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Introduction

0.1 Motivation

The use of deep learning in medical imaging has been on the rise over the
last few years. It has widely been used in various tasks across medical imag-
ing such as image segmentation (Ronneberger, Fischer, and Brox, 2015; Guo
et al., 2019; Sinha and Dolz, 2019; Dolz et al., 2018; Hatt et al., 2018), im-
age denoising (Kadimesetty et al., 2018; Li et al., 2020b; Chen et al., 2017;
Yang et al., 2018), image analysis (Litjens et al., 2017; Amyar et al., 2019; Cui
et al., 2018). Deep learning based algorithms produce faster results along
with best possible quality in accordance with existing state of the art meth-
ods (Leuschner et al., 2021). Medical image reconstruction too has benefited
hugely with the advancement of deep learning (Reader et al., 2020; Zhang
and Dong, 2020). Medical image reconstruction corresponds to the task of
mapping raw projection data retrieved from the detector to image domain
data. During the course of this thesis, the focus has been towards PET and
CT image reconstruction. Both these modalities present a unique of set of
challenges for image reconstruction.

PET imaging is a form of emission tomography wherein the image re-
construction task revolves around identifying the radio-tracer distribution
emitted from the patient. A PET image gives functional information about
the organs in a patient making it invaluable for oncology. Some of the chal-
lenges in PET image reconstruction are scatter, attenuation and difficulty in
identifying the exact positron emission point. Despite being the most sen-
sitive emission tomography modality, the number of photons captured is
low relative to the photons emitted contributing to further image degrada-
tion. These challenges result in very noisy images when reconstructed with
analytical algorithms. These challenges are addressed by iterative/model-
based approaches which take into account detector geometry, noise statistics
and approximate scatter and attenuation correction resulting in better image
quality.
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CT imaging on the other hand is an example of transmission tomography.
The extent of attenuation undergone by X-Rays that pass through a patient
are measured to obtain attenuation maps. In CT imaging research, there has
been active interest in sparse-view and low-dose reconstruction scenarios.
In both cases, severe artifacts are introduced in reconstructed images either
due to incomplete projections or low counts. Many established model-based
iterative methods account for the low-dose and sparse-view settings to re-
move artifacts and noise from the reconstruction (Nuyts et al., 1998; Elbakri
and Fessler, 2002a; Liu et al., 2013). However, these methods require the
knowledge of the noise and artifacts statistics and generally have longer re-
construction times (Kim, Ramani, and Fessler, 2014).

The main tasks involved in image reconstruction can be broadly catego-
rized into three: sinogram correction, domain translation from sinogram to
image, and image correction. Algorithms either tackle each of the tasks in-
dividually or simultaneously account for them. One can relate to these tasks
in the domain of computer vision wherein deep learning architectures have
revolutionized the field by producing the state of the art results in most appli-
cations (Guo et al., 2016). For example, effective use of deep learning-based
methods is seen in dealing with image denoising (Kadimesetty et al., 2018;
Li et al., 2020b; Chen et al., 2017; Yang et al., 2018), super resolution (Ledig
et al., 2017; Lim et al., 2017) and image-to-image translation tasks (Isola et al.,
2017; Zhu et al., 2017). The continuous improvement in the availability of
public data has further propelled interest in data-driven medical image re-
construction making it an active area of research. This thesis aims to explore
novel deep learning approaches for PET and CT image reconstruction. Most
common ways to introduce deep learning architectures in the image recon-
struction pipeline are for pre-processing to correct raw projection data from
the detector and post-processing to improve images reconstructed with ex-
isting methods. Another way is to embed the network into an iterative algo-
rithm to enable faster convergence. The relatively less explored way called
direct image reconstruction is to utilize neural networks alone for the en-
tire reconstruction process. In this thesis two novel CNN-based approaches
namely DUG-RECON and LRRCED are proposed. The common feature of
both these methods is the use of sinogram information to obtain the recon-
structed image. The first approach is a direct neural network reconstruction
framework that reconstructs images using the sinogram alone as it’s input,
without any image estimate from traditional methods. It is demonstrated on
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both PET and CT data. The second approach utilizes low-resolution FBP im-
ages along with the sinogram to learn the domain mapping. Although this
method is demonstrated on the sparse-view CT problem in this manuscript,
it can be extended to other modalities too.

0.2 Thesis Organization

This thesis is divided into six chapters with the first two chapters giving a
general introduction to image reconstruction and neural networks respec-
tively. The third chapter presents the relevant literature review, wherein the
application and impact of deep learning in image reconstruction research fo-
cused on PET and CT is presented. The next two chapters elaborate the dif-
ferent deep learning-based methods proposed in the thesis. In chapter 4, we
discuss reconstruction framework DUG for PET and CT image reconstruc-
tion. A novel method for Sparse-view CT reconstruction called LRRCED is
covered in chapter 5. Potential improvements and ideas for future work are
presented in the final chapter.
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Introduction (French)

L’utilisation de l’apprentissage profond en imagerie médicale est en plein es-
sor depuis quelques années. Il a été largement utilisé dans diverses tâches
d’imagerie médicale telles que la segmentation, le débruitage et l’analyse
d’image. Les algorithmes basés sur l’apprentissage profond produisent des
résultats plus rapidement avec une qualité supérieures aux résultats obtenus
avec des méthodes conventionelles. La reconstruction des images médicales
a bénéficié énormément des progrès de l’apprentissage profond. La recon-
struction des images médicales correspond à la tâche de «transformer» les
données de projection brutes récupérées sur détecteur vers le domaine de
l’image. Dans cette thèse, l’accent a été mis sur la reconstruction des images
TEP et TDM. Toutes les deux modalités présentent un ensemble de nouveaux
pour la reconstruction d’images.

L’imagerie TEP est une forme de tomographie d’émission dans laque-
lle la tâche de reconstruction d’image s’articule autour de l’identification
de la distribution des radio-traceurs émis par le patient. Une image TEP
donne les informations fonctionnelles sur les organes d’un patient, ce qui
la rend inestimable pour l’oncologie. Quelques défis dans la reconstruc-
tion d’images TEP sont la diffusion, l’atténuation et l’identification du point
d’annihilation électron-positron. Bien qu’il s’agisse de la modalité de tomo-
graphie par émission la plus sensible, le nombre de photons capturés est
faible par rapport aux photons émis contribuant à une dégradation supplé-
mentaire de l’image. Ces défis, en effet, produit des images très bruitées
lorsqu’elles sont reconstruites avec des algorithmes analytiques. Ces défis
sont relevés par des approches itératives basées sur des modèles qui pren-
nent en compte la géométrie du détecteur, le modèle statistique du bruit et
une correction de la diffusion et de l’atténuation résultant en une meilleure
qualité de l’image.

L’imagerie TDM est un type de tomographie par transmission. L’atténuation
subie par les rayons X qui traversent un patient est mesurée afin d’obtenir des
cartes d’atténuation. La recherche en imagerie TDM, s’intéresse aux scénar-
ios de reconstruction à vues parcimonieuses (sparse-view) et à faible dose.
Dans les deux cas, des artefacts sont introduits dans les images reconstruites,
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soit en raison de projections incomplètes, soit en raison du faible rapport
signal-sur-bruit. Plusieurs méthodes itératives basés sur des modèles étab-
lis tiennent compte des paramètres de faible dose et de vue dispersée pour
éliminer les artefacts et le bruit de la reconstruction. Cependant, ces méth-
odes sont coûteuses en temps de calcul.

Les tâches principales impliquées dans la reconstruction d’image peuvent
être classées en trois catégories : la correction du sinogramme, la transfor-
mation du sinogramme en image et la correction d’image. Les algorithmes
traitent chacune des tâches individuellement ou simultanément. Ces dernier
temps, les méthodes basées sur l’apprentissage profond ont révolutionné
l’imagerie par ordinateur : débruitage, super résolution et recalage. L’amélioration
continue de ces méthodes ainsi que la disponibilité des données ont propulsé
l’intérêt pour la reconstruction d’images médicales par apprentissage pro-
fond.

Cette thèse vise à explorer de nouvelles approches d’apprentissage appro-
fondi pour la reconstruction d’images TEP et TDM. En général, les méthodes
d’apprentissage profond dans pour la reconstruction d’image consistent à
effectuer un prétraitement pour corriger les données de projection brutes du
détecter et un post-traitement pour améliorer les images reconstruites avec
les méthodes existantes. Une autre façon consiste à intégrer le réseau dans
un algorithme itératif pour permettre une convergence plus rapide. La 3ème
voie, qui est la moins explorée, consiste à utiliser les seuls réseaux de neu-
rones pour l’ensemble du processus de reconstruction. C’est la reconstruc-
tion directe.

Dans cette thèse, deux nouvelles approches basées sur les réseau de neu-
rones convolutifs, à savoir DUG-RECON et LRRCED. La caractéristique com-
mune de ces deux méthodes est l’utilisation des informations du sinogramme
pour obtenir une image structurée. La première approche est propose un
cadre de reconstruction de réseau neuronal direct qui reconstruit des images
en utilisant le sinogramme seul comme donnée d’entrée, sans aucune esti-
mation d’image à partir de méthodes traditionnelles. Nous l’avons validé à
la fois sur les données TEP et TDM. La deuxième approche utilise des im-
ages obtenue par rétroprojection filtré basse résolution avec le sinogramme
pour apprendre le la transformation vers le domaine image. Bien que cette
méthode ait été uniquement validée sur le problème de TDM à vues parci-
monieuses dans ce manuscrit, il peut également être étendu à d’autres modal-
ités.
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Chapter 1

Image Reconstruction

Tomography is the process of observing an object through its cross-sections.
It is a non-invasive technique where the interior of an object is visualized
without any clinical intervention. In tomographic imaging usually a detector
measures the radiation after it’s interaction with the object. The measured
data is transformed into comprehensible images that can be analyzed by a
specialist. This process of mapping measured data into images is called as
image reconstruction. This chapter presents an introduction to the imaging
principles of PET and CT. Analytic and model-based iterative reconstruction
(MBIR) methods are then discussed both from a general standpoint and with
algorithms specific to the respective imaging modality.

1.1 PET

PET images provide functional information to the radiologist making them
invaluable in image analysis. The application of PET imaging has been on the
rise in oncology, cardiology and neuropsychiatry. The increased application
lead to the development of many novel reconstruction approaches targeting
better image quality. PET is a form of emission tomography wherein the
patient to be imaged emits radiation which is collected by a detector. This
emission is a result of positron emitting radionuclide injected into the pa-
tient which causes positron-electron annihilation. Typical radio-tracers used
in PET are 18F-fludeoxyglucose (18F-FDG), fluorothymidine (FLT), rubidium
chloride, etc. Each of these radio-tracers is characterized by a positron emit-
ting radio isotope. The positron decay for a radioactive nuclei (18F for exam-
ple) can be written as follows:

18
9 F→ o

+1β + 18
8 O
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The positron emitted (o
+1β) is an unstable particle and it almost immediately

annihilates with an electron. This annihilation results in the production of
gamma photons that travel in opposite directions in accordance with the law
of conservation of momentum. The simultaneous detection of these photons
(also called coincidence events) enables the estimation of tracer distribution.
The aim of image reconstruction in PET is to determine this tracer distribu-
tion. A PET scanner detects the coincidence events through a set of detectors
arranged in a circular fashion. This design of the scanner facilitates detection
of coincidence photons between a pair of detectors (dp and dq). The centers
of two detectors are connected by a straight line called LOR. Photon pairs
that are not subject to scatter are a result of annihilation events that occur
along a thin volume surrounding the LOR. In PET, f is the distribution of a
radiotracer delivered to the patient by injection, and is measured through the
detection of pairs of γ-rays emitted in opposite directions (indirectly from the
positron-emitting radiotracer).

d
p

d
q

x

y

s
ɸ

FIGURE 1.1: Depiction of a circular PET detector with detectors
dp and dq connected with a LOR indicated in gray.

The number of detected coincidence events is related to the LOR (Ldp,dq)
connecting the centers of detectors dp and dq through a sensitivity function
ψ(~r = (x, y, z)). It is a Poisson variable whose mean can be written as:

pdp,dq = τ
∫

FOV
λ(~r)ψdp,dq(~r)d~r (1.1)
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where λ(~r) denotes tracer concentration and τ is the acquisition time. The
tracer concentration is assumed to be contained within the field of view (FOV).
The reconstruction task can be summarized as estimating tracer concentra-
tion λ, given measured data pdp,dq , (dp, dq) = 1, . . . , NLOR. Analytic recon-
struction algorithms use the above linear model and assume ψ is a uniform
distribution along dp and dq, such that the measurement data is corrected for
non-linear effects like scatter and random coincidences. The measured data
are therefore modeled as line integrals of tracer distribution λ:

pdp,dq =
∫

Ldp ,dq

λ(~r)d~r (1.2)

The coincidences from the detector are typically rearranged either in list-
mode or sinogram format. List mode data is a sequential recording of coinci-
dence events. Time and energy of each detected photon can also be recorded.
It has special significance in time of flight imaging for PET. Most analytical
reconstruction algorithms on the other hand are tailor made for sinogram
data format. Fig 1.1, represents a trans-axial slice of a PET scanner. One can
model 2-D sinogram model with this representation. The variables s and φ

are utilized to relate the LOR to the Cartesian co-ordinates (x, y). The radial
variable s is the distance between the center of the detector ring and the LOR,
while angular variable (φ) gives the orientation of the LOR. For a co-ordinate
t along the line, Eq 1.2 now becomes:

p (s, φ) =
∫ ∞
−∞ λ(x = s cos φ + t sin φ, y = s sin φ + t cos φ) dt (1.3)

Through the line integral approximation and keeping in context the cor-
rected PET data, pdp,dq ≈ p(s, φ). The function that maps the tracer distribu-
tion onto the line integrals is called as the x-ray transform. It is equivalent to
the 2D version of the Radon transform.

1.2 CT

CT imaging is a form of transmission tomography. The high resolution im-
ages obtained from CT scans have many applications. They are extensively
used in diagnosis of muscle, tissue and bone disorders. They serve a guide
for surgery planning and also to pin-point exact location of tumors. In emer-
gency situations like a road accident, CT scan is utilized to check for inter-
nal bleeding. However, the radiation passed through the patient has been a
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topic of constant debate in this imaging modality. Research in recent times
has been focusing on methodologies to reduce radiation while keeping the
image quality intact.

A typical CT imaging setup consists of a X-ray source, the object to be
imaged and detectors to measure the extent of attenuation experienced by
the X-rays. When X-rays are passed through an object they suffer attenua-
tion due to scatter and absorption. Scattering occurs when a X-ray photon
dislodges an electron by transferring a part of it’s energy. This phenomenon
also called Compton scatter is depicted in Fig 1.2.

displaced 
electron

Lower energy 
photon after 
scatter

Incident 
X-ray photon

FIGURE 1.2: Depiction of Compton scatter

Complete absorption happens through photo-electric effect where the en-
tire energy of the x-ray photon is transferred to the electron. The difference
is seen in Fig 1.3, where the incident photon disappears after scatter.

displaced 
electron

Incident 
X-ray photon

FIGURE 1.3: Depiction of Photo-electric effect

Different materials exhibit different absorption properties hence have unique
linear attenuation co-efficient. Let the intensities of incident x-ray and the one
after absorption be I0 and I respectively. From Beer-Lambert’s law, for beam
i we have:
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Ii = I0 · exp(−pi) (1.4)

pi =
∫

Li

µ(~r)d~r (1.5)

where pi is the line integral of attenuation coefficients along the path of the
x-ray photons. Similar to 1.2, measured data in CT can be modeled with line
integrals p:

pi = ln
Ii

I0
(1.6)

The material specific property of attenuation µ varies with the energy of the
incoming X-ray. It reduces with the increase in energy of the X-ray.

Over the years many imaging geometries have been developed to maxi-
mize detector efficiency and obtain better image quality. The first generation
of CT scanners consisted of X-ray beam source and a small detector that ro-
tated and linearly translated around the patient. It had much longer scanning
time compared to modern CT scanners. The second generation setup con-
sisted of fan-beam source with an array of detectors. The motion was similar
to that of the first generation. The third generation fan beam geometry is de-
picted in Fig 1.4, the motion was restricted to rotation of the source-detector
setup. The fourth generation consisted of stationary circular array of detec-
tors similar to PET with a rotating source.

Fan-beam
Source

Object

Detector series

FIGURE 1.4: Fan-beam geometry: the source and the detector
rotate around the object

A representation of a modern helical cone beam scanner is shown in Fig 1.5.
The cone-beam source is rotated around the patient while the bed translates
linearly resulting in a helical orbit. The detector is a 2D array of crystals
making it more efficient and faster for data acquisition.
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FIGURE 1.5: Cone-beam geometry: the source rotates around
the patient while the bed is translated creating a helical scan.

