζ(v) =
√

det gx0(v). We set γ = α ∧ β and k = ⌈γ − 1⌉. Let F denote the map

f ○ expx0
. For h smaller than τ/2, we have exp−1

x0
Bh ⊂ BTx0M

(0,2h) ⊂ BTx0M
(0, τ) (see

Proposition 4.A.2). We can thus write the following expansion, valid for all v ∈ exp−1
x0
Bh

and all w ∈ Tx0M ,

expx0
(v) = x + v +

k+1

∑
j=2

1

j!
dj expx0

(0)[v⊗j] +R1(v) with ∥R1(v)∥ ⩽ C1∥v∥γ+1, (4.24)

F (v) = f(x0) +
k

∑
j=1

1

j!
djF (0)[v⊗j] +R2(v) with ∣R2(v)∣ ⩽ C2∥v∥γ , (4.25)

K(v +w) =K(v) +
k

∑
j=1

1

j!
djK(v)[w⊗j] +R3(v,w) with ∣R3(v,w)∣ ⩽ C3∥w∥γ , (4.26)
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with C1 depending on α, τ and L, C2 depending on β, τ, fmax and R (see Lemma 4.A.6),

andC3 depending onK. Since now we know that gx0
ij (v) = ⟨d expx0

(v)[ei], d expx0
(v)[ej]⟩,

we have a similar expansion for the mapping ζ(v) =
√

det gx0(v)

ζ(v) = 1 +
k

∑
j=1

1

j!
djζ(0)[v⊗j] +R4(v) with ∣R4(v)∣ ⩽ C4∥v∥γ (4.27)

with C4 depending on α, τ and L. Making the change of variable v = hw in (4.23), we

get

fh(P,x0) =
k

∑
k=0

Gj(h,P, x0) +Rh(P,x0)

with Gj corresponding to the integration of the j-th order terms in the expansion

around 0 of the function w ↦ K ( expx0
(hw)−x0

h )F (hw)ζ(hw). In particular Gj can be

written as a sum of terms of the type

I = hj ∫ 1
h

exp−1
x0
Bh
dmK(w)[φ(w)⊗m]ψ(w)dw

where ψ and φ are monomials in w satisfying mdegφ + degψ = j, with coefficients

bounded by constants depending on α, τ,L, β, fmax and R (again, use Lemma 4.A.6

to bound the derivatives). Since now BTx0M
(0,1) ⊂ 1

h exp−1
x0
Bh, and since djK is zero

outside of B(0,1), we have that Gj can actually be written Gj(h,P, x) = hjGj(P,x0)
with ∣Gj(P,x0)∣ ⩽ C for some C depending on K,α, τ,L, β, fmax and R. Similar reason-

ing leads to Rh(P,x0) ⩽ Chγ with C depending again on K,α, τ,L, β, fmax and R. To

conclude, it remains to compute G0(P,x0). Looking at the zero-th order terms in the

expansions (4.24) to (4.27), we find that

G0(P,x0) = ∫
BTx0M

(0,1)
K(w)f(x0)dw = f(x0)

where we used Assumption 4.3.6. The proof of Lemma 4.3.7 is complete.

Proof of Proposition 4.3.8. For a positive integer ` ⩾ 1, let f (`)
h (P,x0) be the mean of the

estimator f̂h(x0) computed using K(`). Let γ = α ∧ β and k = ⌈γ − 1⌉. We recursively

prove on 1 ⩽ ` <∞ the following identity

∀h ⩽ τ/2, f
(`)
h (P,x0) = f(x0) +

k

∑
j=`
hjG

(`)
j (P,x0) +R(`)

h (P,x0) (4.28)

where ∣R(`)
h (P,x0)∣ ⩽ C(`)hγ for some constant C(`) depending on τ, `,L,R, fmax and

β. The initialisation step ` = 1 has been proven in Lemma 4.3.7. Let now 1 ⩽ ` ⩽ k. By

linearity of fh(P,x0) with respect to K, we have

f
(`+1)
h (P,x0) = 2f

(`)
2−1/`h

(P,x0) − f (`)
h (P,x0).
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Since 2−1/`h ⩽ h, we can use our induction hypothesis (4.28) and find

f
(`+1)
h (P,x0) = f(x0) +

k

∑
j=`

(21−j/` − 1)hjG(`)
j (P,x0) + 2R

(`)
2−1/`h

(P,x0) −R(`)
h (P,x0).

We conclude noticing that 21−j/` − 1 = 0 for j = `, and setting G(`+1)
j (P,x0) = (21−j/` −

1)G(`)
j (P,x0) andR(`+1)

h (P,x0) = 2R
(`)
2−1/`h

(P,x0)−R(`)
h (P,x0). The new remainder term

verifies

∣R(`+1)
h (P,x0)∣ ⩽ (21−γ/` + 1)C(`)hγ ⩽ 3C(`)hγ (4.29)

ending the induction by setting C(`+1) = 3C(`). When ` ⩾ k + 1, the induction step is

trivial.

4.A.5 Proofs of Section 4.3.3

Proof of Lemma 4.3.9. Let γ ∶ [0, LM ] → M be a unit speed parametrisation of M

and extend γ to a smooth function on R by LM -periodicity. Suppose without loss

of generality that γ(0) = x. For any t ∈ R, there is a canonical identification between

Tγ(t)M and R through the map v ↦ ⟨γ̇(t), v⟩. With such an identification, we can

write that for s ∈ R ≃ TxM , expx(s) = γ(s) because γ is unit-speed. We thus have

d expx(s)[h] = hγ̇(s) for any h ∈ Tγ(s)M ≃ R. It follows that det gx(s) = ∥d expz(s)[1]∥2 =
∥γ̇(s)∥2 = 1 and this completes the proof.

We write V = (x0,X1, . . . ,Xn) for the vertices of Gε and η̂ = supx∈M d(x,V ). For small

enough η̂ we have that Gε is connected, therefore the distance d̂ε is well-defined on

V . We have in that case a good reverse control of dM by d̂ε, as shown in the next two

lemmata.

Lemma 4.A.7. If ε ⩽ 8τ and 16η̂ ⩽ ε, then d̂ε(x, y) ⩽ dM(x, y) for any x, y ∈ V .

Lemma 4.A.8. If ε ⩽ τ/2, then dM(x, y) ⩽ (1 + π2

48τ2 ε
2) d̂ε(x, y) for any x, y ∈ V .

Proof of Lemma 4.A.7. We can take the shortest path in M between x and y as a unit-

speed path of the form γ ∶ [0, `] → RD with ` = dM(x, y) ⩽ LM/2. We let δ = `/(4⌊`/ε⌋)
and N = 4⌊`/ε⌋. Notice that ε/4 ⩽ δ ⩽ ε/2. Let us define pj = γ(jδ), so that p0 = x and

pN = y. Since η̂ ⩽ ε/16, for every 1 ⩽ j ⩽ N − 1, there exists among our vertices V a point

denoted by p̂j such that ∥pj − p̂j∥ ⩽ ε/16. We set t̂j ∈ [0, LM ] for its coordinate, namely

p̂j = γ(t̂j).

Let us show first that for 1 ⩽ j < N , we have t̂j ∈ [0, `]. Indeed, thanks to Proposi-

tion 4.A.2, since ε/16 ⩽ τ/2, we have ∣tj − t̂j ∣ ⩽ 2∥pj − p̂j∥ ⩽ ε/8. Since δ ⩾ ε/4, we thus

have 0 ⩽ t̂1 ⩽ ⋅ ⋅ ⋅ ⩽ t̂N−1 ⩽ `. Furthermore, writing p̂0 = x and p̂N = y, we have

∥p̂j − p̂j+1∥ ⩽ ∥p̂j − pj∥ + ∥pj − pj+1∥ + ∥pj+1 − p̂j+1∥ ⩽ ε
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for any 0 ⩽ j < `. The sequence s = (p̂0, . . . , p̂N) is thus a path in Gε and so

d̂ε(p, q) ⩽ Ls = ∥p̂1 − p̂0∥ + ⋅ ⋅ ⋅ + ∥p̂N − p̂N−1∥ ⩽ ∣̂t1 − t̂0∣ + ⋅ ⋅ ⋅ + ∣̂tN − t̂N−1∣ = t̂N − t̂0

where we set t̂0 = 0 and t̂N = ` = dM(x, y), ending the proof.

Proof of Lemma 4.A.8. Following the proof of [ACLG19, Lem. 5] if there exists δ > 0

such that ∥x − y∥ ⩽ δ implies dM(x, y) ⩽ πτ for all x, y ∈M , then we must have that for

any x, y ∈M satisfying ∥x − y∥ ⩽ δ,

dM(x, y) ⩽ (1 + π2

48τ2
∥x − y∥2)∥x − y∥.

Thanks to Proposition 4.A.2, this must hold for δ = τ/2. Now let p0, . . . , pm be one

shortest path in Gε between x and y. Since ε ⩽ τ/2, we have

dM(x, y) ⩽
m

∑
j=1

dM(pj , pj−1) ⩽
m

∑
j=1

(1 + π2

48τ2
∥pj − pj−1∥2)∥pj − pj−1∥

⩽ (1 + π2

48τ2
ε2) d̂ε(x, y)

which ends the proof.

In view of Lemma 4.A.7 and Lemma 4.A.8, we want to tune ε so that it is the smallest

possible and so that 16η̂ ⩽ ε holds with high probability. This is achieved for ε of order

logn/n.

Lemma 4.A.9. Setting ε = 32(p+1) logn
fminn

, for every n ⩾ 3, we have P (16η̂ ⩽ ε) ⩾ 1 − 1/np.

Proof. Let δ > 0, and let N = ⌊LM/δ⌋. We split [0, LM ] into N intervals I1, . . . , IN of

lengthLM/N . We denoteA the event for which each Ij contains at least one coordinate

among those of the sample of observations (X1, . . . ,Xn). OnA, we have η̂ ⩽ LM/N ⩽ 2δ.

Moreover,

P(A) = 1 − P (∃j, γ(Ij) contains no observation)

⩾ 1 −N (1 − min
1⩽j⩽N

P (γ(Ij)))
n

⩾ 1 −N (1 − aLM
N

)
n

.

Using that N ⩽ LM/δ and that LM ⩽ 1/a we infer

P (η̂ ⩽ 2δ) ⩾ 1 − 1

aδ
(1 − aδ)n ⩾ 1 − e

−aδn

aδ
.

Setting δ = (p+1) logn
an and ε = 32δ yields

P (16η̂ ⩽ ε) ⩾ 1 − n

(p + 1)np+1 logn
⩾ 1 − 1

np

as soon as logn ⩾ 1, i.e. for n ⩾ 3.
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Proof of Proposition 4.3.10. Recall that we setK1D =K(1,`) whereK(1,`) is defined start-

ing from kernelλ−1
1 Λ. LetAbe the event {16η̂ ⩽ ε}. By triangle inequality, EP⊗n[∣f̂1D

h (x0)−
fP (x0)∣p]1/p ⩽RA +RAc , with

RA = (EP⊗n[∣f̂1D
h (x0) − fP (x0)∣p1A])

1/p

and

RAc = (EP⊗n[∣f̂1D
h (x0) − fP (x0)∣p1Ac])

1/p
.

OnA, we have, for n large enough (depending on p, fmin and τ ) such that ε ⩽ τ/2 holds,

∣d̂ε(Xi, x0) − dM(Xi, x0)∣ ⩽ C1ε
2 with C1 depending on τ only. This is inferred from

Lemmas 4.A.7 and 4.A.8. We deduce that, on this event,

∣f̂1D
h (x0) − ĝ1D

h (x0)∣ ⩽
C1∥K1D′∥∞ε2

h2
with ĝ1D

h (x0) =
1

n

n

∑
i=1

K1D
h (dM(Xi, x0)).

It follows that

RA ⩽ C1∥K1D′∥∞ε2

h2
+ (EP⊗n[∣ĝ1D

h (x0) − fP (x0)∣p])
1/p

⩽ C1∥K1D′∥∞ε2

h2
+ (EP⊗n[∣ξ̂∗h(P,x0)∣p])

1/p + ∣B∗h(P,x0)∣

with B∗h and ξ̂∗h denoting the bias and stochastic deviation of estimator ĝ1D
h (x0). Follow-

ing the same arguments as in proof of Proposition 4.3.5, we have

EP⊗n[∣ξ̂∗h(P,x0)∣p]1/p ⩽ cpΩ(h)p,

with cp depending only on p. For the bias term, as soon as h ⩽ πτ , we have

B∗h(P,x) = EP⊗n[ĝ1D
h (x0)] − f(x0) = ∫

M
K1D
h (d(p, x0))f(p)dµM(p) − f(x0)

= ∫
BTx0M

(0,1)
K1D(∥v∥) (f ○ expx0

(hv) − f(x0))dv.

Since now f ○ expx is β-Hölder on BTx0M
(0, πτ), we know that all the terms in the

development of B∗h(P,x0) up to order ⌈β − 1⌉ cancels. We deduce ∣B∗h(P,x0)∣ ⩽ C2h
β

withC2 depending on ` andR only. For the other termRAc , we write ∣f̂1D
h (x0)−f(x0)∣ ⩽

∥K1D∥∞
h + fmax, so that, according to Lemma 6.2.1,

RAc ⩽ (∥K1D∥∞
h

+ fmax)P(Ac)1/p ⩽ C3
1

nh

with C3 depending on ` and fmax. Putting all these estimates together yields the

result.
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4.A.6 Proofs of Section 4.3.4

Lemma 4.A.10. For any P ∈ Σd
α,β , and Θ > p, we have

EP⊗n[∣f̂(x0) − fP (x0)∣p]1/p ≲ Ω(h∗(P,x0))λ(h∗(P,x0))

up to a constant depending on p and Θ, with

h∗(P,x0) = max{h ∈ H ∣ ∀η ∈ H(h), ∣fη(P,x0) − f(x0)∣ ⩽
1

2
Ω(h)λ(h)} .

Proof. We fix P ∈ Σd
α,β and write ĥ and h∗ for ĥ(x0) and h∗(P,x0) respectively. Let

A = {ĥ ⩾ h∗}. We can write EP⊗n[∣f̂(x0) − fP (x0)∣p] =RA +RAc , where

RA = EP⊗n[∣f̂(x0) − fP (x0)∣p1A] and RAc = EP⊗n[∣f̂(x0) − fP (x0)∣p1Ac].

We start with boundingRA. Firstly,

RA ⩽ 3p−1(EP⊗n[∣f̂ĥ(x0) − f̂h∗(x0)∣p1A] +EP⊗n[∣f̂h∗(x0) − fh∗(P,x0)∣p1A]

+EP⊗n[∣fh∗(P,x0) − fP (x0)∣p1A]).

Next, by definition of ĥ andA, we have

∣f̂ĥ(x0) − f̂h∗(x0)∣1A ⩽ ψ(ĥ, h∗)1A ⩽ 2Ω(h∗)λ(h∗).

By definition of h∗, we also have ∣fh∗(P,x0) − f(x0)∣ ⩽ 1
2Ω(h∗)λ(h∗). Finally, using

Proposition 4.3.5

EP⊗n[∣f̂h∗(x0) − fh∗(P,x0)∣p1A] ⩽ cpΩ(h∗)p ⩽ cp(Ω(h∗)λ(h∗))p

holds as well. Putting all three inequalities together yields

RA ⩽ CA(Ω(h∗)λ(h∗))p with CA = 3p−1 (2p + cp + 2−p) .

We now turn toRAc . Notice that for any h ∈ H(h∗), we have

∣fh(P,x0) − f(x0)∣ ⩽
1

2
Ω(h∗)λ(h∗) ⩽ 1

2
Ω(h)λ(h),

hence

∣f̂h(x0) − f(x0)∣ ⩽
1

2
Ω(h∗)λ(h∗) + ∣ξ̂h(P,x0)∣.

We can thus write

RAc = ∑
h∈H(h∗/2)

EP⊗n[∣f̂h(x0) − f(x0)∣p1{ĥ=h}]

⩽ ∑
h∈H(h∗/2)

EP⊗n[(
1

2
Ω(h∗)λ(h∗) + ∣ξ̂h(P,x0)∣])

p
1{ĥ=h}].
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Now, for any h ∈ H(h∗/2), we have

{ĥ = h} ⊂ {∃η ∈ H(h), ∣f̂2h(x0) − f̂η(x0)∣ > ψ(2h, η)}

⊂ ⋃
η∈H(h)

{Ω(h∗)λ(h∗) + ∣ξ̂2h,η(P,x0)∣ > ψ(2h, η)} ,

where ξ̂2h,η(P,x0) = ξ̂2h(P,x0) − ξ̂η(P,x0), and where we used the triangle inequality

and the definition of h∗. Now, we have Ω(h∗)λ(h∗) ⩽ Ω(2h)λ(2h) since 2h ⩽ h∗ and by

definition of ψ(2h, η), we infer

{ĥ = h} ⊂ ⋃
η∈H(h)

{∣ξ̂2h,η(P,x0)∣ > Ω(η)λ(η)}

so that

P(ĥ = h) ⩽ ∑
η∈H(h)

P (∣ξ̂2h,η(P,x0)∣ > Ω(η)λ(η)) (4.30)

⩽ ∑
η∈H(h)

P
⎛
⎝
∣ξ̂2h,η(P,x0)∣ >

√
8ωλ(η)
nηd

+ 2∥K∥∞λ(η)
nηd

⎞
⎠

⩽ ∑
η∈H(h)

2 exp(−λ(η)2). (4.31)

For (4.30) we use the fact that λ(η) ⩾ 1 and Bernstein’s inequality on the random

variable ξ̂2h,η(P,x0) for (4.31). Noticing now that λ(η)2 ⩾ dΘ log(1/η), we further obtain

P(ĥ = h) ⩽ 2hΘd ×
⌊log2(1/h−)⌋

∑
j=0

2−jΘd ⩽ 2

1 − 2−Θd
hΘd.

For any h ∈ H(h∗/2), we thus get the following bound, using Cauchy-Schwarz inequality

EP⊗n[(
1

2
Ω(h∗)λ(h∗) + ∣ξ̂h(P,x0)∣])

p
1{ĥ=h}]

⩽ P(ĥ = h)1/2EP⊗n[(
1

2
Ω(h∗)λ(h∗) + ∣ξ̂h(P,x0)∣])

2p]1/2

⩽ 2(2p−1)/2
√

2

1 − 2−Θd
hΘd/2 (2−pΩ(h∗)pλ(h∗)p + c1/2

2p Ω(h)p) . (4.32)

We plan to sum over h ∈ H(h∗/2) the RHS of (4.32). Notice first that

∑
h<h∗

hΘd/2 ⩽ (h∗)Θd/2(1 − 2−Θd/2)−1.

Moreover, for any h ⩾ h−, we have Ω(h) ⩽ 2
√

2ω/(nhd) by definition of h−. It follows

that

Ω(h∗) ⩽ Ω(h) ⩽ 2Ω(h∗) (h
∗

h
)
d/2

.
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for any h ⩽ h∗. This enables us to bound the following sum

∑
h∈H(h∗/2)

hΘd/2Ω(h)p ⩽ 2pΩ(h∗)ph∗pd/2 ∑
h∈H(h∗/2)

hΘd/2−pd/2

⩽ 2p

1 − 2(p−Θ)d/2 Ω(h∗)h∗Θd/2

where we used that Θ > p. Putting all these estimates together, using that h∗ ⩽ 1 and

λ(h∗) ⩾ 1, we eventually obtainRAc ⩽ CAcΩ(h∗)pλ(h∗)p, with

CAc =
2p√

1 − 2−Θd
( 2−p

1 − 2−Θd/2 +
√
c2p2

p

1 − 2(p−Θ)d/2) .

In conclusion EP⊗n[∣f̂(x0) − fP (x0)∣p]1/p ⩽ (CA +CAc)Ω(h∗)pλ(h∗)p which completes

the proof.

Proof of Theorem 4.3.4. Let P ∈ Σd
α,β and let h̄ = (ρ logn/n)1/(2γ+d) with γ = α ∧ β and

for some constant ρ to be specified later. By Proposition 4.3.8 we know that for n large

enough (depending on ρ,α, β, d) such that h̄ ⩽ τ/2, we have ∣fη(P,x0) − f(x0)∣ ⩽ C1η
γ

for all η ⩽ h̄ with C1 depending on K, `,α, τ,L, β, fmax and R. Moreover, we also have

2−2Ω(h̄)2λ(h̄)2

C2
1 h̄

2γ
⩾ dΘ2ω log(1/h̄)

4C2
1nh̄

2γ+d = dΘω(2γ + d)−1

2C2
1ρ

logn − log logn − log ρ

logn
.

Thus, picking ρ = dΘω(2γ + d)−1/(2C2
1) yields C1h̄

γ ⩽ 1
2Ω(h̄)λ(h̄) for n large enough

(depending on ρ), and therefore h̄ ⩽ h∗(P,x). By Lemma 4.A.10 this implies

EP⊗n[∣f̂(x0) − fP (x0)∣p]1/p ⩽ C2Ω(h̄)λ(h̄)

where C2 depends on p and Θ. But using that both h̄ ⩾ h− and λ(h̄)2 = dΘ log(1/h̄) for n

large enough (depending on ρ, d,K and Θ), we also obtain

Ω(h̄)2λ(h̄)2 ⩽ 8ωdΘ log(1/h̄)
nh̄d

= 8ωdΘ(2γ + d)−1

ρ

logn − log logn − logω

logn
h̄2γ ⩽ 16C2

1 h̄
2γ .

This last estimate yields

EP⊗n[∣f̂(x0) − fP (x0)∣p]1/p ⩽ (4C1C2ρ
γ/(2γ+d))( logn

n
)
γ/(2γ+d)

for n large enough depending on ρ,α, β, d,K and Θ, which completes the proof.

4.A.7 Proofs of Section 4.3.5

Proof of Proposition 4.3.13. By the triangle inequality, for any P ∈ Σd
α,β , we write

EP⊗n[∣f̂ĥ(d̂;x0) − fP (x0)∣p]
1/p ⩽(EP⊗n [∣f̂ĥ(d̂;x0) − fP (x0)∣

p
1{d̂=d}] )

1/p

+ (EP⊗n [∣f̂ĥ(d̂;x0) − fP (x0)∣
p
1{d̂≠d}] )

1/p
.
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The first term in the right-hand side has the right order thanks to Theorem 4.3.4. For

the second one, using that ∣f(x0)∣ ⩽ fmax and

∣fĥ(d̂, x0)∣ ⩽ sup
1⩽d<D

∥K(`)(d, ⋅)∥∞
(h−d)d

≲ n

up to a constant that depend on D,K and `, we infer

(EP [∣f̂ĥ(d̂;x0) − f(x0)∣
p
1d̂≠d] )

1/p
≲ P (d̂ ≠ d)1/p × n.

Finally, since d̂ satisfies Assumption 4.3.12, we have

EP⊗n[∣f̂ĥ(d̂;x0) − fP (x0)∣p]
1/p ≲ ( logn

n
)
α∧β/(2α∧β+d)

+ n−1/2

for n large enough depending on p,Θ,K, `,α, τ,L, β, fmax, fmin and R, so that the result

indeed holds up to a constant depending on the same parameters and D.

Proof of Proposition 4.3.15. Let P ∈ Σd
α,β and η > 0. Assume that P̂η > 0. We have

∣δ̂η − d∣ ⩽ ∣ log2 P̂2η − log2 P2η ∣ + ∣ log2 P̂η − log2 Pη ∣ + ∣ log2 P2η − log2 Pη − d∣

⩽ 1

log 2
(
∣P̂2η − P2η ∣
P̂2η ∧ P2η

+
∣P̂η − Pη ∣
P̂η ∧ Pη

) + ∣log2 (P2η/(2dPη))∣

We first consider the determinist term. For η ⩽ τ/2, we have, writing rη = ξ(η/τ)η and

using Lemma 4.A.3,

L2η(1 − η2/6τ2)(2η)2ζd ⩽ P2η ⩽ U2η(1 + r2
2η/τ2)rd2ηζd

and

Lη(1 − η2/6τ2)ηdζd ⩽ Pη ⩽ Uη(1 + r2
η/τ2)rdηζd,

where Lη = infM∩B(x0,η) f and Uη = supM∩B(x0,η) f . Using again Lemma 4.A.3, we have

that for η ⩽ τ/2,M ∩B(x0, η) ⊂ expx0
BTx0M

(0,2η), and, since 2η ⩽ πτ/2 and that f ∈ Fβ ,

we know, using Lemma 4.A.6, that there exists R1 > 0 (depending on β, τ, fmax and R)

such that f(x) −R1η ⩽ Lη ⩽ Uη ⩽ f(x) +R1η. If η < τ/4, the same bounds apply for 2η

and we thus obtain

(f(x) −R12η)(1 − η2/6τ2)(2η)dζd ⩽ P2η ⩽ (f(x) +R12η)(1 + r2
2η/τ2)rd2ηζd

and

(f(x) −R1η)(1 − η2/6τ2)ηdζd ⩽ Pη ⩽ (f(x) +R1η)(1 + r2
η/τ2)rdηζd. (4.33)

Using these two inequalities, and the fact that rη/η → 1 as η → 0, we find that ∣P2η/(2dPη)−
1∣ ≲ η up to a constant that depends on R1, τ and fmin, for η small enough (depending
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on R1, τ and fmin as well). For the other terms, a simple use of Hoeffding’s inequality

yields for any η, ε > 0,

P (∣P̂η − Pη ∣ > ε) ⩽ 2 exp(−2nε2).

On the eventAη = {∣P̂η − Pη ∣ ⩽ ε}, we have moreover P̂η ∧ Pη ⩾ Pη − ε. Setting ε = ηd+1,

and using (4.33), we see that Pη − ε ≳ ηd for η small enough (depending on R1, τ and

fmin). Thus, on the event Aη ∩ A2η, with probability at least 1 − 4 exp(−2nη2d+2), we

derive

∣δ̂η − d∣ ≲ η +
ε

Pη − ε
+ ε

P2η − ε
≲ η, (4.34)

for η small enough (depending on R1, τ and fmin), up to a constant that depends on

R1, τ and fmin. Now setting η = n−1/(2D+2), we have d̂ = δ̂η = d on the eventAη ∩A2η as

soon as n is large enough so that the LHS of (4.34) is strictly smaller than 1/2, ending

the proof.
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Chapter 5

Bayesian manifold density
estimation

We study the Bayesian density estimation of data living in the offset of an unknown

submanifold of the Euclidean space. In this perspective, we introduce a new notion of

anisotropic Hölder for the underlying density and obtain posterior rates that are mini-

max optimal and adaptive to the regularity of the density, to the intrinsic dimension

of the manifold, and to the size of the offset. Our Bayesian procedure appears to be

convenient to implement and yields good practical results, even for quite singular data.

This chapter is based on [BRR22].
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5.1 Introduction

5.1.1 Manifold density estimation

In many high dimensional statistical problems it is common to consider that the data

has an intrinsic low dimensional structure. More precisely, statistics and computer

sciences have seen a growing interest in the so-called manifold hypothesis where the

data is believed to be supported (or near supported) on a low dimensional submanifold

M of an ambient space (see [MF12] for an introduction).

There are good intuitive reasons to believe that real world data (such as natural

images, sounds, texts, etc . . .) belong to the vicinity of a low dimensional submani-

fold, often due to physical constraints, see for instance [LV07] or [FMN16b]. Empirical

evidence has also been shown in a number of important cases such as texts data sets

[BN01], sounds [KPP70, BN01], images and videos [WS06b, KW13] or more recently

in Covid data [VSFD+22]. Analysing such data sets is often called manifold learning.

Manifold learning deal with either nonlinear dimension reduction techniques, man-

ifold estimation or the construction of generative models and the estimation of the

distribution on or near an unknown manifold. These problems are strongly connected.

Dimension reduction consists in finding low dimensional representations of the data.

This is typically done by constructing mappings as in Kernel PCA or graph based meth-

ods such as Isomap, Locally Linear Embeddings or Laplacian Eigenmaps.

Instead of estimating an embedding, the problem of reconstructing the manifold

is another popular aspect of manifold learning, see [GPPVW12b], [AL19], [Div21a] or

[DW21] among others. Finally the estimation of the distributions on or near manifolds

and the construction of generative models have received recent wide interests in the

statistics and machine learning community, specially with the developments of deep

learning algorithms. There is a growing literature on generative models under the

manifold hypothesis with many methodological developments around variational

autoencoders (see [GBC16, Sec 14.6] or [KW13]), Generative adversarial networks (see

[GPAM+14, AB17, ACB17] among others) or recent versions of normalizing flows (see

[HP21]). The theoretical results associated to these approaches control the error be-

tween the true generative process and the estimated generative models typically under

adversarial losses such as the Wasserstein distance, as in [TY22], since the focus is

more on generating interesting samples than on estimating the distribution per se.

In this Chapter we study the estimation of the density in the vicinity of an unknown
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submanifold M of the ambient space RD. Density estimation is an important class

of problems in statistics and machine learning and in addition to being of interest

in itself can be used as an intermediate steps in many tasks of unsupervize learning

such as clustering, prediction or in ridge estimation ([GPPVW14, CGW15]). Density

or distribution estimation under the exact manifold hypothesis (assuming that the

data belong to a submanifold) has been studied theoretically for instance in [OG09] or

[Div21b] under Wasserstein losses and in [BH21] under the pointwise loss. Assuming

that the data belong exactly to a smooth manifold may be too restrictive since signals

are often corrupted by noise. Hence in this Chapter we assume that the data belong

to a neighbourhood M δ = {x ∈ RD;d(x,M) ⩽ δ}, neither M nor d or the density f are

considered known. This problem is studied in[CKKL21] in the special case of data cor-

rupted with Gaussian noise and [MLD20] proposes a Bayesian nonparametric method

to estimate a density on M δ based on mixtures of Fisher - Gaussian distributions for

which they prove consistency under the assumption that the width δ of the tube M δ is

fixed.

5.1.2 Our approach and contributions

As far as we are aware there is no theoretical results on convergence rates - either from

a frequentist or a Bayesian approach - for estimating a density on tubes M δ when M

and δ are unknown and δ is possibly small. In this Chapter we bridge this gap and

we propose a Bayesian nonparametric method based on specific families of location -

scale mixtures of Gaussian distributions. We study the posterior concentration rates

associated to these priors, i.e. the smallest possible εn such that

II(d(f0, f) ⩽ εn∣X1,⋯,Xn)→ 1,

in probability when the dataX1,⋯,Xn are a n sample from f0 and where II(⋅∣X1,⋯,Xn)
denotes the posterior distribution, see [GGVDV00]. As is well known, when the distance

d(., .) is the Hellinger or the L1 metric, this posterior concentration rates induces also

a convergence rate εn for the posterior mean f̂ , see for instance [GGVDV00]. Typcally

the rate εn depends on regularity properties of the density f0 and on the prior.

To do so we first define a general mathematical framework describing regularity

properties of densities defined on possibly small neighbourhoods M δ of submanifolds

M , with the idea that the density has a given smoothness β0 along the manifold M

and another smoothness β⊥ along the normal to the manifold. This manifold driven

anisotropic smoothness is defined in Section 5.2.2 and is an extension to anisotropic

Hölder functions along coordinate axes. Building on that we show that the posterior

concentration rate depends on β0, β⊥ together with the dimension d of M and the

width δ of the tube. Interestingly the prior II does not need to depend on β0, β⊥, d, δ or
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M which makes the approach fully adaptive and the rate we obtain, at least when δ is

not too small is of order

n−γ with γ = β0

2β0 + d + (D − d)β0/β⊥
,

up to a logn term, which is minimax.

Nonparametric location mixtures of Gaussians are known to be flexible models for

densities, and adaptive minimax rates of convergence on Hölder types spaces have

been obtained using Bayesian or frequentist estimation procedures based on location

mixtures of normals, see [KRVDV10], [STG13], and [GVDV07] for Bayesian methods

and [MRM13] for a penalized likelihood approach. However, location mixtures are not

versatile enough since the covariance matrix remains fixed across the components,

so we instead take advantage of the flexibility of location-scale mixtures of Gaussians.

In [CDB17] the authors derive a suboptimal posterior concentration rate for isotropic

positive Hölder densities on RD, while [MRM13] obtained minimax convergence rates

for penalized maximum likelihood methods based on the same type of location-scale

mixtures and [NR17] obtained also minimax posterior concentration rates using a

hybrid location-scale mixture prior in the regression model. These results thus indi-

cate that one has to be careful in designing the prior in nonparametric location-scale

mixtures of Gaussians. The priors we consider in this Chapter are variants of location-

scale mixture priors, see Section 5.2.3, which are flexible enough to adapt to the non

linear or manifold driven smoothness of the class of densities studied here. This prior

construction can also be seen as tiling the manifold by low-rank Gaussian pancakes,

a method that is similar to mixtures of factors analyzers [GH96, DCS+10] or manifold

Parzen windows [VB02] where, however, no theoretical guarantees on the estimation

of the density were proven.

Hence our contributions are both methodological and theoretical. From a method-

ological point of view, we provide with a family of versatile priors (see 5.2) that are

shown empirically and theoretically to perform very well in modelling data that are

singularly supported near submanifolds. In particular we show empirically that these

variants or location scale mixtures of Gaussian priors behave much better than the

standard conjuguate location-scale mixture of Gaussian prior, see Section 5.4.

From a theoretical point of view, we introduce a new notion of Hölder smoothness

along a submanifold (see Section 5.2.2) which is proving to be adequate for the study of

such almost-degenerated densities, and we derive posterior concentration rates for this

new model (Section 5.3.1). The rates are optimal if the data do not collapse too quickly

towards the manifold. These results rely on an intermediate result in approximation
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theory which has interests in its own right and is provided in Section 5.3.2.

