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Abstract

The vast grassland surfaces as well as the growing recognition of the ecosystem services they provide have
revealed urgent needs for their conservation and sustainable management. In particular, over-exploitation
causes a significant decrease in their capacity to provide multiple ecosystem services. Despite the acknowl-
edged importance of management practices, there are currently no large-scale efforts reporting on their fre-
quency and nature.

Satellite remote sensing appears to be a suitable tool for efficient grassland monitoring. Satellite time
series specifically allow synoptic and regular observations. Combined, the characteristics provided by com-
plementary optical and Synthetic Aperture Radar (SAR) images from the Sentinels bring new opportunities to
monitor grassland vegetation conditions. The research conducted in this PhD thesis intends to investigate the
capabilities and the synergy of Sentinel time series for grassland monitoring. Specifically, it aims to develop
methods for detecting grassland management practices. Farmers are managing grasslands with a wide range
of practices, having different impacts on biomass and calendars. Therefore, frequent and regular satellite ac-
quisitions are mandatory, especially because grasslands exhibit the particularity of potential rapid regrowth
after management.

The joint exploitation of Sentinel-1 and Sentinel-2 and the increase of acquired data raise new challenges.
The high dimension and the heterogeneous physical nature of the data, with various spatial, spectral and
temporal domains, are among the aspects to be explored. At the same time, recent advances in computing
resources and machine learning algorithms are bringing to the forefront deep learning strategies suitable
for dealing with the reported requirements, such as large-scale processing and data mining. In this context,
the main objective of this PhD is to develop new methodologies allowing the frequent and regular monitor-
ing of grasslands and the detection of their management practices. Under this purpose, this PhD: (i) uses
the advances of deep learning architectures to develop a multi-source methodology exploiting the synergy
and capabilities of both Sentinel-1 and Sentinel-2 data. The developed recurrent-based methodology targets
to regress multivariate SAR time series towards optical NDVI and proposes the incorporation of contextual
knowledge to reduce the impact of exogenous factors leading to SAR data variability ; (ii) explores methods
aiming to detect heterogeneous changes in vegetation status associated to grassland management practices.

The proposed Sentinels Regression for Vegetation Monitoring (SenRVM) approach provides NDVI time
series with no missing data at 6 days. The results, compared to the NDVI obtained by Sentinel-2, show low er-
rors and good stability on contrasted vegetation surfaces and different large-scale geographical contexts. An
ablation study of satellite and ancillary features and a comparison to commonly adopted gap-filling methods
for retrieving information over short- and long-term data gaps underline the methodological contributions.
To accurately detect management practices, a segmentation of grassland parcels at the superpixel-scale, justi-
fied by their rotational management, furthermore allows exploiting the dense time series over homogeneous
areas. Diverse 1D time series change detection methodologies are compared using two constructed large-
scale validation datasets. The results achieve high performances in retrieving the different patterns related to
grassland management.

The proposed methodologies integrate freely accessible data, whose continuity is ensured, and exploit
deep learning methods favoring large-scale and versatile applications. Therefore, they are foundations for
the extraction from multi-modal satellite image time series of relevant information related to the grassland
ecosystem whose understanding is essential.





Résumé

Les vastes surfaces de prairies ainsi que la reconnaissance croissante des services écosystémiques qu’elles
fournissent ont révélé des besoins urgents pour leur conservation et leur gestion durable. En particulier, leur
surexploitation entraîne une diminution de leur capacité à fournir des services écosystémiques. En dépit de
la nécessité d’obtenir des données décrivant l’exploitation des prairies, l’observation de la fréquence et de la
nature de leur exploitation demeure restreinte.

La télédétection par satellite est un outil approprié pour un suivi efficace des prairies. Les séries tempo-
relles d’images satellites permettent des observations synoptiques et régulières. Combinées, les caractéris-
tiques fournies par les images complémentaires optiques et radars des satellites Sentinel offrent de nouvelles
opportunités. Les recherches menées dans le cadre de ce doctorat visent à étudier les capacités et la synergie
des séries temporelles Sentinel pour le suivi des prairies. Plus spécifiquement, elles visent le développement
de méthodes de détection des pratiques agricoles. La gestion de chaque prairie est faite avec des intensités et
des calendriers distincts. Par conséquent, des acquisitions fréquentes et régulières sont d’autant plus indis-
pensables que les prairies peuvent repousser rapidement après leur exploitation.

L’abondance des données de Sentinel-1 et Sentinel-2 et leur exploitation conjointe soulèvent de nouvelles
problématiques. La haute dimension et la nature physique hétérogène des données, conjuguant divers do-
maines spatiaux, spectraux et temporels, font partie des aspects à explorer. Récemment, les progrès en matière
de ressources informatiques et d’algorithmes d’apprentissage automatique mettent au premier plan les straté-
gies d’apprentissage profond, qui permettent de relever les défis exposés, tels que le traitement à grande échelle
et l’extraction d’informations complexes. L’objectif principal de la thèse est donc de développer des méthodes
permettant le suivi en continu des prairies et la détection de leur exploitation. À cette fin, la thèse : (i) utilise
les progrès permis par l’apprentissage profond, pour développer une méthodologie multi-source exploitant la
synergie des données Sentinel-1 et Sentinel-2. La méthodologie développée vise spécifiquement à régresser
les séries temporelles radars multivariées vers le NDVI optique et propose l’incorporation de connaissances
contextuelles pour réduire l’impact de facteurs exogènes ; (ii) explore différentes méthodes permettant de dé-
tecter l’exploitation hétérogène des prairies.

L’approche proposée, nommée Sentinels Regression for Vegetation Monitoring (SenRVM), fournit des
séries temporelles de NDVI complètes avec une répétitivité de six jours. Les résultats, comparés aux NDVI
obtenus par Sentinel-2, indiquent de faibles erreurs et une bonne stabilité sur diverses surfaces de végétation
et différents contextes géographiques. Une étude d’ablation des données satellitaires et auxiliaires ainsi qu’une
comparaison avec des méthodes communément adoptées pour interpoler les données manquantes soulignent
la pertinence des contributions méthodologiques. Pour détecter avec précision les pratiques agricoles, une
segmentation des parcelles de prairie à l’échelle du superpixel, justifiée par leur gestion rotative, permet d’ex-
ploiter les séries temporelles denses sur des zones homogènes. Différentes méthodologies de détection de
changements sont comparées à l’aide de jeux de données de validation construits. Les résultats atteignent des
performances élevées dans l’identification des différentes tendances liés à la gestion des prairies.

L’intégration de données accessibles gratuitement, dont la continuité est assurée, et l’exploitation de mé-
thodes d’apprentissage profond favorisant les applications à grande échelle et polyvalentes, ont permis d’in-
troduire des méthodes qui proposent des bases pour la collecte d’informations pertinentes liées à l’écosystème
des prairies.
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1.1. DEFINITION, EXTENT AND IMPORTANCE OF GRASSLANDS

1.1 Definition, extent and importance of grasslands

1.1.1 A vast and disparate entity

Grasslands have existed for millions of years and constitute biomes (Dinerstein et al., 2017), which are large
and homogeneous ecological environments (Figure 1.1). Grasslands biomes are formed under certain climate
conditions. The climate must be sufficiently humid for vegetation to grow, otherwise the environment is
desert. Conversely, a too humid climate leads to the growth of trees, forming forests (Hibbard et al., 2003;
Hou et al., 2019). Grasslands are therefore a transitional biome. Its existence is nevertheless favored by other
natural disturbance mechanisms such as defoliation by animals or frequent fires (Begon et al., 2006) that
prevent the transition from grassland to forest. Although there are various agronomic, historical, or practical
aspects to defining grassland, the consensus is that it is a habitat consisting mostly of grasses the Poaceae
and other graminoids, with a low abundance of trees or shrubs. The presence in a variable proportion of
natural forbs is also a characteristic of grasslands. With more than 12,000 species of solely Poaceae recorded
(Kellogg, 2015), grasslands induced diversity at the botanical level can already be imagined (Wilsey, 2018). The
complexity of grasslands is thus, understandably, reflected in the lack of consensus regarding their precise
definition.

Alongside the areas of natural grassland forming biomes, human activities, as for other ecosystems, are a
major factor in the maintenance, development or decline of grasslands. Human activities traced back to the
domestication of livestock in the Neolithic period and the appearance of grazing and deforestation (Poschlod
et al., 2009) have greatly expanded the location and diversity of the natural grasslands (Gibson, 2009). When
managed by humans, grasses are commonly associated with leguminous plants, the Fabaceae, composed of
over 19,000 species (Nadon and Jackson, 2020) increasing again the agronomic variety of grasslands. These
newly formed managed grasslands belong to one of the most ancient forms of farming (White et al., 2000).
At the same time, human activities through successive evolution, from breeding, mechanization or the fodder
revolution, have allowed grasslands to be maintained by eliminating woody resources.

Figure 1.1: Worldwide distribution of pastures retrieved from two satellite (MODIS and SPOT VEGETATION)
combinedwith agricultural inventory data for the year 2000 (modified from : Ramankutty et al., 2010). Location
of natural grasslands biome are superimposed in red (modified from : Dinerstein et al., 2017).

Nowadays, grasslands, i.e., natural and human-induced, cover a significant proportion of about 40% of
Earth’s surface and near 70% of all agricultural land areas (Suttie et al., 2005). Figure 1.1 includes a map
produced from satellite data and agricultural statistics for the year 2000 by Ramankutty et al., 2010. This
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1.1. DEFINITION, EXTENT AND IMPORTANCE OF GRASSLANDS

map shows the large areas covered by a varying percentage of grasslands and the location of the natural
grassland biome. A first remark concerns the unique characteristic of grasslands of being distributed on all
continents and especially at every latitude from the Equator to the poles. Grasslands are also encountered at
very different altitudes (Allaby, 1998; Pausas and Bond, 2019) showing significant adaptation and resilience
to a wide range of climatic conditions. By comparing the location of the natural grassland biome and their
current distribution, this map also highlights the historical great expansion of grasslands, primarily due to
human intervention. This is particularly noticeable in temperate climates, such as in Europe and South-
Western North-America where grasslands are very present, despite a climate rather favorable to the presence
of forests. The varied distribution of grasslands leads to varied denominations. The different denominations
are mainly based on their location or usage. Steppes and parts of the tundra in Asia, pampas in South America,
savanna in Africa and Australia, or Prairies of the Great Plains in North America, and simply grasslands in
Europe all refer to grasslands with distinct geographical distributions. Pastures, rangelands, or meadows also
refer to grasslands through their main botanic composition and usage.

Through their botanic, agronomic, and geographical diversity, grasslands represent a challenging ecosys-
tem. Being for some part of a natural biome and now covering one of the most extensive ecosystems on our
planet, grasslands play an important role in many aspects of climate, economy, society, and health.

1.1.2 Grassland ecosystem services

Some of the major benefits of grasslands are well known: they are habitat for abounding plant and animal
species (Watkinson andOrmerod, 2001; Petermann and Buzhdygan, 2021). They feed an important population
as the main resource for livestock (O’Mara, 2012; Michalk et al., 2019). Nevertheless, beyond these aspects,
the fundamental importance of grasslands lies in their multifunctional capacities, most of which are often
neglected or poorly known.

The notion of ecosystem services emerged in the 20th century (Ehrlich and Ehrlich, 1981; Mooney and
Ehrlich, 1997) and offers a framework at the interface between ecology and economics. Ecosystem services
groups together the goods and services that humans can obtain from an ecosystem, directly or indirectly, ben-
efiting their well-being. Ecosystem services are commonly regrouped in four different types (Bishop, 2012):
(i): provisioning services, define the tangible products that can be exploited like food, raw materials, freshwa-
ter or medicinal resources; (ii): regulating services, which are intangible, regroup all benefits provided by an
ecosystem for maintaining, improving, controlling or preventing environmental effects; (iii): socio-cultural
services, which are non-material and at the interface between humans and their relationship with nature
such as aesthetic, touristic or spiritual benefits; (iv): supporting services that include indirect interactions
with other elements of the biosphere such as providing living spaces for fauna and flora.

Beyond the two aspects of habitat and resources to livestock, grasslands, due to their variety, are one of
the habitats that offer both one of the largest ranges and important number of ecosystem services:

• Provisioning services: these services are the most obvious and include the products of animal hus-
bandry and gathering. The production of fodder and plant protein, the flowers, berries or mushrooms
found in the grasslands are at the heart of productivity issues. These grasslands products are directly
linked to notions of quality of food value, animal health, and in-fine to the quality of the products
resulting from breeding and ultimately human health.

• Regulating services: they are perceptible at several scales of analysis, at the grassland parcel level
as well as at the level of a farm, a region or finally at the global level. The different scales interact,
making grasslands one of the ecosystems providing the most regulating services. Grasslands provide
water quality regulation, with the fixation of atmospheric nitrogen by the presence of legumes for
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example. They have a filtering effect of collecting and distributing rainfall to surface and ground water.
Grasslands also serve to protect against floods and erosion, by retaining water or spreading the flow
of floods and fix the soil, especially in areas with a varied topography. Grasslands are also reserves of
biodiversity, hosting and feeding an abundant and varied fauna, including grassland dependent species.
The flora of grasslands, often accompanied by mellifluous plants, allows the reproduction of pollinating
insects. Finally, grasslands fix and store carbon dioxide (CO2) as well as other atmospheric gases such
as nitrous oxide.

• Socio-cultural services: the meadows have a landscape, faunistic, floristic, and therefore educational
interest. Their heritage value is part of landscapes such as bocage or estives and alpine pastures, giving
them an appreciated scenic value.

• Supporting services: these services result from the previous ones. Combined, they allow the essential
cycles of nutrients, water, or the formation of soils which are the supporting services.

1.1.3 Environmental importance and associated threats

In view of contemporary challenges that include climate change, biodiversity loss, and food security, the im-
portance of grasslands is increasing and their essential character emerges (TEEB, 2010; Boval and Dixon,
2012; Yang et al., 2019b). Monitoring the dynamics of grasslands now seems essential, as evidenced by a
revival of public policies concerning them (Le Quéré et al., 2013; Luyssaert et al., 2014; UN, 2015; Bengtsson
et al., 2019; Powers and Jetz, 2019; Shukla et al., 2019; Bardgett et al., 2021; Chang et al., 2021). This is the
case of the global climate policies defined by the United Nations, such as the Decade on Ecosystem Restora-
tion from 2021 to 2030 or the 2030 Agenda for Sustainable Development, which succeeded the Millennium
Development Goals in 2012 and defines 17 Sustainable Development Goals (SDGs). Grassland ecosystem ser-
vices participate in several goals such as achieving zero hunger (SDG 1), ensuring good health and well-being
(SDG 3), providing access to clean water and sanitation (SDG 6), leaning towards responsible consumption
and production (SDG 12), enforcing climate actions (SDG 13) and protecting life on land (SDG 15). Agree-
ments signed in 2015 notably during the COP21 in Paris (France) or during the Sendai Framework for Disaster
Risk Reduction signed in Japan also recognized grasslands as major actors of the future climate. All of these
public policies coordinate efforts on a global scale concerning several climate factors, of which one of the
most prominent objectives is the reduction of carbon emissions.

As a counterpart to climate change linked to the increase of greenhouse gases in the atmosphere, grass-
lands are, alongside forests and wetlands, key ecosystems in the fixation and storage of CO2 (Scurlock and
Hall, 1998). In contrast to forests which store carbon mainly in their leaves and woody resources, grasslands
sequester carbon underground, in their roots and by transmission to the underlying soil. Deforestation and
especially the increasing frequency of fires due to rising temperatures and droughts lead to the release of the
stored carbon in trees into the atmosphere. These changes affect the overall carbon budget of forests nega-
tively, while grasslands, with their underground storage, are more adapted to current changes (Hufkens et al.,
2016; Dass et al., 2018). While the role of grassland in carbon storage is often omitted, they could currently
contain about 30% of the world’s soil carbon stock (Bardgett et al., 2021; Chang et al., 2021; Scurlock and
Hall, 1998).

Exponential efforts have been made to monitor the current state and trends of our globe’s surfaces, among
them grasslands (Plummer et al., 2017; Liu et al., 2020a; Winkler et al., 2021). Satellites are one of the tools
allowing the monitoring of large areas (Section 1.2) and have therefore been exploited for this purpose. For
example, Winkler et al., 2021 have recently proposed to map global changes per 1×1 km grid cell from 1960
to 2019 by combining multiple satellite data (MODIS, Landsat, Sentinel) with historical statistical datasets,
such as from the Food and Agriculture Organization of the United Nations. The results were obtained for six
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classes, namely urban, cropland, pasture / rangeland, unmanaged grass / shrubland, and sparse/no vegetation
classes. Annual dynamics were used to compute a global change rate from the complete period. Four classes
of changes which are stability, losses, gains and multiple changes have been defined. Authors have found that
17% of the Earth’s land surface has changed at least once between the assessed time intervals. Furthermore,
they highlighted that 86% of all multiple changes are related to agriculture such as land transitions related to
cropland or pasture/rangeland. Figure 1.2 shows the changes observed for grassland classes (pasture, range-
land and unmanaged grass/shrubland) through the period 1960-2019 found by Winkler et al., 2021. It can be
observed that a significant number of grasslands were affected by changes.

Figure 1.2: Changes in grassland surfaces for the period 1960-2019 detected with satellite and statistical
datasets. (Modified from : Winkler et al., 2021)

Despite the importance of grasslands and the many explained multi-domain benefits they provide (Sec-
tion 1.1.2), grassland areas have largely decreased in many parts of the world, mostly in favor of crops (Bard-
gett et al., 2021; Bongaarts, 2019; Winkler et al., 2021). Furthermore, it is estimated that currently, about 50%
of the global grasslands are degraded (Gang et al., 2014; Bardgett et al., 2021). The main factors of degradation
are overgrazing, intensive agricultural practices, and climate change. Degradation and losses of grasslands
poses important threats for a significant part of the world population relying on them. Food, fuel, and fiber
or medicinal products are direct and necessary resources produced by the grasslands.

Because of their geographical distribution and the wide range of ecosystem services they provide it would
nevertheless be inappropriate, if not impossible, to consider grasslands as a single environment. A possible
and commonly used distinction is based on the origin and history of the grassland. On the one hand, natural
grasslands, originating from their biomes, have certain distinct properties with respect to grasslands emerging
from human activities. They are are perennial and respond favorably to the full range of grassland-related
ecosystem services. In particular, they allow carbon storage over time scales of at least decades or centuries.
On the other hand, the majority of agricultural grasslands provide a lower and degraded range of ecosystem
services, particularly due to their intensive exploitation. Decline in endemic biodiversity and reduced carbon
storage capacity are the main subsequent consequences. Some agricultural grasslands in temperate climates
fulfill the same functions as natural grassland but are largely in the minority. These grasslands are generally
protected by local policies preventing their conversion to crops or forest. Figures 1.1 and 1.2 highlight that
the majority of grasslands that have changed over the last six decades are agricultural grasslands, mainly
intensively used for profitable supply services. Consequently, this intensive exploitation throughmanagement
practices may be a growing problem with respect to the importance of grasslands.

The changes and impacts on grasslands are mainly due, as illustrated, to the effect of humans and their
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exploitation. Global scale observations available through remote sensing, including the example of Figure 1.2,
provide essential information to understand our environment. They serve as a support for key applications
such as long- and short-term climatemodeling or for the implementation of public policies to regulate, protect,
and change our future. In this sense, grasslands of temperate climate and their management systems are of
utmost importance for the overall conservation of grassland ecosystem services.

1.1.4 Temperate managed grasslands and their exploitation

The potential management of a grassland is initially conditioned by abiotic factors such as pedological, cli-
matic, and topographical properties and subsequently its agronomic type. Furthermore, the provisioning
services expected from a grassland will constrain its management regime. To obtain the provisioning ser-
vices, technical acts, decided and conducted by human intervention, are then performed on the grassland
throughout the year. Three elements can characterize the technical act: its intensity, which roughly defines
the impact on the grass resource, its duration and timing within the agricultural calendar. On grasslands,
two main types of technical acts are defined: grazing and mowing. In practice, the management regime of
a grassland may be a combination of these two technical acts. Furthermore, grasslands can be ploughed for
reseeding or to convert grassland to another type of crop.

(a) Grazing (b) Mowing (c) Ploughing

Figure 1.3: The three types of technical acts performed on grasslands.

Grazing is the traditional type of grassland management. Livestock exploits the grassland resource for
the production of animal products such as milk, meat or wool. The grazing of a grassland can be favored by
its geographical condition, when mechanical exploitation is made difficult, e.g., for fertilization or mowing.
Grazed grasslands will be dominated by fairly low plants with an increased agronomic variety and low spatial
homogeneity. Grazed grasslands species are thus adapted to trampling and browsing. Grazing has different
regimes, i.e., continuous or rotational grazing (Schmitz and Isselstein, 2020). Continuous grazing provides
unrestricted access to a grassland over a long period of time. In this case, the vegetation rarely rest. Con-
tinuous grazing offers the advantages of low planning costs and relatively simple livestock management. On
the other hand, the timing and intensity of grazing is difficult to control without livestock loading manage-
ments. Rotational grazing favors grass regrowth by regulating the pressure of the livestock load successively
at distinct areas. This rotation can be done between different grasslands but also within the same grassland.
This latter case is more likely in the presence of large parcels and allows among others for a reduction in the
travel distance of the livestock. Typically, in this case, the farmer will install a temporary fence delimiting
a specific area of the parcel. While the livestock grazes the available resources in this area, the grass in the
other areas of the parcel continues to grow. When the resource in the fenced area is exhausted, the farmer
moves the livestock to an area that has not yet been grazed. The same principle applies to a rotation between
several grasslands parcels. This rotating approach is favorable to the availability of the resource by temporal
and spatial management, throughout the season.

Mowing permits over natural grasslands to remove woody vegetation cover. It protects grassland, plant
and animal species habitat dependent and reduces risks from natural hazards such as fire. In the agricultural
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context, grasslands are mainly mowed to produce resource for livestock feed. The cutting of grass during
mowing can also have ecological succession goals to favor certain agronomic species or stimulate grass vigor
and regrowth. Grasslands that are mowed can reach significant grass heights of up to one meter. By cutting
the grass, the whole aboveground biomass that has been accumulated during a growth cycle is removed at
once to a certain cutting height threshold. This threshold generally preserves a biomass of at least 5 to 7 cm
in order to leave sufficient plant tissue for photosynthesis and regrowth. In certain cases, the grass can be
cut and immediately fed to livestock. In most cases, the forage needs to be conserved. The haymaking may
be done by a drying process directly on the parcel or at the barn. Mowing for which the resource will be
conserved by drying, is mostly done late in the season regarding the climate. The conservation alternative
uses the wet process by reducing oxygen and fermenting the resource. Especially in rainy climates, silage and
wrapping permit to preserve the grass quality and can be implemented early in the season.

Grazing and mowing have distinct intensity, duration and timing. Despite the important heterogeneity
among grazing and mowing practices due to agronomic, climatic, or management regimes constraints, the
following observations can be considered:

Intensity:
- Grazing: the grazing effect on vegetation depends on the grazing regime, the grazer’s specie, livestock
loading, and their time spent grazing. The herbaceous resource can be consumed in a short period of time,
leaving the soil almost bare, or can diminish only gradually over time.

- Mowing: the cutting height is the factor influencing the intensity. Depending on the expected use of the
mowed resource, the grass removal can be minor to almost complete.

Duration:
- Grazing: the grazing regime but also the overall exploitation of the grassland make the duration characteris-
tic highly variable. On very small areas, grazing may last only a few days. On vast grasslands, and moreover,
in continuous grazing, the duration extends to several months, depending on the climatic conditions, allowing
the livestock to be outdoor.

- Mowing: mowing is generally accomplished in a very short period of time (i.e., within few hours or at most
two days, if the visibility does not allow the technical act to be continued), especially when the technical act
is mechanized.

Timing:
- Grazing: the timing of grazing is conditioned by the climate. The first grazing can occur as soon as the
climatic conditions are favorable, and the grass comes out of its winter dormancy. The exit of the dormancy
is allowed when the temperatures reach a certain point, depending on the plant species, globally between
4 and 8°C. For grasslands in temperate climates, and particularly in the case of mixed grazing and mowing
management, grazing can be done as early as spring, which will impact the quality, productivity and sustain-
ability of the good species for the coming season. The last pasture should ideally leave around 5cm of grass
for dormancy. Its timing will be again dependent on the climate.

- Mowing: mowing can occur at almost any time during the growing season. Generally, it is done in good
weather, as rainfall can affect the resource. A first mowing can be done early in the growing season to en-
courage vigorous regrowth. A very late mowing at the end of the growing season can also be carried out to
optimize the grass state for its re-entry into dormancy. Indeed, above a certain height of grass (ideally 5 to 6
cm), rotting can affect the grass during the dormancy.
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As with any agricultural land, besides grazing and mowing, a grassland can be ploughed. Nevertheless,
ploughing does not necessarily occurs on every grassland, as they can have constant ground cover and
do not inherently require ploughing to subsist. The agronomic type, the parcel history and thus underlying
regulation policies or the overall management of a farm can conduct the ploughing of a grasslands. Ploughing
ismainly carried for the purpose of reseeding a grassland or changing the crop type. The duration of ploughing
is similar to that of mowing, being done at once for a whole parcel (or some part in the case of rotational
management). The intensity of ploughing will mainly depend on its timing. A ploughing can immediately
follow a mowing and in this case remove only a small amount of biomass. It can also be done according to
the crop rotation schemes and agricultural calendars. Ploughing can potentially occur much later than the
last technical act and hence remove a larger amount of biomass.

1.2 Earth Observation from space: principles and applications over grass-
lands

1.2.1 Characteristics and multi-modalities of satellite imagery

Remote sensing is defined by the French Official Journal of 11 December 1980 (JORF, 1980) as "all the knowl-
edge and techniques used to determine the physical and biological characteristics of objects by measurements
taken at a distance, without physical contact with them". The underlying principle is the measurement of ra-
diations in different portions of the electromagnetic (EM) spectrum, giving remote sensing multiple potential
applications.

Earth observation (EO) by remote sensing began in the 19th century with atmospheric balloons and then
spread during the First and Second World Wars as a source of military information. The use of EO satellites,
which were first restricted to telecommunications functions, was initially motivated by meteorological con-
cerns. TIROS 1 (Television and InfraRed Observation Satellite) was launched by the National Aeronautics and
Space Administration (NASA) in 1960, providing unprecedented global coverage via daily images acquired on
board the satellite and transmitted to ground receiving stations located throughout the world (United States,
1956). Landsat-1 launched in 1972 was the first satellite which explicit goal was to monitor Earth’s landmasses
(Boland, 1976). Ever since, the capacity of EO satellites for synoptic coverage and repeated acquisitions has
been increasingly exploited. A multitude of applications on numerous themes have been developed using
satellite data: Earth’s cover mapping, study of vegetation or snow cover, inventory of crops and forests, land
use planning, monitoring of urban growth, mining or oil exploration, monitoring of coastal or marine pollu-
tion, hydrology, oceanology or military intelligence among others.

As of end 2021, the United Nation Office for Outer Space Affairs registered more than 7,100 satellites in
orbits (United Nations Office for Outer Space Affairs (UNOOSA), 2021). A large majority of them are still
dedicated to telecommunications despite an exponential number of EO satellites. Satellites are placed in three
main orbits with different characteristics and applications. The Geostationary orbit (GEO) refers to satellites
that orbit above the Equator at 35,786 km and follow the Earth rotation. This allows them to be constantly
above the same point and therefore are mainly exploited for telecommunication and weather satellites. They
further help for data downlink being always in sight of a ground receiving station. Medium Earth Orbit (MEO)
is above 1,000 km and below GEO and is almost exclusively used by navigation satellites such as the Global
Positioning System or Galileo.

The LowEarthOrbit (LEO) is the closest to the Earthwith altitudes ranging from about 150 km to 1,000 km.
Apart when global-scale processes are being observed (e.g., atmospheric or weather conditions), the LEO is
adopted by EO satellites. For a LEO satellite, it typically takes about 90 minutes to circle the Earth entirely. A
conventionally route for LEO called near-polar orbit follows the North-South direction passing approximately
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over the Earth’s poles. Orbit directions northwards and southwards are, respectively, called ascending and
descending orbits. In conjunction with the West-Est Earth’s rotation, this permits satellites in LEO to cover
the Earth’s surface (Figure 1.4). In addition, these satellites are also often sun-synchronous by having a fixed
position relative to the sun, allowing them to always observe the same area at the same local time. This ensures
consistent illumination conditions over some time intervals (e.g., few days or between years). A main interest
which advocates for LEO in the context of EO is their reduced distance to the observed target (i.e., the Earth).
This allows to observe phenomena at finer scales, which is for example, necessary for applications related to
agriculture. On the other hand, the ground area imaged by the sensors during an overpass (called the swath)
may be reduced. Typically, the swath of LEO satellites varies between tens and hundreds of kilometers.

Figure 1.4: Schematic representation of an Earth Observation satellite in near-polar sun-synchronous Low
Earth Orbit.

Among the notable characteristics of EO satellites, four specificities, which are based on the satellite’s
orbit and its payload, i.e., onboard sensor, can be defined:

• The spatial resolution is the ground surface represented by an individual sampling, being the smallest
addressable element in an image. This ground surface is therefore the smallest possible feature that
can be detected by the sensor. Coarse or low resolution mainly depict large features while fine or
high resolution will provide more details. The spatial resolution influences the swath of the satellite
depending on the orbit and sensor capabilities. While in 1972 Landsat-1 had a spatial resolution of 80 m,
some commercial satellites currently provide sub-metrics spatial resolutions. An example of different
optical image spatial resolutions is visible in Figure 1.5.

• The spectral resolution refers to the position, number and width of EM spectrum portions, called bands,
being observed by a sensor. A low spectral resolution would, for example be a single panchromatic
(black and white) band acquiring at once a wide portion of the EM. High spectral resolutions are for
example provided by hyperspectral imaging, with hundreds of EM portions independently observed.

• The radiometric resolution describes the depth of possible values assigned to an energy measurement
within a pixel. The larger this number, the higher the radiometric resolution and thus sensitivity and
discrimination power.

• The temporal resolution (or revisit time) defines the length of time taken by a satellite to observe again
a same point on Earth. The temporal resolution is generally expressed in days. A higher temporal
resolution allows to gather dense time series, i.e., successive images of the same location.

Due to physical and engineering constraints and the different resolutions being correlated, a sensor cannot
optimize all four resolutions at once (Selva and Krejci, 2012; Shen et al., 2016). Spectral and radiometric
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Figure 1.5: Four acquisitions of passive optical satellites with different spatial resolutions over the city of
Bourg-en-Bresse in France along a main road (yellow line) are presented. False-color compositions with the
Near-infrared, Red and Green bands mapped to the RGB channels are emphasizing the high reflectance of
vegetation. The 48 years separating the first and last acquisitions show the improvements in spatial and
radiometric resolutions achieved.

resolutions have trade-offs with signal-to-noise ratios. Apart from signal-to-noise ratio, the spatial resolution
has a trade-off with spectral resolution and data volume. Eventually, the temporal resolution has a trade-off
mainly with spatial resolution. Hence, satellites and their sensor characteristics generally define the resulting
potential applications.

Finally, a fundamental distinction of the different EO satellites lies in the source of the energy measured
by their sensor. Two types of sensors are thus defined: passive and active sensors.

1.2.1.1 Passive sensors and optical imaging

Passive acquisitions are based on the collection of EM radiation from an off-system source (i.e., not emitted by
the satellite), mainly natural sources such as the sun. The visible, infrared and thermal domains are the major
domains studied by passive acquisition systems as presented in Figure 1.6. Approaching the human vision
perception, one of the main interests of passive sensors are the acquisition of well-known and identifiable
phenomena. This allows in many cases a relatively simple exploitation and interpretation of passive-based
sensor data.

Figure 1.6: Passive sensors principle and commonly acquired bands.

By measuring the energy coming from the target, passive sensors allow to distinguish specific charac-
teristics of each surface. Among passive sensors, optical sensors are the most common. They investigate
the interactions between solar radiation and a material, independently for several wavelengths. Except in
specific study cases, the bands acquired by passive sensors are selected in atmospheric windows which min-
imizes atmospheric absorption and scattering. The remainder effects, coming from gases, molecules, and
aerosols whose absorption is known, can be modeled. Thus, the measured energy at the sensor provides, af-
ter necessary atmospheric and geometric corrections, direct information of the Earth’s surface. Solar radiation
reaching the surface can be transmitted, absorbed or reflected, which sums to 1 by the law of conservation

12



1.2. EARTH OBSERVATION FROM SPACE: PRINCIPLES AND APPLICATIONS OVER GRASSLANDS

of energy. These interactions allow optical imaging, which measures the reflected proportion of the EM, to
distinguish a large number of surfaces and phenomena. This proportion depends on the wavelength and
acquisition conditions, the object observed and its intrinsic properties.

Passive sensors and optical imaging are therefore primarily sensitive to the chemical properties of the
observed surface. Consequently, they are extensively used for monitoring vegetation in which the chemical
activities vary with time and condition (Knyazikhin et al., 2013; Kuenzer et al., 2014; De Grave et al., 2020;
Zeng et al., 2020). For example when chlorophyll activity is at its peak, vegetation appears to the human
vision at a maximum intensity of green wavelengths. Conversely, when chlorophyll activity is lower, the red
absorption property of vegetation is lower and its reflection is proportionally higher, making the vegetation
appear less green. The interest of optical sensor capabilities to extend their acquisition to the near infrared
domain is for vegetation, attested by the strong reflection of these wavelengths by the cell structure of plants.
When vegetation grows by photosynthesis, the cell structures are more numerous and the reflection in the
near-infrared increases while the reflection in the red decreases. The relationship between solar radiation
and chlorophyll thus allows passive optical sensors to determine the spectral signature of the vegetation.
The same principle is valid for other types of surfaces such as water or mineral surfaces. Some spectral
signatures are presented in Figure 1.7, illustrating how optical sensors allow to separate surface types and
provide information on their characteristics depending on different wavelengths.

Figure 1.7: Ideal spectral signatures of four types of surfaces in the visible and infrared range. The interac-
tions between radiation and a healthy vegetation surface are illustrated by distinct absorption and reflection
mechanisms.

Scanning systems acquiring a variety of different spectral bands, called multispectral scanners (MSS), are
therefore a crucial capability of optical sensors to provide information of the Earth’s surface. Optical sensors
generally acquire a minimum of four spectral bands in the blue, green, red, and near infrared portions of the
EM. Despite illustrating the improvements in spatial resolution, the previous Figure 1.5 also illustrates the
ability to create color compositions from the different acquired bands by a MSS. Color composition refers to
the assignment of specific spectral bands to the Red-Green-Blue (RGB) visible bands. The assignment of data
acquired in the near infrared to the red visible portion allows, via the chemical properties of the vegetation
previously explained, to highlight the vegetation and its condition in reddish tones.

Depending on satellite sensor characteristics, acquisitions in a larger number of spectral bands (i.e., more
than the 4 conventional bands) can be made. Indices, commonly used to enhance the distinct reflectance
of distinct materials, are developed from the different acquired bands. A larger number of bands can thus
allow the development of a greater number of different indices. A significant number of these indices are
designed to study vegetation. Most of these indices, such as the popular Normalized Difference Vegetation
Index (NDVI) first proposed in Tucker, 1979, rely on red-edge related bands, which is a thin portion of the EM
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spectrum inwhich chlorophyll-related changes in plant reflectance are highlighted. This phenomena is visible
in Figure 1.7 with a steep increase in reflectance of healthy vegetation reflectance. The variety of indices is
as numerous as the types of surfaces (Glenn et al., 2008; Xue and Su, 2017). Indices are thus also employed
to quantify the soil mineral composition or estimate the severity of fires in forest areas among others. The
number of acquired spectral bands can reach several hundred, as it is the case with so-called hyperspectral
sensors using narrower bands. Nevertheless, only a few satellite missions have integrated this type of sensor
or are planned (e.g., Hyperion, PRISMA, EnMAP). Indeed, the engineering challenges and their high costs are
for the moment a brake to their use (Govender et al., 2007; Transon et al., 2018).

SomeMSS are also acquiring bands in the thermal infrared domain (Prata et al., 1995; Sobrino et al., 2016).
In this case, terrestrial radiation is used directly as the source of energy as opposed to the sun’s illumination.
Thermal bands are of longer wavelengths and because of the inverse relationship between wavelength and
energy, thermal sensors must either sense wider areas to gather enough energy and thus decrease spatial
resolution or increase the exposure time through different orbits. Thus, thermal bands are less common than
visible or reflected infrared bands and EO satellites providing them are currently more sparse. Passive sensors
evolving in the microwave domain, although few in number, are also used (e.g., TRMM, SMOS). These sensors
work in a similar way to thermal sensors, collecting the energy emitted by the surface. The capture in the
microwave domain mainly enables surface moisture (soil moisture, atmospheric water vapor, cloud liquid
water or rainfall rate) related applications (Huffman et al., 2007; Brandt et al., 2018). Their use is therefore
mainly made on the oceans or polar ice caps.

Because of their characteristics, optical passive sensors have historically been favored, and still are. Yet,
these sensors suffer from important limitations. Their dependence on a energy source first prevents night-time
acquisitions. Most importantly, cloud cover is preventing optical sensors from observing the earth’s surface.
Cloud coverage causes considerable data gaps in both spatial and temporal domains. As a consequence, the
temporal sampling of optical time series is irregular due to weather conditions (Sudmanns et al., 2020a;
Whitcraft et al., 2015). It is among others, constrained by the geographical location of the area under study
(Ju and Roy, 2008; Sudmanns et al., 2020a). In some parts of the world, this constraint makes the use of
optical images very complex and almost impossible. In the same way, some applications requiring repeated
acquisitions can not depend only on data from optical sensors. Furthermore, optical sensors only observe
the top of surfaces. The undergrowth of a forest, for example, cannot be observed. Finally, the similarity of
spectral signatures of certain surfaces, as may be the case between tree species or different crop types, may
limit the surface distinction possibilities of optical sensors.

1.2.1.2 Active sensors and Synthetic Aperture Radar imaging

In contrast to passive sensors, active remote sensing (Figure 1.8) is based on the emission of a coherent ra-
diation source and the analysis of its return to the sensor. One of the most common active sensor is the
Radio Detection And Ranging (radar), which operates in the microwave range. A radar emits a beam from
its antenna by focusing short pulses of microwave emitted at regular intervals. The measured strength of
the energy backscattered (i.e., returning towards the sensor) from an emitted wavelength refers to the de-
tection part. Ranging is done measuring the time taken between emission and reception of a wavelength,
which permits to determine the exact location of the target. Radar data is thus composed of a real (corre-
sponding to the phase) and an imaginary (corresponding to the amplitude) part. Some limitations of passive
sensors previously presented are bypassed by the use of the microwave range of the EM. Especially, day and
night acquisition are possible and, with wavelengths of several centimeters, the acquisition of data in cloudy
conditions is possible.

In the case radar active sensors, the term band refers to the wavelength/frequency of the emitted wave.
Bands are named with letters, mentioned in Figure 1.8, from very short wavelengths (X-band) to the longest
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Figure 1.8: Active sensors principle and commonly acquired bands.

radar wavelengths (P-band). The choice of the band will have an impact in particular on the capacity of
penetration of the wave in the surface. The longer the higher the penetration capacity, or, longer wavelengths
are associated with more coarse spatial resolution (El Hajj et al., 2019; Jiao et al., 2010). The most commonly
used bands are X and C bands for their versatility against different surfaces and atmospheric conditions (Van
der Sanden et al., 2001).

One further distinction with passive optical imaging lies in the radar sensor acquisition geometry. Un-
like optical imaging where sensors are generally pointing at the nadir (i.e., directly bellow its location), a
radar satellite illuminates the surface obliquely at a right angle to the motion of the platform. Because SAR
distinguished various surfaces based upon the arrival time of the received signal, this side-looking nature is
constrained by the fact that two equidistant points left and right from the sensor would be undifferentiated
in a nadir-looking SAR. This oblique nature causes significant effects in radar measurements, exacerbated
by topographic features on the ground, some of which are presented in Figure 1.9. Radar measurements are
made in radar slant range geometry dependent on the viewing incidence angle and observed topography.
Acquisition geometry of radar systems can cause phenomena of shortening of surfaces, called foreshorten-
ing. Foreshortening occurs when the beam is reaching the bottom of a tall feature such as a mountain tilted
towards the radar before it reaches the top. This causes compression phenomena to appear in the resulting
images with reduced lengths between the two observed points. Conversely, layover refers to the top of tall
objects (e.g., the mountain) being viewed before the bottom. The top will therefore appear nearer than the
base in the resulting image causing inversion of the relief (i.e. the highest point being considered closer than
the base of the terrain). Several types of backscattering products are therefore derived (Rudant and Frison,
2019) for their subsequent use, translating the radar geometry to terrain geometry.

Figure 1.9: Description of geometry elements of a side-looking active satellite acquisition. Main distortions
due to topography that are layover, foreshortening and shadow are illustrated.

As a result of slant range geometry acquisition, the spatial resolution of radar sensors has two dimensions,
one azimuthal (in the propagation direction of the satellite) and one radial (called range resolution, in the view
direction of the sensor). The range resolution will first depend on the distance to the surface and will therefore
be variable along the swath (finer for the near-range, lower for the far-range, see Figure 1.9). The frequency of
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the emitted beam also influence range resolution but can be improved by pulse modulation techniques called
chirp (Prats-Iraola et al., 2014). The azimuthal resolution depends mainly on the size of the antenna and
the distance to the surface. On a satellite, this antenna size is necessarily limited by engineering constraints
(orbiting and deployment). With the help of chirp and the Doppler effect, the simulation of an antenna much
longer than its real physical length is possible (radar echo history). Sensors using this technique, called
Synthetic Aperture Radar (SAR), allow a considerable improvement of spatial resolution up to a certain limit
defined by the signal to noise ratio.

Radar’s ability in surface discrimination is determined, apart from viewing and surface geometry, by
very different physical phenomena compared to optical sensors. Radar sensors are sensitive to geometric
properties, e.g., surface roughness, and dielectric properties such as surfacemoisture. The sensitivity is mainly
determined by the the wavelength used. The backscattering intensity which is recorded, is partly defined
by the Rayleigh criterion characterizing a smooth or rough surface, depending on the wavelength and the
incidence angle. This will influence the nature of the backscattering mechanism involved. For example,
surface or volumic backscattering are predominant in the case of vegetation, surface specular in the case of
very smooth water bodies or double-bounce mechanisms when vertical structures such as buildings are lined
up with the beam (McNairn and Brisco, 2004; Picard et al., 2003). The dielectric constant defines the response
of a surface to an incident electric field. Since water has a very high dielectric constant, the surface moisture
will strongly influence the penetration of the radar wave and increases backscattered intensity (Shao et al.,
2003). In addition, while the number of wavelengths used by SAR sensors are relatively limited compared
to passive sensors, the direction of the electric field vector of the emitted wave is controlled, defining its
polarization. Horizontal (H) and vertical (V) linear polarizations are commonly used by radar sensors. The
polarimetric capability of a SAR sensor is thus defined by the transmission and reception polarizations it
allow. Single- dual- or quad-polarized (also called full-polarized) measurements are possible depending on
the sensor characteristics and allow additional information to discriminate surfaces.

Interferometry is another interest of radar sensors based on the use of two or more images. Since the
satellites do not pass perfectly over the same point (typically an offset of several tens of meters), the repeat-
pass interferometry technique is based on the phase differences occurring between the acquisitions (Krieger
et al., 2005; Perissin and Wang, 2012). By measuring the exact phase difference between both acquisitions,
displacements on the size order of the used wavelength (e.g., centimeters) can be calculated. The computation
of interferograms enables the production of elevation maps and displacements maps. Nevertheless, such
accuracy can only be achieved on relatively stable surfaces and in the presence of low signal decorrelation
factors (e.g., spatial or temporal).

Among the limitations of active sensor like SAR, their analysis and interpretation require a good un-
derstanding of the above-mentioned characteristics and phenomena. Furthermore, topography, due to the
side-looking nature of SAR, is a major limitation in mountainous regions. Finally, inherent to all radar im-
ages, the speckle appears as a grainy "salt and pepper" texture in the image. The speckle is due to the coherent
sum of random constructive, and destructive interference (random-walk) from the numerous elementary scat-
terers within a pixel scattering back the signal (Lee et al., 1994; Singh and Shree, 2016). Thus, two adjacent
pixels on an apparently homogeneous surface, such as a grass surface, may have very different responses
due to the interaction of the signal with individual blades of grass (or any structure of minimal wavelength
size). Different techniques have been developed to reduce speckle noise, e.g., multi-looking based on non-
coherent averaging, spatial or temporal speckle filtering techniques. They nevertheless have an impact on
the radiometric or spatial quality of the original images.

Apart from radar, another type of active sensor operates in the visible and near-infrared EM portion. Light
Detection and Ranging (Lidar) emits light from a rapidly firing laser. Likewise radar sensors, the emitted light
travels to the ground and reflects on the surface towards the sensor. Time-travel as well as backscattered
intensity are recorded forming a point cloud transcribed to elevation (Mallet and Bretar, 2009; Simard et al.,
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2011a). The wavelengths used by Lidar potentially allow a spatial resolution clearly superior to that obtained
by the radar systems operating in themicrowaves. Their penetrating power is reduced is nevertheless reduced,
especially regarding the cloud cover. Because of the high energy required for their operation, satellite lidar
systems have so far been mainly used for the study of the atmosphere and large polar surfaces mainly (e.g.,
ICESat-2, CALIPSO, ADM-Aeolus, GEDI), solely with low spatial resolution. They are therefore rarely used
for monitoring vegetation surfaces (Simard et al., 2011b; Silva et al., 2018).

1.2.1.3 Copernicus programme and Sentinels

Historically, EO applications were based on a single type of sensor, either passive or active with little crossover
in application. The low overlap in spatial and temporal terms between various datasets prevented their com-
bined use. Recently, this paradigm has been challenged by the appearance of satellite constellations (i.e., a
more or less large number of identical or complementary satellites), including both passive and active sensors.

A recent and notable programme providing a satellite constellation is the European Union’s EO Coperni-
cus programme. Initiated in 1998 and endorsed in 2001 by the European Commission (Lamy and Saint-Martin,
2013), Copernicus aims to develop operational information services on a global scale using both space- and
ground-base monitoring systems (Aschbacher and Pérez, 2010). The Copernicus Space Component is a shared
responsibility through the European Space Agency (ESA), the European Organization for the Exploitation of
Meteorological Satellites (EUMETSAT), and the European Union. The Sentinel satellites, briefly presented in
Figure 1.10, the first of which was launched in 2014 (Sentinel-1A or S1A), constitute the satellite constellation
of the Copernicus programme.

Sentinel Expansion Missions: 

 Sentinel-2: High Resolution Optical Mission       

 Sentinel-3: Medium Resolution Imaging and Altimetry Mission 

 Sentinel-4: Geostationary Atmospheric Chemistry Mission                  

 Sentinel-5: Low Earth Orbit Atmospheric Chemistry Mission  

 Sentinel-6 (Jason-CS): Altimetry Mission    

 Sentinel-1: Radar Mission 

Copernicus Space Component In-orbit Planned 

-  Sentinel-CO2M:     Anthropogenic CO2 mission; -  Sentinel-CHIME:    Hyperspectral imaging mission; 

-  Sentinel-CIMR:      Passive microwave imaging mission; -  Sentinel-CRISTAL:  Polar ice and snow mission; 

-  Sentinel-LSTM:      Land surface temperature mission; -  Sentinel-ROSE-L:    L-band SAR mission; 

Figure 1.10: Sentinels missions from the European Copernicus programme.

The multi-modality of the sensors on board the Sentinel satellites, together with the temporal revisit
allowed by the duplication of the satellites, has allowed an unprecedented gathering of EO images. Specifically,
regular optical and SAR time series with similar spatial resolution are available. In addition, a free and open
access policy on Sentinel images has allowed the development of numerous methodologies fusing passive and
active sensors on a routine basis. These acquisitions have been systematic since 2014 and their sustainability
is ensured by the future launch of new satellites.
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1.2.2 Satellite remote sensing of grasslands

1.2.2.1 Grasslands extent mapping products

One of the most common application of satellite remote sensing for land surfaces is the production of land
cover maps. Land cover refers to the biophysical properties of a land surface aiming at the distinction of
its properties (i.e., water, built-up area, vegetation, etc.). Land cover maps are now usually produced on an
annual basis and reflect the summarized area status for the year. A number of classes of interests is defined,
depending on the used data and the applications. In this context, grasslands are often a distinct class, due
to their large and dense coverage. The semantic richness of the classification, i.e., the complexity of the
nomenclature to distinguish between different types of grasslands, varies mainly according to the spatial
extent of the classification. Taking into account larger areas implies a higher diversity of spectral signatures,
under influence of a different climate, for example. In these cases, retrieving surfaces belonging to the same
thematic class poses further challenges. As a result, large-scale products tend to have fewer semantic classes.

Land cover maps classifying large areas (region, country, continent, or globe) generally define one or
very few grassland classes. These meta-classes contain a large number of grassland areas. Figure 1.11 shows
grasslands retrieved by four examples of large-scale land cover products with distinct semantic richness.
Three products are continental scale (Europe) while the last one is produced at the country scale (France).
Figure 1.11 aggregates all grassland classes among a product for visualization.

Figure 1.11: Grassland retrieved from large scale satellite-based land cover products available for the year 2018
in France. SATELLITE : Google Maps; CLC : Corine Land Cover, HRL : High Resolution Layer - Grassland,
ELC : European Land Cover, OSO : Occupation des SOls.

The Corine Land Cover (CLC)map (Heymann et al., 1994) covers Europe and is currently updated every six
years. It is based on visual interpretation of several optical satellite sources and ground-based statistical infor-
mation and can distinguish up to 44 classes. The grasslands are differentiated solely into two classes, pastures
and natural grasslands. The High Resolution grassland Layer (HRL) produced by the European Environment
Agency in the framework of the Copernicus Land Monitoring Service proposes a binary map (grassland / non-
grassland) covering Europe. It is derived from optical Sentinel-2 time series using a Random Forest classifier
and learning samples gathered from several agricultural databases (such as the Land Use and Coverage Area
frame Survey, LUCAS) and manual sampling (European Union, 2018). The European Land Cover (ECL) map
(Venter and Sydenham, 2021) uses the same approach as CLC (i.e., integrating geographical databases and
satellite images) but further integrates Sentinel-1 SAR data to distinguish 8 land cover classes, one of which
is grassland. While the three previous products were available at the continental scale, most operational ap-
proaches in the literature are defined at the country level, due to the computational constraints of larger scale
products. For metropolitan France, the Occupation des Sols (OSO) map produced from Sentinel-2 data by
the CESBIO (Inglada et al., 2017) proposes the distinction of 23 classes, including agricultural grassland, and
natural grasslands regrouped with pasture classes.
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A good agreement on the location of grasslands is visible among the different products even if different
data sources, techniques, and scales are originally explored. Satellites can therefore effectively differentiate
grasslands from other types of surfaces and map their geographical extent over large areas. Especially at
large scales when few grassland distinctions are made, most land cover products do not represent a significant
added value for grassland monitoring. Indeed, apart from information on their extent, these products only
make a very partial difference of grassland types (i.e., as here, mostly a few classes) or do not allow specific
intra-annual monitoring.

1.2.2.2 An overview of satellite-based grassland monitoring studies

The interest of satellite data for monitoring grasslands is surely not recent. In this regard, EO data has been
exploited since the first images were available. Tucker et al., 1985 were already analyzing NOAA-6 and 7
optical satellite data to compare the total productivity of Senegalese grasslands in the Sahel between 1980 and
1984.

