2.1 A modern helical CT scanner (left). The basis principle of CT. The X-ray source and detector set-up(center). A three-dimentional (3D) reconstructed volume of the heart utilizing CT scanning(right).
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ABSTRACT

The multi-channel joint reconstruction technique is a highly suited method for multi-modal medical imaging reconstruction. In the technique, the unknown images are reconstructed simultaneously by solving a single combined inverse problem and exploiting structural similarities between the images. The hypothesis behind this approach is that the image modalities inform each other during the reconstruction allowing artifact reduction and image quality enhancement. The present thesis develops three image reconstruction models for multi-channel image reconstruction.

The first methodology consists of a Coupled Image-Motion Dictionary Learning algorithm for Motion Estimation-Compensation in Cone-Beam Computed Tomography (CBCT). Standard CBCT motion estimation techniques from the literature enforce uniform motion smoothing, which can be sub-optimal (e.g., sliding motion between organs). This approach proposes a motion estimation-compensation algorithm by penalized-likelihood function with a coupled dictionary learning as a regularization. The advantage of the methodology is that the image and the motion can inform each other, thus allowing for noise reduction and learning features such as sliding motion at organ boundaries. The dictionaries are learned from a set of images and their corresponding Deformation Vector Fields (DVF) at each respiratory gate. Results show the ability of the proposed coupled dictionary learning algorithm to learn from both dictionaries simultaneously and exploit data dependencies.

The second approach proposes a Multi-channel Convolutional Analysis Operator Learning (MCAOL) for Dual-Energy CT (DECT) Reconstruction. The method exploits standard spatial features within attenuation images at different energies and proposes an optimization method that jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features. In particular, the regularization term promotes the joint sparsity between features obtained by pre-trained convolutional filters through the Convolutional Analysis Operator Learning (CAOL). Extensive experiments with simulated and real CT data were performed to validate the effectiveness of the proposed meth-ods. Qualitative and quantitative results on sparse-views and low-dose DECT demonstrate that the proposed MCAOL method outperforms both CAOL applied on each energy independently and several existing state-of-the-art model-based iterative methods.

In the third technique, we focus on the sparse view single-source fast KVp switching acquisition set-up in Dual Energy CBCT to reduce the total dose delivered during a CT acquisition. We propose to exploit the Joint Total Variation regularization in the reconstruction problem, between low and high energy images, to reduce the artifacts due to the under-sampling of the angular views. Through numerical experiments and patient data, we show the benefit of the proposed method for material decomposition and estimation both qualitatively and quantitatively compared to regularization on the images separately.

Keywords: X-ray Computed Tomography, Dictionary Learning, Image Recon- 
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From the first generation to the seventh generation, CT has continually improved in speed, spatial resolution, and density resolution. Currently, these three aspects of CT are still goals of manufacturers, but the fourth aspect, low-dose scanning, is what manufacturers are focused on and is their main direction for CT development.

In general, X-ray CT has been trending towards low-dose CT, ultra-low-dose CT, and spectral CT, which have an accurate positioning and qualitative diagnosis using the least amount of radiation possible [START_REF] Liu | Research status and prospect for ct imaging[END_REF].

Common strategies to lower X-ray radiation dose are: lowering the X-ray exposure in each view by adjusting the tube current; decreasing the number of projection angles (sparse-view)-CT. However, reducing the number of projection angles leads to inaccuracy in the resultant image. More sophisticated methods are needed to process the raw data from CT systems to reduce radiation while still producing good quality images. These methods are known as image reconstruction and are one of the main topics of research in the CT field. Researchers constantly develop new, faster, and more accurate image reconstruction algorithms.

Aim of the Thesis

The present thesis aims to develop sophisticated X-ray CT image reconstruction algorithms to improve image quality while keeping the radiation dose as low as possible. The objective is to deploy new model-based iterative reconstruction algorithms based on the Compressed Sensing (CS) theory and Machine Learning.

Proof-of-concept methods are developed with an emphasis on the joint reconstruction of multi-channel modalities to exploit structural similarities in the images.

Structure of the Thesis

The present manuscript is composed of five main chapters in addition to a general introduction presented in Chapter 1, the Conclusions presented in Chapter 7 and the appendices.

Chapter 2 explains the physics and mathematical principles of the X-ray CT.

It provides detailed information about the X-ray production (Bremsstrahlung radiation) and the main interaction process of the X-ray with the matter at the Computed Tomography and Image Reconstruction

X-ray Tomographic Imaging

The earliest diagnostic imaging technology with X-rays was created immediately after Roentgen discovered X-rays in 1895. X-rays are electromagnetic radiation that propagates through matter and interacts with it through various physical processes. Planar radiography and CT utilize differential absorption of X-rays while traveling through human tissue. For example, bones absorb X-rays more efficiently than soft tissue. Therefore, the interaction of X-rays with matter can be used as a non-invasive alternative to imaging an object. In radiography, an X-ray beam irradiates an object providing a two-dimentional (2D) image, which is the "shadow" of the 3D object. The projection becomes a superposition of internal structures, making it difficult for the radiologist to identify them. Moreover, it is quite challenging to differentiate low-contrast structures in tissue.

CT was developed to overcome these limitations and to be able to acquire a fully three-dimensional image. The CT machine consists of an X-ray source and a radiation detector with multiple rows placed in the opposite direction to the source.

The source and the detector rows are rotated in synchronization around the patient.

A set of 2D projections are acquired and further reconstructed to form the 3D images [START_REF] Smith | Introduction to medical imaging: physics, engineering and clinical applications[END_REF]. Figure 2.1 shows the basic principle of CT scanner and a picture of a modern multi-detector helical scanner.

X-ray Generation

The X-ray source consist of an X-ray tube. The X-rays photons are produced when accelerated electrons hit a target with a high number of protons.

The tube is composed of an electron source, the cathode, commonly a heated filament, and an anode, usually made of tungsten and contained in an evacuated glass envelope. First, a high voltage is applied between the cathode and the anode.

This voltage accelerates the electrons in a range from 30 to 140 kilo-volts. This accelerating voltage is also known as the Peak-Kilo-voltage (kVp). When the for "braking radiation"). The incident electron also loses energy throughout the tungsten target by ionization, interacting with other electrons in the matter. Thus, the mean energy lost by the electron in a material of thickness dx can quantitatively be described by

dE dx = dE dx ionization + dE dx bremsstrahlung (2.1)
where dE dx ionization is given by the Bethe-Bloch equation

dE dx ionization = -4πN A ρ Z A r e 4 m e c 2 z 2 β 2 • (2.2) 1 2 ln 2m e c 2 β 2 γ 2 T max I m -β 2 - δ 2 
with N A denoting the Avogadro constant, ρ is the material density, Z is the atomic number, A r is the atomic weight of the material; e and m e the electron charge and rest mass, respectively. The electron velocity is expressed in units of light speed, i.e. β = v/c; γ represents the Lorentz factor γ = (1 -β 2 ) -1/2 and T max is equal to the tube voltage times the electron charge and represents the maximum kinetic energy that may be transmitted in a single collision; δ is a density correction of the ionization energy, and I m is the mean ionization energy of the material [START_REF] Buzug | Computed tomography: From photon statistics to modern cone-beam ct[END_REF].

The second term in 2.1 is the Bremsstrahlung photons energy and is given by quantum electrodynamics (QED) [START_REF] Buzug | Computed tomography: From photon statistics to modern cone-beam ct[END_REF]) (2.3) where α denotes the fine-structure constant.

dE dx bremsstrahlung = -4αN A ρ Z 2 A e 2 m e c 2 2 E ln 183 Z 1/3 ,
The bremsstrahlung radiation has a continuous spectrum with an energy range from zero to the maximum kinetic energy of the bombarding electron depending on how much the nucleus electric field impacts the electrons. The efficiency of converting kinetic electron energy to bremsstrahlung energy is given by [START_REF] Buzug | Computed tomography: From photon statistics to modern cone-beam ct[END_REF])

η = KZU a , (2.4) 
where is K = 9.2 • 10 -7 kV -1 the Kramers constant [START_REF] Kramers | Xciii. on the theory of x-ray absorption and of the continuous x-ray spectrum[END_REF]), U a is the accelerating voltage in the X-ray tube, and Z is the atomic number of the anode material. Following equation 2.4, the quantum efficiency of the conversion from kinetic energy into X-ray radiation, within a tungsten anode (Z = 74), and operating with an acceleration voltage of U a = 140kV is η = 0.01. This efficiency implies that only 1% of the kinetic energy is converted to bremsstrahlung radiation.

The other 99% is transmitted locally to the lattice, causing the anode to heat up.

As a consequence, CT X-rays tubes may suffer from overheating [START_REF] Buzug | Computed tomography: From photon statistics to modern cone-beam ct[END_REF]).

Interaction of X-ray with the matter

The X-rays produced in the tube irradiate the patient or the studied anatomical region. They interact with the tissue via three main processes, which depend on the photons energy, atomic number of the material, and the density of the material [START_REF] Hapugoda | Characteristic radiation: Case courtesy of dr sachintha hapugoda, radiopaedia.org[END_REF])) X-rays production mechanisms in the atom. b) X-ray energy spectrum from tungsten anode operating at 120 KVp. [START_REF] Punnoose | spektr 3.0-a computational tool for x-ray spectrum modeling and analysis[END_REF] in the body. At the diagnostic energies, the primary interaction processes are photoelectric effect, incoherent (Compton) scattering, and coherent (Rayleigh) scattering. The interaction of the photons with matter is a stochastic process. The probability of the interaction depends on the atomic cross-section. We denote σ FE the atomic cross-section for the photoelectric effect, σ R for coherent scattering and, σ KN for incoherent scattering.

Photoelectric effect

The photo-effect or photoelectric effect is the process where an incident photon interacts with a binding electron in the atom. Albert Einstein introduced the photoelectric effect theory in 1905, based on Max Planck's idea that light consists of small packets of energy known as photons or light quanta with energy hν proportional to the frequency ν of the corresponding electromagnetic wave and the Planck's constant h. In CT the incident photons come from the X-ray beam generated in the X-ray tube. The incident photon is absorbed, leaving the atom in an excited state. One of the electrons attached to the nucleus is ejected, releasing the extra energy in the collision. The ejected electron is called a photo-electron and leaves the atom with a kinetic energy

T = hν -E s (2.5)
where E s is the binding energy of the electron shell where the electron was located, and ν is the incident photon frequency [START_REF] Dance | Diagnostic radiology physics: A handbook for teachers and students[END_REF]). Thus, the photoelectric effect occurs only when the incident photon energy is greater than the binding energy. The electron shell that satisfies these criteria and is closest to the nucleus (with the highest binding energy) is the most likely to lose an electron. The photoelectric effect cross-section is obtained through Quantum Mechanics, and it is proportional to fourth power atomic number (Z) and inversely proportional to photon energy (hν). In the diagnostic photon energy range, a typical dependency

of σ FE is σ FE ∼ Z 4 (hν) 3 (2.6)
The photoelectric effect is the most likely process for low energy photons and high Z materials. It plays an essential role in CT and is the reason why bone tissue is easily visible in CT images [START_REF] Dance | Diagnostic radiology physics: A handbook for teachers and students[END_REF]).

Coherent (Rayleigh) scattering

The Rayleigh scattering mechanisms consists of scattering of photons by non-free electrons. In the Rayleigh scattering the photon is scattered slightly resulting in a small change in energy. The differential cross-section can be written as

dσ R dΩ = r 2 0 2 1 + cos 2 θ [F (q, Z)] 2 (2.7)
where θ is the photon scattering angle, r 0 is the classical electron radius, and F (q, Z) is a coherent factor calculated utilizing Quantum Mechanical Models with q = sin(θ/2) λ . Denoting λ the wavelength of the incident photon and dΩ is the solid angle (Figure 2.3). The total atomic cross-section in the Rayleigh scattering is second power inversely proportional to the energy of the photon and directly proportional to the atomic number

σ R ∝ Z 2 (hν) 2 (2.8)
Since the incident photon loses no energy during Rayleigh scattering, the process does not deliver a radiation dose to matter. Rayleigh scattering is more likely to occur in photon beams with lower energy [START_REF] Dance | Diagnostic radiology physics: A handbook for teachers and students[END_REF]).

Incoherent (Compton) scattering

The Compton scattering, as Rayleigh scattering, is the interaction between the incident photons and the electrons in the matter, where the electron receives an energy transfer during the process. Figure 2.4 depicts the interaction geometry.

An incident photon with energy hν collides (Billiard-ball-like collision) with the electron and is scattered through an angle θ. The photon energy after the collision becomes hν ′ . The electron recoils with kinetic energy T e at angle ϕ T e = hν -hν ′ (2.9)

The differential cross-section can be calculated by assuming the electron is "free" (unbound). Klein and Nishina first derived it in 1928 utilizing the Dirac theory of the electron [START_REF] Klein | Über die streuung von strahlung durch freie elektronen nach der neuen relativistischen quantendynamik von dirac[END_REF]. The expression estimates the differential cross-section for the scattering of photons by a free electron. where

dσ KN dΩ = r 2 0 2 1 + cos 2 θ f KN (2.10)
f KN = 1 1 + α(1 -cos θ) 2 1 + α 2 (1 -cos θ) 2 [1 + α(1 -cos θ)] [1 + cos 2 θ] (2.11)
where α = hν/m 0 c 2 , with c the speed of the light in vacuum and m 0 denoting the electron rest mass.

Integrating over all the scattered angles, the total cross-section becomes

σ KN (hν) = 2πr 2 0 1+α α 2 2(1+α) 1+2α -ln(1+2α) α + 2πr 2 0 ln(1+2α) 2α -1+3α (1+2α) 2
(2.12)

In 2.1.2.3 is assumed that the electron is free. We can see from this equation that the attenuation coefficient per electron is independent of the atomic number and is solely reliant on the photon energy.

Linear attenuation coefficient

The total cross-sections mentioned above concern the interaction of photons with an individual atom. It is necessary to consider the macroscopic properties of a photon beam when traversing the matter. Consider a photon beam incident generally on a thin uniform slab of material with thickness dl. The probability that a photon interacts in this thin slab is given by

N a σdl (2.13)
where N a is the total number of atoms in a substance per unit volume, and σ is the total atomic cross-section, which can be calculated utilizing the "or rule" for probabilities

σ = σ FE + σ R + σ KN (2.14)
The quantity N a σ is the linear attenuation coefficient, and it is denoted by µ in the manuscript. The estimation of the number of atoms N a can be performed utilizing the Avogadro constant N A , the material density ρ, and the atomic weight

A r µ = N a σ = N A ρ A r σ (2.15)
The dimensions of µ in the International System of Units is m -1 , although it is common to use cm -1 [START_REF] Dance | Diagnostic radiology physics: A handbook for teachers and students[END_REF].

Exponential attenuation

Let us consider a thick slab of material of thickness l and I f (l) the fluence of photons that have passed the slab and have not interacted. The variation in the fluence, dI f , after passing the thickness dl is given by

dI f = -I f µdl dI f /I f = -µdl (2.16)
The negative sign implies that the fluence I f decreases with l and µ. Integrating each side of the equation 2.16

I f I f 0 dI f /I f = L 0 µdl I f = I f 0 e -µL
(2.17)

where L denotes the slab's thickness and I f 0 is the initial fluence. The resulting relation in 2.17 is known as Beer's law and describes the exponential attenuation of a photon beam. More specifically, I f represents the number of photons that pass through the slab without interaction. In the CT energy ranges, other photons may be present in the detector after passing the slab [START_REF] Dance | Diagnostic radiology physics: A handbook for teachers and students[END_REF]. To account for these photons, we add a background term s to equation 2.17

I f = I f 0 e -µL + s (2.18)
The expression 2.18 holds for mono-energetic X-rays and assumes the slab of thickness L is composed of a unique material. Let us denote µ(l) the variation of the linear attenuation coefficient through a medium with different materials. Thus, after crossing a multi-material slab of length L, the fluence is given by [START_REF] Buzug | Computed tomography: From photon statistics to modern cone-beam ct[END_REF])

I f = I f 0 e -L 0 µ(l)dl + s (2.19)
Taking into account the energy dependency of the attenuation values, equation 2.19 must be extended to (2.20) where ε(E) denotes the detector efficiency. The relation 2.19 is the most common used for image reconstruction. Therefore, in this thesis, it will be used to model the projection dataset.

I f = Emax 0 I f 0 (E)ε(E)e -L 0 µ(E,l)dl dE

Radiation Detection

In the previous sections, we have described how the incident photons coming from the X-ray tube interact with the body. The photons that cross the body are collected in a device known as detectors. Specific materials in the detector are used to convert the X-ray energy of the photons into lower-energy forms. For instance, optical photons in the case of scintillator detectors or electron-hole pairs in the case of semiconductor detectors. In the detection process, thousands of secondary quanta per primary incident photon are generated, which have energies of a few electron volts. The low energy quanta generated produce an electrical current which is further conditioned utilizing an electronic amplifier. Then, the signal passes through an analog-to-digital converter which converts it into a digital number.

These digital numbers are the raw projection data which is further reconstructed utilizing an appropriated reconstruction algorithm (Drzezo 2016).

CT Configuration and Generations

Several CT configurations have been implemented based on the physics principles above explained. The CT configurations have gone through multiple enhancements focusing on an increase in the number of detectors and a reduction in scan time. The first generation design consists of a single X-ray source emitting a single needle-like X-ray beam and rigidly coupled single detector cell. The pencil beam is translated across the patient to obtain a set of parallel projections at one angle. Then the system rotates γ degrees, and another set of parallel projections is collected by translating the system across the patient. The process is repeated until they acquired 180 projections with a Field of View (FOV) of 24 cm approximately. This type of scanner is known as parallel beam translate-rotate scanners [START_REF] Buzug | Computed tomography: From photon statistics to modern cone-beam ct[END_REF]. The second tomographs generation features an X-ray source with a narrow fan beam and a short detector array of about 30 elements. Because the fan beam aperture is small, the X-ray tube and the detector array needs to be linearly translated and rotated as in the first generation. The fan angle on the earliest second-generation CT scanners was 10 degrees. This type of scanner is known as Narrow Fan Beam Rotation-Translation scanners. The third generation focuses on decreasing the acquisition time to less than 20 seconds, which allows to acquire an image of the abdomen while the patient holds their breath. The main improvement in the third generation is the extension of fan beam angle to a range between 40 to 60 degrees and the detector array to an arc of 400 to 1000 elements (Figure 2.5b left). For each projection angle γ, the system can simultaneously irradiate the full measuring field, which is wide enough to encompass the torso. Thus, the third-generation scanner eliminates the linear translation of the X-ray source and the detector [START_REF] Buzug | Computed tomography: From photon statistics to modern cone-beam ct[END_REF].

The rotation-fix with closed detector ring CT is the fourth generation of scanners.

The X-ray source remains the same as in the third generation, a fan-beam source rotating continuously around the measuring field. However, the detector is fixed, making a ring with around 5000 elements. The X-ray tube rotates inside the detector ring. Other modifications of tomographs have been developed to improve the older generations. For example, Rotation in Spiral Path Scanner, the Electron Beam Computerized Tomography, and Rotation in Cone-Beam Geometry. Many authors identify them as the fifth, sixth, and seventh generations. However, there is no precise classification [START_REF] Buzug | Computed tomography: From photon statistics to modern cone-beam ct[END_REF]).

Electron Beam Computerized Tomography

One approach to decrease the acquisition time is to use the Electron Beam Computerized Tomography (EBCT) system. It was introduced for cardiac imaging and was capable of acquiring an image slice in 50ms. In EBCT an electron beam is focused onto tungsten target rings which are positioned in a half-circle around the patient and generate a fan beam. A stationary detector ring is used to measure the X-ray irradiation [START_REF] Buzug | Computed tomography: From photon statistics to modern cone-beam ct[END_REF]. The main application of this type of tomographs is in cardiology to search calcium build-up in the heart arteries. The EBCT is also referred as the "cine CT" system, and some authors have categorized it as the fifth generation. irradiate with a wide fan beam, and the X-ray source rotates continuously without any linear displacement. In the third generation, the detector has an arc shape with around 1000 elements, while in the fourth generation, the detector has a ring shape and is fixed. Reprint from [START_REF] Buzug | Computed tomography: From photon statistics to modern cone-beam ct[END_REF] Rotation in Spiral Path

In the previous CT generations, after each 360°rotation, the gantry has to stop and reverse direction. Mainly because of the cables connecting the rotating components to the rest of the gantry. They are spooled onto a drum, then released and re- In this technology, the electrical power is provided via sliding contacts outside the gantry, allowing the X-ray tube and the detector (in the third generation) to rotate continuously. Since the gantry can now rotate non-stop, it become possible to acquire data in the shape of a spiral by translating the patient table through the gantry. This powerful idea, also known as helical CT or spiral CT, enables quick scans of entire z-axis regions of interest, in some circumstances within a single breath hold [START_REF] Buzug | Computed tomography: From photon statistics to modern cone-beam ct[END_REF]. However, as seen in section 2.1.1 the X-ray tubes suffer from overheating.

The solution is to employ the X-ray beam more efficiently. For instance, the X-ray beam has a cone shape by nature. The pencil and fan-beam are created utilizing appropriate pin-hole or slit collimators. Thus, a distinctive approach would be to widen the beam in the z-direction (slice thickness) and adapt multiple detectors rows to collect the data for more than one slice at a time. This idea is the principle of Multi-slice Computed Tomography (MSCT), which was an extension of the third generation of tomographs (tube and detector bank linked and rotating together). The detectors in MSCT are further separated along the z-axis, allowing for the acquisition of many sections per rotation at the same time. As a result, with smaller section widths, MSCT delivers more and quicker z-axis coverage each rotation [START_REF] Goldman | Principles of ct: multislice ct[END_REF]. Figure 2.6 illustrates the difference between single-slice CT (left) and multi-slice CT which utilizes multiple detector rows. After the introduction of MSCT in the 1990s, many detector array configurations were exploited depending on the number of sections acquired at each rotation. For example, for 4 data channels, the system acquires 4 slice at a time. From this point forward, manufacturers started developing 16-channel (16-slices), 64-channel (64-slices) scanners with different detector configurations. The total number of detector rows and z-axis coverage varies amongst CT manufacturers [START_REF] Goldman | Principles of ct: multislice ct[END_REF]).

