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ABSTRACT

The multi-channel joint reconstruction technique is a highly suited method for

multi-modal medical imaging reconstruction. In the technique, the unknown images

are reconstructed simultaneously by solving a single combined inverse problem and

exploiting structural similarities between the images. The hypothesis behind this

approach is that the image modalities inform each other during the reconstruction

allowing artifact reduction and image quality enhancement. The present thesis

develops three image reconstruction models for multi-channel image reconstruction.

The first methodology consists of a Coupled Image-Motion Dictionary Learning

algorithm for Motion Estimation-Compensation in Cone-Beam Computed Tomog-

raphy (CBCT). Standard CBCT motion estimation techniques from the literature

enforce uniform motion smoothing, which can be sub-optimal (e.g., sliding mo-

tion between organs). This approach proposes a motion estimation-compensation

algorithm by penalized-likelihood function with a coupled dictionary learning as

a regularization. The advantage of the methodology is that the image and the

motion can inform each other, thus allowing for noise reduction and learning

features such as sliding motion at organ boundaries. The dictionaries are learned

from a set of images and their corresponding Deformation Vector Fields (DVF) at

each respiratory gate. Results show the ability of the proposed coupled dictionary

learning algorithm to learn from both dictionaries simultaneously and exploit data

dependencies.

The second approach proposes a Multi-channel Convolutional Analysis Operator

Learning (MCAOL) for Dual-Energy CT (DECT) Reconstruction. The method

exploits standard spatial features within attenuation images at different energies

and proposes an optimization method that jointly reconstructs the attenuation

images at low and high energies with a mixed norm regularization on the sparse

features. In particular, the regularization term promotes the joint sparsity between

features obtained by pre-trained convolutional filters through the Convolutional

Analysis Operator Learning (CAOL). Extensive experiments with simulated and

real CT data were performed to validate the effectiveness of the proposed meth-
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ods. Qualitative and quantitative results on sparse-views and low-dose DECT

demonstrate that the proposed MCAOL method outperforms both CAOL applied

on each energy independently and several existing state-of-the-art model-based

iterative methods.

In the third technique, we focus on the sparse view single-source fast KVp switching

acquisition set-up in Dual Energy CBCT to reduce the total dose delivered during

a CT acquisition. We propose to exploit the Joint Total Variation regularization

in the reconstruction problem, between low and high energy images, to reduce

the artifacts due to the under-sampling of the angular views. Through numeri-

cal experiments and patient data, we show the benefit of the proposed method

for material decomposition and estimation both qualitatively and quantitatively

compared to regularization on the images separately.

Keywords: X-ray Computed Tomography, Dictionary Learning, Image Recon-

struction, Iterative Methods, Optimization.
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CHAPTER 1

General Introduction

1.1 Introduction

Computed Tomography CT has become an invaluable imaging tool in clinical

practice. It was the first non-invasive means of obtaining images of the human

body’s interior that were not distorted by the superposition of different anatomical

features, as in planar X-ray fluoroscopy. As a result, CT produces images with

better contrast compared to traditional radiography. This was a giant stride

forward in advancing diagnostic capabilities in medicine throughout the 1970s

(Buzug 2008).

CT has proven an effective imaging technique for detecting potential cancers or

lesions in the abdomen. A CT scan of the heart may be requested when various

cardiac illnesses or anomalies are detected. CT scans of the head can detect injuries,

tumors, blood clots that cause strokes, bleeding, and other diseases. It can examine

the lungs to see malignancies, pulmonary embolisms (blood clots), excess fluid,

and other illnesses, including emphysema or pneumonia (NIBIB 2021).

CT scanners have gone through seven generations of development and research.

From the first generation to the seventh generation, CT has continually improved

in speed, spatial resolution, and density resolution. Currently, these three aspects

of CT are still goals of manufacturers, but the fourth aspect, low-dose scanning, is

what manufacturers are focused on and is their main direction for CT development.

In general, X-ray CT has been trending towards low-dose CT, ultra-low-dose CT,

and spectral CT, which have an accurate positioning and qualitative diagnosis

using the least amount of radiation possible (Liu 2018).

Common strategies to lower X-ray radiation dose are: lowering the X-ray exposure

in each view by adjusting the tube current; decreasing the number of projection

angles (sparse-view)-CT. However, reducing the number of projection angles leads

to inaccuracy in the resultant image. More sophisticated methods are needed to

process the raw data from CT systems to reduce radiation while still producing

good quality images. These methods are known as image reconstruction and are

one of the main topics of research in the CT field. Researchers constantly develop
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new, faster, and more accurate image reconstruction algorithms.

1.2 Aim of the Thesis

The present thesis aims to develop sophisticated X-ray CT image reconstruction

algorithms to improve image quality while keeping the radiation dose as low as

possible. The objective is to deploy new model-based iterative reconstruction

algorithms based on the Compressed Sensing (CS) theory and Machine Learning.

Proof-of-concept methods are developed with an emphasis on the joint reconstruc-

tion of multi-channel modalities to exploit structural similarities in the images.

1.3 Structure of the Thesis

The present manuscript is composed of five main chapters in addition to a general

introduction presented in Chapter 1, the Conclusions presented in Chapter 7 and

the appendices.

Chapter 2 explains the physics and mathematical principles of the X-ray CT.

It provides detailed information about the X-ray production (Bremsstrahlung

radiation) and the main interaction process of the X-ray with the matter at the

diagnostic energies (Photoelectric effect, Compton scattering, and Coherent scat-

tering). Furthermore, it goes through the advancement of the CT generations

by describing the seven generations and their main characteristics. The second

part of the chapter explains the mathematics behind image reconstruction in CT

starting with the analytical methods and continuing with the Model-based iterative

reconstructions (MBIR). It explains in detail the main optimization algorithms for

MBIR used in the thesis (e.g., Newton approaches with Limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) algorithm).

Chapter 3 describes the CS theory and provides a literature review of the main

sparse recovery algorithms used in the thesis (Orthogonal Machine Pursuit (OMP),

Iterative Soft Thresholding (IST), Iterative Hard Thresholding (IHT) ). It describes

the Total Variation (TV) semi norm and its implication in the CS theory. The

Dictionary Learning (DL) problem and the main optimization algorithms for patch-

based dictionary learning are explained in detail in this chapter. The Convolutional

Dictionary Learning (CDL) and, more specifically, the Convolutional Analysis

Operator Learning (CAOL) are explained. The Block Proximal Extrapolated

Gradient method using a Majorizer (BPEG-M) algorithm for the optimization of

the CAOL algorithm is detailed as well as its application to the CAOL problem.

Chapter 4 depicts the first contribution of this thesis. We deploy a new approach for

motion-estimation compensation in Cone-Beam Computed Tomography (CBCT)
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by learning joint image-motion dictionaries in order to correct sliding motion at or-

gans boundaries. First, the state-of-the-art of the motion estimation-compensation

with sliding correction in CBCT is presented. Then, the model is explained in

detail and the methods used for comparison. Details on the experiments performed

are explained, and the more relevant results are discussed. An extensive discussion

section details the follow-up projects of the proposed approach.

Chapter 5, which is the major contribution of the thesis, proposes the Multi-channel

Convolutional Analysis Operator Learning (MCAOL) method for Dual-Energy

Computed Tomography (DECT). It proposes an optimization algorithm that jointly

reconstructs the attenuation images at low and high energies with a mixed semi-

norm regularization on the sparse features. First, it details the state-of-the-art of

joint reconstruction within the CS theory. Then, the methodology is explained in

detail and the algorithm used for comparison. The experiments performed with

low-dose CT and sparse-view CT for the Extended Cardiac-Torso (XCAT) phantom

and the clinical data are detailed in the chapter guaranteeing their reproducibility.

Chapter 6 proposes a methodology for sparse-view image reconstruction in single-

source rapid Peak Kilo-Voltage (KVp) switching in Dual-Energy Cone Beam

Computed Tomography (DE-CBCT). The Joint Total Variation (JTV) regulariza-

tion is implemented and used within a MBIR to encode the low and high energy

images. The performance of the reconstructed images for material decomposition

is evaluated and compared with the single reconstruction utilizing TV and the

Huber prior.
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Computed Tomography and Image Reconstruction

2.1 X-ray Tomographic Imaging

The earliest diagnostic imaging technology with X-rays was created immediately

after Roentgen discovered X-rays in 1895. X-rays are electromagnetic radiation

that propagates through matter and interacts with it through various physical

processes. Planar radiography and CT utilize differential absorption of X-rays

while traveling through human tissue. For example, bones absorb X-rays more

efficiently than soft tissue. Therefore, the interaction of X-rays with matter can

be used as a non-invasive alternative to imaging an object. In radiography, an

X-ray beam irradiates an object providing a two-dimentional (2D) image, which is

the “shadow” of the 3D object. The projection becomes a superposition of internal

structures, making it difficult for the radiologist to identify them. Moreover, it is

quite challenging to differentiate low-contrast structures in tissue.

CT was developed to overcome these limitations and to be able to acquire a fully

three-dimensional image. The CT machine consists of an X-ray source and a

radiation detector with multiple rows placed in the opposite direction to the source.

The source and the detector rows are rotated in synchronization around the patient.

A set of 2D projections are acquired and further reconstructed to form the 3D

images (Smith and Webb 2010). Figure 2.1 shows the basic principle of CT scanner

and a picture of a modern multi-detector helical scanner.

2.1.1 X-ray Generation

The X-ray source consist of an X-ray tube. The X-rays photons are produced when

accelerated electrons hit a target with a high number of protons.

The tube is composed of an electron source, the cathode, commonly a heated

filament, and an anode, usually made of tungsten and contained in an evacuated

glass envelope. First, a high voltage is applied between the cathode and the anode.

This voltage accelerates the electrons in a range from 30 to 140 kilo-volts. This

accelerating voltage is also known as the Peak-Kilo-voltage (kVp). When the
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Fig. 2.1 A modern helical CT scanner (left). The basis principle of CT. The X-ray
source and detector set-up(center). A 3D reconstructed volume of the heart utilizing CT
scanning(right). Reprint from Smith and Webb (2010), O’Donnell (2022)

high-energy electrons collide with the target (tungsten anode), they pass close to

the nucleus in the atoms. They are influenced by its electric field (Allisy-Roberts

and Williams 2007). They are decelerated, deflecting their trajectories, decreasing

the electron’s kinetic energy. The energy “lost” by the electron in this process is

emitted as X-rays photons or bremsstrahlung radiation (bremsstrahlung is German

for “braking radiation”). The incident electron also loses energy throughout the

tungsten target by ionization, interacting with other electrons in the matter. Thus,

the mean energy lost by the electron in a material of thickness dx can quantitatively

be described by (
dE

dx

)
=

(
dE

dx

)
ionization

+

(
dE

dx

)
bremsstrahlung

(2.1)

where
(
dE
dx

)
ionization

is given by the Bethe-Bloch equation(
dE

dx

)
ionization

= −4πNAρ
Z

Ar

(
e4

mec2

)
z2

β2
· (2.2)[

1

2
ln

(
2mec

2β2γ2Tmax

Im

)
− β2 − δ

2

]
with NA denoting the Avogadro constant, ρ is the material density, Z is the atomic

number, Ar is the atomic weight of the material; e and me the electron charge and

rest mass, respectively. The electron velocity is expressed in units of light speed,

i.e. β = v/c; γ represents the Lorentz factor γ = (1− β2)
−1/2

and Tmax is equal to

the tube voltage times the electron charge and represents the maximum kinetic

energy that may be transmitted in a single collision; δ is a density correction of
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the ionization energy, and Im is the mean ionization energy of the material (Buzug

2008).

The second term in 2.1 is the Bremsstrahlung photons energy and is given by

quantum electrodynamics (QED) (Buzug 2008)(
dE

dx

)
bremsstrahlung

= −4αNAρ
Z2

A

(
e2

mec2

)2

E ln

(
183

Z1/3

)
, (2.3)

where α denotes the fine-structure constant.

The bremsstrahlung radiation has a continuous spectrum with an energy range

from zero to the maximum kinetic energy of the bombarding electron depending on

how much the nucleus electric field impacts the electrons. Figure 2.2 illustrates the

bremsstrahlung emission mechanisms in the atom and the X-ray energy spectrum

from tungsten anode operating at 120 KVp accelerating voltage. The spectrum

contains vertical lines corresponding to characteristics X-ray. These characteristics

X-rays are created when a bombarding electron collides with a K-shell electron in

the tungsten anode. If the incident electron’s energy is bigger than the binding

energy of the K-shell electron, the electron in K-shell is ejected, leaving a hole in

the shell. An electron coming from more external shells (L-shell, M-shell) fills the

hole. During the desexcitation process, a characteristic photon is emitted with an

energy level equal to the binding energy difference between the outer and inner

shell electron involved in the transition. Figure 2.2a show the characteristic X-rays

production mechanism (Hapugoda 2020a).

The efficiency of converting kinetic electron energy to bremsstrahlung energy is

given by (Buzug 2008)

η = KZUa, (2.4)

where is K = 9.2 · 10−7kV −1 the Kramers constant (Kramers 1923), Ua is the

accelerating voltage in the X-ray tube, and Z is the atomic number of the anode

material. Following equation 2.4, the quantum efficiency of the conversion from

kinetic energy into X-ray radiation, within a tungsten anode (Z = 74), and

operating with an acceleration voltage of Ua = 140kV is η = 0.01. This efficiency

implies that only 1% of the kinetic energy is converted to bremsstrahlung radiation.

The other 99% is transmitted locally to the lattice, causing the anode to heat up.

As a consequence, CT X-rays tubes may suffer from overheating (Buzug 2008).

2.1.2 Interaction of X-ray with the matter

The X-rays produced in the tube irradiate the patient or the studied anatomical

region. They interact with the tissue via three main processes, which depend on

the photons energy, atomic number of the material, and the density of the material
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Bremsstrahlung X-rays Characteristic X-rays

(a) X-rays production mechanisms
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(b) Energy spectrum of Bremsstrahlung X-rays

Fig. 2.2 a) Bremsstrahlung (Reprint from Hapugoda (2020a)) and characteristics
(Reprint from (Hapugoda 2020b)) X-rays production mechanisms in the atom. b)
X-ray energy spectrum from tungsten anode operating at 120 KVp. (Punnoose
et al. 2016)

in the body. At the diagnostic energies, the primary interaction processes are

photoelectric effect, incoherent (Compton) scattering, and coherent (Rayleigh)

scattering. The interaction of the photons with matter is a stochastic process. The

probability of the interaction depends on the atomic cross-section. We denote σFE

the atomic cross-section for the photoelectric effect, σR for coherent scattering and,

σKN for incoherent scattering.

2.1.2.1 Photoelectric effect

The photo-effect or photoelectric effect is the process where an incident photon

interacts with a binding electron in the atom. Albert Einstein introduced the

photoelectric effect theory in 1905, based on Max Planck’s idea that light consists
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of small packets of energy known as photons or light quanta with energy hν

proportional to the frequency ν of the corresponding electromagnetic wave and

the Planck’s constant h. In CT the incident photons come from the X-ray beam

generated in the X-ray tube. The incident photon is absorbed, leaving the atom in

an excited state. One of the electrons attached to the nucleus is ejected, releasing

the extra energy in the collision. The ejected electron is called a photo-electron

and leaves the atom with a kinetic energy

T = hν − Es (2.5)

where Es is the binding energy of the electron shell where the electron was located,

and ν is the incident photon frequency (Dance et al. 2014). Thus, the photoelectric

effect occurs only when the incident photon energy is greater than the binding

energy. The electron shell that satisfies these criteria and is closest to the nucleus

(with the highest binding energy) is the most likely to lose an electron. The

photoelectric effect cross-section is obtained through Quantum Mechanics, and it

is proportional to fourth power atomic number (Z) and inversely proportional to

photon energy (hν). In the diagnostic photon energy range, a typical dependency

of σFE is

σFE ∼
Z4

(hν)3
(2.6)

The photoelectric effect is the most likely process for low energy photons and high

Z materials. It plays an essential role in CT and is the reason why bone tissue is

easily visible in CT images (Dance et al. 2014).

2.1.2.2 Coherent (Rayleigh) scattering

The Rayleigh scattering mechanisms consists of scattering of photons by non-free

electrons. In the Rayleigh scattering the photon is scattered slightly resulting in a

small change in energy. The differential cross-section can be written as

dσR
dΩ

=
r20
2

(
1 + cos2 θ

)
[F (q, Z)]2 (2.7)

where θ is the photon scattering angle, r0 is the classical electron radius, and

F (q, Z) is a coherent factor calculated utilizing Quantum Mechanical Models with

q = sin(θ/2)
λ

. Denoting λ the wavelength of the incident photon and dΩ is the

solid angle (Figure 2.3). The total atomic cross-section in the Rayleigh scattering

is second power inversely proportional to the energy of the photon and directly
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Fig. 2.3 The solid and scatter angles. A photon incident on a tiny volume element
dV is scattered into the solid angle element dΩ through angle σ. (Reprint from
(Dance et al. 2014))

proportional to the atomic number

σR ∝
Z2

(hν)2
(2.8)

Since the incident photon loses no energy during Rayleigh scattering, the process

does not deliver a radiation dose to matter. Rayleigh scattering is more likely to

occur in photon beams with lower energy (Dance et al. 2014).

2.1.2.3 Incoherent (Compton) scattering

The Compton scattering, as Rayleigh scattering, is the interaction between the

incident photons and the electrons in the matter, where the electron receives an

energy transfer during the process. Figure 2.4 depicts the interaction geometry.

An incident photon with energy hν collides (Billiard-ball-like collision) with the

electron and is scattered through an angle θ. The photon energy after the collision

becomes hν ′. The electron recoils with kinetic energy Te at angle ϕ

Te = hν − hν ′ (2.9)

The differential cross-section can be calculated by assuming the electron is “free”

(unbound). Klein and Nishina first derived it in 1928 utilizing the Dirac theory of

the electron (Klein and Nishina 1929). The expression estimates the differential

cross-section for the scattering of photons by a free electron.

dσKN

dΩ
=
r20
2

(
1 + cos2 θ

)
fKN (2.10)
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Fig. 2.4 Compton scattering geometry. Reprint from (Dance et al. 2014)

where

fKN =

{
1

1 + α(1− cos θ)

}2{
1 +

α2(1− cos θ)2

[1 + α(1− cos θ)] [1 + cos2 θ]

}
(2.11)

where α = hν/m0c
2, with c the speed of the light in vacuum and m0 denoting the

electron rest mass.

Integrating over all the scattered angles, the total cross-section becomes

σKN(hν) = 2πr20

{(
1+α
α2

) (2(1+α)
1+2α

− ln(1+2α)
α

)}
+

2πr20

{
ln(1+2α)

2α
− 1+3α

(1+2α)2

} (2.12)

In 2.1.2.3 is assumed that the electron is free. We can see from this equation

that the attenuation coefficient per electron is independent of the atomic number

and is solely reliant on the photon energy.

2.1.2.4 Linear attenuation coefficient

The total cross-sections mentioned above concern the interaction of photons with

an individual atom. It is necessary to consider the macroscopic properties of

a photon beam when traversing the matter. Consider a photon beam incident

generally on a thin uniform slab of material with thickness dl. The probability

that a photon interacts in this thin slab is given by

Naσdl (2.13)
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where Na is the total number of atoms in a substance per unit volume, and σ is

the total atomic cross-section, which can be calculated utilizing the “or rule” for

probabilities

σ = σFE + σR + σKN (2.14)

The quantity Naσ is the linear attenuation coefficient, and it is denoted by µ in the

manuscript. The estimation of the number of atoms Na can be performed utilizing

the Avogadro constant NA, the material density ρ, and the atomic weight Ar

µ = Naσ =
NAρ

Ar

σ (2.15)

The dimensions of µ in the International System of Units is m−1, although it is

common to use cm−1 (Dance et al. 2014).

Exponential attenuation

Let us consider a thick slab of material of thickness l and If(l) the fluence of

photons that have passed the slab and have not interacted. The variation in the

fluence, dIf , after passing the thickness dl is given by

dIf = −Ifµdl
dIf/If = −µdl

(2.16)

The negative sign implies that the fluence If decreases with l and µ. Integrating

each side of the equation 2.16 ∫ If
If0

dIf/If =
∫ L

0
µdl

If = If0e
−µL

(2.17)

where L denotes the slab’s thickness and If0 is the initial fluence. The resulting

relation in 2.17 is known as Beer’s law and describes the exponential attenuation of

a photon beam. More specifically, If represents the number of photons that pass

through the slab without interaction. In the CT energy ranges, other photons may

be present in the detector after passing the slab (Dance et al. 2014). To account

for these photons, we add a background term s to equation 2.17

If = If0e
−µL + s (2.18)

The expression 2.18 holds for mono-energetic X-rays and assumes the slab of

thickness L is composed of a unique material. Let us denote µ(l) the variation of

the linear attenuation coefficient through a medium with different materials. Thus,

after crossing a multi-material slab of length L, the fluence is given by (Buzug
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2008)

If = If0e
−

∫ L
0 µ(l)dl + s (2.19)

Taking into account the energy dependency of the attenuation values, equation

2.19 must be extended to

If =

∫ Emax

0

If0(E)ε(E)e
−

∫ L
0 µ(E,l)dldE (2.20)

where ε(E) denotes the detector efficiency. The relation 2.19 is the most common

used for image reconstruction. Therefore, in this thesis, it will be used to model

the projection dataset.

2.1.3 Radiation Detection

In the previous sections, we have described how the incident photons coming from

the X-ray tube interact with the body. The photons that cross the body are

collected in a device known as detectors. Specific materials in the detector are used

to convert the X-ray energy of the photons into lower-energy forms. For instance,

optical photons in the case of scintillator detectors or electron-hole pairs in the

case of semiconductor detectors. In the detection process, thousands of secondary

quanta per primary incident photon are generated, which have energies of a few

electron volts. The low energy quanta generated produce an electrical current which

is further conditioned utilizing an electronic amplifier. Then, the signal passes

through an analog-to-digital converter which converts it into a digital number.

These digital numbers are the raw projection data which is further reconstructed

utilizing an appropriated reconstruction algorithm (Drzezo 2016).

2.1.4 CT Configuration and Generations

Several CT configurations have been implemented based on the physics principles

above explained. The CT configurations have gone through multiple enhancements

focusing on an increase in the number of detectors and a reduction in scan time. The

first generation design consists of a single X-ray source emitting a single needle-like

X-ray beam and rigidly coupled single detector cell. The pencil beam is translated

across the patient to obtain a set of parallel projections at one angle. Then the

system rotates γ degrees, and another set of parallel projections is collected by

translating the system across the patient. The process is repeated until they

acquired 180 projections with a Field of View (FOV) of 24 cm approximately. This

type of scanner is known as parallel beam translate-rotate scanners (Buzug 2008).

Figure 2.5a (left) illustrates the configuration of the first tomograph generation.
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The second tomographs generation features an X-ray source with a narrow fan beam

and a short detector array of about 30 elements. Because the fan beam aperture is

small, the X-ray tube and the detector array needs to be linearly translated and

rotated as in the first generation. The fan angle on the earliest second-generation

CT scanners was 10 degrees. This type of scanner is known as Narrow Fan Beam

Rotation–Translation scanners. Figure 2.5a (right) illustrates the configuration of

the second tomograph generation. The first and second-generation are quite slow

in acquisition time per slice. Thus these scanners were mainly restricted to use in

imaging the cranium.

The third generation focuses on decreasing the acquisition time to less than 20

seconds, which allows to acquire an image of the abdomen while the patient holds

their breath. The main improvement in the third generation is the extension of

fan beam angle to a range between 40 to 60 degrees and the detector array to an

arc of 400 to 1000 elements (Figure 2.5b left). For each projection angle γ, the

system can simultaneously irradiate the full measuring field, which is wide enough

to encompass the torso. Thus, the third-generation scanner eliminates the linear

translation of the X-ray source and the detector (Buzug 2008).

The rotation-fix with closed detector ring CT is the fourth generation of scanners.

The X-ray source remains the same as in the third generation, a fan-beam source

rotating continuously around the measuring field. However, the detector is fixed,

making a ring with around 5000 elements. The X-ray tube rotates inside the detector

ring. Figure 2.5b (right) illustrates the configuration of the fourth tomograph

generation.

Other modifications of tomographs have been developed to improve the older

generations. For example, Rotation in Spiral Path Scanner, the Electron Beam

Computerized Tomography, and Rotation in Cone-Beam Geometry. Many authors

identify them as the fifth, sixth, and seventh generations. However, there is no

precise classification (Buzug 2008)).