There is a large body of work that includes satellite data and grassland monitoring. Their applications
and processed data are diverse, with the aim of obtaining quantitative informations of ecological or econom-
ical concerns. A corpus of 286 research papers from 238 different first authors, published in peer-reviewed
journals or major satellite remote sensing conferences, is retrieved. Thematic keywords such as grasslands,
pasture, meadow, rangelands, biomass, management, mowing, grazing, ploughing, harvest, productivity, map-
ping, phenology were combined with data-related keywords such as earth observation, remote sensing, satellite,
optical, SAR, time series in various web-based searches. A focus on published works between the years 2000
and 2022 is retained. Some important prior works, i.e., recently repeatedly cited, are also integrated in the
corpus.

Clearly, the present corpus is not exhaustive, but it integrates the most recent, most read and cited works
concerning satellite remote sensing and grasslands. Moreover, this relatively large corpus already allows us
to highlight the distinctions regarding two crucial aspects, namely, the research objective relating to grass-
lands and the type of used data. Figure 1.12 classifies and quantifies the corpus regarding the two aspects (i.e.,
research topic and used data). In a sign of the recent revival of interest in the subject of grasslands, several
meta-analysis on the subject of satellite remote sensing for grasslands are been recently published (Reiner-
mann et al., 2020; Li et al., 2021; Soubry et al., 2021). The conclusions presented hereafter are in agreement
with these reviews.

Seven grassland themes are defined, covering the majority of the applications proposed in the corpus.
Some articles deal with several topics at the same time and are counted in each of the topics they deal with.
Concerning the types of data, the research concerns satellite data and therefore omits airborne or Unmanned
Aerial Vehicles data. While optical and SAR sensors are intensively used, hyperspectral and lidar data are
hardly represented. This is due, as previously mentioned, to the low number of satellite sensors offering this
type of data. In this corpus, the exploitation of optical or SAR data, or their joint use is retained. The complete
corpus organized by research topic and data type used is presented in Tab. 1.7.

Biomass assessment

Similarly to Tucker in 1985, the vast majority of papers (about 208 out of 286, see Figure 1.12) focus pri-
marily on grassland biomass assessment, including information on vegetation quality or quantity, such as
biomass, yields or productivity. Aboveground biomass (AGB), Growth Primary Production (GPP), and Net
Primary Production (NPP) of grasslands are critical biophysical information serving as input to global circu-
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Figure 1.12: Main research topics and data types used in a corpus of 286 papers involving grasslandmonitoring
with satellite remote sensing published in peer-reviewed journals or major conferences (between 2000 and
2022 mainly).

lation models such as carbon and nitrogen cycles and therefore of particular interest. Passive optical satellite
data are overwhelmingly preferred (197 articles against solely 4 using SAR images and 7 using both optical and
SAR images) following the strong correlation of visible and near-infrared bands with vegetation’s photosyn-
thetic activity. To accurately monitor biomass, dense time series of images are necessarily favored, focusing
on the vegetation’s growth season or spanning one or multiple years. A coarse spatial resolution (e.g., ∼100m)
in order to obtain more regular images is usually chosen. The Moderate-Resolution Imaging Spectroradiome-
ter (MODIS) (Ali et al., 2017b; Liu et al., 2020b; Roumiguié et al., 2017), onboard Terra and Aqua satellites,
is the most used sensor. It is followed by sensors with higher spatial resolution such as Landsat (Clementini
et al., 2020; Dara et al., 2020; Röder et al., 2008) and Sentinel-2 (Askari et al., 2019; Buddeberg et al., 2021;
Fernández-Habas et al., 2021; Myrgiotis et al., 2021) with nevertheless a reduced temporal resolution that is
frequently mentioned as a limitation.

Regarding the used features, vegetation indices (VIs) are commonly derived (partially listed in Cui et al.,
2012, and Tong and He, 2017), in particular the NDVI (Chen et al., 2021; Hill et al., 2004; Liu et al., 2020b;
Piao et al., 2007; Reeves and Baggett, 2014; Schucknecht et al., 2017; Wang et al., 2020) but also EVI (Ma
et al., 2019; Meshesha et al., 2020; Tiscornia et al., 2019), SAVI (Fern et al., 2018; Jiang et al., 2015) or Tasseled
Cap (Dara et al., 2020), among others. VIs are calculated from the satellite reflectance values and are used as
proxies to grassland biomass. They allow to directly monitor spatio-temporal variations. In support, the joint
acquisition of field data allows comparison and correlation with satellite-based data. Field data are obtained
from different sources, such as spectral measures from portable spectrometers (Motta et al., 2021; Punalekar
et al., 2018), fresh or dried matter (Brinkmann et al., 2011; Chen et al., 2021; Gutiérrez-Guzmán et al., 2017;
Qin et al., 2021), eddy covariance flux towers (Gu et al., 2013; He et al., 2014; Maselli et al., 2013; Wylie et al.,
2016) or grass canopy height measurements (Ali et al., 2017a; Cimbelli and Vitale, 2017; Nickmilder et al.,
2021; Yin et al., 2020).

Subsequently, empirical models are built to correlate satellite data with field data to mainly retrieve bio-
physical variables which are closely related to biomass. The Leaf Area Index (LAI) (Ding et al., 2017; Dusseux
et al., 2015; Yu et al., 2018), the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) (Diouf
et al., 2015; Gaffney et al., 2018; Tiscornia et al., 2019) or the Fraction of green Vegetation Cover (FCOVER)
(Dusseux et al., 2015; Roumiguié et al., 2017) are among the most often derived. The used models are mostly
linear or multi-linear regression approaches (Baghi and Oldeland, 2019; Clementini et al., 2020; Holtgrave
et al., 2020; Wang et al., 2019c) but also rely on machine learning approaches such as Random Forests and
Support Vector Machines (Lei et al., 2020; O’Hara et al., 2021; Raab et al., 2020; Schwieder et al., 2020), Gaus-
sian Processes (Yin et al., 2018) or Artificial Neural Networks (Chen et al., 2021; Li et al., 2016; Nickmilder
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et al., 2021; Yang et al., 2018). Alternatively, radiative transfer models such as PROSAIL are used to recover
these biophysical variables (He et al., 2019; Punalekar et al., 2018; Quan et al., 2017; Schwieder et al., 2020).

Finally, high level information concerning biomass estimation in different forms are retrieved, whether for
anomaly detection, yield quantification, correlation between external effects (e.g., climatic or anthropogenic)
and biomass, or for assessing the grazing pressure on biomass.

Management practices

The management of grassland parcels is the second most approached topic, accounting for 16% of the corpus.
Two main objectives, sometimes approached jointly, follow the management practices purpose. First, satel-
lite data can be used to differentiate between management practices, i.e., mowed or grazed or a mix of both
and sometimes ploughing (Chiboub et al., 2019; Dusseux et al., 2014b; Lopes et al., 2017; Myrgiotis et al.,
2021; Voormansik et al., 2020), as a classification task. Secondly, the detection and quantification of one or
more management practices by detecting for example the frequency of mowing during a season, is explored
(De Vroey et al., 2021a; Estel et al., 2018; Griffiths et al., 2019; Kolecka et al., 2018; Lobert et al., 2021). Based
on this satellite-derived information, the overall exploitation of a parcel, e.g., extensive or intensive, can be
estimated a posteriori. This information is possibly obtained by combining information related to biomass.

Regarding the detection of management practice frequency, one key constraint mentioned in all related
works is the temporal resolution. Indeed, the effects of management have an important impact on the phenol-
ogy of the grass, affecting its regime. The duration of the effects on vegetation cover induced by agricultural
practices can be very variable but especially very short as explained in Sec. 1.1.4. Thus, a greater temporal
resolution will be beneficial to an exhaustive and accurate detection. As a result, the use of optical, which
is affected by cloud cover, and radar data, is much more balanced in the works dealing with management
practices over grasslands. As previously seen, radar data do not suffer from missing data and allow constant
and regular acquisitions, reducing the risk of missing a technical act. Fig. 1.13 illustrates the proportional
use of optical, SAR or both optical and SAR images among the different research topics of the corpus. It ap-
pears that the research topic of management practices is the one where work most often incorporates SAR
data. Out of the 45 articles related to management practices, only 24 are exploiting passive optical images,
11 are using SAR images and 10 are integrating both optical and SAR images. Regarding the use of optical
imagery, NDVI (De Vroey et al., 2021b; O’Hara et al., 2021; Reinermann et al., 2021) and LAI (Asam et al.,
2015; Dusseux et al., 2014c; Myrgiotis et al., 2021) are the most frequently derived features. Medium spatial
resolution from MODIS or SPOT-VEGETATION are used to derive those features (Estel et al., 2018; Halabuk
et al., 2015; Zhou et al., 2021). High spatial resolution (e.g., ∼10-30m) (Bastin et al., 2012; Kolecka et al., 2018;
Zhou et al., 2021) and very high spatial resolution (e.g., ∼1-5m) (Franke et al., 2012; Gómez-Giménez et al.,
2017; Hadj Said et al., 2011; Sibanda et al., 2017) images are nevertheless largely preferred. This is due to
the fact that management practices are generally detected at the agricultural parcel scale. From SAR data,
backscattering coefficient information is usually extracted (O’Hara et al., 2021; Schuster et al., 2011; Taravat
et al., 2019; Wesemeyer et al., 2021). The temporal information (i.e., related to the task of change detection
induced by the management practices) encompassed in the calculation of interferometric coherence is also
considered (De Vroey et al., 2021a; Kavats et al., 2019; Tamm et al., 2016; Voormansik et al., 2020). Very high
spatial resolution X-band SAR sensors are favored, allowing more spatial texture to be retrieved at the parcel
scale. When used in conjunction with optical data, C-band SAR data are more prevalent, increasingly since
the availability of freely available Sentinel-1.

Management practices can be numerous during the same agricultural season causing changes in the veg-
etation. Thus, the totality of work are relying on time series allowing to observe the vegetation at multiple
times. These time series are mainly restricted to one year or even to one growing season, e.g., from March to
October. Indeed, management practices are mainly expected during this time interval. The areas covered by
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Figure 1.13: Satellite sensor type over grasslands according to the main research topic.

these articles are generally small (of the order of a few parcels to a few hundred). This is due to the complexity
of reporting technical acts as well as to a lesser interest, until now than for the measurement of biomass in
particular.

Two main methodological approaches are adopted to retrieve the frequency of management practices. A
binary temporal classification problem is defined, with classes being the occurrence or not of a technical act.
Several machine learning techniques are used such as Decision Trees or Random Forests (Halabuk et al., 2015;
O’Hara et al., 2021), k-Nearest Neighbors (Dusseux et al., 2014c), Maximum Likelihood classifier (Kurtz et al.,
2010), Extreme Gradient Boosting (O’Hara et al., 2021), Gaussian Kernels (Lopes et al., 2017) or Neural Net-
works (Lobert et al., 2021; Taravat et al., 2019; Komisarenko et al., 2022). Nevertheless, these approaches are
mainly supervised, i.e., dependent on the availability of validation data. As those are scarce, the work relying
on supervised machine learning are for the most part exploratory. The second approach, mostly used, is based
on the analysis of the time series trend to detect abrupt changes synonymous to technical acts (Stendardi et al.,
2019a; Griffiths et al., 2019; Schwieder et al., 2020). These methods generally depend on thresholds, applied
either directly to the satellite time series or fitted distributions.

Other research topics

Apart from biomass assessment andmanagement practice evaluation, some other applications of EO on grass-
lands are investigated but with much lower occurrence.

A certain number of work addresses the topic of species richness of grasslands that can be wide (Sec. 1.1.1).
To this concern, the history of grasslands is derived, which is related to the potential of species richness,
(Barrett et al., 2014; Hubert-Moy et al., 2019; Lopes et al., 2017). More often, spectral differentiation of species
is explored (Adamo et al., 2020; Bekkema and Eleveld, 2018; Fazzini et al., 2021; Radkowski et al., 2021;
Tarantino et al., 2021). As field measurements of agronomic variety are complex, unsupervised approaches
are often preferred. They rely on raw spectral data or derived feature such as NDVI (Adamo et al., 2020;
Hubert-Moy et al., 2019; Xu et al., 2019a), the Sentinel-2 Red-Edge Position (Bekkema and Eleveld, 2018)
or Simpson and Shannon indexes (Fauvel et al., 2020). Adopted methodologies are using Random Forests
(Barrett et al., 2014; Fauvel et al., 2020), Support Vector Machines (Barrett et al., 2014; Schuster et al., 2015;
Xu et al., 2019a), Gaussian Kernels (Lopes et al., 2017) or Convolutional Neural Networks (Fazzini et al.,
2021). In order to improve the results, some work also propose the integration of edaphic or climatic auxiliary
data that further allow distinction of the species (Adamo et al., 2020; Mansour et al., 2016). As for biomass
assessment, optical images are predominantly favored. A wide range of sensors are being exploited. High
spatial resolution Sentinel-2, Landsat-8 and SPOT-5, or very high resolution such as RapidEye (Schuster et al.,
2015), FORMOSAT-2 (Lopes et al., 2017), PlanetScope (Radkowski et al., 2021) or WorldView-2 (Adamo et al.,
2020) images are encountered. SAR images are once again mainly used in support of optical images (i.e., as
gap-free data). A single paper uses only SAR images from ENVISAT, ERS and ALOS PALSAR to discriminate
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several types of grasslands based on potential species richness (Barrett et al., 2014).

Extent of grassland surfaces and their trend is also assessed by means of satellite time series. The trend
of surfaces can be assessed over different grassland classes, such as permanent and temporary grassland
or improved, semi-improved, and unimproved (Hubert-Moy et al., 2019; O’Hara et al., 2021; Smit et al.,
2008). Another approach consists of differentiation of grassland versus other vegetation types, mainly crops
or afforestation (Nicula, 2019; Esch et al., 2014; Kloucek et al., 2018; Parente et al., 2019; Pazúr et al., 2021).
Spectral reflectance values or vegetation indices (NDVI, EVI) are mainly used as input for classifiers. Random
Forests or Support Vector Machines are employed. RADARSAT-2 (Dusseux et al., 2014a), Sentinel-1 (O’Hara
et al., 2021; Samrat et al., 2021; Spagnuolo et al., 2020) and ALOS PALSAR-2 (Spagnuolo et al., 2020) images
are also used alongside optical images, in each case improving the classification.

Some articles focus on the effects of drought on grasslands and correlate optical data with climatic data
over large areas. These work aim at deriving drought severity information (Abdel-Hamid et al., 2020; Kath et
al., 2019; Peratoner et al., 2021). In some cases, prediction on the probability and severity of fire are provided
(Cao et al., 2015; Chaivaranont et al., 2018). Large-scale analysis are predominant with the use of MODIS
sensor. Other works specifically observe the intra-annual phenology of grasslands. In particular, they attempt
to retrieve specific phenological stages such as beginning and end of growing season (Almeida-Ñauñay et al.,
2022; Mardian et al., 2021; Stendardi et al., 2019a). MODIS images are again the most widely used, from
which NDVI is commonly derived. Seasonality retrieval fitting algorithms like Breaks for Additive Seasonal
and Trend (BFAST) (Mardian et al., 2021) or Harmonic ANalysis of Time Series (HANTS) (Li et al., 2020b)
are traditionally employed. Finally, a very small number of papers address soil moisture (Asmuß et al., 2019;
Baghdadi et al., 2016) and irrigation performances (Abuzar et al., 2017; Reinfelds, 2011) in grasslands. Since
SAR data are sensitive to dielectric activity and thus moisture, half of the papers, although their number is
limited, exploit the correlation of backscatter and soil moisture, notably through inversion techniques.
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Table 1.1: Corpus of scientific publications related to remote sensing and grasslands. Seven main research
topics are defined and references are further classified by remote sensing data type. The order of presentation
of the topics follows their representation in the corpus.

Biomass assessment

Optical Ali et al., 2014, Ali et al., 2017b, An et al., 2013, Anaya et al., 2009, Anderson et al., 1993, Askari et al., 2019,
Baeza et al., 2010, Baghi and Oldeland, 2019, Barrachina et al., 2015, Carlos Marcelo et al., 2004, Bellini et al.,
2021, Bénié et al., 2005, Blanco et al., 2009, Boschetti et al., 2007, Brinkmann et al., 2011, Buddeberg et al.,
2021, Buono et al., 2010, Chen et al., 2011, Chen et al., 2014, Chen et al., 2021, Chi et al., 2018, Cimbelli
and Vitale, 2017, Clementini et al., 2020, Courault et al., 2010, Cui et al., 2012, Dara et al., 2020, Ding et al.,
2017, Diouf et al., 2015, Donald et al., 2010, Donald et al., 2013, Dube and Pickup, 2001, Dusseux et al., 2015,
Edirisinghe et al., 2011, Edirisinghe et al., 2012, Eisfelder et al., 2017, Everitt et al., 1989, Fan et al., 2010,
Fassnacht et al., 2018, Feng and Zhao, 2011, Feng et al., 2017, Fern et al., 2018, Fernández-Habas et al., 2021,
Friedl et al., 1994, Fu et al., 2014, Gaffney et al., 2018, Gao et al., 2013, Gao et al., 2016, Grant et al., 2013, Gu
et al., 2013, Guerini Filho et al., 2019, Guido et al., 2014, Guo et al., 2000a, Guo et al., 2012, Guo et al., 2019,
Gutiérrez-Guzmán et al., 2017, Hall et al., 2010, Hardy et al., 2021, He et al., 2014, He et al., 2019, Hill et al.,
2004, Ikeda et al., 1999, Irisarri et al., 2012, Jackson and Prince, 2016, Jansen et al., 2018, Jia et al., 2015, Jia
et al., 2018, Jiang et al., 2015, Jianlong et al., 1998, Jin et al., 2014, Jin et al., 2019, Jobbágy et al., 2002, John
et al., 2018, Justice and Hiernaux, 1986, Kawamura et al., 2005b, Kawamura et al., 2005a, Kogan et al., 2004,
Lei et al., 2020, Leimgruber et al., 2001, Li et al., 2013b, Li et al., 2013a, Li et al., 2016, Liang et al., 2016, Liu
et al., 2015, Liu et al., 2019, Liu et al., 2020b, Long et al., 2010, Luo et al., 2014, Ma et al., 2019, Magiera
et al., 2017, Mao et al., 2014, Marsett et al., 2006, Marwaha et al., 2020, Maselli et al., 2013, Meng et al., 2017,
Meshesha et al., 2020, Moreau et al., 2003, Motta et al., 2021, Munyati and Makgale, 2009, Myrgiotis et al.,
2021, Na et al., 2018, Numata et al., 2007, Otgonbayar et al., 2019, Palmer et al., 2010, Paruelo et al., 2000,
Paudel and Andersen, 2010, Piao et al., 2007, Piñeiro et al., 2005, Porter et al., 2014, Punalekar et al., 2018,
Qamer et al., 2016, Qin et al., 2021, Quan et al., 2017, Ramoelo et al., 2015a, Ramoelo et al., 2015b, Reeves
et al., 2001, Reeves and Baggett, 2014, Ren and Feng, 2015, Ricotta et al., 2003, Robinson et al., 2019, Röder
et al., 2008, Rossini et al., 2012, Roumiguié et al., 2015, Roumiguié et al., 2017, Rufin et al., 2015, Sankey
et al., 2009, Schino et al., 2003, Schucknecht et al., 2017, Schwieder et al., 2020, Seaquist et al., 2003, Serrano
et al., 2021, Si et al., 2012, Sibanda et al., 2016, Sibanda et al., 2017, Silverman et al., 2019, Smith et al., 2011,
Sun et al., 2013, Sun et al., 2017, Sun et al., 2019, Tan et al., 2010, Tang et al., 2014, Tiscornia et al., 2019,
Todd et al., 1998, Tong and He, 2017, Tsalyuk et al., 2015, Tucker et al., 1985, Ullah et al., 2012, Vescovo and
Gianelle, 2008, Wang et al., 2016, Wang et al., 2017b, Wang et al., 2019e, Wang et al., 2019a, Wang et al.,
2020, Wehlage et al., 2016, Wei et al., 2019, Wu et al., 2008, Wu, 2012, Wu et al., 2014, Wylie et al., 1991,
Wylie et al., 2002, Wylie et al., 2016, Xia et al., 2014, Xie et al., 2009, Xing et al., 2010, Xiong et al., 2019, Xu
et al., 2007, Xu et al., 2013, Xu et al., 2016, Xu et al., 2018, Xu et al., 2019b, Yang et al., 1998, Yang et al., 2009,
Yang et al., 2012, Yang et al., 2015, Yang et al., 2017, Yang et al., 2018, Yang et al., 2019a, Yin et al., 2014, Yin
et al., 2018, Yin et al., 2020, You et al., 2019, Yu et al., 2018, Yu et al., 2019, Zeng et al., 2019, Zhang et al.,
2014a, Zhang et al., 2014b, Zhang et al., 2016, Zhang et al., 2017, Zhang et al., 2018, Zhao et al., 2014, Zhao
et al., 2019, Zheng et al., 2020, Zhou et al., 2014a, Zhou et al., 2014b, Zhou et al., 2017a, Zhou et al., 2017b,
Zhu et al., 2019

SAR Ali et al., 2017a, Crabbe et al., 2019, Grant et al., 2015, Yang et al., 2021
Optical+SAR Ali et al., 2016, Frolking et al., 2005, Holtgrave et al., 2020, Nickmilder et al., 2021, O’Hara et al., 2021, Raab

et al., 2020, Wang et al., 2019c
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Management practices

Optical Asam et al., 2015, Bastin et al., 2012, Dusseux et al., 2014b, Dusseux et al., 2014c, Estel et al., 2018, Franke
et al., 2012, Gómez-Giménez et al., 2017, Griffiths et al., 2019, Guo et al., 2000a, Guo et al., 2003, Guo et al.,
2004, Hadj Said et al., 2011, Halabuk et al., 2015, Kolecka et al., 2018, Kurtz et al., 2010, Lopes et al., 2017,
Myrgiotis et al., 2021, Reinermann et al., 2021, Rossi et al., 2018, Rossi et al., 2019, Sibanda et al., 2016,
Sibanda et al., 2017, Stumpf et al., 2020, Schwieder et al., 2021

SAR Chiboub et al., 2019, De Vroey et al., 2021a, Kavats et al., 2019, Schuster et al., 2011, Siegmund et al., 2016,
Tamm et al., 2016, Taravat et al., 2019, Voormansik et al., 2013, Voormansik et al., 2016, Zalite et al., 2014,
Zalite et al., 2016

Optical+SAR D’Andrimont et al., 2018, Dabrowska-Zielinska et al., 2017, De Vroey et al., 2021b, Lobert et al., 2021, O’Hara
et al., 2021, Stendardi et al., 2019a, Voormansik et al., 2020, Wesemeyer et al., 2021, Zhou et al., 2021, Komis-
arenko et al., 2022

Species differentiation

Optical Adamo et al., 2020, Bekkema and Eleveld, 2018, Fazzini et al., 2021, Hubert-Moy et al., 2019, Lopes et al.,
2017, Mansour et al., 2016, Radkowski et al., 2021, Tarantino et al., 2021, Toivonen et al., 2003, Xu et al.,
2019a, Zongyao and Yongfei, 2013

SAR Barrett et al., 2014
Optical+SAR Fauvel et al., 2020, Schuster et al., 2015

Surfaces and degradation

Optical Nicula, 2019, Esch et al., 2014, Hubert-Moy et al., 2019, Kloucek et al., 2018, Kurtz et al., 2010, Munyati and
Makgale, 2009, Parente et al., 2019, Pazúr et al., 2021, Smit et al., 2008

SAR -
Optical+SAR Dusseux et al., 2014a, O’Hara et al., 2021, Samrat et al., 2021, Spagnuolo et al., 2020

Drought effects

Optical Cao et al., 2015, Kath et al., 2019, Li et al., 2017, Peratoner et al., 2021, Wang et al., 2019d
SAR Abdel-Hamid et al., 2020
Optical+SAR Chaivaranont et al., 2018

Phenology characterization

Optical Almeida-Ñauñay et al., 2022, Lara and Gandini, 2016, Fontana et al., 2008, Li et al., 2020b, Mardian et al.,
2021

SAR -
Optical+SAR Stendardi et al., 2019a

Soil moisture and irrigation

Optical Abuzar et al., 2017, Reinfelds, 2011
SAR Asmuß et al., 2019
Optical+SAR Baghdadi et al., 2016
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1.3 Problem statement and objectives

The vast grassland surfaces as well as the growing recognition of the ecosystem services they provide have
revealed urgent needs for their conservation and sustainable management. Grasslands serve major functions
in climate change mitigation, particularly through global carbon storage and sequestration. The extent of
the grassland biome has evolved greatly through history with abiotic factors such as climate, mostly at the
interface between desert and forest areas. Beyond climate change, grasslands have decreased considerably
as a result of human activities, such as conversion to impervious surfaces or agricultural activities. This de-
cline has been reported by many works which have observed increasing surface losses. The conversion of
grasslands to croplands compromises ecosystem services with harmful effects on soil, water, and air quality.
Besides the impact of grassland conversion, the overexploitation of grassland through overgrazing, frequent
mowing, and depletion of seeded species lead to a significant decrease in their capacity to provide multiple
ecosystem services: lower captured CO2 through a decrease in biomass, alteration of biodiversity through a
decrease in floral diversity, soil impoverishment, and threats to wildlife corridors, among others. Accordingly,
although monitoring crop management has until recently received more attention, new governmental efforts
are foreseen for the conservation of grasslands through promoting land preservation, grassland friendly poli-
cies on land use, and sustainable management efforts.

For instance, in Europe, the first pillar of the Common Agricultural Policy (CAP) and especially its Green-
ing component are aiming to maintain highly valued ecological surfaces such as grasslands. The component
Greening is intended, among others, to protect permanent grassland areas and prevent their conversion to
other surfaces such as crops, by means of financial support. Permanent grasslands refer to land used contin-
uously to grow herbaceous fodder, forage, or energy purpose crops. They are not part of crop rotation on
the holding and occupy the land for five years or longer. Therefore, permanent grasslands are often linked
to grasslands that provide higher ecosystemic services with a positive impact on carbon sequestration and
biodiversity.

Monitoring management practices is essential to ensure grassland conservation and promote sustainable
management. The regulation of grassland exploitation intensity and management calendars have proven to
be effective measures to preserve or restore the environmental quality of grasslands. Despite growing interest,
monitoring the management of grasslands poses many challenges due to their great agronomic diversity and
the multitude of management practices to which they are subject. Numerous technical acts are performed on
grasslands such as grazing, mowing, and ploughing. They have a direct but varying impact on above-ground
or root biomass and are the underlying factor in grassland degradation. Detecting a high mowing frequency
can, for instance, hint at frequent fertilizer inputs synonymous with a negative impact on various ecosys-
tem services. Similarly, the precocity of technical acts during the growing season, while often beneficial for
grass production throughout the year, affects ecosystem services. Thus, information that describes the nature
and quantity of technical acts performed can provide useful information to predict the quality of rendered
ecosystem services. Despite the acknowledged importance of management practices, large-scale information
is currently not available reporting on the frequency and nature of technical acts.

Satellite remote sensing appears to be a suitable tool for efficient grassland monitoring. In particular,
satellite image time series allow synoptic and regular analysis. As demonstrated by the numerous works ex-
isting in the literature, research on grassland monitoring by using satellite images is rich and growing. Recent
data acquired from the Sentinel satellites in the framework of the Copernicus programme further highlight
the interest of satellite images for grassland monitoring. Sentinels offer high spatial and temporal resolutions,
complementary optical and Synthetic Aperture Radar (SAR) images, and free and large-scale data. Combined,
these characteristics bring new opportunities for monitoring grassland vegetation conditions. Consequently,
the research conducted in this thesis aims at investigating the capabilities and the synergy of recent
Sentinel time series for continuous grassland monitoring. Specifically, the thesis focuses on develop-
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ing methods for detecting grassland management practices from complementary optical and SAR
multivariate image time series.

The retrieval of relevant signal patterns associated with grassland management practices from multivari-
ate time series is challenging. As previously mentioned, grasslands exhibit highly variable phenologies, unlike
crops or forests, for example, due to the multitude of agronomic species. Hence, farmers manage each grass-
land with different calendars and frequency through nutrient management, water management, or different
types of practice. Besides the challenge of the diversity of management practices, their spatio-temporal detec-
tions imply important temporal constraints. The accurate management practices detection requires frequent
and regular satellite acquisitions. Consequently, the exploitation of low temporal resolution time series can
lead to substantial errors. This is particularly caused by rapid changes in the state of the grassland vegetation.
For instance, under favorable climatic conditions or with the help of nitrogenous fertilizers, the vegetation
can rapidly recover after mowing or grazing.

To illustrate the rapid regrowth of grass cover, Figure 1.14 shows five consecutive cloudless Sentinel-2
images acquired over a ryegrass parcel. A complete regrowth of the grass cover is visible on June 9th within
seven days after the first mowing occurring on June 2nd. As observed, the grass cover on June 9th is similar
to May 27th, prior to mowing. As a consequence, if the image of June 2nd had been missing, the mowing
could not have been detected. Furthermore, after the complete regrowth on June 9th, a second mowing takes
place ten days later on June 19th. As in the previous example, if the image of June 9th had been missing,
the second mowing would have been missed considering the already low grass cover on June 2nd. These
examples emphasize the rapid regrowth of grasslands and the short temporal window during which they can
be observed. Therefore, dense temporal sampling is mandatory to monitor changes in grassland vegetation
status associated with management practices.

Figure 1.14: Consecutive Sentinel-2 images illustrating the rapid regrowth of grassland surfaces.

In terms of temporal resolution, Sentinel satellites offer unprecedented opportunities. Especially, weather-
independent SAR sensors enable regular acquisitions in compliance with grassland rapid regrowth. Despite
its high temporal revisit, the exploitation of SAR time series is not straightforward. SAR images suffer from
inherent speckle noise and important signal fluctuations, mainly due to the climate conditions during ac-
quisition. These fluctuations can be confused with changes in the state of vegetation. For this reason, the
use of SAR time series in the context of grassland monitoring is less often observed, as previously reported
in favor of optical data. As it is well-known, optical time series provide relevant information that describes
the evolution of vegetation cover (as seen in Figure 1.14). Simple yet effective vegetation indexes, such as
the Normalized Difference Vegetation Index (NDVI), are widely exploited and have shown some interest in
detecting management practices. However, the observed temporal resolution of optical data due to frequent
and persistent cloud cover still remains an important limitation. NDVI time series consequently suffer from
missing data, which, as previously seen, will prevent monitoring of management practices. Large temporal
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data gaps can last from weeks to months and may occur at key moments involving important vegetation
changes (e.g., during growth or senescence, or even at harvest time). The reconstruction of optical indices can
be seen as a mandatory step to allow for continuous monitoring of grassland surfaces. Accordingly, the first
goal of this thesis is the reconstruction of dense NDVI time series by exploiting the synergy of both
optical and SAR Sentinels.

Besides the requirement of dense temporal time series, the analysis scale at which the detection of prac-
tices is possible also needs to be addressed. The finer pixel-scale analysis involves high computational costs
and is more prone to noise. As management practices are assumed to be performed at the parcel scale, the
suggestion is made to work at the parcel scale. In addition, large-scale information on the location of grass-
lands is available in a growing number of countries through various agricultural policies, as it is the case in
France. However, it was observed that grassland can be managed at a finer scale, lying between the pixel-
and parcel-scale. With additionally various lengths and intensities impacts of management practices on the
vegetation, this intermediate scale seems to be necessary to allow to reduce the uncertainties involved in
their detection. The second goal of this thesis is therefore to propose a methodology to detect grassland
management practices.

The joint exploitation of Sentinel-1 and Sentinel-2 data for grassland monitoring, which both permit a ad-
equate spatial resolution, thus appears promising. Nevertheless, the data proliferation raises new challenges.
The high dimension and the heterogeneous physical nature of the data, with various spatial, spectral and tem-
poral domains are among the aspects to be explored. Especially, among the few works exploiting Sentinel-1
and Sentinel-2 for grassland monitoring, the information from both satellites is generally individually pro-
cessed. The methodologies exploited are, as a result, specific to some grassland types, areas, or evolving
administrative constraints. At the same time, recent advances in computing resources and machine learning
algorithms have brought deep learning strategies to the forefront as suitable for dealing with the reported
challenges. Among others, the interests of deep learning methods for key considerations such as data mining,
large-scale processing, and reproducibility have been highlighted.

In this context, the main goal of the thesis is to develop methods that allow the continuous monitor-
ing of grasslands and the detection of their management practices from complementary Sentinel satellite
data. For this purpose, the thesis will: (i) employ advances in deep learning to develop a multi-source
methodology exploiting the synergy and capabilities of both Sentinel-1 and Sentinel-2 data sources.
Deep-based methods allow for early fusion of multi-modal data streams which is advantageous in view of the
heterogeneous dimensions of the data exploited herein. The developed methodology targets to regress mul-
tivariate SAR time series towards optical NDVI and proposes the incorporation of contextual knowledge to
reduce the impact of exogenous factors leading to SAR data variability. NDVI was chosen as an easily inter-
pretable and widely used variable. This choice also supports the potential use of the results in post-processing
that does not require expert knowledge of remote sensing; (ii) explore methods aiming at detecting veg-
etation status changes related to management practices on grasslands. The proposed methods, nec-
essarily unsupervised as reference data about management practices do not exist, will exploit the previously
obtained gap-free NDVI time series. Different strategies are compared, taking into account the heterogeneous
nature of grassland management practices.

1.4 Outline of the manuscript

The introduction proposed in this chapter focused on grasslands, their systemic diversity and associated
threats, and the different management practices they are subject to. Satellite remote sensing and relevant
works from the scientific literature have been presented.

Chapter 2 is devoted to the description of the reference and ancillary data used to define an experimental
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setup to meet the objectives of this manuscript. Sentinel-1 and 2 missions are briefly presented, and the
interest of exploiting both data types for grassland monitoring is illustrated. The pre-processing steps of
the different pertinent datasets are detailed. A first qualitative and quantitative evaluation of the different
satellite features is performed on several grassland datasets as well as on other vegetation types introduced
for comparison.

After having determined the strengths and weaknesses of optical and SAR features, Chapter 3 defines
the deep learning methodology, namely, Sentinels Regression for Vegetation Monitoring (SenRVM), allowing
to encompass the advantages of both active and passive sensors for grassland monitoring. The existing ap-
proaches used in the literature to obtain dense time series are reviewed. Classical deep-based architectures
and their relevance for the defined task are outlined. Subsequently, the new deep-based regression methodol-
ogy is detailed, which exploits Sentinel-1 and Sentinel-2 time series in order to recover NDVI from SAR-based
features.

Chapter 4 includes a in-depth analysis of the results obtained with the SenRVM approach. The analysis
will address common challenging aspects of both machine learning and Earth Observation data exploitation
(e.g., datasets, features, generalization capabilities). The benefits of the SenRVM approach to increase tem-
porally available observations are illustrated and compared on several types of vegetation. The impact of
spatio-temporal variations in the datasets is explored both in the learning process of SenRVM and on the
results. Relevance and importance of the selected satellite and ancillary features are assessed. Next, a com-
parison of the SenRVM approach with related and widely used methods is proposed for a gap-filling task
on short- and long-term data gaps. Lastly, further post-processing steps with the objective of introducing
possible improvements to the results are discussed.

The challenge of detecting management practices in grasslands is presented inChapter 5. A review of the
pertinent literature is first proposed. This allows to highlight the drawbacks of the existing approaches and
suggest improvements. In particular, a superpixel-scale approach is defined as an alternative to the pixel- and
parcel-based approaches. Comprehensive validation datasets are subsequently constructed. Different time
series change detection methods are defined to retrieve technical acts performed on grasslands. Methods are
compared and their sensitivity to different parameters is assessed. Finally, examples of applications to obtain
information describing the exploitation of grasslands are introduced.

Finally, conclusions and perspectives are presented in Chapter 6.
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2.1. STUDY AREAS

2.1 Study areas

The study areas are located in France, which had, in 2020, the largest extent of grasslands in Europe (Eurostat,
2021). The coverage of agricultural land amounted to 52% of the French metropolitan territory. Grasslands
in the broad sense (grass, fodder crops, and fallow land) covered 12.8 million hectares, i.e., approximately
45% of agricultural land. In other words, in 2020, nearly a quarter of the French metropolitan territory was
grasslands, greatly contributing in the production of agricultural goods (Agreste, 2021). Their monitoring
thus appears necessary, relating these important surfaces to ecosystemic and economic challenges.

Different study areas with distinct geographical contexts are selected. Several criteria are taken into
account for their selection such as the abundance of grasslands, data availability, or the topography as it
impacts both satellite acquisition and phenologies. The exact extent of the different areas is induced by the
division in tiles of satellite products, done for their latter distribution. This division is based on a commonly
used tiling system which is the Military Grid Reference System (MGRS).

The resulting study areas are divided in two groups. The first group corresponds to Mâcon and Toulouse
areas, described in Section 2.1.1, which are the primary study areas used in this work. Both areas are se-
lected for the further design and implementation of the experiments and the extensive analysis of the results.
The second group, described in Section 2.1.2, are additional sites covering large geographical surfaces, only
dedicated for further assessment in a few experiments.

2.1.1 Mâcon and Toulouse sites

These two areas are defined as the main study areas.

Mâcon area - T31TFM
This area is located in the East of France (purple area in Figure 2.1). The area is first defined by the extent
of the MGRS tile T31TFM. Agricultural season from October 2016 to October 2017 is studied, being the one
for which reference data describing the grasslands was available at the start of this work. Consequently, only
one of the two satellites composing the Sentinel-2 optical constellation is considered until June 2017. The full
capacity of the constellation is exploited once the Sentinel-2B satellite becomes operational. The study site
is therefore selected over a smaller area where overlapping swaths of two adjacent orbits are available. The
selected area allows an increased temporal resolution despite the momentary availability of only one satellite.
While Bourg-en-Bresse becomes the major city of the study area, the name of Mâcon is retained as the main
city of the original tile extent. The final area of 5, 328 km2 is depicted by a varied topography. The area is
characterized by a river valley on the Western side, hills and plateaus of the Jura mountains on the Eastern
side (Figure 2.1).

Toulouse area - T31TCJ/CH
This area, denoted as Toulouse, is located in the South-West of France (blue area in Figure 2.1) and straddles
two MGRS tiles, T31TCJ and T31TCH. The area covers 15, 120 km2. It is characterized by different landscapes
with an important topographic gradient. Lowlands with little topography are located in the Northern part,
whereas the Pyrenees mountains cover a vast Southern part of the area (Figure 2.1). For this area, the time
interval under consideration is from February 2017 to April 2018. Same exact time interval as for Mâcon
could not be considered, due to the temporary unavailability of Sentinel-1A data because of a change in the
acquisition plan of the relative orbits between October 2016 and February 2017. As for the Mâcon area, the
full capacity of the Sentinel-2 constellation is only available from the end of June 2017.
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2.1.2 Additional sites

Five Sentinel-2 tiles covering the French territory are further considered as additional areas. These areas are
proposed to assess the results obtained over the previous Mâcon and Toulouse sites. The additional sites
aim to validate the results on large scale areas with higher diversity. They will also allow us to assess the
generalization capacity of the proposed methods. The five tiles are regrouped in two distinct large areas,
namely theWestern- andNorthern-area. The firstWestern-area (cyan color in Figure 2.1) is located in theWest
of France, mainly in the Pays de la Loire region. This area of 26, 713 km2 contains parts of three contiguous
MRGS tile, namely T30TXS, T30TXT, T30TWT, covering respectively 7, 914 km2, 11, 746 km2 and 9, 098 km2.
The second Northern-area covers the city of Paris on the South-West and extends Northward (khaki area in
Figure 2.1). The area is 20, 107 km2. It regroups parts of the two T31UDQ and T31UEQMGRS tiles, respectively
12, 065 km2 and 9, 117 km2. The two additional areas are characterized by low topography but distinct climates
and therefore phenologies. In addition, the types of agricultural systems and grassland cultivated are also
different. The agricultural season ranging fromOctober 2018 to October 2019 is considered for both additional
areas, thus granting the full temporal resolution of the Sentinel-1 and 2 constellations.
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Figure 2.1: Location of the study areas Mâcon (purple) and Toulouse (blue), and the additional study sites
(Northern-area in brown and Western-area in cyan). Grasslands located in the study sites are colored accord-
ing to the four meta-classes described in Section 2.3.1.1

33



2.2. SATELLITE DATA

2.2 Satellite data

2.2.1 Sentinel-2 optical imagery

The twin satellites Sentinel-2A and Sentinel-2B, launched in 2015 and 2017 respectively, are carrying mul-
tispectral optical sensors (Drusch et al., 2012). Acquisitions have a swath of 290 km but are divided and
distributed according to the MRGS tiling system (Section 2.1.1) in 110 km tiles. Thirteen spectral bands are
available with different spatial resolutions. Bands at 10 m and 20 m spatial resolutions are mainly used for
terrestrial applications and the three bands acquired at 60 m spatial resolution are mostly used for atmo-
spheric corrections or related applications (Table 2.1). Both satellites have the same orbit but are phased at
180°, permitting a temporal resolution of 5 days at the equator and lower at higher latitudes. Nevertheless,
temporal revisit is only theoretical. The cloud cover more or less important according to the geographical
areas, strongly degrades the data availability (Sudmanns et al., 2020a). Since the beginning of operations and
until end of 2020, the Sentinel-2 constellation has made available about 14×106 gigabyte (GB) of data covering
the globe and freely accessible (ESA, 2021a).

Table 2.1: Spectral band ranges and spatial resolutions of the Sentinel-2 constellationMultispectral Instrument
(MSI) sensors. Bold spectral bands (B2, B3, B4 and B8) are the ones used in this work.

Band Number Band Description Wavelength range (nm) Spatial Resolution (m)

B1 Coastal aerosol 443 - 453 60
B2 Blue 458 - 523 10
B3 Green 543 - 578 10
B4 Red 650 - 680 10
B5 Vegetation Red Edge 698 - 713 20
B6 Vegetation Red Edge 733 - 748 20
B7 Vegetation Red Edge 773 - 793 20
B8 NIR 785 - 900 10
B8a Vegetation Red Edge 855 - 875 20
B9 Water vapor 935 - 955 60
B10 SWIR - Cirrus 1360 - 1390 60
B11 SWIR 1565 - 1655 20
B12 SWIR 2100 - 2280 20

Sentinel-2 images are mainly distributed according to two levels of pre-processing. The first level of
processing provides geometric correction (Level-1), allowing to take into account several possible distortions
related to the acquisition angle, the orbit, themotion of the satellite or Earth’s rotation and terrain topography.
Images are further geo-referenced providing accurate location to each pixel. However, pixel values of Level-1
do not take into account the atmosphere’s properties at the time of acquisition or the nature of the observed
target. The atmospheric properties are not constant in time, and corrections may be necessary.

For some applications that do not require an evolving process to be monitored continuously, such as
land cover classification, these further corrections may be optional. For the temporal analysis of physical
phenomena such as grassland cover dynamic, they are of utmost importance. It will allow a comparison of the
surface, independently from exogenous factors such as atmospheric absorption or scattering. The correction
step permits to convert Sentinel-2 Top Of Atmosphere (TOA) reflectance including the atmospheric effect
provided by Level-1 into Bottom Of Atmosphere (BOA), describing the corrected reflectance of the observed
surface (Level-2). Several operational processing chains enable to retrieve Level-2 images such as Sen2Cor
(Main-Knorn et al., 2017), FMask (Zhu et al., 2015) or the MACCS-ATCOR joint algorithm (MAJA, Hagolle
et al., 2015). The latter was developed as a joint effort of the Centre National des Études Spatiales (CNES) and
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the Deutsches Zentrum für Luft- und Raumfahrt (DLR). Being distributed by several French data providers
and having reported higher accuracies compared to the other approaches (Baetens et al., 2019; Doxani et al.,
2018), the Sentinel-2 Level-2 products produced by MAJA have been adopted.

Table 2.2 provides the number of Level-2 Sentinel-2 images considered over the different study areas,
ranging from 53 to 80. In Mâcon (T31TFM) and Toulouse (T31TCJ/CH), the initial availability of only one of
the two satellites reduces the number of exploited images.

Table 2.2: Description of Sentinel-2 images, first and last acquisitions dates for the study areas.

Area name Tile Images First date Last Date

Mâcon T31TFM 53 22-Oct-2016 12-Oct-2017
Toulouse T31TCJ/CH 73 15-Feb-2017 16-Apr-2018

Western-area
T30TXS 80 1-Oct-2018 31-Oct-2019
T30TXT 80 1-Oct-2018 31-Oct-2019
T30TWT 79 4-Oct-2018 29-Oct-2019

Northern-area T31UDQ 79 3-Oct-2018 28-Oct-2019
T31UEQ 79 3-Oct-2018 28-Oct-2019

2.2.2 Masks: clouds & shadow, snow

The MAJA chain producing Level-2 Sentinel-2 images includes a first step that identifies and locates clouds
and their shadows. This detection is done by both a mono- and multi-temporal analysis of blue and atmo-
spheric reflectance bands (Hagolle et al., 2015). In addition, a geophysical mask is also provided that contains
information on snow-covered areas (Gascoin et al., 2019). Cloud & shadows and snow masks are available at
the same spatial resolution as the reflectance images (10 m).

Cloud & shadow masks are available for each image of the time series. The temporal distribution of the
cloud cover can thus be extracted. Considering all pixels belonging to grasslands (retrieved from the RPG,
see Section 2.3.1.1), a cloud-cover percentage is calculated. This percentage is reported for each study area
in Table 2.3. This cloud-cover percentage allows us to observe that for all tiles over roughly one-year time
intervals, more than half of the acquisitions made by Sentinel-2 could be considered as cloudy. For the two
main study areas, only about 26 and 24 images, for Mâcon and Toulouse respectively, were cloud-free over a
grassland pixel. The percentage of cloud cover even reaches 72% over the T31UDQ tile near Paris, where only
22 images were available on average over a complete year. These cloud cover percentages illustrate that the
nominal 5-day temporal resolution of the Sentinel-2 constellation is only theoretical, largely degraded over
the study areas.

Table 2.3: Cloud cover percentages of optical imagery acquired over the different study areas. The percentage
is computed by considering all pixels over grasslands (Table 2.6) during the studied time intervals.

Mâcon Toulouse Western-area Northern-area
T31TFM T31TCJ/CH T30TXS T30TXT T30TWT T31UDQ T31UEQ

Total cloud-cover percentage 51 66 58 60 63 72 67of grassland pixels (%)

Furthermore, the cloud cover is indeed not uniformly distributed during the season. Figure 2.2 illustrates
this cloud cover percentage per date, for both Mâcon and Toulouse areas. As expected, cloud-cover is higher
in winter months. Several months over the Toulouse area are depicted by very few valid Sentinel-2 obser-
vations. The 66% of cloud-cover percentage observed for the Sentinel-2 time series over Toulouse does not

35



2.2. SATELLITE DATA

inform on lasting cloud cover that can further prevent acquisition over longer time intervals. It can also be
observed that cloud cover occurs during the active vegetation period of grasslands, in spring or summer. Es-
pecially, successive cloudy dates are numerous as it is the case end of July for both Mâcon and Toulouse areas.
Therefore, the characterization of the phenological evolution of the vegetation surfaces from the resulting
times series can be obstructed, even at key time intervals such as July.

The efficiency of the masks may prove to be essential to discard acquisitions that do not provide relevant
information and may pollute the time series. Indeed, over- or under-detection of invalid pixels can convey
wrong information to be used in subsequent time series exploitation. A valid observation can be discarded,
while an invalid observation can be included in the analysis. While the task of constructing these masks
is complex and not addressed in this work, the potential impact of mask errors will be briefly discussed in
Chapter 4 and 5.

Figure 2.2: Percentage of pixels from the grassland datasets (Table 2.6) detected as invalid by the cloud &
shadow masks. Each acquisition date of Mâcon and Toulouse areas are considered.

2.2.3 Sentinel-1 SAR imagery

Sentinel-1A & 1B are C-band (wavelength of 5.6 cm) SAR satellites launched in 2014 and 2016 and orbiting
on the same plane (Potin et al., 2019). The Sentinel-1 constellation offers a 6 days temporal resolution at the
equator, in one orbit direction (ascending or descending). Since the orbit track spacing varies with latitude,
the revisit rate is greater at higher latitudes than at the equator. Available acquisitions also vary with the
acquisition plan of the satellites. As previously stated in Section 1.2.1.2, active sensors such as the one carried
by Sentinel-1 can acquire images regardless of illumination conditions. Images are thus available from both
ascending and descending orbits. Four imaging modes are available: Interferometric Wide Swath (IW), Extra
Wide Swath (EW), Strip Map (SM) and Wave (WV). Over land surfaces, the IW is the nominal imaging mode
of Sentinel-1. The IW mode uses the Terrain Observation with Progressive Scan (TOPS) technique helping to
achieve a homogeneous image quality throughout the 250 km swath. The swath is subdivided in three sub-
swaths (IW1, IW2, IW3) each composed of about ten bursts. The sensors have a dual-polarization capability
with vertical transmitted and receive (VV) or vertical transmitted and horizontal received (VH) polarizations
bands.

For SAR active sensors, the spatial resolution is two-fold. Resolution as referred in Table 2.4 defines the
minimum distance at which the sensor can discriminate between two closely spaced scatterers that have
approximately responses of equal strength. Pixel spacing on the other hand denotes the size of the pixels that
have been sampled (i.e., aggregating the individuals scatterers) throughout the scene and corresponds to the
pixel size distributed by the SAR products.

Single Look Complex (SLC) and Ground Range Detected (GRD) are the two main types of products avail-
able for Sentinel-1 data, for which the important characteristics are reported in Table 2.4.
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Table 2.4: Sentinel-1 Interferometric Wide (IW) swath mode SLC and GRD product characteristics. rg stands
for range and az for azimuth. ENL stands for Equivalent Number of Looks.

Product Wavelenght Frequency Swath Incidence angle Polarizations Resolution
(rg×az)

Pixel spacing
(rg×az) ENL

IW-SLC 5.6 cm 5.405 GHz 250 km 29.1° - 46.0° VV, VH 3.1 × 22 m 2.3 × 14.1 m 1
IW-GRD 20 × 22 m 10 × 10 m 4.4

SLC product consists of focused (i.e., processing of azimuth and range signals to form an image) SAR data,
geo-referenced using orbit and attitude data from the satellite. SLC products are in slant-range geometry,
defined as the line-of-sight from the sensor to each reflecting object. The full spatial resolution is provided
(single look) and complex signals (real and imaginary parts) preserving the phase information are available.

GRD product also consists of focused SAR data but only provides backscatter magnitude and the phase
information is lost. GRD products are projected to ground range, i.e., onto the ellipsoid of the Earth and multi-
looked (averaging in the spatial domain). Consequently, GRD products of Sentinel-1 have approximately
square pixel spacing (10 m). While the speckle effect is reduced by multi-looking from which the Equivalent
Number of Looks (ENL) is calculated, resolution and pixel spacing are lower than for SLC products.

Since amplitude and phase are distinct information, both SLC and GRD products of Sentinel-1 are ex-
ploited. Table 2.5 shows the number of images for ascending and descending orbits, gathered for the different
study areas. The agricultural seasons considered with Sentinel-1 imagery are the same as for optical imagery
(Table2.2).

Table 2.5: Description of Sentinel-1 acquisitions used over the study areas. For each area, both GRD and SLC
products are exploited.