5.1.3 Organisation of the Chapter

In Section 5.2, we define manifold-anisotropic Hölder function, together with the

families of priors we consider in the Chapter. Section 5.3 contains the main theoretical

results and Section 5.4 the empirical results, with a description of the algorithms

used to simulate from the posterior distribution. We provide in Section 5.5 proofs of

the main results, namely the contraction rate Theorem 5.3.2 and the approximation

Theorem 5.3.7. Some useful facts on manifolds are presented in Appendix 5.A. The

other Appendices contain additional proofs and lemmata, as well as details on the

numerical setting of Section 5.4.

5.1.4 Notations

For a multi-index k = (k1, . . . , kD) ∈ ND, we set ∣k∣ = k1 + ⋅ ⋅ ⋅ + kD and k! = k1! . . . kD!.

For x ∈ RD, we write xk = xk1
1 . . . xkDD ∈ R and xmax (resp. xmin) to be the maximal (resp.

minimal) value of its entries. For any two indices i, j ∈ {1, . . . ,D} with i ⩽ j, we set

xi∶j = (xi, . . . , xj) ∈ Rj−i+1. Finally, for a sufficiently regular function f ∶ RD → R, we

define its k-th partial derivative as

Dkf(x) = ∂ ∣k∣f

∂xk1
1 . . . ∂xkDD

(x).

If M ⊂ RD is a measurable subset with Hausdorff dimension d, one denote µM for

the Borel measure µM =Hd(⋅ ∩M) whereHd is the d-dimensional Hausdorff measure

on RD. For r > 0 and x ∈ RD, one write BM(x, r) = B(x, r) ∩M where B(x, r) is the

usual Euclidean ball of RD. IfM is closed, then prM defines the (possible multi-valued)

orthonormal projection from RD to M .

We will denote by ∥ ⋅ ∥ the usual Euclidean norm of Rk for any k ∈ N∗. When L is a

linear map between such spaces, we write ∥L∥op for the operator norm associated with

the Euclidean norms. The notation ∥ ⋅ ∥1 (resp. ∥ ⋅ ∥∞) will refer to both the L1-norm

(resp sup-norm) for vectors of Rk for any k ∈ N∗, and to the L1-norm (resp sup-norm)

for measurable functions from Rk to R for any k ∈ N∗. The brackets ⟨⋅, ⋅⟩ will be used to

denote the usual Euclidean product in Rk for any k ∈ N∗. For any matrix A ∈ Rk×k, the

notation ∥ ⋅ ∥A will refer to the quadratic form over Rk defined by x ↦ ⟨Ax,x⟩, which

is a norm if A is positive. The set of orthogonal transform of RD will be denoted by

O(D,R), or sometimes simplyO(D).
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For two positive functions f, g ∶ RD → R we write the Hellinger distance as

dH(f, g) = {∫
RD

(
√
f(x) −

√
g(x))2dx}

1/2
.

In this Chapter, M will designate a closed submanifold of RD of dimension 1 ⩽
d ⩽ D − 1. For any point x ∈ M , the tangent and normal spaces of M at x will be

denoted TxM and NxM , and the corresponding bundles TM and NM . We write

expx ∶ (TxM,0) → (M,x) for the exponential map of M at point x. We let dM(x, y)
denote the intrinsic distance between x and y in M .

Finally we will use throughout the symbols ≃, ≲ and ≳ to denote equalities or in-

equalities up to a constant, when the constant is not important.

5.2 Model : distributions concentrated near manifolds

We assume that we observe X1, . . . ,Xn independent and identically distributed from

P0 on RD with density f0 with respect to Lebesgue measure. We assume that there

is a low dimensional structure underlying our observations, i.e. that f0 has support

concentrated near a low dimensional manifold M which is unknown. More precisely

there exists δ > 0 unknown and typically small such that P0(M δ) = 1, where M δ is the

δ-offset of M : it is the set of points that are at distance less than δ from M ,

M δ ∶= ⋃
x∈M

B(x, δ) = {z ∈ RD ∣ d(z,M) ⩽ δ} .

A typical example is when the observations are noisy versions of data whose support

is M : X = Y +Z with Y ∈M and ∣Z ∣ ⩽ δ almost surely. When the noise Z has a density

smoother than the density of Y on M (with respect to the Hausdorff measure), the

density of X is anisotropic with a smoothness along the manifold M smaller than

that along the normal directions. In this Chapter we thus aim at constructing priors

which are flexible enough to lead to good estimation of f0 in situations where the

density has a complex anisotropic structure in that it has an unknown smoothness β0

along an unknown manifold M and a different (larger) smoothness β⊥, also unknown,

along the normal spaces of the manifold. In this context, since the anisotropy varies

spatially, it is therefore important to consider priors which adapt spatially to such non

linear smoothness. In Section 5.2.3 below we consider certain families of location-scale

mixtures with a careful modelling of the prior on the variance of the components and

we show in Section 5.3 that these priors allow for manifold driven smoothness.

To begin with, we define what we think is a new notion of anisotropic Hölder

spaces on the Euclidean space RD, and which happens to be a natural extension of the
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usual notion of (isotropic) Hölder smoothness. We are aware that there exist various

notions of anisotropic smoothness, see for instance [KLP01, HL02, CL13, GL11, GL14],

with most of them stemming from the anisotropic smoothness as defined in [Nik12].

In all the aforementionned references, the anisotropy was consistently defined as a

control of the variations of the partial derivatives along each axis separately, with no

control of the cross-derivatives (and no guarantee that they, in fact, exist). While this is

enough in a Euclidean framework, we argue that, to the best of our effort, we could not

make such assumptions sufficient in our non-linear setting, as the proofs presented

in Section 5.5 or in the Appendices might highlight. Instead, we come out with a

new notion of Hölder anisotropy, in the footsteps of what [STG13] already sketched

in their paper, that handles cross-derivatives in the same way that the usual notion of

(isotropic) Hölder smoothness does, and which in fact coincides with the latter when

the anisotropy vector is isotropic. This new class is defined is the first subsection below,

and its main properties reviewed in Section 5.B.1.

5.2.1 General anisotropic Hölder functions

An anisotropic Hölder functions f ∶ RD → R is, informally, a function whose smooth-

ness is different along each axis of RD. Letting β = (β1, . . . , βD) ∈ (R∗
+)D, which will

represent the regularity indices along each axis, we define

α = (α1, . . . , αD) where αi = β/βi ∈ [0,D] and β−1 = 1

D
∑
i

β−1
i .

The coefficient β acts as the effective smoothness of the function f . Notice that α1+⋅ ⋅ ⋅+
αD = D. In this section, we define the spaces of anisotropic functions over bounded

open subset of RD. We defer to Section 5.B.1 the introduction of the same class over

general open subsets. We let U ⊂ RD be a bounded open subset and L ∶ U → R+ be any

non-negative function.

Definition 5.2.1. The anisotropic Hölder spaces Hβ
an(U , L) is the set of all functions

f ∶ U → RD satisfying:

i) For any multi-index k ∈ ND such that ⟨k,α⟩ < β, the partial derivative Dkf is well

defined on U and ∣Dkf(x)∣ ⩽ L(x) for all x ∈ U ;

ii) For any multi-index k ∈ ND such that β − αmax ⩽ ⟨k,α⟩ < β, there holds

∣Dkf(y) −Dkf(x)∣ ⩽ L(x)
D

∑
i=1

∣yi − xi∣
β−⟨k,α⟩
αi

∧1 ∀x, y ∈ U . (5.1)

See Figure 5.2.1 for a graphical representation of the quantities at stake. The func-

tion L acts as an upper-bound for the localized and anisotropic version of the usual
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Hölder-norm:

{ max
⟨k,α⟩<β

∣Dkf(x)∣} ∨ max
β−αmax⩽⟨k,α⟩<β

sup
y∈U

∣Dkf(y) −Dkf(x)∣
D

∑
i=1

∣yi − xi∣
β−⟨k,α⟩
αi

∧1

.

Figure 5.2.1 – An exemple in dimension D = 2. The vector α is the only vector of

1-norm D which has positive coordinates and which is orthogonal to the simplex of

vertices {βiei}1⩽i⩽D. In black are the points k of N2 such that ⟨k,α⟩ < β.

Note that the constraint on the intermediate derivatives Dkf(x) for 0 < ⟨k,α⟩ < β
may seem superfluous since some Kolmogorov-Landau type inequalities would yield

some bounds on these derivatives, but we add them nonetheless to our functional class

to simplify some notations. We list and prove in Section 5.B.1 various useful properties

of functions in the anisotropic Hölder class. Also the function L in the definition of

Hβ
an(U , L) can be constant, in which case we will typically denote it C, to make it more

explicit (leading toHβ
an(U ,C)).

Remark 5.2.2. The usual isotropic Hölder spaces are special case of our definition of

Hβ
an(U , L) corresponding to β = (β, . . . , β) with β > 0. In this case we write

Hβiso(U , L) ∶=H
β
an(U , L) for β = (β, . . . , β).

As a final remark, we will use the same notations for the spaces of multivalued

functions when their coordinate functions are all in the corresponding space. For

instance, if Ψ ∶ U → RD, then

Ψ = (Ψ1, . . . ,ΨD) ∈Hβ
an(U , L) ⇔

def
Ψi ∈Hβ

an(U , L) for all i ∈ {1, . . . ,D} ,

and the same holds for the other spaces defined in this subsection.

5.2.2 Manifold anisotropic Hölder functions

We now consider functions whose smoothness directions at point x ∈ RD are dependant

on the position of x with respect to a given submanifold M ⊂ RD of dimension 1 ⩽
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d ⩽ D − 1. More specifically, we extend the above notions of anisotropy to functions

with a given regularity in the tangential directions of M , and of another regularity in

the normal directions of M . We call such functions manifold-anisotropic Hölder, or

sometimes simply M-anisotropic. To define such a class of function, we assume that

M is a closed submanifold with reach bounded from below by τ > 0 (see Appendix 5.A

for definition and properties of the reach) and we consider local parametrizations at

any x0 ∈M
Ψx0 ∶ Vx0 →M,

where Vx0 is a neighborhood of 0 in Tx0M . The maps Ψx0 can be taken in a wide class

of parametrizations of M . For instance, one could consider taking Ψx0 to be (close to)

the inverse projection over M → Tx0M where Tx0M is seen as an affine subspace of RD

going through x0, see for instance [AL19] or [Div21b]. For purely practical matter, we

choose Ψx0 to be the exponential map expx0
, although the results in this Chapter could

be carried out with other well-behaved parametrizations, such as the one mentioned

above. In particular, in the case of the exponential maps, we can define the domain of

Ψx0 to be BTx0M
(0, πτ), see Appendix 5.A. In the rest of this Chapter, we set

Vx0 ∶= BTx0M
(0, τ/8),

with factor 1/8 being there for technical reasons. If all the maps Ψx0 are of regularity

βM > 1, meaning that there exists a constant CM > 0 such that

Ψx0 ∈H
βM
iso (Vx0 ,CM), ∀x0 ∈M (5.2)

(in particular M is at least Ck with k = ⌈βM − 1⌉), then one can construct a map

Ψ̄x0 ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Vx0 ×Nx0M → RD

(v, η) ↦ Ψx0(v) +Nx0(v, η).

where Nx0(v, ⋅) is an isometry from Nx0M to NΨx0(v)M and where v ↦ Nx0(v, ⋅) ∈
HβM−1

iso (Vx0 ,C
⊥
M) for some other constant C⊥M depending on CM , τ and βM . We refer to

Appendix 5.A for further details concerning the construction of Ψ̄x0 and the proof of its

regularity. When restricting the latter map, one get a local parametrization of the offset

M τ/2 around x0

Ψ̄x0 ∶ Vx0 ×BNx0M
(0, τ/2)→M τ/2

as shown in Lemma 5.A.2. This parametrization is such that prM(Ψ̄x0(v, η)) = Ψx0(v)
for any (v, η) ∈ Vx0×BNx0M

(0, τ/2) and Ψ̄x0 is a diffeomorphism fromVx0×BNx0M
(0, τ/2)

to its image which satisfies

Ψ̄x0 ∈H
βM−1
iso (Vx0 ×BNx0M

(0, τ/2),C∗
M) (5.3)
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Figure 5.2.2 – A visual interpretation of the parametrization Ψ̄x0 .

for some C∗
M > 0 depending on CM , τ and βM . See Figure 5.2.2 for a visual interpreta-

tion of this parametrizations.

For any δ > 0, we define Ψ̄x0,δ(v, η) ∶= Ψ̄x0(v, δη) to be the rescaled version of

Ψ̄x0 in the normal directions. It is a well defined parametrization of M τ/2 on the set

Wx0,δ ∶= Vx0 × BNx0M
(0, τ/2δ). We let β0, β� be two positive real numbers, and define

the vector

β0,⊥ = (β0, . . . , β0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d

, β�, . . . , β�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D−d

) ∈ RD.

Now for any function L ∶ RD → R+, we define:

Definition 5.2.3. Let L ∶ RD → R+ be a function; the classHβ0,β�
δ (M,L) is the set of all

functions f ∶ RD → R whcih satisfy:

i) f is supported on M δ;

ii) For any x0 ∈M , set f̄x0,δ ∶= δD−df ○ Ψ̄x0,δ and Lx0,δ ∶= δD−dL ○ Ψ̄x0,δ, then

f̄x0,δ ∈H
β0,⊥
an (Wx0,δ, Lx0,δ). (5.4)

Informally, such a function is β0-Hölder along the manifold M , and β⊥-Hölder nor-

mal to the manifold M . The normalization δD−d accounts for the scaling η ↦ δη along

the normal spaces (which are of dimensionD−d) in the definition of Ψ̄x0,δ. Its presence

is natural and can be understood as follows: when f is a density supported on M δ, the

typical magnitude of its values is of order 1/δD−d, and the absence of normalization

would whence make the above functional class irrelevant to describe the regularity of

such densities.

M-anisotropic functions happen to be a convenient way to describe the regularity

of a number of densities that are naturally supported around M . To illustrate this, take
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f∗ ∶M → R to be a β0-Hölder density, meaning that there exists L0 ∶M → R such that

for any x0 ∈M ,

f∗ ○Ψx0 ∈H
β0

iso(Vx0 , L0 ○Ψx0).

Now take K ∶ RD → R to be a normalized positive smooth isotropic kernel supported

on B(0,1). We introduce c−1
� = ∫ K(ε)dµE(ε) whereE is any (through isotropy) (D−d)-

dimensional subspaces of RD. We also assume thatK ∈Hβ⊥iso(R
D, L⊥) for some function

L⊥ which is also rotationally invariant.

Proposition 5.2.4. Let f be the density of a random variable Z = X + δE where X ∼
f∗(x)µM(dx) and 0 < δ < τ . Then,

1. (Orthonormal noise) If β⊥ ⩽ βM − 1, and if E ∣X ∼ c�K(ε)µNXM(dε), then

f ∈Hβ0,β�
δ (M,L), with , L(x) ∶= Cδ−(D−d)L0(prM x) ×L⊥(x − prM x), C > 0.

2. (Isotropic noise) If δ < τ/32 and β0 ⩽ β⊥ ⩽ βM −1, and if E ∼K(ε)dε, independently

of X, then

f ∈Hβ0,β�
δ (M,L), with L(x) ∶= Cδ−D ∫

M
L⊥ (

x − y
δ

)L0(y)µM(dy), C > 0.

In both cases C depends on CM , τ , βM , β0, β�.

See Section 5.A.2 for a proof of this result.

Remark 5.2.5. Throughout the Chapter we assume that the true density f0 ∈Hβ0,β�
δ (M,L),

which implies thatP0(M δ) = 1. However it is enough to assume thatP0(M δ) ⩾ 1−o(1/n)
where n is the number of observations. This makes no difference in terms of the results

presented in Section 5.3. The weaker assumption P0(M δ) ⩾ 1 − o(1/n) is for instance

fulfilled in the additive noise model (see Proposition 5.2.4) with Z =X + δ√
C logn

E with

the Gaussian kernel K(x) ∶= (2π)D/2 exp(−∥x∥2/2).

In the following section we describe the family of priors which we use to estimate

the above family of densities.

5.2.3 Location-scale mixtures of normal priors

We model the manifold-anisotropic Hölder densities using location-scale mixtures of

normals. We parametrize the covariances of the components by Σ = OTΛO where O is

a unitary matrix and Λ = diag(λ1,⋯, λD) is diagonal. Location-scale mixtures can then

be written as:

fP (x) = ∫
RD

ϕOTΛO(x − µ)dP (µ,O,Λ), P =
K

∑
k=1

pkδ(µk,Ok,Λk), K ∈ N ∪ {+∞} , (5.5)
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where, for any positive definite matrix Σ,

ϕΣ(z) ∶= 1

det1/2 (2πΣ)
exp{−1

2
∥z∥2

Σ−1} ,

is the density of a centered Gaussian with covariance matrix Σ. The two most well

known families of priors on P are Dirichlet process priors and mixtures with random

number of components, also known as mixtures of finite mixtures. Recall that if P

follows a Dirichlet process priors with parameters A and H where A > 0 and H is a

probability measure on some measurable space Θ , then

P =
∞
∑
k=1

pkδθk with pk = Vk∏
i<k

(1 − Vi), Vi
iid∼ Beta(1,A) and θk

iid∼ H.

If P follows a mixture of finite mixtures prior of parameters αK and πK where αK > 0

and πK is a probability measure on N, then

P =
K

∑
k=1

pkδθk with K ∼ πK , (p1,⋯, pK) ∣K ∼ D(αK , . . . , αK) and θk
iid∼ H.

In both cases (Dirichlet process and mixture of finite mixtures) we callH the base prob-

ability measure. Obviously in the case of mixtures of finite mixtures the conditional

prior on (p1, . . . , pK) and θ1, . . . , θK could be different but we consider this setup for

the sake of simplicity.

As shown empirically by [MLD20] location-scale Dirichlet process mixtures with

base measure constructed from the conjuguate prior of the Gaussian model are not

well adapted to the problem at hand. We show however that if particular care is given

to the choice of H , the posterior on manifold-anisotropic density is well behaved. In

particular we consider the two following types of location-scale mixtures:

• Partial location-scale mixtures: The eigenvalues Λ of the covariance of the Gaus-

sians are common accross components,

fΛ,P (x) = ∫
RD

ϕOTΛO(x−µ)dP (µ,O), P =
K

∑
k=1

pkδ(µk,Ok), K ∈ N∪ {+∞} (5.6)

where P is a probability distribution on RD × O(D) (where O(D) is the set of

unitary matrices in RD) and is either a Dirichlet process prior or a mixture of

finite mixtures.

• Hybrid location-scale mixtures: The density fP is written as (5.5) where P condi-

tionally on a probabilityQ2 on RD+ follows a Dirichlet process mixture or a mixture

of finite mixtures with base measure H0(dµ,dO,dλ) =H1(dµ,dO)⊗Q2(dλ), and

Q2 follows a distribution ĨIΛ.
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We denote by II the prior on the parameter and we consider the following assump-

tions on II. These conditions differs wether II is assumed to come from a partial

location-scale mixture prior or a hybrid location-scale mixture prior.

Conditions on the partial location-scale mixtures. f is modelled as in (5.6) and P

follows either a Dirichlet process with base measure H or a mixture of finite mixtures

with base measure H and prior on K satisfying

− log IIK(K = x) ≃ x(logx)r, r = 0,1. (5.7)

Here r = 0 corresponds to the geometric prior on K and r = 1 to the Poisson one. The

base measure H(dµ,dO) = h(µ,O)dµdO where dµ designates the Lebesgue measure

on RD and dO the Haar measure on O(D). and we further assume that there exists

c1, b1 > 0 and b2 > 2D − 1 such that

e−c1∥µ∥
b1 ≲ h(µ,O) ≲ (1 + ∥µ∥)−b2 with ∀µ,O. (5.8)

We also assume that Λ is drawn from a probability measure IIΛ that has a density πΛ

with respect to Lebesgue measure on RD, and that this density satisfies: there exists

c2, c3, b3 > 0 and b4 >D(D − 1)/2 such that

e−c2∑
D
i=1 λ

−d/2
i ≲ πΛ(λ1,⋯, λD) for small λ1, . . . , λD ∈ (R∗

+)D,

IIΛ ( min
1⩽i⩽D

λi < x) ≲ e−c3x
−b3 for small x > 0,

and IIΛ (max
1⩽i⩽D

λi > x) ≲ x−b4 for large x > 0.

(5.9)

Condition (5.8) is weak and is for instance satisfied as soon as µ andO are independent

under H with positive and continuous density for O and positive density for µ with

weak tail assumptions. Condition (5.9) is also weak and common in the case of location

Gaussian mixtures and is verified in particular if the
√
λi’s are independent inverse

Gammas under IIΛ, or if the λi’s are independent inverse Gammas and d ⩾ 2.

Conditions on the hybrid location-scale mixtures. H1 satisfies (5.8) andQ2 is random

with distribution ĨIλ which satisfies: for all b > 0 there exists B0, c2 > 0 such that for

2x1 ⩽ x2 both small,

ĨIΛ [Q2 ([x1, x1(1 + xb1)]d × [x2, x2(1 + xb1)]D−d) ⩾ x
B0
1 ] ≳ e−c2x

−d/2
1 . (5.10)

Moreover we assume that for some positive constant c3, b3, c4, b4 > 0 such that for x > 0

small,

EĨIΛ
[Q2 ( min

1⩽i⩽D
λi ⩽ x)] ≲ e−c3x

−b3 for small x,

EĨIΛ
[Q2 (max

1⩽i⩽D
λi > x)] ≲ e−c4x

b4 for large x.
(5.11)
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Remark 5.2.6. One can view the partial location-scale mixture as a special instance

of the hybrid location-scale mixture defined above: take Q2 to be the Dirac mass at a

value Λ where Λ ∼ IIΛ.

Conditions (5.10) and (5.11) are in particular satisfied if Q2 comes from a Dirichlet

process. More precisely, if Q2 is of the form

Q2(dλ) =
D

∏
i=1

Q0(dλi) with Q0 ∼ DP(BHλ),

with B > 0, then (5.10) and (5.11) are satisfied for reasonable choices of probability

distribution Hλ on R+. We show in the next proposition that this is in particular true

when Hλ is a square-root- inverse Gamma.

Proposition 5.2.7. Assume that Q2 = Q⊗D
0 where Q0 ∼ DP(BHλ), where B > 0 and

under Hλ,
√
λi follow a truncated inverse Gamma with parameters a1, a2 > 0, and

truncation parameter T ≪ nω for some ω > 0. Then conditions (5.10) and (5.11) are

satisfied.

A proof of Proposition 5.2.7 can be found in Appendix 5.B.3.

Remark 5.2.8. Although the conditions on the prior: (5.9) and (5.10) depend on d, they

are satisfies for all d by setting d = 1 and in particular they are verified for all d ⩾ 1 if
√
λi

follow an inverse Gamma under the base measure, which is agnostic to d.

MFM DPM Partial Hybrid

Conditions (5.7)+(5.8) (5.8) (5.9) (5.10)+(5.11)

Table 5.2.1 – Summary table of the required conditions depending on the type of

mixture and the type of scale sampling.

5.3 Main results

5.3.1 Posterior contraction rates

Recall thatX1, . . . ,Xn is an n sample drawn from a distribution P0 with density f0. This

density is concentrated around a submanifold M , with a a given smoothness β0 along

the manifold and a typically much larger smoothness β⊥ along the normal spaces.

More precisely, we will assume:

• Conditions on M : the submanifold M is of dimension d and has a reach greater

than τ > 0. Furthermore, there exists βM > 2 and CM > 0 such that Ψx0 ∈
HβMiso (Vx0 ,CM), ∀x0 ∈M . In particular, M also satisfies (5.3).
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• Conditions on f0: the density f0 is in Hβ0,β�
δ (M,L). Furthermore, there exists

c5 > 0 and κ > 0,

f0(x) ≲ e−c5∥x∥
κ

∀x ∈ RD, (5.12)

and for some ω > 6β and C0 <∞,

∫Wx0,δ

∣
Dkf̄x0,δ

f̄x0,δ
∣
ω/⟨k,α⟩

f̄δ,x0 ⩽ C0 and ∫Wx0,δ

∣
Lx0,δ

f̄x0,δ
∣
ω/β

f̄δ,x0 ⩽ C0. (5.13)

for all δ small, x0 ∈M and all 0 ⩽ ⟨k,α⟩ < β

• Conditions on II: the prior II is originating from a Partial / Hybrid location-scale

mixture of finite mixtures / Dirichlet process mixture satisfying the conditions

displayed in the Table 5.2.1.

Remark 5.3.1. Note that the conditions regarding the prior II do not involve M , δ, L,

β, or τ : they are regarded as unknown in this framework. In fact, the only feature of

M or f0 from which II seems to depend is the intrinsic dimension d, through (5.9) or

(5.10). However, as noted in Remark 5.2.8 we can choose priors which do not depend

on d and such that these aassumptions are verified for all d ⩾ 1.

In the rest of this Chapter the symbols ≃, ≲ and ≳ denote equalities or inequalities

up to a constant depending on D, d, τ , βM , CM , β0, β⊥ and all the other parameters

appearing in conditions (5.7) to (5.13).

Theorem 5.3.2. Let X1, . . . ,Xn be a n-sample from f0. We assume that ω > 6β is large

enough so that n−
ω−6β
2β+D = o(δD−d) and that β0 ⩽ β⊥ ⩽ βM − 3. Then, under the conditions

stated above,

II (dH(fP , f0) ⩾ εn ∣ Xn)ÐÐÐ→
n→∞

0 in P⊗n0 -probability

where

εn ≃ logp n ×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
√
nδ

D
α0−α⊥

∨ n−
β

2β+D

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

with p > 0 depending on D, κ and β.

Remark 5.3.3. The case where β⊥ is infinite is particularly of interest. Then, β → β0,

α0 →D/d, α⊥ → 0 and the rate εn becomes

ε∞n = logp(n) × { 1√
nδd

∨ n−
β0

2β0+d} ,

which is, when δ is not too small (i.e δ ≳ n−1/(2β0+d)), the minimax rate for estimating a

β0 Hölder density in Rd, up to a log term. Here the strength of our result lies in that the

manifold (and thus the support of f0) is unknown and the prior depends neither on β

nor δ or d (or M ).
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Since the class of densities contains the case where M is a d dimensional subspace

of RD, when δ ≳ n−(α0−α⊥)/(2β+D) the rate εn is the minimax estimation rate (up to a

logn term). Although no proof of a minimax bound exists in our framework, a careful

look at the proof of [GL14, Thm 4 (ii)] for p = 1, r = (∞, . . . ,∞), s = ∞ and θ = 1 (tail

dominance from (5.12)) show that the lower-bound translates in our context. Indeed

the densities used to derived the lower bound are obtained from a smooth density with

additive perturbations of the form x ↦ hβ∏ g(xi/hαi) where h > 0 and g is a smooth

and compactly supported function of zero-mean. Such a perturbations belong to

anisotropic Hölder classes defined in Section 5.2.1.

Remark 5.3.4. A refinement of [STG13] shows in fact that some location mixtures

priors are able to achieve the rate of n
− β0

2β0+d+(D−d)
β0
β⊥ (up to a ln factor) in the models

5.2.4 when the manifold M is in fact a d-dimensional subspace of Rd, thanks to the

simple euclidian anisotropic smoothness property of the underlying density (up to an

orthogonal change of basis adapted to the linear subspace). Our result is a nonlinear

extension of this work.

Remark 5.3.5. Because the approximation results of Subsection 5.3.2 are stable under

finite mixtures, so do the results of Theorem 5.3.2. In particular, the support of f0 can

be a finite union of submanifolds Mi with non trivial intersections and with each Mi

fulfilling (5.2). See Figure 5.3.1 for a diagram of such a situation. Hence the assumption

on the lower bound on the reach can be significantly weakened. We consider such an

example in the simulations of Section 5.4.

Figure 5.3.1 – (Left) An example of smooth submanifolds with a reach constrained

to be greater than τ and (Right) a finite union of such manifolds. Both subsets are

admissible as the (near) support for a density f0 satisfying the contraction rates

displayed in Theorem 5.3.2, as explained in Remark 5.3.5.

Assumptions (5.12) and (5.13) are common assumptions in density estimation

based on mixtures of Gaussians, see for instance [KRVDV10] or [STG13] for the Bayesian

approaches and [MRM13] for the frequentist approaches. They are rather weak ass-

sumptions. The difficulty with (5.13) is that it is expressed on f̄x0,δ, which is natural in

our context since the smoothness assumption on f0 is expressed in terms of f̄x0,δ, but

is not so intuitive. However, a careful examination of (5.13) show that this assumption
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is for instance implied by the stronger, but chart-independent assumption:

∫
RD

{ L(x)
f0(x)

}
ω∗

f0(x)dx ⩽ C0,

for some large ω∗. Moreover, to understand better what (5.13) means in terms of f0,

we illustrate it in our archetypal model where f0 is the density of X = Y + δE as in

Proposition 5.2.4. We then have the following result:

Lemma 5.3.6. Under the conditions of Proposition 5.2.4 and if

∫
M

{L0(x)
f∗(x)

}
ω∗

f∗(x)dµM(x) <∞ and ∫
B(0,1)

{L⊥(η)
K(η)

}
ω∗

K(η)dη <∞,

for some ω∗ large. Then (5.13) is satisfied in both the orthonormal noise model and in

the isotropic noise model.

The proof of Lemma 5.3.6 can be found in Section 5.B.2. Note that the conditions

in Lemma 5.3.6 are fulfilled by a number of natural kernels or densities such as K(η) ≈
(1 − ∥η∥2)p+ and L⊥ ≈ (1 − ∥η∥2)p−β⊥+ with large p or K(η) ≈ exp(−(1 − ∥x∥2)−1

+ ) and

L⊥(η) ≈ (1 − ∥η∥2)−βMK(η), see Lemma 5.A.6 for further details.

5.3.2 Approximating M-anisotropic densities

Theorem 5.3.2 is proved using the approach of [GVDV07], with a control on the prior

mass of Kullback-Leibler neighbourhoods of f0 and on the entropy of the support of

the prior. The main difficulty in our setup is in proving the Kullback-Leibler prior mass

condition. To do so, we need to construct an efficient approximation of f0 by mixtures

of Gaussian. This construction is of interest in its own as it sheds light on the behaviour

of such mixtures and on the geometry of M-anisotropic densities.

To explain the construction, we denote, for any x ∈ M τ , Tx = TprM (x)M and Nx =
NprM (x)M . We also write Σ(x) = O⊺

x∆2
σ,δOx where Ox is the matrix in the canonical

basis of RD and in arbitrary orthonormal basis of Tx and Nx of the linear map z ↦
(prTx z,prNx z) and where

∆σ,δ =
⎛
⎝
σα0 Idd 0

0 δσα⊥ IdD−d

⎞
⎠
.

Note that Σx does not depends on the choice of an orthonormal basis of Tx and Nx

since for any orthonormal base change P that preserves Tx, one have P ⊺∆σ,δP = ∆σ,δ.

For any function f ∶ RD → R, we define

KΣf(x) ∶= ∫
Mτ

ϕΣ(y)(x − y)f(y)dy,
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where we recall that ϕΣ(y) is the density of a centered Gaussian with variance Σ(y). The

idea behind the construction of the approximation of f0 by a mixture of gaussians is to

show that KΣf0(x) is close to f0 and then to define a perturbation f1 of f0 such that

KΣf1(x) − f0(x) = O(L(x)σβ). Compared to the construction proposed by [KRVDV10]

in the univariate case or [STG13] in the multivariate case where KΣf = ϕΣ ∗ f , in our

construction Σ varies with the location y. Note that in particular ∫ ϕΣ(y)(x − y)dy may

be different from 1. This dependence in y is crucial to adapt to the geometry of the

manifold but considerably complicates the proof as the underlying kernel integral

operator can no longer be written as a convolution. We first show that f0 can be

efficiently approximated pointwise.

Theorem 5.3.7. Assume that σ, δ ⩽ 1, that f0 ∈ Hβ0,β�
δ (M,L) satisfies (5.12) and (5.13),

that σα0−α⊥ ⩽ δ and that the manifold satisfies (5.2) with β0 ⩽ β⊥ ⩽ βM − 3. Then there

exists a function g ∶ RD → R such that, for any H > 0,

∣KΣg(x) − f0(x)∣ ≲ σβL(x)1Mτ + (H log(1/σ))D/κσH∥L∥∞ ∀x ∈ RD.

The function g has the form

g(x) = f0 +
1

δD−d
∑

0<⟨k,α⟩<β
σ⟨k,α⟩

J

∑
j=1

dj,k(x,σ, δ)Dk
z(χjf0)xj ,δ(zj,x),

where zj,x ∶= ∆−1
1,δΨ̄

−1
xj ,δ

(x), where (χj)j⩽J is a partition of unity, defined in Section

5.C.1, of the set M τ ∩ B(0,R0(log(1/σ))1/κ) associated with a τ/64-packing (xj)j⩽J of

M τ ∩B(0,R0(log(1/σ))1/κ) and where dj,k(x,σ, δ) are smooth and bounded functions

depending on χj and M .

We then establish that the previous bound translates to a control in terms of

Hellinger distance.

Corollary 5.3.8. In the context of Theorem 5.3.7, if f0 also satisfies (5.13) and if σω−6β =
o(δD−d) and δσα⊥ = o(∣ logσ∣−1/2), the probability density h̃ ∝ g1g⩾f0/2 + f0/21g<f0/2
verifies

dH(KΣh̃, g)2 ≲ σ2β ∣ logσ∣16β+D/κ. (5.14)

Theorem 5.3.7 is proven in Section 5.5.2 while the proof of Corollary 5.3.8, which

appears to be a non-trivial consequence of Theorem 5.3.7, is delayed to Section 5.C.1.