Electron Beam Computerized Tomography

One approach to decrease the acquisition time is to use the Electron Beam Com-

puterized Tomography (EBCT) system. It was introduced for cardiac imaging and

was capable of acquiring an image slice in 50ms. In EBCT an electron beam is

focused onto tungsten target rings which are positioned in a half-circle around the

patient and generate a fan beam. A stationary detector ring is used to measure the

X-ray irradiation (Buzug 2008). The main application of this type of tomographs

is in cardiology to search calcium build-up in the heart arteries. The EBCT is also

referred as the “cine CT” system, and some authors have categorized it as the fifth

generation.
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First CT Generation Second CT Generation

(a) Rotate-Translate CT scanners

Third CT Generation Fourth CT Generation

(b) Rotation of a fan-beam CT scanners

Fig. 2.5 a) The first and second generation of X-ray CT scanners utilize the
rotate-translate principle. The source and the detector are moved linearly and
rotated at an angle γ. b) Third and fourth generation of CT scanners which
irradiate with a wide fan beam, and the X-ray source rotates continuously without
any linear displacement. In the third generation, the detector has an arc shape
with around 1000 elements, while in the fourth generation, the detector has a ring
shape and is fixed. Reprint from Buzug (2008)

Rotation in Spiral Path

In the previous CT generations, after each 360° rotation, the gantry has to stop and

reverse direction. Mainly because of the cables connecting the rotating components

to the rest of the gantry. They are spooled onto a drum, then released and re-
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Fig. 2.6 Single-slice CT (left) versus multi-slice CT. Reprint from Annelies van der
Plas (2016)

spooled during rotation and reversal. The scanning, braking, and reverse process

needs at least 8-10 seconds, with just 1-2 seconds spent on data acquisition. As a

result, the scan required considerable acquisition time, and the temporal resolution

is poor (Goel 2015). The invention of slip-ring technology eliminates this problem

and led to what Bushberg et al. (2003) identified as the sixth generation scanners.

In this technology, the electrical power is provided via sliding contacts outside the

gantry, allowing the X-ray tube and the detector (in the third generation) to rotate

continuously. Since the gantry can now rotate non-stop, it become possible to

acquire data in the shape of a spiral by translating the patient table through the

gantry. This powerful idea, also known as helical CT or spiral CT, enables quick

scans of entire z-axis regions of interest, in some circumstances within a single

breath hold (Buzug 2008). However, as seen in section 2.1.1 the X-ray tubes suffer

from overheating.

The solution is to employ the X-ray beam more efficiently. For instance, the

X-ray beam has a cone shape by nature. The pencil and fan-beam are created

utilizing appropriate pin-hole or slit collimators. Thus, a distinctive approach

would be to widen the beam in the z-direction (slice thickness) and adapt multiple

detectors rows to collect the data for more than one slice at a time. This idea is the

principle of Multi-slice Computed Tomography (MSCT), which was an extension

of the third generation of tomographs (tube and detector bank linked and rotating

together). The detectors in MSCT are further separated along the z-axis, allowing

for the acquisition of many sections per rotation at the same time. As a result,

with smaller section widths, MSCT delivers more and quicker z-axis coverage each

rotation (Goldman 2008). Figure 2.6 illustrates the difference between single-slice

CT (left) and multi-slice CT which utilizes multiple detector rows. After the

introduction of MSCT in the 1990s, many detector array configurations were
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exploited depending on the number of sections acquired at each rotation. For

example, for 4 data channels, the system acquires 4 slice at a time. From this

point forward, manufacturers started developing 16-channel (16-slices), 64-channel

(64-slices) scanners with different detector configurations. The total number of

detector rows and z-axis coverage varies amongst CT manufacturers (Goldman

2008).

2.1.5 Cone-Beam Computed Tomography

Following the previous idea of exploiting more efficiently the X-ray beam the next

step in the development of CT scanners was the use of a cone-shaped X-ray beam,

which is already created in the X-ray tube. A flat-panel detector, which did not

exist at the time, had to be created to replace the line or multi-line detector

arrays to employ the cone beam. This type of scanners are referred as the seventh

generation of CT scanners and are denominated as CBCT (Bushberg et al. 2003).

The X-ray source and the bank flat-panel detector synchronously rotate around

the patients to acquire between 150 and 600 sequential planar projections in a

single sweep in 180°–360° of gantry rotation. The main application of CBCT is

in dentistry and maxillofacial scan. It produces images of contrasted structures,

which makes it well-suited to imaging skeletal structures in the craniofacial region.

Another major application of CBCT is for Image-Guided Radiation Therapy

(IGRT). In external beam radiotherapy treatments, the machines come with a

CBCT device attached to the gantry. The CBCT machine is used to ensure

optimum patient setup and as image guidance tools in IGRT, by providing a

volumetric image of a patient in the treatment position. With proper calibration,

the CBCT image can be used for dose calculation during the radiotherapy and re-

planning the treatment in case of anatomical changes in the patient. Nevertheless,

the image quality is inferior compared to diagnostic CT. The cone beam irradiates

more volume in the patient. Consequently, a large amount of scattering signal

reaches the detector. The large scatter-to-primary ratio substantially degrades the

reconstructed image. Moreover, depending on the frequency of the acquired CBCT

(given that radiotherapy treatments typically involve 30-50 fractions), the dose to

the patient may become significant. Decreasing the dose, therefore, increases the

noise due to low photon counts, which creates artifacts in the image resulting in

random thin bright and dark streaks that appear preferentially along the direction

of most significant attenuation (Boas et al. 2012).

There is an increasing interest in working with low-dose CBCT acquisitions without

compromising the overall resulting image quality. Additionally, the gantry rotation

in a CBCT acquisition for radiotherapy takes around 1 minute for a 360 degrees

34



CHAPTER 2. Computed Tomography

scan, and the respiratory cycle is up to 6 seconds. The patient breaths ten times

during the acquisition, introducing respiratory motion artifacts in the image (Yoon

et al. 2019). In Chapter 4 we propose a novel algorithm for motion-estimation and

motion-compensation in CBCT to improve the image quality of a CBCT mounted

on the gantry of a linear accelerator used in radiation therapy.

2.1.6 Dual Energy Computed Tomography

Advances in CT continued moving in the direction of improving the visualization of

the images and obtaining better contrast and image quality. One approach toward

enhancing tissue visualization in CT-CBCT is the dual-energy acquisition. The

fundamental concept behind imaging with two energy spectra is that understanding

how a material behaves at two different energies can reveal information about

tissue composition. As seen in Section 2.1.2, the photoelectric effect depends on the

incident photons energy, and its probability or cross-section increases as the incident

photon energy approximate the K-shell binding energy of an electron in the matter.

The K-shell binding energy is different for each element, increasing with atomic

number (Z). The term “K-edge” refers to the increase in attenuation at energy

levels just above the K-shell binding due to increased photoelectric absorption.

This variability of the K-edges for each material and the energy dependence of the

photoelectric effect are the basis of dual-energy imaging techniques.

Let us consider a simple example to illustrate the ideas underpinning dual-energy

approaches. Assume hypothetical elements A and B, with K edges of 90 keV and

190 keV, respectively. Now assume four unknown substances, each containing

unknown quantities of A and B. We irradiate the unknown substances at two

different voltages, 100 kVp and 200 kVp, to determine the amount of element A or

B in each unknown substance. The results are shown in Figure 2.7. Substance 1

does not attenuate at either 100KVp or 200KVp. Therefore it contains neither A

nor B. Substance 2 attenuates more at 200KVp than at 100KVp; consequently,

mainly contains B because 200 kVp is just above 190 keV, the K edge of element

B. Substance 3 attenuates more at 100KVp than at 200KVp; therefore it mainly

contains A, because 100 kVp is close to 90 keV, the K-edge of element A. Substance

4 attenuates similarly to 100KVp and 200KVp; thus, it contains a similar amount

of A and B. (Coursey et al. 2010).

In DECT, it is desirable to have the least possible overlap between spectra,

therefore the lowest and highest potentials offered by the scanner should be used.

A voltage below 60kV would not be useful because most of the radiation would

be absorbed by the human body. Due to heating limitations, X-ray tubes are

not capable of using voltages above 150 KV. Furthermore, the material to be

35



CHAPTER 2. Computed Tomography

Fig. 2.7 Attenuation of elements A and B as a function of energy level (top). Behavior
of substances 1, 2, 3 and 4 at 100kV and 200kV (botton). Reprint from Coursey et al.
(2010).

studied must have a sufficient difference in spectral properties. Only elements

with considerably different atomic numbers can be distinguished by their spectral

properties (Johnson et al. 2011).

2.1.6.1 DECT acquisition methods

There are multiple CT scanner configuration to acquire dual energy projection

data: Sequential Acquisition, Rapid Voltage Switching, Dual-Source CT, Dual

Layer Detector and Multi-spectral CT with energy discriminating detectors.

The sequential acquisition can be achieved as two subsequent helical or CBCT

scans one scan at high kilo-voltage and a second scan at low kilo-voltage. Alterna-

tively, it can be acquired by subsequent rotations at alternating tube voltages and

step-wise table feed. This strategy may make sense in systems with wide detectors,

but the relatively significant latency between both acquisitions is a drawback. The

delay is too lengthy to avoid artifacts caused by cardiac or respiratory movements

and variations in contrast material specifications. However, for clinical DECT

applications that do not need contrast material, such as metal artifact removal

or kidney stone distinction, the sequential acquisition should be a feasible choice

36



CHAPTER 2. Computed Tomography

Fig. 2.8 Dual Energy CT acquisition configurations. A. Only one tube and one detector
are used in the rapid kilo-voltage switching device. The voltage is rapidly cycled between
two levels. B. Dual-source CT system with two tubes operating at different tube voltages
and two detectors mounted orthogonally. C. Dual-layer detection setup consisting of
two layers detectors with different sensitivity profiles and one X-ray tube. Reprint from
(Johnson 2012)

(Johnson 2012).

Dual-Source CT utilizes two tubes operating at different voltages, and corre-

sponding detectors mounted orthogonally in the gantry (Figure 2.8B). This solution

needs double the hardware cost, yet it provides significant DECT benefits: voltage,

current, and filter settings can be selected independently for each tube to ensure

optimal spectral contrast, sufficient transmission, and the least amount of overlap;

despite the angular offset between both spiral paths, the data acquisition does

not require a time offset because equivalent z-axis positions are scanned at the

same time in both orthogonal systems. The main issue with orthogonal setups is

cross-scatter radiation, which partially hits non-corresponding detectors and needs

to be corrected. However, dual-source CT systems use specific detector elements

for measuring and correcting cross-scatter radiation (Johnson 2012).

The dual-layer detection approach uses a two layers energy-resolving detector

and the polychromatic spectrum of one X-ray tube (Figure 2.8C). The scintillator

material in a layer detector determines the sensitivity of the two layers. For exam-

ple, ZnSe or CsI should be used in the top layer, while Gd2O2S should be used in

the bottom layer. The scintillator materials determine the spectral resolution, but

sensitivity profiles have a rather broad overlap since the available materials have

overlapping sensitivity profiles (Johnson 2012).

In rapid voltage switching, one X-ray source is used, with the tube voltage

alternating between high and low voltages. The transmission data are collected

twice for every projection or, in practice, for consecutive projections. The addi-

tional projections and rise and fall times of the voltage modulation require a slower

rotation speed. Another downside is the low photon output at low voltages, which

causes excessive noise and necessitates the use of a relatively large current and,
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therefore, dose to the patient (Johnson 2012).

A multi-spectral CT with photon-counting detectors that discriminate energy

may be a robust solution for dual-energy, or multi-energy, data acquisition. The

spectral CT technique uses photon-counting detectors, which can acquire spectral

information for several bins of energy simultaneously.

2.1.6.2 Application of Spectral CT

As discussed in Section 2.1.6, dual-energy and spectral CT imaging allow discrim-

inating the transmitted photons between different energies. The technique will

enable us to bypass many of the limitations of conventional CT approaches and

opens up many new application possibilities. From Dual Energy CT it is possible

to obtain material-nonspecific and material-specific energy-dependent information,

and both evaluations can be qualitative or quantitative. The material-nonspecific

energy-dependent information includes virtual mono-energetic imaging for beam

hardening suppression, effective atomic map, and electron density map. The

material-specific energy-dependent information includes material decomposition,

material labeling, and material highlighting (Goo and Goo 2017). Detailed material

decomposition methods will be introduced in Chapter 6.

2.2 Image Reconstruction Techniques

The previous sections described the different CT configurations in which the human

body can be scanned and how incident photons are transmitted and collected.

The next challenge lies in reconstructing images from the collected data. This is

the fundamental problem of computed tomography: from an object tomographic

measurement, or more precisely, its projection, reconstruct the object. This problem

is a mathematical problem that has been addressed utilizing analytical methods,

iterative statistical methods, and, more recently, machine learning approaches.

2.2.1 Analytical methods

Analytical methods are the pioneers in medical image reconstruction. They offer

fast and accurate reconstruction. However, they are based on simplified models

that are somehow unrealistic. For example, the measurement noise is ignored

and treated utilizing filtering operations. Analytical methods generally provide

integral-form solutions by assuming the measurements follow a continuous behavior.

Moreover, they required specific standard geometries (e.g., parallel beam and

complete sampling in radial and angular coordinates) (Fessler 2009).
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Fig. 2.9 Schematic representation of the line integrals associated with the Radon
transform. Reprint from Fessler (2009)

2.2.1.1 Radon Transform

Reconstruction methods based on analytical approach are based on the Radon

transform, which relates 2D functions f(x, y) to a collection of line integrals of

those functions. It was first introduced by the Austrian Mathematician Johann

Radon in April 1917 at the annual meeting of the Royal Saxonian Society of

Physical and Mathematical Sciences (Radon 1986).

Assuming an idealized scanner system, the scanner detector measurements can be

represented according to Beers Law:

If (r, γ) = If0 e
−

∫
L(r,γ) f(x,y)dxdy (2.21)

where L(r, γ) denotes the line in the Euclidean plane forming an angle γ with the

y-axis and at distance r from the origin (Fessler 2009):

L(r, γ) =
{
(x, y) ∈ R2 : x cos γ + y sin γ = r

}
(2.22)

= {(r cos γ − ℓ sin γ, r sin γ + ℓ cos γ) : ℓ ∈ R}
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The line integral through the object f(x, y) along the line L(r, γ) takes the form

pγ(r) =

∫
L(r,γ)

f(x, y)dℓ (2.23)

=

∫ ∞

−∞
f(r cos γ − ℓ sin γ, r sin γ + ℓ cos γ)dℓ (2.24)

(2.25)

Thus the Radon transform of function f(x, y) is defined through the operator

R → Rf with Rf(x, y) = pγ(r). The projection of f(x, y) at the gantry rotation

angle γ is the function pγ(·). The 2D image reconstruction problems consist of

recovering f(x, y) from its projection pγ(·). The Radon transform models the system

imaging. In transmission tomography the scanner detector measurement is defined

as

If (r, γ) = If0 e
−pγ(r) (2.26)

Radon transform properties

The following is a list of the most notable properties of the Radon transform. We

use the notation from Fessler (2009); i.e f(x, y)
R↔ pγ(r) is Rf(x, y) = pγ(r)

• Linearity

If g(x, y)
R↔ qγ(r), then αf(x, y) + βg(x, y)

R↔ αpγ(r) + βqγ(r)

• Shift / translation

f (x− x0, y − y0)
R↔ pγ (r − x0 cos γ − y0 sin γ)

• Rotation

f (x cos γ′ + y sin γ′,−x sin γ′ + y cos γ′)
R↔ pγ−γ′(r)

• Magnification/minification

f(αx, αy)
R↔ 1

|α|pγ(αr), α ̸= 0

• Flip

f(x,−y) R↔ pπ−γ(−r)
f(−x, y) R↔ pπ−γ(r)

pγ(−r) = pγ + π(r)

• Laplacian(
∂2

∂x2 +
∂2

∂y2

)
f(x, y)

R↔ ∂2

∂r2
pγ(r)

If we display the projections pγ(r) of a 2D Dirac impulse, where usually r and

γ are the horizontal and vertical axes respectively, then the projection image is
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Fig. 2.10 Schematic representation of the back projection operation for a single
projection view. Reprint from Fessler (2009)

a sinusoid corresponding to the function r = x0 cos γ + y0 sin γ. This function is

termed sinograms, and represents the raw data used to reconstruct an image.

Back projection

The straightforward approach to recover the object represented by the function

f(x, y) from the projections pγ(r) is to take each sinogram value and spread it back

into the object space along the line integral (Figure 2.10). In image reconstruction,

this operation is named back projection. However, this operation does not retrieve

the object f(x, y). It produces a blurred version of the object fb(x; y) which is

called laminogram.

The back projection operation can be written as

fb(x, y) =

∫ π

0

pγ (x cos γ + y sin γ)dγ, (2.27)

which corresponds to the transpose of the Radon transform. The practical backpro-

jection are performed utilizing four distinct approaches: rotation-based backpro-

jection, ray-driven backprojection, pixel-driven backprojection and distance-driven

backprojection (De Man and Basu 2002).
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2.2.1.2 Inverse Radon Transform

In order to recover the object f(x, y), one must compute the Inverse Radon

transform. There exist several alternatives, e.g. direct Fourier reconstruction

based on the Fourier-slice theorem, the back project-filter method based on the

laminogram and Filtered Back Projection (FBP) method. FBP is one of the most

popular and used method in image reconstruction. The following section describes

the FBP algorithm.

Filtered back projection

The filtered back projection approach is based on the Fourier-slice theorem, also

known as the central-slice theorem or projection-slice theorem. It states the

following: “If pγ(r) is the Radon transform of the function f(x; y), then the One-

dimentional (1D) Fourier transform of pγ(r) equals the slice at angle γ through

the 2D Fourier transform of f(x; y)”. Mathematically, if we denote Pγ(ν) as the

1D Fourier transform of pφ(r):

Pγ(ν) =

∫ ∞

−∞
pγ(r)e

−ı2πνr dr (2.28)

and F (u, v) the 2D Fourier transform of f(x, y)

F (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−ı2π(ux+vy)dx dy (2.29)

then the Fourier-slice theorem can be written as follow

Pφ(ν) = F (ν cosφ, ν sinφ) ∀ν ∈ R, ∀φ ∈ R, (2.30)

The FBP uses the Fourier Slice theorem as follow

f(x, y) =

∫∫
F (u, v)eı2π(xu+yv)du dv (2.31)

=

∫ π

0

∫ ∞

−∞
F (ν cos γ, ν sin γ)eı2πν(x cos γ+y sin γ)|ν|dνdγ (2.32)

=

∫ π

0

∫ ∞

−∞
Pγ(ν)e

ı2πν(x cos γ+y sin γ)|ν|dνdγ (2.33)

=

∫ π

0

p̌γ(x cos γ + y sin γ)dγ (2.34)

where the filtered projection p̌γ is defined as

p̌γ(r) =

∫ ∞

−∞
Pγ(ν)|ν|eı2πνr dν (2.35)
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where |ν| represents the Ramp filter (due to its shape) applied to the frequency

domain. The FBP method summarizes as follow (Fessler 2009)

f → Projection → pγ → Ramp filters → p̌γ → Backprojection → f̂

• Compute the 1D Fourier transform of the projection pγ(·) at each projection

angle γ to obtain Pγ(ν)

• Compute P̌γ by multiplying Pγ and the Ramp filter |ν|, i.e., P̌γ(ν) = |ν|Pγ(ν)

• For each angle γ compute the inverse 1D Fourier transform P̌γ(ν) to obtain

the filtered projection p̌γ(r) (Equation 2.35)

• Backproject the filtered sinogram using 2.27 to obtain f̂(x, y), i.e.

f̂(x, y) =

∫ π

0

p̌γ(x cos γ + y sin γ)dγ. (2.36)

2.2.1.3 Model Based Iterative Reconstruction

Analytical methods, which are based on model simplicity, are limited by many

drawbacks as outlined in Section 2.2.1. Statistical image reconstruction techniques

can help overcome these limitations. These iterative statistical reconstructions

provide accurate physics models that include the X-ray spectrum and scatter,

which can improve beam hardening artifacts. It is possible to incorporate detector

characteristics such as the focal spot size and spatial detector response into the

model, which improves spatial resolution. By incorporating the spectral detector

response (e.g., photon-counting detectors), one can improve the contrast between

different materials. Statistical methods can model non-standard geometries, includ-

ing irregular angular sampling in “next-generation” geometries, limited angular

range, and “missing” data such as sparse views. Object constraint can be incor-

porated which, helps to reduce image artifacts (e.g., non-negativity constraints,

object support, piece-wise smoothness, object sparsity, motion models, dynamic

models). Several statistical models have been proposed in the literature. Table 2.1

illustrates a list of the most popular statistical reconstruction methods for X-ray CT.

2.2.1.4 Discrete model

As discussed in section 2.1.2 the incident photons that interact with the human body

follows Lamber Beer’s law. We derivated Beer’s law in a continuous formulation.

This section will derive Beer’s law in its discrete form.
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Model Based Iterative Reconstruction for X-ray CT
Algebraic reconstruction technique (ART)

(Gordon et al. 1970)
Simultaneous Algebraic reconstruction technique (SART)

(Andersen and Kak 1984)
Simultaneous iterative reconstruction technique (SIRT)

(Gilbert 1972)
Multiplicative algebraic reconstruction technique
(Lent and Censor 1991, Badea and Gordon 2004)

Iterative coordinate descent
(Thibault et al. 2007, Sauer and Bouman 1993, Bouman and Sauer 1996)

Roughness regularized Least Square for tomography
(Kashyap and Mittal 1975)
Ordered-subsets algorithms

(Erdogan and Fessler 1999, Beekman and Kamphuis 2001, Lee 2000)

Table 2.1 Statistical reconstruction methods for X-ray CT.

Let i denote the index of the pixel detector locations, where i = 1, . . . , n. Generally

in transmission scans and in modern X-ray CT systems n ≈ 105 − 106. Let bi

denote the number of photons collected in the detector when there is no patient

(blank scan). This value bi depends on the X-ray source intensity, the scan duration,

and the detector efficiency at the source photon energy 1.

Denote yi a random variable representing the number of photons counted in the

detector for the ith ray. A statistical model for the transmission measurement

assumes that they are independent Poisson random variables with means given by

(Fessler 2000).

E[Yi] = bi exp

(
−
∫
Li

µ0(x⃗)dl

)
+ si (2.37)

where si represents the background events (such as random coincidences, scatter,

and cross-talk). The reconstruction problem consists of estimating µ from the

measurement realizations {yi = Yi}NY

i=1 (the discrete sinograms). Image reconstruc-

tion naturally becomes a statistical problem due to the primary concern of noise.

Moreover, since the numbers of measurements is finite µ can be represented with

a finite parametrization. An approach to parameterize the linear attenuation

coefficient map is through a finite basis expansion as follow

µ0(x⃗) =

NP∑
j=1

µjχj(x⃗) (2.38)

1The detector efficiency is the ratio of the number of photons measured by the detector to the
number of incident photons.
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Fig. 2.11 Illustration of the function µ(x, y) parametrized utilizing pixel basis functions.
Reprint from (Fessler 2000)

where NP denotes the number of coefficients µj , and χj(x⃗) the basis functions.

Since µ ⩾ 0, one would like to represent the basis functions as non-negative

functions. Conventionally, these basic functions are the “pixels” or “voxels”. The

pixel basis function χj(x⃗) is 1 inside the jth pixel and 0 everywhere else (Fessler

2000).

χj(x, y) = rect

(
x− xj
∆

)
rect

(
y − yj
∆

)
(2.39)

where ∆ is the pixel width and (xj, yj) is the center of the jth pixel. Figure 2.11

illustrates the parametrization. It provides piece-wise-constant approximation to

µ.

At this stage, the problem of estimating the linear attenuation coefficients map

reduces to estimating the vector µ =
[
µ1, . . . , µNp

]
from the set of measurements

y = [Y1, . . . , YNY
] and the line integral becomes

∫
Li

µ0(x⃗)dl =

∫
Li

Np∑
j=1

µjχj(x⃗)dl =

Np∑
j=1

µj

∫
Li

χj(x⃗)dl =

Np∑
j=1

aijµj, (2.40)

where aij denotes the normalized strip integrals (Lo 1988) along the ith ray passing
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through the jth pixel

aij ≜
∫
Li

χj(x⃗)dl (2.41)

The discrete measurement model simplifies to

yi ∼ Poisson {ȳi (µtrue )} , i = 1, . . . , NY (2.42)

where

ȳi(µ) ≜ bie
−[Aµ]i + si (2.43)

with

[Aµ]i ≜
Np∑
j=1

aijµj (2.44)

where A = {aij} is the system matrix.

2.2.1.5 Maximum Likelihood estimation

Maximum Likelihood (ML) estimation is a probabilistic approach for estimating µ

from the observable y. A maximum likelihood estimate of µ is the value µ̂ that

maximizes the likelihood function (Fessler 2000).

