Firstly, I would like to thank my supervisors Dimitris Visvikis and Alexandre Bousse, whose guidance has been the key motivating factor during the course of this thesis. I would like to express my gratitude to all the colleagues at LATIM, especially the members of the reconstruction team, for their constant encouragement and advise at critical moments. I thank Alessandro Perelli for the valuable insights that helped in developing the neural network architecture in chapter 5 of the thesis.

My sincere thanks to Jean-Francois Clement for his timely help with the lab computation resources. I also thank Didier Benoit for his kindness in helping me relocate to France, when I first embarked on this journey. I thank the rapporteurs Prof. Andrew Reader and Dr. Kuang Gong for taking time out of their busy schedule to evaluate my thesis. I thank the members of the soutenance jury

Declaration of Authorship

I, Venkata Sai Sundar KANDARPA, declare that this thesis titled, "Tomographic Image Reconstruction with Direct Neural Network Approaches" and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this University.

• Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, The use of deep learning in medical imaging has been on the rise over the last few years. It has widely been used in various tasks across medical imaging such as image segmentation (Ronneberger, Fischer, and [START_REF] Cui | Artificial Neural Network With Composite Architectures for Prediction of Local Control in Radiotherapy[END_REF]. Deep learning based algorithms produce faster results along with best possible quality in accordance with existing state of the art methods [START_REF] Leuschner | Quantitative Comparison of Deep Learning-Based Image Reconstruction Methods for Low-Dose and Sparse-Angle CT Applications[END_REF]. Medical image reconstruction too has benefited hugely with the advancement of deep learning (Reader et al., 2020; [START_REF] Zhang | A review on deep learning in medical image reconstruction[END_REF]. Medical image reconstruction corresponds to the task of mapping raw projection data retrieved from the detector to image domain data. During the course of this thesis, the focus has been towards PET and CT image reconstruction. Both these modalities present a unique of set of challenges for image reconstruction.

PET imaging is a form of emission tomography wherein the image reconstruction task revolves around identifying the radio-tracer distribution emitted from the patient. A PET image gives functional information about the organs in a patient making it invaluable for oncology. Some of the challenges in PET image reconstruction are scatter, attenuation and difficulty in identifying the exact positron emission point. Despite being the most sensitive emission tomography modality, the number of photons captured is low relative to the photons emitted contributing to further image degradation. These challenges result in very noisy images when reconstructed with analytical algorithms. These challenges are addressed by iterative/modelbased approaches which take into account detector geometry, noise statistics and approximate scatter and attenuation correction resulting in better image quality.

CT imaging on the other hand is an example of transmission tomography. The extent of attenuation undergone by X-Rays that pass through a patient are measured to obtain attenuation maps. In CT imaging research, there has been active interest in sparse-view and low-dose reconstruction scenarios. In both cases, severe artifacts are introduced in reconstructed images either due to incomplete projections or low counts. Many established model-based iterative methods account for the low-dose and sparse-view settings to remove artifacts and noise from the reconstruction [START_REF] Nuyts | Iterative reconstruction for helical CT: a simulation study[END_REF]Elbakri and Fessler, 2002a;[START_REF] Liu | Total variation-Stokes strategy for sparse-view Xray CT image reconstruction[END_REF]. However, these methods require the knowledge of the noise and artifacts statistics and generally have longer reconstruction times [START_REF] Kim | Combining ordered subsets and momentum for accelerated X-ray CT image reconstruction[END_REF].

The main tasks involved in image reconstruction can be broadly categorized into three: sinogram correction, domain translation from sinogram to image, and image correction. Algorithms either tackle each of the tasks individually or simultaneously account for them. One can relate to these tasks in the domain of computer vision wherein deep learning architectures have revolutionized the field by producing the state of the art results in most applications [START_REF] Guo | Deep learning for visual understanding: A review[END_REF] [START_REF] Ledig | Photo-realistic single image super-resolution using a generative adversarial network[END_REF][START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF] and image-to-image translation tasks [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF][START_REF] Zhu | Unpaired image-to-image translation using cycle-consistent adversarial networks[END_REF]. The continuous improvement in the availability of public data has further propelled interest in data-driven medical image reconstruction making it an active area of research. This thesis aims to explore novel deep learning approaches for PET and CT image reconstruction. Most common ways to introduce deep learning architectures in the image reconstruction pipeline are for pre-processing to correct raw projection data from the detector and post-processing to improve images reconstructed with existing methods. Another way is to embed the network into an iterative algorithm to enable faster convergence. The relatively less explored way called direct image reconstruction is to utilize neural networks alone for the entire reconstruction process. In this thesis two novel CNN-based approaches namely DUG-RECON and LRRCED are proposed. The common feature of both these methods is the use of sinogram information to obtain the reconstructed image. The first approach is a direct neural network reconstruction framework that reconstructs images using the sinogram alone as it's input, without any image estimate from traditional methods. It is demonstrated on both PET and CT data. The second approach utilizes low-resolution FBP images along with the sinogram to learn the domain mapping. Although this method is demonstrated on the sparse-view CT problem in this manuscript, it can be extended to other modalities too.

Thesis Organization

This thesis is divided into six chapters with the first two chapters giving a general introduction to image reconstruction and neural networks respectively. The third chapter presents the relevant literature review, wherein the application and impact of deep learning in image reconstruction research focused on PET and CT is presented. The next two chapters elaborate the different deep learning-based methods proposed in the thesis. In chapter 4, we discuss reconstruction framework DUG for PET and CT image reconstruction. A novel method for Sparse-view CT reconstruction called LRRCED is covered in chapter 5. Potential improvements and ideas for future work are presented in the final chapter.

Introduction (French)

L'utilisation de l'apprentissage profond en imagerie médicale est en plein essor depuis quelques années. Il a été largement utilisé dans diverses tâches d'imagerie médicale telles que la segmentation, le débruitage et l'analyse d'image. Les algorithmes basés sur l'apprentissage profond produisent des résultats plus rapidement avec une qualité supérieures aux résultats obtenus avec des méthodes conventionelles. La reconstruction des images médicales a bénéficié énormément des progrès de l'apprentissage profond. La reconstruction des images médicales correspond à la tâche de «transformer» les données de projection brutes récupérées sur détecteur vers le domaine de l'image. Dans cette thèse, l'accent a été mis sur la reconstruction des images TEP et TDM. Toutes les deux modalités présentent un ensemble de nouveaux pour la reconstruction d'images.

L'imagerie TEP est une forme de tomographie d'émission dans laquelle la tâche de reconstruction d'image s'articule autour de l'identification de la distribution des radio-traceurs émis par le patient. Une image TEP donne les informations fonctionnelles sur les organes d'un patient, ce qui la rend inestimable pour l'oncologie. Quelques défis dans la reconstruction d'images TEP sont la diffusion, l'atténuation et l'identification du point d'annihilation électron-positron. Bien qu'il s'agisse de la modalité de tomographie par émission la plus sensible, le nombre de photons capturés est faible par rapport aux photons émis contribuant à une dégradation supplémentaire de l'image. Ces défis, en effet, produit des images très bruitées lorsqu'elles sont reconstruites avec des algorithmes analytiques. Ces défis sont relevés par des approches itératives basées sur des modèles qui prennent en compte la géométrie du détecteur, le modèle statistique du bruit et une correction de la diffusion et de l'atténuation résultant en une meilleure qualité de l'image.

L'imagerie TDM est un type de tomographie par transmission. L'atténuation subie par les rayons X qui traversent un patient est mesurée afin d'obtenir des cartes d'atténuation. La recherche en imagerie TDM, s'intéresse aux scénarios de reconstruction à vues parcimonieuses (sparse-view) et à faible dose. Dans les deux cas, des artefacts sont introduits dans les images reconstruites, soit en raison de projections incomplètes, soit en raison du faible rapport signal-sur-bruit. Plusieurs méthodes itératives basés sur des modèles établis tiennent compte des paramètres de faible dose et de vue dispersée pour éliminer les artefacts et le bruit de la reconstruction. Cependant, ces méthodes sont coûteuses en temps de calcul.

Les tâches principales impliquées dans la reconstruction d'image peuvent être classées en trois catégories : la correction du sinogramme, la transformation du sinogramme en image et la correction d'image. Les algorithmes traitent chacune des tâches individuellement ou simultanément. Ces dernier temps, les méthodes basées sur l'apprentissage profond ont révolutionné l'imagerie par ordinateur : débruitage, super résolution et recalage. L'amélioration continue de ces méthodes ainsi que la disponibilité des données ont propulsé l'intérêt pour la reconstruction d'images médicales par apprentissage profond.

Cette thèse vise à explorer de nouvelles approches d'apprentissage approfondi pour la reconstruction d'images TEP et TDM. En général, les méthodes d'apprentissage profond dans pour la reconstruction d'image consistent à effectuer un prétraitement pour corriger les données de projection brutes du détecter et un post-traitement pour améliorer les images reconstruites avec les méthodes existantes. Une autre façon consiste à intégrer le réseau dans un algorithme itératif pour permettre une convergence plus rapide. La 3ème voie, qui est la moins explorée, consiste à utiliser les seuls réseaux de neurones pour l'ensemble du processus de reconstruction. C'est la reconstruction directe.

Dans cette thèse, deux nouvelles approches basées sur les réseau de neurones convolutifs, à savoir DUG-RECON et LRRCED. La caractéristique commune de ces deux méthodes est l'utilisation des informations du sinogramme pour obtenir une image structurée. La première approche est propose un cadre de reconstruction de réseau neuronal direct qui reconstruit des images en utilisant le sinogramme seul comme donnée d'entrée, sans aucune estimation d'image à partir de méthodes traditionnelles. Nous l'avons validé à la fois sur les données TEP et TDM. La deuxième approche utilise des images obtenue par rétroprojection filtré basse résolution avec le sinogramme pour apprendre le la transformation vers le domaine image. Bien que cette méthode ait été uniquement validée sur le problème de TDM à vues parcimonieuses dans ce manuscrit, il peut également être étendu à d'autres modalités.

Chapter 1

Image Reconstruction

Tomography is the process of observing an object through its cross-sections. It is a non-invasive technique where the interior of an object is visualized without any clinical intervention. In tomographic imaging usually a detector measures the radiation after it's interaction with the object. The measured data is transformed into comprehensible images that can be analyzed by a specialist. This process of mapping measured data into images is called as image reconstruction. This chapter presents an introduction to the imaging principles of PET and CT. Analytic and model-based iterative reconstruction (MBIR) methods are then discussed both from a general standpoint and with algorithms specific to the respective imaging modality.

PET

PET images provide functional information to the radiologist making them invaluable in image analysis. The application of PET imaging has been on the rise in oncology, cardiology and neuropsychiatry. The increased application lead to the development of many novel reconstruction approaches targeting better image quality. PET is a form of emission tomography wherein the patient to be imaged emits radiation which is collected by a detector. This emission is a result of positron emitting radionuclide injected into the patient which causes positron-electron annihilation. Typical radio-tracers used in PET are 18 F-fludeoxyglucose ( 18 F-FDG), fluorothymidine (FLT), rubidium chloride, etc. Each of these radio-tracers is characterized by a positron emitting radio isotope. The positron decay for a radioactive nuclei ( 18 F for example) can be written as follows:

18 9 F → o +1 β + 18 8 O
The positron emitted ( o +1 β) is an unstable particle and it almost immediately annihilates with an electron. This annihilation results in the production of gamma photons that travel in opposite directions in accordance with the law of conservation of momentum. The simultaneous detection of these photons (also called coincidence events) enables the estimation of tracer distribution. The aim of image reconstruction in PET is to determine this tracer distribution. A PET scanner detects the coincidence events through a set of detectors arranged in a circular fashion. This design of the scanner facilitates detection of coincidence photons between a pair of detectors (d p and d q ). The centers of two detectors are connected by a straight line called LOR. Photon pairs that are not subject to scatter are a result of annihilation events that occur along a thin volume surrounding the LOR. In PET, f is the distribution of a radiotracer delivered to the patient by injection, and is measured through the detection of pairs of γ-rays emitted in opposite directions (indirectly from the positron-emitting radiotracer). The number of detected coincidence events is related to the LOR (L d p ,d q ) connecting the centers of detectors d p and d q through a sensitivity function ψ( r = (x, y, z)). It is a Poisson variable whose mean can be written as:

p d p ,d q = τ FOV λ( r)ψ d p ,d q ( r)d r (1.1)
where λ( r) denotes tracer concentration and τ is the acquisition time. The tracer concentration is assumed to be contained within the field of view (FOV).

The reconstruction task can be summarized as estimating tracer concentration λ, given measured data p d p ,d q , (d p , d q ) = 1, . . . , N LOR . Analytic reconstruction algorithms use the above linear model and assume ψ is a uniform distribution along d p and d q , such that the measurement data is corrected for non-linear effects like scatter and random coincidences. The measured data are therefore modeled as line integrals of tracer distribution λ:

p d p ,d q = L d p ,d q λ( r)d r (1.2)
The coincidences from the detector are typically rearranged either in listmode or sinogram format. List mode data is a sequential recording of coincidence events. Time and energy of each detected photon can also be recorded. It has special significance in time of flight imaging for PET. Most analytical reconstruction algorithms on the other hand are tailor made for sinogram data format. Fig 1 .1, represents a trans-axial slice of a PET scanner. One can model 2-D sinogram model with this representation. The variables s and φ are utilized to relate the LOR to the Cartesian co-ordinates (x, y). The radial variable s is the distance between the center of the detector ring and the LOR, while angular variable (φ) gives the orientation of the LOR. For a co-ordinate t along the line, Eq 1.2 now becomes:

p (s, φ) = ∞ -∞ λ(x = s cos φ + t sin φ, y = s sin φ + t cos φ) dt (1.3)
Through the line integral approximation and keeping in context the corrected PET data, p d p ,d q ≈ p(s, φ). The function that maps the tracer distribution onto the line integrals is called as the x-ray transform. It is equivalent to the 2D version of the Radon transform.

CT

CT imaging is a form of transmission tomography. The high resolution images obtained from CT scans have many applications. They are extensively used in diagnosis of muscle, tissue and bone disorders. They serve a guide for surgery planning and also to pin-point exact location of tumors. In emergency situations like a road accident, CT scan is utilized to check for internal bleeding. However, the radiation passed through the patient has been a topic of constant debate in this imaging modality. Research in recent times has been focusing on methodologies to reduce radiation while keeping the image quality intact.

A typical CT imaging setup consists of a X-ray source, the object to be imaged and detectors to measure the extent of attenuation experienced by the X-rays. When X-rays are passed through an object they suffer attenuation due to scatter and absorption. Scattering occurs when a X-ray photon dislodges an electron by transferring a part of it's energy. This phenomenon also called Compton scatter is depicted in Fig 1 .2.
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Lower energy photon after scatter Incident X-ray photon Different materials exhibit different absorption properties hence have unique linear attenuation co-efficient. Let the intensities of incident x-ray and the one after absorption be I 0 and I respectively. From Beer-Lambert's law, for beam i we have:

I i = I 0 • exp(-p i )
(1.4)

p i = L i µ( r)d r (1.5)
where p i is the line integral of attenuation coefficients along the path of the x-ray photons. Similar to 1.2, measured data in CT can be modeled with line integrals p:

p i = ln I i I 0 (1.6)
The material specific property of attenuation µ varies with the energy of the incoming X-ray. It reduces with the increase in energy of the X-ray. Over the years many imaging geometries have been developed to maximize detector efficiency and obtain better image quality. The first generation of CT scanners consisted of X-ray beam source and a small detector that rotated and linearly translated around the patient. It had much longer scanning time compared to modern CT scanners. The second generation setup consisted of fan-beam source with an array of detectors. The motion was similar to that of the first generation. The third generation fan beam geometry is depicted in Fig 1 .4, the motion was restricted to rotation of the source-detector setup. The fourth generation consisted of stationary circular array of detectors similar to PET with a rotating source. 
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Analytic Reconstruction

This section discusses analytic reconstruction applicable to both PET and CT imaging. The image is referred to as f and it is assumed to represent the activity distribution λ for PET and the attenuation µ for CT. The line integrals can be represented using angular co-ordinates (s, φ), indicated in Figure 1.1 as follows:

p(s, φ) = L s,φ p( r)d r (1.7)
where L s,φ is the line of response along the radial variable s at an angle φ.

