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Ècole doctorale : MADIS-631
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Abstract

Clustering reveals all its interest when the data set size considerably increases, since there
is the opportunity to discover tiny but possibly high value clusters, which can not be
detected with moderate sample sizes. However, the clustering of such high data volumes
encounters computational limitations, requiring extremely high memory and computa-
tional resources. Thus, current clustering algorithms need frugal implementations, also
demanded by institutions and industries to accomplish today’s eco-friendly policies. In
this context, Gaussian model-based clustering, a popular clustering technique based on
Gaussian mixtures, has required frugal adaptations to overcome these computational lim-
itations and to report, even in the huge data case, the same good performance achieved
in moderate size analyses. Such implementations are essentially based on subsampling
strategies, which manage to be frugal, but they are expected to heavily failed in highly
imbalanced cluster case. Thus, in this work, we propose a frugal technique, based on a
so-called bin-marginal data-compression, to perform Gaussian model-based clustering on
huge and imbalanced data sets. After a preliminary analysis on simple univariate set-
tings revealing the potential of our solution (here, based on univariate binned data), we
extend our proposal to multivariate data sets, where bin-marginal data are employed to
perform a drastic reduction of the data volume. Despite this extreme loss of information,
we prove identifiability property for the diagonal mixture model and we also introduce
a specific EM-like algorithm associated to a composite likelihood approach guaranteeing
frugality. Numerical experiments highlight that the proposed method outperforms sub-
sampling both in controlled simulations and in various real applications where imbalanced
clusters may typically appear, such as image segmentation, hazardous asteroids recogni-
tion and fraud detection. Then, additional topics regarding model choice, the problem of
local maxima and the impact of our data-compression on clustering are dealt with a pure
experimental point of view. Finally, through a collaboration with a company specialized
in predictive maintanance, a practical application of anomaly detection on real time series
is shown, in order to extend the potential application domains of the proposal.
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Résumé

Par nature, le clustering révèle tout son intérêt lorsque le volume des jeux de données
augmente considérablement, parce qu’il y a ainsi l’opportunité de découvrir des classes
potentiellement petites mais inconnues jusqu’alors puisque indétectables avec des tailles
d’échantillons plus réduits. L’intérêt de telles classes peut être en outre inversement pro-
portionnel à leur taille, signe de phénomènes atypiques mais à forte valeur comme des
anomalies, des fraudes, etc. Toutefois, classifier de tels volumes de données peut facile-
ment rencontrer des limitations informatiques fortes, demandant en effet potentiellement
d’énormes quantités de mémoire vive et d’autres ressources informatiques substantielles
(calcul, énergie, flux). Par conséquent, si l’on souhaite effectivement mettre en oeu-
vre des algorithmes de classification sur de très grands jeux de données tout en limi-
tant les ressources informatiques à mobiliser (pour des raisons de coût ou d’écologie),
il est nécessaire d’envisager des approches beaucoup plus frugales que les approches
actuelles, tout en garantissant des résultats d’estimation de haute qualité. La classifi-
cation sur modèle de mélange gaussien étant certainement l’approche la plus populaire
(ne serait-ce par son lien structurel avec les méthodes de k-means), ce travail de thèse
explore prioritairement la frugalité du clustering dans ce cadre. Il est à noter que des
stratégies fondées sur de l’échantillonnage, bien qu’ayant de bonnes propriétés de frugalité,
doivent être écartées car elles s’avèrent incapables de détecter des partitions extrêmement
déséquilibrées, ce qui est un prérequis essentiel dans notre contexte. Par conséquent, dans
cette thèse, on adopte une stratégie frugale alternative qui repose sur une compression
des données à la fois par axes et par intervalles (on parle alors de “bin-marginal”). Après
une analyse préliminaire en situation simplifiée (univarié avec bins) qui révèle le poten-
tiel de notre proposition, nous abordons le cas multivarié (combinant cette fois bins et
marginalisation) qui sera le coeur de ce travail. Malgré la réduction extrême des données
permise par le “bin-marginal”, nous montrons que cette perte drastique d’information
n’est pas préjudiciable à l’objectif de clustering par mélanges gaussiens dans le cas diag-
onal. Dans un premier temps, nous montrons l’identifiabilité de ces mélanges diagonaux
et nous introduisons un algorithme spécifique similaire à EM mais associé à une approche
basée sur une vraisemblance composite qui s’appuie sur une garantie de consistance des
estimateurs. Des expériences numériques illustrent que notre méthode est beaucoup plus
performante que le sous-échantillonnage soit dans des simulations, soit dans des applica-
tions réelles où les classes sont fortement déséquilibrées par nature, comme la segmentation
d’images, la reconnaissance d’astéröıdes dangereux ou la détection de fraudes. Ensuite,
des sujets supplémentaires concernant le choix de modèle, la problématique des maxima
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locaux et l’impact de notre compression sur le clustering sont traités avec un point de
vue plus expérimental. Finalement, une application pratique de détection d’anomalies sur
des séries temporelles (potentiellement très volumineuse), et réalisée dans le cadre d’un
partenariat avec une petite entreprise spécialisée en maintenance prédictive, est menée
pour évaluer la potentialité de notre approche dans un domaine d’application connexe.
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Introduction

Clustering and all other analyses known as unsupervised learning aim to distinguish ho-
mogeneous classes among data, when data labels are not provided. Nowadays, these tech-
niques are intensively studied, as, in many contexts, it is impossible to do a data labeling,
especially in those cases where data size is prohibitive (millions or billions of records).
Actually, huge data sets are really common (Sagiroglu and Sinanc, 2013), thanks to the
technological development of the last decades. In addition to the impossibility of data
labeling, the analysis of such enormous statistical information is complex with traditional
methods, as classical clustering algorithms require too many computational resources
(time, memory and energy). This is also in contrast with the current eco-friendly policies
of many national governments and industries, which are searching for methods able to do
good statistical analyses without employing complex and wasteful technologies. Thus, in
this thesis, we focus on methods able to perform clustering on huge data sets frugally,
i.e., exploiting only the limited computational resources of a standard laptop.

The aim of this thesis is to propose a frugal approach for model-based clustering.
This is a way of clustering which has become popular because it allows a well-posed
mathematical definition of the clusters, thanks to the use of Gaussian mixture models,
for instance. Model-based clustering has proved to be successful in case of moderate size
data sets, but its common frugal specifications can be inefficient, especially if the data
set to analyze is imbalanced. These kinds of data, where there is one class composed by
very few elements in comparison to the others, can be collected in different fields, such
as anomaly or fraud detection. In general, imbalanced data appear in all contexts where
very few “abnormal” objects have to be recognised among a large amount of “normal”
ones. Thus, in this thesis, we provide a frugal method for model-based clustering which
can be applied even on such huge imbalanced data sets.

This work is organised as follows. In Chapter 1, we define our framework, reviewing
current clustering algorithms with particular emphasis on ideas to make clustering frugal
and on model-based clustering. We also provide the mathematical tools that are essential
for the rest of the work. Then, we specify the motivations of the thesis and its main
contributions. It is in this part that we introduce binned data, whose use is crucial
for our frugality purposes. Indeed, the artificial construction of binned data let us to
obtain a heavily-reduced data set which can be clustered frugally. In Chapter 2, we
apply this idea in two simple practical situations. Firstly, we estimate a single univariate
Gaussian, investigating both the theoretical properties of the estimators in presence of
binned data and the influence of the binning grids on the estimation. Then, we pass to the
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mixture case (still univariate), illustrating a suitable algorithm of estimation which lets
us appreciate for the very first time the benefits of our proposal in terms of efficiency and
frugality. In Chapter 3, we present our main contribution, that is a technique to cluster
multidimensional huge data sets (mainly imbalanced). Here, we discuss why a simple
multivariate extension of the binned solution provided in Chapter 2 is not possible and
how we can cope with it using our principal contribution. We also discuss some theoretical
aspects of the models involved, including identifiability. Finally, extensive numerical
simulations and real applications are provided in order to quantify the frugality of the
method and its advantages with relation to concurrency, especially in presence of cluster
imbalance. In Chapter 4, further topics regarding local maxima, model and grid choice
are dealt with, essentially from a numerical point for view. In Chapter 5, we complete the
work showing a possible application of our proposal on real cases of anomaly detection in
time series. In the final chapter, we briefly summarize the main results contained in the
thesis and its perspectives for future research.

List of contributions The content of this thesis is based on the following contributions
listed below:

- Chapter 2 is based on the work ”Estimation of univariate Gaussian mixtures for
huge raw data sets by using binned data sets”, F. Antonazzo, C. Biernacki and
C. Keribin, submitted to JDS 2020-52ème Journées de Statistiques de la Société
Française de Statistique.

- Chapter 3 is based on ”Frugal Gaussian clustering of huge imbalanced data sets
through a bin-marginal approach”, F. Antonazzo, C. Biernacki and C. Keribin,
submitted to Statistics and Computing (under revision).
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Chapter 1

Background and motivations

In this chapter, we illustrate the state of the art in clustering for very large data sets. In
particular, we discuss the main ideas to make clustering frugal, with particular emphasis
on our framework of reference, the model-based clustering. In the same chapter, we
introduce binned data, giving both definition and formal notation, on which we base the
techniques proposed in the next chapters. We conclude with a brief presentation of the
contributions contained in the thesis, explaining why they are introduced.

1.1 Clustering

Clustering is a very common statistical technique consisting in dividing a data set D into
a partition {Ck ⊂ D, k = 1, . . . , K}, where Ck, k = 1, . . . , K are K groups that are ho-
mogenous according to a certain criterion of similarity between the elements. Different
approaches for clustering can be identified: the most common are partitioning, hierarchi-
cal, density-based, model-based. Despite a wider description of each clustering methods
could be interesting, this is not the aim of the chapter. We prefer giving in the next para-
graphs an illustration of the best-known algorithms for each approach in order to provide
their distinctive notation. This is useful to describe the frugal methods of the follow-
ing sections. Furthermore, we reserve for model-based clustering a stand-alone section,
because this thesis is mainly based on this approach.

1.1.1 Partitioning clustering

In this kind of clustering we divide the initial data set into a partition of K subgroups
that minimizes a certain cost function. This partitioning is usually conducted iteratively
until its stabilization and the number K is a-priori fixed. In this section, we describe two
famous basic algorithms: K-means (MacQueen et al., 1967) and K-medoids (Kaufman
and Rousseeuw, 1990).

K-means K-means is recognised as one of the oldest clustering algorithms. Its main
idea is quite simple: it associates each point to the cluster with the nearest mean point
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(or center) respectively to the Euclidean distance d2(x,y) = ||x−y||2, where x,y ∈ RD.
Denoting the n data points as xi ∈ RD, i = 1, . . . , n, and with Ck, k = 1, . . . , K the K
clusters, K-means consists in these steps:

1. Initialization: fix a number K of clusters and select randomly K points ck ∈
RD, k = 1, . . . , K. These points are considered the means of the initial clusters.

2. Clusters formation: associate each point to the cluster with the nearest mean
according to the distance d2(·, ·).

3. Means update: update ck, k = 1, . . . , K with the means of the objects constitut-
ing the new clusters:

ck =

∑
i:xi∈Ck xi

|Ck|
,

where |Ck| is the cardinality of Ck.

4. Repeat 2-3 until no point changes cluster.

In Figure 1.1a an example of K-means clustering is depicted: the first two pictures (a-
b) refer to the initialization phase; the third picture (c) shows the initial clusters formation;
in the fourth picture (d) means are updated leading to the new clusters formation of
picture (e). The last picture (f) finally shows the recovered partition.

It is evident that K-means can not be used when categorical variables occur, as in
defining an Euclidean distance between categorical data points is not appropriate. It is
for this reason that K-medoids algorithm was introduced.

K-medoids A medoid of a cluster is a representative object of this cluster for which
the total distance or dissimilarity to all the objects of the cluster is minimal. Medoids
are similar in concept to means, but medoids are always restricted to be members of the
data set (Boehmke and Greenwell, 2019). A method of partitioning clustering based on
the search of medoids for K clusters is the K-medoids. A common implementation of K-
medoids is the PAM (Partitioning around medoids) algorithm (Kaufman and Rousseeuw,
1990), which we describe in the following. It starts selecting K initial medoids among
the data points and choosing a distance or dissimilarity function d(·, ·). It is possible to
choose any kind of function, so suitable distances (dissimiliarities) to analyze categorical
variables can be selected. Each medoid is denoted as mk, k = 1, . . . , K, and their set
as M. Given M, each data point xi /∈ M is assigned to the cluster Ck whose medoid
minimizes the distance function, in the same fashion of K-means. Given a set of medoids
M and a partition C1, . . . , CK , at each step a data point xi /∈ M is chosen to substitute
mk as new possible medoid. Considering xi as a medoid induces a new setM′ and a new
partition C ′1, . . . , C ′K . The idea is to substitute mk with xi if the following cost function

Cost(xi,mk) =
∑

l:xl /∈M′

∑
k′:xl∈C′k′

d(xl,m
′
k′)−

∑
l:xl /∈M

∑
k′:xl∈Ck′

d(xl,mk′)
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(a) (b)

Figure 1.1: Flowcharts of K-means (Chen and Lai, 2016) (a) and K-medoids (Choi and
Kwon, 2015) (b) applied on two bi-dimensional data sets.

is negative. We are ready to formalize the steps of PAM:

1. Initialization: Select K initial medoids among the data points.

2. Cluster formation: associate each point to the cluster with the nearest medoid
according to the distance d(·, ·).

3. Optimal new medoid search: for each medoid mk and non-medoid point xi
calculate Cost(xi,mk) and retain the couple (xi∗ ,mk∗) with the minimum cost.

4. Swap: if Cost(xi∗ ,mk∗) < 0 swap mk∗ with xi∗ and return to 2. Stop otherwise.

Figure 1.1b shows of a generic iteration of K-medoids: in this picture, all its character-
istic phases are depicted starting from the first two pictures on the top-left (initialization)
and finishing with the phase of swap represented in the central picture on the bottom.

Advantages and disadvantages Partitioning clustering algorithms have the advan-
tage of being very intuitive and very easy to implement (Tomar and Agarwal, 2013).
However, they encounter difficulties in detecting non-convex clusters and they are very
sensitive to outliers and initialization. In addition, the choice of the number of clusters
K has to be a-priori defined (Xu and Tian, 2015).

1.1.2 Hierarchical clustering

Hierarchical clustering (Murtagh and Contreras, 2012) orders data points in a tree struc-
ture, named dendogram. In this context it is important, once selected a distance function
d(·, ·) between two points, to define a distance between two clusters Ck and Ck′ , with
cardinalities |Ck| and |Ck′|, respectively. Examples of cluster distances are:
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• Single link: dS(Ck, Ck′) = minxi∈Ck,xl∈Ck′ d(xi,xl)

• Complete link: dC(Ck, Ck′) = maxxi∈Ck,xl∈Ck′ d(xi,xl)

• Average link: dA(Ck, Ck′) =

∑
xi∈Ck,xl∈Ck′

d(xi,xl)

|Ck||Ck′ |

According to the way of constructing clusters we distinguish between agglomerative and
divisive methods.

Agglomerative clustering Every algorithm starts considering each data point as a
single cluster, thus K = n. At each step the two points (or two clusters in successive
iterations) minimizing the chosen distance criterion are merged together. This process
continues until all the points are grouped into the same cluster (K=1). In this way, a tree
structure (the dendrogram) is obtained, because each cluster could be considered as the
parent node of the two clusters by which it is composed. The criterion of choice of the
best clustering is the following: it is recommended to select the partition corresponding
to the merging stage where the decrease in total cost function (sum of distance function
within of points) becomes negligible respectively to a certain threshold. A particular case
of agglomerative clustering is represented by the Ward’s method (Ward, 1963). In this
technique clusters are merged in order to minimize the increase of the intra-class inertia:

Ia =
1

n

K∑
k=1

∑
i:xi∈Ck

d(xi, ck),

where each ck is the mean point of the cluster Ck. This is also equivalent to maximize the
increase of the inter-class inertia:

Ie =
1

n

K∑
k=1

d(c, ck),

where c is the mean point of all data.

Divisive clustering This approach is the exact opposite of the agglomerative one:
it starts with a single cluster grouping all observations and at each step the cluster is
divided into two new clusters aiming to minimize a cost function based on a cluster
distance. Figure 1.2 synthesizes both agglomerative and divisive approach, representing
the dendrogram obtained for a clustering of seven objects. Despite it seems as intuitive
as the agglomerative approach, divisive clustering has not encountered the same success
in common statistical applications.
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Figure 1.2: Example of hierarchical clustering (both agglomerative and divisive) on seven
objects (Sembiring et al., 2011).

Advantages and disadvantages An advantage of this kind of clustering is that it
is not necessary to specify a-priori the number of clusters K, which is on the contrary
mandatory in partitional algorithms. Moreover, hierarchical algorithms can detect various
shapes of clusters (Xu and Tian, 2015; Tomar and Agarwal, 2013). However easy their
implementation may be, these procedures have a high time and memory complexities
(O(n3) and O(n2), respectively (Pandove et al., 2018)) and they are sensitive to outliers.

1.1.3 Density-based clustering

The algorithms belonging to this macro-group share the idea of considering clusters as
those areas of the observational space where density of points is higher. The formulation
of a density-based clustering procedure requires some initial definitions. We introduce
them in the context of DBSCAN (Density-Based Spatial Clustering of Applications with
Noise (Ester et al., 1996), which is the most popular density-based algorithm.

Before giving these definitions, we have to fix the two tuning parameters of DBSCAN:
a real number ε and a natural number M , whose meaning is specified in the following.
We also select a point distance d(·, ·), that could be, for example, the Euclidean distance.

Given a set of n data points xi, i = 1, . . . , n, we present the first fundamental definition:

Definition 1.1.1. Given a point xi, the ε-neighborhood of xi is the set of points Nε(xi) =
{xl : d(xi,xl) ≤ ε}.

This definition is necessary to operate a first distinction between the data points.
Indeed, all points xi such that |Nε(xi)| ≥ M are named core points and the remaining
ones are named border points. Another definition is:

Definition 1.1.2. A point xl is directly density-reachable from a point xi w.r.t. ε and
M if:
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1. xl ∈ Nε(xi);

2. xi is a core point.

This definition is generalized by the following one that involves chains of “reachable”
points.

Definition 1.1.3. A point xl is density-reachable from a point xi w.r.t. ε and M if it
exists a succession of points x1, . . . ,xS with x1 = xi and xS = xl, such that each point
xs+1 is directly density-reachable from xs for s = 1, . . . , S − 1.

It is clear that the relation of density-reachability is not symmetric. To cover this
case, a notion of density-connectivity is introduced.

Definition 1.1.4. A point xl is density-connected to a point xi w.r.t. ε and M if it exists
a point xs such that both xi and xl are density-reachable from xs.

Thanks to all of these definitions, it is possible to define what is a cluster in the
density approach. A cluster can be interpreted as a set of density-connected points which
is maximal respectively to the relation of density-reachability. In more formal terms:

Definition 1.1.5. Given a set of data D, a cluster C w.r.t. ε and M is a non-empty
subset of D satisfying the following conditions:

1. ∀xi,xl with i 6= l if xi ∈ C and xl is density-reachable from xi then xl ∈ C (maxi-
mality condition).

2. ∀xi,xl ∈ C with i 6= l, xi is density-connected to xl w.r.t. ε and M (connectivity
condition).

Once defined what is a cluster it is possible to name noise every point not belonging
to a cluster. Figure 1.3 represents all the key-components of DBSCAN: in picture (a)
a cluster is depicted; picture (b) shows a core point (in blue), while a border point is
depicted in picture (c) (in yellow); in picture (d) a set of density-reachable points is
represented.

Now, we describe briefly the main steps of DBSCAN:

1. Select arbitrarily a data point xi.

2. Find the list of points density-reachable from xi.

3. If xi is a core point, then this list of points forms a cluster, otherwise it is a noise
and we have to pass to the next point.

4. Repeat 1-3 until all points are processed.

In the original article of DBSCAN it is provided also an heuristic to choose the best
values for ε and M , the parameters which indicate how much “dense” the clusters should
be.
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Figure 1.3: An illustration of DBSCAN on a bi-dimensional data set (Entezami et al.,
2020).

Advantages and disadvantages DBSCAN does not require to specify at the begin-
ning the number of clusters K and it can also detect clusters of any shapes. It can also
manage well the presence of noise. However, it is highly dependent on the choice of the
distance d(·; ·) and it requires a huge amount of memory if the data set is very large (the
memory complexity is O(n2)) (Pandove et al., 2018; Tomar and Agarwal, 2013; Xu and
Tian, 2015).

1.1.4 Spectral clustering

Spectral clustering (Von Luxburg, 2007) has its roots in graph theory. A graph G = (V , E)
can be considered as a set of vertices V = {v1, . . . , vn} linked by a certain set of edges
E = {e1, . . . , em}. In general, an edge between two vertices vi and vl has a non-zero weight
wil, if this edge exists. Thus, it is possible construct a matrix W = (wil)i,j=1,...,n named
adjacency matrix containing all weights of the graph. If wil = wli for all i, l = 1, . . . , n
the graph is said to be undirected. It is also useful to define the diagonal matrix of
degree D = (di)i=1,...,n, where di =

∑n
l=1wil. Given a set of vertices V , the set of subsets

A1, . . . ,AP is a partition if Ap ⊂ V , p = 1, . . . , P , A1 ∪ · · · ∪ AP = V and Ai ∩ Al = ∅, if
i 6= l.

The idea of spectral clustering is to report the problem of finding homogeneous groups
among data to how to recover a partition in a graph. A graph partition has these char-
acteristics: the weights of edges between points belonging to the same Ap are low and
those ones between points of two different Ap and Ap′ are high. The first step to do is to
transform a set of data points x1, . . . ,xn into a graph. It is supposed that a similarity
function s(xi,xl) ( or a distance d(xi,xl)) has already been defined in order to associate
to every couple of points (xi,xl). Given this information, a graph can be constructed in
different ways. We highlight the most used.
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• ε-neighbourhood graph Two points xi and xl are considered as connected, if
their similarity (or distance) is less or equal to a certain threshold ε. In this case,
each edge has the same weight, 1 for instance.

• K-nearest neighbour graph In this case xi is connected to xl if xi is among the
K-nearest neighbours of xl (and/or vice versa). Then, the weight of this edge is
equal to the similarity s(xi,xl) (or distance d(xi,xl)).

• Fully-connected graph All points are connected and each weight wil is equal to
their similarity s(xi,xl) (or distance d(xi,xl)).

Once obtained a graph representation of data and the matrices W and D, it is pos-
sible to obtain a P -partition using the eigenvectors corresponding to the first P non-zero
eigenvalues of the matrix L = W −D, called Laplacian of the graph. Then, in order to
obtain a clustering partition, a clustering algorithm is performed on a data matrix of size
n× P, where the P columns are the P selected eigenvectors. Here is a brief formulation
of the simpler spectral clustering algorithm (Von Luxburg, 2007):

1. Define a similarity function s(xi,xl) or a distance d(xi,xl).

2. Build a graph representation of data points using one of the approach described
before.

3. Calculate the eigenvalues of the Laplacian matrix L and select the eigenvectors
a1, . . . ,aP corresponding to the first P ones.

4. Build the n× P matrix A = (a1, . . . ,aP ).

5. Perform a clustering algorithm with the number of groups equal to K on the data
contained in A. A partition C∗1 , . . . , C∗K is obtained.

6. Associate each point xi to the cluster Ck if the point corresponding to the i-th row
of A belongs to C∗k .

Figure 1.4 shows an example of spectral clustering applied to data depicted in Figure 1.4a,
where a naive K-means fails (Figure 1.4b). In the first step, the adjacency matrix W is
calculated (Figure 1.4c). Then, the first P eigenvectors of the Laplacian L = W −D are
extracted and stored in a matrix A (Figure 1.4d). Finally, a good clustering partition is
recovered by applying a clustering algorithm (here, a K means) on A (Figure 1.4e).