µ̂ = argmax
µ≥0

L(µ), L(µ) ≜ logP [Y = y;µ]. (2.45)

Utilizing the Poisson Model 2.42 the measurement joint probability mass function

is

P [Y = y;µ] =

NY∏
i=1

P [Yi = yi;µ] =

NY∏
i=1

e−ȳi(µ) [ȳi(µ)]
yi

yi!
(2.46)

Applying the log to the condition probability 2.46 the log-likelihood function takes

the form

L(µ) =

NY∑
i=1

(yi ln ȳi(µ)− ȳi(µ)− ln yi!) (2.47)

The term ln yi! is constant and may be neglected for optimization. Thus, the

log-likelihood takes the form

L(µ) =

NY∑
i=1

yi ln ȳi(µ)− ȳi(µ) (2.48)

Having the likelihood function, the challenge will be finding an appropriate opti-

mization algorithm to maximize 2.48.
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2.2.1.6 Penalized Maximum Likelihood estimation

If we maximize the log-likelihood function alone, the result will lead to a noisy

image because the transmission tomography is an ill-conditioned problem.

An alternative could be to include a penalty function that favors reconstructed

images that are piece-wise smooth. This procedure is known as regularization. The

expected value of the attenuation coefficients map is obtained by maximizing the

penalized-likelihood objective function

µ̂ ≜ argmax
µ≥0

Φ(µ), Φ(µ) ≜ L(µ)− βR(µ), (2.49)

where R(µ) denotes the penalty term and β is a parameter which controls the

relative contributions of the data fidelity term (the log-likelihood function) and of

the penalty term.

Bayesian approach

The Bayes rule applied to the likelihood probability also leads to objective functions

of the form 2.49. The Bayes rules is mathematically formulated as follow (Bayes

1763)

P (A | B) =
P (B | A)P (A)

P (B)
(2.50)

where

• P (A | B) : Conditional probability defined as the likelihood of an event A

occurring if B is true. The posterior probability of A given B is another

name for it.

• P (B | A): Conditional probability defined as the probability of event B

occurring given that A is true. It can also be interpreted as the probability

of A given a fixed B because P (B | A) = L(A | B).

• P (A) and P (B) are the likelihood of observing A and B respectively without

a given conditions; they are known as the prior probability.

Let assume µ is a random vector corresponding to a prior distribution f(µ)

that is proportional to e−βR(µ). (Markov Random Field models for images entail

such priors by nature (Besag 1986)). The Maximum a Posteriori (MAP) estimate

of µ is the value that maximizes the posterior distribution f(µ|y). By Bayes rule:

f(µ | y) = f(y | µ)f(µ)
f(y)

(2.51)
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and applying the logarithm, the log posterior takes the form

log f(µ | y) ≡ log f(y | µ) + log f(µ) ≡ L(µ)− βR(µ) (2.52)

It’s worth noting that f(y | µ) is proportional to the likelihood function, with

the exception of a constant that makes it a proper density. Furthermore, the

marginal probability f(y) serves as a normalizing constant, ensuring that the

posterior density is appropriate. Therefore, the MAP estimation is computationally

equivalent to the penalized maximum likelihood estimation.

Penalty function: For many authors the attenuation coefficients maps are

considered piece-wise smooth functions. If attenuation maps are piece-wise smooth,

it makes sense for the penalty function R(µ) to discourage images that are too

rough. The most basic penalty function for roughness discouragement examines

the differences between nearby pixel values:

R(µ) =

Np∑
j=1

1

2

Np∑
k=1

wjkψ (µj − µk) (2.53)

where wjk = wkj.

For the four horizontal and vertical neighboring pixels wjk = 1 and for diagonal

neighboring pixels wjk = 1/
√
2. Typical choices of the potential function ψ are the

Quadratic prior (O’Meara 2013), the Huber prior (Huber 1964) and the Geman

prior (Geman 1987). The Huber potential is detailed in Chapter 6.

2.2.2 Optimization Algorithms

After defining the objective function, an optimization algorithm needs to be

developed to maximize the objective function. If one ignores the non-negativity

constraint, one could try to find µ̂ analytically by zeroing the gradient of the

objective function. Unfortunately, there is not closed solution to this problem, even

without taking into account the non-negativity constraint and the prior. Here is

where iterative methods play a roll, in order to find the maximizer of the objective

function. An iterative method is a mathematical procedure which begins with

an initial estimation of µ(0) of the linear attenuation coefficient and generates a

sequences of improved µ(1),µ(2), ...,. The iterates µ(n) should converge as fast as

possible to the solution µ̂. For the purpose of designing an algorithm to optimize

a penalized maximum-likelihood objective function, some characteristics must be

taken into account (Fessler 2000):

• Non-negativity constraint: (µ ≥ 0)
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• Convergence rate: (The fewer iterations the better)

• Computation time per iteration: (Minimize the number of floating point

operations)

• Storage requirements: (Minimize memory usage as much as possible)

2.2.3 Quasi-Newton algorithm

One of the algorithms for optimization are the Newton methods. In order to

understand the Quasi-Newton algorithm it is necessary to introduce the Newton-

Raphson method. Let us consider the case of a 1D variable objective function Φ(µ)

which is twice differentiable Φ : R → R. One attempt to solve the optimization

problem:

min
µ∈R

Φ(µ) (2.54)

Newton’s methods solve optimization problem 2.54 by building a sequences of

{µt} from an initial guess 2 (µ0). It uses a succession of second-order Taylor

approximations of Φ(µ) around the iterates µt to converge towards a minimizer.

The second-order Taylor expansion of Φ(µ) takes the form

Φ(µ) ≈Φ (µt)

0!
(µ− µt)

0 +
Φ′ (µt)

1!
(µ− µt)

1

+
Φ′′ (µt)

2!
(µ− µt)

2

(2.55)

thus

Φ(µ) ≈ Φ(µt) + Φ′ (µt) (µ− µt) +
Φ′′ (ϕt)

2
(µ− µt)

2 (2.56)

where Φ′(·) and Φ′′(·) denotes the first and second derivative of Φ(µ). The minimum

can be achieved by setting the derivative to zero (0 = ∂Φ
∂µ
).

∂Φ
∂µ

= Φ′ (µt) + Φ′′
µt
(µ− µt)

0 = Φ′ (µt) + Φ′′ (µt) (µ− µt]

− Φ′(µt)
Φ′′(µt)

= µ− µt

µt+1 = µt − Φ′(µt)
Φ′′(µt)

(2.57)

The Newton methods then estimates the minimum at each iteration by comput-

ing µt+1 as in 2.57. In the multi-dimensional case, equation 2.57 can be expressed

as

µt+1 = µt −
∇Φ (µt)

∇2Φ (µt)
(2.58)

2In transmission tomography, the initial guess may be an initial reconstruction of the sinograms
utilizing an analytical method, for example FBP.
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where ∇ denotes the gradient and ∇2 denotes the exact Hessian.

A more generic version of 2.57 is what is known as the line search technique, of

which Newton’s method is an example. Line search iterations compute the search

direction pt and decides how far to move along it (Nocedal and Wright 2006a).

µt+1 = µt +mη
t
pt, (2.59)

where mη
t
is called the step length. The search direction pt has the general form

pt = −B−1
t ∇Φ(µt) (2.60)

where Bt is a symmetric and non-singular matrix. With Bt being the identity

matrix, one have the steepest gradient descent algorithm (Nocedal and Wright

2006a). For the gradient descent the iterates take the form

µt+1 = µt −mη
t
∇Φ(µt), (2.61)

In Newton’s method as showed in 2.58 , Bt is the exact Hessian.

Gradient descent uses the first-order Taylor expansion at the current optimized

location to estimate the shape of the optimization space, while Newton’s approach

uses the second-order Taylor expansion. From the graphic point of view, Newton’s

uses a quadratic “bowl” with local curvature to approximate the shape of the

presently optimized point. The second derivative informs the curvature at the

current point and takes steps that are inversely proportional to the degree of

“steepness” (very steep→tiny steps, extreme flat→huge steps). Therefore, Newton’s

method advances to the minimum more rapidly than gradient descent, which

requires more iterations. Figure 2.12 shows a comparison between gradient descent

and Newton’s Method.

The Hessian must be determined on the first iteration and then fully recalculated

on subsequent iterations, making Newton’s technique computationally expensive.

The Newton technique requires iteratively solving a linear system of equations,

which is memory demanding and time consuming. Quasi-Newton techniques

are an alternative to Newtonian procedures. In quasi-Newton techniques, B is

an estimate of the Hessian that is updated using a low-rank formula at each

iteration (Nocedal and Wright 2006a). An example of a quasi-Newton algorithm is

the Broyden–Fletcher–Goldfarb–Shanno algorithm proposed by Charles George

Broyden, Roger Fletcher, Donald Goldfarb and David Shanno (Broyden 1970,

Goldfarb 1970, Shanno 1970).
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Fig. 2.12 A gradient descent (green) versus Newton’s method (red) comparison for
minimizing a function. Newton’s method relies on curvature information (i.e. the second
derivative) to reach more direct the minimum. Reprint from (Alexandrov 2021)

2.2.4 L-BFGS

The L-BFGS iterative solver estimates µt starting the previous iterate µt−1. We

define the first estimate as µ(0). Given a current estimate µ(t), the new estimate

µ(t+1) is obtained as

µ(t+1) = µ(t) − s⋆(B−1)
(t)∇Φ(µ(t))

with s⋆ = argmax
s∈[0,1]

χ(s) (2.62)

and χ(s) = Φ
(
µ(t) − s(B−1)

(t)∇Φ(µ(t))
)

where (B−1)
(t)

is an approximate inverse Hessian of Φ evaluated at µ(t). The

matrix/vector product (B−1)
(t)∇Φ(µ(t)) in (2.62) is directly computed (without

storing (B−1)
(t)
) from the m previous iterates µ(t−p), p = 0, . . . ,m − 1. An

approximate solution of the line-search sub-problem is obtained by backtracking

to match the Wolfe Conditions. The iterative scheme (i.e., w.r.t. t) is repeated

until a convergence criterion is met. A more detailed explanation can be found in

Bousse et al. (2019).

In L-BFGS the next step direction is calculated as the approximate inverse

Hessian times the gradient, but it only needs to store the last several gradient
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updates, not the approximate inverse Hessian.

In the experiments presented in this thesis, we employed the L-BFGS method

to optimize the objective function with regard the linear attenuation coefficient.
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CHAPTER 3

Sparse Regularization for Inverse Problem

The present chapter describes the CS theory and provides a literature review of

the main sparse recovery algorithms used in the thesis (OMP, IST, IHT ). It

describes the Total Variation semi norm, the Dictionary Learning approaches and

the main optimization algorithms for patch-based dictionary learning. The CAOL

and the Block Proximal Extrapolated Gradient with a Majorizer algorithm for the

optimization of the CAOL algorithm are detailed.

3.1 Compressed Sensing Theory

CS is a technique for recovering a signal from fewer samples than the Nyquist-

Shannon sampling theorem requires (Sher 2019). The essential assumption of the

CS theory is that most signals in real applications have a sparse representation

in a certain transform domain with just a few of them being significant and the

rest being zero or negligible. Another essential condition is that measurements

in the signal acquisition domain are incoherent. That is, the distances between

sparse signals are roughly preserved as the distances between the observations

made by the sampling process (Orović et al. 2016, Marques et al. 2018). CS assists

in reducing the energy required for transmission and storage by projecting the

information into a smaller dimensional space. It reduces power consumption by

lowering the sampling rate to the signal’s information content rather than its

bandwidth (Marques et al. 2018, Donoho 2006). The CS process is divided into

three fundamental steps as shown in 3.1.

The sparse representation step is the process of expressing a signal using a

small number of projections on an appropriate basis. A vector signal x ∈ RN is

s-sparse if s elements of its entries are non-zero, where s is denoted as the sparsity

level. Mathematical, this can be written as (Draganic et al. 2017)

∥x∥0 = lim
p→0

N∑
i=1

|xi|p ⩽ s (3.1)
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Sparse
Representation

CS
Acquisition

Sparse
Recovery

Fig. 3.1 The primary technique of compressive sensing.

If a signal is not sparse, it can be sparsified by simply representing it as a suitable

basis. For instances, a linear combination of s≪ N basis vectors. Fundamentally,

the signal x can be represented with N basis vectors {Υi}Ni=1. Let Υ be an N ×N
basis matrix, the sparse representation of the signal x becomes the vector z as

(Marques et al. 2018)

x = Υz (3.2)

A visual example of how the sparse representation works is illustrated in

Figure 3.2. It depicts a 200-sample time-domain signal with 8 different sinusoids.

It is a frequency domain representation of an 8-sparse signal. That means, there

are only 8 non-zero values among the 200 frequency (Marques et al. 2018). Other

examples of sparse representation are Wavelet Transform (WT), Fast Fourier

Transform (FFT), and Discrete Cosine Transform (DCT).

Fig. 3.2 8 sinusoidal samples in (a) time and (b) frequency domains. Reprint
from Marques et al. (2018).

The CS Acquisition process entails obtaining a few measurements y ∈ RM from

the sparse signal, with M ≪ N . Obtaining the measurements consist of sampling

the signal x according to a matrix Φ ∈ RM×N , where ϕi denotes the i
th column of

Φ :

y = Φx+ n (3.3)

y = ΦΥz + n (3.4)

y = Dz + n (3.5)
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≈

y ∈ RM

Dataset

×

D ∈ RM×N

Measurement matrix

z ∈ RN

Sparse matrix

s = 2 non −
zero values

Fig. 3.3 Matrix representation of the Compressive Sensing metrics.

where n is the noise and D ∈ RM×N (D = ΦΥ ) is the measurement matrix. To

reconstruct the original signal from the few selected measurements, the reduction

from N to M signals must preserve the information stored in the s-space.

The last step in the CS process is the sparse recovery. It consists of recov-

ering the sparse signal from the few measurements y through a sparse recovery

algorithm (Arjoune et al. 2017)

CS theory covers two major issues: the design of the matrix D; and implemen-

tation of an efficient sparse recovery method for the estimation of the sparse vector

z, given y, D and s.

The measurement matrix design must be in such a way that the relevant

information of any s-sparse signal is contained in this matrix. The ultimate

objective is to create a suitable measurement matrix with M ≈ s.

Moreover, the measurement matrix should satisfy the Restricted Isometry Property

(RIP) (Donoho 2006):

(1− δs) ∥z∥22 ≤ ∥Dz∥22 ≤ (1 + δs) ∥z∥22 (3.6)

where δs ∈ (0, 1) is the Restricted Isometry Constant (RIC) value and denotes the

lowest number that satisfies 3.6. If the measurement matrix D fulfills the RIP, an

accurate estimation of the sparse signal z can be obtained using a recovery technique,

such as solving an lp-norm problem (Wen et al. 2015). Once the measurement

matrix is appropriately defined, the sparse recovery consists of finding the sparse

vector z by solving:

min
z
∥z∥p s.t. Dz = y (3.7)

where ∥z∥p is the lp-norm of z with 0 < p < 2. The system 3.7 contains an unlimited

number of solutions when M < N , with some exceptions. The problem 3.7 is

NP-hard (non-deterministic polynomial-time hardness): there are no algorithms

that can ensure it will always be solved (Dumitrescu and Irofti 2018). Figure 3.3

shows the connection between the variables in the noiseless scenario. Each column

of the matrix D is called atom.

Several methods for sparse recovery have been proposed in the literature.
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Sparse Recovery Algorithms
Convex

Relaxation
Non-Convex
Optimization

Greedy
Algorithms

Approximate
Message
Passing

(Donoho et al. 2010)

Bayesian
Compressive

Sensing
(Ji et al. 2008)

Matching
Pursuit

(Mallat and Zhang 1993)

Basis
Pursuit

(Chen and Donoho 1994)

Orthogonal
Matching
Pursuit

(Pati et al. 1993)
Least
Angle

Regression
(Efron et al. 2004)

Focal
Under determined
System Solution

(Gorodnitsky and Rao 1997)

Subspace
Pursuit

(Dai and Milenkovic 2009)

Gradient
Projection
for Sparse

Reconstruction
(Figueiredo et al. 2007)

Stage-wise
Orthogonal

Matching Pursuit
(Donoho et al. 2012)

Least Absolute
Shrinkage

and Selection
Operator

(Tibshirani 1996a)

Iterative
Reweighted

Least Squares
(Burrus et al. 1994)

Regularized
Orthogonal

Matching Pursuit
(Needell D. 2009)

Iterative Soft
Thresholding

(Daubechies et al. 2004)

Iterative Hard
Thresholding

(Blumensath and Davies 2008)

Table 3.1 List of sparse recovery algorithms according to their classification in
Convex Relaxation, Non-Convex Optimization and Greedy Algorithms.

They are mainly classified into three categories: convex relaxations, non-convex

optimization techniques, and greedy algorithms (Marques et al. 2018). The convex

relaxations algorithms replace the lp-norm by a smooth approximation. For instance,

replacing it by l1-norm or by a smooth function (Elad 2010). The non-convex

optimization techniques solve the challenge of sparse recovery by using prior

knowledge of the sparse signal distribution. The greedy techniques recover the

sparse signal iteratively (Donoho 2006). They are usually extremely speedy.

Table 3.1 displays a list of sparse recovery algorithms based on the previous

categorization. We selected the most relevant algorithms among the extensive

approaches existing in the literature. The following sections provide a detailed

explanation of the most relevant sparse recovery algorithms covered in the thesis.
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3.1.1 Orthogonal Machine Pursuit: OMP

The optimization algorithm to be solved takes the form

min
z
∥y −Dz∥2 (3.8)

s.t. ∥z∥0 ≤ s

If we had an appropriate guess of the sparsity level s the solution to 3.8 would be

straightforward. However, in the majority of applications there is not an exact

sparsity level estimate. Therefore the choice of s is based on try-and-error approach.

For instance, imposing an error bound

min
z

∥z∥0 (3.9)

s.t. ∥y −Dz∥ ≤ ε

The problem 3.9 may not have a sparse solution if ε is too small. If ε is large, the

solution is over sparse. Dumitrescu and Irofti (2018) suggest ε being larger than

the square root of the noise variance, but of the same order of magnitude.

OMP (Pati et al. 1993) builds the sparse representation support by finding

the column dj ∈ RM (called atom) which is best aligned with the residual vector

r. It chooses the atoms one by one in order to minimize the approximation error

as much as possible (greedily). At each iteration, OMP adds the atom with the

largest projection value to the augmented support matrix DS , with S containing

the indices of the selected atoms. Assuming that we know the atom coefficients at

the current iteration or representation, the residual takes the form (Dumitrescu

and Irofti 2018)

r = y −
∑
j∈ S

zjdj (3.10)

The augmented matrix is void in the first iteration. As a result, the residual is

the signal r = y. The first step in the OMP algorithm consists of finding the next

atom to be added. This step is performed by projecting the matrix D onto the

residual or the signal in the first iteration. This is accomplished by determining

which atom has the highest inner product with the residual and storing the atom

index in S. The new atom is designated as dk∣∣rTdk

∣∣ = max
j /∈S

∣∣rTdj

∣∣ (3.11)

Then, we include the selected atom in the augmented matrix DS , which is used to

minimize the next residual. Thus, the next S would be S ← S ∪ {k}.
The second step in the OMP algorithm consists of computing the new sparse
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Algorithm 1: Orthogonal Matching Pursuit algorithm

Data: Measurement matrix D ∈ RM×N ;
Signal y ∈ RM ;
Sparsity level s;
Stopping error ε;
Result: Support S; Sparse solution z
Initialization S = ∅, r = y;
while |S| < s and ∥r∥ > ε do

Find the index: k = argmaxj /∈S
∣∣rTdj

∣∣ ;
Build the support:S ← S ∪ {k};
Find the sparse solution: zS = minz ∥y −DSz∥ ;
Find the residual: r = y −DSzS

end

representation coefficients utilizing the matrix DS at the current iteration. These

coefficients are the solution of the least squares optimization problem

min
z
∥y −DSz∥ (3.12)

where DS are the atoms of D which had the largest projection (the atoms with

indices in S ). The analytical solution to 3.12 can be written as

zS =
(
DT

SDS
)−1

DT
Sy (3.13)

where zS is a vector of |S| dimension and contains the current non-zero values of

the sparse representation z. It is worth noting that at each step of OMP, all of

the non-zero coefficients of the sparse representation are recalculated.

The third and last step in the OMP algorithm computes the new residual which

will be used in the next iteration

r = y −DSzS (3.14)

The algorithm then continues to iterate until the stopping criteria is reached. There

are two stopping criteria enclosing the optimization problem 3.8 and 3.9. The first

criteria imposes a value of s as the maximum sparse level to be reached. Once

the algorithm reaches the sparsity level, it stops disregarding the error bound ε.

The second stopping criteria sets the error bound ε and increases the sparsity

level at each iteration until the error becomes the error bound. The choice of

the error bound is critical for this criteria since the sparsity level can increase to

the point where the solution is no longer sparse. In Chapter 4 we implemented a

GPU-accelerated version of the OMP algorithm described in algorithm 1.
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3.1.2 Iterative Soft Thresholding: ISTA

The IST algorithm (Daubechies et al. 2004) is a convex relaxation method which

relaxes the l0-norm in 3.8 by an l1-norm regularization. It solves the optimization

problem

min
z
∥y −Dz∥2 + λ∥z∥1 (3.15)

The above optimization (3.15) can be seen as a more general problem

min
z
f(z) + g(z) (3.16)

where f, g : Rm → R are convex functions, but only f is differentiable. Therefore,

f(z) = ∥y−Dz∥2 and g(z) = λ∥z∥1. It can be solved utilizing a proximal gradient

descent method (Rockafellar 1970).

The general approach of the proximal gradient descent method for minimizing a

convex function h(x) can be defined as

xt+1 = proxηh (xt − η∇h (xt)) (3.17)

where t is the current iteration, η is the step size and prox is the proximal operator.

The proximal operator applied to a function h can be defined as

proxh(z) = argmin
x

h(x) +
1

2
∥x− z∥22 (3.18)

Applying the proximal gradient to equation 3.16 the IST algorithm takes the form

zt+1 = argminz

{
f (zt) + (z − zt)

T ∇f (zt) +
1
2η
∥z − zt∥2 + g(z)

}
(3.19)

= argminz

{
1
2η
∥z − (zt − η∇f (zt))∥2 + g(z)

}
Focusing in our specific case g(z) = λ∥z∥1 and denoting z̃t = zt − η∇f (zt) the

problem 3.19 becomes

zt+1 = argmin
z

{
1

2η
∥z − z̃t∥2 + λ∥z∥1

}
(3.20)

which can be solved utilizing a soft thresholding operator applied to each element

on vectors.

zt+1 = Sth (z̃t, ηλ) (3.21)

59



CHAPTER 3. Sparse Regularization for Inverse Problem

where

Sth(ξ, α) =


ξ + α, if ξ < −α
0, if − α ≤ ξ ≤ α

ξ − α, if ξ > α

(3.22)

At each iteration the soft thresholding operator pulls ξ towards the origin by α.

The IST algorithm is guaranteed to converge, however it convergence rate is slow.

Several variations, such as the “fast ISTA” (FISTA), which uses a Nesterov’s

Accelerated Gradient Descent algorithm, have been developed to speed it up (Beck

and Teboulle 2009).

3.1.3 Iterative Hard Thresholding: IHT

The IHT algorithm (Blumensath and Davies 2008) solve the optimization problem

min
z
∥y −Dz∥2 + λ∥z∥0 (3.23)

At each iteration the solution is computed as

zt+1 = Hλ0.5

(
zt +DT (y −Dzt)

)
(3.24)

where Hλ0.5 is the element-by-element hard thresholding operation

Hλ0.5 (zi) =

{
0 if |zi| ≤ λ0.5

zi if |zi| > λ0.5
(3.25)

The IHT algorithm can either finish after a set number of iterations or when the

sparse vector does not change significantly between iterations. Blumensath and

Davies (2009) proves that under the assumption ∥D∥2 < 1 the algorithm converges

to a local minimum of 3.23.

3.2 Total Variation

The TV problem recovers a signal which is sparse in its gradient transform do-

main. As raw images generally assume that their gradients are sparse, TV-based

approaches have been widely used in practical image reconstruction. The TV

problem can be posed as

min
z
∥z∥TV s.t. y = Az (3.26)
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or in its regularized version

min
z

1

2
∥y −Az∥22 + λ∥z∥TV (3.27)

where the measurement matrix A describes the system model (e.g. Fourier trans-

form or Radon transform), z is the signal or image to be recovered and y is the

incomplete measurement data (Poon 2015). The TV semi-norm introduced by

Rudin et al. (1992) in the context of image denoising can be defined for smooth

functions as

∥z∥TV :=

∫
Ω

√
|∇z|2 dxdy =

∫
Ω

∥∇z∥2 dxdy (3.28)

where ∇ indicates the gradient of z and Ω ⊂ Rm is the m-dimensional signal

domain.

In Chapters 4 and 5 we define the l2-TV semi norm defined as

∥z∥TV :=
m∑
j=1

∑
k∈Nk

ωj,k

√
(zj − zk)2 (3.29)

where Nj denotes the 8 nearest neighboring pixels of pixel j and ωj,k are weights

(ωj,k = 1 for axial neighbors and ωj,k = 1/
√
2 for diagonal neighbors). In this case

we represent the image z(j) as a 2D matrix with pixel index (j). In Chapter 6 we

defined an l2-TV semi norm where the gradient is computed utilizing the finite

difference approximation and taking the image z(i, j) as:

∥z∥TV :=
m∑
i,j

√
|zi+1,j − zi,j|2 + |zi,j+1 − zi,j|2 (3.30)

The ∥z∥TV semi norm can be also written as an l1-TV semi norm

∥z∥TV := ∥z∥1 =
m∑
j=1

∑
k∈Nk

ωj,k|zj − zk| (3.31)

For this case one exploits the sparsity of the gradient when solving the optimization

problem 3.27.

