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Abstract

Structural health monitoring (SHM) is primordial for safe use and is essential for sustainable
development. Among existing methods for SHM, vibration-based methods are the most
commonly used. Operational modal analysis (OMA) is suitable for real structures as it
offers several advantages: low cost, normal use of structures, and continuous monitoring.
However, it has some main obstacles: (i) uncertainty in identified modal parameters due to
unmeasured and uncontrolled operational excitations; (ii) underdetermined problems when
the number of measured responses is less than that of active modes; (iii) the relationship
between the damage in terms of change in mechanical properties like mass and stiffness and
the change in modal parameters, is not straightforward, and it often goes through finite
element update steps resulting in computational burden; (iv) in reality, there may be several
damages in a structure, and the detection of multiple damages is not obvious. Therefore,
the objectives of the thesis are: (i) overview of efficient and popular methods for operational
modal analysis and damage identification; (ii) propose improvements to existing methods
or a novel method that can deal with underdetermined cases; (iii) develop a procedure for
rapid damage detection based on a simplified relationship between damage and changes in
modal parameters; (iv) introduce an enhanced procedure for multiple damage detection in
structures. To achieve these objectives, the obtained results of the thesis can be briefly
summarized in the following four contributions.

The first contribution is an improvement of the existing modal identification technique based
on the PARAllel FACtor (PARAFAC) decomposition in time domain. The third-order ten-
sor of the covariance of responses is first decomposed into components corresponding to
structural modes or harmonic components. A minimum length of autocovariance functions
using natural periods and damping factors is suggested to distinguish between harmonics
and structural modes accurately.

The second contribution is the development of a novel method for modal identification based
on PARAFAC decomposition in frequency domain. Using the PARAFAC decomposition, a
third-order tensor in frequency constructed from Power Spectral Density (PSD) of responses
is first decomposed into rank-1 tensors that can be structural modes or harmonic components.
The auto-PSD function of each rank-1 tensor is then used to identify modal parameters, while
spectral kurtosis values are used for the distinction of structural modes and harmonics.

The third contribution is devoted to the proposal of an efficient method for the rapid de-
tection and quantification of a single local change in the mass and/or stiffness of like-beam
structures using identified modal parameters. This contribution considers the relationship
between local changes in the mass and/or stiffness of a beam and its natural frequency shift
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and mode shape, and explicitly gives an analytical expression. Based on the proposed expres-
sion, linear regression is applied to obtain accurate results of the change in the mass/stiffness
of the beam.

The fourth contribution aims to extent the previous damage identification procedure for
multiple damage detection. Comparison between natural frequency shifts obtained directly
from the analytic expression established in the former contribution instead of using FEM
and measured ones allows multiple damages to be identified using Bayesian inference. The
proposed identification of damages becomes rapid because it skips the computational cost
caused by FEM simulations.

All the above contributions have been validated by numerical simulations and experimental
laboratory tests.
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1 Introduction to structural heathmonitoring

Structural Health Monitoring (SHM) is process of in-service health assessment for a
structure through a monitoring system. It is a key element of cost-effective maintenance
strategies. A complete SHM system includes many components: sensor networks, modal
analysis, damage assessment, and decision making. Modal identification and damage
detection are considered to be the most important components of a SHM system. The
general principle of SHM is that modal parameters are first determined from vibration
measurements using modal analysis methods. The obtained modal parameters are then
associated with a change in structure’s parameters, such as a decrease in stiffness or a
change in mass, due to structural damage. Therefore, it is natural to use the measured
change in dynamic behavior to determine structural damage. The main advantage of the
vibration-based approach is that damage can be determined globally, even if the damage
site cannot be reached.
This chapter is constructed as follows. First, a general introduction of Structural Health
Monitoring is presented in Section 1.1. Then, the most common methods used in modal
analysis are briefly described in Sections 1.2-1.4. Next, several Structural Damage De-
tection (SDD) methods are summarized in Section 1.5. The challenges, objectives and
the organization are highlighted in Sections 1.6-1.7, respectively. Finally, Section 1.8 lists
the main contributions of the research presented in this dissertation, which addresses the
issues discussed in this chapter.

Chapter abstract

1.1 General introduction
The health of a structure can be stated as its current ability to safely and effectively pro-
vide the intended level of service against expected hazards during its service life [1]. SHM
performs health assessment of engineering structures using a system of sensors, associated
hardware and software to monitor the performance and the operational environment of engi-
neering structures. It provides useful information for optimizing the maintenance planning of
engineering structures for reliable operation, cost-effectively schedule maintenance planning
and repair. Therefore, over the past decades, this topic has attracted considerable attention
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of researchers. Comprehensive reviews of SHM development can be found in studies [2, 3,
4]. A schematics of a structural health monitoring system is shown in Fig. 1.1.

Figure 1.1: Schematics of a structural health monitoring system [5]

Engineering infrastructure includes bridges, buildings, towers, pipelines, tunnels, dams, and
other structures. Although the necessary design methods were initially adopted, these engi-
neering structures will degrade over time. This deterioration is due to a variety of causes,
including structural aging, cyclic loading and environmental factors (e.g. steel corrosion,
concrete carbonation) [6]. In addition, degradation can be caused by infrequent natural dis-
asters such as earthquakes, hurricanes, and floods. All these factors are uncertain variables,
so it is difficult to determine the health state of a structure according to its age as well as
its use and safety against the harsh effects of nature.

(a) Tacoma bridge (b) Sampoong Department Store

Figure 1.2: Examples of structural failure [7]

Several case studies have reported collapse and damage of civil engineering structures due
to insufficient SHM [8, 9, 10]. Here are some illustrative examples to prove this fact. In
the study [1] the catastrophic structural failure of the I-35 highway bridge due to aging was
highlighted as a critical civilian infrastructure problem. The collapse of the Tacoma Narrows
Bridge (TNB) in 1940 is undoubtedly the most famous structural failure attributed to a the
sudden change from a vertical to a torsional mode of oscillation [11]. In 1864, Dale Dyke
Dam in the United Kingdom collapsed due to the formation of cracks in the embankment
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[12]. The Sampoong Department Store collapsed in 1989, along with 1,500 employees inside,
due to massive cracks that were noticed but ignored. Similarly, in recent years, the Florida
International University pedestrian bridge suffered structural damage due to crack growth in
2018 [13], and the Xinjia Express Hotel due to the unauthorized construction of an additional
floor in 2020 [14]. Thus, the above examples highlight the importance of SHM, since the
long-term safe and economical use of civil structures depends largely on proper maintenance
and use management [15].

The development of SHM technology for cost-effective infrastructure management has at-
tracted significant attention from the engineering community as tt is essential to identify
damages in structures as early as possible. In SHM, vibration-based methods are generally
more commonly used for modal analysis and damage detection, as they offer advantages such
as low cost, applicability during normal operation of structures, and continuous monitoring
[16]. However, the application of these methods also have some limitations, which have stim-
ulated research and development based on the continuous observation and interpretation of
the comprehensive performance of engineering structures during use. It is clear that SHM
technology can bring enormous security and economic benefits. The future development of
the SHM strategy requires a multidisciplinary research effort involving areas such as sensing,
signal processing, data interpretation, numerical modeling, and computational hardware.

1.2 Modal analysis
The design and construction of large engineering structures, such as long bridges and high-
rise buildings, is becoming more common. This requires the development of reliable methods
to accurately identify the most relevant dynamic characteristics: natural frequency, mode
shape, and damping ratio. Such modal identification methods can provide reliable infor-
mation to support validation of models used during the design phase. These methods also
provide up-to-date information to help identify damage in engineering structures through
structural health monitoring systems.

1.2.1 Dynamics of structures
Consider a classically damped system with n Degree-Of-Freedom (DOF) subjected to an
excitation f(t) as follows:

Mẍ(t)+Cẋ(t)+Kx(t) = f(t) (1.1)
where x(t) is the vector of displacements. M,C,K are mass, damping and stiffness matrices,
respectively.

For the viscous damping model, the damping force is assumed to be proportional to the
velocity. For systems with external dampers, or with energy dissipation devices, or made
of various materials differ significantly in properties from viscous damping, the resulting
damping matrix is non-proportional. For such systems, each component of a given mode
shape is characterized by its amplitude and phase [17].
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A damping matrix is proportional to the mass and/or stiffness matrix and it satisfies the
orthogonality conditions.

C = a0M+a1K (1.2)
where a0 and a1 are arbitrary coefficients. The orthogonality properties of mode shapes can
be applied to the damping matrix:

{
ΦT

i CΦj = 0, i 6= j
ΦT

i CΦi = 2ξiωi
(1.3)

where Φ,ξi,ω are mode shape matrix, damping ratio and angular frequency, respectively.

In the case of proportional damping, Φ are real values while Φ are complex values if damping
is not proportional.

The vector of displacements x(t) can be represented in the form of a modal superposition
of the vibration modes:

x(t) = Φq(t) (1.4)
where Φ is the mode shape matrix and q(t) is a column vector of modal coordinates.

Relation (1.4) shows that the measured responses can be used to determine the modal param-
eters of the system. The process of correlating the dynamic characteristics of a mathematical
model with the physical properties of the system derived from experimental measurements
called modal identification of an engineering structure [18].

A huge number of modal identification methods have been developed for this area, and they
can be divided into two groups depending on what data they use: input-output identification
methods and output-only identification methods [18]. Input-output methods, known as
classical modal testing methods or Experimental Modal Analysis (EMA), require both input
and output information (excitations and responses). Output-only identification methods,
also known as Operational Modal Analysis (OMA), require only response measurements of
the structure under operational conditions. These methods can be performed in either the
time domain or in the frequency domain. The most common methods will be briefly reviewed
in the following subsections.

1.2.2 Classical experimental modal analysis
Classical modal testing methods are known as input-output methods or Experimental Modal
Analysis (EMA), which is based on controlled input that is measured and used in the identifi-
cation process. In classical modal analysis, Frequency Response Functions (FRFs) or Impulse
Response Functions (IRFs) are constructed from the relationship between the applied exter-
nal force and the corresponding responses at predetermined points on the structure. Many
techniques have been developed for input-output modal identification, based on estimat-
ing a set of FRFs or corresponding IRFs. Comprehensive reviews of input-output modal
identification methods can be found in [19, 20, 21, 22].
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The frequency response function can be represented as follows:

H(ω) =
n∑
1

ΦiΦT
i

ω2
i −ω2−2jωiω

(1.5)

where ωi is the ith frequency of structure.

Classical EMA methods are generally used to determine the dynamic characteristics of small
and medium-size structures. On rare occasions, these methods are used on large structures
because of the complexity of providing significant excitation levels to a large, massive struc-
ture. In these tests, artificial excitation is applied to structures to induce vibrations. By
measuring the response of structure to these known forces, the dynamic characteristics of
the structure can be determined. The measured excitation and response time histories are
used to estimate FRFs, or IRFs between measured outputs and measured inputs, as it shown
on the Figure .1.3

Figure 1.3: An example of a MIMO system

The developments in these methods progressed from Single-Input-Single-Output (SISO)
systems through Single-Input-Multiple-Output (SIMO) systems, then through Multiple-
Input-Single-Output (SISO) systems to the general case of Multiple-Input-Multiple-Output
(MIMO) systems. These methods can work in both time and frequency domain.

• Classical time domain identification methods

Time domain identification methods have been developed and become widely available over
the past decades. Logarithmic decrement technique was introduced by Rayleigh [23]. The
measure of damping is the reduction in amplitude of the response after several cycles of free
response, as shown in Figure. 1.4. This technique is considered standard work and provides
the basis for many modern techniques.

Complex Exponential Algorithms (CEA) is one of the earliest modal analysis methods based
on the curve fitting of the response properties of the system, represented as time-domain
data [24]. It was first used to extract frequency and damping using IRF for SISO systems.
Although the method is simple, it is very sensitive to noise.

Brown et al. [25] developed the Least-Squares Complex Exponential (LSCE) method for
SIMO systems using multiple IRFs and the least square (LS) procedure to extract frequencies
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Figure 1.4: Free response

and dampings. The method can deal with noise due to the LS procedure, but it requires
selecting mode numbers in advance.

Vold et al. [26] presented the Polyreference Time Domain (PTD) for MIMO systems. It was
formulated as an extension of the LSCE method. By using several references, the chances
of missing a mode of the structure are reduced.

Juang and Pappa [27] proposed the Eigen Realization Algorithm (ERA) method based on
the general state-space description using the IRFs. However, the disadvantage of this method
is that it has the need to obtain free or impulsive responses of structure, which is not always
available in civil engineering applications.

• Classical frequency domain identification methods

Frequency domain methods are based on frequency response functions as shown in Figure.
1.5. The Half-Power Bandwidth (HPB) method is one of the most common methods [28,
29, 30, 31]. It is used to estimate damping ratios from the frequency response function
of a structure. However, this method gives large errors for highly damped modes and is
inapplicable for closely spaced modes.

Figure 1.5: Frequency Response Functions (FRFs)

Formenti and Richardson [32] developed the Rational Fraction Polynomial (RFP) method
for SIMO systems using FRF measurements. The FRFs are given in partial fraction form.
It is one of the most widely used methods in the frequency domain. In addition, it has
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been adopted and implemented by commercial modal analysis software. This method has
been verified to be effective for many cases, even with closely spaced modes. Later, the
author introduced the global rational fraction polynomial (GRFP) method to obtain global
estimates of modal frequency and damping from a set of FRF measurements [33]. This
method can provide some advantages, but it requires selection of an appropriate number of
modes as its prerequisite.

Complex Mode Indicator Function (CMIF) was introduced based on Singular Value Decom-
position (SVD) applied to multiple reference FRF measurements [34]. It was first developed
for traditional FRF data in order to identify the proper number of modal frequencies, par-
ticularly when there are closely spaced.

Peeters et al. [35] developed the PolyMax or polyreference least-squares complex frequency-
domain method. It is implemented in a very similar way as the industry standard polyrefer-
ence (time-domain) least-squares complex exponential method. It offer even greater promise
for obtaining accurate modal parameter estimates by using FRF measurements. It uses a
stabilization diagram to estimate frequency, damping and participation information. This
method can handle difficult estimation cases such as high-order systems or highly damped
systems with modal overlap.

• Main drawbacks of the above classical methods

– Require both input and output information, so are generally applicable to small and
medium-size structures.

– High cost and are time-consuming due to the installation of artificial excitations.

1.2.3 Operational modal analysis
In contrast to EMA, Operational Modal Analysis (OMA) is the engineering field that stud-
ies the modal characteristics of structures under ambient vibration, or normal operational
conditions. It does not require any controlled excitation as artificial stimuli such as sharkers
and impact hammers may not be suitable for large engineering structures such as high-rise
buildings and long-span bridges. Instead, the response of structures to ambient excitations
such as wind, traffic, and human-induced loadings are recorded.

OMA techniques have become very attractive due to their relatively low cost and speed
of implementation, as well as recent improvements in recording equipment and calculation
methods. It offers many advantages for modal identification of mechanical systems as it does
not require to measure external excitation and allows to estimate modal parameters under
actual boundary conditions.

Various modal identification techniques have been developed for engineering systems in
OMA. They perform identification either in the time domain or in the frequency domain. As
a rule, identification methods are aimed at obtaining physical information related to struc-
tures from correlation functions or spectral densities [36, 18]. Time-domain identification
methods obtain this physical information from the correlation functions, while frequency-
domain identification methods derive it from the Power Spectral Densitiy (PSD) functions.
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1.2.3.1 Time domain methods

Time domain methods apply an appropriate mathematical model to idealize the dynamic
structural behavior for the output-only modal identification, e.g. time-discrete or state-space
stochastic models [37].

Ibrahim Time Domain (ITD) method was introduced in [38, 39]. It is one of the first
techniques developed for the modal identification of multiple-output systems. The method
uses free responses to estimate the modal parameters. However, it requires free-response
inputs, and an appropriate selection of modal order is a prerequisite.

Stochastic Subspace Identification (SSI) method was proposed by Overschee and Moor [40].
This is an output-only system identification method and has been quite popular over the past
decades. The basic idea of the data-driven SSI is to form the block Hankel matrix based
directly on the measured responses. However, this method seems to be computationally
expensive and time consuming due to the projection calculation and the use of a stability
diagram.

1.2.3.2 Frequency domain methods

Along with the development of time domain identification methods, frequency domain meth-
ods have been introduced for operational modal analysis [41]. Typical frequency domain
methods are described as follows:

Peak-Picking (PP) method is the basic frequency domain method for estimating the modal
parameters of a structure. The basic idea of peak-peaking is that when a structure is
subjected to ambient excitations, it will have strong responses close to its natural frequency.
These frequencies can be determined from the peaks in the PSD calculated from the time
history recorded at the measurement points.

Frequency Domain Decomposition (FDD) was introduced by Brincker, Zhang, and Andersen
[42] in 2000. The method is based on SVD of spectral density matrices. It is closely related
to the CMIF method introduced by C.Y.Shih et al. [34], which was based on an SVD of the
FRF matrix. This method is relatively intuitive and user-friendly, but it can give unreliable
damping estimates in the case of heavily damped and closely spaced modes.

1.3 Blind source separation
Blind Source Separation (BSS) emerged in the 1990s in the audio domain to recover original
sources from the records. They are output-only methods. The separation can be achieved
without any knowledge of the mixing process. A detailed description of the fundamental
principles of BSS can be found in the reference [43]. The BSS has been used extensively
in speech and audio processing [44, 45, 46, 47]. A typical example of a source separation
problem is the cocktail party problem, where several people are talking simultaneously at
a cocktail party in a room, and a listener is trying to follow one of the discussions. The
term blind is commonly used because BSS methods aim to recover the mixing matrix A and
the corresponding source s without knowing the mixing process. An illustration of the BSS
problem can be represented as in Figure. 1.6.
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Depending on the relation between the number of measurements nx and the number of
sources ns, BSS problems can be classified as overdetermined case when nx >ns, determined
case when nx = ns, or underdetermined case when nx < ns.

Figure 1.6: Blind source separation scheme

Over the last decade, blind separation techniques have widely employed in different research
areas [48, 49, 50, 51, 52, 53, 54]. It has attracted considerable interest in OMA as a non-
parametric alternative to modal identification from output-only measurements. In general,
the BSS models can be divided into two groups depending on the mixing structure of the
sources: the instantaneous model and the convolutive mixed model. More detailed informa-
tion about BSS models can be found in reference [55].

• Instantaneous mixture

The instantaneous model is most commonly used in BSS problems as well as in modal
analysis where sources arrive simultaneously at the sensors but with different intensities,
and is expressed as follows:

x(t) =As(t)+n(t) (1.6)

where x(t) = [x1(t),x2(t), . . . ,xm(t)]
T containsmmeasurements, s(t) = [s1(t),s2(t), . . . ,sn(t)]

T

contains n sources, n(t) = [n1(t),n2(t), . . . ,nm(t)]
T is the noise vector and A is the static

mixing matrix.

The output of the ith measurement can be represented as:

xi(t) =
n∑

j=1
aijsj(t)+ni(t) (1.7)

Without consideration of observation noise, the equation (1.6) can be expressed as follows:

x(t) =As(t) (1.8)

Eq. (1.8) is similar to the classical modal superposition model in Eq. (1.4). This provides
a basic equivalence model for using BSS as an identification method. Once the sources and
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the mixing matrix are recovered using BSS, the natural frequencies and the damping ratios
can be identified from the recovered sources.

• Convolutive mixture

The validity of the instantaneous model has been questioned in the processing of data ob-
tained by wireless sensors [56], where data from multiple locations does not arrive simultane-
ously or the mixing matrix coefficients are time-varying. This problem led to the development
of a convolution BSS solution that takes into account the time lag in modeling [57, 58, 59].

A convolutive mixture can be expressed as follows [46]:

x(t) =A(τ ) ∗ s(t− τ )+n(t) (1.9)
where * is the convolution operator, A is the mixing filter matrix containing the coefficients
of finite impulse response (FIR) filter.

A(τ ) =


a11(τ ) a12(τ ) · · · a1n(τ )
a21(τ ) a12(τ ) · · · a2n(τ )

... ... · · · ...
am1(τ ) am2(τ ) · · · a1n(τ )

 (1.10)

where aij(τ ) is the impulse response of the filter characterizing the propagation of the signal
from the jth source to the ith sensor with τ delay.

In order to separate mixed sources in a convolution scenario, several BSS solutions have
been developed. They allow to take into account time lags in the model. This convolutive
model can be transformed into an equivalent static mixing problem in a transformed domain
using Short Time Fourier Transform (STFT) [59, 58]. However, this issue has received
less attention because the superposition model is widely used and is accepted in structural
dynamics as an equivalent instantaneous mixing model.

Solutions to the BSS problem have been applied to modal identification. Independent com-
ponent analysis (ICA) [48] is one of the first application of BSS in structural dynamics that
deals with overdetermined or determined problems. This method assumes that the observed
data are a linear combination of statistically independent sources. The next advent of Second
Order Blind Identification (SOBI) [49], which is based on cross-correlation of data, improves
the separation performance compared to Independent Component Analysis (ICA).These
methods have been successfully applied to perform output-only modal identification [60, 61,
62, 63, 64].

One of the main challenges of BSS-based modal identification methods is to deal with un-
derdetermined problems where the number of mixtures (registered system responses) is less
than the number of sources (active modes). Conventional BSS algorithms such as ICA or
SOBI can only handle the overdetermined or determined problems that require the number
of mixtures equal or greater the number of sources. This requirement may not be satisfied
in many practical applications with limited sensors; for example, for large-scale or complex
structures, where the sensors may be less than the number of structural modes. This poses a
serious limitation in practical applications of these methods, which has been reported many
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times in the literature. A few BSS approaches have been developed in the literature to han-
dle the underdetermined case, but they seem to be very restricted. So far, two approaches
seem to be the most popular and efficient: the first exploits the sparseness of the source,
and the second involves tensor decomposition. A recent review of BSS methods in structural
dynamics is presented by Sadhu, Narasimhan, and Antoni [65].

1.3.1 Independent component analysis
Independent Component Analysis (ICA) is one of the earliest BSS methods in the literature
for determined cases. The ICA method uses the following assumptions:

- A statistical independence. It means that the general probability density can be decom-
posed into the product of the probability density of the component sources:

P (s1,s2, ...,sn) = P (s1)P (s2)...P (sn) (1.11)

- A is non-Gaussian distribution.

- The unknown mixing matrix is square, i.e., the number of independent components equals
the number of observed mixture signals.

From the above three assumptions, the independent components s(t) can be estimated by
transforming the observed signals x(t) into the components s(t).

s(t) =Bx(t) (1.12)

The basic idea of the ICA algorithm is to construct an objective function that measures
mutual information [48], non-Gaussianity [66] or entropy [67] of the demixed signals s(t).

1.3.2 Second-order blind identification
In the second-order method, sources are assumed to be spatially uncorrelated, but temporally
correlated as determined by the diagonal correlation matrix [49]. The SOBI method does
not make any prior assumptions about the statistical independence or non-gaussianity of
the sources. It improves separation performance compared to ICA. The basic assumptions
are that the sources are assumed to be stationary and the measured noise is assumed to be
uncorrelated. The correlation matrix is built from the measurement x(t) as follows:

Rx(τ ) = E{x(t)xT (t+ τ}=ARs(τ )AT +σ2δ(τ )I (1.13)
where Rs(τ ) is the correlation matrix of sources, δ is the standard deviation of the additive
noise which is assumed to be stationary, white and uncorrelated to the sources , δ(τ ) is the
Kronecker delta, and I is the identity matrix.

Source separation by SOBI consists of two main steps: (i) whitening of the measured signal
and (ii) Joint Approximate Diagonalization (JAD) that can be accomplished with the Jacobi
method [68].
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1.3.3 Sparse component analysis
Sparse Component Analysis (SCA) has experienced considerable development in the early
1990s. Sparsity means a domain of representation where the sources tend to occupy different
regions of the space, with a reduced degree of overlap [53, 69, 46]. This approach has
proven to be more promising. By far, this technique began to be fully exploited for blind
source separation [70, 71, 72, 53, 73]. It can implement a relatively simple framework for
underdetermined cases when the number of sources exceeds the number of observed mixtures.

(a) Time domain (b) Frequency domain

Figure 1.7: Scatter plot x1 vs. x2 of five sources mixed into two mixtures in the time (left) and
frequency (right) domains

It is shown that the time domain representation for a signal cannot be sparse enough, but
sparsity can still be achieved in a transformed domain [53]. Sparsity can be achieved in the
frequency or time-frequency domain using Fast Fourier Transform (FFT) [74], Short Time
Fourier Transform (STFT) [75], Wavelet Packet Transform (WPT) [76], etc., when they
are not directly achievable in the time domain. The mixing matrix is then estimated using
clustering algorithms such as K-means clustering [77], hierarchical clustering [78], fuzzy C-
mean clustering [79], etc. From the estimated mode shapes, the modal coordinates can be
recovered by methods such as the least square method [80], l1-norm [79].

The benefit of such an approach is clearly shown in Fig. 1.7. The five simulated signals
are combined into two mixtures. Fig. 1.7a presents a scatter plot of the resulting data
(x1 against x2), showing a mess cloud. As can be seen, the sources are indistinguishable
in the time domain. Then each mixture was transformed to the frequency domain and the
scatter plot of the frequency domain data is shown in Fig. 1.7b. However, the accuracy of
the estimated mode shape of these methods depends on the clustering technique, and the
recovered modal coordinates are less accurate in the case of poor clustering performance.

1.3.4 Tensor decomposition
The tensor decomposition technique was recently employed in operation modal analysis as
one of the BSS family methods. It has been proven to effectively treat different types of
excitations such as ambient vibrations, earthquakes, or human-induced vibrations [81, 82,
83, 84, 85, 86, 87, 88].
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A multidimensional signal can be expressed as a tensor using multi-linear algebra tools,
which are more efficient and powerful than linear algebra tools (e.g. principal component
analysis) [89].

For example, a vector t = ti ∈ Cn1 is a first-order tensor, a matrix T = tij ∈ Cn1×n2 is a
second-order tensor. pth-order tensor is written as T = tij...p ∈ Cn1×n2×...×np

A third order tensor can be decomposed into a sum of outer products triple vectors as follows
[90]:

T =
R∑

r=1
ar ◦br ◦cr⇔ Tijk =

R∑
r=1

airbjrckr (1.14)

where ◦ denotes the tensor outer product, R is the number of rank-1 tensor present in T.
This is termed as a trilinear model of T, T = [[a,b,c]] with the matrices a = (a1,a2, ...,aR),
b = (b1,b2, ...,bR), and c = (c1,c2, ...,cR).

The geometric interpretation for the above equation can be represented as shown in Figure
1.8.

Figure 1.8: Geometric interpretation for PARAFAC decomposition [89]

In this work, the third-order tensor is used as the fact that the signals are represented and
processed in a three-dimensional array. The factor matrices can be obtained by optimizing
the following cost function:

min
a,b,c

∥∥∥∥∥∥T−
R∑

r=1
ar ◦br ◦cr

∥∥∥∥∥∥
2

(1.15)

This technique was introduced by PARAllel FACtor (PARAFAC) decomposition [91] and
canonical decomposition [92]. Several algorithms have been developed to fit a PARAFAC
model, which can be classified into three categories [93, 94]: Alternating Least Square (ALS)
algorithm, derivative based algorithms, and non-iterative algorithms. The derivative based
algorithms seek an update for all the parameters simultaneously by successive approxima-
tions while non-iterative algorithms have one matrix factor with a Toeplitz structure which
are somewhat complicated. In this work, the ALS algorithm is applied because of its simpler
implementation, and guaranteed convergence [95].