Advantages and disadvantages Spectral clustering can be used to detect clusters of
any shapes and it can deal with categorical variables (it can be based on similarities) and
with outliers. On the contrary, its time and memory complexities are high (O(n3) and
O(n2), respectively) and it highly depends on the choice of d(·, ·) (or s(·, ·)) and on the
number of selected eigenvectors (Pandove et al., 2018; Xu and Tian, 2015).
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Figure 1.4: An example of spectral clustering on a bi-dimensional set. (a) The original
data; (b) A bad partition obtained with K-means; (c) An extract of the adjacency matrix
W ; (d) An extract of the eigenvectors of the Laplacian L; (e) The recovered partition.
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1.2 Model-based clustering

In the previous sections we described clustering methods principally based on geometrical
heuristics, such as distances between the data points. Another way of clustering, the
model-based clustering, has become popular because it allows a well-posed mathematical
definition of the clusters. Indeed, it is principally based on maximum likelihood estimation
of finite mixture models (McLachlan and Peel, 2004), flexible models that are used in
several areas, including density-estimation and robustness analysis.

1.2.1 Models

Finite mixtures assume data come from K different sub-populations with different den-
sities fk(·,θk), k = 1, . . . , K of the same shape, indexed by a vector of parameters θk.
Let consider a set of n observations with D variables. It is supposed that the observa-
tions x = {xi ∈ RD, i = 1, . . . , n} are i.i.d. and generated according to a D-dimensional
mixture with K components, whose probability density function is:

f(x;ψ) =
K∑
k=1

πkfk(x;θk)

K∑
k=1

πk = 1, πk > 0 (k = 1, . . . , K),

(1.1)

where ψ = (π1, . . . , πK ,θ1, . . . ,θK) contains all the parameters of the mixtures and it
belongs to a real space Ψ. The set of all possible vectors of proportions π = (π1, . . . , πK)
is denoted as ΠK . The parameters πk, k = 1, . . . , K are called weights, while each fk(·;θk)
is a component of the mixture.

In (1.1) the shape of the components is not specified. Typically, this choice depends on
the nature of data. In statistical and clustering literature, particular importance is given to
the Gaussian mixture models (GMM), which assume that each density component fk(·;θk)
has a Gaussian shape. In addition, each Gaussian density is indexed by the mean µk =
(µk1, . . . , µkD) and the covariance matrix Σk, which diagonal (σ2

k1, . . . , σ
2
kD) and, thus, it

is denoted by φ(·;µk,Σk). Consequently, the probability density function of a Gaussian
mixture model is given by a specialization of (1.1), where fk(x;θk) = φ(x;µk,Σk) for
each k = 1, . . . , K. Thus, the vector containing all parameters of a Gaussian mixture
model is ψ = (π1, . . . , πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK). Due to its prominence in model-
based clustering literature and its importance for the rest of the work, we will principally
focus on model-based clustering with GMM.
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1.2.2 Partition recovery

In model-based clustering the partition is recovered by first providing a good estimate
of ψ, let say ψ̂, and, then, by applying a decision rule based on it. The estimate ψ̂ is
typically calculated by maximizing the likelihood of the model L(ψ; x) =

∏n
i=1 f(xi;ψ) or

its log-likelihood `(ψ; x) = logL(ψ; x). For mixture models, log-likelihood maximization
is not trivial and it requires special numerical routines as the Expectation-Maximization
(EM) algorithm, which is described in the next paragraph. Regarding the decision rule,
typically a maximum a posteriori (MAP) rule is chosen to assign observations to the K
groups. In the Gaussian case, it means that the estimated labels ẑ = (ẑ1, . . . , ẑn), where
ẑi = k if xi is assigned to Ck, are given by:

ẑi = argmax
1≤k≤K

π̂kφ(xi; µ̂k, Σ̂k) i = 1, . . . , n.

1.2.3 EM algorithm

In the case of Gaussian mixtures, log-likelihood maximization is hard with common alge-
braic tools. For this reason, it is usual to recover it through numerical algorithms. The
most popular one in statistical literature is the EM algorithm, an iterative routine con-
sisting in maximizing the objective log-likelihood through the maximization of an “easier”
function which could be seen as a “surrogate” of the original one. EM algorithm (Demp-
ster et al., 1977) is historically employed to estimate those models when data information
is somewhat hidden. Mixture models are part of this category, because it is not known
which group each observation xi comes from. Data membership information, if known,
can be resumed in a n×k matrix z whose generic element zik is 1 if xi belongs to the k-th
group, 0 otherwise. An hypothetical knowledge of this hidden information could simplify
estimation, as the log-likelihood

`c(ψ; x, z) =
n∑
i=1

K∑
k=1

zik log[πkφ(xi;µk,Σk)]

is very easy to maximize. This log-likelihood is called the complete log-likelihood.
Let consider an initial guess for ψ, let say ψ(0) and the conditional density p(z|x;ψ(0)).

This conditional density is so defined:

p(z|x;ψ(0)) ∝
n∏
i=1

K∏
k=1

(π(0)
k φ(xi;µ

(0)
k ,Σ

(0)
k )

f(xi;ψ
(0))

)zik
. (1.2)

It is shown in Dempster et al. (1977) that the maximization, with respect to ψ, of
Q(ψ,ψ(0)) = Eψ(0) [`c(ψ; X,Z)|X = x], where X and Z are the random variables gen-
erating x and z, regularly increases the objective (or incomplete) log-likelihood `(ψ; x).
This can be iterated for j ≥ 0 iterations until convergence of a chosen criterion typically
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based on absolute or relative log-likelihood increase. Algorithm 1 presents an exhaustive
EM algorithm formulation in the case of a Gaussian mixture model. It is worth noting
that this algorithm produces closed-form update formulas, which are, thus, easy to apply.

Algorithm 1 EM algorithm for Gaussian mixtures models

1. Initialization phase: provide an initial guess ψ(0) and a threshold ε > 0.

2. For j ≥ 0:

• E Step: Given the estimate ψ(j), calculate Q(ψ,ψ(j)) = Eψ(j) [`c(ψ; X,Z)|x].

• M Step: Obtain the new estimate ψ(j+1) = argmaxψ∈ΨQ(ψ,ψ(j)). This
maximization leads to:

For k = 1, . . . , K

τ
(j)
ik =

πkφ(xi;µ
(j)
k ,Σ

(j)
k )

f(xi;ψ
(j))

, i = 1, . . . , n,

π
(j+1)
k =

∑n
i=1 τ

(j)
ik

n
,

µ
(j+1)
k =

∑n
i=1 xiτ

(j)
ik∑n

i=1 τ
(j)
ik

,

Σ
(j+1)
k =

∑n
i=1(xi − µ(j+1)

k )(xi − µ(j+1)
k )tτ

(j)
ik∑n

i=1 τ
(j)
ik

.

• Stopping rule: if
∣∣∣ `(ψ(j+1);x)−`(ψ(j);x)

`(ψ(j);x)

∣∣∣ < ε is verified, continue otherwise.

1.2.4 Advantages and disadvantages

Model-based clustering with GMM can be seen as a generalization of K-means
(Fraley and Raftery, 2002). Indeed, suitable specifications of the underlying GMM can
help in describing data adequately (Xu and Tian, 2015). As K-means, the main drawback
is related to the number of clusters K which has to be a-priori chosen and it is also highly
dependent on the specification of the model. But, the fact on being based on a statistical
model allows the use of well-posed choice criteria to select both of them (further details
will be given in Chapter 4). This is one of the reasons justifying model-based clustering
as our approach of reference.
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1.3 Frugal clustering for huge data sets

In this thesis we want to propose a frugal clustering method able to work with very large
data sets (contemporary data sets have millions or billions records (Rajaraman, 2016;
Sagiroglu and Sinanc, 2013)), without employing too many resources. Previously, we
have described for each clustering approach its advantages and disadvantages taking into
account the performances, in terms of accuracy of an algorithm or its ability to discover
clusters of any shape. In order to reach frugality, we have to quantify and discuss their
complexity. Typically, the analysis of the complexity refers to the asymptotic time de-
manded by the whole algorithm, which is usually a function of the sample dimension n,
the dimensionality of data D and the number of clusters K. Although lowering time
complexity is often the main objective of research, we have also to reduce the complexity
in terms of memory required by the algorithm, because we suppose to work with limited
memory space, too. It is a reliable restriction which is present for example in edge com-
puting (Hassan et al., 2019), where machine learning algorithm are executed by front-end
sensors and devices with limited memory (Zhang et al., 2019). In Table 1.1 we provide
time and space complexity of the techniques presented in the last sections (Pandove et al.,
2018).

Algorithm Time Memory
K-means O(nKD) O(n(D +K))

PAM O(K(n−K)2) O(n2)
Hierarchical O(n3) O(n2)
DBSCAN O(nlog(n)) O(n)
Spectral O(n3) O(n2)

Model-based O(nKD) O(nD)

Table 1.1: Complexity of algorithms presented in Sections 1.1 and 1.2.

Given these asymptotic complexities we try to quantify them practically. Concerning
time amount, if n is very large (order of billions), even with a linear algorithm we have to
execute billions of elementary operations (unit of time used in complexity theory) that a
standard laptop is able to do in hours or in a couple of days. Regarding memory we can
say that, using an R implementation (R Core Team, 2021), a vector of 10 billions data
(today this is realistic, see, for instance, the UCI Machine Learning repository (Dua and
Graff, 2017)) is large around 80 Gb. A such large memory is not available for a common
PC. So, to sum up, we have to develop an algorithm sub-linear respectively to n or which
does not depend on n. Similar conclusions could be done for the dimensionality D and
the number of clusters K, but here we focus on those data sets where n is considerably
greater than D and K.

In the last years, researchers have tried to reduce the complexity of traditional tech-
niques in order to allow the analysis of larger and larger data sets, developing algorithms
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to perform the so-called frugal clustering. However useful they may be for their ideas,
some of them remain too burdensome for us, because they are not able to properly deal
with time and memory at the same time. There are also different methods using very
advanced technologies (such as parallel computer architectures) to be frugal: this could
be considered outside the domain of the thesis, because we have decided to work with the
limited computational resources provided by a standard laptop.

In the following, we describe different algorithms for frugal clustering for huge data
sets, which were extensively reviewed in Pandove et al. (2018). We group these techniques
according to their main idea to allow frugality in order to highlight the tools to leverage
complexity in clustering.

Thus, we can identify five groups of methods:

1. Data-reduction;

2. Operations reduction;

3. Clustering on transformed space;

4. Subspace clustering;

5. Advanced technologies for clustering.

Before describing each of these groups, we highlight that different algorithms use
actually a combination of several techniques to enhance their performances.

1.3.1 Data-reduction

This is probably the biggest group of methods and it contains several algorithms with
different approaches to the same main idea: reducing the size of the original data set to
make easier and faster the analysis with traditional methods. Firstly, we summarize the
most common techniques:

• Subsampling;

• Data summarization;

• Grid-based approach.

Subsampling All the algorithms presented in the following paragraph share the idea of
extracting a random subsample of dimension m from the initial data set (with dimension
n), such that m � n. The statistical motivation is quite easy: as n is very big, we
can suppose that a subsample of a more reasonable dimension m can provide acceptable
results. The length m is usually a tuning parameter and its choice is given by a thread-off
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between efficiency and quality of estimation, but, in some cases, m is given by limitation
on memory or available resources.

Subsampling is a distinct feature of CLARA (Kaufman and Rousseeuw, 1990), where
the classical K-medoids algorithm is performed on a subsample, reducing the quadratical
complexity of the original method (PAM). CLARA consists in performing a PAM algo-
rithm on 5 random samples of length 40 + 2K, retaining the best result. In this way, the
total time complexity of CLARA is O(K(40 +K)2 +K(n−K)).

Actually, the subsampling is a very general-purpose method used by several other
algorithms present in literature to speed-up execution, even if this is not the main char-
acteristic of them. An example is CURE (Guha et al., 1998). This algorithm performs a
scalable agglomerative hierarchical clustering, where the key-idea is to use only c represen-
tative points of each cluster to calculate the distance between them (classic hierarchical
approach in Section 1.1.2 uses all points). These ones are calculated in this way: the
best scattered points of a cluster according to a distance criterion are selected and, then,
shrunk toward the cluster mean by a factor α. This helps to prevent the presence of
highly-influential outliers. Despite the use of particular data structure, such as heaps and
trees, to store data in a linear memory space and to simplify the algorithm, CURE has
a quadratic time complexity that in the worst case can reach even O(n2 log n). Thus,
the authors provided two methods to manage very large data sets: subsampling and par-
titioning. In case of partitioning, the data set is divided into multiple subsets and a
double-stage clustering is performed: a first one on each subset, and the second one on
the total of clusters found. Using a combination of these two methodologies, CURE is
proved to be frugal with a complexity depending only on the dimension of the subsample
and/or partition.

Data summarization In this case, data set dimension is reduced by representing a
large number of data with a vector of quantities, typically sufficient statistics. The key-
idea is that these statistics are able to convey enough information about the groups with
an evident gain in terms of complexity and, so, there is no need to store the entire set of
data. Once summarized data, each vector of statistics is treated as a single sub-cluster
for which an easy generalization of classical clustering algorithms is demanded.

An example of this approach is BIRCH (Tian et al., 1996). In this algorithm, data are
scanned once and stored in a tree structure where each node corresponds to a vector of
sufficient statistics summarizing a group of data (means, for example), named clustering
feature. The dimension of the tree is given by memory limits. Once obtained it, an
agglomerative clustering is performed on the leaf vectors. Its time complexity is linear
but it has some performance limits, because it works well only with spherical clusters.
In the original work there are also two optional phases: in the first one it is possible to
re-build a smaller tree, removing outliers and merging subclusters into larger ones, while,
in the second one, an ulterior refinement of the clustering is performed, using the original
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clusters as seeds and redistributing the data points to the closest seeds. In this way, new
clusters are obtained.

BFR (Bradley et al., 1998a) uses data summarization for an iterative compressed
version of K-means method, where clusters are represented by summarizing statistics
(means, sum of squares and dimensions). At each phase, a random subsample of dimension
given by memory limitations is extracted from the original data set. This subsample is
used to update the current clustering model (an extended version of K-means able to
work with summarizing statistics) and, then, data in main memory are divided into these
three sets:

1. Retain set: these points are retained in the main memory, as they do not belong
to any cluster.

2. Compression set: points to retain in the main memory, but after a compression
in summarizing statistics.

3. Discard set: points that can be discarded, as they are represented by statistics
contained in the compression set.

The algorithm is then stopped when no point changes cluster, as in classic K-means.

Grid-based approach It is very important to analyze this set of methods because
they are similar to the one proposed in this thesis. They consist in imposing a grid on
the original sample space and grouping all observations that lie in the same region or cell.
In this type of clustering, each cell is considered as a single unit and methods proceed
aggregating them using some criteria based on density or entropy. Concerning the grid,
it can be regular or adaptive, but it is needed that the number of cells remains inside the
limit of the computational resources.

The first example of such algorithms is CLIQUE (Agrawal et al., 1998), which we now
briefly describe. Considering a D-dimensional data set whose variables are (X1, . . . , XD),
CLIQUE divides the space of each variable Xd, d = 1, . . . , D into several units of length ε
(which is, thus, a tuning parameter), obtaining a list of one-dimensional units. The final
units are built as product of the one-dimensional ones and they are considered as dense
if the number of points inside them is over a certain threshold τ . Then, similar to the
density-clustering approach, a cluster is defined as a set of connected units, i.e., units that
share a common face.

As discovering all connected units in all subspaces is infeasible, CLIQUE employs some
heuristics to reduce complexity. Firstly, it reduces the number of clusters to analyze,
because it can be proved that if some units form a cluster in a subspace of dimension D∗,
they are part of the same cluster projected in a subspace of dimension D∗−1. So, if some
units do not form a cluster in a subspace of dimension D∗ − 1, they are discarded them
when clusters in upper dimensions are searched. Finally, it is also possible to reduce the



1.3. Frugal clustering for huge data sets 29

number of clusters, considering only those ones in subspaces with a high coverage, which
is defined as the fraction of points located in the dense units.

The algorithm ends recovering for each cluster a minimal and non-redundant descrip-
tion as sum of rectangles. Totally, the time complexity of CLIQUE is linear with respect
to n and quadratically with respect to D, as shown by several simulations in the original
paper.

There are other methods could be considered as slight variation of CLIQUE schema:
in ENCLUE (Cheng et al., 1999) a new entropy criterion is added to correct some bad
behaviours of CLIQUE, while in MAFIA (Goil et al., 1999) regular grids are substituted
by adaptive grids, varying according the difference in density between two consecutive
cells (if it is too tight, those cells are merged, making the grid coarser).

1.3.2 Operation reduction

While the main idea in the last subsection was to reduce the size of data set, here we
will focus on how to build clustering algorithm with a minimum number of operations.
Some bottlenecks of traditional algorithms are usually multiple scanning of the data set
and the analysis of clusters that are not significant in the context of reference. In order
to solve the first issue, some authors developed techniques able to scan all data few times,
building also particular data structure such as tree or graph. We have already mentioned
BIRCH and CLARA, where such structures are present. An improvement of CLARA,
named CLARANS (Ng and Han, 2002), uses a graph architecture to reduce the number of
comparisons to do. Indeed, it is possible to build a graph Gn,K (for a K-medoids algorithm
applied on a sample with n observations), such that each node S is a set of medoids M.
Then, two nodes S1 and S2 are neighbors (i.e. connected by an arc) if the two sets of
medoidsM1 andM2 differ just for one medoid. And, if each node S is associated to the
dissimilarity cost of its induced partition, its clear that the cost difference between two
neighbors is equal to the cost usually minimized in a K-medoids algorithm. Thus, the
clustering problem can be viewed as a search for a minimum in a graph Gn,k.

In this new view, PAM can be seen as a search for a minimum in the complete graph
Gn,k, which is an optimal but complex process, while CLARA is a sub-optimal search
in a simpler graph Gn,K . Despite this, both algorithms consist in repetitively selecting
an arbitrary node on the graph and then comparing its cost to those ones of its neigh-
bors, until all the nodes are explored. In order to reach both optimality and simplicity,
CLARANS works on the original graph Gn,K , but instead of checking all neighbors of a
random selected node it controls only a prefixed number of them, after a random selection.
Moreover, it is also possible to fix a maximum number of iterations for this operation, as
it is not demanded to exhaust the list of nodes.

It is worth also mentioning an example of spectral clustering, the USPEC method
(Huang et al., 2019). In this technique, in addition to an hybrid strategy of subsampling
and K-means to select p representative points, it is possible to build an adjacency matrix
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of dimension n × p where each point xi is linked only to its K-nearest representative
points. This has important advantages because the obtained graph is bi-partite and it
has structural properties allowing a remarkable simplification in eigenvalues calculus. In
this way, the whole time complexity of the algorithm is O(nD

√
p) and the memory cost

O(nK) (or O(n
√
p), depending on the implementation).

For the second problem, several heuristics to prune irrelevant clusters are available. In
fact, different algorithms employ criteria based on density (CLIQUE) or other measures,
like correlation (ENCLUE), to select only the most relevant clusters and delete the others,
decreasing the complexity. The application of these heuristics is strongly related to the
subspace clustering (Section 1.3.3), because they help to exclude all the clusters formed
in lower on higher dimensions by a cluster not respecting them.

1.3.3 Clustering on transformed space/subspace

We choose to regroup those two ideas because they both refer to the more general intuition
of working in spaces where clustering is easier. The difference between them is that in the
former clusters are usually searched into a transformation of the original space and then
re-transformed in clusters to obtain an interpretable result, while in the latter the research
is restricted on small subspaces of the complete space in order to avoid the problem of
the dimensionality.

WaveCluster (Sheikholeslami et al., 1998) uses a wavelet transform over the feature
space. This algorithm starts with the construction of units similar to the grid approach (in
this case, this step is called quantization), then these ones are transformed by a wavelet
function. It is possible to re-apply it many other times in order to obtain a multi-resolution
representation of the transformed space. Then, at each different level, connected units
are recognised and mapped back to the clusters in the original sample space. The time
complexity of WaveCluster is O(n) and, furthermore, it is possible to reduce noise thanks
to the application of the wavelet transformation.

Clustering on subspaces is well suited to analyze data sets with a high number of
variables. As clusters in CLIQUE and MAFIA are connected units inside particular
subspaces, these algorithms belong to this group. We can also mention SUBCLU (Kailing
et al., 2004), which can be considered a subspace version of DBSCAN. Indeed, it starts
generating all clusters in each one-dimensional subspaces using DBSCAN. Then, knowing
the clusters in subspaces of dimension D∗, it generates iteratively the ones in subspaces of
dimension D∗+1, where clusters are searched through DBSCAN. This algorithm, in order
to alleviate computational burden, exploits monotonicity between connected subspaces to
conclude that ,if a subspace of dimension D∗ does not include a cluster in any of its
subspaces of dimension lower than D∗, it can not include clusters. Moreover, another
heuristic, based on the minimum number of object contained in a cluster, is used to select
only the best subspace among those of a fixed dimension. DUSC (Assent et al., 2007)
is an improvement of SUBCLU which introduces a new density measure, motivated by
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the fact that two densities in two different subspaces are not comparable (dimensionality
bias).

The method known as nCluster (Liu et al., 2007) introduces new heuristics to be used
in a subspace clustering context. Given a set of objects O and a set of attributes A and
a threshold δ, two objects x, y ∈ O are neighbors in a subset of attributes H ⊂ A if, for
each a ∈ H (a continuous), |vxa−vya| < δRa, where vxa, vya are the values of the attribute
a for object x and y and Ra is the range of values for a. If a is a categorical attribute,
it is demanded to have vxa = vya. With this statement, δ-nClusters are defined by the
couple (T ,H), where T ⊂ O and H ⊂ A, such that for each attribute a ∈ H any two
objects x, y ∈ T are neighbors. Moreover, if for a δ-nClusters (T ,H) it does not exist
another δ-nClusters (T ′,H′) such that T ⊂ T ′, H ⊂ H′, then (T ,H) is called maximal
δ-nClusters. In effect, nCluster searches for these particular clusters, selecting those with
a minimum number of observations and attributes. Similarly to the previous algorithms,
this method starts from discovering one-dimensional clusters, then it generates clusters
in upper dimensions using monotonic properties similar to the previous ones to prune
subspaces useless to analyze.

1.3.4 Advanced technologies for clustering

Big data arose due to the technological development of the last decades. It is also true
that this phenomenon has also brought new technologies to be used in statistics and in
computer science. In particular, we refer to those instruments able to heavily reduce time
execution of every computing task enabling parallelization. Thanks to the advances in
communications, now it is possible to build frameworks of several computing machines
that are able to execute any task collaboratively at the same time, according to the
paradigm divide et impera. Among these ones, we mention MapReduce (Dean and Ghe-
mawat, 2008) and Spark (Zaharia et al., 2012), which are intensively used in clustering
and they help to obtain results from classical clustering algorithms quickly. Indeed, en-
hanced versions of K-means, as PKMeans (Zhao et al., 2009) and SOKM (Zayani et al.,
2016), have been proposed. Briefly speaking, they use an architecture called master-slave,
where a machine is a master node and the others slaves. Generally, the huge amount of
data is divided into several little data sets, which are analyzed singularly by each slave
node. The master node assigns the tasks to each slave one, it coordinates their activities,
and, at the end, it joins together the results. It is straightforward that these methods
are really powerful, but it is also obvious they request lots of machines and the availabil-
ity of infrastructures allowing the communication between each node of the architecture
and data set partition. Thus, we consider all the algorithms employing them outside the
domain of the thesis.
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1.4 Frugal model-based clustering

At the end of Section 1.2, we specified model-based clustering would have been our ap-
proach of reference. But, the time complexity of EM algorithm is linearly related to the
sample size n as reported in Table 1.1, making it not directly applicable to huge data
sets. Thus, motivated by the good results of model-based clustering for moderate size
data, researchers have designed frugal implementations for model-based clustering when
very massive data sets have to be analyzed. The strategies used are the same we have
described in the previous section.