Area name Tile Asc. orbits images Des. orbits images Total images SLC / GRD

Mâcon T31TFM 60 60 120 ✓/✓
Toulouse T31TCJ/CH 71 71 142 ✓/✓

Western-area
T30TXS 69 69 138 ✓/✓
T30TXT 69 69 138 ✓/✓
T30TWT 69 69 138 ✓/✓

Northern-area T31UDQ 64 64 128 ✓/✓
T31UEQ 64 64 128 ✓/✓

2.3 Reference and ancillary datasets

2.3.1 Land Parcel Identification System

Within the framework of the Common Agricultural Policy (CAP), the Land Parcel Identification System (LPIS)
is a core component of the Integrated Administration and Control System used for the payment of subsidies.
The LPIS spatially registers agricultural parcels with several attributes such as its size, precise location, and a
unique identifier. In particular, farmers are asked each year to provide the main crop grown on their parcel,
which is associated to a certain code. The Registre Parcellaire Graphique (RPG), the French LPIS, is produced
annually and made available after anonymization by the Institut National de l’Information Géographique et
Forestière (IGN) on the basis of data produced by the Agence des Services et des Paiements (ASP).
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2.3.1.1 Grasslands

The RPG defines several codes for grassland or fodder crops associated to grassland, i.e., that have a similar
cover and provisioning service. The differences between grassland types are made mainly according to two
criteria, the agronomic criterion and the temporal criterion, which is defined by the time since the grassland
has not been converted to another crop. Four grassland meta-classes can be defined from administrative
declarations, each meta-class regrouping several declarative codes (see Appendix 6.2 for details):

• Permanent grassland or pasture (PM) refers to parcels with predominantly herbaceous cover in
place for five or more years. Three cover types are further differentiated: (i) permanent grasslands,
that are grasslands with little or no woody forage resource; (ii) grasslands which occur in long rotation
schemes but are in place since at least five years; (iii) that are herbaceous pastoral areas (such as moors
or summer and alpine pastures) where grass is the main cover.
RPG codes: PPH, PRL, SPH.

• Temporary grassy areas (TG) are grasslands seeded since less than five years, composed mainly of
grass cover such as ryegrass, orchardgrass, borage, bromegrass, or fescue in pure composition or in
mixtures.
RPG codes: BRH, BRO, CRA, DTY, FET, FLO, PAT, PCL, RGA, XFE, GFP, MLG, PTR.

• Fallow land (FA) are land left without sowing and where the grassy resource is present. A distinction
of several fallow land types is made trough the duration of its presence.
RPG codes: J5M, J6P, J6S.

• Forage legumes (FL) are assimilated to highly productive grasslands with similar management prac-
tices, including agronomic varieties such as alfalfa, clover, or sainfoin.
RPG codes: FFO, JOS, LFH, LFP, LUZ, MEL, PFH, PFP, SAI, SER, TRE, VES.

While the fallow land (FA) and forage legumes (FL) meta-classes have clear agronomic distinctions, the
two meta-classes of permanent (PM) and temporary (TG) grasslands may share some similarities. In theory,
TG can be associated with more productive varieties and consequently increased exploitation in contrast to
PM that are more related to extensive farming. Thus different phenologies should be observed on both meta-
classes. Nevertheless, RPG codes related to one or the other meta-classes are solely distinguished based on the
length of time the grassland has been established (i.e., more or less than five years). While older grasslands
(PM) are eligible to certain subsidies, this implies certain constraints. For example, it has been noticed that
the ratio of permanent grassland must be maintained within the framework of the CAP. As a result, some
temporary grasslands older than five years are not declared as permanent to alleviate the constraints on
their exploitation. The RPG codes associated with permanent and temporary grasslands, both of which are
the predominantly reported grassland areas, therefore do not allow a strict distinction of agronomic type or
associated management practices.

The four grassland meta-classes constitute the further exploited grassland dataset. Grassland locations
for the selected RPG codes are subsequently retrieved from the RPG. Figure 2.1 shows the description of
grassland parcels extracted from the RPG for Mâcon and Toulouse areas as well as for the two Western- and
Norther-areas. Table 2.6 reports the different grassland datasets obtained from the RPG for the seven areas. A
total of 284,881 parcels are extracted covering 12,056 km2 of grasslands. The sizes of the parcels are relatively
similar among the areas, except for Toulouse, where very large pasture parcels are found in the Pyrenees.
Permanent grasslands and pastures constitute approximately 75% of the grasslands in the Mâcon area. The
remaining grasslands are mostly temporary grasslands with a very low number of fallow lands and forage
legumes. These are more prevalent in the Toulouse area, accounting for about 25% of the surface area, with a
consequently reduced number of permanent grasslands and pastures.
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Table 2.6: Description of grassland datasets for the different study areas retrieved from the RPG. Information
about grassland surfaces and their corresponding parcel sizes is provided. The proportion of different grass-
land types per area is visually given according to four main grasslands meta-classes defined from the RPG.
PM= permanent grassland or pasture; TG= temporary grassy area; FA= fallow land; FL= forage legumes.

Tile Grasslands Total grasslands Parcels size (ha) Meta-classes
parcels surface (km2) Min Max Mean Median

- Main areas
T31TFM 27,832 1,275 0.89 87.32 4.58 3.22

T31TCJ/CH 50,103 2,758 0.88 1,733 5.5 2.66

- Add. areas
T30TXS 52,352 1,985 0.88 240.8 3.79 2.8
T30TXT 84,757 3,254 0.87 124.55 3.84 2.92
T30TWT 43,559 1,647 0.88 159.26 3.78 2.78
T31UDQ 14,279 583 0.3 92.14 4.08 2.71
T31UEQ 11,999 554 0.91 70.4 4.62 3.04

2.3.1.2 Further vegetation surfaces

Monitoring the status and evolution of vegetation surfaces are not solely required for grassland areas. Ac-
cordingly, the methodologies proposed in this work aiming the reconstruction of dense time series are studied
on other vegetation data sets. In addition to the grassland datasets, two other common vegetation classes are
studied for both Mâcon and Toulouse areas. Two additional datasets, as for grasslands, are subsequently
constructed (see Appendix 6.2 for details):

• The crops dataset, which is composed of the three major cereals cultivated throughout Mâcon and
Toulouse areas: maize, winter wheat and winter barley.

• The forests dataset, that includes different species of closed-canopy deciduous and coniferous forests.
The resulting datasets contain 11 forest subclasses for both studied areas.

Crops have more pronounced phenologies than grasslands, generally modeled by a logistic function during
growth, a plateau, and a single decrease at harvest (Zhang et al., 2003; Beck et al., 2006; Salinero-Delgado
et al., 2022). Forests, apart in silviculture schemes, and abrupt changes such as fires, are not influenced by
human activities. Therefore, they have relatively stable phenologies throughout the season, depending on the
deciduous or evergreen coniferous species for example. Depicted by different phenologies, the study of crops
and forests alongside grasslands will be proposed in experiments of Chapter 4.

Polygons describing crop parcel boundaries are, likewise grasslands retrieved from the RPG. Concerning
forests, the French database BD FORET (IGN, 2021) is used. It delineates forest areas and provides semantic
information on the dominant species. For this database, only polygons having sizes ranging from 4 to 50
hectares are considered. This consideration permits to balance the size of the forest polygons with respect
to the grassland and crop ones. Information about crop and forest datasets with a recall about grassland for
comparison, are given for Mâcon and Toulouse in Table 2.7.

Besides taking into account the three vegetation classes datasets separately, a supplementary multi-class
dataset is constructed merging the three (grassland, crops and forest) vegetation datasets. The total number
of parcels of the two multi-class datasets constructed for Mâcon and Toulouse areas is given in Table 2.7
(Total polygons). The multi-class datasets will help to assess the generalization performances of the proposed
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methodology. It will also support to investigate possible improvements regarding the use of larger datasets
as reference data.

Table 2.7: Spatial statistics for grassland, crops, and forest polygons, which are obtained for Mâcon and
Toulouse areas. The subsequent additional merging into multi-class datasets results in a total number of
polygons of 46, 001 and 98, 203 for Mâcon and Toulouse, respectively.

Area Class Polygons Total surface Parcels size (ha) Total
(km2) Min Max Mean Median polygons

Mâcon
Grasslands 27,832 1,274.9 0.89 87.32 4.58 3.22

46,001Crops 12,557 594.9 0.88 52.02 4.74 3.53
Forests 5,612 579.2 3.01 49.89 10.33 6.84

Toulouse
Grasslands 50,103 2,758 0.88 1,733 5.5 2.66

98,203Crops 34,504 1,870.4 0.89 82.06 5.42 3.82
Forests 13,596 1,177.4 3.01 39.79 8.66 6.03

2.3.2 Ancillary data

Non-Agricultural Surfaces (SNA)
Grasslands often contain non-agricultural elements within the boundaries extracted from the RPG. In fact,
grasslands are often located in areas less suitable for crops, such as mountainous areas, parcels with limited
access or complex shapes. These non-agricultural elements are not associated with the grassland phenology
and can lead tomixed pixels. Mixed pixels are characterized by distinct surfaces andmixed spectral signatures.
Non-agricultural elements regroup several surfaces that can be artificial (roads, paths, buildings,...), natural
vegetation (trees, forests, brushes,...), or natural non-vegetation (ponds, rock formations,...).

Some of these elements are informed by the farmers during the CAP declaration and are later post-
processed and complemented by IGN. The dataset Non Agricultural Areas (Surfaces Non-Agricoles, referred
to in the following as SNA) is gathered for each study area and used to locate the non-agricultural surfaces
within the RPG parcels. These elements are subsequently excluded from the grassland parcel boundaries.
This greatly reduces the potential mixed pixels.

Figure 2.3 illustrates an area of the RPG that provides color-coded information on the cultivated species
of each parcel (Figure 2.3a). The SNA of the corresponding area is shown in Figure 2.3b. Grassland parcels
are extracted and the SNA is superimposed (Figure 2.3c), allowing to discard the non-agricultural areas from
their boundaries.

Digital Terrain Model
Topographic data are retrieved with 5×5 m spatial resolution Digital Terrain Models (DTMs) from the very
high resolution height layer provided in the RGE ALTI acquired by IGN. This DTM is multi-source (lidar,
radar and aerial photography dense matching) and its altimetric accuracy therefore varies from 0.2 m to 7 m
depending on the data source. The use of a DTMmust be considered hereafter on the one hand to differentiate
grasslands according to their topographic characteristics (Nasrallah et al., 2019) but also for geometric cor-
rections related to the adoption of SAR images (Section 1.2.1.2). The DTMs of the main study areas are visible
in Figure 2.4, superimposed by the major water network for visualization. The Mâcon area has elevations
ranging from 173 m in the Western part along the water network to 1,295 m in the Southeastern part. For the
Toulouse area, the altitudes range from 68 m in the Northern plains to 3,127 m (Pique d’Estats) in the summit
of the French Pyrénées.
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Figure 2.3: (a): Agricultural parcels describing cropland and grassland surfaces retrieved from the RPG; (b)
Non-agricultural surfaces (SNA); (c) Final grasslands extent, after SNA subtraction.

Figure 2.4: Digital TerrainModels (DEMs) with 5 m spatial high resolution of the twomain study areas (Mâcon
and Toulouse areas respectively, left and right). The altitudes range from 40 m to 3127 m.

Weather data
Climate data are extracted from theMétéo France SAFRAN-ISBA dataset (Quintana-Seguí et al., 2008; Vidal et
al., 2010). This dataset gathers measurements from several hundreds of climate stations of the French national
meteorological service. The dataset provides daily aggregated measurements of 25 climatic variables. The
available variables are (for some acquired on the ground and others at 1 m altitude): liquid precipitation, solid
precipitation, total precipitation, effective rainfall, daily mean temperature, minimum/maximum of 24 hourly
temperatures, daily mean wind speed, atmospheric radiation, visible radiation, actual evaporation, potential
evapotranspiration, specific humidity, relative humidity, soil moisture index, drainage, runoff, liquid water
content in root layer, solid water content in root layer, snow-pack water equivalent, snow-pack thickness,
fraction of mesh covered by snow and snow-pack base runoff.

The gathered dataset uses a point grid evenly spaced 8 km apart as spatial sampling. Each point gathers
data which is spatially interpolated from the nearest meteorological station. The large number of climate
stations allows to ensure data variability despite the low spatial resolution of the grid. An example of the
climate variables, daily temperature and precipitation, is given via climographs for the two main study areas
in Figure 2.5. The climate datasets obtained over the studied areas have potentially two applications, similar
to the use of topographic data. Depending on the agronomic variety, a grassland’s phenology will, at least
partially, vary according to the climate. The use of climate variables may in this case, help to differentiate
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between agronomic types and geographical areas. The use of a DTM aims at describing and processing the
geometry of SAR images. In the case of climate data, their use must allow to constrain or explain the differ-
ences observed in SAR radiometry (Vreugdenhil et al., 2018). In particular, humidity-related variables should
help to explain SAR fluctuations that are sensitive to surface properties (Section 1.2.1.2).

(a) Mâcon

(b) Toulouse

Figure 2.5: Average climographs (temperature and precipitations) obtained for the two main study areas dur-
ing the studied periods.

2.4 Features derived from Sentinel images for grassland monitoring

High-level description of the satellite images can be extracted by the calculation of features. In this work,
handcrafted features are computed to provide useful information for grassland monitoring by exploiting the
content of the original Sentinel-2 and Sentinel-1 images. From optical imagery, the well-known Normalized
Difference Vegetation Index (NDVI) is retained. In the case of Sentinel-1 images, two features are considered
for grassland monitoring. The first is the backscatter coefficient computed from GRD products and the second
is the coherence computed from SLC products. The different features exploited in the experiments of this
manuscript are detailed hereafter.

2.4.1 Normalized Difference Vegetation Index

The red edge portion of the electromagnetic spectrumwas shown to have a significant correlationwith chloro-
phyll content and leaf structures (Section 1.2.1.1). Vegetation indexes exploiting red edge portions are there-
fore preferred for temporal monitoring of grasslands and detection of management practices. The NDVI
(Rouse et al., 1974; Tucker, 1979) has been previously mentioned, being one of the first indexes developed
from satellite remote sensing data. More importantly, it is by far the most widely used vegetation index (Xue
and Su, 2017; Ali et al., 2014; Gao et al., 2016; Fern et al., 2018; Griffiths et al., 2019; Clementini et al., 2020;
Reinermann et al., 2021). Besides, the interest of NDVI as a reliable indicator for monitoring vegetation and
grasslands has been demonstrated. NDVI is calculated as follows:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

, −1 ⩽ NDVI ⩽ 1 (2.1)

with ρNIR the reflectance in the near infrared and ρRed the red reflectance, respectively, B8 and B4 bands
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of Sentinel-2 satellites. NDVI normalizes the leaf structure, chlorophyll scattering and absorption effects
taking place in the red and near-infrared wavelengths. Negative NDVI values typically approaching -1 corre-
spond to water surfaces. Barren areas of rock, sand or snow show very low NDVI values, generally ranging in
[−0.1, 0.1]. NDVI over vegetation has values above 0.2, increasing with the vegetation’s activity. Peak growth
of vegetation potentially reaches values close to 1.

Figure 2.6 shows the yearly NDVI evolution of a permanent grassland of the Mâcon area. The displayed
NDVI is the average of all pixels within the parcels boundaries. This parcel appears to be very lightly exploited
with a high and stable NDVI level throughout the year. NDVI analysis allows the deduction that this parcel
has probably not been mowed or ploughed during this agricultural season, but was rather extensively grazed
or not exploited at all.

Figure 2.6: NDVI temporal evolution over a permanent grassland of the Mâcon area. The stability of NDVI
throughout the agricultural season indicates a parcel that is not or very extensively farmed. Green dots
indicate a valid non-cloudy acquisitions whereas red crosses indicate an acquisition flagged as cloudy by the
masks.

The temporal variation of NDVI on a alfalfa parcel shown in Figure 2.7 illustrates the ability of NDVI
to capture fluctuations in vegetation evolution. Sentinel-2 images over this parcel are provided at some key
stages of the vegetation’s phenology. This parcel contains several phenological cycles within the same agricul-
tural season. These cycles are close together over a short period of time where the parcel successively exhibits
high and low NDVI values. Despite the numerous missing data due to clouds denoted by the red crosses, valid
acquisitions allow to observe sudden drops exceeding 0.3 of NDVI. These rapid and abrupt decreases clearly
indicate a change in vegetation status that can be easily related to human intervention. Mowing events are
thus detected, evidenced by the Sentinel-2 optical imagery corresponding to the dates of change.

Figure 2.7: NDVI temporal evolution over an intensively exploited alfalfa parcel of the Mâcon area. Sudden
NDVI drops correspond to management practices which is attested by the visualization of Sentinel-2 images
over the parcel.

A possible shortcoming of NDVI is its tendency to saturate (i.e., no longer reflects variation) once the cover
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is spatially very dense. For a minority of grasslands whose agronomic type implies a very dense cover and
which are generally highly productive and intensively exploited, NDVI can become saturated. Nevertheless,
several factors advocate for the use of NDVI in this work:

(i) its availability for almost all optical sensors, as its calculation relies on two widely used spectral bands;
(ii) its prominence in the literature, helping to provide extensive examples of NDVI behavior related to

vegetation;
(iii) its simplicity, on the contrary of other optical derived features whose computation incorporate inter-

polations or constants related to the observed surface, such as the LAI. This simplicity minimizes the
potential sources of errors and uncertainties in the measurements. For operational studies, simplicity
also means explainability;

(iv) finally, the illustrated examples allowed us to demonstrate the satisfactory capacity of the NDVI to
characterize the phenology of grasslands.

2.4.2 Backscattering coefficient

A SAR sensor records the echo received from the emitted pulse through a digital number (DN). The value
of the DN is proportional to the emitted energy and system properties, to the radar cross-section (RCS) of
the target and thus to the incoming energy. The RCS is defined as the scaled ratio of the scattered power to
the incident power per unit area, as if the radiation were isotropic. The RCS therefore broadly refers to the
target reflectivity. As the RCS will depend, among others, on the form and the composition of the target, its
variations will allow to discriminate surfaces. To compare DN from several sensors or between acquisitions,
radiometric calibrations are commonly performed. The Beta naught calibration scales the DN with system
characteristics and is called radar brightness (Raney et al., 1994; Rudant and Frison, 2019; Schmidt et al.,
2020):

β0 =
DN2

ks
, (2.2)

with ks a sensor-specific calibration constant provided through look-up-tables alongside acquisitions.
The area normalization of β0 is aligned with the sensor’s acquisition geometry (i.e., slant range). In order to
deal with consistent spatially areas, the normalization can be aligned with the ground range plane (Atwood
et al., 2012). The radar cross-section or backscattering coefficient, Sigma naught (Sigma0 or σ0), is extensively
adopted to normalize DN into an area of one square meter on the ground:

σ0 = β0 · sin(θiloc) , (2.3)

with θiloc the incidence angle of the incoming beam with respect to the ground as modeled by an el-
lipsoidal Earth model. Sigma0 is usually expressed in decibels (dB), which modifies the initial distribution to
stretch out the low values variations that are usually associated with natural landscapes:

σ0dB = 10 · log10(σ0) , (2.4)

Backscattering coefficient over a vegetation surface first varies according to SAR system characteristics,
which are previously known (Table 2.4). The different polarizations and beam incidence angles, for exam-
ple, will allow distinct geometric interactions with the observed vegetation. Most importantly, the frequency
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band used by the sensor will imply a varying contribution of vegetation biomass, structure and ground con-
ditions to the backscattering coefficient. C-band wavelengths such as the ones used by Sentinel-1 penetrates
the vegetation’s canopy of most agricultural surfaces, making ground’s contribution significant. Vegetation
contribution due to volume scattering will increase with vegetation’s leaf orientations, sizes, density, and,
correlatively, water content. Potentially, the backscattering coefficient will thus vary with the species and its
phenology. The increase of vegetation will gradually attenuate the contribution of the ground. Nonetheless,
grasslands often feature low cover heights, i.e., compared to most crops for example, and do not have a strong
vertical structure. This will allow ground contribution to the backscatter coefficient to remain important. The
ground contribution to the backscatter coefficient also fluctuates over time, as a function of soil moisture,
surface roughness or local terrain topography (McNairn and Brisco, 2004; Veloso et al., 2017).

Figure 2.8 illustrates both σ0
VV and σ0

VH polarization time series of the previously observed permanent
grassland of Figure 2.6. Using NDVI time series, it was observed that the vegetation remained stable dur-
ing the entire agricultural season and that no management practice was made. The temporal dynamic of
backscattering coefficient (σ0) is substantially different. Strong temporal instability affects the time series and
a magnitude of about 4 dB for both polarizations is observed.

Figure 2.8: Average σ0
VV and σ0

VH time series over the Mâcon permanent grassland already observed in
Figure 2.6. The temporal variations of both σ0 polarizations are greatly fluctuating over short time intervals
and do not allows us to characterize the phenological curve pattern. The fluctuations of σ0 due to the snow
cover are visible during the month of January.

The discordance between a stable NDVI time series and a highly fluctuating backscatter coefficient can
be explained by relevant climate variables (Section 2.3.2). Snow cover over the parcel is shown by blue bars
in the lower part of Figure 2.8. It is observed that the strong drops in both polarizations visible in January are
correlated to the snow cover. During the time snow covers the parcel, the backscattering coefficient reaches
a minimum at −16.7 dB and −22.2 dB for VV and VH polarizations, respectively. The drastic drops in the
backscattering coefficient time series, which should remain stable as observedwith NDVI, are explained by the
appearance and subsequentmelting of up to 10 cm of snow cover. Backscattering coefficient of snow decreases
with increasing liquidwater content due to the high dielectric loss ofwaterwhich affects the penetration depth
capacity of the wave. This is why, during the snowfall itself in mid-January, the signal remained relatively
unaffected. It is dominated by volume scattering as the wavelengths used allow the signal to pass through the
snow cover (Nagler et al., 2016; Tsai et al., 2019). Themelting occurring in the second half of January increased
water content leading to the observed decrease of backscattering coefficients. While the effects induced by
snow cover as illustrated in Figure 2.8 are particularly significant, the same artifacts can be consecutive to
frost, or much more frequently, to rain (El Hajj et al., 2019). Wet soils for example, may affect the backscatter
signal up to several days after precipitations, increasing significantly the backscattering coefficients. On the
contrary, intense rains leading to stagnant water may decrease considerably the backscattering coefficients.
Climatic data are therefore useful to help explaining the temporal fluctuations observed in the time series.

The study of the backscattering coefficients is also proposed for the same alfalfa parcel shown in Fig-
ure 2.7. Previously, three consecutive mowings have been identified by observing NDVI time series. The
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backscattering coefficient time series are shown in Figure 2.9.

Figure 2.9: Average σ0
VV and σ0

VH time series over an alfalfa grassland from theMâcon area, already observed
in Figure 2.7. The σ0 temporal variation does not allow us the characterization of the grassland phenology
evolution nor the detection of management practices.

Figure 2.9 allows us to observe that both polarizations provide hardly interpretable time series with respect
to phenology or mowing related vegetation changes. The slope change with the highest magnitude coincides
with the snow event previously observed in January in Figure 2.8.

For the three mowings, different behaviors are observed for both polarizations. The backscatter coeffi-
cients increases during the first mowing but decreases during the two following ones. Several works have
reported notable changes in the backscatter coefficient time series during crop harvesting or parcel plowing
(Meroni et al., 2021; Van Tricht et al., 2018; Veloso et al., 2017; Vreugdenhil et al., 2018). Depending on
the considered species and used polarization, increases, decreases or both successively have been observed.
Nevertheless, the variety of grassland management practices and their influence on the canopy results in a
significant diversity of backscatter coefficient responses. For example, the first mowing observed on the alfalfa
parcel at the end of April increases the backscattering coefficient as a response to higher soil surface rough-
ness. The two following mowings are short, and a slight tillage of the soil could be done. In these cases, the
slight tillage implies a reduced surface roughness which results in a decrease of the backscatter coefficient.
These differences in behavior, coupled with the significant impact of weather conditions, make the overall
interpretation of the backscattering coefficient challenging.

2.4.3 Interferometric coherence

The interferometric coherence module, called coherence or γ, estimates the complex correlation in amplitude
and phase on a local neighborhood of N×N pixels between two different SAR acquisitions. Coherence evalu-
ates the temporal stability of the surface and provides a ratio between coherent and incoherent summations
(Touzi et al., 1999; Tamm et al., 2016; Mestre-Quereda et al., 2020):

γ =
|⟨TiT∗

j ⟩|√
⟨TiT∗

i ⟩⟨TjT∗
j ⟩

, 0 ⩽ γ ⩽ 1 (2.5)

where Ti and Tj are two complex SAR images, | · | denotes the absolute value, ⟨·⟩ denotes the averaging
operation done over range and azimuth pixels and the superscript * denotes the complex conjugate product.
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Coherence is a product of several decorrelation sources that can occur between the two Ti and Tj acquisitions
or from computation parameters:

γoverall = γtemporal · γSNR · γparam · γothers , (2.6)

where γtemporal corresponds to the temporal decorrelation. System-related noises are depicted by
γSNR, γparam relates spatial averaging operations that depends on the local neighborhood window size
selected and the resulting ENL, and γothers to potential orbital or data processing errors. In this work, the
temporal decorrelation factor is the most important as it provides information about the vegetation’s evolu-
tion. The window size selected for the coherence calculation will also influence its capability to discriminate
values in low coherence areas, with increased smoothing through bigger window sizes. Apart from temporal
decorrelation and window size, the additional decorrelation sources, although potentially having an impact,
will not be considered or discussed in the following.

Coherence value varies between 0 and 1. Coherence theoretically reaches 1 if the position and physical
properties of all elementary scattererswithin the ⟨·⟩window are strictly identical between the two acquisitions
T1 and T2. Man-made structures, for example, typically exhibit high coherence values as remaining stable over
time. Changes in position and physical properties of the elementary scatterers between the two images will
decrease the coherence towards 0, roughly proportionally to the importance of the change.

Over grasslands, likewise for the backscatter coefficient, coherence values will depend on the condition of
the canopy and ground. The growth of vegetation, because the pattern and condition of the canopy differ from
date to date, will cause temporal decorrelation and lower values. As the centimeter wavelength as the one
used by Sentinel-1 allows the interaction with elements having larger or similar size, the pattern generated
by individual grass blades can be a source of temporal decorrelation. Furthermore, rain, air temperature or
wind, influencing both vegetation and ground surfaces will also affect the coherence values. Thus, coherence
values over vegetation can be very sensitive to a wide range of factors which are hardly predictable.

The NDVI (Figure 2.6) and the backscattering coefficient (Figure 2.8) have already been studied over a
permanent grassland parcel. Figure 2.10 illustrates coherence time series of both polarizations over the same
parcel, computed with a window size of 9×3 for range and azimuth, respectively. Relatively low coherence
values are observed, but the time series appear relatively stable. This stability is similar as the one observed
with NDVI. As observed with backscattering coefficient, the relatively large drop in coherence in January
is due to snowfall. Nevertheless, comparing with backscattering coefficient, coherence time series are more
stable. This is notably due to the spatial averaging and temporal smoothing by encompassing two dates in its
calculation.

Figure 2.10: Average γVV and γVH time series over the permanent grassland already observed in Figure 2.6.
The little temporal variations are responsive to the dense but stable herbaceous cover observed on this parcel.

To assess the sensitivity of coherence to vegetation changes, the alfalfa parcel of Figure 2.7 and Figure 2.9 is
also studied. Figure 2.11 illustrates the coherence time series of both polarizations over this parcel, which has
beenmanaged three times. Several works have already investigated the exploitation of coherence information
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for studying management practices (Chiboub et al., 2019; De Vroey et al., 2021b; Schuster et al., 2011; Tamm
et al., 2016; Voormansik et al., 2016).

Figure 2.11: Average γVV and γVH time series over the Mâcon alfalfa grassland previously studied. Increased
coherence values are observed after the three management practices. This is due to a high temporal stability
of ground cover compared to vegetation.

The coherence values are computed by taking into account a time interval defined by two dates (Ti and
Tj of Eq. 2.5). The management practices can occur in the middle of the used time interval (i) or before the
first image Ti (ii). Considering these two situations, two different coherence responses can be expected:

(i) In this first case, the grassland is covered by an important vegetation in the Ti image. In contrast, the
vegetation has been removed due to a management practice before the Tj image. Hence, a coherence
decrease is expected due to temporal decorrelation, as Ti and Tj images depict different surfaces with a
higher ground contribution from the Tj image.

(ii) In the second case, the Ti image already depicts a strong ground contribution due to the prior manage-
ment practice. The Tj image also depicts a strong ground contribution. Provided that the grass does not
regrow in-between, an increase of coherence is expected, considering the temporal stability of both Ti
and Tj ground responses.

Both cases are induced by the management practices performed on the alfalfa parcel shown in Figure 2.11.
The three management practices detected over this parcel lead to a first decrease of coherence (case (i)) due
to the two different vegetation states of Ti and Tj, with high and low vegetation cover, respectively. This
decrease is directly followed by an increase in coherence, expected as both Ti and Tj images observe a strong
ground contribution (case (ii)). As with the backscattering coefficient, climatic conditions can also affect the
coherence. Therefore, the fluctuations of coherence time series can not only be the consequence of manage-
ment practices. Notably, the snow cover in January leads to the coherence increase. Without knowledge of
this climatic event, the high frequencies of the signal could be interpreted as management practices.

As a result, coherence time series appear less fluctuating than backscattering coefficient time series and
allow us to better characterize the vegetation phenology. Besides, it can help in the identification of manage-
ment practices. However, it is shown that their interpretation requires to take into account multiple factors
such as the temporal interval considered for coherence computation and the climate context.
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2.5 Description of the feature engineering steps

The last section has shown how different features extracted from satellite and ancillary datasets can help to
monitor the phenology of vegetation surfaces. This section presents the feature engineering steps performed
on the data described in Section 2.2 and Section 2.3. The different steps aim to extract multiple sets of fea-
tures for each polygon of the grasslands, crops and forests datasets (Table 2.7). Distinct types of features are
proposed, considering the spatial and temporal characteristics of the datasets and the main goal of vegetation
monitoring. Figure 2.12 illustrates some satellite features further used to describe the vegetation polygons.

▶ Step 1: Exploiting reference polygon boundaries to define an object-level scale

The RPG, BD FORET, and SNA are vector data providing information about the location of the different
polygons (i.e., grasslands, crops and forests) and the non-agricultural surfaces. In order to limit the integration
of mixed pixels, two tasks are routinely performed on the different datasets. First, the RPG and BD FORET
polygons are eroded by an internal buffer of 10 m, corresponding to the spatial resolution of Sentinel pixels.
Secondly, the SNA has been used to remove non-agricultural objects within the RPG grassland polygons. A
buffer of 5 m is applied on the polygonal and linear elements of the SNA, while a 10 m buffer is used for point
elements (e.g., trees). The resulting SNA layer is then subtracted from the RPG grassland polygons.

Eroded and filtered polygons of grasslands, crops and forests are subsequently exploited to define an
object-level scale, i.e., all spatial information gathered over a polygon is reduced as one single value describing
the object. The object-oriented strategy is chosen for three reasons:

(i) the reference data permit the delineation of relatively homogeneous clusters (parcels). This reduces
possible inconsistencies in spatial measurements (Atzberger, 2004) that may occur among the different
reference and satellite datasets;

(ii) pixel-wise analysis would require further SAR processing to reduce speckle noise (Section 1.2.1.2), and
would lead to adding additional parameters (e.g., the window size and the used algorithm). The object-
level approach allows its reduction through adopting spatial averaging;

(iii) the computational and storage challenges associated to the high data volume (Atzberger, 2013; Inglada
et al., 2017; Mallet and Le Bris, 2020) can be reduced.

▶ Step 2: Extracting optical features from Sentinel-2

From the Sentinel-2 Level-2 images, the NDVI is calculated. Object-level statistics are next derived using the
datasets obtained from the first step. The average NDVI for all the pixels of each polygon is calculated using
the Orfeo Toolbox (OTB) library (Grizonnet et al., 2017) and the Object Radiometric Statistics remote module
and bash scripting.

The Sentinel-2 images obtained in the study areas were associated with the two cloud & shadow and
snow masks. Although the cloud & shadow masks can differentiate certain types of clouds depending on the
detection methods (mono- and multi-temporal), the use of masks is done in the strictest possible way. The
information contained on the two masks are merged, leading to define a validity mask. This merged infor-
mation is referred to as masks in the followings. Object-level statistics are derived from the masks which are
then converted to binary masks: "0" indicating no invalidity report from the two masks, while "1" indicates at
least one pixel of the grassland is flagged as invalid by at least one of the two masks.
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Sentinel-2 : NDVI 

NDVI RGB NDVI 

R:VV, G:VH, B:VV/VH 

VV VV/VH 

VH R:VV, G:VH, B:VV/VH 
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R:VV, G:VH 

VV 

VH R:VV, G:VH 

VV 

VH 

Sentinel-1 : backscattering coefficient (σ0) 

Sentinel-1 : interferometric coherence () 

4 km Mâcon Toulouse 

RGB 

Figure 2.12: NDVI, backscattering coefficient (σ0) and coherence (γ) images and 4 km diameter close-up con-
taining grassland surfaces of Mâcon and Toulouse areas. RGB compositions are provided for visualization
purposes.
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Table 2.8: Summary of features computed at the polygon level from Sentinel-2 data.

Sentinel-2 features
(1) NDVI mean values of the pixels belonging to each polygon.
(2) Masks boolean value indicating the presence or absence of clouds, shadows or snow.

▶ Step 3: Extracting SAR features from Sentinel-1

Sentinel-1 GRD and SLC images are processed using the freely accessible Sentinel Application Platform
(SNAP) software and its command line Graph Processing Tool (GPT) option (ESA, 2021b). Ascending and
Descending orbits are considered separately given the very different incidence angles of the two orbits. From
GRD images, calibration to backscattering coefficient (σ0) is performed followed by a sensor thermal noise
removal, and a de-burst operation to produce an overlap between the different bursts acquired. Finally, a
conversion from linear scale to dB is performed. Both σ0

VV and σ0
VH polarizations are selected. A cross-ratio

band between σ0
VV and σ0

VH polarizations (VV/VH) is additionally calculated for each date. The interest of
this cross-ratio band is its high correlation with vegetation biophysical parameters and its capability to some-
what mitigate topographic and climatic effects on the backscatter coefficient (Veloso et al., 2017; Vreugdenhil
et al., 2020).

SLC images are processed in pairs. The two images of each pair are first back-geocoded together, i.e.
spatial matching with sub-pixel accuracy. A bi-cubic interpolation and the Shuttle Radar Topographic Mission
(SRTM) 1 DTM are used during the back-geocoding. The SRTMDTM is preferred to the higher resolution IGN
DTM for two reasons. First, SRTM is acquired from a C-band similarly to Sentinel-1 images and thus features
the approximately same surface penetration depth. Secondly, the spatial resolution of the IGN DTM is finer
than that of Sentinel-1. An oversampling step to match the spatial resolutions would have been necessary.
Following the back-geocoding step, coherence (γ) bands are calculated for both polarizations with a window
size of 9×3 (range and azimuth, respectively) and deburst is performed. All images are then orthorectified
using the Range Doppler Terrain Correction algorithm (Small and Schubert, 2019) and the SRTM 1Arc-Second
corresponding elevation data. Resulting images have an output spatial resolution of 10×10 m, matching the
optical ones.

Object-level statistics are subsequently extracted for each date from the 3 backscattering coefficient σ0

and 2 coherence γ bands. Two categories of features are further computed for each parcel. The first category
describes the statistics computed on the different polarization bands and is denoted as (3) and (4) in Table 2.9.
The statistics correspond to themean, median, and standard deviation values calculated on the processed GRD
and SLC images. These statistical descriptors are chosen to integrate measures of central tendency which are
expected to provide distinct information on small populations such as the number of pixels in a parcel, as well
as measure of dispersion. For each date, the resulting datasets contain 9 features describing the statistics of
σ0 bands and 6 features from the coherence bands.

The second category of Sentinel-1 features corresponds to the datasets (5) and (6) of the Table 2.9. These
features provide information about the first-order derivatives computed on the time series considered in (3)
and (4). The features in (5) describe the statistics previously computed with (3) and (4) for the first-order
derivative between date t and date t−1. In order to incorporate information about the polygon neighborhood,
the set of features in (6) is also proposed. The feature set (6) contains then the average of features computed
on (5) on a specific neighborhood. The polygon neighborhood is defined by all the polygons belonging to the
same vegetation class inside a given empirically pre-defined radius of 2 km. The goal of features in (6) is to
highlight if a specific polygon has a diverging behavior (due to management practices, climatic conditions or
sensor noise) compared to its neighborhood (Ding et al., 2017).
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Table 2.9: Summary of features computed at the polygon level from Sentinel-1 data.

Sentinel-1 features computed for ascending and descending orbits
(3) Sigma0 dB mean, median and standard deviation for VV, VH and VV/VH bands
(4) Coherence mean, median and standard deviation for VV and VH bands
(5) Derivatives first order derivative computed for the previous (3) and (4) mean features
(6) Neighborhood features in (5) are averaged on the polygon neighborhood within a specific radius

▶ Step 4: Extracting features from ancillary data

Alongside the altitude provided by the RGE Alti, two additional information are calculated: slopes and expo-
sure. Mean and standard deviation values are computed from the height, slope, and exposure bands for each
polygon. Furthermore, polygon shape features are also considered: area in hectares, perimeter and the num-
ber of Sentinel pixels. This provides information on the spatial context of the parcel, which may be different
for small, productive parcels, or large, extensively farmed ones, for example.

For each Sentinel-1 acquisition date and the previous day, 25 climatic variables are collected. Information
about the previous day of the acquisition is incorporated to take into account the morning schedule of some
SAR acquisitions as well as rain accumulation. Additionally, two types of metadata information are stored.
The first one concerns the temporal information of Sentinel’s acquisitions converted to day of the year. Fi-
nally, the agronomic class from the RPG is attached to each polygon.

Table 2.10: Summary of features computed at the polygon level from ancillary data.

Ancillary and metadata features
(7) Topography mean and standard deviation for height, slope, exposure; area, perimeter and parcel size
(8) Climate day of SAR acquisition and day before with 25 variables
(9) Metadata temporal distribution of satellite acquisition and RPG subclass

▶ Step 5: Building a common temporal grid

As Sentinel-1 and Sentinel-2 time series have different temporal grids, the definition of a common temporal
grid is proposed. This new temporal grid must permit to statistically correlate the extracted Sentinel features
to analyze their joint temporal evolution. Furthermore, irregular time series or with different sequence length
(i.e., with missing data) lead to additional challenges in automated processing.

Alternating ascending and descending orbits, SAR features from Sentinel-1 are obtained every 3 days.
Sentinel-2 NDVI features, on the other hand, have a more irregular temporal sampling due to cloud coverage.
Furthermore, the availability of only one satellite until June 2017 for the two main study areas, and, for
Mâcon, a orbit overlap area, increases this irregularity. The definition of the common temporal grid is made
by the utility of coupling an NDVI value with ascending and descending orbit SAR features. In this work,
we propose the definition of a temporal grid keeping a 6 day interval. Based on the 3-day revisit of both
Sentinel-1 orbits, the dates retained for the common temporal grid are in between the two temporal grids of
the ascending and descending orbits. The resampling of features to the new common temporal grid follows
the nearest neighbor approach. This method is generally considered simplistic and is discarded in favor of
methods that take into account the trend of the signal. Methods such as polynomial methods, based on
the Fourier Transform or auto-regressive methods (Lepot et al., 2017) are commonly adopted. Nevertheless,
resampling is here only used for matching several temporal grids. As most of the methods extrapolate from
the data and produce new values, the nearest neighbor approach was adopted as a method that preserves
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the original dynamics of acquired values. For example, as significant changes can occur in the time series,
particularly as a result of management practices, trend-based interpolation would alter the original magnitude
of the variations observed. The nearest neighbor approach introduces a time lag in the resampling task but
preserves the original values.

The resampling task is illustrated for Mâcon and Toulouse areas in Figure 2.13. As SAR features have
a fixed and gap-free temporal grid, their association with the new dates of the common temporal grid is
straightforward. To each date of the new temporal grid, descending and ascending orbit features of Sentinel-
1 which are 1 day apart from the new dates, are gathered (blue lines of Figure 2.13). Regarding the resampling
of Sentinel-2 features, the temporal nearest acquisition to the new date is selected (green lines in Figure 2.13).
Because of the irregular temporal sampling of the Sentinel-2 original grid, some acquisitions are nevertheless
resampled to several new dates of the common temporal grid. In some cases, especially when the full capacity
of the Sentinel-2 constellation is obtained, the temporal sampling of Sentinel-2 is lower than the one of the
common temporal grid. Hence, several Sentinel-2 acquisitions are associated with the same date of the com-
mon temporal grid (red lines of Figure 2.13). In this case, if one of the two observations is flagged as invalid,
the other one is kept. If both are flagged as invalid, the one with the shortest temporal gap to the new date is
kept. If both have the same temporal distance to the new date, the one with the lowest first order derivative
to the previous valid NDVI observation is kept.

Figure 2.13: Description of the construction of a new common temporal grid allowing Sentinel-1 and Sentinel-
2 features to be jointly observed. Having a more irregular temporal sampling, Sentinel-2 features are resam-
pled by the nearest neighbor approach. When two Sentinel-2 acquisitions are close to the new resampled date
(red lines), only one of both is kept. Sentinel-1 coming from ascending and descending orbits are associated
to each date of the common temporal grid.

2.6 Exploring the relationships between derived satellite features

The previous subsections have shown that information coming from multiple sources could provide comple-
mentary knowledge. Nevertheless, several strengths and flaws have been identified for each of the extracted
features (Section 2.4). In this manuscript, multi-modal satellite features will be considered to monitor grass-
lands as well as crops and forest vegetation. Thereby, it is proposed to assess the temporal correlation through
statistical analysis between the extracted features.
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The relation between optical (NDVI) and SAR features (backscattering coefficient and coherence) is as-
sessed for both Mâcon and Toulouse areas. The mean values at object-level are taken into account for NDVI.
Similarly, the mean values of σ0 in VV, VH and VV/VH and γ in VV and VH polarizations features are consid-
ered from both ascending and descending orbits. The common temporal grid described in step 5 of Section 2.5
is used. In order to cope with missing data, a linear interpolation is performed on NDVI features rather than
the nearest neighbor approach. Linear interpolation provides a relatively smoother temporal trend and is
therefore closer to the natural evolution of the vegetation. The common temporal grid contains 60 and 71
dates for the Mâcon and Toulouse areas, respectively.

To evaluate the statistical relationship between NDVI and the selected SAR features, the Pearson correla-
tion coefficient (rp) and the Spearman correlation coefficient (rs) are calculated. Pearson correlation estimates
the linear relationship between the two populations. Spearman correlation is based on monotonic rank-order
correlation, providing further information on non-linear relationships. Both correlation coefficients range
from -1 to 1, with 0 implying no correlation. Correlations of -1 or +1 imply an exact relationship between
the two variables. Positive correlations imply that as one variable increases, so does the other. Negative
correlations imply that as one increases, the other decreases (De Winter et al., 2016).

2.6.1 Feature correlation for grassland, crop and forest surfaces

Grasslands, crops and forest datasets described in Table 2.7 are here considered. The objective is to analyze if
the correlations between NDVI and different SAR features strongly vary according to the type of vegetation.
Considering all dates and valid pixels of the different datasets, large populations (N) are obtained. For Mâcon
and Toulouse, respectively, the number of considered pixels for the different vegetation types is: 1,669,920 and
3,557,313 for grasslands, 753,420 and 2,449,784 for crops and 336,720 and 965,316 for forest. Table 2.11 reports
both rp and rs correlation coefficients for Mâcon and Toulouse areas over grasslands, crops and forests.

Between the three vegetation types, the correlation found between NDVI and SAR features are clearly
higher over crops. Significant negative correlations are found with VV polarization features for both σ0 and
γ (≈ -0.400 to -0.500). As crops havemarked phenologies, backscattering attenuations with vegetation growth
are strongly marked in VV polarizations. σ0

VV/VH
feature appears as the most correlated SAR feature with

NDVI over both areas and for both correlation coefficients. rp of -0.667 and -0.735 are obtained, respectively,
for Mâcon and Toulouse in ascending orbits. Ascending orbit for Mâcon and descending orbit for Toulouse
obtain rs for -0.663 and -0.727, respectively. A strong correlation with NDVI is thus suggested by both rp and
rs for σ0

VV/VH
features, indicating a good complementarity for crop vegetation monitoring.

Over forests, the computed correlations are lower than for crops. The highest correlation is obtained, sim-
ilarly as for crops, with σ0

VV/VH
feature from Mâcon descending orbit (rs=+0.477) and Toulouse descending

orbit (rs=+0.509). Differences are nevertheless notable for correlations assessed over crops. σ0
VH polariza-

tion features are more correlated with NDVI that VV polarization, due to the strong volume scattering of the
forest canopy. Furthermore, the resulting correlations for VH polarization are positive, meaning that when
the NDVI over forests growth or decreases, the σ0

VV/VH
features will follow its direction. γ features show

a relatively weak correlation for both polarizations and both orbits. As the temporal fluctuation of forests
is rather low, so does the NDVI. Stability of coherence features could thus be expected. The low correlation
found may indicate decorrelation of another type, such as due to weather conditions.

Obtained correlations between SAR features and NDVI over grasslands are the lowest among the three
vegetation types. The highest is rp=-0.405 for γVV in descending orbit on the Toulouse area. VV polarization
features are systematically more correlated than VH features. The low vegetation cover of grasslands and
subsequent volume scattering from ground contribution can explain theses findings. While for the Mâcon
area, σ0

VV/VH
features (as for crops and forests) obtain the highest correlations, γ features are overall weakly
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Table 2.11: Pearson (rp) and Spearman (rs) correlation coefficients between NDVI and derived SAR features
(mean values of (3) and (4) of Table 2.9). Grasslands, crops and forest datasets are considered for the Mâcon
and Toulouse areas. Green color indicates the highest obtained correlations, while the red color denotes the
lowest ones.

Asc. orbit Desc. orbit Asc. orbit Desc. orbit

σ0
VV σ0

VH σ0
VV/VH σ0

VV σ0
VH σ0

VV/VH γVV γVH γVV γVH

Grasslands (N= Mâcon: 1,669,920 ; Toulouse: 3,557,313)

M
âc
on rp

N
D
V
I

-0.141 +0.052 -0.265 -0.123 +0.044 -0.221 -0.231 -0.129 -0.164 -0.079

rs -0.125 +0.033 -0.233 -0.101 +0.021 -0.188 -0.223 -0.120 -0.132 -0.041

To
ul
ou

se rp -0.142 +0.096 -0.378 -0.116 +0.068 -0.311 -0.367 -0.235 -0.405 -0.300

rs -0.120 +0.103 -0.315 -0.061 +0.078 -0.223 -0.353 -0.227 -0.389 -0.289

Crops (N= Mâcon: 753,420 ; Toulouse: 2,449,784)

M
âc
on rp

N
D
V
I

-0.400 +0.121 -0.667 -0.405 +0.042 -0.588 -0.443 -0.242 -0.433 -0.287

rs -0.323 +0.137 -0.663 -0.335 +0.047 -0.591 -0.406 -0.180 -0.393 -0.220

To
ul
ou

se rp -0.508 +0.039 -0.735 -0.485 -0.045 -0.700 -0.521 -0.306 -0.575 -0.440

rs -0.446 +0.076 -0.726 -0.438 -0.011 -0.727 -0.501 -0.263 -0.559 -0.421

Forests (N= Mâcon: 336,720 ; Toulouse: 965,316)

M
âc
on rp

N
D
V
I

-0.054 -0.260 +0.424 +0.043 -0.133 +0.357 -0.251 -0.247 -0.148 -0.122

rs -0.074 -0.316 +0.477 +0.017 -0.199 +0.407 -0.225 -0.217 -0.167 -0.143

To
ul
ou

se rp -0.086 -0.244 +0.408 -0.077 -0.264 +0.473 -0.277 -0.246 -0.202 -0.172

rs -0.122 -0.317 +0.450 -0.106 -0.332 +0.509 -0.291 -0.256 -0.209 -0.174

correlated. In contrast, γ features on the Toulouse area are found more correlated than σ0 features. A uneven
distribution of grassland species between the two areas, and consequently heterogeneous phenologies can be
the reason for these differences.

2.6.2 Feature correlation for various grassland surfaces

The same correlation study is carried out but considering the four different meta-classes (PM, TG, FA, FL) of
grasslands described in Section 2.3.1.1. As grassland types have a strong influence on vegetation’s phenology
(i.e., from extensively exploited to highly exploited), correlation analysis could illustrate these differences.
Table 2.12 reports both rp and rs correlation coefficients for the four grasslands meta-classes obtained in
Mâcon and Toulouse areas.

In all cases, a negative correlation with NDVI is found, except for some σ0
VH features in both orbits. It

can be noted that both Pearson and Spearman correlation coefficients provide broadly similar values and that
they are similar for both Mâcon and Toulouse areas. For Pearson’s rp, the lowest and highest obtained corre-
lations among the four grassland meta-classes and two areas are respectively +0.046 and -0.539. Spearman’s
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Table 2.12: Pearson (rp) and Spearman (rs) correlation coefficients between NDVI and derived SAR features
(mean values of (3) and (4) described in Table 2.9). Results are provided according to the four grassland meta-
classes defined in Section 2.3.1.1. Green color indicates the highest correlation found with NDVI, while the
red color denotes the lowest ones.

Asc. orbit Desc. orbit Asc. orbit Desc. orbit

σ0
VV σ0

VH σ0
VV/VH σ0

VV σ0
VH σ0

VV/VH γVV γVH γVV γVH

Permanent grasslands (PM) (N= Mâcon: 1,259,640 ; Toulouse: 1,921,189)

M
âc
on rp

N
D
V
I

-0.101 +0.057 -0.224 -0.084 +0.055 -0.190 -0.183 -0.095 -0.101 -0.026

rs -0.111 +0.036 -0.226 -0.091 +0.027 -0.189 -0.188 -0.091 -0.095 -0.009

To
ul
ou

se rp -0.113 -0.001 -0.228 -0.046 +0.026 -0.148 -0.251 -0.176 -0.290 -0.216

rs -0.113 +0.024 -0.220 -0.014 +0.060 -0.126 -0.281 -0.196 -0.325 -0.239

Temporary grasslands (TG) (N= Mâcon: 361,020 ; Toulouse: 819,766)

M
âc
on rp

N
D
V
I

-0.206 +0.074 -0.340 -0.191 +0.046 -0.285 -0.327 -0.198 -0.279 -0.167

rs -0.143 +0.050 -0.252 -0.117 +0.023 -0.198 -0.313 -0.194 -0.221 -0.114

To
ul
ou

se rp -0.254 -0.116 -0.475 -0.268 +0.032 -0.414 -0.390 -0.212 -0.435 -0.302

rs -0.180 +0.124 -0.405 -0.164 +0.038 -0.312 -0.370 -0.195 -0.408 -0.284

Fallow land (FA) (N= Mâcon: 27,720 ; Toulouse: 456,743)

M
âc
on rp

N
D
V
I

-0.194 +0.096 -0.371 -0.139 +0.086 -0.289 -0.292 -0.138 -0.261 -0.137

rs -0.211 +0.049 -0.337 -0.138 +0.049 -0.246 -0.275 -0.122 -0.229 -0.100

To
ul
ou

se rp -0.284 -0.040 -0.428 -0.259 -0.014 -0.353 -0.335 -0.198 -0.364 -0.237

rs -0.216 +0.052 -0.360 -0.164 +0.009 -0.267 -0.300 -0.168 -0.313 -0.194

Forage legumes (FL) (N= Mâcon: 19,500 ; Toulouse: 356,278)

M
âc
on rp

N
D
V
I

-0.229 +0.165 -0.477 -0.279 +0.078 -0.417 -0.459 -0.251 -0.441 -0.265

rs -0.167 +0.153 -0.392 -0.197 +0.067 -0.331 -0.447 -0.257 -0.378 -0.210

To
ul
ou

se rp -0.241 +0.174 -0.539 -0.247 +0.112 -0.510 -0.450 -0.214 -0.484 -0.325

rs -0.186 +0.192 -0.509 -0.172 +0.122 -0.457 -0.441 -0.193 -0.469 -0.315

rs provides broadly similar values with the lowest and the highest correlations being +0.009 and -0.509.

