N
N

N

HAL

open science

Monitoring dynamics of grassland with multi-modal and

multi-temporal satellite time series analysis
Anatol Garioud

» To cite this version:

Anatol Garioud. Monitoring dynamics of grassland with multi-modal and multi-temporal satellite
time series analysis. Image Processing [eess.IV]. Université Gustave Eiffel, 2022. English. NNT:

2022UEFL2013 . tel-03843683

HAL Id: tel-03843683
https://theses.hal.science/tel-03843683

Submitted on 8 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-03843683
https://hal.archives-ouvertes.fr

>‘.'< Université
-~ Gustave Eiffel

EXx ADEME v
REPUBLIQUE @r}

IGN

FRANCAISE y INSTITUT NATIONAL

Lliberté AGENCE DE LA Cnes DE LINFORMATION
ité TRANSITION =

Egalzte” ECOLOGIQUE CENTRE NATIONAL GEOGRAPHIQUE

Fraternité D'ETUDES SPATIALES ET FORESTIERE

Monitoring grassland dynamics by exploiting multi-
modal satellite image time series.

Theése de doctorat de I'Université Gustave Eiffel

Ecole doctorale n° 532, Mathématiques, Science, et Technologie de I'Information et de la Communication (MSTIC)
Spécialité de doctorat : Sciences et technologie de I'information géographique

Laboratoire des Sciences et Technologies de I'Information Géographique (LASTIG), UGE, IGN, ENSG

Centre d’'Etudes Spatiales de la Biosphére (CESBIO), UMR 5126 (CNRS, UPS, IRD, CNES, INRAe)

Theése présentée et soutenue a I'Université Gustave Eiffel,
le 20/05/2022, par

Anatol GARIOUD

Composition du Jury

Clement ATZBERGER R ;

Professeur, Univ. fiir Bodenkultur (BOKU), Autriche apporteut

Dino IENCO

Directeur de Recherche, UMR TETIS, INRAe, France Rapporteur

Marie WEISS . .
Examinatrice

Ingénieur de Recherche, UMR EMMAH, INRAe, France
Thomas CORPETTI

Directeur de Recherche, UMR LETG, CNRS, France
Jochem VERRELST

Chargé de Recherche, Univ. de Valéncia, Espagne
Nicolas DELBART

Professeur, Univ. de Paris, UMR LIED, France

Président, Examinateur
Examinateur

Examinateur

Encadrement de la thése

Clément MALLET

Ingénieur, Univ. Gustave Eiffel, IGN, ENSG, LASTIG, France
Silvia VALERO

Maitre de Conférences, Univ. Paul Sabatier, UMR CESBIO, France

Directeur de thése

Co-directrice de thése

Invités
Sébastien GIORDANO Invité
Ingénieur de recherche, IGN, France
Thomas EGLIN ..,
Invité

Chargé de Mission, ADEME, France













Acknowledgments

Bird’s view is somehow fascinating, rich in contrasts and details, stimulating curiosity. To have been able
to work on demonstrating a utility to this atypical point of view, on a current and fascinating subject, and to
end up with this PhD is for me an invaluable opportunity. To begin with, I would thus like to thank all those
who, from near or far, have made this work progress in any way.

I would like to express my gratitude to my thesis supervisors, Clément Mallet and Silvia Valero, who
allowed me to carry out my work in serene and pleasant conditions. On the scientific questions, they were
always available and caring, giving me the confidence and tools necessary to succeed. On personal aspects,
their listening, support, and sense of compromise were precious. Thank you to Clément who, despite the
random posters on the ceiling and the countless football-related tackles, was always one step ahead and en-
couraging for the following. Thank you to Silvia, for her incredible patience when I was cutting corners...and
for the immense amount of time devoted to perfecting the content of this PhD. I would also like to warmly
thank Sébastien Giordano, supervisor during the first round. His enthusiasm and transversal vision of the
scope of this thesis allowed the work to be on the right track early on. The freedom that the three of you gave
me allowed for continuous learning and to make this thesis a pride, so for this, again, merci!

Next, I am thankful to all the members of the jury for accepting to proofread the manuscript, and espe-
cially to the rapporteurs Clement Atzberger and Dino Ienco. Thank you to ADEME and CNES who gave me
their confidence by financing this thesis, and Météo-France for sharing some valuable data. I would also like
to thank Francesco Sarti and Clément Albinet, who during my stay in Rome planted the seed of a pursuit as
a PhD candidate.

I had the pleasure of being affiliated with two exceptional laboratories during my thesis years. First and
foremost, at the LASTIG of IGN which I thank for the welcome, and where I could appreciate the jovial mood
and the characteristic effervescence of research. Thank you to the co-detainee Vivien, to Loic, Yanis, Raphael,
Marc, Luc, Emile, Hermann, Arnaud, Mathieu, Ewelina, Paul, Oussama, Stéphane, Pierre-Louis...and all the
others. Break a leg to all of you! A big thank you to Jean-Paul Rudant, for the enriching discussions and
the opportunities to communicate on my work. I would also like to thank Francois Lecordix and IGNfab for
allowing me to collaborate or exchange with different private actors on various subjects. On the CESBIO lab
side, despite my limited stays, a special thank you goes to Jean-Francois Dejoux who devoted himself to me
to dig up validation data... an arduous task! Warm thanks to Jordi Inglada, Mathieu Fauvel, Milena Planells,
Eric Ceschia, Rémy Fieuzal...and many others, for the gratifying and fruitful discussions. I hope to have the
pleasure of meeting you again.

Then, a sincere thank you to my friends, for helping to take things easy. To my lifelong friends: Benjamin,
Nicolas, Julien, Théodore, Hugo. .. what a journey! To my almost lifelong friends: Ali, Helenka, both Adriens,
Julien, Sandrine, Quentin...to many more bro dinners. Cheers to the TGAE team: Zack, Samar, and Ludovic.
And also, to Valo’s two brothers, stop peeking. Ultimately, to all the ones that are looking for their names...!

Finally, a big thank you to my family, first of all to my parents for their unfailing support and enthusiasm,
and to my grandmother, whose pride, despite being over a hundred years old, is nothing but inspiration. Then
to the Peyriolans, Wiener, Nargissians, Lyonnais, and Saint-Orennais, who had to sometimes endure my PhD
debacles. Although it probably sounded like lucubrations to you, it had to come out! I also have a particular
and emotional thought for Manon.

A closing and special mention to you, Amélie, who largely made this thesis possible. Thank you for your
awesome support, in every respect, despite the crazy times. Being on the same page while both doing a PhD
isn’t a walk in the park. But here we are, and it’s your time soon.






Abstract

The vast grassland surfaces as well as the growing recognition of the ecosystem services they provide have
revealed urgent needs for their conservation and sustainable management. In particular, over-exploitation
causes a significant decrease in their capacity to provide multiple ecosystem services. Despite the acknowl-
edged importance of management practices, there are currently no large-scale efforts reporting on their fre-
quency and nature.

Satellite remote sensing appears to be a suitable tool for efficient grassland monitoring. Satellite time
series specifically allow synoptic and regular observations. Combined, the characteristics provided by com-
plementary optical and Synthetic Aperture Radar (SAR) images from the Sentinels bring new opportunities to
monitor grassland vegetation conditions. The research conducted in this PhD thesis intends to investigate the
capabilities and the synergy of Sentinel time series for grassland monitoring. Specifically, it aims to develop
methods for detecting grassland management practices. Farmers are managing grasslands with a wide range
of practices, having different impacts on biomass and calendars. Therefore, frequent and regular satellite ac-
quisitions are mandatory, especially because grasslands exhibit the particularity of potential rapid regrowth
after management.

The joint exploitation of Sentinel-1 and Sentinel-2 and the increase of acquired data raise new challenges.
The high dimension and the heterogeneous physical nature of the data, with various spatial, spectral and
temporal domains, are among the aspects to be explored. At the same time, recent advances in computing
resources and machine learning algorithms are bringing to the forefront deep learning strategies suitable
for dealing with the reported requirements, such as large-scale processing and data mining. In this context,
the main objective of this PhD is to develop new methodologies allowing the frequent and regular monitor-
ing of grasslands and the detection of their management practices. Under this purpose, this PhD: (i) uses
the advances of deep learning architectures to develop a multi-source methodology exploiting the synergy
and capabilities of both Sentinel-1 and Sentinel-2 data. The developed recurrent-based methodology targets
to regress multivariate SAR time series towards optical NDVI and proposes the incorporation of contextual
knowledge to reduce the impact of exogenous factors leading to SAR data variability ; (ii) explores methods
aiming to detect heterogeneous changes in vegetation status associated to grassland management practices.

The proposed Sentinels Regression for Vegetation Monitoring (SenRVM) approach provides NDVI time
series with no missing data at 6 days. The results, compared to the NDVI obtained by Sentinel-2, show low er-
rors and good stability on contrasted vegetation surfaces and different large-scale geographical contexts. An
ablation study of satellite and ancillary features and a comparison to commonly adopted gap-filling methods
for retrieving information over short- and long-term data gaps underline the methodological contributions.
To accurately detect management practices, a segmentation of grassland parcels at the superpixel-scale, justi-
fied by their rotational management, furthermore allows exploiting the dense time series over homogeneous
areas. Diverse 1D time series change detection methodologies are compared using two constructed large-
scale validation datasets. The results achieve high performances in retrieving the different patterns related to
grassland management.

The proposed methodologies integrate freely accessible data, whose continuity is ensured, and exploit
deep learning methods favoring large-scale and versatile applications. Therefore, they are foundations for
the extraction from multi-modal satellite image time series of relevant information related to the grassland
ecosystem whose understanding is essential.






Résumé

Les vastes surfaces de prairies ainsi que la reconnaissance croissante des services écosystémiques qu’elles
fournissent ont révélé des besoins urgents pour leur conservation et leur gestion durable. En particulier, leur
surexploitation entraine une diminution de leur capacité a fournir des services écosystémiques. En dépit de
la nécessité d’obtenir des données décrivant 'exploitation des prairies, 'observation de la fréquence et de la
nature de leur exploitation demeure restreinte.

La télédétection par satellite est un outil approprié pour un suivi efficace des prairies. Les séries tempo-
relles d’images satellites permettent des observations synoptiques et régulieres. Combinées, les caractéris-
tiques fournies par les images complémentaires optiques et radars des satellites Sentinel offrent de nouvelles
opportunités. Les recherches menées dans le cadre de ce doctorat visent a étudier les capacités et la synergie
des séries temporelles Sentinel pour le suivi des prairies. Plus spécifiquement, elles visent le développement
de méthodes de détection des pratiques agricoles. La gestion de chaque prairie est faite avec des intensités et
des calendriers distincts. Par conséquent, des acquisitions fréquentes et réguliéres sont d’autant plus indis-
pensables que les prairies peuvent repousser rapidement aprés leur exploitation.

L’abondance des données de Sentinel-1 et Sentinel-2 et leur exploitation conjointe soulévent de nouvelles
problématiques. La haute dimension et la nature physique hétérogéne des données, conjuguant divers do-
maines spatiaux, spectraux et temporels, font partie des aspects a explorer. Récemment, les progrés en matiére
de ressources informatiques et d’algorithmes d’apprentissage automatique mettent au premier plan les straté-
gies d’apprentissage profond, qui permettent de relever les défis exposés, tels que le traitement a grande échelle
et 'extraction d’informations complexes. L’objectif principal de la thése est donc de développer des méthodes
permettant le suivi en continu des prairies et la détection de leur exploitation. A cette fin, la thése : (i) utilise
les progres permis par 'apprentissage profond, pour développer une méthodologie multi-source exploitant la
synergie des données Sentinel-1 et Sentinel-2. La méthodologie développée vise spécifiquement a régresser
les séries temporelles radars multivariées vers le NDVI optique et propose I'incorporation de connaissances
contextuelles pour réduire 'impact de facteurs exogénes; (ii) explore différentes méthodes permettant de dé-
tecter Iexploitation hétérogéne des prairies.

L’approche proposée, nommée Sentinels Regression for Vegetation Monitoring (SenRVM), fournit des
séries temporelles de NDVI complétes avec une répétitivité de six jours. Les résultats, comparés aux NDVI
obtenus par Sentinel-2, indiquent de faibles erreurs et une bonne stabilité sur diverses surfaces de végétation
et différents contextes géographiques. Une étude d’ablation des données satellitaires et auxiliaires ainsi qu’une
comparaison avec des méthodes communément adoptées pour interpoler les données manquantes soulignent
la pertinence des contributions méthodologiques. Pour détecter avec précision les pratiques agricoles, une
segmentation des parcelles de prairie a I’échelle du superpixel, justifiée par leur gestion rotative, permet d’ex-
ploiter les séries temporelles denses sur des zones homogeénes. Différentes méthodologies de détection de
changements sont comparées a I’aide de jeux de données de validation construits. Les résultats atteignent des
performances élevées dans I'identification des différentes tendances liés a la gestion des prairies.

L’intégration de données accessibles gratuitement, dont la continuité est assurée, et 'exploitation de mé-
thodes d’apprentissage profond favorisant les applications a grande échelle et polyvalentes, ont permis d’in-
troduire des méthodes qui proposent des bases pour la collecte d’informations pertinentes liées a I’écosystéme
des prairies.
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1.1. DEFINITION, EXTENT AND IMPORTANCE OF GRASSLANDS

1.1 Definition, extent and importance of grasslands

1.1.1 A vast and disparate entity

Grasslands have existed for millions of years and constitute biomes (Dinerstein et al., 2017), which are large
and homogeneous ecological environments (Figure 1.1). Grasslands biomes are formed under certain climate
conditions. The climate must be sufficiently humid for vegetation to grow, otherwise the environment is
desert. Conversely, a too humid climate leads to the growth of trees, forming forests (Hibbard et al., 2003;
Hou et al., 2019). Grasslands are therefore a transitional biome. Its existence is nevertheless favored by other
natural disturbance mechanisms such as defoliation by animals or frequent fires (Begon et al., 2006) that
prevent the transition from grassland to forest. Although there are various agronomic, historical, or practical
aspects to defining grassland, the consensus is that it is a habitat consisting mostly of grasses the Poaceae
and other graminoids, with a low abundance of trees or shrubs. The presence in a variable proportion of
natural forbs is also a characteristic of grasslands. With more than 12,000 species of solely Poaceae recorded
(Kellogg, 2015), grasslands induced diversity at the botanical level can already be imagined (Wilsey, 2018). The
complexity of grasslands is thus, understandably, reflected in the lack of consensus regarding their precise
definition.

Alongside the areas of natural grassland forming biomes, human activities, as for other ecosystems, are a
major factor in the maintenance, development or decline of grasslands. Human activities traced back to the
domestication of livestock in the Neolithic period and the appearance of grazing and deforestation (Poschlod
et al., 2009) have greatly expanded the location and diversity of the natural grasslands (Gibson, 2009). When
managed by humans, grasses are commonly associated with leguminous plants, the Fabaceae, composed of
over 19,000 species (Nadon and Jackson, 2020) increasing again the agronomic variety of grasslands. These
newly formed managed grasslands belong to one of the most ancient forms of farming (White et al., 2000).
At the same time, human activities through successive evolution, from breeding, mechanization or the fodder
revolution, have allowed grasslands to be maintained by eliminating woody resources.

XXy Grassland natural biome
Grassland coverage (%)

0 S 100

Figure 1.1: Worldwide distribution of pastures retrieved from two satellite (MODIS and SPOT VEGETATION)
combined with agricultural inventory data for the year 2000 (modified from : Ramankutty et al., 2010). Location
of natural grasslands biome are superimposed in red (modified from : Dinerstein et al., 2017).

Nowadays, grasslands, i.e., natural and human-induced, cover a significant proportion of about 40% of
Earth’s surface and near 70% of all agricultural land areas (Suttie et al., 2005). Figure 1.1 includes a map
produced from satellite data and agricultural statistics for the year 2000 by Ramankutty et al., 2010. This

4



1.1. DEFINITION, EXTENT AND IMPORTANCE OF GRASSLANDS

map shows the large areas covered by a varying percentage of grasslands and the location of the natural
grassland biome. A first remark concerns the unique characteristic of grasslands of being distributed on all
continents and especially at every latitude from the Equator to the poles. Grasslands are also encountered at
very different altitudes (Allaby, 1998; Pausas and Bond, 2019) showing significant adaptation and resilience
to a wide range of climatic conditions. By comparing the location of the natural grassland biome and their
current distribution, this map also highlights the historical great expansion of grasslands, primarily due to
human intervention. This is particularly noticeable in temperate climates, such as in Europe and South-
Western North-America where grasslands are very present, despite a climate rather favorable to the presence
of forests. The varied distribution of grasslands leads to varied denominations. The different denominations
are mainly based on their location or usage. Steppes and parts of the tundra in Asia, pampas in South America,
savanna in Africa and Australia, or Prairies of the Great Plains in North America, and simply grasslands in
Europe all refer to grasslands with distinct geographical distributions. Pastures, rangelands, or meadows also
refer to grasslands through their main botanic composition and usage.

Through their botanic, agronomic, and geographical diversity, grasslands represent a challenging ecosys-
tem. Being for some part of a natural biome and now covering one of the most extensive ecosystems on our
planet, grasslands play an important role in many aspects of climate, economy, society, and health.

1.1.2 Grassland ecosystem services

Some of the major benefits of grasslands are well known: they are habitat for abounding plant and animal
species (Watkinson and Ormerod, 2001; Petermann and Buzhdygan, 2021). They feed an important population
as the main resource for livestock (O’Mara, 2012; Michalk et al., 2019). Nevertheless, beyond these aspects,
the fundamental importance of grasslands lies in their multifunctional capacities, most of which are often
neglected or poorly known.

The notion of ecosystem services emerged in the 20th century (Ehrlich and Ehrlich, 1981; Mooney and
Ehrlich, 1997) and offers a framework at the interface between ecology and economics. Ecosystem services
groups together the goods and services that humans can obtain from an ecosystem, directly or indirectly, ben-
efiting their well-being. Ecosystem services are commonly regrouped in four different types (Bishop, 2012):
(i): provisioning services, define the tangible products that can be exploited like food, raw materials, freshwa-
ter or medicinal resources; (ii): regulating services, which are intangible, regroup all benefits provided by an
ecosystem for maintaining, improving, controlling or preventing environmental effects; (iii): socio-cultural
services, which are non-material and at the interface between humans and their relationship with nature
such as aesthetic, touristic or spiritual benefits; (iv): supporting services that include indirect interactions
with other elements of the biosphere such as providing living spaces for fauna and flora.

Beyond the two aspects of habitat and resources to livestock, grasslands, due to their variety, are one of
the habitats that offer both one of the largest ranges and important number of ecosystem services:

« Provisioning services: these services are the most obvious and include the products of animal hus-
bandry and gathering. The production of fodder and plant protein, the flowers, berries or mushrooms
found in the grasslands are at the heart of productivity issues. These grasslands products are directly
linked to notions of quality of food value, animal health, and in-fine to the quality of the products
resulting from breeding and ultimately human health.

« Regulating services: they are perceptible at several scales of analysis, at the grassland parcel level
as well as at the level of a farm, a region or finally at the global level. The different scales interact,
making grasslands one of the ecosystems providing the most regulating services. Grasslands provide
water quality regulation, with the fixation of atmospheric nitrogen by the presence of legumes for
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example. They have a filtering effect of collecting and distributing rainfall to surface and ground water.
Grasslands also serve to protect against floods and erosion, by retaining water or spreading the flow
of floods and fix the soil, especially in areas with a varied topography. Grasslands are also reserves of
biodiversity, hosting and feeding an abundant and varied fauna, including grassland dependent species.
The flora of grasslands, often accompanied by mellifluous plants, allows the reproduction of pollinating
insects. Finally, grasslands fix and store carbon dioxide (CO;) as well as other atmospheric gases such
as nitrous oxide.

« Socio-cultural services: the meadows have a landscape, faunistic, floristic, and therefore educational
interest. Their heritage value is part of landscapes such as bocage or estives and alpine pastures, giving
them an appreciated scenic value.

« Supporting services: these services result from the previous ones. Combined, they allow the essential
cycles of nutrients, water, or the formation of soils which are the supporting services.

1.1.3 Environmental importance and associated threats

In view of contemporary challenges that include climate change, biodiversity loss, and food security, the im-
portance of grasslands is increasing and their essential character emerges (TEEB, 2010; Boval and Dixon,
2012; Yang et al., 2019b). Monitoring the dynamics of grasslands now seems essential, as evidenced by a
revival of public policies concerning them (Le Quéré et al., 2013; Luyssaert et al., 2014; UN, 2015; Bengtsson
et al., 2019; Powers and Jetz, 2019; Shukla et al.,, 2019; Bardgett et al., 2021; Chang et al., 2021). This is the
case of the global climate policies defined by the United Nations, such as the Decade on Ecosystem Restora-
tion from 2021 to 2030 or the 2030 Agenda for Sustainable Development, which succeeded the Millennium
Development Goals in 2012 and defines 17 Sustainable Development Goals (SDGs). Grassland ecosystem ser-
vices participate in several goals such as achieving zero hunger (SDG 1), ensuring good health and well-being
(SDG 3), providing access to clean water and sanitation (SDG 6), leaning towards responsible consumption
and production (SDG 12), enforcing climate actions (SDG 13) and protecting life on land (SDG 15). Agree-
ments signed in 2015 notably during the COP21 in Paris (France) or during the Sendai Framework for Disaster
Risk Reduction signed in Japan also recognized grasslands as major actors of the future climate. All of these
public policies coordinate efforts on a global scale concerning several climate factors, of which one of the
most prominent objectives is the reduction of carbon emissions.

As a counterpart to climate change linked to the increase of greenhouse gases in the atmosphere, grass-
lands are, alongside forests and wetlands, key ecosystems in the fixation and storage of CO; (Scurlock and
Hall, 1998). In contrast to forests which store carbon mainly in their leaves and woody resources, grasslands
sequester carbon underground, in their roots and by transmission to the underlying soil. Deforestation and
especially the increasing frequency of fires due to rising temperatures and droughts lead to the release of the
stored carbon in trees into the atmosphere. These changes affect the overall carbon budget of forests nega-
tively, while grasslands, with their underground storage, are more adapted to current changes (Hufkens et al.,
2016; Dass et al., 2018). While the role of grassland in carbon storage is often omitted, they could currently
contain about 30% of the world’s soil carbon stock (Bardgett et al., 2021; Chang et al,, 2021; Scurlock and
Hall, 1998).

