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Abstract

The impairments arising from Kerr nonlinearity in optical fiber is a major hindering

effect in optical fiber communications, limiting the achievable information rate. Unlike

linear effects, such as chromatic and polarization-mode dispersion (PMD), which can

be compensated via linear equalization in a low-complexity regime, nonlinear equalizers

are required to be implemented in digital signal processing (DSP) unit of the receivers

in fiber-optic transmission systems to mitigate nonlinear channel impairments. This

requirement substantially escalates the computational complexity of the DSP unit.

With the conventional nonlinear equalization methods, such as digital backpropagation

(DBP), this computational overhead becomes so significant that it may impede the

practical implantation of the method in real-time systems.

With regard to this matter, considering the universality of neural networks, deep

learning-based methods have recently attracted attention for nonlinearity mitigation in

fiber-optic communications. In these methods, a neural network structure is adopted

to learn the nonlinearity patterns within the received signal. These sorts of approaches

have shown success in this task by attaining a comparable performance to conventional

methods while having lower computational complexity.

Subsequent to the advent of this research area, as a matter of course, there is ever-

increasing attention in the community over the concept of the computational efficiency

in the adopted neural structures for equalization; in pursuit of investigating more

efficient neural networks capable of attaining comparable or higher performance relative

to other networks while incurring lower or equivalent complexity.

This topic founds the subject of this doctoral manuscript, which has been prepared

within the framework of European Union’s Horizon 2020 research and innovation pro-

gram under the Marie Sk lodowska-Curie grant agreement No 766115.

In this manuscript, following having a concise overview of the fields of transmission

systems, fiber-optic communication, and neural networks, we investigate a variety of

state-of-the-art neural network-based equalization methods, in particular bidirectional

recurrent neural network (bi-RNN) -based approaches, considering their superior per-

formance, with their implementation on a natively-developed polarization-multiplexed



fiber-optic transmission system model.

In continuation of these studies, subsequently, through identifying and addressing the

sources of inefficiency in the adopted networks, we propose a more computationally

efficient neural structure formed as a hybrid convolutional recurrent neural network

(CRNN) comprising a convolutional neural network (CNN) -based encoder and a uni-

directional many-to-one vanilla RNN working in tandem, each best capturing specific

types of channel impairments while compensating for the shortcomings of the other.

We show that for a 64 GBd dual-polarization 16-QAM optical transmission over 14 × 80

km standard single-mode fiber, the proposed hybrid CRNN-based method achieves su-

perior or comparable performance to recently-proposed multilayer perceptron (MLP),

CNN+MLP, bi-RNN, bidirectional gated recurrent unit network, bidirectional long

short-term memory (bi-LSTM) network, and CNN+bi-LSTM -based equalizers in the

literature, with considerably lower complexity measured by the number of floating-

point operations (FLOPs). In particular, we demonstrate that the suggested model

approaches the performance of the state-of-the-art bidirectional recurrent-based meth-

ods with > 50% lower computational complexity compared to them.

In addition, by taking into account the polarization-mode dispersion effects, including

frequent rotation of the state-of-polarization and variation of differential group delay

along the fiber, and also by considering the laser phase noise in supplement to the

previous studies, we further investigate a more coherent way in dealing with these

effects when adopting a neural network-based equalization solution. We demonstrate

that a solitary neural network-based nonlinearity mitigation approach implemented

at the end of the linear equalization chain could deliver higher efficiency in terms of

performance and complexity relative to incorporating the polarization-mode dispersion

compensation and carrier phase estimation task into the neural network’s task.



Résumé

Les dégradations dues à la non-linéarité de Kerr dans les fibres optiques constituent une

entrave majeure aux communications sur fibre optique, limitant le débit d’information.

Contrairement aux effets linéaires, tels que la dispersion chromatique et la dispersion en

mode de polarisation (PMD), qui peuvent être compensés par une égalisation linéaire

dans un régime de faible complexité, les égaliseurs non linéaires doivent être mis en

œuvre dans l’unité de traitement numérique du signal (DSP) des récepteurs dans les

systèmes de transmission sur fibre optique pour atténuer les dégradations non linéaires

des canaux. Cette exigence augmente considérablement la complexité de calcul de

l’unité DSP. Avec les méthodes d’égalisation non linéaires classiques, telles que Digital

backpropagation (DBP), cette surcharge de calcul devient si importante qu’elle peut

entraver l’implantation pratique de la méthode dans les systèmes en temps réel.

À ce sujet, compte tenu de l’universalité des réseaux neuronaux, les méthodes basées

sur l’apprentissage profond ont récemment attiré l’attention pour l’atténuation de la

non-linéarité dans les communications sur fibre optique. Dans ces méthodes, une struc-

ture de réseau neuronal est adoptée pour apprendre les modèles de non-linéarité dans

le signal reçu. Ces types d’approche ont montré leur succès dans cette tâche en at-

teignant une performance comparable aux méthodes conventionnelles tout en ayant

une complexité de calcul plus faible.

Après l’avènement de ce domaine de recherche, la communauté s’intéresse de plus en

plus au concept d’efficacité de calcul dans les structures neuronales adoptées pour

l’égalisation, dans le but d’étudier des réseaux neuronaux plus efficaces capables

d’atteindre des performances comparables ou supérieures à celles d’autres réseaux tout

en présentant une complexité inférieure ou équivalente.

Ce sujet constitue le thème de ce manuscrit de doctorat, qui a été préparé dans le cadre

du programme de recherche et d’innovation Horizon 2020 de l’Union européenne, sous

la convention de subvention Marie Sk lodowska-Curie n° 766115.

Dans ce manuscrit, après avoir eu un aperçu concis des domaines des systèmes de

transmission, de la communication sur fibre optique et des réseaux neuronaux, nous

étudions une variété de méthodes d’égalisation basées sur les réseaux neuronaux, en

particulier les approches basées sur les réseaux neuronaux récurrents bidirectionnels

(bi-RNN), compte tenu de leur performance supérieure, avec leur mise en œuvre sur



un modèle de système de transmission sur fibre optique multiplexé par polarisation

développé nativement.

Dans le cadre de ces études, par la suite, en identifiant et en traitant les sources

d’inefficacité des réseaux adoptés, nous proposons une structure neuronale plus effi-

cace en termes de calcul, sous la forme d’un réseau neuronal récurrent convolution-

nel (CRNN) hybride comprenant un encodeur basé sur un réseau neuronal convolutif

(CNN) et un réseau de neurones récurrents vanille unidirectionnel travaillant en tan-

dem, chacun capturant au mieux des types spécifiques de dégradations de canaux tout

en compensant les défauts de l’autre.

Nous montrons que pour une transmission optique 16-QAM à double polarisation de

64 GBd sur une fibre monomode standard de 14 × 80 km, la méthode hybride CRNN

proposée atteint des performances supérieures ou comparables à celles des égaliseurs

basés sur un perceptron multicouche (MLP), CNN+MLP, bi-RNN, réseau d’unités

récurrentes gated bidirectionnel, réseau de mémoire à long terme bidirectionnel (bi-

LSTM) et CNN+bi-LSTM récemment proposés dans la littérature, avec une complexité

considérablement inférieure mesurée par le nombre d’opérations en virgule flottante

(FLOP). En particulier, nous démontrons que le modèle suggéré s’approche de la per-

formance des méthodes bidirectionnelles récurrentes de pointe avec une complexité de

calcul inférieure de > 50% par rapport à celles-ci.

En outre, en prenant en compte les effets de dispersion du mode de polarisation, y

compris la rotation fréquente de l’état de polarisation et la variation du retard de

groupe différentiel le long de la fibre, et en considérant également le bruit de phase du

laser en complément des études précédentes, nous étudions la manière plus cohérente

de traiter ces effets lors de l’adoption d’une solution d’égalisation basée sur un réseau

neuronal. Nous démontrons qu’une approche d’atténuation de la non-linéarité basée sur

un réseau neuronal solitaire, mise en œuvre à la fin de la châıne d’égalisation linéaire,

pourrait offrir une efficacité supérieure en termes de performance et de complexité par

rapport à l’intégration de la compensation de la dispersion en mode de polarisation et

de l’estimation de la phase de la porteuse dans la tâche du réseau neuronal.
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SSFM Split-Step Fourier Method

SSMF Standard Single-Mode Fibre

StPS Step per Span



Notations

Notation Description

σℓ(.) Neural network’s activation function for layer ℓ

ω Angular frequency

Rs Baud rate

bℓ Bias vector for layer ℓ

c(t) Cell state of of the time-step t in LSTM and GRU

D Chromatic dispersion parameter

qx Complex envelope of the signal in x-polarization

propagating in the fiber as a function of time t and distance z

qy Complex envelope of the signal in y-polarization

propagating in the fiber as a function of time t and distance z

q [qx,qy]
T

F Discrete Fourier transform matrix

M Effective channel memory

Aeff Effective cross-sectional area

neff Effective refractive index

α Fiber loss

Lsp Fiber span length

Γf Forget gate weights of LSTM

vg Group velocity

β2 Group velocity dispersion

h(t) Hidden state of the time-step t in RNNs (vanilla LSTM GRU)

x(t) Input to the time-step t of the RNN

F† Inverse discrete Fourier transform matrix

αlr Learning rate

Lker Length of the 1-D convolution kernel

nl Linear refractive index coefficient

L̂(W ) Loss function (value) given the wights matrix W



Notation Description

W<t>
ℓ Neural network’s weight matrix of layer ℓ at iteration t

nnl Nonlinear refractive index coefficient

γ Nonlinearity coefficient

Nch Number of channels in the convolution layer

Nstps Number of step per span

Ntaps Number of taps

L Optical fiber length

(φi)
n
i=1 Orthonormal basis spanning a Hilbert space Hn

Γo Output gate weights of LSTM

vp Phase velocity

h Planck constant

τ PMD parameter

Γr Relevance gate weights of LSTM

L2 Set of all finite energy functions

MLP(σ, d,Nℓ) Set of all MLPs with d-dimensional input, Nℓ layers,

and activation σ(.)

σsig Sigmoid activation

c Speed of light in vacuum

δ Step size in SSFM

Ts Symbol period

σtanh Tanh activation

βAdam
1 The exponential decay rate for the first moment estimates

in Adam algorithm

βAdam
2 The exponential decay rate for the second moment estimates

in Adam algorithm

s
(i)
x ,ŝ

(i)
x Transmitted symbol at symbol time-step i modulated on

x-polarization, and the corresponding recovered symbol at receiver

s
(i)
y ,ŝ

(i)
y Transmitted symbol at symbol time-step i modulated on

y-polarization, and the corresponding recovered symbol at receiver

Γu Update gate weights of LSTM and GRU

λ Vacuum wavelength

kw Wave number
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Chapter 1

Introduction

The ubiquitous usage of fiber-optic communications has ushered in a new era of data

networking. The use of optical fibers in place of copper cables nowadays has made it

possible for telecom connections to be established over longer distances and with lower

loss in the transmission medium. Optical fibers have made it possible to transmit data

at speeds that are several orders of magnitude greater than those possible with the

electrical transmission.

These benefits have resulted in the extensive use of optical fiber communication systems

for a variety of applications ranging from the backbone infrastructure of long-haul

communication systems to Ethernet systems, broadband distribution systems, and

general data networking. In particular, nowadays, more than 99% global Internet

traffic pass through optical fibers [1]. Fig. 1.1 shows the map of submarine optical

fiber cables connecting countries and continents by May 2022.

Consequently, with the exponential increase in the demand for data rates worldwide,

there is escalating pressure imposed on fiber-optic networks. Based on the CISCO

annual report, the Internet traffic has grown 3.7-fold from 2017 to 2022 (a compound

annual growth rate of 30%), and IP traffic will reach 50 GB per capita in 2022, up from

16 GB per capita in 2017 [2]. In an estimate, there will be 5.3 billion total Internet

users (66% of the global population) by 2023, up from 3.9 billion (51% of the global

population) in 2018 [3], and the gigabyte equivalent of all movies ever made will cross

global IP networks among these users every 1 minute [2].

Given this drastic growth in demand, the quality of fiber-optic systems needs to be

19



raised to meet the situation and tolerate the pressures. Concerning this matter, besides

coherent detection combined with high-speed digital signal processing (DSP) circuits,

the underlying algorithms to reverse the distortion effects of fiber-optic channels arising

from their physical properties should be improved. These effects include attenuation,

chromatic dispersion (CD), polarization-mode dispersion (PMD), and the Kerr effect

(also called the quadratic electro-optic effect), which is caused by the change in the

refractive index of the optical link in response to the applied electric field [4]–[6].

As opposed to CD and PMD, which are linear effects, the Kerr effect is proportional to

the square of the transmitted signal amplitude and does not vary linearly with it. This

nonlinear property limits the achievable information rate of the conventional transmis-

sion techniques. It also makes the equalization task at the receiver (RX) a complex

nonlinear process requiring substantially higher computing resources than that for lin-

ear channels. Digital backpropagation (DBP) [7], [8], Volterra series transfer function

[9], [10], maximum-likelihood sequence estimation (MLSE) [11], [12], and optical phase

conjugation [13]–[15] are the main conventional nonlinear equalization solutions, in

this regard, which suffer from high computational complexity hindering their real-time

functioning in practical systems.

With the advent of the concept of the neural network in 1943 by Warren McCulloch

and Walter Pitts [17], and following the progress of this field and its implementation

in light of the advancement of computers, and the success of this field in many areas of

research and industry [18]–[20], neural networks gradually found their ways into fiber-

optic communications, and they were leveraged for equalization [21]–[29] to attain

higher efficiency in terms of complexity-performance trade-off.

These networks, which are composed of concatenated linear and nonlinear operators,

can be optimized via the backpropagation algorithm [30] and variants of stochastic

Gradient Descent [31, Ch. 4] to capture the complex nonlinear input-output corre-

lations and mathematical structures in the presented data, and thus they are used

to learn the deterministic distortion patterns across the signal by observing multiple

input-output samples of the fiber-optic channel.

Neural networks are hierarchically organized into groups of basic processing units or

neurons, and their performance and efficiency are associated with this organization and

the scheme that information propagates from the input layer to the output. According

to this fact, different levels of performance and efficiency, in terms of performance-
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Figure 1.1: Operating submarine optical fiber cables by May 2022 as the infrastructure

of the Internet, connecting continents and countries [16]

complexity trade-off, have been obtained via different adopted architectures for neural

network-based equalization; and there is ongoing research to devise more efficient neural

network models capable of attaining comparable or higher performance than other

networks while incurring lower or comparable complexity, respectively.

This topic has been the subject of the doctoral program resulting in this manuscript.

This doctoral program started in May 2019 within the FONTE-EID project, in the

framework of the European Union’s Horizon 2020 research and innovation program

under the Marie Sk lodowska-Curie grant agreement No 766115. During this period, we

investigated a variety of state-of-the-art neural network-based equalization methods,

with a focus on bidirectional recurrent neural network (bi-RNN) -based approaches con-

sidering their superior performance, with their implementation on a natively-developed

long-haul fiber-optic transmission system model. In these studies, we analyzed the

sources of computational inefficiency in the processing structures of the adopted net-

works; and subsequently, by addressing them, we proposed a more efficient architec-

ture formed as a hybrid convolutional recurrent neural network (CRNN) comprising a
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CNN-based encoder and a unidirectional many-to-one vanilla RNN working in tandem,

each best capturing specific types of channel impairments while compensating for the

shortcomings of the other.

We have demonstrated that for the nonlinearity and joint nonlinearity-PMD mitigation

at RX in a 64 GBd dual-polarization 16-QAM optical transmission over 14×80 km stan-

dard single-mode fiber (SSMF), which is a typical system architecture for fiber-optic

transmission systems, the proposed CRNN model achieves the comparable performance

to the state-of-the-art bi-RNN, bi-GRU, bi-LSTM, and CNN+bi-LSTM -based equal-

ization approaches [32]–[35] with greater than 50% fewer number of FLOPs, and it

achieves superior performance over multi-layer perceptron (MLP) and convolutional

neural network (CNN) -based approaches with lower complexity.

As the dissemination results of the carried out research during the doctoral program, we

published two conference papers, one journal paper (invited paper), one peer-reviewed

book chapter (invited paper), nine deliverables to European Union regarding FONTE-

EID project, and the software project entitled ”Fiber-Optic Transmission System Mod-

eling” under the GNU General Public License v3.0. It is noteworthy to mention that

among these publications, the conference paper ”Efficient Deep Learning of Nonlinear

Fiber-Optic Communications Using a Convolutional Recurrent Neural Network” was

placed among the ten selected papers of the 2021 20th IEEE International Conference

on Machine Learning and Applications (ICMLA). Subsequently, we were invited to

submit the extended version of the paper to be published as a book chapter in ”Deep

Learning Applications, vol. 4,” published by Springer Nature.

The concepts in these publications in the elaborated form and their backgrounds aim

to form the core of this doctoral manuscript. With respect to this, in this manuscript,

following providing a succinct background and overview of fiber-optic transmission sys-

tems and neural networks, we elaborate on the methods and outcomes of the conducted

research and investigations to provide a clear understanding of the research problem,

achieved results, and the developed software libraries and resources within the doctoral

program.

This doctoral manuscript is organized into five chapters to better convey the objective

discussed. In the remainder of this section, we provide a brief introduction to each of

these chapters.

Chapter 2 provides a concise overview of the principles of the dual-polarization fiber-
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optic communication systems covering a variety of concepts about the fundamental

technology in these systems, transmission schemes, fiber-optic channel model, different

types of channel impairments and distortions, and required digital signal processing

(DSP) at the receiver to compensate for them. The purpose of this chapter is two-fold.

First, to provide the user with an understanding of the considered optical fiber commu-

nication system in this study and the corresponding developed software. Second, and

more importantly, to familiarize the reader with the concept of channel impairments,

especially nonlinearity, and the substantial processing overhead required to compensate

for it.

Chapter 3 briefly discusses the underlying theory of the neural networks, different cat-

egories of the neural networks, including feed-forward neural networks (FNNs) and

recurrent neural networks (RNNs), and the concept of feature extraction, dimension-

ality reduction, and latent space. This section aims to familiarize the reader with the

concept of the architecture of the neural network and its decisive role in the perfor-

mance and complexity of the neural model.

Chapter 4 splits in to two parts. The beginning part focuses on the state-of-the-art

neural network-based equalization methods, including MLP, CNN, bi-RNN, bi-GRU,

bi-LSTM, and CNN+bi-LSTM methods, and it reviews and debates them. Through

critical analysis, this section tries to shed light on the sources of complexity and ineffi-

ciency in these networks, which forms the motivation for the devised CRNN model for

addressing them. The second part of this chapter presents the proposed CRNN model

in detail, elaborates on its process flow, and substantiates its underlying logic.

Chapter 5 dedicates to evaluating the devised CRNN model in comparison to the dis-

cussed state-of-the-art methods discussed in Chapter 4. This chapter, in the beginning,

clearly explains the modeled fiber-optic communication systems, the methods and al-

gorithms for the modeling, the considered system setup, channel parameters, neural

network setups and optimization, and the equalization target. Following clarifying the

methods and algorithms, the chapter discusses the numerical results in the consid-

ered configurations and comprehensively debates the complexity versus the gain of the

methods.

