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Chapter 1

Introduction

1.1 General Context

According to Cisco, the number of devices connected to IP networks will be more than three

times the global population by 2023. There will be 3.6 networked devices per capita by 2023

(29.3 billion networked devices), up from 2.4 networked devices per capita in 2018 (18.4 billion

networked devices). The share of Internet of Things (IoT) devices -also referred to as Machine-

Type-Communication (MTC), Device-to-Device (D2D), or Machine-to-Machine (M2M)- will

be 50% [1]. On the other hand, the global mobile connections will grow from 8.8 billion in 2018

to 13.1 billion by 2023 at a compound annual growth rate of 24%. Among them, 1.4 billion will

be 5G capable [1]. The vision of more than 1.4 billion connected devices is going to implement

profound changes in the way people, businesses and society interact, such as social networking,

public safety services, and advertising. These trends are based on proximity communication

that enables User Equipements (UE) to transmit and receive information without going through

the evolved Node B (eNB).

The Long Term Evolution (LTE) network is considered as a promising technology for cellular

IoT as it provides mobility and connectivity along wide coverage area [2, 3]. Consequently,

cellular IoT has become a research concern to support the emerging growth of IoT applications

and services aiming to bring billions of scattered connected devices [4]. However, as IoT defines

a different set of requirements than the initial LTE system, namely low-rate, low-overhead,

low-power consumption, and low-cost, the 3rd Generation Partnership Project (3GPP) has
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been working on numerous LTE features such as power saving, signaling reduction, overload

control, and complexity reduction to meet the new requirements. D2D communication was

introduced in the LTE cellular network under the name of Proximity Services (ProSe) as a vital

component to enable novel and significant opportunities requiring localized communications in

which nearby users exchange data [5, 6].

In addition to MTC features, 5G and beyond 5G systems are expected to provide users

with the experience of “unlimited” network performance i.e., instantaneous delivery of huge

volume of multimedia data over a highly stable connection [7]. Therefore, higher throughput

and energy efficiency, lower latencies, lower outage probability, and more reliable data trans-

mission are all key considerations in the design of future mobile communication systems [7,8].

Ultra-Reliable Communication (URC) is one of the novel features of 5G system to provide a

certain level of communication service with very high requirements on availability and reliabil-

ity (1ms end-to-end delay, 10−5 packet loss probability) almost 100% of the time [9, 10]. We

identify three variants of URC : 1) URC-L for Long-term URC that concerns how to guarantee

(provide with high probability) certain rates to multiple users over longer periods, 2) URC-S

for Short-term URC that concerns provisioning of moderate data rates with low latency and

very high probability, e.g. latency less than 2ms with 99.999% guarantee, for a limited number

of devices, and 3) URC-E for Emergency that is related to providing communications when

the infrastructure becomes partially damaged or non-functional [9].

The use of Unmanned Aerial Vehicles (UAVs), also known as drones, has risen dramatically

in recent years and has been introduced as part of 5G system. This was driven by UAVs’

promising potential to reduce risk, cost, and time deployment for many activities, such as

buildings inspection, surveillance and monitoring, search and rescue missions, delivery of med-

ical supplies, and several other use cases [11]- [14]. Owing to their autonomy, flexibility, and

quick deployment, there has been a tremendous increase in research efforts of both academia

and industry for several years. Most of UAV-centric research were robotics or military-oriented

and had focused on issues of navigation, control, and autonomy. However, the communication

challenges of UAVs used to be considered as part of the control and autonomy components,

and only in very recent years that UAVs communication aspects were considered as a main

issue in communication systems [14,15].

The previously cited features hit the design of both new network architectures, e.g. ProSe-

enabled and Unmanned Aerial Vehicles (UAV)-assisted networks, and improved PHYsical/Medium
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Access Control (PHY/MAC) layers procedures, e.g. discovery methods and radio resource man-

agement algorithms. These aspects present the main concerns of our research works, which

cover several techniques that enable IoT implementation, massive MTC, and URC in 5G and

beyond 5G systems.

1.2 Scope of the Research Works

The findings of the research works presented in this dissertation deal with two mains features,

namely MTC and URC. In particular, we investigate improved and new techniques deployed

to ensure the requirements set by these two pillars of 5G and beyond 5G networks.

The introduction of ProSe-enabled networks relied on multiple enhancements to existing

LTE standards including new functional elements and a Sidelink (SL) air interface for direct

connectivity between devices. Three functionalities are defined under ProSe paradigm: direct

communication, direct discovery, and synchronization. Direct communication allows UEs to

establish a communication link between them without routing data via the eNB. Direct dis-

covery is the functionality by which UEs advertise and detect useful information provided by

their peers in proximity without the need for establishing a communication link. Finally, syn-

chronization is the process necessary to agree on common system information and to be able

to decode SL transmissions. Both Synchronization and Neighbor Discovery have been studied

through different scenarios and configurations while respecting the standard specifications.

Also, 5G ecosystem includes a myriad of new applications based on location awareness and

other contextual information, which made accurate localization a key component of 5G systems.

The Global Navigation Satellite System (GNSS) has been the most dominant technology to

enable outdoor localization. However, the multitude of localization demands causes GNSS

saturation due to its limited capacity and coverage. Other problems with GNSS localization are

the too much power consumption and the Line-of-Sight (LoS) to satellites requirement which is

not guaranteed in urban regions. This motivated us to address 5G assets with massive Multiple

Input Multiple Output (MIMO) antennas and millimeter waves (mm-waves) for improved

Localization.

Having the capabilities to fly above the ground level and the flexibility to be positioned in

the air and avoid obstacles, UAVs experience an increased likelihood of direct unobstructed
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path with both the serving ground communicating network parts and peer flying nodes in the

same area. Consequently, if properly deployed, UAV-enabled networks are expected to offer

a remarkable performance improvement over the traditional network in terms of reliability,

operation range, applications use cases, and throughput. To exploit the potential of UAV

in 5G and beyond networks, we study the optimization of the Positioning of Low-Altitude

Platform (LAP) for enhanced performance.

Due to the challenging wireless propagation environment, many techniques have been de-

veloped and optimized to enhance transmission reliability. In particular, Automatic Repeat

reQuest (ARQ) and Hybrid-ARQ (HARQ) techniques were proposed to improve data link layer

robustness by retransmitting packets received in error [16]. HARQ techniques have been a fun-

damental part of several current communication systems and are expected to be used in future

communication systems as well [17]. While the use of ARQ and HARQ increases the reliability

of communication, re-transmission operations decrease the throughput efficiency resulting in

an overall system performance degradation. To overcome this limitation, Power Control (PC)

and Adaptive Modulation and Coding (AMC) were used either jointly or separately. In our

research, we study Energy Allocation and Modulation and Coding Scheme (MCS) Selection for

maximized throughput to cope with re-transmissions’ impact.

Recent advances in sensors and low-power integrated circuits have enabled the design of

miniature sensors implanted in the body to gather patient information (e.g. electrocardio-

graphy signal) that are used in e-Health systems [20]. Due to scarcity of energy supply and

uninterrupted service requirements, energy harvesting techniques were proposed to provide the

energy necessary for the functioning of the Wireless Body Area Network (WBAN) from the

environment (e.g. body heat, foot strike, finger strokes). To ensure uninterrupted network

lifetime, we study the optimization of dynamic Time Resource Allocation based on the energy

budget of each sensor node.

1.3 Contributions and Outline

In this section, we highlight the contributions of the research works which cover several tech-

niques proposed to enable meeting 5G and beyond 5G system requirements in terms of massive

MTC and URC. Some of the following contributions involve works achieved by PhD and Master

students, while others are conducted with collaborators.
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To enable direct communication between UEs, synchronization has to first be performed.

In OFDM systems, the main purpose of synchronization is to acquire time and frequency

offset estimates, in addition to the Sector Identifier (SID) determination in the case of cellular

networks. First, a Reduced-Complexity (RC) synchronization technique [23], initially proposed

for single-antenna OFDM system and assessed in AWGN channel [22] and multipath fading

channel [24], is applied to the IEEE 802.11n WLAN standard. We exploit the repetitive

structure of the IEEE 802.11n preamble and the diversity offered by MIMO configuration to

apply the RC approach to the standard and assess the performance in the IEEE 802.11 channel

B. Second, we focus on primary synchronization in cellular networks exploiting the Primary

Synchronization Signal (PSS). Particularly, we conduct a theoretical study to assess the effect

of frequency offset on synchronization performance of the two RC Simply Differential (SD) and

Doubly Differential (DD) approaches initially proposed in [26] and [27] for the case of perfect

frequency synchronization and single antenna configuration. Furthermore, simulations are

investigated in the case of multiple antenna configuration in the Extended Pedestrian A (EPA)

and Extended Typical Urban (ETU) channel models to ensure the robustness of the approaches.

Then, we focus on synchronization in the context of MTC by applying the SD approach to

the standardized signal introduced in the 3GPP Rel. 12 to be used for direct communication.

The performance of the studied approach is evaluated in terms of theoretical correct detection

probability derived in its closed form, and compared to the experimental probability. The

outcomes of the previously cited contributions are presented in chapter 2, and lead to three

conference papers [29] and [28], and one journal paper [30]. These contributions present an

extension of the PhD findings and involve the PhD supervisory team, professor Lëıla Najjar

(COSIM. Research Lab., SUP’COM) and professor Mohamed Siala (MEDIATRON Research

Lab., SUP’COM).

The second step required to establish a direct communication is neighbor discovery, by

which a UE knows about other UEs in its vicinity. We first investigate neighbor discovery

based on SL transmissions, where a UE can discover his peers through simply listening to their

transmissions, sensing the reference signals by performing correlation, and finally applying a

binary hypothesis test to decide. We propose two approaches that use Sounding Reference

Signal (SRS) with cross-correlation and Demodulation Reference Signal (DMRS) with power-

normalized-correlation. Both approaches are evaluated through simulations and theoretical

studies of the probability of correct discovery calculated in its closed form to ensure their

effectiveness for any system parameters. The main advantage of these approaches is their com-
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patibility with the LTE standardized signal structure without the requirement of any additional

resources, in addition to the reduced complexity offered by recursive implementations. The

findings of these research works are detailed in chapter 3 of this manuscript and appeared in

the papers [31–34]. The previously cited contributions involve professor Lëıla Najjar (COSIM.

Research Lab., SUP’COM) and Dr. Salama Ikki (Associate professor at the Electrical Engi-

neering Department, Lakehead University, Ontario, Canada), and some of them received a fund

from the Natural Sciences and Engineering Research Council of Canada (NSERC) through its

Discovery Grant Program (DP).

Neighbor discovery is further investigated in chapter 4 from a MAC perspective for both

ProSe and V2X services in single user and multiple user scenarios. Exploiting random-access

like procedures, we first propose a partial-contention free discovery approach in which the

ProSe-enabled UEs first select beacons that are forwarded to the eNB in charge of verifying

collisions and enabling connections between contention-free ProSe-enabled neighbors. We eval-

uate the collision probability considering several scenarios, for which we study the impacts of

the distance between transmitter and receiver devices, the density of connected users, and the

time dedicated for the discovery process. Group discovery is then studied in distributed and

centralized (network-assisted) communication modes defined for 5G communications. In the

first case, we use a method inspired by Aloha protocol, while Polling-like protocol is used in the

second one. The performance is evaluated in terms of the time required to complete the group

discovery. Also, two different collision models are assumed for performance evaluation. The

first model considers MAC collision, referred to as the L-2 model, in which when two or more

UEs pick the same resource, the mutual interference will prevent any collided message from

being received by other UEs. The second one considers a more practical assumption where

some collided messages may be received if the signal strength is sufficiently high to provide a

satisfactory Block Error Rate (BLER), and it is referred to as the L-1 model. The findings of

these contributions lead to two publications [33,35]. The work in [33] is investigated in collab-

oration with Dr. Salama Ikki and funded by the Natural Sciences and Engineering Research

Council of Canada (NSERC)-Discovery Program.

Chapter 5 deals with techniques that enhance coverage and ensure connectivity for emer-

gency situations. Particularly, we investigate the optimization of network performance through

a judicious positioning of a UAV for free-space propagation. Exploiting a physics-based Rician

channel model, we study the maximum coverage radius and show that there exists a unique op-

timum height at which the UAV should be located to maximize the deployment area. Besides,
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we consider outdoor localization of a steady UE under Rician channel conditions. We propose

a multi-stage approach that exploits the potential of both massive MIMO and mm-waves in 5G

systems. the approach performs a research over a limited beam to reduce the complexity. An

assessment of the reference signal strength is first achieved to estimate the distance to the tar-

get UE, followed by a two-stage beamforming carried out to determine the coarse and fine AoA

estimates using large and thin steps, respectively. Lastly, both distance and AoA estimates are

used to find the UE coordinates, and localization is assessed in terms of sub-meter accuracy

probability. The works in these concerns appear in the publications [36, 39, 40], where [36]

and [40] are the findings of the PhD of Ms. Amal Sellami (PhD student at COSIM Research

Lab., SUP’COM) entitled “Localization for 5G and IoT Systems ”, that I co-supervise with

professor Lëıla Najjar. Besides, the work on UAV positioning [39] was conducted during my

scholar visit at FUNLab in collaboration with professor Sumit Roy (University of Washington,

Seattle, USA).

Then, in chapter 6, we study the performance optimization of ARQ/HARQ protocols to

reduce the effect of re-transmissions on throughput efficiency. The proposed solution uses

a combination of PC and AMC techniques exploiting Genetic Algorithm (GA) treatment to

maximize the throughput while maintaining a constant energy budget. For a specific Signal to

Noise Ratio (SNR) value, an adequate Modulation and Coding Scheme (MSC) is chosen and

a vector of energy values corresponding to the energies used for each packet (re)-transmission

attempt is determined. We assume a partial Channel State Information (CSI) knowledge, such

as to perform optimization for an SNR value to enable offline treatment. We first investigate

the simple case of Binary Phase Shift Keying (BPSK) with only optimized energy allocation.

Then, we extend the optimization problem to the general case of combined use of AMC with

PC. The findings of this research work are published in [41] and under review in [42]. This

work is achieved in collaboration with professor Lëıla Najjar and professor Mohamed Siala, and

it also involves the work of a master of research project of Mr. Akram Dabbar (PhD student

at ENSI).

The last part of the dissertation also concerns resource allocation, yet for energy harvesting

WBAN in the context of e-health system. The aim is to maximize the uninterrupted network

lifetime through a judicious time scheduling of sensor nodes transmissions. First, the energy

harvesting process is modeled as a discrete-time Markov chain. Then, by minimizing the gap

between consumed and harvested energies during each time slot, a sensor node maintains a

sufficient energy level for a longer time. Two solutions are proposed based on the energy budget
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of each sensor node : 1) a heuristic algorithm based, and 2) a game-theory based. The heuristic

solution aims to minimize this gap for a general Time Division Multiple Access (TDMA) frame,

while a first price sealed-bid auction-based is proposed using the frame structure of the IEEE

805.15.4 standard during which sensor nodes compete for slices. At the beginning of each

super-frame, sensor nodes with a specific instantaneous energy level can bid and enter the

auction. The findings of these two solutions are presented in chapter 7 of the manuscript and

are published in [43,44]. This work is the finding of the PhD of Mrs. Nedia Badri (PhD student

at CRISTAL Research Lab., ENSI) entitled “Resource Allocation for IoT Health Monitoring

Applications with Energy Harvesting ”, that I co-supervise with professor Lëıla Azzouz Saidane.

Other research works that are not presented in the manuscript focuses on security aspects

for IoT applications based on LoRa connectivity [45], which are conducted in collaboration

with professor Adnane Cabani from the University of Rouen, France.
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Chapter 2

Synchronization for WiFi and LTE

Standards

2.1 Introduction

Orthogonal Frequency Division Multiplexing (OFDM) is a Multi-Carrier Modulation (MCM)

technique used to reduce the Inter-Symbol Interference (ISI) of wireless systems. This technique

has gained popularity in several applications, such as the LTE, WiMAX (IEEE 802.16e), and

WiFi (IEEE 802.11n/ac and IEEE 802.22), and has shown promising potential for use in

5G standard. In addition to its robustness to multipath fading distortions and narrow-band

interferences, the greatest benefit of using OFDM among MCM techniques is its high spectral

efficiency due to the orthogonality between sub-carriers. However, both time and frequency

errors destroy the orthogonality among the OFDM sub-carriers such that OFDM symbols

can no longer be correctly demodulated. Hence, the start of OFDM symbols needs to be

accurately determined and the Frequency Offset (FO) must be estimated and compensated

before demodulation.

In this chapter, we focus on time and frequency synchronization in the standards LTE-A and

WiFi based on the finding of the PhD. Initially, data-aided reduced complexity synchronization

approaches were proposed for the case of single-antenna and multiple-antenna OFDM systems

in [24] and [25], respectively. We here study the adaptation and application of [24, 25] to

the case of WiFi networks exploiting both cyclic and space-time diversities. Further, during
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the PhD, doubly and simply primary synchronization approaches were presented in [26, 27]

for single-antenna LTE system under perfect frequency synchronization assumption. We here

study the case of multiple antenna configuration under standardized channel models (EPA and

ETU) and FO. The effect of the FO is also assessed theoretically to analyse its impact on

time synchronization accuracy in both approaches [30]. Then, we conduct a theoretical study

of the approach [27] and investigate its application to the newly introduced LTE interface for

Machine Type Communication (MTC) [139]. It is worth to note that, although the baselines

of this chapter are the findings of my PhD research works, none of the herein presented results

was included in the PhD thesis [21], and all the studies were performed afterward.

2.2 System Model

2.2.1 OFDM Modulator/Demodulator

The OFDM technique allows to enhance the spectral efficiency and to reduce the ISI due to

multi-path propagation through dividing a high-data rate stream of information units into

several parallel lower-rate streams and modulating each stream on separate orthogonal carriers

(sub-carriers) [46,47].

In practice, the OFDM system is implemented through banks of modulators and demodula-

tors that are deployed by Inverse Discrete Fourier Transform (IDFT)/Discrete Fourier Trans-

form (DFT). At the transmitter, the kth time-domain OFDM symbol is generated by applying

an Nu-point IDFT to the complex data c(m) as

s(k) = 1/
√
Nu

Nu−1∑
m=0

c(m)ej2π
km
Nu . (2.1)

Reciprocally, the receiver will apply an Nu-point DFT to recover the modulated data. The

complete OFDM symbol has a length of Ns samples and is built up by its useful part gener-

ated as in equation (2.1) whose length is Nu to which a Cyclic Prefix (CP) of length Ng is

prepended (Ns = Nu + Ng) to mitigate the multipath effect. While OFDM technique solves

most of the wideband mobile communication limitations, it introduces new problems itself.

By using high numbers of narrow sub-carriers, the system becomes very sensitive to time and

frequency offsets, which both cause ISI and Inter-Carrier Interference (ICI) to deteriorate the
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orthogonality. In our work, we consider the received OFDM signal expressed as

r(k) = ej2π
kν
Nu

NH−1∑
l=0

h(l)s(k + τl) + ω(k), (2.2)

where h(l) is the lth sampled complex channel impulse response, NH is the channel memory

length, ν is the normalized carrier FO with respect to the sub-carriers spacing, and ω(k) is a

complex Additive White Gaussian Noise (AWGN).

2.2.2 MIMO-OFDM System

The combination of Multiple-Input Multiple-Output (MIMO) wireless technology with OFDM

technique has been recognized as one of the most promising techniques to provide high data

rate and robust reception through spatial diversity and spatial multiplexing [48–50]. Space

Time Bloc Coding (STBC) is a technique implemented to extract the total available spatial

diversity in a MIMO channel through appropriate construction of the space-time codewords.

As we focus on non-coherent reception, we opt for the Differential Space Time Bloc Coding

(D-STBC), which was first proposed by Tarokh et al. in [52] for two transmit antennas and

Nr receive antennas configuration. The coding rule in (2.3) is applied to the codeword to be

sent at time index 2t and it involves the previously coded block as

s2t = (s2t s2t+1) = (c2t c2t+1)

 s2t−2 s2t−1

−s∗2t−1 s∗2t−2

 . (2.3)

As depicted in figure 2.1, once generating the codeword s2t, the transmitter applies the Alam-

outi’s STBC to the differentially coded samples. Hence, at time index 2t, s2t and s2t+1 are sent

from antennas one and two respectively, while −s∗2t+1 and s∗2t are sent at time index 2t+ 1.

Figure 2.1: Differential Alamouti STBC block diagram.
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Assuming a constant channel over two consecutive data symbols (fading conditions can be

considered constant), the received signal in equation (2.6) can be rewritten as:

r = sH + η, H =

h1 −h∗2
h2 h∗1

 , (2.4)

where r = (r2t r
∗
2t+1), s = (s2t s

∗
2t+1), η = (η2t η2t+1), η2t and η2t+1 are independent AWGN.

At the receiver, a non-coherent differential detection with low complexity, as proposed in

[52], is carried to decode the source symbols sent from each transmit antenna (c2t c2t+1) as

ĉ2t =
〈

(r2t−2, r
∗
2t−1), (r2t, r

∗
2t+1)

〉
and ĉ2t+1 =

〈
(r2t−1,−r∗2t−2), (r2t, r

∗
2t+1)

〉
.

It was shown in [52] that the differential MIMO system works 3 dB poorer than the coherent

decoder [53] with perfect channel knowledge. Naturally, it is expected that the performance of

this scheme degrades in frequency-selective channels. However, the combination of differential

Alamouti STBC (as previously described) with the OFDM multi-carrier technique mitigates

this effect [54]. This solution is adopted in the remaining of this chapter.

2.3 Related Works

Accurate synchronization is required in OFDM systems for correct demodulation [18]. Among

existing synchronization techniques, some techniques exploit the redundancy in the CP [58]-

[60], for blind synchronization, which is more suited to continuous flow transmissions. Other

techniques use preambles with specific structures to which tailored metrics are designed [19,

22,23,61–63]. These approaches, known as data-aided synchronization methods, cost in terms

of bandwidth but are generally more efficient than blind ones, especially for bursty packet

traffic [22], [23]. The works in [61], [18], and [19] for example, use training symbols with

repetitive structures (two identical halves in [61], [18], and [19], and 4 identical parts in [62])

and estimates the preamble start from the auto-correlation based metrics of the received signal.

These methods are simple and have low implementation complexity. However, the estimation

variance is very large due to the plateau in the timing metric, which becomes larger than the CP

length when there are more than two repeated preamble sub-sequences. The works in [62]- [65]

investigate time and frequency synchronization problem for MIMO-OFDM systems applied for

the WiFi standards IEEE 802.11. The authors of [62] and [63] use a simple MIMO extension

of Schmidl’s synchronization algorithm [61]. Further, in [64, 65], three-step synchronization
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schemes are proposed. For coarse timing synchronization, the algorithms use a sliding window

differentiator after a conventional auto-correlation metric so that the timing ambiguity caused

by the auto-correlation metric plateau can be removed. For fine timing synchronization, a

metric called signal-to-interference ratio (SIR) is derived based on the cross-correlation output

in a small search window, which is around the estimated coarse timing position. Thus, a more

precise timing estimation is acquired based on this metric. In the third step, the frame timing

is refined in a small window around the estimation from the second step, based on a threshold

operation whose aim is to distinguish the first path from the fake paths caused by noise.

Data-aided synchronization approaches are also used in LTE standards, that initially pro-

vide specifically designed synchronization signals, known as Primary Synchronization Signal

(PSS) and Secondary Synchronization Signal (SSS) [21]. We here focus on the primary syn-

chronization process that includes time synchronization and Sector Identifier (S-ID) recovery,

which involves the PSS generated from ZC sequences. Several research works have been done

on this issue. Some approaches propose new synchronization signals which are not compliant

with the LTE signal [66, 67], while others exploit dedicated synchronization signals and tailor

specific metrics to them [69]- [71]. The approaches in [69]- [71] exploit the redundancy in the CP

to accomplish symbol start detection in a blind manner. Then, the S-ID is determined through

cross-correlating the three local known PSS sequence candidates to the frequency-domain ex-

tracted OFDM symbols. In [69], non-differential correlation and differential correlation are

used for long and short channel delay spreads respectively, while only differential correlation

is used in [70] and [71].

2.4 Time and Frequency Synchronization for WiFi Standard

In this section, we focus on synchronization for the standard IEEE 802.11n. In particular, we

study the application of the two-stage Reduced-Complexity (RC) method proposed in [24,25],

which exploits a preamble with repetitive structure and different sequence types [51]. The

RC method showed a good trade-off between complexity and detection accuracy in single

antenna OFDM systems and is here applied to the WiFi standard considering single antenna

configuration in [68], and multiple antenna configuration in [29] based on the work in [28].
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2.4.1 IEEE 802.11n System Description

Wireless LANs (WLANs) based on the IEEE 802.11n standard is high performance successor

to the older 802.11a/g standards whose initial aim was to achieve 600 Mbps reached through

several physical (PHY) layer digital communication techniques and Medium Access Control

(MAC) layer protocols [72], [68]. We consider a MIMO-OFDM system with Nt transmit an-

tennas and Nr receive antennas which respects the IEEE 802.11n standard that incorporates

three mechanisms to exploit the spatial diversity available in multiple configurations, namely,

STBC [53], Spatial Division Multiplexing (SDM) [73], and Cyclic Delay Diversity (CDD) [74].

Whilst SDM increases the throughput by sending independent data streams through the differ-

ent transmit antennas, STBC and CDD are used to improve the reception reliability and hence

the system performance. To help the receiver accomplish synchronization, the standard uses a

preamble that has the same structure as in the IEEE 802.11a/g standards [75] for compatibility

with old devices.

2.4.1.1 Preamble Structure

The 802.11n standard defines the High Throughput (HT) Mixed Format (MF) preamble, which

is divided into two parts: (1) the first part is legacy compatible with devices that implement

the 802.11a/g amendments; (2) the second part contains the HT fields. The MF mode is

mandatory for 802.11n devices for compatibility with IEEE 802.11a/g amendments [68]. The

HT-MF preamble, on which we focus, is presented in figure 2.2. The legacy preamble contains

the legacy short training field (L-STF), the Legacy Long Training Field (L-LTF), and the

Legacy Signal Field (L-SIG). The first one is composed of ten identical short symbols denoted

by t1 to t10, each of length 16 samples (0.8µs), and used for packet detection, automatic

gain control, and gross time and frequency synchronization. The L-LTF is composed of two

identical long symbols T1 and T2, of length 64 samples each (3.2µs), extended with a 32-sample

CP (1.6µs). These symbols are generally used for fine time and frequency synchronization and

channel estimation. The total preamble length is 320 samples (16µs) [76].

In addition to synchronization, the preamble is exploited for multiple processing in the

receiver including automatic gain control level setting and channel estimation. The training

preamble is followed by the signal field and data.
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Figure 2.2: IEEE 802.11a/g/n preamble structure.

Thanks to the IEEE 802.11n preamble repetitive structure, several synchronization tech-

niques, initially proposed for the OFDM systems, can be applied to it [29]. In the remaining

of this chapter, we assess the suitability of the RC technique [24] to achieve synchronization

exploiting the L-STF composed of ten identical parts. The choice of the L-STF provides an

early time synchronization to allow the processing of the other tasks (carrier frequency offset

estimation, channel estimation) that use the other preamble parts.

2.4.1.2 Cyclic Delay Diversity

In IEEE 802.11n systems, the HT device supports spatial multiplexing and the preamble is

a single stream signal. To transmit the legacy preamble using all available antennas without

undesirable effects (power loss, undesirable beamforming effects), the solution is to use a CDD

scheme to decorrelate the signal transmitted at different antennas. In other words, CDD is

used to avoid the unintentional beamforming effect which arises when multiple copies of the

same signal are transmitted through different antennas [55]. The use of a CDD scheme creates

pseudo-path in the received signal which can cause further degradation in the synchronization

accuracy [74].

In this case, the OFDM signal si transmitted from the ith antenna is a cyclic delay shifted

version of the original modulated signal with a delay di. The shift of the signal transmitted

from the first antenna is generally set to 0. The transmitted signal then becomes

si(k) = s0(mod(k + di, Nu)), (2.5)

where Nu denotes the number of sub-carriers and mod denotes the modulo function. The

received signal at the jth receive antenna after multipath channel propagation results from the
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summation of the Nt transmitted signals and is expressed as

rj(k) = ej2πνk/N
Nt∑
i=1

NH−1∑
l=0

hi,j(l)si(k − l) + ωj(k), (2.6)

where hi,j(l) is the lth sampled complex channel impulse response between the ith transmit

antenna and the jth receive antenna.

In the IEEE 802.11n systems, STBC is an optional functionality used to map Spatial Streams

(SS) to space-time streams (STS), while CDD is necessary to decorrelate the signals transmitted

at each STS to mitigate the undesirable beamforming effects [76]. The number of SS and STS

are denoted by NSS and NSTS , respectively. In this work, we investigate the STBC scheme

with NSS = 1 and NSTS = 2. Although it is not explicitly specified, the considered standard

opts for the Alamouti STBC scheme [53], [28].

2.4.2 Reduced-Complexity Synchronization

The RC technique aims to provide a high detection accuracy while reducing the computational

load by combining the sliding and differential correlations and splitting the synchronization

processing into two stages [24], [25].

2.4.2.1 Coarse stage

Coarse time acquisition consists on finding the preamble start over an approximate range of

samples [28]. To this aim, a two identical part preamble is required. Exploiting the L-STF

preamble, two ways to split it into two parts are possible: (1) two parts of five short symbols;

(2) two parts of four short symbols extended with a CP composed of two short symbols as

in [57].

The coarse synchronization is achieved by auto-correlating the received signal using a shift

equal to the preamble repetitive part length (Nu/2), respecting the algorithm in [61] as

M j
c (k) =

Nu/2−1∑
m=0

rj(k +m)r∗j (k +m+Nu/2), (2.7)
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The coarse time estimate is chosen as the argument that maximizes |M j
c | and is denoted by τ̂c.

This metric can be implemented in a recursive way to reduce the computational complexity

as explained in [61]. When using more than one receive antenna, the correlation outputs of

different antennas are combined to improve the performance in a way similar to Maximum

Ratio Combining (MRC) as below

Mc(k) =

Nr∑
j=1

M j
c (k). (2.8)

The coarse metric is drawn in figure 2.3 using the two introduced subdivisions of the L-STF.

It is shown that using five short symbols as the preamble repetitive part leads to a wide shape

metric with a single peak that corresponds to the start of the preamble. On the other hand,

when considering a CP in the preamble, we note that the coarse metric exhibits a plateau whose

length is equal to that of the CP length. The plateau effect makes the estimation error very

large leading to uncertainty in the preamble start detection, especially in noisy environments.

To overcome this limitation, we here opt for the first subdivision (five short symbols in each

preamble half).

Figure 2.3: Coarse metric under noiseless
conditions using different subdivisions.

Figure 2.4: Coarse and Fine metrics under
noiseless conditions.

2.4.2.2 Fine stage

The fine time synchronization aims to detect the exact preamble start position around the

coarse time estimate [28]. To this aim, a differential correlation-based metric with a correlation

shift q different from the preamble repetitive part length is processed over a reduced interval
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centered on τ̂c, which we refer to as the uncertainty interval ∆τ as in [56] and [57]. The fine

metric is given by

M j
f (k) =

Nu/2−1∑
m=0

rj(k +m)r∗j (k +m+ q)p(m)p∗(m+ q), q ∈ [1, ..., Nu/2− 1], (2.9)

where p(m) stands for the mth preamble sample. The preamble fine start estimate τ̂f is

chosen as the argument that maximizes the metric amplitude |M j
f |. A judicious choice of the

correlation shift q such to be equal to the delay di allows avoiding the pseudo-path problem

caused by the CDD scheme.

The fine timing metric is drawn in figure 2.4, for an uncertainty interval ∆τ equal to a short

symbol length. We note that it provides an extremely high sharp peak compared to the coarse

one, which greatly enhances the detection accuracy.

2.4.2.3 Fractional Frequency Offset Estimation

The FFO estimation is here based on the algorithms in [29] which is deduced from the timing

metric phase at the preamble start estimate that had already proved its accuracy under different

scenarios [56], [57]. We recall that the FO causes a shift of the information signal leading to a

phase rotation. It then follows that all summed terms have a constant phase within the two

preamble parts. Hence, we can estimate the FFO by determining the actual phase of the coarse

timing metric at the estimated preamble start as

ν̂ =
1

π
]Mf (τ̂f ). (2.10)

As the estimation range of the phase is limited to [−π, π], the FO estimation range provided

in equation (2.10) is limited as well to its fractional part only, which we denote by ν̂.

2.4.3 Performance Evaluation

We use Matlab simulations (104 Monte Carlo trials) to evaluate the synchronization technique,

showing the Correct Detection Rate (CDR) of the preamble start and the Mean Squared Error
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(MSE) of the FFO estimate. The CDR is evaluated as the rate of trials where τ̂f coincides with

the correct preamble start. The obtained results are compared with the three-stage algorithm

proposed by Wang et al. in [64].