Cone-Beam Computed Tomography

Following the previous idea of exploiting more efficiently the X-ray beam the next step in the development of CT scanners was the use of a cone-shaped X-ray beam, which is already created in the X-ray tube. A flat-panel detector, which did not exist at the time, had to be created to replace the line or multi-line detector arrays to employ the cone beam. This type of scanners are referred as the seventh generation of CT scanners and are denominated as CBCT [START_REF] Bushberg | The essential physics of medical imaging[END_REF].

The X-ray source and the bank flat-panel detector synchronously rotate around the patients to acquire between 150 and 600 sequential planar projections in a single sweep in 180°-360°of gantry rotation. The main application of CBCT is in dentistry and maxillofacial scan. It produces images of contrasted structures, which makes it well-suited to imaging skeletal structures in the craniofacial region.

Another major application of CBCT is for Image-Guided Radiation Therapy (IGRT). In external beam radiotherapy treatments, the machines come with a CBCT device attached to the gantry. The CBCT machine is used to ensure optimum patient setup and as image guidance tools in IGRT, by providing a volumetric image of a patient in the treatment position. With proper calibration, the CBCT image can be used for dose calculation during the radiotherapy and replanning the treatment in case of anatomical changes in the patient. Nevertheless, the image quality is inferior compared to diagnostic CT. The cone beam irradiates more volume in the patient. Consequently, a large amount of scattering signal reaches the detector. The large scatter-to-primary ratio substantially degrades the reconstructed image. Moreover, depending on the frequency of the acquired CBCT (given that radiotherapy treatments typically involve 30-50 fractions), the dose to the patient may become significant. Decreasing the dose, therefore, increases the noise due to low photon counts, which creates artifacts in the image resulting in random thin bright and dark streaks that appear preferentially along the direction of most significant attenuation [START_REF] Boas | Ct artifacts: causes and reduction techniques[END_REF].

There is an increasing interest in working with low-dose CBCT acquisitions without compromising the overall resulting image quality. Additionally, the gantry rotation in a CBCT acquisition for radiotherapy takes around 1 minute for a 360 degrees scan, and the respiratory cycle is up to 6 seconds. The patient breaths ten times during the acquisition, introducing respiratory motion artifacts in the image [START_REF] Yoon | A motion estimation and compensation algorithm for 4d cbct of the abdomen[END_REF]. In Chapter 4 we propose a novel algorithm for motion-estimation and motion-compensation in CBCT to improve the image quality of a CBCT mounted on the gantry of a linear accelerator used in radiation therapy.

Dual Energy Computed Tomography

Advances in CT continued moving in the direction of improving the visualization of the images and obtaining better contrast and image quality. One approach toward enhancing tissue visualization in CT-CBCT is the dual-energy acquisition. The fundamental concept behind imaging with two energy spectra is that understanding how a material behaves at two different energies can reveal information about tissue composition. As seen in Section 2.1.2, the photoelectric effect depends on the incident photons energy, and its probability or cross-section increases as the incident photon energy approximate the K-shell binding energy of an electron in the matter.

The K-shell binding energy is different for each element, increasing with atomic number (Z). The term "K-edge" refers to the increase in attenuation at energy levels just above the K-shell binding due to increased photoelectric absorption.

This variability of the K-edges for each material and the energy dependence of the photoelectric effect are the basis of dual-energy imaging techniques.

Let us consider a simple example to illustrate the ideas underpinning dual-energy In DECT, it is desirable to have the least possible overlap between spectra, therefore the lowest and highest potentials offered by the scanner should be used.

A voltage below 60kV would not be useful because most of the radiation would be absorbed by the human body. Due to heating limitations, X-ray tubes are not capable of using voltages above 150 KV. Furthermore, the material to be studied must have a sufficient difference in spectral properties. Only elements with considerably different atomic numbers can be distinguished by their spectral properties [START_REF] Johnson | Dual energy CT in clinical practice[END_REF]).

DECT acquisition methods

There are multiple CT scanner configuration to acquire dual energy projection data: Sequential Acquisition, Rapid Voltage Switching, Dual-Source CT, Dual

Layer Detector and Multi-spectral CT with energy discriminating detectors.

The sequential acquisition can be achieved as two subsequent helical or CBCT scans one scan at high kilo-voltage and a second scan at low kilo-voltage. Alternatively, it can be acquired by subsequent rotations at alternating tube voltages and step-wise table feed. This strategy may make sense in systems with wide detectors, but the relatively significant latency between both acquisitions is a drawback. The delay is too lengthy to avoid artifacts caused by cardiac or respiratory movements and variations in contrast material specifications. However, for clinical DECT applications that do not need contrast material, such as metal artifact removal or kidney stone distinction, the sequential acquisition should be a feasible choice In rapid voltage switching, one X-ray source is used, with the tube voltage alternating between high and low voltages. The transmission data are collected twice for every projection or, in practice, for consecutive projections. The additional projections and rise and fall times of the voltage modulation require a slower rotation speed. Another downside is the low photon output at low voltages, which causes excessive noise and necessitates the use of a relatively large current and, therefore, dose to the patient [START_REF] Johnson | Dual-energy ct: general principles[END_REF].

A multi-spectral CT with photon-counting detectors that discriminate energy may be a robust solution for dual-energy, or multi-energy, data acquisition. The spectral CT technique uses photon-counting detectors, which can acquire spectral information for several bins of energy simultaneously.

Application of Spectral CT

As discussed in Section 2.1.6, dual-energy and spectral CT imaging allow discriminating the transmitted photons between different energies. The technique will enable us to bypass many of the limitations of conventional CT approaches and opens up many new application possibilities. From Dual Energy CT it is possible to obtain material-nonspecific and material-specific energy-dependent information, and both evaluations can be qualitative or quantitative. The material-nonspecific energy-dependent information includes virtual mono-energetic imaging for beam hardening suppression, effective atomic map, and electron density map. The material-specific energy-dependent information includes material decomposition, material labeling, and material highlighting [START_REF] Goo | Dual-energy ct: new horizon in medical imaging[END_REF]. Detailed material decomposition methods will be introduced in Chapter 6.

Image Reconstruction Techniques

The previous sections described the different CT configurations in which the human body can be scanned and how incident photons are transmitted and collected.

The next challenge lies in reconstructing images from the collected data. This is the fundamental problem of computed tomography: from an object tomographic measurement, or more precisely, its projection, reconstruct the object. This problem is a mathematical problem that has been addressed utilizing analytical methods, iterative statistical methods, and, more recently, machine learning approaches.

Analytical methods

Analytical methods are the pioneers in medical image reconstruction. They offer fast and accurate reconstruction. However, they are based on simplified models that are somehow unrealistic. For example, the measurement noise is ignored and treated utilizing filtering operations. Analytical methods generally provide integral-form solutions by assuming the measurements follow a continuous behavior.

Moreover, they required specific standard geometries (e.g., parallel beam and complete sampling in radial and angular coordinates) [START_REF] Fessler | Analytical tomographic image reconstruction methods[END_REF]. Assuming an idealized scanner system, the scanner detector measurements can be represented according to Beers Law:

I f (r, γ) = I f 0 e -L(r,γ) f (x,y)dxdy (2.21)
where L(r, γ) denotes the line in the Euclidean plane forming an angle γ with the y-axis and at distance r from the origin [START_REF] Fessler | Analytical tomographic image reconstruction methods[END_REF]:

L(r, γ) = (x, y) ∈ R 2 : x cos γ + y sin γ = r (2.22) = {(r cos γ -ℓ sin γ, r sin γ + ℓ cos γ) : ℓ ∈ R}
The line integral through the object f (x, y) along the line L(r, γ) takes the form

p γ (r) = L(r,γ) f (x, y)dℓ (2.23) = ∞ -∞ f (r cos γ -ℓ sin γ, r sin γ + ℓ cos γ)dℓ (2.24) (2.25)
Thus the Radon transform of function f (x, y) is defined through the operator R → Rf with Rf (x, y) = p γ (r). The projection of f (x, y) at the gantry rotation angle γ is the function p γ (•). The 2D image reconstruction problems consist of recovering f (x, y) from its projection p γ(•) . The Radon transform models the system imaging. In transmission tomography the scanner detector measurement is defined as

I f (r, γ) = I f 0 e -pγ (r) (2.26)

Radon transform properties

The following is a list of the most notable properties of the Radon transform. We use the notation from [START_REF] Fessler | Analytical tomographic image reconstruction methods[END_REF]

; i.e f (x, y) R ↔ p γ (r) is Rf (x, y) = p γ (r) • Linearity If g(x, y) R ↔ q γ (r), then αf (x, y) + βg(x, y) R ↔ αpγ(r) + βqγ(r) • Shift / translation f (x -x 0 , y -y 0 ) R ↔ p γ (r -x 0 cos γ -y 0 sin γ) • Rotation f (x cos γ ′ + y sin γ ′ , -x sin γ ′ + y cos γ ′ ) R ↔ p γ-γ ′ (r) • Magnification/minification f (αx, αy) R ↔ 1 |α| p γ (αr), α ̸ = 0 • Flip f (x, -y) R ↔ p π-γ (-r) f (-x, y) R ↔ p π-γ (r) p γ (-r) = p γ + π(r) • Laplacian ∂ 2 ∂x 2 + ∂ 2 ∂y 2 f (x, y) R ↔ ∂ 2 ∂r 2 p γ (r)
If we display the projections p γ (r) of a 2D Dirac impulse, where usually r and γ are the horizontal and vertical axes respectively, then the projection image is 

Back projection

The straightforward approach to recover the object represented by the function f (x, y) from the projections p γ (r) is to take each sinogram value and spread it back into the object space along the line integral (Figure 2.10). In image reconstruction, this operation is named back projection. However, this operation does not retrieve the object f (x, y). It produces a blurred version of the object f b (x; y) which is called laminogram.

The back projection operation can be written as 

f b (x, y) = π 0 p γ (x cos γ + y sin γ)dγ, ( 2 

Inverse Radon Transform

In order to recover the object f (x, y), one must compute the Inverse Radon transform. There exist several alternatives, e.g. direct Fourier reconstruction based on the Fourier-slice theorem, the back project-filter method based on the laminogram and Filtered Back Projection (FBP) method. FBP is one of the most popular and used method in image reconstruction. The following section describes the FBP algorithm.

Filtered back projection

The filtered back projection approach is based on the Fourier-slice theorem, also known as the central-slice theorem or projection-slice theorem. It states the following: "If p γ (r) is the Radon transform of the function f (x; y), then the Onedimentional (1D) Fourier transform of p γ (r) equals the slice at angle γ through the 2D Fourier transform of f (x; y)". Mathematically, if we denote P γ (ν) as the 1D Fourier transform of p φ (r): ux+vy) dx dy (2.29) then the Fourier-slice theorem can be written as follow

P γ (ν) = ∞ -∞ p γ (r)e -ı2πνr dr (2.28) and F (u, v) the 2D Fourier transform of f (x, y) F (u, v) = ∞ -∞ ∞ -∞ f (x, y)e -ı2π(
P φ (ν) = F (ν cos φ, ν sin φ) ∀ν ∈ R, ∀φ ∈ R, (2.30) 
The FBP uses the Fourier Slice theorem as follow

f (x, y) = F (u, v)e ı2π(xu+yv) du dv (2.31) = π 0 ∞ -∞ F (ν cos γ, ν sin γ)e ı2πν(x cos γ+y sin γ) |ν|dνdγ (2.32) = π 0 ∞ -∞ P γ (ν)e ı2πν(x cos γ+y sin γ) |ν|dνdγ (2.33) = π 0 pγ (x cos γ + y sin γ)dγ (2.34)
where the filtered projection pγ is defined as

pγ (r) = ∞ -∞ P γ (ν)|ν|e ı2πνr dν (2.35)
where |ν| represents the Ramp filter (due to its shape) applied to the frequency domain. The FBP method summarizes as follow [START_REF] Fessler | Analytical tomographic image reconstruction methods[END_REF])

f → Projection → p γ → Ramp filters → pγ → Backprojection → f
• Compute the 1D Fourier transform of the projection p γ (•) at each projection angle γ to obtain P γ (ν)

• Compute Pγ by multiplying P γ and the Ramp filter |ν|, i.e., Pγ (ν) = |ν|P γ (ν)

• For each angle γ compute the inverse 1D Fourier transform Pγ (ν) to obtain the filtered projection pγ (r) (Equation 2.35)

• Backproject the filtered sinogram using 2.27 to obtain f (x, y), i.e. [START_REF] Lent | The primal-dual algorithm as a constraint-setmanipulation device[END_REF]Censor 1991, Badea and[START_REF] Badea | Experiments with the nonlinear and chaotic behaviour of the multiplicative algebraic reconstruction technique (mart) algorithm for computed tomography[END_REF] Iterative coordinate descent [START_REF] Thibault | A threedimensional statistical approach to improved image quality for multislice helical ct[END_REF][START_REF] Sauer | A local update strategy for iterative reconstruction from projections[END_REF][START_REF] Bouman | A unified approach to statistical tomography using coordinate descent optimization[END_REF] Roughness regularized Least Square for tomography [START_REF] Kashyap | Picture reconstruction from projections[END_REF] Ordered-subsets algorithms [START_REF] Erdogan | Ordered subsets algorithms for transmission tomography[END_REF][START_REF] Beekman | Ordered subset reconstruction for x-ray ct[END_REF][START_REF] Lee | Accelerated coordinate descent methods for bayesian reconstruction using ordered subsets of projection data[END_REF] Table 2.1 Statistical reconstruction methods for X-ray CT.

f (x, y) = π 0 pγ (x cos γ + y sin γ)dγ. ( 2 
Let i denote the index of the pixel detector locations, where i = 1, . . . , n. Generally in transmission scans and in modern X-ray CT systems n ≈ 10 5 -10 6 . Let b i denote the number of photons collected in the detector when there is no patient (blank scan). This value b i depends on the X-ray source intensity, the scan duration, and the detector efficiency at the source photon energy1 . Denote y i a random variable representing the number of photons counted in the detector for the ith ray. A statistical model for the transmission measurement assumes that they are independent Poisson random variables with means given by [START_REF] Fessler | Statistical image reconstruction methods for transmission tomography[END_REF].

E[Y i ] = b i exp - L i µ 0 (⃗ x)dl + s i (2.37)
where s i represents the background events (such as random coincidences, scatter, and cross-talk). The reconstruction problem consists of estimating µ from the measurement realizations {y i = Y i } N Y i=1 (the discrete sinograms). Image reconstruction naturally becomes a statistical problem due to the primary concern of noise.

Moreover, since the numbers of measurements is finite µ can be represented with a finite parametrization. An approach to parameterize the linear attenuation coefficient map is through a finite basis expansion as follow Reprint from [START_REF] Fessler | Statistical image reconstruction methods for transmission tomography[END_REF] where N P denotes the number of coefficients µ j , and χ j (⃗ x) the basis functions.

µ 0 (⃗ x) = N P j=1 µ j χ j (⃗ x) (2.38)
Since µ ⩾ 0, one would like to represent the basis functions as non-negative functions. Conventionally, these basic functions are the "pixels" or "voxels". The pixel basis function χ j (⃗ x) is 1 inside the jth pixel and 0 everywhere else [START_REF] Fessler | Statistical image reconstruction methods for transmission tomography[END_REF].

χ j (x, y) = rect x -x j ∆ rect y -y j ∆ (2.39)
where ∆ is the pixel width and (x j , y j ) is the center of the jth pixel. 

L i µ 0 (⃗ x)dl = L i Np j=1 µ j χ j (⃗ x)dl = Np j=1 µ j L i χ j (⃗ x)dl = Np j=1 a ij µ j , (2.40) 
where a ij denotes the normalized strip integrals [START_REF] Lo | Strip and line path integrals with a square pixel matrix: A unified theory for computational ct projections[END_REF]) along the ith ray passing through the jth pixel

a ij ≜ L i χ j (⃗ x)dl (2.41)
The discrete measurement model simplifies to

y i ∼ Poisson {ȳ i (µ true )} , i = 1, . . . , N Y (2.42) where ȳi (µ) ≜ b i e -[Aµ] i + s i (2.43) with [Aµ] i ≜ Np j=1 a ij µ j (2.44)
where A = {a ij } is the system matrix.

Maximum Likelihood estimation

Maximum Likelihood (ML) estimation is a probabilistic approach for estimating µ from the observable y. A maximum likelihood estimate of µ is the value μ that maximizes the likelihood function [START_REF] Fessler | Statistical image reconstruction methods for transmission tomography[END_REF]. 

P [Y = y; µ] = N Y i=1 P [Y i = y i ; µ] = N Y i=1 e -ȳ i (µ) [ȳ i (µ)] y i y i ! (2.46)
Applying the log to the condition probability 2.46 the log-likelihood function takes the form

L(µ) = N Y i=1 (y i ln ȳi (µ) -ȳi (µ) -ln y i !) (2.47)
The term ln y i ! is constant and may be neglected for optimization. Thus, the log-likelihood takes the form

L(µ) = N Y i=1 y i ln ȳi (µ) -ȳi (µ) (2.48)
Having the likelihood function, the challenge will be finding an appropriate optimization algorithm to maximize 2.48.

Penalized Maximum Likelihood estimation

If we maximize the log-likelihood function alone, the result will lead to a noisy image because the transmission tomography is an ill-conditioned problem.

An alternative could be to include a penalty function that favors reconstructed images that are piece-wise smooth. This procedure is known as regularization. The expected value of the attenuation coefficients map is obtained by maximizing the penalized-likelihood objective function

μ ≜ arg max µ≥0 Φ(µ), Φ(µ) ≜ L(µ) -βR(µ), (2.49) 
where R(µ) denotes the penalty term and β is a parameter which controls the relative contributions of the data fidelity term (the log-likelihood function) and of the penalty term.

Bayesian approach

The Bayes rule applied to the likelihood probability also leads to objective functions of the form 2.49. The Bayes rules is mathematically formulated as follow (Bayes 1763) • P (A) and P (B) are the likelihood of observing A and B respectively without a given conditions; they are known as the prior probability.

P (A | B) = P (B | A)P (A) P (B) (2.
Let assume µ is a random vector corresponding to a prior distribution f (µ)

that is proportional to e -βR(µ) . (Markov Random Field models for images entail such priors by nature [START_REF] Besag | On the statistical analysis of dirty pictures[END_REF]). The Maximum a Posteriori (MAP) estimate of µ is the value that maximizes the posterior distribution f (µ|y). By Bayes rule:

f (µ | y) = f (y | µ)f (µ) f (y) (2.51)
and applying the logarithm, the log posterior takes the form

log f (µ | y) ≡ log f (y | µ) + log f (µ) ≡ L(µ) -βR(µ) (2.52)
It's worth noting that f (y | µ) is proportional to the likelihood function, with the exception of a constant that makes it a proper density. Furthermore, the marginal probability f (y) serves as a normalizing constant, ensuring that the posterior density is appropriate. Therefore, the MAP estimation is computationally equivalent to the penalized maximum likelihood estimation.

Penalty function: For many authors the attenuation coefficients maps are considered piece-wise smooth functions. If attenuation maps are piece-wise smooth, it makes sense for the penalty function R(µ) to discourage images that are too rough. The most basic penalty function for roughness discouragement examines the differences between nearby pixel values:

R(µ) = Np j=1 1 2 Np k=1 w jk ψ (µ j -µ k ) (2.53)
where w jk = w kj .

For the four horizontal and vertical neighboring pixels w jk = 1 and for diagonal neighboring pixels w jk = 1/ √ 2. Typical choices of the potential function ψ are the Quadratic prior (O'Meara 2013), the Huber prior [START_REF] Huber | Robust estimation of a location parameter: Annals mathematics statistics[END_REF]) and the Geman prior [START_REF] Geman | Statistical methods for tomographic image reconstruction[END_REF]. The Huber potential is detailed in Chapter 6.

Optimization Algorithms

After defining the objective function, an optimization algorithm needs to be developed to maximize the objective function. If one ignores the non-negativity constraint, one could try to find μ analytically by zeroing the gradient of the objective function. Unfortunately, there is not closed solution to this problem, even without taking into account the non-negativity constraint and the prior. Here is where iterative methods play a roll, in order to find the maximizer of the objective function. An iterative method is a mathematical procedure which begins with an initial estimation of µ (0) of the linear attenuation coefficient and generates a sequences of improved µ (1) , µ (2) , ...,. The iterates µ (n) should converge as fast as possible to the solution μ. For the purpose of designing an algorithm to optimize a penalized maximum-likelihood objective function, some characteristics must be taken into account [START_REF] Fessler | Statistical image reconstruction methods for transmission tomography[END_REF]:

• Non-negativity constraint: (µ ≥ 0)

• Convergence rate: (The fewer iterations the better)

• Computation time per iteration: (Minimize the number of floating point operations)

• Storage requirements: (Minimize memory usage as much as possible) Newton's methods solve optimization problem 2.54 by building a sequences of {µ t } from an initial guess2 (µ 0 ). It uses a succession of second-order Taylor approximations of Φ(µ) around the iterates µ t to converge towards a minimizer.

The second-order Taylor expansion of Φ(µ) takes the form

Φ(µ) ≈ Φ (µ t ) 0! (µ -µ t ) 0 + Φ ′ (µ t ) 1! (µ -µ t ) 1 + Φ ′′ (µ t ) 2! (µ -µ t ) 2 (2.55) thus Φ(µ) ≈ Φ(µ t ) + Φ ′ (µ t ) (µ -µ t ) + Φ ′′ (ϕ t ) 2 (µ -µ t ) 2 (2.56)
where Φ ′ (•) and Φ ′′ (•) denotes the first and second derivative of Φ(µ). The minimum can be achieved by setting the derivative to zero (0 = ∂Φ ∂µ ).