The conclusions section finally briefly reviews and concludes the manuscript. The

future studies section, following the conclusions, moreover, discusses the potential areas

for further research and investigations.
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Chapter 2

Optical fiber transmission systems:

from modulation to nonlinearity

mitigation

As telecommunications evolved, the demand for quicker and more efficient data trans-

mission grew. Faced with this demand, with the advent of silica-based optical fibers, the

deployment of optical fiber communications as a principal infrastructure for telecom-

munication systems, especially for long-haul communications, was primarily taken into

account.

Optical fiber communications, or alternatively fiber-optic communications, refers to the

transmission of information from one location to another using light pulses transmitted

over an optical fiber. Any optical fiber communication system consists of four major

components: transmitter, optical fiber cable, optical amplifier, and receiver.

Briefly saying, the transmitter modulates data on an eclectic field, converts it to the

optical domain, and transmits it over the optical fiber. The optical fiber, which consists

of a core surrounded by a lower refractive index layer called cladding, directs the optical

pulse towards the receiver. The receiver converts the optical pulses into the equivalent

electrical field and applies digital signal processing algorithms to it to compensate

for the channel’s deterministic effects; a process termed equalization. Also, as signal

attenuation happens along the optical fiber link owing to fiber loss, amplifiers are

installed at various points along the optical fiber connection to compensate for the
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attenuation.

Depending on the application, the system components may change. Systems used

for low-capacity lines, particularly for local area networks, leverage schemes and com-

ponents slightly distinct from those utilized by network providers offering ultra-high

data rates across large distances. Despite this, the fundamental concepts are the same

regardless of the system.

In this chapter, we provide a summary of the principal concepts in the mentioned fiber-

optic communication systems components, from the physical properties of the fiber to

the required digital signal processing at receiver DSP.

2.1 Optical fiber as a data transmission medium

An optical fiber is a flexible, transparent medium made by drawing glass or silica,

which is intended to direct the transmitted light pulses toward the other end. The

pulse propagation in optical fibers operates based on a physical phenomenon called

total internal reflection, which means the full reflection of the light beam within a

medium from the surrounding boundaries back into the medium. This phenomenon

is rooted in the difference in the refractive index of the two adjacent materials, and

it happens when the refractive index of the surrounding material is lower than the

reflective index of the medium.

Optical fibers have been established based on this phenomenon. These mediums consist

of a core, around which there is another layer called cladding, which is made of similar

material, i.e., silica, but with a slightly lower refractive index. This results in as

the light pulse propagates down the core and hits the boundaries, it undergoes total

internal reflection and is therefore confined inside the optical fiber’s core. Outside of

the cladding, there exists a plastic layer called coating, with the purpose of providing

protection to the core and cladding. Fig. 2.1 shows this anatomy of the optical fiber.

Depending on the properties of the fiber’s core, optical fibers are categorized into single-

mode and multi-mode fibers. Multi-mode fibers have a core diameter of ∼ 50µm,

enabling the propagation of multiple light modes. However, in consequence, the prop-

agation in these fibers incurs modal dispersion and experiences higher reflections, re-
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Figure 2.1: The general anatomy of an optical fiber, relied on the total internal reflec-

tion phenomenon [36].

sulting in lower bandwidth. 1 On the contrary, the core’s diameter in single-mode

fibers (SMFs) is reduced (8 − 10.5µm) such that it only allows for propagation in a

single mode of light, resulting in higher bandwidths.

Propagation of signals in both types, however, is subject to 2 attenuation, chromatic

dispersion (CD), polarization-mode dispersion (PMD), and nonlinear impairments [4]–

[6] imposing distortions to the signal.

2.1.1 Attenuation

As the light pulse travels through the fiber, its intensity is attenuated. Attenuation in

optical fibers is caused by two factors: absorption and scattering.

Absorption is induced by light absorption and conversion to heat by molecules of

the fiber’s glass. The principal absorbers are residual OH-ions and dopants that are

employed to change the refractive index of the glass.

The main cause of attenuation, however, is scattering. Scattering happens when a wave

and a particle interact in such a manner that the energy from the directed propagating

1These fibers are only efficient for short-distance transmissions (< 2km) and have an easier and

less costly manufacturing process.
2Not limited to
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Figure 2.2: Attenuation rate of optical fiber as a function of the wavelength [37].

wave is removed, and it is transferred to other directions. In this case, the light is not

absorbed but rather redirected.

Fig. 2.2 shows the loss rate in a standard SMF (SSMF) as a function of the wavelength.

As this figure demonstrates, the minimum level of loss occurs at near the wavelength

1550nm with the rate of 0.2 dB/km. Note that the absorption peak at 1380nm due to

OH-ions concentration is currently suppressed for the modern SSMFs (i.e., G.652 c/d

fibers).

Due to the attenuation, the optical link is usually split into a number of so-called spans.

At the end of each span, an amplification process via an amplifier compensates for the

fiber loss. Section 2.3.2 describes this process.

2.1.2 Chromatic dispersion

Although laser sources are spectrally narrow in fiber-optic transmission systems, they

are not monochromatic. This indicates that the input light pulse has several wavelength

components. Moreover, modulation of the optical carrier intrinsically induces spectral

broadening.

Chromatic dispersion refers to the phenomenon in which different spectral components

of a light pulse have different velocities (traveling at different speeds) in the medium,

depending on their frequency. This causes the pulse to spread, leading to intermixing
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the slower wavelengths of one pulse with the faster wavelengths of the next pulse,

resulting in inter-symbol interference.

Two factors contribute to chromatic dispersion: material dispersion, which is related

to the dependence of the the refractive index of the fiber material to the wavelength,

and waveguide dispersion, which is associated with the waveguide properties.

As mentioned, chromatic dispersion leads a short light pulse to be broadened through

the propagation. This phenomenon is referred to as group velocity dispersion, and it is

quantified as the derivative of the reciprocal of the group velocity with respect to the

radian frequency

β2 =
∂

∂ω

1

vg
=

∂

∂ω

∂kw
∂ω

=
∂2kw
∂ω2

, (2.1.1)

where vg is the group velocity (derivative of the phase velocity vp = ω/kw), ω is the

angular frequency, and kw is the wavenumber. β2 is called group velocity dispersion

parameter.

In fiber-optic communications, however, there is a tendency to define dispersion as a

derivative with respect to wavelength (rather than angular frequency). This is realized

by

D =
∂

∂λ

1

vg
= −2πc

λ2

∂2kw
∂ω2

= −2πc

λ2
β2, (2.1.2)

where λ is the vacuum wavelength. D is also termed as chromatic dispersion parameter.

2.1.3 Polarization mode dispersion

In dual-polarization systems, the electrical field of the transmitted polarization-

multiplexed signal can be decomposed into two orthogonal polarization 3, each carrying

a different signal. In an ideal optical fiber, the two orthogonal polarizations travel at

the same speed; however, in a realistic fiber, the two polarizations propagate at frac-

tionally different velocities, owing to random imperfections and non-circularity of the

3polarization is typically defined in the context of the electric field.
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Figure 2.3: The realistic model of a cabled optical fiber as a chain of simple birefringent

fiber segments concatenated at random rotational angles, resulting in PMD effects.

core, accumulating phase shift, and corresponding differential delay in proportion to

distance 4 (termed as birefringence). This phenomenon is called polarization mode

dispersion, abbreviated as PMD.

According to this phenomenon, fiber birefringence separates the input pulse into linear

slow and fast polarization modes across short distances. This disparity in propagation

time is referred to as the differential group delay (DGD). DGD has Maxwellian distri-

bution, and its mean value grows as the square root of fiber length (The average DGD

divided by the square root of fiber length is called the PMD coefficient).

Besides DGD, as a matter of fact, only quite short lengths of optical fiber exhibit uni-

form birefringences. A cabled optical fiber, however, is more accurately represented, in

practice, as a chain of basic birefringent fiber segments connected at random rotational

orientations (see Fig. 2.3). Each segment changes its input polarization state into

another output state by modifying the relative phase of the local fast and slow waves.

The output state is then forwarded to the subsequent segment, where the wave splits

into local fast and slow waves, and the process starts over.

With regard to the discussed distortion effects in propagation through optical fibers,

proper transmission, reception, and equalization techniques should be adopted for the

transmitter and receiver in the fiber-optic transmission systems.

4A waveguide generating such a phase shift in termed as birefringent. There are two roots for fiber

birefringence: non-circularity of the core, and some material imperfections in the fiber resulting in

polarization-dependent refractive index

29



2.1.4 Nonlinearity

Nonlinear impairments are another sort of distortions experienced by a signal propagat-

ing through a fiber-optic channel, particularly in long-distance transmissions. For high

bit-rate systems, Kerr effect is the more significant type of nonlinear impairments.

Because of its nonlinear nature, the Kerr effect is one of the key limiting factors of

achievable information rate (AIR) in optical fiber communications.

Kerr effect describes the change in the refractive index of a material in response to an

applied electric field, which is proportional to the square of the electric field instead of

having a linear relationship with it. This phenomenon, which is rooted in the anhar-

monic motion of bound electrons under the influence of the applied electromagnetic

field [38, Ch. 1.3], prompts the notion of the effective refractive index

neff (z, t) = nl + nnl
|E(z, t)2|
Aeff

(2.1.3)

where nl is the linear refractive index, and nnl is the nonlinear refractive index coeffi-

cient. Aeff is the effective cross-sectional area defined as

Aeff =

(∫ ∞

−∞

∫ ∞

−∞
|E(x, y)|2 dxdy

)2
∫ ∞

−∞

∫ ∞

−∞
|E(x, y)|4 dxdy

(2.1.4)

where E(x, y) is the optical mode field distribution [39]. The nonlinearity coefficient

subsequently is defined as

γ =
2π

λ

nnl

Aeff

(2.1.5)

A detailed and broad discussion on the concept of Kerr nonlinearity is presented in [40,

pp. 275-297].

Kerr nonlinearity, however, is better understandable in the context of the nonlinear

Schrödinder equation describing the propagation of the signal in the optical fiber. In

Section 2.3, we elaborate on this topic.
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2.2 Transmission in fiber-optic communications

In optical fiber communication systems, the aim of the transmitter is to load the

information on light beams and transmits them to the optical fiber in such a way

that the received signal can be efficiently recovered at the receiver, given the channel

distortions. In dual-polarization optical fiber communication systems, this task involves

(not limited to) modulation and polarization-division multiplexing (PDM). In this

section, we briefly describe these concepts and discuss the adopted methods in this

work for their implementation.

2.2.1 Modulation

Modulation is the process of converting information (digital bit stream or analog signal)

to a form that can be physically transmitted over the communication medium. In

this process, the information is called the baseband or modulating signal; and the

periodic waveform that is used to physically transmit information by varying one or

more properties of it based on the baseband is called the carrier signal.

This section briefly discusses the mathematical foundation of this concept and the

processes comprising the modulation, including constellation mapping, pulse shaping,

and power adjustment.

2.2.1.1 Mathematical foundation

The idea of modulation has been built upon the corollary that every finite-energy

function f in a Hilbert space Hn can be decomposed into an orthonormal basis

{φ1, φ2, . . . , φn} of the space. In this subsection, we mathematically discuss this con-

cept and formulate the modulation process.

Definition 2.2.1 (Inner product). An inner product on a vector space E over a field

K is a function < ., . > : E × E → K satisfying the following properties [1]:

(a) ∀x, y ∈ E, < x, y >= < y, x >.

(b) ∀x1, x2, y ∈ E, ∀λ1, λ2 ∈ K, < λ1x1 + λ2x2, y >= λ1 < x1, y > +λ2 < x2, y >.
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(c) ∀x ∈ E, < x, x >≥ 0 & < x, x >= 0 iff. x = 0.

Definition 2.2.2 (Inner product). An inner product space is a vector space together

with an inner product.

Definition 2.2.3. A Hilbert space H is a real or complex inner product space that

is also a complete metric space with respect to the distance function induced by the

inner product.

Theorem 2.2.1. The set of all finite energy functions (L2 space) forms a Hilbert space

over the field C with the following inner product:

< f(t), g(t) >=

∫ ∞

−∞
f(t)g(t)dt. (2.2.1)

Theorem 2.2.2. Every Hilbert space has an orthonormal basis.

According to Theoream 2.2.1 and Theoream 2.2.2 every finite-energy function f can

be decomposed into an orthonormal basis {φ1, φ2, . . . } of the space as the following

f(t) =
∑
k

skφk(t) (2.2.2)

where sk ∈ C.

This notion forms the underlying logic of the modulation process by taking sks as

the information to be sent, and φk(t)s as the selected orthonormal basis of the space,

referred to as pulse shapes. In other words, mathematically defining, modulation is the

process of mapping symbols sk (information) to the function f(t) (modulated signal)

by expanding the modulating signal (baseband) in the orthonormal basis of the space

(pulse shapes), according to (2.2.2). By this approach, the received waveform at the

receiver can be decoded by the projection of the received signal into the orthonormal

basis to obtain the transmitted symbols, a process called demodulation.

To demonstrate this, let X(t) =
∑n

k=1 skφk be the transmitted signal. In an identity

channel where the received signal Y equals transmitted signal X, the symbol si can be

simply demodulated as follows:

ŝi =< Y, φi >=< X,φi >=<
n∑

k=1

skφk, φi >=
n∑

k=1

sk < φk, φi >= si. (2.2.3)
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Figure 2.4: An illustration of four common modulation techniques: OOK, ASK, FSK,

BPSK, to modulate a binary data stream over a sine carrier wave.

Based on the physical interpretation and assignments for sks and φks in (2.2.2) dif-

ferent modulation techniques are developed. In the following section, we discuss the

fundamental modulation techniques for digital communication systems.

2.2.1.2 Fundamental modulation techniques for digital communication sys-

tems

Fundamentally, there exist four main modulation techniques for digital communica-

tion systems, which are based on modifying the amplitude, frequency, phase, and

combination of amplitude and phase to reach higher spectral efficiency, defined as the

information rate that can be transmitted over a given bandwidth [41, Ch. 7].

On-off keying (OOK) and amplitude shift keying (ASK) are the two main types of

amplitude modulation formats. In OOK, the binary signal (bit stream) toggles the
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carrier amplitude on and off, resulting in the creation of OOK. On the other hand, ASK

is produced by shifting the carrier amplitude between two different amplitude levels.

Similarly, frequency-shift keying (FSK) is produced by shifting the carrier between

two different frequencies named the mark and space frequencies. Fig. 2.4 presents an

illustration of the OOK, ASK, and FSK modulation techniques.

Binary phase-shift keying (BPSK) and quadrature phase-shift keying (QPSK) are two

main techniques in the modulation based on the modification of the phase. In BPSK,

for each change in the binary state, the carrier periodic waveform is shifted 180◦. An

example of BPSK modulation is also demonstrated in Fig. 2.4.

In QPSK, two periodic carrier waveforms are produced 90◦ apart. Then each phase is

modulated by the binary data, resulting in four distinct sine signals that are shifted in

phase by 45◦. The final signal is produced by adding the two phases together. Carriers

with distinct phases are generated for each unique pair of bits.

Modulation based on the modification of both amplitude and phase levels is called

quadrature amplitude modulation (QAM). This modulation technique substantially

improves spectral efficiency and allows for transmitting more information per sym-

bol. In view of this, the QAM technique was adopted for the considered fiber-optic

transmission system during the doctoral program.

QAM makes use of both amplitude and phase components to offer a form of modulation

with higher spectral efficiency. In QAM, two carriers with 90◦ phase shift are modulated

and merged to form a single carrier signal. The term quadrature in QAM refers to this

90◦ phase difference. In this technique, one of the two signals is called In-phase, and the

other is called Quadrature. Both In-phase and Quadrature carriers can have amplitude

variations.

According to this fact, as opposed to basic signals toggling between two levels, several

points with different phase and amplitude levels (known as symbols) can be used in

QAM. These points constitute a so-called constellation diagram (see. Fig. 2.5) in

which each point (symbol) represents a specific phase and amplitude, and it is used for

denoting specific pairs of bits. The number of these points in a constellation diagram

typically is of power of 2, i.e., 16, 64, ..., which are referred to as 16-QAM, 64-QAM,

..., formats. By using more points in the constellation, the information rate that can

be transmitted per symbol is increased, but by this action, the points get closer to

each other, and they become prone to noise and other distortions, resulting in a higher
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(a) 8-QAM (b) 16-QAM

Figure 2.5: Sample 8-QAM and 16-QAM constellations. QAM uses a mix of ampli-

tudes and phases to achieve higher spectral efficiency. Each state denotes a symbol

representing a sequence of bits. The number of bits carried per symbol in 8-QAM is 3

bits, and in 16-QAM is 4 bits.

bit-error-rate (BER). Fig. 2.6 demonstrates the BER performance of a communication

system over an additive white Gaussian noise (AWGN) channel Y = X(t) + N(t),

where N(t) is circularly distributed Gaussian noise, in transmission using different

QAM formats. Fig. 2.7 also shows the corresponding obtained constellations at the

receiver, which illustratively shows the signal degradation due to the random noise

coming from the AWGN, by the rise of QAM order.

It should be mentioned that in the context of Section 2.2.1.1, the constellation points

which account for sks in (2.2.2) are mathematically modeled by being drawn from C.

The orthonormal basis φks are also chosen to be the set {p(t− i/Rs)}∞i=−∞ where p(t)

is the pulse shape and Rs is the baud rate. In the next part, we elaborate on the

pulse shaping, in particular root-raised cosine pulse shapes, which were adopted for

the considered communication system in our doctoral studies.

2.2.1.3 Pulse shaping

Mathematically expressing, pulse shaping is the process of adopting the pulse shape

p(t) with which {p(t − i/Rs)}∞i=−∞ forms an orthonormal basis for the space, so that

the baseband can be modulated to the waveform q(t, 0) =
∑∞

i=−∞ sip(t− i/Rs).
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Figure 2.6: BER performance of a transmission system as a function of signal-to-noise

ratio (SNR) over an AWGN channel using different QAM orders.

(a) 8-QAM (b) 16-QAM (c) 32-QAM

(d) 64-QAM (e) 128-QAM (f) 256-QAM

Figure 2.7: Obtained constellation at receiver in the considered transmission system

over an AWGN channel at SNR 12 dB using different QAM formats.
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In the context of physics, the term ”pulse shaping” refers to modifying the waveform

of transmitted pulses to make the transmitted signal more optimally suited to the

communication channel. The employment of a pulse shaping filter is necessary for

communications systems because of two essential criteria that must be satisfied by a

communications channel: 1) generating band-limited signals, 2) eliminating interfer-

ence from adjacent symbols, known as inter-symbol interference. An optimal pulse

shaping filter that is applied to each symbol can fulfill both of these needs simultane-

ously.

Theoretically, an ideal pulse shaping filter is the sinc pulses (also called Boxcar filter).

In the frequency domain, the sinc filter produces a rectangular shape, which perfectly

limits the effective bandwidth. However, technically it is not feasible to implement the

sinc filter accurately, considering that it is a non-causal filter (its output depends on

future input as well) with relatively slowly decaying tails.