The system parameters are fixed respecting the standard IEEE 802.11n [76] for the 20MHz

bandwidth using QPSK modulation: Nu=64, Ng = 16, CDD=[0, 8]. The normalized frequency

offset ν is set to 0.4 sub-carrier spacing. The simulations are carried out for different SNR values

and under the multipath Rayleigh standardized 2x2 MIMO channel B [77] in section 2.4.3.1,

while Rayleigh-fading 2×1 and 2×2 MIMO channel models are considered in section 2.4.3.2.

2.4.3.1 Performance with CDD

Figure 2.5 illustrates the CDR of the coarse and fine estimators of the RC technique and

Wang’s estimator. As in the general case of OFDM system [24], the considered RC approach

provides satisfactory detection accuracy and it outperforms the considered benchmark. Indeed,

the detection is good for most of practical SNR values and it becomes perfect (CDR=100%)

above an SNR of 6 dB. The approach of Wang provides a lower detection rate for all SNR

ranges, and it exhibits a loss of about 5 dB for a target CDR equal to 90%. The coarse

synchronization provides the lowest CDR, which is expected due to the metric shape. The

obtained performance ensures the suitability of the RC approach for time synchronization in

the IEEE 802.11n system.

Figure 2.5: CDR of the preamble start. Figure 2.6: MSE of the FFO.

Figure 2.6 presents the mean squared error of the fractional frequency offset estimate. We
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note that Wang’s technique also allows the estimation of the FFO through the evaluation of the

metric phase at the preamble start estimate respecting the algorithm of Schmidl and Cox [61]

recalled in (2.10). Figure 2.8 shows that the RC estimator provides lower MSE which decreases

to 2.10−5 sub-carrier spacing for high SNR values and realizes a gain of about 5 dB compared

to the estimator of Wang. It is worth to mention that, even if the same estimator is used in

both of the compared techniques, the RC technique outperforms the considered benchmark.

This is due to a more accurate time estimation provided by the RC approach. We also observe

that, consistently with the previous results, the low estimation error of the FFO ensures the

suitability of the RC approach for frequency synchronization in the IEEE 802.n standard [29],

which was also confirmed for any OFDM system [56].

2.4.3.2 Performance with STBC

Figure 2.7 draws the CDR of the compared synchronization techniques. As expected, it is

obvious that the synchronization becomes significantly more robust if full-spatial diversity is

exploited through the use of space time coding in the proposed scheme. Moreover, exploiting

differential STBC avoids any channel estimation requirements. Figure 2.7 shows that at very

low SNR values, the compared schemes provide close detection performance. At higher SNR

values, the proposed technique outperforms Wang’s scheme and realizes a gain of about 4 dB

for a target CDR of 90% in both MIMO configurations (2×2 and 2×1). We also note that the

use of a second receive antenna enhances the detection accuracy, and offers a gain of about 2

dB in the proposed scheme as well as the considered benchmark. Furthermore, at high SNR

values, both compared schemes provide perfect detection with CDR equal to 100%.

Figure 2.8 presents the mean squared error of the fractional frequency offset estimate.

Wang’s technique also allows the estimation of the FFO through the evaluation of the metric

phase at the preamble start estimate respecting the algorithm of Cox and Schmidl [61] recalled

in (2.10). Even if the same estimator is used in both of the compared techniques, the proposed

one outperforms the considered benchmark, due to a more accurate time estimate. It is shown

in figure 2.8 that the proposed estimator provides the lowest MSE for 2×2 configuration, which

reduces to 2.10−5 sub-carrier spacing for high SNR values and realizes a gain of about 5 dB

compared to the other estimator. Using a 2×1 configuration, the proposed estimator provides

almost the same performance as Wang’s estimator for 2×2 configuration. Wang’s estimator

has the highest error using a single receive antenna.
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Figure 2.7: CDR of the preamble start. Figure 2.8: MSE of the FFO.

2.5 Primary Synchronization for LTE Standard

LTE is a broadband wireless communication standard that supports both Frequency Division

Duplexing (FDD) and Time Division Duplexing (TDD) modes [86]. The combination of OFDM

and MIMO techniques allows high data rate in a harsh propagation environment [46]. To

access the LTE network, a User Equipment (UE) has to follow the access procedures that

mainly consist in time and frequency synchronization, cell search, and acquisition of other

useful system parameters (cyclic prefix length, access mode...). To this aim, the UE exploits

the Primary Synchronization Signal (PSS) and the Secondary Synchronization Signal (SSS)

broadcasted regularly in each cell.

In this section, we study the performance of the primary Synchronization approaches ini-

tially proposed in [27] and [26]. In particular, we explicitly take into account the effect of

the FO on time synchronization performance to assess the FO-combatting capabilities of the

studied approaches. To this aim, theoretical analysis as well as simulations are carried out

and compared to validate the obtained results. Moreover, we evaluate the two approaches in

LTE system parameters with multiple antenna configuration and under standardized channel

models (EPA and ETU).
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2.5.1 LTE System Description

The LTE as defined by the 3GPP is an innovative wireless communication standard that

provides peak rates of at least 100 Mbps and 50 Mbps for DL and UL respectively and it

supports scalable bandwidth from 1.4 MHz to 20 MHz. By offering a highly flexible radio

interface, LTE suits the needs of different network operators that have different bandwidth

allocations. Thanks to its robustness to frequency-selective channels, the OFDM technique

is used for the DL transmission [46]. For the UL, where the available transmission power is

significantly lower than that for the DL, single-carrier transmission based on DFT-precoded

OFDM, also referred to as single-carrier frequency-division multiple access (SC-FDMA) [78].

Before a UE can communicate through an LTE network it has to acquire synchronization

to a cell within the network. Precisely, it should accomplish primary synchronization which

consists in detecting the PSS start and determining the S-ID. There are 504 different physical-

layer cell-ID which are grouped into 168 groups identified by a number N
(1)
ID (ranging from 0

to 167), where each group consists in three identities specified by a number N
(2)
ID (ranging from

0 to 2). The cell-ID is determined as

CID = 3N
(1)
ID +N

(2)
ID . (2.11)

The parameter N
(2)
ID represents the sector identifier (S-ID) of each cell, which is strongly related

to the PSS, whereas the parameter N
(1)
ID represents the physical-layer group identifier and is

sent on the SSS.

2.5.1.1 Downlink Frame Structure

In LTE systems, the transmitted signal is organized into radio frames of 10ms duration, each

consisting of 10 sub-frames of length 1ms which are further divided into two slots of 0.5ms

each as shown in figure 2.9. We note that depending on whether normal or extended CP is

used, a slot contains 7 or 6 OFDM symbols of duration equal to 66.7µs each among them

two symbols for the PSS and the SSS sent regularly in the last two OFDM symbols of slot

0 and slot 10. Transmitted data are mapped on a time-frequency resource grid consisting of

elementary units, called resource blocks, defined as 12 consecutive 15kHz sub-carriers over one

slot. The first symbol in each frame has a longer CP with a length denoted by Ng1 [46].
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Figure 2.9: LTE frame structure in the FDD mode: 7 OFDM symbols with normal CP [46].

2.5.1.2 Primary Synchronization Signal (PSS)

In one cell, the two PSSs within a frame are identical. The PSS is generated from one of three

known ZC sequences with length Nzc = 63 and root index u ∈ {25, 29, 34}, which corresponds

to the S-ID N
(2)
ID ∈ {0, 1, 2} [87]. ZC sequences that we here denote by du(n) are complex

exponential sequences generated respecting the equation below

du(n) = e−j
πun(n+1)

Nzc , 0 ≤ n ≤ Nzc − 1. (2.12)

During resource mapping, the 32nd sample is omitted to avoid modulating the DC sub-carrier

and only 62 samples of the ZC sequence are mapped on the 62 centered sub-carriers in the

transmission bandwidth. The PSS is then generated in time domain using an IFFT of size

Nu. The size of the IFFT, as well as the number of sub-carriers set to zero in both sides

of the ZC sequence depend on the system bandwidth [79]. Furthermore, the PSS occupies 6

resource blocks which makes 72 sub-carriers for it (five resource elements at each side of the

synchronization sequence are set to zero) [46]. The corresponding time-domain signal can be

generated using an IFFT of size Nu. The size of the IFFT depends on the system bandwidth.

In our work, we exploit the duality between ZC sequences in time and frequency domains,

which states that the IFFT of a ZC sequence remains a ZC sequence [84] that allows applying

the SD approach to LTE signal.
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2.5.2 Simply-Differential Synchronization

The SD approach, initially proposed in [27], achieves time synchronization by locating the ZC

sequence position within the received signal. When applied to LTE systems, the SD metric

fulfills both coarse PSS start detection and sector search in a sole stage. The joint detection is

a particularity in the SD approach when compared to several existing primary synchronization

approaches.

2.5.2.1 Simply-Differential Metric

The SD metric is based on differential correlation carried out onto the received signal. Ob-

serving the correlation outcome of the lth received sample with its q-shifted counterpart, which

we denote by MSD(l) = r(l)r∗(l − q), along the received signal. For independent samples,

the correlation outcome is very low. However, when the received samples fall within the ZC

sequence, and under noiseless conditions and ideal channel, the correlation output is given by

MSD(l) = e−j
πul(l+1)
Nzc ej

πu(l−q)(l+1−q)
Nzc = e−j

πu(2ql−q2+q)
Nzc = e−j

πu(2ql)
Nzc . (2.13)

In this case, when compensating MSD(l) with its complex conjugate ej
πu(2ql)
Nzc , the resulting

output turns into a constant value. Hence, the addition of differentially correlated and com-

pensated elements sums constructively and allows the localization of the ZC sequence position

within the received signal. We, then, define the SD metric Mu
SD, that sums the adjusted

elements along Nzc adjacent samples as

Mu
SD(k) =

∣∣∣∣∣
Nzc−1∑
l=0

MSD(k + l)ej
πu(2q(l+k))

Nzc

∣∣∣∣∣, (2.14)

This metric was shown to provide high accuracy with low complexity achieved through a recur-

sive implementation that reduces the number of complex multiplication required to evaluate

the metric Mu
SD(k) from 2Nzc to only 4 with additional 2 complex addition operations whose

computational load is trifling compared to multiplication operations [27].

When applied to the LTE signal, the SD metric exhibits a plateau due to the CP insertion.

To mitigate this effect, the approach proceeds to a second stage, in which the PSS located in
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the received signal is cross-correlated with the local known ZC sequence Du =IFFT(du) as

Mu
F (k) =

∣∣∣∣∣
Nu−1∑
l=0

r(k + l)D∗u(l)

∣∣∣∣∣ . (2.15)

The fine metric Mu
F is here calculated over a short interval I centered on the coarse estimate

and the fine PSS start estimate is selected as the argument that maximizes (2.15) as

τ̂ = argmax
k∈I

{Mu
F (k)}. (2.16)

.

Figure 2.10 presents the SD and DD coarse metrics drawn for LTE signal parameters (Nu =

2048, Ng = 144). It is shown that the metrics keep their triangular shapes, yet with an

aperture wider than that of the time-domain based metrics. The DD metric localizes the PSS

start regardless of the ZC training sequence, while the SD metric localizes the PSS start for the

effectively transmitted ZC sequence. Indeed, only one among the three SD calculated metrics

clearly shows the PSS position, which here corresponds to the sequence generated using the

root u = 25. We also note that, due to the CP extension, the metrics exhibit a plateau,

whose effect is mitigated by opting for the second stage in both approaches, which enhances

the detection accuracy.

(a) Time Domain (b) Frequency Domain (LTE signal)

Figure 2.10: The proposed coarse DD and SD metrics for time domain and frequency domain
based ZC sequences under noiseless conditions.
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2.5.2.2 Impact of the Frequency Offset on the Metric

Now, to assess the impact of a frequency offset on the SD timing metric, we consider that

the received signal is affected by a frequency offset ν, and analyze its effect. In this case, the

expression of MSD in equation (2.13), for time index l belonging to the ZC sequence, turns

into

MSD(l) = e−j
πul(l+1)
Nzc ej

2πνl
Nzc ej

πu(l−q)(l+1−q)
Nzc e−j

2πν(l−q)
Nzc = e−j

πu(2ql−q2+q)
Nzc ej

2πνq
Nzc

= e−j
πu(2ql)
Nzc ej

2πνq
Nzc .

(2.17)

We note that, at the correlator output, the same expression obtained in (2.13) appears here,

yet with an additional term including the frequency offset ν. Hence, the timing metric Mu
SD

in (2.14), that compensates MSD(l) with the adjustment term ej
πu(2ql)
Nzc leads to a constant

value multiplied by the factor ej
2πνq
Nzc that also encompasses ν. The residual term in the timing

metric demonstrates the sensitivity of the SD metric to the FO, which leads to performance

degradation.

2.5.3 Doubly-Differential Synchronization

The DD approach, initially proposed in [26], locates a ZC sequence pattern within the received

signal regardless of the root used to generate the ZC training sequence. The calculated metric

correlates consecutive samples and it allows the compensation of any frequency offset, which is

a main feature in this approach. When applied to the LTE signal, the DD approach requires

two stages to achieve primary synchronization. The first stage aims to roughly detect the PSS

start while the second stage provides the S-ID using conventional cross-correlation based metric.

Detecting the PSS start from the first step allows performing the sector search processing over

only one symbol instead of being carried over all symbols as done in conventional approaches.

2.5.3.1 Doubly-Differential Metric

The DD metric is also based on differential correlation. Let us define the sequence MDD

resulting from doubly-differential correlation of the received samples as

MDD(l) =
[
r(l)r∗(l − q)

][
r(l − 1)r∗(l − 1− q)

]∗
, (2.18)
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where q stands for the correlation shift that is arbitrarily chosen in the range of [1,Nzc−1]. For

independent samples, the differential correlation output has low value. Whereas, for samples

falling within a ZC sequence, and under noiseless conditions and ideal channel, MDD(l) turns

into

MDD(l) = du(l)d∗u(l − q)d∗u(l − 1)du(l − 1− q) = e−j
2πul
Nzc ej

2πu(l−q)
Nzc = e−j

2πuq
Nzc . (2.19)

We note that the DD correlated terms MDD(l) are independent of l and they are all equal

to the constant value e−j
2πuq
Nzc for samples belonging to a ZC sequence. Hence, we define the

timing metric MDD as the sum of the correlation output along the ZC sequence length as

MDD(k) =

∣∣∣∣∣
Nzc−1∑
l=0

MDD(k + l)

∣∣∣∣∣. (2.20)

The metric MDD sums constructively and, as shown in figure 2.10, its amplitude exhibits a

triangular shape that reaches its maximum at the ZC sequence start where it sums over all

ZC sequence elements. Note that u is unknown in practice. This metric was also implemented

through a recursive formula to lower its complexity, which was reduced from 3Nzc complex

multiplication operations to only 6.

When applied to the LTE signal, the DD in 2.20 only localizes the arrival time of a ZC

sequence within the received signal. Hence a second stage is required to provide the exact

PSS start and the S-ID. A cross-correlation metric respecting (2.15) is calculated three times

involving the three local PSS candidates Du. The sequence Du that provides the highest peak

identifies the S-ID by the root u while the time index that maximizes the selected metric

indicates the PSS start estimate as

{û, τ̂} = argmax
u,k∈I

{Mu
F (k)}. (2.21)

As in the SD approach, the fine stage is here carried over a short interval centered on the

coarse PSS start estimate.

27



2.5. Primary Synchronization for LTE Standard Chapter 2. Synchronization for WiFi and LTE Standards

2.5.3.2 Impact of the Frequency Offset on the Metric

To analyze the impact of the frequency offset on the DD metric, we hereafter consider the

received signal in equation (2.6) affected by the frequency offset ν. Similarly to the noiseless

case, the correlation of data symbols here leads to very low values. When correlating samples

belonging to a ZC sequence, the correlation output MDD of the lth sample is given by

MDD(l) =
[
du(l)ej

2πνl
Nzc d∗u(l − q)e−j

2πν(l−q)
Nzc

][
d∗u(l − 1)e−j

2πν(l−1)
Nzc du(l − 1− q)ej

2πν(l−1−q)
Nzc

]
= e−j

2πul
Nzc ej

2πu(l−q)
Nzc ej

2πν(2l−1−q)
Nzc e−j

2πν(2l−1−q)
Nzc

= e−j
2πuq
Nzc .

(2.22)

We here note that, although the received signal is affected by a frequency offset, the correlation

output MDD reduces to its expression in the case where no FO is present as in equation (2.19).

This latter corresponds to the constant e−j
2πuq
Nzc , which is independent of the time index l. As

a result, the effect of the frequency offset is totally eliminated without additional processing.

The analysis of the frequency offset impact on the DD metric proves its immunity to any

frequency offset when the correlated samples fall within the ZC sequence. This would greatly

enhance the time detection accuracy.

2.5.4 Performance Evaluation

In this section, we evaluate the performance of the presented primary synchronization ap-

proaches for PSS start detection and S-ID recovery through Monte Carlo simulation carried

over 104 trials. Time synchronization is evaluated in terms of PSS start Correct Detection

Rate (CDR), defined as the percentage of realizations where the estimated time index coin-

cides with the correct PSS start (τ̂ = τ). Sector search is evaluated in terms of S-ID Failure

Detection Rate (FDR), defined as the percentage of realizations for which an isolated sector is

recovered. The erroneous detection corresponds to the case where one of the other correlation

terms generates a peak higher than the peak corresponding to the actual sector.
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2.5.4.1 Simulation Parameters

We consider the 20 MHz LTE communication system with 2 antennas at the transmitter and

2 antennas at the receiver with normal CP transmission mode. For the chosen sampling rate

30.72 MHz, each OFDM symbol is composed of Nu = 2048 samples, modulated from a set

of QPSK constellation, and is extended with a CP of length Ng = 144 samples. The first

symbol of each slot has larger CP of length Ng1 = 160 samples. The correlation shift q used to

evaluate the DD approach is set to 1, while three different shifts used in the SD approach are

set to {32, 162, 162} and the adjustment frequency δ = u′q
Nu

to {5, 2, 2046}. The fine stage is

calculated over a short interval around the coarse PSS start estimate of length equal to the CP

length Ng. To assess the effect of the FO on synchronization performance, we consider an error

ν = 0.4 sub-carrier spacing and compare the detection accuracy provided for the indicated ν

value and a zero-valued one.

Table 2.1: LTE tapped-delay channel models parameters.
Tap EPA Channel ETU Channel
no. τ (ns) SMR (dB) τ (ns) SMR (dB)

1 0 0.0 0 -1.0
2 30 -1.0 50 -1.0
3 70 -2.0 120 -1.0
4 90 -3.0 200 0.0
5 110 -8.0 230 0.0
6 190 -17.2 500 0.0
7 410 -20.8 1600 -3
8 2300 -5
9 5000 -7

To demonstrate the capability of the investigated synchronization approaches in challenging

scenarios, we adopt standardized channel models. The LTE specifications defines an extension

of the 3GPP and ITU models [88], resulting in the Extended Pedestrian A (EPA), Extended

Vehicular A (EVA) and Extended Typical Urban (ETU) channel models to characterize three

basic environments having low, medium and large delay spread, respectively. We consider the

EPA and ETU channel models specified in TS 36.101 [89] and TS 36.104 [90] and summarized

in table I.
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2.5.4.2 PSS Detection Performance

Figure 2.11 displays the PSS start CDR in the case of EPA channel. We note that, overall,

the compared approaches provide good time detection accuracy that becomes almost perfect

at SNR values above 4 dB and 8 dB for the DD and the SD approaches, respectively. At very

low SNR values (lower than -2 dB), we note that the SD estimator outperforms the DD one

and, for a target CDR equal to 0.5, it realizes a gain of 5 dB that lessens as the SNR rises.

For high SNR values, the CDR of the DD estimator increases fast and becomes higher than

that provided by the SD approach. This latter is more advantageous in harsh propagation

environment with low SNR. However, the DD approach is penalized by doubling the number

of samples involved in the metric calculation, which doubles the noise energy resulting in poor

detection at low SNR.

Figure 2.11: PSS start CDR in the EPA
channel for different FO values.

Figure 2.12: PSS start CDR in the ETU
channel for different FO values.

The curves are drawn in figure 2.11 shed light on the impact of a FO on synchronization

performance for each approach. On one hand, we record that the SD approach exhibits a

loss of about 2 dB when the received signal is affected by a FO, whose value is here set to

0.4 sub-carrier spacing. On the other hand, the DD approach provides almost the same CDR

at all considered SNR range regardless of the FO value. These results concord well with the

analytical study carried for both approaches in sections 2.5.2.2 and 2.5.3.2, which shows the

sensitivity of the SD metric and the immunity of the DD metric to frequency offsets.

To ensure the efficiency of the presented approaches, we now assess their performance in

the ETU channel and depict the CDR in figure 2.12. We note that both approaches provide

satisfactory detection accuracy which becomes near-perfect at SNR values about 4 dB and -2
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dB for the SD and DD detectors, respectively. Consistently with the previous results provided

for short channel delay spread, the SD detector here outperforms the DD detector for very low

SNR values (lower than −4 dB), due to high noise value in the DD metric. For higher SNR

values, the detectors’ behavior is switched and the DD one provides better detection accuracy

thanks to its insensitivity to the FO effects. This property is ensured through the CDR curves

that concord well along all the considered SNR range. However, the SD detector, whose metric

is sensitive to the FO, provides worse CDR with a gap of about 1.5 dB when the offset ν 6= 0.

In both of the considered channel models, the time synchronization performance provided

by the presented approaches is globally good. Although the second fine stage is the same in

both approaches, the performance results show a noteworthy gap in the detection accuracy.

This gap is due to the coarse synchronization stages which carry different timing metrics with

different features. Comparing the previously presented results depicted in figures 2.11 and

2.12, we observe that the SD approach and the DD approach are well suited for large delay

spread channels. For example, we record gains of about 3 dB and 2 dB for a target CDR of

0.8 realized by the DD and the SD approaches respectively, between EPA and ETU channels.

2.5.4.3 Sector ID Search Performance

The performance is here provided in terms of FDR and is illustrated in figures 2.13 and 2.14

for the EPA and ETU channel models. In the first case, the recorded error is about 0.05, at

very low SNR values, and it declines continuously to reach 10−4 and 10−5 for the SD and DD

approaches, respectively. Along the considered SNR range, the SD detector outperforms the

DD detector and it realizes a gain that increases as the SNR value becomes higher. It is worth

to note that the effect of the FO on the sector detection is trifling. Indeed, the FDR is almost

the same for the simulation scenarios where ν = 0 and ν = 0.4 sub-carrier spacing in both

approaches.

The case of ETU channel model, depicted in figure 2.14, shows a similar trend in the S-ID

acquisition performance when compared to the previous case (EPA channel model). Indeed, at

very low SNR values, the SD approach performs better and achieves a gain of about 4 dB for

an error equal to 0.05. For higher SNR values, the DD approach improves its S-ID detection

that becomes perfect (FDR=0) at -4 dB, while the FDR provided by the SD approach vanishes

at 0 dB. Once again, we note that the SD and DD sector recovery schemes are not sensitive
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Figure 2.13: FDR of the SID in the EPA
channel for different FO values.

Figure 2.14: FDR of the SID in the ETU
channel for different FO values.

to the FO as the FDR provided for different values of ν are almost equal in both approaches.

The results presented in this section show the robustness of the DD and SD approaches

in both channel models. However, they are well suited for channels with high mobility like

the considered example of ETU channel, for which the FDR of the sector ID vanishes at very

low SNR values. The DD detector is based on conventional algorithms [69]- [71] that consist

in cross-correlating the received signal with the local known PSS candidates in either time or

frequency domains, which provided poorer S-ID recovery performance [26]. The improvement

recorded in the DD approach is due to the robustness of the DD coarse stage, which offers

accurate PSS localization. Hence, the timing synchronization errors have a great impact on

the DD S-ID recovery. However, the SD detector allows the S-ID recovery from the first stage

which makes it independent from timing synchronization errors.

2.6 Time Synchronization for MTC over LTE System

Recently, there have been several works in extending the cellular systems with Machine MTC

to support the emerging growth of IoT applications and services aiming to bring about billions

of scattered connected devices [4]. The LTE is considered as a promising technology for cellular

MTC as it provides mobility and connectivity along a wide coverage area [2,3]. As MTC defines

a different set of requirements than the initial LTE system, namely low-rate, low-overhead,

low-power consumption, and low-cost, the 3GPP has been working on numerous LTE features

such as power saving, signaling reduction, overload control and complexity reduction to meet
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new requirements [81]. These features hit the design of discovery methods, physical layer

procedures, and radio resource management algorithms.

We here investigate the low-complexity SD synchronization approach proposed in [27] and

described earlier. The contribution of this work is to assess the performance of the SD metric

and ensure its synchronization capabilities for narrow-band LTE systems. Our study here ex-

clusively concerns the coarse SD metric, and it is carried out through simulation and theoretical

analysis to validate the obtained results. To this aim, the metric is first approximated by a

Gaussian distribution, to which we have determined the mean and variance. Then, we derive

the expression of the Probability of Correct Detection (PCD) in its closed-form expression.

2.6.1 Enhancement for MTC over LTE

In this section, we summarize features that are relevant to MTC, which have been standardized

in different 3GPP releases, with the main focus on synchronization issues.

2.6.1.1 LTE Cat-0 and Cat-M

Recently, the 3GPP achieved a major milestone to enhance network capabilities for cellular IoT

over LTE [3]. These improvements address the issues of overload control, support of a massive

number of low-throughput devices, device cost reduction, low-power consumption, signaling

overhead, and coverage enhancement. Key functionalities of new LTE UE with the maximum

throughput of 1 Mbps are defined in the most two recent LTE releases.

In LTE Release 12, new UE category was developed, referred to as LTE Category 0, or

simply LTE Cat-0. This was the first device category specifically targeting reduced complexity

and, thus, reduced cost for the IoT. It has the following reduced capabilities : 1) Single receive

antenna and associated receiver chain, 2) Reduced peak data rates of 1 Mbps in both downlink

and uplink, and 3) Optional half-duplex FDD operation. LTE Category M (for Machine-Type

Communication) is a key theme in LTE Release 13 with significantly reducing complexity,

further cost saving and improving battery lifetime. The main altered issues compared to Cat-0

device are : 1) Reduced device RF bandwidth of 1.4 MHz in both downlink and uplink, and 2)

Reduced maximum transmit power to allow for an integrated power amplifier implementation,

e.g. 20 dBm compared to 23 dBm for the baseline LTE device. Whilst the new categories Cat-0
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and Cat-M offer a reduced specification, they still comply with the LTE system requirements.

2.6.1.2 Synchronization Aspects

Synchronization is required in both eNB coverage area and outside eNB coverage area and

it is assisted by the transmission of the known synchronization or reference signals. A UE

assumes that synchronization signals are transmitted by either an eNB or a peer UE. The

synchronization signals are exemplified by the PSS and the SSS in the LTE system [79, 80].

Outside eNB coverage areas, Primary and Secondary Sidelink Synchronization Signals (PSSS

and SSSS) are prescribed as signals for synchronization between MTC devices. The PSSS

is transmitted on the 2nd and 3rd OFDM symbols in the slot of the sub-frame assigned for

synchronization signal transmission, while the SSSS is transmitted on the 5th and 6th OFDM

symbols. Instead of carrying the physical Cell ID, the PSSS and SSSS carry a Sidelink Identifier

(SID). The SID value also indicates whether the UE transmitting the sidelink synchronization

signals has derived its synchronization from the network or a peer device.

The synchronization between two devices depends on the scenario and coverage situation in

a hierarchical way. First of all, the device needs to determine if it is located in the coverage area

or not, based on the signal quality measurement using the Reference Signal Received Power

(RSRP) measurement performed on the downlink signal [82]. If the measured RSRP values

are above a specific threshold, the device considers itself in the coverage area and uses LTE

Rel-8 downlink signals (PSS, SSS) for synchronization. Otherwise, the device cannot detect an

eNB and is assumed out of the coverage area. The device, then, starts looking for PSSS and

SSSS, which are transmitted once every 40 ms, from other devices.

2.6.2 Simply-Differential Synchronization for MTC

In this section, we study the application of the SD synchronization metric to MTC underlying

LTE-A network [139]. We also derive the probability of correct detection in its closed form

to ensure the effectiveness of our analysis. The SD approach can be used in all systems that

exploit ZC sequences as a training sequence for synchronization purposes. It achieves time

synchronization by locating the ZC sequence within the received signal. The SD metric exploits

the differential correlation outcome of the nth received sample with its q-shifted counterpart

as described in section 2.5.2.
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Figure 2.15 depicts the SD metric presented for ZC sequence in the frequency domain (a)

and in the time domain after mapping on the OFDM symbol (b). The metric is here drawn for

1.4 MHz LTE communication system having useful OFDM symbol length Nu = 128, Cyclic

Prefix (CP) length Ng = 10, ZC sequence length Nzc = 63 and a root u = 25. We note that

both metrics exhibit a triangular shape that reaches its maximum at the ZC sequence start,

where the sum in (2.14) spans the whole ZC sequence. The gap of the metric in Figure 2.15.b

is wider due to oversampling the ZC sequence used in LTE signal. We also highlight that

the metrics are drawn for the three possible ZC sequences specified in the LTE standard, and

only the correct sequence provides a high magnitude. This allows the detection of the sector

identifier which is a part of the Cell ID/Sidelink ID.

Figure 2.15: The simply-differential metrics : (a) initial ZC sequence, (b) Mapped ZC sequence
(LTE signal).

2.6.2.1 Distribution of the SD Metric

The SD timing metric expressed in (2.14) sums up Nzc random variables [139]. Assuming

the independence between the summed terms of MSD in (2.14) and for Nzc sufficiently large,

the central limit theorem enables to approximate MSD(n) by a Gaussian distribution [85]

with mean µn and variance σ2
n. To calculate the mean µn = E[MSD(n)] and variance σ2

n =

E[|MSD(n)|2]−µ2
n values, we first split the received sample to signal and noise components as

rn = sn + ωn. The metric can then be rewritten as

MSD(n) =

Nzc−1∑
k=0

(sn+k + ωn+k)
∗(sn+k+q + ωn+k+q)e

jπu
Nzc

2q(n+k). (2.23)
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Since sn and ωn are independent and ωn is centered, the expected value of MSD turns into

E[MSD(n)] =

Nzc−1∑
k=0

E
[
(s∗n+ksn+k+q)e

jπu
Nzc

2q(n+k)
]
. (2.24)

As the correlation shift q 6= 0, MSD(n) is then zero mean unless for n falling within the ZC

sequence, where it becomes

µn =

Nzc−1∑
k=n

e−
jπu
Nzc

2q(n+k)e
jπu
Nzc

2q(n+k) = Nzc − 1− n. (2.25)

To find the variance of the SD metric, look at its square value |MSD(n)|2 expressed as

|MSD(n)|2 =

Nzc−1∑
k,l=0

[
sn+ks

∗
n+ls

∗
n+k+qsn+l+q + sn+ks

∗
n+lω

∗
n+k+qωn+l+q + ωn+kω

∗
n+ls

∗
n+k+qsn+l+q

+ ωn+kω
∗
n+lω

∗
n+k+qω

∗
n+l+q

]
e
−jπu
Nzc

2q(k−l).

(2.26)

For samples belonging to a ZC sequence, it turns into

|MSD(n)|2 = NzcE
2
s + 2NzcEsEω +NzcE

2
ω + (Nzc − 1− n)2 − (Nzc − 1− n), (2.27)

were Es and Eω stand respectively for the symbol and noise energies. However, for randomly

generated samples, the squared metric in (2.26) reduces to

|MSD(n)|2 = NzcE
2
s + 2NzcEsEω +NzcE

2
ω. (2.28)

As |MSD(n)|2 is constant, the value of its expectation is E
[
|MSD(n)|2

]
= |MSD(n)|2. The

variance σ2
n of the metric for time indexes out of the ZC sequence corresponds to the root

square of the metric in (2.28), due to their zero mean value. However, along the ZC sequence,

the variance value becomes

σ2
n = NzcE

2
s + 2NzcEsEω +NzcE

2
ω − (Nzc − 1− n). (2.29)

36



2.6. Time Synchronization for MTC over LTE SystemChapter 2. Synchronization for WiFi and LTE Standards

2.6.2.2 Probability of Correct Detection

The estimated correct time denoted as nc is the argument that maximizes the metric |MSD(n)|.

