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Prof. Frédéric LE MOUËL (INSA Lyon, FR) Examiner
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Abstract

Data stream processing and analytics (DSPA) applications are widely used to process the ever
increasing amounts of data streams produced by highly geographically distributed data sources,
such as fixed and mobile IoT devices, in order to extract valuable information in a timely manner
for actuation. DSPA applications are typically deployed in the Cloud to benefit from practically
unlimited computational resources on demand.

However, such centralized and distant computing solutions may suffer from limited network
bandwidth and high network delay. Additionally, data propagation to the Cloud may compro-
mise the privacy of sensitive data.

To effectively handle this volume of data streams, the emerging Edge/Fog computing paradigm
is used as the middle-tier between the Cloud and the IoT devices to process data streams closer
to their sources and to reduce the network resource usage and network delay to reach the Cloud.
However, Edge/Fog computing comes with limited computational resource capacities and re-
quires deciding which part of the DSPA application should be performed in the Edge/Fog layers
while satisfying the application response time constraint for timely actuation. Furthermore, the
computational and network resources across the Edge-Fog-Cloud architecture can be shareable
among multiple DSPA (and other) applications, which calls for efficient resource usage.

In this PhD research, we propose a new model for assessing the usage cost of resources
across the Edge-Fog-Cloud architecture. Our model addresses both computational and net-
work resources and enables dealing with the trade-offs that are inherent to their joint usage.
It precisely characterizes the usage cost of resources by distinguishing between abundant and
constrained resources as well as by considering their dynamic availability, hence covering both
resources dedicated to a single DSPA application and shareable resources. We complement our
system modeling with a response time model for DSPA applications that takes into account
their windowing characteristics.

Leveraging these models, we formulate the problem of scheduling streaming operators over a
hierarchical Edge-Fog-Cloud resource architecture. Our target problem presents two distinctive
features. First, it aims at jointly optimizing the resource usage cost for computational and net-
work resources, while few existing approaches have taken computational resources into account
in their optimization goals. More precisely, our aim is to schedule a DSPA application in a way
that it uses available resources in the most efficient manner. This enables saving valuable re-
sources for other DSPA (and non DSPA) applications that share the same resource architecture.
Second, it is subject to a response time constraint, while few works have dealt with such a con-
straint; most approaches for scheduling time-critical (DSPA) applications include the response
time in their optimization goals.

To solve our formulated problem, we introduce several heuristic algorithms that deal with
different versions of the problem: static resource-aware scheduling that each time calculates a
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new system deployment from the outset, time-aware and resource-aware scheduling, dynamic
scheduling that takes into account the current deployment.

Finally, we extensively and comparatively evaluate our algorithms with realistic simulations
against several baselines that either we introduce or that originate / are inspired from the existing
literature. Our results demonstrate that our solutions advance the current state of the art in
scheduling DSPA applications.

Keywords

Internet of things, data stream, Continuous Operator, Edge/Fog computing, Cloud Computing,
Optimization, Queueing Networks, Dynamic System



Résumé

Les applications de traitement et d’analyse des flux de données (DSPA en anglais) sont large-
ment utilisées pour traiter les quantités toujours plus importantes de flux de données produites
par des sources de données hautement distribuées géographiquement, telles que les dispositifs
de l’internet des objets (IdO) fixes et mobiles, afin d’extraire des informations précieuses le
plus rapidement possible pour une action satisfaisaint une limite de temps de réponse. Les ap-
plications DSPA sont généralement déployées dans le Cloud pour bénéficier de ressources de
calcul pratiquement illimitées à la demande. Cependant, ces solutions de calcul centralisées et
distantes peuvent souffrir d’une bande passante réseau limitée et des retards de réseau élevé. De
plus, la propagation des données dans le nuage peut compromettre la confidentialité des données
sensibles.

Pour traiter efficacement ce volume de flux de données, le paradigme émergent du Edge/Fog
computing est utilisé comme niveau intermédiaire entre le Cloud et les dispositifs IdO pour
traiter les flux de données plus près de leurs sources afin de réduire l’utilisation des ressources
réseau et les retards dans le réseau pour atteindre le Cloud. Cependant, le paradigme Edge/Fog
computing contient des ressources de calcul limitées, il est donc necessaire de décider quelle
partie de l’application DSPA doit être exécutée au niveau du Edge/Fog tout en satisfaisant à la
contrainte de temps de réponse de l’application. De plus, les ressources de calcul et de réseau de
l’architecture Edge-Fog-Cloud peuvent être partagées entre plusieurs applications de DSPA (ou
autres), ce qui nécessite une utilisation efficiente de ces ressources.

Dans cette thèse, nous proposons un nouveau modèle pour évaluer le coût d’utilisation des
ressources à travers l’architecture Edge-Fog-Cloud. Notre modèle concerne à la fois les ressources
de calcul et de réseau et permet de traiter les compromis inhérents à leur utilisation conjointe. Ce
modèle caractérise précisément le coût d’utilisation des ressources en distinguant les ressources
abondantes des ressources contraintes et en considérant leur disponibilité dynamique, couvrant
ainsi les ressources dédiées à une seule application de DSPA et les ressources partageables.
Nous complétons notre modélisation du système par un modèle de temps de réponse pour les
applications DSPA qui prend en compte leurs caractéristiques de fenêtrage.

En s’appuyant sur ces modèles, nous formulons le problème de l’ordonnancement d’opérateurs
continus, qui constituent une application de DSPA, sur une architecture hiérarchique de res-
sources Edge-Fog-Cloud. Notre problème cible présente deux différentes caractéristiques. Premièrement,
il vise à optimiser conjointement le coût d’utilisation des ressources de calcul et de réseau, alors
que peu d’approches existantes ont pris en compte les ressources de calcul dans leurs objectifs
d’optimisation. Plus précisément, notre objectif est de déployer une application de DSPA de
manière à ce qu’elle utilise les ressources disponibles de la manière la plus efficace possible. Cela
permet d’économiser des ressources précieuses pour les autres applications de DSPA (ou d’autre
type) qui partagent la même architecture de ressources.
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Deuxièmement, il est soumis à une contrainte de temps réponse, alors que peu de travaux
ont traité d’une telle contrainte ; la plupart des approches d’ordonnancement des applications
soumises au contrainte de temps de réponse incluent le temps de réponse dans leurs objectifs
d’optimisation.

Nous introduisons plusieurs algorithmes basés sur des heuristiques qui traitent différentes
versions du problème : l’ordonnancement statique tenant compte que des ressources de calcul
et réseau, l’ordonnancement static tenant compte à la fois des ressources et de la contrainte de
temps de réponse, et l’ordonnancement dynamique qui prend en compte le déploiement actuel
de l’application et des resources disponibles.

Enfin, nous évaluons de manière approfondie et comparative nos algorithmes à l’aide de
simulations réalistes par rapport à plusieurs alogorithmes que nous avons soit conçu ou qui sont
issus ou inspirés de la littérature existante. Nos résultats démontrent que nos solutions font
progresser l’état actuel de l’art en matière d’ordonnancement des applications de DSPA.

Mots clés

Internet des objets, flux de données, opérateur continu, informatique de périphérie/de brouillard,
informatique en nuage, optimisation, réseaux de files d’attente, système dynamique
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Today, more and more data are delivered in real-time. According to the International Data

Corporation1 by 2025, more than 25% of all data created will be real-time in nature 2. Real-time

data could not be stored but should be processed as quickly as it is gathered. The time value

of data is essential in many applications with time-constraint control and automation, such as

smart transportation [1, 2], augmented or virtual reality [3–6]. For example, Internet of things

(IoT) applications built using several geographically distributed devices (aka thinks) enhanced

with sensing capabilities produce data streams that have to be processed and analysed on the fly

in order to take time-sensitive decisions or actions e.g., to regulate a traffic jam. Unlike snapshot

queries on historical data, data stream processing and analytics (DSPA) engines continuously

process unbounded data streams to extract valuable information in timely manner via a series of

continuous operators (streaming operators or simply operators) such as aggregation, filter, join,

etc [7]. This series of operators specifies a DSPA application.

DSPA applications are typically deployed in the Cloud to benefit from unlimited computa-

tional resources on demand depending on the number of streams and the speed of data that

needs to be processed. As depicted in Figure 1.1a, this Cloud-based analytics requires to trans-

mit all the data streams produced by IoT devices to the distant Cloud by traversing wide area

network (WAN) links involving several hops [8] and the response may have to be sent all the

1https://www.idc.com/
2https://www.zdnet.com/article/by-2025-nearly-30-percent-of-data-generated-will-be-real-time-idc-says/
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(a) Cloud IoT Analytics architecture
(b) IoT edge Analytics architecture

Figure 1.1: From Cloud based IoT analytics to IoT edge analytics

way back. Such centralized solutions favor DSPA application availability but may suffer from

network congestion and delay issues in case of highly dynamic data stream rates. Additionally,

data propagation to the Cloud may compromise privacy of sensitive data [9].

Recent breakthroughs in network technology allows to realize post-Cloud architectures in

order to collect and process real-time data. In particular, 5G networks [10,11] enable an increased

network bandwidth capacity up to 10Gbps, low-latency communications down to 1ms, and a

high connectivity density up to 1 million of IoT devices per km2. This enables IoT devices to

transmit a greater number of data streams at high data rates. However, pushing systematically

to the Cloud such amount of data streams could over-utilize the available network resources

and thus introduce network delays. The situation is worsened by the fact that the available

bandwidth capacities of WAN links are inherently dynamic due to the varying Internet traffic

conditions [8]. Additionally, the sum rate of transmissions of IoT data streams could overwhelm

the bandwidth capacity reserved in the Cloud, incurring additional monetary charges: the cost

for WAN bandwidth usage can be much higher than the cost for computational resource usage

[12].

In this respect, bringing computational resources closer to where data streams are produced

(at the IoT network edge) through Edge and Fog architectures is currently one of the key

solutions being adopted by the industry to respond to the identified need, but also an open

research question [13, 14]. As depicted in Figure 1.1b, the Edge/Fog architecture introduces

intermediate layers of computing, storage, and networking between the IoT devices and the Cloud

enabling to process data streams near their sources and hence to reduce network consumption

and network delay of WAN links toward the Cloud and to enforce data privacy [15,16].

Edge/Fog architectures are highly distributed and come with stringent resource constraints in

terms of computational capacity (e.g., CPU, GPU, RAM, etc.) or power supply (e.g., recharge-
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able batteries, solar energy, wind power,etc.). In this context, the allocation of Edge/Fog com-

putational resources to a DSPA application should cope with their heterogeneity, their limited

and shareable capacities, as well as the highly dynamic workload related to the spatio-temporal

dynamics of real-time data produced in the wild [17,18].

In order to process as much as possible data streams at the IoT network edge, one needs to

schedule the related operators across Edge-Fog-Cloud nodes by controlling both the processing

latency and the network delays, while keeping minimal the costs of using the computational

resources (CPU/GPU, RAM, energy) at the Edge/Fog layers and the network resources to reach

the Cloud (WAN bandwidth, WAN delays) [14]. Specifically, we aim to schedule the operators

across Edge/Fog/Cloud nodes in a way that exhibits optimal trade-offs between the usage of

network and computational resources. As DSPA application workload may highly vary, we need

to monitor at run-time the allocated resources and continuously reschedule the operators in the

Edge/Fog/Cloud continuum.

Scheduling operators has largely been studied in the literature for DSPA applications de-

ployed in the Cloud or distributed on peer nodes of a data center, where the computational

resources are abundant [19,20]. On the other hand, related work on processing data streams at

the IoT network edge mostly focuses on reducing the required network bandwidth and resulting

delays to reach the Cloud by exploiting to the maximum the available computational resources

at the Edge/Fog layers [21–24]. Given that the Edge/Fog nodes come with heterogeneous and

limited computational resources, using to the maximum their available computational resources

may in turn impair on the DSPA application performance i.e. violate time-constraint [14].

1.1 Use case: Wide-area traffic management

To motivate this thesis, we introduce a DSPA application for wide-area traffic management [25]

at different geographical and time scales as illustrated in Figure 1.2. We consider streams of

traffic data generated by connected vehicles (simply vehicles) such as the vehicle identifier, GPS-

location and driving speed. Vehicles transmit such data at a given frequency to the nearest street

antenna which in turn forwards them to the DSPA application.

The DSPA application processes the input traffic data by the means of operators. Given the

infinite nature of IoT data stream, we consider for each operator a window to chop its input

data streams into a finite set of data to be processed along a fixed time period (window size).

The resulting data stream after being processed by the DSPA application via the series of

operators is given as input for two IoT analytics applications. The first implements a country-

wide traffic monitoring that reports on an hourly basis traffic statistics for the entire country.

The second application aims to support city-wide traffic regulation: control the traffic lights,

e.g. to give priority to jammed traffic flows over non-jammed ones, etc.

We assume that the country-wide traffic monitoring application is deployed in the Cloud
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1.1. Use case: Wide-area traffic management

Figure 1.2: DSPA application for wide-area traffic management

and an instance of city-wide traffic regulations is deployed per district on the Fog to regulate

the traffic per IoT area. Furthermore, we assume that the DSPA application is deployed in the

Cloud and the available Fog computational resource capacity can be used by other applications

including also the DSPA application if necessary.

Traffic data rates are highly dynamic due to the high variability of traffic density and mobility

patterns of vehicles [26] between rush hours (high data stream rates) and normal hours (normal

data stream rates). This can lead to high fluctuations in the DSPA’s demand for processing

capacity and network bandwidth, hence may result in resource congestion and failure to meet

time-constraint requirements. In particular, at normal hours DSPA application can be deployed

in the Cloud as the data streams send to the Cloud at normal rate do not overwhelm the WAN

resources and the aggregated data stream rates do not exceed the maximum Cloud bandwidth

capacity agreed between the Cloud provider and the application owner. However, at rush hours

sending data streams at high rates toward the Cloud may overwhelm the WAN resources causing

network congestion and high network delays that may impair on the timeliness of data stream.

Furthermore, the aggregated data stream rates may eventually exceed the maximum Cloud

bandwidth capacity and therefore unforeseen monetary costs.

Pushing computation of DSPA application at the IoT network edge should be exploited to

overcome high variability in the number or the rate of traffic data streams. In this case data

streams will be partially processed at the IoT network edge and the reduced data stream rates

will be sent to the Cloud for further processing. Of course the computational resources requested

by the pushed computations should not exceed the capacity of the IoT network edge on which a

part of the DSPA application is deployed. Furthermore, when placing a part of DSPA application
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at the IoT network edge, one needs to ensure geographical placement constraint. In particular,

each part of DSPA application can be placed at specific node at the IoT network edge if there

is sense in applying its operation only to the local data stream produced by the closest IoT area

(city level). Otherwise, if this operation must be applied to the global data stream (country

level), this part can only be deployed in the Cloud.

1.2 Scope of the thesis

This thesis considers a hierarchical Edge-Fog-Cloud architecture that can be shared among

several DSPA applications. Each IoT device at the Edge is connected to its closest Fog node

and all the Fog nodes are connected to a single Cloud. According to the use case example, we

assume that a DSPA application is initially deployed in the Cloud, on which the sink of the

DSPA application is fixed, while some part of the DSPA application can migrate to the Fog

if necessary. Figure 1.3 depicts the hierarchical Edge-Fog-Cloud architecture in consideration.

At the root of the hierarchy we consider a Cloud node providing computational and network

resources on demand. Linked to the Cloud node, a set of Fog nodes provides heterogeneous

and limited computational and network resources at the Fog layer [27]. We assume an overlay

network based on the publish-subscribe protocol MQTT [28] to transport data streams across

the Edge-Fog-Cloud architecture. In this respect we consider at the Edge layer, mobile IoT

devices (e.g.,vehicles) per geographical area that produce and publish data at a certain rate

(e.g., 4KB/s [29]) to the MQTT instance deployed on the closest Fog node via 5G antennas.

We assume that these antennas enable high connectivity density and lossless communication

for IoT devices. If a part of the DSPA application is deployed on this Fog node, the MQTT

instance transfers these data to this application segment and waits for the resulting output data

back in order to send them to the MQTT instance deployed in the Cloud for further processing.

Otherwise, if no application part is deployed on the Fog node, the Fog MQTT instance transfers

directly these data to the Cloud MQTT instance.

In this setting, we are interested in continuously scheduling DSPA application between the

Fog and Cloud nodes for processing the data streams generated by IoT devices at the Edge.

In particular as data stream rates may evolve according to various spatio-temporal patterns

[17, 18], the DSPA application workload may heavily vary, and accordingly the computational

and network resources needed to be allocated for its processing. Taking for instance the use

case example in Section 1.1, in case of high usage of computational and network resources, we

essentially need to reschedule the current placement of operators by replicating new operators

initially deployed at the Cloud or removing already replicated operators at the Fog. To this, we

need to address the following challenges:
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Figure 1.3: Edge-Fog-Cloud architecture example

How to model the resource usage of DSPA applications across a shareable and het-

erogeneous Edge-Fog-Cloud architecture ? Initially modeling computational and network

resources across the Edge-Fog-Cloud architecture is challenging due to the heterogeneity of the

different nodes in terms of CPU/RAM and network bandwidth capacities, as well as to the fact

that this infrastructure is shared among several (DSPA or other) applications. As a matter of

fact, several stakeholders (e.g., the city, telecommunication companies, etc.) may provide their

own network communication technology (e.g., WiFi, LoRaWAN, 4G, 5G, etc.) and equipment

for Edge/Fog nodes (e.g., small server, Raspberry Pi, Gateway, 5G antennas, etc.). Further-

more, the geographic dispersion of Edge/Fog nodes with respect to the Cloud may increase the

variability in terms of network delays.

On the other hand, DSPA applications are characterized by different type of operators (e.g.,

aggregation, filter, join, etc.) and each operator may support different type of windows (e.g.,

count, time-based). By assuming that a DSPA application processes data streams that come at

different rates, it is necessary to model at fine grain each operator and links between operators

in order to identify at any time instant its processing time and its computational and network

resource usage demands for processing its input data stream and for transmitting the processed

data streams to its upstream operator (or sink).

In this respect, given the heterogeneity of the computational and network resources across

the Edge-Fog-Cloud architecture. It is necessary to distinguish these resources in terms of their

maximum capacities. On the other hand, given that several (DSPA) applications can be deployed

dynamically on the fly on these resources, it is also necessary to distinguish these resources in

terms of their available capacities. It should also take into account the time-constraint of DSPA

application. Therefore, we need to propose a holistic resource usage model as well as response

time model that captures the different characteristics of both the Edge-Fog-Cloud architecture,
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the DSPA application, and dynamic data stream stream rates produced by IoT devices.

How to deploy a DSPA application while taking into account the Edge-Fog-Cloud

resource characteristics? Given that data streams produced by each individual IoT areas

at the Edge reach the Cloud through the intermediate closest Fog nodes. Then, by assuming

that all the operators that constitute a DSPA applications are usually deployed in the Cloud,

distributing this application between the Cloud and Fog nodes assumes placing some operators

on the Fog nodes. However only placing the existing operators of the DSPA application will

not enable to handle all the data streams produced at the different IoT areas and the analytic

results may not be accurate. Thus, we need to replicate each operator at the maximum on each

of the Fog nodes on which the data stream arrive first before reaching the Cloud in order to

partially processed these streams at the Fog layer.

However, given the different type of operators that determine the computational and network

resource demands for each operator to process its input data stream and to send the processed

data stream to next operator. We need to identify how to replicate these operators in respect

of not only the maximum capacities but also the available capacities of Fog nodes capable of

hosting them and of the Fog to Cloud network resources. Furthermore, we should pay attention

whether some DSPA application may be subject to geographical placement constraint.

How to ensure that a deployed DSPA application satisfies the response time con-

straint?

The response time of a DSPA application is constituted by the operator processing time

that depends on the characteristics of the operators, the available computational and network

resources across the heterogeneous Edge-Fog-Cloud architecture, as well as the network delays

in the network links through which operators transmit (or receive) data to each other (or from

IoT devices). Any deployment of DSPA application does not necessarily guarantee to satisfy the

response time constraint. Thus, we need to introduce a scheduling solution for DSPA applications

across the Edge-Fog-Cloud architecture that optimizes not only the resource usage and satisfies

the geographical placement constraint but also satisfies the response time constraint.

How to continuously ensure response time constraint and optimized resource usage

of a DSPA application in dynamic environments? As discussed earlier, the workload of a

DSPA application may exhibit variation at run-time due to variability of the rates of data streams

produced by IoT devices. At the same time the available resource capacities across the Edge-

Fog-Cloud architecture may exhibit also variation given these resources can be shared among

several (DSPA) applications. Finally, the WAN resources to reach the Cloud can be dynamic

due to the underlying internet condition [8]. Considering this dynamic environment on which

a DSPA application can be deployed, the initial deployment, at a certain time may no longer

optimize the resource usage or may fail to satisfy the response time constraint. Therefore, we
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Figure 1.4: Framework for Scheduling of Continuous Operators for IoT edge analytics

need to monitor at run-time the resource usage and response time constraint satisfaction and to

identify scheduling strategy for adapting the current scheduling of operators at run-time in order

to decide how and by how much to replicate and place operators with respect to the evolution

of the available Edge-Fog-Cloud resource capacities and DSPA application workload [30].

1.3 Contributions of the thesis

We are interested in operator replication and placement scheme that consumes as less as possible

the Fog computational resources and Fog to Cloud network resources as well as satisfies any

response time constraint set by a DSPA application. Figure 1.4 sketches the main contributions

of the thesis, which are detailed in the sequel.

Edge/Fog/Cloud resource usage and application response time models. The first

contribution of this thesis is a resource usage model for assessing the utilization of Edge-Fog-
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Cloud resources allocated to the execution of a DSPA application. In this respect, a DSPA

application is abstracted as a directed acyclic graph (DAG) of operators, while an Edge-Fog-

Cloud architecture is abstracted as a hierarchical WAN of resources, where we identify for

each resource (CPU, RAM, GPU of Edge/Fog/Cloud node or bandwidth of WAN link) its

available and maximum capacities. Additionally, we introduce a response time model for a

DSPA application, to which a response time constraint may be associated (see Step 1 in Figure

1.4).

More precisely, we identify at a fine grained level the computational resource usage demand

of each operator and the network resource usage demand for transmitting data streams between

two operators executed at distributed nodes. Then, we propose a holistic resource usage cost

model that can be used in two different cases. The first case takes into account that the DSPA

application is statically deployed on dedicated Edge-Fog-Cloud resources (non shared resources).

In this case, the request of using a resource is weighted by a static weight that captures only

the maximum capacity of this resource. On the other hand, the second case takes in account

that the DSPA application is dynamically deployed on non-dedicated Edge-Fog-Cloud resources

(shareable resources). In this case, the request of using a resource is weighted by a dynamic

weight that takes into account both the available and maximum capacities of this resource.

To estimate the response time of a DSPA application, we account for the transmission and

propagation delays on each network link when sending and receiving data streams from the

IoT devices at the Edge, considered as data sources, to the DSPA application sink deployed in

the Cloud while traversing the Fog resource nodes on which the replicated operators of DSPA

application can be placed. Furthermore, our response time model estimates the time required

per each operator to process its input data stream in the specified window of an operator. Given

the variability of IoT data stream rates and hence of the data stream size in the operator window,

we abstract each operator with a queuing model to estimate the operator processing time (or

operator latency).

Resource-aware scheduling of operators for IoT Edge analytics. The second contribu-

tion of the thesis is a set of new scheduling algorithms for statically deploying DSPA applications

between the Fog and the Cloud with dedicated Edge-Fog-Cloud resources. In this respect, we

use the version of resource usage model with static weights (Step 2 in Figure 1.4). Then with

this version of the resource usage model, we introduce a resource constraint satisfaction (RCS)

algorithm that replicates and migrates operators from the Cloud to the Fog nodes. This baseline

solution allows us to regulate the Fog computational resource usage and the Fog to Cloud net-

work resource usage according to the evolution of IoT data stream rates, by minimally resorting

to Fog resources in order to satisfy Cloud bandwidth constraints. RCS does not optimze the

resource usage cost.

Next, we formulate the problem of replicating and migrating operators from the Cloud to the
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Fog as a single objective optimization (SOO) problem. SOO essentially minimizes the combined

cost of the Fog computational resource usage and the Fog to Cloud network resource usage

while satisfying constraints on the usage of both types of resources. We observe that the SOO

problem is a NP-hard problem. Towards its solution, we first formulate the SOO problem as an

integer linear programming (ILP) model and exploit a mathematical optimization tool (CPLEX)

to optimally solve it. However, our experimental results show that the SOO-CPLEX solution

raises serious scalability concerns.

For this reason, we propose a heuristic algorithm, called SOO-H, which attempts to approx-

imate the optimal SOO-CPLEX solution within a reasonable amount of time. Using thorough

experiments, we demonstrate that SOO-H runs faster than SOO-CPLEX, regardless of the scale

of the problem. Additionally, SOO-H reaches the optimal scheduling solution in most cases.

Only in few cases SOO-H fails to find the optimal scheduling solution, but the approximation

error is very small.

Resource-aware scheduling of operators for IoT Edge analytics with time con-

straints. The third contribution of the thesis extends the SOO problem with response time

constraints set by DSPA applications (Step 3 in Figure 1.4). To this end, we exploit the re-

sponse time model for estimating the DSPA application response time for a given placement

solution between the Fog and Cloud nodes. Then, we formulate the related Time-based Sin-

gle Objective Optimization (TSOO) problem and show that it can be mapped to a Job Shop

Scheduling (JSS) problem which is NP-hard. In order to solve this TSOO problem, we exploit

the meta-heuristic simulated annealing (SA) to formulate and solve the TSOO problem. We

rely on SA as it has been proven in the literature to solve the instances of JSS problem. The

drawback of TSOO-SA, is the high execution time of SA. Therefore, we propose a heuristic

algorithm called TSOO-H to solve the TSOO problem in time efficient. TSOO-H approximates

the optimal solution in a reasonable amount of time when comparing to TSOO-SA. However, it

may fail to satisfy the response time constraint at highest data stream rates.

Adaptive scheduling of operators for IoT Edge analytics. The fourth contribution

of the thesis extends the TSOO problem with the problem of dynamic deployment of DSPA

application on the Edge-Fog-Cloud resources that can be shared among several other DSPA

(non DSPA ) applications. In this respect we use the version of the resource usage cost model

with dynamic weights (Step 4 in Figure 1.4).

To this end, we consider a framework for threshold based monitoring approach of the work-

load of DSPA applications in order to trigger an adaptive rescheduling of the current operator

placement solution whenever it is needed. To solve the extended TSOO problem instead of

running from scratch the whole TSOO-H algorithm that may incur high execution cost in terms

of both the execution time and operator rescheduling cost, we propose an adaptive version of
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TSOO-H algorithm, called aTSOO-H.

aTSOO-H identifies the operators to replicate or to remove on the Fog in respect to the

changes identified in the environment. By doing so aTSOO-H approximates the best feasible

scheduling solution of operators at run-time with lower execution cost compared to TSOO-H,

however with practically similarly resource usage cost and response time satisfaction ratio. In

this respect, aTSOO-H is a best effort algorithm that provides feasible solution compared to

TSOO-H algorithm.

Evaluation with recent related work shows that both TSOO and aTSOO-H provide signifi-

cant solution in terms of successfully deploying DSPA applications across the Edge-Fog-Cloud

resources shared among several application with lower overall resource usage cost.

1.4 Outline of the thesis

The remainder of the thesis is organized as follows.

In Chapter 2, we give the background of the DSPA application and the Edge-Fog-Cloud

architecture. In Chapter 3, we analyze and classify the existing scheduling algorithms on resource

allocation problem for DSPA application across distributed resource nodes (sensor network, peer

resource nodes and Edge-Fog-Cloud architecture). To this end, we develop a general taxonomy

that summarizes the main design choices of these existing solutions. Then we position our

contribution with regard to the most relevant related works.

In Chapter 4, we introduce abstraction models of DSPA application and Edge-Fog-Cloud ar-

chitecture. Based on these models we devise the resource usage cost model and DSPA application

response time model for scheduling operators in the Edge-Fog-Cloud continuum.

Next, Chapter 5 presents the resource aware scheduling of continuous operators for IoT

edge analytics that rely of the models presented in Chapter 4. Then follows Chapter 6 that

presents the resource aware scheduling of continuous operators for IoT edge analytics with time

constraints. The latter chapter is extended in Chapter 7 to account for the adaptive scheduling

of continuous operators for IoT edge analytics. Then in Chapter 8, we conclude the thesis and

present perspective for future work.
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This chapter contains 20 pages.

2.1 Introduction

In this chapter, in Section 2.2 we present the core operators defined for data streams and

describe the main steps in executing a DSPA application along with the main architectures of

DSPA engines. In Section 2.3, we discuss the benefits of processing and analysing IoT data

streams at the IoT network edge and introduce the challenges in pushing computations from the

Cloud to the IoT network Edge.
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Figure 2.1: Example of a data tuple in a stream produced by connected vehicle [32]

2.2 Data Stream Processing and Analytics (DSPA)

Data Stream Processing and Analytics (DSPA) relies on the principle of online computation to

mine data stream in near real time [22]. In this respect, a DSPA application is constituted of

operators that process the data stream. Conversely to one shot operators of snapshot-based

queries in traditional databases, the results of a operator are constantly updated each time new

data tuple of input data streams are processed [7].

2.2.1 Data Streams

A data stream is an unbounded sequence of tuples [31]. In general, all tuples of a data stream

share the same schema. As shown in Figure 2.1, a tuple is defined as list of attribute-value pairs

where each attribute has a name and a type (e.g., integer, double, string, etc.). We denote the

schema of a generic data stream as (A1, A2, . . . , An) and we refer to attribute Ai of a data tuple

d by d.Ai.

A data tuple in a stream is timestamped. Depending on the DSPA engine [33], timestamps

can be set in different ways: (i) the event time is related to time that the data tuple was

generated, (ii) the ingestion time is related to the time that the data tuple entered into the system

(DSPA engine, DSPA application) and (iii) the processing time is related to the time that the

data tuple was processed by an operator. The event time and the processing time assume that

the data stream sources and the nodes hosting the DSPA application use a clock synchronization

protocol like NTP [34]. The ingestion time can be used in the case clock synchronization protocol

is not possible.

2.2.2 Time-based and Tuple-based Windows

Because of the infinite nature of the data stream, the mechanism called window has been in-

troduced for setting an operator with a flexible bounds on the unbounded data stream in order

to fetch a finite, yet ever changing set of data tuples, which may be regarded as a temporary

relation [35]. Formally, it is defined as follows:
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W{∀t ≥ t0|Wstate← {d ∈ Sin|p(d, t) = True }}(Sin,Wstate,Wtype,Wsize, [Wadvance], t, t0)

(2.1)

where Wtype is the type of a window that can be time-based or tuple-based. The former is

defined over a period of time (e.g., data tuples received in the last 5 minutes) while the latter is

defined over a fixed number of data tuples (e.g., last 100 data tuples). For both type, Wstate

is the state of the window defined as the number of data tuples that it contains at every time

instant t.

Wsize is the size of the window that corresponds to the window boundary, e.g., 5 minutes

for the time-based window and 100 data tuples for the tuple-based window. The parameter

Wadvance called slide is optional and used to process the data tuples in a window of size Wsize

by slide of Wadvance. Sin is the input data stream from which the input data tuples arrive.

t0 is the time at which the windowed operator has been deployed while t is the current time.

Finally, p is a condition to verify if a data tuple d satisfies the window size (and the slide size)

boundary before to be included in the window state Wstate.

Two kinds of windows are widely used in the recent generation of DSPA engines, namely,

time-based and tuple-based windows distinguished according to the unit in which window state

is determined [35]. It worth noting that in our work we do not cover the session window.

Unlike the formal definition of windows introduced bellow, a session window does not rely on a

static boundary. It actually depends on a defined session period which can be static or dynamic

(see [36] for further details).

2.2.2.1 Time-based windows

In time-based windows the timestamps of data tuples are checked for inclusion within a specified

temporal boundary. This requirement is expressed by means of a scope function that may be

defined for each window type. In essence, at every time instant the scope function returns the

window time boundary and not the actual window state. This scope function take as parameter

the window size and the window slide. We present the Time-based sliding window and Tumbling

window as the most representative time-based window types. For further reading on the time-

based windows, we refer reader to [37].

Time-based sliding windows consider the invariable temporal extend of the window called

window size Wsize, the progression temporal step, called sliding size Wadvance. In this respect,

the window contains the set of data that arrive within the last Wsize time units, so that the

set of data within the window are processed every Wadvance time units.

Let consider t0 as the time at which the operator is deployed considering a time-based sliding

window W, we assume the time window size has no delay with regard to the current time t.

Thus, the scope function of this window can be defined as a function of time:
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Wscope(t)←


[t0, t] if t0 ≤ t < t0 +Wsize ∧mod((t− t0),Wadvance) = 0

[t−Wsize+ 1, t] if t ≥ t0 +Wsize ∧mod((t− t0),Wadvance) = 0

Wscope(t− 1) if mod((t− t0),Wadvance) ̸= 0

(2.2)

where t0 and t are timestamps, Wsize and Wadvance are sizes of time interval and sliding where

Wsize > 0 and Wadvance > 0.

For every time instant t, the window state contains the data tuple of the data stream Sin

whose the timestamp is in the time interval of the scope function:

W{Wstate← {d ∈ Sin|d.ts ∈Wscope(t)}}(Sin,Wstate,Wtype,Wsize,Wadvance, t, t0)

(2.3)

where ts is the timestamp of the input data tuple d.

For a time sliding window where Wsize > Wadvance, an overlapping of data tuples is

observed between two successive states of the time sliding window. Thus, a subset of their data

tuples remains the same across states.

Time tumbling windows consider only the invariable temporal extend of the window called

window size Wsize so that the window state contains the set of data tuples that arrive within

the last Wsize time units, that are processed every Wsize time units. In this respect, there is no

data tuple overlapping, each data tuple belongs to only one window state. A tumbling window

can be seen as a special case of the time-based sliding window where Wsize = Wadvance. Thus,

the time tumbling window is formally defined as following:

W{Wstate← {d ∈ Sin|d.ts ∈Wscope(t)}}(Sin,Wstate,Wtype,Wsize,Wsize, t, t0) (2.4)

2.2.2.2 Tuple-based windows

The window state is determined by counting the most recent data tuples. Thus, Wsize ∈ N is

a natural number (not determined in terms of time unit). We present the tuple-based window

and Partitioned window. For further reading on the tuple-based windows, readers are referred

to [37].

Tuple-based window At every time instant t, a tuple-based window covers the most recent

Wsize data tuples d of the input data stream Sin:

W{Wstate← {d ∈ Sin : (∃t1 ≤ t ∧ ∥d ∈ Sin : t1 ≤ d.ts ≤ t| ≤Wsize) (2.5)

∧ (∀t2 ≤ t1 ∧ |d ∈ Sin : t2 ≤ d.ts ≤ t| > Wsize)}}(Sin,Wstate,Wtype,Wsize, t)

32



Chapter 2. Background

where t1 and t2 are timestamp values. The former bounds the most recent data tuples while

the latter bounds the data tuples that can be considered as outdated. In this respect, in order

to group the set of Wsize last data tuple, the tuple-based window starts from the current time

t, selects data tuple d by going steadily backwards in time until the Wsize data tuples are

collected.