The common practical pulse shapes that are used in communication systems are the

Gaussian filter, Raised-cosine (RC) filter, and Root raised-cosine (RCC) filter.

Gaussian pulse: A Gaussian filter has an impulse response in the form of a Gaussian

function. The impulse response of the Gaussian filter is given by

hgs(t) =

√
π

αgs

exp

[
−(

π

αgs

t)2
]
, (2.2.4)

where αgs is associated to 3-dB bandwidth-symbol time product of the Gaussian filter

as follows

αgs =
1

BTs

√
log 2

2
(2.2.5)

where B is bandwidth, and Ts = 1/Rs.

According to (2.2.4), by the rise of αgs, the spectrum occupancy of the Gaussian filter

is reduced, and the impulse response extends over neighboring symbols, which results

in an increase in the inter-symbol interference.

Raised-cosine pulse: RC filter is a solution to address the problem of the sinc

pulse, in order to eliminate infinitely long tails in either the time or frequency domain
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(associated with rectangular pulse shape). The impulse response of an RC filter is as

follows

hrc(t) =



π

4Ts

sinc

(
1

2βro

)
, t = ± Ts

2βro

1

Ts

sinc

(
t

Ts

) cos

(
πβrot

Ts

)
1 −

(
2βrot

Ts

)2 , otherwise,

(2.2.6)

where 0 ≤ βro ≤ 1 is the roll-off factor.

Root raised-cosine pulse: RRC filter has a similar underlying motivation to RC

filter, with a frequency response equal to the square root of the frequency response of

RC, i.e |Hrrc(f)| =
√

|Hrc(f)|. The impulse response of an RRC filter is as follows

hrrc(t) =



1

Ts

(
1 + βro(

4

π
− 1)

)
, t = 0

βro

Ts

√
2

[(
1 +

2

π

)
sin

(
π

4βro

)
+

(
1 − 2

π

)
cos

(
π

4βro

)]
, t = ± Ts

4βro

1

Ts

sin

[
π
t

Ts

(1 − βro)

]
+ 4βro

t

Ts

cos

[
π
t

Ts

(1 + βro)

]
π
t

Ts

[
1 −

(
4βro

t

Ts

)2
] , otherwise.

(2.2.7)

The advantage of the RRC filter is that it is its own matched filter, thanks to being

symmetric and real-valued.

2.2.1.4 Signal power

The area under the squared magnitude of a continuous-time signal x(t) is defined as

the energy Es of the signal. That is to say
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Es =

∫ T
2

−T
2

|x(t)|2dt, (2.2.8)

where T is the signal duration. The power of the signal x(t) is defined as the energy

divided by time, i.e., mathematically

P = lim
T→∞

1

T

∫ T
2

−T
2

|x(t)|2dt. (2.2.9)

Let L2
B be the space of finite-energy functions that are band-limited to B Hz with the

basis (φk(t))Nk=1. Subsequently, if x(t) ∈ L2
B, x(t) =

∑N
k skφk(t) for some sk ∈ C.

Using the basis φk(t) = sinc(Bt− k/B) and the orthogonality property, the integral in

the definition of power can be computed analytically so that

P =
1

N

N∑
k=1

|sk|2, (2.2.10)

given that T = N/B and
∫

sinc2(Bx)dx = 1/B.

When dealing with random processes X(t), P becomes a random variable, and sub-

sequently the term power connotates the average power. In the particular case that

x(t) is expanded in a basis as discussed, and sks are a sequence of independent and

identically distributed (iid) random variables with variance σ2, we have

Pa =
1

N

N∑
k=1

E[|sk|2] = σ2. (2.2.11)

In a broader definition, however, the average power for a general random process is

defined as

Pa = lim
T→∞

1

T

∫ T
2

−T
2

E[|x(t)|2]dt

= lim
T→∞

1

T

∫ T
2

t1=−T
2

∫ T
2

t2=−T
2

E[X(t1)X
∗(t2)]δ(t2 − t1)dt1dt2, (2.2.12)
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Figure 2.8: Propagation of two ASK signals in distance, in parallel, through

polarization-division multiplexing approach.

where δ(.) is the Dirac-delta generalized function.

2.2.2 Polarization-division multiplexing

In communication systems based on electromagnetic waves, two information channels

can be transmitted simultaneously on the same carrier frequency utilizing two orthog-

onal polarization states. This physical layer approach for multiplexing signals is called

polarization-division multiplexing (PDM). In dual-polarization optical fiber commu-

nication systems, PDM is used to double the information rate by multiplexing two

modulated signals and transmitting them in parallel using the separate left and right

circularly polarized optical pulses through the channel. Fig. 2.8 illustrates an ideal

dual-polarization propagation, where two modulated signals are propagating in dis-

tance simultaneously by being multiplexed on orthogonal polarization states of the

space.

In optical fiber communication system, applying PDM also results in some side effects

due to the fiber birefringence, termed polarization mode dispersion (PMD), introducing

the notion of group differential delay and rapid changes of the state-of-polarization

(SOP) over the entire Poincaré sphere, especially in long-haul systems. We discuss

these effects more in detail in Section 2.3.
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(a) 50 KHz (b) 100 KHz

(c) 500 KHz (d) 5000 KHz

Figure 2.9: Effect of the phase noise on the constellation based on different laser

linewidths during 2560 ns observation in 64 GBd transmission. The phase offset level

extends towards covering the entire rings by increasing the linewidth.

2.2.3 Laser phase noise

As a matter of fact, the light emitted by a single-frequency laser is not completely

monochromatic 5, and it incorporates some phase noise, which can be expressed as the

fluctuations in the optical phase. This phenomenon results in a finite linewidth 6 of

the laser output.

Spontaneous emission and quantum noise are the contributors to the laser phase noise.

Additionally, there is a potential for the presence of technical noise impacts, such as

those resulting from vibrations in the resonator mirrors or temperature changes in the

gain medium [6], [42, Ch. 10].

5Monochromatic light is defined as a light with just one optical frequency in its optical spectrum.
6A laser’s linewidth is the width of the power spectral density of the emitted electric field
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The laser phase noise is typically modeled by a Wiener process, where the phase noise

rotation of sip (the symbol at time-step i on the polarization p), denoted by θip, is

realized by

θip =
n∑

k=1

Θk (2.2.13)

where Θk ∼ N (µ, σ2
Θ), in which

σ2
Θ = 2π∆νTe, (2.2.14)

where ∆ν denotes the laser linewidth and Te is the sample period. Fig. 2.9 shows

the effect of the laser phase noise on a 16-QAM signal using the constellation in Fig.

2.5b based on different laser linewidth. As it is clear in the figures, by the rise of laser

linewidth, the phase offset spans toward covering the entire rings.

2.3 Channel model of dual-polarization optical

fiber transmission systems

In dual-polarization optical fiber communication systems, following the PDM process,

the multiplexed signal is transmitted to the optical fiber. As discussed, due to the

attenuation, the optical fiber is split into a number of segments called spans, where

at the end of each, an amplification process compensates for the fiber loss by optical

amplifying the signal (see Fig. 2.10), which is also accompanied by imposing amplified

spontaneous emission (ASE) noise to the signal.

2.3.1 Signal propagation in one span of single-mode optical

fiber

Propagation of signals in two polarizations of the electric field over one span of SSMF

can be modeled by the coupled nonlinear Schrödinger equation (CNLSE) [43], [44],
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Figure 2.10: Schematic of an optical link. The optical link is divided into a number

of spans. At the end of each span, an amplifier compensates for the fiber loss by

amplifying the signal.

which describes the interactions between the two states of polarization along the fiber.

The equation for the x-polarization is [6, Chap. 6.1]

∂qx(t, z)

∂z
= −α

2
qx − β1x

∂qx
∂t

− jβ2

2

∂2qx
∂t2

+ jγ
(
|qx|2 +

2

3
|qy|2

)
qx. (2.3.1)

Here, qx(t, z) is the complex envelope of the signal in the x polarization propagating in

the fiber as a function of time t and distance z, α and β2 are respectively the attenuation

and CD coefficients, and γ is the nonlinearity parameter. The first-order dispersion

coefficient β1x depends on the polarization, giving rise to DGD and PMD effects. [4,

Sec. VI.C]. The equation for the y-polarization is similar to (2.3.1) upon swapping x

and y in (2.3.1).

Equation (2.3.1) is numerically solved using the split-step Fourier method (SSFM) [8]

with distributed PMD as follows. The fiber span is divided into K segments of length

δ. In each segment i, a linear, PMD, and nonlinear step is performed consecutively as

follows.

1. Linear step

Loss and CD are applied in the frequency domain to the signal as
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q̂x(ω, z) 7→ exp

(
−α

2
δ + j

β2

2
ω2δ

)
q̂x(ω, z), (2.3.2)

where q̂x(ω, z) is the Fourier transform of qx(t, z).

2. PMD step

To model the distributed PMD, a unitary matrix J (i)(ω) is applied to the signal vector

q(t, z) = [qx(t, z), qy(t, z)]T in the frequency domain as

q̂(ω, z) 7→ J (i)(ω)q̂(ω, z), (2.3.3)

where q̂(ω, z) is the Fourier transform of q(t, z), and

J (i)(ω) = R(i)D(i)(ω), (2.3.4)

in which

R(i) =

(
ej

ϕi
2 cos(θi) e−j

ϕi
2 sin(θi)

−ej
ϕi
2 sin(θi) e−j

ϕi
2 cos(θi)

)
, (2.3.5)

is the rotation matrix, where (θi)
K
i=1 and (ϕi)

K
i=1 are sequences of independent and

identically distributed (iid) random variables drawn from a uniform distribution on

[0, 2π). In consequence, the state of polarization (SOP) is uniformly distributed over

the surface of the Poincaré sphere along the fiber. Further, D(i)(ω) is the DGD operator

D(i)(ω) =

(
e−jω τ(i)

2 0

0 ejω
τ(i)

2

)
, (2.3.6)

where (τ (i))Ki=1 are DGD parameters, which we assume to be a sequence of iid random

variables drawn from the probability distribution N (0, τ
√
δ), where τ (measured in

ps/
√

km) is the PMD parameter.
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Figure 2.11: Spontaneous and Stimulated emission. In spontaneous emission, there is

no interaction with other photons, while in stimulated emission, there is, and the phase

and direction are copied.

3. Nonlinear step

Kerr nonlinearity effect for x-polarization is modeled in the time domain as

qx(t, z) 7→ exp

(
jγδ
(
|qx(t, z)|2 +

2

3
|qy(t, z)|2

))
qx(t, z). (2.3.7)

For the y-polarization, the process is similar by swapping x and y in (2.3.7).

2.3.2 Optical amplification

Following each optical fiber span, there is an optical amplification process to compen-

sate for the attenuation. Optical amplification is commonly achieved by stimulated

emission when the rare-earth-doped fiber 7 in the amplifier is optically pumped 8 with

a light from a different source, such as a laser diode.

Once an optical gain medium is optically pumped, the electrons within the medium

are excited from a state with a lower energy level to a state with a higher energy

level. Because higher energy states are generally less stable than those of lower energy,

radiated energy eventually relaxes the excited medium to a lower energy state. This

7A kind of glass fiber used in fiber amplifiers and laser, which is doped with laser-active rare earth

ions
8Optically pumping entails injecting light into a medium in order to electronically excite it (or a

group of its elements) into a higher energy state.
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Figure 2.12: Schematic structure of a simple EDFA amplifier. The pump power is

supplied by two laser diodes. The pump light is injected through dichroic fiber cou-

plers. Faraday optical isolators are used at the two ends to reduce the back-reflection

sensitivity.

energy radiation may take the form of photon emission. When this emission occurs

without contact with other photons, it is referred to as spontaneous emission. The

direction and phase of the released photons are random in this scenario. On the other

hand, it is termed stimulated emission if the emission occurs when the excited electron

interacts with another photon. In this particular instance, the direction, as well as the

phase, are taken from the photons that have interacted [6, Ch. 3.1], [45], resulting

in amplification of the optical signal. This conceptualization is shown graphically in

Figure 2.11.

According to this mechanism, the commonly adopted type of amplifiers (EDFA) in

fiber-optic links are Erbium-doped fiber amplifiers. The following section describes

these amplifiers.

2.3.2.1 Erbium-doped fiber amplifiers

When it comes to long-haul optical fiber communications, EDFAs are by far the most

adopted fiber amplifiers. EDFAs have the ability to effectively amplify light in the

wavelength area of 1550 nm, where the optical fiber incurs the lowest loss.

In EDFA, amplification is conducted through an Erbium-doped optical fiber which is

pumped with light from the laser diodes. A general setup for an EDFA is illustrated

in Fig. 2.12. The pump light, which is typically 980 nm or 1480 nm in wavelength, is

used to excite the Erbium ions (Er3+) into an excitation state.
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Figure 2.13: Erbium excitation diagram for stimulated emission

When pumped at 1480 nm, Er3+ absorbs the pump light and is excited from the ground

level L1 into the excited state L2, as shown in Fig. 2.13. In this case, amplification

by stimulated emission occurs at around 1550 nm when there is sufficient pump power

supplied to the fiber and a population inversion 9 is generated between the ground

state (L1) and the excited state L2.

In pumping at 980 nm, Er3+ is excited from the ground level L1 into the excited state

L3, as it is shown in Fig. 2.13. Following this excitation, however, due to the short

lifetime of the excited state L3, Er3+ is quasi-instantly relaxed to the excited state L2.

Upon this relaxation, a population inversion is generated between the ground level and

excited state L2, which results in the amplification occurring at 1550 nm.

EDFA amplification, however, is accompanied by introducing some noise to the signal,

mainly originating from amplified spontaneous emission (ASE) noise, which consec-

utively diminishes the signal-to-noise ratio. The following subsection describes this

process.

2.3.2.2 Amplified spontaneous emission noise effect

In amplification by EDFAs, and generally amplifiers, following pumping, spontaneous

emission usually happens. When spontaneous emission coincides with stimulated emis-

sion, it is amplified through it. This phenomenon, which is called amplified spontaneous

emission, introduces noise to the signal and has a destructive effect on the system

9Population inversion refers to the condition where in a system, such as a group of atoms, a greater

proportion of the members are in higher, excited energy states than in lower, unexcited energy states
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performance. This process is modeled by the addition of zero-mean white complex

circularly symmetric Gaussian noise with the power spectral density per polarization

NASE = (G− 1)hνnsp (2.3.8)

where G = e
α
2
Lsp is the amplification gain (Lsp is the span length), h is Planck constant,

ν is the carrier frequency, and nsp is the spontaneous emission factor (1 < nsp <

∼1.5). The spontaneous emission factor, however, cannot be directly observed, and it

is characterized within the reported noise figure (NF) of the amplifier, defined as

NF = 2nsp
G− 1

G
. (2.3.9)

NF in (2.3.9) is typically expressed in decibel as NFdB = 10 log10(NF).

2.4 Optical receiver and digital signal processing

As the light pulses reach the end of the optical link, it is the role of the receiver to

translate them into the corresponding transmitted bitstream. This process involves

optical detection and a digital signal processing chain to reverse the deterministic

effects and polarization-dependant effects of the channel, a process called equalization.

2.4.1 Optical detection

Optical detection can be in the form of non-coherent (direct) or coherent detection 10.

In non-coherent detection, the receiver computes decision variables based on the signal

energy. An example of direct detection for ASK signals is shown in Fig. 2.14, where

a photodiode 11 releases an electrical current proportional to the energy (intensity)

of the optical signal. Then a threshold decision element determines the value of the

10Not limited to, e.g., differentially coherent detection and a hybrid of non-coherent and differentially

coherent detection
11A photodiode is a semiconductor that loses electrons when hit by a photon of a certain wavelength.

Electrons are released when the photodiode is hit by light energy.
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(a) (b)

Figure 2.14: Non-coherent detection for : a) ASK signals, b) binary FSK

corresponding symbol according to the energy of the electrical current. For FSK signals,

this follows the separation of frequency levels, as it is shown in Fig. 2.14b.

As a matter of fact, adopting non-coherent detection scheme results in two main flaws:

a) Energy-based detection allows signals to encode just one degree of freedom per

polarization per carrier, hence decreasing spectral and power efficiency; b) Loss of phase

information during detection is an irreversible transition that precludes linear filters

from fully equalizing linear channel impairments such as CD and PMD. Considering

these issues, non-coherent detection is not suitable for QAM signals, and long-haul

fiber-optic channels [46].

Coherent detection, on the other hand, is based on the recovery of the full electric

field, which, when sampled at the Nyquist rate, can be forwarded to the digital signal

processing block to compensate for channel impairments. As information can be stored

in both amplitude and phase, or alternatively in both in-phase (I) and quadrature (Q)

components of a carrier, coherent detection provides the most versatility in modulation

formats [46].

In coherent detection, the received signal is mixed with a continuous waveform gen-

erated by a local oscillator (LO) oscillating at roughly the same frequency, serving as

an absolute phase reference. The overall construction of a coherent optical receiver in

dual-polarization systems is shown schematically in Fig. 2.15. In this structure, ini-

tially, the polarizations of both the incoming optical signal and the waveform produced

by LO are split using polarization beam splitters (PBSs). To recover the in-phase and

quadrature components of the signal, each polarization enters a 90◦ optical hybrid, al-

lowing coherent mixing of the LO (adjusted at the carrier frequency) with the incident

x- and y-polarization components of the optical signal. As Fig. 2.15 shows, the out-

put of the optical hybrids is then linked to balanced photodiodes, which provide two
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Figure 2.15: General structure of a dual-polarization detector. receiver

currents corresponding to the I and Q components of the optical signal corresponding

polarization, given by

IQ(t) = τPD

√
PsigPLO cos(θsig(t) − θLO(t)) (2.4.1)

II(t) = τPD

√
PsigPLO sin(θsig(t) − θLO(t)) (2.4.2)

where Psig, PLO, θsig, θLO are the powers and phases of the received signal and the

local oscillator, respectively. τPD is the photodetection responsivity coefficient.

Consequently, the complex amplitude or the baseband signal is represented as

Ic(t) = II(t) + jIQ(t)

= τPD

√
PsigPLO ej(θsig(t)−θLO(t)). (2.4.3)
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Figure 2.16: Conventional DSP chain in long-haul optical fiber communication system

considered in this manuscript.

2.4.2 Digital signal processing in dual-polarization optical

fiber communication

Following the full translation of the optical signal to the electric field, the signal is

passed to a digital signal processing (DSP) chain, as Fig. 2.16 shows, to compensate

for the channel impairments discussed in the previous section, a process referred to as

equalization. The linear DSP incorporates 12 matched filtering, chromatic dispersion

compensation, multiple-input multiple-output (MIMO) -based PMD compensation,

and carrier phase estimation. The linear DSP, however, can only reverse the linear dis-

tortions, while nonlinear impairments require nonlinear equalization methods. Digital

backpropagation is a primary method to be leveraged in the DSP chain in place of the

CD compensation block to reverse the chromatic dispersion and nonlinear impairments

jointly. In the following sections, we concisely describe these processing blocks.