1.3 Analytic Reconstruction

This section discusses analytic reconstruction applicable to both PET and CT
imaging. The image is referred to as f and it is assumed to represent the
activity distribution λ for PET and the attenuation µ for CT. The line integrals
can be represented using angular co-ordinates (s, φ), indicated in Figure 1.1
as follows:

p(s, φ) =
∫

Ls,φ

p(~r)d~r (1.7)

where Ls,φ is the line of response along the radial variable s at an angle φ.
The starting point of analytic reconstruction is the central slice theorem. It
states that 2D Fourier transform of the image f is related to the 1D Fourier
transform of the x-ray transform as follows:

P(v, φ) = (F f )
(
vx = v cos φ, vy = v sin φ

)
(1.8)

where F indicates Fourier transform in s, v is the frequency variable associ-
ated with s and the 1-D Fourier transform of the line integral p(s, φ) is:

P(v, φ) = (F p)(v, φ) =
∫

R
p(s, φ) exp(−2πisv)ds (1.9)

In the context of tomographic image reconstruction this theorem has the fol-
lowing implication: given the measurement data for all projection angles
φ ∈ [0, π], the radial line sweeps all the frequencies hence making it possible
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to compute f (vx, vy) for (vx, vy) ∈ R2. The image f can then be estimated
by finding the inverse 2D Fourier transform. This result leads to the filtered
back-projection algorithm which can be written as follows:

f (x, y) =
∫ π

0 pF(s = x cos φ + y sin φ, φ)dφ (1.10)

where filtered projections pF are given by

pF(s, φ) =
∫

p
(
s′, φ

)
h
(
s− s′

)
ds′ (1.11)

and h is the ramp filter given by

h(s) =
∫ ∞

−∞
|v| exp(2πιsv)dv (1.12)

The function mapping from pF to f is the back-projection operator. In real-
ity discrete sampling is required to accurately model the acquisition process.
The discrete implementation of the FBP can be written as follows:

x(i, j) =
π

Nφ

Nφ−1

∑
l=0

y f (s = i cos φl + j sin φl, φl) (1.13)

where x is the image for a set of pixels (i, j), y f are the filtered projections,
expressed in terms of radial variable s and projection angle φ, and Nφ is the
number of projection angles. The above equation is the approximation of
backprojection by a discrete quadrature.

1.4 Model-Based Image Reconstruction (MBIR)

Analytical methods are faster to implement and practical in a clinical set-
ting but they are vulnerable to noise. The assumptions made in analytical
algorithms are that the measurements are continuous and the solutions are
of integral formulation. Sampling is done to the data a posteriori. They are
also highly susceptible to system geometry. Since the 80’s, MBIR techniques
(Shepp and Vardi, 1982a; Fessler, Sonka, and Fitzpatrick, 2000) became the
standard approach. As they model the stochasticity of the system, they are
more robust to noise as compared with FBP, and can be completed with a
penalty term for additional control over the noise (De Pierro, 1995). They
also incorporate corrections for scatter and are independent of detector ge-
ometry.
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1.4.1 Data Model for PET

The starting point of any model-based method is the data model. The mea-
surement y is a random vector modeling the number of detected photons at
each of the n detector bins, and it follows a Poisson distribution with inde-
pendent entries:

y ∼ Poisson(ȳ(λ)) (1.14)

where ȳ(λ) ∈ Rn is the expected number of counts (noiseless), which is a
function of the image λ ∈ Rm, represented by m voxels. The expected num-
ber of counts is

ȳ(λ) = Aλ + r (1.15)

where A ∈ Rn×m is a system matrix that accounts for the detector geometry,
attenuation and the resolution model and r is a term to model scatter and
random events. Each entry [A]i,j represents the probability that a photon
pair emitted from voxel j is captured at detector i. Image reconstruction is
achieved by finding a suitable image λ̂, which when represented with 1.15 is
in agreement with 1.14, and follows a cost function L:

λ̂ = argmin
λ≥0

L(λ) (1.16)

L(λ) for PET is given by the log of the Poisson likelihood.

L(λ) = log Pr(y | ȳ(λ)) (1.17)

where

Pr(y | ȳ(λ)) =
n

∏
i=1

exp(−ȳi(λ))
ȳi(λ)

yi

yi!
(1.18)

Putting 1.15 in 1.18, taking log and dropping terms that do not depend on
unknown image λ we get,

L(λ) =
n

∑
i=1

{
−

m

∑
j=1

ai,jxj + yi log

(
m

∑
j=1

ai,jxj

)}
(1.19)

where ai,j are the elements of system matrix A, and the definition of other
variables is consistent from above. As long as the matrix A is singular, the
above cost function remains convex and results in a unique image.
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Maximum Likelihood Expectation Maximization (MLEM)

One of the most famous methods to solve 1.16 is the maximum likelihood
expectation-maximization (MLEM) algorithm (Shepp and Vardi, 1982b). The
update step to map from the current estimate xN to the next estimate xN+1

can be written as follows:

xN+1
j = xN

j
1

∑n
i′=1 ai′,j

n

∑
i=1

ai,j
yi

∑m
j′=1 ai,j′xN

j′
; j = 1, . . . , m (1.20)

The initial estimate x1
j , typically follows a uniform distribution. j′ is the

forward projection operation. Hence it estimates the measured data for the
current image estimate. The numerator with sum over index j is the back
projection over the ratio of measured and estimated data. The MLEM algo-
rithm does not include a prior and it converges to the image that best fits the
data. This estimate has inherent instabilities as the fitting is done closely to
the noisy measured data.

Ordered Subsets Expectation Maximization (OSEM)

The ordered-subsets expectation-maximisation (OSEM) algorithm is a mod-
ification of the MLEM algorithm which made it computationally practical
for implementation in clinical setting. The LOR data is divided into S dis-
joint subsets: J1, · · · , JS ⊂ [1, · · · , NLOR ]. Each of the parallel projection is
assigned to a unique subset: c, c + S, c + 2S, · · · ,≤ Nφ to the subset Jc+1.
MLEM (Eqn 1.20) is applied to each of the subsets individually in an orderly
fashion. Subset JN mod S is used at iteration N:

xN+1
j = xN

j
1

∑i′∈JN mod S
ai′ ,j

∑i∈JN mod S
ai,j

yi
∑m

j′=1 ai,j′ x
N
j′

j = 1, . . . , m
(1.21)

1.4.2 Data Model for CT

Let an image be represented by µ ∈ Rm and the scanner measurement by b ∈
Rn where m is the number of voxels and n is the number of measurements. In
2-D CT imaging n depends on the number of detectors Nd and the number of
angles Na. The task of medical image reconstruction corresponds to finding
a mapping from b to µ. The measurement b is a random vector modeling
the number of detection (photon counting) at each of the n detector bins, and
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follows a Poisson distribution with independent entries, i.e.,

b ∼ Poisson(b̄(µ)) (1.22)

where, b = [b1, . . . , bn]> ∈ Rn and b̄(µ) = [b̄1(µ), . . . , b̄n(µ)]> ∈ Rn is the
expected number of counts (noiseless), which is a function of the image µ.

The image µ ∈ Rm is a vectorized input image (also referred to as attenu-
ation) representing the measure of X-rays absorbed or scattered as they pass
through the patient. In a monochromatic setting, the expected number of
counts b̄(µ) is given by the Beer-Lambert law, i.e.,

b̄i(µ) = Bi · exp(−[Aµ]i) ∀i = 1, . . . , n (1.23)

where, Bi is the blank scan value at i and A ∈ Rn×m is a system matrix such
that each entry [A]i,j represents the contribution of the j-th image voxel to the
i-th detector. Given the raw projections b̄, we take the logarithm as follows

yi = log
(

Bi

bi

)
∀i = 1, . . . , n (1.24)

where we assumed that the intensity I is sufficiently high so that bi > 0
for all i. Image reconstruction is based on finding a suitable image µ̂ that
approximately solves

y = Aµ̂ (1.25)

where y = [y1, . . . , yn]> ∈ Rn.

Maximum Likelihood for Transmission tomography (MLTR)

The MLEM algorithm was implemented for transmission tomography by
Lange and Carson, 1984. A practical version of the same with a gradient
ascent algorithm called maximum likelihood for transmission tomography
(MLTR) was proposed for helical beam geometry by Nuyts et al., 1998. The
image reconstruction problem for CT can be summarized as finding a suit-
able image µ̂, which when represented by 1.23 in agreement with 1.22, fol-
lows a cost function L:

µ̂ = argmax
µ>0

L(µ) (1.26)
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Similar to PET, the cost function for CT follows a Poisson likelihood that can
be given as follows:

Pr(b | b̄(µ)) =
NLoR

∏
i=1

exp(−b̄i(µ))
b̄i(µ)

bi

bi!
(1.27)

L(µ) = log Pr(b | b̄(µ)) (1.28)

The update step for MLTR can be given as follows:

µN +1
j = µN

j +
α

m

(
1− ∑i aijyi

∑i aijBi exp
(
−∑ξ aiξµξ

)) (1.29)

where α is the relaxation parameter.

Weighted Least Squares (WLS)

One of the most common iterative techniques for CT image reconstruction
is the weighted least squared (WLS) method, which approximates 1.28 to
obtain the image µ̂ estimate as follows:

µ̂ = arg min
µ�0

1
2
‖y− Aµ‖2

W (1.30)

where W = diag {wi} is the diagonal weighting matrix that constitutes for
the variance of each ray and ‖z‖2

W = z′Wz (Elbakri and Fessler, 2002b). The
weighting matrix accounts for the recorded x-ray intensity and electronic
noise. Despite the statistical weighting, due to the ill-conditioned problem
of image reconstruction, the image estimate will still be noisy.

1.4.3 Penalized MBIR

An improvement to the above mentioned MBIR algorithms can be brought
by finding a balance between the desired a priori characteristics of the im-
age and the data fitting. This balance is realized through a regularized cost
function.

x̂ = argmin
x>0

− L(x) + βR(x) (1.31)

where R(x) is the regularizer and β is the regularization parameter that con-
trols the balance between the data fidelity term and the regularization. Here
the image x = λ or µ and the objective function L(λ) or L(µ) from equations
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1.17,1.28 corresponding to PET or CT. The effect of a regularizer is usually to
encourage the image to be piece-wise smooth. One such form of regulariza-
tion is introduced through an edge preserving regularizer that penalizes the
differences between neighboring voxels:

R(x) =
m

∑
j=1

∑
k∈Nj

wjkψ
(
xj − xk

)
(1.32)

where ψ is a potential function that controls the penalization of differences
in the neighboring voxels and Nj are the set of neighboring indices of the jth

voxel. The weights wjk help in incorporating details from anatomical images
like MRI. A host of iterative algorithms have been proposed to solve the op-
timization problem with regularization both for PET and CT. For PET, De
Pierro, 1995 proposed a modified version of the MLEM algorithm to include
regularization. The update step to include a prior of the form in 1.32 with a
quadratic potential can be written as:

xN+1
j =

2xEM
j(

1− βvjxSM
j

)
+

√(
1− βvjxSM

j

)2
+ 4βvjxEM

j

(1.33)

where xEM is the current estimate using the MLEM update step from 1.20,
s = AT1 is the sensitivity image,

vj =
∑m

l=1 wjl

sj
(1.34)

xSM is the edge-constrained, weighted smoothing factor of the current esti-
mate:

xSM
j =

1
2 ∑m

l=1 wjl

m

∑
l=1

wjl

(
xN

j + xN
l

)
(1.35)

Quadratic functions with ψ(t) = 1
2 t2 are easier to implement but they

increase rapidly leading to the loss of resolution with blurred edges. To
counteract this blurring, potential functions that increase at a lower rate than
quadratic functions are used. An example is the hyperbola given by ψ(t) =√

δ2 + t2 − δ. This function becomes quadratic when the neighboring vox-
els differ by a value that is less than δ. Erdogan and Fessler, 2002 used the
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optimization transfer principle to propose algorithms for penalized trans-
mission tomography reconstruction. They used surrogate paraboloidal func-
tions (SPF) that guarantee monotonicity for the log likelihood. The optimiza-
tion problem is essentially divided into simpler parts at each iteration. The
weights of the regularization estimate xSM given in 1.35 can be modified at
each iteration to reflect a different prior appropriate to the surrogate function
at that iteration.

Another way of tackling the edges is to have ψ(t) = |t| also called as to-
tal variation (TV). This form of prior does not meet the necessary conditions
of the SPF algorithm and one needs to use different types of solver to esti-
mate the image. One such solver is alternating direction method of multipli-
ers (ADMM) (Boyd, Parikh, and Chu, 2011). Complex image reconstruction
problems like sparse-view CT are under-determined due to the limited num-
ber of projection data available for reconstruction. In such a scenario stronger
forms of regularization like TV are utilized.
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Chapter 2

Neural Networks

Neural networks, also known as artificial neural networks (ANN) are ma-
chine learning algorithms that form the basis of deep learning. They inherit
name and structure from neurons in the brain. Biological neurons trans-
mit signals to one another through complex networks. This interconnected
networking is realized though various combinations of neurons forming an
ANN. Sets of artificial neurons are stacked on top of each other to form a
layer. A typical neural network consists of many such layers that are con-
nected to each other. The first layer is called input layer, the final layer is
termed output layer and the layers in-between are called hidden layers. A
neural network with three hidden layers is depicted in Fig 2.1. The trans-
mission of data across the nodes or artificial neurons happens through the
connections. Each and every node has a specific weight and threshold asso-
ciated. The output from a node is passed through the connection only if the
value is above the threshold. Neural network approaches are data-driven.
Their performance improves as they learn through training on a dataset.

To further understand the working of a neural network, we can imag-
ine each node to be solving the problem of linear regression. For example
consider a node with four inputs (xi, i = 1, 2, . . . 4), four weights (wi, i =

1, 2, . . . 4) and a bias:

m

∑
i=1

wixi + bias = w1x1 + w2x2 + w3x3 + w4x4 + bias (2.1)

The output of the node is the above summation after going through an
activation function g:

output = g(x) =

{
1 if ∑i wixi + b ≥ 0
0 if ∑i wixi + b < 0

(2.2)

In the above example, the given activation function of this node propagates
the value 1 only when the weighted sum of it’s inputs is non-negative. When
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FIGURE 2.1: Depiction of a neural network with an input layer,
three hidden layers and an output layer

the condition of an activation function are met, the output of this node be-
comes an input to the node to which it’s connected. Due to the process of
forwarding values through a network, an ANN is also called feed-forward
network. Complex networks with multiple layers of these nodes are used for
various tasks. An important sub-category of machine learning is supervised
learning. It involves training a neural network on labeled datasets. The goal
of training a neural network is to minimize a cost function that enforces the
closeness of predicted and real output labels. During training the network re-
organizes it’s weights based on the loss function. Weights of the network are
updated through optimization. Each update is aimed at reaching a minimum
of the loss function. A popular optimization method is gradient descent.
It guides the model in the direction of reducing errors to reach an optima.
The development of back-propagation (Rumelhart, Hinton, and Williams,
1986) has been instrumental in successful implementation of optimization
algorithms for neural networks. A machine learning algorithm is typically
specified by a cost function, an optimization procedure and a model. Simi-
larly neural network design too is based on these principles. One can find a
co-relation between iterative reconstruction algorithms that rely on gradient-
based optimization and neural network training with gradient descent. It
is to be noted that the non-linearity in the activation functions causes loss
functions to become non-convex. This implies that gradient-based optimiz-
ers used for neural network training essentially drive the cost function to a
very small value without a global convergence guarantee. Neural networks
are initialized to small random variables prior to training, as gradient descent
without the convergence guarantee is sensitive to values of initial weights.
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2.1 Cost Function

Neural networks can be represented by parametric models that define a dis-
tribution p(y | x; θ). The aim is to learn a conditional distribution to predict
y given x. Through principle of maximum likelihood, cross-entropy between
the training data and the model’s predictions become the cost function. This
negative log-likelihood or cross-entropy between training data and model
distribution can be written as:

J(θ) = −Ex,y∼ p̂data log pmodel (y | x) (2.3)

Given a specific pmodel, the cost function exhibits a different form. Ex-
panding the above generates some terms which are discarded as they do not
depend on trainable model parameters. As an example, if pmodel follows a
Gaussian distribution N (y; f (x; θ), I), Equation 2.3 becomes:

J(θ) =
1
2

Ex,y∼ p̂data ‖y− f (x; θ)‖2 (2.4)

The above is equivalent to mean squared error (MSE) between the model
distribution and the training data and is one of the most commonly used loss
functions in training neural networks for linear regression. This approach of
deriving the cost function from maximum likelihood removes the difficulty
of choosing cost functions for each model. Choice of the model itself deter-
mines the cost function. Another popular loss function mean absolute error
(MAE) can be derived from 2.3 by assuming pmodel to follow a Laplacian dis-
tribution.

2.2 Output Unit

Neural networks as described above consists of an output layer after a se-
ries of hidden layers. The choice of cost function and output layer are highly
dependent on each other. The representation of the output, determines the
cross-entropy function. Given a set of hidden features defined by h = f (x; θ).,
the role of the output layer is to transform the features appropriate for the
task at hand. The most common choices for output layers are linear units
and sigmoid units. Given a set of features h, a linear layer outputs a vector
ŷ = W>h + b. A modification of a linear layer is rectified linear unit (ReLU)
given by g(z) = max{0, z}. The frequent usage of linear units is to find the
mean of a conditioned Gaussian distribution. For regression tasks the output
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unit typically has the linear activation. Tasks like binary classification require
to define Bernoulli distribution for the maximum likelihood approach. The
network needs to predict only p(y = 1 | x). The output value need to be in
the interval [0, 1]. In this scenario a sigmoid activation does the task of trans-
forming the hidden features into normalized probability value in the range
[0, 1]. A sigmoid output unit is defined by:

ŷ = σ
(

w>h + b
)

(2.5)

where σ is given by:

σ(x) =
1

1 + exp(−x)
(2.6)

The hidden units are usually preferred to have ReLU or variations of
ReLU as the activation in order to have significant gradients during opti-
mization.