Therefore, there are two possible interpretations of the TV regularization. First,

it can be seeing as a sparsity promoting norm in the gradient domain due to the

l1-norm. Secondly, it can be seeing as a regularizer that penalizes the oscillations

in the output signal. By taking the gradient, one work in a domain where the

values themselves are less important than their relationships with their neighbors.

TV regularization measures how much the neighboring point or pixels differ from

each other and forces the neighboring pixels to have similar values. TV-based
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models have the advantage that the image edges are preserved, which is important

for many imaging problems (Chambolle and Pock 2011). The problem 3.27 can be

solved utilizing the first-order primal-dual algorithm for convex problems proposed

by Chambolle and Pock (2011). The FISTA algorithm explained in Section

3.1.2 can be used specially when the l1-TV semi norm is used as regularization.

The Augmented Lagrange approaches can solve problem 3.27, for example the

Alternating Direction Method of Multipliers (ADMM) (Hestenes 1969).

3.3 Dictionary Learning

The sparse recovery problem 3.7 assumes that the measurement matrix D is a fixed

transform such as WT, DCT or Fourier Transform. In the Dictionary Learning

(DL) approach the measurement matrix D is learned from a training dataset and

adapted to the class of signal at hand. The adaptation process is called Dictionary

Learning and can be posed as an optimization problem. Let us consider a set of P

training signals y and build the matrix Y ∈ Rm×P whose columns are the training

signals. DL solves the optimization problem

minD,Z ∥Y −DZ∥22
s.t. ∥zℓ∥0 ≤ s, ℓ = 1 : P

∥dj∥ = 1, j = 1 : n

(3.32)

where the sparsity level s is given a priori, D ∈ Rm×n is the dictionary and

Z ∈ Rn×P is a matrix containing the sparse vectors. The first constraint in 3.32

enforces each column of Z to contain at most s non-zero values. It sets the

sparsity level of the representation to be the same for each signal. The second

constraint normalizes the dictionary atoms to have unit norm. This constraint

is inherited from orthogonal transforms. The normalization constraint aims to

remove indetermination caused by a possible multiplicative factor that can multiply

D and divide Z without changing the objective function.

In general, the dictionary learning method involves finding the dictionary D and

the sparse representation Z such that Y ≈DZ is as good as possible (Dumitrescu

and Irofti 2018). This problem is extremely difficult since it is non-convex and has

a sparsity constraint which makes it NP-hard.

The normalization constraint opens the possibility for a sign flip in the dictionary

atoms and the sparse representation. Moreover, the problem can be indeterminate

due to the fact that a permutation of atoms can be combined with a permutation

of representations to produce an identical objective function. Therefore, if (D,Z)

is a solution of problem, 3.32 then (DP ,P−1Z is also a solution, where P is a

permutation matrix with nonzero elements equal ±1. As a consequence, there
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will be multiple local minima with the same value. Nevertheless, sign flipping and

atom permutations do not hinder the optimization since identifying one of these

minima is sufficient. The uniqueness of the solution is an issue in DL problem.

One may wonder, under which conditions D and Z are the unique matrices

whose product is Y . Dumitrescu and Irofti (2018) summarized as follow: (i) If

|| y || 0 < spark1(D)/2 then the solution is the sparsest possible. As a result, once

D is known, the matrix Z must be unique, due to the sparse nature of the support.

(ii) There must be enough training signals in order to have information to retrieve a

unique solution. Technically, there must be s+1 signals that are linear combinations

of these atoms for each set of s atoms. That would be P ≥ (s+ 1)

(
n

s

)
signals,

which is practically impossible. However, reducing the number of signals to 2n(s+1)

ensures that D is unique.

Another shortcoming of the DL problem is the multiple local minima. There is a

distinct solution for each sparsity pattern. By considering only dictionaries with

exactly s nonzero elements, it is clear that the DL problem, for each sparsity

pattern, has at least one distinct local minimum (Dumitrescu and Irofti 2018).

3.3.1 Optimization algorithm in Dictionary Learning

Several approaches have been developed in the literature for the DL optimization

problem. The straightforward and more successful approach is the alternate opti-

mization. The optimization is performed by iteratively alternating between solving

the sparse code keeping the dictionary fixed and updating the dictionary fixing

the sparse representation variables. The strategy is also called block coordinate

descent. Algorithm 2 shows how DL problem can be split into two optimization

sub-problems (sparse coding and dictionary update) utilizing alternate optimization

approach (Dumitrescu and Irofti 2018).

The most popular algorithms developed for dictionary learning are Method of

Optimal Directions (MOD) and K-means Singular Value Decomposition (K-SVD).

The MOD was introduced by Engan et al. (1999) in 1999. The MOD iteratively

alternates between the sparse-code step and the dictionary updates. The sparse

recovery step is performed for each signal using any standard sparse recovery

technique presented in 3.1. The dictionary update step is analytically solved by

computing D = Y Z−1 with Z−1 denoting the inverse. The MOD is an extremely

effective algorithm that only requires a few iterations to converge. However, due

to the complexities of matrix inversion, the procedure is quite difficult.

The K-SVD algorithm was developed by Aharon et al. (2006) in 2005. Similar to

1The spark of a dictionary D is the smallest number of columns that are linearly dependent.
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Algorithm 2: DL by Alternate Optimization

Data: Training signals set Y ∈ Rm×P ;
Sparsity level s ;
Number of iterations T
Result: Trained dictionary D ; Sparse representation Z
Initialization: Initial dictionary D0;
Initial sparse representation Z0;
for t = 1, . . . , T do

Sparse Coding Update;
Keeping D fixed, solve 3.32 to compute the sparse representations Z
Dictionary Update;
Keeping the nonzero pattern fixed Z, solve 3.32 to compute new
dictionary

Perform atoms normalization : dj ←
dj

∥dj∥
, j = 1 : n

end

MOD, the K-SVD algorithm performs alternate optimization, updating the sparse

representation individually. The main contribution of K-SVD concerns the dictio-

nary update step. Instead of utilizing the matrix inversion the dictionary update

is performed atom by atom. The current atom and its related sparse coefficients

are both updated at the same time, which provides even more acceleration. As a

result, the method is both fast and efficient, and it is significantly less demanding

than the MOD. For each atom the quadratic term in 3.32 is reformulated as∥∥∥∥∥Y −∑
j ̸=k

djz
T
j − dkz

T
k

∥∥∥∥∥
2

F

=
∥∥Ek − dkz

T
k

∥∥2
F

(3.33)

where zT
j are the rows of the sparse representation matrix, and Ek is the residual

matrix. The atoms are updated by minimizing 3.33 with respect to zT
j and dk via

a simple rank-1 approximation of Ek. Updates are performed only for examples

whose current representations use the atom dk. These methods are appropriate for

image patches since they produce a non-structured dictionary (Rubinstein et al.

2010).

Ravishankar et al. (2017) also proposed a powerful approach for DL called Sum

of Outer Products Dictionary Learning (SOUP-DIL). In order to approximate the

training signals Y , they use sparse rank-one matrices or outer products. In Chapter

4 we explain SOUP-DIL algorithm in detail. We implemented a multi-channel

GPU version of the SOUP-DIL for multi-channel dictionary training.
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3.4 Convolutional Dictionary Learning

The dictionary learning technique uses overlapping patches across the training

signals. This approach leads to spatially redundant atoms that are essentially

shifts of a basic atom type to “enforce” the expected spatial-invariance of the

representation. Patch-domain methods suffer from memory limitation, especially

when large dataset is used.

The convolutional dictionary learning approach, instead, replaces the non-structured

dictionary D with a set of convolutional filters. In this method, one can utilize

the entire image instead of small patches and learn filters and obtaining (sparse)

representations directly from the original signals without storing many overlapping

patches (Garcia-Cardona and Wohlberg 2018a).

In the CDL approach convolutional kernels are used to sparsely represent the signal

Chun and Fessler (2017a, 2019a). The signal y can be synthesized by performing

convolution of the filters and the sparse component:

y =
K∑
k=1

dk ⊛ zk . (3.34)

where the signal-dimension vector zk ∈ Rm contains sparse signal features; and

dk ∈ RR (R represents filters dimensions) are filters regrouped in a dictionary

D = {dk}.
The mapping SD : {zk} 7→

∑K
k=1 dk ⊛ zk is called synthesis operator, since it

synthesizes the signal y from the sparse vector zk.

Alternatively, the sparse vector zk can be represented as a convolution of the signal

y and the filters dk Chun and Fessler (2019a), i.e.,

dk ⊛ y = zk, ∀k = 1, ..., K (3.35)

Hence, the mapping AD : y 7→ dk ⊛ y is the analysis operator which coincides

with the synthesis operator transpose, AD = S⊤
D.

A dataset of signals {yl ∈ Rm : l = 1 . . . P} is used to train the filters dk. The

training cost synthesis function Γs and its analysis counterpart Γa are defined as

follow (as defined in Chun and Fessler (2017a, 2019a)):

Γs(D, {zk,l}) =
P∑
l=1

1

2
∥yl −

K∑
k=1

dk ⊛ zk,l∥22 + α

K∑
k=1

∥zk,l∥r. (3.36)

and,
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Γa(D, {zk,l}) =
P∑
l=1

K∑
k=1

1

2
∥dk ⊛ yl − zk,l∥22 + α ∥zk,l∥r. (3.37)

where zk,l is the feature sparse vector associated to the training examples (yl) and

the filter dk, ∥ · ∥r is a norm promoting sparsity (i.e., r = 0, 1) and α >> 0 is a

penalty weight controlling the sparsity of the features vector zk,l. Thus the training

consists of finding a set of filters D̂ = {d̂k} that “best” sparsify the set of training

images such that (Chun and Fessler 2019a):

D̂ = argmin
D

min
{zk,l}

Γ(D, {zk,l}), (3.38)

In Chun and Fessler (2019a) the constraint enforces the filter to satisfy the tight-

frame condition to promote filter diversity: C = {{dk} : [d1, ...dK ][d1, ...dK ]
⊤ =

1

R
IK} where IK is the K ×K identity matrix (see (Hines 2010)). The tight-frame

condition forces the filters to be orthogonal, ensuring diversity.

3.4.1 Optimization Algorithms in CDL

As in DL optimization problem, the approach used in CDL alternates between the

sparse code and the dictionary update. The most common method used are the

Augmented Lagrangian approaches (Chun and Fessler 2017a, 2019a). The first

application of Augmented Lagrangian methods in CDL was proposed by Bristow

et al. (2013).

In Heide et al. (2015), Wohlberg (2015, 2016) a spatial domain ADMM framework

was utilized to solve the CDL problem. These methods use alternate optimization

between the sparse code and the dictionary (i.e., a two-block update), using

augmented Lagrange (or ADMM) methods for each inner update (Chun and

Fessler 2017a). The sparse coding step can be performed utilizing a suitable

sparse recovery algorithm (e.g IHT ) as presented 3.1, while the dictionary update

can be addressed utilizing proximal gradient methods. For example, Chun and

Fessler (2017a, 2019a) introduced a new optimization approach (BPEG-M) for

solving block multi-nonconvex problems as the convolutional analysis and synthesis

operator learning. The following section describe the (BPEG-M) algorithm applied

to CAOL.
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3.4.1.1 Block Proximal Extrapolated Gradient method using a Majorizer

The BPEG-M solve the block multi-nonconvex optimization problem:

minF (x1, . . . ,xB) := f (x1, . . . ,xB) +
B∑
b=1

gb (xb) (3.39)

where x is decomposed into B blocks x1, . . . ,xB ({xb ∈ Rnb : b = 1, . . . , B}). The
function f is differentiable while the set of functions {gb : b = 1, . . . , B} are not

necessarily differentiable. For example, gb could be a non-convex lp quasi-norm,

0 ⩽ p < 1). The constraint xb ∈ Xb can be incorporated to the function gb by

allowing them to be extended-valued. (Extended value means gb(xb) = +∞ if

xb ∈ dom(gb), for b = 1, . . . , B. In particular, gb can be indicator functions of

convex sets) (Chun and Fessler 2019a).

Chun and Fessler (2019a) prove in Section V that the CAOL model 3.38 satisfies

the BPEG-M conditions. Thus it can be solved for two blocks, the zk,l-block and

the D-block. From equation 3.37 and 3.39 can be inferred that

f (z,D) =
P∑
l=1

K∑
k=1

1

2
∥dk ⊛ yl − zl,k∥22 (3.40)

with

g1 (z) = α
P∑
l=1

K∑
k=1

||zl,k||0 (3.41)

and

g2(D) =

{
0 DDT = 1

R
IK

+∞ otherwise.
(3.42)

The BPEG-M method employs an optimization transfer approach with a quadratic

majorization matrix of the Hessian. A general definition of a Quadratic Majorization

is explained in Lemma 4.2 in (Chun and Fessler 2019a):

Let f : Rn → R. If ∇f is M -Lipschitz (The definition of M -Lipschitz continuity

can be found in Chun and Fessler (2019a) Definition 4.1 ) continuous, then

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ 1

2
∥x− y∥2M , ∀x, y ∈ Rn. (3.43)

If f satisfies 3.43, it is also satisfied with M̃ that M̃ >M with M̃ being a diagonal

matrix. A diagonal matrix provides an easy-to-minimize majorizer function. In the

CAOL case f is quadratic, thus, M̃ is a majorizer of the Hessian matrix. Thus,

BPEG-M solves 3.39 by minimizing a majorizer of F cyclically with respect to each

block x1, . . . ,xB while fixing the remaining blocks at their previously updated
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variables. For each block the iterations take the form:

x
(i+1)
b = argmin

xb

1

2

∥∥∥∥∥xb −
(
x
(i)
b −

[
M̃

(i)
b

]−1

∇xb
f (i)x

(i)
b

)∥∥∥∥∥
2

M̃
(i)
b

+ gb(xb) (3.44)

which is a proximal gradient update similar to the IST algorithm. The BPEG-

M block updates applied to CAOL performs the sparse code update, then the

dictionary update.

Sparse code: zk,l-block

Given the current estimate of the dictionary D, the optimization problem for the

sparse code is written as follow:

zl,k = argmin
{z}

P∑
l=1

K∑
k=1

1

2
∥dk ⊛ yl − z∥22 + α||z||0 (3.45)

This problem can be optimally solved utilizing the hard thresholding sparse recovery

algorithm presented in 3.1.3.

z
(i+1)
l,k = H√

2α (dk ⊛ yl) (3.46)

Chun and Fessler (2019a) Section V.B shows how the Hard-Thresholding optimiza-

tion is equivalent to apply the BPEG-M to problem 3.45.

Dictionary Update: D-block

The filters update step consist of solving

argmin
{dk}

P∑
l=1

K∑
k=1

1

2
∥dk ⊛ yl − zl,k∥22 + βg(D) (3.47)

given the current estimate of the sparse component zl,k. Defining Ψld = yl⊛d ∀ d
the filters update problem can be written as

argmin
{dk}

K∑
k=1

P∑
l=1

1

2
∥Ψldk − zl,k∥22 + βg(D) (3.48)

Next step consists of designing the majorizer. One option is utilizing a diagonal

majorization matrix M̃D ∈ RR×R that satisfies M̃D ⪰
∑P

l=1 Ψ
T
l Ψl

M̃D = diag

(
P∑
l=1

∣∣ΨT
l

∣∣ |Ψl| 1R

)
(3.49)

The majorization matrix in CAOL is pre-computed before optimization. However

in the general case of BPEG-M the majorizer is updated at each iteration since it
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depends on the sparse code.

After computing the majorization matrices one applies them in the proximal

mapping problem to update the filters. The Proximal Mapping with Orthogonality

Constraint (PMOC) is obtained by applying 3.44 to the optimization problem

3.48. Thus, the proximal mapping problem is written as

d
(i+1)
k = argmin

K∑
k=1

1

2

∥∥∥∥∥dk−

(
d
(i)
k −

[
M̃D

]−1
P∑
l=1

ΨT
l

(
Ψld

(i)
k − zl,k

))∥∥∥∥∥
2

M̃D

(3.50)

Representing ν =

(
di
k −

[
M̃D

]−1∑P
l=1Ψ

T
l

(
Ψld

(i)
k − zl,k

))
the problem 3.50 can

be re-written as {
d
(i+1)
k

}
= argmin

{dk}

∑K
k=1

1
2

∥∥∥dk − ν(i)k

∥∥∥2
M̃D

,

subject to DDH = 1
R
· I,

(3.51)

Proposition 5.4 in Chun and Fessler (2019a) considers the optimization problem

min
D

∥∥∥M̃ 1/2
D D − M̃

1/2
D V

∥∥∥2
F
, subj. to DDH =

1

R
· I (3.52)

where V =
[
ν
(i+1)
1 · · · ν(i+1)

K

]
∈ RR×K , which can be solved using value decomposi-

tion of M̃DV .
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CHAPTER 4

Coupled Dictionary Learning Algorithm for Motion

Estimation-Compensation in Cone-Beam CT

The present chapter proposes a new approach for motion-estimation compensation

in CBCT. The main idea is to learn joint image-motion dictionaries in order to

capture sliding motion at organs boundaries. An image dictionary and a set of DVF

at different respiratory gates are learned jointly, thus, allowing the motion and the

image to share structural similarities. The learned dictionaries are used within

a MBIR algorithm to perform direct motion-estimation motion compensation.

The preliminary results show the ability of the coupling dictionaries to capture

structural similarities. The method performs well in terms of noise controlling.

However, we have found many drawbacks to this methodology. The idea is at early

research stage. This chapter related to the work presented in IEEE Nuclear Science

Symposium and Medical Imaging Conference. Boston, USA. Oral Presentation.

4.1 Introduction

Due to the limited gantry rotation speed in acquiring the CBCT projection data,

respiratory motion causes severe blurring artifacts, affecting the image quality of

the reconstructed volume and the accuracy of dose planning and delivery (Zhi et al.

2019). Four-dimensional Cone Beam Computed Tomography (4D-CBCT) has been

developed to address this issue, in which the acquired full-sampled projections are

sorted into different respiratory phases. Thereafter the phase-resolved projections

are reconstructed independently (Liu et al. 2015). The above technique is the so-

called phase-correlated reconstruction technique which reconstructs the 3D image at

each phase from gated data and concatenates the reconstructed images to obtain a

Four-dimentional (4D) reconstruction. These reconstruction techniques include the

respiration-correlated variants of the Feldkamp– Davis– Kress (FDK) (Feldkamp

et al. 1984, Sonke et al. 2005) and simultaneous algebraic reconstruction (Andersen

and Kak 1984) approaches (Mory et al. 2016). Nevertheless, the insufficient cone-

beam projections per respiratory phase cause streak artifacts in the reconstructed
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images due to the Nyquist-Shannon theorem (Rit, Wolthaus, van Herk and Sonke

2009). Several iterative reconstruction algorithms utilizing regularization can

mitigate this shortcoming. The TV regularization is one of the most widespread

regularization used to reconstruct sparse sample projection data. However, when

the number of measurements is insufficient, the reconstruction frequently result in

over-smoothing, especially for low-contrast regions (Wang and Gu 2013).

Alternative solutions are the motion-compensated reconstruction techniques where

the motion is estimated by computing the DVF either from scout images or

from the projection data. Earlier research works from (Li et al. 2007), (Rit,

Wolthaus, van Herk and Sonke 2009), (Rit, Sarrut and Desbat 2009) and (Rit et al.

2011) use an a priori motion estimation from the Four-dimentional Computed

Tomography (4D-CT) to back-project along curved trajectories. These approaches

are highly dependent on the a priori estimation, meaning the motion-compensation

is as good as the motion-estimation used as input. The motion estimation from

the CBCT projection data, also known as joint motion-estimation and motion-

compensated reconstruction methods, estimate the DVF from the gated Cone-Beam

(CB) projections and perform a motion-compensated reconstruction. Examples of

joint motion-estimation and motion-compensation methods are: the Simultaneous

Motion Estimation and Image Reconstruction (SMEIR) algorithm introduced in

(Wang and Gu 2013) and the Motion-Compensated 4D-CBCT approach proposed

in (Brehm et al. 2011). Another approach, known as regularized 4D reconstruction

techniques, reconstructs the entire cycle at once, using all of the projection data,

and impose some similarities between subsequent frames by regularizing along

time (Mory et al. 2016). These techniques include (Jia et al. 2010) and (Ritschl

et al. 2012).

The majority of the motion-compensated 4D-CBCT reconstruction typically impose

isotopic smoothing of the DVF, which can be inaccurate, at regions where different

organs are in contact such as the lung-to-thoracic interface or lung-to-heart interface,

where we observe a sliding motion between the organs. In the literature researchers

have addressed this issue by zeroing motion regularization or adding a different

motion constraint at boundaries between organs, but a segmentation of the organs

is required prior to motion estimation (Dang et al. 2016). For example, (Werner

et al. 2009) and (Wu et al. 2008) based motion estimation on the segmentation of

areas that slide along each other. The work from (Schmidt-Richberg et al. 2012)

introduces directional dependent regularization for the DVF estimation. They

differentiate between the normal and tangential motion direction according to the

boundary of the sliding regions. The normal-directed motion regularizer prevents

overlaps, whereas the tangential regularization allows sliding motion. However,
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segmentation of sliding organs is still needed (Delmon et al. 2013).

The present work proposes a novel algorithm for motion-estimation and motion-

compensation in CBCT, based on image-motion dictionary coupling. Each atom of

the dictionary represents a portion of the CBCT image and the associated motion.

The hypothesis behind this approach is that the image and the motion can inform

each other, thus not only allowing for noise reduction but also to learn features

such as sliding motion at organ boundaries. We treat the motion vectors field as an

image and learn dictionaries such that they can inform which motion takes place

at which region of the body. For example, we would like the method to “learn”

the sliding motion at lung boundaries.

The implementation of the proposed methodology concerns two stages: coupled

dictionary learning and motion estimation-compensation. The first step consists

of learning an image-motion coupled dictionary from a training dataset of images

with a pre-estimated motion DVF dataset at different respiratory phases, using

a modified SOUP-DIL algorithm (Ravishankar et al. 2017). In the second step,

we utilize the learned dictionaries as an image-motion prior within a motion-

compensated iterative reconstruction algorithm. This proposed methodology was

validated using a training dataset generated from XCAT phantom (Kainz et al.

2019).

4.2 Direct Motion Compensation by Penalized-Likelihood

The model from (Zeng et al. 2005) was used to describe the image acquisition

with gated motion. We assume that the measurement data are regrouped into L

respiratory gates y1, . . . ,yL, where for all ℓ = 1, . . . , L, yℓ = [y1,ℓ, . . . , y1,ℓ]
⊤ ∈ Rn

is the projection data (sinogram) corresponding to the ℓ-th respiratory gate.

The discrete attenuation image to reconstruct takes the form of a vector µ =

[µ1, . . . , µm]
⊤ ∈ Rm, where m is the number of voxels in the image. For all

j = 1, . . . ,m, the coordinate of the j-th voxel is denoted rj = [xj, yj, zj]
⊤ ∈ R3,

and G = {rj}mj=1 denotes the voxel grid. At each respiratory gate ℓ, G is deformed

by a mapping φℓ : R3 → R3. The discrete DVF is denoted Mℓ = { # »mj,ℓ}mj=1 ∈ R3×m,

with # »mj,ℓ = φℓ(rj)− rj ∈ R3 and φ(rj) defined as:

φ(rj) = rj +


∑nc

n=1 α
X
n B
(
r−r̃n

σ

)∑nc

n=1 α
Y
nB
(
r−r̃n

σ

)∑nc

n=1 α
Z
nB
(
r−r̃n

σ

)
 (4.1)

where nc are the numbers of control points, B is the cubic B-spline function,

σ is the distance between control points and αX =
(
αX
n

)nc

n=1
,αY =

(
αY
n

)nc

n=1
,

αZ =
(
αZ
n

)nc

n=1
are the motion B-spline coefficients along each axis X, Y and Z.
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Using the cubic B-spline interpolation, the image deformation operator is a m×m
square matrix entirely determined by Mℓ, and is denoted Wℓ (warping operator).

The respiratory-deformed attenuation image at gate ℓ is the matrix/vector product

Wℓµ ∈ Rm.

In a simplified setting (no electronic noise), each sinogram yℓ is a random vector

following a Poisson distribution with independent entries,

yi,ℓ ∼ Poisson(ȳi,ℓ(Wℓµ)) , (4.2)

with

ȳi,ℓ(µ) = I0 exp(−[Aµ]i) + si,ℓ (4.3)

where A is a matrix modeling the CBCT system, si,ℓ is a background term and I0

is the blank scan.