5.4 Numerical experiments

In this section, we provide a few numerical experiments using the Maximum A Posteri-

ori (MAP) to approximate the true distribution, as implemented in the python package

pyro [BCJ+19]. The goal of this section is not to check that the theoretical results of this
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Chapter hold numerically, but rather to give some visual examples as how suitable the

location-scale mixtures of Subsection 5.2.3 can be to describe in a relevant way data

that can be very singular. More precisely, we consider the hierarchical model:

(yi)ni=1 ∣ (µi,Oi)ni=1,Λ ∼
n

⊗
i=1

N (⋅∣µi,OiΛOTi ) with Λ = diag(λ1, . . . , λD),

(µi,Oi)ni=1 ∣ P ∼ P⊗n,

P ∼ DP(αP0) with P0 = N (⋅∣µ0,Σ0)⊗Unif(O(D)),

(λj)Dj=1∣(bj)Dj=1 ∼
D

⊗
j=1

InvΓ(aj , bj), with (bj)Dj=1 ∼
D

⊗
j=1

Exp(κj).

(5.15)

We set in our experiments the value of the hyperparameters as α = 1, aj = κj = 1 for

all 1 ⩽ j ⩽ D and µ0 = 0, Σ0 = ID. We will restrict our numerical study to the ambiant

dimension D = 2 and D = 3, and use the partial location-scales mixture described in

Section 5.2 with exponential hyperpriors on the common eigenvalues λ1 and λ2 of the

scales, and with the eigenvalue matrix Λ having the form

Λ =
⎛
⎝
λ1 0

0 λ2

⎞
⎠

for D = 2, or Λ =
⎛
⎜⎜
⎝

λ1 0 0

0 λ2 0

0 0 λ2

⎞
⎟⎟
⎠

for D = 3.

We refer to Appendix 5.E for further details regarding the design of the prior. The

synthetic dataset we use are supported near four geometric shapes: the 2D-spiral

(D = 2, d = 1) the two circles (D = 2, d = 1); the 3D-spiral (D = 3, d = 1) and the torus

(D = 3, d = 2). We also refer to Appendix 5.E for the exact parametric equations of these

sets. For each shape, we generate between 500 and 10000 points for various values

of δ, and generate the same amount of data through the estimated posterior obtain

with SVI by predictive posterior sampling. The results are presented in Figures 5.4.1 to

5.4.4. As expected, the posterior does visually concentrate around the true distribution,

even when δ is very small (i.e the true probability measure is very singular) or when

the support of the density is based on two crossing manifolds as it is the case for the

two circles, see also remark 5.3.5.

One interesting observation is the fact that the prior naturally adapts to the intrin-

sic dimension d of the support: for the 3D spiral and the torus one notice that the

value of λ1 (which corresponds to the 1-dimensional side of the covariance matrix) is

predominant compared to λ2, while it is automatically the other way around for the

torus — see Figure 5.4.5 for a visualisation of this fact.

We conclude this series of numerical experiments with the inspection of the de-

crease of contraction rate for the 2D spiral and the torus, with n ranging from 100 to

10000. As in [MLD20] we evaluate the risk using the histogram metric which is compu-

tationally much less expensive than the L1 metric. It is computed as follow: take a new
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Figure 5.4.1 – The 2D spiral: For δ = 0.1 (Left), we observed n = 500 data points (in

Blue) and predicted the same amount from the posterior distribution (in Orange). In

(Right), same experiment but with δ = 0.01.

Figure 5.4.2 – The circles: For δ = 0.1 (Left), we observed n = 500 data points (in

Blue) and predicted the same amount from the posterior distribution (in Orange). In

(Right), same experiment but with δ = 0.01.

Figure 5.4.3 – The 3D spiral: For δ = 0.1 (Left), we observed n = 1000 data points (in

Blue) and predicted the same amount from the posterior distribution (in Orange). In

(Right), same experiment but with δ = 0.01.

Figure 5.4.4 – The torus: For δ = 0.5 (Left), we observed n = 10000 data points (in

Blue) and predicted the same amount from the posterior distribution (in Orange). In

(Right), same experiment but with δ = 0.05.

test sample XN = {x1, . . . , xN} and, for any predictive n-sample Zn ∶= {z1, . . . , zn} built
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on a training sample, compute

histε(XN ,Zn) ∶=
1

N

N

∑
i=1

∣PXN (B(xi, ε)) − PZn(B(xi, ε))∣ (5.16)

where PXN (resp. PZn) is the empirical distribution associated with XN (resp. Zn). We

present the results in Figures 5.4.6 and 5.4.7.

Figure 5.4.5 – The values of λ1 and λ2 as functions of the number of iterations in the

SVI process for the 3D spiral with n = 1000 observations and δ = 0.05 (Left) and the

torus with n = 10000 observations and δ = 0.05 (Right). Each value is initialized in the

same way but are seperated as soon as the first iteration.

Figure 5.4.6 – For the 2D-spiral with δ = 0.05 we sampled 1000 points from the predic-

tive distribution after observing (Left) 100 points and (Middle) 999 points. (Right) We

computed the histogram metric (5.16) for a new test sample of size N = 10000 and a

predictive n = 1000 sample, for ε = 0.05. The experiment was repeated 30 times for a

training sample of size ranging from 100 to 999 on a log-regular grid of length 10. We

show the median value of the metric in orange and its 10 and 90 percentiles in gray.

Results are in double log10-scale.

5.5 Proofs of the main results

5.5.1 Proof of Theorem 5.3.2

Theorem 5.3.2 is proven using [GVDV07, Thm 5], which relies on two things: making

sure that the prior probability distribution puts enough mass around the true density

f0, and ensuring that most of its probability mass is concentrated on a subset of

manageable entropy.
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Figure 5.4.7 – Same experiment as in Figure 5.4.6 but for the torus with δ = 0.05.

Prediction is made using (Left) 100 observed points and (Middle) 10000 points. (Right)

We computed the histogram metric (5.16) for a new test sample of size N = 10000 and

a predictive n = 1000 sample, for ε = 0.5. The experiment was repeated 10 times for a

training sample of size ranging from 100 to 10000 on a log-regular grid of length 5.

Proof of Theorem 5.3.2. We first check that our prior fulfils the entropic condition

of [GVDV07, Thm 5]. To do so we define, for any sequence εn going to 0, Fn =
Fn(εn,R0,H0, σ0, σ1) to be the set of all probability density function fP with P =
∑h⩾1 πhδµh,Uh,Λh such that

∑
h>Hn

πh ⩽ εn, ∀h ⩽Hn, µh ∈ B(0,Rn) and ∀h ⩽Hn,Λh ∈ Qn = [σ2
n, σ̄

2
n]D, Uh ∈ O(D)

where Rn = exp(R0nε
2
n), Hn = ⌊H0(nε2

n)/ logn⌋, σ2
n = σ2

0(nε2
n)−1/b3 for some positive

constant R0,H0 and σ0 and where, for some σ1 > 0,

• σ̄2
n = exp(σ2

1nε
2
n) in the case of the Partial location-scale mixture

• σ̄2
n = σ2

1(nε2
n)1/b4 in the case of the Hybrid location-scale mixture.

We then show in Lemma 5.5.1 below that II(Fcn) ≲ exp (−c1nε
2
n) as soon as nε2

n ⩾ nω

for some ω > 0, and that Fn satisfies the entropic bound of [GVDV07, Thm 5] with

partitions described in the aforementioned lemma.

We finally define for any ε > 0,

B(f0, ε) = {f ∶ RD → R ∣ P0 (log
f0

f
) ⩽ ε2 and P0 (log2 f0

f
) ⩽ ε2} ,

and introduce p = s ∨ t/2 and

ε̃n ∶= δ
β

α0−α⊥ ∧ n−
β

2β+D and εn ∶= {C
1/2

√
n
ε̃−D/2β
n logt/2(1/ε̃n)} ∨ {ε̃n logs(1/ε̃n)}

where s, t and C are introduced in Lemma 5.5.2. The sequence ε̃n goes to 0 and is such

that ε̃α0
n ⩽ δβ ε̃α⊥n so that Lemma 5.5.2 below applies and

II (fP ∈ B(f0, εn)) ⩾ II (fP ∈ B(f0, ε̃n logs(1/ε̃n)) ≳ exp (−Cε̃−D/β
n logt(1/ε̃n))

≳ exp(−nε2
n),
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so that the posterior contracts at rate εn, so long as nε2
n ⩾ nω for some ω > 0, which

allows application of Lemma 5.5.1 and in turn of [GVDV07, Thm 5]. We now distinguish

three cases:

1. If first δ
D

α0−α⊥ ⩽ n−1 then the results of Theorem 5.3.2 is trivial and there is nothing

to show (because the contraction rate goes to ∞ instead of 0);

2. If δ
D

α0−α⊥ ⩾ n−
D

2β+D , then ε̃n = n−
β

2β+D and one easily get that εn ≃ n−
β

2β+D logp n. In

particular, nε2
n ≫ nω for ω =D/(2β +D).

3. If finally n−1 < δ
D

α0−α⊥ < n−
D

2β+D , then ε̃n = δ
β

α0−α⊥ and log(1/δ) ≳ logn so that

nε2
n ⩾ Cε̃−D/β

n logt(1/ε̃n) ≳ δ
− D
α0−α⊥ logt(n) ≫ n

D
2β+D .

In particular, Lemma 5.5.1 applies and the conclusion follows again from [GVDV07,

Thm 5], to the last detail that we need to understand how εn depends on δ. By

assumption, there holds log(1/ε̃n) ≲ log(1/δ) ≲ log(n) and ε̃n < n−β/(2β+D) and

thus

εn ≲ logp n ×
⎧⎪⎪⎨⎪⎪⎩

ε̃
−D/2β
n√
n

∨ ε̃n
⎫⎪⎪⎬⎪⎪⎭
= logp n × 1√

nδD/(α0−α⊥)
.

We now turn on the entropic condition on the sieve Fn introduced in the proof

below. We define, for j = (jh, h ⩽Hn) ∈ NHn ,

Fn,j ∶= {fP ∈ Fn ∣ ∀h ⩽ hn, jh
√
n < ∥µh∥ ⩽ (jh + 1)

√
n}

along with the following refinement

Fn,j,0 ∶= {fP ∈ Fn,j ∣
maxi λi
mini λi

⩽ n}

and ∀` ⩾ 1, Fn,j,` ∶= {fP ∈ Fn,j ∣ n2`−1

< maxi λi
mini λi

⩽ n2`} .

Lemma 5.5.1. Under assumptions of Table 5.2.1, for any sequence εn → 0 such that

nε2
n ⩾ nω, for some ω > 0, and for all c1 > 0, if R0,H0, σ

2
1 are large enough and σ2

0 is small

enough, there exists M0 > 0 such that,

i) II(Fcn) ≲ exp (−c1nε
2
n);

ii) In the case of the partial location-scale prior

∑
j,`

√
II(Fn,j,`)N(εn,Fn,j,`, ∥ ⋅ ∥1)e−M0nε

2
n = o(1);

iii) In the case of the hybrid location-scale prior

∑
j

√
II(Fn,j)N(εn,Fn,j, ∥ ⋅ ∥1)e−M0nε

2
n = o(1).
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The proof of Lemma 5.5.1 can be found in Section 5.D.1. The last elementary brick

in the proof of Theorem 5.3.2 is the control of the probability of small balls around P0,

which is stated below.

Lemma 5.5.2. Let ε > 0 and assume that it is small enough so that εα0 ⩽ δβεα⊥ and that

εα⊥ ≪ log−1(1/ε). Then, in the context of Theorem 5.3.2, there holds

II (fP ∈ B(f0, ε̃)) ≳ exp{−Cε−D/β logt (1/ε)} ,

where the constant C depends on the parameters, where ε̃ ≃ ε logs(1/ε) and with s, t > 0

depending on D, β and κ.

The complete proof is given in Section 5.D.2 and is sketched as follow: the first

step is the Hellinger approximation of f0 by KΣh̃ as expressed in Corollary 5.3.8. Then

we exhibit an ε-approximation of KΣh̃ by a discrete location scale mixture with a

controlled number of atoms through the use of Lemma 5.5.3 below. The result then

follows from similar arguments as in [STG13, KRVDV10] or [NR17].

Lemma 5.5.3. Let ε > 0 such that δσα⊥ log(1/ε) ≪ 1. For any density g on M δ sat-

isfying (5.12), there exists a discrete probability measure G on RD with at most N ≃
σ−D logD(1/ε) atoms such that

∥KΣG −KΣg∥∞ ≲ ε

σDδD−d
and ∥KΣG −KΣg∥1 ≲ ε logD/2(1/ε).

The atoms of G are in M δ and are σ2α0ε-apart.

The proof of Lemma 5.5.3 can be found in Section 5.D.3. We underline that although

it uses similar ideas to [GVDV01, Lem 3.1], it is not a straightforward adaptation of it,

since in KΣ the covariances depend on the locations of the mixture in a complicated

way.

5.5.2 Proof of Theorem 5.3.7

As explained in Section 5.3.2 a key ingredient of the proof of Theorem 5.3.2 is the

pointwise approximation of f0 by KΣg̃ where g is close to f0 and is explicited in the

proof of Theorem 5.3.7 below.

Proof of Theorem 5.3.7. Let x0 ∈M and define

Wj
x0
∶= BTx0

(0,
2 + j
16

τ) ×BNx0
(0,

6 + j
8

τ) for j ∈ {0,1,2} ,

and Ojx0 = Ψ̄x0(O
j
x0) for j ∈ {0,1,2}. We haveW0

x0
⊂ W1

x0
⊂ W2

x0
andO0

x0
⊂ O1

x0
⊂ O2

x0
.

Furthermore, the setsO0
x0

for x0 ∈M forms a covering of M3τ/4, see Section 5.A.4 for

more details.
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We now drop the x0 from the notation. Let f ∶ RD → R be inHβ0,β�
δ (M,L) and sup-

ported onO0 — it is to be thought of as f0 multiplied by a smooth function supported

onO0. Take x ∈ O1 and compute

KΣf(x) ∶= ∫
RD

ϕΣ(u)(x − u)f(u)du = ∫
Mδ∩O0

ϕΣ(u)(x − u)f(u)du.

We first prove that we can construct a function g such that KΣg is close to f and we

then apply this result to f = f0χj with χj the partition of unity defined in Lemma 5.A.6.

The idea is to use the fact that Σ(u) = o(1) and the smoothness of u↦ Σ(u) so that

KΣf(x) ≈ ∫
Mδ∩O0

ϕΣ(x)(x − u)f(u)du ≈ f(x).

We now write down the approximation rigorously and quantify the error, taking into

accound the geometry of the manifold M . In all that follows, we use the notation

z = (v, η) for points belonging to BTx0M
(0, τ/16) × BNx0M

(0, τ/2), while throughout

w = (v, δη) ∈ BTx0M
(0, τ/16) × BNx0M

(0, δτ/2). We first make the change of variable

w = Ψ̄−1(u), yielding

KΣf(x) = ∫
Ψ̄−1(Mδ∩O0)

ϕΣ(Ψ̄(w))(x − Ψ̄(w))f(Ψ̄(w))∣det dΨ̄(w)∣dw.

Then, denoting by wx = Ψ̄−1(x), we write

w = ∆σ,δz +wx = ∆σ,δz +∆1,δzx, wx = (vx, δηx), zx = ∆−1
1,δwx,

in the integral above, giving

KΣf(x) =
1

(2π)D/2δD−d ∫∆−1
σ,1(W0−zx)

e−Bσ(x,z)f̄δ(∆σ,1z + zx)ζ(∆σ,δz +wx)dz, (5.17)

with

Bσ(x, z) ∶=
1

2
∥x − Ψ̄(∆σ,δz +wx)∥2

Σ−1(Ψ̄(∆σ,δz+wx))

and ζ(∆σ,δz +wx) ∶= ∣det dΨ̄(∆σ,δz +wx)∣,

and where we used the fact that ∣det Σ(u)∣ is constantly σDδD−d for u ∈ M τ . Since

z ↦ f̄δ(∆σ,1z + zx) is zero outside of ∆−1
σ,1(W0 − zx), we can replace the latter set with

Tx0M ×Nx0M ≈ RD in the integral above. We now develop each term separately. First

ζ(∆σ,δz +wx) = ∣det dΨ̄(wx)∣ + ∑
1⩽∣k∣<βM−2

(∆σ,δz)k

k!
Dkζ(wx) +Rζσ(x, z)

with Rζσ(x, z) ≲ ∥∆σ,δz∥βM−2, up to a constant that depends on CM . Secondly, there

holds

f̄δ(∆σ,1z + zx) = f̄δ(zx)
´¹¹¹¹¹¸¹¹¹¹¹¹¶

=δD−df(x)

+ ∑
0<⟨k,α⟩<β

zk

k!
σ⟨k,α⟩ Dkf̄δ(zx) +Rfσ(x, z) (5.18)
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withRfσ(x, z) ⩽DLδ(zx)σβ∥1∨z∥βmax

1 =DδD−dL(x)σβ∥1∨z∥βmax

1 in application of Corol-

lary 5.A.3. It remains to understand Bσ(x, z). Notice that

Ψ̄(∆σ,δz +wx) = x + dΨ̄(wx)[∆σ,δz] + ∑
2⩽∣k∣<βM−1

(∆σ,δz)k

k!
DkΨ̄(wx) +RΨ̄

σ (x, z). (5.19)

with againRΨ̄
σ (x, z) ≲ ∥∆σ,δz∥βM−1. Let write k = (k0, k⊥) with k0 ∈ Nd and k⊥ ∈ ND−d. We

know that Ψ̄ is affine with respect to its second variable, so that

D(k0,k⊥)Ψ̄ = 0 for ∣k⊥∣ ⩾ 2. (5.20)

The sum in the RHS of (5.19) thus rewrites

∑
k⊥=0

2⩽∣k0∣<βM−1

σ∣k0∣α0
zk

k!
DkΨ̄(wx) + ∑

∣k⊥∣=1
ind⩽∣k0∣<βM−2

σ∣k0∣α0σα⊥δ
zk

k!
DkΨ̄(wx) (5.21)

and RΨ̄
σ is bounded by the more precise quantity

∥RΨ̄
σ (x, z)∥ ≲ ∑

∣k∣=⌈βM−2⌉
∣k⊥∣⩽1

∣∆σ,δz∣k∥∆σ,δz∥βM−1−⌈βM−2⌉.

Furthermore, the first differential of Ψ̄ reads

dΨ̄(wx)[∆σ,δz] = σα0dΨ(vx)[v] + σα0 prTx dvN(wx)[v]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈Tx

+ σα0 prNx dvN(wx)[v] + δσα⊥N(vx, η)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈Nx

.
(5.22)

Now recall that u = Ψ̄(∆σ,δz +wx) and that

Bσ(x, z) =
1

2
∥x − u∥2

Σ−1(u) =
1

2σ2α0
∥prTu(x − u)∥

2 + 1

2δ2σ2α⊥
∥prNu(x − u)∥

2

Using the development of u that we have in (5.19,5.21), we find that, noting again

k = (k0, k⊥), for any y ∈ RD,

prTu(y) = prTx(y) + ∑
1⩽∣k∣<βM−1

∣k0∣⩾1

(∆σ,δz)kΦT
k (wx)[y] +R

T
σ (x, y, z) (5.23)

with

∣RTσ (x, y, z)∣ ≲ ∥y∥ ∑
∣k∣=⌈βM−2⌉

∣k0∣⩾1

∣∆σ,δz∣k∥∆σ,δz∥βM−1−⌈βM−2⌉.

and for some (βM − 1 − ∣k∣)-Hölder functions ΦT
k (wx) (which are smooth functions of

D`Ψ(wx) for 1 ⩽ ∣`∣ ⩽ ∣k∣, see for instance Lemma 5.A.2). Here the important fact is that

the sums in both displays above start at ∣k0∣ ⩾ 1. This is because:
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i) s↦ prM(x+s) is constant over the fiberNx, so there is no sole contribution of the

normal part of u − x (only mixed contribution with the tangential part) in (5.23);

ii) The tangential part of dΨ̄(wx)[∆σ,δz] does not inherit the contribution of the

normal displacement in δα⊥, as shown in (5.22);

iii) In (5.21), neither sums contain any term of type (0, k⊥).

Plugging y = u − x = Ψ̄(∆σ,δz +wx) − x in (5.23) and using (5.22) yields

σ−α0 prTu(x − u) = dΨ(vx)[v] + prTx dvN(wx)[v]

+ ∑
2⩽∣k∣<βM−1

∣k0∣⩾1

σ−α0(∆σ,δz)kΦ̃T
k (wx) +R

T
σ (x, z)

with Φ̃T
k being a again smooth functions of D`Ψ̄(wx) for ∣`∣ ⩽ ∣k∣, and where

∥RTσ (x, z)∥ ≲ σ−α0 ∑
∣k∣=⌈βM−2⌉

∣k0∣⩾1

∣∆σ,δz∣k∥∆σ,δz∥βM−1−⌈βM−2⌉ ≲ δβM−2σ(βM−2)α⊥∥z∥βM−1

up to a constant that depends on CM . Now notice that

prNu(z) = z − prTu z = prNx z − ∑
1⩽∣k∣<βM−1

∣k0∣⩾1

(∆σ,δz)kΦT
k (wx)[z] −R

T
σ (x, y, z)

whence again plugging z = u − x and using (5.22)

δ−1σ−α⊥ prNu(x − u) = N(vx, η) + σα0−α⊥δ−1 prNx dvN(wx)[v]

+ ∑
2⩽∣k∣<βM−1

∣k0∣⩾1

σ−α⊥δ−1(∆σ,δz)kΦ̃N
k (wx) +RNσ (x, z)

where again Φ̃N
k (wx) is polynomial in D`Ψ̄(x) for ` ⩽ k and

∥RNσ (x, z)∥ ≲ σ−α⊥δ−1 ∑
∣k∣=⌈βM−2⌉

∣k0∣⩾1

∣∆σ,δz∣k∥∆σ,δz∥βM−1−⌈βM−2⌉

≲ δβM−3σα⊥(βM−3)+α0∥z∥βM−1.

Recall that by assumption σα0 ⩽ δσα⊥ so that RN is of greater order that RT . There thus

exists functions Φk similar to Φ̃T
k and Φ̃N

k such that

Bσ(x, z) =
1

2
∥A(wx)[z]∥2 + ∑

1⩽∣k∣<βM−1
∣k0∣⩾1

σ−α⊥δ−1(∆σ,δz)kΦk(wx) +RBσ (x, z)

with RBσ (x, z) ≲ δβM−2σ(βM−2)α⊥∥z∥βM−1 and where

A(wx)[v, η] ∶= dΨ(vx)[v] + prTx dvN(wx)[v] +N(vx, η).
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We can rewrite the development of Bσ, up to a slight modification of the Φk and of RB ,

which we write again Φk and RB with a slight abuse of notation, in the following form

−Bσ(x, z) +
1

2
∥A(wx)[z]∥2

= log

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 + ∑
1⩽∣k∣<βM−1

∣k0∣⩾1

σ−α⊥δ−1(∆σ,δz)kΦk(wx) +RBσ (x, z)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(5.24)

or again

e−Bσ(x,z) = e−
1
2
∥A(wx)[z]∥2

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 + ∑
1⩽∣k∣<βM−1

∣k0∣⩾1

σ−α⊥δ−1(∆σ,δz)kΦk(wx) +RBσ (x, z)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

All in all, we obtain a development of KΣf(x) of the form

KΣf(x) = ∑
0⩽⟨k,α⟩<β

∑
0⩽∣m∣<βM−2

σ⟨k+m,α⟩δ∣m⊥∣ξk,0,m(x)

+ ∑
0⩽⟨k,α⟩<β

∑
1⩽∣`∣<βM−1

∣`0∣⩾1

∑
0⩽∣m∣<βM−2

σ⟨k+`+m,α⟩−α⊥δ∣`⊥∣+∣m⊥∣−1ξk,`,m(x) +Rσ(x)

(5.25)

with ∣Rσ(x)∣ ≲ {σβ + σβ(βM−2)/β⊥δβM−2}L(x) ≲ σβL(x) as soon as βM − 2 ⩾ β⊥. The term

L(x) appears in the control of Rσ because every term in the remainder is multiplied by

one term of the development (5.18) of f̄δ, and each one of this term is upper bounded

by L(x). The term ξk,`,m(x) (for both ` = 0 and ` > 0 with the convention Φ0 = 1) is

exactly

Dkf̄δ(zx) ×Φ`(wx) ×Dmζ(wx) ×
1

(2π)D/2δD−d ∫RD
e−

1
2
∥A(wx)[z]∥2

z(k+`+m)dz.

The zero-th order term is equal to

f̄δ(zx) × ζ(wx) ×
1

(2π)D/2δD−d ∫RD
e−

1
2
∥A(wx)[z]∥2

dz = f(x) × ∣det Ψ̄(wx)∣ ×
1

∣detA(wx)∣

But recall that

dΨ̄(wx)[z] = dΨ(vx)[v] + prTx dvN(wx)[v] + prNx dvN(wx)[v] +N(vx, η)

which, written from an othonormal basis concatenated from orthonormal bases of Tx0

and Nx0 to an orthonormal basis concatenated from orthonormal bases of Tx and Nx

leads to a matrix which is block triangular inferior with diagonal blocks corresponding

to dΨ(vx)[v] + prTx dvN(wx)[v] and N(vx, η) so that ∣det dΨ̄(wx)∣ = ∣detA(wx)∣. Now

for the higher-order terms, notice that the map

w ↦ Dmζ(w) ×Φ`(w) × 1

(2π)D/2 ∫RD
e−

1
2
∥A(w)[η]∥2

η(k+`+m)dη

176



CHAPTER 5. BAYESIAN DENSITY ESTIMATION

belongs, in application of Proposition 5.B.6 and Proposition 5.B.1, toHβM−2−∣m∣∨∣`∣
iso (Wx0,δ,C)

for some C depending on CM and τ . Likewise, z ↦ Dkf̄δ(z) belongs toHβ(k)(Wx0,δ, L)
according to Proposition 5.B.1. Using Proposition 5.B.6 once again and the definition

of manifold-driven Hölder spaces, one get that

ξk,`,m ∈Hβ̃0,β̃⊥
δ (M,CL) with

⎧⎪⎪⎪⎨⎪⎪⎪⎩

β̃0 = {β0 − ⟨k,α⟩/α0} ∧ {βM − 2 − ∣m∣ ∨ ∣`∣}

β̃⊥ = {β⊥ − ⟨k,α⟩/α⊥} ∧ {βM − 2 − ∣m∣ ∨ ∣`∣} .

Looking at (5.25), if we were to prove that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⟨k +m,α⟩ + β̃ ⩾ β if ` = 0

⟨k + ` +m,α⟩ + β̃ ⩾ α0 + β if ∣`0∣ ⩾ 1
where β̃ ∶=D × { d

β̃0

+ D − d
β̃⊥

}
−1

, (5.26)

then we would get, by induction, that there exists a function g, supported onO0, of the

form

g(x) = f(x) + 1

δD−d
∑

0<⟨k,α⟩<β
σ⟨k,α⟩dk(x,σ, δ)Dkf̄δ(zx)

with dk uniformly bounded, such that

∣KΣg(x) − f(x)∣ ≲ L(x)σβ ∀x ∈ O1.

It only remains to prove (5.26). We start with ` = 0. Then ∣m∣ ∨ ∣`∣ = ∣m∣ and since

β0 − ⟨k,α⟩/α0 ⩽ β⊥ − ⟨k,α⟩/α⊥, there are three cases to cover: case 1.: βM − 2 − ∣m∣ ⩾
β⊥−⟨k,α⟩/α⊥; case 2.: βM−2−∣m∣ ⩽ β0−⟨k,α⟩/α0 and case 3: β0−⟨k,α⟩/α0 ⩽ βM−2−∣m∣ ⩽
β⊥ − ⟨k,α⟩/α⊥.

We start with case 1: in this case, β̃ = β − ⟨k,α⟩ and (5.26) follows immediately. In

both case 2 and case 3, notice that denoting α̃⊥ ∶= β̃/β̃⊥, we either have α̃⊥ = 1 ⩾ α⊥ (case

2) or α̃⊥ = β̃/β̃⊥ ⩾ α⊥ because β̃⊥/β̃0 ⩽ β⊥/β0 by assumption (case 3). This yields that

β̃ = (βM − 2 − ∣m∣ ∨ ∣`∣)α̃⊥ ⩾ (βM − 2 − ∣m∣)α⊥ ⩾ (βM − 2)α⊥ − ⟨m,α⟩

⩾ βM − 2

β⊥
β − ⟨m,α⟩

ending the proof of (5.26) for ` = 0 since βM − 2 ⩾ β⊥. Now for the case ∣`0∣ ⩾ 1, if ∣`∣ ⩽ ∣m∣,
the previous reasoning still holds and we get

⟨k + ` +m,α⟩ + β̃ ⩾ ⟨`,α⟩ + ⟨k +m,α⟩ + β̃ ⩾ α0 + β.

If finally ∣`∣ > ∣m∣, then we can write ` = ̃̀+ei for some i ∈ {1, . . . , d} so that ∣`∣ = ∣̃̀∣+1 and

⟨k + ` +m,α⟩ + β̃ ⩾ α0 + ⟨k + ̃̀, α⟩ + β̃.

Now noticing that βM − 2 − ∣`∣ = βM − 3 − ∣̃̀∣, we obtain, using the same reasoning as

above, that ⟨k + ̃̀, α⟩ + β̃ ⩾ β as soon as βM − 3 ⩾ β⊥, ending the proof of (5.26).
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We are now ready to prove Theorem 5.3.7. We let

R = {H log(1/σ)}1/κ

and χ1, . . . , χJ be the functions defined at Lemma 5.A.6 from a τ/64-packing of M ∩
B(0,R). Recall that we can always chose J of order less than RD. In light of the point

(iv) of Lemma 5.A.6, the function fj ∶= χjf0 is still inHβ0,β⊥
δ (M,CL) for some constant

C depending on τ and β⊥. Since supp fj ⊂ O0
xj (point (i) of Lemma 5.A.6), the first part

of this proof yields that there exists some functions gj supported onO0
xj , such that

∣KΣgj(x) − fj(x)∣ ≲ L(x)σβ (5.27)

uniformly on O1
xj . Now notice that for x outside of O1

xj , we have d(x,O0
xj) > (σα0 ∨

δσα⊥)
√

(H +D) log(σ) so that

∣KΣgj(x)∣ ⩽ ∫O0
xj

∣ϕΣ(u)(x − u)gj(u)∣du ⩽
σH

(2π)D/2δD−d ∫O0
xj

∣gj(u)∣du ≲ σH sup
O0
xj

L

and the equality (5.27) extends to the whole set RD with the bound σH∥L∥∞ on RD∖O1
xj .

Using the linearity of KΣ, we thus find that for g = ∑Jj=1 gj , and for any x ∈ RD, there

holds,

∣KΣg(x) − f0(x)∣ ⩽
J

∑
j=1

∣KΣgj(x) − fj(x)∣ ⩽ ∑
j∈J(x)

∣KΣgj(x) − fj(x)∣ + ∑
j∉J(x)

∣KΣgj(x)∣

≲ ∣J(x)∣ ×L(x)σβ + (J − ∣J(x)∣) × σH∥L∥∞
≲ σβL(x) + {H log(1/σ)}D/κ σH∥L∥∞

where we denoted J(x) = {1 ⩽ j ⩽ J ∣ x ∈ O1
xj}, and used the fact that J(x) is bounded

from above by something depending on D and τ only, ending the proof.

5.6 Discussion

With the aim of developing Bayesian procedures in the framework of manifold learn-

ing, we exhibited a new family of priors based on location-scales of Dirichlet mixture

of Gaussians, and described a general setting for studying density supported near a

submanifold. The latter relies on two things: first, a parametrization of the offset of

the manifold and second, an anisotropic class of Hölder functions. In this model, we

obtained concentration rates in Theorem 5.3.2 for the associated posterior distribution

that are adaptive to the regularity of the underlying density while being totally agnostic

of the underlying submanifolds and their main features. Our procedure is therefore

fully adaptive.
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An interesting feature of our theoretical framework is that it allows to express the

rate in terms of the smoothnesses of the density and the manifold together with the

thickness δ of the support around the manifold. When δ is fixed, our results can be

viewed as an extension of minimax rates for regular anisotropic densities to manifold

driven anisotropic densities. But we are also considering the regime where δ = o(1)
which corresponds to the manifold learning problem. The rates obtained in Theorem

5.3.2 have two regimes: one when δ is not too small with rate n−β/(2β+D) (up to logn

terms) and the concentrated regime where δ is very small (δ = o(n−1/(2β+D)) ) where we

obtain the rate (nδD/(α0−α⊥))−1/2. It is not clear if this latter rate is optimal or not. The

case δ = 0 would correspond to the observations belonging to the manifold M (and for

which we would expect the rate n−β0/(2β0+d)) but cannot be thought as a limiting case

of our problem since then the distribution has density with respect to the Hausdorff

measure on M and not with respect to the Lebesgue measure on RD. When M is un-

known the model is not dominated and our approach is not applicable. The problem

of posterior contraction rates when the distribution lives on an unknown manifold

remains open, although some interesting ideas in [TY22] or [CDFM22] could be used

to address it.

Another interesting output of our results is that if nonparametric mixtures of normal

densities define a versatile and flexible model for smooth densities, the structure of

the prior on the mixing distribution is crucial. In this Chapter we propose two classes

of priors which we believe enjoy many strong theoretical properties while remaining

reasonnably simple to implement. Moreover variational Bayes algorithms using pyro

can be easily implemented and for which the same theoretical guarantees hold. It is

quite possible that other nonparametric mixture models such as the Fisher-Gaussian

kernels of [MLD20] would enjoy the same theoretical guarantees and we believe that

our approximation result can be useful to study the theoretical properties of mixtures

of Fisher-Gaussian kernels which are stronly related to Gaussian kernels.

