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Dans cette thèse, les problèmes d’optimisation mixtes coûteux sont abordés par le biais de
processus gaussiens où les variables discrètes sont relaxées en variables latentes continues.
L’espace continu est plus facilement exploité par les techniques classiques d’optimisation
bayésienne que ne le serait un espace mixte. Les variables discrètes sont récupérées soit
après l’optimisation continue, soit simultanément avec une contrainte supplémentaire de
compatibilité continue-discrète qui est traitée avec des Lagrangiens augmentés. Plusieurs
implémentations possibles de ces optimiseurs mixtes bayésiens sont comparées. En
particulier, la reformulation du problème avec des variables latentes continues est mise en
concurrence avec des recherches travaillant directement dans l’espace mixte. Parmi les
algorithmes impliquant des variables latentes et un Lagrangien augmenté, une attention
particulière est portée aux multiplicateurs de Lagrange pour lesquels des techniques
d’estimation locale et globale sont étudiées. Les comparaisons sont basées sur l’optimisation
répétée de trois fonctions analytiques et sur une application mécanique concernant la
conception d’une poutre. Une étude supplémentaire dans le domaine de l’auto-calibrage
est faite, dont une des perspectives est l’application de la stratégie d’optimisation mixte
proposée. Cette application concerne la quantification des radionucléides, qui définit
une fonction inverse spécifique nécessitant l’étude de ses multiples propriétés. Nous
réalisons cette étude dans un scénario continu. Une proposition de différentes stratégies
déterministes et bayésiennes a été faite en vue d’une définition ultérieure dans un contexte
de variables mixtes.

Plus précisément, le chapitre 2 examine le cadre de l’optimisation bayésienne pour les
fonctions continues coûteuses. Ensuite, les principaux ingrédients de l’optimisation
bayésienne, la technique de remplissage d’espace, le métamodèle du processus gaussien et
les critères d’acquisition de l’amélioration attendue sont présentés.

Dans le chapitre 3, nous passons en revue les approches déterministes, bayésiennes et
stochastiques les plus courantes pour traiter les problèmes inverses mal posés. De plus,
nous présentons la mise en place de techniques telles que les moindres carrés régularisés,
le maximum a posteriori et le Monte Carlo par châıne de Markov.

Le chapitre 4 présente la principale contribution de cette thèse, l’algorithme LV-EGO,
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une méthodologie capable d’effectuer une optimisation bayésienne de fonctions mixtes
coûteuses. Cette méthode propose une relaxation de l’espace mixte vers un espace continu
par le biais de la cartographie des variables latentes, tout en préservant le lien de cette
relaxation comme une contrainte discrète lors de l’optimisation des critères d’acquisition.
Cela nous a conduit à proposer une variante plus robuste basée sur les Lagrangiens
augmentés et de nombreuses autres variantes pour traiter cette contrainte. Toutes les
méthodes proposées ont été comparées aux stratégies de l’état de l’art sans exigence
de cartographie et/ou de méta-modèle. Toutes les stratégies ont été comparées entre
différentes fonctions déterministes et une application en mécanique.

Dans le chapitre 5, nous considérons une famille de problèmes inverses. Le Chapitre se
concentre sur l’étude de différents scénarios pour une forme spécifique de problème inverse
qui n’a pas été étudiée dans l’état de l’art et qui apparâıt couramment dans le domaine de
la spectrométrie gamma. Les scénarios proposés impliquent une fonction déterministe et
un simulateur non linéaire de type bôıte noire. Bien qu’ils soient définis pour des entrées
continues uniquement, ces scénarios représentent un cadre à partir duquel la méthodologie
LV-EGO pourrait être appliquée. Enfin, dans le chapitre 6, nous discutons de plusieurs
lignes de recherche futures, à la fois théoriques et concernant les applications mixtes réelles
au CEA.
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Chapter 1

Engineering problems with mixed
variables

Contents
1.1 Structure of the manuscript . . . . . . . . . . . . . . 4

1.2 Scientific contributions . . . . . . . . . . . . . . . . . 4

A key task in engineering design is to find an optimal configuration from a very large
set of alternatives. When the performance of the candidate solutions is measured through
a realistic simulation, the numerical cost of the procedure becomes a bottleneck. The
optimization of computationally expensive simulators is a topic widely studied in the
literature Thi et al. [2019]. In this field of study, we focus on Bayesian optimization
(BO), which is particularly suitable for solving such problems Frazier [2018]. Bayesian
optimization is a sequential design strategy that requires a data-driven mathematical model
or metamodel that provides predictions along with their uncertainty Bartz-Beielstein et al.
[2019]. The metamodel replaces some of the calls to the expensive simulation and is a key
ingredient to the optimization of costly functions. An acquisition criterion Wilson et al.
[2018] aggregates the spatial predictions and uncertainties. The metamodel is trained from
a reduced set of simulation data and the acquisition criterion is maximized to propose
new configurations to be simulated at the next iteration. When the acquisition criterion
is the expected improvement (EI), as first introduced in Mockus et al. [1978], the BO
algorithm is often called EGO (Efficient Global Optimization, Jones et al. [1998]). EGO is
currently a state-of-the-art approach to medium size, continuous and costly optimization
problems, both from an empirical Le Riche and Picheny [2021] and a theoretical point of
view Vazquez and Bect [2010].

However, in realistic settings, some of the decision variables are categorical. In structural
design for example, the type of material, the number of components, the choice between
alternative technologies lead to discrete variables with no obvious distance between them.
The combination of continuous and categorical variables is called a mixed optimization
problem. In non-costly cases, mixed optimization problems can be approached by Mixed-
Integer NonLinear Programming Belotti et al. [2013] (when the discrete variables are
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2 1 Engineering problems with mixed variables

integers), by sampling based techniques such as evolutionary optimization Cao et al.
[2000], Emmerich et al. [2008], Ocenasek and Schwarz [2002] or by alternating mixed
programming Audet and Dennis Jr [2001].

When the objective function is costly, mixed optimization problems remain challenging
and a topic for research. Bartz-Beielstein and Zaefferer [2017] provides an overview of
metamodels that have or can be used in optimization when the variables are continuous
or discrete. Bayesian optimization methods have already been extended to mixed
problems. It was made possible by creating GP kernels (covariance functions) in mixed
variables as a combination of continuous and discrete kernels. The acquisition function is
defined over the same space as the objective function. Therefore maximizing the
acquisition function is also a mixed variables problem.

To the best of our knowledge, the first EGO-like algorithm for mixed variables has
been proposed in Hutter et al. [2011]. In this article, the mixed kernel is a product of
continuous and discrete Gaussian kernels, and random forests constitute an alternative
choice of mixed metamodel. More precisely, the discrete kernel is based on the hamming
(also known as Gower) distance for ordinal or nominal variables, respectively. In Hutter
et al. [2011], the expected improvement is first optimized with a multi-start local search
for both continuous and discrete variables (thus a neighborhood for the discrete variables
is defined) which is then complemented by a random search. This work was continued
with the REMBO method in Wang et al. [2016], where a random linear embedding is
introduced to tackle high-dimensional problems. Discrete variables were relaxed into
continuous variables thanks to a mapping function. The optimization of the acquisition
function was made with a combination of the DIRECT and CMA-ES continuous global
optimizers. Both Hutter et al. [2011] and Wang et al. [2016] have been motivated by
applications to the automatic configuration of algorithms. The goal of reaching very high
dimensions (millions) probably forced the authors to use isotropic kernels.

A Bayesian mixed optimizer is presented in Pelamatti et al. [2019]. The GP kernels
are products of continuous and discrete kernels. Different discrete kernels are compared,
namely the homo- and hetero-scedastic hypersphere decomposition and the compound
symmetric kernels. The optimization of the acquisition function is performed with a
genetic algorithm in mixed variables. A similar BO with mixed kernel is described in
Zuniga and Sinoquet [2020], but the expected improvement is optimized with the mixed
version of the MADS algorithm Audet and Dennis Jr [2001] and a neighborhood for
the categorical variables is defined through a probabilistic model. Random forests can
replace the kriging model in BO with mixed inputs as they natively have a measure of
prediction uncertainty. Such an implementation, first done in Hutter et al. [2011], is
part of the mlrMBO R package Bischl et al. [2018], in conjunction with several acquisition
criteria that can be optimized with a “focus-search” algorithm. The focus-search algorithm
hierarchically samples the search space of the chosen acquisition criterion.

Recent developments in metamodels involving mixed variables assume that it is possible
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to map categorical variables into quantitative un-observed continuous latent variables
Zhang et al. [2019]. Whenever it is possible to write a model of the studied system,
there often exist quantitative latent variables that describe the effects of the categorical
variables. Typically, there are more latent variables than categorical ones. The existence of
continuous latent variables can sometimes be established from the physics of the considered
phenomena, e.g. in material science Zhang et al. [2020]. In structural mechanics for
example, if the categorical variable describes the shape and the material of an element load
in flexion, its bending moment of inertia is a candidate latent variable. Latent variables
can emulate the properties of the original categorical variables, in particular within the
metamodel, and open the way to reasoning with continuous quantities: the kernels of the
Gaussian processes can be taken as continuous, gradients and neighborhoods are naturally
defined during the optimization. On the contrary, categorical variables and their inherent
lack of distance definition is the cause of complications in the kernel definition and in the
optimization.

In this thesis we present a new Bayesian optimization algorithm for mixed variables
called LV-EGO (for Latent Variable EGO). Our contribution with respect to Zhang et al.
[2020] is that the continuity of latent variables is also considered during the optimization
of the acquisition criterion. This implies that categorical variables must be recovered
from the continuous latent variables, which creates a new “pre-image” problem that we
tackle with a novel methodology based on augmented Lagrangian.

As optimization techniques have been recently used in inverse problems Ye et al. [2019],
Kunze et al. [2021], we also address the possibility of applying our LV-EGO methodology
for inverse problems with mixed variables and involving expensive simulators. Motivated
by an industrial application we consider a bi-linear and expensive to evaluate function.
That kind of problem seems not to be investigated much in the literature. More precisely,
consider a continuous bi-linear inverse problem y = mf(x) + η, with y ∈ Rp, unknowns
m ∈ R, and x ∈ Rd, where f is an expensive-to-evaluate function. This specific product
form mf(x) makes the inverse problem ill-posed. This type of ill-posedness, as the
product is scalar-vector, differs with classical bi-linear and self-calibration forms already
studied in the literature like image blind deconvolution, compressed sensing and other
applications Idier and Blanc-Féraud [2008] Ling [2017].

This particular setup appears as a calibration formulation for a radionuclide
quantification application in Clement et al. [2018], where the aim is to quantify the
radionuclide mass m inside a nuclear waste container defined by mixed source properties
x, u via a non-destructive gamma spectrometry technique Guillot [2015], Dyrcz et al.
[2021], Máduar and Miranda Junior [2007]. Figure 1.1 illustrates this process. The
activity of a specific radionuclide is measured for a set of known energy levels E1, . . . , Ep

where p ≊ 6. Then to obtain the calibration coefficient ϵ, reliable simulations can be
performed with a set of simplified environmental setting involving continuous variables:
Distance, Density, Eq-Surface, Eq-Thickness; and 2 categorical variables: 3 shapes
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Sensor

Source

Gamma ray

Spectra

Figure 1.1: Diagram of a gamma spectrometry setup (Guillot [2015]).

(Parallelepiped, Sphere, Cylinder) and 4 materials (Iron, Vinyl, Chlorine, Plumb) as
defined in Clement et al. [2018].

Motivated by this application, we study different deterministic and Bayesian
approaches in order to address this specific type of inverse problem. To do that, we define
different strategies for two key scenarios in a continuous setting, towards extending the
proposed methodologies for a complete mixed-variable scenario.

1.1 Structure of the manuscript

This document is organized as follows. In Chapter 2 we present a brief overview of
optimization of expensive functions and surrogate-based optimization, with a focus on
Bayesian optimization (BO). Chapter 3 reviews the most common approaches to deal
with continuous inverse problems in general. Then in Chapter 4 we present the LV-EGO
strategy for optimization in presence of qualitative and quantitative variables. We define
different variations of the main methodology as a way to improve its performance. We
evaluate them on a set of test cases and an application in mechanics. In Chapter 5, we
consider the application of LV-EGO methodology to inverse problems. Finally in Chapter
6 we discuss several future research lines, both theoretical and concerning the real mixed
applications at CEA.

1.2 Scientific contributions

Results throughout this thesis are based on scientific contributions including one publica-
tion in an international journal, a technical report and communications in conferences.

Publications in international journals

1. Cuesta-Ramirez J., Le Riche R., Roustant O., Perrin G., Durantin C., Glière
A. A comparison of mixed-variables Bayesian optimization approaches. Advanced
Modeling and Simulation in Engineering Sciences, special Issue on Efficient Strategies
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for Surrogate-Based Optimization Including Multifidelity and Reduced-Order Models.
Published - June 2022.

Technical Report

2. Cuesta-Ramirez J., Le Riche R., Roustant O., Perrin G., Durantin C., Glière A.
Inversion of a costly multivariate function in presence of categorical variables.
Applied Inverse Problems Conference, Grenoble, France, 2019. https://hal.

archives-ouvertes.fr/hal-02273738.

Oral Presentations

3. Cuesta-Ramirez J., Le Riche R., Roustant O., Perrin G., Durantin C., Glière
A. Optimization of a computationally expensive simulator with quantitative and
qualitative inputs. OQUAIDO scientific days, May 2019, Nov 2019, Jun 2020, Dec
2020. Oral presentations.

4. Cuesta-Ramirez J., Le Riche R., Roustant O., Perrin G., Durantin C., Glière A. Opti-
mization of a computationally expensive simulator with quantitative and qualitative
inputs. CIROQUO scientific days, Jun 2021, Nov 2021. Oral presentations.

5. Cuesta-Ramirez J., Le Riche R., Roustant O., Perrin G., Durantin C., Glière
A. Optimization of a computationally expensive simulator with quantitative and
qualitative inputs. CEA-LETI PhD days, 2021. Oral Presentation.

Poster presentations

6. Cuesta-Ramirez J., Le Riche R., Roustant O., Perrin G., Durantin C., Glière A.
Latent Variable Efficient Global Optimization for Qualitative and Quantitative
Inputs. Modeling and Numerical Methods for Uncertainty Quantification. 2019
https://www.sigma-clermont.fr/en/mnmuq2019

7. Cuesta-Ramirez J., Le Riche R., Roustant O., Perrin G., Durantin C., Glière
A. Optimization of a computationally expensive simulator with quantitative and
qualitative inputs. CEA-LETI PhD days, 2019.

8. Cuesta-Ramirez J., Le Riche R., Roustant O., Perrin G., Durantin C., Glière A.
Bayesian optimization for mixed continuous and categorical variables: A latent
variable approach. MASCOT PhD student 2020 Meeting, Grenoble- France, 2020.
https://www.gdr-mascotnum.fr/mascotphd20.html.
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Chapter 2

Global Continuous Optimization of
Expensive Functions

Contents
2.1 Expensive Functions and Global Optimum . . . . . 7

2.2 Bayesian Optimization . . . . . . . . . . . . . . . . . 9

2.2.1 Space-filling techniques . . . . . . . . . . . . . . . . . 9

2.2.2 Gaussian Process Metamodel . . . . . . . . . . . . . . 10

2.2.3 Acquisition Criterion . . . . . . . . . . . . . . . . . . . 11

The main goal of this chapter is to introduce the concepts behind the common
terminology while finding the global optimum of an expensive-to-evaluate function.
In particular we will present the population-based and surrogate-based frameworks as
two possible choices when trying to tackle this challenge. Finally we review Bayesian
Optimization (BO) as a selection of techniques to perform surrogate-based optimization
in continuous inputs.

2.1 Expensive Functions and Global Optimum

In the framework of continuous global optimization, the main goal is to find, if possible,
the best evaluation x⋆ also known as global optimum, from a set of feasible points X of a
function f : Rnc → R. This is written as:

x⋆ = argminx∈X⊂Rncy(x),

where y = −f if we want to find the maximum or y = f if we want to find the minimum.
In the case of the expensive functions that will be considered in this document, f may
not have explicit formula (non available derivatives) and it is represented by point-wise
evaluations (xi, yi), i = {1, . . . , n} defined on a space X , typicallyX ∈ [0, 1]nc Frazier
[2018]. In addition, further evaluations are controlled by a fixed budget t.

7



8 2 Global Continuous Optimization of Expensive Functions

Under this setting, direct search techniques that often converge to local optima such as
the Nelder-Mead method Nelder and Mead [1965] could not be applied. However, in the
literature, there are different techniques that ensure convergence to the global optimum
and could be divided in population-based, such as Covariance Matrix Adaptation Hansen
[2006] and surrogate-based, such as Efficient Global Optimization Jones et al. [1998].

Figure 2.1: Diagram of population-based optimization.

On one hand, a population-based strategy proposes a set of steps inspired by biology,
where each individual x

(t)
i has the capability of evolution due to his adaptability, thereby

producing better solutions x
(t+1)
i . Figure 2.1 shows the basic steps of evolutionary

algorithms, where it starts by selecting individuals within a population of size n, as
parents for the reproduction (recombination) step. Later, each newborn individual (or its
parents) could experience a random mutation before its further fitness evaluation is made.
This process is repeated until the budget t is consumed. At the end, the best individual
among all the different iterations x⋆ and its evaluation y⋆ are returned.

Evolution strategies can be applied to any type of variable (continuous, discrete) and
the implementation is very simple. As a drawback, they require a larger number of
evaluations Elsawy et al. [2019] compared with surrogate-based methods. It is important
to remark that there exist many different evolutionary strategies that vary in the way of
dealing with the steps previously mentioned. For a review of population-based
evolutionary algorithms we refer to Slowik and Kwasnicka [2020], and Boussäıd et al.
[2013] for more general meta-heuristic methods.

On the other hand, surrogate-based strategies propose a way to mimic and further
replace the current expensive function y, by a cheaper-to-evaluate model Y (x). After
executing the first step of its sequence (see Figure 2.2), we obtain a pair (X,Y) also
called Design of Experiment (DoE) that corresponds to a set of initial informative points
of size NDoE already evaluated with the expensive function f . This set of points X can
be chosen at random (e.g. from the uniform distribution) or by using a space-filling
technique such as Latin Hypercube Sampling (LHS) McKay et al. [1979].
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Figure 2.2: Diagram of Surrogate-based Optimization.

In the second step, a metamodel strategy is chosen to train the surrogate model Y with
the DoE (X,Y). Then the third step makes use of an acquisition criteria, often a function
that will propose a candidate xt, to be evaluated through y in step 4. This process will
continue until t is exhausted, and will return the best point found x⋆ in step 6.

Surrogate-based strategies are often more difficult to implement than population-based
ones. However, as an advantage the surrogate Y can explore faster the solution set X
which has already been exploited to improve the speed of convergence Jones et al. [1998].
When a Gaussian process is used as a surrogate, surrogate-based optimization is called
Bayesian Optimization, that we now describe.

2.2 Bayesian Optimization

Bayesian Optimization (BO) is a common choice in engineering, when dealing with
expensive black-box functions. Its three main ingredients are the space filling technique,
the metamodel and the acquisition criterion that we now present.

2.2.1 Space-filling techniques

Optimization using expensive simulators requires generating an initial DoE (X,Y) to
train Y . A well designed space-filling DoE is beneficial not only to the metamodel
accuracy but also to the overall search effectiveness Tenne [2015]. In the context of BO,
the black-box function may be non linear and a space filling design is used as a DoE.
Furthermore, a LHS is often considered due to its good sampling properties with respect
to marginals. Basically the idea of LHS is to sample points in a hypercube such that each
point is the only one in each axis-aligned hyperplane containing it. Combining the two
ideas, optimized versions of LHS such as the maximin distance criteria, where the
sampled points are uniformly spaced, have been proposed in the literature Johnson et al.
[1990].
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Other ways to optimize LHS are the Translational Propagation LHS proposed by Viana
et al. [2010], where the maximin distance can vary accordingly to the dimension nc; and a
Basic General Extension, where it is possible to construct an optimized LHS based on a
previously constructed one during an iterative optimization process. The compatibility of
those techniques in terms of convergence has not been studied under the BO framework,
therefore are out of the scope of this document.

2.2.2 Gaussian Process Metamodel

GP based models are widely used in literature as the surrogate in BO. They are one of
the most flexible statistical models available. Furthermore, in sequential designs, the
uncertainty does not depend on the outputs and will be reduced by adding new points
(See Eq. 2.1).