Direct motion compensation is achieved by penalized maximum-likelihood joint

estimation of the image µ and the motion fields M from the gated sinograms yℓ:

(µ̂,M̂) = argmax
µ≥0,M

L(µ,M)− βR(µ,M) (4.4)

where M = {Mℓ}Lℓ=1, and R(µ,M) is a noise-controlling penalty on the image

and the motion, and the log-likelihood L is defined as:

L(µ,M) =
L∑

ℓ=1

n∑
i=1

yi,l log ȳi,ℓ([Wℓµ])− ȳi,ℓ([Wℓµ]) . (4.5)

The maximization problem 4.4 can be solved with the Joint Reconstruction and

Motion estimation (JRM) technique proposed in Bousse et al. (2016) for example.

4.2.1 Coupled-Dictionary Penalty

In this work, we used a penalty term R(µ,M) derived from coupled image-motion

dictionary learning inspired from (Song et al. 2019):

R(µ,M) = argmin
z1,...,zP∈Rd

P∑
p=1

{
∥P im

p (µ)−Dimzp∥22

+
L∑

ℓ=1

∥Pmtn
p (Mℓ)−Dmtn

ℓ zp∥22 + γ∥zp∥0
}

(4.6)

where Dim (resp. Dmtn) is a m̃ × d (resp. 3m̃ × d) image (resp. motion) dic-

tionary matrix composed of d m̃-dimensional atoms and P im
p : Rm → Rm̃ (resp

Pmtn
p : R3m → R3m̃) is the p-th image (resp. motion) patch extractor. The penalty
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≈

P imµ

PmtnM

Dataset

×

Dim

Dmtn

Dictionary atoms

Z

Sparse matrix

Fig. 4.1 Matrix representation of the coupled dictionary learning approach. (P imµ)
and (PmtnM) represent the training examples, Dim and Dmtn the dictionaries
and Z the common sparse matrix shared by the dictionaries. The sparse vector
selects the same signal from (P imµ) and (PmtnM) to update the same atom in
Dim and Dmtn.

weight γ controls the overall sparsity. We treat each Mℓ as a 3-channel image

containing the DVF in x, y, z coordinates. Therefore, if we train the dictionaries

for 2 respiratory gates the total number of dictionaries would be 7.

At each respiratory gate, the image and motion dictionaries are trained to fit

the training image-motion dataset {µk,Mk}Kk=1, using a common sparse encoding

Z = [z1, . . . ,zP ] ∈ Rd×P which is used to encode the image and the motion

simultaneously. This can be formulated as a constrained optimization problem:

min
Dim,Dmtn,{Zk}

K∑
k=1

{
∥P im(µk)−DimZk∥22

+∥Pmtn(Mk)−DmtnZk∥22
}

s.t ∥Zk∥0 ≤ s ∀k and ∥dim
q ∥2 = ∥dmtn

q ∥2 = 1 ∀q (4.7)

where P im : : Rm → Rm̃×P (resp. Pmtn : : R3m → R3m̃×P ) is the image (resp.

motion) patch extractor, dim
q (resp. dmtn

q ) is the q-th column of Dim (resp. Dmtn)

and s denotes the maximum sparsity level (number of non-zeros in Zk). We solved

this problem with a modified version of the SOUP-DIL algorithm (Ravishankar

et al. 2017).

The training task consists of finding a common sparse component Z that is

shared by the image and motion dictionariesDim,Dmtn. We enforce the dictionaries

to “fit the image and motion datasets simultaneously”. Hence, if one atom of Dim

is a linear combination of the first and third signal of P imµk , then the same atom

of Dmtn will be a linear combination of the first and third signal of PmtnMk as

well. Figure 4.1 shows a representation of the aforementioned hypothesis.
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DVF training dataset

Image training dataset

Training
Trained

dictionaries
Dim,Dmtn

l

Motion Compensated
Reconstruction

Gated Sinograms yℓ

Estimated
DVF (Mℓ)

Motion-
compensated
image (µ)

Fig. 4.2 Diagram of coupled dictionary learning algorithm for motion estimation-
compensation consisting of the dictionary learning training and the motion-
estimation and motion-compensation module.

4.2.1.1 Methodology

The approach proposed in this work is divided into two stages: a) the training

consisting of estimating the image and motion dictionaries and b) the motion

compensated reconstruction where we utilize the trained dictionaries to estimate

the DVF and perform motion compensated reconstruction. Figure 4.2 shows

the diagram describing coupled dictionary learning algorithm for motion estima-

tion/compensation.

For the training step, we extended the SOUP-DIL algorithm to multi-channel

dictionary learning. We stake-up the dictionaries and the training dataset as if we

had only one dictionary and only one dataset:

D =

[
Dim

Dmtn
ℓ

]
(4.8)

Y =

[
µ

Mℓ

]
(4.9)

The SOUP-DIL replaces the sparsity constraint in 4.7 with an l0 penalty

term and introduces C = ZH ∈ RP×d where (·)H is the Hermitian (conjugate

transpose). Then the product DZ can be written as a Sum of OUter Products

(DZ = DCH =
∑d

q=1 dqc
H
q ) where cq is the q column ofC. Thus, the optimization

problem 4.7 is written as:
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min
dq ,cq
∥P (Y )−

d∑
q=1

dqc
H
q ∥22 + λ2

d∑
q=1

∥cq∥0; (4.10)

s.t ∥cq∥∞ ⩽ Ω; ∥dim
q ∥2 = ∥dmtn

q ∥2 = 1 ∀q

where λ > 0 is a weight to control the sparsity level and P is the patch-

extraction operator. The constraint ∥cq∥∞ ⩽ Ω with Ω > 0 (e.g. Ω = ∥PY ∥2)
makes the objective function invariant to (arbitrarily) large scaling of cq (i.e.,

non-coercive objective). See section II in Ravishankar et al. (2017). We constrain

the columns of Dim and Dmtn to have unit norm individually since they have

different physical units.

For each dictionary atom q, we solve equation 4.10 using the block coordinate

descent algorithm. We first update the sparse vector cq keeping the dictionaries

fixed. We refer to this step as the sparse coding update. Then, we update the

dictionaries keeping the sparse matrix constant. We refer to this step as the

dictionaries update. Given Eq ≜ PY −
∑

t̸=q dtc
H
t the sparse coding update is

achieved with truncated hard-thresholding operation (Ravishankar et al. 2017):

ĉq = min
(∣∣Hλ

(
EH

q dq

)∣∣ ,Ω1N

)
⊙ e∠EH

q dq (4.11)

with

(Hλ(x)) =

{
0 |x| < λ

x |x| ⩾ λ
(4.12)

and 1P is the vector of ones of length P . “⊙” denotes the element-wise multiplica-

tion. The supplementary material in Ravishankar et al. (2017) provides a detailed

explanation on how to solve 4.11.

The dictionaries update consist of finding dq from 4.10. SOUP-DIL applies the

global minimizer:

d̂q =

{
Eqcq

∥Eqcq∥2
, if cq ̸= 0

v, if cq = 0
(4.13)

where v can contain random or unit values. (See Section III in Ravishankar et al.

(2017))

Following the estimation of the dictionaries, we perform motion-compensated

reconstruction by iteratively alternating between (i) updating the common sparse

vector Z using the OMP algorithm (Rubinstein et al. 2008), and (ii) updating

the image µ and the motion fields M with a L-BFGS algorithm. The 4D-CBCT

reconstruction is achieved by warping the reconstructed images at the reference

gate utilizing the estimated DVF. The pseudo-code for motion compensation
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Algorithm 3: Motion Compensated Reconstruction algorithm

Input: Pre-trained dictionaries (Dim,Dmtn
ℓ ), initial DVF (M0), initial

sparse matrix (Z0), initial image (µ0), penalty weight (β), gated
sinograms (yℓ), forward operator (A), patch-extraction operators
(Pmtn,P im ), error threshold for OMP (χ) ;

D = [Dim;Dmtn
ℓ ];

#outer iterations Nouter.
Output: DVF estimation, (M̂), Motion-compensated reconstructed

image (µ̂), Sparse matrix ,(Ẑ)
for t = 1, . . . , Nouter − 1 do

Sparse code update
Zt ← OMP(Zt−1,Mt−1,µt−1,D,Pmtn,P im, χ)
Motion field update (For each respiratory phase)
M t

ℓ ← L-BFGS(M t−1
ℓ ,Zt,µt−1,Dmtn

ℓ ,yℓ,P
mtn,A, β)

Image update
µt ← L-BFGS(µt−1,Mt,Zt,y1, . . . ,yL,D

im,P im,A, β)
end

M̂← {M t=Nouter
ℓ }Lℓ=1 ;

µ̂← µt=Nouter ;

reconstruction is summarized in Algorithm 3.

4.2.2 Non-Coupled Dictionary Penalty

We also investigate the use of a non-coupled dictionary penalty term in which the

sparse vectors are not updated jointly:

R(µ,M) = argmin
zim
1 ,...,zim

P ∈Rd

zmtn
1 ,...,zmtn

P ∈Rd

P∑
p=1

{
∥P im

p (µ)−Dimzim
p ∥22

+
L∑

ℓ=1

∥Pmtn
p (Mℓ)−Dmtn

ℓ zmtn
p,ℓ ∥22 + κ∥zim

p ∥0 + ε∥zmtn
p ∥0

}
(4.14)

where κ and ε are penalty weight controlling the overall sparsity.

The dictionaries are trained separately, the motion and image dictionaries are

not sharing information. Thus, there is a different sparse matrix for the motion

and the image dictionaries. The motion dictionary is obtained by solving:

min
Dim,{(Zim)k}

K∑
k=1

{
∥P im(µk)−Dim(Zim)k∥22

}
s.t ∥(Zim)k∥0 ≤ s ∀k and ∥dim

q ∥2 = 1 ∀q (4.15)
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while the image dictionary is obtained by solving:

min
Dmtn

ℓ ,{(Zmtn
ℓ )k}

K∑
k=1

{
∥Pmtn(µk)−Dmtn

ℓ (Zmtn
ℓ )k∥22

}
s.t ∥(Zmtn

ℓ )k∥0 ≤ s ∀k and ∥dmtn
q,ℓ ∥2 = 1 ∀q (4.16)

As for the coupled dictionary learning algorithm, we perform motion-compensated

reconstruction by iteratively alternating between (i) updating the sparse vectors

Zim and Zmtn separately, using the OMP algorithm (Rubinstein et al. 2008), and

(ii) updating the image µ and the motion fields M with a L-BFGS algorithm.

During the reconstruction, the image and the motion penalty terms do not share

information.

4.2.3 Algorithms used for Comparison

We compare the methodology proposed in this work against a motion-estimation

motion-compensation approach utilizing the EP regularizer:

R(µ) =
m∑
j=1

∑
t∈Nj

ωj,t

√
(µj − µt)2 +ϖ (4.17)

where Nj denotes the 8 nearest neighboring pixels of pixel j and ωj,t are weights

(ωj,t = 1 for axial neighbors and ωj,t = 1/
√
2 for diagonal neighbors), and ϖ > 0 is

a small real value to ensure differentiability. The objective function takes the form:

(µ̂,M̂) = argmax
µ≥0,M

L(µ,M)− βR(µ) (4.18)

We used the L-BFGS solver to estimate µ̂ and M̂.

4.3 Experiments

The training data consists of a collection of 3-mm pixel-width 90× 90× 90 torso

axial images generated from the XCAT phantom. Patient size, organs size, and

the maximum extension of the diaphragm were modified to assure diversity in

the dataset. The image dataset corresponds to the phantom at the reference gate.

For each phantom at the reference gate, we obtained their corresponding DVF

at each respiratory gate with a standard deformable registration (Bousse et al.

2016). The DVF correspond to the displacement of each pixel from the reference

gate to the pointed gate in x, y, z coordinates. For example, if the reference gate

is 5%-inhalation and the pointed gate is 50%-inhalation, the DVF is the pixel

displacements between the two respiratory phases. We utilized 10 3D images as
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Fig. 4.3 Trained coupled dictionaries from the image dataset (Dim) and the DVFs
dataset (Dmtn) along x-axis.

training examples. The dictionaries were trained on 8× 8× 8-pixel patches and

contained 7680 atoms. We trained a total of 7 dictionaries corresponding to the

image dictionary Dim; the motion dictionaries at gate ℓ = 1 in the x, y, z axes

(Dmtn)Xℓ=1; (D
mtn)Yℓ=1; (D

mtn)Zℓ=1 and the motion dictionaries at gate ℓ = 2 in the

x, y, z axes (Dmtn)Xℓ=2; (D
mtn)Yℓ=2; (D

mtn)Zℓ=2. The gated CB projection data was

generated by forward projection of 3-mm pixel-width 90×90×90 torso axial images

generated from the XCAT phantom at each respiratory phase. We modeled the

projector A with a cone-beam CT system utilizing the Astra Toolbox (van Aarle

et al. 2016, van Aarle et al. 2015, Palenstijn et al. 2011). For each sinogram, we use

a monochromatic source with 103 incident photons and 100 background events. We

initialized the image using the Maximum-likelihood reconstruction for transmission

tomography (MLTR) algorithm (Nuyts et al. 1998), which maximizes the likelihood

function without regularization. The motion vectors were initialized with zeros.

The implementation of the OMP and the modified SOUP-DIL algorithms were

GPU-accelerated and directly callable from Matlab (Release 2018).

4.4 Results on XCAT phantom

In this section we report results with 3D images. We compare the performance of

MEC-MDL (Section 4.2.1) with MEC-SDL (Section 4.2.2). We also compare with

EP regularizer (Section 4.2.1) applied in the image update.

4.4.1 Training

Figure 4.3 shows the image and motion dictionaries at the end-of-inhalation

respiratory phase. Each atom is represented in the figure as an 8× 8 square patch.

Most of them exhibit structural similarities but different values, as Dim represents

linear attenuation coefficient values and Dmtn represents motion amplitude. This

confirms that the coupled dictionaries are able to capture similarities between

image and DVFs. Figure 4.4 shows the dictionaries trained using an independent

sparse vector for each of them. The atoms are not showing structural similarities
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Fig. 4.4 Trained dictionaries from the image dataset (Dim) and the DVFs dataset
(Dmtn) along x-axis using a different sparse vectors for each dictionary.

since they are not constrained to have the same number of supports in the sparse

vector.

4.4.2 Motion Estimation-Compensation

Figure 4.5 shows a coronal view of the motion-compensated images utilizing

MEC-MDL, MEC-SDL and the EP regularizer. It also includes the no-motion

compensated image and the ground truth. The no-motion-compensated image

presents noise artifacts and motion artifacts around moving areas. A visual analysis

confirms that the MEC-SDL and MEC-MDL algorithms suppress noise and remove

motion artifacts correctly. However, the images are still blurry, making it difficult

to distinguish between organ features. We selected the ribs-to-lung contact area as

Regions of Interest (ROI) to evaluate the impact of the sliding motion correction.

A profile along the x − axis on the dashed line (Figure 4.6) shows that Linear

Attenuation Coefficient (LAC) values estimated using MEC-MDL are notably

biased compare with the ground truth. The MEC-MDL method scores lower

performance compare with MEC-SDL and the reconstruction with EP regularizer.

The MEC-MDL method and the reconstruction utilizing EP regularizer achieves

similar performance, and their LAC values are close to the ground truth.

Figure 4.7 shows a sagittal view of the reconstructed images at the end-of-inhalation

respiratory phase. The ROI around the spherical lesion shows a small modification

in the tumor shape for the MEC-MDL method. The tumor shape and position in

the MEC-SDL image results closer to the ground truth in comparison with EP

regularizer.

We quantitatively evaluated the performance of the reconstruction methods by

computing the RMSE and the PSNR in the selected ROI. Table 4.1 shows the

values of the PSNR and RMSE computed using m = 60 pixels in the selected ROI.
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(a) Ground truth (b) No-motion (c) EP prior (d) MEC-SDL (e) MEC-MDL

Fig. 4.5 Coronal view of the: a) Ground truth image; b) No motion compensated
image (no prior); c) Reconstructed image utilizing the EP prior ; d) Reconstructed
image utilizing the MEC-SDL method; e) Reconstructed image utilizing the MEC-
MDL method.

The PSNR was computed as:

PSNR(dB) = 10 · log10

( {
max(µ̂GT )

}2∑m
j=1

1
m

(
µ̂j − µ̂GT

j

)2
)

(4.19)

and the RMSE as:

RMSE =

√√√√ 1

m

m∑
j=1

(
µ̂GT
j − µ̂j

)2
(4.20)

The MEC-MDL images scores lower PSNR and higher RMSE than the MEC-

SDL images and the image reconstructed utilizing the EP prior. The MEC-SDL

shows better performance compare with the image reconstructed utilizing the EP

prior. It scores higher PSNR and lower RMSE. The gain in PSNR was 1.01%.

(Gain(%) = 100 · (MEC-SDL− EP)/EP ).

Overall, the reconstructed images correct motion artifacts and noise acceptably.

However, the images are blurred which made difficult to evaluate the sliding

artifacts correction. The MEC-MDL methods show lower performance compare

with MEC-SDL method and the EP regularizer.

4.5 Discussion and Conclusion

We proposed a method for direct motion-compensated CBCT reconstruction by

penalized maximum likelihood using a coupled (image-motion) dictionary learning

regularization term. The image to reconstruct and the motion fields image utilize

the same encoding in order to capture structural similarities between the image and

the DVF. The coupled and single dictionary learning algorithms perform well in

terms of noise controlling in the reconstructed image and both estimate the motion

correctly. For the coupled dictionary learning algorithm, the dictionaries exhibit

structural similarities which confirms that they are able to capture similarities
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Fig. 4.6 Reconstructed image profile along the x− axis on the dashed line showed
in figure 4.5.

(a) Ground truth (b) EP prior (c) MEC-SDL (d) MEC-MDL

Fig. 4.7 Sagittal view of the: a) Ground truth image; b) Reconstructed image
utilizing the EP prior ; c) Reconstructed image utilizing the MEC-SDL method; d)
Reconstructed image utilizing the MEC-MDL method.

Method PSNR(dB) RMSE

EP-prior 39.3 0.0123
MEC-SDL 39.7 0.0102
MEC-MDL 38.1 0.0127

Table 4.1 Peak Signal-to-Noise Ratio (PSNR) in dB and the Root Mean Square
Error (RMSE) for the reconstructed image utilizing EP regularizer, MEC-SDL
method and MEC-MDL method.

between image and DVFs. However, the reconstructed image is still blurred. The

single dictionary learning algorithm performs better in terms of noise controlling

with an improvement in comparison with the EP regularizer.

The authors consider that the MEC-MDL algorithm can potentially work and

perform better than existing state-of-the-art methods for sliding artifact correction.

Further improvements need to be performed to achieve such accomplishment.

It is critical to ensure that the ground truth DVF estimation accounts for

the sliding between organs boundaries. In the present work, we use the B-spline

interpolation to estimate the DVF, which can be sub-optimal to account for sliding
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motion along organs boundary. Furthermore, it is widely known that in motion-

compensation techniques, B-spline interpolation over-smooths the reconstructed

images. The authors suggest using the demons registration (Thirion 1998) to better

account for the sliding artifacts and avoid over-smoothness.

We generate the CB projection data utilizing few projection angles and ex-

tremely low counts, making the image reconstruction task even more ill-posed.

The authors suggest increasing the number of projection angles and perform less

challenging experiments. Thus, It will be possible to evaluate the effectiveness of

the MEC-MDL for the sliding artifacts correction task.

Moreover, the MEC-MDL reconstruction could be enhanced by fine-tuning the

regularization parameters during the training and the reconstruction. Other factors

that must be considered are the following: the number of atoms in the dictionary,

the sparsity level, and the number of patches or training examples. However, the

time required to train the dictionaries and reconstruct the images makes it quite

challenging to tuning the parameters. The authors suggest the optimization of the

algorithm to enhanced execution speed.

For the coupled image-motion dictionary learning, since the DVF and the atten-

uation images have different values (motion amplitude and attenuation coefficients

respectively), constraining both datasets to have the same sparse coefficients could

be a strong constraint, a less constraining model is to constrains only the supports

(locations of zeros and non-zeros) of each sparse vector to be identical but their

values could be different.
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Multi-channel Convolutional Analysis Operator Learning

for Dual-Energy CT Reconstruction

Summary

The present Chapter proposes the multi-channel convolutional analysis operator

learning MCAOL method for DECT to exploit common spatial features within

attenuation images at different energies. It proposes an optimization algorithm

which jointly reconstructs the attenuation images at low and high energies with

a mixed norm regularization on the sparse features. The convolutional filters are

pre-trained through the MCAOL algorithm and used within an MBIR, where

the unknown images are reconstructed simultaneously by solving one combined

optimization problem. As of the authors knowledge, this is the first time MCAOL

is applied to DECT image reconstruction and we reported increased reconstruction

accuracy compared to CAOL and iterative methods with single and joint total-

variation JTV regularization. This work has been published in the peer-reviewed

journal Physics in Medicine and Biology.

5.1 Introduction

The dual-source acquisition technique in DECT requires two helical scans at two

different tube voltages; therefore, two sets of projection data at different energy

levels are collected and further reconstructed. However, as the number of incident

photons increases when irradiating with two sources the same anatomical region,

the radiation dose increases proportionally (Sajja et al. 2020). A reduction in

radiation exposure can be achieved by decreasing the number of projection angles.

However, aliasing artifacts can appear in the reconstructed images if the number

of projection angles does not follow the Nyquist sampling theorem. Moreover, it is

more challenging to achieve high-resolution, high-contrast image reconstruction

due to the low Signal-to-Noise Ratio (SNR) (Zhang et al. 2020).

In the literature, most of the development on low-dose CT reconstruction has

focused on single image. Among the main techniques, MBIR methods are the
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most popular. These techniques exploit models of the imaging system’s physics

(forward models) along with statistical models of the measurements and noise and

often simple object priors. They iteratively optimize model-based cost functions

to estimate the underlying unknown image (Elbakri and Fessler 2002). Typically,

such cost functions consist of a data-fidelity term, e.g., least squares or NLL,

capturing the imaging forward model and the measurement/noise statistical model

and a regularizer term promoting smoothness, low-rank or sparsity (Kim et al.

2014). The Total Variation (Sidky et al. 2006, Sidky and Pan 2008) has been

proposed to solve incomplete projection data reconstruction problems and achieved

good performance. However, TV reconstruction results in undesired patchy effects.

Data-driven and learning-based approaches have gained much interest in recent

years for biomedical image reconstruction. These methods learn representations of

images and are used in combination with MBIR techniques to perform complex

mappings between limited or corrupted measurements and high-quality images.

Among those algorithms, data-driven sparse transforms such as DL (Xu et al. 2012)

use a training dataset of high-resolution and denoised images to learn features,

in an unsupervised manner, that can be used to reconstruct new images. These

features take the form of “atoms”, which are regrouped into dictionaries and

are used to sparsely represent the image (Aharon et al. 2006). DL-based image

reconstruction integrates the learned atoms with the raw scanner data within a

regularized MBIR context (Ravishankar et al. 2017, Zheng et al. 2018). Other

closely related methods include sparsifying transform learning (Ravishankar and

Bresler 2012) and the connection between data-adaptive models and convolutional

deep learning algorithms (Ravishankar et al. 2019) with an increase interest in

methods that leverage both learning-based and MBIR tools.

However, most DL methods are patch-based, and the learned features often contain

shifted versions of the same features. The resulting learned dictionary may be over-

redundant and therefore are memory demanding, which makes it difficult to utilize

in 3D multi-modal imaging. To address these problems, CDL techniques utilize

shift-invariant filters, providing a convenient and memory-efficient alternative to

conventional DL techniques (Chun and Fessler 2017b). CDL approaches can be

combined with MBIR by providing unsupervised prior knowledge of the target

image. The CDL approach can also be formulated from an analysis point of view

(Chun and Fessler 2019b) (sparse convolution) and is known as CAOL. Despite the

rapidly expanding research, the application of CDL to multi-channel images has

received little attention (Degraux et al. 2017, Garcia-Cardona and Wohlberg 2018b).

Image reconstruction from DECT sparse-views or low-dose requires algorithms

more advanced than the standard approach where attenuation at each measured
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energy is reconstructed independently. Notable models in the literature designed to

promote structural similarity of images are JTV (Ehrhardt et al. 2014a), spectral

patch-based penalty for the maximum-likelihood method (Kim et al. 2015), tensor-

based and coupled dictionary learning (Wu et al. 2018, Song et al. 2019), parallel

level sets (Kazantsev et al. 2018) and the prior rank, intensity and sparsity model

(PRISM) (Yang et al. 2017).

We extend the CAOL approach to multi-channel settings and we develop a MCAOL

framework that can exploit direct joint reconstruction, given the low-dose DECT

measurements, where all the unknown images are reconstructed simultaneously

by solving one combined optimization problem. As of the author knowledge, this

is the first time that MCAOL is applied to DECT image reconstruction and we

demonstrate its superiority with respect to CAOL. Furthermore, MCAOL requires

considerably less memory compared to alternative DL approaches. The joint

reconstruction approach is developed for a low-dose data acquisition protocol which

consists of collecting data using a sparse angular sampling, using a different X-ray

energy in consecutive steps and low X-ray photon counts.

