
HAL Id: tel-03836248
https://theses.hal.science/tel-03836248

Submitted on 2 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From the algorithm to the targets, optimization flow for
high performance computing on embedded GPUs

Mickaël Seznec

To cite this version:
Mickaël Seznec. From the algorithm to the targets, optimization flow for high performance computing
on embedded GPUs. Distributed, Parallel, and Cluster Computing [cs.DC]. Université Paris-Saclay,
2021. English. �NNT : 2021UPASG074�. �tel-03836248�

https://theses.hal.science/tel-03836248
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N
N
T:
2
0
2
1
U
PA

S
G
0
7
4

From the algorithm to the
targets, optimization flow for

high performance computing on
embedded GPUs

De l’algorithme à l’implémentation, flot d’optimisations
pour le calcul haute performance sur GPU embarqués

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 580, sciences et technologies de
l’information et de la communication (STIC)

Spécialité de doctorat: Traitement du signal et des images
Unité de recherche: Université Paris-Saclay, CNRS, CentraleSupélec,
Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France

Référent: faculté des sciences d’Orsay

Thèse présentée et soutenue à Paris-Saclay, le 25/10/2021, par

Mickaël SEZNEC

Composition du jury :

Frédéric CHAMPAGNAT Président
Ingénieur de recherche, ONERA
Michael KRAJECKI Rapporteur, Examinateur
Professeur, Université Reims Champagne-Ardenne
Cristina SILVANO Rapportrice, Examinatrice
Professeure, Politecnico di Milano
Julien DEMOUTH Examinateur
Ingénieur de recherche, NVIDIA
Jean-François NEZAN Examinateur
Professeur, INSA Rennes

Direction de la thèse :

Nicolas GAC Directeur
Maître de conférences, Université Paris-Saclay
François ORIEUX Co-encadrant
Maître de conférences, Université Paris-Saclay
Alvin Sashala NAIK Co-encadrant
Ingénieur de recherche, Thales Research & Technology

Abstract

Current digital processing algorithms require more computing power to achieve
more accurate results and process larger data. In the meantime, hardware archi-
tectures are becoming more specialized, with highly efficient accelerators designed
for specific tasks. In this context, the path of deployment from the algorithm to the
implementation becomes increasingly complex. It is, therefore, crucial to deter-
mine how algorithms can be modified to take advantage of new hardware capabili-
ties. Our study focused on graphics processing units (GPUs), a massively parallel
processor. Our algorithmic work was done in the context of radio-astronomy or
optical flow estimation and consisted of finding the best adaptation of the software
to the hardware. At the level of a mathematical operator, we modified the tra-
ditional image convolution algorithm to use the matrix units and showed that its
performance doubles for large convolution kernels. At a broader method level, we
evaluated linear solvers for the combined local-global optical flow to find the most
suitable one on GPU. With additional optimizations, such as iteration fusion or
memory buffer re-utilization, the method is twice as fast as the initial implemen-
tation, running at 60 frames per second on an embedded platform (30 W). Finally,
we also pointed out the interest of this hardware-aware algorithm design method
in the context of deep neural networks. For that, we showed the hybridization of a
convolutional neural network for optical flow estimation with a pre-trained image
classification network, MobileNet, that was initially designed for efficient image
classification on low-power platforms.

Contents

Contents v

List of Figures vii

List of Tables xi

Introduction xiii

1 Efficient deployment for high-performance architectures 1
1.1 Examples of algorithm design for image processing 3

1.1.1 Image convolution . 4
1.1.2 Optical flow estimation . 7

1.2 High-performance architectures . 11
1.2.1 Context and current hardware designs 12
1.2.2 The GPU architecture . 16

1.3 Optimizing for hardware performance 18
1.3.1 From ideas to instructions 18
1.3.2 Understanding the execution 22
1.3.3 Optimize . 23

1.4 Conclusion . 25

2 GPU acceleration of image convolutions 27
2.1 A Study on Convolution using Half-Precision Floating-Point Num-

bers on GPU for Radio Astronomy Deconvolution, SiPS 2018, Pub-
lished . 27

2.2 The Im2Tensor Algorithm for Efficient 2D Convolutions on GPU
Tensor Cores, under review . 36

2.3 Conclusion . 58

Contents vi

3 Implementation strategy for variational optical flow estimation 59
3.1 Real-Time Optical Flow Processing on Embedded GPU: an Hardware-

Aware Algorithm to Implementation Strategy, under review 60
3.2 Conclusion . 73

4 Towards real-time optical flow with DNNs 75
4.1 State of the art . 76

4.1.1 Optical flow estimation via DNNs 77
4.1.2 Real-time strategies for DNNs 82

4.2 Deploying PWC-Net on Jetson Xavier 85
4.2.1 Architecture . 86
4.2.2 Deployment . 86
4.2.3 Results . 90

4.3 MobileFlow: an hybrid model based on efficient networks 91
4.3.1 Architecture and learning method 91
4.3.2 Results . 92

4.4 Conclusion . 95

Conclusion 97

Scientific contributions 101

Résumé en français 103

Bibliography 107

List of Figures

1 Representation of several hardware platforms in terms of flexibility,
performance and power. From (Lee et al., 2009). xiv

1.1 A tradionnal development path. The algorithm design team creates
an algorithm that solves a given problem. The implementation team
then tries to implement the solution on the target hardware. 2

1.2 Addition of a collaborative phase between algorithm and imple-
mentation teams compared to fig. 1.1. This hardware-in-the-loop
scheme finds critical inadequations between software and hardware
early and permits faster algorithm re-designs. It also enables new
types of optimizations that require mutual understanding of the
software and the hardware. 2

1.3 Operations required to compute one pixel of a convolution. Source:
Tim Harley CC BY-NC 4.0. 4

1.4 The sum of four numbers computed serially (left) or in parallel (right). 5
1.5 The arithmetic intensity of various algorithms. Source: Lawrence

Berkeley National Laboratory. 7
1.6 Optical flow example on three moving pixels. 8
1.7 From left to right, Middlebury, Sintel, KITTI, and a calibration

pattern. The frame is on the top, and its corresponding flow on the
bottom. 9

1.8 Diagram of a multi-scale optical flow estimation. First, input images
generate a downsampled Gaussian pyramid. A first estimation is
made at the top level and is used to warp the second image one
scale below. From there, an estimation of the residual flow is done
again and the procedure continues until reaching the first level. . . . 11

https://community.arm.com/developer/tools-software/graphics/b/blog/posts/when-parallelism-gets-tricky-accelerating-floyd-steinberg-on-the-mali-gpu

List of Figures viii

1.9 Performance of CPUs as evaluated by the SPEC benchmarks (log
scale). Over the span of 20 years since 1986, the performance has
increased by 52% per year. Afterwards, this development has slowed
down. From (Hennessy & Patterson, 2011). 13

1.10 Plot of computer characteristics since 1970 (log scale). While the
frequency, power and single-thread performance are stalling since
the 2010’s, the numbers of transistors and logical cores continue to
grow. From (Rupp, 2015). 13

1.11 Overview of Kalray’s MPPA Coolidge manycore architecture. One
full processor is made of five compute clusters, each of which features
sixteen CPUs. Credits: Kalray. 14

1.12 A systolic array for computing. The communication grid between
PEs (Processing Elements) is well-suited for linear algebra opera-
tions. From (Wei et al., 2017). 15

1.13 Compute throughput vs. power consumption of many types of
platforms. Very parallel architectures, such as the V100, tend to
achieve better performance-per-Watt than more traditionnal CPUs,
like AMD-MI60 or Intel Phi7210F. From (Reuther et al., 2019). . . 16

1.14 In the last few years, the FLOP/s attained by GPUs have largely
surpassed those of CPUs. 17

1.15 Floating-point formats accepted by NVIDIA’s tensor cores. FP64,
FP32, and FP16 are standardized under IEEE 754. BF16 is a 16-
bit truncated version of FP32 and widely used for low-precision
arithmetic. TF32 is specific to NVIDIA and have the same range
as FP32 and the same precision as FP16. 18

1.16 The architecture of an Ampere Streaming Multiprocessor. 19
1.17 The GA100, an NVIDIA GPU based on the Ampere architecture. . 19
1.18 NVIDIA tools and workflow for GPU profiling. 23
1.19 A fictional roofline model. The log-log plot indicates throughput

vs. arithmetic intensity. Three example measures are given: the
square is memory limited due to its low AI. Triangle is far from the
theoretical maximum throughput given its AI. There are other fac-
tors than memory and compute bandwidth that limits its execution.
Diamond uses the hardware almost at its best. 25

2.1 Once completed, the SKA will use thousands of such 15m dishes.
Credits: skatelescope.org. 28

2.2 Modelisation of an aquisition in the inverse problem framework. . . 28
2.3 A tensor core performs a matrix-matrix multiplication. Adapted

from Nvidia. 36

List of Figures ix

3.1 The Xavier chip on its compute module. Credits: Nvidia. 59

4.1 The Alexnet CNN architecture that won the ImageNet classification
challenge. The first five layers are a grouping of convolution, activa-
tion and max pooling. This generates features for the input image
that are discriminated by two dense layers to assign probabilites to
a thousand classes. Credits: Adam Geitgey. 77

4.2 The two DNN architectures for optical flow introduced by Doso-
vitskiy et al., 2015. Top, FlownetS, which stacks two images to
form the input, then generates features via convolutions, and finally
aggregates results of different layers to generate the flow. Bottom,
FlownetC, replaces the start of the network with two siamese (which
share the same weights) CNNs that operate on the two images in-
dependently. Features of both images are then combined with a
correlation operation. 79

4.3 Zoom on the refinement module presented in fig. 4.2. Its uses previ-
ous feature tensors to generate increasingly larger flow estimations.
From (Dosovitskiy et al., 2015). 79

4.4 Left, the usual multi-scale processing for optical flow. Replacing
the Energy Minimization step with a neural network would resut
in SPyNet’s approach (Ranjan & Black, 2017). Right, PWC-Net
operates on CNN features directly and uses the correlation operator
(Cost Volume Layer) defined in Flownet. From (Sun et al., 2018b). 81

4.5 Difference between a traditional 3× 3 convolution and a separable
one. On top, the regular filter’s size is C × 3 × 3. On the bottom,
using first a 1×3×3 filter, applied on the C layers, then performing
a C × 1× 1 convolution reduces the number of weights needed. . . . 84

4.6 MobileNets’ accuracy results with different choices of α. Higher
is better. Note the log-linear relation between the number of mult-
adds and the attained accuracy on Imagenet classification. From (Howard
et al., 2017). 85

4.7 PWC-Net’s feature extraction. Each block represent a feature ten-
sor. Red blocks are used for optical flow estimation. 87

4.8 Optical flow prediction of PWC-Net at a single scale. The previous
flow, features of the two images and other hidden coefficients serve
at generating a new tensor. From this tensor, a new flow is estimated
and up-scaled. 87

4.9 The deployment path from a PyTorch model to its execution on
Xavier. It is first converted to the ONNX format that TensorRT
accepts for optimization. We developped correlation and warp plu-
gins for TensorRT to handle these non-standard operations. 88

List of Figures x

4.10 Two equivalent ways of performing the correlation operation. Left:
the method used in the original implementation, with tensors trans-
posed in the NHWC format. Right: our proposed implementation,
that operates directly in the NCHW format. 89

4.11 PWC-Net’s execution on Jetson Xavier. With or without fp16 en-
abled when generating the model with TensorRT. Figure created
with flowpy (M. Seznec, 2021). 90

4.12 End-point errors vs. network parameters’ size on the validation split
of FlyingChairs. Lower is better. The disc is the PWC-Net refer-
ence (Sun et al., 2018b). Diamonds represent MobileFlow networks,
labelled with their corresponding Mobilenet widths. 92

4.13 Results of PWC-Net and different versions of MobileFlow on a Fly-
ingChairs sample. 93

4.14 Inference runtime breakdown, grouped by layer type, in fp16 pre-
cision. 95

List of Tables

4.1 Median runtime of the correlation layer on Jetson AGX Xavier with
(1, 32, 256, 256) tensor inputs. 89

4.2 PWC-Net’s performance on a Jetson AGX Xavier with 512 × 384
images. 90

4.3 Runtime of MobileFlow networks and PWC-Net on the Jetson AGX
Xavier with 512× 384 images. 94

Introduction

The manuscript you are about to read results from a joint research effort between
the Laboratoire des Signaux et Systèmes (L2S) and Thales Research & Technology
(TRT).

As an innovative company, Thales always strives for fast, accurate, and robust
algorithmic solutions to various data processing problems. This goal is achieved
through the combination of the right software with the right hardware. Even
if both of them can be chosen or designed separately, splitting up the process
may cause the implementation of an algorithm to perform poorly on its execution
platform.

In a context where various hardware architectures are available off-the-shelf,
it is crucial to identify the main advantages each offers. These features introduce
new trade-offs during the design of the algorithm. Knowing which programs or
operations are favored at execution time makes it possible to conceive methods
that use the hardware to its full potential.

This adaption of the software to the hardware is all the more critical as new
innovative computer architectures bring promises of low-power, high-performance
computations at the cost of specialization in the programs they execute, as shown
on fig. 1. To push performance forward and stay on the leading edge of data
processing systems, a company like Thales must be able to adapt its algorithms
to leverage the power offered by new accelerators.

In this manuscript, I will focus on two questions: what are the opportunities
for adapting to specific hardware architectures offered by algorithms? What are
the impacts of specialization of the algorithm in terms of performance and quality
of the result?

My work during this Ph.D. program was to identify potential performance
gain in several computer vision algorithms: radio-astronomy image reconstruction,
optical flow estimation, or image convolution. With these use-cases, I aimed at
understanding what portion of the algorithm could be modified to become a better
fit for a specific type of processor, the GPU. The proportion of the optimized code
ranges from a single operator to a whole numerical method, but in all cases, the
goal was to conserve similar results with better performance.

Chapter 0. Introduction xiv

Figure 1: Representation of several hardware platforms in terms of flexibility,
performance and power. From (Lee et al., 2009).

This manuscript will guide you through the different aspects of my research
effort and is structured as follows:

The first chapter exposes the different aspects that govern the development
of an algorithm. It provides an overview of the diverse hardware architectures
available on the market and the reasons for this heterogeneity. Then, based on
the optical flow estimation problem, it provides an overview of the main features
of a computer vision algorithm and the challenges faced for efficient execution.
This chapter ends by explaining the current methodology used for deploying such
algorithms to the hardware platforms.

In chapter 2, I explore the replacement of operators of a larger algorithm with a
GPU-dedicated version. The study begins in the context of radio-astronomy, where
an observation of the sky is the source of an inverse problem. The initial image is
sought to be restored to remove alterations from the capturing instruments. This
digital image processing is limited by the time to perform image convolutions.
Several methods for computing this operation on GPU are explored and compared,
focusing on numerical precision. Then, we move to a broader context and present
a new algorithm that computes 2D convolutions efficiently by relying on matrix-
multiplication units of the GPU.

Chapter 3 extends the scope of the optimization process. In the context of
optical flow, a method, Combined Local-Global, was selected at Thales for im-
plementation on GPU. My analysis begins at the method level to choose a lin-
ear equations solver that fits GPUs’ characteristics. The second step dives into

Chapter 0. Introduction xv

operation-level optimizations to obtain maximum performance. The optical flow
algorithm can run in real-time on an embedded GPU with this combination of
solver choice and hardware-aware optimizations.

Chapter 4 focuses on deep convolutional neural networks. This type of algo-
rithm has become a predominant technique to solve many compute vision tasks.
In this section, we review different network architectures designed for estimating
the optical flow. Just like any other type of workload, DNNs may be tailored for a
particular architecture. We then experiment with hybrid networks to benefit from
previous work from the literature and adapt it to real-time, low-power devices.

This manuscript contains chapters based on research articles, either published
or under-review in several international journals or conferences. The verbatims of
these articles are directly included in this document. In order of appearance, these
publications are:

• Seznec, M., Gac, N., Ferrari, A., & Orieux, F. (2018, October). A Study
on Convolution using Half-Precision Floating-Point Numbers on GPU for
Radio Astronomy Deconvolution, In 2018 IEEE International Workshop on
Signal Processing Systems (SiPS). 2018 IEEE International Workshop on
Signal Processing Systems (SiPS), Cape Town, IEEE. https://doi.org/10.
1109/SiPS.2018.8598342

• Seznec, M. Gac, N. Orieux, F. & Naik, A. S. The Im2Tensor Algorithm for
Efficient 2D Convolutions on GPU Tensor Cores. Journal Article. (Under
review by the Journal of Real-Time Image Processing)

• Seznec, M. Gac, N. Orieux, F. & Naik, A. S. Real-Time Optical Flow Pro-
cessing on Embedded GPU: an Hardware-Aware Algorithm to Implemen-
tation Strategy. Journal Article. (Under review by the SIAM Journal on
Scientific Computing)

https://doi.org/10.1109/SiPS.2018.8598342
https://doi.org/10.1109/SiPS.2018.8598342

Chapter 1
Efficient deployment for high-performance
architectures

The development of a software solution is a long and challenging process. The
industry often divides the task between several teams with specific areas of ex-
pertise to manage the complexity of the process. We can distinguish two main
groups of skills: algorithm design and implementation. The former develops soft-
ware solutions, algorithms to answer a given problem. It usually uses a high-level
environment, such as Python or Matlab, on a desktop or server computer and aims
at validating a specification in terms of the accuracy of the solution. The second
group intervenes afterward once the algorithm is developed. It implements the so-
lution on the desired hardware target, often with size, weight, and power (SWaP)
constraints. This team employs low-level tools, such a C, VHDL, or CUDA, to
interact closely with the hardware and take the best of its performance.

Figure 1.1 explains this traditional way of splitting the concerns between al-
gorithm and implementation. The main issue with this development scheme is
the apparition of late implementation failures. Sometimes, the solution designed
by the algorithm team cannot attain desired performance on the final hardware.
This impossibility may be caused by a too complicated algorithm or a mismatch
between the software characteristics and what can be executed on the hardware
platform.

Let us give an example with the resolution of a linear equations system. Many
solvers have been developed to solve this task. Gauss-Seidel is one of them; it is
quite a performant algorithm but sequential. Conversely, the Jacobi solver con-
verges more slowly but is parallel (Saad, 2003). This example is detailed later
in the manuscript and shows that in a single CPU setting, Gauss-Seidel would
outperform Jacobi, but this hierarchy is inversed on a GPU. When the implemen-
tation team understands that it will never implement the Gauss-Seidel solver as

Chapter 1. Efficient deployment for high-performance architectures 2

Algorithm team Implementation team

Problem Platform

Design

Verify

Deploy

Profile

Optimize

Fixed algorithmAlgorithm
loop

Performance
loop

Algorithm re-design path (long)

Deployed
solution

Figure 1.1: A tradionnal development path. The algorithm design team creates
an algorithm that solves a given problem. The implementation team then tries to
implement the solution on the target hardware.

Algorithm team Implementation team
Algo./Implem.
collaboration

Problem Platform

Design

Verify

Deploy

Profile

Optimize

Assess

DeployAdapt

Algorithm
proposal

Fixed
algorithm

Algorithm
loop

Performance
loop

Algorithm re-design path (short)

Deployed
solution

Figure 1.2: Addition of a collaborative phase between algorithm and implementa-
tion teams compared to fig. 1.1. This hardware-in-the-loop scheme finds critical
inadequations between software and hardware early and permits faster algorithm
re-designs. It also enables new types of optimizations that require mutual under-
standing of the software and the hardware.

Chapter 1. Efficient deployment for high-performance architectures 3

efficiently as required, the solution must pass through the hands of the algorithm
team once again, which wastes precious time.

On fig. 1.2, we look into another type of process for algorithm deployment.
This scheme proposes an intermediate work between algorithm development and
implementation. It requires expertise from both domains to understand whether a
solution is feasible. In this scenario, the algorithm team still performs preliminary
tests to design an algorithm, which we call phase one. The output of phase one
is not fixed. During the algorithm/implementation stage, or phase two, the algo-
rithm is adapted to the hardware as far as possible. This second phase would be
responsible for changing the linear solver from Gauss-Seidel to Jacobi to come back
to our example. The third phase can now extend the deployment with additional
optimizations, thanks to the know-how of the implementation team.

The additional second phase is an adapter between the far-apart domains of
algorithm design and platform optimization. It should work hand-in-hand with
both teams to alleviate inadequations between the solution and the platform and
allows more serene work for the implementation team. Non-feasibilities are also
detected earlier than in the traditional process of fig. 1.1, thanks to having the
hardware in the loop sooner. Minor issues can even be fixed directly in the second
stage with combined knowledge in software and hardware.

This chapter details the stakes of acknowledging the hardware architecture
early in a solution’s design. In section 1.1, we present some aspects of algorithms
the software must deal with, with a focus on two image processing methods, 2D
convolution and optical flow estimation. They serve at introducing algorithmic
concepts such as complexity and arithmetic intensity. Section 1.2 explains the
reasons behind the current split of platform architectures between the two different
development worlds, algorithm design, and deployment. The last section presents
the implementation and optimization side of the deployment. It focuses on the
tools needed for deployment and how to profile and efficiently optimize.

1.1 Examples of algorithm design for image pro-
cessing

As presented in figs. 1.1 and 1.2, an algorithm team is responsible for the construc-
tion of a solution that answers a problem with a set of specifications. This section
details two algorithms, image convolution, and optical flow estimation, used in
different industrial contexts. They allow us to understand the characteristics of a
software solution and the leeway available during the design of these algorithms.

Chapter 1. Efficient deployment for high-performance architectures 4

Figure 1.3: Operations required to compute one pixel of a convolution. Source:
Tim Harley CC BY-NC 4.0.

1.1.1 Image convolution
The 2D-convolution is a fundamental tool for processing images. We use it here
to introduce several aspects of computer algorithms that are useful for the com-
prehension of this manuscript. A digital image I is made of a collection of pixels
{I[x, y], 0 ≤ x < Iw and 0 ≤ y < Ih}. Ih and Iw are the height and the width of
the image, respectively. I[x, y] is a scalar value corresponding to the intensity of
the pixel at coordinates (x, y).

The convolution between two images I and K is noted I ∗K and

(I ∗K)[i, j] =
Kw∑︂
x=0

Kh∑︂
y=0

I[i− ⌊Kw

2
⌋+ x, j − ⌊Kh

2
⌋+ y] ·K[x, y]. (1.1)

K is called the convolution filter, or kernel, with dimensions Kh, Kw.
At coordinates (i, j), we can think of K being super-imposed over I, as in

fig. 1.3. The convolution is then a sum of all kernel coefficients multiplied by the
image coefficient they overlap. These operations must then be repeated for each
destination pixel. For now, we do not account for border conditions.

In reality, eq. (1.1) expresses the cross-correlation between I and K. It is for
simplicity called a convolution. In the proper sense, the correlation is the cross-
correlation of I and KT , the transposition of K.

Time complexity

The first characteristic we want to know about this operation is its complexity.
How many operations must we do to compute a convolution? This metric is called

https://community.arm.com/developer/tools-software/graphics/b/blog/posts/when-parallelism-gets-tricky-accelerating-floyd-steinberg-on-the-mali-gpu

Chapter 1. Efficient deployment for high-performance architectures 5

x1 x2

+ x3

+ x4

+

s

x1 x2 x3 x4

+ +

+

s

Figure 1.4: The sum of four numbers computed serially (left) or in parallel (right).

the algorithmic complexity or time complexity. It is often expressed using the big
O notation to show predominant terms only. In this example, to compute a single
destination pixel, the complexity is O(KwKh) because of the two sum loops. Since
we need to re-iterate this operation on all output pixels, the final time complexity
is

T = O(IwIhKwKh). (1.2)

The algorithmic complexity is a valuable tool to assess algorithms. It does
not account, however, for independent operations. For example, in the case of
convolution, all pixels of the output can be produced in parallel, as there are no
dependencies between them. To measure this, we can use the step complexity S.

Step complexity

Let us introduce S with a simple example. Figure 1.4 shows the sum of (x1, x2,
x3, x4) with two different methods. The first iterates over all variables in order to
compute (((x1+x2)+x3)+x4) . The second relies on the associativity of the sum
to compute ((x1+x2)+(x3+x4)). Computing this four-sum has time complexity T
equals 3, but in one case, the depth of the computation graph is three, while in the
other, it is only two. The depth of the graph is what we call the step complexity,
S. A sequential machine computes the graph in a time proportional to T , while
parallel architectures leverage the independent operations to compute the graph
proportionaly to S.

In the case of 2D convolutions, since all pixels can be computed in parallel,
the step complexity of the convolution is the step complexity of the operations
required for one pixel, as in eq. (1.1). Because the step complexity of a sum of n
elements is O(log(n)), we finally have S = O(log(KwKh)).

In an ideal scenario, the time to compute a convolution on a parallel computer

Chapter 1. Efficient deployment for high-performance architectures 6

is then proportional to S, i.e., log(KwKh). While a sequential machine would
do it in O(IwIhKwKh). This large gap justifies the need to find formulations of
algorithms that expose parallelism and to have adequate machines to run them
efficiently.

Arithmetic intensity

So far, we have analyzed algorithms in terms of arithmetic operations. Another
essential component that dictates the runtime of a program is memory access. In
fact, over the last decades, memory bandwidth has not progressed as fast as the
number and efficiency of arithmetic units (Hennessy & Patterson, 2011). As a
result, recent hardware architectures can usually perform many more operations
than get data from memory in the same amount of time. The arithmetic intensity
then measures the ratio of operations required with respect to the number of bytes
of data needed

AI = number of operations
bytes moved . (1.3)

In the case of the convolution, for one pixel, we need to move pixels from the
kernel and a sub-image, accounting for O(KwKh) movements. In the meantime,
the number of operations is O(KwKh), the arithmetic intensity is then AI = O(1).
It is relatively low compared to other algorithms (see fig. 1.5, convolution being
a type of stencil), but implementation techniques can improve this number. For
example, re-using coefficients by storing them in cache enhances the overall AI.

Knowing the arithmetic intensity is critical to understanding how an algorithm
will perform on a given architecture. As we will see in section 1.3.2, the execution
is often limited by a bottleneck, memory, or arithmetic. Evaluating the limiting
factor is essential for efficient optimization.

Fourier transforms

Algorithms can sometimes be seen in different forms. For example, we showed
that the sum of a set of variables could be a sequential or parallel procedure.
Similarly, convolution can be viewed as a multiplication in the Fourier domain.
This technique, referred to as the convolution theorem, offers opportunities for
faster execution of the operation.

The convolution theorem states that the convolution of I by K equals the in-
verse Fourier transform F−1 of the point-wise product, ⊙, of the Fourier transforms
F(I) and F(K)

I ∗K = F−1(F(I)⊙F(K)). (1.4)

This form is attractive as there exists fast algorithms to compute a Fourier
transform as well as its inverse (Nussbaumer, 1981), in O(n log(n)). In fact, the

Chapter 1. Efficient deployment for high-performance architectures 7

Figure 1.5: The arithmetic intensity of various algorithms. Source: Lawrence
Berkeley National Laboratory.

time complexity of convolution in this form is

TFourier = O(IhIw log(IhIw)) (1.5)

Compared to eq. (1.2), we see that if the kernel is large enough, so that KhKw >
log(IhIw), the Fourier version becomes faster.

In the end, for an operation as essential as the image convolution, multiple ways
exist for computing it. Depending on the hardware that executes the algorithm,
one convolution formulation might be more performant than another. The step
complexity is a crucial metric on parallel hardware, while a sequential platform is
more sensitive to algorithmic complexity. Furthermore, the arithmetic intensity
plays a significant role in the limitations of the algorithm’s runtime, whether it is
memory or operations limited.

Choosing the right way to express an operation is essential to find the best com-
promise regarding arithmetic intensity, algorithmic, and step complexity. Chap-
ter 2 gives further details about actual implementation of image convolutions on
GPUs.

1.1.2 Optical flow estimation
The previous section presented a fundamental operation of image processing, the
2D-convolution. On its own, this function does not produce very significant results.
It is still the backbone of many computer vision techniques. Optical flow estimation

Chapter 1. Efficient deployment for high-performance architectures 8

is one of them. This task consists of finding the displacement of pixels from one
image to another, usually in a video stream. Figure 1.6 shows the displacement
of three pixels. Images 1 & 2 are known, and optical flow estimation aims to find
the displacement vectors.

Applications

Optical flow is an essential building block of more advanced computer vision ap-
plications. Super-resolution, for example, relies on optical flow to register moving
pixels in a video sequence. The aggregation of sources of information from sev-
eral frames increases the accuracy of the image (Baker & Kanade, 1999). Particle
image velocimetry is another example that leverages optical flow to estimate the
movement of particles in a moving fluid (Ruhnau et al., 2005).

In object tracking, the optical flow serves to estimate the motion of the tracked
object. It is a valuable tool to update the position of the object in the next
frames (Smeulders et al., 2014). Finally, the optical flow may be used to esti-
mate stereo disparity with binocular imaging. Knowing the displacement of one
object between the two cameras may then lead to depth estimation (Beauchemin
& Barron, 1995).

Databases and accuracy

Several benchmarks have emerged to offer a comparison baseline for optical flow
estimation. The first one, known as the Middlebury database, features a dozen of
sequences, real and synthetic (Baker et al., 2011). For computer-generated images,
it is usually simple to have access to the optical flow. These 3D scenes provide all
the information required, with the camera and objects’ movements. For real-life
captures, the flow was re-constructed by tracking fluorescent dot patterns visible
under UV illumination on objects.

The second broadly used database is the MPI (Max Planck Institute) Sin-
tel (Butler et al., 2012). It has been constructed from an open-sourced animation

First image

+

Optical Flow

=

Second image

Figure 1.6: Optical flow example on three moving pixels.

Chapter 1. Efficient deployment for high-performance architectures 9

Figure 1.7: From left to right, Middlebury, Sintel, KITTI, and a calibration pat-
tern. The frame is on the top, and its corresponding flow on the bottom.

movie. The database is entirely synthetic but orders of magnitude larger than
Middlebury. It also features longer sequences, several levels of details, and optical
effects such as motion blur.

Finally, the KITTI benchmark is a suite of datasets aimed at several computer
vision tasks for autonomous driving: optical flow, odometry, tracking, for example.
It has had two major releases in 2012 and 2015 (Geiger et al., 2012; Menze &
Geiger, 2015). This time, the data originates from real-life captures. The optical
flow was derived from a laser scanner mounted on top of the car that generated
3D point clouds.

Figure 1.7 shows examples from the three databases. The flow is represented
in color. The hue indicates the flow direction, and the color intensity gives the
norm of the vector.

To compare algorithms with these databases, the end-point error (EPE) is
often used. It measures the norm between the estimated flow and the reference.
The AEPE (Average EPE) summarizes this metric over all vectors by taking the
mean

AEPE(w̄) =
1

HW

∑︂
x,y

∥wx,y −w∗
x,y∥. (1.6)

With wx,y the estimated flow on coordinates (x, y) and w∗
x,y the reference flow.

The goal is then to find an algorithm that minimizes this metric on the images of
a database.

Variational methods

Algorithms made for optical flow estimation exist since the 1980s, with pioneer
work from (Lucas & Kanade, 1981) and (Horn & Schunck, 1981). They have
paved the way for two families of results: sparse and dense. Sparse methods
only generate displacement vectors for key pixels of the image, usually where the
confidence in the result is best. Conversely, dense optical flow estimation provides

Chapter 1. Efficient deployment for high-performance architectures 10

a displacement for every pixel. If required, techniques exist to “densify” a sparse
flow, see for example (Leordeanu et al., 2013).

In this section, we explain the basics of variational optical flow. This introduc-
tion gives an overview of the work we need to deploy to estimate optical flow. The
mathematical notations are as follows: a lowercase a ∈ R is a coefficient, while
a ∈ Rn is a vector. ā is a field, indexed with parenthesis: ā(x, y, t), for example.
ā, is a vector field.

Many methods of estimation relies the illumination constancy assumption. It
assumes that a pixel’s value does not change between two frames

f̄(x+ ux,y, y + vx,y, t+ 1) = f̄(x, y, t) (1.7)
wx, y = (ux,y, vx,y)

T . (1.8)

Where f̄ represents a video stream, the first two dimensions are spatial, and the
third one is temporal. u and v are the horizontal and vertical components of the
flow.

This equation has two unknowns: u and v. It is not possible to solve it as
is. A remedy is to add constraints to the flow in the form of a penalization term.
Our solution should then both solve eq. (1.7) while respecting constraints, such as
being smooth. This can be summarized as an energy function minimization

E(w̄) =

∫︂
x,y

D(f̄ , wx,y, x, y) +R(wx,y, x, y) dx dy. (1.9)

For example, (Horn & Schunck, 1981) set

DHS(f̄ , wx,y, x, y) = ∥f(x+ ux,y, y + vx,y, t+ 1)− f(x, y, t)∥2 (1.10)
RHS(wx,y, x, y) = ∥∇x,ywx,y∥2 (1.11)

Algorithmic techniques and challenges

Solving eq. (1.9) is expensive. After discretization, it means finding the solution to
a system with as many equations as they are pixels in the image. Furthermore, new
and more accurate optical flow algorithms add complexity to the model, increasing
the cost of computing a solution.

For example, (Farnebäck, 2003) uses a quadratic regularization instead of the
usual linearization of eq. (1.10). (Brox et al., 2004) add a gradient conservation
term to the intensity convervation, (Zach et al., 2007) use the l1 norm instead of
l2. (Bruhn et al., 2005) adjoin a neighbor condition to the data term of eq. (1.10).

Another challenge for optical flow algorithms is the handling of large displace-
ments. Usually, the presented method only finds movements of a few pixels max-
imum. To overcome this limitation, a multi-scale strategy is employed, as shown

Chapter 1. Efficient deployment for high-performance architectures 11

Gaussian Pyramid

Downsampling

Downsampling

Flow estimation

Upscale

Warp
Flow estimation

Upscale

+

Warp

Flow estimation +

Level 3

Level 2

Level 1

Figure 1.8: Diagram of a multi-scale optical flow estimation. First, input images
generate a downsampled Gaussian pyramid. A first estimation is made at the
top level and is used to warp the second image one scale below. From there, an
estimation of the residual flow is done again and the procedure continues until
reaching the first level.

on fig. 1.8. The idea is to process the image at lower resolutions. The solution is
then used to “warp” the image. This operation moves the pixels according to the
optical flow. After warping, the two images should almost match each other. We
can then re-apply the optical flow algorithm to find any residual displacement (Le
Besnerais & Champagnat, 2005).

This pyramidal framework is used in other areas of image processing, for ex-
ample, denoising (Lebrun et al., 2014) or segmentation (Sharon et al., 2000). The
benefits of scale change are twofold: comprehension of the image at another level,
to find large displacement, for example, and faster processing times at higher
scales. Even though smaller image sizes require less computation, they also offer
less parallelism. On GPUs, the speed-up of higher levels might be compromised
by this lack of parallel work, as we will see in 3.1.

1.2 High-performance architectures
This section introduces the current landscape of computer architectures to under-
stand the gap between environments used for algorithm development and efficient
deployment. Software research and development are often conducted on tradi-
tional CPU architectures, but this type of hardware has had difficulty increasing
its performance in recent years. This stagnation has led to the emergence of com-
peting architectural designs. Different approaches are currently used for reaching

Chapter 1. Efficient deployment for high-performance architectures 12

high-performance with embedded requirements. This section reviews some of them
and focuses on GPUs, predominantly used for our work.

1.2.1 Context and current hardware designs
Throughout the 20th century, computers’ performance has seen an unprecedented
expansion. The origins of this improvement are multiple. First, the size of transis-
tors crammed onto integrated circuits has fallen and allowed doubling their number
per chip every two years, according to Moore’s law (Moore, 1965). Other factors
such as increasing manufacturable die size and improving manufacturing processes
with fewer defects supported this growth.

In addition to hardware size, several other aspects contributed to more power-
ful processors. A boost in the clock frequency naturally resulted in faster CPUs.
Improved hardware designs with “smarter” architectures also helped in the ef-
ficiency of computers by exploiting ILP (Instruction-Level Parallelism) (Hwu &
Patt, 1986), with deep pipelining and branch prediction (A. Seznec et al., 2002),
for example. In the meantime, data throughput and access latency have improved
with better memories and cache-based architectures.

This pace of innovation has, however, slowed down in the last decades. Fig-
ure 1.9 shows an inflection in performance happening in the mid-’00s. Current
development is now facing several “walls” (Sutter et al., 2005). The power wall,
for example, is a capping of the chips’ energy consumption. It is caused by a
large amount of heat dissipated by transistors. Cooling systems have reached an
efficiency limit, and more power dissipation would lead to excessive temperatures.
The power wall is, in turn, a cause for the frequency wall, as faster clock speeds
would over-heat circuits. Finally, the memory wall is the delay in the improve-
ment of memories compared to processors. From 1980 to 2010, the typical CPU
performance has been multiplied by 10,000 while RAM latency access has only
improved by a factor of 10 (Hennessy & Patterson, 2011; Wulf & McKee, 1995).

Figure 1.10 shows the power and frequency growth stop of typical computers.
The number of transistors per chip is, however, still currently rising. To lever-
age this hardware availability, the number of processors per chip began to grow
around 2005. Multi-core CPUs are, in fact, one form of exploitation of programs’
concurrency that has become crucial in modern computers.

Making full use of a large number of available transistors is a central aspect of
computer design. For that, exploiting the parallelism of programs is a must. Let
us now take a look at several examples of modern design that leverage parallel
architectures for high-performance.

