Nathalie Gaudechoux 
  
Valérie Issarny 
  
Françoise Sailhan 
  
Maroua Bahri 
  
Abdoul Shahin 
  
Abdoul Soukour 
  
Resource-Aware Scheduling of Continuous Operators

Keywords: Edge/Fog computing, Cloud Computing, Optimization, Queueing Networks, Dynamic System

Data stream processing and analytics (DSPA) applications are widely used to process the ever increasing amounts of data streams produced by highly geographically distributed data sources, such as fixed and mobile IoT devices, in order to extract valuable information in a timely manner for actuation. DSPA applications are typically deployed in the Cloud to benefit from practically unlimited computational resources on demand.

However, such centralized and distant computing solutions may suffer from limited network bandwidth and high network delay. Additionally, data propagation to the Cloud may compromise the privacy of sensitive data.

To effectively handle this volume of data streams, the emerging Edge/Fog computing paradigm is used as the middle-tier between the Cloud and the IoT devices to process data streams closer to their sources and to reduce the network resource usage and network delay to reach the Cloud. However, Edge/Fog computing comes with limited computational resource capacities and requires deciding which part of the DSPA application should be performed in the Edge/Fog layers while satisfying the application response time constraint for timely actuation. Furthermore, the computational and network resources across the Edge-Fog-Cloud architecture can be shareable among multiple DSPA (and other) applications, which calls for efficient resource usage.

In this PhD research, we propose a new model for assessing the usage cost of resources across the Edge-Fog-Cloud architecture. Our model addresses both computational and network resources and enables dealing with the trade-offs that are inherent to their joint usage. It precisely characterizes the usage cost of resources by distinguishing between abundant and constrained resources as well as by considering their dynamic availability, hence covering both resources dedicated to a single DSPA application and shareable resources. We complement our system modeling with a response time model for DSPA applications that takes into account their windowing characteristics.

Leveraging these models, we formulate the problem of scheduling streaming operators over a hierarchical Edge-Fog-Cloud resource architecture. Our target problem presents two distinctive features. First, it aims at jointly optimizing the resource usage cost for computational and network resources, while few existing approaches have taken computational resources into account in their optimization goals. More precisely, our aim is to schedule a DSPA application in a way that it uses available resources in the most efficient manner. This enables saving valuable resources for other DSPA (and non DSPA) applications that share the same resource architecture. Second, it is subject to a response time constraint, while few works have dealt with such a constraint; most approaches for scheduling time-critical (DSPA) applications include the response time in their optimization goals.

To solve our formulated problem, we introduce several heuristic algorithms that deal with different versions of the problem: static resource-aware scheduling that each time calculates a
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R ésum é

Les applications de traitement et d'analyse des flux de données (TAFD) sont largement utilisées pour traiter les quantités toujours plus importantes de flux de données produites par des sources de données hautement distribuées géographiquement, telles que les dispositifs de l'internet des objets (IdO) fixes et mobiles, afin d'extraire des informations précieuses le plus rapidement possible pour une action satisfaisaint une limite de temps de réponse. Les applications TAFD sont généralement déployées dans le Cloud pour bénéficier de ressources de calcul pratiquement illimitées à la demande. Cependant, ces solutions de calcul centralisées et distantes peuvent souffrir d'une bande passante réseau limitée et des retards de réseau élevé. De plus, la propagation des données dans le nuage peut compromettre la confidentialité des données sensibles.

Pour traiter efficacement ce volume de flux de données, le paradigme émergent du Edge/Fog computing est utilisé comme niveau intermédiaire entre le Cloud et les dispositifs IdO pour traiter les flux de données plus près de leurs sources afin de réduire l'utilisation des ressources réseau et les retards dans le réseau pour atteindre le Cloud. Cependant, le paradigme Edge/Fog computing contient des ressources de calcul limitées, il est donc necessaire de décider quelle partie de l'application TAFD doit être exécutée au niveau du Edge/Fog tout en satisfaisant à la contrainte de temps de réponse de l'application. De plus, les ressources de calcul et de réseau de l'architecture Edge-Fog-Cloud peuvent être partagées entre plusieurs applications de TAFD (ou autres), ce qui nécessite une utilisation efficiente de ces ressources.

Dans cette thèse, nous proposons un nouveau modèle pour évaluer le coût d'utilisation des ressources à travers l'architecture Edge-Fog-Cloud. Notre modèle concerne à la fois les ressources de calcul et de réseau et permet de traiter les compromis inhérents à leur utilisation conjointe. Ce modèle caractérise précisément le coût d'utilisation des ressources en distinguant les ressources abondantes des ressources contraintes et en considérant leur disponibilité dynamique, couvrant ainsi les ressources dédiées à une seule application de TAFD et les ressources partageables. Nous complétons notre modélisation du système par un modèle de temps de réponse pour les applications TAFD qui prend en compte leurs caractéristiques de fenêtrage.

En s'appuyant sur ces modèles, nous formulons le problème de l'ordonnancement d'opérateurs continus, qui constituent une application de TAFD, sur une architecture hiérarchique de ressources Edge-Fog-Cloud. Notre problème cible présente deux différentes caractéristiques. Premièrement, il vise à optimiser conjointement le coût d'utilisation des ressources de calcul et de réseau, alors que peu d'approches existantes ont pris en compte les ressources de calcul dans leurs objectifs d'optimisation. Plus précisément, notre objectif est de déployer une application de TAFD de manière à ce qu'elle utilise les ressources disponibles de la manière la plus efficace possible. Cela permet d'économiser des ressources précieuses pour les autres applications de TAFD (ou d'autre type) qui partagent la même architecture de ressources.