The starting point of analytic reconstruction is the central slice theorem. It states that 2D Fourier transform of the image f is related to the 1D Fourier transform of the x-ray transform as follows:

P(v, φ) = (F f ) v x = v cos φ, v y = v sin φ (1.8)
where F indicates Fourier transform in s, v is the frequency variable associated with s and the 1-D Fourier transform of the line integral p(s, φ) is:

P(v, φ) = (F p)(v, φ) = R p(s, φ) exp(-2πisv)ds (1.9)
In the context of tomographic image reconstruction this theorem has the following implication: given the measurement data for all projection angles φ ∈ [0, π], the radial line sweeps all the frequencies hence making it possible to compute f (v x , v y ) for (v x , v y ) ∈ R 2 . The image f can then be estimated by finding the inverse 2D Fourier transform. This result leads to the filtered back-projection algorithm which can be written as follows:

f (x, y) = π 0 p F (s = x cos φ + y sin φ, φ)dφ (1.10)
where filtered projections p F are given by

p F (s, φ) = p s , φ h s -s ds (1.11)
and h is the ramp filter given by

h(s) = ∞ -∞ |v| exp(2πιsv)dv (1.12)
The function mapping from p F to f is the back-projection operator. In reality discrete sampling is required to accurately model the acquisition process.

The discrete implementation of the FBP can be written as follows:

x(i, j) = π N φ N φ -1 ∑ l=0 y f (s = i cos φ l + j sin φ l , φ l ) (1.13)
where x is the image for a set of pixels (i, j), y f are the filtered projections, expressed in terms of radial variable s and projection angle φ, and N φ is the number of projection angles. The above equation is the approximation of backprojection by a discrete quadrature.

Model-Based Image Reconstruction (MBIR)

Analytical methods are faster to implement and practical in a clinical setting but they are vulnerable to noise. The assumptions made in analytical algorithms are that the measurements are continuous and the solutions are of integral formulation. Sampling is done to the data a posteriori. They are also highly susceptible to system geometry. Since the 80's, MBIR techniques (Shepp and Vardi, 1982a;[START_REF] Fessler | Statistical image reconstruction methods for transmission tomography[END_REF] became the standard approach. As they model the stochasticity of the system, they are more robust to noise as compared with FBP, and can be completed with a penalty term for additional control over the noise [START_REF] De Pierro | A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography[END_REF]. They also incorporate corrections for scatter and are independent of detector geometry.

Data Model for PET

The starting point of any model-based method is the data model. The measurement y is a random vector modeling the number of detected photons at each of the n detector bins, and it follows a Poisson distribution with independent entries:

y ∼ Poisson( ȳ(λ)) (1.14)
where ȳ(λ) ∈ R n is the expected number of counts (noiseless), which is a function of the image λ ∈ R m , represented by m voxels. The expected number of counts is

ȳ(λ) = Aλ + r (1.15)
where A ∈ R n×m is a system matrix that accounts for the detector geometry, attenuation and the resolution model and r is a term to model scatter and random events. Each entry [A] i,j represents the probability that a photon pair emitted from voxel j is captured at detector i. Image reconstruction is achieved by finding a suitable image λ, which when represented with 1.15 is in agreement with 1.14, and follows a cost function L:

λ = argmin λ≥0 L(λ) (1.16) 
L(λ) for PET is given by the log of the Poisson likelihood.

L(λ) = log Pr(y | ȳ(λ)) (1.17)
where

Pr(y | ȳ(λ)) = n ∏ i=1 exp(-ȳi (λ)) ȳi (λ) y i y i ! (1.18)
Putting 1.15 in 1.18, taking log and dropping terms that do not depend on unknown image λ we get,

L(λ) = n ∑ i=1 - m ∑ j=1 a i,j x j + y i log m ∑ j=1 a i,j x j (1.19)
where a i,j are the elements of system matrix A, and the definition of other variables is consistent from above. As long as the matrix A is singular, the above cost function remains convex and results in a unique image.

Maximum Likelihood Expectation Maximization (MLEM)

One of the most famous methods to solve 1.16 is the maximum likelihood expectation-maximization (MLEM) algorithm (Shepp and Vardi, 1982b). The update step to map from the current estimate x N to the next estimate x N+1 can be written as follows:

x N+1 j = x N j 1 ∑ n i =1 a i ,j n ∑ i=1 a i,j y i ∑ m j =1 a i,j x N j ; j = 1, . . . , m (1.20) 
The initial estimate x 1 j , typically follows a uniform distribution. j is the forward projection operation. Hence it estimates the measured data for the current image estimate. The numerator with sum over index j is the back projection over the ratio of measured and estimated data. The MLEM algorithm does not include a prior and it converges to the image that best fits the data. This estimate has inherent instabilities as the fitting is done closely to the noisy measured data.

Ordered Subsets Expectation Maximization (OSEM)

The ordered-subsets expectation-maximisation (OSEM) algorithm is a modification of the MLEM algorithm which made it computationally practical for implementation in clinical setting. The LOR data is divided into S disjoint subsets:

J 1 , • • • , J S ⊂ [1, • • • , N LOR ].
Each of the parallel projection is assigned to a unique subset: c, c + S, c + 2S, • • • , ≤ N φ to the subset J c+1 . MLEM (Eqn 1.20) is applied to each of the subsets individually in an orderly fashion. Subset J N mod S is used at iteration N: The image µ ∈ R m is a vectorized input image (also referred to as attenuation) representing the measure of X-rays absorbed or scattered as they pass through the patient. In a monochromatic setting, the expected number of counts b(µ) is given by the Beer-Lambert law, i.e., bi (µ

x N+1 j = x N j 1 ∑ i ∈J N mod S a i ,j ∑ i∈J N mod S a i,j y i ∑ m j =1 a i,j x N j j = 1, . . . , m ( 
) = B i • exp(-[Aµ] i ) ∀i = 1, . . . , n (1.23)
where, B i is the blank scan value at i and A ∈ R n×m is a system matrix such that each entry [A] i,j represents the contribution of the j-th image voxel to the i-th detector. Given the raw projections b, we take the logarithm as follows

y i = log B i b i ∀i = 1, . . . , n (1.24) 
where we assumed that the intensity I is sufficiently high so that b i > 0 for all i. Image reconstruction is based on finding a suitable image μ that approximately solves

y = A μ (1.25)
where y = [y 1 , . . . , y n ] ∈ R n .

Maximum Likelihood for Transmission tomography (MLTR)

The MLEM algorithm was implemented for transmission tomography by [START_REF] Lange | EM reconstruction algorithms for emission and transmission tomography[END_REF] 

Pr(b | b(µ)) = N LoR ∏ i=1 exp(-bi (µ)) bi (µ) b i b i ! (1.27) L(µ) = log Pr(b | b(µ)) (1.28)
The update step for MLTR can be given as follows:

µ N +1 j = µ N j + α m 1 - ∑ i a ij y i ∑ i a ij B i exp -∑ ξ a iξ µ ξ (1.29)
where α is the relaxation parameter.

Weighted Least Squares (WLS)

One of the most common iterative techniques for CT image reconstruction is the weighted least squared (WLS) method, which approximates 1.28 to obtain the image μ estimate as follows:

μ = arg min µ 0 1 2 y -Aµ 2 W (1.30)
where W = diag {w i } is the diagonal weighting matrix that constitutes for the variance of each ray and z 2 W = z Wz (Elbakri and Fessler, 2002b). The weighting matrix accounts for the recorded x-ray intensity and electronic noise. Despite the statistical weighting, due to the ill-conditioned problem of image reconstruction, the image estimate will still be noisy.

Penalized MBIR

An improvement to the above mentioned MBIR algorithms can be brought by finding a balance between the desired a priori characteristics of the image and the data fitting. This balance is realized through a regularized cost function.

x = argmin x>0 -L(x) + βR(x) (1.31)
where R(x) is the regularizer and β is the regularization parameter that controls the balance between the data fidelity term and the regularization. Here the image x = λ or µ and the objective function L(λ) or L(µ) from equations 1.17,1.28 corresponding to PET or CT. The effect of a regularizer is usually to encourage the image to be piece-wise smooth. One such form of regularization is introduced through an edge preserving regularizer that penalizes the differences between neighboring voxels:

R(x) = m ∑ j=1 ∑ k∈N j w jk ψ x j -x k (1.32)
where ψ is a potential function that controls the penalization of differences in the neighboring voxels and N j are the set of neighboring indices of the j th voxel. The weights w jk help in incorporating details from anatomical images like MRI. A host of iterative algorithms have been proposed to solve the optimization problem with regularization both for PET and CT. For PET, De Pierro, 1995 proposed a modified version of the MLEM algorithm to include regularization. The update step to include a prior of the form in 1.32 with a quadratic potential can be written as:

x N+1 j = 2x EM j 1 -βv j x SM j + 1 -βv j x SM j 2 + 4βv j x EM j (1.33)
where x EM is the current estimate using the MLEM update step from 1.20,

s = A T 1 is the sensitivity image, v j = ∑ m l=1 w jl s j (1.34)
x SM is the edge-constrained, weighted smoothing factor of the current estimate:

x SM j = 1 2 ∑ m l=1 w jl m ∑ l=1 w jl x N j + x N l (1.35)
Quadratic functions with ψ(t) = 1 2 t 2 are easier to implement but they increase rapidly leading to the loss of resolution with blurred edges. To counteract this blurring, potential functions that increase at a lower rate than quadratic functions are used. An example is the hyperbola given by ψ(t) = √ δ 2 + t 2δ. This function becomes quadratic when the neighboring voxels differ by a value that is less than δ. Erdogan and Fessler, 2002 used the optimization transfer principle to propose algorithms for penalized transmission tomography reconstruction. They used surrogate paraboloidal functions (SPF) that guarantee monotonicity for the log likelihood. The optimization problem is essentially divided into simpler parts at each iteration. The weights of the regularization estimate x SM given in 1.35 can be modified at each iteration to reflect a different prior appropriate to the surrogate function at that iteration.

Another way of tackling the edges is to have ψ(t) = |t| also called as total variation (TV). This form of prior does not meet the necessary conditions of the SPF algorithm and one needs to use different types of solver to estimate the image. One such solver is alternating direction method of multipliers (ADMM) [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]. Complex image reconstruction problems like sparse-view CT are under-determined due to the limited number of projection data available for reconstruction. In such a scenario stronger forms of regularization like TV are utilized.

Chapter 2

Neural Networks

Neural networks, also known as artificial neural networks (ANN) are machine learning algorithms that form the basis of deep learning. They inherit name and structure from neurons in the brain. Biological neurons transmit signals to one another through complex networks. This interconnected networking is realized though various combinations of neurons forming an ANN. Sets of artificial neurons are stacked on top of each other to form a layer. A typical neural network consists of many such layers that are connected to each other. The first layer is called input layer, the final layer is termed output layer and the layers in-between are called hidden layers. A neural network with three hidden layers is depicted in Fig 2 .1. The transmission of data across the nodes or artificial neurons happens through the connections. Each and every node has a specific weight and threshold associated. The output from a node is passed through the connection only if the value is above the threshold. Neural network approaches are data-driven. Their performance improves as they learn through training on a dataset.

To further understand the working of a neural network, we can imagine each node to be solving the problem of linear regression. For example consider a node with four inputs (x i , i = 1, 2, . . . 4), four weights (w i , i = 1, 2, . . . 4) and a bias:

m ∑ i=1 w i x i + bias = w 1 x 1 + w 2 x 2 + w 3 x 3 + w 4 x 4 + bias (2.1)
The output of the node is the above summation after going through an activation function g:

output = g(x) = 1 if ∑ i w i x i + b ≥ 0 0 if ∑ i w i x i + b < 0 (2.2)
In the above example, the given activation function of this node propagates the value 1 only when the weighted sum of it's inputs is non-negative. When 1986) has been instrumental in successful implementation of optimization algorithms for neural networks. A machine learning algorithm is typically specified by a cost function, an optimization procedure and a model. Similarly neural network design too is based on these principles. One can find a co-relation between iterative reconstruction algorithms that rely on gradientbased optimization and neural network training with gradient descent. It is to be noted that the non-linearity in the activation functions causes loss functions to become non-convex. This implies that gradient-based optimizers used for neural network training essentially drive the cost function to a very small value without a global convergence guarantee. Neural networks are initialized to small random variables prior to training, as gradient descent without the convergence guarantee is sensitive to values of initial weights.
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Cost Function

Neural networks can be represented by parametric models that define a distribution p(y | x; θ). The aim is to learn a conditional distribution to predict y given x. Through principle of maximum likelihood, cross-entropy between the training data and the model's predictions become the cost function. This negative log-likelihood or cross-entropy between training data and model distribution can be written as:

J(θ) = -E x,y∼ pdata log p model (y | x) (2.3)
Given a specific p model , the cost function exhibits a different form. Expanding the above generates some terms which are discarded as they do not depend on trainable model parameters. As an example, if p model follows a Gaussian distribution N (y; f (x; θ), I), Equation 2.3 becomes:

J(θ) = 1 2 E x,y∼ pdata y -f (x; θ) 2 (2.4)
The above is equivalent to mean squared error (MSE) between the model distribution and the training data and is one of the most commonly used loss functions in training neural networks for linear regression. This approach of deriving the cost function from maximum likelihood removes the difficulty of choosing cost functions for each model. Choice of the model itself determines the cost function. Another popular loss function mean absolute error (MAE) can be derived from 2.3 by assuming p model to follow a Laplacian distribution.

Output Unit

Neural networks as described above consists of an output layer after a series of hidden layers. The choice of cost function and output layer are highly dependent on each other. The representation of the output, determines the cross-entropy function. Given a set of hidden features defined by h = f (x; θ)., the role of the output layer is to transform the features appropriate for the task at hand. The most common choices for output layers are linear units and sigmoid units. Given a set of features h, a linear layer outputs a vector ŷ = W h + b. A modification of a linear layer is rectified linear unit (ReLU) given by g(z) = max{0, z}. The frequent usage of linear units is to find the mean of a conditioned Gaussian distribution. For regression tasks the output unit typically has the linear activation. Tasks like binary classification require to define Bernoulli distribution for the maximum likelihood approach. The network needs to predict only p(y = 1 | x). The output value need to be in the interval [0, 1]. In this scenario a sigmoid activation does the task of transforming the hidden features into normalized probability value in the range [0, 1]. A sigmoid output unit is defined by:

ŷ = σ w h + b (2.5)
where σ is given by:

σ(x) = 1 1 + exp(-x) (2.6)
The hidden units are usually preferred to have ReLU or variations of ReLU as the activation in order to have significant gradients during optimization.