Formally, a Gaussian Process (GP) is a possible infinite collection of random variables,
where any finite set of them has a joint Gaussian distribution Rasmussen and Williams
[2006] Lawrence [2003]

Y ∼ GP(m(x), k(x, x′)).

A GP is completely specified by a mean function (or trend) m(x) and a covariance
function (or kernel) k(x, x′) that represents the spatial dependence. The trend could be
any function, and the kernel should fulfill the semi-definite positiveness (SDP) property:

∀n ∈ N∗,∀α1, . . . , αn ∈ R,
∀x1, x2, · · · , xn ∈ X ⊂ Rnc

n∑
i=1

n∑
j=1

αiαjk(xi, xj) ≥ 0

Usually for the mean function a constant value is selected (often zero). For the
covariance function there are a lot of possible choices depending on the input space
properties (dimension, type of variables, etc). Usual choices are: Gaussian or Matérn
kernels, but there are a lot of valid functions and combinations. More examples can be
found in Rasmussen and Williams [2006].

In Gaussian process regression, the goal is to predict the response ynew = Y (x⋆) of a new
input x⋆, conditionally on a given training set (X,Y). These conditional distributions are
Gaussian and given for centered GP’s by:

m̂(x⋆) = k(x⋆,X)k(X,X)−1Y (2.1)

σ̂2(x⋆) = k(x⋆, x⋆)− k(x⋆,X)k(X,X)−1k(X, x⋆),

where k(X, x⋆) is the NDoE × 1 covariance vector, k(x⋆,X) = k(X, x⋆)⊤, k(X,X) is
NDoE ×NDoE, and each xi is of dimension nc.
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Finally, the parameters for the trend, and the variance and kernel function are estimated
via Maximum Likelihood Estimation (MLE). The log negative likelihood is given by:

−2 log p(Y|X,θ) = n log 2π +Y⊤K−1Y + log|K|,

where, K = k(X,X) is the Gram matrix, and θ is the vector of model parameters.

2.2.3 Acquisition Criterion

The last ingredient of BO is an acquisition criterion which is used to provide new design
points. We focus on the expected improvement (EI), as an example. The basic idea of this
acquisition criteria is to quantify an unvisited point x⋆ regarding how much its evaluation
Y (x⋆) is expected to be better, which in a minimization problem means smaller, than the
current best evaluation ymin = min(y(x1), . . . , y(xn)). More formally EI is defined as:

EI(x⋆) = E[(ymin − Y (x⋆))+|Y (x1), . . . , Y (xn)].

In the case of a GP Y , the EI has a closed form and can be written as a function of the
trend and variance from Eq. 2.1 as :

EI(x⋆) =

{
σ̂(x⋆)[u(x⋆)Φ(u(x⋆)) + ϕ(u(x⋆))] if σ̂(x⋆) > 0

0 if σ̂(x⋆) = 0,

where ϕ is the pdf of the standard normal distribution N (0, 1), Φ its cdf, and

u(x⋆) =
ymin − m̂(x⋆)

σ̂(x⋆)
.

A new candidate point to be evaluated x(i+1) can be obtained by maximizing EI from
x(i+1) ∈ argmax

x∈X
EI(x). This optimization can lead to either exploiting promising areas

when m̂(x) is small or exploring new areas when σ̂(x) is large. More information on
different acquisition functions can be found in Agnihotri and Batra [2020] and an optimized
version for GP metamodel are proposed in Wilson et al. [2018].
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Chapter 3

Solution of continuous ill-posed
inverse problems
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In this chapter we are going to review the most common approaches when dealing with
an ill-posed inverse problem, where the approach to take will depend on its own properties.
The general statement of an Inverse Problem suggests to find the set of inputs x⋆ ∈ X to
a mathematical model M , given an observation or set of observations y ∈ Y . This is

y = M(x), (3.1)

where X and Y are Banach spaces. Frequently the inverse problems are ill-posed, this
means that there is no solution, or the solution may not be unique, and may be sensitive
to variations in the observations y. Among the different approaches to tackle inverse
problems, the most common are the Deterministic and Bayesian Regularization ones.

3.1 Deterministic Approach

Under the classical regularization framework, the solution of any inverse problem from
equation 3.1 can be written as the least square problem:

x⋆ = argmin
x∈X

||y −M(x)||2Y , (3.2)

which should suffice to find x⋆ when the problem is not ill-posed. Otherwise, finding a
solution will require the addition of an auxiliary term depending on a point or center x0

in the input space. This can be written as:

13
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x⋆ = argmin
x∈X

(
1

2
||y −M(x)||2Y+ρ

)
, (3.3)

where ρ is a penalty term to be defined. Tikhonov Regularization Tarantola [2004] and
the Ridge Regression Murphy [2012] are examples where the definition of ρ admits a
closed-form solution for x⋆.
The main advantage of Classical regularization is the availability to obtain a deterministic

solution to the inverse problem by using classical global optimization algorithms. This
solution will depend on how the optimizer can deal with multiple local optima that appears
often from equation 3.3.

3.2 Bayesian Approach

The Bayesian framework, instead of using partial information about the variable uncer-
tainties, as is some of the classical approaches, it makes make use of all the possible
probabilistic content available for the unknown to estimate. Here, the inverse problem is
now written as

y = M(x) + η

where η is the observational noise. Then, using the Bayes theorem, the solution is written
as a posterior distribution is

π(x|y) = π(y|x)π(x)∫
Rnc π(y|x′)π(x′)dx′ ,

where π(y|x) is called the likelihood to recover observation knowing the input parameters,
π(x) is the prior and the denominator or evidence π(y) is often intractable. Under the
Bayesian framework, by defining a prior π(x) ∼ N (x0,Σ0) and if the noise is Gaussian
η ∼ N (0,Γ), the posterior takes the form

π(x|y) ∝ exp{−1

2
||y −M(x)||2Γ−

1

2
||x− x0||2Σ0

}, (3.4)

where ||y||2Γ= yTΓ−1y, ||x||2Σ0
= xTΣ−1

0 x. Under this framework and in the case of M
being linear regarding x, the posterior distribution will be also Gaussian, and its
Maximum a Posteriori,(or the value of x that maximizes its posterior density π(x|y)),
correspond to the regularized least squares solution on equation 3.3.

Bayesian Regularization can be seen as a more general strategy that accounts for the
uncertainty on x⋆, this at the cost of the evidence often being intractable or difficult to
approximate when the posterior cannot be written as a Gaussian Distribution. For a more
rigorous review on Bayesian Inverse problems, check Stuart [2010] or Dashti and Stuart
[2016].
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3.2 Bayesian Approach 15

3.2.1 Stochastic Sampling

As is in general it is hard to obtain information from a probability measure where is not
possible to express all the probabilities in terms of Gaussian distributions or the model
M is nonlinear, or either in high dimensions Stuart [2010]; a commonly used method to
extract information from a probability distribution is sampling. This means, generating a
set of points {xn}Nn=1 that is distributed according to π(x|y). The most common
techniques of stochastic sampling are the Markov Chain Monte Carlo algorithms (MCMC)
and its variants, where Metropolis-Hastings Hastings [1970] offers a framework to find an
universal solution to the construction of an appropriate Markov chain, this means to
generate a sequence that starts from a density π̃(x), that converges to the target density
π(x) and explores all its support in a finite number of steps Robert and Changye [2020].

The basic idea of MH, also known as random walk, is to sample candidates x′ from a
a proposal or jumping distribution ξ(x′|x(t)) (usually a normalized pdf), then accept or
reject some of the proposed candidates. The acceptance probability is computed using
the likelihood ratio of the previous and new candidates values:

α(x′, x(t)) =

{
min{ π̃(x′)ξ(x′|x(t))

π̃(x(t))ξ(x(t)|x′)
, 1} if π̃(x(t))ξ(x(t)|x′) > 0

1, Otherwise

If this probability is greater than a draw according to an uniform U(0, 1) distribution,
then the candidate is accepted. The algorithm consists in defining a proposal distribution
that accepts a large number of candidates in order to converge quickly to the target
distribution but without increasing the autocorrelation too much. In the case of selecting
a symmetric jumping distribution ξ(x(t)|x′) = ξ(x′|x(t)) (usually Gaussian) the algorithm
simplifies to the following steps:

Algorithm 1 Metropolis-Hastings Algorithm Hastings [1970]

Initialize x0 ∼ ξ(x)

for iteration t = 0, 2, . . . do
Propose: x′ ∼ ξ(x′|x(t))
Acceptance probability:

α = min
{
1, π̃(x′)

π̃(x(t))

}
ν ∼ uniform (0, 1)
if ν < α then
Accept the proposal: x(t+1) ← x′

else
Reject the proposal: x(t+1) ← x(t)

end if
end for

Common adaptations to the original MH are the adaptive covariance version where the
variance of the proposal is modified in order to satisfy an acceptance rate Roberts and
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16 3 Solution of continuous ill-posed inverse problems

Rosenthal [2009]; and the Metropolis-Within Gibbs algorithm which is commonly used on
multiple dimensions as:

Algorithm 2 Metropolis-Hastings Within Gibbs Algorithm Ghirmai [2015]

Let be x ∈ Rnc

Initialize x(0) ∼ ξ(x)

for iteration t = 0, 2, . . . do
Propose and accept with MH: x1

′ ∼ ξ1(x1
′|x2

(t), . . . , xnc
(t))

Propose and accept with MH: x2
′ ∼ ξ2(x2

′|x1
′, x3

(t), . . . , xnc
(t))

...
Propose and accept with MH: xnc−1

′ ∼ ξnc−1(xnc−1
′|x2

′, x3
(t), . . . , xnc−2

(t), xnc
(t))

Propose and accept with MH: xnc
′ ∼ ξnc(xnc

′|x2
′, x3

(t), . . . , xnc−1
(t))

end for

where it is possible to define different proposals ξi for each variable Ghirmai [2015].

MCMC convergence criteria

In order to set up and interpret a MCMC sampling routine, we need first to recall that
the goal of MCMC sampling is to generate enough independent samples from the target
distribution π̃, this means, being able to represent the true distribution while exploring
all the support of it. To achieve that, it is necessary to identify when the chain or the
sequence of sampled points has reached its stationary distribution and when the
consecutive observations can be considered independent. The former is related to
Convergence metrics and the later is to the Mixing metrics for any chain. Even that may
exist different techniques to ensure convergence or mixing, it is recommended to apply a
variety of them Givens and Hoeting [2005]

The group regarding Mixing metrics of the chain can be analyzed in a simple way
graphically by using either the sample path or the autocorrelation plot. The first one
corresponds to a figure relating the iteration number versus the realizations x. As shown
in figures 3.1 and 3.2, a chain is mixing well when it moves from its starting value and
continuously oscillates rapidly regarding the number of iterations in the support of the
target distribution. On the other hand a poor mixture, is a representation of slower
oscillations that are not compacted in the total number of iterations, this indicates that a
longer chain may be required to observe a good mixture.

In the case of the autocorrelation plot, it summarizes the correlation in the sequence
at different intervals of time or lags, this means, that autocorrelation at lag k is the
correlation between iterates that are t iterations apart. As shown by figures 3.3 and 3.4 we
expect that a good chain will show a faster decay as the lag increases and it will remain
close to zero for higher lags k.
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Figure 3.1: Sample path representing a good
mixture.

Figure 3.2: Sample path representing bad
mixture.

Figure 3.3: Sample path representing a good
autocorrelation.

Figure 3.4: Sample path representing bad
autocorrelation.

In the case of convergence the key considerations are the burn-in and the effective
sample size. The burn-in phase allows us to adjust the proposal distribution in order
to obtain a suitable acceptance rate. Candidates obtained during this phase are not
necessarily in the zones of statistical content (high value of the likelihood) and are then
discarded. Typically the number of samples to discard D is fixed to a few hundred or
thousand values Givens and Hoeting [2005]. On the other hand the effective sample size
(ESS) of the chain is the size of an i.i.d. sample that would contain the same information
(e.g. mean and standard deviation). This value can be computed by:

ESS =
L

τ̂

τ = 1 + 2
∞∑
k=1

r(k),

where r(k) is the autocorrelation with lag k and L are the iterations after the burn-in
period. Commonly, τ is estimated by truncating the summation when r̂(k) < 0.1 For a
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18 3 Solution of continuous ill-posed inverse problems

fixed number of iterations an MCMC algorithm with a larger ESS is likely to converge
more quickly, this means that ESS can be used to compare the efficiency of different
MCMC techniques Gong and Flegal [2016].

The Geweke-test is another common metric used to analyze whether the mean
estimates have converged. This metric proposes to compare the mean values from the
early and latter part of the Markov chain Geweke [1995]. Its interpretation is related to
the a Z-test for the equality of means, where if |Zi|> 1.96 implies that the means are
different and the chain did not converge.

Another set of metrics used in tandem to evaluate the stopping criteria of a chain are
the Heidelberger-Welch Stationary and Half-Width Tests . The former tests if
the chain is already stationary and the latter if the sample size is adequate to meet the
accuracy for the mean estimate. If the first one fails, it could indicate that a longer chain
is required. Then, If the first one succeeds, it is the failure of the second that could
indicate a longer chain is required Heidelberger and Welch [1983].

Finally the Minimum effective sample size is a formula that provides an estimator
of the minimum iterations for your MCMC algorithm given the dimensions and desired
confidence interval on the estimation of the sequence meanGong and Flegal [2016].
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Optimization of an expensive
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In this chapter we present LV-EGO as a novel strategy to perform global optimization
in the presence of mixed variables. This model proposes a relaxation scheme from the
mixed set of variables w to a full continuous one, therefore allowing the use of the
classical BO algorithm as introduced in chapter 2. We define different variations of the
algorithm as a way to improve its performance through comparisons on a group of test
cases (including a mechanical application) and versus different related mixed optimizers.
Most of the following contents correspond to our publication in the Journal Advanced
Modeling and Simulation in Engineering Sciences, special Issue on Efficient Strategies for
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20 4 Optimization of an expensive simulator with mixed variables

Surrogate-Based Optimization Including Multifidelity and Reduced-Order Models.

We consider the problem of minimizing a function y(x, u) depending on a vector of
continuous variables x = (x1, . . . , xnc) and a vector of discrete variables u = (u1, . . . , und

),
where each ui has mi levels encoded 1, . . . ,mi. We denote X the domain of definition for
the continuous inputs, typically, after rescaling, the hypercubic domain [0, 1]nc . Similarly,
we denote U =

∏nd

j=1{1, . . . ,mj} the domain of definition for the discrete inputs. We also
denote w = (x, u) and W = X ×U . For simplicity, the definition of y is overloaded in the
following, and we will not make a distinction between (x, u) 7→ y(x, u) and w 7→ y(w).
We focus on costly functions, meaning that each evaluation of y is time-consuming, and
we aim at minimizing y with a tiny budget of evaluations. In this context, minimizing
directly y is hardly possible. An alternative is to use Bayesian optimization (BO). In BO
approaches, there are two main ingredients: a Gaussian process (GP) serving as a fast
proxy, often called metamodel, built from the current learning set, and a sampling
criterion, often called acquisition criterion, used to update the learning set with a new
data point computed with y. A famous acquisition criterion is the expected improvement
(EI). In that case, the BO approach is often called Efficient Global Optimization (EGO)
algorithm.

To be more precise, let W = {w(1), . . . , w(t)} ∈ W t be a design of experiments (DoE),
and yi = y(w(i)) be the corresponding function evaluations (i = 1, . . . , t). Let ymin =
min(y1, . . . , yt) be the current minimum. Let us now assume that y is a particular
realization of the GP Y defined on W . In that case, the EI criterion is defined by

EI(w) = E
[
max(ymin − Y t(w), 0)

]
, w ∈ W ,

where Y t is the conditional GP knowing the observations:

Y t := Y | {Y (w(1)) = y1, . . . , Y (w(t)) = yt}.

Notice that EI(w) is large when exploiting interesting area, that is to say when there is
a good chance that Y t(w) is smaller than ymin. This may occur when E[Y t(w)] is close to
ymin, or when exploring unvisited areas, i.e. when the variance of Y t(w) is large compared
to (E[Y t(w)]− ymin)

2. The idea of EGO is to evaluate y at a new point maximizing the EI
criterion until a stopping criterion is reached. See Algorithm 3 for a synthetic description
of the EGO algorithm when the stopping criterion is a maximum number of evaluations
of y, noted budget.
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Algorithm 3 EGO algorithm on a generic space

1: Generate the initial DoE of size NDoE, W, and calculate Y = (y1, . . . , yNDoE
),

t← NDoE.
2: while t ≤ budget do
3: Estimate the GP Y t from the learning set formed by W and Y.
4: Look for the current minimum ymin and maximize w 7→ EI(w) on W: wt+1 ∈

argmaxw∈WEI(w).
5: Evaluate y at wt+1, yt+1 = y(wt+1).
6: Update the learning set: W←W ∪ {wt+1}, Y ← Y ∪ {yt+1}.
7: t← t+ 1
8: end while
9: w⋆ = argminw∈W y(w), y⋆ = y(w⋆)
10: return (w⋆, y⋆)

This EGO algorithm has been intensively studied to minimize nonlinear functions that
are expensive to be evaluated in the case W = X , i.e. when all input variables are
continuous (see Le Riche and Picheny [2021] for numerical illustrations of its efficiency).
The application of this algorithm in the presence of categorical variables is much less
documented (see e.g. Pelamatti et al. [2019], Zuniga and Sinoquet [2020]), which can
be explained by two main difficulties. The first one is related to the difficult estimation
of covariance kernels on mixed spaces. Indeed, multi-dimensional covariance functions
are often built by combination of one-dimensional ones. Therefore, covariance functions
on W can be obtained by combining covariance functions on X and U , so that, for all
w = (x, u) and w′ = (x′, u′) in W :

Cov(Y (w), Y (w′)) = kx
1 (x1, x

′
1) ∗ · · · ∗ kx

nc
(xnc , x

′
nc
) ∗ ku

1 (u1, u
′
1) ∗ · · · ∗ ku

nd
(und

, u′
nd
), (4.1)

where kx
1 , . . . , k

x
nc
, ku

1 , . . . , k
u
nd

are covariance functions and ∗ is an operation that preserves
positive definiteness, such as sum or product. If we focus on the single categorical variable
uj with levels 1, . . . ,mj, we can identify the covariance function ku

j to a (mj × mj)-
dimensional positive semidefinite matrix T, such that for all 1 ≤ k, ℓ ≤ mj,

(T)kℓ = ku
j (k, ℓ). (4.2)

This means that
∑nd

j=1mj(mj + 1)/2 coefficients need to be estimated to determine a
covariance on U in the general case. That number can be large when m is large, which
very often makes this estimation very difficult in practice. Furthermore, the optimization
problem is often harder than the box-constrained one met with continuous variables.
Indeed it is either constrained by the positive definiteness of T, which is non-linear, or
defined on a manifold if T is parameterized in spherical coordinates. We refer to Roustant
et al. [2020] for more details and other parsimonious representations of ku

j , which can
reduce but not totally fix these issues. The second reason that can explain the few
number of direct applications of EGO algorithm on mixed space is related to the difficult
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maximization of the expected improvement, i.e. the search of the new input points where
to call the function y, which are solutions of:

max
x,u∈X×U

EI(x, u) . (4.3)

Indeed, classical optimization algorithms on continuous spaces usually try to exploit
information related to the gradient of the function to be maximized, as well as notions of
proximity in the space of the inputs. However, these two notions are difficult to exploit
when dealing with categorical inputs, i.e. without any a priori ordering between the input
instances. To circumvent this difficulty, a naive approach of resolution would consist in
no longer considering a single maximization problem on W , but the resolution in parallel
of
∏nd

j=1mj maximization problems on X , i.e. one problem per combination of instances
of the categorical inputs u. Such an approach is not tractable when the number of
optimization problems to be solved becomes large, which has motivated the definition of
heuristics, such as evolutionary algorithms Li et al. [2013a], Cao et al. [2000], Lin et al.
[2018], which seek to concentrate the searches only on the interesting instances of u.
However, these approaches still rely on a large number of calls to the function to be
optimized, and their convergence is not always easy to quantify.

Because mixed optimization problems are difficult, an alternative approach is proposed in
the rest of this manuscript. It is based on the possibility to relax the discrete variables into
continuous latent variables, therefore benefiting from the more efficient search mechanisms
that exist in continuous spaces (e.g. gradients).