Exponential efforts have been made to monitor the current state and trends of our globe’s surfaces, among
them grasslands (Plummer et al., 2017; Liu et al., 2020a; Winkler et al., 2021). Satellites are one of the tools
allowing the monitoring of large areas (Section 1.2) and have therefore been exploited for this purpose. For
example, Winkler et al., 2021 have recently proposed to map global changes per 1x1 km grid cell from 1960
to 2019 by combining multiple satellite data (MODIS, Landsat, Sentinel) with historical statistical datasets,
such as from the Food and Agriculture Organization of the United Nations. The results were obtained for six
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classes, namely urban, cropland, pasture / rangeland, unmanaged grass / shrubland, and sparse/no vegetation
classes. Annual dynamics were used to compute a global change rate from the complete period. Four classes
of changes which are stability, losses, gains and multiple changes have been defined. Authors have found that
17% of the Earth’s land surface has changed at least once between the assessed time intervals. Furthermore,
they highlighted that 86% of all multiple changes are related to agriculture such as land transitions related to
cropland or pasture/rangeland. Figure 1.2 shows the changes observed for grassland classes (pasture, range-
land and unmanaged grass/shrubland) through the period 1960-2019 found by Winkler et al., 2021. It can be
observed that a significant number of grasslands were affected by changes.

Stable Loss Gain Loss/Gain & <

Figure 1.2: Changes in grassland surfaces for the period 1960-2019 detected with satellite and statistical
datasets. (Modified from : Winkler et al., 2021)

Despite the importance of grasslands and the many explained multi-domain benefits they provide (Sec-
tion 1.1.2), grassland areas have largely decreased in many parts of the world, mostly in favor of crops (Bard-
gett et al., 2021; Bongaarts, 2019; Winkler et al., 2021). Furthermore, it is estimated that currently, about 50%
of the global grasslands are degraded (Gang et al., 2014; Bardgett et al., 2021). The main factors of degradation
are overgrazing, intensive agricultural practices, and climate change. Degradation and losses of grasslands
poses important threats for a significant part of the world population relying on them. Food, fuel, and fiber
or medicinal products are direct and necessary resources produced by the grasslands.

Because of their geographical distribution and the wide range of ecosystem services they provide it would
nevertheless be inappropriate, if not impossible, to consider grasslands as a single environment. A possible
and commonly used distinction is based on the origin and history of the grassland. On the one hand, natural
grasslands, originating from their biomes, have certain distinct properties with respect to grasslands emerging
from human activities. They are are perennial and respond favorably to the full range of grassland-related
ecosystem services. In particular, they allow carbon storage over time scales of at least decades or centuries.
On the other hand, the majority of agricultural grasslands provide a lower and degraded range of ecosystem
services, particularly due to their intensive exploitation. Decline in endemic biodiversity and reduced carbon
storage capacity are the main subsequent consequences. Some agricultural grasslands in temperate climates
fulfill the same functions as natural grassland but are largely in the minority. These grasslands are generally
protected by local policies preventing their conversion to crops or forest. Figures 1.1 and 1.2 highlight that
the majority of grasslands that have changed over the last six decades are agricultural grasslands, mainly
intensively used for profitable supply services. Consequently, this intensive exploitation through management
practices may be a growing problem with respect to the importance of grasslands.

The changes and impacts on grasslands are mainly due, as illustrated, to the effect of humans and their
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exploitation. Global scale observations available through remote sensing, including the example of Figure 1.2,
provide essential information to understand our environment. They serve as a support for key applications
such as long- and short-term climate modeling or for the implementation of public policies to regulate, protect,
and change our future. In this sense, grasslands of temperate climate and their management systems are of
utmost importance for the overall conservation of grassland ecosystem services.

1.1.4 Temperate managed grasslands and their exploitation

The potential management of a grassland is initially conditioned by abiotic factors such as pedological, cli-
matic, and topographical properties and subsequently its agronomic type. Furthermore, the provisioning
services expected from a grassland will constrain its management regime. To obtain the provisioning ser-
vices, technical acts, decided and conducted by human intervention, are then performed on the grassland
throughout the year. Three elements can characterize the technical act: its intensity, which roughly defines
the impact on the grass resource, its duration and timing within the agricultural calendar. On grasslands,
two main types of technical acts are defined: grazing and mowing. In practice, the management regime of
a grassland may be a combination of these two technical acts. Furthermore, grasslands can be ploughed for
reseeding or to convert grassland to another type of crop.

(a) Grazing (b) Mowing (c) Ploughing

Figure 1.3: The three types of technical acts performed on grasslands.

Grazing is the traditional type of grassland management. Livestock exploits the grassland resource for
the production of animal products such as milk, meat or wool. The grazing of a grassland can be favored by
its geographical condition, when mechanical exploitation is made difficult, e.g., for fertilization or mowing.
Grazed grasslands will be dominated by fairly low plants with an increased agronomic variety and low spatial
homogeneity. Grazed grasslands species are thus adapted to trampling and browsing. Grazing has different
regimes, i.e., continuous or rotational grazing (Schmitz and Isselstein, 2020). Continuous grazing provides
unrestricted access to a grassland over a long period of time. In this case, the vegetation rarely rest. Con-
tinuous grazing offers the advantages of low planning costs and relatively simple livestock management. On
the other hand, the timing and intensity of grazing is difficult to control without livestock loading manage-
ments. Rotational grazing favors grass regrowth by regulating the pressure of the livestock load successively
at distinct areas. This rotation can be done between different grasslands but also within the same grassland.
This latter case is more likely in the presence of large parcels and allows among others for a reduction in the
travel distance of the livestock. Typically, in this case, the farmer will install a temporary fence delimiting
a specific area of the parcel. While the livestock grazes the available resources in this area, the grass in the
other areas of the parcel continues to grow. When the resource in the fenced area is exhausted, the farmer
moves the livestock to an area that has not yet been grazed. The same principle applies to a rotation between
several grasslands parcels. This rotating approach is favorable to the availability of the resource by temporal
and spatial management, throughout the season.

Mowing permits over natural grasslands to remove woody vegetation cover. It protects grassland, plant
and animal species habitat dependent and reduces risks from natural hazards such as fire. In the agricultural
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context, grasslands are mainly mowed to produce resource for livestock feed. The cutting of grass during
mowing can also have ecological succession goals to favor certain agronomic species or stimulate grass vigor
and regrowth. Grasslands that are mowed can reach significant grass heights of up to one meter. By cutting
the grass, the whole aboveground biomass that has been accumulated during a growth cycle is removed at
once to a certain cutting height threshold. This threshold generally preserves a biomass of at least 5 to 7 cm
in order to leave sufficient plant tissue for photosynthesis and regrowth. In certain cases, the grass can be
cut and immediately fed to livestock. In most cases, the forage needs to be conserved. The haymaking may
be done by a drying process directly on the parcel or at the barn. Mowing for which the resource will be
conserved by drying, is mostly done late in the season regarding the climate. The conservation alternative
uses the wet process by reducing oxygen and fermenting the resource. Especially in rainy climates, silage and
wrapping permit to preserve the grass quality and can be implemented early in the season.

Grazing and mowing have distinct intensity, duration and timing. Despite the important heterogeneity
among grazing and mowing practices due to agronomic, climatic, or management regimes constraints, the
following observations can be considered:

Intensity:

- Grazing: the grazing effect on vegetation depends on the grazing regime, the grazer’s specie, livestock
loading, and their time spent grazing. The herbaceous resource can be consumed in a short period of time,
leaving the soil almost bare, or can diminish only gradually over time.

- Mowing: the cutting height is the factor influencing the intensity. Depending on the expected use of the
mowed resource, the grass removal can be minor to almost complete.

Duration:

- Grazing: the grazing regime but also the overall exploitation of the grassland make the duration characteris-
tic highly variable. On very small areas, grazing may last only a few days. On vast grasslands, and moreover,
in continuous grazing, the duration extends to several months, depending on the climatic conditions, allowing
the livestock to be outdoor.

- Mowing: mowing is generally accomplished in a very short period of time (i.e., within few hours or at most
two days, if the visibility does not allow the technical act to be continued), especially when the technical act
is mechanized.

Timing:

- Grazing: the timing of grazing is conditioned by the climate. The first grazing can occur as soon as the
climatic conditions are favorable, and the grass comes out of its winter dormancy. The exit of the dormancy
is allowed when the temperatures reach a certain point, depending on the plant species, globally between
4 and 8°C. For grasslands in temperate climates, and particularly in the case of mixed grazing and mowing
management, grazing can be done as early as spring, which will impact the quality, productivity and sustain-
ability of the good species for the coming season. The last pasture should ideally leave around 5cm of grass
for dormancy. Its timing will be again dependent on the climate.

- Mowing: mowing can occur at almost any time during the growing season. Generally, it is done in good
weather, as rainfall can affect the resource. A first mowing can be done early in the growing season to en-
courage vigorous regrowth. A very late mowing at the end of the growing season can also be carried out to
optimize the grass state for its re-entry into dormancy. Indeed, above a certain height of grass (ideally 5 to 6
cm), rotting can affect the grass during the dormancy.
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As with any agricultural land, besides grazing and mowing, a grassland can be ploughed. Nevertheless,
ploughing does not necessarily occurs on every grassland, as they can have constant ground cover and
do not inherently require ploughing to subsist. The agronomic type, the parcel history and thus underlying
regulation policies or the overall management of a farm can conduct the ploughing of a grasslands. Ploughing
is mainly carried for the purpose of reseeding a grassland or changing the crop type. The duration of ploughing
is similar to that of mowing, being done at once for a whole parcel (or some part in the case of rotational
management). The intensity of ploughing will mainly depend on its timing. A ploughing can immediately
follow a mowing and in this case remove only a small amount of biomass. It can also be done according to
the crop rotation schemes and agricultural calendars. Ploughing can potentially occur much later than the
last technical act and hence remove a larger amount of biomass.

1.2 Earth Observation from space: principles and applications over grass-
lands

1.2.1 Characteristics and multi-modalities of satellite imagery

Remote sensing is defined by the French Official Journal of 11 December 1980 (JORF, 1980) as "all the knowl-
edge and techniques used to determine the physical and biological characteristics of objects by measurements
taken at a distance, without physical contact with them". The underlying principle is the measurement of ra-
diations in different portions of the electromagnetic (EM) spectrum, giving remote sensing multiple potential
applications.

Earth observation (EO) by remote sensing began in the 19*" century with atmospheric balloons and then

spread during the First and Second World Wars as a source of military information. The use of EO satellites,
which were first restricted to telecommunications functions, was initially motivated by meteorological con-
cerns. TIROS 1 (Television and InfraRed Observation Satellite) was launched by the National Aeronautics and
Space Administration (NASA) in 1960, providing unprecedented global coverage via daily images acquired on
board the satellite and transmitted to ground receiving stations located throughout the world (United States,
1956). Landsat-1 launched in 1972 was the first satellite which explicit goal was to monitor Earth’s landmasses
(Boland, 1976). Ever since, the capacity of EO satellites for synoptic coverage and repeated acquisitions has
been increasingly exploited. A multitude of applications on numerous themes have been developed using
satellite data: Earth’s cover mapping, study of vegetation or snow cover, inventory of crops and forests, land
use planning, monitoring of urban growth, mining or oil exploration, monitoring of coastal or marine pollu-
tion, hydrology, oceanology or military intelligence among others.

As of end 2021, the United Nation Office for Outer Space Affairs registered more than 7,100 satellites in
orbits (United Nations Office for Outer Space Affairs (UNOOSA), 2021). A large majority of them are still
dedicated to telecommunications despite an exponential number of EO satellites. Satellites are placed in three
main orbits with different characteristics and applications. The Geostationary orbit (GEO) refers to satellites
that orbit above the Equator at 35,786 km and follow the Earth rotation. This allows them to be constantly
above the same point and therefore are mainly exploited for telecommunication and weather satellites. They
further help for data downlink being always in sight of a ground receiving station. Medium Earth Orbit (MEO)
is above 1,000 km and below GEO and is almost exclusively used by navigation satellites such as the Global
Positioning System or Galileo.

The Low Earth Orbit (LEO) is the closest to the Earth with altitudes ranging from about 150 km to 1,000 km.
Apart when global-scale processes are being observed (e.g., atmospheric or weather conditions), the LEO is
adopted by EO satellites. For a LEO satellite, it typically takes about 90 minutes to circle the Earth entirely. A
conventionally route for LEO called near-polar orbit follows the North-South direction passing approximately
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over the Earth’s poles. Orbit directions northwards and southwards are, respectively, called ascending and
descending orbits. In conjunction with the West-Est Earth’s rotation, this permits satellites in LEO to cover
the Earth’s surface (Figure 1.4). In addition, these satellites are also often sun-synchronous by having a fixed
position relative to the sun, allowing them to always observe the same area at the same local time. This ensures
consistent illumination conditions over some time intervals (e.g., few days or between years). A main interest
which advocates for LEO in the context of EO is their reduced distance to the observed target (i.e., the Earth).
This allows to observe phenomena at finer scales, which is for example, necessary for applications related to
agriculture. On the other hand, the ground area imaged by the sensors during an overpass (called the swath)
may be reduced. Typically, the swath of LEO satellites varies between tens and hundreds of kilometers.

Figure 1.4: Schematic representation of an Earth Observation satellite in near-polar sun-synchronous Low
Earth Orbit.

Among the notable characteristics of EO satellites, four specificities, which are based on the satellite’s
orbit and its payload, i.e., onboard sensor, can be defined:

« The spatial resolution is the ground surface represented by an individual sampling, being the smallest
addressable element in an image. This ground surface is therefore the smallest possible feature that
can be detected by the sensor. Coarse or low resolution mainly depict large features while fine or
high resolution will provide more details. The spatial resolution influences the swath of the satellite
depending on the orbit and sensor capabilities. While in 1972 Landsat-1 had a spatial resolution of 80 m,
some commercial satellites currently provide sub-metrics spatial resolutions. An example of different
optical image spatial resolutions is visible in Figure 1.5.

« The spectral resolution refers to the position, number and width of EM spectrum portions, called bands,
being observed by a sensor. A low spectral resolution would, for example be a single panchromatic
(black and white) band acquiring at once a wide portion of the EM. High spectral resolutions are for
example provided by hyperspectral imaging, with hundreds of EM portions independently observed.

 The radiometric resolution describes the depth of possible values assigned to an energy measurement
within a pixel. The larger this number, the higher the radiometric resolution and thus sensitivity and
discrimination power.

« The temporal resolution (or revisit time) defines the length of time taken by a satellite to observe again
a same point on Earth. The temporal resolution is generally expressed in days. A higher temporal
resolution allows to gather dense time series, i.e., successive images of the same location.

Due to physical and engineering constraints and the different resolutions being correlated, a sensor cannot
optimize all four resolutions at once (Selva and Krejci, 2012; Shen et al., 2016). Spectral and radiometric
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1973 2017 2021

Figure 1.5: Four acquisitions of passive optical satellites with different spatial resolutions over the city of
Bourg-en-Bresse in France along a main road (yellow line) are presented. False-color compositions with the
Near-infrared, Red and Green bands mapped to the RGB channels are emphasizing the high reflectance of
vegetation. The 48 years separating the first and last acquisitions show the improvements in spatial and

radiometric resolutions achieved.

resolutions have trade-offs with signal-to-noise ratios. Apart from signal-to-noise ratio, the spatial resolution
has a trade-off with spectral resolution and data volume. Eventually, the temporal resolution has a trade-off
mainly with spatial resolution. Hence, satellites and their sensor characteristics generally define the resulting
potential applications.

Finally, a fundamental distinction of the different EO satellites lies in the source of the energy measured
by their sensor. Two types of sensors are thus defined: passive and active sensors.

1.2.1.1 Passive sensors and optical imaging

Passive acquisitions are based on the collection of EM radiation from an off-system source (i.e., not emitted by
the satellite), mainly natural sources such as the sun. The visible, infrared and thermal domains are the major
domains studied by passive acquisition systems as presented in Figure 1.6. Approaching the human vision
perception, one of the main interests of passive sensors are the acquisition of well-known and identifiable
phenomena. This allows in many cases a relatively simple exploitation and interpretation of passive-based
sensor data.
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Figure 1.6: Passive sensors principle and commonly acquired bands.

By measuring the energy coming from the target, passive sensors allow to distinguish specific charac-
teristics of each surface. Among passive sensors, optical sensors are the most common. They investigate
the interactions between solar radiation and a material, independently for several wavelengths. Except in
specific study cases, the bands acquired by passive sensors are selected in atmospheric windows which min-
imizes atmospheric absorption and scattering. The remainder effects, coming from gases, molecules, and
aerosols whose absorption is known, can be modeled. Thus, the measured energy at the sensor provides, af-
ter necessary atmospheric and geometric corrections, direct information of the Earth’s surface. Solar radiation
reaching the surface can be transmitted, absorbed or reflected, which sums to 1 by the law of conservation
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of energy. These interactions allow optical imaging, which measures the reflected proportion of the EM, to
distinguish a large number of surfaces and phenomena. This proportion depends on the wavelength and
acquisition conditions, the object observed and its intrinsic properties.

Passive sensors and optical imaging are therefore primarily sensitive to the chemical properties of the
observed surface. Consequently, they are extensively used for monitoring vegetation in which the chemical
activities vary with time and condition (Knyazikhin et al., 2013; Kuenzer et al,, 2014; De Grave et al., 2020;

Zeng et al.,, 2020). For example when chlorophyll activity is at its peak, vegetation appears to the human
vision at a maximum intensity of green wavelengths. Conversely, when chlorophyll activity is lower, the red
absorption property of vegetation is lower and its reflection is proportionally higher, making the vegetation
appear less green. The interest of optical sensor capabilities to extend their acquisition to the near infrared
domain is for vegetation, attested by the strong reflection of these wavelengths by the cell structure of plants.
When vegetation grows by photosynthesis, the cell structures are more numerous and the reflection in the
near-infrared increases while the reflection in the red decreases. The relationship between solar radiation
and chlorophyll thus allows passive optical sensors to determine the spectral signature of the vegetation.
The same principle is valid for other types of surfaces such as water or mineral surfaces. Some spectral
signatures are presented in Figure 1.7, illustrating how optical sensors allow to separate surface types and
provide information on their characteristics depending on different wavelengths.
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Figure 1.7: Ideal spectral signatures of four types of surfaces in the visible and infrared range. The interac-
tions between radiation and a healthy vegetation surface are illustrated by distinct absorption and reflection
mechanisms.

Scanning systems acquiring a variety of different spectral bands, called multispectral scanners (MSS), are
therefore a crucial capability of optical sensors to provide information of the Earth’s surface. Optical sensors
generally acquire a minimum of four spectral bands in the blue, green, red, and near infrared portions of the
EM. Despite illustrating the improvements in spatial resolution, the previous Figure 1.5 also illustrates the
ability to create color compositions from the different acquired bands by a MSS. Color composition refers to
the assignment of specific spectral bands to the Red-Green-Blue (RGB) visible bands. The assignment of data
acquired in the near infrared to the red visible portion allows, via the chemical properties of the vegetation
previously explained, to highlight the vegetation and its condition in reddish tones.

Depending on satellite sensor characteristics, acquisitions in a larger number of spectral bands (i.e., more
than the 4 conventional bands) can be made. Indices, commonly used to enhance the distinct reflectance
of distinct materials, are developed from the different acquired bands. A larger number of bands can thus
allow the development of a greater number of different indices. A significant number of these indices are
designed to study vegetation. Most of these indices, such as the popular Normalized Difference Vegetation
Index (NDVI) first proposed in Tucker, 1979, rely on red-edge related bands, which is a thin portion of the EM
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spectrum in which chlorophyll-related changes in plant reflectance are highlighted. This phenomena is visible
in Figure 1.7 with a steep increase in reflectance of healthy vegetation reflectance. The variety of indices is
as numerous as the types of surfaces (Glenn et al., 2008; Xue and Su, 2017). Indices are thus also employed
to quantify the soil mineral composition or estimate the severity of fires in forest areas among others. The
number of acquired spectral bands can reach several hundred, as it is the case with so-called hyperspectral
sensors using narrower bands. Nevertheless, only a few satellite missions have integrated this type of sensor
or are planned (e.g., Hyperion, PRISMA, EnMAP). Indeed, the engineering challenges and their high costs are
for the moment a brake to their use (Govender et al., 2007; Transon et al., 2018).

Some MSS are also acquiring bands in the thermal infrared domain (Prata et al., 1995; Sobrino et al., 2016).
In this case, terrestrial radiation is used directly as the source of energy as opposed to the sun’s illumination.
Thermal bands are of longer wavelengths and because of the inverse relationship between wavelength and
energy, thermal sensors must either sense wider areas to gather enough energy and thus decrease spatial
resolution or increase the exposure time through different orbits. Thus, thermal bands are less common than
visible or reflected infrared bands and EO satellites providing them are currently more sparse. Passive sensors
evolving in the microwave domain, although few in number, are also used (e.g., TRMM, SMOS). These sensors
work in a similar way to thermal sensors, collecting the energy emitted by the surface. The capture in the
microwave domain mainly enables surface moisture (soil moisture, atmospheric water vapor, cloud liquid
water or rainfall rate) related applications (Huffman et al., 2007; Brandt et al., 2018). Their use is therefore
mainly made on the oceans or polar ice caps.

Because of their characteristics, optical passive sensors have historically been favored, and still are. Yet,
these sensors suffer from important limitations. Their dependence on a energy source first prevents night-time
acquisitions. Most importantly, cloud cover is preventing optical sensors from observing the earth’s surface.
Cloud coverage causes considerable data gaps in both spatial and temporal domains. As a consequence, the
temporal sampling of optical time series is irregular due to weather conditions (Sudmanns et al., 2020a;
Whitcraft et al., 2015). It is among others, constrained by the geographical location of the area under study
(Ju and Roy, 2008; Sudmanns et al., 2020a). In some parts of the world, this constraint makes the use of
optical images very complex and almost impossible. In the same way, some applications requiring repeated
acquisitions can not depend only on data from optical sensors. Furthermore, optical sensors only observe
the top of surfaces. The undergrowth of a forest, for example, cannot be observed. Finally, the similarity of
spectral signatures of certain surfaces, as may be the case between tree species or different crop types, may
limit the surface distinction possibilities of optical sensors.