Subsampling This technique is widely employed to make model-based clustering frugal
(Fraley and Raftery, 2002; Banfield and Raftery, 1993; Tsapanos et al., 2016). It is appre-
ciated for its simplicity and speed as it consists in applying EM algorithm on a randomly
selected subsample. However, this method is generally prone to inaccuracy and variability
(DuMouchel et al., 1999). In addition, this approach becomes critical in presence of very
small classes as the random subsample could not contain any representatives of this class:
this is usual when the analyzed data set is imbalanced, as shown in Section 1.5.1.

Data summarization In this category we find EMADS (Jin et al., 2005) and the
algorithm described in Moore (1998), where sufficient statistics (means and covariances,
in particular) are used to represent group of points. The main criticality of these methods
is in the structures they use to store summaries, which are multidimensional grids and
multiresolution KD-trees. Indeed, the dimension of them (and, thus, the corresponding
memory occupancy) can explode even if dimension D is moderate and also the speed-up of
the algorithms with respect to classic EM declines rapidly if D increases (see, for example,
Moore (1998)). Another similar approach is contained in Bradley et al. (1998b), where a
key-role is also played by subsampling, so it inherits all its drawbacks.

Advanced technologies EM algorithm has also been parallelized and adapted to Map-
Reduce applications (Wolfe et al., 2008). As written in Section 1.3.4, these paradigms are
considered outside the domain of the thesis, because they require particular technological
infrastructures.

1.5 Imbalanced data sets

In the previous sections, we have talked about the challenges of clustering very huge
data sets. Here, we introduce a second category of data collection, which contributes to
completely define the context of our thesis: imbalanced data sets. The main characteristic
of these data is the presence of at least one class which is very tiny with respect to the
total. This is usual in several fields, such as credit card fraud detection (Chan and Stolfo,
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1998), cancer recognition (Yu et al., 2012), fraudulent calls (Fawcett and Provost, 1997),
where typically very few anomalies have to be distinguished from normal events.

Imbalanced data sets are usually analyzed in classification settings, where class labels
are known. The most employed techniques consist in the creation of an artificial balanced
data set in a pre-preprocessing stage, by oversampling the minority class (Chawla et al.,
2002), or undersampling (Tahir et al., 2009) the majority one. In this thesis, we focus
on solving the corresponding clustering problem, motivated by the fact that labelling
records could be sometimes difficult, especially when sample size is large. Our purpose
has been ultimately strengthened by the explosion of Big Data, which has made possible
the availability of very large data sets, mostly imbalanced (Leevy et al., 2018; Fernández
et al., 2017).

1.5.1 Subsampling with imbalanced data sets

In Section 1.4, we have written that subsampling becomes critical in presence of tiny
classes. This is because, if the small class proportion is very low and the subsample size S
is small, a random subsample could not contain any representatives of this class. This is
realistic, as our memory constraints are strong. Consequently, designing a frugal clustering
technique based on subsampling is not advised if the data set to be analyzed is imbalanced.
In this section, we empirically illustrate this fact showing how many different subsamples
“miss” the small class of an imbalanced data set under strong memory constraints. This
experience considers 200 subsamples of various size S = 50, 100, 200, 400 extracted from
three simulated data sets with 106 records generated according to three 2-class univariate
mixtures with densities

f1(x;ψ) = 10−2φ(x;−4, 1) + (1− 10−2)φ(x; 4, 1)

f2(x;ψ) = 10−3φ(x;−4, 1) + (1− 10−3)φ(x; 4, 1)

f3(x;ψ) = 10−4φ(x;−4, 1) + (1− 10−4)φ(x; 4, 1)

Thus, what it changes between the three mixtures is the proportion of the small class π1,
which is decreasing. Consequently, imbalance is increasing. In Figure 1.5 we shows the
percentage of subsamples containing representatives of the small class for each scenario
and for each subsample size. This experience confirms our first intuition about subsam-
pling in case of highly imbalanced data sets and strong memory constraints: the proba-
bility of ”missing” the small class is not negligible (especially if the maximum sample size
S is small) and it is increasing with the imbalance. Consequently, a new data-reduction
approach is needed: our proposal is based on binned data, which are introduced in the
next section.
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Figure 1.5: Percentage of subsamples (out of 200 samples) containing representatives of
the small class.

1.6 Binned data

In this section we introduce binned data, which correspond to the counts of raw data
in given regions of the sample space (McLachlan and Jones, 1988). They typically arise
when it is impossible to collect data with infinite precision and some phenomena, like
truncation or rounding, can happen. In this work, we employ them for frugality purposes.
Let consider a sample x = {x1, . . . ,xn} composed by n observations belonging to a real
D-dimensional space X ⊂ RD and a partition {Bb ⊂ RD, b = 1, . . . , B} ⊂ X . Binned
data are defined as the vector n = (n1, . . . , nB), where each element nb is the number of
observations lying inside the region Bb. Thus, nb = #{x i ∈ Bb}.

In this work, we suppose binning regions to be D-dimensional real intervals. In this
case, we can hypothesize that binning regions are delimited by a D-dimensional Cartesian
grid, which can be named binning grid. Formally, we can assume that the grid G =
G1 × . . . × GD is the Cartesian product between D univariate grids Gd with Rd + 2
cut points (ad0, . . . , ad(Rd+1)), where ad0 = −∞ and ad(Rd+1) = ∞. This grid, whose

refinement is defined as R =
∏D

d=1 Rd, divides the sample space into B =
∏D

d=1(Rd + 1)

real intervals of dimension D. Each region (or bin) is defined as Bb =
⊗D

d=1[ad(bd−1), adbd),
where (b1, . . . , bD) is a vector of indices satisfying

b = b1 +
D∑
d=2

(bd − 1)
d−1∏
d′=1

(Rd′ + 1), (1.3)

with bd ∈ {1, . . . , Rd + 1}, for each d = 1, . . . , D.
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Let assume that observations xi are i.i.d realizations of a random real variable X
with parametric density f(x;ψ) indexed by the vector of parameters ψ, which has to
be estimated. The whole set of parameter is denoted as Ψ and it is typically assumed
to be an Euclidean set. Under these assumptions, binned data n are modelled by the
multinomial density:

p(n;ψ) ∝
B∏
b=1

(∫
Bb

f(x;ψ)dx
)nb

. (1.4)

This means that the only knowledge of binned data has important consequences in all
the algorithms which aim to estimate ψ, as we have to treat the model given by (1.4),
instead of the raw model with density f(x;ψ).

1.6.1 Gaussian mixture models with binned data

If the random variable X follows a Gaussian mixture model with density f(x;ψ) given
by
∑K

k=1 πkφ(x;µk,Σk), binned data density specializes in

p(n;ψ) ∝
B∏
b=1

( K∑
k=1

πk

∫
Bb

φ(x;µk,Σk)dx
)nb

. (1.5)

As mentioned in the previous section, the usage of binned data changes model definition
and thus its estimation. Consequently, the EM algorithm described in Algorithm 1 can
not be directly applied to binned mixtures. For this reason, a suitable EM algorithm
was introduced in McLachlan and Jones (1988); Cadez et al. (2002). They proposed to
consider the couple composed by raw data x and labels z as hidden information sources
and, thus, use the EM machinery on the complete log-likelihood

`c(ψ; x, z) =
n∑
i=1

K∑
k=1

zik log(πkφ(xi;µk,Σk)).

In the initial iteration, once fixed the initial guess ψ(0), they propose to maximize the
quantity Q(ψ,ψ(0)) = Eψ(0) [`c(ψ; X,Z)|n], which is calculated with respect to the con-

ditional density p(x, z|n;ψ(0)). This maximization is then repeated at each iteration
j ≥ 0, until the algorithm is stopped due to the convergence of a chosen criterion based
on log-likelihood relative or absolute increasing. Algorithm 2 shows briefly the complete
procedure associated to the binned EM algorithm for multivariate Gaussian mixtures.
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Algorithm 2 Bin-EM algorithm for multivariate Gaussian mixtures models

1. Initialization phase: provide an initial guess ψ(0) and a threshold ε > 0.

2. For j ≥ 0:

• E-Step: Given the estimate ψ(j), calculate Q(ψ,ψ(j)) = Eψ(j) [`c(ψ; X,Z)|n].

• M-Step: Obtain the new estimate ψ(j+1) = argmaxψ∈ΨQ(ψ,ψ(j)). This
maximization leads to:

For b = 1, . . . , B

gb(x) =
f(x,ψ(j))∫

Bb
f(x,ψ(j))dx

For k = 1, . . . , K

τ
(j)
k (x) =

π̂kφ(x,µ
(j)
k ,Σ

(j)
k )

f(x,ψ(j))

π
(j+1)
k =

∑B
b=1 nb

∫
Bb
τ

(j)
k (x)gb(x)dx

n

µ
(j+1)
k =

∑B
b=1 nb

∫
Bb
xτ

(j)
k (x)gb(x)dx∑B

b=1 nb
∫
Bb
τ

(j)
k (x)gb(x)dx

Σ
(j+1)
k =

∑B
b=1 nb

∫
Bb

(x− µ(j+1)
k )(x− µ(j+1)

k )tτ
(j)
k (x)gb(x)dx∑B

b=1 nb
∫
Bb
τ

(j)
k (x)gb(x)dx

• Stopping rule: Stop if
∣∣∣ `(ψ(j+1);n)−`(ψ(j);n)

`(ψ(j);n)

∣∣∣ < ε is verified, continue otherwise.

1.7 Contribution of the thesis

In describing the frugal approaches to model-based clustering in Section 1.4, we can
note that the only technique we can employ frugally with very strong computational
constraints is the random subsampling. But, it has some disadvantages: on the one hand,
it is prone to high variability depending on the quality of the selected subsample; on the
other hand, if the data set to analyze is imbalanced and the maximum possible size for
the subsample is really small, there is a high possibility that a tiny but important class
(which characterizes imbalanced data) is not represented in the extracted subsample,
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as shown in Section 1.5.1. This means that we could never detect the presence of this
relevant cluster. For this reason, we propose a frugal model-based clustering method
overperforming subsampling in presence of imbalanced data sets and strong computational
constraints. This technique is principally based on reducing the size of the original raw
data into a new highly compressed data set composed by a collection of binned data,
which are artificially built in a way specified in the following chapters.

In this thesis, we present two main contributions. In Chapter 2, we present the idea to
build artificially binned data through a binning grid in order to reduce the dimensionality
of the problem. Then, we first apply this method to univariate Gaussian mixture esti-
mations, providing numerical simulations. A remarkable theoretical contribution is given
in the same chapter, as we demonstrate the identifiability of univariate binned Gaussian
mixtures. In Chapter 3, we illustrate our contribution for multivariate diagonal Gaussian
mixtures. Our solution relies on the combination between binned data (used in a marginal
fashion) and composite likelihood (Lindsay, 1988). Marginal binned data avoid to store
D-variate binned data in our limited memory, as their size rapidly explodes even if D
is moderately high (D = 3 or D = 4). Composite likelihood is used to circumvent a
computational problem given by a naive full likelihood estimation of the marginal binned
Gaussian mixture arising from our bin-marginal data reduction. The introduction of both
of these tools will be motivated and discussed in Chapter 3. Further topics that are com-
plementary to our multivariate contribution are discussed in Chapter 4. In particular,
we discuss experimentally local maxima, a typical issue in Gaussian mixture estimation,
showing how it occurs in our case. A similar approach is used to illustrate the influence of
the binning grid on the estimation. In the same chapter, we also propose some guidelines
to choose the number of components of the mixture if this is unknown. Chapter 5 contains
a real-data application of the proposed method on anomaly detection in time series.
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Chapter 2

Frugal univariate Gaussian mixtures
with binned data

At the end of the previous chapter we have introduced binned data, defining them as
the result of an incomplete and imprecise observational process. At a first sight, the only
knowledge of binned data seems to complicate estimation process, as raw data information
is not available. But, they can help in our search of frugality. Indeed, if the raw sample
x = {x1, . . . ,xn} has length n and the binned data vector n has length B and B � n,
it is straighforward to note that storing binned data is much more frugal than saving all
raw data, even if the corresponding grid structure (its cut points) must be also counted.
Thus, our first key idea is to group raw data in order to obtain artificially binned data,
that are used in estimation tasks instead of raw ones. In our case, the binning operation
is done with the help of the Cartesian binning grid introduced in Section 1.6. In the
following paragraphs, we apply this idea to two univariate settings, where data binning
reveals all of its potential in simple situations. As we work in a univariate context, we
can simplify notation to facilitate reading. Indeed, a univariate grid G of refinement R is
defined by R+ 2 cut points (a0, . . . , aR+1), where a0 = −∞ and aR+1 =∞. Accordingly,
binned data vector n will have length equal to B = R+ 1 and each generic element nb is
so defined:

nb = #{xi : ab−1 ≤ xi < ab}, b = 1, . . . , B.

In the following, we will employ a special class of regular grids assuming equidistant
cut-points. This assumption facilitates our investigation about the influence of the binning
process on the quality of estimation, in dependence of the only degree of refinement
R. Returning to the contents of the chapter, we first deeply analyze the estimation
of a Gaussian with unknown mean. This preliminary work highlights good theoretical
properties of the binned maximum likelihood estimator and its dependence in function
of the chosen binning grid. Finally, we focus on how to estimate univariate Gaussian
mixtures in presence of binned data. We will employ a univariate version of Algorithm
1 to experimentally show the computational savings given by our binned strategy. In
addition, an important result about identifiability of univariate Gaussian mixtures in
presence of binned data is provided.
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2.1 Preliminary work: a single univariate Gaussian

In the specific case of this section, we suppose that the sample x = {x1, . . . , xn} arises from
n i.i.d. univariate Gaussian N(µ, σ2) outcomes with density φ(·;µ, σ2), where µ denotes
the mean and σ2 the variance. Here, we aim to deal with three important questions
regarding the identifiability of the model when using binned data (Section 2.1.1), the
properties of the maximum likelihood estimator (Section 2.1.2) and the influence of the
binning grid on statistical accuracy, proposing also a choice criterion between two grids
(Section 2.1.3).

In Section 2.1.2 and 2.1.3 we also make two additional hypotheses. First, the variance
σ2 is known and equal to 1. Second, the grids considered are equispaced and symmetric
around µ. With these last regularity assumptions, the grids are simply indexed by two
parameters which are the number of points R and the “starting” point a1. Consequently,
in these sections we denote each grid with G(a1, R).

2.1.1 Identifiability

We are interested by a fundamental probabilistic property of a model which is the identi-
fiability. A parametric model is identifiable if there is a one-to-one relationship between
each density and each parameter. Here is a formal definition of the concept.

Definition 2.1.1. A parametric model M = {f(·;ψ) : ψ ∈ Ψ} is said to be identifiable
if

∀ψ,ψ′ ∈ Ψ f(·;ψ) = f(·;ψ′)⇒ ψ = ψ′. (2.1)

In case of a model in presence of binned data, this definition has to be specialized
due to the presence of the grid G. We can reasonably argue that identifiability must hold
whatever the grid may be.

Definition 2.1.2. In presence of binned data, a parametric model P = {p(·;ψ) : ψ ∈ Ψ}
is said to be identifiable if

∀ψ,ψ′ ∈ Ψ : p(n;ψ) = p(n;ψ′) ∀G,n⇒ ψ = ψ′. (2.2)

In case of a single Gaussian distribution, we have to prove that each binned multinomial

density p(n;µ, σ2) ∝
∏B

b=1

( ∫ ab
ab−1

φ(x;µ, σ2)dx
)nb

is indexed by only one couple (µ, σ2).

This is true only for specific grids as the following proposition states.

Proposition 2.1.1. Binned univariate normal models are identifiable for R ≥ 2.

Proof. Considering Definition 2.1.2 and denoting with Φ(·) the cumulative density func-
tion (c.d.f.) of a standard Gaussian, if the grid G has R finite cut points (a1, . . . , aR) then
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it is sufficient to prove that the system
Φ(a1−µ

σ
) = Φ(a1−µ

′

σ′
)

...

Φ(aR−µ
σ

) = Φ(aR−µ
′

σ′
)

has only the trivial solution ψ = ψ′ whatever the grid is. Due to the monotonicity of the
Gaussian c.d.f., it is equivalent to: 

a1−µ
σ

= a1−µ′
σ′

...
aR−µ
σ

= aR−µ′
σ′

It is straighforward to prove that if R ≥ 2, ψ = ψ′ is the only solution and, thus,
identifiability is achieved.

2.1.2 Estimators properties

In this section, we aim to analyze the statistical properties of the binned maximum like-
lihood estimator (MLE) of µ obtained from the binned data set n. In particular, we
study the bias and the variance of this estimator. To simplify, we use the same notation
to denote both the estimator (which is a random variable) and the estimate, which is a
particular realization of the estimator. Specifically, in this section the general estimate is
denoted as µ̂ba1,R to highlight the dependence on the equispaced grid G(a1, R) symmetric
around µ.

The following proposition assures that the binned estimator is asymptotically unbiased
and that its asymptotic variance converges to the asymptotic variance of the raw MLE
µ̂MLE as the binning grid becomes wider and finer:

Proposition 2.1.2. µ̂ba1,R is asymptotically unbiased and lima1→−∞
R→+∞

V ar(µ̂ba1,R) = V ar(µ̂MLE).

Proof. The estimator µ̂ba1,R is asymptotically unbiased as it is a maximum likelihood
estimator (regularity conditions provided by Rao (1957) are satisfied). Given the model
log-likelihood

`(µ;n) =
B∑
b=1

nb log
[
Φ
(ab − µ

σ

)
− Φ

(ab−1 − µ
σ

)]
,

it follows from maximum likelihood theory that the asymptotic variance V ar(µ̂ba1,R) is
equal to the reverse of the expected information matrix

I(µ) = E[−`′′(µ)] =
n

σ2

B∑
b=1

(φ(ab−µ
σ

)− φ(ab−1−µ
σ

))2

Φ(ab−µ
σ

)− Φ(ab−1−µ
σ

)
.
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Therefore the asymptotic variance of µ̂2
b is

Var[µ̂2
b ] =

1

I(µ)
=

σ2

n
∑B

b=1

(φ(
ab−µ
σ

)−φ(
ab−1−µ

σ
))2

Φ(
ab−µ
σ

)−Φ(
ab−1−µ

σ
)

.

As V ar(µ̂MLE) = σ2

n
, the quotient of the two variances is equal to:

B∑
b=1

(φ(ab−µ
σ

)− φ(ab−1−µ
σ

))2

Φ(ab−µ
σ

)− Φ(ab−1−µ
σ

)
.

When R is big enough, we can introduce the following approximations for 2 ≤ b ≤ B− 1:

ab ≈ ab−1 + h;

φ
(ab − µ

σ

)
− φ
(ab−1 − µ

σ

)
≈ −h

σ

ab−1 − µ
σ

φ
(ab−1 − µ

σ

)
;

Φ
(ab − µ

σ

)
− Φ

(ab−1 − µ
σ

)
≈ h

σ
φ
(ab−1 − µ

σ

)
,

with h→ 0. Using these approximations and the symmetry of the Gaussian density, it is
possible to write:

B∑
b=1

(φ(ab−µ
σ

)− φ(ab−1−µ
σ

))2

Φ(ab−µ
σ

)− Φ(ab−1−µ
σ

)
=

2φ2(a1−µ
σ

)

Φ(a1−µ
σ

)
+

B−1∑
b=2

(φ(ab−µ
σ

)− φ(ab−1−µ
σ

))2

Φ(ab−µ
σ

)− Φ(ab−1−µ
σ

)

≈
2φ2(a1−µ

σ
)

Φ(a1−µ
σ

)
+

B−1∑
b=2

(ab−1 − µ
σ

)2

φ
(ab−1 − µ

σ

) h
σ2
.

It is straightforward to prove that

lim
a1,R→∞

2φ2(a1−µ
σ

)

Φ(a1−µ
σ

)
+

B−1∑
b=2

(ab−1 − µ
σ

)2

φ
(ab−1 − µ

σ

) h
σ2

=
1

σ2

∫ +∞

−∞

(x− µ)2

σ
φ(
x− µ
σ

)dx = 1.

This completes the proof.

2.1.3 Grid selection

A further point of interest is the selection of an optimal grid. In this section, we consider as
“optimal” that grid whose estimator have minimal variance among the class of equispaced
and symmetric grids. In Proposition 2.1.2, we have seen that an infinitely wide and
fine grid produces estimators whose variance approaches the MLE variance, which is
known to be optimal. Once fixed the refinement R, it is interesting to know how much
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wide the optimal grid must be, i.e., which is the optimal value of a1. Thanks to a
numerical computation, we have seen that a1 may decrease at least at logarithmic rate with
regards to R. Figure 2.1 illustrates the succession of optimal a1 in the case where µ = 0,
showing this logarithmic behaviour. This experimental result motivates the following
(experimental) conjecture for which a theoretical proof is still required.

Conjecture 2.1.3. The sequence a
(R)
1 = maxa1<µ V ar(µ̂

MLE)/V ar(µ̂bR,a1) is bounded be-

low by the sequence a(R) = −2 logR + µ.

−7.5

−5.0

−2.5

0.0

0 25 50 75 100

R

a
1

optimal a
1

R

− 2log(R)

Figure 2.1: Lower bound for the sequence a
(R)
1 when µ = 0.

The previous conjecture would be useful to foresee how much wide an optimal grid
would be, if its refinement R is known. In the following, we propose a criterion to select an
optimal grid among all equispaced grids G(a1, R) symmetric around the point (min(x) +
max(x))/2 (which is asymptotically equal to µ). The selected grid is optimal as the
corresponding provided estimator µ̂ba1,R has minimum variance. This criterion, named
GVC (Grid variance criterion), consists in maximizing, w.r.t. a1 and R, the quantity:

GVC =

R∑
i=0

(φ(ai, µ̂
b
R,a1

, 1)− φ(ai−1, µ̂
b
R,a1

, 1))2

Φ(ai, µ̂bR,a1 , 1)− Φ(ai−1, µ̂bR,a1 , 1)
.

GVC reveals to be consistent, as the following proposition states.
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Proposition 2.1.4. GVC criterion is consistent, i.e., the probability of selecting the grid
G(a1, R) providing the estimator with minimum variance tends to 1 when n→∞.

Before proceeding to the proof of this proposition, we have to demonstrate two lemmas.

Lemma 2.1.5. If an and bn are two non-negative successions and an + bn → 0, then
an → 0 and bn → 0.

Proof. The limit an + bn → 0 is equivalent to write

∀ε > 0 ∃ν > 0 : ∀n > ν |an + bn| < ε

and, using the positiveness of an and bn,

∀ε > 0 ∃ν > 0 : ∀n > ν an + bn < ε

We can prove that an → 0. In fact having fixed ε > 0, it exists a ν > 0 so that
|an| = an ≤ an + bn < ε for all n > ν. Similarly we can prove that bn → 0.

Lemma 2.1.6. If Xn
p→ c and Yn

p→ d with c < d then P (Xn − Yn < 0)→ 1.

Proof. It is well-known that if Xn
p→ c and Yn

p→ d then Xn − Yn
p→ c− d = e < 0. It is

equivalent to write

∀ε > 0 lim
n→∞

P (|Xn − Yn − e| > ε) = 0.

Fixing ε = −e we have that

lim
n→∞

P (|Xn − Yn − e| > −e) = lim
n→∞

P (Xn − Yn > 0) + P (Xn − Yn < −2e) = 0.

As both the successions P (Xn−Yn > 0) and P (Xn−Yn < −2e) are non-negative, we can
use the previous lemma to demonstrate that P (Xn− Yn > 0)→ 0, which is equivalent to
the thesis.

We are now ready for the proof of Proposition 2.1.4.