As above explained in Section 2.6.1, over grasslands, VV polarization features appear more correlated
than VH polarization for both σ0 and γ. By analyzing the most correlated features (highlighted in green in
the Table 2.12), in almost all cases, the σ0

VV/VH
features in the ascending orbit are the most correlated ones

with NDVI. This can first be related to the topography present in both study areas. Furthermore, differences
in local acquisition time (early morning and late afternoon for descending and ascending orbits, respectively)
can change the observed surface with for example, potential dew in the morning.

The analysis of correlations between the different meta-classes permits to complete the results obtained
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in the previous section, where all grasslands were considered regardless of their meta-class. For the Toulouse
area, considering all grasslands, γ features obtained the highest correlations. It is here still the case for perma-
nent grasslands for both correlation coefficients and for rs of temporal grasslands, but not for fallow land and
forage legumes. While γ features are the most correlated ones, the σ0

VV/VH
features follow closely, further

indicating that this feature generally seems to be the most correlated with NDVI.

Another important distinction concerns the strength of correlation obtained for the different grassland
meta-classes. By taking into account the most correlated feature (σ0

VV/VH
in ascending orbit), it can be re-

marked that the lowest correlations are obtained by permanent grassland. They increase for temporal grass-
lands, again for fallow land features and achieve the highest correlations for forage legumes.

The results could be explained by the different intensity of exploitation related to each meta-class. Perma-
nent grasslands are globally less exploited compared to forage legumes, whose agronomic species implies an
intensive production with marked phenological cycles constrained by human activities. Forage legumes are
thus phenologically close to crops, for which a strong correlation has been previously obtained. In addition, a
relationship between slope and grassland meta-class can also be made. Indeed, the steeper the slope, the less
easy the exploitation of the parcel is. The permanent grasslands, requiring less human intervention, are thus
in majority in presence of slope. It was seen previously that the slope could influence the SAR features (even
completely obstructing the observation of the parcel). On the contrary, the nadir acquired NDVI is relatively
insensitive to slope. This can further explain the poor correlation obtained over permanent grasslands.

2.7 Concluding remarks

This chapter first introduced, discussed, and illustrated the two aspects of reference data and satellite time
series. Comprehensive datasets on several vegetation types, geographical areas, and agricultural seasons were
presented.

Several features derived from Sentinel-1 and Sentinel-2 time series have been proposed for monitoring
vegetation, with a focus on grasslands. In particular, the simple NDVI vegetation index, derived from Sentinel-
2, has shown its interest to characterize both the temporal evolution of vegetation and the important variations
induced by management practices on grassland parcels. Nevertheless, an important limitation to the use of
optical data due to the frequent cloud cover was demonstrated. The need for regular and frequent data to
capture rapid variations in grassland vegetation led to the conclusion that the sole use of NDVI to monitor
grasslands was insufficient.

SAR data has been presented as a workaround to the concern of missing data. Sentinel-1 time series
ensure a regular temporal observation in compliance with the task of grassland monitoring. The potential
complementarity of optical and SAR features for vegetation and grasslandmonitoring has been presentedwith
the help of relevant reference data including topographic and meteorological. As a drawback, in contrast to
NDVI, SAR time series require a complex and thorough interpretation for their exploitation.

The construction of a methodology allowing a joint exploitation, taking advantage of both the efficiency
of NDVI and the repetitivity of SAR features, is the main need identified in this chapter by the study of the
exploited satellite data.
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3.1. MONITORING VEGETATION THROUGH OPTICAL-SAR SYNERGY

3.1 Monitoring vegetation through optical-SAR synergy

When dealing with vegetation monitoring, previous chapters have highlighted the essential need for tempo-
ral highly sampled time series. This appeared especially important for grassland surfaces as a consequence of
quickly evolving phenologies, a large variety of agronomic species as well as management practices. The anal-
ysis of the derived satellite features used to characterize grasslands (Section 2.4) has clearly illustrated the good
ability of optical time series to capture both the seasonal phenology of grasslands as well as abrupt changes
related to management practices. Consequently, a large number of approaches are understandably relying on
the use of optical time series mainly through vegetation indices such as the NDVI (see Section 1.2.2.2).

Although affected by missing data, the Sentinel-2 constellation allows the acquisition of a significant
number of non-cloudy NDVI values. The nominal temporal resolution of 5 days allows, at least in Europe,
to ensure, a minima, several valid observations for each season, allowing an essential temporal variety of
observations. Furthermore, the 110×110 km tiles of Sentinel-2 encompass broadly 10,980 pixels (10×10 m).
Referring to the average available non-cloudy images per study area in Chapter 2 and Table 2.3, several million
examples of non-cloudy NDVI values are thus available for each of the study areas. While this stands at large
scales, at the local scale, the cloud cover and subsequent missing data are a major limitation for grassland
monitoring. Missing data can prevent exhaustive and fine-scale monitoring especially on intensivelymanaged
grasslands with rapid vegetation regrowth.

A large number of methods has been devoted to the crucial task of recovering missing optical data. Sec-
tion 3.2 will propose to review the most prominent existing methods. Two different categories are considered.
The first cone addresses interpolation methods (Section 3.2.1) which exploit optical data only. They mostly
rely on time series temporal trend to recover information. The second category explores methods using Ma-
chine Learning (ML) algorithms (Section 3.2.2). These methods rely on the use of complementary SAR data
alongside optical data to describe a supervised regression task. In the last decade, deep neural networks have
particularly attracted a lot of attention of the scientific community for solving regression problems (LeCun
et al., 2015; Goodfellow et al., 2016; Zhu et al., 2017; Lathuilière et al., 2019; Reichstein et al., 2019). The
increasing computer capabilities and the availability of large datasets for supervision have greatly supported
their expansion. Modern neural network architectures have proven to be efficient for time series data mining
where there is limited knowledge about the underlying physical processes. The use of large training datasets
describing high variability further improves their generalization ability on unseen data. This capability is
essential to developing robust methodologies on large geographical areas.

A newly constructed deep-based regression architecture is proposed to exploit the complementarity of
optical and SAR time series. To overcome the complexity of analyzing SAR data and taking into account the
observed efficiency of NDVI time series for vegetation monitoring, the deep-based architecture targets the
regression of SAR features towards NDVI. Since the availability of training labels (i.e., valid NDVI values) is
important, a fully supervised regression approach permitting extensive learning and accuracy assessment is
possible. Furthermore, based on the feature analysis carried in Section 2.4, it is proposed to integrate ancillary
data handling SAR limitations into the network.

Considering the supervised regime allowed by the availability of massive data, the high dimensionality
of the features, their complex relationships and the yearly time series exploited, deep-based methods provide
adequate and proven tools for the targeted regression task. Section 3.3.1 will propose the introduction of
two extensively used deep learning architectures, serving as a basis for the proposed architecture for SAR to
NDVI feature regression. Section 3.3.2 will present compulsory pre-processing steps for the use of the derived
features presented in Section 2.5. Finally, Section 3.3.3 explains the proposed regression framework and will
present the deep-based architecture, namely, the Sentinels Regression for Vegetation Monitoring (SenRVM)
approach.
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3.2. RETRIEVING MISSING DATA IN OPTICAL TIME SERIES

3.2 Retrieving missing data in optical time series

A large range of research efforts has been devoted to develop non-parametric methodologies (i.e., that don’t
require any distributional assumptions about data) for recovering time series of optical-derived vegetation
indices with high temporal sampling (Verrelst et al., 2015; Cai et al., 2017; Belda et al., 2020a). Two main
categories of methods are found in the literature that target to recover the temporal resolution of the time
series: standard interpolation methods and machine learning (ML) regression algorithms. A review of used
methods according to the two categories is proposed in the following.

3.2.1 Standard interpolation methods

Standard interpolation methods can be considered as gap filling reconstruction strategies recovering missing
information. These methodologies can be divided into different categories (Shen et al., 2015; Desai and
Ganatra, 2012; Yin et al., 2017; Lepot et al., 2017; Gerber et al., 2018; Moreno-Martínez et al., 2020).
Traditionally, thesemono-sensor approaches exploit past and future observations acquired by the same sensor
to estimatemissing data. Despite numerous relevant spatial and spatio-temporal approaches (Kang et al., 2005;
Zhang et al., 2007; Das and Ghosh, 2016; Ding et al., 2017; Vuolo et al., 2017; Moreno-Martínez et al., 2020),
local and global temporal interpolation approaches remain the most prevalent methods when dealing with
evolving processes such as vegetation.

Local temporal methods exploit the temporal evolution of the time series by using a sliding temporal win-
dow. Among these approaches, the classical linear interpolation method is the most well-known, straight-
forward, and used (Inglada et al., 2017; Defourny et al., 2019; Hubert-Moy et al., 2019; Bolton et al., 2020;
Kamir et al., 2020). Polynomial-based strategies have been extensively proposed as alternatives. While lin-
ear interpolation methods are computationally effective and minimize the extrapolation of data, polynomial
approaches are naturally more suited for approximating non-linear relationships such as it can be the case
in vegetation changes. Polynomial regressions are nevertheless sensitive to outliers as prone to overfitting,
which can be a disadvantage in the presence of errors in the masks for instance Some examples are spline
interpolation methods (Xu et al., 2017; Meng and Li, 2019), Savitzky-Golay filter-based methodologies (Chen
et al., 2004; Jönsson and Eklundh, 2004; Kandasamy et al., 2013; Julien and Sobrino, 2019) or locally weighted
scatterplot smoothing (Moreno et al., 2014) methods. The gap-filling accuracies of these methods are directly
influenced by the sliding window size, which is a predefined parameter related to the gap length. As non-
uniform gaps are usually encountered in the time series, the requirement for an adequate window size is an
important limitation.

Instead of working at the local scale, global temporal methods propose to recover missing information
by fitting the data to predefined parametric functions. For instance, the widely used Whittaker smoother
fits the time series by minimizing penalized weighted spline regression squared errors (Atkinson et al., 2012;
Kandasamy et al., 2013). Further global approaches include asymmetric Gaussian function fitting (Jonsson and
Eklundh, 2002; Beck et al., 2006) or Fourier-based harmonic analysis (de Wit and Su, 2005; Zhou et al., 2015;
Julien and Sobrino, 2019; Solano-Correa et al., 2020). One of the main limitations of global strategies is that
they generally assume that the data follows some a priori distribution shape. They are therefore class-specific,
resulting in a lack of flexibility in the presence of non-stationary data (Chen et al., 2004; Moreno-Martínez
et al., 2020).

One of the main weaknesses of the standard interpolation methods is their poor effectiveness when large
data gaps are occurring. In these situations, these methods fail in reconstructing temporal trajectories de-
scribing high frequency variations. It can result in missing crucial information about vegetation changes
described by such variations. The effectiveness of standard interpolation approaches directly depends on the
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valid number of observations acquired by the used sensor. Consequently, these methods have been mostly
applied to dense optical time series with a temporal resolution of a few days but with with coarse spatial reso-
lutions (e.g., MODIS or SPOT-VEGETATION) or for tasks requiring limited temporal information, e.g., yearly
land-cover classification (Cai et al., 2017; Sun et al., 2021a).

The temporal resolution of time series acquired at high spatial resolution (e.g., Landsat or Sentinel) is
usually less dense. In this case, missing data periods can range from weeks to months (Roy et al., 2008).
To address such limitations, some interpolation methods consider the fusion of complementary optical data
such as Sentinel-2 and Landsat-8 (Gao et al., 2017; Claverie et al., 2018; Dwyer et al., 2018; Dong et al.,
2020; Griffiths et al., 2019; Moreno-Martínez et al., 2020). Unfortunately, these multi-sensor methods require
important corrections to homogenize the different spatial (Zhu et al., 2016) and spectral (Barsi et al., 2018;
Bolton et al., 2020) resolutions. Additionally, complementary optical data is also affected by cloud coverage
and cannot guarantee to provide a high number of supplementary valid observations.

3.2.2 Supervised machine learning regression methods

The exploitation of multi-sensor observations for recovering time series of optical-derived vegetation indices
are emphasized by ML regression methodologies (Kamilaris and Prenafeta-Boldú, 2018; Reichstein et al.,
2019). An increasing number of works is proposing the use of optical and weather-independent SAR time
series (Schmitt and Zhu, 2016). The availability of complementary optical and SAR satellite missions (e.g.,
Sentinels) has supported their joint exploitation. Three categories of ML regression algorithms approaches
can be found in the literature, exploiting multi-sensor images: classical ML approaches, Gaussian processes,
and deep learning methods.

Classical ML approaches such as Support Vector Machines (SVM) or Random Forests (RF) are commonly
adopted. For instance, the work in (Wang et al., 2019b) proposes to apply SVM and RF algorithms on Sentinel-
1, Sentinel-2 and Landsat 8 data to predict frequent Leaf Area Index (LAI) estimations. RF and Support Vector
Regression are used in (Mohite et al., 2020) to generate a dense NDVI time series. A six-month time interval
is investigated over five different crop types. Despite the good results obtained by SVM and RF approaches,
it must be noticed that they are mostly validated on small agricultural datasets of a few dozen or hundreds
and furthermore composed almost only of crops samples. It is therefore difficult to assess whether these
techniques could be efficiently applied over large areas with different vegetation covers. In addition, these
techniques require a handcrafted feature extraction step and do not exploit the temporal trajectory of the
input time series.

Gaussian process (GP) is another supervised regression method which is increasingly exploited in several
works. Pipia et al., 2019, is proposing a multi-output GP methodology to fill gaps in LAI time series derived
from the joint exploitation of Sentinel-2 and Sentinel-1 observations. Besides time series reconstruction, the
GP performances is also corroborated by other regression tasks involving vegetation monitoring. An example
is found in (Mercier et al., 2020) where biophysical parameters are extracted from wheat and rapeseed parcels
by exploiting Sentinel-1&2 time series. Although neglecting Sentinel images, the use of GP for crop yield
estimation is also studied in (Martínez-Ferrer et al., 2020), combining MODIS and SMAP datasets. Despite
previous works are showing a satisfactory capability of GP for regression tasks, the scalability of these meth-
ods can be challenging. Long training times and significant computational resources are required. The tuning
of GP is also complex and very sensitive to the choice of the kernel. Such a choice questions its generalization
capacity in the presence of very heterogeneous covers. Finally, likewise classical ML approaches, GP does not
exploit the temporal order of the input data used for regression.

Leveraging the significant advances in machine learning and computer vision, deep-learning approaches
are increasingly adopted in satellite Earth Observation related tasks. Deep-learning approaches are taking
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advantage of the exponential availability of satellite time series, which furthermore offer multi-modality and
rich spectral and spatio-temporal structures. The flexibility in design of deep-based methods combined with
the increasing computational resources and data availability allows their exploitation in various tasks, includ-
ing regression.

Deep-based SAR-to-optical regression architectures proposed for Sentinel data have first been devoted to
exploit the spatial dimension of images acquired at a single date (He and Yokoya, 2018; Cresson et al., 2019;
Gao et al., 2020; Meraner et al., 2020). Convolutional Neural Networks (CNNs) or Generative Adversarial
Networks architectures (GANs) are proposed as a single-date regression solution without exploiting the tem-
poral information of times series. The main objective of this work is the regression of SAR data to optical
raw spectral bands to fill the missing data. Only a few deep-based architectures are proposed to exploit the
temporal information of high resolution remote sensing time series and almost exclusively for classification
tasks (land-cover mapping). Scarpa et al., 2018, is proposing the use of CNNs to estimate NDVI from Sentinel
data for dates between May and November. Several scenarios are investigated to exploit optical and SAR data
either separately or jointly. The images preceding or following the date to be estimated are used to integrate
temporal information. While the scenario involving both optical and SAR data as input to their architecture
allows a satisfying estimation of NDVI, in the case of SAR data only, the results are found less accurate. The
need for non-cloudy optical data can nevertheless be a problem depending on the persistence of the cloud
cover. The satisfactory results also highlight the interest of deep learning approaches compared to standard
interpolation methods. High regression scores are obtained, albeit the very limited time series used.

To the best of our knowledge, at the time of writing the manuscript, a single example (Zhao et al., 2020)
of a deep-based regression framework based on yearly SAR time series to retrieve optical-derived vegetation
indices has been found. The authors combine CNNs and RNNs in a reconstruction framework aiming at pre-
dicting gap-free optical NDVI time series. 1D-CNNs are used to extract information from SAR time series
separately for VV and VH polarizations. RNNs are then exploited to integrate the temporal evolution of the
time series. Promising results are presented by this latter approach. Nevertheless, its generalization capability
over heterogeneous vegetation types and large areas can be questioned. Indeed, the work proposed in Zhao
et al., 2020, is primarily focusing on crops and a limited spatial extent. Crops are known to have a clearly
defined phenological cycle. This is especially true in restricted areas, where agricultural practices take place
at the same time and phenological cycles are similar. Consequently, the limited geographical area and the lack
of class variability do not allow to conclude on the potential accuracy in the context of larger areas and more
complex vegetation types. Furthermore, high calculation costs and long training times, which may be chal-
lenging in an operational context are reported due to the pixel-wise approach. Finally, the input data in Zhao
et al., 2020, seems restricted: only descending orbit Sentinel-1 acquisitions are used, discarding the ascending
orbit, which could provide additional information to the regression process. Concerning Sentinel-2, cloud &
shadow masks are used to select only non- or partially-cloudy images for both training and validation. The
predictions are thus made on dates that are extensively seen during training. This strategy does not allow to
assess the approach neither on dates strongly affected by clouds nor on unseen dates. As for the feature used,
only SAR backscatter coefficient information is selected. Additional features such as coherence information,
which embeds temporal information and has demonstrated its usefulness for the study of vegetation could
have been considered. Furthermore, Zhao et al., 2020, reports inferior results when important changes in
scattering mechanism (e.g., from diffuse soil scattering to vegetation volume scattering) are occurring. The
introduction of ancillary information to support the contextualization of SAR measurements could improve
the results. Moreover, this inclusion could allow to improve the generalization of the regression over larger
geographical areas and heterogeneous vegetation covers.
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3.3 SenRVM: A deep learning-based regression framework

The following sections are dedicated to the description of the deep-based methodology proposed for moni-
toring vegetation. The outputs of the SenRVM approach are gap-free NDVI time series, retrieved from the
SAR-based inputs. Figure 3.1 provides a schematic view of the overall SenRVM regression methodology.
Object-level, i.e., LPIS parcel, statistics are first computed from the features derived from the raw satellite
images and databases. SAR and ancillary features are fed as input to the SenRVM network and incomplete
NDVI time series (i.e., with missing data due to cloud cover) are fed as labels.
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Figure 3.1: Overview of the SenRVM regression framework.

Providing state-of-the-art results in multiple domains, Neural Networks (NN) have proven to be effec-
tive for regression problems (Alom et al., 2019; Lathuilière et al., 2019). The proposed deep-based SenRVM
methodology relies on two extensively used NN architectures, namely the Multi-layer Perceptron (MLP) and
a Recurrent Neural Network (RNN). MLPs allow to obtain a high-dimensional representation of multivariate
data by leveraging possible interactions. Section 3.3.1.1 will introduce the concepts that allowed MLPs to
be extensively used in data mining. RNNs are designed to foster information extraction from the temporal
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domain. Section 3.3.1.2 introduces the concepts underlying RNNs and architectures which will be exploited
to characterize the evolution of vegetation.

Derived features identified as relevant for the monitoring of vegetation and presented in Section 2.5 are
exploited. The SenRVM methodology is based on the joint exploitation of optical (i.e., NDVI and masks)
and SAR (i.e., backscattering coefficient and coherence) time series as well as ancillary data (i.e., topography,
climate, and several metadata). Besides, the proposedmethodology requires some further pre-processing steps
described in Section 3.3.2. The resampling task to compute a common temporal grid (Step 5 of Section 2.5),
the rescaling of SenRVM inputs and the encoding of categorical features are specifically discussed. Finally,
the formulation of the SAR to NDVI regression problem and its loss function are defined in Section 3.3.3.1
and the SenRVM architecture is detailed in Section 3.3.3.2.

3.3.1 Basic deep learning architectures

3.3.1.1 From Artificial Neuron to Multi-layer Perceptrons

Multilayer perceptron (MLP) is the simplest form of deep neural network. It consists of inter-connected
neurons transmitting information to each other. A MLP is composed of a input layer containing the inputs,
one or more hidden layers and an output layer. A layer consists of several units (i.e., the inputs for the input
layer) or neurons (i.e., performing calculations) for the hidden and output layers. Hidden and output layers of
a MLP are connected in a feedforward manner: a neuron of a layer is connected to each neuron of the previous
layer. Traditionally, MLPs are used to map inputs into an output representation describing the complex and
non-linear relation among the data, which is known as the encoding task. Similarly, they are used for decoding
tasks, which intend to output the closest match from the given input to the intended output. To understand
how MLP performs encoding or decoding tasks and which computations are involved, we can trace back the
premises of neural networks.

McCulloch and Pitts, 1943, published a logical calculus of the ideas immanent in nervous activity intro-
ducing a mathematical formalization of the concept of biological neuron, the Artificial Neuron (AN). In this
framework, the purpose of the AN, illustrated in Figure 3.2a, was to recognize linearly separable patterns of
its inputs. At that time, inputs and outputs were boolean, i.e., forming a two-class classification problem. To
perform the classification, the AN relied on several calculations. The key concept of AN was that to each
input, a weight was attached. The first computation (the so-called net input function, z) of a AN is a weighted
sum of the inputs, furthermore adding a bias term b. The output of the net input function is next passed
through a logic thresholding step function (s), such as the Heaviside or sign step functions, yielding the result
(ŷ).

z =

n∑
i=1

wi · xi , (3.1)

ŷ = s(z), ∈ {0, 1}, (3.2)

The weights w, bias term b, and the threshold of the s function were the tunable parameters. Limitations
from the AN were that their tuning was analytically and manually determined after each AN computation
and therefore fixed.

Following Hebb, 1949, who put emphasis on the evolving nature of neural interconnections, Rosenblatt,
1958, extended the AN to the so-called Perceptron, concept, which is used today as the foundation of most
types of Artificial Neural Networks (ANNs, Atkinson and Tatnall, 1997). Conversely to the AN whose tunable
parameters were determinedwith respect to the network results, the Perceptron introduced a network capable
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(a) (b)

Figure 3.2: Structural graph of (a) a Artificial Neuron / Perceptron and (b) a ADALINE learning neuron. Both
are using inputs which are associated to weights and perform weighted summation with a dedicated function
(z). A activation function (s) is used to yield the outputs. ADALINE introduces a linear activation function
(p) helping the network to learn during training.

of learning by itself. The perceptron used real-values inputs (i.e., non-boolean), and its weights and biaseswere
iteratively and automatically adjusted. The output of a Perceptron is achieved through the same computing
steps as for the AN, with a random initialization of the weights. The result ŷ was compared to the expected
categorical output. The computed error was then propagated backward to adjust the weights and bias (i.e.,
kept, decreased or increased). These steps are repeated, thus allowing the network to learn until an exact
output prediction is produced.

A further step in the learning process has been achieved in Widrow and Hoff, 1960, with the Adaptative
Linear Element (ADALINE) approach (Figure 3.2b). Compared to the Perceptron who learned by comparing
errors made from the boolean outputs, the ADALINE proposed to add a linear activation function (p) pre-
ceding the binarization of the outputs step (s). This approach allowed a major improvement as it permitted
the ADALINE neuron to continuously learn by using the continuous values yielded by the linear activation
function p for error backpropagation. Using such continuous values instead of boolean values permitted to
define a convex minimization problem. The minimization problem relies on the so-called cost function or loss
(i.e., typically Manhattan distances between expectations and predictions, L1 norm, or Euclidean distances, L2
norm) to asses the network error. Gradient descent techniques were used to efficiently solve the minimization
problem. The gradient descent technique searches for a global minimum of the cost function by evaluating the
partial derivatives, or gradients, with respect to each individual weight and bias parameter. Gradient descent,
whose concept is still in use in modern NN, relies on a hyperparameter, the learning rate, which is a fixed
user-defined value. The learning rate controls how much (i.e., the magnitude) weights and bias are updated
taking into account the corresponding gradient.

The shift from fixed weights and bias in the first AN to learnable Boolean values in the Perceptron and
finally continuous values with the ADALINE approach lead to a significant speed-up of convergence and ab-
straction capabilities of these early neural networks. Eventually, more output neuronswere stacked to form an
output layer. This allowed to evolve from the binary classification problem to more complex problems. Multi-
layered - deep - networks were then proposed using the outputs as input to a second layer with an arbitrary
number of neurons. Figure 3.3 illustrates a single-layer Perceptron and a MLP. The single layer Perceptron
is composed of a input layer (blue layer) and an output layer (red layer). In contrast, the MLP of Figure 3.3b
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is constructed with the same input and output layers but additionally has three hidden layers (green layers).
These hidden layers have distinct number of neurons and interconnected in a feedforward manner the same
way the Single layer Perceptron was. The MLP shows how additional neurons stacked in layers were added
to build deep networks capable or numerous computations and learning. The theoretical depth of deep multi-
layer neural networks is unlimited. However, until now, the backward propagation method used for learning
was not able to differentiate errors between different layers. Parameters were updated uniformly, thus making
more deep networks inefficient. The introduction of the backpropagation algorithm (Werbos and John, 1974;
Linnainmaa, 1976; Rumelhart and McClelland, 1987) helped to overcome this limitation and extended the
use of the gradient descent technique to networks with any number of hidden layer, further increasing their
learning capacity.

(a) (b)

Figure 3.3: Single-layer Perceptron with multiple outputs (a) and a Multi-layer Perceptron with hidden layers
and multiple outputs (b).

Modern MLPs rely on the consecutive improvements of the AN. With increasing computational resources
and interest towards deep learning, the depth (i.e., the number of layers) and number of neurons of each
layer tremendously increased. To help training and thus learning MLPs, several further improvements have
been proposed and are now routinely used. The logic thresholding or linear activation function have been
replaced by non-linear but differentiable activation functions, allowing to solve complex non-linear prob-
lems. Commonly used activation functions are the Sigmoid function (scaling the output between 0 and 1),
Hyperbolic Tangent function (tanh, scaling between -1 and 1) or Rectified Linear Unit function (ReLU, out-
put 0 if negative, otherwise x). To speed-up training, gradient descent in the backpropagation algorithm is
applied on batches, i.e., a subset of the training dataset. Furthermore, training is now commonly performed
using an optimizer, such as Adam, AdaGrad or RMSprop. The Adam optimizer for example permits to modify
the learning rate during training for each networks parameter. Stochastic gradient descent in contrast was
maintaining a single learning rate, set as a upper limit, for all weight updates during the complete learning
process. Finally, to improve the generalization of training and prevent overfitting (i.e., fitting too closely to
the data used for training), regularization techniques such as dropout or normalization layers are routinely
used. Dropout limits the interdependence between neurons in a layer by randomly ignoring neurons during
training. Normalization of the layers outputs helps to stabilize the training accuracy when data have different
ranges. Different normalization techniques exist, such as using mean and variance of the outputs within a
batch, along certain dimensions, or within groups of features.
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3.3.1.2 Neural Networks and temporal sequence

MLPs previously presented are feedforward networks, meaning that each layer output is fed into the next layer
in a unidirectional fashion. The imposed feedforward rule limits the exploitation of inter-dependencies that
can occur when dealing with time- or sequence-dependent problems. A dedicated type of Neural Networks,
called Recurrent neural networks (RNNs), are capable of learning features and time dependencies among
ordered data (Campos-Taberner et al., 2020).

The first successful example of a recurrent network trained with backpropagation was published in El-
man, 1990, who introduced recurrent connections and memory cells. The term "recurrent" indicates that the
network performs the same task over each instance of sequential data. At each time step, a hidden state is
learned and stored into a memory cell. Recurrent connections between memory cells and hidden states imply
that the output at a certain time step depends on the previous computations and results. As for previous
feedforward networks, weights are associated to each connection allowing adjustments and learning. These
recurrent connections are used for dynamic information processing and are naturally suited to satellite time
series. RNNs leverages Backpropagation Through Time (BPTT) to determine the gradients used to update
the weights and biases of the network, which is a slightly modified backpropagation algorithm taking into
account the sequential nature of the processing.

To illustrate the recurrent process in a RNN layer, Figure 3.4 exemplifies the two ways RNNs can be
represented. On the left, a compact visualization referred to as folded, indicates the recurrent cyclic process
of the RNN layer (green outlined circle with curved arrow). On the right, the unfolded version illustrates in
a feedforward manner the notion of time step calculation with as much ’copies’ of the recurrent cells as time
steps in the input sequential data, sharing the same weights. BPTT is relying on this unfolded dimension to
calculate the error and perform update.

Figure 3.4: Schematic representation of a folded RNN on the left, and unfolded on the right. x are the inputs,
h are the hidden states, ŷ are the outputs and t the time steps.

However, RNNs stressed a problem that was already affecting the feedforward multi-layer networks: gra-
dient vanishing and explosion (Bengio et al., 1994). As multiplication is involved in the backpropagation
process, when starting with small or large values in the last layers, the gradients can exponentially grow or
decrease towards zero while being propagated to the first layers. As unfolded RNNs can be seen as having as
much layers as time steps, this caused RNNs to be poorly effective in dealing with long sequences, learning
long-term dependencies and prone to errors on top of long computation times.

The introduction of Long Short-Term Memory (LSTM, Hochreiter and Schmidhuber, 1997) and Gated
Recurrent Units (GRU, Cho et al., 2014) cells addressed the major issues of the former RNNs. As the name
suggests, it is achieved through the addition of units combining both short-memory and long-memory capa-
bilities and controlling the passed hidden states. Figure 3.5 illustrates the functioning of both LSTM and GRU
cells.

RNNs were called forgetful as we saw that they retained mostly memory only from the previous time step.
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Figure 3.5: Long Short-Term Memory (LSTM) cell left and Gated Recurrent Unit (GRU) cell right. x are the
inputs, h are the hidden states, c is the cell state and t is the current time step.

LSTM cell (left in Figure 3.5) by contrast, introduces loops that can generate long-term gradients and such
memory. The final output of a LSTM cell ties together three information: the current input data (xt), the short-
termmemory from the previous time step (ht−1) and a long-termmemory frommore remote time steps (ct−1).
A gating system inside the LSTM cell regulates the flow of information by carrying out specific calculations.
A forget gate first decides based on previous hidden state and current time step input what information should
be kept or deleted from the long-term memory. The input gate aims to add new information to the long-term
memory from the current time step. The output gate controls what information should be passed to the next
time step cell. Obviously, weights are added to each calculation step, allowing LSTM cells to learn which
information are effective to reduce the prediction error (i.e., by ’opening’ and ’closing’ gates).

Gated Recurrent Units (GRU) were introduced as a variant of LSTM. Unlike LSTM, GRU uses only two
gates to control the memory. A reset gate at time step t (rt) allows information from the previous hidden
state to be discarded while the update gate (zt) controls how much information is to be passed along the next
hidden state. Furthermore, compared to LSTM which has two distinct memory states passed between the
time steps (i.e., ht and ct), GRU operates inner-cell computation between previous hidden state and a current
candidate hidden state h̃t. Thus, a single hidden state ht is passed along the time steps. With respect to the
notation of Figure 3.5, the computations of a GRU cell are as follows:

rt = σ (Wirxt + bir +Whrht−1 + bhr) , (3.3)
zt = σ (Wizxt + biz +Whzht−1 + bhz) , (3.4)
h̃t = tanh (Wihxt + bih + rt ⊙ (Whhht−1 + bhh)) , (3.5)
ht = (1− zt) ⊙ h̃t + zt ⊙ ht−1 , (3.6)

where xt = input at time step t

ht−1 = hidden state from previous time step t−1
Wir,Wiz,Wih = learnable weights related to the inputs
Whr,Whz,Whh = learnable weights related to the previous hidden state
bir,biz,bih = learnable biases related to the inputs
bhr,bhz,bhh = learnable biases related to the previous hidden state
⊙ = Hadamard product
σ = sigmoid function
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tanh = hyperbolic tangent function.

Due to a greater simplicity, GRU allow for significant decrease in network parameters and computing
time compared to LSTM (Shewalkar et al., 2019; Mateus et al., 2021). For example, Yang et al., 2020 reported
GRU as 29.29% faster than LSTM for processing the same dataset. GRU has also been found to provide similar
results to LSTM (Ndikumana et al., 2018; Yang et al., 2020; Mateus et al., 2021), thus often preferred.

A further advantage of RNNs, and therefore LSTM and GRU, is their flexibility regarding input-output
configurations. Sequential data takes many different forms (e.g., a sequence within a single image, or along
a time series). The hidden states computed for each time step can either be used as a resulting prediction or
probability, or be passed to the next time step. Thus, multiple sequence-related tasks can be performed. The
five main configurations are illustrated in Figure 3.6: one-to-one, which basically yields the same as a feed-
forward MLP and is not a RNN, one-to-many (e.g., captioning an image where elements are inter-connected),
many-to-one (e.g., classification task such as determining a crop type at the end of the season),many-to-many
where the number of inputs and outputs don’t necessarily match (e.g., characterizing an involving process
such as vegetation growth). Obviously, in the case of predicting continuous NDVI over grasslands, themany-
to-many case will be accurate.

Figure 3.6: Variation of Recurrent Neural Network (unfolded) regarding input and output sequences.

Finally, as for feedforward networks, RNN layers can be stacked together where the outputs of the first
RNN layer are used as inputs to a second RNN layer. RNNs can also be bi-directional (BRNN) by processing the
sequence in both directions (Schuster and Paliwal, 1997). Typically, two separate RNNs are used: one for the
forward direction and one for the reverse direction. This offers the advantage of learning temporal patterns
independently from the beginning of the sequence (the first input) in addition to observing the sequence in a
reverse order.

Recently, Vaswani et al., 2017 have introduced Transformers which, like RNNs, are designed to process
sequential input data. Transformers adopt Multihead-Self-Attention mechanisms, efficiently relating different
positions of a given input sequence. Self-attention is computed by weighting the significance of each part
with respect to the other parts of the sequence, to gather information and learn dynamic temporal contextual
information. Transformers have been massively adopted in many sequence-related tasks, providing state-
of-the-art results and notably greatly reducing training times and parameter number. While RNNs have to
process the sequence successively, Transformers overcome this bottleneck and allow long-term memory to
be efficiently retained. Transformers have been successfully adapted and applied to satellite image time series
only very recently (Sainte Fare Garnot et al., 2020; Rußwurm and Körner, 2020).

Despite very promising, Transformers have for now, in the context of satellite image time series, only
been explored in many-to-one contexts. The specific regression task intended in this work, which is many-
to-many (far right in Figure 3.6), may convey questions on the interest of the use of Transformers. Indeed,
the parallel processing of Transformers is initially done in an order-invariant way, meaning the actual order
of the sequence is not kept. Techniques such as positional embedding and attention masking have addressed
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this concern and are now routinely employed (Shaw et al., 2018; Wang et al., 2021). Nevertheless, they in-
crease the complexity and number of parameters of the network and the temporal order is still only implicitly
added. Eventually, for some regression problems such as in this work, the sequential processing of RNNs may
be enough. The prediction task of the state of the vegetation at a certain time step must predominantly de-
pend on the vegetation state at close temporal observations. Indeed, it was observed that grasslands are very
responsive to climate factors and numerous management practices imply variable and unpredictable phenolo-
gies. Carrying temporal information build principally on a few preceding time steps such as with RNNs may
be adequate and appropriate. The main advantage of Transformers for long-term memory processing might
therefore prove to be unnecessary. Lastly, Transformers have shown to outperform RNNs regarding satellite
image time series classification tasks (i.e., predicting a crop type) mainly in end-to-end learning schemes were
unprocessed raw data are fed as inputs. When pre-processing of features is been considered, such as it is the
case in this work, performances of Transformers and RNNs were relatively similar (Rußwurm and Körner,
2020).

3.3.2 SenRVM input pre-processings

We adopt a MLP-RNN based framework for regressing Sentinel-2 variables from Sentinel-1 and ancillary
inputs. We put the focus on NDVI retrieval, since it was seen that the latter responded favorably to the
initial issue of grassland monitoring. Given the asynchronous and multivariate nature of the data and the pre-
requisite of deep-based methods, some pre-processing task are first performed on the input datasets described
in Section 2.5. Three pre-processing tasks are considered: a resampling step already mentioned in Section 2.5,
a scaling transformation of the inputs features and an encoding task of categorical variables.

Resampling of satellite inputs: As optical, SAR and ancillary data do not share the same temporal sam-
pling, the common temporal grid defined in Step 5 of Section 2.5 is used in the regression framework. Thus,
the optical, SAR and ancillary data share the same time step spacing, permitting to associate each input with
a label to be compared with the network output. As a recall, the shift in days caused by the common temporal
grid with respect to the original one is kept as ancillary data and will be used to provide temporal context
information to the regression framework.

Scaling transformation: Any optimization problems require data to be scaled for efficient and tractable
learning. It is the case of most ML and deep learning methods using gradient descend optimization tech-
niques. As the input data values are used in several calculations, they will affect the weights of a deep-based
network. Having different feature ranges can lead the network to prioritize higher values and slow or harm
convergence. Thus, a common scale is preferred, ensuring an update of parameters at the same rate, regardless
of the original data range.

Several scaling techniques are commonly used, among them mainly normalization and standardization.
Normalization re-scales the data between 0 and 1 using argmin and argmax of the distribution. Standardiza-
tion on the other hand uses the mean and standard deviation of a distribution to perform scaling:

x ′ = x− µ/σ (3.7)

where x is the input value, µ is the mean and σ is the standard deviation of the concerned distribution of x.
Thus, a centered and reduced variable has a mean equal to 0 and a standard deviation equal to 1. Standardiza-
tion does not have a bounded range, but will change according to the distribution. As the input data used is
assumed to have what can be referred to as wide ranges (i.e., very different values between active vegetation
and bare soil after management practice), standardization is preferred to normalization. The bounded nature
of normalization ∈ [0, 1] would lead to a compression of the distribution dynamics.
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Standardization is performed independently for each SAR and ancillary inputs and for each data type (i.e.,
VV polarization, VH polarization, altitude, precipitation...). For the following, inputs mentioned in the regres-
sion framework refer to those standardized (x ′). NDVI values, as further used in the regression framework
solely as target values are kept unchanged.

Encoding categorical variables: Among the used ancillary data, the specie type is provided in codes (e.g.,
PPH, PTR, PRL...) that are categorical variables (Section 2.3.1). Numerical variables are nevertheless expected
in ML. Several techniques are proposed to encode categorical data which are ordinal (Hancock and Khoshgof-
taar, 2020), such as the simplest label encoding technique which assigns an integer to each class. The case of
specie codes is nevertheless nominal conversely to ordinal, as each code has the same importance as another.

The One-Hot-Encoding (OHE) technique is commonly used to encode categorical to numerical data when
they do not have a notion of order. OHE will represent each categorical variable by a vector having the length
of the possible categories containing only 0 and 1. This ensures an equal numerical value to each class. The
position of the 1 will then depend on the category such that each category has a unique vector. As an example,
considering three possible codes, the OHE will process as follows:

Categorical variable =
One-hot-encoding =

PPH

[ 1, 0, 0 ]
PTR

[ 0, 1, 0 ]
PRL

[ 0, 0, 1 ] (3.8)

Drawbacks of OHE is the heavy amount of dimensionality to the data that can be added (i.e., when there is
a high number of classes). Furthermore, the number of categories can change on a new dataset for example.
Nevertheless, few other options are available for nominal encoding (Hancock and Khoshgoftaar, 2020) and as
only about 20 grassland and forest and 3 crop codes are retrieved, OHE remains a convenient and efficient
encoding strategy.

3.3.3 SenRVMmethodology

3.3.3.1 Regression task and loss function

Let us denote as X = (x1, x2, ..., xT ) the multivariate time series of length T containing all features derived
from Sentinel-1 (Table 2.9). For each t ∈ {1, 2, ..., T }, SAR features derived from an image acquired at instant t
are represented by xt. In parallel, Z = (z1, z2, ..., zT ) is the multivariate time series where each zt contains the
features computed from ancillary data (Table 2.10), tailored to provide information about SAR measurements
(see Section 2.4). Considering these definitions, {X,Z}asc and {X,Z}desc correspond to the couples of features
from ascending and descending orbits. SAR orbits are individually processed to avoid mixing information
acquired from different viewing angles. The proposed SenRVM regression method then uses both couples to
predict the time series Ŷ = (ŷ1, ŷ2, ..., ŷT ) where ŷt denotes the predicted NDVI measure at the instant t.

To supervise SenRVM, NDVI time series Y = (y1,y2, ...,yT ) of length T derived from Sentinel-2 acqui-
sitions are used (Table 2.8). The training process estimates the network parameters by minimizing a loss
function J. This function quantifies the error L between predicted and expected NDVI values. Given n train-
ing samples, J is defined as the average Mean Squared Error (MSE) L and is committed during the forward
training propagation step as:

J =
1
n

n∑
i=1

L(Ŷi, Yi) , (3.9)

where L evaluates the average error between prediction ŷt and expected yt values at instant t. The MSE

74



3.3. SENRVM: A DEEP LEARNING-BASED REGRESSION FRAMEWORK

is preferred to other classical regression loss functions (Lathuilière et al., 2019) given its ability to converge
towards the optimal solution. Note that the Mean Absolute Error outputs continuously large gradients even
in the case of small errors, which can lead to convergence problems. The alternative Huber loss requires
the setting of a hyper-parameter δ. The setting of this value can be data dependent and can be an iterative
problem.

To take into account the sensitivity of MSE to outliers, cloudy NDVI acquisitions are removed from the
MSE computation. The information contained in the cloud & shadow masking vector M = (m1,m2, ...,mT )
is incorporated in Eq. 3.9 with the validity flagmt ∈ {0, 1} associated with each yt :

L =
1
T

T∑
t=1

mt(ŷt − yt)
2 . (3.10)

It must be noticed that the presence of outliers in the training data cannot be entirely discarded since cloud &
shadow masks can contain errors. The performance impact of such errors is discussed in Section 4.5.1 where
a re-training/refinement strategy is presented to slightly improve the SenRVM performances.

3.3.3.2 SenRVM architecture

The SenRVM architecture, which is based on the previously presented deep-based MLP and RNN architec-
ture, is decomposed into three blocks as depicted in Figure 3.7. Firstly, the encoder block combines SAR and
ancillary data to extract a joint complex representation. Secondly, the recurrent block captures the temporal
dependencies among the previous representations. Finally, the decoder block translates the network represen-
tations into the target variable, namely, NDVI.

The encoding block individually processes ascending and descending orbit datasets by two parallel branches,
which are fed by {X,Z}asc or {X,Z}desc couples. As previously stated, ascending and descending orbits pro-
pose drastically different angles of acquisition and therefore bring a disjointed information. Each branch is
composed of two MLPs, which separately maps each {xt, zt} couple to an output representation of 256 fea-
tures. The four MLPs composing the encoder block contain 4 fully connected (FC) layers whose output sizes
are equal to 128, 128, 200 and 256. FC layers, except for the last one, are followed by batch normalization,
dropout, and non-linear activation layers. As described in Section 3.3.1.1, these layers are used to improve the
accuracy and generalization of the learning. A fixed probability p for the dropout layers is set to 0.2 and a rec-
tified linear unit (ReLU) is used as non-linear activation function. The use ofMLPs allows us to obtain a feature
representation with the same output size (256) from both X and Z. This intermediate representation encodes
complex relationships for each data modality and allows their fusion without prior correlation knowledge. An
element-wise multiplication (Hadamard product) is then proposed to combine the encoded SAR and ancillary
feature representations computed for each acquisition date. Alternatives such as concatenation, summation,
or subtraction are discarded because lower performances were obtained for these strategies in preliminary
experiments. Finally, the encoding block concatenates the two ascending and descending branches in a single
vector of 512 features for each date t. The concatenation is chosen here to keep the raw information from
both orbits.

The second block is a single layer Bi-directional RNN (BRNN), scanning the input in both directions. The
choice of a BRNN is made to obtain robust predictions using past and future observations enclosing each time
step. A single BRNN layer is proposed as it achieves similar performances than more complex multi-layers
stacked BRNNs while reducing the number of network parameters. This block takes as input the outputs of
the encoder block (i.e., the joint SAR and ancillary representation). The RNN is composed of GRU cells which
have a memory size ht equal to 256. Working with short-length satellite time series (i.e., less than 80 time
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Figure 3.7: SenRVM architecture taking as input object-based statistics of SAR and ancillary features and
yielding NDVI predictions. MLPs compose the encoder and decoder blocks and GRU cells the recurrent block.

steps), and because of the limitations exposed previously (Section 3.3.1.2), GRU has been preferred to LSTM
and Transformers. The purpose of this block is to extract the underlying temporal information contained
in the time series described for each t by 512 features previously learned. The bi-directional RNN outputs
two vectors corresponding to forward and backward sequence scanning. These two vectors are element-wise
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multiplied to obtain a single vector of 256 values per date which is passed to the next block. Thus, the recur-
rent block outputs a time series of size T × 256.

For each date t, the last SenRVM block processes its corresponding 256 features to predict ŷ. This last
block is composed of a funnel-shaped MLP which is a succession of six FC layers whose input sizes are equal
to 256, 64, 32, 16, 8, and 4. As previously proposed, FC layers are followed by batch normalization, dropout,
and ReLU activation layers. Dropout probability is here initially set to 0.4 and decreases by 0.1 for the succes-
sive following layers. Finally, the last FC layer applies the sigmoid function as the final activation function,
considering the dynamic range of NDVI values. The decoding block regresses the 256 features to a single
NDVI value ŷ for all dates t ∈ T .

SenRVM network weights and biases are learned through the training phase by minimizing the loss func-
tion of Eq. 3.10. Iterative backpropagation with Adaptive Moment Estimation (Adam) algorithm is used to
find the optimal network weights (Kingma and Ba, 2017). After each iteration, Adam algorithm updates the
weights towards the global minimum of the loss function.

3.4 Concluding remarks

Obtaining dense time series was previously identified as critical for grassland monitoring. Prominent tech-
niques to recover missing data in optical satellite time series were presented. Mono-modal approaches were
nevertheless found inappropriate as not capable at accurately depicting sudden changes in the time series. In
contrast, machine learning approaches proposing a joint optical-SAR data exploitation were found to be more
promising.

In particular, deep learning methods can address some of the issues raised by the grassland monitoring
task. As massive, multi-modal and noisy data must be exploited, deep learning allows the learning of complex
correlations and dependencies. In order to capitalize on the proven efficiency of NDVI time series for grassland
monitoring, a supervised regression task from SAR and ancillary features towards NDVI was proposed.

The Sentinels Regression for Vegetation Monitoring (SenRVM) regression framework presented aims at
obtaining gap-free NDVI time series at a 6-day temporal resolution. The basic building blocks of deep learning
have been introduced with emphasis on the networks that address the proposed regression problem. A new
architecture based on multi-layer perceptron and recurrent neural networks was presented.
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4.1. EXPERIMENTAL DESIGN FOR TRAINING AND EVALUATING SENRVM MODELS

4.1 Experimental design for training and evaluating SenRVMmodels

Multiple experiments are carried out to evaluate the performances of the SenRVMmethodology. The accuracy
of the predicted NDVI time series at high temporal sampling is assessed.

Results are first investigated over a multi-class dataset including three vegetation types (Section 4.2.1).
This targets to confront the SenRVM approach to different phenologies and assess its capabilities to gener-
alize over heterogeneous vegetation covers. In a second step, single-class model results are presented (Sec-
tion 4.2.2).

Next, different spatial and temporal criteria are considered to analyze the per-class results (Section 4.3)
.The importance of the different input SenRVM features is then evaluated by an ablation study. To further
assess the SenRVM performances, the proposed methodology is compared with several standard interpolation
and machine learning regression methodologies. The SenRVM prediction accuracy is evaluated on small and
significant data gaps to explore its predictive ability under different simulated clouding conditions. A related
investigation of SenRVM capability in retrieving time series breaks is proposed.

Focusing on SenRVM models obtained over grasslands, generalization capabilities are assessed in Sec-
tion 4.4, with models trained on an area and inferred on another area, or learned on one year and inferred
on a different year. Finally, post-processing steps are explored in Section 4.5, fostering the potential improve-
ments of SenRVM results.

4.1.1 Experimental setup

For the experiments, the reference data is randomly splitted into disjoint train, validation and test data subsets.
The training dataset contains 3/5th of the polygons describing the complete reference dataset. The remaining
polygons are divided equally for the validation and test datasets. A 5-fold cross-validation is performed during
training by repeating the splitting procedure five times and re-run. This minimizes the possible randomness
effects with respect to the initialization of the network layers as well as the effects due to the sampling strategy
(such as imbalanced sampling or spatial auto-correlation of training samples). Hereinafter, the presented
results, except when stipulated otherwise, are obtained by averaging the 5-fold results.

The SenRVM input features are described in Section 2.4 and are pre-processed as mentioned in Section 2.5.
For the experiments, a notable difference concerning the used dataset for training and evaluation is made.
Single-class and multi-class (see Section 2.3.1) models are considered. Single-class models refer to the training
and evaluation using one single dataset among the grassland, crops and forest datasets. Multi-class models
are trained and evaluated over larger datasets regrouping the three types of vegetation surfaces.

For the different experiments, the batch size (Bs) and learning rate (Lr) are empirically set. The batch
size refers to how many input-output pairs are used in a single back-propagation pass (i.e., update of the
network weights, see Section 3.3.1). The hyperparameters ultimately used for single-class and multi-class
models obtained over the Mâcon and Toulouse areas are reported in Table 4.1. Except when explicitly given,
these hyperparameters are valid for all SenRVM models assessed in the following.

During the training process, the number of epochs is set to 150. The validation dataset is used during
training to asses the model’s accuracy and update its parameters. The epoch obtaining the highest accuracy
on the validation dataset is considered as the best model. For each parcel, only the observations flagged as
non-cloudy by the masks are taken into account. Since the cloud cover does not impact the parcels equally,
the length of the time series Tv, which depicts the number of non-cloudy observation in the time series T, will
therefore vary from one parcel to another.
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Table 4.1: Main SenRVM hyperparameters, learning rate (Lr) and batch size (Bs), as well as training time (T).

Area Class Lr Bs T (min)

Mâcon

Grasslands 5× 10−4 256 57
Crops 5× 10−4 256 32
Forests 1× 10−3 128 24

Multi-class 5× 10−4 512 71

Toulouse

Grasslands 1× 10−4 256 96
Crops 5× 10−4 512 61
Forests 1× 10−3 256 36

Multi-class 5× 104 512 145

4.1.2 Evaluation metrics

Four classical regression metrics are selected to assess the SenRVM performances. Prediction errors are first
evaluated by three metrics which are the Mean Absolute Error (MAE), Mean Squared Error (MSE), and the
Root Mean Squared Error (RMSE):

MAE =
1
T

T∑
t=1

|yt − ŷt| , (4.1)

MSE =
1
T

T∑
t=1

(yt − ŷt)
2 , (4.2)

RMSE =
√
MSE =

√√√√ 1
T

T∑
t=1

(yt − ŷt)2 , (4.3)

with Tv the number of non-cloudy observations, yt the observedNDVI value at the tth time series date, and ŷt

the predicted NDVI value at the corresponding tth time series date. Both MAE and MSE are complementary
metrics. MAE has the advantage of being simply interpretable and expressed in the same units as the variable
being evaluated as it directly reports the absolute potential error. TheMSE, already presented in the context of
the loss of the model, allows through squaring, to penalize large errors. Its interpretation is nevertheless more
complex. RMSE allows to relate the value of the MSE to the units of the evaluated variable, while penalizing
large errors. For the three previous metrics, the lower the values obtained, the higher the accuracy.