2.3 Backpropagation

Consider a feedforward network with an input x that produces an output y.
The propagation through the network starts with initial information from the
inputs and continues through the hidden units at each layer, finally result-
ing in the output ŷ. This process is termed as forward propagation. Back-
propagation on the other hand computes the gradient by making the cost
flow backwards through the network. Forward propagation is carried on
during training to produce a scalar cost J(θ), which is then utilized by back-
propagation to compute the gradients. Back-propagation is a simplified way
for computing the gradients and is used with an optimization algorithm like
stochastic gradient descent for network training. The most important gradi-
ent required in learning algorithms is the one of cost function with respect to
learning parameters, ∇J(θ).

The neural network given in Fig 2.1 follows computational graph repre-
sentation. In order to discuss back-propagation, we formulate a simple nota-
tion using graphs. Each node in the graph can be considered to be a variable.
The variable could be of any type, say a scalar, vector or a matrix. Another
component of a computational graph is an operation. It is just a simple func-
tion based on one or more variables. An operation is assumed to return a
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single output variable, which could have single or multiple entries. A sim-
ple computational graph with one hidden layer and sigmoid output unit is
shown in Fig 2.2.

 h(1)

h(2)

b

w

x

ŷ

dot

+ σ

FIGURE 2.2: Computational graph with one hidden layer. The
nodes in the first layer store the input x, weight w and the bias
b. The second layer contains the hidden layer with 2 units each
with the corresponding operation written below. The final layer
is the output layer denoted by ŷ = σ(wx + b), where σ is the

sigmoid function defined earlier.

The gradients in the backpropagation algorithm are calculated by recur-
sively applying the chain rule of calculus. The chain rule is a process of com-
puting derivatives of functions based on multiple functions whose deriva-
tives are already known. Back-propagation is an efficient implementation of
chain rule with an order of operations feasible for computation. Let the input
x, b and w to be real numbers, and h1, h2 and ŷ be functions mapping from
one real number to another, the chain rule can be written as follows:

dy
dx

=
dy
dh2

dh2

dh1
dh1

dx
(2.7)

where h1 = xw, h2 = h1 + b from Figure 2.2. We can generalize the above for
a vector case with x, w, b ∈ Rm as follows:

∂y
∂xi

= ∑
j

∂y
∂h1

j

∂h2
j

∂h1
j

∂h1
j

∂xj
(2.8)

The chain rule involves many repeatable expressions which may need to
be stored to avoid multiple re-computations for estimating gradients. Espe-
cially for complex neural networks it would lead to an exponentially high
number of computations. A simplistic version of the backpropagation al-
gorithm for a fully-connected multi-layer perceptron (MLP) is discussed in
this section. For a supervised loss function L(ŷ, y), where ŷ is the predicted
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output and y the target, forward propagation for a single training example
is shown in Algorithm 1. After the forward propagation the gradient on
the cost function J is calculated and then propagated through the network
through back-propagation described in Algorithm 2.

Algorithm 1: Forward propagation algorithm for a single input ex-
ample x

Number of layers, l ;
Network weights represented by matrices, W (i), i ∈ {1, . . . , l} ;
Bias parameters, b(i), i ∈ {1, . . . , l} ;
Hidden units, h(i), i ∈ {1, . . . , n} ;
h(0) = x, . Initializing input nodes ;
for j = 1, . . . , l do

a(j) = b(j) + W (j)h(j−1) . information from previous layers;
h(j) = f (a(j)) . activation in the current layer;

end
ŷ = h(l) ;
J = L(ŷ, y) + λR(θ) . Cost function with a regularization ;

Algorithm 2: Backward propagation for neural network from Algo-
rithm 1

Computing gradient g of the output layer;
g = ∇ŷ J = ∇ŷL(ŷ, y)
for j = l, l − 1 . . . , 1 do

Convert the gradient on the layer’s output into a gradient into the
pre-nonlinearity activation (element-wise multiplication if f is
element-wise)

g = ∇a(j) J = g ◦ f
′
(a(j)) ;

Gradients on weights and biases ∇b(j) J = g + λ∇b(j)R(θ) ;
∇W (j) J = gh(j−1) + λ∇W (j)R(θ) ;
Propagating the gradients through the preceding lower lowel
activations;

g = ∇h J = W (j)ᵀg
end

2.4 Optimization

Once the gradients are calculated through backpropagation algorithm, op-
timization procedures like gradient descent can be use to update the net-
work parameters θ. The two algorithms in the previous section were demon-
strated for a single example. In reality neural networks are often trained in
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parallel on multiple examples. This set of combined examples is called a
batch and optimization algorithms are implemented accordingly for train-
ing in batches. In this section we discuss two of the most used optimization
algorithms stocastic gradient dscent (SGD) and ADAM.

2.4.1 Stochastic Gradient Descent

SGD is an implementation of the popular gradient descent algorithm for
training in batches. We obtain an estimate of the gradient by averaging the
gradient over a minibatch of m training examples taken from the data distri-
bution. SGD is depicted in Algorithm 3.

Algorithm 3: Training update at an iteration j for stocastic gradient
dscent (SGD)

Learning rate εj;
Current parameters θk;
while stopping criterion is not reached do

From the training set, sample m minibatch of examples
{x(1), . . . , x(m)} and corresponding targets {y(1), . . . , y(m)}

Computing average gradient:
ĝ = 1

m∇θj ∑m
i=1 L( f (x(i), θj), y(i))

Update: θj = θj − εĝ
end

The learning rate εj is gradually decreased as the training progresses, due
to the noise introduced by random sampling of minibatches.

2.4.2 ADAM

ADAM is another optimization algorithm which incorporates adaptive learn-
ing rate and momentum for faster convergence (Kingma and Ba, 2014). Mo-
mentum introduces velocity denoted by v that indicates speed and direction
for parameters to update through parameter space. It is typically set to an
exponentially decaying average of the negative gradient. Adam is derived
from adaptive momentum. It is depicted in Algorithm 4.

2.4.3 Universal Approximation Theorem

The wide usage of neural networks is a testimony of their ability to adapt
across multiple applications. This is based on the universal approximation
theorem which states that a feed-forward network with a linear output layer
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Algorithm 4: Adam algorithm
Step size ε default usually 0.001 ;
Exponential decay rates ρ1 and ρ2, typically set to 0.9 and 0.999 ;
Constant δ, a very small number for stabilization, usually in the order
of 10−8 ;

Parameters θ ;
1st and 2nd moment variables, initialized to s = 0, r = 0 ;
Time step t = 0 ;
while stopping criterion is not reached do

From the training set, sample m minibatch of examples
{x(1), . . . , x(m)} and corresponding targets {y(1), . . . , y(m)}

Computing average gradient:
ĝ = 1

m∇θj ∑m
i=1 L( f (x(i), θj), y(i))

t = t + 1
Update first momentum estimate: s = ρ1s + (1− ρ1)g
Update second momentum estimate: r = ρ2r + (1− ρ2)g ◦ g
Correct bias in first moment: ŝ = s

1−ρt
1

Correct bias in second moment: r̂ = r
1−ρt

2

Calculate parameter update: ∆θj = −ε ŝ√
r̂+δ

Update: θ = θ+ ∆θ
end

and at least one hidden layer with a non-linear squashing activation func-
tion (like sigmoid) can approximate any function mapping from any finite
dimensional discrete space to another provided that the network has enough
hidden units (Hornik, Stinchcombe, and White, 1990). This statement needs
to be taken with a pinch of salt as it does not guarantee determining the op-
timal parameters of the network. It merely acknowledges the existence of a
network that can represent the function in question. Training the network has
two major challenges. One, the optimization process involved in training the
network may not be able to find the network weights suitable to represent the
function due to inadequate data (under-fitting problem). Two, the training
could lead to a set of parameters that do not generalize well for the test data
(over-fitting). Depending on the application and the data, network design
is subject to change. The best network parameters that generalize well are
usually obtained empirically through careful and logical experimentation.
In theory a network with a single layer is sufficient to learn the representa-
tion but it would need to be very large and therefore may fail to generalize.
Hence, deeper architectures with multiple hidden layers are preferred over
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shallow network with infeasible number of neurons. In the next section, spe-
cialized deep neural network, suitable for images called convolutional neural
network (CNN) is discussed.

2.5 Convolutional Neural Network

The neural network depicted in 2.1 is an example of densely connected net-
work, where all the neighboring nodes are connected with one another. As
the size of data increases (say large image data), and the network becomes
more complex, the number of parameters increases exponentially. To ad-
dress this and also to be more suitable for image data CNNs were formu-
lated. CNNs are extensively used in computer vision tasks like image classi-
fication, object detection, image segmentation (Voulodimos et al., 2018). The
three main building blocks of a CNN are Convolution, Activation and Pool-
ing. Each of these layers is discussed below:

2.5.1 Convolution

Images are digitally stored in the form of 2D or 3D matrices depending on
the format. A convolution kernel (also known as filter) is a matrix that oper-
ates on these images and transforms them based on the kernel values. These
kernel values are also known as weights in the neural network terminology.
Typically, the size of the kernel is much smaller than that of the image. Many
sets of these kernels form the convolution layer of the CNN. The movement
of the kernel over the image can be made either by a single pixel or multiple
pixels. This step size is called stride (s). The resulting output of a convolu-
tion between filter and image is called a feature map. Consider a kernel h
and input image f with m rows and n columns. Convolution between h and
f results in a feature map g:

g[m, n] = (h ∗ f )[m, n] = ∑
i

∑
j

h[i, j] f [m− i, n− j] (2.9)

Given in Fig 2.3 is a representation of the convolution operation. Zero
padding is used to manipulate the dimensions of the feature maps. In the
above Figure below it is indicated with dotted lines. The function of padding
here is to maintain same dimensions in the input image f and the feature
map g. A CNN learns features from the input through many convolutional
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f[5,5]

h[3,3]

g[5,5]

FIGURE 2.3: Convolution of an input image of dimensions 5×5
with a filter of dimensions 3×3.(Dumoulin and Visin, 2016)

layers. The earlier layers learn general features like edges, contrast, while the
deeper layers learn more abstract and finer details.

2.5.2 Activation Layer

The activation layer that follows the convolution layer in a CNN is most com-
monly the ReLU activation function, depicted in Fig 2.4.

y=max(0,x)

x

FIGURE 2.4: The ReLU function

Most of the tasks based on images are non-linear in nature. Whether it
is a computer vision task like identifying objects in an image or a medical
imaging task involving tumor detection, the relationships are far from being
linear. The function of the activation layer is to increase this required non-
linearity in the CNN.
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2.5.3 Pooling Layer

The third building block of a CNN is the pooling layer. Pooling operation
is mainly used to reduce the dimensions of a tensor which enables faster
computation. Max pooling is the most commonly used pooling operation.
A max pooling operator of a particular size returns the maximum value of a
selected region in the feature map. Similar to a filter it is implemented with
a specific stride. A max pooling filter with s = 2 is depicted in Fig 2.5.
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FIGURE 2.5: Max pooling with 2×2 filter and stride 1

A CNN with 2 convolutional layers, 2 activation layers and 2 pooling lay-
ers is represented in Fig 2.6. Layer number is given by l. The first and the last
layer are the input and output respectively. Usually, the last set of layers in
a CNN used for classification or regression tasks are fully-connected layers
which are similar to the neural network represented in Fig 2.1. With the ad-
vent of powerful computation tools and efficient parallel processing, neural
networks with many layers could be implemented. The term deep learning
was coined for networks with this "deep" design (LeCun, Bengio, and Hin-
ton, 2015). Deep neural networks could be trained over large datasets and
they outperformed many existing state of the art algorithms in computer vi-
sion. In this thesis we focus specifically on CNNs under the umbrella of deep
neural networks.

2.5.4 Neural Networks for Image to Image Translation

Image to image translation tasks require the CNN to map from image in one
domain to an image in another related domain. This requires the design of
the CNN to be quite different from the one depicted in Fig 2.6. Convolution
and pooling operations compress the input to obtain an abstract representa-
tion in lower dimensions. This lower dimensional encoding is transformed
back into an image through the use of transposed convolution operators. In
contrast to the compressing nature of the pooling operation, they expand
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FIGURE 2.6: Architecture of a typical CNN. This representation
was first proposed by LeCun and Bengio, 1995.

the input feature map. The combination of convolution+pooling and trans-
posed convolutions are adjusted depending on the dimensions of the input
and output images. Transposed convolution is shown in Fig 2.7. Essentially
the transposed convolution spatially reverses the dimensions of the convo-
lution+pooling operation. This sub-category of networks with two distinct
parts, where one downsamples the input image and the other upsamples the
encoding back into an image are called encoder-decoder networks. Since we
use convolutions for achieving this encoder-decoder setup they are specifi-
cally called as convolutional encoder decoder (CED).

FIGURE 2.7: Transposed convolution over a 2× 2 input to get a
4× 4 output. (Dumoulin and Visin, 2016)

CEDs are used in a variety of image to image translation tasks. Across
the literature one would find many variations used in super resolution, im-
age segmentation, denoising and image reconstruction. This subset of CNNs
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appropriate for image reconstruction task is represented in Fig 2.8.

Convolution,Activation and
Pooling Layers

Transposed Convolution 
and Activation Layers

Input Image Output Image

FIGURE 2.8: CNN for image to image translation tasks. This
example has an identical structure in convolution path and the

transposed convolution path.

The building blocks described in this section essentially form the basis of
neural network approaches proposed in this thesis. The specific details of
the neural network architecture and the implementation are given in chapter
4 and 5. The next chapter consists of a review of existing works in deep
learning applied to medical image reconstruction.
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Chapter 3

Deep Learning and Tomographic
Image Reconstruction

The impact of deep learning has been immense over the last few years in
the field of medical imaging (Greenspan, Van Ginneken, and Summers, 2016;
Litjens et al., 2017). Medical image reconstruction has also benefited hugely
from the various advances in neural network architectures (Wang, Ye, and
De Man, 2020; Reader et al., 2020; Yedder, Cardoen, and Hamarneh, 2021).
In the specific case of CT image reconstruction, there has been active interest
in sparse-view and low-dose reconstruction scenarios, while with PET recon-
struction on the other hand, low-dose imaging and total body imaging have
been on the forefront. In both cases, obtaining high quality reconstructed im-
ages is a challenging task. Many established model-based iterative methods
account for the low-dose and sparse-view settings to remove artifacts and
noise from the reconstruction (Nuyts et al., 1998; Elbakri and Fessler, 2002a;
Liu et al., 2013). However, these methods are computationally expensive and
generally have longer reconstruction times. Deep learning-based methods on
the other hand are claimed to achieve reconstructed images with quality on
par with iterative techniques and in a much shorter time frame (Leuschner
et al., 2021).

In this work, the focus has been on PET and CT image reconstruction.
As depicted in Fig 3.1, one can broadly identify three different categories of
approaches for the implementation of deep learning within the framework
of medical image reconstruction:

(i) Methods that use deep learning as an image processing step that im-
proves the quality of the raw data and/or the reconstructed image (Gong
et al., 2018a; Maier et al., 2018);

(ii) Methods that embed deep-learning image processing techniques in the
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iterative reconstruction framework to accelerate convergence or to im-
prove image quality (Xie et al., 2019; Kim et al., 2018; Gong et al., 2019);

(iii) Direct reconstruction with deep learning alone without any use of tra-
ditional reconstruction methods (Whiteley and Gregor, 2019b; Zhu et
al., 2018; Haeggstroem et al., 2018).

Projection Domain

Image Domain

Unrolled Iterative 
Algorithm

Deep Learning 
In  update step

Iterative 
Algorithm

Deep Learning 
Algorithm

Data Corrections
with Deep Learning

Post-Processing
with Deep Learning

FIGURE 3.1: Deep Learning in Medical Image Reconstruction

Each of these categories are discussed along with reference to some of the
popular deep learning-based methods for CT and PET image reconstruction
in this chapter.

3.1 Data Corrections or Post-processing

The use of deep learning for the development of either data corrections or
post-reconstruction image based approaches has shown potential to improve
the quality of reconstructed images. While it is possible to train a CNN to
regress directly from the measurement (raw data) domain to the image do-
main, the use of CNN entirely in one particular domain makes it fast and
relatively easy to implement. The motivation behind using deep learning
architectures for these processing tasks is the extremely well documented
performance in denoising and super resolution domains (Tian et al., 2020;
Wang, Ye, and De Man, 2020). Data corrections involve improving the mea-
surement data either through denoising or finding missing projection angle
data. Post-processing in the image domain on the other hand consists of im-
proving images reconstructed with standard reconstruction methods.
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The corrected data ŷ is obtained from measured data y as:

ŷ = Fθ(y) (3.1)

where F is the neural network with trainable parameters θ. The new set
of corrected data ŷ are then used to reconstruct images through traditional
methods. An example of data corrections in PET image reconstruction through
sinogram repair is proposed by Whiteley and Gregor, 2019a, where a CNN
is utilized to predict missing projection data for total body PET image recon-
struction. The repaired sinograms eventually improve image reconstruction
by standard methods.

In CT imaging, missing projection data in sparse-view setting is estimated
through neural networks. An example in this regard is proposed in Lee et
al., 2018, where the authors use U-Net to map sparse-view sinograms to full-
view sinograms and then reconstruct the images using FBP. Another idea to
improve the raw data through scatter correction is proposed in Maier et al.,
2018. In this work a modified U-Net is used to estimate scatter and correct
the raw data in order to improve CT images.