∂Φ ∂µ = Φ ′ (µ t ) + Φ ′′ µt (µ -µ t ) 0 = Φ ′ (µ t ) + Φ ′′ (µ t ) (µ -µ t ] -Φ ′ (µt) Φ ′′ (µt) = µ -µ t µ t+1 = µ t -Φ ′ (µt) Φ ′′ (µt) (2.57)
The Newton methods then estimates the minimum at each iteration by computing µ t+1 as in 2.57. In the multi-dimensional case, equation 2.57 can be expressed as

µ t+1 = µ t - ∇Φ (µ t ) ∇ 2 Φ (µ t ) (2.58)
where ∇ denotes the gradient and ∇ 2 denotes the exact Hessian.

A more generic version of 2.57 is what is known as the line search technique, of which Newton's method is an example. Line search iterations compute the search direction p t and decides how far to move along it (Nocedal and Wright 2006a).

µ t+1 = µ t + m η t p t , (2.59) 
where m η t is called the step length. The search direction p t has the general form

p t = -B -1 t ∇Φ(µ t ) (2.60)
where B t is a symmetric and non-singular matrix. With B t being the identity matrix, one have the steepest gradient descent algorithm (Nocedal and Wright 2006a). For the gradient descent the iterates take the form

µ t+1 = µ t -m η t ∇Φ(µ t ), (2.61) 
In Newton's method as showed in 2.58 , B t is the exact Hessian.

Gradient descent uses the first-order Taylor expansion at the current optimized location to estimate the shape of the optimization space, while Newton's approach uses the second-order Taylor expansion. From the graphic point of view, Newton's uses a quadratic "bowl" with local curvature to approximate the shape of the presently optimized point. The second derivative informs the curvature at the current point and takes steps that are inversely proportional to the degree of "steepness" (very steep →tiny steps, extreme flat →huge steps). Therefore, Newton's method advances to the minimum more rapidly than gradient descent, which requires more iterations. Figure 2.12 shows a comparison between gradient descent and Newton's Method.

The Hessian must be determined on the first iteration and then fully recalculated on subsequent iterations, making Newton's technique computationally expensive.

The Newton technique requires iteratively solving a linear system of equations, which is memory demanding and time consuming. Quasi-Newton techniques are an alternative to Newtonian procedures. In quasi-Newton techniques, B is an estimate of the Hessian that is updated using a low-rank formula at each iteration (Nocedal and Wright 2006a). An example of a quasi-Newton algorithm is the Broyden-Fletcher-Goldfarb-Shanno algorithm proposed by Charles George Broyden, Roger Fletcher, Donald Goldfarb and David Shanno [START_REF] Broyden | The convergence of a class of double-rank minimization algorithms 1. general considerations[END_REF][START_REF] Goldfarb | A family of variable-metric methods derived by variational means[END_REF][START_REF] Shanno | Conditioning of quasi-newton methods for function minimization[END_REF]. 

L-BFGS

The L-BFGS iterative solver estimates µ t starting the previous iterate µ t-1 . We define the first estimate as µ (0) . Given a current estimate µ (t) , the new estimate µ (t+1) is obtained as

µ (t+1) = µ (t) -s ⋆ (B -1 ) (t) ∇Φ(µ (t) ) with s ⋆ = arg max s∈[0,1] χ(s) (2.62) and χ(s) = Φ µ (t) -s(B -1 ) (t) ∇Φ(µ (t) )
where (B -1 ) (t) is an approximate inverse Hessian of Φ evaluated at µ (t) . The matrix/vector product (B -1

) (t) ∇Φ(µ (t) ) in (2.62) is directly computed (without storing (B -1 ) (t)
) from the m previous iterates µ (t-p) , p = 0, . . . , m -1. An approximate solution of the line-search sub-problem is obtained by backtracking to match the Wolfe Conditions. The iterative scheme (i.e., w.r.t. t) is repeated until a convergence criterion is met. A more detailed explanation can be found in [START_REF] Bousse | Pet reconstruction with non-negativity constraint in projection space: Optimization through hypo-convergence[END_REF].

In L-BFGS the next step direction is calculated as the approximate inverse Hessian times the gradient, but it only needs to store the last several gradient updates, not the approximate inverse Hessian.

In the experiments presented in this thesis, we employed the L-BFGS method to optimize the objective function with regard the linear attenuation coefficient.

CHAPTER 3

Sparse Regularization for Inverse Problem

The present chapter describes the CS theory and provides a literature review of the main sparse recovery algorithms used in the thesis (OMP, IST, IHT ). It describes the Total Variation semi norm, the Dictionary Learning approaches and the main optimization algorithms for patch-based dictionary learning. The CAOL and the Block Proximal Extrapolated Gradient with a Majorizer algorithm for the optimization of the CAOL algorithm are detailed. The sparse representation step is the process of expressing a signal using a small number of projections on an appropriate basis. A vector signal x ∈ R N is s-sparse if s elements of its entries are non-zero, where s is denoted as the sparsity level. Mathematical, this can be written as [START_REF] Draganic | On some common compressive sensing recovery algorithms and applications-review paper[END_REF])

Compressed Sensing Theory

∥x∥ 0 = lim p→0 N i=1 |x i | p ⩽ s (3.1)
Sparse Representation If a signal is not sparse, it can be sparsified by simply representing it as a suitable basis. For instances, a linear combination of s ≪ N basis vectors. Fundamentally, the signal x can be represented with N basis vectors {Υ i } N i=1 . Let Υ be an N × N basis matrix, the sparse representation of the signal x becomes the vector z as [START_REF] Marques | A review of sparse recovery algorithms[END_REF])

CS Acquisition

Sparse Recovery

x = Υz (3.2)
A visual example of how the sparse representation works is illustrated in The measurement matrix design must be in such a way that the relevant information of any s-sparse signal is contained in this matrix. The ultimate objective is to create a suitable measurement matrix with M ≈ s.

Moreover, the measurement matrix should satisfy the Restricted Isometry Property (RIP) [START_REF] Donoho | Compressed sensing[END_REF]:

(1 -δ s ) ∥z∥ 2 2 ≤ ∥Dz∥ 2 2 ≤ (1 + δ s ) ∥z∥ 2 2 (3.6)
where δ s ∈ (0, 1) is the Restricted Isometry Constant (RIC) value and denotes the lowest number that satisfies 3.6. If the measurement matrix D fulfills the RIP, an accurate estimation of the sparse signal z can be obtained using a recovery technique, such as solving an l p -norm problem [START_REF] Wen | Stable recovery of sparse signals via lpminimization[END_REF]. Once the measurement matrix is appropriately defined, the sparse recovery consists of finding the sparse vector z by solving:

min z ∥z∥ p s.t. Dz = y (3.7)
where ∥z∥ p is the l p -norm of z with 0 < p < 2. The system 3.7 contains an unlimited number of solutions when M < N , with some exceptions. The problem 3.7 is NP-hard (non-deterministic polynomial-time hardness): there are no algorithms that can ensure it will always be solved [START_REF] Dumitrescu | Dictionary learning algorithms and applications[END_REF]. Figure 3.3

shows the connection between the variables in the noiseless scenario. Each column of the matrix D is called atom.

Several methods for sparse recovery have been proposed in the literature. They are mainly classified into three categories: convex relaxations, non-convex optimization techniques, and greedy algorithms [START_REF] Marques | A review of sparse recovery algorithms[END_REF]. The convex relaxations algorithms replace the l p -norm by a smooth approximation. For instance, replacing it by l 1 -norm or by a smooth function [START_REF] Elad | Sparse and redundant representations: from theory to applications in signal and image processing[END_REF]. The non-convex optimization techniques solve the challenge of sparse recovery by using prior knowledge of the sparse signal distribution. The greedy techniques recover the sparse signal iteratively [START_REF] Donoho | Compressed sensing[END_REF]. They are usually extremely speedy. Table 3.1 displays a list of sparse recovery algorithms based on the previous categorization. We selected the most relevant algorithms among the extensive approaches existing in the literature. The following sections provide a detailed explanation of the most relevant sparse recovery algorithms covered in the thesis. If we had an appropriate guess of the sparsity level s the solution to 3.8 would be straightforward. However, in the majority of applications there is not an exact sparsity level estimate. Therefore the choice of s is based on try-and-error approach.

Sparse Recovery Algorithms

For instance, imposing an error bound min z ∥z∥ 0 (3.9)

s.t. ∥y -Dz∥ ≤ ε
The problem 3.9 may not have a sparse solution if ε is too small. If ε is large, the solution is over sparse. [START_REF] Dumitrescu | Dictionary learning algorithms and applications[END_REF] suggest ε being larger than the square root of the noise variance, but of the same order of magnitude.

OMP [START_REF] Pati | Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[END_REF] The algorithm then continues to iterate until the stopping criteria is reached. There are two stopping criteria enclosing the optimization problem 3.8 and 3.9. The first criteria imposes a value of s as the maximum sparse level to be reached. Once the algorithm reaches the sparsity level, it stops disregarding the error bound ε.

The second stopping criteria sets the error bound ε and increases the sparsity level at each iteration until the error becomes the error bound. The choice of the error bound is critical for this criteria since the sparsity level can increase to the point where the solution is no longer sparse. In Chapter 4 we implemented a GPU-accelerated version of the OMP algorithm described in algorithm 1. where f, g : R m → R are convex functions, but only f is differentiable. Therefore, f (z) = ∥y -Dz∥ 2 and g(z) = λ∥z∥ 1 . It can be solved utilizing a proximal gradient descent method [START_REF] Rockafellar | Convex analysis princeton university press[END_REF].

The general approach of the proximal gradient descent method for minimizing a convex function h(x) can be defined as

x t+1 = prox ηh (x t -η∇h (x t )) (3.17)
where t is the current iteration, η is the step size and prox is the proximal operator.

The proximal operator applied to a function h can be defined as

prox h (z) = arg min x h(x) + 1 2 ∥x -z∥ 2 2 (3.18)
Applying the proximal gradient to equation 3.16 the IST algorithm takes the form

z t+1 = arg min z f (z t ) + (z -z t ) T ∇f (z t ) + 1 2η ∥z -z t ∥ 2 + g(z) (3.19) = arg min z 1 2η ∥z -(z t -η∇f (z t ))∥ 2 + g(z)
Focusing in our specific case g(z) = λ∥z∥ 1 and denoting zt = z t -η∇f (z t ) the problem 3.19 becomes

z t+1 = arg min z 1 2η ∥z -zt ∥ 2 + λ∥z∥ 1 (3.20)
which can be solved utilizing a soft thresholding operator applied to each element on vectors.

z t+1 = S th ( zt , ηλ) (3.21)
where

S th (ξ, α) =      ξ + α, if ξ < -α 0, if -α ≤ ξ ≤ α ξ -α, if ξ > α (3.22)
At each iteration the soft thresholding operator pulls ξ towards the origin by α.

The IST algorithm is guaranteed to converge, however it convergence rate is slow.

Several variations, such as the "fast ISTA" (FISTA), which uses a Nesterov's Accelerated Gradient Descent algorithm, have been developed to speed it up [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm with application to wavelet-based image deblurring[END_REF]. At each iteration the solution is computed as

z t+1 = H λ 0.5 z t + D T (y -Dz t ) (3.24)
where H λ 0.5 is the element-by-element hard thresholding operation

H λ 0.5 (z i ) = 0 if |z i | ≤ λ 0.5 z i if |z i | > λ 0.5 (3.25)
The IHT algorithm can either finish after a set number of iterations or when the sparse vector does not change significantly between iterations. [START_REF] Blumensath | Iterative hard thresholding for compressed sensing[END_REF] proves that under the assumption ∥D∥ 2 < 1 the algorithm converges to a local minimum of 3.23.

Total Variation

The TV problem recovers a signal which is sparse in its gradient transform domain. As raw images generally assume that their gradients are sparse, TV-based In Chapters 4 and 5 we define the l 2 -TV semi norm defined as

approaches
∥z∥ T V := m j=1 k∈N k ω j,k (z j -z k ) 2 (3.29)
where N j denotes the 8 nearest neighboring pixels of pixel j and ω j,k are weights (ω j,k = 1 for axial neighbors and ω j,k = 1/ √ 2 for diagonal neighbors). In this case we represent the image z(j) as a 2D matrix with pixel index (j). In Chapter 6 we defined an l 2 -TV semi norm where the gradient is computed utilizing the finite difference approximation and taking the image z(i, j) as:

∥z∥ T V := m i,j |z i+1,j -z i,j | 2 + |z i,j+1 -z i,j | 2 (3.30)
The ∥z∥ T V semi norm can be also written as an l 1 -TV semi norm

∥z∥ T V := ∥z∥ 1 = m j=1 k∈N k ω j,k |z j -z k | (3.31)
For this case one exploits the sparsity of the gradient when solving the optimization problem 3.27.

Therefore, there are two possible interpretations of the TV regularization. First, it can be seeing as a sparsity promoting norm in the gradient domain due to the l 1 -norm. Secondly, it can be seeing as a regularizer that penalizes the oscillations in the output signal. By taking the gradient, one work in a domain where the values themselves are less important than their relationships with their neighbors.

TV regularization measures how much the neighboring point or pixels differ from each other and forces the neighboring pixels to have similar values. TV-based models have the advantage that the image edges are preserved, which is important for many imaging problems [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. The problem 3.27 can be solved utilizing the first-order primal-dual algorithm for convex problems proposed by [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. The FISTA algorithm explained in Section 3.1.2 can be used specially when the l 1 -TV semi norm is used as regularization.

The Augmented Lagrange approaches can solve problem 3.27, for example the Alternating Direction Method of Multipliers (ADMM) [START_REF] Hestenes | Multiplier and gradient methods[END_REF].

Dictionary Learning

The In general, the dictionary learning method involves finding the dictionary D and the sparse representation Z such that Y ≈ DZ is as good as possible [START_REF] Dumitrescu | Dictionary learning algorithms and applications[END_REF]. This problem is extremely difficult since it is non-convex and has a sparsity constraint which makes it NP-hard.

The normalization constraint opens the possibility for a sign flip in the dictionary atoms and the sparse representation. Moreover, the problem can be indeterminate due to the fact that a permutation of atoms can be combined with a permutation of representations to produce an identical objective function. Therefore, if (D, Z)

is a solution of problem, 3.32 then (DP , P -1 Z is also a solution, where P is a permutation matrix with nonzero elements equal ±1. As a consequence, there will be multiple local minima with the same value. Nevertheless, sign flipping and atom permutations do not hinder the optimization since identifying one of these minima is sufficient. The uniqueness of the solution is an issue in DL problem.

One may wonder, under which conditions D and Z are the unique matrices whose product is Y . [START_REF] Dumitrescu | Dictionary learning algorithms and applications[END_REF] 

Optimization algorithm in Dictionary Learning

Several approaches have been developed in the literature for the DL optimization problem. The straightforward and more successful approach is the alternate optimization. The optimization is performed by iteratively alternating between solving the sparse code keeping the dictionary fixed and updating the dictionary fixing the sparse representation variables. The strategy is also called block coordinate descent. Algorithm 2 shows how DL problem can be split into two optimization sub-problems (sparse coding and dictionary update) utilizing alternate optimization approach [START_REF] Dumitrescu | Dictionary learning algorithms and applications[END_REF].

The most popular algorithms developed for dictionary learning are Method of Optimal Directions (MOD) and K-means Singular Value Decomposition (K-SVD).

The MOD was introduced by [START_REF] Engan | Method of optimal directions for frame design[END_REF] in 1999. The MOD iteratively alternates between the sparse-code step and the dictionary updates. The sparse recovery step is performed for each signal using any standard sparse recovery technique presented in 3.1. The dictionary update step is analytically solved by computing D = Y Z -1 with Z -1 denoting the inverse. The MOD is an extremely effective algorithm that only requires a few iterations to converge. However, due to the complexities of matrix inversion, the procedure is quite difficult.

The K-SVD algorithm was developed by [START_REF] Aharon | K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[END_REF] in 2005. Similar to 1 The spark of a dictionary D is the smallest number of columns that are linearly dependent. are both updated at the same time, which provides even more acceleration. As a result, the method is both fast and efficient, and it is significantly less demanding than the MOD. For each atom the quadratic term in 3.32 is reformulated as

Y - j̸ =k d j z T j -d k z T k 2 F = E k -d k z T k 2 F (3.33)
where z T j are the rows of the sparse representation matrix, and E k is the residual matrix. The atoms are updated by minimizing 3.33 with respect to z T j and d k via a simple rank-1 approximation of E k . Updates are performed only for examples whose current representations use the atom d k . These methods are appropriate for image patches since they produce a non-structured dictionary (Rubinstein et al. 

Convolutional Dictionary Learning

The dictionary learning technique uses overlapping patches across the training signals. This approach leads to spatially redundant atoms that are essentially shifts of a basic atom type to "enforce" the expected spatial-invariance of the representation. Patch-domain methods suffer from memory limitation, especially when large dataset is used.

The convolutional dictionary learning approach, instead, replaces the non-structured dictionary D with a set of convolutional filters. In this method, one can utilize the entire image instead of small patches and learn filters and obtaining (sparse) representations directly from the original signals without storing many overlapping patches (Garcia-Cardona and Wohlberg 2018a).

In the CDL approach convolutional kernels are used to sparsely represent the signal [START_REF] Chun | Convolt: CONVolutional Operator Learning Toolbox[END_REF]Fessler (2017a, 2019a). The signal y can be synthesized by performing convolution of the filters and the sparse component:

y = K k=1 d k ⊛ z k . (3.34)
where the signal-dimension vector z k ∈ R m contains sparse signal features; and In Chun and Fessler (2019a) the constraint enforces the filter to satisfy the tightframe condition to promote filter diversity: [START_REF] Hines | An introduction to frame theory[END_REF]). The tight-frame condition forces the filters to be orthogonal, ensuring diversity.

d k ∈ R R (R
Γ s (D, {z k,l }) = P l=1 1 2 ∥y l - K k=1 d k ⊛ z k,l ∥ 2 2 + α K k=1 ∥z k,l ∥ r . (3.36) and, Γ a (D, {z k,l }) = P l=1 K k=1 1 2 ∥d k ⊛ y l -z k,l ∥ 2 2 + α ∥z k,l ∥ r . ( 3 
C = {{d k } : [d 1 , ...d K ][d 1 , ...d K ] ⊤ = 1 R I K } where I K is the K × K identity matrix (see

Optimization Algorithms in CDL

As in DL optimization problem, the approach used in CDL alternates between the sparse code and the dictionary update. The most common method used are the Augmented Lagrangian approaches [START_REF] Chun | Convolt: CONVolutional Operator Learning Toolbox[END_REF]Fessler 2017a, 2019a). The first application of Augmented Lagrangian methods in CDL was proposed by [START_REF] Bristow | Fast convolutional sparse coding[END_REF].

In [START_REF] Heide | Fast and flexible convolutional sparse coding[END_REF], [START_REF] Wohlberg | Efficient algorithms for convolutional sparse representations[END_REF][START_REF] Wohlberg | Boundary handling for convolutional sparse representations[END_REF] a spatial domain ADMM framework was utilized to solve the CDL problem. These methods use alternate optimization between the sparse code and the dictionary (i.e., a two-block update), using augmented Lagrange (or ADMM) methods for each inner update (Chun and Fessler 2017a). The sparse coding step can be performed utilizing a suitable sparse recovery algorithm (e.g IHT ) as presented 3.1, while the dictionary update can be addressed utilizing proximal gradient methods. For example, [START_REF] Chun | Convolt: CONVolutional Operator Learning Toolbox[END_REF]Fessler (2017a, 2019a) introduced a new optimization approach (BPEG-M) for solving block multi-nonconvex problems as the convolutional analysis and synthesis operator learning. The following section describe the (BPEG-M) algorithm applied to CAOL.

Block Proximal Extrapolated Gradient method using a Majorizer

The BPEG-M solve the block multi-nonconvex optimization problem: Chun and Fessler (2019a) prove in Section V that the CAOL model 3.38 satisfies the BPEG-M conditions. Thus it can be solved for two blocks, the z k,l -block and the D-block. From equation 3.37 and 3.39 can be inferred that 

f (z, D) = P l=1 K k=1 1 2 ∥d k ⊛ y l -z l,k ∥ 2
f (x) ≤ f (y) + ⟨∇f (y), x -y⟩ + 1 2 ∥x -y∥ 2 M , ∀x, y ∈ R n . (3.43)
If f satisfies 3.43, it is also satisfied with M that M > M with M being a diagonal matrix. A diagonal matrix provides an easy-to-minimize majorizer function. In the CAOL case f is quadratic, thus, M is a majorizer of the Hessian matrix. Thus, BPEG-M solves 3.39 by minimizing a majorizer of F cyclically with respect to each block x 1 , . . . , x B while fixing the remaining blocks at their previously updated variables. For each block the iterations take the form:

x (i+1) b = arg min x b 1 2 x b -x (i) b -M (i) b -1 ∇ x b f (i) x (i) b 2 M (i) b + g b (x b ) (3.44)
which is a proximal gradient update similar to the IST algorithm. The BPEG-M block updates applied to CAOL performs the sparse code update, then the dictionary update.

Sparse code: z k,l -block

Given the current estimate of the dictionary D, the optimization problem for the sparse code is written as follow:

z l,k = arg min {z} P l=1 K k=1 1 2 ∥d k ⊛ y l -z∥ 2 2 + α||z|| 0 (3.45)
This problem can be optimally solved utilizing the hard thresholding sparse recovery algorithm presented in 3.1.3.

z (i+1) l,k = H √ 2α (d k ⊛ y l ) (3.46)
Chun and Fessler (2019a) Section V.B shows how the Hard-Thresholding optimization is equivalent to apply the BPEG-M to problem 3.45.