4.1 Latent Variable EGO

For an easier handling of categorical inputs, it was proposed in Zhang et al. [2019] to
replace each categorical input uj by a vector of qj ≥ 1 continuous inputs with values in
Rqj , noted ℓj. To give an intuition of the underlying idea in the automotive domain, a
category of lubricant may be determined by physical continuous features such as boiling
temperature, viscosity, etc that act as latent variables. In structural mechanics, the shape
of a load carrying structure, which is categorical, has underlying continuous flexural and
membrane moments that drive its behavior. This amounts to associating to the Gaussian
process (GP) Y a new GP Ỹ , such that for each instance u of the categorical inputs there
exists a particular value of ℓ := (ℓ1, . . . , ℓnd

) ∈ L ⊂ Rq1 × · · · ×Rqnd , which is called latent
variable, allowing us to write:

Y (x, u)
in law
= Ỹ (x, ℓ), x ∈ X . (4.4)

An important point is that the values of ℓ are unobserved and therefore Ỹ is unknown.
Nevertheless, in order to replace the EI maximization problem on X × U by a new
optimization problem on X × L, a precise knowledge of Ỹ is not necessary. Indeed,
assuming that kernels for mixed inputs are built by combining 1-dimensional ones as in
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(4.1), it is sufficient to identify the mappings ϕj from {1, . . . ,mj} to Rqj to each variable
uj such that

ku
j (uj, u

′
j) ≈ kj(ϕj(uj), ϕj(u

′
j)), (4.5)

where kj is a continuous kernel on Rqj × Rqj . Thus, it is not so much the values of ϕj(uj)
that are important, but their relative positions in Rqj in order to allow a reasonable
reconstruction of the dependency structure between Y (x, u) and Y (x′, u′).

According to the works achieved in Zhang et al. [2019], it appears that interesting
mappings can be obtained by likelihood maximization and that relatively small values of
qj can give a satisfying reconstruction. Following their recommendations, qj can be
chosen equal to 1 if mj ≤ 3 and to 2 otherwise, which will be the values chosen in the
rest of this manuscript. We denote by nℓ =

∑nd

j=1 qj the total number of latent variables.
Following Roustant et al. [2020], the continuous kernel kj associated to the latent
variables was chosen as the dot product kernel kj(t, t

′) = ⟨t, t′⟩. The corresponding
covariance matrix is then low-rank, and provided better performances than the Gaussian
kernel in the examples considered in the latter reference.

This new parameterization leads us to the following adaptation of the EI maximization
problem defined by Eq. (4.3), which we name acquisition problem as it allows to acquire
a new point to evaluate:

max
x,ℓ∈X×L⊂Rnc+nℓ

EI(t)(x, ℓ)

such that ∃u ∈ U with ℓ = ϕ(t)(u).
(4.6)

Here, EI(t)(x, ℓ) is the expected improvement associated with GP Ỹ at iteration t,

ϕ(t) = (ϕ
(t)
1 , . . . , ϕ

(t)
nd) is the vector-valued mapping from

∏nd

j=1{1, . . . ,mj} to
Rq1 × · · · × Rqnd at iteration t, and the constraint on the values of ℓ is driven by the fact
that the values of the latent variables at the new point have to remain compatible with
the current mapping functions.

We follow two paths to solve this acquisition problem. In the vanilla LV-EGO approach,
which will be described soon, the EI maximization and the latent-discrete compatibility
constraint are addressed one after each other. Alternatively, with the augmented
Lagrangian approaches, which will be described in Section 4.1.2, the full constrained
optimization problem is treated.

4.1.1 The vanilla LV-EGO algorithm

At each iteration, the vanilla LV-EGO algorithm first maximizes EI in a relaxed, fully
continuous, formulation where the discrete variables are replaced by relaxed continuous
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latent variables. Then, a pre-image problem is solved where EI is maximized over the
discrete variables only, the continuous variables being fixed at their value of the relaxed
problem. The LV-EGO methodology is summarized in Algorithm 4.

Algorithm 4 Vanilla LV-EGO with mixed inputs

1: Generate the initial DoE of size NDoE: X, U
2: Costly function evaluations y(xi, ui) , i = 1, . . . , NDoE, t← NDoE
3: while t ≤ budget do
4: Estimate the latent variable mappings ϕ(t) and the parameters of the continuous

GP Ỹ .
5: Perform one EGO iteration in the relaxed continuous space :

(xt+1, ℓt+1) = argmaxx,ℓ∈X×L⊂Rnc+nℓ EI
(t)(x, ℓ).

6: Recover the discrete pre-image component ut+1 as: ut+1 =
argmaxu∈U EI(t)(xt+1, ϕ(t)(u)).

7: Update the DoE with (xt+1, ut+1) with output value y(xt+1, ut+1).
8: t← t+ 1
9: end while
10: Return (x⋆, u⋆) = argminxt,ut∈(X,U) y(x

t, ut)

The main difference with the generic Bayesian algorithm 3 is the new discrete pre-image
problem in line 6. Notice that the pre-image is formulated in terms of the EI objective,
as opposed to a more arbitrary distance like ∥ℓt+1 − ϕ(t)(u)∥.

In terms of implementation, the EI maximization (line 5) is done with the COBYLA
algorithm, a gradient free non-linear optimization technique Powell [1994]. Since COBYLA
is a local optimizer and the EI is a multimodal function, the maximization is repeated
(10 times) from randomly chosen initial points and the best result is kept. An exhaustive
search is carried out for the EI maximization of the pre-image problem (line 6).
A comparison of the numerical complexities of the vanilla LV-EGO (Algorithm 4) and

the generic EGO (Algorithm 3) shows that the cost of the latent variables is limited.
Let us consider that the discrete space can be searched essentially by enumeration in
O(cardU) = O(

∏nd

i=1 mi) operations (where mi is the number of levels per discrete
variable) while a continuous space can be searched more efficiently in linear time. At
each iteration, the Bayesian algorithms of this manuscript have three steps: first a GP is
learned, then an acquisition criterion (EI for now and an augmented Lagrangian later) is
maximized and finally a pre-image problem is solved. In the vanilla LV-EGO algorithm,
these steps take place at lines 4, 5 and 6 of Algorithm 4, respectively. Table 4.1 summarizes
the number of operations per step. The number of operations for learning the GPs is
proportional to the cube of the number of points evaluated (t) because of the inversions
of the covariance matrices, times the number of (continuous) parameters of the GP for
the likelihood maximization.
The two other steps, the acquisition and the pre-image, imply predictions by the GP

in t2 operations times a number of operations that depends on the specific algorithm.
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Mixed space search Vanilla LV-EGO ALV-EGO-g ALV-EGO-l
(Alg. 3) (Alg. 4) (Alg. 5+6) (Alg. 5+7)

GP
learning

(nc +
∑nd

i=1mi)× t3 (nc + q ×∑nd

i=1 mi)× t3
(nc + q ×∑nd

i=1mi)× t3
(nc + q ×∑nd

i=1mi)× t3

max
acquisi-
tion

(
∏nd

i=1mi)× nc × t2 (nc + q ×∑nd

i=1 mi)× t2
(N ′

DoE + nc + q ×∑nd

i=1mi)× t2
(nc + q ×∑nd

i=1mi)× t2

pre-
image

0 (
∏nd

i=1 mi)× t2 (
∏nd

i=1mi)× t2 (
∏nd

i=1mi)× t2

Table 4.1: Numerical complexities of the algorithms compared at each iteration (for a
given t).

Comparing in Table 4.1 the column of the generic EGO with that of the vanilla LV-EGO,
and assuming that for all i mi = m to keep the discussion simple, it can be seen that the
latent variables induce a slight extra cost to be learnt. When q = 2, which is our default
here, this extra cost is nd ×mi × t3 operations. q = 1 would not add any cost to the
learning. An advantage, which comes from the sequential resolution of the mixed problem,
occurs in the maximization of the acquisition criterion when nc + q × nd ×m < mnd × nc,
at the cost of an additional pre-image problem to solve. Thus, LV-EGO will be faster than
a mixed EGO once the latent variables are estimated if mnd +nc+ q×m×nd < mnd ×nc,
which happens frequently (take for example nc = 4, nd = 2,m = 10, q = 2).

4.1.2 LV-EGO algorithms with Augmented Lagrangian

A possible pitfall of the vanilla LV-EGO detailed in Algorithm 4.1.1 is that the link
between the discrete variables u and their relaxed continuous counterparts ℓ is lost when
maximizing EI(t)(x, ℓ) in line 5. Recovering it during the discrete pre-image problem
where x is fixed to a value optimal in the relaxed formulation but possibly non-optimal
with respect to the mixed problem (4.3) may yield a sub-optimal solution. For this
reason, we now propose LV-EGO algorithms that account for the discreteness constraint
during the optimization using augmented Lagrangians.

In that prospect, notice that problem (4.6) can be approximated as an optimization
problem with an inequality constraint:

min
x,ℓ∈X×L⊂Rnc+nℓ

f (t)(x, ℓ) := − log(1 + EI(t)(x, ℓ))

such that g(t)(ℓ) := min
u∈U
∥ℓ− ϕ(t)(u)∥ − ϵ ≤ 0

(4.7)

where ϵ is a small positive relaxation constant and ∥·∥ the Euclidean norm. In this
reformulation, called relaxed acquisition problem, notice the log scaling of the EI which
does not change the solution but improves the conditioning of the problem. Two values of
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ϵ will be discussed in the sequel, ϵ = 0 in which case the constraint becomes an equality
constraint, minu∈U∥ℓ−ϕ(t)(u)∥ = 0, and ϵ > 0 but small which corresponds to a relaxation
of the equality. In the sequel, ϵ is normalized with respect to the size of the vector of
latent variables and set to ϵ = 0.01.
The constrained optimization problem (4.7) is solved through an augmented Lagrangian

approach Minoux [1986], Nocedal and Wright [2006]. The augmented Lagrangian is that
of Rockafellar Rockafellar [1993] which, specified for Problem (4.7), is,

L
(t)
A (x, ℓ;λ, ρ) =

{
f (t)(x, ℓ)− λ2

2ρ
, if g(t)(ℓ) ≤ −λ

ρ

f (t)(x, ℓ) + λg(t)(ℓ) + ρ
2
g(t)(ℓ)2 , otherwise

(4.8)

When ϵ = 0, the constraint g(t)(ℓ) ≤ 0 becomes an equality constraint, g(t)(ℓ) = 0. In
this case, the augmented Lagrangian connected to that of Rockafellar is that of Hestenes
Hestenes [1969] and takes the form

L
(t)
A (x, ℓ;λ, ρ) = f (t)(x, ℓ) + λg(t)(ℓ) +

ρ

2
g(t)(ℓ)2 (4.9)

Complementary explanations about the augmented Lagrangians are given in Ap-
pendix A.1.
Augmented Lagrangians require to specify the values of the Lagrange multiplier, λ,

and of the penalty parameter, ρ. The general principle to fix them is to calculate the
generalized Lagrange multiplier with a dual formulation Minoux [1986]: the dual function
D(t) is maximized with respect to the multiplier λ while the penalty parameter ρ should
take the smallest value that allows to find feasible solutions,

ρt = argmin
ρ≥0

ρ such that g(ℓt) ≤ 0

where λt = argmax
λ≥0

D(t)(λ, ρ) ,

D(t)(λ, ρ) = min
x,ℓ∈X×L⊂Rnc+nℓ

L
(t)
A (x, ℓ;λ, ρ) ,

and (xt, ℓt) ∈ arg min
x,ℓ∈X×L⊂Rnc+nℓ

L
(t)
A (x, ℓ;λ, ρ) .

(4.10)

There are two logics to solve Problem (4.10), both of which have been investigated in this
study. Following an idea presented in Le Riche and Guyon [2002] for classical Lagrangians,
we first propose to approximate the dual function D() as the lower front of the augmented
Lagrangians of a finite set of calculated points. The approximated dual is

D̂(λ, ρ) = min
(x,ℓ)∈(X′,L′)

L
(t)
A (x, ℓ;λ, ρ) (4.11)

where (X′,L′) is a DoE that should not be mistaken for (X,U), the DoE of the original
expensive problem. (λt, ρt, x

t, ℓt) comes from solving Problem (4.10) with minimizations
over the finite set (X′,L′) instead of the initial X × L. The functions in Problem (4.7)
are not costly, (X′,L′) can be quite large.
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This approach is called global dual as a global approximation to the dual function is
built and maximized. It applies to very general functions, e.g., non differentiable functions.
Another advantage of this approach is to allow large changes in the dual space. Figure
A.1 provides an illustration of the approximated dual function and the effect of ρ on the
dual problem. The sketch is done for an inequality constraint, yet it also stands with
marginal changes for an equality (cf. Appendix A.1 and the caption to the Figure). Under
the non-restrictive hypothesis that there is a ρ beyond which the solution to the primal
problem (4.7) maximizes the dual function, maximizing the dual function preserves the
global aspect of the search. However, the accuracy of the obtained (λt, ρt)’s will depend
on the DoE. Because there is only one constraint in the current problem and evaluating
it does not require calling the costly function, the maximization on λ and ρ is done by
enumeration on a 100× 20 grid and (X′,L′) is a 100 LHS sample.

The other path to updating the multiplier is to progressively change them based on
the minimizers of the augmented Lagrangian at the current step. This updating can be
seen as a step in the dual space which makes it general, although it is usually proved by
analogy with the Karush Kuhn and Tucker optimality conditions Nocedal and Wright
[2006] which add unnecessary conditions (like differentiability), cf. Appendix A.1. Let
(xt, ℓt) be a solution to

min
x,ℓ∈X×L⊂Rnc+nℓ

L
(t)
A (x, ℓ;λt, ρt) (4.12)

The update formula reads

λt+1 = λt + ρt

(
g(t)(ℓt) + max(0,

−λt

ρt
− g(t)(ℓt))

)
(4.13)

As in Picheny et al. [2016], the penalty parameter ρ is simply increased if the constraint
is not satisfied,

ρt+1 =

{
ρt if g(t)(ℓt) ≤ 0

2ρt otherwise
(4.14)

The update scheme based on equations (4.13) and (4.14) is called local dual as a local
step in the dual (λ, ρ) space is taken.
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Algorithm 5 Augmented Lagrangian Latent Variables EGO with global or local dual
scheme (ALV-EGO-g or ALV-EGO-l)

1: generate the initial DoE of size NDoE for (X,U)
2: costly function evaluations y(xi, ui) , i = 1, . . . , NDoE, t← NDoE
3: initialize budget, ϵ
4: while t ≤ budget do
5: estimate the latent variables ϕ(t) and the GP parameters from current DoE.
6: {approximately solve the relaxed acquisition problem (4.7) with f (t)(·) = − log(1 +

EI(t)(·))}
(xt+1, ℓt+1) = argminx,ℓ f

(t)(x, ℓ) s.t. g(t)(ℓt+1) = minu∈U∥ℓ− ϕ(t)(u)∥ − ϵ ≤ 0,
ALV-EGO-g variant: with the global dual scheme, cf. Algorithm 6
ALV-EGO-l variant: with the local dual scheme, cf. Algorithm 7

7: recover the discrete pre-image component ut+1 as: ut+1 =
argmaxu∈U EI(t)(xt+1, ϕ(t)(u))

8: update DoE: add (xt+1, ut+1) and its costly evaluation y(xt+1, ut+1) to the DoE
(X,U).

9: t← t+ 1
10: end while
11: return (x⋆, u⋆) = argmin(X,U) y(x, u)

Algorithm 5 gathers all these changes and is called ALV-EGO. The essential difference
between this ALV-EGO algorithm and the vanilla counterpart (Algorithm 4) is that the
EI maximization step is constrained so that the link between the discrete variables and
the relaxed latent variables (hence the continuous x) is not lost and left to the pre-image
step. The coupling between the continuous and the discrete variables is better accounted
for. However, a pre-image step (line 7) is still necessary to fully recover a discrete
solution in cases when the constraint is relaxed (ϵ > 0). In ALV-EGO like in the vanilla
LV-EGO, there are q = 2 continuous latent variable per discrete variable.

The global and local dual schemes are further detailed in Algorithms 6 and 7. The
continuous minimizations of the Augmented Lagrangians once the Lagrange multipliers
are set are always done with 10 random restarts of the COBYLA algorithm Powell [1994].
They occur in Algorithm 6, line 4 and Algorithm 7 line 5. To allow comparisons, this
implementation is identical to the EI maximization of the vanilla LV-EGO (step 5 of
Algorithm 4).
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Algorithm 6 Global dual scheme (makes ALV-EGO-g when used in Algorithm 5)

Ensure: An estimation of the solution to the relaxed acquisition problem (4.7)
Require: f (t)(), an objective function, g(t)(), a constraint

N ′
DoE, Nλ, Nρ > 0

1: Calculate a DoE (X′,L′) ∈ (X ,L)N ′
DoE .

Half of the points are feasible by i) sampling a u ∈ U and ii) setting ℓ′ = ϕ(t)(u)
2: Create a grid of Lagrange multipliers and penalty parameters, (λ,ρ) = {λ1, . . . , λNλ

}×
{ρ1, . . . , ρNρ}, with λi ≥ 0 and ρj ≥ 0 for all i, j

3: Approximately solve the dual problem by enumeration:
ρt smallest ρ ∈ ρ that yields a feasible solution, g(ℓt) ≤ 0 where

(λt, x
′, ℓ′) = argmaxλ∈λmin(x,ℓ)∈(X′,L′) L

(t)
A (x, ℓ;λ, ρ)

4: Fine tune the next candidate: (xt+1, ℓt+1) = argmin(x,ℓ)∈(X ,L) L
(t)
A (x, ℓ;λt, ρt)

5: return xt+1, ℓt+1

Algorithm 7 Local dual scheme (makes in ALV-EGO-l when used in Algorithm 5)

Ensure: An estimation of the solution to the relaxed acquisition problem (4.7)
Require: f (t)(), an objective function, g(t)(), a constraint

initial values of the Lagrange multiplier and penalty, λNDoE
= 0 and ρNDoE

= 1, t
1: if t > NDoE then
2: {when t = NDoE the initial λNDoE

, ρNDoE
are used}

Update λ according to Eq. (4.13)

λt = λt−1 + ρt−1

(
g(t−1)(ℓt) + max(0, −λt−1

ρt−1
− g(t−1)(ℓt))

)
3: Update ρ according to Eq. (4.14)

ρt = ρt−1 if g(t−1)(ℓt) ≤ 0, 2ρt−1 otherwise
4: end if
5: (xt+1, ℓt+1) = argmin(x,ℓ)∈(X ,L) L

(t)
A (x, ℓ;λt, ρt)

6: return xt+1, ℓt+1

While the local update of λ and ρ might seem less robust, it is the most common
implementation and it might be sufficient for the constrained EI maximization. Indeed,
between two iterations, the EI changes only locally around the current iterate. Providing
the latent mapping functions do not change too much, a local update of λ and ρ seems
appropriate. The numerical complexity of the ALV-EGO-g and -l algorithms is essentially
the same as that of the vanilla LV-EGO, cf. Table 4.1. The global dual scheme has a
slight extra-cost because of the search for the Lagrange multiplier and penalty parameter
that require N ′

DoE extra GP predictions.

Eventually, four variants of ALV-EGO are considered, ALV-EGO-ge or -gi or -le or -li
where g stands for global, l for local, e for equality (ϵ = 0) and i for inequality (ϵ > 0).
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name formulation metamodel acq. crit. optimizer of the acq.
crit.

LV-EGO LV GP EI restarted COBYLA
LV-RFO LV randomForest

toolbox
EI focus-search (from

mlrMBO)
ALV-EGO-
ge or
-gi

LV GP EI DoE (for λt and
ρt) and restarted
COBYLA

ALV-EGO-
le or -li

LV GP EI restarted COBYLA

MS-RFO MS randomForest

toolbox
EI focus-search (from

mlrMBO)
MS-ES MS none −y(x, u) evolution strategy

(from Li et al.
[2013a] in CEGO

implementation
Zaefferer [2014–2021])

MS-MKES MS GP (sym. com-
pound disc. ker-
nel)

EI evolution strategy
(from Li et al.
[2013a] in CEGO

implementation
Zaefferer [2014–2021])

Table 4.2: Summary of the 9 algorithms tested: name, space over which it is defined
(mixed versus continuous with latent variables), metamodel used, acquisition criterion,

optimizer of the acquisition criterion.