The ALS algorithm is mainly comprised of the following key steps to undertake simultaneous
unfolding of three model matrices:
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1. Fix a and b. c is solved using:

minc ‖T− [[a,b,c]]‖2 = minc

∥∥∥T(3)−c(a�b)T
∥∥∥2

(1.16)

where � represents Khatri-Rao product. Given a ∈ CI×R and b ∈ CJ×R, then a�b is a
matrix with IJ rows and R columns and is expressed as:

a�b =


a11 a12 . . . a1R

a21 a22 . . . a2R
... ... . . .

...
aI1 aI2 . . . aIR

�

b11 b12 . . . b1R

b11 b12 . . . b1R
... ... . . .

...
bJ1 bJ2 . . . bJR

=

a11b:1 a12b:2 . . . a1Rb:R
a21b:1 a22b:2 . . . a2Rb:R

... ... . . .
...

aI1b:1 aI2b:2 . . . aIRb:R

 (1.17)

where b:k denotes kth column of matrix b.

2. Successively solve for a,b and c, until the desired convergence is achieved

3. Finally, a tensor T̄ =
R∑

r=1
ar ◦br ◦cr is obtained such that the cost function is minimized:

f(a,b,c) = ||T− T̄||2 (1.18)

A unique decomposition is obtained if the Kruskal condition [96] is satisfied:

ka +kb +kc ≥ 2R+ 2 (1.19)
where ka,kb and kc are k−rank of the matrices a,b and c respectively, where k−rank is
defined as maximum number k such that every set of k columns of the matrix is linearly
independent.

The PARAFAC decomposition offers a unique decomposition even if its rank order is greater
than the smallest dimension of the tensor. Therefore, this decomposition can be utilized to
handle underdetermined cases. The constrained decomposition in Eq. (1.14) is essentially
unique under the following condition [97]:

2ns(ns−1) ≤ n2
x(nx−1)2 (1.20)

where ns is the number of sources, and nx is number of measurements.

The relationship between the number of measurements and the maximum number of identi-
fiable sources extracted by PARAFAC decomposition is given in Table. 1.1. It can be noted
that the number of identifiable modes for complex tensor cases is higher than for real-valued
tensors.

1.4 Harmonic detection in modal analysis
Engineering structures are subjected to ambient and human-induced vibrations during nor-
mal operational conditions. In general, a fundamental assumption of operational modal
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Table 1.1: Source separation capability for PARAFAC decomposition [97]

Number of measurements nx 2 3 4 5 6 7 8

Number of identifiable modes nmax
s (real-valued case) 2 4 6 10 15 20 26

Number of identifiable modes nmax
s (complex case) 2 4 9 14 21 30 40

analysis methods is that the external excitation is white noise. This assumption implies
that the excitations are not driving the system at any particular frequency, and therefore
any identified active frequency reflects structural modal response. However, in reality, some
of the harmonic disturbances, for instance, an adjacent machine operating at a particular
frequency, may drive the structure at that frequency. Thus, these components need to be
detected and eliminated in the modal identification process. A direct approach for process-
ing these harmonic components is to consider them as zero-damping modes [98]. Besides,
kurtosis can also be used as a harmonic indicator. It was used in the time domain or in the
frequency domain to distinguish structural modes from periodic excitations [99, 100, 101,
102].

1.4.1 Histograms and kurtosis values
In BSS methods, the conventional kurtosis value can be used to distinguish modal responses
and harmonic components. Kurtosis is a measure of the tailedness of the probability dis-
tribution of a real-valued random variable. The kurtosis is defined as the fourth central
moment of the stochastic variable as follows [103]:

k =
E
{
x4
}

(E {x2})2 (1.21)

where E is the expectation operator.

For sampled data with K samples, the expectation can be computed statistically as follows:

E{x}= 1
K

K∑
k=1

x(k) (1.22)

The Probability Density Function (PDF) of the response of a structural mode will be nor-
mally distributed (Fig. 1.9a), and the kurtosis k = 3. The PDF p is given as follows:

p(x|µ,δ) = 1
δ
√

2π
e−

(x−µ)2

2δ2 (1.23)

where µ and δ are the mean and standard deviation of x, respectively.
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In the case of a pure harmonic component, the PDF will have two distinct peaks (Fig. 1.9b)
and the kurtosis k = 1.5. The PDF p is given as follows:

p(x,a) =


0, |x|> a

1

π cos
(

arcsin
(
x

a

)) , |x| ≤ a (1.24)

where a is the amplitude of the harmonic component.

(a) Structural mode (b) Harmonic component

Figure 1.9: Normalized PDF of the response of a structural mode and a harmonic component

1.4.2 Spectral kurtosis
In the frequency domain, the Spectral Kurtosis (SK) of a signal is defined as the kurtosis
value of its frequency component. It has been applied to the detection of harmonics in studies
[102, 104, 105, 106]. A remarkable advantage of this approach is that the information for
each frequency component can be indicated in the frequency range of interest.

Let X(f) be the Discrete Fourier Transform (DFT) of signal x(t). The original SK can be
defined as follows [102]:

SK(f) =
E
{
|X (f)|4

}
−2

[
E
{
|X (f)|2

}]2
[
E
{
|X (f)|2

}]2 (1.25)

where E{.} denotes the operator of expectation and |.| represents the modulus operator.

In practice, the signal x(t) is divided into M blocks to obtain an unbiased estimator of the
SK by using the k-statistics as in [107]:

SK(f) =
M

M −1


(M + 1)

M∑
i=1

∣∣∣Xi (f)
∣∣∣4(

M∑
i=1
|Xi (f)|2

)2 −2

 (1.26)
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where the vector Xi(f) is a DFT of the i-th block.

According to the statistical characteristic [102], the SK of a synthetic signal always equals
to –1 for the harmonic frequency. However, this value for a random process equals to zero.
In the case of x(t) mixing with a harmonic signal, its SK can be comprehensively described
as:

{
SK(f) = −1, f = fh

SK(f) = 0, f 6= fh
(1.27)

where fh is a harmonic frequency.

Consequently, harmonic components will be detected by estimating the values of SK at each
frequency through Eq. (1.26) and Eq. (1.27).

1.5 Structural damage detection
Structural Damage Detection (SDD) is one of the most important part of the health assess-
ment for a structure. In the functional time, damage may accumulate on structures due to
environmental and human-induced factors. Damage is interpreted as a change in a system’s
geometric or material characteristics that can adversely affect its performance, safety, relia-
bility, and longevity. A structural failure can be catastrophic if it is not detected or repaired
in time. Therefore, Structural Damage Detection is essential, especially in the early damage
state, to avoid sudden failures and improve the safety and longevity of structures [1].

In general, the identification of the damage can be classified into four levels [108]. Most
current research focuses on the first three levels [109]:

• Level 1: Damage detection. It gives a qualitative indication that damage might be
present in the structure.

• Level 2: Damage localization, providing information on the location of possible damage

• Level 3: Damage quantification, give an estimate of damage

• Level 4: Damage prognosis, providing information about the safety of the structure.

SDD methods have been the subject of numerous research projects in recent decades [1, 3,
109, 110, 111]. In general, damage identification methods can broadly be categorized into
two groups [1]: traditional Non-Destructive Testing (NDT) methods (local methods) and
modern vibration-based methods (global methods). Both global and local methods provide
different types of information and support different types of analysis. The local ones detect
and quantify structural damage on a relatively smaller scale without using the responses of
structures. The detection area for local methods is relatively small. Therefore, most of NDT
methods are considered as local methods. In contrast, vibration-based damage methods
examine changes in the global vibration characteristics of the structure and are therefore
considered global methods.

The manipulations of NDT methods are usually manual and relatively simple. They are
often localized and require prior knowledge of the damage location in a structure. Modal
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analysis is not very useful for NDT methods. Due to their local nature, the assessment of
the overall structure may not be resolved.

In contrast to the NDT methods, vibration-based damage methods often use sensor networks
that can be automated. They can cover large areas and do not require prior knowledge of
the damage location. Modal analysis is an integral part of most these methods, and they
are used to determine modal parameters based on ambient measurements.

1.5.1 Traditional non-destructive testing methods
Non-Destructive Testing methods have been extensively employed for detecting damage in
engineering structures [112, 113, 114], including acoustic emission, ultrasound, lamb waves,
laser vibrometer, thermal imaging, and Global Positioning System (GPS). Studies [115,
116] present a detailed literature review of the most widely used NDT methods applied to
engineering structures.

(a) AE (b) Ultrasound (c) Thermography

Figure 1.10: Some examples of non-destructive testing methods

Acoustic emission (AE) is used as an NDT method. This theory is that damage events in a
material or structure create stress waves that propagate throughout the structure (Figure.
1.10a). These stress waves are called acoustic emissions with a frequency range typically
from 20 kHz to 1.0 MHz. The properties of these stress waves depend on the nature of
damages and structures. Therefore, by analyzing the measured acoustic emission signals,
structural damage can be detected, and the state of the structure can be estimated. This is
a passive NDT method, and depends on the propagation of damage signals.

Ultrasound is a prevalent NDT method for investigating the inner structure in a solid test
object. In ultrasound scanning, the transmitter send ultrasound waves into the material, and
the receiver collects its signal once the transmitter signal has passed through the material
(Figure. 1.10b). Then, the signals collected by the receiver can be processed, and the damage
in the test object can be detected. The ultrasound technique is an active method, and it
generates signals and monitors the interaction of the signals with test objects.

Thermal imaging is a subsurface defect detection method based on temperature variations
measured on the examined surface during monitoring using infrared sensors or cameras
(Figure. 1.10c).

Besides, the magneto-inductive method arises in the cableways sector in the first half of
the 20th century. The magneto-inductive test method is based on an electromagnetic field
generated by a field coil and modified by the presence of a test piece with conductivity
and permeability. This method can be applied to different sectors and applications. Such
characteristics as the surface hardness and case hardening depth can be identified without
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destruction. However, the method can be affected by metal structures in near-field magneto-
inductive communication systems.

In general, these above methods give effective damage detection results in local areas when
these locations are known. However, these NDT methods differ significantly in their range
of applicability and may only be suitable for damage assessment in local areas. In addition,
they have certain kinds of limitations in practical applications, particularly for large complex
engineering structures.

1.5.2 Vibration-based damage identification methods
It is clear from the previous discussion that a reliable and ongoing assessment of the integrity
of structures is required. The need for effective damage detection in engineering structures
has stimulated the development of SHM methods. As a result, SHM is an emerging method
for assessing the current health and predicting the future performance of engineering struc-
tures. Vibration-based damage identification techniques show great promise for damage
assessment in engineering structures [117]. These methods are based on vibration mea-
surements, such as the acceleration, which are related to damage in the structure. Thus,
from vibration measurements, these techniques can be applied to detect structural damage
directly.

The underlying principle behind these methods is that the vibration signature, such as modal
parameters, is a sensitive indicator of a structure’s physical integrity [109, 118]. When a dam-
age occurs in a structure, the structural parameters, such as stiffness, flexibility, and strain
energy, are altered, and consequently, the modal parameters, such as natural frequency, mode
shape, and damping, will also be changed. Modal parameters can be derived from vibration
measurements of the structure under consideration using modal analysis. Therefore, it is
reasonable to use the measured change in dynamic behavior to identify structural damage.

Since the number of published studies related to damage identification is huge, damage
identification in a structure can be performed using various system properties. These damage
identification methods can be classified into following main groups [111]: modal parameter
based methods, signal processing based methods, finite element model updating methods
and machine learning methods.

1.5.2.1 Modal parameter based methods

Modal parameters, such as natural frequencies, mode shapes and damping ratios are global
properties of an engineering structure. Damage identification methods based on the change
of modal parameters do not require the measurements at the damage location. Instead, they
assume that damages can be identified by comparing the current modal parameters with
those of the undamaged state.

a. Natural frequency based methods

In damage identification techniques, natural frequencies are the easiest to measure and are
independent of the measurement location. Since changes in stiffness due to damages in
a structure, whether local or distributed, cause a change in the natural frequency of the
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structure, the presence of these failures can be detected using the change in natural fre-
quency. Cawley and Adams [119] introduced the relationship between the change of natural
frequencies and the change in stiffness as follows:

∆ω2
i =

ΦT
i ∆KΦi

ΦT
i MΦi

(1.28)

where ∆ωi and ∆K are the ith natural frequency change and the stiffness change, respectively,
Φi is the ith mode shape of the undamaged structure and M is the global mass matrix.

This simple relationship is not sensitive enough for damage detection and it is of little use
for damage detection in practice.

b. Mode shape based methods

Mode shape changes are also discovered to be sensitive to damages in structures, in par-
ticular, when higher-order modes are utilized. Therefore, mode shape changes can directly
provide damage location information [120]. However, the mode shape measurements of an
engineering structure require a high number of spatial sensors. The commonly used ways
to compare two sets of mode shapes include the Modal Assurance Criterion (MAC) and the
coordinate modal assurance criterion (COMAC).

The MAC can be used to detect the existence and the location of structural faults. The
MAC value is a scale quantity ranging from 0 to 1. Low MAC values close to zero indicate
possible damage in the structure. When applied to damage detection, the MAC can be
defined as follows:

MACi =

∣∣∣ΦhT
i Φd

i

∣∣∣2
ΦhT

i Φh
i ΦdT

i Φd
i

(1.29)

where Φh
i and Φd

i are the ith mode shape vectors of the intact and damaged structure,
respectively.

The COMAC is a point-wise measure of the difference between two sets of mode shapes
[121]. It ranges from 0 to 1. The COMAC spatially correlates two sets of mode shapes
and identifies the DOFs with maximum disagreement between the mode pair. The COMAC
value at location j can be represented as follows:

COMACi,j =

n∑
i=1

(
Φh

i,jΦd
i,j
)2

(
n∑

i=1

(
Φh

i.j
)2)( n∑

i=1

(
Φd

i.j
)2) (1.30)

where n is the number mode shapes, Φh
i.j and Φd

i.j denote the values of ith mode shape at a
point j for healthy and damaged states,respectively.

The MAC and COMAC have been successfully applied for many damage detection studies
[122, 123]. However, they are highly dependent on the geometry of the structure and the
damage location. Sufficient sensors must be used to ensure that these values are a meaningful
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indicator. These criteria are not sensitive enough to detect damages in the early stages of
their growth.

c. Mode shape curvature based methods

Pandey, Biswas, and Samman [124] used the change of mode shape curvature to detect and
locate damage in structures. The mode shape curvature of the undamaged and damaged
structure can be calculated from the displacement mode shapes using a central difference
approximation technique.

Φh′′
i,j =

Φh
i,j+1−2Φh

i,j +Φh
i,j−1

p2 (1.31)

Φd′′
i,j =

Φd
i,j+1−2Φd

i,j +Φd
i,j−1

p2 (1.32)

where i is the ith mode, j is the jth point, and p is the distance between two consecutive
mode shape points.

The modal curvature change rate index βi,j for the ith mode is defined as follows:

βi,j =

∣∣∣Φh′′
i,j −Φd′′

i,j
∣∣∣∑

j

∣∣∣Φh′′
i,j −Φd′′

i,j
∣∣∣ (1.33)

The mode shape curvature (MSC) damage index is defined as the average of the mode
curvature change rates for the total n modes:

MSCi,j =
1
n

n∑
i=1

βi,j (1.34)

Methods based on mode shapes and their derivatives are more sensitive to damage identi-
fication than methods based on changes in natural frequencies. However, the measurement
of mode shapes for damage detection requires a large number of spatial measurements.

d. Damping ratio

Compared to natural frequency and mode shape, damping is less commonly used for damage
detection in the literature. The existence of damages in a structure can cause changes in
the damping of a structure Rytter [108]. However, these changes are highly dependent on
ambient factors, such as temperature, humidity, or uncertainty in boundary conditions. The
damping ratio variation given in modal parameter variations is inapplicable since the ratio
variance in actual measurement is entirely masking any large damage effect.
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1.5.2.2 Signal processing based methods

These damage detection methods are based on the measurement and analysis of signals
collected from sensors. The measured signals are usually analyzed in a transformed domain
by transforming the signal from the time domain, since the damage characteristics can
be displayed more clearly. Some signal processing approach includes methods of damage
identification based on signal processing such as Wavelet [125], Hilbert-Huang transform
[126] or fractal dimension [127].

a. Wavelet transforms

Wavelet transforms are one of the common tools for signal processing. They are mathe-
matical functions that can slice data into different frequency components, then study each
component with a resolution appropriate to its scale [125]. Wavelet transforms have advan-
tages over traditional Fourier methods in analyzing physical situations where the signal has
discontinuities and spikes.

The Continuous Wavelet Transform (CWT) of a signal x(t) can be represented as:

cwt(s,τ ) = 1√
s

+∞∫
−∞

x(t)ψ(
t− τ
s

)dt (1.35)

where the basic function (wavelet function) ψ(s,τ , t) includes a scaling variable (s) and a
translation variable (τ ).

Wavelet analysis is suitable to the analysis of non-stationary signals, so it can be used as a
feasible method for signal processing to construct an intended index of structural damage.
In addition, the spectrum obtained using the Wavelet transforms can directly indicate the
presence of damage. Applications of wavelet analysis for structural damage detection are
discussed in [128].

b. Hilbert–Huang transform

The Hilbert–Huang Transform (HHT) [126] is a famous signal processing technique that is
applicable for non-stationary and nonlinear signals. It is a combination of two methods,
which are Empirical Modal Decomposition (EMD) and Hilbert Transform (HT).

The HT of a signal x(t) can be represented as:

x̂(t) =
1
π
P

+∞∫
−∞

x(τ )

t− τ
dτ (1.36)

where P is the Cauchy principal value.

The HHT offers many advantages, such as being applicable to non-stationary signals or
non-linear problems. It can produce more physically meaningful results than other trans-
formations. This method performs empirical mode decomposition of the time signal into
narrow-band components with zero mean. These components can be associated with a
physical meaning. HHT-based structural damage detection methods have been reviewed in
study [129].
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In general, these signal processing methods are typically non-parametric methods. They
only require the measurement of signals from a damaged structure. While these methods
are effective for practical application without requiring a baseline model, they are generally
limited to a low level of damage identification, such as damage localization only. This
limitation is due to the lack of relationship between the measured signal and the severity of
damage.

1.5.2.3 Finite element model updating methods

The Finite Element Method (FEM) is a popular tool for structural damage detection in civil
engineering. In finite element model updating methods, the finite element model can provide
baseline information, which can then be updated with new information received from the
monitoring system to detect structural damage and predict future performance [109].

Many studies have been conducted in model updating using vibration measurements over the
past several decades [130, 131, 132, 133]. According to their approach, they can be broadly
classified into two main groups: direct methods and iterative methods. In the first approach,
direct methods are a one-step approach that directly updates the elements of the stiffness and
mass matrix [134]. They allow the updated model to reproduce the measured modal data,
but there is no guarantee that the updated model truly represents the physical properties
of the actual structure. In the second approach, iterative methods use the sensitivity of the
parameters to update the analytical model [135]. These methods use the error between the
analytical data and the measurement data as an objective function. They then minimize
the selected objective function by adjusting a preselected set of physical parameters of the
analytical model.

Within these groups, iterative methods are more popular in many applications for model
update problems. The update parameters can be material properties, geometric properties,
and non-dimensional scaling multipliers applied at the element level. The performance of
iterative methods extensively depends on the selection of updating parameters and optimiza-
tion techniques [136]. Their objective function can be the residual between the measured and
predicted modal data from the original FE model, for example, the difference in frequency
and mode shape.

Although the application of FE model update methods for damage detection has developed
significantly, these methods have certain limitations. These methods require a large amount
of computational time to process the data and update the model. This will delay the
identification process for real-time damage detection. Besides, the performance of these
methods largely depends on the accuracy of the FE model. Practical applications often
show considerable discrepancy between the predictions of the FE model and the tested
results. Two main sources of error are popular in the finite element model: discretization
error and modeling error. Due to various assumptions, idealizations, customizations and
parameterizations introduced into the numerical model, it may not reflect the actual behavior
of the structure. Furthermore, the update process often requires expert intervention, which
can prevent the automation of update-based methods for SHM.
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1.5.2.4 Machine learning methods

Significant improvements in computing power and advances in technology have enabled the
use of Machine Learning (ML) methods in engineering applications. ML includes intelli-
gent algorithms capable of automatically gathering knowledge from available data. These
algorithms are intended to give machines the ability to learn by example and recognize pat-
terns. A general overview of the use of ML in damage detection is presented in [110]. These
ML algorithms can be broadly divided into supervised, unsupervised, and semi-supervised
learning.

a. Supervised learning

Most ML algorithms are supervised learning, which requires features of both the damaged
and undamaged states of the structure. These features are used to establish a statistical
model during the training process [137].

One of the widely used ML algorithms is Artificial Neural Networks (ANNs). ANNs were
initially developed to simulate the function of the human brain or neural system. Conse-
quently, they have been widely applied to various fields ranging from biology to many areas
of engineering [138]. For structural damage detection, ANN is used to establish a representa-
tive model of the relationship between features extracted from vibration data and structural
parameters through a training process [139].

Supervised ML methods require data from damaged and undamaged structures for the train-
ing process. However, data regarding damage situations may not be available in practical
applications and it is often generated through laboratory testing or numerical simulation.
Therefore, the effectiveness of supervised learning techniques depends on the accuracy of the
numerical model.

b. Unsupervised learning

Unsupervised learning methods only require data from the intact state for the training
process. The trained model is used to evaluate the current structural state when new data
are available. If the difference between the predicted data from the trained model and the
measured data exceeds the threshold, the structure is considered abnormal and may be
damaged [140, 141].

While unsupervised learning methods are preferred for actual damage detection, they are
usually limited to level 1 of damage identification - whether there is a damage or not. They
could not provide further information on the location and severity of the damage.

c. Semi-supervised learning

In practical applications, it is not feasible to collect fully labeled data for training, while it is
possible to have a small amount of labeled data. In such situations, semi-supervised learning
methods may make more practical sense as they use both labeled and unlabeled data for the
learning process [3]. Many researchers have found that using unlabeled data in combination
with small amounts of labeled data can significantly improve the accuracy of ML algorithms
[142, 143].
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Semi-supervised learning can provide more information than pure novelty detection in un-
supervised learning. It can detect and quantify structural damage. However, the use of
semi-supervised ML algorithms for damage identification is very limited in the literature.

Despite the fact that ML methods are developing at a fast pace, there are still some chal-
lenges and difficulties. The quality of the training data set is extremely important for the
performance of ML algorithms. The training process is computationally heavy and labor-
intensive. A well-trained and validated model can only work well for a specific type of
structure and a specific type of damage.

1.6 Challenges and objectives
In Structural Health Monitoring (SHM), measurement data from the operational responses
are used to estimate the parameters of structures, which are a sensitive indicator of struc-
tural physical integrity. An approach that studies modal properties of structures under
ambient vibrations or under normal operating conditions is called Operational Modal Anal-
ysis (OMA). This approach has become quite attractive as it offers several advantages:
relatively low cost, speed of implementation, and continuous monitoring during normal use
of structures. However, it has some major challenges:

• In modal analysis, the fundamental assumption of the analysis of these ambient vibra-
tions is that the inputs causing motion have white noise characteristics in the frequency
range of interest. This assumption implies that the input loads do not drive the system
at any particular frequency, and hence any identified frequency associated with an ac-
tive response reflects a structural modal response. However, in reality, civil engineering
structures are exposed to environmental vibrations generated by wind, occupants, venti-
lation equipment..., under normal operating conditions. For example, a nearby machine
operating at a certain frequency may drive the structure at that frequency. This causes
uncertainty in modal identification.

• Another limitation of current BSS based modal identification methods is that they can
only handle a number of active modes equal to or less than that of measured responses
known as overdetermined or determined problems. These methods cannot solve under-
determined problems when the number of measured responses is less than that of active
modes. However, it should also be noted that underdetermined problems are quite com-
mon in practice when the measurements are smaller than the number of active modes or
in the presence of harmonic excitations.

• In Structural Damage Detection (SDD), the relationship between damage due to changes
in mechanical properties such as mass and stiffness and changes in modal parameters is not
straightforward, and often goes through finite element model updating procedures. The
Finite element (FE) modeling is based on the direct assembly of all critical structural
components that will involve a large number of degrees of freedom (DOFs) and thus
become computationally burden. This also causes a critical problem that the number of
DOFs in the finite element model is much higher than the number of DOFs measured in
modal testing. In addition, these methods do not provide much-needed rapid assessment
of structural integrity after extreme events, such as an earthquake or blast loading.
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• In reality, there may be several damages in a structure, and detecting multiple damage is
more challenging than detecting a single damage. Although FEM updating and optimiza-
tion methods can be applied to detect multiple damages, they often cause computational
burden or difficulty in achieving convergence of optimization procedures.

Summarizing the above challenges, the objectives of the thesis are as follows:

• Review efficient and popular methods for operational modal analysis and structural
damage identification.

• Propose improvements to existing methods or a novel method that can deal with un-
derdetermined cases and uncertainty due to unmeasured and uncontrolled operational
excitations.

• Develop a procedure for rapid damage detection based on a simplified relationship
between damage and changes in modal parameters.

• Introduce an enhanced procedure for multiple damage detection in structures.

1.7 Organization
This thesis consists of four chapters and is organized as follows:

Chapter 1: This chapter provides a brief introduction to the general principle of structural
health monitoring.

• It summarizes the background of various modal identification and damage detection
methods for structural health monitoring.

• It highlights the challenges, objectives and main contributions of this thesis.

Chapter 2: This chapter presents an enhanced procedure for modal analysis in the time
domain.

• The chapter presents an enhanced procedure of the PARAFAC decomposition-based
method used for the operational modal analysis. The minimum length of autocovari-
ance functions using natural periods and damping factors are suggested to distinguish
between harmonic and modal components accurately. This modification allows to
effectively distinguishing separated structural modes and harmonic ones. The effec-
tiveness of the proposed procedure has been validated by numerical simulations and
experimental tests

Chapter 3: In this chapter, a new method of modal analysis in the frequency domain is
developed.

• A novel modal identification method based on tensor decomposition in the frequency
domain has been developed. A PARAFAC decomposition is used to decompose a
third-order tensor constructed from power spectral density matrices of response signals.
The decomposition results in the mode shape and the auto-PSD matrix of the modal
coordinates. Then natural frequencies and damping ratios can be estimated from the
estimated auto-PSD functions. Numerical simulation and experimental tests show that
the presented method is efficient when applied to determined and underdetermined
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problems in identifying mechanical systems with normal modes, with complex modes,
closely-spaced modes and for cases with the presence of harmonic excitations.

Chapter 4: This chapter presents a suggested procedure for single damage detection.

• This chapter presents a procedure for detecting changes in the beam structures using
dynamic analysis. A simplified relationship between local changes in mass and/or
stiffness and variations in modal parameters is established for damage identification
procedure. This procedure allows to determine the location of structural changes and
the degree of their severity by analyzing the variations of natural frequencies, the mode
shape and the curvature of the intact and damaged states. The effectiveness of the
proposed procedure was confirmed by numerical simulations followed by experiment
investigation.

Chapter 5: This chapter presents an improvement to the multiple damage detection pro-
cedure.

• This chapter presents a enhanced procedure for multi-damage identification using nat-
ural frequency shifts, mode shape curvature and Bayesian inference. Comparison
between natural frequency shifts obtained directly from the analytic expression es-
tablished in the previous chapter, instead of using FEM, and measured ones, allows
multiple damages to be identified using Bayesian inference. The effectiveness of the pro-
posed method is demonstrated by numerical simulation and then experimental study
of beams with the different number of cracks and different boundary conditions.

Chapter 6: This chapter provides some concluding remarks as well as perspectives.

1.8 Publications
Published articles

1. Duc-Tuan Ta, Thien-Phu Le, Michael Burman. Operational modal identification based
on parallel factor decomposition with the presence of harmonic excitation. Comptes Rendus.
Mécanique, Volume 349 (2021) no. 3, pp. 435-452. doi: 10.5802/crmeca.90.