In DECT, a reasonable prior assumption is that attenuation images at different

energies can be expected to be structurally similar in the sense that an edge

(e.g., an organ boundary) that is present at one energy, is likely to be at same

location and alignment with the other energies as well, even though the contrast

between materials will be different at each energy. MCAOL technique reconstructs

attenuation images from the projection data combined with multi-channel filters

trained on a dataset of reconstructed images. The central idea of MCAOL is to

learn unsupervised DECT multi-channel convolutional dictionaries that can provide

a joint sparse representation of the underlined images by jointly learning filters for

the different energies: each atom not only carries individual information for each

energy individually but also inter-energy information. By reconstructing DECT

images using MBIR techniques in conjunction with MCAOL, the multi-energy

information can be optimally used by allowing the images to “talk to each other”

during the reconstruction process through the learned joint dictionaries, reducing

noise while preserving image resolution. In order to deal with the extreme low-dose

scenario, we model the Poisson and we solve the image optimization problem by

using approximated quasi-Newton method with constrained memory to achieve

accurate joint reconstruction with limited computational complexity.
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5.2 Learning Convolutional Regularizers for Image Reconstruction:

CAOL

In this Section we review the foundation of CAOL for MBIR.

MBIR is achieved by solving an optimization problem of the form

min
µ∈Rm

L(µ,y) + βR(µ) (5.1)

where µ ∈ Rm is the 2D or 3D image to reconstruct, y ∈ Rn is the observed

measurement, L is a data-fidelity term that incorporates the measurement model

–generally taking the form of a NLL function– and R is a regularizer weighted by

β > 0; n and m are respectfully the dimension of the measurement (number of

detectors) and dimension of the image (number of pixels). The minimization is

carried out with the help of iterative algorithms such as modified expectation-

maximization (EM) for emission tomography (ET) (De Pierro 1995) or PWLS

combined with separable paraboloidal surrogate (SPS) for CT (Elbakri and Fessler

2002).

The regularizer R is designed such that the reconstructed image µ̂(y) has

desired properties, such as smoothness and sparsity of the gradient. It can be also

trained so that µ̂(y) can be sparsely represented as a linear combination of basic

elements, or atoms, regrouped in a dictionary.

We consider the CAOL approach (Chun and Fessler 2019b) where the image is

sparsely represented with convolutional kernels (filters). In the analysis model, the

image is represented with “sparsifying” filters dk ∈ RR by the analysis operator

AD : µ 7→ {dk ⊛ µ}, such that

dk ⊛ µ = zk, ∀k = 1, . . . , K. (5.2)

where zk ∈ Rm is a sparse feature image vector of the same dimension as the

image µ, and “⊛” denotes the 2D convolution operator. The filters dk ∈ RR

are vectorized images of dimension R ≪ m that are regrouped in a dictionary

D = {dk} ∈ RR×K .

Learning the dictionary D from a dataset of training images {µl ∈ Rm : l =

1, . . . , P} corresponds to finding a collection of filters D⋆ = {d⋆
k} obtained by the

following non-convex optimization problem

D⋆ = argmin
D∈C

min
{zl,k}

Fa(D, {zl,k}) (5.3)
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with the training analysis objective function Fa defined as

Fa(D, {zl,k}) =
P∑
l=1

K∑
k=1

1

2
∥dk ⊛ µl − zl,k∥22 + α ∥zl,k∥0 (5.4)

where zl,k ∈ Rm is the feature image associated to the training image µl and

the filter dk, ∥·∥0 is the sparsity-promoting l0 semi-norm defined for all z =

[z1, . . . , zm]
⊤ ∈ Rm as

∥z∥0 =
m∑
j=1

1[0,+∞](|zj|) (5.5)

where 1A : R → {0, 1} denotes the indicator function of a set A ⊂ R, which is

defined as 1A(ξ) = 1 if ξ ∈ A and 1A(ξ) = 0 if ξ /∈ A, and α > 0 is a weight

balancing between accuracy and sparsity and C is the constrain on D = {dk}.
In Chun and Fessler (2019b) the filters are enforced to satisfy the tight-frame

conditions, i.e.,

C =

{
{dk} : [d1, . . . ,dK ][d1, . . . ,dK ]

⊤ =
1

R
IK

}
(5.6)

where IK is the K ×K identity matrix, to promote filters diversity. The entire

optimization problem 5.3 is solved by the BPEG-M utilizing two blocks as described

in Section 3.4.1.1. The minimization in D is achieved with a PMOC algorithm

which can be implemented using the CONVolutional Operator Learning Toolbox

(CONVOLT) (Chun and Fessler 2019b, Chun 2019). The minimization in z is

achieved with a hard-thresholding operator T : Rm × R∗
+ → Rm defined at each

row j as:

[T (a, β)]j =

{
aj if 1

2
a2j ≥ β

0 otherwise
(5.7)

for all a = [a1, . . . , am]
⊤ ∈ Rm and for all β > 0, which provides a global minimizer

for z 7→ 1
2
∥a− z∥22 + β∥z∥0, in such a way that

T (dk ⊛ xl, α) = argmin
zl,k

1

2
∥dk ⊛ xl − zl,k∥22 + α ∥zl,k∥0 (5.8)

Finally the regularizer R in the minimization problem 5.1 is derived from the

learned filters D⋆ as

R(µ) = min
{zk}

K∑
k=1

1

2
∥d⋆

k ⊛ µ− zk∥22 + α ∥zk∥0 . (5.9)
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Training DECT dataset
µe,l : e = 1, 2; l = 1, . . . , L

MCAOL from {µe,l}

Trained filters
D∗ = {D∗

1,D
∗
2}

DECT acquisition

Reconstruction: apply D∗

to MBIR DECT

Sinograms ye, e = 1, 2

Reconstructed
images

µ̂e(ye), e = 1, 2

Fig. 5.1 Diagram of MCAOL consisting of the unsupervised filter learning phase
and the model-based iterative DECT reconstruction module.

5.3 Multi-channel Convolutional Analysis Operator Learning

MBIR can be generalized to multi-channel imaging. Assuming we wish to re-

construct two images µ1,µ2 ∈ Rm of the same “object” from two independent

measurements y1 ∈ Rn1 and y2 ∈ Rn2 corresponding to two modalities, multi-

channel MBIR can be achieved by using an iterative algorithm to solve

min
µ1,µ2∈Rm

ρ1L1(µ1,y1) + ρ2L2(µ2,y2) +Rmc(µ1,µ2) (5.10)

where L1 and L2 are the data-fidelity terms for µ1 and µ2, Rmc is a multi-channel

regularizer and ρ1, ρ2 > 0 are weights. Rmc is designed to exploit the inference

between the 2 channels µ1 and µ2, for example to promote structural similarities

as proposed in (Ehrhardt et al. 2014a).

MCAOL is a generalization of CAOL where the training is performed jointly

on a set of images obtained from imaging modalities as depicted in figure 5.1 for

DECT. Let {(µ1,l,µ2,l) ∈ Rm×Rm : l = 1, . . . , P} be a training dataset consisting

of P pairs of images.

MCAOL learns the sparsifying filter pairs

(d1,k,d2,k) ∈ RR × RR : k = 1, . . . , K (5.11)

together with the extracted feature pairs

(z1,l,k, z2,l,k) ∈ Rm × Rm : k = 1, . . . , K, l = 1, . . . , P . (5.12)

MCAOL is achieved by solving the following optimization problem, given the

training image set (µ1,l,µ2,l)

(D⋆
1,D

⋆
2) = argmin

D1,D2,∈C
min

{z1,l,k}
{z2,l,k}

Fmc (D1,D2, {z1,l,k}, {z2,l,k}) (5.13)
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Fmc(D1,D2, {z1,l,k}, {z2,l,k}) =
P∑
l=1

K∑
k=1

γ1
2
∥d1,k ⊛ µ1,l − z1,l,k∥22

+
γ2
2
∥d2,k ⊛ µ2,l − z2,l,k∥2 + ∥(z1,l,k, z2,l,k)∥1,0 (5.14)

where γ1, γ2 > 0 are weights and the semi-norm ∥ · ∥1,0 on Rm × Rm is defined for

all z1 = [z1,1, . . . , z1,m]
⊤ ∈ Rm and for all z2 = [z2,1, . . . , z2,m]

⊤ ∈ Rm as

∥(z1, z2)∥1,0 =
m∑
j=1

1[0,+∞] (|z1,j|+ |z2,j|) (5.15)

∥ · ∥1,0 denotes the l1,0 norm. It promotes joint sparsity, i.e., with zero and non-zero

values at the same locations, of image features in all the modalities, that are

encoded by the multi-channel dictionary D1,D2.

To solve (5.13) we utilize the BPEG-M algorithm (Chun and Fessler 2019b, Chun

2019) with 3 blocks: 1) the block which updates the sparse codes jointly (z1,l,k, z2,l,k);

2) the block for the first dictionary (D1, ); and 3) the block for the second dictionary

(D2). The 2 dictionary blocks are updated utilizing PMOC algorithm Chun and

Fessler (2019b), Chun (2019) while for the update of the sparse codes we deploy

a multi-channel hard-thresholding operator Tmc : Rm × Rm × (R∗
+)

2 → Rm × Rm

defined at each row j as

[Tmc(a1,a2,γ)]j =

{
(a1,j, a2,j) if 1

2
γ1a

2
1,j +

1
2
γ2a

2
2,j ≥ 1

(0, 0) otherwise
(5.16)

for all a1 = [a1,1, . . . , a1,m]
⊤ ∈ Rm, a2 = [a2,1, . . . , a2,J ]

⊤ ∈ Rm and for all

γ = (γ1, γ2) ∈ (R∗
+)

2, which provides a global minimizer for (z1, z2) 7→ γ1
2
∥a1 −

z1∥22 +
γ2
2
∥a2 − z2∥22 + ∥z1, z2∥1,0 (Xu et al. 2011, Section 3), in such a way that

Tmc (d1,k ⊛ x1,l,d2,k ⊛ x2,l,γ) = argminz1,l,k,z2,l,k

{
γ1
2
∥d1,k ⊛ x1,l − z1,l,k∥22

+γ2
2
∥d2,k ⊛ x2,l − z2,l,k∥2 + ∥(z1,l,k, z2,l,k)∥1,0

}
(5.17)

Finally the regularizer Rmc in the minimization problem 5.10 is derived from
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Algorithm 4: MCAOL Training Algorithm

Input: DE Training Dataset µe,l, l = 1, . . . , P , e = 1, 2, joint sparsity
weights γ = (γ1, γ2), #outer iterations Nouter

Output: Learned filters (D⋆
1,D

⋆
2)

(D0
1,D

0
2)← Normalized random initialization ;

for t = 0, . . . , Nouter − 1 do
Update sparse codes (in parallel) ;
for k,l=1,1,. . . ,K,P do

(zt+1
1,l,k, z

t+1
2,l,k)← Tmc(d

t+1
1,k ⊛ µ1,l,d

t+1
2,k ⊛ µ2,l,γ) ;

end
Update Filters ;
Dt+1

1 ← PMOC(µ1,l, z
t+1
1,k ) ;

Dt+1
2 ← PMOC(µ2,l, z

t+1
2,k ) ;

end

D⋆
1 ←DNouter

1 ;

D⋆
2 ←DNouter

2 ;

the learned filters (D⋆
1,D

⋆
2) as

Rmc(µ1,µ2) = min
{z1,k}
{z2,k}

K∑
k=1

γ1
2

∥∥d⋆
1,k ⊛ µ1 − z1,k

∥∥2
2

+
γ2
2

∥∥d⋆
2,k ⊛ µ2 − z2,k

∥∥2
2
+ ∥(z1,k, z2,k)∥1,0 (5.18)

The pseudo-code for MCAOL training procedure is summarized in Algorithm 4.

5.4 Dual-Energy CT Reconstruction with Multi-Channel CAOL

5.4.1 X-ray CT Discrete Model

In this section, we describe the CT discrete physical measurement process with

the spectrum of the X-ray source beams composed of two different energies. We

consider the case of 2D slice-by-slice imaging systems. For image reconstruction

we assume that the continuous attenuation image µe(r) which denotes the linear

attenuation coefficient at position r ∈ R2 and the energy level e = 1, 2, can be

represented by a linear combination of basis functions {bj} associated to a discrete

sampling on a
√
m×

√
m Cartesian grid,

µe(r) =
m∑
j=1

µe,jbj(r) , (5.19)

where µe,j > 0 for all j = 1, . . . ,m and all e = 1, 2. The line integral becomes

a summation:
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∫
R
µe(νi(l)) dl =

m∑
j=1

µe,j

∫
R
bj(νi(l)) dl =

m∑
j=1

ai,jµe,j (5.20)

where νi(l) = si+ lϵ⃗i ∈ R2 is a parametrization of the i-th ray emitted from the

source si with direction ϵ⃗i, ai,j ≜
∫
R bj(νi(l)) dl is the contribution of the j-th pixel

to the i-th ray. The system matrix A is constructed as an under-determined matrix

of dimensions n×m where n = Nd ×Nθ with Nd and Nθ being respectively the

number of detectors and Nθ and the number of angles (projections), and is defined

as [A]i,j = ai,j, ∀ i = 1, . . . , n, ∀ j = 1, . . . ,m. The spectral X-ray mathematical

discrete model is based on the Beer’s law which provides the X-ray intensity after

transmission. The expected number of detected photons ȳi,e is then redefined as a

function of the discrete image µe as

ȳi,e(µe) = See
−[Aµe]i + ηe,i (5.21)

where µe = [µe,1, . . . , µe,m]
⊤ ∈ Rm is the vector of attenuation coefficients at source

energy e, Se is the mean photons flux at the e-th energy bin, as we assume a

mono-energetic intensity, and ηe,i ∈ R+ is a known additive term representing the

expected number of background events (primarily from scatter). In the case of

normal exposure, the number of detected photons follows a Poisson distribution,

i.e.,

yi,e ∼ Poisson(ȳi,e(µe)) (5.22)

and the measurements at each energy bin e = 1, 2 are stored in a vector ye =

[ye,1, . . . , ye,Nd·Nθ
]⊤.

Although monochromatic X-ray source does not usually hold for scanners in

clinical practice, a common effective strategy consists of applying a polychromatic-

to-monochromatic source correction pre-processing step (Whiting et al. 2006), and

in the rest of the paper we will therefore assume that we have a monoenergetic

source or that it has already been appropriately corrected.

5.4.2 Low-Dose CT Reconstruction

In case of low X-ray dose, since the photons counts can be very limited, the

Gaussian approximation is no longer applicable as the logarithm of the data cannot

be computed. We therefore chose to perform sparse view CT reconstruction from

the raw measurements (y1,y2) by solving the minimization problem 5.10, with

positivity constraints on (µ1,µ2), using the Poisson NLL functions L1 and L2

defined as
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− Le(µe,ye) =
n∑

i=1

ye,i log ȳi,e(µe)− ȳi,e(µe), e = 1, 2 (5.23)

and the trained regularizer Rmc derived from the learned filters (D⋆
1,D

⋆
2) as in

5.18.

Therefore, substituting 5.23 and 5.18 into the minimization 5.10, we obtain the

following explicit expression for the MCAOL DECT reconstruction problem:

(µ⋆
1,µ

⋆
2) = argmin

µe≥0

2∑
e=1

ρe

n∑
i=1

ye,i log ȳi,e(µe)− ȳi,e(µe)︸ ︷︷ ︸
Le(µe,ye)

+ min
{z1,k}
{z2,k}

K∑
k=1

{
2∑

e=1

γe
2

∥∥d⋆
e,k ⊛ µe − ze,k

∥∥2
2

}
+ ∥(z1,k, z2,k)∥1,0︸ ︷︷ ︸

Rmc(µ1,µ2)

(5.24)

We solve the minimization problem (5.24) by the alternating estimation of the

sparse feature images and the linear attenuation images {µe : e = 1, 2}. Given the

current estimates of the sparse coefficients {zt
k : k = 1, . . . , K}, the image update

µt
e at iteration t is obtained through the following minimization problem

µt
e = argmin

µe∈(R+)m
Φt

e(µe) (5.25)

with Φe(µe) = ρeLe(µe,ye) +
γe
2

K∑
k=1

∥∥d⋆
e,k ⊛ µe − zt

e,k

∥∥2
2
.

In this work, we utilized a L-BFGS algorithm (Nocedal and Wright 2006b,

Chapter 7) to solve 5.4.2. We utilized the implementation proposed in Zhu et al.

(1997). We also used the L-BFGS algorithm to minimize L1(·,y1) and L2(·,y2)

(without penalty) in order to obtain initial images µ0
1 and µ0

2.

The other part of the alternating scheme is to update the sparse features zt
e,k

given the current estimate of µt
e. This step is achieved using the multi-channel

thresholding operator defined in 5.16.

The pseudo-code for MCAOL reconstruction algorithm is detailed in Algo-

rithm 5.
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Algorithm 5: MCAOL Reconstruction Algorithm

Input: Initial images (µ0
1,µ

0
2), DECT learned filters D⋆ = (D⋆

1,D
⋆
2), joint

sparsity weight γ = (γ1, γ2), penalty weights ρ = (ρ1, ρ2), DE
sinogram y = (y1,y2), system matrix A, intensities (S1, S2) ,
#outer iterations Nouter.

Output: Reconstructed images (µ⋆
1,µ

⋆
2)

for t = 0, . . . , Nouter − 1 do
Update sparse codes (in parallel) ;
for k,. . . ,K do

(zt+1
1,k , z

t+1
2,k )← Tmc(d

⋆
1,k ⊛ µt

1,d
⋆
2,k ⊛ µt

2,γ) ;

end
Update linear attenuation images ;
µt+1

1 ← L-BFGS(Φt
1, init = µt

1 | y1, z
t+1
1 ,D⋆

1,A, S1, ρ1, γ1) ;
µt+1

2 ← L-BFGS(Φt
2, init = µt

2 | y2, z
t+1
2 ,D⋆

1,A, S2, ρ2, , γ2) ;

end

µ⋆
1 ← µNouter

1 ;

µ⋆
2 ← µNouter

2 ;

5.5 Validation

We validated the proposed methods on two different DECT low-dose acquisition

setup. In particular, we analyzed the case of sparse-view DECT reconstruction

with normal photon dose and the case of extreme low-photon counts with increased

number of views. By approximating the dose as the product of the number of views

and photon counts, the latter case represents a more challenging scenario since the

overall dose considered is lower than the sparse-view case. Our implementation

was based on CONVOLT (Chun 2019).

5.5.1 Methods Used for Comparison

The objective of the simulations with sparse views and normal X-ray source

intensity is to demonstrate that MCAOL achieves improved accuracy compared to

reconstructing each energy separately by solving 5.1 with the CAOL regularizer

defined in 5.9 and with the TV regularizers, as well as simultaneously by solving

5.10 with the JTV regularizer, respectfully defined as

Rtv(µ) =
m∑
j=1

∑
k∈Nj

ωj,k

√
(µj − µk)2 + ε (5.26)

and

Rjtv(µ1,µ2) =
m∑
j=1

∑
k∈Nj

ωj,k

√
(µ1,j − µ1,k)2 + (µ2,j − µ2,k)2 + ε (5.27)
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where Nj denotes the 8 nearest neighboring pixels of pixel j and ωj,k are weights

(ωj,k = 1 for axial neighbors and ωj,k = 1/
√
2 for diagonal neighbors), and ε > 0 is

a small real value to ensure differentiability. For each method, we used the L-BFGS

solver to estimate µ1 and µ2.

The experiment with extreme low-counts aims at demonstrating that considering

a weighted least-squares approximation of the log-likelihood function no longer

guarantees effective reconstruction results, instead the exact Poisson statistics

should be accounted. This results in a degradation of the performance of CAOL

when optimized through the PWLS solver while using the quasi-Newton solver

L-BFGS leads to improved qualitative and quantitative results.

5.5.2 Methodology

All experiments were validated by generating the DECT measurements as in

equation 5.21 and then running M = 20 Poisson noise instances as in equation 5.22

from a Ground Truth (GT) image µGT
e = [µGT

e,1 , . . . , µ
GT
e,m]

⊤ ∈ Rm, e = 1, 2. As

performance metrics, we considered the mean absolute bias (AbsBias) error function

defined as follows

AbsBias =
1

NR

1

Nnoise

∑
j∈R

Nnoise∑
M=1

∣∣∣µ[M ]
e,j − µGT

e,j

∣∣∣ (5.28)

where µ
[M ]
e,j indicates the reconstructed linear attenuation coefficient at image pixel

j from the M -th Poisson noise replicate, R is the spatial region of interest and NR

is the number of pixels in the region R. Furthermore, we compute the Standard

Deviation (STD) defined as

STD =
1

NR

∑
j∈R

√√√√ 1

Nnoise

Nnoise∑
M=1

(
µ
[M ]
e,j − µ̄e,j

)2
(5.29)

where µ̄e,j =
1

Nnoise

∑Nnoise

M=1 µ
[M ]
e,j . In this work R corresponds to the non-negative

pixels region of µGT
e and is the same for both energy levels.

The simulations were repeated for all the methods, for different values of the

regularization parameters in the objective functions 5.1 and 5.10 in order to plot

AbsBias/STD curves. The quality of the reconstruction is assessed by the proximity

of the curve to the origin. Training and reconstruction were performed according

to the below-described settings.

Training The optimization problem (5.13) is minimized using the BPEG-M

algorithm Chun and Fessler (2019b) with normalized input dataset. To investigate
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(E1), γ1 = 800 (E2), γ2 = 800

(a) Learned l1,0 filters via MCAOL

(E1), α = 0.01 (E2), α = 0.01

(b) Learned l0 filters via CAOL

Fig. 5.2 Learned filters {(d1,k,d2,k)} with R = K = 49 using the XCAT training
dataset, for a MCAOL and b CAOL.

the trade-off between accuracy and features sparsity, we tested (5.13) with different

values of γ1 = γ2 with filter (d1,k,d2,k) of dimension R = 49 and number of filters

K = 49. For each simulation, we tuned γ1 = γ2 by testing different values to

investigate the effect. For all the datasets, we have used a training of P = 25

images for each energy e. Regarding the BPEG-M algorithm, we set the tolerance

value equal to 10−4 and the maximum number of iterations to 3 × 103. For the

CAOL training algorithm, we have used the same settings as detailed for MCAOL

except that we tuned a single regularization weight α in the optimization problem

5.4 for each separate energy channel.

Reconstruction MCAOL and JTV reconstructions were achieved by solving 5.10

with Rmc defined as 5.18 and 5.27 respectively, while CAOL and TV reconstructions

by solving 5.1 for each energy bin e = 1, 2 separately with R defined as 5.9 and

5.26 respectively. MCAOL and CAOL were achieved using Nouter = 300 outer

iterations while the inner image update is obtained using the L-BFGS algorithm

with 300 iterations. The (γ1, γ2)-values and β-values were the same as for training.

TV and JTV reconstructions were achieved with the L-BFGS algorithm with 300

iterations. The measurements were obtained from the GT images µGT
e outside the

training set and the reconstructions were repeated for each noise instance M , for a

range of (ρ1, ρ2)-values with ρ1 = ρ2 and for a range of β-values, in order to obtain

AbsBias-versus-STD curves.

We performed sparse-views and low-dose experiments on a simulated XCAT

phantom and clinical data to assess the potential of the method for medical practice

as detailed below. The experiments were conducted with fixed X-ray dose amount,

i.e., by selecting the number of angles and the X-ray source intensity, and we

evaluated the quality of the linear attenuation images reconstructed with different

methods, both qualitatively and quantitatively.
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z1,k CAOL z2,k CAOL

(a)

z1,k MCAOL z2,k MCAOL

(b)

Fig. 5.3 XCAT Phantom: estimated sparse feature maps z2,k for e = 1, 2 and
k = 1, ..., 49 using CAOL (a) and MCAOL (b); color scale: red for positive values,
blue for negative values.

5.5.3 Results on XCAT Phantom

For the unsupervised MCAOL and CAOL training, the numerical data consists

of 1-mm pixel-width 512× 512 torso axial slice images generated from the XCAT

phantom for 60 keV and 120 keV energies.

We utilized 20 slice pairs from the XCAT phantom, each pair consisting of

a slice at E1 = 60 KeV and a slice at E2 = 120 KeV, to train the filters. An

additional slice pair—not part of the training dataset—was used to generate the

projection data. We used the MCAOL weights parameters γ1 = γ2 = 800 and the

CAOL parameter α = 0.01.

Figure 5.2 shows the pairs (d1,k,d2,k) of learned convolutional filters obtained

by MCAOL (Fig. 5.2a) and separate learning with CAOL (Figure 5.2b). From a

qualitative point of view, it is possible to highlight how the MCAOL filter pairs

d1,d2 look to share a strong coupling as the edges are identical in the 2 energy

images compared to the CAOL filters.