The PCD is defined as the probability that, for all values of time index n, the magnitude of

|MSD(n)| is less than that of |MSD(nc)|. The time index nc corresponds to the first received

sample of the ZC sequence [139]. For notational convenience, we denote |MSD(nc)| by ζ

and introduce the random discrete variable X to refer |MSD(n)|. Assuming the independence

between the different values of X and ζ, the PCD is expressed in its closed form as

PCD =

∫ +∞

0

∏
n6=nc

Fn(ζ)Pnc(ζ)dζ, (2.30)

where Fn(ζ) is the cumulative distribution function of the SD metric modeled by the Gaussian

random variable X, which is determined as

F|X|(ζ) = P (|X| < ζ) =
1√

2πσ2
n

∫ ζ

−ζ
e
−(x−µn)2

2σ2n dx =
1√
π

∫ +∞

−ζ−µ√
2σ2

e−x
′2
dx′ − 1√

π

∫ +∞

ζ−µ√
2σ2

e−x
′2
dx′

=
1

2
erfc

(
−ζ − µn√

2σ2
n

)
− 1

2
erfc

(
ζ − µn√

2σ2
n

)
,

(2.31)

In the PCD closed form expression (2.30), Pn(ζ) stands for the probability density function of

the SD metric for the correct ZC sequence start position nc, expressed as follows

Pnc(ζ) =
1√

2πσ2
nc

(
e
−(ζ−µnc )

2

2σ2nc + e
−(−ζ−µnc )

2

2σ2nc

)
. (2.32)

2.6.3 Performance Evaluation

The performance of the SD synchronization approach is here assessed in terms of ZC sequence

start probability of correct detection. Monte Carlo simulation is carried out for 104 trials

to evaluate the experimental PCD, which is compared to the theoretical probability derived

in (2.30). The simulated PCD is defined as the number of trials for which the estimated

ZC sequence start corresponds to the exact one. We highlight that the study derived here

concerns the coarse SD metric and further detection accuracy could be reached through the

fine metric, which is based on cross-correlation, as explained in [27]. We consider the 1.4 MHz
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LTE communication system with single antenna configuration and peak data rate of 1 Mbps,

which is the configuration introduced in Rel-13 of the 3GPP standards. We also assume that

the terminal is located within the coverage area. The considered OFDM system parameters

are as follows : useful data symbol length Nu = 128, cyclic prefix length Ng = 10 and the ZC

sequence has a length Nzc = 63. The correlation shift q in (2.14) is set to 1. The evaluation is

here carried out in the AWGN channel and over practical SNR range.

Figure 2.16 illustrates the PCD in two scenarios: in the first one, we consider the exact

point as a reference point, while in the seconds one we tolerate an error of 2 samples around

the exact point. Globally, the provided detection accuracy is satisfactory. Indeed, the PCD

reaches a target of about 90% from an SNR value equal to 5 dB, which is quite good for coarse

synchronization performance. This accuracy helps to reduce the time interval around which

the fine metric may be calculated for further detection accuracy. The figure also shows that the

analytical probability exhibits a good match with the experimental one in the first scenario, up

to a very slight gap of about 0.5 dB for an SNR range between 0 dB and 10 dB. In the second

scenario, we note that the probabilities concord perfectly. Overall, the experimental results

ensure the theoretical analysis and validate the synchronization capabilities of the studied

metric in the considered system.

Figure 2.16: Probability of correct detection of the ZC sequence start: Theory and Simulation.
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2.7 Conclusion

In this chapter, reduced complexity synchronization techniques for OFDM systems were pre-

sented and applied to the standards IEEE 802.11n WLAN and LTE in the context of cellular

and machine-type communications that are adapted for IoT applications. We exploited the

repetitive structure of the IEEE 802.11n preamble and applied a two-stage processing to it. To

first provide a coarse preamble start estimation, the approach uses sliding correlation. Then,

for more accurate estimation, differential correlation is carried out over a short interval centered

on the coarse time estimate. The combined use of sliding and differential correlations and the

designed metric provide satisfactory performance in terms of detection accuracy and computa-

tional load. The performance was evaluated respecting the parameters of the WLAN standard

IEEE 802.11n and exploiting both cyclic and space time diversities. Simulation results showed

the robustness of the reduced-complexity approach under the IEEE 802.11 channel B and thus

its suitability for the considered standard.

Then, we studied reduced-complexity timing synchronization and sector search approaches

for the LTE system. The first approach calculates a Simply-Differential correlation based met-

ric and allows joint time synchronization and S-ID recovery using the same metric. The second

approach carries out Doubly-Differential correlation based metric to detect a ZC sequence

pattern within the received signal, then recovers the S-ID during the second stage. The per-

formance evaluation investigated in the EPA and ETU channel models showed the robustness

of the approaches even at very low SNR values. The DD approach has a computational load

higher than that of the SD approach and provides better detection performance for medium

and high SNR values. We also analyzed the effect of a FO on time synchronization performance

and approved the immunity of the DD approach and the sensitivity of the SD approach to FO.

The reduced complexity of these approaches makes them suitable for MTC over cellular

LTE networks. Hence, we investigated the application of the simply differential approach to

machine type communication to jointly provide time synchronization and sector identifier. The

performance of the studied approach was evaluated in terms of theoretical correct detection

probability, which was derived in its closed form, and compared to the experimental proba-

bility. The obtained results showed that, when applied to the LTE signal specified for MTC,

the studied approach provided good detection accuracy. Moreover, the simulated probability

perfectly agrees with the theoretical one, which validates the analysis carried out.
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Chapter 3

RS-based Neighbor Discovery

3.1 Introduction

In its latest releases, the LTE standard was defined to support new paradigms for LTE to im-

prove network capacity and efficiency. Among them, Device-to-Device (D2D) communication

was proposed as a vital component to enable novel and significant opportunities requiring local-

ized communications and IoT applications. From Rel. 12, D2D communication was introduced

in the LTE cellular network under the name of Proximity Services (ProSe) [5]. The standard

enables a User Equipment (UE) to communicate directly with other UEs in its vicinity using

a portion of the channel known as SideLink (SL) through the new interface PC5. Later on,

Rel. 14 and Rel. 15 included the cellular Vehicle-to-Everything (V2X) standard with further

enhancements to the Vehicle-to-Vehicle (V2V) standard that was defined as a part of ProSe

communications. In particular, short-range V2X was added to the features of LTE and 5G to

allow vehicles, roadside devices, and vulnerable users to directly exchange information using

the same chipset used in traditional long-range connections [108,109].

To establish a direct link, a UE has to first perform neighbor discovery, which is defined as

the process by which it advertises and detects useful information provided by its peers using

a specific set of time and frequency resources contained in the Physical Sidelink Discovery

Channel (PSDCH) [5]. The announcement and monitoring of discovery messages are authorized

by the upper layers. In the radio network, discovery procedures involve only the Media Access

Control (MAC) and Physical (PHY) layers. The MAC layer builds a MAC protocol data
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unit carrying a discovery message from the upper layer and determines the radio resource for

announcing the discovery message.

In this chapter, we address the problem of neighbor discovery in LTE networks exploiting

direct radio links between ProSe-enabled users. In particular, we use Reference Signals (RS),

i.e. Sounding Reference Signal (SRS) [31] and the Demodulation Reference Signal (DMRS) [32],

which are sent periodically within the UL/SL frame to sense the presence of neighboring UEs

in the vicinity. The SRS-based discovery performs simple cross-correlation, while the DMRS-

based discovery performs a power normalized correlation between the received signal and the

local known reference sequences. Both approaches exploit a hypothesis binary test to decide

about the activity of a neighboring user. The performance is evaluated through a theoretical

study of the probability of discovery and simulation.

3.2 Related Works

The discovery procedure can use conventional wireless localization methods such as time-of-

arrival (TOA), angle-of-arrival (AOA), time-difference-of-arrival (TDOA), and global position-

ing system (GPS) to track the location of each UE [93]. However, these methods can not

provide the required accuracy for the proximity-based service. To overcome this limitation,

beacon-based D2D discovery schemes, in which D2D users find their nearby peers using pre-

defined proximity beacons can be used. Depending on the level of network involvement, the

discovery process can be assorted into centralized and direct [94]. In direct discovery meth-

ods, discovery is distributed and does not involve the base station. Wireless ad hoc networks

including Bluetooth and WiFi-direct, which work on unlicensed band are examples of fully-

distributed networks. Centralized discovery can further be assorted into fully-controlled (cen-

tralized) in which the base station manages the whole discovery and link establishment process

and loosely controlled (semi-centralized) in which the task is performed based on information

exchange between D2D users and the base station.

The proximity beacon-based discovery scheme has been studied is several research works

[95]- [101]. In [95, 96], FlashLinQ, which is the neighbor discovery scheme proposed by Qual-

comm, provides a synchronous and distributed device discovery solution for wireless ad hoc

networks, yet on the licensed band. This architecture is completely flat as there are no cen-

tralized masters that control the operations of other devices. In [97] and [98], adaptive peer
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discovery schemes were considered in which the probing rate of peer discovery is varied accord-

ing to social domain information or the wakeup schedule of D2D users is changed according

to predicted inter-contact time of users. In [100], peer discovery based on the LTE beacon

structure was considered. It exploited primary and secondary synchronization signals followed

by information bits as beacons. However, the use of such a beacon for the D2D discovery

can lead to underutilization of resource blocks and a high collision probability. To overcome

this limitation, a random access procedure like scheme was proposed in [101], which uses the

preamble dedicated for random access phase as beacons to identify in a centralized way. The

work in [102] focused on neighbor discovery utilizing SRS channel, which can be accessed by

peer UEs that are LTE-compliant. Under the constraint of unknown channel statistics during

uplink hearing, neighbor detection is achieved through the conventional Constant False Alarm

Rate (CFAR) detector. Then, in [103], the authors used DMRS signal to which a Generalized

Likelihood Ratio Test (GLRT) estimator is applied, followed by a hypothesis test to detect

neighboring users.

3.3 System Architecture

We consider an LTE cellular network that supports direct user communications, in which UEs

might access the eNB for regular cellular communications or establish D2D pairwise links for

both ProSe and V2X application cases. In this case, active users can be potentially captured

during UL/SL periods for which a UE is not transmitting to the eNB.

3.3.1 Signal Structure

To reduce hardware requirements on UE, it was agreed that the SL uses the UL resources as well

as Single-Carrier Orthogonal Frequency Division Multiple Access (SC-FDMA) transmission

keeping almost the same signals and channels [104]. Resources assigned to the SL are taken

from the UL, i.e. from the subframes on the UL frequency in frequency division duplex mode

and from the subframes assigned to UL in time division duplex mode. This choice is justified

by the lower UL subframes occupation compared to the DL subframes [105]. The sub-frame is

in this case made of two 0.5ms slots, each made of 7 SC-FDMA symbols.

Each ProSe-enabled user i (UE-i) interested in creating a D2D link, transmits his signal
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which is received with a delay τi. The signal received at the listener ProSe-enabled user j

(UE-j), which aims to discover the presence of his peers in his neighborhood is written as

rj =

U∑
i=1;i 6=j

hiyi(τi) + ωj , (3.1)

where hi denotes the channel coefficient, yi(τi) stands for the delayed received version of the

signal yi that is transmitted from the neighbor UE-i. The parameter ωj is the AWGN assigned

to the UE-j. As some users might not be involved in the D2D communication, the channel

coefficient hi is then set to 0 for inactive users (UE-i ∈ U0). We introduce the variable σ2
s and σ2

ω

corresponding to the symbol energy, and the noise energy at the discoverer UE-j, respectively.

Note that the symbol energy is the invariant for all UEs and σ2
s is used hereafter to design the

symbol energy for a specific UE-i.

3.3.2 SideLink Communication

The SL is an LTE feature initially introduced in 3GPP Rel.12 to enable D2D communication

underlying cellular LTE radio access networks [5]. In Rel.13, SL functionalities have been en-

riched to be applicable to public safety and commercial communication use cases, and recently

(Rel.14 and Rel.15) to Vehicle-to-Everything (V2X) scenarios.

3.3.2.1 Sidelink Channels

In conventional cellular traffic over Uu interface, the eNB communicates with the UE via the

UL and DL for both signaling and data. In contrasting fashion, as shown in figure 3.1, SL

enables the direct communication between proximal UEs, often called ProSe-enabled UEs,

using the newly defined PC5 interface and data does not need to go through the eNB. The first

definitions of D2D communications used the term SL to distinguish it from downlink (eNB-

to-UE) and uplink (UE-to-eNB). The interface defined for this scope is named PC5 and the

newly defined physical layer channels are:

• PSBCH: Physical SideLink Broadcast CHannel, which carries system information and

synchronization signals;

• PSCCH: Physical SideLink Control CHannel, which carries UE-to-UE control plane data;
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Figure 3.1: Enabled Sidelink for direct communication in LTE network [105].

• PSDCH: Physical SideLink Discovery CHannel, which supports UE direct discovery

transmissions;

• PSSCH: Physical SideLink Shared CHannel, which is used for user plane data transmis-

sion.

The design of SL revolves around three functionalities for enabling direct UE communica-

tions: synchronization, discovery, and communication. Primary and Secondary Synchroniza-

tion signals share the PSBCH using broadcast signals; discovery messages use the dedicated

PSDCH, and control messages and data transmissions employ PSCCH and PSSCH respec-

tively. During synchronization, UEs come to a consensus over timing to ensure the subsequent

transmission of data and control packets. During the discovery procedure, UEs announce their

presence and discover other UEs in the vicinity. This information is used to determine the

subsequent communications phase, where actual data transport occurs.

3.3.2.2 Sidelink Frame Structure

The LTE signal is organized in frames of 10ms composed of 10 subframes having each a length

of 1ms. Each subframe is structured in two slots that comprise 7 and 6 SC-FDMA symbols

for normal and extended CP respectively. The SL subframe is depicted in figure 3.2. Similar

to synchronization design in LTE conventional downlink, two synchronization signals, primary

sidelink synchronization signal (PSSS) and secondary sidelink synchronization signal (SSSS),

are defined for sidelink, where each occupies the center 62 sub-carriers and two SC-FDMA

symbols within the 1ms subframe. PSSS is transmitted in the 2nd and 3rd symbols of the first

time slot (half of the subframe) while SSSS is transmitted in the 5th and 6th symbols of the

second time slot.
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Figure 3.2: Sidelink synchronization subframe structure [105].

These signals are used by listener UEs to synchronize with broadcasting UE, which is willing

to initiate direct D2D communication. Along with the subframe, two Demodulation Reference

Signals (DMRS) are mapped in the 4th symbol of each slot and is intended to be used for

coherent channel demodulation. The DMRS structure will be explained separately in more

detail in the next section. The last symbol in a sub-carrier is punctured to serve as guard

period.

3.3.2.3 Resource Block

In the LTE network, the radio resources are allocated in units of time-frequency physical

Resource Block (RB). Each RB spans one time slot in the time domain and 12 sub-carriers in

the frequency domain as shown in figure 3.3. Each time slot further consists of 7 or 6 OFDM

symbols, depending on whether a normal or an extended cyclic prefix is used [46].

The allocation of SL resources is based on resource pools, which are formed by a subframe

pool in the time domain and a Resource Block (RB) pool in the frequency domain. The

bandwidths that can be allocated to SL differ based on the following rule: up to 20 MHz can

be reserved for discovery, whereas 10 MHz is the maximum for communication and control.

3.3.3 Reference Signals

In addition to the physical channel, the LTE standard defines two reference signals in its UL:

Demodulation Reference Signals (DMRS) and Sounding Reference Signals (SRS). The DMRS

is intended to be used by the eNB for channel estimation for coherent demodulation of the UL

physical channels (PUSCH and PUCCH). In contrast, the SRS is used to support UL channel-
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Figure 3.3: Physical Resource Block.

dependent scheduling and link adaptation and to estimate the DL channel-state assuming

sufficient UL/DL reciprocity. It can also be used in cases when UL transmission is needed,

although there is no data to transmit [46]. To support a large number of UEs, RS sequences

are defined by cyclically shifting a base sequence r̄ as

r(δi)(n) = ejδinr̄(n), 0 ≤ n < M, (3.2)

where δi is the shift, M = mNRB is the length of RS sequences, m is the number of RBs and

NRB is the size, in sub-carriers, of each RB. As the sub-carrier bandwidth is set to 15kHz, each

RB contains 12 sub-carriers, i.e NRB = 12 [110]. Multiple RS sequences can be derived from a

single base sequence through different values of δi and each sequence is attributed to one user.

The definition of the base sequence r̄ depends on the sequence length. For M ≥ 3NRB, the

base sequence r̄ is chosen as the cyclic extension of a Zadoff-Chu (ZC) sequence xu of root u

and is expressed as

r̄(n) = xu(nmodNzc), 0 ≤ n < M, (3.3)

where Nzc is the length of the ZC sequence xu. This is given by the largest prime number such

that Nzc < M [83]

xu(n) = e−j
πun(n+1)

Nzc , 0 ≤ n ≤ Nzc − 1. (3.4)
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As the number of available ZC sequences of a certain length Nzc, i.e. the number of possible

values of u, equals the number of integers that are relatively prime to Nzc, a cyclic extension

of prime-length sequences would be preferred to maximize the number of available reference

signals. Before transmission, an N -point IFFT is applied to r(δi) in (3.2) to generate the RS

sequence to be mapped into the frame. Thanks to their good correlation properties, this type

of sequences is well suited for detection and synchronization purposes. Moreover, they have the

advantage of remaining invariant under several operations such as the FFT and IFFT, which

are applied to generate the RS signal in the LTE system [84]. Since the resulting sequences

are all mutually orthogonal, they can serve as unique identifiers for UEs that are willing to set

up a direct link with their neighbors.

3.3.3.1 Sounding Reference Signal

There are two types of SRS transmission defined for the LTE UL: periodic SRS transmission,

which has been available from the first release of LTE (release 8); and aperiodic SRS trans-

mission, introduced in LTE release 10. Periodic SRS transmission from a UE occurs at regular

time intervals, from as often as once every 2ms (every 2 sub-frames) to as infrequently as

once every 160ms (every 16 sub-frames). When the SRS is transmitted within a sub-frame, it

occupies the last SC-FDMA symbol of the sub-frame.

Authorized UEs are scheduled to transmit by the eNB and they can be multiplexed in the

same SRS symbol in a combination of FDM or CDM. In a given sub-frame, all UEs within

the same cell and sharing the same SRS bandwidth are generated from the same ZC sequence.

The system offers a multiplexing capacity of 8 users. The sequence mapping reflects the Single

Carrier Interleaved Frequency Division Multiple Access (SC-IFDMA) transmission scheme of

the SRS: within its allocated bandwidth, a UE’s SRS sequence is mapped to every second

subcarrier, creating a comb-like spectrum. As a result, the total SRS multiplexing capacity for

a given SRS bandwidth is 16 users [46].

3.3.3.2 Demodulation Reference Signal

The DMRS signals are intended to be used by the base station for channel estimation for

coherent demodulation of the uplink physical channels (PUSCH and PUCCH). They are thus

only transmitted together with PUSCH or PUCCH and are then transmitted with the same
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bandwidth as the corresponding physical channel. Likewise, in Rel. 12 and beyond, DMRS

is associated with physical SL channels (PSSCH, PSCCH, PSDCH, and PSBCH) for coherent

demodulation. The DMRS is mapped on the 4th symbol of each slot for ProSe in Rel. 12 [110]

and on the 3rd and 6th symbols of each slot for V2X communication [111].

3.3.4 Discovery Framework

In the studied system, ProSe-enabled UEs can be aware of potential partners in the vicinity

through their RS and hence initiate direct communication between each other. Unlike con-

ventional discovery approaches which may not be compliant with the LTE specifications [98],

require additional physical resources [99] or detect the presence of a neighbor only [102], the

proposed framework exploits the standardized UL/SL signal structure to accomplish the de-

tection of active users and the identification of their beacons.

To set up D2D communication links, each active UE should first learn about his neighbors,

which are the set of UEs within a limited range. The set of neighbors is denoted by U and is

partitioned into two sets: 1) a set of target users U1, which are ProSe-enabled users located

within a limited area interested in D2D communication, and 2) a set of inactive users U0,

which are not involved in the D2D communication. Assuming synchronization between ProSe-

enabled UEs, the RS transmitter is designed in such a way to assign a unique beacon to each

UE which is derived from the extended and cyclically shifted ZC sequence as explained in

section 3.3.3. As the generated beacons sharing the same duration are orthogonal, they can

be used as beacons to identify ProSe-enabled UEs. The received signal at each ProSe-enabled

UE resulting from the summation of neighboring signals in (3.1) becomes

rj =

Nu∑
i=1;i 6=j

hisi + ωj , (3.5)

where Nu is the number of ProSe-enabled UEs (U1) in the network, j and i stand for the indexes

of the listener and the sender UEs, respectively. As we assume synchronization between ProSe-

enabled users, the transmitted signal yi in (3.1) is here replaced by the RS sequence si of the

UE-i. It is worth noting that both DMRS and SRS signals provide specific information related

to each UE and thus can serve as discovery beacons to identify UEs and to establish D2D links.

Upon receiving a signal, the listener UE performs a correlation-based metric followed by a
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binary hypothesis test to detect the active UEs. The binary hypothesis test with two hypotheses

H0 and H1. First, H1 denotes the hypothesis corresponding to the case that a UE is a true

active neighbor from the set of target D2D users. On the other hand, H0 stands for the

hypothesis corresponding to the case that a UE is not an active neighbor. The hypothesis test

that corresponds to UE-i discovery task can then be modeled as H0 : UE-i ∈ U0

H1 : UE-i ∈ U1.
(3.6)

It is worthy to note that according to UEs activity, U0 and U1 components can vary through

time. The false alarm probability PF and the detection probability PD of the detector are

defined as

PD = P (H1|H1) and PF = P (H1|H0), (3.7)

where P (Hi|Hj) denotes the probability that Hi is claimed under Hj and is useful to set the

threshold η according to the requirements on false and correct detection probabilities.

Note that depending on the position of the discoverer UE, we can denote UE-0, RS sequences

that can be communicated through the eNB using RRC signaling, e.g. via system information

blocks (SIBs), if the UE is located in the coverage area. For a partial coverage scenario, the

configuration can be forwarded to UE-0 by one or multiple UEs that are in-coverage, or others

that are outside the coverage area. For an out-of-coverage scenario, the configuration can be

predefined or broadcasted by a centralized D2D device. Alternatively, the configuration can be

associated with and signaled by an independent synchronization source, with the configuration

further forwarded by other synchronization sources [113].

3.4 SRS-based Discovery

In this section, we address the problem of neighbor discovery in LTE networks exploiting

direct radio links between ProSe-enabled users, which have been allowed for data transmission

in Rel. 12 [82]. In particular, we exploit the SRS sent periodically within the UL frame as a

D2D neighbor discovery beacon [31, 34]. Based on the SRS structure, which is known for all

UEs, we perform a correlation between the received signal and the local known SRS candidates

at each searching UE. Hence, the discovery is enabled by exploiting the orthogonality between
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different SRS sequences. To the best of our knowledge, such properties, have not been exploited

to this purpose in the literature.

3.4.1 Discovery Metric

Exploiting the orthogonality between beacons of all ProSe-enabled UEs, we define the discovery

metric that cross-correlates the received signal at the jth user with the local known SRS

candidates to identify active neighbor

Γj(i, n) =

∣∣∣∣∣ 1

N

N−1∑
l=0

r∗j (n+ l)si(l)

∣∣∣∣∣, i ∈ U (3.8)

Note that n is the time index spanning the observing window of N samples, positioned at the

start of the SRS symbol (last SC-FDMA symbol of the sub-frame) [31]. The discovery metric

in figure 3.4 depicts the cases for one active UE and one inactive UE in the vicinity of the

listener UE in the noiseless case. For the active neighbor, we note that the metric exhibits high

magnitude when it performs the cross-correlation with the SRS candidate that corresponds to

the one sent from the active transmitter. However, a trifling magnitude is exhibited if no UE

in the vicinity is using an SRS sequence corresponding to the candidate that the listener uses

for correlation, which corresponds to an inactive user.
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Figure 3.4: SRS-based Discovery metric for active and inactive ProSe-enabled users [31].

Let us analyze the correlation output in the discovery metric ΓΓΓj for any active UE of index

i based on the ZC sequence expression in (3.4). Respecting [84], the IFFT of a ZC sequence

preserves the initial properties of ZC sequences and can be considered as a ZC sequence, yet
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with new root and length that are here denoted as u′ and N ′zc respectively. In the noiseless

case, and when correlating the received signal with the correct local SRS sequence i, which is

a ZC sequence [84], ΓΓΓj turns into

Γj(i, n) = e
−j πun(n+1)

N′zc e
j
πu′n(n+1)

N′zc = 1. (3.9)

Hence the sum in (3.22) adds constructively in such a way to provide high metric magnitude

when the output sums up the ZC sequence length N ′zc (N ′zc = N in this case). However, if the

received signal is correlated with a different SRS sequence that is not used by any of the active

users, the correlation output becomes

Γj(i, n) = e
−j πu

′n(n+1)

N′zc ejαne
j
πu′n(n+1)

N′zc = ejαn. (3.10)

In this case, the sum in (3.22) adds randomly which results in low metric magnitude.

The addition of correlated elements along the beacon length sums constructively for active

users and allows their detection based on the test in (3.11). Since the shared SRS sequence set

is known to all UEs within the network, each D2D receiver can detect all present sequences

as part of the neighbor discovery process. To identify active D2D users, the receiving UE j

applies the following detection rule onto each ith line of the decision metric Γj as

max
n

{
Γj(i, n)

} H1

R
H0

η, (3.11)

where η is a preset threshold and H0 and H1 are the two hypothesis of the binary test. H1

denotes the hypothesis corresponding to the case that a UE is a true active neighbor, while

H0, stands for the hypothesis corresponding to the case that a UE is not an active neighbor.

Hypothesis H1 holds for UE-i in the set of active ProSe-enabled neighbors (Γj(i, nmax) > η).

Otherwise, hypothesis H0 detains to indicate that the UE-i is not an active UE.

3.4.2 Complexity Evaluation

In (3.22), the detection metric should be calculated U times to ensure the discovery of the

whole set of active users U1, which may result in a huge computational load. To overcome this
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limit, we suggest a reduced complexity recursive implementation as

Γj(i, n+ 1) = Γj(i, n)− 1

N

∣∣∣r∗(n)xi(0)
∣∣∣+

1

N

∣∣∣r∗(n+N − 1)xi
(
N − 1

)∣∣∣. (3.12)

In the initial metric (3.22), the computation of each element Γj(n) requires N complex multipli-

cation operations. However, the proposed recursive implementation expressed in (3.12) reduces

this number to only 2 with additional 2 complex addition operations whose computational load

is trifling compared to multiplication operations. Thus, N − 2 complex multiplication opera-

tions are saved using (3.12) rather than (3.22). For the whole discovery process, which involves

the set of D2D users, the recursive implementation saves U × (N − 2) complex multiplication

operations per metric evaluation.

3.4.3 Closed-Form Discovery Probability

To determine the probability of discovery in its closed form, we first study the statistical

properties of the discovery metric [34]. We assume that we have two ProSe-enabled UEs; a

listener UE-j and a sender UE-i and suppose that the channel coefficient h is perfectly known.

The received signal at the listener side can be reduced to rrrj = sssi + ωωω. The discovery metric

in (3.8) sums up N variables. Assuming the independence between the summed terms in ΓΓΓj

and for N sufficiently large, by the Central Limit Theorem ΓΓΓj is Gaussian and is characterized

by its mean µΓj and variance σ2
Γ. Recall that to decide whether a neighbor is active or not,

the metric is evaluated at its maximum value as in (3.27). Hence, it is necessary to study the

statistics of the metric in the cases of active and inactive neighbors [34].

3.4.3.1 Case of Active Neighbor

We here focus on deriving the mean and variance of the magnitude of ΓΓΓj at its maximum value

for an effective ProSe-enabled UE-i [34]. Substituting the simplified received signal expression

in the equation (3.8), the metric yields

Γj(i, n) =
1

N

N+n−1∑
l=n

|si(l)|2 + ω∗(l)si(l). (3.13)

For notational convenience, we introduce the Gaussian random variable X that corresponds
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to the maximum of Γj(i, nmax). Referring to the analysis of the metric in section 3.4.1, the

mean of X is µX = σ2
s , since each of the N elements belonging to the SRS sequence has an

expected value of σ2
s and all the other terms have an expected value of zero.

To determine the variance of the metric, we need to first evaluate the expectation of the

squared metric which can be expressed as:

E
(
|Γj(i, n)|2

)
=

1

N
× E

(
N+n−1∑
l,k=n

[
|si(l)|2 + ω∗j (l)si(l)

][
|si(k)|2 + ωj(k)s∗i (k)

])

=
1

N
E

(
N+n−1∑
l,k=n

|si(l)|2|si(k)|2 +
N+n−1∑
l=k=n

|si(l)|2|ωj(l)|2
)

= Nσ4
s + σ2

sσ
2
ω,

(3.14)

The variance is then evaluated as

σ2
Γ = E(|Γj |2)− |µΓj |2 = Nσ4

s + σ2
sσ

2
ω − σ4

s = (N − 1)σ4
s + σ2

sσ
2
ω, (3.15)

3.4.3.2 Case of Inactive Neighbor

We now focus on the statistical characterization of the discovery metric in the case of any

inactive user, for which the metric correlates between the received signal with the SRS sequence

of the inactive user that we denote as UE-g and the local sequence candidate si (i 6= g) [34].

The metric can then be written as

Γj(n) =
1

N

N+n−1∑
l=n

si(l)sg(l) + ω∗(l)sg(l). (3.16)

In this case, the metric sums randomly and the output has an insignificant value as demon-

strated in section 3.4.1. The expected value of the metric output for all inactive UEs is then

null leading to a mean µ = 0. Consequently, the variance will be equal to the expected value
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of the square of the discovery metric determined as

E(|Γj(i, n)|2) =
1

N
E

(
N+n−1∑
l,k=n

[
s∗i (l)sg(k) + ω∗(l)sg(k)

]
×
[
si(l)s

∗
g(k) + ω(l)s∗g(k)

])

=
1

N
E

(
N+n−1∑
l=k=n

|si(l)|2|sg(k)|2) + |ω(l)|2|sg(k)|2
)

= σ4
s + σ2

ωσ
2
s .

(3.17)

3.4.3.3 Discovery Probability

We have shown in the previous section that the decision metric can be approximated with

a Gaussian random variable with mean µγ = σ2
s and variance σ2

γ = (N − 1)σ4
s + σ2

sσ
2
ω for

active neighbor and zero mean with variance σγ = σ4
s + σ2

ωσ
2
s for an inactive neighbor. We

here exploit these results to derive the Discovery Probability (DP) in its closed form. The

discovery probability can be defined as the probability that the magnitude of X is higher than

a preset threshold η for the active user UE-i and that of Y is less than the threshold. Therefore,

assuming the independence between the metric values calculated for each UE, this probability

can be expressed as

PD = P (γi > η)P (γj ≤ η) =
[
1− Fγi(η)

]
Fγj (η), (3.18)

where FX(η) stands for the Cumulative Distribution Function (CDF) of the random variable

X evaluated at η, which can be determined as

F|X|(x) = P (X ≤ η) + P (−X ≤ η) =

∫ η

−η

1√
2πσ2

X

e
−(x−µX )2

2σ2
X dx (3.19)

for the studied metric γ modeled by the random Gaussian variable X. For notational con-

venience we consider X ∈ {γi, γj}, µX ∈ {µγi , µγj} and σ2
X ∈ {σ2

γi , σ
2
γj}. The CDF of the

Gaussian random variable expressed in (6.2) can, after applying a variable change of x by
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x′ = x−µX
σX

, be determined as

F|X|(η) =
1√
π

∫ η−µX
sqrt2σ2

X

−η−µX√
2σ2
X

ex
′2
dx′ =

1√
π

∫ +∞

−η−µX√
2σ2
X

e−x
′2
dx′ − 1√

π

∫ +∞

η−µX√
2σ2
X

e−x
′2
dx′

=
1

2
erfc

−η − µX√
2σ2

X

− 1

2
erfc

η − µX√
2σ2

X

 ,

(3.20)

where erfc(x) is the complementary error function of x defined as

erfc(x) =
2√
π

∫ ∞
x

e−t
2
dt. (3.21)

3.4.4 Performance Evaluation

The performance of the correlation-based neighbor discovery approach is here assessed in terms

of analytical and simulated Probability of Discovery (PD) as a function of the SNR. Monte

Carlo simulation is carried out for 104 trials to evaluate the simulated PD, which is defined as

the number of trials for which the detected UE corresponds to the active ProSe-enabled UE.

The parameters of the simulation setting are summarized in table 3.1 respecting LTE standard

specifications.

Table 3.1: Simulation parameters of the SRS-based approach.

Parameter Value

System bandwidth 20 MHz
FFT size N 2048 sub-carriers
CP size Ng 140 sub-carriers
SRS bandwidth 96 RB (1152 sub-carriers)
ZC sequence length Nzc 571 sub-carriers
E-ZC sequence length M 576 sub-carriers
D2D pathloss 148+40log10(d[Km])
Transmission power 0 (dBm)

The considered system involves Nc = 2 SRS combs and hence a total of U = 16 possible

SRS transmitters. Due to Interleaved FDMA, each SRS comb is composed of 576 sub-carriers,

which is half of the SRS bandwidth. We consider the neighbor discovery process in which 12 out

of 16 possible SRS transmitters are actively transmitting by sharing the same SRS symbol and
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with fixed transmission power. For each observation, one among the 12 active users is chosen

as searching D2D users around which are distributed the target D2D users. A random choice of

the active users is done in each iteration. At the searching user, the discovery metric in (3.11)

is first calculated for each user UE-i ∈ U , then the decision rule in (3.11) is applied to identify

active users among the 16 possible candidates. Given a target value of false alarm probability

PF , the detection threshold η is set empirically from 103 independent channel realizations.

Figure 3.5: Receiver Operating Characteristic (ROC).

Figure 3.5 presents the ROC curves of the proposed discovery scheme and the constant false

alarm rate (CFAR) detector developed in [102] and here considered as a benchmark. The ROC

of both schemes is evaluated for an SNR value of 10dB. Overall, the proposed scheme performs

better than the CFAR with approximately 0.1 higher detection probability for all target false

alarm values. In the following results, the detection threshold is set by fixing PF = 0.01.