Partitioned window (operator) splits its input data stream Sin into a set of data sub-

streams L = {A1, A2, · · · , Ak} according to a grouping over data tuple attributes and each sub-

stream corresponds to a combination of values Dk = (a1, a2, ..., ak) on the grouping attributes.

Then, the tuple-based window is applied on each substream and the union of the resulting data

tuple constitutes the window state Wstate. Formally, it is defined as following:

W{Wstate←
⋃

Ak∈L

{d ∈ Sin : ∀Ak = ak ∧ ak ∈ Dk

∧ (∃t1 ≤ t ∧ ∥d ∈ Sin : d.Ak = ak ∧ t1 ≤ d.ts ≤ t| ≤Wsize) (2.6)

∧ (∀t2 ≤ t1 ∧ |d ∈ Sin : d.Ak = ak ∧ t2 ≤ d.ts ≤ t| > Wsize)}}

(Sin,Wstate,Wtype,Wsize, L, t)

It worth noting that, the timestamp attribute is not involved in grouping. Thus, tuple-based

windows may be considered as a special case of partitioned windows where all data tuples of the

data stream get assigned to a single partition [37].

2.2.2.3 Out-of-order data tuples in data streams

Both time-based and tuple-based windows rely on a time notion to specify the contents of a

current window. However, how we can ensure that a set of incoming data tuples corresponds to

a specific window when they arrive out-of-order? This is frequently the case of data tuples from

IoT streams as devices they produce them may stay off-line due to a network issues and thus send

out-of-order data tuples after some time. This issue is usually handled by DSPA engines using

a watermarking heuristic. The wisdom behind the watermark is to balance between including

as much late data as possible and not delaying window processing too much [33].

2.2.3 Operators

Typical operators specifying a DSPA application are analogous to relational algebra operators

and can be classified as stateless or stateful [35, 38]. Stateless operators (e.g., Map, Union and

Filter) do not keep state across data tuples and perform their computation solely based on each

input data tuple. Stateful operators (e.g., Aggregate, Join and Cartesian Product) perform

operations on sequences of data tuples.
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The result of a operator is a data tuple whose constituents may differ from the input data

tuple both in terms of content and structure [31]. An operator is characterized by a selectivity

defined as the the ratio between the number of data tuple (or the number of data tuple attributes)

it produces and the number of data tuple (or the number of data tuple attributes) it consumes

[39].

In the following, we present formally the typical operators including Map, Filter, Aggregation,

Union and Join [40].

2.2.3.1 Filter

The filter operator is used to select input data tuples according to a set of predicates and route

them over one or more output data streams.

In practice, filter operation involves selection or projection. In this respect, the selection can

be defined as the operation of selecting data tuple d from input data stream Sin that satisfies a

given predicate p on its attribute. Thus, the selection operator is formally defined as following:

σ{Sout←
⋃
{d ∈ Sin : p(d) = TRUE}}(Sin, p) (2.7)

On the other hand, the projection can be defined as the operation of selecting attribute of

data tuple d from input data stream Sin in order to produce output data stream Sout constituted

with data tuple with new attribute schema.

π{Sout←
⋃
{dout ←

⋃
Ak∈d

{d ∈ Sin : d.Ak = P.Ak}}}(Sin, P (A1, ..., Am)) (2.8)

P contains the attributes that will constitute the schema of the output data tuple dout in the

output data stream Sout. In this setting the number of attributes of the output data tuple dout

should be less than the number of attributes of the input data tuple d.

2.2.3.2 Map

The Map operator is used to transform each input data tuple to another output data tuple

via set of user defined functions. The schema of the output data tuple may be different from

the schema of the input data tuple but the timestamp of the former is preserved in the latter.

Formally the Map operator is defined as follows:

Ξ{A′
1 ← f1(din), A

′
2 ← f2(din), · · · , A′

n ← fn(din)}(din, dout) (2.9)

where din is the input data tuple defined by the schema (A1, · · ·Am), dout is the output data

tuple defined by the schema (A
′

1, · · ·A
′

n) and m ̸= n. Finally ,f1, · · · fn are the user defined

functions.
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2.2.3.3 Union

The union operator merges multiples input data streams sharing the same schema into a single

output data stream by using the first in first out (FIFO) policy. It is formally defined as follows:

⋃
{Sout← {d ∈ (∪ni=1Sini)}}(Sin1, · · · , Sinn, Sout) (2.10)

where Sin1, · · · , Sinn are the input data streams, Sout is the output data stream.

2.2.3.4 Aggregation

The aggregation operator is used to compute aggregate functions such as count, sum, average,

etc. over a set of data tuples in a window. More formally, it is defined as follows:

Ag.{W,A′
1 ← f1(W ), · · · , A′

n ← fn(W ), [Group− by = (A1, · · · , Am)]}(Sin, Sout) (2.11)

where W is the window used by the operator that can be time-based or tuple-based. Sin is the

input data stream whose data tuples fed to the various windows types. When a window reaches

its time- or tuple-based boundary, the aggregate functions f1(W ), · · · fn(W ), are triggered on

its input data tuples and produce a single output data tuple over the output data stream Sout.

The schema of the output data tuple is different from the one of the input data tuples and

the timestamp of the output data tuple is the one associated to the earliest data tuple in the

window.

A Group-by operation is optional and used to partition the data tuples of the input data

stream Sin. Assume for example Group − by = Ai, where Ai is an attribute of the input data

tuple. Then, the operator handles separate windows for each possible value of Ai.

2.2.3.5 Join

The Join operator is used to match data tuples from multiple input data streams. It is formally

defined as follows:

1 {W,p}(Sinr, Sinl, Sout) (2.12)

where Sinr and Sinl are two input data streams refereed as right and left respectively while

Sout is the output data stream. p is a predicate for matching a pair of data tuples, one from

each input data stream.

The join operator keeps separate windows Wr,Wl for each input data stream. Data tuples

arriving on the left (respectively right) input stream are used to update the right (respectively

left) window. If the window is a logical one, upon arrival of data tuple din ∈ Sinl, the window

Wr is updated by removing all data tuples d such that din.ts - d.ts is higher or equal to the

35



2.2. Data Stream Processing and Analytics (DSPA)

Figure 2.2: From deployment to execution of DSPA application

window size [37]. If the window is a physical one, upon arrival of data tuple din ∈ Sinl, the

window Wr, if it is full, it is updated by removing the earliest data tuple. After window update,

predicate evaluation and output propagation for input data tuples over the right stream are

performed in a similar fashion.

It worth noting that, the Cartesian product operator (X ) is defined and works like the join

operator with a predicate always true.

2.2.4 DSPA applications in Action

To implement a DSPA application, developers use an SQL-like continuous query [41, 42] which

is submitted to a DSPA engine capable of executing the operators on an underlying computing

infrastructure (on the Cloud, a data center, etc.).

In this respect, DSPA engine parses a continuous SQL query to generate an associated

logical application graph. It is essentially a directed, acyclic graph (DAG), where the vertices

capture operators, and the edges capture the data streams flowing between them [7]. This logical

application graph is then optimized in order to fulfill certain quality of service (QoS) associated

with the DSPA application. In particular, graph rewritings is applied w.r.t. an optimal usage of

the network and computational resources of the nodes chosen to execute the operators. During

this optimization, several candidate physical placements of operators are generated, and the one

that fulfill optimally the QoS objective is selected to be deployed on the resource nodes. Figure

2.2 shows the main steps in executing a DSPA application.

2.2.4.1 Quality of Service

A DSPA engine should respect the QoS requirements of a DSPA application to support real

time data stream processing. This QoS is typically expressed in terms of high throughput [43]

and low end-to-end latency (response time) [8]. To foster DSPA application availability, a DSPA

engine could also optimize the resource usage cost [22] (e.g., for monetary purpose) in terms of

CPU/RAM usage, network bandwidth usage and energy consumption.
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Table 2.1: Optimization Policies on DSPA application

Policy Change topology Adapted
application

Occurring time

Operator reordering Yes Logical depends

Replication Yes Logical depends

Placement No Physical depends

2.2.4.2 Optimization policies

[44] surveys several optimization policies used to reconfigure a DSPA application graph in order

to satisfy a QoS objective. In our work, we consider two main optimization policies: (i) graph

rewriting that includes the operator reordering and the operator replication and (ii) operator

placement. We describe bellow these policies by highlighting in Table 2.1 whether they change

the topology of the DSPA application and whether they are applied to adapt its previously

scheduled deployment, consequently whether the optimization policy can occur respectively at

deployment time or at run-time.

Graph rewriting enables to rewrite a DSPA application graph into an equivalent one that

when executed on a number of allocated computational resources can satisfy a QoS objective. It

essentially rewrites operators using well-known equivalence rules of relational algebra [45]. We

present in the following few of these rules where we consider S as the input data stream and p

as the predicate associated with an operator:

1. Conjunctive selection can be rewritten as a sequence of selections:

σp1∧p2(S) ≡ σp1(σp2(S)) (2.13)

2. Selection over Join can be rewritten as Join:

σp(S1 1 S2) ≡ S1 1P S2 (2.14)

3. Conjunctive selection can be distributed over Join:

σp1∧p2(S1 1 S2) ≡ (σp1(S1)) 1 (σp2(S2)) (2.15)

4. Filter, Map, Aggregation, etc. can be distributed over Union:

σp(S1

⋃
S2) ≡ σp(S1)

⋃
σp(S2) (2.16)

The translation of a logical DSPA DAG to a physical one that will be executed on the

resource nodes relies on two main rewriting policies described as follows [8]:
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Definition 1. (Reordering) “moves an operator from one node to another by following
the topological order of operators in the DAG. For instance, a selection can be moved
near to the source of the DAG to reduce the amount of data tuples of two streams that are
joined afterwords (see Formula 2.14). As the performance gains achieved by this policy
depends on the actual selectivity of operators which may change at run-time, operators
reordering at deployment time may not always be sufficient”.

Definition 2. (Replication) “replicates a operator in the DAG, so that each replica can
process a portion of the operator input data stream to enhance parallel data processing [7].
As the performance gains achieved by this policy heavily depends on the actual dynamics
of the DSPA application workload, operators replication should be decided at run-time”.

Changing at run-time a running DSPA DAG composed of stateless operators is easy. We

need to simply replace the old by the new execution. This is not the case of graphs composed

of statefull operators. In this case, the new execution of the DSPA DAG should preserve the

execution state of the old one. For example, the window state of the join operator in the appli-

cation graph σ(S1 1 S2) can not be recovered by the application graph rewrites as σ(S1 1 S3).

Nevertheless, in this thesis we do not explicitly cover the reconfiguration of DSPA application

constituted by state-full operators to manage state migration.

operator placement In order to deploy a physical DSPA DAG on our computing infrastruc-

ture, we need to select the nodes on which operators will be executed to respect the QoS objective

of the DSPA application and eventually an overall optimal resource usage. Placement decisions

are usually made once at deployment time [22–24]. Some placement algorithms [8, 46, 47] con-

tinue to be active also at run-time, in order to response to changes in the DSPA application

workload or changes in the availability of the allocated resources.

2.2.5 DSPA Engines Architecture

We consider general DSPA engines that leverage the relational model of Data Base Management

Systems (DBMS) for specifying DSPA applications using SQL-Like continuous queries. Unlike

one-shot operators of traditional DBMS, once a operator is deployed, its results are computed

each time a new data tuple becomes available in its input [7]. DSPA engines are typically

categorized under 3 generations [48] while a fourth one [43] has been recently proposed to

accommodate the growth of IoT applications.

First generation of DSPA engines heavily relies on DBMS technology extended to process

long running queries in a centralized setting. They have been built to run as standalone prototype

or as an extension to an existing DBMS [48]. The notorious examples of DSPA engines of this

generation are Aurora [38] and TelegraphCQ [49].
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Second generation of DSPA engines introduces distributed processing of operators to take

the advantage of abundant computational resources available in clusters. In this respect, these

DSPA engines have been extended to support more expressive operators [50] but also additional

services such as fault tolerance [51] and adaptive query processing [52]. Borealis [51], CEDR [50],

CAPE [52], etc. are typical examples of this generation.

Third generation of DSPA engines is influenced by the trends of massively parallel and

distributed systems for cloud computing. Beside SQL-like queries, engines of this generation are

able to support a wide range of complex jobs like iterative machine learning (ML), interactive

queries and online processing on different data modalities (record or graph data). Well known

DSPA engines are among others Apache Storm [53], Apache Flink [54], Apache Kafka [55],

Apache Spark [56], etc. It is worth noting that such DSPA engines can also be deployed on

heterogeneous computing systems such as Edge/Fog nodes to process data streams near to their

source of creation.

Fourth generation of DSPA engines aims to overcome the limitations of Edge/Fog comput-

ing architectures in terms of constrained resources that can impair the performance of DSPA

applications [57]. In particular, this generation of DSPA engine becomes aware of the Edge/Fog

resources at the IoT network edge that could execute an application eventually in coopera-

tion with a cloud-based DSPA engine. Nevertheless, the development of such DSPA engines

are still in their infancy. Apache Minifi [58] is a framework for deploying data collection ap-

plications on resource-poor nodes characterized by a lightweight energy footprint. It aims to

supplement the core tenets of NiFi [59] as a powerful and reliable DSPA engine designed for

resource-rich computing nodes. IBM Apache Edgent [60] is a stream processing programming

model and lightweight run-time framework to support IoT data analytics at the edge nodes or

the gateway. Edgewise [61] and Resense [62] are recent efforts to support IoT data analytics on

resource-constraint devices at the edge or fog nodes. Furthermore, several commercial DSPA

engines such as Amazon IoT greenglass [63] aim to extend the cloud IoT analytics to local IoT

devices, enabling devices to efficiently collect and analyse data closer to data sources. Finally,

FogHorn [64] aims to enable Artificial Intelligence (AI) at the IoT edge for high volumes, vari-

eties and velocities of live sensors and machine data, that is optimized for resource-constrained

devices. More recently, NebulaStream [65] is emerging as the major engine to overcome the

limitation of the Edge/Fog computing. It is designed to incorporate all computing resources,

even outside the cloud (i.e. IoT network edge), and apply processing wherever possible.
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2.3 Edge/Fog Cloud continuum

In this section, we describe a multi-tier architecture that introduce between the Cloud and the

IoT devices, Edge and Fog layers.

2.3.1 Definitions and motivation

According to National Institute of Standard and Technology (NIST) [66]:

Definition 3. (The Cloud computing) “is defined as model for enabling ubiquitous, con-
venient, on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or service provider interaction”.

The main Cloud providers are among other OVH [67], Google Cloud [68], Amazon Web

Service (AWS) [69], etc. They mostly offer Cloud services with a pay-as-you-go model [57, 70].

The Cloud is the prevalent environment for executing DSPA applications that requires to transfer

the data streams produced by IoT devices over the WAN links. This Cloud-based IoT Analytics

architecture (see Figure 1.1a) was enabled by the increasing connectivity of IoT devices (i.e.,

things) and the practically unlimited Cloud resources offered to host the third generation of

DSPA engines.

In particular, the Cloud provides [66]: (i) On demand self-service to enable Cloud resources to

be provisioned on-demand automatically without human interaction; (ii) Broad network access

to enable IoT devices to access via the internet to the Cloud resources in a seamless manner;

(iii) Resource pooling to serve seamlessly multiple Cloud consumers; (iv) Rapid elasticity to

scale according to the consumer demands by allocating or releasing Cloud resources automat-

ically; and (v) Measured service to enable transparency to Cloud provider and consumers by

completely monitoring Cloud resource usage. As result, the Cloud ensures high availability of

DSPA applications and application owners are charged only on the basis of the Cloud resources

actually consumed by the application.

The terms Edge and Fog computing are often used interchangeably [71]. However, in this

thesis we consider them as different layers where the boundary between the two is tiny [72]. In

particular, we consider that Edge/Fog layers provide complementary computational and network

resources to the Cloud enabling IoT edge analytics in the Edge-Fog-Cloud continuum as depicted

in Figure 1.1b.

In this context, we refer to the definitions of the Edge and Fog as provided by the National

Institute of Standards and Technology [73]:
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Definition 4. (The Fog computing) “is a horizontal, physical or virtual resource
paradigm that resides between smart end-devices and the traditional Cloud. This
paradigm supports vertically-isolated, latency-sensitive applications by providing ubiq-
uitous, scalable, layered, federated, and distributed computing, storage, and network
connectivity”.

Definition 5. (The Edge computing) “is referred as the IoT network encompassing the
smart end-devices and their users, to provide, for example, local computing capability on
a sensor, metering or some other devices that are network-accessible”.

Fog computing is generally a geographical distributed (or not virtualized) platform providing

computational, network and storage service between the IoT devices at the Edge and the Cloud.

While the Edge computing is highly distributed including all the IoT devices augmented with

computational and networking capabilities and connected to the Cloud through a Fog computing

nodes.

2.3.2 Benefits

Event though that the initial concepts of Edge/Fog computing aiming to process data at the IoT

network edge were formulated more than a decade ago, its main motivations are still prevailing

today. In the context of the recent growth of IoT industry, it evenly shows high benefits in

terms of (i) preventing network congestion; (ii) reducing the network delay, and (iii) ensuring

privacy of sensitive data. It worth noting that ongoing research works intend to demonstrate

that Edge/Fog computing may support sustainability in terms of electricity consumption and

carbon footprint. However, further insights from large-scale measurement exercises are required

to make a more informed case [13].

2.3.2.1 Reduce network delay

Reducing the network delay by processing IoT data streams at the IoT network edge is one of

the motivations in favor of the Edge/Fog computing. However, different technology providers

may consider the network delay in different ways. Therefore, for the sake of clarity we define in

the following what should constitutes the network delay.

The network delay includes the propagation delay on the network link medium that depends

on the distance (number of hops) between the source node and the destination node. The

propagation delay is the time it takes to transmit bits of data between a source node and a

destination node and it is independent on the data size [74,75]. However, it depends on the type

of the network link medium, the distance between the connected endpoints and is limited by the

speed of the light. For instance if a source node and a destination node are in the same building

at the distance of 200m, the propagation delay will be 1 microsecond. However, if they are

located in different countries at a distance of 20000 Km, the delay is in order of 0.1 second [76].

41



2.3. Edge/Fog Cloud continuum

Figure 2.3: Network delay differences from the IoT network edge to the distant Cloud

Additionally, the network delay includes the transmission delay that depends on the size of

the data to transmit and the available network bandwidth between the source and destination

nodes. The available network bandwidth depends on several factors including number of active

sessions, transmission capacity of the link (nominal network bandwidth capacity), medium access

control (MAC) access delay, etc. [76].

Finally, the network delay includes also the processing and queuing delays of a packet at the

intermediate routers [37,77,78]. The latter can be big in case of congestion at the router but in

general these delays can be considered as constant [13].

If we assume that the processing and queuing delays of a packet at the intermediate routers

are constant, the main components that constitute the network delay become the propagation

and transmission delays.

Figure 2.3 shows the benefits in terms of network delay when sending a ping message with

packet size of 1400 bytes from a Raspberry Pi 3 located at INRIA Paris to a closest VM server

located in the INRIA Paris data center with average 3ms of network on WIFI , versus sending

to a VM server located respectively on OVH site in Roubaix in France with average 10ms on

WIFI and 79ms on 4G, and Google Cloud site in United State of America (USA) with average

150ms of network delay on WIFI and 255ms on 4G. These results show that processing data

stream at the network edge will support time sensitive of DSPA application with a low network

delay between 3ms to 10ms.

Although the theoretical 1ms of network delay of 5G, real deployment in USA and United

Kingdom have demonstrated respectively 30ms and 20ms of network delays to the distant Cloud.

According to [13], such network delay can support many time sensitive applications. However,

they will not be adequate to support applications requiring constrained response time (sub

millisecond), such as those involving autonomous cars or robots.
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In this respect, by combining communication technology providing low network delay like

5G and the Edge/Fog computing is one of the solutions to further reduce the network delay for

supporting both time sensitive and highly time sensitive applications.

2.3.2.2 Prevent network congestion

Sending data stream from the IoT devices to the distant Cloud require traversing WAN links

with several hops. According to Varghese et al [13] the network bandwidth between two VM

located in the same AWS data centers have been demonstrated to be on average 900Mbps.

However when the WAN is involved, the network bandwidth to the same VMs was between

30Mbp-160Mbps.

For a DSPA application relying on intensive IoT data streams, sending huge volume of data

stream to the distant Cloud may overwhelm the network resources to reach the Cloud and cause

network congestion that can consequently increase the network delay. Additionally, most Cloud

providers limit the bandwidth when the total data transfer reaches a certain threshold [13].

In this respect, relying on the Edge/Fog computing enables to partially process data streams

and sending to the Cloud reduced size data stream, thus preventing network congestion.

2.3.2.3 Ensure data privacy

With the high growth of the IoT industry, the IoT devices collect and produce data that are

useful for consumers, businesses and public sector policy-making. In this context privacy arise

naturally as IoT data has to be transmitted to the distant Cloud while non anonymous data can

sometime provide real insights into an individual behavior, health or relationships.

For example in Figure 2.1 data tuples related to driving speed and location can be used

against car owners by the car insurance companies. The latter, can set high insurance price

according to whether car has a sportive driving behavior. In this respect, by leveraging Edge/Fog

computing as a privacy preservation means [79], IoT data can be aggregated closer to where they

are created and send to the Cloud only the average values per district or street. Nevertheless,

the Edge/Fog providers should be trustworthy.

2.3.3 Challenges

Even though that IoT Edge Analytics enables to reduce the network delays, prevent network

congestion and ensure data privacy, the environment on which a DSPA application is deployed

influences drastically the associated QoS in terms of security, response time (i.e., the sum of

network delays and processing time), throughput, and resource usage cost (i.e., CPU, memory,

storage, energy, bandwidth, etc.). In the following, we revisit the challenges that come with IoT

edge analytics.
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2.3.3.1 Resource heterogeneity at Edge/Fog layers

In IoT cloud analytics, application providers can scale cloud resources (CPU, memory, stor-

age, bandwidth, etc) on demand by using a pay-as-you-go model [19]. However in IoT Edge

Analytics, the Edge/Fog computing consider different execution models [31] and rely on geo-

graphical distributed heterogeneous nodes such as mobile or fixed IoT devices (e.g., camera,

connected vehicle, smartphone, etc.), small data centers, routers, wireless base stations, etc.

that come with stringent resource constraints in terms of limited computational resources (e.g.,

CPU, RAM, etc.) and limited power supply (e.g., rechargeable batteries, solar energy, etc.)

that may have to be shared amongst several DSPA applications. Therefore, computing resource

allocation becomes a prominent challenge. Insufficient computational resource allocation leads

to workload imbalance, increase of computation time, QoS violations, and affects energy con-

sumption of Edge/Fog nodes [13, 80] In this respect, an efficient resource allocation mechanism

is required [81].

Even though significant developments are achieved, techniques are very diverse, to name [19,

81] propose taxonomies for resource management solutions in Edge-Fog-Cloud. Nevertheless, the

problem is still very challenging which always presents a hot issue for the research community.

2.3.3.2 Dynamic Workload

The workload of a system is defined as the set of all inputs received by the system from its

environment during a time period. Long running DSPA application is characterized by a dynamic

workload owing to the spatial and temporal dynamics of IoT device distributions. Thus, the IoT

data stream rate can be dynamic until it influences the workload behavior. Clearly a dynamic

workload has an impact on QoS requirement of DSPA application: higher workload may incur

high usage of computational resources, energy and bandwidth along with high network and

processing delays. Therefore, dynamic scheduling of DSPA operators according to the evolution

of the workload is necessary to ensure the associated QoS requirements. However, it requires

appropriate model and mechanisms to decide, how to schedule, when to schedule and by how

much [30,81]

2.3.3.3 Privacy and Security

Today’s IoT devices rise many vulnerabilities due to the lack of adoption of well-known security

techniques, such as encryption, authentication, access control, and role-based access control.

The reason for this lack is that existing security techniques, tools, and products may not be

easily deployed to IoT devices because of, the variety of hardware platforms and limited com-

puting resources of devices. Although the concept of processing IoT data at the network edge

by providing computing resource close to IoT devices provides better structure to enforce data

privacy [79], the distributed architecture of IoT edge analytics increases in fact the dimension
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of attack vectors [82]. Therefore, revisiting and extending existing privacy and security tech-

niques to address the specificities of IoT analytics systems entails not only many scientific and

engineering challenges but also public policy challenges.

2.3.4 Framework overview to support IoT Edge Analytics

Edge/Fog computing paradigms are still struggling to find an official implementation. However,

several efforts continue to be made in order to provide simulated or real prototype implementa-

tions. Thus, we survey the main prototype implementations that we present a brief summary

in Table 2.2, where we consider: (i) architecture to describe the number of intermediate layers

between the IoT devices and the Cloud; (ii) App. type to describe the type of the application

whether it is based on DSPA, micro-service (MS); interconnected application modules (AppM),

etc. that the prototype supports; (iii) mobility to describe whether the prototype includes mo-

bile resource by enabling dynamic discovery and federation of mobile resources to the global

prototype architecture; (iv) monitoring to describes if the monitoring is supported by the proto-

type to give insight of resource state at run-time; and (v) Type: to define whether the prototype

is a simulator or is implemented on real resources as a private or open source platform.

In the sequel, we briefly present the main efforts to implement or simulate an Egde-Fog-Cloud

computing platform [83].

2.3.4.1 KubeEdge

KubeEdge [84] is an open source system for extending native containerized application orches-

tration at the IoT network edge. It is built on top of Kubernetes and provides fundamental

infrastructure support for network, application deployment and metadata synchronization be-

tween the Cloud and the Edge. Kubernetes is an open-source system that enable to automat-

ically deploy and manage large scale cloud applications using containers such as docker. The

communication of module in KubeEdge is based on the decouple communication protocol called

MQTT protocol. In this respect a mobile node can connect and disconnect without significant

impact of the overall KubeEdge.

2.3.4.2 iFogSim

iFogSim [85] is a toolkit based on the well adopted CloudSim framework. CloudSim [86] is

the most used framework for modeling and simulating the Cloud environment. Thus, iFogSim

extends the basic abstract classes of Cloud to offer a framework for modeling and simulating

the Edge/Fog computing environment with large number of layers between the IoT devices

and the Cloud. iFogSim applies Sense-Process-Actuate and distributed data-flow model while

simulating any application scenario in Fog computing environment. It facilitates evaluation of

end to end latency, network congestion, power usage and computational resource usage. However
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iFogSim does not yet support run-time reconfiguration of simulated application. In this respect

MobFogSim [87] extends iFogSim to support reconfiguration of simulated application.

2.3.4.3 Enorm

Enorm [88] is a framework providing a 3-tier architecture composed of Cloud, Edge and IoT

devices. The management is centralized in the Cloud. IoT devices offload tasks to Edge nodes

when necessary, either due to user mobility or QoS (e.g. violation of latency constraint). Enorm

dynamically allocates resources by an auto-scaling mechanism which scales up/down the re-

sources, considering the network latency and task execution time. However Enorm does not

support dynamic reconfiguration of application.

2.3.4.4 FogFlow

FogFlow [89] is programmable Fog computing environment on resource network divided vertically

in 3 layers including IoT devices layer, Fog/Edge layer and Cloud layer. To support openness

and interoperability of IoT applications, FogFlow uses the data flow model for modeling DSPA

application in which operators are define as dockerized application based on the standard NGSI.

NGSI [90] is an open standard that enables to define both data model and communication inter-

face to exchange contextual information between applications (operators) via context broker. In

this respect, FogFlow uses 3 logical views to operate on a geo-distributed resource network that

include service management, data processing and context management. (i) Service management

is deployed in the Cloud and includes task designer (TD), docker image repository (DIR) and

topology manager (TM). TD provides the web-based interface to enable a developer to design,

submit, monitor and manage operators of a DSPA application. DIR manages the images of all

dockerized operators submitted by the developer. TM is responsible for orchestration and map-

ping operators as tasks to workers (Cloud and Edge/Fog nodes). The service orchestration has

the objective to minimize the network bandwidth usage without overloading the workers. (ii)

The data processing view manages to worker to perform data processing task assigned by TM.

(iii) Context management view enables to establish data flow across the tasks via NGSI [90].

2.3.4.5 OpenStack

OpenStack [91] is an open-source platform designed for deploying a Cloud computing by using

virtualization through infrastructure as a service model. Even though that the main goal of

OpenStack is to support the cloud computing in data center. Today’s OpenStack is extended

to support an Edge-Cloud computing use case by providing a flexible and modular design [92].

2.3.4.6 EdgeNet

EdgeNet [93] is a public Kubernetes cluster dedicated to network and distributed systems re-

search, supporting experiments that are deployed concurrently by independent groups. Its nodes
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Table 2.2: Summary of Edge/Fog platforms

Architecture App. type Mobility Monitoring Type

KubeEdge [84] 2 layers MS, DSPA,
AppM

Supported Supported Open source
platform

iFogSim [85] extensible
layers

MS, DSPA,
AppM

Not supported Supported Simulation
platform

MobFogSim
[87]

extensible
layers

MS, DSPA,
AppM

Supported Supported Simulation
platform

Enorm [88] 3-layers MS, DSPA Supported Supported Open source
platform

FogFlow [89] 3-layers DSPA Supported Supported Open source
platform

OpenStack
[91,92]

2-layers DSPA, MS,
AppM

Supported Supported Open source
platform

EdgeNet [93] extensible
layers

DSPA, MS,
AppM

Not supported - Open source
platform

Pan et al. [94] 3-layers Smart grid Supported Supported Research
prototype

are hosted by multiple institutions around the world. It represents a departure from the clas-

sic Kubernetes model, where the nodes that are available to a single tenant reside in a small

number of well-interconnected data centers. The free open-source EdgeNet code extends Ku-

bernetes to the edge, making three key contributions: multi-tenancy, geographical deployments,

and single-command node installation.

2.3.4.7 Research prototype

Due to the lack of well defined architecture that include both Edge, Fog and Cloud computing,

researchers propose prototype implementation of such architecture that focus on specific applica-

tion use cases. For instance, (and not limited to) Pan et al. [94] propose a prototype architecture

of Fog computing for smart grid based application. In essence, it provides an architecture that

strengths the coordination between Fog nodes to reduce smart grid based application latency.

This prototype takes into account mobile devices as well as resource usage monitoring. However

it is designed for specific application and does not support DSPA application.

2.4 Conclusion

In this Chapter, we described the main functionality of DSPA applications for processing data

streams on the fly via a series of operators. More precisely, a DSPA application that can

be represented as DAG of operators that could be executed in a network of computational

resources. In this respect, we highlighted the main optimization techniques (i.e., graph rewriting
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and operators’ placement) used to reconfigure a DSPA DAG in order to satisfy the associated

QoS objective. We also described how operators of a DSPA DAG can be executed by Edge-Fog-

Cloud nodes. Then, we presented both simulating and real prototype frameworks that allow us

to experiment with an Edge-Fog-Cloud architecture.

In the next Chapter, we will present the state of the art on scheduling algorithms used to

execute DSPA applications in Edge-Fog-Cloud nodes and we will position the contributions of

this thesis.
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3.1 Introduction

Identifying optimal scheduling solutions of operators across the resource nodes of a network is

a tedious task in particular for nodes with heterogeneous resources (e.g., in Edge/Fog layers)

which are shared by different DSPA applications over dynamic IoT data streams.

Several approaches have been introduced to schedule operators in order to fulfil the QoS

objective of a DSPA application [19]. They differ in the architecture of the execution environ-

ment (hierarchical, peer to peer, centralized, etc.), the scheduling objectives (response time,

throughput, network resource usage, computational resource usage, energy consumption, etc.),

the optimization methodologies (heuristic, meta-heuristic, mathematical optimization, predic-

tive, etc. ), whether the scheduling strategy produces a scheduling solution and later it enables
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to reschedule the current solution at run-time. For the latter case, existing approaches addition-

ally differ in how rescheduling is triggered at run-time (time-based, proactive approach, reactive

approach, etc.). This chapter attempts to survey the related work and is structured according

to the aforementioned dimensions. At the end, we position the contributions of our thesis.

3.2 Execution Environments

Initially DSPA applications were designed to run in centralized environments as an extension

of a data base management system (DBMS) server capable of generating data streams. Thus,

cluster nodes with high computational resources was the prevailing environment for executing

DSPA applications specified e.g., in TelegraphCQ [49].

As data streams were generated by multiple sources, operators started to be distributed across

the computational resources of a peer-to-peer (P2P) network. In this context, the challenge was

how to improve the performance of a DSPA application by minimizing the network resource usage

[8, 22, 24, 46, 47, 77, 95, 96]. High performance computing (HPC) nodes have been additionally

exploited in [97] providing high computational resources and interconnectivity (i.e., Infiniband

with network delay in the order of microsecond) to speedup the execution of a DSPA application.

With the emergence of the Cloud facilitating to scale up or out computational resources,

DSPA applications were naturally deployed in the Cloud to benefit from practically unlimited

computational and network resources in order to guarantee high availability and performance

(i.e. constrained response time, high throughput) [19]. Wireless sensor networks have been also

employed to schedule DSPA applications [98]. For example a hierarchical wireless sensor network

is used in [99], where computational resources and network bandwidth capacity are progressively

increasing as we go from the bottom to the top of the hierarchy.

New challenges emerged with the upcoming of the IoT, where IoT devices are inter-connected

through the Internet, interact and continuously generate huge volumes of data as streams, where

the latter may require real-time processing. In this context, the Cloud was de facto the right

execution environment. However, IoT data streams need to be transferred to the distant Cloud,

involving WAN links, in order to be processed there [100–102]. Cloud-based DSPA solutions

may involve a high cost in terms of network bandwidth usage and network delays.

Edge/Fog computing is gaining nowadays increasing attention as it enables to schedule DSPA

applications at the IoT network edge. Hence, reduced data size is sent to the Cloud, which

decreases the network bandwidth usage and network delays. In this setting, works like [103–109]

consider the Edge-Fog-Cloud architecture as the execution environment. Each of these works

comes with specific network resource organization. For instance, [109] proposes a shareable

hierarchical Edge-Fog-Cloud architecture that comes with several layers of Fog nodes between

the IoT devices at the Edge and the Cloud node, while [107, 108] introduce only one layer of

Fog nodes. Furthermore, [105,106] propose an Edge-Cloud architecture where the Edge contains
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Table 3.1: Execution environments of DSPA applications

Network architecture Layer of hosting nodes

Central. Hierarc. P2P Cluster HPC Cloud Fog Edge Shared

[49] ✓ ✓

[22, 46,47,77,95] ✓ ✓

[97] ✓ ✓

[100–102] ✓ ✓

[99] ✓ ✓

[98] ✓ ✓

[23, 110–112] ✓ ✓ ✓

[114–116] ✓ ✓ ✓ ✓

[107,108] ✓ ✓ ✓ ✓ ✓

[109] ✓ ✓ ✓ ✓ ✓ ✓

[103–106] ✓ ✓ ✓ ✓

[21, 43] ✓ ✓

Our work ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

two layers, namely IoT devices and micro data centers, both providing computational resource

capacity for hosting operators. In the Cloud layer, they consider federated Cloud sites.