4.2 Description of the numerical experiments

This section presents the different algorithms tested as well as the test-cases and applica-
tions used to compare their performance. The set of algorithms tested are summarized
in the Table 4.2 which provides their names, the type of formulation for the mixed
variables, the type of metamodel, the acquisition criterion and the technique to optimize
the acquisition criterion. The two possible formulations for the mixed variables are either
by searching in a mixed space (MS) or by a formulation in latent variables (LV). All
Gaussian processes (GPs) are built with the kerpg package Deville et al. [2017–2021].
The meaning of the acronyms is: LV-EGO, Latent Variables EGO; LV-RFO, Latent
Variables Random Forest Optimization; ALV-EGO-ge/-gi/-le/-li, Augmented Lagrangian
Latent Variables global/local dual scheme with equality/inequality pre-image constraints;
MS-RFO, Mixed Space search with Random Forest Optimization; MS-ES, Mixed Space
search with Evolution Strategy; MS-MKES, Mixed Space search with Mixed Kriging
metamodel and Evolution Strategy. The different algorithms will be tested on the suite
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of test problems soon to be described. Before that, we provide a few more details about
the evolution strategy and the mixed kriging model.

Mixed space evolution strategies

Among population-based techniques, the Evolution Strategy (ES) (µ+, λ) is a stochastic
optimization algorithm modified to solve problems with categorical and continuous inputs.
As proposed in Li et al. [2013b], they extend the classical representation of the individuals
by defining the space I = X × U , with U = Z× D, where X ,Z,D denotes the continuous,
integer and factor variables respectively that are sampled (which includes mutated)
independently. The combined goal of the stochastic operators, the mutation and the
recombination, and the selection of the best points, is to concentrate the search in
interesting instances of the input variables. Given the mixed space of the individuals I,
the Evolution Strategy (µ +

, λ) proceeds as follows

Algorithm 8 (µ+, λ) Evolution Strategy

1: t← 0
2: Initialize population P (t) ∈ I
3: Evaluate the µ initial individuals with objective function f
4: while termination criteria not fulfilled do
5: for all i ∈ {i = 1, 2, . . . , λ} do
6: chose uniform randomly parents ci1 , ci2 from P (t)(repetition is possible)
7: xi ← mutate (recombine:ci1 , ci2)
8: Q(t)← Q(t) ∪ {xi} (set of offspring individuals Q(t))
9: end for
10: P (t+ 1)← µ select individuals from: (P ∪Q) (“+” version) or Q (“,”’ version)
11: t← t+ 1
12: end while

This version of the (µ +
, λ) Evolution Strategy Algorithm is used as the MS-ES technique

defined in table 4.2 and will be combined with a mixed metamodel, based on a mixed
variable kernel, that will be defined hereafter.

Mixed variable kernel

A mixed Gaussian Process {(x, u); (y(x, u))} can be written as

Y ∼ GP (0,Cov(Y (w), Y (w′)))

where the covariance function can be a tensor product as in Equation 4.1:

Cov(Y (w), Y (w′)) = kx
1 (x1, x

′
1) ∗ · · · ∗ kx

nc
(xnc , x

′
nc
) ∗ ku

1 (u1, u
′
1) ∗ · · · ∗ ku

nd
(und

, u′
nd
),
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Under the strong assumption of a common correlation value for all the levels of each
categorical variable, it is possible to reduce the effective number of parameters to estimate.
Then each ku

j is constructed as follows

ku
j(u, u

′) =

{
σ2
u, if u = u′

c, if u ̸= u′

where c is a constant value. This corresponds to a Compound Symmetry (CS) kernel, for
a more general mixed kernel representation see Roustant et al. [2020]. Under this setting,
an hybrid MS-MKES is formed by a mixed GP with a CS kernel for the discrete variables
optimized via the previously defined (µ +

, λ) ES. In MS-MKES, at each iteration, the EI
acquisition criterion is maximized in terms of the mixed variables.

4.2.1 Test cases

There are 3 analytical test cases and a beam bending problem. The analytical test cases
have all been designed by discretizing some of the variables of classical multimodal con-
tinuous test functions. The following notation is introduced to describe the discretization:
if the continuous variable xi is discretized with uj that takes values in {1, . . . ,mj}, then
uj(k) = β means xi = β when uj = k, β a scalar, 1 ≤ k ≤ mj.

(a) Discretized Branin-Hoo function (b) Discretized Goldstein-Price function

Figure 4.1: Two of the test functions with 1 discrete variable.

Test case 1: discretized Branin function. We modified the 2 dimensional Branin-
Hoo function whose expression is

y(x1, x2) = (x′
2 − bx′2

1 + cx′
1 − r)2 + s(1− t) cos (x′

1) + s,

x′ = x′min
+ (x′max − x′min

)× x

where b = 5/(4π2), c = 5/π, r = 6, s = 10, t = 1/(8π), x′min = [−5; 0], x′max = [10; 15] by
keeping x1 continuous in [0; 1] and making x2 discrete with 4 levels
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{u(1) = 0;u(2) = 0.333;u(3) = 0.666;u(4) = 1}. The discretized Branin, which was
already used in Zhang et al. [2020], has several local minima as shown in Figure 4.1a.
The global optimum is located at (x⋆

1, u
⋆) = (0.182;u(3)) with y(x⋆

1, u
⋆) = 2.791.

Test case 2: discretized Goldstein function. As a second test case, the continuous
Goldstein function

y(x1, x2) =[1 + (x′
1 + x′

2 + 1)2(19− 14x′
1 + 3x′2

1 − 14x′
2 + 6x′

1x
′
2 + 3x′2

2)]

×[30 + (2x′
1 − 3x′

2)
2(18− 32x′

1 + 12x′2
1 + 48x′

2 − 36x′
1x

′
2 + 27x′2

2)] ,

x′ =x′min
+ (x′max − x′min

)× x , x′min
= [−2,−2] , x′max

= [2, 2]

is partly discretized by replacing x2 by u with 5 levels
{u(1) = 0;u(2) = 1/2;u(3) = 1/2;u(4) = 3/4;u(5) = 1}. The discretized Goldstein,
which has also been studied in Zhang et al. [2020], is drawn in Figure 4.1b. It has several
local optima. The global optimum is located at (x⋆

1, u
⋆) = (0.5;u(2)) with y(x⋆

1, u
⋆) = 3.

Test case 3: discretized Hartman function. Two variables are discretized in the 6
dimensional Hartman function,

y(x) = −
4∑

i=1

αi exp

(
−

d∑
j=1

Aij(xj − Pij)

)
,

where x ∈ [0, 1]d, d = 6, α = [1, 1.2, 3, 3.2]⊤ and

A =


10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 , P = 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 .

x5 and x6 are discretized with 5 and 4 levels respectively such that
{u1(1) = 0.350;u1(2) = 0.257;u1(3) = 0.477;u1(4) = 0.312;u1(5) = 0.657} and
{u2(1) = 0.150;u2(2) = 0.657;u2(3) = 0.512;u2(4) = 0.741}. Again, there are multiple
local minima and the global optimum is located at (x⋆, u⋆) = (0.202; 0.150; 0.477;
0.275;u1(4), u2(2)) with y(x⋆, u⋆) = −3.322.

Euler-Bernoulli beam bending problem. This test case corresponds to an horizontal
beam that is clamped at one end and subject to a vertical force at the other end. If the
length of the beam is sufficiently long compared to the dimensions of its cross section,
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and if it is operating within its linear elastic range, the final beam deflection y (to be
minimized) is expressed as

D(L, S, Ĩ) =
L3

3S2 Ĩ
(4.15)

where L ∈ [0, 1] is the horizontal length of the beam, S ∈ [0, 1] is the cross-section area
and Ĩ = I/S2,∈ {Ĩ(1), Ĩ(2), . . . , Ĩ(12)} is the normalized moment of inertia that can
explicitly be derived for a given catalog of beam profiles. The 12 levels of the normalized
moment of inertia are

Ĩ = {0.083; 0.139; 0.380; 0.080; 0.133; 0.363; 0.086; 0.136; 0.360; 0.092; 0.138; 0.369} .
(4.16)

We are interested in finding the best compromise between a minimization of the vertical
deflection and the total weight, as expressed in the objective

y(x1, x2, u1) = D(L, S, Ĩ) + αLS , (4.17)

where L = 10 + 10× x1 , S = 1 + x2 , u1 = Ĩ , α = 60 (4.18)

and (x1, x2) ∈ [0, 1]2 . (4.19)

The solution is (x⋆
1, x

⋆
2, u

⋆
1) = (0; 0.43; Ĩ(3)) with output y⋆ = 1.287385× 103.

4.2.2 Experiments setup and metrics

The optimization of each pair of algorithm and test case are repeated 50 times from
different initial DoEs. The DoEs are generated by minimax Latin Hypercube Sampling.
The size of the DoEs is NDoE = 4 × nc × nd × max(mi) and a budget of NDoE + 50
evaluations of the true objective function. Remember that the true objective function is
supposed to be computationally intensive although it is not in these experiments so that
runs can be repeated. The evolution strategies are stopped after NDoE + 50 evaluations
of the true function, like the other algorithms.
The internal local optimizer, COBYLA, is restarted 5 times during the likelihood

maximization and 10 times during the maximization of the acquisition criterion. The
focus-search algorithm has a sample size of 1000 with 5 boundary reduction iterations
and 3 multi-starts, for a total of 3000 calls to the acquisition criterion.
A summary of the dimensions involved in the different examples is given in Table 4.3.

4.3 Results and discussion

In this section we analyze the obtained results by employing 4 main metrics. The
performance of an algorithm is classically described by the median objective function over
the 50 repeated runs, calculated at each iteration. The associated measure of dispersion of
the performance is the interquartile over the repetitions as a function of the iteration. To
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Name nc nd mi NDoE nlocal

Branin-Hoo 1 1 4 16 > 4
Goldstein 2 1 5 40 > 4
Hartmann 4 2 {5,4} 160 > 4
Beam Bending 2 1 12 96 NA

Table 4.3: Dimensions and DoE size of the test cases.

discriminate between methods that are rapid but provide rough solutions from the ones
that take more time but yield better solutions, the two other metrics are based on the
definition of targets. For each test case, a target is a given quantile of all the objectives
functions found by all the algorithms throughout all the repetitions. A 10% target is
difficult, while a 50% target is the median performance. The third metric is the iteration
number at which the median objective function of a given algorithm reaches a given target.
The fourth metric is the success rate (given a target), which is the percentage of the runs
that do better than the target. The metrics associated to the quantile targets have the
advantage that they are normalized with respect to the test cases: thanks to the quantiles,
the definitions of an easy, a median or a hard target stands across the different functions
to optimize. The target-based metrics will later be averaged over the different test cases.
Let us now review the performances of the algorithms on each test case.

4.3.1 Analytical test functions

Branin function. Figure 4.2 presents the results for the Branin function with the
four metrics. On the top left plot, showing the median value for the objective function,
it is clear that the two methods that rely on the random forest metamodel (MS-RFO
and LV-RFO) are overtaken by all other methods. This indicates that, whether in the
mixed or in the latent-augmented space, random forests do not represent sufficiently well
the Branin function in comparison to Gaussian processes. Looking at Figure 4.2b, it is
observed that the fast methods typically have the lowest spread in performance and vice
versa. This is expected as non converging runs may yield a wide range of performances.
All methods involving the discrete constraint (i.e., the augmented Lagrangians) managed
to improve over the LV-EGO performance; and including a mixed metamodel increased
significantly the success rate and the median solution for the evolutionary strategy.
Regarding the success rate on Figure 4.2d, the methods MS-MKES, LV-EGO, ALV-

EGO-li, -le, -ge and -gi were the most prominent, the latter being capable to reach success
rates of about 20% for a 10% target. Notice that all these methods contain Gaussian
processes. Indeed, the Branin function is easy to represent by a GP whether continuous
or mixed. In the same vein, MS-MKES which differs from MS-ES by the use of a GP,
clearly benefits from that metamodel.
All ALV- methods, which account for the discrete constraint, obtained the best median
performances. ALV-EGO-ge in particular found all targets, in the median sense, earlier
than the other algorithms as can be seen from Figure 4.2c.
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A last comment is necessary regarding the bottom of Figure 4.2: the plot on the left
describes the median performance (in terms of targets reached) while the right plot counts
the success rate at reaching a target over all runs. Therefore, some targets are reached on
the right by some of the runs of a given algorithm, while they are never attained on the
left by the median of the same algorithm. This comment stands accross all test cases.

(a) Median solution (b) Interquartile range

(c) Iteration to median success (d) Success rate

Figure 4.2: Comparison of all 9 algorithms on the Branin function. y⋆ = 2.79118.

Goldstein function. The experiments done with the Goldstein test function are
summed up in Figure 4.3. Like with the Branin function, algorithms relying on random
forests (LV-RFO and MS-RFO) showed both poor performance (top left plot). The
associated high constant interquartile (top right) is that of the best points in the initial
designs, which remains unchanged since no better point is found by these algorithms.
Considering the success rates for all targets (bottom plots), it is seen that accounting for

the discreteness through a constraint (which is the distinctive feature of ALV- methods) is
useful with the Goldstein function: like with Branin, ALV-EGO-gi is the best performer,
but the other ALV- follow and outperform LV-EGO. All ALV- strategies almost reach the
absolute target of percentile 25% with a rate of 25% or higher.
The comparison of the plots 4.3c and 4.3d also shows that, behind the ALV- methods,

LV-EGO has a good median performance (cf. Figure 4.3c) but more of the MS-MKES
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searches manage to find difficult targets (the 25% and 10% quantiles).

(a) Median solution (b) Interquartile range

(c) Iteration to median success (d) Success rate

Figure 4.3: Comparison of the 9 algorithms on the Goldstein function. y⋆ = 3.

Hartmann function. Results on the Hartmann function which has 4 continuous and 2
discrete variables, with a total of 9 discrete levels, will be impacted by the sensitivity of
the algorithms to an increase in dimension. These results are reported in Figure 4.4.
LV-EGO stands out as the best method with respect to all criteria for Hartmann.

The next two best methods are LV-RFO and ALV-EGO-gi, followed by MS-RFO and
ALV-EGO-ge. This time, LV-RFO and MS-RFO, which both rely on random forests,
belong to the efficient methods: random forests gain in relative performance with respect
to the GPs when the dimension and the size of the initial DoE increase. For Hartmann,
LV-EGO consistently outperforms the ALV- implementations. The importance of keeping
the coupling between discrete and latent variables during the optimization seems less
crucial, and even somewhat detrimental, in the Hartmann case. We think that this is due
to the very tight budget (50 iterations after the initial DoE) which does not allow the
convergence of the optimizers, as can be seen in the Plot 4.4a where the global optimum
is not reached. Because the optimum is not really found, constraints on discreteness are
superfluous and their handling through the pre-image problem is sufficient. As in the
other test cases, MS-ES was slower than the other methods.
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(a) Median solution (b) Interquartile range

(c) Iteration to median success (d) Success rate

Figure 4.4: Comparison of the 9 algorithms on the Hartmann function (for which
y⋆ = −3.32237).

4.3.2 Beam bending application

Optimization results. Figure 4.5 summarizes the 4 comparison metrics of all 9
algorithms in the bended beam test case. The ranking of the algorithms is similar to that
obtained with the Branin and Goldstein functions. LV-EGO has the best convergence
both in terms of median speed (cf. plots of the left column) and accuracy (bottom right
plot). ALV-EGO-gi is the second most efficient method followed by ALV-EGO-ge. Again,
the algorithms that resort to random forests, LV-RFO and MS-RFO, are the slowest and
most inaccurate. They share this counter-performance with MS-ES.
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(a) Median solution (b) Interquartile range

(c) Iteration to median success (d) Success rate

Figure 4.5: Comparison of all 9 algorithms on the beam design test case (y⋆ = 1.28738).

Latent variables in the beam application. The beam subject to a bending load is
a test case that allows to interpret the latent variables. Indeed, the normalized moment
of inertia, Ĩ, is a candidate latent variable once it is allowed to take continuous values
as it determines, with the continuous cross-section S and the length L, the output (the
penalized beam deflection) y in Equation (4.19). The levels of Ĩ (given in Equation (4.16))
correspond to 3 increasingly hollow profiles of 4 shapes, as illustrated in Figure 4.6.
Because a relaxed Ĩ is a possible latent variable, it is expected that the latent variables
ϕ(t) learned from the data will be grouped in the same way as Ĩ. Looking at Ĩ values and
at Figure 4.6, we thus expect, in the image space defined by latent variables, three groups
of levels: those corresponding to solid forms (levels {1, 4, 7, 10}), medium-hollow forms
(levels {2, 5, 8, 11}) and hollow forms (levels {3, 6, 9, 12}).
For the sake of interpretation, we select 1 run that found the global optimum with the

Vanilla LV-EGO algorithm. In Figure 4.7, we represent in a color scale the estimated
correlation matrix corresponding to the categorical kernel of Equation (4.5), at iterations
[1; 26; 49; 50].

At the beginning of the optimization, at iteration 1, we can see a block-structure
which corresponds quite well to the three groups of forms described above. This structure
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Ĩ1 Ĩ2 Ĩ3 Ĩ4 Ĩ5 Ĩ6

Ĩ7 Ĩ8 Ĩ9 Ĩ10 Ĩ11 Ĩ12

Figure 4.6: Shapes of the considered beam profiles. The scale differs from one picture to
another, as the areas are supposed to be the same for each cross-section. From Roustant

et al. [2020].

becomes less clear for the next iterations of the LV-EGO algorithm. This may be explained
by the fact that the algorithm creates an unbalanced design, with more points in the
promising areas according to the optimizers, so that all levels are no longer properly
represented.

(a) Correlation of the latent variables at
iteration #1

(b) Correlation of the latent variables at
iteration #26

(c) Correlation of the latent variables at
iteration #49

(d) Correlation of the latent variables at
iteration #50

Figure 4.7: Representation of the correlation between the latent variables at various
iterations t. The correlations correspond to the categorical kernel of Equation (4.5). The

levels were grouped according to Ĩ: {1, 4, 7, 10}, {2, 5, 8, 11}, {3, 6, 9, 12}.
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4.3.3 Summarized results

The results of all the previous test cases which are measured through targets can be
averaged. For example, the success rate of an algorithm at 25% difficulty is the average
of the rates for the 25% quantiles of all test cases. The average results are presented in
Figure 4.8.

The three leading algorithms out of the 9 tested are ALV-EGO-gi, -ge and LV-EGO.
Among them, LV-EGO is slightly better at locating difficult targets (10% quantile) while
ALV-EGO-gi (closely followed by ALV-EGO-ge) is more robust at locating 50% targets
as can be seen from the median success plot in Figure 4.8a. All three algorithms have in
common to use latent variables. In particular, these algorithms outperformed MS-MKES
which benefits from a Gaussian process but works only in the mixed space, i.e., MS-MKES
does not imply latent variables. This shows that latent variables are useful to speed up a
Bayesian search for mixed problems.

No clear advantage, on the average, was found for accounting for the discrete nature of
the variables through constraints: LV-EGO, which ignores the link between latent variables
and the discrete variables until the pre-image problem, is competitive with the best of
the augmented Lagrangian ALV-EGO algorithms. We hypothesize that the constraint on
latent variables, by creating disconnected feasibility islands around ϕ(t)(u), u ∈ U , makes
the optimization of the acquisition criterion almost as difficult to solve as it originally
was in the mixed space, therefore not allowing to fully benefit from the continuity of the
X × L space.

In our tests, the global updating of the Lagrange multipliers was always preferable to
the local counterparts, ALV-EGO-gi and -ge eclipsing ALV-EGO-li and -le. The ALV-
EGO-gi approach, where the discrete constraint is relaxed and turned into an inequality
(Equation (4.7)), works better on the average than ALV-EGO-ge where the constraint
is an equality. This illustrates the positive effect of the relaxation ϵ, that softens the
phenomenon we mentioned above where the feasible domain is broken into disconnected
regions.

MS-ES is consistently less efficient than the other algorithms. It was expected, because
there is no metamodel to save calls to the function. Furthermore, the sampling is done in
the mixed space. The optimizers based on random forests have also rather poor average
performances, to the exception of the 6 dimensional Hartmann function. We believe
the random forests need a sufficiently large initial DoE (which happened with a higher
dimension) to fruitfully guide the search.

As a final comment, we discuss the necessity of re-estimating the latent variables at each
iteration. The estimation of the latent variables has an important numerical cost of about
qt3
∑nd

i=1mi operations at each iteration t (cf. Table 4.1).It was repeated at each iteration
in the algorithms with latent variables considered so far. In the experiment reported in
Figure 4.9, a version of the LV-EGO algorithm is considered where the latent variables
are estimated once only, with the initial DoE, yielding the NR-LV-EGO algorithm (for
Non Repeated estimation of ϕ()).