Figures 5.1 and 3.7 depicts the experimental ProSe-enabled user Discovery rate, defined as

the number of trials for which the searching user succeeds to detect transmitting ones. The

figures depict two scenarios: the first one evaluates the performance for steady users while the

second one assumes a pedestrian profile with low speed. In the latter scenario, we opt for the

Evolved Pedestrian-A (EPA) channel, which exhibits 7 taps with delays {0,30,70,90,110,190,410}

(ns) and relative power {0,-1,-2,-3,-8,-17.2}(dB). The EPA channel is defined for 5Hz maximum

Doppler frequency, which translates to UE velocity of 2.7Km/h.

In figure 5.1, which depicts the discovery rate as a function of the SNR, we note a good

discovery accuracy, which becomes perfect for steady users from an SNR value of 13dB, while

it stagnates at a probability of 0.9 for pedestrian users. Naturally, higher SNR leads to better

performance of the system. Figure 3.7 shows the discovery rate when varying the distance
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between searching and transmitting D2D users. As the transmission power is fixed, it is

expected that the discovery accuracy lessens as the distance between neighbors increases. The

detection remains satisfactory up to distances of 50m and 40m respectively for steady and

pedestrian users. We also note that in the pedestrian profile, no neighbors can be detected

farther than 80m.

Figure 3.6: The neighbor discovery perfor-
mance as a function of the SNR.

Figure 3.7: The neighbor discovery perfor-
mance as a function of the user position.

Figure 3.8 illustrates the comparison of the analytical and simulated probability of discov-

ery determined in section 3.4.3.3. It is worth noting that the studied SRS-based provides a

satisfactory discovery accuracy that becomes perfect from an SNR value equal to 10 dB and

approved through both simulation and analysis. Indeed, the figure shows that the analytical

probability exhibits a very good match with the simulated one, up to a very slight gap less than

0.1 dB for an SNR range between 5 dB and 9 dB. Elsewhere, we note that the probabilities

concord perfectly. The obtained results prove that the assumptions made in the analysis are

valid and the simulation results validate the theoretical analysis.

3.5 DMRS-based Discovery

This section explores DMRS signals which are sent regularly through the UL/SL for coherent

demodulation to fulfill neighbor discovery [32]. Within the SL, DMRS sequences have the

same properties and structure as in the UL and are useful in assisting link setup. By simply

listening to DMRS signals from nearby transmitters, a ProSe-enabled UE can be aware of

potential partners in its vicinity and hence initiate direct communication with its peers. A

robust method that carries out power-normalized correlation between locally known DMRS
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Figure 3.8: Probability of Discovery of the SRS-based approach: Analytical vs Simulation.

candidates and the signal received from neighbor devices is here investigated. To decide about

neighbor detection success, a binary hypothesis test is used to design the discoverer UE under

a preset false alarm rate constraint. ation of SRS signals [?] without any additional resources.

3.5.1 Discovery Metric

To distinguish users interested in establishing a direct link for ProSe communication from

inactive or disabled users, the listener UE-0 performs a power normalized cross-correlation of

the received signal to the local known DMRS sequence candidates. Assuming synchronization

between UE-0 and UE-i, the discovery metric carried out to identify a UE-i willing to establish

direct communication with UE-0 is then expressed as

Γ(i, n) =

(
|γ(i, n)|
ρ(n)

)2

, i ∈ U , (3.22)

where n refers to the time index
(

with reference to the DMRS sequence start: 0 ≤ n ≤ N−1
)
,

γ(i, n) is the correlation of the received signal to the local known DMRS sequence candidate

sssi which is expressed as

γ(i, n) =

N−1∑
l=0

r∗(n+ l)si(l), (3.23)
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and ρ(n) is the instantaneous power of the received signal at the time index n which is given

by

ρ(n) =

n+N−1∑
l=n

|r(l)|2. (3.24)

Discovery metrics drawn for active and inactive neighbor UEs are depicted in figure 3.9 in the

noiseless case. The figure shows a high magnitude exhibited at the start of the DMRS sequence

for the active neighbor while trifling magnitudes are exhibited by inactive users with several

side-peaks distributed at different positions. The highest magnitude of the metric associated

with the active user corresponds to the first sample of the DMRS sequence, for which the

metric sums up the N samples. Let us analyze the correlation output in the denominator
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Figure 3.9: DMRS-based Discovery metric for active and inactive ProSe-enabled users [32].

of the discovery metric γ for any active UE of index i based on the ZC sequence expression

in (3.4). Respecting [84], the IFFT of a ZC sequence preserves the initial properties of ZC

sequences and can be considered as a ZC sequence, yet with new root and length that are here

denoted as u′ and N ′zc respectively. In the noiseless case, and when correlating the received

signal with the correct local DMRS sequence i, which is a ZC sequence [84], γ turns into

γ(i, n) = e
−j πu

′n(n+1)

N′zc e
j
πu′n(n+1)

N′zc = 1. (3.25)

Hence the sum in (3.23) adds constructively in such a way to provide high metric magnitude

when the output sums up the ZC sequence length N ′zc (N ′zc = N in this case). However, if the

received signal is correlated with a different DMRS sequence corresponding to an inactive UE,
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the correlation output becomes

γ(i, n) = e
−j πu

′n(n+1)

N′zc ejαne
j
πu′n(n+1)

N′zc = ejαn. (3.26)

In this case, the sum in (3.23) adds randomly resulting in low metric magnitude.

Consequently, to determine whether the UE-i is active and in the neighborhood of UE-0,

the maximum of metrics related to different users are first picked and are compared to a preset

threshold η. Then, a binary hypothesis test with two hypotheses H0 and H1, where H1 denotes

the hypothesis that the UE-i is a true active neighbor from the set of ProSe-enabled users, and

H0 corresponds to the case that the UE-i is not an active neighbor, is applied. This test can

be expressed as follows

max
n

{
Γ(i, n)

} H1

R
H0

η, i ∈ U , (3.27)

Hypothesis H1 holds if maxn

{
Γ(i, n)

}
for UE-i is higher than the threshold η. Otherwise,

hypothesis H0 detains.

3.5.2 Complexity Evaluation

The computational complexity of the discovery method is defined as the number of real floating-

point operations (flops) needed to identify active neighbors [32]. One complex multiplication is

counted as six flops, whereas a complex addition is two flops [107]. Implementing the discovery

metric Γ as expressed in (3.22) results in a huge computational load. Hence, a recursive

implementation is proposed to reduce the load due to multiplication operations. To simplify

the notation, let us denote by γ(n) the correlation related to any ith UE. The evaluation of γ

for the (i+ 1)th index can be deduced from the ith one as

γ(n+ 1) = γ(n)− r∗(n)si(0) + r∗(n+N − 1)si(N − 1). (3.28)

Note that n = 0 is the time index corresponding to the start of the DMRS sequence within the

received signal, which also represents the first sample of the correlation window of N samples.

This window slides along in time as UE-0 attempting to discover UE-i. The expression in

(3.28) reduces the number of flops required per each evaluation to 16 flops in addition to the
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number required for the initial term (n = 0) which is equal to 6N + 2(N − 1) flops. Hence, a

total of 6N + 18(N − 1) flops is consumed to calculate each output sample γ(n). Identically,

the power ρ in (3.24) can be calculated recursively and has the same cost as γ. The overall

complexity cost required to discover a neighbor UE is then 12N [1 + (N + 3(N − 1))] for a

correlation window of size N .

3.5.3 Closed-Form Discovery Probability

The analysis presented here considers the case where UE-i is an active neighbor of UE-0,

assuming that hi is perfectly known at UE-0 and that both UEs are synchronized (τi = 0) [32].

A similar assumption of perfect synchronization is also made in [114, 115]. Consequently, the

received signal that is considered to compute the discovery metric turns into rrr = sssi +ωωω.

3.5.3.1 Distribution of γ(i, n)

Substituting the new expression for rrr in the correlation metric (3.23) yields γ(i, n) =
∑N

l=1 s
∗
i (l+

n)si(l) +ω∗(l+n)si(l). When correlated with the correct DMRS sequence, γ(i, n) can be bro-

ken into an in-phase part and a quadrature part respecting the term s∗i (l + n)si(l) product

which has a phase φ.

For usable SNR values and if the magnitude of γ(i, n) is considered, the quadrature part

of it will be insignificant compared to the in-phase part and can therefore be omitted. The

magnitude of γ(i, n) hence becomes

|γ(i, n)| ≈ e−jφ
N−1∑
l=0

s∗i (n+ l)si(l) +
N−1∑
l=0

Iφ{ω∗(n+ l)si(l)}, (3.29)

where Iφ{x} stands for the component in the same direction of the phase φ. The quadrature

part is neglected because the Rician distribution can be approximated by a Gaussian random

variable when taking the envelope of a dominant signal with Gaussian noise [116].

In (3.29), the first term is dominant since s∗i (n+ l)si(l) products have the same phase φ and

add constructively, while the second term can be neglected because its elements can sum with

random phases. According to the Central Limit Theorem (CLT), |γ(i, n)| is Gaussian with

mean µγi and variance σ2
γi . The mean is µγi = Nσ2

s since each of the N elements s∗i (n+ l)si(l)
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has an expected value σ2
s . To determine the variance of the metric, we first calculate the

expectation of its square E(|γ(i, n)|2), which can be written as

E(|γ(i, n)|2) = E

[
N+n−1∑
l,k=n

[
|si(l)|2 + ω∗(l)si(l)

][
|si(k)|2 + ω(k)s∗i (k)

]]

= E

[
N+n−1∑
l,k=n

|si(l)|2|si(k)|2 +
N+n−1∑
l=k=n

|si(l)|2|ω(l)|2
]

= N2σ4
s +Nσ2

sσ
2
ω.

(3.30)

Then the variance can be evaluated as

σ2
γi = E

(
|γ(i, n)|2

)
−
(
µγi
)2

= N2σ4
s +Nσ2

sσ
2
ω −

(
Nσ2

s

)2
= Nσ2

sσ
2
ω.

(3.31)

3.5.3.2 Distribution of ρ(n)

By substituting the new expression of rrr into (3.24), the power turns to

ρ(n) =

n+N−1∑
l=n

[
|si(l)|2 + s∗i (l)ω(l) + si(l)ω

∗(l) + |ω(l)|2
]
. (3.32)

The expression of the power in (3.32) adds up to N variables. Assuming independence between

the summed terms in ρ(n) and for N sufficiently large, the CLT enables us to approximate

ρ(n) using a Gaussian distribution that is characterized by its mean µρ and variance σ2
ρ.

Furthermore, since si(l) and ω(l) are mutually uncorrelated, the second and third terms of

equation (3.32) have a zero mean. Only the first and the fourth terms are involved in its

expected value, ultimately resulting in a mean µρ = N(σ2
s + σ2

ω).

To calculate the variance of ρ(n), we first evaluate the expected value of its square E
(
|ρ(n)|2

)
,
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which can be written as

E
(
|ρ(n)|2

)
= E

[
n+N−1∑
l=n

(
r∗(l)r(l)

) n+N−1∑
k=n

(
r(k)r∗(k)

)]

= E

[
n+N−1∑
l=n

(
|si(l)|2 + s∗i (l)ω(l) + si(l)ω

∗(l) + |ω(l)|2
)

×
n+N−1∑
k=n

(
|si(k)|2 + si(k)ω∗(k) + s∗i (k)ω(k) + |ω(k)|2

)]
.

(3.33)

Exploiting the lack of correlation between the signal sss and the noise ωωω allows us to omit

the terms including both variables, and so the expected value of |ρ(n)|2 can be written as

E(|ρ(n)|2) = E

[
n+N−1∑
l,k=n

|si(l)|2|si(k)|2 + 2

n+N−1∑
l=k=n

|si(l)|2

|ω(k)|2 + 2
n+N−1∑
l,k=n

|si(l)|2|ω(k)|2 +
n+N−1∑
l,k=n

|ω(l)|2|ω(k)|2
]

= N2σ4
s + 2N2σ2

sσ
2
ω + 2Nσ2

sσ
2
ω +N2σ4

ω.

(3.34)

The variance of ρ(n) is then given by

σ2
ρ = E(|ρ(n)|2)− (µρ)

2 = N2σ4
s + 2N2σ2

sσ
2
ω + 2Nσ2

sσ
2
ω +N2σ4

ω −
(
N(σ2

s + σ2
ω)
)2

= 2Nσ2
sσ

2
ω. (3.35)

3.5.3.3 Distribution of Γi,max

In order to determine the distribution of the metric at Γi,max, let its square root be defined as

αi = |γi,max|/ρmax, where |γi,max| and ρmax stand respectively for the values of the correlation

metric in (3.23) and the power in (3.24) at the PNC metric maximum. To simplify the notation,

we use µγi and σ2
γi to refer to the mean and variance of |γi,max|, while µρ and σ2

ρ are used to

refer to the mean and variance of ρmax.

Since αi has Gaussian random variables in the numerator and the denominator, and because

the standard deviations of both the numerator and denominator (σγi =
√
Nσ2

sσ
2
ω and σρ =√

2Nσ2
sσ

2
ω) are much smaller than their means (µγi = Nσ2

s and µρ = N(σ2
s + σ2

ω)), the ratio
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αi can be approximated by a single Gaussian random variable [117]. The mean of αi is

µαi =
σ2
γi

σ2
γi + σ2

ρ

, (3.36)

and its variance is

σ2
αi =

µ2
γiσ

2
ρ + µ2

ρσ
2
γi

µ4
ρ

. (3.37)

The decision metric value Γi,max corresponds to α2
i and follows the square of a Gaussian

distribution with a variance σ2
αi much smaller than its mean µαi . Hence, Γi,max can also be

approximated by a Gaussian random variable expressed as

Γi,max →
(
µαi + z(0, σ2

αi)
)2

= µ2
αi + 2µαiz(0, σ

2
αi) +

(
z(0, σ2

αi)
)2

≈ µ2
αi + 2µαiz(0, σ

2
αi),

(3.38)

where z(µ, σ2) is a Gaussian random variable with mean µ and variance σ2. The mean of

Γi,max is consequently expressed as

µΓi,max = E(Γi,max) =
σ4
s

(σ2
s + σ2

ω)2
, (3.39)

and the variance is

σ2
Γi,max

= 4µ2
αiσ

2
αi

=
2σ4

s [(1 + µΓi,max)σ2
sσ

2
ω + (1 + 2µΓi,max)σ4

ω]

N(σ2
s + σ2

ω)4
.

(3.40)

3.5.3.4 Discovery Probability

The probability of neighbor discovery is defined as the probability that the estimated maximum

value of the metric in (3.22), which is denoted by Γi,max, is higher than the threshold η, and

can be expressed as [33]

PDi = Pr(Γi,max > η) = F̄η(Γi,max), (3.41)
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where F̄ is the complementary cumulative distribution function. Referring to the previous

statistical analysis, which allowed for the approximation of Γi,max through the use of a Gaussian

random variable of mean µΓi,max and variance σ2
Γi,max

, the discovery probability can be derived

in its closed-form as

PDi = 1−

1

2

1 + erf

η − µΓi,max√
2σ2

Γi,max

 = Q

(
η − µΓi,max

σΓi,max

)
,

where erf(.) is the error function and Q(.) is the Q-function.

At high SNR values, the mean in (3.39) approximately equals 1 and the variance in (3.40)

is approximately 2σ4
s [(1 + 1)σ2

sσ
2
ω]/[N(σ2

s)
4] ≈ 4/(NSNR). In this case, PD can be rewritten

as a function of the SNR as follows

PDi = Q

 η − 1

2
√

1
NSNR

 . (3.42)

3.5.4 Performance Evaluation

In this section, we evaluate the accuracy of the PNC approach in terms of Probability of Dis-

covery (PD) through both simulation and theoretical results using the closed-form expression

derived in (6.2). We also compare it to the GLRT-based approach [103]. The considered

benchmark also exploits the DMRS sequence sent within the SL to which GLRT is performed

to first estimate the channel gain. Then, a hypothesis test is applied to decide whether or not

an estimated gain corresponds to an active ProSe-enabled neighbor. Simulations are performed

using 104 Monte Carlo realization for which the distance between ProSe-enabled UEs is chosen

randomly within a circle of 150-meter diameter. Unless otherwise indicated, the number of

ProSe-enabled UEs Nu is here set to 10 users.

The parameters of the simulation setting are summarized in table 3.2 respecting LTE stan-

dard specifications.

To evaluate the performance of the PNC method proposed, we first present ROC in figure

3.10 for an SNR value equal to 5 dB. The GLRT explores the block structure of the channel

vector while our method relies on the maximum magnitude of the discovery metric as expressed

in (3.27). Compared to the GLRT, the proposed PNC method is optimal in the sense that
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Table 3.2: Simulation parameters of the DMRS-based approach

Parameter Value

System bandwidth 20 MHz
UE transmission power 0 dBm
FFT size N = 2048 sub-carriers
CP size Ncp = 140 sub-carriers
DMRS bandwidth 50 RB
ZC sequence length Nzc = 571 sub-carriers
Extended ZC sequence length M = 578 sub-carriers
D2D pathloss 148+40log10(d[Km])

it provides the highest detection probability for a fixed false alarm rate, especially for low

values. This is due to the good correlation properties of ZC sequences used to generate DMRS

sequences that provide high peak for active users. In the following results, the detection

threshold η is set by fixing PF = 0.01 among the 104 independent channel realizations.
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Figure 3.10: ROC of the PNC and the GLRT methods for SNR value 5dB.

The performance of the proposed method is depicted in terms of detection probability as a

function of the SNR in figure 3.11. For each SNR value, the distance d between the listening

device UE-0 and the sender UE-i is chosen randomly for each realization within a range of

150 meters. The result shows that the proposed PNC method is more immune to noise and

it achieves almost perfect discovery from an SNR value equal to 2 dB. For a target detection

probability of 0.9, the proposed method realizes a gain of 3 dB compared to the considered

66



3.5. DMRS-based Discovery Chapter 3. RS-based Neighbor Discovery

benchmark, which is based on the application of the GLRT to the DMRS sequence [103].

Figure 3.12 depicts the theoretical and simulated PD of the PNC and the GLRT-based

approaches in the case of AWGN channel. Globally, the provided discovery accuracy is sat-

isfactory and outperforms the considered benchmark. Indeed, the PD becomes perfect from

an SNR value less than 1 dB, which solidifies the robustness of the proposed approach and

guarantees quality service, especially for Public Safety-critical scenarios.
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Figure 3.11: Probability of Discovery of
DMRS-based methods: PNC vs GLRT.
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Figure 3.12: PD for single-user scenario in
the AWGN channel.

It is worth noting that detection performance depends on the value of η. In fact, the lower

the threshold value, the higher the possibility to detect an active user satisfying H1 in (3.27)

for a specific DMRS sequence candidate sssi. This observation implies that UE-i is an active

neighbor. However, very low values of η may result in a false discovery.

To highlight the impact of interfering signals on the discovery probability, figure 3.13 depicts

the PD in the multi-user case using the received signal expressed in (3.5) and considering more

realistic multi-path fading channels for unsynchronized UEs in low and high mobility scenarios.

It is shown that despite the accumulation in interference due to the increasing number of users

transmitting their DMRS signals, the performance of both schemes only degrades a little, and

remains satisfactory for the considered SNR range. Indeed, the probability reaches about 0.98

starting from SNR values of 8dB and 11dB for the PNC and GLRT methods, respectively. The

minor effect of interfering signals can be explained by the orthogonality of DMRS sequences

sent by different UEs; such orthogonality helps to prevent adjacent channel interference. On
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Figure 3.13: PD for multi-user scenario in Rayleigh multipath fading channels.

the other hand, however, the multi-path fading affects the detection performance, capping it

at a maximum PD value of about 0.87 in both methods.

3.6 Conclusion

In this chapter, distributed neighbor discovery for proximity services in LTE networks is in-

vestigated based on reference signals. Indeed, due to the orthogonality between RS sequences,

the approaches enable the discovery and the identification of the potential users willing to

establish direct links with their peers. The proposed methods are fully compatible with the

existing LTE architecture and can be used for both SL and UL liaisons without requiring any

additional resources. The proposed approaches perform correlation on the RS signal assigned

to ProSe-enabled UEs and sent through the UL/SL, followed by a binary hypothesis test. To

reduce the computational load due to correlation with all available RS sequences, we sug-

gested recursive implementations. Further, theoretical studies were carried out to determine

the discovery probability in its closed-form of the SRS-based and the DMRS-based metric.

The SRS-based approach exploits cross-correlation while the DMRS-based approach uses a

power-normalized-correlation metric. Simulation results showed the capability of the proposed

methods to ensure an accurate discovery, with higher robustness offered by the DMRS-based

approach at low SNR values. In the case of multi-user scenario, the discovery probability

exhibited a minor effect of interfering signals, which can be explained by the orthogonality
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of reference sequences sent by different UEs; such orthogonality helps to prevent adjacent

channel interference. On the other hand, however, the multi-path fading affects the detection

performance.

Furthermore, the obtained results demonstrate that, when applied to the LTE signal, the

simulated probability agrees perfectly with the theoretical one, validating the analysis carried

out in the two approaches and the approximated closed-form for any functional system setting.
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Chapter 4

Random Access-Like Neighbor

Discovery

4.1 Introduction

This chapter also focuses on neighbor discovery to enable D2D communication over cellular

networks exploiting random access-like procedures for both centralized and distributed strate-

gies. To achieve neighbor discovery, the first proposed scheme suggests partial contention-free

beacon assignment. During the first stage, a D2D transmitter randomly selects a beacon among

a predefined set of beacons and sends it to the D2D receiver, with whom it is willing to initiate

a D2D link. The selected beacon will be used by the D2D receiver as a temporary beacon to

switch from the idle mode to the connected mode during which the BS will assign a beacon

from the contention-free part. Then, the eNB will allocate resources to each respective beacon

so that the transmitter UE exploits it to pursue its communication. If two or more UEs select

the same beacon at the first stage, a collision happens at the network side during the connec-

tion of the corresponding receiver UEs resulting in a connection failure. The proposed scheme

helps to reduce the underutilization of resources through the random access procedure and it

guarantees low collision probability thanks to the partial contention-free concept. Then, based

on more recent 5G system specifications, we investigate network-assisted as well as distributed

group discovery strategies for the available D2D communication modes: supervised and un-

supervised. The studied strategies are inspired by the Aloha and Polling protocols, and are
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evaluated in terms of time required to complete the group discovery. Two different collision

models are assumed for performance evaluation. The first model considers MAC collision, re-

ferred to as the L-2 model, in which when two or more UEs pick the same resource, the mutual

interference will prevent any collided message from being received by other UEs. The second

one considers a more practical assumption where some collided messages may be received if

the signal strength is sufficiently high to provide a satisfactory Block Error Rate (BLER), and

it is referred to as the L-1 model.

Throughout the presented results, we cover both low-mobility for ProSe scenarios and high-

mobility for public safety V2X scenarios. In both cases, multi-path Rayleigh fading channels

are used with low and high Doppler shift values. Unlike most of the previously described

approaches, this work uses the current standard specifications without the need for any ad-

ditional signaling messages, making it fully compatible with the standard and applicable to

real-life scenarios.

4.2 Single Discovery Strategy

In this section, we study neighbor discovery for a single user scenario. In particular, we

investigate partial contention-free beacons’ assignment to enable neighboring UEs to establish

direct links by simply listening to their UL channels with the assistance of the eBN [35].

4.2.1 System Architecture

We consider an LTE-A cellular network that supports direct user communications through

uplink for proximity-based services simultaneously with conventional cellular communications

as depicted in figure 4.1. A UE in the network has access to the eNB for conventional cellular

communications and can also establish direct D2D links with his neighbors if permitted by the

network. We here briefly introduce the main elements of the LTE-A uplink channel that are

involved in our scheme.
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Figure 4.1: System architecture: cellular user and D2D users.

4.2.1.1 Uplink Channels and Random Access Procedure

The LTE UL transmission comprises three physical channels: Physical Uplink Shared Channel

(PUSCH), Physical Uplink Control Channel (PUCCH), and Physical Random Access Channel

(PRACH). The PUSCH and PUCCH are dedicated channels, which are modulated using UE-

specific information and exploited for the transport of data and control signaling, respectively.

The eNB assigns different resources to different UEs such that their signal can be separated

easily during uplink reception. The PRACH allows UEs to initiate a connection with the eNB

during its identification within a cell or for reconnection. When a UE intends to establish a

connection to the eNB, he first initiates a random access procedure by sending a preamble

to the eNB via the PRACH. The RBs for PRACH are semi-statistically allocated within the

PUSCH region and are repeated periodically. On a PRACH, a UE can transmit a preamble,

on which a ZC sequence is mapped to allows multiple orthogonal sequences to be generated

from the same ZC sequence.

During each PRACH time slot, a transmitting UE may randomly select a preamble from

a predefined set of 64 orthogonal preambles to allow eNB to distinguish different UE trans-

missions. Since the preamble set is known to all UEs within the network, a UE that aims

to establish a D2D link can to detect different preamble sequences as part of the neighbor

discovery process. Given this feature, we identity PRACH as a potential neighbor discovery

opportunity.
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4.2.2 Discovery Framework

We consider a single cell-centered by an eNB that presents the discovery entity, within which

we define the set of the indices of all UEs involved in the D2D discovery by U [35]. A user

belonging to U is indexed by its identifier u and located by its two-dimensional coordinate cu.

Each UE has a set of target users UEs T within a discovery distance D. An unidirectional link

from a UE i to UE j implied that UE i is willing to discover UE j in its proximity within the

distance D. A link (i, j) is established if and only if UE j is in the proximity of UE i (i.e.,

|ci − cj | ≤ D) and UE j belongs to the set of target users of UE i (i.e., j ∈ Ti). The set of all

available links is denoted by L.

To be able to access to the network, the transmitter Tx-UE and the receiver Rx-UE must

have identifiers, which are beacons selected from a predefined set that we here denote by B.

This latter is partitioned to two groups; the contention-based part (BCB) and contention-free

(BCF) part of sizes NCB and NCF respectively. The first group is dedicated to being used by the

Tx-UEs and by Rx-UEs temporary. The second group is reserved by the eNB for contention-

free final beacon assignment. As the proposed scheme is based on the random access procedure

of LTE-A system, beacons here are generated from ZC sequences. Hence, during each PRACH

time slot, a Tx-UE will randomly select a beacon out of the 64-NCF orthogonal beacons made

from the same ZC sequence.

4.2.3 Partial Contention-Free Discovery

The discovery procedure, depicted in figure 4.2 is designed in three steps. During the first

step, the Tx-UE randomly selects a beacon from the contention-based sub-set. Then, the same

beacon is used by the Rx-UE to connect to the eNB and obtain a new contention-free beacon,

to which the eNB assigns uplink RBs. Finally, the Tx-UE is allocated the UL RB by the eNB

corresponding to its initial beacon [35].

4.2.3.1 Preamble Selection and Forward

Each Tx-UE selects a beacon out of the set of the possible 64-NCF available beacons. Let bTX

denotes the beacon index that is selected by Tx-UE i and T i denotes the set of target Rx-UE of
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Figure 4.2: Messages exchanged during the discovery process.

i. Tx-UE i randomly selects its beacon bTX out of BCB with an equal probability. The selected

beacon is sent to the target RX-UE through the uplink PRACH [35]. The transmission power

of the beacon from the Tx-UE is set so that the target Rx-UEs within the discovery distance D

can receive but the other Rx-UEs outside the set of target users Ti cannot. Hence, the beacon

from the Tx-UE i can be heard by any Rx-UE j for which |ci − cj | ≤ D.

Any Rx-UE that is listening to the Uplink within his neighborhood for hearing beacons

from any nearby Tx-UE, tries to receive beacons assigned to the discovery sub-set to which it

belongs. Note that if more than one nearby Tx-UE sending the same beacon simultaneously,

the Rx-UE can not distinguish how many Tx-UEs send the beacon but only knows there is at

least one nearby Tx-UE that sends the beacon. Upon receiving at least one beacon, Rx-UE

is activated. Next, we explain the second phase of the proposed scheme, which is the Rx-UE

reporting phase.

4.2.3.2 Receiver Connection Phase

In this phase, all activated Rx-UEs will report the received beacons to the eNB by using

a method similar to the standard random access procedure. To this aim, the same beacon

received during the previous step is used to temporary identify the Rx-UE. Let btmp denotes the
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beacon index received at the activated Rx-UE j. The eNB receives all the beacons transmitted

by all the activated Rx-UEs. Upon receiving the beacons from different Rx-UE, the eNB

allocates a number of NRB uplink RBs for each beacon which has been initially chosen by at

least one activated Tx-UE and used to identify the Rx-UE during its connection to the eNB.

The eNB sends a random access response (RAR) message for each received beacon, in which

it specifies the uplink RB grant that maps each UE.

When receiving the RAR message, activated Rx-UE j finds the RBs corresponding to its

temporary beacon btmp and sends a Contention-Free Beacon Request (CFBR) on those RBs.

The CFBR message is introduced in our scheme to enable the Rx-UE to recover a new beacon.

If more than one activated Rx-UEs forwarded the same beacon, a collision happens since more

than one Rx-UEs send their CFBR messages on the same RBs. In this case, the eNB fails

to decode the CFBR message and will not answer the request. The eNB can decode the

CFBR messages transmitted on RBs without collision and answer the request by allocating a

dedicated beacon for each successful Rx-UEs.

4.2.3.3 Transmitter Connection Phase

Once the dedicated beacon is assigned to the Rx-UE, this latter will answer with a random

access beacon with its new beacon, as in the contention-free random access procedure for the

LTE-A standard. The eNB keeps the initial successful Rx-UE temporary beacon (btmp) and

sends a second RAR message corresponding to the uplink RBs for each beacon. As the Rx-

UE have used the same beacon as temporary identifier to connect to the eNB, the connection

request related to colliding beacons are failed from the previous step. This means that the

Tx-UE who have initially chosen the same beacons are not involved during this step, which

greatly reduces the time to process the connection procedure.

It is worth noting that using the same beacon to identify the Tx-UE and the Rx-UE in

our scheme will induce ambiguity at the transmitter side which will normally answer the RAR

message sent from the eNB corresponding to the beacon he selected. To solve this ambiguity, we

suppose that the Tx-UE will not answer the first RAR message received from the eNB and set

a timer starting from the first RAR message reception. If the Tx-UE does not receive a second

RAR message after a timeout, a collision is assumed to happen for the selected beacon. The

Tx-UE will then restart the random access procedure by selecting a new beacon as in the first
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step. Another solution to solve this issue might be to add one bit in the RAR message which

indicates the sate 0 if the RAR message is destined to the Rx-UE (first RAR transmission)

and the sate 1 if the RAR message is destined to the Tx-UE (second RAR transmission). In

this case, each UE will first check the state of the bit in the RAR message before using the

RBs allocated to it.

4.2.4 Performance Evaluation

In this section, we present the performance evaluation of the proposed neighbor discovery

scheme by using matlab simulation. We consider a single cell with radius R=500m where the

number of UEs (Tx and Rx) follows the Poisson point process with density λ. The density

in what follows is given in the unit of the number of UEs per m2. Among the users involved

here, half of them is considered as Tx-UE while the other half is considered as Rx-UE. The

total number of available beacons in the PRACH is fixed to 64 beacons, where half of them

is reserved for contention-free allocation. Figure 4.3 presents two configurations of the UEs

location in the considered network with different density values λ.

=0.001=0.0001

Figure 4.3: Network deployment with different UE densities.

We define the variable τ corresponding to the number of slots for the discovery procedure.

The maximum round-trip distance is here set to 100m between a Tx-UE and an Rx-UE. The

duration of a beacon sequence is here considered equal to the length of one slot (0.5ms), and

76



4.2. Single Discovery Strategy Chapter 4. Random Access-Like Neighbor Discovery

the maximum round-trip time corresponding to 100m is then 0.66µs. Therefore, it is possible

to have more than 700 beacons in one slot for the proposed discovery scheme. Considering

the cyclic prefix and the guard time, we estimate that 400 beacons are available in one slot

resulting in a total number of available preambles 400τ . In the following, we set τ to 2 time

slots which results in a total number of 800 beacons.

In figure 4.4, we present the total number allocated RBs as a function of the density of

UEs λ, and we also vary the discovery distance D. The plotted curves depict the sum of the

numbers of uplink RBs allocated for both the Tx-UEs and the Rx-UEs. The figure shows that

the number of allocated uplink RBs increases as the density of connected UEs increases. We

also note that as the discovery distance increases, more uplink RBs are allocated. This result

shows that the proposed scheme can adaptively allocate uplink RBs in response to the number

of required links.

Figure 4.5 depicts the collision probability of beacons selected by Tx-UEs as a function of

the total number of users and different discovery distances. Consistently with the previous

results, the collision probability rises as the number of connected users increases. Also, for

higher discovery ranges the collision probability rises as the number of users involved within

the discovery group becomes high.
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Figure 4.4: Total number of uplink RBs al-
located for Tx-UEs and Rx-UEs as a func-
tion of the number of UEs (density λ) for
different discovery distance D.
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Figure 4.5: Collision probability as a func-
tion of the number of UEs (density λ) for
different discovery distance D.