179



CHAPTER 5. BAYESIAN DENSITY ESTIMATION

180



Appendix

Contents

5.A Some facts on submanifolds with bounded reach . . . . . . . . . . . 181
5.A.1 The geometry of submanifolds with bounded reach . . . . . . . 181

5.A.2 Taylor expansion of M-anisotropic Hölder functions . . . . . . . 185

5.A.3 Stability by a change of basis . . . . . . . . . . . . . . . . . . . . . 185

5.A.4 Partitions of unity and packings . . . . . . . . . . . . . . . . . . . 186

5.B Appendix to Section 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.B.1 Auxiliary results on general anisotropic Hölder functions . . . . 189

5.B.2 Proofs associated to the examples of Proposition 5.2.4 . . . . . . 195

5.B.3 Proof of Proposition 5.2.7 . . . . . . . . . . . . . . . . . . . . . . . . 198

5.C Appendix to Section 5.5.2: proof of Theorem 5.3.7 . . . . . . . . . . . 199
5.C.1 Technical Lemmata . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.C.2 Proof of Corollary 5.3.8 . . . . . . . . . . . . . . . . . . . . . . . . . 201

5.D Appendix to Section 5.5.1: proof of Theorem 5.3.2 . . . . . . . . . . . 205
5.D.1 Proof of Lemma 5.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.D.2 Proof of Lemma 5.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 208

5.D.3 Proof of Lemma 5.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 211

5.E Appendix to Section 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

5.A Some facts on submanifolds with bounded reach

5.A.1 The geometry of submanifolds with bounded reach

The reach τK of a closed subset K ⊂ RD, initially introduced by [Fed59, Def 4.1 p.432],

is defined the supremum of all the r ⩾ 0 such that the orthogonal projection from the

r-offset Kr = {x ∈ RD ∣ d(x,K) ⩽ r} to K is well-defined, namely

τK ∶= sup{r ⩾ 0 ∣ ∀x ∈Kr,∀y, z ∈K, d(x,K) = ∥x − y∥ = ∥x − z∥ ⇒ y = z} .

When the reach of a closed submanifold M ⊂ RD is bounded away from zero, M enjoys

a number useful properties, that we list and prove below. In all the results stated

hereafter, the reach of M is bounded from below by some τ > 0. Lemma 5.A.1 provide
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already existing results from the literature, sometimes slightly rephrased to better suit

our needs. We start off with a control of the exponential map over submanifold with

bounded curvature together with a comparison between the intrinsic distance on M ,

denoted by dM(., .), and the ambient Euclidean distance. Recall that for any x, y ∈M ,

dM(x, y) is the infimum of the length of all continuous path between x and y in M and

if x and y are in two separate path-connected components, then dM(x, y) =∞.

Lemma 5.A.1. The following facts hold true

i) For any x ∈M , the exponential map expx is a diffeomorphism from BTxM(0, πτ)
to expx {BTx0M

(0, πτ)}.

ii) It is double Lipschitz from BTxM(0, τ/4) to its image with

∀v,w ∈ BTxM(0, τ/4), 11

16
∥v −w∥ ⩽ ∥ expx(v) − expx(w)∥ ⩽ 21

16
∥v −w∥. (5.28)

iii) Letting κ ∶ γ ↦ 2(1 −
√

1 − γ)/γ. If ∥x − y∥ ⩽ γτ/2 with γ ⩽ 1, then

∥x − y∥ ⩽ dM(x, y) ⩽ κ(γ)∥x − y∥. (5.29)

iv) Finally, if ∥x − y∥ ⩽ τ/2, there holds

∥prTxM −prTyM ∥op ⩽
dM(x, y)

τ
⩽ 2

τ
∥x − y∥. (5.30)

Proof. The first result on expx is an application of [AB06, Thm 1.3] . For ii), denoting

Rx(v) = expx(v) − x − v, there holds that,

∣∥ expx(v) − expx(w)∥ − ∥v −w∥∣ ⩽ ∥Rx(v) −Rx(w)∥ ⩽ 5

16
∥v −w∥

where we used [AL19, Lem 1]. Finally iii) comes from the monotonicity of κ and

[NSW08, Prp 6.3], and using [BLW19, Lem 6], there holds ∥prTxM −prTyM ∥op ⩽ dM(x, y)/τ ,

which, together with iii) for γ = 1, leads to iv).

We now wish to define the parametrization of the τ/2-offset ofM that we introduced

in Subsection 5.2.2. This requires to identify in a non-ambiguous way every normal

fiber NxM to the base fiber Nx0M for x in the vicinity of x0. A natural way to do that

would be to use parallel transport, and define

Nx0(v, η) ∶= tγ(η)

where tγ ∶ Nx0M → Nexpx0
(v)M is the parallel transport along the path γ(s) ∶= expx0

(sv).

We refer to [Lee06, Sec 4] for a formal introduction to parallel transport.

In order to make things more comprehensible for the reader who is unfamiliar

with parallel transports, and in order to have clear and quantitative controls and the
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quantity at stake, we suggest another, more elementary approach. We assert that the

two approaches yields similar regularity classes as introduced in Subsection 5.2.2. We

start off with a few notations. For a matrix A ∈ RD×D and 1 ⩽ k ⩽D, we let Vk(A) be the

vector space spanned by the first k columns of A. We denote by Norm ∶ x↦ x/∥x∥. We

let

G ∶ GL(D,R)→ O(D,R)

be the Gram-Schmidt process, defined recursively on the columns of any invertible

matrix A = (A1, . . . ,AD) as G(A) = (G1(A), . . . ,GD(A)) with

G1(A) ∶= Norm(A1) and ∀1 ⩽ j ⩽D − 1, Gj+1(A) ∶= Norm (Ḡj+1(A))

where Ḡj+1(A) ∶= Aj+1 − ∑
1⩽i⩽j

⟨Aj+1,Gi(A)⟩Gi(A).

Because G is such that Vk(A) = Vk(G(A)) for every 1 ⩽ k ⩽D, there holds that Ḡk+1(A) =
prVk(A)⊥(Ak+1), and that Ḡj(A) is thus non zero everywhere, so that G is a well-defined,

smooth application. In order to bound its derivatives, we need to control how Ḡk is far

away from zero. We introduce

GLε(D,R) ∶= {A ∈ GL(D,R) ∣ d(Ak+1, Vk(A)) ⩾ ε ∀1 ⩽ k ⩽D} ,

so that ∥Ḡk(A)∥ ⩾ ε for every k and any A ∈ GLε(D,R), and thus straightforwardly

all the derivatives, up to any order, of G are bounded on GLε(D,R). We let B0 be an

arbitrary basis of Tx0M , B⊥ be an arbitrary basis of Nx0M and let B = (B0,B⊥). We

define, for v ∈ BTx0M
(0, τ/4), Ax0(B,v) ∶= (dΨx0(v)[B0],B⊥). Note that since Ψx0 is a

diffeomorphism, there holds

Vd(Ax0(B,v)) = Vect(dΨx0(v)[B0]) = TΨx0(v)M. (5.31)

Set

NB
x0

(v, ⋅) ∶= G(Ax0(B,v))[⋅], Ψ̄B
x0

(v, η) ∶= Ψx0(v) +N
B
x0

(v, η).

We show in Lemma 5.A.2 that NB
x0

and Ψ̄B
x0

are well defined and smooth, which com-

bined with (5.31) yields in particular that NB
x0

(v, ⋅) is an isometry between Nx0M and

NΨx0(v)M .

Lemma 5.A.2. For any v ∈ BTx0M
(0, τ/4), there holds that Ax0(B,v) ∈ GLε(D,R) with

ε = 1/2d. Consequently, the map v ↦ NB
x0

(v, ⋅) is in HβM−1
iso (BTx0M

(0, τ),C) for some

constant CM , τ , βM and D (and not on B). Moreover for any basis B, it holds that

∣det dΨ̄B
x0

(v, η)∣ ⩾ (3/16)d,

for any v ∈ BTx0M
(0, τ/4) and η ∈ BNx0M

(0, τ/2).
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Proof. First notice that for d ⩽ k ⩽ D − 1 and v ∈ BTx0M
(0, τ/4), there holds, letting

A = Ax0(B,v), and because of (5.31) and the fact that B⊥ is an orthonormal frame of

Nx0M ,

d(Ak+1, Vk(A)) = d(Ak+1, TΨx0(v)M) ⩾ 1 − ∥prTx0M
−prTΨx0 (v)

M ∥op ⩾ 3/4

where we used (5.30). Now we let 1 ⩽ k ⩽ d − 1 and let V0(A) = {0}. Letting Q =
(A1, . . . ,Ad), here holds that

d−1

∏
k=0

d(Ak+1, Vk(A))2 = detQ⊺Q = det dΨx0(v)
⊺dΨx0(v).

Using [AL19, Lem 1], it holds ∥dΨx0(v) − ι∥op ⩽ 5/16 for v ∈ BTx0M
(0, τ/4) where ι ∶

Tx0M → RD is the inclusion so that for any h ∈ Tx0M , ∥dΨx0(v)[h]∥ ⩾ (1 − 5/16)∥h∥ =
11/16∥h∥. In particular det Ψx0(v)⊺dΨx0(v) ⩾ (11/16)2d. Since now

d(Ak+1, Vk(A))2 ⩽ ∥Ak+1∥2 ⩽ ∥dΨx0(v)∥
2
op ⩽ (21/16)2

there holds that for any 1 ⩽ k ⩽ d,

d(Ak+1, Vk(A))2 ⩾ (16/21)2(d−1)(11/16)d ⩾ (11/21)2d ⩾ 1/22d.

Using that the Gram-Schmidt transform is smooth on GLε(D,R) with ε = 1/2d and

Proposition 5.B.7, we obtain that the map v ↦ NB
x0

(v, ⋅) is inHβM−1
iso (BTx0M

(0, τ),C).

Also, in B and in orthonormal bases of TΨx0(v)M and NΨx0(v), the Jacobian of

Ψ̄B
x0

(v, η) write

⎛
⎜
⎝

dΨx0(v) + prTΨx0 (v)
M ○dvNB

x0
(v, η) 0

prNΨx0 (v)
M ○dvNB

x0
(v, η) NB

x0
(v, ⋅)

⎞
⎟
⎠

so that ∣det dΨ̄B
x0

(v, η)∣ = ∣det{dΨx0(v) + prTΨx0 (v)
M ○dvN(v, η)}∣. We saw earlier in the

proof that ∥dΨx0(v)∥op ⩾ 11/16. Furthermore, using (5.30), we find that for any small

w ∈ Tx0M ,

∥prTΨx0 (v)
{NB

x0
(v +w,η) −NB

x0
(v, η)} ∥ = ∥(prTΨx0 (v+w)

−prTΨx0 (v)
)NB

x0
(v +w,η)∥

⩽ ∥w∥
τ

∥η∥,

and consequently ∥prTΨx0 (v)
○dvNB

x0
(v, η)∥op ⩽ ∥η∥/τ ⩽ 1/2. Thus, for any h ∈ Tx0M ,

∥dΨx0(v)[h] + prTΨx0 (v)
M ○dvN(v, η)[h]∥op ⩾ (11/16 − 1/2)∥h∥ ⩾ 3/16∥h∥ and thus

∣det dΨ̄B
x0

(v, η)∣ ⩾ (3/16)d.

An important feature of the parametrizations Ψ̄B
x0

is that the subsequent Hölder

classes as defined in Definition 5.2.3 do not depend, up to a universal constant, to the

choice of a collection of basis (Bx0)x0∈M . This is shown in Section 5.A.3.

184



CHAPTER 5. BAYESIAN DENSITY ESTIMATION

5.A.2 Taylor expansion of M-anisotropic Hölder functions

In this section, we derive a Taylor expansion for manifold-anisotropic Hölder functions.

Recall from Section 5.3 that for any σ, δ > 0,

∆σ,δ =
⎛
⎝
σα0 Idd 0

0 δσα⊥ IdD−d

⎞
⎠
.

Corollary 5.A.3. Let f ∈ Hβ0,β�
δ (M,L). Then, for any x0 ∈ M , any w ∈ Wx0,δ, and any

z ∈ Tx0M ×Nx0M such that w +∆σ,1z ∈Wx0,δ, there holds

f̄x0,δ(w +∆σ,1z) = f̄x0,δ(w) + ∑
0<⟨k,α⟩<β

σ⟨k,α⟩ z
k

k!
Dkf̄δ,x0(w) +R(w, z),

where the remainder R satisfies the following bound

∣R(w, z)∣ ⩽Dσβ∥1 ∨ z∥βmax

1 Lx0,δ(w).

Proof of Corollary 5.A.3. Simply applying Proposition 5.B.2 to f̄x0,δ yields

f̄x0,δ(w +∆σ,1z) = f̄x0,δ(w) + ∑
0<⟨k,α⟩<β

(∆σ,1z)k

k!
Dkf̄δ,x0(w) +Rx0,δ(w,w +∆σ,1z)

where Rx0,δ(w,∆σ,1z) satisfies

∣Rx0,δ(w,w +∆σ,1z)∣ ⩽ Lx0,δ(w) ∑
β−αmax⩽⟨k,α⟩<β

∣∆σ,1z∣k

k!

D

∑
j=1

∣(∆σ,1z)j ∣
β−⟨k,α⟩
αj

= Lx0,δ(w) ∑
β−αmax⩽⟨k,α⟩<β

σ⟨k,α⟩ ∣z∣k

k!

D

∑
j=1

σβ−⟨k,α⟩∣zj ∣
β−⟨k,α⟩
αj

⩽DσβLx0,δ(w)∥1 ∨ z∥βmax

1

where we used the fact that kj + β−⟨k,α⟩
αj

⩽ βj ⩽ βmax for any 1 ⩽ j ⩽D.

5.A.3 Stability by a change of basis

We now show that a change of basis does not interfere with the anisotropic regularity

of a map seen through Ψ̄B
x0

.

Lemma 5.A.4. For any orthonormal basis B′ = (B′
0,B

′
⊥) subordinated to Tx0M and

Nx0M , and for any δ > 0, it holds that

(Ψ̄B
x0,δ

)−1 ○ Ψ̄B′

x0,δ(v, η) = (v,CB,B′(v)η) (5.32)

where CB,B′ is independent of δ and is inHβM−1
iso (BTx0M

(0, τ),C) for some constant C

depending on CM , τ , βM and D (and not on B and B′).
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Proof. Short and simple computations shows that CB,B′(v) ∶= NB
x0

(v, ⋅)⊺NB′

x0
(v, ⋅) so

that an application of Lemma 5.A.2 with Proposition 5.B.6 immediately yields the

result.

Corollary 5.A.5. In the context of Subsection 5.2.2. Assume that β0 ⩽ β⊥ ⩽ βM − 1. Then,

there exists a constant C depending on CM , τ , βM and D such that, if there exists a

basis B such that f ○ Ψ̄B
x0,δ

∈Hβ
an(Wx0,δ, L

B
x0,δ

), then, for any other orthonormal basis B′,

f ○ Ψ̄B′

x0,δ
∈Hβ

an(Wx0,δ,CL
B′

x0,δ
).

Proof. Using the lemma above, there holds

f ○ Ψ̄B′

x0,δ = f ○ Ψ̄B
x0,δ(v,CB,B(v)η) = f ○ Ψ̄B

x0,δ ○ J(v, η)

where J is defined through (5.32). We denote for short fB
′ = f ○ Ψ̄B′

x0,δ
, fB = f ○ Ψ̄B′

x0,δ
so

that fB
′ = fB ○ J . Taking ⟨k,α⟩ < β and using the multivariate Faa di Bruno formula

[CS96], we find that DkfB
′

is a sum of product of the form

D`(fB ○ J) ×∏(Dk(j)J)`
(j)

subject to ∣`∣ ⩽ ∣k∣, ∑j `(j) = ` and ∑j ∣`(j)∣k(j) = k with k(j) ≠ 0. Now notice that

(Dk(j)J)i = 0 for 1 ⩽ i ⩽ d as soon as k(j)⊥ ≠ 0. For a configuration of `, `(j) and k(j) such

that the above product is not zero, there thus holds

∣`0∣ =∑
j

∣`(j)0 ∣ = ∑
k
(j)
⊥

=0

∣`(j)0 ∣ ⩽ ∑
k
(j)
⊥

=0

∣`(j)0 ∣∣k(j)0 ∣ ⩽ ∣k0∣

which, together with ∣`∣ ⩽ ∣k and α0 ⩾ α⊥, yields that ⟨`,α⟩ ⩽ ⟨k,α⟩ whenever the above

product is non zero. We conclude with a telescopic argument with Lemma 5.A.4.

5.A.4 Partitions of unity and packings

The approximation result uses a particular covering of an offset of the manifold M ,

which we describe here. Take x0 ∈M and define

Wj
x0
∶= BTx0

(0,
2 + j
16

τ) ×BNx0
(0,

6 + j
8

τ) for j ∈ {0,1,2} ,

andOjx0 = Ψ̄x0(O
j
x0) for j ∈ {0,1,2}. We have

W0
x0

⊂W1
x0

⊂W2
x0

and O0
x0

⊂ O1
x0

⊂ O2
x0
.

Furthermore, the setsO0
x0

for x0 ∈M forms a covering of M3τ/4. See Figure 5.A.1 for an

illustration of these open sets.

In what follows, we will need the notion of packing. An ε-packing of a subsetA ⊂ RD

is a set {y1, . . . , yJ} of points ofA such that ∥xj − xk∥ > ε for any 1 ⩽ i ≠ j ⩽ J and such

that no set of J + 1 points has this property. We denote by pk(A, ε) ∶= J the ε-packing
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Figure 5.A.1 – A visual representation of the sets used in the proof of Section 5.3.

number of A. By maximality of J , it is straightforward to see that a A is covered by

the union of the balls B(xj , ε). Furthermore, the balls B(xj , ε/2) must be disjoint by

definition of a packing so that

pk(A, ε) ×min
x∈A

vol(A ∩B(x, ε/2)) ⩽ vol

⎧⎪⎪⎨⎪⎪⎩
A ∩ ⋃

1⩽j⩽J
B(xj , ε/2)

⎫⎪⎪⎬⎪⎪⎭
⩽ volA.

In the case whereA is a ball of radius R with R large before ε, it is straightforward to

see that vol(A ∩B(x, ε/2)) ≳ εD for any x ∈ A so that pk(A, ε) ≲ (R/ε)D. We now let

ρ(x) ∶= exp{− 1

(1 − ∥x∥2)+
}

which is an infinitely differentiable, radially symmetric function from RD to [0,1]
supported on B(0,1). For any x0 ∈M , we define

ρx0(x) ∶= ρ(32
x − x0

τ
)

For any large R > 0, one can take a τ/64-packing of M ∩B(0,R), say {x1, . . . , xJ} with J

of order less than pk(B(0,R), τ/64) ≲ RD. We can define

χj(x) ∶=
ρxj(x)

∑Ji=1 ρxi(x)
.

In a similar fashion as what is done in [Div21b], we first review a few properties satisfied

by the maps {χj}1⩽j⩽J , which forms a partition of unity associated with the covering

{B(xj , τ/32)}1⩽j⩽J ofM ∩B(0,R). See Figure 5.A.2 for a geometric interpretation of the

situation.

Lemma 5.A.6. The following assertions hold true:

i) For any 1 ⩽ j ⩽ J , suppχj ⊂ O0
xj ;
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ii) There exists a numeric constant γ > 0 such that Mγτ ∩B(0,R) ⊂ supp∑j χj ;

iii) There exists a numeric constant ν > 0, such that for any x ∈Mγτ ∩ B(0,R), there

holds∑Jj=1 ρxj(x) ⩾ ν;

iv) For any ∣k∣ ⩽K, there holds that ∥Dkχj∥∞ ⩽ C <∞ with C depending on K and τ ;

v) For any ∣k∣ ⩽K, there exists a non-negative function IK such that, for any 1 ⩽ j ⩽ J ,

∣Dkχj(x)∣ ⩽ IK(x − xj)χj(x), ∀x ∈Mγτ ∩B(0,R)

with IK being such that for any ω > 0

sup
x∈Mγτ

(IK(x − xj))ω χj(x) ⩽ C <∞

where C depends on K, τ and ω.

We stress out that the constants appearing in Lemma 5.A.6 do not depend on R or

J at all, so that it can be applied for a family of covering {x1, . . . , xJ} indexed byR →∞,

as it will be the case in the proofs below.

Figure 5.A.2 – A visual interpretation of the framework and results of Lemma 5.A.6.

Proof of Lemma 5.A.6. We start with proving i). Let x ∈ B(xj , τ/32) and let z = prM x.

There holds that

∥z − xj∥2 = ∥z − x∥2 + ∥x − xj∥2 + 2⟨z − x,x − xj⟩ = ∥z − x∥2 − ∥x − xj∥2 + 2⟨z − xj , x − xj⟩.

But now using [Fed59, Thm 4.7 (8)], there holds that 2⟨z −xj , x−xj⟩ ⩽ ∥z −xj∥2∥z −x∥/τ
so that in the end

∥z − xj∥2 ⩽ ∥z − x∥2

1 − ∥z − x∥/τ
⩽
⎧⎪⎪⎨⎪⎪⎩

√
32

31

τ

32

⎫⎪⎪⎬⎪⎪⎭

2

,

where we used the fact that ∥z − x∥ ⩽ ∥xj − x∥ ⩽ τ/32. In particular, using Lemma 5.29,

one get

dM(z, xj) ⩽ κ
⎛
⎝

√
32

31

1

16

⎞
⎠
∥z − xj∥ ⩽ κ

⎛
⎝

√
32

31

1

16

⎞
⎠

√
32

31

τ

32
< τ/16
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where the last inequality was checked with a calculator, so that z = Ψxj(v) with

v ∈ BTxjM(0, τ/16). Finally ∥x − z∥ ⩽ τ/32 so that x − z = Nxj(v, η) for some η ∈
BNxjM(0, τ/32). In the, end x = Ψ̄xj(v, η) with (v, η) ∈ W0

xj so x ∈ O0
xj , ending the

proof of the assertion i).

We continue with proving ii) and iii) with γ = 1/128 and ν = exp{−16/7}. Take

x ∈Mγτ ∩B(0,R) and z = prM(x). There exists xj such that ∥z − xj∥ ⩽ τ/64, leading to

∥x − xj∥ ⩽ 3τ/128 and thus x ∈ suppχxj . Furthermore,

ρxj(x) = exp{− 1

(1 − (32∥x − xj∥/τ)2)+
} ⩾ exp{− 1

(1 − (3/4)2)+
} = ν,

so that points ii) and iii) are proven.

We finish with the proof of iv) and v). We let R(x) = (∑Ji=1 ρxi(x))−1, which is well

defined on Mγτ ∩B(0,R) and bounded from above by ν−1 so that χj(x) = R(x)ρxj(x)
and

Dkχj(x) = ∑
∣`∣⩽k

(k
`
)Dk−`R(x)D`ρxj(x).

Outside of B(xj , τ/32) one can take IK = 0. Now if x ∈ B(xj , τ/32), one get that for any

∣`∣ < k, using the Faa Di Bruno formula yields that D`ρxj(x) is a sum of term of the form

(−1)s
s

∏
i=1

DriΥ(x) × ρxj(x) with Υ(x) ∶= 1

1 − 322

τ2 ∥x − xj∥2
and

s

∑
i=1

ri = `.

In particular, we get that D`ρxj(x) is bounded from above by some constant depending

on K and τ on B(xj , τ/32). Furthermore, for any ∣`∣ < k, the derivative D`R(x) is a sum

of terms of the form

R(x)r
s

∏
i=1

DriR−1(x) with
s

∑
i=1

ri ⩽ ` and r +
s

∑
i=1

∣ri∣ = ∣`∣ + 2,

and DriR−1(x) = ∑q Driρxq(x) which is bounded from above by something depending

on τ and K. All in all, we get the uniform boundedness of Dkχj and that

∣Dkχj(x)∣ ⩽ IK(x − xj)χj(x)

with IK(x) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

CK,τ {1 − 322

τ2
∥x∥2}

−(K+1)
if x ∈ B(0, τ/32),

0 otherwise,

where CK,τ depends on K and τ , ending the proof.

5.B Appendix to Section 5.2

5.B.1 Auxiliary results on general anisotropic Hölder functions

We first extend Definition 5.2.1 to functions defined on general open sets of RD. For

any open set U ⊂ RD, any function L ∶ U → R+ and any positive real number ζ > 0, we
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define the anisotropic Hölder spacesHβ
an(U , L, ζ) as the set of functions f ∶ U → RD

satisfying that

i) For any multi-index k ∈ ND such that ⟨k,α⟩ < β the partial derivative Dkf is well

defined on U and ∣Dkf(x)∣ ⩽ L(x) for all x ∈ U ;

ii) For any multi-index k ∈ ND such that β − αmax ⩽ ⟨k,α⟩ < β, there holds

∣Dkf(y) −Dkf(x)∣ ⩽ L(x)
D

∑
i=1

∣yi − xi∣
β−⟨k,α⟩
αi

∧1 ∀x, y ∈ U , ∥x − y∥ ⩽ ζ. (5.33)

Like in Subsection 5.2.1, we define in a similar fashionHβiso(U , L, ζ),Hβ
an(U ,C, ζ) and

Hβiso(U ,C, ζ) for some constant C > 0. We now list a number of useful results which

hold for our definition of anisotropy. The proofs of these results are provided below.

Proposition 5.B.1. Let f ∈ Hβ
an(U , L, ζ). Then for any k ∈ ND such that ⟨k,α⟩ < β, the

partially differentiated function Dkf is inHβ(k)

an (U , L, ζ) with

β(k) = {1 − ⟨k,α⟩
β

}β.

Anisotropic Hölder functions enjoy the same convenient Taylor expansion as usual

Hölder function.

Proposition 5.B.2. Let f ∈Hβ
an(U , L, ζ). Then, for any x, y ∈ U with ∥x − y∥ ⩽ ζ,

f(y) = f(x) + ∑
0<⟨k,α⟩<β

(y − x)k

k!
Dkf(x) +R(x, y),

where the remainder R satisfies the following bound

∣R(x, y)∣ ⩽ L(x) ∑
β−αmax⩽⟨k,α⟩<β

∣y − x∣k

k!

D

∑
i=1

∣yi − xi∣
β−⟨k,α⟩
αi .

Proposition 5.B.3. Let f ∈Hβ
an(U , L, ζ). Then, for any k ∈ ND such that ⟨k,α⟩ < β, and

any x, y ∈ U with ∥x − y∥ ⩽ ζ,

∣Dkf(y) −Dkf(x)∣ ⩽ CL(x){
D

∑
i=1

∣yi − xi∣
β−⟨k,α⟩
αi

∧1} .

with C depending on k,ζ and D.

Proposition 5.B.4. Let f ∈Hβ
an(U , L, ζ). Then, for any β′ ⩽ β, f ∈Hβ′

an(U ,CL, ζ) with C

depending on β, ζ and D.

Proposition 5.B.5. Let f ∈ Hβ1
an (U1, L1, ζ1) and g ∈ Hβ2

an (U2, L2, ζ2) with U1 ⊂ RD1 and

U2 ⊂ RD2 . Then

f ⊗ g ∈H(β1,β2)
an (U1 × U2,CL1 ⊗L2, ζ)

where f ⊗ g(x, y) = f(x)g(y) and ζ = ζ1 ∧ ζ2, and where C depends on D1,D2, ζ,β1 and

β2.
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Proposition 5.B.6. Let f ∈Hβ1
an (U , L1, ζ) and g ∈Hβ2

an (U , L2, ζ). Then f×g ∈Hβ
an(U , L, ζ)

with β = β1 ∧β2, and where, for some constant C depending on ζ, β and D,

L(x) = CL1(x)L2(x).

Proposition 5.B.7. Let f ∈Hβ1

iso(U1, L1) and g ∈Hβ0

iso(U0,C0) where g takes its value in U1,

and where U0 is bounded. Assume furthermore that β0 ⩾ 1. Then f ○ g ∈Hβiso(U0, L1 ○ g)
where β = β0 ∧ β1 and where C depends on C0,C1 and diamU0.

Proof of Proposition 5.B.1. Let k ∈ ND such that ⟨k,α⟩ < β. Note that

α = β 1

β
= β(k) 1

β(k) .

Let ` ∈ ND such that ⟨`,α⟩ < β(k). Then ⟨k+`,α⟩ < β so that by definition, D`Dkf = Dk+`f

exists and is bounded from above by L. If now ` is such that β(k) − αmax ⩽ ⟨`,α⟩ < β(k),

then β − αmax ⩽ ⟨k + `,α⟩ < β and for any x, y ∈ U that are at most ζ-apart,

∣D`Dkf(y) −D`Dkf(x)∣ ⩽ L(x)
D

∑
i=1

∣yi − xi∣
β−⟨k+`,α⟩

αi
∧1 = L(x)

D

∑
i=1

∣yi − xi∣
β(k)−⟨`,α⟩

αi
∧1
,

ending the proof.

Proof of Proposition 5.B.2. We let for any 0 ⩽ i ⩽D,

z(i) = (y1, . . . , yi, xi+1, . . . , xD) ∈ RD

so that z(0) = x and z(D) = y. We prove the results recursively on the integer N =
∣⌈β − 1⌉∣. If N = 0, then every coefficient βi are strictly less than 1, and the results

follow immediately from the definition of being β-Hölder (there are no k that satisfies

⟨k,α⟩ < β except k = 0). If N ⩾ 1, we can order without loss of generality and for ease of

notations

β1 ⩽ ⋯ ⩽ βk < 1 ⩽ βk+1 ⩽ .. ⩽ βD
with k ⩽D − 1 because N ⩾ 1. We write

f(y) − f(x) = f(z(k)) − f(x) +
D−1

∑
i=k

f(z(i+1)) − f(z(i)).

The first term is simply bounded from above by

∣f(z(k)) − f(x)∣ ⩽ L(x)
k

∑
i=1

∣yi − xi∣β/αi .

Recall we write ei = (0, . . . ,0,1,0, . . . ,0) with 1 at the i-th position. For the other terms,

we do the Taylor expansion with integral remaining term:

f(z(i)) − f(z(i−1)) =
Li−1

∑
`=1

(yi − xi)`

`!
D`eif(z(i−1)) +Ri(y, x), Li = ⌈βi − 1⌉ ⩾ 1

Ri(y, x) =
(yi − xi)Li
(Li − 1)! ∫

1

0
(1 − t)Li−1 DLieif(z(i)(t))dt,

with z(i)(t) = tz(i) + (1 − t)z(i−1).

(5.34)
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Note thatLiαi = ⌈βi−1⌉
βi

β and for all k = (k1∶i,0) ≠ 0 ,Liαi+⟨k,α⟩ ⩾ β. Indeed, because

the coefficient of β are ordered, there holds

Liαi + ⟨k,α⟩ = β

βi

⎡⎢⎢⎢⎢⎣
⌈βi − 1⌉ +∑

j⩽i
kjβi/βj

⎤⎥⎥⎥⎥⎦
⩾ β

βi
(⌈βi − 1⌉ + 1) ⩾ β.

Therefore

∣DLieif(z(i)(t)) −DLieif(x)∣ ⩽ L(x)
i

∑
j=1

∣yj − xj ∣
β−Liαi
αj (5.35)

and in particular

Ri(x, y) =
(yi − xi)Li

Li!
DLieif(x) + R̃i(x, y)

where ∣R̃i(x, y)∣ ⩽ L(x)
∣yi − xi∣Li

Li!

i

∑
j=1

∣yj − xj ∣
β−Liαi
αj .

Now we use the induction hypothesis on fi,` = D`eif which belongs toHβ(`ei)(U , L, ζ)
(according to Proposition 5.B.1):

fi,`(z(i−1)) − fi,`(x) = ∑
0<⟨k,α⟩<β−`αi

ki∶D=0

(y − x)k

k!
D`ei+kf(x) +Ri,`(x, y),

where the remainder R satisfies the following bound

∣Ri,`(x, y)∣ ⩽ L(x) ∑
β−αmax⩽⟨k+`ei,α⟩<β

ki∶D=0

∣y − x∣k

k!

D

∑
i=1

∣yj − xj ∣
β−⟨k+`ei,α⟩

αj .

All in all, gathering all the developments yields

f(z(i)) − f(z(i−1))

=
Li−1

∑
`=1

(yi − xi)`

`!

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D`eif(x) + ∑
0<⟨k,α⟩<β−`αi

ki∶D=0

(y − x)k

k!
D`ei+kf(x) +Ri,`(x, y)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

+Ri(y, x)

=
Li−1

∑
`=1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
0<⟨k+`ei,α⟩<β

ki∶D=0

(y − x)k+`ei
(k + `ei)!

D`ei+kf(x) + (yi − xi)`

`!
Ri,`(y, x)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

+Ri(y, x)

= ∑
0<⟨k,α⟩<β

ki≠0, k
(i+1)∶D=0

(y − x)k

k!
Dkf(x) + {R̃i(y, x) +

Li−1

∑
`=1

(yi − xi)`

`!
Ri,`(y, x)}
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so that

f(y) − f(x) = ∑
0<⟨k,α⟩<β

(y − x)k

k!
Dkf(x)

+ ∑
i⩾k+1

{R̃i(y, x) +
Li−1

∑
`=1

(yi − xi)`

`!
Ri,`(y, x)} +R0(y, x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=R(y,x)

with R0(y, x) = f(z(k)) − f(x), and with R(y, x) being exactly bounded from above by

∣R(y, x)∣ ⩽ L(x) ∑
β−αmax⩽⟨k,α⟩<β

∣y − x∣k

k!

D

∑
j=1

∣yj − xj ∣
β−⟨k,α⟩
αj

and Proposition 5.B.2 is proved.

Proof of Proposition 5.B.3. Either ⟨k,α⟩ ⩾ β − αmax and then there is nothing to show,

or ⟨k,α⟩ < β −αmax, in which case ⟨k + ei,α⟩ < β for any i and thus d Dkf is well defined.

There thus exist z ∈ [x, y] such that Dkf(y) −Dkf(x) = d Dkf(z)[y − x] leading to

∣Dkf(y) −Dkf(x)∣ ⩽
D

∑
i=1

∣Dk+eif(z)∣ × ∣yi − xi∣.