Deuxièmement, il est soumis à une contrainte de temps réponse, alors que peu de travaux 3 ont traité d'une telle contrainte ; la plupart des approches d'ordonnancement des applications soumises au contrainte de temps de réponse incluent le temps de réponse dans leurs objectifs d'optimisation. Nous introduisons plusieurs algorithmes basés sur des heuristiques qui traitent différentes versions du problème : l'ordonnancement statique tenant compte que des ressources de calcul et réseau, l'ordonnancement static tenant compte à la fois des ressources et de la contrainte de temps de réponse, et l'ordonnancement dynamique qui prend en compte le déploiement actuel de l'application et des resources disponibles.

Enfin, nous évaluons de manière approfondie et comparative nos algorithmes à l'aide de simulations réalistes par rapport à plusieurs alogorithmes que nous avons soit conçu ou qui sont issus ou inspirés de la littérature existante. Nos résultats démontrent que nos solutions font progresser l'état actuel de l'art en matière d'ordonnancement des applications de TAFD.

Mots clés

Internet des objets, flux de données, opérateur continu, informatique de périphérie/de brouillard, informatique en nuage, optimisation, réseaux de files d'attente, système dynamique new system deployment from the outset, time-aware and resource-aware scheduling, dynamic scheduling that takes into account the current deployment.

Finally, we extensively and comparatively evaluate our algorithms with realistic simulations against several baselines that either we introduce or that originate / are inspired from the existing literature. Our results demonstrate that our solutions advance the current state of the art in scheduling DSPA applications.
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Today, more and more data are delivered in real-time. According to the International Data Corporation1 by 2025, more than 25% of all data created will be real-time in nature 2 . Real-time data could not be stored but should be processed as quickly as it is gathered. The time value of data is essential in many applications with time-constraint control and automation, such as smart transportation [1,2], augmented or virtual reality [3][4][5][6]. For example, Internet of things (IoT) applications built using several geographically distributed devices (aka thinks) enhanced with sensing capabilities produce data streams that have to be processed and analysed on the fly in order to take time-sensitive decisions or actions e.g., to regulate a traffic jam. Unlike snapshot queries on historical data, data stream processing and analytics (DSPA) engines continuously process unbounded data streams to extract valuable information in timely manner via a series of continuous operators (streaming operators or simply operators) such as aggregation, filter, join, etc [7]. This series of operators specifies a DSPA application.

DSPA applications are typically deployed in the Cloud to benefit from unlimited computational resources on demand depending on the number of streams and the speed of data that needs to be processed. As depicted in Figure 1.1a, this Cloud-based analytics requires to transmit all the data streams produced by IoT devices to the distant Cloud by traversing wide area network (WAN) links involving several hops [START_REF] Jonathan | Wasp: Wide-area adaptive stream processing[END_REF] and the response may have to be sent all the network congestion and delay issues in case of highly dynamic data stream rates. Additionally, data propagation to the Cloud may compromise privacy of sensitive data [START_REF] Nayak | A review on edge analytics: Issues, challenges, opportunities, promises, future directions, and applications[END_REF].

Recent breakthroughs in network technology allows to realize post-Cloud architectures in order to collect and process real-time data. In particular, 5G networks [START_REF] Li | 5g internet of things: A survey[END_REF][START_REF] Akyildiz | 5g roadmap: 10 key enabling technologies[END_REF] enable an increased network bandwidth capacity up to 10Gbps, low-latency communications down to 1ms, and a high connectivity density up to 1 million of IoT devices per km 2 . This enables IoT devices to transmit a greater number of data streams at high data rates. However, pushing systematically to the Cloud such amount of data streams could over-utilize the available network resources and thus introduce network delays. The situation is worsened by the fact that the available bandwidth capacities of WAN links are inherently dynamic due to the varying Internet traffic conditions [START_REF] Jonathan | Wasp: Wide-area adaptive stream processing[END_REF]. Additionally, the sum rate of transmissions of IoT data streams could overwhelm the bandwidth capacity reserved in the Cloud, incurring additional monetary charges: the cost for WAN bandwidth usage can be much higher than the cost for computational resource usage [START_REF] Amazon | Aws whitepapers guides[END_REF].

In this respect, bringing computational resources closer to where data streams are produced (at the IoT network edge) through Edge and Fog architectures is currently one of the key solutions being adopted by the industry to respond to the identified need, but also an open research question [START_REF] Varghese | Revisiting the arguments for edge computing research[END_REF][START_REF] Ali-Eldin | The hidden cost of the edge: A performance comparison of edge and cloud latencies[END_REF]. As depicted in Figure 1.1b, the Edge/Fog architecture introduces intermediate layers of computing, storage, and networking between the IoT devices and the Cloud enabling to process data streams near their sources and hence to reduce network consumption and network delay of WAN links toward the Cloud and to enforce data privacy [START_REF] Mcchesney | Defog: fog computing benchmarks[END_REF][START_REF] Shi | Edge computing: Vision and challenges[END_REF].