To be submitted

2. A novel method for modal analysis using parallel factor decomposition in the frequency
domain.

3. Single damage detection using natural frequencies and mode shapes.

4. Multiple damage detection on beams using relative natural frequency shifts and Bayesian
inference.
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2 Operational modal analysis in the
time domain

Despite the wide variety of methods presented in the previous part, there are still chal-
lenges for which a stable and reliable solution for modal analysis has not yet been pro-
posed. One such problem is the undetermined situation when the number of measure-
ments is less than the number of active modes. Another, no less important problem is the
presence of external harmonic excitations, which can be confused with modal parameters
of system.
This chapter presents an improvement of the existing modal identification technique
based on the PARAllel FACtor (PARAFAC) decomposition in the time domain. Re-
cently proposed for operational modal analysis, PARAFAC decomposition based meth-
ods have been proven to be efficient for underdetermined problems and problems with
the presence of harmonic excitations. The third-order tensor of the covariance of re-
sponses is decomposed into components corresponding to structural modes or harmonic
components. The modal parameters are then deduced from the auto-covariance function
of each component, and the distinction between the structural mode and the harmonic
component is based on its kurtosis value. However, no criterion about the length of the
auto-covariance function was given in the literature.
The study of the thesis showed that this length is important and should be chosen de-
pending on the decomposed components, as an insufficient length of the auto-covariance
function can lead to inaccurate results. To overcome this limitation, an enhanced pro-
cedure of the PARAFAC decomposition-based method for modal analysis in the time
domain has been proposed. The minimum length of auto-covariance functions using
natural periods and damping ratios is proposed to distinguish between harmonics and
structural modes accurately. This procedure has been confirmed by numerical simula-
tions and experimental tests.
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Abstract. One of the main difficulties of the operational modal analysis is to deal with underdetermined
problems in which the number of sensors is less than the number of active modes. In the last decade, methods
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analysis because it has been proven that these methods can deal with underdetermined cases, as well as the
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1. Introduction

In recent decades, operational modal analysis (OMA) has been significantly developed, and it
plays a vital role in the engineering fields. This is an identification technique that uses only
structural responses without knowing the input excitation information [1]. It is a challenging
task to measure the input excitations of mechanical systems and sometimes even impossible.
Therefore, the input excitation is frequently considered as Gaussian white noise. However, this
assumption is not always validated in reality because of the existence of periodic excitations.
Moreover, the presence of input excitations such as harmonic ones can cause errors in the modal
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identification process. Therefore, harmonic excitations should be detected and isolated from the
estimation of the structure’s modal parameters.

Emerged in the audio domain for sources demixing from the audio records [2], the blind
source separation (BSS) techniques have widely deployed in different research areas [3–8]. Cas-
tiglione et al. [9] recently proposed a solution to the BSS approach based on multi-filters designed
in the frequency domain. The method’s main idea is to divide a large underdetermined problem
in the frequency axis into several overdetermined or determined problems in sub-bands. The
modal parameters can then be estimated in the sub-bands. Thus, the method can handle the
issue of severely underdetermined scenarios. In OMA, these techniques are used for finding la-
tent sources from registered signals of systems without using any information about the mixing
process. The state of the art in BSS for OMA has been comprehensively treated in [10].

The main challenge for applying the BSS techniques in OMA is when the number of measure-
ment signals (or sensors) is less than that of latent sources—an underdetermined case. This prob-
lem can be encountered in many practical applications with limited measurements, for example,
for complex structures or in the presence of harmonic excitations, when the measurement signals
may be insufficient compared to the number of hidden sources.

There are some well-known indicators used in OMA to distinguish between the harmonic
components and the structural components. Initially pointed out in study [11], kurtosis value has
been widely used to distinguish between harmonic and modal responses [12–17]. If a component
is pure harmonic, the graph of its probability density function (PDF) will have two peaks with
the kurtosis value of 1.5. Otherwise, the PDF of a pure structural mode response will have a
normal distribution with the kurtosis value equal to 3. Another effective tool to distinguish a
structural component from a harmonic one is the modal assurance criterion (MAC) [18]. If a
linear relationship exists between the two modal vectors, the MAC value will be near 1. If they
are linearly independent, the MAC value will be near zero. In addition to the above-mentioned
techniques, there is a direct approach for distinguishing harmonic components. This method
proposes to consider them as zero-damping modes, while the damping ratio of the real pole of
the structural component varies between 0.1% and 2% [12]. However, this method would not be
effective when the structural modes have very low damping or the harmonic frequencies are very
close to the structural frequencies [16].

The PARAFAC decomposition technique [19] was recently employed in operation modal anal-
ysis as one of the BSS family methods. It has been proven to effectively treat different types of ex-
citations such as ambient vibrations, earthquakes, or human-induced vibrations [20–27]. It was
showed that the method could handle a system with many modes, in which each mode has a dif-
ferent damping level [22, 27]. A simplified description of these methods can be summarized in
three steps. At the first step, the covariance matrices of system responses are used to construct
a third-order tensor. The PARAFAC technique is then used to decompose this third-order tensor
into a sum of triple vectors’ outer products. And finally, the obtained decomposition products
like the mixing matrix and the auto-covariance matrix are used to estimate the system modal
parameters.

Among the PARAFAC decomposition technique applications, Sadhu et al. [25] proposed a new
approach based on a multiple-rank PARAFAC decomposition. In order to distinguish between
sources corresponding to harmonic components or structural modes, the average kurtosis value
is used. The authors proved that this approach is efficient for modal identification under the
presence of multiple harmonic excitations.

However, the PARAFAC decomposition results in the auto-covariance functions of modal
coordinates rather than direct modal coordinates. Because of the decaying feature of the auto-
covariance functions of modal coordinates [28], the kurtosis values depend on the lengths of
these functions. As a consequence, the insufficient length of the auto-covariance function can
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cause inaccuracy when using kurtosis value as a harmonic indicator. Hence, for OMA, the length
of the auto-covariance function needs to be considered when using kurtosis value as a harmonic
indicator in PARAFAC decomposition-based methods.

To the best of our knowledge, there have been no studies on the influence of the length of the
auto-covariance function on its kurtosis value.

This work takes advantage of previous studies. A modified procedure of the PARAFAC
decomposition-based method is presented for the OMA. The minimum length of auto-
covariance functions using natural periods and damping factors are suggested to distinguish be-
tween harmonic and modal components accurately. This modification allows to effectively dis-
tinguishing separated structural modes and harmonic ones. The efficiency in the performance of
the proposed procedure has been verified using numerical and experimental tests. The rest of the
paper is organized as follows. Section 2 describes the techniques of BSS and PARAFAC decompo-
sition, Section 3 formulates a proposed procedure. The validation of the proposed procedure is
presented in Section 4. Finally, Section 5 presents a conclusion.

2. Theoretical formulation

2.1. Instantaneous mixing model and PARAFAC decomposition

A linear instantaneous mixing model

x(t ) = As(t )+n(t ) =
ns∑
i

Ai si (t )+n(t ), (1)

where x(t ) = [x1(t ), x2(t ), . . . , xnx (t )]T is nx output measurements, s(t ) = [s1(t ), s2(t ), . . . , sns (t )]T

contains ns latent sources, n(t ) is the noisy vector, and Ai is the i th column of the unknown
mixing matrix A. BSS aims to obtain the latent sources s(t ) from the output measurement x(t )
only. Depending on the relation between the number of measurement sensors and the number
of sources, BSS problems can be classified as overdetermined case, when nx > ns , determined
case, when nx = ns , or underdetermined case, when nx < ns .

Consider a classically damped system with n degrees of freedom subjected to excitation f(t ) as
follows:

Mẍ(t )+Cẋ(t )+Kx(t ) = f(t ), (2)

where x(t ) is the vector of displacements; M, C, K are mass, damping, and stiffness matrix,
respectively.

The displacement x(t ) can be represented in the form of a modal superposition of the vibration
modes

x(t ) =Φq(t ), (3)

whereΦ is the mode shape matrix and q(t ) is a column vector of modal coordinates.
Consider the similarity between (1) and (3), the modal coordinates q(t ) and the mode shape

matrixΦ can be considered as the sources and the mixing matrix without the presence of noise,
respectively.

The noise term n(t ) in (1) is an additive noise assumed to be white. Therefore, its effect in the
covariance function is zero at the time-lag τk different from zero. The covariance matrix Cx(τk )
of vibration measurements x(t ) evaluated at time-lag τk can be written as follows:

Cx(τk ) = E {x(t )xT (t +τk )} =ΦCq(τk )ΦT . (4)

The auto-covariance matrix Cq(τk ) of modal coordinates (sources) at a time-lag τk is defined
as

Cq(τk ) = E {q(t )qT (t +τk )} (5)
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Figure 1. Geometric interpretation for PARAFAC decomposition [33].

and
C i j

q (τk ) = E {qi (t )q j
T (t +τk )} =C i j

q,k . (6)

The modal coordinates are considered to be mutually uncorrelated C i j
q,k = 0 ∀i 6= j .

In the case of a 2-DOF system, x(t ) = [x1(t ), x2(t )]T . The covariance matrix of the responses at
a time-lag τk is represented as follows:

[
C 11

x,k C 12
x,k

C 21
x,k C 22

x,k

]
=

[
φ11 φ12

φ21 φ22

][
C 11

q,k 0

0 C 22
q,k

][
φ11 φ21

φ12 φ22

]
, (7)

where

C i j
x,k =φi 1φ j 1C 11

q,k +φi 2φ j 2C 22
q,k =

2∑
r=1

φi rφ j r C r r
q,k . (8)

For a general n-DOF system, the correlation between response signals at a time-lag τk can be
represented by the following equation

C i j
x,k =

n∑
r=1

φi rφ j r C r r
q,k . (9)

Equation (9) can be treated by the joint approximate diagonalization technique employed in
conventional second-order blind identification [4]. However, this method is only applicable to
determined or overdetermined cases.

In order to deal with the underdetermined problem, Lathauwer and Castaing [29] introduced
a simultaneous matrix diagonalization technique. A third-order tensor C constructed from the
covariance matrices Cx(τk ) can be treated by a PARAFAC decomposition [19]. This decomposition
gives a mixing matrix and a matrix containing auto-covariance functions of modal coordinates.

The third-order tensor C can be decomposed to n rank-one tensors as follows:

C=
n∑

r=1
Φr ◦Φr ◦Cr

q ⇔C i j
x,k =

n∑
r=1

φi rφ j r C r r
q,k , (10)

where ◦ denotes the tensor outer product, and Φr and Cr
q is the r th column of Φ and Cq,

respectively.
As a consequence that tensor decomposition can be used to estimate mixing matrix Φ and

auto-covariance functions of modal coordinates in matrix Cq. Several algorithms have been
developed to fit a PARAFAC model, which can be classified into three categories: alternating
algorithms, derivative-based algorithms, and non-iterative algorithms [30–32]. The geometric
interpretation for the above equation can be represented as shown in Figure 1 [33].

Unlike singular value decomposition used for matrix cases, PARAFAC decomposition offers
an additional advantage: it gives a unique decomposition even if its rank order is greater than
the smallest dimension of the tensor. This property of PARAFAC decomposition can be utilized

C. R. Mécanique — 2021, 349, n 3, 435-452

44 Chapter 2. Operational modal analysis in the time domain



Duc-Tuan Ta et al. 439

Table 1. Number of identifiable sources with the number of measurements [34]

Number of measurements nx 2 3 4 5 6 7 8 9 10
Number of identifiable sources nmax 2 4 6 10 15 20 26 33 41

to deal with underdetermined cases in BSS. Stegeman et al. [34] derived the uniqueness for the
decomposition if the inequality equation between the number of measurements nx and the
number of latent sources ns is satisfied:

ns (ns −1)

2
≤ nx (nx −1)

4

(
nx (nx −1)

2
+1

)
− nx !

(nx −4)!4!
(nx )(nx≥4), (11)

where
(nx ){nx≥4} = 0 if nx < 4
(nx ){nx≥4} = 1 if nx ≥ 4.

(12)

The relationship between the number of measurements and the maximal number of identifi-
able sources extracted using the PARAFAC decomposition is presented in Table 1.

2.2. PARAFAC decomposition for modal analysis

In BSS, the conventional kurtosis value can be used to distinguish modal responses and harmonic
components. Besides, it has also been applied to a decay signal or the auto-covariance functions
of modal responses [25, 35]. The kurtosis value of a zero-mean random variable x is defined as
follows:

k = E {x4}

(E {x2})2 , (13)

where E is the expectation operator.
For sampled data with K samples, the expectation can be computed statistically as follows:

E {x} = 1

K

K∑
k=0

x(k). (14)

The existing PARAFAC decomposition can deal with underdetermined cases, and it also works
well with the presence of harmonic excitations. In the case of harmonic excitations, kurtosis
values of separated auto-covariance functions can be used to distinguish between the harmonic
components and structural modes.

The main steps for modal analysis of the PARAFAC decomposition-based method can be
presented as follows [25]:

• Step 1: Collect responses x(t ).
• Step 2: Build a third-order tensor C from Cx(τk ) using (4).
• Step 3: Perform rank R = 2 : nmax PARAFAC decomposition of the tensor C to obtain Cq

and mixing matrix A. Estimate frequencies f , damping ratios ξ, and kurtosis values κ
from Cq.

• Step 4: Build a stability diagram and calculate the average kurtosis values k at the
estimated frequencies from the results in step 3.

• Step 5: Determine the number of active modes Rr , identify structural modes correspond-
ing to the average kurtosis values k ≥ 3, and harmonic components with k < 3 from the
stability diagram.

• Step 6: Use the results of rank Rr PARAFAC decomposition and obtain modal parameters
by eliminating harmonic components.
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Table 2. Modal parameters of the numerical system are estimated with the proposed
procedure under different kinds of excitations

Mode 1 2 3 4
Exact f (Hz) 1.24 3.59 6.81

ξ (%) 1.31 0.50 0.34
Initial displacement f (Hz) 1.24 3.59 6.81

ξ (%) 1.29 0.51 0.38
Kurtosis 3.9 3.9 3.9
Nature Struct Struct Struct

Random noise f (Hz) 1.24 3.59 6.81
ξ (%) 1.42 0.46 0.38

Kurtosis 4.0 3.9 4.0
Nature Struct Struct Struct

Presence of harmonics f (Hz) 1.24 3.59 6.81 10.00
ξ (%) 1.42 0.46 0.39 0.00

Kurtosis 4.0 3.9 4.1 1.5
Nature Struct Struct Struct Harmonic

The kurtosis values are estimated with T i
L = (40Ti )/(ξi ).

In the method, the modal parameters can be extracted from the auto-covariance functions
using the logarithmic decrement method in the time domain or the single-mode curve fitting
method in the frequency domain.

2.3. Illustration

Consider an example of a 3-DOF mass–spring–damper system with the mass matrix M and the
stiffness matrix K:

M =



2 0 0
0 2 0
0 0 2


 ; K =




200 −360 120
−360 2000 −1300
120 −1300 2600


 .

The damping matrix C is calculated through a proportional damping model C = 0.2M +
0.00005K. The three exact natural frequencies and the three damping ratios are presented in
Table 2.

The exact mode shape matrix is as follows:

Φ=



1.0000 1.0000 1.0000
0.2480 −3.1550 −6.8089
0.0816 −2.6650 8.4359


 .

The system is subjected to an initial displacement x3(0) = 1 with zero velocity. Responses are
simulated for a duration of 50 s with a sampling rate of 200 Hz. The responses of 3 DOFs of the
system are presented in Figure 2a. For the illustration, the covariance matrix is calculated with
the total of 3000 time-lag points (15 s).

Following the steps of the existing PARAFAC decomposition-based method, a stability diagram
is built with different rank R PARAFAC decomposition values ranging from 2 to 4 (corresponding
to three signals).

Three average kurtosis values corresponding to three active modes in the diagram are shown
in Figure 2b. The first two kurtosis values are less than 3. This means that these two first
frequencies belong to harmonic excitation, according to step 5. This is an incorrect result since
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Figure 2. Responses (left) and stability diagram obtained from the PARAFAC
decomposition-based method (right).

these active modes are the structural modes in this example. This is due to the lengths of auto-
covariance functions used for calculating kurtosis values are not sufficient. The existing PARAFAC
decomposition-based method does not give a rule for choosing the length of the auto-covariance
of the modal coordinates. To overcome this limitation and improve the existing method, the
presented study proposes to select the length of the auto-covariance function while using the
kurtosis value as a harmonic indicator.

3. Enhanced procedure for the PARAFAC decomposition-based method

The previous illustration shows that it is necessary to have an adequate length of auto-covariance
function for accurate modal identification and an efficient distinction of structural modes and
harmonic components. Since the decaying feature of the auto-covariance function [28] this
decaying feature causes a variation of the auto-covariance function’s statistical characteristic
when the length of the auto-covariance function changes. Therefore, using kurtosis value as
a harmonic indicator to distinguish between harmonic components and modal ones needs to
consider the length of auto-covariance functions in PARAFAC decomposition-based methods in
the OMA.

Kurtosis is well-known as a measure of the “tailedness” of the probability distribution that
differs from the tails of a normal distribution. The modal coordinate has a normal distribution,
and its kurtosis value equals 3. However, the decaying nature of the auto-covariance function
makes the graph of its distribution being more narrow near the peak when the length of the
auto-covariance functions is longer. It means that an auto-covariance function’s kurtosis value
becomes more than 3 if its length is longer than a certain value. The auto-covariance function of a
harmonic component has a different feature than that of the modal coordinate’s auto-covariance
function. The kurtosis value of the auto-covariance function of a harmonic component is about
1.5 regardless of the length of its auto-covariance function.

3.1. The effect of signal length on kurtosis value

Under free vibration, the modal coordinate is the response of a single degree of freedom system
that has a form as follow:

qi (t ) = Ai e−2ξπ fni t sin(2π fdi t +θi ), (15)
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Figure 3. Three decaying signals.

Figure 4. Kurtosis with length variation of the decaying signals.

where fni , ξi , θi , and Ai are the natural frequency, the damping ratio, the phase, and the
amplitude of the i th mode, respectively.

It was proven that the auto-covariance functions of responses have a decaying form [36] that
is similar to those in (15). Thus, the auto-covariance functions can be treated as free vibration
signals [37].

Decaying vibration signals with different natural frequencies and damping ratios are used to
illustrate the influence of their length on kurtosis value. These signals last for 100 s, as seen in
Figure 3.

It takes about 60 s for the kurtosis value to become equal to 3 for the first signal in Figure 4a.
Less than this duration, its kurtosis values will be smaller than 3. However, less time is needed for
the second and the third ones to their kurtosis values higher than 3.

Because of the decaying feature of these signals, not only the kurtosis value depends on the
natural period, but it also depends on the signal’s damping ratio. The kurtosis value of the auto-
covariance function increases in the function of the period Ti and increases inversely in the
damping ratio ξi function.
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Therefore, this study considers the simultaneous influence of frequency and the damping
coefficient on the kurtosis values. Figure 4b draws kurtosis values in a function of ti with ti

defined in (16)

ti =
Ti

ξi
, (16)

where ξ is in percentage value, Ti is in second.
According to the numerical simulations that were carried out, one can conclude that the

kurtosis reaches a value of 3 after approximately 30ti . Figure 4b shows that the kurtosis value
reaches 3 in about 30ti for the given example. Consequently, the auto-covariance functions’
length should be at least 30ti , as presented in (17)

T i
L > 30ti =

30Ti

ξi
. (17)

In the case of an auto-covariance function with a damping ratio identified smaller than 0.1%,
the length of auto-covariance functions is selected by (18)

T i
L > 30ti =

30Ti

0.1
. (18)

In this study, kurtosis values estimated with a time length T i
L = 40ti is used for distinguishing

between harmonic components and structural modes.

3.2. The improvement procedure

The above choice of the time length of the auto-covariance functions is integrated into the
proposed procedure.

Here are the proposed steps for the PARAFAC decomposition-based method in OMA.

• Step 1: Collect responses x(t ).
• Step 2: Build a third-order tensor C from Cx(τk ).
• Step 3: Perform rank R = 2 : nmax PARAFAC decomposition of the tensor C to obtain Cq

and mixing matrix A. Estimate frequencies f from Cq.
• Step 4: Build a stability diagram and determine the number of active modes Rr .
• Step 5: Use the result of rank Rr PARAFAC decomposition. Recognize harmonic compo-

nents with kurtosis value k ≈ 1.5, or structural modes with k ≥ 3.0 based on a choice of
the time length of auto-covariance functions as follows:


T i

L > 30Ti

ξi
if ξi ≥ 0.1(%)

T i
L > 30Ti

0.1
if ξi < 0.1(%).

(19)

• Step 6: Obtain modal parameters by eliminating harmonic components.

4. Application

To validate the effectiveness of the proposed procedure, numerical and experimental tests were
carried out for various excitation cases.

4.1. Numerical simulations

The numerical model used in Section 2.3 will be reutilized in this part. Modal identifications are
performed for different cases like initial displacement, white noise excitation, and white noise
accompanied by a harmonic excitation.
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Figure 5. Auto-covariance functions and kurtosis in the case of an initial displacement.

Figure 6. Auto-covariance functions and kurtosis values in the case of random noise.

4.1.1. The numerical system subjected to an initial displacement

The proposed procedure was applied to the simulated responses used in Section 2.3. Three
auto-covariance functions corresponding to rank R = 3 PARAFAC decomposition are shown in
Figure 5a.

To illustrate the proposed procedure’s effectiveness, the curves of kurtosis values correspond-
ing to different lengths of the auto-covariance functions are presented in Figure 5b. One can real-
ize that auto-covariance functions’ lengths should be longer than 30× (Ti )/(ξi ) to make kurtosis
values higher than 3, as seen in Figure 5b. The identified modal parameters are the same as the
exact ones, as seen in Table 2.

4.1.2. The numerical system subjected to random noise excitation

In this numerical test, random excitations were applied at all three DOFs of the system. The
responses in the displacements of three DOFs were obtained by integrating the motion equation
with the Runge–Kutta algorithm. The sampling rate was 200 Hz for a duration of 600 s.

The proposed procedure was then applied to this case. Three auto-covariance functions
corresponding to rank R = 3 PARAFAC decomposition are shown in Figure 6a. The curves of
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Figure 7. Stability diagram in the case of random noise accompanied by harmonic excita-
tion.

kurtosis values corresponding to their different lengths are presented in Figure 6b. One can realize
that auto-covariance functions’ lengths should be longer than 30 × (Ti )/(ξi ) to make kurtosis
higher than 3, as seen in Figure 6b. The identified modal parameters are close to the exact ones,
as shown in Table 2.

4.1.3. The numerical system subjected to random noise accompanied by a harmonic excitation

In this numerical test, random excitations accompanied by a harmonic excitation were ap-
plied at all three DOFs of the system. The displacement of three DOFs was obtained by integrat-
ing the motion equation with the Runge–Kutta algorithm. The sampling rate was 200 Hz for a
duration of 600 s.

The proposed procedure is now implemented to identify the modal parameters of the system.
A stability diagram is built from different values of rank R PARAFAC decompositions, as seen in
Figure 7. One can see that there are four active modes in this case.

The auto-covariance functions corresponding to rank R = 4 PARAFAC decomposition are
shown in Figure 8a. The curves of kurtosis values corresponding to their different lengths are
presented in Figure 8b. The figure shows that the first three components’ kurtosis values (corre-
sponding to source 1, source 2, and source 3) are higher than 3.0 when lengths of auto-covariance
functions are longer than 30× (Ti )/(ξi ). It means that these components belong to the structural
modes. The last component (corresponding to source 4) with a kurtosis value of 1.5 corresponds
to harmonic excitation. The MAC diagram shows a good correlation, as presented in Figure 9. The
modal parameters are presented in Table 2, and they are close to the exact ones.

4.2. Experimental tests

To validate the proposed procedure’s efficiency, a series of experimental tests were carried out, as
shown in Figure 10. The tests were conducted for a steel cantilever beam with Young’s modulus
E = 200,000 MPa, and density ρ = 7850 kg/m3. The cantilever beam of 0.8 m in length, 0.04 m in
width, and 0.006 m in height were used for experimental tests under different excitation patterns.
The responses of the cantilever beam were recorded at a sampling rate of 2048 Hz.

Initially, an analytical computation of the first five natural frequencies of the considered
beam was performed. Its analytical frequencies are given in Table 3. To obtain a reference
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Figure 8. Auto-covariance functions and kurtosis values in the case of random noise ac-
companied by harmonic excitation.

Figure 9. Mode shape comparison in the case of random noise accompanied by harmonic
excitation.

Table 3. Modal parameters of the cantilever beam are estimated by the proposed pro-
cedure under different kinds of excitations, and kurtosis values are estimated with T i

L =
(40Ti )/(ξi )

Mode 1 2 3 4 5 6
Analytical f (Hz) 7.64 47.90 134.14 262.85 433.52

B&K software f (Hz) 7.28 46.82 131.43 260.86 427.86
ξ (%) 1.23 0.28 0.45 0.66 0.17

Gaussian noise f (Hz) 7.32 46.73 131.23 260.44 428.00
ξ (%) 1.38 0.35 0.52 0.63 0.12

Kurtosis 3.8 3.9 3.8 3.9 4.0
Nature Struct Struct Struct Struct Struct

Presence of harmonics f (Hz) 7.28 19.99 46.54 130.60 259.88 427.81
ξ (%) 1.11 0.00 0.32 0.52 0.63 0.13

Kurtosis 3.8 1.5 3.9 3.8 3.8 3.8
Nature Struct Harmonic Struct Struct Struct Struct
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Figure 10. The cantilever beam and test point locations.

model, a classical experimental modal analysis was performed using a shaker at a location
on the cantilever beam. The time responses were recorded using five B&K Type 4533-B-001
accelerometers mounted along the length of the cantilever beam. A B&K Type 8230-001 force
transducer is also used to collect the input excitation, as shown in Figure 10. The commercial
B&K Connect™ software acquires signals from the force sensor and the accelerators for input–
output modal identification. The results of modal parameter identification are given in Table 3.

Two following experimental examples are considered to demonstrate the efficiency of the pro-
posed procedure on actual measurements. The first example represents a determined case when
the measurements equal the number of the structural modes. The second example illustrates an
underdetermined problem where five sensors are used to separate six components: five struc-
tural modes and a harmonic component.

4.2.1. The structure subjected to Gaussian noise excitation

In this experiment, an actuator was used to create a band-limited Gaussian noise excitation
with a 0–500 Hz pass-band.

The proposed procedure was then applied to the measurement data. A stability diagram is
built with different rank R PARAFAC decomposition values ranging from 2 to 10 (corresponding
to five measurement signals). The diagram shows that there are five active modes, as seen in
Figure 11.

Five auto-covariance functions corresponding to rank R = 5 PARAFAC decomposition are
shown in Figure 12a. The curves of kurtosis values estimated with different lengths of the auto-
covariance functions are presented in Figure 12b. All kurtosis values of the auto-covariance
functions are higher than 3.0 when their lengths are longer than 30× (Ti )/(ξi ). Hence, it means
that these active modes belong to the cantilever beam.

These results are compared to those identified by the software, as shown in Table 3. These
estimated modal parameters match well with those identified by the software. The MAC shows
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Figure 11. Stability diagram in the case of Gaussian noise excitation.

Figure 12. Auto-covariance functions and kurtosis values in the case of Gaussian noise
excitation.

a good correlation between the structural mode shapes obtained by two different methods with
the auto-correlation coefficients approximate 1, as seen in Figure 13.

4.2.2. The structure subjected to Gaussian noise accompanied by a harmonic excitation

In this experiment, in addition to a band-limited Gaussian noise excitation with a pass-band
of 0 to 500 Hz, the cantilever beam was also subjected to a harmonic excitation at 20 Hz.