Using an induction argument, there exists Ci > 0 such that

∣Dk+eif(z) −Dk+eif(x)∣ ⩽ CiL(x){
D

∑
i=1

∣yi − xi∣
β−⟨k+ei,α⟩

αi
∧1} ⩽ CiD(1 ∨ ζ)L(x)

leading the the right results with C = 1 +D(1 ∨ ζ)max1⩽i⩽D Ci.

Proof of Proposition 5.B.4. Let β′ be the harmonic mean of β′ and α′ = β′/β′. For any

k ∈ ND such that ⟨k,α′⟩ < β′, we have ⟨k,α⟩ < β so that Dkf is well defined and bounded

from above by L. What’s more, using Proposition 5.B.3, we have

∣Dkf(y) −Dkf(x)∣ ⩽ CL(x){
D

∑
i=1

∣yi − xi∣
β−⟨k,α⟩
αi

∧1} .

Now notice that

β − ⟨k,α⟩
αi

= βi {1 − ⟨k,1/β⟩} ⩾ β′i {1 − ⟨k,1/β′⟩} = β
′ − ⟨k,α′⟩
α′i

so that

∣yi − xi∣
β−⟨k,α⟩
αi

∧1 ⩽ (1 ∨ ζ) × ∣yi − xi∣
β′−⟨k,α′⟩

α′
i

∧1

yielding the result.
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Proof of Proposition 5.B.5. Let k = (k1, k2) ∈ ND1+D2 . Let β = (β1,β2) and β,β1, β2 be

the harmonic means of β,β1 and β2. Let also α = β/β and αi = βi/βi for i ∈ {1,2}. If

⟨k,α⟩ < β, then

⟨k1,1/β1⟩ + ⟨k2,1/β2⟩ < 1

so that both term is stricly less that one Dk1f and Dk2g are well defined and Dk(f ⊗ g) =
Dk1f ⊗Dk2g is well defined as well. Furthermore, if x = (x1, x2) and y = (y1, y2), is such

that ∥x − y∥ ⩽ ζ, then ∥x1 − y1∥ ⩽ ζ ⩽ ζ1 and ∥x2 − y2∥ ⩽ ζ ⩽ ζ2. Using Proposition 5.B.3,

one find that

∣Dk(f ⊗ g)(x) −Dk(f ⊗ g)(y)∣

⩽ ∣Dk2g(x2)∣ × ∣Dk1f(x1) −Dk1f(y1)∣ + ∣Dk1f(y1)∣ × ∣Dk2g(x2) −Dk2f(y2)∣

⩽ CL2(x2)L1(x1){
D1

∑
i=1

∣y1,i − x1,i∣
β1−⟨k1,α1⟩

α1,i
∧1

}

+C ∣Dk1f(y1)∣L2(x2){
D2

∑
i=1

∣y2,i − x2,i∣
β2−⟨k2,α2⟩

α2,i
∧1

} .

for some constant C > 0 depending on D1,D2, ζ and β. Now notice first that

∣Dk1f(y1)∣ ⩽ ∣Dk1f(y1) −Dk1f(x1)∣ + ∣Dk1f(x1)∣ ⩽ (CD(1 ∨ ζ) + 1)L1(x1),

and notice furthermore that of either j ∈ {1,2},

βj − ⟨kj ,αj⟩
αj,i

= βj,i {1 − ⟨kj ,1/βj⟩} ⩾ βj,i {1 − ⟨k,1/β⟩} = β − ⟨k,α⟩
αi

(= β − ⟨k,α⟩
αi+D1

if j = 2)

so that

∣Dk(f ⊗ g)(x) −Dk(f ⊗ g)(y)∣

⩽ (1 ∨ ζ)CL2(x2)L1(x1){
D1

∑
i=1

∣y1,i − x1,i∣
β−⟨k,α⟩
αi

∧1}

+ (1 ∨ ζ)C(CD(1 ∨ ζ) + 1)L1(x1)L2(x2){
D2

∑
i=1

∣y2,i − x2,i∣
β−⟨k,α⟩
αi+D1

∧1
}

⩽ (1 ∨ ζ)C(CD(1 ∨ ζ) + 1)(L1 ⊗L2)(x){
D1+D2

∑
i=1

∣yi − xi∣
β−⟨k,α⟩
αi

∧1}

ending the proof.

Proof of Proposition 5.B.6. We let α = β/β with β the harmonic mean of β. Now for

any multi-index k such that ⟨k,α⟩ < β, we have ⟨`,α⟩ < β for any ` ⩽ k so that Dkfg is

indeed well-defined and

Dkfg(x) =∑
`⩽k

(k
`
)D`f(x)Dk−`g(x)
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so that ∣Dkfg(x)∣ ⩽ 2∣k∣L1(x)L2(x) and

∣Dkfg(y)−Dkfg(x)∣ ⩽ L2(x)∑
`⩽k

(k
`
)∣D`f(y)−D`f(x)∣+L1(x)∑

`⩽k
(k
`
)∣D`g(y)−D`g(x)∣.

Using now Proposition 5.B.3, we find that there exists C > 0 depending on β, D and ζ

such that

∣Dkfg(y) −Dkfg(x)∣ ⩽ 2CL1(x)L2(x)∑
`⩽k

(k
`
)
D

∑
i=1

∣yi − xi∣
β−⟨`,α⟩
αi

∧1

⩽ 2∣k∣+1(1 ∨ ζ)CL1(x)L2(x)
D

∑
i=1

∣yi − xi∣
β−⟨k,α⟩
αi

∧1

where we used again that

∣yi − xi∣
β−⟨`,α⟩
αi

∧1 ⩽ (1 ∨ ζ) × ∣yi − xi∣
β−⟨k,α⟩
αi

∧1
,

for ` ⩽ k, ending the proof.

Proof of Proposition 5.B.7. A simple use of the multivariate Faa Di Bruno formula

[CS96] yields that, for any k ∈ ND with ∣k∣ ⩽ β, Dk(f ○ g)(x) for x ∈ U0 is a sum a term of

the form

D`f(g(x))
s

∏
j=1

(Dk(j)g(x))`
(j)

with ∣`∣ ⩽ ∣k∣, s ⩽ ∣k∣, ∑j `(j) = `, and ∑j ∣`(j)∣k(j) = k. In particular, it is bounded by

CL1(g(x)) where C depends on C0 and β. Likewise, a telescopic argument would yield

that

∣Dk(f ○ g)(y) −Dk(f ○ g)(x)∣ ⩽ CL1(g(x))
D

∏
i=1

∣x − y∣(β−∣k∣)∧1

where C depends on C0, β and diamU0, ending the proof.

5.B.2 Proofs associated to the examples of Proposition 5.2.4

Proof of Proposition 5.2.4. Take x0 ∈M . In the orthonormal noise model, the density f

takes the very simple form

f̄x0,δ(v, η) = δ
D−df ○ Ψ̄x0,δ(v, η) = δ

D−d × f0(Ψx0(v)) × δ
−(D−d)c�K (1

δ
Nx0(v, δη))

= fx0(v) × c�K (η)

where we used the isotropy of K. Thus, f̄x0,δ lies inHβ
an(Wx0,δ, Lx0,δ) where L was de-

fined in the statement of Proposition 5.2.4, through Proposition 5.B.5 and the isotropy

of L⊥.

In the isotropic noise model, one can write

f̄x0,δ(v, η) = δ
D−d∫

M
δ−DK (

Ψ̄x0,δ(v, η) − x
δ

) f0(x)dµ(x).
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If ∥η∥ ⩾ 1, the integrand is trivially 0, so one may focus on ∥η∥ ⩽ 1. Now if x ∈ M is at

least 2δ apart from Ψx0(v), there holds

∥x − Ψ̄x0,δ(v, η)∥ ⩾ ∥x −Ψx0(v)∥ − δ ⩾ δ

so that the integrand in the integral above is zero for x outside of B(Ψx0(v),2δ). Doing

the variable change x = Ψx0(w), we can write

f̄x0,δ(v, η) =
1

δd
∫

exp−1
x0

B(Ψx0(v),2δ)
K (

Ψ̄x0,δ(v, η) −Ψx0(w)
δ

) fx0(w)∣det dΨx0(w)∣dw

= ∫Zδ
K (Ψx0(v) −Ψx0(v + δs)

δ
+Nx0(v, η))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶K○gδ,s(v,η)

fx0(v + δs)∣det dΨx0(v + δs)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶hδ,s(v)

ds

where

Zδ =
1

δ
{exp−1

x0
B(Ψx0(v),2δ) − v} .

Now notice that, using the first inequality of (5.29), we have B(Ψx0(v),2δ) ⊂ B(x0, τ/8+
2δ) ⊂ B(x0,3τ/16), so that, using the second inequality of (5.29) with γ = 3/8, we find

exp−1
x0

B(Ψx0(v),2δ) ⊂ BTx0M
(0, κ(3/8)3τ/16) ⊂ BTx0M

(0, τ/4)

so that in particular, according to (5.28), exp−1
x0

is 16/11-Lipschitz on B(Ψx0(v),2δ) and

consequently, Zδ ⊂ BTx0M
(0,32/11). Furthermore, notice that

v + δBTx0M
(0,32/11) ⊂ BTx0M

(0,19τ/88)

with 19τ/88 being smaller than the injectivity radius, so that finally

f̄x0,δ(v, η) = ∫
BTx0M

(0,32/11)
K ○ gδ,s(v, η) × hδ,s(v)ds (5.36)

It is straighforward to see that

v ↦ Ψx0(v) −Ψx0(v + δs)
δ

has derivatives bounded from above, in virtue of Proposition 5.B.3, by something

depending on CM and βM only (and not on δ) and up to order ⌈βM − 1⌉ ⩾ β⊥. Fur-

thermore, (v, η) ↦ Nx0(v, η) is (βM − 1)-Hölder by construction. It so happens that

gδ,s ∈ Hβ⊥iso(Wx0,δ,Cg) for some g depending on CM and βM . Using Proposition 5.B.7,

we get that K ○ gδ,s ∈ Hβ⊥iso(Wx0,δ,C1L⊥ ○ gδ,s) for some constant C1 depending on

Cg, CK and β⊥. Similar reasoning and the use and Proposition 5.B.6 would lead to

hδ,s ∈ Hβ0

iso(Vx0 ,C2L0 ○ Ψx0 ○ τδs) where τδs(v) = v + δs and for some constant C2 de-

pending on CM , τ and β0. Now seeing hδ,s as a function of (v, η) would trivially lead to
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hδ,s ∈ Hβ
an(Wx0,δ,C2L0 ○Ψx0 ○ τδs ○ π1) with β = (β0, . . . , β0, β⊥, . . . , β⊥) and π1(v, η) = v,

and an application of Proposition 5.B.6 together with the observation that β0 ⩽ β⊥
yields

K ○ gδ,s × hδ,s ∈Hβ
an(Wx0,δ,CL⊥ ○ gδ,s ×L0 ○Ψx0 ○ τδs ○ π1)

for some constantC depending onC2,C1 and β0, β⊥. We conclude by using the linearity

of the integral, so that integrating (5.36) gives f̄x0,δ ∈H
β
an (Wx0,δ, L̃), where

L̃(v, η) = C ∫
BTx0M

(0,32/11)
L⊥ ○ gδ,s(v, s) ×L0 ○Ψx0(v + δs)ds

≲ ∫
BTx0M

(0,32/11)
L⊥ ○ gδ,s(v, s) ×L0 ○Ψx0(v + δs) × ∣det dΨx0(v + δs)∣ds

= δ−d∫
M
L⊥ (

Ψ̄x0,δ(v, η) − x
δ

) ×L0(x)dµM(x)

so that

L(y) = Cδ−D ∫
M
L⊥ (

y − x
δ

) ×L0(x)dµM(x)

whereLwas defined in the statement of Proposition 5.2.4, and where we used Lemma 5.A.2

to justify the introduction of ∣det dΨx0(v + δs)∣. This ends the proof.

Proof of Lemma 5.3.6. In the orthogonal noise model, recall (see proof of Proposi-

tion 5.2.4) that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

f0(x) = f∗(prM(x)) × c⊥δ−(D−d)K((x − prM x)/δ)

L(x) = Cδ−(D−d)L0(prM(x)) ×L⊥((x − prM x)/δ),

for some C > 0. There thus holds, letting Ox0 = Ψ̄x0,1(Wx0,1), we a simple use of

Cauchy-Schwartz inequality

⎧⎪⎪⎨⎪⎪⎩
∫Ox0

{ L(x)
f0(x)

}
ω∗/2

f0(x)dx
⎫⎪⎪⎬⎪⎪⎭

2

≲ ∫Ox0

{L0(prM x)
f∗(prM x)

}
ω∗

f0(x)dx∫Ox0

{L⊥((x − prM x)/δ)
K((x − prM x)/δ)

}
ω∗

f0(x)dx.

The first integral in the RHS is simply, up to the constant c⊥,

∫
Ψx0(Vx0)

{L0(z)
f∗(z)

}
ω∗

f∗(z)dµM(z),

which is bounded by assumption. The second integral is exactly

∫
Ψx0(Vx0)

f∗(z)dµM(z) × ∫
BRD−d(0,1)

{L⊥(η)
K(η)

}
ω∗

K(η)dx.
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which is also bounded by assumption. Hence (5.13) holds true in this case.

In the isotropic noise model, there holds this time

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f0(x) = δ−D ∫
M∩B(x,δ)

K((y − x)/δ)f∗(y)dµM(y)

L(x) = Cδ−D ∫
M∩B(x,δ)

L⊥((y − x)/δ)L0(y)dµM(y),

for some C > 0. Using the fact that for any integrable function φ,ψ ⩾ 0 and any ω ⩾ 1,

there holds

{∫ φ}
ω

⩽ {∫
φω

ψω−1
} × {∫ ψ}

ω−1

,

(which is simple consequence of the Hölder inequality), one find that

∫Ox0

{ L(x)
f0(x)

}
ω∗/2

f0(x)dx

≲ ∫Ox0

∫
M

{L⊥((y − x)/δ)L0(y)
K((y − x)/δ)f∗(y)

}
ω∗/2

δ−DK((y − x)/δ)f∗(y)dµM(y)dx

⩽ δ−DI1/2
1 I

1/2
2 ,

where

I1 ∶= ∫Ox0

∫
M

{L0(y)
f∗(y)

}
ω∗

K((y − x)/δ)f∗(y)dµM(y)dx

≲ δD ∫
M

{L0(y)
f∗(y)

}
ω∗

f∗(y)dµM(y) ≲ δD,

by assumption, and where

I2 ∶= ∫Ox0

∫
M

{L⊥((y − x)/δ)
K((y − x)/δ)

}
ω∗

K((y − x)/δ)f∗(y)dµM(y)dx

≲ δD ∫
M
fdµM ∫

B(0,1)
{L⊥(η)
K(η)

}
ω∗

K(η)dη,

so that indeed δ−DI1/2
1 I

1/2
2 ≲ 1, which ends the proof.

5.B.3 Proof of Proposition 5.2.7

If Q2 = Q⊗D
0 with Q0 ∼ DP(BHλ) ∶= IIDP then, for 0 < x1 ⩽ x2/2 and x1 < 1, letting

A1 = [x1, x1(1 + xb1)], A2 = [x2, x2(1 + xb1)] and A3 = (A1 ∪A2)c, we have

(Q0(A1),Q0(A2),Q0(A3)) ∼ D(BHλ(A1),BHλ(A2),BHλ(A3)),

and

Q2(Ad1 ×AD−d2 ) = Q0(A1)dQ0(A2)D−d.
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We let γ = Γ(B)/ (Γ(BHλ(A1))Γ(BHλ(A2))Γ(BHλ(A3)). Noticing that when x1, x2 are

small, Hλ(A3) = 1 − o(1), there holds

ĨIΛ[Q2 (Ad1AD−d2 ) ⩾ xB0
1 ] ⩾ IIDP (Q0(A1) > xB0/D

1 ,Q0(A2) > xB0/D
1 )

⩾ γ

2(B−1)+ ∫
1/4

x
B0/D
1

xBHλ(A1)−1dx∫
1/4

x
B0/D
1

xBHλ(A2)−1dx

⩾ Γ(B)
(1 + o(1))2(B−1)+

[4−BHλ(A1) − x
BHλ(A1)B0

D
1 ] [4−BHλ(A2) − x

BHλ(A2)B0
D

1 ]

⩾ Γ(B)4−2BHλ(A1)

(1 + o(1))2(B−1)+
[1 − e−

BHλ(A1)B0
D

log(4D/B0x1)]
2

,

where we used the fact that for x1 and x2 small, Hλ(A1) ⩽Hλ(A2) and were both small.

Under the inverse Gamma assumption on Hλ,

e−a2x
−1/2
1 x

−a1+1

2
1 x1+b

1 ≲Hλ(A1) ≲ e−a2x
−1/2
1 /

√
2x

−a1+1

2
1 x1+b

1 ≲ e−a2x
−1/2
1 /2

so that for small x1,

1 − e−
BHλ(A1)B0

D
log(4D/B0x1) ≳ e−a2x

−1/2
1 x

−a1+1

2
1 x1+b

1 ∣ log(x1)∣ ≳ e−2a2x
−1/2
1

so that (5.10) holds. Condition (5.11) is verified similarly. First note thatQ2 (mini⩽D λi ⩽ x) ⩽
DQ0((0, x]) and using the fact that Q0((0, x]) follows a Beta variable with parameters

BHλ((0, x]),B(1 + o(1)) we obtain that

EĨIΛ
[Q2 (min

i⩽D
λi ⩽ x)] ≲Hλ((0, x]) ≲ e−a2x

−1/2/2,

for small x. Similar computation terminates the proof of (5.11)

5.C Appendix to Section 5.5.2: proof of Theorem 5.3.7

5.C.1 Technical Lemmata

We let χ1, . . . , χJ be the partition of unity defined in Section 5.A.4 associated with

a τ/64-packing of {x1, . . . , xJ} of M ∩ B(0,R). We recall that J ≲ RD and we take

R = (H log(1/σ))1/κ. We define

fj ∶= c−1
j χj × f0 where cj = ∫

RD
χj(x)f0(x)dx.

Before we give the proof of Corollary 5.3.8 we need a few technical Lemmata.

Lemma 5.C.1. For all 1 ⩽ j ⩽ J , fj ∈Hβ0,β�
δ (M,Lj) withLj(x) ∶= Cc−1

j IK(x−xj)χj(x)L(x)
where C > 0 is a constant depending on τ and where we took K = ⌈β⊥⌉.

Proof. This is an easy corollary of Proposition 5.B.6 and Proposition 5.B.7 along with

the assertion iv) from Lemma 5.A.6.
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We let Lj,δ ∶= δD−dLj ○ Ψ̄xj ,δ and

f̄j,δ ∶= fj ○ Ψ̄xj ,δ ∶Wxj ,δ → RD.

and also introduce the functions gj ∶ RD → R from the proof of Theorem 5.3.7. Recall

that these functions are of the form

gj(x) ∶= fj(x) +
1

δD−d
∑

0<⟨k,α⟩<β
σ⟨k,α⟩dj,k(x,σ, δ)Dkf̄j,δ(zx) where zx ∶= ∆−1

1,δΨ̄
−1
xj ,δ

(x)

and satisfy

1. They are supported onO0
xj ;

2. The functions dj,k are uniformly bounded by a constant C depending on CM ;

3. ∣KΣgj(x) − fj(x)∣ ≲ σβLj(x) onO1
xj ;

4. ∣KΣgj(x) − fj(x)∣ ≲ σH∥Lj∥∞ outside ofO1
xj .

Lemma 5.C.2. Under (5.13), there holds, for any ε ∈ (0, ω − 2β), any ⟨k,α⟩ < β and any

1 ⩽ j ⩽ J ,

∫ (
∣Dkf̄j,δ(z)∣
f̄j,δ(z)

)
2β+ε
⟨k,α⟩

f̄j,δ(z)dz ≲ c−1
j and ∫ (

Lj,δ(z)
f̄j,δ(z)

)
2β+ε
β

f̄j,δ(z)dz ≲ c−1
j ,

up to a constant depending on the parameters.

Proof. We denote by χ̄j,δ = χj ○ Ψ̄xj ,δ and Īj,δ ∶= IK(Ψ̄xj ,δ(⋅) − xj). Writing that

∣
Dkf̄j,δ

f̄j,δ
∣ ⩽∑

`⩽k
(k
`
) ∣

Dk−`χ̄j,δ
χ̄j,δ

∣ ×
RRRRRRRRRRR

D`f̄xj ,δ

f̄xj ,δ

RRRRRRRRRRR
≲ Īj,δ∑

`⩽k

RRRRRRRRRRR

D`f̄xj ,δ

f̄xj ,δ

RRRRRRRRRRR
we easily see that

∫ ∣
Dkf̄j,δ

f̄j,δ
∣

2β+ε
⟨k,α⟩

f̄j,δ ≲ c−1
j ∑

`⩽k
∫

⎧⎪⎪⎨⎪⎪⎩
Īj,δ

RRRRRRRRRRR

D`f̄xj ,δ

f̄xj ,δ

RRRRRRRRRRR

⎫⎪⎪⎬⎪⎪⎭

2β+ε
⟨k,α⟩

χ̄j,δf̄xj ,δ

≲ c−1
j ∑

`⩽k
∫

RRRRRRRRRRR

D`f̄xj ,δ

f̄xj ,δ

RRRRRRRRRRR

2β+ε
⟨k,α⟩

f̄xj ,δ ≲ c
−1
j

where we used both Lemma 5.A.6 iv) and (5.13) with the fact that ⟨`,α⟩ ⩽ ⟨k,α⟩ for

` ⩽ k. The bound on the second integral follows from the same line of reasoning.

Lemma 5.C.3. We letAj,σ be the event of all x ∈ O2
xj such that

∀0 < ⟨k,α⟩ < β,
∣Dkf̄j,δ(zx)∣
f̄j,δ(zx)

⩽ σ−⟨k,α⟩ log(1/σ)−⟨k,α⟩/2 and
Lj,δ(zx)
f̄j,δ(zx)

⩽ σ−β log(1/σ)−β/2.

Then, the following assertions hold true for σ small enough
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i) gj(x) ⩾ fj(x)/2 for all x ∈ Aj,σ;

ii) Pfj(Acj,σ) ≲ c−1
j {σ log(1/σ)}2β+ε;

iii) For any ⟨k,α⟩ < β, ∫Acj,σ ∣Dkf̄j,δ(zx)∣dx ≲ c−1
j δ

D−d {σ log(1/σ)}2β+ε−⟨k,α⟩ .

Proof. We start with proving i). For any x ∈ Aj,σ, there holds, using the fact that the

functions dj,k are uniformly bounded,

∣gj(x) − fj(x)∣ =
RRRRRRRRRRRR

1

δD−d
∑

0<⟨k,α⟩<β
σ⟨k,α⟩dk(y, σ, δ)Dkf̄j,δ(zy)

RRRRRRRRRRRR

≲
f̄j,δ(zx)
δD−d

∑
0<⟨k,α⟩<β

σ⟨k,α⟩ ∣
Dkf̄j,δ(zx)
f̄j,δ(zx)

∣

≲ fj(x) ∑
0<⟨k,α⟩<β

log(1/σ)−⟨k,α⟩/2 ≲ log−α⊥/2(1/σ)fj(x) <
1

2
fj(x)

provided that σ is chosen small enough. For ii), notice that

Pfj(A
c
j,σ) ⩽ ∑

0<⟨k,α⟩<β
Pfj (

∣Dkf̄j,δ(zx)∣
f̄j,δ(zx)

> σ−⟨k,α⟩ log(1/σ)−⟨k,α⟩/2)

⩽ ∑
0<⟨k,α⟩<β

σ2β+ε log(1/σ)2β+ε∫O0
xj

(
∣Dkf̄j,δ(zx)∣
f̄j,δ(zx)

)
2β+ε
⟨k,α⟩

fj(x)dx

≲ c−1
j σ

2β+ε log(1/σ)2β+ε

where we used Lemma 5.C.2 after a variable change z = zx. Finally, for iii), there holds

∫Acj,σ
∣Dkf̄j,δ(zx)∣dx = ∫

∣Dkf̄j,δ(zx)∣
f̄j,δ(zx)

f̄j,δ(zx)1Acj,σ(x)dx

⩽
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ {

∣Dkf̄j,δ(zx)∣
f̄j,δ(zx)

}
2β+ε
⟨k,α⟩

f̄j,δ(zx)1Acj,σ(x)dx
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⟨k,α⟩
2β+ε

× {δD−dPfj(A
c
j,σ)}

1− ⟨k,α⟩
2β+ε

≲ {c−1
j δ

D−d}
⟨k,α⟩
2β+ε × {c−1

j δ
D−d {σ log(1/σ)}2β+ε}

1− ⟨k,α⟩
2β+ε

≲ c−1
j δ

D−d {σ log(1/σ)}2β+ε−⟨k,α⟩ .

ending the proof.

5.C.2 Proof of Corollary 5.3.8

Let define

h̃j ∶= gj1gj>fj/2 +
1

2
fj1gj⩽fj/2
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and hj = h̃j/Ij where Ij = ∫ h̃j . The function hj is a probability measure on O0
xj and

furthermore, using the convexity of f → d2
H(f, f0), there holds

d2
H(KΣ(h), f0) ⩽

J

∑
j=1

cj d2
H(KΣ(hj), fj) where h =

J

∑
j=1

cjhj .

We will control each term separately. First notice that

J

∑
j=1

cj d2
H(KΣ(hj), fj) ⩽ Jσ2β + ∑

cj⩾σ2β

cj d2
H(KΣ(hj), fj).

Now take 1 ⩽ j ⩽ J such that cj ⩾ σ2β and define Uj,σ = {x ∈ RD ∣ fj(x) ⩾ σH1} for some

H1 > 0 to be specified later. Then there holds

d2
H(KΣhj , fj) ⩽∫Uj,σ∩O1

xj

(
√
KΣ(hj) −

√
fj)

2
+ ∫(O1

xj
)c
KΣ(hj) + ∫Ucj,σ

[KΣ(hj) + fj]

and

∫Uj,σ∩O1
xj

(
√
KΣ(hj) −

√
fj)

2
⩽ ∫Uj,σ∩O1

xj

(KΣ(hj) − fj)2

KΣ(hj) + fj

⩽ ∫Uj,σ∩O1
xj

KΣ(hj − h̃j)2

KΣ(hj) + fj
+ ∫Uj,σ∩O1

xj

KΣ(h̃j − gj)2

KΣ(hj) + fj
+ ∫Uj,σ∩O1

xj

(KΣ(gj) − fj)2

KΣ(hj) + fj

and therefore

d2
H(fj ,KΣ(hj)) ⩽∫(O1

xj
)c
KΣ(hj) (5.37)

+ ∫Ucj,σ
[KΣ(hj) + fj] (5.38)

+ (1 − Ij)2 (5.39)

+ ∫Uj,σ∩O1
xj

KΣ ((fj/2 − gj)1gj<fj/2)
2

KΣ(hj) + fj
(5.40)

+ ∫Uj,σ∩O1
xj

(
KΣ(gj) − fj

fj
)

2

fj (5.41)

where each term will be bounded independently.

1. For (5.37), notice that for any y ∈ O0
xj and any x ∉ O1

xj , there holds that ∥x−y∥2
Σ−1
y
⩾
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C/(δ2σ2α⊥) for some C depending on τ . We can thus write

∫(O1
xj

)c
KΣ(hj) = ∫(O1

xj
)c ∫

hj(y)ϕΣ(y)(x − y)dydx

= ∫(O1
xj

)c ∫O0
xj

hj(y)
exp (−1

2∥x − y∥
2
Σ−1(y))

(2π)D/2σDδD−d
dydx

⩽ exp{− C2

4δ2σ2α⊥
}∫(O1

xj
)c ∫O0

xj

hj(y)
exp (−1

4∥x − y∥
2
Σ−1(y))

(2π)D/2σDδD−d
dydx

≲ exp{− C2

4δ2σ2α⊥
}∫(O1

xj
)c
K2Σ(hj) ≲ exp{− C2

4δ2σ2α⊥
} ≲ σ2β,

because δσ⊥ = o(∣ log(σ)∣1/2) by assumption.

2. For (5.41), there holds

∫Uj,σ∩O1
xj

(
KΣ(gj) − fj

fj
)

2

fj ⩽ ∫O1
xj

(
Ljσ

β

fj
)

2

fj ⩽ σ2β

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫O1

xj

(
Lj

fj
)

2β+ε
β

fj

⎫⎪⎪⎪⎬⎪⎪⎪⎭

2β
2β+ε

⩽ σ2β

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫W1

xj

(
Lj,δ

f̄j,δ
)

2β+ε
β

f̄j,δ
∣det dΨ̄xj ,δ ∣

δD−d

⎫⎪⎪⎪⎬⎪⎪⎪⎭

2β
2β+ε

≲ σ2β

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫W1

xj

(
Lj,δ

f̄j,δ
)

2β+ε
β

f̄j,δ

⎫⎪⎪⎪⎬⎪⎪⎪⎭

2β
2β+ε

≲ c
− 2β

2β+ε

j σ2β ≲ c−1
j σ

2β,

where we used that ∣det dΨ̄xj ,δ ∣ ≲ δD−d and Lemma 5.C.2.

3. For (5.39), notice that

Ij = ∫ gj1{fj<2gj} + ∫
fj

2
1{fj⩾2gj} = ∫ gj + ∫

(fj − 2gj)
2

1{fj⩾2gj}

and that ∫ gj = ∫ KΣ(gj). Moreover

∫O1
xj

KΣ(gj) = ∫O1
xj

fj + ∫O1
xj

(KΣ(gj) − fj) = 1 + ∫O1
xj

(KΣ(gj) − fj)

and since
RRRRRRRRRRR
∫O1

xj

KΣ(gj) − fj
RRRRRRRRRRR
⩽ ∫O1

xj

Ljσ
β = σβ ∫W1

xj

Lj,δ ×
∣det dΨ̄xj ,δ ∣

δD−d

≲ σβ
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫W1

xj

(
Lj,δ

f̄j,δ
)

2β+ε
β

f̄j,δ

⎫⎪⎪⎪⎬⎪⎪⎪⎭

β
2β+ε

≲ c
− β

2β+ε

j σβ ≲ c−1/2
j σβ.

where we again used that ∣det dΨ̄xj ,δ ∣ ≲ δD−d and Lemma 5.C.2, we have that

∫O1
xj

KΣ(gj) = 1 +O(c−1/2
j σβ).
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We also have, as in (5.37) that

∫(O1
xj

)c
KΣ(∣gj ∣) ≲ e−

C2

4δ2σ2α⊥ ∫O1
xj

∣gj ∣(y)dy

≲ e−
C2

4δ2σ2α⊥ ∥Lj∥∞ = o(c−1
j σ

2β) = o(c−1/2
j σβ),

where the two last inequality comes from δ2σ2α⊥ = o(1/ log(1/σ)) and cj ⩾ σ2β .

Therefore ∣1 − ∫ gj ∣ ≲ c
−1/2
j σβ . Moreover, using this time Lemma 5.C.3

∫
fj>2gj

(fj − 2gj) ≲ Pfj(fj > 2gj) + ∑
0<⟨k,α⟩<β

σ⟨k,α⟩

δD−d ∫fj>2gj
∣Dkf̄j,δ(zx)∣dx

≲ c−1
j σ

2β+ε.

All in all, we find that

(1 − Ij)2 ≲ exp{−C2/(4δ2σ2α⊥)} + {c−1
j σ

2β} ∨ {c−2
j {σ log(1/σ)}4β+2ε}

≲ exp{−C2/(4δ2σ2α⊥)} + c−1
j σ

2β

where the last inequality again holds because cj ⩾ σ2β .

4. For (5.38), we start with taking ⟨k,α⟩ < β. Notice that, thanks to Proposition 5.B.3,

there exists a constantC > 0 such that for any x, y ∈ O0
xj , ∣Dkf̄j,δ(zx)−Dkf̄j,δ(zy)∣ ⩽

CδD−dLj(x). Then, using (5.17), together with ∣det dΨ̄(w)∣ ⩽ C,

∣KΣ(Dkf̄j,δ(z◻))(x)∣ ≲ ∫
∆−1
σ,1(W0−zx)

e−Bσ(x,z)∣Dkf̄j,δ(∆σ,1z + zx)∣dz

≲ δD−dLj(x)∫
∆−1
σ,1(W0−zx)

e−Bσ(x,z)dz ≲ δD−dLj(x).

Now notice that

∫Ucj,σ
∣Dkf̄j,δ(zx)∣dx

⩽
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫Ucj,σ

{
∣Dkf̄j,δ(zx)∣
f̄j,δ(zx)

}
2β+ε
⟨k,α⟩

f̄j,δ(zx)dx
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⟨k,α⟩
2β+ε

× {∫Ucj,σ
f̄j,δ(zx)dx}

1− ⟨k,α⟩
2β+ε

≲ c−1
j δ

D−dσH1×{1−⟨k,α⟩/(2β+ε)} ≲ c−1
j δ

D−dσH1/2

and likewise, ∫Ucj,σ Lj(x)dx ≲ c
−1
j δ

D−dσH1×{1−β/(2β+ε)} ≲ δD−dσH1/2. We thus have

shown that

∫Ucj,σ
∣KΣ(Dkf̄j,δ(z◻))(x)∣ ≲ c−1

j δ
D−dσH1/2. (5.42)

Coming back to (5.38), there immediately holds that ∫Ucj,σ fj ≲ σ
H1 , and further-

more, noticing that

hj ≲ h̃j ≲ fj +
1

δD−d
∑

0⩽⟨k,α⟩<β
σ⟨k,α⟩∣Dkf̄j,δ(z◻)∣

and using (5.42) and the monotonicity ofKΣ, we find that ∫Ucj,σ KΣ(hj) ≲ c−1
j σ

H1/2.
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5. Finally, for (5.40), notice that fj/2−gj is a sum of terms of the formσ⟨k,α⟩δ−(D−d) Dkf̄j,δ(z◻)
for 0 ⩽ ⟨k,α⟩ < β. The term KΣ((fj/2 − gj)1gj⩽fj/2)

2 is thus upper bounded by a

sum of terms of the form σ2⟨k,α⟩δ−2(D−d)KΣ(Dkf̄j,δ(z◻)1gj⩽fj/2)
2. Now there holds

∫Uj,σ∩O1
xj

KΣ(Dkf̄j,δ(z◻)1gj⩽fj/2)
2

KΣ(hj) + fj

≲ σ−H1∥KΣ(Dkf̄j,δ(z◻)1gj⩽fj/2)∥∞ × ∫ KΣ(∣Dkf̄j,δ(z◻)∣1gj⩽fj/2)

≲ σ
−H1

cj
∫O1

xj

∣Dkf̄j,δ(zy)∣1gj⩽fj/2)dy ≲
σ−H1

c2
j

δD−d {σ log(1/σ)}2β+ε−⟨k,α⟩

where we used Lemma 5.C.3. Summing all the bounds in k, we obtain that (5.40)

is bounded from above, up to constant, by

max
k
c−2
j σ

2β+ε−H1+2⟨k,α⟩δ−(D−d)log(1/σ)2β+ε ≲ c−1
j δ

−(D−d)σε−H1 log(1/σ)2β+ε

where we used that cj ⩾ σ2β .