The fourth metric is the coefficient of determination R2 which is used to estimate how strong the linear
relationship is between the expected and predicted NDVI measures:

R2 = 1−
1
T

∑T
t=1(yt − ŷt)

2

1
T

∑T
t=1(yt − ȳ)2

, (4.4)

with Tv the number of observations, yt the observed NDVI value at the tth time series date, ŷt the predicted
NDVI value at the corresponding date t, and ȳ the average of y ∈ T . The three previous metrics have arbitrary
ranges depending on the evaluated variable units. In the case of a simple linear regression, R2 varies between
0 and 1. This allow using R2 for model comparison. Contrary to MAE, MSE, and RMSE, the higher the R2, i.e.,
the closer to 1, the better the fit and the higher the prediction accuracy.
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4.2 Assessment of SenRVM predictions

4.2.1 Evaluation of the multi-class SenRVMmodel

ForMâcon, 27, 599 polygons from a total of 46, 001 elements from the correspondingmulti-class (i.e. grassland,
crops and forest) dataset are used for training the models while 58, 921 out of 98, 203 polygons are used for
the Toulouse area (Table 2.7). As previously mentioned, the three vegetation classes, grasslands, crops and
forests, respectively, have distinct phenologies, which leads to a high data variability.

Results obtained for the multi-class SenRVM model are shown in Table 4.2. Results are averaged over all
polygons belonging to the test dataset and for all dates of the time series. Highly accurate results are obtained,
with R2 above 0.86 andMAE errors below 0.042. Low standard deviations are also found across the fourmetrics
for both areas. The R2 found values of 0.86 and 0.89 for Mâcon and Toulouse, respectively, indicate a strong
correlation between the Sentinel-2 acquired and the SenRVM predicted time series. Considering that NDVI
∈ [−1, 1], the MAE represent a ≈ 2% error rate. This shows the ability of the SenRVM network to provide
good predictions despite the different phenologies of the vegetation types.

Table 4.2: Average results and ± standard deviation obtained by multi-class SenRVM models.

Mâcon Toulouse

M
ul
ti-
cl
as
s R2 0.8650 ± 0.0039 0.8947 ± 0.0016

MAE 0.0419 ± 0.0016 0.0404 ± 0.0016
MSE 0.0039 ± 0.0002 0.0030 ± 0.0002
RMSE 0.0628 ± 0.0021 0.0547 ± 0.0017

The best performances are reached in Toulouse. Nonetheless, the differences found between both areas
are relatively small accounting the important number of samples. The differences can be justified by several
reasons. The Mâcon area has a more spatially distributed topography. Because of the side-looking nature of
SAR data, this can lead to data being masked by topography (see Section 1.2.1.2). On the other hand, large
parts of plains marked by a subtle topography characterize the Toulouse area. The temporal distribution of
satellite acquisitions, with more dates for the Toulouse area can also favor the learning process of the model.
Lastly, the uneven number of training samples allows the models of Toulouse to integrate twice the number
of polygons used for Mâcon for learning each vegetation class (see Table 2.7).

4.2.2 Evaluation of single-class SenRVMmodels

This study aims to investigate if multi-class model results could be improved by training SenRVM on single-
class datasets. Hence, three SenRVM models are individually trained on grassland, crop and forest datasets.
Hyperparameters are empirically tuned according to each vegetation class (Table 4.1). Results obtained over
Mâcon and Toulouse are shown in Table 4.3. The minimum R2 and the maximum MAE are here respectively
equal to 0.8384 and 0.0443. Results of single-class and multi-class models are of the same order of magnitude.
The differences found with the multi-class model are highlighted in green (improvement) or red (decrease).

The highest accuracies are reached by the crops class for both study areas, exhibiting similar results.
Conversely, grasslands obtain the worst results and the highest standard deviations. This can be explained by
its high intra-class variability and the important number of abrupt events impacting them. Although some
R2 differences are observed between crops and grasslands, similar results are obtained for the rest of the
precision metrics. Forest class results obtain the lowest precision errors which are related to the class signal
stability. Human intervention in forests remains rare and their phenology response curve only variates with
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some specific factors such as climate. Some differences are observed by comparing the forest results obtained
in the two study areas. The best performances are reached in Toulouse which can be justified by a higher
number of training samples, that is, as previously stated, approximately double that of the Mâcon area.

Sub-class results (i.e., according to the grassland or crop declarative code and the forest species) are subse-
quently computed from the single-class. Sub-class related results can be found in Appendix. 6.2. Satisfactory
stability of the results are observed among the sub-classes despite a considerable variation in the number
of samples. The results for three sub-classes, namely, maize, winter wheat and alfalfa, can be compared to
those obtained in a similar study (Zhao et al., 2020). For maize and winter wheat, Zhao et al., 2020, obtained
R2=0.9409 and R2=0.9157, respectively. SenRVM results, averaged on both Mâcon and Toulouse areas, are
broadly similar although higher, especially for maize, with R2=0.9465 and R2=0.9635 for winter wheat and
maize, respectively. It should be noted that the SenRVM results were obtained over much larger study areas
than those evaluated in Zhao et al., 2020. For the alfalfa class, the only one related to grasslands in Zhao
et al., 2020, the results obtained by SenRVM largely outperform the ones presented in Zhao et al., 2020. In
the latter study, authors stipulate the very complex alfalfa NDVI trends compared to other major crops to jus-
tify the decrease in accuracy found. For the alfalfa class, authors achieved a R2 of 0.7018. SenRVM obtains
significantly higher correlation, with R2=0.8425 over alfalfa classes (i.e., several declarative codes are related
to alfalfa, which are averaged). This difference can be explained by several factors, such as the integration
of the two Sentinel-1 orbits, larger study areas allowing for more robust model learning, or the integration
of ancillary data allowing for contextualization of the SAR measurements. Section 4.3.4 will further compare
SenRVM results with other commonly employed methods in two contexts of missing data.

Table 4.3: Class-specific average results ± standard deviations, over all the predicted instant of times and
for all testing polygons. Differences with results obtained with the multi-class model are marked in green
(improvement) or red (decrease).

Mâcon Toulouse

Gr
as
sla

nd
s R2 0.8384 (+0.0038) ± 0.0152 0.8464 (+0.0089) ± 0.0115

MAE 0.0418 (+0.0011) ± 0.0058 0.0443 (-0.0002) ± 0.0029
MSE 0.0040 (+0.0003) ± 0.0009 0.0037 (-0.0002) ± 0.0006
RMSE 0.0629 (+0.0018) ± 0.0069 0.0606 (-0.0011) ± 0.0049

Cr
op

s

R2 0.9433 (+0.0033) ± 0.0017 0.9676 (+0.0001) ± 0.0037
MAE 0.0420 (-0.0061) ± 0.0014 0.0353 (-0.0019) ± 0.0038
MSE 0.0040 (+0.0008) ± 0.0001 0.0026 (+0.0001) ± 0.0005
RMSE 0.0630 (+0.0065) ± 0.0010 0.0503 (-0.0001) ± 0.0044

Fo
re
st
s

R2 0.8486 (+0.0006) ± 0.0268 0.9235 (+0.0030) ± 0.0106
MAE 0.0343 (-0.0001) ± 0.0066 0.0318 (-0.0017) ± 0.0051
MSE 0.0032 (+0.0002) ± 0.0007 0.0020 (-0.0001) ± 0.0005
RMSE 0.0562 (+0.0013) ± 0.0057 0.0450 (-0.0013) ± 0.0049

The little variations in results evidenced in Table 4.3 between single-class and multi-class models corrobo-
rate the accurate predictions of SenRVM, even in the case of amulti-class dataset with high data heterogeneity.
Compared to single-class models, training a multi-class SenRVM model can offer some advantages as, for in-
stance, the reduction of the number of parameters to be learned. Furthermore, the use of a large training
dataset permits to increase the batch size, which reduces the computational times. The multi-class dataset
learning phase took in average 71 mn while 113 mn were necessary to obtain the three single-class models.
Similarly for Toulouse, 145 mn and 196 mn for multi-class and single-class models, respectively, were needed.
Besides simplifying the parameter tuning, the reference data scarcity problem which may exist for minority
classes can be reduced by training a multi-class model. In addition, the variability of multi-class training data
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is usually increased. Therefore, multi-class SenRVM models can improve their generalization performances
and potentially reduce overfitting, while preserving accurate results.

Figure 4.1 provides visual examples of SenRVM predicted time series for the three vegetation classes and
for both main study areas (Mâcon on the top and Toulouse at the bottom).

(a) SenRVM grassland time series: top : permanent grassland in Mâcon; bottom : rye-grass in Toulouse.

(b) SenRVM crop time series: top : maize in Mâcon; bottom : winter barley in Toulouse.

(c) SenRVM forest time series: top : scots pine in Mâcon; bottom : deciduous oak in Toulouse.

Figure 4.1: NDVI time-series predicted from SenRVM for the Mâcon and Toulouse areas over three common
vegetation classes: top: grasslands, middle: crops, bottom: forests. Sentinel-2 acquired NDVI is depicted
with green dots while red crosses indicates cloudy observations. Illustrated parcels are from the test datasets
meaning that they were not used during training.

The six illustrated polygons belong to the test dataset and have not been used during training. It is visually
possible to see that the predictions are very close to the NDVI values observed by Sentinel-2. Moreover, the
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different phenologies apparent between vegetation types are accurately reproduced by SenRVM predictions.
Several technical acts are observable for the two grassland time series and for the Macon corn parcel with a
catch crop harvested late April. The stability of forests is evidenced by time series with low temporal variance.

4.3 Empirical analysis of the SenRVM results

Both fine quantitative and qualitative analysis are carried out for the Mâcon and Toulouse areas. First, spatial
assessment evaluates the effect of size and location of polygons on the reconstruction accuracy. In a second
step, the time-dependent accuracy of SenRVM is evaluated on different dates and seasons of the year. The
temporal assessment also evaluates how the number of valid Sentinel-2 acquisitions can influence the Sen-
RVM performances. The importance of the different input SenRVM features is then evaluated by an ablation
study. To further assess the SenRVM performances, the proposed methodology is compared with standard
interpolation and ML regression methodologies. The SenRVM prediction accuracy is evaluated on small and
significant temporal data gaps.

4.3.1 Spatial and qualitative analysis

Ten size categories are defined to assess if the results fluctuate according to the size of the parcels. Each
category contains the same number of polygons. In general, the number of polygons for each category is
similar for both study areas (Figure 4.2). Only small differences are found for grasslands since large summer
pastures covering several hundred hectares are present in the Toulouse area.

The SenRVM single-class results obtained in Section 4.2.2 are studied according to the ten size categories.
Figure 4.2 shows the obtained results where, for each vegetation class, the Pearson correlation coefficient rp
between the polygon size and the R2 score is also displayed. The results show that a strong correlation exists
between both the polygon size and the prediction performances, with the highest accuracy obtained by the
largest polygons.

Figure 4.2: SenRVM accuracy evaluated according to the polygon size. Ten polygon size classes of equal
population are defined for each vegetation class (columns) and both areas (rows). Average R2 of SenRVM
per-class predictions and their standard deviation are displayed. Pearson correlation coefficient rp between
SenRVM predictions and polygon sizes are displayed on the bottom right corner of each plot.
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Grasslands reach the highest correlation coefficients, higher than 0.99 for both study areas. In contrast,
the lowest correlation coefficients are obtained on forests. The strong correlation obtained on grasslands and
crops can be mainly explained by three reasons. First, large polygons contain more pixels and the resulting
statistics (i.e., mean, median, and standard deviation used as features) are more meaningful and less sensitive
to outliers. Second, the mechanization of farming practices on large agricultural parcels leads to the pres-
ence of more homogeneous and human-controlled vegetation covers. Time series describing homogeneous
vegetation polygons lead to more predictable and reliable results. Lastly, large polygons are less affected by
the SAR speckle noise given the proposed object-oriented approach. Although similar satisfactory results
are obtained for the three classes, the effects of polygon size on prediction accuracies are different. The R2

difference between small and large polygons is minimal for crops and forests. In contrast, for grasslands, the
impact of polygon size appears greater with R2 gains of about 0.1 for larger polygons.

Following the same idea, the effects of the altitude, slope, and exposure of polygons on SenRVM results
are also studied. The altitude of the parcels does not seem to influence the SenRVM performances with corre-
lation coefficients close to 0. Slope and exposure exhibit a significant negative correlation (−0.75 < r <−0.6),
except for forests. In the case of grasslands and crops, the increase of slope and exposure decreases the predic-
tion quality. A possible explanation for these correlations is related to grassland management. Parcel with a
significant slope are less suitable for intensive exploitation and are generally larger (e.g., mountain pastures).
Larger plots are likely to incorporate greater intra-plot variability and extensively farmed plots have less pre-
dictable phenologies, whichmay explain lower SenRVMperformance. Nevertheless, the correlations obtained
for these three topographic features are not as significant as the ones presented in Figure 4.2. Consequently,
these results are not further explored in the following.

Figure 4.3 shows the spatial distribution of the R2 results obtained by SenRVM for both study areas. A four-
color map is used to evaluate the defined the R2 scale ranges. Ranges are chosen accordingly to the results,
with four classes that can correspond to poor, average, good and very good results. Results show that high
relief areas obtain the poorest SenRVM performances. This can be observed by looking at the Eastern part
of Mâcon and the Southern part of Toulouse. The zoom box of each area is superimposed with a DTM. Light
colors describe high altitude areas, where an accuracy decrease is observed in mountainous areas. Polygons
located onmountain regions can suffer from non-exploitable Sentinel-1 data (i.e., due to geometric effects such
as layover or foreshortening). Furthermore, as these high relief parts also have strong slopes and exposures,
this visual assessment confirms the quantitative correlation results.

Another interesting remark is that SenRVM errors seem not to be concentrated in specific areas but rather
isolated. It is worth reminding that the R2 measures the co-variation between the labels and the predictions.
Low R2 values therefore do not necessarily indicate erroneous predictions. Conversely, high R2 can be ob-
tained from far predictions with a constant shift. For example, if predictions are constantly shifted to 0.1 from
the labels, the R2 would be of 1. As such, a combined analysis of R2 and MAE is needed to detect parcels with
potential learning errors. Only 0.15% of the parcels for Mâcon (43 out of 27,932) and Toulouse (out of 50,103)
have R2<0.5 and MAE>0.1.

Qualitative analysis of the results obtained over these parcels has highlighted three potential error sources
which will affect the accuracy metrics: (i) cloud & shadow mask errors; (ii) parcels remaining as bare soil
thorough the entire agricultural season; (iii) reference data errors.

Figure 4.4 illustrates examples of the three error sources over the Mâcon area. For the three SenRVM
predicted time series, accuracy metrics are poor (R2<0.5 and MAE>0.1).

Figure 4.4a shows a cloud mask error occurring on January 13: a cloudy acquisition is marked as valid.
The corresponding Sentinel-2 RGB image easily confirms the error. SenRVM prediction for this date is far
from the erroneously valid label. On the one hand, it can be considered satisfactory that the prediction does
not replicate the mask error. Nevertheless, this label is taken into account in the calculation of metrics, which
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Figure 4.3: Spatial visualization of the SenRVM performance obtained on all vegetation polygons. DTM is
displayed as base-map in the zoom boxes. Four scale R2 ranges are used to evaluate SenRVM predictions
which exhibit less accurate prediction in mountainous areas (East part of Mâcon and South part of Toulouse).

will be low. The impact of these mask errors will be discussed later in Section 4.5.1.

A parcel declared as permanent grassland in the RPG is depicted in Figure 4.4b. Nonetheless, from the
NDVI time series as well as the Sentinel-2 RGB images, it is observed that this parcel remains in bare ground
thorough the entire agricultural season. The sufficient number of valid dates, especially during the growing
season, suggests no doubt about this outcome. Although the corresponding SenRVM time series appropriately
has little temporal variation, it is observed a relatively constant overestimation for most of the predictions.

87



4.3. EMPIRICAL ANALYSIS OF THE SENRVM RESULTS

(a) Cloud mask error flagging a cloudy acquisition as valid.

(b) Bare soil characterizing a permanent grassland thorough the entire agricultural season.

(c) RPG declared permanent grassland being a pond.

Figure 4.4: Most prominent types of errors leading to poor SenRVM regression accuracy metrics.
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It is first possible to explain this overestimation by the very small number of parcels with such low NDVI
values. Furthermore, the use of a sigmoid activation as an output of the network is not suitable for estimating
NDVI of a surface other than vegetation.

Finally, Figure 4.4c illustrates a type of error that is fortunately relatively uncommon but can be encoun-
tered. A RPG declared parcel as permanent grassland is characterized by very lowNDVI values, mostly bellow
zero. The Sentinel-2 spatial resolution does not directly explain these low values. Using a higher spatial res-
olution image (from the same year on Google Maps), we can nevertheless see that this parcel declared as
grassland is in fact a pond. This is confirmed by the sun glitter observed on the pond. Water surfaces appear
specular to SAR, which is very sensitive to humidity (Section 2.4.2). Thus, the resulting time series of SenRVM
appear flat. Although these cases necessarily affect the metrics obtained by SenRVM, they are inherent to the
reference data. In the framework of large-scale studies proposed here, the fine quantification of errors, their
impact, and the correction of reference data is practically unfeasible. An uncertainty on the exact quality
of the results can therefore be included, but can only with difficulty be quantified and rectified. Within the
framework of this work, a qualification step of the reference data is therefore not included.

4.3.2 Temporal analysis

The second evaluation carried out here assesses the intra-annual consistency of the SenRVM results. For each
single date, the SenRVM performances are evaluated by computing the MAE. Only valid NDVI measurements
not affected by clouds are considered. The MAEs and their respective standard deviations obtained are shown
in Figure 4.5. To simplify the result interpretation (and considering the similar results obtained for the three
classes), the results are averaged across the three vegetation classes.

Figure 4.5: MAE obtained for each date comparing the non cloudy NDVI observations with their correspond-
ing SenRVM predictions. Results are averaged for the three classes and reported for the Mâcon (left) and
Toulouse (right) areas. Large MAE are explained by the presence of cloud & shadow mask errors.

As observed, most of the dates obtain MAE lower than 0.05, which confirms the high SenRVM perfor-
mances. The two study areas show similar and satisfactory results despite the timelines of image acquisi-
tions are different. Some abnormal MAE higher than 0.2 are visible in January (Mâcon area) and December
(Toulouse area). These high values are explained by the presence of cloud & shadow mask errors which
were visually confirmed. At these dates, the corresponding validity flags denote as valid numerous cloudy
Sentinel-2 observations. In this situation, the NDVI values predicted by SenRVM are compared with invalid
NDVI measures (see Section 4.5.1). As a result, MAE calculated for those dates is high, however, without
indicating a limitation in the learning process.

Further analysis is carried out to evaluate if MAEs are influenced by the yearly season. Previous per-date
results are averaged over the four seasons of the year as illustrated in Figure 4.6. At the bottom of the figure,
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the percentages of cloudless NDVI measurements per season are also reported. Despite the seasons having
a similar number of valid optical observations (except for spring in Mâcon), the winter period obtains the
highest MAEs. These high values can be explained by the persistent winter cloud coverage producing large
gaps without Sentinel-2 images (see Figure 2.2.2).

Figure 4.6: On top, MAE computed for the four seasons of the year are shown for both study areas. The
bottom chart indicates the percentage of cloudless observations available per season.

Although Figure 4.5 shows similar MAEs for both study areas, they are differently impacted by cloud
coverage as shown in Figure 2.2. Considering the R2 between predicted and expected NDVI time series of each
polygon, correlation between R2 and the number of cloudless NDVI observations used is also investigated.
Although 60 dates are available for the Mâcon area, cloudless measurements are ranging from 18 to 43 among
all polygons. Concerning Mâcon, the valid number of observations ranges from 7 to 35 out of the 71 dates.
Significant correlation, above 0.7, is only found for grasslands and crops from the Mâcon area. In these
cases, the performances are improved with an increased number of cloudless NDVI observations available
for training. These results must be nevertheless tempered since the temporal distribution of missing data nor
their duration are taken into account in this study. Moreover, the number of polygons greatly varies between
classes. The results are therefore indicative and are not illustrative.

4.3.3 Ablation study of SenRVM inputs

The proposed ablation study describes the relevance assessment of the various features. The potential sim-
plification or complexity in the design of the deep-based architecture is not evaluated. An ablation study is
presented here by analyzing the SenRVM performances obtained with 6 input feature set scenarios. The study
aims to evaluate the impact of the input features on the SenRVM predictions. The first scenario is the baseline
(denoted as ALL), in which the input SenRVM data corresponds to all features described in Section 2.5. The
other 5 scenarios are constructed by removing some specific features from the baseline one.

Referring to Table 2.8, 2.9 and 2.10, the σ0 (3) and γ (4) features are removed, respectively, for the SIG
and COH scenarios. In the SAR scenario, all features derived from Sentinel-1 and denoted as (3), (4), (5),
and (6) are not considered. This should help to observe the importance of the SAR-based features for the
regression task. The AUX scenario studies the removal of (7), (8), and (9) ancillary features from ALL. Finally,
the MASK scenario investigates how SenRVM performance differ when the validity flags provided by the
cloud & shadow masks are not incorporated in the loss function. The different scenarios consider the same
SenRVM parameter configurations and the same train/validation/test datasets. Table 4.4 provides information
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on the different families of features removed for each scenario, while Table 4.5 shows the size of the inputs
for each parcel at each date and for one branch of the SenRVM encoder w.r.t. each scenario.

Table 4.4: SenRVM ablation study with 6 scenarios. For detailed features description, see Table 2.8, 2.9 and
2.10 of Chapter. 2.

SenRVM INPUTS

σ0 γ climate topography metadata masks

SC
EN

A
R
IO

S

ALL ✓ ✓ ✓ ✓ ✓ ✓

SIG ✗ ✓ ✓ ✓ ✓ ✓

COH ✓ ✗ ✓ ✓ ✓ ✓

SAR ✗ ✗ ✓ ✓ ✓ ✓

AUX ✓ ✓ ✗ ✗ ✗ ✓

MASK ✓ ✓ ✓ ✓ ✓ ✗

Table 4.5: Inputs size of the SenRVM methodology varying with the different ablation study scenarios. The
input sizes correspond to the SAR and AUX features (Section 3.3.3.1) of one branch of the architecture used
in the SenRVM methodology (Section 3.3.3.2).

SenRVM INPUT SIZES (SAR / AUX)
Mâcon Toulouse

Multi-class Grasslands Crops Forests Multi-class Graslands Crops Forests

SC
EN

A
R
IO

S

ALL 25 / 104 25 / 83 25 / 63 25 / 79 25 / 103 25 / 81 25 / 63 25 / 79
SIG 10 / 104 10 / 83 10 / 63 10 / 79 10 / 103 10 / 81 10 / 63 10 / 79
COH 15 / 104 15 / 83 15 / 63 15 / 79 15 / 103 15 / 81 15 / 63 15 / 79
SAR 0 / 104 0 / 83 0 / 63 0 / 79 0 / 103 0 / 81 0 / 63 0 / 79
AUX 25 / 0 25 / 0 25 / 0 25 / 0 25 / 0 25 / 0 25 / 0 25 / 0
MASK 25 / 104 25 / 83 25 / 63 25 / 79 25 / 103 25 / 81 25 / 63 25 / 79

A visual interpretation of the ablation study results is illustrated in Figure 4.7, where the summarized
results of each specific scenario are compared with the ALL scenario. For this visual evaluation, a global
score is computed by averaging the four metrics obtained by both study areas. To take into account that the
metrics have different ranges, they are normalized between 0 and 1 by considering the results of the different
scenarios. The best result, obtained here in each case by ALL, is 1. Conversely, 0 indicates the worst result
among the assessed scenarios. The global score is used to represent the accuracy decrease in Figure 4.7. The
arrow direction represents the accuracy decrease between the best (top) and worst (bottom) scenarios.

Figure 4.7: Ablation study results obtained by themulti-class and single-class SenRVMmodels. The accuracies
of the five scenarios are compared to the baseline (ALL) by using a global score summarizing the four metrics
results obtained for both study areas. The arrow direction represents the accuracy decrease between the best
and worst scenarios.

The results of the ablation study are detailed in Table 4.6, where the different scenarios are both evaluated
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with multi-class and single-class models. The four metrics (MAE, MSE, RMSE and R2) are computed to assess
the results over Mâcon and Toulouse. Both study areas obtain similar results and attest that as expected, the
highest accuracies are obtained by the ALL scenario. This result corroborates that none of the set of features
removed from the different input data scenarios decrease the optimal ALL SenRVM accuracy. Only forest class
models obtain different feature removal impact, indicating a contrasting feature importance in the regression
task over forests.

SAR results : the worst prediction accuracies are obtained by the SAR scenario where all features derived
from Sentinel-1 are removed. Looking at the R2 values obtained by single-class grassland model, it can be
observed that SAR scenario obtains low values (around 0.55) compared to the baseline ALL scenario (≈ 0.84)
for both study areas. Similar results are obtained by the multi-class model, which is expected given that
multi-class data is mostly populated by grasslands. The R2 performance decrease is also observed on single-
class crop results, however lesser with a decrease of 0.2. As discussed in Section 2.6.1 a high intra-class
variability exists in grasslands and crops classes. Furthermore, the time series describing these classes have
many abrupt breaks (i.e., due to agricultural practices). Ancillary data are in these cases not sufficient to model
the NDVI yearly behavior. The importance of Sentinel-1 data is here highlighted by its capacity in delivering
precise and temporally close information describing vegetation polygons. The SAR scenario thus leads to a
significant performance decrease. Concerning single-class forest models, the removal of SAR features seems
less important (decrease of about 0.02) for both study areas. This result is explained by the importance of
ancillary data over forests, explained below.

AUX results : the lowest accuracy decrease (≈ 0.02 of R2) is obtained by single-class models trained on
grasslands and crops and, consequently to their important number of samples, by the multi-class model. In
contrast, the removal of AUX features seems to have a strong impact on the single-class forests model. Results
obtained by the AUX scenario are, for forests, almost equivalent to the SAR scenario. This surprising results
are explained by the low temporal variability of forest NDVI curves, which only exhibit small fluctuations
due to seasonal climate evolution. Information provided by the ancillary data is less prone to noise compared
to satellite remote sensing features. For forests, ancillary data are thus valuable for obtaining satisfactory
reconstruction results.

SIG and COH results : the results obtained by all SenRVM models for both study areas corroborate that
the importance of σ0 and γ features are relatively similar. The decrease of R2 observed for the two scenarios
ranges from 0.01 to 0.06. Despite the similar results, some differences can be discussed between both scenarios.
For instance, the high standard deviations obtained by SIG scenario indicate a slightly superior importance
of σ0 features. In this case, the results may be more stable as the number of inputs differs between both
scenarios (i.e., σ0 additional VV/VH polarization ratio band). Furthermore, while temporal information is
directly integrated in γ features, the use of RNNs to extract temporal dependencies akin to γ information
may explain this result. Opposite results can be observed between Mâcon and Toulouse areas concerning
the impact of the SIG and COH scenarios. The contradictory results may be due to temporal and spatial
differences existing in both areas. Concerning single-class forest results, it can be observed that the removal
of one of these two families of features does not greatly impact the performances.

MASK results : in general, the MASK scenario results obtained by the different SenRVMmodels indicate
that the incorporation of the validity flags in the loss function is beneficial. This scenario obtains, excluding
the single-class forest results, the second most significant performance reduction. The performance decrease
is more visible on single-class grassland results with R2 of 0.78 and 0.73 for Mâcon and Toulouse, respectively.
For forests, the MASK scenario leads to the worst overall results. As in this case cloud & shadow mask infor-
mation is not incorporated in the loss function, important label noise is affecting the training process. This
noise prevents an accurate learning of the small variations observed in the forest time series (see Figure 4.1).
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Table 4.6: Average results and ± standard deviation for the ablation study. Five input data scenarios are
compared to the baseline scenario (ALL) for which the complete dataset described in Table 2.8, 2.9 and 2.10
is used. Four metrics are provided for the grasslands, crops, forests and multi-class datasets. Grey indicates
the baseline, green color indicates the input removal having the lowest impact on performances, while the
red color denotes the highest.

Multi-class (Grasslands, Crops, Forests)
R2 MAE MSE RMSE

M
âc
on

ALL 0.8650 ± 0.0121 0.0419 ± 0.0065 0.0039 ± 0.0010 0.0624 ± 0.0069
- COH 0.8293 ± 0.0097 0.0459 ± 0.0030 0.0046 ± 0.0004 0.0681 ± 0.0028
- SIG 0.8346 ± 0.0100 0.0469 ± 0.0029 0.0048 ± 0.0004 0.0689 ± 0.0029
- AUX 0.8458 ± 0.0145 0.0443 ± 0.0060 0.0043 ± 0.0008 0.0654 ± 0.0058
- SAR 0.6314± 0.0084 0.0848 ± 0.0019 0.0148 ± 0.0004 0.1217 ± 0.0015
- MASK 0.7854 ± 0.0152 0.0532 ± 0.0041 0.0058 ± 0.0007 0.0761 ± 0.0041

To
ul
ou

se

ALL 0.8947 ± 0.0056 0.0404 ± 0.0039 0.0030 ± 0.0005 0.0545 ± 0.0038
- COH 0.8669 ± 0.0071 0.0452 ± 0.0024 0.0038 ± 0.0003 0.0616 ± 0.0022
- SIG 0.8562 ± 0.0111 0.0498 ± 0.0050 0.0045 ± 0.0007 0.0671 ± 0.0049
- AUX 0.8778 ± 0.0135 0.0435 ± 0.0055 0.0035 ± 0.0008 0.0587 ± 0.0057
- SAR 0.5758 ± 0.0067 0.1194 ± 0.0021 0.0267 ± 0.0004 0.1634 ± 0.0012
- MASK 0.8179 ± 0.0152 0.0531 ± 0.0044 0.0054 ± 0.0007 0.0732 ± 0.0046

Grasslands
R2 MAE MSE RMSE

M
âc
on

ALL 0.8384 ± 0.0152 0.0418 ± 0.0058 0.0040 ± 0.0009 0.0629 ± 0.0069
- COH 0.7891 ± 0.0081 0.0470 ± 0.0021 0.0048 ± 0.0004 0.0691 ± 0.0027
- SIG 0.8011 ± 0.0115 0.0470 ± 0.0038 0.0048 ± 0.0006 0.0690 ± 0.0041
- AUX 0.8159 ± 0.0147 0.0439 ± 0.0043 0.0043 ± 0.0007 0.0657 ± 0.0048
- SAR 0.5557 ± 0.0061 0.0791 ± 0.0019 0.0122 ± 0.0005 0.1106 ± 0.0023
- MASK 0.7893 ± 0.0819 0.0528 ± 0.0063 0.0060 ± 0.0011 0.0772 ± 0.0063

To
ul
ou

se

ALL 0.8464 ± 0.0115 0.0443 ± 0.0029 0.0037 ± 0.0006 0.0606 ± 0.0049
- COH 0.8076 ± 0.0106 0.0506 ± 0.0032 0.0046 ± 0.0005 0.0677 ± 0.0037
- SIG 0.7976 ± 0.0173 0.0526 ± 0.0040 0.0050 ± 0.0007 0.0706 ± 0.0047
- AUX 0.8256 ± 0.0114 0.0470 ± 0.0025 0.0040 ± 0.0005 0.0635 ± 0.0037
- SAR 0.5535 ± 0.0093 0.0914 ± 0.0016 0.0151 ± 0.0004 0.1231 ± 0.0016
- MASK 0.7332 ± 0.0173 0.0579 ± 0.0034 0.0063 ± 0.0006 0.0791 ± 0.0034

Crops
R2 MAE MSE RMSE

M
âc
on

ALL 0.9433 ± 0.0017 0.0420 ± 0.0014 0.0040 ± 0.0001 0.0630 ± 0.0010
- COH 0.9270 ± 0.0070 0.0490 ± 0.0042 0.0052 ± 0.0007 0.0718 ± 0.0043
- SIG 0.9220 ± 0.0080 0.0516 ± 0.0058 0.0057 ± 0.0010 0.0753 ± 0.0059
- AUX 0.9358 ± 0.0081 0.0466 ± 0.0075 0.0047 ± 0.0010 0.0684 ± 0.0076
- SAR 0.7212 ± 0.0080 0.1181 ± 0.0051 0.0257 ± 0.0011 0.1603 ± 0.0034
- MASK 0.9176 ± 0.0100 0.0536 ± 0.0077 0.0061 ± 0.0015 0.0776 ± 0.0085

To
ul
ou

se

ALL 0.9676 ± 0.0037 0.0353 ± 0.0038 0.0026 ± 0.0005 0.0503 ± 0.0044
- COH 0.9584 ± 0.0048 0.0389 ± 0.0040 0.0031 ± 0.0005 0.0551 ± 0.0042
- SIG 0.9526 ± 0.0039 0.0422 ± 0.0048 0.0037 ± 0.0006 0.0608 ± 0.0045
- AUX 0.9652 ± 0.0026 0.0363 ± 0.0031 0.0027 ± 0.0004 0.0517 ± 0.0035
- SAR 0.7151 ± 0.0076 0.1293 ± 0.0039 0.0296 ± 0.0007 0.1720 ± 0.0021
- MASK 0.9501 ± 0.0062 0.0440 ± 0.0063 0.0041 ± 0.0011 0.0634 ± 0.0076

Forests
R2 MAE MSE RMSE

M
âc
on

ALL 0.8486 ± 0.0268 0.0343 ± 0.0066 0.0032 ± 0.0007 0.0562 ± 0.0057
- COH 0.8443 ± 0.0182 0.0352 ± 0.0042 0.0034 ± 0.0005 0.0582 ± 0.0043
- SIG 0.8349 ± 0.0234 0.0365 ± 0.0050 0.0035 ± 0.0006 0.0587 ± 0.0044
- AUX 0.8189 ± 0.0243 0.0373 ± 0.0050 0.0037 ± 0.0005 0.0604 ± 0.0041
- SAR 0.8207 ± 0.0056 0.0403 ± 0.0009 0.0043 ± 0.0003 0.0653 ± 0.0021
- MASK 0.7119 ± 0.0266 0.0514 ± 0.0073 0.0064 ± 0.0010 0.0795 ± 0.0059

To
ul
ou

se

ALL 0.9235 ± 0.0106 0.0318 ± 0.0051 0.0020 ± 0.0005 0.0450 ± 0.0049
- COH 0.9232 ± 0.0041 0.0317 ± 0.0015 0.0021 ± 0.0001 0.0454 ± 0.0015
- SIG 0.9152 ± 0.0076 0.0340 ± 0.0034 0.0024 ± 0.0004 0.0484 ± 0.0033
- AUX 0.9086 ± 0.0047 0.0343 ± 0.0026 0.0024 ± 0.0002 0.0487 ± 0.0024
- SAR 0.9058 ± 0.0050 0.0395 ± 0.0012 0.0033 ± 0.0002 0.0577 ± 0.0018
- MASK 0.8454 ± 0.0204 0.0483 ± 0.0081 0.0049 ± 0.0011 0.0698 ± 0.0070
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4.3.4 Assessment against existing methodologies

Single-class SenRVM models are here evaluated against standard interpolation and machine learning (ML)
regression methodologies. The robustness and efficiency of the methods are evaluated through their ability
to reconstruct short- and long-term missing data gaps. The MAEs obtained for these two different scenarios
are discussed in Sec 4.3.4.1 and Sec 4.3.4.2.

In these experiments, a new learning constraint is incorporated in the SenRVM training stage. The learn-
ing constraint ensures that satellite observations acquired on the dates that want to be predicted are not used
to train the SenRVM models. It must be remarked that the same temporal grid is shared for the disjoint train-
ing and testing datasets used in the previous experiments. Therefore, a few non-cloudy observations acquired
on the specific predicted date are most of the time considered in the training step. This is prevented here by
completely masking the date during the training step.

The three ML regression algorithms described in the following are studied. For the three methods, the
same SAR and ancillary input data as SenRVM is considered.

• a Random Forest Regression (RF) algorithm. This ensemble learning method is based on the construc-
tion of multiple decision tree classifiers (Belgiu and Drăguţ, 2016; Li et al., 2020c). The individual trees
are built by applying a bagging strategy which randomly selects a subset of training samples and fea-
tures. Following (Pelletier et al., 2016) conclusions, the number of trees is set to 100. The maximum
number of features taken into account for tree splitting is set to the square root of the number of input
features and the maximum depth of a tree to 25.

• a Gaussian Processes Regression function (GPR) with a squared exponential kernel (RBF) and length
scale parameter of 10 with initialized bounds (i.e., that are optimized during training) of [1e-3, 1e3].
The L-BFGS-B optimization algorithm commonly used with Gaussian Processes is retained (Liu and
Nocedal, 1989). GPR is a non-parametric kernel-based probabilistic regression algorithm based on a
Bayesian framework. GPR is selected given the convincing results obtained in similar regression tasks
(Belda et al., 2020b; Mercier et al., 2020).

• a deep-basedmethod usingMLPs architecture (MLP). This simplified version of the SenRVM is obtained
by removing the recurrent block (i.e., GRU cells) from the architecture (Figure 3.7). The training is thus
performed for each date individually without handling the inherent temporal information of the time
series. The MLP method integrates 4 MLPs for encoding and 1 MLP for decoding.

A fair comparison of the three previous regression algorithms with SenRVM requires the use of the same
training samples. Nevertheless, substantial computational problems can occur if all polygons and their entire
corresponding NDVI time series are used for training RF and GPR methods. Therefore, a temporal sampling
strategy is proposed for RF and GPR methods. The solution here proposed is to discard some dates that are
temporally far from the prediction date. For half of the training polygons of SenRVM, the selected training
dates correspond to the nearest past cloud-free date of each polygon. For the other half, the following cloud-
free date is used. It must be remarked that besides the sampling selection strategy, the space-time evolution
of the cloud coverage makes it possible to include numerous dates and cover up to several months. The same
training sample size as for SenRVM andMLP is thus kept for theRFmethod while temporal information is fed
to the model. Concerning the GPRmethod, the number of training polygons is nevertheless limited to 10, 000
polygons, due to long calculation times andmemory constraints. It must be remarked that despite reducing the
number of training samples, the resulting training dataset of GPR having 10,000 polygons remains significant.
This only impacts grasslands in both areas and crops in the Toulouse area.

Besides the previousML algorithms, twomono-sensor standard interpolationmethods are also considered
in this study:

94



4.3. EMPIRICAL ANALYSIS OF THE SENRVM RESULTS

• aWhittaker smoother (WHIT), which is based on a penalized least-square regression algorithm combin-
ing fidelity to the data and smoothness of the filtered sequence (Vuolo et al., 2017; d’Andrimont et al.,
2020). The smoothing criterion (λ value) is set to 1. This low value preserves the temporal variability
of the original signal, describing important changes in vegetation cover. The d parameter used in the
penalty calculation is set to 2.

• a weighted linear interpolation method (linear), which assigns weights to neighboring observations
(two before and after), based on the distance to the interpolated value.

Compared to the previous methods, the main difference is that WHIT and linear interpolation ap-
proaches only consider valid Sentinel-2 observations. These mono-sensor methods focus on exploiting the
temporal trajectory of neighboring NDVI observations.The Decomposition and Analysis of Time Series Soft-
ware (DATimeS, Belda et al., 2020a) is selected for the WHIT method. For the linear interpolation, the
Orfeo ToolBox implementation (Grizonnet et al., 2017) is used.

4.3.4.1 Short-term data gaps

The short-term study consists in removing 6 individual non-consecutive acquisitions from the training datasets.
The number of dates has been chosen to keep a sufficient learning set and to have a substantial amount of
validation data available. The deletion of 6 dates corresponds to 10% and 8.45% of the time series of Mâcon and
Toulouse, respectively, not taking into account the cloudy dates which increase these numbers considerably.
The chosen dates are distributed along the complete year and have a low cloud cover rate. This therefore im-
plies that a high number of measurements can be used to validate this experiment. Prediction results obtained
on the six reconstructed dates are evaluated for the three vegetation classes and over the two study areas.

In the case of SenRVM and MLP method, a unique model is trained and used for the prediction of the six
dates. In contrast, as a temporal sampling strategy is defined for the RF and GPR methods, six models are
independently trained for the six masked dates.

Figure 4.8 shows that similar satisfactory results are obtained by the different methods which most of the
time achieve MAE lower than 0.15. Grassland and forest results obtained on Mâcon show that high errors are
obtained on the second reconstructed date (i.e., February 14th). These high values are justified by the high
number of cloud & shadow mask errors existing at this date.

Results show how SenRVM achieves accurate and comparable performances w.r.t. to standard interpola-
tion methods. Furthermore, SenRVM obtains in most cases the lowest standard deviations. The interest of
SenRVM is especially remarkable at the dates of June 8th over Mâcon and June 6th over Toulouse. At these
dates, numerous anthropic activities exist given the agricultural calendar of grasslands and crops. These ac-
tivities lead to phenology breaks in the time series (see Figure 2.7) occurring during the masked dates. For the
ML regression methods, based on SAR data, an accurate reconstruction of these breaks is possible, whereas
standard interpolation methods fail. A complementary discussion about break reconstruction can be found in
Section 4.3.4.3. Concerning forests, the stability of the NDVI temporal trajectory of this class leads to obtain
similar results for all methods. For this class, SenRVM obtains the best accuracies for three dates.

The RF, GPR and MLP methods generally obtain comparable results. The highest MAEs are obtained by
these methods, especially remarkable on grasslands and crops. The RFmethod obtains slightly better results
than GPR for several dates, and notably lower standard deviations. Over 18 assessed dates for each area, RF
achieves greater accuracy than SenRVM for 4 dates over Mâcon and 3 dates over Toulouse. GPR reaches lower
MAE than SenRVM for 2 dates over Mâcon and only one date over Toulouse. The upper accuracy found with
SenRVM can be explained by several factors. In comparison to RF and GPR methods, entire time series are
fed to SenRVM. The bi-directional RNN used in SenRVM can therefore extract long-term phenological stages
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Figure 4.8: Comparison of gap filling performances over six non-consecutive dates, corresponding to short-
term data gaps. Mean Absolute Error are assessed over Mâcon and Toulouse areas for the three vegetation
classes.

helping accurate predictions. This long-term evolution may be neglected by the temporal sampling strategy
of the RF and GPR methods. Another explanatory factor is the adoption of several encoding branches in the
SenRVM and MLP methods, allowing more complex and descriptive features to be considered.

Regarding the results obtained by the MLP method, it only achieves the best results over the first date
on crops for both areas and the first date over forests of the Mâcon area. The main explanatory factor is
that MLP processed each date individually without exploiting temporal information. Comparing MLP with
SenRVM results, the improvements achieved by recurrent networks are highlighted. For example, crop results
obtained by MLP show a high MAE in Toulouse at the date of November 27th. At this date, bare soil covers
most of the crops parcels which leads to the presence of large fluctuations in SAR time series. Processing
individual dates with the MLP method produces low prediction results while recurrent cells permit accurate
predictions, taking advantage of the full temporal trajectory.

This experiment also corroborates the good results of the commonly used linear interpolation method.
Over the 12 reconstructed dates, the linear interpolation reaches the highest accuracies for 5 dates on
grasslands and forests and 3 dates on crops. The satisfactory results can be explained by the availability of
cloudless neighboring Sentinel-2 acquisitions, close to the reconstructed dates (see Figure 2.2). Therefore,
information describing the temporal trajectory of NDVI allows the linear method to obtain low MAE.
As expected, the WHIT approach obtains results similar to the linear method. This method exhibits the
highest variability in the results that can be explained by the use of a smoothing function. This function is
mostly well adapted for filtering purposes over long time series.

4.3.4.2 Long-term datagaps

Consecutive missing values are likely to occur in optical time series (up to one or several months). Con-
sequently, the performances of gap filling methods can strongly decrease when the temporal frequency of
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exploitable observations is reduced. As previously discussed with Figure2.2, the presence of long-term gaps
during winter can lead to a decrease of SenRVM performances. The robustness of the different methods in
the presence of a significant data gap is here assessed.

Figure 4.9: Comparison of gap filling performances over four continuous dates, corresponding to long-term
data gaps. Mean Absolute Error are assessed over Mâcon and Toulouse areas for the three vegetation classes.

To perform this study, long-term data gaps are artificially created by removing 4 consecutive dates from
the valid NDVI time series. The 4 consecutive dates induce an entire month without acquisitions, which
implies a sufficiently long period of time for significant changes in vegetation surfaces to occur. In addition, the
number of consecutive acquisitions contaminated by clouds can potentially affect the study areas (Figure 2.2.

The four consecutive dates are removed over different time periods for the two study areas. The number
of valid observations as well as the agricultural practices calendars are considered as selection criteria. A
long gap is then considered in June for the Mâcon area. Concerning Toulouse, October is chosen. For this
experiment, as the fourmasked dates are consecutive, a uniquemodel is trained for all ML regressionmethods.

The results obtained by the different methods can be visually compared in Figure 4.9. The reconstruction
performances consolidate the previous results and further demonstrate the interest of the SenRVM approach.
Grassland and crop results show how SenRVM obtains almost in all cases the lowest MAE and standard
deviations. The performance improvement is more remarkable over Mâcon. This is explained by the frequent
presence of anthropic interventions taking place during the reconstructed time period. Solely the first date
over forest for the Mâcon area and the last date over grasslands for the Toulouse area is better predicted by the
two optical-basedmethods than by SenRVM. Nevertheless, the difference inMAE difference between SenRVM
and the two methods is very low for this specific date. Concerning forests, similar results are obtained by all
the methods. The low temporal variation of NDVI curves of forests again explains these similarities.

Close MAEs are obtained for both areas by RF, GPR, and MLP methods for the three vegetation classes.
GPR and MLP methods provide superior results than RF for the Mâcon area while it is the opposite for the
Mâcon area. The exploitation of the temporal SAR trajectory and the use of multiple encoding branches
explain the good SenRVM results.
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Linear and WHIT methods exhibit substantially lower results than SenRVM, except for two dates pre-
sumably with less vegetation changes. The differences are more noticeable for the Mâcon area. This is related
to the presence of numerous agricultural practices, which are not detected by the mono-sensor interpolation
methods. Consequently, differences are less marked for the Toulouse area, where few agricultural practices
are performed.

4.3.4.3 Reconstruction of time series breaks

We explore the ability to reconstruct time series breaks, which are usually associated with vegetation changes
over agricultural areas (i.e., grasslands and crops). SenRVM is especially relevant, w.r.t. the other methods, for
dates containing numerous breaks (June 8th and June 6th for Mâcon and Toulouse respectively, in Figure 4.8).
The long-term experiment (Section 4.3.4.2) shows such conclusions, SenRVM reaching the highest accuracies
on agricultural classes, but without significant differences in terms of MAE. A qualitative evaluation of the
results obtained in Section 4.3.4.2 is proposed. As a recall, four consecutive dates aremasked from learning and
used to assess the predictions of the different methods. This evaluation permits to highlight the interest of the
SenRVM method to recover vegetation changes. The reconstructions of two types of breaks are considered:

(i) a drastic decrease in NDVI due to mowing or ploughing;

(ii) an increase due to vegetation growth.

Figure 4.10 shows four examples over two grassland and two crop polygons. It corroborates the interest
of ML regression methods: the results show that the reconstruction performances of mono-sensor methods
(linear, WHIT) are strongly affected by the distance between the reconstructed date and the valid NDVI
measurements used in the reconstruction. Because of the simulated data gap of about onemonth, the standard
interpolation methods are relying on temporally distant dates for interpolation. On intensively exploited
and quickly evolving agricultural parcels, this interpolation significantly or even entirely obscures part of
their phenological cycles. SAR-based multi-sensor solutions can integrate temporally close knowledge, and
efficiently recover these cycles. Comparing RF, GPR, MLP and SenRVM, the latter exhibiting the highest
accuracies obtained and more stable results.

Figure 4.10a shows the results for a permanent grassland parcel (a mowing followed by a vegetation
regrowth). Standard interpolation approaches use the dates of June 2nd and July 26th for reconstructing the
missing period. Despite the mowing occurring in-between, the vegetation has grown back on July 26th, reach-
ing high NDVI values. The resulting reconstructed time series follow a gradual but not significant decrease
in NDVI, preventing abrupt change detection.

Figure 4.10b, illustrates the capability of the methods for recovering vegetation changes on a maize parcel.
As observed, the four masked dates result in a gap of two months without cloudless measurements. The
vegetation growth iswell captured by all methods. However, the standard interpolationmethods showgradual
and weak growth, whereas ML regression methods suggest that such a growth occurs mainly in June. The
image acquired on June 20th confirms the accurate reconstruction of the four multi-sensor methods.

A complete phenological cycle showing the growth and harvest periods is shown in Figure 4.10c. The two
dates related to both growth and mowing stages are unfortunately acquired during the data gap. As a result,
the two successive dates available for the standard interpolation methods both correspond to a bare ground
cover with close NDVI values. The reconstructed time series are therefore flat and do not reflect vegetation
changes. In contrast, ML regression approaches accurately fit the phenology cycle of the parcel.

The harvest period of a winter wheat parcel is shown in Figure 4.10d. In this example, a single cloud-
less NDVI observation is masked. It results in a two-month data gap between September 10th and November
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(a) Mowing of a permanent grassland over the Mâcon area.

(b) Greening of a maize parcel over the Mâcon area.

(c) Growth and mowing of an alfalfa parcel over the Toulouse area.

(d) Harvest of a winter wheat parcel over the Toulouse area.

Figure 4.10: Performance assessment comparing six different methods aiming at recovering vegetation
changes occurring during a long-term data gap (red square). NDVI values evaluating the reconstruction
results are depicted by the green crosses. Black-dashed lines and circle numbers correspond to the specific
dates which are analyzed by the Sentinel-2 images shown on the right part of the figures.

9th. The standard interpolation methods fail to reconstruct the vegetation decrease, while ML regression ap-
proaches accurately mark a clear decrease in NDVI values, suggesting that the mowing occurred between
September 10th and September 16th. Even without masking the date of October 10th to the standard interpo-
lation methods, it would have been impossible to determine the date of mowing with such precision.

These last results further corroborate that regular vegetation monitoring needs the exploitation of multi-
sensor information such as it has been proposed by the SenRVM approach.

4.4 Generalization capabilities of single-class grassland SenRVMmodels

Only the grassland datasets are considered here, as being the main thematic vegetation class. SenRVMmodels
are first assessed on larger geographical areas (Section 4.4.1), to consolidate the results obtained on the two
main study areas. Subsequently, spatial (Section 4.4.2 and Section 4.4.3) and temporal (Sec 4.4.4) generalization
capabilities of SenRVM models are explored. The generalization experiments must first assess if a model
trained in one geographical area can yield accurate predictions in another geographical area. This implies
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different phenologies, acquisition dates and climate contexts. Temporal generalization focuses on the same
geographical area but assesses the prediction accuracy of a model learned on one specific year and inferred
on another year.

4.4.1 Evaluation over larger geographical areas

Single-class models are also trained over the 5 supplementary areas presented in Section 2.1.2. Results ob-
tained are presented in Table 4.7. Satisfactory results are observed with similar regression scores as in the case
of Mâcon and Toulouse areas. However, comparing the results of the five tiles belonging to the Western-area
(T30TXS, T30TXT and T30TWT) and to the Northern-area (T31UDQ and T31UEQ), some differences can be
noticed.

Table 4.7: Average results and± standard deviations obtained by single-class SenRVMmodels over grasslands
of supplementary areas.