Improvements in the images reconstructed by traditional methods are
usually brought about through neural networks designed for denoising or
super resolution. An image x̂ (λ̂ or µ̂) estimated by conventional methods
like FBP or OSEM is improved through a neural network:

xden = Fθ(x̂) (3.2)

where xden is the post-processed image. Over the years the trend in PET
imaging has been towards reducing the dose of the radiotracer injected into
the patient, which in turn leads to noisier reconstructed images. The ap-
proach has been to create datasets with conventional algorithms (like OSEM)
for both low-dose and normal dose settings and then train a neural network
to achieve normal dose quality starting from low-dose images. Apart from
the low dose noise problem, in CT, improvements in sparse-view imaging
through deep learning has been an active area of research. The focus here is
to reduce the artifacts produced by FBP with sparse-view sinograms. These
artifacts are either removed by first finding the missing projections and re-
pairing the sinograms or by post-processing the images. In both these sce-
narios FBP is utilized; in the former case neural network corrects the sino-
grams thereby providing full-view sinograms for reconstruction and in the
latter case FBP estimated artifact effected images are improved by the neural



60 Chapter 3. Deep Learning and Tomographic Image Reconstruction

network.
Some of the recent developments in post-processing and data corrections

for PET and CT are summarized in Table 3.1 and Table 3.2. A short descrip-
tion of the method along with the citation is given in the second column of
both the tables. These approaches typically modify an existing neural net-
work architecture to suit the problem they are addressing. U-Net is one of
the most utilized architectures as seen in the third column where the base
neural network is given. The datasets utilized by each of these works are
mentioned in the final column. Along with the proposed modifications of
established neural networks, these approaches typically use loss functions
consisting of multiple components. The authors in Gong et al., 2018a used
perceptual loss along with MSE to preserve qualitative and quantitative ac-
curacy of the reconstructed images. The work proposed by Whiteley et al.,
2020 uses multi scale structural similarity index (MS-SSIM) along with per-
ceptual loss and MAE. Another strategy used is pre-training on simulated
data followed by fine-tuning on real patient data. Data corrections in the
form of scatter correction of the sinogram data is proposed in Qian, Rui, and
Ahn, 2017. The authors use CNN followed by fully connected (FC) layers
in their approach. In CT imaging there are works that do denoising of low-
dose sinograms (Zhu et al., 2020; Ma et al., 2021) and also finding the missing
projections in sparse-view sinograms (Lee et al., 2018). The same problem is
tackled in the image domain through denoising (Yang et al., 2018) and arti-
fact removal for sparse-view problem (Jin et al., 2017; Xie et al., 2018; Zhang
et al., 2018).

TABLE 3.1: Summary of recent works on data corrections and
post-processing approaches in PET

Sl.No. Method Base Neural Dataset
Network

1 Gong et al., 2018a CNN with residual BrainWeb and XCAT
Low-dose Image blocks phantoms; Fine-tuning/testing

Denoising with real patient data
2 Whiteley et al., 2020 U-Net with residual Real PET/CT data

Histo Image blocks
Correction

3 Zhao et al., 2020 Cycle GAN Real PET/CT data
Low-dose Image

Denoising
4 Qian, Rui, and Ahn, 2017 CNN with fully Monte Carlo simulations

Sinogram Scatter connected layer with phantoms
Correction

5 Hong et al., 2018 Deep residual CNN Digital phantoms
Single Image Super

Resolution for sinograms
6 Sanaat et al., 2021 ResNet Real TOF-PET/CT data

Low-dose to full-dose
sinogram synthesis
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TABLE 3.2: Summary of recent works on data corrections and
post-processing approaches in CT

Sl.No. Method Base Neural Dataset
Network

1 Lee et al., 2018 Residual U-Net Simulated projections
Sinogram synthesis from real patient data
for sparse-view CT

2 Jin et al., 2017 Residual U-Net Phantom and Real patient
Artifact removal in data along with projections

sparse-view reconstructed images
3 Xie et al., 2018 Improved GoogleNet Simulated projections

Artifact removal in from real data
sparse-view reconstructed images

4 Zhang et al., 2018 DeneNet with Simulated projections
Artifact removal in deconvolutions from real data

sparse-view reconstructed images
5 Ma et al., 2021 Attention residual Real data along with

Low dose sinogram dense CNN projections
denoising

6 Yang et al., 2018 Wasserstein-GAN Real data along with
Low-dose image projections

denosing
7 Zhu et al., 2020 Three-segment network Real data along with

Simultaneous sinogram and ADAPTIVE-NET projections
image domain denoising

An important aspect of the methods discussed in this section is that they
all claim to provide fast reconstructed images using well established neural
network architectures. This also stems from the fact that most of these ap-
proaches start with an image estimate that is also obtained with a relatively
faster conventional method, like FBP for CT and OSEM for PET. These fast
estimates are usually very noisy or artifact ridden. These approaches rely
on the neural network to handle the noise and artifacts. The attractiveness
of these methods is the simplicity, ease of implementation and the lack of
requirement of large datasets.

3.2 Hybrid Methods

The methods mentioned in this section and the next, are directly involved
in the reconstruction process, rather than being exclusive to data corrections
or post-reconstruction processing. The hybrid methodology for image recon-
struction combines model-based and neural network approaches exploring
the benefits of both methods. In this section we discuss some of the recent
works in both PET and CT that fall in the category of hybrid methods.

• Data-driven information learned by a neural network can be incorpo-
rated into an iterative algorithm through the regularization term. Gong
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et al., 2019 used a modified version of the U-Net comprising of multi-
channel input to represent PET images.

λ = Fθfixed(z) (3.3)

where Fθfixed represents the trained denoising neural network (modified
U-Net) with fixed trainable parameters θfixed and z represents the input
to the neural network. The PET reconstruction model (from 1.15) can
be modified to incorporate 3.3.

ȳ(λ) = AFθfixed(z) + r (3.4)

The unknown image λ can be estimated using the maximum likelihood
criterion:

λ̂ = Fθfixed(ẑ) (3.5)

ẑ = argmax
z

L(Fθfixed(ẑ)) (3.6)

In order to ease the difficulty of solving the above due to the non-
linearity of the neural network, the authors adapted a constrained ver-
sion of the above:

max
λ,z

L(λ), s.t. λ = Fθfixed(ẑ) (3.7)

The authors solved the above optimization problem with the ADMM
algorithm. Using the augmented Lagrangian format, the above prob-
lem can be expressed as:

min
λ,z

max
u

Lp(λ, z, u) (3.8)

where,
Lρ = L(λ)− ρ

2
‖λ− Fθfixed(z) + u‖2 +

ρ

2
‖u‖2, (3.9)

The three update steps featuring each of the variables to be optimized
can be written as:

λN+1 = arg max
λ

L(λ)− ρ

2

∥∥∥λ− Fθfixed(z)
N + uN

∥∥∥2
(3.10)

zN+1 = arg min
∥∥∥Fθfixed(z)−

(
λN+1 + uN

)∥∥∥2
(3.11)
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uN+1 = uN + λN+1 − Fθfixed(z)
N+1 (3.12)

The problem 3.10 is equivalent to penalized PET reconstruction and the
authors used the optimization transfer method proposed in Wang and
Qi, 2012. The second part of the algorithm (from 3.11) involving the
input z update, is a non-linear version of the least squares problem. In
the above methodology, the network parameters θ are fixed while the
input to the network z is updated. The authors extended this approach
in Gong et al., 2018b by using a fixed input to the network zfixed, while
setting the network parameters to update. The fixed input to the net-
work was an MRI image while the network training was based on the
concept of deep image prior (Ulyanov, Vedaldi, and Lempitsky, 2018).
The second sub-problem was modified to reflect the update in the net-
work parameters:

θN+1 = arg min
∥∥∥Fθ(z f ixed)−

(
λN+1 + uN

)∥∥∥2
(3.13)

Both these methods require that the raw data also agree with the de-
noising CNN. The images reconstructed are reported to have better
lesion contrast compared to the post-processing CNN denoising ap-
proaches, indicating an advantage of the hybrid methods, despite being
slightly tedious to implement and having longer prediction times.

• Apart from using neural networks for regularization, the prior infor-
mation captured by them can be combined with established model-
based methods. One such approach called FBSEM-Net was proposed
by Mehranian and Reader, 2020. Their unrolled method is based on
forward-backward splitting (FBS) algorithm. The update for their method
is:

λN = argmax
λ

{
L(λ | y)− 1

2β

∥∥∥λ− λN
Reg

∥∥∥2
}

(3.14)

with β being a hyper-parameter that controls the balance between the
data fidelity term and the regularization term. The authors solved the
above through the method of separable surrogates proposed in De Pierro,
1995. The three steps involved in obtaining the final image update:
computing the regularization term, finding the EM update and fusing
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the EM update with the neural network estimated prior. The first step
to compute the regularization term can be written as:

λN
reg = Fθ(λ

N−1) (3.15)

where F is a residual neural network estimating the regularization term
based on the image from the previous iteration. The second step in-
volved getting the EM update λN

EM similar to 1.20. Finally the image is
estimated by

λN+1
j =

2λN
EM(

1−δjλ
N
j,Reg

)
+

√(
1−δjλ

n
j,Reg

)2
+4δjλ

n
j,EM

, δj =
1

βsj (3.16)

During the network training, two reconstructions occur simultaneously,
one with good quality reference data and the other with noisy data. The
role of the neural network is to denoise the current estimate, such that
the fused combined image using 3.16 best agrees with the high quality
MLEM reconstructed image. The overall methodology constitutes of a
very deep network with each iteration being a block of CNN along with
the conventional MLEM layers.

• A hybrid method for sparse-view CT was proposed in Wu et al., 2021.
The authors propose a three-stage reconstruction framework consisting
of embedding, refinement and awareness. The first module extends the
sinogram and reduces the sparse-view artifacts. The refinement part
of the method recovers finer details in the images and finally the last
module regularizes the images from the earlier modules by ensuring
consistency between the measurement data and images. The last mod-
ule was adapted from compressed sensing and it ensures stability and
generalizability in the reconstructed images. The embedding module
consists of two neural networks F1 and F2, the first one is a U-Net that
operates in the sinogram domain, mapping from 60 views to 180 views,
and the second one a W-GAN that operates in the image domain refin-
ing the image obtained through FBP on the upsampled sinograms. It
can be represented as follows:

x′ = F2(A+
2 (F1(y))) (3.17)

where x′ is the image estimated by the embedding module, A+
2 is the

FBP reconstruction operator for the up-sampled views (180). The next
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module maintains a balance between the extension of views and refin-
ing the subsequent details in the images through two neural networks
similar to the ones in the first module. The residual between the image
predicted by the embedding module and the re-sampled sinogram is:
(y′ − A2x′), where y′ = F1(y). The first neural network is trained to
minimize the MSE between the measurement data labels and predic-
tions.

y′′ = F3(y′ − A2x′) (3.18)

The second neural network in the refinement module is trained to mini-
mize the MSE between the image data and labels, resulting in a residual
image:

x′′ = F4(A+
2 (y

′′)) (3.19)

The measurement data and the images are then updated with the pre-
dictions from the trained networks:

yd = y′′ + A2x′ (3.20)

xd = x′ + x′′ (3.21)

The final module combines the deep learning-based data image priors
yd, xd and the compressed sensing framework to arrive at an objective
function as follows:

min
x

{
1
2 ‖y−A1x‖2 + α1

2

∥∥yd −A2x
∥∥2

+ α2
2 W(x) + α3

2 W
(
x− xd)

}
(3.22)

where α1 ≥ 0 balances the two data fidelity terms, A1 represents the
system matrix that projects the lower-sampled data (60 views) and A2

represents the system matrix that projects the higher up-sampled data
(180 views), α2 and α3 are the regularization hyper-parameters. For
regularization, the authors used a variation of TV, called total difference
represented by W defined as follows:

W(x) =
m

∑
i=2

n

∑
j=2

(|x (i, j)− x (i, j− 1)|+ |x (i, j)− x (i, j− 1)|) (3.23)
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The authors validated their method on clinical and pre-clinical datasets
and reported superior performance of their proposed method when
compared to deep learning-based methods like FBPConvNet (Jin et al.,
2017), HD-Net (Wu et al., 2020) and DL-PICCS (Zhang, Li, and Chen,
2020).

• Adler and Öktem, 2018 proposed a learned primal-dual algorithm which
was one of the first methods that combined MBIR methods with deep
learning for low-dose CT image reconstruction. The authors proposed
a generalized algorithm that could be modified for other tomographic
imaging modalities also. CNNs are used both in the image domain
and the sinogram domain, connected through the forward projection
operator and it’s adjoint. In many MBIR approaches, non-smooth reg-
ularizers are used. They are typically handled through smooth ap-
proximations which lead to additional parameters and non-exact so-
lutions. As an alternative, proximal methods are used to tackle the
non-smooth objective functions. The method proposed in this arti-
cle was inspired from one such proximal primal-dual hybrid gradi-
ent (PDHG) algorithm (Chambolle and Pock, 2011). They replaced the
proximal operators with learned parameterized operators (CNNs) to
result in a learned reconstruction operator. The primal and dual op-
erators were parameterized as CNNs consisting of 3 layers and in to-
tal of 64 intermediate convolution channels. The neural networks and
the projection/back-projection operators were implemented using op-
erator discretization library (ODL) and Tensorflow (Abadi et al., 2016).
The authors tested their approach on ellipse phantoms and real patient
data. They reported better qualitative and quantitative results when
compared to TV and deep learning-based post-processing method.

Other works in the hybrid approach include the article by Xie et al., 2019,
who extended the method proposed by Gong et al., 2019 by replacing the
U-Net with a generative adversarial network (GAN) for image representa-
tion within the iterative framework. Kim et al., 2018 incorporated a trained
denoising convolutional neural network (DnCNN) along with a novel lo-
cal linear fitting function into the iterative algorithm. The DnCNN which is
trained on data with multiple noise levels improves the image estimate at
each iteration. They used simulated and real patient data in their study. In
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Gupta et al., 2018, a U-Net is used to encode the prior, i.e., to project the cur-
rent estimate to the prior image set while gradient descent enforces measure-
ment consistency. Xiang, Dong, and Yang, 2021 proposed a hybrid method
named FISTA-Net which is a combination of the model-based Fast Itera-
tive Shrinkage/Thresholding Algorithm (FISTA) and neural network. The
parameters of FISTA-Net like gradient step size, threshold and momentum
scalar are learned from the data rather than through fine-tuning. FISTA-Net
was demonstrated to be effective for multiple imaging modalities including
CT. The drawbacks of the methods described in this section are the slow re-
construction time and high computational expense, since the optimization
procedure is carried out also during test time. Despite the advantage of pro-
ducing state of the art results (Reader et al., 2020; Leuschner et al., 2021) along
with the stability and consistency offered by these hybrid methods, the justi-
fication of complexity vs accuracy trade-off is still a topic of active research.

3.3 Direct Reconstruction with Deep Learning

The third approach is using deep learning-based methods to directly map
from projection to image space. Essentially neural network can be modeled
to approximately learn the inverse mapping from measurement y to image
x. A neural network F with trainable parameters θ can be represented as:

x̂ = Fθ(y) (3.24)

where x̂ is the reconstructed image estimated by the neural network. Once
trained, the images are reconstructed from the sinograms by a single pass
though the network, making it the fastest approach for image reconstruction.

The deep learning architecture proposed by Zhu et al., 2018 called AU-
TOMAP uses FC layers (which encode the raw data information) followed
with convolutional layers. The first three layers in this architecture are FC
layers with dimensions 2n2, n2 and n2 respectively where n× n is the dimen-
sion of the input image. The AUTOMAP requires the estimation of a huge
number of parameters which makes it computationally intensive. Although
initially developed for magnetic resonance imaging (MRI), AUTOMAP has
been claimed to work on other imaging modalities too. Brain images en-
coded into sensor-domain sampling strategies with varying levels of additive
white Gaussian noise were reconstructed with AUTOMAP. Within the same
concept of using FC layers’ architectures a three stage image reconstruction
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pipeline called DirectPET has been proposed to reduce associated compu-
tational issues Whiteley and Gregor, 2019b. The first stage down-samples
the sinogram data, following which a unique Radon transform layer encodes
the transformation from sinogram to image space. Finally the estimated im-
age is improved using a super resolution block. This work was applied to
full body PET images and remains the only approach that can reconstruct
multiple slices simultaneously (up to 16 images). DeepPET is another ap-
proach implemented on simulated images using CED architecture based on
the neural network proposed by the visual geometric group Haeggstroem et
al., 2018. Using realistic simulated data, they demonstrated a network that
could reconstruct images faster, and with an image quality (in terms of root
mean squared error) comparable to that of conventional iterative reconstruc-
tion techniques. Liu, Chen, and Liu, 2019 proposed a direct conditional GAN
based approach, that replaced the CED with a U-Net.