Vector architectures Doing the same operation on different data is a simple
way to take advantage of parallelism. This type of architecture is classified as

Chapter 1. Efficient deployment for high-performance architectures 13

Figure 1.9: Performance of CPUs as evaluated by the SPEC benchmarks (log
scale). Over the span of 20 years since 1986, the performance has increased by
52% per year. Afterwards, this development has slowed down. From (Hennessy &
Patterson, 2011).

Figure 1.10: Plot of computer characteristics since 1970 (log scale). While the
frequency, power and single-thread performance are stalling since the 2010’s, the
numbers of transistors and logical cores continue to grow. From (Rupp, 2015).

Chapter 1. Efficient deployment for high-performance architectures 14

Figure 1.11: Overview of Kalray’s MPPA Coolidge manycore architecture. One
full processor is made of five compute clusters, each of which features sixteen
CPUs. Credits: Kalray.

SIMD (Single Instruction, Multiple Data) according to Flynn’s taxonomy (Flynn,
1966).

Many recent CPUs feature such vector instructions: Intel’s SSE and AVX,
ARM NEON or RISC-V’s “P” standard extensions (Lomont, 2011; Reddy, 2008;
Waterman et al., 2011). The idea is to provide an extended-length register to
gather pieces of data. Then, a single instruction executes the same operation on
all registers. This kind of design reaches high performance without deviating too
much from the usual scalar CPU architecture. Compilers may automatically trans-
form code that was written for SISD (Single-Instruction Single-Data) machines to
leverage the vector units (Maleki et al., 2011).

The simplicity and efficiency of this architecture make it attractive for power-
constrained embedded systems (Moloney et al., 2014; Petreto et al., 2018).

Manycore processors This kind of design is an extension of multi-core comput-
ers. Instead of replicating a more traditional high-performance CPU core, many
small and efficient processing units are grouped to form a processor. Multi-core
architectures usually feature up to 8 or 16 independent high-performance cores,
while many-core designs push the design further with dozens of simpler cores. The
challenge for this type of design lies in the efficiency of inter-core communication
and the programmability of the hardware.

Figure 1.11 presents an overview of an MPPA (Massively-Parallel Processor
Array) architecture from Kalray. The synchronization and communication between
cores are handled by a NoC (Network on Chip), which is an efficient type of

Chapter 1. Efficient deployment for high-performance architectures 15

Figure 1.12: A systolic array for computing. The communication grid between
PEs (Processing Elements) is well-suited for linear algebra operations. From (Wei
et al., 2017).

memory design for embedded chips (Monchiero et al., 2006). It is programable
via a dedicated language or through the more generic OpenCL and achieves high
performance-per-Watt (de Dinechin et al., 2013).

Dedicated architectures Sometimes, the specificities of a domain of applica-
tion require special hardware to perform dedicated operations. In signal process-
ing, for example, Fourier transforms are found everywhere, so many DSPs (Digital
Signal Processors) feature dedicated hardware to speed up this operation.

Recent architectures now include custom accelerators for operations found in
artificial intelligence and deep learning algorithms. For example, a systolic ar-
ray serves for computing matrix operations. Figure 1.12 shows an FPGA design
where many small processors (PEs) collaborate through an optimized data path
to compute linear algebra arithmetic operations.

NVIDIA’s NVDLA is another example of deep-learning acceleration, focussed
on convolutional neural networks. Is it specifically designed to handle the different
steps of processing the image with convolution, activation, and pooling (Zhou
et al., 2018). The specialization of the architecture allows an excellent energy
efficiency for the inference of neural networks (Farshchi et al., 2019).

In the end, these types of architecture continue the growth of computers’ com-
pute power. Figure 1.13 shows that in all conditions, with high or low power
requirements, innovative designs attain high performance-per-Watt. It is then
crucial to count on them to reach the best performance for industrial applications.
This new attractiveness is the source of a widening gap between the development

Chapter 1. Efficient deployment for high-performance architectures 16

Figure 1.13: Compute throughput vs. power consumption of many types of
platforms. Very parallel architectures, such as the V100, tend to achieve bet-
ter performance-per-Watt than more traditionnal CPUs, like AMD-MI60 or Intel
Phi7210F. From (Reuther et al., 2019).

environment, the realm of CPUs, and deployment.

1.2.2 The GPU architecture
The previous section presented several hardware architectures that take advantage
of parallel computing to provide low-power and efficient alternatives to monolithic
CPU designs. GPUs have combined vector, many-core and dedicated architectures
to become a broadly-used solution in the industry for high-performance computing
(see fig. 1.14). As the work presented later in this manuscript primarily targets
NVIDIA GPUs, we expose their principal design characteristics in this section.

GPUs, as their name indicates, have been developed to compute graphic pay-
loads. They manipulate 3D scenes and render pixels with a complex pipeline of
operations that involves managing a model’s geometry, textures, and lights. This
processing is carried out in parallel by the numerous floating-point units present in
the GPU hardware. This considerable computing power has since been leveraged
in domains other than scene rendering and display. Image processing, machine
learning, bioinformatics, or physics simulations are now heavy users of GPUs for
massively parallel workloads.

GPUs work with fundamental execution units called warps in NVIDIA’s ter-

Chapter 1. Efficient deployment for high-performance architectures 17

2004 2006 2008 2010 2012 2014 2016 2018 2020
Year

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
F

L
O

P
/s

Intel CPU Single Precision

Intel CPU Double Precision

Nvidia GPU Single Precision

Nvidia GPU Double Precision

Figure 1.14: In the last few years, the FLOP/s attained by GPUs have largely
surpassed those of CPUs.

minology. They are an ensemble of 32 “threads” that process instructions in lock-
step. Warps are handled by schedulers that emit an instruction as soon as all
conditions required for the execution are met. The warp then disposes of vari-
ous ALUs (Arithmetic and Logic Units) to perform the operation. Warps have
access to registers in the register file, and intra-warp register sharing is possible
via “shuffle” instructions. Here, we call the reunion of these ALUs, registers, and
schedulers a sub-core, as NVIDIA does not name it specifically.

In the Ampere architecture, each sub-core has a tensor core, a special unit
that performs matrix-matrix multiplications. Threads of a warp collaborate to
provide input and ouptut registers required by the tensor core. It handles multiple
arithmetic precisions: floating point formats (fp64, fp32, tf32, fp16, and b16)
and integers (8, 4 or 1 bit, signed or unsigned). Figure 1.15 explains the differ-
ent floating point formats. Using tensor cores for matrix-matrix multiplication is
significantly faster than relying on traditional ALUs (NVIDIA, 2017).

Figure 1.16 shows the architecture of an Ampere SM (Streaming Multiproces-
sor). It is made of four sub-cores that share a L1 cache. This memory location
is more than a cache. It also plays the role of a shared memory. Being directly
addressable, multiple warps living in the same SM can exchange data via this lo-
cation. This has the benefit of being faster and less power-hungry than relying on
the main memory.

Several SMs are then assembled into one GPU. They use the VRAM (Video
RAM) for storing and reading data and share a connection with the CPUs and
other peripherals via the PCI-E or NVLINK interfaces. This type of architecture
is entirely scalable. Streaming multiprocessors are fundamental building blocks

Chapter 1. Efficient deployment for high-performance architectures 18

FP64 11 BITS 52 BITS : 64 BITS

FP32 8 BITS 23 BITS : 32 BITS

TF32 8 BITS 10 BITS : 19 BITS

FP16 5 BITS 10 BITS : 16 BITS

BF16 8 BITS 7 BITS : 16 BITS

Sign

Exponent

Mantissa

Figure 1.15: Floating-point formats accepted by NVIDIA’s tensor cores. FP64,
FP32, and FP16 are standardized under IEEE 754. BF16 is a 16-bit truncated
version of FP32 and widely used for low-precision arithmetic. TF32 is specific to
NVIDIA and have the same range as FP32 and the same precision as FP16.

that can be arranged depending on the constraints. For example, with the Volta
architecture, the Titan V card, made for servers, provides 80 SMs, while the Jetson
AGX Xavier, an embedded device, has only 8 SMs.

GPUs represent indeed a mix of the examples architectures presented in sec-
tion 1.2.1. The warp-level parallelism can be considered as a form of SIMD ar-
chitecture. The numerous streaming multiprocessors with per-core addressable
memory are typical of many cores, and tensor cores are an excellent example of
specialization for specific computations. It is then necessary to leverage all these
characteristics to achieve maximum performance on GPUs.

1.3 Optimizing for hardware performance

In previous sections, we have seen how computer architectures have flourished
to offer maximum performance on silicon and what were typical computer vision
algorithms. The last essential step is to unify these two topics with the concrete
implementation of an algorithm on its execution platform. In this section, we detail
the execute, profile, and optimize loop. This method aims at reaching maximum
performance for a given code on a platform.

1.3.1 From ideas to instructions

The deployment on a particular hardware platform can take different paths. Here,
we present solutions that allow the deployment of a given algorithm by the im-
plementation team on the target machine. We label these different ways with
categories whose borders are not strict. A language may have characteristics of
several groups but mostly belong to one in particular, for example.

Chapter 1. Efficient deployment for high-performance architectures 19

Figure 1.16: The architecture of an Ampere Streaming Multiprocessor.

Figure 1.17: The GA100, an NVIDIA GPU based on the Ampere architecture.

Chapter 1. Efficient deployment for high-performance architectures 20

Libraries

The easiest solution for deployment is probably to rely on pre-compiled libraries.
The APIs (Application Programming Interfaces) they expose must be plugged
into pre-existing programs to accelerate a portion of the code. Its un-flexibility
counters, however, the ease of use of this solution. Libraries, especially closed-
source ones, are opaque from the programmer’s point of view. If a functionality is
missing or too slow, it is hard to fix the library directly.

Examples of hardware-specific high-performance libraries include Intel’s MKL
(Math Kernel Library) (Wang et al., 2014), which uses SIMD instructions of Intel
CPU to accelerate linear algebra primitives; Arrayfire (Malcolm et al., 2012), an
open-source CPU/GPU library that implements linear algebra, image processing,
and other utility functions; cuDNN (Chetlur et al., 2014) that has GPU primitives
dedicated to neural networks; or AMGX (Naumov et al., 2015), that solves sparse
linear systems on GPU, using algebraic multigrid methods.

Language extensions

Language extensions are often a good compromise between performance, flexibil-
ity, and proportion of the code modified. OpenMP (Dagum & Menon, 1998),
for example, is a framework that consists of C preprocessor macros. They are
handled by the compiler and give hints about parts of the code that can use par-
allel hardware features. This approach allows quick testing on a parallel platform
already-existing code (Delisle et al., 2001). OmpSs, developed by the Barcelona
Supercomputing Center (Duran et al., 2011), uses the same principle for GPUs
and heterogeneous systems, more generally. OmpSs features interoperability with
CUDA and MPI. openACC is a similar alternative that primarily targets GPUs
with a good trade-off between development effort and performance (Wienke et al.,
2012).

Numba is an in-between solution for Python (Lam et al., 2015). It is a library
that adds JIT (Just-In-Time) compilation to existing Python programs. The re-
quirement is to annotate the function to compile with numba.jit. Numba supports
automatic detection of parallel loops and their multi-threaded execution as well as
the usage of SIMD instruction and even GPU acceleration on NVIDIA and AMD
GPUs (Oden, 2020).

Hardware-focused languages

The specificities of high-performance hardware architectures call for new pro-
gramming paradigms. The range of languages that produce accelerated code is
broad, sometimes limited to a single platform like CUDA or more generic like
SYCL (Keryell et al., 2015). This category presents generic languages in the sense

Chapter 1. Efficient deployment for high-performance architectures 21

of being applicable for many types of applications, not restricted to signal or image
processing, for example.

CUDA and OpenCL are the two main programming languages that focus di-
rectly on GPUs and parallel platforms. OpenCL is versatile and targets NVIDIA
and AMD GPUs, CPUs, and FPGAs, while CUDA is limited to Nvidia GPUs.
This restriction is also advantageous because it is easier to access low-level fea-
tures of the NVIDIA hardware, such as warp-level instructions or tensor cores.
Both languages require the code to be written as if it was executed sequentially.
At launch time, the programmer specifies how many threads the function will be
run.

SYCL is a programming model developed by the Kronos Group for high-
performance computing on various accelerators. Its syntax is based on C++
and relies on templates and lambda functions to support off-loading on the ac-
celerator. SYCL is only the specification, and multiple vendors have provided
implementations, Intel with DPC++, codeplay with ComputeCpp. Compared to
OpenCL, SYCL implementations usually have shown similar performance with a
more generic programming style (Deakin & McIntosh-Smith, 2020).

HDLs (Hardware Description Languages) describe digital circuitry at Register-
Transfer-Level (RTL). They serve for designing an architecture to be printed on
silicon or synthesized on FPGAs. Being so low level, they model concurrency
and parallelism directly and allow to develop an optimal architecture to perform
a specific computation. The most notorious languages are VHDL, Verilog, and
SystemVerilog.

High-Level Code Generation

Developing with HDLs is long and tedious. That is why HLS (High-Level Syn-
thesis), a type of high-level code generation, has seen its popularity grown over
the years. This technique leverages the expressiveness of higher-level languages,
such as C, OpenCL (Martelli et al., 2019) or Scala (Bruant et al., 2021) to gen-
erate a hardware description. HLS tools are usually a good compromise between
development time and performance.

Another example is dataflow languages, that model an algorithm using a di-
rected graph between data and functions. This representation is particularly
adapted for tiling or pipelining in image processing. PREESM (Pelcat et al.,
2014) follows this principle and generates code for several platforms.

Domain-specific languages (DSLs)

This type of language is not expected to be generic; it can then implement facilities
dedicated to particular use cases, favoring ease of expression and performance at

Chapter 1. Efficient deployment for high-performance architectures 22

the expense of flexibility.
HALIDE (Ragan-Kelley et al., 2013) is dedicated to image processing. It is

based on C++ and creates computation pipelines that support tiling, vectoriza-
tion, loop-unrolling on several platforms: CPUs (Intel, ARM, RISC-V, . . .), GPUs
(NVIDIA, AMD, Apple), and even FPGAs.

HipACC (Membarth et al., 2016) is another DSL that uses specific C++ syntax
for source-to-source compilation towards different backends: CUDA, C/C++, or
Vivado C++ (for HLS), for example. The language has dedicated constructions
for image processing and supports boundary conditions, strided image accesses,
pyramidal processing, and higher-level operations such as linear filters for convo-
lution.

InKS (Ejjaaouani et al., 2020) is more of a programming model than a single
language. It aims at separating the concerns between algorithm development and
fine-grained optimizations. For that, several languages have been developped.
InKSpia serves at high-level algorithm expression while InKSpso defines lower-level
operations.

1.3.2 Understanding the execution
After running the software on the target platform, it is crucial to understand its
execution. This phase is called the profiling of a program. It vastly depends on
the type of the target. In this section, we propose to examine ways of profiling a
program on CPU and GPU.

On CPUs running Linux, a widely used solution is gprof. It depends on GCC
to generate instrumentation code (with the -pg option). It relies on program
counter sampling through CPU interruptions to generate a distribution of where
the program spends its time.

Hardware manufacturers usually provide a way to sample performance coun-
ters. These special registers measure various things, from memory accesses (cache
hits/misses) to instructions per cycle. Different software exists to retrieve such
information: nvprof (Nvidia), MAP (Arm), VTune (Intel). For FPGA implemen-
tations, the developer designs these counters explicitly or analyzes signal waves.

More specifically, on Nvidia GPUs, three different tools are currently used.
The first is Nsight Systems and performs computer-wide profiling. It displays an
execution timeline of CPU and GPU functions. This way, it is easy to see when syn-
chronizations happen and if concurrency between data transfers and computation
is efficient. Then, depending on the application, a deeper analysis is conducted
with Nsight Graphics for computer graphics and 3D scenes or Nsight Compute
for compute workloads. Nsight Compute gives insights about GPU utilization,
memory accesses, and hardware utilization of the kernels, as seen on fig. 1.18.

Chapter 1. Efficient deployment for high-performance architectures 23

Figure 1.18: NVIDIA tools and workflow for GPU profiling.

1.3.3 Optimize
Choosing the right portion

Efficiently optimizing a code requires a detailed understanding of its execution,
which was covered precedently. Often, the algorithm to speed up is complex and
made of several parts. Suppose that it takes time T to run the algorithm. The
portion of code we seek to optimize is noted p, and we can decompose the total
execution time as in eq. (1.12). If this portion achieves a speed-up s, then the
optimized program run in Topt (eq. (1.13)). The overall speed-up, computed on
the entire program, is given in eq. (1.14).

T = (1− p)T + pT (1.12)

Topt := (1− p)T +
p

s
T (1.13)

S :=
T

Topt
=

T

(1− p)T +
p

s
T

=
s

p+ s− ps
(1.14)

These equations are the essence of Amdahl’s law (Amdahl, 2013) that formu-
lates an upper bound on achievable speedup with multi-core processors. In our
more generic case, if we optimize a fraction p = 20% with a large s = 10, we expect
a speed-up of S ≈ 1.21. While a weaker s = 1.5 on a larger fraction p = 80% leads
to S ≈ 1.36.

This numerical application shows that choosing the right portion to optimize
is key to practical speed-up without wasting development time on a smaller part
of the code.

Chapter 1. Efficient deployment for high-performance architectures 24

Using the roofline model

Once the section of code we seek to optimize is defined, we need to understand
what levers we have to make the code faster. Mathematically, let us model the
execution time

T = l +
w

b
(1.15)

with l the system’s latency, w the work required by our program, and b the system’s
bandwidth in units of work per second. Here, the program is supposed to run in a
bandwidth-limited regime with l ≪ w

b
. This assumption makes sense for parallel

and data-intensive applications where w is very high.
We can refine the bandwidth model by distinguishing the compute and memory

throughput. If the running program does c arithmetic operations and moves m
bytes of data on a machine that can process C operations per second with memory
bandwidth M , we have

T = max(
c

C
,
m

M
) (1.16)

1

T
= min(

C

c
,
M

m
) (1.17)

c

T
= min(C,M

c

m
) (1.18)

FLOP/s = min(C,M · AI) (1.19)

where AI is the arithmetic intensity, as defined in section 1.1.1.
On fig. 1.19, we plot the attained FLOP/s as a function of AI. The model

predicts that measures of performance should lie on the boundaries. In reality,
the machine memory and compute bandwidths are an upper bound. Actual im-
plementations perform worse than the model.

The model teaches what kind of optimization is efficient on the implementation.
For example, the square measure on fig. 1.19 is bandwidth limited. Increasing its
AI will allow it to translate towards a less limited region. This can be achieved
by reducing the number of memory operations, for example, with better caches
or shared memory utilization. The diamond dot is compute-limited and attains
the maximum performance of the hardware. It should be considered sufficiently
optimized. The only hope would be to reduce the total number of operations.

Finally, the triangle sample is neither bandwidth nor compute limited. We need
to dive deeper into the profiling to understand what is its bottleneck. This simple
roofline model only acknowledges arithmetic performance and memory bandwidth
but may be refined with new constraints: hierarchical memory bandwidths or per-
type-of-instruction throughput (Ding & Williams, 2019; Yang et al., 2020) to help
with the analysis.

Chapter 1. Efficient deployment for high-performance architectures 25

10−2 10−1 100 101 102 103
106

107

108

109

1010

Machine balance point

Bandwidth limited Compute limitedMemory bandwidth

Compute Throughput

AI

FL
O

P/
S

Figure 1.19: A fictional roofline model. The log-log plot indicates throughput
vs. arithmetic intensity. Three example measures are given: the square is memory
limited due to its low AI. Triangle is far from the theoretical maximum throughput
given its AI. There are other factors than memory and compute bandwidth that
limits its execution. Diamond uses the hardware almost at its best.

1.4 Conclusion
The journey from the definition of an algorithm to its implementation on industrial
platforms is winding and requires precise knowledge along the way. This require-
ment is enhanced by new hardware designs that have been developed to overcome
the pace of innovation slowdown for traditional CPU architectures. Most of the
algorithm development phase is still done on these usual platforms due to their
ease of use. For best performance and high power efficiency, however, deployment
on specialized parallel architectures is a must.

Because of the widening gap in the separation of concern in industrial develop-
ment, with an algorithm team that designs on CPU and an implementation team
that masters efficient architectures, the produced software tends to be sub-optimal.
We propose to add an intermediate phase in development that serves as an adap-
tation between the two. Thanks to the combined knowledge of the software and
the hardware, it seems possible to find algorithmic trade-offs to leverage available
hardware as efficiently as possible.

To understand a solution’s development context, we have presented two algo-
rithms: image convolution and optical flow estimation. With them, we introduced
notions such as arithmetic intensity, time, and step complexity. They character-
ize the algorithm and help in understanding how it performs on actual hardware.
Then, we presented why implementations of these algorithms on usual CPUs tend

Chapter 1. Efficient deployment for high-performance architectures 26

to become less attractive. A diversity of architecture for high power efficiency has
emerged, and we presented some of them, focusing on GPUs that we use for our
work. We finally discussed the various ways of targetting a platform of execution,
measuring a software implementation’s performance, and enhancing its runtime.
In the following chapters, we capitalize on this context evaluation to show how the
software adaptation phase improves the final performance of the implementation.

Chapter 2
GPU acceleration of image convolutions

This chapter presents the work we did around the convolution operation. It ap-
peared in two contexts: radio-astronomy image reconstruction and a more theo-
retical setting, where pure performance was sought.

Regarding the development scheme of fig. 1.2, the radio-astronomy experiments
are located in phases 2 and 3 of the diagram. The algorithm is set, it is a gradient
descent for image deconvolution, but we want to know the required precision to
ensure its convergence. Because operating on lower precisions is faster on GPU,
we evaluate the trade-off between speed gains and precision degradation on this
gradient descent in particular.

Then, we explore a new algorithm for image convolution on tensor cores, a
dedicated hardware unit in GPUs for matrix multiplication. This is phase 3 work:
the operation is fixed, and we try to attain maximum performance on the execution
platform. We evaluate this novel algorithm and compare it with other state-of-
the-art implementations regarding the speed and accuracy of the results.

2.1 A Study on Convolution using Half-Precision
Floating-Point Numbers on GPU for Radio
Astronomy Deconvolution, SiPS 2018, Pub-
lished

This first article stems from the context of the SKA (Square Kilometer Array).
This new radio telescope comprises a network of antennas and is expected to
provide unprecedented opportunities for space observations. Figure 2.1 shows an
artist’s view of the type of dishes used for SKA. An enormous amount of data are
collected and requires real-time and on-site processing, as raw observations are too

Chapter 2. GPU acceleration of image convolutions 28

large to be stored. In addition to these constraints, the telescope’s location is split
across the Australian and South African desert, so power efficiency is a must for
the data processing pipeline. These conditions make GPUs a platform of choice
to handle the flow of data.

Figure 2.1: Once completed, the SKA will use thousands of such 15m dishes.
Credits: skatelescope.org.

We want to identify possible bottlenecks of a typical image processing pipeline
on GPU. To do so, we choose a simple yet representative application used in radio-
astronomy, deconvolution. This kind of post-processing is generally needed when
doing a physical observation of an object. In our case, the object f is an image
of the sky. The observation instrument, a telescope, may be modeled as a linear
operator, H , as a first approximation. We also consider additive measurement
noise n so that we observe g = Hf +n, like illustrated on fig. 2.2. The final goal
is to find f , knowing g and H .

Object
f

Instrument response
H

+

Noise
n

Observation
g

Figure 2.2: Modelisation of an aquisition in the inverse problem framework.

An iterative solver is usually used for finding f ∗, the re-constructed sky. This
processing loop is what constitutes most of the deconvolution’s computational
needs. Our phase 2 work begins by understanding the iterative solver and find
possible optimizations permitted by execution on GPU. With initial profiling, it

Chapter 2. GPU acceleration of image convolutions 29

appears that the iterative solver heavily uses convolutions. Our first action is then
to benchmark several implementations from different libraries.

From this initial point of comparison, we try to leverage reduced-precision
floating-point units, such as fp16 (see fig. 1.15) and see its influence on the algo-
rithm’s convergence. This data format offers good speedups on GPUs, but is it
sufficient to re-construct images with this algorithm?

A Study on Convolution Using Half-Precision Floating-Point Numbers on
GPU for Radio Astronomy Deconvolution

Mickaël Seznec1, Nicolas Gac1, André Ferrari2, François Orieux1.

1 Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec, CNRS, Univ Paris sud, Université Paris Saclay, Gif-sur-Yvette, France
2 Lab. J.-L. Lagrange, Université de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, Parc Valrose, F-06108 Nice cedex 02, France

Abstract— The use of IEEE 754-2008 half-precision floating-
point numbers is an emerging trend in Graphical Processing
Units’ architecture. Being such a compact way of representing
data, its use may speed up programs by reducing the memory
bandwidth usage and allowing hardware designers to fit more
computing units within the same die space. In this paper, we
highlight the acceleration offered by the use of half floating-
point numbers over different implementations of the same
operation, a 2D convolution. We show that even though it may
lead up to a significant speed-up, the degradation brought by
this new format is not always negligible. Then, we choose a
deconvolution problem inspired by the SKA radio-telescope
processing pipeline to show how half floats behave in a more
complex application.

Index Terms— deconvolution, radio astronomy, half-precision
floating-point, GPU, parallel computing

I. INTRODUCTION

Before appearing in the IEEE standard in 2008 [1] as
binary16, half-precision floating-point arithmetic (FP16) has
been a topic of interest for computer graphics commu-
nity since the early 2000s. In parallel, embedded high-
performance computing [2] has also investigated its use as an
alternative to fixed-point arithmetic in order to design more
energy-efficient hardware accelerators. In the same way,
deep learning has made a renewed interest to approximate
computing [3], [4] especially since GPUs provide half float
computation [5]. Indeed, NVIDIA GPUs are offering half
float storage since 2015 with CUDA 7.5, half float Multiplier-
ACcumulator (MAC) since 2016 with the Pascal architecture
[6] and tensor cores, designed for convolutional neural net-
work training, since 2017 with the Volta architecture [7].
These tensor cores offer a Fused-Multiply-Add (FMA) with
a mixed precision: a half float multiplication of the FP16
operands followed but an accumulation in the FP32 format.

The half-precision floating point format occupies only
16 bits (1 bit of sign, 5 bits of exponent and 10 bits of
mantissa) as illustrated on fig 1 whereas single precision
occupies 32 bits (8 bits of exponent and 23 bits of mantissa).
Compared to 16-bit integers, it offers an increased dynamic
range and compared to 32-bit reals, it divides by 2 the
memory storage and bandwidth, of course at the cost of a
reduced precision and range. Moreover, the theoretical peak
performance (Tflops) on NVIDIA GPU architectures can be

This work was supported by MAGELLAN (ANR-14-CE23-0004-01)

significantly increased thanks to half-precision. For instance,
the computation power of the Tesla V100 is 15.7 Tflops for
FP32 MACs, 31.4 Tflops for FP16 MACs and 125 Tflops
for tensors cores.

sign

15

exponent

14 10

mantissa

9 0

Fig. 1: IEEE 754 binary16 format

Acceleration and energy-efficiency brought by FP16 com-
putation have to be put in the balance with the potential loss
of precision. Stability of algorithms using FP16 format is an
open problem [8]. Intuitively, one may think that applications
where the raw data output of the instrument is integer values,
with a dozen bits of accuracy, would not be too much
penalized by this compressed-number representation. Like
what has been observed for tomography reconstruction [9].
The goal of this study is to observe its use for another
inverse problem, the deconvolution for radio astronomy. The
optimization algorithm studied (gradient descent) is mainly
based on the 2D convolution operator whose acceleration on
GPU has been widely investigated for single-precision [10],
[11], [12] but as far as we know not yet for half precision.
The motivation of this paper is to benefit from the potential
acceleration of the 2D convolution with FP16 on GPUs in
the perspective of the SKA data processing challenge.

The remainder of this article is organized as follows.
Section II describes the deconvolution problem solved using
a simple gradient descent. Section III makes a benchmark
of 2D convolution on GPU in terms of acceleration and
precision. Section IV studies its application for image recon-
struction in radio astronomy. Section V presents a discussion
and an analysis of the experimental results.

II. DECONVOLUTION

Deconvolution is a classical inverse problem [13] and
arises when the observation model is a convolution

g = Hf + n (1)

where g ∈ RN is the data set, f ∈ RM the unknown,
n ∈ RN unknown noise and H ∈ RN×M the linear obser-
vation model or the convolution operator. If the convolution
is circulant, then N = M , the matrix H is square and

diagonalizable in Fourier space like H = F †ΛF where
F is the linear Fourier transform and Λ a diagonal matrix.
If the convolution is not circulant the matrix H is not
necessary square but remains Tœplitz: all lines of H are
shifted version of the first line. In both cases, the matrix H
usually leads to ill-conditioned problems with instability and
noise amplification.

A standard approach for the reconstruction relies on the
regularized least-square where the solution f̂ is defined as
the minimizer of a data adequacy term and a penalization
term

J = ‖g −Hf‖2 + λ‖f‖2 (2)

f̂ = argmin
f

J(f) (3)

The penalization term ‖f‖2 on the energy of the solution
allows compensating the pathological behavior of the data
adequacy and, depending on the balance term λ, leads to a
well-posed problem with good conditioning.

The explicit minimizer is known

f̂ =
(
HtH + λI

)−1
Htg (4)

and is called the Wiener filter when H is diagonalizable in
Fourier space. Otherwise, if the dimension of f is large,
the size of the Hessian matrix HtH forbids the matrix
inversion and the solution f̂ must be computed with an
iterative linear solver [14]. A common one is the gradient
descent or conjugate gradient descent described algorithm 1.
We consider two versions: one with a fixed step α and one
with the optimal one (that corresponds to the maximum
descent in the current direction r) that needs a little extra
computation.

Algorithm 1 The gradient descent algorithm
Require: H , λ, g, ε, N , c

1: Set b = Htg and Q = HtH + λI
2: Set f (0) and n← 0
3: repeat
4: k←HtHf (n) − b+ λ‖f (n)‖2
5: α← ktk/ktQk . or α← c with c ≤ 2

‖Q‖
6: f (n+1) ← f (n) − αk
7: n← n+ 1
8: until Some criterion is met . e.g.: n ≥ N

return f (n)

III. CONVOLUTION BENCHMARK

The algorithm shown in the previous section relies heavily
on the convolution operator: two are needed to find k, and
two supplementary ones for the optimal α. Computing a
convolution is time-consuming and is often the bottleneck
of such methods. There are many ways of implementing this
operation on GPU [10]. In this section, we focus on the usage
of half floating-point numbers for those methods.

Four implementations are compared in this benchmark:
cuBLAS, cuDNN, cuFFT, naive and PRCF. The first three
are part of libraries written by Nvidia. cuBLAS is an

implementation of the BLAS API [15]. cuDNN (CUDA
Deep Neural Network) is a low-level API for deep learning
primitives used by other frameworks such as TensorFlow,
Caffe2 or PyTorch [16]. cuDNN itself relies on different
methods to perform a convolution, depending on many fac-
tors: the size of the convolution kernel, whether the images
are batched [17]... cuFFT is a GPU implementation of the
Fast Fourier Transform method to compute a discrete Fourier
transform.

In addition to the implementations found in these libraries,
we tested our own algorithms. “naive” launch one GPU
thread per image pixel. It then loops over the convolution
kernel to perform the multiply-add accumulation. A mixed
strategy has also been tested: data are stored in half precision
and computation are done using floats. In the kernel code,
the GPU threads convert data to floats, do the computation in
float and then convert the result back to half. Finally, we used
“PRCF” (Parallel Register-only Convolution Filter), that was
first presented by Perrot et al [11]. We re-implemented their
method but instead on relying on a fixed code generator, we
took advantage of C++ templates.

For this benchmark, we use a zero-padding method to
handle border issues. Convolutions are done out-of-place. We
first transfer the data to the GPU, time 20 convolutions to
average the results, stop the timer and transfer the data back
to the CPU to check the accuracy of the resulting image.
The convolution kernel used is Gaussian and the image is
a standard 512 × 512 pixels cameraman picture. The GPU
used is a Nvidia Titan V [7].

In figure 2, the cuFFT curve is almost flat. In fact, the
sum of the kernel’s width and the image’s width is padded
to the next power of 2 for performance reasons. In this case,
it’s always 1024, hence these constant results. cuBLAS and
cuDNN are way slower than our custom methods. In fact,
cuDNN relies on a matrix multiplication method, just like
cuBLAS. They are however useful in neural network contexts
as they scale well when many kernels are to be convolved
with the same image.

A gap in computation time appears in both “naive” and
PRCF implementations for a kernel size of 35 or more.
This is due to those implementations being loop unrolled
for smaller kernels. However, the compilation time explodes
as the size of kernel increase: after 35 we chose to tell the
compiler not to optimize them. Finally, because we store the
kernel in the GPU texture cache, those implementations are
also limited by its size. Once it is too big to fit in, we cannot
use them directly.

In terms of performance, once the kernel becomes big
(between 35 and 50, depending on implementations and
optimizations) it is faster to use a Fourier transform to
compute the convolution. We will use this result when
choosing an implementation in part IV.

When using half-precision floats, acceleration depends a
lot on the chosen algorithm. In CUBLAS, it can reach a
x4 speedup (see figure 3). This is due to the library using
NVidia Tensor Cores to perform matrix multiplications[7].
The results for the remaining implementations are a bit

disappointing. For the naive algorithm, however, perfor-
mance increases with a bigger kernel. In fact, the speedup
is mainly explained by fewer memory transfers, that bound
the algorithm when the kernel becomes large. Regarding
PRCF, the poor performance might be due to worse compiler
optimizations. Finally, in cuFFT, it is harder to give a
justification as we do not have access to the code. Our
explanation is that because memory issues do not coalesce,
the bandwidth is not saturated, hence no real improvement
when using FP16.

In figure 4, the Mean Relative Error (MRE) between the
convolution computed on GPU and one done on CPU is
displayed. MRE is computed as:

MRE =
1

N

∑
∣∣∣∣x[i]− y[i]x[i]

∣∣∣∣ , if x[i] 6= 0

0, otherwise
(5)

Where x and y are the images to compare and N the total
number of pixels in an image.

Please note that we compared our own reference imple-
mentation with convolve2d from the Python package SciPy.
The results are clear: when using half floats, the loss of
precision is much higher. The error also increases with the
size of the kernel. With a width of 115, cuFFT has a 1%
error, naive and PRCF, a 10% error. This is due to the
multiple imprecisions while accumulating the intermediate
results. The naive mixed strategy (half storage and float
computation) gives nearly the same acceleration than naive
half but provides a lower error (10−4) invariant to kernel
size.

10
1

10
2

10
3

10
4

10
5

 0 20 40 60 80 100 120

ti
m

e
 (

µ
s
)

kernel size

cublas
cudnn

cufft
naive

prcf

Fig. 2: Execution time in single precision

IV. APPLICATION TO IMAGE RECONSTRUCTION IN
RADIO ASTRONOMY

The future Square Kilometre Array (SKA) will provide
radio interferometric data with unprecedented detail. To
achieve the nominal performances of the instrument, image
reconstruction algorithms are challenged to scale well with
TeraByte image sizes never seen before. In the perspective of

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100 120

A
c
c
e

le
ra

ti
o

n
 h

a
lf
 v

e
rs

u
s
 s

in
g

le

kernel size

naive
naive mixed

cudnn
cublas

cufft
prcf

Fig. 3: Acceleration ratio in half vs single

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 0 20 40 60 80 100 120

m
e

a
n

 r
e

la
ti
v
e

 e
rr

o
r

kernel size

naive, prcf, cudnn (half)
cublas (half)

cufft (half)
cufft (single)

naive (single)
naive (mixed)

Fig. 4: Error compared to a reference implementation

this challenge, the simulations which follow focus on image
deconvolution for radio astronomy.

We used a simulated PSF (Point Spread Function) for the
SKA Phase 1 mid-frequency array. The array, which will
include 197 dishes, will be built in South Africa from its
precursor Meerkat. The PSF was obtained using the HI-inator
package based on the MeqTrees software [18] (figure 5a). To
ensure a high dynamic range, the simulated sky is composite
of point sources and a faint halo modeled by a homogeneous
Gaussian field (figure 5b). The ratio between the amplitude
of the sources and the maximum value of the halo was set
to 10−3. The signal to noise ratio on the observed “dirty”
image is set to 37dB.

The goal is to reconstruct the image of the sky given
a noisy and distorted observation. To accomplish that, we
base our approach on the minimization of the quadratically
penalized criterion (2) using a gradient descent algorithm
as described in section II. Please note that the purpose of
these simulations is not to illustrate the performances of the
“state of the art” reconstruction algorithms but rather empha-
sizes advantages and shortcomings of using half-precision

floating-point numbers. All convolutions are done using
cuFFT. On figure 6, you can observe multiple reconstructed
images using different strategies and precisions. Criterion
values across iterations are visible on figure 7. The balance
term λ has been set to 0.01 as it provided sensible results.

The FP32 optimal-step curve represents the criterion value
J across iterations of the algorithm described in section II
(figure 7). As you can see, it quickly decreases and becomes
almost flat. The same behavior is observed with the “float
fixed-step” curve. In this method, the step α is constant. We
chose it by looking at the optimal step values found in the
first method and choosing the minimum one. The “mixed”
curve behaves the same way. For this implementation, data
is stored as halves but computations are made using floats.