The proposed procedure was then applied to the measurement data. A stability diagram is
built with different values of rank R PARAFAC decomposition ranging from 2 to 10. There are six
active modes, as found in Figure 14. These six auto-covariance functions corresponding to rank
R = 6 PARAFAC decomposition are shown in Figure 15a.

The curves of kurtosis values estimated with different lengths of the auto-covariance func-
tions are presented in Figure 15b. The second separated component belongs to the harmonic
excitation because this component’s kurtosis values remain the same with the different lengths
of its auto-covariance function. Its kurtosis value is approximately 1.5 at the time length of
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Figure 13. Mode shape comparison in the case of Gaussian noise excitation.

Figure 14. Stability diagram in the case of Gaussian noise accompanied by harmonic
excitation.

T i
L = 40× (T2)/(ξ2). Other kurtosis values of the remaining auto-covariance functions are about

3.0 when their lengths are longer than a duration T i
L = 30× (Ti )/(ξi ). The kurtosis values of these

components with T i
L = 40×(Ti )/(ξi ) are about 3.8, as given in Table 3. It means that these remain-

ing active modes belong to the cantilever beam. The identified results are presented in Table 3.
The MAC comparison is presented in Figure 16. It shows a good correlation.

5. Conclusions

The discussed method based on the PARAFAC decomposition has proven to be an effective
tool for modal analysis in underdetermined cases. This method can also distinguish harmonic
components and structural modes using kurtosis values estimated from the auto-covariance
functions of modal coordinates. However, there was no explicit proposition for the choice of the
length of the auto-covariance function, which led to an erroneous result when this length was
insufficient.
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Figure 15. Auto-covariance functions and kurtosis values in the case of Gaussian noise
accompanied by harmonic excitation.

Figure 16. Mode shape comparison in the case of Gaussian noise accompanied by har-
monic excitation.

This study illustrates the dependence of the kurtosis values on the lengths of the auto-
covariance functions. The presented work allows one to make a conclusion about this length
based on the modal period Ti and the damping ratio ξi . It turned out that for the correct
separation of structural modes and harmonic components, the length of these auto-covariance
functions must be greater than 30Ti /ξi .

The proposed procedure was applied to numerical examples and then confirmed by experi-
mental tests. To estimate the kurtosis values, the length of the auto-covariance function was fixed
at 40Ti /ξi (> (30Ti )/(ξi )).

For the numerical simulation part, the responses from the 3-DOF system under (i) random
excitation and (ii) random excitation accompanied by harmonic excitation were processed in
accordance with the proposed procedure. The revealed modal parameters are very close to the
exact ones when the calculated values of kurtosis for the structural modes is (k = 3.9–4.1) and for
the harmonic component is k ≈ 1.5).
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In the experimental test section, the proposed procedure is applied to the responses of the
cantilever beam under (i) random excitation and (ii) random excitation mixed with harmonic
excitation. The identified modal parameters by the proposed method are in good agreement
with the reference ones obtained using the B&K software. In the presence of harmonic excitation,
the calculated kurtosis values for the structural modes are close to 4.0, and for the harmonic
component is approximate 1.5.

These validation tests confirm the effectiveness of the proposed method for use in OMA
for underdetermined cases in general and cases with the presence of harmonic excitations, in
particular.
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3 Operational modal analysis in the
frequency domain

The work presented in Chapter 2 to improve the existing modal analysis method based
on the PARAFAC decomposition led to a better understanding of the performance of
this mathematical tool, its capabilities and limitations for applications in the time do-
main. It has been noted that due to the nature of this decomposition, the number
of identifiable modes is higher then the number of measured signals. Moreover, the
PARAFAC decomposition in time-domain leads to covariance matrices of real values
when its frequency-domain decomposition yields the PSD functions of the complex val-
ues. And it was shown in Table 1.1 that the PARAFAC decomposition in the frequency
domain has more identifiable modes than in the time domain. This fact led to the idea
of using the PARAFAC decomposition in the frequency domain for modal analysis to
reveal complex modes, which is difficult to achieve in the time domain. To the best of
authors’ knowledge, there are no studies in the literature of modal identification method
based on PARAFAC decomposition in the frequency domain.
This chapter presents the development of a novel method for modal identification based
on PARAFAC decomposition in the frequency domain. Using the PARAFAC decomposi-
tion, a third-order tensor constructed from Power Spectral Density (PSD) of responses is
decomposed into rank-1 tensors which can be structural modes or harmonic components.
The auto-PSD function of each rank-1 tensor is then used to identify modal parameters,
while spectral kurtosis values are used for the distinction of structural modes and har-
monics. Detailed analytic development of the method is presented together with its
practical step-by-step application procedure. The performance of the proposed method
has been investigated for proportional/non-proportional damping, closely spaced modes,
underdetermined cases and in the presence of harmonic excitations.

Chapter abstract
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A novel method for modal analysis using parallel factor
decomposition in the frequency domain

Abstract

Current study presents a new method for output only modal identification in the frequency
domain. This work was inspired by the challenges of modern modal analysis when it
comes to underdetermined problems, when the number of measurements is less than the
number of active modes, or there are harmonic excitations. The proposed method based on
parallel factor (PARAFAC) decomposition technique, which is used to decompose a third-
order tensor constructed from power spectral density (PSD) matrices of response signals.
This decomposition leads directly to mode shapes and auto-PSD matrices of the modal
coordinates. Natural frequencies and damping ratios are then estimated from the auto-
PSD functions. And the spectral kurtosis is used to distinguish disturbance modes from
structural ones. Numerical simulation and experimental tests validate the effectiveness of
the proposed method when applied to determined and underdetermined problems in modal
analysis. It shows correct results in identifying mechanical systems with normal modes,
with complex modes, closely-spaced modes and for cases with the presence of harmonic
excitations.

Keywords: Modal identification, PARAFAC decomposition, frequency domain, power
spectral density, harmonic excitation

1. Introduction

Operational modal analysis (OMA) aims to identify modal characteristics using only
vibration responses of structures under ambient excitation [1, 2]. It offers many advantages
for modal identification of mechanical systems as it does not require to measure external
excitation and allows to estimate modal parameters under actual boundary condition.

Various modal identification methods have been developed for mechanical systems in
OMA. They perform identification either in the time domain [3–6] or in the frequency do-
main [7, 8]. In general, these identification methods are aimed at information physically
related to structures from correlation functions or spectral densities. Time domain iden-
tification methods extract this physical information from the correlation functions, while
frequency domain identification methods extract it from the spectral density functions [9].
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Blind source separation (BSS) has attracted considerable interest over the last decade
in OMA as a non-parametric alternative to modal characteristic identification from output-
only measurements [10]. The main purpose of the BSS is to identify sources from simul-
taneous recordings [11]. Many identification methods have been proposed. For example,
one of the first methods used in BSS was called independent component analysis (ICA)
[12–14], which assumed that the sources were statistically independent. Among various
other techniques, there is a technique called second order blind identification (SOBI) [15],
which uses a significant temporal structure of sources. However, these methods require
a number of sources equal to or less than the number of measurements, which called a
determined or an overdetermined problem. This limited the use of BSS methods for un-
derdetermined problems. Therefore, various other BSS methods and variations have been
proposed in the literature to deal with underdetermined cases. The state of the art in BSS
for operational modal analysis has been comprehensively reviewed and discussed in [16].
Two main approaches seem to be the most efficient for handling underdetermined cases:
the first uses the sparsity of sources, and the second involves tensor decomposition.

The idea of employing sparsity for underdetermined problems have been described in
[17]. Sparsity means having a representation domain in which sources tend to occupy dif-
ferent regions of space with reduced overlap. Sparsity can be achieved in the frequency or
time-frequency domain using Fourier transform [18], short-time Fourier transform [19],
wavelet packet transform [20], etc when they are not directly achievable in the time do-
main. And then, mixing matrix is estimated through clustering algorithms, such as K-
means clustering, hierarchical clustering, fuzzy C-mean clustering [21–23], etc. From the
estimated mode shapes, the modal coordinates can be recovered by methods such as the
least square method [24], l1-norm [23]. However, the accuracy of the estimated mode
shape of these methods depends on the clustering technique, and the recovered modal
coordinates are less precise in the case of poor clustering performance.

In the second approach, tensor decomposition based methods provide a relatively
straightforward solution to underdetermined BSS problems. It does not require statisti-
cal independence or the sparsity of sources. A parallel factor (PARAFAC) decomposition
of a tensor was introduced in [25, 26]. This is a multi-linear algebra tool. Several al-
gorithms have been developed to adapt to the PARAFAC model, which can be classified
into three categories: alternating algorithms, derivative based algorithms and non-iterative
algorithms [27–29]. The first algorithm is more popular because it is easier to implement,
ensuring convergence. Modal identification methods based on the PARAFAC decompo-
sition have been studied to solve undetermined cases, even in the presence of harmonic
excitations. In the time domain, covariance matrices with several time lags are used to
construct a third-order tensor. Then the tensor is decomposed into a mixing matrix and
an auto-covariance matrix of latent sources [30–38]. Besides, Ta et al. [30] defined a
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minimum length of auto-covariance functions to distinguish harmonic components for
PARAFAC decomposition-based methods in the time domain.

To the best of our knowledge, there have been no studies using PARAFAC decompo-
sition in the frequency domain for modal identification.

This present work employs the PARAFAC decomposition technique in the frequency
domain. First, the third-order tensor is constructed from PSD matrices of response signals.
Next, perform a decomposition to obtain mode shapes and an auto-PSD matrix of modal
coordinates in the frequency domain. Then, the frequencies and damping ratios can be
determined from the estimated auto-PSD functions of the modal coordinates.

The effectiveness of the proposed method is validated by numerical examples followed
by experimental tests for determined and underdetermined cases. The performance of the
method is investigated with proportional damping and non-proportional damping. The
ability to cope with the presence of harmonic excitation is verified, which is known to be
more challenging in BSS. Furthermore, tests are used to confirm the ability of the present
method to deal with closely spaced modes.

The rest of the article is organized as follows. Section 2 presents the problem PARAFAC
decomposition application in frequency domain. A procedure for modal analysis is re-
vealed. Section 3 presents numerical and experimental tests that were carried out to con-
firm the effectiveness of the proposed method. Finally, Section 4 summarizes the results.

2. PARAFAC decomposition-based modal identification

2.1. Tensor and PARAFAC decomposition
Tensor representation is an adequate form to express data in many situations for in-

stance, scores of air indicators on different time points and locations, correlation functions
of responses from different channels and different time lags and so on. The use of tensor
representation allows moreover to consider data as multidimensional that can be processed
using multi-linear algebra tools, more efficient and powerful than linear algebra ones (e.g.
principal component analysis) [39].

A complex-valued vector t = ti ∈ Cn1 is a first-order tensor while a complex-valued
matrix T = ti j ∈ Cn1×n2 is a second-order tensor. In general, a complex-valued pth-order
tensor is written as T = ti j...p ∈ Cn1×n2×...×np where n1 × n2 × ... × np are respectively the size
of p dimensions indiced by i j ... p.

In this work, the focus is limited to third order tensors noted by T = ti jk ∈ Cn1×n2×n3 . An
illustration of a third order tensor as a parallelepiped is given in Figure 1. When one index
is fixed, a third order tensor is reduced to matrices also called slices and when two indices
are fixed, it reduced to vectors also called fibers. Matricization is the way to transform
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a tensor to matrices and and then use efficient tools (singular value decomposition for
instance) devoted to matrices for data processing.

Using parallel factor decomposition (PARAFAC) a third order tensor can be decom-
posed into a sum of outer products of triple vectors as follows [40]:

T =

R∑

r=1

ar ◦ br ◦ cr =

R∑

r=1

Tr ⇔ ti jk =

R∑

r=1

airb jrckr (1)

where ◦ denotes the tensor outer product and R is the number of rank-1 tensor Tr present
in T of rank R. This is termed as a trilinear model of T, T = [[A,B,C]] with the matrices
A = [a1, a2, ..., aR], B = [b1,b2, ...,bR], and C = [c1, c2, ..., cR].

The factor matrices A,B,C can be obtained by optimizing the following cost function:

min
A,B,C

∥∥∥∥∥∥∥
T −

R∑

r=1

ar ◦ br ◦ cr

∥∥∥∥∥∥∥

2

(2)

The fundamental technique of PARAFAC was introduced in reference [25] and also
called canonical decomposition [26]. Several algorithms have been developed to fit a
PARAFAC model, which can be classified into three categories: alternating least square
algorithm, derivative based algorithms, and non-iterative algorithms [27, 28]. In this work,
the alternating least square algorithm is applied because of its simpler implementation, and
guaranteed convergence [31, 40, 41].

A unique PARAFAC decomposition is obtained if the Kruskal condition [42] is satis-
fied:

kA + kB + kC ≥ 2R + 2 (3)

where kA, kB and kC are k−rank of the matrices A,B and C respectively, where k−rank is
defined as maximum number k such that every set of k columns of the matrix is linearly
independent.

2.2. Formulation for the PARAFAC decomposition in the frequency domain
The motion equation of a n-DOF linear system subjected to external forces can be

written as follows:

Mẍ(t) + Cẋ(t) + Kx(t) = f(t) (4)

where M, C, and K denote the n × n mass, damping, and stiffness matrices, respectively.
f(t) is the n × 1 vector of applied forces, and x(t) is the n × 1 vector of displacements.
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The displacement x(t) can be represented in the form of a modal superposition of the
vibration modes:

x(t) = Φq(t) =

n∑

r=1

φrqr(t) (5)

where Φ is the n × n mode shape matrix and q(t) is a n × 1 column vector of modal
coordinates.

The correlation function (CF) matrix Cx(τ) of vibration measurements x(t) evaluated
at time-lag τ can be written as follows:

Cx(τ) = E
{
x(t)xT (t + τ)

}
= ΦCq(τ)ΦT (6)

where the n × n CF matrix Cq(τ) of modal coordinates is expressed as follows:

Cq(τ) = E
{
q(t)qT (t + τ)

}
(7)

with

Cq
i j(τ) = E

{
qi(t)q j

T (t + τ)
}

(8)

Fourier transform of both sides of Eq. (6) gives corresponding PSD matrices:

Gx( f ) = ΦGq( f )ΦH (9)

In Eq. (9), the values of the cross-correlation functions of the measurements are com-
plex values, while the values of the autocorrelation part are positive real values. In oper-
ational conditions, excitations are assumed to be white noise and uncorrelated processes.
Gq( f ) is thus diagonal and it leads to the following approximation:

Gx( f ) = ΦGq( f )ΦH ≈
n∑

r=1

φrφ
H
r gq

rr( f ) (10)

where Gx( f ) and gq
rr( f ) are respectively the n × n PSD matrix of the responses and the

rth diagonal component of the n × n auto-PSD matrix of the modal coordinates Gq( f ).
The frequency domain decomposition (FDD) technique was introduced by Brincker

et al. [7] that is based on the singular value decomposition (SVD) of the spectral density
matrices Gx( f ) in Eq. (10) evaluated in discretized frequencies fk. For each frequency fk,
the processing is independent and it gives the corresponding singular values and singular
vectors. The abscissa of the peaks in the first singular values in function of frequencies
fk indicate natural frequencies and associated singular vectors at these frequencies gives
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estimates of mode shapes. The enhanced frequency domain decomposition (EFDD) [43]
proposed to identify the modal damping using a piece of singular values around a mode.
The selection of the piece is based on the similarity of singular vectors of adjacent fre-
quencies using MAC values.

In the FDD method, at a frequency neighborhood, the estimated mode shapes given
by SVD are orthogonal and the number of identified modes is limited by the number of
sensors (i.e. the smallest dimension of the PSD matrix). Moreover, the PSD matrices are
considered separately and the relationship between them are not clearly exploited.

In contrast to the FDD method based on SVD, we propose to consider the PSD as a
third-order tensor G and to apply the PARAFAC decomposition to identify modal parame-
ters. The tensorG is obtained in stacking Gx( f ) sampled in n f frequencies. The dimension
of G is thus n × n × n f or in practice nx × nx × n f where nx is the number of measurement
channels. Figure 1 gives an illustration of G with indices: i = 1 . . . nx, j = 1 . . . nx and
k = 1 . . . n f .

Equation (10) can be rewritten for every frequency fk

Gx( fk) =

n∑

r=1

φrφ
H
r gq

rr( fk) (11)

and the (i, j, k) component of the third-order tensor G of responses x(t) is thus computed
by

gx
i j( fk) = gx

i jk =

n∑

r=1

φirφ
∗
jrg

q
r ( fk) =

n∑

r=1

φirφ
∗
jrg

q
rk (12)

By comparison between Equation (12) and Equation (1), it can be deduced

gx
i jk =

n∑

r=1

φirφ
∗
jrg

q
rk ⇔ Gx =

n∑

r=1

Gr
x =

n∑

r=1

φr ◦ φ∗r ◦ gr
q (13)

Recall that φr is the rth column vector of mode shape matrixΦ and gq
r is the vector eval-

uated at n f frequencies of the rth component auto-PSD modal coordinate. The Equation
(13) gives the foundation of our proposed method. By using the PARAFAC decomposi-
tion of Gx under the condition of unique decomposition as given in Equation(3), the mode
shapes are estimated from φr while natural frequencies and damping ratios are deduced
from gq

r .
It is worth to note that the PARAFAC decomposition offers a unique decomposition

even if its rank order is greater than the smallest dimension of the tensor. Therefore, this
decomposition can be utilized to handle underdetermined cases. For the complex form of

6
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Fig. 1. Geometric interpretation for PARAFAC decomposition [44]

the PSD tensor, the constrained decomposition in Eq. (1) is essentially unique under the
following condition [44]:

2ns(ns − 1) ≤ n2
x(nx − 1)2 (14)

where nx is the number of measurements and ns is the maximum number of identifiable
sources.

The relationship between the number of measurements and the maximum number of
identifiable sources (i.e., modes or components) extracted by PARAFAC decomposition is
given in Table. 1. It can be noted that the number of identifiable modes for complex tensor
cases is higher than for real-valued tensors.

Table 1
Source separation capability for PARAFAC decomposition [44]

Number of measurements nx 2 3 4 5 6 7 8

Number of identifiable modes nmax
s (real-valued case) 2 4 6 10 15 20 26

Number of identifiable modes nmax
s (complex-valued case) 2 4 9 14 21 30 40

2.3. Harmonic detection in the frequency domain
In the OMA, system is generally assumed to be excited by a random broadband sig-

nal. However, in many applications, periodic forces generated by unbalanced masses of
rotating parts or electric actuators may cause harmonic components in the responses. Ex-
tra terms relative to the harmonic excitations are thus added in the Equation(13). These
components need to be detected and eliminated in the modal identification process [45].
A direct approach for processing these harmonic components is to consider them as zero-
damping modes [46]. Kurtosis value was also used in time domain to distinguish modal

7
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responses from periodic excitations [47, 48]. In frequency domain, the spectral kurtosis
(SK) of a signal is defined as the kurtosis value of its frequency component. It has been
applied to the detection of harmonics [49–52]. A remarkable advantage of this approach
is that the information for each frequency component can be indicated in the frequency
range of interest.

Let X( f ) be the discrete Fourier transform (DFT) of signal x(t). The original SK can
be defined as follows [49]:

S K( f ) =
E

{
|X ( f )|4

}
− 2

[
E

{
|X ( f )|2

}]2

[
E

{
|X ( f )|2

}]2 (15)

where E{.} denotes the operator of expectation and |.| represents the modulus operator.
In practice, the signal x(t) is divided into M blocks to obtain an unbiased estimator of

the SK by using the k-statistics:

S K( f ) =
M

M − 1



(M + 1)
M∑

i=1

∣∣∣Xi ( f )
∣∣∣4

(
M∑

i=1
|Xi ( f )|2

)2 − 2


(16)

where the vector Xi( f ) is a DFT of the i-th block.
According to the statistical characteristic [49], the SK of a synthetic signal always

equals to –1 for the harmonic frequency. However, this value for a random process equals
to zero. In the case of x(t) mixing with a harmonic signal, its SK can be comprehensively
described as:

{
S K( f ) = −1, f = fh

S K( f ) = 0, f , fh
(17)

where fh is a harmonic frequency.
Consequently, harmonic components and structural modes will be detected and con-

firmed by estimating the values of SK at each frequency through Eq. (16) and Eq. (17).

2.4. Proposed procedure for modal analysis
The procedure for modal analysis using PARAFAC decomposition in the frequency

domain is proposed as follows:
Step 1. Collect responses x(t).
Step 2. Estimate the third-order PSD tensor Gx from x(t).

8
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Step 3. Build a stability diagram and determine the number of active modes R.
Methods based on the PARAFAC decomposition require a prior knowledge of the num-

ber of active modes. The order of rank R of the decomposition is chosen equal to the
number of operating modes. This is essential to determine the correct rank. In order to
determine the actual value of the rank order, the present study applies a PARAFAC de-
composition with several ranks to obtain a stability diagram. The actual rank R will be
determined from the stability diagram. This step is done as follows:

- Perform multi-rank Ri = 2 : nmax
s PARAFAC decomposition of tensor Gx to estimate

mode shape matrix Φ(i) and auto-PSD matrix Gq
(i) corresponding to the rank Ri decompo-

sition.
- Find the dominant frequency in each auto-PSD function in the estimated Gq

(i)
- Draw the stability diagram of the identified frequencies with Ri = 2 : nmax

s
- Determine the number of active modes R equals to the minimum rank order when the

number of identified frequencies becomes stable.
Step 4. Use the results of the rank R decomposition to estimate the frequencies and

damping ratios from gq
r using a optimization procedure.

Each separated mode can be interpreted as a 1-DOF system. The theoretical formula
of an auto-PSD function of the rth mode can be written as follows:

ĝq
r ( f ) =

Ar(
f 2
r − f

)2
+ 4 f 2

r f 2ξ2
r

(18)

where fr and ξr are the modal frequency and the damping ratio of the kth mode, respectively
and Ar is a constant.

The frequency and the damping ratio can be identified by solving the optimization
problem. Each auto-PSD function estimated in the previous step is treated as the input for
the optimization procedure as follows:

Âr, f̂r, ξ̂r = arg min
Ar , fr ,ξr

∥∥∥ĝq
r ( f ) − gq

r( f )
∥∥∥

2
(19)

where ‖.‖2 denotes the L2-norm (Euclidean norm). ĝq
r ( f ) and gq

r( f ) are the theoretical
formula and the estimated auto-PSD of the rth mode, respectively.

The frequency values identified in the previous step are reutilized. The damping ratio
can be estimated preliminarily by the half power bandwidth method. They can be consid-
ered as the initial values for the optimization procedure.

Step 5. Detect harmonic components by evaluating spectral kurtosis values at the
frequencies identified in step 4.

- The SK value of the signal is -1 for the harmonic frequency and its value is close to
zero for a structural mode.

9
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Step 6. Obtain modal parameters by eliminating harmonic components.
The Modal Assurance Criterion (MAC) [53] can be used to check the colinearity be-

tween mode shapes φi and φ j as follows :

MACi j =

∣∣∣φH
i φ j

∣∣∣2

(φH
i φi)(φ

H
j φ j)

(20)

When exact mode shapes are known, MAC values are also used to evaluate the quality
of identified mode shapes.

3. Validation

3.1. Theoretical power spectral density
In this section, different mass-spring-damper systems are examined to validate the pro-

posed method. The different modal parameters are defined to take into account various
problems in modal identification, such as real-valued normal mode and complex modes.

3.1.1. A proportionally damped system
Consider an example of a 2-DOF system with the mass matrix M, the stiffness matrix

K and the corresponding mode shape matrix Φ.

M =

[
2 0
0 2

]
; K =

[
800 −800
−800 2400

]
;Φ =

[
1.0000 1.0000
0.4142 −2.4142

]

The damping matrix C is calculated through a proportional model C = 0.2M+0.00005K.
Two exact natural frequencies and the two damping ratios are presented in Table. 2.

The third-order tensor Gx is estimated under white noise excitation according to the
theoretical formula from the reference [54] with 524288 frequency lines and a sampling
rate of 512 Hz. The components of this theoretical PSD tensor are shown in Fig. 2:

The theoretical PSD tensor is processed by the proposed method to obtain a mode
shape matrix and a matrix containing the auto-PSD functions of modal coordinates. Two
estimated auto-PSD functions with rank R = 2 PARAFAC decomposition are shown in
Fig. 3a.

The modal frequencies and damping ratios are identified using the optimization proce-
dure described in Step 4. In Fig. 3b, the red-dash line shows the PSD curves plotted by
the identified values.

The identification results are shown in Table. 2 together with exact modal parameters.
The identified frequencies and the damping ratios are the same as the exact ones. The
mode shapes are also exactly estimated. This confirms the efficiency of the procedure
proposed when it is applied to the exact third-order PSD tensor by the theoretical formula.
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Fig. 2. Theoretical PSD curves of the 2-DOF system
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(a) Auto-PSD functions (b) Estimation of modal parameters

Fig. 3. The identified sources from the 2-DOF system

Table 2
The identified results from the 2-DOF system

Mode Frequency (Hz) Damping ratio (%) MAC
Exact Identified Exact Identified

1 2.44 2.44 0.69 0.69 1.00
2 5.88 5.88 0.36 0.36 1.00
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3.1.2. A non-proportionally damped system
To demonstrate the capabilities of the proposed method for identifying complex modes,

this study uses a non proportionately damped 4-DOF model taken from the reference [55].
The mass, stiffness, and damping matrices of the model are as follows:

M =



1 0 0 0
0 1 0 0
0 0 0.5 0
0 0 0 0.3


; K =



2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1


; C =



0.04 −0.02 0 0
−0.02 0.03 −0.01 0

0 −0.01 0.02 −0.01
0 0 −0.01 0.01


The complex mode shapes are presented in Table. 3. The exact modal frequencies and

the exact modal damping ratios of the system are presented in Table. 4.
The theoretical PSD tensor is estimated with 524288 frequency points. The four auto-

PSD curves are presented in Fig. 4.

Fig. 4. Theoretical auto-PSD curves of the 4-DOF system

Fig. 5a shows the identified auto-PSD functions by PARAFAC decomposition in fre-
quency domain. Fig. 5b presents the auto-PSD functions obtained by optimization proce-
dure (in red) with ones from figure 5a (in blue). The curves are coincide. The identified
results for the plots presented on Fig. 5 are shown in Table. 3 and Table. 4. It can be
seen that the identified parameters are the same as the exact values. This confirms that the
method is capable of dealing with complex modes.

3.2. Numerical examples
3.2.1. Well-separated modes

The effectiveness of the proposed method is investigated here using data from a nu-
merical system. This test uses a simple 3 DOF system (Fig. 6) with a mass matrix M, a
stiffness matrix K, and a corresponding mode shape matrix Φ.

12
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(a) Auto-PSD functions (b) Estimation of modal parameters

Fig. 5. The identified sources from the 4-DOF system

Table 3
The complex modes of the 4-DOF system .