1.2.1.2 Active sensors and Synthetic Aperture Radar imaging

In contrast to passive sensors, active remote sensing (Figure 1.8) is based on the emission of a coherent ra-
diation source and the analysis of its return to the sensor. One of the most common active sensor is the
Radio Detection And Ranging (radar), which operates in the microwave range. A radar emits a beam from
its antenna by focusing short pulses of microwave emitted at regular intervals. The measured strength of
the energy backscattered (i.e., returning towards the sensor) from an emitted wavelength refers to the de-
tection part. Ranging is done measuring the time taken between emission and reception of a wavelength,
which permits to determine the exact location of the target. Radar data is thus composed of a real (corre-
sponding to the phase) and an imaginary (corresponding to the amplitude) part. Some limitations of passive
sensors previously presented are bypassed by the use of the microwave range of the EM. Especially, day and
night acquisition are possible and, with wavelengths of several centimeters, the acquisition of data in cloudy
conditions is possible.

In the case radar active sensors, the term band refers to the wavelength/frequency of the emitted wave.
Bands are named with letters, mentioned in Figure 1.8, from very short wavelengths (X-band) to the longest
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Figure 1.8: Active sensors principle and commonly acquired bands.

radar wavelengths (P-band). The choice of the band will have an impact in particular on the capacity of
penetration of the wave in the surface. The longer the higher the penetration capacity, or, longer wavelengths
are associated with more coarse spatial resolution (El Hajj et al., 2019; Jiao et al., 2010). The most commonly
used bands are X and C bands for their versatility against different surfaces and atmospheric conditions (Van
der Sanden et al., 2001).

One further distinction with passive optical imaging lies in the radar sensor acquisition geometry. Un-
like optical imaging where sensors are generally pointing at the nadir (i.e., directly bellow its location), a
radar satellite illuminates the surface obliquely at a right angle to the motion of the platform. Because SAR
distinguished various surfaces based upon the arrival time of the received signal, this side-looking nature is
constrained by the fact that two equidistant points left and right from the sensor would be undifferentiated
in a nadir-looking SAR. This oblique nature causes significant effects in radar measurements, exacerbated
by topographic features on the ground, some of which are presented in Figure 1.9. Radar measurements are
made in radar slant range geometry dependent on the viewing incidence angle and observed topography.
Acquisition geometry of radar systems can cause phenomena of shortening of surfaces, called foreshorten-
ing. Foreshortening occurs when the beam is reaching the bottom of a tall feature such as a mountain tilted
towards the radar before it reaches the top. This causes compression phenomena to appear in the resulting
images with reduced lengths between the two observed points. Conversely, layover refers to the top of tall
objects (e.g., the mountain) being viewed before the bottom. The top will therefore appear nearer than the
base in the resulting image causing inversion of the relief (i.e. the highest point being considered closer than
the base of the terrain). Several types of backscattering products are therefore derived (Rudant and Frison,
2019) for their subsequent use, translating the radar geometry to terrain geometry.

/ I‘I LAYOVER: B’ closer than A’
W FORESHORTENING : d(A’,B’) < d(A,B)
T B’ p

Near range
inc. angle
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Ground range geometry

Figure 1.9: Description of geometry elements of a side-looking active satellite acquisition. Main distortions
due to topography that are layover, foreshortening and shadow are illustrated.

As aresult of slant range geometry acquisition, the spatial resolution of radar sensors has two dimensions,
one azimuthal (in the propagation direction of the satellite) and one radial (called range resolution, in the view
direction of the sensor). The range resolution will first depend on the distance to the surface and will therefore
be variable along the swath (finer for the near-range, lower for the far-range, see Figure 1.9). The frequency of
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the emitted beam also influence range resolution but can be improved by pulse modulation techniques called
chirp (Prats-Traola et al., 2014). The azimuthal resolution depends mainly on the size of the antenna and
the distance to the surface. On a satellite, this antenna size is necessarily limited by engineering constraints
(orbiting and deployment). With the help of chirp and the Doppler effect, the simulation of an antenna much
longer than its real physical length is possible (radar echo history). Sensors using this technique, called
Synthetic Aperture Radar (SAR), allow a considerable improvement of spatial resolution up to a certain limit
defined by the signal to noise ratio.

Radar’s ability in surface discrimination is determined, apart from viewing and surface geometry, by
very different physical phenomena compared to optical sensors. Radar sensors are sensitive to geometric
properties, e.g., surface roughness, and dielectric properties such as surface moisture. The sensitivity is mainly
determined by the the wavelength used. The backscattering intensity which is recorded, is partly defined
by the Rayleigh criterion characterizing a smooth or rough surface, depending on the wavelength and the
incidence angle. This will influence the nature of the backscattering mechanism involved. For example,
surface or volumic backscattering are predominant in the case of vegetation, surface specular in the case of
very smooth water bodies or double-bounce mechanisms when vertical structures such as buildings are lined
up with the beam (McNairn and Brisco, 2004; Picard et al., 2003). The dielectric constant defines the response
of a surface to an incident electric field. Since water has a very high dielectric constant, the surface moisture
will strongly influence the penetration of the radar wave and increases backscattered intensity (Shao et al.,
2003). In addition, while the number of wavelengths used by SAR sensors are relatively limited compared
to passive sensors, the direction of the electric field vector of the emitted wave is controlled, defining its
polarization. Horizontal (H) and vertical (V) linear polarizations are commonly used by radar sensors. The
polarimetric capability of a SAR sensor is thus defined by the transmission and reception polarizations it
allow. Single- dual- or quad-polarized (also called full-polarized) measurements are possible depending on
the sensor characteristics and allow additional information to discriminate surfaces.

Interferometry is another interest of radar sensors based on the use of two or more images. Since the
satellites do not pass perfectly over the same point (typically an offset of several tens of meters), the repeat-
pass interferometry technique is based on the phase differences occurring between the acquisitions (Krieger
et al,, 2005; Perissin and Wang, 2012). By measuring the exact phase difference between both acquisitions,
displacements on the size order of the used wavelength (e.g., centimeters) can be calculated. The computation
of interferograms enables the production of elevation maps and displacements maps. Nevertheless, such
accuracy can only be achieved on relatively stable surfaces and in the presence of low signal decorrelation
factors (e.g., spatial or temporal).

Among the limitations of active sensor like SAR, their analysis and interpretation require a good un-
derstanding of the above-mentioned characteristics and phenomena. Furthermore, topography, due to the
side-looking nature of SAR, is a major limitation in mountainous regions. Finally, inherent to all radar im-
ages, the speckle appears as a grainy "salt and pepper" texture in the image. The speckle is due to the coherent
sum of random constructive, and destructive interference (random-walk) from the numerous elementary scat-
terers within a pixel scattering back the signal (Lee et al., 1994; Singh and Shree, 2016). Thus, two adjacent
pixels on an apparently homogeneous surface, such as a grass surface, may have very different responses
due to the interaction of the signal with individual blades of grass (or any structure of minimal wavelength
size). Different techniques have been developed to reduce speckle noise, e.g., multi-looking based on non-
coherent averaging, spatial or temporal speckle filtering techniques. They nevertheless have an impact on
the radiometric or spatial quality of the original images.

Apart from radar, another type of active sensor operates in the visible and near-infrared EM portion. Light
Detection and Ranging (Lidar) emits light from a rapidly firing laser. Likewise radar sensors, the emitted light
travels to the ground and reflects on the surface towards the sensor. Time-travel as well as backscattered
intensity are recorded forming a point cloud transcribed to elevation (Mallet and Bretar, 2009; Simard et al.,
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2011a). The wavelengths used by Lidar potentially allow a spatial resolution clearly superior to that obtained
by the radar systems operating in the microwaves. Their penetrating power is reduced is nevertheless reduced,
especially regarding the cloud cover. Because of the high energy required for their operation, satellite lidar
systems have so far been mainly used for the study of the atmosphere and large polar surfaces mainly (e.g.,
ICESat-2, CALIPSO, ADM-Aeolus, GEDI), solely with low spatial resolution. They are therefore rarely used
for monitoring vegetation surfaces (Simard et al., 2011b; Silva et al.,, 2018).

1.2.1.3 Copernicus programme and Sentinels

Historically, EO applications were based on a single type of sensor, either passive or active with little crossover
in application. The low overlap in spatial and temporal terms between various datasets prevented their com-
bined use. Recently, this paradigm has been challenged by the appearance of satellite constellations (i.e., a
more or less large number of identical or complementary satellites), including both passive and active sensors.

A recent and notable programme providing a satellite constellation is the European Union’s EO Coperni-
cus programme. Initiated in 1998 and endorsed in 2001 by the European Commission (Lamy and Saint-Martin,
2013), Copernicus aims to develop operational information services on a global scale using both space- and
ground-base monitoring systems (Aschbacher and Pérez, 2010). The Copernicus Space Component is a shared
responsibility through the European Space Agency (ESA), the European Organization for the Exploitation of
Meteorological Satellites (EUMETSAT), and the European Union. The Sentinel satellites, briefly presented in
Figure 1.10, the first of which was launched in 2014 (Sentinel-1A or S1A), constitute the satellite constellation
of the Copernicus programme.

Copernicus Space Component In-orbit Planned

-~ ' Sentinel-1: Radar Mission sia/8 (2014/2016) & s1c/p (2023/2026)
@ Sentinel-2: High Resolution Optical Mission S2A/B (2015/2017) s2¢/D (2024/2026)
Sentinel-3: Medium Resolution Imaging and Altimetry Mission S3A/B (2016/2017) S3¢/D (2025/2026)

‘ Sentinel-4: Geostationary Atmospheric Chemistry Mission _ S4A/B (2023/2028)
Sentinel-5: Low Earth Orbit Atmospheric Chemistry Mission (2017) S5A/B/C  (2023/2028/2030)
. Q Sentinel-6 (Jason-CS): Altimetry Mission (2020) (2025)

Sentinel Expansion Missions: ,/T

- Sentinel-CO2M: Anthropogenic CO, mission; - Sentinel-CHIME: Hyperspectral imaging mission;

- Sentinel-CIMR:  Passive microwave imaging mission; - Sentinel-CRISTAL: Polar ice and snow mission;

- Sentinel-LSTM:  Land surface temperature mission; - Sentinel-ROSE-L: L-band SAR mission;

Figure 1.10: Sentinels missions from the European Copernicus programme.

The multi-modality of the sensors on board the Sentinel satellites, together with the temporal revisit
allowed by the duplication of the satellites, has allowed an unprecedented gathering of EO images. Specifically,
regular optical and SAR time series with similar spatial resolution are available. In addition, a free and open
access policy on Sentinel images has allowed the development of numerous methodologies fusing passive and
active sensors on a routine basis. These acquisitions have been systematic since 2014 and their sustainability
is ensured by the future launch of new satellites.
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1.2.2 Satellite remote sensing of grasslands

1.2.2.1 Grasslands extent mapping products

One of the most common application of satellite remote sensing for land surfaces is the production of land
cover maps. Land cover refers to the biophysical properties of a land surface aiming at the distinction of
its properties (i.e., water, built-up area, vegetation, etc.). Land cover maps are now usually produced on an
annual basis and reflect the summarized area status for the year. A number of classes of interests is defined,
depending on the used data and the applications. In this context, grasslands are often a distinct class, due
to their large and dense coverage. The semantic richness of the classification, i.e., the complexity of the
nomenclature to distinguish between different types of grasslands, varies mainly according to the spatial
extent of the classification. Taking into account larger areas implies a higher diversity of spectral signatures,
under influence of a different climate, for example. In these cases, retrieving surfaces belonging to the same
thematic class poses further challenges. As a result, large-scale products tend to have fewer semantic classes.

Land cover maps classifying large areas (region, country, continent, or globe) generally define one or
very few grassland classes. These meta-classes contain a large number of grassland areas. Figure 1.11 shows
grasslands retrieved by four examples of large-scale land cover products with distinct semantic richness.
Three products are continental scale (Europe) while the last one is produced at the country scale (France).
Figure 1.11 aggregates all grassland classes among a product for visualization.

SATELLITE CLC HRL ELC 0sO

Figure 1.11: Grassland retrieved from large scale satellite-based land cover products available for the year 2018
in France. SATELLITE : Google Maps; CLC : Corine Land Cover, HRL : High Resolution Layer - Grassland,
ELC : European Land Cover, OSO : Occupation des SOls.

The Corine Land Cover (CLC) map (Heymann et al., 1994) covers Europe and is currently updated every six
years. It is based on visual interpretation of several optical satellite sources and ground-based statistical infor-
mation and can distinguish up to 44 classes. The grasslands are differentiated solely into two classes, pastures
and natural grasslands. The High Resolution grassland Layer (HRL) produced by the European Environment
Agency in the framework of the Copernicus Land Monitoring Service proposes a binary map (grassland / non-
grassland) covering Europe. It is derived from optical Sentinel-2 time series using a Random Forest classifier
and learning samples gathered from several agricultural databases (such as the Land Use and Coverage Area
frame Survey, LUCAS) and manual sampling (European Union, 2018). The European Land Cover (ECL) map
(Venter and Sydenham, 2021) uses the same approach as CLC (i.e,, integrating geographical databases and
satellite images) but further integrates Sentinel-1 SAR data to distinguish 8 land cover classes, one of which
is grassland. While the three previous products were available at the continental scale, most operational ap-
proaches in the literature are defined at the country level, due to the computational constraints of larger scale
products. For metropolitan France, the Occupation des Sols (OSO) map produced from Sentinel-2 data by
the CESBIO (Inglada et al., 2017) proposes the distinction of 23 classes, including agricultural grassland, and
natural grasslands regrouped with pasture classes.
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A good agreement on the location of grasslands is visible among the different products even if different
data sources, techniques, and scales are originally explored. Satellites can therefore effectively differentiate
grasslands from other types of surfaces and map their geographical extent over large areas. Especially at
large scales when few grassland distinctions are made, most land cover products do not represent a significant
added value for grassland monitoring. Indeed, apart from information on their extent, these products only
make a very partial difference of grassland types (i.e., as here, mostly a few classes) or do not allow specific
intra-annual monitoring.

1.2.2.2 An overview of satellite-based grassland monitoring studies

The interest of satellite data for monitoring grasslands is surely not recent. In this regard, EO data has been
exploited since the first images were available. Tucker et al., 1985 were already analyzing NOAA-6 and 7
optical satellite data to compare the total productivity of Senegalese grasslands in the Sahel between 1980 and
1984.

There is a large body of work that includes satellite data and grassland monitoring. Their applications
and processed data are diverse, with the aim of obtaining quantitative informations of ecological or econom-
ical concerns. A corpus of 286 research papers from 238 different first authors, published in peer-reviewed
journals or major satellite remote sensing conferences, is retrieved. Thematic keywords such as grasslands,
pasture, meadow, rangelands, biomass, management, mowing, grazing, ploughing, harvest, productivity, map-
ping, phenology were combined with data-related keywords such as earth observation, remote sensing, satellite,
optical, SAR, time series in various web-based searches. A focus on published works between the years 2000
and 2022 is retained. Some important prior works, i.e., recently repeatedly cited, are also integrated in the
corpus.

Clearly, the present corpus is not exhaustive, but it integrates the most recent, most read and cited works
concerning satellite remote sensing and grasslands. Moreover, this relatively large corpus already allows us
to highlight the distinctions regarding two crucial aspects, namely, the research objective relating to grass-
lands and the type of used data. Figure 1.12 classifies and quantifies the corpus regarding the two aspects (i.e,
research topic and used data). In a sign of the recent revival of interest in the subject of grasslands, several
meta-analysis on the subject of satellite remote sensing for grasslands are been recently published (Reiner-
mann et al., 2020; Li et al., 2021; Soubry et al., 2021). The conclusions presented hereafter are in agreement
with these reviews.

Seven grassland themes are defined, covering the majority of the applications proposed in the corpus.
Some articles deal with several topics at the same time and are counted in each of the topics they deal with.
Concerning the types of data, the research concerns satellite data and therefore omits airborne or Unmanned
Aerial Vehicles data. While optical and SAR sensors are intensively used, hyperspectral and lidar data are
hardly represented. This is due, as previously mentioned, to the low number of satellite sensors offering this
type of data. In this corpus, the exploitation of optical or SAR data, or their joint use is retained. The complete
corpus organized by research topic and data type used is presented in Tab. 1.7.

Biomass assessment

Similarly to Tucker in 1985, the vast majority of papers (about 208 out of 286, see Figure 1.12) focus pri-
marily on grassland biomass assessment, including information on vegetation quality or quantity, such as
biomass, yields or productivity. Aboveground biomass (AGB), Growth Primary Production (GPP), and Net
Primary Production (NPP) of grasslands are critical biophysical information serving as input to global circu-
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Research topic Used data type
Biomass assessment (70%)|

[Optical + SAR (8%)]

[Management practices (15%)

SAR (6%)
Phenology (2%)]
[Surfaces and degradation (4%)

[Drought effects (2%)
[Species differenciation (5%)

Optical (86%)

Soil Moisture and irrigation (1%)|

Figure 1.12: Main research topics and data types used in a corpus of 286 papers involving grassland monitoring
with satellite remote sensing published in peer-reviewed journals or major conferences (between 2000 and
2022 mainly).

lation models such as carbon and nitrogen cycles and therefore of particular interest. Passive optical satellite
data are overwhelmingly preferred (197 articles against solely 4 using SAR images and 7 using both optical and
SAR images) following the strong correlation of visible and near-infrared bands with vegetation’s photosyn-
thetic activity. To accurately monitor biomass, dense time series of images are necessarily favored, focusing
on the vegetation’s growth season or spanning one or multiple years. A coarse spatial resolution (e.g., ~100m)
in order to obtain more regular images is usually chosen. The Moderate-Resolution Imaging Spectroradiome-
ter (MODIS) (Ali et al., 2017b; Liu et al., 2020b; Roumiguié et al., 2017), onboard Terra and Aqua satellites,
is the most used sensor. It is followed by sensors with higher spatial resolution such as Landsat (Clementini
et al., 2020; Dara et al., 2020; Roder et al., 2008) and Sentinel-2 (Askari et al., 2019; Buddeberg et al., 2021;
Fernandez-Habas et al., 2021; Myrgiotis et al., 2021) with nevertheless a reduced temporal resolution that is
frequently mentioned as a limitation.

Regarding the used features, vegetation indices (VIs) are commonly derived (partially listed in Cui et al.,
2012, and Tong and He, 2017), in particular the NDVI (Chen et al., 2021; Hill et al., 2004; Liu et al., 2020b;
Piao et al,, 2007; Reeves and Baggett, 2014; Schucknecht et al., 2017; Wang et al.,, 2020) but also EVI (Ma
etal, 2019; Meshesha et al., 2020; Tiscornia et al., 2019), SAVI (Fern et al., 2018; Jiang et al., 2015) or Tasseled
Cap (Dara et al., 2020), among others. VIs are calculated from the satellite reflectance values and are used as
proxies to grassland biomass. They allow to directly monitor spatio-temporal variations. In support, the joint
acquisition of field data allows comparison and correlation with satellite-based data. Field data are obtained
from different sources, such as spectral measures from portable spectrometers (Motta et al., 2021; Punalekar
et al,, 2018), fresh or dried matter (Brinkmann et al., 2011; Chen et al., 2021; Gutiérrez-Guzman et al., 2017;
Qin et al., 2021), eddy covariance flux towers (Gu et al., 2013; He et al., 2014; Maselli et al., 2013; Wylie et al.,
2016) or grass canopy height measurements (Ali et al., 2017a; Cimbelli and Vitale, 2017; Nickmilder et al.,
2021; Yin et al., 2020).

Subsequently, empirical models are built to correlate satellite data with field data to mainly retrieve bio-
physical variables which are closely related to biomass. The Leaf Area Index (LAI) (Ding et al., 2017; Dusseux
et al, 2015; Yu et al., 2018), the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) (Diouf
et al., 2015; Gaffney et al.,, 2018; Tiscornia et al., 2019) or the Fraction of green Vegetation Cover (FCOVER)
(Dusseux et al., 2015; Roumiguié et al., 2017) are among the most often derived. The used models are mostly
linear or multi-linear regression approaches (Baghi and Oldeland, 2019; Clementini et al., 2020; Holtgrave
et al., 2020; Wang et al., 2019¢) but also rely on machine learning approaches such as Random Forests and
Support Vector Machines (Lei et al., 2020; O'Hara et al., 2021; Raab et al., 2020; Schwieder et al., 2020), Gaus-
sian Processes (Yin et al., 2018) or Artificial Neural Networks (Chen et al., 2021; Li et al., 2016; Nickmilder
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et al., 2021; Yang et al.,, 2018). Alternatively, radiative transfer models such as PROSAIL are used to recover
these biophysical variables (He et al., 2019; Punalekar et al., 2018; Quan et al., 2017; Schwieder et al., 2020).

Finally, high level information concerning biomass estimation in different forms are retrieved, whether for
anomaly detection, yield quantification, correlation between external effects (e.g., climatic or anthropogenic)
and biomass, or for assessing the grazing pressure on biomass.

Management practices

The management of grassland parcels is the second most approached topic, accounting for 16% of the corpus.
Two main objectives, sometimes approached jointly, follow the management practices purpose. First, satel-
lite data can be used to differentiate between management practices, i.e., mowed or grazed or a mix of both
and sometimes ploughing (Chiboub et al., 2019; Dusseux et al., 2014b; Lopes et al., 2017; Myrgiotis et al.,
2021; Voormansik et al., 2020), as a classification task. Secondly, the detection and quantification of one or
more management practices by detecting for example the frequency of mowing during a season, is explored
(De Vroey et al., 2021a; Estel et al., 2018; Griffiths et al., 2019; Kolecka et al., 2018; Lobert et al., 2021). Based
on this satellite-derived information, the overall exploitation of a parcel, e.g., extensive or intensive, can be
estimated a posteriori. This information is possibly obtained by combining information related to biomass.