Edge/Fog architectures are highly distributed and come with stringent resource constraints in terms of computational capacity (e.g., CPU, GPU, RAM, etc.) or power supply (e.g., recharge-able batteries, solar energy, wind power,etc.). In this context, the allocation of Edge/Fog computational resources to a DSPA application should cope with their heterogeneity, their limited and shareable capacities, as well as the highly dynamic workload related to the spatio-temporal dynamics of real-time data produced in the wild [START_REF] Hong | Resource management in fog/edge computing: A survey on architectures, infrastructure, and algorithms[END_REF][START_REF] Al-Khafajiy | Iot-fog optimal workload via fog offloading[END_REF].

In order to process as much as possible data streams at the IoT network edge, one needs to schedule the related operators across Edge-Fog-Cloud nodes by controlling both the processing latency and the network delays, while keeping minimal the costs of using the computational resources (CPU/GPU, RAM, energy) at the Edge/Fog layers and the network resources to reach the Cloud (WAN bandwidth, WAN delays) [START_REF] Ali-Eldin | The hidden cost of the edge: A performance comparison of edge and cloud latencies[END_REF]. Specifically, we aim to schedule the operators across Edge/Fog/Cloud nodes in a way that exhibits optimal trade-offs between the usage of network and computational resources. As DSPA application workload may highly vary, we need to monitor at run-time the allocated resources and continuously reschedule the operators in the Edge/Fog/Cloud continuum.

Scheduling operators has largely been studied in the literature for DSPA applications deployed in the Cloud or distributed on peer nodes of a data center, where the computational resources are abundant [START_REF] Liu | Resource management and scheduling in distributed stream processing systems: a taxonomy, review, and future directions[END_REF][START_REF] Cardellini | Run-time adaptation of data stream processing systems: The state of the art[END_REF]. On the other hand, related work on processing data streams at the IoT network edge mostly focuses on reducing the required network bandwidth and resulting delays to reach the Cloud by exploiting to the maximum the available computational resources at the Edge/Fog layers [START_REF] Hiessl | Optimal placement of stream processing operators in the fog[END_REF][START_REF] Cardellini | Optimal operator placement for distributed stream processing applications[END_REF][START_REF] Prosperi | Planner: cost-efficient execution plans placement for uniform stream analytics on edge and cloud[END_REF][START_REF] Nardelli | Efficient operator placement for distributed data stream processing applications[END_REF]. Given that the Edge/Fog nodes come with heterogeneous and limited computational resources, using to the maximum their available computational resources may in turn impair on the DSPA application performance i.e. violate time-constraint [START_REF] Ali-Eldin | The hidden cost of the edge: A performance comparison of edge and cloud latencies[END_REF].

Use case: Wide-area traffic management

To motivate this thesis, we introduce a DSPA application for wide-area traffic management [START_REF] Tiwari | Reconfigurable streaming for the mobile edge[END_REF] at different geographical and time scales as illustrated in Figure 1.2. We consider streams of traffic data generated by connected vehicles (simply vehicles) such as the vehicle identifier, GPSlocation and driving speed. Vehicles transmit such data at a given frequency to the nearest street antenna which in turn forwards them to the DSPA application.

The DSPA application processes the input traffic data by the means of operators. Given the infinite nature of IoT data stream, we consider for each operator a window to chop its input data streams into a finite set of data to be processed along a fixed time period (window size).

The resulting data stream after being processed by the DSPA application via the series of operators is given as input for two IoT analytics applications. The first implements a countrywide traffic monitoring that reports on an hourly basis traffic statistics for the entire country.

The second application aims to support city-wide traffic regulation: control the traffic lights, e.g. to give priority to jammed traffic flows over non-jammed ones, etc.

We assume that the country-wide traffic monitoring application is deployed in the Cloud Traffic data rates are highly dynamic due to the high variability of traffic density and mobility patterns of vehicles [START_REF] Cookson | INRIX global traffic scorecard[END_REF] between rush hours (high data stream rates) and normal hours (normal data stream rates). This can lead to high fluctuations in the DSPA's demand for processing capacity and network bandwidth, hence may result in resource congestion and failure to meet time-constraint requirements. In particular, at normal hours DSPA application can be deployed in the Cloud as the data streams send to the Cloud at normal rate do not overwhelm the WAN resources and the aggregated data stream rates do not exceed the maximum Cloud bandwidth capacity agreed between the Cloud provider and the application owner. However, at rush hours sending data streams at high rates toward the Cloud may overwhelm the WAN resources causing network congestion and high network delays that may impair on the timeliness of data stream.

Furthermore, the aggregated data stream rates may eventually exceed the maximum Cloud bandwidth capacity and therefore unforeseen monetary costs.

Pushing computation of DSPA application at the IoT network edge should be exploited to overcome high variability in the number or the rate of traffic data streams. In this case data streams will be partially processed at the IoT network edge and the reduced data stream rates will be sent to the Cloud for further processing. Of course the computational resources requested by the pushed computations should not exceed the capacity of the IoT network edge on which a part of the DSPA application is deployed. Furthermore, when placing a part of DSPA application at the IoT network edge, one needs to ensure geographical placement constraint. In particular, each part of DSPA application can be placed at specific node at the IoT network edge if there is sense in applying its operation only to the local data stream produced by the closest IoT area (city level). Otherwise, if this operation must be applied to the global data stream (country level), this part can only be deployed in the Cloud.