Mode 1 2 3 4

Exact

1.00 + 0.00i 1.00 - 0.00i 1.00 - 0.00i 1.00 + 0.00i
1.78 + 0.00i 0.47 + 0.01i -1.05 + 0.02i -4.53 + 0.16i
2.17 + 0.00i -0.78 - 0.00i 0.09 - 0.01i 19.59 - 0.88i
2.32 + 0.00i -1.43 - 0.01i 1.09 - 0.02i -20.35 + 0.93i

Identified

1.00 + 0.00i 1.00 - 0.00i 1.00 - 0.00i 1.00 + 0.00i
1.78 + 0.00i 0.47 + 0.01i -1.05 + 0.02i -4.53 + 0.16i
2.17 + 0.00i -0.78 - 0.00i 0.09 - 0.01i 19.59 - 0.88i
2.32 + 0.00i -1.43 - 0.01i 1.09 - 0.02i -20.35 + 0.93i

Table 4
Frequencies and damping ratios estimated from the 4-DOF system

Mode 1 2 3 4

Exact
f (Hz) 0.07 0.20 0.28 0.41
ξ (%) 0.45 0.86 1.48 1.30

Identified
f (Hz) 0.07 0.20 0.28 0.41
ξ (%) 0.45 0.86 1.48 1.30

MAC 1.00 1.00 1.00 1.00

The damping matrix is calculated through a proportional model C = 0.2M+0.00005K.
The exact values of the natural frequencies and the damping ratios are presented in Table.
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5.

m1 m2

k1 k2

c2c1

m3

k3

c3

x1 x2 x3

Fig. 6. The 3-DOF numerical system

M =


2 0 0
0 2 0
0 0 2

 ; K =


800 −800 0
−800 2400 −1600

0 −1600 4000

; C =


0.44 −0.04 0.00
−0.04 0.52 −0.08
0.00 −0.08 0.60


In this test, random excitations accompanied by harmonic excitation were applied to

all three DOFs of the system. Newmark algorithm was used to obtain time responses. In
this simulation, the sampling rate was 200Hz and the total response time was 1200s. The
responses of the system are shown in Fig. 7a.

(a) Simulated signals (b) Stability diagram

Fig. 7. Simulated signals and stability diagram in the case of random noise accompanied
by harmonic excitation

The stability diagram is drawn for PARAFAC decomposition for rank Ri = 2 : 4 as
shown in Fig. 7b. The diagram shows that there are four active modes. The four auto-PSD
functions estimated by PARAFAC decomposition of rank R = 4 are presented in Fig. 8a.
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The PSD curves obtained by the optimization are plotted in Fig. 8b (in red) with one from
Fig. 8a (in blue).

(a) Auto-PSD functions (b) Estimation of modal parameters

Fig. 8. Separated sources in the case of random noise accompanied by harmonic excita-
tion

Fig. 9 presents the spectral kurtosis corresponding to the identified frequencies. It can
be seen from the figure that the first three components (corresponding to source 1, 2, and 3)
with average SK values are approximately equal to zero, which corresponds to structural
modes. However, the last component (corresponding to source 4) with an average SK of
about -1.0, corresponds to harmonic excitation.

Fig. 9. Spectral kurtosis at each frequency of the simulated signals
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The estimated modal parameters are presented in Table. 5. They are close to the exact
ones. This confirms the effectiveness of the proposed procedure for a numerical system
subjected to white noise excitation accompanied by harmonic excitation.

Table 5
Results estimated from the numerical system

Mode 1 2 3 4

Exact
f (Hz) 2.05 4.82 7.98 10.00
ξ (%) 0.81 0.41 0.32 -

Identified

f (Hz) 2.05 4.82 7.95 10.00
ξ (%) 0.78 0.37 0.42 0.01
S K value 0 0 0 -1
Nature Struct Struct Struct Harmonic

MAC 1.00 1.00 1.00

3.2.2. Closely-spaced modes
The property of closely spaced modes frequently appears in practical engineering

structures. To demonstrate the capabilities of the proposed method for identifying closely
spaced modes, a 3-DOF model is taken from [56]. The mass, stiffness, and damping ma-
trices of the model are as follows:

M =


1 0 0
0 2 0
0 0 1

 ; K =


5 −1 0
−1 4 −3
0 −3 3.5

; C =


0.0894 −0.0084 0.0003
−0.0084 0.1301 −0.0244
0.0003 −0.0244 0.0772


Free decay is simulated with initial condition x(0) = [0, 0, 0]T and v(0) = [0, 1, 0]T .

The responses are shown in Figure 10. In this example, modes 2 and 3 are quite closely
spaced.

The stability diagram is shown in Fig 11 and it indicates the number of active modes
R = 3. The estimated auto-PSD functions of modal responses are shown in Fig. 12a, from
which the modal frequencies and damping ratios are estimated (shown in Table. 6). The
PSD curves obtained by the optimization are plotted in Fig. 12b. These values are well
identified. The identified mode shapes fit the exact ones, with MAC values higher than
0.99.

3.3. Experimental tests
3.3.1. Cantilever beam

The proposed method of modal identification is now verified with an experimental
test shown in Fig. 13. The test was carried out on a steel cantilever beam with Young’s

16

3.1. A novel method for modal analysis in the frequency domain (Article 2) 75



Fig. 10. Simulated signals and corresponding Fourier spectrums with closely-space
modes

Fig. 11. Stability diagram

modulus E = 200GPa and a density of ρ = 7850kg/m3. The dimensions of the cantilever
beam are as follows: length 1005mm, width 42mm and height 10mm.

To obtain a reference model, a classical experimental modal analysis was performed.
The time responses were recorded using five B&K Type 4533-B-001 accelerometers mounted
along the length of the cantilever beam. A B&K Type 8230-001 force transducer was used
to collect the input excitation as shown in Fig. 13(at the place of actuator 1). The commer-
cial B&K ConnectTM software was used to acquire both the input excitation and the output
responses. The modal parameters were determined using Rational Fraction Polynomial
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(a) Auto-PSD functions (b) Estimation of modal parameters

Fig. 12. Separated sources in the case of the system with closely-space modes

Table 6
Results estimated from the closely-spaced modes system

Mode 1 2 3

Exact
f (Hz) 0.10 0.34 0.37
ξ (%) 3.83 1.16 1.07

Identified
f (Hz) 0.10 0.34 0.37
ξ (%) 3.83 1.23 1.17

MAC 1.00 0.999 0.999

(RFP) method implemented in the software. The identified mode shapes are shown in Eq.
(21) and identified natural frequencies and damping ratios are given in Table. 7. These
results are used as reference values to check the accuracy of the proposed method. In this
experiment, in addition to an ambient excitation, the cantilever beam was also excited by
a harmonic frequency of 20Hz (at the place of actuator 2). The responses were recorded
with a sampling rate of 2048Hz. Fig. 14 shows the acceleration responses at the locations
of the sensors on the beam.

Stability diagram of five measurement signals obtained by performing several PARAFAC
decompositions with Ri = 2 : 7. When performing a decomposition for rank R = 7, seven
auto-PSD functions are given. However, two of them have the same dominant peak at the
same frequency. This means that only six frequencies are identified by the decomposition
for rank R = 7. The stability diagram indicates that there are six active modes in this test
(Fig. 15a). In addition, to simulate the underdetermined case, the stability diagrams using
only four sensors is also shown in Fig. 15b. One more time, the stability diagram indicates
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(a) Cantilever beam (b) Schematic model

Fig. 13. The cantilever beam and test point locations

(a) Time domain (b) Frequency domain

Fig. 14. Five measurement signals of the cantilever beam

six active modes.
Six estimated auto-PSD functions of PARAFAC decomposition for rank R = 6 are

shown in Fig. 16. The modal frequencies and the damping ratios are estimated from these
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(a) Using five sensors (b) Using four sensors

Fig. 15. Stability diagrams

Fig. 16. Separated auto-PSD functions in the case of random noise accompanied by
harmonic excitation

estimated functions. They are plotted in Fig. 17 together with the corresponding identified
auto-PSD curves. The identified results are presented in Table.7. The results agree with
the modal parameters identified by the RFP method in the software.

The plots of the SK value of the first and fifth measured signals for different frequencies
are shown in Fig. 18. It can be seen that the second separated component belongs to the
harmonic excitation because its SK values in the five measurement signals are equal to
-1.0. This second mode also has a zero identified damping value. The other components
have mean SK values close to zero. This means that these frequencies correspond to the
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Fig. 17. Estimation of modal parameters of the cantilever beam

Fig. 18. Spectral kurtosis at each frequency of the measurement signals

structural modes.
The estimated mode shapes using PARAFAC decomposition are presented in Eq. (22)

for five sensors and Eq. (23) for 4 sensors respectively. The structural mode shape plots
are depicted in Figure. 19. The continuous blue lines represent the analytical mode shapes
and the red asterisks represent the results obtained from the proposed method.

ARFP =



0.1725 −0.3794 0.6935 −1.0027 0.6005
0.2698 −0.7120 0.4873 0.4719 −0.7356
0.4943 −0.5681 −0.5248 0.4392 0.7818
0.7440 0.0930 −0.4077 −0.7186 −0.6527
1.0000 1.0000 1.0000 1.0000 1.0000


(21)

A(5)
PARAFAC =



0.1723 −0.0297 −0.3791 0.6935 −1.2693 0.6006
0.2689 0.0000 −0.7116 0.4874 0.5866 −0.7369
0.4944 0.2130 −0.5679 −0.5249 0.4746 0.7829
0.7438 0.5805 0.0932 −0.4076 −0.9281 −0.6558
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000


(22)
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A(4)
PARAFAC =



0.1724 −0.0293 −0.3790 0.6932 −1.0079 0.5974
0.2692 −0.0001 −0.7112 0.4870 0.3650 −0.7317
0.4942 0.2127 −0.5673 −0.5247 0.4299 0.7794
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000


(23)

Fig. 19. Mode shapes of the experimental cantilever beam

Table 7
Results estimated from the experimental beam

Mode 1 2 3 4 5 6

RFP
f (Hz) 7.55 - 48.11 136.57 274.17 442.52
ξ(%) 0.72 - 0.33 0.70 1.12 0.30

5 sensors
f (Hz) 7.56 20.04 48.09 136.63 275.08 442.57
ξ(%) 0.73 0.00 0.40 0.72 1.09 0.29
MAC 1.00 - 1.00 1.00 0.99 1.00

4 sensors
f (Hz) 7.56 20.00 48.09 136.64 275.12 442.56
ξ(%) 0.66 0.02 0.35 0.71 1.08 0.28
S K value ≈ 0 -1 ≈ 0 ≈ 0 ≈ 0 ≈ 0
Nature Struct Harmonic Struct Struct Struct Struct

Besides, four out of five measurement signals (1, 2, 3, 5) are also used for modal
identification to show the effectiveness of the proposed method. The identified results
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are tabulated in Table.7. The estimated partial mode shapes are shown in Eq. (23). The
identified parameters match well with the references.

These obtained results confirm the effectiveness of the proposed procedure in under-
determined problems as well as with the presence of harmonic excitation.

3.3.2. Two-story aluminum frame
In order to test the proposed method with an experimental test of very close modes, a

two-storey laboratory frame (shown in Fig. 20a) is considered, measuring 19cm x 30cm
in plan with a story height of 31cm. First, a classical modal analysis based on the RFP
method is performed with the input and output signals. These identified modal parameters
by the RFP method are the used as reference values.

(a) Two-story frame (b) Schematic model

Eight B&K Type 4533-B-001 accelerometers are attached to the frame to measure the
vibration response of the frame in two horizontal directions. Vibration responses were
measured with a sampling rate of 2048 Hz. The auto-PSD functions of the vibration
signals are shown in Fig. 21. It should be noted that modes 1 and 2 closely spaced. It is
also the same for modes 4 and 5.

The signals is processed by the proposed method in two situations : (i) eight signals
and (ii) four signals only . The stability diagrams for 8 sensors and 4 sensors are shown
in Fig. 22a and Fig. 22b, respectively. They indicate clearly the present of six active
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Fig. 21. The auto-spectral density functions of measured signals

modes in the signals. The six estimated auto-PSD functions of PARAFAC decomposition
for rank R = 6 are shown in Fig. 23. It can be seen that they are effectively separated by
the PARAFAC decomposition. These functions are also plotted in Fig. 24 together with
its corresponding identified curve in red dashed line. The identified modal parameters
are presented in Table.8. The results match well with the modal parameters identified by
the classical RFP method implemented in the B&K Pulse software. The estimated mode
shapes are plotted in the Fig. 25. Besides, the FDD method is also applied for comparisons
with the proposed method in this test. The comparison of the estimated mode shapes is
presented in Fig. 26.

Furthermore to simulate an underdetermined case, only four sensors (1,2,7,8) are used
for the proposed method. The identified results given in in Table.8 confirm that the pro-
posed method can give a good performance in underdetermined cases.

4. Conclusion

This paper presents a novel method for output-only modal identification in the fre-
quency domain. The method is based on the PARAFAC decomposition of the third-order
PSD tensor of responses. Decomposed components along sensor dimension allow to iden-
tified mode shapes while the ones along the frequency dimension give auto-PSD functions
of modal coordinates. The application of an optimization procedure on these functions
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(a) Using eight sensors (b) Using four sensors

Fig. 22. Stability diagrams

Fig. 23. Separated auto-PSD functions

gives natural frequencies and damping ratios. The use of a stability diagram allows to
recognize the exact number of active modes. A practical step-by-step procedure of the
proposed method has been proposed.

The validity of the proposed method was verified using simulated responses and exper-
imental tests. Proportional and non-proportional damping examples showed that the appli-
cation of the PARAFAC decomposition in frequency domain gives the proposed method
the capacity identifying complex modes and moreover it is more efficient in comparison
with real-valued tensors as the case of time domain.

Closely and very closely-spaced modes tests were also tested. Identified results by
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Fig. 24. Estimation of modal parameters of the frame

Table 8
Results estimated from the frame

Mode 1 2 3 4 5 6

RFP
f (Hz) 36.25 38.44 63.00 144.24 148.14 246.71
ξ(%) 0.55 0.38 0.32 0.31 0.13 0.25

FDD
f (Hz) 36.27 38.41 62.96 144.28 148.20 246.64
ξ(%) 0.44 0.46 0.32 0.20 0.17 0.14

8 sensors
f (Hz) 36.27 38.39 62.96 144.30 148.19 246.63
ξ(%) 0.43 0.42 0.30 0.21 0.10 0.14

4 sensors
f (Hz) 36.26 38.42 62.97 144.26 148.16 246.62
ξ(%) 0.35 0.42 0.31 0.21 0.11 0.15

the proposed method are all in good agreement exact values or reference values of the
input-output RFP method.

The proposed method was also efficient in underdetermined cases when the number
of signal channels was reduced in comparison with number of active modes. The quality
of identified results are quite unchanged when a half of signal channels were removed (8
sensors v.s. 4 sensors) for the case of two-storey frame.

In presence of harmonic excitations, by using the spectral kurtosis values, the proposed
method can easily distinguish structural modes from harmonic components.

The proposed method should be thus a performance method for operational modal
analysis.
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(a) 1st mode (lateral) (b) 2nd mode (lateral) (c) 3rd mode (torsional)

(d) 4th mode (lateral) (e) 5th mode (lateral) (f) 6th mode (torsional)

Fig. 25. The identified mode shapes of the frame
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Fig. 26. Cross MAC
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93

4 Single damage detection

As discussed in Chapter 1, the damage detection procedure is an indispensable tool for
ensuring structure integrity and safety in the process of Structural Health Monitoring.
This is just as important as modal analysis presented in previous chapters. The chal-
lenges in damage detection procedure are to detect the presence, location and extent of
structural damage, especially in the early stage of its formation. In addition, an impor-
tant part of this procedure is damage diagnostics, which reflects information about the
safety of the structure.
As modal parameters like natural frequencies, mode shapes and its curvatures are highly
depend on health state of structure, the most of existing methods for detection of a single
damage are based on this fact. They assume a simplified heuristic expression between the
change in beam stiffness and its impact on the natural frequency shift and mode shape
curvature. Then they produce a curve for each mode, expressing the severity of damage
and its location. In plotting several curves of identified modes, the stiffness change and
its location are deduced manually from the coordinates of the intersection of these curves.
However, these methods can give inaccurate results of damage identification when these
curves do not have the same intersection point. In addition, it is important to note that
the variation in modal parameters comes not only from the appearance of a stiffness
change, as the main assumption of all these methods, but also from a local change in the
mass of the structure.
This chapter presents an efficient method for the rapid detection and quantification of
single local damage in like-beam structures using identified modal parameters. Damage
can be viewed as a localized change in mass and/or stiffness. The presented explicit ana-
lytical expression provides a relationship between local changes in the mass and stiffness
of a beam and its natural frequency shift and mode shape. Based on the proposed expres-
sion, linear regression is applied to obtain accurate results of the change in masse/stiffness
of the beam. The effectiveness of the proposed procedure was confirmed by numerical
simulations followed by experiment verification.
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Single damage detection using natural frequency shift, mode
shapes and curvatures

Abstract

The article presents a procedure for detecting changes in the beam structures using dy-
namic analysis. This procedure allows to determine the location of structural changes in
the beam and the degree of their severity by analyzing the variations of natural frequen-
cies, the mode shapes and the curvatures of the intact and damaged states. For damage
identification, a simplified relationship between local changes in mass and/or stiffness and
variations in natural frequency is established. These local changes are represented by dam-
age coefficients, which are estimated by linear regression along the structure. The criterion
for determining the location of the damage is defined as the position at which the error in
estimating these coefficients is the smallest. Then, the type of damage and its severity are
determined by analyzing the values of these estimated coefficients. The effectiveness of
the proposed procedure was confirmed by numerical simulations followed by experiment
verification.

Keywords: Structural modification, single damage identification, frequency shift, mode
shape

1. Introduction

The past few decades have seen a rapid growth in the development of structural health
monitoring tools thanks to tremendous technological advances. Consequently, the detec-
tion of structural damage has now become one of the important parts of assessing the con-
dition of engineering structures. Since damage can cause changes in the dynamic behavior
of structures [1, 2], it is obvious that these unnoticed and untreated structural changes can
have serious consequences.

Structural damage detection by monitoring the dynamic behavior of structures using
modal parameters has been the subject of numerous studies [3, 4]. Changes in dynamic
characteristics such as natural frequencies, mode shapes, and damping ratios are the most
common parameters used in damage detection. However, damping ratios are less com-
monly used for damage detection than changes in natural frequencies or mode shapes as it
is sensitive to environmental factors such as humidity and temperature [5].
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Studies based on comparisons of modal shapes and their curvature before and after
damage exploit the fact that these parameters are sensitive to the presence of damage [6–
9]. Studies [10, 11] show that the use of additional modal parameters, in combination with
mode shapes and their derivatives, can provide a more reliable assessment of damage iden-
tification. However, these methods mainly depend on the number of measurement points
for accurate damage assessment, which is often difficult to achieve in real conditions.
Also, techniques using only mode shapes or their derivatives are limited to identifying the
location of the damage, without assessing the severity.

Damage detection methods using frequency shift has been introduced in many studies
as natural frequencies are independent of the measurement site and can be measured more
accurately than mode shape and damping [12]. Thus, Patil and Maiti [13] developed a
crack detection technique that uses a rotational spring model to simulate the crack effect
in the beam, with the damage index being an indicator of how much strain energy is stored
in the spring. Dahak et al. [14] presented a study where the damaged zone was distin-
guished by the classification of the first four frequencies of the structure. Sha et al. [15]
developed a damage detection method that combines relative natural frequency changes
and Bayesian inference to detect damage in beams. Surace and Bovsunovskii [16] used
the ratios between natural frequencies of different modes as a characteristic of damage.
Gillich and Praisach [17] discovered the damage location through a pattern recognition
problem of measured frequency changes. Le et al. [18] used a first-order estimate between
the relative frequency variation and the damage parameters to determine the damage. In
addition, in [10, 11, 19] the use of the relationship between natural frequency variation
and modal curvature for damage detection was discussed.

Significant improvements in computing power and advances in sensor technology have
enabled machine learning techniques to be used in damage detection applications. Lee [20]
constructed a set of training patterns of a neural network for damage detection in pipe-
type beams using changes in natural frequencies. Other methods such as bee algorithm
[21], hybrid optimization [22] and particle swarm optimization [23] have been applied for
damage detection. In general, these methods are effective but cause computational burden
while trying to get convergence of the damage identification algorithm.

Among the above studies, methods using natural frequency shift seem to be simple,
accurate and convenient for single crack detection in beams. These methods are based on
using natural frequency shift and modal curvature to produce contour lines along the entire
length of the beam. The intersection of these contour lines then serves to manually locate
the damage by visual identification of these intersections. However, damage identification
becomes less accurate when several of these contour lines do not have a mutual intersection
point [10, 11, 19]. In addition, it is important to note that variation in modal parameters
occurs not only from the appearance of a crack, but also from a local change in the mass
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of the structure.
Summarizing the above, this work is aimed at establishing a simplified relationship

between changes in natural frequency and local changes in the stiffness and mass of the
beam, either separately or simultaneously. Based on this relation, a procedure for detecting
a single damage in beams is introduced. This procedure can be used to simultaneously de-
tect and quantify local changes in the mass and/or stiffness of a beam. Numerical examples
and experimental tests were used to validate this procedure.

The rest of the article is organized as follows. First, a general dynamic analysis is
discussed in Section 2. Then, damage analysis and a proposed procedure for damage
identification are introduced in Section 3. Next, the focus of the work shifts to the appli-
cation of proposed procedure to numerical and experimental tests with different boundary
conditions in Section 4 and Section 5. Finally, a conclusion is given in Section 6.

2. Theoretical formulation

Consider an Euler–Bernoulli beam with the following equation of motion:

∂2

∂x2

(
EI(x)

∂2y(x, t)
∂x2

)
− P

∂2y(x, t)
∂x2 + µ(x)

∂2y(x, t)
∂t2 = 0 (1)

where y(x, t) is the displacement of the beam at a coordinate x at time t. P, µ and EI(x)
are axial force, the mass per unit length and bending stiffness, respectively.

The solution of Eq. (1) is obtained by separation of variables. Suppose that the dis-
placement can be represented as two parts: one depending on the position x and the other
depending on time t as follows:

y(x, t) = φi(x)y(t) (2)

After substituting Eq. (2) into Eq. (1) and some mathematical rearrangements, the
following equation is obtained:

(
EI(x)φ

′′
i (x)

)′′
− Pφ

′′
i (x) − λiµ(x)φi(x) = 0 (3)

where λi and φi are eigenvalue and mode shape of the ith mode, respectively.
Multiplying Eq.(3) by any function u(x) that satisfies the same boundary conditions as

the modes and continuing the mathematical transformations of this equation (presented in
Appendix A), one can arrive at the following equation:

L∫

0

EI(x)φ
′′
i (x)u

′′
(x)dx + P

L∫

0

φ
′
i(x)u

′
(x)dx − λi

L∫

0

µ(x)φi(x)u(x)dx = 0 (4)
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Consider two cases when function u(x) satisfies the same boundary conditions as the
modes:

Case 1. When u(x) = φi(x), expression (4) becomes:

L∫

0

EI(x)φ
′′2
i (x)dx + P

L∫

0

φ
′2
i (x)dx − λi

L∫

0

µ(x)φ2
i (x)dx = 0 (5)

Defining the parameter γi as:

γi =

L∫
0

EI(x)φ
′′2
i (x)dx

P
L∫

0
φ
′2
i (x)dx

(6)

allows to express the eigenvalue λi as a function of bending stiffness:

λi =
1 + γi

γi

L∫
0

EI(x)φ
′′2
i (x)dx

L∫
0
µ(x)φ2

i (x)dx

(7)

When P = 0, expression (7) becomes:

λi =

L∫
0

EI(x)φ
′′2
i (x)dx

L∫
0
µ(x)φ2

i (x)dx

(8)

Case 2. When u(x) = φ j(x), the modes are orthogonal with respect to the mass density
µ(x):

L∫

0

µ(x)φi(x)φ j(x)dx = 0; ∀i , j (9)

Thus, Eq. (4) becomes:

L∫

0

EI(x)φ
′′
i (x)φ

′′
j (x)dx + P

L∫

0

φ
′
i(x)φ

′
j(x)dx = 0 (10)
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If the axial force P = 0, Eq. (10) turns out to:

L∫

0

EI(x)φ
′′
i (x)φ

′′
j (x)dx = 0 (11)

The above equation represents the orthogonality of the curvatures with respect to the
bending stiffness.

3. Damage analysis

Consider a change due to a local variation in bending stiffness ∆EI(x) and/or mass
µ(x):

EI(x) = EI(x) + ∆EI(x) (12)

µ(x) = µ(x) + ∆µ(x) (13)

These modifications are assumed to be sufficiently small to make a first-order approx-
imation in this work. These variations cause new natural frequencies, eigenvalues and
mode shapes.

fi(x) = fi(x) + ∆ fi(x) (14)

λi(x) = λi(x) + ∆λi(x) (15)

φi(x) = φi(x) + ∆φi(x) (16)

The change in mode shape ∆φi(x) can be expressed using the basis of the normal modes{
φ j

}∞
j=1

, as follows:

∆φi(x) =

∞∑

j=1

ηi jφ j(x) (17)

The changed mode shape φi(x) and eigenvalue λi(x) must satisfy Eq. (4):

L∫

0

(
EI(x)φ

′′

i (x)u
′′
(x) + Pφ

′

i(x)u
′
(x) − λiµ(x)φi(x)u(x)

)
dx = 0 (18)
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By subtraction between Eq. (18) and Eq. (4) with u(x) = φi(x) given in Appendix B,
one can get:

L∫

0

∆EI(x)φ
′′2
i (x)dx − λi

L∫

0

∆µ(x)φ2
i (x)dx − ∆λi

L∫

0

µ(x)φ2
i (x)dx ≈ 0 (19)

From (7) and (19), the relative variation of the eigenvalue can be expressed as:

∆λi

λi
≈ γi

1 + γi

L∫
0

∆EI(x)φ
′′2
i (x)dx

L∫
0

EI(x)φ′′2i (x)dx

−

L∫
0

∆µ(x)φ2
i (x)dx

L∫
0
µ(x)φ2

i (x)dx

(20)

The variations in mass and stiffness are assumed to be local and around x0 on the
interval Ω of length ∆L with ∆L << L.

L∫

0

∆EI(x)φ
′′2
i (x)dx ≈



∫

Ω

∆EI(x)dx

 φ
′′2
i (x0) (21)

L∫

0

∆µ(x)φ2
i (x)dx ≈



∫

Ω

∆µ(x)dx

 φ
2
i (x0) (22)

From the expression λi = (2π fi)2, one can obtain (see details in Appendix C):

∆λi

λi
≈ 2

∆ fi

fi
(23)

From Eq. (20), the relative variation of each natural frequency can be expressed as:

∆ fi

fi
≈ γi

1 + γi


∫

Ω

∆EI(x)dx
 φ′′2i (x0)

2
L∫

0
EI(x)φ′′2i (x)dx

−


∫

Ω

∆µ(x)dx
 φ2

i (x0)

2
L∫

0
µ(x)φ′′2i (x)dx

(24)
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The bending stiffness and the density are assumed to be initially constant (EI(x) = EI
and µ(x) = µ). The variations on the interval Ω are assumed to be ∆EI(x) = ∆EI and
∆µ(x) = ∆µ. Thus, the relative variation of each natural frequency can be rewritten as:

∆ fi

fi
≈ γi

1 + γi

∆EI∆L
2EI

φ
′′2
i (x0)
∥∥∥φ′′i

∥∥∥2

2

− ∆µ∆L
2µ

φ2
i (x0)
∥∥∥φi

∥∥∥2

2

(25)

When the axial force P tends to be zero, γi tends to infinity in (6). Thus, the above
equation becomes:

∆ fi

fi
≈ δK

φ
′′2
i (x0)
∥∥∥φ′′i

∥∥∥2

2

+ δM
φ2

i (x0)

‖φi‖22
(26)

where δK =
∆EI∆L

2EI
and δM = −∆µ∆L

2µ
represent the relative local variation of bending

stiffness and mass, respectively.
It can be seen that the natural frequency of the beam varies with a local changes in

stiffness and/or mass.
In the case of a change in bending stiffness due to damage and neglecting the influence

of mass change, Eq. (26) becomes:

∆ fi

fi
≈ δK

φ
′′2
i (x0)
∥∥∥φ′′i

∥∥∥2

2

(27)

Eq. (27) represents the relationship between the relative frequency shift and the mode
shape curvature of the intact state of a beam. A similar form of this relationship was used
for damage detection in [11, 17, 19, 24]. However, these studies do not consider the effect
of a local mass change, which can lead to false identification results.