In the following, we assess the impact of the number of slot dedicated for neighbor discovery
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on the performance of the proposed scheme. Figure 4.6 illustrates the collision probability as

a function of the number of slots (τ) reserved for the discovery procedure and for different

UE density. We here observe that the collision probability can be decreased by increasing the

number of slots reserved for discovery which increases the number of available beacons.

Another important measurement to evaluate the proposed scheme is the link discovery

probability, which is defined as the number of the discovered links over the number of all

available links. In figure 4.7, we can see that it is possible to achieve a target link discovery

probability by adjusting the number of preambles. For example, to achieve the link discovery

probability of 0.8 given that the density is λ = 0.007, there should be at least 5 slots for the

discovery procedure, which means we need 2000 available beacons.
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Figure 4.6: Collision probability as a func-
tion of the number of slots reserved for the
discovery process.
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Figure 4.7: Link discovery probability as
a function of the number of slots reserved
for the discovery process.

The advantages of the proposed D2D discovery scheme can be summarized in three points:

First, the proposed scheme can effectively prevent underutilization of available resources through

the use of the random access procedure. Second, contention-free beacon assignment for the

receiver UE greatly reduces the potential collision resulting from the random multiple selec-

tion of the same beacon. Third, the use of temporary beacons reduces the multiple message

exchange between the D2D transmitter/D2D receiver and the BS, which can further reduce

the time required to establish a D2D link.
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4.3 Group Discovery Strategies

In this section, we explore the recent LTE D2D radio resource management specifications to

evaluate the potential of neighbor discovery for safety-critical V2X communication. In par-

ticular, we investigate multiple-round discovery for a group of users through network-assisted

and distributed strategies for the proposed D2D communication modes specified in the 5G

system specification : supervised and unsupervised. The studied strategies are inspired by the

Aloha and Polling protocols, and are evaluated in terms of time required to complete the group

discovery [33].

4.3.1 System Architecture

We consider the SL signal of an LTE radio access network using SC-FDMA transmission and

an SL resource element grid in the frequency division duplex mode. The system supports

direct communication modes in which UEs can establish direct pairwise links for both ProSe

and V2X application cases.

4.3.1.1 Discovery Message Transmission

The PSDCH resource pool repeats periodically in the time domain; the period is given by the

parameter P , which is set by the Information Element (IE) DiscPeriod. The period takes a

value in binary multiples of 0.32s (i.e. a permissible set includes 0.32s, 0.64s, 1.28s, 2.56s,

5.12s, and 10.24s). In each period, the PSDCH configuration variables prb−Start, prb−End,

and prb − Num determine the range of sub-bands that the PSDCH occupies, as depicted in

Figure 4.8. The SL−OffsetIndicator IE provides the displacement of the pool from the first

subframe, while the SL− TF −ResourceConfig IE contains these IEs [33].

An RB with index m is part of the PSDCH if prb−Start ≤ m ≤ prb−Start+ prb−Num

or prb − End − prb −Num ≤ m ≤ prb − End. The set of subframes that forms the PSDCH

is encoded in a bitmap defined by the IE subframeBitmap, where bit 1 indicates that the

corresponding subframe is part of the PSDCH. The bitmap is repeated for numRepetition

times. The subframeBitmap IE is located in the SL − DiscResourcePool. A UE with a

discovery message to send generates a uniformly distributed random value p ∈ (0, 1]. The

79



4.3. Group Discovery Strategies Chapter 4. Random Access-Like Neighbor Discovery

Figure 4.8: The structure of the PSDCH resource pool.

UE sends its message if p is less than a threshold value txProbability, which can take one of

the four thresholds values: {0.25,0.50, 0.75,1}. Figure 4.8 shows the PSDCH structure and

periodicity and illustrates the role of the various IEs.

4.3.1.2 Control and Data Transmission

Direct communication over the LTE air interface supports two types of allocation schemes for

the resources dedicated to the transmission of control and data traffic. The first type, known

as mode 1 in Rel. 12 and mode 3 in Rel. 14, is dedicated to scheduled transmissions. Here,

the UEs are assisted by the eNB and use dedicated radio resources for data transmission. The

second one, known as mode 2 in Rel. 12 and mode 4 in Rel. 14, is dedicated to autonomous

transmissions where UEs randomly select radio resources from a resource pool preconfigured

by the eNB. In Rel. 12, data transmission is scheduled within the PSCCH period, during which

a set of subframes is determined for the PSCCH transmission and a different set of subframes

are determined for the PSSCH. Rel. 12 also contains the SideLink Control Information (SCI),

also known as the Scheduling Assignment (SA), which is used by the receiver UE to determine

the occupation of the PSSCH radio resources.

In Rel. 14, however, modes 3 and 4 do not provide a PSCCH period for the transmission of

both physical channels into different temporal periods. Instead, the PSCCH and PSSCH are

separated in the frequency domain. The resource grid is divided into sub-channels, in which

the first RBs of these sub-bands compose the PSCCH pool while the others form the PSSCH

pool. Control messages and data transmissions repeat periodically with periods 40ms, 80ms,

160ms, or 320ms [112]. The number of RBs devoted to each transmission type is defined before

off-network SL transmission begins.
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4.3.1.3 Resource Structure

The discovery pool here is modeled as a matrix of Nt effective subframes (mapped to 1) of 1ms

each and Nf physical RBs. This results in an overall Nr = Nt ×Nf resources available to be

used for discovery during one discovery period. Resource pool sizes are preconfigured. At the

beginning of each period, a UE determines whether or not to transmit with an independent

trial with success probability of p. All active UEs then choose one of the available Nr resources

to randomly transmit the message once per discovery period or round. During one subframe, a

UE is either listening to his neighbors’ transmissions or sending its discovery message. Figure

4.9 illustrates an example of resource selection by a set of 10 users shown in the chosen box.

Numbers show the identifier for each UE that selects the resource while the color of the box

Figure 4.9: Example of discoveries in a resource pool with Nr = Nt × Nf discrete resources
organized into Nf = 3 blocks and Nt = 4 sub-frames.

indicates whether an RB is selected by one user or more for message transmissions. We assume

that, in the L-2 collision model, if more than one discovery message occupy the same resource,

all the co-located messages will be lost due to mutual interference, as is the case for UE-1 and

UE-5.

In the L-1 collision model, however, an evaluation of the received colliding signals is required

to verify the possibility of decoding one of the discovery messages. Hence, it might be possible

to identify one of the two previously seen UEs if its signal strength is sufficiently high. Moreover,

a half-duplex UE cannot transmit and receive at the same time, and thus misses any discovery

messages that other UEs send in the subframe during which it is transmitting. For example,

UE-7 and UE-9 are not able to discover each other during the first discovery period because

they are broadcasting their discovery messages during the same frame.
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4.3.2 Discovery Framework

We study the capability of a UE to discover the set of all UEs within its vicinity along multiple

rounds. To this aim, we consider the set of all Nu UEs that are placed randomly following

a uniform distribution in an area that represents a single collision domain. We focus on the

discovery process for one randomly chosen UE, which we denote to be UE-0. We also assume

that the area occupied by the Nu UEs is small enough that every UE in the set can receive

transmissions from every other UE [33].

If a UE picks a resource that no other UE picks, its message will be received by all other

UEs. From a MAC perspective, when two or more UEs pick the same resource, the mutual

interference will prevent any collided message from being received by other UEs. In practice,

channel effects will introduce a message loss probability for users with harsh channels. Conse-

quently, some collided messages may be received by some UEs if the signal at the receiver is

sufficiently strong. Depending on the BLER for a specific Signal to Interference Noise Ratio

(SINR) value, UE-0 can decide to correctly decode the discovery messages.

The discovery process consists of individual discovery rounds, and during each of them all

UEs contend to transmit using the available discovery pool. As stated in section 4.3.1.1, if

a UE has a discovery message to send, it generates the discovery transmission probability p,

which is then compared to the threshold indicated in the variable txProbability denoted by θ.

Afterwards, it decides whether or not the discovery message will be transmitted.

The time (in terms of number of discovery periods) to discover all other UEs is referred to

as the discovery completion time NDCT . We also define the variable ND(t) as the number of

UEs that have been discovered by UE-0 at the end of the tth PSDCH period as having the

number t. The range of possible values for ND(t) is 0 ≤ ND(t) ≤ Nu − 1. The process of

discovery can then be modeled as a discrete-time Markov chain with a single state variable

ND(t) that indicates the number of discoveries at the round number t.

The chain starts at the state ND(0) = 0 as UE-0 has not yet discovered any of the other

Nu− 1 UEs in its group. The ending state of the chain is ND(t) = Nu− 1, which is reached at

t = NDCT . Figure 4.10 shows an example of a Markov chain describing the discovery process

of the UE-0 for a resource pool of size Nr = 4 and a set of Nu = 8 users. During each round,

UE-0 can discover nb neighbor UEs at a time, where 0 ≤ nb ≤ min(Nr, Nu). In the example,
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Figure 4.10: An example of Markov chain of the discovery process for Nu = 8 and Nr = 4; the
states of the chain show the number of discovered UEs which starts at ND(0) = 0 and ends at
ND(NDCT ) = 7.

UE-0 can discover up to 4 UEs during one discovery round even though none of these 4 UEs,

who selected the same sub-frame to transmit, can decode other users’ discovery messages due

to the half-duplex mode.

4.3.3 Distributed Discovery

Distributed discovery is well adapted to autonomous communication modes 2 and 4 [33]. Dur-

ing each discovery period, all UEs contend to transmit using the pre-configured shared resource

pool via an Aloha-like protocol. According to the Aloha access protocol, collision information

is immediately available upon transmission and is followed by a back-off process that controls

subsequent channel access for nodes that have previously collided. Unlike what is seen in the

wired network, wireless UEs are unable to detect collisions and so no mechanism exists to mod-

ify subsequent behavior based on collision detection. As a preemptive mechanism of collision

avoidance, UEs contend to access the channel with the probability p < θ to reduce the number

of UEs attempting to transmit at one discovery period .

Figure 4.11 presents an example of potential discoveries based on a distributed strategy, in

which both the discovered UEs (e.g. UE-7) and collided UEs (e.g. UE-2 and UE-8) continue

advertising regardless of any previous discoveries. A discovery round is conducted as follows:

Each UE generates a uniform random variable p that is first compared to the threshold θ. If the

randomly generated number is less than θ, the UE is considered active in this period, meaning

that it seeks to transmit its discovery message. Each active UE uniformly selects one of the

Nr available resources, through which it can transmit its discovery message. UE-0, which is

not ready to transmit, scans the Nr resources in the pool to decode the discovery messages.

After each discovery period, the discoverer UE-0 logs all new UEs discovered in that period
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Figure 4.11: An example of realization of a distributed discovery scenario.

and updates its cumulative list of discoveries.

However, due to the memory-less character of the discovery process in distributed modes,

none of the discovered UEs is notified and they will all continue sending their discovery messages

indefinitely. This will keep the number of contending UEs relatively high at any period, leading

to a high number of collisions.

4.3.4 Network-Assisted Discovery

Network-Assisted (NA) discovery can be applied to modes 1 and 3 (i.e. for supervised commu-

nications) using a Polling-like access scheme. The basic feature of a polling network is evident

when a central node, which serves as a controller, polls each of the nodes sharing the resource

in a pre-specified cyclic order to provide access to the communication channel [33]. Applied to

the cellular scenario, polling can be assigned to either the eNB or a relay node that possesses

all discovery information within its coverage area. In this way, discovered UEs are notified and

cease sending their discovery messages.

Indeed, after each round, a discoverer UE reports its discoveries to the eNB accumulating

all the discoveries. The eNB then logs all new UEs discovered in that period and updates its

cumulative list. When a UE is discovered by all his neighbors, the eNB notifies the concerned

UE to stop sending its discovery messages during the following rounds. On the other hand,

undiscovered UEs will continue advertising their discovery messages until receiving a notifi-

cation of completed discovery. Consequently, the number of discovery messages will either

remain constant or decrease during the phase of discovery. Figure 4.12 presents an example

of potential discoveries based on an NA strategy, in which the discovered UEs (e.g. UE-7 and

UE-9) cease advertising their presence. On the other hand, UEs that experience collisions (e.g.
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UE-1 and UE-5) continue announcing their discovery messages in the following rounds. This

greatly reduces the collision probability in the next round and consequently improves discovery

reliability.

Figure 4.12: An example of realization of a network-assisted discovery scenario.

A discovery round is conducted in a way slightly similar to the distributed strategy. At

the beginning, the same processing is performed to transmit the discovery messages. Then,

if the resource selected by an active UE is not selected by another UE, the discovery of the

sender UE is successful and it will be logged in the controller. At the end of each round, the

controller accumulates all new discoveries and announces those that have been completed to

the corresponding sender UEs. Discovered UEs continue listening to other SL transmissions

while collided UEs are implicitly polled to proceed for discovery message transmission until

discovery completion.

It is worth noting that in both distributed and NA discovery strategies, if a collision takes

place during a discovery round, one discovery message among colliding ones can potentially be

decoded. This can lead to a successful discovery for a receiving UE with sufficiently low BLER

in the physical collision model.

4.3.5 Performance Evaluation

In this section, we present the performance results for neighbor discovery where several sce-

narios are run to capture all the essential angles of SL transmission [33]. The evaluation is

performed in two Rayleigh channel models and Monte Carlo simulations are run for 104 trials.

The two multi-path fading Rayleigh channels are used to cover low-mobility and high-mobility

conditions of both ProSe and V2X application use cases. For low-mobility, we use a 4-tap

channel with delays {0,70,110,410} ns, path gains {0,-2,-8,-20} dB and a Doppler shift equal
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to 5Hz for all taps. The high-mobility channel is also modeled with a 4-tap channel having

delays of {0,200,433,700} ns, path gains {0,-2,-5,-7} dB and different Doppler shifts set as

{0,689,-492,886} Hz for Highway NLOS channel [119]. In both models, the first path is static

and serves as a normalization for the other taps. The other taps are uniformly defined as

Rayleigh taps.

We consider a 20 MHz LTE system with SC-FDMA symbol of size N = 2048 sub-carriers

appended to a CP of length Ncp = 140 sub-carriers. The DMRS bandwidth is fixed to 50

RBs. The initial ZC sequence length is Nzc = 571 sub-carriers, and its extended version

has the length M = 578 sub-carriers. We use discPeriod equal to 0.32s as specified in the

standard for resource pool sizes with a number of sub-frames Nt < 320. The transmission

probability threshold θ is randomly chosen for each Monte-Carlo trial from the preset values

{0.25,0.5,0.75,1}. Unless otherwise mentioned, the number of UEs is set to Nu = 20 users that

are placed randomly (i.e. distributed uniformly) on a disk of radius 500m. All UEs transmits

at a power Pt = 0dBm.

4.3.5.1 Discovery Time Performance

This section provides an evaluation of the multiple-round discovery presented through the mean

of total discovery completion time E(NDCT ) as a function of the number of UEs within the

neighborhood of UE-0. The L-1 collision is modeled using the BLER vs SINR curves obtained

in [118], assuming that a message is decodable so long as its BLER is less than 10−2.

Figures 4.13 and 4.14 depict E(NDCT ) as a function of the total number of UEs Nu, in

the low and high-mobility Rayleigh channel models, respectively. In the two channels and

collision models, distributed strategies require more time to complete the discovery of all UEs

due to the continuous discovery message transmissions along all rounds. This occurrence is

more prominent, however, in the L-2 collision model. This model spends 34 rounds to discover

31 UEs, whereas only 10 rounds are needed in the L-1 collision model to discover the same

number of UEs. The L-1 collision is modeled using the BLER vs SINR curves obtained in [118],

assuming that a message is decodable so long as its BLER is less than 10−2.

It is also key to note that as Nu increases E(NDCT ) increases, but for large values of

Nu, the L-1 collision model illustrates that the discovery process takes significantly less time

to complete. For example, figure 4.13 shows that for Nu = 36 UEs and assuming a 0.32s
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discovery period, the process takes about 5 rounds or 1.6s and 6 rounds or 1.92s for the NA

and distributed strategies, respectively. For the physical L-1 collision model, the two strategies

provide very close performance with no more than 2 additional rounds required to accomplish

the discovery of all UEs for the Nu values.
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Figure 4.13: E(NDCT ) as a function of Nu

for Nr = 12 resources in low-mobility con-
ditions.
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Figure 4.14: E(NDCT ) as a function of Nu

for Nr = 12 resources in high-mobility con-
ditions.

Compared with the results in figure 4.13, figure 4.14 shows that the time required to com-

plete the discovery of all UEs remains invariant for the L-2 collision model because it is inde-

pendent of any physical aspects. However, L-1 collision model showcases a prominent behavior

change with increasing time demand as the number of users Nu increases. Indeed, distributed

discovery requires 19 rounds to discover 31 UEs in high-mobility conditions, which corresponds

to 6.09s while only 1.92s are spent in the low-mobility channel. The degradation is mainly due

to the harsh multi-path effect and the high Doppler shift that weaken the signal and result in a

higher BLER. Consequently, the discoverer UEs are incapable of decoding any of the discovery

messages transmitted through the same resource.

4.3.5.2 Collision Performance

In this section, we provide an evaluation of the multiple-round discovery in terms of collision

rate for both L-1 and L-2 collision models as a function of the number of UEs within the

neighborhood of UE-0 in figure 4.15, and as a function of the transmission probability θ in

figure 4.16.
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Figure 4.15 presents the collision rate of both distributed and NA strategies for L-1 and

L-2 collision models. Consistent with the previous results, as the number of UEs increases,

collision increases mainly in distributed strategies because all UEs continue transmitting their

discovery messages “infinitely”. The rate, in this case, reaches 83% when Nu = 20 UEs for L-2

model, 35% for L-1 model in high-mobility channel, and 25% for L-1 model in low-mobility

channel.

The same sequencing is perceived in NA strategies, but lower collision rates are exhibited.

The surge in collision for high values of Nu justifies the extended period of time required to

complete the discovery process for all UEs shown in figures 4.13 and 4.14. In the L-1 collision

model, it is natural that the low-mobility channel provides better performance in terms of

collision rate as the possibility to decode discovery messages sent through the same resource is

higher than the case of high-mobility channel.
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Figure 4.15: Collision rate as a function of
Nu for Nr = 12 resources.
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Figure 4.16: Collision rate as a function of
θ for Nr = 12 resources and Nu = 20 users.

Figure 4.16 presents the collision rate as a function of the transmission probability θ forNu =

20 users. In all the envisaged scenarios, we note that the collision rate evolves proportionally

to the value of θ. Indeed, the higher the value of θ, the more collisions occur, and the number

of UEs with transmission probability lower than θ increases.

Furthermore, as in figure 4.15, distributed strategies experience more collisions due to the

continuous transmissions of discovery messages. For θ values close to 1, the collision rate

stagnates at rates greater than 80% because almost all the users are transmitting their discovery

messages. In the L-1 collision model, as expected, the collision rate is lower for UEs with

reduced speed since the BLER is better than in the high-speed scenario.
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4.4 Conclusion

In this chapter, neighbor discovery for ProSe and V2X communications underlying cellular

networks was investigated by utilizing random access-like procedures. First, we studied a

beacon-based partial contention-free single discovery, in which a contention-based random ac-

cess procedure-like is initially achieved to connect the receiver UE to the eNB. During this

stage, the transmitter starts the selection of a beacon and forwards it to the receiver. Upon

success of the first connection (no colliding beacons), the eNB carries out a contention-free

random access procedure-like to allocate radio resource blocks to the receiver UE. Finally,

the eNB specifies the resource blocks dedicated for the transmitter UE using the initial ran-

domly selected beacon to allow data transmission between nearby user through uplink resource

blocks. Performance evaluation of the proposed discovery scheme, assessed for different link

distances, showed its ability to adaptively allocate resource blocks for the D2D neighbor discov-

ery to prevent underutilization of radio resources. We also evaluated the collision probability

considering several scenarios, for which we studied the impacts of the distance between trans-

mitter and receiver devices, the density of the connected users, and the time dedicated for the

discovery process. Overall, the collision probability showed low values thanks to the partial

contention-free access that limited collisions for only transmitter UEs.

Then, multiple-round discovery was considered to assess the performance of distributed and

network-assisted discovery strategies. In the distributed strategy, users continue to transmit

their discovery messages, which results in a high collision rate that delays the completion

of the discovery process of all users in the vicinity. In the network-assisted strategy, however,

discovered users are notified to cease sending their discovery messages, which leads to enhanced

performance. To present a realistic assessment of collision, we opted for a physical model in

addition to the typical legacy MAC model. Throughout the performance evaluation, both

low and high-mobility channel models were considered to cover both ProSe and vehicular use

case applications. Simulation results showed a noticeable improvement in the physical collision

model in all the considered scenarios.
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Chapter 5

UAV Positioning and UE

Localization

5.1 Introduction

UAVs admit several key potential applications in wireless systems and can be used as aerial

base stations to enhance coverage, capacity, and reliability. The performance of the network in

this case strongly depends on the UAV position, as it has a direct impact on the communication

channel. Also, due to the increase of location awareness applications for mobile users and the

use of UE as relays, accurate localization has become crucial. In this chapter, we focus on

two techniques that help to extend the coverage in assisted networks. The first part of this

chapter focuses on the positioning of UAVs that could serve as flying eBN or relay UE to

extend the network coverage for terrestrial users (LTE ProSe mode 2). In particular, we study

the optimization of a Low Altitude Platform (LAP) relay node positioning to maximize the

detection range and the averaged connectivity of terrestrial UEs. Unlike the previously cited

works, we investigate a physics-based Rician channel model, whose K-factor is dependent on

the ground roughness, and we assess the impact of this latter on the network performance [39].

The second part deal with the localization of UEs communicating through millimeter-waves

(mm-wave) in a massive MIMO context. We propose a multi-stage localization method that

reduces the search space and then deduces the UE location. To achieve this, a processing

center collects power measurements from all BSs and compares them to identify the hosting
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BS and estimate the range. Once the hosting cell is identified, a downlink signal is used to

identify the sector to which the user belongs. In a second step, multi-stage beamforming is

carried out in the estimated sector to determine the AoA and deduce the coordinates of the

UE. An extensive evaluation of the impact of several parameters on the localization accuracy

is presented to highlight the asset of using MIMO and mm-waves techniques [36], [40].

5.2 Related Works

In this section, we review research works in both positioning aerial devices to ensure high-

quality connection to ground users and performance, and localization of ground devices within

a terrestrial network.

The work in [15] suggested a classification of UAVs based on their altitudes, into high

altitude platforms (HAPs) and low altitude platform (LAPs). HAPs have altitudes above

17km and are typically quasi-stationary, while LAPs, on the other hand, can fly at altitudes

of tens of meters up to a few kilometers, can quickly move, and are more flexible [120,121]. In

an aerial context, flexibility vis-a-vis aerial positioning facilitates obstacle avoidance and the

prospect of serving ground users with requisite performance in terms of reliability, throughput,

and operation range [122]. Some recent research has focused on UAV positioning to optimize

network performance with different objectives, such as a) maximizing the coverage area, b)

aggregate downlink rates or c) ensuring connectivity of a set of drones with minimum cost. A

variety of air-to-ground (A-2-G) channel models have been used in these formulations, some

only use deterministic path loss of the channel without any consideration of random effects

[124]- [125], while others have considered both long term and small scale variations [126]- [128]

in the received signal. In [124], the authors optimized the position of a UAV relay node to

improve the network connectivity through a free space Line Of Site (LOS) channel. The work

in [125] studied the energy-efficient 3D placement of a UAV-BS that aims to maximize the

number of covered ground nodes while keeping a minimum required transmit power based on

a pure path loss model. The work in [126] presented an analytical approach to optimize the

altitude of a LAP platform based on the finding of [123] to provide maximum radio coverage

on the ground, yet it does not consider the small-scale fluctuations caused by the rapid changes

in the propagation environment. Later, a Rician fading model with K factor depending on the

elevation angle was introduced by [127, 128] who studied the outage probability and showed
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that there exists an optimum height for the UAV node which maximizes the coverage area.

To determine the exact position of ground users, the Global Navigation Satellite System

(GNSS) has been the most dominant technology to enable outdoor localization [129,130]. The

multitude of localization demands causes GNSS saturation due to its limited capacity and

coverage. To tackle the problems with GNSS, many researchers have developed a series of

localization schemes that rely on the estimated distance and can be obtained through measur-

ing methods like Angle-of-Arrival (AoA), Time-of-Arrival (ToA), Time-Difference-of-Arrival

(TDoA), or propagation model generated from RSSI value [131]. Several works have dealt

with the problems above-mentioned.

Direct Localization for Massive MIMO (DiSouL) method [132] has solved the problem of

localization under NLoS conditions by exploiting the high angular resolution of massive arrays.

First, at each BS, the ToAs are roughly estimated via an adapted filter with an offset version

of the reference signal. Second, the position is searched on a grid by solving a convex optimiza-

tion problem (adjustment between observations from the positions and outputs of the adapted

filter) relying on tools from compressive sensing. This technique has achieved sub-meter local-

ization with high probability in dense multiple-path environments with narrow-band signals

and has proven robustness against synchronization errors but this significant gain in accuracy

is accompanied by a higher computational complexity compared to existing techniques.

Further, based on the Beam-RSRP and the Extended Kalman Filter (EKF), the work

in [133] has exploited the 3D-beamforming features of multiantenna equipment employed in

5G networks. The position is estimated using a two-stage EKF that is based on reference

signal received power (RSRP) measurements. During the first EKF phase, the Directions-of-

Departure (DoDs) are estimated at each BS. These estimates are then merged into a central

entity and using a second angle-based EKF phase, the 3D UE position estimate is obtained.

The performance evaluation of this work in a 5G deployment shows that a sub-metric 3D

positioning accuracy is achievable in future 5G millimeter wave (mmW) networks without

taking into consideration the uncertainties in the orientation of the BS in the beamforming

step.
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5.3 UAV Positioning

Recent advances in UAV technology has enabled their increasing use as airborne elements

within a wireless network that supports connectivity to ground users. In this section, we re-

visit the positioning of a low altitude UAV functioning as a relay node to provide connectivity

and communication services to ground users who are out of coverage [39]. A new altitude

dependant Rician distribution for the air-to-ground channel - derived from propagation physics

- is used and its impact on the optimum altitude for network coverage is explored via numerical

results.

5.3.1 System Model

In this work, we focus on low altitude UAVs operating over a largely open environment with a

rough (ground) surface, as illustrated in Fig. 5.1, where the relay R-UAV is located at height

h1 and an elevation angle φ with respect to the ground nodes (G-UEs) located at height h2

and distance r from the projection of the R-UAV onto the ground plane O.

Figure 5.1: Example of a typical A-2-G communication system compromising a UAV and
randomly distributed G-UEs over open areas with a rough surface.

Our primary objective in this work is to use physics-inspired Rician model for the received

signal and compare its impact on the R-UAV positioning problem as compared to previous

studies. We demonstrate that not only does such physics-based modeling provide significantly

different results, it also allows for more insightful interpretations as a function of the opera-

tional geometry.
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5.3.1.1 Channel Model

The net received signal at a ground node consists of a) direct LOS and b) diffuse or ground-

scattered NLOS components. Consider that the R-UAV transmits at a power Pt, then the

received mean signal power at the G-UE receiver corresponding to the LOS component is

calculated according to the Friis propagation loss formula. For noise power σ2
n in the signal

band, the mean received SNR can then be written as

SNR =
Pt
(
λ

4πl

)2
σ2
n

Ω, (5.1)

where λ is the signal wavelength corresponding to the center frequency of the band, l is the slant

distance between the R-UAV and the G-UE given by l =
√
r2 + (h1 − h2)2, and Ω ∈ [0,∞] is

the channel powerloss/gain factor.

We use the Rician distribution to model the (random) power loss/gain for a scenario that

represents a combination of LOS path and diffuse multi-path due to nearby rough surface

scattering [185]. The distribution of Ω follows a non-central chi-square probability density

function given by [134], for ω > 0

fΩ(ω) =
(K + 1)e−K

Ω
e
−(K + 1)ω

Ω
I0

(
2

√
K(K + 1)ω

Ω

)
(5.2)

where I0(.) is the zeroth-order modified Bessel function of the first kind, K = PLOS
PNLOS

is the

ratio of the powers in the LOS to the NLOS components and mean Ω = 1 for normalization.

5.3.1.2 Rician Factor Model

For a UAV at a given height, the K value in the Rician model changes depending on the

horizontal displacement of the UAV relative to the ground node (or equivalently, the elevation

angle). For a reference PLOS = 1 (unity power LOS component), we can express using [135]

K =
1

< |ρ2| >
, (5.3)
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where < |ρ2| > is the mean square power from the scattered components, expressed as

< |ρ2| > =

∫ h1cot2β0

h2cot2β0

l2cot2β0(
π(h2

2 + x2)(h2
1 + (r − x)2)cos4β

)×
exp
(
− tan2β

tan2β0

)
dx.

(5.4)

As shown in Fig. 5.2, β presents the angle made by the bisector of the incident and scattered

rays with the z-axis, and β0 is the area contributing to the diffused component of the reflected

ray, given by

tan(β0) =
2σ

T
, (5.5)

where σ is the standard deviation of normally distributed height variations and T is the hori-

zontal auto-correlation distance.

Figure 5.2: β shown in the link geometry context.

Fig. 5.3 shows the variation of K as a function of the elevation angle φ which depends on the

horizontal distance as φ = tan−1
(

∆h
r

)
, where ∆h = h1 − h2. We note in Fig. 5.3(a) that for a

fixed UAV height, K initially decreases for small angles and then increases monotonically with

the elevation angle. At low elevation angles, K is larger due to the strong specular component

resulting from the ground behaving closer to an optical reflecting plane. This phenomenon is

more evident in Fig. 5.3(b) for lower β0 values, where the area contributing to the diffused

component of the reflected ray is smaller [185]. Also note that for a fixed elevation angle, K

is higher for smoother surfaces (low β0 value) and more distant G-UE location, and higher for

rougher surfaces and closer G-UE.

In the following, we study the problem of finding the best altitude of the R-UAV for opti-
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Figure 5.3: Variation of K with the elevation angle for h2 = 1m: (a) different altitude values
and a fixed β0 = 0.784, (b) different β0 values and fixed altitude h1 = 100m.

mizing the link reliability and explore its impact on the R-UAV coverage area. As a function

of height, an A-2-G channel at greater height benefits from a lower path loss exponent (i.e.

stronger LOS component). On the other hand, the link distance increases which increases

the LOS path loss [39]. These two opposing features can be judiciously balanced by opti-

mizing the UAV height to optimize the ground user detection performance (i.e. A-2-G link

reliability) [185].

5.3.2 Height-dependent Coverage

We consider the worst-case which corresponds to a G-UE located at the edge of the coverage

area at a distance r = R. We define the (minimum acceptable) probability of successful

detection (PD) as one corresponding to SNR level greater than the minimum SNR required

for the G-UE to detect the R-UAV signal. Denoting this SNR threshold by ξ, we can write

PD as follows

PD = F̄ξ(SNR) = Pr

(
Pt

(
λ

4πl

)2

σ2
n

Ω > ξ

)
, (5.6)

where F̄ is the complementary cumulative density function. Substituting (5.2) in (5.6), the

computation of PD leads to

PD =

∫ ∞
√
y
x exp

(
− x2 + 2K

2

)
I0

(√
2Kx

)
dx, (5.7)
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where y = 2ξ[1 +K] l
2

Pt

(
4πσn
λ

)2
. The probability of detection can then be rewritten as [134]

PD = Q
(√

2K,
√

2ξ[1 +K]l2B/Pt

)
, (5.8)

where Q(., .) is the first order Marcum Q-function and B =
(

4πσn
λ

)2
is introduced to simplify

the notation. For the considered Rician-K model, we study the impact of the R-UAV height

on the maximum coverage area delimited by the SNR threshold ξ which is defined by a target

probability of detection PDtarget above which the link is deemed to be reliable. To this aim,

we evaluate the radius of the coverage area Rh1 for a given R-UAV height h1, which consists

in solving the implicit equation

PD(h1, Rh1) = PDtarget, (5.9)

The set of all possible pairs (h1, Rh1) presents a configuration space of the studied network

among which there exist potential solutions of (5.9) that satisfy (5.6) and hence optimize the R-

UAV position for maximum coverage with SNR > ξ. To determine the optimal configuration,

we used an iterative computation of the inverse Marcum Q-function in (5.9).

5.3.3 Height-dependent Spectral Efficiency

We now consider the optimization of a different metric - the average spectral efficiency (ASE)

at which information can be reliably transmitted to the UEs in the coverage area. From the

Shannon capacity for AWGN, the spectral efficiency (SE) C is given by

C = log2(1 + SNR). (5.10)

where the SNR is the signal-to-noise ratio at the ground UE receiver input. The SE is implicitly

dependent on the height of the R-UAV, the distance of the G-UE to the center, and the

physical propagation environment through the SNR defined in (5.1). Hence, the PDF gC(c)

for the SE expressed in equation (5.10) is obtained from the PDF of the SNR in (5.1) using

the transformation of random variables as

gC(c) = 2cln(2)lα
B

Pt
fC

(
(2c − 1)lα

B

Pt

)
, c > 0, (5.11)
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where α stands for the path loss exponent, which is set to 2 in the case of Friis propagation

environment.