Backpropagation

Consider a feedforward network with an input x that produces an output y. The propagation through the network starts with initial information from the inputs and continues through the hidden units at each layer, finally resulting in the output ŷ. This process is termed as forward propagation. Backpropagation on the other hand computes the gradient by making the cost flow backwards through the network. Forward propagation is carried on during training to produce a scalar cost J(θ), which is then utilized by backpropagation to compute the gradients. Back-propagation is a simplified way for computing the gradients and is used with an optimization algorithm like stochastic gradient descent for network training. The most important gradient required in learning algorithms is the one of cost function with respect to learning parameters, ∇J(θ).

The neural network given in Fig 2 .1 follows computational graph representation. In order to discuss back-propagation, we formulate a simple notation using graphs. Each node in the graph can be considered to be a variable. The variable could be of any type, say a scalar, vector or a matrix. Another component of a computational graph is an operation. It is just a simple function based on one or more variables. An operation is assumed to return a single output variable, which could have single or multiple entries. A simple computational graph with one hidden layer and sigmoid output unit is shown in Fig 2 .2.

h (1) h (2) b w x ŷ dot + σ FIGURE 2
.2: Computational graph with one hidden layer. The nodes in the first layer store the input x, weight w and the bias b. The second layer contains the hidden layer with 2 units each with the corresponding operation written below. The final layer is the output layer denoted by ŷ = σ(wx + b), where σ is the sigmoid function defined earlier.

The gradients in the backpropagation algorithm are calculated by recursively applying the chain rule of calculus. The chain rule is a process of computing derivatives of functions based on multiple functions whose derivatives are already known. Back-propagation is an efficient implementation of chain rule with an order of operations feasible for computation. Let the input x, b and w to be real numbers, and h 1 , h 2 and ŷ be functions mapping from one real number to another, the chain rule can be written as follows:

dy dx = dy dh 2 dh 2 dh 1 dh 1 dx (2.7)
where

h 1 = xw, h 2 = h 1 + b from Figure 2.2.
We can generalize the above for a vector case with x, w, b ∈ R m as follows:

∂y ∂x i = ∑ j ∂y ∂h 1 j ∂h 2 j ∂h 1 j ∂h 1 j ∂x j (2.8)
The chain rule involves many repeatable expressions which may need to be stored to avoid multiple re-computations for estimating gradients. Especially for complex neural networks it would lead to an exponentially high number of computations. A simplistic version of the backpropagation algorithm for a fully-connected multi-layer perceptron (MLP) is discussed in this section. For a supervised loss function L( ŷ, y), where ŷ is the predicted output and y the target, forward propagation for a single training example is shown in Algorithm 1. After the forward propagation the gradient on the cost function J is calculated and then propagated through the network through back-propagation described in Algorithm 2.

Algorithm 1: Forward propagation algorithm for a single input example x Number of layers, l ; Network weights represented by matrices, W (i) , i ∈ {1, . . . , l} ; Bias parameters, b (i) , i ∈ {1, . . . , l} ; Hidden units, h (i) , i ∈ {1, . . . , n} ;

h (0) = x,
Initializing input nodes ; for j = 1, . . . , l do a (j) = b (j) + W (j) h (j-1) information from previous layers;

h (j) = f (a (j) )
activation in the current layer;

end ŷ = h (l) ; J = L( ŷ, y) + λR(θ)
Cost function with a regularization ;

Algorithm 2: Backward propagation for neural network from Algorithm 1 Computing gradient g of the output layer; g = ∇ ŷ J = ∇ ŷ L( ŷ, y) for j = l, l -1 . . . , 1 do Convert the gradient on the layer's output into a gradient into the pre-nonlinearity activation (element-wise multiplication if f is element-wise) g = ∇ a (j) J = g • f (a (j) ) ; Gradients on weights and biases ∇ b (j

) J = g + λ∇ b (j) R(θ) ; ∇ W (j) J = gh (j-1) + λ∇ W (j) R(θ) ;
Propagating the gradients through the preceding lower lowel activations; g = ∇ h J = W (j) g end

Optimization

Once the gradients are calculated through backpropagation algorithm, optimization procedures like gradient descent can be use to update the network parameters θ. The two algorithms in the previous section were demonstrated for a single example. In reality neural networks are often trained in parallel on multiple examples. This set of combined examples is called a batch and optimization algorithms are implemented accordingly for training in batches. In this section we discuss two of the most used optimization algorithms stocastic gradient dscent (SGD) and ADAM.

Stochastic Gradient Descent

SGD is an implementation of the popular gradient descent algorithm for training in batches. We obtain an estimate of the gradient by averaging the gradient over a minibatch of m training examples taken from the data distribution. SGD is depicted in Algorithm 3.

Algorithm 3: Training update at an iteration j for stocastic gradient dscent (SGD)

Learning rate j ; Current parameters θ k ; while stopping criterion is not reached do From the training set, sample m minibatch of examples {x (1) , . . . , x (m) } and corresponding targets {y (1) , . . . , y (m) } Computing average gradient:

ĝ = 1 m ∇ θ j ∑ m i=1 L( f (x (i) , θ j ), y (i) ) Update: θ j = θ j - ĝ end
The learning rate j is gradually decreased as the training progresses, due to the noise introduced by random sampling of minibatches.

ADAM

ADAM is another optimization algorithm which incorporates adaptive learning rate and momentum for faster convergence (Kingma and Ba, 2014). Momentum introduces velocity denoted by v that indicates speed and direction for parameters to update through parameter space. It is typically set to an exponentially decaying average of the negative gradient. Adam is derived from adaptive momentum. It is depicted in Algorithm 4.

Universal Approximation Theorem

The wide usage of neural networks is a testimony of their ability to adapt across multiple applications. This is based on the universal approximation theorem which states that a feed-forward network with a linear output layer Algorithm 4: Adam algorithm

Step size default usually 0.001 ; Exponential decay rates ρ 1 and ρ 2 , typically set to 0.9 and 0.999 ; Constant δ, a very small number for stabilization, usually in the order of 10 -8 ; Parameters θ ; 1 st and 2 nd moment variables, initialized to s = 0, r = 0 ; Time step t = 0 ; while stopping criterion is not reached do From the training set, sample m minibatch of examples {x (1) , . . . , x (m) } and corresponding targets {y (1) , . . . , y (m) } Computing average gradient:

ĝ = 1 m ∇ θ j ∑ m i=1 L( f (x (i) , θ j ), y (i) ) t = t + 1 Update first momentum estimate: s = ρ 1 s + (1 -ρ 1 )g Update second momentum estimate: r = ρ 2 r + (1 -ρ 2 )g • g Correct bias in first moment: ŝ = s 1-ρ t 1 Correct bias in second moment: r = r 1-ρ t 2 Calculate parameter update: ∆θ j = -ŝ √ r+δ
Update: θ = θ + ∆θ end and at least one hidden layer with a non-linear squashing activation function (like sigmoid) can approximate any function mapping from any finite dimensional discrete space to another provided that the network has enough hidden units [START_REF] Hornik | Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks[END_REF]. This statement needs to be taken with a pinch of salt as it does not guarantee determining the optimal parameters of the network. It merely acknowledges the existence of a network that can represent the function in question. Training the network has two major challenges. One, the optimization process involved in training the network may not be able to find the network weights suitable to represent the function due to inadequate data (under-fitting problem). Two, the training could lead to a set of parameters that do not generalize well for the test data (over-fitting). Depending on the application and the data, network design is subject to change. The best network parameters that generalize well are usually obtained empirically through careful and logical experimentation. In theory a network with a single layer is sufficient to learn the representation but it would need to be very large and therefore may fail to generalize. Hence, deeper architectures with multiple hidden layers are preferred over shallow network with infeasible number of neurons. In the next section, specialized deep neural network, suitable for images called convolutional neural network (CNN) is discussed.

Convolutional Neural Network

The neural network depicted in 2.1 is an example of densely connected network, where all the neighboring nodes are connected with one another. As the size of data increases (say large image data), and the network becomes more complex, the number of parameters increases exponentially. To address this and also to be more suitable for image data CNNs were formulated. CNNs are extensively used in computer vision tasks like image classification, object detection, image segmentation [START_REF] Voulodimos | Deep learning for computer vision: A brief review[END_REF]. The three main building blocks of a CNN are Convolution, Activation and Pooling. Each of these layers is discussed below:

Convolution

Images are digitally stored in the form of 2D or 3D matrices depending on the format. A convolution kernel (also known as filter) is a matrix that operates on these images and transforms them based on the kernel values. These kernel values are also known as weights in the neural network terminology. Typically, the size of the kernel is much smaller than that of the image. Many sets of these kernels form the convolution layer of the CNN. The movement of the kernel over the image can be made either by a single pixel or multiple pixels. This step size is called stride (s). The resulting output of a convolution between filter and image is called a feature map. Consider a kernel h and input image f with m rows and n columns. Convolution between h and f results in a feature map g:

g[m, n] = (h * f )[m, n] = ∑ i ∑ j h[i, j] f [m -i, n -j]
(2.9)

Given in Fig 2 .3 is a representation of the convolution operation. Zero padding is used to manipulate the dimensions of the feature maps. In the above Figure below it is indicated with dotted lines. The function of padding here is to maintain same dimensions in the input image f and the feature map g. A CNN learns features from the input through many convolutional

f[5,5] h[3,3] g[5,5] FIGURE 2.3: Convolution of an input image of dimensions 5×5
with a filter of dimensions 3×3. [START_REF] Dumoulin | A guide to convolution arithmetic for deep learning[END_REF] layers. The earlier layers learn general features like edges, contrast, while the deeper layers learn more abstract and finer details.

Activation Layer

The activation layer that follows the convolution layer in a CNN is most commonly the ReLU activation function, depicted in Fig 2 .4.

y=max(0,x) x FIGURE 2.4: The ReLU function
Most of the tasks based on images are non-linear in nature. Whether it is a computer vision task like identifying objects in an image or a medical imaging task involving tumor detection, the relationships are far from being linear. The function of the activation layer is to increase this required nonlinearity in the CNN.

Pooling Layer

The third building block of a CNN is the pooling layer. Pooling operation is mainly used to reduce the dimensions of a tensor which enables faster computation. Max pooling is the most commonly used pooling operation. A max pooling operator of a particular size returns the maximum value of a selected region in the feature map. Similar to a filter it is implemented with a specific stride. A max pooling filter with s = 2 is depicted in A CNN with 2 convolutional layers, 2 activation layers and 2 pooling layers is represented in Fig 2 .6. Layer number is given by l. The first and the last layer are the input and output respectively. Usually, the last set of layers in a CNN used for classification or regression tasks are fully-connected layers which are similar to the neural network represented in Fig 2 .1. With the advent of powerful computation tools and efficient parallel processing, neural networks with many layers could be implemented. The term deep learning was coined for networks with this "deep" design (LeCun, Bengio, and Hinton, 2015). Deep neural networks could be trained over large datasets and they outperformed many existing state of the art algorithms in computer vision. In this thesis we focus specifically on CNNs under the umbrella of deep neural networks.

Neural Networks for Image to Image Translation

Image to image translation tasks require the CNN to map from image in one domain to an image in another related domain. This requires the design of the CNN to be quite different from the one depicted in The building blocks described in this section essentially form the basis of neural network approaches proposed in this thesis. The specific details of the neural network architecture and the implementation are given in chapter 4 and 5. The next chapter consists of a review of existing works in deep learning applied to medical image reconstruction.

Chapter 3

Deep Learning and Tomographic Image Reconstruction

The impact of deep learning has been immense over the last few years in the field of medical imaging (Greenspan, Van Ginneken, and Summers, 2016; [START_REF] Litjens | A survey on deep learning in medical image analysis[END_REF]. Medical image reconstruction has also benefited hugely from the various advances in neural network architectures (Wang, Ye, and De Man, 2020; Reader et al., 2020; Yedder, Cardoen, and Hamarneh, 2021). In the specific case of CT image reconstruction, there has been active interest in sparse-view and low-dose reconstruction scenarios, while with PET reconstruction on the other hand, low-dose imaging and total body imaging have been on the forefront. In both cases, obtaining high quality reconstructed images is a challenging task. Many established model-based iterative methods account for the low-dose and sparse-view settings to remove artifacts and noise from the reconstruction (Nuyts et Each of these categories are discussed along with reference to some of the popular deep learning-based methods for CT and PET image reconstruction in this chapter.

Data Corrections or Post-processing

The use of deep learning for the development of either data corrections or post-reconstruction image based approaches has shown potential to improve the quality of reconstructed images. While it is possible to train a CNN to regress directly from the measurement (raw data) domain to the image domain, the use of CNN entirely in one particular domain makes it fast and relatively easy to implement. The motivation behind using deep learning architectures for these processing tasks is the extremely well documented performance in denoising and super resolution domains (Tian et al., 2020; Wang, Ye, and De Man, 2020). Data corrections involve improving the measurement data either through denoising or finding missing projection angle data. Post-processing in the image domain on the other hand consists of improving images reconstructed with standard reconstruction methods.

The corrected data ŷ is obtained from measured data y as:

ŷ = F θ (y) (3.1)
where F is the neural network with trainable parameters θ. The new set of corrected data ŷ are then used to reconstruct images through traditional methods. An example of data corrections in PET image reconstruction through sinogram repair is proposed by Whiteley and Gregor, 2019a, where a CNN is utilized to predict missing projection data for total body PET image reconstruction. The repaired sinograms eventually improve image reconstruction by standard methods.

In CT imaging, missing projection data in sparse-view setting is estimated through neural networks. An example in this regard is proposed in [START_REF] Lee | Deep-neural-network-based sinogram synthesis for sparse-view CT image reconstruction[END_REF], where the authors use U-Net to map sparse-view sinograms to fullview sinograms and then reconstruct the images using FBP. Another idea to improve the raw data through scatter correction is proposed in [START_REF] Maier | Deep scatter estimation (DSE): Accurate real-time scatter estimation for X-ray CT using a deep convolutional neural network[END_REF] In this work a modified U-Net is used to estimate scatter and correct the raw data in order to improve CT images.

Improvements in the images reconstructed by traditional methods are usually brought about through neural networks designed for denoising or super resolution. An image x ( λ or μ) estimated by conventional methods like FBP or OSEM is improved through a neural network:

x den = F θ ( x) (3.2)
where x den is the post-processed image. Over the years the trend in PET imaging has been towards reducing the dose of the radiotracer injected into the patient, which in turn leads to noisier reconstructed images. The approach has been to create datasets with conventional algorithms (like OSEM) for both low-dose and normal dose settings and then train a neural network to achieve normal dose quality starting from low-dose images. Apart from the low dose noise problem, in CT, improvements in sparse-view imaging through deep learning has been an active area of research. The focus here is to reduce the artifacts produced by FBP with sparse-view sinograms. These artifacts are either removed by first finding the missing projections and repairing the sinograms or by post-processing the images. In both these scenarios FBP is utilized; in the former case neural network corrects the sinograms thereby providing full-view sinograms for reconstruction and in the latter case FBP estimated artifact effected images are improved by the neural network. Some of the recent developments in post-processing and data corrections for PET and CT are summarized in Table 3.1 and Table 3.2. A short description of the method along with the citation is given in the second column of both the tables. These approaches typically modify an existing neural network architecture to suit the problem they are addressing. U-Net is one of the most utilized architectures as seen in the third column where the base neural network is given. The datasets utilized by each of these works are mentioned in the final column. Along with the proposed modifications of established neural networks, these approaches typically use loss functions consisting of multiple components. The authors in Gong An important aspect of the methods discussed in this section is that they all claim to provide fast reconstructed images using well established neural network architectures. This also stems from the fact that most of these approaches start with an image estimate that is also obtained with a relatively faster conventional method, like FBP for CT and OSEM for PET. These fast estimates are usually very noisy or artifact ridden. These approaches rely on the neural network to handle the noise and artifacts. The attractiveness of these methods is the simplicity, ease of implementation and the lack of requirement of large datasets.