For direct CT image reconstruction, Li et al., 2019 proposed an architec-
ture termed iCT-Net consisting of 12 layers that are a combination of convo-
lutions and modified fully-connected layers. The 12 layers are separated into
segments and are trained separately before being combined for end-to-end
training. To reduce the number of parameters in learning the mapping for
full resolution CT reconstruction, Fu and De Man, 2019 proposed a break-
down of the problem into smaller fragments that can be mapped onto a hi-
erarchical network architecture. The approach proposed in Ye et al., 2018
converts the sinogram data into a stack of back projections for each angle,
which are then fed into a CNN. The spatial in-variance of the CNN is ex-
ploited to learn the mapping from these single view stacked back projections
onto reconstructed images. Currently, we observe that adversarial networks
are increasingly used in scenarios with high-resolution images. In Thaler et
al., 2018 a W-GAN is proposed for sparse-view CT image reconstruction. The
authors used a combination of L1 loss and adversarial loss to train their net-
work. The generator in their work is a U-Net and the discriminator a typical
classification CNN. It is to be noted that the authors performed their experi-
ments on down-sampled images of resolution 128× 128. The direct approach
appears to exploit the power of neural networks to the fullest, however, the
challenges include data management, large number of training parameters
and stability at testing time. Among the three approaches discussed they
have the least stability when tested with different configurations of data An-
tun et al., 2020. However, with the constant developments in neural network
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designs, the possibility of arriving at a network most suitable for image re-
construction cannot be ruled out.
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Chapter 4

DUG-RECON: A Framework for
Direct Image Reconstruction using
Convolutional Generative
Networks

This chapter explores convolutional generative networks as an alternative to
iterative reconstruction algorithms in medical image reconstruction. A novel
framework called DUG-RECON is proposed that only uses sinogram as the
input to reconstruct images for both PET and CT modalities. A part of this
work was presented as a poster presentation in National Science Symposium
and Medical Imaging Conference (NSS-MIC), Manchester 2019. This work
was also published in IEEE Transactions on Radiation and Plasma Medical
Sciences (Kandarpa et al., 2020).

4.1 Introduction

The task of medical image reconstruction involves mapping of projection do-
main data collected from the detector to the image domain. This mapping is
done typically through iterative reconstruction algorithms which are time
consuming and computationally expensive. Trained deep learning networks
provide faster outputs as proven in various tasks across computer vision.
In this work we propose a direct reconstruction framework exclusively with
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deep learning architectures. The proposed framework consists of three seg-
ments, namely denoising, reconstruction and super resolution. The denois-
ing and the super resolution segments act as processing steps. The recon-
struction segment consists of a novel DUG which learns the sinogram-to-
image transformation. This entire network was trained on PET and CT im-
ages. The reconstruction framework approximates 2-D mapping from pro-
jection domain to image domain. The architecture proposed in this proof-
of-concept work is a novel approach to direct image reconstruction; further
improvement is required to implement it in a clinical setting. In our work
we explore the use of U-Net based deep learning architectures (Ronneberger,
Fischer, and Brox, 2015) to perform a direct reconstruction from the sino-
gram to the image domain using real patient datasets. Our aim is to reduce
the number of trainable parameters along with exploring a novel strategy
for direct image reconstruction using generative networks. More specifically
our approach consists of a three-stage deep-learning pipeline consisting of
denoising, image reconstruction and super resolution segments. Our experi-
ments included training the deep learning pipeline on PET and CT sinogram-
image pairs. A single pass through the trained network transforms the noisy
sinograms to reconstructed images. The reconstruction of both PET and CT
datasets was considered and presented in the following sections.

4.2 Method

Image reconstruction with deep learning however is a data driven approach
wherein there is a training and a prediction phase. Given a set of training
data which is a subset of the raw data (y) and its corresponding images (x),
a deep learning architecture learns the mapping from raw data to the im-
age and improves this mapping through the training process. During the
prediction phase a subset of raw data different from the training data serves
as the input to the trained deep learning architecture. The output is a re-
constructed image which is obtained on a single forward pass through the
network. Hence making the reconstruction process through deep learning
instantaneous as opposed to an iterative process. This makes direct recon-
struction with deep learning faster and less computationally expensive than
iterative algorithms.
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4.2.1 Deep Learning Architectures

As shown in Figure 4.1, we propose a three-stage deep learning pipeline for
the task of tomographic reconstruction. In the first step the raw data (pro-
jection space) are denoised. Next the denoised sinograms are transformed to
the image domain in the image reconstruction segment. The third and final
segment operates in the image domain to improve the image produced af-
ter domain transformation. The following sections discuss these segments in
detail.

Denoising
Image 

Reconstruction
Super 

Resolution

FIGURE 4.1: Proposed Deep Learning pipeline for Direct Image
Reconstruction

TABLE 4.1: Trainable Parameters comparison

Architecture Input Size Output Size Trainable
Parameters

AUTOMAP 200× 168 200× 200 6,545,920,000
Radon Inversion Layer 200× 168 200× 200 382,259,200

(40× 40 Patch size)
DeepPET 128× 128 128× 128 62,821,473

DUG-RECON 128× 128 128× 128 17,444,140

Denoising

We used a modified U-Net architecture to denoise the Poisson sampled sino-
grams, based on the work previously carried out for ultrasound denoising
Perdios et al., 2018. The U-Net is an encoder-decoder network which was
initially implemented for segmentation but over the years its applications
have broadened. As shown in Figure 4.2 there are increasing number of con-
volutions along with max pooling to arrive at an encoding of the input and
then with convolutions followed by upsampling, arriving at the output with
an identical dimension as the input. The important modification in the ar-
chitecture mentioned in Perdios et al., 2018 with respect to U-Net was the
residual connection from the input to the final output. Perdios et al trained
the denoising architecture on simulated ultrasound images so as to enhance
ultrafast ultrasound imaging. This denoising architecture corresponds to the
first segment in our proposed framework. It was trained on raw data pairs,
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i.e., low-count and high-count sinograms, considering multiple noise levels.
The detailed architecture is represented in Figure 4.2. We defined the loss
function between a true sinogram y? = [y?1 , . . . , y?n]> ∈ Rn and a prediction
ŷ = [ŷ1, . . . , ŷn]> ∈ Rn as the MSE:

MSE(y?, ŷ) =
1
n

n

∑
i=1

(y?i − ŷi)
2 , (4.1)

where, n is the number pixels on the sinogram, corresponding to the number
of detectors in the scanner.

Concatenation

3 layers of 32 x (3,3)  

3 layers of 64 x (3,3)  

3 layers of 128 x (3,3)  

3 layers of 256 x (3,3)  

3 layers of 512 x (3,3)  

FIGURE 4.2: Representation of the denoising network. The in-
puts to the network were 2-D grayscale slices with resolution

128× 128 and the outputs were denoised sinograms.

Image Reconstruction

The novelty in this work is the proposed U-Net based network in contrast
to previous works in direct image reconstruction using the FC layer archi-
tectures. This design of the network draws its inspiration from conditional
GAN for image to image translation called Pix2Pix Isola et al., 2017. The
proposed network namely DUG consists of two cascaded U-Nets. The first
U-Net transforms the raw data to image while the second U-Net takes as in-
put the generated image and transforms it back to the raw data. The second
U-Net assesses the reconstructed image output, reiterating the relation be-
tween the sinogram and the image. This architecture differs from the Pix2Pix,
which consists of a generator (U-Net like network) and a discriminator (clas-
sification convolutional network). While the generator in both architectures
serves the purpose of transforming images from one domain to the other,
the discriminator with regards to Pix2Pix classifies inputs as real/fake. The
objective function for this architecture can be written as:
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Ltotal = LG1 + LG2 + LG1+G2 (4.2)

where,

LG1 =
1
n

n

∑
i=1
|x?i − x̂i| (4.3)

LG2 =
1
n

n

∑
i=1
|y?i − ŷi| (4.4)

G1, G2 are Generator 1 and Generator 2 which predict image and sino-
gram respectively; x?, x̂ the true and predicted image, y?, ŷ the true and
predicted sinogram respectively. LG1+G2 is defined similar to LG2 with the
combined architecture of G1 + G2, keeping the weights of G2 fixed.

The architecture is represented in detail in Figure 4.3. The training for
this architecture is summarized in Algorithm 1. A comparison of the train-
able parameters for various segments that are used to perform the domain
mapping from sinogram to image is provided in Table 4.1, considering the
AUTOMAP from Zhu et al., 2018, the Radon inversion layer from Whiteley
and Gregor, 2019b and the proposed architecture DUG along with denoising
and super resolution segments.

Concatenation

2 layers of 32 x (3,3)  

2 layers of 64 x (3,3)  

2 layers of 128 x (3,3)  

2 layers of 256 x (3,3)  

1 layer of 512 x (3,3)  

Generator 1

Generator 2

FIGURE 4.3: Representation of the DUG, the image reconstruc-
tion block. This network was trained on denoised sinograms

which were the outputs of the previous segment.



76 Chapter 4. DUG-RECON

Algorithm 5: Training the DUG
M = number of epochs ;
N = total training data (images/sinograms) ;
for i = 1,2,. . . , M do

for j = 1,2,. . . ,N do
Train G1: minimizing LG1 ;

end
for j = 1,2,. . . ,N do

Train G2: minimizing LG2 ;
end
for j = 1,2,. . . ,N do

Train combined architecture, freezing the weights of G2:
minimizing LG1+G2 ;

end
end

Super Resolution

The function of the SR is to improve the estimate produced by the image
reconstruction network. Several works already exist concerning single im-
age super resolution (Ledig et al., 2017; Lim et al., 2017). In this work we
employed a basic super residual network architecture to improve the recon-
struction. It consists of convolutional blocks followed by batch normalization
with parametric rectified linear unit (PReLU) activation. There were a total
of 8 residual blocks in the network as represented in Figure 4.4. The loss
function used in this architecture was perceptual loss:

PerceptualLoss = |VGG16(x?)−VGG16(x̂)| (4.5)

VGG16(x?) and VGG16(x̂) are the extracted features with VGG16 convolu-
tional neural network (Simonyan and Zisserman, 2014) for the true and pre-
dicted image.

The features are extracted from the 10th layer of the VGG architecture i.e.,
only the first three convolutional blocks are considered. We observed that
extracting deeper features led to the network hallucinating features in the
reconstructed images.

4.3 Dataset Description

We applied our methodology on fluorothymidine (FLT) PET/CT images from
the American College of Radiology Imaging Network (ACRIN) FLT Breast
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Convolution: 32x(3,3) Layer
Batch normalisation Layer 

Residual 
Block

      Initial
Reconstructed 
      Image

      Final
Reconstructed 
      Image

FIGURE 4.4: Representation of the super resolution block. It
consists of 8 residual blocks with Convolution, Batch normal-

ization and PReLu.

PET/CT database (Kostakoglu et al., 2015). The details of the dataset are
given in Table 4.2. The sinograms were initially generated by projecting 2-D
PET and CT images slices with the Python SKLEARN Radon transform, fol-
lowing the models (1.23) and (1.15) for CT and PET respectively, with Poisson
noise added. The methodology represented in Figure 4.5 was used for data
preparation for the PET and CT modalities respectively. Sample pairs from
the PET and CT datasets are shown in Figures 4.6 and 4.7. The CT images
were downsized from 512 × 512, and the reconstruction was implemented
for 2-D 128× 128 images.

TABLE 4.2: Dataset Description

Dataset Statistics
Modalities CT, PET

Number of Patients 83
Number of PET 2-D Image slices 76,000
Number of CT 2-D Image slices 21,104

PET Matrix size 128
CT Matrix size 512

Scanner GE Discovery ST

4.4 Training

TensorFlow (Abadi et al., 2016) and Keras (Chollet, 2015) were used for the
realization of the architectures described in the section above. These architec-
tures were implemented on a single Nvidia GeForce GTX 2080Ti GPU. A col-
lection of images {x?k}N

k=1 was used to generate a corresponding collection of
noiseless sinograms {y?

k}N
k=1 following models (1.23) and (1.15), low-counts
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1

1

Image Volume 
to 2D Image 
slices

Poisson 
Resampled
sinograms

CT Image Volume

PET Image Volume

FIGURE 4.5: Data preparation

FIGURE 4.6: Example PET sinogram-image pairs from the
dataset
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and high-counts sinograms, {yLC
k }

N
k=1 and {yHC

k }
N
k=1 sinograms were gener-

ated by adding Poisson noise, where the expected number of counts was ad-
justed by rescaling the intensity. The denoising segment was trained with the
collection {(yLC

k , (yHC
k )}N

k=1, using the high-count sinograms as ground truth,
with total number of training samples N = 120000 and number of epochs M =
100. For the training of the second segment, we used a collection of denoised
sinograms, namely {ŷk}N

k=1, and their corresponding ground true images
{x?k}N

k=1. The image reconstruction segment was trained according to the Al-
gorithm 5, that is to say by alternating between training G1 with {(ŷk, x?k)}N

k=1

and training G2 with {(x̂k, y?
k )}N

k=1, where x̂k is a prediction from G1 with x̂k

as an input. This segment was trained with N = 40000 and M = 50. The CT
data were augmented by rotating the data by 90 degrees to generate the re-
quired training data. Owing to the larger PET dataset it was not necessary to
perform data augmentation. Finally the SR segment was trained on the im-
ages predicted by the DUG and the GT images {(x̂k, x?k)}N

k=1 . The SR block
was trained with N = 20000 for 100 epochs. For the testing, a set of 2000
sinogram-image pairs were used.

FIGURE 4.7: Example CT sinogram-image pairs from the
dataset

4.5 Quantitative analysis

Testing for the aforementioned architectures was done on samples that were
not a part of the training data. The metrics used for this analysis are RMSE
and SSIM Index. They are defined below:
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RMSE(x?, x̂) =

√√√√ 1
n

m

∑
j=1

(x?j − x̂j)2 (4.6)

where n is the number of pixels. x̂ is the GT x? the predicted output.

SSIM(x?, x) =
(2µx?µx + c1)(2σx?x + c2)

(µ2
x? + µ2

x + c1)(σ
2
x? + σ2

x + c2)
(4.7)

where µx? µx are the averages of x? and x respectively, σ2
x? and σ2

x are the
variances of x? and x, σx?x is the covariance between x? and x , c1 = (k1L)2

and c2 = (k2L)2 where k1 = 0.01 and k2 = 0.03 by default.

4.5.1 Region of Interest analysis

The SNR and CNR were studied for four regions of interest identified within
the patient body. The SNR and CNR were evaluated by treating a region as
foreground and the other three regions as background.

SNR =
µr − µb

σb
(4.8)

CNR =
|µr − µb|√

σ2
r + σ2

b

. (4.9)

where µr and µb, σr and σb correspond to the mean and standard devia-
tion in the region of interest (ROI) and the background respectively. In this
study we compared the initial reconstructed output of the DUG, the final
reconstruction along with SR and the original GT which was reconstructed
with GE discovery ST using an OSEM algorithm..

4.6 Comparison with DeepPET

We implemented the architecture DeepPET (Haeggstroem et al., 2018) and
compared the predictions with our proposed approach for the reconstruc-
tion of PET images. DeepPET was trained on {(ŷk, x?k)}N

k=1, notation similar
to the training section from above, with N = 120000, exclusively on PET data.
It is worth noting that the input and output dimensions in our study are iden-
tical while it was not originally for DeepPET. The architecture of DeepPET is
summarized in Figure 4.4. This architecture was trained for 100 epochs with
an Adam optimiser.
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FIGURE 4.8: Representation of DeepPET. The number of filters
in each convolutional layer is labeled on top of each block.

4.7 Results

The predictions from the architectures along with the GT and the sinogram
are shown in Figure 4.9 for PET images. The results are displayed for four test
image slices across the columns. Each column shows the predicted output
by the proposed DUG-RECON architecture and the DeepPET architecture,
as well as the GT. With regards to the proposed architecture it is observed
that the initial reconstructed image i.e., the output of the DUG looks blurred
while final reconstructed output from the super resolution block has notice-
ably improved details. The predictions by DeepPET are also visibly blurred
compared to the final reconstructed output of the proposed architecture and
the GT. These observations are further ascertained in Table 4.3 where the
quantitative metrics are tabulated. Figure 4.13 provides a comparison of the
intensity profiles for the predictions by DUG, DUG+SR and DeepPET w.r.t.
to the GT for PET images. These intensity values are observed along the line
marked in yellow in these figures. As this figure shows, the intensity profile
of the final reconstructed image of the proposed architecture is closest to the
GT. The predictions by DUG and DeepPET are smoother compared to the
predictions by DUG+SR and the GT.

The ROI analysis is tabulated in Table 4.5 for the four regions marked in
Figure 4.10. This analysis was carried out for final predictions by the pro-
posed architecture and MLEM. Looking closely at Table 4.5 we notice that
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FIGURE 4.9: Image predictions by DUG+SR, DeepPET and GT
for four PET Images from different parts of the patient volume

    
   DUG+SR                                     MLEM

S
N

R

C
N

R

Region of Interest Region of Interest

1

2
3

4

1

2
3

4

1 2 3 4
0

2

4

6

8

10
DUG+SR
MLEM

1 2 3 4
0

2

4

6

8

10

12

14
DUG+SR
MLEM
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FIGURE 4.11: Image predictions by DUG+ SR, DeepPET and
GT are displayed for 3 CT Images along different parts of the
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TABLE 4.3: The SSIM and RMSE for the various modalities
compared

Image Architecture RMSE SSIM

1 DUG 0.059 0.74
DUG+SR 0.038 0.84
DeepPET 0.047 0.80

2 DUG 0.043 0.76
DUG+SR 0.046 0.86
DeepPET 0.054 0.85

3 DUG 0.050 0.76
DUG+SR 0.038 0.85
DeepPET 0.043 0.83

4 DUG 0.061 0.70
DUG+SR 0.045 0.82
DeepPET 0.048 0.79

TABLE 4.4: The SSIM and RMSE for the CT images are eval-
uated for 4 different 2-D slices. Here the architecture indicates
the prediction by DUG and that of DUG along with SR segment

Image Architecture RMSE SSIM

1 DUG 0.0083 0.90
DUG+SR 0.0015 0.98
DeepPET 0.0012 0.99

2 DUG 0.0081 0.90
DUG+SR 0.0015 0.99
DeepPET 0.0014 0.99

3 DUG 0.0015 0.91
DUG+SR 0.0018 0.98
DeepPET 0.0013 0.99

the mean values of the deep learning predicted image and the MLEM recon-
structed image are comparable. The results for CT images are displayed in
Figure 4.11. This Figure provides a comparison between reconstructed image
predictions with the proposed architecture, DeepPET with respect to the GT.
The high-resolution nature of the CT images and a smaller dataset presented
challenges during the training of the proposed architecture.