Proof of Proposition 2.1.4. Let G′ = G(a′1, R
′) and G′′ = G(a′′1, R

′′) be two grids on
the same data. We define an oracle criterion GVCO, consisting in mazimizing w.r.t. a1,
R:

GVCO =
R∑
i=0

(φ(ai, µ, 1)− φ(ai−1, µ, 1))2

Φ(ai, µ, 1)− Φ(ai−1, µ, 1)
,

where µ is the true mean. We suppose that the grid G′ is better than G′′ according to the
oracle criterion GV CO, i.e. GV CO(G′′) < GV CO(G′). What we need to demonstrate is
that limn→∞ P (GV C(G′′)−GV C(G′) < 0) = 1.

We know that the µ̂bR,a1
p→ µ and µ̂bR,a′1

p→ µ, from properties of maximum likelihood

estimator. ConsequentlyGV C(G′)
p→ GV CO(G′) andGV C(G′′)

p→ GV CO(G′′), because
our criteria are based on the same continuous function. So, the hypotheses of the previous
lemma are fulfilled, and the claim follows immediately from this result.
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2.2 Univariate Gaussian mixtures

In this section, we focus on univariate Gaussian mixture models with K classes. We
show how the usage of binned data requires a particular version of the EM algorithm to
be estimated (McLachlan and Jones, 1988). This procedure reveals to be scalable and
frugal, guaranteeing a good compromise between clustering quality and time and memory
consumption. This fact is shown experimentally, making comparisons with the original
raw algorithm, which will be overtaken especially with R � n. Previously, we assess the
generic identifiability of univariate Gaussian mixtures in presence of binned data. We can
specialize the notation presented in Section 1.2, assuming for that the observations xi are
generated according to the density:

f(x;ψ) =
K∑
k=1

πkφ(x;µk, σ
2
k), πk > 0,

K∑
k=1

πk = 1,

in which µk denotes the mean of the k-th component, σ2
k is its variance and θ is the vector

that contains all the parameters, thus θ = (π1, . . . , πK , µ1, . . . , µK , σ
2
1, . . . , σ

2
K). Moreover,

as the observations have real values like in the previous cases, we can adopt the same
notation for the grids considered. If we build binned data n with a grid of refinement
degree equal to R, then n will have length B = R + 1 and density:

p(n;ψ) ∝
B∏
b=1

(∫ ab

ab−1

K∑
k=1

πkφ(x;µk, σ
2
k)dx

)nb
. (2.3)

2.2.1 Generic identifiability of univariate binned Gaussian mix-
tures

In Section 2.1.1 we have defined the notion of identifiability and prove it for binned
Gaussian models. Gaussian mixtures with K components are known to be generically
identifiable (Yakowitz and Spragins, 1968), which means that strict identifiability as de-
fined in Definition 2.1.1 holds only almost everywhere in Ψ. Here is a formal definition of
that:

Definition 2.2.1. A parametric model M = {f(·;ψ) : ψ ∈ Ψ} is said to be generically
identifiable if it exists a null measure set Ψ′ such that

∀ψ,ψ′ ∈ Ψ \Ψ′ f(·;ψ) = f(·;ψ′)⇒ ψ = ψ′. (2.4)

Mixture models with K components are only generically identifiable because identifi-
ability holds up to labels permutation. Now, our aim is to assess the validity of the same
property for binned mixture models. As in Section 2.1.1, we specialize the definition of
generic identifiability in presence of binned data.
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Definition 2.2.2. In presence of binned data, a parametric model P = {p(·;ψ) : ψ ∈ Ψ}
is said to be generically identifiable if it exists a null measure set Ψ′ such that

∀ψ,ψ′ ∈ Ψ \Ψ′ p(n;ψ) = p(n;ψ′) ∀G,n⇒ ψ = ψ′. (2.5)

Typically, identifiabity is considered to be a prerequisite for a good estimation. How-
ever this, to the best of our knowledge, there is no reference to Gaussian mixtures iden-
tifiability with binned data, neither in the seminal works of McLachlan and Jones (1988)
and Cadez et al. (2002), which pass directly to the estimation phase. In this section, we
cover partially this lack, giving some conditions on the grid assuring identifiability in the
univariate case. This analysis continues in the next chapters, where multivariate models
will be debated.

In the univariate setting, we are able to define a sufficient condition that assures generic
identifiability. This is a consequence of the following proposition which is contained in
Valiant (2012).

Proposition 2.2.1 (Proposition 11.5 in Valiant (2012)). Given the linear combination
of K univariate Gaussian densities f(x) =

∑K
k=1 πkφ(x;µk, σ

2
k), such that either µk1 6= µk2

or σ2
k1
6= σ2

k2
for k1 6= k2 and for all k πk ∈ R∗, the number of solutions to f(x) = 0 is at

most 2(K − 1).

We are ready to enounce and prove our proposition for the generic identifiability of
univariate binned Gaussian mixtures.

Proposition 2.2.2. Binned univariate mixtures of K Gaussian distributions are identi-
fiable if the binning grid has R > 4K − 3 cut points.

Proof. If X = R, the considered probability mass functions reduces to p(n,ψ), thus it
is needed to demonstrate that statement

∀ψ,ψ′ ∈ Ψ : p(n;ψ) = p(n;ψ′) ∀G,n ⇒ ψ = ψ′ (2.6)

hold almost everywhere (up to label permutation) except for a set whose Lebesgue’s
measure is zero, respectively to the dimension of the original space.

Denoting with Φ(·) the cumulative density function of a standard Gaussian, if G has
R cut points (a1, . . . , aR) then it is sufficient to prove that the system

∑K
k=1 πkΦ(a1−µk

σk
) =

∑K
k=1 π

′
kΦ(

a1−µ′k
σ′k

)∑K
k=1 πkΦ(a2−µk

σk
) =

∑K′

k=1 π
′
kΦ(

a2−µ′k
σ′k

)
...∑K

k=1 πkΦ(aR−µk
σk

) =
∑K

k=1 π
′
kΦ(

aR−µ′k
σ′k

)
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has only the trivial solution ψ = ψ′ whatever the grid is. Hence, the non-zero subset of
non identifiability is the one of the possible permutation of ψ.

It is also equivalent to discover how many zeros can have the difference between the
cumulative density functions of two different Gaussian mixtures. If this number is a
certain Z, identifiability is assured for R > Z.

Again, considering the difference between two cumulative functions with Z zeros,
namely h(x), for continuity and for the fact that limx→−∞ h(x) = limx→+∞ h(x) = 0, it
is necessary that this function has at least Z + 1 critical points, i.e. the difference of the
two respective density functions has at least Z+1 zeros. So it is possible to formulate the
problem in the terms of maximum number of zeros of the difference between the densities
of two different mixtures.

Valiant’s theorem states that this maximum number is 4K − 2. Thus, if R > 4K − 3,
identifiability holds.

2.2.2 Binned EM algorithm for univariate mixture models

The usage of binned data changes model definition and thus its estimation. We have
already presented the EM algorithm used to estimate a general multivariate mixture
models in presence of binned data (Algorithm 1). We can therefore specify the previous
algorithm for a univariate mixture adopting our notation. As before, the couple composed
by raw data x and labels z is considered as hidden information sources and, thus, used
the EM machinery on the complete log-likelihood

`c(ψ; x, z) =
n∑
i=1

K∑
k=1

zik log(πkφ(xi;µk, σ
2
k)).

In the binned data case, once fixed an initial guess ψ(0), the quantity Q(ψ,ψ(0)) =
Eψ(0) [`c(ψ; X,Z)|n], calculated with respect to the conditional density p(x, z|n;ψ(0)), is
maximized. This maximization is repeated at each iteration j ≥ 0, until the algorithm is
stopped due to the convergence of a chosen criterion. Algorithm 3 briefly shows the com-
plete procedure associated to the binned EM algorithm for univariate Gaussian mixtures.

2.2.3 Experimental analysis: binned data in action

In order to motivate our proposed binned strategy, we furnish a numerical simulation
illustrating the gain that could be expected in comparison to the classical subsampling
strategy. As seen in Section 1.3.1, subsampling is usually used for reducing the data size
and, thus, alleviate computational cost. In this simulation a sample of n = 106 raw data
i.i.d. arises from a univariate Gaussian mixture of three components, with true density

f(x;ψ∗) = 0.6φ(x;−1, 2) + 0.3φ(x; 1, 1) + 0.1φ(x; 0, 0.5).
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Algorithm 3 Bin-EM algorithm for univariate Gaussian mixtures models

1. Initialization phase: provide an initial guess ψ(0) and a threshold ε > 0

2. For j ≥ 0:

• E Step: Given the estimate ψ(j), calculate Q(ψ,ψ(j)) = Eψ(j) [`c(ψ; X,Z)|n];

• M Step: Obtain the new estimate ψ(j+1) = argmaxψ∈ΨQ(ψ,ψ(j)). This
maximization leads to:

For b = 1, . . . , B

gb(x) =
f(x,ψ(j))∫ ab

ab−1
f(x,ψ(j))dx

For k = 1, . . . , K

τ
(j)
k (x) =

πkφ(x, µ
(j)
k , σ

2(j)
k )

f(x,ψ(j))

π
(j+1)
k =

∑B
b=1 nb

∫ ab
ab−1

τ
(j)
k (x)gb(x)dx

n

µ
(j+1)
k =

∑B
b=1 nb

∫ ab
ab−1

xτ
(j)
k (x)gb(x)dx∑B

b=1 nb
∫ ab
ab−1

τ
(j)
k (x)gb(x)dx

σ
2(j+1)
k =

∑B
b=1 nb

∫ ab
ab−1

(x− µ(j+1)
k )2τ

(j)
k (x)gb(x)dx∑B

b=1 nb
∫ ab
ab−1

τ
(j)
k (x)gb(x)dx

• Stopping rule: Stop if
∣∣∣ `(ψ(j+1);n)−`(ψ(j);n)

`(ψ(j);n)

∣∣∣ < ε is verified, continue otherwise.

As specified before, binned data are created through a grid with refinement parameter R.
We considered different values of R (thus different candidate binned data sets) and differ-
ent values of m (thus different candidate subsampled data sets) both to compare binning
and subsampling strategies and also to observe the influence of the grid refinement on the
estimation procedure. For each value of R and m we performed EM algorithm (binned
and subsampled version, respectively). Then, we measured time and memory requested
by each algorithm execution. In addition, to quantify the loss of information induced
by binning or subsampling, we calculate the Kullback-Leibler divergence (Kullback and
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Figure 2.2: (a) Logarithm of Kullback-Leibler divergence from the true parameters for
different values of R and m in function of the required computer memory (logarithmic
scale); (b) Logarithm of total time requested by EM algorithm for different values of R
(binned version) and m (subsamplig version) in function of the required computer memory
(logarithmic scale).

Leibler, 1951) between each estimated density and f(·;ψ∗). Figures 2.2a-2.2b confirm that
binning is more convenient than subsampling. Indeed, it is possible to note that the loss
of information (measured by the Kullback-Leibler divergence) induced by binning is much
lower than that obtained with subsampling, even negligible if we use a grid moderately
dense. This is in addition accompanied by an evident gain in terms of computer memory
and computational time.

2.3 Conclusion

In this chapter we have formalized our idea of data-reduction based on an building ar-
tificially binned data, where a key-role is played by a regular binning grid. We have
seen that binned MLE for univariate Gaussian mixtures preserves the good properties of
its raw counterpart and that the related EM algorithm is frugal and more efficient than
subsampling.

These preliminary results are very promising for an extensive application of binned
data in D-variate context, with D > 1, which are presented in the next chapter. This
is the main contribution of the thesis and it allows to perform model-based clustering
frugally on huge imbalanced multivariate data sets. As it consists in a marginal use of
binned data, we have named our proposed technique bin-marginal.
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Chapter 3

Frugal multivariate Gaussian
mixture models with binned data:
bin-marginal approach

In this chapter we describe the main contribution of the thesis: a bin-marginal method
to frugally cluster huge and imbalanced D-variate data using Gaussian mixture models.
This approach is motivated by the fact that a specific version of the curse of dimension-
ality (Bellman, 1961) affects the naive multivariate extension of the binned methodology
described in Chapter 2, as shown in Section 3.1. In order to cope with this difficulty,
in Section 3.2.1 we propose further reducing our initial data set, working with marginal
counts or bin-marginal data, i.e., a collection of univariate binned data generated by each
separate variable of the raw data set. This further data-reduction given by marginaliza-
tion involves the definition of a new bin-marginal model, whose identifiability is discussed
in Section 3.2.2, after a preliminary discussion on the identifiability of multivariate binned
Gaussian mixtures. In Section 3.2.3, we formulate the EM algorithm to optimize the re-
lated bin-marginal likelihood, but this procedure turns out to be computationally unfeasi-
ble. Therefore, in Section 3.3 we define a composite likelihood (Lindsay, 1988) approach to
estimate the bin-marginal model, providing a feasible EM-like algorithm which maximizes
the bin-marginal composite likelihood. This final step finally defines our frugal Gaussian
clustering proposal based on the bin-marginal approach. Previously, in Section 3.3.3, we
give some theoretical remarks on the bin-marginal composite likelihood. The method is
developed under the hypothesis of diagonal covariance matrices, due to the theoretical
impossibility of estimating covariance parameters. This diagonal restriction is in fact
common in literature, as it is employed in some popular clustering methods, as K-means
(MacQueen et al., 1967), or in the so-called parsimonious Gaussian mixture models (Mc-
Nicholas and Murphy, 2008). Then, in Section 3.4, the proposed method is tested on
several numerical simulations involving imbalanced and huge data sets, comparing it to
the subsampling strategy and to the full data set analysis. In particular our method and
the subsampling are compared under identical computational constraints, assuring they
will use the same amount of computer memory. Full data result is used as a benchmark,
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even if it is far from being competitively frugal. The same settings are maintained in
Section 3.5, where we test the proposed technique on real data sets coming from various
domains of application, such as image segmentation, hazardous asteroids detection and
frauds recognition.

3.1 Curse of dimensionality for binned data

In Section 1.6.1, we presented multivariate binned Gaussian mixture models and the EM
algorithm to estimate them through the maximization of the log-likelihood

`(ψ;n) =
B∑
b=1

nb log(
K∑
k=1

πk

∫
Bb
φ(x;µk,Σk)dx

)
,

where all quantities have already been defined in the same section.
The use of multivariate binned data can be seen as the natural extension of the uni-

variate binned methodology developed in the previous chapter. We have shown that
this strategy works well if B = R + 1 � n, where R is the refinement of the only grid
considered.

The same technique could be adopted in this multivariate setting, but we have to point
out the arising of some issues when D increases. Indeed, as the number of non-empty bins
depends exponentially on the dimension D (Figure 3.1), the amount of binned data does
not allow to stick to our frugal memory constraints. Thus, in the D-dimensional context,
a classical approach with binned data vanishes any kind of gain.
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Figure 3.1: Number of non-empty bins depending on both space dimension D and grid
refinement (per axis) generated by a single D-variate standard Gaussian.

In order to avoid this particular version of curse of dimensionality for binned data,
non-trivial multivariate extensions of the binned methodology of Chapter 2 are demanded.
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In the following sections, we present our solution, based on a marginal use of binned data
and on the related bin-marginal model.

3.2 Bin-marginal model

3.2.1 Compressed binned data: bin-marginal solution

In the previous section we pointed out the storage issues linked to a classical use of
binned data. Our first idea consists in using what we call marginal counts, that are the
collection of binned data obtained on each dimension separately. In the present section we
illustrate a full likelihood estimation of the model generating marginal counts, highlighting
its complexity, which motivates completely our final proposal in Section 3.3 based on an
alternative composite likelihood approach.

Let define m = {m1, . . . ,mD}, where md is the binned data vector referring to the
projection on the axis d of the observations xi after imposing the grid Gd, which produces
Bd = Rd + 1 bins. It means that, for each d = 1, . . . , D, md = (md1, . . . ,mdBd), where
each component is defined as mdbd = #{xid : ad(bd−1) ≤ xid < adbd} and xid is the d-th
component of xi. Thus, the collection m contains the marginal counts of n. To facilitate
the comprehension of the specific data compression mechanism and its related notation,
a simple bivariate situation is depicted in Figure 3.2. Here, a 3× 3 grid overlaps 20 raw
individuals x = (x1, . . . ,x20) and both the bivariate binned data n and marginal counts
m are highlighted.

The introduction of marginal counts makes resource savings possible: in fact, it is
clear that storing them instead of the full grid is convenient for computer memory, as we
have to save at most

∑D
d=1Bd elements instead of

∏D
d=1Bd ones. So, a first attempt could

be the estimation of the bin-marginal model whose probability mass function is:

pm(m;ψ) =
∑
n′∈Fm

p(n′;ψ), (3.1)

where Fm is the set of tables n′ sharing the same marginals m. Formally:

Fm = {n′ : m′ = m},

where m′ are the marginal counts of each table n′.
But now we need to assess three important issues before proposing this model as a

useful frugal method:

• Identifiability of the model. We wonder if different parameters index different bin-
marginal probability mass functions. This question will be treated in Section 3.2.2.
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• Mathematical complexity of the log-likelihood `m(ψ;m) = log pm(m;ψ). From (3.1)
we note that the computation of this log-likelihood is intractable, because we need
to calculate a considerable number of complete tables. Section 3.3 will be dedicated
to overcome this specific issue.

• Optimization of the likelihood. In Section 3.2.3 we give a version of the EM algorithm
to do this task. We will show it does not solve all the issues appeared in 3.1 and,
again, Section 3.3 will propose a specific solution.
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Figure 3.2: Bivariate representation of a 3 × 3 grid (red dotted lines) superposing on
20 points x = (x1, . . . ,x20) (in blue). Bivariate binned data are n = (n1, . . . , n16),
while marginal counts are m = {m1,m2}, where m1 = (m11, . . . ,m14) and m2 =
(m21, . . . ,m24).

3.2.2 Requirements for identifiability

Typically, before proceeding with the estimation of any statistical model P = {p(x;ψ),x ∈
X ,ψ ∈ Ψ}, statisticians are interested in knowing if it is identifiable, i.e. if any different



3.2. Bin-marginal model 55

value of the model parameter ψ indexes different elements in P . In case of continuous
model, these elements are densities, while they are probability mass functions if the model
is discrete, as in our binned data case. In this section, we discuss the identifiability of
bin-marginal Gaussian mixtures models, knowing that Gaussian mixtures with raw data
are identifiable up to a labelling permutation (Yakowitz and Spragins, 1968). As pointed
out in Section 2.2.1, there is no reference to Gaussian mixtures identifiability with binned
data in the multivariate case, to the best of our knowledge. Our investigation in the
bin-marginal case also allows us to cover partially this lack, as our result on the bin-
marginal case is based on a preliminary statement about full binned identifiability. These
two results provide sufficient conditions regarding the binning grids and the parameter
space, under hypothesis of diagonal covariance matrices (in the following, Ψ is the space
containing only diagonal Gaussian mixtures). This apparent restriction does not affect
our proposal, because this assumption is common in several clustering approaches, even
for the raw data case, as K-means (MacQueen et al., 1967) and parsimonious Gaussian
mixture models (Celeux and Govaert, 1995), and because, in Section 3.3, our proposal
will be presented under these conditions.

Preliminary result: identifiability of binned Gaussian diagonal mixtures Suf-
ficient conditions for the identifiability of diagonal D-variate binned mixture models are
provided by the following proposition. These conditions regard the refinement degree of
the binning grid and the mixture components, that can not share the projection on the
same axis or having the same proportion. Thus, the parametric space is restricted to
Ψ/Ψ†. The set Ψ† is defined as Ψ† = (Π‡K × RDK × R+DK) ∪Ψ‡, where

Ψ‡ = {ψ ∈ Ψ : ∃k, k′, d : µkd = µk′d, σ
2
kd = σ2

k′d}
Π‡K = {π ∈ ΠK : ∃i, j : πi = πj}.

As Ψ† is a null-measure set, we can also say that binned Gaussian diagonal mixtures are
generically identifiable (Allman et al., 2009).

Proposition 3.2.1 (Binned Gaussian diagonal mixtures). Under hypothesis of di-
agonal covariance matrices, binned D-variate mixtures of K components are identifiable
if Rd > 4K − 3, d = 1, . . . , D and ψ ∈ Ψ/Ψ†, up to label permutations.

Proof. The statement to prove is:

∀ψ,ψ′ ∈ Ψ/Ψ† : p(n;ψ) = p(n;ψ′) ∀G,n
⇒ ψ = ψ′ (up to label permutation).

(3.2)

We have to prove statement (3.2) for a binned mixture of dimension D. Considering a
grid with Rd cut points on each dimension d = 1, . . . , D and

∏D
d=1(Rd+1) bins, statement
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(3.2) holds if the system 

∑K
k=1 πk

∫
Bb
φ(x;µk,Σk)dx

=
∑K

k=1 π
′
k

∫
Bb
φ(x;µ′k,Σ

′
k)dx

b = 1, . . . , B

(3.3)

has only the trivial solutions ψ = ψ′, up to a label permutation. Each D-dimensional bin
is the Cartesian product of certain 1-dimensional bins, so every one-dimensional projection
of a D-dimension bin Bb, namely Bdb , coincides with a certain Bdbd , which is a bin on the
d-th dimension. Thus, under hypothesis of diagonal covariance matrices, the system (3.3)
can be rewritten as:



∑K
k=1 πk

∫
B1b1

φ(x1;µk1, σ
2
k1)dx1

× . . .×
∫
BDbD

φ(xD;µkD, σ
2
kD)dxD

=
∑K

k=1 π
′
k

∫
B1b1

φ(x1;µ′k1, σ
2′
k1)dx1

× . . .×
∫
BDbD

φ(xD;µ′kD, σ
2′
kD)dxD

bd = 1, . . . , Bd, d = 1, . . . , D.

(3.4)

To simplify notation, we define the vector of indices b = (b1, . . . , bD) and the set B̄
containing all b. Furthermore, we resume with pb(ψ) = pb(ψ

′) each equation in the
system (3.4), which can be concisely written as


pb(ψ) = pb(ψ

′)

b ∈ B̄.
(3.5)

Let consider all equations involving integrals on the same set B1
b1

and sum them for every

Bdbd , bd = 1, . . . , Bd, d = 2, . . . , D. Iterate this procedure for b1 = 2, . . . , B1 to obtain:

K∑
k=1

πk

∫
B1

b1

φ(x1;µk1, σ
2
k1)dx1 =

K∑
k=1

π′
k

∫
B1

b1

φ(x1;µ′
k1, σ

2′
k1)dx1.

These equations define the system of identifiability for a univariate binned mixture with K
components. Therefore, from Proposition 2.2.2, it exists a permutation ρ1(·), such that, for each
k = 1, . . . ,K:
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π′k = πρ1(k) µ
′
k1 = µρ1(k)1 σ2′

k1 = σ2
ρ1(k)1.

The permutation ρ1(·) is also unique, as proportions are different from the fact that ψ,ψ′ ∈
Ψ/Ψ†. We can use the rest of equations in system (3.5) to iterate the same procedure for all the
D axes, finding D (unique) permutations ρd(·) such that, for each k = 1, . . . ,K and d = 1, . . . , D:

π′k = πρd(k) µ
′
kd = µρd(k)d σ2′

kd = σ2
ρd(k)d. (3.6)

If all permutations ρd(·) are equal, identifiability is achieved. Let assume that two permutations
ρd′(·) and ρd′′(·) are different for d′ 6= d′′ . It means that there is at least a value k1 such that{

ρd′(k1) = k2

ρd′′(k1) = k3,

with k2 6= k3.
From (3.6) we have π′k1 = πk2 and π′k1 = πk3 . Thus, πk2 = πk3 . It means that, if ρd′(·) and

ρd′′(·) are different, at least two of the K proportions are equal. This is absurd, as ψ ∈ Ψ/Ψ†,
and the two permutations must be the same. This completes the proof.