Hybrid Methods

The methods mentioned in this section and the next, are directly involved in the reconstruction process, rather than being exclusive to data corrections or post-reconstruction processing. The hybrid methodology for image reconstruction combines model-based and neural network approaches exploring the benefits of both methods. In this section we discuss some of the recent works in both PET and CT that fall in the category of hybrid methods.

• Data-driven information learned by a neural network can be incorporated into an iterative algorithm through the regularization term. Gong et al., 2019 used a modified version of the U-Net comprising of multichannel input to represent PET images.

λ = F θ fixed (z) (3.3)
where F θ fixed represents the trained denoising neural network (modified U-Net) with fixed trainable parameters θ fixed and z represents the input to the neural network. The PET reconstruction model (from 1.15) can be modified to incorporate 3.3.

ȳ(λ) = AF θ fixed (z) + r (3.4)
The unknown image λ can be estimated using the maximum likelihood criterion:

λ = F θ fixed ( ẑ) (3.5) ẑ = argmax z L(F θ fixed ( ẑ)) (3.6) 
In order to ease the difficulty of solving the above due to the nonlinearity of the neural network, the authors adapted a constrained version of the above:

max λ,z L(λ), s.t. λ = F θ fixed ( ẑ) (3.7)
The authors solved the above optimization problem with the ADMM algorithm. Using the augmented Lagrangian format, the above problem can be expressed as:

min λ,z max u L p (λ, z, u) (3.8)
where,

L ρ = L(λ) - ρ 2 λ -F θ fixed (z) + u 2 + ρ 2 u 2 , ( 3.9) 
The three update steps featuring each of the variables to be optimized can be written as:

λ N+1 = arg max λ L(λ) - ρ 2 λ -F θ fixed (z) N + u N 2 (3.10) z N+1 = arg min F θ fixed (z) -λ N+1 + u N 2 (3.11) u N+1 = u N + λ N+1 -F θ fixed (z) N+1 (3.12)
The problem 3.10 is equivalent to penalized PET reconstruction and the authors used the optimization transfer method proposed in Wang and Qi, 2012. The second part of the algorithm (from 3.11) involving the input z update, is a non-linear version of the least squares problem. In the above methodology, the network parameters θ are fixed while the input to the network z is updated. The authors extended this approach in Gong et al., 2018b by using a fixed input to the network z fixed , while setting the network parameters to update. The fixed input to the network was an MRI image while the network training was based on the concept of deep image prior (Ulyanov, Vedaldi, and Lempitsky, 2018).

The second sub-problem was modified to reflect the update in the network parameters:

θ N+1 = arg min F θ (z f ixed ) -λ N+1 + u N 2 (3.13)
Both these methods require that the raw data also agree with the denoising CNN. The images reconstructed are reported to have better lesion contrast compared to the post-processing CNN denoising approaches, indicating an advantage of the hybrid methods, despite being slightly tedious to implement and having longer prediction times.

• Apart from using neural networks for regularization, the prior information captured by them can be combined with established modelbased methods. One such approach called FBSEM-Net was proposed by Mehranian and Reader, 2020. Their unrolled method is based on forward-backward splitting (FBS) algorithm. The update for their method is:

λ N = argmax λ L(λ | y) - 1 2β λ -λ N Reg 2 (3.14)
with β being a hyper-parameter that controls the balance between the data fidelity term and the regularization term. The authors solved the above through the method of separable surrogates proposed in De Pierro, 1995. The three steps involved in obtaining the final image update: computing the regularization term, finding the EM update and fusing the EM update with the neural network estimated prior. The first step to compute the regularization term can be written as:

λ N reg = F θ (λ N-1 ) (3.15)
where F is a residual neural network estimating the regularization term based on the image from the previous iteration. The second step involved getting the EM update λ N EM similar to 1.20. Finally the image is estimated by

λ N+1 j = 2λ N EM 1-δ j λ N j,Reg + 1-δ j λ n j,Reg 2 +4δ j λ n j,EM , δ j = 1 βs j (3.16)
During the network training, two reconstructions occur simultaneously, one with good quality reference data and the other with noisy data. The role of the neural network is to denoise the current estimate, such that the fused combined image using 3.16 best agrees with the high quality MLEM reconstructed image. The overall methodology constitutes of a very deep network with each iteration being a block of CNN along with the conventional MLEM layers.

• A hybrid method for sparse-view CT was proposed in Wu et al., 2021.

The authors propose a three-stage reconstruction framework consisting of embedding, refinement and awareness. The first module extends the sinogram and reduces the sparse-view artifacts. The refinement part of the method recovers finer details in the images and finally the last module regularizes the images from the earlier modules by ensuring consistency between the measurement data and images. The last module was adapted from compressed sensing and it ensures stability and generalizability in the reconstructed images. The embedding module consists of two neural networks F 1 and F 2 , the first one is a U-Net that operates in the sinogram domain, mapping from 60 views to 180 views, and the second one a W-GAN that operates in the image domain refining the image obtained through FBP on the upsampled sinograms. It can be represented as follows:

x = F 2 (A + 2 (F 1 (y))) (3.17)
where x is the image estimated by the embedding module, A + 2 is the FBP reconstruction operator for the up-sampled views (180). The next module maintains a balance between the extension of views and refining the subsequent details in the images through two neural networks similar to the ones in the first module. The residual between the image predicted by the embedding module and the re-sampled sinogram is: (y -A 2 x ), where y = F 1 (y). The first neural network is trained to minimize the MSE between the measurement data labels and predictions.

y = F 3 (y -A 2 x ) (3.18)
The second neural network in the refinement module is trained to minimize the MSE between the image data and labels, resulting in a residual image:

x = F 4 (A + 2 (y )) (3.19)
The measurement data and the images are then updated with the predictions from the trained networks:

y d = y + A 2 x
(3.20)

x d = x + x (3.21)
The final module combines the deep learning-based data image priors y d , x d and the compressed sensing framework to arrive at an objective function as follows:

min x 1 2 y -A 1 x 2 + α 1 2 y d -A 2 x 2 + α 2 2 W(x) + α 3 2 W x -x d (3.22)
where α 1 ≥ 0 balances the two data fidelity terms, A 1 represents the system matrix that projects the lower-sampled data (60 views) and A 2 represents the system matrix that projects the higher up-sampled data (180 views), α 2 and α 3 are the regularization hyper-parameters. For regularization, the authors used a variation of TV, called total difference represented by W defined as follows:

W (x) = m ∑ i=2 n ∑ j=2 (|x (i, j) -x (i, j -1)| + |x (i, j) -x (i, j -1)|) (3.23)
The authors validated their method on clinical and pre-clinical datasets and reported superior performance of their proposed method when compared to deep learning-based methods like FBPConvNet (Jin et al., 2017), HD-Net (Wu et al., 2020) and DL-PICCS (Zhang, Li, and Chen, 2020).

• Adler and Öktem, 2018 proposed a learned primal-dual algorithm which was one of the first methods that combined MBIR methods with deep learning for low-dose CT image reconstruction. The authors proposed a generalized algorithm that could be modified for other tomographic imaging modalities also. CNNs are used both in the image domain and the sinogram domain, connected through the forward projection operator and it's adjoint. In many MBIR approaches, non-smooth regularizers are used. They are typically handled through smooth approximations which lead to additional parameters and non-exact solutions. As an alternative, proximal methods are used to tackle the non-smooth objective functions. The method proposed in this article was inspired from one such proximal primal-dual hybrid gradient (PDHG) algorithm [START_REF] Chambolle | A first-order primaldual algorithm for convex problems with applications to imaging[END_REF]. They replaced the proximal operators with learned parameterized operators (CNNs) to result in a learned reconstruction operator. The primal and dual operators were parameterized as CNNs consisting of 3 layers and in total of 64 intermediate convolution channels. The neural networks and the projection/back-projection operators were implemented using operator discretization library (ODL) and Tensorflow [START_REF] Abadi | Tensorflow: A system for large-scale machine learning[END_REF].

The authors tested their approach on ellipse phantoms and real patient data. They reported better qualitative and quantitative results when compared to TV and deep learning-based post-processing method.

Other works in the hybrid approach include the article by Xie et al., 2019, who extended the method proposed by Gong et al., 2019 by replacing the U-Net with a generative adversarial network (GAN) for image representation within the iterative framework. Kim et al., 2018 incorporated a trained denoising convolutional neural network (DnCNN) along with a novel local linear fitting function into the iterative algorithm. The DnCNN which is trained on data with multiple noise levels improves the image estimate at each iteration. They used simulated and real patient data in their study. In Gupta et al., 2018, a U-Net is used to encode the prior, i.e., to project the current estimate to the prior image set while gradient descent enforces measurement consistency. Xiang, Dong, and Yang, 2021 proposed a hybrid method named FISTA-Net which is a combination of the model-based Fast Iterative Shrinkage/Thresholding Algorithm (FISTA) and neural network. The parameters of FISTA-Net like gradient step size, threshold and momentum scalar are learned from the data rather than through fine-tuning. FISTA-Net was demonstrated to be effective for multiple imaging modalities including CT. The drawbacks of the methods described in this section are the slow reconstruction time and high computational expense, since the optimization procedure is carried out also during test time. Despite the advantage of producing state of the art results (Reader et al., 2020; Leuschner et al., 2021) along with the stability and consistency offered by these hybrid methods, the justification of complexity vs accuracy trade-off is still a topic of active research.

Direct Reconstruction with Deep Learning

The third approach is using deep learning-based methods to directly map from projection to image space. Essentially neural network can be modeled to approximately learn the inverse mapping from measurement y to image x. A neural network F with trainable parameters θ can be represented as:

x = F θ (y) (3.24)
where x is the reconstructed image estimated by the neural network. Once trained, the images are reconstructed from the sinograms by a single pass though the network, making it the fastest approach for image reconstruction.

The deep learning architecture proposed by Zhu et al., 2018 called AU-TOMAP uses FC layers (which encode the raw data information) followed with convolutional layers. The first three layers in this architecture are FC layers with dimensions 2n 2 , n 2 and n 2 respectively where n × n is the dimension of the input image. The AUTOMAP requires the estimation of a huge number of parameters which makes it computationally intensive. Although initially developed for magnetic resonance imaging (MRI), AUTOMAP has been claimed to work on other imaging modalities too. Brain images encoded into sensor-domain sampling strategies with varying levels of additive white Gaussian noise were reconstructed with AUTOMAP. Within the same concept of using FC layers' architectures a three stage image reconstruction pipeline called DirectPET has been proposed to reduce associated computational issues Whiteley and Gregor, 2019b. The first stage down-samples the sinogram data, following which a unique Radon transform layer encodes the transformation from sinogram to image space. Finally the estimated image is improved using a super resolution block. This work was applied to full body PET images and remains the only approach that can reconstruct multiple slices simultaneously (up to 16 images). DeepPET is another approach implemented on simulated images using CED architecture based on the neural network proposed by the visual geometric group Haeggstroem et al., 2018. Using realistic simulated data, they demonstrated a network that could reconstruct images faster, and with an image quality (in terms of root mean squared error) comparable to that of conventional iterative reconstruction techniques. Liu, Chen, and Liu, 2019 proposed a direct conditional GAN based approach, that replaced the CED with a U-Net.

For direct CT image reconstruction, Li et al., 2019 proposed an architecture termed iCT-Net consisting of 12 layers that are a combination of convolutions and modified fully-connected layers. The 12 layers are separated into segments and are trained separately before being combined for end-to-end training. To reduce the number of parameters in learning the mapping for full resolution CT reconstruction, Fu and De Man, 2019 proposed a breakdown of the problem into smaller fragments that can be mapped onto a hierarchical network architecture. The approach proposed in Ye et al., 2018 converts the sinogram data into a stack of back projections for each angle, which are then fed into a CNN. The spatial in-variance of the CNN is exploited to learn the mapping from these single view stacked back projections onto reconstructed images. Currently, we observe that adversarial networks are increasingly used in scenarios with high-resolution images. In Thaler et al., 2018 a W-GAN is proposed for sparse-view CT image reconstruction. The authors used a combination of L 1 loss and adversarial loss to train their network. The generator in their work is a U-Net and the discriminator a typical classification CNN. It is to be noted that the authors performed their experiments on down-sampled images of resolution 128 × 128. The direct approach appears to exploit the power of neural networks to the fullest, however, the challenges include data management, large number of training parameters and stability at testing time. Among the three approaches discussed they have the least stability when tested with different configurations of data Antun et al., 2020. However, with the constant developments in neural network designs, the possibility of arriving at a network most suitable for image reconstruction cannot be ruled out.

Chapter 4 DUG-RECON: A Framework for Direct Image Reconstruction using Convolutional Generative Networks

This chapter explores convolutional generative networks as an alternative to iterative reconstruction algorithms in medical image reconstruction. A novel framework called DUG-RECON is proposed that only uses sinogram as the input to reconstruct images for both PET and CT modalities. A part of this work was presented as a poster presentation in National Science Symposium and Medical Imaging Conference (NSS-MIC), Manchester 2019. This work was also published in IEEE Transactions on Radiation and Plasma Medical Sciences (Kandarpa et al., 2020).

Introduction

The task of medical image reconstruction involves mapping of projection domain data collected from the detector to the image domain. This mapping is done typically through iterative reconstruction algorithms which are time consuming and computationally expensive. Trained deep learning networks provide faster outputs as proven in various tasks across computer vision. In this work we propose a direct reconstruction framework exclusively with deep learning architectures. The proposed framework consists of three segments, namely denoising, reconstruction and super resolution. The denoising and the super resolution segments act as processing steps. The reconstruction segment consists of a novel DUG which learns the sinogram-toimage transformation. This entire network was trained on PET and CT images. The reconstruction framework approximates 2-D mapping from projection domain to image domain. The architecture proposed in this proofof-concept work is a novel approach to direct image reconstruction; further improvement is required to implement it in a clinical setting. In our work we explore the use of U-Net based deep learning architectures [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] to perform a direct reconstruction from the sinogram to the image domain using real patient datasets. Our aim is to reduce the number of trainable parameters along with exploring a novel strategy for direct image reconstruction using generative networks. More specifically our approach consists of a three-stage deep-learning pipeline consisting of denoising, image reconstruction and super resolution segments. Our experiments included training the deep learning pipeline on PET and CT sinogramimage pairs. A single pass through the trained network transforms the noisy sinograms to reconstructed images. The reconstruction of both PET and CT datasets was considered and presented in the following sections.

Method

Image reconstruction with deep learning however is a data driven approach wherein there is a training and a prediction phase. Given a set of training data which is a subset of the raw data (y) and its corresponding images (x), a deep learning architecture learns the mapping from raw data to the image and improves this mapping through the training process. During the prediction phase a subset of raw data different from the training data serves as the input to the trained deep learning architecture. The output is a reconstructed image which is obtained on a single forward pass through the network. Hence making the reconstruction process through deep learning instantaneous as opposed to an iterative process. This makes direct reconstruction with deep learning faster and less computationally expensive than iterative algorithms.

Deep Learning Architectures

As shown in Figure 4.1, we propose a three-stage deep learning pipeline for the task of tomographic reconstruction. In the first step the raw data (projection space) are denoised. Next the denoised sinograms are transformed to the image domain in the image reconstruction segment. The third and final segment operates in the image domain to improve the image produced after domain transformation. The following sections discuss these segments in detail. 