In the case of the mass change only, the relative change of the natural frequency in Eq.
(26) can be rewritten as:

∆ fi

fi
≈ δM

φ2
i (x0)
∥∥∥φi

∥∥∥2

2

(28)

Eq. (28) represents the relationship between the relative frequency shift and the mode
shape of the intact state.
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Finally, for damage location identification, the relationship in (26) is transformed into
the following form:

δK
φ
′′2
i (x0) fi∥∥∥φ′′i

∥∥∥2

2
∆ fi

+ δM
φ2

i (x0) fi∥∥∥φi

∥∥∥2

2
∆ fi

− 1 ≈ 0 (29)

δK and δM are considered constants, depending only on the degree of the local changes.
These local changes in the stiffness and/or mass of the damaged element should be taken as
a general physical measure of the severity of the damage, rather than its geometric shape.
For example, cracks often have an irregular shape, whose dimensions cannot be accurately
determined.

Summing up the presented analysis of the damage identification in the beam, first of
all, the location of the damage is identified, followed by an assessment of the degree of its
severity. The detailed steps for the proposed damage identification procedure are presented
in the Table. 1.

Table 1
Modification identification procedure

1) Divide the beam into xk = 0, ..., L
2) For each location xk:

- Compute the following values for all n modes: Xi,k =
φ
′′2
i (xk) fi

∥∥∥φ′′i
∥∥∥2

2∆ fi
, Yi,k =

φ2
i (xk) fi

∥∥∥φi

∥∥∥2
2∆ fi

;

- Do linear regression of all n modes (X1,k,Y1,k), ..., (Xn,k,Yn,k): f (X,Y) = δKX + δMY − 1

- Calculate coefficients (δk
K, δ

k
M) and the error εk =

n∑
i=1

(δk
KXi + δk

MYi − 1)2

n
3) Draw εk. The minimum value εmin indicates the location of the modification at x0.
4) The damage coefficients (δK, δM) are determined from the corresponding values (δk

K, δ
k
M) at

the identified damage location x0.
5) Consequently, the change in mass and/or in stiffness are identified.

4. Numerical tests

In this section, the proposed procedure is validated by analyzing the model simulated in
ANSYS APDL. The numerical tests were carried out for a steel beam of Young’s modulus
E = 2e11Pa, and density ρ = 7850kg/m3. The beam of 1000mm in length, 40mm in
width, and 6mm in height were used for these simulations. The tests were performed with

8

102 Chapter 4. Single damage detection



different scenarios under different boundary conditions. These scenarios are chosen to
check the efficiency of the proposed procedure when different structural modifications are
present: increase/decrease in mass/stiffness at different locations.

4.1. Clamped-simply supported beams
Six cases are considered with different modification parameters for a damage simu-

lation in a clamped-simply supported beam. x0, b0, and h0 are the position, width, and
height at local modification, respectively. The interval Ω is 2mm for all simulations of
local changes. These cases are summarized in Table 2.

In cases, 1 to 4, the geometric dimensions of these beams are the same as those in the
intact state. Only local mass density is modified in the first two cases. This change is
equivalent to about 15% local mass increase in the first case, and about 20% local mass
decrease in the second case. In cases 3 and 4, only the local elastic modulus is adjusted to
change the bending stiffness by a 10% decrease and a 5% increase while keeping the mass
density constant. Examples of cross-sectional reduction are given in cases 5 and 6, which
leads to a change in both the mass density and the bending stiffness. Equivalent changes
in local stiffness and mass are calculated for each case. In each case, the first five modal
frequencies of the cantilever beam were used for calculations. These data are presented in
Table 3.

By following the steps presented in Table 1, the calculated error values are plotted. The
minimum values εmin of these curves indicate the modified location. The identified location
of changes in mass and bending stiffness are shown in Figures 1 and 2, respectively. The
red dashed line marks the actual position of the modification on the beam. Fig. 3 shows
the determined result of the damage location in the case of local change in cross-section
geometry.

The results of determining the extent of the modifications are given in Table. 4. It can
be seen that they are very close to the data chosen for simulations in determining both the
location and the degree of the modifications.

4.2. Cantilever beams
Six cases are considered with different modification parameters for cantilever beam.

These cases are summarized in Table 5. The local modulus of elasticity was changed to
decrease the bending stiffness by 5% and increase it by 10% for cases 1 and 2, respectively.

In the third case, the local mass increase is 10%, and in the fourth case, the local mass
loss is 20%. The changes in both the mass density and the elastic modulus due to the
reduction of the cross-section are given in cases 5 and 6. The first five frequencies for
these cases are presented in Table. 6.
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Table 2
Scenarios for numerical tests for clamped-simply supported beam.

Case No. x0 (mm) b0 (mm) h0 (mm) E0 (Pa) ρ0(kg/m3)
∆EI
EI

(%)
∆µ

µ
(%)

Intact - 40 6 2e11 7850 - -
1 300 40 6 2e11 9030 - 15.03
2 600 40 6 2e11 6280 - -20.00
3 300 40 6 1.8e11 7850 -10.00 -
4 500 40 6 2.1e11 7850 5.00 -
5 400 35 6 2e11 7850 -12.5 -12.5
6 700 40 5.8 2e11 7850 -9.67 -3.33

Table 3
Frequencies for numerical tests for clamped-simply supported beam.

Case No. Natural frequency (Hz)
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Intact 21.4530 69.5181 145.0328 247.9883 378.3667
1 21.4506 69.4947 145.0058 247.9878 378.2834
2 21.4627 69.5207 145.0701 248.0546 378.3798
3 21.4528 69.5059 145.0157 247.9878 378.3049
4 21.4543 69.5190 145.0446 247.9920 378.3970
5 21.4549 69.5189 145.0323 247.9789 378.3640
6 21.4507 69.5105 145.0327 247.9667 378.3145

The results of determining the modification sites are shown in Figs. 4, 6, and 7 for
the local mass change, local stiffness change and local cross-section reduction, respec-
tively. The actual modified positions are marked with red dashed lines. It can be seen that
the minimum values εmin of these curves coincide with the actual modification positions.
However, these figures have two symmetric minima due to the relationship between the
mode shape and the curvature of the cantilever beam given in Eq. (D.12).

The proposed procedure provides information about two possible modification posi-
tions: the actual location of the modification and its fictitious counterpart on the symmet-
rical part. The actual modification site can be clarified if additional information about the
modification is known i.e. change in mass or stiffness. It can be easily detected by com-
paring the difference between the mode shapes of the modified state and those of the intact
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Table 4
Results estimated from numerical tests for clamped-simply supported beam.

Case No. Exact value Identified value

x0 (mm)
∆EI
EI

(%)
∆µ

µ
(%) x0 (mm)

∆EI
EI

(%)
∆µ

µ
(%)

1 300 - 15.03 301.3 0.47 15.41
2 600 - -20.00 600.6 0.77 -19.17
3 300 -10.00 - 300.3 -10.64 0.46
4 500 5.00 - 498.5 5.20 0.48
5 400 -12.50 -12.50 402.4 -14.44 12.65
6 700 -9.67 -3.33 698.7 -10.60 -3.05

Fig. 1. Damage detection for changes in mass for case 1 (left) and case 2 (right)

state [6].
The example of reduction in stiffness was considered in the first case. The proposed

procedure detects the actual reduction in stiffness on the left side of the beam. In addition,
it detects in a pseudo-symmetric position on the right side of the beam an increase in
mass. This is because the extra mass at that location can cause the same change in natural
frequency.

An example of using a modal curvature comparison between modified and intact state
to determine the actual position can be seen in Fig. 5 for cases 1 and 2. The results of
determining the extent of the modifications are given in Table. 7. They are very close to
the exact ones.
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Fig. 2. Damage detection for changes in stiffness for case 3 (left) and case 4 (right)

Fig. 3. Damage detection for changes in cross-section for case 5 (left) and case 6 (right)

4.3. Clamped-clamped beams
This section describes six numerical tests for a pinched beam with the following local

modifications. In the first case, a local decrease in mass density by about 5% is considered.
In the second case, a local increase in stiffness by 10% is considered. In the third case, the
local elastic modulus and mass density are reduced by about 5% and 10%, respectively.
In the fourth case, the same parameters are increased by 10% and approximately 15%,
respectively. In the fifth and sixth cases, local changes in the mass density and elastic
modulus of 12.5% occur due to variations in the cross-section. The parameters of each
case are presented in Table. 8. The first five frequencies for all these cases are given in
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Table 5
Scenarios for numerical tests for cantilever beam.

Case No. x0 (mm) b0 (mm) h0 (mm) E0 (Pa) ρ0(kg/m3)
∆EI
EI

(%)
∆µ

µ
(%)

Intact - 40 6 2e11 7850 - -
1 300 40 6 1.9e11 7850 -5.00 -
2 800 40 6 2.2e11 7850 10.00 -
3 300 40 6 2e11 8640 - 10.06
4 400 40 6 2e11 6280 - -20.00
5 400 35 6 2e11 7850 -12.50 -12.50
6 450 40 5.5 2e11 7850 -22.97 -8.33

Table 6
Frequencies for numerical tests for cantilever beam.

Case No. Natural frequency (Hz)
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Intact 4.8923 30.6579 85.8373 168.1903 277.9952
1 4.8919 30.6573 85.8295 168.1849 277.9919
2 4.8925 30.6589 85.8486 168.2250 278.0398
3 4.8923 30.6545 85.8176 168.1780 277.9897
4 4.8925 30.6694 85.8564 168.2038 278.1032
5 4.8918 30.6590 85.8382 168.1885 277.9850
6 4.8917 30.6519 85.8351 168.1619 277.9668

Table. 9.
The results of determining the modification sites are illustrated in Figs. 8, 9, and

10. It can be seen that these curves have two symmetric minima. The actual modified
positions are marked with red dashed lines and coincide with one of the minimum values
εmin. In contrast to the symmetry of the results for cantilever beams, which is due to the
relationship between mode shape and curvature, the reason for the symmetry of solutions
in this case is related to the symmetry of the mode shapes and curvatures. Thus, the same
local changes at the two symmetry positions will give the same frequency shifts.

However, when the change happens in the middle of the beam (case 4), the identified
results are unique as shown in Fig. 9.

The actual modification site can be found by comparing the difference between the
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Table 7
Results estimated from numerical tests for cantilever beam.

Case No. Exact value Identified value

x0 (mm)
∆EI
EI

(%)
∆µ

µ
(%) x0 (mm)

∆EI
EI

(%)
∆µ

µ
(%)

1 300 -5.00 - 301.0 -5.28 -0.02
2 800 10.00 - 799.8 8.17 -1.77
3 300 - 10.06 301.0 0.11 10.15
4 400 - -20.00 399.9 0.40 -19.68
5 400 -12.5 -12.5 400.7 -14.19 -12.43
6 450 -22.97 -8.33 447.4 -21.88 -9.67

Fig. 4. Damage detection for changes in stiffness for case 1 (left) and case 2 (right)

mode shapes of the modified state and those of the intact state as shown in Fig. 11.
Table. 10 presents the results determining the extent of the modifications. The identi-

fied parameters are very close to the exact ones. These results of numerical tests confirm
the effectiveness of the proposed technique.
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Fig. 5. Actual modification detection in curvature changes for case 1 (left) and case 2
(right).

Fig. 6. Damage detection for changes in mass for case 3 (left) and case 4 (right)
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Fig. 7. Damage detection for changes in cross-section for case 5 (left) and case 6 (right)

Table 8
Scenarios for numerical tests for clamped-clamped beam.

Case No. x0 (mm) b0 (mm) h0 (mm) E0 (Pa) ρ0(kg/m3)
∆EI
EI

(%)
∆µ

µ
(%)

Intact - 40 6 2e11 7850 - -
1 200 40 6 2e11 7460 - -4.97
2 400 40 6 2.2e11 7850 10.00 -
3 300 40 6 1.9e11 7070 -5.00 -9.94
4 500 40 6 2.2e11 9030 10.00 15.03
5 350 35 6 2e11 7850 -12.5 -12.5
6 450 45 6 2e11 7850 12.5 12.5
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Table 9
Frequencies for numerical tests for clamped-clamped beam.

Case No. Natural frequency (Hz)
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Intact 31.1303 85.8074 168.2035 278.0186 415.2543
1 31.1308 85.8136 168.2225 278.0427 415.2637
2 31.1333 85.8147 168.2101 278.0682 415.2562
3 31.1335 85.8188 168.2105 278.0206 415.2885
4 31.1226 85.8073 168.1846 278.0185 415.2054
5 31.1338 85.8083 168.2037 278.0103 415.2432
6 31.1256 85.8067 168.2011 278.0156 415.2495

Table 10
Results estimated from numerical tests for clamped-clamped beam.

Case No. Exact value Identified value

x0 (mm)
∆EI
EI

(%)
∆µ

µ
(%) x0 (mm)

∆EI
EI

(%)
∆µ

µ
(%)

1 200 0.00 -4.97 201.0 1.36 -4.08
2 400 10.00 0.00 400.0 9.41 0.26
3 300 -9.94 -5.00 300.0 -9.77 -5.06
4 500 10.00 15.03 496.0 10.24 16.20
5 350 -12.5 -12.5 349.0 -14.03 -12.29
6 450 12.5 12.5 450.0 11.35 12.69
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Fig. 8. Damage detection for changes in mass for case 1 (left) and stiffness for case 2
(right)

Fig. 9. Damage detection for both stiffness and mass changes for case 3 (left) and case 4
(right)
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Fig. 10. Damage detection for changes in cross-section for case 5 (left) and case 6 (right)

Fig. 11. Actual modification detection in curvature changes for case 5 (left) and case 6
(right).
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It has been shown that the exact location can be determined without doubt by using
additional information, such as the difference between the mode shapes or curvatures of
the intact state and those of the modified state, or just by visualization of possible damage
locations of the structures.

5. Experimental tests

Steel cantilever beams were used to verify the proposed damage identification proce-
dure. Tested beams have the following physical parameters: length L = 1005mm, width
B = 40mm and height H = 10mm. The material of the beams has Young’s modulus E =

200GPa, and density ρ = 7850kg/m3. Experimental tests were considered for two sce-
narios: one is for identifying an additional mass, and the other is for identifying a cross-
section reduction. The experimental setup is shown in Figure. 12.

In the first scenario two experimental tests were carried out. At the first test, a 10g
rectangular magnet was attached to a chosen location on the beam, without changing local
stiffness. This change corresponds to a local mass increase of ∆m1/m ≈ 0.32%. For the
second test, another 10g magnet was attached to the first one, which corresponds to an
increase of ∆m2/m ≈ 0.63%. These mass changes are given in Table. 11.

For this testing scenario, the natural frequencies of both intact and modified states were
obtained by classical testing performed by the commercial B&K ConnectTM software. The
identified frequencies of the beams are given in Table. 12. In both cases, the mode shape
and the curvature of the intact state are calculated using the analytic formula in Eqs. (D.10)
and (D.11).

The results of identified locations of mass changes are shown in Fig. 13. These figures
have two symmetric minima due to the relationship between the mode shape and the cur-
vature of the cantilever beam. The results of determining the degree of the modifications
are given in Table. 13. The obtained results are in a good agreement with the actual values
of the localization of modifications and their quantitative assessment.

In the second scenario, the proposed damage identification procedure was applied to
the case of the cross-section reduction where the damage was fabricated by a milling.
The produced cut is about 2mm wide and 5mm depth (about 12.5% stiffness loss and
12.5% mass loss per unit length). It was located at a distance of 220mm from the support.
The identified localization of the cross-section drop is located at 228mm from the support
as represented in Fig. 14. The estimated damage by the proposed procedure for this
experimental test is 14.1% in stiffness and 5.6% in mass per unit length. The identified
results in two scenarios are in agreement with the actual ones, which validates the proposed
procedure.
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(a) Add mass (b) Reduce cross-section

Fig. 12. Experimental setup for cantilever beams

Table 11
Variations in mass for experimental tests for a cantilever beam.

Case No. x0 (mm) Added mass (g)
∆m
m

(%)

1 300 10 0.32
2 300 20 0.63
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Table 12
Frequencies of experimental tests for cantilever beams.

Case No. Natural frequency (Hz)
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Intact 7.7691 48.3655 137.3496 277.2691 445.6196
1 7.7688 48.2876 136.8765 276.9507 445.5082
2 7.7679 48.2078 136.4057 276.6315 445.3966
3 7.7674 48.3689 137.3397 277.2396 445.5758

Table 13
Results obtained from experimental tests on a cantilever beam.

Case No. Actual value Identified value

x0 (mm)
∆m
m

(%) x0 (mm)
∆m
m

(%)

1 300 0.32 305.7 0.31
2 300 0.63 303.8 0.61

(a) Case 1 (b) Case 2

Fig. 13. Damage detection for changes in mass
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Fig. 14. Damage detection for a change in cross-section

Similarly, the exact location can be determined by using additional information, such
as the difference between the mode shapes or curvatures of the intact state and those of the
modified one, or just by visualization of possible damaged locations of the structures.

6. Conclusion

This work presents a procedure for localization and quantification of a single structural
damage, which can be modeled as local modification in stiffness and mass of a structure.
To identify damage, a simplified relationship was established between local changes in
mass and/or stiffness and changes in natural frequency. These local changes in mass and
stiffness were represented by damage coefficients, which were estimated by linear regres-
sion along the structure. The criterion for determining the location of damage was the
position in which the error in estimating these coefficients was the least. Then, to quan-
tify the type of damage and its severity, the values of the estimated coefficients mentioned
above used.

To validate the procedure, it was numerically tested on cantilever beams with local
variations in mass, stiffness or cross-section. These numerical tests were carried out on
beams with various boundary conditions. All tested scenarios showed accurate identifica-
tion of locations and quantification of modeled structural variations. The procedure has
been found to offer the following benefits: (i) it localizes the modification site, the extent of
change in mass and stiffness; (ii) it requires only natural frequency shifts and intact mode
shapes of the intact state that are easily achievable in practice; (iii) it provides a unique
solution for identification of modifications in clamped-simply supported beams. Despite
all of the above, it does not unambiguously determine the position of damage for cases
of cantilever beams and clamped-clamped beams. Due to the symmetry in the boundary
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conditions for clamped-clamped beams and the relationship between the mode shapes and
the curvatures in cantilever beams, the given procedure identifies two possible modifica-
tion positions: the real one and the fictitious one. But it was shown that the exact location
can be determined without a doubt by using additional information, such as the difference
between the mode shapes or curvatures of the intact state and those of the modified one or
just by a simple visualization of the structures. Finally, this damage identification proce-
dure was experimentally tested on cantilever beams with local variations in mass and cross
section. All tested scenarios showed accurate identification of locations and quantification
of structural variations.

In conclusion, the numerical and experimental results show that the proposed proce-
dure can localize and quantify the local variations in mass and stiffness in beams under
different boundary conditions.
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Appendix A.

Multiplying Eq. (3) by a function u(x) and then taking an integration by part leads to
the following relation:

L∫

0

(
EI(x)φ

′′
i (x)

)′′
u(x)dx −

L∫

0

Pφ
′′
i (x)u(x)dx −

L∫

0

λiµ(x)φi(x)u(x)dx = 0 (A.1)

The first two parts of Eq. (A.1) are transformed as follows:

L∫
0

(
EI(x)φ

′′
i (x)

)′′
u(x)dx =

[
∂

∂x

(
EI(x)φ

′′
i (x)

)
u(x)

]L

0
−

L∫
0

(
EI(x)φ

′′
i (x)

)′
u′(x)dx

=

[
∂

∂x

(
EI(x)φ

′′
i (x)

)
u(x)

]L

0
−

[
EI(x)φ

′′
i (x)u

′
(x)

]L

0
+

L∫
0

EI(x)φ
′′
i (x)u

′′
(x)dx

(A.2)

and

−
L∫

0
Pφ

′′
i (x)u(x)dx = −

[
Pφ

′
i(x)u(x)

]L

0
+

L∫
0

Pφ
′
i(x)u

′
(x)dx (A.3)
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From the above transformations, Eq. (A.1) can be expressed as follows:

L∫

0

(
EI(x)φ

′′
i (x)u

′′
(x) + Pφ

′
i(x)u

′
(x) − λiµ(x)φi(x)u(x)

)
dx + C = 0 (A.4)

where C depends on the boundary condition.

C =

[
∂

∂x

(
EI(x)φ

′′
i (x)

)
u(x)

]L

0
−

[
EI(x)φ

′′
i (x)u

′
(x)

]L

0
−

[
Pφ

′
i(x)u(x)

]L

0
(A.5)

The quantity C is zero for any function u(x) satisfying the same boundary conditions
as the modes for beams satisfying one of the most common boundary conditions such as
clamped-simply supported beam (φi(0) = φ

′
i(0) = φi(L) = φ

′′
i (L) = 0), clamped-free beam

(φi(0) = φ
′
i(0) = φ

′′
i (L) = φ

′′′
i (L) = 0 and P = 0), clamped-clamped beam (φi(0) = φ

′
i(0) =

φi(L) = φ
′
i(L) = 0).

L∫

0

(
EI(x)φ

′′
i (x)u

′′
(x) + Pφ

′
i(x)u

′
(x) − λiµ(x)φi(x)u(x)

)
dx = 0 (A.6)

or
L∫

0

EI(x)φ
′′
i (x)u

′′
(x)dx + P

L∫

0

φ
′
i(x)u

′
(x)dx − λi

L∫

0

µ(x)φi(x)u(x)dx = 0 (A.7)

Appendix B.

Performing subtraction between Eq. (18) and Eq. (4) with u(x) = φi(x) gives:

L∫
0

(
EI(x)φ′′i (x) − EI(x)φ

′′
i (x)

)
φ
′′
i (x)dx + P

L∫
0

(
φ
′
i(x) − φ′i(x)

)
φ
′
i(x)dx

+
L∫

0

(
λiµ(x)φi(x) − λiµ(x)φi(x)

)
φi(x)dx = 0

(B.1)

The parts of the above equation can be approximated as follows:

L∫

0

(
EI(x)φ′′i (x) − EI(x)φ

′′
i (x)

)
φ
′′
i (x)dx ≈

L∫

0

EI(x)∆φ
′′
i (x)φ

′′
i (x)dx+

L∫

0

∆EI(x)φ
′′2
i (x)dx(B.2)
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P

L∫

0

(
φ
′
i(x) − φ′i(x)

)
φ
′
i(x)dx = P

L∫

0

∆φ
′
i(x)φ

′
i(x)dx (B.3)

and

L∫
0

(
λiµ(x)φi(x) − λiµ(x)φi(x)

)
φi(x)dx ≈

−
L∫

0
λiµ(x)∆φiφi(x)dx −

L∫
0
λi∆µ(x)φ2

i (x)dx −
L∫

0
∆λiµ(x)φ2

i (x)dx
(B.4)

From the above approximate transformations, Eq. (B.1) becomes:

L∫
0

EI(x)∆φ
′′
i (x)φ

′′
i (x)dx + P

L∫
0

∆φ
′
i(x)φ

′
i(x)dx −

L∫
0
λiµ(x)∆φiφi(x)dx+

+
L∫

0
∆EI(x)φ

′′2
i (x)dx −

L∫
0
λi∆µ(x)φ2

i (x)dx −
L∫

0
∆λiµ(x)φ2

i (x)dx ≈ 0
(B.5)

Combining with Eq. (10) and Eq. (17), the above equation can be transformed to:

ηii


L∫

0
EI(x)φ

′′2
i (x)dx + P

L∫
0
φ
′2
i (x)dx − λi

L∫
0
µ(x)φ2

i (x)dx
 +

+


L∫

0
∆EI(x)φ

′′2
i (x)dx − λi

L∫
0

∆µ(x)φ2
i (x)dx − ∆λi

L∫
0
µ(x)φ2

i (x)dx
 ≈ 0

(B.6)

The first part of the above equation is zero because of Eq. (5). Thus:

L∫

0

∆EI(x)φ
′′2
i (x)dx − λi

L∫

0

∆µ(x)φ2
i (x)dx − ∆λi

L∫

0

µ(x)φ2
i (x)dx ≈ 0 (B.7)

Appendix C.

The eigenvalue can be written as:

λ = (2π f )2 (C.1)

Taking a derivative of λ with respect to f , one gets:

∂λ

∂ f
= (2π)22 f (C.2)
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∂λ = (2π)2 2 f ∂ f (C.3)

Dividing both sides by λ, the above equation becomes:

∂λ

λ
=

(2π)2 2 f
λ

∂ f (C.4)

∂λ

λ
=

(2π)2 2 f
(2π f )2 ∂ f (C.5)

Simplifying the right part of the above equation, one gets:

∂λ

λ
=

2∂ f
f

(C.6)

or

∆λ

λ
≈ 2∆ f

f
(C.7)

Appendix D. Vibrations of beams under different boundary conditions

In this part, free vibration of beams is investigated analytically under four different
boundary conditions.

For an intact beam with EI(x) = EI and µ(x) = µ, the mode shape φ(x) is represented
by the following form:

φi(x) = a1 sin(αix) + a2 cos(αix) + a3 sinh(αix) + a4 cosh(αix) (D.1)

with

αi =
4

√
ρAω2

i

EI
(D.2)

The first three derivatives of Eq. (D.1) are given as follows:


φi(x) = a1 sin(αix) + a2 cos(αix) + a3 sinh(αix) + a4 cosh(αix)
φ′i(x) = αi (a1 cos(αix) − a2 sin(αix) + a3 cosh(αix) + a4 sinh(αix))
φ′′i (x) = α2

i (−a1 sin(αix) − a2 cos(αix) + a3 sinh(αix) + a4 cosh(αix))
φ′′′i (x) = α3

i (−a1 cos(αix) + a2 sin(αix) + a3 cosh(αix) + a4 sinh(αix))

(D.3)

where the constants a1, a2, a3, a4 depends on the boundary conditions,
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Appendix D.1. Clamped-simply supported beam
The boundary conditions satisfied by a clamped-simply supported beam are as follows:

φi(0) = 0, φ′i(0) = 0, φi(L) = 0 and φ′′i (L) = 0. The a1, a2, a3, a4 of the beam can be
represented as follows:

a1 = −a3; a2 = −a4; a3 sinh(αiL) + a4 cosh(αiL) = 0 (D.4)

Substituting the above conditions into Eq. (D.3), after some mathematical operations,
the value αi for the mode nth is determined from the characteristic equation as follows:

sin(αiL) cosh(αiL) − sinh(αiL) cos(αiL) = 0 (D.5)

The mode shape and curvature of the clamped-simply supported beam are given as
followed:

φi(x) = a1(sin(αix) − sinh(αix) − tanh(αi)(cos(αix) − cosh(αix))) (D.6)

φ′′i (x) = −a1α
2
i (sin(αix) + sinh(αix) − tanh(αi)(cosh(αix) + cos(αix))) (D.7)

The first five mode shapes and mode shape curvatures of the clamped-simply supported
beam are shown in Fig. D.15.

Fig. D.15. Mode shape (left) and curvature (right) of a clamped-simply supported beam
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Appendix D.2. Cantilever beam
Applying the boundary condition of a cantilever beam (clamped-free beam): φi(0) = 0,

φ′i(0) = 0, φ′′i (L) = 0 and φ′′′i (L) = 0. The constants a1, a2, a3, a4 can be determined as
follows:

a1 = −a3; a2 = −a4; a1 = −a2
cos(αiL) + cosh(αiL)
sin(αiL) + sinh(αiL)

(D.8)

The values αi for modes can be determined from the following characteristic equation:

1 + cos(αiL) cosh(αiL) = 0 (D.9)

Substituting Eq. (D.8) into Eq. (D.3), the mode shape and curvature are defined as:

φi(x) = a1

(
sin(αix) − sinh(αix) +

sin(αiL) + sinh(αiL)
cos(αiL) + cosh(αiL)

(cosh(αix) − cos(αix))
)

(D.10)

φ′′i (x) = a1α
2
i

(
− sin(αix) − sinh(αix) +

sin(αiL) + sinh(αiL)
cos(αiL) + cosh(αiL)

(cos(αix) + cosh(αix))
)
(D.11)

From Eqs. (D.10) and (D.11), the first five mode shapes and mode shape curvatures of
the cantilever beam are shown in Fig. D.16.