Scope of the thesis

This thesis considers a hierarchical Edge-Fog-Cloud architecture that can be shared among several DSPA applications. Each IoT device at the Edge is connected to its closest Fog node and all the Fog nodes are connected to a single Cloud. According to the use case example, we assume that a DSPA application is initially deployed in the Cloud, on which the sink of the DSPA application is fixed, while some part of the DSPA application can migrate to the Fog if necessary. Figure 1.3 depicts the hierarchical Edge-Fog-Cloud architecture in consideration.

At the root of the hierarchy we consider a Cloud node providing computational and network resources on demand. Linked to the Cloud node, a set of Fog nodes provides heterogeneous and limited computational and network resources at the Fog layer [START_REF] Hu | Quantifying the impact of edge computing on mobile applications[END_REF]. We assume an overlay network based on the publish-subscribe protocol MQTT [START_REF] Katsikeas | Lightweight & secure industrial iot communications via the mq telemetry transport protocol[END_REF] to transport data streams across the Edge-Fog-Cloud architecture. In this respect we consider at the Edge layer, mobile IoT devices (e.g.,vehicles) per geographical area that produce and publish data at a certain rate (e.g., 4KB/s [START_REF] Xhafa | Evaluation of iot stream processing at edge computing layer for semantic data enrichment[END_REF]) to the MQTT instance deployed on the closest Fog node via 5G antennas.

We assume that these antennas enable high connectivity density and lossless communication for IoT devices. If a part of the DSPA application is deployed on this Fog node, the MQTT instance transfers these data to this application segment and waits for the resulting output data back in order to send them to the MQTT instance deployed in the Cloud for further processing.

Otherwise, if no application part is deployed on the Fog node, the Fog MQTT instance transfers directly these data to the Cloud MQTT instance.

In this setting, we are interested in continuously scheduling DSPA application between the Fog and Cloud nodes for processing the data streams generated by IoT devices at the Edge.

In particular as data stream rates may evolve according to various spatio-temporal patterns [START_REF] Hong | Resource management in fog/edge computing: A survey on architectures, infrastructure, and algorithms[END_REF][START_REF] Al-Khafajiy | Iot-fog optimal workload via fog offloading[END_REF], the DSPA application workload may heavily vary, and accordingly the computational and network resources needed to be allocated for its processing. Taking for instance the use case example in Section 1.1, in case of high usage of computational and network resources, we essentially need to reschedule the current placement of operators by replicating new operators initially deployed at the Cloud or removing already replicated operators at the Fog. To this, we need to address the following challenges:

1.2. Scope of the thesis How to model the resource usage of DSPA applications across a shareable and heterogeneous Edge-Fog-Cloud architecture ? Initially modeling computational and network resources across the Edge-Fog-Cloud architecture is challenging due to the heterogeneity of the different nodes in terms of CPU/RAM and network bandwidth capacities, as well as to the fact that this infrastructure is shared among several (DSPA or other) applications. As a matter of fact, several stakeholders (e.g., the city, telecommunication companies, etc.) may provide their own network communication technology (e.g., WiFi, LoRaWAN, 4G, 5G, etc.) and equipment for Edge/Fog nodes (e.g., small server, Raspberry Pi, Gateway, 5G antennas, etc.). Furthermore, the geographic dispersion of Edge/Fog nodes with respect to the Cloud may increase the variability in terms of network delays.

On the other hand, DSPA applications are characterized by different type of operators (e.g., aggregation, filter, join, etc.) and each operator may support different type of windows (e.g., count, time-based). By assuming that a DSPA application processes data streams that come at different rates, it is necessary to model at fine grain each operator and links between operators in order to identify at any time instant its processing time and its computational and network resource usage demands for processing its input data stream and for transmitting the processed data streams to its upstream operator (or sink).

In this respect, given the heterogeneity of the computational and network resources across the Edge-Fog-Cloud architecture. It is necessary to distinguish these resources in terms of their maximum capacities. On the other hand, given that several (DSPA) applications can be deployed dynamically on the fly on these resources, it is also necessary to distinguish these resources in terms of their available capacities. It should also take into account the time-constraint of DSPA application. Therefore, we need to propose a holistic resource usage model as well as response time model that captures the different characteristics of both the Edge-Fog-Cloud architecture, the DSPA application, and dynamic data stream stream rates produced by IoT devices.

How to deploy a DSPA application while taking into account the Edge-Fog-Cloud resource characteristics? Given that data streams produced by each individual IoT areas at the Edge reach the Cloud through the intermediate closest Fog nodes. Then, by assuming that all the operators that constitute a DSPA applications are usually deployed in the Cloud, distributing this application between the Cloud and Fog nodes assumes placing some operators on the Fog nodes. However only placing the existing operators of the DSPA application will not enable to handle all the data streams produced at the different IoT areas and the analytic results may not be accurate. Thus, we need to replicate each operator at the maximum on each of the Fog nodes on which the data stream arrive first before reaching the Cloud in order to partially processed these streams at the Fog layer.

However, given the different type of operators that determine the computational and network resource demands for each operator to process its input data stream and to send the processed data stream to next operator. We need to identify how to replicate these operators in respect of not only the maximum capacities but also the available capacities of Fog nodes capable of hosting them and of the Fog to Cloud network resources. Furthermore, we should pay attention whether some DSPA application may be subject to geographical placement constraint.