2.4.2.1 Matched filtering

Following the coherent optical detection, matched filtering is applied to maximize the

signal-to-noise ratio (SNR) by correlating the received waveform with a linear matched

filter, u, as

y[n] =
∞∑

k=−∞

u[n− k]x[k], (2.4.4)

12Not limited to.
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(a) w/o matched filtering (b) With matched filtering

Figure 2.17: The effect of matched filtering in resulting constellation output by RX in

an AWGN channel. The same is applicable to fiber-optic transmission systems.

where u is the time-reversed complex conjugate of the pulse shape 13, and x[k] and

y[n], respectively, represent the input as a function of the independent variable k and

the filtered output.

The intuition underlying an ideal matched filter is to correlate the received signal with a

filter that is parallel with it, maximizing the signal, while being towards orthogonality

to the noise, minimizing the noise effects. Fig. 2.17 shows an example of the final

constellation output by RX in an AWGN communication system in the presence and

absence of the matched filtering.

2.4.2.2 Chromatic dispersion compensation

Following matched filtering, in the linear DSP chains, there exists CD compensation

block. This processing unit performs based on reversing the dispersion effect through-

out the fiber, in a one-shot process as

q̂x(ω,L) 7→ exp

(
−j

β2

2
ω2L

)
q̂x(ω,L), (2.4.5)

where q̂(ω,L) is the Fourier transform of q(t,L), and L is the fiber length.

13The RRC filter is its own matched filter.
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2.4.2.3 MIMO-based equalization

Unlike CD, which can be regarded as a static effect, polarization-dependent effects are

time-varying and thus require adaptive filters. As discussed, PMD effects results in a

2× 2 frequency-dependent transfer function matrix. Therefore, following the CD (and

nonlinearity) compensation, a complex-valued 2 × 2 MIMO finite impulse response

(MIMO-FIR) filter is applied to reverse the PMD effects, such that the outputs are

obtained as

qoutx (t = k) = hH
xxq

in
x (t = k′, . . . , t = k′ + Ntaps) + hH

xyq
in
y (t = k′, . . . , t = k′ + Ntaps)

(2.4.6)

qouty (t = k) = hH
yxq

in
x (t = k′, . . . , t = k′ + Ntaps) + hH

yyq
in
y (t = k′, . . . , t = k′ + Ntaps),

where qinp is the signal of polarization p input to the MIMO block, qoutp is the correspond-

ing output signal of MIMO for polarization p, Ntaps is the number of taps (covering the

PMD memory) and hH
xx,h

H
xy,h

H
yx,h

H
yy are the Ntaps-length vectors representing the tap

weights. k′ = k×SpS, where SpS denotes the number of sample per symbol (note that

the output signal is at 1 SpS). hH is the conjugate transpose of h. Equation (2.4.6)

for polarization p can be rewritten as

zp(k) = hH
p q

in(k), (2.4.7)

where zp(k) denotes qoutp (t = k), hH
p denotes the concatenation of corresponding h

vectors for polarization p, and qin(k) denotes the concatenation of corresponding qin

vectors.

Constant modulus algorithm (CMA) and radius-directed equalization (RDE) are two of

the main conventional PMD equalization and demultiplexing techniques to determine

the optimal weights for respectively PSK and QAM signals [47].

In CMA, the constant modulus criteria is used to determine the tap weights, which are

determined by minimizing the following cost function

LCMA(hp) = E[LCMA,k(hp)], (2.4.8)
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where

LCMA,k(hp) = (|zp(k)|2 −R)2, (2.4.9)

in which

R =
E[|sp(k)]|4

E[|sp(k)]|2
, (2.4.10)

where sp is the sequence of symbols in the polarization p.

CMA is typically implemented via a stochastic gradient descent approach, where the

filter coefficients at each sample are updated iteratively as follows

h<k+1>
p = h<k>

p − αlr∇LCMA,k(h<k>
p ), (2.4.11)

where αlr is the learning rate, ∇LCMA,k(h<k>
p ) is the gradient at time step k, and h<k>

p

is the tap weights at time step k. The gradient is realized to be

∇LCMA,k(h<k>
p ) = (|zp(k)|2 −R)zp(k)qin(k). (2.4.12)

Although CMA is efficient for BPSK and QPSK, it is not optimal for QAM signals,

such as 16-QAM, in the sense that the error does not go to zero when the equalizer has

fully converged [48]. The RDE criterion is a generalization of the CMA algorithm for

QAM signals, where the modulus of the constellation is not constant (see Fig. 2.18).

In RDE, in particular, for 16-QAM signals 14, the cost function is considered as

LRDE(hp) = E[LRDE,k(hp)], (2.4.13)

where

LRDE,k(hp) = (|zp(k)|2 −R0)
2, (2.4.14)

14generalizable for higher order with a similar approach
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(a) CMA for QPSK (b) RDE for 16-QAM

Figure 2.18: Radii of QPSK and 16-QAM constellations considered in CMA and RDE

algorithm.

where if |zp(k)| < (
√
R1 +

√
R2)/2 then R0 = R1, if |zp(k)| > (

√
R2 +

√
R3)/2 then

R0 = R3, otherwise, R0 = R2.

Realizing the tap weights using gradient descent in RDE is similar to what was dis-

cussed for CMA.

2.4.2.4 Carrier phase estimation

As discussed, the phase offset is another type of effect that the fiber-optic transmission

systems deal with. Phase error and phase noise are the phase offset effects, respectively,

resulting from channel deterministic effects and non-deterministic random effects from

laser sources associated with the laser linewidth, as discussed in the previous sections.

In order to compensate for these effects, a process termed carrier phase estimation

(CPE) should be performed. CPE is formally defined as recovering the phase offset θ

as follows

s(k) = ejθŝ(k) (2.4.15)

where {s(k)}Ns
k=1 are the transmitted symbols and {ŝ(k)}Ns

k=1 is the resulting constella-

tion after assuming ideally compensating all the channel impairments.
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A variety of CPE algorithms have been proposed [49], [50]. However, in the case of

non-blind recovery using pilot symbols, it suffices to calculate the angle between the

transmitted symbols and the pilots over a sliding window and rotate the symbols of

that window according to the mean angle between the pilots and transmitted symbols.

The output of CPE is then forwarded to the detection block, which is a simple block

assigning the equalized symbol to the nearest symbol in the constellation, and subse-

quently de-maps the symbol to the bits.

2.4.2.5 Nonlinearity mitigation through digital backpropagation

As discussed, the linear DSP chain, which is composed of the processing units described

in the previous subsections, is merely able to compensate for the linear channel effects.

Digital backpropagation (DBP) [7] is a major technique to jointly compensate the

chromatic dispersion and nonlinear impairments, and it is implemented in the place of

the CD compensation block in the DSP chain.

DBP reverses the deterministic effects of the channel by propagating the signal back-

ward in distance using negated parameters in SSFM (see Fig. 2.19), without integrating

PMD effects, thus only linear and nonlinear steps.

(a) Forward propagation modeling (b) DBP

Figure 2.19: DBP’s underlying approach. DBP uses SSFM with inverse parameters to

reverse the deterministic effect of the channel

DBP, however, uses the Manakov equation as a reference for propagation, as in most

cases, it considers the step sizes considerably larger than the one used for the forward

propagation modeling. This is in view of the fact that, as discussed in 2.3, the birefrin-

gence variations change the SOP rapidly such that the field covers the entire Poincaré
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Figure 2.20: Corresponding BER performances of the receiver, based on using DBP

with different StPS values, as a function of the total launch power.

sphere after a few kilometers. This results in the possibility of averaging the nonlin-

earity terms in CNLSE over the birefringence variations. The resulting propagation

equation is called the Manakov-PMD equation [51]

∂q(t, z)

∂z
= −α

2
q− β1(z)

∂q

∂t
− jβ2

2

∂2q

∂t2
+ j

8

9
γ|q|2q, (2.4.16)

where q(t, z) = [qx(t, z), qy(t, z)]T. Thus, in the nonlinear step, DBP reverses the

nonlinearity effect at each nonlinear step of SSFM as

q(t, z) 7→ exp

(
j

8

9
(−γ)δ|q(t, z)|2

)
q(t, z). (2.4.17)

The linear step would be the same as (2.3.2) with negated β2 parameter.

Depending on the step sizes in DBP or equivalently the number of step per span con-

sidered for it, DBP results in different performances. Fig. 2.20 shows the performance

of different step sizes in DBP as well as the performance of CD compensation in a
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considered dual-polarization fiber-optic communication system 15.

2.5 Conclusion

In this chapter, we discussed the principles of dual-polarization fiber-optic commu-

nication systems, including the physical properties of fiber-optic channels leading to

different types of distortions, the attenuation phenomenon and the consequent op-

tical amplification in optical links, mathematical modeling of the dual-polarization

optical fiber channel with distributed PMD effects, common transmission schemes in

dual-polarization communication systems and modulation formats, optical detection

at receiver, and the conventional DSP chain to compensate the channel impairments

in the electrical field.

We demonstrated that unlike linear effects such as CD and PMD effects which could be

compensated through a linear DSP block at low complexity, nonlinear impairments is a

major obstacle in optical fiber communications which requires a heavy computational

process at the receiver to be partially compensated.

With regard to this matter, in recent years, neural networks have been widely inte-

grated into the DSP chain to either optimize or replace the nonlinearity mitigation

component in the receiver. In the following chapter, we elaborate on the principles

of these structures, their underlying rationale enabling them to approximate complex

functions, and a variety of neural network models within this field.

15The specification and fiber parameters of this system is described in Section. 5.1
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Chapter 3

Learning by neural networks:

principles and fundamental models

Artificial neural networks, commonly referred to as neural networks, are a sub-field

of machine learning. In the field of machine learning, which is itself a sub-category of

artificial intelligence, the attempts are towards finding a sort of algorithms that enables

computer machines to learn and advance from past experiences without the need to

be explicitly programmed [52]. These algorithms start with observations or data in a

vector space E to finally output a determination or prediction in the same or another

vector space K. Machine learning algorithms are commonly categorized as supervised

or unsupervised.

In supervised learning, the vector space E of all possible inputs, the vector space K of

all possible outputs, and the known ground truth input-output pairs (xi, yi) are taken

first. Then the algorithm seeks the best function, f : E → K, predicting the output

y ∈ K for an input x ∈ E. In order to evaluate the quality of obtained function f ,

a cost or loss function is defined, denoted by L(Y, f(X)), to penalize the prediction

error, where X ∈ E is a random variable, and Y ∈ K is the corresponding ground

truth. The loss function produces a criterion for choosing f, called expected prediction

error (EPF). In the case of choosing the square error loss function, which is the most

common loss function among the variety of adopted loss functions, EPF will form as

follows 1 [53, Ch. 2]:

1Without loss of generality, X and Y are assumed be continuous over the fields.
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EPF(f) = E[(Y − f(X))2]

=

∫
[y − f(x)]2Pr(x, y)dxdy. (3.0.1)

By conditioning on X, EPF can be written as

EPF(f) = EXEY |X([Y − f(X)]2 |X). (3.0.2)

Hence, it suffices to minimize EPF point-wise:

f(x) = argmincEY |X([Y − c]2 |X = x). (3.0.3)

This yields the solution

f(x) = E(Y |X = x), (3.0.4)

the conditional expectation (often referred to as the regression function 2). Therefore,

when the best evaluation metric is (mean) squared error, the conditional mean is the

best prediction of Y at any point X = x.

Neural networks, which are inspired by the biological neural networks constituting the

brain, are a branch of supervised learning which attempts to figure out (3.0.4), or any

function leading to the minimum EPF, by a topology of basic processing units struc-

tured as a directed computational graph performing concatenated linear and nonlinear

operators to the inputs.

The concept of neural networks was initially introduced in 1943 by neurophysiologist

Warren McCulloch and mathematician Walter Pitts [17], and it has been in and out of

favor for more than 70 years. However, following recent spectacular breakthroughs in

this area, neural networks have abruptly attracted attention nowadays, and they have

been extensively used in several fields of research to get superior outcomes.

Neural networks are organized into layers that are linked. Each layer is made up of a

number of nodes known as hidden units or neurons, each of which has an activation

2In this manuscript, without loss of generality, we mainly focus on regression rather than classi-

fication, considering the study area of this thesis and the research carried out within the doctoral

program.
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function. Training samples are fed into the neural network through the input layer,

where they are routed to the hidden layers, where they are processed using a weighted

connection mechanism. Finally, the output layer delivers the answer.

A node’s activation function, σ(.), introduces nonlinearity to it. This is to address the

so-called expressive power of the neural network [54]. As a result, the neural network

functional form conforms to the hierarchical or Markovian structure. Most data of

practical interest is generated by some form of these processes [55]. Table 3.1 presents

a number of commonly used activation functions.

The majority of neural networks follow some form of learning algorithm that constantly

corrects the weights of connections depending on the calculated final loss of the pro-

vided batch of training examples, a process named Gradient Descent [56]. After a

cycle of forward activated flow of outputs and backward propagation of error, known

as backpropagation [30], a correction is performed. Backpropagation generates the

steepest descent through the error surface by performing a gradient over the vector

space K towards the global/local minimum. Simply said, a neural network sets its

weights at random at first, then compares its estimate to the ground truth depending

on the input according to the loss function (a number of commonly used loss functions

are presented in Table 3.2). The result is then used to make the correction through

backward propagation of the calculated error. Mathematically saying, at each iteration

t, following the backpropagation process, the weights are updated as follows

W<t+1>
ℓ = W<t>

ℓ − αlr∇L̂(W<t>
ℓ ), (3.0.5)

where W
(t)
ℓ is the weight matrix of layer ℓ at iteration t, L̂ is the resulting loss by the

current weights, ∇L̂ is the gradient of L̂, and αlr > 0 is the learning rate.

As noted, neural networks form a directed computational graph applying concatenated

linear and nonlinear operators to the inputs. In a general categorization, depending

on how information is propagated from the input layer to the output, neural networks

are classified into two groups:

• Feed-forward Neural Networks (FNNs). Each neuron in an FNN is only

connected to neurons in the following layer. As a result, information solely prop-

agates forward from the input layer to the output layer, with no feedback loop.
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Table 3.1: Common activation functions adopted in neural networks and their corre-

sponding derivative (for backpropagation). The parameter α in ELU and Leaky ReLU

is a hyper-parameter.

Name Function σ(x) Derivative σ′(x)

Sigmoid
1

1+e−x σ(x)(1 − σ(x))

Gaussian e−x2 −2xe−x2

Hyperbolic tangent

(tanh)

ex−e−x

ex+e−x 1 − σ(x)2

Exponential linear unit

(ELU)

α (ex − 1) if x ≤ 0

x if x > 0


αex if x < 0

1 if x > 0

1 if x = 0 and α = 1

Rectified linear unit

(ReLU)

0 if x ≤ 0

x if x > 0


0 if x < 0

1 if x > 0

undefined if x = 0

Leaky rectified linear unit

(Leaky ReLU)

αx if x ≤ 0

x if x > 0


α if x < 0

1 if x > 0

undefined if x = 0
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Table 3.2: Common loss functions adopted in the machine learning tasks. In the

formulations, yi denotes the ground truth and ŷi = f(xi) denotes the predicted value

Loss function Formulation

Mean Square Error
1

N

∑N
i=1 (yi − ŷi)

2

Mean Absolute Error
1

N

∑N
i=1 |yi − ŷi|

Mean Bias Error
1

N

∑N
i=1 (yi − ŷi)

Log-Cosh
1

N

∑N
i=1 log(

e(yi−ŷi) + e−(yi−ŷi)

2
)

Huber Loss Lδ(yi, ŷi) =


1

2
(yi − ŷi)

2 for |yi − ŷi| ≤ δ,

δ ·
(
|yi − ŷi| −

1

2
δ

)
, otherwise.

Binary Cross-entropy

(for classification)
− 1

N

∑N
i=1

[
yi log ŷi + (1 − yi) log(1 − ŷi)

]
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• Recurrent Neural Networks (RNNs). In contrast to FNNs, RNNs support

feedback connections; thus, information can be forwarded to previous layers in

the network through feedback links.

Among the well-established neural network models, multi-layer perceptrons (MLPs),

also known as dense neural networks, and convolutional neural networks (CNNs) are

the two primary neural network types within the category of the FNNs. Vanilla RNNs,

long-short term memory (LSTM), and gated recurrent unit (GRU) networks, on an-

other side, are the main neural network types in the category of RNNs. The topology

of the cells in RNN networks can also form a variety of RNN formats, including many-

to-many (or seq2seq), many-to-one (many inputs, one output), and one-to-many.

In the following sections of this chapter, we elaborate on these concepts and discuss

the underlying structure of each of the mentioned neural networks type.

3.1 Multi-layer perceptrons and universal approxi-

mation theorem

A multi-layer perceptron, abbreviated as MLP, is a stack of interconnect layers (fully-

connected) on top of each other over a system of weighted connections. In MLPs,

connections between the nodes do not form a cycle. Each layer ℓ with dℓ hidden units

performs the mapping Ψℓ : Rdℓ−1 → Rdℓ on the output of the previous layer, xℓ−1, as

follows:

xℓ = Ψℓ(xℓ−1)

= σℓ

(
W T

ℓ xℓ−1 + bℓ

)
, (3.1.1)

where Wℓ ∈ Rdℓ−1×dℓ is the weight matrix, bℓ ∈ Rdℓ is the bias vector, and σℓ(.) is the

activation function. Fig. 3.1 illustrates a schematic of an MLP with an input layer

compromising 6 hidden units, 2 hidden layers, and an output layer having one unit

outputting the answer.
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Figure 3.1: Schematic of an MLP comprising the input layer with 7 hidden units, 2

hidden layers having 5 and 4 hidden units, respectively, and the output layer with 1

hidden unit to output a single value.

The underlying logic of these networks is reinforced by the universal approximation

theorem. Consider the the topological space C(K), for k ⊂ Rd, defined as

C(K) = {f : K → R : f continuous} (3.1.2)

with the uniform norm

||f ||∞ = sup
x∈K

|f(x)| (3.1.3)

Assuming K to be compact, according to the Riesz representation theorem [57, Ch. 6],

the topological dual space of C(K) is

M = {µ : µ is a signed Borel measure on K}. (3.1.4)

Subsequently, the term universality is defined as follows:

Definition 3.1.1. Let MLP(σ, d,Nℓ) be the set of all MLPs with d-dimensional input,

Nℓ layers, and activation function σ : R → R, where d ∈ N, Nℓ ∈ N and σ is continuous.

Let K ⊂ Rd be compact. MLP(σ, d,Nℓ) is said to be universal, if it is dense in C(K)

[58].
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Definition 3.1.2. Assume d ∈ N and k ⊂ Rd to be compact. A continuous function

f : R → R is termed as discriminatory, iff. there exists a measure µ ∈ M such that

∫
K

f(ax− b)dµ(x) = 0, for all a ∈ Rd, b ∈ R (3.1.5)

then µ = 0 [58].

Given the definitions above, the universal approximation theorem is stated as follows:

Theorem 3.1.1 (Universal approximation theorem). If d ∈ N, K ⊂ Rd be compact,

and σ : R → R be discriminatory, then MLP(σ, d, 2) is universal [59].