The half-precision counterpart curves’ behavior is slightly
more complex. The optimal step method does not make
the criterion decrease for every iteration, hence the noisy
values. We can also notice a difference depending on the
SNR (Signal-to-Noise Ratio): with a fixed step and a high
(37dB) SNR, the criterion seems to decrease but only during
the first 250 iterations. With more noise (16dB SNR) “half
- fixed step” has the same behavior as the optimal step.

To address this issue, we try a different method: rather than
blindingly using f (n+1) ← f (n)−αg, we use a backtracking
algorithm. The criterion for the next iteration candidate is
computed: if it is higher than the previous one, we step
back, set α ← α

2 and try the new value. We proceed until
the criterion decreases. Note that sometimes the computed
gradient is so inaccurate that it is impossible to make the
criterion decrease along its direction. When that happens
(after a fixed number of retries), the procedure is ended. We
then use the final image of this method as the starting point
of an FP32 optimal step method. This is referred to as “half
- backtracking than float -optimal step” in figure 7.

0.00

0.05

0.10

0.15

0.20

0.25

(a) PSF (cubic root)

0.0002

0.0004

0.0006

0.0008

0.0010

(b) Sky (clipped to 0.001)

Fig. 5: The dataset used

V. DISCUSSION & ANALYSIS

The first thing to point out is that it is difficult to rely on
computations done using FP16 numbers. As seen in part II,
when doing a convolution, the error increases with the kernel
size. In part III, with a 2048x2048 kernel, it is not precise
enough to make the criterion decrease at each step. On figure
8, the difference is striking across computations done with
FP32 and FP16. The MSE between these two images is 9.46,
with some points having a relative difference over 1000%.

0.1

0.0

0.1

0.2

0.3

(a) g

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

(b) zoom on (a)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(c) f̂FP32 optimal step

0.05

0.00

0.05

0.10

0.15

0.20

(d) zoom on (c)

0.05

0.00

0.05

0.10

0.15

0.20

(e) f̂FP16 optimal step

0.05

0.00

0.05

0.10

0.15

0.20

(f) zoom on (e)

0.04

0.02

0.00

0.02

0.04

0.06

0.08

(g) f̂FP16 backtracking

0.0650

0.0675

0.0700

0.0725

0.0750

0.0775

0.0800

0.0825

0.0850

(h) zoom on (g)

Fig. 6: Reconstructions of f with different precisions (the
cubic root is displayed for better contrast)

Deconvolution relying on half floats seems also much
more sensitive to noise levels. By comparing figures 7a and
7b, we notice different behaviors in the half-float implemen-
tations. The fixed-step version seems noisy with a 16dB SNR
but not with a 37dB SNR. There are even differences in
the noisy-shaped curves’ behavior: they appear to slowly
converge on a noisier dataset (16dB SNR). This may be
explained by some form of dithering.

In any case, you must put extra care when using half floats
as their range is very limited. This issue arises when using
cuFFT uses the Fourier domain do compute convolutions.
As cuFFT performs non-normalized transforms, half float
numbers are easily overflowed. Infinite values will appear
in the DFT and lead to wrong results. If you try to first
divide your image values by the number of elements, you

10
1

10
2

 50 100 150 200 250 300 350 400 450 500

J

iteration number

half − fixed step
half − optimal step

half − backtracking then float − optimal step
mixed − optimal step

float − fixed step
float − optimal step

(a) Image generated with a 16dB SNR

10
−2

10
−1

10
0

10
1

10
2

10
3

 50 100 150 200 250 300 350 400 450 500

J

iteration number

half − fixed step
half − optimal step

half − backtracking then float − optimal step
mixed − optimal step

float − fixed step
float − optimal step

(b) Image generated with a 37dB SNR

Fig. 7: Criterion value across iterations

will underflow and set most values to zero (depending on
the size of your data). A solution is to pre-divide by the
square root of the number of elements, do the cuFFT, then
re-divide by the square root of the number of elements.

Even with this extra care, it was not possible to rely on
the convolution in the descent algorithm shown in III. The
criterion value is indeed imprecise. This can clearly be seen
in figure 7 when stepping from half to single precision in
the “half then float” method. Even with the same image,
the criterion significantly differs depending on the precision
used for its computation. Anyway, using the best image
computed with FP16 as an initializer for the FP32 method is
slightly better than using a zero-filled image. It is, however,
equivalent to an image found after only a few iterations in
single precision.

It is unclear why the images produced with the optimal
step method using half floats visually give rather good
results. Across the iterations, FP16 images do appear to be
better even though the criterion does not decreases (even we
computed in FP32). The problem might be in the definition
of “visually better”. Multiple images hold the same criterion
value but some may “look” closer to the reconstruction. We

(a) H ∗ f using FP32 (b) H ∗ f using FP16

(c) Squared difference between
FP16 and FP32 results

Fig. 8: Convolution errors with our dataset

are currently investigating this issue.
More generally, a dataset involving a smaller kernel may

mitigate many problems. When possible, it seems appropriate
to use half floats only for storage and convert them on-
the-fly as single floats to benefit from lighter data transfer
and reasonable accuracy. We can observe on figure 7 that
the “mixed” curve has similar performance as the float-only
implementation. This kind of strategy is in fact used by
Nvidia in their Tensor Cores[7]. In conclusion, the switch
from FP32 to FP16 should be done carefully.

VI. CONCLUSION

In this paper, we have observed the non-negligible loss of
precision for 2D convolution using half-precision arithmetic
on GPUs. We have pointed out that for limited convolution
kernel sizes, a good compromise between acceleration and
calculation error is to use a storage in half and a computation
in single.

Then, we incorporated half precision arithmetic within a
complex application: optimization for image reconstruction
in radio astronomy with a kernel convolution of the same size
as the 2D images. We tried several methods to choose the
step’s size in the gradient descent and achieved good visual
results. Even though a good convergence does not seem to
be achieved using solely half precision, relying on it only
for storage but performing computations as floats makes the
algorithm converge.

REFERENCES

[1] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008,
pages 1–70, August 2008.

[2] L. Lacassagne, D. Etiemble, and S. A. O. Kablia. 16-bit floating point
instructions for embedded multimedia applications. In Seventh Inter-
national Workshop on Computer Architecture for Machine Perception
(CAMP’05), pages 198–203, July 2005.

[3] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pri-
tish Narayanan. Deep Learning with Limited Numerical Precision.
arXiv:1502.02551 [cs, stat], February 2015. arXiv: 1502.02551.

[4] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David.
Training deep neural networks with low precision multiplications.
arXiv:1412.7024 [cs], December 2014. arXiv: 1412.7024.

[5] N. M. Ho and W. F. Wong. Exploiting half precision arithmetic in
Nvidia GPUs. In 2017 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–7, September 2017.

[6] Nvidia. GP100 Pascal Whitepaper,
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-
architecture-whitepaper.pdf.

[7] Nvidia. Volta V100 whitepaper,
http://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf.

[8] P. Luszczek, J. Kurzak, I. Yamazaki, and J. Dongarra. Towards numer-
ical benchmark for half-precision floating point arithmetic. In 2017
IEEE High Performance Extreme Computing Conference (HPEC),
pages 1–5, September 2017.

[9] Clemens Maaß, Matthias Baer, and Marc Kachelrieß. CT image
reconstruction with half precision floating-point values. Medical
Physics, 38(S1):S95–S105, July 2011.

[10] O. Fialka and M. Cadik. FFT and Convolution Performance in Image
Filtering on GPU. In Tenth International Conference on Information
Visualisation (IV’06), pages 609–614, July 2006.

[11] Gilles Perrot, Stéphane Domas, and Raphaël Couturier. An optimized
GPU-based 2d convolution implementation: AN OPTIMIZED GPU-
BASED 2d CONVOLUTION IMPLEMENTATION. Concurrency and

Computation: Practice and Experience, 28(16):4291–4304, November
2016.

[12] Pavan Yalamanchili, Umar Arshad, Zakiuddin Mohammed, Pradeep
Garigipati, Peter Entschev, Brian Kloppenborg, James Malcolm, and
John Melonakos. ArrayFire - A high performance software library for
parallel computing with an easy-to-use API. AccelerEyes, Atlanta,
2015.

[13] Jérôme Idier and Laure Blanc-Féraud. Bayesian Approach to Inverse
Problems. pages 141–167. January 2010.

[14] Jonathan Richard Shewchuk. An introduction to the conjugate gradient
method without the agonizing pain. Carnegie-Mellon University.
Department of Computer Science, 1994.

[15] J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and I. S. Duff. A
Set of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math.
Softw., 16(1):1–17, March 1990.

[16] Deep Learning Frameworks, https://developer.nvidia.com/deep-
learning-frameworks. NVIDIA Developer, April 2016.

[17] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. cuDNN:
Efficient Primitives for Deep Learning. arXiv:1410.0759 [cs], October
2014. arXiv: 1410.0759.

[18] Jan E. Noordam and Oleg M. Smirnov. The MeqTrees software system
and its use for third-generation calibration of radio interferometers. As-
tronomy & Astrophysics, 524:A61, December 2010. arXiv: 1101.1745.

Chapter 2. GPU acceleration of image convolutions 36

2.2 The Im2Tensor Algorithm for Efficient 2D
Convolutions on GPU Tensor Cores, under
review

In this article, we broaden the study of image convolutions on GPU to the use of
tensor cores. These hardware units are capable of performing matrix multiplica-
tions, as depicted on fig. 2.3. This feature is then taken into account in our phase
3 optimization method for maximum performance.

We design a dedicated algorithm for tensor cores. While other implementations
are already available for convolutions on these units, they are all specialized for
particular use-cases, for example, with convolutions between multiple images and
many small kernels (Anderson et al., 2017; Chetlur et al., 2014). Our solution is
more general and usable in the single-image, single-kernel case.

Figure 2.3: A tensor core performs a matrix-matrix multiplication. Adapted from
Nvidia.

The paper analyzes first describes the proposed im2tensor algorithm and its
dual variation. Several optimizations are then studied, using shared memory,
atomic operations, and tweaking the work division between GPU cores for maxi-
mum performance. This new algorithm is then compared to the state-of-the-art,
both in terms of speed and accuracy.

THE IM2TENSOR ALGORITHM FOR EFFICIENT 2D
CONVOLUTIONS ON GPU TENSOR CORES∗

MICKAËL SEZNEC †‡ , NICOLAS GAC † , FRANÇOIS ORIEUX † , AND ALVIN SASHALA

NAIK ‡

Abstract. NVIDIA has recently added tensor cores for efficient matrix multiplication in its5
Graphics Processing Units (GPUs). New DNNs (Deep Neural Networks) or linear algebra programs
may leverage them, with typical speedups ranging from 2.5× to 10×. This computing power is, how-
ever, limited to specific workloads. For example, the im2col algorithm, by Chetlur et al., is broadly
used by DNNs but is efficient only when computing convolutions in batches. This article follows the
current effort to broaden the use of tensor cores by introducing the im2tensor algorithm: a method10
for efficient single-image, single-kernel convolution. It leverages tensor cores by relying on a matrix-
tensor multiplication followed by a sum on diagonals. On small (1024×1024) and larger (4096×4096)
image dimensions, our implementation’s speed is on par with an optimized GPU convolution in the
direct space for small kernels (10-pixel wide) and up to 2× faster for large kernels (30 ∼ 50-pixel
wide). In IEEE FP16 precision, the proposed program is 5× more accurate than CUFFT and up15
to 100× more accurate than direct space convolution due to the extended precision registers used
inside tensor cores. Those results have been verified on an embedded GPU (Jetson Xavier) and on
a Titan V, a more power-requiring GPU.

Key words. Image Convolution, Hardware Acceleration, GPU Optimisation, Image Processing
Systems, GPU Tensor Cores20

AMS subject classifications. 65Y05, 65F05, 65G50

1. Introduction. Tensor cores are a new kind of hardware accelerator made
available in NVIDIA GPUs’ (Graphics Processing Unit) recent architectures . These
units are dedicated to matrix-matrix multiplications, following the computer archi-
tecture trend towards specialized accelerators [13].25

Tensor cores’ stated purpose is to maintain GPUs’ ever-growing influence in com-
pute workloads, such as DNNs (Deep Neural Networks) or, more generally, BLAS
(Basic Linear Algebra Set) operations [6]. Since their introduction in 2017 with the
Volta architecture [21], they have gained flexibility thanks to the broader range of
allowed input types and dimensions. They are now a versatile tool that most GPU30

users can benefit from when using NVIDIA-provided libraries. Indeed, the tensor core
hardware acceleration is already leveraged by CUBLAS, CUTLASS, or CUDNN [8].

While NVIDIA implementations cover many current use cases, the shift intro-
duced by tensor cores towards cheap matrix multiplication operations may prove
to have a broad influence on GPU algorithm design. In practice, a current trend35

is to re-express algorithms in terms of tensor core operations: for parallel primi-
tives [19, 9, 12], image processing via a DSL (Domain-Specific Language) [27] or CT
reconstruction [20], for example.

This article shows how to redesign the 2D convolution to take advantage of tensor
cores. The 2D convolution is the backbone of many image processing methods for40

computer vision and appears in a wide range of situations: edge detection, template
matching, Gaussian blurring, or feature maps generation for CNNs (Convolutional
Neural Networks).

∗Submitted to the editors April 6, 2021
†Paris-Saclay University, CNRS, CentraleSupelec, L2S, Gif-sur-Yvette, 91192 France (first-

name.lastname@l2s.centralesupelec.fr).
‡Thales Research and Technology, Palaiseau, 91120 France (first-

name.lastname@thalesgroup.com).

1

This manuscript is for review purposes only.

2 M. SEZNEC, N. GAC, F. ORIEUX, A. SASHALA NAIK

The variety of situations in which 2D convolutions are used means that each
particular context may benefit from a dedicated implementation. In the case of CNNs,45

there are many small kernels to apply to many images. This setting is handled by
im2col in the CUDNN library and leverages tensor cores. This algorithm is inadequate
in more traditional computer vision workloads, like large spatial gradients or Gaussian
blurs. This is the setting where our implementation is most useful.

Our contribution is then as follows:50

• The im2tensor algorithm for 2D convolutions is described as a sequence of
matrix multiplications and summations on the diagonals. In this form, the
convolution can leverage tensor cores’ power, and the framework can handle
different image border policies. The article also explains a dual variant of the
algorithm.55

• The CUDA implementation for Nvidia Titan V and Jetson Xavier devices
is exposed, along with the different challenges raised by tensor cores. That
ranges from a sensible choice for the underlying matrix dimensions for the
tensor cores to the use of shared memory for maximized data utilization.

• This novel algorithm is compared with state-of-the-art methods such as CU-60

DNN, CUFFT, and ArrayFire [33], with results for speed and accuracy. The
proposed approach is fastest on a large range of kernel sizes, while being one
of the most accurate methods.

Section 2 presents related work on convolution algorithms and an overview of GPU
programming and tensor cores. Section 3 explains in detail the im2tensor algorithm65

as well as its dual variant. Section 4 goes through the details of the implementation.
It reviews the different strategies used to minimize the runtime of the algorithm.
Section 5 provides a comparison between our method and several state-of-the-art
implementations. The evaluation is done in two different contexts: embedded (30W)
and desktop (500W). Results are given in terms of speed and accuracy with respect70

to a reference implementation. Finally, section 6 concludes this paper and offers
directions to follow for further work.

2. Background.

2.1. 2D Convolutions. Convolutions are a fundamental tool of signal process-
ing. When applied to images, it serves for template-matching methods [7], edge75

detection [31], or noise reduction [28]. Convolution is such a ubiquitous operation
that a lot of work has been devoted to speed up its execution on modern computers:

Separable convolutions. If the kernel K can be written as the outer product
of two vectors K = k1k

T
2 , the convolution can be performed in two steps: R =

(I ∗ k1) ∗ k2. This technique reduces the overall memory pressure but is restricted to80

particular kernels.
Convolutions in the Fourier space. A convolution can be computed with an

element-wise multiplication of the Fourier transforms of the image and the kernel.
This product should then undergo an inverse Fourier transform. This technique is
asymptotically faster than convolutions in the direct space but may be slower for85

large images and small kernels [26].
Winograd convolutions. This category groups several methods that build opti-

mal algorithms in terms of arithmetic complexity. In [17], Lavin et al. first presented
a GPU implementation said to be Winograd-based [32]. Like the Fourier method,
it requires the input image and kernel to be transformed, pointwise multiplied and90

then be inverse-transformed. It has been shown to perform well in DNN for small
convolution kernels but is also sensitive to numerical instability [4].

This manuscript is for review purposes only.

THE IM2TENSOR ALGORITHM 3

Overlap and Add. This algorithm follows the divide-and-conquer strategy:
first, divide the input image into smaller images. Then, compute the convolution
of all smaller images with the original kernel. Then recombine the full image and sum95

where the results overlap [2].
GEMM-based techniques. GEMM strategies are motivated by heavily opti-

mized libraries for matrix multiplication (openBLAS, cuBLAS). The transformation
from convolution to matrix multiplication stems from two steps: first, flatten the ker-
nel into a vector in a row-major fashion. Second, design a matrix from the image’s100

coefficients such that when multiplying the flattened kernel with this constructed ma-
trix, the vector-matrix product effectively computes the convolution [8]. This method
shows all benefits when batching multiple kernels: by stacking the kernels to form
a matrix, the now matrix-matrix multiplication computes multiple convolutions at
once. Anderson et al. [3] extend this idea to different layouts.105

Out of the presented methods, only GEMM-based convolutions benefits from
the additional power brought by tensor cores. However, they are only useful when
computing batches of convolutions, with the same kernels on many images. This
scenario is less likely to appear in a traditional computer vision algorithm. A typical
processing would use a small number of kernels (spatial derivative, Gaussian blur) on110

few images.
In the rest of this article, we detail a new algorithm that uses tensor cores effi-

ciently for single-kernel and single-image convolutions.

2.1.1. Notations. In this article, a lowercase a denotes a coefficient, the bold
lowercase a is a vector, the uppercase A is a matrix, and the bold uppercase A is a115

three-dimensional tensor. Ai,j denotes the coefficient in the i-th row, j-th column of
A. The colon notation selects all elements in a dimension: Ai,: is the entire i-th row
of A.

Let I be an image of size (hI , wI) and K be the kernel of size (hK , wK). Let R,
of shape (hR, wR), be the convolution of I by K, defined by:120

∀i ∈ J0, hI − hKK,∀j ∈ J0, wI − wKK,(2.1)

Ri,j =

hK−1∑
y=0

wK−1∑
x=0

Ky,xIi+y,j+y(2.2)

Formally, this definition is a cross-correlation. For the sake of simplicity, it is
anyway called a convolution throughout this article. The real convolution can be125

computed by cross-correlating the image with the reversed kernel. With our definition,
the result’s dimensions are (hR, wR) = (hI−hK +1, wI−wK +1). To adhere to numpy
and Matlab conventions, this is the so-called valid convolution. A full convolution
yields a (hI + hK − 1, wI + wK − 1) output while same produces a (hI , wI) result.
The latter two methods require conditions on the borders. They can be computed130

by doing a valid convolution on a pre-padded image. Figure 1 introduces the above
notations.

2.2. GPU Programming. GPUs were initially designed for efficient production
and display of images on computer screens. They first achieved this goal by means
of hardware-fixed functions such as rasterization and pixel shading. With the ever-135

growing interest in such a powerful processor, GPUs became more flexible and open to
general computation. In 2007, Nvidia released the CUDA language that made GPUs
handy as a compute platform.

This manuscript is for review purposes only.

4 M. SEZNEC, N. GAC, F. ORIEUX, A. SASHALA NAIK

I3,0

I2,0

I1,0

I0,0

I3,1

I2,1

I1,1

I0,1

I3,2

I2,2

I1,2

I0,2

I3,3

I2,3

I1,3

I0,3

hI

wI

I: the image

*

K2,0

K1,0

K0,0

K2,1

K1,1

K0,1

K2,2

K1,2

K0,2

hK

wK

K: the kernel (or filter)

=

R1,0

R0,0

R1,1

R0,1

h
I
−
h
K

+
1

wI − wK + 1

R: the result

Fig. 1: The valid convolution between I and K.

From the software perspective, CUDA bases its programming model on a SIMT
(Single Instruction, Multiple Threads) paradigm, a variant of SIMD (Single Instruc-140

tion, Multiple Data). The programmer writes a single program and specifies how
many threads should run it. Threads are partitioned into Thread Blocks (TB) of a
customizable size where threads can be synchronized using barrier instructions and
share data efficiently through shared memory. This memory location is used in our
implementation to share partial matrix multiplication results.145

Many challenges must be faced for a program to run efficiently on GPU:
• The program must be parallel enough to maximize the occupation of the

GPU.
• It should perform sequential (coalesced) memory accesses and take advantage

of the cache hierarchy and the shared memory to boost performance.150

• Control flow path divergence should be avoided within the same warp even
though this constraint is less of an issue on recent architectures [21].

See [16, 25, 15] for more information about GPU and CUDA programming.

2.3. Tensor Cores. Tensor cores are recent additional hardware built into the
Volta, Turing, and Ampere GPU architectures [21, 22, 23]. These special units com-155

pute a matrix multiplication and accumulation: D = AB + C as shown in Figure 2.
While tensor cores operate on 4× 4 matrices at the hardware level, the ISA (Instruc-
tion Set Architecture) of NVIDIA GPUs provides instructions for larger operand sizes.
This is made possible by combining block matrices operations.

D =

A3,0

A2,0

A1,0

A0,0

A3,1

A2,1

A1,1

A0,1

A3,2

A2,2

A1,2

A0,2

A3,3

A2,3

A1,3

A0,3

×

B3,0

B2,0

B1,0

B0,0

B3,1

B2,1

B1,1

B0,1

B3,2

B2,2

B1,2

B0,2

B3,3

B2,3

B1,3

B0,3

+

C3,0

C2,0

C1,0

C0,0

C3,1

C2,1

C1,1

C0,1

C3,2

C2,2

C1,2

C0,2

C3,3

C2,3

C1,3

C0,3

Fig. 2: The matrix multiplication-and-accumulation operation made by a tensor core.

The operands A, B, C, and D may be stored with several numerical precisions.160

The supported formats depend on the generation of the GPU. Volta GPUs brought
the first generation of tensor cores and only supported fp16 precision (IEEE 754
binary16). Turing and Ampere added support for other input types while keeping
backward compatibility for already supported precisions. The output type is usually

This manuscript is for review purposes only.

THE IM2TENSOR ALGORITHM 5

the same as the input matrices, except for fp16 inputs, where the user chooses between165

an fp16 or fp32 output.
Several authors have explored the arithmetic accuracy of such reduced or mixed-

precision operations [14, 18, 5]. Several experiments are conducted later in this article
to assess those effects on our convolution algorithm.

3. The im2tensor algorithms. This section introduces our novel algorithm170

to compute a valid convolution between an image I and a kernel K, as defined in
subsection 2.1.1. It uses a 3-dimensional tensor S of size (hS , wS , dS) = (hK , wI , hI −
hK + 1) defined by:

(3.1) ∀i ∈ J0, hK − 1K,∀j ∈ J0, wI − 1K,∀k ∈ J0, hI − hKK,175

Si,j,k = Ii+k,j

By multiplying KT with S and summing along the resulting tensor’s diagonals, the
result is effectively a convolution (Figure 3).

KT

S

P

R

I0,:

I1,:

I2,:

I1,:

I2,:

I3,:

wK

hK

hK

hI
− hK

+ 1

wI

Fig. 3: Convolution as a sum on diagonals of a matrix-tensor product.

The rest of this section explains how this operation works, introduces a dual180

version of this algorithm, and explains how to handle borders to achieve a same
convolution.

3.1. Convolution through matrix products.

3.1.1. Row selections of I. From (3.1), it follows that the k-th depth-wise
slice of S, noted S:,:,k, is a row selection of the input image. Figure 4 shows how to185

construct S:,:,0.
Notice that two successive slices of S, S:,:,k and S:,:,k+1 both use the rows Jk +

1, k + hK − 1K of I. These shared references should be leveraged to avoid duplicates
when storing S in a computer’s memory.

3.1.2. Sums on diagonals. Let P be the result of the matrix-tensor product190

KTS. P is a tensor of size (hP , wP , dP) = (wK , wI , hI − hK + 1). We now seek to
compute the sums of the diagonals of a depth-wise slice P:,:,k.

This manuscript is for review purposes only.

6 M. SEZNEC, N. GAC, F. ORIEUX, A. SASHALA NAIK

I3,0

I2,0

I1,0

I0,0

I3,1

I2,1

I1,1

I0,1

I3,2

I2,2

I1,2

I0,2

I3,3

I2,3

I1,3

I0,3

I

Image

S2,0,0

S1,0,0

S0,0,0

S2,1,0

S1,1,0

S0,1,0

S2,2,0

S1,2,0

S0,2,0

S2,3,0

S1,3,0

S0,3,0

S:,:,0

Row Selection

Fig. 4: Selecting the first hK rows of I to form S:,:,0.

P:,:,k is a matrix of size (hP , wP). The l-th diagonal of P:,:,k is refered as d(k,l).

It is defined by ∀m, d
(k,l)
m = Pm,m+l,k.

Only complete diagonals of P:,:,k, i.e., diagonals with as many elements as d(k,0)195

are considered. Since P:,:,k has a (wK , wI) shape, it has |wK − wI | + 1 complete
diagonals.

Figure 5 shows the multiplication of KT with S:,:,0 to get P:,:,0. Summing the
elements of the two complete diagonals of P:,:,0, d(0,0) and d(0,1), respectively yields
R0,0 and R0,1.200

K0,2

K0,1

K0,0

K1,2

K1,1

K1,0

K2,2

K2,1

K2,0

KT

S2,0,0(=I2,0)

S1,0,0(=I1,0)

S0,0,0(=I0,0)

S2,1,0(=I2,1)

S1,1,0(=I1,1)

S0,1,0(=I0,1)

S2,2,0(=I2,2)

S1,2,0(=I1,2)

S0,2,0(=I0,2)

S2,3,0(=I2,3)

S1,3,0(=I1,3)

S0,3,0(=I0,3)

S:,:,0

P:,:,0

K0,0I0,0
+K1,0I1,0
+K2,0I2,0

K0,0I0,1
+K1,0I1,1
+K2,0I2,1

K0,0I0,2
+K1,0I1,2
+K2,0I2,2

K0,0I0,3
+K1,0I1,3
+K2,0I2,3

K0,1I0,0
+K1,1I1,0
+K2,1I2,0

K0,1I0,1
+K1,1I1,1
+K2,1I2,1

K0,1I0,2
+K1,1I1,2
+K2,1I2,2

K0,1I0,3
+K1,1I1,3
+K2,1I2,3

K0,2I0,0
+K1,2I1,0
+K2,2I2,0

K0,2I0,1
+K1,2I1,1
+K2,2I2,1

K0,2I0,2
+K1,2I1,2
+K2,2I2,2

K0,2I0,3
+K1,2I1,3
+K2,2I2,3

d(0,0) d(0,1)

+

+

+

+

R0,0 R0,1

Fig. 5: Detail of the KTS:,:,0 product and sums on diagonals.

Let us reiterate this process with S:,:,1, a selection of the last hK rows of I. Having
computed P:,:,1 = KTS:,:,1, another sum on the diagonals now gives R1,:.

It should now be clear how the matrix-tensor product P = KTS leads to rows of
R by summing on the diagonals of depth-wise slices of P .

We shall now formalize the sums over the complete positive diagonals. Tr+ is205

defined for a matrix A of shape (m,n) such that m ≤ n:

This manuscript is for review purposes only.

THE IM2TENSOR ALGORITHM 7

Tr+ : Rm×n → Rn−m+1(3.2)

A 7→ x,xk =
∑
i

Ai,i+k, ∀k ∈ J0, n−mK(3.3)

Likewise, the bold operator Tr+ is defined for 3D tensors and stacks the results210

of Tr+ on each slice of its input. The im2tensor algorithm can finally be summarized
as,

(3.4) R = Tr+(KTS)

This equation is visualized in Figure 3.

3.2. A Dual Version. While row selection is the backbone of the im2tensor215

algorithm just presented, another algorithm based on column selection exists. We
call it dual im2tensor and explain it in this section.

I3,0

I2,0

I1,0

I0,0

I3,1

I2,1

I1,1

I0,1

I3,2

I2,2

I1,2

I0,2

I3,3

I2,3

I1,3

I0,3

I

Image

S∗
3,0,0

S∗
2,0,0

S∗
1,0,0

S∗
0,0,0

S∗
3,1,0

S∗
2,1,0

S∗
1,1,0

S∗
0,1,0

S∗
3,2,0

S∗
2,2,0

S∗
1,2,0

S∗
0,2,0

S∗
:,:,0

Column Selection

Fig. 6: Selecting the first wK columns of I to form S∗:,:,0.

Similarly to (3.1), let S∗ be the tensor of size (h∗S , w
∗
S , d
∗
S) = (hI , wK , wI−wK +1)

such that:
220

(3.5) ∀i ∈ J0, hI − 1K,∀j ∈ J0, wK − 1K,∀k ∈ J0, wI − wKK,
S∗i,j,k = Ii,j+k

Instead of having S:,:,k slices be row selections of I, S∗:,:,k slices are column selec-

tions of I (see Figure 6). The matrix-tensor operands are commuted: P ∗ = S∗KT .225

(see Figure 7).
The afterward sum must now be done on the lower diagonals of a slice P ∗:,:,k. The

Tr- operator is defined to be the negative diagonal counterpart of Tr+. The same
logic applies to Tr- and Tr+.

Just like (3.4), the dual im2tensor algorithm is summarized as follows:230

(3.6) R = Tr-(S
∗KT)

3.3. Handling borders. So far, we have presented the im2tensor algorithm for
valid convolutions. Same and full convolutions require a preprocessing step. The
image I should be padded accordingly to the desired border conditions.

Figure 8 shows a zero-padding example for a same convolution, for a K of size235

(3, 3).

This manuscript is for review purposes only.

8 M. SEZNEC, N. GAC, F. ORIEUX, A. SASHALA NAIK

S∗
3,0,0

S∗
2,0,0

S∗
1,0,0

S∗
0,0,0

S∗
3,1,0

S∗
2,1,0

S∗
1,1,0

S∗
0,1,0

S∗
3,2,0

S∗
2,2,0

S∗
1,2,0

S∗
0,2,0

S∗
:,:,0

K0,2

K0,1

K0,0

K1,2

K1,1

K1,0

K2,2

K2,1

K2,0

KT

K0,0I0,0
+K0,1I0,1
+K0,2I0,2

K1,0I0,0
+K1,1I0,1
+K1,2I0,2

K2,0I0,0
+K2,1I0,1
+K2,2I0,2

K0,0I1,0
+K0,1I1,1
+K0,2I1,2

K1,0I1,0
+K1,1I1,1
+K1,2I1,2

K2,0I0,2
+K2,1I1,2
+K2,2I2,2

K0,0I2,0
+K0,1I2,1
+K0,2I2,2

K1,0I2,0
+K1,1I2,1
+K1,2I2,2

K2,0I2,0
+K2,1I2,1
+K2,2I2,2

K0,0I3,0
+K0,1I3,1
+K0,2I3,2

K1,0I3,0
+K1,1I3,1
+K1,2I3,2

K2,0I3,0
+K2,1I3,1
+K2,2I3,2

P ∗
:,:,0

d(0,0)

d(0,−1) +

+

+

+

R0,0

R1,0

Fig. 7: Detail of the im2tensor dual algorithm. The matrix-matrix product S∗:,:,0K
T =

P ∗:,:,0 leads to one column of R.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

I3,0

I2,0

I1,0

I0,0

I3,1

I2,1

I1,1

I0,1

I3,2

I2,2

I1,2

I0,2

I3,3

I2,3

I1,3

I0,3

h
I
+
h
K
−

1

wI + wK − 1

I ′

Fig. 8: I ′ is the zero-padded version of I for a same convolution.

The im2tensor algorithm can now be used on I ′, the padded version of I: R′ =
Tr+(KTS′). Note that no actual storage for I ′ is needed in computer memory. The
algorithm could deduce the values of I ′ on-the-fly.

4. Efficient GPU implementation.240

4.1. Overview. In the previous section, we explained two ways to compute a
2D convolution, both relying on a matrix-tensor product, followed by a sum reduction
along diagonals. The following section, in turn, describes details of an implementation
of the algorithm. It reviews the characteristics needed for efficient parallel execution
on GPUs.245

A pseudo-code of our implementation is given in Algorithm 1. It describes the
row-selection version of im2tensor. In this procedure, we compute a valid convolution

This manuscript is for review purposes only.

THE IM2TENSOR ALGORITHM 9

1 Function Im2Tensor
input : An image I, a kernel K
output: R the 2D valid convolution

2 KT ← transpose(K)
3 begin CUDA Kernel
4 while any Pblock remains do
5 bidx ← getPBlockIdx (TBidx)

6 Kblock ← readLines (KT , bidx)
7 Sblock ← readAndBuildSubTensor (I, bidx)
8 Pblock ← matTensorMultiply (Kblock, Sblock)

9 end

10 end
11 begin CUDA Kernel
12 while any diagonal remains do
13 d(k), d(l) ← getDiagIds (Threadidx)

14 s ← sumDiagonal (P, d(k), d(l))
15 storePixel (R, s)

16 end

17 end

Algorithm 1: Pseudo-code description of im2tensor.

Kblock

Sblock

Pblock

KT

S

P

hB

wB dB

Fig. 9: A Pblock is handled by a thread block. To compute its values, the TB must
read the associated Kblock and Sblock.

and start by transposing the kernel.
The core of the algorithm is composed of two main operations: computing the

matrix-tensor product P = KTS, and executing the Tr+ operator, i.e., a sum over250

the diagonals of P .
Regarding the matrix-tensor product, the strategy is to partition P into blocks.

Each individual Pblock is computed by a CUDA thread block (TB). Each TB is referred
by a unique identifier: TBidx (see Line 4 of Algorithm 1). There can be more Pblock

than TBs. Then, when a TB finishes its Pblock, it moves onto another Pblock to work255

on (Line 3).

This manuscript is for review purposes only.

10 M. SEZNEC, N. GAC, F. ORIEUX, A. SASHALA NAIK

To compute a Pblock, a TB must access a selection of rows of KT , which we
call Kblock, and a sub-tensor of S called Sblock. Note that a Sblock can be formed
by reading a selection of columns of I. The Pblock has a (hB , wB , hB) shape. The
blocked matrix-tensor product can be seen in Figure 9.260

The last part of the algorithm is a reduction on the diagonals. On Line 11, each
CUDA thread is assigned to a diagonal according to its thread id. d(k) is the depth
index and refers to the k-th slice of P . (d(k), d(l)) refers to l-th diagonal of P:,:,k, as
defined in subsection 3.1.2. The CUDA thread iterates over the diagonal, sum the
coefficients and stores the result to the GPU’s main memory.265

4.2. Levers for performance.

4.2.1. Tensor cores considerations. Our algorithm was designed with tensor
cores in mind, as presented in subsection 2.3. They are used when computing a
Pblock (Algorithm 1, Line 7). The matrix-tensor product is indeed a collection of
matrix-matrix multiplications handled by tensor cores.270

Tensor Core operations are restricted to specific matrix dimensions. NVIDIA
provides a reference of the acceptable shapes (mtc, ktc) and (ktc, ntc) for the operands
A and B, respectively.

This restricted shape imposes padding on the inputs. The choice for the shape’s
dimensions impacts the overall performance. For example, the choice of (mtc, ntc, ktc)275

= (32, 8, 16) with a small kernel (hK , wK) = (5, 5) requires the extension of KT

with zeros so its height meets 32. Consequently, a large portion of the algorithm’s
operations will be to compute the zeros of P .

Let us analytically derive the overhead introduced by the tensor core padding.
To this end, the following notation is introduced: dme(n). It refers to the multiple of280

n directly higher than m:

(4.1) ∀n ∈ N∗,∀m ∈ N, dme(n) 7→ ndm
n
e

The hat version of matrices and tensors are zero-padded to the nearest multiple
of mtc, ktc or ntc:

(4.2) ŵK = dwKe(mtc), ĥK = dhKe(ktc), ŵI = dwIe(ntc)285

K̂T =

[
KT 0
0 0

]
∈ RŵK×ĥK(4.3)

∀k ∈ J0, dS − 1K, Ŝ:,:,k =

[
S:,:,k 0

0 0

]
∈ RĥK×ŵI(4.4)

The result P̂ = K̂T Ŝ has a shape (ŵK , ŵI , hI − hK + 1).290

4.2.2. Computational Complexity. Our method uses a simple matrix mul-
tiplication algorithm, without Strassen-like methods’ sophistication. Its complexity
is:

O
(
ŵKŵI ĥK(hI − hK + 1)

)
(4.5)

i.e.,O
(
dwKe(mtc)dwIe(ntc)dhKe(ktc)(hI − hK + 1)

)
(4.6)295

This manuscript is for review purposes only.

THE IM2TENSOR ALGORITHM 11

Three terms are directly impacted by the padding introduced by tensor cores’
input shapes. In our setting, we consider that the image is significantly larger than
the kernel: wI � wK , wI � hK . With this assumption, we deduce that ktc and mtc

should be kept small while the choice of ntc is less sensitive.300

4.2.3. Arithmetic Intensity. The arithmetic intensity of a computer program
that transfers Q bytes of data to execute W operations is defined as:

(4.7) ai =
W

Q

This measure, central to the roofline model analysis[30], must be high enough to
claim using the GPU efficiently[10]. It is usually measured at execution time through305

performance counters. We, however, propose an a priori estimation of the arithmetic
intensity to guide our design choices.