How to ensure that a deployed DSPA application satisfies the response time constraint?

The response time of a DSPA application is constituted by the operator processing time that depends on the characteristics of the operators, the available computational and network resources across the heterogeneous Edge-Fog-Cloud architecture, as well as the network delays in the network links through which operators transmit (or receive) data to each other (or from IoT devices). Any deployment of DSPA application does not necessarily guarantee to satisfy the response time constraint. Thus, we need to introduce a scheduling solution for DSPA applications across the Edge-Fog-Cloud architecture that optimizes not only the resource usage and satisfies the geographical placement constraint but also satisfies the response time constraint.

How to continuously ensure response time constraint and optimized resource usage of a DSPA application in dynamic environments? As discussed earlier, the workload of a DSPA application may exhibit variation at run-time due to variability of the rates of data streams produced by IoT devices. At the same time the available resource capacities across the Edge-Fog-Cloud architecture may exhibit also variation given these resources can be shared among several (DSPA) applications. Finally, the WAN resources to reach the Cloud can be dynamic due to the underlying internet condition [START_REF] Jonathan | Wasp: Wide-area adaptive stream processing[END_REF]. Considering this dynamic environment on which a DSPA application can be deployed, the initial deployment, at a certain time may no longer optimize the resource usage or may fail to satisfy the response time constraint. Therefore, we 

Contributions of the thesis

We are interested in operator replication and placement scheme that consumes as less as possible the Fog computational resources and Fog to Cloud network resources as well as satisfies any response time constraint set by a DSPA application. Figure 1.4 sketches the main contributions of the thesis, which are detailed in the sequel.

Edge/Fog/Cloud resource usage and application response time models. The first contribution of this thesis is a resource usage model for assessing the utilization of Edge-Fog-Cloud resources allocated to the execution of a DSPA application. In this respect, a DSPA application is abstracted as a directed acyclic graph (DAG) of operators, while an Edge-Fog-Cloud architecture is abstracted as a hierarchical WAN of resources, where we identify for each resource (CPU, RAM, GPU of Edge/Fog/Cloud node or bandwidth of WAN link) its available and maximum capacities. Additionally, we introduce a response time model for a DSPA application, to which a response time constraint may be associated (see Step 1 in Figure 1.4).

More precisely, we identify at a fine grained level the computational resource usage demand of each operator and the network resource usage demand for transmitting data streams between two operators executed at distributed nodes. Then, we propose a holistic resource usage cost model that can be used in two different cases. The first case takes into account that the DSPA application is statically deployed on dedicated Edge-Fog-Cloud resources (non shared resources).

In this case, the request of using a resource is weighted by a static weight that captures only the maximum capacity of this resource. On the other hand, the second case takes in account that the DSPA application is dynamically deployed on non-dedicated Edge-Fog-Cloud resources (shareable resources). In this case, the request of using a resource is weighted by a dynamic weight that takes into account both the available and maximum capacities of this resource.

To estimate the response time of a DSPA application, we account for the transmission and propagation delays on each network link when sending and receiving data streams from the IoT devices at the Edge, considered as data sources, to the DSPA application sink deployed in the Cloud while traversing the Fog resource nodes on which the replicated operators of DSPA application can be placed. Furthermore, our response time model estimates the time required per each operator to process its input data stream in the specified window of an operator. Given the variability of IoT data stream rates and hence of the data stream size in the operator window, we abstract each operator with a queuing model to estimate the operator processing time (or operator latency). Next, we formulate the problem of replicating and migrating operators from the Cloud to the
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Contributions of the thesis

Fog as a single objective optimization (SOO) problem. SOO essentially minimizes the combined cost of the Fog computational resource usage and the Fog to Cloud network resource usage while satisfying constraints on the usage of both types of resources. We observe that the SOO problem is a NP-hard problem. Towards its solution, we first formulate the SOO problem as an integer linear programming (ILP) model and exploit a mathematical optimization tool (CPLEX)

to optimally solve it. However, our experimental results show that the SOO-CPLEX solution raises serious scalability concerns.

For this reason, we propose a heuristic algorithm, called SOO-H, which attempts to approximate the optimal SOO-CPLEX solution within a reasonable amount of time. Using thorough experiments, we demonstrate that SOO-H runs faster than SOO-CPLEX, regardless of the scale of the problem. Additionally, SOO-H reaches the optimal scheduling solution in most cases.

Only in few cases SOO-H fails to find the optimal scheduling solution, but the approximation error is very small. To this end, we consider a framework for threshold based monitoring approach of the workload of DSPA applications in order to trigger an adaptive rescheduling of the current operator placement solution whenever it is needed. To solve the extended TSOO problem instead of running from scratch the whole TSOO-H algorithm that may incur high execution cost in terms of both the execution time and operator rescheduling cost, we propose an adaptive version of TSOO-H algorithm, called aTSOO-H.

Resource

aTSOO-H identifies the operators to replicate or to remove on the Fog in respect to the changes identified in the environment. By doing so aTSOO-H approximates the best feasible scheduling solution of operators at run-time with lower execution cost compared to TSOO-H, however with practically similarly resource usage cost and response time satisfaction ratio. In this respect, aTSOO-H is a best effort algorithm that provides feasible solution compared to TSOO-H algorithm.