Dictionary Update: D-block

The filters update step consist of solving arg min

{d k } P l=1 K k=1 1 2 ∥d k ⊛ y l -z l,k ∥ 2 2 + βg(D) (3.47)
given the current estimate of the sparse component z l,k . Defining Ψ l d = y l ⊛d ∀ d the filters update problem can be written as argmin

{d k } K k=1 P l=1 1 2 ∥Ψ l d k -z l,k ∥ 2 2 + βg(D) (3.48)
Next step consists of designing the majorizer. One option is utilizing a diagonal

majorization matrix M D ∈ R R×R that satisfies M D ⪰ P l=1 Ψ T l Ψ l M D = diag P l=1 Ψ T l |Ψ l | 1 R (3.49)
The majorization matrix in CAOL is pre-computed before optimization. However in the general case of BPEG-M the majorizer is updated at each iteration since it depends on the sparse code.

After computing the majorization matrices one applies them in the proximal mapping problem to update the filters. The Proximal Mapping with Orthogonality Constraint (PMOC) is obtained by applying 3.44 to the optimization problem 3.48. Thus, the proximal mapping problem is written as

d (i+1) k = argmin K k=1 1 2 d k -d (i) k -M D -1 P l=1 Ψ T l Ψ l d (i) k -z l,k 2 M D (3.50) Representing ν = d i k -M D -1 P l=1 Ψ T l Ψ l d (i)
k -z l,k the problem 3.50 can be re-written as

d (i+1) k = argmin {d k } K k=1 1 2 d k -ν (i) k 2 M D , subject to DD H = 1 R • I, (3.51) 
Proposition 5.4 in Chun and Fessler (2019a) considers the optimization problem min in [START_REF] Brehm | Motion-compensated 4d cone-beam computed tomography[END_REF]. Another approach, known as regularized 4D reconstruction techniques, reconstructs the entire cycle at once, using all of the projection data, and impose some similarities between subsequent frames by regularizing along time [START_REF] Mory | Motion-aware temporal regularization for improved 4d cone-beam computed tomography[END_REF]). These techniques include [START_REF] Jia | 4d computed tomography reconstruction from few-projection data via temporal non-local regularization[END_REF]) and [START_REF] Ritschl | Iterative 4d cardiac micro-ct image reconstruction using an adaptive spatio-temporal sparsity prior[END_REF].

D M 1/2 D D -M 1/2 D V 2 F , subj. to DD H = 1 R • I (3.52) where V = ν (i+1) 1 • • • ν (i+1) K ∈ R R×K ,
The majority of the motion-compensated 4D-CBCT reconstruction typically impose isotopic smoothing of the DVF, which can be inaccurate, at regions where different organs are in contact such as the lung-to-thoracic interface or lung-to-heart interface, where we observe a sliding motion between the organs. In the literature researchers have addressed this issue by zeroing motion regularization or adding a different motion constraint at boundaries between organs, but a segmentation of the organs is required prior to motion estimation [START_REF] Dang | Simultaneous 4d-cbct reconstruction with sliding motion constraint[END_REF]. For example, [START_REF] Werner | Validation and comparison of a biophysical modeling approach and non-linear registration for estimation of lung motion fields in thoracic 4d ct data[END_REF]) and [START_REF] Wu | Evaluation of deformable registration of patient lung 4dct with subanatomical region segmentations[END_REF] based motion estimation on the segmentation of areas that slide along each other. The work from [START_REF] Schmidt-Richberg | Estimation of slipping organ motion by registration with direction-dependent regularization[END_REF] introduces directional dependent regularization for the DVF estimation. They differentiate between the normal and tangential motion direction according to the boundary of the sliding regions. The normal-directed motion regularizer prevents overlaps, whereas the tangential regularization allows sliding motion. However, segmentation of sliding organs is still needed [START_REF] Delmon | Registration of sliding objects using direction dependent b-splines decomposition[END_REF].

The present work proposes a novel algorithm for motion-estimation and motioncompensation in CBCT, based on image-motion dictionary coupling. Each atom of the dictionary represents a portion of the CBCT image and the associated motion.

The hypothesis behind this approach is that the image and the motion can inform each other, thus not only allowing for noise reduction but also to learn features such as sliding motion at organ boundaries. We treat the motion vectors field as an image and learn dictionaries such that they can inform which motion takes place at which region of the body. For example, we would like the method to "learn"

the sliding motion at lung boundaries.

The implementation of the proposed methodology concerns two stages: coupled dictionary learning and motion estimation-compensation. The first step consists of learning an image-motion coupled dictionary from a training dataset of images with a pre-estimated motion DVF dataset at different respiratory phases, using a modified SOUP-DIL algorithm [START_REF] Ravishankar | Efficient sum of outer products dictionary learning (soup-dil) and its application to inverse problems[END_REF]). In the second step, we utilize the learned dictionaries as an image-motion prior within a motioncompensated iterative reconstruction algorithm. This proposed methodology was validated using a training dataset generated from XCAT phantom [START_REF] Kainz | Advances in computational human phantoms and their applications in biomedical engineering-a topical review[END_REF]).

Direct Motion Compensation by Penalized-Likelihood

The model from [START_REF] Zeng | Respiratory motion estimation from slowly rotating x-ray projections: Theory and simulation[END_REF] was used to describe the image acquisition with gated motion. We assume that the measurement data are regrouped into L respiratory gates y 1 , . . . , y L , where for all ℓ = 1, . . . , L,

y ℓ = [y 1,ℓ , . . . , y 1,ℓ ] ⊤ ∈ R n
is the projection data (sinogram) corresponding to the ℓ-th respiratory gate.

The discrete attenuation image to reconstruct takes the form of a vector µ = [µ 1 , . . . , µ m ] ⊤ ∈ R m , where m is the number of voxels in the image. For all j = 1, . . . , m, the coordinate of the j-th voxel is denoted

r j = [x j , y j , z j ] ⊤ ∈ R 3 ,
and G = {r j } m j=1 denotes the voxel grid. At each respiratory gate ℓ, G is deformed by a mapping φ ℓ :

R 3 → R 3 . The discrete DVF is denoted M ℓ = { # » m j,ℓ } m j=1 ∈ R 3×m , with # » m j,ℓ = φ ℓ (r j ) -r j ∈ R 3
and φ(r j ) defined as:

φ(r j ) = r j +    nc n=1 α X n B r-rn σ nc n=1 α Y n B r-rn σ nc n=1 α Z n B r-rn σ    (4.1)
where n c are the numbers of control points, B is the cubic B-spline function, σ is the distance between control points and α

X = α X n nc n=1 , α Y = α Y n nc n=1 , α Z = α Z n nc
n=1 are the motion B-spline coefficients along each axis X, Y and Z.

Using the cubic B-spline interpolation, the image deformation operator is a m × m square matrix entirely determined by M ℓ , and is denoted W ℓ (warping operator).

The respiratory-deformed attenuation image at gate ℓ is the matrix/vector product

W ℓ µ ∈ R m .
In a simplified setting (no electronic noise), each sinogram y ℓ is a random vector following a Poisson distribution with independent entries,

y i,ℓ ∼ Poisson(ȳ i,ℓ (W ℓ µ)) , (4.2) with ȳi,ℓ (µ) = I 0 exp(-[Aµ] i ) + s i,ℓ (4.3)
where A is a matrix modeling the CBCT system, s i,ℓ is a background term and I 0 is the blank scan.

Direct motion compensation is achieved by penalized maximum-likelihood joint estimation of the image µ and the motion fields M from the gated sinograms y ℓ :

( μ, M) = arg max µ≥0,M L(µ, M) -βR(µ, M) (4.4)
where M = {M ℓ } L ℓ=1 , and R(µ, M) is a noise-controlling penalty on the image and the motion, and the log-likelihood L is defined as: weight γ controls the overall sparsity. We treat each M ℓ as a 3-channel image containing the DVF in x, y, z coordinates. Therefore, if we train the dictionaries for 2 respiratory gates the total number of dictionaries would be 7.

L(µ, M) = L ℓ=1 n i=1 y i,l log ȳi,ℓ ([W ℓ µ]) -ȳi,ℓ ([W ℓ µ]) .
At each respiratory gate, the image and motion dictionaries are trained to fit the training image-motion dataset {µ k , M k } K k=1 , using a common sparse encoding Z = [z 1 , . . . , z P ] ∈ R d×P which is used to encode the image and the motion simultaneously. This can be formulated as a constrained optimization problem: min

D im ,D mtn ,{Z k } K k=1 ∥P im (µ k ) -D im Z k ∥ 2 2 +∥P mtn (M k ) -D mtn Z k ∥ 2 2 s.t ∥Z k ∥ 0 ≤ s ∀k and ∥d im q ∥ 2 = ∥d mtn q ∥ 2 = 1 ∀q (4.7)
where P im : : R m → R m×P (resp. P mtn : : R 3m → R 3 m×P ) is the image (resp. motion) patch extractor, d im q (resp. d mtn q ) is the q-th column of D im (resp. D mtn ) and s denotes the maximum sparsity level (number of non-zeros in Z k ). We solved this problem with a modified version of the SOUP-DIL algorithm [START_REF] Ravishankar | Efficient sum of outer products dictionary learning (soup-dil) and its application to inverse problems[END_REF].

The training task consists of finding a common sparse component Z that is shared by the image and motion dictionaries D im , D mtn . We enforce the dictionaries to "fit the image and motion datasets simultaneously". Hence, if one atom of D im is a linear combination of the first and third signal of P im µ k , then the same atom of D mtn will be a linear combination of the first and third signal of P mtn M k as well. For the training step, we extended the SOUP-DIL algorithm to multi-channel dictionary learning. We stake-up the dictionaries and the training dataset as if we had only one dictionary and only one dataset:

D = D im D mtn ℓ (4.8) Y = µ M ℓ (4.9)
The SOUP-DIL replaces the sparsity constraint in 4.7 with an l 0 penalty term and introduces C = Z H ∈ R P ×d where (•) H is the Hermitian (conjugate transpose). Then the product DZ can be written as a Sum of OUter Products (DZ = DC H = d q=1 d q c H q ) where c q is the q column of C. Thus, the optimization problem 4.7 is written as:

min dq,cq ∥P (Y ) - d q=1 d q c H q ∥ 2 2 + λ 2 d q=1 ∥c q ∥ 0 ; (4.10) s.t ∥c q ∥ ∞ ⩽ Ω; ∥d im q ∥ 2 = ∥d mtn q ∥ 2 = 1 ∀q
where λ > 0 is a weight to control the sparsity level and P is the patchextraction operator. The constraint ∥c q ∥ ∞ ⩽ Ω with Ω > 0 (e.g. Ω = ∥P Y ∥ 2 )

makes the objective function invariant to (arbitrarily) large scaling of c q (i.e., non-coercive objective). See section II in [START_REF] Ravishankar | Efficient sum of outer products dictionary learning (soup-dil) and its application to inverse problems[END_REF]. We constrain the columns of D im and D mtn to have unit norm individually since they have different physical units.

For each dictionary atom q, we solve equation 4.10 using the block coordinate descent algorithm. We first update the sparse vector c q keeping the dictionaries fixed. We refer to this step as the sparse coding update. Then, we update the dictionaries keeping the sparse matrix constant. We refer to this step as the dictionaries update. Given E q ≜ P Y -t̸ =q d t c H t the sparse coding update is achieved with truncated hard-thresholding operation [START_REF] Ravishankar | Efficient sum of outer products dictionary learning (soup-dil) and its application to inverse problems[END_REF]:

ĉq = min H λ E H q d q , Ω1 N ⊙ e ∠E H q dq (4.11) with (H λ (x)) = 0 |x| < λ x |x| ⩾ λ (4.12)
and 1 P is the vector of ones of length P . "⊙" denotes the element-wise multiplication. The supplementary material in [START_REF] Ravishankar | Efficient sum of outer products dictionary learning (soup-dil) and its application to inverse problems[END_REF] provides a detailed explanation on how to solve 4.11.

The dictionaries update consist of finding d q from 4.10. SOUP-DIL applies the global minimizer:

dq = Eqcq ∥Eqcq∥ 2 , if c q ̸ = 0 v, if c q = 0 (4.13)
where v can contain random or unit values. (See Section III in Ravishankar et al.

(

)) 2017 
Following the estimation of the dictionaries, we perform motion-compensated reconstruction by iteratively alternating between (i) updating the common sparse vector Z using the OMP algorithm [START_REF] Rubinstein | Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit[END_REF] Sparse code update

Z t ← OMP(Z t-1 , M t-1 , µ t-1 , D, P mtn , P im , χ)
Motion field update (For each respiratory phase)

M t ℓ ← L-BFGS(M t-1 ℓ , Z t , µ t-1 , D mtn ℓ , y ℓ , P mtn , A, β) Image update µ t ← L-BFGS(µ t-1 , M t , Z t , y 1 , . . . , y L , D im , P im , A, β) end M ← {M t=Nouter ℓ } L ℓ=1 ; μ ← µ t=Nouter ;
reconstruction is summarized in Algorithm 3.

Non-Coupled Dictionary Penalty

We also investigate the use of a non-coupled dictionary penalty term in which the sparse vectors are not updated jointly:

R(µ, M) = arg min z im 1 ,...,z im P ∈R d z mtn 1 ,...,z mtn P ∈R d P p=1 ∥P im p (µ) -D im z im p ∥ 2 2 + L ℓ=1 ∥P mtn p (M ℓ ) -D mtn ℓ z mtn p,ℓ ∥ 2 2 + κ∥z im p ∥ 0 + ε∥z mtn p ∥ 0 (4.14)
where κ and ε are penalty weight controlling the overall sparsity.

The dictionaries are trained separately, the motion and image dictionaries are not sharing information. Thus, there is a different sparse matrix for the motion and the image dictionaries. The motion dictionary is obtained by solving: min

D im ,{(Z im ) k } K k=1 ∥P im (µ k ) -D im (Z im ) k ∥ 2 2 s.t ∥(Z im ) k ∥ 0 ≤ s ∀k and ∥d im q ∥ 2 = 1 ∀q (4.15)
while the image dictionary is obtained by solving: min

D mtn ℓ ,{(Z mtn ℓ ) k } K k=1 ∥P mtn (µ k ) -D mtn ℓ (Z mtn ℓ ) k ∥ 2 2 s.t ∥(Z mtn ℓ
) k ∥ 0 ≤ s ∀k and ∥d mtn q,ℓ ∥ 2 = 1 ∀q (4.16)

As for the coupled dictionary learning algorithm, we perform motion-compensated reconstruction by iteratively alternating between (i) updating the sparse vectors Z im and Z mtn separately, using the OMP algorithm [START_REF] Rubinstein | Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit[END_REF], and

(ii) updating the image µ and the motion fields M with a L-BFGS algorithm.

During the reconstruction, the image and the motion penalty terms do not share information.

Algorithms used for Comparison

We compare the methodology proposed in this work against a motion-estimation motion-compensation approach utilizing the EP regularizer:

R(µ) = m j=1 t∈N j ω j,t (µ j -µ t ) 2 + ϖ (4.17)
where N j denotes the 8 nearest neighboring pixels of pixel j and ω j,t are weights (ω j,t = 1 for axial neighbors and ω j,t = 1/ √ 2 for diagonal neighbors), and ϖ > 0 is a small real value to ensure differentiability. The objective function takes the form:

( μ, M) = arg max µ≥0,M L(µ, M) -βR(µ) (4.18)
We used the L-BFGS solver to estimate μ and M.

Experiments

The training data consists of a collection of 3-mm pixel-width 90 × 90 × 90 torso axial images generated from the XCAT phantom. Patient size, organs size, and the maximum extension of the diaphragm were modified to assure diversity in the dataset. The image dataset corresponds to the phantom at the reference gate.

For each phantom at the reference gate, we obtained their corresponding DVF at each respiratory gate with a standard deformable registration [START_REF] Bousse | Maximum-likelihood joint image reconstruction/motion estimation in attenuation-corrected respiratory gated PET/CT using a single attenuation map[END_REF]. The DVF correspond to the displacement of each pixel from the reference gate to the pointed gate in x, y, z coordinates. For example, if the reference gate is 5%-inhalation and the pointed gate is 50%-inhalation, the DVF is the pixel displacements between the two respiratory phases. We utilized 10 3D images as . The gated CB projection data was generated by forward projection of 3-mm pixel-width 90×90×90 torso axial images generated from the XCAT phantom at each respiratory phase. We modeled the projector A with a cone-beam CT system utilizing the Astra Toolbox [START_REF] Van Aarle | Fast and flexible x-ray tomography using the astra toolbox[END_REF][START_REF] Van Aarle | The astra toolbox: A platform for advanced algorithm development in electron tomography[END_REF][START_REF] Palenstijn | Performance improvements for iterative electron tomography reconstruction using graphics processing units (gpus)[END_REF]. For each sinogram, we use a monochromatic source with 10 3 incident photons and 100 background events. We initialized the image using the Maximum-likelihood reconstruction for transmission tomography (MLTR) algorithm [START_REF] Nuyts | Iterative reconstruction for helical ct: a simulation study[END_REF], which maximizes the likelihood function without regularization. The motion vectors were initialized with zeros.

The implementation of the OMP and the modified SOUP-DIL algorithms were GPU-accelerated and directly callable from Matlab [START_REF] Release | of the matlab and simulink product families[END_REF].

Results on XCAT phantom

In this section we report results with 3D images. We compare the performance of MEC-MDL (Section 4.2.1) with MEC-SDL (Section 4.2.2). We also compare with EP regularizer (Section 4.2.1) applied in the image update. We quantitatively evaluated the performance of the reconstruction methods by computing the RMSE and the PSNR in the selected ROI. Table 4.1 shows the values of the PSNR and RMSE computed using m = 60 pixels in the selected ROI. The PSNR was computed as:

Training

PSNR(dB) = 10 • log 10 max(μ GT ) 2 m j=1 1 m μj -μGT j 2 (4.19)
and the RMSE as:

RM SE = 1 m m j=1 μGT j -μj 2 (4.20)
The MEC-MDL images scores lower PSNR and higher RMSE than the MEC-SDL images and the image reconstructed utilizing the EP prior. The MEC-SDL

shows better performance compare with the image reconstructed utilizing the EP prior. It scores higher PSNR and lower RMSE. The gain in PSNR was 1.01%.

(Gain(%) = 100 • (MEC-SDL -EP)/EP ).

Overall, the reconstructed images correct motion artifacts and noise acceptably.

However, the images are blurred which made difficult to evaluate the sliding artifacts correction. The MEC-MDL methods show lower performance compare with MEC-SDL method and the EP regularizer.

Discussion and Conclusion

We proposed a method for direct motion-compensated CBCT reconstruction by penalized maximum likelihood using a coupled (image-motion) dictionary learning regularization term. The image to reconstruct and the motion fields image utilize the same encoding in order to capture structural similarities between the image and the DVF. The coupled and single dictionary learning algorithms perform well in terms of noise controlling in the reconstructed image and both estimate the motion correctly. For the coupled dictionary learning algorithm, the dictionaries exhibit structural similarities which confirms that they are able to capture similarities between image and DVFs. However, the reconstructed image is still blurred. The single dictionary learning algorithm performs better in terms of noise controlling with an improvement in comparison with the EP regularizer.

The authors consider that the MEC-MDL algorithm can potentially work and perform better than existing state-of-the-art methods for sliding artifact correction.

Further improvements need to be performed to achieve such accomplishment.

It is critical to ensure that the ground truth DVF estimation accounts for the sliding between organs boundaries. In the present work, we use the B-spline interpolation to estimate the DVF, which can be sub-optimal to account for sliding motion along organs boundary. Furthermore, it is widely known that in motioncompensation techniques, B-spline interpolation over-smooths the reconstructed images. The authors suggest using the demons registration [START_REF] Thirion | Image matching as a diffusion process: an analogy with maxwell's demons[END_REF] to better account for the sliding artifacts and avoid over-smoothness.

We generate the CB projection data utilizing few projection angles and extremely low counts, making the image reconstruction task even more ill-posed.

The authors suggest increasing the number of projection angles and perform less challenging experiments. Thus, It will be possible to evaluate the effectiveness of the MEC-MDL for the sliding artifacts correction task.

Moreover, the MEC-MDL reconstruction could be enhanced by fine-tuning the regularization parameters during the training and the reconstruction. Other factors that must be considered are the following: the number of atoms in the dictionary, the sparsity level, and the number of patches or training examples. However, the time required to train the dictionaries and reconstruct the images makes it quite challenging to tuning the parameters. The authors suggest the optimization of the algorithm to enhanced execution speed.

For the coupled image-motion dictionary learning, since the DVF and the attenuation images have different values (motion amplitude and attenuation coefficients respectively), constraining both datasets to have the same sparse coefficients could be a strong constraint, a less constraining model is to constrains only the supports (locations of zeros and non-zeros) of each sparse vector to be identical but their values could be different.

Introduction

The dual-source acquisition technique in DECT requires two helical scans at two different tube voltages; therefore, two sets of projection data at different energy levels are collected and further reconstructed. However, as the number of incident photons increases when irradiating with two sources the same anatomical region, the radiation dose increases proportionally [START_REF] Sajja | Technical principles of dual-energy cone beam computed tomography and clinical applications for radiation therapy[END_REF]. A reduction in radiation exposure can be achieved by decreasing the number of projection angles.

However, aliasing artifacts can appear in the reconstructed images if the number of projection angles does not follow the Nyquist sampling theorem. Moreover, it is more challenging to achieve high-resolution, high-contrast image reconstruction due to the low Signal-to-Noise Ratio (SNR) [START_REF] Zhang | Multi-energy ct reconstruction using tensor nonlocal similarity and spatial sparsity regularization[END_REF]).