Collecting all the bounds on (5.37-5.41) together with δ2σ2α⊥ = o(1/ log(1/σ)), we get

that

cj d2
H(KΣ(hj), fj) ≲ cj [σ2β log(1/σ)4β+2ε + σH1/2 + σε−H1δ−(D−d)log(1/σ)2β+ε] .

Choosing H1 = 4β and ε ⩾ 6β + ε1 where σε1 ⩽ δD−d, we obtain the result.

5.D Appendix to Section 5.5.1: proof of Theorem 5.3.2

For any probability distribution P on RD × S++(D,R), one defines the probability

density function on RD

fP (x) ∶= ∫ ϕΣ(x − y)dP (y,Σ).

Note that when g is a probability distribution on RD, then

KΣg(x) = fP (x) with dP (y,Σ) = δΣ(y)(Σ)g(y)dy.

Lemma 5.D.1. Let V0, . . . , VN be a partition of RD and let P = ∑Nj=1 πjδzj ,Σj with zj ∈ Vj .
Then, for any probability measure Q on RD × S++(D,R),

∥fQ − fP ∥1 ⩽ 2
N

∑
j=1

∣Q1(Vj) − πj ∣ +
1

2
sup

1⩽j⩽N
∥Σ−1/2

j ∥op diamVj +
3

2
sup

1⩽j⩽N
sup
Σ∈Sj

√
tr(Σ−1

j Σ − Id)2,

where Q1 is the first marginal of Q and Sj is the support of the second marginal of

1Vj(y)dQ(y,Σ).

205



CHAPTER 5. BAYESIAN DENSITY ESTIMATION

Proof. We write that fQ(x) − fP (x) is

∫
V0

ϕΣ(x − y)dQ(y,Σ) +
N

∑
j=1
∫
Vj

{ϕΣ(x − y) − ϕΣj(x − zj)}dQ(y,Σ)

+
N

∑
j=1

(Q1(Vj) − πj)ϕΣj(x − zj),

The last term can be readily bounded in L1-norm by

N

∑
j=1

∣Q1(Vj) − πj ∣∫ ϕΣj(x − zj)dx =
N

∑
j=1

∣Q1(Vj) − πj ∣,

and the first one by Q1(V0) = 1 − ∑Nj=1Qj ⩽ ∑Nj=1 ∣Q1(Vj) − πj ∣. For the second term,

notice that each term of the sum is upper-bounded in L1-norm by

∫
Vj

∥ϕΣ(⋅ − y) − ϕΣj(⋅ − zj)∥1dQ(y,Σ)

⩽ ∫
Vj

∥ϕΣj(⋅ − y) − ϕΣj(⋅ − zj)∥1dQ(y,Σ) + ∫
Vj

∥ϕΣ(⋅ − y) − ϕΣj(⋅ − y)∥1dQ(y,Σ)

⩽ 1

2
∫
Vj

∥Σ−1/2
j (y − zj)∥dQ1(y) +

3

2
∫
Vj

√
tr(Σ−1

j Σ − Id)2dQ(y,Σ)

⩽ 1

2
Q1(Vj)∥Σ−1/2

j ∥op diamVj +
3

2
Q1(Vj) sup

Σ∈Sj

√
tr(Σ−1

j Σ − Id)2,

where we used Prp 2.1 and Thm 1.1 of [DMR18].

5.D.1 Proof of Lemma 5.5.1

Throughout the proof, C denotes a generic constant whose value depends only on D.

We start with bounding the probability measure of Fcn. There holds

II(Fcn) ⩽ II{∃h ⩽Hn, µh ∉ B(0,Rn)} + II

⎧⎪⎪⎨⎪⎪⎩
∑
h>Hn

πh ⩾ εn
⎫⎪⎪⎬⎪⎪⎭
+ II(∃h ⩽Hn,Λh ∉ [σ2

n, σ̄
2
n]D).

The first mass is bounded using (5.8):

II{∃h ⩽H,µh ∉ B(0,Rn)} ≲Hn∫ ∥µ∥−b21∥µ∥⩾Rndµ ≲HnR
−b2
n ≲ e−c1nε

2
n ,

as soon as b2R0 ⩾ 2c1. The second term is bounded in [STG13, p. 15] by

II

⎧⎪⎪⎨⎪⎪⎩
∑
h>Hn

πh ⩾ εn
⎫⎪⎪⎬⎪⎪⎭
⩽ { eB

Hn
log(1/ε)}

Hn

≲ e−c1nε
2
n ,

as soon as H0 is large enough. Finally, to bound the last probability, we consider

separately the partial and hybrid location-scale priors.
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• Partial location-scale: Λh = Λ1 for all h and using (5.9),

II(Λ1 ∉ Qn) ⩽ IIΛ {min
i

Λi ⩽ σ2
n} + IIΛ {max

i
Λi ⩾ σ̄2

n} ≲ e−c3σ
−2b3
0 nε2n + σ̄−2b4

n ⩽ e−c1nε
2
n ,

as soon as σ2
1 is large enough and σ2

0 is small enough.

• Hybrid location-scale prior

II(∃h ⩽Hn, Λh ∉ Qn) ⩽HnEĨIΛ
[Q2(min

i
Λi ⩽ σ2

n)] +HnEĨIΛ
[Q2(max

i
Λi > σ̄2

n)]

⩽Hne
−c3σ−2b3

0 nε2n +Hne
−c4σ2b4

1 nε2n ≲ e−c1nε
2
n .

We then turn on bounding the entropy of the partions of Fn. Note that on Fn mini λi ⩾
σ2
n so that

maxi λi
mini λi

⩽ max
i
λiσ

−2
n ⩽ σ−2

0 n2ω/b3 ×max
i
λi.

From [CDB17], the covering number of Fn,j,` is bounded by

N(εn,Fn,j,`, ∥ ⋅ ∥1)

⩽ exp
⎛
⎝
CHn[logn + log(1/εn)] + (D − 1) ∑

h⩽Hn
log(jh + 1) +D(D − 1)2`−2Hn logn

⎞
⎠
,

and the covering number of Fn,j is bounded by

N(εn,Fn,j, ∥ ⋅ ∥1) ⩽ exp
⎛
⎝
CHn[logn + log(1/εn)] + ∑

h⩽Hn
log(jh + 1) +Hn log σ̄2

n

⎞
⎠

≲ exp
⎛
⎝
CHn[logn + log(1/εn)] + ∑

h⩽Hn
log(jh + 1)

⎞
⎠
.

We bound II(Fn,j,`) in the case of the partial location-scale prior, for ` ⩾ 1:

II(Fn,j,`) ≲ ∏
h⩽Hn

(jh
√
n)−(b2−D)1jh⩾1IIΛ (max

i
λi > σ2

0n
2`−1−2ω/b3)

≲ ∏
h⩽Hn

(jh
√
n)−(b2−D)1jh⩾1n−b4(2

`−1−2ω/b3)

= exp

⎧⎪⎪⎨⎪⎪⎩
−(b2 −D) ∑

h⩽Hn
1jh⩾1 log(jh) −

1

2
(b2 −D)nHn − b4(2`−1 − 2ω/b3)Hn logn

⎫⎪⎪⎬⎪⎪⎭
.

We bound II(Fn,j) in the case of the hybrid location-scale prior:

II(Fn,j) ≲ ∏
h⩽Hn

(jh
√
n)−(b2−D)1jh⩾1

= exp

⎧⎪⎪⎨⎪⎪⎩
−(b2 −D) ∑

h⩽Hn
1jh⩾1 log(jh) −

1

2
(b2 −D)nHn

⎫⎪⎪⎬⎪⎪⎭
.
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This implies in particular that for the partial location-scale prior

∑
j,`

√
II(Fn,j,`)N(εn,Fn,j,`, ∥ ⋅ ∥1) ≲ exp(1

2
CHn[logn + log(1/εn)])

×∑
j,`

exp (1

2
∑
h

[(D − 1) log(jh + 1) − (b2 −D)(log(jh)1jh⩾1 − 1)]

+ 1`⩾22`−1 logn[D(D − 1)/2 − b4])

≲ exp (CHn[logn + log(1/εn)]/2) ,

since b4 >D(D − 1)/2 and b2 > 2D − 1. Therefore, by choosing M0 > 0 large enough

∑
j,`

√
II(Fn,j,`)N(εn,Fn,j,`, ∥ ⋅ ∥1)e−M0nε

2
n = o(1).

We obtain a similar result for the hybrid location-scale prior.

5.D.2 Proof of Lemma 5.5.2

We let again R = (H log(1/ε)/C2)1/κ and define σ ∶= ε1/β . Thanks to Corollary 5.3.8,

we know there exists a density function g supported on M δ such that d2
H(KΣg, f0) ≲

σ2β logq(1/σ) for some a > 0. We can in turn, thanks to Lemma 5.5.3, find a discrete

probability measure G on M δ ∩B(0,R) with N atoms at least σα1ε2-apart such that

∥KΣg −KΣG∥1 ≲ ε2 logD/2(1/ε) and N ≲ σ−D logD(1/ε).

We thus have d2
H(KΣG,f0) ≲ σ2β logq(1/σ) + ε2 logD/2(1/ε) ≲ ε2 log2r(1/ε) with r ∶=

q/2 ∨ D/4. We let z1, . . . , zN be the atoms of G and denote by pj = G(zj). We let Vj
be the ball centered around zj with radius σ2α0ε2/2. We complete V1, . . . , VN with

sets VN+1, . . . , VJ that forms a partition of M τ ∩ B(0,R) with Vj included in balls of

the form {x ∈ RD ∣ ∥x − zj∥Σ−1(zj) ⩽ 1} for some zj ∈ M τ ∩ B(0,R), so that we can take

J ≲ N + (R/σ)D ≲ σ−D logD/κ(1/ε). We then set V0 to be the complementary set of the

reunion of the Vj and set further pj = 0 for j greater than N + 1.

We write under the prior II, P = ∑∞
h=1 πhδµh,Uh,Λh and Σh = U⊺

hΛhUh. We use the

convention that Λh = Λ for all h in the case of the Partial location scale prior and πh = 0

for h ⩾K for the mixture of finite mixtures prior. Set Ñ = log(1/ε) ×N , we consider the

following events

PJ =
⎧⎪⎪⎨⎪⎪⎩

J

∑
j=1

∣pj − Pµ(Vj)∣ ⩽ ε2 and min
1⩽j⩽J

Pµ(Vj) ⩾ ε4
⎫⎪⎪⎬⎪⎪⎭
,

FÑ =
⎧⎪⎪⎨⎪⎪⎩
∑
h⩽Ñ

πh ⩾ 1 − ε8
⎫⎪⎪⎬⎪⎪⎭
,

OÑ = {∀1 ⩽ h ⩽ Ñ , ∥UhO⊺
µh
− Id ∥op ⩽ σ2α0ε2} ,

and LÑ = {∀1 ⩽ h ⩽ Ñ , Λh ∈ S(σα0)d × S(δσα⊥)D−d}

where S(t) = {s ∣ t2 ⩽ s ⩽ t2(1 + σ2β)} .
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We first show that if P ∈ PJ ∩FÑ ∩OÑ ∩LÑ , then

dH(fP , f0) ≲ ε logr(1/ε).

Indeed, we have

dH(fP , f0) ⩽ dH(fP ,KΣG) + dH(KΣG,f0) ⩽ dH(fP̂ , fĜ) + dH(fP̂ , fP ) + ε logr(1/ε),

where dĜ(y,Σ) = δΣ(y)dG(y) and P̂ = ∑h⩾1 πhδµh,Σ̂h with

Σ̂h =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Σh if h ⩽ Ñ

Σ(zh) if h > Ñ and µh ∈ Vj with j ⩽ N ;

0 otherwise,

where, conventionally, ϕΣ(⋅ − z)dz = δz when Σ = 0. Since P ∈ FÑ , there easily holds

∥fP − fP̂ ∥1 ⩽ 2ε2 and, using Lemma 5.D.1, we find that

∥fP̂ − fĜ∥1

⩽ 2
N

∑
j=1

∣Pµ(Vj) − pj ∣ +
1

2
σ−α0 sup

1⩽j⩽N
diamVj +

3

2
sup

1⩽j⩽N
sup
µh∈Vj

√
tr(Σ(zj)−1Σ̂h − Id)2,

≲ ε2 + sup
1⩽j⩽N

sup
µh∈Vj

∥Σ(zj)−1Σ̂h − Id ∥op.

where we used that P ∈ PJ and that diamVj ≲ σα0ε2 for j ⩽ N . In the last supremum,

if h > Ñ and µh ∈ Vj , then Σh = Σ(zj) so we only need to handle the case when h ⩽ Ñ .

Moreover,

Σ(zj)−1Σ̂h − Id = O⊺
zj∆

−2
σ,δOzjU

⊺
hΛhUh − Id

= O⊺
zj∆

−2
σ,δ(OzjU

⊺
h − Id)ΛhUh +O⊺

zj∆
−2
σ,δΛhUh − Id

= O⊺
zj∆

−2
σ,δ(OzjU

⊺
h − Id)ΛhUh +O⊺

zj(∆
−2
σ,δΛh − Id)Uh +O⊺

zjUh − Id,

so that

∥Σ(zj)−1Σ̂h − Id ∥op ≲ ∥∆−2
σ,δ∥op∥Λh∥op∥∥OzjU

⊺
h − Id ∥op + ∥∆−2

σ,δΛh − Id ∥op + ∥O⊺
zjUh − Id ∥op

≲ ε2 + σ2β ≃ ε2,

where we used both that h ⩽ Ñ and P ∈ OÑ ∩LÑ .

Using [STG13, Lem B2], we find that for λ > 0 small enough

P0 log
f0

fP
≲ d2

H(f0, fP )(1 + log(1/λ)) + P0 {log
f0

fP
1fP /f0<λ}

P0 (log
f0

fP
)

2

≲ d2
H(f0, fP )(1 + log2(1/λ)) + P0 {(log

f0

fP
)

2

1fP /f0<λ} ,
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up to numeric constant. Notice that by assumption, f0 is bounded from above by ∥L∥∞.

Let x ∈M τ ∩B(0,R), and let 1 ⩽ j ⩽ J be such that x ∈ Vj . Notice that, since P ∈ FÑ ∩PJ ,

there holds

ε4 ⩽ Pµ(Vj) = ∑
µh∈Vj

πh ⩽ ∑
µh∈Vj
h⩽Ñ

πh + ε8 so that ∑
µh∈Vj
h⩽Ñ

πh ⩾ ε4/2.

Now we can write

fP (x) ⩾ ∑
µh∈Vj
h⩽Ñ

πhϕΣh(x − µh) ≳
ε4

δD−dσD
,

where we used that ∣det Σh∣1/2 ⩽ (1+σ2β)D/2δD−dσD ≲ δD−dσD and that ∥x− y∥Σ−1(y) ≲ 1

for any x, y ∈ Vj with a similar line of reasoning as in the proof of Lemma 5.5.3, relying

on P ∈ OÑ ∩LÑ . Furthermore, since fP (x) ⩽ ε8 +∑h⩽Ñ πhϕΣh(x − µh), there must be

some h ⩽ Ñ such that both πh ⩾ ε2 and µh ∈ B(0,R) holds, otherwise one would get a

contradiction looking at the mass of f0 since one would get

∥f0∥1 = ∥f01B(0,R/2)∥1 + ∥f01B(0,R/2)c∥1

⩽ ∥fP1B(0,R/2)∥1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≲ε2+εH

+ ∥(fP − f0)1B(0,R/2)∥1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≲ε+σβ

+ ∥f01B(0,R/2)c∥1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≲εH

,

where the inequalities occurs up to log-term. For x ∉ B(0,R), notice that, for this

particular h ⩽ Ñ , fP (x) ≳ ε2ϕΣh (x − µh) . Taking λ = Cε4/(δD−dσD) for some small

constant C, one get for any ` ⩾ 1,

P0 {(log
f0

fP
)
`

1fP /f0<λ} ⩽ P0 {(log
f0

fP
)
`

1B(0,R)c}

≲ log`
ε2

σDδD−d
× P0(B(0,R)c) + ∫

B(0,R)c
∥x − µh∥2`

Σ−1
h
f0(x)dx

≲ εH log`
ε2

σDδD−d
+ σ−2`α0 {∫ ∥x∥4`f0(x)dx}

1/2
P0(B(0,R)c)1/2

≲ ε2 log2(1/ε),

where the last inequality holds for ` ∈ {1,2}, provided that we chose H ⩾ 8α0 + 4β. This

shows that fP ∈ B(f0, ε̃) for ε̃ ≈ ε logs(1/ε) with s = r ∨ 1. It only remains to lower bound

the prior mass of the event PJ ∩FÑ ∩OÑ ∩LÑ .

For this, one can use (5.8) and the fact that the scales are drawn independently to

rest to find that

II(PJ ∩FÑ ∩OÑ ∩LÑ) ⩾ II(PJ ∩FÑ) × cÑo ∏
h⩽Ñ

O {∥UOµh − Id ∥op ⩽ σ2α0ε2} × II(LÑ).
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We easily get that O {∥UOµh − Id ∥op ⩽ σ2α0ε2} ≳ (σ2α0ε2)D(D−1)/2. For II(LÑ), we use

(5.9) or (5.10) along with a simple Markov inequality to find that

II(LÑ) = EII {Q2 ([σ2α0 , (1 + σ2β)σ2α0]d × [δ2σ2α⊥ , (1 + σ2β)δ2σ2α⊥]D−d)Ñ}

≳ exp(−2α0B0 log(1/σ)Ñ) exp{−c2Dσ
−D} .

For II(PJ ∩FÑ), we write

II(PJ ∩FÑ) ⩾ II(PJ) − II(Fc
Ñ
) ≳ e−CJ log(1/ε) − e−Ñ log(Ñ),

where we used [GVDV07, Lem 10] and the bound [STG13, p. 15]. We conclude by

noticing that e−Ñ log(Ñ) ≪ e−N log(1/ε) so that in the end

II(PJ ∩FÑ ∩OÑ ∩LÑ) ≳ exp(−CN logt(1/ε))),

for some C depending on the parameters and t =D/κ + 2, ending the proof.

5.D.3 Proof of Lemma 5.5.3

Proof of Lemma 5.5.3. Let g ∶ RD → R be a density supported on M δ and satisfying

(5.12) and (5.13). Let R = (H log(1/ε)/C2)1/κ, so that g is less than C1ε
H outside of

B(0,R). We consider the functions {χi}i∈I introduced in Lemma 5.A.6 associated with

a τ/64-packing {xi}i∈I of M ∩ B(0,R). Recall that the number ∣I ∣ of functions is less

than of order RD. We can write

KΣg(x) =KΣ(g1Bc(0,R))(x) +∑
i∈I
KΣ(χig1B(0,R))(x) =KΣ(g1Bc(0,R))(x) +∑

i∈I
ciKΣgi(x)

where ci = ∥χig1B(0,R)∥1 and gi = χig1B(0,R)/ci is a density supported on O0
xi . Notice

that for any x ∈ RD

KΣ(g1Bc(0,R))(x) ⩽ C1ε
HKΣ(1Bc(0,R))(x) ⩽ C1ε

H

and that

∥KΣ(g1Bc(0,R))∥1 = ∥g1Bc(0,R)∥1 ⩽ ∫∥x∥⩾R
C1e

−C2∥x∥κ ≲ ∫
r⩾R

e−C2r
κ

rD−1dr

≲ log(D−2)/κ+1(1/ε) × εH ,

where we used a NP-bound on the incomplete Gamma function in the last inequality.

Consequently, the term KΣ(g1Bc(0,R)) need not be discretized. Take now i ∈ I. As in

the proof of Theorem 5.3.7, there holds that

ϕΣ(y)(x − y) ≲
εH

σDδD−d
∀x ∉ O1

xi , y ∈ O
0
xi ,
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provided that τ ≳ Rδσα⊥ . This means that ∣KΣgi(x)∣ ≲ εH

σDδD−d
for all x ∉ O1

xi . If now

x ∈ O1
xi , there holds

KΣgi(x) = ∫W0
xi

ϕΣ(Ψ̄xi(w))(x − Ψ̄xi(w))ḡi(w)dw

= ∑
j∈Ji

c̄i,j ∫Wi,j

ϕΣ(Ψ̄xi(w))(x − Ψ̄xi(w))ḡi,j(w)dw

where ḡi(w) = gi(Ψ̄xi(w)) × ∣det dΨ̄xi(w)∣, c̄i,j = ∫Wi,j
ḡi and ḡi,j = ḡi/c̄i,j . The setsWi,j

form a partition ofW0
xi that are included in

d

∏
`=1

[w0
t`
,w0

t`+1) ×
D

∏
`=d+1

[w⊥t` ,w
⊥
t`+1) ∩W0

xi ,

for (w0
t1 , . . . ,w

0
td
,w⊥td+1

, . . . ,w⊥tD) vary on a grid of size (σα0 , . . . , σα0 , δσα⊥ , . . . , δσα⊥). No-

tice that

CardJi ≃
1

σα0d
× ( δ

δσα⊥
)
D−d

= σ−D.

Let i ∈ I and j ∈ Ji be fixed and denote for short Ψ̄ = Ψ̄xi and Σ̄ = Σ ○ Ψ̄. We let Γ > 0

and we distinguish two cases: infw∈Wi,j ∥x − Ψ̄(w)∥2
Σ̄−1(w) ⩾ Γ log(1/ε) and infw∈Wi,j ∥x −

Ψ̄(w)∥2
Σ̄−1(w) < Γ log(1/ε). In the former,

∫Wi,j

ϕΣ̄(w)(x − Ψ̄(w))ḡi,j(w)dw ≲ εΓ/2

σDδD−d
.

While if infw∈Wi,j ∥x−Ψ̄(w)∥2
Σ̄−1(w) ⩽ Γ log(1/ε), we first show that supw∈Wi,j

∥x−Ψ̄(w)∥2
Σ̄−1(w) ⩽

Γ′ log(1/ε) for some Γ′ > Γ. We let w0 ∈Wi,j such that ∥x − Ψ̄(w0)∥2
Σ̄−1(w) ⩽ 2Γ log(1/ε)

and take w ∈ Wi,j . Using (5.30), we get that there ∥prTΨ̄(w)
−prTΨ̄(w0)

∥op ⩽ 2/τσα0 and

the same holds for prNΨ̄(w)
−prNΨ̄(w0)

. Furthermore, using (5.19) and (5.22) with the

same set of notations yields

∥prTΨ̄(w0)
(Ψ̄(w) − Ψ̄(w0))∥ ⩽ C ′σα0 and ∥prTΨ̄(w0)

(Ψ̄(w) − Ψ̄(w0))∥ ⩽ C ′δσα⊥ ,

for some other constant C ′ > 0. All in all, there holds

∥x − Ψ̄(w)∥2
Σ̄−1(w) =

1

σ2α0
∥prTΨ̄(w)

(x − Ψ̄(w))∥2 + 1

δ2σ2α⊥
∥prNΨ̄(w)

(x − Ψ̄(w))∥2

⩽ 4C2 + 2

σ2α0
∥prTΨ̄(w0)

(x − Ψ̄(w))∥2 + 2

δ2σ2α⊥
∥prNΨ̄(w0)

(x − Ψ̄(w))∥2

⩽ 4C2 + 8C ′2 + 4

σ2α0
∥prTΨ̄(w0)

(x − Ψ̄(w0))∥2 + 4

δ2σ2α⊥
∥prNΨ̄(w0)

(x − Ψ̄(w0))∥2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=4∥x−Ψ̄(w0)∥2

Σ̄−1(w0)

⩽ 4C2 + 8C ′2 + 8Γ log(1/ε) ⩽ 9Γ log(1/ε),

for ε small enough. Denote RT (u) = exp(u) −∑T−1
t=0 ut/t!, then ∣RT (u)∣ ⩽ eu∣u∣T /T ! and

exp{−1

2
∥x − Ψ̄(w)∥2

Σ̄−1(w)} =
T−1

∑
t=0

(−1)t

2tt!
∥x − Ψ̄(w)∥2t

Σ̄−1(w) +RT (−∥x − Ψ̄(w)∥2
Σ̄−1(w)/2) .

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶= RT (x,w)
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Note that RT (x,w) is uniformly bounded by

∣RT (x,w)∣ ⩽ e5Γ log(1/ε) (5Γ log(1/ε))T

T !
≈ ε

−5Γ logT (1/ε)
T !

.

Set,

Ai,j(w) ∶= ⟨ei, Σ̄−1(w)ej⟩, Bi(w) ∶= ⟨ei, Σ̄−1(w)Ψ̄(w)⟩, and C(w) ∶= ∥Ψ̄(w)∥2
Σ̄−1(w),

so that all functionsAi,j ,Bi andC are continuous functions ofw and if x = (x1, . . . , xD),

∥x − Ψ̄(w)∥2t
Σ̄−1(w) = {∥x∥2

Σ̄−1(w) − 2⟨x, Σ̄−1(w)Ψ̄(w)⟩ + ∥Ψ̄(w)∥2
Σ̄−1(w)}

t

= ∑
∣k∣=t

(t
k
)(−2)k2

⎧⎪⎪⎨⎪⎪⎩
∑

1⩽i,j⩽D
xixjAi,j(w)

⎫⎪⎪⎬⎪⎪⎭

k1

{
D

∑
i=1

xiBi(w)}
k2

C(w)k3

= ∑
∣k∣=t

(t
k
)(−2)k2C(w)k3 ∑

∣`∣=k1

(k1

`
) ∏

1⩽i,j⩽D
(xixj)`i,jA

`i,j
i,j (w) ∑

∣m∣=k2

(k2

m
)
D

∏
i=1

xmii Bmi
i (w)

= ∑
(p,`,m)∈Gt

Pp,`,m(x) ×C(w)p ∏
1⩽i,j⩽D

A
`i,j
i,j (w) ∏

1⩽i⩽D
Bmi
i (w)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶= Qp,`,m

where Pp,`,m(x) are polynomial functions of x, Qp,`,m(w) are continuous functions of

w, and where Gt is the set {(p, `,m) ∣ p + ∣`∣ + ∣m∣ = t} ⊂ ND2+D+1. According to [GVDV01,

Lem 3.1], one can always find an atomic probability measure Gi,j such that

∫ Qp,`,m(w)ḡi,j(w)dw = ∫ Qp,`,m(w)Gi,j(dw)

for all p, `,m such that p+ ∣`∣+ ∣m∣ ⩽ T −1. Since there are less than TD
2+D+1 such triplets,

the probability measure Gi,j can be taken to have less than TD
2+D+1 atoms. Note that

then, this measure satisfies that

∣∫Wi,j

ϕΣ̄(w)(x − Ψ̄(w))(ḡi,j(w)dw −Gi,j(dw))∣

= 1

(2π)D/2δD−dσD
∣∫Wi,j

RT (x,w)(ḡi,j(w)dw −Gi,j(dw))∣ ≲ ε
−5Γ logT (1/ε)
δD−dσDT !

.

All in all, Gi,j is such that

∣∫Wi,j

ϕΣ̄(w)(x − Ψ̄(w))ḡi,j(w)dw − ∫Wi,j

ϕΣ̄(w))(x − Ψ̄(w))Gi,j(dw)∣

≲

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

σDδD−d
εH if x ∉ O1

xi ;

1

σDδD−d
εΓ/2 if x ∈ O1

xi and infw∈J ∥x − Ψ̄(w)∥2
Σ̄−1(w) ⩾ Γ log(1/ε);

1

σDδD−d
1

T !
ε−5Γ logT (1/ε) if x ∈ O1

xi and infw∈J ∥x − Ψ̄(w)∥2
Σ̄−1(w) ⩽ Γ log(1/ε).
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Taking H ⩾ 1, Γ ⩾ 2 and T ⩾ 5Γ log(1/ε) yields a bound of order ε/σDδD−d in every case.

Then the probability measure

G =∑
i∈I
αi ∑

j∈Ji
c̄i,j(Ψ̄xi)#Gi,j ,

is a discrete measure on M δ with at most

Nε = TD
2+D+1∑

i∈I
CardJi ≈ logD

2+D+1(1/ε)RDσ−D ⩽ σ−D logD
2+D/(κ∧2)(1/ε)

atoms and such that ∥KΣG −KΣg∥∞ ≲ ε/(σDδD−d).

We now turn to bounding the L1 norm. Let again pick i ∈ I and j ∈ Ji. We let

xi,j = Ψ̄xi(wi,j) for some wi,j ∈Wi,j and for T > 0 we define

HA = {x ∈ RD ∣ ∥x − xi,j∥Σ−1(xi,j) ⩽ A} .

There holds that LebHA ≃ δD−dσDTD. Furthermore, we have, denoting respectively

Pi,j and Qi,j the push-forwards of ḡi,j and Gi,j through Ψ̄xi

∥KΣPi,j −KΣQi,j∥1 = ∫HA
∣KΣPi,j −KΣQi,j ∣ + ∫HcA

∣KΣPi,j −KΣQi,j ∣

≲ δD−dσDAD∥KΣPi,j −KΣQi,j∥∞∫HcA
[KΣQi,j +KΣPi,j]

≲ ADε + ∫HcA
[KΣPi,j +KΣQi,j]. (5.43)

Recall that the support of Pi,j and Qi,j are in Ψ̄xi(Wi,j). Furthermore, since

diam prM Ψ̄xi(Wi,j) ≲ σα0 ,

there holds, using (5.30), that ∥prTy −prTy′ ∥op ≲ σα0 for any two y, y′ ∈ Ψ̄xi(Wi,j). Let

y ∈ Ψ̄xi(Wi,j) and x ∈ HcA, we now show that ∥x − y∥Σ−1(y) ⩾ ζA is A is chosen large

enough, where zeta > 0 is a fixed constant. We have

∥x − y∥Σ−1(y) = ∥ 1

σα0
∥prTy(x − y) +

1

σα⊥δ
prNy(x − y)∥

= ∥ 1

σα0
prTxi,j

(x − y) + 1

σα⊥δ
prNxi,j

(x − y)∥ +O(∥x − y∥)

= ∥ 1

σα0
prTxi,j

(x − xi,j) +
1

σα⊥δ
prNxi,j

(x − xi,j)∥ +O(∥x − y∥) +O(1),

= ∥x − xi,j∥Σ−1(xi,j) +O(∥x − y∥) +O(1). (5.44)

where the term O(1) comes from noticing that

∥prTxi,j
(y − xi,j)∥ ⩽ ∥prTxi,j

(Ψxi(v) −Ψxi(v
′))∥ + ∥prTxi,j

Nxi(v, η)∥

≲ ∣v − vi,j ∣ + ∥prTxi,j
−prTy ∥op × ∥η∥ ≲ σα0 ,
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and

∥prNxi,j
(y − xi,j)∥ ⩽ ∥prNxi,j

(Ψxi(v) −Ψxi(v
′))∥ + ∥prNxi,j

(Nxi(v, η) −Nxi(vi,j , ηi,j))∥

≲ ∣v − vi,j ∣ + ∣η − ηi,j ∣ ≲ σα⊥δ.

The above inequalities also imply that ∥y −xi,j∥ = O(1) so that ∥x− y∥ = ∥x−xi,j∥+O(1).

Decomposing x − xi,j into prTxi,j
and prNxi,j

show that ∥x − xi,j∥ = o(∥x − xi,j∥Σ−1(xi,j))
so that finally

∥x − y∥Σ−1(y) = ∥x − xi,j∥Σ−1(xi,j)(1 + o(1)) +O(1)

uniformly for x ∈HcA and y ∈Wi,j . By choosing A larger than a fixed constant we then

obtain that

∥x − y∥Σ−1(y) ⩾ A/2 uniformly on x ∈ RD ∖HA and y ∈ Ψ̄xi(Wi,j).

This yields that

∫HcA
KΣPi,j = ∫

Ψ̄xi(Wi,j
∫HcA

ϕΣ(y)(x − y)dxPi,j(dy)

= 1

(2π)D/2σDδD−d ∫Ψ̄xi(Wi,j)
∫HcA

exp{−1

2
∥x − y∥2

Σ−1(y)}dxP (dy)

⩽ 1

(2π)D/2 ∫∥z∥⩾A/2
exp{−1

2
∥z∥2}dz ≲ exp(−A2/8),

where we made the variable change z = Σ−1/2(y)(x − y) in the second to last inequality.

The same holds for KΣQi,j . Setting A = (8 log(1/ε))1/2 and combining with (5.43),

∥KΣPi,j −KΣQi,j∥1 ≲ logD/2(1/ε)ε. We finally obtain that

∥KΣg −KΣG∥1 ≲∑
i

αi ∑
j∈Ji

c̄i,j logD/2(1/ε)ε ≲ logD/2(1/ε)ε.