The predictions by DeepPET appear to be better resolved than those by
the proposed architecture. However, the tissue and the bone structures are
not clearly seen in the predictions by the deep learning architectures, thereby
requiring further work to improve the reconstruction. The intensity plots
are compared for two different images in the Figure 4.14. The ROI analysis
was carried out for 4 regions marked in the images reconstructed with deep
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TABLE 4.5: ROI Analysis: The mean, SD and the SNR for the 4
regions of interest marked in Figure 12

Region Image Mean SD SNR CNR

1 DUG+SR 0.706 0.024 7.15 5.71
MLEM 0.676 0.035 5.72 4.55

2 DUG+SR 0.713 0.091 4.81 3.42
MLEM 0.648 0.11 4.38 3.26

3 DUG+SR 0.744 0.071 2.73 1.65
MLEM 0.547 0.154 3.23 1.22

4 DUG+SR 0.117 0.008 14.96 10.64
MLEM 0.057 0.010 8.01 4.8

TABLE 4.6: ROI Analysis: The mean, SD and the SNR for the 4
regions of interest marked in Figure 15

Region Image Mean SD SNR CNR

1 DUG+SR 0.011 2.91e-4 7.61 6.66
FBP 0.011 3.45e-4 15.86 10.69

2 DUG+SR 0.004 1.53e-4 9.34 9.02
FBP 0.004 1.84e-4 15.36 13.74

3 DUG+SR 0.005 5.90e-4 9.40 5.49
FBP 0.005 4.88e-4 16.19 7.78

4 DUG+SR 0.012 8.319e-4 15.47 5.92
FBP 0.012 2.736e-4 14.74 11.47

learning and FBP. The image reconstructed with FBP has better SNR and
CNR compared to the image reconstructed with the proposed architecture.

4.8 Discussion

Deep learning has been applied to different fields of medical imaging. The
vast majority of developments concern primarily image processing and anal-
ysis/classification tasks. Few works devoted in the field of image reconstruc-
tion have been largely concentrated in the use of deep learning within clas-
sical tomographic reconstruction algorithms. The main objectives of these
works have been an improvement in the speed of convergence and the qual-
ity of the successive image estimation within the iterative reconstruction pro-
cess. The alternative approach involving direct image reconstruction through
the use of deep learning approaches to estimate images directly from the use
of raw data (sinograms or projections) has been much less explored both for
PET and CT.
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Most implementations in direct image reconstruction concern the use of
fully connected layers which encode the raw data followed by convolutional
layers. In most of the proposed implementations a large number of parame-
ters need to be optimised which reduces the computational burden and over-
all robustness. In this work we have proposed an original direct image re-
construction deep learning framework based on an architecture inspired by
convolutional generative adversarial networks used in image to image trans-
lation. The implementation is based on the use of a double U-Net generator
(DUG) consisting of two cascaded U-Nets. While the first network trans-
forms the raw data to an image the second one assesses the reconstructed
image output of the first network by reiterating the relationship between the
reconstructed image and the raw data. Two additional blocks were added;
namely a network denoising the raw data prior to their input in the DUG
network and a super-resolution block operating on the DUG output image
in order to improve it’s overall quality. The proposed network was directly
trained on clinical datasets for both PET and CT image reconstruction and its
performance was assessed qualitatively and quantitatively.

Deep neural networks usually result in blurred output. This fact is clear
in the predictions made by the DUG network. Both the qualitative analysis
using the profiles through the reconstructed images and the quantitative met-
rics SSIM and the MSE, demonstrate the improvement of the reconstructed
images resulting from the incorporation of the SR block. The qualitative
analysis also clearly demonstrates the superiority of the proposed algorithm
for direct PET image reconstruction in comparison to alternative approaches
such as DeepPET. Finally in the ROI analysis we observed that the SNR and
CNR are higher with the deep learning approach for the PET images while
they are lower than the traditional methods for CT images. This is consis-
tent with the observations in the qualitative analysis, where the proposed
approach was not able to sufficiently resolve different tissue classes in the
resulting reconstructed CT images in comparison with the ground truth.

One of the potential reasons of the worse performance of DUG-RECON
for CT reconstruction relative to the superior performance observed for PET
image reconstruction may be the lower number of available CT images in the
training process. This limitation will be addressed as part of future work.
Despite the lower performance of the proposed architecture for CT images it
still presents comparable predictions and opens up avenues for deep learning
architectures in tomographic reconstruction. In general, the limitations of a
deep learning based reconstruction is the adaptability to new data which is
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very different from the training sample space. Once a practical methodology
is identified, one could have a deep learning pipeline with an ensemble of
networks trained on different datasets to perform the reconstruction task.

4.9 Conclusion

We have demonstrated the use of generative convolutional networks for the
tomographic image reconstruction task. More specifically we have proposed
a new architecture for direct reconstruction that approximates the 2-D re-
construction process. Also we have significantly reduced the parameters re-
quired for the domain transform task in image reconstruction. The three-step
training pipeline based exclusively on deep learning decentralises the vari-
ous tasks involved in image reconstruction into denoising, domain transform
and super resolution. Various super resolution strategies are currently be-
ing explored to improve the reconstructed image. Our proposed strategy for
tomographic reconstruction will eventually lead to a network based recon-
struction as we continue to improve the framework. Currently it does not
perform better than traditional methods in terms of utility metrics but still
has the advantage of instantaneous reconstruction and an effective denois-
ing strategy. We plan to extend the work on realistic detector data generated
through Monte Carlo simulations in addition to sinograms obtained through
Radon transform. We are also working on adapting the architecture to raw
detector data. Another important aspect of the data based deep learning
approach is that the predictions are limited by the quality of the dataset. It
becomes essential to have realistic datasets without compromising on the im-
age quality to improve the training of the neural networks.
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Chapter 5

LRR-CED: Low-Resolution
Reconstruction aware
Convolutional Encoder-Decoder
Network for Direct Sparse-View
CT Image Reconstruction

In this chapter, neural network approach termed as LRRCED for sparse-view
CT reconstruction is presented in detail. This approach utilizes both sino-
gram and low resolution FBP estimates to learn the mapping required for CT
image reconstruction. A part of this work was presented as a poster virtually
in NSS-MIC, Yokohama, Japan, 2021. An article related to this work was also
submitted to the journal physics in medicine and biology (PMB) in January
2022.

5.1 Introduction

Sparse-view CT reconstruction has been at the forefront of research in med-
ical imaging. Reducing the total X-ray radiation dose to the patient while
preserving the reconstruction accuracy is a big challenge. The sparse-view
approach is based on reducing the number of rotation angles, which leads to
poor quality reconstructed images as it introduces several artifacts. These ar-
tifacts are more clearly visible in traditional reconstruction methods like the
FBP algorithm. Over the years, several model-based iterative and more re-
cently deep learning-based methods have been proposed to improve sparse-
view CT reconstruction. Many deep learning-based methods improve FBP-
reconstructed images as a post-processing step. In this work, we propose a
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direct deep learning-based reconstruction that exploits the information from
low-dimensional FBP estimates, to learn the projection-to-image mapping.
This is done by concatenating the FBP estimate at multiple resolutions in
the decoder part of a CED. This approach is investigated on two different
networks, based on Dense Blocks and U-Net to show that a direct mapping
can be learned from a sinogram to an image. The results are compared to a
post-processing deep learning method and an iterative method that uses a
TV regularization.

5.2 Main Contribution

The main drawbacks of current deep learning-based direct image reconstruc-
tion algorithms are the tedious training process necessary to train large net-
works with large number of trainable parameters and the requirement of
high memory in case of high-resolution CT images. In this work we propose
a new method for direct deep learning based sparse-view CT image recon-
struction with fully convolutional networks. We use two networks, namely
Fully Convolutional Densenets (Jégou et al., 2017) and U-Net (Ronneberger,
Fischer, and Brox, 2015). An important characteristic of both these architec-
tures (Jégou et al., 2017; Ronneberger, Fischer, and Brox, 2015) is the presence
of concatenation from the encoding layers to the decoding layers that en-
sures the usage of features from the input for the reconstruction. Specifically,
for application in sparse-CT image reconstruction, the network would have
sparse-view sinograms as input and reconstructed images as output. The
original application in the medical imaging field of both these architectures
was in image segmentation, where the image-to-image mapping operates in
the same image domain. Medical image reconstruction on the other hand
involves mapping between two different domains (sinogram to image). In
order to help the network to learn the mapping from sinogram to image, we
propose the use of FBP image estimates of the sparse sinograms and concate-
nate them with the feature maps of the decoder.

Given that we only have access to sparse measurement data, taking the
form of a sinogram y, we can enforce that the inverse mapping F at each
layer/sub-resolution of the network is consistent in the measurement do-
main. That is PF(y) = y. This can be achieved by concatenating, as feature
maps, (fast) low-resolution FBP-reconstructed images for each or a subset
of the network levels. While this leads to a massive reduction of the pa-
rameters (fully convolutional layers instead of fully-connected) required in
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the network, the above-mentioned constraint is not enough to learn the in-
verse mapping as it cannot capture information about the image x outside
the range of the physical under-determined operator P (Radon transform for
CT). Hence, the network needs to be trained accordingly.

Once the network is trained, these custom concatenations enable archi-
tectures that were previously used for denoising/artifact removal to learn
a mapping from sparse sinograms to full-resolution CT images. One char-
acteristic feature of reconstructions generated by deep learning-based meth-
ods is the blurriness of the outputs. To counteract this we used perceptual
loss involving features extracted from two different levels of VGG16 network
(Block 1 and Block 3). Since the exclusive use of perceptual loss results in un-
realistic artifacts we couple it with a L1 loss. A general representation of the
proposed approach is depicted in Figure 5.1. It consists of a CED network
with two blocks in both the encoder and the decoder that takes in as input a
reshaped sparse sinogram which has the same dimensions as the output im-
age. A concatenation of two resolutions h1 × w1 and h2 × w2 is incorporated
in the decoder.

The main contributions of our work are summarized as follows:

• A new approach for sparse-view CT image reconstruction using fully-
convolutional networks

• Use of lower resolution FBP estimates which enable the networks that
are predominantly used for denoising to learn the more complex map-
ping from sinogram to image domain.

• Two neural networks are implemented to test this approach using dif-
ferent levels of sparsity in the sinograms.

5.3 Methods

5.3.1 Proposed Low Resolution Reconstruction aware CED

Model

Supervised deep learning-based methods learn the mapping between the
measurement y and the corresponding reconstructed image x. In the case
of direct deep learning-based image reconstruction this mapping is typically
learned via neural networks which can be represented as a function FΘ : Rn →
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FIGURE 5.1: General representation of an encoder-decoder ar-
chitecture with fully convolutional layers and the proposed
FBP concatenations (x1 and x2) at two different resolutions

h1 × w1 and h2 × w2

Rm with trainable parameters Θ:

x̂ = FΘ(y) . (5.1)

where, x̂ is the predicted image.
Most of the works in direct reconstruction for sparse-view CT represent

F with a neural network with fully-connected layers. These networks re-
quire huge memory and large datasets for training. As an alternative to this,
we propose the use of fully convolutional encoder-decoder networks that
have lesser trainable parameters and are faster to train. The main idea is to
enforce data consistency by providing estimates at different resolutions x̂r,
r = 1, . . . , R:

x̂ = FΘ(y, (x̂r)
R
r=1) (5.2)

where each x̂r ∈ Rmr , mr < m, is an approximate solution of

y = PUr x̂r (5.3)

with Ur ∈ Rm×mr being an upsampling operator.
In a typical CED, the encoder learns the representation of the input do-

main and the decoder learns to map this representation to the corresponding
image in the output domain. In the specific case of a CED for medical image



5.3. Methods 95

reconstruction, the encoder operates in the sinogram space and the decoder
in the image space. Based on this hypothesis, we propose to concatenate the
estimates at different levels of the decoder part of the network. The func-
tion of these concatenations is to help the network learn the structure of the
image. The feature maps at different levels of the decoder have different
resolutions. Hence, concatenating the estimate x̂r at different levels requires
the estimate to be of the appropriate resolution. The different convolutional
layers in the decoder work towards arriving at a clear reconstructed image
that is free of artifacts and noise. The estimate x̂r is obtained with a sparse
sinogram, hence it is artifact-ridden and noisy. Therefore, concatenating the
estimate x̂r at a level closer to the output resolution is counter productive as
the network has lesser number of convolutional layers to correct the noise
and artifacts. On the other hand the estimate at lower resolutions has lesser
structural information compared to the estimates at higher resolution. The
selection of x̂r should ensure a balance between aiding the network to learn
the structure of the image and enabling it to correct the artifacts and noise.

Our method, namely LRRCED, was implemented with R = 2 and the
image estimates x̂r were obtained by FBP at lower resolution. With the help
of a series of experiments, we determined the best possible configuration for
concatenating x̂r. In section Section 5.8.4, we present quantitative evaluation
of the effect of these concatenations on the reconstructed images.

We investigate LRRCED with two different variations for F, LRRCED(D)
with Fully Convolutional DenseNets and LRRCED(U) with U-Net, which are
discussed in Section 5.3.1 and Section 5.3.1.

Fully Convolutional Dense Networks

A fully convolutional dense network was used as first variation of LRRCED.
Dense networks (Huang et al., 2017) are based on the hypothesis that con-
necting all the layers to each other in a feed forward fashion leads to higher
accuracy and easier training of the network. A typical dense block of three
layers is depicted in Figure 5.2(a). The extension of dense networks for image
segmentation was proposed by (Jégou et al., 2017). The three blocks involved
in the construction of this network are Dense Block (DB) with l number of
layers, Transition Up (TU) and Transition Down (TD). The combination of
these three blocks helps in building an encoder-decoder structure suitable
for tasks dealing with image-to-image domain transfer. Each layer consists
of batch normalization, ReLU activation and 3× 3 convolution. TD includes:
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batch normalization, ReLU, 1× 1 Convolution and 2× 2 max pooling. Fi-
nally, TU includes a 3× 3 transposed convolution with stride 2. The impor-
tant modification to the architecture blocks in our work is the removal of the
dropout layers. The fully convolutional dense network with proposed con-
catenations is represented in Figure 5.2(b). For the sake of representation we
included only 5 dense blocks in the figure. The complete architecture details
are given in Fig 5.2(c).

U-Net

One of the most established architectures for image-to-image translation is
U-Net, which we used as second variation of LRRCED (called from here on-
wards as LRRCED(U)).

A typical U-Net consists of Convolution, Activation (ReLU) and Pooling
layers in the encoder and Upsampling, Convolution and Activation in the
decoder. We have used U-Net without the dropout, similar to the dense net-
work. The U-Net is represented in Figure 5.3(a).
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(C) Architecture Summary

FIGURE 5.2: Different components of LRRCED(D): (a) Repre-
sentation of a dense block with three layers. (b) LRRCED(D):
Fully convolutional dense network with x1 at 64× 64 and x2 at

128× 128. (c) Complete architecture summary
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FIGURE 5.3: Different components of LRRCED(U): (a) LR-
RCED(U): U-Net with x1 at 64 × 64 and x2 at 128 × 128. (b)

Complete architecture summary.
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Loss Function

The aim of a supervised data-driven image reconstruction task is to predict
an image that is as close as possible to the GT image. The appropriate loss
function to achieve this is the MAE which is defined as follows:

MAE(x?, x̂) =
1
m

m

∑
j=1
|x?j − x̂j| (5.4)

where x? = [x?1 , . . . , x?m]> ∈ Rm and x̂ = [x̂1, . . . , x̂m]> ∈ Rm are respectively
the true image and predicted image.

In order to improve the resolution of reconstructed images, many deep
learning approaches have used the perceptual loss as proposed by (John-
son, Alahi, and Fei-Fei, 2016). This loss uses a pre-trained neural network
to extract features from the predicted image and the GT. It can be defined as
follows:

Pk(x?, x̂) = |[VGG16]k(x?)− [VGG16]k(x̂)|, k = 1, . . . , 5 (5.5)

where [VGG16]k(x?) and [VGG16]k(x̂) are the features extracted from block k
of the VGG16 neural network (Simonyan and Zisserman, 2014) with respec-
tively the GT and the predicted image as inputs. The features extracted from
higher layers of the neural network contain generic information (edges, con-
trast, etc.) while the deeper layers have finer task-specific details. The VGG16
network was pre-trained on Image-Net data (Deng et al., 2009) which is far
from a medical context. Hence, the higher-level generic features were found
to be more relevant for the task of medical image reconstruction. We ob-
served that using extracted features from two different levels, namely Block
1 and Block 3, of the VGG16 network proved to be most effective.