Fig. D.16. Mode shape (left) and curvature (right) of a cantilever beam

There is a relationship between the mode shape and the curvature of the cantilever
beam as follows:

φ′′i (x) = (−1)i+1α2
i φi(L − x) (D.12)
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The sign of the right part in (D.12) depends on the roots αi of the equation (D.9).
This relationship can be observed graphically in Fig. D.16 and demonstrated later in this
section.

From (26) and (D.12), it should be noted that an increase in mass or a decrease in
stiffness at the point of symmetry results in the same frequency change in the cantilever
beam.

• Demonstration for the relation (D.12)

Denote C =
sin(αiL) + sinh(αiL)
cos(αiL) + cosh(αiL)

, Eq. (D.10) can be written as follows:

φi(L − x)
a1

= sin(αiL − αix) − sinh(αiL − αix) + C [cosh(αiL − αix) − cos(αiL − αix)]

= sin(αiL) cos(αix) − cos(αiL) sin(αix) − sinh(αiL) cosh(αix) + cosh(αiL) sinh(αix)
+C [cosh(αiL) cosh(αix) − sinh(αiL) sinh(αix)] −C [cos(αiL) cos(αix) + sin(αiL) sin(αix)]
= [− cos(αiL) −C sin(αiL)] sin(αix) + [cosh(αiL) −C sinh(αiL)] sinh(αix)+
+[sin(αiL) −C cos(αiL)] cos(αix) + [− sinh(αiL) + C cosh(αiL)] cosh(αix)+
= C1 sin(αix) + C2 sinh(αix) + C3 cos(αix) + C4 cosh(αix)

(D.13)

φi(L − x)
a1

= C1 sin(αix) + C2 sinh(αix) + C3 cos(αix) + C4 cosh(αix) (D.14)

Where

C1 = − cos(αiL) −C sin(αiL) = − cos(αiL) − sin(αiL) + sinh(αiL)
cos(αiL) + cosh(αiL)

sin(αiL)

C1 = −cos2(αiL) + cos(αiL) cosh(αiL) + sin2(αiL) + sin(αiL) sinh(αiL)
cos(αiL) + cosh(αiL)

C1 = −cos2(αiL) + sin2(αiL) + cos(αiL) cosh(αiL) + sin(αiL) sinh(αiL)
cos(αiL) + cosh(αiL)

C1 = −1 + cos(αiL) cosh(αiL) + sin(αiL) sinh(αiL)
cos(αiL) + cosh(αiL)

C1 = − sin(αiL) sinh(αiL)
cos(αiL) + cosh(αiL)

(D.15)
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C2 = cosh(αiL) −C sinh(αiL) = cosh(αiL) − sin(αiL) + sinh(αiL)
cos(αiL) + cosh(αiL)

sinh(αiL)

C2 =
cos(αiL) cosh(αiL) + cosh2(αiL) − sin(αiL) sinh(αiL) − sinh2(αiL)

cos(αiL) + cosh(αiL)

C2 =
cosh2(αiL) − sinh2(αiL) + cos(αiL) cosh(αiL) − sin(αiL) sinh(αiL)

cos(αiL) + cosh(αiL)

C2 =
1 + cos(αiL) cosh(αiL) − sin(αiL) sinh(αiL)

cos(αiL) + cosh(αiL)

C2 = − sin(αiL) sinh(αiL)
cos(αiL) + cosh(αiL)

(D.16)

C3 = sin(αiL) −C cos(αiL) = sin(αiL) − sin(αiL) + sinh(αiL)
cos(αiL) + cosh(αiL)

cos(αiL)

C3 =
sin(αiL) cos(αiL) + sin(αiL) cosh(αiL) − sin(αiL) cos(αiL) − cos(αiL) sinh(αiL)

cos(αiL) + cosh(αiL)

C3 =
sin(αiL) cosh(αiL) − cos(αiL) sinh(αiL)

cos(αiL) + cosh(αiL)

(D.17)

C4 = − sinh(αiL) + C cosh(αiL) = − sinh(αiL) +
sin(αiL) + sinh(αiL)
cos(αiL) + cosh(αiL)

cosh(αiL)

C4 =
− cos(αiL) sinh(αiL) − sinh(αiL) cosh(αiL) + sin(αiL) cosh(αiL) + sinh(αiL) cosh(αiL)

cos(αiL) + cosh(αiL)

C4 =
sin(αiL) cosh(αiL) − cos(αiL) sinh(αiL)

cos(αiL) + cosh(αiL)

(D.18)

Eq. (D.14) can be represented as follows:

φi(L − x)
a1

= − sin(αiL) sinh(αiL)
cos(αiL) + cosh(αiL)

[sin(αix) + sinh(αix)]+

sin(αiL) cosh(αiL) − cos(αiL) sinh(αiL)
cos(αiL) + cosh(αiL)

[cos(αix) + cosh(αix)]
(D.19)

With αi being the root of (D.9), the following equality can be proved by squaring both
sides of it:



sin(αiL) sinh(αiL)
cos(αiL) + cosh(αiL)

= (−1)i+1

sin(αiL) cosh(αiL) − cos(αiL) sinh(αiL)
cos(αiL) + cosh(αiL)

= (−1)i+1 sin(αiL) + sinh(αiL)
cos(αiL) + cosh(αiL)

(D.20)

From (D.20), Eqs. (D.19) becomes:

φi(L−x) = (−1)i+1a1

(
− sin(αix) − sinh(αix) +

sin(αiL) + sinh(αiL)
cos(αiL) + cosh(αiL)

(cos(αix) + cosh(αix))
)
(D.21)

From (D.11) and (D.21), the relation (D.12) are verified.
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Appendix D.3. Clamped-clamped beam
Apply the boundary condition of the clamped-clamped beam: φi(0) = 0, φi(L) = 0,

φ′i(0) = 0 and φ′i(L) = 0, one gets:

a1 = −a3; a2 = −a4; a1 = a2
cosh(αiL) − cos(αiL)
sin(αiL) − sinh(αiL)

(D.22)

The root αi of the characteristic equation of the fixed beam is given below:

1 − cos(αiL) cosh(αiL) = 0 (D.23)

Substitute Eq. (D.22) into Eq. (D.3), the mode shape and the curvature are as follows:

φi(x) = a1

(
sin(αix) − sinh(αix) +

sin(αiL) − sinh(αiL)
cosh(αiL) − cos(αiL)

(cos(αix) − cosh(αix))
)

(D.24)

φ′′i (x) = −a1α
2
i

(
sin(αix) + sinh(αix) +

sin(αiL) − sinh(αiL)
cosh(αiL) − cos(αiL)

(cos(αix) + cosh(αix))
)
(D.25)

Fig. D.17 presents the first five mode shapes and curvatures of the clamped-clamped
beam, determined with relation D.24 and D.25, respectively.

Fig. D.17. Mode shapes (left) and curvatures (right) of a clamped-clamped beam

32

126 Chapter 4. Single damage detection



References

[1] S. W. Doebling, C. R. Farrar, M. B. Prime, D. W. Shevitz, Damage identification
and health monitoring of structural and mechanical systems from changes in their
vibration characteristics: a literature review, Technical Report (1996).

[2] H. P. Chen, Y.-Q. Ni, Structural Health Monitoring of Large Civil Engineering
Structures, John Wiley & Sons Ltd, UK, 2018. doi:https://doi.org/10.1002/
9781119166641.

[3] O. Avci, O. Abdeljaber, S. Kiranyaz, M. Hussein, M. Gabbouj, D. J. Inman, A review
of vibration-based damage detection in civil structures: From traditional methods to
machine learning and deep learning applications, Mechanical Systems and Signal
Processing 147 (2021) 107077. doi:https://doi.org/10.1016/j.ymssp.2020.
107077.

[4] R. Hou, Y. Xia, Review on the new development of vibration-based damage identi-
fication for civil engineering structures: 2010–2019, Journal of Sound and Vibration
491 (2021) 115741. doi:https://doi.org/10.1016/j.jsv.2020.115741.

[5] A. Rytter, Vibrational Based Inspection of Civil Engineering Structures, Ph.D. thesis,
University of Aalborg, Denmark, 1993.

[6] A. Pandey, M. Biswas, M. Samman, Damage detection from changes in curvature
mode shapes, Journal of Sound and Vibration 145 (1991) 321–332. doi:https:
//doi.org/10.1016/0022-460X(91)90595-B.

[7] M. M. A. Wahab, G. D. Roeck, Damage detection in bridges using modal curvatures:
Application to a real damage scenario, Journal of Sound and Vibration 226 (1999)
217–235. doi:https://doi.org/10.1006/jsvi.1999.2295.

[8] E. Carden, P. Fanning, Vibration based conditioning monitoring: a review, Structural
Health Monitoring 3 (2004)) 355–377.

[9] R. Gorgin, Damage identification technique based on mode shape analysis of beam
structures, Structures 27 (2020) 2300–2308. doi:https://doi.org/10.1016/j.
istruc.2020.08.034.

[10] D. Capecchi, J. Ciambella, A. Pau, F. Vestroni, Damage identification in a parabolic
arch by means of natural frequencies, modal shapes and curvatures, Meccanica 51
(2016) 467–476. doi:https://doi.org/10.1007/s11012-016-0510-3.

33

4.1. Single damage detection using natural frequency shifts and mode shapes (Article 3)127



[11] M. Dahak, N. Touat, M. Kharoubi, Damage detection in beam through change
in measured frequency and undamaged curvature mode shape, Inverse Problems
in Science and Engineering 27 (2018) 1–26. doi:https://doi.org/10.1080/
17415977.2018.1442834.

[12] Y.-S. Lee, M.-J. Chung, A study on crack detection using eigenfrequency test
data, Computers & Structures 77 (2000) 327–342. doi:https://doi.org/10.
1016/S0045-7949(99)00194-7.

[13] D. Patil, S. Maiti, Experimental verification of a method of detection of multiple
cracks in beams based on frequency measurements, Journal of Sound and Vibration
281 (2005) 439–451. doi:10.1016/j.jsv.2004.03.035.

[14] M. Dahak, N. Touat, N. Benseddiq, On the classification of normalized natural fre-
quencies for damage detection in cantilever beam, Journal of Sound and Vibration
402 (2017) 70–84. doi:https://doi.org/10.1016/j.jsv.2017.05.007.
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131

5 Multiple damage detection

Continuing the topic covered in Chapter 4, a problem of a higher degree of complexity is
considered, namely the problem of identifying multiple damages in engineering structures.
As discussed in Chapter 1, finite element methods (FEM) are a popular tool for structural
design, dynamic analysis, and damage detection in civil engineering. In general, these
finite element methods can provide baseline information that can then be compared
to new information from a monitoring system to detect structural damage and predict
the future performance. In particular, for damage detection, natural frequency shifts
between a healthy state and a suspected damaged state are obtained by simulations using
FEM. Comparison of the simulated and measured natural frequency shifts then allows
damage to be identified, for example using an optimization step or Bayesian inference.
However, despite the seemingly clear and understandable algorithm, there are a number
of difficulties that must be taken into account when applying these methods. First,
they require a large amount of computational time to process the data and update the
model, which delay the identification process for real-time damage detection. Second,
the performance of these methods largely depends on the accuracy of the FE model,
namely discretization error and modeling error.
To overcome these shortcomings of FEM for multiple damage detection, this chapter
extends the damage identification procedure presented previously for multiple damage
detection. The simulated natural frequency shifts are obtained directly from the analytic
expression established in the former chapter instead of using FEM. Then, the localization
of damages is deduced based on the most probable locations given by the Bayesian
reference. The damages identification becomes fast because the proposed procedure skips
the computational costs associated with FEM simulations. However, it can introduce
pseudo-damage locations that are symmetrical to the real damage ones. These pseudo-
damage locations can be easily eliminated by using other available information such as
measured modal shape. The proposed method has been confirmed by numerical and
experimental tests.
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Multiple damage detection on beams using relative natural
frequency shifts and Bayesian inference

Abstract

Vibration based methods for detecting the location of damage in structures are generally
based on changes in the dynamic characteristics of structures caused by damage, such as
natural frequencies and mode shapes. The frequency based damage detection approach
is one such technique, which uses natural frequency shifts between intact and damaged
structure to locate damage. This paper presents a modified procedure for multiple damage
detection based on a simplified relationship between relative natural frequency shift and
damage. The proposed procedure allows to determine the locations of structural changes in
beams and their severity by analyzing the variation of natural frequencies combined with
Bayesian inference. The efficiency of the proposed method was validated by numerical
simulation and then by experimental tests under different boundary conditions.

Keywords: Damage detection, frequency shift, mode shape curvature

1. Introduction

Structural damage detection is an essential part of monitoring the health of a structure.
During operation, structures can accumulate damage caused by environmental and human
factors. Damage is interpreted as a change in the geometrical or material properties of
the structure, which can adversely affect the performance, safety and durability of the
structure [1]. A structural failure can have catastrophic consequences if it is not detected
or repaired in time. Structural damage induces changes in vibration characteristics such as
frequencies, mode shapes and damping ratios [2]. The identification of structural damage
based on change of these dynamic characteristics has been the subject of many studies
[3, 4].

Among the many methods developed for damage detection, methods based on fre-
quency variation are widely used [5–7]. This is because natural frequencies are easier and
accurately to measure than mode shapes or damping ratios. The main drawback of these
methods is that different damage locations can result in the same frequency change.

Many studies have attempted to detect single damage in beams. One of the first com-
pact forms relating natural frequency and damage parameters was introduced in [8]. This

Preprint submitted to xxx October 26, 2022

5.1. A enhance method for multiple damage detection (Article 4) 133



form was used for damage localization in beams by Narkis [9]. Similarly, Kam and Lee
[10] used frequencies and mode shapes to identify a cracked element based on a simple
reduced stiffness model. Lee and Chung [11] identified a crack in a cantilever beam by
combining a finite element model with an analysis of the first four natural frequencies.
Sayyad and Kumar [12] determined the location and the size of a damage using the first
two natural frequencies by establishing the relationship between the natural frequencies,
the location and the size of the crack. Lee [13] presented a method for determining the
location and the extent of a crack in a tapered cantilever using natural frequency variations
and neural networks. Dahak et al. [14] developed a damage detection procedure based
on the classification of normalized frequencies in cantilever beams. An expression of the
natural frequency variation and damage was derived in [15] and applied to single damage
detection as a pattern recognition problem in [16]. The expression in [15] is also used to
generate contour lines along the entire length of the beam, and the intersection of these
contours is considered to be damage position [17–19]. Radzieński et al. [20] introduced
a method for single damage detection using frequency shift and analytical mode shape.
Le et al. [21] presented a single damage detection procedure based on the relationship
between damage parameters and natural frequencies.

The identification of multiple damages is more difficult than that of single damage,
and in recent decades this issue has received considerable attention [22]. Ostachowicz and
Krawczuk [23] analyzed the influence of the location and depth of two cracks on the nat-
ural frequency of cantilever beams. Mazanoglu and Sabuncu [24] presented an algorithm
that uses the map of natural frequency ratios to identify double cracks in beams. Xiang
and Liang [25] developed a two-step hybrid method based on mode shape and frequency
changes to detect two cracks in cantilever beams. Studies [26, 27] proposed probabilis-
tic approaches to damage identification. Bayesian inference-based methods have been
recognized as an effective approach to detecting structural damage [28–31]. Generalized
procedures for the identification of multiple damages such as genetic algorithm [32] or
optimization algorithm [33, 34] have been developed recently. Although these optimiza-
tion methods are effective, they often take a long time to reach the convergence of the
optimization procedures.

Among the above studies, the relationship between natural frequency shift and damage
is used for many damage identification procedures [15–19, 21], but its applications are only
limited to single damage detection.

This article uses the simplified relationship derived in chapter 4 and the procedure
presented by Sha et al. [27] to detect multiple damages in structures. In this work, the sim-
ulated natural frequency shifts are obtained directly from the analytical expression given in
a simplified relationship, instead of using the finite element method (FEM). The localiza-
tion of damages is determined by the most probable locations obtained using the Bayesian
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inference. The proposed procedure of damage identification becomes fast because it skips
the computational cost associated with FEM simulations.

The remainder of this study is organized as follows. Section 2 presents a simplified
relationship between relative natural frequency shift and damages and the modified proce-
dure for multiple damage detection. The modified procedure is then validated by numeri-
cal tests in Section 3, followed by experimental tests in Section 4. Finally, a conclusion is
given in Section 5.

2. Theoretical formulation

2.1. Theoretical background
In chapter 4, the relationship between natural frequency shift and damage at location

x0 is given as:

∆ fi

fi
=

fi − fi

fi
≈ δK

φ
′′2
i (x0)
∥∥∥φ′′i

∥∥∥2

2

+ δM
φ2

i (x0)

‖φi‖22
(1)

where fi and fi are the natural frequencies of ith mode of the intact and damaged states,

respectively; δK =
∆EI∆L

2EI
and δM = −∆µ∆L

2µ
represent the relative local variation of

bending stiffness and mass, respectively;
∥∥∥φ′′i

∥∥∥2

2
=

L∫
0
φ
′′2
i (x)dx and ‖φi‖22 =

L∫
0
φ2

i (x)dx

In the case of damage due to only change of bending stiffness and neglecting the in-
fluence of mass change, a simpler expression for the natural frequency variation can be
expressed as a function of squared modal curvature:

∆ fi

fi
≈ ζφ′′2i (x0) (2)

Where ζ represents the damage severity.
The expression (2) has been applied to damage detection in many studies [15, 16, 18–

21]. However, these applications are limited to the detection of single damage in beam-like
structures. In the case of structures with multiple damages, their identification becomes
even more challenging. In the next part, expression (2) and Bayesian inference are com-
bined to develop a fast procedure for multiple damage detection.
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2.2. The damage detection procedure
This article partially uses the steps of the damage identification process presented in

[27], but the natural frequency shifts are obtained directly from Equation (2). This work
does not use the FEM as in the existing procedure, although the authors in [27] also men-
tion the possibility of using Equation (2). The proposed identification of damages becomes
fast as it skips the computational cost associated with FEM simulations.

Assuming that damages are independent events with P(a, b) = P(a)∗P(b) and the effect
of multiple damages follows the principle of superposition. The procedure for multiple
damage detection is as follows:

Step 1. Calculate relative frequency shift ∆ f
o
i, j from analytical formula (2) by varying

damage location x j = 0 : L.
Normalize the relative frequency shift to the range [0 1].

δ f
o
i, j =

∆ f
o
i, j −min

i
(∆ f

o
i, j)

max
i

(∆ f
o
i, j) −min

i
(∆ f

o
i, j)

(3)

where ∆ f
o
i, j is the relative frequency shift of the ith mode due to a damage occurring at

location x j.
Step 2. Calculate relative frequency shift from measured values.

∆ f i =
fi − fi

fi
(4)

Normalize the relative frequency shift to the range [0 1].
min

i

δ fi =
∆ fi −min(∆f)

max(∆f) −min(∆f)
(5)

where ∆f contains the measured relative frequency shifts of modes.
Step 3. Denote the damage position function at location x j with mode i as:

Pi, j = 1 −
∣∣∣∣δ f

o
i, j − δ f i

∣∣∣∣ (6)

Step 4. Apply the Bayesian probability theory
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The posterior probability of events A1, A2, .., An after the relevant information is taken
into account can be represented as follows [35]:

P(A j|S 1, S 2, ..., S m) =
P(S 1, S 2, ..., S m|A j)P(A j)

P(S 1, S 2, ..., S m)
(7)

where m, n are the number of information S i and the number of events A j, respectively.
In the damage identification problem, each mode i is considered as an information

S i, and damage occurring at point j is considered as an independent event A j. Suppose
that n is the total number of locations of the beam, the prior probability of each event is
P(A j) = 1/n.

P(S 1, S 2, ..., S m|A j) =

m∏

i

P(S i|A j) (8)

P(S 1, S 2, ..., S m) =

n∑

j

P(S 1, S 2, ..., S m|A j)P(A j) =

n∑

j


m∏

i

P(S i|A j)P(A j)

 (9)

Substitute Eq. (8) and Eq. (9) into Eq. (7):

P(A j|S 1, S 2, ..., S m) =

m∏
i

P(S i|A j)P(A j)

n∑
j

(
m∏
i

P(S i|A j)P(A j)
) (10)

The conditional probability of S i is considered as P(S i|A j) = Pi, j. The posterior prob-
ability P j in Eq. (10) can be simplified as follows:

P j =

m∏
i

Pi, j

n∑
j

(
m∏
i

Pi, j

) (11)

Step 5. Make a generalization for all boundary conditions

Q j =
√

P jPn+1− j (12)

Step 6. Normalize

Z j =
Q j − µ(Q)
δ(Q)

(13)

5

5.1. A enhance method for multiple damage detection (Article 4) 137



where µ and δ are mean and standard deviation operators, respectively.
Step 7. Calculate probabilistic damage indicator (PDI)

PDI =


Z if Z ≥ 0
0 if Z < 0

(14)

The regions with PDI > 0 contain damage locations. Therefore, the peaks of this curve
represent the highest possibility of damage locations.

Step 8. Estimate damage severity
When the effect of multiple damages follows the principle of superposition, the relative

natural frequency shift can be represented as follows:

∆ f i ≈
d∑

k=1

ζk φ
′′2
i

(
x0,k

)
(15)

where d is the number of identified damages. x0,k and ζk represents the location and the
coefficient of the kth damage, respectively.

Once the locations of the damages are determined, the damages coefficients ζk can be
solved from m Equation (15) of m modes. The corresponding damage severity (depth)
is estimated through an inverse method using the relationship between damage depth and
damage coefficient obtained by numerical simulations.

2.3. The proposed augmentation procedure for measured mode shape
In general, damage detection methods based on mode shapes require many measure-

ment points to improve the accuracy. However, in practical applications, a limited number
of measurement points leads to low accuracy of this method. In order to overcome this
limitation, a procedure is proposed to improve the lack of points for the measured mode
shapes.

In experimental tests, analytical mode shapes and analytical curvatures can be inter-
polated from measured mode shapes. When measured mode shapes are used for damage
detection, a procedure must be implemented to deal with a limited number of sensors.

It is known that the ith mode shape and curvature function of an intact beam are ex-
pressed using five coefficients including a1, a2, a3, a4 and α.


φi(x) = a1 sin(αix) + a2 cos(αix) + a3 sinh(αix) + a4 cosh(αix)
φ′′i (x) = α2

i (−a1 sin(αix) − a2 cos(αix) + a3 sinh(αix) + a4 cosh(αix))
(16)

where the coefficients a1, a2, a3, a4 and α depend on the boundary conditions,
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From spatial points of measured mode shapes, the measured mode shapes are used
to estimate the coefficients a1, a2, a3, a4 and α in (16). Since the relationship between
the mode shapes and their coefficients is non-linear, an optimization procedure is used to
estimate these coefficients from the measured points. Once these coefficients are obtained,
the modal curvatures of the intact state can be calculated for any location x j using Equation
(16).

3. Numerical tests

In this section, the procedure is verified by the analysis of the simulated models using
ANSYS Workbench (Fig. 1). The tests were carried out with different boundary condi-
tions.

The numerical beams have a length of 800 mm, a width of 40mm, and a height of 6mm.
Their physical properties are Young’s modulus E = 200GPa, the density ρ = 7850kg/m3,
and the Poisson’s ratio υ = 0.3.

(a) Numerical intact beam (b) Numerical beam with damages

Fig. 1. Numerical beams simulated in ANSYS

3.1. Numerical cantilever beam
Five cases with different crack locations and crack depths in a cantilever beam are

considered. Damage scenarios are shown in Table 1. xk and sk represent the damage
location from the fixed-end and the damage depth of the kth damage. All damages are
simulated with a width of 2mm.

By following the steps mentioned in Section. 2.2, the probability curves of damage for
each case are obtained, as shown in Figs. 2 and 3. Areas with probability values higher
than zero may contain damaged locations. The identified damage locations are defined at
the abcisse of the peaks of the curve. It can be seen from Fig. 3 that the accuracy of the
proposed procedure can increase as the number of modes used increases. This method
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Table 1
Damage scenarios of the numerical cantilever beams.

Case Damage (mm) Natural frequency (Hz)
x1 s1 x2 s2 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Intact 7.6850 48.149 134.79 264.08 436.47
1 300.0 15.0 7.6375 47.838 133.83 263.86 431.64
2 513.3 20.0 7.6772 47.294 132.24 263.85 429.11
3 300.0 15.0 650.0 20.0 7.6471 47.672 131.84 257.66 422.86
4 400.0 25.0 650.0 20.0 7.6304 46.355 132.70 249.87 426.38
5 450.0 10.0 650.0 20.0 7.6804 47.734 132.70 257.15 426.54

gives symmetrical fake damage locations, but these false locations can be easily detected
by comparing the difference between the modal curvature of the modified state and those
of the intact state as shown in Fig. 4.

Once the damage location is determined, the damage severity ζk corresponding to its
damage location can be estimated using Equation (15). For an accurate assessment of the
damage depth, numerical simulations are carried out to establish the relationship between
depths and their coefficients. The curve of this relationship is shown in Fig. 5. The damage
depths are interpolated from adjacent values using cubic spline interpolation.

The identified results given in Table 2 represent damage locations and damage depths.
It can be seen that they are close to the data selected for simulations in determining both
the locations and the depths of the damages. Although the proposed procedure gives both
the actual damages and the symmetrically false ones, it limits the number of possible
locations containing damages. Fake damaged locations can be eliminated with additional
information, such as the difference between the mode shapes or curvatures of the intact
state and those of the modified one, or by visualization at possible damage locations on
the structure.

3.2. Numerical clamped-clamped beam
Four cases were considered with different crack locations and crack depths of the

clamped-clamped beams. Damage scenarios are given in Table 3.
By following the steps mentioned in Section. 2.2, the probability curves of damage

for each case are presented in Fig. 6. Actual damages are always inside regions with high
probability values. After the damage location is determined, the damage coefficients ζk

corresponding to its damage locations are estimated. The curve for the relationship be-
tween damage depths and their coefficients is shown in Fig. 7. The damage depths are
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(a) Case l (b) Case 2

(c) Case 3 (d) Case 4

Fig. 2. Damage index in the numerical cantilever beams by using the first five modes

Table 2
Results identified from the numerical cantilever beams.

Case x1 (mm) s1 (mm) x2 (mm) s2 (mm)

1 301.1 14.2
2 502.1 19.5
3 318.7 14.1 643.8 19.6
4 428.4 23.9 630.2 19.2
5 455.7 9.5 638.2 19.6
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(a) Using the first four modes (b) Using the first five modes

Fig. 3. Damage index in the numerical cantilever beams in case 5

(a) Case l (b) Case 4

Fig. 4. Eliminate fake locations for case 1 (left) and case 4 (right)

interpolated from adjacent values using cubic spline interpolation. The results of deter-
mining the location and the depth of damage are given in Table 4. The identified results
are close to the exact ones.

4. Experimental tests

This section uses experimental tests to verify the method’s effectiveness in beams with
different boundary conditions. The damage detection procedure is considered in two ap-
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Fig. 5. Damage coefficient vs. damage depth in the numerical cantilever beam

Table 3
Damage scenarios of the numerical clamped-clamped beams.