In the literature, most of the development on low-dose CT reconstruction has focused on single image. Among the main techniques, MBIR methods are the most popular. These techniques exploit models of the imaging system's physics (forward models) along with statistical models of the measurements and noise and often simple object priors. They iteratively optimize model-based cost functions to estimate the underlying unknown image [START_REF] Elbakri | Statistical image reconstruction for polyenergetic X-ray computed tomography[END_REF]. Typically, such cost functions consist of a data-fidelity term, e.g., least squares or NLL, capturing the imaging forward model and the measurement/noise statistical model and a regularizer term promoting smoothness, low-rank or sparsity [START_REF] Kim | Sparse-view spectral CT reconstruction using spectral patch-based low-rank penalty[END_REF]. The Total Variation [START_REF] Sidky | Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[END_REF][START_REF] Sidky | Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[END_REF] has been proposed to solve incomplete projection data reconstruction problems and achieved good performance. However, TV reconstruction results in undesired patchy effects.

Data-driven and learning-based approaches have gained much interest in recent years for biomedical image reconstruction. These methods learn representations of images and are used in combination with MBIR techniques to perform complex mappings between limited or corrupted measurements and high-quality images.

Among those algorithms, data-driven sparse transforms such as DL [START_REF] Xu | Low-dose X-ray CT reconstruction via dictionary learning[END_REF] use a training dataset of high-resolution and denoised images to learn features, in an unsupervised manner, that can be used to reconstruct new images. These features take the form of "atoms", which are regrouped into dictionaries and are used to sparsely represent the image [START_REF] Aharon | K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[END_REF]. DL-based image reconstruction integrates the learned atoms with the raw scanner data within a regularized MBIR context [START_REF] Ravishankar | Efficient sum of outer products dictionary learning (soup-dil) and its application to inverse problems[END_REF][START_REF] Zheng | PWLS-ULTRA: An efficient clustering and learning-based approach for low-dose 3D CT image reconstruction[END_REF]. Other closely related methods include sparsifying transform learning [START_REF] Ravishankar | Learning sparsifying transforms[END_REF] and the connection between data-adaptive models and convolutional deep learning algorithms [START_REF] Ravishankar | Image reconstruction: From sparsity to data-adaptive methods and machine learning[END_REF]) with an increase interest in methods that leverage both learning-based and MBIR tools.

However, most DL methods are patch-based, and the learned features often contain shifted versions of the same features. The resulting learned dictionary may be overredundant and therefore are memory demanding, which makes it difficult to utilize in 3D multi-modal imaging. To address these problems, CDL techniques utilize shift-invariant filters, providing a convenient and memory-efficient alternative to conventional DL techniques (Chun and Fessler 2017b). CDL approaches can be combined with MBIR by providing unsupervised prior knowledge of the target image. The CDL approach can also be formulated from an analysis point of view [START_REF] Chun | Convolutional analysis operator learning: Acceleration and convergence[END_REF]) (sparse convolution) and is known as CAOL. Despite the rapidly expanding research, the application of CDL to multi-channel images has received little attention (Degraux et al. 2017, Garcia-Cardona andWohlberg 2018b).

Image reconstruction from DECT sparse-views or low-dose requires algorithms more advanced than the standard approach where attenuation at each measured energy is reconstructed independently. Notable models in the literature designed to promote structural similarity of images are JTV (Ehrhardt et al. 2014a), spectral patch-based penalty for the maximum-likelihood method [START_REF] Kim | Sparse-view spectral CT reconstruction using spectral patch-based low-rank penalty[END_REF], tensorbased and coupled dictionary learning [START_REF] Wu | Low-dose spectral CT reconstruction using image gradient ℓ0-norm and tensor dictionary[END_REF][START_REF] Song | Coupled dictionary learning for multi-contrast MRI reconstruction[END_REF], parallel level sets [START_REF] Kazantsev | Joint image reconstruction method with correlative multi-channel prior for x-ray spectral computed tomography[END_REF]) and the prior rank, intensity and sparsity model (PRISM) [START_REF] Yang | Superiorization-based multi-energy CT image reconstruction[END_REF].

We extend the CAOL approach to multi-channel settings and we develop a MCAOL framework that can exploit direct joint reconstruction, given the low-dose DECT measurements, where all the unknown images are reconstructed simultaneously by solving one combined optimization problem. As of the author knowledge, this is the first time that MCAOL is applied to DECT image reconstruction and we demonstrate its superiority with respect to CAOL. Furthermore, MCAOL requires considerably less memory compared to alternative DL approaches. The joint reconstruction approach is developed for a low-dose data acquisition protocol which consists of collecting data using a sparse angular sampling, using a different X-ray energy in consecutive steps and low X-ray photon counts.

In DECT, a reasonable prior assumption is that attenuation images at different energies can be expected to be structurally similar in the sense that an edge (e.g., an organ boundary) that is present at one energy, is likely to be at same location and alignment with the other energies as well, even though the contrast between materials will be different at each energy. MCAOL technique reconstructs attenuation images from the projection data combined with multi-channel filters trained on a dataset of reconstructed images. The central idea of MCAOL is to learn unsupervised DECT multi-channel convolutional dictionaries that can provide a joint sparse representation of the underlined images by jointly learning filters for the different energies: each atom not only carries individual information for each energy individually but also inter-energy information. By reconstructing DECT images using MBIR techniques in conjunction with MCAOL, the multi-energy information can be optimally used by allowing the images to "talk to each other" during the reconstruction process through the learned joint dictionaries, reducing noise while preserving image resolution. In order to deal with the extreme low-dose scenario, we model the Poisson and we solve the image optimization problem by using approximated quasi-Newton method with constrained memory to achieve accurate joint reconstruction with limited computational complexity.

Learning Convolutional Regularizers for Image Reconstruction: CAOL

In this Section we review the foundation of CAOL for MBIR.

MBIR is achieved by solving an optimization problem of the form

min µ∈R m L(µ, y) + βR(µ) (5.1)
where µ ∈ R m is the 2D or 3D image to reconstruct, y ∈ R n is the observed measurement, L is a data-fidelity term that incorporates the measurement model -generally taking the form of a NLL function-and R is a regularizer weighted by β > 0; n and m are respectfully the dimension of the measurement (number of detectors) and dimension of the image (number of pixels). The minimization is carried out with the help of iterative algorithms such as modified expectationmaximization (EM) for emission tomography (ET) (De Pierro 1995) or PWLS combined with separable paraboloidal surrogate (SPS) for CT [START_REF] Elbakri | Statistical image reconstruction for polyenergetic X-ray computed tomography[END_REF].

The regularizer R is designed such that the reconstructed image μ(y) has desired properties, such as smoothness and sparsity of the gradient. It can be also trained so that μ(y) can be sparsely represented as a linear combination of basic elements, or atoms, regrouped in a dictionary.

We consider the CAOL approach [START_REF] Chun | Convolutional analysis operator learning: Acceleration and convergence[END_REF] where the image is sparsely represented with convolutional kernels (filters). In the analysis model, the image is represented with "sparsifying" filters d k ∈ R R by the analysis operator

A D : µ → {d k ⊛ µ}, such that d k ⊛ µ = z k , ∀k = 1, . . . , K. (5.2) 
where z k ∈ R m is a sparse feature image vector of the same dimension as the image µ, and "⊛" denotes the 2D convolution operator. The filters

d k ∈ R R are vectorized images of dimension R ≪ m that are regrouped in a dictionary D = {d k } ∈ R R×K .
Learning the dictionary D from a dataset of training images {µ l ∈ R m : l = 1, . . . , P } corresponds to finding a collection of filters D ⋆ = {d ⋆ k } obtained by the following non-convex optimization problem

D ⋆ = arg min D∈C min {z l,k } F a (D, {z l,k }) (5.3)
with the training analysis objective function F a defined as

F a (D, {z l,k }) = P l=1 K k=1 1 2 ∥d k ⊛ µ l -z l,k ∥ 2 2 + α ∥z l,k ∥ 0 (5.4)
where z l,k ∈ R m is the feature image associated to the training image µ l and the filter d k , ∥•∥ 0 is the sparsity-promoting l 0 semi-norm defined for all z =

[z 1 , . . . , z m ] ⊤ ∈ R m as ∥z∥ 0 = m j=1 1 [0,+∞] (|z j |) (5.5)
where 1 A : R → {0, 1} denotes the indicator function of a set A ⊂ R, which is In [START_REF] Chun | Convolutional analysis operator learning: Acceleration and convergence[END_REF] the filters are enforced to satisfy the tight-frame conditions, i.e.,

defined as 1 A (ξ) = 1 if ξ ∈ A and 1 A (ξ) = 0 if ξ / ∈ A,
C = {d k } : [d 1 , . . . , d K ][d 1 , . . . , d K ] ⊤ = 1 R I K (5.6)
where I K is the K × K identity matrix, to promote filters diversity. The entire optimization problem 5.3 is solved by the BPEG-M utilizing two blocks as described in Section 3.4.1.1. The minimization in D is achieved with a PMOC algorithm which can be implemented using the CONVolutional Operator Learning Toolbox (CONVOLT) [START_REF] Chun | Convolt: CONVolutional Operator Learning Toolbox[END_REF]Fessler 2019b, Chun 2019). The minimization in z is achieved with a hard-thresholding operator T : R m × R * + → R m defined at each row j as:

[T (a, β)] j = a j if 1 2 a 2 j ≥ β 0 otherwise (5.7)
for all a = [a 1 , . . . , a m ] ⊤ ∈ R m and for all β > 0, which provides a global minimizer for z → 1 2 ∥a -z∥ 2 2 + β∥z∥ 0 , in such a way that

T (d k ⊛ x l , α) = arg min z l,k 1 2 ∥d k ⊛ x l -z l,k ∥ 2 2 + α ∥z l,k ∥ 0 (5.8)
Finally the regularizer R in the minimization problem 5.1 is derived from the learned filters D ⋆ as

R(µ) = min {z k } K k=1 1 2 ∥d ⋆ k ⊛ µ -z k ∥ 2 2 + α ∥z k ∥ 0 .
(5.9) 

Multi-channel Convolutional Analysis Operator Learning

MBIR can be generalized to multi-channel imaging. Assuming we wish to reconstruct two images µ 1 , µ 2 ∈ R m of the same "object" from two independent measurements y 1 ∈ R n 1 and y 2 ∈ R n 2 corresponding to two modalities, multichannel MBIR can be achieved by using an iterative algorithm to solve

min µ 1 ,µ 2 ∈R m ρ 1 L 1 (µ 1 , y 1 ) + ρ 2 L 2 (µ 2 , y 2 ) + R mc (µ 1 , µ 2 )
(5.10)

where L 1 and L 2 are the data-fidelity terms for µ 1 and µ 2 , R mc is a multi-channel regularizer and ρ 1 , ρ 2 > 0 are weights. R mc is designed to exploit the inference between the 2 channels µ 1 and µ 2 , for example to promote structural similarities as proposed in (Ehrhardt et al. 2014a).

MCAOL is a generalization of CAOL where the training is performed jointly on a set of images obtained from imaging modalities as depicted in figure 5.1 for DECT. Let {(µ 1,l , µ 2,l ) ∈ R m × R m : l = 1, . . . , P } be a training dataset consisting of P pairs of images.

MCAOL learns the sparsifying filter pairs (5.11) together with the extracted feature pairs

(d 1,k , d 2,k ) ∈ R R × R R : k = 1, . . . , K
(z 1,l,k , z 2,l,k ) ∈ R m × R m : k = 1, .
. . , K, l = 1, . . . , P .

(5.12)

MCAOL is achieved by solving the following optimization problem, given the training image set (µ 1,l , µ 2,l ) 5.14) where γ 1 , γ 2 > 0 are weights and the semi-norm To solve (5.13) we utilize the BPEG-M algorithm [START_REF] Chun | Convolt: CONVolutional Operator Learning Toolbox[END_REF]Fessler 2019b, Chun 2019) with 3 blocks: 1) the block which updates the sparse codes jointly (z 1,l,k , z 2,l,k );

(D ⋆ 1 , D ⋆ 2 ) = arg min D 1 ,D 2 ,∈C min {z 1,l,k } {z 2,l,k } F mc (D 1 , D 2 , {z 1,l,k }, {z 2,l,k }) (5.13) F mc (D 1 , D 2 , {z 1,l,k }, {z 2,l,k }) = P l=1 K k=1 γ 1 2 ∥d 1,k ⊛ µ 1,l -z 1,l,k ∥ 2 2 + γ 2 2 ∥d 2,k ⊛ µ 2,l -z 2,l,k ∥ 2 + ∥(z 1,l,k , z 2,l,k )∥ 1,0 ( 
∥ • ∥ 1,0 on R m × R m is defined for all z 1 = [z 1,1 , . . . , z 1,m ] ⊤ ∈ R m and for all z 2 = [z 2,1 , . . . , z 2,m ] ⊤ ∈ R m as ∥(z 1 , z 2 )∥ 1,0 = m j=1 1 [0,+∞] (|z 1,j | + |z 2,j |) (5.15) ∥ • ∥
2) the block for the first dictionary (D 1 , ); and 3) the block for the second dictionary (D 2 ). The 2 dictionary blocks are updated utilizing PMOC algorithm [START_REF] Chun | Convolutional analysis operator learning: Acceleration and convergence[END_REF], [START_REF] Chun | Convolt: CONVolutional Operator Learning Toolbox[END_REF] while for the update of the sparse codes we deploy a multi-channel hard-thresholding operator (Xu et al. 2011, Section 3), in such a way that where ν i (l) = s i + l⃗ ϵ i ∈ R 2 is a parametrization of the i-th ray emitted from the source s i with direction ⃗ ϵ i , a i,j ≜ R b j (ν i (l)) dl is the contribution of the j-th pixel to the i-th ray. The system matrix A is constructed as an under-determined matrix Although monochromatic X-ray source does not usually hold for scanners in clinical practice, a common effective strategy consists of applying a polychromaticto-monochromatic source correction pre-processing step [START_REF] Whiting | Properties of preprocessed sinogram data in X-ray CT[END_REF], and in the rest of the paper we will therefore assume that we have a monoenergetic source or that it has already been appropriately corrected.

T mc : R m × R m × (R * + ) 2 → R m × R m defined at each row j as [T mc (a 1 , a 2 , γ)] j = (a 1,j , a 2,j ) if 1 2 γ 1 a 2 1,j + 1 2 γ 2 a 2 2,j ≥ 1 (0, 0) otherwise (5.16) for all a 1 = [a 1,1 , . . . , a 1,m ] ⊤ ∈ R m , a 2 = [a 2,1 , . . . , a 2,J ] ⊤ ∈ R m and for all γ = (γ 1 , γ 2 ) ∈ (R * + ) 2 , which provides a global minimizer for (z 1 , z 2 ) → γ 1 2 ∥a 1 - z 1 ∥ 2 2 + γ 2 2 ∥a 2 -z 2 ∥ 2 2 + ∥z 1 , z 2 ∥ 1,0
T mc (d 1,k ⊛ x 1,l , d 2,k ⊛ x 2,l , γ) = arg min z 1,l,k ,z 2,l,k γ 1 2 ∥d 1,k ⊛ x 1,l -z 1,l,k ∥ 2 2 + γ 2 2 ∥d 2,k ⊛ x 2,l -z 2,l,k ∥ 2 + ∥(z 1,l,k , z 2,l,k )∥
(z t+1 1,l,k , z t+1 2,l,k ) ← T mc (d t+1 1,k ⊛ µ 1,l , d t+1 2,k ⊛ µ 2,l , γ) ; end Update Filters ; D t+1 1 ← PMOC(µ 1,l , z t+1 1,k ) ; D t+1 2 ← PMOC(µ 2,l , z t+1 2,k ) ; end D ⋆ 1 ← D Nouter 1 ; D ⋆ 2 ← D Nouter 2 ; the learned filters (D ⋆ 1 , D ⋆ 2 ) as R mc (µ 1 , µ 2 ) = min {z 1,k } {z 2,k } K k=1 γ 1 2 d ⋆ 1,k ⊛ µ 1 -z 1,k 2 2 + γ 2 2 d ⋆ 2,k ⊛ µ 2 -z 2,k 2 2 + ∥(z 1,k , z 2,k )∥ 1,0 ( 

Low-Dose CT Reconstruction

In case of low X-ray dose, since the photons counts can be very limited, the Gaussian approximation is no longer applicable as the logarithm of the data cannot be computed. We therefore chose to perform sparse view CT reconstruction from the raw measurements (y 1 , y 2 ) by solving the minimization problem 5. 

In this work, we utilized a L-BFGS algorithm [START_REF] Nocedal | Numerical Optimization[END_REF] Chapter 7) to solve 5.4.2. We utilized the implementation proposed in [START_REF] Zhu | Algorithm 778: L-bfgsb: Fortran subroutines for large-scale bound-constrained optimization[END_REF]. We also used the L-BFGS algorithm to minimize L 1 (•, y 1 ) and L 2 (•, y 2 ) (without penalty) in order to obtain initial images µ 0 1 and µ 0 2 . The other part of the alternating scheme is to update the sparse features z t e,k given the current estimate of µ t e . This step is achieved using the multi-channel thresholding operator defined in 5.16.

The pseudo-code for MCAOL reconstruction algorithm is detailed in Algorithm 5. Reconstruction MCAOL and JTV reconstructions were achieved by solving 5.10 with R mc defined as 5.18 and 5.27 respectively, while CAOL and TV reconstructions by solving 5.1 for each energy bin e = 1, 2 separately with R defined as 5.9 and 5.26 respectively. MCAOL and CAOL were achieved using N outer = 300 outer iterations while the inner image update is obtained using the L-BFGS algorithm with 300 iterations. The (γ 1 , γ 2 )-values and β-values were the same as for training.

TV and JTV reconstructions were achieved with the L-BFGS algorithm with 300 iterations. The measurements were obtained from the GT images µ GT e outside the training set and the reconstructions were repeated for each noise instance M , for a range of (ρ 1 , ρ 2 )-values with ρ 1 = ρ 2 and for a range of β-values, in order to obtain AbsBias-versus-STD curves.

We performed sparse-views and low-dose experiments on a simulated XCAT phantom and clinical data to assess the potential of the method for medical practice as detailed below. The experiments were conducted with fixed X-ray dose amount, i.e., by selecting the number of angles and the X-ray source intensity, and we evaluated the quality of the linear attenuation images reconstructed with different methods, both qualitatively and quantitatively. In order to generate the sparse-view DECT projection measurements 5.21, we modeled the projector A with a 2-mm Full Width at Half Maximum (FWHM) resolution parallel beam system and we used a 1-mm pixel-width 406×406 GT torso axial-slice images with attenuation coefficients µ ⋆ 1 , µ ⋆ 2 at energies 120 keV (high) and We use this simulation to prove that MCAOL returns a more accurate solution compared to other priors. Furthermore, we prove that despite the higher computational complexity to minimize the exact Poisson NLL in 5.24 compared to solving the problem with a weighted least-squares approximated NLL, i.e., PWLS data-fit cost function, MCAOL achieves substantial improved bias accuracy compared to the PWLS solution. To perform these experiments, we used the same optimal learned convolutional filters as obtained by the MCAOL training procedure detailed in Section 5.5.4 and the GT images in Figure 5.6(a). 

Discussion and Conclusions

In this work, we have extended the convolutional analysis operator framework to multi-channel imaging and we have applied and extensively analyzed the proposed method to the DECT application. The presented results show that by using the information coming from both energies and allowing the channels to "talk to each other" a more accurate solution of the reconstruction problem can be achieved together with a reduction of the noise in the estimate. The coupling between energies is encapsulated by using an l 1,0 sparse mixed norm in the MCAOL optimization problems both for training and reconstruction. We obtain consistently better performances across different DECT acquisition scenarios from sparse-views to low-dose photon counts.

The bias-variance trade-off analysis of the estimation results over the regularization parameters confirms that MCAOL allows to achieve the minimum absolute bias compared to CAOL and other MBIR state-of-the-art methods and also reduce standard deviation. Furthermore, MCAOL has the benefit of requiring less memory respect to DL methods because of the convolutional structure of the trained filters.

The MCAOL framework allows to utilize any mixed norms for the jointly sparse regularization and other norms, such as the l 2,1 -norm which as proposed by [START_REF] Degraux | Online convolutional dictionary learning for multimodal imaging[END_REF] for convolutional synthesis operator learning, may also be considered.

In our experiments we have considered the product between the X-ray source intensity and the number of projection angles as an empirical measure for the total transmitted X-ray dose. While this metric gives a good approximation of the dose, we consider the analysis of the standardized measure of radiation dose, i.e., CT dose index (CTDI), as well as the absorbed dose as a follow-up study.

We account the open problems of how to optimally select both the regularization norm and regularization parameter according to the dataset for future algorithm development.

Although this work focuses on the multi-channel imaging reconstruction problem, we believe that our proposed method can be utilized in conjunction to DECT to task-oriented material decomposition problems. In particular, while an approach would be to design a material decomposition module in the image space which takes as input the MCAOL reconstructed images, a more compelling strategy would be designing a direct approach from sinograms to material images through MCAOL. Furthermore, MCAOL method can be exploited for other multi-modal imaging application such as PET/CT and PET/MRI. In the multi-modal case, given the different intensity range on each channel, a further analysis on how to choose the NLL weights γ 1 ̸ = γ 2 in (5.10) should be conducted to properly balancing the information coming from the different modalities.

Finally, from a learning point of view, MCAOL training can be seen as a multi-channel single layer unsupervised convolutional autoencoder [START_REF] Chun | Convolutional analysis operator learning: Acceleration and convergence[END_REF], Appendix A) which paves the way to extend this approach to deeper autoencoder architectures to capture more complex features such as textures.

The analysis and comparison of the proposed MCAOL approach with other supervised deep learning approaches is planned as a follow-up study. It is important to stress that MCAOL inherits a precise mathematical derivation and therefore it should not be susceptible of instabilities in the reconstruction which have been proven to occur with deep learning methods [START_REF] Antun | On instabilities of deep learning in image reconstruction and the potential costs of ai[END_REF].

We consider these problems as future development of the proposed algorithm. 