Denoising

We used a modified U-Net architecture to denoise the Poisson sampled sinograms, based on the work previously carried out for ultrasound denoising Perdios et al., 2018. The U-Net is an encoder-decoder network which was initially implemented for segmentation but over the years its applications have broadened. As shown in Figure 4.2 there are increasing number of convolutions along with max pooling to arrive at an encoding of the input and then with convolutions followed by upsampling, arriving at the output with an identical dimension as the input. The important modification in the architecture mentioned in Perdios et al., 2018 with respect to U-Net was the residual connection from the input to the final output. Perdios et al trained the denoising architecture on simulated ultrasound images so as to enhance ultrafast ultrasound imaging. This denoising architecture corresponds to the first segment in our proposed framework. It was trained on raw data pairs, 

Image Reconstruction

The novelty in this work is the proposed U-Net based network in contrast to previous works in direct image reconstruction using the FC layer architectures. This design of the network draws its inspiration from conditional GAN for image to image translation called Pix2Pix Isola et al., 2017. The proposed network namely DUG consists of two cascaded U-Nets. The first U-Net transforms the raw data to image while the second U-Net takes as input the generated image and transforms it back to the raw data. The second U-Net assesses the reconstructed image output, reiterating the relation between the sinogram and the image. This architecture differs from the Pix2Pix, which consists of a generator (U-Net like network) and a discriminator (classification convolutional network). While the generator in both architectures serves the purpose of transforming images from one domain to the other, the discriminator with regards to Pix2Pix classifies inputs as real/fake. The objective function for this architecture can be written as:

L total = L G 1 + L G 2 + L G 1 +G 2 (4.2)
where, 

L G 1 = 1 n n ∑ i=1 |x i -xi | (4.3) L G 2 = 1 n n ∑ i=1 |y i -ŷi | (4.4) G 1 , G 2 are

Training

TensorFlow [START_REF] Abadi | Tensorflow: A system for large-scale machine learning[END_REF] and Keras (Chollet, 2015) were used for the realization of the architectures described in the section above. These architectures were implemented on a single Nvidia GeForce GTX 2080Ti GPU. A collection of images {x k } N k=1 was used to generate a corresponding collection of noiseless sinograms {y k } N k=1 following models (1.23) and (1.15), low-counts 

Quantitative analysis

Testing for the aforementioned architectures was done on samples that were not a part of the training data. The metrics used for this analysis are RMSE and SSIM Index. They are defined below:

RMSE(x , x) = 1 n m ∑ j=1 (x j -xj ) 2 (4.6)
where n is the number of pixels. x is the GT x the predicted output.

SSIM(x , x) = (2µ x µ x + c 1 )(2σ x x + c 2 ) (µ 2 x + µ 2 x + c 1 )(σ 2 x + σ 2 x + c 2 ) (4.7)
where µ x µ x are the averages of x and x respectively, σ 2 x and σ 2 x are the variances of x and x, σ x x is the covariance between x and x , c 1 = (k 1 L) 2 and c 2 = (k 2 L) 2 where k 1 = 0.01 and k 2 = 0.03 by default.

Region of Interest analysis

The SNR and CNR were studied for four regions of interest identified within the patient body. The SNR and CNR were evaluated by treating a region as foreground and the other three regions as background.

SNR = µ r -µ b σ b (4.8) CNR = |µ r -µ b | σ 2 r + σ 2 b . (4.9)
where µ r and µ b , σ r and σ b correspond to the mean and standard deviation in the region of interest (ROI) and the background respectively. In this study we compared the initial reconstructed output of the DUG, the final reconstruction along with SR and the original GT which was reconstructed with GE discovery ST using an OSEM algorithm..

Comparison with DeepPET

We implemented the architecture DeepPET [START_REF] Haeggstroem | DeepRec: A deep encoder-decoder network for directly solving the PET reconstruction inverse problem[END_REF]) and compared the predictions with our proposed approach for the reconstruction of PET images. DeepPET was trained on {( ŷk , x k )} N k=1 , notation similar to the training section from above, with N = 120000, exclusively on PET data. It is worth noting that the input and output dimensions in our study are identical while it was not originally for DeepPET. The architecture of DeepPET is summarized in Figure 4.4. This architecture was trained for 100 epochs with an Adam optimiser. 

Results

The predictions from the architectures along with the GT and the sinogram are shown in Figure 4.9 for PET images. The results are displayed for four test image slices across the columns. Each column shows the predicted output by the proposed DUG-RECON architecture and the DeepPET architecture, as well as the GT. With regards to the proposed architecture it is observed that the initial reconstructed image i.e., the output of the DUG looks blurred while final reconstructed output from the super resolution block has noticeably improved details. The predictions by DeepPET are also visibly blurred compared to the final reconstructed output of the proposed architecture and the GT. These observations are further ascertained in Table 4.3 where the quantitative metrics are tabulated. The ROI analysis is tabulated in Table 4.5 for the four regions marked in Figure 4.10. This analysis was carried out for final predictions by the proposed architecture and MLEM. Looking closely at Table 4.5 we notice that 

Discussion

Deep learning has been applied to different fields of medical imaging. The vast majority of developments concern primarily image processing and analysis/classification tasks. Few works devoted in the field of image reconstruction have been largely concentrated in the use of deep learning within classical tomographic reconstruction algorithms. The main objectives of these works have been an improvement in the speed of convergence and the quality of the successive image estimation within the iterative reconstruction process. The alternative approach involving direct image reconstruction through the use of deep learning approaches to estimate images directly from the use of raw data (sinograms or projections) has been much less explored both for PET and CT.

Most implementations in direct image reconstruction concern the use of fully connected layers which encode the raw data followed by convolutional layers. In most of the proposed implementations a large number of parameters need to be optimised which reduces the computational burden and overall robustness. In this work we have proposed an original direct image reconstruction deep learning framework based on an architecture inspired by convolutional generative adversarial networks used in image to image translation. The implementation is based on the use of a double U-Net generator (DUG) consisting of two cascaded U-Nets. While the first network transforms the raw data to an image the second one assesses the reconstructed image output of the first network by reiterating the relationship between the reconstructed image and the raw data. Two additional blocks were added; namely a network denoising the raw data prior to their input in the DUG network and a super-resolution block operating on the DUG output image in order to improve it's overall quality. The proposed network was directly trained on clinical datasets for both PET and CT image reconstruction and its performance was assessed qualitatively and quantitatively.

Deep neural networks usually result in blurred output. This fact is clear in the predictions made by the DUG network. Both the qualitative analysis using the profiles through the reconstructed images and the quantitative metrics SSIM and the MSE, demonstrate the improvement of the reconstructed images resulting from the incorporation of the SR block. The qualitative analysis also clearly demonstrates the superiority of the proposed algorithm for direct PET image reconstruction in comparison to alternative approaches such as DeepPET. Finally in the ROI analysis we observed that the SNR and CNR are higher with the deep learning approach for the PET images while they are lower than the traditional methods for CT images. This is consistent with the observations in the qualitative analysis, where the proposed approach was not able to sufficiently resolve different tissue classes in the resulting reconstructed CT images in comparison with the ground truth.

One of the potential reasons of the worse performance of DUG-RECON for CT reconstruction relative to the superior performance observed for PET image reconstruction may be the lower number of available CT images in the training process. This limitation will be addressed as part of future work. Despite the lower performance of the proposed architecture for CT images it still presents comparable predictions and opens up avenues for deep learning architectures in tomographic reconstruction. In general, the limitations of a deep learning based reconstruction is the adaptability to new data which is very different from the training sample space. Once a practical methodology is identified, one could have a deep learning pipeline with an ensemble of networks trained on different datasets to perform the reconstruction task.

Conclusion

We have demonstrated the use of generative convolutional networks for the tomographic image reconstruction task. More specifically we have proposed a new architecture for direct reconstruction that approximates the 2-D reconstruction process. Also we have significantly reduced the parameters required for the domain transform task in image reconstruction. The three-step training pipeline based exclusively on deep learning decentralises the various tasks involved in image reconstruction into denoising, domain transform and super resolution. Various super resolution strategies are currently being explored to improve the reconstructed image. Our proposed strategy for tomographic reconstruction will eventually lead to a network based reconstruction as we continue to improve the framework. Currently it does not perform better than traditional methods in terms of utility metrics but still has the advantage of instantaneous reconstruction and an effective denoising strategy. We plan to extend the work on realistic detector data generated through Monte Carlo simulations in addition to sinograms obtained through Radon transform. We are also working on adapting the architecture to raw detector data. Another important aspect of the data based deep learning approach is that the predictions are limited by the quality of the dataset. It becomes essential to have realistic datasets without compromising on the image quality to improve the training of the neural networks.

Chapter 5

LRR-CED: Low-Resolution Reconstruction aware Convolutional Encoder-Decoder Network for Direct Sparse-View CT Image Reconstruction

In this chapter, neural network approach termed as LRRCED for sparse-view CT reconstruction is presented in detail. This approach utilizes both sinogram and low resolution FBP estimates to learn the mapping required for CT image reconstruction. A part of this work was presented as a poster virtually in NSS-MIC, Yokohama, Japan, 2021. An article related to this work was also submitted to the journal physics in medicine and biology (PMB) in January 2022.

Introduction

Sparse-view CT reconstruction has been at the forefront of research in medical imaging. Reducing the total X-ray radiation dose to the patient while preserving the reconstruction accuracy is a big challenge. The sparse-view approach is based on reducing the number of rotation angles, which leads to poor quality reconstructed images as it introduces several artifacts. These artifacts are more clearly visible in traditional reconstruction methods like the FBP algorithm. Over the years, several model-based iterative and more recently deep learning-based methods have been proposed to improve sparseview CT reconstruction. Many deep learning-based methods improve FBPreconstructed images as a post-processing step. In this work, we propose a direct deep learning-based reconstruction that exploits the information from low-dimensional FBP estimates, to learn the projection-to-image mapping. This is done by concatenating the FBP estimate at multiple resolutions in the decoder part of a CED. This approach is investigated on two different networks, based on Dense Blocks and U-Net to show that a direct mapping can be learned from a sinogram to an image. The results are compared to a post-processing deep learning method and an iterative method that uses a TV regularization.

Main Contribution

The main drawbacks of current deep learning-based direct image reconstruction algorithms are the tedious training process necessary to train large networks with large number of trainable parameters and the requirement of high memory in case of high-resolution CT images. In this work we propose a new method for direct deep learning based sparse-view CT image reconstruction with fully convolutional networks. We use two networks, namely Fully Convolutional Densenets [START_REF] Jégou | The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation[END_REF] and U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. An important characteristic of both these architectures [START_REF] Jégou | The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation[END_REF][START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] is the presence of concatenation from the encoding layers to the decoding layers that ensures the usage of features from the input for the reconstruction. Specifically, for application in sparse-CT image reconstruction, the network would have sparse-view sinograms as input and reconstructed images as output. The original application in the medical imaging field of both these architectures was in image segmentation, where the image-to-image mapping operates in the same image domain. Medical image reconstruction on the other hand involves mapping between two different domains (sinogram to image). In order to help the network to learn the mapping from sinogram to image, we propose the use of FBP image estimates of the sparse sinograms and concatenate them with the feature maps of the decoder.

Given that we only have access to sparse measurement data, taking the form of a sinogram y, we can enforce that the inverse mapping F at each layer/sub-resolution of the network is consistent in the measurement domain. That is PF(y) = y. This can be achieved by concatenating, as feature maps, (fast) low-resolution FBP-reconstructed images for each or a subset of the network levels. While this leads to a massive reduction of the parameters (fully convolutional layers instead of fully-connected) required in the network, the above-mentioned constraint is not enough to learn the inverse mapping as it cannot capture information about the image x outside the range of the physical under-determined operator P (Radon transform for CT). Hence, the network needs to be trained accordingly.

Once the network is trained, these custom concatenations enable architectures that were previously used for denoising/artifact removal to learn a mapping from sparse sinograms to full-resolution CT images. One characteristic feature of reconstructions generated by deep learning-based methods is the blurriness of the outputs. To counteract this we used perceptual loss involving features extracted from two different levels of VGG16 network (Block 1 and Block 3). Since the exclusive use of perceptual loss results in unrealistic artifacts we couple it with a L 1 loss. A general representation of the proposed approach is depicted in Figure 5.1. It consists of a CED network with two blocks in both the encoder and the decoder that takes in as input a reshaped sparse sinogram which has the same dimensions as the output image. A concatenation of two resolutions h 1 × w 1 and h 2 × w 2 is incorporated in the decoder.

The main contributions of our work are summarized as follows:

• A new approach for sparse-view CT image reconstruction using fullyconvolutional networks

• Use of lower resolution FBP estimates which enable the networks that are predominantly used for denoising to learn the more complex mapping from sinogram to image domain.

• Two neural networks are implemented to test this approach using different levels of sparsity in the sinograms. where, x is the predicted image. Most of the works in direct reconstruction for sparse-view CT represent F with a neural network with fully-connected layers. These networks require huge memory and large datasets for training. As an alternative to this, we propose the use of fully convolutional encoder-decoder networks that have lesser trainable parameters and are faster to train. The main idea is to enforce data consistency by providing estimates at different resolutions xr , r = 1, . . . , R:

Methods

Proposed Low Resolution

x = F Θ (y, ( xr ) R r=1 ) (5.2)
where each xr ∈ R m r , m r < m, is an approximate solution of y = PU r xr (5.3) with U r ∈ R m×m r being an upsampling operator. In a typical CED, the encoder learns the representation of the input domain and the decoder learns to map this representation to the corresponding image in the output domain. In the specific case of a CED for medical image reconstruction, the encoder operates in the sinogram space and the decoder in the image space. Based on this hypothesis, we propose to concatenate the estimates at different levels of the decoder part of the network. The function of these concatenations is to help the network learn the structure of the image. The feature maps at different levels of the decoder have different resolutions. Hence, concatenating the estimate xr at different levels requires the estimate to be of the appropriate resolution. The different convolutional layers in the decoder work towards arriving at a clear reconstructed image that is free of artifacts and noise. The estimate xr is obtained with a sparse sinogram, hence it is artifact-ridden and noisy. Therefore, concatenating the estimate xr at a level closer to the output resolution is counter productive as the network has lesser number of convolutional layers to correct the noise and artifacts. On the other hand the estimate at lower resolutions has lesser structural information compared to the estimates at higher resolution. The selection of xr should ensure a balance between aiding the network to learn the structure of the image and enabling it to correct the artifacts and noise.

Our method, namely LRRCED, was implemented with R = 2 and the image estimates xr were obtained by FBP at lower resolution. With the help of a series of experiments, we determined the best possible configuration for concatenating xr . In section Section 5.8.4, we present quantitative evaluation of the effect of these concatenations on the reconstructed images.

We investigate LRRCED with two different variations for F, LRRCED(D) with Fully Convolutional DenseNets and LRRCED(U) with U-Net, which are discussed in Section 5.3.1 and Section 5.3.1.

Fully Convolutional Dense Networks

A fully convolutional dense network was used as first variation of LRRCED. Dense networks [START_REF] Huang | Densely connected convolutional networks[END_REF] are based on the hypothesis that connecting all the layers to each other in a feed forward fashion leads to higher accuracy and easier training of the network. A typical dense block of three layers is depicted in Figure 5.2(a). The extension of dense networks for image segmentation was proposed by [START_REF] Jégou | The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation[END_REF]. The three blocks involved in the construction of this network are Dense Block (DB) with l number of layers, Transition Up (TU) and Transition Down (TD). The combination of these three blocks helps in building an encoder-decoder structure suitable for tasks dealing with image-to-image domain transfer. Each layer consists of batch normalization, ReLU activation and 3 × 3 convolution. TD includes: batch normalization, ReLU, 1 × 1 Convolution and 2 × 2 max pooling. Finally, TU includes a 3 × 3 transposed convolution with stride 2. The important modification to the architecture blocks in our work is the removal of the dropout layers. The fully convolutional dense network with proposed concatenations is represented in Figure 5.2(b). For the sake of representation we included only 5 dense blocks in the figure. The complete architecture details are given in Fig 5 .2(c).