Also we can choose the atoms ofG to be σα0ε apart, thanks to Lemma 5.D.1 together

with the following bound on Σ(z)−1Σ(y) − Id when ∥z − y∥ ⩽ σα0ε:

Σ(z)−1Σ(y) − Id = O⊺
z∆−2

σ,δOzO
⊺
y∆2

σ,δOy − Id

= O⊺
z∆−2

σ,δ(OzO
⊺
y − Id)∆2

σ,δOy +OzO
⊺
y − Id,

so that

√
tr(Σ(z)−1Σ(y) − Id)2

⩽
√
D∥Σ(z)−1Σ(y) − Id ∥op ≲ ∥∆−2

σ,δ∥op∥OzO⊺
y − Id ∥op∥∥∆2

σ,δ∥op + ∥OzO⊺
y − Id ∥op

≲ σ−2α0∥Oz −Oy∥op ≲ σ−2α0∥prTz −prTy ∥op ≲ σ−2α0∥z − y∥ ≲ ε,

where we used (5.30) in the second to last inequality, ending the proof.
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5.E Appendix to Section 5.4

In this section, we give some details on the procedure we used in Section 5.4. The

prior we implemented is a version of the partial location-scale mixture described in

Section 5.2: for D ∈ {2,3}, and n ∈ N, we set

(xi)1⩽i⩽n ∣ (µi)1⩽i⩽n, (Σi)1⩽i⩽n ∼
n

⊗
i=1

N (µi,Σi),

(µi)1⩽i⩽n ∣ P ∼ P⊗n,

(Σi)1⩽i⩽n ∣ λ1, λ2 ∼ O⊗n
D,λ1,λ2

, (5.45)

P ∼ DP (αUnif([−c, c]D)) ,

λ1, λ2 ∣ b1, b2 ∼ InvΓ(a1, b1)⊗ InvΓ(a2, b2),

b1, b2 ∼ Exp(κ1)⊗Exp(κ2),

where κ1, κ2, a1, a2, α and c are positive real number provided by the user. In all the

numerical experiments we did, we chose κ1 = κ2 = 1 and a1 = a2 = α = c = 10. It

only remains to describe the scale process (5.45). For this, we take advantage of the

low-dimensionality of D, although other solutions exists for high-dimensional data

[JHD21]. For D = 2, O2,λ1,λ2 is the law of O⊺ΛO where

Λ =
⎛
⎝
λ1 0

0 λ2

⎞
⎠

and O =
⎛
⎝

cos θ − sin θ

sin θ cos θ

⎞
⎠

with θ ∼ Unif([0,2π]).

For dimension D = 3, O2,λ1,λ2 is the law of λ2 Id+(λ1 − λ2)uu⊺ where

u =
⎛
⎜⎜
⎝

cos(θ)
sin(θ) cos(φ)
sin(θ) sin(φ)

⎞
⎟⎟
⎠

with θ ∼ Unif([0, π]) and φ ∼ Unif([0,2π]).

The matrix λ2 Id+(λ1 − λ2)uu⊺ can actually be put in the form O⊺ΛO with

Λ =
⎛
⎜⎜
⎝

λ1 0 0

0 λ2 0

0 0 λ2

⎞
⎟⎟
⎠

and withO being a matrix of the transform x↦ (prVectu x,pru⊥ x) in orthonormal bases,

so that λ2 is associated with the 2-dimensional subspace u⊥ and λ1 with the one di-

mensional subspace Vectu. Notice that we do not provide the algorithm with any prior

knowledge of the intrinsic dimension of the data, but rather let it decide wether density

is going to be 1-dimensional (λ1 ≫ λ2), 2-dimensional (λ1 ≪ λ2) or 3-dimensional

(λ1 ≈ λ2).

We now described analytically the shapes we use for the experiments.
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• The two circles: it is the union of C1 and C2 with equation (x − xi)2 + (y − yi)2 = r2
i

for i ∈ {1,2}. In the experiements, we chose (x1, y1) = (0,0), (x2, y2) = (2,0) and

r1 = r2 = 2.

• The 2D-spiral: it is given by the parametric embedding

ϕ2 ∶ t ∈ [0,1]↦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

R(ωt + θ0) cos(ωt + θ0)

R(ωt + θ0) sin(ωt + θ0).

In the numerical studies, we chose R = 1/2π, ω = 7π/2 and θ0 = π/2.

• The 3D-spiral: it is given by the parametric embedding

ϕ3 ∶ t ∈ [0,1]↦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R(ωt + θ0) cos(αt + θ0)

R(ωt + θ0) sin(αt + θ0)

νt.

In the numerical studies, we chose R = 1/2π, ω = 7π/2, θ0 = π/2 and ν = 2.

• The torus: it is the set T given by the equation (
√

(x − x0)2 + (y − y0)2 −R)2 + (z −
z0)2 = r2. In the experiements, we chose (x0, y0, z0) = (0,0,0), R = 3 and r = 1.

We finally briefly review how the data was generated around each of this shape.

The model we used was the additive isotropic noise model (as described in Proposi-

tion 5.2.4). The noise kernel we chose was

Kβ⊥(x)∝ (1 − ∥x∥2)β⊥+ ,

and the base densities f∗ on the shape were as follows: for the two-circles, we set

f∗ = 1/2f1 + 1/2f2 where fi for i ∈ {1,2} is the uniform distribution on Ci. For the torus,

we chose a uniform distribution on T as well. For the 2D-spiral (resp. the 3D-spiral),

f∗ was simply the push-forward through ϕ2 (resp. ϕ3) of the probability distribution

gβ0 on [0,1] given by

gβ0(t)∝ (1 − (1 − 2t)β0)1t∈[0,1/2] + (1 − (2t − 1)β0+1)1t∈[1/2,1].

In the experiments, the regularities were set to β0 = 2 and β⊥ = 6.
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Chapter 6

From graph centrality to data depth

Given a sample of points in a Euclidean space, we can define a notion of depth by

forming a neighborhood graph and applying a notion of node centrality. In the present

chapter, we focus on the degree, iterates of the H-index, and the coreness, which are

all well-known measures of centrality of a node in a graph. We study their behaviors

when applied to a sample of points drawn i.i.d. from an underlying density and with a

connectivity radius properly chosen. Equivalently, we study these notions of centrality

in the context of random neighborhood graphs. We show that, in the large-sample limit

and under some standard condition on the connectivity radius, the degree converges

to the likelihood depth (unsurprisingly), while iterates of the H-index and the coreness

converge to new notions of depth. This chapter is the subject of the prepublication

[AACB21], in revision.
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6.1 Introduction

6.1.1 From Node Centrality to Data Depth

In the context of multivariate analysis, a notion of depth is meant to provide an ordering

of the space. While in dimension one there is a natural order (the one inherited by

the usual order on the real line), in higher dimensions this is lacking, and impedes the

definition of such foundational objects as a median or other quantiles, for example. By

now, many notions of data depth have been proposed and the corresponding literature

is quite extensive. Most of the notions are geometrical in nature, as perhaps they should

be. Among these, for example, we find the half-space depth [Tuk75, DG92], various

notions of simplicial depth [Oja83, Liu90], or the convex hull peeling [Bar76, Edd82].

Other notions of depth are not motivated by geometry, in particular the likelihood

depth [FLM97, FM99], which is simply given by the values taken by the density (or an

estimate when it is unknown). Notions of depth are surveyed in [LPS99, LSS06, Mos13].

While the focus in multivariate analysis is on point clouds, in graph and network

analysis the concern is on relationships between some items represented as nodes

in a graph. There, the corresponding notion is that of node centrality. (There are

notions of centrality that apply to edges, but we will not consider these here.) Quite

a few notions have been proposed, including the degree, the H-index [Hir05], the

coreness [Sei83], and other notions including some based on graph distances [Fre78]

or on (shortest-)path counting [Fre77], and still other ones that rely on some spectral

properties of the graph [Kat53, Bon72, PBMW99, Kle99]. Notions of centrality are

surveyed in [Kol09, BE06, Fre78].

Thus, on the one hand, notions of depth have been introduced in the context of

point clouds, while on the other hand, notions of centrality have been proposed in

the context of graphs and networks, and these two lines of work seem to have evolved

completely separately, with no cross-pollination whatsoever, at least to our knowledge.

The only place where we found a hint of that is in the discussion of [Alo06], who

mentions a couple of “graph-based approach[es]” which seem to have been developed

for the context of point clouds, although one of them — the method of [TF79] based

on pruning the minimum spanning tree — applies to graphs as well. We can also

mention the recent work of [CS20], who study the large-sample limit of the convex hull

peeling, relating it to a motion by (Gaussian) curvature. This lack of interaction may

appear surprising, particularly in view of the important role that neighborhood graphs

have played in multivariate analysis, for example, in areas like manifold learning

[TSL00, WPS05, BN03], topological data analysis [Was18, CCSM11], and clustering

[NJW02, AC11, MHvL09, BCQY97]. The consideration of neighborhood graphs has
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also led to the definition of geometrical quantities for graphs inspired by Euclidean

or Riemannian geometry, such as the volume, the perimeter, and the conductance

[TSVB+16, ACPP12, MP20], and to the development of an entire spectral theory, in

particular the study of the Laplacian [Chu97, BN08, GK06, Sin06].

Inspired by this movement, we draw a bridge between notions of depth for point

clouds and notions of centrality for nodes in a graph. In a nutshell, we consider a

multivariate analysis setting where the data consist of a set of points in the Euclidean

space. The bridge is, as usual, a neighborhood graph built on this point set, which

effectively enables the use of centrality measures, whose large sample limit we examine

in a standard asymptotic framework where the number of points increases, while the

connectivity radius remains fixed or converges to zero slowly enough. In so doing, we

draw a correspondence between some well-known measures of centrality and depth,

while some notions of centrality are found to lead to new notions of depth. (A bridge

going in the other direction, namely from depth to centrality, can be built by first

embedding the nodes of a graph as points in a Euclidean space, thus making depth

measures applicable. We do not explore this route in the present paper.)

6.1.2 Setting and Notation

We consider a multivariate setting where

Xn = {X1, . . . ,Xn} is an i.i.d. sample from

a uniformly continuous density f on Rd.
(6.1)

The bridge between point clouds and graphs is the construction of a neighborhood

graph. More specifically, for an arbitrary set of distinct points, x1, . . . , xk ∈ Rd and a

radius r > 0, let Gr({x1, . . . , xk}) denote the graph with node set V = {1, . . . , k} and

edge set E = {(i, j) ∶ ∥xi − xj∥ ≤ r}, where ∥ ⋅ ∥ denotes the Euclidean norm. Note that

the resulting graph is undirected. Although it is customary to weigh the edges by the

corresponding pairwise Euclidean distances — meaning that an edge (i, j) has weight

∥xi − xj∥ — we choose to focus on purely combinatorial degree-based properties of the

graph, so that it is sufficient to work with the unweighted graph.

In what follows, we fix a point x ∈ Rd and study its centrality C(x;Gr(x,Xn)) in the

graph Gr(x,Xn) ∶= Gr({x} ∪Xn) as n→∞. This graph is random and sometimes called

a random geometric graph [Pen03]. The connectivity radius may depend on n (i.e.,

r = rn), although this dependency will be left implicit for the most part.

Everywhere, B(x, r) will denote the closed ball centered at x and of radius r. For

a measurable set A, ∣A∣ will denote its volume. In particular, we will let ω denote the

volume of the unit ball, so that ∣B(x, r)∣ = ωrd for all x ∈ Rd and r ⩾ 0. We will let

N ∶= nωrd, (6.2)

which, as we shall see, will arise multiple times as a renormalization factor.
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6.1.3 Contribution and Outline

We study the large-sample (n→∞) limit of the centrality of x in the random neighbor-

hood graph Gr(x,Xn), where the sample Xn is generated as in (6.1). More specifically,

we focus on the degree degr(x,Xn); on the kth iterate of the H-index Hk
r(x,Xn); and on

the coreness Cr(x,Xn). As will be made clear, these notions of centrality can all be seen

as iterates of the H-index, since degr(x,Xn) = H0
r(x,Xn) and Cr(x,Xn) = H∞

r (x,Xn).

Given their prominence in the literature [MGPV20], the degree and the coreness are

examined separately. The main limits are taken as the sample size n goes to infinity

while the neighborhood radius r remains fixed or converges to zero slowly enough. See

Figure 6.1.1 for a compact summary of the main results that we derive.
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Figure 6.1.1 – These are the main relationships that we establish between notions of

centrality and notions of depth.

Section 6.2 is dedicated to the degree, Section 6.3 to the kth iterate of the H-index

for 1 ⩽ k < ∞, and Section 6.4 to the coreness. In Section 6.5 we report on some

numerical simulations.

6.2 Degree

The degree is arguably the most basic measure of centrality, and also one of the earliest

to have been proposed [Fre78]. In our context, the point set Xn is an i.i.d sample with

common density f on Rd, so that it is composed of n distinct points almost surely. The
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degree of x ∈ Rd ∖Xn in the graph Gr(x,Xn) is1

degr(x,Xn) ∶=
n

∑
i=1

1∥x−Xi∥≤r. (6.3)

Dealing with the degree centrality is rather standard (and very straightforward), but as

we will consider more complex notions of centrality below, it helps to draw intuition

from the continuum model where we effectively let the sample size diverge (n→∞).

A Stochastic Convergence Result The analysis of the degree centrality — and of

the other centrality measures hereafter — relies on the following elementary lemma,

which will be used throughout to control stochastic terms. It involves the Vapnik-

Chervonenkis dimension of classes of subsets. Recall that given a class S of subsets of

Rd and an integer m ⩾ 1, the scattering coefficient of S for m point is defined as

∆S(m) ∶= max
x1,...,xm∈Rd

#{(1x1∈S , . . . ,1xm∈S), S ∈ S} ,

which is the maximum number of different labelings of m points that S can produce.

The Vapnik-Chervonenkis (VC) dimension ofS is then defined as the maximum number

of points that can be arbitrary labeled with S, that is,

VC(S) ∶= sup{m ⩾ 1,∆S(m) = 2m} ∈ N ∪ {∞} .

Lemma 6.2.1. Let (Sr)r>0 be a family of classes of subsets of Rd such that:

(i) The VC-dimension of Sr is bounded from above by some v ∈ N uniformly for all

r > 0;

(ii) For all r > 0 and S ∈ Sr, we have diam(S) ⩽ 2r.

Then, for any sequence r = rn such that nrd ≫ logn, we have

η ∶= sup
S∈Sr

1

ωrd
∣Pn(S) − P (S)∣ÐÐÐ→

n→∞
0 a.s.

Proof. We use [AST93, Thm 2.1] to get that for any r > 0 and any ε > 0

P
⎛
⎝

sup
S∈Sr

1√
P (S)

∣Pn(S) − P (S)∣ ⩾ ε
⎞
⎠
⩽ 4∆Sr(2n) exp(−1

4
ε2n) ,

where ∆Sr(2n) is the scattering number of Sr on 2n-points. Using Sauer’s lemma, we

find that as soon as 2n ⩾ v, we have ∆Sr(2n) ⩽ (2en/v)v. Furthermore, since diam(S) ⩽
1If x =Xi0 ∈ Xn, the degree of x in the graph Gr(x,Xn)writes as∑i≠i0 1∥x−Xi∥≤r = (∑

n
i=1 1∥x−Xi∥≤r) − 1,

and therefore only differs by 1 from the formula of (6.3). As this difference will be negligible after

renormalization by 1/N , we will only consider the sum of indicators of (6.3) for simplicity.
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2r for all S ∈ Sr, we have
√
P (S) ⩽

√
∥f∥∞ω(2r)d and setting ε = κ

√
ω(2r)d/∥f∥∞ yields

P( 1

ωrd
sup
S∈Sr

∣Pn(S) − P (S)∣ ⩾ κ) ⩽ 4(2en/v)v exp(− 1

4∥f∥∞
κ2nω(2r)d)

≪ 4(2en/v)v exp(− 2d

4∥f∥∞
κ2 logn) ,

which yields the results when taking κ of the form c log(n)−1/4 for c large enough and

using Borel-Cantelli lemma.

Note that in particular the result holds if r = r0 is constant and if Sr0 has finite

VC-dimension.

Continuum degree: r > 0 fixed The continuous analog to the degree is naturally

obtained by replacing quantities that depend on Xn by their large-sample limit, after

being properly normalized. As we consider r-neighborhood geometric graphs, the

degree of x hence transforms into the convoluted density

fr(x) ∶=
1

∣B(x, r)∣ ∫B(x,r)
f(z)dz. (6.4)

More formally, we have the following well-known asymptotic behavior.

Theorem 6.2.2. If r > 0 is fixed, then almost surely,

1

N
degr(x,Xn)ÐÐÐ→n→∞

fr(x) uniformly in x ∈ Rd.

Proof. This comes from a direct application of Lemma 6.2.1 to Sr = {B(x, r) ∣ x ∈ Rd}.

Remark 6.2.3. We recover that for a neighborhood graph, the counterpart of the degree

is the convoluted density fr. This object satisfies some of the desirable properties

for a depth function identified by [ZS00]. It clearly satisfies P1 [‘affine invariance’] for

rigid transformations and also P4 [‘vanishing at infinity’] due to fr being a uniformly

continuous density. It also satisfies P2 [‘maximality at the center’] and P3 [‘monotonic-

ity relative to deepest point’], at least when the density is unimodal and rotationally

invariant with respect to its mode — the latter being a direct consequence of [And55,

Thm 1].

Continuum degree: r → 0 Now letting r = rn go to zero slowly enough naturally leads

us to recover the actual density.

Theorem 6.2.4. If r = rn is such that r → 0 and nrd ≫ logn, then almost surely,

1

N
degr(x,Xn)ÐÐÐ→n→∞

f(x) uniformly in x ∈ Rd.
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Thus, as a measure of depth, the degree is asymptotically (as the connectivity radius

tends to zero slowly enough) equivalent to the likelihood depth of [FM99].

Proof. This comes from a simple application of Lemma 6.2.1 to the collection of sets

{Sr}r>0 with Sr ∶= {B(x, r) ∣ x ∈ Rd}, and of the fact that fr converges uniformly to f

since f is assumed to be uniformly continuous on Rd.

Remark 6.2.5 (Kernel Density Estimator). Defining the kernel density estimator as

f̂(x) = 1

N
#{Xi ∈ B(x, r)} = 1

N
degr(x,Xn), (6.5)

Theorem 6.2.4 simply restates the well-known fact that this estimator is uniformly

consistent2 over Rd when r → 0 slowly enough that nrd →∞.

Remark 6.2.6 (Eigenvector Centrality). Among spectral notions of centrality, PageRank

is particularly famous for being at the origin of the Google search engine [PBMW99].

This notion of centrality was first suggested for measuring the ‘importance’ of webpages

in the World Wide Web, seen as an oriented graph with nodes representing pages (URLs

specifically) and a directed edge from page i to page j representing a hyperlink on

page i pointing to page j. For an undirected graph, like the random geometric graphs

that concern us here, the method amounts to using the stationary distribution of the

random walk on the graph as a measure of node centrality. This is the walk where, at a

given node, we choose one of its neighbor uniformly at random. (The edge weights play

no role.) However, it is well-known that the stationary distribution is proportional to

the vector of degrees, so that in this particular case, PageRank as a measure of centrality

is equivalent to the degree. (Again, this is not true in general for directed graphs.)

6.3 H-Index

6.3.1 Definition of the H-Index

The H-index is named after [Hir05], who introduced this centrality measure in the

context of citation networks of scientific publications. For a given node in a graph, it

is defined as the maximum integer h such that the node has at least h neighbors with

degree at least h. That is, in our context, the H-index of x in Gr(x,Xn) writes as

Hr(x,Xn) ∶= largest h such that #{Xi ∈ B(x, r) ∶ degr(Xi,Xn) ≥ h} ≥ h.

The H-index was put forth as an improvement on the total number of citations as a

measure of productivity, which in a citation graph corresponds to the degree. We show

below that in the latent random geometric graph model of (6.1), the H-index can be

asymptotically equivalent to the degree3 (see Theorems 6.3.5 and 6.3.7).

2Recall that throughout, as defined in (6.1), f is assumed to be uniformly continuous over Rd.
3Of course, there is no reason why the underlying geometry of a citation graph ought to be Euclidean.
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6.3.2 Iterated H-Index

[LZZS16] consider iterates of the mechanism that defines the H-indices as a function

of the degrees: The second iterate at a given node is the maximum h such that the node

has at least h neighbors with H-index at least h, and so on. More generally, given any

(possibly random) bounded measurable function φ ∶ Rd → R, we define the (random)

bounded measurable function Hn,rφ ∶ Rd → R as

Hn,rφ(x) ∶= largest h such that #{Xi ∈ B(x, r) ∶ φ(Xi) ⩾ h} ⩾ h

= N max{h ∣ 1

N

n

∑
i=1

1∥x−Xi∥⩽r1φ(Xi)/N≥h ≥ h} . (6.6)

The H-index Hr(x,Xn) can be simply written Hn,rdegr(x,Xn), where degr(x,Xn) was

defined in the previous section. The successive iterations of the H-index Hk
r(x,Xn) are

simply Hk
n,rdegr(x,Xn).

Given the variational formula (6.6), a natural continuous equivalent of the H-index

is the Hr transform of the density f , where Hr is defined for any non-negative bounded

measurable function φ ∶ Rd → R as

Hrφ(x) = sup{t ⩾ 0 ∣ 1

ωrd
∫
B(x,r)

1φ(z)⩾tf(z)dz ⩾ t} . (6.7)

See Figure 6.3.1 for an illustration of this transform. The k-th iteration of Hr applied

to φ is simply denoted by Hk
rφ. The Hr transform enjoys a few elementary properties,

such as monotonicity, Lipschitzness and modulus of continuity preservation, which

we now present. We recall that the modulus of continuity of a function g ∶ Rd → R is

defined by ωg(u) ∶= sup{∣g(x) − g(y)∣ ∶ ∥x − y∥ ⩽ u}, for all u ⩾ 0. As in our framework

(see (6.1)), f is assumed to be uniformly continuous, limu→0 ωf(u) = 0. In what follows,

`∞(Rd) denotes the class of bounded measurable maps φ ∶ Rd → R.

Lemma 6.3.1. Hr is monotonous, meaning that for any two functions φ,ψ ∈ `∞(Rd)
such that φ ⩽ ψ, we have Hrφ ⩽ Hrψ.

Proof. This result is trivial once noted that the functional

φ↦ 1

ωrd
∫
B(x,r)

1φ(z)⩾tf(z)dz

that appears in the definition of Hr is non-decreasing in φ.

Lemma 6.3.2. Hr is 1-Lipschitz, meaning that for two functions φ,ψ ∈ `∞(Rd) we have

∥Hrφ −Hrψ∥∞ ⩽ ∥φ − ψ∥∞.

Proof. Let ε = ∥φ − ψ∥∞. We have

1

ωrd
∫
B(x,r)

1φ(z)⩾tf(z)dz ⩽
1

ωrd
∫
B(x,r)

1ψ(z)⩾t−εf(z)dz

so that Hrφ(x) ⩽ Hrψ(x) + ε, and the proof follows.
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Figure 6.3.1 – A density f , a function φ, and its transform Hrφ for r = 0.1. Both f and φ

are smooth. Hrφ does not appear to be continuously differentiable everywhere but

is nonetheless Lipschitz, with Lipschitz constant no bigger than that of f and φ (see

Lemma 6.3.3).

Lemma 6.3.3. If φ ∈ `∞(Rd) is uniformly continuous, then so is Hrφ and we have

ωHrφ ⩽ ωφ ∧ ωf . In particular, since ωfr ⩽ ωf , we have ωHkrfr
⩽ ωf for all k ⩾ 1.

Proof. Let x, y ∈ Rd, and denote u = y − x and ε = ωf ∨ ωφ(∥x − y∥). We have

1

ωrd
∫
B(x,r)

1φ(z)⩾tf(z)dz =
1

ωrd
∫
B(y,r)

1φ(z+u)⩾tf(z + u)dz ⩽ ∫
B(y,r)

1φ(z)⩾t−εf(z)dz + ε

so that we immediately find that Hrφ(x) ⩽ Hrφ(y) + ε, and the proof follows.

Continuum H-indices: r > 0 fixed As intuited above, we have the following general

convergence result of the random discrete transform Hn,r towards the continuum one

Hr.

Lemma 6.3.4. Letφn, φ ∈ `∞(Rd) be random variables such that almost surely, 1
N φn ÐÐÐ→n→∞

φ uniformly. Then almost surely, 1
NHn,rφn ÐÐÐ→

n→∞
Hrφ uniformly.

Proof. Notice that

Hn,rφn(x) = sup{h ⩾ 0 ∣ Card{Xi ∈ B(x, r), φ(Xi) ⩾ h} ⩾ h}

= N × sup{t ⩾ 0 ∣ Card{Xi ∈ B(x, r), φ(Xi) ⩾ Nt} ⩾ Nt}

= N × sup{t ⩾ 0 ∣ 1

N

n

∑
i=1

1Xi∈B(x,r)1 1
N
φn(Xi)⩾t ⩾ t} .
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Let ε = ∥ 1
N φn − φ∥∞. We have

1

N

n

∑
i=1

1Xi∈B(x,r)1 1
N
φn(Xi)⩾t ⩽

1

N

n

∑
i=1

1Xi∈B(x,r)1φ(Xi)⩾t−ε.

Note that the class of balls of Rd is a VC-class, and so is the set of super-level sets of φ.

As a result, the class

Sr = {B(y, r) ∩ {φ ⩾ s} , y ∈ Rd, s ⩾ 0}

thus satisfies the assumptions of Lemma 6.2.1. Furthermore, using notation η from

Lemma 6.2.1, we get

1

N

n

∑
i=1

1Xi∈B(x,r)1φ(Xi)⩾t−ε ⩽
1

ωrd
∫
B(x,r)

1φ(z)⩾t−εf(z)dz + η

uniformly in x and t. We thus have

1

N
Hn,rφn(x) ⩽ sup{t ⩾ 0 ∣ 1

ωrd
∫
B(x,r)

1φ(z)⩾t−εf(z)dz ⩾ t − η} ,

yielding 1
NHn,rφn(x) ⩽ Hrφ(x) + ε ∨ η. The lower bound can be obtained in the same

fashion. We conclude by letting n→∞, so that η goes to 0 a.s. (Lemma 6.2.1) and ε as

well by assumption.

When applied iteratively to the sequence of degree functions ofGr(x,Xn), Lemma 6.3.4

yields the following result.

Theorem 6.3.5. If r > 0 and k ∈ N∗ are fixed, then almost surely,

1

N
Hk
r(x,Xn)ÐÐÐ→n→∞

Hk
rfr(x) uniformly in x ∈ Rd.

Proof. Apply Lemma 6.3.4 recursively to find that 1
NHk

n,rφn → Hk
rφ for all k ⩾ 1. The

stated result follows readily starting from φn = degr(⋅,Xn) and φ = fr.

We note that Hk
rfr satisfies Properties P1 for rigid transformations and P4 of [ZS00],

and also P2 and P3 under the same conditions as in Remark 6.2.3. That being said, the

iterated continuum H-indices Hk
rfr behave very differently from the likelihood depth,

as shown in Figure 6.4.1. Note also that for k ⩾ 1, Hk
rfr(x) depends on f in an even less

local way than fr, since it depends on the values of f on B(x, (k + 1)r).

Continuum H-indices: r → 0 To gain insights on what the discrete H-indices con-

verge to as r = rn → 0, let us first examine how their fixed-r continuous counterparts

Hk
rfr behave in the same regime.

Proposition 6.3.6. For all k ⩾ 1, Hk
rfr(x)ÐÐ→

r→0
f(x) uniformly in x ∈ Rd.
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Proof. On one hand, we have Hk
rfr(x) ⩽ fr(x) ⩽ f(x) + ωf(r). On the other hand, we

get from the definition of Hrfr that Hrfr ⩾ f − ωf(r). Using this bound recursively

together with Lemma 6.3.3, we find that Hk
rfr ⩾ f − kωf(r). At the end of the day, we

have proven that ∥Hk
rfr − f∥∞ ⩽ kωf(r), which concludes the proof.

Coming back to the discrete H-indices, we naturally get that the k-th iteration of

the H-index converges to f(x) as r = rn converges to 0 slowly enough, thus coinciding

with the likelihood depth.

Theorem 6.3.7. If r = rn is such that r → 0 and nrd ≫ logn, then for all k ∈ N, almost

surely,
1

N
Hk
r(x,Xn)ÐÐÐ→n→∞

f(x) uniformly in x ∈ Rd.

Hence, as for the degree (Section 6.2), we see that the iterated H-indices are asymp-

totically equivalent to the likelihood depth when r → 0 slowly enough.

Proof. First, decompose

∣ 1

N
Hk
r(x,Xn) − f(x)∣ ⩽ ∣ 1

N
Hk
r(x,Xn) −Hk

rfr(x)∣ + ∣Hk
rfr(x) − f(x)∣.

Proposition 6.3.6 asserts that the second (deterministic) term converges uniformly to

zero as r → 0. For the first (stochastic) one, we use expressions (6.6) and (6.7) of Hn,r

and Hr respectively, and the proof of Theorem 6.3.5, to get that

∣ 1

N
Hk
r(x,Xn) −Hk

rfr(x)∣ ⩽ η ∶= sup
S∈Sr

1

ωrd
∣Pn(S) − P (S)∣,

where Pn(dz) = n−1∑ni=1 δXi(dz), P (dz) = f(z)dz, and

Sr = {B(y, r) ∩ {φ ⩾ s} ∣ y ∈ Rd, s ⩾ 0, φ ∈ {fr, . . . ,Hk
rfr}} .

As an intersection class of two VC classes, Sr is also VC, with dimension uniformly

bounded in r. It is composed of sets of radii at most r, so that Lemma 6.2.1 applies and

yields η → 0 almost surely as n→∞.

6.4 Coreness

The notion of coreness is based on the concept of core as introduced by [Sei83]. (Seid-

man does not mention ‘coreness’ and only introduces cores, and we are uncertain as to

the origin of the coreness.) For an integer ` ⩾ 0, an `-core of a given graph is a maximal

induced subgraph which has minimum degree `. To be sure, this means that any node

in an `-core is neighbor to at least ` nodes in that core. In a given graph, the coreness

of a node is the largest integer ` such that the node belongs to an `-core. For a recent

paper focusing on the computation of the `-cores, see [MGPV20].
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The coreness is closely related to the degree and H-index. In fact, [LZZS16, Thm 1]

shows that it arises when iterating the definition of the H-index ad infinitum, when

starting with the degree function. That is, in our context, we will study the random

coreness

Cr(x,Xn) ∶= H∞
r (x,Xn). (6.8)

In particular, the coreness satisfies the following fixed-point property: The coreness of

node i is the maximum ` such that at least ` of its neighbors have coreness at least `.

Said otherwise, it is the maximal minimal degree of a subgraph H that contains x:

Cr(x,Xn) = max{` ∣ there is a subgraph H of Gr(x,Xn) with x ∈H and min
i∈H

degH(i) ⩾ `} .

(6.9)

The coreness was analyzed in the context of an Erdös–Rényi–Gilbert random graph

in a number of papers, for example, in [Łuc91, JL08, PSW96, Rio08, JL07], and also in

the context of other graph models, for example, in [FKRD09]. We are not aware of any

work that analyzes the coreness in the context of a random geometric graph.

Remark 6.4.1. As the non-negative integer sequence (Hk
r(x,Xn))k⩾0 is non-increasing,

it becomes stationary after some index k∞ <∞. Said otherwise, the naive algorithm

computing H∞
r (x,Xn) by iterating the H-index terminates after a finite number of

iterations, so that bounding k∞ is of particular computational interest. Such a bound,

depending on the geometric structure of the graph, is discussed in Section 6.5.3.

Continuum coreness: r > 0 fixed As defined above in (6.8), the discrete coreness is

obtained by applying the H-index operator to the degree infinitely many times. Having

in mind Theorem 6.3.5, we naturally define the notion of continuum r-coreness by

taking the limit of the iterated continuum H-index Hk
rfr(x) as the number of iteration

k goes to ∞.

Proposition 6.4.2. Hk
rfr(x) converges uniformly in x as k → ∞. Its limit, denoted by

Cr(x, f), is called the continuum r-coreness at x.

Remark 6.4.3. Note that since the convergence is uniform, Cr(⋅, f) is uniformly con-

tinuous and its modulus of continuity is bounded from above by ωf (Lemma 6.3.3).

See Figure 6.4.1 for an illustration of the convergence of the iterations Hk
rfr towards

Cr(⋅, f).

Proof. Since for all t ⩾ 0 and x ∈ Rd,

1

ωrd
∫
B(x,r)

1fr(z)⩾tf(z)dz ⩽ fr(x),
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Figure 6.4.1 – The successive iterations of Hk
rfr (solid) for a given density f (dashed),

for k ranging from 0 to 100 with r = 0.1. The hundredth iteration is very close to its

limit Cr(x, f).

so that Hrfr ⩽ fr. Using monotonicity of the operator Hr (Lemma 6.3.1) we find that

(Hk
rfr)k∈N is a non-increasing sequence of functions, bounded from above by fr and

from below by 0. In particular, it converges towards a function Cr(⋅, f) pointwise.

Since ∣fr(x)∣ ⩽ supB(x,r) ∣f ∣ and that the latter goes to 0 when x goes to ∞ (since f

is integrable and uniformly continuous over Rd), we can focus on establishing the

uniform convergence of Hk
rfr on a ball B(0,R) for an arbitrary large radius R. Having

done so, the sequence Hk
rfr is equicontinuous (from Lemma 6.3.3), and the Arzelà–

Ascoli theorem insures that the convergence towards Cr(⋅, f) is uniform over B(0,R).