Introduction

In DE-CBCT, the rapid potential switching allows consecutive projection measurements with alternating tube potentials where both the low and high energy projection data are acquired throughout a whole gantry rotation (Garnett 2020, Forghani and[START_REF] Forghani | Advanced dual-energy ct applications for the evaluation of the soft tissues of the neck[END_REF]. The tube voltage varies between high and low, and transmission data is acquired twice for adjacent projection angles.

The major disadvantage of this method is the need of reducing the rotation speed of the system to acquire the extra projections and to account for the rise and fall times required for voltage modulation [START_REF] Lam | Multiparametric evaluation of head and neck squamous cell carcinoma using a single-source dual-energy ct with fast kvp switching: state of the art[END_REF]. Due to fast switching it is not possible to modulate the tube current between high and low energy simultaneously.

It remains constant during the acquisition. Thus, the tube current needs to be increased to reduce the noise on images obtained with lower peak voltage, which results in an increase of the radiation dose (Johnson 2012, Goo and[START_REF] Goo | Dual-energy ct: new horizon in medical imaging[END_REF].

Sparse-view projection angles can reduce the radiation dose, since the total number of photons (emitted during the whole acquisition) decreases. Image reconstruction material-specific projections and further reconstruct them independently (known as two-step projection-based method) or by reconstructing the decomposed images from the dual-energy sinograms in one-step inversion (known as one step material-decomposition) [START_REF] Mory | Comparison of five one-step reconstruction algorithms for spectral ct[END_REF]. In two-step image-based algorithms, each energy sinogram is log-transformed and reconstructed producing one volume per energy bin, which is then decomposed into material-specific volumes.

This work aims to achieve high quality reconstructed images in fast KVp switching DE-CBCT to lead to accurate material decomposition images utilizing the two-step image-based methodology.

Dual Energy Image Reconstruction

Assuming a simplified single-source rapid KVp switching DE-CBCT setting, each sinogram y ℓ ∈ R n , obtained from the energies ℓ ∈ {1, 2} (low and high), is modeled by a random vector y ℓ = [y 1,ℓ , . . . , y n,ℓ ] ⊤ with independent entries, where n is the number of detector pixels. At each detector pixel i ∈ {1, . . . , n}, the number of detected photons y i,ℓ follows a Poisson distribution:

y i,ℓ ∼ Poisson(ȳ i,ℓ (µ ℓ )) , (6.1) with ȳi,ℓ (µ ℓ ) = b i exp(-[Aµ ℓ ] i ) + s i,ℓ (6.2) 
where µ ℓ ∈ R m is the attenuation image at energy ℓ, A is a n × m matrix modeling the system, s i,ℓ is a background term and m is the number of voxels in the image.

We propose to reconstruct the low-and high-energy attenuation images (µ 1 , µ 2 ) by penalized maximum-likelihood joint estimation from the sinograms (y 1 , y 2 ):

( μ1 , μ2 ) = arg max µ 1 ,µ 2 ≥0 L 1 (µ 1 , y 1 ) + L 2 (µ 2 , y 2 ) -βR(µ 1 , µ 2 ) (6.3)
where R(µ 1 , µ 2 ) is a joint regularization term, β is the regularization parameter and L(µ ℓ , y ℓ ) is the log-likelihood defined as:

L(µ ℓ , y ℓ ) = n i=1 y i,ℓ log ȳi,ℓ (µ i , ℓ ) -ȳi,ℓ (µ i , ℓ ) . (6.4)
The Quasi-Newton maximization problem (6.3) is solved using a L-BFGS algorithm [START_REF] Zhu | Algorithm 778: L-bfgsb: Fortran subroutines for large-scale bound-constrained optimization[END_REF]).

Joint Total Variation Regularization

In the present work, we used the JTV penalty term R(µ 1 , µ 2 ) inspired from [START_REF] Ehrhardt | Joint reconstruction of pet-mri by exploiting structural similarity[END_REF]) and [START_REF] Sapiro | Anisotropic diffusion of multivalued images with applications to color filtering[END_REF]. The JTV regularization term can be written as:

R(µ 1 , µ 2 ) = m j=1 ∥[∇µ 1 ] j ∥ 2 + ∥[∇µ 2 ] j ∥ 2 + γ 2 1/2 (6.5)
where

∇µ ℓ ∈ R m×d (d = 2, 3) is the gradient image of µ ℓ and [∇µ ℓ ] j ∈ R d
is the gradient at voxel j, and γ > 0 tunes the smoothness of the prior (for differentiability). The image µ l is reshaped in a matrix, then we compute ∇ as the finite differences along x and y axis as shown in Section 3.2, equation 3.30.

The role of this prior is to promote structural similarities by enforcing joint sparsity of the 2 gradient images. We compared the proposed approach of jointly reconstruct the images with JTV against reconstructing separately with TV as follows: μℓ = arg max

µ ℓ ≥0 L(µ ℓ , y ℓ ) -δS(µ ℓ ) (6.6) with S(µ ℓ ) = m j=1 ∥[∇µ ℓ ] j ∥ 2 + η 2 1/2 (6.7)
where δ and η play the same roles as β and γ respectively.

Moreover, we compared against existing edge preserving prior (e.g. Huber

Prior): μℓ = arg max

µ ℓ ≥0 F (µ ℓ , y ℓ ) -ρU (µ ℓ ) (6.8) with U (µ ℓ ) = m j=1 k∈N j ω j,k Φ(µ j ℓ -µ k ℓ ) (6.9)
where N j are the neighborhood of j and ρ controls the weight of the regularization term; ω j,k are weights (ω j,k = 1 for axial pixels and ω j,k = 1/ √ 2 for diagonal pixels.

For the Huber prior the typical choice of Φ(x) are [START_REF] Nuyts | A concave prior penalizing relative differences for maximum-a-posteriori reconstruction in emission tomography[END_REF])

|x| ⩽ σ : Φ(x) = x 2 2σ 2 |x| > σ : Φ(x) = |x| -σ/2 σ (6.10)
The Huber prior compares the difference between neighboring pixels with the value of the parameter σ [START_REF] Nuyts | A concave prior penalizing relative differences for maximum-a-posteriori reconstruction in emission tomography[END_REF].

With these two approaches using TV and Huber priors, each energy image is reconstructed independently without sharing structural information. Table 6.1 shows the values of the metrics mentioned above for the reconstructed images utilizing the XCAT phantom. At both energy levels, the JTV approach results in higher PSNR and SSIM.

For the low-energy image the JTV gain with respect to TV was 4.58% in PSNR and 0.03% in SSIM while for the high energy image the gain was 5.79% in PSNR and 0.06% in SSIM. Regarding the Huber prior, the gain was 7.51% and 5.84% in PSNR for the low and high energy image respectively, while the gain in SSIM was 0.08% for both, the low and high energy images.

We also analyzed the bias/variance trade-off of JTV, TV and Huber prior on In Figure 6.4 we observe that JTV outperforms TV for clinical data; TVreconstructed images shows aliasing artifacts. Moreover, we computed the PSNR and SSIM for clinical data. Table 6.2 shows Table 6.2 Peak Signal-to-Noise Ratio (PSNR) in dB and the Structural Similarity Index (SSIM) for the JTV, TV and Huber reconstruction algorithms at low energy (70 KeV) and high energy (140 KeV). The Gain is calculated as Gain(%) = 100 • (JTV -TV)/TV for TV and Gain(%) = 100 • (JTV -Huber)/Huber for the Huber prior.

the SSIM and PSNR values are higher for JTV for the low and high energy images. We observe that JTV produces higher spatial resolution than TV and the Huber prior. The spatial resolution analysis reveals that JTV increases detectability and edge-preservation in comparison to TV. We decompose into Soft Tissue (z 1 ): Breast Tissue 308 ICRU-44, 1.00g/cm 3 ;

and Bone: B-100 Bone-Equivalent Plastic, 1.50g/cm 3 ). (of Standards and Technology 2001) Figure 6.9 shows the image decomposition into bone and soft tissue basis material from the reconstructed images using JTV, TV, the Huber Prior and the ground truth. We observe that small bone structures can be better identified in the bone-decomposed image obtained from the JTV reconstruction.

We quantitatively compared the performance of JTV for material decomposition (μ j -μGT j ) 2 (6.17) Table 6.3 show the values of the RMSE calculated in ROI 1 and ROI 2 as shown in 6.9. For both basis materials, the decomposition utilizing JTV reconstructed images scores lower RMSE compared with TV and Huber reconstructed images.

We performed material decomposition from the reconstructed images utilizing clinical data. Figure 6.10 shows the images decomposed into soft tissue and bone. We observe similar behavior to the results obtained with the XCAT data.

Small bone structures are better identified from the image obtained with JTV reconstruction.

CHAPTER 7

Conclusion and Perspectives

Conclusions

The present thesis proposes image reconstruction techniques for different X-ray Computed Tomography modalities. The main objective is the reduction of artifacts and the dose delivered to the patient while maintaining the image quality. We have designed new MBIR methods using data-driven approaches and machine learning. We have exploit the multi-channel joint reconstruction approaches by reconstructing the unknown images simultaneously. We solved a single combined inverse problem and exploit structural similarities between the images. We designed three multi-channel image reconstruction for: (i) Sliding motion artefact correction in CBCT utilizing sparse dictionary learning methods (Chapter 4); eter. We also evaluated the performance of the JTV reconstructed images in material decomposition. The findings revealed that JTV regularization may enhance sparse-view reconstruction even when the number of projection angles is 6 times lower than in a full-view case, resulting in a considerable reduction in the patient's radiation exposure. We used the reconstructed images to perform image base material decomposition. The qualitative and quantitative results showed the effectiveness of JTV for this task as well as its superior performance compared to TV and Huber prior.

Perspectives

The methodologies implemented in this thesis can be considered proof-of-concept.

The most remarkable continuation of the three methodologies would be the use of raw projection data. Thus, other issues such as beam hardening and scatter will be considered, especially in CBCT, where the scatter may be a significant problem.

For the motion estimation compensation presented in Chapter 4, the methodology can be improved utilizing CDL (e.g. MCAOL extended to more than 2 channels).

Another approach could be utilizing CNN which have shown promising results in image processing task.

Sliding motion correction utilizing Neural Networks

CNN have proven to be quite efficient in image processing tasks, such as segmentation, pattern recognition, classification etc. The work from [START_REF] Zhang | Advanced 4-dimensional cone-beam computed tomography reconstruction by combining motion estimation, motioncompensated reconstruction, biomechanical modeling and deep learning[END_REF] uses CNN to improve the accuracy of intra-lung DVF.

The sliding motion estimation presented in Chapter 4 can be driven using CNN.

The general framework is presented in Figure 7.1. The motion DVF can be estimated from the CB projection data. This estimation can be encoded as the network input (Figure 7.2). The output could be the DVF with sliding motion.

The CNN needs to be trained beforehand. The DVF output of the network is used to perform the motion compensation. When convergence is reached, the motion compensated CBCT image and the DVF with sliding motion at organs boundary will be obtained. We account the open problem of choosing the neural network, although we believe that U-net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] could perform the task. where x j,: is the j-th row of X. While the statistical noise tends to be higher in the multi-energy case, on each sub-band the contribute of the noise is reduced since the noise is split on more energy bands. Therefore, evaluating the joint norm, i.e., non-zeros elements in the feature vectors in overlapping positions for all energies at the same time will reduce the degradation due to the increased overall noise.
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  diagnostic energies (Photoelectric effect, Compton scattering, and Coherent scattering). Furthermore, it goes through the advancement of the CT generations by describing the seven generations and their main characteristics. The second part of the chapter explains the mathematics behind image reconstruction in CT starting with the analytical methods and continuing with the Model-based iterative reconstructions (MBIR). It explains in detail the main optimization algorithms for MBIR used in the thesis (e.g., Newton approaches with Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm). Chapter 3 describes the CS theory and provides a literature review of the main sparse recovery algorithms used in the thesis (Orthogonal Machine Pursuit (OMP), Iterative Soft Thresholding (IST), Iterative Hard Thresholding (IHT) ). It describes the Total Variation (TV) semi norm and its implication in the CS theory. The Dictionary Learning (DL) problem and the main optimization algorithms for patchbased dictionary learning are explained in detail in this chapter. The Convolutional Dictionary Learning (CDL) and, more specifically, the Convolutional Analysis Operator Learning (CAOL) are explained. The Block Proximal Extrapolated Gradient method using a Majorizer (BPEG-M) algorithm for the optimization of the CAOL algorithm is detailed as well as its application to the CAOL problem. Chapter 4 depicts the first contribution of this thesis. We deploy a new approach for motion-estimation compensation in Cone-Beam Computed Tomography (CBCT) by learning joint image-motion dictionaries in order to correct sliding motion at organs boundaries. First, the state-of-the-art of the motion estimation-compensation with sliding correction in CBCT is presented. Then, the model is explained in detail and the methods used for comparison. Details on the experiments performed are explained, and the more relevant results are discussed. An extensive discussion section details the follow-up projects of the proposed approach. Chapter 5, which is the major contribution of the thesis, proposes the Multi-channel Convolutional Analysis Operator Learning (MCAOL) method for Dual-Energy Computed Tomography (DECT). It proposes an optimization algorithm that jointly reconstructs the attenuation images at low and high energies with a mixed seminorm regularization on the sparse features. First, it details the state-of-the-art of joint reconstruction within the CS theory. Then, the methodology is explained in detail and the algorithm used for comparison. The experiments performed with low-dose CT and sparse-view CT for the Extended Cardiac-Torso (XCAT) phantom and the clinical data are detailed in the chapter guaranteeing their reproducibility. Chapter 6 proposes a methodology for sparse-view image reconstruction in singlesource rapid Peak Kilo-Voltage (KVp) switching in Dual-Energy Cone Beam Computed Tomography (DE-CBCT). The Joint Total Variation (JTV) regularization is implemented and used within a MBIR to encode the low and high energy images. The performance of the reconstructed images for material decomposition is evaluated and compared with the single reconstruction utilizing TV and the Huber prior.CHAPTER 2
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 21 Fig. 2.1 A modern helical CT scanner (left). The basis principle of CT. The X-ray source and detector set-up(center). A 3D reconstructed volume of the heart utilizing CT scanning(right). Reprint from Smith and Webb (2010), O'Donnell (2022)

Figure 2 .

 2 2 illustrates the bremsstrahlung emission mechanisms in the atom and the X-ray energy spectrum from tungsten anode operating at 120 KVp accelerating voltage. The spectrum contains vertical lines corresponding to characteristics X-ray. These characteristics X-rays are created when a bombarding electron collides with a K-shell electron in the tungsten anode. If the incident electron's energy is bigger than the binding energy of the K-shell electron, the electron in K-shell is ejected, leaving a hole in the shell. An electron coming from more external shells (L-shell, M-shell) fills the hole. During the desexcitation process, a characteristic photon is emitted with an energy level equal to the binding energy difference between the outer and inner shell electron involved in the transition. Figure2.2a show the characteristic X-rays production mechanism(Hapugoda 2020a).

  Fig. 2.2 a) Bremsstrahlung (Reprint from Hapugoda (2020a)) and characteristics (Reprint from[START_REF] Hapugoda | Characteristic radiation: Case courtesy of dr sachintha hapugoda, radiopaedia.org[END_REF])) X-rays production mechanisms in the atom. b) X-ray energy spectrum from tungsten anode operating at 120 KVp.[START_REF] Punnoose | spektr 3.0-a computational tool for x-ray spectrum modeling and analysis[END_REF] 
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 23 Fig. 2.3 The solid and scatter angles. A photon incident on a tiny volume element dV is scattered into the solid angle element dΩ through angle σ. (Reprint from (Dance et al. 2014))
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 24 Fig. 2.4 Compton scattering geometry. Reprint from (Dance et al. 2014)
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 2 Figure 2.5a (left) illustrates the configuration of the first tomograph generation.
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 2 5a (right) illustrates the configuration of the second tomograph generation. The first and second-generation are quite slow in acquisition time per slice. Thus these scanners were mainly restricted to use in imaging the cranium.

Figure 2 .

 2 5b (right) illustrates the configuration of the fourth tomograph generation.

  Rotation of a fan-beam CT scanners

Fig. 2 .

 2 Fig.2.5 a) The first and second generation of X-ray CT scanners utilize the rotate-translate principle. The source and the detector are moved linearly and rotated at an angle γ. b) Third and fourth generation of CT scanners which irradiate with a wide fan beam, and the X-ray source rotates continuously without any linear displacement. In the third generation, the detector has an arc shape with around 1000 elements, while in the fourth generation, the detector has a ring shape and is fixed. Reprint from[START_REF] Buzug | Computed tomography: From photon statistics to modern cone-beam ct[END_REF] 

Fig. 2 .

 2 Fig. 2.6 Single-slice CT (left) versus multi-slice CT. Reprint from Annelies van der Plas (2016)

  approaches. Assume hypothetical elements A and B, with K edges of 90 keV and 190 keV, respectively. Now assume four unknown substances, each containing unknown quantities of A and B. We irradiate the unknown substances at two different voltages, 100 kVp and 200 kVp, to determine the amount of element A or B in each unknown substance. The results are shown in Figure 2.7. Substance 1 does not attenuate at either 100KVp or 200KVp. Therefore it contains neither A nor B. Substance 2 attenuates more at 200KVp than at 100KVp; consequently, mainly contains B because 200 kVp is just above 190 keV, the K edge of element B. Substance 3 attenuates more at 100KVp than at 200KVp; therefore it mainly contains A, because 100 kVp is close to 90 keV, the K-edge of element A. Substance 4 attenuates similarly to 100KVp and 200KVp; thus, it contains a similar amount of A and B. (Coursey et al. 2010).
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 27 Fig. 2.7 Attenuation of elements A and B as a function of energy level (top). Behavior of substances 1, 2, 3 and 4 at 100kV and 200kV (botton). Reprint from Coursey et al. (2010).
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 28 Fig. 2.8 Dual Energy CT acquisition configurations. A. Only one tube and one detector are used in the rapid kilo-voltage switching device. The voltage is rapidly cycled between two levels. B. Dual-source CT system with two tubes operating at different tube voltages and two detectors mounted orthogonally. C. Dual-layer detection setup consisting of two layers detectors with different sensitivity profiles and one X-ray tube. Reprint from (Johnson 2012)
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 29 Fig. 2.9 Schematic representation of the line integrals associated with the Radon transform. Reprint from[START_REF] Fessler | Analytical tomographic image reconstruction methods[END_REF] 
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 2 Fig. 2.10 Schematic representation of the back projection operation for a single projection view. Reprint from[START_REF] Fessler | Analytical tomographic image reconstruction methods[END_REF] 

  .27) which corresponds to the transpose of the Radon transform. The practical backprojection are performed utilizing four distinct approaches: rotation-based backprojection, ray-driven backprojection, pixel-driven backprojection and distance-driven backprojection (De Man and Basu 2002).

Fig. 2 .

 2 Fig. 2.11 Illustration of the function µ(x, y) parametrized utilizing pixel basis functions.

  Figure 2.11 illustrates the parametrization. It provides piece-wise-constant approximation to µ. At this stage, the problem of estimating the linear attenuation coefficients map reduces to estimating the vector µ = µ 1 , . . . , µ Np from the set of measurements y = [Y 1 , . . . , Y N Y ] and the line integral becomes

  μ = arg max µ≥0 L(µ), L(µ) ≜ log P [Y = y; µ]. (2.45) Utilizing the Poisson Model 2.42 the measurement joint probability mass function is

  50) where • P (A | B) : Conditional probability defined as the likelihood of an event A occurring if B is true. The posterior probability of A given B is another name for it. • P (B | A): Conditional probability defined as the probability of event B occurring given that A is true. It can also be interpreted as the probability of A given a fixed B because P (B | A) = L(A | B).
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 2 3 Quasi-Newton algorithm One of the algorithms for optimization are the Newton methods. In order to understand the Quasi-Newton algorithm it is necessary to introduce the Newton-Raphson method. Let us consider the case of a 1D variable objective function Φ(µ) which is twice differentiable Φ : R → R. One attempt to solve the optimization problem

Fig. 2 .

 2 Fig.2.12 A gradient descent (green) versus Newton's method (red) comparison for minimizing a function. Newton's method relies on curvature information (i.e. the second derivative) to reach more direct the minimum. Reprint from[START_REF] Alexandrov | Newton's method in optimization[END_REF] 

  CS is a technique for recovering a signal from fewer samples than the Nyquist-Shannon sampling theorem requires[START_REF] Sher | Review of algorithms for compressive sensing of images[END_REF]. The essential assumption of the CS theory is that most signals in real applications have a sparse representation in a certain transform domain with just a few of them being significant and the rest being zero or negligible. Another essential condition is that measurements in the signal acquisition domain are incoherent. That is, the distances between sparse signals are roughly preserved as the distances between the observations made by the sampling process(Orović et al. 2016[START_REF] Marques | A review of sparse recovery algorithms[END_REF]. CS assists in reducing the energy required for transmission and storage by projecting the information into a smaller dimensional space. It reduces power consumption by lowering the sampling rate to the signal's information content rather than its bandwidth[START_REF] Marques | A review of sparse recovery algorithms[END_REF][START_REF] Donoho | Compressed sensing[END_REF]. The CS process is divided into three fundamental steps as shown in 3.1.
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 31 Fig. 3.1 The primary technique of compressive sensing.

Figure 3 . 2 .

 32 Figure 3.2. It depicts a 200-sample time-domain signal with 8 different sinusoids. It is a frequency domain representation of an 8-sparse signal. That means, there are only 8 non-zero values among the 200 frequency (Marques et al. 2018). Other examples of sparse representation are Wavelet Transform (WT), Fast Fourier Transform (FFT), and Discrete Cosine Transform (DCT).