U-Net

One of the most established architectures for image-to-image translation is U-Net, which we used as second variation of LRRCED (called from here onwards as LRRCED(U)).

A typical U-Net consists of Convolution, Activation (ReLU) and Pooling layers in the encoder and Upsampling, Convolution and Activation in the decoder. We have used U-Net without the dropout, similar to the dense network. The U-Net is represented in Figure 5.3(a). 

Loss Function

The aim of a supervised data-driven image reconstruction task is to predict an image that is as close as possible to the GT image. The appropriate loss function to achieve this is the MAE which is defined as follows: In order to improve the resolution of reconstructed images, many deep learning approaches have used the perceptual loss as proposed by (Johnson, Alahi, and Fei-Fei, 2016). This loss uses a pre-trained neural network to extract features from the predicted image and the GT. It can be defined as follows:

MAE(x , x) = 1 m m ∑ j=1 |x j -xj | (5.
P k (x , x) = |[VGG16] k (x ) -[VGG16] k ( x)|, k = 1, . . . , 5 (5.5) 
where [VGG16] k (x ) and [VGG16] k ( x) are the features extracted from block k of the VGG16 neural network (Simonyan and Zisserman, 2014) with respectively the GT and the predicted image as inputs. The features extracted from higher layers of the neural network contain generic information (edges, contrast, etc.) while the deeper layers have finer task-specific details. The VGG16 network was pre-trained on Image-Net data [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] which is far from a medical context. Hence, the higher-level generic features were found to be more relevant for the task of medical image reconstruction. We observed that using extracted features from two different levels, namely Block 1 and Block 3, of the VGG16 network proved to be most effective.

The final loss function that was used for training both the aforementioned networks is defined as follows:

L(x , x) = αMAE(x , x) + β(P 1 (x , x) + P 3 (x , x))
(5.6)

where P 1 and P 3 are perceptual loss from the extracted features of the two different blocks above-mentioned, α and β are weights which were set to 10 and 0.5 during the training phase.

Dataset

The data used in this work is from the Large-Scale CT and PET/CT Dataset for Lung Cancer Diagnosis (Lung-PET-CT-Dx) (Li et al., 2020c;[START_REF] Clark | The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository[END_REF]. Details of the dataset are given in Table 5.1. The images in this dataset were reconstructed using FBP on full-angular coverage measurement data. We used the ASTRA toolbox (Van Aarle et al., 2016), for data processing to create the projection-image pairs. A fan-beam geometry with a source to detector distance at 1500 mm and source to the center of the rotation at 1000 mm were considered. The number of detectors was set to 700 and the number of angles was varied to generate different levels of sparsity (N a = 60, 90 and 120). The noise-free projection data were obtained using the Beer-Lambert law (1.23) with an input emission intensity of 10 5 . The final projection data were obtained by adding Poisson noise (i.e., (1.14)) to the noise-free projection data. We finally generated the FBP estimates from the noise-added sparse-projections which were used in training the networks as explained previously. Sample images from the dataset are shown in Figure 5.4. 

Training

We implemented the architectures described in the previous section using TensorFlow and Keras [START_REF] Abadi | Tensorflow: A system for large-scale machine learning[END_REF]Chollet, 2015). A subset of the dataset consisting of 22,000 2-D CT images was used in this study. We then split the data into 30,000 images for training and 2,000 images for testing. The sinograms and FBP estimates were generated using the ASTRA toolbox as described above. The sinograms were resized to 512 × 512 to ensure symmetry with the images for easier training of the network. The FBP estimates x1 and x2 were resized to the resolutions required for concatenation to the proposed networks. The neural networks were independently trained for each of the sparse-view settings with N a = 20, 40, 60, 90 and 120. The choice of x 1 and x 2 were at 64 × 64 and 128 × 128 resolutions for LRRCED(D) and 128 × 128 and 256 × 256 resolutions for LRRCED(U). The networks were trained for 50 epochs with Adam optimizer with a decay of 10 -4 .

Quantitative Analysis:

The metrics used for evaluating the reconstructed images were SSIM and PSNR. They are defined as follows:

SSIM(x , x) = (2µ x µ x + c 1 )(2σ x x + c 2 ) (µ 2 x + µ 2 x + c 1 )(σ 2 x + σ 2 x + c 2 ) (5.7)
where µ x and µ x are the mean of x and x respectively, σ 2 x and σ 2 x are the variance of x and x, σ x x is the covariance between x and x , c 1 = (k 1 L) 2 and c 2 = (k 2 L) 2 where k 1 = 0.01 and k 2 = 0.03 by default, PSNR = 20 log 10 L -1 RMSE (5.8)

where L is the maximum intensity in the image and RMSE is given by

RMSE(x , x) = 1 m m ∑ j=1 (x j -xj ) 2 .
(5.9)

Comparative Analysis

The LRRCED method was compared with a post-processing deep learningbased approach, namely FBP-ConvNet (Jin et al., 2017), and a penalized weighted least-squares (PWLS)-TV solver for the model-based iterative CT reconstruction [START_REF] Tang | Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms[END_REF]). We trained FBP-ConvNet on a set of 30,000 noisy, artifact-ridden FBP image and GT pairs. This network was trained for 50 epochs.

Results

Experimental Results

Fig. 5.5 shows the images reconstructed with LRRCED(D) for various degrees of sparsity in the projections. Images from various parts of the patient volume are displayed at different HUT windows for clearer evaluation of the proposed approach. We observe the improvement in the reconstructed images with the decrease in sparsity in the views. The images reconstructed with N a = 120 appear closest to the GT. The soft tissue regions in the images reconstructed with <60 views show artifacts which are not present with the use of more projections. Similarly in Fig. 5.6, we show the images reconstructed with LRRCED(U). In Fig. 5.7 and Fig. 5.8 we present a comparison of reconstructed images using different algorithms with 60 and 90 views respectively. The top row consists of the GT and the reconstructed image by proposed LRRCED(D) approach. The second row consists of images with LRRCED(U) and the FBP-ConvNet. Finally in the last row are the images reconstructed with PWLS-TV iterative method and FBP. The region highlighted in yellow is zoomed and displayed alongside the corresponding image. These methods are quantitatively compared in Table 5.2 and Table 5.3. We observe that the deep learning methods perform better than the iterative and analytical methods. The images reconstructed with U-Net based methods namely LRRCED(U) and FBP-ConvNet, have very similar characteristics: The contrast is higher and they perform better quantitatively. However, images reconstructed with DenseNet by comparison show less noise and streaking artifacts. These visual observations can be more clearly seen in the zoomed images shown in Fig. 5.7. This is further reiterated in the intensity plot profiles shown in Fig. 5.9 and Fig. 5.10, where the LRR-CED(D) results are closer to the GT. In accordance with the metrics tabulated in Table 5.2 and Table 5.3, we find that the plots of deep learning-based methods are very close to that of the GT. Even though the proposed approach with typical CEDs performs a task which is more complex than denoising, the metrics indicate that the quality has not deteriorated compared to a standard post-processing approach. 

Experiments with real data

The proposed networks were initialized with the weights from the previous study and were then trained on the real data. The real data used in this study training the LRRCED. We present the results for four different slices across the patient volume and their quantitative evaluation in Figure 5.11 and Table 5.4, respectively. We observe that the reconstructed images with the proposed networks have similar characteristics as the ones from the simulation study. The transfer learning strategy ensures that the quality of the reconstructed images is maintained even with very limited training data.

Stability Study

One of the major challenges to data-driven neural network approaches is the ability to generalize over different types of test data. The extent to which a neural network is stable when presented with data different from the training data is the focus of this study. This topic has been extensively evaluated in the article by [START_REF] Vegard Antun | On instabilities of deep learning in image reconstruction and the potential costs of AI[END_REF]. The authors analyzed the impact of tiny perturbations and small structural changes in sampling and image domain The trend is towards an improvement in overall image quality with reduced sparsity in the sinograms. On one hand, we observe that in the scenarios where the testing data has more sparsity than the training data, the artifacts in the reconstructed images are more clearly visible. This is clearly seen in the last two rows in Figure 5.12, where the network was trained on 90 views and 120 views data and the images reconstructed with lower N a are ridden with artifacts. On the other hand, the image quality especially in the soft tissue regions is higher when the network is trained and tested on data with more views. The proposed network maintains stability in the reconstructed images with the increase in the sampling in the testing data. However, when the testing data has fewer views than the training data, artifacts are present in the reconstructed images.

Hyperparameter optimization

Finding the optimal hyperparameters is an important aspect of training neural networks. The common hyperparameters in a typical CNN are number of filters, number of layers, etc. These interdependent hyperparameters determine the rate of convergence and require task-specific experimentation to arrive at the best possible configuration. The unique hyperparameters in our proposed approach are the resolutions of concatenated FBP estimates. The number of training examples is another important component that varies depending on the task and the trainable parameters of the neural network selected for the task. In this section we discuss our experiments that determined the selection of these two important hyperparameters. 

Concatenation Resolution Selection

To select the best possible configuration for concatenation in the proposed approach, we trained the networks with a fixed set of hyper-parameters and different combinations of concatenations. We discuss the results with LR-RCED(D) in this regard. The number of training samples were set to 10,000 for all the experiments. The training data were projections with 90 views, corresponding FBP reconstructed images and the GT. The training was done for 25 epochs. Each of the concatenation setting was evaluated on 5 test patients. The average SSIM for each patient was plotted for each of the experiment setting. In Fig 

Ablation Study

We performed an ablation study to understand the impact of the proposed concatenations on the neural network performance. DenseNet described earlier was trained for 50 epochs on 20,000 data samples in three different scenariosas shown in Figure 5.16, two of which used either a sinogram consisting of randomly distributed Gaussian noise and no low-resolution concatenations: (i) true sinogram and the reconstructed image only (no lowresolution concatenations), (ii) Gaussian noise sinogram, low-resolution concatenations and the reconstructed images, and (iii) true sinogram, low-resolution concatenations and the reconstructed images. The image predictions by the three different neural networks are shown in Figure 5.17. DenseNet without the low-resolution concatenations does produce images with some structural information, but the other two configurations generate images of much better quality. We observe that the concatenations indeed help the network learn the structure of the image, while the sinograms contribute in artifact and noise removal. This is reflected upon closer inspection of the third and fourth images in Figure 5.17. The images predicted with LRRCED(D) trained using the randomly distributed Gaussian noise sinogram instead of the true sinogram have artifacts and noise which is also seen quantitatively in Table 5.7. The best metrics and image quality are demonstrated by the neural network trained on the combination of sinograms and low-resolution estimates labeled as LRRCED(D) in Figure 5.17. 

Discussion

The use of deep learning architectures in the framework of medical image reconstruction is propelled by potentially faster reconstruction without compromising on the quality of the images. architectures do not significantly reduce the reconstruction time. Hence, the use of deep learning architectures for either improving images from a fast analytic algorithm or direct reconstruction becomes more relevant for their incorporation into the image reconstruction pipeline. One significant problem for direct image reconstruction is the requirement of large and complex networks to learn the mapping from sinograms to images without the help of any reconstruction estimate. The networks used for post-processing on the other hand are simpler and relatively easy to train. In this work we attempted to use these post-processing networks for the direct image reconstruction task along with low-resolution scout images from direct analytical method. We show that concatenating FBP estimates at lower resolutions is sufficient to allow the network to learn the mapping from sinogram to image space. Through the use of two different networks with the concatenation approach we demonstrate that this idea can be applied to CEDs in general.

In the sparse-view CT scenario artifact removal along with denoising increases the challenges of getting a clean well-resolved image. We observed that the use of traditional loss functions (L1 or L2) resulted in blurry images. To tackle this and to improve the sharpness of the images we used perceptual loss along with the standard L1 loss. The reconstructed images with our proposed LRRCED(D) and LRRCED(U) have higher SSIM and PSNR than images reconstructed with a traditional iterative algorithm and a standard post-processing deep learning method FBP-ConvNet. The similarity in the images from the deep learning methods stems from the fact that the choice of networks used in our proposed work was inspired from post-processing CEDs. The contribution in this work is the use of these networks to learn the mapping from sparse sinograms to images with the same amount of training examples, which is possible only with the proposed addition of the concatenations. Through the ablation study from Section 5.8.5, we reiterate the contribution of both the sinogram and the low-resolution concatenations for image reconstruction. The CED without the concatenations could learn the mapping but it would need much higher number of training examples for image quality comparable to other methods. The proposed method was compared to a U-Net based denoising method (FBP-ConvNet), which has one of the best quantitative metrics in image reconstruction as established by the recent quantitative comparison study carried out by [START_REF] Leuschner | Quantitative Comparison of Deep Learning-Based Image Reconstruction Methods for Low-Dose and Sparse-Angle CT Applications[END_REF] As it was shown in this study, complex unrolled methods do only marginally better than the U-Net, hence making it one of the most frequently used benchmarks for comparison purposes.

We are currently exploring the possibility of using image estimates from earlier iterations of standard iterative algorithms while ensuring that the trade-off between time and image quality is not compromised. The use of other alternative architectures is also being explored to arrive at reconstructed images which perform significantly better than existing post-processing approaches. Finally, we are working on experiments with low-dose CT and other tomographic reconstruction modalities to establish the adaptability of the proposed approach.

Conclusion

In this work we studied the use of fully convolutional encoder-decoder networks in direct sparse-CT image reconstruction. We introduced a new approach that uses lower dimension FBP estimates as concatenations to help the network learn the mapping from sinogram to image space. In the context of image reconstruction, we inject the information from the inverse of a CT physical system (FBP estimate) as a feature map in the decoder. We presented two variations of the proposed approach namely LRRCED(D) using fully convolutional dense networks and LRRCED(U) using U-Net. The proposed neural networks reconstruct images that are either better or are on par with traditional reconstruction algorithms and post-processing deep learning based approach (FBP-ConvNet). A single pass of a sparse sinogram through the network results in reconstructed images without the artifacts and noise which are severely present in the concatenated FBP estimates. Finally, this idea of using task specific concatenations that enable one to have control over what the network learns, can be extended to various other problems in medical imaging.

Chapter 6

Conclusions and Perspectives

The focus in this thesis has been to utilize established neural networks with proposed modifications to suit various aspects of tomographic image reconstruction. A three-stage framework was presented in the form of DUG-RECON, in which each of the stages has a task specific neural network. The first network is a U-Net with a residual connection that denoises the sinogram, the second network, U-Net without the residual connection, maps the denoised sinogram to a reconstruction image estimate and the final stage improves the quality of the image estimate with a residual block. All the neural networks involved are based on CNNs without any FC layers, making it relatively easy for training. The results were quantitatively analyzed and compared with traditional reconstruction approaches and also a deep learning based direct image reconstruction method DeepPET. The second proposed method LRRCED demonstrated with DenseNet and U-Net for sparse-view CT reconstruction, uses information from sinogram and low-resolution FBP estimates to produce a reconstructed image. This method was also validated on real clinical data for sparse-view CT problem. An ablation study was performed to highlight the impact of different components of the LRRCED. Additionally, we tried to address instability in neural networks with different sinogram sampling as pointed out by Antun et al., 2020. DenseNet, U-Net and ResNet were the base neural network architectures utilized in this thesis. The proposed changes suggested in both the aforementioned approaches, made them specifically suitable for tomographic image reconstruction.