Regarding the detection of management practice frequency, one key constraint mentioned in all related
works is the temporal resolution. Indeed, the effects of management have an important impact on the phenol-
ogy of the grass, affecting its regime. The duration of the effects on vegetation cover induced by agricultural
practices can be very variable but especially very short as explained in Sec. 1.1.4. Thus, a greater temporal
resolution will be beneficial to an exhaustive and accurate detection. As a result, the use of optical, which
is affected by cloud cover, and radar data, is much more balanced in the works dealing with management
practices over grasslands. As previously seen, radar data do not suffer from missing data and allow constant
and regular acquisitions, reducing the risk of missing a technical act. Fig. 1.13 illustrates the proportional
use of optical, SAR or both optical and SAR images among the different research topics of the corpus. It ap-
pears that the research topic of management practices is the one where work most often incorporates SAR
data. Out of the 45 articles related to management practices, only 24 are exploiting passive optical images,
11 are using SAR images and 10 are integrating both optical and SAR images. Regarding the use of optical
imagery, NDVI (De Vroey et al,, 2021b; O’Hara et al,, 2021; Reinermann et al., 2021) and LAI (Asam et al.,
2015; Dusseux et al., 2014c; Myrgiotis et al., 2021) are the most frequently derived features. Medium spatial
resolution from MODIS or SPOT-VEGETATION are used to derive those features (Estel et al., 2018; Halabuk
etal, 2015; Zhou et al,, 2021). High spatial resolution (e.g., ~10-30m) (Bastin et al., 2012; Kolecka et al., 2018;

Zhou et al., 2021) and very high spatial resolution (e.g., ~1-5m) (Franke et al., 2012; Gomez-Giménez et al.,
2017; Hadj Said et al,, 2011; Sibanda et al., 2017) images are nevertheless largely preferred. This is due to
the fact that management practices are generally detected at the agricultural parcel scale. From SAR data,
backscattering coefficient information is usually extracted (O'Hara et al., 2021; Schuster et al., 2011; Taravat
et al., 2019; Wesemeyer et al., 2021). The temporal information (i.e., related to the task of change detection
induced by the management practices) encompassed in the calculation of interferometric coherence is also
considered (De Vroey et al,, 2021a; Kavats et al., 2019; Tamm et al., 2016; Voormansik et al., 2020). Very high
spatial resolution X-band SAR sensors are favored, allowing more spatial texture to be retrieved at the parcel
scale. When used in conjunction with optical data, C-band SAR data are more prevalent, increasingly since
the availability of freely available Sentinel-1.

Management practices can be numerous during the same agricultural season causing changes in the veg-
etation. Thus, the totality of work are relying on time series allowing to observe the vegetation at multiple
times. These time series are mainly restricted to one year or even to one growing season, e.g., from March to
October. Indeed, management practices are mainly expected during this time interval. The areas covered by
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Biomass Management Species Surfaces and Drought Phenology Soil Moisture
assessment practices differentiation degradation effects determination and irrigation
(207 art.) (45 art.) (14 art.) (13 art.) (7 art.) (6 art.) (4 art.)
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Figure 1.13: Satellite sensor type over grasslands according to the main research topic.

these articles are generally small (of the order of a few parcels to a few hundred). This is due to the complexity
of reporting technical acts as well as to a lesser interest, until now than for the measurement of biomass in
particular.

Two main methodological approaches are adopted to retrieve the frequency of management practices. A
binary temporal classification problem is defined, with classes being the occurrence or not of a technical act.
Several machine learning techniques are used such as Decision Trees or Random Forests (Halabuk et al., 2015;

O’Hara et al., 2021), k-Nearest Neighbors (Dusseux et al., 2014c), Maximum Likelihood classifier (Kurtz et al.,
2010), Extreme Gradient Boosting (O Hara et al., 2021), Gaussian Kernels (Lopes et al., 2017) or Neural Net-
works (Lobert et al., 2021; Taravat et al., 2019; Komisarenko et al., 2022). Nevertheless, these approaches are
mainly supervised, i.e., dependent on the availability of validation data. As those are scarce, the work relying
on supervised machine learning are for the most part exploratory. The second approach, mostly used, is based
on the analysis of the time series trend to detect abrupt changes synonymous to technical acts (Stendardi et al.,
2019a; Griffiths et al., 2019; Schwieder et al., 2020). These methods generally depend on thresholds, applied
either directly to the satellite time series or fitted distributions.

Other research topics

Apart from biomass assessment and management practice evaluation, some other applications of EO on grass-
lands are investigated but with much lower occurrence.

A certain number of work addresses the topic of species richness of grasslands that can be wide (Sec. 1.1.1).
To this concern, the history of grasslands is derived, which is related to the potential of species richness,
(Barrett et al., 2014; Hubert-Moy et al., 2019; Lopes et al., 2017). More often, spectral differentiation of species
is explored (Adamo et al., 2020; Bekkema and Eleveld, 2018; Fazzini et al., 2021; Radkowski et al., 2021;
Tarantino et al., 2021). As field measurements of agronomic variety are complex, unsupervised approaches
are often preferred. They rely on raw spectral data or derived feature such as NDVI (Adamo et al., 2020;
Hubert-Moy et al., 2019; Xu et al., 2019a), the Sentinel-2 Red-Edge Position (Bekkema and Eleveld, 2018)
or Simpson and Shannon indexes (Fauvel et al.,, 2020). Adopted methodologies are using Random Forests
(Barrett et al., 2014; Fauvel et al., 2020), Support Vector Machines (Barrett et al., 2014; Schuster et al., 2015;
Xu et al., 2019a), Gaussian Kernels (Lopes et al., 2017) or Convolutional Neural Networks (Fazzini et al.,
2021). In order to improve the results, some work also propose the integration of edaphic or climatic auxiliary
data that further allow distinction of the species (Adamo et al., 2020; Mansour et al., 2016). As for biomass
assessment, optical images are predominantly favored. A wide range of sensors are being exploited. High
spatial resolution Sentinel-2, Landsat-8 and SPOT-5, or very high resolution such as RapidEye (Schuster et al.,
2015), FORMOSAT-2 (Lopes et al., 2017), PlanetScope (Radkowski et al., 2021) or WorldView-2 (Adamo et al.,
2020) images are encountered. SAR images are once again mainly used in support of optical images (i.e., as
gap-free data). A single paper uses only SAR images from ENVISAT, ERS and ALOS PALSAR to discriminate
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several types of grasslands based on potential species richness (Barrett et al., 2014).

Extent of grassland surfaces and their trend is also assessed by means of satellite time series. The trend
of surfaces can be assessed over different grassland classes, such as permanent and temporary grassland
or improved, semi-improved, and unimproved (Hubert-Moy et al., 2019; O’Hara et al,, 2021; Smit et al.,
2008). Another approach consists of differentiation of grassland versus other vegetation types, mainly crops
or afforestation (Nicula, 2019; Esch et al.,, 2014; Kloucek et al., 2018; Parente et al., 2019; Pazur et al., 2021).
Spectral reflectance values or vegetation indices (NDVI, EVI) are mainly used as input for classifiers. Random
Forests or Support Vector Machines are employed. RADARSAT-2 (Dusseux et al., 2014a), Sentinel-1 (O’Hara
et al, 2021; Samrat et al.,, 2021; Spagnuolo et al., 2020) and ALOS PALSAR-2 (Spagnuolo et al., 2020) images
are also used alongside optical images, in each case improving the classification.

Some articles focus on the effects of drought on grasslands and correlate optical data with climatic data
over large areas. These work aim at deriving drought severity information (Abdel-Hamid et al., 2020; Kath et
al., 2019; Peratoner et al.,, 2021). In some cases, prediction on the probability and severity of fire are provided
(Cao et al., 2015; Chaivaranont et al., 2018). Large-scale analysis are predominant with the use of MODIS
sensor. Other works specifically observe the intra-annual phenology of grasslands. In particular, they attempt
to retrieve specific phenological stages such as beginning and end of growing season (Almeida-Naufiay et al.,
2022; Mardian et al., 2021; Stendardi et al., 2019a). MODIS images are again the most widely used, from
which NDVI is commonly derived. Seasonality retrieval fitting algorithms like Breaks for Additive Seasonal
and Trend (BFAST) (Mardian et al., 2021) or Harmonic ANalysis of Time Series (HANTS) (Li et al., 2020b)
are traditionally employed. Finally, a very small number of papers address soil moisture (Asmuf; et al., 2019;
Baghdadi et al., 2016) and irrigation performances (Abuzar et al., 2017; Reinfelds, 2011) in grasslands. Since
SAR data are sensitive to dielectric activity and thus moisture, half of the papers, although their number is
limited, exploit the correlation of backscatter and soil moisture, notably through inversion techniques.
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Table 1.1: Corpus of scientific publications related to remote sensing and grasslands. Seven main research
topics are defined and references are further classified by remote sensing data type. The order of presentation
of the topics follows their representation in the corpus.

Biomass assessment

Optical Alietal., 2014, Alietal, 2017b, Anetal, 2013, Anaya et al., 2009, Anderson et al., 1993, Askari et al., 2019,
Baeza et al., 2010, Baghi and Oldeland, 2019, Barrachina et al., 2015, Carlos Marcelo et al., 2004, Bellini et al.,
2021, Bénié et al., 2005, Blanco et al., 2009, Boschetti et al., 2007, Brinkmann et al., 2011, Buddeberg et al.,
2021, Buono et al., 2010, Chen et al., 2011, Chen et al,, 2014, Chen et al., 2021, Chi et al., 2018, Cimbelli
and Vitale, 2017, Clementini et al., 2020, Courault et al., 2010, Cui et al., 2012, Dara et al., 2020, Ding et al.,
2017, Dioufetal., 2015, Donald et al., 2010, Donald et al., 2013, Dube and Pickup, 2001, Dusseux et al., 2015,
Edirisinghe et al.,, 2011, Edirisinghe et al., 2012, Eisfelder et al., 2017, Everitt et al., 1989, Fan et al., 2010,
Fassnacht et al., 2018, Feng and Zhao, 2011, Feng et al., 2017, Fern et al., 2018, Fernandez-Habas et al., 2021,
Friedl et al., 1994, Fuetal, 2014, Gaffney etal., 2018, Gao et al, 2013, Gao etal., 2016, Grantetal., 2013, Gu
et al., 2013, Guerini Filho et al., 2019, Guido et al., 2014, Guo et al., 2000a, Guo et al., 2012, Guo et al., 2019,
Gutiérrez-Guzman et al., 2017, Hall et al., 2010, Hardy et al., 2021, He et al., 2014, He et al., 2019, Hill et al.,
2004, Ikeda et al., 1999, Irisarri et al., 2012, Jackson and Prince, 2016, Jansen et al., 2018, Jia et al., 2015, Jia
etal, 2018, Jiang et al., 2015, Jianlong et al,, 1998, Jin et al., 2014, Jin et al., 2019, Jobbagy et al., 2002, John
et al, 2018, Justice and Hiernaux, 1986, Kawamura et al., 2005b, Kawamura et al., 2005a, Kogan et al., 2004,
Lei et al., 2020, Leimgruber et al., 2001, Liet al., 2013b, Liet al., 2013a, Lietal., 2016, Liang et al., 2016, Liu
et al., 2015, Liu et al, 2019, Liu et al.,, 2020b, Long et al., 2010, Luo et al., 2014, Ma et al., 2019, Magiera
etal, 2017, Mao et al., 2014, Marsett et al., 2006, Marwaha et al., 2020, Maselli et al., 2013, Meng et al., 2017,
Meshesha et al., 2020, Moreau et al., 2003, Motta et al., 2021, Munyati and Makgale, 2009, Myrgiotis et al.,
2021, Na et al.,, 2018, Numata et al., 2007, Otgonbayar et al., 2019, Palmer et al., 2010, Paruelo et al., 2000,
Paudel and Andersen, 2010, Piao et al., 2007, Pifieiro et al., 2005, Porter et al., 2014, Punalekar et al., 2018,
Qamer et al., 2016, Qin et al., 2021, Quan et al., 2017, Ramoelo et al., 2015a, Ramoelo et al., 2015b, Reeves
et al, 2001, Reeves and Baggett, 2014, Ren and Feng, 2015, Ricotta et al., 2003, Robinson et al., 2019, Roder
et al., 2008, Rossini et al., 2012, Roumiguié et al., 2015, Roumiguié et al., 2017, Rufin et al., 2015, Sankey
etal., 2009, Schino et al., 2003, Schucknecht et al., 2017, Schwieder et al., 2020, Seaquist et al., 2003, Serrano
et al, 2021, Sietal, 2012, Sibanda et al., 2016, Sibanda et al., 2017, Silverman et al., 2019, Smith et al., 2011,
Sun et al.,, 2013, Sun et al,, 2017, Sun et al., 2019, Tan et al., 2010, Tang et al., 2014, Tiscornia et al., 2019,
Todd et al., 1998, Tong and He, 2017, Tsalyuk et al., 2015, Tucker et al., 1985, Ullah et al., 2012, Vescovo and
Gianelle, 2008, Wang et al., 2016, Wang et al., 2017b, Wang et al., 2019e, Wang et al., 2019a, Wang et al.,
2020, Wehlage et al., 2016, Wei et al., 2019, Wu et al.,, 2008, Wu, 2012, Wu et al.,, 2014, Wylie et al., 1991,
Wrylie et al., 2002, Wylie et al., 2016, Xia et al., 2014, Xie et al., 2009, Xing et al., 2010, Xiong et al., 2019, Xu
etal., 2007, Xuetal, 2013, Xuetal., 2016, Xuetal., 2018, Xuetal, 2019b, Yangetal., 1998, Yang et al., 2009,
Yang et al., 2012, Yang et al., 2015, Yang et al., 2017, Yang et al., 2018, Yang et al., 2019a, Yin et al., 2014, Yin
et al, 2018, Yin et al.,, 2020, You et al,, 2019, Yu et al., 2018, Yu et al.,, 2019, Zeng et al., 2019, Zhang et al.,
2014a, Zhang et al., 2014b, Zhang et al., 2016, Zhang et al., 2017, Zhang et al., 2018, Zhao et al,, 2014, Zhao
et al, 2019, Zheng et al., 2020, Zhou et al,, 2014a, Zhou et al., 2014b, Zhou et al., 2017a, Zhou et al., 2017b,
Zhu et al., 2019

SAR Ali et al., 2017a, Crabbe et al., 2019, Grant et al., 2015, Yang et al., 2021

Optical+SAR | Alietal, 2016, Frolking et al., 2005, Holtgrave et al., 2020, Nickmilder et al., 2021, O’Hara et al., 2021, Raab
et al., 2020, Wang et al., 2019c
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Management practices

Optical

Asam et al.,, 2015, Bastin et al., 2012, Dusseux et al., 2014b, Dusseux et al., 2014c, Estel et al., 2018, Franke
etal., 2012, Gomez-Giménez et al., 2017, Griffiths et al., 2019, Guo et al., 2000a, Guo et al., 2003, Guo et al.,
2004, Hadj Said et al.,, 2011, Halabuk et al., 2015, Kolecka et al., 2018, Kurtz et al., 2010, Lopes et al., 2017,
Myrgiotis et al., 2021, Reinermann et al., 2021, Rossi et al., 2018, Rossi et al., 2019, Sibanda et al., 2016,
Sibanda et al., 2017, Stumpf et al., 2020, Schwieder et al., 2021

SAR

Chiboub et al., 2019, De Vroey et al., 2021a, Kavats et al., 2019, Schuster et al., 2011, Siegmund et al., 2016,
Tamm et al., 2016, Taravat et al., 2019, Voormansik et al., 2013, Voormansik et al., 2016, Zalite et al., 2014,
Zalite et al., 2016

Optical+SAR

D’Andrimont et al., 2018, Dabrowska-Zielinska et al., 2017, De Vroey et al., 2021b, Lobert et al., 2021, O’Hara
etal., 2021, Stendardietal., 2019a, Voormansik et al., 2020, Wesemeyer et al., 2021, Zhou et al., 2021, Komis-
arenko et al., 2022

Species differentiation

Optical Adamo et al.,, 2020, Bekkema and Eleveld, 2018, Fazzini et al., 2021, Hubert-Moy et al., 2019, Lopes et al.,
2017, Mansour et al., 2016, Radkowski et al., 2021, Tarantino et al., 2021, Toivonen et al., 2003, Xu et al.,
2019a, Zongyao and Yongfei, 2013

SAR Barrett et al., 2014

Optical+SAR | Fauvel et al., 2020, Schuster et al., 2015

Surfaces and degradation

Optical Nicula, 2019, Esch et al., 2014, Hubert-Moy et al., 2019, Kloucek et al., 2018, Kurtz et al., 2010, Munyati and
Makgale, 2009, Parente et al., 2019, Pazur et al., 2021, Smit et al., 2008

SAR -

Optical+SAR Dusseux et al., 2014a, O’Hara et al., 2021, Samrat et al., 2021, Spagnuolo et al., 2020

Drought effects

Optical Cao et al,, 2015, Kath et al.,, 2019, Li et al.,, 2017, Peratoner et al., 2021, Wang et al., 2019d
SAR Abdel-Hamid et al., 2020
Optical+SAR | Chaivaranont et al., 2018

Phenology characterization

Optical Almeida-Naufiay et al., 2022, Lara and Gandini, 2016, Fontana et al., 2008, Li et al., 2020b, Mardian et al,,
2021

SAR -

Optical+SAR | Stendardi et al., 2019a

Soil moisture and irrigation

Optical Abuzar et al., 2017, Reinfelds, 2011
SAR Asmuf et al., 2019
Optical+SAR | Baghdadi et al, 2016
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1.3 Problem statement and objectives

The vast grassland surfaces as well as the growing recognition of the ecosystem services they provide have
revealed urgent needs for their conservation and sustainable management. Grasslands serve major functions
in climate change mitigation, particularly through global carbon storage and sequestration. The extent of
the grassland biome has evolved greatly through history with abiotic factors such as climate, mostly at the
interface between desert and forest areas. Beyond climate change, grasslands have decreased considerably
as a result of human activities, such as conversion to impervious surfaces or agricultural activities. This de-
cline has been reported by many works which have observed increasing surface losses. The conversion of
grasslands to croplands compromises ecosystem services with harmful effects on soil, water, and air quality.
Besides the impact of grassland conversion, the overexploitation of grassland through overgrazing, frequent
mowing, and depletion of seeded species lead to a significant decrease in their capacity to provide multiple
ecosystem services: lower captured CO, through a decrease in biomass, alteration of biodiversity through a
decrease in floral diversity, soil impoverishment, and threats to wildlife corridors, among others. Accordingly,
although monitoring crop management has until recently received more attention, new governmental efforts
are foreseen for the conservation of grasslands through promoting land preservation, grassland friendly poli-
cies on land use, and sustainable management efforts.

For instance, in Europe, the first pillar of the Common Agricultural Policy (CAP) and especially its Green-
ing component are aiming to maintain highly valued ecological surfaces such as grasslands. The component
Greening is intended, among others, to protect permanent grassland areas and prevent their conversion to
other surfaces such as crops, by means of financial support. Permanent grasslands refer to land used contin-
uously to grow herbaceous fodder, forage, or energy purpose crops. They are not part of crop rotation on
the holding and occupy the land for five years or longer. Therefore, permanent grasslands are often linked
to grasslands that provide higher ecosystemic services with a positive impact on carbon sequestration and
biodiversity.

Monitoring management practices is essential to ensure grassland conservation and promote sustainable
management. The regulation of grassland exploitation intensity and management calendars have proven to
be effective measures to preserve or restore the environmental quality of grasslands. Despite growing interest,
monitoring the management of grasslands poses many challenges due to their great agronomic diversity and
the multitude of management practices to which they are subject. Numerous technical acts are performed on
grasslands such as grazing, mowing, and ploughing. They have a direct but varying impact on above-ground
or root biomass and are the underlying factor in grassland degradation. Detecting a high mowing frequency
can, for instance, hint at frequent fertilizer inputs synonymous with a negative impact on various ecosys-
tem services. Similarly, the precocity of technical acts during the growing season, while often beneficial for
grass production throughout the year, affects ecosystem services. Thus, information that describes the nature
and quantity of technical acts performed can provide useful information to predict the quality of rendered
ecosystem services. Despite the acknowledged importance of management practices, large-scale information
is currently not available reporting on the frequency and nature of technical acts.

Satellite remote sensing appears to be a suitable tool for efficient grassland monitoring. In particular,
satellite image time series allow synoptic and regular analysis. As demonstrated by the numerous works ex-
isting in the literature, research on grassland monitoring by using satellite images is rich and growing. Recent
data acquired from the Sentinel satellites in the framework of the Copernicus programme further highlight
the interest of satellite images for grassland monitoring. Sentinels offer high spatial and temporal resolutions,
complementary optical and Synthetic Aperture Radar (SAR) images, and free and large-scale data. Combined,
these characteristics bring new opportunities for monitoring grassland vegetation conditions. Consequently,
the research conducted in this thesis aims at investigating the capabilities and the synergy of recent
Sentinel time series for continuous grassland monitoring. Specifically, the thesis focuses on develop-
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ing methods for detecting grassland management practices from complementary optical and SAR
multivariate image time series.

The retrieval of relevant signal patterns associated with grassland management practices from multivari-
ate time series is challenging. As previously mentioned, grasslands exhibit highly variable phenologies, unlike
crops or forests, for example, due to the multitude of agronomic species. Hence, farmers manage each grass-
land with different calendars and frequency through nutrient management, water management, or different
types of practice. Besides the challenge of the diversity of management practices, their spatio-temporal detec-
tions imply important temporal constraints. The accurate management practices detection requires frequent
and regular satellite acquisitions. Consequently, the exploitation of low temporal resolution time series can
lead to substantial errors. This is particularly caused by rapid changes in the state of the grassland vegetation.
For instance, under favorable climatic conditions or with the help of nitrogenous fertilizers, the vegetation
can rapidly recover after mowing or grazing.

To illustrate the rapid regrowth of grass cover, Figure 1.14 shows five consecutive cloudless Sentinel-2
images acquired over a ryegrass parcel. A complete regrowth of the grass cover is visible on June 9" within
seven days after the first mowing occurring on June 2", As observed, the grass cover on June 9™ is similar
to May 27, prior to mowing. As a consequence, if the image of June 2" had been missing, the mowing
could not have been detected. Furthermore, after the complete regrowth on June 9™, a second mowing takes
place ten days later on June 19", As in the previous example, if the image of June 9 had been missing,
the second mowing would have been missed considering the already low grass cover on June 2", These
examples emphasize the rapid regrowth of grasslands and the short temporal window during which they can
be observed. Therefore, dense temporal sampling is mandatory to monitor changes in grassland vegetation
status associated with management practices.
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Figure 1.14: Consecutive Sentinel-2 images illustrating the rapid regrowth of grassland surfaces.

In terms of temporal resolution, Sentinel satellites offer unprecedented opportunities. Especially, weather-
independent SAR sensors enable regular acquisitions in compliance with grassland rapid regrowth. Despite
its high temporal revisit, the exploitation of SAR time series is not straightforward. SAR images suffer from
inherent speckle noise and important signal fluctuations, mainly due to the climate conditions during ac-
quisition. These fluctuations can be confused with changes in the state of vegetation. For this reason, the
use of SAR time series in the context of grassland monitoring is less often observed, as previously reported
in favor of optical data. As it is well-known, optical time series provide relevant information that describes
the evolution of vegetation cover (as seen in Figure 1.14). Simple yet effective vegetation indexes, such as
the Normalized Difference Vegetation Index (NDVI), are widely exploited and have shown some interest in
detecting management practices. However, the observed temporal resolution of optical data due to frequent
and persistent cloud cover still remains an important limitation. NDVI time series consequently suffer from
missing data, which, as previously seen, will prevent monitoring of management practices. Large temporal
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data gaps can last from weeks to months and may occur at key moments involving important vegetation
changes (e.g., during growth or senescence, or even at harvest time). The reconstruction of optical indices can
be seen as a mandatory step to allow for continuous monitoring of grassland surfaces. Accordingly, the first
goal of this thesis is the reconstruction of dense NDVI time series by exploiting the synergy of both
optical and SAR Sentinels.