In simple (and approximate) words, the universal approximation theorem asserts that

any continuous function f : Rn → R can be approximated arbitrarily well by an MLP

with one hidden layer consisting of a finite number of hidden units with a discriminatory

activation function 3.

However, despite the universal approximation theorem, it is unknown what the suffi-

ciently large number of hidden units to be set for an MLP is to enable it to approximate

a function. An enough required number might be infeasibly large for machines, and it

also may lead to overfitting 4 during the training process. Considering these facts, the

study of various models of neural networks has always been under consideration.

3.2 Convolutional neural networks

Convolutional neural networks, abbreviated as CNNs, are a category of feed-forward

neural networks that are generally composed of convolution layers and sometimes pool-

ing layers. These networks were originally proposed for efficient learning in 2D images,

but following the success and underlying solid logic, they were further extended to

other fields, including 1-D signal processing.

3As an instance, any bounded measurable Sigmoid function is discriminatory
4Overfitting refers to producing an analysis that matches too closely or perfectly to just the training

data, and thus not well-generalizable to unseen data, leading to failure in reliably predicting future

observations.
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CNNs are historically inspired by the organization of the animal visual cortex, in which

individual cortical neurons only react to stimuli in a narrow section of the visual field

known as the receptive field, and different neurons’ receptive fields partly overlap,

covering the full visual field.

CNNs are mainly composed of a series of convolution layers followed by a number

of fully-connected layers. The convolution layers use filters to perform convolution

operations on input I, producing a feature-map fed to the next layer. A filter (kernel)

is a weight matrix that is learned via iterations of gradient descent during training.

For one-dimensional data with Nch channels, the shape of a filter is Lker ×Nch, where

Lker is the filter size. After performing a convolution on data by applying this filter on

it, the mth element of the feature-map in the layer ℓ would be as follows:

xℓ[m] = σℓ(zℓ[m] + bℓ[m]), (3.2.1)

where

zℓ[m] =
Nc∑
k=1

Lker∑
i=1

W [i, k]xℓ−1[m− Lker

2
+ i, k], (3.2.2)

in which W is the filter weight matrix, and W [i, k] is the entry in the row i and the

channel k.

It is possible to stack several feature-maps created by different filters on top of each

other to make an overall feature-map. Then in the next layer, each of them is considered

as a channel of the data. To streamline the underlying computation in the convolution

process, striding [60] could be leveraged with the consideration of the information

structure to avoid loss of principal features and only to skip redundant features.

The pooling layer is a downsampling process, usually following a convolution layer.

Unlike convolutional layers, pooling layers operate separately on each channel, per-

forming some kind of spatial invariance [31, Ch. 9.3]. Max and average pooling are the

most common form of pooling where the maximum and average values, respectively,

are taken within the kernel range.
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3.3 Recurrent neural networks

RNNs are a category of neural networks designed to operate on temporal sequences of

data with correlated samples. These neural networks are composed of recurrent cells

whose states are influenced not only by the current input but also by the past or even

future (for bi-RNNs) time-steps. This scheme is enabled by the so-called memory of the

RNN, which is emulated by the hidden state property. That is to say, the sequential

information is maintained in the RNN’s hidden state, which is utilized to positively

affect the processing of each new time-step as the sequence steps forward.

3.3.1 Vanilla RNNs

A vanilla RNN layer is made up of a number of recurrent cells, governed by the equa-

tions

h(t) = σ1(Whh
(t−1) + Wxx

(t) + bh), (3.3.1)

y(t) = σ2(Wyh
(t) + by),

where x(t) ∈ Rni and h(t) ∈ Rnh are respectively the input and the hidden state of time-

step t; Wh ∈ Rnh×nh , Wx ∈ Rnh×ni , Wy ∈ Rny×nh are the weight matrices, bh ∈ Rnh

and by ∈ Rny are the bias vectors, and σ1(.) and σ2(.) are the activation functions.

Thanks to the memory property of RNNs, they are able to capture long-term depen-

dencies among the temporal sequence. However, a major challenge with RNNs is the

problem of vanishing gradients in the backpropagation, which limits the performance of

RNNs for large numbers of time-steps. Several variants of RNNs have been proposed to

mitigate this problem and enable the processing of longer sequences. LSTM and GRU

networks are primary variants in this respect [61]. These networks incorporate gates in

the RNN cells to regulate the flow of information. These gates learn which information

should be kept or discarded in a time series, allowing the relevant information to be

preserved throughout a long sequence of RNN cells. The following subsections describe

LSTM and GRU networks in more detail.
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Figure 3.2: Schematic of the process flow in an LSTM cell.

3.3.2 Long-Short Term Memory Networks

LSTM networks incorporate three supplementary gates in addition to a cell state to

facilitate handling large sequences: update gate Γu, forget gate Γf , and output gate

Γo. The cell state acts as an additional supportive memory that keeps track of the

relevant information throughout the process flow.

The forget gate determines what information should be discarded and what information

must be retained from the previous cell state. It jointly processes the previous hidden

state as well as the current input and passes the resulting feature through the sigmoid

function resulting in the values in the interval (0,1). The closer this value is to 0, the

more the corresponding information is forgotten, and vice versa. Similarly, the update

and output gates learn, respectively, what values in the cell state should be updated

and what information in the current cell state should be kept as the output of the

hidden state. The equations describing an LSTM cell in the time-step t are as follows:

c̃(t) = σtanh

(
Wchh

(t−1) + Wcxx
(t) + bc

)
Γu = σsig

(
Wuhh

(t−1) + Wuxx
(t) + bu

)
Γf = σsig

(
Wfhh

(t−1) + Wfxx
(t) + bf

)
(3.3.2)

Γo = σsig

(
Wohh

(t−1) + Woxx
(t) + bo

)
c(t) = Γu ⊙ c̃(t) + Γf ⊙ c(t−1)

h(t) = Γo ⊙ σtanh(c(t))
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Figure 3.3: Schematic of the process flow in an GRU cell.

where x(t) ∈ Rni is input, c(t) ∈ Rnc is cell state, h(t) ∈ Rnh is hidden state,

Wch,Wuh,Wfh,Woh ∈ Rnh×nh and Wcx,Wux,Wfx,Wox ∈ Rnh×ni are weight matrices,

bc,bu,bf ,bo ∈ Rnh are biases, and σsig and σtanh are the sigmoid and tanh activations,

respectively. ⊙ is the Hadamard product. Schematic of an LSTM cell is depicted in

Fig. 3.3.

3.3.3 Gated Recurrent Unit Networks

The GRU networks serve the same purpose as LSTM networks. In GRU units, there

exist two gates, compared to three in LSTM, and the cell state equals the hidden state.

Relevance (or reset) gate Γr and update Γu gate are the two gates working almost

similar to forget and update gates in LSTM. The mathematical formulation of a GRU

unit is as follows:

c̃(t) = σtanh

(
Wcc(Γr ⊙ c(t−1)) + Wcxx

(t) + bc

)
Γu = σsig

(
Wucc

(t−1) + Wuxx
(t) + bu

)
Γr = σsig

(
Wrcc

(t−1) + Wrxx
(t) + br

)
(3.3.3)

c(t) = Γu ⊙ c̃(t) + (1 − Γu) ⊙ c(t−1)

h(t) = c(t),

where x(t), c(t) and h(t) have the same definition as in LSTM; Wcc,Wuc,Wrc ∈ Rnh×nh ,
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Wcx,Wux,Wrx ∈ Rnh×ni , and bc,bu,br ∈ Rnh . The schematic of a GRU cell is depicted

in Fig. 3.3.

GRUs have been shown to be able to achieve comparable performance as LSTM in

several applications, such as speech recognition, traffic load prediction, etc., with lower

computational complexity [62]–[64].

3.3.4 Different topologies

Based on the arrangement of the cells, recurrent structures can form different typolo-

gies. The common topologies for RNNs includes many-to-many (many inputs, many

outputs), many-to-one (many inputs, one output), and one-to-many (one-input, many

outputs) structures. Fig. 3.4, shows an schematic illustration of these topologies.

Depending on the application, each of these networks may achieve substantially dif-

ferent levels of efficiency in terms of performance and complexity. This is mostly due

to the proportionality of the consequent number of generated time-steps, the type of

extracted features, and the dimensionality of the resulting feature space to the actual

unknown required complexity and feature space size for the domain of the learning

task. The many-to-many topology in Fig. 1 has been demonstrated to outperform

other forms of RNN in machine translation, and auto-encoder training [65], while the

one-to-many design is suited for image captioning and music generation [66].

In the context of RNN-based equalization in fiber-optic communications, the many-

to-many architecture in Fig. 3.4b has been adopted for equalization in the recent

literature. We, however, in the following chapters, challenge the use of this topology

and debate that via a specific scheme, a many-to-one topology, shown in Fig. 3.4d,

can lead to the same performance but with substantially lower complexity.

3.4 Dimensionality reduction and latent space

One of the obstacles that machine models deal with is the problem of dimensionality

of the feature space (input data). In the context of neural network-based equalization,

the concept of dimensionality is analogous to the memory that the neural network

should cover times the number of samples per symbol (SPS). As the channel memory
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(a) Many-to-many (type 1)

(b) Many-to-many (type 2)

(c) One-to-many

(d) Many-to-one

Figure 3.4: Common different topologies for recurrent networks.
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(a) (b)

Figure 3.5: a) Hypothetical schematic of d-dimensional unit sphere inscribed in a d-

dimensional unit cube. b) Volume of the d-dimensional unit sphere as the dimension

grows.

increase, the neural network faces a harder problem, and its performance is hindered

more by bias and even variance. This issue is also applicable to other machine learning

applications, and it is termed the curse of dimensionality.

The curse of dimensionality, in general, refers to the notion that problems can become

highly more difficult to solve in high-dimensional spaces. This term has a variety of

interpretations in different contexts. One interpretation refers to the growth of the

complexity order of the methods as dimensionality grows. As an instance, minimum

spanning tree can be solved by [67] in nearly linear time for n points when the di-

mensionality d = 2; but as d grows, the order goes to O(n2−a(d)(logn)1−a(d)), where

a(d) = 2−(d+1).

Another interpretation of the curse of dimensionality, which has a more emphasis in

machine learning, refers to the exponential sparsity of samples in high dimensions. To

provide an intuitive demonstration of this, consider the d-dimensional unit sphere, S,

inscribed in a d-dimensional unit cube, Q. The volume of S is given by

vol(S) =
πd/2

Γ(d
2

+ 1)
Rd, (3.4.1)

where Γ(.) is the gamma function. For any positive integer n, Γ(n) = (n − 1)!. Ac-
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cording to to the Stirling’s approximation

n! ≈
√

2πn(
n

e
)n. (3.4.2)

Thus it can easily be seen Γ(d
2

+ 1) grows highly faster than πd/2, hence when R = 1,

vol(S) → 0 as d → ∞.

In other words, the volume of the d-dimensional sphere with radius 1 quickly decreases

to 0 as the dimension d moves to infinity. That is to say, a unit sphere in high

dimensions has roughly no volume, while the unit cube’s volume is always 1. Hence it

is highly probable that there wasn’t any close sample in the training dataset for a new

unseen sample to the neural network.

In order to mitigate the challenges that arise from the curse of dimensionality, the

concept of dimensionality reduction arose.

Dimensionality reduction is the process of transforming data from a high-dimensional

space to a low-dimensional space such that the variance and the distance between the

points are retained. Formally speaking, given the set of points x1, x2, . . . , xn ∈ Cd,

dimensionality reduction is describing P in a lower dimension k << d, via a mapping

f , such that ∀xi, xj ∈ P

|f(xi) − f(xj)|2 ≈ |xi − xj|2

Interestingly, according to Johnson-Lindenstrauss Lemma [68], it is proved that for any

0 < ϵ < 1 and set of points x1, x2, . . . , xn ∈ Rd, there exists a mapping f : Rd → Rk,

with k = Ω( logn
ϵ2

), such that

(1 − ϵ)|xi − xj|2 ≤ |f(xi) − f(xj)|2 ≤ (1 + ϵ)|xi − xj|2. (3.4.3)

Principal component analysis (PCA) [69] and autoencoders are effective dimensionality

reduction techniques that have been established in a variety of fields of research. PCA

is a linear approach that works based on changing the basis to the principal components

of data and then ignoring the low-energy coordinates. The principal component of a

collection of points in d dimensional space is a collection of d orthogonal vectors that
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Figure 3.6: An ideal MLP autoencoder that leans how to encode an input into a lower-

dimensional space, and the corresponding decoding function to retrieve the encoded

input to the original value

best fits the data among the other orthogonal basis of the space. It turns out that

the principal components are eigenvectors of the data’s covariance matrix and they

can be obtained by eigendecomposition or singular value decomposition of the data’s

covariance matrix 5.

On the other hand, the autoencoder is a nonlinear approach utilizing a neural network

to learn a nonlinear function mapping the data to a lower-dimensional space (encoding)

and an inverse function from the encoded data to the original representation (decoding).

Fig. 3.6 shows a schematic of an ideal MLP autoencoder, which learns the function

f : Rd → Rl (l < d) and its inverse. The lower-dimensional space that the data is

mapped to is called a latent space or embedding space 6.

We use this concept in our proposed approach for complexity reduction in bi-RNN-

based equalization. In the following chapter, we explain how we use a convolutional

5Both the methods output the same result because of the symmetric positive semidefinite property

of the covariance matrix
6In more accurate terms, a latent space is an embedding of a collection of elements inside a manifold

in which the elements that are more similar to each other are positioned closer together. Thus, a latent

space, theoretically, does not necessarily need to be in a lower dimension, although in most cases, it

is.
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encoder not only to reduce the dimensionality of the sampled waveform at the receiver

toward 1 SpS, but also to enable the deployment of a unidirectional many-to-one vanilla

RNN in place of bidirectional many-to-many recurrent structures.

3.5 Conclusion

In this chapter, we reviewed the fundamental neural network models and their underly-

ing structures, including MLPs, CNNs, RNNs, LSTMs, GRUs, and different recurrent

typologies. We also discussed the universality approximation theorem and debated

that any continuous function f : Rn → R can be approximated by an MLP with

one hidden layer made up of a finite number of hidden units with a discriminatory

activation function.

We also had a brief overview of the concept of dimensionality reduction and the appli-

cation of neural network encoders in this field; which, as will be discussed in the next

chapter, we exploit in devising a hybrid neural structure providing a higher computa-

tional efficiency compared to the state-of-the-art models in nonlinearity mitigation in

optical fiber communications.
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Chapter 4

Neural network-based equalization

in optical fiber communication

As discussed in the previous chapters, in dual-polarization long-haul optical fiber

communication systems, signal propagation is affected by chromatic dispersion (CD),

polarization-mode dispersion (PMD), Kerr nonlinearity, and amplified spontaneous

emission (ASE) noise [4]–[6]. In consequence, a cascade of digital signal processing al-

gorithms is required to be performed at the receiver to reverse the deterministic channel

effects; a process termed equalization. In this domain, CD and PMD can be compen-

sated via linear equalization in a low-complexity regime; however, on the other hand,

nonlinear distortions require nonlinear complex equalization solutions [47], [70]–[72].

A popular equalization method in optical fiber communication is digital backpropaga-

tion (DBP) [7]. DBP reverses the deterministic effects of the channel by propagating

the signal backward in distance in the fiber modeled by the nonlinear Schrodinger

(NLS) equation, using the split-step Fourier method (SSFM) [7], [8].

DBP, however, suffers from high computational complexity associated with a large

number of spatial segments and processing bandwidth [73]. The alternative solutions

such as Volterra series transfer function [9], [10], maximum-likelihood sequence (MLS)

detection [11], [12], and optical phase conjugation [13]–[15] are also complex, hindering

their real-time functioning in practice [74].

In recent years, data-driven solutions, prompted by neural networks, have shown po-

tential to be satisfactory substitutes for the conventional algorithms [21]–[25], [27],
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[29], [75]. The goal of these methods is to attain the performance of the conventional

solutions with lower complexity and better generalizability over channel parameters.

These solutions leverage neural networks made up of concatenated linear and nonlinear

operators that can be optimized via the backpropagation algorithm to approximate a

target function.

In this chapter, we review the recent state-of-the-art neural network-based equaliza-

tion approaches in the literature, in particular model-agnostic methods, and analyze

their sources of complexity. Subsequently, having the made analysis in hand, to avoid

the investigated sources of complexity, we propose a convolutional recurrent neural

network (CRNN) architecture equalizer model, comprising a CNN-based encoder and

a unidirectional many-to-one vanilla RNN. In Chapter 5, we demonstrated that this

proposed model achieves the same performance as the state-of-the-art bidirectional

recurrent-based equalizers while having substantially lower complexity.

4.1 Neural network-based equalizers in the recent

literature

According to the underlying rationale, the neural network-based equalization methods

can be classified into two categories: model-driven approaches obtained via deep un-

folding [76] of the fiber-optic channel model, and model-agnostic methods based on

generic neural networks.

In model-driven methods, the neural network is constructed similar to the computation

graph of the channel model, and the model parameters are then tuned using variants

of the stochastic gradient descent (SGD), a process termed deep unfolding.

Learned DBP (LDBP) proposed by Häger et al. [77]–[79] is the main approach in this

category. This approach uses the computation graph generated by SSFM as a blueprint

for the neural network design, resulting in a convolutional neural network (CNN) with

a trainable activation function. Fig. 4.1 depicts the schematic of this approach. The

top processing branch in this figure corresponds to the computational graph generated

by SSFM. The bottom processing branch is the computational graph of the proposed

LDBP approach mimicking the computation graph of the SSFM with 2 step/span

(StPS). Each network layer, i, is made up of two weight matrices W
(i)
1 ,W

(i)
2 ∈ Cn, where
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Figure 4.1: Block diagram in [77] illustrating the underlying rationale of the LDBP

approach. The top processing branch at the receiver side corresponds to DBP with the

computational graph generated by SSFM. The bottom processing branch presents the

computational graph of the LDBP imitating the top processing branch.

n in the dimensionality of the network input y ∈ Cn and the activation ρ(i) : Cn → Cn

where ρ(i)(x) = xe−jαi|x|2 in which αi is a trainable parameter. The weight matrices,

however, are restricted to an equivalent circular convolution with a symmetric filter

of length 2Km + 1 (Km is a hyper-parameter), i.e. the matrix rows are circularly

shifted versions of (uKm , ..., u1, u0, u1, ..., uKm , 0, ..., 0), where hi ∈ C and u−i = ui.

The weight matrices are initialized by using the appropriately zeroed versions of Aδ/2,

multiplied by e−
α
2
Lsp (α is the fiber loss and Lsp is the span length) for W

(i)
1 in the

first layer of each span. Here, Aδ = F†diag(H1, . . . , Hn)F in which F and F† are

respectively discrete Fourier transform (DFT) and inverse DFT (IDFT) matrices, and

Hi = exp
(
−α

2
δ + j 1

2
β2ω

2
i δ
)

where ωi is i-th DFT angular frequency, and δ is the step

length in SSFM. There is also a final layer W (ℓ) ∈ Cn×m accounting for the matched

filtering layer, where m in the dimensionality of the input signal x ∈ Cm.