Similarly, works like [23,110–113] consider a hierarchical resource network where IoT devices

are placed at the bottom (Edge) and the Cloud is placed at the top of the hierarchy. A hybrid

network architecture is proposed in [114, 114, 115] including a P2P local area network (LAN)

for connecting different Edge nodes grouped by region and a hierarchical WAN between the

grouped Edge nodes and the Cloud nodes. Finally, distributing DSPA applications only in the

Fog layer is considered by [21, 43]. In this setting, Fog nodes are interconnected via a P2P

network architecture.

3.2.1 Summarizing table

Table 3.1 summarizes and classifies the execution environments used for scheduling DSPA ap-

plications in terms of network architecture to interconnect distributed resource nodes, which

can be Centralized (Central), Hierarchical (Hierarc) or Peer-to-Peer (P2P). Then, the type of

resource nodes on which operators of DSPA applications can be distributed to, which can be

Cluster (or bare-metal), High performance computing (HPC), Cloud, Fog, Edge nodes. Fur-

thermore, whether the target execution environment assumes that its resources can be shared

among several applications. The summary shows that in this thesis, we consider a hierarchically

Edge-Fog-Cloud architecture as the execution environment, where the resources can be shared

among several (DSPA) applications.
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3.3 Scheduling Objectives

A scheduling strategy can come with a single or multi-fold objective that specifies the QoS

required by a DSPA application. For the latter case, preferences must be set to sort eventually

competing scheduling targets that cannot be fulfilled at the same time [22]. To set a common

ground for comparison with the contributions of this thesis, in the sequel we distinguish between

resource aware and performance aware scheduling objectives.

3.3.1 Performance-aware

Throughput and Response time are the two dominant metrics to measure the performance of a

DSPA application from an end-user perspective [19], while other metrics used are: application

availability [22], accuracy of analytic results [8], data loss [117], etc.

Response time is defined as the time interval between the moment a data item is produced

and the moment this data item has been fully processed by a DSPA application [118]. Some other

works consider the response time metric as the maximum end-to-end latency [57] or makespan

[23]. In the following, we use these terms interchangeably.

In this respect, response time has been considered in [8, 22, 24, 95, 96] that model the prob-

lem of scheduling DSPA application as a multi-objective optimization problem on peer network

resources. A similar multi-objective optimization is followed by [21] to schedule a DSPA appli-

cation at the Fog layer by assuming a P2P network. A single objective optimization problem

for minimizing the response time of DSPA applications executed over the Edge/Fog and Cloud

nodes of P2P network is presented in [103]. Indirect minimization of the makespan is studied

in [23] for splitting a DSPA application between the Edge and Cloud aiming actually to mini-

mize the network resource usage to reach the Cloud. The works proposed by [107,108] consider

the response time as objective metric for scheduling a DSPA application across the Edge-Fog-

Cloud nodes of hybrid network resource architecture (hierarchical and P2P). [114] minimizes

the response time of DSPA application by splitting the resulting application graph model, and

distributing the operators across federated Cloud resources and distributed Edge resources.

On the other hand, throughput is defined as the number of data items in a stream that a

DSPA application can process in a given amount of time. Throughput is used as a scheduling

objective metric in [43] to maintain the maximum number of simultaneously processed data items

when scheduling a DSPA application on peer network resources of Fog nodes. This work as well

as [119] rather consider the Maximum Sustainable Throughput instead of simple throughput as

performance-aware scheduling objective. Going one step beyond, [77] guarantees not only a high

throughput but also low response time of DSPA applications running on P2P network nodes

with high computational resources such as cluster. In [112] throughput is maximised in the

context of mobile cloud computing. A model is proposed in [120] for estimating the throughput

of a DSPA application deployed at the Fog based on the placement solution of its operators.
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Some other works consider both two metrics as optimization objectives. For instance, [106]

solves the operator placement problem between the Cloud and the Edge with the objective to

minimize the response time of DSPA application while satisfying a given throughput constraint.

Moreover, [104] attempts to maximise the number of successfully deployed DSPA applications

between the Cloud and Fog nodes requiring that network and computational resources should be

allocated with parsimony to meet response time constraint for each deployed DSPA applications.

3.3.2 Resource-aware

Resource-aware scheduling aims to consume less computational resources (e.g. CPU/GPU,

RAM, etc.) and network resources (e.g. bandwidth, network delay, etc.) in order to achieve the

required QoS of a DSPA application [44]. In this respect, [22,24,95,96] consider minimizing the

network resource usage besides the response time while maximizing the application availability

when scheduling DSPA applications across a P2P network subject to constraints on the band-

width usage of network links and the computational resource usage of nodes. Similarly, [74,121]

consider the network resource usage as the scheduling objective to minimize constrained by the

response time, the bandwidth usage of network links as well as the computational resource usage.

Beside the response time, [21] considers also the network resource usage in their multi-objecting

scheduling problem of DSPA application at the Fog. [99] minimizes the combined usage cost of

the computational and network resources for deploying a DSPA application over as hierarchical

network of sensors.

Besides the objective of minimizing the response time, [114] considers also the constraints of

using the computational resources and network bandwidth resources for distributing operators

across federated Cloud resources and distributed Edge resources. However, network resource

usage is considered as a scheduling objective to minimize in [107,108] in order to deploy a DSPA

application over a hybrid resource network architecture. In the same setting, [8] minimizes

the response time as the scheduling objective subject to constraints regarding the usage of the

computational and network bandwidth resources.

The energy consumed is finally an optimization target when scheduling DSPA applications

over limited computational and network resources. In this respect, [110, 111] consider as the

scheduling objective, the total energy consumption of mobile devices (e.g. smartphones) pro-

cessing DSPA application in the continuum of mobile devices and a central data center (e.g.

Cloud).

Reducing computational and network resource usage along with energy consumption par-

ticipate in reducing the monetary cost for executing a DSPA application. For instance, [78]

minimizes the monetary cost subject to response time constraint for scheduling a DSPA appli-

cation on peer to peer network resources. Furthermore, besides the response time scheduling

objective, [106] considers also minimization of the combined usage cost of computational (i.e.,
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cpu and memory) and network resources (i.e., bandwidth), from a monetary cost perspective.

3.4 Scheduling Strategies

So far, we have described the execution environments and the scheduling objectives of DSPA

applications. However we have not yet explained how the related works achieve these objectives

when scheduling DSPA applications on a specific execution environment. In this subsection, we

distinguish scheduling strategies between those proposing an initial (static) operator scheduling

solution and those enabling to dynamically adapt the initial scheduling solution in response to

the evolution of the DSPA application workload.

3.4.1 Static Scheduling of operators

Scheduling strategies in the related work rely either on mathematical optimization techniques

or on heuristic techniques. Mathematical optimization techniques [22, 96, 103] are used to find

the minimal or maximal value of an objective function with respect to a set of constraints [122].

To solve the formulated optimization problem, optimization tools (or solvers) may be employed,

such as CPLEX [123], Gurobi [124], Gecode [125], Coin and Branch-and-Cut (CBC) [126], etc.

On the other hand, heuristic techniques aim to find more rapidly a solution that approximates

sufficiently well the optimal solution [23,24,78,110,111].

3.4.1.1 Mathematical optimization based

[22] relies on integer linear programming (ILP) to formulate the problem of scheduling operators

over a P2P network of heterogeneous computational nodes with the objective to minimize the

response time and related network resource usage cost as well as to maximize the application

availability. This multi-objective optimization problem is reduced to a single objective optimiza-

tion problem by using simple additive weighting technique. Then, the formulated ILP problem

is solved using the optimization software tool CPLEX. This work is extended in [96] in order to

replicate the operators then placing them across a P2P network of heterogeneous computational

nodes.

Constraint programming (CP) model is also used to find optimal solution to the operator

scheduling problem defined as a constraint satisfaction problem. For instance, [103] proposes

a framework that models the initial operator scheduling problem between the Cloud and the

Edge as a constraint satisfaction problem. The objective is to minimize the response time of

DSPA application by minimizing the sum of each individual time for processing an operator on

Cloud or Edge nodes and for sending data stream between two connected nodes. The problem

considers the resource usage constraints in terms of CPU usage, network bandwidth usage and

energy usage as well as the operator replicability constraint. The latter constraint considers the

fact that some operators can be deployed on the Edge nodes while some other requiring complex
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processing capacity are forced to run only in the Cloud which provides higher computational

resource capacity. To solve the formulated CP model, authors use the open-source software

optimization tool Gecode.

Mixed Integer Linear Programming (MILP) model is used in [106] to solve the operator

placement and replication problem between the IoT devices and Micro Data Center considered

as Edge resources and a federation of Cloud sites. The objective is to minimize at the same time,

the DSPA application response time and the combined usage costs of computational and network

resources. While considering the computational resource usage constraint in terms of CPU and

memory, the operator throughput constraint and the placement constraint of the source and

sink of the DSPA application. They use the CPLEX tool to solve the resulting MILP model.

Dynamic programming algorithm is used by [113] to partition an IoT application modelled

as DAG of operators between the Edge and the Cloud. In this work a specific IoT application

is considered that process stream of video in data chunk of equal size. The objective is to

minimize the overall completion time (response time) of the graph of operators. In this respect,

the proposed dynamic programming algorithm navigates through various possible operators’

placement and chooses the one with the minimum total cost w.r.t. the operator graph completion

time.

3.4.1.2 Heuristic based

Several heuristic methods have been proposed to approximate an optimal value (min or max)

of an objective function with respect to a set of constraints. For instance, [24] proposes several

heuristics to solve the operator placement problem on peer resource networks introduced in [22].

These contributions are distinguished between model free and model based heuristics. The

proposed heuristics involve the selection of suitable computational resources and/or network

links to guide the operator placement decision. In this respect, a penalty function is used for

capturing the cost in terms of the objective function of using any computational resource or

network link.

Model free heuristics from [24] rely on well known search algorithms such as greedy first fit or

local search to solve the operator placement problem. These algorithms involve a risk of getting

stuck in a local optimum. To tackle this, authors use Tabu search (TS) algorithm. starting

from an initial operator placement, TS finds a local optimum through a set of iterations, then

it explores the search space by selecting the best non improving operator placement which can

be found in the neighbourhood of the local optimum. This solution uses a limited tabu list to

avoid cycling back to an already visited operator placement.

On the other hand, model based heuristics from [24] attempt to reduce the search space by

restricting the set of candidate computational resources to host the operator by using a penalty

function. Then, they model the operator placement problem as an instance of ILP in the reduced
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problem space, which can be solved by using the CPLEX tool.

By modelling a DSPA application as a DAG of operators, some heuristics split the resulting

graph of operators into several subgraphs where each individual sub-graph will be mapped to

a specific computational resource node with the aim of optimizing some criterion of the QoS

requirement.

For instance, the edge-cut algorithm is used in [110, 111], where the authors propose the

heuristic algorithm called BOSe. BOSe splits the processing load of DSPA applications defined

as Continuous queries (CQs) between a central server and several mobile user devices in order to

optimize the trade-off between data communication cost and data processing cost. These costs

are expressed in terms of energy consumption on mobile devices. The results of the CQs take

the form of individual data streams disseminated to the mobile devices over a shared broadcast

medium. BOSe relies on a greedy search of edge-cut moves to split the load of CQs.

The edge-cut algorithm is also used by [23], to propose a uniform approach for deploying a

DSPA application between the Cloud and the Edge. The objective is to minimize the network

resource usage and indirectly minimize the response time for transmitting data stream produced

by IoT devices at the Edge toward the Cloud. In this respect, they consider the minimum edge-

cut to split the DAG of operators for each data stream produced at the Edge in two disjoint

sub-graphs. The sub-graph that includes the sink of the DAG of operators remains on the Cloud.

The remaining sub-graph that is connected with the data source is deployed on the devices at

the Edge, the operators that are deployed on the device are subject to the constraint of data

locality. Despite the limited computational resources at the Edge, this work does not minimize

the usage of these resources.

Furthermore, [78] addresses the problem of distributing a DSPA application on an execution

environment constituted with resource nodes which have different management policy (e.g. pric-

ing models). The objective is to minimize the overall resource usage cost in terms of monetary

cost of the resource nodes hosting the DSPA application while its end-to-end latency bound

is respected. By modeling a DSPA application as a DAG of operators, they split this graph

into DAG of control units (CU) where each CU is an operator subgraph that can be deploy

on a resource node with a specific management policy. In terms of solution they proposed an

algorithm that models the problem as an instance of ILP model which is solved with the CBC

solver. To address the scalability issue of the initial algorithm,they propose a heuristic based

scheduling strategy. This algorithm initially distributes the available end-to-end latency evenly

among all CUs of a DSPA application and then a greedy strategy is used to swap the assigned

latency from one CU to another if this leads to a reduced monetary cost. The greedy strategy

is repeated step-wise until no more improvement of the monetary cost is possible. However, this

work does not consider operator replication neither minimizing specifically computational and

network resources.
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Splitting a DAG of operators between the Cloud and the Edge is also addressed by [127]

aiming to minimize the DSPA application response time, the usage of WAN bandwidth between

the Edge and the Cloud as well as the monetary cost of exchanging data streams between the

Edge and the Cloud. This problem is constrained by the computational resource usage (CPU

and memory), however, it does not consider minimization of the computational resources usage.

Given that they model the response time of DSPA application by using queuing model, the

input data stream rate to an operator should be lower than the service rate of this operator and

the network link should not be saturated. In terms of solution they propose a programming

model called R-Pulsar, in which they implement an operator placement algorithm that firstly

splits the application graph by regions to deploy between the Edge and the Cloud nodes. The

Algorithm gives priority to Edge since Cloud is expected to store message for batch processing

while Edge nodes may host the actuators. In this respect if the Edge nodes can not meet the

operator computational resource usage constraint then the operator is moved in the Cloud that

provide practically unlimited computational resources.

[114] extends the work in [128] to model the DSPA application as data-flow graph. Then

authors propose heuristic algorithm that splits the application graph between the Edge and

Cloud with the objective to minimize the sum of the end-to-end latency of all the individual

operator path in the application graph subject to usage constraint of the computational resources

of the Edge nodes and the network resources between both the edge nodes and the Edge node

to the Cloud node. The proposed heuristic initially creates a deployment sequence which is

essentially a list of operators in topological order and the list of the resources that can host these

operators. From the deployment sequences, different heuristics are proposed such as AELS which

is a greedy strategy that places operators incrementally by evaluating the aggregated operator

path end-to-end latency while respecting the computational and network resource constraints.

Furthermore, they extend AELS algorithm to account for the region pattern aka AELS+RP

algorithm. This strategy handles complex data-flows that contain multiple paths from sources

to sinks and hence, it considers the requirement of each individual operator path and gives

priority to message according to their destination. Finally they improve AELS+RP algorithm

in order to reduce end-to-end latency so that the search can be applied on the Edge resource node

regions which provide higher end-to-end operator path latency. This work does not optimize the

computational and network resources. Furthermore, this work considers the operator placement.

[105] proposes a heuristic approach to address the scalability issues of the algorithm proposed

in [106]. The proposed heuristic algorithm attempts to reduce the search space of the Edge (IoT

devices and Micro data centers) nodes or Cloud nodes, by removing the resource nodes that

do not satisfy the operator resource demand. Then, based on the reduced search space, the

optimization problem is framed using MILP and solved with CPLEX tool.

[109] introduces a heuristic algorithm that takes into account the trade off between the Fog
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nodes location and the application latency requirements for scheduling IoT application module

across a hierarchical Edge-Fog-Cloud architecture. However, the Fog nodes are set in more than

one layer of Fog. Within this hierarchy the computational resource capacity of the Fog node

is increasing as we move from the Edge to the Cloud. The proposed heuristic algorithm starts

upon request of application arrival, it first generates a set of group of application components

sharing the same source. The algorithm calculates the communication impact of each group in

the set then it decides to deploy each group of component on the Fog layer with respect to lower

the communication impact. This work consider general IoT application that can be modelled as

directed graph while in our work we consider DSPA application that can be modelled as DAG

of operator. Furthermore, they focus on application latency requirement while in our work we

target not only the application latency requirement but also the network and computational

resources usage costs.

[104] addresses the problem of scheduling DSPA applications in the form of query requests

between Fog and Cloud resources, assuming that computational resources are practically infinite

in the Cloud and limited in the Fog. The objective is to maximize the percentage of successfully

deployed DSPA applications. In this respect, a DSPA application is successfully deployed if

it satisfies the Fog resource constraint, the DSPA application response time constraint and

use as less as possible the Fog to Cloud WAN resources. They distinguish between non time-

critical DSPA applications that have their sink in the Cloud and DSPA applications with strict

latency requirements that have their sink in the Fog. As baseline solutions they propose state

of the art strategies such as as FogOnly that deploys the whole DSPA application in the Fog

so that Fog computational resource usage is maximised and the Fog to Cloud network resource

usage is maximised, AllDC deploys the whole DSPA application in the Cloud so that the Fog

computational resource usage is minimized (i.e., zero) and the Fog to Cloud network resource

usage is maximised. On the other hand, they propose heuristic algorithms that make interplay

placement of DSPA application between the Fog and the Cloud. In particular, they propose

Network aware FogGreedy (NAFogGreedy) algorithm that deploys the whole DSPA application

in the Cloud if its sink is in the Cloud and deploy the whole DSPA application in the Fog in

case it has its sink in the Fog. For the latter case, if the Fog nodes does not have sufficient

resources, then some part of DSPA application will be deployed in the Cloud. They also propose

Network-Aware Application oriented (NAAO) algorithm that similarly to NAFogGreedy deploys

the whole DSPA application in the Cloud if its sink is in the Cloud. However if the DSPA

application has its sink in the Fog, NAAO decides to deploy each individual operator path of

DSPA application in Cloud or Fog where this operator path achieves to satisfy the response time

constraint.
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Table 3.2: Strategies producing a static operator scheduling

Works Strategy Policy Objective Constraint

Heur Math Plac Repl Comp Net T TP CPU,
RAM

Bwd Repl

[103] ✓ ✓ ✓ ✓ ✓ ✓

[22] ✓ ✓ ✓ ✓ ✓ ✓

[96] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[106] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[110,111] ✓ ✓ ✓ ✓

[23, 127] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[109] ✓ ✓ ✓ ✓ ✓

[114,128] ✓ ✓ ✓ ✓ ✓

[105] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[78, 113] ✓ ✓ ✓ ✓

[24] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[104] ✓ ✓ ✓ ✓ ✓

Our work ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

3.4.1.3 Summarizing table

Table 3.2 summarizes scheduling strategies for static deployment of DSPA application and hence

it generate an initial operator placement solution. We classify these works in terms of the follow-

ing: (i) Strategy identifies whether the approach used is heuristic (Heur) based or mathematical

optimization (Math) based; (ii) Policy defines the type of the policy used by the scheduling

strategy to achieve the optimization goal – we distinguish between operator placement (Plac)

policy and operator replication (Repl) policy; (iii) Objective specifies the QoS objective targeted

by the scheduling strategy – this can be whether to minimize the computational resource usage

(comp), the network resource usage (net), the application response time (T), or the applica-

tion throughput (TP); and (iv) Constraint captures the constraints imposed by the execution

environment or the application QoS objective – we distinguish between computational resource

usage (CPU, RAM) constraint, bandwidth usage (Bwd) constraint, and operator replicability

constraint (Repl).

The summary shows that in this thesis, we propose heuristic based and mathematical based

scheduling strategies for the static deployment of DSPA application. It also shows that the

scheduling strategies that we propose use the operator placement and operator replication poli-

cies in order to achieve the objective of minimizing the computational and network resource

usage costs, ensuring real time response of DSPA application while satisfying the resource usage

constraint and the operator replicability constraint.
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3.4.2 Dynamic Scheduling of Continuous Operators

Besides mathematical optimization and heuristic techniques used for scheduling operators at run-

time, predictive techniques have been also used to predict future application and system metrics,

such as, resource utilisation, DSPA application performance, etc. [77, 116, 129–136]. Based on

these predictions, DSPA engines are able to anticipate a possible QoS objective degradation

and hence apply adequate strategies. In the sequel, we classify dynamic operator scheduling

strategies under the above two categories and the predictive based strategy.

3.4.2.1 Mathematical Optimization based

Despite the scalability concerns raised by mathematical optimization techniques, few works rely

on them to solve dynamically the operator scheduling problem. For example, [21] employs ILP

to schedule operators in the Fog layer. To accommodate dynamic workloads of nodes due to the

spatio-temporal evolution of IoT data stream rates, the scheduling problem originally introduced

in [22] has been extended with: (i) the enactment cost, which is the cost per second to run an

operator on a Fog node; and (ii) the migration cost, which considers the operator size and the

data rate for pulling this operator from the Cloud to a Fog node. [119] leverages Constraint

Programming to model the maximum sustainable throughput for dynamic operator placement

in the Edge over a P2P network with highly heterogeneous network resources. The problem

is constrained by the maximum computational resource capacity of each Edge node and the

maximum bandwidth capacity of each network link. This model is solved using the software

optimization tool CPLEX.

3.4.2.2 Heuristic based

Heuristic based approaches are largely used to enable dynamic scheduling of operators. This

is due to the fact that these approaches come with lower execution cost to approximate the

optimal solution and they can scale for large problem instances.

In this respect, [46] proposes a heuristic approach called SBON that dynamically places

operator on P2P network resources. SBON relies on multidimensional cost model that considers

data stream rates and resource availability of computational and network resources. For each

computational resource node, SBON encodes the CPU load and the network latency for routing

data streams with its peer nodes. SBON operates in a scalable and decentralized manner

that allows individual nodes to make dynamic placement decisions with local information. To

determine the placement of an operator to a computational resource node, SBON relies on a

spring-relaxation algorithm: a link between operators is modeled as a spring, whose extension is

mapped to the network latency of the operator link and spring constant is mapped to the data

stream rate flowing on this link.

Similarly, [47] proposes a multidimensional cost model to build a Cartesian space where every
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physical node has a virtual position called virtual node such that the Cartesian distance between

any pair of physical nodes corresponds to the propagation delay between these physical nodes.

Each operator then autonomously determines its optimal virtual node in this cartesian space that

minimizes its network resource usage, depending on its current position and the data stream

rate of its neighbour operators. The selected virtual node is then mapped to the available

closest physical node, if the selected physical node is not overloaded after deployment of the

additional operator. Otherwise the algorithm excludes this physical node from the search space

and assigns the operator to the next nearest physical node. Even though that [47] proposes

a decentralized heuristic while SBON is a centralized heuristic approach. However both two

solutions do not minimize the computational resource usage as they consider resource nodes

with higher computational resource capacity (i.e., cluster). Nevertheless they consider only the

constraints on the computational resource usage. Their proposed scheduling algorithms consider

only the operator placement as the optimization policy of DSPA application.

Operator placement policies are additionally exploited. A dynamic scheduling strategy for

P2P sensor networks is proposed in [121] with the objective to minimize the network resource

usage subject to the constraint of the end-to-end latency. The latency model provided by [46] is

used to estimate the propagation delay between sensor nodes. However, data transmission delays

are omitted and the operator processing time is considered to be negligible for the small data

volumes generated by sensors. The proposed strategy solves the dynamic operator placement

problem in two phases. The unconstrained optimization phase finds the minimum network

resource usage of the whole operator graph across the overall network of physical sensors. If

this initial phase satisfies the end-to-end latency constraint then the optimal solution is found.

Otherwise, the constraint satisfaction phase is apply that degrades a little as possible the network

resource usage in order to satisfy the end-to-end latency constraint. The proposed solution is also

used to solve their extended problem in [74] where they account for the fact that data streams

produced by sensors are of considerable size. Thus, the end-to-end latency includes not only the

propagation delay but also the tuple transmission delay and the tuple processing delay by an

operator on nodes. Despite such extension, however they do not minimize the computational

resources usage.

[8] combined both mathematical and heuristic optimization techniques to propose dynamic

scheduling strategy for DSPA application over a P2P network of Cloud nodes. The proposed

solution, called WASP, takes into account that the WAN bandwidth to reach the Cloud is

dynamic along with the workload of DSPA application. In this respect, the objective is to

minimize the DSPA application response time whatever the change in the WAN bandwidth and

DSPA application workload. Then, WASP employs 3 optimization policies by executing firstly

the operator placement policy to minimize the DSPA application response time. To do so they

model the operator placement problem as ILP model which is solved with optimization tool
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Gurobi. If the operator placement policy does not satisfy the constraint on network bandwidth

usage or on computational resource usage, WASP applies respectively the operator reordering

to change the current plan of a DSPA application into an equivalent one that solves the network

bandwidth bottleneck or the operator replication policy by scaling up/down the number of

operator replicas to address the computational resource bottleneck. This work mimics in some

how, the concept of content delivery network. Whence the resource network optimization of this

work considers distributed Cloud resources interconnected through through WAN characterised

by dynamic available bandwidth capacities. Furthermore, this work does not optimize the

computational resource usage.

[112] proposes a framework for adaptive computation partitioning and multi-tenancy com-

ponent as a Service for partitioning and executing DSPA application between the Cloud and

mobile devices. The objective is to maximize the application throughput while minimizing the

cost of using the Cloud resources with the constraint on bandwidth usage to reach the Cloud.

The proposed algorithm splits the application designed as DAG between the mobile devices and

the Cloud. However, the proposed algorithm is based on the genetic meta-heuristic algorithm

that involves high execution cost and require specific parameter tuning enabling the algorithm

to quickly converge toward the optimal solution.

Operator replication policy is frequently used to scale (i.e., increase or decrease) the par-

allelization degree of an operator in order to improve the computational resource usage and

consequently the DSPA application response time. For instance, [137] addresses the problem of

end-to-end latency violation when improving dynamically the computational resource utilization

of DSPA applications. In this respect, they propose a heuristic approach that firstly analyzes

whether the system is overloaded or under-loaded. Then, decide to scale-down or scale-up oper-

ator replicas to update the operator placement on the hosts that are respectively overloaded or

underloaded. In this respect, the operator placement problem is defined as bin packing problem

constrained by the CPU, memory and bandwidth capacity of each host. To solve this operator

placement problem, they consider a first fit algorithm by sorting the operator to place on host in

decreasing order of their computational resource demands. Then, the upstream or downstream

of the currently placed operator on a host is preferred during the placement to favor in memory

data communication over transferring data on network links.

Furthermore, [43] exploits operator replication and placement policies. To this end they

consider a Monitor, Analyze, Plan and Execute (MAPE) loop design pattern to dynamically

schedule operators in the Fog layer. The objective is to maximize the overall DSPA application

throughput. The MAPE loop pattern relies on the monitored system and application perfor-

mance metrics. It analyzes these metrics in order to determine when to scale-up or scale-down

an operator. In this respect, for the scale-up, a resource node is added with the replica of the

operator that experiences the back-pressure as long as the throughput is lower than a maximum
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threshold. For the scale-down, the solution iteratively removes the resource node that hosts the

replica of the operator that experience lowest throughput by keeping the maximum throughput

higher than a certain threshold. To execute the identified operator placement, the selected re-

source nodes are sorted by latency with their peers. Conversely to this work, in this thesis we

consider not only the Fog resources but also the Cloud resources. Then, we aim at optimizing

the trade-off between the usage of the Fog computational resources and the usage of the Cloud

network resources. Furthermore, in terms of DSPA application performance, we consider the

response time rather than the throughput and aim to ensure the real time response constraint.

3.4.2.3 Predictive based

Several techniques are used in this context to proactively schedule DSPA applications in order

to prevent a possible degradation in the DSPA application performances or in its resource usage

cost. In this respect, Markov decision process (MDP) [116, 129, 130] and Queuing Theory [77,

131, 132] are the most prominent techniques used to model the dynamic scheduling problem of

operators. More recently, machine learning (ML) techniques have been also exploited to propose

predictive scheduling of DSPA applications across distributed resources [133–136].

In this respect, [116] models the problem of dynamic operator rescheduling between the

Edge and Cloud as MDP with the objective of minimizing the DSPA application response time

while satisfying the computational resource constraint of the Edge nodes. To solve the model,

they use a reinforcement learning (RL) technique by employing algorithms such as Monte-Carlo

Tree Search, Temporal-Difference Tree Search and Q-learning. While the previous work targets

Edge-Cloud as execution environment, [129] considers a general geo-distributed resource net-

work, similarly to [22]. The authors model the problem of acquiring an optimal rescheduling of

operators as an infinite horizon of MDP. Then, they address the problem of operator scheduling

on heterogeneous infrastructure while minimizing the response time and reconfiguration over-

head as well as satisfying the computational resource usage constraint. Unlike [116], where the

proposed solution leverages RL techniques which suffer for slow convergence in particular as

the problem size growth, the solution in [129] involves both RL techniques and linear Function

Approximation (FA) techniques. Furthermore, [130] exploits markovian arrival processes to ad-

dress the problem of auto scaling computational resources (CPU) (rather than scaling operators)

while minimizing these computational resources subject to the response time constraint. RL is

also used by [138], which proposes a hierarchical approaches for self-adapting DSPA applications

at run-time to minimize response time under the constraint of computational resource usage.

In this respect, the authors exploit Q-learning algorithms that consider different levels of sys-

tem knowledge: either a model free learning algorithm or a model based approach. The latter

exploits the current knowledge or what can be estimated about the system and application at

run-time.
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[77] proposes dynamic operator scheduling strategies in order to guarantee the DSPA appli-

cation response time constraint while minimizing resource consumption across a Geo-distributed

network of resources that comes with resource-rich homogeneous nodes. They build a latency

model based on a G/G/1 queuing model to predict the latency of each individual operator.

Then, based on the prediction model, they employ operator replication policy by increasing the

number of replica of each individual operators to satisfy the operator latency constraint. The

higher the number of operator replica, the lower the operator latency however the higher the re-

sources consumption. Thus, they use gradient descent algorithm to trade-off between satisfying

operator latency and minimizing resource consumption.

[132] designs an adaptive operator scheduling algorithm that replicates and places operators

on P2P network in the Cloud. The objective is to ensure lower response time. In this respect,

they devise a predictive model of response time and throughput by modeling the problem as a

Jackson network model, where each operator is modeled as a GI/G/K queuing model where K

indicates the number of replica per operator.

ML techniques such as linear regression is used in [133] to propose a strategy, in response

to dynamic data stream rates, that dynamically increases or decreases the number of replicas

of each individual operator of a DSPA application. This aims to prevent operator congestion,

to free unnecessary resource usage (i.e., RAM, CPU, etc.), and hence to yield results with ac-

ceptable data loss and minimum response time. On the other hand, an online support vector

regression algorithm is used in [136] to improve the accuracy of data load prediction for dy-

namic resource allocation of DSPA applications. Furthermore, a neural network technique is

used in [134] to forecast variations in the input load of operators. It periodically checks if the

current provisioning of resources and operator replication need to be scaled-in or scaled-out to

accommodate for foreseeable load fluctuations. Recently, a data stream rate prediction model

and resource estimation model have been proposed in [135] to satisfy the response time constraint

while minimizing the communication cost across a P2P resource network of clusters. They rely

on the neural network prediction based on genetic simulated annealing algorithm to predict the

pattern of data stream rate in near future of the cluster, then according to the response time, the

resource estimation model adjusts the computational resources allocated to the critical operator

of the critical operator path of DSPA application modeled as a DAG.

With the exception of [116] considering an Edge-Cloud architecture, most of the predictive

based scheduling strategies are used in the context of execution environments providing higher

computational resource capacity [20]. The MDP model introduced in [116] has issues of high

computational resource demands and may require high execution time in order to converge to

the optimal solution. In particular, MDP requires complete knowledge of the system that is not

always possible in dynamic environments such as an Edge-Fog-Cloud architecture.
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Table 3.3: Strategies for static and dynamic operator scheduling

Authors Strategy Policy Objective Constraint

Math Heur Pred Plac Repl Comp Net T TP CPU,
RAM

Bwd Repl

[21] ✓ ✓ ✓ ✓ ✓ ✓

[119] ✓ ✓ ✓ ✓ ✓

[8] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[95] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[46,47,74,
121]

✓ ✓ ✓ ✓ ✓ ✓

[112] ✓ ✓ ✓ ✓ ✓ ✓

[137] ✓ ✓ ✓ ✓ ✓ ✓

[43] ✓ ✓ ✓ ✓ ✓ ✓

[116] ✓ ✓ ✓ ✓ ✓

[129,130] ✓ ✓ ✓ ✓ ✓

[77, 132] ✓ ✓ ✓ ✓ ✓ ✓

[133] ✓ ✓ ✓ ✓ ✓

[135] ✓ ✓ ✓ ✓

Thesis ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

3.4.2.4 Summarizing table

Table 3.3, uses a classification similar to the one of Table 3.2. There is only an additional

Strategy category (Pred) for the predictive based approaches.

In this respect, the summary shows that in this thesis, we propose only heuristic based

scheduling strategies for the dynamic deployment of DSPA application. In this context, the

dynamic scheduling strategy use the operator placement and operator replication policies in

order to achieve the objective of minimizing the computational and network resource usage costs,

ensuring real time response of DSPA application while satisfying the resource usage constraint

and the operator replicability constraint.

3.4.3 Triggering Dynamic Scheduling of Operators

Proposing dynamic scheduling strategies is necessary for adapting the current operator mapping

in response to the evolution of the DSPA application workload or changing conditions of the

underlying network and computational resources. However, it is necessary also to decide when

these strategies should be triggered. Thus, according to [20] we distinguish three different means

used to trigger the adaptation of operator placement at run-time.
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Table 3.4: Trigger a dynamic operator scheduling

Works Time-based Reactive Proactive

[139,141] ✓

[8, 21,43,74,77,109,112,119,121,138,140] ✓

[43, 43,116,133–136,138] ✓

Thesis ✓✓✓

3.4.3.1 Time-based

Dynamic scheduling strategies can be performed on a regular basis based on a period of time that

can be in the order of few seconds to several minutes. For instance, a time period called activation

time is defined in [139] to trigger DS2, a controller for dynamic scaling of distributed operators.

DS2 periodically collects operator metrics (i.e., throughput) to build a model that enables to

identify whether the running application is overloaded or has over-provisioned resources. Then,

at each activation time, DS2 invokes the scheduling strategy for re-scaling the current operator

placement.

It is worth noting that triggering a dynamic scheduling of DSPA applications periodically

provides design and implementation simplicity as it requires only a single parameter. However

the challenge remains in specifying the length of the time period to set that allows collecting

sufficient application and system metrics for taking an appropriate scheduling decision. Setting

a short period of time involves small quantities of collected metrics, while setting a long period

of time may reduce responsiveness to rapidly evolving situations. Thus, it is important to take

into account the trade-off between efficiency and responsiveness [20].

3.4.3.2 Reactive

A reactive approach adapts the operator scheduling in reaction to the current system or ap-

plication changes. Several dynamic operator scheduling strategies have been proposed, such

as [8,21,74,77,109,121,138,140]. The aforementioned strategies are mainly triggered by thresh-

old violations, which are evaluated against the latest collected system or application metrics.

3.4.3.3 Proactive

Proactive approach considers past and current system and application metrics, based on which

they try to forecast operator and execution environment changes in the near future, in order to

adapt the current operator scheduling in advance if necessary [43,43,116,133–136,138].

3.4.3.4 Summarizing table

In Table 3.4, we compare the aforementioned works in terms of when dynamic scheduling is

triggered: (i) after a fixed time interval (Time-based); (ii) upon a threshold of a monitored
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metric is reached (Reactive); and (iii) by predicting (Proactive) in the near future when a

threshold of a monitored metric will be reached. This summary shows that this thesis consider

a the reactive approach in order to trigger the rescheduling of operator if necessary.