Identifiability of bin-marginal Gaussian diagonal mixtures Proposition 3.2.1 is
crucial to prove identifiability of bin-marginal Gaussian mixtures themselves. Indeed,
Proposition 3.2.2 establishes below that bin-marginal mixtures are identifiable if binned
mixtures are identifiable. Thus, under the same conditions as Proposition 3.2.1, bin-
marginal Gaussian diagonal mixtures are identifiable in Ψ/Ψ†. Since Ψ† is a null-measure
set, bin-marginal Gaussian diagonal mixtures are, thus, generically identifiable. This
result is of central interest in this work, since we will consider only the bin-marginal data
in order to preserve computer memory.

Proposition 3.2.2. Bin-marginal D-variate mixtures of K components are identifiable
if binned D-variate mixtures are identifiable. So, under diagonal covariance matrices
hypothesis, identifiability is achieved if Rd > 4K − 3, d = 1, . . . , D and ψ ∈ Ψ/Ψ†, up to
label permutation.

Proof. Let consider two probability mass functions pm(m;ψ) and pm(m;ψ′). Our aim is
to demonstrate

∀ψ,ψ′ ∈ Ψ/Ψ† : pm(m;ψ) = pm(m;ψ′) ∀G,m
⇒ ψ = ψ′ (up to label permutation).

We can consider a grid of dimension R1× . . .×RD as defined in Section 3.2.1 and the
vectors mb = (m1

b1
, . . . ,mD

bD
), where b = (b1, . . . , bD) ∈

∏D
d=1{1, . . . , Bd}. Each vector
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md
bd

is defined as

md
bd

=

{
n for an index bd ∈ {1, . . . , Bd}
0 otherwise.

So each md
bd

is a vector of counts representing the situation in which observations are
concentrated in the bd−th bin on the d-th dimension. Moreover, for each possible mb we
have:

pm(mb;ψ) =
∑

n′∈Fmb

p(n′;ψ) = k(mb)Pb

pm(mb;ψ
′) =

∑
n′∈Fmb

p(n′;ψ′) = k(mb)P
′
b

where k(mb) is a constant and Pb (and P ′b) is the probability for the bin whose marginal
bin on the d-th is indexed by the d-th element of b. Choosing every possible value for b
we obtain the same system of identifiability equation for a multivariate binned mixture
model. There are no other equation to satisfy because the other probabilities for other
vectors m are combinations of Pb (or P ′b). Thus if multivariate binned mixture models
are identifiable the binned marginal-conjoint model is identifiable. Moreover, under the
hypothesis of Proposition 3.2.1 diagonal binned conjoint-marginal multivariate mixtures
are identifiable.

Remarks and necessary conditions for identifiability Previous propositions state
sufficient conditions on the parametric space guaranteeing identifiability. Actually, we
think that binned Gaussian mixtures could be identifiable everywhere in Ψ, but this is
not the aim of this work. Indeed, this preliminary result is sufficient to assess identifiability
in the bin-marginal case, which is the main objective of our analysis. Furthermore, the
same parametric restrictions will be considered again in Section 3.3.3 to cope with further
issues related to our particular estimation strategy that will be presented in the next
sections.

We have already pointed out that these propositions contain only sufficient conditions
assuring identifiability. Thus, they are not sharp and they may become too rough if K
increases. For this reason it is interesting to discuss necessary conditions for identifiability.
Following the same approach as Ranalli and Rocci (2017b), in which similar topics are
discussed, a necessary condition is that the number of bins in D-dimensional grid must
be equal or greater that the number of parameters of a full binned D-variate diagonal
Gaussian mixture with K components, as this model can be viewed as a

∏D
d=1(Rd + 1)
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contingency table. It means that:

D∏
d=1

(Rd + 1)− 1 ≥ 2DK +K − 1. (3.7)

3.2.3 EM algorithm

It is possible to formulate a specific EM algorithm in order to maximize the bin-marginal
log-likelihood `m(m;ψ) = log pm(m;ψ) associated to the bin-marginal data set. There-
fore, we introduce the complete log-likelihood

`c(ψ; x, z) =
K∑
k=1

n∑
i=1

zik log(πkφ(xi,µk,Σk)),

where z is an n × K matrix whose generic element zik is equal to 1 if xi belongs to
population k, it is 0 otherwise. Thus, z contains the hidden class memberships of the raw
data x = {x1, . . . ,xn}. More precisely, at each iteration j ≥ 0, given the current estimate
ψ(j), the complete log-likehood is used in the so-called E-step, where the following quantity
is calculated

Qm(ψ,ψ(j)) = Eψ(j) [`c(ψ; X,Z)|m], (3.8)

taking the expectation with respect to p(x, z|m;ψ(j)). Note that X and Z denote, re-
spectively, the random variables generating x and z.

Let rewrite (3.8):

Qm(ψ,ψ(j))

=
∑
n∈Fm

p(n|m;ψ(j))Eψ(j) [`c(ψ; X,Z)|n]

where

p(n|m;ψ(j)) =
p(n;ψ(j))∑

n′∈Fm
p(n′;ψ(j))

1{n∈Fm}. (3.9)

After some calculus, this expression reduces to:

Qm(ψ,ψ(j))

=
∑
n∈Fm

p(n|m;ψ(j))

×
K∑
k=1

B∑
b=1

nbEb[τ (j)
k (X) log[πkφ(X;µk,Σk)]]
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where Eb refers to the expectation with respect to the density g
(j)
b (x) = f(x;ψ(j))∫

Bb
f(y;ψ(j))dy

and

τ
(j)
k (x) =

π
(j)
k φ(x;µ

(j)
k ,Σ

(j)
k )

f(x;ψ(j))
. Before proceeding with the M-step, we introduce the following

quantities to simplify the notations:

α(j)(n) = p(n|m;ψ(j))

A
(j)
kb =

∫
Bb
τ

(j)
k (x)g

(j)
b (x)dx

B
(j)
kb =

∫
Bb
xτ

(j)
k (x)g

(j)
b (x)dx

C
(j)
kb =

∫
Bb

(x− µk)(x− µk)tτ
(j)
k (x)g

(j)
b (x)dx.

Then, in the M-step we maximize Qm(ψ,ψ(j)), obtaining the following update formulas for each
component k = 1, . . . ,K:

π
(j+1)
k =

1

n

∑
n∈Fm

α(j)(n)

B∑
b=1

nbA
(j)
kb

µ
(j+1)
k =

∑
n∈Fm

α(j)(n)
∑B

b=1 nbB
(j)
kb∑

n∈Fm
α(j)(n)

∑B
b=1 nbA

(j)
kb

Σ
(j+1)
k =

∑
n∈Fm

α(j)(n)
∑B

b=1 nbC
(j)
kb∑

n∈Fm
α(j)(n)

∑B
b=1 nbA

(j)
kb

.

Unfortunately, both previous E and M steps involve the computation of all “crossed” tables
Fm sharing the same marginals, coming back to a memory issue (and also a time computation
one). Therefore, an estimation based on the full likelihood of the bin-marginal model is not
numerically tractable under our strong computational constraints. For this very reason we will
provide in the following section estimates following a composite likelihood approach, after having
given a brief introduction of this concept.

3.3 Estimation strategy

In this section we present the estimation part of our contribution, working with diagonal Gaus-
sian mixtures (i.e., matrices Σk in (1.1) are diagonal). Before, it is necessary to briefly introduce
the marginal composite likelihood, on which our estimation proposal is based.

3.3.1 Marginal composite likelihood

Marginal composite likelihood is a pseudo-likelihood used to obtain asymptotically consistent
estimates (see Varin et al. (2011) for instance) when the optimization of the full likelihood is too
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burdensome. The marginal composite likelihood relies only on univariate marginal likelihoods
and it is a special case of composite likelihood (Lindsay, 1988), where more general multivariate
marginal likelihoods can be taken into account.

Let x be a D-dimensional sample with n observations xi = (xi1, . . . , xiD), i = 1, . . . , n,
generated by a Gaussian diagonal mixture model with parameter ψ ∈ Ψ, as in Section 1.6.1.
Denoting with xd = (x1d, . . . , xnd) the component d of the whole raw data set, Ld(ψd; xd)
is the likelihood of the univariate Gaussian mixture at dimension d with parameter ψd =
(π1, . . . , πK , µ1d, . . . , µKd, σ

2
1d, . . . , σ

2
Kd). Then, the marginal composite likelihood is defined as

L̃(ψ; x) =
D∏
d=1

Ld(ψd; xd).

Similarly, the marginal composite log-likelihood is ˜̀(ψ; x) =
∑D

d=1 `d(ψd; xd), with `d(ψd; xd) =
logLd(ψd; xd).

The estimator ψ̃ maximizing L̃(ψ; x) is named maximum marginal composite likelihood esti-
mator. It has proved to be consistent and asymptotically normally distributed under very mild
conditions about the regularity of the marginal densities (see Molenberghs and Verbeke (2005)
for instance).

3.3.2 Bin-marginal composite likelihood

Having given the necessary notation in the previous paragraphs, we can now complete our
proposal, in which we will combine the memory reduction offered by bin-marginal data with
the computational advantages of marginal composite likelihood. Actually, more general but less
frugal versions of composite likelihood have already been used in the area of mixture models.
Indeed, a formalization of EM algorithm with composite likelihood could be seen in Gao and
Song (2011). They also established three fundamental properties of the associated so-called
CL-EM algorithm: ascent property, convergence to a stationary point and a quantification of
its rate of convergence. Whitaker et al. (2020) proved the consistency of maximum composite
likelihood estimators when using binned data, knowing that raw maximum composite likelihood
ones are consistent (see Molenberghs and Verbeke (2005) and Lindsay (1988), for instance). An
application of composite likelihood on binned data appeared in Ranalli and Rocci (2016a), where
these ones arose from a discrete data problem. This is quite similar to the technique we are about
to describe, but it is different as it uses bivariate grids and it does not build artificially binned
data as a solution for scalability, because they were already given in the problem statement.

Assuming a marginal D-dimensional Cartesian grid G as defined in Section 3.2.1 and di-
agonal covariance matrices, instead of maximizing the too complex bin-marginal log-likelihood
`m(ψ;m), we aim to maximize the following bin-marginal composite log-likelihood:

˜̀
m(ψ;m) =

D∑
d=1

`d(ψd;md)

=
D∑
d=1

Bd∑
bd=1

mdbd log
(∫
Bdbd

fd(xd;ψd)dxd

)
.

(3.10)
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Here, `d(ψd;md) is the binned log-likelihood for a univariate Gaussian mixture with K compo-
nents of density fd(xd;ψd) indexed by the parameter ψd. The expression of (3.10) motivates why
we work with diagonal mixtures: it is impossible to estimate any kind of covariance parameter,
since none of them appear in ψd.

3.3.3 Properties of the bin-marginal composite likelihood

In Section 3.2.2 we have provided sufficient conditions assuring identifiability of both full binned
model and bin-marginal one. These conditions restricted the parameter space to Ψ/Ψ†, where
Ψ† contained all the mixtures where at least two components share either the same proportion
or the same projection on at least one axis. We conjectured that, especially for the full binned
model, identifiability could hold in a set larger than Ψ/Ψ† and that these restrictions would
have been considered again to cope with specific issues related to our composite likelihood-based
estimation strategy. Indeed, in this section, we show an example of mixture in Ψ† for which the
use of the bin-marginal composite likelihood sets new obstacles impeding a good estimation.

A pathological example Denoting with N2(·, ·) a normal bivariate distribution, let con-
sider these two bivariate two-classes mixtures:

0.5N2

(( µ1

µ2

)
,
( v1 0

0 v2

))
+ 0.5N2

(( ν1

ν2

)
,
( w1 0

0 w2

))
(3.11)

0.5N2

(( µ1

ν2

)
,
( v1 0

0 w2

))
+ 0.5N2

(( ν1

µ2

)
,
( w1 0

0 v2

))
. (3.12)

We note that, in both mixtures, proportions are equal, so these two mixtures are in Ψ†. As shown
in Figure 3.3, the two mixtures have the same projections on the two axes, although the joint
mixtures are different. Therefore, it is not possible to distinguish these two mixtures, knowing
only marginal distributions. In this case, thus, maximum bin-marginal composite likelihood
estimation is ambiguous.

More specifically, the described example represents a pathological case where two theoretical
properties are not matched: the asymptotic identifiability of the optimization criterion and the
joint identifiability (i.e., it is not possible to infer the joint D-dimensional mixture, knowing only
the D marginal distributions). In the next two paragraphs we show that these two properties
are satisfied if ψ ∈ Ψ/Ψ†.

Asymptotic identifiability of the optimization criterion The asymptotic identifia-
bility of the optimization criterion for the maximum bin-marginal composite likelihood estimator
(i.e., the asymptotic criterion is maximized at the unique value of the true parameter) is a nec-
essary condition to prove its consistency (Wald, 1949; Lindsay, 1988). In this section we prove
that this property is fulfilled almost everywhere, except in a null measure set, as the following
Proposition 3.3.1 assures. This null measure set of restrictions turns out to be the same Ψ†

defined in Section 3.2.2, which contains constraints regarding projections of components and
equality conditions on proportions.
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Figure 3.3: A pathological example where it is impossible to distinguish two bivariate
two-classes mixtures from their marginal distributions. Joint distribution and marginal
distributions of (a) mixture (3.11) and (b) mixture (3.12).

Proposition 3.3.1. Assuming the true model is outside the null measure set Ψ†, the opti-
mization criterion of the bin-marginal composite log-likelihood, using a grid G = G1 × . . .×Gd
with

∏D
d=1Rd cut points is asymptotically identifiable if Rd > 4K − 3, d = 1, . . . , D up to label

permutation.

Proof. Let X = (X1, . . . , XD) be a mixture random variable with pdf f(x,ψ∗) and define the∑
dBd–dimensional random variable M with components (1ad(bd−1)≤Xd<adbd )d=1,...,D;bd=1,...Bd ,

margins of the raw observation X on the D-dimensional grid. Then m is the sum of n outcomes
of i.i.d. random variables having M law. Hence, 1

n
˜̀
m(ψ;m) converges in probability to the

contrast function F (ψ) = Eψ∗ [˜̀m(ψ; M)] when n→∞, uniformly in the parameter.
We have to show that the following inequality holds:

Eψ∗ [˜̀m(ψ∗; M)] > Eψ∗ [˜̀m(ψ; M)] ∀ψ 6= ψ∗, (3.13)

while the corresponding equality holds for ψ = ψ∗ (up to label permutation). In this case we will
say that there is asymptotic identifiability. From the definition of the bin-marginal composite
log-likelihood, we have:

Eψ∗ [˜̀m(ψ∗; M)]− Eψ∗ [˜̀m(ψ; M)]

= Eψ∗1 [`1(ψ∗1; M1)]− Eψ∗1 [`1(ψ1; M1)] + . . .

+ Eψ∗D [`D(ψ∗D; MD)]− Eψ∗D [`D(ψD; MD)],

where Md is a Bd dimensional random variable with components (1ad(bd−1)≤Xd<adbd)bd=1,...,Bd .
For all log-likelihoods `d, d = 1, . . . , D, inequality (3.13) holds. Thus, for all ψ1 6= ψ∗1, . . .ψD 6=
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ψ∗D:

Eψ∗1 [`1(ψ∗1; M1)] > Eψ∗1 [`1(ψ1; M1)]

...

Eψ∗D [`D(ψ∗D; MD)] > Eψ∗D [`D(ψD; MD)]

and we have equality for ψ1 = ψ∗1, . . . ,ψD = ψ∗D, up to label permutation.
As it is well-known for mixtures, each equality hold up to a permutation: so we can define a

set of D permutations named ρ1, . . . , ρD. In the hypothesis of our proposition, which assures that
the marginal mixtures have the same number of components of the original ones and different
proportions, we can match uniquely the components thanks to proportions matching. Therefore,
the D permutations reduce to only one (named ρ) and ψ∗ is equal to ψ after ρ. So, in this case,
asymptotic identifiability is fulfilled.

Joint identifiability The use of composite likelihood sets another kind of identifiability
issue that has to be considered despite the results obtained in Section 3.2.2. Indeed, we have
to show if the joint D-dimensional structure can be uniquely identified looking at only the D
marginal distributions. Given two bin-marginal D-variate mixtures pm(m;ψ) and pm(m;ψ′),
we have to prove that pm(m;ψ) = pm(m;ψ′), knowing equalities between marginals. The
conditions given by Ranalli and Rocci (2017b) in a raw data case and our condition on grid
refinement are sufficient to achieve this kind of identifiability even in the bin-marginal case. We
point out that these conditions are the same defining the null measure set Ψ† in the previous
propositions, as reported in the following result.

Proposition 3.3.2. Let pm(m;ψ) and pm(m;ψ′) two D-variate bin-marginal mixtures with K
components such that pd(md;ψd) = pd(md;ψ

′
d) for all d = 1, . . . , D. Assume that ψ,ψ′ ∈ Ψ/Ψ†

and Rd > 4K − 3, d = 1, . . . , D. Then pm(m;ψ) = pm(m;ψ′).

Proof. As ψ,ψ′ ∈ Ψ/Ψ†, marginals pd(md;ψd) and pd(md;ψ
′
d) for all d = 1, . . . , D have

K components. From pd(md;ψd) = pd(md;ψ
′
d), the hypotheses on grid refinement Rd >

4K − 3 and ψ,ψ′ ∈ Ψ/Ψ† (in particular that proportions πk are different), we deduce thanks
to Proposition 2.2.2 that πk = π′k, k = 1, . . . ,K, and that the labeling order of the components
is the same. Using the same hypotheses and Proposition 2.2.2, it follows also that µkd = µ′kd
and σ2

kd = σ2′
kd, for k = 1, . . . ,K and d = 1, . . . , D. This means that µk = µ′k and Σk = Σ′k for

k = 1, . . . ,K. This completes the proof.

Necessary conditions for joint identifiability As in Section 3.2.2, we can also provide
a necessary condition. Similarly to what is reported in Ranalli and Rocci (2016a), we can state
that a necessary condition to infer the joint structure of a mixture knowing only univariate
marginals is

D∑
d=1

Rd ≥ 2DK +K − 1, (3.14)
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This is because the bin-marginal likelihood is the product of all univariate binned likelihoods
and thus the maximum number of estimable parameters is equal to the number of parameters
of a main effects log-linear model.

3.3.4 Bin-marginal CL-EM algorithm

We can now maximize (3.10) using an EM-like approach. At each data md, d = 1, . . . , D we
associate the missing vectors (xd, zd), d = 1, . . . , D, where xd contains the component d of the
raw data x and zd is the indicator membership matrix for xd. Thus, it is an n×K matrix whose
generic element zdik is equal to 1 if xid belongs to population k, 0 otherwise.

To simplify the notation, we set z̃ = {z1, . . . , zD}: the couple (x, z̃) is named complete data.
Then, we introduce the complete marginal composite log-likelihood :

˜̀c
m(ψ; x, z̃) =

D∑
d=1

`cd(ψd; xd, zd), (3.15)

where `cd(ψd; xd, zd) denotes the complete log-likelihood for the d-th marginal couple of data
(xd, zd).

At iteration j ≥ 0, ψ(j) denotes the current estimate for ψ. Then, denoting respectively
with Xd and Zd the random variables generating xd and zd, we now define the quantity:

Q̃m(ψ,ψ(j)) =
D∑
d=1

E
ψ

(j)
d

[`cd(ψd; Xd,Zd)|md],

where the expectations are taken with respect to the conditional densities f(xd, zd|md;ψ
(j)
d ),

d = 1, . . . , D.
Let re-write Q̃m(ψ,ψ(j)), indicating with Xd × Zd the integration domain of (xd, zd). We

have

Q̃m(ψ,ψ(j)) =

D∑
d=1

∫
Xd×Zd

`cd(ψd; xd, zd)

× f(xd, zd|md;ψ
(j)
d )dxddzd.

Now, we can define our bin-marginal CL-EM algorithm, whose fundamental steps are re-
sumed in Algorithm 1. Therein Bdbd indicates the bd−th interval bin on the d−th dimension.

Initialization We adopt a uniform random initialization for proportions, means and vari-
ances. In particular, for each dimension, means are values extracted uniformly from the range
of values of the data and variances are positive uniform values lower than the variance of the
data.
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Algorithm 1 Bin-marginal CL-EM algorithm for D-dimensional Gaussian diagonal mix-
tures

1. Initialization phase: provide an initial guess ψ(0).

2. For j ≥ 0:

• Binned CL-E Step: Given the estimate ψ(j), calculate Q̃m(ψ,ψ(j));

• Binned CL-M Step: Obtain the new estimate ψ(j+1), maximizing
Q̃m(ψ,ψ(j)).

For d = 1, . . . , D :

For bd = 1, . . . , Bd :

g
(j)
dbd

(xd) =
f(xd;ψ

(j)
d )∫

Bdbd
f(yd;ψ

(j)
d )dyd

For k = 1, . . . , K and d = 1, . . . , D :

τ
(j)
kd (xd) =

π
(j)
k φ(xd;µ

(j)
kd , σ

2(j)
kd )

f(xd;ψ
(j)
d )

π
(j+1)
k =

∑D
d=1

∑Bd
bd=1mdbd

∫
Bdbd

τ
(j)
kd (xd)g

(j)
dbd

(xd)dxd

Dn

µ
(j+1)
kd =

∑Bd
bd=1mdbd

∫
Bdbd

xdτ
(j)
kd (xd)g

(j)
dbd

(xd)dxd∑Bd
bd=1 mdbd

∫
Bdbd

τ
(j)
kd (xd)g

(j)
dbd

(xd)dxd

σ2(j+1)

kd =

∑Bd
bd=1mdbd

∫
Bdbd

(xd − µ(j)
kd )2τ

(j)
kd (xd)g

(j)
dbd

(xd)dxd∑Bd
bd=1 mdbd

∫
Bdbd

τ
(j)
kd (xd)g

(j)
dbd

(xd)dxd

Stop if (3.16) is verified, continue otherwise.

Stopping rule Binned CL-EM algorithm stops as soon as∣∣∣ ˜̀m(ψ(j+1);m)− ˜̀
m(ψ(j);m)

˜̀
m(ψ(j);m)

∣∣∣ < ε, (3.16)

where ε is a chosen threshold.
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Obtaining the final clustering partition Once obtained the final estimate of ψ provided
by our CL-EM algorithm, namely ψ̂, we recover the final clustering partition using a maximum
a posteriori probability (MAP) rule. It means that the estimated labels ẑ = (ẑ1, . . . , ẑn) are
given by:

ẑi = argmax
1≤k≤K

π̂kφ(xi; µ̂k, Σ̂k) i = 1, . . . , n.

We highlight this algorithm involves only D binned vectors of dimension Bd = Rd + 1,
d = 1, . . . , D and only univariate integrals. Thus, our proposal is able to solve our initial issues
linked to storage and complexity.

3.4 Numerical experiences on simulated data

In this section we apply the methodology to different simulated data sets in order to show in
controlled frameworks its ability to recognize the minority class.

Table 3.1: Description of the fifteen scenarios. Covariance matrices Σ1 and Σ2 are equal
to the identity matrix I3 and π2 = 1− π1.

Scenario Separation Imbalance Small class proportion (π1) Means

HH
High

High 10−4

µ1 = (−4,−4,−4)
µ2 = (4, 4, 4)

HM Medium 10−3

HL Low 10−2

MH
Medium

High 10−4

µ1 = (−3,−3,−3)
µ2 = (3, 3, 3)

MM Medium 10−3

ML Low 10−2

LH
Low

High 10−4

µ1 = (−2,−2,−2)
µ2 = (2, 2, 2)

LM Medium 10−3

LL Low 10−2

VH
Very low

High 10−4

µ1 = (−1,−1,−1)
µ2 = (1, 1, 1)

VM Medium 10−3

VL Low 10−2

1HH
One separated

component

High 10−4

µ1 = (−1,−1,−4)
µ2 = (1, 1, 4)

1HM Medium 10−3

1HL Low 10−2

Our second aim is also to compare it to two possible competitors: classic estimation with
the full data set and a subsampling strategy. We will evaluate their performances in terms of
clustering quality, measured by the ARI score (Hubert and Arabie, 1985), and also in terms
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of both time and memory consumption. In particular, the full data set will be our benchmark
in terms of clustering quality, but it will be discarded as it is too much burdensome. The
subsampling will prove to cope with our computational constraints, but resulting usually in bad
clustering performances or in, even, estimation failures.