Evaluation with recent related work shows that both TSOO and aTSOO-H provide significant solution in terms of successfully deploying DSPA applications across the Edge-Fog-Cloud resources shared among several application with lower overall resource usage cost.

Outline of the thesis

The remainder of the thesis is organized as follows.

In Chapter 2, we give the background of the DSPA application and the Edge-Fog-Cloud architecture. In Chapter 3, we analyze and classify the existing scheduling algorithms on resource allocation problem for DSPA application across distributed resource nodes (sensor network, peer resource nodes and Edge-Fog-Cloud architecture). To this end, we develop a general taxonomy that summarizes the main design choices of these existing solutions. Then we position our contribution with regard to the most relevant related works.

In Chapter This chapter contains 20 pages.

Introduction

In this chapter, in Section 2.2 we present the core operators defined for data streams and describe the main steps in executing a DSPA application along with the main architectures of DSPA engines. In Section 2.3, we discuss the benefits of processing and analysing IoT data streams at the IoT network edge and introduce the challenges in pushing computations from the Cloud to the IoT network Edge. 2.2 Data Stream Processing and Analytics (DSPA)

Data Stream Processing and Analytics (DSPA) relies on the principle of online computation to mine data stream in near real time [START_REF] Cardellini | Optimal operator placement for distributed stream processing applications[END_REF]. In this respect, a DSPA application is constituted of operators that process the data stream. Conversely to one shot operators of snapshot-based queries in traditional databases, the results of a operator are constantly updated each time new data tuple of input data streams are processed [7].

Data Streams

A data stream is an unbounded sequence of tuples [START_REF] De Assuncao | Distributed data stream processing and edge computing: A survey on resource elasticity and future directions[END_REF]. In general, all tuples of a data stream share the same schema. As shown in Figure 2.1, a tuple is defined as list of attribute-value pairs

where each attribute has a name and a type (e.g., integer, double, string, etc.). We denote the schema of a generic data stream as (A 1 , A 2 , . . . , A n ) and we refer to attribute A i of a data tuple d by d.A i .

A data tuple in a stream is timestamped. Depending on the DSPA engine [START_REF] Andrade | Fundamentals of stream processing: application design, systems, and analytics[END_REF], timestamps can be set in different ways: (i) the event time is related to time that the data tuple was generated, (ii) the ingestion time is related to the time that the data tuple entered into the system (DSPA engine, DSPA application) and (iii) the processing time is related to the time that the data tuple was processed by an operator. The event time and the processing time assume that the data stream sources and the nodes hosting the DSPA application use a clock synchronization protocol like NTP [START_REF] Mills | Internet time synchronization: the network time protocol[END_REF]. The ingestion time can be used in the case clock synchronization protocol is not possible.

Time-based and Tuple-based Windows

Because of the infinite nature of the data stream, the mechanism called window has been introduced for setting an operator with a flexible bounds on the unbounded data stream in order to fetch a finite, yet ever changing set of data tuples, which may be regarded as a temporary relation [START_REF] Akidau | The dataflow model: a practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing[END_REF]. Formally, it is defined as follows:

W {∀t ≥ t 0 |W state ← {d ∈ Sin|p(d, t) = True }}(Sin, W state, W type, W size, [W advance], t, t 0 ) (2.1)
where W type is the type of a window that can be time-based or tuple-based. The former is defined over a period of time (e.g., data tuples received in the last 5 minutes) while the latter is defined over a fixed number of data tuples (e.g., last 100 data tuples). For both type, W state is the state of the window defined as the number of data tuples that it contains at every time instant t.

W size is the size of the window that corresponds to the window boundary, e.g., 5 minutes for the time-based window and 100 data tuples for the tuple-based window. The parameter W advance called slide is optional and used to process the data tuples in a window of size W size by slide of W advance. Sin is the input data stream from which the input data tuples arrive.

t 0 is the time at which the windowed operator has been deployed while t is the current time.

Finally, p is a condition to verify if a data tuple d satisfies the window size (and the slide size) boundary before to be included in the window state W state.

Two kinds of windows are widely used in the recent generation of DSPA engines, namely, time-based and tuple-based windows distinguished according to the unit in which window state is determined [START_REF] Akidau | The dataflow model: a practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing[END_REF]. It worth noting that in our work we do not cover the session window.

Unlike the formal definition of windows introduced bellow, a session window does not rely on a static boundary. It actually depends on a defined session period which can be static or dynamic (see [START_REF] Warski ; Flink | Windowing data in big data streams-spark[END_REF] for further details).

Time-based windows

In time-based windows the timestamps of data tuples are checked for inclusion within a specified temporal boundary. This requirement is expressed by means of a scope function that may be defined for each window type. In essence, at every time instant the scope function returns the window time boundary and not the actual window state. This scope function take as parameter the window size and the window slide. We present the Time-based sliding window and Tumbling window as the most representative time-based window types. For further reading on the timebased windows, we refer reader to [START_REF] Patroumpas | Window specification over data streams[END_REF].

Time-based sliding windows consider the invariable temporal extend of the window called window size W size, the progression temporal step, called sliding size W advance. In this respect, the window contains the set of data that arrive within the last W size time units, so that the set of data within the window are processed every W advance time units.

Let consider t 0 as the time at which the operator is deployed considering a time-based sliding window W, we assume the time window size has no delay with regard to the current time t.