3.5 Discussion and Positioning

The operator scheduling problem aiming to ensure DSPA application performance and at the

same time efficient resource usage has been largely discussed in related work. This is demon-

strated by the quality and quantity of the contributions made to address the inherent challenges.

These contributions differ in the execution environment and related network architecture where

the DSPA application is deployed (Edge/Fog, Cloud, Cluster, etc.) (see Table 3.1). They differ

also in the scheduling objectives, strategies and policies, as well as the specificities of the DSPA

application under consideration (see Table 3.2, Table 3.3 and Table 3.4).

For processing data stream at the IoT network edge, Table 3.1 shows that some works

consider only the Edge as the only execution environment [98, 99] and few works consider only

the Fog [43]. Some other works consider the execution environment constituted with Edge and

Cloud nodes connected by either hierarchical or P2P network [23,110–112,114–116]. The works

that consider the Edge-Fog-Cloud architecture as the execution environment, the resource nodes

in this architecture are connected either only by a P2P network [103–106] or by both P2P and

hierarchical networks [107–109] while in this thesis we consider a hierarchical Edge-Fog-Cloud

architecture. Furthermore, we consider that the resources across this hierarchical architecture

can be shared among several DSPA applications. Few work have dealt with the shareable

resource characteristic however at very high level [104,109].

The computational and network resources across the Edge-Fog-Cloud (or Edge-Cloud) archi-

tecture are heterogeneous where the resources at the Edge/Fog can be constrained. Most of the

works that rely on this architecture focus on optimizing the network resource usage and the DSPA

response time by ensuring only constraint of computational resource usage [23,104,109,115,142].

While we introduce a resource usage cost model that: (i) addresses both computational and net-

work resources and enables to deal with the trade-offs that are inherent to their joint usage; (ii)

characterizes the usage cost of resources by distinguishing between abundant and constrained

resources as well as based on their dynamic availability, hence covering both dedicated and

shareable resources.

In this respect, we formulate and solve the problem of scheduling operators of DSPA applica-

tions across a hierarchical Edge-Fog-Cloud resource architecture that: (i) jointly optimizes the

resource usage cost for computational and network resources. Few works take computational

resources into account in their optimization goals [105,120]; (ii) subject to a response time con-

straint. Few works deal with such a constraint [104], most works that aim to schedule DSPA

applications include the response time in their optimization goals (See Table 3.2 and Table 3.3).
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Our objective is to schedule a DSPA application in a way that it uses available resources in

the most efficient way. This enables saving valuable resources for other DSPA (or non DSPA)

applications that share the same resource architecture.

We introduce several scheduling algorithms that deal with different versions of the problem:

static scheduling and time aware scheduling (see Table 3.2) and dynamic scheduling (see Table

3.3). In this respect, we consider both mathematical optimization based approach and heuristic

based approach. However as the former bears the issues of scalability and high execution cost

which is not acceptable for dynamic scheduling strategy of DSPA application with response time

constraint. Therefore, we consider the mathematical based optimization approach as benchmark

solution for the static scheduling algorithms. Then for the dynamic scheduling strategy, we

rely only on heuristic based approach as it enables to approximate the optimal solution within

reasonable amount time and take at bay the scalability issues in case of high problem size. The

proposed heuristics for dynamic scheduling is triggered through a reactive technique (See Table

3.4).

We extensively and comparatively evaluate our algorithms against several baselines that ei-

ther we introduce or they originate / are inspired from the state of the art literature [22, 74,

104,143]. It worth noting that, the related works rely on testbed (real environment) [23,95] for

evalutaing scheduling algorithms. A testbed uses real data on real (or near real) execution envi-

ronment. For example, [23] uses the Grid’5000 as the Edge-Cloud architecture by deploying the

DSPA engine Apache Edgent at the Edge and Apache Flink DSPA engine on the Cloud. It worth

noting that in the context of Edge/Fog computing, there is lack of solid established edge-oriented

DSPA engines [20]. Furthermore, existing testbeds does not enable to reproduce experiments.

For these reasons, we use the simulation tool iFogSim to evaluate the scheduling strategies pro-

posed in this thesis. iFogSim enables to realistically design an execution environment such as

Edge-Fog-Cloud architecture, the DSPA application and implement all the scheduling strategies.

Furthermore, iFogSim provides means to monitor the execution of a running DSPA application

(see Table 2.3.4).
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This chapter contains 15 pages.

4.1 Introduction

In this chapter we highlight the main cost factors when executing DSPA applications over Edge-

Fog-Cloud nodes offering network and computational resources. We focus here on cost in terms of

required resource quantities, as: (i) resources may be limited; (ii) they may be shareable among

multiple DSPA applications; and (iii) their use may incur a monetary cost, which however is not

considered here. Long lasting DSPA applications may exhibit a dynamic workload due to the

spatio-temporal dynamics of IoT devices generating the data streams. Such dynamic workload

impacts not only the resource usage cost of Edge-Fog-Cloud nodes but also the way DSPA
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Figure 4.1: DSPA application abstracted as direct acyclic graph

applications should be scheduled in order to ensure a low processing time. In this respect, we

introduce also the response time model of DSPA applications.

4.2 Preliminaries

Prior to introducing the resource usage cost model and the response time model, in this section

we present core models of the DSPA applications and Edge-Fog-Cloud architectures which are

summarized respectively in Table 4.1 and Table 4.2.

4.2.1 DSPA application

We represent a DSPA application as a directed acyclic graph (DAG) of operators (or simply

application graph), denoted by G, where the vertices represent operators (Ox, x ∈ N ) and the

edges represent the data stream flowing between two operators [7]. G topology further includes

the sources that produce the raw data streams Sj , (j ∈ N ) of rate |Sj | consumed by the operators

and the sinks (Sink1, Sink2, etc.) that capture the stream of the computed results. Figure 4.1

illustrates this abstraction of DSPA application.

To cope with the infinite nature of data streams, we consider that operators are executed in

time windows ωx to process a finite set of data items dx arising within a time interval. Thus,

the application graph G is characterized by the following parameters:

Operator selectivity (selx) In related work [110, 111, 114], the authors often distinguish on

one hand selectivity as the ratio between the input and output data tuple size, and on the other

hand productivity as the ratio between the input and output data tuple number. However, in

this work we consider the operator selectivity as the product of the two metrics. Thus, we define

the operator selectivity as the ratio between the input and output data rate of an operator Ox.

Operator cumulative selectivity (cselx) defined as the product of operator selectivity from

a source to a target operator Ox according to their topological order in the application graph

G.
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Edge data rate (λx,y) defined as the rate of data stream flow between the two operators

connected via this edge.

Operator cost (cx) defined in terms of CPU demand (e.g., million instructions (MI) per byte

of data) and/or RAM demand (e.g., Mb per Mb of data) for an operator Ox to process its data

load Dx [144].

Operator data load (Dx) defined as the aggregation of the input data streams per time

window ωx:

Dx =

I∑
i=1

ωx · λi,x (4.1)

Where I is the number of upstream operators Oi producing data stream at rate λi,x towards

the operator Ox.

Operator resource demand (reqx) defined as the computational resource (i.e., CPU/mem-

ory) required by an operator Ox to process its data load Dx at a time t with respect to its

associated cost cx:

reqx = Dx · cx (4.2)

To replicate and migrate a part of G on different computational resources ni = Ei|Fj |C of

Edge-Fog-Cloud nodes that make part of the resource architecture H, we need to partition G

in disjoint sub-graphs, denoted by Gmigi, according to some workload criteria, such that the

resulting graph to deploy is defined as follows:

Gdep =
⋃

∀ni∈H

Gmigi (4.3)

To specify a replication and migration point in G, we rely on the edge-cut algorithm [145]

which partitions G in two disjoint subgraphs. An edge-cut ecj contains the set of edges having

one endpoint in each subgraph of the partition. Additionally, let |ecj | denotes the rate of an edge-

cut ecj defined as the sum of edge data rates crossing this edge-cut. Finally, let the minimum

edge-cut be the edge-cut that has the smallest value among all the edge-cuts in the application

graph G. To calculate the minimum edge-cut we may rely on the Edmond-Karp algorithm [145]

that is proven to be efficient for dense graph.

Finally, we consider that each sub-graph Gmigi to be deployed at the IoT network edge

should satisfy the operator replicability constraint to ensure geographical placement constraint

of part of DSPA application.
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Table 4.1: List of symbols used to model DSPA application

Symbol Description

G Directed acyclic graph of operator (application graph)

Ox Operator Ox ∈ G

exy Edge between operators Ox and Oy

Sj Raw data stream

|Sj | Rate of the data stream Sj

wx Window size of operator Ox

selx Selectivity of operator Ox

cselx Cumulated selectivity up to operator Ox

λxy Data rate flowing on the edge eyx

cx Cost of an operator Ox to process its data load

Dx Data load of the operator Ox

reqx Computational resource demand (e.g. CPU/memory) of an operator Ox

Gmigi Subgraph of the application graph G to place on a resource node ni

Gdep Union of subgraphs Gmigi to deploy across the Edge-Fog-Cloud architecture

ecj An edge-cut in G, the replication and migration point of Sj

|ecj | Data rate of the edge-cut ecj

4.2.2 Edge-Fog-Cloud architecture

We abstract an Edge-Fog-Cloud architecture as a hierarchical wide-area resource network defined

by the set H={E,F,C} [108]. The Edge (E) layer consists of M IoT devices E={E1, ..., EM}mov-

ing in N geographic areas Aj , j={1...N}, the Fog (F) layer consists of N Fog nodes F={F1, ..., FN}
where each Fog node Fj provides nearby computational service to the geographic area Aj . One

Cloud node C is considered at the top of the hierarchy. In this respect, we consider Sj as the

sum of data streams arriving to a Fog node Fj and produced by mj(t) ≤M IoT devices moving

at a time t in the geographic area Aj . Given the above at time t, M =
∑N

j=1 mj(t). Figure 4.2

illustrates this abstraction of the Edge-Fog-Cloud architecture.

In this architecture, we distinguish between the computational resources of the Edge/Fog/-

Cloud nodes in terms of CPU/GPU or RAM for executing operators and the network resources

in terms of the bandwidth and delay of each WAN link connecting two nodes through which

data stream are transmitting from an operator to another.

4.2.2.1 Computational resources

For each individual Edge-Fog-Cloud node, we consider the maximum computational resources

(in terms of CPU/GPU, RAM) cmEi , cmFj and cmC for respectively the Edge node Ei, the Fog

node Fj and the Cloud node C. We additionally consider the available computational resources

at a time t cmaEi
, cmaFj

and cmaC for respectively the Edge node Ei, the Fog node Fj and
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Figure 4.2: Hierarchical Edge-Fog-Cloud Archietcture

the Cloud node C.

More specifically, a physical or virtual node may be dedicated to a single DSPA application.

For example, a Raspberry pi at the Edge or a VM in the Cloud. In this case, cmEi
is the

maximum capacity of the physical node at the Edge and cmC is the maximum reserved capacity

of the VM in the Cloud. Then, available capacity cmaEi < cmEi or cmaC < cmC may occur

when some operators of the DSPA application are already deployed on respectively this Edge

node or this Cloud node. In a different case, a physical or virtual node may be shareable among

multiple DSPA applications and / or other processes. For example, a gateway server at the edge

or a VM in the Fog. In this case, cmEi is the maximum capacity of the physical node at the

Edge and cmFj is the maximum reserved capacity of the virtual node in the Fog, shared among

multiple processes. Here, the available capacity cmaEi
< cmEi

or cmaFj
< cmFj

may occur due

to the DSPA application of interest and / or due to other (DSPA or non DSPA) applications.

4.2.2.2 Network resources

Let nbEiFj
be the maximum network bandwidth to reach a Fog node Fj from the closest Edge

nodes Ei and nbFjC the maximum network bandwidth on the network link from a Fog node

Fj to the Cloud node C. While, nbaEiFj is the available network bandwidth capacity on the

network links from the Edge to the nearest Fog nodes Fj and nbaFjC is the available network

bandwidth on the network link from the Fog node Fj to the Cloud node C.

Several techniques have been proposed to estimate the available network bandwidth of a

network link. The interested reader can refer to [75]. Practically speaking, a network link is a

logical link dedicated to a DSPA application, which however shares the same underlying physical

links with other DSPA applications and processes. In this respect, if nbFjC is the maximum

bandwidth (best effort, not reserved) of the logical link from the Fog node Fj to the Cloud C

that can be used by a DSPA application, the available network bandwidth nbaFjC < nbFjC may

occur due to the utilisation of this network link by the DSPA application of interest but also

due to the utilization of other (DSPA or non DSPA) applications, even if nbFjC is not shared
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Table 4.2: List of symbols used to model the Edge-Fog-Cloud architecture

Symbol Description

H Hierarchical wide area resource network modelling Edge-Fog-Cloud architecture

Ei, Fj , C Resource node at respectively Edge layer, Fog layer and Cloud layer

ni, Abstracts an Edge node Ei, a Fog node Fj or a Cloud node C (i.e. ni = Ei|Fj |C)

Aj Geographical area of IoT devices

mj Number of IoT devices per geographical area Aj

cmni
Maximum computational resource capacity of node ni

cmani Available computational resource capacity of node ni

cmuni
Demand of computational resource usage on a node ni

nlninj
Network link for node ni = Ei|Fj to node nj = Fj |C

nbninj Maximum network bandwidth capacity on the network link nlninj

nbaninj
Available network bandwidth capacity on the network link nlninj

nbuninj
Demand of network bandwidth usage on the network link nlninj

with them.

The network delay on a network link is the time it takes for the first byte to arrive to the

destination. It depends on the distance between the source and the destination of this network

link as well as on the network congestion due for example on the available network bandwidth

capacity, the data size to transmit on this network link, etc. In this respect, let ndEiFj
be the

network delays of the network link from an Edge node Ei to its nearest Fog node Fj and ndFjC

the network delay of the network link from a Fog node Fj to the Cloud node C. In Chapter 6,

we discuss the network delay in detail.

4.3 Resource usage model

Computational and network resources across the Edge-Fog-Cloud architecture are heterogeneous

as they can be constrained and this in very different degrees. Furthermore, these resources are in

most cases shareable among several (DSPA) applications. So, it is important to assess the usage

cost of these resources in a representative way that can ensure their most efficient utilization for

whether at static (initial) deployment or dynamic deployment of DSPA applications.

In essence when we deploy statically a DSPA application, we do not take into account its

current deployment state neither the current state of the Edge-Fog-Cloud resources on which

it is deployed. However, in the case of dynamic deployment, we need to take into account, the

actual deployment state of the DSPA application as well as the actual Edge-Fog-Cloud resources.

One step further, we need also to take into account the state of the resource if it is selected to

be used.

In this respect, prior to introduce the resource usage cost model, we first introduce how to
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weight the usage of each resource of the Edge-Fog-Cloud architecture. Table 4.3 summarizes the

symbol used for modelling the resource usage cost.

4.3.1 Weighting the usage of a resource

We need to distinguish a resource node ni = Ei|Fj |C over another with their underlying network

links by weighting the request of using both the computational and network resources. In this

respect, for any computational or network resource, we consider:

• Max: the maximum reserved resource capacity; that can be either the maximum compu-

tational resource capacity cmEi
, cmFj

or cmC for respectively the Edge node Ei, Fog node

Fj or Cloud node C. It can also be the maximum network bandwidth nbEFj
or nbFjC on

the network link respectively from Edge to Fog node Fj or the Fog node Fj to Cloud node

C.

• Avail: the available resource capacity; that can be either the available computational

resource capacity cmEi
, cmFj

or cmC for respectively the Edge node Ei, Fog node Fj or

Cloud node C. It can be also the available network bandwidth capacity nbaEFj
or nbaFjC

on the network link respectively from Edge to Fog node Fj or the Fog node Fj to Cloud

node C.

• Req: the resource usage requested, that can be either the requested computational resource

usage cmuEi
, cmuFj

or cmuC for respectively deploying a subgraph Gmigi on the Edge

node Ei, Fog node Fj or Cloud node C. It can be also the requested network bandwidth

usage nbuEFj or nbuFjC for transmitting data stream on the network link respectively

from the Edge to Fog node Fj or the Fog node Fj to Cloud node C.

To weight a resource, we distinguish between weight factor that is calculated statically in

the case of static deployment of DSPA application and the weight factor that is calculated

dynamically in case dynamic deployment of DSPA applications.

4.3.1.1 Static weights

This weight factor should be used in the case a DSPA application is deployed statically from

scratch across the Edge-Fog-Cloud architecture. In this context, it only considers the maximum

reserved capacities of each individual resources of the Edge-Fog-Cloud architecture.

In particular, this weight factor reflects the strategy that we should use with parsimony

resources with constrained maximum reserved capacities and favor the usage of resources with

higher maximum reserved capacities. In this respect, we weight the request Req of using each re-

sources across the Edge-Fog-Cloud architecture by the inverse of its maximum reserved capacity

Max. Hence, the weight factor in this case is formulated as following:
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W =
1

Max
(4.4)

4.3.1.2 Dynamic weights

This weight factor should be used in the case of a DSPA application is deployed (redeployed)

dynamically at run-time across the Edge-Fog-Cloud architecture. In this context, we need to

take into account the current state (available capacity) of each individual resources across the

Edge-Fog-Cloud architecture which can already be used by the current DSPA application or

other (DSPA) application.

Specifically, this dynamic weight factor reflects the strategy that, before selecting a resource,

we should take into account not only its maximum capacity but also its current state and even

further its resulting state if this resource is selected to be used.

In this respect, for a resource with the maximum resource capacity Max and available

resource capacity Avail, the current state of this resource is the difference: Max− Avail. The

current usage ratio of this resource is (Max−Avail)
Max . If we want to deploy a DSPA application

that requires resource usage Req on this resource, the usage ratio will be (Max−Avail+Req)
Max . We

propose to use this resulting usage ratio to weight the usage cost of a resource when minimizing

the resource usage cost. Hence, when deploying a new DSPA application, we will favor the usage

of resources with low resulting usage ratios.

W =
(Max−Avail +Req)

Max
≡ Max

Max
− Avail

Max
+

Req

Max
≡ 1− Avail

Max
+

Req

Max
(4.5)

Another intuitive interpretation of W can be drawn from Formula 4.5 as following: with the

term (1 − Avail
Max ), we favor using resources with high relative available capacity; and with the

term Req
Max , we favor using resources with high maximum capacity.

In order to calculate the computational (or network) resource usage cost of a node ni (or

a network link) across the Edge-Fog-Cloud architecture, we need to capture the fact that this

resource is limited and can be shared by several other DSPA applications or processes at any

time. Therefore, we need to efficiently use the node or network link that has the smallest

available resource capacity.

4.3.2 Computational resource usage cost

To assess the cost of using an Edge node Ei, a Fog node Fj or a Cloud node C, we multiply the

usage of each node by either of the weight versions.

For the case of the static weight, we use Formula (4.4) and hence we calculate the weight

WEi
, WFj

and WC of using respectively an Edge node Ei, a Fog node Fj and Cloud node C as

following:
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WEi
=

1

cmEi

(4.6)

WFj =
1

cmFj

(4.7)

WC =
1

cmC
(4.8)

However for the case of the dynamic weight, we use Formula (4.5). In this respect, we

calculate the weight WEi
, WFj

and WC of using respectively an Edge node Ei, a Fog node Fj

and Cloud node C as following:

WEi
= 1− cmaEi

cmEi

+
cmuEi

cmEi

(4.9)

WFj = 1−
cmaFj

cmFj

+
cmuFj

cmFj

(4.10)

WC = 1− cmaC
cmC

+
cmuC

cmC
(4.11)

Given the above Formulas that weight (statically or dynamically) respectively the request of

using an Edge node Ei, a Fog node Fj and a Cloud node C, the overall resource usage cost is

calculated as following:

cru =

M∑
i=1

(cmuEi
∗WEi

) +

N∑
j=1

(cmuFj
∗WFj

) + (cmuC ∗WC) (4.12)

Where M is the total number of the Edge nodes Ei, N is the total number of the Fog nodes

Fj , and C is the Cloud node C. Moreover WEi
, WFj

and WC can be either of the weight versions

and one should never use different weight version in the same model.

4.3.3 Network resource usage cost

Given that we abstracted the Edge-Fog-Cloud architecture as a hierarchical WAN resources, we

observe that the network bandwidth increases up in the hierarchy as we go from the Edge to the

Cloud and the network delay also increases as we go from the Edge to the Cloud. Furthermore,

we consider that the network delays and the available network bandwidth capacities of each

individual WAN links can be dynamic with regard to the network conditions [8].

In the literature [22, 46], concerning peer node networks, network delay is used as the only

weight factor for differentiating network links. We additionally include network bandwidth as a

weight factor: using network links of limited capacity with parsimony allows an efficient sharing

among several DSPA applications. In this respect, the cost of using a network link is calculated

by multiplying the requested network bandwidth usage by the weight factor (static or dynamic)

of using this link and its network delay.
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Table 4.3: List of symbols used for resource usage cost model

Symbol Description

W Weight of using a resource (network or computational)

Max Maximum reserved resource capacity (network or computational)

Avail Available resource capacity (network or computational)

Req Request of using a resource (network or computational)

cruni
Computational resource usage cost on node node ni

cru Overall computational resource usage cost across Edge-Fog-Cloud architecture

nruninj Network resource usage cost of network link nlninj

nru Overall network resource usage cost of all the network links in Edge-Fog-Cloud

To calculate statically the weight factor of using each individual Edge to Fog network link

(i.e. WEiFj ) or each individual Fog to Cloud network link (i.e. WFjC), we use Formula 4.4 as

following:

WEiFj
=

1

nbEiFj

(4.13)

WFjC =
1

nbFjC
(4.14)

On other hand, to calculate dynamically the weight factor of using each individual Edge to

Fog network link (i.e. WEiFj
) or each individual Fog to Cloud network link (i.e. WFjC), we use

Formula 4.5 as following:

WEiFj
= 1−

nbaEiFj

nbEiFj

+
nbuEiFj

nbEiFj

(4.15)

WFjC = 1−
nbaFjC

nbFjC
+

nbuFjC

nbFjC
(4.16)

Given the weight factor statically or dynamically calculated, the overall network resource

usage cost is formulated as following:

nru =

N∑
j=1

M∑
i=1

(nbuEiFj ·WEiFj · ndEiFj ) +

N∑
j=1

(nbuFjC ·WFjC · ndFjC) (4.17)

Where M is the total number of the Edge nodes Ei and N is the total number of the Fog

nodes Fj .

4.4 Response time model

According to the criteria of minimizing cru and nru, the resulting Gdep defined in Formula

(4.3) becomes the disjoint partition in subgraphs Gmigi to deploy across the Edge-Fog-Cloud
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architecture. However, Gdep should also take into account any time-constraint imposed to a

DSPA application. In this respect, we need to introduce the response time model of DSPA

application. Similarly to [22], we define the response time T as the worst end-to-end latency

Lπij among all the operator paths πij ∈ Gdep:

T = max
πij∈Gdep

(Lπij) (4.18)

where each data stream Sj is processed by nπ > 0 operator paths πij in Gdep with i={1, . . . , nπ}.
To calculate the end-to-end latency Lπij of an operator path πij , we consider the network

delay of each network link traversed by this operator path along with the latency of each operator

Ox ∈ πij for processing its data load Dx.

Lπij =
∑

exy∈πij

ndM(x),M(y) +
∑

Ox∈πij

lx (4.19)

where M is the mapping function, that gives the resource node ni=Ei|Fj |C on which a data

source node, an operator Ox or a sink node is (or can be) mapped to. Then, ndM(x)M(y) is

the network delay for transmitting data from a resource node that hosts the data source x or

the operator Ox to the resource node that hosts the operator Oy or the sink y. ndM(x),M(y) is

negligible if the source x or the operator Ox and the operator Oy or the sink y are placed on

the same resource node (i.e.,M(Ox) ==M(Oy)). Otherwise it is not negligible. Furthermore,

lx is the latency of the operator Ox to process its input data load Dx.

In the following, we define in detail the principle components that participate in the response

time model, namely the network delay and the operator latency.

4.4.1 Network link delay

In general, the network delay includes: (i) the propagation delay on the network link medium,

which depends on the distance between the connected nodes and includes the processing and

queuing delays of a packet at the intermediate routers; and (ii) the transmission delay of a packet.

The transmission delay depends on the available bandwidth on the network link. Hence, the

network delay can be defined as the sum of the propagation and transmission delays [75]:

ndninj
= pdninj

+ tdninj
(4.20)

Where pdninj
is the propagation delay between two resource nodes ni and nj and tdninj

is the

transmission delay between these two resource nodes.

4.4.1.1 Propagation delay

The propagation delay of a network link nlninj is the time it takes to transmit a single bit

between two resource nodes (i.e. Edge node Ei to Fog node Fj or Fog node Fj to Cloud node
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C); it is independent of the data size [74]. However, it depends on the type of the network

link medium and the distance between the connected resource nodes; it is limited by the speed

of the light. It also depends on the link conditions, e.g., network congestion. The Vivaldi

algorithm is largely used in the literature to approximate propagation delays between peers in

a network [146].

4.4.1.2 Transmission delay

The transmission delay is the time for putting data on the wire by the source resource node ni in

order to be transmitted on the network link nlninj
for reaching the destination resource node nj .

It depends on the size of data to transmit and the available network bandwidth nbaninj . The

latter is impacted by several factors, including the number of active sessions, the transmission

capacity of the link (nominal network bandwidth capacity), the link conditions, e.g., network

congestion. In this respect, in order to estimate the transmission delays, we need to know the

available network bandwidth capacity. However, estimating the available network bandwidth

capacity on a network link is a tedious task. Several techniques have been proposed for this

purpose [75].

Therefore in this thesis we proceed as follows. To estimate the transmission delay of any data

dxy of size |dxy| from the operator Ox mapped on the node ni to the operator Oy mapped on

the node nj , where ni ̸= nj , we first measure the network delay nd′ninj
of data d of considerable

size |d| between these two nodes. The transmission delay of data d is td′ninj
= nd′ninj

− pd′ninj
,

where pd′ninj
is the propagation delay between these two resource nodes (previously estimated).

Then, the transmission delay of any data dxy is calculated as follows [74]:

tdninj
= td′ninj

· |dxy|
|d|

(4.21)

4.4.2 Operator latency

The latency of an operator Ox depends on its current data load Dx, the type of operation it

performs (e.g., filtering, projection, aggregation, etc.) and the available computational resources

in terms of CPU (cpuj) of the hosting resource node. Thus, let µx be the rate at which an

operator Ox can process its data load Dx on a resource node nj [127] and it is formulated as

following:

µx =
cpuj

reqx
(4.22)

Where cpuj is the available resource capacity of node nj in terms of MIPS and reqx the

computational resource demands of operator Ox in terms of MIPS which is defined in Formula

(4.2).
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We assume that, the resource nodes use a time sharing overbooking strategy in order to

enable CPU allocation even if the CPU demand is greater than the total CPU capacity [144].

Thus, ifMIPSj is the total CPU capacity of a resource node nj , we calculate cpuj as follows [74]:

cpuj = min(MIPSj ,
MIPSj

qj
) (4.23)

where qj is the number of processes (including the operators) running on the resource node nj .

Given the infinite nature of a data stream, let wtx be the waiting time that data elements

remain in the operator queue if this operator is busy. However, the service rate µx, the waiting

time wtx and the number of data elements in an operator queue (i.e.,operator data load Dx) are

random variables over a continuous time parameter. For this reason, to calculate the operator

latency lx we model each operator as a queuing system with one server and following the first

in first out policy [147] as depicted in Figure 4.3. Then, the operator latency lx is approximated

as follows:

E(lx) = E(wtx) +
1

µx
(4.24)

To approximate the waiting time E(wtx), we need to consider the characteristics of each

operator Ox in G, in particular, whether it relies on count based or time based windows.

Figure 4.3: Modeling operator as a queuing system

4.4.2.1 Time based sliding window

This type of window is characterized by the temporal extend of the window, called window

time ωx, and the progression temporal step, called sliding time βx where ωx > βx [37]. In this

respect, the window contains the set of data that arrives within the last ωx time units, and the

window data are processed every βx time units. The data size of each window Dx is dynamic

and dependent on the actual IoT data stream rate. The data arrival rate λx to an operator Ox

may follow an exponential distribution [148].

However, given that the operator Ox always process windows of finite data Dx received at

each time interval βx, thus we can consider the arrival rate λx of each window is deterministic.

Hence, as the service rate depends on the size of the data to process, it also follows an exponential

distribution. Thus, we can model a time based sliding window operator as a D/M/1 queuing

system. The waiting time is estimated as following:
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E(wtx) =
1

µx
· γ

(1− γ)
(4.25)

Where γ is the root of the equation e−(µx·βx·(1−γ)) that should have the smallest absolute

value. For further reading, reader can referee to [149].

4.4.2.2 Tuple based window

This window considers a fixed number (K) of data to be processed. In this respect, it starts

at each specified time t, selects data by going steadily backwards in time until the K data are

collected. Then, the operator is triggered to process the K data contained in the window [37]. To

estimate the waiting time wtx of data element in the queue of Ox, each window is processed when

K data element have arrived in the window. If the arrival rate of data follows an exponential

distribution, the arrival rate of windows can be also exponential as it needs to wait until all K

data items is reached. On the other hand, given that each window contains a fixed size of data

to process, the service rate is deterministic. Hence, we model such an operator as an M/D/1

queuing system, where the waiting time is estimated as:

E(wtx) =
ρx

2 · µx · (1− ρx)
(4.26)

Where ρx = λx

µx
is the utilization rate of an operator Ox.
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Table 4.4: List of symbols used for the response time model

Symbol Description

ndninj Network delay on the network link nlninj

tdninj
Transmission delay on the network link nlninj

pdninj
Propagation delay on the network link nlninj

πij Operator path i for processing data stream Sj

Lπij End-to-end latency of operator path i for processing data stream Sj

T DSPA Application response time

M Mapping function that gives the host resource node of an operator

lx Latency of an operator Ox for processing its data load

µx Service rate of an operator Ox for processing its data load

λx Arrival rate of data stream to operator Ox

ρx utilisation rate of an operator Ox

wtx Waiting time of data items in the queue of an operator Ox

ωx Window size of an operator Ox

βx Sliding size of an operator Ox

MIPSj Maximum CPU capacity of a resource node nj (in terms of MIPS)

cpuj Allocated CPU resources to each process on a resource node nj (in terms of MIPS)

qj Total number of processes running on resource node nj

4.5 Conclusion

In this chapter, we modelled a DSPA application as DAG of operators and the Edge-Fog-Cloud

architecture as hierarchical WAN resources. We then presented a general cost model that weights

statically or dynamically the usage of a resource when distributing operators of DSPA application

across the Edge-Fog-Cloud architecture.

In this respect, the static weight should favor the usage of resources with high maximum

capacities. The resources with constrained maximum capacities should be used efficiently. On

the other hand, the dynamic weight should favor the usage of resources with high available

capacities while resources with constrained available capacities should be used with parsimony.

Furthermore, we introduce the response time model to take into account the real time response

constraint of DSPA application.

In the next chapter, we will exploit the proposed resource usage cost model to devise resource

aware scheduling algorithms of DSPA application across the Edge-Fog-Cloud architecture. Then

latter we will extend the resource aware scheduling algorithms to take into the response time

constraint of DSPA application to be scheduled across the Edge-Fog-Cloud architecture.
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This chapter contains 28 pages.

5.1 Introduction

This chapter relies on the resource usage cost model presented in Chapter 4 (see Section 4.3).

We consider static deployment of the DSPA application across the Edge-Fog-Cloud architecture.

Consequently, the DSPA application is deployed from scratch and hence the maximum capacity

of a resource is available to the reserving DSPA application. We also consider in this Chapter
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that data steam are not processed by IoT devices at the Edge layer and the computational

resources of the Cloud are practically unlimited while those of the Fog layer are limited.

Additionally, the algorithms of this chapter that aim at optimizing resource usage calculate a

new operator placement each time they are employed without taking into account the previous

state of resource usage. Consequently, they assume that the available capacity of a resource

equals its maximum capacity.

In this respect, we formulate the resource allocation problem to identify opportunities for

operator replication and placement between the Fog and Cloud nodes that optimizes at the same

time the computational resource usage cost of Fog nodes and the network resources usage cost

to reach the Cloud while respecting the maximum resource usage constraints.

In this perspective, in Section 5.3 we first propose a baseline solution called resource con-

straint satisfaction (RCS) algorithm that identifies scheduling solution of operator between the

Fog and the Cloud nodes while satisfying only the maximum resource usage constraint. In

essence, the RCS algorithm improves the typical Cloud based processing architecture where the

DSPA application is deployed in the Cloud and the data streams produced by IoT devices are

directly sent to the Cloud.

As the RCS algorithm does not optimize the resources usage cost, in Section 5.4 we formu-

late the operators scheduling problem as a single objective optimization (SOO) problem of the

combined usage costs of the computational resources and the network resources and we show

that the SOO problem is an NP-hard problem. Then, we propose new scheduling strategies for

solving the SOO problem. To do so, we formulate the SOO problem as an instance of integer

linear programming (ILP) model subject to inequality constraints and we rely on the CPLEX

tool [123] to find an optimal solution of this problem. As our SOO-CPLEX solution may incur

a high execution time for large problem sizes, we introduce a heuristic algorithm called SOO-H.

SOO-H exploits the characteristics of the application graph G and of the hierarchical network

model abstracting the Edge-Fog-Cloud architecture to achieve an optimal overall resource usage

cost, both in best-case and worst-case executions.

The contributions described in this Chapter have been published in respectively the fourth

International Workshop on Edge Systems, Analytics and Networking (EdgeSys 2021) [150] and

in the Sixth International Conference on Fog and Mobile Edge Computing (FMEC 2021) [151].

5.2 Resource allocation problem

We choose to initially work under the assumption of static deployment of DSPA application

across the Edge-Fog-Cloud architecture, where the DSPA applications are deployed from scratch

without taking into account the current resource state of the Edge-Fog-Cloud architecture. To

enable efficient usage of constrained resources that may be selected to host a part of the DSPA

application, we use the static weight version (see Formula Formula (4.4) ) in which the usage of
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each resource is weighted by the inverse of its maximum reserved capacity. In other terms the

cost of using an Edge-Fog-Cloud resource is calculated by multiplying the request of using this

resource by the inverse of its maximum resource capacity.

5.2.1 Computational resource usage cost

If we consider cmuEi, cmuF j and cmuC respectively as the request of using the Edge node Ei,

the Fog node Fj and the Cloud node C that have respectively maximum computational resource

capacities cmEi, cmF j and cmuC . Considering the static weight version, the weight of using the

Edge node Ei, the Fog node Fj or the Cloud node C is respectively WEi =
1

cmEi
, WFj = 1

cmFj

and WC = 1
cmC

.

In this thesis, to calculate the computational resource usage cost, we make the following

intuitive assumptions [108]: (i) the computational resources are practically unlimited in the

Cloud, cmC →∞, thanks to the on-demand resource scaling, and hence the weight in the cloud

is practically zero, WC → 0; (ii) the computational resources of Fog nodes are limited as they

can not be scaled on demand, thus the weight in a Fog node is non-zero, WFj
∈]0, 1]; and (iii)

data stream produced by IoT devices are not processed by the Edge nodes. Then, the focus of

our work is to minimize the Fog computational resource usage cost. In this respect, the overall

computational resource usage cost (i.e. cru) defined in Formula (4.12) becomes:

cru =

N∑
j=1

cmuFj
·WFj

≡
N∑
j=1

cmuFj
· 1

cmFj

(5.1)

cmuFj is the sum of the CPU/memory usage required by each operator of the subgraph Gmigj ∈
Gdep, which is replicated on the Fog node Fj .