Western-area Northern-area
T30TXS T30TXT T30TWT T31UDQ T31UEQ

Gr
as
sla

nd
s R2 0.8658 ± 0.0104 0.8851 ± 0.0069 0.8710 ± 0.0097 0.8034 ± 0.0168 0.8113 ± 0.0104

MAE 0.0511 ± 0.0408 0.0484 ± 0.0398 0.0529 ± 0.0430 0.0541 ± 0.0580 0.0524 ± 0.0522
MSE 0.0051 ± 0.0009 0.0046 ± 0.0008 0.0050 ± 0.0009 0.0054 ± 0.0009 0.0053 ± 0.0008
RMSE 0.0714 ± 0.0073 0.0678 ± 0.0069 0.0707 ± 0.0070 0.0735 ± 0.0075 0.0732 ± 0.0070

The three T30TXS, T30TXT and T30TWT tiles in the Western-area have significantly higher R2 scores.
The reasons identified for these differences are threefold. Firstly, these three tiles have a much larger number
of grasslands, on the order of 4 to 8 times more than for the tiles in the Northern-area. Secondly, the cloud
cover over the Western-area is lower. This implies a better temporal distribution and a higher number of
training labels. Finally, the proportion of fallow land and forage legumes is lower in the Western-area. These
grassland types are associated with higher productive agronomic species and more intensive exploitation and
therefore are potentially more challenging to predict (see for example Section 2.4.1).

4.4.2 Spatial generalization of SenRVM

Dealing with geo-spatial data necessarily implies geographical differences. For example, differences can be
climatic, topological, pedological, species-related or management related. This subsection proposes to analyze
the ability of a SenRVMmodel learned on a study area to predict the NDVI of another study area, which refers
to evaluating the generalization capabilities.

Sharing the same agricultural season and number of features, this analysis is done on Western- and
Northern-areas grasslands. To speed up the processing (i.e., 5 models with 5 folds for the 5 tiles are newly
considered) and to minimize the possible differences between the areas especially in the number of samples,
partial SenRVM models learned only on a subset of the features are considered. For each tile, the backscatter
coefficient features are retained, as well as the climate, topographical and temporal context metadata fea-
tures. The γ features, being the most complicated to gather and coming roughly from the same Sentinel-1
data source as σ0 are discarded. The grassland RPG class information is also discarded, being considered of
less primary importance for the regression task. Moreover, a different number of species is present in the dif-
ferent areas, which would require a new one-hot-encoding procedure. SenRVM models are trained for each
area, with a batch size of 512 and a learning rate of 5 · 10−4.
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To evaluate the generalization, the fold among all models (for each area independently) having the highest
R2 and the lowest MAE is selected. This model is subsequently inferred one-by-one on the datasets of the
other study areas, without re-training. Table 4.8 provides the R2 and MAE results of the SenRVM models
trained and inferred on one study area (self-training, grey cells) and learned on one study area and inferred
on another.

Table 4.8: Spatial generalization of SenRVM models learned on one study area and inferred on a different
study area. Scores of models learned and inferred on the same area are highlighted with grey cells. Green
results correspond to the area on which inference obtains the highest accuracy while red ones correspond to
the lowest results.

LEARNING:

T30TXS T30TXT T30TWT T31UDQ T31UEQ

T30TXS R2=0.857±0.112
MAE=0.053±0.015

R2=0.805±0.152
MAE=0.066±0.022

R2=0.667±0.195
MAE=0.098±0.022

R2=0.288±0.198
MAE=0.137±0.026

R2=0.461±0.207
MAE=0.111±0.024

IN
FE

R
EN

C
E:

T30TXT R2=0.808±0.244
MAE=0.067±0.031

R2=0.864±0.109
MAE=0.049±0.017

R2=0.673±0.209
MAE=0.096±0.023

R2=0.251±0.192
MAE=0.146±0.028

R2=0.479±0.214
MAE=0.113±0.024

T30TWT R2=0.688±0.244
MAE=0.108±0.031

R2=0.637±0.233
MAE=0.099±0.022

R2=0.813±0.161
MAE=0.052±0.018

R2=0.319±0.231
MAE=0.117±0.025

R2=0.421±0.242
MAE=0.104±0.026

T31UDQ R2=0.443±0.244
MAE=0.113±0.031

R2=0.465±0.24
MAE=0.099±0.027

R2=0.342±0.237
MAE=0.11±0.029

R2=0.748±0.184
MAE=0.064±0.026

R2=0.627±0.217
MAE=0.076±0.026

T31UEQ R2=0.414±0.244
MAE=0.115±0.031

R2=0.425±0.235
MAE=0.105±0.031

R2=0.285±0.232
MAE=0.122±0.036

R2=0.662±0.211
MAE=0.077±0.032

R2=0.769±0.181
MAE=0.059±0.022

By comparing the obtained self-training results with Table 4.7, it can be observed that discarding gamma

and RPG class features lead to a decrease in model accuracy. On average, for the five tiles, a decrease of 4.4% of
R2 and an increase of 7.4% of MAE are observed. This decrease in accuracy, especially visible for the T30TWT,
T31UDQ and T31UEQ study areas, hints at a dependence of regression accuracy on the deleted features for
this experiment. A more in-depth study on the importance of input features is proposed later in this chapter,
in Section 4.3.3.

Table 4.8 also indicates that the inference on distinct study areas significantly degrades the prediction
results for all assessed cases. A clear distinction can be noted between inference on a study area within the
same larger geographical area (Western-area or Northern-area), and inference from an area of a larger area
to another. Using a model learned on the T30TXS area, for example, still achieves relatively good regression
scores for the T30TXT and T30TWT areas (respectively, 0.808 and 0.688 of R2) but fails on the two areas
T31UDQ and T31UEQ that are geographically distant (respectively 0.443 and 0.414 of R2). Conversely, a
model learned on the T31UDQ tile will perform better on the T31UEQ area than for the three tiles in the
Western-area. Inference on a tile from the Northern-area with models learned on the Western-area will in
average lead to a decrease of 50.97% of R2 and an increase of 108.96% of MAE. Similarly, learning on the
Northern-area and inference on the Western-area shows a decrease of 57.62% of R2 and increase of 139% of
MAE. The geographical proximity, particularly hinting less climatic differences and thus phenologies, appears
as an important factor with regard to generalization. This may indicate that despite the relevance of climate
variables (Section 2.4.2) for regression, different climate contexts may hinder learning and require distinct
models to be trained.

101



4.4. GENERALIZATION CAPABILITIES OF SINGLE-CLASS GRASSLAND SENRVM MODELS

4.4.3 Multi-tile model and spatial generalization of SenRVM

Each geographical area has its own characteristics and the re-use of a model from one geographical study area
to another has proven rather inefficient in the previous subsection. It is therefore proposed here to analyze
the ability to predict NDVI on the different tiles with a single model encompassing for learning samples from
all areas.

From the five tiles, 10, 000 samples per tile are randomly gathered and merged to form a multi-tile grass-
land dataset. New SenRVM models are trained and accuracy metrics are computed. As previously done, the
model with the highest R2 and lowest MAE is selected and inferred on the five tiles.

Results obtained from the inference of the multi-tile model are presented in Table 4.9. By comparing the
results presented in grey cells of Table 4.8 which correspond to training and learning on the same study area, a
decrease in accuracy is observed for the results of the five tiles. Marginal decrease in R2 < 0.03 and an increase
in MAE < 0.01, except for T31UDQ, are nevertheless found. These similar regression accuracies indicate that
a model encompassing different geographical areas does not appear to be penalizing. Above all, these results
were obtained with a smaller number of samples (10, 000 from a tile) and could be improved by increasing the
number of training samples.

Table 4.9: Spatial generalization accuracies of a SenRVM model trained with 50, 000 samples gathered from
five study areas.

MULTI-TILE LEARNED MODEL
R2 MAE

Multi-tiles 0.787 ± 0.176 0.059 ± 0.022
T30TXS 0.853 ± 0.119 0.057 ± 0.016
T30TXT 0.863 ± 0.120 0.056 ± 0.017
T30TWT 0.799 ± 0.174 0.057 ± 0.018
T31UDQ 0.695 ± 0.209 0.071 ± 0.025
T31UEQ 0.737 ± 0.166 0.058 ± 0.020IN
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4.4.4 Temporal generalization of SenRVM

Rather than assessing spatial generalization, it is proposed here to explore if temporal generalization with
suitable accuracy can be reached between two different years. Having two years permits to learn a model
on one year and infer on the other year. For the current experiment, the considered features are σ0, climate,
topography and metadata. These features are computed over the Mâcon area for the agricultural season of
2019. Solely one area is assessed, because of the heavy imagery processing needed to obtain new datasets.

Although the same area is considered for both 2017 and 2019, changes in agricultural parcels are common.
It is first observed that 1,200 parcels were not included in the 2017 LPIS, probably either for administrative rea-
sons or technical omissions. Furthermore, a large number of crops, primarily triticale, rye, and maize, became
grasslands in 2019. Finally, some LPIS-based rules have evolved between 2017 and 2019 and some declarative
codes (i.e., mixture of predominantly forage legumes, and forbs or grasses) were suppressed, leading to an in-
creasing number of temporary grasslands to be declared. Thus, the grassland dataset of 2019 contains 36,754
parcels compared to 27,832 in 2017.

102



4.5. FURTHER POST-PROCESSING OF SENRVM RESULTS

SenRVM models for the year 2019 are trained by using the same hyperparameters as for 2017. The best
resulting model is selected for inference on the 2017 dataset. Conversely, the best model previously selected
for 2017 is inferred on the new 2019 dataset. Results for training and inference on the same year and on the
other year are presented in Table 4.10.

Table 4.10: Temporal generalization of a SenRVM models trained on the same study area but on different
years. Grey cells correspond to the results obtained with the same years is used to train and to evaluate the
SenRVM model.

Learning

Mâcon 2017 Mâcon 2019

In
fe
re
nc

e Mâcon 2017
R2=0.827±0.144

MAE=0.040±0.017

R2=0.193±0.179

MAE=0.151±0.059

Mâcon 2019
R2=0.262±0.216

MAE=0.141±0.042

R2=0.818±0.150

MAE=0.039±0.016

Poor regression accuracy is found in both inferences from 2017 to 2019 and from 2019 to 2017 cases. The
potential changes in grassland parcels between the two years outlined abovemay initially explain the inability
of the network to predict in a different year. More importantly, apart from different years, the intra-annual
acquisition dates are also not identical. The number of calendar days not necessarily being a multiple of
the temporal resolution of a satellite (e.g., the 12 days of a Sentinel-1 satellite), the acquisition dates of the
following year are thus shifted. The acquisition plans of each satellite are also evolving which can accentuate
these differences. In our case, moreover, an orbit overlap area was used in 2017 (see Section 2.1.1) changing
the nominal temporal resolution, which is in this case only available for the year 2019. This mismatch in
acquisition time grids between the years 2017 and 2019 is the primary hypothesis for the observed inefficiency
of using a model from year to year. Although a temporal context around the acquisition dates is provided as
information to the network, it does not appear to be sufficiently effective for the task being explored. A
potential solution would be to assign more weight to this information.

4.5 Further post-processing of SenRVM results

4.5.1 Cloud & shadow mask refinement

Accurate cloud and shadow detection remains a well-known challenge in optical remote sensing, despite a
plethora of approaches (Baetens et al., 2019; Chen et al., 2019; López-Puigdollers et al., 2021; Zekoll et
al., 2021; He et al., 2022). Errors can be divided into two categories. Undetected observations flagged as
valid measurements are known as omission errors, while commission errors correspond to the non-cloudy
observations detected as invalid measurements. The presence of errors can occur, negatively impacting a
large number of reference polygons, and subsequently the SenRVM performances.

In Figure 4.11, a Sentinel-2 image is overlaid by its associated validity mask, where the detected cloudy
areas are highlighted by red stripes. Omission errors are observed in the center part of the image, with a large
clouded area appearing outside the red mask boundaries. The same figure also shows the commission errors,
which are visible in the right part. In this case, some valid observations can be observed inside the validity
mask boundaries, detected as shadow areas probably because of the evergreen forests that appear very dark
on this area. Unfortunately, the presence of errors, either omissions or commissions, can be found on large
geographical areas impacting tens, even hundreds or thousands of grassland polygons.
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Figure 4.11: Example of a cloudy Sentinel-2 true-color composition acquired December 14th 2016 over the
T31TFM tile. Cloudy areas detected by the cloud & shadowmask are represented by the red stripes. Omission
and commission errors are visible in the center and right part of the image.

Commission errors basically only result in a reduced number of valid dates being considered. Omission
errors, on the other hand, can lead to much greater complications. These errors involve the inclusion of
outliers in the temporal analysis. These outliers often induce strong and sudden variations, which can be
falsely interpreted as a significant change in vegetation, especially on grasslands as a result of management
practices. Cloud masks are therefore essential to eliminate the invalid pixels that would appear as outliers in
time series. Fortunately, errors at the scales shown in Figure 4.11 that affects large areas are relatively rare.
Most of the errors are more confined to the parcels covered by cloud or shadow edges.

Figure 4.12 depicts how significant SenRVM errors could be associated to cloud omission and commission
(Figure 4.12a and 4.12b, respectively). SenRVM is particularly insensitive to such errors and could be used as
a solution to improve the mask quality. An experimental set-up is proposed here.

(a) Omission of the cloud & shadow mask. (b) Commission of the cloud & shadow mask.

Figure 4.12: Two examples on how cloud/shadowmask errors could lead to an erroneous performance assess-
ment. Omission (a) and commission (b) errors are shown in the black dashed boxes. As seen, accurate SenRVM
results over neighboring polygons (black lines) are obtained on dates affected by cloud/shadow mask errors.
Red dots are masked dates.

To filter the errors, the MAE of SenRVM predictions are considered. This refinement is performed by
applying at each date simple thresholds:
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m̃ =


0, if mt = 1 and |yt − ŷt| > αom

1, if mt = 0 and |yt − ŷt| < αcom

mt, otherwise.
(4.5)

mt is the original mask validity flag for the instant t. The expected NDVI and SenRVM predicted NDVI
values are yt and ŷt, respectively. The performance of the refinement process depends on the commission and
omission thresholds, which are sensitively set: αom = 0.3 and αcom = 0.02. Eq. 4.5 is applied on the original
masks of both study areas by considering the prediction results obtained by the single-class SenRVM models
presented in Table 4.3. It results in removing or adding a few validation measurements: for each polygon, 1.26
and 1.82 dates were found as omission and commission, respectively. To investigate the impact of outliers on
performances, the resulting m̃masks are inserted in the SenRVM, which is retrained for the three vegetation
classes (the same datasets and hyperparameters as those in Table 4.3). Results obtained by using the refined
mask are reported in Table 4.11.

Table 4.11: SenRVM performances obtained after mask refinement.

Mâcon Toulouse

Grasslands

R2 0.8718 ± 0.0043 0.8692 ± 0.0023
MAE 0.3981 ± 0.0014 0.0409 ± 0.0007
MSE 0.0038 ± 0.0002 0.0029 ± 0.0001
RMSE 0.0546 ± 0.0023 0.0542 ± 0.0011

Crops

R2 0.9532 ± 0.0024 0.9705 ± 0.0010
MAE 0.0395 ± 0.0013 0.0327 ± 0.0008
MSE 0.0031 ± 0.0001 0.0021 ± 0.0001
RMSE 0.0560 ± 0.0013 0.0454 ± 0.0015

Forests

R2 0.8786 ± 0.0035 0.9327 ± 0.0044
MAE 0.0310 ± 0.0004 0.0314 ± 0.0037
MSE 0.0024 ± 0.0001 0.0020 ± 0.0004
RMSE 0.0493 ± 0.0016 0.0447 ± 0.0038

The gain in accuracy, observed by comparing the results obtained in Table 4.3 (Sec. 4.2.2), corroborates
that the removal of numerous cloud & shadow mask errors could improve the SenRVM performances. The
benefit is observed for both areas and the three vegetation classes and across the four metrics. The minimum
R2 of 0.83 is improved to 0.86 by using the m̃ masks.

Percentage of variation (∆%) achieved by the use of refined m̃ masks are calculated and presented for R2

and MAE metrics in Table 4.12. Accounting for both areas, the R2 is increased in average by 2.08% (2.85% and
1.32% for Mâcon and Toulouse, respectively) and the MAE decreased by 6.74% (8.04% and 5.43% for Mâcon
and Toulouse, respectively). Improvements are especially significant in the Mâcon area, given its important
number of mask errors, and over grasslands and forest. Concerning crops, the improvement is less noticeable
given that very good scores are already obtained by using the original masks. For both grassland and crop
classes, MAE errors are largely improved. MAE below 0.04 is achieved for both classes over the Mâcon area.
The interest of the refinement strategy is finally reflected in the standard deviation values of Table 4.11, which
are much lower than those described in Table 4.3.
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Table 4.12: Percentage of variations (∆%) in R2 and MAE observed by using the refined m̃ masks compared
to the results presented in Table 4.3 (Sec. 4.2.2) using the original masks.

Mâcon Toulouse

Grasslands
∆% R2 +3.98 +2.69
∆% MAE -8.85 -7.67

Crops
∆% R2 +1.05 +0.29
∆% MAE -5.95 -7.37

Forests
∆% R2 +3.53 +0.99
∆% MAE -9.33 -1.26

4.5.2 Blending SenRVM predictions with Sentinel-2 observations

Although the SenRVM approach remains a reliable method to recover NDVI measurements, the resulting
time series could be improved in terms of temporal sampling and quality by incorporating the available valid
NDVI observations acquired from Sentinel-2. This post-processing step allows to preserve the original NDVI
variations and marginally reduce the SenRVM errors. Two straightforward blending strategies are considered
without taking into account more advanced techniques requiring the tuning of additional parameters (Wang
and Cheng, 2007; Lim et al., 2021):

• The first blending strategy (OR-S2) consists in replacing SenRVM predictions by the available Sentinel-
2 non-cloudy NDVI values. A pre-processing step of the SenRVM approach has already resampled
the Sentinel-2 NDVI values to a common temporal grid. The OR-S2 strategy takes advantage of this
common temporal grid. The refined masks (Sec. 4.5.1) are used to select the valid Sentinel-2 NDVI
values that are replacing the predictions. This strategy allows to preserve the output SenRVM temporal
grid (6-days) albeit still considering the time-lag of Sentinel-2 acquisitions induced by the resampling
step.

• The second strategy (AND-S2) consists in taking advantage of the distinct temporal grids of non-
resampled Sentinel-2 and SenRVM. True valid NDVI acquisitions are thus inserted in the SenRVM time
series. If Sentinel-2 NDVI was acquired at the same date as a SenRVM prediction, the Sentinel-2 NDVI
value is kept. Since cloud cover affects each parcel differently, the resulting time series have differ-
ent lengths. In average, 86 and 113 NDVI values are, respectively, obtained for Mâcon and Toulouse.
Despite accurate SenRVM results, the AND-S2 strategy can induce some jumps in the resulting time
series. This can especially be the case when original S2 acquisition dates are very close to SenRVM
dates. Theses jumps may be reduced either by adding rules to the selection of Sentinel-2 and SenRVM
values during the blending process (e.g., thresholding on the absolute difference) or by an additional
temporal smoothing strategy. This additional post-processing is not considered here.

The interest of both blending strategies is especially visible when vegetation changes are occurring. Both
strategies allow us to recover the original magnitudes of change observed by Sentinel-2. The AND-S2 strategy
further increases the temporal resolution and incorporates the original dates when the changes were observed
by Sentinel-2.

Figure 4.13 shows some examples obtained by the two proposed blending strategies. The results are
illustrated over two grassland parcels of the Mâcon area. On the left part, the original Sentinel-2 acquisitions
and the predicted SenRVM NDVI time series are displayed. On the right, the results of the two blending
strategies OR- and AND-S2 are compared with the SenRVM results in the presence of management practices
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in mid-August (Figure 4.13a) and end of April (Figure 4.13b). For both parcels, the use of the OR-S2 strategy
(purple line) permits to retrieve the original drop of NDVI induced by themanagement practice, which were in
these cases minored in the SenRVM predictions. While the management practices are satisfactorily depicted
in the OR-S2 time series, the AND-S2 strategy (yellow line) allows us to further recover with more precision
the temporal schedules of the management practices. In both cases, the changes can be observed by the
AND-S2 strategy within a 3-day time interval, while a 6-day time interval is allowed by the OR-S2 strategy.

(a)

(b)

Figure 4.13: Two examples of post-processed SenRVM time series obtained by the two proposed blending
strategies (OR-S2, AND-S2). Both strategies incorporate valid NDVI observations acquired by Sentinel-2 in
SenRVM output result.

4.5.3 Deriving uncertainty for SenRVM predictions ?

Uncertainty refers to the quantitative measurement of potential randomness in the outcomes of an exper-
iment. Measures of uncertainty are essential in decision-based processes and in particular when deriving
operational pipelines from research outcomes. In the SenRVM framework, uncertainty should inform on the
confidence in a predicted value and the importance it should be given in a decision process.

Prediction using supervised machine learning regression methodologies rarely comes with uncertainty
measures, especially when single values are expected as output. Gaussian Processes are ideal to estimate
uncertainty based on their probabilistic outputs. Neural networks, on the contrary, do not inherently allow
the retrieval of uncertainty measures (Antoran et al., 2020; Abdar et al., 2021).

Uncertainty is commonly classified into two types (Kendall and Gal, 2017): epistemic uncertainty, is un-
derstood as the the uncertainty of the model itself, or its parameters, and aleatoric uncertainty, which arises
with the natural stochasticity of the data, such as clouds in optical data. Epistemic uncertainty of Neural
Networks has been partially addressed in the literature with advanced techniques such as deep ensembles
(Lakshminarayanan et al., 2017), Monte Carlo dropout (Gal and Ghahramani, 2016) or stochastic batch nor-
malization (Atanov et al., 2018). In the case of SenRVM, the use of dropout, data folding strategies allowed
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by an important number of training samples and results computed from the averages of several model runs
have permitted to already quantify some epistemic uncertainty of the results. Aleatoric uncertainty, on the
other hand, is rarely handled.

An attempt is here proposed to obtain uncertainty measures associated to the SenRVM predictions. Five
criteria (Cr.), based on both epistemic and aleatoric uncertainty, are considered. They are derived from infor-
mation mainly based on SenRVM results and temporal distribution of the input data:

• (Cr.1) Label spatial availability: this criterion is based on the total number of valid (i.e., non-cloudy) la-
bels, available for each date throughout the dataset and used for training the models. This information
is easily retrieved from the associated masks. The relationship between the number of observations
and the quality of the regression may not be linear due to the possible introduction of noise and false
examples. Nevertheless, it can be considered that a logarithmic relationship exists between the num-
ber of examples and the accuracy of predictions. A higher number of samples allows the network to
encompass an increased variability in the data used and gain generalization.

• (Cr.2) Model Error : this corresponds to the average accuracy of the model for each date. The MAE
between each valid label and the corresponding prediction is computed and averaged for each date.
Some dates do not have any valid label as they are entirely covered by clouds. In this case, this criterion
cannot be calculated and is not taken into account for these dates.

• Label shifts and temporal availability: three criteria are proposed, which are illustrated in Figure 4.14.
For each SenRVMprediction (purple point), the temporal distribution of the nearest label features (green
dots and red cross) are taken into account. Based on the common temporal grid of the labels, the three
following criteria are derived:

– (Cr.3) considering the resampling step of Sentinel-2 acquisition to the common temporal grid
(Section 2.4), the shift with respect to the real date of acquisition is considered. The shift is ex-
pressed as the absolute distance in days. The suggestion is that the smaller the shift, the lowest
the uncertainty in the prediction should be (i.e., lower changes in vegetation cover).

– (Cr.4) as cloudy acquisitions occur, the distance in days to the nearest valid label is computed for
each date. For non-cloudy dates, this criterion is thus set to 0. It indicates whether the condition
of the vegetation was known at a near or distant time.

– (Cr.5) the total distance in days between the nearest preceding and following valid labels is com-
puted. For the first and last dates, only the following or preceding, respectively, is used. On the
contrary to the previous criterion, this allows to know if the temporal evolution of the vegetation
could be observed at short or long intervals.

Considering the five above criteria, different uncertaintymeasures can be associatedwith eachNDVI value
predicted by SenRVM at each specific date. To facilitate the display and handling of uncertainty measures,
it is proposed to calculate a global uncertainty score (Uglobal) integrating all these criteria and allowing a
simplification of interpretation. To account for different ranges, a normalization between 0 and 100 is also
performed for each date:

Cr ′.i t =
(

Cr.i t - min(Cr.i)
max(Cr.i) -min(Cr.i)

)
× 100

∣∣∣ i ∈ [1, 5] & t ∈ T , (4.6)

with Cr’.i t being the normalized criterion i among the five criteria for each date t of the time series T .
It can be noted that a data dependent normalization is proposed here (i.e., taking into account the minimum
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Figure 4.14: Illustration of three uncertainty criteria calculated for a SenRVM prediction related to the tem-
poral distribution.

and maximum distance in days with a valid label for example). It would be possible to fix these values as
absolute, e.g., 1 for the MAE as the NDVI is assessed, or 365 days for the temporal distance. Nevertheless, to
enhance differences in uncertainty regarding model predictions, this possibility is here discarded. The global
uncertainty score for each date t is then the average of the five normalized criteria:

Uglobalt =
1
n

n∑
i=1

Cr ′.it
∣∣∣ n = 5 & t ∈ T , (4.7)

The resulting uncertainty is expressed in percentage, with 0 indicating low uncertainty and 100 high
uncertainty.

To illustrate the resulting uncertainties, the five criteria and the global score are computed for single-class
grassland SenRVM models (Sec. 4.2.2). Figure 4.15 provides examples of two SenRVM time series predicted
by the same model. The five criteria computed are shown. For visual assessment, the global uncertainty score
is also displayed with colors from green to red, respectively, for low to high uncertainties.

It can be noted that the three upper histograms, associated with the criteria Cr.1, 2, and 3, are identical for
both parcels. This is expected, as the same model is used and both parcels are on the same area and the three
criteria are computed from all samples. They will thus only vary between different datasets. On the contrary,
the two following histograms (Cr.4 and 5) vary for each sample.

Figure 4.15a illustrates a time series for which the global uncertainty scores are low for the entire ob-
served time range. Visually, these good scores are explained by the presence of numerous labels for training,
distributed throughout the entire time series.

Conversely, Figure 4.15b depicts a grassland time series located on a high altitude in the Pyrenees moun-
tains. Frequent snow during winter and clouds during spring and summer leads to a very poor number of
valid Sentinel-2 acquisitions to be available for learning. Thus, the uncertainties related to the temporal avail-
ability (Cr.4 and 5) are very high for the first and last parts of the time series, reflecting the lack of supervision
and the potential errors in the predictions. Especially, a sudden drop observed in the SenRVM predictions is
accurately associated with a very high uncertainty score (red color) at the beginning of March. This drop can
be explained by the unavailability of any valid samples (i.e., 100% cloud cover) for training at this date, and
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(a) Example of low uncertainties throughout the agricultural season associated to SenRVM predictions.

(b) Example of high uncertainties throughout the agricultural season associated to SenRVM predictions.

Figure 4.15: Visualization of SenRVM time series and uncertainty scores for two permanent grassland parcels
over the Toulouse area.

the high temporal distance to valid labels.

Although the resulting criteria rely on basic information, the proposed approach illustrates the potential of
deriving uncertainties associated to predictions. Additional criteria tailoredwith respect to a specific decision-
based task or the incorporation of weighting strategies in the global score can be proposed. This could improve
the computation of the uncertainties introduced here and move from a visual perspective to an operational
solution.
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4.6 Concluding remarks

This chapter has proposed the study of the results of the SenRVM approach previously presented. The results
were analyzed both quantitatively and qualitatively. The different experiments have illustrated the satisfac-
tory results of the proposed SenRVM method and demonstrated the relevance of the resulting time series for
grassland monitoring.

The accuracy of the regression towards NDVI was first evaluated on datasets grouping grasslands, crops
and forests as well as separately (multi-class andmono-class). Satisfactory results were obtained in both cases,
with an accurate stability in the results between vegetation types. The influence of the temporal and spatial
distribution of the data on the regression performances has been illustrated, with a noticeable impact of the
persistent cloud cover and the size of the reference parcels on the obtained errors. Taking into account the
different nature of the data used as input, an ablation study was proposed to underline the importance of SAR
time series and the relevance of both backscatter coefficient and coherence features. A divergent outcome
was nevertheless reported for forests, with an increased contribution of the cloud & shadow masks used to
discard cloudy acquisitions. The performances of SenRVM with respect to several existing regression and
interpolation methods have been assessed for the reconstruction over short- and long-term data gaps. The
comparison has allowed to illustrate the satisfactory results of the proposed approach.

The generalization capabilities of the SenRVM approach were then explored. Spatial (i.e., between differ-
ent areas) and temporal (i.e., between different years) shifts were considered. The results have highlighted
some generalization limitations, which nevertheless do not affect the results previously obtained, but rather
point out potential areas for improvement. For instance, models learned on samples extracted from tiles inte-
grating different climatic contexts or the implementation of strategies allowing a better robustness to temporal
shifts are in particular to be considered to improve the generalization of the proposed models.

Finally, post-processing steps allowing to improve the SenRVM results have been briefly presented. The
correction of cloud masks, the integration of Sentinel-2 NDVI data, and the generation of uncertainties asso-
ciated with the predictions have been discussed.
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5.1 Challenges and related work

Previous chapters have demonstrated that grassland management is varied, both in its effects on biomass and
in its temporal calendar. Mowing, grazing, and ploughing have major impacts on ecosystemic services, that
hold an important part of capital environmental goods. Consequently, having a comprehensive knowledge
of management practices, in the context of environmental changes and sustainable management, is a crucial
factor.

The expected provisioning services and subsequent seeded agronomic species will mainly define the na-
ture of technical acts performed on a grassland during the growing season. In order to achieve optimal man-
agement of the grass resource of a parcel, a mix of mowing, grazing, and ploughing practices is often encoun-
tered. Beyond these three technical acts, several commonly employed management practices are performed.
These practices do not necessarily imply the grass resource to be harvested, but do influence its growth. Early
spring mowing and grazing which favor vigorous grass regrowth, are for example frequent. The choice be-
tween mowing or grazing does not have to be permanent for the rest of the growing season. The number of
following technical acts will varies. Grassland maintenance (which can take several forms) is possible before
the beginning of winter, to prepare for the next season. During the growing season, several re-seedings can
also take place after ploughing. Over-seeding, which involves adding seeds to regenerate the grass, is also
routinely performed. It generally occurs at the end of winter or at the end of summer. This technique is often
combined with harrowing or rolling to remove weeds and influence soil structure, respectively. Fertilization
(organic, nitrogen, phosphorus, and potassium mainly) can also be carried out from February onwards to en-
courage growth and favor certain species. Grassland botanical composition and phenology therefore reflect
a combination of environmental factors and farming practices. The strategies mentioned above will imply
different impacts on the above-ground biomass varying in intensity and duration. This consequently also
leads to high variability in the temporal and spatial management of grasslands.

Most of the work studying the detection of practices on grasslands with remote sensing focuses on de-
tecting the three main types of technical acts (i.e., mowing, grazing, and ploughing). The strong correlation
with the ecosystemic quality of a grassland due to the drastic change they induce explains why these three
practices are mainly considered. In recent years, the interest in developing methods to detect grassland man-
agement practices is greatly increasing (see Section 1.2.2.2). First, due to the growing environmental concerns.
The second reason is the arrival of the high spatial and temporal time series from the Sentinel constellation.
From the existing literature, two main categories are recovered: (i) classification-based approaches, aiming
the discrimination of grassland management (e.g., mowed, grazed); (ii) detection-based approaches, which
intend to gather information on management practice frequencies. This last category often aims to estimate
the exact date at which technical acts occur.

The following paragraphs present the existing literature on management practices. The works based on
the classification of practices are first discussed. Close to the objectives followed in this chapter, the methods
for detecting practices are then thoroughly presented. Data and methods used by works considering only
optical time series are first introduced. Works relying on the use of SAR features or integrating both optical
and SAR features are then addressed. The considerations and limitations of the different works will then be
discussed.

Mapping the nature of management practices

Methods that target grassland classification according to management practices make the common assump-
tion that different technical acts have a distinct impact on grassland phenology and therefore are distinguish-
able. The classes recovered are mainly related to usage intensity, e.g., extensively, intensively, with certain
degrees. Grasslands that are intensively exploited are generally assumed to be mowed, while grazing is asso-
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ciated with extensive usage. For instance, Guo et al., 2000b propose to map six different classes of manage-
ment practices according to different usage intensities. The study exploits three Landsat-5 images acquired
at different seasons of a year and thresholding techniques to differentiate the classes. Likewise, thresholding
techniques are employed in Asam et al., 2015 on LAI time series obtained from 9 RapidEye images to distin-
guish four classes of usage intensity. In Sibanda et al., 2017, a single WorldView-3 image is classified with
k-means clustering based on the spectral separability of the expected classes. Random Forest and Gradient
boosting algorithms are applied on a set of 200 images from Sentinel-1 (backscatter coefficient and Gray Level
Co-occurrence Matrices (GLCM)) and Sentinel-2 (NDVI, EVI, Normalized Difference Water Index and GLCM
of Band 8) spanning 24 months to separate 3 classes of grassland management in O’Hara et al., 2021. Meadow
and pastures, which have different usage intensities, are classified at a national scale in Stumpf et al., 2020. For
this purpose, a strategy based on thresholding of NDVI composites from Landsat ETM+ and OLI is proposed.
In Bastin et al., 2012, grazed grasslands are retrieved with Landsat TM and ETM+ images through a compar-
ison of minimum ground-cover on grasslands between the different years. Gaussian Mean Map Kernels are
proposed in Lopes et al., 2017 for mapping management practices (mowed, grazed, or both) from FORMOSAT-
2 times series spanning three years. Deep-based networks are also employed (D’Andrimont et al., 2018) to
separate crops from grasslands by detecting ploughing activities. Time series from Sentinel-1 (backscatter
coefficient and coherence) and Sentinel-2 (Bare Soil Index) are used.

While dealing with management practices, these works are more related to land-cover mapping. They al-
low for an estimation of adopted management regimes but rarely inform about the frequency of management
practices which are identified as of particular interest.

Exploiting optical time series for the detection of practices

Traditionally, the detection-based approaches study the evolution of image time series. Due to the temporal
and quantitative variability of technical acts, gathering exhaustive validation data describing the exact dates
of management practices is complex and costly. As a consequence, works dealing with the detection of man-
agement practices and their frequency are relatively limited and mainly rely on unsupervised approaches.
Existing work considers that technical acts can be associated with abrupt changes in the time series. The
magnitude of the change is usually related to the type of management practice. Mowing or ploughing gener-
ally induce an important and abrupt removal of grass cover, therefore implying a high magnitude of change
in the time series. On the contrary, grazing can last longer and often affect vegetation only gradually. Due to
the temporal resolution of satellite time series, most of the works are therefore focusing on detecting mowing
or ploughing, while grazing is rarely considered.

In the Earth Observation community, different change point detection methods exploiting low- and mod-
erate spatial resolution times series are specifically proposed. For instance, the Breaks For Additive Seasonal
and Trend (BFAST, Verbesselt et al., 2010) or Landsat-based detection of trends in disturbance and recovery
(LandTrendr, Kennedy et al., 2010) approaches are commonly adopted to monitor trends or seasonal changes
in vegetation surfaces. They provide good performance for tasks such as identifying forest disturbances.
However, frequent and varied technical acts prevent any long-term trend in grasslands from being extracted.
Therefore, these methods are not adapted to retrieve these rapidly evolving phenomena and characterize the
technical acts. This explains why they are not exploited in the related literature.

Optical imagery is identified as the most commonly used to monitor grassland vegetation status in Sec-
tion 1.2.2.2. The temporal resolution remains a driving factor for accurate detection of practices. Conse-
quently, work exploiting optical imagery only, either rely on short very high resolution time series such as
from SPOT-5 (Dusseux et al., 2014c), RapidEye (Franke et al., 2012; Gómez-Giménez et al., 2017), FORMOSAT-
2 (Hadj Said et al., 2011), or span multiple years with a lower intra-year repetitivity (Lopes et al., 2017). Some
works propose to exploit coarse-spatial resolution images fromMODIS (Estel et al., 2018; Halabuk et al., 2015)
to increase the temporal resolution, at the cost of spatial resolution. More recently, Sentinel-2 (Kolecka et al.,
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2018) or Harmonized Landsat Sentinel-2 (HLS) products combining Sentinel-2 and Landsat-8 (Griffiths et al.,
2019; Schwieder et al., 2021) are explored to obtain higher temporal resolutions.

Most of the works that aim the detection of practices from optical imagery use hard fixed thresholding
methods. Time series of NDVI (Franke et al., 2012; Estel et al., 2018; Kolecka et al., 2018; Griffiths et al.,
2019) and EVI (Schwieder et al., 2020) features, or spectral bands (Hadj Said et al., 2011), are also proposed. For
these approaches, the thresholds are largely defined by visual interpretation and applied directly to the feature
time series. In Kolecka et al., 2018, management practices are detected by comparing first-order derivatives
computed on neighboring parcels. A threshold is defined to assess the dissimilarity of the resulting time series
to perform the detection. Taking into account the 10-day equidistant NDVI time series constructed from the
HLS products, 1 to 5 mowings between April and November are detected at the country scale in Griffiths et al.,
2019. In this last work, a idealized non-managed time series (i.e., unaffected by management practices) is first
constructed by fitting a polynomial model with a set of vertices corresponding to high NDVI values. To detect
mowings corresponding to contrasting trends between the fitted model and the time series, a fixed threshold
is applied on residual errors. The same strategy is employed for multiple years in Schwieder et al., 2021,
using EVI rather than NDVI. Instead of a polynomial fit, this work proposes a linear interpolation applied
on the selected EVI vertices. To set the threshold, the authors use the mean value of all absolute residuals
within the time series of each parcel. As for the previous work, the residuals are computed from the difference
between the fitted model and the observed time series. A two-stage adaptive threshold, defined for each parcel
independently, is used in Gómez-Giménez et al., 2017. The authors exploit a bi-temporal vegetation index and
propose to use themean and the 95% percentile value of the time series of each parcel in the threshold strategy.

Besides thresholding approaches, someworks are adopting the supervised classification of multi-temporal
optical data. Different classifier methods are proposed such as Dynamic Time Warping with Support Vector
Machines (Dusseux et al., 2014c) or CART decision trees (Halabuk et al., 2015). However, due to the previ-
ously mentioned scarcity of validation data, only a few parcels, dozens at most, are included in these proposed
approaches, preventing a conclusive evaluation of their relevance.

Increasing interest in SAR time series for the detection of practices

Especially since the arrival of Sentinel-1 SAR time series, someworks propose the exploitation of frequent and
regular SAR acquisitions. SAR approaches mainly rely on the backscattering coefficient, calibrated to Sigma0
(σ0, see Section 2.4.2) (Schuster et al., 2011; Siegmund et al., 2016; Stendardi et al., 2019b; Taravat et al., 2019),
Gamma0 (γ0) which is a σ0 normalized with the local incidence (De Vroey et al., 2021a; Lobert et al., 2021),
or coherence (see Section 2.4.3) (De Vroey et al., 2021a; Lobert et al., 2021; Komisarenko et al., 2022). Besides
most of the works exploiting Sentinel-1, the use of TerraSAR-X Schuster et al., 2011 and COSMO-SkyMed
Siegmund et al., 2016 is also explored.

Nevertheless, due to the complexity of interpreting the SAR feature time series (Sections 1.2.1.2 and 2.4),
the majority of work relying only on SAR data is exploratory and does not perform statistical validation or
report a specific methodology for the detection of practices. Instead, these works to analyze the behavior
of different SAR features time series in response to technical acts. For example, Sentinel-1 backscatter co-
efficient (Chiboub et al., 2019; Zhou et al., 2021) and coherence (Chiboub et al., 2019; Tamm et al., 2016;
Voormansik et al., 2016; Voormansik et al., 2020) temporal behavior with respect to mowing or ploughing,
reported from field campaigns, are thoroughly analyzed. Several polarimetric features, such as eigenbased
entropy, anisotropy, or alpha decomposition from high spatial resolution TanDEM-X (dual-polarimetric) and
RADARSAT-2 (fully polarimetric) are also assessed (Voormansik et al., 2016). Optical imagery is sometimes
used alongside SAR features to facilitate the interpretation. In Voormansik et al., 2020, the discrimination of
mowing and ploughing acts using Sentinel-1 backscatter coefficient and Sentinel-2 NDVI 6-month time series
is explored at a national scale. The authors in Zhou et al., 2021 observe the response over a single alfalfa
parcel being monitored on the ground. The backscattering coefficient from Sentinel-1, together with NDVI
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and EVI obtained from Sentinel-2, Landsat-8, and MODIS satellites, as well as HLS products are considered.
SAR and optical responses to technical acts on mountain pastures are also explored using NDVI and RGB
images recorded from on-ground pheno-cameras (Rossi et al., 2019; Stendardi et al., 2019a).

As mentioned, few works perform statistical validation or propose a methodology for the detection of
practices from SAR features time series. These few works, as for optical-based approaches, rely for the most
part on fixed thresholding approaches (Schuster et al., 2015; Siegmund et al., 2016). Adaptive thresholding is
also proposed by someworks in the litterature. For example, several detectionmethods are proposed on either
γ0 time series or coherence time series in De Vroey et al., 2021a. The authors propose three different methods
to detect a signal increase followed by a signal decrease which is related to mowing events (see Section 2.4.3).
The first method is a mean shift approach with a sliding averaging window whose size varies with the local
variance. Fixed or adaptive thresholds (e.g., related to the standard deviation) are applied to each window. The
second assessed method is a linear regression approach with an asymmetrical sliding windows and thresholds
applied on the resulting regression coefficients. The third method follows a two-mean strategy, which relies
on a fixed-size sliding window. A statistical hypothesis test verifies if there is a significant change in each
window, and a threshold on the significance of the p-value of this hypothesis is used to detect a candidate
mowing. In Taravat et al., 2019 a deep-based approach is also adopted. The authors consider the detection
of mowings as a binary classification problem. A shallow MLP with 1 hidden layer using as input Sentinel-1
backscattering coefficient, from which second-order texture metrics are also computed (homogeneity, con-
trast, entropy, and dissimilarity). In this work, network training is done using mowing events with exact dates
reported for ten grassland parcels.

Joint optical and SAR exploitation for the detection of practices

A small number of works finally propose to jointly exploit the strengths of both optical and SAR time series.
Section 2.4 and the previous paragraph highlighted the complex interpretation of SAR time series for detecting
practices. Exploiting SAR and optical features furthermore implies a high dimensionality of the data. Hence,
Machine Learning (ML) approaches are favored. Deep-based methods are adopted here as providing accurate
results such as reported in Chapter 3. In the two identified works, data from the Sentinel-1 and 2 missions are
used. Furthermore, 1D-CNN strategies are proposed in both approaches.

In (Lobert et al., 2021), Sentinel-1 gamma backscattering coefficient and GLCM, interferometric coher-
ence, and NDVI from Sentinel-2 and Landsat-8 are exploited. Median values are computed from the features
at parcel level and used as input data. Labeled sub-sequences of the time series are fed into a 1D-CNN yield-
ing a binary output corresponding to the presence or absence of mowing. In this study, a reference dataset
composed of 257 mowings from 64 parcels is used to supervise model training and validate the results. The
64 grassland parcels are distributed across three different and spatially distant sites in Germany. The sec-
ond work uses temporally smoothed interferometric coherence and filtered NDVI time series from Sentinel-1
and Sentinel-2 acquired between April and October Komisarenko et al., 2022. Both time series are resampled
to a 1-day temporal grid to feed the network with equidistant observations. As for the last work, a binary
classification of mown / not mown for each time series date is performed using a 1D-CNN. Furthermore, a
rejection mechanism in case of uncertainty is furthermore tested. The latter strategy relies on the rejection of
a detection when the distance to a discrimination plan is lower than a particular set threshold. The network
supervision and validation uses a dataset containing the technical acts, manually labeled, of 2,000 grassland
parcels distributed at a country-scale in Estonia.

Characteristics of the most recent notable works

Starting in 2010, only about seventeen peer-reviewed journal research works, reporting a detection method
and assessing the results using optical or SAR features are identified. These works, have been introduce
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din the previous paragraphs. Among these works, important differences are nevertheless observed and are
illustrated here. In particular, the extent of grassland surfaces (km2), and the number of validation points (i.e.,
technical acts) considered for the different works vary significantly.

Figure 5.1 illustrates these two features for the seventeen notable works. It can be remarked that the extent
of considered surfaces ranges from a few contiguous parcels to twenty-seven European countries. It must be
noted that as the grassland extend is not always explicitly given, some of the reported numbers concerning
the considered extent can be approximate. In the case where this information was not explicitly reported in
the works, similar information is used to retrieve the total extent considered, such as the number of parcels
and their average size. The number of validations points varies between 4 and 2,000. These relatively low
numbers highlight the complexity and scarcity of gathering large-scale validation datasets.

References included in the figure
[1] Hadj Said et al., 2011 [11] Griffiths et al., 2019
[2] Schuster et al., 2011 [12] Stendardi et al., 2019a
[3] Franke et al., 2012 [13] Taravat et al., 2019
[4] Dusseux et al., 2014c [14] De Vroey et al., 2021a
[5] Halabuk et al., 2015 [15] Lobert et al., 2021
[6] Siegmund et al., 2016 [16] Schwieder et al., 2021
[7] Gómez-Giménez et al., 2017 [17] Komisarenko et al., 2022
[8] Lopes et al., 2017
[9] Estel et al., 2018
[10] Kolecka et al., 2018

Figure 5.1: Top: Summary of the reviewed work by considering different criteria : grassland extent and num-
ber of included validation points (both in logarithmic scales), input data type, scale of analysis and type of
methodologies; Bottom: reference list of the reviewed works.

Three other characteristics are also reported in Figure 5.1:

(i) the type of satellite input data: optical, SAR or using both;
(ii) the analysis scale: pixel-, object-based or both;
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(iii) the categorization of the proposed methodology : fixed/adaptive thresholds or defining a classification
problem.

From these three additional characteristics, it is observed that ten out of the seventeen studies only exploit
optical imagery, while only four exploit SAR images and three rely on both data sources. Regarding the anal-
ysis scale, six works are pixel-based while nine are object-based and two provide both pixel- and object-based
analysis. The summary shows how fixed thresholds are employed in the majority, as only four studies employ
adaptive thresholds. Finally, only six works propose classification strategies to detect management practices.

Outcomes of the literature review

Despite the efforts mentioned above, the results obtained for the detection of management practices on grass-
lands still exhibit some limitations. In the following, it is proposed to summarize these limitations and identify
important aspects that can be discussed in further detail.

Regarding the choice of data, the temporal resolution they allow considering the rapidly evolving grass-
lands is the main driving factor. Optical data is initially preferred until the availability of Sentinel-1 SAR
data. Due to the speckle noise and the temporal fluctuations of SAR feature, additional filtering steps are
commonly adopted. Temporal smoothing is for example often performed which can be detrimental to the
detection of practices as outlined by the rapid regrowth on grasslands. Additionally, the choices required to
use SAR features are numerous. As SAR data are characterized by several incidence angles, polarizations or
drastically different feature types, their adoption can add many open parameters to the detection task. The
different works thus rely on distinct pre-procesing and feature selection steps that can be discussed. The
recent availability of products that integrate Sentinel-2 and Landsat-8 facilitates the processing, but the tem-
poral repetitivity is remaining conditioned by cloud cover. Geographical considerations can prevent these
approaches to be effective. Overall, the data coming from different sensors (i.e., optical and SAR or multiple
optical sensors) are generally exploited independently, as the main objective of these multi-sensor approaches
is to increase the temporal resolution of the time series.

Threshold-based approaches allow simple interpretations of the results and also the integration of expert
knowledge. Incorporating expect knowledge, regarding features or temporal aspects, appears to be necessary
to address complex phenologies and variable grassland management calendars. Threshold-based approaches
are consequently largely favored. However, setting thresholds is challenging and considerably influences the
reliability of these methods, especially due to missing data in optical time series and variety and fluctuations
of SAR features. The threshold-based approach can be prone to poor spatial generalization capabilities.

Still, most of the existing works are found to validate their approach on a relatively small number of
parcels due to the complexity of acquiring reference data. Moreover, the parcels are generally in the same
climate-wise area, implying low heterogeneity in the used datasets and potential spatial correlation. Taking
into account the work presented in Figure 5.1, the mean number of validation points is only 254. The different
validation datasets aremainly constructed from photo-interpretation of time series of optical data and, to some
extent, from field visits. The low number of validation points reflects the difficulty in obtaining exhaustive
data to allow effective validation of the different proposed methodologies. In addition, the geographical areas
covered by the validation seem insufficient with respect to the large areas covered by grasslands.

Finally, in the literature, both pixel- and object-based approaches are proposed. Pixel-based analysis is
mainly adopted by optical-based studies. The main advantage of this strategy is the spatial accuracy it allows.
However, pixel-based analysis is sensitive to noise, as the accuracy of the analysis depends on the radiometric
quality of the data to separate adjacent pixels responses to changes. This type of analysis is also computa-
tionally resource intensive. Furthermore, as mentioned previously, the pixel-based approach is challenging
when integrating SAR data, especially due to speckle noise. To address the existing drawbacks, object-based
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approaches are found in the literature. Traditionally, these strategies propose the use of LPIS information to
perform analysis at the parcel scale. Integrating object-based knowledge allows to propose a more robust sta-
tistical analysis to detect changes, for example, taking into account the mean, median, or standard deviation
of the pixels in the parcel. However, object-based analysis greatly reduces spatial information and does not
account for large parcels with heterogeneous cover, which can be found in the case of grasslands. Although
the choice of the analysis scale is mainly initiated by the type of data used (i.e., optical or SAR imagery), it is
rarely thematically justified.

To address the limitations of the existing work, a new approach for the detection of technical act frequen-
cies on grasslands is developed and assessed. The proposed approach will assess different methodologies that
are based on the exploitation of highly sampled NDVI time series obtained from the SenRVM approach. This
will allow us to capitalize on the temporal resolution of SAR time series and the favorable spectral response
of the NDVI to management practices. On the contrary of the presented related works, it is furthermore
proposed to discuss and define an alternative to the pixel- and parcel-based analysis scales. To assess the dif-
ferent detection methods and to overcome the scarcity of validation datasets, the construction of large-scale
validation datasets is introduced.

5.2 The proposed methodology

A three-step workflow is proposed in the following. The first step of the methodology aims to address the
spatial specificities of grasslands and discuss the relevant scale of analysis. This will lead to the definition of a
new analysis scale based on superpixels (Section 5.2.1). As a second step, hyper-temporal NDVI time series at
the superpixel scale obtained with the SenRVM methodology are introduced (Section 5.2.2). They must allow
for better characterization of abrupt changes and avoid missed management practices due to clouds. Finally,
different detection strategies that are applied to the time series obtained from SenRVM are proposed as a last
step (Section 5.2.3).

5.2.1 Monitoring grasslands: the importance of the spatial scale

Existing object-based approaches have proposed the detection of grassland management practices at the par-
cel object-level. The proposed parcel-based analysis, although computationally efficient and allowing the
integration of often robust reference data on the location of grassland parcels, includes important limitations.

It was explained in Section 1.1.4 that administratively declared parcels are subject to management prac-
tices that are carried out on finer scales. In particular, rotational management, aiming at spreading the avail-
ability of the grass resource over time, brings farmers to conduct technical acts that are not performed uni-
formly on the parcel. As a result, the parcel is splitted into smaller areas that are managed with distinct
calendars. From a methodological point of view, this process can be related to an over-segmentation (i.e.,
defining multiple and smaller parts) of the parcel boundaries.

Two main factors will induce the spatial distribution of the smaller intra-parcel areas:

• location-induced parcel segmentation is performed when environmental factors, such as topographical
or pedological factors, are inducing the spatial distribution. For instance, some areas may for example
be affected by a lower water retention capacity in the case of a steep slope, or be affected by different
soil properties, e.g., with sandier areas or disparate clay concentrations. Therefore, the phenology of
grasses, potential yields, and growth rates of these areas will differ. The segmentation of the parcel
is in this case naturally influenced by these environmental factors, resulting in distinct management
practices and calendars of the different areas.
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• management-induced parcel segmentation refers to the use of parcel properties, beyond environmental
factors, to define smaller intra-parcel areas. Accessibility to livestock, potential for mechanization, or
temporally expected yields are among the properties commonly used to perform such segmentation.