Fig. 3

 3 Fig. 3.2 8 sinusoidal samples in (a) time and (b) frequency domains. Reprint from Marques et al. (2018).

1 :

 1 builds the sparse representation support by finding the column d j ∈ R M (called atom) which is best aligned with the residual vector r. It chooses the atoms one by one in order to minimize the approximation error as much as possible (greedily). At each iteration, OMP adds the atom with the largest projection value to the augmented support matrix D S , with S containing the indices of the selected atoms. Assuming that we know the atom coefficients at the current iteration or representation, the residual takes the form (Dumitrescu and Irofti 2018) r = y -j∈ S z j d j (3.10) The augmented matrix is void in the first iteration. As a result, the residual is the signal r = y. The first step in the OMP algorithm consists of finding the next atom to be added. This step is performed by projecting the matrix D onto the residual or the signal in the first iteration. This is accomplished by determining which atom has the highest inner product with the residual and storing the atom index in S. The new atom is designated as d k r T d k = max j / ∈S r T d j (3.11) Then, we include the selected atom in the augmented matrix D S , which is used to minimize the next residual. Thus, the next S would be S ← S ∪ {k}. The second step in the OMP algorithm consists of computing the new sparse Algorithm Orthogonal Matching Pursuit algorithm Data: Measurement matrix D ∈ R M ×N ; Signal y ∈ R M ; Sparsity level s; Stopping error ε; Result: Support S; Sparse solution z Initialization S = ∅, r = y; while |S| < s and ∥r∥ > ε do Find the index: k = arg max j / ∈S r T d j ; Build the support:S ← S ∪ {k}; Find the sparse solution: z S = min z ∥y -D S z∥ ; Find the residual: r = y -D S z S end representation coefficients utilizing the matrix D S at the current iteration. These coefficients are the solution of the least squares optimization problem min z ∥y -D S z∥ (3.12) where D S are the atoms of D which had the largest projection (the atoms with indices in S ). The analytical solution to 3.12 can be written as z S = D T S D S -1 D T S y (3.13) where z S is a vector of |S| dimension and contains the current non-zero values of the sparse representation z. It is worth noting that at each step of OMP, all of the non-zero coefficients of the sparse representation are recalculated. The third and last step in the OMP algorithm computes the new residual which will be used in the next iteration r = y -D S z S (3.14)

3. 1 . 2

 12 Iterative Soft Thresholding: ISTA The IST algorithm[START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF]) is a convex relaxation method which relaxes the l 0 -norm in 3.8 by an l 1 -norm regularization. It solves the

3. 1 . 3

 13 Iterative Hard Thresholding: IHT The IHT algorithm (Blumensath and Davies 2008) solve the optimization problem min z ∥y -Dz∥ 2 + λ∥z∥ 0 (3.23)

  have been widely used in practical image reconstruction. matrix A describes the system model (e.g. Fourier transform or Radon transform), z is the signal or image to be recovered and y is the incomplete measurement data[START_REF] Poon | On the role of total variation in compressed sensing[END_REF]. The TV semi-norm introduced by[START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] in the context of image denoising can be defined for the gradient of z and Ω ⊂ R m is the m-dimensional signal domain.

2 s

 2 sparse recovery problem 3.7 assumes that the measurement matrix D is a fixed transform such as WT, DCT or Fourier Transform. In the Dictionary Learning (DL) approach the measurement matrix D is learned from a training dataset and adapted to the class of signal at hand. The adaptation process is called Dictionary Learning and can be posed as an optimization problem. Let us consider a set of P training signals y and build the matrix Y ∈ R m×P whose columns are the training signals. DL solves the optimization problem min D,Z ∥Y -DZ∥ 2 .t. ∥z ℓ ∥ 0 ≤ s, ℓ = 1 : P ∥d j ∥ = 1, j = 1 : n (3.32) where the sparsity level s is given a priori, D ∈ R m×n is the dictionary and Z ∈ R n×P is a matrix containing the sparse vectors. The first constraint in 3.32 enforces each column of Z to contain at most s non-zero values. It sets the sparsity level of the representation to be the same for each signal. The second constraint normalizes the dictionary atoms to have unit norm. This constraint is inherited from orthogonal transforms. The normalization constraint aims to remove indetermination caused by a possible multiplicative factor that can multiply D and divide Z without changing the objective function.

  . (2017) also proposed a powerful approach for DL called Sum of Outer Products Dictionary Learning (SOUP-DIL). In order to approximate the training signals Y , they use sparse rank-one matrices or outer products. In Chapter 4 we explain SOUP-DIL algorithm in detail. We implemented a multi-channel GPU version of the SOUP-DIL for multi-channel dictionary training.

  represents filters dimensions) are filters regrouped in a dictionary D = {d k }. The mapping S D : {z k } → K k=1 d k ⊛ z k is called synthesis operator, since it synthesizes the signal y from the sparse vector z k . Alternatively, the sparse vector z k can be represented as a convolution of the signal y and the filters d k Chun and Fessler (2019a), i.e., d k ⊛ y = z k , ∀k = 1, ..., K (3.35) Hence, the mapping A D : y → d k ⊛ y is the analysis operator which coincides with the synthesis operator transpose, A D = S ⊤ D . A dataset of signals {y l ∈ R m : l = 1 . . . P } is used to train the filters d k . The training cost synthesis function Γ s and its analysis counterpart Γ a are defined as follow (as defined in[START_REF] Chun | Convolt: CONVolutional Operator Learning Toolbox[END_REF] Fessler (2017a, 2019a)):

  .37) where z k,l is the feature sparse vector associated to the training examples (y l ) and the filter d k , ∥ • ∥ r is a norm promoting sparsity (i.e., r = 0, 1) and α >> 0 is a penalty weight controlling the sparsity of the features vector z k,l . Thus the training consists of finding a set of filters D = { dk } that "best" sparsify the set of training images such that(Chun and Fessler 2019a):

  min F (x 1 , . . . , x B ) := f (x 1 , . . . , x B ) + decomposed into B blocks x 1 , . . . , x B ({x b ∈ R n b : b = 1, . . . , B}). The function f is differentiable while the set of functions {g b : b = 1, . . . , B} are not necessarily differentiable. For example, g b could be a non-convex l p quasi-norm, 0 ⩽ p < 1). The constraint x b ∈ X b can be incorporated to the function g b by allowing them to be extended-valued. (Extended value means g b (x b ) = +∞ if x b ∈ dom(g b ), for b = 1, . . . , B. In particular, g b can be indicator functions of convex sets) (Chun and Fessler 2019a).

2 (

 2 M method employs an optimization transfer approach with a quadratic majorization matrix of the Hessian. A general definition of a Quadratic Majorization is explained in Lemma 4.2 in (Chun and Fessler 2019a): Let f : R n → R. If ∇f is M -Lipschitz (The definition of M -Lipschitz continuity can be found in Chun and Fessler (2019a) Definition 4.1 ) continuous, then

  which can be solved using value decomposition of M D V. in Cone-Beam CTThe present chapter proposes a new approach for motion-estimation compensation in CBCT. The main idea is to learn joint image-motion dictionaries in order to capture sliding motion at organs boundaries. An image dictionary and a set of DVF at different respiratory gates are learned jointly, thus, allowing the motion and the image to share structural similarities. The learned dictionaries are used within a MBIR algorithm to perform direct motion-estimation motion compensation.The preliminary results show the ability of the coupling dictionaries to capture structural similarities. The method performs well in terms of noise controlling.However, we have found many drawbacks to this methodology. The idea is at early research stage. This chapter related to the work presented in IEEE Nuclear Science Symposium and Medical Imaging Conference. Boston, USA. Oral Presentation.4.1 IntroductionDue to the limited gantry rotation speed in acquiring the CBCT projection data, respiratory motion causes severe blurring artifacts, affecting the image quality of the reconstructed volume and the accuracy of dose planning and delivery[START_REF] Zhi | Artifacts reduction method in 4dcbct based on a weighted demons registration framework[END_REF]. Four-dimensional Cone Beam Computed Tomography (4D-CBCT) has been developed to address this issue, in which the acquired full-sampled projections are sorted into different respiratory phases. Thereafter the phase-resolved projections are reconstructed independently[START_REF] Liu | 5d respiratory motion model based image reconstruction algorithm for 4d cone-beam computed tomography[END_REF]. The above technique is the socalled phase-correlated reconstruction technique which reconstructs the 3D image at each phase from gated data and concatenates the reconstructed images to obtain a Four-dimentional (4D) reconstruction. These reconstruction techniques include the respiration-correlated variants of the Feldkamp-Davis-Kress (FDK)[START_REF] Feldkamp | Practical cone-beam algorithm[END_REF][START_REF] Sonke | Respiratory correlated cone beam ct[END_REF]) and simultaneous algebraic reconstruction[START_REF] Andersen | Simultaneous algebraic reconstruction technique (sart): a superior implementation of the art algorithm[END_REF] approaches[START_REF] Mory | Motion-aware temporal regularization for improved 4d cone-beam computed tomography[END_REF]). Nevertheless, the insufficient conebeam projections per respiratory phase cause streak artifacts in the reconstructed images due to the Nyquist-Shannon theorem[START_REF] Rit | On-the-fly motioncompensated cone-beam ct using an a priori model of the respiratory motion[END_REF]. Several iterative reconstruction algorithms utilizing regularization can mitigate this shortcoming. The TV regularization is one of the most widespread regularization used to reconstruct sparse sample projection data. However, when the number of measurements is insufficient, the reconstruction frequently result in over-smoothing, especially for low-contrast regions[START_REF] Wang | Simultaneous motion estimation and image reconstruction (smeir) for 4d cone-beam ct[END_REF].Alternative solutions are the motion-compensated reconstruction techniques where the motion is estimated by computing the DVF either from scout images or from the projection data. Earlier research works from[START_REF] Li | Enhanced 4d cone-beam ct with inter-phase motion model[END_REF],[START_REF] Rit | On-the-fly motioncompensated cone-beam ct using an a priori model of the respiratory motion[END_REF],[START_REF] Rit | Comparison of analytic and algebraic methods for motion-compensated cone-beam ct reconstruction of the thorax[END_REF] and[START_REF] Rit | Comparative study of respiratory motion correction techniques in cone-beam computed tomography[END_REF]) use an a priori motion estimation from the Four-dimentional Computed Tomography (4D-CT) to back-project along curved trajectories. These approaches are highly dependent on the a priori estimation, meaning the motion-compensation is as good as the motion-estimation used as input. The motion estimation from the CBCT projection data, also known as joint motion-estimation and motioncompensated reconstruction methods, estimate the DVF from the gated Cone-Beam (CB) projections and perform a motion-compensated reconstruction. Examples of joint motion-estimation and motion-compensation methods are: the Simultaneous Motion Estimation and Image Reconstruction (SMEIR) algorithm introduced in (Wang and Gu 2013) and the Motion-Compensated 4D-CBCT approach proposed

1

 1 Fig. 4.1 Matrix representation of the coupled dictionary learning approach. (P im µ) and (P mtn M) represent the training examples, D im and D mtn the dictionaries and Z the common sparse matrix shared by the dictionaries. The sparse vector selects the same signal from (P im µ) and (P mtn M) to update the same atom in D im and D mtn .

  Figure 4.1 shows a representation of the aforementioned hypothesis.

Fig. 4 . 2

 42 Fig. 4.2 Diagram of coupled dictionary learning algorithm for motion estimationcompensation consisting of the dictionary learning training and the motionestimation and motion-compensation module.

  , and (ii) updating the image µ and the motion fields M with a L-BFGS algorithm. The 4D-CBCT reconstruction is achieved by warping the reconstructed images at the reference gate utilizing the estimated DVF. The pseudo-code for motion compensation Algorithm 3: Motion Compensated Reconstruction algorithm Input: Pre-trained dictionaries (D im , D mtn ℓ ), initial DVF (M 0 ), initial sparse matrix (Z 0 ), initial image (µ 0 ), penalty weight (β), gated sinograms (y ℓ ), forward operator (A), patch-extraction operators (P mtn ,P im ), error threshold for OMP (χ) ; D = [D im ; D mtn ℓ ]; #outer iterations N outer . Output: DVF estimation, ( M), Motion-compensated reconstructed image ( μ), Sparse matrix ,( Ẑ) for t = 1, . . . , N outer -1 do

Fig. 4 . 3

 43 Fig. 4.3 Trained coupled dictionaries from the image dataset (D im ) and the DVFs dataset (D mtn ) along x-axis.

Figure 4 .

 4 Figure 4.3 shows the image and motion dictionaries at the end-of-inhalation respiratory phase. Each atom is represented in the figure as an 8 × 8 square patch. Most of them exhibit structural similarities but different values, as D im represents linear attenuation coefficient values and D mtn represents motion amplitude. This confirms that the coupled dictionaries are able to capture similarities between image and DVFs.Figure 4.4 shows the dictionaries trained using an independent

  Figure 4.4 shows the dictionaries trained using an independent sparse vector for each of them. The atoms are not showing structural similarities

Fig. 4 . 4

 44 Fig. 4.4 Trained dictionaries from the image dataset (D im ) and the DVFs dataset (D mtn ) along x-axis using a different sparse vectors for each dictionary.

Figure 4 .

 4 Figure 4.7 shows a sagittal view of the reconstructed images at the end-of-inhalation respiratory phase. The ROI around the spherical lesion shows a small modification in the tumor shape for the MEC-MDL method. The tumor shape and position in the MEC-SDL image results closer to the ground truth in comparison with EP regularizer.

  Fig. 4.5 Coronal view of the: a) Ground truth image; b) No motion compensated image (no prior); c) Reconstructed image utilizing the EP prior ; d) Reconstructed image utilizing the MEC-SDL method; e) Reconstructed image utilizing the MEC-MDL method.

  Fig. 4.6 Reconstructed image profile along the x -axis on the dashed line showed in figure 4.5.

  Fig. 4.7 Sagittal view of the: a) Ground truth image; b) Reconstructed image utilizing the EP prior ; c) Reconstructed image utilizing the MEC-SDL method; d) Reconstructed image utilizing the MEC-MDL method.

  and α > 0 is a weight balancing between accuracy and sparsity and C is the constrain on D = {d k }.

Fig. 5 . 1

 51 Fig. 5.1 Diagram of MCAOL consisting of the unsupervised filter learning phase and the model-based iterative DECT reconstruction module.

  5.18)The pseudo-code for MCAOL training procedure is summarized in Algorithm 4.5.4 Dual-Energy CT Reconstruction with Multi-Channel CAOL5.4.1 X-ray CT Discrete ModelIn this section, we describe the CT discrete physical measurement process with the spectrum of the X-ray source beams composed of two different energies. We consider the case of 2D slice-by-slice imaging systems. For image reconstruction we assume that the continuous attenuation image µ e (r) which denotes the linear attenuation coefficient at position r ∈ R 2 and the energy level e = 1, 2, can be represented by a linear combination of basis functions {b j } associated to a j b j (r) ,(5.19) where µ e,j > 0 for all j = 1, . . . , m and all e = 1, 2. The line integral becomes a summation: R µ e (ν i(l) ) dl =

  of dimensions n × m where n = N d × N θ with N d and N θ being respectively the number of detectors and N θ and the number of angles (projections), and is defined as [A] i,j = a i,j , ∀ i = 1, . . . , n, ∀ j = 1, . . . , m. The spectral X-ray mathematical discrete model is based on the Beer's law which provides the X-ray intensity after transmission. The expected number of detected photons ȳi,e is then redefined as a function of the discrete image µ e as ȳi,e (µ e ) = S e e -[Aµe] i + η e,i (5.21) where µ e = [µ e,1 , . . . , µ e,m ] ⊤ ∈ R m is the vector of attenuation coefficients at source energy e, S e is the mean photons flux at the e-th energy bin, as we assume a mono-energetic intensity, and η e,i ∈ R + is a known additive term representing the expected number of background events (primarily from scatter). In the case of normal exposure, the number of detected photons follows a Poisson distribution, i.e., y i,e ∼ Poisson(ȳ i,e (µ e )) (5.22) and the measurements at each energy bin e = 1, 2 are stored in a vector y e = [y e,1 , . . . , y e,N d •N θ ] ⊤ .

2 +

 2 10, with positivity constraints on (µ 1 , µ 2 ), using the Poisson NLL functions L 1 and L 2 defined as -L e (µ e , y e ) = n i=1 y e,i log ȳi,e (µ e ) -ȳi,e (µ e ), e = 1, 2 (5.23) and the trained regularizer R mc derived from the learned filters (D ⋆ 1 , D ⋆ 2 ) as in 5.18. Therefore, substituting 5.23 and 5.18 into the minimization 5.10, we obtain the following explicit expression for the MCAOL DECT reconstruction problem: i log ȳi,e (µ e ) -ȳi,e (µ e ) ⊛ µ e -z e,k 2∥(z 1,k , z 2,k )∥ 1,0 Rmc(µ 1 ,µ 2 )(5.24)We solve the minimization problem (5.24) by the alternating estimation of the sparse feature images and the linear attenuation images {µ e : e = 1, 2}. Given the current estimates of the sparse coefficients {z t k : k = 1, . . . , K}, the image update µ t e at iteration t is obtained through the following minimization problem e (µ e ) = ρ e L e (µ e , y e )

(E 1

 1 Fig. 5.2 Learned filters {(d 1,k , d 2,k )} with R = K = 49 using the XCAT training dataset, for a MCAOL and b CAOL.

  Fig. 5.3 XCAT Phantom: estimated sparse feature maps z 2,k for e = 1, 2 and k = 1, ..., 49 using CAOL (a) and MCAOL (b); color scale: red for positive values, blue for negative values.

Figure 5 . 2

 52 Figure 5.2 shows the pairs (d 1,k , d 2,k ) of learned convolutional filters obtained by MCAOL (Fig. 5.2a) and separate learning with CAOL (Figure 5.2b). From a qualitative point of view, it is possible to highlight how the MCAOL filter pairs d 1 , d 2 look to share a strong coupling as the edges are identical in the 2 energy images compared to the CAOL filters.

  Fig. 5.4 Comparison of reconstructed XCAT phantom from different reconstruction methods for sparse-view CT with top row corresponding to high energy E 1 = 120 keV and bottom row to low energy E 2 = 60 keV: (a) Ground truth XCAT test image, (b) minimization of the NLL function without prior, (c) MCAOL reconstruction, (d) CAOL reconstruction, (e) separate reconstruction using TV prior and (f) joint reconstruction using JTV prior.

Figure 6 . 1

 61 Figure 6.1 shows the XCAT GT and the reconstruction images for both 60 keV and 120 keV energies obtained by MCAOL and the other algorithms used for comparison. The images are obtained using the parameters which corresponds to the minimum AbsBias shown in Figures 5.5a and 5.5b. It is worth noting that MCAOL manages to substantially reduce the noise as compared with CAOL.

Figure 5 .

 5 Figure 5.5a and Fig. 5.5b show the AbsBias against the STD results respectively for low and high X-ray source energy. Among the methods used for comparison, TV promotes sparsity of the gradient, while JTV promotes joint sparsity of the 2 gradients and therefore are particularly well-suited for XCAT. Despite this observation, it is possible to show that the minimum AbsBias obtained by MCAOL outperforms all other algorithms, or in other words by fixing the STD, the AbsBias achieved by MCAOL is always lower while it is possible to claim that by fixing the AbsBias, the STD of MCAOL is reduced.

  Fig. 5.6 Comparison of reconstructed clinical data from different reconstruction methods for sparse-view CT with top row corresponding to high energy E 1 = 140 keV and bottom row to low energy E 2 = 70 keV: (a) Ground truth clinical test image, (b) minimization of the NLL function without prior, (c) MCAOL reconstruction, (d) CAOL reconstruction, (e) separate reconstruction using TV prior and (f) joint reconstruction using JTV prior.

Fig. 5 . 9

 59 Fig. 5.9 Plot of the mean absolute bias (AbsBias) versus the standard deviation (STD) for the clinical data at a low X-ray source energy (70 keV) and b high X-ray source energy (140 keV).

  Fig. 5.10 Comparison of reconstructed clinical data from different reconstruction methods for low-dose CT with top row corresponding to high energy E 1 = 140 keV and bottom row to low energy E 2 = 70 keV: (a) Ground truth clinical test image, (b) minimization of the NLL cost function without prior, (c) MCAOL joint reconstruction, (d) energy separate reconstruction using TV prior, (e) JTV prior and (f) CAOL-PWLS reconstruction.

Fig. 5 .

 5 Fig. 5.11 Plot of the mean absolute bias (AbsBias) versus the standard deviation (STD) for the low-dose (I 0 = 10 3 ) reconstruction with clinical data at a low X-ray source energy (70 keV) and b high X-ray source energy (140 keV).

Figure 5 .

 5 Figure 5.10 show the reconstruction images for both energies and different methods; MCAOL accurately reconstruct the image features compared to all other methods and it is confirmed that the PWLS model performs poorly.

Figures

  Figures. 5.11a and 5.11b show either that MCAOL is consistently outperforming

  Figures. 5.11a and 5.11b show either that MCAOL is consistently outperforming the other methods in terms of accuracy and variance and that the Poisson NLL formulation leads to a noticeable improvement compared to the PWLS formulation as it is indicated by comparing CAOL and CAOL-PWLS.

  Joint Reconstruction and Material Decomposition for Dual-Energy Cone-Beam CT The present work proposes a methodology for sparse-view image reconstruction in single-source rapid KVp switching in DE-CBCT. The idea is to reconstruct the low and high energy images jointly in order to exploit structural similarities, thus they inform each other during the reconstruction. The JTV regularization was used within a MBIR to encode the low and high energy images. We demonstrate the superiority of JTV regularization in comparison with TV and the Huber edge preserving prior. We evaluate the performance of the reconstructed images for material decomposition. This work was performed in parallel with the MCAOL algorithm presented in the previous chapter and it was published in the 16th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine 2021, also known as Fully3D.