In these simulations, and in real applications of Section 3.5 as well, we suppose the true
number of components K is known and fixed. Actually, the definition of a criterion to choose
the right number of components is needed to complete our analyses. It is true that examples of
model choice criteria based on penalized composite likelihood have already been defined (Varin
et al., 2011; Ranalli and Rocci, 2016b), but their application on our case requires particular
care, due to numerical complexity. Thus, this topic needs further research and, possibly, new
criteria to define. It is for this very reason that on this work we prefer to test the potential of
our method in simulations where K is fixed. The definition of suitable model choice criteria will
be debated in future works.

3.4.1 Experimental settings

Simulation analyses are conducted on data sets with 1 million data generated from several 3-
dimensional two classes mixtures, different in proportions assigned to the minority class and also
in means, while both covariance matrices remain equal to the identity matrix. These differences
are crucial because lowering proportion of the smallest class corresponds to more difficulties in
detecting it and changing means helps us in controlling classes separation and, thus, clustering
complexity.

We divide our simulations into two main parts: in the first one, cluster separation is equal
for all axes, while, in the second one, clusters are well separated only on one axis, while on
the other two they are not. This is useful to understand the degree of separation needed by
our technique. In particular, in the first part, we gradually increase the small class proportion
three times from 10−4 to 10−2 and we also propose four separation degrees for cluster means,
equal to 8, 6, 4, 2 in terms of absolute difference between them. Their combination results in
twelve different scenarios. Each scenario is named by using two letters: the first one (H, M,
L, V) refers to the degree of separation of the scenario (respectively: high, medium, low and
very low); the second one (H, M, L) refers to the imbalance of the data set (high, medium and
low). Three additional scenarios consist in a variation of scenarios HH-HM-HL where the first
two dimension have the lowest separation degree, while there is a high separation on the third
axis. Their names are 1HH-1HM-1HL, reminding that here high separation is present only on
one axis. Table 3.1 details all these fifteen settings.

Regarding the three analyzed methods, we decide to compare subsampling and our bin-
marginal proposal under the same memory constraints. Bin marginal uses a grid refinement R,
leading to use a 2R memory space (binned data itself and grid); hence, subsampling is conducted
with a subsample of size 2R to be fair. At the same time, we also analyze the influence of
the grid refinement on the binned estimation and, consequently, the effect of the subsample
size on the subsampling performance. In practice, the refinement can be fixed to 50, 100, 200
and, consequently, subsample sizes can be 100, 200 or 400. For each scenario, we simulated 50
different data sets of equal size (1 million) to have consistent results. To evaluate its variability,
subsampling performances are evaluated on 100 different subsamples. On the same sample, all
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the three algorithms start from the same initialization points, in order to correctly evaluate their
performances. Practical implementation, both of simulations and real application as well, was
done in the R environment (R Core Team, 2021). More precisely, we used the routines of the
R package mclust (Fraley et al., 2012) for the two competitors and a self-written code for our
bin-marginal technique.

3.4.2 Results

Clustering quality and memory Figures 3.4a-3.4o depict the results of the simulations.
Mostly, our proposal outperforms subsampling in all the settings with good performances even
with very coarse grids. It encounters some difficulties only in very hard scenarios where separa-
tion and proportion are very small. Generally, it approaches with a low consumption the results
obtained with the full data set, which, on the contrary, uses a huge amount of memory.

Failures There is another virtue in binned strategy: in fact, subsampling can fail, i.e., the
algorithm does not provide any result, as reported in Figure 3.5. It appears the probability of
failure increases if separation increases and imbalance ratio decreases. This is quite astonishing,
as we expected more failures in a more imbalanced data set, but it is not completely incoherent:
in fact, results show that if subsampling does not fail (high imbalancement) it works badly; if on
the contrary it can provide good results, it is prone to failures (low imbalancement). In most of
scenarios, failures surprisingly increase according to subsample size. At this moment, we are not
able to explain exactly the reason of this unusual behaviour, that probably could be resolved
by changing the initial settings of EM (implemented in mclust). But, fortunately, this does not
affect directly our proposal based on binned data.

Time Finally, Figure 3.6 shows time performances for the three strategies. Our CL-EM
algorithm does not outperform subsampled EM in execution time, while it is faster than full
data set EM. This result is coherent with our expectations. Indeed, even if both CL-EM and
classic EM are linear with respect to input size (R and n respectively), the operations executed
by CL-EM are more complex due to the presence of integrals (see Algorithm 1). Thus, if R and n
are comparable (subsampling case), CL-EM is slower than classic EM, while it is faster if R� n
(full data set case). In analyzing Figure 3.6 we also have to point out that the mclust package is
well-optimized. A possible way to speed up our code is the employment of Rcpp (Eddelbuettel
and François, 2011), which enables integration between R and C++. According to Aruoba and
Fernández-Villaverde (2015), Rcpp is faster than R about 100 times, so our time performances
has to be scaled of at least a factor 100. The figure itself pictures our predicted performance
after code optimization (blue boxplots), showing a remarkable improvement relatively to full
data set analysis.
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(a) HH (b) HM (c) HL

(d) MH (e) MM (f) ML

(g) LH (h) LM (i) LL

(j) VH (k) VM (l) VL

(m) 1HH (n) 1HM (o) 1HL

Figure 3.4: Clustering performances for subsampled EM (red boxplots), bin-marginal CL-
EM (black boxplots) and full data EM (purple boxplots) expressed in terms of ARI in
dependence on grid refinement/subsample size under condition of equal memory occu-
pancy. Imbalance is decreasing from left to right and separation is decreasing from top
to bottom.
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Figure 3.5: Percentage of subsampled EM failures.
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Figure 3.6: Scenario HH: execution time (in s) comparison between subsampled EM
(red boxplots) and bin-marginal CL-EM (black boxplots) in dependence on grid refine-
ment/subsample size in condition of equal memory occupancy. Blue boxplots show ex-
pected CL-EM time after optimization in language C++, while the purple boxplot rep-
resents time performance for the full data set analysis.
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(a) (b)

Figure 3.7: Result comparison bin-marginal EM (black boxplots) and mini-batch EM (red
boxplots).

Comparisons with multi-samples methods In these simulations we have seen that
our proposal outperforms subsampling under the same memory restriction. Interesting further
comparisons could be done with methods employing several subsamples in the same estimation
process, such as the mini-batch EM described in Nguyen et al. (2020). Actually, our method
remains competitive with them despite the increase of available information. Let consider a
bivariate simulation involving data generating by a two-classes Gaussian mixtures with the
following parameters:

π1 = 10−4

µ1 = (−4,−4)

µ2 = (4, 4)

Σ1 = Σ2 = I2

We simulated 50 different data sets of equal size (1 million) to have consistent results. For our
method we used marginal grids with refinement 100, while the mini-batch EM uses the initial
settings recommended in the cited reference. In each simulation, we initialized both algorithms
from the same 100 starting points and we selected the result providing the best bin-marginal
likelihood (for our method) and the full data raw likelihood (for the competitor, this information
is also provided by StoEMMIX routines). For the two best results we calculated the inducted
partitions and the corresponding ARI scores (Figure 3.7a). We also computed the time for a
single execution of both algorithms (Figure 3.7a). From the analysis of these results, we can
conclude that our method performs better than mini-batch EM. Moreover, mini-batch EM is
much slower than bin-marginal EM, due to the drawing of several samples.
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3.5 Real data sets

The presented methodology is now applied to several real imbalanced data sets. Here we show
three applications from different fields of interest, which are image segmentation, fraud detection
and recognition of potentially hazardous asteroids. In the last two cases, we have considered a
subset of three variables for each data set. We have chosen those ones whose histograms visually
resulted to be close to GMM hypotheses and with a low percentage of missing values (less than
the 5% of the original data). A comprehensive view of the used data sets is given in Table 3.2.

Table 3.2: Real data sets description.

Data set n D Small class proportion

Cell-1 101,430 3 unknown

Cell-2 65,536 3 unknown

Cell-3 685,020 3 unknown

Comet 1,083,681 3 unknown

Asteroids 932,341 3 0.002

Credit card 284,807 3 0.0014

3.5.1 Data sets and methods

Image segmentation Image segmentation (Pal and Pal, 1993) consists in partitioning an
image into homogeneous parts and it is useful to detect and locate objects. Here we focus on
those images where there are very tiny objects: for this purpose we segment three cell images
available on Kaggle (To, 2021) and an image picturing a distant active comet observed by NASA’s
Hubble Space Telescope (NASA, 2017). After a brief pre-processing phase, these images result
in 3-dimension data sets with a number of records ranging from 65,536 to 1,083,681. The lines
of these data sets correspond to RGB pixels, that could be analyzed with our method.

Asteroids Asteroid data set is a collection of information about asteroids available on Kaggle
(Hossain, 2020). It consists in 958,524 records of 45 variables. The purpose of the analysis is
to detect potentially hazardous asteroids (PHAs), which are those asteroids approaching very
close to the Earth. In particular, an asteroid with small magnitude (H) and Earth minimum
orbit intersection distance (moid) is considered a PHA (Quarta and Mengali, 2010). We use
only a subset of the features contained in this data set, using these two variables and adding
information regarding orbit eccentricity in order to remain in a more interesting 3-dimensional
problem where our method has already been tested in the simulation phase. Due to the presence
of missing values, the analyzed data set contains now 932,341 records out of 958,524. The rest
of the variables were discarded because they contain too many missing values (less than the 5%
of the original data) and their histograms were judged not to be close to GMM hypothesis.
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Credit card fraud detection Kaggle credit card data set (ULB, 2018) is a public repos-
itory which was massively analyzed in literature (Dal Pozzolo et al., 2017, 2014; Niu et al.,
2019) to detect frauds. This data set contains 284,807 transactions, of which 492 are frauds,
made by credit cards in September 2013 by European cardholders. All information given by
31 variables are anonymized and they are the result of a PCA transformation, so the original
meaning of the variables is missed. Following the same ideas of the previous data set, we kept
only three variables (V10-V14-V17), selecting those whose histograms seemed to be closer to
Gaussian assumptions.

Methods For image segmentation, we will simply use the K-class partitions obtained with
both our proposal and subsampling. For Asteroids and Credit Card data sets we perform a
two-classes clustering comparing our method to both subsampled EM and full data set EM.
Actually, true classification labels are provided by the original data sets but we use them only
as a benchmark, as we want to follow a completely unsupervised approach. In particular we
will employ them to rank results based on ARI score (Hubert and Arabie, 1985). Similarly to
simulations, we used our self-written R code for bin-marginal CL-EM and mclust for all versions
of classical EM .

3.5.2 Results and discussion

Image segmentation Figures 3.8-3.11 synthesize results obtained for the image segmenta-
tion of the four images. Figures marked with (a) represent the true images and those denoted
with (b) the segmentation obtained with binned data. Finally, figures (c)-(d) are the best and
worst (respectively associated to the full data set likelihood of the estimated parameter) seg-
mentation obtained with classical subsampling in condition of equal memory occupancy. It can
be seen that our method successfully detects the objects, while subsampling results in very noisy
segmentations. Regarding the binning grid employed, we used marginal grids of refinement 20
for all Cell images and a finer ones with 400 intervals for Comet. In addition for Cell images we
selected K = 4, where 4 colours are recognizable, and K = 3 for Comet, as in this image there
is a consistent group of noise (represented in our segmentation by black points)

Asteroids Figure 3.12a reports the result of the comparison between our bin-marginal CL-
EM and classical EM with both subsampling and full data set. In absolute terms, generically
low ARI scores suggest that a total unsupervised approach could be very risky in this case.
However, our objective is to analyze the results of our proposal relatively to our competitors.
Concerning this, Figure 3.12a shows that, despite the loss of information, bin-marginal method
(black circle) has globally better performances than both subsampling (red boxplot) and full
data set EM (purple circle). Moreover, bin-marginal CL-EM is not prone to the variability of
subsampling, whose result highy depends on subsample choice.
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(a) (b)

(c) (d)

Figure 3.8: Cell-1 segmentation: (a) Original image; (b) Segmentation obtained with bin-
marginal CL-EM; (c)-(d) Worst and best segmentation obtained with two subsampled
EM.
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(a) (b)

(c) (d)

Figure 3.9: Cell-2 segmentation: (a) Original image; (b) Segmentation obtained with bin-
marginal CL-EM; (c)-(d) Worst and best segmentation obtained with two subsampled
EM.
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(a) (b)

(c) (d)

Figure 3.10: Cell-3 segmentation: (a) Original image; (b) Segmentation obtained with
bin-marginal CL-EM; (c)-(d) Best and worst segmentation obtained with two subsampled
EM.
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(a) (b)

(c) (d)

Figure 3.11: Comet image segmentation: (a) Original image; (b) Segmentation obtained
with bin-marginal CL-EM; (c)-(d) Worst and best segmentation obtained with two sub-
sampled EM.
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Credit card fraud detection Following the same strategy used for Asteroids data set,
we build a two-classes partition using our bin-marginal technique to detect frauds among the
set of credit card transactions. Based on Figure 3.12b, similar comments could be made. Our
method seems to be globally better with our direct competitors, avoiding the high variability of
subsampling.
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Figure 3.12: Two-classes clustering performances in terms of ARI for subsampled EM
(red boxplots), bin-marginal CL-EM (black circle) and full data set EM (purple circle).
Data sets: (a) Asteroids; (b) Credit card fraud detection.

3.6 Conclusion

In this chapter we have defined a method based on Gaussian mixture models combining binned
data with marginalization, which is able to detect, in an unsupervised way, imbalanced classes
on large data sets under hard memory constraints. The theoretical results presented in this
chapter have shown that the model and the proposed estimation procedure have good statistical
properties, such as identifiability, despite the huge loss of statistical information caused by our
heavy bin-marginal data compression. Both simulations and real applications have proved the
competitiveness of our method with respect to the traditional subsampling method, in those
cases where a full data set clustering is out of reach. In particular, it has revealed a great
potential in the context of image segmentation when very tiny objects have to be detected.

These very encouraging results set the basis for a deeper research in topics commonly arising
in Gaussian mixture modeling, such as the local maxima problem and the definition of a criterion
to select the right number of components (thus, the number of classes). Proposing initialization
strategies to avoid local maxima and model selection criteria is a fundamental step to further
improve and automate our method. It is also important to quantify the impact of the binning
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grid on clustering quality, in order to design highly efficient and frugal grids. Thus, we discuss
in the next chapter these three topics from an experimental view, given first solutions and useful
ideas for future research.
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Chapter 4

Bin-marginal Gaussian mixtures:
further experimental topics

The aim of this chapter is to study three topics regarding bin-marginal Gaussian mixtures: local
maxima, definition of a model selection criteria and impact of the binning grid on clustering.
These three problems are analyzed from an experimental point of view in imbalanced simulated
scenarios, selected from the settings described in Table 3.1. The first topic regards a typical
problem arising when a general mixture model is estimated through the maximization of its log-
likelihood. This is because current estimation methods based on maximum likelihood principle,
in particularly EM algorithm, can converge to points of local maximum instead of stabilizing
around a point of absolute maximum. After a brief review about local maxima in raw and
binned Gaussian mixture (Section 4.1), we experimentally explore this problem in bin-marginal
Gaussian mixture models (Section 4.2). As regards the model choice, here we focus on the
problem of choosing the right number of components for the underlying Gaussian mixture model.
Typically, this issue is resolved through suitable choice criteria based on penalized form of model
log-likelihood, as described in Section 4.3.1. As our estimation method is based on a marginal
composite log-likelihood, we also review model choice criteria penalizing the marginal composite
log-likelihood, which are more appropriate for our method. However, existing criteria (Section
4.3.2) turn out to be too difficult to compute (Section 4.3.3), so in Section 4.3.4 we define two
new heuristics to select the right number of components in bin-marginal Gaussian mixtures. In
Section 4.4, we try to understand how the refinement of the binning grid impacts the estimation
process and, thus, the clustering. Moreover, as using a finer grid means more data to store,
this has also an impact on the quantity of resources to employ. So, in this section we provide a
first experimental guide to choose an optimal-refined grid which allows a good balance between
clustering performances and employed resources.

4.1 Local maxima in raw and binned GMM

Mixture models, and Gaussian mixtures in particular, present two practical difficulties associated
with their maximum likelihood estimation (Redner and Walker, 1984): firstly, mixture log-
likelihood is not bounded above and it presents spurious local maxima with very high log-
likelihood values (Kiefer and Wolfowitz, 1956); secondly, the log-likelihood function attains its
largest local maximum value at different choices of ψ (label switching).



82 Chapter 4. Bin-marginal Gaussian mixtures: further experimental topics

4.1.1 Spurious local maxima: definition and solutions

The log-likelihood of a Gaussian mixture may be unbounded or present local maxima (Day,
1969). Indeed, we may find high log-likelihood values corresponding to solutions where one of
the estimated components has very small variance relative to the others (univariate case), or
the determinant associated to the covariance matrix of a component is really small (multivariate
case). In order to prevent the choice of these maxima, corresponding to degenerate solutions,
several strategies have been proposed. Here, we revise techniques based on constrained esti-
mation, strategies to find good initialization points for EM and stochastic variants of the EM
algorithm itself.

Constrained estimation In Hathaway (1983) the idea of constraining the search of an
estimate ψ̂ into a specified subset of Ψ is widely debated, providing also guarantees about the
consistency of the constrained solution. In the univariate setting, given a value c ∈ (0, 1], this
solution must lie in the subset given by:

min
j 6=k

σ2
j

σ2
k

≥ c j, k ∈ {1, . . . , G}.

Thus, from a practical point of view, at the end of the EM algorithm it is possible to add a
control phase regarding the relative magnitude of each variance. The same author (Hathaway,
1985) has proposed a similar rule in the multivariate case, where the MLE search is limited to
the solutions respecting

min
j 6=k

λ(ΣjΣ
−1
k ) ≥ c j, k ∈ {1, . . . , G},

where λ(ΣjΣ
−1
k ) denotes the collection of eigenvalues of the matrix ΣjΣ

−1
k . Actually, this

heuristic rule is hard to apply practically. In order to circumvent this problem, Ingrassia (2004)
has proposed to search the MLE in the subset {ψ ∈ Ψ : a ≤ λd(Σk) ≤ b, k = 1, . . . ,K, d =
1, . . . , D}, where a/b ≥ c, for c ∈ (0, 1] and λd(Σk) is the d−th eigenvalues of Σk.

Initialization strategies Even if it is possible to constrain the optimization research in
special subsets to avoid degenerate solutions, EM algorithm does not assure convergence towards
the absolute maximum. This highly depends on how EM is initialized (Baudry and Celeux,
2015). Several authors propose different strategies to find good initialization points or variants
of EM to be less dependent from the point of departure. In order to detect local maxima and
reach the absolute maximum, it is suggested running EM several times starting from different
initialization points and retaining that one with the highest likelihood (Biernacki et al., 2003).
It is possible to choose the starting point randomly or in a deterministic way, through other
clustering methods. A first random method consists in randomly assigning a subsample of data
to the K components and, then, performing a first iteration of the M step on it (Coleman and

Woodruff, 2000). Alternatively, one can choose equal proportions π
(0)
k = 1/K for all k, variances

equal to the covariance of the whole data set and means given by K subsampled data points
(McLachlan and Peel, 2004). In addition, it is possible to evaluate the likelihood of several
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initial random points and starting the EM routine from the best one (Maitra, 2009). Among
the deterministic methods, we mention the use of K-means and hierarchical clustering (Scrucca
and Raftery, 2015).

Stochastic variants of EM algorithm Another current option is to use variants of the
EM algorithm where randomness is introduced to avoid local maxima (Celeux et al., 1995). The
Stochastic EM (SEM) (Celeux and Diebolt, 1985) adds an intermediate stochastic step (S step)
between E-step and M-step. At each iteration j ≥ 0 , group memberships for every observation

zi = (zi1, . . . , ziK) are drawn from a multinomial distribution with parameter given by τ
(j)
i =

(τ
(j)
i1 , . . . , τ

(j)
iK ). Then, M-step is performed on the complete log-likelihood as (estimated) group

labels are known. The same authors proposed also a simulated annealing modification of SEM,
the SAEM (Celeux and Diebolt, 1992). In this algorithm, traditional EM and SEM are both
performed at the same iteration and their estimates are then combined with weights given by
a sequence of positive decreasing real numbers (similarly to the Simulated Annealing algorithm
(Van Laarhoven and Aarts, 1987)). The result is finally retained as the new estimate of the
SAEM.

4.1.2 Label switching: definition and solutions

The problem of label switching is related to the particular mathematical form of the mixture
density. Let consider a general permutation ν(·) for the set of indexes {1, . . . ,K}. It is possible
to define a corresponding permutation for the parameter ψ:

ων(ψ) = (πν(1), . . . , πν(K),µν(1), . . . ,µν(K),Σν(1), . . . ,Σν(K)).

Then, it turns out that the likelihood L(ψ) is the same for all permutations ων(ψ) (Stephens,
2000). This problem affects in particular methods based on a Bayesian approach and it is not a
problem in the iterative computation of the MLE via the EM algorithm (our case) (McLachlan
and Peel, 2004). A first solution to the problem consists in imposing identifiability constraints
on the parameter space, such as π1 < . . . < πK (Stephens, 2000). As this solution is not effective
for any given data set, researchers developed other approaches based on relabelling (Richardson
and Green, 1997; Celeux, 1998; West, 1997).

4.1.3 Effect of binning on local maxima: the case of univariate
binned GMM

The problem of local (degenerate) maxima for binned Gaussian mixtures has been deeply studied
in Biernacki (2007) (in a univariate setting), presenting some particularities and previously
unexpected behaviours. A first difference with its raw counterpart is that the binned likelihood
of a Gaussian mixture is bounded above, as it is always lower than 1. However, this important
characteristic does not prevent binned GMM from degeneracies. The author also notes a strong
connection between the problem of local maxima for binned GMM and the choice of the binning
grid, which is debated in Section 4.4. Indeed, the binned EM seems to converge more towards a
degeneracy if the binning grid is rare. However, when the grid is not too fine, degeneracies can
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be avoided as they tend not to be global maximizers. In addition, binned EM algorithm seems
to move very slowly near a degeneracy which can act as both attractive and repulsive point for
the algorithm itself. It means that, under certain conditions depending on data and model, an
EM routine can “escape” from a degeneracy solution.

4.2 Local maxima in bin-marginal GMM

In this section, we investigate the local maxima problem for the bin-marginal likelihood with a
practical point of view. Theoretically, we can say that the bin-marginal likelihood is bounded
from above, as it is the sum of several binned univariate mixture likelihood (Section 4.1.3).
The rest of the section is focused on practical experiments which show how many local maxima
we can encounter, making comparisons with the traditional raw EM and the full binned EM
(Algorithm 2 in Section 1.6.1). Furthermore, possible initialization rules are provided to find
better starting points for our Bin-CL-EM algorithm.

4.2.1 Numerical experiments

Let consider again the scenarios HH and HL presented in Section 3.4 and described in Table 3.1.
We consider the three algorithms (raw EM, full binned EM and Bin-CL-EM) with these initial
settings: tolerance equal to 1e-8, maximum number of iterations fixed to 500, three marginal
100-bins grids for our bin-marginal method, a full 20 × 20 × 20 three-variate grid for the full
bin EM algorithm. Then, we run each algorithm from the same initial point. We consider a
total of 200 different initializations. To simplify the visualization of results, we apply principal
components to the data set containing all the 200 final estimates and we consider the first two
principal components with maximum explained variance. Figures 4.1a-4.1c and 4.2a-4.2c show
the results obtained. Bin-marginal algorithm exhibits more local maxima than both raw and full
binned ones. In scenario HL, where imbalance is lower, the number of local maxima declines.
In order to reduce local maxima and optimize our method, we propose in the next section two
possible strategies of initialization for the Bin-CL-EM algorithm.