As can be seen in Figure 4.9 when comparing LV-EGO with NR-LV-EGO, the re-
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(a) Average iteration to median success (b) Average success rates

Figure 4.8: Comparison of the 9 algorithms tested with results averaged over all test
cases.

(a) Median objective function (b) Interquartile of the objective functions

(c) Success rate (d) Iteration to median success

Figure 4.9: Comparison of LV-EGO with and without (NR-LV-EGO) a repeated
estimation of the latent variables. Results for the beam design application.

estimation of the latent variables at each iteration, as implemented in the LV-EGO
algorithm and its ALV-EGO variants, improves considerably its performance. An
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accompanying result is the visualization of the correlation matrix of the discrete variable
provided in Figure 4.7, where one notices that the correlation (hence the latent variables)
evolves in time. Our experiments indicate that this evolution is beneficial to the
optimization efficiency.

4.4 Complementary heuristics

In this section we present two different heuristics deduced from our empirical analysis of
the LV-EGO performance with the different test cases.The formulations were inspired
from the analysis of the performance of the augmented Lagrangian methods.

We have observed that ALV-EGO variants struggle to find suitable pairs (xt, ℓt) that
satisfies g(t)(ℓ)≤ 0 in the narrow region close to each latent variable ϕ(t) (the q-ball of
radius ϵ). As a direct consequence of this, in some test-cases like Hartmann and the
Beam Bending applications, vanilla LV-EGO which first ignores the constraint and
focuses on the EI maximization, manages to reach better and faster solutions than the
rest of the methods.

One possible cause for this behavior is that as EI changes at each iteration, it does not
guide the search. Also the connection between the recovery of the discrete variables and
the optimization problems may not be strong enough. The basis for our heuristics is that
the original problem

min
x,ℓ∈X×L⊂Rnc+nℓ

f (t)(x, ℓ) := −EI(t)(x, ℓ)

such that g(t)(ℓ) := min
u∈U
∥ℓ− ϕ(t)(u)∥ − ϵ ≤ 0

(4.20)

can be handled through the penalization

min
x,ℓ∈X×L⊂Rnc+nℓ

P (t)(x, ℓ; ρt, γt) (4.21)

P (t)(x, ℓ; ρt, γt)
.
= −EI(t)(x, ℓ) exp{−ρt(γt)h(t)},

ρt is the positive penalty parameter and exp{−ρt(γt)h(t)(ℓ)} is our penalty factor depending
on the equality constraint

h(t)(ℓ) := min
u∈U
∥ℓ− ϕ(t)(u)∥ (4.22)

i.e., h(t)(ℓ) ≡ g(t)(ℓ) when ϵ = 0. ρt is a function of

γt = max
u∈U
∥ℓt − ϕ(t)(u)∥ (4.23)

which is the largest distance of the best point obtained from the EGO iteration to any of
the latent variables ϕ(t). γt acts as a scaling quantity for the penalty factor and its role
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will be detailed hereafter.

With this product by an exponential, we expect that feasible points with a low
EI(t)(x, ℓ) will more often be proposed instead of infeasible points with better EI’s. The
exponential penalty may counterbalance well the rapid, also exponential, decrease in EI
that is often observed in the neighborhood of visited points. Otherwise we expect that
just feasible regions with radius γt should be taken into consideration.

Like any penalization approach, infeasible points may still be proposed and the
inaccuracy in ℓt+1 should be compensated by the very high expected improvement at
ℓt+1, xt+1 which, in turns, expresses a good compromise between expected performance
and gain of information. Under this setting we are going to evaluate two different ways to
obtain ρt: we either assume that everything is independent at each iteration (meaning
the ϕ changes at each iteration), or we assume that there is a dependency on the previous
values (meaning that the ϕ converge). The first scenario leads to a static exponential
penalty while the second leads to an adaptive exponential penalty.

The two approaches that we are describing are called heuristics because we did not
mathematically prove that they provide a solution to Problem (4.6), as opposed to the
augmented Lagrangians that have proofs partly included in Appendix A.1. However, as
will be seen, they provide very good empirical results.

4.4.1 Static exponential penalty

The first idea tries to balance the contribution of h(t), which measures feasibility, and EI(t)

the expected improvement within the penalized function P (t) through the estimation of
ρt. This can be done by defining a reference value EI(t)r that will help to identify how P (t)

should behave. This can be summarized as

h(t) < γt h(t) = γt h(t) > γt
EI(t)(x, ℓ) > EI(t)r −− − +−
EI(t)(x, ℓ) = EI(t)r − 1 +

EI(t)(x, ℓ) < EI(t)r +− + ++

Table 4.4: P (t) expected variations

The penalty parameter ρt > 0 is obtained from the middle scenario
1 = EI(t)r exp{−ρtγt}, that is

ρt =

 logEI(t)r

γt
, if EI(t)r ≥ 1

− logEI(t)r

γt
, otherwise,

(4.24)

γt (cf. Equation 4.23), which measures the worst distance between a point and the
feasible domain, is an indication of how difficult it can be to satisfy the discreteness
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constraint. If γt is small, it is easy to solve the discrete pre-image problem and it does not
harm to force an early convergence to the feasible domain with a strong penalty, hence
the 1/γt term. Vice versa, a large γt is associated to a more progressive penalization so as
to allow the optimizer to take short cuts through the infeasible domain.

The reference EI(t)r is obtained by evaluating EI(t)(x, ℓ) on a random DoE (X′,L′) ∈
(X ,L)N ′

DoE :

EI(t)r =

{
max(x,ℓ)∈(X′,L′) EI

(t)(x, ℓ), if max(x,ℓ)∈(X′,L′) EI
(t)(x, ℓ) ≥ 1

median(x,ℓ)∈(X′,L′)EI
(t)(x, ℓ), otherwise.

(4.25)

The overall penalization scheme (Equations (4.21), (4.24) and (4.25)) is dominated by
situations where EI(t)r ≪ 1 where a negligible progress in objective is expected and the
emphasis is shifted towards satisfying the discreteness constraint. This Latent Variable
EGO with static exponential penalty or LV-EGO-s is summarized in the following
algorithm

Algorithm 9 LV-EGO-s Algorithm

1: generate the initial DoE of size NDoE for (X,U)
2: costly function evaluations y(xi, ui) , i = 1, . . . , NDoE, t← NDoE
3: initialize budget, γ0 = 2

√
q (where q is the rank of the latent variables

parameterization), define N ′
DoE

4: while t ≤ budget do
5: estimate the latent variables ϕ(t) and the GP parameters from current DoE.
6: Calculate a DoE (X′,L′) ∈ (X ,L)N ′

DoE .
7: Estimate EI(t)r according to equation 4.25
8: Estimate ρt according to equation 4.24
9: (xt+1, ℓt+1) = argmin(x,ℓ)∈(X ,L) P

(t)(x, ℓ; ρt, γt)
10: update γt+1 = maxu∈U∥ℓt+1 − ϕ(t)(u)∥
11: Recover the discrete pre-image component ut+1 as: ut+1 =

argmaxu∈U EI(t)(xt+1, ϕ(t)(u))
12: update DoE: add (xt+1, ut+1) and its costly evaluation y(xt+1, ut+1) to the DoE

(X,U).
13: t← t+ 1
14: end while
15: return (x⋆, u⋆) = argmin(X,U) y(x, u)

A numerical advantages of this technique is that it does not require internal loops
to solve the dual sub-optimization problem like it was the case with the augmented
Lagrangians (ALV-EGO-. . . ) approaches.
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4.4.2 Adaptive exponential penalty

The main idea in this second technique is to propose an iterative way to compute the
penalty parameter ρt. To do that we introduce the quantity P (t)(xt+1, ℓt+1; ρt, γt) +
EI(t)(xt+1, ϕ(t)(ut+1)) as a measure of the discrepancy between the proposed EI and the
penalized one. Note that we are using all the values obtained at the end of optimization
and pre-image on iteration t. With this information it could be possible to detect how
much of the EI is being really recovered. Then if this value is low, the recovered pair
xt+1, ℓt+1 corresponds to a feasible or near feasible pair. We can define 0 < αt+1 < 1 as
the normalized EI discrepancy factor

αt+1 =
P (t)(xt+1, ℓt+1; ρt, γt) + EI(t)(xt+1, ϕ(t)(ut+1))

max
(
P (t)(xt+1, ℓt+1; ρt, γt); EI

(t)(xt+1, ϕ(t)(ut+1))
) , (4.26)

where αt+1 ≈ 0 when the EI is similar between (xt+1, ℓt+1) and (xt+1, ut+1) and αt+1 ≈ 1
when not. After the LV-EGO iteration, we want to obtain the next ρt+1 such that the
penalized function P (t+1)(γt, . . . ) for the theoretical worst feasible point (xγ, ℓγ) located
at h(t) = γt will increase proportionally to how much αt+1 differs from 0. This rule is
expressed with the following equations at the end of iteration t

P (t+1)(xγ, ℓγ; ρt+1, γt+1) = −EI(t)(xγ, ℓγ) exp{−ρt+1γt+1}
= −(1− αt+1)EI

(t)(xγ, ℓγ) exp{−ρtγt+1}

From here we can solve for ρt+1

ρt+1 = ρt −
log(1+ − αt+1)

γt+1

, (4.27)

where 1+ represents a slightly increase to 1 to avoid numerical issues when αt+1 ≈ 1,
which may happen during the iterations. Since (1+ − αt+1) ≤ 1, ρt in Eq. (4.27) is an
increasing sequence of t. With this we can construct the LV-EGO-a, where a stands for
adaptive, algorithm.
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Algorithm 10 LV-EGO-a Algorithm

1: generate the initial DoE of size NDoE for (X,U)
2: costly function evaluations y(xi, ui) , i = 1, . . . , NDoE, t← NDoE
3: initialize budget, γ0 = 2

√
q (where q is the rank of the latent variables

parameterization), ρ0 = 0.
4: while t ≤ budget do
5: estimate the latent variables ϕ(t) and the GP parameters from current DoE.
6: (xt+1, ℓt+1) = argmin(x,ℓ)∈(X ,L) P

(t)(x, ℓ; ρt, γt)
7: Recover the discrete pre-image component ut+1 as: ut+1 =

argmaxu∈U EI(t)(xt+1, ϕ(t)(u))
8: update DoE: add (xt+1, ut+1) and its costly evaluation y(xt+1, ut+1) to the DoE

(X,U).
9: Estimate αt+1 according to equation 4.26
10: update γt+1 = maxu∈U∥ℓt+1 − ϕ(t)(u)∥
11: Estimate ρt according to equation 4.27
12: t← t+ 1
13: end while
14: return (x⋆, u⋆) = argmin(X,U) y(x, u)

The main difference between the LV-EGO-a and LV-EGO-s heuristics is how in the
former αt+1 will limit how much we can increase the penalty at each iteration, when in
the latter ρt can increase or decrease more freely: in LV-EGO-s, ρ does not depend on
any other optimization step or on the creation of an extra DoE. The LV-EGO-a approach
can be seen as an approximated solution to the penalized problem (4.6) where the γ
parameter could be related to the ρ proposed by Picheny et al. [2016].
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4.4.3 Updated results

(a) Average iteration to median success (b) Average success rates

Figure 4.10: Comparison of the 11 algorithms tested with results averaged over all test
cases. By including LV-EGO-a and -s, the relative targets differ with respect to Figure

4.8 which explains changes in total performance.

Upon comparison of the averaged performance of all the algorithms for all the test cases
and including the recently proposed heuristics, we observe on Figure 4.10 that both
LV-EGO-s and -a formulations managed to outperform LV-EGO and all the ALV-EGO
variants. It is the LV-EGO-a that clearly presents the fastest convergence and highest
success rate.

More precisely LV-EGO-s managed to reach an average success rate of more than 50%
for a 25% target and took less than half of the budget to reach a 50% median target
improving the performance of LV-EGO and the . In the case of LV-EGO-a which performs
even better than the -s formulation achieving the 50% target in one third of the budget
and with a success rate close to 50% for the most difficult 10% target. This behavior can
be explained by the combination of the exponential penalty that increases sufficiently
fast to compensate for the rapid drop of the EI to 0, and the increasing penalty factor
ρt that makes it possible to obtain high-performing non-feasible points at the beginning
of the iterations. This clearly helps the iterative metamodel estimation and the overall
performance of the LV-EGO.

Mines Saint-Étienne Jhouben Cuesta-Ramirez



4.4 Complementary heuristics 49

4.4.4 Re-visiting the Beam Bending Problem

(a) Median solution (b) Interquartile range

(c) Iteration to median success (d) Success rate

Figure 4.11: Comparison of all 11 algorithms on the beam design test case (y⋆ = 1.28738).
By including LV-EGO-a and -s, the relative targets differ with respect to Figure 4.5

which explains changes in total performance.

We now revisit the results regarding the Beam Bending application as presented in
section 4.2.1 with the addition of the two heuristics, LV-EGO-s and LV-EGO-a. As
shown in Figure 4.11 LV-EGO-a is the technique with the best performance, managing to
improve all methods in overall and LV-EGO-s being slightly behind the vanilla LV-EGO
algorithm.

Figure 4.12 correspond to an updated representation of the correlation between the
latent variables using LV-EGO-a. In this case is not possible to identify any of the original
groups, neither a similar pattern of convergence, excepted, arguably, at the first iteration.
This could either reinforce the unbalanced design hypothesis explained in section 4.3.2,
or open a new discussion on how it is possible to obtain a correlation that would more
clearly favor the apparition of different groups.
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(a) Correlation of the latent variables at
iteration #1

(b) Correlation of the latent variables at
iteration #26

(c) Correlation of the latent variables at
iteration #49

(d) Correlation of the latent variables at
iteration #50

Figure 4.12: Representation of the correlation between the latent variables at various
iterations t. The correlations correspond to the categorical kernel of Equation (4.5). The

levels were grouped according to Ĩ: {1, 4, 7, 10}, {2, 5, 8, 11}, {3, 6, 9, 12}.

4.5 Conclusions

In this chapter, we have investigated five Bayesian optimization approaches to small and
medium size mixed problems that hinged on latent variables. They differ in the way the
coupling between the discrete variables and their relaxed pendants, the latent variables,
is implemented. Algorithms involving latent variables were compared to other algorithms
directly working in the mixed space and were found to consistently outperform them.
LV-EGO and ALV-EGO-gi were more efficient (in terms of calls to the true objective
function) than MS-MKES which also benefits from the Gaussian process. These first
results show that latent variables provide a flexible way to handle mixed problems where
the total number of levels and of variables is less or equal to about 10 variables and 10
levels in total.

Accounting for the discrete nature of some variables through a constraint during the
relaxed optimization with augmented Lagrangians was not clearly found to further
increase the performance of the search as LV-EGO competed equally and even sometimes
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outperformed the ALV versions of the algorithms. It was also observed that expressing
the discreteness as an inequality constraint by adding a tolerance was a better option
than expressing it as an equality. The global updating strategy of the Lagrange
multipliers, which to the best of our knowledge is original, improved over the more
common local updating schemes. The random forests metamodels did not do as well as
the Gaussian processes, whether in their continuous or mixed forms, within the Bayesian
optimization algorithm.

Finally, we have introduced the concept of exponential penalization in the context of
LV-EGO regularization, as a way to balance the sharp decrease in expected improvement
during the search and to force convergence towards the feasible domain at the end. This
inclusion proved to further increase the LV-EGO performance among all the test cases.
We believe that introducing strong exponential penalties within a discrete constraint
scenario does not harms the optimization because they instead of focusing in convergence,
sample the discrete space which is an step towards feasibility in this setting.
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This chapter focuses on studying different scenarios to solve an inverse problem for
an application in radionuclide quantification. As presented in Clement et al. [2018], the
inverse problem requires quantifying the mass of a radionuclide, that is then related to its
activity measured by gamma spectrometry as

y = mf(x, u) + η, (5.1)

where y ∈ Rp and small p (Usually p ≊ 6). Here m,x, u are unknown quantities, with
m ∈ R+, x ∈ [0, 1]nc , u ∈ U =

∏nd

j=1{1, . . . ,mj}; and with an observation noise

η ∼ N (0, γ2Ip). This problem is also ill-posed, as reviewed in chapter 3 with the
additions of a black-box function f that is potentially non-linear and can be expensive to
evaluate and also could depend on mixed variables (x, u), and scarse data p = 6. Even
though the mixed inputs property makes this problem able to be tackled by the LV-EGO
methodology, the problem is already complex to solve for continuous variables. Therefore,
in this chapter we will focus on defining a framework for the continuous approach, for a
future mixed application of the LV-EGO methodology.

Towards tackling this continuous, potentially non linear, ill-posed inverse problem with
scarse data, in this chapter we propose two global strategies for different scenarios of
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increasing complexity for f . We start with the simplest case, assuming that f is an
explicit continuous linear function f(x) = xβ depending on x only. This scenario still
leads us to an ill-posed inverse problem that we analyze by defining classical and
stochastic approaches (discussed in Chapter 3). In the second scenario, f is considered a
non-linear black-box function, then we analyze the possible extension of the strategies
proposed for the linear case.

It is important to remark that this particular problem, even in the first scenario, is
classified as bi-linear due to the required estimation of the unknowns m and x Ling [2017].
Additionally, the product mf(x) makes the problems immediately ill-posed, which differs
from classical bi-linear self-calibration studies Ling [2017] Idier and Blanc-Féraud [2008],
where the goal is to propose a low rank representation when m is a matrix, or a blind
deconvolution where m is also a function of x. Therefore it corresponds to a problem with
particularities that has not been studied before in the literature.

5.1 Scenario 1: f (x) = X(x)β

Let be y = mX(x) β + η the bi-linear inverse problem with known vector β =
[β1, . . . , βnc ]

⊤, y ∈ Rp, m ∈ R+, η is the observation noise, and where X ∈ Rp×nc

depends on the unknown x = [x1, . . . xnc ]
⊤ and is defined as

X(x) ≜

x1 . . . xnc

...
...

...
x1 . . . xnc

 .

The objective is to obtain m̂, an estimator for m⋆, which is the true but unknown value
of m that explains y the best. Under this basic linear assumptions we study the
possibility of finding an analytical expression, if possible for m̂ by applying both Classical
and Bayesian approaches.

5.1.1 Least-Squares approach

To solve this inverse problem from the Least-squares classical perspective, we proceed by
computing the analytical expressions for x̂ and m̂ that minimize the least squares cost
function J(x,m) = ||y − mX(x)β||2. This is done by solving the system of partial
differential equations ∂J/∂x, ∂J/∂m = 0.

To understand the main difficulties of this approach and without loss of generality we
consider the simpler bi-linear inverse problem

y = mxβ + η,
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where x, y ∈ Rp, β,m ∈ R. Here the cost function can be expressed in vectorial form as

argmin
x̂,m̂

(y −mxβ)T (y −mxβ)

This problem is ill-posed, in the way that it has multiple possible solutions (m,x) (e.g.
(m,x); (m/2, 2x)), and as we expressed in chapter 3 solving it would require adding a
regularization term. Assuming a Gaussian prior for x, π(x) ∼ N (µx, σ

2
xIp), the least

squares problem is now

argmin
x̂,m̂

(y −mxβ)T (y −mxβ) + (x− µx)
Tσ−2

x (x− µx), (5.2)

As we are interested in finding an estimator for m̂, we first obtain x̂(m) from the partial
differential equation ∂J/∂x = 0 as

x̂(m) =
µx + σ2

xmβy

1 + σ2
xm

2β2
.

Then replacing in J , we obtain

J(m) =
(y −mµxβ)

T (y −mµxβ)

1 + σ2
xm

2β2
,

which is quadratic on m in the numerator with a positive term in the denominator that
will reduce while obtaining the derivative. This provides sufficient motivation about the
existence of m̂, which can be obtained from J ′(m) = 0 as

m2 +m

(
ωTω − yTyz

ωTyz

)
+
−yTω
ωTyz

= 0

where z = β2σ2
x, ω = βµx. Then we can define the following theorem:

Theorem 5.1 Let be y = mxβ+η the bi-linear inverse problem with x ∈ Rp, β ∈ R, β ̸=
0, y ∈ Rp and m ∈ R+. It has a unique solution m̂

m̂ =
σ2
x|y|2−|µx|2+

√
(σ2

x|y|2−|µx|2)2 + 4σ2
x(µ

T
x y)

2

2βσ2
x(µ

T
x y)

(5.3)

that satisfies |m̂ − m̂LS|≤ ξ(σ2
x) if and only if σx > 0 and m̂LS corresponds to a Least

Squares solution making x = E[x] = µx as in equation B.6.