5.2.2 Network resource usage cost

For the network resource usage cost, If we consider nbuEiFj and nbuFjC as the request of using

the network link respectively from the Edge node Ei to the Fog node Fj and from the the

Fog node Fj to the Cloud node C. These network links have respectively maximum network

bandwidth capacities nbEiFj
and nbFjC and network delays respectively ndEiFj

and ndFjC .

Considering the static weight version defined in (4.4), the weights of using these network links

are respectively WEiFj
= 1

nbEiFj
and WFjC = 1

nbFjC
.

By assuming that data streams are not processed at the Edge, the Edge to Fog network

resource usage cost is constant as the data stream produced by IoT devices at the Edge reach

the Fog in anyway. Thus, the cost part concerning the Edge to Fog network links is fixed (set as

c constant) in the overall network resource cost (i.e. nru) defined in Formula (4.17). We then

focus on minimizing the Fog to Cloud network resource usage cost that why Formula (4.17)

becomes:
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nru = c+

N∑
j=1

nbuF jC ·WFjC · ndFjC ≡ c+

N∑
j=1

nbuF jC ·
1

nbFjC
· ndFjC (5.2)

Although the network delay on a WAN link can vary due to the condition of the underlying

physical link that is shared by multiple data connections [46], we assume that the network

delays ndFjC between each Fog node and the Cloud can be considered equal and that can

be assigned statically calculated average values. Consequently, rather than to consider the

maximum network bandwidth capacity of each individual Fog to Cloud network link, we assume

nbFC as their aggregated values. If we assume ndFC as the average network delay value of the

Fog to Cloud network links, we can consider ndFC as a constant a. Consequently, Formula (5.2)

becomes:

nru = c+ a ·
N∑
j=1

nbuF jC ·
1

nbFC
(5.3)

In this respect, the network bandwidth effectively used on all the Fog-to-Cloud network links

is defined as follows:

B =

N∑
j=1

nbuFjC (5.4)

While we considered Cloud computational resources are practically infinite in our resource

cost model, we opt for considering Cloud network bandwidth as a resource the usage of which

incurs a cost that should be taken into account. Indeed, Cloud providers rely on contracts with

ISPs for network bandwidth. For distributed data intensive applications, the usage of the Cloud

network bandwidth can be a bottleneck when sending huge volumes of data streams. Hence,

for such applications the (monetary) cost charged by Cloud providers for network bandwidth

usage can be much larger than the cost charged for computational resource usage [12]. Thus,

we assume an upper threshold Bmax of B which is set for a specific DSPA application.

5.2.3 Problem statement

Our goal is to schedule operators of the application graph G so that we respect resource con-

straints and we jointly minimize the computational resource usage cost on the Fog nodes and

the Fog-to-Cloud network resource usage cost. The problem is formalized as follows:

minimize (cru, nru) (5.5)

subject to B ≤ Bmax, (5.6)

cmuFj ≤ cmFj j = 1, . . . , N, . (5.7)
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Equation (5.7) represents the constraint regarding the maximum computational resource

usage (i.e., CPU/RAM usage) of each individual Fog nodes, while Equation (5.6) captures the

constraint on the maximum Fog to Cloud network bandwidth usage.

Clearly our two optimization objectives are conflicting. On one hand, minimizing the overall

usage cost of computational resources in the Fog, i.e., cru, implies to place all operators of G in

the Cloud, which results in low (zero) cru and high (overall Fog-to-Cloud) network resource usage

cost, i.e., nru. On the other hand, minimizing the overall usage cost of network resources between

the Fog and the Cloud, i.e., nru implies to place in the Fog the operators of G delimited by the

minimum edge-cut, which may result in high or low cru and low nru. Having two optimization

objectives which may be in opposition with each other indicates that an optimal scheduling

solution will not be unique. As a matter of fact, a set of optimal solutions, where each represents

a different trade-off between the objectives namely the computational vs network resource usage

for scheduling DSPA applications between the Fog and the Cloud; the choice among these

solutions can be decided by considering different resource allocation policies prioritizing one of

the two optimization objectives.

5.3 Resource Constraint Satisfaction (RCS)

We initially propose a baseline solution, which we call Resource Constraint Satisfaction (RCS)

algorithm. RCS algorithm regulates dynamically the computational and network resource usage

so that the resource usage constraints are continuously satisfied.

B ≤ Bmax, (5.8)

cmuFj ≤ cmFj j = 1, . . . , N, (5.9)

B ≥ Bmin.. (5.10)

We additionally introduce the constraint (5.10), where Bmin is a lower threshold of B, to

avoid oscillation of operator placement between the Fog and the Cloud. Based on Bmin, Fog

computational resources are released when their usage is not necessary.

RCS algorithm is a resource aware based scheduling strategy aiming at using as less as

possible the Fog computational resources.

5.3.1 RCS algorithm

We assume that the DSPA application is initially deployed in the Cloud as all the data streams

produced at the Edge arrive to the Cloud in anyway. In this respect, RCS requires to constantly

monitor the Fog-to-Cloud network bandwidth usage and the Fog computational resource usage.

RCS for which the pseudo code is presented in Algorithm 1 proceeds as follows: If the Fog-

to-Cloud network bandwidth usage constraint (i.e., B ≤ Bmax) is not satisfied, RCS triggers
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the function replicateAndMigrateToFog() (line 1-2). If the constraint B ≥ Bmin is not satisfied,

RCS triggers the function migrateBackToCloud() (line 3-4). Finally, if the computational re-

source usage constraint (i.e., cmuFj > cmFj ) of a Fog node Fj is not satisfied, RCS triggers the

function adjustEdgeCut() (line 5-6). In the following, we present in detail these three functions

used by the RCS algorithm.

Algorithm 1: RCS

Input: G, application graph
Input: S, set of Sj arriving to the Cloud
Input: B, Fog-to-Cloud network bandwidth usage
Input: Bmax, Upper threshold for B
Input: Bmin, Lower threshold for B
Input: Grep ⊆ G, replicable subgraph in G
Input: Fog, set of Fog nodes Fj

1 if B > Bmax then
2 ReplicateAndMigrateToFog()

3 else if B < Bmin then
4 MigrateBackToCloud()

5 else if cmuFj > cmFj then
6 AdjustEdgeCut()

5.3.1.1 Replicate and migrate to the Fog

When B > Bmax, RCS triggers the function replicateAndMigrateToFog (Algorithm 2). The

objective is to lower the Fog-to-Cloud network bandwidth usage B below the upper threshold

Bmax while using as less as possible the Fog computational resources. In this respect, RCS

favors migrating the processing of high-rate data streams, which have a high impact on the

Fog-to-Cloud network bandwidth usage. To this end, RCS sorts all the data streams Sj based

on their rates, then RCS selects the highest-rate data stream Sj (lines 2-4). For the selected

Sj , RCS identifies the maximum subgraph Gsatj ⊆ Grep that can be migrated to the nearest

Fog node Fj while satisfying the related computational resource constraint (5.7). Then, RCS

identifies the subgraph Gmigj ⊆ Gsatj delimited by the minimum edge-cut of Gsatj , and marks

Gmigj as the part of the application graph G to replicate and migrate to the Fog (lines 7-12).

RCS updates B and checks if B is still above Bmax, in order to select the next highest-rate

data stream (lines 13-16). Otherwise RCS performs the reconfiguration of G (lines 17-19).
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Algorithm 2: RCS::replicateAndMigrateToFog

1 Function replicateAndMigrateToFog():
2 Sort S in decreasing order
3 Pick Sj on top of S if not yet migrated on the Fog
4 Selected ← ∅∪Sj

5 M ← ∅, set of subgraphs to deploy on the Fog
6 while Selected ̸= ∅ do
7 Pick Sj on top of Selected
8 Select Fog node Fj receiving Sj

9 Identify Gsatj ⊆ Grep while cmuFj ≤ cmFj

10 Find minimum edge-cut ecj in Gsatj
11 Find Gmigj ⊆ Gsatj delimited by ecj
12 M [j]← Gmigj
13 B ← B − |Sj |+ |ecj |
14 if B > Bmax then
15 Pick Sj on top of S if not yet migrated on the Fog
16 Selected ← Selected ∪Sj

17 Rewrite Gdep to include all Gmigj ∈ M
18 Deploy the new Gdep

19 Redirect all selected Sj to be processed on the Fog

5.3.1.2 Migrate back to the Cloud

When RCS has replicated a part of DSPA application on the Fog, we need a way to move the

processing of these data streams back to the Cloud when using the Fog computational resources

is not necessary any more.

Thus, when B gets lower than Bmin, RCS triggers the function migrateBackToCloud (Al-

gorithm 3). The objective is to raise B as much as possible above the lower threshold Bmin

while still satisfying the constraint B ≤ Bmax. In this respect, RCS favors migrating back to

the Cloud the data streams previously migrated to the Fog that will have the lowest impact on

the constraint B ≤ Bmax. To this end, RCS sorts all the data streams Sj migrated to the Fog,

then selects the lowest-rate one (lines 2-4). Based on the selected data stream Sj , RCS identifies

Gmigj to be removed from the Fog, and checks if removing Gmigj will still keep B lower than

the upper threshold Bmax (lines 7-10). If this is true, RCS actually updates B, marks Gmigj

to be removed, and selects the next lowest-rate data stream Sj (lines 11-14). Otherwise, RCS

performs the reconfiguration of G by removing all marked subgraphs Gmigj and redirecting the

corresponding data streams to be processed directly in the Cloud (lines 15-17).
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Algorithm 3: RCS::migrateBackToCloud

1 Function migrateBackToCloud():
2 Sort S in increasing order
3 Pick Sj on top of S, if migrated on Fog
4 Selected ← ∅∪Sj

5 R set of Gmigj to remove on the Fog
6 while Selected ̸= ∅ do
7 Pick Sj on top of Selected
8 ecj ←MR[j]
9 Gmigj ←M [j]

10 if (B + |Sj | − |ecj |) < Bmax then
11 B ← B + |Sj | − |ecj |
12 RM [j]← Gmigj
13 Pick Sj on top of S, if migrated on Fog
14 Selected ← Selected ∪Sj

15 Rewrite Gdep to remove all Gmigj ∈ R
16 Deploy the new Gdep

17 Redirect all selected Sj to be processed in Cloud

5.3.1.3 Adjust edge-cut

When the computational resource usage constraint is not satisfied for at least one of the Fog

nodes Fj (i.e., cmuFj
> cmFj

) on which a subgraph Gmigj is deployed, RCS triggers the function

adjustEdgeCut (Algorithm 4). The objective is to readjust the current subgraph Gmigj so that

the resulting cmuFj satisfies the constraint cmuFj ≤ cmFj .

Algorithm 4: RCS::adjustEdgeCut

1 Function adjustEdgeCut():
2 Get current Sj served by Fj

3 Gmigcurrent ←M [j]
4 Get Gsatj ⊆ Gmigcurrent where cmuFj ≤ cmFj

5 Find minimum ecj in Gsatj
6 Find Gmigj ⊆ Gsatj delimited by ecj
7 Rewrite Gdep to replace Gmigcurrent by Gmigj
8 Deploy the new Gdep

In this respect, we identify the data stream Sj that is served by the Fog node Fj ; then

we identify the subgraph Gmigcurrent that is currently deployed on this Fog node Fj (lines

2-3). Based on Gmigcurrent and the rate of the data stream Sj , we identify the subgraph

Gsatj ⊆ Gmigcurrent that satisfies the constraint cmuFj
> cmFj

. Then we select the minimum

edge-cut ecj inGsatj , based on which we identify the subgraphGmigj ⊆ Gsatj to replicate (lines

4-6). After having identified the new Gmigj , we perform the reconfiguration of the application

graph G to replace the current Gmigcurrent by Gmigj on the Fog node Fj(lines 7-8).
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5.4 Single Objective Optimization (SOO)

The RCS algorithm merely aims to satisfy the constraints defined in our resource allocation

problem (i.e., Section 5.2.3). Even though RCS uses as less as possible the computational

resources in the Fog, it is oblivious to the minimization of the cost of the computational and

network resources actually used. In this section, we model the resource allocation problem

for scheduling operators between the Fog and Cloud nodes as a Single Objective Optimization

(SOO) problem. We show that this SOO problem is NP-hard and we propose adequate solutions

namely: (i) SOO-CPLEX, which models the SOO problem as an integer linear programming

(ILP) problem and solves it with the CPLEX solver; and (ii) SOO-H, which uses a heuristic

approach to solve the SOO problem more time-efficiently.

5.4.1 Problem formulation

We transform the multi-objective optimization problem introduced in Section 5.2.3 to a single-

objective optimization (SOO) problem by taking the weighted sum of the two optimization

metrics. As cru and nru have different units and scales, we first normalize these two metrics by

using the min-max scaling technique.

In this respect, cru is the non-normalized form of the overall resource usage cost where the

usage cost of each Fog node Fj takes value between 0 and 1 (see Formula (5.1)). Hence, if we

have N (N ≥ 1) Fog nodes that may be used as necessary, cru will take values between 0 and

N. Then, we normalize cru to CRU as following:

CRU =
cru

crumax
(5.11)

With crumax = N , CRU in this case will take values between 0 and 1.

For the overall network resource usage cost (i.e. nru in Formula (5.3)), the weight of using a

Fog to Cloud network bandwidth is equal to the inverse of the aggregated maximum bandwidth

capacity of each individual Fog to Cloud network link. Hence, nru takes values between 0 and

1 if we eliminate the constant values c and a. In this respect, the normalized form of nru is as

follows:

NRU =

N∑
j=1

nbuF jC ·
1

nbFC
(5.12)

Where nbFC =
∑N

j=1 nbF jC .

Following from the above, we aim at minimizing the overall resource usage cost RU defined

as the weighted sum of CRU and NRU :

93



5.4. Single Objective Optimization (SOO)

minimize RU = wc · CRU + wn ·NRU (5.13)

subject to cmuFj
≤ cmFj

j = {1, . . . , N}, (5.14)

B ≤ Bmax. (5.15)

Where wc ≥ 0 and wn ≥ 0 are respectively the weights for the computational and network

resource usage costs, which enable to specify a usage preference for one of the two types of

resources over the other. In this work, we assume no such preference (wc = wn = 1).

Given the application graph G and the set of edge-cuts in G, we observe that we can select

only one edge-cut ecj as the replication and migration point per data stream Sj and Fog node

Fj . We observe also that the resulting subgraph Gmigj , delimited by ecj , to replicate on the Fog

node Fj for partially processing the data stream Sj there, requires the computational resource

usage cmuF j and network bandwidth usage nbuFjC for sending the processed data stream Sj

from the Fog node Fj to the Cloud node C. Thus, each individual selection of the replication

and migration point ecj per each data streams Sj and Fog nodes Fj produces different values of

cmuF j and nbuFjC .

For each selected replication and migration points ecj per each data streams Sj and Fog

nodes Fj , the resulting cmuF j and nbuFjC enable to individually calculate the effect of this

selection on the overall resource usage cost RU . Thus, we assume that the computational and

network resource usage costs can be split for each individual data stream Sj as follows:

RU =

N∑
j=1

RUj , where RUj = CRUj +NRUj (5.16)

Where RUj , CRUj and NRUj are respectively the contributions to RU , CRU , and NRU

for processing a data stream Sj .

In this respect, to solve our SOO problem we need to search in the application graph G

the replication and migration points ecj for each individual data streams Sj and Fog nodes Fj

such that RU should be minimized, each Gmigj should satisfy the computational resource usage

constraint in (5.14) and the operator replicability constraint. On the other hand, the processed

data streams Sj that will be transmitted on the Fog to Cloud network links should jointly satisfy

the network bandwidth usage constraint (5.15).

Considering our SOO problem, the objective of minimizing RU , given the values of RUj at

each edge-cut ecj and for all data streams Sj and Fog nodes Fj , under the global constraint of

network bandwidth usage, the SOO problem can be mapped to a 0/1 knapsack problem [152],

which is NP-hard. An exhaustive search approach is not tractable, particularly for a large

search space, i.e., a big size of application graph G and/or a high number of Fog nodes and data

streams. Hence, specialized algorithms that quickly rule out large parts of the search space or

approximation algorithms should be used instead.
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5.4.2 SOO-CPLEX Algorithm

We initially propose an approach that solves optimally our SOO problem by modelling it as an

ILP problem. To this end, we introduce the decision variables Xjk to set an edge-cut eck ∈ Grep

as the replication and migration point of a data stream Sj that is to be processed on the Fog

node Fj . Xjk is equal to 1 if eck is the selected edge-cut for the data stream Sj , otherwise Xjk

is equal to 0. We consider the subgraph Gmigj ∈ Grep delimited by the edge-cut eck as the

candidate subgraph to replicate and migrate on the Fog node Fj for processing the data stream

Sj . Then, both computational and network resource usage costs defined respectively in (5.1)

and (5.3) become:

cru =

N∑
j=1

K∑
k=1

cmuFjk
· 1

cmFj

·Xjk (5.17)

nru = c+ a ·
N∑
j=1

K∑
k=1

nbuFjCk
· 1

nbFC
·Xjk (5.18)

Where N is the number of Fog nodes Fj and K is the number of edge-cuts identified in the

replicable subgraph Grep ⊂ G. cmuFjk
is the computational resource usage for a candidate

subgraph Gmigj delimited by the edge-cut eck on the Fog node Fj . nbuFjCk
is the Fog-to-Cloud

network bandwidth usage from the Fog node Fj to the Cloud node C when the edge-cut eck is

considered as the migration and replication point in Grep.

Given the decision variable Xjk, and given the reformulation of cru and nru respectively

in Formula (5.17) and Formula (5.18), we formulate the SOO problem as an ILP problem as

follows:

minimize RU = wc · CRU + wn ·NRU (5.19)

subject to

K∑
k=1

cmuFjk
·Xjk ≤ cmFj

j = 1, . . . , N, (5.20)

N∑
j=1

K∑
k=1

nbuF jkC ·Xjk ≤ Bmax (5.21)

K∑
k=1

Xjk = 1, j = 1, . . . , N. (5.22)

where wc = wn = 1. Formula (5.22) ensures that only one edge-cut eck is set as the replication

and migration point in the subgraph Grep per data stream Sj .

Integer Linear Programming is known to be NP-hard [153]. To solve the SOO problem, we

use the CPLEX solver; we call this approach SOO-CPLEX.
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Figure 5.1: DSPA application used in the evaluation

Table 5.1: Parameters of the DSPA application of Figure 5.1

Operators (Ox): O1 O2 O3 O4 O5 O6 O7 O8

Selectivity (selx): 0.8 0.7 0.6 0.8 0.5 0.4 0.6 0.7

Cost (cx): 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

5.4.2.1 Experimental Evaluation

In this set of experiments, we compare SOO-CPLEX against the baseline RCS algorithm. In this

respect, we use the simulator tool iFogSim [85]. iFogSim enables modeling both the hierarchical

Edge-Fog-Cloud architecture and the DSPA application. It also enables implementing in Java

different scheduling strategies. We implement the algorithms RCS and SOO-CPLEX.

To ensure that SOO-CPLEX produces the optimal solution, we set the optimality gap (OG)

to 0.0%. OG is a metric used by CPLEX to trade off between optimality and performance.

Simulated Edge-fog-Cloud architecture and DSPA application We set in iFogSim an

Edge-Fog-Cloud architecture comprising 4 Fog nodes, 1 Cloud node, and 4 IoT areas at the

Edge. Each individual IoT area Aj produces an aggregated data stream Sj . Thus, the 4 IoT

areas A1, A2, A3 and A4 produce the data streams S1, S2, S3 and S4 towards the closest Fog

node F1, F2, F3 and F4, respectively. Each Fog node forwards further its data stream (that can

be or not partially processed) to the Cloud node.

We set also in iFogSim the DSPA application as depicted in Figure 5.1. The cumulated

operator selectivity is decreasing and the cumulated operator cost is increasing as we go from

the source to the sink (see Table 5.1).

Dynamic IoT data stream rates To simulate, the random behaviour of the rates of the

data streams S1, S2, S3 and S4, we create arbitrarily a set of 9 total data stream rate values in

the interval [512, 2256] (in KB/sec). We wish to have around 15 results of the resource usage

costs for each total data stream rate value and plot the average of these results per total data

stream rate value. In this respect, we create a suite of 135 (9*15) instances of the 9 selected total

data stream rate values that evolve randomly as depicted in Figure B.1. For each total data

stream rate value instance, we set an interval [0, total data stream rate] in which we randomly
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Figure 5.2: Overall resource usage cost

(uniform distribution) distribute the rate of each one of the data streams, so that the sum-rate

is equal to the total data stream rate.

We feed the resulting suite of random data stream rates of the streams S1, S2, S3, S4 to

RCS and SOO-CPLEX. For RCS, we maintain the deployment state of the DSPA application

between the successive experiments, while for SOO-CPLEX each experiment is independent as

SOO-CPLEX does not take into account this state.

Setting parameters For RCS, we set Bmin = 800KB/sec and Bmax = 1450KB/sec so that

we have at least 2 total data stream rate values lower than Bmin and 2 others between Bmin and

Bmax. Furthermore the evaluation is carried in two cases: (i) with costly (i.e., relatively more

constrained) Fog computational resources in terms of memory, where we set cmFj = 1280KB

for each Fog node; and (ii) with less costly Fog resources, where we set cmFj
= 2048KB for

each Fog node.

For the evaluation metrics, we compare the metrics RU , CRU and NRU of each RCS and

SOO-CPLEX . In this respect, we consider as modest rate values, for the total data stream rate

produced at the Edge, values that are lower than Bmax (512KB/sec to 1221KB/sec), and as

higher rate values, values that are higher than Bmax (1500KB/sec to 2256KB/sec).

Evaluation results in the case of less costly Fog computational resources Figure 5.2

shows that whatever the data stream rates, SOO-CPLEX outperforms RCS, with a gap up to

37% at modest data stream rates and up to 18% at higher data stream rates.

Figures 5.4 and 5.3 show as expected that RCS favors using network resources until reaching

Bmax and then it has to use also fog resources. SOO-CPLEX favors using Fog computational
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Figure 5.3: Network resource usage cost

Figure 5.4: Computational resource usage cost

resources because apparently they are less costly than network resources.
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Figure 5.5: Overall resource usage cost

Evaluation results in the case of costly Fog computational resources At modest data

stream rates, Figure 5.5 shows that RCS performs like SOO-CPLEX in terms of RU for data

stream rates lower than Bmin. For modest data stream rates greater than Bmin, SOO-CPLEX

has a slightly lower RU , hence outperforms RCS with a gap up to 0.6%. At higher data stream

rates, SOO-CPLEX again slightly outperforms RCS by up to 0.6%. However as long as data

stream rates increase, the difference between SOO-CPLEX and RCS is getting smaller.

Figures 5.7 and 5.6 show that SOO-CPLEX balances CRU and NRU , since at modest data

stream rates it minimizes CRU so that its value is null and constant while NRU is monotonically

increasing up to 0.84 as long as the modest data stream rates are lower than Bmax. However

for higher data stream rates, the behaviour of SOO-CPLEX is reversed, CRU is increasing

monotonically but in small proportions up to 0.74 while NRU has high values up to 0.9 but

keep constant in the form of a tray, until the Fog computational resources are no longer sufficient

to serve the maximum data stream rate 2256KB/sec, then NRU > 1.0.

5.4.3 SOO-H Algorithm

SOO-CPLEX provides optimal solutions to the scheduling problem we target. However, given

the NP-hardness of the problem, it may incur a high execution time for large problem sizes.

Hence, this solution is not appropriate for dynamic scheduling of operators in response to highly

dynamic data streams. In this section, we introduce a heuristic algorithm, which we call SOO-H.

SOO-H approximates the optimal operator scheduling with a lower execution cost. SOO-H is

inspired from BOSe [111].

As presented in Algorithm 5, SOO-H first applies a parallel search to generate a solution

that attempts to minimize the overall resource usage cost RU by minimizing independently RUj
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Figure 5.6: Network resource usage cost

Figure 5.7: Computational resource usage cost

for each data stream Sj (line 6), with the function RUminCut(). If this solution satisfies the

constraint B ≤ Bmax, the achieved RU is optimal. Then, SOO-H rewrites Gdep to include all

the Gmigj and deploys it across the Edge-Fog-Cloud (line 7, 23-24). Otherwise the problem

may not have a solution or, if a solution exists, finding the optimal solution is NP-hard.

Thus in a second step, SOO-H applies a greedy search that produces local optimal solutions to

approximate the global optimal solution in a reasonable amount of time. In this respect, we first

use the minimum edge-cut approach to identify the solution that minimizes NRU by minimizing

independently NRUj for each data stream Sj (line 8), with the function dataMinCut(). If this

solution does not satisfy the constraint B ≤ Bmax, the problem has no solution. By relaxing

accordingly the Bmax constraint, we may accept this last solution as the best possible one.

On the other hand, if the constraint B ≤ Bmax is satisfied, SOO-H applies a greedy search to
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Algorithm 5: SOO-H

Input: G, application graph
Input: Grep, subgraph of replicable operators of G
Input: Bmax, upper threshold for bandwidth usage
Input: Sraw, set of raw data streams Sj

1 Updated← ∅, set of Sj on which ∆RU is applied Sj

2 M ← ∅, set of Gmigj , replicable subgraph per Sj

3 RM ← ∅ set of edge-cuts ecj ∈ Grep per Sj

4 RU ← 0, overall resource usage cost
5 B ← 0, Fog-to-Cloud network bandwidth usage
6 M ← RUminCut()
7 if B > Bmax then
8 Selected← dataMinCut()
9 if B ≤ Bmax then

10 ∆RUset ← edgeCutMove(Selected,RM,M)
11 Sort ∆RUset in increasing order
12 Pull ∆RU on top of ∆RUset
13 while ∆RU < 0 do
14 Get Sj , ejk , Gmigjk corresponding to ∆RU

15 ecj ←MR[j]
16 if B − |ecj |+ |ecjk | ≤ Bmax and Updated.contains(Sj) == False then
17 MR[j]← ejp
18 M [j]← Gmigjk
19 B ← B − |ecj |+ |ecjk |
20 RU ← RU +∆RU

21 Updated← Updated ∪ Sj

22 Pull ∆RU on top of ∆RUset

23 Rewrite Gdep to include all Gmigj (or Gmigjp) ∈ M
24 Deploy the new Gdep

improve this solution by reducing RU (lines 10-22).
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Algorithm 6: SOO-H::RUminCut

1 Function RUminCut(Sraw, RM, M, RU, B, Grep):
2 for Sj ∈ Sraw do
3 Get Fog node Fj to serve Sj

4 Identify Gsatj ⊆ Grep while cmuFj ≤ cmFj

5 Find ecj in Gsatj with the minimum RUj ← CRUj +NRUj

6 Find Gmigj ⊆ Gsatj delimited by ecj
7 M [j]← Gmigj
8 RM [j]← ecj
9 RU ← RU +RUj

10 B ← B + |ecj |
11 Keep and map ecj to RUj

12 return M

5.4.3.1 Parallel search

We use the function RUminCut; its pseudo code is presented in Algorithm 6. More specifi-

cally, for each data stream Sj we identify Gsatj ⊆ Grep as the part of Grep that satisfies the

computational resource constraint on the Fog node Fj receiving the data stream Sj . Then, we

select the edge-cut ecj ∈ Gsatj that produces the minimum RUj (lines 3-5). We identify the

candidate sub-graph Gmigj ⊆ Gsatj to replicate on the Fog node Fj delimited by the identified

edge-cut ecj , and we set this edge-cut as the replication and migration point of Sj on the Fog

node Fj (line 6-8). Finally, we update the Fog-to-Cloud network bandwidth usage B and the

overall resource usage cost RU (line 9-11).
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Algorithm 7: SOO-H::dataMinCut

1 Function dataMinCut(Sraw, RM, M, RU, B, Grep):
2 Selected ← ∅
3 for Sj ∈ Sraw do
4 Get Fog node Fj to serve Sj

5 Identify Gsatj ⊆ Grep while cmuFj ≤ cmFj

6 Find minimum ecj in Gsatj
7 Find Gmigj ⊆ Gsatj delimited by ecj
8 Compute cmuFj and normalize to CRUj

9 Compute nbuFjC and normalize to NRUj

10 RUj ← CRUj +NRUj

11 RU ← RU +RUj

12 B ← B + |ecj |
13 M [j]← Gmigj
14 RM [j]← ecj
15 Keep and map ecj to RUj

16 Selected ← Selected ∪Sj

17 return Selected

Figure 5.8: Example of edge-cut move

5.4.3.2 Greedy search

dataMinCut Similarly to RUminCut, for each data stream Sj , we identify Grep ⊆ G and

Gsatj ⊆ Grep for selecting, in this case, the minimum edge-cut ecj that produces the minimum

NRUj . In this way, we identify the resulting candidate subgraph Gmigj ⊆ Gsatj delimited by

the minimum edge-cut ecj . Then, we compute the overall NRU , RU and B. The pseudo code

of dataMinCut is presented in Algorithm 7.

edgeCutMove Departing from the solution produced by dataMinCut and for each individual

data stream Sj , any backward move of an edge-cut ecj in Gmigj will decrease CRUj (conse-

quently also CRU) while it will increase NRUj (consequently also NRU).

For example, in Figure 5.8 we identify Gmig2 as the subgraph to replicate on the Fog at the

minimum edge-cut ec3 for processing the stream S2. The possible backward edge-cut moves to

consider are: ec21 , ec22 , ec23 and ec24 ; the contributions to RU are respectively RU21 , RU22 ,

RU23
, RU24

.
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Algorithm 8: SOO-H::edgeCutMove

1 Function edgeCutMove(Selected, RM, M, B):
2 ∆RUset ← ∅
3 for Sj ∈ Sraw do
4 ecj ← RM [j]
5 Get RUj corresponding to edge-cut ecj
6 while ecjk is valid do
7 Gmigj ←M [j]
8 Get Gmigjk ⊆ Gmigj delimited by ecjk
9 Compute cmuFj and normalize to CRUj

10 Compute nbuFjC and normalize to NRUj

11 RUjp ← CRUjk +NRUjk

12 ∆RU ← RUjk −RUj

13 ∆RUset ←∆RUset ∪∆RU
14 Keep and map ∆RU, Sj , Gmigjk and ecjk
15 ecj ← ecjk
16 Get ecjk preceding ecj ∈ Gmigj

17 return ∆RUset

Given the above, for any backward edge-cut move ecj on a data stream Sj , we assume the

changes ∆CRU and ∆NRU respectively in CRU and NRU , where ∆CRU is in general negative

and ∆NRU may be negative or positive. Thus, we can calculate the change in the resource usage

cost RU as follows:

∆RU = ∆CRU +∆NRU (5.23)

The objective of the greedy search is first to identify all possible backward edge-cut moves,

as produced by edgeCutMove (Algorithm 8), then to apply the edge-cut moves that produce

the smallest ∆RU < 0 (i.e., the ones that reduce RU the most), while satisfying the constraint

B ≤ Bmax.

To apply the edge-cut moves, in the SOO-H algorithm (Algorithm 5), we retrieve ∆RUset,

the result of edgeCutMove, which is the set of ∆RU’s, then we sort this set in increasing order,

then we pull from the top of the set the smallest ∆RU (Algorithm 5, lines 10-12). If ∆RU

is lower than 0, we set its corresponding edge-cut move ecjk as the current replication and

migration point of the data stream Sj , and we set Gmigjk as the current subgraph to deploy in

the Fog, only if the constraint B ≤ Bmax is satisfied (Algorithm 5, lines 13-21). Then, we pull

from ∆RUset the next lowest ∆RU to continue improving RU (Algorithm 5, line 22), as long as

∆RUset is not empty and we do not encounter a ∆RU ≥ 0. It is worth noting that we update

at most once each data stream Sj with its best (lowest) ∆RU (Algorithm 5, line 16).
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Figure 5.9: DSPA application used in the evaluation

5.5 Experimental Evaluation

We use the simulator tool iFogSim driven by realistic parameter settings that are proposed

in [120]. As benchmarks, we consider: (i) SOO-CPLEX that produces optimal solutions, and

(ii) RCS as baseline approach. In this respect, we implement SOO-H, SOO-CPLEX and RCS

in Java inside the simulator. We set the CPLEX optimality gap to OG = 0.0% to ensure that

SOO-CPLEX produces the optimal solution.

For our simulation experiments, we build a model of the TLC application (New York City

Taxi and Limousine Commission rides) [154]). The TLC application finds the busiest taxi driver

every two hours, where each vehicle emits at the end of a ride a data record containing driver

identification, pick-up and drop-off times and locations. It comprises 5 operators and 1 sink as

depicted in Figure 5.9.

We also build a simulation model of the Edge-Fog-Cloud architecture presented in Figure

1.3, where we scale the numbers of Fog nodes and IoT devices.

5.5.1 Dynamic IoT data stream rates

We statically simulate the variability of the data stream rates arriving to the Fog nodes by

selecting randomly (uniform distribution) 10 values of M (number of IoT devices) in the interval

[5000, 50000], where each IoT device produces data at a rate of 4KB/s [29]. Then for each

value of M, we set an interval [0,M ] in which we randomly (uniform distribution) set mj(t) IoT

devices per geographical area Aj , so that the sum of mj(t) is equal to M. In this respect, each

Fog node Fj receives data stream Sj at rate |Sj | = mj(t)× 4KB/s. As we wish to have around

15 results of RU, CRU, and NRU for each value of M ∈ [5000, 50000] and to plot the average

of these results per value of M, we repeat the splitting of each value of M among geographical

areas 15 times. In this respect, the total data rate reaching the Fog follows a random (uniform

distribution) sequence of the 10 values of M ×4KB/s repeated 15 times as depicted in Figure

B.2. We feed this sequence to SOO-H, RCS and SOO-CPLEX. For RCS, we maintain the

previous state of the DSPA application between the successive experiments. For SOO-H and

SOO-CPLEX, each experiment is independent, since these two approaches calculate each time

a new operator placement without taking into account the previous deployment state.
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Table 5.2: Parameters of the DSPA application of Figure 5.1

Operators (Ox): O1 O2 O3 O4 O5

cselx 0.8 0.96 0.672 0.9408 0.84672

sum csel cx 1.5 2.78 4.412 5.6216 7.40912

5.5.2 Parameter setting

We evaluate the performance of SOO-H against RCS and SOO-CPLEX in both best-case and

worst-case executions of the SOO algorithm. Best-case execution is related to the set of ex-

periments where SOO-H applies only RUminCut. Worst-case execution is related to the set

of experiments where, additionally, SOO-H applies a greedy search including dataMinCut and

edgeCutMove.

In this respect, we observed that SOO-H executes in the worst case only in a narrow subspace

of parameter settings. Thus, we generate parameter settings inside and outside this subspace

by proceeding as follows.

Assuming that the graph G of the DSPA application is a two-degree graph (as the one of

Figure 5.9), we introduce the following two parameters: i) the cost of operator Oy for processing

a unitary data load entering the graph, based on the cumulated selectivity of its upstream

operator Ox: csel cy = cselx · cy, where cy is the cost of the operator Oy; and ii) the cumulated

sum of such costs up to an operator Oy: sum csel cy = sum csel cx + csel cy.