In order to generate the sparse-view DECT projection measurements 5.21, we

modeled the projector A with a 2-mm Full Width at Half Maximum (FWHM)

resolution parallel beam system and we used a 1-mm pixel-width 406×406 GT torso

axial-slice images with attenuation coefficients µ⋆
1,µ

⋆
2 at energies 120 keV (high) and
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(a) Ground truth(b) Reconstruction
without prior

(c) MCAOL joint
reconstruction

(d) CAOL separate
reconstruction

(e) TV prior (f) JTV prior

Fig. 5.4 Comparison of reconstructed XCAT phantom from different reconstruction
methods for sparse-view CT with top row corresponding to high energy E1 = 120
keV and bottom row to low energy E2 = 60 keV: (a) Ground truth XCAT test image,
(b) minimization of the NLL function without prior, (c) MCAOL reconstruction,
(d) CAOL reconstruction, (e) separate reconstruction using TV prior and (f) joint
reconstruction using JTV prior.
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Fig. 5.5 Plot of the mean absolute bias (AbsBias) versus the standard deviation
(STD) for the XCAT phantom at a low X-ray source energy (60 keV) and b high
X-ray source energy (120 keV).

60 keV (low) which differs from the training examples. The simulation consisted on

generating sparse-view sinograms with 406 detector pixels and 60 regularly spaced

projection angles, where 360◦ is the full view rotation. A monochromatic source

with S̄e = 105 incident photons and 100 background events was used to generate

each sinogram.

To support the statement that joint sparsity allows both images to inform each other,

which makes the estimation of z1, z2 more robust, we show the estimated feature

maps in figure 5.3 obtained using the XCAT data. By comparing the estimated

sparse feature maps ze,k for e = 1, 2 and k = 1, ..., 49 for separate reconstructions

( 5.3 (a) ) and joint reconstruction (5.3 (b) ), there are no similarities between
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the feature maps obtained from separate reconstructions while the feature maps

obtained from joint reconstruction have similar structures.

Figure 6.1 shows the XCAT GT and the reconstruction images for both 60

keV and 120 keV energies obtained by MCAOL and the other algorithms used for

comparison. The images are obtained using the parameters which corresponds to

the minimum AbsBias shown in Figures 5.5a and 5.5b. It is worth noting that

MCAOL manages to substantially reduce the noise as compared with CAOL.

Figure 5.5a and Fig. 5.5b show the AbsBias against the STD results respectively

for low and high X-ray source energy. Among the methods used for comparison,

TV promotes sparsity of the gradient, while JTV promotes joint sparsity of the

2 gradients and therefore are particularly well-suited for XCAT. Despite this

observation, it is possible to show that the minimum AbsBias obtained by MCAOL

outperforms all other algorithms, or in other words by fixing the STD, the AbsBias

achieved by MCAOL is always lower while it is possible to claim that by fixing the

AbsBias, the STD of MCAOL is reduced.

(a) Ground truth (b) Reconstructionwithout prior
(c) MCAOL joint

reconstruction
(d) CAOL separate

reconstruction
(e) TV prior (f) JTV prior

Fig. 5.6 Comparison of reconstructed clinical data from different reconstruction
methods for sparse-view CT with top row corresponding to high energy E1 = 140
keV and bottom row to low energy E2 = 70 keV: (a) Ground truth clinical
test image, (b) minimization of the NLL function without prior, (c) MCAOL
reconstruction, (d) CAOL reconstruction, (e) separate reconstruction using TV
prior and (f) joint reconstruction using JTV prior.

5.5.4 Results on Simulation from Clinical Data

We utilized images reconstructed from data acquired on Philips IQon Spectral

CT and reconstructed with a MBIR technique (Philips IQon Elite Spectral CT

product specifications 2018). All patients provided signed permission for the use of

their clinical data for scientific purposes and anonymous publication of data. The

experiment was conducted in a similar fashion as for the XCAT simulation. We

selected 22 slice pairs from a full body patient scan with 0.902-mm pixel-width
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(E1), γ1 = 104 (E2), γ2 = 104

(a) Learned l1,0 filters via MCAOL

(E1), α = 10−4 (E2), α = 10−4

(b) Learned l0 filters via CAOL

Fig. 5.7 Learned filters {(d1,k,d2,k)} with R = K = 49 using the clinical training
dataset, for a MCAOL and b CAOL.

and 512× 512 image size for the training dataset corresponding to thorax. The

energies used in this study are 70 keV and 140 keV. An additional slice pair was

used to generate the projection data for reconstruction, as detailed below. The pair

of trained filters (d1,k,d2,k) obtained by both MCAOL and CAOL unsupervised

learning is shown in Figure 5.7; we used the parameters γ1 = γ2 = 104 and the

CAOL parameter α = 10−4.

z1,k CAOL z2,k CAOL

(a)

z1,k MCAOL z2,k MCAOL

(b)

Fig. 5.8 Clinical data: estimated sparse feature maps ze,k for e = 1, 2 and
k = 1, ..., 49 using CAOL (a) and MCAOL (b); color scale: red for positive values,
blue for negative values.

To generate the sparse-view DECT measurements 5.21, we used the same

geometrical and noise settings as for the XCAT simulation except that we used

451 detector pixels and 451× 451GT thorax images with attenuation coefficients

µ⋆
1,µ

⋆
2 at energies 140 keV (high) and 70 keV (low) which differs from the training
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(a) 70 keV.
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Fig. 5.9 Plot of the mean absolute bias (AbsBias) versus the standard deviation
(STD) for the clinical data at a low X-ray source energy (70 keV) and b high X-ray
source energy (140 keV).
(a) Reconstruction

without prior
(b) CAOL
reconstruction

(c) MCAOL joint
reconstruction

(d) TV prior (e) JTV prior (f) CAOL-PWLS
reconstruction

Fig. 5.10 Comparison of reconstructed clinical data from different reconstruction
methods for low-dose CT with top row corresponding to high energy E1 = 140
keV and bottom row to low energy E2 = 70 keV: (a) Ground truth clinical test
image, (b) minimization of the NLL cost function without prior, (c) MCAOL joint
reconstruction, (d) energy separate reconstruction using TV prior, (e) JTV prior
and (f) CAOL-PWLS reconstruction.

examples. In 5.8 we show the estimated feature maps obtained using the clinical

data. As already noted previously with the XCAT data, by comparing the estimated

sparse feature maps ze,k for e = 1, 2 and k = 1 . . . 49 for separate reconstructions

(5.8 (a)) and joint reconstruction ( 5.8 (b)), there are no similarities between

the feature maps obtained from separate reconstructions while the feature maps

obtained from joint reconstruction have similar structures.

In Figure 5.6 the GT image and the reconstruction images for both energies and

the different methods are shown; it is worth noting that the MCAOL reconstruction

is less noisy than the CAOL reconstruction.

Figures 5.9a and 5.9b report the AbsBias versus the STD plots and we obtain

101



CHAPTER 5. Dual-Energy CT Reconstruction

a similar behavior compared to the XCAT simulations; although the relative

distance of the AbsBias among the simulated algorithms is reduced, MCAOL is

still outperforming all other methods constantly either by fixing AbsBias or STD,

while the performance of CAOL is improving and it is close to the JTV solution

accuracy.

5.5.5 Results for Low-Dose DECT

We conducted DECT reconstruction on the same set of data as in Section 5.5.4 but

with a different CT acquisition setup; we substantially decreased the initial photon

counts to I0 = 103 (reduction of 2 orders of magnitude compared to the previous

experiments) and we doubled the number of views to 120. By approximating the

total delivered X-ray dose as the product of the photons intensity times the number

of views, it turns out that this scenario is considerably more challenging in terms

of ill-posed problem with a total dose reduction of 50 times.
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Fig. 5.11 Plot of the mean absolute bias (AbsBias) versus the standard deviation
(STD) for the low-dose (I0 = 103) reconstruction with clinical data at a low X-ray
source energy (70 keV) and b high X-ray source energy (140 keV).

We use this simulation to prove that MCAOL returns a more accurate solution

compared to other priors. Furthermore, we prove that despite the higher computa-

tional complexity to minimize the exact Poisson NLL in 5.24 compared to solving

the problem with a weighted least-squares approximated NLL, i.e., PWLS data-fit

cost function, MCAOL achieves substantial improved bias accuracy compared to

the PWLS solution. To perform these experiments, we used the same optimal

learned convolutional filters as obtained by the MCAOL training procedure detailed

in Section 5.5.4 and the GT images in Figure 5.6(a).

Figure 5.10 show the reconstruction images for both energies and different

methods; MCAOL accurately reconstruct the image features compared to all other

methods and it is confirmed that the PWLS model performs poorly.
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Figures. 5.11a and 5.11b show either that MCAOL is consistently outperforming

the other methods in terms of accuracy and variance and that the Poisson NLL

formulation leads to a noticeable improvement compared to the PWLS formulation

as it is indicated by comparing CAOL and CAOL-PWLS.

5.6 Discussion and Conclusions

In this work, we have extended the convolutional analysis operator framework to

multi-channel imaging and we have applied and extensively analyzed the proposed

method to the DECT application. The presented results show that by using

the information coming from both energies and allowing the channels to “talk

to each other” a more accurate solution of the reconstruction problem can be

achieved together with a reduction of the noise in the estimate. The coupling

between energies is encapsulated by using an l1,0 sparse mixed norm in the MCAOL

optimization problems both for training and reconstruction. We obtain consistently

better performances across different DECT acquisition scenarios from sparse-views

to low-dose photon counts.

The bias-variance trade-off analysis of the estimation results over the regular-

ization parameters confirms that MCAOL allows to achieve the minimum absolute

bias compared to CAOL and other MBIR state-of-the-art methods and also reduce

standard deviation. Furthermore, MCAOL has the benefit of requiring less memory

respect to DL methods because of the convolutional structure of the trained filters.

The MCAOL framework allows to utilize any mixed norms for the jointly

sparse regularization and other norms, such as the l2,1 -norm which as proposed by

Degraux et al. (2017) for convolutional synthesis operator learning, may also be

considered.

In our experiments we have considered the product between the X-ray source

intensity and the number of projection angles as an empirical measure for the total

transmitted X-ray dose. While this metric gives a good approximation of the dose,

we consider the analysis of the standardized measure of radiation dose, i.e., CT

dose index (CTDI), as well as the absorbed dose as a follow-up study.

We account the open problems of how to optimally select both the regularization

norm and regularization parameter according to the dataset for future algorithm

development.

Although this work focuses on the multi-channel imaging reconstruction prob-

lem, we believe that our proposed method can be utilized in conjunction to DECT

to task-oriented material decomposition problems. In particular, while an approach

would be to design a material decomposition module in the image space which takes

as input the MCAOL reconstructed images, a more compelling strategy would be
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designing a direct approach from sinograms to material images through MCAOL.

Furthermore, MCAOL method can be exploited for other multi-modal imaging

application such as PET/CT and PET/MRI. In the multi-modal case, given the

different intensity range on each channel, a further analysis on how to choose the

NLL weights γ1 ̸= γ2 in (5.10) should be conducted to properly balancing the

information coming from the different modalities.

Finally, from a learning point of view, MCAOL training can be seen as a

multi-channel single layer unsupervised convolutional autoencoder (Chun and

Fessler 2019b, Appendix A) which paves the way to extend this approach to deeper

autoencoder architectures to capture more complex features such as textures.

The analysis and comparison of the proposed MCAOL approach with other

supervised deep learning approaches is planned as a follow-up study. It is important

to stress that MCAOL inherits a precise mathematical derivation and therefore

it should not be susceptible of instabilities in the reconstruction which have been

proven to occur with deep learning methods (Antun et al. 2020).

We consider these problems as future development of the proposed algorithm.
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Sparse-View Joint Reconstruction and Material

Decomposition for Dual-Energy Cone-Beam CT

The present work proposes a methodology for sparse-view image reconstruction in

single-source rapid KVp switching in DE-CBCT. The idea is to reconstruct the

low and high energy images jointly in order to exploit structural similarities, thus

they inform each other during the reconstruction. The JTV regularization was

used within a MBIR to encode the low and high energy images. We demonstrate

the superiority of JTV regularization in comparison with TV and the Huber edge

preserving prior. We evaluate the performance of the reconstructed images for

material decomposition. This work was performed in parallel with the MCAOL

algorithm presented in the previous chapter and it was published in the 16th Inter-

national Meeting on Fully Three-Dimensional Image Reconstruction in Radiology

and Nuclear Medicine 2021, also known as Fully3D.

6.1 Introduction

In DE-CBCT, the rapid potential switching allows consecutive projection mea-

surements with alternating tube potentials where both the low and high energy

projection data are acquired throughout a whole gantry rotation (Garnett 2020,

Forghani and Mukherji 2018). The tube voltage varies between high and low, and

transmission data is acquired twice for adjacent projection angles.

The major disadvantage of this method is the need of reducing the rotation speed of

the system to acquire the extra projections and to account for the rise and fall times

required for voltage modulation (Lam et al. 2015). Due to fast switching it is not

possible to modulate the tube current between high and low energy simultaneously.

It remains constant during the acquisition. Thus, the tube current needs to be

increased to reduce the noise on images obtained with lower peak voltage, which

results in an increase of the radiation dose (Johnson 2012, Goo and Goo 2017).

Sparse-view projection angles can reduce the radiation dose, since the total number

of photons (emitted during the whole acquisition) decreases. Image reconstruction
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from under-sampled projection data is now possible thanks to the advancement

of CS theory. Several MBIR have been proposed based on the CS theorem. The

TV penalty, which promotes sparsity in the image gradient transform domain, has

been widely used as a regularization in MBIR. It successfully suppresses the streak

artifacts arising from sparse-view CT data, nevertheless, it attempts to penalize

the image gradient equally, regardless the underlying image structures. Thus, low

contrast regions are often over smoothed (Yu et al. 2017, Zhu et al. 2013).

Aside from l1 sparsity (Tibshirani 1996b), other prominent sparsity representation

options include a mixture of l1 and TV (l1 + TV )(Tibshirani et al. 2005, Gao and

Zhao 2010), wavelet (Mallat 1998), and tight frame (Daubechies et al. 2003). The

majority of these algorithms reconstruct a single image by maximizing an objective

function composed of the data fidelity term and the sparse regularization term. A

multi-channel joint reconstruction technique is a highly suited method for Dual

Energy Sparse CBCT.

The TV regularization can be generalized for multi-channel image reconstruction.

The most simplified technique to generalize the TV in multi-channel reconstruction

is to sum the total variation of the individual channels, as proposed by (Xu et al.

2014) and (Sawatzky et al. 2014) for spectral CT reconstruction. One important

theoretical shortcoming of this strategy is that it independently penalizes each

channel, despite the fact that strong inter-channel correlations often exist (Rigie

and La Rivière 2015). A few generalizations of TV, which impose coupling in the

images have been investigated, e.g the Total Nuclear Variation for spectral CT

(Rigie and La Rivière 2015) or in earlier research works for color image restoration

(Lefkimmiatis et al. 2013), (Holt 2014), (Keren and Gotlib 1998).

The present work proposes a methodology for sparse view image reconstruction in

single-source rapid KVp switching DE-CBCT by exploiting structural similarities

using the isotropic scalar JTV regularization proposed by (Sapiro and Ringach 1996)

in the context of color images processing. The hypothesis behind this approach is

that the low- and high-energy images can inform each other giving room for dose

reduction and enhancing the spatial resolution deficit due to the down-sampled

projection data.

High-quality reconstructed images allow accurate estimation of the basis materi-

als when performing material decomposition, which constitutes the main clinical

application of DE-CBCT. Thus, the present work, in addition, evaluates the per-

formance of the reconstructed images for material decomposition. The two most

common methods for reconstructing material-specific volumes from dual-energy

CBCT are projection-based and image-based. The projection-based material

decomposition can be conducted either by decomposing the acquired data into
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material-specific projections and further reconstruct them independently (known

as two-step projection-based method) or by reconstructing the decomposed im-

ages from the dual-energy sinograms in one-step inversion (known as one step

material-decomposition) (Mory et al. 2018). In two-step image-based algorithms,

each energy sinogram is log-transformed and reconstructed producing one volume

per energy bin, which is then decomposed into material-specific volumes.

This work aims to achieve high quality reconstructed images in fast KVp switching

DE-CBCT to lead to accurate material decomposition images utilizing the two-step

image-based methodology.

6.2 Dual Energy Image Reconstruction

Assuming a simplified single-source rapid KVp switching DE-CBCT setting, each

sinogram yℓ ∈ Rn, obtained from the energies ℓ ∈ {1, 2} (low and high), is modeled

by a random vector yℓ = [y1,ℓ, . . . , yn,ℓ]
⊤ with independent entries, where n is the

number of detector pixels. At each detector pixel i ∈ {1, . . . , n}, the number of

detected photons yi,ℓ follows a Poisson distribution:

yi,ℓ ∼ Poisson(ȳi,ℓ(µℓ)) , (6.1)

with

ȳi,ℓ(µℓ) = bi exp(−[Aµℓ]i) + si,ℓ (6.2)

where µℓ ∈ Rm is the attenuation image at energy ℓ, A is a n×m matrix modeling

the system, si,ℓ is a background term and m is the number of voxels in the image.

We propose to reconstruct the low- and high-energy attenuation images (µ1,µ2)

by penalized maximum-likelihood joint estimation from the sinograms (y1,y2):

(µ̂1, µ̂2) = argmax
µ1,µ2≥0

L1(µ1,y1) + L2(µ2,y2)− βR(µ1,µ2) (6.3)

where R(µ1,µ2) is a joint regularization term, β is the regularization parameter

and L(µℓ,yℓ) is the log-likelihood defined as:

L(µℓ,yℓ) =
n∑

i=1

yi,ℓ log ȳi,ℓ(µi,ℓ )− ȳi,ℓ(µi,ℓ ) . (6.4)

The Quasi-Newton maximization problem (6.3) is solved using a L-BFGS algorithm

(Zhu et al. 1997).

107



CHAPTER 6. Dual-Energy CBCT Reconstruction

6.2.1 Joint Total Variation Regularization

In the present work, we used the JTV penalty term R(µ1,µ2) inspired from

(Ehrhardt et al. 2014b) and (Sapiro and Ringach 1996). The JTV regularization

term can be written as:

R(µ1,µ2) =
m∑
j=1

(
∥[∇µ1]j∥2 + ∥[∇µ2]j∥2 + γ2

)1/2
(6.5)

where ∇µℓ ∈ Rm×d (d = 2, 3) is the gradient image of µℓ and [∇µℓ]j ∈ Rd

is the gradient at voxel j, and γ > 0 tunes the smoothness of the prior (for

differentiability). The image µl is reshaped in a matrix, then we compute ∇ as

the finite differences along x and y axis as shown in Section 3.2, equation 3.30.

The role of this prior is to promote structural similarities by enforcing joint

sparsity of the 2 gradient images. We compared the proposed approach of jointly

reconstruct the images with JTV against reconstructing separately with TV as

follows:

µ̂ℓ = argmax
µℓ≥0

L(µℓ,yℓ)− δS(µℓ) (6.6)

with

S(µℓ) =
m∑
j=1

(
∥[∇µℓ]j∥2 + η2

)1/2
(6.7)

where δ and η play the same roles as β and γ respectively.

Moreover, we compared against existing edge preserving prior (e.g. Huber

Prior):

µ̂ℓ = argmax
µℓ≥0

F (µℓ,yℓ)− ρU(µℓ) (6.8)

with

U(µℓ) =
m∑
j=1

∑
k∈Nj

ωj,kΦ(µ
j
ℓ − µ

k
ℓ ) (6.9)

where Nj are the neighborhood of j and ρ controls the weight of the regularization

term; ωj,k are weights (ωj,k = 1 for axial pixels and ωj,k = 1/
√
2 for diagonal pixels.

For the Huber prior the typical choice of Φ(x) are (Nuyts et al. 2002)

|x| ⩽ σ : Φ(x) =
x2

2σ2
|x| > σ : Φ(x) =

|x| − σ/2
σ

(6.10)

The Huber prior compares the difference between neighboring pixels with the value

of the parameter σ (Nuyts et al. 2002).

With these two approaches using TV and Huber priors, each energy image is

reconstructed independently without sharing structural information.
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Algorithm 6: JTV Reconstruction Algorithm

Input: Initial images (µ0
1,µ

0
2), penalty weight β, prior smoothness γ > 0,

dual-energy sinogram (y1,y2), forward operator A, intensity
(b1, b2)

#outer iterations Nouter.
Output: Reconstructed images (µ̂1, µ̂2)
for t = 1, . . . , Nouter − 1 do

Update low energy CBCT image
µt

1 ← L-BFGS(µt−1
1 ,µt−1

2 ,y1,A, b1, β, γ)
Update high energy CBCT image
µt

2 ← L-BFGS(µt−1
2 ,µt

1,y2,A, b2, β, γ)
end

µ̂1 ← µNouter
1 ;

µ̂2 ← µNouter
2 ;

6.3 Experiments

We performed the dual-energy image reconstruction by iteratively alternating

between (i) updating the low-energy image µ1 and (ii) updating the high-energy

image µ2 using the L-BFGS algorithm. We initialized the images using a MLTR

algorithm (Nuyts et al. 1998) without explicit prior. The pseudo-code for JTV

reconstruction algorithm is detailed in Algorithm 6.

6.3.1 Results on XCAT phantom

The numerical down-sampled projection data was modeled by forward projection

of a 0.85-mm pixel width 512 × 512 torso axial slice images generated from

the XCAT phantom at two energy levels (Segars et al. 2010). We modeled the

projector A with a 1-mm FWHM resolution fan beam system. We simulated

sparse-view 60-angle sinograms, where 360 is the number of angles in full view.

We distributed the projection angles such that, in a single gantry rotation, one

projection angle corresponds to the low energy, and the consecutive corresponds to

the high energy projection. For each sinogram, we use a monochromatic source

with 105 incident photons and 100 background events. In this work, the values of

the linear attenuation coefficients at each phantom were generated assuming X-ray

energies of 70-KeV (low) and 140-KeV (high).

Figure 6.1 shows the reconstructed images using JTV regularization, TV, the

Huber prior and without prior. In absence of prior, the images suffer from under-

sampling artifacts. The selected ROI in the images show the improved performance

of JTV as compared with TV and the Huber edge preserving prior. Low-contrast

features can be better identified with JTV.
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70 KeV PSNR SSIM 140 KeV PSNR SSIM

JTV 64.85 0.9996 JTV 66.66 0.9998

TV 62.01 0.9993 TV 63.01 0.9992

Gain(%) 4.58 0.030 Gain(%) 5.79 0.06

Huber 60.32 0.9987 Huber 62.98 0.9990

Gain(%) 7.51 0.083 Gain(%) 5.84 0.080

Table 6.1 Peak Signal-to-Noise Ratio (PSNR) in dB and the Structural Similarity
Index (SSIM) for the JTV, TV and Huber reconstruction algorithms at low-energy
(70 KeV) and high-energy (140 KeV). The Gain is calculated as Gain(%) =
100 · (JTV−TV)/TV in the case of TV regularization and Gain(%) = 100 · (JTV−
Huber)/Huber in the case of Huber prior

Furthermore, we quantitatively evaluated the performance of JTV using the

PSNR defined as:

PSNR(dB) = 10 · log10

( {
max(µ̂GT )

}2∑m
j=1

1
m

(
µ̂j − µ̂GT

j

)2
)

(6.11)

where µ̂j and µ̂
GT represent the intensity value at the pixel j in the reconstructed

image and the ground truth respectively.

We utilized the SSIM to measure the visual impact of three characteristics in

the reconstructed image: luminance, contrast and structure. The SSIM between

two images (x, y) can be defined as: (Kawahara et al. 2020, Wang et al. 2004)

SSIM(x, y) =

(
2mη

x
mη

y
+ C1

)
(2σxy + C2)(

mη
2

x
+mη

2

y
+ C1

)(
σ2
x + σ2

y + C2

) (6.12)

where mη
x
,mη

y
, σx, σy, and σxy are the local means, standard deviations, and cross-

covariance for images x, y. The constants C1 , C2 are used to prevent a zero

denominator and to avoid instability for image regions where the local mean or

standard deviation is close to zero.

Table 6.1 shows the values of the metrics mentioned above for the reconstructed

images utilizing the XCAT phantom. At both energy levels, the JTV approach

results in higher PSNR and SSIM.

For the low-energy image the JTV gain with respect to TV was 4.58% in PSNR

and 0.03% in SSIM while for the high energy image the gain was 5.79% in PSNR

and 0.06% in SSIM. Regarding the Huber prior, the gain was 7.51% and 5.84% in

PSNR for the low and high energy image respectively, while the gain in SSIM was

0.08% for both, the low and high energy images.

We also analyzed the bias/variance trade-off of JTV, TV and Huber prior on
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(a) Ground truth (b) No prior (c) Huber prior (d) TV prior (e) JTV prior

Fig. 6.1 Comparison of reconstructed XCAT phantom from different reconstruction
methods for sparse-view DE-CBCT with top row corresponding to high energy
(E = 140 KeV) and bottom row to low energy (E = 70 KeV): (a) Ground truth,
(b) reconstruction without prior, (c) reconstruction utilizing Huber prior, (d)TV
reconstruction, (e) joint reconstruction using JTV prior

the low and high energy images by plotting the absolute bias (AbsBias) against

the variance of the total image, based on K = 30 realizations of y1 and y2, for

each value of the regularization parameter β, δ and ρ.