Under the regularized approach, meaning we have uncertainty on x, the condition σx > 0
is always satisfied, therefore equation 5.3 is a valid approximation. The complete
procedure to obtain theorem 5.1 can be found in the appendix B.1 where we also evaluate
the possibility to include a penalty term on m.

This solution could be extended to the more general case when x ∈ Rnc , by defining the
matrix of continuous input X ∈ Rp×nc in which case the theorem 5.1 becomes:
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Theorem 5.2 Let y = mX(x)β + η be with X ∈ Rp×nc depends on the unknown x =
[x1, . . . xnc ]

⊤ and is defined as

X(x) ≜

x1 . . . xnc

...
...

...
x1 . . . xnc

 ,

the bi-linear inverse problem with known β = [β1, . . . , βnc ]
⊤ ̸= 0, y ⊂ Rp and m ∈ R+

that leads to the following regularization expression

argmin
m,X

J(X,m) = (y −mXβ)T (y −mXβ) +
nc∑
i=1

(xi − µxi
)2

σ2
i

,

has a unique positive solution m̂

m̂ =
βTΣ−1β|y|2−βTATAβ +

√
(βTΣ−1β|y|2−βTATAβ)2 + 4(βTΣ−1β)(βTATy)2

2(βTATy)(βTΣ−1β)
(5.4)

that satisfies |m̂ − m̂LS|≤ ξ(Σ) if and only if Σ ≻ 0 is a positive definite matrix, where
A = [µx1 , µx2 , . . . , µxnc

]⊤ and

Σ =


σ−2
x1

c1,2 . . . c1,nc

c2,1 σ−2
x2

. . . c2,nc

...
...

. . .
...

cnc,1 cnc,2 . . . σ−2
xnc

 ,

with off diagonal elements ci,j = c ∈ R∀i ̸= j; and m̂LS corresponds to the Least Squares
solution.

The complete deduction for this theorem can be found on the appendix B.3

Finally with the results obtained in equation 5.4, and trying to account for the uncertainty
on x as under the Bayesian framework, we can generate nx samples from π(x), and
construct an empirical distribution over m by evaluating on 5.4. This trick can be used in
the next section when dealing with a continuous expensive black-box function.

5.1.2 Gaussian approach

Under the Bayesian framework, a classical approach consists in introducing a prior that
can be conjugated with the available uncertainties. Here we recall the simpler bi-linear
inverse problem

y = mxβ + η,

where x, y ∈ Rp, β,m ∈ R. As η is assumed Gaussian η ∼ N (0, γ2Γ0), a natural choice is
to choose independent priors for m and x to be Gaussian. However by defining
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π(m) ∼ N (m0, σ
2
m), π(x) ∼ N (µx, σ

2
xInc), and assuming that the joint vector

z = (m, y, x)T is Gaussian we cannot obtain π(m|y) ∼ N (µ∗,Σ∗) as a conjugate by
employing Gaussian properties. This is due to the product of m x not leading to a
Gaussian distribution on y, therefore this approach cannot be used even in the simplest
case.

5.1.3 MCMC-based Bayesian approach

In this section, as we cannot derive a Gaussian estimator for m we can involve sampling
methods, such as MCMC reviewed in Section 3.2.1. Under this framework, we do not
require to specify f(x) which can be either a deterministic formula or a black box
function neither the priors π(m), π(x). Therefore, we can avoid the problem of non
Gaussian and non tractable distributions.

Starting from y = mf(x) + η and applying Bayes’ rule we obtain the approximate joint
posterior π(m,x|y) as

π

((
m
x

) ∣∣∣ y

)
∝ π

(
y
∣∣∣ (m

x

))
π(m)π(x) (5.5)

where π(y|m,x) is the likelihood that can be non-linear in x, and we assume independent
priors form and x, π(m) and π(x) respectively. The goal again is to obtain m̂, an estimator
for m⋆, which is the value of m that explains y the best without incurring in strong
assumptions. For that we define 3 different strategies based on 5.5: a pure Markov Chain
Monte Carlo (MCMC) approach, a Monte Carlo integral within a MCMC and a point
wise reconstruction π(m|y) via Monte Carlo integral.

Strategy 1: Straightforward nc + 1 MCMC This strategy relies on the fact that
m and the components of x ∈ Rnc are assumed a priori independent. Then we set up a
MCMC within Gibbs algorithm for equation 5.5 following algorithm 1 and at the end of
the sampling process, we extract the marginal samples of m to approximate the density
π(m|y), where we define m̂ = MAP [π(m|y)] as the maximum a posteriori (MAP). The
major advantage of this strategy is the flexibility to define dependent or independent
proposals for each variable when both m and x are required to estimate.

Strategy 2: MC within MCMC In this case, we exploit the independence defined a
priori between m and x and provide a more direct estimation of the density π(m|y) by
marginalizing x

π(m|y) ∝
∫

π

(
y
∣∣∣ (m

x

))
π(m)π(x)dx (5.6)

In this approach, we require to generate nx samples from π(x) to set up a 1 dimensional
MCMC algorithm which is considerably simpler than the nc + 1 straightforward MCMC,
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and we integrate by Monte-carlo. Then we approximate the density of π(m|y) and apply
m̂ as the MAP.

Strategy 3: Point-Wise MC Another way to tackle Equation 5.6, given that m ∈ R,
is to define an interval of estimation for m between a [mL,mU] from where for each
discrete value within the interval mi with i = {1, . . . , nm} we point-wise evaluate the
approximated posterior as

π(mi|y) ∝
∫
π

(
y
∣∣∣ (mi

x

))
π(m)π(x)dx (5.7)

where for each mi, the integral is approximated by Monte Carlo with the same number of
samples nx from π(x). The main advantage of this method is that we are approximating
directly the posterior density π(m|y) where m̂ is the MAP.

It is expected that while the pure MCMC approach provides more flexibility and is less
dependent on strong assumptions on x, it is also, by definition, more costly computationally
compared to its classical counterpart. Nevertheless in this particular case, as m is a scalar,
strategies two and three are also considerably less costly.

5.1.4 Computer Experiments

In this section we perform a comparison between the classical approach and the MCMC-
based strategies previously defined. As we consider that f(x) = Xβ with X ∈ Rp×nc

defined as

X(x) ≜

x1 . . . xnc

...
...

...
x1 . . . xnc

 .

we generate y ∈ Rp by using

x⋆ ∈ [0, 1]4 = [0.2345,0.7749, 0.9, 0.5643]⊤

β = [2.0293e− 04,− 1.1759e− 04, 0.14258e− 02,−8.890e− 04]⊤,

m = 37.2349, η ∼ N (0, γ2Ip) with γ2 = 1e − 04. We analyze the impact of the prior
parameters µx, σx on m⋆ for different numbers of available measurements p = 100, 30, 6
and under the following configurations

C1. Basic setup: all xj are sampled with µx = [0.5, 0.5, 0.5, 0.5]⊤ and
σx = [0.2, 0.2, 0.2, 0.2]⊤ to satisfy x ∈ [0, 1]4.

C2. Small σx = 0.05, close mean: all xj are sampled with µx = x⋆ − σx.

C3. Small σx = 0.05, far mean: all xj are sampled with µx = x⋆ − 2σx.
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C4. Big σx = 0.1, far mean: all xj are sampled with µx = x⋆ − 2σx.

C5. Big σx = 0.1, close mean: all xj are sampled with µx = x⋆ − σx.

C6. Small σx = 0.05, very far mean: all xj are sampled with µx = x⋆ − 3σx.

To evaluate both classical and sampling approaches, we define the search interval for the
mass m ∈ [2, 100] with initial value m0 = 30. For the classical approach we will apply
equation 5.4, for a number 1000 times with a different value of x sampled from its
Gaussian prior. To setup the sampling strategies 1 and 2, we computed the minimum
effective sample sizes Gong and Flegal [2016] mESS ≥ 8605 and mESS ≥ 6146 at 95%
of expected confidence and tolerance levels.

For the MCMC sampler, we used a Metropolis-Hastings Within Gibbs (MHWG) with
Gaussian proposal for all the dimensions and adaptive variance for each individual
dimension of 30% each 100 iterations for the first half of the chain and 10% for the rest of
the sampling process, to keep the acceptance rate between [0.45, 0.55] which is common
in literature for faster convergence Ghirmai [2015]. This same configuration was used for
the MC within MCMC strategy.

We defined a number of samples for pure MCMC of 20000 and 10000 for the MC
within MCMC iterations including the corresponding discarded samples (burn-in phase)
of 8000 and 4000 respectively. Those quantities were chosen given that the pure MCMC
would require a higher number of iterations to converge given that it is on higher
dimensions than the MC within MCMC. We also generate a total nx = 250 samples from
π(xj) ∼ N (µxj

, σxj
) to be used by the MC strategies. Finally for the point-wise MC we

defined a total of 10000 points between the search interval [mL,mU].

5.1.4.1 Experiments classical approach

p = 100 p = 30 p = 6
C1, σx = 0.2, µx = 0.5 88.95 ± 31.37 96.40 ± 66.48 155 ± 2402
C2, σx = 0.05× 1 40.44 ± 1.59 42.29 ± 2.96 44.59 ± 7.42
C3, σx = 0.05× 2 41.76 ± 1.67 43.67 ± 3.13 46.03 ± 7.86
C4, σx = 0.1× 2 38.47 ± 2.87 40.33 ± 5.45 43.21 ± 14.50
C5, σx = 0.1× 1 37.39 ± 2.71 39.19 ± 5.15 41.96 ± 13.68
C6, σx = 0.05× 3 44.61 ± 1.88 46.64 ± 3.52 49.15 ± 8.86

Table 5.1: Summarized results for the different configurations under 1000 samples from
π(x) and different measurement points p for a m⋆ = 37.2349. For configuration one (C1)

µx, σx represent the parameters of the prior. For the rest Ci,= σx × j means that
configuration i > 1 uses a prior whose µx is deviated from the true value x⋆, j times σx.
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As we know the deterministic formula from theorem 5.2 yields a single value for m, as
we define different configurations for the prior of x we generated 1000 samples, estimated
the empirical mean m̄ and its confidence intervals using the notation m̂ = m̄± 3σm for
each configuration. The results are summarized in Table 5.1, where we can observe three
phenomena. The first is that higher values of p helps to reduce the uncertainty on m
(σm). The second one is that the estimation of m is more sensitive to slight variations on
σx than in µx. From the same table, by analyzing configurations 2 or 3 that share the
similar proposed value of σx = 0.05, versus the configurations 4 or 5 respectively, where
the σx = 0.1 is doubled, duplicates the uncertainty value for m but also increases the
accuracy on m̂.

The final phenomenon is related to the sensitivity of the estimation of m to the definition
of f(x), which in this case f(x) = X(x)β, benefits more from a π(x) that provides diverse
samples with a σx = 0.1, rather than σx = 0.05. This specific behavior points to the
definition of the matrix X, as we generate x that are more similar, with the current
number of parameters β, it will become more difficult to reproduce variability among the
different measurements p.

5.1.4.2 Experiments MCMC-based Bayesian approach

For this group of strategies, we consider important to analyze the most basic configuration
possible (C0), this is, an uniform prior for both m and x which was not possible to include
under the Gaussian prior assumption for the classical approach while defining Theorem
5.2.

The approximated distributions for the direct nc + 1 MCMC strategy are presented in
Figure 5.1. Here we observe how this strategy benefits more from a Gaussian rather than
an Uniform uninformative prior while having its MAP estimate closer to the m⋆. This
relative improvement, which requires no extra information on x is also reflected with
their corresponding trace and autocorrelation plots from Figures 5.2 and 5.3 respectively.
Specially seems beneficial for the case p = 6, where the Gaussian prior chain proved to be
long enough in terms of its trace.

To analyze the performance for configurations from C2 to C6 we observe a relatively
similar behavior in terms of density, trace and autocorrelation compared to C0 and C1.
Here, we can also make use of the 90% confidence intervals presented as its lower value
(CI-lower) and its length (CI-length) in Table 5.2. We observe that for identical σx = 0.01
configurations (C2, C3, C6) as µx deviates more from x⋆ it slightly displaces the CI-lower
and also increases the CI-length which does not seem to impact the approximated
distribution obtained. However, by comparing C2 and C4 (or C3 and C5) while σx

doubles, the CI-length mimic this increment which is more impactful in terms of
retrieving a value closer to the m⋆; finally by mixing this two variations we observe how
the MAP estimate differs more from x⋆ while having the same p.
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Figure 5.1: Results for the strategy 1 nc + 1 MCMC, for configurations C0 (top) to C6
(bottom)for different numbers of observations p = 100 (left), p = 30 (mid), p = 6 (right).
The red dashed line represents the MAP estimate and the gold dashed line the true value

m⋆

It is important to remark that for p = 6 the chains from C1 to C6 managed to converge
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Figure 5.2: Trace plots for the strategy 1 nc+1 MCMC, for configurations C0 (top) to C6
(bottom)for different numbers of observations p = 100 (left), p = 30 (mid), p = 6 (right).

even with a relatively poor prior as is C6. Also the fact that with p = 100 measurements
this strategy found more difficult to find a chain without autocorrelated samples and
with a proper trace plot with the provided priors.
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Figure 5.3: Autocorrelation plots for the strategy 1 nc + 1 MCMC, for configurations C0
(top) to C6 (bottom)for different numbers of observations p = 100 (left), p = 30 (mid),

p = 6 (right).

In the case of strategy 2 MC within MCMC, differently from strategy 1, it benefits from
a small chain requirement and managed to converge even under the C0 configuration as
shown in Figures 5.4, 5.5 and 5.6. Also it presents the same behavior while comparing
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p = 100 p = 30 p = 6
CI-Lower CI-Length CI-Lower CI-Length CI-Lower CI-Length

C0, Uniform 2.55 54.14 2.54 22.44 2.74 86.07
C1, σx = 0.2, µx = 0.5 27.68 63.81 30.69 64.65 31.54 61.03
C2, σx = 0.05× 1 30.29 15.74 31.68 18.64 30.04 25.92
C3, σx = 0.05× 2 30.98 16.30 31.93 19.45 30.96 26.71
C4, σx = 0.1× 2 25.70 33.53 28.48 38.99 27.68 44.27
C5, σx = 0.1× 1 26.13 27.13 27.40 33.12 27.06 48.67
C6, σx = 0.05× 3 33.13 19.19 34.57 22.22 32.69 30.04

Table 5.2: Lower bound and length of the 90% confidence interval for the strategy nc + 1
MCMC and different configurations. After configuration 1, configuration Ci,= σx × j

means that configuration i > 1 uses a prior whose µx = x⋆ − jσx.

p = 100 p = 30 p = 6
CI-Lower CI-Length CI-Lower CI-Length CI-Lower CI-Length

C0, Uniform 23.21 70.64 24.95 67.95 26.13 69.16
C1, σx = 0.2, µx = 0.5 31.00 64.88 32.19 62.46 29.71 66.84
C2, σx = 0.05× 1 31.15 15.15 31.55 18.23 29.57 23.94
C3, σx = 0.05× 2 31.93 17.17 32.22 19.10 30.99 26.60
C4, σx = 0.1× 2 27.32 36.90 28.47 38.14 28.23 50.16
C5, σx = 0.1× 1 26.78 35.85 27.77 35.68 27.93 49.83
C6, σx = 0.05× 3 33.71 18.99 34.21 21.10 33.31 28.88

Table 5.3: Lower bound and length of the 90% confidence interval for the strategy MC
within 1 dimensional MCMC and different configurations. After configuration 1,
configuration Ci,= σx × j means that configuration i > 1 uses a prior whose

µx = x⋆ − jσx.

increments on µx and σx that strategy 1 as shown in Table 5.3. Additionally, it seems
relatively more robust that strategy 1 to variations on the prior and its corresponding
parameters which is always important when applying MCMC-based strategies.

In the case of strategy 3 point-wise MC as is derived from strategy 2, should present
similar results as represented in Table 5.4. However as shown in Figure 5.7 we observe
”wiggly” effects under configurations C0 and C1 which suggests that the prior of x is
not informative enough for the MC integral. We also observe smoother versions of the
approximated density for configurations C2 to C6 compared to the other strategies for
p = 30, 6. In general, all MCMC-based approaches present desirable behaviors while
approximating the m density even with non-Gaussian priors, being the MC within MCMC
the most informative and robust of the 3.

As a final comparison between MCMC-based strategies and the deterministic approach
for this specific scenario, we observe how both of them are viable strategies depending
on the amount of information and precision required on the estimator of m versus the
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Figure 5.4: Results for the strategy 2 MC within MCMC, for configurations C0 (top) to
C6 (bottom)for different numbers of observations p = 100 (left), p = 30 (mid), p = 6

(right). The red dashed line represents the MAP estimate and the gold dashed line the
true value m⋆

knowledge on the prior parameters.
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Figure 5.5: Trace plots for the strategy 2 MC within MCMC, for configurations C0 (top)
to C6 (bottom)for different numbers of observations p = 100 (left), p = 30 (mid), p = 6

(right).
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Figure 5.6: Autocorrelation plots for the strategy 2 MC within MCMC, for configurations
C0 (top) to C6 (bottom)for different numbers of observations p = 100 (left), p = 30

(mid), p = 6 (right).

5.2 Scenario 2: M (x), a non-linear black-box function

As we presented at the beginning of this section, we are inspired by an application for
radionuclide quantification, where the available data is scarse, p = 6 and f(x) is a
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p = 100 p = 30 p = 6
CI-Lower CI-Length CI-Lower CI-Length CI-Lower CI-Length

C0, Uniform 23.34 70.61 24.77 68.45 25.15 70.57
C1, σx = 0.2, µx = 0.5 30.89 65.35 31.79 62.83 32.75 62.92
C2, σx = 0.05× 1 31.05 16.52 31.40 17.40 30.01 24.70
C3, σx = 0.05× 2 31.87 17.60 32.22 18.40 31.05 28.28
C4, σx = 0.1× 2 27.50 37.34 27.97 36.14 26.60 45.16
C5, σx = 0.1× 1 26.93 36.36 27.38 34.85 27.66 50.73
C6, σx = 0.05× 3 33.62 20.09 34.03 20.68 32.93 28.87

Table 5.4: Lower bound and length of the 90% confidence interval for the strategy
point-wise MC and different configurations. After configuration 1, configuration
Ci,= σx × j means that configuration i > 1 uses a prior whose µx = x⋆ − jσx.

black-box function Clement et al. [2018]. Thus, for this scenario we treat f(x) as a
non-linear black-box function and p = 6 measurements are available for y.

To construct this function, we generated 1000 random values in the interval [5.42e−
09, 3.41e− 05] as a valid range of values for a attenuation coefficient f(x) Máduar and
Miranda Junior [2007]. Then we trained a continuous Gaussian process Y (x) conditioned
on inputs x ∈ Rnc in the interval [0,1], and a kernel of the class matérn Rasmussen and
Williams [2006]. We selected m = 10 and

x⋆ = [0.3511; 0.5391; 0.4306; 0.5193]

η = [3.4586; 2.3531; 3.2773; 3.9404; 4.0978; 4.3263]× 10−07,

resulting in an output y = [4.1079; 1.4581; 5.5302; 16.332; 19.354; 20.748] × 10−06. The
goal in this section is to analyze the applicability of the previously defined MCMC based
approaches and its configurations (C0 to C6) under this more realistic scenario.

As an important note, in this section we discarded the possibility to apply a deterministic
formula from Theorem 5.2, which required a parametric linear regression to estimate β.
This, due to the nature of f being a Gaussian process and the fact that a more suitable
strategy can be a non-parametric approach like the kernelized ridge regression model for
f Murphy [2012], which would lead to obtain a new theorem, and to create a dedicated
section which is out of the scope of this document.

5.2.1 Experiments MCMC-based Bayesian approach

In this section, we are going to analyze the configurations C0, C1, C2 and a new
configuration CT (true configuration) from where µx = x⋆ and σx = 0.0005. This new
configuration CT will be key to compare the performance of the different strategies
towards a goal. As a reminder, C0 corresponds to an uniform prior for x, C1 a

Mines Saint-Étienne Jhouben Cuesta-Ramirez



5.3 Conclusions 69

non-informative Gaussian prior for x with µx = 0.5 and σx = 0.2, and C2 is a more
informative Gaussian prior with µx = x⋆ − σx, with σx = 0.05, as defined for the linear
scenario in section 5.1.4. For this setup, for strategies 1 and 2 the starting point was set
to m0 = 6 in the same interval [0, 100], the length of the chain, the number of burn-in
discarded samples as well as, for strategy 3 the number of iterations and samples from
π(x) remain unchanged.