4.2.2 Possible initialization strategies for Bin-CL-EM algorithm

In order to cope with the presence of various local maxima, we formulate new paradigms of
initialization. Here, we propose two possible schema: initialization with big class parameters
fixed, where initial parameters for the big class are not chosen at random and estimated from
data, and marginal initialization.

Initialization with big class parameters fixed As we analyze very imbalanced data
sets, we can fix the starting parameter for big class mean and variance (which can be well
approximated by sample mean and variance, for example) and maintain a random initialization
for the proportions and small class parameters. In Figures 4.1d-4.2d results obtained with this
kind of initialization are shown for both scenario, without highlighting a significant improvement.
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Marginal initialization In this initialization paradigm, we propose to run several separate
univariate (small) EM on each dimension. Then, as possible rule to gather together all marginal
parameters, we suggest to match parameters according to the order given by proportions. The
resulting multidimensional parameter is used to initialize a (long) iteration of our Bin-CL-EM
algorithm. Figures 4.1e-4.2e show results obtained with marginal initialization. These good
results enhanced significantly performances of bin-marginal EM, which converges mostly towards
the right maximum.

4.3 Model selection criteria

In defining mixture models we have always supposed that the number of components K was
known. When no prior information about K is available, it is of primary interest to assess
it. One of the main approach consists in the formulation of model selection criteria based on
penalized form of model likelihood (McLachlan and Peel, 2004). The involved penalizations
try to quantify the complexity of the model, typically employing functions of the number of its
parameters and, thus, of the number of components in mixture models. In this section, we firstly
review common criteria to assess the number of components of Gaussian mixture models with
full likelihood. Then, as our estimation method is based on composite likelihood, we illustrate
model selection criteria based on it. These criteria turn out to be impossible to calculate with
the only knowledge of bin-marginal data, so we propose two ready-to-use heuristics to select the
number of components for a bin-marginal Gaussian mixture.

4.3.1 Full likelihood model selection criteria

Usually, a general full likelihood-based choice criterion C(K) to select the number of components
K has this form:

C(K) = −2`(ψK ; x) + PEN(K,n), (4.1)

where PEN(K,n) is a penalization term depending on K and n and ψK is the MLE for the
model with K components (McLachlan and Peel, 2004). Typically, the model minimizing the
criterion 4.1 is the chosen one.

AIC criterion The Akaike Information Criterion (AIC) was proposed in Akaike (1973).
The theoretical justification of this criterion relies on the minimization of the Kullback-Leibler
divergence (Kullback and Leibler, 1951) between the true distribution and the fitted model. If
the fitted density is denoted by f(x;ψK) and the true model density is q(x), their Kullback-
Leibler divergence is given by:

KL(q, f) = Eq[log q(x)]− Eq[log f(x;ψK)]. (4.2)

As the first term does not depend on f(x;ψK), the minimization of KL(q, f) implies maximizing
Eq[log f(x;ψK)]. AIC criterion is derived as a bias-corrected estimate of Eq[log f(x;ψK)] and
it is defined as:

AIC = −2`(ψK ; x) + 2IK ,
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where IK is the total number of parameters of the model.
The derivation of AIC relies on some regularity conditions (Cramer, 1946) that do not hold

when it is needed to select the right number of components of a mixture (McLachlan and Peel,
2004). However this, AIC is still used to choose K. Furthermore, AIC tends to overestimate
the correct number of components (Celeux and Soromenho, 1996).

BIC criterion The Bayesian Information Criterion (BIC) has been derived using a Bayesian
point of view in model selection (Schwarz, 1978). Let consider a set of models {MK ,K =
Kmin, . . . ,Kmax} with prior probabilities p(MK),K = Kmin, . . . ,Kmax. From a Bayesian per-
spective, the model to retain is the model maximizing the posterior probability

p(MK |x) ∝ p(x|MK)p(MK),

where p(x|MK) is called integrated likelihood and it is equal to

p(x|MK) =

∫
p(x|ψK ,MK)p(ψK |MK)dψK .

If the prior probabilities are the same, then the chosen model it that one with the maximum
integrated likelihood. As the evaluation of integrals in integrated likelihood is difficult (Fraley
and Raftery, 2002), for regular models the following approximation for the logarithm of the
integrated likelihood is used:

log p(x|MK) ≈ 2`(ψK ; x)− IK log(n), (4.3)

where IK is the total number of parameters of the model. Approximation (4.3) completely
defines the BIC criterion, which is

BIC = −2`(ψK ; x) + IK log(n).

Under proper regularity conditions, BIC criterion is consistent, i.e. it selects the right model for
n large enough. As already seen for the AIC, these conditions are not satisfied in general for
mixture models (Celeux et al., 2018). However, there are some results in favour of the use of
BIC. Leroux (1992) proves that BIC does not asymptotically underestimate the true number of
components. Roeder and Wasserman (1997) proves that BIC is consistent if Gaussian mixtures
are used to estimate a univariate density in a non-parametric way. Keribin (2000) generalizes
these results by proving that, under some conditions and for an appropriate penalty term,
BIC does not either asymptotically overestimate the number of components. Finally, BIC shows
encouraging good results in several practical applications (Dasgupta and Raftery, 1998; Stanford
and Raftery, 2000; Campbell et al., 1999).
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Figure 4.1: Scenario HH: PCA representation of local maxima found by: (a) Bin-marginal
EM; (b) Raw EM; (c) Full Binned EM; (d) Bin-marginal EM initialized with big class
given; (e) Bin-marginal EM with marginal initialization. Number between parentheses
inform about the percentage of variance explained by each PCA component.



88 Chapter 4. Bin-marginal Gaussian mixtures: further experimental topics

−4

0

4

−4 0 4
PCA Component 1 ( 0.3 % )

P
C

A
 C

o
m

p
o

n
e

n
t 

2
 (

 0
.2

7
 %

 )

True bin−marginal LL

−9931282

−9822797
−10009225

−11206480

Bin−marginal LL

#Similar points

1

57

(a)

−2

0

2

4

0 5 10
PCA Component 1 ( 0.69 % )

P
C

A
 C

o
m

p
o

n
e

n
t 

2
 (

 0
.1

7
 %

 )

#Similar points

1

186

−4312896−4312896

−4994231

Raw LL

True raw LL

−4349114

(b)

−4

−2

0

2

0 5 10
PCA Component 1 ( 0.55 % )

P
C

A
 C

o
m

p
o

n
e

n
t 

2
 (

 0
.0

9
 %

 )

True full binned LL

−4881234

−4845016−4845016

−5494348

Full binned LL

#Similar points

1

183

(c)

−5

0

5

−4 0 4 8
PCA Component 1 ( 0.37 % )

P
C

A
 C

o
m

p
o

n
e

n
t 

2
 (

 0
.3

2
 %

 )

True bin−marginal  LL

−9921473

−9921465

−9923718

−9928047

Bin−marginal LL

#Similar points

9

72

(d)

−4

−2

0

2

4

−4 −2 0 2 4
PCA Component 1 ( 1 % )

P
C

A
 C

o
m

p
o

n
e

n
t 

2
 (

 0
 %

 )

#Similar points

201

True bin−marginal  LL

−9921473

−9921465−9921465

−9928047

Bin−marginal LL

(e)

Figure 4.2: Scenario HL: PCA representation of local maxima found by: (a) Bin-marginal
EM; (b) Raw EM; (c) Full Binned EM; (d) Bin-marginal EM initialized with big class
given; (e) Bin-marginal EM with marginal initialization. Number between parentheses
inform about the percentage of variance explained by each PCA component.
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4.3.2 Composite likelihood model selection criteria

In the composite likelihood framework, authors have modified the common choice criteria re-
placing log-likelihood with the composite log-likelihood and redefining the penalization term.
In particular, authors have replaced the number of parameters IK with the effective number of

degrees of freedom (Pan, 2001) ĨK = tr(H̃
−1
J̃), where, H̃ and J̃ are consistent estimates of

E[∇2 ˜̀(ψ; X)] and E[(∇˜̀(ψ; X))(∇˜̀(ψ; X))t]. Thus, they are equal to:

H̃ =
1

n

n∑
i=1

∇2 ˜̀(ψ;xi)

J̃ =
1

n

n∑
i=1

(∇˜̀(ψ;xi))(∇˜̀(ψ;xi))
t

Applying these two slight modifications to the classical choice criteria and denoting with ψ̃K the
maximum composite likelihood estimate for the Gaussian mixture model with K components,
Varin and Vidoni (2005) have provided the C-AIC (Composite AIC ) criterion:

C-AIC = −2˜̀(ψ̃K ; x) + 2ĨK ,

while Gao and Song (2010) have introduced the C-BIC (Composite BIC ) criterion:

C-BIC = −2˜̀(ψ̃K ; x) + ĨK log(n).

Both criteria have been used in Ranalli and Rocci (2016a) in order to estimate the number of
components of a Gaussian mixture using a pairwise composite likelihood, showing similar good
behaviours. However, the two criteria require the computation ĨK which can be difficult as
pointed out in Ranalli and Rocci (2016c, 2017a).

4.3.3 Model selection criteria for bin-marginal Gaussian mix-
tures

These two criteria can be employed in our bin-marginal method simply using the bin-marginal
composite log-likelihood ˜̀

m(ψ;m) and finding the right effective number of degrees of freedom

for our bin-marginal model, denoted with Ĩm,K . Similarly to ĨK , we can pose Ĩm,K = tr(H̃
−1
m J̃m),

where H̃m and J̃m are defined as:

H̃m =
1

n

n∑
i=1

∇2 ˜̀
m(ψ; mi)

J̃m =
1

n

n∑
i=1

(∇˜̀
m(ψ; mi))(∇˜̀

m(ψ; mi))
t.

In these definitions, each mi is a realization of a
∑D

d=1Bd-dimensional variable such that the
generic element midbd is equal to 1 if ad(bd−1) ≥ xdi < adbd for d = 1, . . . , D, bd = 1, . . . , Bd and
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0, otherwise. We note that to calculate H̃m and J̃m we need to know at least the full binned
observations, which is impossible if we decide to work only with marginal counts. Thus, new
heuristics to choose the bin-marginal model are needed.

4.3.4 Two heuristics for the bin-marginal model

In the last section we note that present composite likelihood-based criteria are impossible to use
properly with the only knowledge of bin-marginal data. To cope with this difficulty, we propose
two heuristics to choose K, that we name C-BIC1 and C-BM-BIC1.

C-BIC1 Firstly, we can employ this BIC-like criterion using the same penalization term of
BIC :

C-BIC1 = −2˜̀
m(ψ̃K ;m) + IK log(n), (4.4)

This criterion is not new. Indeed, it was employed in Ranalli and Rocci (2016c),
Ranalli and Rocci (2017a) to circumvent computational complexity of C-BIC criterion.

C-BM-BIC1 We can define another heuristic, which is specific for our bin-marginal model.
It is derived as an approximation of a “true” BIC criterion based on the log-likelihood of the
bin-marginal model. If we could calculate the MLE of the bin-marginal model, then we could
easily define this proper BIC criterion, here denoted with BM-BIC:

BM-BIC = −2`m(ψK ;m) + IK log(n). (4.5)

In the following we derive our heuristic approximating the BM-BIC criterion. Let introduce the
following notations for d = 1, . . . , D:

Fmd
= {n′ : m′d = md},

F−md
= {n′ : m′d = md,m

′
l 6= ml ∀l 6= d}.

It turns out that for each d = 1, . . . , D the bin-marginal likelihood Lm(ψK ;m) is equal to

Lm(ψK ;m) =
∑
n′∈Fm

L(ψK ;n′) =
∑

n′∈Fmd

L(ψK ;n′)−
∑

n′∈F−md

L(ψK ;n′)

= L(ψK ;md)−
∑

n′∈F−md

L(ψK ;n′),

where L(ψK ,n
′) is the binned likelihood for binned data n′. Denoting with `m(ψK ;m) the

logarithm of Lm(ψK ;m), the previous equality can be rewritten as:

`m(ψK ;m) = log[L(ψK ;md)−
∑

n′∈F−md

L(ψK ;n′)] = `(ψk;md) + log[1−
∑

n′∈F−md

L(ψk;n
′)].
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Thus, summing all D relations we obtain

`m(ψK ;m) =
1

D
˜̀
m(ψK ;m) +

1

D

D∑
d=1

log
[
1−

∑
n′∈F−md

L(ψK ;n′)
]
.

Then, plugging this relation in BM-BIC and substituting ψK with the composite estimate ψ̃K ,
we obtain this new criterion:

C-BM-BIC = − 2

D
˜̀
m(ψ̃K ;m)− 2

D

D∑
d=1

log
[
1−

∑
n′∈F−md

L(ψ̃K ;n′)
]

+ IK log(n).

Now we complete our heuristic ignoring the second term, which is really hard to compute
due to the presence of several tables to calculate. This define a new possible choice criterion:

C-BM-BIC1 = − 2

D
˜̀
m(ψ̃K ;m) + IK log(n).

4.3.5 Practical experiences

In this section, we employ the two heuristics C-BIC1 and C-BM-BIC1 to select the right model
in imbalanced scenarios, selected from Table 3.1. In particular, we select settings with medium
(M) and low imbalance (L) (the situation with high (H) imbalance is excluded as we risk not to
generate the small class with n = 104, as reported in the next paragraph), while the degree of
separation can vary between very low (VL) and high (H).

Experience description For each scenario we generate 100 different data sets with n data.
In order to quantify practically the consistency of the two chosen heuristics, n vary between
104, 105, 106. Then, the right number of components is chosen among the set K = {1, 2, 3, 4},
according C-BIC1 and C-BM-BIC1.

Results Table 4.1 reports results for each imbalanced scenario. Despite of being two heuris-
tics, both C-BIC1 and C-BM-BIC1 show good results, predicting in the majority of cases the
right number of classes. However, in some settings with a very low degree of separation (V, VM,
VL), performances do not improve with n increasing.

4.4 Impact of the binning grid

In Chapter 3, we described our bin-marginal method in order to frugally perform Gaussian
model-based clustering. In our procedure, a key-role is played by the binning grids which
performed a heavy data size reduction. For this reason, the refinement parameter R contribute to
determine both the clustering quality and the quantity of time and memory used by the process.
Thus, it is natural to quantify the impact of grid refinement on our bin-marginal approach.
In this section, we show some practical examples where grids with different refinements are in
action, revealing how this sort of hyper-parameter impacts clustering performance.
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Table 4.1: Results obtained in imbalanced scenarios.

C-BIC1 BM-BIC-1

Scenario Size K = 1 K = 2 K = 3 K = 4 K = 1 K = 2 K = 3 K = 4

HM
104 - 100 - - - 100 - -
105 - 100 - - - 100 - -
106 - 100 - - - 100 - -

HL
104 - 100 - - - 100 - -
105 - 100 - - - 100 - -
106 - 100 - - - 100 - -

MM
104 - 100 - - 1 99 - -
105 - 100 - - - 100 - -
106 - 100 - - - 100 - -

ML
104 - 100 - - - 100 - -
105 - 100 - - - 100 - -
106 - 100 - - - 100 - -

LM
104 22 78 - - 90 10 - -
105 82 13 3 - 85 15 -
106 - 92 8 - - 92 8 -

LL
104 - 100 - - - 100 - -
105 - 100 - - - 100 - -
106 - 100 - - - 100 - -

VM
104 100 - - - 100 - - -
105 100 - - - 100 - - -
106 84 16 - - 100 - - -

VL
104 78 22 - - - 100 - -
105 - 82 18 - - 100 - -
106 81 19 - - 81 19 -
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4.4.1 Description of scenarios

In this section we consider three imbalanced scenarios depicted in Table 4.2. For each of them,
n = 106 data are generated by a three bivariate two-class mixtures where small class proportion
π1 varies from 10−2 to 10−4. In all the three settings, ordered by imbalance degree, we set a
high separation between the two classes in the first axis, while, in the second dimension, classes
are closer. The separation by clusters is given by means (respectively, µ1 = (−4,−2) and
µ2 = (4, 2)), while variances are fixed to the identity matrix I2.

Table 4.2: Description of the scenarios to evaluate grid impact. Covariance matrices Σ1

and Σ2 are equal to the identity matrix I2, π2 = 1− π1 and µ2 = −µ1.

Scenario Small class proportion (π1) Small class means (µ1)

L 10−2 (−4,−2)

M 10−3 (−4,−2)

H 10−4 (−4,−2)

4.4.2 Results

Results obtained for the three scenarios are represented in Figure 4.3. We can see in all three
figures that performance consistently degrades if R1 = 5, a value which is very close to the limit
of our condition of identifiability (Section 3.2.2). As the first marginal grid is related to the
well-separated axis, we can infer that grid refinement has an impact especially on those axes
where clusters are well-separated. This impact increases as the imbalance increases, while in
general ARI decreases, as expected. Finally, we can note that, except for very coarse grids, there
is no difference between sufficient dense grids.

4.5 Conclusion

In this chapter we have dealt with three complementary topics from an experimental point
view. The conducted analyses regarded the problem of local maxima occurring in bin-marginal
Gaussian mixture estimation, the choice of the right number of components in the same models
and the impact of the binning grid on our method.

Concerning local maxima, we have noticed that our data-reduction technique multiplies the
number of local maxima with respect to the corresponding situations when raw or full binned
data are used. However, it is possible to develop promising initialization strategies providing very
good results, especially with the marginal initialization. Bin-marginalization also complicates
the use of information criteria to choice the number of classes K. This is because full likelihood-
based criteria are not available (we use marginal composite likelihood) and composite likelihood-
based criteria encounter computational difficulties if we do not know at least full binned data.
So, we have employed two heuristics to have a first guide in model selection, obtaining promising
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Figure 4.3: Impact of the grid refinement on clustering three simulated bivariate two-class
mixtures. (a) Scenario L; (b) Scenario M; (c) Scenario H.

results. Finally, we have noticed that it is important to use finer grids in those dimensions that
are more separated, while grids on badly separated axes have not a huge impact.

All the three analyses have been conducted from a fully experimental point of view in order
to show a first exploration of the three related problems. We have noticed that even with bin-
marginal data it is possible to deal with current issues in mixture models, such as local maxima
and model choice, despite further complications caused by the extreme compression of statistical
information. These first experimental results are encouraging for future research on the topic,
which could be also conducted with the help of theoretical tools that have not been adopted in
this work. The same tools could be useful, finally, to definitively assess mathematical rules in
order to find an optimal grid, allowing a good balance between performances and computational
savings.
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Chapter 5

Application: anomaly detection in
time series

In the previous chapters of this work we have presented a frugal method to perform Gaussian
model-based clustering on huge data sets, mostly imbalanced. Up to now, we have applied
our technique to continuous real data instances without any spatio-temporal relation between
them. In this chapter, we aim to develop more deeply the potential of the presented work, by
applying it to detect, in an unsupervised way, anomalies in time-series. This new problem is
highly connected to our initial goal (frugal Gaussian clustering for huge imbalanced data sets).
Indeed, the aim is always to recognize a very small suspicious data class (or several ones)class
among a huge amount of normal data with unsupervised tools. What it changes here is that
data instances are time-dependent.

This chapter is structured as follows: in Section 5.1, we precisely define the framework
of anomaly detection, illustrating current approaches and methods. In Section 5.2, we apply
our method on time-dependent data provided by the start-up DiagRAMS Technologies of Lille
(website: https://diagrams-technologies.com) in two possible scenarios. In the first one, we
adopt an anomaly detection point of view; in the second, we try to recognize anomalies from a
clustering perspective.

5.1 Anomaly detection: background

Anomaly detection refers to the problem of finding patterns, the anomalies, in data, that do
not conform to expected behaviour (Chandola et al., 2009). Anomalies appear in a wide variety
of applications such as fraud detection (Fawcett and Provost, 1997), abnormalities detection in
medical samples (Campbell and Bennett, 2000), network intrusion detection (Yeung and Chow,
2002) and industrial damage detection (Guttormsson et al., 1999). It is possible to identify
various approaches to anomaly detection depending not only on the nature of data instance
(for example: numerical, categorical), but also on the type of anomaly to detect and on the
availability of labels distinguishing between normal and anomalous data.

https://diagrams-technologies.com
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5.1.1 Types of anomalies

It is possible to encounter various types of anomalies. It is important to provide a classification
of anomalies according to their nature, as it changes the kind of approach to detect them.
Chandola et al. (2009) propose to group anomalies into these three categories:

1. Point anomalies: an individual data point is considered as anomalous with respect to
the rest of data. An example is depicted in Figure 5.1a, where the two points A1 and A2

are anomalies.

2. Contextual anomalies: a data point is an anomaly in a specific context, but not other-
wise. They are common in time-series (Salvador et al., 2004) or spatial data (Kou et al.,
2006), where the context is given by specific time periods or spatial regions. In Figure
5.1b an example of contextual anomaly in a time-series is shown.

3. Collective anomalies: in this case, the anomaly is given by the presence of a collection of
data points whose occurrence together is considered as anomalous. The points belonging
to the red segment highlighted in Figure 5.1c have a value which could be considered
as normal relatively to the whole time-series. But, if the whole sequence of red points is
considered, they constitute a collective anomaly, because this same value is repeated for an
abnormal long time. Collective anomalies are distinct features of data sets where instances
are related, such as time series (Warrender et al., 1999) and spatial data (Shekhar et al.,
2001).

5.1.2 Approaches to anomaly detection

In this section, we aim to review and classify the principal techniques developed in scientific
literature to detect anomalies. As in other machine learning problems, a first classification
distinguishes between supervised, semi-supervised and unsupervised approaches, depending on
the availability of labels denoting if a data instance is anomalous or not. Here, we briefly resume
the characteristics of these three settings.

• Supervised anomaly detection In this case, labels distinguishing normal data from
anomalies are available (Chawla et al., 2004; Joshi et al., 2001). The goal is to build a
predictive model on a train set, whose performance in recognising anomalies and normal
data is evaluated on a new set of labeled data, the test set. This approach is affected
by all the issues related to labeling, which may be difficult especially when sample size is
large

• Semi-supervised anomaly detection Labels are required only for normal data in semi-
supervised methods (Warrender et al., 1999; Dasgupta and Nino, 2000). These data are
used in the training phase to build a model describing normal behaviours. Such a model
is then employed to recognize (unlabeled) anomalies in the test set.

• Unsupervised anomaly detection These techniques (Goldstein and Uchida, 2016; Es-
kin et al., 2002) do not need labeled records. It is implicitly assumed that anomalies are
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(a) (b)

(c)

Figure 5.1: Three types of anomalies. (a) Point anomalies represented by points A1 and
A2; (b) Contextual anomaly at level y1; (b) Collective anomaly in a time series (in red)
(Xu and Saleh, 2021; Chandola et al., 2009).

less frequent than normal instances. If this assumption is not true the methods of this
class can suffer from high false alarm rate, i.e. they tend to detect as anomalous a normal
behaviour.

It is also possible to classify the main approaches to anomaly detection according to the
models and the machine learning tools involved in the analysis. Following these criteria, we can
identify methods based on:

• Classification;

• Nearest Neighbors;

• Clustering;

• Statistical techniques;

• Information theoretic;

• Spectral approaches.

Before describing each of these techniques, we point out that it is possible to find in the same
category both supervised and unsupervised methods.
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Classification This category includes mostly supervised and semi-supervised techniques.
The goal of these methods is to build a classifier on the train set able to recognize anoma-
lies in the test set. In a semi-supervised setting, it is possible to distinguish multi-class and
one-class classifications. In the multi-class case, it is supposed that the train test contains in-
stances belonging to multiple normal classes. Then, a classifier able to distinguish between each
class and the rest is built (De Stefano et al., 2000; Barbara et al., 2001). In the test phase, a
point is considered as an anomaly if it is not classified as normal by any of the classifiers. In one-
class classification, it is assumed that all training data points belong to the same class. The goal
of these techniques is to learn a boundary around normal points able to discriminate whether
a test instance is anomalous or not (Schölkopf et al., 2001; Roth, 2004). The classifiers can
also be build with different machine learning tools, such as neural networks (Ghosh and Reilly,
1994; Augusteijn and Folkert, 2002) and support vector machines (King et al., 2002),(Davy and
Godsill, 2002). Association rules have also been used to detect anomalies in an unsupervised
way (Agrawal and Srikant, 1995).