We are interested in the computation of a Pblock, of size (hB , wB , dB), as shown
in Figure 9. Let us see how these three dimensions should be chosen to maximize the
arithmetic intensity.310

As for data transfers, this operation fetches data from K̂T : a (hB , ĥK) sub-image;

and from S: a (ĥK , wB , dB) sub-tensor. Due to duplicate rows in Sblock, this sub-

tensor only requires reading a (ĥK + dB − 1, wB) sub-image from I. Memory writes
are not counted in this analysis.

Regarding operations, the matrix-tensor products for Pblock involve hBĥKwBdB315

multiplication additions. Then, we have:

ai(hB , wB , dB) =
hBĥKwBdB

hBĥK + (ĥK + dB − 1)wB

(4.8)

∇ log(ai) =



1

hB
− ĥK

ĥK + hB + (ĥK + dB − 1)wB

1

wB
− ĥK + dB − 1

ĥK + hB + (ĥK + dB − 1)wB
1

dB
− wB

ĥK + hB + (ĥK + dB − 1)wB


(4.9)

An analysis of ∇ log(ai) shows that it is preferable to increase as a priority dB320

then hB and keep wB low. One must still consider that increasing dB and hB means
reading more rows of I, which is usually slower than reading longer rows (by increasing
wB) due to the memory layout of the image.

In our experiments, with (mtc, ntc, ktc) = (8, 32, 16), we set (hB , wB , dB) to
(8, 32, 32) as it proved provide the best results.325

4.2.4. Fusing the operators. Subsection 4.2.3 showed how to choose adequate
dimensions for Pblock to get a sufficient arithmetic intensity. However, the number of
writes in memory to store the intermediate tensor P was not considered.

To mitigate the overutilization of the memory bandwidth, a technique called
kernel fusion can be quite efficient [11]. Here, we propose to fuse the computation of330

Pblock and the sums on the diagonals of P .
We can take advantage of the fact that a Pblock is computed by a TB to store

it on the shared memory first, then sum along its diagonals, and finally, write those
sums back to main memory. By doing so, the storage space requirement and main
memory bandwidth usage drop from hBwBdB to (hB + wB − 1)dB .335

This manuscript is for review purposes only.

12 M. SEZNEC, N. GAC, F. ORIEUX, A. SASHALA NAIK

The proposed algorithm is then modified to include this Pblock partial reduction.
The sum on diagonals is now split into two passes: the first one within the shared
memory for a Pblock, then recombination of the partial sums from the different Pblocks.
The pseudo-code in Algorithm 2 summarizes this idea.

1 Function Im2TensorFused
input : An image I, a kernel K
output: R the 2D valid convolution

2 KT ← transpose(K)
3 begin CUDA Kernel
4 while any Pblock remains do
5 bidx ← getPBlockIdx (TBidx)

6 Kblock ← readLines (KT , bidx)
7 Sblock ← readAndBuildSubTensor (I, bidx)
8 Pblock ← matTensorMultiply (Kblock, Sblock)
9 dpartial ← sumTensorDiagonals (Pblock)

10 store (Ppartial, dpartial)

11 end

12 end
13 begin CUDA Kernel
14 while any diagonal remains do
15 d(k), d(l) ← getDiagIds (Threadidx)

16 s ← sumDiagonal (Ppartial, d(k), d(l))
17 storePixel (R, s)

18 end

19 end

Algorithm 2: The fused im2tensor variant.

Finding an efficient data structure to hold the partial sums of a tensor is not340

straightforward. The perhaps simplest idea would be to store partial sums of a di-
agonal directly on the pixel of R it contributes to. This requires atomic sums for all
thread blocks to work concurrently. In the following, this strategy is named atomic.
On the one hand, it removes the need for an intermediate buffer. On the other hand,
it makes the algorithm more sequential, hence, slower.345

For better performance, we developed a method that does not rely on atomic
operations. Let us present it in a simple case. A is a (hA, wA) matrix on which Tr+
should be applied. A is partitioned by the submatrices {M (i,j)} of size (hM , wM) as
shown in Figure 10.

(4.10) A =

 M (0,0) · · · M (0,wA/wM)

...
. . .

...
M (hA/hM ,0) · · · M (hA/hM ,wA/wM)

350

Let us explore a method for computing sums on the M (i,j) concurrently. This
would translate into each GPU TB being affected to a M (i,j) block in our imple-
mentation. To do so, a 2D buffer C is used to store partial sums computed in each
submatrix. Each column of C is reserved for a diagonal of A. Each M (i,j) writes

This manuscript is for review purposes only.

THE IM2TENSOR ALGORITHM 13

its partial results on a row of C. In Figure 10, M (0,1) computes partial sums of355

A-diagonals d(3) to d(9). The results are written to C0,3:9.
Reserving one row of C per B-block would waste a lot of space. We adopt two

strategies to reduce the memory footprint needed for C. First, blocks on the same
block-antidiagonal (i.e. ∀n, {M (i,j), s.t. i+ j = n}) do not have any diagonal of A in
common to sum. This way, they can safely use the same row C, as the columns they360

use don’t overlap. In Figure 11, M (1,1) and M (0,2) use the third row of C.
Second, let’s examine a block-antidiagonal’s memory footprint on C: it is a seg-

ment of length hA− 1 +wM min(hA

hM
, wA

wM
). Moreover, the gap in the diagonal indices

treated by two consecutive block-antidiagonals is wM . Thus, when two antidiagonals
are sufficiently apart from each other, they may safely use the same row of C. With365

antidiagonals n and m (with m > n) this happens when:

(m− n)wM > hA − 1 + wM min

(
hA

hM
,
wA

wM

)
(4.11)

m− n ≥ dhA − 1

wM
e+ min

(
hA

hM
,
wA

wM

)
(4.12)

In Figure 11, this is shown with M (0,0) and M (1,2), from antidiagonals 0 and 3,370

using the same row of C.
With these two techniques, the required number of rows for C is reduced from

(hA

hM

wA

wM
) to

(
dhA−1

wM
e+ min(hA

hM
, wA

wM
)
)
.

d(3) d(9)

B(1,0)

B(0,0)

B(1,1)

B(0,1)

B(1,2)

B(0,2)

A

Fig. 10: The matrix A is divided into submatrices {M (i,j)}. M (0,1) computes partial
sums for d(3) to d(9).

C

d(−hA+1) d(3) d(9) d(wA−1)

B(1,1) B(0,2)

B(1,0) B(0,1)

B(0,0) B(1,2)

Fig. 11: Each M (i,j) writes its results to a segment of C. To get the full sum for d(3),
one should add the partial sums from M (0,0), M (0,1), and M (1,1).

Compared to the initial algorithm, the fused version limits the memory footprint
by avoiding the creation of P . It also limits the main memory bandwidth through375

partial summations in the Pblock.
In a setting where the image is 1024×1024, the kernel 32×32 and wB = hB = 32,

the fused algorithm reduces by ∼ 15× its memory bandwidth.

This manuscript is for review purposes only.

14 M. SEZNEC, N. GAC, F. ORIEUX, A. SASHALA NAIK

5. Results.

5.1. Introduction.380

5.1.1. Experimental setup. This section presents the results of several exper-
iments. They were run in two environments, as detailed in Table 1. We are interested
in two facets of a convolution’s performance: the speed and the accuracy of its results.

Machine #1: desktop
Machine #2: embedded

(Jetson AGX Xavier)

OS Ubuntu 16.04 Ubuntu 18.04
Linux Kernel 4.15.0 4.9.140
CUDA 11.0 10.2
NVIDIA Driver 450 JetPack 4.4
CPU Intel i7-3820 8-core ARM 64bits
GPU Titan V (arch. 7.0) Xavier (arch. 7.2)
TDP ∼500W ∼30W

Table 1: Environments of the experiments.

For speed tests, we run the implementations on the cameraman image (see Fig-
ure 12), resized to (1024 × 1024) or (4096 × 4096) pixels. This setting has been385

chosen to mimic an industrial context where an image is to be preprocessed by a large
Gaussian kernel.

We summarize the results by taking the median execution time over 20 runs. Our
benchmark program measures performance with the help of cudaEvents. We do not
account for memory management and data transfers in the reported timings. The390

assumption is that the image and kernel already live on the GPU in a real-world
processing pipeline. Only the duration of processing the convolution is relevant.

Fig. 12: Left, the original image. Middle, a 15×15 random kernel. Right, the same
convolution.

For accuracy, we rely on the median absolute percentage error (median APE).
For a pixel pi, generated by the algorithm under test and compared to ri, the pixel
from the reference implementation, the APE is defined as:395

(5.1) APE(pi) =

{
|pi−ri

ri
|, if ri 6= 0

0, if ri = 0

We aggregate the results on 39 images from the Miscellaneous USC-SIPI data-
set [29]. Kernels’ coefficients are randomly chosen in the interval [0, 1). We use scipy’s
correlate2d with float64 numbers to generate reference results. All images are also
stored on disk in float64 precision using the FITS format.400

This manuscript is for review purposes only.

THE IM2TENSOR ALGORITHM 15

When the precision used by an algorithm is less than float64, we first convert the
image and kernel to the lower precision. All computations are done in the requested
precision. Then, the result is promoted back to fp64 for storage and comparison.

We also consider mixed-precision: in fp16fp32, the algorithm accesses data in
fp16, does the computation in fp32, and store the final result in fp16 (which will later405

be promoted to fp64 for file storage). For tensor core implementations, the situation
is slightly more subtle: with fp16 input, tensor cores always use fp32 internal registers
for intermediate results (see Figure 13). In what we call fp16 implementation, an fp16
output is requested from the tensor core. For fp16fp32, we use fp32 results from the
tensor core.410

A
coef.

B
coef.

× + D
coef.

C
coef.

fp16 input fp32 internal fp16 or fp32

Other products

fp32
multiplier

fp32
accumulation

Fig. 13: Internal decomposition of a tensor core operation.
From: https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/.

The exclusive mode is requested for the GPU under test, which means that no
other programs will interfere with its execution. Moreover, the GPU clocks are set to
fixed values to mitigate dynamic frequency scaling effects.

5.1.2. Implementations Under Test. In this benchmark, we try to cover a
broad range of algorithms. We, however, restricted ourselves to implementations that415

are not optimized for a specific kernel size. This makes the comparison fairer. Those
algorithms require a dedicated program for every kernel shape. They may reach 2-5×
speedups compared to other algorithms but need a longer compilation time and make
the final binary heavy for a general-purpose library.

We compared two families of in-house implementations (“naive”, im2tensor) with420

first-party NVIDIA libraries (CUFFT, CUDNN, NPP) and a third-party library (Ar-
rayFire). Let us give a brief description of each algorithm:

im2tensor. This is the algorithm explained in this article. The + shmem ver-
sions use the shared memory for efficient reuse of Sblock and Kblock. The + fused
versions use the optimization explained in subsection 4.2.4. Finally, the via CUBLAS425

version builds the S tensor explicitly and uses CUBLAS to perform matrix multipli-
cations between KT and the slices of S.

“Naive”. This is the classical approach for convolutions on GPU: each GPU
thread is assigned to computing a resulting pixel. Therefore, each thread loops over
the kernel and image pixels to multiply and sum. In the + shmem version, threads430

in the same thread block use the shared memory to reuse image pixels. Most of the
code is inspired by CUDA samples [24].

CUFFT. This algorithm performs convolutions in the Fourier domain. The time
to do the Fourier transform of the kernel is not counted, as it could easily be precom-
puted and stored in a real-world application. What counts for this implementation435

is the Fourier transform of the image, the pointwise multiplication in the Fourier
domain, and the inverse Fourier transform.

This manuscript is for review purposes only.

16 M. SEZNEC, N. GAC, F. ORIEUX, A. SASHALA NAIK

CUDNN. This library, used for deep neural networks, features the im2col al-
gorithm [8]. We used “cudnnConvolutionForward” with the “CUDNN CONVOLU-
TION FWD PREFER FASTEST” setting on version 7.6.5.440

NPP. NPP are NVIDIA Performance Primitives. They contain many utility
functions for signal and image processing.

ArrayFire. This general-purpose GPU-accelerated library features convolution
implementations based on Fourier transform (ArrayFire Freq.) or similar to naive +
shmem (ArrayFire Spatial) [33].445

0 10 20 30 40 50 60
Kernel size (in pixel)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im
e
(m

s)

Implementation

im2tensor (base)

im2tensor (via cuBLAS GEMM)

im2tensor + shmem

im2tensor + shmem + fused

im2tensor + shmem + fused + atomic

Fig. 14: Effects of im2tensor (fp16) optimizations on Titan V on 1024 × 1024 images.

5.2. Performance. Figure 14 shows the results for different implementations of
the im2tensor algorithm. The CUBLAS version creates the whole S tensor before
using the GEMM CUBLAS implementation for multiple matrix-matrix multiplica-
tions, as explained in subsection 5.1.2. Because the time to create S is not counted, it
only serves as a reference for the other implementations. Aside from that, even if the450

CUBLAS library is highly optimized for GEMMs, it is still penalized, with respect
to other implementations, by the large data movement that results from fetching S
entirely.

The base im2tensor algorithm already achieves satisfying results. Nevertheless, we
applied the optimizations discussed previously. The shmem version performs slightly455

worse, we suppose it is mainly caused by bank conflicts in the shared memory and to
the L1 cache being already as efficient as using shared memory.

By adding the fused optimization, though, the initial algorithm is outperformed.
This confirms the efficiency of reusing data as much as possible once they have been
moved to the thread block. At last, the additional atomic optimization slows down460

the runtime slightly, but does not rely on any intermediate buffer.
In Figure 15, the im2tensor algorithm is compared with other fp16 implementa-

tions. CUDNN proves to be inadequate in the single-kernel and single-image setting.
Naive implementations perform well for relatively small kernels. The usage of shared
memory is beneficial for larger kernels. Note that both programs use the vector-465

ized half2 data type to maximize compute-throughput. The Fourier implementation,

This manuscript is for review purposes only.

THE IM2TENSOR ALGORITHM 17

0

2

4

6

8

10

T
im

e
(m

s)

Nvidia Xavier - 1024 × 1024 images

0 10 20 30 40 50 60

Kernel size (in pixel)

0

2

4

6

8

10

T
im

e
(m

s)

Nvidia Titan V - 4096 × 4096 images

cuDNN

”Naive”

”Naive” + shmem

CUFFT

im2tensor + shmem + fused

Fig. 15: Comparison of fp16 algorithms in two contexts: (1024 × 1024) images on Jet-
son Xavier and (4096 × 4096) images on Titan V. Bands represent the 95% confidence
interval.

CUFFT, is almost constant with respect to the kernel size. The overhead for small
kernels is prohibitive but becomes less of a problem with large kernels (> 40 pixels).

Our algorithm behaves quite well for all kernel sizes. On small kernels, it is on par
with the best implementations. The overhead due to padding for tensor cores does not470

allow it to be the fastest. As the kernel grows in size, the im2tensor execution time
curve is less steep than “naive” implementations. Thus, it is the fastest for kernels
between 15 and ∼ 50 pixels in size.

For very large kernels, CUFFT remains the fastest. This seems sensible, as the
algorithmic complexity is asymptotically better for convolutions in the Fourier space475

rather than in the direct space.
Table 2 provides timings for various implementations and several precisions. It

shows once again that im2tensor is the fastest method for most kernel sizes. Our
algorithm also performs well in the mixed fp16fp32 case. In fp32 and fp64, note that
ArrayFire (Spatial) cannot handle large kernels. When that happens, the result is480

marked “—”.

This manuscript is for review purposes only.

18 M. SEZNEC, N. GAC, F. ORIEUX, A. SASHALA NAIK

Implementation Precision Kernel Size

3 15 25 35 55

“Naive”

fp16

0.21 3.11 8.37 16.17 41.27
“Naive” + shmem 0.31 1.64 3.71 7.43 16.48
CUFFT 5.95 5.96 6.08 5.95 5.96
im2tensor + shmem + fused 0.63 1.23 2.70 4.64 7.02
im2tensor + shmem + fused + atomic 0.82 1.50 3.04 4.86 7.24

“Naive”
fp16fp32

0.39 6.62 17.91 34.72 84.96
“Naive” + shmem 0.47 3.06 7.21 13.55 47.06
im2tensor + shmem + fused 1.07 2.30 4.70 8.37 12.55
im2tensor + shmem + fused + atomic 1.44 2.86 5.73 9.51 14.04

“Naive”

fp32

0.41 6.16 16.71 32.31 168.22
“Naive” + shmem 0.51 2.47 6.38 14.78 38.12
ArrayFire (Freq.) 10.79 10.79 10.78 10.79 10.79
ArrayFire (Spatial) 0.40 2.68 — — —
CUFFT 9.65 9.64 9.64 9.64 9.64
NPP 0.25 2.74 7.18 14.01 34.34

“Naive”

fp64

0.52 6.46 17.53 59.79 214.71
“Naive” + shmem 0.69 3.21 10.82 14.89 45.86
ArrayFire (Freq.) 21.51 21.51 21.51 21.52 21.52
ArrayFire (Spatial) 0.56 2.84 — — —
CUFFT 24.59 24.59 24.58 24.59 24.59
NPP 0.47 5.71 14.74 28.46 70.60

Table 2: Median execution time (in ms) on 4096×4096 images vs. size of kernel. Best
time per category is highlighted.

5.3. Accuracy. The previous section highlighted the difference in speed across
floating-point formats. There is, however, a tradeoff between speed and accuracy when
it comes to float operations. Figure 16 compares some implementations’ accuracy. The
results are averaged over the whole USC-SIPI (Misc) database, with 95% confidence485

bands. The naive implementation grows from 0.02% to about 3% for kernels from 3
to 60. It means that for a large kernel, you can expect a 3% inaccuracy for each pixel.

This inaccuracy might be too large in some contexts [26]. Fortunately, other
implementations perform better. CUFFT is almost constant at 0.1%. im2tensor al-
gorithms in fp16 reach a constant 0.02% inaccuracy, whatever the kernel size. Finally,490

the performance of the “naive” algorithm meets those of im2tensor when it is executed
in fp32fp16 mixed precision.

The remarkable performance of im2tensor is explained by the use of tensor cores.
As Figure 13 showed, even in fp16 precision, the intermediate results of the tensor
core are computed with fp32 numbers [14, 1]. Given that the accuracy of im2tensor495

(fp16) is about the same as the mixed (fp16fp32) versions of “naive” and im2tensor,
we can deduce that the accuracy is further limited by the storage type rather than
the type used for intermediate computations.

For reference, accuracy results are included for higher precision in Table 3. In
fp32, the trend is the same, with the “naive” growing with the kernel size. Most500

results stay within a 10−5, 10−6% accuracy.
In fp64, the “naive” implementation is bit-accurate, hence the 0 precision. This is

due to the reference scipy version making the same sequence of operations to compute
the convolution. Other implementations are very close, about 10−14%. Since the
reference implementation also cannot be perfectly precise, it is hard to conclude for505

an implementation to be more accurate than another in fp64.

This manuscript is for review purposes only.

THE IM2TENSOR ALGORITHM 19

0 10 20 30 40 50 60
Kernel size (in pixel)

10−2

10−1

100

A
cc
ur
ac
y
(i
n
p
er
ce
nt
ag
e)

Implementation

”Naive”

CUFFT

im2tensor + shmem + fused

Precision

fp16

fp16fp32

Fig. 16: Accuracy of algorithms in fp16 or fp16fp32. Lower is better.

Implementation Precision Kernel Size

3 15 25 35 55

“Naive”
fp16

2.73e-02 1.21e-01 2.08e-01 1.04 2.91
CUFFT 1.06e-01 1.12e-01 8.75e-02 8.37e-02 8.57e-02
im2tensor + shmem + fused 2.09e-02 2.03e-02 1.83e-02 1.77e-02 1.78e-02

“Naive”
fp16fp32

1.76e-02 1.69e-02 1.69e-02 1.69e-02 1.70e-02
im2tensor + shmem + fused 1.90e-02 1.97e-02 1.78e-02 1.72e-02 1.72e-02

“Naive”

fp32

3.54e-06 1.48e-05 2.42e-05 3.39e-05 5.30e-05
ArrayFire (Freq.) 2.55e-05 2.89e-05 2.51e-05 2.70e-05 2.76e-05
ArrayFire (Spacial) 3.61e-06 1.48e-05 — — —
CUFFT 1.98e-05 1.82e-05 1.99e-05 1.93e-05 1.80e-05
NPP 3.63e-06 1.48e-05 2.42e-05 3.39e-05 5.30e-05

“Naive”

fp64

0 0 0 0 0
ArrayFire (Freq.) 1.93e-14 3.40e-14 4.96e-14 6.59e-14 1.02e-13
ArrayFire (Spacial) 1.11e-14 3.83e-14 — — —
CUFFT 2.11e-14 3.38e-14 4.91e-14 6.59e-14 1.02e-13
NPP 1.11e-14 3.83e-14 6.29e-14 8.76e-14 1.37e-13

Table 3: Median accuracy (in percentage) of convolutions vs. size of kernel.

6. Conclusion. In this article, we have proposed a new algorithm for 2D convo-
lutions, im2tensor, that uses GPU tensor cores. These are NVIDIA units dedicated
to matrix multiplications that increase the compute throughput of new GPUs.

We conducted an analysis of the algorithm in terms of algorithmic complexity510

and arithmetic intensity. This helped us make the best choice of parameters for the
implementation of our algorithm that is based on matrix-tensor multiplication.

To prove the relevance of this new method, we have benchmarked several well-
known implementations on GPUs. For completeness, we compared in-house imple-
mentations with first and third-party libraries. The effects of floating-point precision515

on the accuracy of the computation were also reviewed.

This manuscript is for review purposes only.

20 M. SEZNEC, N. GAC, F. ORIEUX, A. SASHALA NAIK

We evaluated those methods on two different setups: embedded (∼ 30W) with
an NVIDIA Jetson Xavier and desktop (∼ 500W) with an NVIDIA Titan V. Based
on our experiments, it appears that our optimized method for computing convolution
via matrix-tensor multiplication with tensor cores is competitive for a large range of520

kernel sizes.
For small kernels (≤ 20-pixel wide), it is on par with shared memory “naive”

implementations and 10× faster than Fourier transforms. For large kernels (∼ 50
pixels), our method is as fast as Fourier transforms and 2× faster than shared-memory
“naive”.525

Regarding accuracy, compared to other fp16-only methods, our algorithm is 5×
more precise than Fourier transforms and 100× as good as “naive” implementation
for large kernels. This gain is directly provided by tensor cores, as they use extended-
precision intermediate registers.

REFERENCES530

[1] A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, M. Gates,
T. Grützmacher, N. J. Higham, S. Li, N. Lindquist, Y. Liu, J. Loe, P. Luszczek,
P. Nayak, S. Pranesh, S. Rajamanickam, T. Ribizel, B. Smith, K. Swirydowicz,
S. Thomas, S. Tomov, Y. M. Tsai, I. Yamazaki, and U. M. Yang, A Survey of Numerical
Methods Utilizing Mixed Precision Arithmetic, arXiv:2007.06674 [cs, math], (2020), https:535
//arxiv.org/abs/2007.06674.

[2] K. Adámek, S. Dimoudi, M. Giles, and W. Armour, GPU Fast Convolution via the Overlap-
and-Save Method in Shared Memory, arXiv:1910.01972 [cs], (2020), https://arxiv.org/abs/
1910.01972.

[3] A. Anderson, A. Vasudevan, C. Keane, and D. Gregg, Low-memory GEMM-based convo-540
lution algorithms for deep neural networks, arXiv:1709.03395 [cs], (2017), https://arxiv.
org/abs/1709.03395.

[4] B. Barabasz, A. Anderson, and D. Gregg, Improving The Accuracy of Winograd Convolu-
tion for Deep Neural Networks, (2018), p. 18.

[5] P. M. Basso, F. F. dos Santos, and P. Rech, Impact of Tensor Cores and Mixed Precision on545
the Reliability of Matrix Multiplication in GPUs, IEEE Transactions on Nuclear Science,
67 (2020), pp. 1560–1565, https://doi.org/10.1109/TNS.2020.2977583.

[6] S. G. Bhaskaracharya, J. Demouth, and V. Grover, Automatic Kernel Generation for
Volta Tensor Cores, arXiv:2006.12645 [cs], (2020), https://arxiv.org/abs/2006.12645.

[7] R. Brunelli, Template Matching Techniques in Computer Vision: Theory and Practice, John550
Wiley & Sons, Apr. 2009.

[8] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and
E. Shelhamer, cuDNN: Efficient Primitives for Deep Learning, arXiv:1410.0759 [cs],
(2014), https://arxiv.org/abs/1410.0759.

[9] A. Dakkak, C. Li, I. Gelado, J. Xiong, and W.-m. Hwu, Accelerating Reduction and Scan555
Using Tensor Core Units, Proceedings of the ACM International Conference on Supercom-
puting, (2019), pp. 46–57, https://doi.org/10.1145/3330345.3331057, https://arxiv.org/
abs/1811.09736.

[10] N. Ding and S. Williams, An Instruction Roofline Model for GPUs, in 2019 IEEE/ACM Per-
formance Modeling, Benchmarking and Simulation of High Performance Computer Systems560
(PMBS), Nov. 2019, pp. 7–18, https://doi.org/10.1109/PMBS49563.2019.00007.

[11] J. Filipovic and S. Benkner, OpenCL Kernel Fusion for GPU, Xeon Phi and CPU, in 2015
27th International Symposium on Computer Architecture and High Performance Comput-
ing (SBAC-PAD), Oct. 2015, pp. 98–105, https://doi.org/10.1109/SBAC-PAD.2015.29.

[12] J. S. Firoz, A. Li, J. Li, and K. Barker, On the Feasibility of Using Reduced-Precision565
Tensor Core Operations for Graph Analytics, in 2020 IEEE High Performance Extreme
Computing Conference (HPEC), Sept. 2020, pp. 1–7, https://doi.org/10.1109/HPEC43674.
2020.9286152.

[13] A. González, Trends in Processor Architecture, in Harnessing Performance Variability in
Embedded and High-Performance Many/Multi-Core Platforms: A Cross-Layer Approach,570
W. Fornaciari and D. Soudris, eds., Springer International Publishing, Cham, 2019, pp. 23–
42, https://doi.org/10.1007/978-3-319-91962-12.

This manuscript is for review purposes only.

THE IM2TENSOR ALGORITHM 21

[14] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU Tensor Cores
for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers, in
SC18: International Conference for High Performance Computing, Networking, Storage575
and Analysis, Nov. 2018, pp. 603–613, https://doi.org/10.1109/SC.2018.00050.

[15] M. Khairy, A. G. Wassal, and M. Zahran, A survey of architectural approaches for im-
proving GPGPU performance, programmability and heterogeneity, Journal of Parallel and
Distributed Computing, 127 (2019), pp. 65–88, https://doi.org/10.1016/j.jpdc.2018.11.012.

[16] D. B. Kirk and W. H. Wen-Mei, Programming Massively Parallel Processors: A Hands-on580
Approach, Morgan kaufmann, 2016.

[17] A. Lavin and S. Gray, Fast Algorithms for Convolutional Neural Networks, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4013–4021.

[18] D. Mukunoki, K. Ozaki, T. Ogita, and T. Imamura, DGEMM Using Tensor Cores, and
Its Accurate and Reproducible Versions, in High Performance Computing, P. Sadayappan,585
B. L. Chamberlain, G. Juckeland, and H. Ltaief, eds., vol. 12151, Springer International
Publishing, Cham, 2020, pp. 230–248, https://doi.org/10.1007/978-3-030-50743-512.

[19] C. A. Navarro, R. Carrasco, R. J. Barrientos, J. A. Riquelme, and R. Vega, GPU
Tensor Cores for fast Arithmetic Reductions, arXiv:2001.05585 [cs], (2020), https://arxiv.
org/abs/2001.05585.590

[20] M. Nourazar and B. Goossens, Accelerating iterative CT reconstruction algorithms using
Tensor Cores, Journal of Real-Time Image Processing, (2021), https://doi.org/10.1007/
s11554-020-01069-5.

[21] NVIDIA, V100 GPU Architecture: The world’s most advanced datacenter GPU, tech. report,
Tech. Rep., NVIDIA, 2017.595

[22] NVIDIA, NVIDIA Turing GPU Architecture: Graphics Reinvented, tech. report, Tech. Rep.,
NVIDIA, 2018.

[23] NVIDIA, NVIDIA A100 Tensor Core GPU Architecture: Unprecedented Acceleration at Every
Scale, tech. report, Tech. Rep., NVIDIA, 2020.

[24] V. Podlozhnyuk, CUDA Samples Documentation: convolutionSeparable, tech. report, Tech.600
Rep., NVIDIA, 2007.

[25] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU
Programming, Addison-Wesley Professional, 2010.

[26] M. Seznec, N. Gac, A. Ferrari, and F. Orieux, A Study on Convolution using Half-
Precision Floating-Point Numbers on GPU for Radio Astronomy Deconvolution, in 2018605
IEEE International Workshop on Signal Processing Systems (SiPS), Cape Town, Oct. 2018,
IEEE, pp. 170–175, https://doi.org/10.1109/SiPS.2018.8598342.

[27] S. Sioutas, S. Stuijk, T. Basten, L. Somers, and H. Corporaal, Programming tensor
cores from an image processing DSL, in Proceedings of the 23th International Workshop
on Software and Compilers for Embedded Systems, SCOPES ’20, New York, NY, USA, May610
2020, Association for Computing Machinery, pp. 36–41, https://doi.org/10.1145/3378678.
3391880.

[28] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, California
Technical Publishing, 1997.

[29] A. G. Weber, The USC-SIPI image database version 5, USC-SIPI Report, 315 (1997).615
[30] S. Williams, A. Waterman, and D. Patterson, Roofline: An insightful visual performance

model for multicore architectures, Communications of the ACM, 52 (2009), pp. 65–76,
https://doi.org/10.1145/1498765.1498785.

[31] H. Winnemöller, J. E. Kyprianidis, and S. C. Olsen, XDoG: An eXtended difference-of-
Gaussians compendium including advanced image stylization, Computers & Graphics, 36620
(2012), pp. 740–753, https://doi.org/10.1016/j.cag.2012.03.004.

[32] S. Winograd, Arithmetic Complexity of Computations, SIAM, Jan. 1980.
[33] P. Yalamanchili, U. Arshad, Z. Mohammed, P. Garigipati, P. Entschev, B. Kloppen-

borg, J. Malcolm, and J. Melonakos, ArrayFire - A High Performance Software Li-
brary for Parallel Computing with an Easy-to-Use API, AccelerEyes, Atlanta, 2015.625

This manuscript is for review purposes only.

Chapter 2. GPU acceleration of image convolutions 58

2.3 Conclusion
This chapter has performed two optimization strategies for efficient image con-
volutions on GPUs. The first, based on a radio-astronomy reconstruction, corre-
sponds to our proposed development strategy’s combined algorithm/implementa-
tion stage. It evaluates the possibility of performing the gradient descent algo-
rithm on low precision floats. It studies several algorithmic strategies for taking
into account the loss of precision with back-tracking, optimal or fixed step for the
gradient descent. Finally, this algorithmic and optimization exploration concludes
that using mixed precision (fp16 for storage, fp32 for computing) is a good trade-
off. Acceleration comes from the reduced memory bandwidth, and the accuracy
degradation is sufficiently low, so the gradient descent converges.

In a second time, the im2tensor article shows work for the implementation
phase. The algorithmic context is fixed, and only the convolution operation is un-
der optimization. Regarding accuracy, we used tensor cores in fp16 precision. The
inaccuracy added by the reduced format is nuanced by the fact that intermediate
registers used by the tensor are in fp32. In the end, our algorithm, im2tensor is
faster than other algorithms in the spatial domain for large kernels. Implementa-
tions based on Fourier transforms are still better for even larger kernels (> 50-pixel
wide). Still, for a sweet spot at around 30-pixel wide, our algorithm is two times
faster than other methods.

In the end, this work on image convolution in several contexts shows various
ways to exploit the specificities of GPUs. For radio-astronomy, it showed multiple
ways of taking into account accuracy loss in the gradient descent step choice.
For tensor cores, performance gains are achieved with a new hardware feature,
originally designed for DNN acceleration. These results show the importance of
phases 2 and 3 of the implementation method for maximum performance on GPU.

Chapter 3
Implementation strategy for variational
optical flow estimation

This chapter relates the method we followed for the implemenation of an optical
flow estimation algorithm on GPU. The context stems for Thales that develops
data processing solutions to be embedded in real-world situations. The deployment
of such algorithms must fit tight weight, size, and power constraints. In these
situations, embedded GPUs like the Jetson Xavier, on fig. 3.1, are often a tool
of choice thanks to their high performance per watt ratio. In our case, the goal
is to run an optical flow estimation algorithm, CLG (Bruhn et al., 2005), on this
specific hardware.

The initial algorithm being fixed, we start our analysis at the end of the algo-
rithm phase of fig. 1.2. The second stage consists of adapting the CLG algorithm
to GPUs by chosing a solver that have fast hardware execution and good algorith-
mic properties, i.e. converges quickly. We also push the work to the third phase,

Figure 3.1: The Xavier chip on its compute module. Credits: Nvidia.

Chapter 3. Implementation strategy for variational optical flow estimation 60

where we find kernel-level optimizations on GPU.

3.1 Real-Time Optical Flow Processing on Em-
bedded GPU: an Hardware-Aware Algorithm
to Implementation Strategy, under review

Similar to the radio-astronomy reconstruction, the optical flow estimation consists
of an iterative solver that generates successive approximations of the optical flow.
This time, we analyze the performance of different linear solvers on GPU. The time
to solution of a solver is dictated by two factors, the convergence rate per iteration
and the time per iteration. The first is usually well-studied in the literature and
invariant with respect to the hardware. On the contrary, the second differs on each
execution platform

Our work begins by comparing widely available solvers. With third-party im-
plementations, we evaluate the convergence rate per iteration and discard irrel-
evant algorithms on CPUs first. Then, we implement a selection of solvers on
GPU and choose the best one. We also check the influence of hyper-parameters
on time to convergence. This estimation allows users of the optical flow to tune
the algorithm based on real-time constraints.

Once the solver is chosen, it is time for lower-level optimizations. In section 3.1,
we use memory re-utilization to avoid buffer copies, iteration fusion of the linear
solver to increase the arithmetic intensity, and kernel batching to limit the overhead
of CUDA functions launches.

Journal of Real-Time Image Processing manuscript No.
(will be inserted by the editor)

Real-Time Optical Flow Processing on Embedded GPU: an
Hardware-Aware Algorithm to Implementation Strategy

Mickaël Seznec · Nicolas Gac · François Orieux · Alvin Sashala Naik

Received: date / Accepted: date

Abstract Determining the optical flow of a video is
a compute-intensive task essential for computer vision.

For achieving this processing in real-time, the whole
algorithm deployment chain must be thought of for ef-
ficiency first. The development is usually divided into

two parts: first, designing an algorithm that meets pre-
cision constraints, then, implementing and optimizing
its execution on the targeted platform. We argue that
unifying those operations enhances performance on the

embedded processor.

This paper is based on an industrial use case of

computer vision. The objective is to determine dense
optical flow in real-time on an embedded GPU plat-
form: the Nvidia AGX Xavier. The CLG (Combined

Local-Global) optical flow method, initially chosen, is
analyzed to understand the convergence speed of its
underlying optimization problem. The Jacobi solver is
selected for implementation because of its parallel na-

ture. The whole multi-level processing is then ported
to the GPU, using several specific optimization strate-
gies. In particular, we analyze the impact of fusing the

solver’s iterations with the roofline model.

As a result, with a 30W power budget, our imple-
mentation runs at 60FPS, on 640 × 512 images, with

a four-level processing. This example should hopefully
provide feedback on the issues that arise when trying
to port a method to a parallel platform and serves for

further implementations of computer vision algorithms
on specialized hardware.

Mickaël Seznec · Alvin Sashala Naik
Thales Research and Technology. Palaiseau, France

Mickaël Seznec · Nicolas Gac · François Orieux
Laboratoire des Signaux et Systèmes, Université Paris-Saclay,
CNRS, CentraleSupélec. Gif-Sur-Yvette, France

Keywords Algorithm design, Optical Flow, GPU
Optimization, Linear Solvers, Image Processing

1 Introduction

Computer vision has become an essential aspect of wi-
dely adopted electronic devices in various fields: me-
dicine [7], unmanned flight [13], or autonomous driv-

ing [5], for instance. The constant progress of these ap-
plications is driven by more sophisticated algorithms
and more efficient hardware architectures. As both of

these fields continue to progress, the difficulty of finding
an optimal match between the two increases.

On the one hand, the algorithm design space of

image processing methods is broad. New techniques
are constantly developed that often depend on hyper-

Image 1 Image 2

−0.250.00 0.25
−0.25

0.00

0.25

Flow values

Base CLG Flow @ 60FPS Optimized CLG Flow @ 60FPS

Fig. 1: For the same framerate on Jetson Xavier, our
GPU-optimized multi-scale CLG Optical Flow con-

verges further than the initial implementation.