The A-2-G link between the R-UAV and a specific G-UE is considered reliable if the achiev-

able ASE is higher than a preset threshold C0 defined by the desired QoS. This can be evaluated

using the Probability of Connectivity PC which we define as the probability that the SE (5.10)

is greater than a minimum acceptable C0, expressed as

PC = Pr
(

log2

(
1 + SNR

)
> C0

)
=

∫ ∞
C0

gC(c) dc. (5.12)

By replacing (5.11) in (5.12) and applying a variable substitution, the expression above turns

into

PC =

∫ ∞
√
y
x exp

(
− x2 + 2K

2

)
I0

(√
2Kx

)
dx, (5.13)

where y = 2[1 +K][2C0 − 1]lαB/Pt. Similar to the probability of detection, the probability of

connectivity can be rewritten using the first-order Marcum function as

PC = Q
(√

2K,
√

2[1 +K][2C0 − 1]lαB/Pt

)
. (5.14)

Our purpose here is to find the best altitude h1 for the R-UAV to maximize the connectivity

area for a target PCtarget that ensures the minimum ASE C0. We consider the optimization of

the ASE for the set of all served G-UEs within the boundary of the coverage area. The served

G-UEs are first placed at different distances from the center O following a uniform distribution.

Then, the ASE which is denoted by C̄ is obtained averaging C in (5.10) over the coverage area

of ray Rh1 . The optimal altitude h1 for the averaged rate can then be found by numerically

solving the following equation

PC(h1, Rh1) = PCtarget. (5.15)

The set of all possible pairs (h1,Rh1) here stands for the potential solutions satisfying (5.12)

for an ASE C̄ > C0.
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5.3.4 Performance Evaluation

Numerical evaluations were conducted for the results presented in the previous section for R-

UAV height h1 varying from 0 to 500m and compared to the benchmark study in [127] that used

a K factor model that increases exponentially with height. We performed the optimization for

two different ground roughness values β0 ∈ {0.784, 0.617}. It is assumed that B/Pt = 70dB

and the QoS is defined by a PDtarget = 0.999 and PCtarget = 0.999. The average Spectral

Efficiency (SE) C̄ is obtained over 100 uniformly distributed G-UEs in the relevant region [39].

Fig. 5.4 shows the set of all pairs (h1, Rh1) that satisfy the condition in (5.6) for our model

(K-Model 1) and the considered benchmark (K-Model 2) for three different SNR threshold

values. It is shown that as the R-UAV altitude h1 increases, the coverage radius Rh1 increases

up to a maximum value and thereafter decreases. This implies that for lower altitudes the

reduction of the multi-path effect provided by the increase of height is beneficial. However, for

high altitudes, the path loss dominates and further height increase is detrimental for coverage.

Between these two regimes, the depicted curves exhibit a unique sharp optimal altitude. It

is worth noting that, at the maximum coverage radius, the elevation angle φ is invariant for

all threshold values showing that φ is independent of the SNR threshold. Although different

K values are used in Fig. 5.4(a), our result confirms the benchmark [127]’s conclusion that

for all examined SNR threshold ξ, the optimal elevation angle is the same. Compared to the

results in [127], our physics-based model, however, predicts a higher maximum coverage radius

of 1620 m while the benchmark suggests 1350 m. On the other hand, the benchmark ensures

connectivity for higher altitude that reaches 2500 m, for a very limited coverage radius.

The impact of the surface roughness on the optimal performance in our physics-based model

is depicted in Fig. 5.4(b), where the optimal solution of the R-UAV altitude for β0 = 0.617

is shown. We note that the lower value of β0 results in a larger coverage radius in all cases

(compared to Fig. 5.4(a)) albeit at lower altitudes. This can be explained by the relation

between β0 and the Rician K-factor depicted in Fig. 5.2, which shows that a lower β0 value

results in a higher K value for small elevation angles (i.e. larger ray r). Indeed, it can be

shown that for very low values of K, the Rician distribution reduces to a Rayleigh fading one,

which represents a predominance of the multipath component. However, for higher values, the

Rician model tends to an additive white Gaussian noise channel corresponding to a strong LoS

between the transmitter and receiver.
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Figure 5.4: The set of configuration space for pairs (h1,Rh1) showing the optimum configuration
for PDtarget = 0.999: (a)β0 = 0.784 and (b)β0 = 0.617.

The maximum coverage radius of the two compared K factor models is depicted in Table

5.1 for different values of the SNR threshold ξ. It is shown that the coverage radius diminishes

with the SNR threshold ξ, which is an expected behavior. Indeed, as presented in Fig. 5.4,

increasing ξ decreases the detection probability which results in a smaller coverage area for the

same detection target PDtarget constraint. The results also depict that, for the same QoS, our

Rician-K model provides a wider coverage radius compared with the model studied in [127].

Table 5.1: Maximum coverage radius Rh1 , PDtarget = 0.999, β0 = 0.784.

Threshold ξ(dB) 0 4 8 12 16 20
Rh1

, Model 1(m) 1883 1354 917 630 394 245
Rh1 , Model 2(m) 1705 1078 680 429 270 170

Fig. 5.5 depicts the set of all configuration pairs (h1,Rh1) that satisfy the constraint (5.12)

in our physics-based K-Model 1. Similarly to the previous results, we note that there again

exist two regimes and a unique (sharp) optimum at altitude h1 that maximizes the radius of the

connectivity disc for an average SE C̄ > C0 of ground UEs within the area of radius Rh1 in the

two different scenarios of β0 values. Observing the optimum pairs (h1,Rh1) for each threshold

C0, we note that the optimization of the average SE leads to an invariant altitude value h1

independent of the threshold C0. Interestingly, the maximum radius of the connectivity area

is larger than the maximum radius of the coverage area presented in Fig. 5.4. Indeed, based

on the average SE criteria, the connectivity radius can reach 2400 m while it is about 1620
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Figure 5.5: The set of configuration space for pairs (h1,Rh1) showing the optimum configuration
for PCtarget = 0.999 over K-Model 1: (a)β0 = 0.784 and (b)β0 = 0.617.

m when optimized based on the received SNR for an edge G-UE. We also observe that the

optimal R-UAV height for the average SE connectivity metric depicted in Fig. 5.5(b) shows

larger coverage that reaches 2650 m for low β0, while it is about 2400 m for a high value of

β0 which is concordant to the impact of β0 on the maximum coverage radius presented in Fig.

5.4.

5.4 UE Localization

The position of a UE in a wireless network can be estimated directly. However, it has been

shown that two-step positioning approaches that first determines a set of parameters such as

the ToA, the AoA, the TDoA, or the Received Signal Strength Indicator (RSSI), which are

then used to estimate the accurate position of a UE [131], [140]. In this section, we propose

a multi-stage processing that allows providing accurate coordinates estimation while keeping

the complexity low through reducing the search space.

5.4.1 System Model

Our system includes one stationary UE located at the coordinate c = (x, y), three neighboring

massive MIMO BSs withM antennas each positioned at cBS = (xBS , yBS) as presented in figure
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5.6, and one processing center. We suppose that these elements are perfectly synchronized.

Figure 5.6: Typical structure of LTE 3-sector cells.

The synchronization phase will be treated in future work. The considered BSs are three sector

antenna stations, each serving a hexagonal cell with three sectors each covering a specific

interval as detailed in table 5.2.

Table 5.2: List of SID interval limits

Sector ID (SID) Interval
0 [120, 240]
1 [240, 0]
2 [0, 120]

We denote by aaa(θ) the array response vector at the BS for a ray impinging from angle θ,

which is defined in the case of a uniform linear antenna (ULA) with half-wavelength spacing
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as

a(θ) =



1

ejπ sin θ

.

.

.

ejπ(M−2) sin θ

ejπ(M−1) sin θ


. (5.16)

The UE transmits a reference signal s(t) which propagates through the multipath environment,

resulting in a received amplitude at the mth BS and direction θ given by

Pm(θ) = |a(θ)hsm(t)|, (5.17)

where sm(t) concatenates the signals received at mth BS.

The radio channels between a given UE and BSs are modelled according to Rice Channel

model. Hence, NLoS components between the UE and BSs are taken into account. Considering

that the UE transmits at a power Pt, the received signal power Pr at the BS side is calculated

according to the Friis propagation loss:

Pr = Pt
( λ

4πd

)2
Ω, (5.18)

where λ is the wavelength of the signal, d is the actual distance between the UE and the mth

BS and is given by

d =
√

(x− xBS)2 + (y − yBS)2, (5.19)

Ω ∈ [0,∞] is the Rician distributed channel gain corresponding to the effect of the small-

scale fading such that Ω = 1.

Using this model, the distribution of Ω follows a noncentral Chi-square probability density

function given by [134]:

fΩ(ω) =
(K + 1)e−K

Ω
e
−(K + 1)ω

Ω
I0

(
2

√
K(K + 1)ω

Ω

)
, (5.20)

where ω ≥ 0, I0(.) is the zero-order modified Bessel function of the first kind, and K is the
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Rician factor.

The parameters specifying the environment of the test are considered known and fixed

during the measurements acquisition phase (K-Factor, carrier frequency, locations of the BSs).

Given the above system model and the discussed assumptions, we aim to estimate the UE

position situated in one of three BSs covering three hexagonal cells.

5.4.2 Multi-stage Localization

The proposed method exploits 5G potentials for communication [136] such as the high angular

resolution of massive arrays. In this section, we propose a multi-stage processing to address

the problem of localization.

5.4.2.1 Principle

The procedure of the method is as follows. First, each BS calculates the power received from

the UE and transmits the power measurement to a processing center which estimates the

ranges and decides what is the hosting cell. Second, the UE estimates the sector ID to which

it belongs. Third, a multi-stage beamforming [140] is carried out to estimate the AoA. Both

the range and the angle estimated serve to determine the UE coordinates. The entire process

that we have just described is summarized in Fig. 5.7. In the following, we will detail the steps

listed in the block diagram.

Figure 5.7: The proposed localization method block diagram.
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5.4.2.2 Pre-treatment: Range estimation

The proposed method requires a preliminary step which consists in determining the cell to

which the UE belongs. To do so, the UE broadcasts a known signal. Once received, each BS

calculates the power received using the signal model (3) and transmits this value to a processing

center which compares all the values received and decides which is the nearest BS to the UE.

The value of the maximum power received allows the processing unit also to estimate the

distance between the UE and the BS serving it by following the given formula:

d̂ =

√
PtΩ

Pr

λ

4π
, (5.21)

where λ is the wavelength of the signal, Pt is the power transmitted by the UE, Pr is the power

received at the BS side and Ω is the Rician channel gain, which we assume to be known.

5.4.2.3 SID Determination

The sector search is usually performed as part of the identification of the Cell to which a UE

aims to connect. We here exploit the SID to reduce the search space of the angle θ within a

limited interval of angles respecting table 5.2. In cellular networks, the SID is sent through

the PSS broadcasted regularly by the BS to maintain the connection of the UE [137]. Three

different PSS are used to identify the corresponding sector in the BS ∈ {0, 1, 2}. At the UE

side, several SID determination approaches can be used to fulfill this task [?]- [?]. In our work,

we used the approach presented in [?] which allows a robust sector identification.

5.4.3 Beamforming and Position Estimation

Once the new search space is determined, the AoA can be estimated using a two-stage beam-

forming.

5.4.3.1 Coarse stage

In the first time, the UE emits a reference signal to the BS and since the sector is known, the

BS performs a scan in only the 120◦ of uncertainty instead of the entire cell range of 360◦.
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The search is performed respecting the model in equation (5.17) with a slightly large search

angle δθ. The angle that provides the highest amplitude of (5.17) is considered as the coarse

estimate of θ that we denote by θ̂c. The coarse search result is illustrated in Fig. 5.8 for a

number of antennas M = 4 and a search step δθ = π/100 which shows a maximum at the AoA

estimate.

Figure 5.8: Angle search using a rough step δθ = π/100 and a number of antennas M = 4 in
the noiseless case.

5.4.3.2 Fine stage

At this point, we have the smallest possible search space. We reproduce the coarse stage

treatment but the BS performs a scan throughout a reduced interval equal to 2θ̂◦c centered on

the coarse estimate θ̂c using a new thinner step δθ. At the end of this stage, we obtain a more

accurate estimation of the AoA, which we denote as θ̂f to be used later during the localization

step. It is to be noticed here that the multi-stage beamforming can also be envisaged by

augmenting the used antenna size between the two stages: using a sub-antenna in the coarse

stage and larger one in the fine stage.
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5.4.3.3 Location estimation

At the end of the process, the value of the estimated distance d̂ obtained during the pre-

treatment phase and the value of the angle obtained from the second stage of the beamforming

θ̂ are used to identify the coordinates (x, y) of the UE respecting the geometry rules for angles

as x̂ = xBS + d̂cos(θ̂),

ŷ = yBS + d̂sin(θ̂).
(5.22)

where x̂ and ŷ are the UE x and y coordinates’ estimates, xBS and yBS are the coordinates of

the BS and θ̂ is the AoA estimate.

5.4.4 Performance Evaluation

In this section, we provide the performance evaluation of the proposed localization method

using centimeter waves with typical 5G parameters. We first describe the simulation setup,

then present the result analysis and discussion.

5.4.4.1 Simulation Setup

All numerical results are run over 104 Monte-Carlo trials using the following parameters. We

set the carrier frequency at fc= 7GHz, the Rician K-factor at K=5 and the three BS located at

fixed coordinates [100,190], [250,103], and [250.344,276.404] and one UE positioned randomly

within an area of size 500 m×500 m. Unless otherwise mentioned, the number of receive

antennas is set to M = 4 and M = 100 antennas while the SNR is set to 5 dB. Performance is

measured in terms of Root Mean Square Error (RMSE) of the AoA estimate θ̂, the distance

to the UE estimate d̂, and the coordinate estimates ĉ = (x̂, ŷ). We also depict the probability

of sub-meter precision of d̂ and ĉ. To assess the impact of the multi-stage beamforming, we

present the estimate of the coordinate c in the coarse stage, where we use a large search step

δθ = 102 and the fine stage during which we use a very small step δθ = 104 which is expected

to greatly enhance the estimate. We denote the coarse and fine estimates of c by ĉc and ĉf ,

respectively.

107



5.4. UE Localization Chapter 5. UAV Positioning and UE Localization

5.4.4.2 Results and Discussion

Based on the described scenario, we now present the performance of the proposed method in

terms of sub-meter location accuracy and RMSE. Let us see first the performance plots versus

SNR. To do so, we have added a zero-mean Gaussian noise to the transmitted signal. The

SNR value varies from -10 dB to 30 dB.

Fig. 5.9 depicts the AoA RMSE obtained using 4 and 100 antennas as a function of the SNR

and for both the coarse stage and the fine stage results. As shown, the RMSE of θ̂ decreases

with the increase of SNR regardless of the number of antennas, and increasing the number of

antennas further reduces the error in the estimation. It is also clear that the performance of the

proposed estimator has been improved with the addition of the fine stage. Indeed, comparing

θ̂c estimate for M = 4 and θ̂f estimate for M = 100 shows the gain by both changing antennas’

number and search step between the coarse and fine stages. It is worth noting the effect of

antennas’ number when comparing coarse estimates (resp. fine estimates) for M = 4 and

M = 100, where we can reach the accuracy of the fine stage by increasing the number of

antennas at the same SNR level.
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Figure 5.9: RMSE of the angle estimate’s θ̂ a function of the SNR for numbers of antennas
M = 4 and M = 100.

Fig. 5.10 and Fig. 5.11 present the RMSE and the probability of sub-meter accuracy

of the distance and UE coarse and fine coordinates estimates in the case of coarse and fine

estimate and for different antennas’ number as a function of the SNR. Fig. 5.10 shows that
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for all results, the RMSE decreases with the increase of the SNR value. The augmentation

of the antennas’ number further improves the estimation accuracy. Furthermore, thanks to

the multi-stage processing, the probability of having an error less than 1m in the estimated

location doubles. Compared to the distance estimate, we note that the UE location estimate

exhibits a plateau starting from an SNR value of about 10 dB. This plateau is related to the

error in the AoA estimate that depicts the same phenomena.
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Figure 5.10: RMSE of the distance and co-
ordinates as a function of SNR for numbers
of antennas M = 4 and M = 100.

Figure 5.11: Probability of sub-meter pre-
cision as a function of the SNR for numbers
of antennas M = 4 and M = 100

Thanks to the AoA estimation precision enhancement through the two stages, comparing

coarse position estimate (resp. coarse probability of sub-meter accuracy) for M = 4 and fine

position estimate (resp. fine probability of sub-meter accuracy) for M = 100 shows the gain

by both changing antenna size and AoA search step between coarse and fine stages.

To assess the impact of the number of antennas at the BS side on the performance of the

proposed method, we depict in fig. 5.12 and fig. 5.11 the distance and coordinates estimation

RMSE and probability of sub-meter precision as a function of used antennas and compare

between the coarse stage and the fine stage results. The antennas’ number changes from 1 to

300 while the SNR is fixed to 5 dB. We note that increasing the number of antenna arrays

vastly improves the performance. With reference to the previous results, we note that the

probability to provide a sub-meter accuracy is 0.5 for M = 4 can further be increased using

higher M values. Indeed, due to the antenna arrays size increase, the angular resolution at the

BS also improves.

We now focus on the efficiency and relevance of the proposed algorithm in a 5G context [40].
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Figure 5.12: RMSE of distance and coor-
dinates as a function of the number of an-
tennas at the BS for SNR=5 dB.
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Figure 5.13: Probability of sub-meter pre-
cision as a function of the number of an-
tennas at the BS for SNR=5 dB.

Differently from the previous assumptions, where channel response Ω is assumed to be perfectly

known, we here study the uncertainty on channel estimate by incorporating an error component

modeled as Gaussian centered, ε → N (0, σ2
CH), leading to an erroneous channel response

Ω′ = Ω + ε. A stationary UE is randomly placed in the area. A total of 104 Monte Carlo

realizations are evaluated under uncertain channel conditions in 30 GHz mm-waves.

5.4.4.3 Impact of the wavelength

We start by examining the impact of the wavelength on localization precision. Particularly,

we present the probability to achieve sub-meter accuracy in the estimation of the distance to

the serving BS and the fine and coarse coordinates [40]. The results are presented in figure

5.14 for both 7 GHz and 30 GHz carrier frequencies, respectively corresponding to mm and cm

waves. It is shown that for low SNR values, the accuracy obtained in the case of low frequency

is higher than that obtained for high frequency. However, slightly better performance is shown

in higher frequency when the SNR values increase. This behavior can be explained by the

sensitivity of mm-waves to noise, which fosters their use for short-range communications.

Figure 5.15 depicts the RMSE of the AoA coarse and fine estimates θ̂c and θ̂f , and shows a

low error even for very low SNR value where the RMSE is less than 0.1 at -10 dB. Consistently

with the previous results, we note that mm-waves greatly reduce the error for high SNR values.

Indeed, a 20 dB gain is achieved for the fine AoA estimate at an RMSE of about 0.003.
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Figure 5.14: Probability of sub-meter pre-
cision of distance and coordinates esti-
mates d̂, ĉc, and ĉf as a function of the
SNR for carrier frequencies fc = 7GHz
and fc = 30GHz.
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Figure 5.15: RMSE of the angle estimates
θ̂c and θ̂f as a function of the SNR for
carrier frequencies fc = 7GHz and fc =
30GHz.

5.4.4.4 Impact of the channel error

Note that the above analysis assumes perfect channel knowledge (Ω = Ω′), in what follows,

we evaluate the effect of a channel error on the performance by presenting the probability of

sub-meter accuracy as a function of the SNR in 3 different scenarios: 1) when the channel is

perfectly known; 2) when the variance of the channel estimation error σ2
CH is equal to 10−1;

and 3) when the channel estimation variance is equal to 10−2 [40]. Indeed, channel error is

incorporated as : Ω′ = Ω + ε where ε is the Gaussian centered variable with variance σ2
CH .

It can be clearly observed that the proposed method performs better when SNR value in-

creases in the three scenarios, which is an expected result. We note that despite the satisfactory

performance that exceeds 90% for fine coordinates estimation starting from an SNR value of

12 dB for an error variance σ2
CH = 10−2, the error in the channel estimation still impacts local-

ization accuracy as it is directly related to the estimation of d. Indeed, for the fine coordinate

estimation, losses of about 2 dB and 4 dB are recorded when comparing the perfect channel

case to the case of σ2
CH = 10−2 and σ2

CH = 10−1 respectively.

In figure 5.17, we present the RMSE of the fine and coarse AoA estimations as a function

of the SNR under different channel conditions. It is natural that the perfect channel provides
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Figure 5.16: Probability of sub-meter pre-
cision of distance and coordinates esti-
mates d̂, ĉc, and ĉf as a function of the
SNR for channel estimation error variance
σ2
CH = 10−1 and σ2

CH = 10−2 for carrier
frequencies fc = 7GHz and fc = 30GHz.
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Figure 5.17: RMSE of the angle estimates
θ̂c and θ̂f a function of the SNR for per-
fect channel and erroneous channel esti-
mation with error variance σ2

CH = 10−1

and σ2
CH = 10−2 for carrier frequencies

fc = 7GHz and fc = 30GHz.

the lowest RMSE, while the error in the channel leads to a higher error especially for a very

low SNR value (-10 dB). For medium and high SNR values, the gap between perfect channel

and channel with estimation error variance σ2
CH = 10−2 is about 5 dB.

5.5 Conclusion

In this chapter, we studied the optimization of the height of a UAV relay node to provide a

maximum coverage based on a) the SNR level of an edge user and on b) the average rate of

ground users within a specific range. We exploited a physics-based channel model considering

both deterministic large-scale path loss and random small-scale fading which we modeled by a

Rician fading with an elevation angle-dependent K factor. By studying the maximum coverage

radius based on the two criteria, we showed that there exists a unique optimum height at which

the UAV should be located to maximize the deployment area. We also assessed the sensitivity

of the optimal position to the surface characteristics.

Then, we tackled the problem of outdoor localization under Rician channel conditions. We

proposed a multi-stage approach for the localization of a stationary UE in a massive MIMO
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context. Once the UE is connected to a BS, this latter estimates the distance to the UE

based on the reference signal power measurement. Sector ID identification at the UE side

allows reducing AoA search space. A coarse AoA estimation is then performed throughout

the sector identified. The second stage exploits the coarse AoA estimate to fine-tune the

estimation around a very limited interval. The fine stage can also include an increased antenna

size from the massive MIMO antenna compared to the first stage. Lastly, both distance and

AoA estimates are used to find the UE coordinates. Simulations were performed and showed a

localization accuracy that achieves an error lower than one meter. For more realistic evaluation,

we considered channels affected by estimation errors and mm-waves. Comparing the obtained

results to initial results, we noted that mm-waves provide better performance at high SNR

values while cm-waves perform better at low SNR values. This behavior is justified by the

sensitivity of mm-waves to noise. On the other hand, the studied localization scheme showed

robustness to channel estimation errors. Extensions of this work consider neighbor-assisted

approaches, which are presented in [37] and [38] for outdoor localization.
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Chapter 6

Energy and MCS Allocation for

Ultra-Reliable Communication

6.1 Introduction

ARQ is one of the main protocols which are adopted in wireless communication systems to en-

sure the quality of communications through re-transmission policies. Although re-transmissions

offer time diversity and make communication links viable in front of the stringent requirements

of URC, it greatly impacts the throughput efficiency and the energy budget. To reduce this

impact, HARQ techniques use forward error correction coding.

This chapter studies a cross-layer approach, based on the Genetic Algorithms (GA), that

aims to maximize the throughput efficiency of the HARQ protocol, while guaranteeing URC.

The study combines Adaptive Modulation, and Coding (AMC) and Power Control (PC), at

the physical layer, with ARQ and HARQ type I at the data link layer. The proposed opti-

mization algorithm allows a judicious allocation of the available energy budget and a suitable

Modulation and Coding Scheme (MCS) choice while keeping the same energy cost to maximize

the throughput efficiency. Assuming partial CSI knowledge, the available energy budget is par-

titioned throughout the re-transmission attempts resulting in a vector of successively symbol

energies, on which the throughput efficiency depends. Also, successive re-transmissions can

use different MCS and symbol energies to maximize the throughput. Hence, for a given SNR,

a vector of energy and an MCS are modeled as one individual from a population. The vector
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elements correspond to the energy amounts allocated to each re-transmission trial. In a popu-

lation, the individuals that provides the highest throughput efficiency are selected to be used

in generating the next population through the crossover of the survivals and mutations. The

processing repeats until stagnation of the throughput efficiency is observed. The individual

that provides the highest throughput efficiency in the last population is selected as the solution

offering the optimized parameters (symbol energy for each re-transmission attempt and MCS)

used in the packet transmission at a specific SNR.

6.2 Related Works

In ARQ/HARQ techniques, a packet is retransmitted using the same energy level for all trans-

mission attempts, which might not be the most efficient energy allotment procedure. To

improve the performance of HARQ, in [141], HARQ was considered in Rayleigh block-fading

channels where the transmitter only has knowledge of channel statistics, and, consistent with

contemporary wireless systems, rate adaptation is performed such that a target outage prob-

ability (after a maximum number of H-ARQ rounds) is maintained. Then, in [142], power,

as well as transmission rate are optimally adapted by the transmitter based on channel state

information (CSI) obtained through feedback, while guaranteeing QoS constraints such as av-

erage throughput or average delay. The work in [143] proposes a framework in which a user

selects an optimal amount of redundancy bits used for re-transmissions, an optimal packet er-

ror rate, and an optimal mapping of signal-to-interference-noise ratios (SINR) into modulation

and coding scheme (MCS) such that the user throughput would be maximized.

Contrarily to [142] and [143], where HARQ mechanisms have been mainly studied as tech-

niques to improve the throughput only, recent literature flags an increasing interest in energy

efficiency. The author of [144] considered link adaptation with complete CSI knowledge for

which the instantaneous SNR is known and with incomplete CSI for which only the average

SNR is known. The work evaluated the packet loss probability and the throughput for both

for a slow-varying and a fast-varying channel. In [145] and [146], based on the Lagrange mul-

tipliers, an optimized throughput was studied in an energy-constrained context. In [145], the

optimal power level and the appropriate MCS are jointly determined, as a function of the

fading channel conditions, to achieve the highest average throughput efficiency, for a fixed

average transmit power constraint in AQR. Then, in [146], they developed an energy efficient
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design which optimally combines AMC and PC with type-I (HARQ-I) protocol to maximize

the average throughput efficiency under a prescribed average transmit power constraint.

In [147], the authors developed an energy consumption model that focuses on both simple

HARQ and chase combining HARQ transmissions, which are studied under fast-fading and

block-fading scenarios with Nakagami-m fading. Analytical expressions for the expected num-

ber of transmission trials were derived based on the statistic of re-transmissions. Later, the

work in [148] investigated the trade-off between reliability and energy efficiency and proposed

adaptive FEC/FWD and FEC/ARQ coding frameworks for clustered wireless sensor networks.

The schemes considered channel condition and inter-node distance to decide the adequate chan-

nel coding usage. The work is energy efficient compared to ARQ schemes and FEC schemes,

and suitable to prolong the clustered network lifespan as well as improve the reliability.

To improve energy efficiency, the works in [149] and [150] also optimized the power al-

location considering truncated simple ARQ and HARQ. The optimization problem is solved

in closed-form using the Karush-Kuhn-Tucker conditions and shows that power allocation in

HARQ is a good strategy to improve the system energy efficiency. This work was extended

in [151] to allow ultra reliable operation for HARQ with minimum power consumption in the

finite blocklength regime. The results show that, contrarily to classical approaches, where

it is optimal to allocate equal power with each transmission, the optimal strategy suggests

transmission with incremental power in each round for operation in the ultra reliable regime.

Meticulous energy distribution over re-transmissions is studied in [141] for a specific range of

Signal to Noise Ratio (SNR) to increases the possibility to succeed packet transmission from the

first attempt through boosting the energy during the first transmission. The work minimizes

the average transmission energy while keeping a steady-state average probability of successful

transmission. In [152], the authors aimed to minimize the average transmission energy while

keeping a steady-state average probability of successful transmission.

6.3 Performance of ARQ/HARQ

In this section, we describe the operation of the ARQ retransmission protocol and the criteria

for its evaluation. We consider the truncated version of ARQ which is well adapted for real

time flows such as cloud gaming, voice over IP, and streaming system.
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6.3.1 Presentation of the ARQ Protocol

The idea behind the ARQ, was to design a system that allows to detect the error burst,

discard the affected packet, and request a re-transmission of the erroneous packet. The message

sequence is broken up into packets of length k. Each of these packets is encoded using a rate

binary error detecting code with length kc to generate a coded packet of total size n = k+kc [16].

Consequently, the ARQ protocol allows enhancing communication performance through re-

transmission of erroneously received data packets.

As demonstrated in figure 6.1, it uses acknowledgment (positive and negative) and timeout

to initiate a re-transmission in the case of detection of flawed data or to confirm that data is

received correctly [158]. The protocol is used at the data link layer and exploits a kc-bit Error

Correction Code (ECC) to encode a packet of k useful bits and generate a coded packet of

total size k + kc.

Figure 6.1: Setup for ARQ protocol. The transmitter sends the first packet and waits for the
ACK from the receiver. Once ACK1 is received, the transmitter sends packet 2. If the receiver
can not decode the packet, it discards the packet and sends back a NACK to the transmitter
to ask for packet re-transmission.

The re-transmission process of ARQ can be done using one of three different strategies: 1)

Stop-and-Wait, in which the transmitter sends one packet at a time and wait for the reception

of either a positive acknowledgment (ACK) or a negative acknowledgment (NACK) to either

transmit the next packet or repeat the transmission of the same packet, 2) Go-Back-N, in which

the transmitter sends packets in a continuous stream until an erroneous packet is received,

which blocks the acceptance of all following packets until a correct copy of it is received, and

3) Selective Repeat, which provides buffers in both the receiver and the transmitter to allow

exclusive re-transmission of the erroneous packet only. To overcome the inefficiency due to re-

transmission operations, Hybrid variants of ARQ incorporating FEC are used. The addition of

FEC helps to maintain a significant throughput even in poor channel conditions and can also

offer an increase in the throughput efficiency thanks to its ability to reduce the re-transmissions
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by correcting the commonly occurred patterns as depicted in figure 6.2. The initial ARQ scheme

is unable to provide that kind of efficiency because according to that scheme, defective packets

must be re-transmitted.

The combination of ARQ and FEC produced three Hybrid types: HARQ type I, HARQ

type II, and HARQ type III [159], [160], [161, 162]. Type I uses a fixed rate code designed

for error correction, and a re-transmission remains necessary if the correction operation fails.

The type II HARQ, however, adds memory and processing at the receiver to combine the

multiple packets received within each ARQ transmission attempt, which allows increasing the

correction capability of the code. Two common combining strategies exist in the literature:

1) incremental redundancy in which the redundancy is sent piece-wise upon error detection,

and 2) the chase combining where the same information is combined (the re-transmission is an

identical copy of the original packet). Contrarily to type II, where the decoder relays on both

the initially transmitted packet and the additional incremental coded bits, in HARQ type III,

incremental coded bits are self decodable which is suitable in the situation where a packet is

lost or damaged.

Figure 6.2: The setup for HARQ protocol. The transmitter sends first packet 1 and waits for
the ACK from the receiver. Then it sends packet 2. If the receiver can not decode the packet,
it buffers the packet and asks for re-transmission. Then, when it receives packet 2 once more,
it combines it with the buffered packet to extract the information.

Consider a point-to-point communication link with a reliable feedback path between the

receiver and the transmitter. The CSI is acquired at the receiver and then fed back to the

transmitter with incomplete CSI for which only the SNR is known. According to the current

CSI the transmitter selects the most appropriate transmit parameters to be used for the next

transmission. The packets to be transmitted are first queued in a buffer of infinite size buffer,

then transmitted on a packet-by-packet basis over the wireless channel. At the data link layer,
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the selective repeat (SR) HARQ type I protocol is implemented. Due to latency constraints,

we consider truncated HARQ, limiting the number of re-transmission attempts in equation

(6.1) to a maximum of N trials. Each transmitted packet is encoded for both error detection

and correction.

In what follows, we review the performance of ARQ/HARQ protocols for BPSK and M-ary

modulations to determine the expressions of the throughput efficiency.