That being said, despite the fact that LDBP results in an excellent performance and

substantially reduces complexity compared to DBP, it still results in high complexity.

The computation graph of LDBP with Nsp spans and Nstps StPS is a CNN with ℓ =

3 × Nsp × Nstps successive linear and non-linear layers. For Nsp = 32 and Nstps = 3

considered in [77], [78], this results in ℓ = 288 layers, which could be intolerably high.

This issue is also pertinent to other similar approaches in this category, such as in

[80] by Sidelnikov et al., where a roughly similar approach to LDBP is adopted to

simulate DBP in dual-polarization wavelength-division-multiplexing (WDM) systems

by customizing the nonlinear activation function to account for a different number of

neighboring symbols from adjacent spectral channels; or as in [81] where Jiang et al.

propose a so-called physics-informed MLP which is capable of solving the NLS equation

in fiber-optic communications with lower complexity than SSFM.
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Model-agnostic neural network equalizers, on the other hand, aim to learn the distor-

tion patterns using a low-complexity shallow neural network that does not incorporate

the channel model into the neural network design. Deep learning is performed here

by pairing the sampled waveform at RX (or, typically, the waveform after CD com-

pensation or linear equalization) with the corresponding transmitted symbols at the

transmitter (TX).

Several model-agnostic neural networks have been proposed for mitigating nonlinear

distortions in optical fiber transmission [21], [22], [24], [34].

As universal approximators, MLPs are among the first adopted models in this field.

A number of MLP-based adopted models for equalization are discussed in [81], [82],

[84], [85]. As an instance, Fig. 4.2 shows a schematic of the proposed MLP model by

Catanese et al. [82]. This model, from the pre-processed sampled waveform, takes the

target symbol at time-step i together with a window of its M neighbouring symbols

(effective channel memory) at x- and y− polarization, and it outputs the real and

imaginary part of the equalized symbol. This input-output model, which is referred

to as windowing, is common among the model-agnostic methods. As MLPs, however,

attempt to capture the correlation among each pair of the samples in data at each layer

using fully-connected layers, they are prone to over-fitting due to the large number

of trainable parameters, and they could also incur a large number of floating-point

operations (FLOPs).

Motivated by this problem, hybrid of the convolutional neural network and MLP

(CNN+MLP) -based models have been investigated [83], [86], [87]. Using convolution

layers, these models attempt to capture short-term dependencies among neighboring

symbols. Following the convolution layers, they leverage a series of fully-connected

layers to capture long-term dependencies. Fig. 4.3 shows a CNN+MLP model pro-

posed by Chuang et al. [83] with 5 hidden layers, outperforming the Volterra nonlinear

equalizers in a 128 Gbps PAM-4 optical transmission over 40 km standard SMF. That

said, owing to the presence of fully connected layers introducing a large number of

trainable parameters and floating-point operations (FLOPs), making the model prone

to overfitting, CNN+MLPs might lead to inefficiency as well. With respect to this

matter, efforts to design models with a minimal number of dense layers have recently

grown.

Bidirectional recurrent neural network (bi-RNN) -based equalizers have recently piqued
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Figure 4.2: Schematic of the proposed model by Catanese et al. [82]. The neural

network receives the window of samples qx(i−M, . . . , i+M) and qy(i−M, . . . , i+M),

passes it from two fully connected hidden layers, and outputs the real and imaginary

value of the equalized symbol at time-step i in x- polarization (similarly also for y-

polarization with another network).

Figure 4.3: CNN+MLP model by Chuang et al. [83]. In this model, the window of

samples is passed to the neural network, and the output layer indicates the equalized

symbol.
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Figure 4.4: General structure of bi-RNN based equalizers, where the bi-directional

layer receives the window of samples qx(i−M, . . . , i+M) and qy(i−M, . . . , i+M) and

processes them. The output of the RNN cells then are flattened and, via a linear fully-

connected layer, are processed. The network ultimately outputs the real and imaginary

value of the equalized symbol at time-step i.

Figure 4.5: CNN+bi-LSTM model by Freire et al. [24], [34] where a convolution layer

pre-processes the signal before the bi-LSTM layer.
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attention in this regard [23], [32]–[35], [88]–[90]. RNNs are efficient in capturing long-

term dependencies owing to their ability to keep track of effective information over a

large sequence, resulting in the potential to span a wide channel memory for equaliza-

tion.

It is shown by Liu et al. [33] that bi-directional gated recurrent units (bi-GRU) could

achieve the same bit error rate (BER) in nonlinearity mitigation as bi-directional long-

short-term memory (LSTM) models [35] with a lower number of FLOPs. Furthermore,

Deligiannidis et al. [32] shows that a vanilla bi-RNN could reach the performance of

bi-LSTM and bi-GRU models in some setups, but with a higher number of hidden

units in the recurrent cells. The general structure of the bi-RNN -based approaches

is depicted in Fig. 4.4, where using a bidirectional recurrent layer, a serializer, and a

linear fully-connected layer, the model attempt to capture dependencies within a signal.

A study by Freire et al. [24], [34] also shows that having a convolution layer prior to

a bi-LSTM model could lead to superior performance compared to MLP, CNN+MLP,

and bi-LSTM models in a 34.4 GBd optical transmission over 9 × 50 km TWC fibers.

Fig. 4.5 shows the schematic of this model.

In this doctoral thesis, however, we note that bi-RNN-based equalizers could still be

far from being implemented in realistic systems due to their high computing resource

requirements.

We note three issues concerning the computational complexity of these neural network

equalizers. First, a bi-RNN is not an optimal tool for capturing short-term dependen-

cies. Second, in the gated RNNs, particularly LSTM and GRU structures, although

the supplementary gates strengthen the neural network in the training mode, their

complexity and overhead stay with the model in the inference mode as well. Third,

having one RNN cell per time-step in the signal, as in [24], [32], [34], [35], results in

a high number of RNN cells, which brings about a hefty computational load. This

complexity is doubled furthermore by the bidirectional processing flow. Besides, in

the case of joint nonlinearity-PMD compensation, the computational burden on the

recurrent layer increases by the growth in the dimensionality of the signal.

To address these concerns, in this doctoral thesis, we propose a hybrid architecture

comprising a CNN-based encoder and a unidirectional many-to-one simple (vanilla)

RNN working in tandem. The CNN component captures short-range dependencies

using convolutional kernels. Furthermore, in parallel, by taking the data into a latent
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space using unbalanced multi-channeling and striding, it reduces the dimensionality

of the signal towards 1 SpS. The structure also groups the neighbour samples whose

dependencies have been captured into distinct blocks to be passed as the time-steps

to the RNN. The RNN, then, detects the long-range dependencies within the reduced

number of input dependencies to the layer. As the number of time-steps is substantially

shrunk and the short-term dependencies have been extracted, a unidirectional many-

to-one vanilla RNN is sufficient for this task. In the following section, we elaborate on

this model in more depth.

4.2 Complexity reduction using latent space of

CNNs

There often exist long- and short-term dependencies in the received signal, depend-

ing on distance and bandwidth, that need to be extracted for equalization. We note

that although bidirectional recurrent networks are appropriate tools to capture long-

distance dependencies, using them to learn short-term dependencies brings about a

high computational inefficiency. This inefficiency is mainly rooted in the high number

of time-steps, the presence of recurrent gates, and the bidirectional processing flow.

Besides, in the case of joint nonlinearity-PMD compensation, the dimensionality of

the signal passed to the neural network is usually 2 SpS or higher. This oversampling

imposes an additional computational burden on the recurrent layer.

To address these problems, in this study, we aim to place a pre-processing block prior

to the RNN to eliminate the mentioned sources of complexity. To this end, we leverage

a CNN structure because of its twofold advantages. Firstly, CNNs are established

to be efficient tools to capture short-term dependencies, which minimizes the overlap

between short-term and long-term dependencies extraction. Secondly, by the multi-

channeling and striding properties, they can take the data into a latent space where

not only the neighbour samples whose dependencies have been captured are grouped

in the depth-axis of the feature-map, but also using appropriate hyper-parameters, the

dimensionality of data is reduced towards 1 SpS (the latter is only applicable to joint

PMD-nonlinearity compensation).

This enables the RNN to take the vectors in the depth-axis of the feature-map provided

by the CNN encoder, as the time-steps. This highly limits the number of time-steps
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in the RNN, facilitating the replacement of gated recurrent cells with vanilla RNN

cells. In addition, there is no need for a high number of hidden units in the RNN cells

since there is no need for further processing to capture dependencies within the input

vector as they have already been extracted. These together enable us to replace the

bidirectional recurrent layer with a unidirectional many-to-one vanilla RNN layer. This

is owing to the fact that the effective information (RNN memory) can be maintained

along the layer while it is updated at each time-step in a cascade of quite limited

number of RNN cells (3 to 6). Note that in the absence of a CNN block in the model,

besides the burden of capturing both types of dependencies on the uni-directional RNN

layer, the RNN memory should have been maintained throughout the long cascade of

RNN cells, making the neural network inefficient for real-time operation.

In other words:

The first motivation underlying our approach is to minimize the overlap between cap-

turing short-range and long-range nonlinear impairment patterns in the received wave-

form, in order to improve efficiency. With respect to this, we aim to leverage CNNs for

capturing short-temporal dependencies, which are established tools for this purpose,

and utilize recurrent structures exclusively for capturing long-range dependencies so

that fewer number of units is used in each recurrent cell.

Considering that bi-directional RNN-based methods have relatively high complexity

in general, the second motivation of our approach is to use a unidirectional structure

for the recurrent layer. This necessitates a substantial reduction in the number of

input time-steps to the recurrent layer so that the memory of the RNN can maintain

throughout the pipeline. This requires the neighbour samples whose dependencies are

captured are ground into individual blocks as time-steps for the recurrent layer.

The computational burden on the recurrent layer goes high as the signal dimensionality

increases. The third stimulus of our approach is to reduce the dimensionality of the

signal towards 1 SpS prior to the recurrent layer by a dimensionality reduction process.

This also contributes to the requirement of fewer units in the recurrent cells.

The final ambition in our approach is to enable leveraging vanilla RNNs instead of

LSTM or GRU units in the recurrent layer, given that, as debated, the overhead of the

additional gates in the gated recurrent structures stay with the model in the inference

mode, adding up to the model complexity. Having a limited number of time-steps and

hidden units in the recurrent cells could facilitate this idea.
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Figure 4.6: Schematic illustration of the process flow in the proposed CRNN model

where a CNN-based encoder and a unidirectional many-to-one vanilla RNN work in

tandem, each best capturing one set of channel impairments while compensating for

the shortcomings of the other. The CNN block captures the short-range dependencies

using multi-channel strided layers. The width of the feature-map gets narrower at each

layer while its depth increases. The vectors in the depth-axis of the output feature-map

by the CNN block are considered as the time-step for the unidirectional RNN layer.

To fulfill these objectives, we exploited a CNN-based encoder composed of multi-

channel strided convolution layers prior to the recurrent layer. Multi-channeling en-

ables the possibility of applying an ample number of filters to signal to extract the

short-term dependencies. Moreover, combined with striding, it grants us a tool for

an efficient dimensionality reduction via applying a disproportionate number of filters

in each layer compared to the stride set for the layer. This dimensionality reduction

process not only notably lessens the computational load on the recurrent layer but also

diminishes the load on the final convolution layer, where a small-size filter can span a

large area. Furthermore, at the output of the CNN block, the neighbor symbols whose

dependencies have been captured are automatically grouped together as the individual

vectors in the depth-axis of the output 2-D feature-map.

Based on this rationale, Fig. 4.6 illustrates the schematic of the process flow in the pro-
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Figure 4.7: The architecture of the proposed CRNN model. The number of convolution

layers is a hyper-parameter that is optimized.

posed CRNN model. This model, similar to the bidirectional recurrent-based methods,

follows the windowing input-output format, and thus receives a data matrix containing

windows ux(t = i−M × SpS, . . . , t = i + M × SpS) and uy(t = i−M × SpS, . . . , t =

i+M ×SpS) output by the previous block in the DSP chain for the x- and y- polariza-

tion, where M is the assumed channel memory and i is the index of the symbol that is

going to be equalized 1. This matrix is initially processed by a CNN. In the CNN, at

each layer, the width of the data matrix (feature-map) is reduced (via striding), and

the depth is increased (via applying filters). For joint nonlinearity-PMD compensation,

narrowing the width and increasing the depth should be in a disproportionate manner

to reduce the dimensionality (narrowing the width must be further). Following each

layer, an activation function introduces nonlinearity to the output. The feature-map

output by the CNN is then passed to the recurrent layer, where the vectors in the

depth-axis are considered as the time-steps.

As via striding in the CNN block, the width of the feature-map has markedly reduced,

1A detailed description of the input-output model of the neural network is discussed in Sec. 5.1.3.
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there exist a sharply declined number of time-steps for the RNN. Furthermore, as the

dependencies within each time-step vector have already been captured, the required

number of hidden units in the recurrent cells shrinks noticeably. Having a quite limited

number of time-steps and a small-size hidden state, makes it possible to maintain the

state throughout the layer while it is updated at each time-step, by using a unidirec-

tional many-to-one vanilla RNN layer. The output of the RNN is consequently the

hidden state output by the last recurrent cell. This output is then linked to 4 process-

ing units via a linear fully-connected layer, which forms a linear regression model for

each of the 4 units. These 4 units are supposed to output the real and imaginary parts

of the symbols in the target position i, at x- and y- polarizations. Fig. 4.7 depicts the

block diagram of the proposed model.

4.3 Conclusion

In this chapter, we reviewed a variety of state-of-the-art neural network-based equal-

izers for nonlinearity mitigation in optical fiber communications. We debated that

bidirectional recurrent neural network-based methods have recently piqued big deals

of attention owing to their superior performance; however, their computational com-

plexity goes relatively high.

We analyzed the sources of computational inefficiency in these approaches and sub-

sequently proposed a hybrid neural structure comprised of a CNN-based encoder and

a unidirectional vanilla RNN working in tandem. We discussed that the CNN-based

encoder not only captures the short-term dependencies and reduces the dimensionality

of the signal, but it is also a key structure for enabling the practical implementation

of a unidirectional RNN for capturing long-range dependencies.

In the next chapter, we demonstrate that for a 64 GBd dual-polarization 16-QAM

optical transmission over 14×80 km standard SMF, the proposed CRNN model achieves

a comparable performance to the bi-RNN, bi-GRU, bi-LSTM, and CNN+bi-LSTM -

based equalizers adopted in [32]–[35], with greater than 50% fewer number of FLOPs.
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Chapter 5

Implementation and numerical

results

In this chapter, we discuss the implemented fiber-optic communication system model,

the fiber parameters, system setup, and the developed software. Moreover, we discuss

the applied training and evaluation methodology of the implemented neural network-

based equalizers, and we elaborate on the resulting performance versus the complexity

of the models.

5.1 Implemented polarization-multiplexed fiber-optic

transmission system model

We modeled a dual-polarization 16-QAM 64 GBd point-to-point fiber-optic transmis-

sion system over 14 × 80 km SSMF optical-link, according to the system model il-

lustrated in Fig. 5.1, with the following parameters: fiber loss adB = 0.2 dB/km,

chromatic dispersion D=17 ps/nm/km, nonlinearity parameter γ = 1.4 W−1km−1,

PMD value 0.05 ps/
√

km, EDFA noise figure NF = 5 dB, and the laser linewidth 100

kHz. For pulse shaping, root-raised cosine (RRC) filters with a roll-off of 0.25 are em-

ployed. Forward propagation was simulated using SSFM with 8 SpS and 80 step/span

(increasing either value did not affect the results). The sampling rate at RX was set

to 2 SpS.
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Figure 5.1: Block diagram of the considered fiber-optic transmission system. The top

and bottom branches of the receiver represent the RX model 1 and 2, respectively.

The mentioned setup was adopted based on the common consensus in the community

[32], [33], [77], [79], [82] on the modeling parameters, according to the current available

fiber-optic technologies [91]. The length of the considered optical link also ensures a

long-haul transmission and further resembles C-LION1 submarine cable [92] between

Rostock, Germany and Helsinki, Finland.

The mentioned fiber optic transmission system was implemented as follows.

5.1.1 Transmitter model

At the transmitter, a bit stream mx = (m
(1)
x ,m

(2)
x , . . . ,m

(Nb)
x ), m

(i)
x ∈ {0, 1}, is mapped

to a sequences of symbols sx = (s
(1)
x , s

(2)
x , .., s

(Ns)
x ), where s

(i)
x are drawn from a 16-QAM

constellation. The sequence of symbols sx is then modulated to a digital waveform

qx(t, 0) =
∑Ns

i=1 s
(i)
x p(t− i/Rs), where p(t) is the root-raised-cosine (RRC) pulse shape

and Rs is the baud rate. This is similarly done for the bit stream my which is modulated

to qy(t, 0). The waveforms qx(t, 0) and qy(t, 0) are then multiplexed into an electric field

with a dual-polarization Mach-Zehnder in-phase (I) and quadrature (Q) modulator,

that is transmitted over optical fiber. The modulator is driven by a laser with linewidth

∆ν that introduces phase noise modeled by a Wiener process and Lorentzian power

spectral density [6, Chap. 3.5]. The same realization of the phase noise is applied to

both polarizations.
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5.1.2 Channel model

The channel was implemented according to the explanation provided in Section 2.3.

5.1.3 Receiver model

At the receiver, an optical coherent detector translates the optical signal to four elec-

trical signals, corresponding to the I and Q components of each polarization. It is

assumed that the lasers at TX and RX operate at the same frequency, i.e., the carrier

frequency offset (CFO) is zero. Consecutively, the sampled waveforms are forwarded to

the digital signal processing (DSP) chain to compensate for the channel impairments.

The first step in the DSP is CD compensation, reversing the dispersion effect through-

out the fiber in one-shot as

q̂x(ω,L) 7→ exp

(
−j

β2

2
ω2L

)
q̂x(ω,L), (5.1.1)

where L is the fiber length. Next, depending on the task of the neural network, two

receiver configurations, labeled as RX 1 and RX 2 in Fig. 5.1, are considered.

RX model 1. The neural network is placed after the linear equalization, with the

aim of mitigating nonlinear channel impairments. The linear DSP consists of a cascade

of CD compensation, a radius-directed-equalization (RDE) [93] -based multiple-input-

multiple-output (MIMO) algorithm to compensate for the PMD, a demultiplexer to

separate the two polarizations, and a two-stage carrier phase estimation (CPE) algo-

rithm to compensate for the phase offset. The CFO compensation is not required, since

the CFO is assumed to be zero.

RX model 2. The neural network is placed after the CD compensation, and its

purpose is to jointly mitigate the nonlinearity and PMD. There is a CPE block after

the neural network in this RX architecture to compensate for the laser phase noise, as

the neural network is not able to compensate for the phase noise efficiently due to its

randomness.

The input-output model of the neural networks in both RX models is shown in Fig. 5.2.