Thus, the scope function of this window can be defined as a function of time:

W scope(t) ←      [t 0 , t] if t 0 ≤ t < t 0 + W size ∧ mod((t -t 0 ), W advance) = 0 [t -W size + 1, t] if t ≥ t 0 + W size ∧ mod((t -t 0 ), W advance) = 0 W scope(t -1) if mod((t -t 0 ), W advance) ̸ = 0 (2.2)
where t 0 and t are timestamps, W size and W advance are sizes of time interval and sliding where W size > 0 and W advance > 0.

For every time instant t, the window state contains the data tuple of the data stream Sin whose the timestamp is in the time interval of the scope function:

W {W state ← {d ∈ Sin|d.ts ∈ W scope(t)}}(Sin, W state, W type, W size, W advance, t, t 0 ) (2.3)
where ts is the timestamp of the input data tuple d.

For a time sliding window where W size > W advance, an overlapping of data tuples is observed between two successive states of the time sliding window. Thus, a subset of their data tuples remains the same across states.

Time tumbling windows consider only the invariable temporal extend of the window called window size W size so that the window state contains the set of data tuples that arrive within the last W size time units, that are processed every W size time units. In this respect, there is no data tuple overlapping, each data tuple belongs to only one window state. A tumbling window can be seen as a special case of the time-based sliding window where W size = W advance. Thus, the time tumbling window is formally defined as following:

W {W state ← {d ∈ Sin|d.ts ∈ W scope(t)}}(Sin, W state, W type, W size, W size, t, t 0 ) (2.4)

Tuple-based windows

The window state is determined by counting the most recent data tuples. Thus, W size ∈ N is a natural number (not determined in terms of time unit). We present the tuple-based window and Partitioned window. For further reading on the tuple-based windows, readers are referred to [START_REF] Patroumpas | Window specification over data streams[END_REF].

Tuple-based window At every time instant t, a tuple-based window covers the most recent W size data tuples d of the input data stream Sin:

W {W state ← {d ∈ Sin : (∃t 1 ≤ t ∧ ∥d ∈ Sin : t 1 ≤ d.ts ≤ t| ≤ W size) (2.5) ∧ (∀t 2 ≤ t 1 ∧ |d ∈ Sin : t 2 ≤ d.ts ≤ t| > W size)}}(Sin, W state, W type, W size, t)
where t 1 and t 2 are timestamp values. The former bounds the most recent data tuples while the latter bounds the data tuples that can be considered as outdated. In this respect, in order to group the set of W size last data tuple, the tuple-based window starts from the current time t, selects data tuple d by going steadily backwards in time until the W size data tuples are collected.

Partitioned window (operator) splits its input data stream Sin into a set of data sub- Then, the tuple-based window is applied on each substream and the union of the resulting data tuple constitutes the window state W state. Formally, it is defined as following:

streams L = {A 1 , A 2 , • • • , A k }
W {W state ← A k ∈L {d ∈ Sin : ∀A k = a k ∧ a k ∈ D k ∧ (∃t 1 ≤ t ∧ ∥d ∈ Sin : d.A k = a k ∧ t 1 ≤ d.ts ≤ t| ≤ W size) (2.6) ∧ (∀t 2 ≤ t 1 ∧ |d ∈ Sin : d.A k = a k ∧ t 2 ≤ d.ts ≤ t| > W size)}} (Sin, W state, W type, W size, L, t)
It worth noting that, the timestamp attribute is not involved in grouping. Thus, tuple-based windows may be considered as a special case of partitioned windows where all data tuples of the data stream get assigned to a single partition [START_REF] Patroumpas | Window specification over data streams[END_REF].

Out-of-order data tuples in data streams

Both time-based and tuple-based windows rely on a time notion to specify the contents of a current window. However, how we can ensure that a set of incoming data tuples corresponds to a specific window when they arrive out-of-order? This is frequently the case of data tuples from

IoT streams as devices they produce them may stay off-line due to a network issues and thus send out-of-order data tuples after some time. This issue is usually handled by DSPA engines using a watermarking heuristic. The wisdom behind the watermark is to balance between including as much late data as possible and not delaying window processing too much [START_REF] Andrade | Fundamentals of stream processing: application design, systems, and analytics[END_REF].

Operators

Typical operators specifying a DSPA application are analogous to relational algebra operators and can be classified as stateless or stateful [START_REF] Akidau | The dataflow model: a practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing[END_REF][START_REF] Abadi | Aurora: a new model and architecture for data stream management[END_REF]. Stateless operators (e.g., Map, Union and Filter) do not keep state across data tuples and perform their computation solely based on each input data tuple. Stateful operators (e.g., Aggregate, Join and Cartesian Product) perform operations on sequences of data tuples.

The result of a operator is a data tuple whose constituents may differ from the input data tuple both in terms of content and structure [START_REF] De Assuncao | Distributed data stream processing and edge computing: A survey on resource elasticity and future directions[END_REF]. An operator is characterized by a selectivity defined as the the ratio between the number of data tuple (or the number of data tuple attributes) it produces and the number of data tuple (or the number of data tuple attributes) it consumes [START_REF] Gedik | Pipelined fission for stream programs with dynamic selectivity and partitioned state[END_REF].

In the following, we present formally the typical operators including Map, Filter, Aggregation, Union and Join [START_REF] Gulisano | Streamcloud: An elastic and scalable data streaming system[END_REF].