6.3.2 ARQ Performance for BPSK Modulation

The throughput, which we denote by η can be defined as the average number of encoded data

packets accepted by the receiver (error-free packets) in the time it takes the transmitter to

send a single k-bit data packet [16]. In an FEC system, the throughput is equal to the code

rate R = k/n, where k is the useful data size and n is the total packet size (in bit). In a

retransmission system, the throughput is a function of the number of times a packet has to be

(re)transmitted before it is accepted by the receiver. Based on whether retransmission of an

erroneous packet is carried out until an error-free reception is attained or not, we distinguish

two types of ARQ : 1) truncated ARQ in which a fixed number of retransmissions attempts

is set, over which a packet is thrown if it is not received correctly, and 2) non truncated

ARQ in which an infinity retransmission attempts is allowed. We here consider the case of

truncated ARQ, in which a packet is totally rejected after N erroneous trials. The average

number of retransmission attempts, assuming independent an identically distributed (i.i.d)

retransmissions, is then evaluated as

Tr =
+∞∑
i=0

(Pr)
i =

1

1− Pr
, (6.1)

where Pr stands for the probability to generate a retransmission request (a packet is received

with error). Given that the binary error probability p is known, Pr can be expressed as

Pr = 1− (1− Pe)n. (6.2)

The modulation used for the evaluation is Binary Phase Shift Keying (BPSK). In this case,

the binary error probability Pe used in the packet error probability expressed in equation (6.2)
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is equal to

Pe =
1

2
erfc

(√ E

N0

)
, (6.3)

where erfc(.) is the complementary error function [163] defined as

erfc(x) =
2√
π

∫ ∞
x

e−t
2
dt. (6.4)

We here introduce another performance measurement criterion, which is the packet erasure

probability Ploss defined as the probability that a packet is not received correctly even at

the last retransmission attempt and is then thrown. Assuming a maximum number of N

i.i.d retransmission attempts, Ploss can then be evaluated as the product of all retransmission

attempts’ packet error probabilities expressed below

Ploss =

N∏
i=1

Pr,i =
(
Pr

)N
, (6.5)

where Pr,i refers to the probability to generate a retransmission request at the ith retransmission

attempt. In addition to the number of transmission attempts, the throughput performance of

the ARQ system depends strongly of how retransmission requests are handled by the transmit-

ter and the receiver. Assuming a SR-ARQ protocol and the truncated scheme, the throughput

expression that we consider in our work is given by the following equation

η =
1

Tr

k

n
(1− Ploss). (6.6)

6.3.3 ARQ/HARQ Performance for M-ary Modulation

At the physical layer, a set of MCS is assumed to be supported and denoted as ϑ. A given

MSC θ consists of a specific M-ary Quadrature Amplitude Modulation (QAM), a rate Rθ

FEC code and a packet size of Q symbols. At the transmitter side, an optimal transmit

energy level E (or equivalently a transmit SNR γ) and a convenient MSC θ are selected as a

function of the available CSI. The transmit SNR γ is defined as the ratio between the average

transmit symbol energy E and the one-sided noise power spectral density N0, γ = E
N0

. Each

packet corresponds to k bits of information which are first encoded with a detection code

with kc bits to issue a k + kc codeword. Furthermore, m bits are appended to the generated

codeword to complete the convolutional code trellis. Using an FEC of rate R, a final number
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of (k + kc +m)/R coded bits is obtained. For an M-ary QAM modulation, the coded bits are

mapped to n = (k + kc +m)/(log2(M)R) symbols.

We consider the throughput expression for hybrid type-I ARQ protocol and a given modu-

lation and coding scheme θ selected from the set of possible MCS ϑ, with a modulation order

Mθ and rate, that is expressed as

ηθ = log2(Mθ)
k

k + kc +m

1

Tr
, (6.7)

where Tr is the average number of re-transmission attempts expressed in equation (6.1), and

Pr is the probability to generate a re-transmission request (a packet is received with an error

that could not be corrected), tightly upper-bounded by

Pr(γ) ≤ 1− (1− PE(γ))k+kc , (6.8)

for a specific SNR γ, where PE(γ) stands for the error event probability of the Viterbi algorithm

that can be expressed as

PE(γ) = min

(
1,

+∞∑
d=df

adQ(
√

2dγ

)
(6.9)

for a soft decision decoding. In the above equation (6.9), df and ds are respectively the free

distance and distance spectra of the code, and the Q(.) is the Marcum function defined as

Q(x) =
1√
2π

∫ +∞

x
e
u2

2 du (6.10)

In addition to the throughput efficiency, we here introduce another performance measure-

ment criterion, which is the packet erasure probability Ploss defined as the probability that a

packet is not received correctly even at the last re-transmission attempt and is then thrown.

Assuming a maximum number of N i.i.d re-transmission attempts, Ploss can then be evaluated

as the product of all re-transmission attempts’ packet error probabilities expressed below

Ploss =
N∏
i=1

Pr,i(γ) =
(
Pr(γ)

)N
, (6.11)

where Pr,i(γ) refers to the probability to generate a re-transmission request at the ith re-

transmission attempt.
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For a given MCS θ, when considering a packet size of Q symbols and assuming that kc and

m are � compared to Q, the packet error probability in (6.8) then turns into

Pr(γ) = 1− (1− PeMθ(γ))2Q, (6.12)

where PeMθ(γ) is the probability that the inphase/quadrature phase component of the Mθ-

QAM symbol be erroneously received, given by

PeMθ(γ) =

√
Mθ − 1√
Mθ

erfc

(√
3

2(Mθ − 1)
γ

)
, (6.13)

where erfc(.) is the complementary error function. Now combining the equations (6.1), (6.12)

and (6.13), we can express the throughput efficiency as

ηMθ
(γ) = log2(Mθ)

(
1−
√
Mθ − 1√
Mθ

erfc

(√
3

2(Mθ − 1)
γ

))2Q

. (6.14)

In this case, the throughput expression in (6.7), can further be rewritten as

ηMθ
= log2(Mθ)× (1− PeMθ(γ))2Q. (6.15)

6.4 Impact of PC and AMC on ARQ Performance

In this section, we study the impact of both energy and MCS on the throughput efficiency of

packet transmissions adopting the ARQ protocol. We first present the impact in the case of

BPSK modulation, where only energy is highlighted. Then, we generalize the study to both

PC and AMC strategies.

6.4.1 Energy Allocation for BPSK modulation

For more significant evaluation, we are going to study the throughput efficiency as a function

of the average energy cost due to packet transmission attempts, which is given by the following

expectation

Eavg = E ×
N∑
i=1

(
Pr

)i
= E × Tr. (6.16)
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To highlight the connection of the throughput η expressed in (6.6) to γavg = Eavg/N0, we depict

its curve in figure 6.3. We note that for several instances (e.g. γavg = 7 dB), the same average

SNR γavg leads to different throughput values, while only one of them leads to the maximum

throughput. Thus, only the upper envelope of the throughput curve should be considered for

an energy efficient system.

Figure 6.3: Throughput efficiency as a function of the average SNR for conventional ARQ
(initial and upper envelope). N = 3, k = 90, n = 100.

6.4.2 Energy Allocation and MCS Selection for M-ary Modulation

Figure 6.4 presents the throughput efficiency, expressed in equation (6.15) as a function of the

SNR consumed per symbol for uncoded modulation and different MCS showing the impact of

the MCS and energy selection and on the throughput efficiency. Using a single modulation

technique for every transmission will not ensure the best data transmission at a given time,

thus, the QoS will be affected. Also, having a single modulation scheme could cause an energy

loss, for example taking the case of QPSK, the throughput stagnation start approximately at

12 dB, this means that any higher energy value will not affect on the throughput efficiency [41].

To ensure a reliable setting of the communication, we suggest to dynamically switch the MCS

according to the SNR value, i.e. the appropriate MCS scheme is selected by comparing the

received SNR to preset thresholds indicated by the crossing between curves [42].

To highlight the effect of allocating the available energy budget on the throughput, we

illustrate the throughput efficiency in equation (6.15) as a function of the average SNR defined

as γavg = Eavg/N0, as expressed in equation (6.16). The throughput efficiency is drawn in figure
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Figure 6.4: Throughput efficiency as a function of the SNR γ for conventional ARQ with
different modulation and coding schemes.

6.5 in two cases: 1) case of conventional allocation with equal energy for all re-transmission

attempts, and 2) upper envelope showing maximal throughput values only. It is notable that

the same average SNR per symbol, with different values of the energy per symbol, can exhibit

different throughput efficiency values at the same time. Thus, the upper envelope of the

throughput curve should be considered for energy efficiency and optimized performance. It is

ought to be noted that the average energy can still give a better performance and a higher

throughput if the energy budget is distributed in a judicious manner all along the different

N re-transmissions attempts [42]. Consequently, to enhance the throughput efficiency, we

suggest the allocation of a different energy cost for each transmission, in addition to a suitable

modulation and coding scheme.

As one of the aims of this work is to optimize the amount of energy allocated during each

re-transmission attempt, we use a new total energy formula in the remaining of this chapter,

which is expressed as

Eavg = E1 + E2Pr1 + E3Pr1Pr2 + ...+ ENPr(N−1)Pr(N−2)...Pr1, (6.17)

where Pri stands for the probability to generate an ith re-transmission request. Using the new
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Figure 6.5: ARQ throughput efficiency as a function of the average SNR for QPSK, 16-QAM
and 64-QAM modulations, N=3, Q=120 symbols.

expression the average energy, the re-transmission number becomes

Tr = 1 + Pr1 + Pr1Pr2 + ...+ Pr(N−1)Pr(N−2)...Pr1, (6.18)

6.5 Optimized Performance through PC

6.5.1 Problem Formulation

The curves presented in figure 6.3 correspond to the case where the energy E spent per packet

transmission remains the same for all transmission attempts. To enhance energy efficiency,

we here suggest optimizing the allocation of the energy to be consumed for each transmission

attempt [41], while keeping the same average energy Eavg. The main objective behind optimized

energy allotment is to maximize the throughput efficiency, subject to the constraint of total

target energy cost per all transmission attempts Eavg ≤ Etarget. For each SNR γavg, the
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optimization problem can then be mathematically formulated as follows [42]

Maximize
(Υ)(γavg)

: η =
1

Tr

k

n
(1− Pe)

Subject to : C1 Eavg ≤ Etarget,

C2 N ≥ 1,

(6.19)

where the optimization variable Υ(γavg) introduced here stands for the vector of energy-per-

packet allocated to each transmission attempt Υ = [E1, E2, ..., EN ], for a fixed average SNR

γavg. To solve our optimization problem, we opt for a GA based approach. The choice is

justified by GA capabilities to check partially ordered search space for various tradeoffs as

demonstrated in [154].

6.5.2 GA-based Solution

The Genetic Algorithm is a processing that transforms a set of individual objects, known

as population, into a new generation through reproduction from the set of survivals selected

based on their fitness values. Selection is achieved by evaluating fitness values and picking

up a proportion Ns of the fittest individuals that will be involved in the next generation [42].

Reproduction consists of crossover and mutation by which new individuals are generated.

The crossover is a recombination operation that creates variation in the population g + 1 by

producing offsprings combining traits from two parents (selected individuals from generation

g). To prevent convergence to a local optimum solution, mutation is applied to randomly

change some individuals into the new population. The processing hence attempts to find

the best (or near best) solution to the problem by genetically breeding the population of

individuals over a series of generations, where each individual in the population represents a

possible solution to a given problem. GA search has been used in different application fields of

communication engineering like cooperative communication, sequence generation, and PAPR

reduction [155,157]. The process of the proposed GA-based search described hereafter, includes

the definition of the encoding rule, selection of potential solutions, and crossing and mutation

operations.

1. Encoding: before applying the genetic algorithm to our problem, we need to design

artificial chromosomes and define a mapping between the search space of the problem
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and instances of the artificial chromosome. In our optimization problem, each individual

represents a vector of N chromosomes represented by the energies allocated to each

transmission attempts. Referring to the problem formulation in (6.20) of the section

6.5.1, an individual is presented by a vector of energies Υ while the chromosomes of an

individual are the elementary energies E1, E2, ...EN .

2. Population initialization: the initial population is composed of Np individuals (Υj ,

j = 1, 2, ..., Np) whose chromosomes are randomly generated to form the population,

which is an (Np, N) matrix with lines corresponding to individuals set in such a way

to satisfy the constraint C1. The population size Np must be parameterized sufficiently

high to offer the maximum of diversity in combining energies Ei, i = 1, 2, ..., N for each

individual.

3. Selection: selecting the fittest individuals is based on evaluating the throughput ef-

ficiency expressed in (6.6). Within each generation g, the objective function η is first

calculated for each vector or individual Υg,j . The first Ns candidates with the highest

throughput present the survival fittest ones. In this case, the vectors of the gth generation

Υg,j , j = 1, 2, ..., Ns that provide the highest throughput will survive to create offsprings

of the next population.

4. Crossover: we here choose the one-point crossover due to the limited number of retrans-

mission attempts N in practical truncated ARQ. In each iteration, one crossover point

is chosen randomly to combine parents Υg,m and Υg,n to generate the new individuals

Υg+1,m and Υg+1,n.

5. Mutation: to avoid sub-optimal solutions, the newly created population (using crossover)

will further experience mutation with a small probability Pm and replaces the chosen el-

ements with randomly generated ones.

Steps 3, 4 and 5 are repeated until either stagnation of the maximum value of throughput

efficiency or a specified number of iterations is reached. At the end of processing, the individual

with the highest throughput is selected to be applied for energy allocation during packet

transmission attempts.
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6.5.3 Performance Evaluation

In this section, numerical results are provided to assess the performance of optimized ARQ

and compare it to the heuristic optimization introduced in [153]. We consider a truncated

ARQ with N = 3 maximum allowed transmission attempts, k = 90 useful bits per packet and

n = 100 bits.

We recall that respecting the proposed GA based solution, for each average SNR γavg, we

evaluate the objective function in (6.20) to select the best set of energy vectors in the gth

generation Υg,j(j = 1, 2, ..., Ng − Ns) that maximizes the throughput, carry out the genetic

processing (crossover, mutation) to establish the new population (g + 1) of energy sets more

adapted. The stop condition of the research processing is here set to 50 iterations, which was

experimentally shown to be sufficient to lead to convergence.

Figure 6.6 illustrates the comparison of ARQ throughput efficiency of the proposed GA-

based solution, the dichotomy search-based solution, and the conventional non-optimized one.

It is clearly shown that the optimal power allocation significantly improves the performances

of the ARQ protocol especially for low and medium SNRs in both proposed and considered

benchmark [153] allocation strategies. We can record a gain of about 0.3 dB and 3 dB for a

throughput efficiency equal to 0.1 compared with the dichotomous search optimization and the

conventional non-optimized allocation, respectively. From an average SNR value γavg = 9 dB,

all energy allocation procedures provide the absolute maximum of throughput efficiency.

Figure 6.6: Throughput efficiency as a function of the average SNR for the optimized ARQ.
N = 3, k = 90, n = 100.
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For more significant assessment, we depict in figure 6.7 the number retransmission attempts

in three scenarios : 1) non optimized energy allocation 2) GA-based energy allocation with

maximized throughput as formulated in (6.20), and 3) GA-based energy allocation with mini-

mized number of retransmission attempts and no constraint is set for the throughput efficiency.

In the latter scenario, the objective function aims to minimize the number of retransmissions

Tr given in (6.18) respecting the same constraints of energy allocation C1 and C2 set in (6.20).

Consistently with the previous results, the optimized algorithm requires a much lower number

of retransmissions to ensure error-free packet reception. It is worth here to note that the num-

ber of required retransmission attempts Tr is steady for both scenarios 1 and 2. This result

highlights the efficiency of the proposed energy allocation solution in terms of minimizing the

number of retransmission attempts while keeping an optimum throughput efficiency.

Figure 6.7: Number of retransmission at-
tempts, N = 3, k = 90, n = 100.

Figure 6.8: Probability of packet erasure,
N = 3, k = 90, n = 100.

We present in figure 6.8 the probability of packet erasure expressed in equation (6.5) consid-

ering the three previous scenarios. This adds value to the performance evaluation by giving an

idea about the loss in terms of data. We notice a strong connection between the re-transmission

attempts’ number Tr and the probability of erasure Pe, which is naturally due to their depen-

dency to packets rejection. As the average SNR value increases, error-free packet reception

becomes higher from the beginning of the transmission (first or second transmission attempts)

and hence the probability that a packet is thrown after N transmission trials is decreased.

We notice a gain of about 3 dB for a target erasure probability of 0.7 achieved through the

proposed allocation energy strategy when compared to the uniform energy allocation used in

conventional ARQ.

The work presented here studies efficient energy allocation to maximize the throughput for
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ARQ with BPSK modulation using Genetic Algorithm (GA) based optimization. The avail-

able energy budget is allocated along transmission attempts (first transmission and potential

re-transmission) while the total energy cost is kept steady for each packet. The results demon-

strate the efficiency of the allocation strategy in terms of maximizing the average throughput

efficiency and accordingly reveal the improvement in reducing the probability of packet erasure

as well as the number of required transmissions to achieve high throughput. This work only

considered Binary Phase Shift Keying (BPSK).

6.6 Optimized Performance through PC and AMC

6.6.1 Problem Formulation

Figures 6.4 and fig. 6.5 emphasize the impact of both energy allocation and MCS selection

on the system performance, which motivates the work on optimizing these two parameters

to maximize the throughput efficiency. Hence, we propose an optimization that consists in

searching the most appropriate energy per symbol to spend at each packet transmission attempt

to maximize the throughput for a total energy cost per symbol Eavg not exceeding the total

target energy cost Etarget ( Eavg ≤ Etarget). Besides, a judiciously chosen MCS θ is selected

among a set of available MCSs for each packet transmission that is adapted to the SNR value.

Consequently, the throughput maximization problem can be mathematically formulated as

Maximize
{Υ,θ}

: η = log2(Mθ)
1

Tr

k

k + kc +m

Subject to : C1 Eavg ≤ Etarget,

C2 N ≥ 1,

C3 θ ∈ ϑ.

(6.20)

The optimization variables of the problem are : 1) Υ that stands for the vector of energy-

per-packet allocated to each transmission attempt Υ = [E1, E2, E3, ..., EN ], for a fixed average

SNR γavg, and 2) θ that stands for the MCS chosen for the same SNR and which is selected

from the set of MCSs ϑ (QPSK, 16-QAM, and 64-QAM, with different coding rates). The

optimization problem has been set to work under three different constraints: 1) C1 is set to
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manage the available average energy budget Eavg, which should not surpass the fixed target

energy Etarget for the N packet (re)-transmission attempts, 2) C2 is the condition that guaran-

tees the transmission of a packet for at least one time and at most N allowed re-transmissions

number, and 3) C3 is defined to limit the MCS to be selected among the set of possible MSCs

ϑ. Due to the non-linearity and complexity of the studied optimization problem, we resort

to a numerical Genetic Algorithm based search to approach the couple (Υ, θ) leading to a

maximized throughput.

6.6.2 GA-based Solution

In this section, the GA is also used to search for the optimal combination of the vector of

energy values allocated to each transmission attempt Υ and the MCS θ. To this aim, we model

this couple as the two chromosomes composing an individual that belongs to a population.

Each individual hence presents a potential solution of the optimization problem. Respecting

the GA reproduction principle, the individuals of a population p are used in the generation

of the following population p + 1. Given the fixed size of populations, only a selected set

of individuals contributes to the reproduction process. These individuals are chosen based

on their fitness function values, which is fixed as the throughput efficiency. To explain the

proposed solution, we detail the processing through the flowchart in figure 6.9 and describe

the steps in the following.

1. Initialization: the algorithm starts with an initial population of Np randomly generated

couples of energy vector and an MCS (Υ, θ) to form the individuals. We note each

individual as I ← (Υ, θ).

2. Fitness calculation: the fitness function is the evaluation metric of the individuals in a

specific population. In our algorithm, the throughput expression in equation (6.7) is used

as a fitness function to decide the surviving individuals in a population p that presents

the parents in the population p+ 1.

3. Selection: once the fitness functions of all individuals are calculated, the algorithm

sorts them based on the highest values to determine the fittest ones. Then, the first Ns

individuals are chosen to contribute in the population p + 1. The selected parents are

put into a mating set to continue the genetic operations.
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4. Crossover: according to a fixed crossover point number Pc, two parent individuals

IP1 and IP2 are picked from the mating set are crossed to generate two new offspring

individuals. In other words, our algorithm exploits the values of elements in the energy

vectors of the parents to form new energy vectors Υ1 and Υ2 that present the first

chromosomes of the two offsprings. Moreover, modulation orders and coding rates of the

parents are recombined to create the second chromosomes of the two offsprings θ1 and

θ2. The results consist on two new individuals IO1 ← (Υ1, θ1) and IO2 ← (Υ2, θ2).

5. Mutation: for a defined mutation probability Pm, the chromosomes in one or multiple

individuals will be randomly changed with this probability. This means that the alloca-

tion of the energy vector and the selection of the MSC are randomly selected with the

probability of Pm in each population to avoid sub-optimal solutions and add diversity.

After crossover and mutation operations are applied to the survivals, the resulting offsprings

and their parents are all grouped to compose the new population. These steps are repeated

until either stagnation of the maximum value of throughput efficiency or a specified number of

iterations is reached. The GA processing is expected to ameliorate the performance provided

by individuals from a population to its subsequent as only individuals with efficient genes

participate in the generation of the following populations. At the end of the processing, the

individual with the highest throughput is selected to be applied later during packet transmission

attempts, depending on both the average energy Eavg.

A summary of the proposed solution is depicted in algorithm 1, which defines the inputs,

outputs, and different steps. The algorithm is executed for each SNR value, assuming that

this parameter is known. The population size is set to Np, the mating set is fixed to Ns,

the probabilities of crossover and mutation are set to Pc and Pm respectively. For each SNR

value, as long as the difference between the throughput efficiency values at the iterations i and

i − 1 is high, the genetic processing is performed to produce better individuals. As detailed

in the previous paragraph, this processing consists on evaluating the throughput efficiency

to select the portion of Ns fittest individuals. These latter undergo crossover to generate

the offsprings, a few of them change randomly with the mutation probability Pm. Once the

genetic processing is finished, a new population is produced and individuals are evaluated

again for reproduction. The stop condition is reached at the stagnation of the through-

put efficiency value. The best individual of the last population is selected as a solution of

the optimization problem that provides the optimal performance using the couple (Υopt,θopt).
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Figure 6.9: Genetic Algorithm Based Diagram

Inputs:

Population size: Np

Mating set size: Ns

Crossover probability: Pc

Mutation probability: Pm

Number of re-transmissions: N

Set of MCS: ϑ = [θ1, θ2, θ3, ...]

Energy target value: Etarget
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Average energy: Eavg

One-sided noise power: N0

Throughput efficiency variance ε← 0

Outputs :

Optimal energy vector: Υopt = [E1, E2, ..., EN ]I

Optimal MSC: θopt

begin

1 : set parameters

2 : create an initial random population of Np individuals

while ε =
(
ηimax − η

(i−1)
max

)
>>

3 : compute fitness functions of all I ∈ P as in eq. (1)

4 : sort individuals by highest fitness value

5 : select most fittest individuals in the mating set S

for j=1 to Ns/2

6 : pick IPj and IP (j+1) from S and perform crossover

7 : generate offsprings IOj ← (Υ1, θ1)), IO(j+1) ← (Υ2, θ2))

end for

8 : mutate Pm random individuals

9 : increment i

end while

10 : perform steps 3 and 4

11 : select the best individual with highest η value

10 : return Iopt ← (Υopt, θopt)

end

It is worth noting that GA-based solutions are known for their high computational complex-

ity due to the multiple iterations required for the algorithm to converge. In our case, however,

the processing is carried out offline and the optimal solutions are saved to be used directly

during transmission attempts depending on the channel conditions.
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6.6.3 Performance Evaluation

In this section, we evaluate the performance of the proposed GA-based optimization approach

[42] and compare it to the benchmarks in [145] and [146], which both use the technique of

Lagrange multipliers. Particularly, We present the maximized throughput efficiency η resulting

from the use of optimized energy and MCS for ARQ and HARQ-I in the case of both static and

fading channels. Further, we depict the probability of packet erasure to highlight the capability

of the proposed approach to offer an ultra reliable regime.

6.6.3.1 Simulation parameters

The size of the initial population Np is set to 100 individuals, from which the 50% fittest

individuals are selected during each iteration to be used in the next population. Ns is then

equal to 50 individuals. As the maximum allowed re-transmission attempt N is set to 3 leading

to an energy vector of 3 elements, a one-point crossover is suitable and a mutation probability

Pm = 0.02 of the total population size. The total packet size is Q = 120 symbols which are

FEC coded and we use 7 MCS levels as presented in table I. For the fading channel, we consider

a normalized Doppler frequency DfTs = 0.1.

Table 6.1: Convolutionally Coded Modulation

Modulation QPSK 16-QAM 64-QAM

Coding Rate 1/2 3/4 1/2 3/4 2/3 3/4 5/6

6.6.3.2 Simulation Results

The performance of the proposed optimization solution is presented in terms of throughput

efficiency and the probability of packet erasure to assessed its reliability. Furthermore, the

energy allocation strategy resulting from our algorithm to maximize the throughput is for

different SNR levels.

We compare in figure 6.10 our results to those obtained in [145] based on the Lagrange

multipliers for simple ARQ protocol. It is clearly shown that the proposed GA-based opti-

mization approach outperforms the Lagrange-based one at almost the whole considered SNR
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range starting from 3dB and 6dB in the static channel and fading channel, respectively, real-

izing a gain that reaches 5dB at high SNR values. Below these SNR values, the benchmark

realizes a slight gain of about 1dB in both channels. We also note that the static channel

reaches the possible highest efficiency, while in the fading channel the curves stagnate at a

lower value due to the higher channel power that further weakens the SNR level.

In figure 6.11, we depict the results in the case of HARQ-I compared to the results presented

in [146]. Consistently with the previous figure, we observe that the proposed GA-based solution

provides higher throughput efficiency starting from an SNR value of 5dB, yet with a lower gain

compared to the results in figure 6.10. The proposed solution achieves a gain of about 2dB

and 5dB in the static and fading channels, respectively.
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In both the proposed solution and the considered benchmark, we observe that the perfor-

mance of HARQ is better than those of simple ARQ for low and moderate SNR (γavg < 10dB)

because the standard deviation of the SNR is higher. On the other hand, for higher SNR

values (γavg > 10dB), we note that simple ARQ provides higher throughput efficiency, and the

difference compared with HARQ is smaller for fading channel because the average energy Eavg

available to be allocated is high and judiciously partitioned.

To assess the performance of our approach in terms of packet loss, we depict in figure 6.12

the probability of packet erasure as defined in equation (6.11) in the two considered channels.
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This adds value to the performance evaluation by giving an idea about the loss in terms of

data. It can be seen that as the average SNR value γavg increases, error-free packet reception

becomes higher, and hence the probability that a packet is thrown after N transmission trials

is decreased. The URR operation, for which Ploss < 10−5, starts from SNR values of 7dB and

13dB in static and fading channels, respectively.

Figure 6.12: Probability of packer erasure for PC-AMC-HARQ type I of the proposed GA-
based approach, Q=120, static and fading channels, N = 3.

Figure 6.13 presents an optimal distribution of the available energy budget among all allowed

transmission attempts determined using the proposed GA-based optimization algorithm. The

figure depicts three scenario corresponding to a) low average SNR (γavg = 0), b) medium

average SNR (γavg = 10), and c) high average SNR (γavg = 20). At low SNR, we note

that most of the energy budget is allocated to the first transmission. This will increase the

probability to succeed packet transmission from the first transmission as the energy budget to

allocate to subsequent transmissions is limited. Usually, if the first attempt is unsuccessful,

although it has been allocated the greatest portion of the energy budget, it is undoubtedly not

necessary to go through other attempts with lower energy levels.

In figure 6.13.b) it is shown that for medium SNR values, the algorithm equally distributes

the available energy budget throughout the three transmission attempts. Then in c), when

having a high SNR, an optimal solution can provide a decent energy portion during the first

transmission attempt without sacrificing the upcoming potential re-transmission attempts. In
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the case of unsuccessful transmission, more energy is allocated in the next attempt while

keeping the increase in total average energy cost moderate as re-transmissions probability is

very unlikely. Overall, for a medium energy budget, the optimization results in an intermediate

behavior between energy, which decreases per additional transmission attempt for low SNR,

and energy increase per additional attempt for high SNR as re-transmissions are more and

more unlikely.
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Figure 6.13: Examples of optimized energy budget allocation throughout (re)transmission
attempts for different energy average in static channel.
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6.7 Conclusion

In this chapter, we proposed a cross-layer algorithm to enhance the performance of the trun-

cated ARQ/HARQ protocols. In particular, we investigated throughput maximization through

an optimum combination of power control and adaptive modulation and coding under energy

constraints. Initially, we studied the optimization through PC for BPSK modulation only.

Then, we extended the study to cover both PC and AMC by involving more parameters in the

optimization problem.

Unlike conventional truncated ARQ, where the energy budget is divided into equivalent

partitions throughout all the transmission attempts, in our algorithm the total energy bud-

get is wisely distributed among potential re-transmission attempts with different partitions.

Furthermore, a specifically selected modulation order and code rate are used for each packet.

These parameters are judiciously chosen to maximize the throughput efficiency and ensure re-

liability through genetic algorithm based processing. We presented numerical results in terms

of throughput efficiency and the probability of packet loss. Our solution revealed a significant

throughput improvement, especially for medium SNR, compared to the considered benchmark

that used the Lagrange multipliers optimization for both ARQ and HARQ type I. We also

considered the case of static channel and fading channel to cover a more realistic scenario

assuming partial CSI knowledge, where only the SNR value is known.
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Chapter 7

Resource Allocation in Energy

Harvesting WBAN for E-Health

Systems

7.1 Introduction

In e-Health platforms, the energy supply for sensor nodes is one of the major hurdles to offer

sustainable services. In addition to harvesting energy from the environment, sophisticated

processing and transmission techniques are required. To maximize the uninterrupted network

lifetime, we here use dynamic time resource allocation based on the energy budget of each sensor

node. We present two centralized solutions based on heuristic and game-theory strategies.

The first solution models the energy harvesting process at each sensor as a discrete-time

Markov chain, and evaluate the net energy, defined as the gap between the consumed and

harvested energies at each time slot. By minimizing this gap, a source node will maintain a

sufficient energy level for a longer time after each packet transmission to the central node. The

optimization problem is therefore formulated to minimize the total net energy of all connected

nodes through packet transmission scheduling, subject to the requirement of energy availability.

We then develop a heuristic algorithm to solve the optimization problem in a central manner

based on the energy levels received at the Central Node (CN) [43].
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A first price game theory Sealed-Bid Auction-Based (FPSBA) is also proposed to solve the

same problem, yet contrarily to the first solution, it uses the frame structure of the IEEE

805.15.4 standard. The game model comprises a set of players, presented by the sensor nodes,

which can act to either transmit data or harvest energy. The FPSBA is modeled by one

auctioneer, which represents the CN and the set of players that compete for time slices. Only

the players with the minimum required energy level are allowed to bid during an auction.

Among them, the auctioneer chooses the bidder with the maximum instantaneous energy for

data packet transmission [44].

7.2 Related Works

The purpose of a health monitoring system is to provide cost-effective health services to anyone,

anywhere, and at any time. At the end user side, low-power, high reliability, and energy

efficiency are important aspects in health monitoring systems to ensure service sustainability

[167, 174], and prevention and early detection of diseases [170], [171]. In [173], the authors

studied steady-rate optimization to minimize the source rate fluctuation with respect to the

average sustainable rate, to provide uninterrupted service. Later, in [179], the authors proposed

the optimization of time slot allocation to minimize the packet loss due to energy run-out. The

two works used the Markov chain for modeling the energy harvesting process and used an

analytical resolution in [173] and a heuristic algorithm in [179]. The work in [169] presented an

optimal packet scheduling problem in a single-user energy harvesting wireless communication

scenario. The work adaptively changes the transmission rate according to the traffic load and

available energy, such that the time by which all packets are delivered is minimized.

Game theory has been also used in communication protocol for a better payoff, for example

throughput, latency, energy, etc. In [180] the authors survey the use of game theory to solve

the problems of energy efficiency, security, and pursuit-evasion games in sensor networks. For

example, a well-known equilibrium concept is the Nash equilibrium. A player will receive an

optimal or fair payoff given other players’ strategies if the equilibrium point is reached. The

authors of [181] demonstrated the applications of game-theoretic models to study the radio

resource allocation issues in the context of D2D communication and proved ow game models

can provide distributed solutions to the resource allocation problems. Further, the work in [182]

investigates the suitability of using online auctions to allow sensors to acquire preferential
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access to network resources. A framework is presented that allocates network priority to sensor

devices based on their characteristics such as cost, precision, location, significant changes to

readings, and amount of data collected. These characteristics are combined to form the value

for a particular sensor’s bid in an auction. The sensor with the highest bid wins preferential

access to the network. Priority can be dynamically updated over time with regard to these

characteristics, changing conditions for the phenomenon under observation, and also with input

from a back-end environmental model.

7.3 Network Lifetime Maximization using Heuristic Algorithm

To ensure a sustainable service, we here use a heuristic algorithm, which is designed to solve a

problem in a faster and more efficient fashion than traditional methods by sacrificing optimality,

accuracy, precision, or completeness for speed [43].

7.3.1 System Model

As shown in figure 7.1, we consider a WBSN with a star topology composed of one Central

Node (CN) or Hub node and N sensors indexed by n ∈ {1, 2...N}. All sensor nodes transmit

their data packets periodically to the CN, which will forward the assembled data to the back-

end health care system. This work is predominantly focused on the former part that concerns

the energy harvesting based WBSN.

The WBSN exploits Time Division Multiple Access (TDMA) in the same frequency channel,

which allows all sensors to transmit at different time slots and avoid collision within each

frame [175]. In the considered model, the time resource is organized in a superframe composed

of Nf frames. During one frame, a sensor node is allowed to occupy only one time slot to send

its packet, while it harvests energy during the other N − 1 time slots of the frame [43].