The final loss function that was used for training both the aforementioned
networks is defined as follows:

L(x?, x̂) = αMAE(x?, x̂) + β(P1(x?, x̂) + P3(x?, x̂)) (5.6)

where P1 and P3 are perceptual loss from the extracted features of the two
different blocks above-mentioned, α and β are weights which were set to 10
and 0.5 during the training phase.
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5.4 Dataset

The data used in this work is from the Large-Scale CT and PET/CT Dataset
for Lung Cancer Diagnosis (Lung-PET-CT-Dx) (Li et al., 2020c; Clark et al.,
2013). Details of the dataset are given in Table 5.1. The images in this dataset
were reconstructed using FBP on full-angular coverage measurement data.
We used the ASTRA toolbox (Van Aarle et al., 2016), for data processing to
create the projection-image pairs. A fan-beam geometry with a source to de-
tector distance at 1500 mm and source to the center of the rotation at 1000 mm
were considered. The number of detectors was set to 700 and the number of
angles was varied to generate different levels of sparsity (Na = 60, 90 and
120). The noise-free projection data were obtained using the Beer-Lambert
law (1.23) with an input emission intensity of 105. The final projection data
were obtained by adding Poisson noise (i.e., (1.14)) to the noise-free pro-
jection data. We finally generated the FBP estimates from the noise-added
sparse-projections which were used in training the networks as explained
previously. Sample images from the dataset are shown in Figure 5.4.

TABLE 5.1: Dataset Description

Dataset Statistics
Modalities CT

Number of Participants 355
Number of Studies 436
Number of Series 1295

Number of 2-D Image slices 251,135
CT Matrix size 512

5.5 Training

We implemented the architectures described in the previous section using
TensorFlow and Keras (Abadi et al., 2016; Chollet, 2015). A subset of the
dataset consisting of 22,000 2-D CT images was used in this study. We then
split the data into 30,000 images for training and 2,000 images for testing.
The sinograms and FBP estimates were generated using the ASTRA tool-
box as described above. The sinograms were resized to 512× 512 to ensure
symmetry with the images for easier training of the network. The FBP es-
timates x̂1 and x̂2 were resized to the resolutions required for concatenation
to the proposed networks. The neural networks were independently trained
for each of the sparse-view settings with Na = 20, 40, 60, 90 and 120. The
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            Sinogram                FBP Estimate              GT

700x60

700x90

700x120

700x40

700x20

FIGURE 5.4: Samples from the dataset: Sinograms with differ-
ent sparse-view configurations along with their corresponding

FBP estimate.
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choice of x1 and x2 were at 64× 64 and 128× 128 resolutions for LRRCED(D)
and 128× 128 and 256× 256 resolutions for LRRCED(U). The networks were
trained for 50 epochs with Adam optimizer with a decay of 10−4.

5.6 Quantitative Analysis:

The metrics used for evaluating the reconstructed images were SSIM and
PSNR. They are defined as follows:

SSIM(x?, x) =
(2µx?µx + c1)(2σx?x + c2)

(µ2
x? + µ2

x + c1)(σ
2
x? + σ2

x + c2)
(5.7)

where µx? and µx are the mean of x? and x respectively, σ2
x? and σ2

x are the
variance of x? and x, σx?x is the covariance between x? and x , c1 = (k1L)2

and c2 = (k2L)2 where k1 = 0.01 and k2 = 0.03 by default,

PSNR = 20 log10

(
L− 1

RMSE

)
(5.8)

where L is the maximum intensity in the image and RMSE is given by

RMSE(x?, x̂) =

√√√√ 1
m

m

∑
j=1

(x?j − x̂j)2 . (5.9)

5.7 Comparative Analysis

The LRRCED method was compared with a post-processing deep learning-
based approach, namely FBP-ConvNet (Jin et al., 2017), and a penalized
weighted least-squares (PWLS)-TV solver for the model-based iterative CT
reconstruction (Tang, Nett, and Chen, 2009). We trained FBP-ConvNet on a
set of 30,000 noisy, artifact-ridden FBP image and GT pairs. This network
was trained for 50 epochs.

5.8 Results

5.8.1 Experimental Results

Fig. 5.5 shows the images reconstructed with LRRCED(D) for various de-
grees of sparsity in the projections. Images from various parts of the patient
volume are displayed at different HUT windows for clearer evaluation of the
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proposed approach. We observe the improvement in the reconstructed im-
ages with the decrease in sparsity in the views. The images reconstructed
with Na = 120 appear closest to the GT. The soft tissue regions in the im-
ages reconstructed with <60 views show artifacts which are not present with
the use of more projections. Similarly in Fig. 5.6, we show the images recon-
structed with LRRCED(U).

In Fig. 5.7 and Fig. 5.8 we present a comparison of reconstructed images
using different algorithms with 60 and 90 views respectively. The top row
consists of the GT and the reconstructed image by proposed LRRCED(D)
approach. The second row consists of images with LRRCED(U) and the FBP-
ConvNet. Finally in the last row are the images reconstructed with PWLS-
TV iterative method and FBP. The region highlighted in yellow is zoomed
and displayed alongside the corresponding image. These methods are quan-
titatively compared in Table 5.2 and Table 5.3. We observe that the deep
learning methods perform better than the iterative and analytical methods.
The images reconstructed with U-Net based methods namely LRRCED(U)
and FBP-ConvNet, have very similar characteristics: The contrast is higher
and they perform better quantitatively. However, images reconstructed with
DenseNet by comparison show less noise and streaking artifacts. These vi-
sual observations can be more clearly seen in the zoomed images shown
in Fig. 5.7. This is further reiterated in the intensity plot profiles shown in
Fig. 5.9 and Fig. 5.10, where the LRR-CED(D) results are closer to the GT.
In accordance with the metrics tabulated in Table 5.2 and Table 5.3, we find
that the plots of deep learning-based methods are very close to that of the
GT. Even though the proposed approach with typical CEDs performs a task
which is more complex than denoising, the metrics indicate that the quality
has not deteriorated compared to a standard post-processing approach.

TABLE 5.2: Quantitative comparison of various reconstruction
algorithms with SSIM and PSNR for projections with 60 views

Metric FBP PWLS-TV FBP LRRCED LRRCED
ConvNet (D) (U)

SSIM 0.16 0.66 0.90 0.89 0.90
PSNR 11.57 28.23 31.58 30.04 30.20

5.8.2 Experiments with real data

The proposed networks were initialized with the weights from the previous
study and were then trained on the real data. The real data used in this study



5.8. Results 103

                                                                         LRRCED (D)

          GT                  120 Views             90 Views              60 Views             40 Views              20 Views     

FIGURE 5.5: Images reconstructed with LRR-CED(D) approach
with different sparse-view configurations, i.e., projections with
Na = 120, 90, 60, 40 and 20. For better visual inspection images
in first row are displayed in −40± 600 HUT window, the sec-
ond row in −340± 400 HUT and the third in −150± 400 HUT.

                                                                         LRRCED (U)

          GT                  120 Views             90 Views              60 Views             40 Views              20 Views     

FIGURE 5.6: Images reconstructed with LRR-CED(U) approach
with different Sparse-View configurations, i.e., projections with
Na = 120, 90, 60, 40 and 20. Images in first row are displayed in
−40± 600 HUT window, the second row in −340± 400 HUT

and the third in −150± 400 HUT.
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TABLE 5.3: Quantitative comparison of various reconstruction
algorithms with SSIM and PSNR for projections with 90 views

Metric FBP PWLS-TV FBP LRRCED LRRCED
ConvNet (D) (U)

SSIM 0.19 0.72 0.93 0.91 0.92
PSNR 13.57 30.21 35.27 32.70 32.86

                                     GT                                                                       LRR-CED (D)

                            LRR-CED (U)                                                                FBP-ConvNet                              
         

                                PWLS-TV                                                                       FBP

FIGURE 5.7: Comparative analysis for 60 views: From the
top left corner, we have GT image, reconstructions with LR-
RCED(D) . In the second row reconstructed images with LR-
RCED(U) and FBP-ConvNet. Finally images reconstructed

with PWLS-TV and FBP.

was part of the Low Dose CT grand challenge (McCollough, 2016). The data
constituted of 10 patients, acquired with flying spot technique and a helical
scan. It was a subset of the larger Mayo CT clinic database (Moen et al., 2021).
The data from nine patients constituting of 3,994 2-D slices was used for train-
ing and the trained network was tested on another patient data. The three-
dimensional (3-D) sinograms obtained from the helical scan were converted
into 2-D sinograms through the single slice re-binning method employed in
(Kim, El Fakhri, and Li, 2017). We further resampled the sinograms reducing
the number of views to 64. The number of detector panels was 734. The FBP
estimates were generated from these sparse-view sinograms and resized for
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                                     GT                                                                       LRR-CED (D)

                             LRR-CED (U)                                                                FBP-ConvNet                             
          

                                PWLS-TV                                                                        FBP

FIGURE 5.8: Comparative analysis for 90 views: From the
top left corner, we have GT image, reconstructions with LR-
RCED(D) . In the second row reconstructed images with LR-
RCED(U) and FBP-ConvNet. Finally images reconstructed

with PWLS-TV and FBP.

training the LRRCED.
We present the results for four different slices across the patient volume

and their quantitative evaluation in Figure 5.11 and Table 5.4, respectively.
We observe that the reconstructed images with the proposed networks have
similar characteristics as the ones from the simulation study. The trans-
fer learning strategy ensures that the quality of the reconstructed images is
maintained even with very limited training data.

5.8.3 Stability Study

One of the major challenges to data-driven neural network approaches is the
ability to generalize over different types of test data. The extent to which a
neural network is stable when presented with data different from the training
data is the focus of this study. This topic has been extensively evaluated in
the article by (Antun et al., 2020). The authors analyzed the impact of tiny
perturbations and small structural changes in sampling and image domain
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FIGURE 5.9: Intensity plot profile for the region marked in red
from Fig. 5.7 comparing LRRCED(D) and FBP-ConvNet to the

GT in (a) and LRRCED(U) and FBP-ConvNet in (b)
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FIGURE 5.10: Intensity plot profile for the region marked in red
from Fig. 5.8 comparing LRRCED(D) and FBP-ConvNet to the

GT in (a) and LRRCED(U) and FBP-ConvNet in (b)
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           GT                              LRRCED (D)                    LRRCED (U)

                                                                    

a

b

c

d

FIGURE 5.11: Real data study: Images reconstructed with the
proposed approaches across 4 different slices displayed in the

window 40± 200 HUT.

on the reconstructed images. They also observed the way in which a change
in sampling (sparsity in CT for example) could influence performance. In our
work centered around sparse-view CT image reconstruction, we performed
a series of experiments with different levels of sparsity in the testing data.
The proposed network LRRCED(D) was trained separately on each of the
sparsity configurations, (Na = 20, 40, 60, 90 and 120). It was then tested using
the sinograms and the corresponding FBP estimates for all of the possible
values of Na considered.

The results are displayed in Fig 5.12. The top row corresponds to net-
work trained with 20-view data, the second with 40-view data and so on.
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TABLE 5.4: Quantitative comparison of images reconstructed
with the proposed algorithms w.r.t. GT across different slices in
the patient volume from the real dataset displayed in Fig. 5.11

Image Metric LRRCED(D) LRRCED(U)
a SSIM 0.89 0.92

PSNR 35.70 36.64
b SSIM 0.88 0.92

PSNR 35.19 36.13
c SSIM 0.94 0.92

PSNR 40.86 42.04
d SSIM 0.84 0.91

PSNR 33.37 34.59

The trend is towards an improvement in overall image quality with reduced
sparsity in the sinograms. On one hand, we observe that in the scenarios
where the testing data has more sparsity than the training data, the artifacts
in the reconstructed images are more clearly visible. This is clearly seen in
the last two rows in Figure 5.12, where the network was trained on 90 views
and 120 views data and the images reconstructed with lower Na are ridden
with artifacts. On the other hand, the image quality especially in the soft tis-
sue regions is higher when the network is trained and tested on data with
more views. The proposed network maintains stability in the reconstructed
images with the increase in the sampling in the testing data. However, when
the testing data has fewer views than the training data, artifacts are present
in the reconstructed images.

5.8.4 Hyperparameter optimization

Finding the optimal hyperparameters is an important aspect of training neu-
ral networks. The common hyperparameters in a typical CNN are number
of filters, number of layers, etc. These interdependent hyperparameters de-
termine the rate of convergence and require task-specific experimentation to
arrive at the best possible configuration. The unique hyperparameters in our
proposed approach are the resolutions of concatenated FBP estimates. The
number of training examples is another important component that varies
depending on the task and the trainable parameters of the neural network
selected for the task. In this section we discuss our experiments that deter-
mined the selection of these two important hyperparameters.
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FIGURE 5.12: Stability study: Each row corresponds to the net-
work trained on specific value of Na, and tested with all the

possible values of Na.

Concatenation Resolution Selection

To select the best possible configuration for concatenation in the proposed
approach, we trained the networks with a fixed set of hyper-parameters and
different combinations of concatenations. We discuss the results with LR-
RCED(D) in this regard. The number of training samples were set to 10,000
for all the experiments. The training data were projections with 90 views,
corresponding FBP reconstructed images and the GT. The training was done
for 25 epochs. Each of the concatenation setting was evaluated on 5 test pa-
tients. The average SSIM for each patient was plotted for each of the experi-
ment setting. In Fig 5.13 we have the average SSIM vs Patient plot for single
concatenation at a specific resolution. Similarly Figure 5.14 consists of plots
for double concatenation at two different resolutions. The double concate-
nation at 64× 64, 128× 128 overall leads to the best metrics, thus becoming



110 Chapter 5. LRRCED

our choice for the experiments in this work. These results are tabulated in
Table 5.5.

Training Examples Analysis

One of the biggest challenges in any data driven algorithm is the selection
of training examples required for the experiments. It is important to analyze
this hyper-parameter as it serves as an important factor for the network to
be reproducible and scalable. We varied the number of training examples
for the best concatenation setting from the previous section and the 90-view
scenario. The evaluation was similar to the previous experiment with the
average SSIM for 5 patients. The results from these experiments are tabu-
lated in Table 5.6. As seen in Figure 5.15, the performance of the network
improves along with the increase in the number of training examples. There
is however a marginal difference in the performance of the network when
trained with 20,000 or 30,000 training examples, hence making us choose
20,000 training examples as the optimum number for this hyper-parameter.
The average SSIM values across the test patients tend to get similar as the
number of training examples increases.

5.8.5 Ablation Study

We performed an ablation study to understand the impact of the proposed
concatenations on the neural network performance. DenseNet described ear-
lier was trained for 50 epochs on 20,000 data samples in three different sce-
nariosas shown in Figure 5.16, two of which used either a sinogram con-
sisting of randomly distributed Gaussian noise and no low-resolution con-
catenations: (i) true sinogram and the reconstructed image only (no low-
resolution concatenations), (ii) Gaussian noise sinogram, low-resolution con-
catenations and the reconstructed images, and (iii) true sinogram, low-resolution
concatenations and the reconstructed images.

The image predictions by the three different neural networks are shown in
Figure 5.17. DenseNet without the low-resolution concatenations does pro-
duce images with some structural information, but the other two configura-
tions generate images of much better quality. We observe that the concate-
nations indeed help the network learn the structure of the image, while the
sinograms contribute in artifact and noise removal. This is reflected upon
closer inspection of the third and fourth images in Figure 5.17. The images
predicted with LRRCED(D) trained using the randomly distributed Gaussian
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noise sinogram instead of the true sinogram have artifacts and noise which
is also seen quantitatively in Table 5.7. The best metrics and image quality
are demonstrated by the neural network trained on the combination of sino-
grams and low-resolution estimates labeled as LRRCED(D) in Figure 5.17.

TABLE 5.5: Average SSIM for different configurations of con-
catenations

Concatenated Average SSIM
FBP Resolution P1 P2 P3 P4 P5

(32× 32) 0.82 0.86 0.88 0.86 0.80
(64× 64) 0.85 0.88 0.90 0.88 0.82
(128× 128) 0.85 0.87 0.90 0.89 0.81
(256× 256) 0.58 0.88 0.85 0.88 0.79
(512× 512) 0.66 0.78 0.82 0.75 0.73

(32× 32, 64× 64) 0.83 0.77 0.80 0.80 0.68
(64× 64, 128× 128) 0.85 0.88 0.91 0.89 0.83
(128× 128, 256× 256) 0.67 0.78 0.83 0.84 0.70

TABLE 5.6: Average SSIM for different number of training ex-
amples

Number of Training Average SSIM
examples P1 P2 P3 P4 P5

1, 000 0.82 0.79 0.86 0.85 0.72
5, 000 0.84 0.77 0.86 0.84 0.69

10, 000 0.85 0.88 0.91 0.89 0.83
20, 000 0.89 0.90 0.91 0.90 0.82
30, 000 0.89 0.89 0.90 0.90 0.82

TABLE 5.7: Ablation Study: Quantitative comparison of differ-
ent configurations of the DenseNet

Sl.No. True Concatenations Gaussian noise SSIM PSNR
sinograms sinograms

(i) 3 7 7 0.29 12.05
(ii) 7 3 3 0.70 28.89
(iii) 3 3 7 0.88 32.53
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FIGURE 5.13: Comparison of single concatenations for the par-
ticular case of 90 views evaluated with SSIM on 5 different pa-
tients from the dataset. The best metrics are found with con-

catenation at 128× 128.
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FIGURE 5.14: Comparison of double concatenations for the par-
ticular case of 90 views evaluated with SSIM on 5 different pa-
tients from the dataset. The best metrics are found with con-

catenations at 64× 64 and 128× 128 resolutions.