To equalize the symbols s
(i)
x and s

(i)
y at time-step i, the neural network processes two
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Figure 5.2: Input-output model of the neural networks in both RX models.

vectors u
(i)
x and u

(i)
y containing a window of the time-domain signal samples from each

polarization output by the previous block in the DSP chain, e.g.,

u(i)
x =

(
u(i−M)
x , · · · , u(i)

x , · · · , u(i+M)
x

)T
. (5.1.2)

The input vectors are centered at time-step i, and span 2M neighbor samples (M

left, M right). If the effective channel memory in number of symbols is M̄ , then

M = M̄SpS + (SpS − 1)/2. The real and imaginary parts of the samples in u
(i)
x and

u
(i)
y are then split and placed in every other position in a corresponding vector, e.g.,

ũ(i)
x =

(
ℜ(u(i−M)

x ), · · · ,ℜ(u(i)
x ),ℑ(u(i)

x ), · · · ,ℑ(u(i+M)
x )

)T
. (5.1.3)

Consequently, the vectors ũ
(i)
x and ũ

(i)
y are stacked together, and the matrix U (i) =

(ũ
(i)
x , ũ

(i)
y ) ∈ R2(2M+1)×2 is passed to the neural network as input. For RX 1, the SpS

at the input of the neural network is 1. After processing, the neural network outputs

the real and imaginary parts of the equalized symbol in the x- and y- polarization at

time-step i (4 outputs).

The neural networks are trained with U (i) as the input data matrix, and the correspond-

ing correct transmitted symbols s
(i)
x and s

(i)
y in the standard 16-QAM constellation as
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the ground truth. The performance of the receivers is measured in the test mode by

the Q-factor

Q-factor = 20 log10[
√

2erfc−1(2BER)], (5.1.4)

where BER is the bit-error-rate, and erfc is the complementary error function.

5.2 Developed software

According to the modeling procedure discussed in the previous chapter, a polarization-

multiplexed fiber-optic transmission system model was developed in Python 3.x, con-

sisting of optical fiber channel modeling and DSP chain implementation at the trans-

mitter and receiver. Certain modules of this system were developed under the GNU

General Public License v3.0 (available at [94]), including QAM modulation, RRC

Pulse shaping, signal propagation governed by CNLSE (realized by SSFM with dis-

tributed PMD integration), ASE noise modeling, laser phase noise modeling, sampling,

matched filtering, chromatic dispersion compensation, digital back-propagation, RDE-

based MIMO equalization, polarization separation and synchronization, demodulation,

nearest neighbour detection, and Q-factor calculation.

5.3 Training methodology

MLP, CNN+MLP, bi-RNN, bi-GRU, bi-LSTM, and CNN+bi-LSTM neural structures

with respectively similar architectures to [82], [83], [32] [33], [35], [34], as well as, the

proposed CRNN model were considered for equalization, in the context of the two RX

models in Fig. 5.1.

For both the RX models, the neural networks were trained with U (i) (discussed in

Section 5.1.3) as the input data matrix, and the corresponding correct transmitted

symbols s
(i)
x and s

(i)
y in the standard 16-QAM constellation as the ground truth.

The following subsections discuss the training procedure and hyper-parameters used

for the neural networks in each of the RX models.
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Table 5.1: Details of the hidden layers of the implemented neural networks for RX 1.

The output layer for all the models is a linear fully-connected layer with 4 units.

Model Layer Type Details

MLP [82]

layer 1 Dropout dropout rate: 0.4

layer 2,3 FC #units: 1536, activ.: tanh

layer 4 Dropout dropout rate: 0.3

layer 5,6 FC #units: 1536, activ.: tanh

CNN+MLP [83]

layer 1 Conv-1D Lker: 49, strd: 1, #ch.: 4, activ.: relu

layer 2 Conv-1D Lker: 49, strd: 1, #ch.: 6, activ.: relu

layer 3 Conv-1D Lker: 49, strd: 1, #ch.: 8, activ.: relu

layer 4,5 FC #units: 768, activ.: tanh

bi-LSTM [35]
layer 1 bi-LSTM #units: 144; activ.: tanh, sigmoid

layer 2 Flattening data format: channel last

bi-GRU [33]
layer 1 bi-GRU #units: 144; activ.: tanh, sigmoid

layer 2 Flattening data format: channel last

bi-RNN [32]
layer 1 bi-RNN #units: 240; activ.: tanh

layer 2 Flattening data format: channel last

CNN+bi-LSTM [34]

layer 1 Conv-1D Lker: 49, strd: 1, #ch.: 2, activ.: leaky relu

layer 2 bi-LSTM #units: 136, activ.: tanh, sigmoid

layer 3 Flattening data format: channel last

Proposed CRNN

layer 1 Conv-1D Lker: 49, strd: 1, #ch.: 4, activ: relu

layer 2 Conv-1D Lker: 9, strd: 9, #ch.: 36, activ: relu

layer 3 Conv 1-D Lker: 5, strd: 5, #ch.: 180, activ: relu

layer 4 uni-RNN #units: 454, activ.: tanh
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Figure 5.3: Q-factor gain over linear equalization as a function of the number of hidden

units in the recurrent cells of the recurrent-based approaches for RX 1. Shaded area

illuminates the nonlinear region on the #units-gain curve and the distance of the points

to the linear relation.

5.3.1 RX model 1

As noted, the neural network in RX 1 is placed after CD compensation, RDE-based

MIMO equalizer, demultiplexer, and CPE; and in consequence, it operates on 1 SpS

signals with the input-output scheme illustrated in Fig. 5.2.

The details of the implemented neural networks for RX 1 are mentioned in Table. 5.1.

The hyper-parameters in each case, especially the number of hidden units in the recur-

rent layers, were optimized using K-fold cross-validation, considering the performance-

complexity trade-off. Fig. 5.3 illustrates the Q-factor gain over linear equalization as a

function of the number of hidden units in each cell in the recurrent layers. The region
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Table 5.2: Details of the hidden layers of the implemented neural networks for RX 2.

The output layer for all the models is a linear fully-connected layer with 4 units.

Model Layer Type Details

MLP [82]

layer 1 Dropout dropout rate: 0.5

layer 2 FC #units: 1536, activ.: tanh

layer 3,5 FC #units: 1152, activ.: tanh

layer 4 Dropout dropout rate: 0.4

layer 6 FC #units: 768, activ.: tanh

CNN+MLP [83]

layer 1 Conv-1D Lker: 99, strd: 1, #ch.: 3, activ.: relu

layer 2 Conv-1D Lker: 99, strd: 3, #ch.: 7, activ.: relu

layer 3 Conv-1D Lker: 51, strd: 3, #ch.: 20, activ.: relu

layer 5 Dropout dropout rate: 0.3

layer 4,6 FC #units: 1152, activ.: tanh

bi-LSTM [35]
layer 1 bi-LSTM #units: 158; activ.: tanh, sigmoid

layer 2 Flattening data format: channel last

bi-GRU [33]
layer 1 bi-GRU #units: 158; activ.: tanh, sigmoid

layer 2 Flattening data format: channel last

bi-RNN [32]
layer 1 bi-RNN #units: 270; activ.: tanh

layer 2 Flattening data format: channel last

CNN+bi-LSTM [34]

layer 1 Conv-1D Lker: 49, strd: 1, #ch.: 2, activ.: leaky relu

layer 2 bi-LSTM #units: 136, activ.: tanh, sigmoid

layer 3 Flattening data format: channel last

Proposed CRNN

layer 1 Conv-1D Lker: 99, strd: 1, #ch.: 4, activ: relu

layer 2 Conv-1D Lker: 11, strd: 11, #ch.: 30, activ: relu

layer 3 Conv 1-D Lker: 9, strd: 9, #ch.: 125, activ: relu

layer 4 uni-RNN #units: 494, activ.: tanh
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Figure 5.4: Q-factor gain over linear equalization as a function of the number of hidden

units in the recurrent cells of the recurrent-based approaches for RX 2. Shaded area

illuminates the nonlinear region on the #units-gain curve and the distance of the points

to the linear relation.

of interest is the shaded area between the gain curve and the linear relation, where a

linear increase in the number of hidden units yields a higher than linear payoff. Note

that for bi-directional layers, the presented numbers in the figure and table are the

sum of hidden units for both directions, half for each.

All models were trained using the Adam algorithm in Tensorflow 2.6 with mean square

error (MSE) loss function, 218 normalized input output training vectors (with the

structure discussed in Section 5.1.3), batch size of 16, learning rate of 5 × 10−4, and

the decay rates βAdam
1 = 8.5 × 10−1, βAdam

2 = 9.99 × 10−1, on a Linux Fedora release

35 system with 96 CPUs AMD EPYC 7F72 24-Core Processor, 2 threads per core,

and 259 GB RAM. The number of epochs was set to 120. The value of loss on the
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validation set was calculated at each epoch, and the model with the lowest validation

error over epochs was selected.

5.3.2 RX model 2

As discussed, the neural network in RX 2 is responsible for joint nonlinearity-PMD

compensation upon receiving the sampled waveform after CD compensation with 2

SpS. As the signal is subject to the random phase noise effect, a CPE block is required

outside the neural network to compensate for the phase noise. Despite this, the samples

used for training the neural network are the pairs of normalized transmitted symbols

at time-step i, and the corresponding window of the normalized signal output by the

CD compensation block.

Table. 5.2 presents the details of the implemented neural networks for RX 2. The

networks were tuned (Fig. 5.4) and trained using the same scheme and number of

samples as for the neural networks in RX 1.

5.4 Complexity measurement

We use the number of incurred FLOPs as a metric for measuring the complexity of

the models. In this section, we elaborate on the FLOPs that each of the MLP, CNN,

RNN, GRU, and LSTM models incur.

For a fully-connected layer, according to (3.1.1),

FLOPs{fully-connected} = ninh + ηnh + nh, (5.4.1)

where ni is the number of input features, nh is the number of hidden units, and η is the

number of FLOPs the nonlinear activation function takes. For a convolutional layer,

also, the number of FLOPs is calculated using the following formula

FLOPs{conv} = nker × (2 × eker − 1) × Lout + ηeout, (5.4.2)
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where nker is the number of kernels, eker is the kernel shape, and eout is the shape of the

output feature-map. Lout, which is the length of the output feature-map, is obtained

by

Lout = ⌊Lin + 2 × pad− (dil × Lker − 1) − 1

strd
+ 1⌋, (5.4.3)

where pad, dil and strd, respectively, signify padding, dilation 1, and stride. Lker is the

kernel length.

According to (3.3.1), the number of FLOPs performed in a vanilla RNN cell in one

time-step is

FLOPs{RNN} = ninh + n2
h + 2nh + ηnh, (5.4.4)

From (3.3.2) the number of FLOPs incurred by an LSTM cell is derived as follows

FLOPs{LSTM} = 4 × [ninh + n2
h + 3nh] + 5ηnh, (5.4.5)

In this calculation, with an approximation, it is assumed that tanh and sigmoid acti-

vations both impose the same number of FLOPs.

Based on (3.3.3), the number of FLOPs incurred by a GRU unit is calculated as follows

FLOPs{GRU} = 3 × [ninh + n2
h + 2nh + ηnh] + 5nh, (5.4.6)

In (5.4.6) similar to (5.4.5) it is assumed that sigmoid and tanh activations incur the

same number of FLOPs.

Note that the number of FLOPs incurred by a recurrent layer equals the number of

FLOPs incurred by one recurrent cell multiplied by the number of time-steps. For

bidirectional layers, this value is doubled.

1dilation is off throughout this study
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Figure 5.5: BER of the neural networks for RX 1 in the test mode as a function of the

total launch power.

5.5 Evaluation

224 unseen online-generated bits were used for the evaluation of the neural network

models in both the RX types.

5.5.1 RX model 1

The resulting Q-factor and BER performance plots of the implemented approaches

are demonstrated in Fig. 5.5, and Fig. 5.6, respectively. According to these figures,

the recurrent-based equalizers provide slightly superior performance over MLP and

CNN+MLP models with 0.42 − 0.69 dB and 0.11 − 0.38 dB Q-factor gain, respec-

tively, at the optimal launch power, and in general 1.83 − 2.1 dB gain over linear
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Figure 5.6: Q-factor of the neural networks for RX 1 in the test mode as a function of

the total launch power.

equalization at optimal launch power. As previously noted, the inferior performance of

MLP and CNN+MLP models is attributed to their susceptibility to over-fitting owing

to the excessive amount of parameters associated with fully-connected hidden layers.

Nonetheless, all the neural models achieve relatively close performance to each other

with < 0.8 dB Q-factor difference. It is analyzed that this is in light of the fact that the

number of parameters (weights) in the models are relatively limited (< 107) because

of the limited size of the input. This results in mitigation of the over-fitting risk via an

effective training strategy and escalating the likelihood of converging to the same low

bias level via a suitable network complexity, which on the contrary, was investigated

to be totally different for different models.

Table. 5.3 presents the complexity of the implemented neural network models measured

by the number of FLOPs they incur in the inference mode per output symbol. These
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Table 5.3: Neural networks’ number of parameters and FLOPs per symbol, in RX 1.

Model #Params #FLOPs/symbol

MLP [82] 5,316,100 ∼26.90× 105

CNN+MLP [83] 3,940,966 ∼21.79× 105

bi-LSTM [35] 154,948 ∼54.61× 105

bi-GRU [33] 144,292 ∼39.81× 105

bi-RNN [32] 275,044 ∼33.40× 105

CNN+bi-LSTM [27] 139.066 ∼47.39× 105

Proposed CRNN 324,418 ∼16.47× 105

values are obtained analytically according to the formulas discussed in Section 5.4;

however, they are also checked with their proportionality to the number of CPU cycles

in the training mode obtained by the Linux kernel performance monitoring tool perf

library. The full report of the CPU performance counters and trace-points recorded

for each neural network is available at [95].

As Table. 5.3 demonstrates, although the proposed CRNN achieves a comparable

performance to the bi-RNN based models, it has > 50% lower complexity compared to

them, namely ∼50.6%, ∼58.6%, ∼69.8%, and ∼65.2% fewer number of FLOPs than bi-

RNN, bi-GRU, bi-LSTM, and CNN+bi-LSTM models; which is thanks to the model’s

efficiency in minimizing the overlap between short-range and long-range dependencies

extraction, having quite limited number of time-steps for the recurrent layer allowing

for leveraging uni-directional many-to-one recurrent layer instead of bi-directional and

using vanilla RNN in place of gated recurrent cells.

5.5.2 RX model 2

Fig. 5.7 and Fig. 5.8 demonstrate the resulting BER and Q-factor performance of the

models 2. As it is noticeable in comparison with the corresponding plots for RX 1, the

2The graphs are based on the output of the CPE block with the implementation of the neural

network model prior to that.
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Figure 5.7: BER of the neural networks for RX 2 in the test mode as a function of the

total launch power.

performance in RX 2 is diminished (averagely ∼0.2 dB), which is due to the destructive

effect of unmitigated random phase noise in the training process.

In RX 2, similarly, although the neural networks achieve roughly comparable perfor-

mance as demonstrated, they incur substantially different complexities. Table. 5.4

demonstrates the number of FLOPs incurred by each neural model in RX 2. As this

table reports, the proposed CRNN incurs ∼52.1%, ∼58.1%, ∼69.7%, ∼65.4% lower

complexity than bi-RNN, bi-GRU, bi-LSTM, and CNN+bi-LSTM models, respectively

(roughly escalated ratios compared to that calculated for RX 1), which is in light of

similar underlying reasons as discussed for RX 1, plus the dimensionality reduction

towards 1 SpS prior to the recurrent layer.

Note that, as discussed in Section 5.1.3, in RX 2, the neural networks need to be

retrained online frequently due to the polarization-dependant time-varying effects. The
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Figure 5.8: Q-factor of the neural networks for RX 2 in the test mode as a function of

the total launch power.

neural networks need ∼105 SGD iterations to be retrained. By assuming the number

of FLOPs for one SGD iteration to be 4-6 times that of one forward propagation step,

and the required retraining frequency to be 103 retrain/s, an overhead of 8 − 12% on

top of the complexities discussed in Table. 5.4, should be considered for the models,

in addition to the high-speed memory requirement.
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Table 5.4: Neural networks’ number of parameters and FLOPs per symbol, in RX 2.

Model #Params #FLOPs/symbol

MLP [82] 6,348,292 ∼32.06× 105

CNN+MLP [83] 2,680,183 ∼26.87× 105

bi-LSTM [35] 176,964 ∼66.53× 105

bi-GRU [33] 163,534 ∼48.68× 105

bi-RNN [32] 324,814 ∼42.50× 105

CNN+bi-LSTM [27] 166,002 ∼63.99× 105

Proposed CRNN 344,281 ∼20.36× 105

5.5.3 RX 1 versus RX 2

The neural networks in RX 1 result in an average 0.2 dB superior Q-factor performance

at optimal launch power compared to the neural networks in RX 2, as it is demonstrated

in Fig. 5.9. We also investigated the case where the neural networks are trained using

signals not affected by phase noise (which is not a realistic assumption), but tested with

phase noise. In this scenario, RX 2 demonstrates a negligible performance improvement

over RX 1 in the test mode. In short, while not having a higher performance than RX

1, the neural networks in RX 2 incur substantially higher complexities than RX 1, in

addition to a frequent retraining requirement overhead, which is disproportionate to

the number of FLOPs they pull out by eliminating the MIMO equalizer in the DSP

chain. In view of this matter, it is believed that RX 1 is a better model to be adopted

for deployment in fiber-optic transmission systems.

We also note that RX 1 and RX 2 result in different constellation diagrams.

As Fig. 5.10 shows, the constellation in RX 1 forms a square grid or “jail window”

shape. This effect, which is commonly observed in other work [96]–[100], occurs when

the neural network equalizer is trained based on regression using the MSE loss function.

This, however, differs from the constellation obtained in RX 2. In RX 2, because

of the random phase noise effect, persistent patterns do not exist in the input to

be learned for detection. However, some forms of detection in the context of phase
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Figure 5.9: Comparison of the Q-factor performance of RX 1 and RX 2 in the test

mode.

noise affected constellation happens, which results in non-uniform noise around the

transmitted symbols. Fig. 5.11 illustrates a sample constellation after the neural

network and after the CPE block in RX 2.

5.6 Conclusion

In this chapter, we provided a detailed description of the conducted investigations

towards evaluating the proposed CRNN model in comparison with the state-of-the-

art methods in neural network-based nonlinearity mitigation. We elaborated on the

system architecture and parameters in detail, described the training and evaluation

methodology precisely, and presented a comprehensive comparison of the performance

versus complexity of the different adopted models.
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(a) Before neural network (b) After neural network

Figure 5.10: Sample obtained constellation in RX 1 (a) after linear equalization (before

the neural network), and (b) after the neural network.

(a) After neural network (b) After CPE

Figure 5.11: Sample obtained constellation in RX 2 (a) after the neural network, and

(b) after the CPE block.

For 64 GBd dual-polarization 16-QAM optical transmission over 1120 km of standard

single-mode fiber with 14 spans, we demonstrated that the proposed CRNN-based

equalizer outperforms state-of-the-art bidirectional recurrent-based techniques while

having > 50% less computational complexity measured by the number of FLOPs.