Besides the requirement of dense temporal time series, the analysis scale at which the detection of prac-
tices is possible also needs to be addressed. The finer pixel-scale analysis involves high computational costs
and is more prone to noise. As management practices are assumed to be performed at the parcel scale, the
suggestion is made to work at the parcel scale. In addition, large-scale information on the location of grass-
lands is available in a growing number of countries through various agricultural policies, as it is the case in
France. However, it was observed that grassland can be managed at a finer scale, lying between the pixel-
and parcel-scale. With additionally various lengths and intensities impacts of management practices on the
vegetation, this intermediate scale seems to be necessary to allow to reduce the uncertainties involved in
their detection. The second goal of this thesis is therefore to propose a methodology to detect grassland
management practices.

The joint exploitation of Sentinel-1 and Sentinel-2 data for grassland monitoring, which both permit a ad-
equate spatial resolution, thus appears promising. Nevertheless, the data proliferation raises new challenges.
The high dimension and the heterogeneous physical nature of the data, with various spatial, spectral and tem-
poral domains are among the aspects to be explored. Especially, among the few works exploiting Sentinel-1
and Sentinel-2 for grassland monitoring, the information from both satellites is generally individually pro-
cessed. The methodologies exploited are, as a result, specific to some grassland types, areas, or evolving
administrative constraints. At the same time, recent advances in computing resources and machine learning
algorithms have brought deep learning strategies to the forefront as suitable for dealing with the reported
challenges. Among others, the interests of deep learning methods for key considerations such as data mining,
large-scale processing, and reproducibility have been highlighted.

In this context, the main goal of the thesis is to develop methods that allow the continuous monitor-
ing of grasslands and the detection of their management practices from complementary Sentinel satellite
data. For this purpose, the thesis will: (i) employ advances in deep learning to develop a multi-source
methodology exploiting the synergy and capabilities of both Sentinel-1 and Sentinel-2 data sources.
Deep-based methods allow for early fusion of multi-modal data streams which is advantageous in view of the
heterogeneous dimensions of the data exploited herein. The developed methodology targets to regress mul-
tivariate SAR time series towards optical NDVI and proposes the incorporation of contextual knowledge to
reduce the impact of exogenous factors leading to SAR data variability. NDVI was chosen as an easily inter-
pretable and widely used variable. This choice also supports the potential use of the results in post-processing
that does not require expert knowledge of remote sensing; (ii) explore methods aiming at detecting veg-
etation status changes related to management practices on grasslands. The proposed methods, nec-
essarily unsupervised as reference data about management practices do not exist, will exploit the previously
obtained gap-free NDVI time series. Different strategies are compared, taking into account the heterogeneous
nature of grassland management practices.

1.4 Outline of the manuscript

The introduction proposed in this chapter focused on grasslands, their systemic diversity and associated
threats, and the different management practices they are subject to. Satellite remote sensing and relevant
works from the scientific literature have been presented.

Chapter 2 is devoted to the description of the reference and ancillary data used to define an experimental
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setup to meet the objectives of this manuscript. Sentinel-1 and 2 missions are briefly presented, and the
interest of exploiting both data types for grassland monitoring is illustrated. The pre-processing steps of
the different pertinent datasets are detailed. A first qualitative and quantitative evaluation of the different
satellite features is performed on several grassland datasets as well as on other vegetation types introduced
for comparison.

After having determined the strengths and weaknesses of optical and SAR features, Chapter 3 defines
the deep learning methodology, namely, Sentinels Regression for Vegetation Monitoring (SenRVM), allowing
to encompass the advantages of both active and passive sensors for grassland monitoring. The existing ap-
proaches used in the literature to obtain dense time series are reviewed. Classical deep-based architectures
and their relevance for the defined task are outlined. Subsequently, the new deep-based regression methodol-
ogy is detailed, which exploits Sentinel-1 and Sentinel-2 time series in order to recover NDVI from SAR-based
features.

Chapter 4 includes a in-depth analysis of the results obtained with the SenRVM approach. The analysis
will address common challenging aspects of both machine learning and Earth Observation data exploitation
(e.g., datasets, features, generalization capabilities). The benefits of the SenRVM approach to increase tem-
porally available observations are illustrated and compared on several types of vegetation. The impact of
spatio-temporal variations in the datasets is explored both in the learning process of SenRVM and on the
results. Relevance and importance of the selected satellite and ancillary features are assessed. Next, a com-
parison of the SenRVM approach with related and widely used methods is proposed for a gap-filling task
on short- and long-term data gaps. Lastly, further post-processing steps with the objective of introducing
possible improvements to the results are discussed.

The challenge of detecting management practices in grasslands is presented in Chapter 5. A review of the
pertinent literature is first proposed. This allows to highlight the drawbacks of the existing approaches and
suggest improvements. In particular, a superpixel-scale approach is defined as an alternative to the pixel- and
parcel-based approaches. Comprehensive validation datasets are subsequently constructed. Different time
series change detection methods are defined to retrieve technical acts performed on grasslands. Methods are
compared and their sensitivity to different parameters is assessed. Finally, examples of applications to obtain
information describing the exploitation of grasslands are introduced.

Finally, conclusions and perspectives are presented in Chapter 6.
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2.1. STUDY AREAS

2.1 Study areas

The study areas are located in France, which had, in 2020, the largest extent of grasslands in Europe (Eurostat,
2021). The coverage of agricultural land amounted to 52% of the French metropolitan territory. Grasslands
in the broad sense (grass, fodder crops, and fallow land) covered 12.8 million hectares, i.e., approximately
45% of agricultural land. In other words, in 2020, nearly a quarter of the French metropolitan territory was
grasslands, greatly contributing in the production of agricultural goods (Agreste, 2021). Their monitoring
thus appears necessary, relating these important surfaces to ecosystemic and economic challenges.

Different study areas with distinct geographical contexts are selected. Several criteria are taken into
account for their selection such as the abundance of grasslands, data availability, or the topography as it
impacts both satellite acquisition and phenologies. The exact extent of the different areas is induced by the
division in tiles of satellite products, done for their latter distribution. This division is based on a commonly
used tiling system which is the Military Grid Reference System (MGRS).

The resulting study areas are divided in two groups. The first group corresponds to Macon and Toulouse
areas, described in Section 2.1.1, which are the primary study areas used in this work. Both areas are se-
lected for the further design and implementation of the experiments and the extensive analysis of the results.
The second group, described in Section 2.1.2, are additional sites covering large geographical surfaces, only
dedicated for further assessment in a few experiments.

2.1.1 Macon and Toulouse sites

These two areas are defined as the main study areas.

Macon area - T31TFM

This area is located in the East of France (purple area in Figure 2.1). The area is first defined by the extent
of the MGRS tile T31TFM. Agricultural season from October 2016 to October 2017 is studied, being the one
for which reference data describing the grasslands was available at the start of this work. Consequently, only
one of the two satellites composing the Sentinel-2 optical constellation is considered until June 2017. The full
capacity of the constellation is exploited once the Sentinel-2B satellite becomes operational. The study site
is therefore selected over a smaller area where overlapping swaths of two adjacent orbits are available. The
selected area allows an increased temporal resolution despite the momentary availability of only one satellite.
While Bourg-en-Bresse becomes the major city of the study area, the name of Méacon is retained as the main
city of the original tile extent. The final area of 5,328 km? is depicted by a varied topography. The area is
characterized by a river valley on the Western side, hills and plateaus of the Jura mountains on the Eastern
side (Figure 2.1).

Toulouse area - T31TCJ/CH

This area, denoted as Toulouse, is located in the South-West of France (blue area in Figure 2.1) and straddles
two MGRS tiles, T31TCJ and T31TCH. The area covers 15,120 km?. It is characterized by different landscapes
with an important topographic gradient. Lowlands with little topography are located in the Northern part,
whereas the Pyrenees mountains cover a vast Southern part of the area (Figure 2.1). For this area, the time
interval under consideration is from February 2017 to April 2018. Same exact time interval as for Macon
could not be considered, due to the temporary unavailability of Sentinel-1A data because of a change in the
acquisition plan of the relative orbits between October 2016 and February 2017. As for the Méacon area, the
full capacity of the Sentinel-2 constellation is only available from the end of June 2017.
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2.1.2 Additional sites

Five Sentinel-2 tiles covering the French territory are further considered as additional areas. These areas are
proposed to assess the results obtained over the previous Macon and Toulouse sites. The additional sites
aim to validate the results on large scale areas with higher diversity. They will also allow us to assess the
generalization capacity of the proposed methods. The five tiles are regrouped in two distinct large areas,
namely the Western- and Northern-area. The first Western-area (cyan color in Figure 2.1) is located in the West
of France, mainly in the Pays de la Loire region. This area of 26,713 km? contains parts of three contiguous
MRGS tile, namely T30TXS, T30TXT, T30TWT, covering respectively 7,914 km?, 11,746 km? and 9, 098 km?.
The second Northern-area covers the city of Paris on the South-West and extends Northward (khaki area in
Figure 2.1). The area is 20, 107 km?. It regroups parts of the two T31UDQ and T31UEQ MGRS tiles, respectively
12,065 km? and 9, 117 km?. The two additional areas are characterized by low topography but distinct climates
and therefore phenologies. In addition, the types of agricultural systems and grassland cultivated are also
different. The agricultural season ranging from October 2018 to October 2019 is considered for both additional
areas, thus granting the full temporal resolution of the Sentinel-1 and 2 constellations.

Western-area Northern-area

———— 205km — 192 km —————————

T30TXT T31UDQ T31UEQ

wy 0Tt

175 km =—

T30TWT

T31TFM

B Permanent grasslands (PM)
B Temporary grasslands (TG)
Bl Fallow land (FA)

Forage legumes (FL)

wy 0TT

+——— 155km

T31TCJ/T31TCH

—— 110 km ———— ——— 48km ————e

Toulouse area Macon area

Figure 2.1: Location of the study areas Macon (purple) and Toulouse (blue), and the additional study sites
(Northern-area in brown and Western-area in cyan). Grasslands located in the study sites are colored accord-

ing to the four meta-classes described in Section 2.3.1.1
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2.2 Satellite data

2.2.1 Sentinel-2 optical imagery

The twin satellites Sentinel-2A and Sentinel-2B, launched in 2015 and 2017 respectively, are carrying mul-
tispectral optical sensors (Drusch et al., 2012). Acquisitions have a swath of 290 km but are divided and
distributed according to the MRGS tiling system (Section 2.1.1) in 110 km tiles. Thirteen spectral bands are
available with different spatial resolutions. Bands at 10 m and 20 m spatial resolutions are mainly used for
terrestrial applications and the three bands acquired at 60 m spatial resolution are mostly used for atmo-
spheric corrections or related applications (Table 2.1). Both satellites have the same orbit but are phased at
180°, permitting a temporal resolution of 5 days at the equator and lower at higher latitudes. Nevertheless,
temporal revisit is only theoretical. The cloud cover more or less important according to the geographical
areas, strongly degrades the data availability (Sudmanns et al., 2020a). Since the beginning of operations and
until end of 2020, the Sentinel-2 constellation has made available about 14x 10° gigabyte (GB) of data covering
the globe and freely accessible (ESA, 2021a).

Table 2.1: Spectral band ranges and spatial resolutions of the Sentinel-2 constellation Multispectral Instrument
(MSI) sensors. Bold spectral bands (B2, B3, B4 and B8) are the ones used in this work.

’ Band Number ‘ ’ Band Description ‘ Wavelength range (nm) ‘ Spatial Resolution (m) ‘
B1 Coastal aerosol 443 - 453 60
B2 Blue 458 - 523 10
B3 Green 543 - 578 10
B4 Red 650 - 680 10
B5 Vegetation Red Edge 698 - 713 20
B6 Vegetation Red Edge 733 - 748 20
B7 Vegetation Red Edge 773 - 793 20
B8 NIR 785 - 900 10
B8a Vegetation Red Edge 855 - 875 20
B9 Water vapor 935 - 955 60
B10 SWIR - Cirrus 1360 - 1390 60
B11 SWIR 1565 - 1655 20
B12 SWIR 2100 - 2280 20

Sentinel-2 images are mainly distributed according to two levels of pre-processing. The first level of
processing provides geometric correction (Level-1), allowing to take into account several possible distortions
related to the acquisition angle, the orbit, the motion of the satellite or Earth’s rotation and terrain topography.
Images are further geo-referenced providing accurate location to each pixel. However, pixel values of Level-1
do not take into account the atmosphere’s properties at the time of acquisition or the nature of the observed
target. The atmospheric properties are not constant in time, and corrections may be necessary.

For some applications that do not require an evolving process to be monitored continuously, such as
land cover classification, these further corrections may be optional. For the temporal analysis of physical
phenomena such as grassland cover dynamic, they are of utmost importance. It will allow a comparison of the
surface, independently from exogenous factors such as atmospheric absorption or scattering. The correction
step permits to convert Sentinel-2 Top Of Atmosphere (TOA) reflectance including the atmospheric effect
provided by Level-1 into Bottom Of Atmosphere (BOA), describing the corrected reflectance of the observed
surface (Level-2). Several operational processing chains enable to retrieve Level-2 images such as Sen2Cor
(Main-Knorn et al., 2017), FMask (Zhu et al., 2015) or the MACCS-ATCOR joint algorithm (MAJA, Hagolle
et al., 2015). The latter was developed as a joint effort of the Centre National des Etudes Spatiales (CNES) and
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the Deutsches Zentrum fiir Luft- und Raumfahrt (DLR). Being distributed by several French data providers
and having reported higher accuracies compared to the other approaches (Baetens et al.,, 2019; Doxani et al.,
2018), the Sentinel-2 Level-2 products produced by MAJA have been adopted.

Table 2.2 provides the number of Level-2 Sentinel-2 images considered over the different study areas,
ranging from 53 to 80. In Macon (T31TFM) and Toulouse (T31TCJ/CH), the initial availability of only one of
the two satellites reduces the number of exploited images.

Table 2.2: Description of Sentinel-2 images, first and last acquisitions dates for the study areas.

’ Area name ‘ Tile ‘ ’ Images ‘ First date ‘ Last Date ‘
Maécon T31TFM 53 22-Oct-2016 12-Oct-2017
Toulouse T31TCJ/CH 73 15-Feb-2017 16-Apr-2018

T30TXS 80 1-Oct-2018 31-Oct-2019
Western-area T30TXT 80 1-Oct-2018 31-Oct-2019
T30TWT 79 4-Oct-2018 29-Oct-2019
Northern-area T31UDQ 79 3-Oct-2018 28-Oct-2019
T31UEQ 79 3-Oct-2018 28-Oct-2019

2.2.2 Masks: clouds & shadow, snow

The MAJA chain producing Level-2 Sentinel-2 images includes a first step that identifies and locates clouds
and their shadows. This detection is done by both a mono- and multi-temporal analysis of blue and atmo-
spheric reflectance bands (Hagolle et al., 2015). In addition, a geophysical mask is also provided that contains
information on snow-covered areas (Gascoin et al., 2019). Cloud & shadows and snow masks are available at
the same spatial resolution as the reflectance images (10 m).

Cloud & shadow masks are available for each image of the time series. The temporal distribution of the
cloud cover can thus be extracted. Considering all pixels belonging to grasslands (retrieved from the RPG,
see Section 2.3.1.1), a cloud-cover percentage is calculated. This percentage is reported for each study area
in Table 2.3. This cloud-cover percentage allows us to observe that for all tiles over roughly one-year time
intervals, more than half of the acquisitions made by Sentinel-2 could be considered as cloudy. For the two
main study areas, only about 26 and 24 images, for Macon and Toulouse respectively, were cloud-free over a
grassland pixel. The percentage of cloud cover even reaches 72% over the T31UDQ tile near Paris, where only
22 images were available on average over a complete year. These cloud cover percentages illustrate that the
nominal 5-day temporal resolution of the Sentinel-2 constellation is only theoretical, largely degraded over
the study areas.

Table 2.3: Cloud cover percentages of optical imagery acquired over the different study areas. The percentage
is computed by considering all pixels over grasslands (Table 2.6) during the studied time intervals.

Micon Toulouse Western-area Northern-area
| T31TFM | T31TCJ/CH | T30TXS T30TXT T30TWT | T31UDQ T31UEQ |

Total cloud-cover percentage
51 66 58 60 63 72 67

of grassland pixels (%)

Furthermore, the cloud cover is indeed not uniformly distributed during the season. Figure 2.2 illustrates
this cloud cover percentage per date, for both Macon and Toulouse areas. As expected, cloud-cover is higher
in winter months. Several months over the Toulouse area are depicted by very few valid Sentinel-2 obser-
vations. The 66% of cloud-cover percentage observed for the Sentinel-2 time series over Toulouse does not
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inform on lasting cloud cover that can further prevent acquisition over longer time intervals. It can also be
observed that cloud cover occurs during the active vegetation period of grasslands, in spring or summer. Es-
pecially, successive cloudy dates are numerous as it is the case end of July for both Macon and Toulouse areas.
Therefore, the characterization of the phenological evolution of the vegetation surfaces from the resulting
times series can be obstructed, even at key time intervals such as July.

The efficiency of the masks may prove to be essential to discard acquisitions that do not provide relevant
information and may pollute the time series. Indeed, over- or under-detection of invalid pixels can convey
wrong information to be used in subsequent time series exploitation. A valid observation can be discarded,
while an invalid observation can be included in the analysis. While the task of constructing these masks
is complex and not addressed in this work, the potential impact of mask errors will be briefly discussed in
Chapter 4 and 5.
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Figure 2.2: Percentage of pixels from the grassland datasets (Table 2.6) detected as invalid by the cloud &
shadow masks. Each acquisition date of Macon and Toulouse areas are considered.

2.2.3 Sentinel-1 SAR imagery

Sentinel-1A & 1B are C-band (wavelength of 5.6 cm) SAR satellites launched in 2014 and 2016 and orbiting
on the same plane (Potin et al., 2019). The Sentinel-1 constellation offers a 6 days temporal resolution at the
equator, in one orbit direction (ascending or descending). Since the orbit track spacing varies with latitude,
the revisit rate is greater at higher latitudes than at the equator. Available acquisitions also vary with the
acquisition plan of the satellites. As previously stated in Section 1.2.1.2, active sensors such as the one carried
by Sentinel-1 can acquire images regardless of illumination conditions. Images are thus available from both
ascending and descending orbits. Four imaging modes are available: Interferometric Wide Swath (IW), Extra
Wide Swath (EW), Strip Map (SM) and Wave (WV). Over land surfaces, the IW is the nominal imaging mode
of Sentinel-1. The IW mode uses the Terrain Observation with Progressive Scan (TOPS) technique helping to
achieve a homogeneous image quality throughout the 250 km swath. The swath is subdivided in three sub-
swaths (IW1, IW2, IW3) each composed of about ten bursts. The sensors have a dual-polarization capability
with vertical transmitted and receive (VV) or vertical transmitted and horizontal received (VH) polarizations
bands.

For SAR active sensors, the spatial resolution is two-fold. Resolution as referred in Table 2.4 defines the
minimum distance at which the sensor can discriminate between two closely spaced scatterers that have
approximately responses of equal strength. Pixel spacing on the other hand denotes the size of the pixels that
have been sampled (i.e., aggregating the individuals scatterers) throughout the scene and corresponds to the
pixel size distributed by the SAR products.

Single Look Complex (SLC) and Ground Range Detected (GRD) are the two main types of products avail-
able for Sentinel-1 data, for which the important characteristics are reported in Table 2.4.
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Table 2.4: Sentinel-1 Interferometric Wide (IW) swath mode SLC and GRD product characteristics. rg stands

for range and az for azimuth. ENL stands for Equivalent Number of Looks.

Resoluti Pixel i
Product Wavelenght | Frequency | Swath | Incidence angle | Polarizations esolution | Fxel spacing | pny,
(rgxaz) (rgxaz)
IW-SLC 31X 22m 23 x141m 1
5.6 cm 5.405 GHz | 250 km 29.1° - 46.0° VV, VH
IW-GRD 20 X 22m 10 X 10 m 44

SLC product consists of focused (i.e., processing of azimuth and range signals to form an image) SAR data,
geo-referenced using orbit and attitude data from the satellite. SLC products are in slant-range geometry,
defined as the line-of-sight from the sensor to each reflecting object. The full spatial resolution is provided
(single look) and complex signals (real and imaginary parts) preserving the phase information are available.

GRD product also consists of focused SAR data but only provides backscatter magnitude and the phase
information is lost. GRD products are projected to ground range, i.e., onto the ellipsoid of the Earth and multi-
looked (averaging in the spatial domain). Consequently, GRD products of Sentinel-1 have approximately
square pixel spacing (10 m). While the speckle effect is reduced by multi-looking from which the Equivalent
Number of Looks (ENL) is calculated, resolution and pixel spacing are lower than for SLC products.

Since amplitude and phase are distinct information, both SLC and GRD products of Sentinel-1 are ex-
ploited. Table 2.5 shows the number of images for ascending and descending orbits, gathered for the different
study areas. The agricultural seasons considered with Sentinel-1 imagery are the same as for optical imagery
(Table2.2).

Table 2.5: Description of Sentinel-1 acquisitions used over the study areas. For each area, both GRD and SLC
products are exploited.