5.9 Discussion

The use of deep learning architectures in the framework of medical image
reconstruction is propelled by potentially faster reconstruction without com-
promising on the quality of the images. To this end, hybrid image reconstruc-
tion involving unrolled iterative algorithms with embedded deep learning
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FIGURE 5.15: Comparison of Average SSIM for 5 different Pa-
tient data for 90 views with varying number of training sam-
ples. The configuration of the network is the one with best per-
formance from the analysis in Figure 5.13. (concatenations at

64× 64 and 128× 128).
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FIGURE 5.16: Schematic representation of configurations used
in the ablation study: (i) true sinogram and the reconstructed
image only (no low-resolution concatenations); (ii) randomly
distributed Gaussian noise sinogram, low-resolution concate-
nations and the reconstructed images; (iii) true sinogram, low-

resolution concatenations and the reconstructed images.

architectures do not significantly reduce the reconstruction time. Hence, the
use of deep learning architectures for either improving images from a fast
analytic algorithm or direct reconstruction becomes more relevant for their
incorporation into the image reconstruction pipeline. One significant prob-
lem for direct image reconstruction is the requirement of large and complex
networks to learn the mapping from sinograms to images without the help
of any reconstruction estimate. The networks used for post-processing on
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           GT                                DenseNet                        LRR-CED(D)                     LRR-CED(D)
                                     (without concatenations)      (with Gaussian noise)     
                        

             (i)                                    (ii)                                  (iii) 

FIGURE 5.17: Ablation study: Predictions from different con-
figurations of the network.

the other hand are simpler and relatively easy to train. In this work we at-
tempted to use these post-processing networks for the direct image recon-
struction task along with low-resolution scout images from direct analytical
method. We show that concatenating FBP estimates at lower resolutions is
sufficient to allow the network to learn the mapping from sinogram to im-
age space. Through the use of two different networks with the concatenation
approach we demonstrate that this idea can be applied to CEDs in general.

In the sparse-view CT scenario artifact removal along with denoising in-
creases the challenges of getting a clean well-resolved image. We observed
that the use of traditional loss functions (L1 or L2) resulted in blurry images.
To tackle this and to improve the sharpness of the images we used percep-
tual loss along with the standard L1 loss. The reconstructed images with our
proposed LRRCED(D) and LRRCED(U) have higher SSIM and PSNR than
images reconstructed with a traditional iterative algorithm and a standard
post-processing deep learning method FBP-ConvNet. The similarity in the
images from the deep learning methods stems from the fact that the choice
of networks used in our proposed work was inspired from post-processing
CEDs. The contribution in this work is the use of these networks to learn
the mapping from sparse sinograms to images with the same amount of
training examples, which is possible only with the proposed addition of the
concatenations. Through the ablation study from Section 5.8.5, we reiterate
the contribution of both the sinogram and the low-resolution concatenations
for image reconstruction. The CED without the concatenations could learn
the mapping but it would need much higher number of training examples
for image quality comparable to other methods. The proposed method was
compared to a U-Net based denoising method (FBP-ConvNet), which has
one of the best quantitative metrics in image reconstruction as established
by the recent quantitative comparison study carried out by Leuschner et al.,



5.10. Conclusion 115

2021. As it was shown in this study, complex unrolled methods do only
marginally better than the U-Net, hence making it one of the most frequently
used benchmarks for comparison purposes.

We are currently exploring the possibility of using image estimates from
earlier iterations of standard iterative algorithms while ensuring that the
trade-off between time and image quality is not compromised. The use of
other alternative architectures is also being explored to arrive at reconstructed
images which perform significantly better than existing post-processing ap-
proaches. Finally, we are working on experiments with low-dose CT and
other tomographic reconstruction modalities to establish the adaptability of
the proposed approach.

5.10 Conclusion

In this work we studied the use of fully convolutional encoder-decoder net-
works in direct sparse-CT image reconstruction. We introduced a new ap-
proach that uses lower dimension FBP estimates as concatenations to help
the network learn the mapping from sinogram to image space. In the con-
text of image reconstruction, we inject the information from the inverse of
a CT physical system (FBP estimate) as a feature map in the decoder. We
presented two variations of the proposed approach namely LRRCED(D) us-
ing fully convolutional dense networks and LRRCED(U) using U-Net. The
proposed neural networks reconstruct images that are either better or are
on par with traditional reconstruction algorithms and post-processing deep
learning based approach (FBP-ConvNet). A single pass of a sparse sinogram
through the network results in reconstructed images without the artifacts and
noise which are severely present in the concatenated FBP estimates. Finally,
this idea of using task specific concatenations that enable one to have control
over what the network learns, can be extended to various other problems in
medical imaging.
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Chapter 6

Conclusions and Perspectives

The focus in this thesis has been to utilize established neural networks with
proposed modifications to suit various aspects of tomographic image re-
construction. A three-stage framework was presented in the form of DUG-
RECON, in which each of the stages has a task specific neural network. The
first network is a U-Net with a residual connection that denoises the sino-
gram, the second network, U-Net without the residual connection, maps the
denoised sinogram to a reconstruction image estimate and the final stage im-
proves the quality of the image estimate with a residual block. All the neural
networks involved are based on CNNs without any FC layers, making it rel-
atively easy for training. The results were quantitatively analyzed and com-
pared with traditional reconstruction approaches and also a deep learning
based direct image reconstruction method DeepPET. The second proposed
method LRRCED demonstrated with DenseNet and U-Net for sparse-view
CT reconstruction, uses information from sinogram and low-resolution FBP
estimates to produce a reconstructed image. This method was also validated
on real clinical data for sparse-view CT problem. An ablation study was per-
formed to highlight the impact of different components of the LRRCED. Ad-
ditionally, we tried to address instability in neural networks with different
sinogram sampling as pointed out by Antun et al., 2020. DenseNet, U-Net
and ResNet were the base neural network architectures utilized in this the-
sis. The proposed changes suggested in both the aforementioned approaches,
made them specifically suitable for tomographic image reconstruction.

One of the key challenges involved with training neural networks is fine-
tuning the hyper-parameters. Some of the hyper-parameters like number
of filters in the first layer, the factor of multiplicity of filters can be inspired
from established benchmarks in tasks like segmentation. Once the hyper-
parameters related to the design are fixed, questions related to data and the
training duration can be addressed. Though there is a clear interdependence
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of these hyper-parameters, network design is a more straightforward prob-
lem to address thanks to the already existing literature. Typically the strategy
used to select the hyper-parameters is to monitor the loss on the validation
dataset. Sometimes additional metrics different to that of the loss function are
also used to help in fine-tuning the hyper-parameters (Zhang et al., 2018). In
image reconstruction as the task is to estimate an image, visual inspection
also provides an added advantage to monitor the network training at inter-
mediate steps.

Data preparation is another important aspect which needs to be addressed
before the network can actually be trained. Typically the publicly available
human patient data is in the DICOM format which needs to pre-processed
and then stored efficiently in formats suitable for the machine learning li-
brary. The machine learning library used in this thesis was TensorFlow. Since
the final values in the image pixels are important for image reconstruction,
normalization of data needs to be carefully managed. It is a common prac-
tice to normalize the data prior to training a CNN as it helps in faster con-
vergence. However, the scaling required to get back to the original values
can lead to loss of information. The range of values in the images are very
different for PET and CT. In PET we estimate the tracer activity distribution
while in CT we estimate the attenuation. The former has large values in the
orders of 104 − 106 subject to the dose and the tracer, while the latter has
lower values in the order of 10−2 depending on the energy of the X-rays. For
un-normalized data the last layer of the CNN needs to have either a linear
activation function or a version of ReLU for the estimate predicted by the
network to have values in the same range as the image. It is to be noted that
convergence could be effected for un-normalized data and the network may
need to be trained for a higher number of epochs. For CT imaging, a for-
mat often used for displaying is the HUT, different HUT windows are used
to observe organ specific details. However, a network is typically trained
with attenuation images, and a conversion is required to display the images.
Hence, the range of values in the images estimated become very important.

Transfer learning in neural network terminology refers to taking a net-
work trained on a large dataset and fine-tuning it’s weights to smaller datasets.
It is often used in cases where there is dearth of data. It also becomes an
important strategy to make the network adapt to changes in the data en-
vironment (for example different acquisition geometry). All the weights of
the network could be updated by training on the smaller dataset or only the
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weights of the last few layers. We chose to update the weights of all the lay-
ers across the network. The LRRCED was initialized with the weights of the
larger semi-simulated dataset, (real patient images-synthesized sinograms)
and then trained on the Mayo CT clinical dataset. The reconstructed im-
ages reflected the quantitative metrics similar to that of the simulated dataset.
With one of the primary challenges of neural network approaches being gen-
eralization to new data, transfer learning seems to be a viable option for su-
pervised learning.

The most commonly used datasets for PET and CT image reconstruc-
tion problems are BrainWeb (Cocosco et al., 1997) and Mayo Clinic database
(Moen et al., 2021) respectively. However, there is a lack of a bench-marking
dataset designed specifically to test deep learning-based approaches. The
various data-driven methods proposed across the years use different datasets
and data preparation techniques, making it difficult to reproduce the results
for fair comparison. Even the hyper-parameter fine-tuning gets challenging
when the source code and the dataset are not made public. Also for real clin-
ical datasets, it is important to have access to all the geometry/physics infor-
mation for realistic modeling of the system matrix, essential in the creation of
projection/back-projection operators. Standardization of data and compar-
ison criteria is paramount to establish state of the art methods through fair
and universally accepted evaluation.

The stability of deep learning-based reconstruction methods has been ex-
tensively studied in Antun et al., 2020. The authors designed a stability test
aimed to check the feasibility of these methods for practical usage. They
divided potential instabilities into three main categories: (i) small pertur-
bations either in the data or the image may lead to inexplicable artifacts in
the reconstructed images; (ii) small structural changes in the image may be
missed out in the reconstructed images; (iii) increase in sampling of the data
may degrade the reconstruction. The authors observed that direct neural net-
work approaches seemed most unstable when compared to hybrid and post-
processing methods. In our experiments with sparse-view CT reconstruction
featuring LRRCED, we analyzed the effect of change in the sparsity of sino-
grams on the reconstructed images. We observed that increase in sampling
(reduction in sparsity) either improved the image or at-least maintained the
same image quality. The LRRCED which is a method that combines both
denoising and direct reconstruction approaches, was found to be stable with
the increase in measurement data sampling. Additional experiments based
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on the article are being designed to develop a methodology for ensuring sta-
ble deep learning-based image reconstruction methods.

Medical images of a particular modality share a lot of similarities and re-
dundancies. When a radiologist looks at a CT or PET image his attention
is drawn to a particular area that is relevant for scrutiny. This brings into
context the recently developed self attention mechanism that helps neural
networks focus on important task-specific information. In natural language
processing attention mechanism helps identify the context of a sentence and
which words in a sentence are more important for translation etc. CNNs have
recently been combined with the attention mechanism to improve segmen-
tation (Li et al., 2020a; Hu et al., 2020). For low-dose PET image denoising,
Xue et al., 2020 proposed a network that combined attention mechanism with
GAN. Similarly, Du et al., 2019 demonstrated the effectiveness of visual at-
tention network for low-dose CT denoising. Transformers (Vaswani et al.,
2017) have revolutionized the field of natural language processing and have
recently been applied to computer vision (Khan et al., 2021). The transformer
module which uses a global attention scheme, is typically embedded in the
encoder part of a CED. Works like Chen et al., 2021 use transformer in the
encoder of the U-Net, to explicitly model long range dependency. In Luo
et al., 2021, the authors combined the concepts of transformers and GAN to
propose a 3-D network for PET image denoising. We are currently work-
ing on incorporating the transformer modules in the networks proposed as a
part of this thesis, for direct image reconstruction task for both PET and CT
modalities.

Recently many unsupervised methods have been proposed for image de-
noising. Unsupervised methods, unlike the approaches discussed so far in
this thesis (apart from deep image prior), do not need to be trained on la-
beled data for a dedicated task. As denoising is an integral part of image re-
construction, these new methods have immense potential to improve the re-
constructed images in low dose imaging. Yuan, Zhou, and Qi, 2020 proposed
an approach called Half2Half that does denoising for CT images without the
use of high quality reference data. The authors proposed a novel method to
generate training input and training label from the same CT scan. The de-
noising network is then trained on these data alone without the requirement
of additional high dose CT data. For PET denoising, Chan et al., 2019 trained
a neural network to map from one noise realization to an ensemble of noise
realizations. Currently most of the unsupervised denosing approaches don’t
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surpass the performance of existing supervised methods. The focus has pri-
marily been on finding innovations in data processing, leaving further scope
for developments in the area of neural network design specific to unsuper-
vised learning.

Ever since the development of time of flight (TOF) PET scanners, histo-
images and histo-projections have been extensively studied (Snyder, Thomas,
and Ter-Pogossian, 1981). Modern scanners have the advantage of having
high resolution sampling in list-mode comparable to that of an image voxel.
This allows the conversion histo-projection into hist-image through the use of
a rectangular image grid. Whiteley et al., 2020 proposed an approach called
FastPET for near real-time multi-slice PET image reconstruction. First the
raw detector data is converted into histogram-images through most likely an-
nihilation position (MLAP) algorithm. Then, a U-Net based architecture de-
blurs and denoises the histo-images to obtain clean images. Despite the re-
semblance to post-processing methods, the authors place their method among
direct neural network approaches as it involves histogramming of raw coin-
cidence events in image space. One of the challenges noted by the authors
is the over-smoothing of images and loss of some high frequency details.
A consequence of this could be the difficulty in locating small lesions and
other important details. One possible application of LRRCED from this the-
sis, could be to use histo-images as the concatenated estimate for PET im-
age reconstruction. We are currently working on methodologies to obtain
histo-images for total body PET image reconstruction. Different loss func-
tions for training the neural network are also being explored to address the
over-smoothing of the images.

Two novel neural network-based direct approaches for tomographic imag-
ing have been proposed in this thesis. The first one named DUG-RECON was
demonstrated on both PET and CT data. Along with DeepPET, this method
is one of the few direct reconstruction methods based entirely on convolu-
tions. The second method, LRRCED was discussed with both U-Net and
DenseNet, for sparse-view CT imaging. Both these methods were compared
to traditional reconstruction methods and were either found to be quantita-
tively superior or on par with them. As part of future work, DUG-RECON
is being validated with real clinical data and also latest neural network ar-
chitectures like transformers will be experimented to improve the different
stages of the framework. We are also working on modifying LRRCED for
total body PET reconstruction, more specifically for multi-slice volumetric
reconstruction.
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Titre : Reconstruction d’images tomographiques avec des approches de réseau neuronal di-
rect

Mot clés : Reconstruction d’images, l’apprentissage en profondeur, TEP

Résumé : Les réseaux de neurones sont lar-
gement utilisés dans le domaine de l’imagerie
médicale pour la segmentation d’images bio-
médicales, le diagnostic du cancer, l’analyse
d’images, etc. Les progrès de la puissance
de calcul (GPU) et l’utilisation efficace de la
mémoire ont propulsé la propagation des ré-
seaux de neurones profonds dans divers do-
maines. La principale motivation derrière l’uti-
lisation des approches de réseaux de neu-
rones est une prédiction plus rapide (par rap-
port aux méthodes traditionnelles) sans com-
promettre la qualité du résultat. La reconstruc-
tion d’images médicales implique la tâche de
cartographier les données de mesure brutes

collectées par le détecteur en images com-
préhensibles pour un radiologue. Un algo-
rithme de reconstruction d’images médicales
se rapproche essentiellement de cette carto-
graphie pour prédire la meilleure image pos-
sible. L’utilisation des réseaux de neurones
dans la reconstruction par tomographie par
émission de positrons (TEP) et par tomodensi-
tométrie (CT) a été explorée dans cette thèse.
De nouveaux cadres appelés DUG-RECON
(Double U-Net Generator) pour la reconstruc-
tion d’images TEP, CT et LRR-CED (Low-
Reconstruction Aware Convolutional Encoder-
Decoder) pour la reconstruction d’images CT
clairsemées sont proposés dans ce manuscrit.

Title: Tomographic Image Reconstruction with Direct Neural Network Approaches

Keywords: Image Reconstruction, Deep Learning, PET, sparse-view CT

Abstract: Neural Networks are extensively
used in the field of medical imaging for
biomedical image segmentation, cancer diag-
nosis, image analysis, etc. The advancements
in computation power (GPUs) and efficient
memory utilization have propelled the spread
of deep neural networks into various domains.
The main motivation behind the use of neural
network approaches is faster prediction (com-
pared to traditional methods) without compro-
mising on the quality of the result. Medical im-
age reconstruction involves the task of map-
ping raw measurement data collected by the
detector to images that are comprehensible

to a radiologist. A medical image reconstruc-
tion algorithm essentially approximates this
mapping to predict the best possible image.
The use of neural networks in Positron Emis-
sion Tomography (PET) and Computed To-
mography (CT) reconstruction has been ex-
plored in this thesis. Novel frameworks called
DUG-RECON (Double U-Net Generator) for
PET, CT image reconstruction, and LRR-CED
(Low-Resolution Reconstruction aware Con-
volutional Encoder-Decoder) for sparse-view
CT image reconstruction are proposed in this
manuscript.
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