Nearest Neighbors In a Nearest Neighbors-based technique a point is classified as anoma-
lous if it is too far from its closest neighbors or if its neighborhood is sparse. Thus, it is possible
to define two classes of methods to detect anomalies: distance-based and density-based. For the
first class of techniques, the definition of a distance between data points is required. Then, the
anomalies can correspond to, for example, those points which are far from the k-th neighbors
(Byers and Raftery, 1998), or those data whose sum of distances from the first k neighbors is
too high (Eskin et al., 2002). Several variants of distance-based method can be defined in order
to handle various data types, such as categorical data (Wei et al., 2003) or spatial data (Kou
et al., 2006). Density-based approaches requires the definition of a measure to quantify the
density of a point neighborhood. These methods can be misleading if there are regions of data
with different densities. For this reason, current density-based techniques employ local versions
of data density (Breunig et al., 2000; Tang et al., 2002).

Clustering In this approach, clustering is used to detect anomalies principally in an unsu-
pervised fashion according to three different criteria. In the first category of clustering-based
methods, anomalies are points which are not assigned to any cluster. This requires clustering
algorithms which do not force all the points to be part of a cluster, as DBSCAN (Ester et al.,
1996) or ROCK (Guha et al., 2000). Another way consists in considering as anomalous those
points which are too far from from the nearest cluster centroid (Smith et al., 2002; Labib and
Vemuri, 2002), which is the mean of all points belonging to the same cluster. So, in this case,
the analysis is conducted in two steps: in the first one, data are grouped into clusters and in the
second phase, points are classified according their distance from the nearest centroid. Finally, it
is also possible to detect anomalies assuming that they belong to very sparse or small clusters
(Pires and Santos-Pereira, 2005; Otey et al., 2003).

Statistical techniques The methods belonging to this group of strategies share the idea of
fitting a statistical model to normal data and, then, using a statistical test to determine if an
unseen instance is anomalous or not. Both parametric and non-parametric techniques can be
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applied to build such statistical model, depending on a-priori assumptions regarding its shape.
Simple assumptions of Gaussianity for normal behaviour model can be used with the definition
of specific tests (Barnett and Lewis, 1984; Grubbs, 1969). More complex models used in this
context are regression models (especially for time-series (Abraham and Box, 1979; Abraham and
Chuang, 1989)) and mixture models (Spence et al., 2001; Reddy et al., 2017). Regarding non-
parametric techniques to fit the normal data model, popular choices are histograms (Eskin, 2000;
Endler, 1998) and kernel functions (Yeung and Chow, 2002; Čampulová et al., 2018; Holešovskỳ
et al., 2018).

Information theoretic The methods belonging to this category are based on measures
quantifying the amount of information content of a data set, such as Kolmogorov Complexity
(Li et al., 2008) and entropy (Shannon, 1948). They consist in finding a minimal subset of
data instances such that the difference between the information of the whole data set and the
information of the data set without those points is maximum. This minimal subset is considered
as anomalous. Kolmogorov Complexity is used in several techniques as principal information
measure (Keogh et al., 2004; Arning et al., 1996), while entropy is often used in categorical data
applications (Lee and Xiang, 2000; Ando, 2007). Information theoretic has also been applied to
detect anomalies in more complex data structure, such as time-series (Lin et al., 2005), spatial
data (Lin and Brown, 2006) and graph (Noble and Cook, 2003).

Spectral approaches These techniques assume that it exists a subspace of the original
sample space where anomalies can be easily identified. Typically, these interesting subspaces
are found by using spectral methods which provide embeddings or projections of the initial data
set. A common technique used in this context is Principal Component Analysis (PCA) (Parra
et al., 1996; Dutta et al., 2007), where anomalies correspond to those points having large values
on components with low explained variance. Further methods of data projection have been also
employed to detect anomalies in graph time-series (Sun et al., 2004), intrusion domain (Shyu
et al., 2003) and in space craft components (Fujimaki et al., 2005).

5.2 Detecting anomalies with bin-marginal Gaussian

clustering

In this section, we employ our bin-marginal method to detect anomalies in time-series. Data
are provided by DiagRAMS Technologies, a french startup working on the domain of anomaly
detection in industrial processes. The analyses of this section give a first answer to the needs of
DiagRAMS of developing a tool able to:

• Easily manage huge data sets. In their domain, it is possible to collect long time series
(months) where data appears with a high frequency rate (1 data/ms). Thus, methods
that can easily deal with millions of instances are required.
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• Detect anomalies in an unsupervised way. Actually, labels for supervised detection are
often not provided and manual labeling is a very difficult and long process. Therefore, an
unsupervised method is needed.

Our method satisfies both requirements even if it has been built in a time-independent setting.
Actually, we do not apply our technique to the raw time-series, but on additional “static”
data sets containing useful synthetic information about original time-dependent data. Further
details are given in Section 5.2.1. We point out that these synthetic data sets have the same
characteristic of those described in previous chapters (huge imbalanced data sets), where our
bin-marginal technique can be applied to perform a Gaussian clustering and compared with two
competitors, subsampling and full data set analysis. The results of all analyses and comparisons
are contained in Section 5.2.2 and Section 5.2.3.

5.2.1 Context

All data analyzed in this chapter are generated by a test-bed machine owned by DiagRAMS.
This machine allows to generate time series with reliable anomaly patterns that can be found
in any industrial process. Indeed, the test-bed is employed by DiagRAMS to test new data
science methods to detect anomalies and to show the performances of current techniques during
expositions. This test-bed, built by ICAM (Institut Catholique d’Arts et Métiers de Lille),
is composed by an engine and a brake, connected by a band. It is also equipped with an
accelerometer and a thermometer, which register, respectively, the speed and the temperature
of the system. There is also a module collecting data and extracting synthetic information about
the current system of the machine. These statistics are the object of our analyses.

The test-bed provides three time-series representing the speeds of the system along the
three-dimensional spatial axes. More important, it also provides additional data regarding the
standard deviation of data contained inside sliding windows of length W . At each instant t,
the standard deviation of data between the instant t and t−W is calculated. In Figure 5.2 an
example is depicted for a simple time-series with 240 instances (Figure 5.2a). In this figure, the
window is highlighted in red and the resulting standard deviation time-series is represented in
Figure 5.2b. In our analyses, we consider the data set containing the standard deviations of the
three speeds. Thus, if the original time-series has n data, we analyze a three-dimensional data
set with n−W instances.

We conduct these two different analyses on two different time series data:

1. In the first scenario, we consider a train set where there are two classes of normal behaviour
and anomalies are absent. One of the two classes is much smaller than the other. The goal
of the experiment is to estimate a two-classes mixture on the train set, estimating, thus, a
parametric density denoted by f(·, ψ̂). Then, this model of normal behaviour is tested on
a test set, where a third anomalous class in present. In the test phase, anomalies will be
those points x in the test set whose estimated density with respect to the normal model,
i.e., f(x, ψ̂), is lower than a certain threshold. This is an authentic anomaly detection
task.
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Figure 5.2: Illustration of sliding windows processing. (a) A window of size W (in red)
is fixed for each instant t to compute the standard deviation of all points of the original
time-series between t−W and t. (b) The resulting standard deviation time-series.

2. In the second experiment we consider a single data set containing two normal classes and
a third very rare anomalous class. The aim is to recover a third-class partition which
distinguishes anomalies from normal instances. This is more a clustering-like task.

5.2.2 First scenario

Data In the training phase of the first scenario we consider a three-dimensional time-series
with n = 202, 002 instances and two classes of normal behaviour, where test-bed engine works
at capacity 1,000 and 3,000 (a very rare, but normal, behaviour). This case corresponds to a
practical situation where a machine normally works at a fixed capacity (here 1,000), but, in
very few cases, it can work at a higher speed (here 3,000) due to intense tasks to accomplish. A
possible anomaly could be, for example, working at an intermediate capacity due to an internal
disequilibrium or damages. This is the case of our test time-series (n = 23, 002) where, in
addition to the two normal classes, there is an anomalous condition where machine works at
capacity 2,000. Figures 5.3a-5.3c depict the three speeds of the system on axes X, Y, Z for
the train time-series. The central peak represents the small normal class (capacity 3,000). In
Figures 5.3d-5.3f instances of the small class (the central peak) are zoomed. The time-series
used as test set has 3,000 instances having or one of the two normal behaviours (capacity 1,000
or 3,000) or an anomalous one (capacity 2,000). Here, anomalies are at the beginning of the
time-series, as depicted in Figure 5.5.

As specified in Section 5.2.1, we use for our analyses a (n − W ) × 3 additional data set
(both for train and test sets) containing variances inside each sliding window of length W . As
we specified 15 possible values of W varying between 10 and 150, we analyze 15 different data
sets. As example, in Figure 5.4 and in Figure 5.6 standard deviations obtained for W = 20 are
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depicted for train and test set, respectively. To simplify the analyses, we train and test on data
sets with the same value of W .

Methods For each data set corresponding to a fixed value of W , we fit a two-classes Gaussian
mixture on the train data using our bin-marginal method, EM with subsampling and a full data
EM. The bin-marginal technique uses a grid refinement R = 100 and, hence, subsampling is
conducted with a subsample of size 2R in order to use the same memory space of our proposal.
To evaluate its variability, subsampling performances are evaluated on 100 different subsamples.
Once fitted the two-classes Gaussian mixture, we fix a threshold and we classify as anomalous
all points x in the test set whose estimated density with respect to the train model f(x, ψ̂) is
below this threshold. When labels are available in the train phase (here we use labels only for
final comparisons), it is possible to select a optimal threshold (acting like a hyperparameter)
with the use of a third validation set (Hastie et al., 2009). Alternatively, one can a-priori fix the
threshold to a certain quantile α of the distribution of test points estimated densities, making
the assumption that in the test set there is a percentage α of anomalies. Here, we choose this
last strategy and we use for α different values between 0.01 and 0.13. Once obtained such a
classification, this is then compared with the true labels and its goodness is measured by the
ARI score (Hubert and Arabie, 1985).

Results and discussion The results for the first scenario are depicted in Figure 5.7. We
note that the best results are obtained when window size W is equal to 20 and threshold α
is 0.09. For lower and higher values of the threshold, results deteriorate, as there is an high
number of false anomalies and false normal points, respectively. The rate of false anomalies
(false positive error) and the rate of false normal points (false negative error) for threshold 0.03,
0.07 and 0.13 are represented in Figures 5.8. This confirms that a low threshold increases the
rate of false normal points, while a too high threshold has a small false negative error, but also
a higher false positive rate. We note that false positive rate is high when the threshold is equal
to 0.03. This is surprising as we would expect a very low value. This is because of transitions,
i.e., the points where the system passes from two different speeds. It turns out that these points
are detected as anomalies, while they are labeled as normal. Actually, there is a delay between
the time at which test-bed reports a speed and the time at which the system actually works
at that speed. This fact causes an initial wrong labeling which has an impact of our analyses
and also explain why bin-marginal method outperforms full data set EM. While subsampling
was expected to be worse than our proposal, the results reported by full EM are surprising.
In Figure 5.9 we give an explanation to these phenomena. In this figure, we represent the
anomalies (red points) and normal instances (black points) estimated by bin-marginal method
and full EM for thresholds 0.03 (Figures 5.9a-5.9b), 0.07 (Figures 5.9c-5.9d) and 0.13 (Figures
5.9e-5.9f). From the analysis of these six results, we conclude that transitions are prone to be
detected as anomalies enhancing classification errors. In addition, full EM is not able to find
the small normal class being influenced by transitions and this explains why it performs worse
than bin-marginal. The transition management can be an interesting starting point for future
research in order to improve the proposed method.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: First scenario: train time-series. (a) Speed axis X (b) Speed axis Y (c) Speed
axis Z. (d)-(f) Zoom around the anomalous class.
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(a) (b)

(c)

Figure 5.4: First scenario: train data set containing standard deviations when W = 20.
(a) axis X (b) axis Y (c) axis Z.
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(a) (b)

(c)

Figure 5.5: First scenario: test time-series. (a) Speed axis X (b) Speed axis Y (c) Speed
axis Z.
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(a) (b)

(c)

Figure 5.6: First scenario: test data set containing standard deviations when W = 20.
(a) axis X (b) axis Y (c) axis Z.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: First scenario results: ARI in function of the window size for a fixed threshold
for bin-marginal CL-EM (red crosses), subsampled EM (black boxplots) and full data
EM (green crosses). (a) Threshold 0.03. (b) Threshold 0.05. (c) Threshold 0.07. (d)
Threshold 0.09. (e) Threshold 0.11. (f) Threshold 0.13.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: First scenario: false negative and false positive error for different thresholds
and window sizes for bin-marginal CL-EM (red crosses), subsampled EM (black boxplots)
and full data EM (green crosses). (a)-(b) Threshold 0.03. (c)-(d) Threshold 0.07. (e)-(f)
Threshold 0.13.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: First scenario: transitions study on standard deviation data set when W = 20.
(a) Full EM classification at threshold 0.03. (b) Bin-marginal classification at threshold
0.03. (c) Full EM classification at threshold 0.07. (d) Bin-marginal classification at
threshold 0.07. (e) Full EM classification at threshold 0.13. (f) Bin-marginal classification
at threshold 0.13.
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5.2.3 Second scenario

Data In the second scenario, we consider four time-series with 315,502 instances and three
classes: two normal ones (capacity 1,000 and 2,000, respectively) and an anomalous one (capacity
3,000). The difference between the four time-series is given by the proportion of the small
anomalous class which can be equal to 0.0005, 0.001, 0, 005, 0.01. As example, the three speeds at
dimension X, Y, Z for the forth time series (small class proportion equal to 0.01) are represented
in Figures 5.10a-5.10c. In Figures 5.10d-5.10f we zoom observations corresponding to capacity
2,000 and 3,000. This setting reproduces a practical circumstance where a system can normally
work at two different capacities (low and intense states, here 1,000 and 2,000), and an example of
anomaly is working at an unexpected and too high capacity (here 3,000). As for the first scenario,
we consider the additional data sets containing the three variances inside sliding windows of
length W and we consider the same values of W used in Section 5.2.2. In Figure 5.11 the
standard deviations obtained for W = 20 are presented.

Methods For each data set corresponding to a fixed values of W , we fit a three-classes Gaus-
sian mixture on the given data using our proposed bin-marginal method, EM with subsampling
and full data EM. We use the same settings of Section 5.2.2 for the grid refinement (R = 100),
the subsample size (equal to 2R = 200) and the number of different subsamples (100). In this
scenario, for each method and setting given by the window length W , we use the fitted model
to obtain a partition through the MAP rule. This partition is then compared to the true one
and its quality is measured by the ARI score (Hubert and Arabie, 1985).

Results Figure 5.12 reports the results obtained in this second scenario. We note that bin-
marginal method (red crosses) is competitive with full data EM (green crosses) and subsampling
(black boxplots). Performances depend on the window size W and we can obtain very bad results
if W is too low, especially with full EM. This is because small windows can not separate well
standard deviations of the three classes. If W is too high, results degrade, as the variances
captured by a too large window may be equal to the variance of the whole sample. In general,
there is an improvement in performance when the small class proportion increases. In addition,
we note that box-plots corresponding to subsampling are very tight or they do not exist. In
fact, subsampling produces an high percentage of failures, as represented in Figure 5.13. If the
small class proportion increases, this percentage decreases, confirming results of Chapter 3.
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(a) (b) (c)

(d) (e) (f)

Figure 5.10: Second scenario: time-series for small class proportion equal to 0.0005. (a)
Speed axis X. (b) Speed axis Y. (c) Speed axis Z. (d)-(f) Zoom around points with capacity
2,000 and 3,000.
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(a) (b)

(c)

Figure 5.11: Second scenario: data set containing standard deviations when W = 20. (a)
axis X (b) axis Y (c) axis Z.
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(a) (b)

(c) (d)

Figure 5.12: Second scenario: ARI in function of the window size for time-series for bin-
marginal CL-EM (red crosses), subsampled EM (black boxplots) and full data EM (green
crosses). Small class proportion equal to (a) 0.0005. (b) 0.001. (c) 0.005. (d) 0.01.
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Figure 5.13: Second scenario: percentage of subsampled EM failures in function of small
class proportion and window size.
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5.3 Conclusion

In this chapter we have tested the bin-marginal method in a real problem with time-series,
extending the range of potential applications of the technique to time-dependent data. In par-
ticular, bin-marginal Gaussian clustering has been employed to detect anomalies in time-series
provided by a test-bed machine own by the start-up DiagRAMS Technologies of Lille. Anomaly
detection turned out to be an application field that fits well with the main aims of our methods,
as it is requested to recognize a very tiny, but anomalous, class between a huge amount of normal
instances. Moreover, our method has encountered industrial interest, as it allows a frugal and
unsupervised approach to this problem, avoiding issues related to labeling and data size.

In this application, our proposal has been applied on additional data sets providing informa-
tion about data variance inside fixed intervals of time. In this way, we could use the method on
data similar to those of previous chapters, comparing it to subsampling and full data EM and
obtaining good results. In our perspective, we aim to apply our method directly on time-series
data, avoiding the additional data sets. We have also noticed that our technique can be influ-
enced by transitions. A further axis of research could concern possible methods to recognize
transitions and improve the analysis. Actually, transitions detection could be more powerful as,
in our case, they correspond to the temporal instants before anomalies. Thus, they can be iden-
tified as possible symptoms of incoming anomalous behaviours, providing important information
for timely interventions on the machine.





117

Chapter 6

Conclusions and perspectives

6.1 Summary of the thesis

In this thesis we developed a frugal method to perform Gaussian model-based clustering on
huge imbalanced data sets under conditions of limited computational resources (storage and
time). This technique is principally based on a bin-marginal data reduction that allows sensible
storage and time savings, which are also made possible by a model estimation based on composite
likelihood theory.

In our first contribution (Chapter 2), we introduced the idea of binning univariate data
through a binning grid to reduce storage and time consumption. In a very simple setting, where
data were generated by a single Gaussian with mean unknown, it was possible to show some
theoretical properties of the binned maximum likelihood estimator (regarding bias and variance)
and we defined a criterion to choice an optimal grid reducing the variance of the corresponding
estimator. We proved identifiability for binned univariate Gaussian mixture with K classes as
the main theoretical result of this contribution. Then, a binned EM algorithm was applied to
estimate univariate Gaussian mixture models on simulated data, comparing it to subsampling,
which, in our initial review, had turned out to be a popular method to make current clustering
methods frugal. We noted that our proposal allowed to well estimate the underlying mixture,
while subsampling needed large samples to obtain similar results. Moreover, this practical
experience confirmed remarkable savings in terms of time and memory.

In Chapter 3, we presented our main contribution, consisting in an extension of the previous
univariate method to a multivariate Gaussian setting. We noticed that a trivial use of multi-
variate binned data were not feasible, as D-dimensional binning grids could produce an amount
of binned data difficult to store and analyze, even if D is moderate (D > 2). As a first solution
to this issue, we proposed to employ only the vector of marginal counts, managing in obtaining
a more manageable data collection. The use of marginal counts involved the definition of new
model to estimate, that we have called bin-marginal mixture model. Then, we defined an EM
algorithm maximizing its likelihood to estimate it. Actually, this full-likelihood EM algorithm
revealed to be numerically intractable and, thus, we decided to estimate bin-marginal Gaussian
mixtures with a composite likelihood approach. Using both marginal counts and composite
likelihood, we defined a bin-marginal composite likelihood EM algorithm (bin-CL-EM). The
proposed algorithm was applied on both simulate and real data, in comparison with an EM
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with subsampling and a full data EM. Results confirmed that our proposal outperformed both
competitors. In particular, under the same memory constraints, bin-marginal technique outper-
forms subsampling in clustering quality (measured by ARI score), being also faster and more
frugal than full EM. In real data analyses, we employed our contribution in a huge variety of ap-
plications, including image segmentation, fraud detection and recognition of potential hazardous
asteroids. The chapter also contains remarkable theoretical results regarding the identifiability
of full binned diagonal multivariate Gaussian mixture and bin-marginal Gaussian mixtures.

In Chapter 4, we dealt with further topics regarding multivariate bin-marginal Gaussian
mixtures from an experimental point of view. In particular, we debated the problem of local
maxima in bin-marginal composite likelihood, we furnished heuristics to choose the number K of
components and we provided a first experimental insight regarding the influence of the binning
grid on clustering quality.

Chapter 5 presented an application of our proposal to time-series data provided by the start-
up DiagRAMS Technologies of Lille, with the aim of detecting anomalies in industrial processes.
This real data experience showed how flexible our technique is, as it exhibited good performances
in time-dependent data, even if it had been firstly developed to analyze cross-sectional data sets.
Moreover, our method revealed to be attractive for industries, as it has very appealing features,
such as frugality and the fact of being an unsupervised method.

6.2 Perspectives

There are several possible directions for future research on this topic. In this section, we describe
some future perspectives of the present work.

• In this thesis we have considered data sets with a moderate number of classes. It could
be very timely to extend the presented method to those challenging situations where
several small classes might appear. This will allow to recognize more types of interesting
and hidden patterns inside very huge data collections. Probably, in these more complex
tasks, our data-reduction is really extreme and, maybe, a softer compression is needed
to save enough multivariate statistical information. Thus, possible extension could be
either an intelligent and frugal usage of bivariate grids or hybrid methods involving both
bin-marginal and raw data. Another option could be the use of several univariate binned
data corresponding to projections of the original data on randomly selected axes. In all of
these cases, it is demanded to remain inside the computational constraints of the context
of reference.

• In Chapter 4, we provided two heuristics to choose the number of classes for Gaussian
mixtures when using our bin-marginal method. The two heuristics, in particular the
second one (BM-BIC-1), provides possible lines of future research that could be followed
to provide a reliable model choice criterion. This is not only a pure theoretical issue,
as it has important practical implications. Indeed, the formulation of a model choice
criterion would finally allow the complete automation of the technique and a more precise
clustering.
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• The influence of the grid on our method performances has only been investigated experi-
mentally in this work, showing that there is no difference between sufficiently dense grids.
It would be interesting to know what the minimal acceptable refinement degree is, in order
to maximize storage savings (more bins implies more data to store). We can also imagine
that binning grid also could help in selecting variables. Indeed, we can reasonably suppose
that the selection of a certain grid refinement degree for a variable is correlated to the
degree of importance of the same variable for the clustering. According to this heuristic,
we could infer that uninformative variables are associated to very coarse grids. Indeed,
at the limit case when a marginal grid is restricted to a single bin, we can recognize an
outcome equivalent to variable selection. Thus, such an approach could provide a very
appealing half-way strategy instead of “hard” classical variable selection.

• Bin-marginal CL-EM initialization also requires special care in order to avoid local max-
ima. For this reason, it is necessary to investigate the theoretical properties of bin-marginal
composite log-likelihood, studying in particular its local maxima and the rate of conver-
gence of the related estimator towards the true parameter. In addition to the definition of
smart initialization paradigms, it could be profitable to design stochastic versions of the
bin-CL-EM algorithm, using as reference the works of Celeux and Diebolt (1985) (Stochas-
tic EM algorithm) and Celeux and Diebolt (1992) (Simulated Annealing EM algorithm).

• As we have seen in Chapter 5, our method can be applied to time-series data. In the
relative analyses we have noticed that substantial improvements could be obtained if we
successfully managed system transitions. It is in this direction that we recommend further
research, suggesting developing solutions to detect them. It could be also of interest
to develop a frugal pre-processing technique in order to apply our proposal directly on
time-series without using the statistical information provided by the additional data sets
described in Chapter 5. We also aim to include in the analysis other statistical quantities,
such as means and Fourier coefficient, in order to improve performances and increase the
possibility of detecting other anomalous patterns.
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