To highlight the importance of the analysis scale, an example of multiple intra-parcel behaviors in a parcel
extracted from the RPG is shown in Figure 5.2. Three consecutive non-cloudy Sentinel-2 acquisitions illustrate
the management practices performed on this permanent grassland.

(a) (b) (c)

Figure 5.2: Example of Rotational management of a permanent grassland parcel extracted from the RPG. The
three consecutive non-cloudy Sentinel-2 images illustrate how two technical acts are performed at different
dates for a single parcel.

Another important remark is that the larger the parcel, the more likely and possible rotational manage-
ment will be adopted. Hence, the larger the parcel, the more the parcel object-scale analysis is inappropriate.
To corroborate this, Figure 5.3 illustrates three RPG declared parcels for which rotational managements are
applied. First, it clearly appears that, as previously observed, the height of the vegetation is not homogeneous
on the overall surface of these parcels. Furthermore, two areas are distinguished in the first parcel which is
6.24 ha, 5 areas is the second parcel of 14.41 ha and up to a dozen of differently managed areas are visible in
the third parcel of 44.8 ha.

(a) (b) (c)

Figure 5.3: Three examples of administratively declared parcels for which technical acts are performed only
on local areas of the parcel. Parcel (a) is 6.24 ha, parcel (b) is 14.41 ha and parcel (c) is 44.8 ha.

Considering all the above, a single decision at the parcel scale about the occurrence of a technical act
therefore can not be appropriate. Taking into account the spatial specificities of grassland management prac-
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tices can lead to more robust and reliable methodologies. In this way, several considerations can be taken for
the segmentation of the parcels:

• very small regions in the parcel of the order of a few pixels can occur, due to the strong response of
grasslands to topographic and soil conditions. The small regions will have characteristics different from
those of a more homogeneous neighborhood. These isolated pixels, which are seen as a kind of outliers,
can result in a too detailed over-segmentation.

• a minimum size can be assumed for the distinction of homogeneous regions managed in a similar way.
In fact, constraints on accessibility, profitability or potential mechanization would prevent too small
regions from being defined by farmers.

• effects on the vegetation of management practices are non-persistent as the grass growth back. Relying
only sparse temporal information to differentiate the small areas is therefore not sufficient. As observed
in Figure 5.2, the average NDVI of both separately managed areas is similar if the three dates are only
considered (e.g., two dates with high vegetation cover and one date with bare ground for each area).
Thus, longer time series should be considered alongside spatial features to distinguish the areas.

Superpixel scale definition

One solution to the limitations of pixel- and parcel-based analysis is to define an intermediate analysis scale.
In this work, the partitioning of administratively declared RPG parcels into superpixels (Ren and Malik, 2003)
is proposed. Superpixels are defined as perceptually meaningful atomic regions (i.e., parts of the original
object), which are obtained from feature and spatial characteristics. The underlying idea is to identify regions
of parcels that have the same behavior throughout the year and, by extension, are managed in the same
manner.

Superpixels are automatically obtained from segmentation techniques, aiming the full partition of a digital
image into multiple regions. A rich and prolific literature covers image segmentation techniques from multi-
ple sources and for various applications. Historically and still today, for some applications, techniques based
on thresholding or edge detection are employed. The threshold-based techniques are the simplest approaches
to image segmentation. They mainly investigate intensity histograms to apply thresholds to perform segmen-
tation. Local and global threshold methods can be found, either with fixed or adaptive thresholds. Threshold
methods are used, for example, to create binary segmentation that highlights a single class of interest. Otsu
(Otsu, 1979), Niblack (Niblack, 1985) or Sauvola (Sauvola and Pietikäinen, 2000) methods are among the most
widely used threshold segmentation techniques. Edge-base techniques look for discontinuities in the local
features of an image. They return collections of points, lines, that are then used to obtain a continuous seg-
mentation. Examples of edge-based techniques are the well-known Sobel (Kittler, 1983), Prewitt (Prewitt,
1970), Laplacian (Marr et al., 1980) or Canny (Canny, 1986) operators.

Recent advances in remote sensing sensors allow Earth observation images to provide abundant spatial
information and complex spectral information. Threshold and edge detection techniques are sensitive to
noise and generally only take into account very local spatial information. Furthermore, these techniques are
not necessarily applicable to multispectral data. Hence, region-based approaches that expand the previously
mentioned techniques are preferred for the segmentation of multispectral satellite images. Region-based tech-
niques are separated between region growing methods and region splitting with merging methods. Starting
from seed pixels, these methods are sought for similarities or discontinuities between adjacent pixels. Prede-
fined rules, including thresholds, are used as a criterion to differentiate the different regions in an iterative
process. Statistical Region Merging methods (Nock and Nielsen, 2004), Watershed-based methods (Beucher
and Lantuéjoul, 1979) or Mean Shift methods (Fukunaga and Hostetler, 1975) are region-based techniques that
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are extensively used.

Superpixels (Ren and Malik, 2003) are region-based methods that are gaining interest in various segmen-
tation tasks (Wang et al., 2017a; Stutz et al., 2018). Two constraints are imposed to the superpixels and not
necessarily to region-based approaches. The size must be similar for the set of superpixels which must also
follow an equidistribution throughout the image. Similar sizes limit the creation of very small areas, which
can be implausible in the case of agricultural management practices. Furthermore, this allows the integration
of some spectral diversity in a more globally homogeneous region (e.g., isolated pixels), as it can be the case
for grasslands. The Simple Linear Iterative Clustering (SLIC) algorithm introduced in Achanta et al., 2012, is
a clustering region-based algorithm and belongs to the most commonly used superpixel generation methods
(Zhou et al., 2013; Csillik, 2017; Mahajan and Fataniya, 2020; Derksen et al., 2020; Yin et al., 2021). It adapts
the k-means clustering approach (MacQueen et al., 1967) to efficiently generate superpixels with a combined
spatial-feature distance to encourage compact segments.

SLIC algorithm takes as input the number of superpixels to be generated by setting the k parameter.
The average size of the superpixels S × S is then calculated with k and the total number of image pixels N
of the image. Superpixel centers Ck are initialized on a regular grid spaced S =

√
N/k pixels apart. The

pixels in a 2S × 2S window around Ck are then iteratively aggregated while updated superpixel centers are
calculated. Iterations are repeated until convergence, reached when Ck coordinates are no longer changing.
The aggregation of pixels is verified with the D metric. D is based on a weighted sum of the spatial ds and
feature df distances:

ds =
√

(xk − xi)2 + (yk − yi)2 , (5.1)

df =

√√√√ B∑
b=1

(Gb
k − gbi )

2 , (5.2)

D =

√
(df)2 +

(
ds

S

)2
×m2 , (5.3)

where [x,y] are the image coordinates and Gk
b and gkb are respectively the superpixel mean features and

the pixel feature for the bth feature-channels ∈ B channels of the image. m is a compactness weighting
value to prioritize either the spatial or feature distances. This permits to relax the size and equidistribution
constraints. A post-processing step, based on a connected component algorithm, allows the inclusion of
isolated pixels in the final segmentation.

Initializing Ck on a fixed and evenly spaced grid involves segmenting the entire image (e.g., a rectan-
gular shaped raster). In the case where solely a region of interest wants to be segmented, such as a parcel
with non-rectangular boundaries, the number of superpixels and an adequate border adherence cannot be
achieved. The maskSLIC approach (Irving, 2016) allows to apply the SLIC method only to the region of in-
terest. The initialization of Ck is done taking into account the distance to the borders of a provided mask
and to the respective centers of the superpixels. Figure 5.4 shows an original grassland raster, the results of
a SLIC segmentation in the middle which segments the entire raster, and the maskSLIC segmentation on the
right, applied to the region of interest. Both SLIC and maskSLIC segmentation are performed with the same
parameters (k = 10 andm = 5).
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(a) (b) (c)

Figure 5.4: (a): Grassland raster retrieved from the LPIS. (b): Original SLIC segmentation, which does not
suppresses the background of the input image resulting in a poor segmentation within the region of interest.
(c): Segmentation with maskSLIC which performs segmentation only in the region of interest.

5.2.2 Estimation of hyper-temporal NDVI time series

The estimation of hyper-temporal NDVI time series is performed by the SenRVM regression methodology
presented in Chapter 3. As previously observed, the temporal resolution of the SenRVM time series allows a
better characterization of vegetation changes, which is essential to detect fast changes in grasslands.

To improve the SenRVM predictions, the blending post-processing strategy denoted as AND-S2 and pre-
sented in Section 4.5.2 is considered. This strategy proposes to combine NDVI time series obtained from
SenRVM and Sentinel-2 acquired NDVI time series. The AND-S2 strategy permits to obtain densely sampled
time series with a temporal resolution varying between 2 and 6 days (i.e., the original SenRVM temporal reso-
lution). The resulting temporal resolution appears suitable for the task of detecting the frequency of technical
acts. It allows frequent monitoring, which is mandatory in the case of rapid regrowth, as illustrated in the
objectives of the manuscript.

Chapter 4 has shown satisfactory results of SenRVM formonitoring grassland at the parcel level. However,
Section 5.2.1 has illustrated that this scale is not adapted to the specific task of detecting technical acts. Thus,
SenRVM is applied at the superpixel scale. Working at such a scale offers two main advantages. On the
one hand, it allows a convenient trade-off between preserving the spatial information within a parcel and the
reduction of the speckle effect affecting the SAR-based SenRVM inputs by averaging over clusters of pixels. On
the other hand, it has been seen that the superpixel scale is relevant to distinguish the rotational management
of grasslands. Finally, the pre-processing steps (i.e., object-based statistics, building of a common temporal
grid) described in Section 2.5 defined at the parcel-scale are valid for the superpixel scale and do not need any
adaptation.

5.2.3 Detection of changes in the reconstructed NDVI time series

Different strategies are proposed to exploit the time series obtained from the SenRVM methodology for de-
tecting technical acts. As outlined in the literature, they assume that grassland management practices are
considered as changes in time series inducing a decrease in biomass. The lack of significant reference data
first requires the adoption of unsupervised methods. Furthermore, this limitation prevents the semantic dis-
tinction of the different management practices. Indeed, both the complex visual interpretation and the tem-
poral resolution of Sentinel-2 images used for annotations do not allow such distinction. Methods that require
calibration (e.g., based on phenology) are also discarded, as highly variable grassland phenologies are found.
Change detection methods can also be divided into two categories: offline and online. An offline algorithm
considers the entire time series and determines whether a change occurred using information from preced-
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ing and following data. In contrast, online (i.e., or near real-time) methods will concurrently perform their
monitoring and process each data point as it becomes available. Thus, these online methods have no need,
but also no knowledge, of the incoming acquisitions of the time series. Both types of methods are considered
here, but it is worth mentioning that online methods have the advantage of being able to be applied in more
operational contexts, often requiring decisions to be made quickly. The relevant methods finally must be able
to capture different behaviors in the time series. The decrease induced by technical acts can be abrupt (e.g.,
ploughing) or gradual (e.g., extensive grazing). Furthermore, they can be successive, such as in the case of
rapid regrowth with a new technical act, or ploughing following a mowing.

The time series obtained from the SenRVM methodology are denoted as N̂ = {n̂1, n̂2, ..., n̂T }. N̂ is of
variable length T , with t ∈ T , considering the blending step with non-cloudy Sentinel-2 acquisitions. The
baseline method, referred to as THR, applies a threshold α on the first derivative of N̂, denoted as dt(N̂). The
first derivative is computed as the difference between two consecutive points in a time series of length T . As
proposed in the related work, the threshold value is considered either fixed (i.e., same for all N̂), or adaptive
(i.e., taking into account the variance of N̂).

Rather than considering only two successive dates, as done with THR, the THR-WIN proposed method
takes into account the cumulative sum value of successive decreasing N̂ time intervals as denoted by:

∫tj
ti

dt(N̂)t < α
∣∣∣ dt(N̂)t < 0, t ∈ [ti, tj] , (5.4)

where ti and tj are respectively the first and last dates of the decreasing time interval.

The second proposed strategy is denoted as the THR-OLS method. This methods idea is to use the slope
of a linear regression line to depict the change rate in the time series. A rolling fixed temporal window
applied on the N̂ time series is considered to calculate the slope. The slope parameter is computed using the
classical ordinary least squares (OLS) algorithm. If the slope is exceeding some value, it can be considered
that a change has occurred between the mid-point of the current temporal windows and the mid-point of the
previous one. The change is detected by thresholding the estimated slope coefficient. This method requires
the setting of two parameters: the size of the rolling temporal window W and the thresholding value α.
Following the strategy presented in Griffiths et al., 2019 and Schwieder et al., 2021, the THR-POLY method
is proposed. This third strategy computes an idealized time series of the growing season (e.g., unaffected by
changes due to technical acts). This time series is obtained by fitting a polynomial model (Po) over some
selected vertices (vert). The primary vertices include the first, maximum and last values of N̂. The maximum
values of N̂ selected within a rolling temporal window of size W are then used as supplementary vertices
(sv). The number of such supplementary vertices depends on the size of W. The algorithm then calculates
the residual values for each t ∈ T as the deviation of N̂t from the idealized growing season trajectory at
the corresponding date t. A threshold value α is applied on the residuals to iteratively detect the candidate
technical acts. The size of the rolling windowW and the threshold value α are defined by the user.

svt = max(N̂t:t+W)
∣∣∣ t ∈ {W, W × 2, W × 3, ...,W × T

W
} ,

vert = [N̂0, max(N̂), N̂T , {sv1, sv2, ..., svW}]
∣∣∣W ⩽

T

W
,

Po = c0 + c1 · vert.+ c2 · vert.2 ,

|Pot − N̂t| > α
∣∣∣ t ∈ [0, T ] ,

(5.5)

Lastly, the use of the THR-PELT method is proposed, which relies on the Pruned Exact Linear Time
(PELT, Killick et al., 2012) algorithm. PELT is a common change-point detection approach which minimizes

127



5.2. THE PROPOSED METHODOLOGY

a cost function (cost) over both the number of change-points and their location in the time series. A change-
point is defined as a rupture between several regimes of the time series. These regimes are obtained by
iteratively segmenting the time series into sub-sequences. PELT is based on the dynamic programming ap-
proach (Bellman and Dreyfus, 1962) which allows to skip some iterations aiming at retrieving sub-sequences
if the cost function satisfies some properties. This allows the PELT approach to be considerably much faster
than other change-point detection methods. Furthermore, as a dynamic approach, PELT does not require the
number of change-points to be specified. To account for possible noise in the time series, PELT allows for
a minimum sub-sequence length W to be defined. A ρ penalty term, mostly linear, associated with the cost
function further guards against overfitting and regulates the number of change-points detected.

Figure 5.5 provides a schematic illustration of the five different strategies applied on the same N̂ time
series (green dots). The time intervals taken into account by the different methods for the candidate technical
acts are marked by a grey background. The magnitude of the change thresholded during the change detection
process is illustrated with red lines.

(a) THR (b) THR-WIN

(c) THR-OLS (d) THR-POLY

(e) THR-PELT

Figure 5.5: Schematic illustration of the five management practices detection strategies introduced in Sec-
tion 5.2.3. Detection is performed on a time series signal (green dots). Candidates change-point time intervals
are highlighted by grey background. The red lines represent the magnitude of change assessed by the differ-
ent methods.
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For the first THR method illustrated in Figure 5.5a, only consecutive dates are compared. For the second
candidate technical act, the decrease magnitude is important, and this method should easily detect the change.
The first technical act, which has a substantially lower impact on the decrease, is more challenging. In this
latter case, the second method THR-WIN shown in Figure 5.5b might be more appropriate for detecting the
change. As the magnitude of the change is assessed over decreasing time intervals of N̂, a high magnitude of
change is obtained by accounting for the sum of two consecutive decreases. For the THR-OLS method (Fig-
ure 5.5c), the OLS-regressed lines with a temporal windowW of 3 are illustrated by the blue lines. The slope
coefficient used for detecting the technical acts is shown by the red lines. Accurately, the second technical
act with a larger drop of N̂ exhibits a much more negative slope coefficient than the first technical act. In
Figure 5.5d, the THR-POLYmethod is illustrated with a rolling temporal windowsW of 3 N̂ data points. The
candidate technical acts are searched on the residuals calculated between the fitted polynomial curve (yellow
line) constructed from selected vertices (orange outlined points) and the corresponding values of N̂. Finally,
the THR-PELTmethod based on the segmentation of N̂ is shown in Figure 5.5e. Three sub-sequences are de-
tected by the method (blue lines) using a cost function, a penalty term, and a minimal sub-sequence lengthW

set here at 4. Differences between these observed sub-sequences defining distinct time series regimes are used
to detect the candidates technical acts. At last, it can noted that THR, THR-WIN and THR-OLS methods
are almost online methods as they only rely on the previous, or a few previous data points to perform their
detection. The two remaining THR-POLY and THR-PELT methods are conversely offline, as they need the
entire time series to be effective, respectively, to fit a polynomial curve and segment the time series.

5.3 Description of validation data

As outlined in Chapter 1, despite the clear and growing interest, a large-scale database (e.g., regional, national,
European) collecting information about technical acts currently does not exist (see also Section 5.1). Such a
database is tedious to construct, as grasslands cover vast areas, and calendars of technical acts are neither
regular nor predictable. The works in the literature are presenting several strategies to create validation
datasets, which are illustrating the complexity of the task, especially regarding the highly varied grasslands
agronomic species, and phenologies. To evaluate the methods presented in Section 5.2.3, a large validation
data set is constructed considering the protocol defined in Section 5.3.1.

5.3.1 Protocol for data collection

Three possible ways of constructing such a dataset have been designed in the literature. First, by administra-
tive means, as done in the framework of the Common Agricultural Policy (CAP) where farmers are required to
report their main crop for each parcel. Unfortunately, the legal framework, the implementation of guidelines
and tools are an arduous task that requires significant efforts to be implemented and were not realistic on
the time scale of a PhD. A second possibility relies in field campaigns. Nevertheless, the possibility of rapid
regrowth and the varying and unknown agricultural calendar on grasslands makes the collection of in situ
data from field visits a very tedious task. As already illustrated, management practices monitoring would
require at least weekly visits, which very quickly becomes time consuming. Lastly, the visual interpretation
of satellite remote sensing images available at large scales is the solution proposed by most of the related
works.

Visual interpretation is selected as the most practical of the three different solutions. The use of SAR
images and features for visualization of technical acts has already been discarded as suffering from temporal
fluctuations that can be misinterpreted as management practice (discussed in Section 2.4). Optical satellite
imagery appears to be the best solution for the construction of a validation dataset. The illustrations provided
earlier in this manuscript have already shown that observing the differences in true-color RGB compositions
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is efficient. However, using optical remote sensing time series for the construction of the validation dataset
involves certain limitations that must be outlined:

• the recurrent presence of clouds and the temporal resolution of satellite images prevents the exact date
of the technical act from being known. Likewise, stability (i.e., no technical act was performed) ;

• if the cloud cover is persistent, several technical acts may occur during the obstructed time interval.
Thus, a single technical act can be annotated while two - or more - actually occurred;

• exhaustiveness of annotated technical acts can not be guaranteed and the evaluation of the results can
not be entirely robust. The false positive or true negative rates of a method are only indicative.

In our case, Sentinel-2 images are used to construct a dataset recording all technical acts observed. Annota-
tions are performed by considering the superpixel scale defined in Section 5.2.1. A technical act is considered
when a significant change in reflectance in two successive non-cloudy RGB images is observed. In this case,
the date preceding and the date for which the change is observed are annotated as the time interval during
which a technical act was performed. To perform the annotation task, a python-based annotation module is
subsequently developed (Figure. 5.6). The tool allows one to visualize all non-cloudy images acquired over the
superpixel polygon. To help the annotation of technical acts, the first-order derivative of Sentinel-2 NDVI is
thresholded as a pre-filtering step. The thresholding, using a user-defined value (e.g., 0.1, 0.2), helps to identify
potential technical acts (red boxes and orange temporal window in Figure 5.6), which can then be accepted,
refuted, and supplementary technical acts added.

Figure 5.6: Screenshot of the interactive annotation module used to construct the validation data set. The
module allows for visual interpretation of Sentinel-2 RGB images and time series analysis. Two technical
acts are annotated for this grassland parcel. For each technical act, the two dates highlighted by red boxes
(top) and by the orange temporal windows showing the NDVI decrease between the two consecutive images
(bottom) are retained.
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The use of complementary optical imagery acquired from other optical sensors could be used to reduce
data uncertainty and the number of potentially missed technical acts for the construction of the validation
dataset. Nevertheless, the likelihood of cloud obstruction similar to Sentinel-2 outweighs the data acquisition
and curation efforts, and this possibility was discarded.

5.3.2 Characteristics of the validation dataset

The visual interpretation protocol described above is applied on 1, 000 segments, i.e., the superpixels obtained
by the method described in Section 5.2.1, for both Mâcon and Toulouse areas. The 1, 000 segments are ge-
ographically distributed across the areas and have sizes ranging from 0.28 ha to 25.6 ha. For Mâcon, 1, 625
annotations corresponding to time intervals (i.e., the date before the change, and the date of change) are
obtained. For Toulouse, 1, 641 technical acts are annotated. Only the technical acts for which there is little
doubt are annotated, with a clear change in reflectance between both observed images and a decrease in the
corresponding Sentinel-2 NDVI time series. One may consider that this artificially increases the performance
score of the proposed methods. Yet, this remains the best solution for retrieving the less erroneous validation
dataset possible.

Figure 5.7 provides the main properties of the two constructed validation datasets. It can be observed that
for a large majority of the annotated segments, only 1 technical act is reported. This number goes up to 4 for
some segments associated with more productive agronomic varieties.

Regarding the temporal properties of the annotations, a high propensity of technical acts is observed in
late spring. Note that most of the annotations are contained on the months of June and May, respectively,
for Mâcon and Toulouse. The length in days of the annotated time intervals is disparate, depending on the
cloud cover and the area. For Mâcon, the time intervals range from 2 to 45 days, with a mode of 23 days.
For Toulouse, time intervals ranging from 5 to 90 days are annotated, with a mode equal to 10 days. The
drop magnitude (i.e., difference in NDVI) for each annotated time interval is also calculated. For Mâcon and
Toulouse, most technical acts induce a drop in NDVI ranging from 0.3 to 0.4. For Mâcon, the second most
observed drop is between 0.2 and 0.3. However, for Toulouse, the second most observed drop is ranging from
0.4 to 0.5.

5.4 Experimental setup

The experimental setup of the proposed three-step methodology presented in Section 5.2, i.e., superpixel gath-
ering, calculation of SenRVMmodels, and evaluation of technical act detectionmethods is presented here. The
metrics used to assess the accuracies of the different methods are also introduced.

Generation of superpixels from the grassland datasets

Segmentation with maskSLIC is performed on Mâcon and Toulouse grassland datasets. Two strategies to
apply the maskSLIC algorithm are possible: performing mono-temporal (i.e., renewed at each date) or multi-
temporal segmentation (valid and unchanged for the whole time series). The latter approach is selected, as
technical acts have an impact on both the spatial and temporal domains. Furthermore, varying the location of
the superpixel for each data would require an important adaptation to the SenRVM approach, which requires
full time series to perform the regression task.

Superpixel segmentation is performed for each parcel of the Mâcon and Toulouse grassland datasets pre-
sented in Section 2.3.1.1. For each area, the entire stack of NDVI images marked as valid by the cloud &
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(a) (b)

Figure 5.7: Mâcon (left) and Toulouse (right) validation dataset statistics. From top to bottom: cloud cover
per date, temperature and liquid precipitation, temporal distribution of management practices, number of
acts annotated by the different segments, length in days of annotated time intervals and drop of NDVI in the
annotated time intervals.

shadow masks is used. This temporal stack is fed to the maskSLIC algorithm. The NDVI stack corresponds
then to the previously described feature channels of Equation 5.2. Thus a spatio-temporal segmentation is
performed by the maskSLIC algorithm. Same parameters are used for both areas. Them parameter is empiri-
cally set to 0.2 to encourage feature homogeneity within the superpixels. Indeed, the shapes of the individual
areas within the parcel that wants to be retrieved can greatly vary. The parameter k is set accordingly to the
size in hectares (s) of each parcel: k is (2,5,10) for the intervals (s < 5 ha, 5 ha < s < 30 ha, s > 30 ha).

An additional post-processing step is performed to filter the segments whose sizes are smaller than 0.15 ha.
This value has been chosen to allow for the balance between the minimum spatial size of the superpixels and
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the gathering of enough pixels for the computation of spatial statistics. Based on boundaries, the small seg-
ments are iteratively merged with the smallest neighbor segment until all segments are larger than 0.15 ha.
However, the segments are not always connected to each other due to the complex grassland shapes and, fur-
thermore, due to the negative buffering performed on the initial grassland polygons as a pre-processing step
(Chapter 2, Section 2.5). In the case where no other segments are contiguous, the small segment is merged
with the geographically closest segment according to their centroids.

Training SenRVMmodels at the superpixel-scale

SenRVM models are independently learned on the complete set of superpixels obtained from the previous
step. Models are learned for the Mâcon and Toulouse areas. The same experimental setup previously used for
parcel-basedmodels (i.e., same train/test/validation proportion, 5models each having 5 folds, see Section 4.1.1)
are used for the superpixel-scale models. Minor adjustments in hyperparameters are considered, accounting
for the changes induced by the scale-shift (e.g., number of samples in the datasets, sub-classes distribution,
etc.). These changes are reported in Table 5.1.

Table 5.1: Comparison of SenRVM hyperparameters considered for parcel- and superpixel-based datasets.

Mâcon Toulouse
PARCELS SUPERPIXELS PARCELS SUPERPIXELS

Batch Size 256 128 256 128
Learning rate 0.0005 0.0001 0.0001 0.0001
GRU hidden size 256 512 256 512

Parameters of the technical acts detection methods

The parameters tested for each of the five methods presented in Section 5.2.3 are provided in Table 5.2.

For all five methods, the threshold (or penalty value in the case of THR-PELT) α is tested considering
twenty different values. For THR, THR-WIN and THR-POLY, the range [-3,-1] is empirically defined con-
sidering the observed NDVI drops induced by technical acts and reported for the validation datasets. Steps of
0.01 are considered. For THR-OLS, the range considered as well as the step values are divided by 2. For the
THR-PELT method, the penalty term ρ is in the range [0,0.5] with steps of 0.025.

For the THR-OLS and THR-PELT methods, a temporal window size W is defined. For THR-OLS, W,
which describes the fixed number of consecutive data points taken into account to perform theOLS regression.
Values of 3, 4, and 5 are tested. For THR-POLY, the temporal window W describes the temporal interval in
which vertices are selected. Values of 3, 5, 10, and 20 are considered. The W parameter of THR-PELT is
different, as it constrains the minimal size of sub-sequences and thus the minimal distance between potential
technical acts. Low values of 2, 3, and 4 are tested, as it has been previously demonstrated that rapid regrowth
and thus temporally close technical acts are occurring. For the THR-POLY method, orders of 2 and 3 are
tested for the polynomial fit between the selected vertices. For the implementation of the PELT algorithm,
the Ruptures package is used (Truong et al., 2020). It provides different cost functions fromwhich the L1 norm,
L2 norm, and a Radial Basis Function (RBF) kernel are selected.

During the dormancy of the grass, technical acts are generally not performed. Thus, the time series con-
sidered as input to the different detection methods are restricted to the temporal interval between March 1st
and October 31st. This consideration has been extensively used in the literature as mentioned in Section 5.1,
and allows us to eliminate any significant decrease in vegetative activity or biomass due to climate factors.
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Finally, time intervals are considered as outputs of the detection methods. As in the two validation
datasets, the date preceding the detection and the date detected are kept as the time interval in which the
technical act potentially occurred. Any intersecting date between a detected and an annotated time interval
is subsequently considered as an accurate detection. Consecutive detected time intervals are merged as a
single detection. Furthermore, it should be noted that the annotated time interval can be relatively long due
to cloud cover (Section 5.3.2). Therefore, if several technical acts are detected during a single annotation time
interval, as cloud cover prevents any further assessment, these detections are counted as only one accurate
detection.

Table 5.2: Description of the parameters tested for the different methodologies detailed in Section 5.2.3. α
refers to a threshold, ρ to a penalty value, W to a temporal window size, σ to the standard deviation of the
time series, ord. to the order of the polynomial fit, and cost to a cost function.

METHOD PARAMETERS

THR α = [-0.1 , -0.3] with steps of 0.01 or σ× α, α=[0.75 , 1.75] with steps of 0.05
THR-WIN α = [-0.1 , -0.3] with steps of 0.01
THR-OLS α = [-0.05 , -0.15] with steps of 0.005 | W = [3 , 4 , 5]
THR-POLY α = [-0.1 , -0.3] with steps of 0.01 | W = [3 , 5 , 10 , 20] | ord. = [2 , 3]
THR-PELT ρ = [0 , 0.5] with steps of 0.025 | W = [2 , 3 , 4] | cost = [L1 , L2 , RBF]

Accuracy metrics

The two constructed validation datasets are used to evaluate the five proposed technical act detectionmethods.
Detecting technical acts is a binary classification problem. For each date, the method informs on the presence
(positive outcome) or absence (negative outcome) of the technical act. Precision, Recall, and F-Score metrics
are thus used to evaluate the detection performances:

Precision =
TP

TP + FP
, (5.6)

Recall = TP

TP + FN
, (5.7)

F-Score = 2 · Precision · Recall
Precision+Recall ∈ [0, 1] , (5.8)

where TP (True Positive) = correctly detected management practices
FP (False Positive) = supplementary detected management practices
FN (False Negative) = missed management practices.

Precision informs on how often a technical act detection is accurate, while recall informs about the pro-
portion of accurate detection with respect to the total of detections. The F-score combines both precision
and recall in a single metric assessing the accuracy and sensitivity of the predictions. The three metrics of
Equations 5.6, 5.7 and 5.8 are in the range [0,1] and high values indicate accurate predictions.

It must be once again noted that due to the shortcomings described in Section 5.3.1 (e.g., temporal resolu-
tion of Sentinel-2 or persistent cloud cover), the FP are only indicative. The lack of satellite data used in the
visual interpretation does not guarantee that management practices have not occurred. Thus, the precision
metric can be influenced downward by a large number of FP, without the guarantee of error. Nevertheless,
the methods can be efficiently compared since missing technical acts due to cloud cover are considered in all
detection methods.
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5.5 Assessment of the proposed method

The results of the three-step methodology are presented in the following. The relevance of the proposed
superpixel scale is assessed and illustrated on managed grasslands with technical acts in Section 5.5.1. The
results of the newly obtained SenRVM models at the superpixel scale are presented in Section 5.5.2. Finally,
Section 5.5.3 will present the results obtained by the different detection methods by using the constructed
validation datasets. The detection methods are applied to the resulting SenRVM NDVI time series obtained
from the the two previous steps.

5.5.1 Evaluation of the superpixel scale

For Mâcon, 68,974 segments (i.e., the superpixels) are obtained from the 27,832 grassland parcels described in
Section 2.3.1.1. For Toulouse, 137,378 segments from 50,103 parcels are obtained.

Figure 5.8 indicates the number of segments obtained per parcel (ordinate in logarithmic scale). Two
segments are mostly obtained from the segmentation task. An important number of parcels, corresponding
to small-sized parcels and for which the maskSLIC algorithm could not differentiate spectral and temporal
patterns, are not segmented. On the other hand, andmainly for Toulouse, some parcels are divided into a large
number of segments. Two parcels in the Toulouse area are, for example segmented into 30 superpixels. These
parcels correspond to very large pastoral areas in the Pyrenees, the largest of which is 1,733 ha. The average
size of the resulting segments is 0.89 ha for the Mâcon area and 1.07 ha for Toulouse, which is roughly about
100 Sentinel-2 10×10 pixels. The median values are 0.65 ha and 0.50 ha for Mâcon and Toulouse, respectively.
The similar size of the superpixels observed between the Mâcon and Toulouse areas, in spite of the originally
very different parcel sizes (Table 2.6), illustrates the size and shape constraints imposed by the maskSLIC
algorithm.

Figure 5.8: Number of superpixels obtained per parcel of the Mâcon and Toulouse grassland datasets. The
number ranges from 1 (not segmented) to 30 in the case of large pastoral areas.

The superpixel segmentation task aimed at obtaining more homogeneous surfaces in terms of biomass,
and therefore management practices. A comparison of the standard deviation of the pixels belonging to either
the parcel or the superpixel-scale thus can inform on the obtained improvements. The standard deviation of
the Sentinel-2 NDVI, averaged on all non-cloudy dates, is calculated at both the parcel- and superpixel-scale.
Results are illustrated in Figure 5.9. For the parcels of the Mâcon area, the average standard deviation of the
NDVI is 0.0375. This value drops to 0.0280 when using the superpixels to evaluate the standard deviation
of the pixels. Similarly, for Toulouse, the NDVI standard deviation drops from 0.0493 to 0.0377 with the
segmentation to a superpixel scale. The obtained standard deviation values of the pixels at the parcel-scale
may already appear relatively low. Nevertheless, it must be recalled that a large corpus of several millions of
pixels is taken into account for the computation. Thus, parcels depicting a homogeneous cover were probably
already widely represented. Furthermore, the decrease of standard deviation achieved by the superpixel scale
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corresponds to a significant decrease of 25.33% and 23.53% for Mâcon and Toulouse, respectively.

Figure 5.9: Standard deviation of pixels belonging to a given polygon (either parcel or superpixel scales). All
the polygons of the grasslands datasets are considered. The standard deviation is illustrated with 1,000 bins
and report a decrease of 25.33% and 23.53% for Mâcon and Toulouse, respectively, when using superpixels
compared to parcels. Yellow colors surround the mode of the distribution.

To qualitatively demonstrate the interest of the superpixel scale obtained, Figure 5.10 illustrates two grass-
lands parcels from the Mâcon area over which a technical act (June 16) is observed. The technical acts do not
impact the entire parcels, but rather some distinct areas that have been defined for rotational management.

Figure 5.10: Two examples of resulting satisfactory parcel segmentation. Both parcels have technical acts
performed only on sub-areas of the parcel. NDVI distribution at the RPG parcel level exhibits high variability
as shown in black (left). Considering superpixels depicted as colored boxes, an accurate distinction of the
different vegetation states is possible (right).
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On the left column, the boxplots showing the quartiles (minimum and maximum values, first and last
quartile) of the pixels belonging to the LPIS RPG declared parcel are illustrated in black. It can be seen that
for both parcels, the pixels depict a large dispersion. This is due to the two states of vegetation inside the
parcel, i.e., a part being ploughed and the other still having a grass cover. On the right column, the same
information is provided for pixels belonging to superpixels obtained from the segmentation step. For the
upper and lower parcels, respectively, 2 and 6 segments are obtained. The color of the boxplots denotes the
dispersion of pixels belonging to the corresponding superpixel. For both parcels, a clear contrast of pixels
belonging to one of the two vegetation states is visible. The average NDVI of the cyan segments on the top
parcel and the cyan, yellow, and blue segments of the lower parcels are accurately much lower than the other
segments. In both cases, the dispersion of pixels at the superpixel-scales are much lower, allowing for a clear
spatial distinction.

5.5.2 SenRVM results at the superpixel scale

The results obtained by the maskSLIC segmentation are used to regress NDVI at the superpixel scale. The
pre-processing steps of the optical, SAR, and ancillary data described in Chapter 2 are subsequently repeated
on the new superpixels datasets of Mâcon and Toulouse. As a recall, the two datasets contain 68,974 and
137,378 superpixels, respectively, for Mâcon and Toulouse. This allows for larger datasets to be used in the
SenRVMmethodology and perform validation over a wider number of samples. However, a strong correlation
between regression performances and polygon size has been identified in Section 4.3.1 of Chapter 4.

Comparison of the regression results between single-class SenRVMmodels at the parcel scale presented in
Section 4.2.2 and SenRVM models obtained at the superpixel scale are reported in Table 5.3. Obtained results
show that despite a change of scale, the regression scores achieved from parcel- and superpixel-scales datasets
are similar for both Mâcon and Toulouse areas. This confirms the stability of SenRVM results. Regarding
the observed correlation between poorer performances and small-sized parcels highlighted in Chapter 4, the
post-processing step that allowed one to obtain segments larger than 0.15 ha may have partially addressed
this limitation and explain the satisfactory results.

Table 5.3: Comparison of SenRVM results over grasslands using parcel- and superpixel-based datasets.

Mâcon Toulouse
PARCELS SUPERPIXELS PARCELS SUPERPIXELS

R2 0.8384 ± 0.0152 0.8421 ± 0.0151 0.8464 ± 0.0115 0.8492 ± 0.0108
MAE 0.0418 ± 0.0058 0.0412 ± 0.0042 0.0443 ± 0.0029 0.0441 ± 0.0033
MSE 0.0040 ± 0.0009 0.0041 ± 0.0011 0.0037 ± 0.0006 0.0036 ± 0.0006
RMSE 0.0629 ± 0.0069 0.0618 ± 0.0072 0.0606 ± 0.0049 0.0608 ± 0.0053

Figure 5.11 provides a visual example of the NDVI time series obtained by SenRVM considering the su-
perpixel scale. The two segments obtained in these parcels have previously been shown in Figure 5.10 (top).
The two segments (red and blue color) are from the same administratively declared parcel but are separately
managed, attested by the acquired Sentinel-2 cloudless images. Twomowings occur in June and July, affecting
in both cases only one of the two segments. The corresponding time series accurately show either stability
or decrease of NDVI. Likewise, ploughing of both segments is undergone separately with different calendars
in the end of September and beginning of October. The time series of the two segments correctly follow the
temporal calendars of the ploughing and allow for a spatial separation of technical acts performed on this
declared parcel. Finally, the resulting time series are blended with Sentinel-2 acquisitions with the AND-S2
strategy (Section 4.5.2), to allow the retrieval of the original magnitude of the decrease of NDVI and to further
increase the temporal resolution.
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Figure 5.11: NDVI times series obtained by applying SenRVM on two maskSLIC segments belonging to the
same RPG declared parcel. Sub-parcel management is accurately retrieved in the time series, attested by
Sentinel-2 images.

5.5.3 Detection of management practices

5.5.3.1 Comparative analysis of the different methods

To compare and evaluate the five different technical acts detection methods, the two validation datasets con-
structed over Mâcon and Toulouse and described in Section 5.3.2 are considered. The methods are applied to
each superpixel-scale SenRVM time series blended with Sentinel-2 of the annotated segments. As presented
in Section 5.4, different parameters are tested for each of the methods. The metrics presented in Section 5.4
are used to compare the results. As a wide range of parameters are tested, the F-score is used to select the
best parameter setting for each method. The results that achieve the highest performances are presented in
Table 5.4.

Table 5.4: Highest F-score results of the five detection methods among a range of tested parameters described
in Table 5.2. Results for Mâcon (top) and Toulouse (bottom) areas are given and the highest and lowest per-
formance are highlighted in green and red, respectively.

Mâcon

Rank F-score Precision Recall α/ρ W ord. cost Detected Missed Supplementary

THR 3 0.894 0.885 0.903 -0.14 - - - 1467 158 190
THR - WIN 1 0.917 0.925 0.909 -0.20 - - - 1478 147 120
THR - OLS 2 0.907 0.911 0.903 -0.085 3 - - 1467 158 144
THR - POLY 5 0.792 0.778 0.806 -0.22 5 2 - 1310 315 374
THR - PELT 4 0.893 0.878 0.909 0.025 2 - L2 1477 148 206

Toulouse

Rank F-score Precision Recall α/ρ W ord. cost Detected Missed Supplementary

THR 4 0.765 0.721 0.814 -0.16 - - - 1336 305 517
THR - WIN 1 0.842 0.784 0.909 -0.23 - - - 1492 149 411
THR - OLS 3 0.786 0.749 0.828 -0.105 3 - - 1358 283 456
THR - POLY 5 0.678 0.627 0.738 -0.21 5 2 - 1211 430 721
THR - PELT 2 0.836 0.821 0.851 0.05 2 - L2 1396 245 304
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As observed, the THR-WINmethod, with a fixed threshold value, obtains the best performances for both
test sites. F-scores of 0.917 and 0.842 are achieved, respectively, for the Mâcon and Toulouse areas. In contrast
to THR-WIN, the THR-POLY method obtains the lowest results. A decrease in the F-score is observed
for both areas, with 0.792 (-13.67%) obtained for Mâcon and 0.678 (-19.49%) obtained for Toulouse using the
THR-POLY method. From 1,625 technical acts annotated for Mâcon, 1,478 are correctly detected with the
THR-WIN method, 147 are missed and 120 supplementary technical acts are found. For Toulouse, 1,492 of
the 1,641 annotated technical acts are detected, 149 are missed, and 411 are supplementary detected.

It can first be noted that very similar results are obtained for the two areas with ≈ 91% of the technical
acts detected and ≈ 9% missed. Different but close threshold values α are used for the two areas: -0.20
for Mâcon and -0.23 for Toulouse. It was previously reported that the drops induced by the technical acts
annotated for the Toulouse area (Figure 5.7) are somewhat higher than for the Mâcon area. This potentially
explains the lower α value obtaining the best results. The close α values used for THR-WIN hints at the
good generalization capability. The F-score for the Toulouse area is also slightly lower as a smaller precision
score is achieved. The 411 supplementary detections correspond to 25% of the total annotated technical acts.
The higher percentage of cloud cover that affects the Toulouse area compared to Mâcon (top of Figure 5.7)
nevertheless could prevent numerous technical acts from being annotated during the assessed time interval.
Consequently, the number of supplementary technical acts obtained for the two areas of Mâcon and Toulouse
does not appear unreasonable.

The satisfactory results obtained by the THR-WIN method can be confirmed by comparing the results
obtained from some of the related works presented in Table 5.1b. In Schwieder et al., 2021, the frequency of
mowings is assessed on parcels dispatched across the main natural regions of Germany. Three years are taken
into account, with 92 parcels in 2018, 81 in 2019, and 180 in 2020 being annotatedwithmowings. Mean F-scores
of 0.58, 0.64, and 0.67 are obtained for 2018, 2019, and 2020, respectively. The authors report a clear correlation
between the number of satellite acquisitions and the performances, which explains the relatively low results
obtained. Indeed, as the authors are using optical time series obtained from the HLS product, the lowest F-
scores are obtained in areas where orbit-overlap is not available. Based on optical and SAR time series, an
F-score of 0.84 is reached in Lobert et al., 2021 on 64 parcels for which 257 mowings are recorded. Using a
1D-CNNmethod, the authors found a recall of 0.859 and a precision of 0.824. In this work, an underestimation
of mowings for intensively managed grasslands caused by insufficient temporal resolution of the time series
to detect close events is also observed. The authors in Komisarenko et al., 2022 are reporting the accuracy,
which does not penalize false positives such as done by the F-score, for the detection of mowing events over
2,000 parcels located across Estonia. A 73% accuracy is achieved for mowing detection using a 1D-CNN neural
network and optical and SAR-based features as input. The lower results obtained in the latter work are, as in
the two previous works, due to the unequal temporal resolution of the optical time series used. Furthermore,
most of the incorrectly predicted events are reported for parcels whose sizes are bellow 1 ha. This limitation
appears to be important, since it has been shown that technical acts on grassland parcels can occur on small
intra-parcel areas. While the results obtained by the three previousworks are all integrating optical time series
in their methodology, lower results are reported when SAR features are solely used. The authors in De Vroey
et al., 2021a exploit Sentinel-1 backscattering coefficient and coherence features derived from Sentinel-1. As
previously presented (see Section 5.1), three detection methods are evaluated with 196 parcels in Belgium
for which mowing events are reported from field visits. Precision and recall, respectively, of 0.42 and 0.54
are found for the best performing method. Poor results are obtained for small-sized parcels, due to the SAR
geometry, and for grazed grasslands, possibly related to the important fluctuations in the SAR signal. The
results obtained by these different works first allow to highlight the interest of using the SenRVM approach
to obtain densely sampled time series to overcome the optical data scarcity limitation reported. As NDVI time
series are obtained, the complexity of SAR integration and exploitation is also reduced. Furthermore, albeit
not on the same datasets, the high performances obtained from the THR-WIN method on a large number
of technical acts can be underlined. Especially, an adequate balance between precision and recall is observed
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compared to the mentioned related works.

The results obtained here from the five detection methods are presenting some differences for the Mâcon
and Toulouse areas. In Mâcon, apart from the THR-WIN method, the three THR, THR-OLS, and THR-
PELT methods obtain very similar results. In the case of Toulouse, distinct results are observed with THR-
PELT performing significantly better than the THR and THR-OLS methods.

The THR-OLS method obtains the second best F-score for Mâcon with a temporal rolling window W

of size 3 and a α value of -0.085. This first indicates that the methods perform more efficiently taking into
account longer time intervals (either fixed in the case of THR-OLS or variable in the case of THR-WIN). In
these cases, both abrupt and gradual technical acts can be detected. Similar results are obtained on Toulouse,
where the most accurateW size is also 3. However, threshold α requires a lower value of -0.105.

The THR-PELTmethod achieves the second highest F-score among the five methods (while it ranks 4th
in Mâcon). Furthermore, this method reports the lowest number of supplementary detections. The use of
time intervals that could be larger than for THR-WIN and THR-OLS by segmenting the entire time series
can explain this result. Because of the persistent cloud cover resulting in large data-gaps, the annotations
may have larger time intervals (Figure 5.7) over the Toulouse area. The segmentation proposed by the PELT
algorithm permits to decrease the potential local variability in the time series leading to less supplementary
detections. It can also be noted that for both areas, the penalty values (ρ) guarding from ovefitting and the
minimum segment length between detections (W) are low. Low penalty values indicate that accurate time
series segmentations are obtained. The W value that obtains the best F-score is 2. As it has been illustrated
that rapid regrowth is common and consecutive technical acts can occur, a low value allows for temporally
near detection. Lastly, although close performances are achieved, the L2-norm as the cost function of the
PELT algorithm is found to be more efficient than the L1-norm or a Gaussian RBF kernel.

It is also found that the baselinemethodTHR performs relatively well in both areas. As for theTHR-WIN
method, close α threshold values are achieving the best results, respectively, -0.14 and -0.16 for Mâcon and
Toulouse. For Mâcon, only 11 technical acts are not detected compared to THR-WINwith 70 supplementary
detections. For the Toulouse area, compared to the THR-WIN method, 156 technical acts are additionally
missed and 327 more supplementary detections are found. As mentioned above, the longer time intervals used
for the annotations and the higher magnitude of NDVI drops observed in Toulouse explain the poorer results
obtained by THR. Fixed and adaptive (based on the standard deviation σ of the time series) thresholds were
also tested. A fixed threshold obtains better results. The best F-scores obtained with an adaptive threshold
are 0.869 (σ × 1.2) for Mâcon and 0.722 (σ × 1.045) for Toulouse.

Among the five detection methods, the THR-POLY method achieves substantially less accurate results
for both areas. The highest results are obtained with a temporal windowW equal to 5 and a polynomial fit of
order 2. Results using a 3rd order polynomial show a very large number of additional detections. The poor
results obtained by THR-POLY can be explained by the bi-temporal detection strategy that only considers
two dates. The limitations of bi-temporal strategies are also observed by the THR method. Nevertheless, the
THR-POLYmethod appears less reliable as it is sensitive to the setting of multiple parameters. In particular,
the construction of an idealized time series from the selection of vertices can be complex and strongly influence
the performances. The choice of the time window W size used for the selection of the vertices also have
limitations. A fixed value affects the vertices selections and can greatly constrain the trend of the idealized
time series. Thus, despite that similar threshold values α are used for THR-WIN, the results obtained by the
THR-POLY method are significantly poorer.

Figure 5.12 illustrates the results obtained by the five methods on the same superpixel that belongs to a
grassland parcel in the Mâcon area. The optimal parameters reported in Table 5.4 are used. For this example,
two technical acts are annotated, which are highlighted by gray windows. Different patterns can be associated
with the two practices. In the first technical act, the NDVI drop magnitude is important whereas the second
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technical act corresponds to a gradual decrease of NDVI.

Figure 5.12: Example of results for all methods using the parameter configuration reaching the highest F-
score. The same time series containing two annotated time intervals is considered. The first management
practices occurring mid-June is retrieved by all methods. The second one, depicted by gradual decrease of
NDVI, is only retrieved by two methods relying on temporal windows to perform the detection.

The figure shows that the first technical act is detected accurately by all the methods. On the other
hand, the second technical act is only retrieved by the THR-WIN and THR-OLS methods by integrating
multiple dates to assess the change. In the case of the THR method, the detection of the second practice
having a gradual NDVI decrease would require low threshold values which in return would greatly increase
the number of supplementary detections. The polynomial fit of the THR-POLY method, is, as previously
explained, influenced by the choice of vertices. As the gradual decrease does not exhibit a clear rupture in
the time series trend, the second technical act is missed. Furthermore, a quick vegetation growth occurring
in March lead the THR-POLY method to detect a supplementary technical act. The selection of vertices
corresponding to high NDVI values in temporal windows produces a discrepancy with the actual evolution
of the NDVI time series. Thus, high residuals are considered by the method, falsely triggering a technical act
detection. While a decrease of NDVI is observed with two temporally close Sentinel-2 NDVI acquisitions, the
decrease is weak and this supplementary detection unlikely occurred. Finally, the THR-PELT method does
not perform an adequate segmentation of the time series. The gradual decrease of the second technical act is
observed as too low to define a new regime in the time series, leading to its omission.

Next, the qualitative and quantitative analysis of the supplementary detections permits to highlight the
accuracy of the proposed methods and the interest in using the time series obtained by the SenRVM approach.
A visual photo-interpretation is first performed of the 142 and 411 technical acts detected by the THR-WIN
method for Mâcon and Toulouse areas, respectively. For the Mâcon area, 23% of the supplementary detections
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are in fact accurate detections corresponding to technical acts. For Toulouse, accurate detections corresponds
to 16% of the supplementary detections. These valid supplementary detections are overwhelmingly due to
cloud mask commissions. These commissions are removing a valid image that shows a technical act or a
grass regrowth and prevent an annotation to be made. These statistics further reduce the margin of error
of the results obtained from the THR-WIN method. They also again underline the interest of the SenRVM
approach allowing the detection of technical acts not detected by the use of optical time series or dependent
on the masks quality. Concerning the remaining 77% and 84% of supplementary detections in Mâcon and
Toulouse, the cloud cover prevents the photo-interpretation to be conclusive. Nevertheless it was observed
that a significant number of these additional detections occurred during time intervals with persistent cloud
cover, especially during July and September on the Toulouse area. These two months are particularly cloudy
with few valid acquisitions (Figure 2.2). This supports the fact that the number of supplementary detections
found by most of the methods is coherent with the potential number of performed technical acts.

Figure 5.13 illustrates the results that contain a supplementary detection of the different methods on an
intensively exploited parcel.

Figure 5.13: Example of an accurate supplementary technical act detection performed by all the methods. Two
images (number 6 and 7 at the bottom) are falsely marked as invalid by the cloud & shadow mask preventing
their use for an annotation. Relying on Sentinel-2 and masks, this technical act would have been missed.
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This example shows three annotated technical acts from the validation dataset. However, it can be ob-
served that the third technical act corresponds to a long time interval defined between two successive valid
Sentinel-2 acquisitions. This annotated time interval spans more than a month, from the end of August to
the beginning of October. However, the results obtained from the five methods show two detections during
the annotated time interval. The first is found at the end of August and the second at the end of September.
The visual inspection of the Sentinel-2 images acquired over this superpixel illustrate the commissions errors
previously found during the quantitative analysis. Two successive images (numbers 6 and 7 at the bottom
of the figure) are marked as invalid by the corresponding cloud & shadow masks. Nevertheless, these two
images are actually valid and show a technical act performed and the subsequent regrowth of the vegetation
cover. These two images confirm the validity of the two detections made by the five methods and illustrate the
interest of the reconstructed SenRVM time series accurately depicting this supplementary technical act. This
additional technical act would indeed not be observable with the sole use of Sentinel-2 time series associated
with the masks.