We assume that the CN has sufficient energy, while each sensor node is equipped with

a rechargeable battery and an associated energy harvesting device. The process of energy

harvesting at a sensor node n can be modeled in a discrete time manner using a Markov

chain presented by {Sn, Qn}, where Sn is the set of states of the Markov chain and Qn is the

transition probability matrix of the Markov chain [20]. We use sn,t{sn,t ∈ {1..Sn}} to denote
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Figure 7.1: Body Sensor Network in pervasive health monitoring system [177]

the state of sensor n at the time slot t, during which the node n is harvesting energy at a

constant recharging rate β
(sn,t)
n . The states in Sn are organized in such an ascending order

that β
(1)
n ≤ β

(2)
n ... ≤ β

|Sn|
n where |Sn| is the number of the states in Sn. Furthermore, the

sensor n transfers from the state sn,t to the state sn,(t+1) with the probability Qn(sn,t,sn,t+1) in

the next frame.

We denote the initial energy at the battery of each sensor node by Einit
n (0) and the instan-

taneous energy at time slot t by Einst
n (t), which is obtained as

Einst
n (t) = Einit

n (0) +
t−1∑
i=1

EHn (i)−
t−1∑
i=1

ECn (i), (7.1)

where the first summation term stands for all the energy, the sensor n harvests using energy

harvesting device before transmission block t denoted as EHn , and the second summation term

stands for all the energy consumed by the sensor n, before time slot t. At the time slot t,

ECn (t), is defined as the energy amount composed from the sensing energy Esens
n (t) and the

transmission energy Etrans
n (t). The sensing energy is proportional to the source rate rn at

sensor n . The transmission energy also depends on the source rate and on the path loss model

of the wireless channel in body sensor networks, and it represents the largest portion of the

energy consumed by a sensor node. The path loss in a WBSN can be modeled as [186]

PL(dn) = PL(d0) + 10mplog10(dn/d0) +Xσ, ∀n ∈ N, (7.2)
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where dn stands for the distance between sensor n and the CN, PL(d0) is the reference path

loss at distance d0, mp is the path loss exponent [172], and Xσ is a zero-mean Gaussian random

variable. The total energy consumption at sensor node n is then given by

ECn (t) = Esens
n (t) + Etrans

n (t) = ψnrn + (θn + ηnd
mp
n )rn, (7.3)

where ψn stands for the sensing energy per bit, θn is the energy cost of transmitting electronics

of sensor n, and ηn is a coefficient term corresponding to the energy cost of transmit amplifier

at node n. The source rate considered in this work is modeled respecting the analysis in [173]

such to assign a fixed rate to each sensor depending on the type of gathered informations.

7.3.2 Problem Statement

The purpose of this work is to find the optimized scheduling for sensor nodes that maximizes

the network lifetime and hence ensure service sustainability. The network lifetime is here

defined as the duration of time before the earliest node depletes its battery and therefore, the

duration of time before the first node in the network becomes unavailable due to its energy

replenishment [166].

In order to maximize the network lifetime, a sufficient energy level has to be maintained at

all sensor nodes, through the whole superframe. The idea of our work is to select nodes having

the lowest gap between the consumed energy and the harvested energy to transmit their data

packets first. This will help nodes with a high gap to reduce the difference between consumed

and harvested energies during one superframe and hence increase their chances to transmit

data at each frame to ensure service sustainability.

Let us introduce the net energy E
net(t)
n as the energy resulting from the difference between

the energy consumed ECn (t) and energy harvested EHn (t) expressed as

Enet
n (t) = ECn (t)− EHn (t). (7.4)

Note that reducing the net energy of nodes within each frame avoids the nodes from running

out of energy and augments their lifetime. Maximizing network lifetime is then achieved by

minimizing the sum of net energies at all sensor nodes. Therefore, the optimization problem
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can be formulated as below

min
υ

Enet
tot (t) =

N∑
n=1

ECn (t)− EHn (t) (7.5)

S. T.

Eres
n (t− 1) ≥ ECn (t), (7.6)

Eres
n (t) = Einst

n (t)− EWn (t), (7.7)

N∑
i=1

υ(i, j) = 1, ∀j ∈ [1, ..., Nf ], (7.8)

where υ is the optimization variable, which we define by a bitmapping matrix of sensor nodes

in rows and time slots in columns.

To avoid congestion and guarantee that only one sensor node occupies a time slot, the sum

of each column must be equal to 1. This condition is expressed in the constraint (7.8) of the

optimization problem. The energy values introduced Eres
n (t) and EWn (t) stand for the battery

residual energy level at time slot t and the value of energy wasted due to battery overflow,

respectively. The constraint (7.6) is set to ensure that the residual energy of sensor n at time

slot t is greater than the energy to be consumed for data packet transmission. If this constraint

is not satisfied, the data packet transmission of sensor n will be delayed so that the sensor node

n harvests energy during time slot t and attempts to transmit during the next time slot.

7.3.3 Time Slot Allocation Algorithm

In this section, we present the heuristic algorithm proposed to find the optimal solution for

maximizing network lifetime in the considered WBSN model. The proposed solution is referred

to as Net-E approach. The main idea is to find the optimal scheduling of sensor nodes during

each frame while minimizing the total net energy in order to avoid energy run out. This

problem can be treated as separate sub-problems for each node apart to minimize the net

energy at each sensor node.
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At the beginning, all sensors have the same energy level. Based on the evaluation of net

energy Enet
n , the CN will select the sensor node that will transmit first. While the selected

sensor node is transmitting during time slot t, the other nodes, whose net energy is higher

than the selected one, gather energy and hence reduce the gap between consumed energy and

harvested energy for the current frame.

We state our algorithm for the general scenario in Algorithm 1. As each sensor node is

allowed to transmit one packet per frame, the proposed algorithm starts by computing the net

energies of the N sensor nodes at the start of each frame among the Nf frames. The node with

minimum net energy is selected for possible transmission. Then, the consumed energy ECn (t)

is compared to the residual energy in the battery of the selected node. If the residual energy

Eres
n (t− 1) is higher than the required energy, the selected node is scheduled at time slot t and
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the energy level is updated for all N nodes.

Otherwise, the node with minimum net energy among the N − 1 remaining nodes will be

selected as a candidate to occupy the time slot t. This processing is repeated among all nodes

until a node satisfies the selection criteria (minimum net energy among all nodes and sufficient

residual energy). If at a time slot t within a specific frame, none of the N nodes has sufficient

energy, the channel will not be used during that time slot and all nodes will devote the time

slot to harvest energy. At the end of the frame, the nodes with insufficient residual energy

level will incur packet loss.

7.3.4 Performance Evaluation

In this section, we present simulation results to evaluate the performance of the proposed

algorithm in terms of the probability of packet loss due to energy run. Simulations are carried

out using MATLAB and are averaged over 105 trials [44]. We also evaluate the uninterrupted

lifetime of each sensor and present a comparison of network lifetime with the work in [173] and

present the residual energy level Eres
n (t).

7.3.4.1 Simulation Parameters

We deploy a five-sensors WBSN in health monitoring applications with typical sensors for

body temperature, pulse oxygen, blood pressure, ECG, and EEG. Sensor nodes are located at

distances uniformly distributed between 0.3 and 0.7m to the CN [186] and generates data at

different source rates rn, n ∈ {1, ...N} selected as determined in [173]. The initial energy of

each sensor node is set to 0.1J, while the maximum battery capacity is 0.11J and the minimum

energy required for each sensor node is 0.01J. In the considered WBSN, we assume that typical

energy harvesting devices are vibration-based energy harvesters, which generate the power

using human body motions during activities of daily living. Hence, we assume all sensor nodes

are equipped with the same vibration-based energy harvesting device and model the processing

by a two-state Markov chain, where the first state represents a non-actively recharging state

and the second state represents an actively recharging state [20]. The transition probability

from state 1 to state 2, Qn(1,2), is uniformly distributed between 0.6 and 0.8, and the transition

probability from state 2 to state 1, Qn(2,1), is uniformly distributed between 0.2 and 0.4. In

order to simulate the variations of transmission power consumption caused by the variations
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Table 7.1: Uninterrupted lifetime

sensor 1,2,3 and 4 5

Steady rate ∞ 3395 s

Irregular rate ∞ 3075 s

of the distance and the direction, we change the transmission power consumption model at

sensor n to Etrans
n (t) = ΩEtrans

n (t), where ω is a Gaussian random variable with a variance of

σ2
Ω = 0.01 and a mean of µΩ = 1.

As vibration-based energy harvesters generally remain at the same state for a time interval

between 1 and 10s, we fix the time slot length to 5s. During a time slot, the energy recharging

rate β, the distance, and the direction from a sensor node to the CN remain unchanged.

7.3.4.2 Performance Evaluation

To assess the impact of source rate on the uninterrupted lifetime, we present the maximum

uninterrupted lifetime of the proposed algorithm and compare it to the benchmark [173] in

table 7.1 and table 7.4 respectively. We recall that the uninterrupted lifetime of a sensor is the

duration from the start time of the sensor functioning to the time when its energy level reaches

a value below the minimum energy required for it, which is set to 0.01 J in our network and 0

J in [173].

Table 7.1 depicts the maximum uninterrupted lifetime of all sensors for the considered

network in the cases of steady and changing source rates. Each sensor n generates data with

an irregular source rate higher than the steady source rate. We note that all sensors, except

sensor 5, have an infinite lifetime respecting the considered scenarios for steady and changing

source rates. However, the energy level of the battery of sensor 5, which generates a higher rate

compared to the other sensors, reduces less than the threshold required to transmit. This leads

to mean lifetime values equal to 3395 s and 3075 s for steady and irregular rates, respectively.

Table 7.2 presents the trade-off between the source rate r and the lifetime of one sensor node

and shows the comparison of the proposed algorithm with the considered benchmark [173].

The table shows that, for the same parameters, the uninterrupted lifetime evaluated for sensor

3 is reduced as the source rate is increased for the considered benchmark, while it shows

sustainability in the proposed algorithm. Indeed, when the source rate of sensor 3 is below 1574
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bps, the uninterrupted lifetime has an infinity value for both algorithms. Beyond this rate value,

the sensor runs out of energy at 13228 s in the algorithm of the considered benchmark [171].

In the proposed algorithm, the lifetime remains uninterrupted which ensures sustainability.

Further assessment was carried out for sensor 3 using the highest rate in table 7.4 (1695 bps)

for 108 seconds and has also shown an uninterrupted lifetime.

Table 7.2: Relationship between the source rate and the lifetime (in second) of one sensor

Source rate [bps] 847 1090 1332 1453 1574 1695

Benchmark [173] ∞ ∞ ∞ ∞ 13228 6614

Proposed NET-E ∞ ∞ ∞ ∞ ∞ ∞

To examine the instantaneous residual energy, we set Nf = 100 frames as a superframe

length. We then present the variations of energy level at the batteries of sensors in Figures 7.9

and 7.3 for one realization and when averaged over 105 iterations, respectively. Consistently

with the lifetime assessment, we note that the energy level at the battery of sensor 5, with

the highest rate, decreases continuously, which explains the lifetime interruption presented in

table 7.1 for this sensor.

Figure 7.2: Instantaneous residual energy
variations during 100 frames of 5 time slots
each.

Figure 7.3: Averaged instantaneous resid-
ual energy level variations during 100
frames of 5 time slots each.

Indent that, if the net energy (Enet) is positive, during one frame, the residual energy

level at the battery is decreased as the consumed energy is higher than the harvested one.

Otherwise, the residual energy level is increased as the consumed energy is smaller than the
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harvested one. The variation of the energy level is bound by the maximum battery capacity

0.11 J, which may lead to energy waste if the battery energy level reaches its maximum while

the node is harvesting energy. As shown in Figure 7.3, sensors 1,2,3, and 4 are overflowed,

while sensor 5 whose rate is much higher leading to higher energy consumption does not exceed

the maximum energy level.

Figure 7.4 presents the packet loss probability due to energy run out in the case of steady

and irregular data rates for a superframe of length Nf = 200 frames. It is worth noting that

no packet loss is recorded until the frames of numbers 144 and 148 for the steady and irregular

rates, respectively. At these frames, the packet loss probability has a value equal to 2.10−6 and

it increases in time as the energy level decreases to values below the amount of energy required

to transmit a packet. The loss probability rises continuously to reach 2.10−3 for irregular rate

and 3.10−4 for a steady rate and stagnates at these values. The loss probability is averaged

over all sensors to show the whole network performance. However, only sensor 5 experiences

the packet loss effect due to energy run out as shown in Table 7.1.

Figure 7.4: Probability of packet loss due to energy run out.

7.4 Network Lifetime Maximization using Game Theory

Game theory is a mathematical method to study the interactions between several decision-

makers who have conflicts or common interest. A game theory model is carried out for better

optimization when a group of players are involved in a game to select either cooperate or not
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cooperative means to obtain better result with some specific strategy among the players [44].

In this section, we use the auction-based technique for energy harvesting in WBAN. Par-

ticularly, we exploit an auction-based algorithm to maximize network lifetime. Through First

Price Sealed Bid Auction, the nodes entrust themselves to the central node to allocate the

slices in an adequate way according to game rules. These rules will limit the packet loss as

the results will be shown and the overlap of sending between the nodes and guarantee the

maximum sufficient energy harvest possible to maintain a sustainable energy level.

7.4.1 System Model

Similarly to the first solution, we consider a WBAN with a star topology composed of CN andN

sensors indexed by n ∈ {1, 2...N}. All sensor nodes transmit their data packets periodically to

the CN, which will forward the collected data to the medical center. We assume that each sensor

node n is equipped with a rechargeable battery and an associated energy harvesting device

to replenish energy from the ambient environment. We opt for the same energy harvesting

modeling as in section 7.3.1, while we adapt the herein presented solution to the standardized

frame of the IEEE 802.15.4 network.

The IEEE 802.15.4 is the standard designed to support low data-rate and low energy ap-

plications in WBAN. IEEE 802.15.4 specifies Medium Access Control (MAC), Physical Layer,

non-beacon-enabled mode, and beacon-enabled mode. In non-beacon-enabled mode, MAC is

based Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA). In beacon-enabled

mode, the Central Node (CN) transmits beacons periodically to synchronize with sensor nodes.

Since the beacon-enabled mode transmits well-timed data packets, we adopt this model in this

work. The superframe of IEEE 802.15.4 is divided into an active period and an inactive period

as shown in fig. 7.5. Each superframe is between two beacons generated by the CN. The

superframe is divided into equal 16 slices [183]. During the active period, the sensor nodes

request the CN for slices to transmit their data packets. In the inactive period, the sensor

nodes harvest energy [44]. In the considered model, the time resource is organized in a super-

frame F divided into Nf slices, each has a duration of T . During one superframe, specifically

on the active period, the CN allows a sensor node n to allocate S slices for its data packet

transmission, while it harvests during the other Nf − S slices of the superframe.

In table 7.3, we depict an example of time resource allocation throughout the whole super-
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Figure 7.5: Frame structure of WBAN based on the standard IEEE 805.15.4.

frame for a WBAN composed of 4 sensors. To guarantee that each slice τ is allocated by only

one sensor node n and avoid congestion, the sum of each column is equal to 1. We denote

τn = Snτ as the time allocated for the nth sensor that spans Sn slices.

Table 7.3: Example of time slot allocation.

Time slice τ 2τ 3τ3 ... Nf

Sensor 1 0 0 1 ... 0

Sensor 2 1 0 0 ... 0

Sensor 3 0 0 0 ... 1

Sensor 4 0 1 0 .. 0

Column Sum 1 1 1 ... 1

7.4.2 First Price Sealed-Bid Auction Modeling

In Health care systems, the major goal is to provide sustainable service for all patients via

network lifetime maximization to continuously transmit all data packets to the medical center.

The network lifetime is here defined as the duration until the energy level of the first sensor

node becomes insufficient for packet transmission.

7.4.2.1 Game Model

A game model comprises a set of players, and an auction-based game theory model is rep-

resented by a set of players, a set of actions available for each player, a utility function cor-

responding to each combination of actions, and probability distributions associated with the

types [187]. Generally, the players are the buyer(s) and the seller(s). The FPSBA is modeled

by one Auctioneer, which represents the CN and N sensor nodes that are bidding for the same

resource at the same slot τ as illustrated in figure 7.6. Its principal idea is to allow the resource

owner (i.e CN) to choose the bidder (i.e sensor node n) with maximum instantaneous energy

Einst
n at a specific time of bidding and enter the auction for data packets transmission.
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Figure 7.6: First price sealed-bid auction mechanism.

7.4.2.2 Parameters Definition

The goal for sensor nodes is to reach the optimal allocation during each superframe. The

bidders follow a non-dominant strategy and their valuations are random variables. Bidders

are drawn from the continuous uniform distribution. Let us first recall some definitions and

related structures associated with an FPSBA based game theory:

• Players : In our model, we assign a sensor node n as a bidder and CN as an auctioneer

which owns the resource units (i.e slice τ) as shown in figure 7.6. We define N as a finite

set of bidders, n = {1, 2, ..., N}.

• Strategy : The set of Actions available for each bidder n (i.e sensor’s state). It determines

the activities of each sensor node during the auction. Each bidder n has two possible

actions (transmission state T or harvesting state H as shown fig 7.7) at each auction. If

it is in state H, it collects the energy to attain a sufficient energy level. Otherwise, in the

T state, it will transfer the data packets to the medical center.

Figure 7.7: Strategy matrix for one sensor during all Nf slices.

The actions number will be equal to 2Nf . We use sn,τ{sn,τ ∈ {1..Sn}} to denote the

state of a bidder n at the slice τ , which represents all the combination of H and T states

for the Nf slices where Sn = 2Nf . The bidder n is harvesting energy at a constant

recharging rate β
(sn,τ )
n . We define Pn as the state transition probability matrix of the

sensor n. Based on the values on Pn, the bidder moves from the state sn,τ at the instant

τ to the state sn,(τ+1) at the slice τ + 1 with the probability Pn(sn,τ ,sn,τ+1). During each
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time slot, one bidder n will win and be in the transmission state, while the other bidders

will be in the harvesting state as shown in figure 7.8 for an example of two players and

different transitions between the two possible states. Therefore, the equilibrium consists

of choosing the best strategy depending on a given utility.

Figure 7.8: Example of the Matrix utility.

• Utility : The aim is to maximize the utility function Un(s, τ) = Einst
n (τ) defined in

equation (7.7) to assist the CN to choose the sensor node with maximum instantaneous

energy Einst
n . The utility is then expressed as:


Un(s, τ) = Einst

n (τ) if Un(s, τ) ≥ Eth
n ,

Un(s, τ) ' 0 otherwise,

Eres
m (sn,τ)

Eres
n (sn,τ) ' 1, ∀m ∈M,n ∈ N,

(7.9)

where Eth
n is the energy threshold that is already set up by the CN to fix the minimum energy

level that the bidder must have to enter the auction. The parameter M stands for the number

of of sensor nodes with sufficient energy to enter the auction for the slice bidding procedure.

The eligibility criteria require bidders to have a sufficient energy level, i.e. Eres
m (sn,τ)

Eres
n (sn,τ) ' 1 to

ensure an energy level fairness within the bidders M and the rest of sensor nodes N . The

fairness criterion is necessary to ensure a more or less equitable energy level for all the sensors

who enter the auction or the others who are in a harvesting state. The sensors with high energy
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level will affect the next auctions. This criterion ensures the energy level sufficiency for each

bidder and avoid the energy run out.

7.4.3 Time Slot Allocation Algorithm

The auctions are held at a first price sealed-bid auction-based game theory. We here present

the proposed algorithm, which is presented in Algorithm 1, in detail to describe the auction

mechanism that enables a fair resource allocation while maximizing lifetime. In addition to

the parameters introduced in section II, we define δ as the optimization variable, which we

define by a bitmapping matrix of sensor nodes in rows and slices in columns, similar to the

one presented in table I [44]. To start the auction, the auctioneer CN announces the threshold

Eth
n for all the bidders to avoid the energy run out of bidders with insufficient energy. Slices

will be assigned to the N bidders with sufficient energy levels. Each bidder n knows only its

own bid’s valuation Einst
n without the knowledge of other bidders. At the beginning of each

auction among the superframe, the bidder n sends its energy information (EH
n (τ) , EC

n (τ)) to

the CN for instantaneous energy evaluation. Indeed, if the bidder’s residual energy is higher

than its consumed energy (Eres
n (τ) > EC

n (τ)), and the instantaneous energy is greater than the

threshold to insure the energy sufficiency (Einst
n ≥ Eth), the bidder n submits its instantaneous

energy E
inst(τ)
n for the slice τ as a bid. Therefore, the bidder n is moved to the set M and

enters the auction with the other bidders satisfying the entrance criterion. The auctioneer CN

determines for each slice τ which bidder n should transmit first based on its bid valuation.

The winner is the bidder n with maximum Einst
n .

Once a bidder n is allocated the slice τ , it transmits its data packets to the medical center

in the active period [44]. Otherwise, the CN gives the bidder n with higher energy consump-

tion Eres
n (τ) < EC

n (τ) and insufficient energy level the chance to reduce the gap between the

consumed and the harvested energy for the next data transmission by harvesting more energy

in the inactive period. At the end of each superframe, if a bidder n with an insufficient energy

level did not harvest the sufficient amount of energy, it will incur packet loss.
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7.4.4 Performance Evaluation

In this section, we present simulation results to evaluate the performance of the proposed

algorithm in terms of the uninterrupted lifetime of each sensor and present a comparison of

network lifetime with the heuristic solution presented in the previous section and [173].

We deploy a five-sensors WBSN in health monitoring applications with typical sensors for

body temperature, pulse oxygen, blood pressure, ECG, and EEG. Sensor nodes are located at

distances uniformly distributed between 0.3 and 0.7m to the CN [186] and generates data at

different source rates r selected as determined in [173]. The initial energy of each sensor node

is set to 0.1 J, while the maximum battery capacity 0.11 J, and the minimum energy required

for each sensor node is 0.01 J. We assume that each sensor node is equipped with the same

vibration-based energy harvesting device and model the processing by a two-state, where the

first state represents a non-actively recharging state and the second state represents an actively

recharging state. The transition probability from state 1 to state 2 is uniformly distributed
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between 0.6 and 0.8, and the transition probability from state 2 to state 1 is uniformly dis-

tributed between 0.2 and 0.4. To simulate the variations of transmission power consumption

caused by the variations of the distance and the direction, we change the transmission power

consumption model at sensor n to Etrans
n (τ) = ΩEtrans

n (τ), where ω is a Gaussian random

variable with a variance of σ2
Ω = 0.01 and a mean of µΩ = 1.

As vibration-based energy harvesters generally remain at the same state for a time interval

between 1 and 10 s, we fix the time slot length to 5 s. During a time slot, the energy recharging

rate β, the distance, and the direction from a sensor node to the CN remain unchanged.

Table 7.4 presents the trade-off between the source rate r and the lifetime of a sensor node

and shows the comparison of the proposed algorithm with the considered benchmarks. The

table shows that, for the same parameters, the uninterrupted lifetime evaluated for sensor

3 is reduced as the source rate is increased for the considered benchmarks, while it shows

sustainability in the proposed algorithm. Indeed, when the source rate of sensor 3 is below

1574 bps, the uninterrupted lifetime is of an infinity value for the three algorithms. Beyond

this value, the sensor runs out of energy at 13228 s and at 18676 s in [173] and the heuristic

solution, respectively. In the proposed algorithm, the lifetime remains uninterrupted which

ensures sustainability.

Table 7.4: Relationship between the source rate and the lifetime (in second) of one sensor

Rate [bps] 847 1090 1332 1453 1574 1695 1816

[173] ∞ ∞ ∞ ∞ 13228 6614 58

Proposed NET-E ∞ ∞ ∞ ∞ ∞ ∞ 18676

Proposed FPSBA ∞ ∞ ∞ ∞ ∞ ∞ ∞

To examine the instantaneous residual energy, the mean variations of energy level at the

sensors’ batteries for a time interval of length Nf = 100 frames is presented in figure 7.9

averaged over 105 iterations. Consistently with the lifetime assessment, we note that the mean

energy level of the sensors in approach [173] decreases continuously, which explain the lifetime

interruption presented in table 7.4. The approach we proposed in the first section exhibits a

higher mean energy level that decreases slower than that approach in [173], yet it is faster than

the proposed auction-based approach. This latter seems to have a constant pattern that always

keeps the mean energy level high and hence guarantee service sustainability. The variation of

the energy level is bounded by the maximum battery capacity 0.11 J, which may lead to energy
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waste if the battery energy level reaches its maximum while the node is harvesting energy.
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Figure 7.9: Variations of the mean instantaneous energy during 100 time slices.

7.5 Conclusion

In this chapter, we investigated network lifetime maximization with energy harvesting for

WBAN to provide sustainable health monitoring services. For this purpose, we proposed an

optimized time slots allocation schemes that allow to prioritize sensors with specific energy

qualification such as to allow sensors with insufficient energy level to harvest more energy

during one frame.

In particular, a first solution exploited a heuristic algorithm to allow sensor nodes whose net

energy is the lowest among all nodes. The net energy was defined as the difference between the

consumed energy and the harvested energy, which decreases in time as the node gathers energy.

Hence delaying the transmission of packets belonging to nodes with low net energy would allow

these nodes to provide sufficient energy to transmit during each frame. The second proposed

solution was based on game theory and it prioritized the sensor nodes having the lowest instan-

taneous energy among all nodes by First price sealed-bid auction-based. Through simulations,

we demonstrated that optimal resource allocation improves the system performances in terms

of sustainability.
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The performance was presented in terms of uninterrupted lifetime and packet loss probability

due to energy run out for the first solution. Compared to the considered benchmark, the two

proposed algorithms provided a longer uninterrupted lifetime. On the other hand, the second

solution provided a longer lifetime and a higher instantaneous energy level. Also, in the NET-E

solution, the longer uninterrupted lifetime was depicted in the packet loss probability of very

low values appearing after a relatively long period of operating.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

Introducing a revolutionary air interface that improves spectral efficiency and delivers mo-

bile communication with massive connections, high reliability, and low latency has intensively

driven research efforts on improving existing techniques and developing new ones to fit the

requirements of the 5G system. In this context, the contributions presented in the previous

chapters tackled sophisticated techniques to enable the deployment of IoT services, mMTC,

and URC.

Respecting the standardized LTE signal structure defined in Rel. 12, 13, 14, and 15, we

investigated synchronization, sector search, and neighbor discovery through theory and sim-

ulation. All considered methods respect the standard specifications and do not require any

additional resources to achieve the task. The presented synchronization issues concern pre-

viously proposed methods, yet new aspects are studied. First, we studied synchronization

exploiting the IEEE 802.11n standard, to which the reduced-complexity two-stage approach is

applied exploiting the repetitive structure of its preamble. The approach that provided satis-

factory performance in generalized OFDM systems, also showed its effectiveness in exploring

the potential of MIMO diversity in the IEEE 802.11n standards. Then, the performance evalu-

ation of the simply-differential and doubly-differential approaches was investigated to assess the

impact of a frequency offset on synchronization accuracy through both theory and simulation

in the LTE network. Further, multiple antenna configuration in the case of standardized EPA
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and ETU channel models is assessed and it showed the robustness of the approaches even at

very low SNR values. We also investigated the application of the simply-differential approach

to MTC to jointly provide time synchronization and sector identifier. The performance evalu-

ated through theoretical correct detection probability derived in its closed form, and compared

to the experimental probability showed that, when applied to the LTE signal specified for

MTC, the studied approach provided good detection accuracy with a perfect match between

simulation and theory.

Neighbor discovery for ProSe and V2X communications underlying cellular networks was

investigated by utilizing physical and MAC features of the newly introduced SideLink. A

theoretical study of single-round discoveries was presented in terms of discovery probability

under a simple cross-correlation and power-normalized-correlation applied on SRS and DMRS

sequences, respectively. The obtained results demonstrate that, when applied to the LTE

signal, the simulated probability agrees perfectly with the theoretical one, validating the anal-

ysis carried out and the approximated closed-form for any functional parameters. Also, the

multiple-round discovery was then considered to assess the performance of distributed and

network-assisted discovery strategies. In the distributed strategy, users continue to transmit

their discovery messages, which results in a high collision rate that delays the completion of

the discovery process of all users in the vicinity. In the network-assisted strategy, however, dis-

covered users are notified to cease sending their discovery messages, which leads to enhanced

performance. To present a realistic assessment of collision, we opted for a physical model in

addition to the typical legacy MAC model. Throughout the performance evaluation, both

low and high-mobility channel models were considered to cover both ProSe and vehicular use

case applications. Simulation results showed a noticeable improvement in the physical collision

model in all the considered scenarios.

Positioning and localization were also studied to improve system performance under Rice

channel models. First, we studied the maximization of coverage radius optimized through UAV

height based on a) the SNR level of an edge user and on b) the average rate of ground users

within a specific range. We showed that there exists a unique optimum height at which the

UAV should be located to maximize the deployment area. We also assessed the sensitivity of

the optimal position to the surface characteristics. Then, we considered the localization of a

stationary UE in a massive MIMO and mm-wave 5G system. A reduced-complexity processing

based on distance and AoA measurements was used to estimate the exact UE coordinates.

We showed that mm-waves provide better performance at high SNR values while cm-waves
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perform better at low SNR values. This behavior is justified by the sensitivity of mm-waves

to noise. On the other hand, the studied localization scheme showed robustness to channel

estimation errors.

We also proposed energy optimization and MCS selection solution for truncated ARQ/HARQ

protocols. The optimization aims to maximize the throughput efficiency by meticulously dis-

tributing the prescribed energy budget among all (re)-transmission attempts, while maintaining

a fixed total energy-per-packet cost. Furthermore, a specifically selected modulation order and

code rate are selected for each packet. These parameters are judiciously chosen to maximize

the throughput efficiency and ensure reliability through a genetic algorithm based processing.

We also considered the case of static channel and fading channel to cover a more realistic

scenario. Our solution revealed a significant throughput improvement for both throughput

efficiency and packet erasure probability, especially for low and medium SNRs, relatively to

the uniform energy allocation used in the conventional ARQ protocol. Initially, we studied the

optimization through PC for BPSK modulation only. Then, we extended the study to cover

both PC and AMC by involving more parameters in the optimization problem.

Finally, we investigated network lifetime maximization with energy harvesting for WBAN

to provide sustainable health monitoring services. For this purpose, we proposed an optimized

time slots allocation that allows to prioritize sensors with specific energy qualification such

to allow sensors with insufficient energy level to harvest more energy during one frame. In

particular, a first solution exploited a heuristic algorithm to allow sensor nodes whose net

energy is the lowest among all nodes. Then, a second solution that gives the priority to

the sensor having the lowest instantaneous energy among all nodes by First price sealed-bid

auction-based. The overall performance was presented in terms of uninterrupted lifetime and

packet loss probability due to energy run out for the first solution. The proposed algorithms

provided a longer uninterrupted lifetime, which is depicted in the packet loss probability of

very low values appearing after a relatively long period of operating.

8.2 Ongoing and Future Works

This manuscript covered several aspects in enabling techniques that hit the design and evalu-

ation of 5G systems performance, yet further investigation would add values to the achieved

results.
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Almost all the investigations concerning neighbor discovery considered perfect synchro-

nization, so extending the study to the case of unsynchronized neighbors UEs will provide a

complete and more realistic insight on the performance of the proposed approaches.

Also, localization was assessed assuming the presence of a LOS path in addition to scattering

multipath modeled by Rician channel. Ongoing works consider harsh channel conditions, where

only multipath Rayleigh propagation is available. To achieve accurate coordinates’ estimation

of obstructed UEs, we suggest a process that involves a minimum of two neighboring UEs who

are assumed to have sufficiently high received signal power allowing their localization based on

the RSSI measurement followed by AoA estimation beamforming processing as in [36]. Two

approaches are proposed for neighbor-assisted localization and are presented in [37] and [38].

Furthermore, localization in the context of UAV-assisted network is envisaged as the use of

flying platforms is increasing to offer an on-demand connectivity.

Aligned with the previous work in UAV positioning, we propose to study the optimization for

a more generalized environment, which respects a probabilistic propagation model that includes

rural and urban scenario, each with a specific probability. Then, the navigation trajectory of

a flying UAV will be considered for optimization. We envisage considering real cities’ maps.

These works are planned to be elaborated during a master project and extended to a PhD.

Finally, new research tracks have just been started. Particularly, the use of Blockchain for IoT

health applications to ensure secured resource allocation, in the context of the ongoing PhD

entitled “Resource Allocation for IoT Health Monitoring Applications with Energy Harvesting”

[188].

Further ideas in the previously mentioned research topics are either under investigation or

planned for the forthcoming period. In particular, social awareness in localization and discovery

procedures, Artificial Intelligence (AI) and Machine Learning (ML) in resources allocation,

beamforming and positioning. Ultimately, the research findings will be disseminated through

a variety of scientific publications in renowned journals/conferences.

Longer-term research agenda expands my central substantive area to more thoroughly in-

vestigate emerging technologies for the 6G system, including AI/ML for communications, un-

manned platforms, network automation, and autonomous electric vehicles. In keeping with my

past and current research experiences, I intend to initiate further collaborations and to develop

proposals for securing grants and funds from the transdisciplinary research efforts.
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