AbsBias =
1

K

1

m

K∑
k=1

m∑
j=1

∣∣µ̂k
j − µ̂GT

j

∣∣ (6.13)

Var =
1

K

1

m

K∑
k=1

m∑
j=1

(
µ̂k
j − µ̂

mη
j

)2

with µ̂
mη
j =

1

K

K∑
k=1

µ̂k
j

where µ̂k
j the reconstructed image at pixel j for the noise realization k and µ̂GT

j is

the ground truth.

Figure 6.2 and 6.3 show that JTV achieves lower absolute bias for any variance

level in the two energy images.

6.4 Results on simulation from Clinical Data

The clinical dataset is acquired from the Philips IQon Spectral CT scanner from

the Poitiers University Hospital. All patients used in the study provided signed per-

mission to use their clinical data for scientific purposes and anonymous publication
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Fig. 6.2 Plot of the Absolute Bias (AbsBias) versus the Variance (VAR) for the
sparse-view reconstruction with XCAT data and high X-ray source energy, 140 keV.
Each point on the curve corresponds to a value of the regularization parameter
β, δ and ρ.
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Fig. 6.3 Plot of the Absolute Bias (AbsBias) versus the Variance (Var) for the
sparse-view reconstruction with XCAT data and low X-ray source energy, 70 keV.
Each point on the curve corresponds to a value of the regularization parameter
β, δ and ρ.

of data.

We selected 2D slices from a full body patient scan with 0.902-mm pixel-width

and 512× 512 image size corresponding to thorax. The monochromatic energies

used in this study are 70 keV and 140 keV. To generate the sparse-view DE-CBCT

measurements we used the same geometrical and noise settings as for the XCAT

simulation.

In Figure 6.4 we observe that JTV outperforms TV for clinical data; TV-

reconstructed images shows aliasing artifacts.

Moreover, we computed the PSNR and SSIM for clinical data. Table 6.2 shows
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(a) Ground truth (b) No prior (c) Huber prior (d) TV prior (e) JTV prior

Fig. 6.4 Comparison of reconstructed Clinical data from different reconstruction
methods for sparse-view with top row corresponding to high energy (E = 140 KeV )
and bottom row to low energy (E = 70 KeV ): (a) Ground truth, (b) reconstruction
without prior, (c)reconstruction utilizing Huber prior (d)TV reconstruction, (e)
joint reconstruction using JTV prior.

70 KeV PSNR SSIM 140 KeV PSNR SSIM

JTV 63.81 0.9993 JTV 66.24 0.9994

TV 62.27 0.9989 TV 65.23 0.9992

Gain(%) 2.45 0.040 Gain(%) 1.54 0.02

Huber 59.74 0.9978 Huber 63.68 0.9990

Gain(%) 6.80 0.150 Gain(%) 4.02 0.04

Table 6.2 Peak Signal-to-Noise Ratio (PSNR) in dB and the Structural Similarity
Index (SSIM) for the JTV, TV and Huber reconstruction algorithms at low energy
(70 KeV) and high energy (140 KeV). The Gain is calculated as Gain(%) =
100 · (JTV− TV)/TV for TV and Gain(%) = 100 · (JTV−Huber)/Huber for the
Huber prior.

the SSIM and PSNR values are higher for JTV for the low and high energy images.

Figures 6.5 and 6.6 report the AbsBias versus the Var plots. We obtain a

similar behavior compared to the XCAT simulations, JTV outperforms TV and

the Huber edge preserving prior.

6.4.0.1 Modulation Transfer Function

The spatial resolution of the DE-CBCT images reconstructed utilizing the different

algorithms was measured by computing the MTF derived from an edge measurement.

The MTF is a metric that indicates how efficiently a system transmits contrast

across spatial-frequencies. In this work we utilized the slanted edge technique to

measure the MTF (Richard et al. 2012). Initially, an Edge Spread Function (ESF)

was obtained at the slanted edge between the trachea and the lung. The ESF was
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Fig. 6.5 Plot of the Absolute Bias (AbsBias) versus the Variance (Var) for the
sparse-view reconstruction with Clinical Data and high X-ray source energy, 140
keV.
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Fig. 6.6 Plot of the Absolute Bias (AbsBias) versus the Variance (Var) for the
sparse-view reconstruction with Clinical Data and low X-ray source energy, 70 keV.

re-sampled using linear interpolation and averaged across multiple ESF realizations

to reduce noise in ESF. Then, a Line Spread Function (LSF) was estimated by

taking the derivative of the ESF as:

LSF (x) =
∂(ESF )

∂x
(6.14)

Finally, the MTF was obtained by applying the Fourier Transform to the LSF

Zhang et al. (2017), Richard et al. (2012).
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MTF (t) = F{LSF (x)} (6.15)

Figures 6.7 and 6.8 show the MTF of the images reconstructed utilizing TV,

JTV and the Huber regularization for high- and low-energy images respectively.

We observe that JTV produces higher spatial resolution than TV and the Huber

prior. The spatial resolution analysis reveals that JTV increases detectability and

edge-preservation in comparison to TV.

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Spatial Frequency(lp/pixel)

M
T
F

JTV
TV
Huber

Fig. 6.7 MTF obtained from the reconstructed images utilizing JTV, TV and the
Huber priors for high-energy clinical data , 140 keV.
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Fig. 6.8 MTF obtained from the reconstructed images utilizing JTV, TV and the
Huber priors for low-energy clinical data , 70 keV.
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(a) Ground truth (b) Huber prior (c) TV prior (d) JTV prior

ROI2

ROI1

Fig. 6.9 Decomposed images into Bone (top row) and Soft Tissue (bottom row)
basis materials utilizing the XCAT images obtained form the (a) ground truth,
(b) Huber prior reconstruction (c) reconstruction with TV and (d) reconstruction
using JTV prior

6.5 Results for Material Decomposition

An important application of DE-CBCT is material decomposition. It relies on the

approximation of the linear attenuation coefficient at each pixel in the CT image

by a linear combination of the attenuation values of basis materials. Thus, the

material decomposition can be written as:

(
µ1

µ2

)
=

(
µ11 µ21

µ12 µ22

)(
z1

z2

)
(6.16)

where the subscripts p ∈ (1, 2) indicate two basis materials, µpl is the linear

attenuation coefficient of material p at the energy l ∈ (1, 2), z1 and z2 are the

volume fractions of the basis materials at the same position of two basis material

images and µ1 and µ2 are the low and high energy reconstructed images. The aim

of material decomposition algorithms is to estimate the volume fractions knowing

the linear attenuation coefficient of the basis materials. In the present study we

utilize the methodology proposed in Friedman et al. (2012).

We decompose into Soft Tissue (z1): Breast Tissue 308 ICRU-44, 1.00g/cm3;

and Bone: B-100 Bone-Equivalent Plastic, 1.50g/cm3). (of Standards and Technol-

ogy 2001)

Figure 6.9 shows the image decomposition into bone and soft tissue basis

material from the reconstructed images using JTV, TV, the Huber Prior and the

ground truth. We observe that small bone structures can be better identified in

the bone-decomposed image obtained from the JTV reconstruction.

We quantitatively compared the performance of JTV for material decomposition
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Bone RMSE Soft Tissue RMSE

JTV 0.1722 JTV 0.1710

TV 0.2142 TV 0.1757

Huber 0.2672 Huber 0.2395

Table 6.3 Root Mean Square Error (RMSE of the soft tissue (ROI1) and bone
ROI2 images decomposed utilizing JTV,TV and The Huber regularization.

(a) Ground truth (b) Huber prior (c) TV prior (d) JTV prior

Fig. 6.10 Decomposed images into Bone (top row) and Soft Tissue (bottom row)
basis materials utilizing the clinical images obtained form the (a) ground truth,
(b) Huber prior reconstruction (c) reconstruction with TV and (d) reconstruction
using JTV prior

by computing the RMSE in the selected ROI as:

RMSE =

√√√√ 1

m

m∑
j=1

(µ̂j − µ̂GT
j )2 (6.17)

Table 6.3 show the values of the RMSE calculated in ROI1 and ROI2 as shown

in 6.9. For both basis materials, the decomposition utilizing JTV reconstructed

images scores lower RMSE compared with TV and Huber reconstructed images.

We performed material decomposition from the reconstructed images utilizing

clinical data. Figure 6.10 shows the images decomposed into soft tissue and

bone. We observe similar behavior to the results obtained with the XCAT data.

Small bone structures are better identified from the image obtained with JTV

reconstruction.
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6.6 Discussion and Conclusions

The present work proposes an image reconstruction methodology for sparse-view

DE-CBCT using a JTV regularization. The coupled regularizer exploits structural

similarities between the two images acquired at low- and high-energy. We compared

the performance of the proposed approach against the reconstruction of each

image separately using TV regularization and the Huber edge preserving prior.

Reconstruction with JTV resulted in improved contrast and spatial resolution as

well as improved material decomposition.

By using JTV and coupling the low- and high-energy images, is possible to

incorporate joint structural information between the 2 energies. This allows to

reconstruct images from the same object where some features are missing due to

the down-sampling projection data, for instance. The results presented in this work

show the ability of the JTV regularization to improve sparse-view reconstruction,

even when the number projection angles are 6 times less than that of a full-view

setting, which allows a significant decrease the radiation dose to the patient. In

comparison with TV regularization and the Huber prior, JTV leads to improved

accuracy both in reconstruction and material decomposition. The reconstruction

with JTV results in better contrast and spatial resolution. The results obtained with

patient data or more textured phantoms corroborate the high performance of JTV

compared to TV. Further analysis will involve using the proposed reconstruction

framework in new CT scanner technologies, like photon-counting spectral CT,

where the algorithm can leverage the joint structural similarities from an increased

number of images at different energies, leading to an overall improved quantitative

estimation even with a further reduction of the acquired projection angles.
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Conclusion and Perspectives

7.1 Conclusions

The present thesis proposes image reconstruction techniques for different X-ray

Computed Tomography modalities. The main objective is the reduction of artifacts

and the dose delivered to the patient while maintaining the image quality. We

have designed new MBIR methods using data-driven approaches and machine

learning. We have exploit the multi-channel joint reconstruction approaches by

reconstructing the unknown images simultaneously. We solved a single combined

inverse problem and exploit structural similarities between the images. We de-

signed three multi-channel image reconstruction for: (i) Sliding motion artefact

correction in CBCT utilizing sparse dictionary learning methods (Chapter 4);

(ii) Dual energy CT reconstruction utilizing convolutional dictionary learning ap-

proaches (Chapter 5); (iii) Dual energy CBCT reconstruction utilizing the joint

total variation technique (Chapter 6). The three approaches exploit the hypothesis

that the input channels share structural similarities thus thy can “inform” each

other during the reconstruction. The proposed methodologies were compared with

the state-of-the-art in low dose and sparse-view CT image reconstruction methods.

• In Chapter 4 we proposed a coupled image-motion dictionary learning tech-

nique for sliding motion estimation-compensation in CBCT. The image and

the DVF are simultaneously encoded in order to capture structural similarities

between the image and the motion, especially the sliding motion at organs

boundaries. The first step consisted of learning a set of coupled image-motion

dictionaries from a training data set of DVF and image at different respiratory

gates. The second step uses the trained dictionaries as sparse regularization

within a MBIR which performs direct motion estimation-compensation from

the projection data. We also proposed a single dictionary learning approach

where the image and the motion dictionaries are trained separately, thus,

they do not share the same sparse component. Both methodologies perform
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well in terms of noise controlling and both estimate the motion field correctly.

The resulting dictionaries learned with the coupled image-motion technique

exhibit structural similarities. However, still further improvement are needed

in order to capture sliding motion at organ boundaries and image denoising.

Because the single dictionary learning performed better than coupled dictio-

nary learning, we may conclude that restricting the algorithm so that both

dictionaries have the same sparse vector is a very strong constraint. Another

option is to restrict only the support, which means having two sparse vectors

but with zeros and non-zero coefficients at the same position. Moreover,

for each respiratory phase, an image dictionary and three DVF dictionaries

(corresponding to the DVF along each axis x, y, z) are learned. The approach

uses a significant amount of memory. Convolutional dictionary learning is

one technique which could mitigate this issue. Another option is to use CNN

to fine-tune the DVF. We discuss these concepts in depth in the next section.

• In Chapter 5 we proposed a multi-channel convolutional analysis operator

learning framework as an extension of the CAOL method. We applied the

MCAOL method to DECT. MCAOL learns convolutional dictionaries of the

underlined images by jointly learning filters for the different modalities. In

the DECT application, each atom not only carries individual information

for each energy individually but also inter-energy information. We utilize

two sparse vector coupled through using an l1,0 sparse mixed semi norm in

the MCAOL optimization problems both for training and reconstruction.

We performed extensive experiments for sparse-view and low dose CT. We

evaluated through many experiments the superior performance of MCAOL

compared to independent optimization of each input energy. MCAOL resulted

in higher quality images than state-of-the-art methods. The bias versus

variance trade off showed how MCAOL archives the minimum bias and

reduces the variance. The proposed methodologies can be seen as a general

multi-channel framework. It can be applied to other modalities such as

PET/CT, PET/MRI and SPECT/CT. Moreover, it can be extended to

multi-energies or spectral CT by training energy dictionaries and combine

the sparse vectors ze,k (e : 1, . . . , E, with E is the number of energies) in a

mixed norm. The reconstructed images from MCAOL can be used as follow

up for image-based material decomposition in Spectral CT.

• In Chapter 6 we implemented the JTV and applied to the fast KVp switching

set up in DE-CBCT. We simulated sparse-view CB projection data such that,

in a single gantry rotation, one projection angle corresponds to the low energy,

and the consecutive corresponds to the high energy. The main purpose was
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to asses the spacial resolution improvement with joint reconstructions in

alternating projection angles. We compared the reconstruction obtained with

JTV against the single reconstruction utilizing TV and the Huber prior. The

bias versus variance trade-off showed the out-performance of JTV, which

scores lower bias and variance for different values of the regularization param-

eter. We also evaluated the performance of the JTV reconstructed images

in material decomposition. The findings revealed that JTV regularization

may enhance sparse-view reconstruction even when the number of projection

angles is 6 times lower than in a full-view case, resulting in a considerable

reduction in the patient’s radiation exposure. We used the reconstructed

images to perform image base material decomposition. The qualitative and

quantitative results showed the effectiveness of JTV for this task as well as

its superior performance compared to TV and Huber prior.

7.2 Perspectives

The methodologies implemented in this thesis can be considered proof-of-concept.

The most remarkable continuation of the three methodologies would be the use of

raw projection data. Thus, other issues such as beam hardening and scatter will

be considered, especially in CBCT, where the scatter may be a significant problem.

For the motion estimation compensation presented in Chapter 4, the methodology

can be improved utilizing CDL (e.g. MCAOL extended to more than 2 channels).

Another approach could be utilizing CNN which have shown promising results in

image processing task.

7.2.1 Sliding motion correction utilizing Neural Networks

CNN have proven to be quite efficient in image processing tasks, such as segmen-

tation, pattern recognition, classification etc. The work from Zhang et al. (2019)

uses CNN to improve the accuracy of intra-lung DVF.

The sliding motion estimation presented in Chapter 4 can be driven using CNN.

The general framework is presented in Figure 7.1. The motion DVF can be es-

timated from the CB projection data. This estimation can be encoded as the

network input (Figure 7.2). The output could be the DVF with sliding motion.

The CNN needs to be trained beforehand. The DVF output of the network is used

to perform the motion compensation. When convergence is reached, the motion

compensated CBCT image and the DVF with sliding motion at organs boundary

will be obtained. We account the open problem of choosing the neural network,

although we believe that U-net (Ronneberger et al. 2015) could perform the task.
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Fig. 7.1 General framework of the sliding motion estimation compensation in CBCT.

7.2.2 MCAOL extension to Spectral CT

The MCAOL algorithm can be extended to multi-energies since the l1,0 semi-norm

can be defined for a set of d-vectorized feature maps z1, . . . ,zd. Each zi, i = 1, . . . , d

is a column vector of dimension J × 1. Then the joint l1,0 semi-norm is defined as

∥(z1, . . . ,zd)∥1,0 =
J∑

j=1

1]0,+∞[ (|z1,j|+ . . .+ |zd,j|) (7.1)

A more compact form it is obtainable using the matrix form, i.e., by collecting

all column vectors zi in matrix form as X = [z1, . . . ,zd]. Then the semi-norm can

be written as

∥X∥1,0 =
J∑

j=1

∥zj,:∥0 (7.2)
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Fig. 7.2 The set up of the sliding motion correction with CNN.

where xj,: is the j-th row of X. While the statistical noise tends to be higher in

the multi-energy case, on each sub-band the contribute of the noise is reduced since

the noise is split on more energy bands. Therefore, evaluating the joint norm, i.e.,

non-zeros elements in the feature vectors in overlapping positions for all energies

at the same time will reduce the degradation due to the increased overall noise.
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Appendix A

Sparsity Promoting Norms

This section discusses why the l0 pseudo-norm and l1 norm promote sparsity.

The lp-norm of a vector x = (x1, . . . , xn) measures its size and can be computed as

∥x∥p :=

(
n∑

i=1

|xi|p
)1/p

(A.1)

The norms can be geometrically represented as shown in figure A.1. The points

(vector) on the red “star” have l1 norm equal 1. For the Euclidean distance measure

with the l2 norm every point on the circumference is a vector with l2 norm equal 1.

Fig. A.1 Geometric properties of l0 pseudo-norm, l1 and l2 norm. Every vector on
the red shape has respectively l0 pseudo-norm, l1 and l2 norm equal 1. Reprint from
Brunton and Kutz (2019)

Let us consider the following system of equation:

y = Dz (A.2)

where y and D are known. This is an undetermined system of equation with

multiple solutions zk. Figure A.2 depicts the solutions zk as a blue line.

If an lp-norm constraint in z is added, the optimization problem takes the form

min
z
∥z∥p s.t. Dz = y (A.3)
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Appendix A. Sparsity Promoting Norms

The solution is constrained to the vector with the smallest lp norm among the

possible solutions zk.

When p = 2 (Euclidean norm), the selected vector is the intersection point

between the red circle and the blue line, as shown in A.2. This point has the two

coordinates with non-zero values, thus it is not the sparsest solution.

Fig. A.2 The minimum norm point on a line in different lp norms. The red curves
show the minimum-norm level sets that cross the blue line for different norms, while
the blue line represents the solution set of an under-determined system of equations.
According to the l0 and l1 norms, the minimal norm solution also corresponds to the
sparsest solution, i.e., with just one active coordinate. There is no sparsity in the l2
minimum-norm solution, as all coordinates are active. Reprint from Brunton and Kutz
(2019)

When p = 0 the point with the smallest l0 pseudo-norm is on the axis, which has

one of its coordinates equal zero. Thus, the l0 pseudo-norm, due to the geometrical

shape, selects the sparsest solution among all the possibles values zk. That is the

reason why l0 pseudo-norm promote sparse solutions. The l0 pseudo-norm would be

the ideal case-scenario to induce sparsity. However with this norm the optimization

problem becomes highly combinatorial, NP-hard and extremely difficult to solve.

One approach to relax the optimization problem is to replace the l0 pseudo-norm

by the l1. As shown in A.2, the l1 norm constraint also selects the sparsest solution

among all the possibles values zk.
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CAOL PWLS Objective Function

With X-ray CT high/normal exposure, a common practice is to use a quadratic

approximation of equation (5.23) which leads to a Weighted Least Squares (WLS)

approximation (Elbakri and Fessler 2002) based on taking the logarithm of the

data

ye,i = log

(
Se

pe,i − ηe,i

)
(B.1)

This is equivalent to observing ue corrupted with a data-dependent Gaussian noise,

ne,

ye = ue + ne = Aµe + ne (B.2)

where ye = [ye,1, . . . , ye,I ] and ne ∼ N (0,W−1
e ), with inverse covarianceWe ∈ RI×I

defined as follows

We = diag
[
(pe,i−ηe,i)

2

pe,i

]
(B.3)

The NLL can then be approximated as:

− L(µe) ≈ const. +
1

2

(
Aµe − ye

)T
We

(
Aµe − ye

)
(B.4)

Using the learned dictionaries (D⋆
1,D

⋆
2) = ({d⋆

1,k}, {d⋆
2,k}) obtained as the

solution the CAOL optimization (5.13) with a set of high-quality CT images, i. e.

normal-dose and full views, we aim at reconstruct dual energy images independently

(µ1,µ2) ∈ RJ × RJ from the post-log measurements (y1,y2) ∈ RI × RI . We use a

model-based objective function with a penalty term for (µ1 and µ2) that can be

solved through the following multi-nonconvex optimization problem

(µe) = argmin
µe>0

−
2∑

e=1

γeL(µe,ye) +Re(µe) (B.5)

with

R(µe) =
K∑
k=1

β1
2

∥∥d⋆
e,k ⊛ µe − ze,k

∥∥2
2
− ∥(ze,k)∥0 (B.6)
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Substituting the NLL expression in (B.4) we obtain for each energy e = 1, 2 the

following optimization problems

µe = argmin
µe≥0

γe
2
∥ye −Aµe∥2We

(B.7)

+ min
ze,k

K∑
k=1

βe
2

∥∥d⋆
e,k ⊛ µe − ze,k

∥∥2
2
+ ∥(ze,k)∥0

The minimization problem (B.7) is solved through a gradient-based two-block

solver which alternating estimates the sparse feature images and the linear attenu-

ation images {µe : e = 1, 2} as in Chun and Fessler (2019b).

149



 

 

 

Titre:  Reconstruction d’images Tomographiques Multicanaux en Exploitant les Structures  

Similaire des Images. 

Mots clés : Tomographie à rayons X, Apprentissage par dictionnaires, Reconstruction d’images, 

Méthodes itératives, Optimisation. 
 

Résumé : La technique de reconstruction 

multicanal est une méthode adaptée à la 

reconstruction multimodale en imagerie médicale. 

Dans la technique, les images inconnues sont 

reconstruites simultanément en résolvant un seul 

problème inverse et en exploitant les similitudes 

structurelles entre les images. L’hypothèse sous-

jacente à cette approche est que les modalités de 

l’image s’informent mutuellement lors de la 

reconstruction permettant la réduction des artefacts 

et l’amélioration de la qualité de l’image. La 

présente thèse développe trois modèles de 

reconstruction d’images multicanaux. La première 

méthodologie consiste un algorithme 

d’apprentissage du dictionnaire couplé image et 

mouvement pour l’estimation et la compensation 

du mouvement en Cone Beam  
 

Computed Tomography (CBCT). La deuxième 

approche propose un apprentissage d’opérateur 

d’analyse convolutive multicanal (MCAOL) pour 

la reconstruction CT bi-énergie (DECT). Dans la 

troisième technique, nous nous concentrons sur la 

configuration d’acquisition de commutation KVp 

rapide à source unique à vue sparse dans le CBCT 

à double énergie pour réduire la dose totale 

délivrée lors d’une acquisition CT. Les 

méthodologies proposées ont été comparées aux 

algorithmes de reconstruction de pointe actuels 

pour la tomographie à faible dose et à vue sparse. 

Les trois méthodologies surpassent les méthodes 

utilisées par comparaison. Ils ont été publiés dans 

des revues à comité de lecture et des conférences 

internationales. 

 

Title:  Multi-channel Computed Tomographic Image Reconstruction by Exploiting Structural  

Similarities 

Keywords:  X-ray Computed Tomography, Dictionary Learning, Image Reconstruction, Iterative  

Methods, Optimization. 

Abstract: The multi-channel joint reconstruction 

technique is a highly suited method for multi-

modal medical imaging reconstruction. In the 

technique, the unknown images are reconstructed 

simultaneously by solving a single combined 

inverse problem and exploiting structural 

similarities between the images. The hypothesis 

behind this approach is that the image modalities 

inform each other during the reconstruction 

allowing artifact reduction and image quality 

enhancement. The present thesis develops three 

image reconstruction models for multi-channel 

image reconstruction. The first methodology 

consists of a Coupled Image-Motion Dictionary 

Learning algorithm for Motion Estimation 

 

Compensation in Cone-Beam Computed 

Tomography (CBCT). The second approach 

proposes a Multi-channel Convolutional 

Analysis Operator Learning (MCAOL) for 

Dual-Energy CT (DECT) Reconstruction. In the 

third technique, we focus on the sparse view 

single source fast KVp switching acquisition set-

up in Dual Energy CBCT to reduce the total dose 

delivered during a CT acquisition. The proposed 

methodologies were compared with the current 

state-of-the-art reconstruction algorithms for 

sparse-view and low-dose CT. The three 

methodologies outperform the methods used for 

comparison. They were published in peer-

reviewed journals and international conferences. 
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