Table 5.2 shows the values of cselx and sum csel cx for the DSPA application of Figure 5.9.

Given the normalized forms of cru (i.e. CRU) and nru (i.e. NRU), we identify the following

equilibrium, which represents a balance between the maximum CRU and NRU values over all

possible edge-cuts selected as replication and migration points:

max
Ox∈G

(sum csel cx)∑N
j=1 cmFj

≈
max
Ox∈G

(cselx)

Bmax
(5.24)

This equilibrium qualifies the case when, while moving from an edge-cut to another, network

resources are replaced by computational resources of, more or less, equal cost. Then RU =

CRU +NRU will be almost constant.

We have observed that, for a best-case execution of SOO-H, the Fog computational resources

should be less costly (i.e., relatively more abundant) than the Cloud network resources. To do

so, we increase cmFj
for each Fog node Fj or decrease Bmax with respect to the equilibrium

(5.24). This ensures that RUminCut produces a solution where the constraint B ≤ Bmax is

satisfied.

Accordingly, we consider N=30 Fog nodes, and we set their computational capacity in terms

of RAM so that 20% of the nodes have 256MB, 30% have 1GB and 50% have 2GB. Then we set
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Figure 5.10: Overall resource cost (best-case execution)

Bmax = 125000KB/s (≈ 1Gbps).

For a worst-case execution of SOO-H, the Fog computational resources should be more costly

(i.e., relatively less abundant) than the Cloud network resources. To this end, we decrease cmFj

for each Fog node Fj or increase Bmax with respect to the equilibrium (5.24). However, we

cannot go very far away from the equilibrium, otherwise by decreasing too much cmFj
of each Fog

nodes Fj or increasing too much Bmax, dataMinCut may produce a solution with B > Bmax,

and hence the TSOO algorithm will produce a solution where the constraint B ≤ Bmax is

not satisfied. Accordingly, we consider N=10 Fog nodes where all of them have 256MB of

RAM, and we keep Bmax = 125000KB/s. Additionally for the baseline solution RCS, we set

Bmin = 75000KB/s.

5.5.3 Evaluation results

We distinguish the evaluation results between the best-case and the worst-case executions. In

the former, SOO-H applies RUminCut, which directly identifies the optimal solution. In the

latter case, SOO-H in contrary applies greedy search with dataMinCut and edgeCutMove, in

which an approximation of the optimal solution is identified.

5.5.3.1 Best-case execution

In this set of experiments, the Fog computational resources are relatively abundant and hence

their usage is less costly than the usage of the Cloud network resources. As depicted in Figure

5.10, whatever the number of IoT devices at the Edge and consequently the data stream rates

reaching the Fog nodes, SOO-H performs like SOO-CPLEX, thus it finds the optimal RU with

RUminCut, for which the resulting solution satisfies directly the constraint B ≤ Bmax. When

comparing to RCS, SOO-H outperforms it with a difference ratio that lies between 43.96% and

2.48% with respect to the evolution of the number of IoT devices at the Edge.
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Figure 5.11: Computational resource cost (best-case execution)

Figure 5.12: Network resource cost (best-case execution)

Figure 5.11 and Figure 5.12 show that SOO-H (same as SOO-CPLEX) finds a balance be-

tween CRU and NRU in order to minimize RU . On the other hand, RCS resorts minimally to

the Fog resources. When M ≤ 20000 IoT devices, the resulting data stream rate that reaches

the Cloud through the Fog nodes is lower than Bmax, hence no processing is moved to the Fog

and CRU is null. At the same time, the counterpart in terms of NRU is high. When M > 20000

IoT devices, CRU for RCS increases for satisfying the constraint B ≤ Bmax.

Furthermore, we can see in Figure 5.11 that CRU values of SOO-H, SOO-CPLEX and RCS

are very small, lower than 0.1. This is due to the specific computational requirements of the

DSPA application (Figure 5.9) and the high capacities of the Fog computational resources.

5.5.3.2 Worst-case execution

In this set of experiments, the Fog computational resources are pretty limited, thus their usage

is more costly than the usage of the Cloud bandwidth.

As shown in Figure 5.13, the RU plots are steeper (compared to Figure 5.10) for RCS, SOO-

H and SOO-CPLEX, with small differences between them. More specifically, SOO-H achieves

a lower RU compared to RCS with a difference ratio ranging between 14.77% and 0.76% with
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Figure 5.13: Overall resource cost (worst-case execution)

Figure 5.14: Computational resource cost (worst-case execution)

Figure 5.15: Network resource cost (worst-case execution)

respect to the number of IoT devices (M) at the Edge.

Furthermore, SOO-H achieves equal RU compared to SOO-CPLEX for the experiments

where M < 40000 IoT devices at the Edge. This still corresponds to best-case execution for

SOO-H, thus SOO-H produces optimal results like SOO-CPLEX. On the other hand, when

M is equal to 40000 and 45000 IoT devices, SOO-CPLEX outperforms SOO-H, with a small
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Figure 5.16: Execution time by scaling N, Bmax and M

difference ratio up to 0.01%. This corresponds to worst-case execution for SOO-H, where SOO-

H approximates the optimal solution.

Figure 5.14 and Figure 5.15 show a behavior for RCS in terms of CRU and NRU that is similar

to Figures 5.11 and 5.12. On the other hand, SOO-H and SOO-CPLEX achieve a smoother and

more balanced use of the two types of resources, even with limited Fog resources.

5.5.3.3 Scalability analysis

We assess the scalabilty of SOO-H against SOO-CPLEX in terms of execution time, i.e., the

time it takes for either algorithm to find the best operator placement. In this respect, we use as

starting point the parameter settings for SOO-H worst-case execution with N = 10 Fog nodes,

M = 40000 IoT devices and Bmax = 125000KB/s. To maintain the same ratio in parameter

setting with respect to the equilibrium (5.24), we consider the scaling up ratio N
Ninit

, where

Ninit = 10 Fog nodes, then we scale Bmax and M by multiplying their initial values with the

scaling up ratio for each increase of N , where initially N = Ninit.

Besides the setting of SOO-CPLEX with OG = 0.0% (see Section 5.4.2.1), we additionally

consider the setting of SOO-CPLEX with OG = 50% to enable the CPLEX tool to balance

between optimality and execution time.

As depicted in Figure 5.16, for the different scaling up ratios, SOO-H has lower execution

times, with a difference ratio ranging between 54% and 70%, compared to SOO-CPLEX with

OG = 0%. Even when compared to SOO-CPLEX with OG = 50%, SOO-H has lower execution

times with a difference ratio between 1% and 30%.

In terms of the produced RU solution, Figure 5.17 shows that SOO-H fails to find the optimal

solution compared to SOO-CPLEX with OG = 0%, but the approximation error is very small,

ranging from 0.01% to 0.0003%, following the scaling-up ratio increase. On the other hand, when

comparing to SOO-CPLEX with OG = 50%, SOO-H produces a better RU solution whatever

the scaling-up ratio.
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Figure 5.17: Resource usage cost by scaling N, Bmax and M

5.6 Conclusion

In this chapter, we designed and implemented resource aware scheduling algorithms that stat-

ically deploys DSPA application between the Fog and Cloud nodes in order to process the

dynamic data stream rates produced by IoT devices at the Edge. These algorithms rely on our

holistic resource usage cost model that uses the static weight version.

In this respect, the baseline RCS algorithm does not optimize the resource usage cost, it only

satisfies the problem constraint by using as less as possible the Fog computational resources.

However, by solving our problem as a single objective optimization problem, the main conclusions

drawn from our experiments follows. First, compared to simple baseline such as RCS, SOO-

CPLEX and SOO-H are not only capable in finding scheduling solutions that satisfy the resource

usage constraints, but also that exhibit interesting trade-offs between the usage of the Fog

computational resources and the usage of Cloud network bandwidth resources so that the sum

of the two costs is minimized.

Second, SOO-H identifies optimal solutions like SOO-CPLEX when Fog computational re-

sources are abundant. Even though that for very limited (or constrained) computational re-

sources at the Fog layer, SOO-H may fail to approximate the optimal solutions found by SOO-

CPLEX. However, the approximation error is very small up to 0.01%.

In overall, we observe that the resource usage cost model achieve enough to respond to

a resource-aware QoS requirement for the static deployment of DSPA application at the IoT

network edge featuring constrained and heterogeneous computational resources. However, due

to these constrains, replicating operators at Fog nodes may increase their processing times even

if the reduced data streams sent toward the Cloud will lower the involved network delays. This

observation fosters us to consider not only the resource usage cost model but also the response

time model of DSPA applications distributed between the Fog and the Cloud. For these reasons,

in the next Chapter 6, we will extend the formulation of our optimization problem to take into
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account the response time constraints of DSPA applications.
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This chapter contains 19 pages.

6.1 Introduction

In this chapter, we extend the SOO problem introduced in Chapter 5 with response time con-

straints of DSPA application, and hence we formulate the extension of SOO problem as a Time

based Single Objective Optimization (TSOO) problem. To take into account the response time

of DSPA application, we rely on the response time model presented in Chapter 4 (see Section

4.4).
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The remainder of this Chapter is organized as follows: In Section 6.2 we formulate the

TSOO problem and show that we can map this problem to a job shop scheduling (JSS) problem

known to be NP-hard [155]. In Section 6.3, we first solve the TSOO problem by using meta-

heuristic algorithm based on simulated annealing (SA) (TSOO-SA) [143]. Next, in Section 6.4

we introduce a heuristic algorithm called TSOO-H which extends our SOO-H algorithm in order

to take into account the response time constraint. In Section 6.5 we experimentally evaluate

TSOO-SA and TSOO-H. Finally, Section 6.6 concludes this chapter.

The contributions described in this Chapter have been published in the International Con-

ference on Smart Computing (Smartcomp2022) [156].

6.2 Time based Single Objective Optimization (TSOO)

Prior to formulate the TSOO problem, we need to adjust the response time model and the

network resource usage model.

6.2.1 Adjusting the models

As TSOO problem extends the SOO problem that assumes the data streams are processed only

between the Fog and Cloud, we need to formulate the response time model to cope with this

assumption. Furthermore by introducing the response time model we need also to take into

account the network delay of each individual Fog to Cloud network link that may have an

impact on the network resource usage cost defined in Formula (5.3).

6.2.1.1 Response time model

We defined the response time T as the worst end-to-end latency Lπij among all the operator

paths πij of the deployable application graph Gdep. In this Chapter we assume that the data

streams are not processed at the Edge and the Gdep is distributed only between the Fog and

Cloud nodes. In this respect the operator latency at the Edge is zero and hence the end-to-end

operator path latency defined in Formula (4.19) becomes:

Lπij = max
∀Ei∈Aj(t)

(ndEiFj) +
∑

exy∈πij

ndM(x),M(y) +
∑

Ox∈πij

lx (6.1)

Where the first term gives the maximum network delay among all the network links connecting

each individual Edge nodes Ei of the IoT area Aj to the closest Fog node Fj .

Given that data streams are processed only between the Fog and Cloud,M is the mapping

function, that gives the resource node (i.e. Fog node Fj or Cloud node C) on which an operator

Ox or a sink node is (or can be) mapped to. Then, ndM(x)M(y) is the network delay for

transmitting data from a Fog node Fj that hosts the operator Ox to the Cloud node C that

114



Chapter 6. Resource-Aware Scheduling of Continuous Operators With Time Constraints

hosts the operator Oy or the sink y. ndM(x),M(y) is negligible if the operator Ox and the operator

Oy or the sink y are placed on the same resource node (i.e., Fog node Fj or Cloud node C).

Otherwise it is not negligible. Furthermore, lx is the latency of the operator Ox to process its

input data load.

6.2.1.2 Resource usage cost

Unlike in SOO problem where the Fog to Cloud network delays are assumed to be equal (stati-

cally calculated). By introducing the response time, we need to take into account the network

delay of transmitting data streams from the Fog to Cloud. This network delay along with the

network bandwidth can be dynamic and hence, we need to take into account these two factors

in order to differentiate these Fog to Cloud network links. Thus, in this Chapter we consider the

overall network resource usage cost (nru) defined in Formula (5.2). However, in order to have

nru without unit, we divide the network delay of each individual Fog to Cloud network links by

the maximum network delay among all the network links. In this respect the overall network

resource usage cost becomes:

nru = c+

N∑
j=1

nbuF jC ·
1

nbFjC
·
ndFjC

ndmax
(6.2)

Where ndmax = max
i,j
{ndEiFj

, ndFjC} is the maximum network delay.

In order to normalize nru to NRU , we can eliminate the constant value c as it can not

change during the optimization. In this respect, the cost of using each Fog to Cloud network

link takes values between 0 and 1. Consequently nru takes values between 0 and N, as we have

N (N ≥ 1) Fog to Cloud network links across the Edge-Fog-Cloud architecture. In this respect

the normalized form of nru is as follows:

NRU =
nru

N
≡

∑N
j=1 nbuF jC · 1

nbFjC
· ndFjC

ndmax

N
(6.3)

In this respect, NRU takes values between 0 and 1.

However, introducing the response time constraint in the problem does not require to adjust

the formulation of the overall computational resource usage cost (i.e. cru). We consider cru

defined in Formula (5.1) along with its normalized form CRU defined in Formula (5.11).

6.2.2 Problem formulation

While the scheduling of G as Gdep should take into account any response time constraint imposed

by a DSPA application, we formulate the TSOO problem as following:

115



6.2. Time based Single Objective Optimization (TSOO)

minimize RU = wc · CRU + wn ·NRU (6.4)

subject to: cmuFj ≤ cmFj j = {1, . . . , N}, (6.5)

B ≤ Bmax (6.6)

T ≤ Tmax. (6.7)

To ensure the real time constraint, Formula (6.7) imposes that the response time of a specific

DSPA application should not exceed a threshold Tmax.

6.2.2.1 Problem complexity

Our TSOO problem can be mapped to the job shop scheduling (JSS) problem. In JSS problem

we have n jobs that will need to be processed using m machines. Each job consists of X tasks,

each of which needs to be processed in a certain order. The objective is to find the scheduling

of these n jobs on the m machines in order to ensure resource usage fairness, to minimize the

completion time of the jobs or to ensure deadline constraint (i.e. completion time within a

certain threshold).

To map the TSOO problem as an instance of JSS problem, we can consider the Fog and Cloud

nodes as the m machines, each operator path πij ∈Gdep as a job, each operator in the path as

a task job and the edges between operators determine the operator processing order. Each

operator requires computational and network resources to process and transmit data stream

with a certain latency and network delay. Furthermore, we can consider the DSPA application

response time as the completion time.

Finding the scheduling of operators between the Fog and Cloud nodes with the objective

to ensure the response time constraint and fairness in resource usage [155], where the latter is

defined in terms of: (i) optimal trade-off between CRU and NRU (cfr Formula (6.4)), (ii) re-

source usage constraints (cfr Formulas (6.5) and (6.6)) and (iii) operator replicability constraint.

In this respect, our TSOO problem can be set as an instance of JSS problem with deadline

constraint [155,157]. The JSS problem is known to be NP-hard and hence, the TSOO problem

is NP-hard as well. Its complexity increases as we increase the number of resource nodes, data

streams and the size of the application graph G.

Solving the JSS problem consistently is still challenging [158]. In this respect, meta-heuristic

based approaches are largely used as ways of obtaining better solutions, because of their flexibil-

ity and global optimization capabilities [158]. Meta-heuristics that have been used to solve the

JSS problem include but are not limited to: (i) Genetic Algorithm (GA), used for example by

Souleiman et al. [159] to solve the problem of optimal scheduling and allocation of jobs under

a QoS requirement in terms of job waiting time on a multi-cloud tier; (ii) Simulated Annealing

(SA), applied for example by Fang et al. [160] to solve the application modules placement prob-

lem between the Edge and Cloud while minimizing IoT application response time and energy
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consumption; (iii) Tabu search (TS), used by Zang et al. [161] in combination with SA to solve

time-efficiently the JSS problem; (iv) Particle swarm optimization (PSO), used for instance by

Djemai et al. [162] to efficiently place IoT application modules on the Fog with the goal of min-

imizing energy consumption and application response time violations, subject to resource nodes

capacity constraints and module placement constraints.

In this thesis, we do not seek to demonstrate the superiority of one meta-heuristic over the

other. Even though each one of these approaches comes with its own limitations [158]. The

common limitations of these approaches are parameter setting and high execution time. There-

fore, we propose a greedy approach, TSOO-H, for solving the TSOO problem time-efficiently.

To evaluate the quality of the results of TSOO-H, we also develop TSOO-SA, a solution based

on the SA meta-heuristic to solve the TSOO problem. The choice of SA is motivated by the fact

that it is designed to escape from the local minimum compared to TS thanks to its capability

of accepting non local minimum solution. Moreover it requires less parameter setting compared

to GA [161].

6.3 TSOO-SA algorithm

Simulated annealing (SA) is an iterative search method for approximating the global optimum

for a given optimization problem [163]. Starting from the current solution with cost fi and based

on an adequate perturbation method to generate a neighbour solution of the current one with

cost fj , SA accepts the neighbourhood solution as the current one on the basis of a probability

controlled by a parameter called temperature τ :

P[accept fj ] =

{
1, if (fj − fi) < 0.

e−
fj−fi

τ , otherwise.
(6.8)

Besides the initial temperature τ at which SA starts, SA includes also [143]: (i) the cooling

rate α, which determines how quickly the temperature decreases: τ = τ · α, where typically

α ∈ [0.8; 0.99]; (ii) a finite number of transitions for each value of τ , which determines after

how many neighbour solutions generated SA will decrease the temperature; and (iii) the final

temperature value τfinal, which determines the temperature at which SA will end.

To solve the TSOO problem using SA, we need to define the corresponding problem:

Search space any edge-cut ecj ∈ G that can be set as the replication and migration point of

an individual data stream Sj to be processed on the Fog node Fj .

Solution the graph Gdep to be deployed across H and the corresponding operator placement

M for an RM . RM is the set of selected edge-cuts ecj to be each the replication and migration
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point of a data stream Sj .

Cost function In the TSOO problem, we consider RU as the cost function to minimize, under

the constraints of the Fog to Cloud bandwidth usage, the Fog computational resource usage,

and the response time T calculated as the maximum end-to-end latency among all the operator

paths πij ∈ Gdep.

It has to be noted that TSOO is a minimization problem with constraints, while SA is

designed to solve unconstrained optimization problems. For this reason, we need to consider an

approximation of the TSOO problem for SA. In particular, we consider a constraint relaxation

method frequently used in this context [143]. We add to the cost function to minimize (i.e., RU)

a penalty ζk for the violation of each individual constraint of the TSOO problem:

f = wc · CRU + wn ·NRU +

kmax∑
k=1

ζk (6.9)

We set ζk = 1 if valk −maxk > 0, otherwise ζk = 0. Where valk can be the value of cmuFj ,

B or T and maxk can be the value of cmFj , Bmax or Tmax, respectively.

6.3.1 Algorithm description

The pseudo-code of the TSOO-SA algorithm is presented in Algorithm 9. We set Grep as the

subgraph of G containing the set of operators that can be replicated on the Fog. Given that SA

starts from an initial solution which is likely to lead the search to converge towards the global

optimum, TSOO-SA produces this solution by applying the function dataMinCut() (presented

in Algorithm 7), which identifies for each data steam Sj and Fog node Fj , the minimum edge-cut

ecj as the replication and migration point. This solution comprises: RM, the set of replication

and migration points; and M, the set of subgraphs Gmigni
to replicate and deploy on each

individual resource node ni = Fj |C. This solution becomes the current best solution with cost

f (Algorithm 9, line 4). It also becomes the current solution to improve further, if it satisfies

the constraint B ≤ Bmax (Algorithm 9, line 5).

For each set of L iterations, TSOO-SA applies the temperature value τ , while it decreases it

progressively at the end of each set by using the cooling rate α (Algorithm 9, line 19). TSOO-SA

stops when τ reaches the predefined lower temperature threshold, τfinal.

At each iteration (Algorithm 9, lines 6-19), a new solution is taken from the neighbourhood of

the current solution. To generate a neighbour solution, we use the function neighboringSolution()

(Algorithm 9, line 8), which is detailed in the next section. The cost of the new generated

solution, fl, is compared with that of the current solution, fcurr, in order to determine if an

improvement has been achieved. If fl is smaller than fcurr, the new solution becomes the current

solution (Algorithm 9, lines 9-12). Furthermore, if fl is smaller than the cost of the best solution,
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Algorithm 9: TSOO-SA

Input: G, application graph
Input: Grep, subgraph of replicable operators of G
Input: τ , initial temperature value
Input: τfinal, final temperature value
Input: α, cooling rate
Input: L, maximum iteration number
Input: Sraw, set of raw data streams Sj

1 M← ∅, set of Gmigni , to replicate on per node ni

2 RM ← ∅ set of edge-cuts ecj ∈ Grep per Sj

3 fcur,Mcur ← dataMinCut(Grep, Sraw)
4 f ← fcur & M ←Mcur

5 if B ≤ Bmax then
6 while τ > τfinal do
7 for l = 1 to L do
8 fl,Ml ← neighboringSolution(Grep,RM)
9 ∆← fl − fcur

10 if ∆ < 0 then
11 fcur ← fl
12 Mcur ←Ml

13 if fcur < f then
14 f ← fcur
15 M ←Mcur

16 else if rand(0, 1) ≤ P[accept fl] then
17 fcur ← fl
18 Mcur ←Ml

19 τ ← τ · α

20 Rewrite Gdep to include all Gmigni ∈M
21 Send each Gmigni ∈M to the corresponding node ni

f , the new solution becomes the best solution (Algorithm 9, line 13-15). On the other hand, if

fl is not smaller than fcurr, the new solution can be accepted as current solution (Algorithm

9, lines 16-18) with the probability defined in Formula (6.8). The probability for accepting a

neighbour solution decreases as τ decreases. For high values of τ , the search is almost random,

while for low τ values, the search becomes almost greedy.

6.3.2 Generating neighbour solution

The function neighboringSolution() is illustrated in Algorithm 10 in which we represent RM

the set of replication and migration points as an array. At each array index of RM, we have the

mapping data stream Sj and edge-cut ecj to be selected as the replication and migration point

of Sj . In order to avoid TSOO-SA to be trapped in a local minimum during the search [161], we

guide the search so that the selection of the replication and migration points goes continuously

from the source to the sink in G. Opposite to a random selection of a neighborhood solution (as

in the mutation technique called shift move (SM) [164]) we only randomly select a data stream
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Algorithm 10: neighboringSolution

1 Function neighboringSolution(Grep, RM, Sraw):
Input: Grep, subgraph of replicable operators of G
Input: Sraw, set of raw data streams Sj

Input: RM, set of tuple <data stream, edge cut>
2 Random select Sj from Sraw
3 Get < Sj , ecj > from RM that corresponds to Sj

4 index ← 1
5 while index < sizeOf(RM) do
6 < Sk, eck > ← RM [index]
7 if Sk == Sj then
8 Get ec′j directly succeeding ecj in Grep
9 RM[index] ←<Sj , ec

′
j >

10 else if index == 1 then
11 RM[index] = RM[sizeOf(RM)]

12 else
13 RM[index+1] ←<Sk, eck >

14 return RM

Sj (Algorithm 10, line 2). From the selected data stream Sj , we select its current replication

and migration point ecj that we replace by ec′j (Algorithm 10, lines 7-9). ec′j is the edge-cut

that directly succeeds ecj as we go from the source to the sink of G. If ecj is the last edge-cut in

G (or Grep, the sub-graph of replicable operators), ec′j will take the value of the first edge-cut

in G (or Grep). Then, we move for all the data streams Sk ̸= Sj , the replication and migration

points from one position (i.e. array index) in RM . This move can be right or left, in the present

work we consider right move (Algorithm 10, line 10-13).

Example of generating a neighbourhood solution: To illustrate the generation of a new

solution in the neighbourhood of the current solution, let consider an application graph G (which

is equal to its Grep). This G has the following edge-cuts: ec1, ec2, ec3, ec4, ec5 and it process

the data streams Sraw={S1, S2, S3}. If we consider that the function dataMinCut() identifies

the following initial solution that we represent as an array of replication and migration points:

RM={(S1, ec2); (S2, ec4); (S3, ec1)}.

To generate the neighbourhood solution by applying the Algorithm 10, we process as follows:

randomly select S2, as ec5 succeeds directly ec4 in the set of edge-cuts of G, we set ec5 as the new

replication and migration point of S2 that replaces ec4. Then, we move (to right) the replication

and migration point of S1 and S3. This means that S1 will have ec1 as its current replication and

migration point the one that S3 had before and S2 is not concerned as its has a new replication

and migration point ec5. Then S3 will have ec4 the previous replication and migration point of

S2. Thus, we have the following neighbour solution RM1={(S1, ec1); (S2, ec5); (S3, ec4)}.
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6.4 TSOO-H Algorithm

To overcome the high execution cost of TSOO-SA, we propose a heuristic approach called TSOO-

H. TSOO-H extends the SOO-H algorithm introduced in Chapter 5. It reuses the functions

of SOO-H: RUminCut (cf. Algorithm 6), DataMinCut (cf. Algorithm 7), EdgeCutMove (cf.

Algorithm 8).

6.4.1 Algorithm description

TSOO-H (cf. Algorithm 11) starts by applying RUminCut() to generate a solution that at-

tempts to minimize directly RU . If the output solution of RUminCut() satisfies the constraints

B ≤ Bmax and T ≤ Tmax, then the achieved RU is optimal (Algorithm 11, line 6). Otherwise

the problem may not have a solution or, if a solution exists, finding the optimal solution is

NP-hard.

As a next step, TSOO-H applies a greedy search that produces local optimal solutions to

approximate the global optimal solution in a reasonable amount of time. In this respect, we apply

the function dataMinCut() to identify the solution that minimizes NRU and consequently B

(Algorithm 11, lines 7-8). If the output solution of dataMinCut() does not satisfy the constraint

B ≤ Bmax, the TSOO problem has no solution satisfying this constraint, unless we relax Bmax

in order to accept this solution as the least bad one.

If the constraint B ≤ Bmax is satisfied, TSOO-H further checks whether the constraint

T ≤ Tmax is satisfied or not: (i) if the constraint T ≤ Tmax is satisfied, this means that the

solution produced by dataMinCut() satisfies all the problem constraints; (ii) if the constraint

T ≤ Tmax is not satisfied, starting from the solution of dataMinCut(), we search in the

subgraphs Gmigj and GmigC the operators to move from the Fog to the Cloud (or the inverse)

in order to reduce T until we satisfy this constraint, while keeping satisfied the constraint

B ≤ Bmax (Algorithm 11, lines 9-13). This greedy search is performed with the functions

operatorMoveback() and operatorMoveDown(), which we describe in Section 6.4.1.1. If the

greedy search does not find a solution that satisfies the time constraint, we relax Tmax to

accept this last solution as the least bad one that we can find.

If both constraints B ≤ Bmax and T ≤ Tmax are finally satisfied, as a next step, TSOO-H

applies a greedy search to minimize RU while keeping satisfied the problem constraints (Algo-

rithm 11, lines 14-30). We describe this greedy search in Section 6.4.1.2.

6.4.1.1 Satisfy the Response time constraint

When moving an operator from the Cloud to the Fog, the operator latency will probably increase,

if we assume that the computational resources of a Fog node are smaller than the ones of the

Cloud. At the same time, if other operators of the same operator path are already hosted on this

Fog node, the latency of these operators will also probably increase, if we assume that the node
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Algorithm 11: TSOO-H

Input: G, application graph
Input: Grep, subgraph of replicable operators of G
Input: Bmax, upper threshold for bandwidth usage
Input: Tmax, upper threshold for response time
Input: Sraw, set of raw data streams Sj

1 X ← ∅, set of Sj on which ∆RU is applied Sj

2 M ← ∅, set of Gmigj , replicable subgraph per Sj

3 RM ← ∅ set of edge-cuts ecj ∈ Grep per Sj

4 RU ← 0, overall resource usage cost
5 B ← 0, Fog-to-Cloud network bandwidth usage
6 M ← RUminCut()
7 if B > Bmax then
8 M,RM,Gdep ← dataMinCut(G)

9 if T > Tmax ∧B ≤ Bmax then
10 Set maxπ, sorted set of paths πij where Lπij > Tmax
11 operatorMoveBack(M,RM,Gdep,maxπ)
12 if T > Tmax then
13 operatorMoveDown(M,RM,Gdep,maxπ)

14 if B ≤ Bmax ∧ T ≤ Tmax then
15 ∆RUset ← edgeCutMove(G,RM,M)
16 Sort ∆RUset in increasing order
17 Pull ∆RU on top of ∆RUset
18 while ∆RU < 0 do
19 Get Sj , ejk , Gmigjk corresponding to ∆RU

20 ecj ← RM [j]
21 Calculate T when considering ecj

22 B
′
← B − |ecj |+ |ecjk |

23 if B
′
≤ Bmax ∧T ≤ Tmax ∧X.has(Sj) = False then

24 RM [j]← ejp
25 M [j]← Gmigjk
26 B ← B − |ecj |+ |ecjk |
27 RU ← RU +∆RU

28 X.add(Sj)

29 Pull ∆RU on top of ∆RUset

30 Rewrite Gdep to include all Gmignj (or Gmigjp) ∈ M
31 Send each Gmignj ∈M to corresponding resource node nj

resources will now be shared among more processes. Regarding the operators of the same path

that remain in the Cloud after this move, we assume that the effect on their latency is negligible.

On the other hand, the effect of this move on the network delay of network link between the

Fog node Fj and the Cloud depends on the size of the data produced by the moved operator

in comparison to the size of the data that were transmitted from the Fog node Fj to the Cloud

before. In the opposite case, when moving an operator from the Fog to the Cloud, the operator

latency on the same path will probably decrease, while the network link delay may increase or

decrease.
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Algorithm 12: OperatorMoveBack

1 Function OperatorMoveBack(M, RM, maxπ):
2 Get πij on top of maxπ
3 while continue = true do
4 continue← false
5 Get Gmigj and GmigC traversed by πij

6 Get exy in ecj of the path πij

7 Gmig′j ← Gmigj \Ox

8 Gmig′j ← Gmigj \ {Ox, {exy}}
9 Replace exy by eux in ecj and calculate L′πij , B

10 if L′πij < Lπij & B ≤ Bmax then
11 Gmigj ← Gmig′j
12 Update GmigC accordingly and calculate T
13 M [j]← Gmigj ,M [C]← GmigC , RM [j]← ecj
14 if T ≤ Tmax then
15 continue = false

16 else if For eux|u = source & maxπ ̸= ∅ then
17 Get πij on top of maxπ
18 continue = true

19 else if maxπ ̸= ∅ then
20 Get πij on top of maxπ
21 continue = true

22 return M, RM, T

Operator move back In this respect, to satisfy the response time constraint we first apply

the function operatorMoveback(), as it is more likely to reduce the response time T on an

operator path.

More specifically as presented in Algorithm 12, we iteratively select the operator paths πij

where Lπij > Tmax, in decreasing order of their end-to-end latencies Lπij . For each selected

πij , we start from the edge-cut ecj that delimits the two subgraphs Gmigj and GmigC , through

which this operator path πij traverses, and we select the upstream replicated operator of ecj to

be removed from the Fog node Fj . If this action improves the resulting end-to-end latency, we

continue to remove the next upstream replicated operator, as long as the constraint B ≤ Bmax

is satisfied. We stop applying operatorMoveback() if the constraint T ≤ Tmax is satisfied.

However, if the constraint is finally not satisfied or if removing a replicated operator does not

improve the resulting end-to-end latency, we next apply the function operatorMoveDown().

Operator move down operatorMoveDown() processes similarly. Rather than removing

the replicated operators from the Fog, it replicates and migrates non yet replicated operators

from the Cloud to the Fog. Then, it stops if the constraint T ≤ Tmax is satisfied. If the

constraint is not satisfied or if replicating an operator on the Fog does not improve the resulting

end-to-end latency, we stop improving the response time. The pseudo-code of the function
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Algorithm 13: OperatorMoveDown

1 Function OperatorMoveDown(M, RM, maxπ):
2 Get πij on top of maxπ
3 while continue = true do
4 continue← false
5 ecj ← RM [j]
6 Get Gmigj and GmigC traversed by πij

7 Get exy ∈ecj of the path πij

8 Gmig′j ← Gmigj ∪ {Oy, {eyz}}
9 Replace exy by eyz in ecj and calculate L′πij , B

10 if L′πij < Lπij & B ≤ Bmax then
11 Gmigj ← Gmig′j
12 Update GmigC accordingly and calculate T
13 M [j]← Gmigj ,M [C]← GmigC , RM [j]← ecj
14 if T ≤ Tmax then
15 continue = false

16 else if For exz|z = sink & maxπ ̸= ∅ then
17 Get πij on top of maxπ
18 continue = true

19 else if maxπ ̸= ∅ then
20 Get πij on top of maxπ
21 continue = true

22 return M, T, RM

operatorMoveDown() is presented in Algorithm 13.

6.4.1.2 Improve the overall resource usage cost

Aiming to improve the overall resource usage cost, we apply the function edgeCutMove() (Algo-

rithm 11, line 16) to identify all possible backward edge-cut moves [151]. We put the identified

edge-cut moves and their ∆RU values in the set ∆RUset.

To apply the edge-cut moves (Algorithm 11, line 17-30), we sort the set ∆RUset in increasing

order. Then, we pull from the top of the set the smallest ∆RU. If ∆RU is lower than 0, we apply

its corresponding edge-cut move ecjk to the data stream Sj , only if the constraints B ≤ Bmax

and T ≤ Tmax are satisfied. Then, we pull from ∆RUset the next lowest ∆RU to continue

improving RU , as long as the remaining ∆RUset is not empty or we do not yet encounter a

∆RU ≥ 0. Like in SOO-H, TSOO-H updates at most once each data stream Sj with its best

(lowest) ∆RU.

6.5 Experimental evaluation

We use iFogSim to simulate an Edge-Fog-Cloud architecture as well as several DSPA applica-

tions. Besides the TSOO-H and TSOO-SA algorithms, we also implement in our experimental
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framework the following competitor methods:

Approach by Rizou et al. [74] This solution proposes an algorithm for distributing oper-

ators on a peer resource network. This algorithm considers a latency (i.e., propagation delay)

space, where each host has a virtual position. It determines for each operator its optimal host-

ing node that minimises its network resource usage in the latency space, depending on the data

stream rates between this operator and its neighbour operators. Starting from this solution, if

the response time constraint is not satisfied, the algorithm tries moving each operator to the

host that increases the network usage as little as possible, until satisfying the response time

constraint. In particular, this approach can be mapped to TSOO-H, with the differences that

it minimizes only the overall network resource usage cost (i.e. NRU). Then if the resulting

solution does not satisfy the constraint T ≤ Tmax but it satisfies the constraint B ≤ Bmax, in

this case it attempts to satisfy the constraint T ≤ Tmax by applying operatorMoveback() and

operatorMoveDown() like in TSOO algorithm, see Algorithm 11 (lines 9-13)).