By analogy with (6.9), we may also seek a variational characterization of Cr(x, f)
in terms of subsets of Rd, which are the natural continuous counterparts of sub-

graphs. This formulation, besides offering additional geometrical insights, will help

with proving convergence from discrete to continuous r-coreness (see the proof of

Theorem 6.4.5).

Lemma 6.4.4. Let Ω(x) be the class of measurable sets S ⊂ Rd that contain x. Then for

r > 0, the continuum r-coreness admits the following expression

Cr(x, f) = sup{t ∣ ∃S ∈ Ω(x) such that inf
y∈S

1

ωrd
∫
B(y,r)∩S

f(z)dz ≥ t} . (6.10)

231



CHAPTER 6. DATA DEPTH

Proof. Let us write F (x) for the supremum on the right-hand side, and show that

Cr(⋅, f) = F by considering their super-level sets. Let t ⩾ 0, and S = {F ⩾ t}. For all

y ∈ Rd, we define

g(y) ∶= 1

ωrd
∫
S∩B(y,r)

f(z)dz,

which, by definition of S, satisfies g(y) ⩾ t for all y ∈ S. In particular, we get that for all

y ∈ S,
1

ωrd
∫
B(y,r)

1g(z)⩾tf(z)dz ⩾
1

ωrd
∫
B(y,r)

1z∈Sf(z)dz = g(y) ⩾ t,

so that Hrg(y) ⩾ t. By induction on k ⩾ 1, we find that Hk
rg(y) ⩾ t for all y ∈ S, and

letting k →∞, that Cr(y, f) ⩾ t for all y ∈ S, so that S ⊂ {Cr(⋅, f) ⩾ t}.

For the converse inclusion, notice that since the operator Hr is 1-Lipschitz (thanks

to Lemma 6.3.2) and that Hk
rfr converges uniformly towards Cr(⋅, f) (Proposition 6.4.2),

we have that HrCr(⋅, f) = Cr(⋅, f). Therefore, if y ∈ {Cr(⋅, f) ⩾ t}, meaning Cr(y, f) ≥ t,
by definition of Hr, we get

1

ωrd
∫
B(y,r)

1Cr(z,f)⩾tf(z)dz ⩾ t

yielding, by maximality of S, that {Cr(⋅, f) ⩾ t} ⊂ S, ending the proof.

By definition, the continuum r-coreness Cr(⋅, f) behaves roughly like Hk
rfr for k

large enough, as shown in Figure 6.4.1. The variational formulation of Lemma 6.4.4

also highlights the fact that Cr(⋅, f) depends on f globally, as it depends on values

it takes in the entire space, at least in principle. That is, perturbing f very far away

from x may change Cr(x, f) drastically. In Figure 6.4.1, this phenomenon translates

into the wider and wider plateaus that Hk
r(⋅, f) exhibits as k grows, which eventually

approaches Cr(⋅, f). It is no surprise, then, that Cr(⋅, f) satisfies Properties P1 for rigid

transformations and P4 of [ZS00], and also P2 and P3 under the same conditions as in

Remark 6.2.3 — just like Hk
rfr.

We are now in position to prove the convergence of the renormalized discrete

coreness towards the r-continuum coreness, for a bandwidth parameter r > 0 being

fixed.

Theorem 6.4.5. If r > 0 is fixed, then almost surely,

1

N
Cr(x,Xn)ÐÐÐ→

n→∞
Cr(x, f) uniformly in x ∈ Rd. (6.11)

Proof. Let k ⩾ 1. By the decreasingness of the iterations of the H-index Hk
r(x,Xn)

and their convergence towards Cr(x,Xn) [LZZS16, Thm 1], we have that Cr(x,Xn) ⩽
Hk
r(x,Xn). Taking n to ∞ and using Theorem 6.3.5, we find that almost surely,

lim sup
n→∞

1

N
Cr(x,Xn) ⩽ Hk

rfr(x)
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uniformly in x, so that letting k →∞ and using Proposition 6.4.2, we have

lim sup
n→∞

1

N
Cr(x,Xn) ⩽ Cr(x, f).

For the converse inequality, we will use the variational formulation of Cr(x, f) given

by Lemma 6.4.4. Let t < Cr(x, f) and S ⊂ Rd be such that x ∈ S and

1

ωrd
∫
B(y,r)∩S

f(z)dz ⩾ t ∀y ∈ S.

Let H denote the subgraph of Gr(x,Xn) with vertices in S, and degH the degree of the

vertices in this subgraph. We have, for all vertex s in S,

degH(s) = n × Pn(B(s, r) ∩ S) − 1 ⩾ N × (P (B(s, r) ∩ S) − η) − 1 ⩾ N × (t − η) − 1,

where

η ∶= sup
A∈Sr

1

ωrd
∣Pn(A) − P (A)∣, with Sr ∶= {S ∩B(y, r) ∣ y ∈ Rd} ,

so that Cr(x,Xn) ⩾ N(t − η) − 1. The class Sr satisfies the assumptions of Lemma 6.2.1,

and applying that lemma with r > 0 fixed yields that, almost surely,

lim inf
n→∞

1

N
Cr(x,Xn) ⩾ t

uniformly in x ∈ Rd. Letting t↗ Cr(x, f) establishes

lim inf
n→∞

1

N
Cr(x,Xn) ≥ Cr(x, f),

which concludes the proof.

Continuum coreness: r → 0 Seeking to complete the construction above to include

asymptotic regimes where r → 0, we first opt for a purely functional approach. That is,

taking the limit of the continuum r-coreness as r goes to zero.

Proposition 6.4.6. Cr(x, f) converges uniformly in x ∈ Rd as r → 0. Its limit, denoted by

C0(x, f), is called the continuum coreness at x.

The proof of this result relies on an intermediary notion of coreness at scale α > 0.

Given K ⊂ Rd and y ∈ Rd, we write d(y,K) ∶= infz∈K ∥y − z∥ for the distance from y to K.

We let Bα ∶= {Kα ∣K ⊂ Rd}, where Kα ∶= {y ∈ Rd ∣ d(y,K) ⩽ α} and define

Cα(x, f) ∶= sup{t ⩾ 0 ∣ ∃S ∈ Bα with x ∈ S, S ⊂ {f ⩾ t} and ∂S ⊂ {f ⩾ 2t}} .

Since (Kα)β =Kα+β for all α,β ⩾ 0, the class Bα is increasing as α → 0+, so is Cα(x, f),

and since the latter in bounded from above by ∥f∥∞, it converges to a finite limit. The

following lemma asserts that this limit actually coincides with the limit of Cr(x, f) as

r → 0+.
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Lemma 6.4.7. We have limr→0 Cr(x, f) = limα→0 Cα(x, f).

This result thus asserts the existence of C0(x, f) pointwise, as used in the proof of

Proposition 6.4.6. To show Lemma 6.4.7, we first need the following volume estimate.

Lemma 6.4.8. For all r ∈ (0, α/2], x ∈ Rd and y ∈ B(x,α), we have

∣B(y, r) ∩B(x,α)∣ ⩾ 1

2
ωrd (1 − Cr

α
) ,

where C is a positive constant depending on d only.

Proof. The quantity ∣B(y, r)∩B(x,α)∣ is a decreasing function of ∥y−x∥, so we can only

consider the case where ∥x − y∥ = α. Let now

ρ = r (1 − r

2α
) and x0 = x + (α − r + ρ)(y − x).

Easy computations show that the half ball

B+ = B(x0, ρ)⋂{z ∈ Rd ∣ ⟨z − x0, x − x0⟩ ⩾ 0}

is a subset of B(y, r) ∩B(x,α) so that

∣B(y, r) ∩B(x,α)∣ ⩾ ∣B+∣ = 1

2
ωrd (1 − r/2α)d ⩾ 1

2
ωrd(1 −Cr/α),

with C = d/2.

Proof of Lemma 6.4.7. Let 0 < r ⩽ α and let t = Cα(x, f). Let K ⊂ Rd be such that

Kα ⊂ {f ⩾ t − ε} and ∂Kα ⊂ {f ⩾ 2t − 2ε} for some arbitrarily small ε > 0. For all y ∈Kα

at distance at least r from ∂Kα, we have B(y, r) ⊂Kα, so that

1

ωrd
∫ 1z∈Kα1z∈B(y,r)f(z)dz =

1

ωrd
∫
B(y,r)

f(z)dz ⩾ t − ε − ωf(r),

where we recall thatωf denotes the modulus of continuity of f . Otherwise if d(y, ∂Kα) ⩽
r, we have for any v ∈ B(y, r) that f(v) ⩾ 2t − 2ε − ωf(2r). We then have, thanks to

Lemma 6.4.8,

∣B(y, r) ∩Kα∣ ⩾ ∣B(y, r) ∩B(z0, α)∣ ⩾ ωrd(1/2 −O(r/α)),

where z0 ∈K is such that y ∈ B(z0, α). We hence deduce that

1

ωrd
∫ 1Kα1B(y,r)f ⩾ t − ε −O(r/α) − ωf(2r),

so that Cr(x, f) ⩾ t − ε −O(r/α) − ωf(2r). Taking r → 0 and ε→ 0, we obtain

lim inf
r

Cr(x, f) ⩾ Cα(x, f),

for any α > 0.
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Conversely, let S be a set containing x such that

∀y ∈ S, 1

ωrd
∫ 1z∈S1z∈B(y,r)f(z)dz ⩾ t.

In particular, we have for any y ∈ S, f(y) ⩾ t − ωf(r), so that for any y ∈ Sα, we have

f(y) ⩾ t − ωf(r) − ωf(α). Let now take y ∈ ∂Sα, and let z0 ∈ S be a point at distance at

most α from y. We have

f(y) ⩾ f(z0) − ωf(α) ⩾
1

∣S ∩B(z0, r)∣ ∫
1z∈S1z∈B(z0,r)f(z)dz − ωf(α) − ωf(r)

⩾ ωrd

∣S ∩B(z0, r)∣
t − ωf(α) − ωf(r).

But now, Lemma 6.4.8 again yields

∣S ∩B(z0, r)∣ ⩽ ∣B(z0, r) ∖B(y,α)∣ = ωrd − ∣B(z0, r) ∩B(y,α)∣ ⩽ ωrd (1/2 +O(r/α)) ,

which gives

Cα(x, f) ⩾ t −O(r/α) − ωf(r) − ωf(α)

and hence Cα(x, f) + ωf(α) ⩾ lim supr Cr(x, f). We thus proved that

Cα(x, f) ⩽ lim inf
r

Cr(x, f) ⩽ lim sup
r

Cr(x, f) ⩽ Cα(x, f) + ωf(α), ∀α > 0,

which allows to conclude.

Proof of Proposition 6.4.6. From Lemma 6.4.7, we get that Cr(⋅, f) converges pointwise

towards a limit C0(⋅, f). Since Cr(x, f) ⩽ fr(x) ⩽ f(x) + ωf(r), and since f → 0 at ∞
(because f is integrable and is uniformly continuous), we can focus on the uniform

convergence of Cr(⋅, f) on a ball B(0,R) for some arbitrarily large R > 0. But now, the

uniform convergence on B(0,R) is only a consequence of the Arzelà–Ascoli theorem

and the equicontinuity of Cr(⋅, f) (Remark 6.4.3).

As was shown to be the case for Cr(⋅, f) in Lemma 6.4.4, we also give a geometric

variational formulation of C0(⋅, f), which is illustrated in Figure 6.4.2.

Lemma 6.4.9. Let Σ(x) be the class of open sets S ⊂ Rd with smooth boundaries4 that

contain x. Then the continuum coreness admits the following expression

C0(x, f) = sup{t ⩾ 0 ∣ ∃S ∈ Σ(x) such that S ⊂ {f ⩾ t} and ∂S ⊂ {f ⩾ 2t}} .

4That is, ∂S is a disjoint union of smooth (d − 1)-dimensional submanifolds of Rd.
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Figure 6.4.2 – An illustration of f (blue), f/2 (red) and C0(⋅, f) (black) for a mixture

of 6 Gaussians in dimension d = 1. In the zones where C0(⋅, f) does not coincide

with f/2, it exhibits plateaus over intervals [xmin, xmax]. For x ∈ (xmin, xmax), the

supremum of Lemma 6.4.9 is attained for S = (xmin, xmax). Otherwise, this supremum

is asymptotically attained for S = {x}.

Proof. Write C∗ for the supremum of the right hand side. We want to show that

C∗ = C0(x, f). For this, take t > 0 such that there exists S containing x, with smooth

boundary, and such that S ⊂ {f ⩾ t} and ∂S ⊂ {f ⩾ 2t}. Then, for any α > 0, Sα satisfies

∀y ∈ Sα, f(y) ⩾ t − ωf(α) and ∀y ∈ ∂Sα, f(y) ⩾ 2t − ωf(α).

As a result, Cα(x, f) ⩾ t − ωf(α) and thus, letting α → 0, we have C0(x, f) ⩾ t, and thus

C0(x, f) ⩾ C∗.

Conversely, denote t = C0(x, f) and let ε > 0 and α > 0 such that Cα(x, f) ⩾ t − ε.

There exists K ⊂ Rd containing x such that Kα satisfies Kα ⊂ {f ⩾ t − 2ε} and ∂Kα ⊂
{f ⩾ 2t − 4ε}. For δ > 0, let us define

Ψδ(y) ∶=
1

δd
∫
Rd
κ(y − v

δ
)1Kα+δ(v)dv,

where κ is a smooth positive normalized kernel supported in B(0,1). The function

Ψδ ∶ Rd → R is a smooth function with values in [0,1], with Ψδ = 1 on Kα and Ψδ = 0

outside ofKα+2δ. Using Sard’s lemma, we can find a regular value of Ψδ in [1/4,3/4], say

λ. The set S = {Ψδ > λ} is then an open set of Rd with smooth boundary ∂S = {Ψδ = λ},

which contains K, so in particular, it contains x. Furthermore, any point of S (resp.

∂S) is at distance at most 2δ from Kα (resp. ∂Kα). We thus have

∀y ∈ S, f(y) ⩾ t − 2ε − ωf(2δ) and, ∀y ∈ ∂Sα, f(y) ⩾ 2t − 4ε − ωf(2δ),

so that C∗ ⩾ t − 2ε − ωf(2δ). Letting ε, δ → 0, we find that C∗ ⩾ C0(x, f), ending the

proof.
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The above formulation clearly establishes that C0(x, f) ⩽ f(x). On the other hand,

taking for S a ball centered around x with an arbitrary small radius, we find that

C0(x, f) ⩾ f(x)/2. The equality actually occurs whenever the homology of the super-

level sets of f is simple enough, as shown in Proposition 6.4.10. In particular, this is the

case when the super-level sets are contractible sets (such as star-shaped ones), or the

union of contractible sets.

Proposition 6.4.10. If all the super-level sets of f have a trivial (d − 1)-th homology

group over Z, then C0(x, f) = f(x)/2 for all x ∈ Rd. This is the case, for example, if f is a

mixture of symmetric unimodal densities with disjoint supports.

The proof of this proposition relies on the following topological result.

Lemma 6.4.11. Let X ⊂ Rd be a compact subset with Hd−1(X;Z) = {0}. Then Rd ∖X is

path-connected.

Proof. We introduce the Alexandrov compactification Y = Rd ∪ {∞} of Rd, which is

homeomorphic to the sphere Sd. Using Alexander’s duality theorem [Hat02, Cor 3.45

p.255], we find that H̃0(Y ∖X;Z) = H̃d−1(X;Z) = Hd−1(X;Z) = {0} where H̃● and H̃●

denote respectively the reduced homology and cohomology groups. As pointed out

in [Hat02, Paragraph 2, p.199], the group H̃0(Y ∖X;Z) is identified to the group of

functions Y ∖X → Z that are constant on the path-connected component of Y ∖X,

quotiented by the group of constant functions. We conclude that Y ∖X, and hence

Rd ∖X by boundedness of X, has only one path-connected component.

Proof of Proposition 6.4.10. From the formulation of Lemma 6.4.9 applied with S rang-

ing within open balls centered at x and radius δ → 0, we see that we always have

C0(x, f) ⩾ f(x)/2.

Conversely, if t < C0(x, f), there exists a smooth set S ⊂ {f ⩾ t} with ∂S ⊂ {f ⩾ 2t}
that contains x. Assume for a moment that S ∖ {f ⩾ 2t} is non-empty, and take a

point y in it. Since {f ⩾ 2t} is compact with a trivial (d − 1)-th homology group, we

have that Rd ∖ {f ⩾ 2t} is path-connected thanks to Lemma 6.4.11, so that there exists

a continuous path from y to any point z ∈ Rd ∖ S that stays in Rd ∖ {f ⩾ 2t}. Such

a path necessarily crosses ∂S ⊂ {f ⩾ 2t}, which is absurd. We hence conclude that

S ⊂ {f ⩾ 2t}, so that f(x) ⩾ 2t, and taking t to C0(f, x), we find that C0(f, x) ⩽ f(x)/2,

which concludes the proof.

Hence, for densities f with simple enough landscapes, the continuum coreness

is, as a measure of depth, equivalent to the likelihood depth. Otherwise, generically,

C0(⋅, f) provides us with a new notion of depth that lies between f/2 and f (see Fig-

ure 6.4.2). As is the case for Cr(⋅, f), the continuum coreness C0(⋅, f) depends on the

values f on the entire space, at least in principle. This is apparent in the variational
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formulation of Lemma 6.4.4 and is clearly illustrated by the plateau areas of Figure 6.4.2.

And just like Cr(⋅, f) for r > 0, C0(⋅, f) satisfies Properties P1 for rigid transformations

and P4 of [ZS00], and also P2 and P3 under the same conditions as in Remark 6.2.3.

We finally address the large-sample limit of Cr(x,Xn) as r = rn → 0, which does

coincide with the continuum coreness C0(x, f).

Theorem 6.4.12. If r = rn is such that r → 0 and nrd ≫ logn, then almost surely,

1

N
Cr(x,Xn)ÐÐÐ→

n→∞
C0(x, f) uniformly in x ∈ Rd. (6.12)

The remaining results are directed towards the proof of Theorem 6.4.12, which

follows directly from Lemma 6.4.13 and Lemma 6.4.14. The usual decomposition in

term of variance and bias that we used for instance in the proof of Theorem 6.3.7 does

not work here, because the deviation term would be indexed by a class of subsets that

is too rich (and which would not satisfy the assumptions of Lemma 6.2.1). Instead, we

take advantage of the alternative definition of the coreness through Cα introduced in

the beginning of this Section 6.4.

Lemma 6.4.13. If r = rn is such that r → 0 and nrd ≫ logn, then almost surely,

lim sup
n→∞

1

N
Cr(x,Xn) ⩽ C0(x, f) uniformly in x ∈ Rd.

Proof. For short, write cn = Cr(x,Xn), and Sn for the vertices of a subgraph of Gr(x,Xn)
containing x with minimal degree cn. Let α > 0 and consider Sαn ∈ Bα. For any y ∈ Sαn ,

there exists s ∈ Sn such that ∥s − y∥ ⩽ α. We deduce that

f(y) ⩾ f(s) − ωf(α) ⩾
1

ωrd
P (B(s, r)) − ωf(r) − ωf(α) ⩾

cn
N

− η − ωf(r) − ωf(α).

where we denoted by

η = sup
S∈Sr

1

ωrd
∣Pn(S) − P (S)∣,

with Sr = {B(y, r) ∩B(z,α) ∣ y, z ∈ Rd} ⋃ {B(y, r) ∖B(z,α) ∣ y, z ∈ Rd} .
(6.13)

The sets Sr satisfy the assumptions of Lemma 6.2.1, so that η goes to 0 almost surely

as n → ∞. Now, let y ∈ ∂Sαn , and take s ∈ Sn among its nearest neighbors in Sn. This

neighbor s is at distance exactly α from y, so that ∣Sn ∩ {B(s, r) ∖B(y,α)} ∣ = cn. But on

the other hand, we have

1

ωrd
∫ 1B(s,r)∖B(y,α)(z)f(z)dz ⩽

f(s) + ωf(r)
ωrd

∫ 1B(s,r)∖B(y,α)(z)dz

⩽ (f(s) + ωf(r)) (1/2 +O(r/α)) ,
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so that

f(y) ⩾ f(s) − ωf(α) ⩾ (2 −O(r/α)) 1

ωrd
P (B(s, r) ∖B(y,α)) − ωf(r) − ωf(α)

⩾ (2 −O(r/α)) (cn
N

− η) − ωf(r) − ωf(α)

⩾ 2
cn
N

−O(r/α) − 2η − ωf(r) − ωf(α).

Putting the two estimates of f over ∂Sα and Sα together, we have shown that

Cα(x, f) ⩾ cn
N

−O(r/α) − η − ωf(r) − ωf(α),

so that, using Lemma 6.2.1, we have almost surely,

lim sup
n→∞

cn
N

⩽ Cα(x, f) + ωf(α) uniformly in x ∈ Rd.

Letting α → 0 then concludes the proof.

Lemma 6.4.14. If r = rn is such that r → 0 and nrd ≫ logn, then almost surely,

lim inf
n→∞

1

N
Cr(x,Xn) ⩾ C0(x, f) uniformly in x ∈ Rd.

Proof. Let α > 0 and ε > 0. Denoting t = Cα(x, f), there is S ∈ Bα with x ∈ S such that

∀y ∈ S, f(y) ⩾ t − ε and ∀y ∈ ∂S, f(y) ⩾ 2t − 2ε.

LetH be the subgraph of Gr(x,Xn) with vertices in S, and let degH(s) be the degree of a

vertex s ∈ S inH . If s is at distance more than r from ∂S, then, using again η introduced

in the proof of Lemma 6.4.13 at (6.13),

degH(s) = n × Pn(B(s, r)) − 1 ⩾ N(f(s) − ωf(r) − η) − 1 ⩾ N(t − ε − ωf(r) − η) − 1.

Now if s is at distance less that r than ∂S, we can take y ∈ S such that s ∈ B(y,α) ⊂ S. The

volume of B(s, r) ∩B(y,α) is then at least ωrd(1/2 −O(r/α)) according to Lemma 6.4.8.

We thus have,

degH(s) = n × Pn(S ∩B(s, r)) − 1

⩾ n × Pn(B(y,α) ∩B(s, r)) − 1

⩾ N ( 1

ωrd
P (B(y,α) ∩B(s, r)) − η) − 1

⩾ N ((1

2
−O(r/α)) (f(s) − ωf(r)) − η) − 1

⩾ N (t − ε −O(r/α) − ωf(r) − η) − 1

where we used the fact that f(s) ⩾ 2t − 2ε − ωf(r) because s is r-close to ∂S. We thus

have shown here that

Cr(x,Xn)
N

⩾ t − ε −O(r/α) − ωf(r) − η − 1/N.
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Now letting n→∞ yields, almost surely,

lim inf
n→∞

Cr(x,Xn)
N

⩾ t − ε = Cα(x, f) − ε uniformly in x ∈ Rd.

and letting α, ε→ 0 yields the result.

6.5 Numerical Simulations

We performed some small-scale proof-of-concept computer experiments to probe

into the convergences established earlier in the paper, as well as other questions of

potential interest not addressed in this paper.

6.5.1 Illustrative Examples

In the regime where r = rn → 0 and nrd ≫ log(n), Theorems 6.2.4, 6.3.7 and 6.4.12 show

that only f(x) and C0(x, f) can be obtained as limits of H-index iterates Hk
r(x,Xn),

when k ∈ {0,1, . . . ,∞} is fixed. Figures 6.5.1a and 6.5.1b both illustrate, for d = 1 and

d = 2 respectively, the following convergence behavior:

• 1
N degr(x,Xn)ÐÐÐ→n→∞

f(x) (see Theorem 6.2.4);

• Hk
r(x,Xn)ÐÐÐ→

k→∞
Cr(x,Xn) (see (6.8));

• 1
NCr(x,Xn)ÐÐÐ→

n→∞
C0(x, f) (see Theorem 6.4.12).

The density functions have been chosen to exhibit non-trivial super-level sets, so that

C0(⋅, f) ≠ f/2 (see Proposition 6.4.10).

6.5.2 Convergence Rates

Intending to survey limiting properties of the degree, the H-index and the coreness,

the above work does not provide convergence rates. We now discuss them numerically

in the regime where r → 0.

A close look at the proofs indicates that only bias terms of orderO(r∨ωf(r)) appear

in the centrality-to-depth convergences of Theorems 6.2.4, 6.3.7 and 6.4.12. For the

degree, the stochastic term is known to be of order O(1/
√
nrd). If f is Lipschitz (i.e.,

ωf(r) = O(r)), the bandwidth ropt that achieves the best minimax possible convergence

rate in Theorem 6.2.4 is ropt = O(n−1/(d+2)), yielding a pointwise error ∣N−1degr(x,Xn)−
f(x)∣ = O(ropt) = O(n−1/(d+2)). Naturally, larger values r ⩾ ropt make the bias term lead,

and smaller values r ⩽ ropt make the stochastic term lead. Although it remains unclear

how bias terms behave for H-indices and the coreness, simulations indicate a similar

bias-variance tradeoff depending on n and r. Indeed, the sup-norms ∥N−1degr(⋅,Xn) −
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(a) The mixture f of six Gaussians in dimension d = 1 from Figure 6.4.2 sampled n = 10000 times. On

the discrete side (solid), are displayed the degree (k = 0), iterated H-indices for k ∈ {1,5,10,15,20}, and

coreness (k =∞). On the continuous side (dashed), the density f and the continuum coreness C0(⋅, f) are

plotted. Here, r ≈ 0.13 was picked proportional to the optimal kernel bandwidth ropt ≍ n−1/(d+2)
= n−1/3.
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(b) A plot similar to Figure 6.5.1a for d = 2. The generating density function f exhibits a crater-like shape

enclosing a peak, yielding a continuum coreness C0(⋅, f) that plateaus, and in particular differs from f/2

within the crater area. Here, n = 20000, k ∈ {0,1,5,10,15,20,∞} and r ≍ ropt ≍ n−1/(d+2)
= n−1/4.

Figure 6.5.1 – Illustrative examples in dimension d = 1 and in dimension d = 2.
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Figure 6.5.2 – Scatterplot of values (∥N−1degr(⋅,Xn)−f∥∞, ∥N−1Cr(⋅,Xn)−C0(⋅, f)∥∞)
with data generated according to (a) the Gaussian mixture distribution depicted in

Figure 6.5.1a, and (b) the crater-like density of Figure 6.5.1b. Sample size values n

take 9 different values in [100,10000], while connection radii r take 8 different values

within the interval [0.1,0.97] for (a) and [0.27,1.80] for (b). For each such pair (n, r),

simulations are repeated 10 to 20 times, depending on the value of n.

f∥∞ and ∥N−1Cr(⋅,Xn) −C0(⋅, f)∥∞ appear to be linearly correlated (see Figure 6.5.2).

As a result, with a choice r ≍ ropt = O(n−1/(d+2)), we anticipate

∣N−1Cr(x,Xn) −C0(x)∣ = O(∣N−1degr(x,Xn) − f(x)∣) (Rate Conjecture)

= O(n−1/(d+2)), (6.14)

with high probability. Furthermore, Figure 6.5.2 suggests that the slope relating

∥N−1degr(⋅,Xn) − f∥∞ and ∥N−1Cr(⋅,Xn) − C0(⋅, f)∥∞ is of constant order, in fact be-

tween 1/2 and 1, which suggests very moderate constants hidden in the termO(∣N−1degr(x,Xn)−
f(x)∣).

6.5.3 Iterations of the H-Index

Seen as the limit (6.8) of H-index iterations, the coreness Cr(x,Xn) = H∞
r (x,Xn) raises

computational questions. One of them resides in determining whether it is reasonable

to compute it naively, by iterating the H-index over the graph until stationarity at all

the vertices.

More generally, given a graph G = (V,E) and a vertex v ∈ V of G , and similarly as

what we did in Section 6.3 for random geometric graphs, we can study the H-index

HG(v), its iterations Hk
G(v) for k ∈ N, and the coreness CG(v). The max-iteration k∞(G)

of the H-index of G is then defined as the minimal number of iterations for which the

iterated H-index Hk
G coincides with the coreness CG. That is,

k∞(G) ∶= min{k ∈ N ∣ ∀v ∈ V, CG(v) = Hk
G(v)} .
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Known bounds for k∞(G) are of the form

k∞(G) ⩽ 1 + ∑
v∈V

∣degG(v) −CG(v)∣ and k∞(G) ⩽ ∣V ∣,

and can be found in [MDPM13, Thm 4 & Thm 5]. For random geometric graphs, this

yields probabilistic bounds of order O(n2rd) and O(n) respectively, with one or the

other prevailing depending on whether we are in a sub-critical or super-critical regime.

However, for the random geometric graphs G(x,Xn), numerical simulations suggest

that an even stronger bound of order k∞(Gr(x,Xn)) = O(nrd−1) may hold with high

probability (see Figure 6.5.3). Indeed, in the regime where r = rn is large enough

that Gr(x,Xn) is connected, this latter quantity appears to coincide with its diameter

— which is of order O(1/r) — multiplied by its maximal degree — which is of order

O(nrd).

Coming back to the general deterministic case, this observation leads us to conjec-

ture that

k∞(G) ⩽ max
H⊂G

connected

diam(H) ×max
v∈V

degG(v), (Max-Iter. Conjecture)

where diam(H) is the diameter of H seen a combinatorial graph (with edge weight 1).

This conjecture, clearly satisfied in simulations (see Figure 6.5.3), would shed some

light — if correct — on the dependency of the H-index iteration process with respect

to the graph’s geometry.
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Figure 6.5.3 – Scatterplot of values (k∞(Gr),diam(Gr)×maxv deg
Gr

(v)/k∞(Gr)) in log-

log scale, with data generated according to (a) the Gaussian mixture distribution of

Figure 6.5.1a, and (b) the crater-like density of Figure 6.5.1b. Values all appear to

satisfy k∞(Gr) ⩽ diam(Gr) ×maxv deg
Gr

(v) widely (i.e., points with ordinate at least 1

in these plots), even for small values of r and n.
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6.6 Concluding Remarks and Open Questions

New Depths from Other Centralities We obtained limits for the centrality measures

given by the degree, H-index, and coreness. We noticed that they shared the desirable

properties of depths from [ZS00], but only in the specific cases where the likelihood is

itself a relevant notion of depth. This is not surprising, in the sense that we observed

here that degree-based centralities yield density-based ‘depths’. Seeking for new no-

tions of data depths, it would be interesting to study the limiting objects associated

to other notions of centrality, such as the closeness centrality of [Fre78], the between-

ness of [Fre77], and other ‘spectral’ notions [Kat53, Bon72, PBMW99, Kle99]. Similarly,

we only focused on a r-ball neighborhood graph construction, but there are other

graphs that could play that role, such as nearest-neighbor (possibly oriented) graphs

or Delaunay triangulations, possibly yielding new limiting objects.

Conjectures Beyond the first-order almost-sure convergence results that we ob-

tained, we could consider deriving convergence rates. In this regard, we left the conjec-

ture displayed in (Rate Conjecture), but all the convergence rates associated with the

results displayed in Figure 6.1.1 remain to be established. Another conjecture that we

leave open is the bound on k∞(G) displayed in (Max-Iter. Conjecture).
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MOTS CLÉS

Statistique non-paramétrique, statistique en grande dimension, apprentissage sur variété, inférence
géométrique, estimation de densité, théorie minimax, estimation adaptative, estimation du reach, inférence
bayésienne, mesure de centralité, profondeur statistique

RÉSUMÉ

En statistique, l’hypothèse des variétés suppose que les données observées se répartissent autour de structures
de faible dimension, appelées variétés. Ce postulat permet d’expliquer pourquoi les algorithmes d’apprentissage
fonctionnent bien même sur des données en grande dimension, et est naturellement satisfait pour de nombreux jeux de
données issus de la vie réelle.

Nous présentons dans cette thèse quelques contributions aux problèmes d’estimation de deux quantités sous cette
hypothèse : la densité de la distribution sous-jacente, et le reach de son support. Pour l’estimation du reach, nous
élaborons des stratégies basées sur des invariants géométriques, avec d’une part la fonction de défaut de convexité, et
d’autre part, des mesures de distortion métrique, desquels nous obtenons des vitesses de convergence optimales au
sens minimax. Concernant l’estimation de la densité, nous proposons deux approches : l’une s’appuyant sur l’étude
fréquentiste d’un estimateur à noyaux, et une approche bayésienne non-paramétrique se reposant sur des mélanges de
gaussiennes. Nous montrons que ces deux méthodes sont optimales et adaptatives en la régularité de la densité.

Enfin, nous examinons le comportement de certaines mesures de centralité dans des graphes aléatoires géométriques,
l’étude duquel, bien que sans lien avec l’hypothèse des variétés, a des implications méthodologiques et théoriques qui
peuvent être intéressantes dans tout cadre statistique.

ABSTRACT

In high-dimensional statistics, the manifold hypothesis presumes that the data lie near low-dimensional structures, called
manifolds. This assumption helps explain why machine learning algorithms work so well on high-dimensional data, and
is satisfied for many real-life data sets.

We present in this thesis some contributions regarding the estimation of two quantities in this framework: the density
of the underlying distribution, and the reach of its support. For the problem of reach estimation, we suggest different
strategies based on important geometric invariants — namely the convexity defect functions, and measures of metric
distortions — from which we derive minimax-optimal rates of convergence. Regarding the problem of density estimation,
we propose two approaches: one relying on the frequentist study of a kernel density estimator, and a Bayesian
nonparametric approach based on location-scale mixtures of Gaussians. Both methods are shown to be optimal in most
settings, and adaptive to the smoothness of the density.

Lastly, we examine the behavior of some centrality measures in random geometric graph, the study of which, although
unrelated to the manifold hypothesis, bears methodological and theoretical implications that can be of interest in any
statistical framework.

KEYWORDS

Nonparametric statistics, high-dimensional statistics, manifold learning, manifold hypothesis, geometric infer-
ence, density estimation, minimax theory, adaptive estimation, reach estimation, Bayesian inference, central-
ity measure, data depth