’ Area name ‘ Tile ‘ ‘ Asc. orbits images ‘ Des. orbits images ‘ Total images ‘ SLC / GRD ‘
Macon T31TFM 60 60 120 VIV
Toulouse T31TCJ/CH 71 71 142 VIV

T30TXS 69 69 138 ViV
Western-area T30TXT 69 69 138 VIiv
T30TWT 69 69 138 VIV
Northern-area T31UDQ 64 64 128 VIV
T31UEQ 64 64 128 VIV

2.3 Reference and ancillary datasets

2.3.1 Land Parcel Identification System

Within the framework of the Common Agricultural Policy (CAP), the Land Parcel Identification System (LPIS)
is a core component of the Integrated Administration and Control System used for the payment of subsidies.
The LPIS spatially registers agricultural parcels with several attributes such as its size, precise location, and a
unique identifier. In particular, farmers are asked each year to provide the main crop grown on their parcel,
which is associated to a certain code. The Registre Parcellaire Graphique (RPG), the French LPIS, is produced
annually and made available after anonymization by the Institut National de 'Information Géographique et
Forestiere (IGN) on the basis of data produced by the Agence des Services et des Paiements (ASP).
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2.3.1.1 Grasslands

The RPG defines several codes for grassland or fodder crops associated to grassland, i.e., that have a similar
cover and provisioning service. The differences between grassland types are made mainly according to two
criteria, the agronomic criterion and the temporal criterion, which is defined by the time since the grassland
has not been converted to another crop. Four grassland meta-classes can be defined from administrative
declarations, each meta-class regrouping several declarative codes (see Appendix 6.2 for details):

« Permanent grassland or pasture (PM) refers to parcels with predominantly herbaceous cover in
place for five or more years. Three cover types are further differentiated: (i) permanent grasslands,
that are grasslands with little or no woody forage resource; (ii) grasslands which occur in long rotation
schemes but are in place since at least five years; (iii) that are herbaceous pastoral areas (such as moors
or summer and alpine pastures) where grass is the main cover.

RPG codes: PPH, PRL, SPH.

- Temporary grassy areas (TG) are grasslands seeded since less than five years, composed mainly of
grass cover such as ryegrass, orchardgrass, borage, bromegrass, or fescue in pure composition or in
mixtures.

RPG codes: BRH, BRO, CRA, DTY, FET, FLO, PAT, PCL, RGA, XFE, GFP, MLG, PTR.

- Fallow land (FA) are land left without sowing and where the grassy resource is present. A distinction
of several fallow land types is made trough the duration of its presence.
RPG codes: J5M, J6P, 768S.

« Forage legumes (FL) are assimilated to highly productive grasslands with similar management prac-
tices, including agronomic varieties such as alfalfa, clover, or sainfoin.
RPG codes: FFO, JOS, LFH, LFP, LUZ, MEL, PFH, PFP, SAI, SER, TRE, VES.

While the fallow land (FA) and forage legumes (FL) meta-classes have clear agronomic distinctions, the
two meta-classes of permanent (PM) and temporary (TG) grasslands may share some similarities. In theory,
TG can be associated with more productive varieties and consequently increased exploitation in contrast to
PM that are more related to extensive farming. Thus different phenologies should be observed on both meta-
classes. Nevertheless, RPG codes related to one or the other meta-classes are solely distinguished based on the
length of time the grassland has been established (i.e., more or less than five years). While older grasslands
(PM) are eligible to certain subsidies, this implies certain constraints. For example, it has been noticed that
the ratio of permanent grassland must be maintained within the framework of the CAP. As a result, some
temporary grasslands older than five years are not declared as permanent to alleviate the constraints on
their exploitation. The RPG codes associated with permanent and temporary grasslands, both of which are
the predominantly reported grassland areas, therefore do not allow a strict distinction of agronomic type or
associated management practices.

The four grassland meta-classes constitute the further exploited grassland dataset. Grassland locations
for the selected RPG codes are subsequently retrieved from the RPG. Figure 2.1 shows the description of
grassland parcels extracted from the RPG for Macon and Toulouse areas as well as for the two Western- and
Norther-areas. Table 2.6 reports the different grassland datasets obtained from the RPG for the seven areas. A
total of 284,881 parcels are extracted covering 12,056 km? of grasslands. The sizes of the parcels are relatively
similar among the areas, except for Toulouse, where very large pasture parcels are found in the Pyrenees.
Permanent grasslands and pastures constitute approximately 75% of the grasslands in the Macon area. The
remaining grasslands are mostly temporary grasslands with a very low number of fallow lands and forage
legumes. These are more prevalent in the Toulouse area, accounting for about 25% of the surface area, with a
consequently reduced number of permanent grasslands and pastures.
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Table 2.6: Description of grassland datasets for the different study areas retrieved from the RPG. Information
about grassland surfaces and their corresponding parcel sizes is provided. The proportion of different grass-
land types per area is visually given according to four main grasslands meta-classes defined from the RPG.
PM-= permanent grassland or pasture; TG= temporary grassy area; FA= fallow land; FL= forage legumes.

Tile Grasslands Total grasslands Parcels size (ha) Meta-classes
parcels surface (km?) Min Max Mean Median EEPM BETG BEEFA FL

- Main areas

T31TFM 27,832 1,275 0.89 87.32 4.58 3.22
T31TCJ/CH 50,103 2,758 0.88 1,733 5.5 2.66
- Add. areas

T30TXS 52,352 1,985 0.88 240.8 3.79 2.8

T30TXT 84,757 3,254 0.87  124.55 3.84 2.92

T30TWT 43,559 1,647 0.88  159.26 3.78 2.78

T31UDQ 14,279 583 0.3 92.14 4.08 2.71

T31UEQ 11,999 554 0.91 70.4 4.62 3.04

2.3.1.2 Further vegetation surfaces

Monitoring the status and evolution of vegetation surfaces are not solely required for grassland areas. Ac-
cordingly, the methodologies proposed in this work aiming the reconstruction of dense time series are studied
on other vegetation data sets. In addition to the grassland datasets, two other common vegetation classes are
studied for both Macon and Toulouse areas. Two additional datasets, as for grasslands, are subsequently
constructed (see Appendix 6.2 for details):

+ The crops dataset, which is composed of the three major cereals cultivated throughout Macon and
Toulouse areas: maize, winter wheat and winter barley.

« The forests dataset, that includes different species of closed-canopy deciduous and coniferous forests.
The resulting datasets contain 11 forest subclasses for both studied areas.

Crops have more pronounced phenologies than grasslands, generally modeled by a logistic function during
growth, a plateau, and a single decrease at harvest (Zhang et al., 2003; Beck et al., 2006; Salinero-Delgado
et al., 2022). Forests, apart in silviculture schemes, and abrupt changes such as fires, are not influenced by
human activities. Therefore, they have relatively stable phenologies throughout the season, depending on the
deciduous or evergreen coniferous species for example. Depicted by different phenologies, the study of crops
and forests alongside grasslands will be proposed in experiments of Chapter 4.

Polygons describing crop parcel boundaries are, likewise grasslands retrieved from the RPG. Concerning
forests, the French database BD FORET (IGN, 2021) is used. It delineates forest areas and provides semantic
information on the dominant species. For this database, only polygons having sizes ranging from 4 to 50
hectares are considered. This consideration permits to balance the size of the forest polygons with respect
to the grassland and crop ones. Information about crop and forest datasets with a recall about grassland for
comparison, are given for Macon and Toulouse in Table 2.7.

Besides taking into account the three vegetation classes datasets separately, a supplementary multi-class
dataset is constructed merging the three (grassland, crops and forest) vegetation datasets. The total number
of parcels of the two multi-class datasets constructed for Macon and Toulouse areas is given in Table 2.7
(Total polygons). The multi-class datasets will help to assess the generalization performances of the proposed
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methodology. It will also support to investigate possible improvements regarding the use of larger datasets
as reference data.

Table 2.7: Spatial statistics for grassland, crops, and forest polygons, which are obtained for Macon and
Toulouse areas. The subsequent additional merging into multi-class datasets results in a total number of
polygons of 46,001 and 98, 203 for Macon and Toulouse, respectively.

Area Class Polygons Total surface Parcels size (ha) Total
(km?) Min Max Mean Median polygons

Grasslands 27,832 1,274.9 0.89  87.32 4.58 3.22

Maécon Crops 12,557 594.9 0.88  52.02 4.74 3.53 46,001
Forests 5,612 579.2 3.01 49.89 1033 6.84
Grasslands 50,103 2,758 0.88 1,733 5.5 2.66

Toulouse Crops 34,504 1,870.4 0.89  82.06 5.42 3.82 98,203
Forests 13,596 1,177.4 3.01 39.79 8.66 6.03

2.3.2 Ancillary data

Non-Agricultural Surfaces (SNA)

Grasslands often contain non-agricultural elements within the boundaries extracted from the RPG. In fact,
grasslands are often located in areas less suitable for crops, such as mountainous areas, parcels with limited
access or complex shapes. These non-agricultural elements are not associated with the grassland phenology
and can lead to mixed pixels. Mixed pixels are characterized by distinct surfaces and mixed spectral signatures.
Non-agricultural elements regroup several surfaces that can be artificial (roads, paths, buildings,...), natural
vegetation (trees, forests, brushes,...), or natural non-vegetation (ponds, rock formations,...).

Some of these elements are informed by the farmers during the CAP declaration and are later post-
processed and complemented by IGN. The dataset Non Agricultural Areas (Surfaces Non-Agricoles, referred
to in the following as SNA) is gathered for each study area and used to locate the non-agricultural surfaces
within the RPG parcels. These elements are subsequently excluded from the grassland parcel boundaries.
This greatly reduces the potential mixed pixels.

Figure 2.3 illustrates an area of the RPG that provides color-coded information on the cultivated species
of each parcel (Figure 2.3a). The SNA of the corresponding area is shown in Figure 2.3b. Grassland parcels
are extracted and the SNA is superimposed (Figure 2.3c), allowing to discard the non-agricultural areas from
their boundaries.

Digital Terrain Model

Topographic data are retrieved with 5x5 m spatial resolution Digital Terrain Models (DTMs) from the very
high resolution height layer provided in the RGE ALTI acquired by IGN. This DTM is multi-source (lidar,
radar and aerial photography dense matching) and its altimetric accuracy therefore varies from 0.2 m to 7 m
depending on the data source. The use of a DTM must be considered hereafter on the one hand to differentiate
grasslands according to their topographic characteristics (Nasrallah et al., 2019) but also for geometric cor-
rections related to the adoption of SAR images (Section 1.2.1.2). The DTMs of the main study areas are visible
in Figure 2.4, superimposed by the major water network for visualization. The Macon area has elevations
ranging from 173 m in the Western part along the water network to 1,295 m in the Southeastern part. For the
Toulouse area, the altitudes range from 68 m in the Northern plains to 3,127 m (Pique d’Estats) in the summit
of the French Pyrénées.
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4

2.5 km

Figure 2.3: (a): Agricultural parcels describing cropland and grassland surfaces retrieved from the RPG; (b)
Non-agricultural surfaces (SNA); (c) Final grasslands extent, after SNA subtraction.
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Figure 2.4: Digital Terrain Models (DEMs) with 5 m spatial high resolution of the two main study areas (Macon
and Toulouse areas respectively, left and right). The altitudes range from 40 m to 3127 m.

Weather data

Climate data are extracted from the Météo France SAFRAN-ISBA dataset (Quintana-Segui et al., 2008; Vidal et
al., 2010). This dataset gathers measurements from several hundreds of climate stations of the French national
meteorological service. The dataset provides daily aggregated measurements of 25 climatic variables. The
available variables are (for some acquired on the ground and others at 1 m altitude): liquid precipitation, solid
precipitation, total precipitation, effective rainfall, daily mean temperature, minimum/maximum of 24 hourly
temperatures, daily mean wind speed, atmospheric radiation, visible radiation, actual evaporation, potential
evapotranspiration, specific humidity, relative humidity, soil moisture index, drainage, runoff, liquid water
content in root layer, solid water content in root layer, snow-pack water equivalent, snow-pack thickness,
fraction of mesh covered by snow and snow-pack base runoff.

The gathered dataset uses a point grid evenly spaced 8 km apart as spatial sampling. Each point gathers
data which is spatially interpolated from the nearest meteorological station. The large number of climate
stations allows to ensure data variability despite the low spatial resolution of the grid. An example of the
climate variables, daily temperature and precipitation, is given via climographs for the two main study areas
in Figure 2.5. The climate datasets obtained over the studied areas have potentially two applications, similar
to the use of topographic data. Depending on the agronomic variety, a grassland’s phenology will, at least
partially, vary according to the climate. The use of climate variables may in this case, help to differentiate
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between agronomic types and geographical areas. The use of a DTM aims at describing and processing the
geometry of SAR images. In the case of climate data, their use must allow to constrain or explain the differ-
ences observed in SAR radiometry (Vreugdenhil et al., 2018). In particular, humidity-related variables should
help to explain SAR fluctuations that are sensitive to surface properties (Section 1.2.1.2).
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Figure 2.5: Average climographs (temperature and precipitations) obtained for the two main study areas dur-
ing the studied periods.

2.4 Features derived from Sentinel images for grassland monitoring

High-level description of the satellite images can be extracted by the calculation of features. In this work,
handcrafted features are computed to provide useful information for grassland monitoring by exploiting the
content of the original Sentinel-2 and Sentinel-1 images. From optical imagery, the well-known Normalized
Difference Vegetation Index (NDVI) is retained. In the case of Sentinel-1 images, two features are considered
for grassland monitoring. The first is the backscatter coefficient computed from GRD products and the second
is the coherence computed from SLC products. The different features exploited in the experiments of this
manuscript are detailed hereafter.

2.4.1 Normalized Difference Vegetation Index

The red edge portion of the electromagnetic spectrum was shown to have a significant correlation with chloro-
phyll content and leaf structures (Section 1.2.1.1). Vegetation indexes exploiting red edge portions are there-
fore preferred for temporal monitoring of grasslands and detection of management practices. The NDVI
(Rouse et al., 1974; Tucker, 1979) has been previously mentioned, being one of the first indexes developed
from satellite remote sensing data. More importantly, it is by far the most widely used vegetation index (Xue
and Su, 2017; Ali et al., 2014; Gao et al., 2016; Fern et al., 2018; Griffiths et al., 2019; Clementini et al., 2020;
Reinermann et al.,, 2021). Besides, the interest of NDVI as a reliable indicator for monitoring vegetation and
grasslands has been demonstrated. NDVI is calculated as follows:

NDVI = PNIRZPRed 4 « NDVI< 1 2.1)
PNIR + PRed

with pn 1R the reflectance in the near infrared and preq the red reflectance, respectively, B8 and B4 bands
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of Sentinel-2 satellites. NDVI normalizes the leaf structure, chlorophyll scattering and absorption effects
taking place in the red and near-infrared wavelengths. Negative NDVI values typically approaching -1 corre-
spond to water surfaces. Barren areas of rock, sand or snow show very low NDVI values, generally ranging in
[—0.1,0.1]. NDVI over vegetation has values above 0.2, increasing with the vegetation’s activity. Peak growth
of vegetation potentially reaches values close to 1.

Figure 2.6 shows the yearly NDVI evolution of a permanent grassland of the Macon area. The displayed
NDVTIis the average of all pixels within the parcels boundaries. This parcel appears to be very lightly exploited
with a high and stable NDVI level throughout the year. NDVI analysis allows the deduction that this parcel
has probably not been mowed or ploughed during this agricultural season, but was rather extensively grazed
or not exploited at all.

o Non-cloudy NDVI  x Cloudy NDVI

1.00
x
X o

0.75{o—° %o . o %00 X700 00y x g 0%0 ooy
;050 x * x x x *
av. x
z

0.25 x x x

0.00 X oxox x x X x

2016-Nov  2016-Dec 2017-Jan 2017-Feb 2017-Mar 2017-Apr  2017-May 2017-Jun 2017-Jul 2017-Aug 2017-Sep  2017-Oct

Figure 2.6: NDVI temporal evolution over a permanent grassland of the Macon area. The stability of NDVI
throughout the agricultural season indicates a parcel that is not or very extensively farmed. Green dots
indicate a valid non-cloudy acquisitions whereas red crosses indicate an acquisition flagged as cloudy by the
masks.

The temporal variation of NDVI on a alfalfa parcel shown in Figure 2.7 illustrates the ability of NDVI
to capture fluctuations in vegetation evolution. Sentinel-2 images over this parcel are provided at some key
stages of the vegetation’s phenology. This parcel contains several phenological cycles within the same agricul-
tural season. These cycles are close together over a short period of time where the parcel successively exhibits
high and low NDVI values. Despite the numerous missing data due to clouds denoted by the red crosses, valid
acquisitions allow to observe sudden drops exceeding 0.3 of NDVI. These rapid and abrupt decreases clearly
indicate a change in vegetation status that can be easily related to human intervention. Mowing events are
thus detected, evidenced by the Sentinel-2 optical imagery corresponding to the dates of change.
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Figure 2.7: NDVI temporal evolution over an intensively exploited alfalfa parcel of the Macon area. Sudden
NDVI drops correspond to management practices which is attested by the visualization of Sentinel-2 images
over the parcel.

A possible shortcoming of ND VT is its tendency to saturate (i.e., no longer reflects variation) once the cover
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is spatially very dense. For a minority of grasslands whose agronomic type implies a very dense cover and
which are generally highly productive and intensively exploited, NDVI can become saturated. Nevertheless,
several factors advocate for the use of NDVI in this work:

(i) its availability for almost all optical sensors, as its calculation relies on two widely used spectral bands;

(ii) its prominence in the literature, helping to provide extensive examples of NDVI behavior related to
vegetation;

(iii) its simplicity, on the contrary of other optical derived features whose computation incorporate inter-
polations or constants related to the observed surface, such as the LAIL This simplicity minimizes the
potential sources of errors and uncertainties in the measurements. For operational studies, simplicity
also means explainability;

(iv) finally, the illustrated examples allowed us to demonstrate the satisfactory capacity of the NDVI to
characterize the phenology of grasslands.

2.4.2 Backscattering coefficient

A SAR sensor records the echo received from the emitted pulse through a digital number (DN). The value
of the DN is proportional to the emitted energy and system properties, to the radar cross-section (RCS) of
the target and thus to the incoming energy. The RCS is defined as the scaled ratio of the scattered power to
the incident power per unit area, as if the radiation were isotropic. The RCS therefore broadly refers to the
target reflectivity. As the RCS will depend, among others, on the form and the composition of the target, its
variations will allow to discriminate surfaces. To compare DN from several sensors or between acquisitions,
radiometric calibrations are commonly performed. The Beta naught calibration scales the DN with system
characteristics and is called radar brightness (Raney et al., 1994; Rudant and Frison, 2019; Schmidt et al.,
2020):

_ DN2
=

B’ (22)

with ks a sensor-specific calibration constant provided through look-up-tables alongside acquisitions.
The area normalization of B° is aligned with the sensor’s acquisition geometry (i.e., slant range). In order to
deal with consistent spatially areas, the normalization can be aligned with the ground range plane (Atwood
et al,, 2012). The radar cross-section or backscattering coefficient, Sigma naught (Sigma® or ¢?), is extensively
adopted to normalize DN into an area of one square meter on the ground:

0’ =B’ sin(Bitoc) » (23)
with 0i1oc the incidence angle of the incoming beam with respect to the ground as modeled by an el-

lipsoidal Earth model. Sigma’ is usually expressed in decibels (dB), which modifies the initial distribution to
stretch out the low values variations that are usually associated with natural landscapes:

0°dB = 10 - log,,(0?) , (2.4)
Backscattering coefficient over a vegetation surface first varies according to SAR system characteristics,
which are previously known (Table 2.4). The different polarizations and beam incidence angles, for exam-

ple, will allow distinct geometric interactions with the observed vegetation. Most importantly, the frequency
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band used by the sensor will imply a varying contribution of vegetation biomass, structure and ground con-
ditions to the backscattering coefficient. C-band wavelengths such as the ones used by Sentinel-1 penetrates
the vegetation’s canopy of most agricultural surfaces, making ground’s contribution significant. Vegetation
contribution due to volume scattering will increase with vegetation’s leaf orientations, sizes, density, and,
correlatively, water content. Potentially, the backscattering coefficient will thus vary with the species and its
phenology. The increase of vegetation will gradually attenuate the contribution of the ground. Nonetheless,
grasslands often feature low cover heights, i.e., compared to most crops for example, and do not have a strong
vertical structure. This will allow ground contribution to the backscatter coefficient to remain important. The
ground contribution to the backscatter coefficient also fluctuates over time, as a function of soil moisture,
surface roughness or local terrain topography (McNairn and Brisco, 2004; Veloso et al., 2017).

Figure 2.8 illustrates both 0Y,,, and 0%, polarization time series of the previously observed permanent
grassland of Figure 2.6. Using NDVI time series, it was observed that the vegetation remained stable dur-
ing the entire agricultural season and that no management practice was made. The temporal dynamic of
backscattering coefficient (0°) is substantially different. Strong temporal instability affects the time series and
a magnitude of about 4 dB for both polarizations is observed.
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Figure 2.8: Average 0%,,, and 09,,, time series over the Macon permanent grassland already observed in
Figure 2.6. The temporal variations of both ¢° polarizations are greatly fluctuating over short time intervals
and do not allows us to characterize the phenological curve pattern. The fluctuations of 0° due to the snow
cover are visible during the month of January.

The discordance between a stable NDVI time series and a highly fluctuating backscatter coefficient can
be explained by relevant climate variables (Section 2.3.2). Snow cover over the parcel is shown by blue bars
in the lower part of Figure 2.8. It is observed that the strong drops in both polarizations visible in January are
correlated to the snow cover. During the time snow covers the parcel, the backscattering coefficient reaches
a minimum at —16.7 dB and —22.2 dB for VV and VH polarizations, respectively. The drastic drops in the
backscattering coefficient time series, which should remain stable as observed with NDVI, are explained by the
appearance and subsequent melting of up to 10 cm of snow cover. Backscattering coefficient of snow decreases
with increasing liquid water content due to the high dielectric loss of water which affects the penetration depth
capacity of the wave. This is why, during the snowfall itself in mid-January, the signal remained relatively
unaffected. It is dominated by volume scattering as the wavelengths used allow the signal to pass through the
snow cover (Nagler et al., 2016; Tsaietal., 2019). The melting occurring in the second half of January increased
water content leading to the observed decrease of backscattering coefficients. While the effects induced by
snow cover as illustrated in Figure 2.8 are particularly significant, the same artifacts can be consecutive to
frost, or much more frequently, to rain (El Hajj et al., 2019). Wet soils for example, may affect the backscatter
signal up to several days after precipitations, increasing significantly the backscattering coefficients. On the
contrary, intense rains leading to stagnant water may decrease considerably the backscattering coefficients.
Climatic data are therefore useful to help explaining the temporal fluctuations observed in the time series.

The study of the backscattering coefficients is also proposed for the same alfalfa parcel shown in Fig-
ure 2.7. Previously, three consecutive mowings have been identified by observing NDVI time series. The
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backscattering coefficient time series are shown in Figure 2.9.
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Figure 2.9: Average 0%,,, and 03,,, time series over an alfalfa grassland from the Macon area, already observed

in Figure 2.7. The o° temporal variation does not allow us the characterization of the grassland phenology
evolution nor the detection of management practices.