One of the key challenges involved with training neural networks is finetuning the hyper-parameters. Some of the hyper-parameters like number of filters in the first layer, the factor of multiplicity of filters can be inspired from established benchmarks in tasks like segmentation. Once the hyperparameters related to the design are fixed, questions related to data and the training duration can be addressed. Though there is a clear interdependence of these hyper-parameters, network design is a more straightforward problem to address thanks to the already existing literature. Typically the strategy used to select the hyper-parameters is to monitor the loss on the validation dataset. Sometimes additional metrics different to that of the loss function are also used to help in fine-tuning the hyper-parameters [START_REF] Zhang | A sparse-view CT reconstruction method based on combination of DenseNet and deconvolution[END_REF]. In image reconstruction as the task is to estimate an image, visual inspection also provides an added advantage to monitor the network training at intermediate steps.

Data preparation is another important aspect which needs to be addressed before the network can actually be trained. Typically the publicly available human patient data is in the DICOM format which needs to pre-processed and then stored efficiently in formats suitable for the machine learning library. The machine learning library used in this thesis was TensorFlow. Since the final values in the image pixels are important for image reconstruction, normalization of data needs to be carefully managed. It is a common practice to normalize the data prior to training a CNN as it helps in faster convergence. However, the scaling required to get back to the original values can lead to loss of information. The range of values in the images are very different for PET and CT. In PET we estimate the tracer activity distribution while in CT we estimate the attenuation. The former has large values in the orders of 10 4 -10 6 subject to the dose and the tracer, while the latter has lower values in the order of 10 -2 depending on the energy of the X-rays. For un-normalized data the last layer of the CNN needs to have either a linear activation function or a version of ReLU for the estimate predicted by the network to have values in the same range as the image. It is to be noted that convergence could be effected for un-normalized data and the network may need to be trained for a higher number of epochs. For CT imaging, a format often used for displaying is the HUT, different HUT windows are used to observe organ specific details. However, a network is typically trained with attenuation images, and a conversion is required to display the images. Hence, the range of values in the images estimated become very important.

Transfer learning in neural network terminology refers to taking a network trained on a large dataset and fine-tuning it's weights to smaller datasets. It is often used in cases where there is dearth of data. It also becomes an important strategy to make the network adapt to changes in the data environment (for example different acquisition geometry). All the weights of the network could be updated by training on the smaller dataset or only the weights of the last few layers. We chose to update the weights of all the layers across the network. The LRRCED was initialized with the weights of the larger semi-simulated dataset, (real patient images-synthesized sinograms) and then trained on the Mayo CT clinical dataset. The reconstructed images reflected the quantitative metrics similar to that of the simulated dataset. With one of the primary challenges of neural network approaches being generalization to new data, transfer learning seems to be a viable option for supervised learning.

The most commonly used datasets for PET and CT image reconstruction problems are BrainWeb [START_REF] Cocosco | Brainweb: Online interface to a 3D MRI simulated brain database[END_REF] and Mayo Clinic database (Moen et al., 2021) respectively. However, there is a lack of a bench-marking dataset designed specifically to test deep learning-based approaches. The various data-driven methods proposed across the years use different datasets and data preparation techniques, making it difficult to reproduce the results for fair comparison. Even the hyper-parameter fine-tuning gets challenging when the source code and the dataset are not made public. Also for real clinical datasets, it is important to have access to all the geometry/physics information for realistic modeling of the system matrix, essential in the creation of projection/back-projection operators. Standardization of data and comparison criteria is paramount to establish state of the art methods through fair and universally accepted evaluation.

The stability of deep learning-based reconstruction methods has been extensively studied in Antun et al., 2020. The authors designed a stability test aimed to check the feasibility of these methods for practical usage. They divided potential instabilities into three main categories: (i) small perturbations either in the data or the image may lead to inexplicable artifacts in the reconstructed images; (ii) small structural changes in the image may be missed out in the reconstructed images; (iii) increase in sampling of the data may degrade the reconstruction. The authors observed that direct neural network approaches seemed most unstable when compared to hybrid and postprocessing methods. In our experiments with sparse-view CT reconstruction featuring LRRCED, we analyzed the effect of change in the sparsity of sinograms on the reconstructed images. We observed that increase in sampling (reduction in sparsity) either improved the image or at-least maintained the same image quality. The LRRCED which is a method that combines both denoising and direct reconstruction approaches, was found to be stable with the increase in measurement data sampling. Additional experiments based on the article are being designed to develop a methodology for ensuring stable deep learning-based image reconstruction methods.

Medical images of a particular modality share a lot of similarities and redundancies. When a radiologist looks at a CT or PET image his attention is drawn to a particular area that is relevant for scrutiny. This brings into context the recently developed self attention mechanism that helps neural networks focus on important task-specific information. In natural language processing attention mechanism helps identify the context of a sentence and which words in a sentence are more important for translation etc. CNNs have recently been combined with the attention mechanism to improve segmentation (Li et Recently many unsupervised methods have been proposed for image denoising. Unsupervised methods, unlike the approaches discussed so far in this thesis (apart from deep image prior), do not need to be trained on labeled data for a dedicated task. As denoising is an integral part of image reconstruction, these new methods have immense potential to improve the reconstructed images in low dose imaging. Yuan, Zhou, and Qi, 2020 proposed an approach called Half2Half that does denoising for CT images without the use of high quality reference data. The authors proposed a novel method to generate training input and training label from the same CT scan. The denoising network is then trained on these data alone without the requirement of additional high dose CT data. For PET denoising, Chan et al., 2019 trained a neural network to map from one noise realization to an ensemble of noise realizations. Currently most of the unsupervised denosing approaches don't surpass the performance of existing supervised methods. The focus has primarily been on finding innovations in data processing, leaving further scope for developments in the area of neural network design specific to unsupervised learning.

Ever since the development of time of flight (TOF) PET scanners, histoimages and histo-projections have been extensively studied (Snyder, Thomas, and Ter-Pogossian, 1981). Modern scanners have the advantage of having high resolution sampling in list-mode comparable to that of an image voxel. This allows the conversion histo-projection into hist-image through the use of a rectangular image grid. Whiteley et al., 2020 proposed an approach called FastPET for near real-time multi-slice PET image reconstruction. First the raw detector data is converted into histogram-images through most likely annihilation position (MLAP) algorithm. Then, a U-Net based architecture deblurs and denoises the histo-images to obtain clean images. Despite the resemblance to post-processing methods, the authors place their method among direct neural network approaches as it involves histogramming of raw coincidence events in image space. One of the challenges noted by the authors is the over-smoothing of images and loss of some high frequency details. A consequence of this could be the difficulty in locating small lesions and other important details. One possible application of LRRCED from this thesis, could be to use histo-images as the concatenated estimate for PET image reconstruction. We are currently working on methodologies to obtain histo-images for total body PET image reconstruction. Different loss functions for training the neural network are also being explored to address the over-smoothing of the images.

Two novel neural network-based direct approaches for tomographic imaging have been proposed in this thesis. The first one named DUG-RECON was demonstrated on both PET and CT data. Along with DeepPET, this method is one of the few direct reconstruction methods based entirely on convolutions. The second method, LRRCED was discussed with both U-Net and DenseNet, for sparse-view CT imaging. Both these methods were compared to traditional reconstruction methods and were either found to be quantitatively superior or on par with them. As part of future work, DUG-RECON is being validated with real clinical data and also latest neural network architectures like transformers will be experimented to improve the different stages of the framework. We are also working on modifying LRRCED for total body PET reconstruction, more specifically for multi-slice volumetric reconstruction. 
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 11 FIGURE 1.1: Depiction of a circular PET detector with detectors d p and d q connected with a LOR indicated in gray.
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 1 FIGURE 1.4: Fan-beam geometry: the source and the detector rotate around the object
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 1 FIGURE 1.5: Cone-beam geometry: the source rotates around the patient while the bed is translated creating a helical scan.

  Model for CTLet an image be represented by µ ∈ R m and the scanner measurement by b ∈ R n where m is the number of voxels and n is the number of measurements. In 2-D CT imaging n depends on the number of detectors N d and the number of angles N a . The task of medical image reconstruction corresponds to finding a mapping from b to µ. The measurement b is a random vector modeling the number of detection (photon counting) at each of the n detector bins, and follows a Poisson distribution with independent entries, i.e., b ∼ Poisson( b(µ)) (1.22) where, b = [b 1 , . . . , b n ] ∈ R n and b(µ) = [ b1 (µ), . . . , bn (µ)] ∈ R n is the expected number of counts (noiseless), which is a function of the image µ.

  FIGURE 2.1: Depiction of a neural network with an input layer, three hidden layers and an output layer

FigFIGURE 2

 2 FIGURE 2.5: Max pooling with 2×2 filter and stride 1
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 2 FIGURE 2.6: Architecture of a typical CNN. This representation was first proposed by LeCun and Bengio, 1995.
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  FIGURE 2.7: Transposed convolution over a 2 × 2 input to get a 4 × 4 output. (Dumoulin and Visin, 2016)

  et al., 2018a used perceptual loss along with MSE to preserve qualitative and quantitative accuracy of the reconstructed images. The work proposed by Whiteley et al., 2020 uses multi scale structural similarity index (MS-SSIM) along with perceptual loss and MAE. Another strategy used is pre-training on simulated data followed by fine-tuning on real patient data. Data corrections in the form of scatter correction of the sinogram data is proposed in Qian, Rui, and Ahn, 2017. The authors use CNN followed by fully connected (FC) layers in their approach. In CT imaging there are works that do denoising of lowdose sinograms (Zhu et al., 2020; Ma et al., 2021) and also finding the missing projections in sparse-view sinograms (Lee et al., 2018). The same problem is tackled in the image domain through denoising (Yang et al., 2018) and artifact removal for sparse-view problem (Jin et al., 2017; Xie et al., 2018; Zhang et al., 2018).
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 2 FIGURE 4.2: Representation of the denoising network. The inputs to the network were 2-D grayscale slices with resolution 128 × 128 and the outputs were denoised sinograms.

FIGURE 4

 4 FIGURE 4.3: Representation of the DUG, the image reconstruction block. This network was trained on denoised sinograms which were the outputs of the previous segment.

FIGURE 4

 4 FIGURE 4.5: Data preparation

FIGURE 4

 4 FIGURE 4.7: Example CT sinogram-image pairs from the dataset

Figure 4 .

 4 13 provides a comparison of the intensity profiles for the predictions by DUG, DUG+SR and DeepPET w.r.t. to the GT for PET images. These intensity values are observed along the line marked in yellow in these figures. As this figure shows, the intensity profile of the final reconstructed image of the proposed architecture is closest to the GT. The predictions by DUG and DeepPET are smoother compared to the predictions by DUG+SR and the GT.

FIGURE 4 . 9 :FIGURE 4

 494 FIGURE 4.9: Image predictions by DUG+SR, DeepPET and GT for four PET Images from different parts of the patient volume

FIGURE 4

 4 FIGURE 4.12: SNR and CNR comparison amongst DUG+SR and OSEM for CT image along 4 regions of interest

Figure 4 .FIGURE 4

 44 FIGURE 4.14: Intensity Profile for two CT images (highlighted by a yellow line) predicted by DUG and SR compared with the GT

  FIGURE 5.1: General representation of an encoder-decoder architecture with fully convolutional layers and the proposed FBP concatenations (x 1 and x 2 ) at two different resolutions h 1 × w 1 and h 2 × w 2

  FIGURE 5.2: Different components of LRRCED(D): (a) Representation of a dense block with three layers. (b) LRRCED(D): Fully convolutional dense network with x 1 at 64 × 64 and x 2 at 128 × 128. (c) Complete architecture summary

  4) where x = [x 1 , . . . , x m ] ∈ R m and x = [ x1 , . . . , xm ] ∈ R m are respectively the true image and predicted image.

FIGURE 5 . 4 :

 54 FIGURE 5.4: Samples from the dataset: Sinograms with different sparse-view configurations along with their corresponding FBP estimate.

  FIGURE 5.5: Images reconstructed with LRR-CED(D) approach with different sparse-view configurations, i.e., projections with N a = 120, 90, 60, 40 and 20. For better visual inspection images in first row are displayed in -40 ± 600 HUT window, the second row in -340 ± 400 HUT and the third in -150 ± 400 HUT.

  FIGURE 5.7: Comparative analysis for 60 views: From the top left corner, we have GT image, reconstructions with LR-RCED(D) . In the second row reconstructed images with LR-RCED(U) and FBP-ConvNet. Finally images reconstructed with PWLS-TV and FBP.

  FIGURE 5.9: Intensity plot profile for the region marked in red from Fig. 5.7 comparing LRRCED(D) and FBP-ConvNet to the GT in (a) and LRRCED(U) and FBP-ConvNet in (b)

  FIGURE 5.12: Stability study: Each row corresponds to the network trained on specific value of N a , and tested with all the possible values of N a .

FIGURE 5 .

 5 FIGURE 5.15: Comparison of Average SSIM for 5 different Patient data for 90 views with varying number of training samples. The configuration of the network is the one with best performance from the analysis in Figure 5.13. (concatenations at 64 × 64 and 128 × 128). Input Concatenation Output

FIGURE 5

 5 FIGURE 5.17: Ablation study: Predictions from different configurations of the network.

  al., 2020a; Hu et al., 2020). For low-dose PET image denoising, Xue et al., 2020 proposed a network that combined attention mechanism with GAN. Similarly, Du et al., 2019 demonstrated the effectiveness of visual attention network for low-dose CT denoising. Transformers (Vaswani et al., 2017) have revolutionized the field of natural language processing and have recently been applied to computer vision (Khan et al., 2021). The transformer module which uses a global attention scheme, is typically embedded in the encoder part of a CED. Works like Chen et al., 2021 use transformer in the encoder of the U-Net, to explicitly model long range dependency. In Luo et al., 2021, the authors combined the concepts of transformers and GAN to propose a 3-D network for PET image denoising. We are currently working on incorporating the transformer modules in the networks proposed as a part of this thesis, for direct image reconstruction task for both PET and CT modalities.

Titre:

  Reconstruction d'images tomographiques avec des approches de réseau neuronal direct Mot clés : Reconstruction d'images, l'apprentissage en profondeur, TEP Résumé : Les réseaux de neurones sont largement utilisés dans le domaine de l'imagerie médicale pour la segmentation d'images biomédicales, le diagnostic du cancer, l'analyse d'images, etc. Les progrès de la puissance de calcul (GPU) et l'utilisation efficace de la mémoire ont propulsé la propagation des réseaux de neurones profonds dans divers domaines. La principale motivation derrière l'utilisation des approches de réseaux de neurones est une prédiction plus rapide (par rapport aux méthodes traditionnelles) sans compromettre la qualité du résultat. La reconstruction d'images médicales implique la tâche de cartographier les données de mesure brutes collectées par le détecteur en images compréhensibles pour un radiologue. Un algorithme de reconstruction d'images médicales se rapproche essentiellement de cette cartographie pour prédire la meilleure image possible. L'utilisation des réseaux de neurones dans la reconstruction par tomographie par émission de positrons (TEP) et par tomodensitométrie (CT) a été explorée dans cette thèse. De nouveaux cadres appelés DUG-RECON (Double U-Net Generator) pour la reconstruction d'images TEP, CT et LRR-CED (Low-Reconstruction Aware Convolutional Encoder-Decoder) pour la reconstruction d'images CT clairsemées sont proposés dans ce manuscrit. Title: Tomographic Image Reconstruction with Direct Neural Network Approaches Keywords: Image Reconstruction, Deep Learning, PET, sparse-view CT Abstract: Neural Networks are extensively used in the field of medical imaging for biomedical image segmentation, cancer diagnosis, image analysis, etc. The advancements in computation power (GPUs) and efficient memory utilization have propelled the spread of deep neural networks into various domains. The main motivation behind the use of neural network approaches is faster prediction (compared to traditional methods) without compromising on the quality of the result. Medical image reconstruction involves the task of mapping raw measurement data collected by the detector to images that are comprehensible to a radiologist. A medical image reconstruction algorithm essentially approximates this mapping to predict the best possible image. The use of neural networks in Positron Emission Tomography (PET) and Computed Tomography (CT) reconstruction has been explored in this thesis. Novel frameworks called DUG-RECON (Double U-Net Generator) for PET, CT image reconstruction, and LRR-CED (Low-Resolution Reconstruction aware Convolutional Encoder-Decoder) for sparse-view CT image reconstruction are proposed in this manuscript.