TRCS (Time and Resource Constraint Satisfaction) We extend here the baseline ap-

proach RCS (cf. Algorithm 1). TRCS enhances pure IoT Cloud analytics by dynamically

placing the operators between the Cloud and the Fog in synergy with the evolution of the IoT

data stream rates. More specifically, assuming an initial deployment of all the operators in

the Cloud, TRCS minimally uses the Fog computational resources to satisfy the constraints

T ≤ Tmax, B ≤ Bmax and B ≥ Bmin, where Bmin is a lower threshold of B used to avoid

the oscillation of operator placement between the Fog and the Cloud. Algorithm 14 presents the

pseudo-code of TRCS.

More specifically, if the constraint B ≤ Bmax is satisfied while the constraint T ≤ Tmax

is not satisfied, TRCS (similarly to TSOO-H) applies a search in the subgraphs Gmigj and

GmigC to select the operators to move from the Fog to the Cloud (or the inverse) in order to

reduce T until the time constraint is satisfied, while keeping satisfied the constraint B ≤ Bmax

and B ≥ Bmin. This greedy search is performed with the functions operatorMoveback() and

operatorMoveDown(), which we described in Section 6.4.1.1. However in the case of TRCS, for

each operator path, the function operatorMoveback() will move an operator from the Fog to

the Cloud only if the constraints B ≤ Bmax and B ≥ Bmin are satisfied and the resulting end-

to-end latency is improved. In this respect, one should update Algorithm 12 (line 10) in order

to include the constraint B ≥ Bmin. Similarly, the function operatorMoveDown() replicates

an operator in the Fog only if the constraints B ≤ Bmax and B ≥ Bmin are satisfied and the

resulting end-to-end latency is improved. We should also update Algorithm 13 (line 10) in order

to add the constraint B ≥ Bmin.
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Algorithm 14: TRCS

Input: G, application graph
Input: S, set of Sj arriving to the Cloud
Input: B, Fog-to-Cloud network bandwidth usage
Input: T , DSPA application response time
Input: Bmax, Upper threshold for B
Input: Bmin, Lower threshold for B
Input: Tmax, Upper threshold for T
Input: Grep ⊆ G, replicable subgraph in G
Input: Fog, set of Fog nodes Fj

1 if cmuFj > cmFj then
2 AdjustEdgeCut()

3 if B > Bmax then
4 ReplicateAndMigrateToFog()

5 else if B < Bmin then
6 MigrateBackToCloud()

7 if T > Tmax & B ≤ Bmax then
8 Set maxπ, sorted set of paths πij where Lπij > Tmax
9 operatorMoveBack(M,RM,Gdep,maxπ)

10 if T > Tmax then
11 operatorMoveDown(M,RM,Gdep,maxπ)

6.5.1 Experimental Setup

The experimental setup of data stream rates, DSPA application and Edge-Fog-Cloud architecture

is the same as in the the previous Chapter (Chapter 5) with some differences that we point out

in the following.

For the variability of the data stream rates arriving to the Fog nodes, we consider 10 values

of M (number of IoT devices) selected randomly in the interval [5000, 50000]. In this respect,

the total data rate reaching the Fog follows a sequence of 10 uniformly distributed values of

M ×4KB/s repeated 15 times as depicted in Figure B.2. We feed this sequence to TSOO-H,

TSOO-SA, TRCS and Rizou et al.

For the DSPA application, we use the same model of TLC application presented in Chapter

5 and depicted in Figure 5.9.

For the execution environment, we simulate the Edge-Fog-Cloud architecture as in Chapter

5, that includes 1 Cloud node, 10 Fog nodes and up to 50000 IoT devices at the Edge at the

bottom. We use the tool Ether [165] to generate plausible (based on real data set) network

configurations of the Edge-Fog-Cloud architecture. The distribution of the resulting network

configurations follows the one used in [8]. For the computational resources, we simulate the

Cloud node as an AWS VM instance of type m6g.xlarge [12]. At the Fog, we simulate ESXi

virtual machines [166]. The MIPS evaluation of each resource node comes from [167]. Table 6.1

presents the configuration of the Edge-Fog-Cloud architecture.
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Table 6.1: Network and computational resource parameters

Layer Nodes Prop. delay to up
layer (ms)

Bandwidth to up
layer (Mbps)

CPU (MIPS) RAM (GB)

Cloud 1 - - 35900 12

Fog 10 [100,300] [100, 250] [2400, 8150] [1, 4]

Edge [5000, 50000] [10, 100] [10, 50] - -

Finally for the threshold parameters, we set Bmax=125MB/s and Bmin=30MB/s. Given

that the maximum propagation delay among all the network links is 300ms (Table 6.1), we set

Tmax=500ms.

6.5.2 Evaluation results

We present in this section the evaluation results of TSOO-H against the competitor algorithms.

We first discuss the results in terms of the resource usage cost achieved, then in terms of sat-

isfaction of the resource usage constraint and response time constraint. Finally, we present the

results in terms of scalability.

6.5.2.1 Resource usage cost

Figure 6.1 shows that TSOO-H finds the optimal RU , like TSOO-SA, whatever the data stream

rates for up to M=30000 IoT devices and for M ≥ 45000 IoT devices. For the other data

stream rate values where M ∈ [35000, 40000], TSOO-H approximates the optimal RU with an

approximation error of only up to 5.14%, when comparing to TSOO-SA. Furthermore, TSOO-H

outperforms TRCS, whatever the data stream rates, with a difference ratio respectively up to

29.23%. On the other hand, TSOO-H outperforms the approach by Rizou et al. for the data

stream rate values where M ∈ [35000, 40000] with a difference ratio up to 4.11%, while for the

remaining data stream rate values Rizou et al. performs like TSOO-H. In particular, TSOO-H

performs better than TRCS and Rizou et al. because TRCS does not aim to optimize the overall

resource usage cost and Rizou et al. optimizes only the network resource usage cost.

6.5.2.2 Constraint satisfaction

We adopt the strategy of deploying a scheduling solution in all cases, the best one found or the

least bad one. Hence, we apply constraint relaxation when an algorithm does not find a solution

that satisfies all the constraints. In this section, we analyze how often the RU result achieved

for each value of M satisfies or not the response time constraint (T ≤ Tmax) and the Fog to

Cloud bandwidth usage constraint (B ≤ Bmax). To do so, we divide by 15 the number of times

that the value of B (or T ) does not satisfy the related constraint per each value of M (as we run
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Figure 6.1: Overall resource usage cost

Figure 6.2: Violation rate of the Cloud bandwidth constraint

15 experiments per value of M). This gives the percentage of constraint violations per value of

M.

Cloud bandwidth usage constraint. As depicted in Figure 6.2, TSOO-H satisfies this

constraint whatever the data stream rates for up to M=45000 IoT devices. TSOO-H does

not satisfy the constraint at the highest data stream rate value (M = 50000 IoT devices); it

results in 100% of constraint violations. On the other hand, TSOO-SA and Rizou et al., same as

TSOO-H, also fail to satisfy the cloud bandwidth constraint only at the highest data stream rate

(M=50000) with 100% of constraint violations. At the same time, TRCS does not satisfy this

constraint starting already at M = 40000 with about 7% of constraint violations, and reaching

100% of constraint violations at the highest data stream rate.

Response time constraint. As depicted in Figure 6.3, TSOO-H satisfies this constraint at

lower and moderate data stream rates where M ≤ 35000 IoT devices. For data stream rates

where M ≥ 40000, it may fail to fulfill this constraint with constraint violations that range

between 73% and 100%. The approach by Rizou et al. performs similarly to TSOO-H in terms
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Figure 6.3: Violation rate of the response time constraint

of time constraint violations.

TSOO-SA satisfies the time constraint at lower data stream rates (M ≤ 20000). Upon

moderate or higher data stream rates, it may not satisfy this constraint with an increasing

percentage of constraint violations (from 6.67% to 100%) as the data stream rate value increases.

This means that in certain cases, relaxation of the time constraint was necessary in order to

allow to TSOO-SA to find a solution, which was finally slightly better than the solution found by

TSOO-H, as presented in Section 6.5.2.1. The results of TSOO-SA could possibly be improved

with careful tuning of its parameters. However, this was not the focus of our work.

Finally, TRCS may fail to satisfy the time constraint even at low data stream rates (93.3%

of constraint violations at M = 10000). This is due to the fact that TRCS prioritizes the

satisfaction of the cloud bandwidth constraint. Nevertheless, TRCS performs better than all

the other approaches at high data stream rates. It sometimes manages to find solutions that

satisfy the time constraint where all the other approaches register 100% of constraint violations.

However this result of TRCS does not lead to solutions without any constraint relaxation, as

TRCS registers at these data stream rates more violations of the cloud bandwidth constraint

than the other approaches (cf. Figure 6.2).

6.5.2.3 Scalability analysis

We assess the scalability of TSOO-H against TSOO-SA and Rizou et al. in terms of execution

time, i.e., the time it takes for each algorithm to find the best operator placement. In this respect,

we consider 6 different DSPA applications built based on the TLC application. Thus, App-1 has

5 operators (cf. Figure 5.9), App-2 has 6 operators, ..., and App-6 has 10 operators. We keep

the same configuration of the Edge-Fog-Cloud architecture along with the parameter setting as

presented in Section 6.5.1. We plot the results for low data stream rates where M=15000 and

high data stream rates where M=40000.

At low data stream rates (cf. Figure 6.4 in log scale), the execution time increases with the
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Figure 6.4: When M=15000 IoT devices

Figure 6.5: When M=40000 IoT devices

number of operators per DSPA application. TSOO-SA has much higher execution times than

the other two algorithms. The execution cost of TSOO-H is on the same order of magnitude as

the one of Rizou et al., with a difference ratio of up to 30% (TSOO-H being more costly).

At high data stream rates (cf. Figure 6.5 in log scale), the execution time similarly increases

with the number of operators per DSPA application. TSOO-SA has still very high execution

times; when comparing to TSOO-H, the latter reduces this execution time in the order of 99%.

The execution cost of TSOO-H is higher than the one of Rizou et al. with a difference ratio of

up to 51.37%.
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6.6 Conclusion

In this chapter, we extended the problem of scheduling DSPA operators between the Cloud and

the Fog in order to account for response time constraints of DSPA applications.

When evaluating the proposed algorithms, we can see that for lower data stream rates,

TSOO-H is likely to find the optimal solution in terms of minimum overall resource usage cost

and satisfaction of the problem constraints. However at higher data stream rates, TSOO-H may

fail to find the optimal solution with an approximation error of up to 5.14%. Nevertheless, these

solutions have lower rate of constraint violation of the problem constraint when comparing to

TSOO-SA, TRCS and Rizou et al. Unless at highest data stream rates where all the proposed

algorithms are likely to not satisfy the problem constraints.

Furthermore, we investigate also the scalability of the TSOO-H, we observed reduction in

execution time of TSOO-H in the order of up to 99% when compared to TSOO-SA. Even though

that Rizou et al. has lower execution time, TSOO-H provides the lower overall resource usage

cost with lower lower constraint violation rates.

The current resource usage cost model fits for static deployment of DSPA application across

the Edge-Fog-Cloud architecture. Static deployment of a DSPA application does not take into

account the actual state of the Edge-Fog-Cloud resources. Whereas, it may require to dynam-

ically re-schedule the current deployed DSPA application in reaction to the evolution of its

workload since we assumed that DSPA application process data streams that come with differ-

ent rates. Furthermore the Edge-Fog-Cloud resources can be used by other (DSPA) applications

and hence, the available Edge-Fog-Cloud resource capacities can be dynamic.

Thus, in the next Chapter, we will improve the current resource usage cost model to fit for

dynamic deployment of DSPA application. We will also extend the TSOO-H algorithm in order

to adaptively re-schedule the current deplyment of DSPA application with respect to the dynamic

environment (i.e. dynamic DSPA application workload and dynamic available Edge-Fog-Cloud

resource capacities.
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This chapter contains 25 pages.

7.1 Introduction

In the previous chapters, we studied how to obtain a scheduling of a DSPA application that takes

into account the constraints in the computational resources of the Fog layer and the network

resources between the the Fog and Cloud layers, as well as the DSPA application response time

constraint.

Given that long running DSPA applications are characterized by a dynamic workload related

to the varying IoT data stream rates [168], the algorithms that we proposed so far produce only
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a static scheduling for each individual workload. This means that they do not take into account

the previous deployment state of the DSPA application (except in the case of RCS/TRCS).

In this Chapter, we study how to adapt scheduling decisions to take into account the workload

dynamics of the DSPA application, its deployment state, as well as, the dynamic available

resource capacities of the Edge-Fog-Cloud architecture supporting the execution of several DSPA

applications. Specifically, in this chapter we consider that the Edge-Fog-Cloud resources can be

shared among several DSPA application.

The remainder of this Chapter is organized as follows. In Section 7.2, we extend the TSOO

problem by introducing the dynamic operator placement problem. In Section 7.3, we propose

the aTSOO-H algorithm for solving this problem. Finally, in Section 7.4 we thoroughly evaluate

aTSOO-H.

7.2 Problem statement

For scheduling dynamically DSPA application across the Edge-Fog-Cloud architecture, we need

to consider its current resource state in order to differentiate the usage of any individual resource

across the Edge-Fog-Cloud architecture not only by its maximum resource capacity but also by

its available resource capacity. In this respect, to assess the cost of using each computational or

network resource, we use the dynamic weight version (see Formula (4.5)).

7.2.1 Computational and network resource usage costs

This chapter extends the TSOO problem in order to address the problem of adaptively scheduling

the DSPA applications between the Fog and Cloud nodes. In this respect, for the computational

resource usage cost, we use Formula (5.1) as in the TSOO problem we still focus on minimizing

the usage of Fog computational resources. However rather than to statically calculate the weight,

in this chapter we use the dynamic weight version to cope with the dynamic requirement of the

environment. Thus, we use the dynamic weight version Formula (4.5) to calculate the weight

factor of using a Fog node Fj at run-time:

WF j = 1− cmaF j

cmF j
+

cmuF j

cmF j
, (7.1)

Where, for a Fog node Fj , cmF j and cmaF j are respectively the maximum and available

computational resource capacities and cmuF j is the request of using the computational resources

of a Fog node Fj .

Given the Formula (7.1) of the dynamic weight, given the overall Fog computational resource

usage cost (cru) defined in Formula (5.1), the overall Fog computational resource usage cost

becomes:
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cru =

N∑
j=1

(cmuFj
·WF j) ≡

N∑
j=1

(cmuFj
· (1− cmaF j

cmF j
+

cmuF j

cmF j
)) (7.2)

Furthermore, for the network resource usage cost, we use Formula (5.2) as in the TSOO

problem we still focus on minimzing the Fog to Cloud network resource usage. However we use

the dynamic weight version to cope with the dynamic environment. In this case, the weight

factor of using a network link from a Fog node Fj to a Cloud node C is as following:

WFjC = 1−
nbaFjC

nbFjC
+

nbuFjC

nbFjC
(7.3)

where nbFjC denotes the maximum network bandwidth capacity, nbaFjC the available net-

work bandwidth capacity, and nbuFjC the request of using the available network bandwidth.

Then, by taking into account the weight factor defined in Formula (7.3), the overall Fog to

Cloud network resource usage cost defined in Formula (5.2) becomes:

nru = c+

N∑
j=1

(nbuFjC ·WFjC) ·ndFjC ≡ c+

N∑
j=1

(nbuFjC · (1−
nbaFjC

nbFjC
+

nbuFjC

nbFjC
)) ·ndFjC (7.4)

To normalize the computational resource usage cost, we devise cur by the sum of the max-

imum capacity of all the Fog nodes Fj (i.e. cmFj
). In this respect the normalized form of cru

defined in Formula (7.2) becomes:

CRU =
cru

crumax
where crumax =

N∑
j=1

cmFj
(7.5)

Finally, to normalize the overall Fog to Cloud network resource usage cost, we eliminate the

constant value c, we divide the network delay of each individual Fog to Cloud network links by

the maximum network delay among all the network link in order to have nru without unit after

the normalization. Then finally, we divide nru by the sum of the maximum capacity of all the

Fog to Cloud bandwidth (i.e. nbFjC) and hence, the normalized form of nru defined in Formula

(7.4) becomes:

NRU =
nru

nrumax
where nrumax =

N∑
j=1

nbFjC (7.6)

7.2.2 Adaptive operator placement problem

Given the overall Fog computational resources usage cost, i.e., CRU and the overall Fog-to-Cloud

network resource usage cost, i.e., NRU , the initial optimal placementM of an application graph

Gdep, between the Fog nodes Fj and the Cloud node C should minimize both CRU and NRU
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while satisfying the resource usage constraint and the response time constraint. As in Chapters

5 and 6, we consider the initial optimization of the TSOO problem as following:

minimize RU = wc · CRU + wn ·NRU (7.7)

Subject to: T ≤ Tmax (7.8)

B ≤ Bmax (7.9)

cmuFj ≤ cmaFj : ∀Fj, j = 1, . . . , N, (7.10)

Unlike in the previous Chapters where we constrained the usage of each Fog node Fj by its

maximum capacities. In order to take into account the computational resource state of each Fog

node Fj , in this Chapter we constrain the usage of each Fog node Fj by its available resource

capacities (i.e. cmaF j) (see Formula (7.10)).

By considering that the Edge-Fog-Cloud resources are shared among several DSPA applica-

tion, the available computational and network resource capacities can be dynamic as long as the

DSPA applications can be (re)deployed or removed on the fly. Moreover, the number and rate

of individual data streams Sj produced from an IoT area Aj may vary according to the mobility

patterns of IoT devices Ei [30]. Under these conditions, an optimal placement M statically

defined may not anymore be a feasible solution to the TSOO problem. For this reason, we need

to adapt the current operator placement M by rescheduling an already deployed application

graph Gdep at run-time.

In essence we need to compute a new operator placementM that optimizes RU and satisfies

the TSOO problem constraints by taking into account the current state of the Edge-Fog-Cloud

resources.

Such adaptive scheduling of operator requires to take into account: (i) the cost of monitoring

the current operator placement scheme, which may cause delay and network resource usage

overhead; and (ii) the rescheduling cost that should take into account the number of replicated

or removed operators. An efficient rescheduling strategy should have lower cost.

7.3 Proposed solution

To find an initial scheduling of DSPA application at deployment time we rely on the TSOO-H

algorithm presented in Algorithm 11. However, we consider that the overall resource usage cost

model takes into account both the available and maximum resource capacities. Moreover, the

available resource capacities are used as upper bound of the resource usage constraints. Then,

we propose the adaptive solution called aTSOO-H algorithm for evolving the DSPA application

at run-time. Before detailing aTSOO-H, we first explain how we can monitor the execution of

a deployed DSPA application between the Fog and Cloud nodes that processes dynamic data

stream rate produced by IoT devices (Edge layer).

136



Chapter 7. Adaptive Scheduling of Continuous Operators

7.3.1 Monitoring the Distributed Execution of a DSPA application

DSPA engines such as Apache Flink [54] run several DSPA applications. A DSPA engine consists

of Job Manager (JM) and multiple Task Managers (TMs) distributed across the nodes. By

assuming that IoT data streams produced at the Edge are processed on Fog and Cloud nodes,

the JM can be deployed on Cloud as it provides practically unlimited resources and a TM can

be deployed on each Fog and Cloud nodes [8]. Then, the JM is responsible for planning the

execution of operators by the mean of a scheduler (e.g. aTSOO-H) and to assign them to the

TMs. Then, each TM executes the assigned operators.

We assume that the JM enabled with a global monitoring service while each TM with a local

monitoring service. In this respect, at run time each TM continuously monitors metrics such as

λx, µx of each operator Ox that constitute the sub-graph Gmignj deployed on each resource node

nj , (nj = Fj |C) along with the computational resource usage (i.e., cmunj) and the available

computational resource capacity (i.e., cmanj) on this node. Furthermore, it monitors for each

individual Fog to Cloud network links, the values of the network bandwidth usage (i.e., nbuFjC)

and the current network delay (i.e., ndFjC), see Formula (4.20) and Formula (4.21). Then, it

sends at each fixed time interval t the average value of the monitored metrics to the JM instance

in the Cloud.

Then, JM aggregates the reported values to calculate the current overall resources usage cost

RU(tm) at each monitored time interval tm (t ≤ tm), the current overall Cloud bandwidth usage

B, and the application response time T . It also calculates the current computational usage of the

target DSPA application on each individual Fog node Fj (i.e., cmu(tm)), as well as, the available

computational resource (i.e., cmaFj) of each individual DSPA application. Finally, it calculates

the current network bandwidth usage of the target DSPA application on each individual Fog to

Cloud network link (i.e., nbuFjC(tm)).

To decide whether M still satisfies our optimisation objective, we consider (i) RUmax an

upper threshold of RU ; and (ii) ϕk a term that penalizes the violation of any constraint k of the

TSOO problem:

ϕk = max(0, Uk −Ak) (7.11)

where for each constraint k, Uk can be the value of cmuFj(tm), nbuFjC(tm), B or T and Ak

can be the value of cmaFj , Bmax or Tmax. The current deploymentM is acceptable under the

following conditions:

RU(tm) ≤ RUmax, (7.12)

kmax∑
k=1

ϕk = 0 (7.13)
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In this context, we need to search for a new operator placement M if at least one of the

conditions (7.12) and (7.13) is not satisfied. However, defining statically the value of RUmax

does not guarantee to have RU bellow RUmax. In this respect RUmax should be relative to

RU. In this way rescheduling of the current M at time tm is triggered when RU(tm) value

exceeds or falls below RUmax; where RUmax is equal to the RU value (optimal or best found)

achieved with the last scheduling decision by more than a given relative threshold, (e.g., 10%). A

small relative threshold will probably lead to more frequent rescheduling, depending also on how

much and how fast the data stream rates evolve. This mechanism could also be complemented

by setting a second, upper threshold for limiting the frequency of rescheduling execution.

7.3.2 aTSOO-H Algorithm

The scheduler takes the current operator placementM and the corresponding application graph

Gdep as input, then it produces as output a new operator placement M and the resulting

application graph Gdep to deploy so that the conditions defined in Formulas (7.12) and (7.13)

are satisfied. The pseudo code of the algorithm aTSOO-H that we introduce to solve this problem

is depicted in Algorithm 15.

aTSOO-H checks whether there is a Fog node Fj where the computational resource usage

constraint is not satisfied. In this case, aTSOO-H selects another edge-cut as the replication

and migration point. This is used to identify a new sub-graph Gmigj so that the resulting

computational resource usage satisfies the constraint (cmuF j ≤ cmaF j) (Algorithm 15, lines

2-7).

In the next step, aTSOO-H checks whether the overall Cloud bandwidth usage constraint is

not satisfied. In this case, aTSOO-H migrates the data stream Sj on the Fog if they are not

yet processed there. To this end aTSOO-H applies the function dataMinCut() (Algorithm 15,

lines 9-10). Then, aTSOO-H builds the set Sraw2 that contains the data stream Sj that have

been already migrated in the Fog and sorts them in decreasing order by their rates (Algorithm

15, line 11-12). If the Cloud bandwidth usage constraint (B ≤ Bmax) is still not satisfied,

aTSOO-H selects on the top of Sraw2 the highest-rate data stream Sj then applies the function

dataMinCut() in order to identify a new replication and migration point with the minimum

edge-cut ecj if it exists to further reduce the overall Cloud bandwidth usage and hence, to satisfy

the Cloud bandwidth usage constraint. aTSOO-H continuous to iterate by pulling the highest

rate data stream Sj ∈ Sraw2 as long as the constraint B ≤ Bmax is not satisfied (Algorithm

15, lines 14-18).

Then, if the constraint T ≤ Tmax is not satisfied, aTSOO-H searches in subgraphs Gmigj

and GmigC the operators to move from the Fog to the Cloud (or the inverse) in order to reduce T

until the constraint T ≤ Tmax gets satisfied. This greedy search is performed with the functions

operatorMoveback() and operatorMoveDown() (Algorithm 15, lines 18-22), which we describe
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in Section 6.4.1.1. If both constraints B ≤ Bmax and T ≤ Tmax are finally satisfied, aTSOO-H

algorithm applies a greedy search to further minimize RU while keeping satisfied the problem

constraints (Algorithm 15, lines 23-24). This greedy search is described in Section 6.4.1.2.

It worth noting that at the end of the algorithm execution, if aTSOO-H produces a solution

where at least one constraint is still not satisfied, as our strategy is to always deploy a solution,

we consider constraint relaxation to accept this last solution as the least bad one.

Algorithm 15: aTSOO-H

Input: G, application graph
Input: Grep, subgraph of replicable operators of G
Input: Bmax, upper threshold for bandwidth usage
Input: Tmax, upper threshold for response time
Input: Sraw, set of raw data streams Sj

Input: M, current operator scheduling solution
Input: RM, replication and migration points
Input: B, current overall Fog to Cloud bandwidth usage
Input: Nodes, Set of Fog node Fj where cmuFj > cmaFj

1 for Fj ∈ Nodes do
2 Get the data stream Sj served by Fj

3 Gmigcurrent ←M [j]
4 Get Gsatj ⊆ Gmigcurrent where cmuFj ≤ cmaFj + cmucurrent

5 Find minimum ecj in Gsatj
6 Find Gmigj ⊆ Gsatj delimited by ecj
7 M[j] ←Gmigj ; RM[j] ←ecj

8 if B > Bmax then
9 Set Sraw1 to contain data stream Sj ∈ Sraw not yet migrated on Fog

10 M,RM,Gdep← dataMinCut(Sraw1, G)
11 Set Sraw2 ← Sraw \ Sraw1
12 Sort Sraw2 in decreasing order
13 while B > Bmax do
14 pull Sj on top of Sraw2 and get current ecj
15 Gmigj , ec

′
j ← dataMinCut(Sj ,G)

16 M[j] ←Gmigj ;RM[j] ←ec
′
j

17 B ← B − |ecj |+ |ec′j |

18 if T > Tmax ∧B ≤ Bmax then
19 Set maxπ, sorted set of paths πij where Lπij > Tmax
20 operatorMoveBack(M,RM,Gdep,maxπ)
21 if T > Tmax then
22 operatorMoveDown(M,RM,Gdep,maxπ)

23 if B ≤ Bmax ∧ T ≤ Tmax then
24 Improve RU

25 Rewrite Gdep to include all Gmignj (or Gmigjp) ∈ M
26 Send each Gmignj ∈M to corresponding resource node nj
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(a) DSPA application App-1 sharing the Edge-
Fog-Cloud network resources

(b) DSPA application App-2 sharing the Edge-
Fog-Cloud network resources

7.4 Experimental Evaluation

This section describes our experimental setup and the analysis of the obtained results. We use

iFogSim to simulate two DSPA applications sharing the same Edge-Fog-Cloud architecture for

processing the IoT data streams produced at the Edge.

We evaluate aTSOO-H against the algorithms TSOO-H and TRCS, described respectively in

Section 6.4 and Section 6.5.1. For this comparison, we apply for all the algorithms our resource

usage cost model version with dynamic weights, introduced in Section 4.3.1.2. As TSOO-H does

not solve the TSOO problem dynamically, we run these algorithms from scratch each time a

rescheduling is needed.

Furthermore, we compare aTSOO-H against the scheduling strategies proposed in [104],

where the authors target a scheduling problem that is pretty similar to ours.

7.4.1 Experimental Setup

We present the two DSPA applications that we used in our experiments and the parameters that

we applied to simulate the Edge-Fog-Cloud architecture. Then, we describe how we generate

dynamic data streams produced by IoT devices to be processed by the two DSPA applications.

7.4.1.1 DSPA applications

As in Chapter 6, we consider the TLC application (New York City Taxi and Limousine Com-

mission rides) [154]. From this application, we build two DSPA applications: App-1 and App-2,

containing respectively 9 operators and 11 operators. We need that the two applications come

with different requirement in terms of resource usage. To this end, for App-1 depicted in Figure

7.1a, we set the selectivity and cost of the operators respectively from [0.4, 1] and [1.0, 1.8], and,

for App-2 depicted in Figure 7.1b, we set the selectivity and cost of operators respectively from

[0.8, 1.2] and [1.0, 1.9].
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7.4.1.2 Simulated Edge-Fog-Cloud architecture

We again rely on iFogSim to simulate an Edge-Fog-Cloud architecture. In this architecture, we

consider 1 Cloud node and 10 Fog nodes. On the other hand, we consider up to 75000 IoT

devices at the Edge in order to vary the size of the data streams to be processed by the two

DSPA applications.

For the computational and network resource parameters of our Edge-Fog-Cloud simulation,

we consider that the Cloud node is an Amazon VM instance of type m6g.xlarge [12]. In the Fog,

we simulate ESXi virtual machines [166]. The maximum reserved capacity of CPU and RAM of

the Cloud node and the Fog nodes along with the parameters for the network topology in terms

of propagation delay and network bandwidth capacities are the same as in Chapter 6. Table 7.1

presents the computational and network resource parameters used in these experiments.

Table 7.1: Network and computational resource parameters

Layer Nodes Prop. delay to
up layer (ms)

Bandwidth to
up layer (Mbps)

CPU (MIPS) RAM (GB)

Cloud 1 - - 35900 12

Fog 10 [100,300] [100, 250] [2400, 8150] [1, 4]

Edge [5000, 75000] [10, 100] [10, 50] - -

7.4.1.3 Dynamic IoT data stream rates

For the number of runs, like in Chapter 6, we statically simulate the variability of the data

stream rates arriving to the Fog nodes by selecting randomly (uniform distribution) 11 values

of M (number of IoT devices) in the interval [5000, 75000], where each IoT device produces data

at a rate of 6KB/s. Table 7.2 presents the resulting set of 11 values of M IoT devices. Then,

for each value of M, we set an interval [0,M ] in which we uniformly set mj(t) IoT devices per

geographical area Aj so that the sum of mj(t) be equal to M.

As we want to deploy both App-1 and App-2 across the Edge-Fog-Cloud resources, some IoT

devices at the Edge should produce data streams to be processed by App-1 while some others

IoT devices should produce data streams to be processed by App-2. In this respect, we split

each mj(t) between mj1(t) and mj2(t) so that each Fog node Fj receives data stream Sj splits

between Sj1 and Sj2 with rate respectively |Sj1| = mj1(t)×6KB/s and |Sj2| = mj2(t)×6KB/s

as the input of respectively App-1 and App-2.

For the number of repetitions per run, we consider around 15 repetitions as in our previous

set of experiments. In this respect, we repeat the splitting of each value of M per geographical

area and per DSPA application 15 times. The total data rate reaching the Fog follows a sequence

of 11 uniformly distributed values of M ×6KB/s repeated 15 times. We feed this sequence to

aTSOO-H, TSOO-H, TRCS and to the state of the art solutions. We produce 15 results of T, B,
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Table 7.2: Set of number of IoT devices (M) selected randomly in interval [5000, 75000]

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

Value 5000 12000 19000 26000 33000 40000 47000 54000 61000 68000 75000

(a) Splitting of total average data stream rates in Scenario 1

(b) Splitting of total average data stream rates in Scenario 2

Figure 7.2: Distribution of data stream rate per applications and scenarios

RU, CRU, and NRU for each value of M and we plot the average of these results per value of M

and per DSPA application (App-1 and App-2). This is achieved through two different scenarios

that we explain in the following.

Scenario 1 In this scenario, the rates of data streams to be processed by App-1 are constant.

Compared to the data stream rates of App-1, the rates of data streams to be processed by App-2

vary with values that are, for about half of them, lower than App-1, and for the other half, higher

than App-1. In this respect, we fix the rate of input data streams of APP-1 approximately in

the middle of possible values of M (i.e. M=40000 IoT devices in Table 7.2) and we leave the rest

of the data streams for App-2. This is depicted in Figure 7.2a. The sequence of random data

stream rates for both DSPA application are depicted in Figure B.3.
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Scenario 2 In this scenario, we want to have close but not equal rates for the input data

streams of App-1 and App-2. In this respect, we split the load of each M value between the two

applications so that

App-1 processes the data streams produced by 55% of the M IoT devices, and App-2 processes

the data streams produced by the other 45%. Thus, Figure 7.2b depicts the total input data

stream rate per DSPA application for each value of M. The sequence in time of the data stream

rates for either DSPA application is depicted in Figure B.4.

7.4.1.4 Setting threshold parameters

For each DSPA application, we set the threshold parameters Tmax, Bmax and Bmin as follows.

Bmax = 125MB/s. Given that the maximum propagation delay among all the network links

is 300ms (Table 7.1), we set Tmax = 1000ms, to allow some margin for operator latency and

transmission delay. Finally, for TRCS we set Bmin = 50MB/s.

Given that we aim to evaluate the dynamic scheduling algorithm aTSOO-H and not the

dynamic triggering mechanism described in Section 7.3.1. In this respect, we set the experiment

to trigger aTSOO-H as well as TSOO-H at each change in data stream rates. In this way, we

can evaluate all the scheduling algorithms on a common basis.

7.4.2 Evaluation results

In these evaluation results, we pay particular attention to the capability of the algorithms to

solve the TSOO problem when scheduling two different DSPA applications one (App-1) after

the other (App-2) across the Edge-Fog-Cloud resources, while taking into account the available

resource capacities, thanks to the resource usage cost model version with dynamic weights. As

evaluation metrics, we consider RU, T, B and the execution cost.

The execution cost encompasses the execution time and the rescheduling cost. The execution

time is the time it takes for each algorithm to find the new operator placement and to rewrite

the application graph based on the identified operator placement. We define the rescheduling

cost as the number of operators that are: (i) instantiated, i.e., they are replicated in the Fog

or they are deployed for the first time (like union operator) in the Fog or Cloud or (ii) deleted,

i.e., they are ’migrated’ back to the Cloud. Imporvement of the resource usage cost model will

be necessary in order to take into account state migration between the Fog and Cloud in case

of statefull operator. In this work we assume stateless operators.

7.4.2.1 Analysis of resource usage costs and related constraint satisfaction rates

Scenario 1 For this scenario, the results achieved by each algorithm are presented in Table

7.3, Figure 7.3 and Figure 7.4.
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Table 7.3: Results when scheduling App-1 in scenario 1 where data stream rate is static

RU

aTSOO-H 0.285879722369758

TSOO-H 0.285879722369758

TRCS 0.301286945681742

Figure 7.3: RU of App-2, when scheduling App-2 after App-1 in Scenario 1

In this scenario the input data steam rate toward App-1 is static. In this respect, we present

the overall resource usage cost of App-1 in Table 7.3. aTSOO-H like TSOO-H achieves optimal

RU when comparing to TRCS, thanks to RUminCut algorithm. As introduced in Chapter

6, RUminCut attempts to select the edge-cut ecj as the replication and migration point that

minimizes directly the overall resource usage cost RUj of each data stream Sj and Fog node Fj ,

then the resulting solution is optimal if all the TSOO problem constraints are satisfied. This

is shown in Table 7.3, where aTSOO-H like TSOO-H has the lowest RU when comparing to

TRCS.

In the second hand, when scheduling a DSPA application across the Edge-Fog-Cloud re-

sources which are already used by other applications (e.g. App-1), the available resource ca-

pacities are reduced and hence the weight of using these resources are higher. As depicted in

Figure 7.3, aTSOO-H provides lower RU when comparing to TRCS with a difference ratio of

up to 15.88% from lower data stream rates until to the highest data stream rates (M1 to M11).