Figure 2.9 allows us to observe that both polarizations provide hardly interpretable time series with respect
to phenology or mowing related vegetation changes. The slope change with the highest magnitude coincides
with the snow event previously observed in January in Figure 2.8.

For the three mowings, different behaviors are observed for both polarizations. The backscatter coeffi-
cients increases during the first mowing but decreases during the two following ones. Several works have
reported notable changes in the backscatter coefficient time series during crop harvesting or parcel plowing
(Meroni et al., 2021; Van Tricht et al,, 2018; Veloso et al., 2017; Vreugdenhil et al., 2018). Depending on
the considered species and used polarization, increases, decreases or both successively have been observed.
Nevertheless, the variety of grassland management practices and their influence on the canopy results in a
significant diversity of backscatter coefficient responses. For example, the first mowing observed on the alfalfa
parcel at the end of April increases the backscattering coefficient as a response to higher soil surface rough-
ness. The two following mowings are short, and a slight tillage of the soil could be done. In these cases, the
slight tillage implies a reduced surface roughness which results in a decrease of the backscatter coefficient.
These differences in behavior, coupled with the significant impact of weather conditions, make the overall
interpretation of the backscattering coefficient challenging.

2.4.3 Interferometric coherence

The interferometric coherence module, called coherence or 7y, estimates the complex correlation in amplitude
and phase on a local neighborhood of NxN pixels between two different SAR acquisitions. Coherence evalu-
ates the temporal stability of the surface and provides a ratio between coherent and incoherent summations
(Touzi et al., 1999; Tamm et al., 2016; Mestre-Quereda et al., 2020):

(T

y:—<"> ,  0<y<1 (2.5)
(LT(GT)

where T; and Tj are two complex SAR images, | - | denotes the absolute value, (-) denotes the averaging

operation done over range and azimuth pixels and the superscript * denotes the complex conjugate product.
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Coherence is a product of several decorrelation sources that can occur between the two T; and T; acquisitions
or from computation parameters:

Yoverall = Ytemporal * YSNR * Yparam * Yothers (2~6)

where Ytemporal corresponds to the temporal decorrelation. System-related noises are depicted by
YSNRs Yparam relates spatial averaging operations that depends on the local neighborhood window size
selected and the resulting ENL, and Ythers to potential orbital or data processing errors. In this work, the
temporal decorrelation factor is the most important as it provides information about the vegetation’s evolu-
tion. The window size selected for the coherence calculation will also influence its capability to discriminate
values in low coherence areas, with increased smoothing through bigger window sizes. Apart from temporal
decorrelation and window size, the additional decorrelation sources, although potentially having an impact,
will not be considered or discussed in the following.

Coherence value varies between 0 and 1. Coherence theoretically reaches 1 if the position and physical
properties of all elementary scatterers within the (-) window are strictly identical between the two acquisitions
T; and T;. Man-made structures, for example, typically exhibit high coherence values as remaining stable over
time. Changes in position and physical properties of the elementary scatterers between the two images will
decrease the coherence towards 0, roughly proportionally to the importance of the change.

Over grasslands, likewise for the backscatter coefficient, coherence values will depend on the condition of
the canopy and ground. The growth of vegetation, because the pattern and condition of the canopy differ from
date to date, will cause temporal decorrelation and lower values. As the centimeter wavelength as the one
used by Sentinel-1 allows the interaction with elements having larger or similar size, the pattern generated
by individual grass blades can be a source of temporal decorrelation. Furthermore, rain, air temperature or
wind, influencing both vegetation and ground surfaces will also affect the coherence values. Thus, coherence
values over vegetation can be very sensitive to a wide range of factors which are hardly predictable.

The NDVI (Figure 2.6) and the backscattering coefficient (Figure 2.8) have already been studied over a
permanent grassland parcel. Figure 2.10 illustrates coherence time series of both polarizations over the same
parcel, computed with a window size of 9x3 for range and azimuth, respectively. Relatively low coherence
values are observed, but the time series appear relatively stable. This stability is similar as the one observed
with NDVI. As observed with backscattering coefficient, the relatively large drop in coherence in January
is due to snowfall. Nevertheless, comparing with backscattering coefficient, coherence time series are more
stable. This is notably due to the spatial averaging and temporal smoothing by encompassing two dates in its
calculation.

——VV pol. -x-VH pol.

1.0 1.0
0.8 0.8
206 0.6
I I
> 0.4 04

=
0.2 T 0.2
0.0 0.0

" 2016-Nov  2016-Dec 2017-Jan 2017-Feb 2017-Mar 2017-Apr  2017-May 2017-jun 2017-Jul 2017-Aug 2017-Sep  2017-Oct
Figure 2.10: Average yvv and Yy time series over the permanent grassland already observed in Figure 2.6.

The little temporal variations are responsive to the dense but stable herbaceous cover observed on this parcel.

To assess the sensitivity of coherence to vegetation changes, the alfalfa parcel of Figure 2.7 and Figure 2.9 is
also studied. Figure 2.11 illustrates the coherence time series of both polarizations over this parcel, which has
been managed three times. Several works have already investigated the exploitation of coherence information
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for studying management practices (Chiboub et al., 2019; De Vroey et al., 2021b; Schuster et al., 2011; Tamm
et al., 2016; Voormansik et al., 2016).
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Figure 2.11: Average yvv and Yy time series over the Méicon alfalfa grassland previously studied. Increased
coherence values are observed after the three management practices. This is due to a high temporal stability
of ground cover compared to vegetation.

The coherence values are computed by taking into account a time interval defined by two dates (T; and
T; of Eq. 2.5). The management practices can occur in the middle of the used time interval (i) or before the
first image T (ii). Considering these two situations, two different coherence responses can be expected:

(i) In this first case, the grassland is covered by an important vegetation in the T; image. In contrast, the
vegetation has been removed due to a management practice before the T; image. Hence, a coherence
decrease is expected due to temporal decorrelation, as T; and T images depict different surfaces with a
higher ground contribution from the T; image.

(ii) In the second case, the T; image already depicts a strong ground contribution due to the prior manage-
ment practice. The T; image also depicts a strong ground contribution. Provided that the grass does not
regrow in-between, an increase of coherence is expected, considering the temporal stability of both T;
and Tj ground responses.

Both cases are induced by the management practices performed on the alfalfa parcel shown in Figure 2.11.
The three management practices detected over this parcel lead to a first decrease of coherence (case (i)) due
to the two different vegetation states of T; and Tj, with high and low vegetation cover, respectively. This
decrease is directly followed by an increase in coherence, expected as both T; and T; images observe a strong
ground contribution (case (ii)). As with the backscattering coefficient, climatic conditions can also affect the
coherence. Therefore, the fluctuations of coherence time series can not only be the consequence of manage-
ment practices. Notably, the snow cover in January leads to the coherence increase. Without knowledge of
this climatic event, the high frequencies of the signal could be interpreted as management practices.

As a result, coherence time series appear less fluctuating than backscattering coefficient time series and
allow us to better characterize the vegetation phenology. Besides, it can help in the identification of manage-
ment practices. However, it is shown that their interpretation requires to take into account multiple factors
such as the temporal interval considered for coherence computation and the climate context.
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2.5 Description of the feature engineering steps

The last section has shown how different features extracted from satellite and ancillary datasets can help to
monitor the phenology of vegetation surfaces. This section presents the feature engineering steps performed
on the data described in Section 2.2 and Section 2.3. The different steps aim to extract multiple sets of fea-
tures for each polygon of the grasslands, crops and forests datasets (Table 2.7). Distinct types of features are
proposed, considering the spatial and temporal characteristics of the datasets and the main goal of vegetation
monitoring. Figure 2.12 illustrates some satellite features further used to describe the vegetation polygons.

» Step 1: Exploiting reference polygon boundaries to define an object-level scale

The RPG, BD FORET, and SNA are vector data providing information about the location of the different
polygons (i.e., grasslands, crops and forests) and the non-agricultural surfaces. In order to limit the integration
of mixed pixels, two tasks are routinely performed on the different datasets. First, the RPG and BD FORET
polygons are eroded by an internal buffer of 10 m, corresponding to the spatial resolution of Sentinel pixels.
Secondly, the SNA has been used to remove non-agricultural objects within the RPG grassland polygons. A
buffer of 5 m is applied on the polygonal and linear elements of the SNA, while a 10 m buffer is used for point
elements (e.g., trees). The resulting SNA layer is then subtracted from the RPG grassland polygons.

Eroded and filtered polygons of grasslands, crops and forests are subsequently exploited to define an
object-level scale, i.e., all spatial information gathered over a polygon is reduced as one single value describing
the object. The object-oriented strategy is chosen for three reasons:

(i) the reference data permit the delineation of relatively homogeneous clusters (parcels). This reduces
possible inconsistencies in spatial measurements (Atzberger, 2004) that may occur among the different
reference and satellite datasets;

(ii) pixel-wise analysis would require further SAR processing to reduce speckle noise (Section 1.2.1.2), and
would lead to adding additional parameters (e.g., the window size and the used algorithm). The object-
level approach allows its reduction through adopting spatial averaging;

(iii) the computational and storage challenges associated to the high data volume (Atzberger, 2013; Inglada
et al., 2017; Mallet and Le Bris, 2020) can be reduced.

» Step 2: Extracting optical features from Sentinel-2

From the Sentinel-2 Level-2 images, the NDVI is calculated. Object-level statistics are next derived using the
datasets obtained from the first step. The average NDVI for all the pixels of each polygon is calculated using
the Orfeo Toolbox (OTB) library (Grizonnet et al., 2017) and the Object Radiometric Statistics remote module
and bash scripting.

The Sentinel-2 images obtained in the study areas were associated with the two cloud & shadow and
snow masks. Although the cloud & shadow masks can differentiate certain types of clouds depending on the
detection methods (mono- and multi-temporal), the use of masks is done in the strictest possible way. The
information contained on the two masks are merged, leading to define a validity mask. This merged infor-
mation is referred to as masks in the followings. Object-level statistics are derived from the masks which are
then converted to binary masks: "0" indicating no invalidity report from the two masks, while "1" indicates at
least one pixel of the grassland is flagged as invalid by at least one of the two masks.
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Macon Toulouse

Sentinel-2 : NDVI

Figure 2.12: NDVI, backscattering coefficient (0°) and coherence (y) images and 4 km diameter close-up con-
taining grassland surfaces of Macon and Toulouse areas. RGB compositions are provided for visualization

purposes.
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Table 2.8: Summary of features computed at the polygon level from Sentinel-2 data.

Sentinel-2 features
(1) NDVI
(2) Masks

mean values of the pixels belonging to each polygon.

boolean value indicating the presence or absence of clouds, shadows or snow.

» Step 3: Extracting SAR features from Sentinel-1

Sentinel-1 GRD and SLC images are processed using the freely accessible Sentinel Application Platform
(SNAP) software and its command line Graph Processing Tool (GPT) option (ESA, 2021b). Ascending and
Descending orbits are considered separately given the very different incidence angles of the two orbits. From
GRD images, calibration to backscattering coefficient (0°) is performed followed by a sensor thermal noise
removal, and a de-burst operation to produce an overlap between the different bursts acquired. Finally, a
conversion from linear scale to dB is performed. Both 0%,,, and 0%, polarizations are selected. A cross-ratio
band between 0{,,, and 0%, polarizations (VV/VH) is additionally calculated for each date. The interest of
this cross-ratio band is its high correlation with vegetation biophysical parameters and its capability to some-
what mitigate topographic and climatic effects on the backscatter coefficient (Veloso et al., 2017; Vreugdenbhil
et al., 2020).

SLC images are processed in pairs. The two images of each pair are first back-geocoded together, i.e.
spatial matching with sub-pixel accuracy. A bi-cubic interpolation and the Shuttle Radar Topographic Mission
(SRTM) 1 DTM are used during the back-geocoding. The SRTM DTM is preferred to the higher resolution IGN
DTM for two reasons. First, SRTM is acquired from a C-band similarly to Sentinel-1 images and thus features
the approximately same surface penetration depth. Secondly, the spatial resolution of the IGN DTM is finer
than that of Sentinel-1. An oversampling step to match the spatial resolutions would have been necessary.
Following the back-geocoding step, coherence (y) bands are calculated for both polarizations with a window
size of 9x3 (range and azimuth, respectively) and deburst is performed. All images are then orthorectified
using the Range Doppler Terrain Correction algorithm (Small and Schubert, 2019) and the SRTM 1 Arc-Second
corresponding elevation data. Resulting images have an output spatial resolution of 10x 10 m, matching the
optical ones.

Object-level statistics are subsequently extracted for each date from the 3 backscattering coefficient o°
and 2 coherence y bands. Two categories of features are further computed for each parcel. The first category
describes the statistics computed on the different polarization bands and is denoted as (3) and (4) in Table 2.9.
The statistics correspond to the mean, median, and standard deviation values calculated on the processed GRD
and SLC images. These statistical descriptors are chosen to integrate measures of central tendency which are
expected to provide distinct information on small populations such as the number of pixels in a parcel, as well
as measure of dispersion. For each date, the resulting datasets contain 9 features describing the statistics of
0 bands and 6 features from the coherence bands.

The second category of Sentinel-1 features corresponds to the datasets (5) and (6) of the Table 2.9. These
features provide information about the first-order derivatives computed on the time series considered in (3)
and (4). The features in (5) describe the statistics previously computed with (3) and (4) for the first-order
derivative between date t and date ¢_;. In order to incorporate information about the polygon neighborhood,
the set of features in (6) is also proposed. The feature set (6) contains then the average of features computed
on (5) on a specific neighborhood. The polygon neighborhood is defined by all the polygons belonging to the
same vegetation class inside a given empirically pre-defined radius of 2 km. The goal of features in (6) is to
highlight if a specific polygon has a diverging behavior (due to management practices, climatic conditions or
sensor noise) compared to its neighborhood (Ding et al., 2017).
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Table 2.9: Summary of features computed at the polygon level from Sentinel-1 data.

Sentinel-1 features computed for ascending and descending orbits

3) Sigma® dB mean, median and standard deviation for VV, VH and VV/VH bands

(4) Coherence mean, median and standard deviation for VV and VH bands

(5) Derivatives first order derivative computed for the previous (3) and (4) mean features

(6) Neighborhood | features in (5) are averaged on the polygon neighborhood within a specific radius

» Step 4: Extracting features from ancillary data

Alongside the altitude provided by the RGE Alti, two additional information are calculated: slopes and expo-
sure. Mean and standard deviation values are computed from the height, slope, and exposure bands for each
polygon. Furthermore, polygon shape features are also considered: area in hectares, perimeter and the num-
ber of Sentinel pixels. This provides information on the spatial context of the parcel, which may be different
for small, productive parcels, or large, extensively farmed ones, for example.

For each Sentinel-1 acquisition date and the previous day, 25 climatic variables are collected. Information
about the previous day of the acquisition is incorporated to take into account the morning schedule of some
SAR acquisitions as well as rain accumulation. Additionally, two types of metadata information are stored.
The first one concerns the temporal information of Sentinel’s acquisitions converted to day of the year. Fi-
nally, the agronomic class from the RPG is attached to each polygon.

Table 2.10: Summary of features computed at the polygon level from ancillary data.

Ancillary and metadata features

(7) Topography mean and standard deviation for height, slope, exposure; area, perimeter and parcel size
(8) Climate day of SAR acquisition and day before with 25 variables
9) Metadata temporal distribution of satellite acquisition and RPG subclass

» Step 5: Building a common temporal grid

As Sentinel-1 and Sentinel-2 time series have different temporal grids, the definition of a common temporal
grid is proposed. This new temporal grid must permit to statistically correlate the extracted Sentinel features
to analyze their joint temporal evolution. Furthermore, irregular time series or with different sequence length
(i.e., with missing data) lead to additional challenges in automated processing.

Alternating ascending and descending orbits, SAR features from Sentinel-1 are obtained every 3 days.
Sentinel-2 NDVI features, on the other hand, have a more irregular temporal sampling due to cloud coverage.
Furthermore, the availability of only one satellite until June 2017 for the two main study areas, and, for
MaAcon, a orbit overlap area, increases this irregularity. The definition of the common temporal grid is made
by the utility of coupling an NDVI value with ascending and descending orbit SAR features. In this work,
we propose the definition of a temporal grid keeping a 6 day interval. Based on the 3-day revisit of both
Sentinel-1 orbits, the dates retained for the common temporal grid are in between the two temporal grids of
the ascending and descending orbits. The resampling of features to the new common temporal grid follows
the nearest neighbor approach. This method is generally considered simplistic and is discarded in favor of
methods that take into account the trend of the signal. Methods such as polynomial methods, based on
the Fourier Transform or auto-regressive methods (Lepot et al., 2017) are commonly adopted. Nevertheless,
resampling is here only used for matching several temporal grids. As most of the methods extrapolate from
the data and produce new values, the nearest neighbor approach was adopted as a method that preserves
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the original dynamics of acquired values. For example, as significant changes can occur in the time series,
particularly as a result of management practices, trend-based interpolation would alter the original magnitude
of the variations observed. The nearest neighbor approach introduces a time lag in the resampling task but
preserves the original values.

The resampling task is illustrated for Macon and Toulouse areas in Figure 2.13. As SAR features have
a fixed and gap-free temporal grid, their association with the new dates of the common temporal grid is
straightforward. To each date of the new temporal grid, descending and ascending orbit features of Sentinel-
1 which are 1 day apart from the new dates, are gathered (blue lines of Figure 2.13). Regarding the resampling
of Sentinel-2 features, the temporal nearest acquisition to the new date is selected (green lines in Figure 2.13).
Because of the irregular temporal sampling of the Sentinel-2 original grid, some acquisitions are nevertheless
resampled to several new dates of the common temporal grid. In some cases, especially when the full capacity
of the Sentinel-2 constellation is obtained, the temporal sampling of Sentinel-2 is lower than the one of the
common temporal grid. Hence, several Sentinel-2 acquisitions are associated with the same date of the com-
mon temporal grid (red lines of Figure 2.13). In this case, if one of the two observations is flagged as invalid,
the other one is kept. If both are flagged as invalid, the one with the shortest temporal gap to the new date is
kept. If both have the same temporal distance to the new date, the one with the lowest first order derivative
to the previous valid NDVI observation is kept.

o Sentinel-2 o Sentinel-1 Asc. a Sentinel-1 Des. ® Common temporal grid
—Resampling —Selective Resampling —Association

Macon

i

i B

Figure 2.13: Description of the construction of a new common temporal grid allowing Sentinel-1 and Sentinel-
2 features to be jointly observed. Having a more irregular temporal sampling, Sentinel-2 features are resam-
pled by the nearest neighbor approach. When two Sentinel-2 acquisitions are close to the new resampled date
(red lines), only one of both is kept. Sentinel-1 coming from ascending and descending orbits are associated

to each date of the common temporal grid.

2.6 Exploring the relationships between derived satellite features

The previous subsections have shown that information coming from multiple sources could provide comple-
mentary knowledge. Nevertheless, several strengths and flaws have been identified for each of the extracted
features (Section 2.4). In this manuscript, multi-modal satellite features will be considered to monitor grass-
lands as well as crops and forest vegetation. Thereby, it is proposed to assess the temporal correlation through
statistical analysis between the extracted features.
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The relation between optical (NDVI) and SAR features (backscattering coefficient and coherence) is as-
sessed for both Macon and Toulouse areas. The mean values at object-level are taken into account for NDVL
Similarly, the mean values of ¢° in VV, VH and VV/VH and v in VV and VH polarizations features are consid-
ered from both ascending and descending orbits. The common temporal grid described in step 5 of Section 2.5
is used. In order to cope with missing data, a linear interpolation is performed on NDVI features rather than
the nearest neighbor approach. Linear interpolation provides a relatively smoother temporal trend and is
therefore closer to the natural evolution of the vegetation. The common temporal grid contains 60 and 71
dates for the Macon and Toulouse areas, respectively.

To evaluate the statistical relationship between NDVI and the selected SAR features, the Pearson correla-
tion coefficient (v, ) and the Spearman correlation coefficient (r5) are calculated. Pearson correlation estimates
the linear relationship between the two populations. Spearman correlation is based on monotonic rank-order
correlation, providing further information on non-linear relationships. Both correlation coefficients range
from -1 to 1, with 0 implying no correlation. Correlations of -1 or +1 imply an exact relationship between
the two variables. Positive correlations imply that as one variable increases, so does the other. Negative
correlations imply that as one increases, the other decreases (De Winter et al., 2016).

2.6.1 Feature correlation for grassland, crop and forest surfaces

Grasslands, crops and forest datasets described in Table 2.7 are here considered. The objective is to analyze if
the correlations between NDVI and different SAR features strongly vary according to the type of vegetation.
Considering all dates and valid pixels of the different datasets, large populations (N) are obtained. For Macon
and Toulouse, respectively, the number of considered pixels for the different vegetation types is: 1,669,920 and
3,557,313 for grasslands, 753,420 and 2,449,784 for crops and 336,720 and 965,316 for forest. Table 2.11 reports
both 1, and r5 correlation coefficients for Macon and Toulouse areas over grasslands, crops and forests.

Between the three vegetation types, the correlation found between NDVI and SAR features are clearly
higher over crops. Significant negative correlations are found with VV polarization features for both ¢° and
Y (= -0.400 to -0.500). As crops have marked phenologies, backscattering attenuations with vegetation growth
are strongly marked in VV polarizations. 0%, /vy feature appears as the most correlated SAR feature with
NDVI over both areas and for both correlation coefficients. T, of -0.667 and -0.735 are obtained, respectively,
for Macon and Toulouse in ascending orbits. Ascending orbit for Micon and descending orbit for Toulouse
obtain 75 for -0.663 and -0.727, respectively. A strong correlation with NDVI is thus suggested by both r;, and
T for 0%, VH features, indicating a good complementarity for crop vegetation monitoring.

Over forests, the computed correlations are lower than for crops. The highest correlation is obtained, sim-
ilarly as for crops, with 03, VH feature from Méacon descending orbit (rs=+0.477) and Toulouse descending

orbit (rs=+0.509). Differences are nevertheless notable for correlations assessed over crops. 0%, polariza-
tion features are more correlated with NDVI that VV polarization, due to the strong volume scattering of the
forest canopy. Furthermore, the resulting correlations for VH polarization are positive, meaning that when
the NDVI over forests growth or decreases, the G({/V VH features will follow its direction. y features show
a relatively weak correlation for both polarizations and both orbits. As the temporal fluctuation of forests
is rather low, so does the NDVI. Stability of coherence features could thus be expected. The low correlation
found may indicate decorrelation of another type, such as due to weather conditions.