We also debated that having a neural network-based nonlinearity mitigation approach

at the end of linear equalization could result in higher computational efficiency in terms

of performance and complexity compared to a joint neural network-based nonlinearity-

PMD compensation approach after chromatic dispersion compensation.
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Conclusions

In this dissertation, we presented a concise review of the fundamentals of dual-

polarization fiber-optic communication systems, its constituent components, and the

different types of distortions that the signal is affected by through the propagation

in the optical fiber. Considering the reviewed channel effects, we elaborated on the

transmission techniques and digital signal processing carried out in these systems to

mitigate the channel impairments and achieve higher information rates. We indicated

that implementation of nonlinear equalization methods, which are required for equaliz-

ing the nonlinear channel effects, brings about a substantial computational overhead to

the DSP unit compared to the linear DSP chain, especially with conventional solutions,

in particular digital backpropagation.

In view of this matter, we introduced the concept of neural network-based equalization,

which has recently piqued big deals of attention for obtaining comparable performance

to conventional solutions while requiring lower computing resources. Towards this, we

concisely reviewed the principles of neural networks, the underlying rationale, and the

fundamental neural network structures for deep learning, utilizing which several neural

network-based equalizers have recently been proposed in the community. We debated

the state-of-the-art neural network-based equalization methods and made an analysis

of their computational efficiency towards figuring out the stratagems within the models

that could lead to computational inefficiency.

With regard to the analysis made, we proposed a hybrid neural network equalizer com-

prising a CNN-based encoder and a unidirectional many-to-one vanilla RNN working

in tandem to mitigate nonlinear channel impairments in long-haul fiber-optic commu-

nications. We showed that the suggested CNN-based encoder not only minimizes the

overlap between short-term and long-term dependencies extraction but also, by taking

data into a latent space through multi-channeling and striding properties, it reduces
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the number of significant features so that the subsequent layer can be implemented ef-

ficiently in the form of a unidirectional vanilla recurrent layer in lieu of a bidirectional

gated recurrent layer.

We demonstrated that for 64 GBd dual-polarization 16-QAM optical transmission over

14×80 km SSMF, the suggested CRNN-based equalizer reaches a comparable perfor-

mance to the state-of-the-art bidirectional recurrent-based approaches while having

> 50% lower computational complexity compared to them; thanks to the efficiency of

the model in minimizing the overlap between short-range and long-range dependen-

cies extraction, leveraging unidirectional recurrent layer instead of bidirectional, using

vanilla RNN in place of gated recurrent cells, and the dimensionality reduction prior

to the recurrent layer.

We also investigated that when phase noise is present, a neural network-based approach

to only compensate for the nonlinear impairments at the end of the linear DSP unit

could result in greater efficiency in terms of performance and complexity compared to

a combined nonlinearity-PMD mitigation solution via a neural network following the

CD compensation block in the DSP unit.
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Future studies

In this section, we discuss two of the compelling areas for future studies in the contin-

uation of this doctoral thesis.

Attention-based pruning and quantization

One of the intriguing areas for future studies is to use an attention mechanism, as in

[23], for punning and quantization of the connections in the proposed CRNN model.

This process may lead to an ample complexity reduction in terms of the number of bit-

wise operations in the interest of field-programmable gate array (FPGA) programming

and high-performance computing (HPC) applied to the equalization process.

In a side study, presented in [23], we investigated that using an attention mechanism

for learning and removing unnecessary connections in the final fully-connected layer of

bidirectional recurrent-based models in block-to-block based equalization (as in [78])

could moderately reduce the number of FLOPs in the inference mode. The schematic

of that approach is depicted in Fig. 5.12, where there exists one attention unit on

top of each RNN cell to determine the intensity of the impact of that RNN time-step

on each of the equalized symbol in the output vector. If it is turned out that the

impact level of a connection is below a threshold, the connection can be dropped.

Furthermore, in FPGA programming and circuit design, the number of bits dedicated

to each connection can be assigned according to the determined impact.

In a future study, one could adopt this approach for determining the impact level of

each/block of the connections in the unidirectional many-to-one recurrent layer of the

proposed CRNN model by putting one attention unit per connection or a group of

connections, depending on the available computing resources and the system setup.
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Figure 5.12: Presence of one attention unit on top of each RNN time-step j, in a

CNN+bi-RNN -based equalizer, to determine the impact level of the RNN time-step

on the equalized value for each of the symbol si.

Deep reinforcement learning-based joint transmitter

and receiver optimization

One of the other interesting areas for future research is the concept of joint transmitter

and receiver optimization using a hybrid of deep learning and reinforcement learning

(RL), where the receiver is implemented via a neural network-based approach (the

same as what is proposed in this manuscript), and the transmitter is implemented as

an RL agent. The neural network is directly updated via variants of SGD at each

iteration, and the RL-based transmitter gets trained according to an RL algorithm.

RL is about an agent interacting with the environment to learn an optimal policy for

sequential decision-making problems, by trial and error. Trial-and-error learning is

associated with so-called long-term rewards. In RL, the algorithm (agent) analyses

the current situation (state), makes a decision, and receives feedback (reward) from

the environment. Positive feedback denotes a reward, and negative feedback denotes a

punishment due to the wrong decision. The main objective of RL is to determine the
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best sequence of decisions that will enable an agent to solve a problem while optimizing

long-term rewards [101, Ch. 1]. This is carried out via the following process.

At each time step t, the agent receives a state st in the state space S and selects an

action at from the action space A, according to the policy π. A policy is a mapping from

states to probabilities of selecting each possible action, together with their associated

rewards. In the event of an episodic problem, this cycle proceeds until the agent enters

the terminal state, where it restarts. The return (accumulated reward) of a policy for

the state st is calculated as

Rt =
T∑

k=0

ξkrt+k, (5.6.1)

where T is the time of termination, and rt is the reward of the action at time step

t, based on the policy. ξ ∈ [0, 1) is the discount factor. The goal of the agent is

to maximize the expectation of the return from each state. This is performed by

estimating the value function. The value function measures the expected return for a

state under a policy. Therefore, mathematically, the value of a state s under a policy

π, denoted by vπ(s), is defined as

vπ(s) = Eπ[Rt|st = s] = Eπ

[
T∑

k=0

ξkrt+k|st = s

]
. (5.6.2)

Similarly, the value of taking action a at state s under policy π, is defined by the

action-value function for policy π as

qπ(s, a) = Eπ[Rt|st = s, at = a] = Eπ

[
T∑

k=0

ξkrt+k|st = s, at = a

]
. (5.6.3)

A foundational property of the value functions in RL is that for any policy π and any

state s, the following consistency condition holds between the value of s and the value

of its possible successor states [101, Ch. 3]
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vπ(s) = Eπ[Rt|st = s]

= Eπ[rt+1 + ξRt+1|st = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a) [r + ξEπ[Rt+1|st+1 = s′]]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + ξvπ(s′)] ,

(5.6.4)

where π(a|s) denotes the probability that at = a if st = s, under policy π.

Solving a RL task means finding the optimal policy π∗, whose expected return for

all the states is higher than or equal to all the other policies. Optimal policies have

the same state-value function, called the optimal state-value function. This function

is defined as v∗(s) = maxπ vπ(s) for all s ∈ S. Optimal policies also have the same

optimal action-value function q∗(s, a) = maxπ qπ(s, a) for all s ∈ S and a ∈ A. A(s) is

the set of all available actions for the state s. Therefore,

q∗(s, a) = Eπ[Rt+1 + ξv∗(st+1)|st = s, at = a]. (5.6.5)

According to the Bellman optimality equation [102] and by (5.6.5),

v∗(s) = max
a∈A(s)

q∗(s, a)

= max
a

Eπ[Rt+1 + ξv∗(st+1)|st = s, at = a]

= max
a

∑
s′,r

p(s′, r|s, a) [r + ξv∗(s
′)] .

(5.6.6)

Various solutions have been proposed to achieve π∗ through iterations of policy im-

provement, the prominent of which are Q-learning[103], policy gradient [104] , DQN

[105], and DDPG [106]. The policy improvement process finishes when v∗ is reached

[101, Ch. 4], which is the case when

∀ s ∈ S, ∄ a ∈ A(s) [(a ̸= π(s)) ∧ (qπ(s, a) > vπ(s))] . (5.6.7)

As discussed at the beginning of this section, one promising research field for future

investigations is to extend the current CRNN -based receiver to a transceiver opti-

mization approach, where the CRNN is trained using variants of SGD, based on the
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Figure 5.13: The general schematic of the potential deep reinforcement learning-based

approach towards jointly optimizing transmitter and receiver, where the CRNN model

is trained in a supervised learning manner via SGD, and the RL-based transmitter

learns the optimal policy by updating its policy iteratively according to the feedback

it receives.

calculated loss, and the transmitter is implemented as an RL agent which is optimized

through the process of receiving rewards via a feedback link connected to the actions

(an approach likewise [107], [108]). The domain of actions could be the adopted con-

stellation shape, the pulse shape, or even the channel coding format. A schematic of

this approach in the general form is illustrated in Fig. 5.13 where, roughly saying,

the calculated loss is considered as the loss for the CRNN-based equalizer, and as the

feedback for the transmitter.

This approach is appealing from the perspective that it does not require the full im-

plementation of the channel’s computational graph and prior knowledge about all the

channel parameters as in the end-to-end deep learning-based methods [28], [109], [110];

thus, in case of success, it is considered to be more practical for realistic fiber-optic

communication systems.

Besides the discussed research field for the future studies, leveraging the proposed

CRNN model in post-processing of the nonlinear spectrum at RX in nonlinear Fourier

transform (NFT)-based optical transmission systems [72], [111] is one the other note-

worthy areas that could provide additional gains to these systems.
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[96] C. Bluemm, M. Schaedler, S. Calabrò, et al., “Equalizing nonlinearities with

memory effects: Volterra series vs. deep neural networks,” in Eur. Conf. Opt.

Commun. (ECOC), Sep. 2019, pp. 1–4. doi: 10.1049/cp.2019.0945.

[97] M. A. Jarajreh, E. Giacoumidis, I. Aldaya, et al., “Artificial neural network

nonlinear equalizer for coherent optical ofdm,” IEEE Photonics Technol. Lett.,

vol. 27, no. 4, pp. 387–390, Dec. 2015. doi: 10.1109/LPT.2014.2375960.

[98] L. Liu, M. Bi, S. Xiao, J. Fang, T. Huang, and W. Hu, “Ols-based rbf neural

network for nonlinear and linear impairments compensation in the co-ofdm sys-

tem,” IEEE Photonics J., vol. 10, no. 2, pp. 1–8, Feb. 2018. doi: 10.1109/

JPHOT.2018.2808919.

[99] J. Zhang, P. Lei, S. Hu, et al., “Functional-link neural network for nonlin-

ear equalizer in coherent optical fiber communications,” IEEE Access, vol. 7,

pp. 149 900–149 907, Oct. 2019. doi: 10.1109/ACCESS.2019.2947278.

[100] O. Kotlyar, M. Kamalian-Kopae, M. Pankratova, A. Vasylchenkova, J. E. Prilep-

sky, and S. K. Turitsyn, “Convolutional long short-term memory neural network

equalizer for nonlinear fourier transform-based optical transmission systems,”

Opt. Express, vol. 29, no. 7, pp. 11 254–11 267, Mar. 2021. doi: 10.1364/OE.

419314.

124

https://www.submarinecablemap.com/submarine-cable/c-lion1/
https://doi.org/10.1109/JLT.2009.2021961
https://github.com/FONTE-EID/fiber-optic-transmission-system-modeling/
https://github.com/FONTE-EID/fiber-optic-transmission-system-modeling/
https://www.kaggle.com/datasets/performancedata/nn-nonlinearity-mitigation/
https://www.kaggle.com/datasets/performancedata/nn-nonlinearity-mitigation/
https://doi.org/10.1049/cp.2019.0945
https://doi.org/10.1109/LPT.2014.2375960
https://doi.org/10.1109/JPHOT.2018.2808919
https://doi.org/10.1109/JPHOT.2018.2808919
https://doi.org/10.1109/ACCESS.2019.2947278
https://doi.org/10.1364/OE.419314
https://doi.org/10.1364/OE.419314


[101] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

press, 2018.

[102] R. Bellman, “On the theory of dynamic programming,” Proc. Natl. Acad. Sci.

U.S.A., vol. 38, no. 8, p. 716, 1952.

[103] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,

pp. 279–292, 1992.

[104] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradi-

ent methods for reinforcement learning with function approximation,” in Conf.

Neural Inf. Process. Syst. (NeurIPS), 2000, pp. 1057–1063.

[105] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through deep

reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[106] T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., “Continuous control with deep

reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.

[107] M. Goutay, F. A. Aoudia, and J. Hoydis, “Deep reinforcement learning autoen-

coder with noisy feedback,” in Int. Symp. Model. Optim. Mob. Ad Hoc Wireless

Networks (WiOPT), Jun. 2019, pp. 1–6. doi: 10.23919/WiOPT47501.2019.

9144089.

[108] F. A. Aoudia and J. Hoydis, “End-to-end learning of communications systems

without a channel model,” in Asilomar Conf. Signals Syst. Comput. (ACSSC),

Oct. 2018, pp. 298–303. doi: 10.1109/ACSSC.2018.8645416.

[109] M. Li, D. Wang, Q. Cui, Z. Zhang, L. Deng, and M. Zhang, “End-to-end

learning for optical fiber communication with data-driven channel model,” in

Opto-Electron. Commun. Conf. (OECC), Oct. 2020, pp. 1–3. doi: 10.1109/

OECC48412.2020.9273665.

[110] V. Neskorniuk, A. Carnio, V. Bajaj, et al., “End-to-end deep learning of long-

haul coherent optical fiber communications via regular perturbation model,”

in Eur. Conf. Opt. Commun. (ECOC), Sep. 2021, pp. 1–4. doi: 10.1109/

ECOC52684.2021.9605928.

[111] O. Kotlyar, M. Pankratova, M. Kamalian-Kopae, A. Vasylchenkova, J. E. Prilep-

sky, and S. K. Turitsyn, “Combining nonlinear Fourier transform and neural

network-based processing in optical communications,” Opt. Lett., vol. 45, no. 13,

pp. 3462–3465, Jul. 2020. doi: 10.1364/OL.394115.

125

https://doi.org/10.23919/WiOPT47501.2019.9144089
https://doi.org/10.23919/WiOPT47501.2019.9144089
https://doi.org/10.1109/ACSSC.2018.8645416
https://doi.org/10.1109/OECC48412.2020.9273665
https://doi.org/10.1109/OECC48412.2020.9273665
https://doi.org/10.1109/ECOC52684.2021.9605928
https://doi.org/10.1109/ECOC52684.2021.9605928
https://doi.org/10.1364/OL.394115


Titre : Réduction de la complexité de l’égalisation de la non-linéarité Kerr dans les communications sur fibre
optique à double polarisation par une approche de réseaux de neurones récurrents convolutifs

Mots clés : Communications sur fibre optique, égalisation de non-linéarité, réseaux de neurones, réduction
de la complexité de calcul, réseaux de neurones récurrents convolutifs.

Résumé : Les dégradations dues à la non-linéarité
de Kerr dans les fibres optiques limitent les débits
d’information des systèmes de communications. Les
effets linéaires, tels que la dispersion chromatique
et la dispersion modale de polarisation, peuvent être
compensés par égalisation linéaire, de mise oeuvre
relativement simple, au niveau du récepteur. A l’in-
verse, la complexité de calcul des techniques clas-
siques de réduction de la non-linéarité, telles que la
rétro-propagation numérique, peut être considérable.
Les réseaux neuronaux ont récemment attiré l’at-
tention, dans ce contexte, pour la mise en oeuvre
d’égaliseurs non-linéaires à faible complexité.
Cette thèse porte sur l’étude des réseaux neuro-
naux récurrents pour compenser efficacement les
dégradations des canaux dans les transmissions à
longue distance multiplexés en polarisation. Nous
présentons une architecture hybride de réseaux neu-
ronaux récurrents convolutifs (CRNN), comprenant
un encodeur basé sur un réseau neuronal convolu-
tif (CNN) suivie d’une couche récurrente travaillant

en tandem. L’encodeur basé sur CNN représente
efficacement la mémoire de canal à court terme
résultant de la dispersion chromatique, tout en fai-
sant passer le signal vers un espace latent avec
moins de caractéristiques pertinentes. La couche
récurrente suivante est implémentée sous la forme
d’un RNN unidirectionnel de type vanille, chargé de
capturer les interactions à longue portée négligées
par l’encodeur CNN. Nous démontrons que le CRNN
proposé atteint la performance des égaliseurs ac-
tuels dans la communication par fibre optique, avec
une complexité de calcul significativement plus faible
selon le modèle du système. Enfin, le compromis
performance-complexité est établi pour un certain
nombre de modèles, y compris les réseaux neuro-
naux multicouches entièrement connectés, les CNN,
les réseaux neuronaux récurrents bidirectionnels, les
réseaux long short-term memory bidirectionnels (bi-
LSTM), les réseaux gated recurrent units bidirection-
nels, les modèles bi-LSTM convolutifs et le modèle
hybride proposé.

Title : Complexity reduction over bi-RNN-based Kerr nonlinearity equalization in dual-polarization fiber-optic
communications via a CRNN-based approach

Keywords : Optical fiber communications, nonlinearity equalization, neural networks, complexity reduction,
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Abstract :
The impairments arising from the Kerr nonlinearity in
optical fibers limit the achievable information rates in
fiber-optic communication. Unlike linear effects, such
as chromatic dispersion and polarization-mode dis-
persion, which can be compensated via relatively
simple linear equalization at the receiver, the com-
putational complexity of the conventional nonlinea-
rity mitigation techniques, such as the digital back-
propagation, can be substantial.
Neural networks have recently attracted attention, in
this context, for low-complexity nonlinearity mitigation
in fiber-optic communications. This Ph.D. dissertation
deals with investigating the recurrent neural networks
to efficiently compensate for the nonlinear channel
impairments in dual-polarization long-haul fiber-optic
transmission. We present a hybrid convolutional re-
current neural network (CRNN) architecture, compri-
sing a convolutional neural network (CNN) -based en-

coder followed by a recurrent layer working in tan-
dem. The CNN-based encoder represents the short-
term channel memory arising from the chromatic dis-
persion efficiently, while transitioning the signal to a
latent space with fewer relevant features. The sub-
sequent recurrent layer is implemented in the form
of a unidirectional vanilla RNN, responsible for cap-
turing the long-range interactions neglected by the
CNN encoder. We demonstrate that the proposed
CRNN achieves the performance of the state-of-the-
art equalizers in optical fiber communication, with
significantly lower computational complexity depen-
ding on the system model. Finally, the performance-
complexity trade-off is established for a number of mo-
dels, including multi-layer fully-connected neural net-
works, CNNs, bidirectional recurrent neural networks,
bidirectional long short-term memory (bi-LSTM), bidi-
rectional gated recurrent units, convolutional bi-LSTM
models, and the suggested hybrid model.
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