Case Damage (mm) Natural frequency (Hz)
x1 s1 x2 s2 Mode

1
Mode
2

Mode
3

Mode
4

Mode
5

Mode
6

Intact 49.142 135.41 265.35 438.47 654.76 914.14
1 200.0 15.0 49.131 134.36 263.06 437.68 653.17 907.33
2 400.0 10.0 48.961 135.39 263.91 438.39 651.31 913.80
3 200.0 15.0 400.0 10.0 48.965 134.39 261.74 437.64 649.88 905.08
4 450.0 10.0 700.0 10.0 48.866 135.23 264.35 435.98 651.24 905.72

Table 4
Results identified from the numerical clamped-clamped beams.

Case x1 (mm) s1 (mm) x2 (mm) s2 (mm)

1 211.4 14.0
2 399.6 10.3
3 216.2 13.4 373.2 11.7
4 449.2 10.6 695.1 9.8

proaches: the first uses the analytical mode curvatures, and the second uses the mode
curvatures derived from the measured mode shapes in the intact state.
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(a) Case l (b) Case 2

(c) Case 3 (d) Case 4

Fig. 6. Damage index in the numerical clamped-clamped beams using first six modes

4.1. Using analytical mode shape curvature
This section uses an example taken from the work of Gillich and Praisach [16]. The

structure is a clamped-clamped beam: 1000mm in length, 50mm in width, and 5mm in
height. The physical properties of the beam: density ρ = 7850kg/m3, Young’s modulus
E = 200GPa. The transversal damage was placed at 0.6m from the fixed-end with 2mm
wide and 30% depth. The measured frequencies are given in Table. 5.

In this test, mode shape measurements are not available, so the analytical mode curva-
tures are used for the damage detection procedure. The probability curves obtained by the
proposed procedure are shown in Fig. 8. It can be seen that the accuracy of the probability
curves is significantly improved when ten modes are used instead of five modes.
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Fig. 7. Damage coefficient vs. damage depth in the numerical clamped-clamped beam

Table 5
Measured frequencies of the intact and damaged states of the clamped-clamped beam [16].

Case Measured frequency (Hz)

Intact

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
26.099 71.926 140.991 233.070 348.205
Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
486.420 647.735 832.155 1039.672 1270.254

Damaged

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
25.929 71.493 140.579 230.016 348.130
Mode 6 Mode 7 Mode 8 Mode 9 Mode 10
481.188 643.729 829.675 1026.964 1269.934

4.2. Using experimental mode shape
In this section, an experimental test on a cantilever beam was designed to verify the

applicability of the proposed procedure in the real structure. The beam have the follow-
ing physical parameters: length L = 1005mm, width B = 42mm and height H = 10mm,
Young’s modulus E = 200GPa, and density ρ = 7850kg/m3. Two damages of different
depths were introduced into the lateral side. These damages have a width of 2mm.

To obtain natural frequencies and mode curvatures for the damage detection procedure,
five Type 4533-B-001 accelerometers located along the beam length, were used for modal
analysis. The masses of the selected accelerometers are relatively small in comparison
with the mass of the beam, so the effect of these additional masses can be neglected. The
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(a) Using five modes (b) Using ten modes

Fig. 8. Damage index in the beam by using the five modes (left) and ten modes (right)

experimental setup is shown in Fig. 9. Table. 6 shows the damage scenario and measured
frequencies of the intact and damaged beams.

Table 6
Damage scenario of the experimental cantilever beam.

Case Damage (mm) Measured frequency (Hz)
x1 s1 x2 s2 1 2 3 4 5

Intact 7.7691 48.3655 137.3496 277.2691 445.6196
Damaged 500.0 10.0 750.0 15.0 7.7450 47.4729 134.6511 270.9963 445.5722

The relative natural frequency shift is used in addition to the mode curvature calculated
from the measured mode shapes of the intact structure. The probability curves obtained
by the proposed procedure are shown in Fig. 11. The red dashed line marks the actual po-
sitions of the damages on the beam. It shows the identified damage locations that are close
to real ones. The corresponding damage coefficient is then estimated for each location.

In order to estimate the depth of these damages, the relationship between the damage
coefficient and damage depth can be accomplished by numerical simulations. The curve
for this relationship is shown in Fig. 12. The results of determining the damage parameters
are presented in Table 7. These results confirm the effectiveness of the proposed procedure.
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Fig. 9. Experimental setup for the cantilever beam

Table 7
Results identified from the experimental cantilever beam.

Case x1 (mm) s1 (mm) x2 (mm) s2 (mm)

1 493.9 8.9 741.4 13.8

5. Conclusion

This work extends the previous damage identification procedure to detect multiple
damages. In this study, the simulated natural frequency shifts are obtained directly from
the analytic expression established in the previous chapter instead of using finite element
method. The proposed identification of damages becomes fast because it skips the com-
putational costs associated with FEM simulations. However, the procedure gives pseudo-
failure locations that are symmetrical to the actual failure locations. They can be easy to
distinguish by comparing the difference between the mode shapes of the modified state
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(a) Experimental mode shape (b) Augmented mode shape

Fig. 10. Experimental mode shape (left) and augmented mode shape (right) in the intact
cantilever beam

Fig. 11. Damage index in the experimental cantilever beam

and those of the intact state. Numerical simulations were carried out to confirm the effec-
tiveness of the proposed method on the various types of beams. The proposed procedure
has also been tested experimentally in two different approaches: the first using the analyt-
ical modal curvatures, the second using the modal curvatures derived from the measured
mode shapes.
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Fig. 12. Damage coefficient vs. damage depth in the experimental cantilever beam
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[30] M. Uzun, H. Sun, D. Smit, O. Büyüköztürk, Structural damage detection using
bayesian inference and seismic interferometry, Structural Control and Health Moni-
toring 26 (2019) 1–20. doi:https://doi.org/10.1002/stc.2445.

[31] X. Wang, R. Hou, Y. Xia, X. Zhou, Structural damage detection based on varia-
tional bayesian inference and delayed rejection adaptive metropolis algorithm, Struc-
tural Health Monitoring 20 (2020) 1518–1535. doi:https://doi.org/10.1177/
1475921720921256.

[32] M.-T. Vakil-Baghmisheh, M. Peimani, M. H. Sadeghi, M. M. Ettefagh, Crack de-
tection in beam-like structures using genetic algorithms, Applied Soft Computing 8
(2008) 1150–1160. doi:https://doi.org/10.1016/j.asoc.2007.10.003.

20

152 Chapter 5. Multiple damage detection



[33] S. A. Moezi, E. Zakeri, A. Zare, Structural single and multiple crack detection in
cantilever beams using a hybrid cuckoo-nelder-mead optimization method, Mechan-
ical Systems and Signal Processing 99 (2018) 805–831. doi:https://doi.org/10.
1016/j.ymssp.2017.07.013.

[34] S. Khatir, K. Dekemele, M. Loccufier, T. Khatir, M. Abdel Wahab, Crack identifica-
tion method in beam-like structures using changes in experimentally measured fre-
quencies and particle swarm optimization, Comptes Rendus Mécanique 346 (2018)
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6 General conclusions andperspectives

This part summarizes the work and its results described in the previous chapters. It
gives a brief discussion about the prospects and possible ways for improvements that can
be applied in future studies of the proposed vibration-based methods for application in
the process of structural health monitoring.
It briefly recalls the work presented earlier: (1) review of modern effective and popular
methods of operational modal analysis, damage identification and existing problems; (2)
improvement on the existing modal identification method that can deal with underdeter-
mined cases in the time domain; (3) introduction of a new method of modal identification
in the frequency domain; (4) development of a fast damage detection procedure based
on a simplified relationship between damage and modal change; (5) presentation of an
improved procedure for the detection of multiple damages in structures by replacing the
computational costs associated with finite element modeling with a calculated developed
analytical expression.
It then discusses some recommendations for future research that should be applied to
improve the proposed methods and procedures for their use for modal identification as
well as damage detection.

Chapter abstract

6.1 Conclusions
Structural health monitoring has always been a focus of research because the health and
safety of structures depends on monitoring the occurrence, formation and propagation of
structural damage. In the SHM system, the modal analysis and damage detection are the
two most important components. This thesis has proposed a number of methods for modal
analysis and damage detection used use in engineering structures. The main conclusions in
this thesis are summarized in four major contributions, which are listed below:

1. The first contribution is an improvement of the existing modal identification technique
based on the PARAFAC decomposition in the time domain. Recently proposed for op-
erational modal analysis, PARAFAC decomposition based methods have been proven to
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be efficient in underdetermined situations and in the presence of harmonic excitations.
The third-order tensor of the covariance of responses is first decomposed into components
corresponding to structural modes or harmonic deflections. The modal parameters are
then deduced from the auto-covariance function of each component, and the distinction
between the structural mode and the harmonic component is based on its kurtosis value.
No criterion about the length of the auto-covariance function was given. However, the
study of the thesis showed that this length should be chosen depending on the decom-
posed components, and an insufficient length of the auto-covariance function can lead to
inaccurate results. To overcome this limitation, an enhanced procedure of the PARAFAC
decomposition-based method for modal analysis in the time domain has been proposed.
The minimum length of auto-covariance functions using natural periods and damping
ratios is proposed to distinguish between harmonics and structural modes accurately.

2. The second contribution is the development of a novel method for modal identification
based on PARAFAC decomposition in the frequency domain. Using the PARAFAC de-
composition, a third-order tensor in frequency constructed from PSD of responses is first
decomposed into rank-1 tensors that can be structural modes or harmonic components.
The auto-PSD function of each rank-1 tensor is then used to identify modal parame-
ters, while spectral kurtosis values are used for the distinction of structural modes and
harmonics. Detailed analytic developments of the method are presented together with
its practical step-by-step procedure. The performance of the proposed method has been
investigated for proportional/non-proportional damping, closely spaced modes, under-
determined cases and in the presence of harmonic excitations. To the best of authors’
knowledge, there was no similar modal identification method in the literature based on
PARAFAC decomposition in frequency.

3. The third contribution is devoted to the proposal of an efficient method for the rapid
detection and quantification of a single local change in the mass and/or stiffness of like-
beam structures using identified modal parameters. Existing methods are based on a
simplified heuristic expression between beam stiffness change alone and its impact on
natural frequency shift and mode shape curvature to produce a curve for each mode
expressing damage severity and damage location. In plotting several curves of identified
modes, the stiffness change and its location are deduced manually from the coordinates
of the intersection of these curves. The existing methods can however give inaccurate
results of damage identification when the curves do not have the same intersection point.
In addition, it is important to note that the variation in modal parameters occurs not
only from the appearance of a stiffness change, but also from a local change in the mass
of the structure. Therefore, the third contribution considers the relationship between
local changes in the mass and/or stiffness of a beam and its natural frequency shift
and mode shape, and explicitly gives an analytical expression. Based on the proposed
expression, linear regression is applied to obtain accurate results of the change in the
mass/stiffness of the beam. However, this proposed procedure identifies two possible
modification positions: the real one and the fictitious one in cases of cantilever beams
and clamped-clamped beams. But it was shown that the exact location can be determined
without a doubt by using additional information, such as the difference between the mode
shapes or curvatures of the intact state and those of the modified one.

4. The fourth contribution aims to extent the previously presented damage identification
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procedure for multiple local changes in mass and/or stiffness. In general, natural fre-
quency shifts between the healthy state and assumed damaged states are obtained by
simulations using the Finite Element Method (FEM). Comparison between simulated
and measured natural frequency shifts allows damage to be identified, for example, using
an optimization step or Bayesian inference. In this contribution, the simulated natural
frequency shifts are obtained directly from the analytic expression established in the for-
mer contribution instead of using FEM. The localization of damages is deduced based on
the most probable locations given by the Bayesian inference. The proposed identification
of damages becomes rapid because it skips the computational cost caused by FEM sim-
ulations. It can however introduce pseudo-damage locations that are symmetrical to the
actual damage ones. These pseudo-damage locations can be easily eliminated by using
other available information such as measured modal shape.

6.2 Perspectives
Despite some promising results were obtained and presented in this thesis, further works are
always possible in order to enhance performance of proposed methods for modal identification
as well as for damage detection. Below are some suggestions and ideas for further research
that can enhance the proposed methods:

Modal identification

• The performance of the developed modal analysis method needs to be studied in more
challenging situations, such as a structure that has several identical frequencies.

• PARAFAC decomposition-based methods in the time domain involve user selection of
time-lag parameters to compute correlation matrices, but there is no optimal proce-
dure for this selection. It is still necessary to develop a procedure for choosing such
parameter and minimizing user intervention.

• In the proposed methods for mode analysis in this thesis, the stability graph is used to
determine the number of active modes. However, this leads to multiple decompositions
for the stability diagram. The problem of selecting the number of active modes without
using stability diagram requests a development in future studies.

• The thesis considers the PARAFAC decomposition for third-order tensors in the time
domain and frequency domain, but does not consider the decomposition in the time-
frequency domain. Decomposition in the time-frequency domain can be used to exam-
ine the change in frequency over time. Therefore, it could be an interesting extension
for modal analysis as well as damage detection.

Damage identification

• The use of mode shape comparison to eliminate the pseudo-failure locations can be
resolved in simulation with a large number of mode shape points. In reality, the
measurements are often limited. Therefore, the use of a limited number of measured
points for eliminating the fake damage location is expected.

• The damage detection procedure proposed in the thesis detects damage based on natu-
ral frequency shifts, but it can produce symmetrical fake locations. This work does not
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consider further information of the locations of measurements. Responses at different
locations on structures contain different information, and thus responses at sites near
the actual damage site have different information from responses at distant sites of
the damaged area. Additional processing of the measured signals to eliminate spurious
damage locations using the Hilbert transform should be considered.

• The proposed procedure for multiple damage detection in this thesis do not consider the
use of change in mode shape between intact and damaged states for Bayesian inference
in multiple damage detection. Therefore, the combination of changes in frequency
and mode shape should be considered together for multiple damage detection using
Bayesian inference.
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A Résumé étendu en Français

La surveillance de la santé structurelle (SHM) des structures est primordiale pour une util-
isation sûre et essentielle pour le développement durable. Parmi les méthodes existantes
de SHM, les méthodes basées sur les mesures de vibration, sont les plus couramment util-
isées. L’analyse modale opérationnelle (OMA) est très appropriée pour les structures réelles
car elle offre plusieurs avantages : faible coût, utilisation normale des structures et surveil-
lance continue. Cependant, elle présente quelques obstacles majeurs : (i) l’incertitude des
paramètres modaux identifiés due à des excitations opérationnelles non mesurées et non con-
trôlées ; (ii) des problèmes de sous-détermination lorsque le nombre de réponses vibratoires
mesurées est inférieur à celui des modes actifs ; (iii) la relation entre les endommagements
exprimés par le changement des propriétés mécaniques comme la masse et la rigidité et le
changement des paramètres modaux, n’est pas directe, et elle passe souvent par des étapes
de recalage des modèles d’éléments finis, ce qui entraîne une charge importante de calcul
; (iv) en réalité, il peut y avoir des endommagements multiples dans une structure, et la
détection de endommagements multiples n’est pas évidente. Par conséquent, les objectifs
de cette thèse sont les suivants : (i) faire une analyse sur des méthodes efficaces et popu-
laires pour l’analyse modale opérationnelle et pour l’identification des endommagements ;
(ii) proposer des améliorations des méthodes existantes ou de nouvelles méthodes qui peu-
vent traiter les cas sous-déterminés ; (iii) développer une procédure de détection rapide des
endommagements basée sur un lien simplifié entre les endommagements et les changements
des paramètres modaux ; (iv) introduire une procédure améliorée pour la détection des dom-
mages multiples dans les structures. Par rapport à ces objectifs, les résultats obtenus dans
le cadre de cette thèse peuvent être résumés en quatre contributions principales suivantes
: La première contribution est une amélioration de la technique d’identification modale
existante basée sur la décomposition PARAllel FACtor (PARAFAC) dans le domaine tem-
porel. Récemment proposée pour l’analyse modale opérationnelle, la méthode PARAFAC
s’est avérée efficace dans des situations sous-déterminées et en présence d’excitations har-
moniques. Le tenseur de troisième ordre de la covariance des réponses est d’abord décom-
posé en composantes correspondant aux modes structurels ou aux déflections harmoniques.
Les paramètres modaux sont ensuite déduits de la fonction d’auto-covariance de chaque
composante et la distinction entre un mode structurel et une composante harmonique est
basée sur sa valeur de kurtosis. Aucun critère concernant la longueur de la fonction d’auto-
covariance n’a été donné. Cependant, l’étude de la thèse a montré que cette longueur doit
être choisie en fonction des composantes décomposées et qu’une longueur insuffisante de la
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fonction d’auto-covariance peut conduire à des résultats inexacts. Afin de surmonter cette
limitation, une procédure d’amélioration de la méthode PARAFAC existante a été proposée.
Une longueur minimale des fonctions d’auto-covariance utilisant les périodes naturelles et
les taux d’amortissement est suggérée pour distinguer avec précision les harmoniques des
modes structurels. La deuxième contribution consiste à développer une nouvelle méthode
d’identification modale basée sur la décomposition PARAFAC dans le domaine fréquentiel.
En utilisant la décomposition PARAFAC, un tenseur d’ordre 3 en fréquence construit à
partir de la densité spectrale de puissance (DSP) des réponses est d’abord décomposé en
plusieurs tenseurs d’ordre de rang 1 qui peuvent être des modes structurels ou des com-
posantes harmoniques. La fonction auto-PSD de chaque tenseur d’ordre 3 de rang 1 est en-
suite utilisée pour identifier les paramètres modaux tandis que les valeurs de kurtosis spectral
sont utilisées pour distinguer les modes structurels et les harmoniques. Les développements
analytiques détaillés de la méthode sont présentés ainsi que sa procédure pratique étape
par étape. La performance de la méthode proposée a été étudiée avec un amortissement
proportionnel/non-proportionnel, des modes très rapprochés, des cas sous-déterminés et en
présence d’excitations harmoniques. A notre connaissance, aucune méthode d’identification
modale similaire basée sur la décomposition PARAFAC en fréquence n’existait dans la lit-
térature. La troisième contribution est consacrée à la proposition d’une méthode rapide pour
la détection et la quantification d’un changement local simple de la masse et/ou la rigidité
de structures de type poutre en utilisant des paramètres modaux identifiés. Les méthodes
existantes sont basées sur une expression heuristique simplifiée entre le changement seul
de la rigidité d’une poutre et son impact sur le décalage de la fréquence naturelle et la
courbure de la déformée modale pour produire une courbe correspondant à chaque mode ex-
primant la sévérité et la localisation des endommagements. En traçant plusieurs courbes de
modes identifiés, le changement de rigidité et sa localisation sont déduits manuellement des
coordonnées de l’intersection de ces courbes. Les méthodes existantes peuvent cependant
donner des résultats inexacts de l’identification des endommagements lorsque les courbes
n’ont pas le même point d’intersection. En outre, il est important de noter que la variation
des paramètres modaux ne résulte pas seulement de l’apparition d’un changement de rigid-
ité, mais aussi d’un changement local de la masse de la structure. Par conséquent, dans la
troisième contribution, la relation entre les changements locaux de masse et/ou de rigidité
d’une poutre et son décalage de fréquence naturelle et sa déformée modale est examinée et
une expression analytique est explicitement donnée. Sur la base de l’expression proposée, une
régression linéaire est appliquée pour obtenir des résultats précis du changement de masse
et/ou rigidité des poutres. La quatrième contribution vise à étendre la procédure précédente
d’identification des endommagements pour de multiples changements locaux de masse et/ou
de rigidité. En général, les décalages de fréquence naturelle entre l’état sain et les états sup-
posés endommagés sont obtenus par des simulations utilisant la méthode des éléments finis
(FEM). La comparaison entre les décalages de fréquence naturelle simulés et ceux mesurés
permet ensuite l’identification des endommagements en utilisant une étape d’optimisation ou
une inférence Bayésienne par exemple. Dans cette contribution, les décalages de fréquence
naturelle simulés sont obtenus directement à partir de l’expression analytique établie dans
la contribution précédente au lieu d’utiliser la méthode des éléments finis. La localisation
des dommages est déduite sur la base des emplacements les plus probables donnés par la
référence Bayésienne. L’identification des endommagements proposée devient rapide car elle
évite le coût de calcul causé par les simulations FEM. Elle peut cependant introduire des em-
placements de pseudo-endommagements qui sont symétriques à ceux des endommagements
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réels. Ces emplacements de pseudo-endommagements peuvent être facilement éliminés en
utilisant d’autres informations disponibles telles que les déformées modales mesurées. Toutes
les contributions ci-dessus ont été validées par des simulations numériques et des tests expéri-
mentaux au laboratoire. Bien que de bons résultats aient été obtenus dans cette thèse, des
travaux supplémentaires sont toujours possibles pour améliorer leur performance/précision
pour l’analyse modale opérationnelle ainsi que pour l’identification des endommagements.
Quelques idées sur les perspectives de la thèse sont donc proposées.
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Résumé: La surveillance de la santé struc-
turelle (SHM) des structures est primordiale
pour une utilisation sûre et essentielle pour le
développement durable. L’analyse modale opéra-
tionnelle (OMA) pour SHM est appropriée pour
les structures réelles car elle offre plusieurs avan-
tages : faible coût, utilisation normale des struc-
tures et surveillance continue. Cependant, elle
présente quelques obstacles majeurs : (i) exci-
tations non mesurées; (ii) problèmes de sous-
détermination; (iii) relation entre les endommage-
ments et le changement des paramètres modaux,
n’est pas directe; (iv) identification difficile des
endommagements multiples. Par conséquent,
les objectifs de la thèse sont : (i) faire une
analyse sur des méthodes efficaces et populaires
pour l’analyse modale opérationnelle et pour
l’identification des endommagements ; (ii) pro-
poser des améliorations des méthodes existantes
ou de nouvelles méthodes qui peuvent traiter les
cas sous-déterminés ; (iii) développer une procé-
dure de détection rapide des endommagements;
(iv) introduire une procédure améliorée pour la
détection des dommages multiples. Les résultats
obtenus dans le cadre de cette thèse peuvent être
résumés en quatre contributions principales suiv-
antes :

La première contribution est une amélioration
de la technique d’identification modale existante
basée sur la décomposition PARAllel FACtor
(PARAFAC) dans le domaine temporel. Le
tenseur de troisième ordre de la covariance des
réponses est décomposé en composantes corre-
spondant aux modes structurels ou aux déflec-
tions harmoniques. Une longueur minimale des
fonctions d’auto-covariance utilisant les périodes
naturelles et les taux d’amortissement est sug-
gérée pour distinguer avec précision les har-
moniques des modes structurels.

La deuxième contribution consiste à dévelop-
per une nouvelle méthode d’identification modale
basée sur la décomposition PARAFAC dans le
domaine fréquentiel. En utilisant la décomposi-
tion PARAFAC, un tenseur d’ordre 3 en fréquence

construit à partir de la densité spectrale de puis-
sance (DSP) des réponses est d’abord décom-
posé en plusieurs tenseurs d’ordre de rang 1
qui peuvent être des modes structurels ou des
composantes harmoniques. La fonction auto-
PSD de chaque tenseur d’ordre 3 de rang 1
est ensuite utilisée pour identifier les paramètres
modaux tandis que les valeurs de kurtosis spec-
tral sont utilisées pour distinguer les modes struc-
turels et les harmoniques. La performance de la
méthode proposée a été étudiée avec un amor-
tissement proportionnel/non-proportionnel, des
modes très rapprochés, des cas sous-déterminés
et en présence d’excitations harmoniques.

La troisième contribution est consacrée à la
proposition d’une méthode rapide pour la détec-
tion et la quantification d’un changement local
simple de la masse et/ou la rigidité de struc-
tures de type poutre en utilisant des paramètres
modaux identifiés. La relation entre les change-
ments locaux de masse et/ou de rigidité d’une
poutre et son décalage de fréquence naturelle et sa
déformée modale est examinée et une expression
analytique est explicitement donnée. Sur la base
de l’expression proposée, une régression linéaire
est appliquée pour obtenir des résultats précis du
changement de masse et/ou rigidité des poutres.

La quatrième contribution vise à étendre la procé-
dure précédente d’identification des endommage-
ments pour de multiples changements locaux de
masse et/ou de rigidité. La comparaison en-
tre les décalages de fréquence naturelle obtenus
directement à partir de l’expression analytique
établie dans la contribution précédente au lieu
d’utiliser la méthode des éléments finis et ceux
mesurés permet ensuite l’identification des en-
dommagements en utilisant une inférence Bayési-
enne. L’identification des endommagements pro-
posée devient rapide car elle évite le coût de calcul
causé par les simulations FEM.

Toutes les contributions ci-dessus ont été validées
par des simulations numériques et des tests ex-
périmentaux au laboratoire.
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Abstract: Structural health monitoring
(SHM) is primordial for safe use and is essen-
tial for sustainable development. Among existing
methods for SHM, vibration-based methods are
the most commonly used. Operational modal
analysis (OMA) is suitable for real structures as
it offers several advantages: low cost, normal use
of structures, and continuous monitoring. How-
ever, it has some main obstacles: (i) uncertainty
in identified modal parameters due to unmea-
sured and uncontrolled operational excitations;
(ii) underdetermined problems when the num-
ber of measured responses is less than that of
active modes; (iii) the relationship between the
damage in terms of change in mechanical prop-
erties like mass and stiffness and the change in
modal parameters, is not straightforward, and it
often goes through finite element update steps
resulting in computational burden; (iv) in reality,
there may be several damages in a structure, and
the detection of multiple damages is not obvi-
ous. Therefore, the objectives of the thesis are:
(i) overview of efficient and popular methods for
operational modal analysis and damage identi-
fication; (ii) propose improvements to existing
methods or a novel method that can deal with
underdetermined cases; (iii) develop a procedure
for rapid damage detection based on a simpli-
fied relationship between damage and changes
in modal parameters; (iv) introduce an enhanced
procedure for multiple damage detection in struc-
tures. To achieve these objectives, the obtained
results of the thesis can be briefly summarized in
the following four contributions.

The first contribution is an improvement of the
existing modal identification technique based on
the PARAllel FACtor (PARAFAC) decomposi-
tion in time domain. The third-order tensor of the
covariance of responses is first decomposed into
components corresponding to structural modes or
harmonic components. A minimum length of au-
tocovariance functions using natural periods and

damping factors is suggested to distinguish be-
tween harmonics and structural modes accurately.

The second contribution is the development of
a novel method for modal identification based
on PARAFAC decomposition in frequency do-
main. Using the PARAFAC decomposition, a
third-order tensor in frequency constructed from
Power Spectral Density (PSD) of responses is first
decomposed into rank-1 tensors that can be struc-
tural modes or harmonic components. The auto-
PSD function of each rank-1 tensor is then used to
identify modal parameters, while spectral kurto-
sis values are used for the distinction of structural
modes and harmonics.

The third contribution is devoted to the pro-
posal of an efficient method for the rapid detec-
tion and quantification of a single local change
in the mass and/or stiffness of like-beam struc-
tures using identified modal parameters. This
contribution considers the relationship between
local changes in the mass and/or stiffness of a
beam and its natural frequency shift and mode
shape, and explicitly gives an analytical expres-
sion. Based on the proposed expression, linear
regression is applied to obtain accurate results of
the change in the mass/stiffness of the beam.

The fourth contribution aims to extent the pre-
vious damage identification procedure for multi-
ple local changes in mass and/or stiffness. Com-
parison between natural frequency shifts obtained
directly from the analytic expression established
in the former contribution instead of using FEM
and measured ones allows multiple damages to
be identified using Bayesian inference. The pro-
posed identification of damages becomes rapid be-
cause it skips the computational cost caused by
FEM simulations. All the above contributions
have been validated by numerical simulations and
experimental laboratory tests.
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