While trying to analyze C0, both strategies 1 and 2 struggle to obtain a likely value to
start the chain, not even when a 0.5 value is relatively close to the true x. We observe this
main difficulty in Figure 5.8 where a point-wise representation, for this case, leads to a
”peak” distribution with very small ”bumps” separated on the interval. This means that
the true probability content lies on a small peak and that the prior information should be
accurate enough not to displace the probability content further from the goal m⋆.

Now in Figure 5.9 we compare the performance for the configurations C1, C2 versus
CT. We observe that the 3 strategies behave differently. nc + 1 MCMC seems to
approximate a distribution that seems correct according to the plot. However the
information provided by Figure 5.10, shows that the chain is still far from convergence
and that the samples are still highly autocorrelated. Thus, the apparent convergence for
a uniform prior and the worse performance when introducing a more informative
Gaussian prior, corresponds to a noisy chain based analysis.

For the second strategy, the behavior is different, even if Figure 5.11 suggests its
convergence, the obtained density converges to a region where the m⋆ is not likely. A
similar behavior is observed for the point-wise strategy, as it detects a principal peak that
is far from the region where m⋆ is located. We believe that this behavior is due to the
multi-modality induced by a non-linear f(x) and the ill-posed product mf(x).

After comparing with the configuration CT, we can deduce that the prior needs to be
very precise, as the probability as the target distribution is very thin and presents multiple
modes that are located far in the search space. This special multi-modality makes worse
for the uninformative priors because it can lead to a lot of unlikely samples and most of
the time to focus in a specific mode. It is also important to remark that this analysis is
done by using the real η which is another variant to add when evaluating the likelihood
of any of the MCMC-based strategies.

5.3 Conclusions

In this chapter, we have investigated and analyzed two different scenarios that helped us
to understand the bi-linear inverse problem y = mf(x) + η towards an application for
radionuclide quantification. On the first scenario we provided a simple example where we
managed to define a classical least-squares approach and 3 different MCMC-based
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strategies. We were able to analyze the impact of different choices of prior on the
estimation of the m value. As the deterministic approach provided a small confidence
interval length, it was less robust for estimating m than its MCMC-based counterpart,
the MC within MCMC strategy among the tested configurations. This strategy managed
to avoid the necessity of a nc + 1 chain while maintaining the convergence metrics. We
also remark that any of the strategies can be used under particular scenarios depending
on the prior information available, being a Gaussian type of prior more suitable for the
techniques.

In the second scenario we created a continuous setting for a radionuclide application to
analyze the performance of the MCMC-based strategies for different prior information
available. Here we valued the importance of the trace and autocorrelation plots when
analyzing the convergence of a chain. Furthermore we emphasize how this particular
scenario requires a very precise and informative prior to be able to recover a distribution
where m⋆ is likely while η is known. We believe that this is related to the non-linear
properties of f(x).
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Figure 5.7: Results for the strategy 3 point-wise MC, for configurations C1 (top) to C6
(bottom)for different numbers of observations p = 100 (left), p = 30 (mid), p = 6 (right).
The red dashed line represents the MAP estimate and the gold dashed line the true value

m⋆.
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Figure 5.8: Obtained densities for the point-wise MC strategy. Red dashed line
represents the MAP estimate. Golden dashed line represents m⋆

Figure 5.9: Obtained densities for the strategies MCMC (left), MC within MCMC
(middle) and point-wise MC (right) for configurations C1 (top), C2 (middle) and CT

(bottom). Red dashed line represents the MAP estimate. Golden dashed line represents
m⋆
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Figure 5.10: Obtained trace (left) and autocorrelation (right) plots for the MCMC
strategy.
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Figure 5.11: Obtained trace (left) and autocorrelation (right) plots for the MC within
MCMC strategy.

Mines Saint-Étienne Jhouben Cuesta-Ramirez



Chapter 6

Conclusions and perspective

Summary of Contributions

In this document we investigated Bayesian approaches to solve mixed problems. We
proposed the LV-EGO algorithm as a novel methodology that relaxes a problem from the
mixed space to a continuous one. This was done by employing a latent variable mapping
and preserving the link between the mapping and the categorical variables by inducing a
constraint during the relaxed optimization. We also proposed different variations based
on augmented Lagrangians (the ALV-EGO variants) to handle this constraint properly.
Then we compared LV-EGO and its variants to algorithms working directly in the mixed
space based on random forests, evolutionary strategies and mixed kernels.

Among the different algorithms, we found that the augmented Lagrangian accounting of
the constraint as an inequality plus a tolerance value was better than the original equality
form suggested by the constraint. However, during this relaxed optimization, it was not
clear that the augmented Lagrangians increased the performance of the search versus the
vanilla LV-EGO. We also introduced the concept of exponential penalization for LV-EGO
regularization, as a strong penalty trying to force convergence on a feasible domain. This
modification proved to further increase the performance of the LV-EGO among all the
different test cases.

As an additional study, we proposed different scenarios to solve the specific inverse
problem in a continuous setting y = mf + η, where m ∈ R is the variable of interest, η is
the observation noise. We defined two different scenarios, one with f being a deterministic
function and the second with f being a non-linear black box function.

For the first scenario, we considered both least-squares and three different MCMC
based strategies in order to understand the impact of the uncertainty of the prior on the
estimation of m. This helped us to understand the difficulties to apply classical approaches,
and the advantages of using Monte-Carlo integral to simplify a higher dimensional MCMC.
Then the second scenario showed us the difficulties of convergence for the different
MCMC chains when there are few observations for different types of priors. Finally, we
established a framework in continuous inputs, as a step of applying mixed methodologies
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that translates the problem to a continuous inputs setting.

Perspectives

After studying Bayesian optimization and inversion in the context of mixed variables,
we suggest possible lines of research that will complement the results presented in
this document. For the optimization study, we propose three ways. Providing the
analytical gradients for the acquisition function on the relaxed problem should increase
the performance of the LV-EGO algorithms, as gradients are key elements during
continuous optimization. Extending the convergence results of EGO to the scenario
of mixed optimization through latent variables, which will increase the credibility of those
methodologies. Developing a new parameterization for the discrete levels that can extend
the application of LV-EGO to more than 10 levels.

For the inversion study, we also propose three different ways. Defining a more general
linear model (e.g. kernel ridge regression) to derive analytical expressions that can be
applied for different types of regularization and black-box functions.Further exploration of
the impact of the prior parameters with other functions that exhibit different types of non-
linearity seems to be a useful continuation. We also believe that hybrid strategies mixing
deterministic and Bayesian approaches should be investigated as a path to cumulate the
advantages of both methods.

Finally, as the contents in this document were motivated by different CEA applications,
the following paragraphs present some of the developments related to tackling those
specific problems.

Application to a mixed filter design

Figure 6.1: (a) Conventional camera system based on a color filter array (Bayer mosaic),
an image sensor with the IR cut-off filter (IRCF). (b) Spectral sensitivity of the camera

system. Source: Park and Kang [2016].

Mines Saint-Étienne Jhouben Cuesta-Ramirez



77

The near-infrared (NIR) is one of the regions closest in wavelength to the radiation
detectable by the human eye. Therefore even though human eyes cannot detect NIR,
silicon based filters can and are highly sensitive up to a wavelength (λ) of 1100nm as in
Park and Kang [2016] and presented in Figure 6.1. Engineers at CEA-LETI are developing
strategies to increase the response of an infrared cut filter (IRCF) in the NIR region. This
can be done by designing an interference filter based on a stack of K multiple optical
cavities of thickness ek and optical index mk with k = 1, . . . , K. Then the obtained
Transmission spectrum T (λ) should mimic the behavior presented in Figure 6.1. This
design will require T (λ) to satisfy

α− T (λ1) ≤ 0 ∀λ1 ∈ S1
T (λ2)− β ≤ 0 ∀λ2 ∈ S2,

where S1 and S2 correspond to the visible and near infra-red regions respectively,
α ∈ [0, 1] is the desired proportion of transmission and β ∈ [0, 1] is the desired proportion
of reflection. The values of T (λ) will depend on the number of layers K, the thickness
of each layer e = (e1, . . . , eK), and on the effective index Nk of the chosen material
m = (m1, . . . ,mK) corresponding to each layer. This yields, once again a mixed variables
problem. Now for a fixed number of layers K we can create a surrogate of T (λ), and
optimize it in the LV-EGO fashion, through the Expected Improvement (EI) as:

max
(e,m)∈S

EI (6.1)

s.t. g =
K∑
k=1

ek ≤ τ,

where g is a design constraint for the global thickness.

Application to radionuclide quantification

The inverse problem y = mf(x, u) + η defined in chapter 5 can be reviewed in a new
scenario where f(x, u) is a mixed and expensive simulator. Under a Bayesian setup, we
can directly rewrite the original inverse problem as a maximization problem of the mode
of the posterior distribution π(m,x, u|y), where the likelihood π(y|m,x, u) will depend on
the mixed surrogate definition (for example a mixed kernel surrogate). Then we can apply
any of the LV-EGO variants from section 4.1. In this formulation, as in the continuous
one proposed in Clement et al. [2018] we may require a mixed metamodel to account for
the model error.
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Chapter A

Mixed Optimization

A.1 Complements on the augmented Lagrangians

Case of an equality constraint

Let us first consider an optimization problem with an equality constraint,

{
minx∈X f(x)
such that h(x) = 0

(A.1)

At this point, f() and h() are very general functions on a d-dimensional general set X .
We only require that X is not empty, that f() and h() are bounded, and that there is at
least one solution to (A.1), x⋆ ∈ X , which can be attained. f() and h() are not necessarily
continuous, a fortiori not necessarily differentiable. With respect to the main body of the
article, the notations are simplified in this Section: X stands for the cartesian product
of X and L, f(x) generalizes − log(1 + EI(t)(x, ℓ)) and h(x) corresponds to g(t)(ℓ) when
ϵ = 0. Note that g(t)(), being made of the minimum distance to a discrete set of points
(cf. Eq. (4.7)), is not differentiable. g(t)() is the only constraint in the article. This
appendix considers one constraint too, but all the results given readily generalize to many
constraints by replacing the products by vector scalar products.
Problem (A.1) can be equivalently reformulated as

{
minx∈X f(x) + 1

2
ρh2(x)

such that h(x) = 0
(A.2)

where ρ ≥ 0 is a penalty parameter. The two above formulations have the same solution
x⋆ and the same value of optimal objective function since x⋆ is feasible, h(x⋆) = 0,
therefore f(x⋆) = f(x⋆) + 1

2
ρh2(x⋆). However, as proved in Minoux [1986] and sketched in

Figure A.1, there is always a positive lower bound on the penalty parameters, ρ ≥ ρ⋆ ≥ 0,
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such that Problem (A.2) can be equivalently solved through the dual formulation,

max
λ∈R

D(λ, ρ)

where D(λ, ρ) = min
x∈X

LA(x;λ, ρ)

and LA(x;λ, ρ) = f(x) + λh(x) +
1

2
ρh2(x)

(A.3)

In this way, the augmented Lagrangian of Hestenes [1969] is the classical Lagrangian of
the penalized problem (A.2). We write λ⋆, ρ⋆ a solution to (A.3). D(λ, ρ) is the lower
front of all augmented Lagrangians for varying x at a given λ, ρ. The “global dual” update
of (λ, ρ) comes from the resolution of (A.3) where the set X is approximated by the finite
subset of samples X.
Let us denote

x(λ, ρ) = argmin
x∈X

LA(x;λ, ρ) (A.4)

a solution at given multiplier and penalty parameter. The function D(λ, ρ) is concave
in λ and ρ and h(x(λ, ρ)) is a subgradient with respect to λ Minoux [1986]. This is at
the root of updating strategies that we called “local dual” earlier and which consist in a
gradient step in the dual space,

λt+1 = λt + α∂λD(λt, ρt) = λt + αh(x(λt, ρt)) , (A.5)

where α > 0 is a step size factor.
More specific update strategies such as those given in Nocedal and Wright [2006],

Picheny et al. [2016] stem from the Karush Kuhn and Tucker (KKT) optimality conditions
and require the additional assumption that X ∈ Rd and f() and h() are differentiable. At
x⋆, since h(x⋆) = 0 and λKKT being the KKT multiplier1, one has

∇f(x⋆) + ρh(x⋆)∇h(x⋆) + λKKT∇h(x⋆) = 0

⇒ ∇f(x⋆) + λKKT∇h(x⋆) = 0 (A.6)

At iteration t, the necessary conditions for xt = x(λt, ρt) to be the minimum of LA(;λt, ρt)
are

∇f(xt) + ρth(x
t)∇h(xt) + λt∇h(xt) = ∇f(xt) + (ρth(x

t) + λt)∇h(xt) = 0 (A.7)

Comparing equations (A.6) and (A.7), xt can be driven to x⋆ if

λt+1 = λt + ρth(x
t) (A.8)

The updates (A.5) and (A.8) have the same form, (A.8) is more restrictive since the KKT
conditions must apply but the step size is known.

1The Lagrange multiplier that maximizes the dual function is equal to the KKT multiplier only when
the functions are differentiable, the constraints qualification conditions apply, and there is a saddle point
i.e., minxmaxλLA(x;λ, ρ) = maxλminxLA(x;λ, ρ).
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The equality constraint of the article (Equation (4.7) with ϵ = 0) is a minimum over
distances. It has the additional feature that it is always positive or null, ∀x ∈ X , h(x) ≥ 0.
Because of this, if h is locally differentiable around x⋆, ∇h(x⋆) = 0 since h has a minimum
at x⋆. The constraint qualification condition is not satisfied (∇h(x⋆) does not span a
non-empty set) and the KKT conditions do not apply. Another consequence is that
the optimal Lagrange multiplier must be positive and the search for λ can be written
maxλ≥0D(λ, ρ) in Problem (A.3), as in Problem (4.10).
Proof: Assume ρ is large enough for Problem (A.2) to have a saddle point at its optimum,
f(x⋆) ≤ f(x)+ρ/2h2(x)+λ⋆h(x) , ∀x where λ⋆ is the optimum Lagrange multiplier. Since
the optimization problem has an active constraint, there is a point xI that is infeasible,
h(xI) > 0, and has a better objective function than the feasible solution (otherwise the
constraint is useless), f(xI) + ρ

2
h2(xI) ≤ f(x⋆). If the optimum Lagrange multiplier is

negative, λ⋆ < 0, f(xI) + ρ
2
h2(xI) + λ⋆h(xI) < f(x⋆) which contradicts the fact that x⋆ is

a solution to the dual problem. □

Inequality constraint

When ϵ > 0, Problem (4.7) has an inequality constraint which we rewrite here more
simply, {

minx∈X f(x)
such that g(x) ≤ 0

(A.9)

The considerations on augmented Lagragian done above for equality constraints readily
extend to inequality constraints by introducing a slack variable,{

minx,s∈X×R f(x)
such that g(x) + s2 = 0

(A.10)

and the expression for the augmented Lagrangian (A.3) becomes

LA(x, s;λ, ρ = f(x) + λ(g(x) + s2) +
1

2
ρ(g(x) + s2)2 (A.11)

The minimization of LA() on the slack variable s can be done analytically:

∂LA(x, s;λ, ρ)

∂s
= 0 ⇐⇒ s2 = −λ

ρ
− g(x)

Since s2 needs to be positive, all cases are summed up in

s2 = max

(
0,−λ

ρ
− g(x)

)
(A.12)

Reinjecting the expression of s2 into the augmented Lagrangian yields

LA(x;λ, ρ) = f(x) +
1

2ρ

[
(max(0, λ+ ρg(x)))2 − λ2

]
(A.13)
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Figure A.1: Sketch of Rockafellar’s augmented Lagrangian for ρ ≈ 0 in blue and ρ > 0 in
red. x1 is infeasible, x2 feasible (and g(x2) < −λ/ρ) and x⋆ is an optimum with

g(x⋆) = 0. The black highlighted curves are the approximation to the dual function, D̂(λ)
for X = {x1, x2, x⋆}, for ρ ≈ 0 and ρ > 0. There is no saddle point and a duality gap

with the blue set of curves in that x⋆ /∈ argminx LA(x;λ
⋆, ρ ≈ 0) and

D̂(λ⋆) = minxLA(x;λ
⋆, ρ ≈ 0) < LA(x

⋆;λ⋆, ρ ≈ 0), i.e., minimizing the augmented
Lagrangian does not lead to the result of the problem. However, by increasing ρ, it is

visible that the y-intercept of the infeasible points increase so that one always reaches a
state where x⋆ = argminx LA(x;λ

⋆, ρ) as in the red set of curves. A similar illustration
can be done with the augmented Lagrangian with equality constraint: f(x) + ρ/2h2(x) is
the y-intercept and h(x) is the slope of the augmented Lagrangian associated to x. The

main difference is that all points contribute linearly in terms of λ to LA(x;λ, ρ).
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which is equivalent to the expression of Rockafellar with the 2 cases given in Equation (4.8)
(recall − log(1 + EI) is f(x)).

The update equations for λ are the same as those for the equality case where the
slack variable s2 takes its optimal value. On the one hand, it is possible to solve the
approximated dual problem as in (4.11). On the other hand, a step along a subgradient
in the dual space can be taken,

λt+1 = λt + α(g(xt) + s2t )

⇒ λt+1 = λt + α

(
g(xt) + max(0,−λ

ρ
− g(xt))

)
(A.14)

where α is again a positive step factor. It has the same form as Equation (4.13). The
update (4.13) is fully recovered from the KKT conditions as above for equalities, (A.8),

λt+1 = λt + ρ(g(xt) + s2t )

⇒ λt+1 = λt + ρ

(
g(xt) + max(0,−λ

ρ
− g(xt))

)
(A.15)

Equations (A.14) and (A.15) are the same but in the latest the step factor α is known
and equal to ρ, which comes at the additional expense of the KKT validity conditions.

A.1.1 Random Forest Regression

The basic idea of Random Forest regression, as introduced by Breiman in Breiman [2001],
is to combine a large collection of de-correlated tree predictors that are capable to capture
complex structures in data with a relatively low bias and a bagging (bootstrap) sampling
technique Tibshirani et al. [2009]. With this setting is possible to reduce the noise of an
approximately unbiased model by averaging. Given a training set (X,Y) of size NDoE
and a bagging quantity B the basic setting of a random forest follows the algorithm:
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Algorithm 11 Random forest for Regression

1: for b ∈ {b = 1, 2, . . . , B} do
2: Sample with replacement N training points from (X,Y) and form the subset

(Xb,Yb)
3: Grow a random-forest tree Tb to the bootstrapped data, by recursively repeating

the following steps for each terminal node of the tree, until minimum node size nmin

is reached.

� Select m variables at random from the p variables.

� Pick the best variable/split-point among the m.

� Split the node into two daughter nodes.

4: end for
5: Output the ensemble of trees {Tb}B1 .
6: Predictions are made by averaging from all the B predictors ŷrf(x) =

1

B

∑B
b=1 Tb(x)
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A.2 Supplementary results Including Heuristics

(a) Median solution (b) Interquartile range

(c) Iteration to median success (d) Success rate

Figure A.2: Comparison of all 11 algorithms on the Branin function. y⋆ = 2.79118.
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(a) Median solution (b) Interquartile range

(c) Iteration to median success (d) Success rate

Figure A.3: Comparison of the 11 algorithms on the Golstein function. y⋆ = 3.
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(a) Median solution (b) Interquartile range

(c) Iteration to median success (d) Success rate

Figure A.4: Comparison of the 11 algorithms on the Hartmann function (for which
y⋆ = −3.32237).
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Chapter B

Mixed Inversion

B.1 Deterministic expression for m

In the first part of this section, we are going to add a ℓ2 regularization term just for u
and try to find an unique solution for m̂. Later we will discuss about the necessity of
adding a second penalty term related to the mass m and its implications.

For the first part, let X = Rp, Y = Rp and assuming that u follows a multivariate
Gaussian distribution π(x) ∼ N (µx, σ

2
xIp). The least squares problem is now

argmin
x̂,m̂

(y −mxβ)T (y −mxβ) + (x− µx)
Tσ−2

x (x− µx), (B.1)

where the term in blue corresponds to the regularization term related to π(x).