Finally, despite most of the supplementary detections could not be assessed, it is worth mentioning that
using the optimal parameters described in Table 5.4, solely 6 technical acts out of the 1,625 annotated for the
Mâcon area are missed by all the five methods. For Toulouse, 15 technical acts are missed by all methods from
a total of 1,641. These technical acts correspond to very gradual and low decreases of NDVI and mainly in
long time intervals.

Figure 5.14 illustrates two annotations (top in Mâcon, bottom in Toulouse) that are missed by all methods.
The undetected annotation is marked in red and the two corresponding Sentinel-2 images used for the anno-
tation are shown on the right part of the Figure. While the visual interpretation clearly hints at a change in
reflectance, a poor decrease of NDVI both in Sentinel-2 and SenRVM obtained time series is observed. Thus,
unless very low threshold values are used, which would lead to other supplementary detections, the meth-
ods are unable to retrieve this annotated technical act. This discrepancy between visual interpretation and
patterns observed on the time series evolution illustrates the complexity of annotating technical acts from
satellite images. The observed change in reflectance may for example be induced by atmospheric conditions
resulting in the decrease in NDVI to be underestimated.

Figure 5.14: Two examples of annotations missed by all the detection methods on Mâcon (top) and Toulouse
(bottom). In both cases, the visual interpretation of Sentinel-2 images suggests a change in vegetation status.
Nevertheless, NDVI time series both from Sentinel-2 and obtained with SenRVM show a low decrease during
the annotated time interval (red frame). Consequently, the methods do not detect the change.
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5.5.3.2 Sensitivity analysis for parameter setting

The 6 and 15 technical acts missed by all methods in Mâcon and Toulouse, respectively, show on one hand the
good overall performance of the proposed methods. On the other hand, compared to the respective number
of missed annotations of the different methods, this low number indicates that the technical acts missed are
not necessarily the same depending on the method. It was explained earlier that a distinction in the approach
to detecting technical acts (e.g., in temporal windows, in online or offline ways) explains these differences.
Therefore, to estimate the sensitivity of selecting method parameters according to the area under study, the
evolution of the number of missed annotations and supplementary detected technical acts can be reported.

Figure 5.15 and Figure 5.16 illustrate the sensitivity of the five different methods to a range of threshold
values α and penalty values ρ (for THR-PELT) reported in Table 5.2. The missed annotations are depicted
by brown bars, supplementary detection by the purple lines, and the F-scores by red lines. The highest F-
score (Table 5.4) achieved by the methods is shown with a red vertical line and a black outlined dot. To ease
the comparison between the methods, other parameters, e.g., the size of the temporal window W, and the
other cost function cost, the polynomial order, as well as the adaptive threshold for THR, are not shown
as performing poorly. For these additional parameters, the parameter that achieves the highest performance
(Table 5.2) is selected for visualization.

Figure 5.15: Sensitivity of the five methods to a threshold value α or ρ to missed (brown bars) and supplemen-
tary detections (purple line) in the Mâcon area. The red vertical lines indicate the highest F-score obtained
among the different thresholds. Regarding additional parameters to concerned methods (window size, W,
cost function, cost), the best parameter reported in Table 5.4 is used.

It can be observed in Figure 5.15 that for the Mâcon area, the evolution of the F-score with respect to
the threshold values is very similar for the THR-WIN and THR-OLS methods. However, greater stability
is observed for the THR-WIN method with important threshold values, synonymous with fewer missed an-
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notations. In comparison, the baseline method THR only achieves satisfactory results with lower threshold
values, due to its date-to-date detection. TheTHR-POLYmethod, as previously reported, obtains a significant
number of missed annotations and additional detections and consequently much lower F-scores. The evolu-
tion of the F-score allows to visualize the higher difficulty in choosing the right parameters for this method,
with a plateau of high values less important than for the THR-WIN and THR-OLS methods. We can also
note the very large number of supplementary detections obtained by this method with low threshold values,
despite the short temporal windows and the second-order polynomial fitting, which promotes reasonable
distance to the selected vertices. The THR-PELT method appears to be relatively similar to the THR-OLS
method, but with a substantial decrease in accuracy when using low ρ penalty values. This decrease is due to
an exponential number of supplementary detections as the penalty values are aimed at regulating the number
of detections.

Figure 5.16: Sensitivity of the five methods to a threshold value α or ρ to missed (brown bars) and supplemen-
tary detections (purple line) in the Toulouse area. The red vertical lines indicate the highest F-score obtained
among the different thresholds. Regarding additional parameters to concerned methods (window size, W,
cost function, cost), the best parameter reported in Table 5.4 is used.

Compared to the Mâcon area, Figure 5.16 shows that for Toulouse, theTHR and THR-POLY exhibit
same F-score trends with nevertheless lower performance. While for these last two methods, the number
of supplementary detections is somewhat similar to the Mâcon area, the THR method shows exponentially
higher numbers when using low α values. As previously explained, the higher drops in NDVI observed on
the Toulouse area explain this result. Again, the accuracy of these detections cannot be verified, but this
large number compared to other methods seems to indicate an over-detection. The THR-PELT method, on
the other hand, has fewer annotations missed for large ρ penalty values compared to the Mâcon area but
more supplementary detections. For Toulouse, the THR-PELTmethod obtains the highest apparent stability
regarding the tested range of penalty values, along with the THR-WIN method. However, the two THR-
WIN and THR-OLS methods appear less stable when low or high threshold values are used than in the case
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of Mâcon. This is again probably due to the important number of supplementary detections found for the
Toulouse area, which nevertheless unfortunately can not be validated.

From a parameter setting point of view, the results obtained in the previous Section 5.5.3.1 are confirmed.
Methods relying on temporal windows to perform the detection appear to be more stable for a range of
threshold values. The THR-WIN method, especially, requires a single parameter to be set and achieves the
overall best results compared to the four other methods.

5.6 Potential outcomes

The two tasks of reconstructing time series for frequent and regular monitoring and detecting management
practices were determined in response to the issues of grassland conservation and sustainable management.
The methodologies presented in this manuscript have incorporated data that favor their large-scale deploy-
ment. Therefore, information on the intensity of grassland exploitation can be derived and observed in large
areas, allowing a better understanding of existing spatial and temporal distinctions. Using the time series ob-
tained at the superpixel-scale by the SenRVM approach (Section 5.5.2), the THR-WINmethod (Section 5.2.3) is
applied to the entire areas of Mâcon and Toulouse. The optimal threshold values obtained from the validation
datasets are used.

It was emphasized (Chapter 1) that the frequency of technical acts, their earliness, and their impact on
biomass are the main aspects to estimate the quality of ecosystem services provided by grasslands. A subset
of the results, which provides these three information for the growing season from March to October 2017,
is presented in Figure 5.17 for Mâcon and Figure 5.18 for Toulouse. The two figures provide the RPG cultural
codes on top left and three key features: the number of technical acts detected on top right, the month of
the first technical act on bottom left, and the amplitude in NDVI (i.e., between the maximum and minimum
values) on bottom right.

The derived key features, albeit illustrated at a local scale, permit to draw several observations regarding
the different agronomic species and their related management practices. It can, for example, be noted that
the detected number of performed technical acts is accurately related to the agronomic type of the grassland.
Permanent grasslands (PPH, PRL, SPH ), are more prone to extensive exploitation, making up almost all seg-
ments for which no or at most one technical act has been detected. The first technical act on these segments
is also generally done later in the season, mostly in June and July, when the grass reaches its maximum yield.
Consequently, the NDVI amplitude during the season is low, mainly varying with climate, as there is little
or no anthropological pressure. Fallow lands (J5M, J6P, J6S) are similarly managed as commonly associated
with low production areas. On the contrary, temporary grassy areas (LU5, LU6, LU7, LUZ, MLG, RGA) and
forage legumes (TR5, TR6, TR7, TRE) are clearly subject to more performed technical acts. For Mâcon, the
number of detected acts reaches four for some temporary grassy areas and a ryegrass parcel, and up to five
for Toulouse for alfalfa parcels. The illustrated information also allows one to observe that a first mowing
is performed earlier on these types of grasslands, mainly in April and, for some, even in March. The NDVI
amplitude derived from the NDVI time series obtained from SenRVM also accurately depicts the distinction
between extensively and intensively exploited grasslands.

This visual interpretation of these value-added features about grassland management, moreover, once
again demonstrate the accuracy of the SenRVM obtained time series. The different segments belonging to the
same parcel very often display similar and stable information, for the three provided key features. It must
lastly noted that for the Mâcon area, only 6 segments out of 68,974 are found with more than 5 technical acts
(up to seven), furthermore solely from 5 unique RPG parcels. For Toulouse, 68 segments (from 57 RPG parcels)
of a total of 137,378 have more than 5 detected technical acts (up to six). This largely confirms the satisfactory
results obtained on the validation datasets, this time at large scale.
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Figure 5.17: Information derived about grassland management practices for the growing season between
March and October 2017 for a subset of the Mâcon area. Top left: RPG codes; Top right: number of detected
technical acts; Bottom left: month of the first technical act; Bottom right: NDVI amplitude.
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Toulouse subset (RPG codes)
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Figure 5.18: Information derived about grassland management practices for the growing season between
March and October 2017 for a subset of the Toulouse area. Top left: RPG codes; Top right: number of detected
technical acts; Bottom left: month of the first technical act; Bottom right: NDVI amplitude.
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The number of technical acts found for the two areas ofMacon and Toulouse demonstrates the high quality
of the results obtained by the proposed method, since they are fully coherent with the expected number of
technical acts performed.

These examples illustrate the potential applications of the proposed methodology in monitoring grassland
dynamics. Reliable and large-scale information can then be used to derive spatial analyses related to various
factors that influence the environment. The earliness of technical acts can be linked to climate change, mon-
itoring of grassland overexploitation can indicate potential environmental degradation, or the intra-seasonal
amplitude of NDVI can indicate the resilience of certain soils, species or practices.

5.7 Concluding remarks

This chapter has established a three-step approach for detecting management practices on grasslands. A
review of the related literature has first allowed us to analyze the strengths and especially the weaknesses
of the existing approaches. Drawbacks associated with the spatial and temporal scales were identified and
improvements regarding the scale of analysis and the temporal resolution of the data have been proposed.

A new analysis scale was proposed to take into account the specificities of rotational management encoun-
tered on grasslands. The superpixels segmentation strategy has permitted to retrieve intra-parcel areas being
homogeneously managed, favoring an adequate NDVI time series response to technical acts. To overcome the
temporal resolution limitations for detecting temporally close technical acts, the time series obtained by the
SenRVMmethod have proven to enable a substantial revisit and therefore frequent monitoring. Subsequently,
validation datasets with a total of more than 3,000 technical acts have been constructed and presented. This
high number and the diversity of annotations has allowed us to perform a comprehensive and large-scale
validation.

Several bi- and multi-temporal detection strategies have been proposed and studied. The change detec-
tion problem has also be tackled by segmentation and error fitting methods. These several methods have
corroborated that there exists a high variability of temporal patterns, number of the practices, and dates at
which technical acts are performed. Using the constructed validation datasets, the proposed methods have
been compared and their stability with respect to parameter settings has been explored. More reliable re-
sults were obtained by thresholding methods performing the detection in temporal windows both in terms
of overall accuracy and parameter setting configurations. These approaches have achieved the detection of
different types of managements with abrupt or more gradual decreases. A method performing the detection
on decreasing time intervals of time series first-order derivative retrieved 91% of the annotated technical acts
accurately. The lowest results, with 77% of detected annotations, have been obtained by a error fitting method
relying on the comparison between a constructed idealized fitted time series and the real time series.

The satisfactory results have been confirmed by comparing them with those obtained in several related
works. Furthermore, a low number of supplementary detections (about 150 for the best-performing method)
have been obtained. Among the supplementary, 20% were valid detections that cloud & shadow masks error
prevented to be annotated.

Finally, this chapter has corroborated the interest in continuous monitoring and mapping of grassland
management practices through different illustrated examples. The achieved results allow to foresee the po-
tential of the developed approach to support the conservation and sustainable management of grasslands
through satellite monitoring.
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6.1 Summary

Overview of challenges and contributions

Grasslands were recognized as complex ecosystems, as evidenced by the lack of consensus on their definition.
The monitoring of grassland dynamics was presented as a challenging task due to the multitude of agronomic
species, varied topographic and climatic contexts they cover. The temperate grasslands, with a large majority
of agricultural vocation, were identified as subject to the greatest threats. Their conversion into other types
of surfaces such as crops, but especially their increasing overexploitation was pointed out. The frequency of
management practices (i.e., mowing, grazing, and ploughing) was presented as closely linked to grasslands
capacities to provide multiple ecosystem services. In a context where grasslands took an increasingly impor-
tant place in environmental issues, the development of methods to retrieving information on this frequency
appeared as necessary.

To account for the heterogeneity of grasslands, a large-scale analysis was performed. The French Land
Parcel Identification System (RPG) was used to recover the location of grasslands polygons. Two main areas,
around Mâcon and Toulouse, and two additional areas (divided into several sub-areas) north of Paris and
around Nantes in Western France were defined to develop and assess the proposed methodologies. In total,
more than 284,000 parcels with various agronomic species and geographical context were gathered to compose
the grassland datasets. The study areas cover more than 67,000 km2, while the variety of grasslands leads
most of the related work to integrate only local scales (a few parcels, watershed, etc.). To allow a transverse
interpretation of the results, similar datasets on crops (> 47, 000 polygons) and forests (> 19, 000 polygons)
were also obtained over the two main areas.

To conduct large-scale analysis, satellite missions offer an efficient and accessible tool for continuous
vegetation monitoring. Freely available optical and Synthetic Aperture Radar (SAR) imagery from Sentinel-2
and Sentinel-1 can provide significant information to monitor vegetation changes over wide areas at high
spatial and temporal resolution. Sentinel time series were considered over all areas on an annual basis to
cover a complete agricultural season. Subsequently, different satellite-based features were computed, i.e.,
the Normalized Difference Vegetation Index (NDVI), the backscattering coefficient, and the interferometric
coherence. Therefore, a first objective of this thesis was to assess the distinct strengths and weaknesses of
the different satellite features for grassland monitoring. The evolution of NDVI has shown its interest in
monitoring management practices. However, the effective temporal resolution of optical data, due to cloudy
conditions, appeared to be insufficient. Observing the management practices using SAR features was more
complex, because of their temporal fluctuations due to external effects. Nevertheless, the temporal repetitivity
of SAR features, ensured by their weather independent acquisition, proved to be a major asset. To exploit the
information provided by SAR time series, this thesis proposed the integration of ancillary data. Topographic
and climatic data were incorporated in the proposed methodologies to address the limitations related to the
acquisition geometry and dielectric conditions of the SAR signal.

Under the grassland monitoring goal, the analysis of features derived from Sentinel images performed
in this thesis highlighted two majors challenges. The first challenge stemmed from the fact that grassland
exhibit highly varied and quickly evolving dynamics. In particular, it was illustrated that vegetation regrowth
after a management practice was often fast. A possible complete recovery of the biomass was observed even
in less than a week. Besides the challenge of rapid regrowth, grasslands also presented the particularity of
being managed at a fine and intra-parcel scale. Rotational management was observed as a common strategy
established by farmers to favor the temporal availability of the grass resource. Thus, relying on the polygons
recovered from the RPG to detect a management practice turned out not to be adapted. In particular, the use
of large polygons could lead to significant errors as they were enclosing very different grass cover states.

The irregular temporal resolution of optical Sentinel acquisitions was, with respect to rapid regrowth of
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the grass, a strong limitation to its use. To address this concern, this thesis proposed the Sentinel Regression
for Vegetation Monitoring (SenRVM) approach. SenRVM is a new deep learning strategy to provide dense
temporal resolution NDVI time series describing the phenological evolution of vegetation covers. The high
temporal resolution of SAR acquisitions was exploited to recover NDVI time series on a regular temporal grid
of 6 days, coping with the observed requirements of frequent revisit. The proposed SenRVM methodology
relied on a highly supervised recurrent deep learning architecture, using the cloudless Sentinel-2 NDVI ac-
quisitions to perform the regression task. Furthermore, the architecture proposed to integrate the ancillary
data to address the weaknesses of the SAR signal and its sensitivity to fluctuations. The fusion of climate, to-
pography, and SAR features allowed the extraction of complex relationships and the achievement of accurate
results. Instead of studying grasslands on the classical polygon scale, this thesis proposed the segmentation
to superpixels of the RPG polygons. This allowed smaller and homogeneously managed areas to be obtained
within the different grassland parcels, addressing the challenge of rotational management. The analysis of
NDVI times series at the superpixel scale has corroborated that management practices are performed on dif-
ferent areas in a single grassland parcel with different timings.

The challenges of specific spatio-temporal management of grasslands have been addressed by proposing
new methodologies. These methodologies were the first important contributions of this thesis which allowed
to achieve novel accurate spatial and temporal scales for detecting grassland management practices. The
second important contribution of this work was the development of new detection methodologies exploiting
the the superpixel spatial scale and the SenRVM obtained time series temporal scale. These methodologies
were tailored to cope with the high diversity of time series patterns associated with grassland management
practices. In fact, a diverse number of management practices, with different timings and abrupt or gradual
decreases in grass cover, had to be taken into account. Finally, the construction of large validation datasets
covering different geographical contexts was used to corroborate the satisfactory results achieved.

SenRVM for continuous vegetation monitoring

The SenRVM performances were first evaluated on two test sites, Mâcon and Toulouse. Large datasets cov-
ering three vegetation classes (grassland, crop and forest) exhibiting many agronomic subclasses and distinct
landscapes were used. This comprehensive evaluation was a novelty, as most of the similar existing works
aiming the recovery of NDVI from SAR features focused exclusively on crops. Among the three classes
(> 144, 000 vegetation polygons) and two areas (> 20, 000 km2), R2 above 0.83 and MAE below 0.05 were
obtained. Despite the high phenological variability of the different classes, satisfactory generalization capa-
bilities of SenRVM were obtained with respect to vegetation type.

Class-oriented results were analyzed on different temporal scales (per date and season). The temporal
stability of the results was corroborated by the low errors. The highest MAE errors of about 0.25 were ob-
served during winter, which is more prone to long-term data gaps due to heavy cloud cover. Besides the
lack of supervision due to clouds, these results were explained by fluctuations in SAR measurements during
winter, due to the presence of bare soil or very little vegetation cover. A spatial evaluation of the results
was also performed to investigate whether the reconstruction accuracies were affected by the polygon sizes
and their respective locations. This study showed that there is a significant correlation between the size of
the polygons (ranging from 0.12 to several hundreds of hectares) and their prediction accuracies. Pearson
correlation coefficients above 0.71 were found for the three vegetation classes. The results highlighted that
large homogeneous polygons achieve the best accuracies. Among others, large polygons benefit from strong
speckle filtering, which could explain the increase in performance. Concerning the location of the polygons,
a slight decrease in performance was observed on high-relief geographical regions. This could be explained
by the particular side-looking geometry and the strong local incidence angle effects induced by surface to-
pography. It is well-known that these effects degrade the usefulness of SAR images. In the presence of steep
topography, it may even prevent information extraction. The SenRVM method proposed a solution to reduce
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these undesirable topographic effects by incorporating DTM-derived data. The incorporation of such data
as input to the SenRVM architecture helped mitigating the topographic effects which nevertheless cannot be
discarded.

The performances of multi-class and single-class SenRVM models were also evaluated and compared by
performing an ablation study. The study investigated the impact of different input feature scenarios on the
SenRVM performances. The results have suggested different conclusions for agricultural and forest classes.
For instance, ancillary data (e.g., climatic and topographic information) could not provide sufficient informa-
tion for the prediction of NDVI time series on grassland and crop classes (R2 between 0.5 and 0.7), driven
by anthropic activities and phenological stages. Conversely, these features seemed of utmost importance for
accurate predictions on forests, achieving R2 above 0.83 when discarding SAR features. This result was ex-
plained by the lower impact of human activities, which leads forest time series to be defined by a more stable
and seasonal evolution. The removal of the cloud & shadow mask information allowed another distinction
among vegetation classes. The use of these masks permitted a performance gain in all cases (on average 0.07
of R2), which was considerable on forests (0.13 of R2).

Different experiments were carried out to evaluate SenRVM performances with respect to several exist-
ing machine learning regression algorithms and standard interpolation methods. Random Forest, Gaussian
Processes and Multilayer Perceptron supervised regression approaches were considered. Concerning inter-
polation methods, a Whittaker smoother and a weighted linear interpolation method were considered. Two
different scenarios were investigated to confirm the advantages of the SenRVM approach for regular vegeta-
tion monitoring. The reconstruction of short- and long-term data gaps showed that the SenRVM approach
obtained satisfactory results. SenRVM reached similar absolute errors with classical mono-sensor method-
ologies and even the lowest in many cases. The advantages of SenRVM were more noticeable in recovering
long-term data gaps. Especially, the SenRVM performances were remarkable when vegetation changes occur
during the missing data period. In this situation, standard interpolation methods obtained low accuracies and
failed to capture vegetation cover changes. The good performance of SenRVM was mainly explained by two
factors: its ability to extract complex features and relations between SAR and ancillary data and the efficient
extraction of temporal information through recurrent cells.

The generalization capabilities of the SenRVM approach to predict NDVI over grasslands were also ex-
plored using the two additional areas (> 46, 000 km2) divided in five sub-areas. Models trained on these test
sites have corroborated the stability of SenRVM results with R2 > 0.80 and MAE < 0.054 over 205, 000 grass-
land polygons. The results showed that spatial generalization capabilities of models trained and inferred in
distinct sub-areas with similar climatic conditions gave promising results with decreases of R2 below 0.18.
Furthermore, a model using a limited number of training polygons (10, 000) from the five sub-areas has ob-
tained reliable predictions. R2 ranging from 0.69 to 0.86 were obtained when this multi-area learned model
was applied to the five sub-areas. Temporal generalization was briefly explored by applying a model trained
on a specific year (i.e., 2017) to another year (e.g., 2019). Unfortunately, learning and inference from one year
to another showed very deteriorated results with R2 drops of about 0.6.

Finally, some post-processing strategies were proposed to improve SenRVM results. The detection of
cloud mask errors by comparing SenRVM and Sentinel-2 discrepancies allowed to improve the results. The
blending of SenRVM time series with cloudless Sentinel-2 NDVI was proposed to obtain time series with
an even higher temporal resolution. A strategy to obtain a measure of uncertainty associated with SenRVM
predictions was also discussed. Relying on spatial and temporal criteria describing the input features, the
proposed uncertainties criteria have allowed to illustrate how such additional information could improve the
interpretation or integration of the results.
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Detection of grassland management practices

A literature review has first allowed us to identify the strengths and especially the weaknesses of the ex-
isting approaches. Drawbacks associated to the spatial and temporal scales were identified as the two main
challenges to detect management practices on grasslands.

The limitations of object-based studies considering the parcel scale have been presented. This scale was
found inadequate due rotational management and the distinction of small intra-parcel areas. To address the
limitations, a new scale of analysis between the commonly adopted pixel and parcel-scales was adopted to
detect the management practices. A spatio-temporal segmentation of Sentinel-2 times series was proposed
to divide into superpixels the grassland parcels recovered from the RPG. Superpixels are intended at pro-
viding segments of close size and relatively similar shapes. These two constraints can be counterintuitive
in natural environments such as grasslands. Consequently, the maskSLIC algorithm, an alternative to the
commonly used SLIC, was proposed to perform the segmentation task. The segmentation with maskSLIC
is performed only in a region of interest. Thus, irregular parcel shapes of grasslands were taken into ac-
count during the segmentation and the shape constraint was relaxed. The size constraint turned out to be
adequate as intra-parcel areas are mainly defined according to practicality of management (accessibility, po-
tential mechanization, etc.). This strategy allowed to avoid the presence of isolated and small-sized segment
in the results. The spatio-temporal segmentation was subsequently performed on the Mâcon and Toulouse
areas using the complete available set of non-cloudy Sentinel-2 NDVI images. An average size of 0.98 ha was
obtained for more than 206,000 superpixels obtained from approximately 78,000 RPG parcels. The resulting
superpixel scale has shown satisfactory spatial homogeneity, illustrated by several examples. The standard
deviations computed at superpixel scale were found to be lower than those computed at the parcel scale. The
analysis of results has corroborated that the different superpixel segments within a grassland parcel can be
associated to different management practices. Concerning limitations regarding the temporal scales proposed
in the existing methodologies, they were addressed by developing the SenRVM approach. The blended time
series (i.e., with non-cloudy Sentinel-2 NDVI) was proven to be an excellent tool to obtain frequent and reg-
ular observations to monitor vegetation conditions. The SenRVM method, previously assessed at the parcel
scale, was applied at the superpixel scale. The results obtained on Mâcon and Toulouse demonstrated the sat-
isfactory performances achieved by SenRVM by obtaining similar results. The relevance of the obtained time
series was illustrated by the good contrasting temporal trends of adjacent superpixels managed separately.

The lack of in-situ reference data describing the frequency and dates of management practices was a
third limitation highlighted through this thesis. Poor and spatially local statistical validations was presented
by existing works which have, on average, use approximately 250 known technical acts for validation. To
develop robust and reliable methodologies, the construction of a large dataset has been a mandatory step in
this thesis. The photo-interpretation of Sentinel-2 images has been proposed to manually annotate multiple
technical acts on 2, 000 superpixels covering the Mâcon and Toulouse areas. Time intervals were annotated
considering the non-cloudy Sentinel-2 acquisitions preceding and displaying the observed technical act. The
resulting data sets contained a wide variety of technical acts performed throughout the growing season. For
each study area, more than 1, 600 technical acts were annotated.

The exploitation of the hyper-temporal NDVI times series at the superpixel-scale was finally proposed
to develop different methodologies aiming the management practices detection. Unsupervised methods were
considered because there was not enough reference data available to adopt supervised strategies. Offline and
online detection methods were proposed and compared with strategies adapted from the literature. Some
methods have considered bi-temporal strategies by only evaluating two consecutive time series values. In
contrast, other methods have proposed to study temporal windows to perform a detection.

Five different methods were compared using the two constructed validation datasets. Their performances
were measured with the F-score, Precision, and Recall metrics. Different parameter configurations were stud-
ied for the different methods. The performances of the different methods were compared by considering the
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parameter configurations obtaining the highest F-Score. A method (THR-WIN) based on a fixed threshold
applied on the sum of the first derivative in decreasing values intervals achieved the highest F-scores in both
areas. F-scores of 0.917 and 0.842 were obtained by this method, missing only about 9% (150 of more than
1, 600) annotated technical acts in each area. Comparatively, the rest of the methods obtained more or less
similar results. The lowest results were found using a bi-temporal method based on time series polynomial
fitting and thresholding of residual errors. This strategy obtained F-scores of 0.792 and 0.678 on the Mâcon
and Toulouse test areas. Different experiments were carried out to analyze the sensitivity of the parameter
settings of the different methods. The results obtained have corroborated that strategies performing detection
in temporal windows provided more reliable and robust results.

A comparison with results obtained by similar works confirmed the excellent results of the THR-WIN
method. The main limitations reported in these works have been overcome by addressing in this thesis the
spatio-temporal constraints related to grassland monitoring (super-pixel scale and especially hyper-temporal
NDVI time series). The generalization capabilities of THR-WIN were demonstrated by the similar results
obtained for both test sites. Furthermore, close optimal threshold parameters were found for Mâcon and
Toulouse. To understand the limitation of the THR-WIN method, the missed technical acts were analyzed.
Some examples showed that practices characterized by a very gradual decrease of NDVI over long time
intervals (several weeks or even months) were causing these omissions. The good performances of the
THR-WIN method were also corroborated by the low over-detection of technical acts, with only 120 and
411 non-annotated detections for the Mâcon and Toulouse areas. A study was carried out to analyze if
these supplementary detections were due to the method or to the construction protocol of the validation
dataset. To address this, the supplementary detected technical acts were qualitatively analyzed through photo-
interpretation. Approximately 20% of the supplementary detections were correct detections of technical acts
thatwere not annotated. Mostly, these technical actswere not annotated due to cloud& shadowmask commis-
sion errors. This result outlined the interest in using the time series obtained from the multi-modal SenRVM
approach, as these supplementary technical acts would have been missed by the sole use of Sentinel-2 time
series. For the remaining 80% of the supplementary detections, any conclusion could not be reached, since
cloud cover prevent to confirm the occurrence of a technical act.

Finally, some visual results allowed to corroborate the interest of the proposed methodologies. These
results were obtained by applying the THR-WIN method with optimal parameter setting on the entire Mâcon
and Toulouse test sites. Three different informations were extracted from the hyper-temporal NDVI time
series and detection results and mapped. The key features, closely related to the quality of the ecosystem
services of a grassland, involving the frequency of technical acts, the date of the first detected technical
act, and the seasonal amplitude of NDVI were proposed. Accurate and coherent results have confirmed the
relevance and interest of the methods developed in this thesis. Acquiring and monitoring on large scales
information such as provided by these key features, and potentially others, allow to foresee efficient tools for
grassland monitoring.

6.2 Perspectives

The perspectives presented hereafter should help to identify potential future improvements of the proposed
methodologies aiming: (i) the recovery of dense NDVI time series and (ii) the detection of grassland manage-
ment practices.

Methodological perspectives involving the SenRVM framework

Improvements of the SenRVM method could be proposed involving the selection of the input data, the pre-
processing steps, and the neural network architecture. Concerning the SenRVM input data proposed in this
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thesis, twomain limitations could bementioned. The first concerns the important computational costs that are
required to obtain the interferometric coherence features. Nevertheless, this feature has been found essential,
as it provides temporal information and is less prone to climate-induced noise than the backscattering coef-
ficient. Efforts are underway to allow large-scale calculation of interferometric coherence images on clusters
(for example, through PEPS, 2021) or provide platform services for its systematic distribution (such as through
ForM@Ter, 2021). This will eventually allow in the near future to minor the computational constraints linked
to interferometric coherence. The second limitation is the use of proprietary data for climate features. These
data, acquired daily under the authority of the French national meteorological service, provide calibrated and
highly accurate measurements. However, their acquisition can be costly and limit the large-scale deployment
of the SenRVM approach. Alternatives can be proposed to acquire large-scale and free climate data based on
remote sensing (Liu, 2015; Baghdadi et al., 2020). These last data also provide better spatial resolution than
the 8 km grid used in this thesis. Unfortunately, the quality of these data is often much lower, and the variety
of climate measurements they propose is limited. Hence, a trade-off between spatial resolution, quality of
data and availability is for now required to exploit climate features. The pre-processing step of building a
common temporal grid to align the different Sentinels acquisition can also be discussed. First, in this the-
sis, a nearest-neighbor interpolation was proposed to preserve the dynamics of the NDVI time series. This
was motivated by the grassland management practice detection goal. However, other interpolation methods
(Lepot et al., 2017) could also be proposed, which could allow a better characterization of the gradual tempo-
ral evolution generally observed in vegetation cover. Another solution could be the exploitation of different
neural network architectures that do not require the use of regular temporal sampling. Strategies such as the
positional encoding traditionally used in Transformers architectures (Vaswani et al., 2017; Li et al., 2020a;
Rußwurm and Körner, 2020; Sainte Fare Garnot et al., 2020; Wang et al., 2021) could be implemented to pro-
cess time series with irregular and asynchronous sampling. Another improvement that could be proposed to
improve the regression results is the incorporation of Sentinel-2 information. Indeed, optical measurements
have only been used for network supervision. Taking into account past and future Sentinel-2 observations
from the current sample or from neighborhood samples may help to improve the predictions of SenRVM.
This temporal trajectory could be incorporated by proposing new loss functions based on the assessment
of trajectory similarity between predicted and expected time series. For instance, losses based on Dynamic
Time Warping (Sakoe and Chiba, 1990), Temporal Distortion Index (Gastón et al., 2017) or Shape and Time
Distortion Loss (Guen and Thome, 2019) were already proposed to integrate temporal constraints. However,
such strategies must take into account that due to potential long-term data gaps in optical imagery, past and
future observations may be temporally very distant.

Besides the improvements mentioned above, heading towards a large-scale application of the SenRVM
approach is one of the main perspectives of the work presented in this thesis. Excellent results were obtained
by models learned and inferred during an agricultural season (e.g., October 2016 to October 2017) and a spe-
cific location (e.g., on a Sentinel-2 tile). The trained models, when confronted with a single spatio-temporal
domain, have demonstrated satisfactory generalization capabilities over several vegetation types. Further
spatio-temporal generalization experiments have been proposed. Encouraging results of spatial generaliza-
tion of the SenRVM approach have been found for two experiments. Within broader areas with same climate,
the learning on one area and inference on another area gave reliable results. In addition, by integrating data
from several areas for learning, the trained models achieved good results in all areas. In contrast, the temporal
generalization (e.g., training on one year and inference on another year) which have been explored for a single
area, has revealed some limitations. Therefore, to train more generalizable SenRVM models robust to spatial
and temporal shifts, different strategies need to be considered.

For spatial generalization, the multi-area learning experiment could be be extended. For instance, if the
objective is to develop a model for large scales in France, the construction of a consistent and balanced dataset
containing geographically distributed parcels is the first step. Spatial sampling of parcels in numerous areas
(e.g., such as Sentinel-2 tiles) or at least in each eco-climatic region would be appropriate (Inglada et al., 2017;
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Verde et al., 2020). This would allow the integration of different phenologies, spatial contexts, and especially
to gather sufficient samples of infrequent grassland classes at the scale of a single smaller area. The availability
of Land Parcel Identification Systems such as the RPG allows to recover the location of grassland parcels on
a country-scale. Training SenRVM from spatially distributed samples on large scales could also help mitigate
the effects of cloud cover on predictions (Sudmanns et al., 2020b). Higher SenRVM errors have been found in
winter due to the lack of supervision. A large and spatially dispatched sampling would increase the chances
of gathering non-cloudy NDVI acquisitions over the winter period. Incorporating more training labels during
this cloudy period will allow to train more robust models (Che et al., 2018). Some important considerations
for training SenRVM at large scale are the computation costs and training times. It should be noted that
the reconstruction task in this thesis has taken about an hour for a complete Sentinel-2 tile (i.e., 1/90th of
metropolitan France), which seems reasonable for country-wide operational deployment.

To promote the SenRVM temporal generalization capabilities of a large scale model, several strategies
could be possible. Data augmentation methods for time series could first be implemented (Guennec et al.,
2016; Iwana and Uchida, 2021). Among others, introducing small temporal shifts in the time series of SAR,
ancillary, or NDVI features could be a simple and efficient proposed strategy (Sainte Fare Garnot et al., 2022).
A modality-dropout could also be employed (Gibert et al., 2020), by randomly removing certain dates during
training. Training SenRVM models by using data acquired from several years is also a simple and obvious
prospect. A yearly time series containing dates from the different years would increase the integration of more
varied weather conditions. Alternatively, training over longer time series composed of several years could
be proposed. In this thesis, relatively short time series were extracted. The sequential processing of RNNs
was found to be sufficient for the proposed regression task. Short-term memory was favored to describe the
rapidly evolving vegetation cover of grasslands. Training over longer time series, on the other hand, could
favor long-term memory, for example, to learn patterns of specific seasons seen multiple times. In this case,
the use of architectures with self-attention such as Transformers would allow to extract long-term memory
and also through parallel learning, greatly reduce training times.

Beyond generalization capabilities, another important consideration is that the SenRVM performances
have been only evaluated on NDVI predictions. As previously discussed, this choice was made because of its
versatility and simplicity. Nevertheless it is worth noting that the SenRVM methodology is not specifically
designed for NDVI. Depending on the application and output modality required by the intended reconstruc-
tion task, the presented approach could be applied to different vegetation indices (e.g., EVI, MSAVI, NDMI),
biophysical variables (e.g., LAI, faPAR, fCOVER) or even raw optical spectral bands. Such experiments would
require little change in the proposed SenRVM architecture. The changes would occur at the last decoding
block of the architecture, which would require a different output layer size (e.g., 4 instead of 1 for NDVI,
for the prediction of the blue, green, red and infrared bands). In this sense, simultaneous reconstructions of
multiple and various vegetation indices (e.g., NDVI and NDMI) potentially exhibiting complex correlations
could be considered. Considering the prediction of multiple indices as a multi-task learning problem (Zhang
and Yang, 2021; Ilteralp et al., 2022), it would require the definition of weighted combination of task-specific
losses (Kendall et al., 2018).

The predictive capacity of RNNs could also be exploited in a near real-time or forecast scenario. A pre-
trained model over a sufficient time interval could be used to predict NDVI, from the latest acquired SAR data
without retraining. Using such a pre-trained model would allow to obtain NDVI values regardless of climatic
conditions by overcoming the need for non-cloudy conditions for network supervision data. A fine-tuning
(Sćepanović et al., 2021) of the model, for example, on a monthly basis with the new acquired data, could also
be considered to improve the prediction results.

Taking into account all the above, the developed SenRVMmethodology could be considered as one of the
main contributions of this thesis. The proposed regression method has opened the door to the development
of methodologies that jointly exploit optical and SAR data from different satellites. In fact, it must be noticed
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that the proposed methodology is nearly invariant to the satellites from which the features are obtained. The
NDVI, the backscattering coefficient, or the interferometric coherence statistical descriptors could be com-
puted from other satellites than the Sentinels. Optical data coming from Landsat or Planet, SAR data retrieved
from RADARSAT-2 or TerraSAR-X, with different spatial and temporal resolutions could be considered. The
growing availability of Earth observation data will thus probably allow the integration of data from various
sensors, increasing the scope of applications of an approach such as SenRVM. Furthermore, the imminent
arrival of SAR and optical satellites expanding the Sentinel-1 and Sentinel-2 constellations may also permit
to apply the SenRVM framework with a temporal resolution higher than 6 days. Such improvements will be
beneficial for the regular monitoring of vegetation through satellite time series.

Improvements on detecting grassland management practices

An essential aspect of any scientific work is the validation of the proposed approaches. The lack of validation
data on technical acts on grasslands has been a very limiting aspect in the development of the constructed
methods. Despite the solicitation of several agriculture chambers, different public research institutes and
institutions working on grasslands, and even farmers, no data beyond a few parcels could be obtained. This
lack of in situ reference data prevented, for example, assessing the temporal accuracy of the detectionmethods
or distinguishing the management practices (i.e., mowing, grazing, ploughing). In this thesis, the constitution
of a dataset by photo-interpretation of optical satellite images has allowed the validation of the methods to
some extent. However, some limitations have been highlighted in the constructed datasets (e.g., the impact
of clouds, and the temporal resolution of satellite acquisitions). Obtaining expert data on grasslands would
certainly allow a more exhaustive validation of the proposed approaches. Therefore, any work that seeks to
study grassland management should consider the acquisition of validation data as a priority.

A dataset containing details about the nature (grazed, mowed, mixed, ploughed) and at least the frequency
– and at best the exact dates of the technical acts for each grasslands would therefore be essential to improve
the results obtained. Above all, for large-scale (country, continent) grassland monitoring, the constitution of
such reference data on several geographical contexts is fundamental. It would be possible, for example, to
have farmers themselves provide this information via their annual Common Agricultural Policy declarations,
in the same way as for the majority crop of their parcels.

Despite the lack of large-scale reference data, it must be noted that satisfactory results have already been
achieved for the detection of management practices. By considering accurate spatial (superpixels) and tempo-
ral (SenRVM time series) scales, the exploitation of simple methodologies have been found effective. Extend-
ing the methods proposed in this thesis could improve the results and promote their large-scale application.
One possibility would be to integrate an uncertaintymeasure, such as the one explored in this thesis to charac-
terize SenRVM predictions, in the change detection decision. This uncertainty could inform on the predictive
quality of NDVI but also integrate thematic expert knowledge on management practices. Integrating con-
straints on the temporal proximity of technical acts, on the probability of a technical act according to climatic
conditions, according to the agronomic species or the their spatial proximity could also be considered. This
expert knowledge could be defined according to geographical areas or legislative constraints, allowing to
obtain tailored results. Another possible improvement would be to exploit the information, illustrated as rel-
evant, from the interferometric coherence features to confirm or deny the detection of a change. Performing
change detection with multimodal data could improve the results by limiting the weaknesses of each data.

The collection of large in-situ reference data could promote the development of more integrated and
complex methods, based particularly on supervised learning. In particular, such supervised approach would
make it possible to avoid the threshold calibration step of methods such as the one proposed in this thesis.
These thresholds can vary from one geographical context to another and prevent to obtain a generic change
detection model applicable on a large scale. In the case of possible supervision, multi-task methodologies
could especially be proposed. This thesis allowed to outline through different illustrations and results that
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evolution of NDVI, management practices, and agronomic type of a grassland are closely linked. For example,
a ryegrass parcel will have higher temporal fluctuations and numerous and temporally close management
practices, whereas a permanent grassland may only be managed once whit otherwise a stable vegetation
cover.

Therefore, multi-task approaches aiming the reconstruction of NDVI and classification of grassland types
could be proposed. Similarly, a multi-task learning of NDVI reconstruction and change detection could be
considered. The idea behind multi-task models is that since NDVI, grassland type and technical acts are
highly correlated, the embeddings obtained by the first two blocks of the SenRVM architecture (encoding
and recurrent block) could subsequently be used as a pivot variable for one or more prediction tasks (Adsuara
et al., 2021; Rolf et al., 2021). Providing as input to the SenRVM approach information related to the grassland
type alongside the ones used for NDVI reconstruction could allow training on both tasks simultaneously. This
strategy would potentially improve the results by capitalizing on the correlation between the two tasks. If
sufficient reference data is acquires describing technical acts, a similar strategy could be implemented to both
reconstruct NDVI and detect a change. In addition, if adequate reference data were available, the semantic
distinction of management types (e.g., mowed, grazed, mixed, etc.) could also be a novel outcome of such
strategies (Daudt et al., 2019). As in the case of multiple output of vegetation indices, separate losses should
be considered for these multi-tasks strategies, e.g., for the reconstruction of the NDVI and the probability of
change.

Furthermore, depending on the amount of reference data available, transfer-learning strategies could be
explored. Indeed, the tasks of NDVI reconstruction and grasslands type classification are both highly su-
pervised. Examples of SAR, ancillary data and NDVI are countless to perform the reconstruction task and
the availability of Land Parcel Identification Systems providing class information of grassland parcels on a
large-scale are available. Accounting for the high correlation of the different tasks, fine-tuning (Sćepanović
et al., 2021) or few shot learning (Rußwurm et al., 2020; Sun et al., 2021b) strategies could be considered.
The idea would be, for example, to first train a model for the reconstruction or classification task with strong
supervision. The networks weights of the encoder and recurrent block of the SenRVM architecture could then
be freezed. The embeddings of the pre-trained recurrent block describing SAR and ancillary time series could
next be used to propose a fine-tuning task of the decoder block for the task of change detection, supervised
with scarce in-situ reference data. These strategies could provide reliable results with limited validation data
which, as seen above, are complex and costly to obtain.

Finally, from a thematic point of view, the results obtained over grasslands in this thesis could be exploited
for various applications. The key indicators proposed as examples that are the frequency of the technical
acts, the precocity of their occurrence, and the amplitude of variation of the biomass via the NDVI could
be used at a large-scale. Their large-scale retrieval could be used to corroborate different environmental
studies, for example, related to climate change. Different spatio-temporal analysis could be used to observe or
highlight global trends directly linked to different environmental aspects. Lastly, the methods proposed in this
thesis could be applied to other similar problems that require frequent and regular monitoring. The retrieval
of crop phenological parameters could be proposed by exploiting SenRVM time series. Forest monitoring
applications, such as cutting detection, could be considered, especially in environments with high cloud cover.
Given the successful and promising result obtained in this thesis for grassland monitoring, the use of the
proposed methodologies presented should be beneficial for accurate monitoring and forecasting of vegetation
conditions.
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Appendix A. Thesis publications

This appendix provides a list of publications made during this PhD or soon to be published.

Peer-reviewed journal papers

• A. Garioud, S. Valero, S. Giordano, C. Mallet. Recurrent-based regression of Sentinel time series for con-
tinuous vegetation monitoring. Remote Sensing of Environment, vol. 263, pp. 112419, 2021.

• A. Garioud, S. Valero, C. Mallet. Exploiting the synergy of Sentinel’s times series for accurate grassland
management practices detection at new spatial and temporal scales. In prep., 2023.

Peer-reviewed conferences

• A. Garioud, S. Giordano, S. Valero, C. Mallet. Challenges in grassland mowing event detection with mul-
timodal sentinel images. IEEE 10th International Workshop on the Analysis of Multitemporal Remote
Sensing Images (MultiTemp), pp. 1–4, 2019. (oral communication with proceedings)

• A. Garioud, S. Valero, S. Giordano, C. Mallet. Joint analysis of SAR and optical satellite images time series
for grassland mowing event detection. ILUS International Land Use Symposium 2019, Land use changes:
Trends and projections, 2019. (oral communication with proceedings)

• A. Garioud, S. Valero, S. Giordano, C. Mallet. On the joint exploitation of optical and SAR imagery for
grassland monitoring. The International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences XLIII-B3-2020, pp.591-598, 2020. (oral communication with proceedings)

• A. Garioud, S. Valero and C. Mallet. Assessing the interest of a multi-modal gap-filling strategy for mon-
itoring changes in grassland parcels. IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), pp. 3105-3108, 2021. (oral communication with proceedings)

• A. Garioud, S. Valero and C. Mallet. Superpixel-based identification of grassland management practices
from dense SenRVM-NDVI time series. IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), pp. 3105-3108, 2022. (oral communication with proceedings)

• A. Garioud, S. Valero and C. Mallet. Detecting management frequency in grasslands from multi-modal
Sentinel time series. The International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 2022. (poster presentation)

• A. Garioud, S. Valero and C. Mallet. SenRVM: A multi-modal deep learning regression methodology for
continuous vegetation monitoring with dense temporal NDVI time series. ESA Living Planet Symposium
(LPS), 2022. (poster presentation)

• A. Garioud, S. Valero and C. Mallet. Superpixel-based identification of grassland management practices
from dense NDVI time series. ESA Living Planet Symposium (LPS), 2022. (poster presentation)
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Appendix B. LPIS and BD-Forêt cultural and species codes

A full description of declarative codes used in the French Registre Parcellaire Graphique within the Common
Agricultural Policy is available at Telepac, 2021. Forest polygon species of the BD Forêt V2 and related codes
are available at (IGN, 2021).

Grassland-related declarative codes:

Permanent grassland or pasture (PM):

▶ PPH = Permanent grassland - predominantly grass (no or limited woody forage resources)
▶ PRL = Long rotation grassland (6 years or more)
▶ SPH = Pastoral surface - predominantly grass and woody forage resources present

Temporary grassy areas (TG):

▶ BRH = Borage, 5 years old or less
▶ BRO = Brome, 5 years old or less
▶ CRA = Garden Cress, 5 years old or less
▶ DTY = Orchad grass, 5 years old or less
▶ FET = Fescue, 5 years old or less
▶ FLO = Timothy grass, 5 years old or less
▶ PAT = Rough bluegrass, 5 years old or less
▶ PCL = Phacelia, 5 years old or less
▶ RGA = Ryegrass, 5 years old or less
▶ XFE = X-Festolium, 5 years old or less
▶ GFP = Other pure forage grass, 5 years old or less
▶ MLG = Mixture of predominantly leguminous plants at seeding and forage grasses, 5 years old or less
▶ PTR = Other temporary grassland of 5 years or less

Fallow land (FA):

▶ J5M = Fallow land of 5 years or less
▶ J6P = Fallow land of 6 years or more
▶ J6S = Fallow land of 6 years or more declared as an ecological interest area

Forage legumes (FL):

▶ FFO = Fodder beans
▶ JOS = Grass peas
▶ LFH = Winter forage lupin
▶ LFP = Spring forage lupin
▶ LUZ = Alfalfa
▶ MEL = Melilot
▶ PFH = Other winter field peas
▶ PFP = Other spring field peas
▶ SAI = Common sainfoin
▶ SER = Serradella
▶ TRE = Clover
▶ VES = Vetches
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Crops-related declarative codes:

▶ BTH = Winter wheat
▶ MIS = Maize
▶ ORH = Winter barley

Forest-related species:

▶ FF_1 = Closed forest with a mixture of predominantly coniferous and deciduous trees
▶ FF_2 = Closed forest of pure black pine or Laricio pine
▶ FF_3 = Closed pure Scots pine forest
▶ FF_4 = Closed forest with a mixture of other conifers
▶ FF_5 = Closed fir or spruce forest
▶ FF_6 = Closed forest of another pure pine
▶ FF_7 = Closed pure Douglas fir forest
▶ FF_8 = Closed forest of pure coniferous patches
▶ FF_9 = Closed forest of another deciduous tree
▶ FF_10 = Closed forest with pure pine mix
▶ FF_11 = Closed forest with a mixture of deciduous trees
▶ FF_12 = Closed pure deciduous oak forest
▶ FF_13 = Closed forest of another pure conifer other than pine
▶ FF_14 = Closed forest with a mixture of predominantly deciduous trees and coniferous
▶ FF_15 = Closed pure beech forest
▶ FF_16 = Closed pure Robinia forest
▶ FF_17 = Closed forest with a mixture of other conifers in patches
▶ FF_18 = Closed forest of another pure hardwood
▶ FF_19 = Closed pure chestnut forest
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Appendix C. SenRVM regression results for Mâcon and Toulouse

per vegetation sub-class

(a) (b)

Figure APP. 1: R2 scores obtained for each sub-class of the three grasslands, crops and forests vegetation
classes, for Mâcon (a) and Toulouse (b) study areas. Results are averages obtained from the test datasets of 5
folds and 5 runs of single-class SenRVM models presented in Section 4.2.2.
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Monitoring grassland dynamics by exploiting
multi-modal satellite image time series.

Anatol Garioud

Abstract

The vast grassland surfaces as well as the growing recognition of the ecosystem services they provide have
revealed urgent needs for their conservation and sustainable management. Despite the acknowledged im-
portance of grassland management practices, there are currently no large-scale efforts reporting on their
frequency and nature. Satellite remote sensing time series appear to be a suitable tool for efficient grassland
monitoring and allow synoptic and regular analysis. The research conducted in this PhD aims to develop
methods for the detection of grassland management practices from complementary optical and SAR mul-
tivariate time series. Advances in deep learning are employed to regress multivariate SAR time series and
contextual knowledge towards optical NDVI. Resulting gap-free time series are used to efficiently explore
methods aiming to detect vegetation status changes related to management practices on grasslands.

Résumé

Les vastes surfaces de prairies et la reconnaissance croissante des services écosystémiques qu’elles rendent
impliquent d’urgents besoins pour leur conservation et leur gestion durable. En dépit de l’impact avéré des
pratiques culturales sur les prairies, l’observation de la fréquence et de la nature de l’exploitation des prairies
demeure restreinte. La télédétection par satellite est un outil approprié pour un suivi efficace des prairies,
permettant une analyse synoptique et régulière. Cette thèse vise à développer des méthodes de détection de
l’exploitation des prairies à partir de séries temporelles complémentaires multivariées optiques et radars. Les
progrès permis par l’apprentissage profond sont utilisés pour régresser des séries temporelles radars multi-
variées et des connaissances contextuelles vers le NDVI optique. Les séries temporelles sans données man-
quantes qui en résultent sont utilisées pour explorer différentesméthodes permettant de détecter l’exploitation
hétérogène des prairies.
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