2 Seznec et al.

parameters to control a trade-off between the speed and
accuracy of the results. On the other hand, modern
hardware architectures such as GPUs (Graphics Pro-
cessing Units), FPGAs (Field-Programmable Gate Ar-

ray), or SIMD (Single-Instruction Multiple-Data) pro-
cessors have successfully improved the execution of vi-
sion algorithms. The increasing complexity in both of

these domains calls for expertise that keeps being more
and more specific. It is then challenging to combine
these two skills to find an optimal match between the

algorithm and the target.
In this article, we focus on the optical flow prob-

lem. The goal is, given two successive frames of a video,
to find a per-pixel displacement vector. First numeri-

cal methods to solve it have been found by Horn and
Schunk in the 1980s [10] and numerous refinements have
been developed since [8,3]. For our analysis, we select

the CLG (Combined Local-Global) method [4] as it is
the basis of one of our industrial applications.

Our analysis then serves two goals. First, finding
the impact of the solver choice and the values of hyper-

parameters on the speed and accuracy of the CLG me-
thod. This initial study gives rise to an initial imple-
mentation on the NVIDIA Jetson AGX Xavier, an em-

bedded GPU SOC (System On Chip). The next goal is
finding efficient optimization procedures for this algo-
rithm to achieve maximum performance. Overall, the

study aims at finding algorithm-implementation syner-
gies through the perspective of optical flow processing.

The main novelties brought by this article are listed
below.

– It extends previous work [17] on the influence on
speed and accuracy of the hyper-parameters of the

CLG optical flow. Notably, the spectral radiuses of
splitting solvers are provided, and new performance
results on the Xavier GPU are presented.

– It introduces a complete implementation of the al-
gorithm on the Jetson AGX Xavier, optimized in-
depth with diverse techniques: buffer re-utilization,
solver iteration fusion, and kernel launches batch-

ing.
– It analyses the impact of the multi-scale scheme on

the performance of our implementation.

The rest of this article is structured as follows: sec-
tion 2 outlines related work on optical flow process-

ing for real-time systems and optimization strategies
for parallel systems. Section 3 introduces mathemati-
cal notations for optical flow and analyzes solvers and

hyper-parameters on the convergence speed. Section 4
deals with the implementation optimizations on GPU
and focuses on arithmetic intensity to explain achieved
performance. Section 5 concludes this paper and gives

direction for further work.

2 Related Work

Optical flow has received a lot of attention since pi-
oneering numerical methods introduced by Horn and

Schunk [10] and Lucas & Kanade [12]. From there,
many refinements have been incorporated on top of
these frameworks. Review papers [2,19] explore com-
prehensively the different strategies used for computing

optical flow.

In this article, we focus on a differential method,

a family that was introduced by Horn & Schunk. It
consists of minimizing a penalization function usually
composed of two types of terms: model attach and reg-
ularization. On top of the original penalization function

found in [10], Farnebäck et al. replace the linear interpo-
lation with a quadratic one for better accuracy [8]. Brox
et al. add a gradient conservation term [3] while Zach

et al. use a L1-norm penalization instead of a quadratic
one [22] to obtain better-defined object boundaries. The
selected algorithm for our study is the CLG (Combined

Local-Global) method, as defined by Bruhn et al. [4].
This method adds a neighboring condition to the model
attach term, similar to the one found in [12]. This unify-
ing model is less sensitive to noise, as the local informa-

tion is averaged over multiple pixels. Furthermore, the
method does not require many more operations than
the traditional Horn & Schunk approach.

Efficient implementation has always been key to an
attractive optical flow method. For CLG, a CPU imple-
mentation has been described in [11] and Moussu [14]

detailed its GPU counterpart. With respect to this pre-
vious work, our article details how to choose the right
solver and hyper-parameters of CLG for fast conver-

gence. It is completed by GPU optimizations, especially
for the Jacobi solver.

There is plenty of literature about GPU optimiza-
tion for linear algebra. Kernel fusion is a frequent tech-
nique, manually applied to a sparse CG (Conjugate
Gradient) solver in [1], or BCG (Biconjugate-CG) in [20].

Filipovic et al. propose a source-to-source compiler to
perform fusion at the compilation stage [9]. Regarding
the Jacobi solver specifically, Aslam et al. have bench-

marked many computations and synchronization tech-
niques. We differ from this work by not relying on sparse
matrices to implement the Jacobi solver but by im-
plementing the operators defined by those matrices di-

rectly. In [15], Nguyen et al. compare several GPU sol-
vers for fastest convergence and comes to similar con-
clusions as ours: more iterations on simpler solvers are

more efficient on GPUs.

To guide our optimization strategy, we rely on the

roofline model, as introduced by Williams in [21]. It is

Optical Flow on Jetson Xavier 3

a general and a powerful tool to find bottlenecks in an
application, that has already been used for GPUs [6].

3 Method-level approach

In this section, we examine the CLG algorithm from
a mathematical perspective. This first analysis serves
our optimization method by highlighting the degrees of

freedom allowed by our application. After giving some
mathematical context, we then explore the implications
of the solver choice and the tuning of hyper-parameters.

3.1 Modeling optical flow

A category of optical flow algorithms provides a result
by finding the solution to an optimization problem. In

this section, we introduce the mathematical notations
associated with this optimization problem.

The variables are named using the following con-

vention: the lowercase a ∈ R is a coefficient, the bold
lowercase a ∈ Rn is a vector, the uppercase A ∈ Rn×m
is a matrix. The over-line symbol ā ∈ RIh×Iw repre-

sents the field a over a two-dimensional image. Like-
wise, ā is a vector field, Ā is a matrix field. Finally,
the double bar notation introduces flattened fields: ¯̄a is
a two-dimensional field represented as a vector with a

row-major convention.

In a sequence of images at time t, the optical flow at
(x, y) is noted wx,y,t = (ux,y,t, vx,y,t, 1)T . It has three

components: ux,y,t and vx,y,t are the displacement in
the x and y axis, respectively, with the time displace-
ment equals 1. We also introduce w∗ = (ux,y,t, vx,y,t)

T ,

for ease of notation.

Finally, fx,y,t represents the pixel intensity of the
frame at time t, at coordinates x, y. Images are gray-
scale, so fx,y,t is a scalar. Later in the article, and for

the sake of brevity, we may omit the x, y, t indices, so
wx,y,t becomes w, for example.

With the variables now set, we present an energy

definition that serves as a framework for many varia-
tional methods

E(w̄) =

∫
Ω

D(w, f̄) +R(w) dxdy (1)

where D is the data-fitting term while R plays the role

of regularization, and Ω represents the 2D image do-
main.

For example, in [10], Horn & Schunck set D and R

to

DHS(w, f̄) := wTJ0w (2)

and

RHS(w) := α
(
‖∇x,yux,y‖2 + ‖∇x,yvx,y‖2

)
, (3)

where ∇x,y is a two-dimensional spatial gradient and
α ∈ R+ is the trade-off between data fitting and regu-
larization penalization. J̄0 is a matrix field and corre-
sponds to a quadratic penalization of the image inten-

sity conservation, eq. (4), with a linear approximation,
eq. (5) of the image’s values

‖f̄(x+ u, y + v, t+ 1)− f̄(x, y, t)‖2 (4)

≈ ‖f̄(x, y, t) +∇f̄(x, y, t)Tw − f̄(x, y, t)‖2 (5)

= ‖∇f̄(x, y, t)Tw‖2 (6)

= wT∇f̄(x, y, t)∇f̄(x, y, t)Tw (7)

= wTJ0w. (8)

With this definition, the data-fitting term only incorpo-
rates pixel-wise intensity conservation. In [4], Bruhn et
al. leverage the energy penalization found in [12] to av-
erage the intensity conservation over the pixel’s neigh-

borhood.

DBruhn(w, f̄) := wTJρw (9)

with

Jρ = (Kρ ~ J̄0)(x, y, t) and ρ ∈ R+. (10)

Here, Kρ is a 2D Gaussian kernel with a standard devi-
ation ρ, and ~ is a per-channel 2D-convolution operator

applied to the matrix field J̄0. It means that the solu-
tion w should solve its intensity conservation equation
and its neighbors’.

By replacing D by eq. (10) and R by eq. (3) in
eq. (1), we have the CLG (Combined Local-Global)
model, as defined in [4]

ECLG(w̄) :=

∫
Ω

wTJρw

+ α(‖∇x,yu‖2 + ‖∇x,yv‖2) dxdy. (11)

The convex optimization problem is now entirely
defined. It is usually solved with an iterative gradient
descent technique: each step yields a new approximate

solution by displacing the current solution towards the
opposite direction of the gradient. Two methods exist to
compute the gradient of E(w̄): the first one considers

f̄ and w̄ to be continuous functions and employs the
Euler-Lagrange equations. The second one discretizes

4 Seznec et al.

f̄ and w̄ over the two-dimensional pixel grid first. This
version is detailed in this article, with

ECLG(¯̄w∗) = ¯̄wTH ¯̄w + α
(
‖DxSu ¯̄w∗‖2 + ‖DySu ¯̄w∗‖2

+ ‖DxSv ¯̄w∗‖2 + ‖DySv ¯̄w∗‖2
)
. (12)

Equation (12) introduces ¯̄w, a 3 × Ih × Iw vector,

such that ¯̄wT =
[
¯̄uT ¯̄vT ¯̄1T

]
, similarly, ¯̄w∗T =

[
¯̄uT ¯̄vT

]
.

Su and Sv are diagonal matrices that respectively select
¯̄u and ¯̄v parts of ¯̄w. Dx and Dy are discrete partial

derivative operators along the x and y axes.

H is composed of diagonal matrices

H =

diag ¯̄jρ,0,0 diag ¯̄jρ,0,1 diag ¯̄jρ,0,2
diag ¯̄jρ,1,0 diag ¯̄jρ,1,1 diag ¯̄jρ,1,2
diag ¯̄jρ,2,0 diag ¯̄jρ,2,1 diag ¯̄jρ,2,2

 , (13)

with

Jρ =

jρ,0,0 jρ,0,1 jρ,0,2jρ,1,0 jρ,1,1 jρ,1,2
jρ,2,0 jρ,2,1 jρ,2,2

 . (14)

Let us now compute the derivative of eq. (12) with

respect to ¯̄w∗

∇ ¯̄w∗ECLG(¯̄w∗) = 2Su,vH ¯̄w

+ 2α
(
STu (DT

xDx +DT
y Dy)Su ¯̄w∗

+ STv (DT
xDx +DT

y Dy)Sv ¯̄w∗
)

(15)

Su,vH ¯̄w =

[
diag ¯̄jρ,0,0 diag ¯̄jρ,0,1
diag ¯̄jρ,1,0 diag ¯̄jρ,1,1

]
¯̄w∗ +

[¯̄jρ,0,2
¯̄jρ,1,2

]
. (16)

The selection matrix Su,v is necessary as H is applied
to the vector ¯̄w that contains ones in addition to u’s

and v’s.

Equation (15) should now be set to zero to find a
minimizer of ECLG. By doing so, we obtain an equation
of the generic form

Ax = b (17)

where

A =

[
diag ¯̄jρ,0,0 diag ¯̄jρ,0,1
diag ¯̄jρ,1,0 diag ¯̄jρ,1,1

]
− α

[
L 0
0 L

]
(18)

with L = DT
xDx +DT

y Dy, x = ¯̄w∗, (19)

and b = −
[¯̄jρ,0,2
¯̄jρ,1,2

]
(20)

3.2 Solver Overview

The linear system of equations Ax = b can be solved
in various ways. However, the characteristics of the op-
tical flow setting restrict the choice of possible solvers.

In a typical environment, with an HD image stream
of dimensions 1280 × 480, there are over 2 · 109 coef-
ficients in the matrix A. As is, an embedded system

would never be able to store the whole matrix. Hope-
fully, the matrix is sparse, with more than 99.999% of
its coefficients being zeros. It is then crucial to find a
solver that takes advantage of this sparsity to make the

computation possible on embedded devices.

The two following sections present two principal fa-
milies of solvers for the optical flow. First, matrix split-
ting methods have been chosen in seminal work on flow

estimation [10] and remain widely used to solve these
linear systems [11]. Second, Krylov methods are often
used for numerical simulations and benefit from a well-
supplied scientific corpus [16].

3.2.1 Matrix Splitting

The matrix splitting methods partition the matrix A
into two: A = B + C. Using this equality in Ax = b
yields

Bx = b− Cx. (21)

Assuming B is invertible, an iterative scheme is con-

structed

xk+1 = B−1(b− Cxk) (22)

xk+1 = (I −B−1A)xk +B−1b. (23)

The choice of B leads to different methods. For ex-
ample, choosing B to hold the diagonal of A: BJ := DA

is the Jacobi solver, while BGS := DA+LA is the Gauss-
Seidel method (with LA, the lower triangular part of

A).

In the case of optical flow problems, we can craft
custom B matrices based on the structure of A. These
variants contain the four non-empty diagonals of A

B
(diags)
J :=

[
diag ¯̄jρ,0,0 − αDL diag ¯̄jρ,0,1

diag ¯̄jρ,1,0 diag ¯̄jρ,1,1 − αDL

]
(24)

B
(diags)
GS :=

[
diag ¯̄jρ,0,0 − αLL diag ¯̄jρ,0,1

diag ¯̄jρ,1,0 diag ¯̄jρ,1,1 − αLL

]
. (25)

This construction of B matrices is called the pointwise-
coupled method in [11], as these matrices update ux,y
and vx,y simultaneously. Later in this article, we call
these versions “preconditioned” by analogy with the
Krylov methods.

Optical Flow on Jetson Xavier 5

None Diagonals

10−4

10−3

10−2

10−1

100

101

S
o

lv
er

s’
co

n
ve

rg
en

ce
sp

ee
d

:
−

lo
g
(ρ

S
R
)

α = 5.0e−3

Solver

Jacobi

GS

None Diagonals

10−4

10−3

10−2

10−1

100

101
α = 5.0e−6

Fig. 2: Comparison of the theoretical convergence speed
of the Jacobi and Gauss-Seidel (GS) methods. Stan-
dard solvers are refered by None and precontioned, or

pointwise-coupled, variations with Diagonals.

The spectral radius ρSR of I−B−1A must be studied
to show how the specially designed matrices compare to

the traditional ones. At each iteration of the solver, the
error’s norm ‖ek‖ = ‖b−Axk‖ is multiplied by a factor
ρSR. The end goal is then to find a matrix B such that

the corresponding ρSR is as close to zero as possible.
Figure 2 presents results for the Jacobi and Gauss-

Seidel solvers with their derived pointwise-coupled me-

thods. The optical flow is analyzed under two parameter
settings, with α = 5e−3 or α = 5e−6. The plot shows
− log(ρSR) for easier comparison between solvers. Note
that finding ρSR is a computationally heavy task, so

images have been cropped to obtain such results.
We can draw three conclusions from fig. 2. First, a

low alpha dramatically increases the convergence speed

for all types of solvers by factors of 20 ∼ 100. Second,
with the same flow parameters, Gauss-Seidel is about
three times faster than Jacobi. Last, the pointwise-cou-
pled method is useful only in a low alpha setting where

a 5× speedup is achieved.

3.2.2 Krylov’s methods

Krylov solvers all emerge from the same premise: at
each iteration, increase the possible solutions’ space’s
dimension. Such spaces, called Krylov spaces, are de-

fined by

Kn(A, b) = span{b, Ab, A2b, . . . , An−1b}, n ∈ N∗. (26)

The choice of the solution in these subspaces leads to
different methods: Conjugate Gradient (CG), MINimal

10−4 10−2 100

Regularization weight (α)

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
co

n
d

it
io

n
n

u
m

b
er

(
κ κ
0

)

Neighborhood
regularization (ρ)

0.0

2.0

4.0

6.0

Preconditioner

None

Diagonals

Fig. 3: Normalised condition number of the problem
versus parameters’ value.

RESidual (MINRES), or Generalized Minimal RESid-
ual (GMRES), for example.

The speed of Krylov’s methods depends on the ma-

trix condition number κ of the matrix A. This charac-
teristic quantifies how much our model’s result changes
with a small perturbation in the input data. A low
condition number reflects a robust modelization of our

problem. It also hints that Krylov solvers should con-
verge rapidly [18].

Sometimes, the system can be enhanced by the use

of a preconditioner M . With M being an invertible ma-
trix, the equation eq. (17) becomes

M−1Ax = M−1b. (27)

Solving the system in eq. (27) is equivalent to solve
eq. (17) with a change of variables A′ = M−1A and
b′ = M−1b. This system should be faster to solve if

κ(A′) < κ(A).

Similarly to the pointwise-coupled matrices defined
for splitting solvers, a natural preconditioner for the

optical flow is

M =

[
diag ¯̄jρ,0,0 − αDL diag ¯̄jρ,0,1

diag ¯̄jρ,1,0 diag ¯̄jρ,1,1 − αDL

]
. (28)

Figure 3 summarizes the value of κ for several model
parametrizations: with ρ, the local radius parameter,
ranging from 0 to 6 and α, the global regularization

weight, from 1e−5 to 10. The values shown are the ratio
κ by κ0 with κ0 the value of κ taken with α = 0 and ρ =
0. Just like in section 3.2.1, images have been cropped

to compute κ.

We can now conduct a similar analysis for fig. 3
as we did for fig. 2. First, without preconditioning, κ

follows a V-shape with respect to α. However, with a
preconditioner M defined as in eq. (28), κ always in-
creases with α. This difference is important, as, for low
values of α, the preconditioner decreases κ by orders of

magnitudes. With higher values of α, though, the effect

6 Seznec et al.

of M is barely noticeable. Finally, we can assert that
increasing ρ is significant with low α and no precondi-
tioning.

Figure 3 confirms the results of fig. 2: solvers are
the fastest when preconditioned and with low α values.
The effect of α can be analyzed by looking back at

eq. (11): with α close to zero, most of the penalization
comes from wTJρw. This term is directly sensitive to
the value ρ. Moreover, the preconditioner M “targets”

this term. It is then not a surprise to see how effective
it is with low α.

With high values of α, the term ‖∇x,yu‖2+‖∇x,yv‖2
dominates. Then, the influences of ρ and M are negli-
gible. Conversely, κ increases because the solution is
solely determined by having a zero derivative so that

any constant field would be a potential solution.

3.3 A coarse solver benchmark

While sections 3.2.1 and 3.2.2 presented theoretical re-
sults for solver convergence on small images, the actual

performance is yet to be measured. In this section, we
are interested in two indicators: convergence vs. itera-
tions and convergence vs. time.

Since convergence vs. iterations is platform-inde-
pendent, we can rely on it as an initial filter for limiting

the number of solvers to test on the target hardware.

Then comes an implementation on target for the ac-

tual solvers’ performance. In fact, a performant solver
under the convergence vs. iterations measure may be-
come less attractive if the time to perform one iteration
is too slow on the targeted hardware.

3.3.1 Convergence vs. iterations

For fig. 4, we chose two sets of parameters to compare
the convergence of the solvers mentioned above. We
tried several Krylov solvers from the sparse module of

Scipy but only reported Conjugate-Gradient (CG) as it
was the most relevant. We developed two splitting me-
thods: Jacobi and Red-Black Gauss-Seidel (Red-Black

GS). The more traditional Gauss-Seidel solver has been
discarded from the benchmark. It requires all pixels to
be treated sequentially and thus is not appropriate for
a parallel implementation. Red-Black GS is a variation

on Gauss-Seidel that updates half of the pixels simul-
taneously [16].

The results differ greatly depending on α. On fig. 4,
when α is low, preconditioned method converges quickly
(up to 10−9 in 100 iterations). The CG method is the

fastest, but splitting methods are not far behind. On the
contrary, when α is higher, all solvers converge slowly

0 100 200

Iterations

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
d

is
ta

n
ce

to
b

es
t

en
er

g
y

α = 5.0e− 03

Solver type

CG

Jacobi

Red-Black GS

Preconditioner

None

Diagonals

0 100 200

Iterations

10−10

10−8

10−6

10−4

10−2

100
α = 5.0e− 06

Fig. 4: Convergence vs. iterations with ρ = 2.5. On the
lest α = 5e−3, on the right α = 5e−6

(∼ 10−5 in 100 iterations), and splitting methods are
still slower.

Consistently with the results found in section 3.2,
the effects of the preconditioner are less visible with
higher α. On the left graph of fig. 4, the preconditioned

helps the convergence of CG a little, but not as much as
when α = 5e−6. Regarding splitting solvers, the results
with or without preconditioning overlap.

3.3.2 Convergence vs. time

This subsection presents solvers’ results as implemented
on the embedded target GPU: the Jetson AGX Xavier.
The time spent on all implementations was roughly

equal. Splitting solvers’ implementation is relatively straight-
forward: all (Jacobi) or half (Red-Black GS) of the pix-
els are updated in parallel, in a “embarrassingly paral-
lel” fashion.

For the Conjugate-Gradient method, one difficulty
is to compute a vector’s norm. This operation is not
so well adapted to GPUs. Then, we leveraged the CUB

library (CUDA UnBound) for state-of-the-art GPU re-
duction performance. We, moreover, took extra care to
keep all intermediate results on GPU to avoid expensive

latency in CPU-GPU communication.
Figure 5 shows convergence timings for different sol-

vers on GPU until they reach a runtime of 200ms. Glob-
ally, the curves follow the same trend as fig. 4 and the

order of the curves is respected. Splitting solvers are,
however, catching up with CG’s performance.

With a low alpha (left-hand side), Jacobi and Red-

Black GS are faster than CG in the very first iterations
and stay close to CG’s performance for a longer time.

Optical Flow on Jetson Xavier 7

0 100 200

Time (ms)

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
d

is
ta

n
ce

to
b

es
t

en
er

g
y

α = 5.0e− 03

Solver type

CG

Jacobi

Red-Black GS

Preconditioner

None

Diagonals

0 100 200

Time (ms)

10−10

10−8

10−6

10−4

10−2

100
α = 5.0e− 06

Fig. 5: Convergence vs. time on a Jetson AGX Xavier.
Parameters are the same as on fig. 4.

With a high alpha (right-hand side), all preconditioned

methods are on par.

An important finding of the benchmark is that the
Conjugate-Gradient method is sensitive to numerical
precision. On the right-hand side graph of fig. 5, the
method diverges after about 100ms of compute. While

arithmetic is done in FP32 (IEEE 754 binary32) preci-
sion, we observed identical behavior in FP64 [17]. This
phenomenon also happened with α = 5.0e−3, after a

vast number of iterations, though. We attribute this di-
vergence to the sensitivity of the Conjugate-Gradient
method to its search direction.

For further optimization, Jacobi was chosen as it is
the simplest to implement, with adequate performance

and good numerical stability. As described later in the
article, it is also possible to fuse iterations of Jacobi.

4 Implementation-level approach

This section extends the analysis done in section 3. As a
starting point, the solver is now considered fixed. That

choice is possible thanks to the initial benchmark on
the actual target.

An initial implementation of the CLG method on
GPU is done, including the underlying solver and the
multi-scale strategy, as detailed in [11]. First, we find

sources of optimizations for the solver or elsewhere in
the method. Then, we analyze the effects of multi-scale
processing by measuring the performance of working on

a particular level and the computational cost of chang-
ing scale.

Input Jacobi Output
1

4

2

5

3

cudaMemcpy(..., cudaMemcpyDeviceToDevice)

In/Out Jacobi In/Out
1

4

2

3

Fig. 6: Two iterations of Jacobi without (top) and with
(bottom) buffer reuse.

4.1 Framework and optimizations

When optimizing the code, it is essential to follow a con-
sistent strategy. One must profile the application first

to find its main bottlenecks, then try to solve these
hotspots, and always check that the application pro-
vides the same results. On the Jetson AGX Xavier plat-

form, Nsight Systems and Nsight Compute are two NVIDIA-
provided tools that profile executions of programs.

The first one analyzes the whole system and pro-
vides CPU and GPU execution traces. This information

highlight which kernels would benefit the most from op-
timization.

The second one dives deeper into a single kernel
execution. It provides multiple metrics such as GPU
cores occupancy, bandwidth, or a roofline model plot.

These lower-level indicators facilitate the discovery of
bottlenecks within the kernel.

4.1.1 Optimizations’ overview

In this sub-section, we detail the different optimizations
that we added to our CLG GPU implementation. They

are presented in their order of importance: after each
optimization, a new hotspot is selected until speed gains
become marginal.

Buffer Reuse: this optimization acts on the Jacobi
solver. At the k-th iteration, the program needs one lo-

cation in memory for the input x(k) and one for the
output x(k+1). An initial approach is to fix the mem-
ory position of inputs and outputs. This strategy then

rely on a copy of the previous output to the current
iteration’s input: x(k) ← x(k−1). The memory opera-
tion can be avoided by changing the input and output

locations at each solver iteration, in a back-and-forth
fashion. Figure 6 illustrates this technique.

8 Seznec et al.

Jacobi Fusion: the Jacobi solver consumes a lot of
memory bandwidth: for each pixel, it fetches a neigh-
borhood of values to compute the Laplacian in addition
to coefficients from b. All this data is processed with

few operations: the solver is bandwidth limited. Our
solution is to combine the computation of several itera-
tions within a single kernel launch. This optimization is

probably the most important one so that section 4.1.2
extends its analysis.

Batched convolutions: the multi-scale processing
of CLG relies on up and down-sampling the image to
solve the problem at different scales. This change of res-

olution uses a Gaussian kernel convolution on images
to preserve the down-sampling for high-frequency arti-
facts. Rather than launching a CUDA kernel for each

convolution, we prefer to launch a single kernel that
performs convolutions on many images at once. This
means that the kernel launch overhead is limited and

that the Gaussian filter weights are loaded once and
reused for all images.

4.1.2 Fusing iterations of Jacobi

As mentioned previously, the main issue of the Jacobi

solver on GPU is its high demand for memory resources.
As is, the implementation saturates the VRAM band-
width, and GPU compute units are starving. To quan-

tify the phenomenon, let us introduce the arithmetic
intensity of a program defined by the ratio between
the number of floating-point operations (FLOPs) per-
formed by a computed unit over the number of bytes

moved to do these operations

AI =
FLOPs

Bytes loaded
. (29)

A low AI is symptomatic of over-used memory band-
width. Conversely, if AI is too high, the program re-
quests so many FLOPs that the compute units cannot
process them fast enough. Further analysis of the role

of AI on a program’s execution may be found in [21].

In our initial case, the CUDA kernel is programmed
to do a single Jacobi iteration. This approach is straight-
forward but has several limitations: it requires one ker-

nel launch per iteration so that the call overhead might
become an issue. Moreover, each iteration output is
written back to main memory, but this is not strictly

needed. Combining several iterations within the same
kernel would allow direct reuse of intermediate itera-
tions in addition to load coefficients of b only once.

Bottom fig. 7 exposes a fusion of two iterations of
Jacobi within a single kernel launch. Static parameters

are loaded once and serve for both iterations. The out-
put of the first Jacobi iteration is immediately reused

Parameters

x(k)

AI = 5
5+5

= 0.5

CUDA
Thread

x(k+1)

Parameters

x(k)

CUDA
Thread

AI = 5×5+5
5+13

≈ 1.7

x(k+1)

x(k+2)

Fig. 7: Top: an iteration of Jacobi for a single output.
Bottom: fusion of two Jacobi iterations. Arithmetic in-
tensity is given for reference only, assuming one opera-

tion per x(k).

for the second one. The two-iteration scheme requires
loading a larger neighborhood of x values to satisfy all

further dependencies.

Another important aspect of this implementation
is shared memory. In the CUDA model, GPU threads
are partitioned into Thread Blocks (TB). Threads of a
common TB are executed on a single processing unit,

the streaming multiprocessor, and have access to shared
memory. This location is used to share the coefficient of
x between GPU threads, leveraging the pixels’ neigh-

borhoods’ spatial redundancies.

For now, let us set the TB size to 32× 32. Initially,

each thread of the TB load one coefficient of x(k) from
the main memory to the shared memory. Then, threads
compute a first Jacobi iteration and wait for the TB

to have finished thanks to the synchronization primi-
tive syncthreads. With the x(k+1) coefficients being
computed, the TB computes the subsequent Jacobi it-

eration.

Let us now find the approximate value of AI based

on an implementation that fuses j iterations. At each
new iteration, the size of the computed area decreases
because of spatial dependencies. At the i-th iteration,

i ≤ j, the footprint’s size is (32 − 2i) × (32 − 2i). We
can now express AI as a function of j, the number of

Optical Flow on Jetson Xavier 9

2 4 6 8 10 12

Number of fused iterations

2

4

6

8

A
ri

th
m

et
ic

in
te

n
si

ty

AI (Raw)

AI (Compensated)

Fig. 8: Arithmetic intensity w.r.t. the number of fused
iterations.

fused iteration

AI(j) =
α
∑j
i=1(32− 2i)2

β(32× 32)
(30)

α is the number of FLOPs needed per pixel and per

iteration and β is the number of bytes to load per pixel.

While the AI expressed in eq. (30) increases with
j and then seems to benefit the implementation, it is
important to understand that the total FLOPs required

by the algorithm are not constant with j. A single non-
fused Jacobi needs

Wno fusion = αHW. (31)

operations. With H and W the dimensions on the pro-

cessed image. In comparison, in a j-fused implementa-
tion, each TB computes a patch of (32−2j)2 pixels. To
compute the entire image, we have

Wj-fusion = d H

32− 2j
ed W

32− 2j
eα

j∑
i=1

(32− 2i)2. (32)

Some operations are redundant with the fused itera-
tions technique to handle patch borders and avoid inter-
TB communication.

The ratio between Wj-fusion and j · Wno fusion ex-

presses the overhead of operations due to the fusion of
operations

Wj-fusion

jWno fusion
≈ 1

j(32− 2j)2

j∑
i=1

(32− 2i)2 (33)

Figure 8 shows the AI for different choices of j, the
number of fused iteration. The solid curve represents

the AI computed by the formula in eq. (30). The dashed
curve is arithmetic intensity divided by the compute
overhead, as expressed in eq. (33).

The raw AI is an increasing function of j: by look-

ing at this metric only, it would make sense to choose
j as large a possible to reduce the memory pressure.

Conversely, the refined metric, compensated AI, indi-
cates that because higher values of j induce too much
redundant work, it is better to choose j close to 5.

This study of the Jacobi iteration fusion has exhib-
ited the pros and cons of using many fused iterations.
While done in a theoretical setting, it should help to

analyze GPU execution performance.

4.2 Results

To measure the effects of the various optimizations pre-
sented in section 4.1.1, we have taken measurements on
two GPU cards. The first one, an NVIDIA Titan V, is

used in PCs and computing servers. We use it as the
baseline of our development process. The second one,
a Jetson AGX Xavier, is the actual target of our in-
dustrial application. After initial implementation and

verification on Titan V, we deploy on Xavier, and we
check if the optimization has the expected effect.

In our method, the optimizations’ order is guided
by results on the Jetson Xavier. For example, fig. 9
shows us that once the buffer reuse optimization is im-

plemented, the time spent in memory transfers is still
relatively high on Titan V but not on Xavier. Since we
ultimately focus on this embedded target, we will not

dwell on further optimization for memory transfers.

All the details about the hardware used for our ex-

periments are available on table 1.

Machine #1: desktop
Machine #2: embedded

(Jetson AGX Xavier)

OS Ubuntu 16.04 Ubuntu 18.04
Linux Kernel 4.15.0 4.9.140
CUDA 11.0 10.2
NVIDIA Driver 450 JetPack 4.4
CPU Intel i7-3820 8-core ARM 64bits
GPU Titan V (arch. 7.0) Xavier (arch. 7.2)
TDP ∼500W ∼30W

Table 1: Environments of the experiments.

Buffer Reuse: On the initial runtime bar of fig. 9,
we can see that a good part of the computation time

spent on GPU is dedicated to memory transfers. The
effects of the buffer reuse optimization are pretty dif-
ferent depending on the platform.

On Jetson Xavier, we can see that the time spent
in memory operations goes from about 3ms to 0.5ms.
The remaining memory time is spent uploading the in-

put images and downloading the output flow. A fur-
ther optimization could lead to marginal gains by using
Unified Memory. This makes buffer transfers with zero-

copy, because the GPU and the CPU share the same
memory.

10 Seznec et al.

0 1 2 3

Execution time (ms)

+ Batch convs.

+ Fused Jacobi (3)

+ Buffer Reuse

Base

Incremental optimisations on Titan V

Memory

Jacobi

Convolutions

Others

0 5 10 15

Execution time (ms)

+ Batch convs.

+ Fused Jacobi (3)

+ Buffer Reuse

Base

Incremental optimisations on Jetson Xavier

Memory

Jacobi

Convolutions

Others

Fig. 9: Effects of cumulative optimizations on Titan V

(top) and Jetson Xavier (bottom).

100 101

Arithmetic Intensity

10−1

100

101

102

T
F

L
O

P
/

s Global Memory

Double precision max. FLOP/s

Single precision max. FLOP/s

1 2
3 4 5 6

7
8

9
10

11
12

1
2

3
4 5 6 7 8 9 10 11 12

Jacobi FP32

Jacobi FP32 (compensated FLOP/s)

Jacobi FP64

Jacobi FP64 (compensated FLOP/s)

Fig. 10: A roofline model analysis of Jacobi iteration

fusion on Titan V.

On Titan V, we can see that those memory opera-
tions still require a lot of time (∼33% of the computa-

tion time). This is explained by the fact that the CPU
and GPU memory are disjoint, so it takes more time
(proportionally to the power of the machine) to trans-

fer the inputs and outputs.

Jacobi Fusion: tests shown on figs. 10 and 11 eval-

uates the performance of different number of fused Ja-
cobi iterations, as explained in section 4.1.2. Figure 10
plots the achieved TFLOP/s (Tera Floating-Point Op-

erations per second) with respect to the measured arith-
metic intensity. This figure first shows that, for Titan

1 2 3 4 5 6 7 8 9 10 11 12

Number of fused iterations

1.0

1.5

2.0

2.5

S
p

ee
d

u
p

Single precision Jacobi

Double precision Jacobi

Fig. 11: Speedup vs. number of fused iterations on Titan
V.

V, the FP64 machine balance is reached for an AI of

10, while 20 is needed for FP32 operations. This value
exposes the minimum number of operations per byte
to compute to benefit from maximal hardware perfor-

mance.

Without any fusion, it is clear that both FP32 and
FP64 implementations are bandwidth-limited. As ex-
pected, the arithmetic intensity of increases with the

number of fused iterations. With an ideal execution, the
points should appear close to the roofline. Here, after
few fusions, it is clear that the progression stalls. While
the FLOP/s continue to increase, this growth is not

sufficient to stay close to the roofline. We explain this
behavior by the low number of active threads within a
TB. At each new fused iteration, the size of the region

of interest of a TB decreases, then, more of its threads
are idle.

Comparing raw performance on fig. 10 is complex.
The FLOP/s metric, given by Nvidia Nsight Compute,

directly measures the activity of computing units. As
explained in section 4.1.2, some computations are re-
dundant from the method point-of-view. To correct the
FLOP/s metric, we divide it by the work overhead de-

fined in eq. (33). This compensated curve draws a dif-
ferent conclusion than the initial one. For example, in
FP32, the raw FLOP/s is highest for nine fused iter-

ations. In the compensated model, the best fusion is
lower: around three iterations.

This difference highlight a drawback of the analysis
based on the roofline model only. When the total num-

ber of operations changes from one implementation to
another, the acheived FLOP/s is not comparable. In
our case, fig. 11 is more straightforward: it shows the

execution time gain for different numbers of fused iter-
ations.

The maximum performance is achieved with seven
fused iterations in FP32 and five in FP64. These results

tend to confirm the analysis of the compensated roofline
model made on fig. 10.

Optical Flow on Jetson Xavier 11

0.0 0.5 1.0 1.5 2.0 2.5

Time (ms)

1

2

3

4

5

6

P
yr

am
id

le
ve

l

15 Jacobi iterations

Level change overhead

Fig. 12: Time to reach a new pyramid level and perform
15 Jacobi iterations on that level. Infered from timing
measurements.

We now choose a value of three fused iterations in
FP32 for two reasons: it achieves good speedup both in

FP32 and FP64 precisions, and it is more convenient
to have a total number of iterations that is a multiple
of three, than seven, for example. On fig. 9, the time
spend for Jacobi iterations is almost divided by three

on Titan V and about by two on Jetson Xavier. The
additional speedup, especially on Titan V, is explained
by reducing kernel launch overhead.

Batched convolutions: after optimizing the Ja-
cobi solver, fig. 9 shows that on Jetson Xavier, almost
half of the runtime is spent doing convolutions. As ex-

plained in section 4.1, convolutions have been re-expressed
to be run in a single CUDA function. Instead of launch-
ing a kernel per convolution, the batch computation

reduces the overhead and lets the convolution filter’s
coefficients in the CUDA thread registers. This makes
the runtime of convolutions decrease by a factor of two
on Xavier.

4.3 Execution model and method configuration

As detailed in [4], multi-level processing aims at find-
ing optical flows at different scales of the problem. The
technique is helpful for finding large displacement and

for iterating quickly on higher levels due to the reduced
problem size. Consequently, we measure the actual per-
formance of our GPU implementation on the different

sub-sampled problems. Those results should guide de-
cisions back at the algorithm level. With a 60 FPS real-
time constraint, we estimate the number of possible it-
erations during that time. This information makes a

more educated choice of the hyper-parameters possible
by knowing how precisely the model converges within
the limited time frame.