However, when comparing aTSOO-H against TSOO-H, we notice that TSOO-H provides

optimal operator placement at lower data stream rates (i.e. M1 to M3). For the other data

stream rates, TSOO-H approximates the optimal operator placement. Whence, TSOO-H out-

performs aTSOO-H in terms of RU with a small difference of up to 0.0045 for all the data

stream rates, except for the moderate data stream rate (i.e. M8) where aTSOO-H approximate

the optimal operator placement than TSOO-H with a small difference of 0.01. At each time

TSOO-H is triggered, the algorithm is executed from scratch without taking into account the
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(a) Cloud bandwidth usage

(b) Response time

Figure 7.4: Constraint violation rates of App-2 in Scenario 1

current operator placement, and hence TSOO-H has higher probability to identify the operator

placement which approximates the most the optimal RU (see Chapter 6). On the other hand,

when aTSOO-H is triggered, it considers the current operator placement from which it produces

the new operator placement that minimizes RU and satisfies the TSOO problem constraint.

In this respect aTSOO-H is more likely to produce RU which is a bit higher than the one of

TSOO-H (except for M8).

When analyzing the constraint violation rate of each algorithm, we observe that all the

algorithms satisfy the TSOO problem constraint when deploying the App-1, that why we omit to

present the related plots. However, when the available capacities of Edge-Fog-Cloud resources are

reduced due to the workload of App-1 initially deployed, when scheduling App-2 the constraint

violation rate is increasing with the data stream rates. For instance, Figure 7.4a, shows that for

TRCS the violation rate of the constraint B ≤ Bmax is already 20% at the data stream rates

produced by IoT devices of M9 value and it keeps increasing until to reach 100% at the highest
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(a) RU of APP-1

(b) RU of APP-2 w.r.t the load of App-1

Figure 7.5: Overall resource usage costs when scheduling App-1 and App-2 in Scenario 2

data stream rate produced by IoT devices of M11 value. While for aTSOO-H and TSOO the

violation rate of this constraint is lower, specifically 6.67% at M8 and 6.67% at M9 and it keeps

increasing however without reaching 100%.

Last but not least, Figure 7.4b shows that TRCS has the highest violation rate of the con-

straint T ≤ Tmax from M7 to M9 with respectively 20% to 46%. However it has the same

violation rate as TSOO-H and aTSOO-H at M10 and it gets even lower than the latter at the

highest data stream rate (i.e. M11) with 73.3% while they have the same highest violation rate

of 93.3%.

Scenario 2 We consider dynamic data loads for both App-1 and App-2 where App-1 is ini-

tially deployed across the Edge-Fog-Cloud architecture, then the App-2 is deployed when App-1

is processing data stream. Thus, both App-1 and App-2 have to share the Edge-Fog-Cloud

resources to process the dynamic data stream rate produced at the Edge. The results achieved

in this scenario are presented in Figure 7.5 and 7.6.
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(a) Cloud bandwidth constraint for APP-1

(b) Cloud bandwidth constraint for APP-2

(c) Response time constraint for App-2

Figure 7.6: Constraint violation rates when scheduling App-1 and App-2 in Scenario 2

The plots of the overall resource usage cost (RU) are steeper as depicted in Figure 7.5a. In this

respect, we observe that when scheduling App-1, aTSOO-H performs like TSOO-H. In particular

TSOO-H produces the optimal solution from M1 to M10 IoT devices, thanks to RUminCut
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algorithm, and it approximates the optimal solution at the highest data stream rates (i.e. M11).

Since we run TSOO-H from scratch at each time the rescheduling is triggered, it is more obvious

to observe such performance of TSOO-H as long as we have shown in Chapter 6 that TSOO-H

is more likely to identify the optimal (or near optimal) solution. Unlike TSOO-H, aTSOO-H is

executed from scratch only for the first data stream rates in the random sequence of data stream

rates where it produces also the optimal solution. For the following data stream rates, aTSOO-H

adapts the current operator placement solution in order to provide an (near) optimal operator

placement solution with respect to the actual workload. In this respect, aTSOO-H takes the

advantage of the abundant available resources capacities across the Edge-Fog-Cloud architecture

which does not trigger constraint violations and hence it improves only RU . However TRCS

provides the highest RU when comparing to both TSOO-H and aTSOO-H with a difference ratio

of up to 7.65%

When Scheduling App-2 with respect to the load of App-1 already scheduled between the

Fog and Cloud nodes, Figure 7.5b shows that TSOO-H has the lowest RU among all algorithms

for the data stream rates produced from M1toM8 IoT devices. However the difference ratio

is very small this is due to fact that the input data stream rates are closer for the two DSPA

applications. Even though that aTSOO-H is outperformed by TSOO-H, the difference ratio is

very small up to 1.29%. However, at higher data stream rates from M9 to M11 IoT devices,

aTSOO-H outperforms TSOO-H with a small difference ratio of up to 1.88%. This happens

in general when both algorithms fail to satisfy the constraint T ≤ Tmax. In particular, both

algorithm provide a different operator placement solution from which to improve the response

time in order to satisfy the related constraint. Then, the greedy search to satisfy the response

time is applied differently based on the input operator placement. Moreover, when comparing

to TRCS, aTSOO-H and TSOO-H provide lower RU with a difference ratio respectively of up

to 17.68% and 18.02%.

Regarding the TSOO problem constraints, all the algorithms satisfy the constraint T ≤
Tmax when scheduling App-1 at any data stream rates that why we omit to put the related

plots. Even though that TSOO-H and aTSOO-H provide the lowest RU , like TRCS they are

more likely to fail to satisfy the constraint B ≤ Bmax with an increasing probability as the

data stream rates are increasing from M8 to M11 spanning from 20% to 86.67% of constraint

violation rate, see Figure 7.6a.

For App-2, we observe that TRCS is likely to not satisfy the constraint B ≤ Bmax. As de-

picted in Figure 7.6b, both aTSOO-H, TSOO-H and TRCS start failing to satisfy this constraint

at higher data stream rates (i.e. M9 to M11) with hover high constraint violation rate spanning

from 20% to 73.33% for TRCS, while TSOO-H and aTSOO-H have the same constraint violation

rate spanning from 13.3% to 60%.

For the real time response constraint, Figure 7.6c shows that all the algorithms start failing
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(a) Execution time

(b) rescheduling cost

Figure 7.7: Execution cost of App-2 in scenario 1

to satisfy this constraint up on moderate data stream rate, i.e. M7 for aTSOO-H and TRCS and

M8 for TSOO-H. Then, the constraint violation rate keep increase with the data stream rates.

7.4.2.2 Analysis of execution cost

As introduced above, we consider the execution cost of the algorithms in terms of the execution

time and the rescheduling cost. In this respect, we purposely not put the plot of execution

cost of App-1, as we consider constant data stream rate and consequently the initial scheduling

solution identified by each of the algorithms is sufficient.

For App-2, the achieved results are depicted in Figure 7.7, Figure 7.8 and Figure 7.9. In these

figures, we plot the average execution times and rescheduling costs of the 15 random executions

of each value of M IoT devices.

Scenario 1 Figure 7.7a shows the execution times of the algorithms in scenario 1 when schedul-

ing App-2. At lower data stream rates (i.e. M1 to M3), TSOO-H has lower execution time when
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comparing to both aTSOO-H and TRCS with a difference ratio of respectively up to 56.63%

and 54.71%. In this case, TSOO-H is executed in the favorite case of applying only RUminCut

to find directly the optimal solution. From the next lower to the highest data data stream rate

(i.e. M4 to M11), we observe that aTSOO-H has lower execution time than TSOO-H for 6 data

points and the rest of 3 data points, the execution times are closer. In this case, TSOO-H relies

on the costly greedy search part of the algorithm. Thanks to its adaptive approach, aTSOO-H

achieves to identify the scheduling solution faster than TSOO-H. On the other hand, TRCS has

the lowest execution time for the data stream rates produced from M4 to M7, in this setting

the search for identifying the operators to replicate on Fog or to move back in Cloud in order

to meet the TSOO problem constraint is reduced that may involve fewer Fog nodes. However

at high data stream rates (i.e. M8 to M11), TRCS has highest execution time except for M10

where it performs costly like TSOO-H. In this case TRCS expands the search space that may

involve all the Fog nodes and hence high execution time.

When analyzing the rescheduling cost, we can see in Figure 7.7b that at moderate and higher

data stream rates (i.e., M5 to M11) TSOO-H replicates more operator in order to address the

change in the DSPA application workload thus imposing high reconfiguration cost of the DSPA

application The rescheduling cost of TRCS is lower however the resulting RU is higher than the

one of aTSOO-H. In contrast, aTSOO-H reconfigures the current operator placement to a new

one by replicating or/and removing only a minimal number of operator. Thus, aTSOO-H has

lowest rescheduling cost than TSOO-H.

Scenario 2 In scenario 2 when scheduling App-1, Figure 7.8a shows that TSOO-H has the

highest execution times from the lowest to the highest data stream rates (i.e. M1 to M11) except

at M3 and M9 where aTSOO-H equals the high execution cost of TSOO-H. Even thought that

TSOO-H is executing in the best case from M1 to M10 by applying only RUminCut algorithm.

However the adaptive approach of aTSOO-H is much faster than the RUminCut algorithm. On

the other hand, we observe that TRCS has the lowest execution times among all the algorithms

except at M3 where aTSOO-H as the lowest execution time.

In terms of the rescheduling cost, Figure 7.8b shows that the rescheduling cost of aTSOO-

H is the lowest among all the algorithms except for M5 and M6 where TRCS provides the

lowest rescheduling cost. Thanks to the adaptive approach of aTSOO-H that replicates or/and

removes only the operator that are likely to solve the TSOO problem. In contrast TSOO-H has

the highest rescheduling cost, this cost is constant from lower to moderate data stream rates (i.e.

M1 to M7) as TSOO-H is executed from scratch in its best case by applying only the RUminCut

algorithm that provides the same number of operator to replicates on the Fog. However, from

moderate to higher data stream rates (i.e. M8 to M9), this cost is increasing with the data

stream rate.

The execution cost when scheduling App-2 after App-1 follows the same pattern as the exe-
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(a) Execution time

(b) Rescheduling cost

Figure 7.8: Execution cost of App-1 in scenario 2

cution cost when scheduling App-1. However, in this case available resource capacities between

the Fog and Cloud are not anymore abundant. Hence, by taking into account the actual available

resource capacities and the application workload, the execution times of TSOO-H and aTSOO-

H are still high than those TRCS (see Figure 7.9a). In terms of rescheduling cost aTSOO-H

has the lowest cost only at lower data stream rates (i.e. M1 to M4). From M4 to M11 the

rescheduling cost of aTSOO-H becomes higher than the one of TRCS but remains lower than

the one TSOO-H (see Figure 7.9b).

7.4.3 Comparison with state of the art solutions

As introduced in Chapter 3, Rzepka et al. [104] address the problem of scheduling on the fly

several DSPA applications sharing the Edge-Fog-Cloud resources. The objective is to maximize

the number of successfully deployed DSPA applications while limiting the WAN resources usage

for transmitting data streams on the Fog to Cloud WAN links and using efficiently the Fog

computational resources. However they distinguish between DSPA applications that have sink
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(a) Execution time

(b) Rescheduling cost

Figure 7.9: Execution cost of App-2 in scenario 2

in the Cloud and those have sink in the Fog which are categorized respectively between non

response time-critical and strict response time requirements applications. To solve the problem,

they propose scheduling strategies (not optimization algorithms) designed based on the following

insights:

• limite the WAN resources usage for transmitting data stream on the Fog to Cloud WAN

links;

• efficiently use the Fog computational resources so that it can (also) be used by several

(DSPA) applications;

• save the Fog computational resources for DSPA applications with strict latency require-

ments and use the Cloud for non time-critical DSPA applications.

Among all the scheduling strategies of [104], we observe that only FogOnly strategy can be

applied directly in order to solve the TSOO problem. FogOnly deploys in the Fog the overall
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DSPA application even if it has the sink in the Cloud in order to maximize the Fog resource usage.

When applying the rest of the strategies to the TSOO problem, it falls that the overall DSPA

application is deployed in the Cloud as in this thesis we assumed that each DSPA application

has the sink in the Cloud. Deploying the overall DSPA application in the Cloud is the solution

we want to avoid as it may bring network congestion and high network delays.

In this respect, we inspire from their insights to build another scheduling strategy called

Fog Cloud Interplay (FCInterplay) to solve the TSOO problem. In this respect, given the data

streams Sj , given the application graph G, FCInterplay attempts to solve the TSOO problem

as follows:

• Send directly a data stream Sj to be processed in the Cloud if the resulting end-to-end

operator path latency can not satisfy in any way the response time constraint. This is

to avoid wasting the Fog computational resources. However if only the Cloud bandwidth

usage constraint is satisfied.

• A data stream Sj for which the resulting end-to-end operator path latency can meet the

response time constraint without being partially processed in the Fog is placed in the Cloud

to avoid wasting Fog resources. However if only it also satisfies the Cloud bandwidth usage

constraint. Otherwise, it should be partially processed on the Fog. For the latter case, we

identify the sub-graph Gmigj delimited by the minimum edge-cut ecj to be replicated on

the corresponding Fog node Fj .

• For the remaining data streams Sj , for which the resulting end-to-end operator path latency

can meet the response time constraint by using the Fog resources, we identify the sub-graph

Gmigj delimited by the minimum edge-cut ecj to be replicated on the corresponding Fog

node Fj .

7.4.3.1 Evaluation results

We compare aTSOO-H and TSOO-H with the FogOnly algorithm proposed in [104] and the

FCInterplay algorithm inspired from [104]. As a reminder, FogOnly deploys the whole DSPA

application in the Fog in order to maximize the Fog computational resource usage under the

constraint of available resource capacity. However if the computational resources at the Fog are

not sufficient, the request of deploying the DSPA application is rejected [104].

We use the same experimental setting parameters introduced earlier in this chapter. However,

we use the same VM in the Cloud as in the Fog. In this way the Fog can have a time advantage

over the Cloud as there is no network delay.

Then, to compare the identified algorithms we consider the following metric used in [104]:

(i) the overall Fog to Cloud bandwidth usage ratio; (ii) the overall Fog computational resource

usage ratio; and (iii) the DSPA application deployment success rate. The latter is calculated
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(a) Fog computational resource usage ratio

(b) Fog to Cloud bandwidth usage ratio

Figure 7.10: Computational and network utilization ratio

as the ratio of the DSPA applications deployed successfully over the total number of deployed

DSPA applications.

In particular, we consider each change in the data stream rate as the request of deploying a

new DSPA application [104]. Given the simulation of the dynamic data stream rates introduced

in Section 7.4.1, we consider a sequence of 165 variations of data stream rates that we feed to

the algorithms for each of the two DSPA applications. We have in total 330 requests of DSPA

application deployment with 30 requests per each of the 11 (M) values of IoT devices. Hence,

the deployment success rate is calculated on the basis of 30 requests per each M value of IoT

devices. In the following we present the evaluation results of only scenario 2. These results are

depicted in Figure 7.10 and Figure 7.11

Fog computational resource usage ratio Figure 7.10a shows that FogOnly has the highest

usage of these resources. This is due to its strategy of deploying the overall DSPA application on

the Fog. However, FCInterplay adapts the usage of the Fog computational resources according to
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the data stream rates. In particular, at lower data stream rates (i.e. M1 to M2), FCInterplay has

higher Fog computational resource usage than aTSOO-H and TSOO-H as by partially processing

each individual data stream Sj on the Fog, the resulting end-to-end latency satisfies the response

time constraint (i.e. Lπij ≤ Tmax). Consequently the constraints T ≤ Tmax and B ≤ Bmax

are satisfied. In this way the Fog to Cloud bandwidth resources are saved for other applications.

For the next data stream rates (i.e., M3 to M6), we observe that the Fog computational resource

usage of FCInterplay starts decreasing when comparing to TSOO-H (and aTSOO-H). In this

respect, FCInterplay favors processing entirely the data stream Sj in the Cloud whose when

partially processed in the Fog, their resulting end-to-end latency did not satisfy the response

time constraint (i.e. Lπij ≤ Tmax). In this way FCInterplay saves the Fog resources for other

applications. Finally, at the data stream rate M7, we observe that FCInterplay has a sudden

increase in the Fog resource usage compared for instance to data stream rate produced by M6

IoT devices. This is due not only in the increase of data stream rates, it is also due to the fact

that for certain data stream Sj that should be processed entirely in the Cloud, however the

constraint B ≤ Bmax was not satisfied. Hence, theses data streams are partially processed in

the Fog.

While aTSOO-H and TSOO-H try to jointly optimize the usage of the Fog resources and

Fog to Cloud network resources.

Fog to Cloud wide area bandwidth usage ratio At lowest data stream rates (i.e., M1 and

M2), Figure 7.10a shows that FCInterplay has the lowest Fog to Cloud bandwidth usage ratio

thanks to dataMinCut algorithm which was applied in order to partially process data streams

Sj in the Fog. For the other data stream rates (i.e., M3 to M7) as they are increasing, the Fog

to Cloud bandwidth usage ratio of FCInteraplay is also increasing. It becomes even the highest

among all the algorithms at the data stream rate produced by M6 and M7. This is due to the

FCInterplay favors processing some data streams in the Cloud if partially processing them in

the Fog would not satisfy the response time constraint.

At the lowest data stream rates (i.e. M1 and M2), FogOnly has the second lowest Fog to

Cloud bandwidth usage ratio when comparing to FCInteraplay. However as the data stream

rates is increasing, FogOnly has the lowest Fog to Cloud bandwidth usage ratio among all the

algorithms. FogOnly does not apply dataMinCut as FCInterplay. However, given that it

replicates as much as possible the operators for each individual data streams on the Fog, as we

go from the source to the sink the cumulated selectivity and hence data stream rates most often

decrease. As a result the Fog to Cloud bandwidth usage also decreases.

On the other hand, aTSOO-H and TSOO-H have slightly higher usage of these resources

when comparing to FogOnly but lower when comparing to FCInterplay. This is due to fact that

aTSOO-H and TSOO-H aim to jointly minimize the Fog resources and Fog to Cloud network

resources.
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Figure 7.11: Deployment success rate in scenario 2

DSPA Application deployment success rate FCInterplay successfully deploys the DSPA

applications only at lower data stream rates (M1 to M2) with success rate of 100%. Upon data

stream rates produced by M3 the success rate start decreasing. In this respect, FCInterplay has

the lowest success rate and it becomes even 0 at data stream rates produced by M6 and M7.

As the data stream rate is increasing the strategy of FCInetraplay is not sufficient to solve the

TSOO problem, an optimization approach is necessary.

On the other hand FogOnly has the second lowest success rate and it achieves 100% of

success rate only at the lowest data stream rates (i.e. M1 and M2). This is due to the choice of

maximizing Fog resource usage. However the operator processing times are higher on the Fog

which impacts on the response time constraint. The major cause in the decrease of the success

rate of FogOnly is the violation of the response time constraint. This is exacerbated by the

violation of the Cloud bandwidth constraint at higher data stream rates.

TSOO-H has 100% of success rate from M1 to M4 while aTSOO-H has 100% of success

rate only from M1 to M2. The success rate of TSOO-H starts decreasing only from M5, while

aTSOO-H has a success rate lower than TSOO-H but higher than FCInterplay. We believe that

the dynamic optimization approach of aTSOO-H that takes into account the current operator

placement in order to produce a new operator placement does not enable aTSOO-H to converge

to the best possible scheduling solution even if it provides lower execution cost.

7.5 Conclusion

In this chapter, we introduced the dynamic version of the TSOO problem, the problem of

continuously scheduling DSPA application between the Fog and Cloud nodes in synergy with

the change in the data stream rates and the available Edge-Fog-Cloud resource capacities. The

objective was to jointly optimize the Fog computational resource usage and Fog to Cloud network

resource usage while satisfying the real time response constraint of DSPA application.

In this respect, we use the version of the resource usage cost model with dynamic weights

in order to take into account both maximum and available resource capacities when deploying
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DSPA application across the Edge-Fog-Cloud resources. Then we propose aTSOO-H algorithm

that adaptively schedules DSPA application by taking into account its current deployment state

in order to solve the dynamic version of the TSOO problem.

aTSOO-H exhibits significant advantages when compared to TSOO-H and TRCS. In partic-

ular, aTSOO-H approximates better the optimal solution of the TSOO problem when comparing

to TRCS. It worth noting that TSOO-H approximates better than aTSOO-H the optimal solu-

tion, however aTSOO-H has lower execution cost in terms of algorithm execution time and the

number of operators replicated or removed at each rescheduling of the current deployment of

DSPA application.

Lastly, we evaluate aTSOO-H against FogOnly from the recent related work and FCInterplay

inspired from the related work. It shows that aTSOO-H has better performance than FogOnly

and FCInterplay in terms of optimizing resource usage and successfully deploying DSPA appli-

cation. In particular aTSOO-H has 100% of success rate when deploying DSPA application at

lower data stream rates and the success rates is decreasing with the increasing of the data stream

rates while never reach 0%. However this success rate remains higher than those of FogOnly

and FCInterplay. It worth noting that TSOO-H outperforms also aTSOO-H in terms of DSPA

application deployment success rate.
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8.1 Summary of Contributions

Data stream processing and analytics (DSPA) engines have been originally designed to run on

centralized environments (e.g., Cloud) featuring high computational resource capacities. With

the exponential growth of the Internet of Things (IoT), the quality of service (QoS) of DSPA

applications is challenged by the need to systematically transmit data streams from IoT devices

to the Cloud.

In this respect, processing data streams at the IoT network edge emerges as a promising so-

lution for addressing congestion issues on long-distance communication network links. However,

to this end we need to deploy DSPA applications on Edge/Fog nodes that come with non-trivial

constraints in terms of heterogeneous, shareable and limited computational resources. In respect,

a thorough allocation of Edge/Fog resources becomes crucial in order to meet QoS requirements

of DSPA applications over dynamic IoT data streams. In this thesis, we leverage the computa-

tional resources available in the Edge/Fog layers to distribute DSPA computations performed in

the Cloud. Hence, only partially processed IoT data streams at the Edge/Fog need to be finally

send to the Cloud for further analysis.
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In a nutshell, we address in this thesis the main challenges of distributing DSPA applications

between the Fog and Cloud resources. As Fog computational resources and wide area network

resources to reach the Cloud may exhibit a workload fluctuation that could impair on DSPA ap-

plication response time constraints, we consider both static and dynamic scheduling approaches.

These fluctuations are due to the fact that computational and network resources can be shared

among several applications but also to the dynamics of the IoT data stream rates according

to spatio-temporal patterns. More precisely, we are answering three particular questions: (i)

How can we model the computational and network resources of Edge-Fog-Cloud nodes and the

continuous operations of DSPA applications? (ii) How can we estimate the usage of resources

allocated to the execution of a DSPA application given that Edge-Fog-Cloud nodes are highly

heterogeneous and could be shared by different applications? and (iii) How can we afford an

adaptive scheduling of DSPA applications in the Edge-Fog-Cloud continuum given the resource

fluctuation at the Fog and Cloud layers as well the fluctuation of data stream rates from the

Edge layer to the Fog layer ?

In the first contribution, we proposed abstraction models of the DSPA application and

Edge-Fog-Cloud architecture. The DSPA application is abstracted as a directed acyclic graph of

operators based on which we propose a model for estimating the resource required by each oper-

ator in terms of CPU/RAM to process its input data stream and network bandwidth for sending

the processed data streams on the wire. In this respect, we consider the operator selectivity, the

operator window type and the operator cost. The Edge-Fog-Cloud architecture is abstracted as

a wide area resource network by specifying for each resource its available and maximum capaci-

ties. Based on the two abstractions, we build a holistic resource usage cost model for replicating

and placing operators of DSPA applications from the Cloud to Fog resources, by distinguishing

static and dynamic weighting the required computational and network resource usage of each

operator respectively in the case of static and dynamic deployment of DSPA application. To

cope with the response time constraint, we further propose a response time model that takes

into account the network delay of sending a data stream on each individual wide area network

link and the time required per continuous operator to process its input data streams. For the

latter case, we model each operator as a queuing system.

In the second contribution, we exploited the above models to propose resource aware and

time aware scheduling strategies for statically distributing a DSPA application between the Fog

and the Cloud nodes by assuming that the target Edge-Fog-Cloud resources are dedicated to

a single application. In this respect, we consider the version of the resource usage cost model

with static weights. The static weights distinguish the usage a each resource by the inverse

of its maximum capacity. Based on this resource usage cost model version, we first proposed

resource aware scheduling algorithms, namely RCS, SOO-CPLEX and SOO-H. RCS is a resource
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constraint satisfaction approach that dynamically evolves the DSPA application between the Fog

and the Cloud, aiming to satisfy the computational and network resource requirement by using as

less as possible the Fog computational resources. SOO-CPLEX is a mathematical optimization

based approach that aimed at an optimal overall resource usage cost due to an optimal trade-off

between the Fog computational resource usage cost and the Fog-to-Cloud network resource usage

cost. Finally, SOO-H is a heuristic based approach that efficiently achieved the optimal overall

resource usage cost in the best case like SOO-CPLEX, while it approximated in the worst case

in a time efficient way the overall resource usage cost, with a small approximation error when

compared to SOO-CPLEX.

In the third contribution, we proposed a time and resource aware scheduling strategy.

In this respect, we extended SOO-H to TSOO-H to account for response time constraints.

Experimental results showed that TSOO-H is scalable and time efficient when comparing to

state of the art solutions. It approximates the optimal solution, while managing the trade-off

between the usage costs of Fog computational resources and Fog-to-Cloud network resources

and satisfying the response time constraint.

In the fourth contribution, we used the version of the resource usage cost model with

dynamic weights to account for dynamic deployment of DSPA application on the Edge-Fog-

Cloud resources that are shared among several applications. In this way the dynamic weights

distinguish the usage of each Edge-Fog-Cloud resource by take into account not only its maximum

resource capacity but also its available resource capacity. We account also for the fact that the

dynamic data stream rates produced by IoT devices require dynamic and lightweight scheduling

solutions. Hence, we proposed a monitoring framework for analyzing the workload of a DSPA

application deployed between the Fog and Cloud resources and triggering an adaptive scheduling

of the current operator placement whenever it is necessary. To this end, we proposed aTSOO-H,

which, adaptively and with lower execution cost, reschedules the current operator placement of

a DSPA application in order to minimize the overall resource usage and satisfy the response

time constraint.

8.2 Future Research Directions

This work opens new challenges for future research that we briefly detail in the sequel.

8.2.1 Integrating with existing DSPA engines

To integrate our proposed scheduling solutions with widely-used DSPA engines (e.g., Apache

Storm [53], Apache Kafka [55], Apache Flink [54]), we need to understand the architectural

characteristics of the DSPA engine to be used.
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For instance, when a DSPA application is submitted to the JobManager of Apache flink, the

latter converts this application as JobGraphs. Then, the JobManager will call a schedule method

that invokes an ExecutionGraph to subsequently call scheduleForExecution. This triggers a task

allocation method for each of the vertices in the ExecutionJobVertex (a collection of vertices

in JobGraphs). So, basically the idea is to override the task allocation algorithm with the

scheduling strategies that we propose in this thesis. To re-schedule a running application, the

idea could be to generate and maintain multiple plans of JobGraphs for each submitted DSPA

application. These plans will be considered when evaluating a running DSPA application.

However, it is worth noting that the popular DSPA engines enumerated above are designed

to run on resource-rich environments, while the Edge/Fog computing environment may come

with constrained computational resources. Thus, effective deployment of DSPA engines in the

Edge/Fog environment requires lightweight DSPA engines such as NebulaStream [65]. We expect

this direction to be further explored as stable Edge/Fog oriented DSPA engines are still not yet

established [20].

8.2.2 Generalization of the DSPA application type

In this thesis, we focused on the problem of scheduling a DSPA application in the Edge-Fog-

Cloud continuum where the DSPA application is initially deployed in the Cloud and it has its

sink there. One of the recent works that we surveyed proposed interplay strategies between the

Fog and the Cloud for scheduling DSPA applications that have their sink either in the Cloud or

in the Fog [104]. One of the insights drawn in [104] is that the best scheduling strategy is to favor

deploying a DSPA application entirely in the Cloud or entirely in the Fog if it has respectively

its sink in the Cloud or in the Fog. Actually, we compared our solutions with a strategy that we

implemented inspired from [104] in Section 7.4.3. A future extension of our work is to consider

not only DSPA applications that have their sinks in the Cloud, but also DSPA applications that

have their sink in the Fog or in both the Fog and the Cloud. In the latter cases, a scheduling

algorithm should possibly also take into account data streams in the direction Cloud to Fog.

8.2.3 Explore mobile Edge resources

In this thesis, we consider only Fog and Cloud computational resources, while IoT devices at the

Edge come with non negligible processing capacities. However, extending the processing of data

streams at the Edge layer possibly means dealing with mobile nodes, which can have a disruptive

impact on the whole DSPA application. In this context, some efforts have been made to tackle

the challenges associated with deploying DSPA applications on mobile IoT devices at the Edge.

To cite some of them, O’Keeffe et al. [169] design an edge-based IoT data processing approach

that leverages the computing abilities of multiple IoT devices in order to process data streams

in parallel and to account for the unreliable network conditions in wireless networks. Chao et
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al. [170] propose a solution to improve the resilience of DSPA applications deployed on mobile

Edge resources interconnected via a wireless network in which the communication quality is

severely affected by the environment condition, signal attenuation, channel contention. On the

other hand, the upcoming of 5G network technologies [10, 11] enables increased network band-

width capacity, high connectivity density of IoT devices, and, more importantly, highly reliable

communication network links. In spite of these efforts, there are still challenges to address. We

believe that a future exploration should pay particular attention to resource churning caused by

the mobility of IoT devices and to energy consumption of mobile devices, in order to enhance

the resilience of DSPA applications deployed on Edge resources.

8.2.4 Leverage Machine Learning Techniques

Applying machine learning (ML) techniques to the problem of scheduling DSPA applications

in the Edge-Fog-Cloud continuum can be useful in various ways. In this respect, our threshold

based monitoring approach can be enhanced by using ML techniques such as linear regression

in order to predict in the near future the status of the resource usage and performance of a

DSPA application, based on which the rescheduling of the current operator placement can be

proactively triggered if necessary by taking into account the DSPA application characteristics,

how the data stream rate evolve and also how much time it takes to deploy a new scheduling [8]

Furthermore, ML techniques such as reinforcement learning (RL) can be used in order to

evolve the scheduling of a DSPA application in synergy with the evolution of available resources

and data stream rates [115].

On the other hand, training ML models can be resource greedy, while the Edge/Fog layers

may come with limited computational resources. Thus, it is necessary to investigate the use of

Edge/Fog resource aware machine learning models, like in Federated Learning.

8.2.5 Privacy and security

Today IoT devices collect and produce data that are useful to consumers, businesses and public

sector policy-making. In this context, privacy issues naturally arise, as these devices can collect

and transmit personal data, from which insights about an individual’s behavior, health or rela-

tionships can be inferred. On the other hand, existing security techniques, tools and products

may not be easily deployable on IoT devices because of the variety of hardware platforms and

limited computational resource capacity. Although processing data at the network edge through

Edge/Fog computing can enforce data privacy [79], the distributed architecture of edge analytics

increases the risk of attack vectors [82]. Therefore, revisiting and extending existing privacy and

security techniques deserve to be explored further to address the specificity of IoT edge analytics

systems. Certainly, these challenges entail not only research and system engineering challenges

but also public policy challenges.
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Appendix A
Use case detailed operators

In the following we detail the operators that constitute the DSPA application introduced in the

use example for country wide traffic monitoring in Section 1.1:

Union (U): combines raw traffic data streams from street antennas into a single data stream

for further processing:

1 CREATE STREAM unionDataStream as

2 UNION SELECT car_id, latitude, longitude, speed, timestamps

3 FROM S_1,S_2,...,S_N

4 WINDOW HOPPING (SIZE 1 SECOND, ADVANCED BY 1 SECOND);

Join (1R): matches the GPS-location of vehicles and the road network information (R) to

find-out the street segment and the city related to the GPS-location of the vehicle:

1 CREATE STREAM joinDataStream as

2 SELECT d.car_id, d.speed, r.segment, r.city

3 FROM unionDataStream as d, raodNetwork as r

4 WHERE d.latitude = r.latitude and d.longitude = r.longitude

5 WINDOW HOPPING (SIZE 1 SECOND, ADVANCED BY 1 SECOND );

Group (Gby): groups the input data stream per street segment, computes the average speed

and the number of vehicles per street segment:

1 CREATE STREAM aggregationDataStream as

2 SELECT d.segment, d.city, count(d.car_id) as car_nbr, avg(d.speed) as avg_speed

3 FROM joinDataStream as d

4 GROUP BY d.segment

5 WINDOW HOPPING (SIZE 1 SECONDS, ADVANCED BY 1 SECONDS );

Split (SP ): copies the input data stream in two data streams, e.g., the first for supporting

country-wide traffic monitoring and the second city-wide traffic regulation:

1 CREATE STREAM countryWideDataStream as

2 SELECT d.city, d.segment, d.car_nbr, d.avg_speed

3 CREATE STREAM cityWideDataStream as
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4 SELECT d.city,d.segment, d.car_nbr, d.avg_speed

5 FROM aggregationDataStream as d

6 WINDOW HOPPING (SIZE 1 SECONDS, ADVANCED BY 1 SECONDS );

The resulting data stream after applying the previous operators is given as input for the country-

wide traffic monitoring and city-wide traffic regulation IoT applications.

The first application for country-wide traffic monitoring reports on an hourly basis traffic

statistics for the entire country. In this respect, we need to group the input data stream per city

to provide the average speed and number of vehicles per city:

1 CREATE STREAM aggregationDataStream as

2 SELECT d.city, sum(d.car_nbr) as car_nbr_city, avg(d.avg_speed) as avg_speed

3 FROM countryWideDataStream as d

4 GROUP BY d.city

5 WINDOW HOPPING (SIZE 3600 SECONDS, ADVANCED BY 3600 SECONDS );

and finally filter (σ) the result of the previous operator to obtain the global traffic status per

city. We assume that the first application allows a geographical browsing by city, hence the

operator σ is executed several times with different constant values captured by the parameter

$CITY ID:

1 CREATE STREAM results as SELECT d.city, d.car_nbr_city, avg_speed

2 FROM aggregationDataStream as d

3 WHERE d.city = \$CITY_ID
4 WINDOW HOPPING (SIZE 3600 SECONDS, ADVANCED BY 3600 SECONDS );

The second application for city-wide traffic regulation aims to support the control of the traffic

lights e.g., to give priority to jammed traffic flows over non-jammed ones, etc. In this respect,

we need to simply filter (σ) the input data stream for the specified city and obtain the traffic

per street segment:

1 CREATE STREAM results as

2 SELECT d.segment, d.avg_speed, d.car_nbr

3 FROM cityWideDataStream as d

4 WHERE d.city = \$CITY_ID
5 WINDOW HOPPING (SIZE 20 SECONDS, ADVANCED BY 20 SECONDS);
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Appendix B
Data stream rate sequences

Sequence of random data stream rates in Chapter 5

Figure B.1: Simulation of 9 data point evolving randomly

Sequence of random data stream rates in Chapter 6

Figure B.2: Simulation of 10 data points evolving randomly used in Chapter 6
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Sequence of random data stream rates in Chapter 7

Figure B.3: Simulation of 11 data points evolving randomly used in Chapter 7 for scenario 1

Figure B.4: Simulation of 11 data points evolving randomly used in Chapter 7 for scenario 2
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