Obtained correlations between SAR features and NDVI over grasslands are the lowest among the three
vegetation types. The highest is 1,=-0.405 for yy/v in descending orbit on the Toulouse area. VV polarization
features are systematically more correlated than VH features. The low vegetation cover of grasslands and
subsequent volume scattering from ground contribution can explain theses findings. While for the Macon
area, GQ/V JVH features (as for crops and forests) obtain the highest correlations, y features are overall weakly
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Table 2.11: Pearson (rp) and Spearman (rs) correlation coefficients between NDVI and derived SAR features
(mean values of (3) and (4) of Table 2.9). Grasslands, crops and forest datasets are considered for the Macon
and Toulouse areas. color indicates the highest obtained correlations, while the red color denotes the
lowest ones.

Asc. orbit Desc. orbit Asc. orbit Desc. orbit

0 0 0 0 0 0
Oyv Ovh OVvv,vH Oyvv OvH Ovv/vu | Yvv Yvh Yvv Yvh

Grasslands (N= Macon: 1,669,920 ; Toulouse: 3,557,313)

§ Tp -0.141 | +0.052 -0.265 -0.123 | +0.044 -0.221 -0.231 | -0.129 | -0.164 | -0.079
(:Ed Ts S| -0.125 | +0.033 -0.233 -0.101 | +0.021 -0.188 -0.223 | -0.120 | -0.132 | -0.041
% Tp % -0.142 | +0.096 -0.378 -0.116 | +0.068 -0.311 -0.367 | -0.235 | -0.405 | -0.300
[:g Ts -0.120 | +0.103 -0.315 -0.061 | +0.078 -0.223 -0.353 | -0.227 | -0.389 | -0.289

Crops (N= Macon: 753,420 ; Toulouse: 2,449,784)

§ Tp -0.400 | +0.121 -0.667 -0.405 | +0.042 -0.588 -0.443 | -0.242 | -0.433 | -0.287
(:Ed Ts S| -0.323 | +0.137 -0.663 -0.335 | +0.047 -0.591 -0.406 | -0.180 | -0.393 | -0.220
% Tp % -0.508 | +0.039 -0.735 -0.485 | -0.045 -0.700 -0.521 | -0.306 | -0.575 | -0.440
[:g Ts -0.446 | +0.076 -0.726 -0.438 | -0.011 -0.727 -0.501 | -0.263 | -0.559 | -0.421

Forests (N= Macon: 336,720 ; Toulouse: 965,316)

§ Tp -0.054 | -0.260 +0.424 +0.043 | -0.133 +0.357 -0.251 | -0.247 | -0.148 | -0.122
g Ts S| -0.074 | -0.316 +0.477 +0.017 | -0.199 +0.407 -0.225 | -0.217 | -0.167 | -0.143
% Tp % -0.086 | -0.244 +0.408 -0.077 | -0.264 +0.473 -0.277 | -0.246 | -0.202 | -0.172
E Ts -0.122 | -0.317 +0.450 -0.106 | -0.332 +0.509 -0.291 | -0.256 | -0.209 | -0.174

correlated. In contrast, y features on the Toulouse area are found more correlated than o features. A uneven
distribution of grassland species between the two areas, and consequently heterogeneous phenologies can be
the reason for these differences.

2.6.2 Feature correlation for various grassland surfaces

The same correlation study is carried out but considering the four different meta-classes (PM, TG, FA, FL) of
grasslands described in Section 2.3.1.1. As grassland types have a strong influence on vegetation’s phenology
(i.e, from extensively exploited to highly exploited), correlation analysis could illustrate these differences.
Table 2.12 reports both T, and rs correlation coefficients for the four grasslands meta-classes obtained in
Maécon and Toulouse areas.

In all cases, a negative correlation with NDVI is found, except for some cr({,H features in both orbits. It
can be noted that both Pearson and Spearman correlation coefficients provide broadly similar values and that
they are similar for both Macon and Toulouse areas. For Pearson’s T, the lowest and highest obtained corre-
lations among the four grassland meta-classes and two areas are respectively +0.046 and -0.539. Spearman’s
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Table 2.12: Pearson (1) and Spearman (rs) correlation coefficients between NDVI and derived SAR features
(mean values of (3) and (4) described in Table 2.9). Results are provided according to the four grassland meta-
classes defined in Section 2.3.1.1. color indicates the highest correlation found with NDVI, while the
red color denotes the lowest ones.

Asc. orbit Desc. orbit Asc. orbit Desc. orbit

0 0 0 0 0 0
Ovv OvH Ovv/vH Ovv OvH Ovv,ve | Yvv YvH Yvv YvH

Permanent grasslands (PM) (N= Macon: 1,259,640 ; Toulouse: 1,921,189)

§ Tp -0.101 | +0.057 -0.224 -0.084 | +0.055 -0.190 -0.183 | -0.095 | -0.101 | -0.026
g Ts ; -0.111 | +0.036 -0.226 -0.091 | +0.027 -0.189 -0.188 | -0.091 | -0.095 | -0.009
% Tp % -0.113 | -0.001 -0.228 -0.046 | +0.026 -0.148 -0.251 | -0.176 | -0.290 | -0.216
E Ts -0.113 | +0.024 -0.220 -0.014 | +0.060 -0.126 -0.281 | -0.196 | -0.325 | -0.239
Temporary grasslands (TG) (N= Macon: 361,020 ; Toulouse: 819,766)

§ Tp -0.206 | +0.074 -0.340 -0.191 | +0.046 -0.285 -0.327 | -0.198 | -0.279 | -0.167
(:E“ Ts ; -0.143 | +0.050 -0.252 -0.117 | +0.023 -0.198 -0.313 | -0.194 | -0.221 | -0.114
% Tp % -0.254 | -0.116 -0.475 -0.268 | +0.032 -0.414 -0.390 | -0.212 | -0.435 | -0.302
E Ts -0.180 | +0.124 -0.405 -0.164 | +0.038 -0.312 -0.370 | -0.195 | -0.408 | -0.284
Fallow land (FA) (N= Macon: 27,720 ; Toulouse: 456,743)

§ Tp -0.194 | +0.096 -0.371 -0.139 | +0.086 -0.289 -0.292 | -0.138 | -0.261 | -0.137
g Ts ; -0.211 | +0.049 -0.337 -0.138 | +0.049 -0.246 -0.275 | -0.122 | -0.229 | -0.100
% Tp % -0.284 | -0.040 -0.428 -0.259 | -0.014 -0.353 -0.335 | -0.198 | -0.364 | -0.237
E Ts -0.216 | +0.052 -0.360 -0.164 | +0.009 -0.267 -0.300 | -0.168 | -0.313 | -0.194

Forage legumes (FL) (N= Macon: 19,500 ; Toulouse: 356,278)

§ Tp -0.229 | +0.165 -0.477 -0.279 | +0.078 -0.417 -0.459 | -0.251 | -0.441 | -0.265
g Ts g | -0.167 | +0.153 -0.392 -0.197 | +0.067 -0.331 -0.447 | -0.257 | -0.378 | -0.210
% Tp % -0.241 | +0.174 -0.539 -0.247 | +0.112 -0.510 -0.450 | -0.214 | -0.484 | -0.325
E Ts -0.186 | +0.192 -0.509 -0.172 | +0.122 -0.457 -0.441 | -0.193 | -0.469 | -0.315

T provides broadly similar values with the lowest and the highest correlations being +0.009 and -0.509.

As above explained in Section 2.6.1, over grasslands, VV polarization features appear more correlated
than VH polarization for both ¢° and y. By analyzing the most correlated features (highlighted in green in
the Table 2.12), in almost all cases, the G(\)/V VH features in the ascending orbit are the most correlated ones
with NDVL This can first be related to the topography present in both study areas. Furthermore, differences
in local acquisition time (early morning and late afternoon for descending and ascending orbits, respectively)
can change the observed surface with for example, potential dew in the morning.

The analysis of correlations between the different meta-classes permits to complete the results obtained
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in the previous section, where all grasslands were considered regardless of their meta-class. For the Toulouse
area, considering all grasslands, y features obtained the highest correlations. It is here still the case for perma-
nent grasslands for both correlation coefficients and for r of temporal grasslands, but not for fallow land and
forage legumes. While y features are the most correlated ones, the G‘{/V vH features follow closely, further
indicating that this feature generally seems to be the most correlated with NDVL

Another important distinction concerns the strength of correlation obtained for the different grassland
meta-classes. By taking into account the most correlated feature (G({/V sy in ascending orbit), it can be re-
marked that the lowest correlations are obtained by permanent grassland. They increase for temporal grass-
lands, again for fallow land features and achieve the highest correlations for forage legumes.

The results could be explained by the different intensity of exploitation related to each meta-class. Perma-
nent grasslands are globally less exploited compared to forage legumes, whose agronomic species implies an
intensive production with marked phenological cycles constrained by human activities. Forage legumes are
thus phenologically close to crops, for which a strong correlation has been previously obtained. In addition, a
relationship between slope and grassland meta-class can also be made. Indeed, the steeper the slope, the less
easy the exploitation of the parcel is. The permanent grasslands, requiring less human intervention, are thus
in majority in presence of slope. It was seen previously that the slope could influence the SAR features (even
completely obstructing the observation of the parcel). On the contrary, the nadir acquired NDVI is relatively
insensitive to slope. This can further explain the poor correlation obtained over permanent grasslands.

2.7 Concluding remarks

This chapter first introduced, discussed, and illustrated the two aspects of reference data and satellite time
series. Comprehensive datasets on several vegetation types, geographical areas, and agricultural seasons were
presented.

Several features derived from Sentinel-1 and Sentinel-2 time series have been proposed for monitoring
vegetation, with a focus on grasslands. In particular, the simple NDVI vegetation index, derived from Sentinel-
2, has shown its interest to characterize both the temporal evolution of vegetation and the important variations
induced by management practices on grassland parcels. Nevertheless, an important limitation to the use of
optical data due to the frequent cloud cover was demonstrated. The need for regular and frequent data to
capture rapid variations in grassland vegetation led to the conclusion that the sole use of NDVI to monitor
grasslands was insufficient.

SAR data has been presented as a workaround to the concern of missing data. Sentinel-1 time series
ensure a regular temporal observation in compliance with the task of grassland monitoring. The potential
complementarity of optical and SAR features for vegetation and grassland monitoring has been presented with
the help of relevant reference data including topographic and meteorological. As a drawback, in contrast to
NDVI, SAR time series require a complex and thorough interpretation for their exploitation.

The construction of a methodology allowing a joint exploitation, taking advantage of both the efficiency
of NDVTI and the repetitivity of SAR features, is the main need identified in this chapter by the study of the
exploited satellite data.
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3.1. MONITORING VEGETATION THROUGH OPTICAL-SAR SYNERGY

3.1 Monitoring vegetation through optical-SAR synergy

When dealing with vegetation monitoring, previous chapters have highlighted the essential need for tempo-
ral highly sampled time series. This appeared especially important for grassland surfaces as a consequence of
quickly evolving phenologies, a large variety of agronomic species as well as management practices. The anal-
ysis of the derived satellite features used to characterize grasslands (Section 2.4) has clearly illustrated the good
ability of optical time series to capture both the seasonal phenology of grasslands as well as abrupt changes
related to management practices. Consequently, a large number of approaches are understandably relying on
the use of optical time series mainly through vegetation indices such as the NDVI (see Section 1.2.2.2).

Although affected by missing data, the Sentinel-2 constellation allows the acquisition of a significant
number of non-cloudy NDVI values. The nominal temporal resolution of 5 days allows, at least in Europe,
to ensure, a minima, several valid observations for each season, allowing an essential temporal variety of
observations. Furthermore, the 110x110 km tiles of Sentinel-2 encompass broadly 10,980 pixels (10x 10 m).
Referring to the average available non-cloudy images per study area in Chapter 2 and Table 2.3, several million
examples of non-cloudy NDVI values are thus available for each of the study areas. While this stands at large
scales, at the local scale, the cloud cover and subsequent missing data are a major limitation for grassland
monitoring. Missing data can prevent exhaustive and fine-scale monitoring especially on intensively managed
grasslands with rapid vegetation regrowth.

A large number of methods has been devoted to the crucial task of recovering missing optical data. Sec-
tion 3.2 will propose to review the most prominent existing methods. Two different categories are considered.
The first cone addresses interpolation methods (Section 3.2.1) which exploit optical data only. They mostly
rely on time series temporal trend to recover information. The second category explores methods using Ma-
chine Learning (ML) algorithms (Section 3.2.2). These methods rely on the use of complementary SAR data
alongside optical data to describe a supervised regression task. In the last decade, deep neural networks have
particularly attracted a lot of attention of the scientific community for solving regression problems (LeCun
et al., 2015; Goodfellow et al., 2016; Zhu et al., 2017; Lathuiliere et al., 2019; Reichstein et al., 2019). The
increasing computer capabilities and the availability of large datasets for supervision have greatly supported
their expansion. Modern neural network architectures have proven to be efficient for time series data mining
where there is limited knowledge about the underlying physical processes. The use of large training datasets
describing high variability further improves their generalization ability on unseen data. This capability is
essential to developing robust methodologies on large geographical areas.

A newly constructed deep-based regression architecture is proposed to exploit the complementarity of
optical and SAR time series. To overcome the complexity of analyzing SAR data and taking into account the
observed efficiency of NDVI time series for vegetation monitoring, the deep-based architecture targets the
regression of SAR features towards NDVL Since the availability of training labels (i.e., valid NDVI values) is
important, a fully supervised regression approach permitting extensive learning and accuracy assessment is
possible. Furthermore, based on the feature analysis carried in Section 2.4, it is proposed to integrate ancillary
data handling SAR limitations into the network.

Considering the supervised regime allowed by the availability of massive data, the high dimensionality
of the features, their complex relationships and the yearly time series exploited, deep-based methods provide
adequate and proven tools for the targeted regression task. Section 3.3.1 will propose the introduction of
two extensively used deep learning architectures, serving as a basis for the proposed architecture for SAR to
NDVI feature regression. Section 3.3.2 will present compulsory pre-processing steps for the use of the derived
features presented in Section 2.5. Finally, Section 3.3.3 explains the proposed regression framework and will
present the deep-based architecture, namely, the Sentinels Regression for Vegetation Monitoring (SenRVM)
approach.
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3.2. RETRIEVING MISSING DATA IN OPTICAL TIME SERIES

3.2 Retrieving missing data in optical time series

A large range of research efforts has been devoted to develop non-parametric methodologies (i.e., that don’t
require any distributional assumptions about data) for recovering time series of optical-derived vegetation
indices with high temporal sampling (Verrelst et al., 2015; Cai et al., 2017; Belda et al.,, 2020a). Two main
categories of methods are found in the literature that target to recover the temporal resolution of the time
series: standard interpolation methods and machine learning (ML) regression algorithms. A review of used
methods according to the two categories is proposed in the following.

3.2.1 Standard interpolation methods

Standard interpolation methods can be considered as gap filling reconstruction strategies recovering missing
information. These methodologies can be divided into different categories (Shen et al., 2015; Desai and
Ganatra, 2012; Yin et al., 2017; Lepot et al., 2017; Gerber et al., 2018; Moreno-Martinez et al., 2020).
Traditionally, these mono-sensor approaches exploit past and future observations acquired by the same sensor
to estimate missing data. Despite numerous relevant spatial and spatio-temporal approaches (Kang et al., 2005;
Zhang et al., 2007; Das and Ghosh, 2016; Ding et al., 2017; Vuolo et al., 2017; Moreno-Martinez et al., 2020),
local and global temporal interpolation approaches remain the most prevalent methods when dealing with
evolving processes such as vegetation.

Local temporal methods exploit the temporal evolution of the time series by using a sliding temporal win-
dow. Among these approaches, the classical linear interpolation method is the most well-known, straight-
forward, and used (Inglada et al., 2017; Defourny et al., 2019; Hubert-Moy et al., 2019; Bolton et al., 2020;

Kamir et al., 2020). Polynomial-based strategies have been extensively proposed as alternatives. While lin-
ear interpolation methods are computationally effective and minimize the extrapolation of data, polynomial
approaches are naturally more suited for approximating non-linear relationships such as it can be the case
in vegetation changes. Polynomial regressions are nevertheless sensitive to outliers as prone to overfitting,
which can be a disadvantage in the presence of errors in the masks for instance Some examples are spline
interpolation methods (Xu et al., 2017; Meng and Li, 2019), Savitzky-Golay filter-based methodologies (Chen
etal., 2004; Jonsson and Eklundh, 2004; Kandasamy et al., 2013; Julien and Sobrino, 2019) or locally weighted
scatterplot smoothing (Moreno et al., 2014) methods. The gap-filling accuracies of these methods are directly
influenced by the sliding window size, which is a predefined parameter related to the gap length. As non-
uniform gaps are usually encountered in the time series, the requirement for an adequate window size is an
important limitation.

Instead of working at the local scale, global temporal methods propose to recover missing information
by fitting the data to predefined parametric functions. For instance, the widely used Whittaker smoother
fits the time series by minimizing penalized weighted spline regression squared errors (Atkinson et al., 2012;
Kandasamy et al., 2013). Further global approaches include asymmetric Gaussian function fitting (Jonsson and
Eklundh, 2002; Beck et al., 2006) or Fourier-based harmonic analysis (de Wit and Su, 2005; Zhou et al., 2015;
Julien and Sobrino, 2019; Solano-Correa et al., 2020). One of the main limitations of global strategies is that
they generally assume that the data follows some a priori distribution shape. They are therefore class-specific,
resulting in a lack of flexibility in the presence of non-stationary data (Chen et al., 2004; Moreno-Martinez
et al., 2020).

One of the main weaknesses of the standard interpolation methods is their poor effectiveness when large
data gaps are occurring. In these situations, these methods fail in reconstructing temporal trajectories de-
scribing high frequency variations. It can result in missing crucial information about vegetation changes
described by such variations. The effectiveness of standard interpolation approaches directly depends on the
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3.2. RETRIEVING MISSING DATA IN OPTICAL TIME SERIES

valid number of observations acquired by the used sensor. Consequently, these methods have been mostly
applied to dense optical time series with a temporal resolution of a few days but with with coarse spatial reso-
lutions (e.g., MODIS or SPOT-VEGETATION) or for tasks requiring limited temporal information, e.g., yearly
land-cover classification (Cai et al., 2017; Sun et al., 2021a).

The temporal resolution of time series acquired at high spatial resolution (e.g., Landsat or Sentinel) is
usually less dense. In this case, missing data periods can range from weeks to months (Roy et al., 2008).
To address such limitations, some interpolation methods consider the fusion of complementary optical data
such as Sentinel-2 and Landsat-8 (Gao et al., 2017; Claverie et al., 2018; Dwyer et al., 2018; Dong et al.,
2020; Griffiths et al., 2019; Moreno-Martinez et al., 2020). Unfortunately, these multi-sensor methods require
important corrections to homogenize the different spatial (Zhu et al., 2016) and spectral (Barsi et al., 2018;
Bolton et al., 2020) resolutions. Additionally, complementary optical data is also affected by cloud coverage
and cannot guarantee to provide a high number of supplementary valid observations.

3.2.2 Supervised machine learning regression methods

The exploitation of multi-sensor observations for recovering time series of optical-derived vegetation indices
are emphasized by ML regression methodologies (Kamilaris and Prenafeta-Boldu, 2018; Reichstein et al.,
2019). An increasing number of works is proposing the use of optical and weather-independent SAR time
series (Schmitt and Zhu, 2016). The availability of complementary optical and SAR satellite missions (e.g.,
Sentinels) has supported their joint exploitation. Three categories of ML regression algorithms approaches
can be found in the literature, exploiting multi-sensor images: classical ML approaches, Gaussian processes,
and deep learning methods.

Classical ML approaches such as Support Vector Machines (SVM) or Random Forests (RF) are commonly
adopted. For instance, the work in (Wang et al., 2019b) proposes to apply SVM and RF algorithms on Sentinel-
1, Sentinel-2 and Landsat 8 data to predict frequent Leaf Area Index (LAI) estimations. RF and Support Vector
Regression are used in (Mohite et al., 2020) to generate a dense NDVI time series. A six-month time interval
is investigated over five different crop types. Despite the good results obtained by SVM and RF approaches,
it must be noticed that they are mostly validated on small agricultural datasets of a few dozen or hundreds
and furthermore composed almost only of crops samples. It is therefore difficult to assess whether these
techniques could be efficiently applied over large areas with different vegetation covers. In addition, these
techniques require a handcrafted feature extraction step and do not exploit the temporal trajectory of the
input time series.

Gaussian process (GP) is another supervised regression method which is increasingly exploited in several
works. Pipia et al., 2019, is proposing a multi-output GP methodology to fill gaps in LAI time series derived
from the joint exploitation of Sentinel-2 and Sentinel-1 observations. Besides time series reconstruction, the
GP performances is also corroborated by other regression tasks involving vegetation monitoring. An example
is found in (Mercier et al., 2020) where biophysical parameters are extracted from wheat and rapeseed parcels
by exploiting Sentinel-1&2 time series. Although neglecting Sentinel images, the use of GP for crop yield
estimation is also studied in (Martinez-Ferrer et al., 2020), combining MODIS and SMAP datasets. Despite
previous works are showing a satisfactory capability of GP for regression tasks, the scalability of these meth-
ods can be challenging. Long training times and significant computational resources are required. The tuning
of GP is also complex and very sensitive to the choice of the kernel. Such a choice questions its generalization
capacity in the presence of very heterogeneous covers. Finally, likewise classical ML approaches, GP does not
exploit the temporal order of the input data used for regression.

Leveraging the significant advances in machine learning and computer vision, deep-learning approaches
are increasingly adopted in satellite Earth Observation related tasks. Deep-learning approaches are taking
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advantage of the exponential availability of satellite time series, which furthermore offer multi-modality and
rich spectral and spatio-temporal structures. The flexibility in design of deep-based methods combined with
the increasing computational resources and data availability allows their exploitation in various tasks, includ-
ing regression.

Deep-based SAR-to-optical regression architectures proposed for Sentinel data have first been devoted to
exploit the spatial dimension of images acquired at a single date (He and Yokoya, 2018; Cresson et al., 2019;
Gao et al., 2020; Meraner et al., 2020). Convolutional Neural Networks (CNNs) or Generative Adversarial
Networks architectures (GANs) are proposed as a single-date regression solution without exploiting the tem-
poral information of times series. The main objective of 