Again, we need to compute ∂J/∂x = 0 to find x̂(m)

∂J

∂x
= −2mβy+2m2β2x− 2σ−2

x µx + 2σ−2
x x = 0

x̂(m) =
µx + σ2

xmβy

1 + σ2
xm

2β2
,

now the updated function J(m) will be

J(m) =
(y −mµxβ)

T (y −mµxβ)

1 + σ2
xm

2β2
,

which is a 1 variable real valued function. Figure B.1 show that J(m), for real values of
m is quadratic. This provides sufficient motivation to find an algebraic expression for real
(positive) values of m̂ as desired by the application.
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Figure B.1: Graphical representation of the function J(m), for real values of m. This
function reach its minimum value on the model estimator m̂

Expression for m̂: Re-defining useful constants z = β2σ8xx
2, ω = βµ8xx

J(m) =
(y −mω)T (y −mω)

1 +m2z

Now computing J ′(m) = 0

J ′(m) =
−2ω(1 +m2z)(y −mω)T − 2mz(y −mω)T (y −mω)

(1 +m2z)2

0 =
−2(y −mω)T [ω(1 +m2z) +mz(y −mω)]

(1 +m2z)2

0 =
−2(y −mω)T [ω +����

ωm2z + ymz −����
ωm2z]

(1 +m2z)2

0 =
−2(y −mω)T (ω + ymz)

(1 +m2z)2

Now removing constants and positive values

0 = (y −mω)T (ω + ymz)

0 = m2(ωTyz) +m(|ω|2−z|y|2)− yTω,

which corresponds to a second order polynomial of the form Am2 +Bm+ C = 0 where,

A = ωTyz = β3σ2
xµ

T
x y

B = |ω|2−z|y|2 = β2(|µx|2−σ2
x|y|2)

C = −yTω = −βµT
x y
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The test-case requires to find a unique value m ≥ 0. To impose this constraint in the
quadratic formula, we require both roots R1, R2 to be real (∆ = B2− 4AC > 0) and with
opposite sign (R1R2 < 0).

We are going to find the scenarios when we could satisfy this constraint, for that, we
are going to compare with the real roots polynomial x2 − x(R1 + R2) + R1R2 = 0. For
that we are dividing by A to ensure positive sign on the second order term

m2(ωTyz) +m
(
ωTω − yTyz

)
− yTω = 0

m2 +m

(
B

A

)
+

C

A
= 0

m2 +m

(
ωTω − yTyz

ωTyz

)
+
−yTω
ωTyz

= 0

from where we could extract R1R2 = C/A = −1/z. Forcing R1R2 < 0, means that

−1

z
< 0. This could be possible if and only if z > 0, which recovering the original

notation z = β2σ2
x, which will always satisfy z > 0, which also satisfies R1R2 < 0 and

∆ = B2 − 4AC > 0. This means, that we will always recover 1 positive and 1 negative
root from the second order polynomial, ensuring that there is a single value of m that
satisfies the constraints of the test-case.

Finally, we can find an analytical expression to m̂

m̂ = max [m1,m2] (B.2)

m1,2 =
β2σ2

x|y|2−β2|µx|2±
√

β4|µx|4−2β4σ2
x|µx|2|y|2+β4σ4

x|y|4−4β4σ2
x(µ

T
x y)

2

2β3σ2
x(µ

T
x y)

(B.3)

m1,2 =
σ2
x|y|2−|µx|2±

√
|µx|4−2σ2

x|µx|2|y|2+σ4
x|y|4+4σ2

x(µ
T
x y)

2

2βσ2
x(µ

T
x y)

(B.4)

m1,2 =
σ2
x|y|2−|µx|2±

√
(σ2

x|y|2−|µx|2)2 + 4σ2
x(µ

T
x y)

2

2βσ2
x(µ

T
x y)

(B.5)

Analyzing the expression for m̂ Now we are interested in providing a mathematical
interpretation of the results obtained in equation B.2. We know from the quadratic
polynomial that we will obtain real roots with opposite sign if β2σ2

x > 0, that could be
easily satisfied having β ̸= 0 (that will always be true, because if β is 0 we have no linear
problem to solve) and σx > 0+ (which also is always true because is a standard deviation
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and by definition is a positive measure). Now, recalling the general quadratic solution

m1,2 =
−B ±

√
B2 − 4AC

2A
C = −βµT

x y

B = β2|µx|2−β2σ2
x|y|2

A = −β2σ2
xC

with A ̸= 0 that forces C = −βµT
x y ̸= 0. Now applying β2σ2

x > 0, we will always get
AC < 0, which means we will always get

√
B2 + 4AC and also |

√
B2 + 4AC|≥ |B|.

With this information and knowing that the sign of βµT
x y will play a role for identifying
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Figure B.2: Estimations of the m for different configurations. Top Left:γ = 0.05, m = 0.3,
β = 0.1,m̂ = 0.30824. Top Right: γ = 0.05, m = 0.3, β = 3, m̂ = 0.2991. Bottom Left:

γ = 0.5, m = 0.3, β = −0.1, m̂ = 0.2045. Bottom Right: γ = 0.5, m = 0.3, β = 4,
m̂ = 0.3071.
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B.1 Deterministic expression for m 95

the positive root of m1,2, we will obtain 2 different scenarios

Case 1: if βµT
x y > 0

m̂ =
+
√
B2 + 4AC −B

2A

Case 2: if βµT
x y < 0

m̂ =
+
√
B2 + 4AC +B

2|A|

Recall that

m1,2(σ
2
x) =

−(|µx|2−σ2
x|y|2)±

√
(σ2

x|y|2−|µx|2)2 + 4σ2
x(µ

T
x y)

2

2βσ2
x(µ

T
x y)

First, we are going to rewrite this expression in order to simplify. Defining p = σ2
x, the

expression inside the square root is

(p|y|2−|µx|2)2 + 4p(µT
x y)

2 = p2|y|4−2p|y|2|µx|2+|µx|4+4p(µT
x y)

2

Defining a = |y|2, b = |µx|2, c = (µT
x y)

p2|y|4−2p|y|2|µx|2+|µx|4+4p(µT
x y)

2 = p2a2 − 2pab+ b2 + 4pc2

The new expression for m1,2(p)

m1,2(p) =
−(b− pa)± (p2a2 − 2pab+ b2 + 4pc2)1/2

2βpc

Now we are going to check in both scenarios when p→ 0+. First we are going to check
Case 2

lim
p→0+

+
√

p2a2 − 2pab+ b2 + 4pc2 + b− pa

2βp|c|

lim
p→0+

2b

0+
→ +∞

Given that b = |µx|2 ̸= 0, we will fail to recover the mass.
Now for Case 1

lim
p→0+

+
√

p2a2 − 2pab+ b2 + 4pc2 + pa− b

2βpc

lim
p→0+

0+

0+
= undet..
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96 B Mixed Inversion

To solve this, we are going to approximate (p2a2 − 2pab+ b2 + 4pc2)1/2 using the Taylor
expansion for (1 + x)1/2 = 1 + x/2− x2/4 + o(x2), where o(x2) are negligible terms when
x→ 0. Applying this expansion we obtain

(p2a2 − 2pab+ b2 + 4pc2)1/2 = b

(
1 + p

(
a2p− 2ab+ 4c2

b2

))1/2

b

(
1 + p

(
a2p− 2ab+ 4c2

b2

))1/2

= b[1 +
p

2b2
(4c2−2ab+ a2p)− p2

4b4
(16c4 − 16abc2+

4a2b2 − 4pa3b+ 8pa2c2 + p2a4) + o(p3)]

When extracting the terms in red we will get b− pa, that will cancel with +pa− b on the
numerator of m̂. Now neglecting p3 terms we obtain

m̂(p) =
1

2pβc

(
p
2c2

b
+

p2

b

(
a2

2
− a2

)
+

p2

b2
(4c2a)− p2

b3
(4c4) + o(p3)

)
Now applying the denominator we obtain

m̂(p) =
c

βb
+

p

βb

(
2ca

b
− a2

4c
− 2c3

b2

)
+ o(p2)

where this corresponds to a polynomial expansion of m̂(p) centered in 0. Now making
p→ 0

m̂LS(p) =
c

βb
=

µT
x y

β|µx|2
(B.6)

which corresponds to the Least Squares solution, making x = E[x] = µx. Also we could
use the term depending on p as an approximation error ξ(p)

ξ(p) ≊
p

βb

(
2ca

b
− a2

4c
− 2c3

b2

)
ξ(σ2

x) ≊
σ2
x

β|µx|2

(
2(µT

x y)|y|2

|µx|2
− |y|

4

4µT
x y
− 2(µT

x y)
3

|µx|4

)
this means that |m̂− m̂LS|≤ ξ(σ2

u) for this specific approach.

B.2 Including m penalty term

Lets try to include also a penalty term involving the uncertainty about m in J(m,u) this
means defining a prior π(m) ∼ N (m0, σ

2
m). Now the optimization problem is

argmin
û,m̂

(y −muβ)T (y −muβ) + (u− µu)
Tσ−2

u (u− µu) +
(m−m0)

2

σ2
m

,
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where is important to remark that if σm → ∞ we recover the equation B.1. This new
inclusion does not affect the value of û, but it will change the form of J(m) to

J(m) =
(y −mµuβ)

T (y −mµuβ)

1 + σ2
um

2β2
+

(m−m0)
2

σ2
m

It could be proved that J ′(m) = 0 will be no longer a second order polynomial (will
include 5th order terms into the equation) and will be not so obvious the possibility of
finding an analytical expression for the test-case constraints, also to find the scenarios
where that solution will be unique and positive. That is why, given the good experimental
results with the approximation given by equation B.1, it will not be necessary for this
test-case to include a penalty term involving m.

B.3 General expression for any f (X) = Xβ

We are interested in considering the more general case of f(X) = Xβ, here we are going to
introduce the matrix of continuous input X ∈ Rp×nc and a expensive function f(X) = Xβ,
then the inverse problem is

y = mXβ + η,

where y ∈ Rp, X is the design matrix with rows Xi ≜ x, and the β = [β1, . . . , βj, . . . βnc ]
⊤

are learnt from data. Defining the same prior π(xj) ∼ N (µxj
, σ2

xj
Inc). Now, we formulate

the regularization problem:

argmin
m,X

J(X,m) = (y −mXβ)T (y −mXβ) +
nc∑
i=1

(xi − µxi
)2

σ2
i

J(X,m) = (y −mXβ)T (y −mXβ) + Tr((X − A)T (X − A)D2)

where:

A = [µx1 , µx2 , . . . , µxnc
]⊤

is a p× nc design matrix with the mean values of the xj stacked by columns, and D is a
nc × nc matrix, that includes in its diagonal the inverse of the standard deviations of X.

D =


σ−1
x1

d1,2 . . . d1,nc

d2,1 σ−1
x2

. . . d2,nc

...
...

. . .
...

dnc,1 dnc,2 . . . σ−1
xnc

 ,
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98 B Mixed Inversion

Again we compute the partial derivative ∂J/∂X = 0, find X̂(m), and then update the
expression of J(X̂(m),m) to find m̂.

0 = −2m(y −mXβ)βT + 2(X − A)D2

(X − A)D2 = m(y −mXβ)βT

XD2 +m2XββT = myβT + AD2

X(m2ββT +D2) = AD2 +myβT

X̂ = (AD2 +myβT )(D2 +m2ββT )−1

where, X̂ exists if (D2 +m2ββT )−1 exists. Now defining constants δ = mβ and D2 = Σ
and applying Woodbory inversion formula

(D2 +m2ββT )−1 = (Σ + δδT )−1

= Σ−1 − Σ−1δδTΣ−1

1 + δTΣ−1δ

now re defining the scalar product z = δTΣ−1δ and simplifying the denominator we obtain

(D2 +m2ββT )−1 =
Σ−1

1 + z

Now, X̂mβ

X̂ = (AD2 +myβT )(D2 +m2ββT )−1mβ

= (AΣ + yδT )

(
Σ−1

1 + z

)
δ

=
yz + Aδ

1 + z

Now, y − X̂mβ

y −mX̂β = y − yz + Aδ

1 + z

=
y − Aδ

1 + z
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Now computing (X − A)T and (X − A)D2

(X − A)D2 = (y −mX̂β)mβT

(X − A)D2 =
(y − Aδ)

1 + z
δT

(X − A) =
(y − Aδ)

1 + z
δTΣ−1

(X − A)T = Σ−1δ
(y − Aδ)T

1 + z

Tr((X − A)T (X − A)D2) = Tr

(
Σ−1δ

(y − Aδ)T (y − Aδ)

(1 + z)2
δT
)

= Tr

(
(y − Aδ)T (y − Aδ)

(1 + x)2
δTΣ−1δ

)
= Tr

(
(y − Aδ)T (y − Aδ)

(1 + z)2
z

)
The term inside the trace is scalar, so is possible to remove the trace operator and update
J(m, X̂)

J(m, X̂) =
(y − Aδ)T (y − Aδ)

(1 + z)2
+

(y − Aδ)T (y − Aδ)

(1 + z)2
z

=����(1 + z)
(y − Aδ)T (y − Aδ)

(1 + z)�2

=
(y − Aδ)T (y − Aδ)

(1 + z)

J(m) =
(y − Aβm)T (y − Aβm)

(1 +m2βTΣ−1β)

Now, defining w = βTΣ−1β and computing J ′(m) = 0 we obtain

0 =
1

(1 +m2w)2
[
−2(y − Aβm)Aβ(1 +m2w)− 2mz(y − Aβm)T (y − Aβm)

]
0 = (y − Aβm)T (−Aβ −�����

m2Aβw − ymw +�����
m2Aβw)

0 = (yT −mβTAT )(−Aβ − ymw)

0 = m2(βTATyw) +m(βTATAβ − w|y|2)− yTAβ

Again, we obtain a 2nd order polynomial

am2 + bm+ c = 0

a = (βTATy)(βTΣ−1β)

b = βTATAβ − βTΣ−1β|y|2

c = −βTATy
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100 B Mixed Inversion

where again we could ensure a single positive root if a/c < 0, this means
−1/(βTΣ−1β) < 0 and βTΣ−1β ≻ 0 which is possible if and only if Σ ≻ 0 is a positive
definite matrix, that also ensures the existence of (D2 +m2ββT )−1.

Expression for m̂: Finally we could find an analytical expression for m̂.

m̂ = max [m1,m2]

m1,2 =
βTΣ−1β|y|2−βTATAβ ±

√
(βTΣ−1β|y|2−βTATAβ)2 + 4(βTΣ−1β)(βTATy)2

2(βTATy)(βTΣ−1β)
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102 B Mixed Inversion

B.4 Complete Results By Configuration

p = 100 p = 30 p = 6

Figure B.3: Results for the strategy 1 nc + 1 MCMC, for configurations C1 (top) to C6
(bottom)for different number of observations p = 100 (left), p = 30 (mid), p = 6 (right).
The red dashed line represents the MAP estimate and the gold dashed line the true value

m⋆
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p = 100 p = 30 p = 6

Figure B.4: Results for the strategy 1 nc + 1 MCMC, for configurations C1 (top) to C6
(bottom)for different number of observations p = 100 (left), p = 30 (mid), p = 6 (right).
The red dashed line represents the MAP estimate and the gold dashed line the true value

m⋆
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p = 100 p = 30 p = 6

Figure B.5: Results for the strategy 1 nc + 1 MCMC, for configurations C1 (top) to C6
(bottom)for different number of observations p = 100 (left), p = 30 (mid), p = 6 (right).
The red dashed line represents the MAP estimate and the gold dashed line the true value

m⋆
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p = 100 p = 30 p = 6

Figure B.6: Results for the strategy 2 MC within MCMC, for configurations C1 (top) to
C6 (bottom)for different number of observations p = 100 (left), p = 30 (mid), p = 6

(right). The red dashed line represents the MAP estimate and the gold dashed line the
true value m⋆
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p = 100 p = 30 p = 6

Figure B.7: Results for the strategy 2 MC within MCMC, for configurations C1 (top) to
C6 (bottom)for different number of observations p = 100 (left), p = 30 (mid), p = 6

(right). The red dashed line represents the MAP estimate and the gold dashed line the
true value m⋆
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p = 100 p = 30 p = 6

Figure B.8: Results for the strategy 2 MC within MCMC, for configurations C1 (top) to
C6 (bottom)for different number of observations p = 100 (left), p = 30 (mid), p = 6

(right). The red dashed line represents the MAP estimate and the gold dashed line the
true value m⋆
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108 B Mixed Inversion

p = 100 p = 30 p = 6

Figure B.9: Results for the strategy 3 point-wise MC, for configurations C1 (top) to C6
(bottom)for different number of observations p = 100 (left), p = 30 (mid), p = 6 (right).
The red dashed line represents the MAP estimate and the gold dashed line the true value

m⋆
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Jérôme Idier and Laure Blanc-Féraud. Deconvolution of Images, chapter 6, pages 141–
167. John Wiley & Sons, Ltd, 2008. ISBN 9780470611197. doi: https://doi.org/
10.1002/9780470611197.ch6. URL https://onlinelibrary.wiley.com/doi/abs/10.

1002/9780470611197.ch6.

M.E. Johnson, L.M. Moore, and D. Ylvisaker. Minimax and maximin distance designs.
Journal of Statistical Planning and Inference, 26(2):131–148, 1990. ISSN 0378-3758. doi:
https://doi.org/10.1016/0378-3758(90)90122-B. URL https://www.sciencedirect.

com/science/article/pii/037837589090122B.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13(4):455–492, Dec 1998.
ISSN 1573-2916. doi: 10.1023/A:1008306431147. URL https://doi.org/10.1023/A:

1008306431147.

H Kunze, D La Torre, and M Ruiz Galán. Optimization methods in inverse problems and
applications to science and engineering. Optimization and Engineering, 22(4):2151–2158,
December 2021.

Neil D. Lawrence. Gaussian Process Latent Variable Models for Visualisation of High
Dimensional Data. In Proceedings of the 16th International Conference on Neural
Information Processing Systems, NIPS’03, pages 329–336, Cambridge, MA, USA, 2003.
MIT Press. URL http://dl.acm.org/citation.cfm?id=2981345.2981387. event-
place: Whistler, British Columbia, Canada.
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processes where the discrete variables are relaxed into continuous latent variables. The
continuous space is more easily harvested by classical Bayesian optimization techniques
than a mixed space would. Discrete variables are recovered either subsequently to
the continuous optimization, or simultaneously with an additional continuous-discrete
compatibility constraint that is handled with augmented Lagrangians. Several possible
implementations of such Bayesian mixed optimizers are compared. In particular, the
reformulation of the problem with continuous latent variables is put in competition
with searches working directly in the mixed space. Among the algorithms involving
latent variables and an augmented Lagrangian, a particular attention is devoted to the
Lagrange multipliers for which a local and a global estimation techniques are studied.
The comparisons are based on the repeated optimization of three analytical functions
and a mechanical application regarding a beam design. An additional study for applying
a proposed mixed optimization strategy in the field of mixed self-calibration is made.
This analysis was inspired in an application in radionuclide quantification, which defined
an specific inverse function that required the study of its multiple properties in the
continuous scenario. A proposition of different deterministic and Bayesian strategies was
made towards a complete definition in a mixed variable setup.
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Résumé :

Dans cette thèse, les problèmes d’optimisation mixtes coûteux sont abordés par le biais de
processus gaussiens où les variables discrètes sont relaxées en variables latentes continues.
L’espace continu est plus facilement exploité par les techniques classiques d’optimisation
bayésienne que ne le serait un espace mixte. Les variables discrètes sont récupérées soit
après l’optimisation continue, soit simultanément avec une contrainte supplémentaire de
compatibilité continue-discrète qui est traitée avec des Lagrangiens augmentés. Plusieurs
implémentations possibles de ces optimiseurs mixtes bayésiens sont comparées. En
particulier, la reformulation du problème avec des variables latentes continues est mise en
concurrence avec des recherches travaillant directement dans l’espace mixte. Parmi les
algorithmes impliquant des variables latentes et un Lagrangien augmenté, une attention
particulière est consacrée aux multiplicateurs de Lagrange pour lesquels des techniques
d’estimation locale et globale sont étudiées. Les comparaisons sont basées sur l’optimisation
répétée de trois fonctions analytiques et sur une application mécanique concernant la
conception d’une poutre. Une étude supplémentaire analyse s’inspire d’une application de
quantification des radionucléides, qui définit une fonction inverse spécifique nécessitant
l’étude de ses multiples propriétés dans un scénario continu. Une proposition de différentes
stratégies déterministes et bayésiennes a été faite en vue d’une définition complète dans
un contexte de variables mixtes.
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