Figure 12 presents results for the multi-scale CLG
optical flow. At the first level, the flow resolution is the
same as the image’s one. For each subsequent level, the

problem is down-sampled by a factor of two. The graph

Iterations per level:
{75, 75, 75, 75}

Iterations per level:
{60, 120, 180, 240}

Fig. 13: Results on 640 × 512 images at 60 FPS. Doing
more iterations at higher levels converges faster.

reports the time needed for reaching a higher scale as

well as fifteen Jacobi iterations on this level.

Level changes and Jacobi iterations have an ideal

speedup of 4× at each higher level because of the lower
number of pixels to process. In reality, gains are not
optimal: even if levels 1-2-3 see consequent runtime re-

duction, higher scales stagnate. This is the consequence
of the GPU not being in a throughput-limited regime.
There is not enough parallelism with low-resolution im-

ages to use all cores; the GPU latency then limits the
runtime. In light of these results, it seems interesting to
benefit from the speedups at levels 3-4 and restrict the
first levels use to a minimum.

On fig. 13, the optical flow for two choices of param-
eters is displayed. The left-hand flow was obtained by

doing 75 iterations at each level. The right-hand flow
sets 60 iterations at the finest level and 120, 180, and
240 iterations at the higher ones. While both configu-

rations run at the same speed, 60 FPS on the Jetson
Xavier with 640 × 512 images, the configuration using
more iterations on the higher levels seems smoother. It
has converged more on less textured regions and seems

better for practical use.

5 Conclusion

This article has shown the interest in combining anal-
yses at the algorithm and implementation levels to ob-
tain the best performance.

Initially, we pre-selected candidate GPU solvers for
a subsequent GPU optimization. This first analysis also

provided an understanding of the hyper-parameters on
the convergence speed. Then, the multi-scale CLG algo-
rithm was ported on the embedded Jetson AGX Xavier

GPU. Several optimizations have enhanced the algo-
rithm’s run time: re-utilization of intermediate Jacobi
buffers, solver iteration fusion and batching of convo-
lution. Overall, these techniques decreased the runtime

of the algorithm by more than 2×.

12 Seznec et al.

The multi-scale behavior of the method has also
been studied. Results have shown that higher levels are
processed faster but that the speedup plateaus for im-
ages smaller than 80 × 64. This result allowed us to

choose the right parameters for the best possible con-
vergence within a limited time frame.

In the end, our GPU implementation of the CLG

optical flow method runs at 60 frames per second on
640× 512 images with a 30W power budget. Moreover,
we were able to tweak the hyper-parameters and multi-

scale behavior to converge quickly.

References

1. Aliaga, J.I., Pérez, J., Quintana-Ort́ı, E.S.: Systematic
Fusion of CUDA Kernels for Iterative Sparse Linear Sys-
tem Solvers. In: J.L. Träff, S. Hunold, F. Versaci (eds.)
Euro-Par 2015: Parallel Processing, Lecture Notes in
Computer Science, pp. 675–686. Springer, Berlin, Hei-
delberg (2015). doi: 10.1007/978-3-662-48096-0_52

2. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black,
M.J., Szeliski, R.: A Database and Evaluation Method-
ology for Optical Flow. International Journal of
Computer Vision 92(1), 1–31 (2011). doi: 10.1007/

s11263-010-0390-2

3. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High
Accuracy Optical Flow Estimation Based on a Theory
for Warping. In: T. Kanade, J. Kittler, J.M. Kleinberg,
F. Mattern, J.C. Mitchell, O. Nierstrasz, C. Pandu Ran-
gan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar,
M.Y. Vardi, G. Weikum, T. Pajdla, J. Matas (eds.)
Computer Vision - ECCV 2004, vol. 3024, pp. 25–36.
Springer Berlin Heidelberg, Berlin, Heidelberg (2004).
doi: 10.1007/978-3-540-24673-2_3

4. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade
Meets Horn/Schunck: Combining Local and Global Optic
Flow Methods. International Journal of Computer Vision
61(3), 1–21 (2005). doi: 10.1023/B:VISI.0000045324.

43199.43

5. Capito, L., Ozguner, U., Redmill, K.: Optical Flow based
Visual Potential Field for Autonomous Driving. In: 2020
IEEE Intelligent Vehicles Symposium (IV), pp. 885–891
(2020). doi: 10.1109/IV47402.2020.9304777

6. Ding, N., Williams, S.: An Instruction Roofline Model
for GPUs. In: 2019 IEEE/ACM Performance Model-
ing, Benchmarking and Simulation of High Performance
Computer Systems (PMBS), pp. 7–18 (2019). doi:
10.1109/PMBS49563.2019.00007

7. Dougherty, L., Asmuth, J.C., Gefter, W.B.: Alignment of
CT Lung Volumes with an Optical Flow Method. Aca-
demic Radiology 10(3), 249–254 (2003). doi: 10.1016/
S1076-6332(03)80098-3

8. Farnebäck, G.: Two-Frame Motion Estimation Based on
Polynomial Expansion. In: J. Bigun, T. Gustavsson (eds.)
Image Analysis, Lecture Notes in Computer Science, pp.
363–370. Springer, Berlin, Heidelberg (2003). doi: 10.

1007/3-540-45103-X_50

9. Filipovič, J., Madzin, M., Fousek, J., Matyska, L.: Opti-
mizing CUDA Code By Kernel Fusion—Application on
BLAS. The Journal of Supercomputing 71(10), 3934–
3957 (2015). doi: 10.1007/s11227-015-1483-z

10. Horn, B.K.P., Schunck, B.G.: Determining optical flow.
Artificial Intelligence 17(1), 185–203 (1981). doi: 10.

1016/0004-3702(81)90024-2

11. Jara-Wilde, J., Cerda, M., Delpiano, J., Härtel, S.: An
Implementation of Combined Local-Global Optical Flow.
Image Processing On Line 5, 139–158 (2015). doi: 10.
5201/ipol.2015.44

12. Lucas, B.D., Kanade, T.: An Iterative Image Registra-
tion Technique with an Application to Stereo Vision. In:
Proceedings of the 7th International Joint Conference on
Artificial Intelligence - Volume 2, IJCAI’81, pp. 674–679.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA (1981)

13. McGuire, K., de Croon, G., De Wagter, C., Tuyls, K.,
Kappen, H.: Efficient Optical Flow and Stereo Vision for
Velocity Estimation and Obstacle Avoidance on an Au-
tonomous Pocket Drone. IEEE Robotics and Automation
Letters 2(2), 1070–1076 (2017). doi: 10.1109/LRA.2017.
2658940

14. Moussu, C.: GPU based real-time optical Flow computa-
tion. Tech. rep., Imperial College London (2010)

15. Nguyen, M.T., Castonguay, P., Laurendeau, E.: GPU
parallelization of multigrid RANS solver for three-
dimensional aerodynamic simulations on multiblock
grids. The Journal of Supercomputing 75(5), 2562–2583
(2019). doi: 10.1007/s11227-018-2653-6

16. Saad, Y.: Iterative Methods for Sparse Linear Systems.
SIAM (2003)

17. Seznec, M., Gac, N., Orieux, F., Naik, A.S.: An
Efficiency-Driven Approach For Real-Time Optical Flow
Processing On Parallel Hardware. In: 2020 IEEE Interna-
tional Conference on Image Processing (ICIP), pp. 3055–
3059 (2020). doi: 10.1109/ICIP40778.2020.9191164

18. Shewchuk, J.R.: An Introduction to the Conjugate Gra-
dient Method without the Agonizing Pain. Carnegie-
Mellon University. Department of Computer Science
(1994)

19. Sun, D., Roth, S., Black, M.J.: A Quantitative Anal-
ysis of Current Practices in Optical Flow Estimation
and the Principles Behind Them. International Jour-
nal of Computer Vision 106(2), 115–137 (2014). doi:
10.1007/s11263-013-0644-x

20. Tabik, S., Ortega, G., Garzón, E.M.: Performance evalu-
ation of kernel fusion BLAS routines on the GPU: Itera-
tive solvers as case study. The Journal of Supercomputing
70(2), 577–587 (2014). doi: 10.1007/s11227-014-1102-4

21. Williams, S.W.: Auto-tuning performance on multicore
computers. Ph.D. thesis, University of California at
Berkeley, USA (2008)

22. Zach, C., Pock, T., Bischof, H.: A Duality Based Ap-
proach for Realtime TV-L 1 Optical Flow. In: F.A.
Hamprecht, C. Schnörr, B. Jähne (eds.) Pattern Recog-
nition, vol. 4713, pp. 214–223. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2007). doi: 10.1007/

978-3-540-74936-3_22

Chapter 3. Implementation strategy for variational optical flow estimation 73

3.2 Conclusion
The work on the second and third stages of the deployment strategy for the optical
flow has made possible a real-time implementation on a embedded GPU. First, the
algorithm/hardware phase consisted in a benchmark of several solvers and the in-
fluence of the hyper-parameters on the convergence speed. This initial comparison
allowed us to select an efficient method on GPU.

Then, the GPU optimization work has tested several strategies such as kernel
batching, iteration fusion and buffer re-utilization to speed up the implementation
by a factor of two.

Finally, the optical flow estimation algorithm runs on an embedded GPU,
the Nvidia Xavier, at 60 frames per second. This processing is real-time and
embeddable in power-constrained situations. We have also established a run-time
model to analyze the effect of the multi-scale processing. With it, it is easier to
choose a suitable configuration in terms of iterations per level.

Chapter 4
Towards real-time optical flow with DNNs

Artificial Neural Networks (ANNs) have played a major role in the Machine Learn-
ing (ML) domain, an important part of Artificial Intelligence (AI) (Lecun, 1985).
For image processing tasks, Convolutional Neural Network (CNNs) is the most
popular ANN model. CNNs draw their inspiration from biological neurons, and
the association of convolution filters and activation functions, also called a layer,
emulates brain cells’ behavior (Kietzmann et al., 2019).

The term deep neural network (DNN) finds its origin in modern networks that
stack many layers to overpass traditional algorithms’ results, including for optical
flow estimation (Ilg et al., 2017; OMahony et al., 2020). The performance of
CNNs has, for example, augmented the resilience and autonomy of drones, and
these networks are now a critical factor in adapting a system to rapid changes in
the environment and operational needs (Doll & Schiller, 2019; Ferrari, 2019; Parly,
2019). Embedding CNN processing close to sensors is thus a definitive advantage in
conflict zones and urban areas where telecommunication jamming is predominant.
The offloading of AI analysis to cloud-based systems is indeed impossible, as all
communications are blocked.

In these conditions, embedded systems are crucial assets but limited by SWaP
(Size, Weight, and Power) constraints. On the other side, DNNs require massive
computing power and have a large memory footprint. Their integration is then
a challenging task. In this chapter, the research work we present is part of the
CALYPSO expertise platform, currently being developed at Thales Research &
Technology. CALYPSO englobes algorithm development for artificial intelligence
(AI), software stacks for optimized code generation, and neuromorphic hardware
expertise for more efficient AI processing at the edge. Its objective is to master the
complete toolchain from algorithm development (with the industrial use-case in
mind) through an optimized software stack dedicated to embedded systems down
to hardware-specific code generation for energy and power-efficient execution on

Chapter 4. Towards real-time optical flow with DNNs 76

the targeted embedded processors. In other terms, CALYPSO’s expertise targets
the algorithm/implementation and performance loop phases that we presented in
fig. 1.2 to exploit the full capabilities offered by embedded hardware platforms.

In our work, we use this deployment strategy to implement PWC-Net (Pyra-
mid, Warping, and Cost Volume Network) (Sun et al., 2018b) , an optical flow
estimation DNN, on the embedded Jetson AGX Xavier. After several optimiza-
tions, such as the use of shared memory for a correlation operation and using fp16
arithmetic, we attain near real-time on the energy-efficient platform. Then, at the
algorithm/implementation level, we design an architecture derived from PWC-Net
that leverages MobileNetV2 (Sandler et al., 2018), which was created for low-end
hardware platforms.

The chapter starts with section 4.1 that gives an overview of current work
in the field of deep convolutional networks. First, our analysis targets architec-
tures designed for the estimation of optical flow. Then, it tackles strategies used
for the development and deployment of neural networks on embedded targets.
Then, implementation of PWC-Net on the Jetson AGX Xavier is analyzed in sec-
tion 4.2 and shows that it achieves high performance on this embedded platform.
Section 4.3 presents MobileFlow, a new network architecture designed for more
efficient processing. Our work’s novelty lies in this lightweight architecture that
combines PWC-Net and MobileNetV2, leverages transfer learning, and re-designs
flow estimation layers. Section 4.4 concludes this chapter and discuss possible
perspectives.

4.1 State of the art

This review begins with an introduction to CNNs with Alexnet (Krizhevsky et
al., 2012), which classifies images according to the object present in the picture.
Then, the survey is extended to optical flow estimation networks, such as PWC-
Net (Sun et al., 2018b), and their specificities in terms of architecture and training
procedures.

These DNNs are usually computationally heavy. Consequently, techniques at
the implementation and design levels have been developed to allow execution on
constrained platforms. Section 4.1.2 explains, for example, the advantages of run-
ning a network with reduced precision and also why depth-separable convolutions
present in MobileNet are an asset for efficient processing.

Chapter 4. Towards real-time optical flow with DNNs 77

Figure 4.1: The Alexnet CNN architecture that won the ImageNet classification
challenge. The first five layers are a grouping of convolution, activation and max
pooling. This generates features for the input image that are discriminated by two
dense layers to assign probabilites to a thousand classes. Credits: Adam Geitgey.

4.1.1 Optical flow estimation via DNNs

Convolutional Neural Networks for classification

Convolutional neural networks have reached considerable popularity since the
demonstration by Krizhevsky et al., 2012 that they outperform traditional im-
age classification methods on the ImageNet dataset (Deng et al., 2009). The core
idea of CNNs is to apply successive convolution filters and activation functions
on an input image. This series of operations generate three-dimensional tensors,
called feature maps. Then, a linear classifier combines this computed coefficient to
assign probabilities to recognized objects in the image. Figure 4.1 illustrates the
architecture used by Alexnet. The first operation is a convolution with a 11× 11
kernel and a stride of four, which generates a tensor with a lower resolution than
the image. At the end of the network, dense layers are matrix multiplications, and
the final output is a vector of size 1000 that corresponds to the probabilities of the
recognizable classes.

This type of network is often trained in a supervised setting. For image clas-
sification, that means having a collection of images and their corresponding label,
like a dog or a car. The training procedure consists in presenting a picture to
the network and collect its output probabilities. Then, a loss function determines
the error between the CNN’s result and the correct classification. Ultimately,
the goal is to minimize this loss function over the entire training dataset. For
that, one can differentiate the loss and perform gradient descent. With the back-
propagation (Rumelhart et al., 1986), the learnable weights of the network are
then adapted to provide correct results.

Chapter 4. Towards real-time optical flow with DNNs 78

Towards optical flow estimation with CNNs

As is, these image classification networks can already be used for optical flow
estimation. The high-level features they learn may serve as the data term of
traditional optimization approaches. For example, the general Equation (1.9),
presented in section 1.1.2, can use CNN features’ conservation for D. This method
has the advantage of leveraging higher-level features of the image, with semantic
information, rather than just pixels’ values (Bai et al., 2016).

The integration of CNNs can go one step further with direct neural optical
flow estimation Dosovitskiy et al., 2015. This pioneer architecture, Flownet, as
presented in fig. 4.2, is entirely based on CNNs. The network outputs per-pixel
results, just like Long et al., 2015 did for image segmentation. In details, two archi-
tectures were originally proposed by Dosovitskiy et al., FlownetS and FlownetC.
They differ in how they handle images at the beginning of the network. The first
concatenates the image pair to form one single tensor fed into a fully convolutional
network. The second handles both images separately initially and computes cor-
relations between features computed for the two. This network uses a multi-scale
processing, and the tensors’ spatial dimensions are first reduced. Some features
are stored in memory to be used later during the “refinement” step that generates
optical flow prediction. This time, the first prediction is at the smallest resolution
level, and larger flows are iteratively generated, see fig. 4.3.

An optical flow-specific layer, the feature correlation

The correlation operation serves at finding features that are identical, or close to
each-other, in the two input images. Even if results of (Dosovitskiy et al., 2015)
showed that FlowNetSimple was better, correlations have been successfully used
in other networks (Ilg et al., 2017; Sun et al., 2018b). Given two tensors F1 and
F2 of identical size (H, W, C) the correlation between F1 at coordinates (y1, x1),
F2 at coordinates (y2, x2) is defined as

c(y1, x1, y2, x2) =
∑︂

(x, y)∈ [−k,k]2

⟨F1(y1 + y, x1 + x), F2(y2 + y, x2 + x)⟩. (4.1)

This expression uses vector products of slices of F1 and F2. The outer sum over a
neighborhood defined by k serves for averaging and regularization. The correlation
c is a measure of how close features from F1 and F2 are from each other. In terms
of optical flow, if c(y1, x1, y2, x2) is high, it means that pixel (y1, x1) has probably
“moved” from coordinates (y1, x1) to (y2, x2) between the two tensors.

The global displacement features tensor C, of size (H, W, H ′, W ′) is a collec-
tion of coordinates correlation. Given (y, x), the slice C(y, x) holds correlations
of F1(y, x) with points in F2, in a neighborhood of size (H ′, W ′) around (y, x),

Chapter 4. Towards real-time optical flow with DNNs 79

Figure 4.2: The two DNN architectures for optical flow introduced by Dosovitskiy
et al., 2015. Top, FlownetS, which stacks two images to form the input, then
generates features via convolutions, and finally aggregates results of different layers
to generate the flow. Bottom, FlownetC, replaces the start of the network with
two siamese (which share the same weights) CNNs that operate on the two images
independently. Features of both images are then combined with a correlation
operation.

Figure 4.3: Zoom on the refinement module presented in fig. 4.2. Its uses previous
feature tensors to generate increasingly larger flow estimations. From (Dosovitskiy
et al., 2015).

Chapter 4. Towards real-time optical flow with DNNs 80

such that

C(y, x, y′, x′) = c(y, x, y + y′ − ⌊H
′

2
⌋, x+ x′ − ⌊W

′

2
⌋). (4.2)

For convenience with other operations in the network, the last two dimensions of
the 4D tensor C are often flattened to create a tensor C′ of size (H, W, H ′×W ′).

Training procedures

During training, FlowNet uses a specially crafted synthetic dataset (Dosovitskiy
et al., 2015). The images represent 3D models of chairs “flying” over a static
background. Because image pairs are computer-generated, it is possible to know
the ground-truth optical flow. With more than 20,000 optical flow examples, this
dataset is beneficial for the initial training of the network. A common second step
consists of using another dataset, such as KITTI or Sintel, to fine-tune the network
to specific examples. The underlying assumption is that the network learns how
to generate optical flow with many examples of FlyingChairs. Only a few data are
required to specialize the flow estimation for specific situations.

The total number of examples seen during training can be chosen according to
different schedules, defined in (Ilg et al., 2017). For example, the long schedule
uses 1.2M iterations of eight examples per mini-batch. It also defines the learning
rate, starting at 1× 10−4 and halving it after 400k, 600k, 800k and 1M iterations.

The size of the dataset can also be artificially increased thanks to augmentation
procedures. Flipping an image pair along the vertical axis, for example, produces
a new sample, but the ground-truth flow must be modified to account for this
transformation. More generally, a linear image transformation, combining rota-
tion, translation, shear, and zoom, can be used (Pinard, 2017, January 27/2021).
The choice of the input image’s dimensions is also sensitive, and depending on the
cropping strategy, the training may be improved (Bar-Haim & Wolf, 2020).

Other DNN architectures for optical flow

FlowNet2 (Ilg et al., 2017) is the direct descendant of FlowNet. It employs
FlowNetS and FlowNetC as sub-modules to find small and large displacements
between the two images, achieves better results, but is longer to train and process
images.

The SPyNet (Spatial Pyramid Network), presented in (Ranjan & Black, 2017),
uses a multi-scale architecture that resembles the classic optical flow scheme, as
shown previously on fig. 1.8. The input image pair is successively downscaled to
form a pyramid of images. A CNN uses current images and flow estimation of the
previous level to warp the image and find residual flow for each pyramid level. The

Chapter 4. Towards real-time optical flow with DNNs 81

Figure 4.4: Left, the usual multi-scale processing for optical flow. Replacing the
Energy Minimization step with a neural network would resut in SPyNet’s ap-
proach (Ranjan & Black, 2017). Right, PWC-Net operates on CNN features di-
rectly and uses the correlation operator (Cost Volume Layer) defined in Flownet.
From (Sun et al., 2018b).

fact that this architecture incorporates optical flow-specific design choices results
in a 96% reduction in the number of weights needed by the network, compared to
FlowNet, and attains similar results.

PWC-Net, which we use later in our work, can be thought of as an extension of
SPyNet. Instead of operating on a pyramid of “raw” images, it uses a pyramid of
learned features, like presented on fig. 4.4 (Sun et al., 2018b). It allows the network
to learn higher-level features of the image and outperforms SPyNet and FlownetS.
The same authors presented in (Sun et al., 2018a) a better way of training optical
flow networks. They change the data augmentation scheme and the learning rate
schedule to increase PWC-Net’s accuracy by 11% and FlownetC’s by 56%.

The PWC-Net network has since been re-used in (Bar-Haim & Wolf, 2020) to
introduce new techniques at the learning stage to increase even more the perfor-
mance of the network. In (P. Liu et al., 2019), self-supervised learning of optical
flow is studied with PWC-Net. At the training stage, no “ground-truth” flow is
present, but the network seeks to minimize a photometric loss between the two
images after a warp by the resulting flow. PWC-Net also serves in (Zhao et al.,
2020) for joint estimation of optical flow and occlusion mask. Concurrently, the
LiteFlowNet architectures (Hui & Loy, 2020; Hui et al., 2018; Hui et al., 2020) use
a similar approach as PWC-Net but add a regularization module on each level of
the pyramid.

A comparison in terms of performance of several architectures and techniques of
deep-learning estimation of optical flow has been made by (Hur & Roth, 2020). It
gathers results on the Sintel final dataset and shows that FlowNetS and FlowNetC
attain, respectively, an EPE of 7.2 and 7.9. PWC-Net reduces the error down to 5.0
while LiteFlownet achieves 5.4. These results show the progress made by optical
flow CNN architectures at being more precise while being relatively lightweight.

Chapter 4. Towards real-time optical flow with DNNs 82

4.1.2 Real-time strategies for DNNs
Deep neural networks tend to be computationally heavy and demand a large
amount of memory space for execution. Their implementation on constrained
and embedded platforms is complex, and real-time processing requires some tech-
niques to lighten the network (Han et al., 2016). In this section, we review two
different approaches that can be combined. First, starting from an existing trained
network and modify the way it executes to increase efficiency. Then, designing a
DNN from scratch by using layers dedicated to low-end platforms.

Optimizing an existing network

Weight pruning removes useless connections in a network. For example, weights
with low magnitudes are discarded, and their operations no longer need to be com-
puted. The near-zero values of these weights show that the associated connections
do not participate significantly in the result of the network. After removing these
weights, it is essential to re-train the pruned network for better accuracy. This
technique is particularly effective on fully connected layers, where more than 90%
of the weights can be discarded with almost no impact on accuracy (Han et al.,
2015). This reduction has an immediate effect on the memory footprint of the
network. Speed-up gains are, however, not automatic, as the platform must take
advantage of the now sparse operations (Yao et al., 2019).

Another widely used technique is weight compression. Networks are usually
trained with fp32 arithmetic. Reducing it to fp16 numbers or even fixed-point
numbers with eight or fewer bits of accuracy compresses both the model and the
feature maps. It accelerates the execution by reducing the memory bandwidth and
leveraging low-precision hardware units (Han et al., 2016).

The use of 16-bit floating-point numbers is usually the first step towards reduc-
ing the model’s weight. binary16 is sometimes prefered, because it has the same
representation range as fp32 but offers lower precision (see fig. 1.15). IEEE fp16
is challenging to handle, especially with near-zero fp32 numbers that cannot be
represented in this format. This problem can be handled by scaling the operations,
so the results are in the representable range of fp16 (Micikevicius et al., 2018).

Using fixed-point arithmetic is the next challenge after floating-point size re-
duction. Once the network has been trained, a standard method for quantizing
the weights is to perform inference with representative dataset examples. Then,
collect the activation values at each layer to determine the range to represent with
fixed-point numbers. Fixed-point quantification can provide good performance
while maintaining accuracy and even outperform floating-point networks (Lin et
al., 2016).

Pruning, weight reduction and other platform-specific optimization can be done

Chapter 4. Towards real-time optical flow with DNNs 83

by automatic tools such as TensorRT (Vanholder, 2016), TVM (Chen et al., 2018),
or N2D2 (Bichler et al., 2017). Starting from a graph representation of the neu-
ral network, in formats such as Pytorch, Tensorflow, or ONNX, those toolchains
attempt to perform optimizations that lead to efficient deployment on the target
platform: GPU, FPGA, or mobile CPU. A GPU-specific optimization is, for ex-
ample, to merge several network operations into one function. The interest is to
keep intermediate values in registers and re-use them as much as possible instead
of going back and forth in the main memory.

Designing an efficient network

The other strategy employed for high-performance neural networks is to design
them directly with embedded platform deployment in mind. This resulting ar-
chitecture can also benefits from the optimizations we introduced previously for
optimal performance. Efficient designs take place at two levels: micro and macro
architectures. The micro-level chooses an efficient operation or module that is
repeated throughout the network. The choice of how to arrange and connect the
modules constitutes the macro-level.

For Squeezenet, Iandola et al., 2016 modify Alexnet’s architecture to remove
traditional 3× 3 convolution kernels. In fact, to transform a layer map F1 of size
(C1, H, W) to F2, of size (C2, H, W), requires the learning of

Wbase = C1 × C2 × 3× 3 (4.3)

weights. Reducing the extent of convolutions from 3×3 to 1×1 divides the number
of weights to learn by 9. A reduction of the convolution’s radius also diminishes
the receptive field of the layer. Squeezenet then employs an hybrid strategy to
reduce the number of features on which the 3 × 3 convolution operates. Starting
from F1, it applies a 1 × 1 convolution to generate F

′
1, of size (C

′
1, H, W) with

C
′
1 < C1. It concludes with a 3 × 3 convolution to go from F

′
1 to F2. The total

number of weights is now

Wopt = C1 × C
′

1 × 1× 1 + C
′

1 × C2 × 3× 3. (4.4)

By comparison with the initial number of weight needed, the weight ratio is

Wopt

Wbase
=

C1C
′
1 + 9C

′
1C2

9C1C2

=
C

′
1

9C2

+
C

′
1

C1

. (4.5)

This fraction shows that when choosing small values for C ′
1, the number of weights

decreases.
This strategy, applied by (Iandola et al., 2016), is the foundation of the micro-

architectural Fire module. With it, they reduce Alexnet’s number of parameters
by 50× and achieve similar results.

Chapter 4. Towards real-time optical flow with DNNs 84

C × 3× 3 convolution

1× 3× 3 convolution
(broadcast)

C × 1× 1 convolution

+

Figure 4.5: Difference between a traditional 3×3 convolution and a separable one.
On top, the regular filter’s size is C× 3× 3. On the bottom, using first a 1× 3× 3
filter, applied on the C layers, then performing a C × 1 × 1 convolution reduces
the number of weights needed.

The Mobilenet architectures are based on a quite similar idea with separable
convolutions (Howard et al., 2017). Once again, the idea is to limit the use of
traditional 3 × 3 convolutions. Separable convolution first applies a 3 × 3 filter,
constant for all input layers. Then, a 1 × 1 convolution is applied, as explained
on fig. 4.5. At the macro-architecture level, Mobilenets are generated based on
a coefficient α that impacts the depth of the layers in the network. With this
parameter, it is easy to limit the network size, depending on the run-time platform.
Figure 4.6 shows the results of Mobilenets depending on the size of the networks.
In our work, we try Mobilenets, with different sizes, as feature extractors.

In a follow-up paper, Sandler et al., 2018 employ the so-called inverted-residual
modules. Compared to the original Mobilenet module, they change the layers
where the activation function is applied. They also introduce skip-connections
between layers with a few channels.

Shufflenet is another efficient architecture that bases its design on group con-
volutions. This function splits a feature tensor into several parts and applies
convolutions to them independently. Group convolution reduces the number of
operations to do and the number of weights to learn (Zhang et al., 2018).

All this design effort for lightweight and fast classification neural networks
has been re-used for per-pixel output architectures (Briot et al., 2018). For ex-
ample, Shufflenet has been utilized by Gamal et al., 2018 as the backbone of a
semantic segmentation network, or Mobilenet by Ghosh et al., 2019. At the outer-
architecture level, a particular focus for pixel-wise-output networks is the image
resolution and where to downsample it. Having smaller tensors to handle is com-

Chapter 4. Towards real-time optical flow with DNNs 85

Figure 4.6: MobileNets’ accuracy results with different choices of α. Higher is
better. Note the log-linear relation between the number of mult-adds and the
attained accuracy on Imagenet classification. From (Howard et al., 2017).

putationally efficient but also results in a loss of accuracy. With BiSeNet, Yu et al.,
2018 create two paths in the network. One is used for context information and is
downscaled early, and the other is focused on details and has a finer resolution but
shallower.

More recently, methods have emerged for automatic neural architecture search
(NAS). The first solution uses evolutionary algorithms or reinforcement learning
techniques that test many networks to find the optimal one. This search method
is costly. For example, Zoph et al., 2018 attain state-of-the-art results, but at the
cost of searching the architecture for 2000 GPU days. Conversely, differentiable
methods need less computational power to find a solution. For that, they define a
large, directed acyclic graph. Nodes represent operations, such as a convolution,
and edges are the network’s connections. Every edge is assigned a weight that
represents its contribution to the network. The NAS then consists in finding
optimal edges’ weight, via a gradient descent (C. Liu et al., 2019; Yan et al., 2020).
Hybrid strategies also exist to optimize non-differentiable criteria in reasonable
time (Vahdat et al., 2020).

4.2 Deploying PWC-Net on Jetson Xavier
PWC-Net has been chosen as the base network for our study. This architecture is
often re-used in the litterature (Bar-Haim & Wolf, 2020; P. Liu et al., 2019; Zhao
et al., 2020) and provides accurate results for a relatively small computational and
memory footprint. The initial objective of our study is twofold, deploy the network

Chapter 4. Towards real-time optical flow with DNNs 86

on an embedded chip, the NVIDIA Jetson Xavier, and find ways of improving its
run-time without changing the network’s architecture.

The first section details the PWC-Net architecture. Then, we explain the
workflow we used for inference on an edge device and show results with an fp16
inference.

4.2.1 Architecture
PWC-Net, as presented in fig. 4.4, can be sought of as two different parts. A “back-
end” that computes multi-scale features of the two input images and a “head” that
generates optical flow from those features. The back-end, or feature extractor, is
a traditional CNN, as presented on fig. 4.7. Only some feature maps serve as
input for subsequent flow generation. Like traditional optical flow approaches, the
multi-scale flow is used for a warping step. This time, on features directly, instead
of the sub-sampled images.

This operation can be seen as W on fig. 4.8. The warped features of the second
image are then correlated, through C with those of the first image. Features from
this correlation are concatenated with the first image features, the previous flow,
and hidden features from the previous level to generate flow. Ff is a sub-network,
a CNN, that generates a new tensor. From this intermediate result, a prediction
of the flow is made with P . In addition, and a shallower but larger tensor is
generated for the next level by Uh. Uf upscales the flow with a learned “transposed
convolution”.

In terms of training, PWC-Net is sensitive to its initialization (Sun et al.,
2018b). We tried, without success, to reproduce results from the authors in the
PyTorch environment. The results we provide in this chapter have been obtained
by re-using network weights converted from a Caffe training to its equivalent Py-
Torch model. They are available on the authors’ repository (Sun, 2018, June 13/
2021).

4.2.2 Deployment
The high popularity of neural networks in the image processing community has
seen the emergence of various frameworks for developing and training deep net-
works. These tools are designed for ease of use and flexibility and adapted for
creating new architectures and training networks. For the deployment of those al-
gorithms, it is, however, often necessary to use specialized software, as mentioned
in section 4.1.2.

Our work uses PyTorch as the training platform, and we have chosen the
TensorRT toolkit to target NVIDIA GPUs. The inter-operability of these two

Chapter 4. Towards real-time optical flow with DNNs 87

16 25
6

32 12
8

64 64
96 32 128 16

Figure 4.7: PWC-Net’s feature extraction. Each block represent a feature tensor.
Red blocks are used for optical flow estimation.

image 1 feats.

image 2 feats.

previous flow

hidden feats.

warped features

correlations

generated features

hidden feats.

estimated flow

upscaled flow

W

C

Ff

P Uf

Uh

Figure 4.8: Optical flow prediction of PWC-Net at a single scale. The previous
flow, features of the two images and other hidden coefficients serve at generating
a new tensor. From this tensor, a new flow is estimated and up-scaled.

Chapter 4. Towards real-time optical flow with DNNs 88

PyTorch

Training

TensorRT + plugins (warp, correlation)

Hardware-specific optimization Runnable model

ONNX model Codegen

Configuration (fp32, fp16, DLA, …)

Figure 4.9: The deployment path from a PyTorch model to its execution on Xavier.
It is first converted to the ONNX format that TensorRT accepts for optimization.
We developped correlation and warp plugins for TensorRT to handle these non-
standard operations.

tools is permitted by the intermediate ONNX description of a neural network, as
depicted on fig. 4.9.

The network is exported from the PyTorch environment and imported into
TensorRT. Then, it goes through a series of optimizations and run-time parameters
tuning, depending on the actual hardware. When TensorRT has found its best
possible way of executing the network, it saves the configuration into a binary file.
This file can later be loaded to run the network.

One common limitation of tools like TensorRT is that they rely on standardized
layer operations. The ONNX specification, for example (ONNX, 2017, September
7/2021), defines the standard 2D convolution with variants like stride, dilation,
or group convolutions. If an operator is missing from the tool, it is necessary to
rely on custom definitions. An ONNX description can reference custom operators,
and TensorRT must have a corresponding implementation to execute the network.
In our case, the warp W and feature correlation C operators were missing from
ONNX and TensorRT.

These two operations are indeed not that common in the neural network com-
munity. We have implemented both of them as TensorRT plugins to execute
PWC-Net on an embedded platform. The warp operation is straightforward and
consists of a bi-linear interpolation of pixels’ value, displaced by their optical flow.

An implementation of feature correlation, as defined in (Dosovitskiy et al.,
2015), can be found in (Mayer, 2017, April 25/2021), but it made for the Caffe

Chapter 4. Towards real-time optical flow with DNNs 89

1×32×256×256 1×32×256×256

1×81×256x256

Transpose Transpose

channelCorrelation

Transpose

image1 image2

corr

1×32×256×256 1×32×256×256

1×81×256×256

channelCorrelation

image1 image2

corr

Figure 4.10: Two equivalent ways of performing the correlation operation. Left:
the method used in the original implementation, with tensors transposed in the
NHWC format. Right: our proposed implementation, that operates directly in the
NCHW format.

NHWC (transpose) NCHW NCHW + shared mem.
Timings (ms) 19.7 18.7 (×0.95) 15.2 (×0.77)

Table 4.1: Median runtime of the correlation layer on Jetson AGX Xavier with (1,
32, 256, 256) tensor inputs.

framework. We started by porting this code to TensoRT as a plugin. The main
issue is that Caffe supports network tensors in the NHWC (batch, height, width,
channel) memory ordering, and TensorRT rather uses NCHW. Re-using the initial
implementation is still possible, at the price of transpositions, as shown in fig. 4.10.

With the missing W and C operations implemented, the TensorRT toolkit
can deploy PWC-Net. We use the trtexec executable to optimize the network on
Jetson Xavier and generate a binary model representation. Then, using TensorRT’s
Python API, we profile the network execution on images from the FlyingChairs
dataset.

Chapter 4. Towards real-time optical flow with DNNs 90

Precision Architecture EPE FPS
fp32 PWC-Net 2.28 20.7
fp16 2.28 36.3 (×1.75)

Table 4.2: PWC-Net’s performance on a Jetson AGX Xavier with 512×384 images.

Image 1 Image 2 Reference flow

−25 0 25

−40

−20

0

20

40

Flow scale
PWC-Net (fp32) PWC-Net (fp16)

Figure 4.11: PWC-Net’s execution on Jetson Xavier. With or without fp16 en-
abled when generating the model with TensorRT. Figure created with flowpy (M.
Seznec, 2021).

4.2.3 Results
The first tests we conducted were on the correlation layer alone. We made a
re-implementation that supports natively NCHW tensors. Since this operation
involves accessing the pixel’s neighbors, it is possible to use the GPU’s shared
memory to efficiently re-utilize shared values. In table 4.1 we show that with this
optimization, we attain a 30% speed-up versus the initial NHWC implementation.

Table 4.2 shows the results of PWC-Net’s execution on the Jetson AGX Xavier.
Its initial implementation, in fp32, attains 20.7 frames per second (FPS) on images
from the FlyingChair dataset. The EPE is computed averaged over its validation
split. Then, we configured TensorRT to use fp16 where applicable. The engine
chooses from fp32 or fp16 to find the best trade-off between acceleration and

Chapter 4. Towards real-time optical flow with DNNs 91

keeping a good accuracy (nvidia, 2021). Indeed, the EPE in fp16 does not change
from the fp32 version, which can be seen on fig. 4.11, but the performance increases
by 75% to reach 36.3 FPS.

These results are promising. With more than 30 FPS, the execution is al-
ready acceptable on relatively small images (512× 384) for a real-time embedded
application.