  Index (SSIM) for the JTV, TV and Huber reconstruction algorithms at low-energy (70 KeV) and high-energy (140 KeV). The Gain is calculated as Gain(%) = 100 • (JTV -TV)/TV in the case of TV regularization and Gain(%) = 100 • (JTV -Huber)/Huber in the case of Huber prior Furthermore, we quantitatively evaluated the performance of JTV using the PSNR defined as: PSNR(dB) = 10 • log 10 max(μ GT ) μGT represent the intensity value at the pixel j in the reconstructed image and the ground truth respectively.We utilized the SSIM to measure the visual impact of three characteristics in the reconstructed image: luminance, contrast and structure. The SSIM between two images (x, y) can be defined as:(Kawahara et al. 2020, Wang et al. , σ y , and σ xy are the local means, standard deviations, and crosscovariance for images x, y. The constants C 1 , C 2 are used to prevent a zero denominator and to avoid instability for image regions where the local mean or standard deviation is close to zero.

Fig. 6 . 1

 61 Fig. 6.1 Comparison of reconstructed XCAT phantom from different reconstruction methods for sparse-view DE-CBCT with top row corresponding to high energy (E = 140 KeV) and bottom row to low energy (E = 70 KeV): (a) Ground truth, (b) reconstruction without prior, (c) reconstruction utilizing Huber prior, (d)TV reconstruction, (e) joint reconstruction using JTV prior

Figure 6 . 2 2

 622 Figure 6.2 and 6.3 show that JTV achieves lower absolute bias for any variance level in the two energy images.

Fig. 6 . 4

 64 Fig. 6.4 Comparison of reconstructed Clinical data from different reconstruction methods for sparse-view with top row corresponding to high energy (E = 140 KeV ) and bottom row to low energy (E = 70 KeV ): (a) Ground truth, (b) reconstruction without prior, (c)reconstruction utilizing Huber prior (d)TV reconstruction, (e) joint reconstruction using JTV prior.

Figures 6 .

 6 Figures 6.5 and 6.6 report the AbsBias versus the Var plots. We obtain a similar behavior compared to the XCAT simulations, JTV outperforms TV and the Huber edge preserving prior.

Fig

  Fig. 6.7 MTF obtained from the reconstructed images utilizing JTV, TV and the Huber priors for high-energy clinical data , 140 keV.

1 Fig. 6 . 9

 169 Fig. 6.9 Decomposed images into Bone (top row) and Soft Tissue (bottom row) basis materials utilizing the XCAT images obtained form the (a) ground truth, (b) Huber prior reconstruction (c) reconstruction with TV and (d) reconstruction using JTV prior

  (a) Ground truth (b) Huber prior (c) TV prior (d) JTV prior

Fig. 6 . 10

 610 Fig. 6.10 Decomposed images into Bone (top row) and Soft Tissue (bottom row) basis materials utilizing the clinical images obtained form the (a) ground truth, (b) Huber prior reconstruction (c) reconstruction with TV and (d) reconstruction using JTV prior

(

  ii) Dual energy CT reconstruction utilizing convolutional dictionary learning approaches (Chapter 5); (iii) Dual energy CBCT reconstruction utilizing the joint total variation technique (Chapter 6). The three approaches exploit the hypothesis that the input channels share structural similarities thus thy can "inform" each other during the reconstruction. The proposed methodologies were compared with the state-of-the-art in low dose and sparse-view CT image reconstruction methods. • In Chapter 4 we proposed a coupled image-motion dictionary learning technique for sliding motion estimation-compensation in CBCT. The image and the DVF are simultaneously encoded in order to capture structural similarities between the image and the motion, especially the sliding motion at organs boundaries. The first step consisted of learning a set of coupled image-motion dictionaries from a training data set of DVF and image at different respiratory gates. The second step uses the trained dictionaries as sparse regularizationwithin a MBIR which performs direct motion estimation-compensation from the projection data. We also proposed a single dictionary learning approach where the image and the motion dictionaries are trained separately, thus, they do not share the same sparse component. Both methodologies perform to asses the spacial resolution improvement with joint reconstructions in alternating projection angles. We compared the reconstruction obtained with JTV against the single reconstruction utilizing TV and the Huber prior. The bias versus variance trade-off showed the out-performance of JTV, which scores lower bias and variance for different values of the regularization param-

Fig. 7 . 1

 71 Fig. 7.1 General framework of the sliding motion estimation compensation in CBCT.
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 2 

	.1

.36) 2.2.1.3 Model Based Iterative Reconstruction Analytical methods, which are based on model simplicity, are limited by many drawbacks as outlined in Section 2.2.1. Statistical image reconstruction techniques can help overcome these limitations. These iterative statistical reconstructions provide accurate physics models that include the X-ray spectrum and scatter, which can improve beam hardening artifacts. It is possible to incorporate detector characteristics such as the focal spot size and spatial detector response into the model, which improves spatial resolution. By incorporating the spectral detector response (e.g., photon-counting detectors), one can improve the contrast between different materials. Statistical methods can model non-standard geometries, including irregular angular sampling in "next-generation" geometries, limited angular range, and "missing" data such as sparse views. Object constraint can be incorporated which, helps to reduce image artifacts (e.g., non-negativity constraints, object support, piece-wise smoothness, object sparsity, motion models, dynamic models). Several statistical models have been proposed in the literature.

As discussed in section 2.1.2 the incident photons that interact with the human body follows Lamber Beer's law. We derivated Beer's law in a continuous formulation. This section will derive Beer's law in its discrete form.

Table 3 . 1

 31 List of sparse recovery algorithms according to their classification in Convex Relaxation, Non-Convex Optimization and Greedy Algorithms.

  summarized as follow:(i) If || y || 0 < spark 1 (D)/2 then the solution is the sparsest possible. As a result, once D is known, the matrix Z must be unique, due to the sparse nature of the support.

	(ii) There must be enough training signals in order to have information to retrieve a
	unique solution. Technically, there must be s+1 signals that are linear combinations
	of these atoms for each set of s atoms. That would be P ≥ (s + 1)	n s	signals,
	which is practically impossible. However, reducing the number of signals to 2n(s+1)
	ensures that D is unique.		

Another shortcoming of the DL problem is the multiple local minima. There is a distinct solution for each sparsity pattern. By considering only dictionaries with exactly s nonzero elements, it is clear that the DL problem, for each sparsity pattern, has at least one distinct local minimum

[START_REF] Dumitrescu | Dictionary learning algorithms and applications[END_REF]

.

Table 4 . 1

 41 Peak Signal-to-Noise Ratio (PSNR) in dB and the Root Mean Square Error (RMSE) for the reconstructed image utilizing EP regularizer, MEC-SDL method and MEC-MDL method.

  1,0 denotes the l 1,0 norm. It promotes joint sparsity, i.e., with zero and non-zero values at the same locations, of image features in all the modalities, that are encoded by the multi-channel dictionary D 1 , D 2 .

  DE Training Dataset µ e,l , l = 1, . . . , P , e = 1, 2, joint sparsity weights γ = (γ 1 , γ 2 ), #outer iterations N outer

	Algorithm 4: MCAOL Training Algorithm
	Input: Output: Learned filters (D ⋆ 1 , D ⋆ 2 )
	(D 0 1 , D 0 2 ) ← Normalized random initialization ;
	for t = 0, . . . , N outer -1 do
	Update sparse codes (in parallel) ;
	for k,l=1,1,. . . ,K,P do
	1,0
	(5.17)
	Finally the regularizer R mc in the minimization problem 5.10 is derived from

  Table 6.1 Peak Signal-to-Noise Ratio (PSNR) in dB and the Structural Similarity

	70 KeV PSNR SSIM 140 KeV PSNR SSIM
	JTV	64.85	0.9996	JTV	66.66	0.9998
	TV	62.01	0.9993	TV	63.01	0.9992
	Gain(%)	4.58	0.030	Gain(%) 5.79	0.06
	Huber	60.32	0.9987	Huber	62.98	0.9990
	Gain(%)	7.51	0.083	Gain(%) 5.84	0.080

  Table 6.3 Root Mean Square Error (RMSE of the soft tissue (ROI 1 ) and bone ROI 2 images decomposed utilizing JTV,TV and The Huber regularization.

	Bone RMSE Soft Tissue RMSE
	JTV	0.1722	JTV	0.1710
	TV	0.2142	TV	0.1757
	Huber 0.2672	Huber	0.2395

The detector efficiency is the ratio of the number of photons measured by the detector to the number of incident photons.

In transmission tomography, the initial guess may be an initial reconstruction of the sinograms utilizing an analytical method, for example FBP.

CHAPTER 5

Multi-channel Convolutional Analysis Operator Learning for Dual-Energy CT Reconstruction

Summary

The present Chapter proposes the multi-channel convolutional analysis operator learning MCAOL method for DECT to exploit common spatial features within attenuation images at different energies. It proposes an optimization algorithm which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features. The convolutional filters are pre-trained through the MCAOL algorithm and used within an MBIR, where the unknown images are reconstructed simultaneously by solving one combined optimization problem. As of the authors knowledge, this is the first time MCAOL is applied to DECT image reconstruction and we reported increased reconstruction accuracy compared to CAOL and iterative methods with single and joint totalvariation JTV regularization. This work has been published in the peer-reviewed journal Physics in Medicine and Biology.

Algorithm 5: MCAOL Reconstruction Algorithm

Input: Initial images (µ 0 1 , µ 0 2 ), DECT learned filters D ⋆ = (D ⋆ 1 , D ⋆ 2 ), joint sparsity weight γ = (γ 1 , γ 2 ), penalty weights ρ = (ρ 1 , ρ 2 ), DE sinogram y = (y 1 , y 2 ), system matrix A, intensities (S 1 , S 2 ) , #outer iterations N outer . Output: Reconstructed images (µ ⋆ 1 , µ ⋆ 2 ) for t = 0, . . . , N outer -1 do Update sparse codes (in parallel) ; for k,. . . ,K do

Validation

We validated the proposed methods on two different DECT low-dose acquisition setup. In particular, we analyzed the case of sparse-view DECT reconstruction with normal photon dose and the case of extreme low-photon counts with increased number of views. By approximating the dose as the product of the number of views and photon counts, the latter case represents a more challenging scenario since the overall dose considered is lower than the sparse-view case. Our implementation was based on CONVOLT (Chun 2019).

Methods Used for Comparison

The objective of the simulations with sparse views and normal X-ray source intensity is to demonstrate that MCAOL achieves improved accuracy compared to reconstructing each energy separately by solving 5.1 with the CAOL regularizer defined in 5.9 and with the TV regularizers, as well as simultaneously by solving 5.10 with the JTV regularizer, respectfully defined as

where N j denotes the 8 nearest neighboring pixels of pixel j and ω j,k are weights (ω j,k = 1 for axial neighbors and ω j,k = 1/ √ 2 for diagonal neighbors), and ε > 0 is a small real value to ensure differentiability. For each method, we used the L-BFGS solver to estimate µ 1 and µ 2 .

The experiment with extreme low-counts aims at demonstrating that considering a weighted least-squares approximation of the log-likelihood function no longer guarantees effective reconstruction results, instead the exact Poisson statistics should be accounted. This results in a degradation of the performance of CAOL when optimized through the PWLS solver while using the quasi-Newton solver L-BFGS leads to improved qualitative and quantitative results.

Methodology

All experiments were validated by generating the DECT measurements as in 

(5.28)

where µ

[M ] e,j indicates the reconstructed linear attenuation coefficient at image pixel j from the M -th Poisson noise replicate, R is the spatial region of interest and N R is the number of pixels in the region R. Furthermore, we compute the Standard Deviation (STD) defined as

e,j -μe,j 2 (5.29) where μe,j = 1

e,j . In this work R corresponds to the non-negative pixels region of µ GT e and is the same for both energy levels.

The simulations were repeated for all the methods, for different values of the regularization parameters in the objective functions 5.1 and 5.10 in order to plot AbsBias/STD curves. The quality of the reconstruction is assessed by the proximity of the curve to the origin. Training and reconstruction were performed according to the below-described settings.

Training The optimization problem (5.13) is minimized using the BPEG-M algorithm [START_REF] Chun | Convolutional analysis operator learning: Acceleration and convergence[END_REF] with normalized input dataset. To investigate from under-sampled projection data is now possible thanks to the advancement of CS theory. Several MBIR have been proposed based on the CS theorem. The TV penalty, which promotes sparsity in the image gradient transform domain, has been widely used as a regularization in MBIR. It successfully suppresses the streak artifacts arising from sparse-view CT data, nevertheless, it attempts to penalize the image gradient equally, regardless the underlying image structures. Thus, low contrast regions are often over smoothed [START_REF] Yu | Image reconstruction for few-view computed tomography based on l0 sparse regularization[END_REF][START_REF] Zhu | Improved compressed sensing-based algorithm for sparse-view ct image reconstruction[END_REF].

Aside from l 1 sparsity [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], other prominent sparsity representation options include a mixture of l 1 and TV (l 1 + T V ) (Tibshirani et al. 2005, Gao and Zhao 2010), wavelet [START_REF] Mallat | A wavelet tour of signal p rocessing (academic p ress[END_REF], and tight frame [START_REF] Daubechies | Framelets: Mra-based constructions of wavelet frames[END_REF]. The majority of these algorithms reconstruct a single image by maximizing an objective function composed of the data fidelity term and the sparse regularization term. A multi-channel joint reconstruction technique is a highly suited method for Dual Energy Sparse CBCT.

The TV regularization can be generalized for multi-channel image reconstruction.

The most simplified technique to generalize the TV in multi-channel reconstruction is to sum the total variation of the individual channels, as proposed by [START_REF] Xu | Sparsityregularized image reconstruction of decomposed k-edge data in spectral ct[END_REF]) and [START_REF] Sawatzky | Proximal admm for multi-channel image reconstruction in spectral x-ray ct[END_REF] for spectral CT reconstruction. One important theoretical shortcoming of this strategy is that it independently penalizes each channel, despite the fact that strong inter-channel correlations often exist [START_REF] Rigie | Joint reconstruction of multi-channel, spectral ct data via constrained total nuclear variation minimization[END_REF]. A few generalizations of TV, which impose coupling in the images have been investigated, e.g the Total Nuclear Variation for spectral CT [START_REF] Rigie | Joint reconstruction of multi-channel, spectral ct data via constrained total nuclear variation minimization[END_REF] or in earlier research works for color image restoration [START_REF] Lefkimmiatis | Convex generalizations of total variation based on the structure tensor with applications to inverse problems[END_REF], (Holt 2014), (Keren and[START_REF] Gotlib | Denoising color images using regularization and "correlation terms[END_REF].

The present work proposes a methodology for sparse view image reconstruction in single-source rapid KVp switching DE-CBCT by exploiting structural similarities using the isotropic scalar JTV regularization proposed by [START_REF] Sapiro | Anisotropic diffusion of multivalued images with applications to color filtering[END_REF] in the context of color images processing. The hypothesis behind this approach is that the low-and high-energy images can inform each other giving room for dose reduction and enhancing the spatial resolution deficit due to the down-sampled projection data. Update low energy CBCT image

Experiments

We performed the dual-energy image reconstruction by iteratively alternating between (i) updating the low-energy image µ 1 and (ii) updating the high-energy image µ 2 using the L-BFGS algorithm. We initialized the images using a MLTR algorithm [START_REF] Nuyts | Iterative reconstruction for helical ct: a simulation study[END_REF]) without explicit prior. The pseudo-code for JTV reconstruction algorithm is detailed in Algorithm 6.

Results on XCAT phantom

The numerical down-sampled projection data was modeled by forward projection of a 0.85-mm pixel width 512 × 512 torso axial slice images generated from the XCAT phantom at two energy levels [START_REF] Segars | 4d xcat phantom for multimodality imaging research[END_REF]. We modeled the projector A with a 1-mm FWHM resolution fan beam system. We simulated sparse-view 60-angle sinograms, where 360 is the number of angles in full view.

We distributed the projection angles such that, in a single gantry rotation, one projection angle corresponds to the low energy, and the consecutive corresponds to the high energy projection. For each sinogram, we use a monochromatic source with 10 5 incident photons and 100 background events. In this work, the values of the linear attenuation coefficients at each phantom were generated assuming X-ray energies of 70-KeV (low) and 140-KeV (high).

Figure 6.1 shows the reconstructed images using JTV regularization, TV, the Huber prior and without prior. In absence of prior, the images suffer from undersampling artifacts. The selected ROI in the images show the improved performance of JTV as compared with TV and the Huber edge preserving prior. Low-contrast features can be better identified with JTV.

Discussion and Conclusions

The present work proposes an image reconstruction methodology for sparse-view DE-CBCT using a JTV regularization. The coupled regularizer exploits structural similarities between the two images acquired at low-and high-energy. We compared the performance of the proposed approach against the reconstruction of each image separately using TV regularization and the Huber edge preserving prior.

Reconstruction with JTV resulted in improved contrast and spatial resolution as well as improved material decomposition.

By using JTV and coupling the low-and high-energy images, is possible to incorporate joint structural information between the 2 energies. This allows to reconstruct images from the same object where some features are missing due to the down-sampling projection data, for instance. The results presented in this work show the ability of the JTV regularization to improve sparse-view reconstruction, even when the number projection angles are 6 times less than that of a full-view setting, which allows a significant decrease the radiation dose to the patient. In comparison with TV regularization and the Huber prior, JTV leads to improved accuracy both in reconstruction and material decomposition. The reconstruction with JTV results in better contrast and spatial resolution. The results obtained with patient data or more textured phantoms corroborate the high performance of JTV compared to TV. Further analysis will involve using the proposed reconstruction framework in new CT scanner technologies, like photon-counting spectral CT, where the algorithm can leverage the joint structural similarities from an increased number of images at different energies, leading to an overall improved quantitative estimation even with a further reduction of the acquired projection angles.

well in terms of noise controlling and both estimate the motion field correctly.

The resulting dictionaries learned with the coupled image-motion technique exhibit structural similarities. However, still further improvement are needed in order to capture sliding motion at organ boundaries and image denoising.

Because the single dictionary learning performed better than coupled dictionary learning, we may conclude that restricting the algorithm so that both dictionaries have the same sparse vector is a very strong constraint. Another option is to restrict only the support, which means having two sparse vectors but with zeros and non-zero coefficients at the same position. Moreover, for each respiratory phase, an image dictionary and three DVF dictionaries (corresponding to the DVF along each axis x, y, z) are learned. The approach uses a significant amount of memory. Convolutional dictionary learning is one technique which could mitigate this issue. Another option is to use CNN to fine-tune the DVF. We discuss these concepts in depth in the next section.

• In Chapter 5 we proposed a multi-channel convolutional analysis operator learning framework as an extension of the CAOL method. We applied the MCAOL method to DECT. MCAOL learns convolutional dictionaries of the underlined images by jointly learning filters for the different modalities. In the DECT application, each atom not only carries individual information for each energy individually but also inter-energy information. We utilize two sparse vector coupled through using an l 1,0 sparse mixed semi norm in the MCAOL optimization problems both for training and reconstruction.

We performed extensive experiments for sparse-view and low dose CT. We evaluated through many experiments the superior performance of MCAOL compared to independent optimization of each input energy. MCAOL resulted in higher quality images than state-of-the-art methods. The bias versus variance trade off showed how MCAOL archives the minimum bias and reduces the variance. The proposed methodologies can be seen as a general multi-channel framework. It can be applied to other modalities such as PET/CT, PET/MRI and SPECT/CT. Moreover, it can be extended to multi-energies or spectral CT by training energy dictionaries and combine the sparse vectors z e,k (e : 1, . . . , E, with E is the number of energies) in a mixed norm. The reconstructed images from MCAOL can be used as follow up for image-based material decomposition in Spectral CT.

• In Chapter 6 we implemented the JTV and applied to the fast KVp switching set up in DE-CBCT. We simulated sparse-view CB projection data such that, in a single gantry rotation, one projection angle corresponds to the low energy, and the consecutive corresponds to the high energy. The main purpose was
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Appendix A

Sparsity Promoting Norms

This section discusses why the l 0 pseudo-norm and l 1 norm promote sparsity.

The l p -norm of a vector x = (x 1 , . . . , x n ) measures its size and can be computed as

The norms can be geometrically represented as shown in figure A.1. The points (vector) on the red "star" have l 1 norm equal 1. For the Euclidean distance measure with the l 2 norm every point on the circumference is a vector with l 2 norm equal 1.

Fig. A.1

Geometric properties of l 0 pseudo-norm, l 1 and l 2 norm. Every vector on the red shape has respectively l 0 pseudo-norm, l 1 and l 2 norm equal 1. Reprint from [START_REF] Brunton | Data-driven science and engineering: Machine learning, dynamical systems, and control[END_REF] Let us consider the following system of equation:

where y and D are known. This is an undetermined system of equation with multiple solutions z k . The solution is constrained to the vector with the smallest l p norm among the possible solutions z k .

When p = 2 (Euclidean norm), the selected vector is the intersection point between the red circle and the blue line, as shown in A.2. This point has the two coordinates with non-zero values, thus it is not the sparsest solution. show the minimum-norm level sets that cross the blue line for different norms, while the blue line represents the solution set of an under-determined system of equations.

According to the l 0 and l 1 norms, the minimal norm solution also corresponds to the sparsest solution, i.e., with just one active coordinate. There is no sparsity in the l 2 minimum-norm solution, as all coordinates are active. Reprint from [START_REF] Brunton | Data-driven science and engineering: Machine learning, dynamical systems, and control[END_REF] When p = 0 the point with the smallest l 0 pseudo-norm is on the axis, which has one of its coordinates equal zero. Thus, the l 0 pseudo-norm, due to the geometrical shape, selects the sparsest solution among all the possibles values z k . That is the reason why l 0 pseudo-norm promote sparse solutions. The l 0 pseudo-norm would be the ideal case-scenario to induce sparsity. However with this norm the optimization problem becomes highly combinatorial, NP-hard and extremely difficult to solve.

One approach to relax the optimization problem is to replace the l 0 pseudo-norm by the l 1 . As shown in A. where y e = [y e,1 , . . . , y e,I ] and n e ∼ N (0, W -1 e ), with inverse covariance W e ∈ R I×I defined as follows