  Brox, 2015; Guo et al., 2019; Sinha and Dolz, 2019; Dolz et al., 2018; Hatt et al., 2018), image denoising (Kadimesetty et al., 2018; Li et al., 2020b; Chen et al., 2017; Yang et al., 2018), image analysis (Litjens et al., 2017; Amyar et al., 2019;

  ). For example, effective use of deep learning-based methods is seen in dealing with image denoising (Kadimesetty et al., 2018; Li et al., 2020b; Chen et al., 2017; Yang et al., 2018), super resolution

  Across the literature one would find many variations used in super resolution, image segmentation, denoising and image reconstruction. This subset of CNNs appropriate for image reconstruction task is represented in Fig 2.8.

	Input Image	Convolution,Activation and	Transposed Convolution	Output Image
		Pooling Layers	and Activation Layers	
		FIGURE 2.8: CNN for image to image translation tasks. This
		example has an identical structure in convolution path and the
		transposed convolution path.	
		2.7: Transposed convolution over a 2 × 2 input to get a
		4 × 4 output. (Dumoulin and Visin, 2016)	

CEDs are used in a variety of image to image translation tasks.

  [START_REF] Nuyts | Iterative reconstruction for helical CT: a simulation study[END_REF] Elbakri and Fessler, 2002a;[START_REF] Liu | Total variation-Stokes strategy for sparse-view Xray CT image reconstruction[END_REF]. However, these methods are computationally expensive and generally have longer reconstruction times. Deep learning-based methods on the other hand are claimed to achieve reconstructed images with quality on par with iterative techniques and in a much shorter time frame[START_REF] Leuschner | Quantitative Comparison of Deep Learning-Based Image Reconstruction Methods for Low-Dose and Sparse-Angle CT Applications[END_REF].In this work, the focus has been on PET and CT image reconstruction. As depicted in Fig 3.1, one can broadly identify three different categories of approaches for the implementation of deep learning within the framework of medical image reconstruction: (i) Methods that use deep learning as an image processing step that improves the quality of the raw data and/or the reconstructed image (Gong to accelerate convergence or to improve image quality (Xie et al., 2019; Kim et al., 2018; Gong et al., 2019); (iii) Direct reconstruction with deep learning alone without any use of traditional reconstruction methods (Whiteley and Gregor, 2019b; Zhu et al., 2018; Haeggstroem et al., 2018).

	Projection Domain	
	Data Corrections		
	with Deep Learning		
	Iterative	Unrolled Iterative	Deep Learning
	Algorithm	Algorithm	Algorithm
	Post-Processing with Deep Learning	Deep Learning In update step	
		Image Domain	

et al., 2018a; Maier et al., 2018); (ii) Methods that embed deep-learning image processing techniques in the iterative reconstruction framework FIGURE 3.1: Deep Learning in Medical Image Reconstruction
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 3 

		.1: Summary of recent works on data corrections and
		post-processing approaches in PET
	Sl.No.	Method	Base Neural	Dataset
			Network	
	1	Gong et al., 2018a	CNN with residual	BrainWeb and XCAT
		Low-dose Image	blocks	phantoms; Fine-tuning/testing
		Denoising		with real patient data
	2	Whiteley et al., 2020	U-Net with residual	Real PET/CT data
		Histo Image	blocks	
		Correction		
	3	Zhao et al., 2020	Cycle GAN	Real PET/CT data
		Low-dose Image		
		Denoising		
	4	Qian, Rui, and Ahn, 2017	CNN with fully	Monte Carlo simulations
		Sinogram Scatter	connected layer	with phantoms
		Correction		
	5	Hong et al., 2018	Deep residual CNN	Digital phantoms
		Single Image Super		
		Resolution for sinograms		
	6	Sanaat et al., 2021	ResNet	Real TOF-PET/CT data
		Low-dose to full-dose		
		sinogram synthesis		

TABLE 3

 3 

		.2: Summary of recent works on data corrections and
		post-processing approaches in CT	
	Sl.No.	Method	Base Neural	Dataset
			Network	
	1	Lee et al., 2018	Residual U-Net	Simulated projections
		Sinogram synthesis		from real patient data
		for sparse-view CT		
	2	Jin et al., 2017	Residual U-Net	Phantom and Real patient
		Artifact removal in		data along with projections
		sparse-view reconstructed images		
	3	Xie et al., 2018	Improved GoogleNet	Simulated projections
		Artifact removal in		from real data
		sparse-view reconstructed images		
	4	Zhang et al., 2018	DeneNet with	Simulated projections
		Artifact removal in	deconvolutions	from real data
		sparse-view reconstructed images		
	5	Ma et al., 2021	Attention residual	Real data along with
		Low dose sinogram	dense CNN	projections
		denoising		
	6	Yang et al., 2018	Wasserstein-GAN	Real data along with
		Low-dose image		projections
		denosing		
	7	Zhu et al., 2020	Three-segment network	Real data along with
		Simultaneous sinogram and	ADAPTIVE-NET	projections
		image domain denoising		

  Representation of the super resolution block. It consists of 8 residual blocks with Convolution, Batch normalization and PReLu. PET/CT database (Kostakoglu et al., 2015). The details of the dataset are given in Table 4.2. The sinograms were initially generated by projecting 2-D PET and CT images slices with the Python SKLEARN Radon transform, following the models (1.23) and (1.15) for CT and PET respectively, with Poisson noise added. The methodology represented in Figure 4.5 was used for data preparation for the PET and CT modalities respectively. Sample pairs from the PET and CT datasets are shown in Figures 4.6 and 4.7. The CT images were downsized from 512 × 512, and the reconstruction was implemented for 2-D 128 × 128 images.

		Convolution: 32x(3,3) Layer	
	Initial Reconstructed Image	Batch normalisation Layer	Final Reconstructed Image
	Residual		
	Block		
	FIGURE 4.4:		
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	.2: Dataset Description
	Dataset Statistics	
	Modalities	CT, PET
	Number of Patients	83
	Number of PET 2-D Image slices	76,000
	Number of CT 2-D Image slices	21,104
	PET Matrix size	128
	CT Matrix size	512
	Scanner	GE Discovery ST

  Representation of DeepPET. The number of filters in each convolutional layer is labeled on top of each block.

	32				32
	64				64
	128				128
	256	512	1024	512	256
	128x128				
	Conv 3*3,stride 1	Batch norm	ReLU
	Conv 3*3,stride 2		Upsample
	FIGURE 4.8:				
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	.3: The SSIM and RMSE for the various modalities
		compared		
	Image Architecture RMSE SSIM
	1	DUG	0.059	0.74
		DUG+SR	0.038	0.84
		DeepPET	0.047	0.80
	2	DUG	0.043	0.76
		DUG+SR	0.046	0.86
		DeepPET	0.054	0.85
	3	DUG	0.050	0.76
		DUG+SR	0.038	0.85
		DeepPET	0.043	0.83
	4	DUG	0.061	0.70
		DUG+SR	0.045	0.82
		DeepPET	0.048	0.79
	TABLE 4.4: The SSIM and RMSE for the CT images are eval-
	uated for 4 different 2-D slices. Here the architecture indicates
	the prediction by DUG and that of DUG along with SR segment
	Image Architecture RMSE SSIM
	1	DUG	0.0083 0.90
		DUG+SR	0.0015 0.98
		DeepPET	0.0012 0.99
	2	DUG	0.0081 0.90
		DUG+SR	0.0015 0.99
		DeepPET	0.0014 0.99
	3	DUG	0.0015 0.91
		DUG+SR	0.0018 0.98
		DeepPET	0.0013 0.99
	the mean values of the deep learning predicted image and the MLEM recon-
	structed image are comparable. The results for CT images are displayed in

TABLE 4 .

 4 5: ROI Analysis: The mean, SD and the SNR for the 4 regions of interest marked in Figure12

	Region	Image	Mean	SD	SNR CNR
	1	DUG+SR 0.706 0.024 7.15	5.71
		MLEM	0.676 0.035 5.72	4.55
	2	DUG+SR 0.713 0.091 4.81	3.42
		MLEM	0.648 0.11	4.38	3.26
	3	DUG+SR 0.744 0.071 2.73	1.65
		MLEM	0.547 0.154 3.23	1.22
	4	DUG+SR 0.117 0.008 14.96 10.64
		MLEM	0.057 0.010 8.01	4.8
	TABLE 4.6: ROI Analysis: The mean, SD and the SNR for the 4
	regions of interest marked in Figure 15
	Region	Image	Mean	SD	SNR CNR
	1	DUG+SR 0.011 2.91e-4	7.61	6.66
		FBP	0.011 3.45e-4 15.86 10.69
	2	DUG+SR 0.004 1.53e-4	9.34	9.02
		FBP	0.004 1.84e-4 15.36 13.74
	3	DUG+SR 0.005 5.90e-4	9.40	5.49
		FBP	0.005 4.88e-4 16.19 7.78
	4	DUG+SR 0.012 8.319e-4 15.47 5.92
		FBP	0.012 2.736e-4 14.74 11.47
	learning and FBP. The image reconstructed with FBP has better SNR and
	CNR compared to the image reconstructed with the proposed architecture.
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	.1: Dataset Description
	Dataset Statistics	
	Modalities	CT
	Number of Participants	355
	Number of Studies	436
	Number of Series	1295
	Number of 2-D Image slices 251,135
	CT Matrix size	512

TABLE 5

 5 

		.2: Quantitative comparison of various reconstruction
	algorithms with SSIM and PSNR for projections with 60 views
	Metric FBP PWLS-TV	FBP	LRRCED LRRCED
				ConvNet	(D)	(U)
	SSIM	0.16	0.66	0.90	0.89	0.90
	PSNR 11.57	28.23	31.58	30.04	30.20

TABLE 5 .

 5 3: Quantitative comparison of various reconstruction algorithms with SSIM and PSNR for projections with 90 views

	Metric FBP PWLS-TV	FBP	LRRCED LRRCED
				ConvNet	(D)	(U)
	SSIM	0.19	0.72	0.93	0.91	0.92
	PSNR 13.57	30.21	35.27	32.70	32.86

TABLE 5 .

 5 4: Quantitative comparison of images reconstructed with the proposed algorithms w.r.t. GT across different slices in the patient volume from the real dataset displayed in Fig.5.11

	Image Metric LRRCED(D) LRRCED(U)
	a	SSIM	0.89	0.92
		PSNR	35.70	36.64
	b	SSIM	0.88	0.92
		PSNR	35.19	36.13
	c	SSIM	0.94	0.92
		PSNR	40.86	42.04
	d	SSIM	0.84	0.91
		PSNR	33.37	34.59

  5.13 we have the average SSIM vs Patient plot for single concatenation at a specific resolution. Similarly Figure 5.14 consists of plots for double concatenation at two different resolutions. The double concatenation at 64 × 64, 128 × 128 overall leads to the best metrics, thus becoming our choice for the experiments in this work. These results are tabulated in Table 5.5. One of the biggest challenges in any data driven algorithm is the selection of training examples required for the experiments. It is important to analyze this hyper-parameter as it serves as an important factor for the network to be reproducible and scalable. We varied the number of training examples for the best concatenation setting from the previous section and the 90-view scenario. The evaluation was similar to the previous experiment with the average SSIM for 5 patients. The results from these experiments are tabulated in Table 5.6. As seen in Figure 5.15, the performance of the network improves along with the increase in the number of training examples. There is however a marginal difference in the performance of the network when trained with 20,000 or 30,000 training examples, hence making us choose 20,000 training examples as the optimum number for this hyper-parameter. The average SSIM values across the test patients tend to get similar as the number of training examples increases.

	Training Examples Analysis

TABLE 5

 5 

		.5: Average SSIM for different configurations of con-
				catenations	
		Concatenated		Average SSIM
		FBP Resolution	P1	P2	P3	P4	P5
		(32 × 32)	0.82 0.86 0.88 0.86 0.80
		(64 × 64)	0.85 0.88 0.90 0.88 0.82
		(128 × 128)	0.85 0.87 0.90 0.89 0.81
		(256 × 256)	0.58 0.88 0.85 0.88 0.79
		(512 × 512)	0.66 0.78 0.82 0.75 0.73
		(32 × 32, 64 × 64)	0.83 0.77 0.80 0.80 0.68
		(64 × 64, 128 × 128) 0.85 0.88 0.91 0.89 0.83
		(128 × 128, 256 × 256) 0.67 0.78 0.83 0.84 0.70
		TABLE 5.6: Average SSIM for different number of training ex-
				amples		
		Number of Training		Average SSIM
		examples	P1	P2	P3	P4	P5
		1, 000	0.82 0.79 0.86 0.85 0.72
		5, 000	0.84 0.77 0.86 0.84 0.69
		10, 000	0.85 0.88 0.91 0.89 0.83
		20, 000	0.89 0.90 0.91 0.90 0.82
		30, 000	0.89 0.89 0.90 0.90 0.82
		TABLE 5.7: Ablation Study: Quantitative comparison of differ-
			ent configurations of the DenseNet
	Sl.No.	True	Concatenations Gaussian noise SSIM PSNR
		sinograms			sinograms
	(i)						0.29	12.05
	(ii)						0.70	28.89
	(iii)						0.88	32.53
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i.e., low-count and high-count sinograms, considering multiple noise levels. The detailed architecture is represented in Figure 4.2. We defined the loss function between a true sinogram y = [y 1 , . . . , y n ] ∈ R n and a prediction ŷ = [ ŷ1 , . . . , ŷn ] ∈ R n as the MSE:

where, n is the number pixels on the sinogram, corresponding to the number of detectors in the scanner. 

. ,N do

Train G 2 : minimizing L G 2 ; end for j = 1,2,. . . ,N do Train combined architecture, freezing the weights of G 2 : minimizing L G 1 +G 2 ; end end

Super Resolution

The function of the SR is to improve the estimate produced by the image reconstruction network. Several works already exist concerning single image super resolution [START_REF] Ledig | Photo-realistic single image super-resolution using a generative adversarial network[END_REF][START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF]. In this work we employed a basic super residual network architecture to improve the reconstruction. It consists of convolutional blocks followed by batch normalization with parametric rectified linear unit (PReLU) activation. There were a total of 8 residual blocks in the network as represented in Figure 4.4. The loss function used in this architecture was perceptual loss:

VGG 16 (x ) and VGG 16 ( x) are the extracted features with VGG 16 convolutional neural network (Simonyan and Zisserman, 2014) for the true and predicted image.

The features are extracted from the 10th layer of the VGG architecture i.e., only the first three convolutional blocks are considered. We observed that extracting deeper features led to the network hallucinating features in the reconstructed images.

Dataset Description

We applied our methodology on fluorothymidine (FLT) PET/CT images from the American College of Radiology Imaging Network (ACRIN) FLT Breast