4.3 MobileFlow: an hybrid model based on effi-
cient networks

We now explore architectural changes to push the initial results PWC-Net fur-
ther. For that, we leverage an existing neural network classifier, MobileNetV2,
designed for embedded applications. Using it should both help the learning phase
of the network by relying on transfer learning and ultimately increase inference’s
performance.

4.3.1 Architecture and learning method
The original PWC-Net is trained as a whole, include both feature extraction and
flow generation. We propose to replace its back-end, the feature extraction, with
a pre-existing architecture: MobileNetV2 (Sandler et al., 2018). This network is
designed for image classification, but its initial layers extract image features that
can be used to feed PWC-Net’s optical flow head. “Plugging” MobileNet into
PWC-Net’s head is the first step towards the MobileFlow architecture.

The second change deals with the flow generation step. First, the Ff sub-
network, as defined in fig. 4.8, is switched. In the original PWC-Net, it is made
of classic convolutions with dense connections. For MobileFlow, we change those
convolutions with depth-separable convolutions that were presented in fig. 4.5.
The predictor P follows the same replacement strategy. Finally, Uf and Uh, that
upscale the flow and hidden features, are changed from transposed convolutions
to a separable convolution followed by bilinear re-sampling. This choice has the
advantage of reducing the number of learnable weights and reduces potential arti-
facts (Odena et al., 2016).

We re-use MobileNets of several widths, controlled by α. For example, Mobile-
Flow (0.25) refers to the network obtained with a Mobilenet of width 0.25. The
Mobilenet back-end is pre-trained on ImageNet, an open-source dataset (Deng et
al., 2009), and the weights are frozen for the subsequent flow learning. During
the training, only the optical flow estimation layers are learned. We use the long
training schedule defined in (Ilg et al., 2017).

Chapter 4. Towards real-time optical flow with DNNs 92

0 10 20 30 40 50

Parameters’ size (MB)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

E
nd

-p
oi

nt
E

rr
or

(E
P

E
)

1.00
0.75

0.50

0.35
0.25

0.10 PWC-Net

MobileFlow

Figure 4.12: End-point errors vs. network parameters’ size on the validation split
of FlyingChairs. Lower is better. The disc is the PWC-Net reference (Sun et al.,
2018b). Diamonds represent MobileFlow networks, labelled with their correspond-
ing Mobilenet widths.

4.3.2 Results

On fig. 4.12, we report the average end-point error (EPE) obtained on the valida-
tion data of the FlyingChairs database. In terms of size, it is clear that MobileFlow
networks are lighter than PWC-Net. The largest MobileFlow architecture requires
learning 10MB of parameters, while PWC-Net uses more than 35MB. The end-
point error of our proposed architecture is close to 1.50 for the largest network but
degrades with smaller networks. The accuracy of PWC-Net has been estimated
with weights from (Sun, 2018, June 13/2021) at 2.26 but is likely overestimated,
as the training procedure used for this result was not optimal (Sun et al., 2018a).

These results prove that using a pre-trained architecture as a feature extrac-
tor work for optical flow estimation. Even if the database used for pre-training,
ImageNet, is not the same as the one involved in the optical flow, FlyingChairs,
this transfer learning procedure provides satisfying results. We also report that
training this hybrid architecture was less sensitive to weight initialization and lo-
cal minima, compared to PWC-Net (Sun et al., 2018a). The pre-trained feature
extractor seems to, indeed, provide starting points that avoid poor local minima.

Figure 4.13 shows an example of flow estimation on the image 06565 of the
FlyingChairs dataset. Compared to PWC-Net, MobileFlows provide similar results
visually. The networks accurately estimate the background displacement and large

Chapter 4. Towards real-time optical flow with DNNs 93

Image 1 Image 2 Reference flow

−25 0 25

−40

−20

0

20

40

Flow scale
PWC-Net MobileFlow (1.00)

MobileFlow (0.75) MobileFlow (0.50) MobileFlow (0.35)

MobileFlow (0.25) MobileFlow (0.10)

Figure 4.13: Results of PWC-Net and different versions of MobileFlow on a Fly-
ingChairs sample.

Chapter 4. Towards real-time optical flow with DNNs 94

Precision Architecture Width EPE FPS

fp32

PWC-Net - 2.28 20.6

MobileFlow

0.10 2.80 22.4
0.25 2.00 21.1
0.35 2.01 20.5
0.50 1.80 19.2
0.75 1.58 17.3
1.00 1.54 16.6

fp16

PWC-Net - 2.28 36.1

MobileFlow

0.10 2.80 44.1
0.25 2.00 41.2
0.35 2.01 39.9
0.50 1.80 36.7
0.75 1.58 32.2
1.00 1.54 31.0

Table 4.3: Runtime of MobileFlow networks and PWC-Net on the Jetson AGX
Xavier with 512× 384 images.

displacements, with the top-left chair, for example. Smaller objects sometimes
generate artifacts, especially with overlapping chairs, on the bottom-right corner,
for example.

We then compared the FPS throughput of MobileFlows with PWC-Net, once
again, using TensorRT on Jetson Xavier. There is no need for additional plugins as
TensorRT already handles operations such as depth-wise convolutions. Table 4.3
details the results in fp32 and fp16 of PWC-Net and MobileFlow with different
back-end widths.

The largest versions of MobileFlow are slower than PWC-Net, but below a
depth of 0.35, they overcome the reference network’s performance. Since the ac-
curacy of PWC-Net is likely to be under-estimated, we can conservatively use
MobileFlow (0.25) as a fair comparison with PWC. Then, we observe that its
performance it marginally better in fp32 (+2%) but this gain increases with fp16
arithmetic (+14%). The probable explanation is that TensorRT allows more layers
to use fp16 on MobileFlow than PWC because its output is more stable numeri-
cally.

Figure 4.14 details the time spent by the different networks’ inference, and was
obtained with trtexec profiling. The plot groups the results into three categories:
convolutions, correlations, and other layers. It appears that the most significant
difference between those architectures is the time spend doing correlations. Indeed,

Chapter 4. Towards real-time optical flow with DNNs 95

Convolutions Correlations Other layers
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
im

e
(m

s)

PWC-Net

MobileFlow (0.10)

MobileFlow (0.25)

MobileFlow (0.35)

MobileFlow (0.50)

MobileFlow (0.75)

MobileFlow (1.00)

Figure 4.14: Inference runtime breakdown, grouped by layer type, in fp16 preci-
sion.

this processing is affected by the depth of the input tensors, which varies quite a
lot across the different versions.

Conversely to what we expected, the time spend doing convolutions is not
decreased significantly on MobileFlow models. Across the different versions of
MobileFlow, this processing time is reduced from about 19 ms to 16.5 ms. This
small difference suggests that the optical flow estimation part of the network oc-
cupies most of the GPU time. Also, this result seems to indicate that depth-wise
convolutions are not much faster than their traditional counterparts.

4.4 Conclusion
This study on neural networks for optical flow has permitted an embedded imple-
mentation of PWC-Net on Jetson AGX Xavier. To the best of our knowledge, this
step had never been done before. Developing two TensorRT plugins and exporting
the corresponding layers in ONNX before running the network on Jetson Xavier
has been necessary. With an initial performance of 20.6 FPS, the inference was
then allowed to use fp16 to reach 36.1 FPS, a 75% increase.

For even better performance, we have searched for new efficient network de-
signs. At the architectural level, we have demonstrated that it is possible to use

Chapter 4. Towards real-time optical flow with DNNs 96

a pre-trained “back-end”, derived from a classification network, and only learn
the optical flow estimation layers. This transfer learning procedure has several
advantages.

First, it simplifies the design of the network. By leveraging pre-existing archi-
tectures, we can capitalize on state-of-the-start results and focus on flow generation
layers. Second, it is easier to find a database to train the back-end. It is indeed
challenging to obtain annotated examples for optical flow compared to classifica-
tion labeling. Moreover, classification networks are easily found with pre-trained
versions on popular datasets. Third, a complex image processing pipeline may
share the MobileNet back-end with classification, detection, or pixel segmentation
“heads”. Several tasks can then share a common backbone to save many compu-
tations.

After proving that this hybrid network structure is possible, we have also de-
ployed the DNN on an embedded target. In fp16 precision and compared to PWC,
MobileFlow (0.25) shows similar accuracy, but is 14% faster. The network weights
are also reduced by 92%, even if the memory footprint of the inference is mostly
determined by tensors that must be kept in memory.

Going further, it should be interesting to assess the performance of int8 quan-
tization of the network. This step might increase the network’s performance dras-
tically (Venkata Bhargava Narendra et al., 2021) but has a more significant impact
on the accuracy. The use of NVIDIA’s DLAs (Deep Learning Accelerators), which
are present on the Xavier SoC, might also be beneficial. Developing and integrating
custom operations, such as correlation and warp, requires, however, a significant
development effort.

Other work may target the design of the network to increase the performance
of MobileFlow. More analysis should be conducted to understand the effect of
depth-wise convolutions and why they do not bring much acceleration. Also, a
new architecture that contracts the feature tensors before performing the corre-
lation could be considered. This “squeezenet-like” (Iandola et al., 2016) could
dramatically reduce the time spend in this operator. Going further, neural archi-
tecture search techniques may also provide new efficient designs.

Finally, it should be interesting to assess the back-end pre-training’s effects on
the final accuracy. Is there an advantage at training the back-end for classification
on images used in production if no optical flow ground truth is available for them?

Conclusion

This manuscript has detailed the research effort conducted with the objective
of a better understanding of the way various algorithms can be modified to fit
modern GPU architectures. This work was motivated by the need to run computer
vision methods on low-power platforms. To that end, it is crucial to use the
provided hardware to its full capability. While traditional deployment strategies
use two main phases, software design, and hardware implementation, we proposed
an additional in-between stage. It consists of a software-hardware adaptation of
an algorithm and finds whether it is possible to run it on the proposed platform.
The advantage of this additional step in the deployment process is that it combines
expertise from both software and hardware fields to find high-level optimizations.

We began by introducing the optical flow problem, an algorithmic context that
served as a basis for most of the work of this thesis. This complex computer vi-
sion processing is quite representative of the difficulties of pixel-level tasks. This
way, we hope that our results may be transferable to other related tasks, such as
semantic segmentation. Then, we drew an overview of the hardware landscape.
This complex field is motivated by a significant observation: the mono-CPU ar-
chitecture can no longer reach the highest performance and has a low performance
per Watt ratio. Due to power density and frequency limitations, various parallel
accelerators have been brought to the forefront. Each of them has capabilities
and restrictions in the type of computations they perform. The GPU architec-
ture was presented in-depth as it is now a common type of hardware for parallel
computing and is used industrially. We also discussed a methodology for imple-
menting computer programs on a specific platform. We showed that extending the
execute-profile-optimize loop to algorithmic choices improves the journey from the
algorithm to the implementation.

With the context set and the development method being in place, we have
presented results in the context of radio-astronomy. As a first step, we proposed
to optimize a single method, the image convolution, to obtain the best performance
on a GPU. After comparing several methods that execute this operation, we have
selected a frequency-based implementation with the help of the cuFFT library. We
have shown that the direct use of the fp16 precision leads to the divergence of the

Chapter 5. Conclusion 98

iterative reconstruction process. Instead, storing data in fp16 but operating on
them with the extended fp32 precision is a beneficial trade-off between accuracy
and speed. We then explored the use of tensor core units for the image convolution
in a more general context. The algorithm we proposed is more efficient than other
spatial domain convolutions with large kernels. Our implementation outpaces the
best-known algorithms by a factor of two for kernels of size 30 while maintaining
a better accuracy because of the extended precision used within tensor cores.

When chapter 2 showed results with changes for single operators within an
algorithm, chapter 3 extended the analysis to entire sub-algorithms. For that, we
used the Combined Local-Global algorithm for optical flow estimation as the root
of our work. This method relies on an iterative scheme to solve a system of linear
equations. Many solvers can perform this task, but some are more efficient than
others on GPU hardware. Thanks to an initial review, we have chosen the Jacobi
solver as it showed good properties in terms of speed and accuracy. With this
algorithm-level choice made, we deepened our optimization to the implementation
level. Techniques like iteration fusion, kernel batching, or memory re-utilization
allowed us to increase the throughput of the computations by a factor of two.
Thanks to this combined reflection on the algorithm at the method and imple-
mentation levels, we ran the CLG method on a Jetson Xavier at 60 FPS.

In chapter 4, we opened the perspective of algorithm modifications to deep neu-
ral networks. After reviewing the state-of-the-art of machine learning for optical
flow estimation, we detailed DNN architectures designed for efficient inference on
low-power platforms. Our initial contribution consisted in the port of PWC-Net
to the Jetson AGX Xavier, thanks to TensorRT. Then, we modified this initial
network to replace its feature extraction module with MobileNet, an efficient clas-
sifier. This transfer-learning procedure has led to the MobileFlow architecture. It
has better accuracy than PWC-Net for similar or better inference speeds.

In the end, our experiments plead for a stronger bond between algorithm design
and implementation teams in industrial development. In many contexts, they are
two distinct entities with limited interactions. Here, we played the role of the
middleman that allows cooperation between the two. This position seems essential
for algorithm performance enhancement, as it opens up a new range of possible
improvements.

Several areas of improvement emerge from the work explored in this manuscript.
Regarding the use of reduced or mixed precision, mentioned in section 2.1, auto-
matic floating-precision accuracy checks exist (Févotte & Lathuilìère, 2019). This
kind of tool helps to understand the numerical stability of arithmetic expressions
and provides insights on where using lower precision is possible. Regarding our
im2Tensor algorithm, presented in section 2.2, improvements may come from the
use of a lower-level API for tensor core usage (the mma API). This finer-grained

Chapter 5. Conclusion 99

control could lead to better performance by avoiding conflicting accesses to the
GPU’s shared memory.

Chapter 3 presented CLG, an optical flow estimation algorithm, and ways of
improving its linear algebra system resolution. Solvers such as Jacobi or Gauss-
Seidel have been explored, but other types of solving procedures, like multi-grid
methods, could be studied, especially their impact on GPU. This kind of tech-
nique aims to solve the linear system on lower resolutions, thereby reducing the
complexity but also the possible parallelization. Exploring the trade-off between
these two factors, especially on GPU, seems essential for a high-performance im-
plementation. Going further, it would make sense to understand the impact of
CLG in a more complex image processing pipeline. The usage of optical flow
for real-time object detection or image super-resolution requires heavy processing.
The parametrization of CLG (number of scales, iterations per scale) impacts its
run-time but also the quality of the estimation. Knowing how the flow is used
afterward makes possible the exploration of the speed/accuracy balance.

For deep neural networks design, the current trend focuses on automatic neural
architecture search. This process permits the development of neural architectures
for a specific hardware (Cai et al., 2020). In the case of optical flow estimation,
this technique should be applicable for searching for better feature extractors or
optical flow estimators, either separately or all together.

Finally, this thesis has targeted a specific software/hardware context, image
processing methods on GPU. This particular setting offered insights on what is
possible to achieve in terms of optimizations, but it could be extended to other
platforms and types of algorithms. As mentioned in chapter 1, FPGAs, TPUs, or
manycore architectures are privileged hardware that may lead to other types of op-
timizations. The type of algorithm is also fundamental. GPUs, for example, favor
image and video processing. Conversely, DSPs or FPGAs might be more efficient
for unidimensional signal processing. Following this idea, it might be interesting
to relax the fixed-hardware constraint in our implementation methodology.

Opening up the choice of the architecture in the deployment loop would proba-
bly lead to more efficient solutions at the cost of increasing the optimization search
space and, therefore, the overall complexity. This difficulty could be handled by
relying on higher-level tools for software deployment, such as the ones presented in
section 1.3, and would also be mitigated by the development of hardware-agnostic
profiling and analysis tools, using the roofline model, for example.

Scientific contributions

• International conference: Seznec, M., Gac, N., Ferrari, A., & Orieux,
F. (2018, October). A Study on Convolution using Half-Precision Floating-
Point Numbers on GPU for Radio Astronomy Deconvolution, In 2018 IEEE
International Workshop on Signal Processing Systems (SiPS). 2018 IEEE
International Workshop on Signal Processing Systems (SiPS), Cape Town,
IEEE. https://doi.org/10.1109/SiPS.2018.8598342 (https://hal.archives-ouvertes.
fr/hal-01837982)

• International conference: Seznec, M., Gac, N., Orieux, F., & Naik, A. S.
(2020b, October). An Efficiency-Driven Approach For Real-Time Optical
Flow Processing On Parallel Hardware, In 2020 IEEE International Confer-
ence on Image Processing (ICIP). 2020 IEEE International Conference on
Image Processing (ICIP). https://doi.org/10.1109/ICIP40778.2020.9191164
(https://hal.archives-ouvertes.fr/hal-02604755)

• Poster: Seznec, M., Gac, N., Orieux, F., & Naik, A. S. (2020a, May). A
new convolutions algorithm to leverage tensor cores. Retrieved August 13,
2021, from https://hal.archives-ouvertes.fr/hal-02605077
Published: GPU Technology Conference (GTC)
(https://hal.archives-ouvertes.fr/hal-02605077)

• Software package: Seznec, M. (2021). Flowpy: Tools for working with
optical flow (Version 0.6.0). Retrieved August 13, 2021, from https://gitlab-
research.centralesupelec.fr/2018seznecm/flowpy https://pypi.org/project/
flowpy/

• Journal article: Seznec, M. Gac, N. Orieux, F. & Naik, A. S. The Im2Ten-
sor Algorithm for Efficient 2D Convolutions on GPU Tensor Cores. Journal
Article. (Under review by the Journal of Real-Time Image Processing)

• Journal article: Seznec, M. Gac, N. Orieux, F. & Naik, A. S. Real-Time
Optical Flow Processing on Embedded GPU: an Hardware-Aware Algorithm

https://doi.org/10.1109/SiPS.2018.8598342
https://hal.archives-ouvertes.fr/hal-01837982
https://hal.archives-ouvertes.fr/hal-01837982
https://doi.org/10.1109/ICIP40778.2020.9191164
https://hal.archives-ouvertes.fr/hal-02604755
https://hal.archives-ouvertes.fr/hal-02605077
https://hal.archives-ouvertes.fr/hal-02605077
https://gitlab-research.centralesupelec.fr/2018seznecm/flowpy
https://gitlab-research.centralesupelec.fr/2018seznecm/flowpy
https://pypi.org/project/flowpy/
https://pypi.org/project/flowpy/

Chapter 5. Scientific contributions 102

to Implementation Strategy. Journal Article. (Under review by the SIAM
Journal on Scientific Computing)

Résumé en français

Les algorithmes de traitement numérique actuels nécessitent une puissance de cal-
cul accrue pour obtenir des résultats plus précis et traiter des données plus volu-
mineuses. Dans le même temps, les architectures matérielles se spécialisent, avec
des accélérateurs très efficaces pour des tâches spécifiques. Dans ce contexte, le
chemin du déploiement de l’algorithme à l’implémentation est de plus en plus
complexe. Il est donc crucial de déterminer comment les algorithmes peuvent être
modifiés pour tirer parti des capacités du matériel. Dans notre étude, nous intéres-
sons aux unités graphiques (GPU), un type de processeur massivement parallèle.
Notre travail consiste à l’adaptation entre l’algorithme et le matériel d’exécution.

Le premier chapitre présente le contexte de notre étude. En premier lieu, nous
décrivons les algorithmes étudiés dans ce manuscrit : la convolution d’image et l’es-
timation de flux optique. Ensuite, nous effectuons un état de l’art des différents
processeurs pour le calcul haute performance. Nous montrons que la pérennité
de la loi de Moore bénéficie à présent aux architectures matérielles spécialisées
et fortement concurrentes. Ainsi, nous justifions notre utilisation des processeurs
graphiques pour atteindre un rapport performance sur puissance consommée très
élevé. Enfin, nous montrons les challenges que posent ce genre d’architecture.
Le déploiement d’application est souvent plus compliqué qu’avec des processeurs
séquentiels classiques. Nous faisons donc un tour d’horizons des langages de pro-
grammation, outils de développement et méthodes qui permettent atteindre les
meilleurs performances possibles.

Dans le chapitre deux, nous modifions un algorithme de convolution d’images
pour utiliser les tensor cores. Ces unités matérielles, propres aux GPU de la mar-
que NVIDIA, permettent de calculer des produits matriciels très efficacement. La
convolution d’image se calcule habituellement selon deux méthodes. Dans l’es-
pace direct, il s’agit d’une somme de produit entre le filtre et l’image en chaque
pixel. Dans l’espace de Fourier, c’est une simple multiplication point-à-point.
Mais il faut alors procéder à une transformée de Fourier de l’image, du noyau,
ainsi qu’une transformée inverse du résultat. Ces deux méthodes traditionnelles
ne faisant pas appel à des multiplications de matrices, nous avons développé un
nouvel algorithme qui ré-exprime la convolution pour utiliser les tensors cores.

Chapter 5. Résumé en français 104

Cette nouvelle méthode algorithmique fait intervenir la transposée du filtre ainsi
qu’un tenseur construit à partir des coefficients de l’image. Après implémentation
sur GPU, nous avons montré l’intérêt de la méthode, avec des résultats jusqu’à
deux fois plus rapides pour de grands noyaux de convolution. Contrairement à
d’autres algorithmes prévus particulièrement pour les réseaux neuronaux convo-
lutifs, nous n’avons pas besoin d’utiliser des noyaux en paquets pour avoir une
exécution efficace.

L’objet d’étude du chapitre trois se situe au niveau de la méthode algorith-
mique. Nous y évaluons des solveurs linéaires pour l’estimation de flux optique afin
de trouver le plus adéquat sur GPU. Lorsque l’on compare les solveurs en vitesse de
convergence par itérations effectuées, la méthode par gradient conjugués est bien
meilleure que les autres de l’étude : Jacobi et Gauss-Seidel. Cependant, après im-
plémentation sur GPU, cette avance est moins marquée, une itération de gradients
conjugués étant plus longue qu’une de Jacobi. De plus, les gradients conjugués
semblent plus sensibles au bruit numérique et ne permettent une convergence pré-
cise sur GPU. Nous avons donc sélectionné la méthode Jacobi et poursuivit son
optimisation sur ce processeur spécifique. La fusion d’itérations nous permet no-
tamment de doubler la rapidité de ce solveur. Une fois ce travail accompli, notre
implémentation de l’estimation de flux optique fonctionne à plus de 60 images par
seconde sur la carte électronique embarquée Jetson Xavier d’NVIDIA, pour une
consommation électrique de 30W.

Le quatrième chapitre présente l’utilisation de réseaux neuronaux convolutifs
pour l’estimation de flux optique. En effet, les réseaux de neurones profonds ont
permis des nombreuses avancées quasiment tous les domaines de la vision par
ordinateur. Pour le flux optique, ces méthodes dominent maintenant l’état de
l’art. Cependant, l’utilisation de telles méthodes requiert un nombre de calculs
conséquent ainsi qu’une grande empreinte mémoire. Il est alors difficile de les
utiliser sur du matériel embarqué. Dès lors, nous avons cherché à concevoir un
réseau léger qui permettrait un déploiement plus aisé. Pour cela nous sommes
parti du réseau PWC-Net qui nous avons fusionné avec MobileNet. Ce dernier
réseau, conçu pour la classification d’images, est léger et prévu pour être déployé
sur des cibles à puissance limitée. En utilisant la stratégie de l’apprentissage par
transfert, nous entrainons notre propre architecture, MobileFlow, composée en
partie de PWC-Net et de MobileNet. Ce réseau hybride, comparé à PWC-Net, a
un temps d’exécution similaire sur la carte Jetson Xavier, mais requiert sept fois
moins de paramètre et a une précision accrue.

En conclusion, notre étude a permis de mieux comprendre les leviers qui per-
mettent une implémentation plus efficace de certaines méthodes logicielles. Notre
objet d’analyse se situe à la frontière entre une optimisation au niveau logiciel et
matérielle. Trouver les meilleurs formulations algorithmiques en se basant sur les

Chapter 5. Résumé en français 105

forces du processeur qui se chargera de l’exécution nous a permis d’obtenir des
implémentations très efficaces dans différentes situations. Pour continuer notre
étude, on pourrait utiliser notre l’algorithme de convolution par multiplication de
matrice sur d’autres plateformes que les GPU NVIDIA. L’étude du flux optique par
solveur linéaire pourrait être raffinée pour prendre en compte les solveurs multi-
échelles. Enfin, concernant l’utilisation des réseaux de neurones de flux optique,
une perspective d’amélioration serait l’utilisation de coefficient à précision réduite
(int8) pour faciliter leur utilisation sur plateformes embarquées.

Bibliography

Amdahl, G. M. (2013). Computer Architecture and Amdahl’s Law. Computer,
46 (12), 38–46. https://doi.org/10.1109/MC.2013.418

Anderson, A., Vasudevan, A., Keane, C., & Gregg, D. (2017, September 8). Low-
memory GEMM-based convolution algorithms for deep neural networks. Re-
trieved September 10, 2019, from http://arxiv.org/abs/1709.03395

Bai, M., Luo, W., Kundu, K., & Urtasun, R. (2016). Exploiting Semantic Infor-
mation and Deep Matching for Optical Flow (B. Leibe, J. Matas, N. Sebe,
& M. Welling, Eds.). In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.),
Computer Vision ECCV 2016, Cham, Springer International Publishing.
https://doi.org/10.1007/978-3-319-46466-4_10

Baker, S., & Kanade, T. (1999). Super-Resolution Optical Flow. Carnegie Mellon
University.

Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., & Szeliski, R. (2011).
A Database and Evaluation Methodology for Optical Flow. International
Journal of Computer Vision, 92 (1), 1–31. https://doi.org/10.1007/s11263-
010-0390-2

Bar-Haim, A., & Wolf, L. (2020, February 25). ScopeFlow: Dynamic Scene Scoping
for Optical Flow. Retrieved March 11, 2020, from http://arxiv.org/abs/
2002.10770

Beauchemin, S. S., & Barron, J. L. (1995). The computation of optical flow. ACM
Computing Surveys, 27 (3), 433–466. https : //doi . org/10 .1145/212094 .
212141

Bichler, O., Briand, D., Gacoin, V., Bertelone, B., Allenet, T., & Thiele, J. (2017).
N2D2-neural network design & deployment. https : //github . com/CEA-
LIST/N2D2

Briot, A., Viswanath, P., & Yogamani, S. (2018). Analysis of Efficient CNN Design
Techniques for Semantic Segmentation. Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops. Retrieved

https://doi.org/10.1109/MC.2013.418
http://arxiv.org/abs/1709.03395
https://doi.org/10.1007/978-3-319-46466-4_10
https://doi.org/10.1007/s11263-010-0390-2
https://doi.org/10.1007/s11263-010-0390-2
http://arxiv.org/abs/2002.10770
http://arxiv.org/abs/2002.10770
https://doi.org/10.1145/212094.212141
https://doi.org/10.1145/212094.212141
https://github.com/CEA-LIST/N2D2
https://github.com/CEA-LIST/N2D2

Bibliography 108

August 5, 2021, from https://openaccess.thecvf.com/content_cvpr_2018_
workshops/w12/html/Briot_Analysis_of_Efficient_CVPR_2018_paper.
html

Brox, T., Bruhn, A., Papenberg, N., & Weickert, J. (2004). High Accuracy Optical
Flow Estimation Based on a Theory for Warping (T. Pajdla & J. Matas,
Eds.). In T. Pajdla & J. Matas (Eds.), Computer Vision - ECCV 2004,
Berlin, Heidelberg, Springer. https://doi.org/10.1007/978-3-540-24673-
2_3

Bruant, J., Horrein, P.-H., Muller, O., Groléat, T., & Pétrot, F. (2021). Towards
Agile Hardware Designs with Chisel: A Network Use-case. IEEE Design
Test, 1–1. https://doi.org/10.1109/MDAT.2021.3063339

Bruhn, A., Weickert, J., & Schnörr, C. (2005). Lucas/Kanade Meets Horn/Schunck:
Combining Local and Global Optic Flow Methods. International Journal
of Computer Vision, 61 (3), 1–21. https : / / doi . org / 10 . 1023 / B : VISI .
0000045324.43199.43

Butler, D. J., Wulff, J., Stanley, G. B., & Black, M. J. (2012, October). A nat-
uralistic open source movie for optical flow evaluation (A. Fitzgibbon et
al. (Eds.), Ed.). In A. Fitzgibbon et al. (Eds.) (Ed.), European conf. on
computer vision (ECCV), Springer-Verlag.

Cai, H., Gan, C., Wang, T., Zhang, Z., & Han, S. (2020, April 29). Once-for-All:
Train One Network and Specialize it for Efficient Deployment. Retrieved
August 31, 2021, from http://arxiv.org/abs/1908.09791

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Cowan, M., Shen, H., Wang,
L., Hu, Y., Ceze, L., Guestrin, C., & Krishnamurthy, A. (2018, October 5).
TVM: An Automated End-to-End Optimizing Compiler for Deep Learning.
Retrieved August 4, 2021, from http://arxiv.org/abs/1802.04799

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B.,
& Shelhamer, E. (2014, October 3). cuDNN: Efficient Primitives for Deep
Learning. Retrieved September 3, 2019, from http://arxiv.org/abs/1410.
0759

Dagum, L., & Menon, R. (1998). OpenMP: An industry standard API for shared-
memory programming. IEEE Computational Science and Engineering, 5 (1),
46–55. https://doi.org/10.1109/99.660313

Deakin, T., & McIntosh-Smith, S. (2020, April 27). Evaluating the performance
of HPC-style SYCL applications, In Proceedings of the International Work-
shop on OpenCL, New York, NY, USA, Association for Computing Ma-
chinery. https://doi.org/10.1145/3388333.3388643

de Dinechin, B. D., Ayrignac, R., Beaucamps, P.-E., Couvert, P., Ganne, B., de
Massas, P. G., Jacquet, F., Jones, S., Chaisemartin, N. M., Riss, F., &
Strudel, T. (2013, September). A clustered manycore processor architec-

https://openaccess.thecvf.com/content_cvpr_2018_workshops/w12/html/Briot_Analysis_of_Efficient_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018_workshops/w12/html/Briot_Analysis_of_Efficient_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018_workshops/w12/html/Briot_Analysis_of_Efficient_CVPR_2018_paper.html
https://doi.org/10.1007/978-3-540-24673-2_3
https://doi.org/10.1007/978-3-540-24673-2_3
https://doi.org/10.1109/MDAT.2021.3063339
https://doi.org/10.1023/B:VISI.0000045324.43199.43
https://doi.org/10.1023/B:VISI.0000045324.43199.43
http://arxiv.org/abs/1908.09791
http://arxiv.org/abs/1802.04799
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
https://doi.org/10.1109/99.660313
https://doi.org/10.1145/3388333.3388643

Bibliography 109

ture for embedded and accelerated applications, In 2013 IEEE High Per-
formance Extreme Computing Conference (HPEC). 2013 IEEE High Per-
formance Extreme Computing Conference (HPEC). https://doi.org/10.
1109/HPEC.2013.6670342

Delisle, P., Krajecki, M., Gravel, M., & Gagné, C. (2001, September). Parallel im-
plementation of an ant colony optimization metaheuristic with OpenMP, In
International Conference on Parallel Architectures and Compilation Tech-
niques, Barcelone, France. Retrieved August 12, 2021, from https://hal.
archives-ouvertes.fr/hal-02572435

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009, June). Ima-
geNet: A large-scale hierarchical image database, In 2009 IEEE Conference
on Computer Vision and Pattern Recognition. 2009 IEEE Conference on
Computer Vision and Pattern Recognition. https : / / doi . org / 10 . 1109 /
CVPR.2009.5206848

Ding, N., & Williams, S. (2019, November). An Instruction Roofline Model for
GPUs, In 2019 IEEE/ACM Performance Modeling, Benchmarking and Sim-
ulation of High Performance Computer Systems (PMBS). 2019 IEEE/ACM
Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS). https://doi.org/10.1109/PMBS49563.2019.
00007

Doll, T., & Schiller, T. (2019, November). Artificial Intelligence in Land Forces.
Army Concepts and Capabilities Development Centre (ACCDC). https://
www.bundeswehr.de/resource/blob/156026/79046a24322feb96b2d8cce168315249/
download-positionspapier-englische-version-data.pdf

Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., van der
Smagt, P., Cremers, D., & Brox, T. (2015, December). FlowNet: Learning
Optical Flow with Convolutional Networks, In 2015 IEEE International
Conference on Computer Vision (ICCV). 2015 IEEE International Confer-
ence on Computer Vision (ICCV), Santiago, IEEE. https://doi.org/10.
1109/ICCV.2015.316

Duran, A., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L., Martorell, X., &
Planas, J. (2011). OmpSs: A PROPOSAL FOR PROGRAMMING HET-
EROGENEOUS MULTI-CORE ARCHITECTURES. Parallel Processing
Letters, 21 (02), 173–193. https://doi.org/10.1142/S0129626411000151

Ejjaaouani, K., Aumage, O., Bigot, J., Méhrenberger, M., Murai, H., Nakao, M.,
& Sato, M. (2020). InKS: A programming model to decouple algorithm
from optimization in HPC codes. The Journal of Supercomputing, 76 (6),
4666–4681. https://doi.org/10.1007/s11227-019-02950-2

Farnebäck, G. (2003). Two-Frame Motion Estimation Based on Polynomial Expan-
sion (J. Bigun & T. Gustavsson, Eds.). In J. Bigun & T. Gustavsson (Eds.),

https://doi.org/10.1109/HPEC.2013.6670342
https://doi.org/10.1109/HPEC.2013.6670342
https://hal.archives-ouvertes.fr/hal-02572435
https://hal.archives-ouvertes.fr/hal-02572435
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/PMBS49563.2019.00007
https://doi.org/10.1109/PMBS49563.2019.00007
https://www.bundeswehr.de/resource/blob/156026/79046a24322feb96b2d8cce168315249/download-positionspapier-englische-version-data.pdf
https://www.bundeswehr.de/resource/blob/156026/79046a24322feb96b2d8cce168315249/download-positionspapier-englische-version-data.pdf
https://www.bundeswehr.de/resource/blob/156026/79046a24322feb96b2d8cce168315249/download-positionspapier-englische-version-data.pdf
https://doi.org/10.1109/ICCV.2015.316
https://doi.org/10.1109/ICCV.2015.316
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1007/s11227-019-02950-2

Bibliography 110

Image Analysis, Berlin, Heidelberg, Springer. https://doi.org/10.1007/3-
540-45103-X_50

Farshchi, F., Huang, Q., & Yun, H. (2019, February). Integrating NVIDIA Deep
Learning Accelerator (NVDLA) with RISC-V SoC on FireSim, In 2019 2nd
Workshop on Energy Efficient Machine Learning and Cognitive Comput-
ing for Embedded Applications (EMC2). 2019 2nd Workshop on Energy
Efficient Machine Learning and Cognitive Computing for Embedded Ap-
plications (EMC2). https://doi.org/10.1109/EMC249363.2019.00012

Ferrari, V. (2019). Manmachine Teaming: Towards a New Paradigm of Manma-
chine Collaboration? In Disruptive Technology and Defence Innovation Ecosys-
tems (pp. 121–137). John Wiley & Sons, Ltd. https://doi.org/10.1002/
9781119644569.ch6
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119644569.ch6

Févotte, F., & Lathuilìère, B. (2019, February). Debugging and optimization of
HPC programs in mixed precision with the Verrou tool. Retrieved August
31, 2021, from https://hal.archives-ouvertes.fr/hal-02044101

Flynn, M. J. (1966). Very high-speed computing systems. Proceedings of the IEEE,
54 (12), 1901–1909. https://doi.org/10.1109/PROC.1966.5273

Gamal, M., Siam, M., & Abdel-Razek, M. (2018, March 15). ShuffleSeg: Real-
time Semantic Segmentation Network. Retrieved August 4, 2021, from http:
//arxiv.org/abs/1803.03816

Geiger, A., Lenz, P., & Urtasun, R. (2012, June). Are we ready for autonomous
driving? The KITTI vision benchmark suite, In 2012 IEEE Conference
on Computer Vision and Pattern Recognition. 2012 IEEE Conference on
Computer Vision and Pattern Recognition. https : / / doi . org / 10 . 1109 /
CVPR.2012.6248074

Ghosh, S., Pal, A., Jaiswal, S., Santosh, K. C., Das, N., & Nasipuri, M. (2019).
SegFast-V2: Semantic image segmentation with less parameters in deep
learning for autonomous driving. International Journal of Machine Learn-
ing and Cybernetics, 10 (11), 3145–3154. https://doi.org/10.1007/s13042-
019-01005-5

Han, S., Mao, H., & Dally, W. (2016, October 1). Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding. ICLR.

Han, S., Pool, J., Tran, J., & Dally, W. J. (2015, October 30). Learning both
Weights and Connections for Efficient Neural Networks. Retrieved August
3, 2021, from http://arxiv.org/abs/1506.02626

Hennessy, J. L., & Patterson, D. A. (2011, October 7). Computer Architecture: A
Quantitative Approach. Elsevier.

https://doi.org/10.1007/3-540-45103-X_50
https://doi.org/10.1007/3-540-45103-X_50
https://doi.org/10.1109/EMC249363.2019.00012
https://doi.org/10.1002/9781119644569.ch6
https://doi.org/10.1002/9781119644569.ch6
https://hal.archives-ouvertes.fr/hal-02044101
https://doi.org/10.1109/PROC.1966.5273
http://arxiv.org/abs/1803.03816
http://arxiv.org/abs/1803.03816
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1007/s13042-019-01005-5
https://doi.org/10.1007/s13042-019-01005-5
http://arxiv.org/abs/1506.02626

Bibliography 111

Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial
Intelligence, 17 (1), 185–203. https://doi.org/10.1016/0004-3702(81)90024-
2

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., & Adam, H. (2017, April 16). MobileNets: Efficient Convo-
lutional Neural Networks for Mobile Vision Applications. Retrieved March
9, 2020, from http://arxiv.org/abs/1704.04861

Hui, T.-W., & Loy, C. C. (2020). LiteFlowNet3: Resolving Correspondence Ambi-
guity for More Accurate Optical Flow Estimation (A. Vedaldi, H. Bischof,
T. Brox, & J.-M. Frahm, Eds.). In A. Vedaldi, H. Bischof, T. Brox, & J.-M.
Frahm (Eds.), Computer Vision ECCV 2020, Cham, Springer International
Publishing. https://doi.org/10.1007/978-3-030-58565-5_11

Hui, T.-W., Tang, X., & Change Loy, C. (2018). LiteFlowNet: A Lightweight Con-
volutional Neural Network for Optical Flow Estimation. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. Retrieved
September 4, 2019, from http://openaccess.thecvf.com/content_cvpr_
2018/html/Hui_LiteFlowNet_A_Lightweight_CVPR_2018_paper.html

Hui, T.-W., Tang, X., & Loy, C. C. (2020, January 13). A Lightweight Optical
Flow CNN - Revisiting Data Fidelity and Regularization. Retrieved March
11, 2020, from http://arxiv.org/abs/1903.07414

Hur, J., & Roth, S. (2020). Optical Flow Estimation in the Deep Learning Age.
In N. Noceti, A. Sciutti, & F. Rea (Eds.), Modelling Human Motion: From
Human Perception to Robot Design (pp. 119–140). Cham, Springer Inter-
national Publishing. https://doi.org/10.1007/978-3-030-46732-6_7

Hwu, W., & Patt, Y. N. (1986). HPSm, a high performance restricted data flow
architecture having minimal functionality. ACM SIGARCH Computer Ar-
chitecture News, 14 (2), 297–306. https://doi.org/10.1145/17356.17391

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer,
K. (2016, November 4). SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size. Retrieved March 9, 2020, from http:
//arxiv.org/abs/1602.07360

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., & Brox, T. (2017, July).
FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks,
In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), Honolulu, HI, IEEE. https://doi.org/10.1109/CVPR.2017.
179

Keryell, R., Reyes, R., & Howes, L. (2015, May 12). Khronos SYCL for OpenCL:
A tutorial, In Proceedings of the 3rd International Workshop on OpenCL,

https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1016/0004-3702(81)90024-2
http://arxiv.org/abs/1704.04861
https://doi.org/10.1007/978-3-030-58565-5_11
http://openaccess.thecvf.com/content_cvpr_2018/html/Hui_LiteFlowNet_A_Lightweight_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Hui_LiteFlowNet_A_Lightweight_CVPR_2018_paper.html
http://arxiv.org/abs/1903.07414
https://doi.org/10.1007/978-3-030-46732-6_7
https://doi.org/10.1145/17356.17391
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
https://doi.org/10.1109/CVPR.2017.179
https://doi.org/10.1109/CVPR.2017.179

Bibliography 112

New York, NY, USA, Association for Computing Machinery. https://doi.
org/10.1145/2791321.2791345

Kietzmann, T. C., McClure, P., & Kriegeskorte, N. (2019, January 25). Deep Neu-
ral Networks in Computational Neuroscience. Oxford Research Encyclope-
dia of Neuroscience. https://doi.org/10.1093/acrefore/9780190264086.013.
46

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. Advances in neural information pro-
cessing systems, 25, 1097–1105.

Lam, S. K., Pitrou, A., & Seibert, S. (2015, November 15). Numba: A LLVM-
based Python JIT compiler, In Proceedings of the Second Workshop on the
LLVM Compiler Infrastructure in HPC, New York, NY, USA, Association
for Computing Machinery. https://doi.org/10.1145/2833157.2833162

Le Besnerais, G., & Champagnat, F. (2005). Dense optical flow by iterative local
window registration, In IEEE International Conference on Image Process-
ing 2005. 2005 International Conference on Image Processing, Genova, Italy,
IEEE. https://doi.org/10.1109/ICIP.2005.1529706

Lebrun, M., Colom, M., & Morel, J. M. (2014, October). The noise clinic: A
universal blind denoising algorithm, In 2014 IEEE International Conference
on Image Processing (ICIP). 2014 IEEE International Conference on Image
Processing (ICIP). https://doi.org/10.1109/ICIP.2014.7025541

Lecun, Y. (1985). Une procedure d’apprentissage pour reseau a seuil asymmetrique
(A learning scheme for asymmetric threshold networks). Proceedings of Cog-
nitiva 85, Paris, France, 599–604. Retrieved August 23, 2021, from https:
//nyuscholars.nyu.edu/en/publications/une-procedure-dapprentissage-
pour-reseau-a-seuil-asymmetrique-a-l

Lee, G. G., Chen, Y., Mattavelli, M., & Jang, E. S. (2009). Algorithm/Architecture
Co-Exploration of Visual Computing on Emergent Platforms: Overview and
Future Prospects. IEEE Transactions on Circuits and Systems for Video
Technology, 19 (11), 1576–1587. https://doi.org/10.1109/TCSVT.2009.
2031376

Leordeanu, M., Zanfir, A., & Sminchisescu, C. (2013). Locally Affine Sparse-to-
Dense Matching for Motion and Occlusion Estimation. Proceedings of the
IEEE International Conference on Computer Vision. Retrieved July 16,
2021, from https://www.cv-foundation.org/openaccess/content_iccv_
2013/html/Leordeanu_Locally_Affine_Sparse-to-Dense_2013_ICCV_
paper.html

Lin, D., Talathi, S., & Annapureddy, S. (2016, June 11). Fixed Point Quantization
of Deep Convolutional Networks, In International Conference on Machine

https://doi.org/10.1145/2791321.2791345
https://doi.org/10.1145/2791321.2791345
https://doi.org/10.1093/acrefore/9780190264086.013.46
https://doi.org/10.1093/acrefore/9780190264086.013.46
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1109/ICIP.2005.1529706
https://doi.org/10.1109/ICIP.2014.7025541
https://nyuscholars.nyu.edu/en/publications/une-procedure-dapprentissage-pour-reseau-a-seuil-asymmetrique-a-l
https://nyuscholars.nyu.edu/en/publications/une-procedure-dapprentissage-pour-reseau-a-seuil-asymmetrique-a-l
https://nyuscholars.nyu.edu/en/publications/une-procedure-dapprentissage-pour-reseau-a-seuil-asymmetrique-a-l
https://doi.org/10.1109/TCSVT.2009.2031376
https://doi.org/10.1109/TCSVT.2009.2031376
https://www.cv-foundation.org/openaccess/content_iccv_2013/html/Leordeanu_Locally_Affine_Sparse-to-Dense_2013_ICCV_paper.html
https://www.cv-foundation.org/openaccess/content_iccv_2013/html/Leordeanu_Locally_Affine_Sparse-to-Dense_2013_ICCV_paper.html
https://www.cv-foundation.org/openaccess/content_iccv_2013/html/Leordeanu_Locally_Affine_Sparse-to-Dense_2013_ICCV_paper.html

Bibliography 113

Learning. International Conference on Machine Learning, PMLR. Retrieved
August 4, 2021, from http://proceedings.mlr.press/v48/linb16.html

Liu, C., Chen, L.-C., Schroff, F., Adam, H., Hua, W., Yuille, A. L., & Fei-Fei,
L. (2019). Auto-DeepLab: Hierarchical Neural Architecture Search for Se-
mantic Image Segmentation. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. Retrieved August 5, 2021, from
https://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Auto-
DeepLab_ Hierarchical_ Neural_ Architecture_ Search_ for_ Semantic_
Image_Segmentation_CVPR_2019_paper.html

Liu, P., Lyu, M., King, I., & Xu, J. (2019). SelFlow: Self-Supervised Learning
of Optical Flow. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. Retrieved August 3, 2021, from https :
//openaccess.thecvf.com/content_CVPR_2019/html/Liu_SelFlow_Self-
Supervised_Learning_of_Optical_Flow_CVPR_2019_paper.html

Lomont, C. (2011). Introduction to intel advanced vector extensions. Intel white
paper, 23.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully Convolutional Networks for
Semantic Segmentation. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. Retrieved August 2, 2021, from https :
/ / openaccess . thecvf . com / content _ cvpr _ 2015 / html / Long _ Fully _
Convolutional_Networks_2015_CVPR_paper.html

Lucas, B. D., & Kanade, T. (1981). An Iterative Image Registration Technique
with an Application to Stereo Vision, In Proceedings of the 7th Interna-
tional Joint Conference on Artificial Intelligence, San Francisco, CA, USA,
Morgan Kaufmann. Vancouver, BC, Canada. Retrieved September 4, 2019,
from http://dl.acm.org/citation.cfm?id=1623264.1623280

Malcolm, J., Yalamanchili, P., McClanahan, C., Venugopalakrishnan, V., Patel, K.,
& Melonakos, J. (2012, May 4). ArrayFire: A GPU acceleration platform, In
Modeling and Simulation for Defense Systems and Applications VII. Model-
ing and Simulation for Defense Systems and Applications VII, International
Society for Optics and Photonics. https://doi.org/10.1117/12.921122

Maleki, S., Gao, Y., Garzarťn, M. J., Wong, T., & Padua, D. A. (2011, October).
An Evaluation of Vectorizing Compilers, In 2011 International Conference
on Parallel Architectures and Compilation Techniques. 2011 International
Conference on Parallel Architectures and Compilation Techniques. https:
//doi.org/10.1109/PACT.2011.68

Martelli, M., Gac, N., Mérigot, A., & Enderli, C. (2019). 3D Tomography Back-
Projection Parallelization on Intel FPGAs Using OpenCL. Journal of Signal
Processing Systems, 91 (7), 731–743. https://doi.org/10.1007/s11265-018-
1403-6

http://proceedings.mlr.press/v48/linb16.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Auto-DeepLab_Hierarchical_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Auto-DeepLab_Hierarchical_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Auto-DeepLab_Hierarchical_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Liu_SelFlow_Self-Supervised_Learning_of_Optical_Flow_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Liu_SelFlow_Self-Supervised_Learning_of_Optical_Flow_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Liu_SelFlow_Self-Supervised_Learning_of_Optical_Flow_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
http://dl.acm.org/citation.cfm?id=1623264.1623280
https://doi.org/10.1117/12.921122
https://doi.org/10.1109/PACT.2011.68
https://doi.org/10.1109/PACT.2011.68
https://doi.org/10.1007/s11265-018-1403-6
https://doi.org/10.1007/s11265-018-1403-6

Bibliography 114

Mayer, N. (2021, August 12). Caffe for FlowNet2. Retrieved August 19, 2021, from
https://github.com/lmb-freiburg/flownet2

Membarth, R., Reiche, O., Hannig, F., Teich, J., Körner, M., & Eckert, W. (2016).
HIPAcc: A Domain-Specific Language and Compiler for Image Processing.
IEEE Transactions on Parallel and Distributed Systems, 27 (1), 210–224.
https://doi.org/10.1109/TPDS.2015.2394802

Menze, M., & Geiger, A. (2015, June). Object scene flow for autonomous vehicles,
In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2015 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). https://doi.org/10.1109/CVPR.2015.7298925

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg,
B., Houston, M., Kuchaiev, O., Venkatesh, G., & Wu, H. (2018, February
15). Mixed Precision Training. Retrieved August 4, 2021, from http://arxiv.
org/abs/1710.03740

Moloney, D., Barry, B., Richmond, R., Connor, F., Brick, C., & Donohoe, D. (2014,
August). Myriad 2: Eye of the computational vision storm, In 2014 IEEE
Hot Chips 26 Symposium (HCS). 2014 IEEE Hot Chips 26 Symposium
(HCS). https://doi.org/10.1109/HOTCHIPS.2014.7478823

Monchiero, M., Palermo, G., Silvano, C., & Villa, O. (2006, July). Exploration of
Distributed Shared Memory Architectures for NoC-based Multiprocessors,
In Modeling and Simulation 2006 International Conference on Embedded
Computer Systems: Architectures. Modeling and Simulation 2006 Interna-
tional Conference on Embedded Computer Systems: Architectures. https:
//doi.org/10.1109/ICSAMOS.2006.300821

Moore, G. E. (1965). Cramming more components onto integrated circuits, 38 (8),
4.

Naumov, M., Arsaev, M., Castonguay, P., Cohen, J., Demouth, J., Eaton, J., Lay-
ton, S., Markovskiy, N., Reguly, I., Sakharnykh, N., Sellappan, V., & Str-
zodka, R. (2015). AmgX: A Library for GPU Accelerated Algebraic Multi-
grid and Preconditioned Iterative Methods. SIAM Journal on Scientific
Computing, 37 (5), S602–S626. https://doi.org/10.1137/140980260

Nussbaumer, H. J. (1981). The Fast Fourier Transform. In H. J. Nussbaumer (Ed.),
Fast Fourier Transform and Convolution Algorithms (pp. 80–111). Berlin,
Heidelberg, Springer. https://doi.org/10.1007/978-3-662-00551-4_4

NVIDIA. (2017). V100 GPU Architecture: The worlds most advanced datacenter
GPU. Tech. Rep., NVIDIA. https ://images .nvidia .com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf

nvidia. (2021). NVIDIA TensorRT Documentation. Nvidia. Retrieved August 26,
2021, from https ://docs .nvidia . com/deeplearning/tensorrt/developer -
guide/index.html

https://github.com/lmb-freiburg/flownet2
https://doi.org/10.1109/TPDS.2015.2394802
https://doi.org/10.1109/CVPR.2015.7298925
http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1710.03740
https://doi.org/10.1109/HOTCHIPS.2014.7478823
https://doi.org/10.1109/ICSAMOS.2006.300821
https://doi.org/10.1109/ICSAMOS.2006.300821
https://doi.org/10.1137/140980260
https://doi.org/10.1007/978-3-662-00551-4_4
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html

Bibliography 115

Oden, L. (2020, March). Lessons learned from comparing C-CUDA and Python-
Numba for GPU-Computing, In 2020 28th Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing (PDP). 2020
28th Euromicro International Conference on Parallel, Distributed and Network-
Based Processing (PDP). https://doi.org/10.1109/PDP50117.2020.00041

Odena, A., Dumoulin, V., & Olah, C. (2016). Deconvolution and checkerboard
artifacts. Distill. https://doi.org/10.23915/distill.00003

OMahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G. V.,
Krpalkova, L., Riordan, D., & Walsh, J. (2020). Deep Learning vs. Tra-
ditional Computer Vision (K. Arai & S. Kapoor, Eds.). In K. Arai & S.
Kapoor (Eds.), Advances in Computer Vision, Cham, Springer Interna-
tional Publishing. https://doi.org/10.1007/978-3-030-17795-9_10

ONNX. (2021, August 19). Use ONNX. Retrieved August 19, 2021, from https:
//github.com/onnx/onnx

Parly, F. (2019, September). Artificial Intelligence in Support of Defence. Min-
istère de la Défense. Retrieved August 23, 2021, from https://webcache.
googleusercontent .com/search?q=cache: j_SdUrGw-eIJ:https ://www.
defense . gouv . fr / content / download / 573877 / 9834690 / Strat % 25C3 %
25A9gie%2520de%2520l%2527IA-UK_9%25201%25202020.pdf+&cd=
1&hl=en&ct=clnk&gl=fr&lr=lang_en%7Clang_fr&client=ubuntu

Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J.-F., & Aridhi, S. (2014,
September). Preesm: A dataflow-based rapid prototyping framework for
simplifying multicore DSP programming, In 2014 6th European Embedded
Design in Education and Research Conference (EDERC). 2014 6th Euro-
pean Embedded Design in Education and Research Conference (EDERC),
Milano, Italy, IEEE. https://doi.org/10.1109/EDERC.2014.6924354

Petreto, A., Hennequin, A., Koehler, T., Romera, T., Fargeix, Y., Gaillard, B.,
Bouyer, M., Meunier, Q. L., & Lacassagne, L. (2018, October). Energy
and Execution Time Comparison of Optical Flow Algorithms on SIMD
and GPU Architectures, In 2018 Conference on Design and Architectures
for Signal and Image Processing (DASIP). 2018 Conference on Design and
Architectures for Signal and Image Processing (DASIP). https://doi.org/
10.1109/DASIP.2018.8597004

Pinard, C. (2021, August 24). FlowNetPytorch. Retrieved August 24, 2021, from
https://github.com/ClementPinard/FlowNetPytorch

Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., & Amarasinghe, S.
(2013). Halide: A language and compiler for optimizing parallelism, locality,
and recomputation in image processing pipelines. ACM SIGPLAN Notices,
48 (6), 519–530. https://doi.org/10.1145/2499370.2462176

https://doi.org/10.1109/PDP50117.2020.00041
https://doi.org/10.23915/distill.00003
https://doi.org/10.1007/978-3-030-17795-9_10
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://webcache.googleusercontent.com/search?q=cache:j_SdUrGw-eIJ:https://www.defense.gouv.fr/content/download/573877/9834690/Strat%25C3%25A9gie%2520de%2520l%2527IA-UK_9%25201%25202020.pdf+&cd=1&hl=en&ct=clnk&gl=fr&lr=lang_en%7Clang_fr&client=ubuntu
https://webcache.googleusercontent.com/search?q=cache:j_SdUrGw-eIJ:https://www.defense.gouv.fr/content/download/573877/9834690/Strat%25C3%25A9gie%2520de%2520l%2527IA-UK_9%25201%25202020.pdf+&cd=1&hl=en&ct=clnk&gl=fr&lr=lang_en%7Clang_fr&client=ubuntu
https://webcache.googleusercontent.com/search?q=cache:j_SdUrGw-eIJ:https://www.defense.gouv.fr/content/download/573877/9834690/Strat%25C3%25A9gie%2520de%2520l%2527IA-UK_9%25201%25202020.pdf+&cd=1&hl=en&ct=clnk&gl=fr&lr=lang_en%7Clang_fr&client=ubuntu
https://webcache.googleusercontent.com/search?q=cache:j_SdUrGw-eIJ:https://www.defense.gouv.fr/content/download/573877/9834690/Strat%25C3%25A9gie%2520de%2520l%2527IA-UK_9%25201%25202020.pdf+&cd=1&hl=en&ct=clnk&gl=fr&lr=lang_en%7Clang_fr&client=ubuntu
https://webcache.googleusercontent.com/search?q=cache:j_SdUrGw-eIJ:https://www.defense.gouv.fr/content/download/573877/9834690/Strat%25C3%25A9gie%2520de%2520l%2527IA-UK_9%25201%25202020.pdf+&cd=1&hl=en&ct=clnk&gl=fr&lr=lang_en%7Clang_fr&client=ubuntu
https://doi.org/10.1109/EDERC.2014.6924354
https://doi.org/10.1109/DASIP.2018.8597004
https://doi.org/10.1109/DASIP.2018.8597004
https://github.com/ClementPinard/FlowNetPytorch
https://doi.org/10.1145/2499370.2462176

Bibliography 116

Ranjan, A., & Black, M. J. (2017). Optical Flow Estimation Using a Spatial
Pyramid Network. Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition. Retrieved August 3, 2021, from https ://
openaccess . thecvf . com / content _ cvpr _ 2017 / html / Ranjan _ Optical _
Flow_Estimation_CVPR_2017_paper.html

Reddy, V. G. (2008). Neon technology introduction. ARM Corporation, 4 (1).
Reuther, A., Michaleas, P., Jones, M., Gadepally, V., Samsi, S., & Kepner, J. (2019,

August 29). Survey and Benchmarking of Machine Learning Accelerators.
Retrieved September 9, 2019, from http://arxiv.org/abs/1908.11348

Ruhnau, P., Kohlberger, T., Schnörr, C., & Nobach, H. (2005). Variational opti-
cal flow estimation for particle image velocimetry. Experiments in Fluids,
38 (1), 21–32. https://doi.org/10.1007/s00348-004-0880-5

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representa-
tions by back-propagating errors. Nature, 323 (6088), 533–536. https://doi.
org/10.1038/323533a0
Bandiera_abtest: a Cg_type: Nature Research Journals Primary_atype:
Research

Rupp, K. (2015). 40 Years of Microprocessor Trend Data | Karl Rupp. Retrieved
July 26, 2021, from https ://www.karlrupp .net/2015/06/40-years -of -
microprocessor-trend-data/

Saad, Y. (2003). Iterative methods for sparse linear systems. SIAM.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mo-

bileNetV2: Inverted Residuals and Linear Bottlenecks. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. Retrieved
August 3, 2021, from https://openaccess.thecvf.com/content_cvpr_2018/
html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.
html

Seznec, A., Felix, S., Krishnan, V., & Sazeides, Y. (2002, May). Design trade-
offs for the alpha EV8 conditional branch predictor, In Proceedings 29th
Annual International Symposium on Computer Architecture. Proceedings
29th Annual International Symposium on Computer Architecture. https:
//doi.org/10.1109/ISCA.2002.1003587

Seznec, M. (2021). Flowpy: Tools for working with optical flow (Version 0.6.0).
Retrieved August 13, 2021, from https://gitlab-research.centralesupelec.
fr/2018seznecm/flowpy

Seznec, M., Gac, N., Ferrari, A., & Orieux, F. (2018, October). A Study on Con-
volution using Half-Precision Floating-Point Numbers on GPU for Radio
Astronomy Deconvolution, In 2018 IEEE International Workshop on Signal
Processing Systems (SiPS). 2018 IEEE International Workshop on Signal

https://openaccess.thecvf.com/content_cvpr_2017/html/Ranjan_Optical_Flow_Estimation_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Ranjan_Optical_Flow_Estimation_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Ranjan_Optical_Flow_Estimation_CVPR_2017_paper.html
http://arxiv.org/abs/1908.11348
https://doi.org/10.1007/s00348-004-0880-5
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
https://doi.org/10.1109/ISCA.2002.1003587
https://doi.org/10.1109/ISCA.2002.1003587
https://gitlab-research.centralesupelec.fr/2018seznecm/flowpy
https://gitlab-research.centralesupelec.fr/2018seznecm/flowpy

Bibliography 117

Processing Systems (SiPS), Cape Town, IEEE. https://doi.org/10.1109/
SiPS.2018.8598342

Seznec, M., Gac, N., Orieux, F., & Naik, A. S. (2020a, May). A new convolutions
algorithm to leverage tensor cores. Retrieved August 13, 2021, from https:
//hal.archives-ouvertes.fr/hal-02605077
Published: GPU Technology Conference (GTC)

Seznec, M., Gac, N., Orieux, F., & Naik, A. S. (2020b, October). An Efficiency-
Driven Approach For Real-Time Optical Flow Processing On Parallel Hard-
ware, In 2020 IEEE International Conference on Image Processing (ICIP).
2020 IEEE International Conference on Image Processing (ICIP). https :
//doi.org/10.1109/ICIP40778.2020.9191164

Sharon, E., Brandt, A., & Basri, R. (2000, June). Fast multiscale image seg-
mentation, In Proceedings IEEE Conference on Computer Vision and Pat-
tern Recognition. CVPR 2000 (Cat. No.PR00662). Proceedings IEEE Con-
ference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat.
No.PR00662). https://doi.org/10.1109/CVPR.2000.855801

Smeulders, A. W. M., Chu, D. M., Cucchiara, R., Calderara, S., Dehghan, A., &
Shah, M. (2014). Visual Tracking: An Experimental Survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 36 (7), 1442–1468.
https://doi.org/10.1109/TPAMI.2013.230

Sun, D. (2021, August 26). NVlabs/PWC-Net. Retrieved August 26, 2021, from
https://github.com/NVlabs/PWC-Net

Sun, D., Yang, X., Liu, M.-Y., & Kautz, J. (2018a, September 14). Models Matter,
So Does Training: An Empirical Study of CNNs for Optical Flow Estima-
tion. Retrieved May 28, 2020, from http://arxiv.org/abs/1809.05571

Sun, D., Yang, X., Liu, M.-Y., & Kautz, J. (2018b, June). PWC-Net: CNNs for Op-
tical Flow Using Pyramid, Warping, and Cost Volume, In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Salt
Lake City, UT, USA, IEEE. https://doi.org/10.1109/CVPR.2018.00931

Sutter, H. et al. (2005). The free lunch is over: A fundamental turn toward con-
currency in software. Dr. Dobbs journal, 30 (3), 202–210.

Vahdat, A., Mallya, A., Liu, M.-Y., & Kautz, J. (2020). UNAS: Differentiable
Architecture Search Meets Reinforcement Learning. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. Re-
trieved August 5, 2021, from https ://openaccess . thecvf . com/content_
CVPR_2020/html/Vahdat_UNAS_Differentiable_Architecture_Search_
Meets_Reinforcement_Learning_CVPR_2020_paper.html

Vanholder, H. (2016). Efficient inference with tensorrt. ed.

https://doi.org/10.1109/SiPS.2018.8598342
https://doi.org/10.1109/SiPS.2018.8598342
https://hal.archives-ouvertes.fr/hal-02605077
https://hal.archives-ouvertes.fr/hal-02605077
https://doi.org/10.1109/ICIP40778.2020.9191164
https://doi.org/10.1109/ICIP40778.2020.9191164
https://doi.org/10.1109/CVPR.2000.855801
https://doi.org/10.1109/TPAMI.2013.230
https://github.com/NVlabs/PWC-Net
http://arxiv.org/abs/1809.05571
https://doi.org/10.1109/CVPR.2018.00931
https://openaccess.thecvf.com/content_CVPR_2020/html/Vahdat_UNAS_Differentiable_Architecture_Search_Meets_Reinforcement_Learning_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Vahdat_UNAS_Differentiable_Architecture_Search_Meets_Reinforcement_Learning_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Vahdat_UNAS_Differentiable_Architecture_Search_Meets_Reinforcement_Learning_CVPR_2020_paper.html

Bibliography 118

Venkata Bhargava Narendra, V., Rangababu, P., & Balabantaray, B. K. (2021).
Low-Power U-Net for Semantic Image Segmentation (E. S. Gopi, Ed.). In
E. S. Gopi (Ed.), Machine Learning, Deep Learning and Computational
Intelligence for Wireless Communication, Singapore, Springer. https://doi.
org/10.1007/978-981-16-0289-4_35

Wang, E., Zhang, Q., Shen, B., Zhang, G., Lu, X., Wu, Q., & Wang, Y. (2014).
Intel Math Kernel Library. In E. Wang, Q. Zhang, B. Shen, G. Zhang, X.
Lu, Q. Wu, & Y. Wang (Eds.), High-Performance Computing on the Intelő
Xeon Phi: How to Fully Exploit MIC Architectures (pp. 167–188). Cham,
Springer International Publishing. https://doi.org/10.1007/978-3-319-
06486-4_7

Waterman, A., Lee, Y., Patterson, D. A., & Asanovic, K. (2011). The risc-v in-
struction set manual, volume i: Base user-level isa. EECS Department, UC
Berkeley, Tech. Rep. UCB/EECS-2011-62, 116.

Wei, X., Yu, C. H., Zhang, P., Chen, Y., Wang, Y., Hu, H., Liang, Y., & Cong,
J. (2017, June). Automated systolic array architecture synthesis for high
throughput CNN inference on FPGAs, In 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC). 2017 54th ACM/EDAC/IEEE De-
sign Automation Conference (DAC). https://doi.org/10.1145/3061639.
3062207

Wienke, S., Springer, P., Terboven, C., & an Mey, D. (2012). OpenACC First Ex-
periences with Real-World Applications (C. Kaklamanis, T. Papatheodorou,
& P. G. Spirakis, Eds.). In C. Kaklamanis, T. Papatheodorou, & P. G. Spi-
rakis (Eds.), Euro-Par 2012 Parallel Processing, Berlin, Heidelberg, Springer.
https://doi.org/10.1007/978-3-642-32820-6_85

Wulf, W. A., & McKee, S. A. (1995). Hitting the memory wall: Implications of the
obvious. ACM SIGARCH computer architecture news, 23 (1), 20–24.

Yan, X., Jiang, W., Shi, Y., & Zhuo, C. (2020). MS-NAS: Multi-scale Neural
Architecture Search for Medical Image Segmentation (A. L. Martel, P.
Abolmaesumi, D. Stoyanov, D. Mateus, M. A. Zuluaga, S. K. Zhou, D.
Racoceanu, & L. Joskowicz, Eds.). In A. L. Martel, P. Abolmaesumi, D.
Stoyanov, D. Mateus, M. A. Zuluaga, S. K. Zhou, D. Racoceanu, & L.
Joskowicz (Eds.), Medical Image Computing and Computer Assisted Inter-
vention MICCAI 2020, Cham, Springer International Publishing. https:
//doi.org/10.1007/978-3-030-59710-8_38

Yang, C., Kurth, T., & Williams, S. (2020). Hierarchical Roofline analysis for
GPUs: Accelerating performance optimization for the NERSC-9 Perlmutter
system. Concurrency and Computation: Practice and Experience, 32 (20),
e5547. https://doi.org/10.1002/cpe.5547
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5547

https://doi.org/10.1007/978-981-16-0289-4_35
https://doi.org/10.1007/978-981-16-0289-4_35
https://doi.org/10.1007/978-3-319-06486-4_7
https://doi.org/10.1007/978-3-319-06486-4_7
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1007/978-3-642-32820-6_85
https://doi.org/10.1007/978-3-030-59710-8_38
https://doi.org/10.1007/978-3-030-59710-8_38
https://doi.org/10.1002/cpe.5547

Bibliography 119

Yao, Z., Cao, S., Xiao, W., Zhang, C., & Nie, L. (2019). Balanced Sparsity for
Efficient DNN Inference on GPU. Proceedings of the AAAI Conference on
Artificial Intelligence, 33 (01), 5676–5683. https://doi.org/10.1609/aaai.
v33i01.33015676

Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., & Sang, N. (2018). BiSeNet: Bilateral
Segmentation Network for Real-time Semantic Segmentation. Proceedings
of the European Conference on Computer Vision (ECCV). Retrieved Au-
gust 5, 2021, from https://openaccess.thecvf.com/content_ECCV_2018/
html/Changqian_Yu_BiSeNet_Bilateral_Segmentation_ECCV_2018_
paper.html

Zach, C., Pock, T., & Bischof, H. (2007). A Duality Based Approach for Realtime
TV-L 1 Optical Flow. In F. A. Hamprecht, C. Schnörr, & B. Jähne (Eds.),
Pattern Recognition (pp. 214–223). Berlin, Heidelberg, Springer Berlin Hei-
delberg. https://doi.org/10.1007/978-3-540-74936-3_22

Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). ShuffleNet: An Extremely Efficient
Convolutional Neural Network for Mobile Devices. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. Retrieved August
3, 2021, from https://openaccess.thecvf.com/content_cvpr_2018/html/
Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html

Zhao, S., Sheng, Y., Dong, Y., Chang, E. I.-C., & Xu, Y. (2020, April 8). Mask-
Flownet: Asymmetric Feature Matching with Learnable Occlusion Mask. Re-
trieved May 19, 2020, from http://arxiv.org/abs/2003.10955

Zhou, G., Zhou, J., & Lin, H. (2018, November). Research on NVIDIA Deep
Learning Accelerator, In 2018 12th IEEE International Conference on Anti-
counterfeiting, Security, and Identification (ASID). 2018 12th IEEE In-
ternational Conference on Anti-Counterfeiting, Security, and Identification
(ASID). https://doi.org/10.1109/ICASID.2018.8693202

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning Transferable Ar-
chitectures for Scalable Image Recognition. Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. Retrieved August 5,
2021, from https ://openaccess . thecvf .com/content_cvpr_2018/html/
Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html

https://doi.org/10.1609/aaai.v33i01.33015676
https://doi.org/10.1609/aaai.v33i01.33015676
https://openaccess.thecvf.com/content_ECCV_2018/html/Changqian_Yu_BiSeNet_Bilateral_Segmentation_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Changqian_Yu_BiSeNet_Bilateral_Segmentation_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Changqian_Yu_BiSeNet_Bilateral_Segmentation_ECCV_2018_paper.html
https://doi.org/10.1007/978-3-540-74936-3_22
https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html
http://arxiv.org/abs/2003.10955
https://doi.org/10.1109/ICASID.2018.8693202
https://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html

Titre : De l’algorithme à l’implémentation, flot d’optimisations pour le calcul haute
performance sur GPU embarqués
Mots clés : adéquation algorithme architecture, implémentation et optimisation, GPU, traite-
ment d’images, systèmes embarqués, réseaux de neurones convolutifs
Résumé : Les algorithmes de traitement
numérique actuels nécessitent une puissance
de calcul accrue pour obtenir des résultats
plus précis et traiter des données plus volu-
mineuses. Dans le même temps, les architec-
tures matérielles se spécialisent, avec des ac-
célérateurs très efficaces pour des tâches spé-
cifiques. Dans ce contexte, le chemin du dé-
ploiement de l’algorithme à l’implémentation est
de plus en plus complexe. Il est donc cru-
cial de déterminer comment les algorithmes peu-
vent être modifiés pour tirer parti des capac-
ités du matériel. Dans notre étude, nous nous
sommes intéressé aux unités graphiques (GPU),
un type de processeur massivement parallèle.
Notre travail a consisté à l’adaption entre l’al-
gorithme et le matériel d’exécution. À l’échelle
d’un opérateur mathématique, nous avons mod-

ifié un algorithme de convolution d’images pour
utiliser les tensor cores et montré qu’on peut en
doubler les performances pour de grands noy-
aux de convolution. Au niveau méthode, nous
avons évalué des solveurs linéaires pour l’esti-
mation de flux optique afin de trouver le plus
adéquat sur GPU. Grâce à ce choix et après
de nouvelles optimisations spécifiques, la méth-
ode est deux fois plus rapide que l’implémenta-
tion initiale, fonctionnant à 60 images par sec-
onde sur plateforme embarquée (30W). Enfin,
nous avons également montré l’intérêt, dans le
cadre des réseaux de neurones profonds, de cette
méthode de conception d’algorithmes adaptée
au matériel. Avec pour exemple l’hybridation
entre un réseau conçu pour le flux optique avec
une autre architecture préentrainée et conçue
pour être efficace sur des cibles à faible puis-
sance de calcul.

Title: From the algorithm to the targets, optimization flow for high performance com-
puting on embedded GPUs
Keywords: Hardware-Aware Algorithm design, Implementation and Optimization, GPU, Im-
age Processing, Embedded Systems, Convolutional Neural Networks
Abstract: Current digital processing algo-
rithms require more computing power to achieve
more accurate results and process larger data.
In the meantime, hardware architectures are be-
coming more specialized, with highly efficient
accelerators designed for specific tasks. In this
context, the path of deployment from the algo-
rithm to the implementation becomes increas-
ingly complex. It is, therefore, crucial to deter-
mine how algorithms can be modified to take ad-
vantage of new hardware capabilities. Our study
focused on graphics processing units (GPUs), a
massively parallel processor. Our algorithmic
work was done in the context of radio-astronomy
or optical flow estimation and consisted of find-
ing the best adaptation of the software to the
hardware. At the level of a mathematical op-
erator, we modified the traditional image con-

volution algorithm to use the matrix units and
showed that its performance doubles for large
convolution kernels. At a broader method level,
we evaluated linear solvers for the combined
local-global optical flow to find the most suit-
able one on GPU. With additional optimiza-
tions, such as iteration fusion or memory buffer
re-utilization, the method is twice as fast as the
initial implementation, running at 60 frames per
second on an embedded platform (30 W). Fi-
nally, we also pointed out the interest of this
hardware-aware algorithm design method in the
context of deep neural networks. For that, we
showed the hybridization of a convolutional neu-
ral network for optical flow estimation with a
pre-trained image classification network, Mo-
bileNet, that was initially designed for efficient
image classification on low-power platforms.

Maison du doctorat de l’Université Paris-Saclay
2e étage aile ouest, École normale supérieure Paris-Saclay
4 avenue des Sciences,
91190 Gif sur Yvette, France

	Contents
	List of Figures
	List of Tables
	Introduction
	Efficient deployment for high-performance architectures
	Examples of algorithm design for image processing
	Image convolution
	Optical flow estimation

	High-performance architectures
	Context and current hardware designs
	The GPU architecture

	Optimizing for hardware performance
	From ideas to instructions
	Understanding the execution
	Optimize

	Conclusion

	GPU acceleration of image convolutions
	A Study on Convolution using Half-Precision Floating-Point Numbers on GPU for Radio Astronomy Deconvolution, SiPS 2018, Published
	The Im2Tensor Algorithm for Efficient 2D Convolutions on GPU Tensor Cores, under review
	Conclusion

	Implementation strategy for variational optical flow estimation
	Real-Time Optical Flow Processing on Embedded GPU: an Hardware-Aware Algorithm to Implementation Strategy, under review
	Conclusion

	Towards real-time optical flow with DNNs
	State of the art
	Optical flow estimation via DNNs
	Real-time strategies for DNNs

	Deploying PWC-Net on Jetson Xavier
	Architecture
	Deployment
	Results

	MobileFlow: an hybrid model based on efficient networks
	Architecture and learning method
	Results

	Conclusion

	Conclusion
	Scientific contributions
	RÃ©sumÃ© en franÃ§ais
	Bibliography