Filter

The filter operator is used to select input data tuples according to a set of predicates and route them over one or more output data streams.

In practice, filter operation involves selection or projection. In this respect, the selection can be defined as the operation of selecting data tuple d from input data stream Sin that satisfies a given predicate p on its attribute. Thus, the selection operator is formally defined as following:

σ{Sout ← {d ∈ Sin : p(d) = T RU E}}(Sin, p) (2.7) 
On the other hand, the projection can be defined as the operation of selecting attribute of data tuple d from input data stream Sin in order to produce output data stream Sout constituted with data tuple with new attribute schema.

π{Sout ← {d out ← A k ∈d {d ∈ Sin : d.A k = P.A k }}}(Sin, P (A 1 , ..., A m )) (2.8) 
P contains the attributes that will constitute the schema of the output data tuple d out in the output data stream Sout. In this setting the number of attributes of the output data tuple d out should be less than the number of attributes of the input data tuple d.

Map

The Map operator is used to transform each input data tuple to another output data tuple via set of user defined functions. The schema of the output data tuple may be different from the schema of the input data tuple but the timestamp of the former is preserved in the latter.

Formally the Map operator is defined as follows:

Ξ{A ′ 1 ← f 1 (din), A ′ 2 ← f 2 (din), • • • , A ′ n ← f n (din)}(din, dout) (2.9)
where din is the input data tuple defined by the schema (A 1 , • • • A m ), dout is the output data tuple defined by the schema (A

′ 1 , • • • A ′ n ) and m ̸ = n. Finally ,f 1 , • • • f n are the user defined functions.

Union

The union operator merges multiples input data streams sharing the same schema into a single output data stream by using the first in first out (FIFO) policy. It is formally defined as follows:

{Sout ← {d ∈ (∪ n i=1 Sin i )}}(Sin 1 , • • • , Sin n , Sout) (2.10)
where Sin 1 , • • • , Sin n are the input data streams, Sout is the output data stream.

Aggregation

The aggregation operator is used to compute aggregate functions such as count, sum, average, etc. over a set of data tuples in a window. More formally, it is defined as follows:

Ag.{W, A ′ 1 ← f 1 (W ), • • • , A ′ n ← f n (W ), [Group -by = (A 1 , • • • , A m )]}(Sin, Sout) (2.11)
where W is the window used by the operator that can be time-based or tuple-based. Sin is the input data stream whose data tuples fed to the various windows types. When a window reaches its time-or tuple-based boundary, the aggregate functions

f 1 (W ), • • • f n (W )
, are triggered on its input data tuples and produce a single output data tuple over the output data stream Sout.

The schema of the output data tuple is different from the one of the input data tuples and the timestamp of the output data tuple is the one associated to the earliest data tuple in the window.

A Group-by operation is optional and used to partition the data tuples of the input data stream Sin. Assume for example Group -by = A i , where A i is an attribute of the input data tuple. Then, the operator handles separate windows for each possible value of A i .

Join

The Join operator is used to match data tuples from multiple input data streams. It is formally defined as follows:

1 {W, p}(Sin r , Sin l , Sout) (2.12)

where Sin r and Sin l are two input data streams refereed as right and left respectively while Sout is the output data stream. p is a predicate for matching a pair of data tuples, one from each input data stream.

The join operator keeps separate windows W r, W l for each input data stream. Data tuples arriving on the left (respectively right) input stream are used to update the right (respectively left) window. If the window is a logical one, upon arrival of data tuple din ∈ Sin l , the window W r is updated by removing all data tuples d such that din.ts -d.ts is higher or equal to the It worth noting that, the Cartesian product operator (X ) is defined and works like the join operator with a predicate always true.

DSPA applications in Action

To implement a DSPA application, developers use an SQL-like continuous query [START_REF] Jafarpour | Ksql: Streaming sql engine for apache kafka[END_REF][START_REF] Tommasini | Declarative languages for big streaming data[END_REF] which is submitted to a DSPA engine capable of executing the operators on an underlying computing infrastructure (on the Cloud, a data center, etc.).

In this respect, DSPA engine parses a continuous SQL query to generate an associated logical application graph. It is essentially a directed, acyclic graph (DAG), where the vertices capture operators, and the edges capture the data streams flowing between them [7]. This logical application graph is then optimized in order to fulfill certain quality of service (QoS) associated with the DSPA application. In particular, graph rewritings is applied w.r.t. an optimal usage of the network and computational resources of the nodes chosen to execute the operators. During this optimization, several candidate physical placements of operators are generated, and the one that fulfill optimally the QoS objective is selected to be deployed on the resource nodes. Figure 2.2 shows the main steps in executing a DSPA application.

Quality of Service

A DSPA engine should respect the QoS requirements of a DSPA application to support real time data stream processing. This QoS is typically expressed in terms of high throughput [START_REF] Arkian | Model-based stream processing auto-scaling in geo-distributed environments[END_REF] and low end-to-end latency (response time) [START_REF] Jonathan | Wasp: Wide-area adaptive stream processing[END_REF]. To foster DSPA application availability, a DSPA engine could also optimize the resource usage cost [START_REF] Cardellini | Optimal operator placement for distributed stream processing applications[END_REF] (e.g., for monetary purpose) in terms of CPU/RAM usage, network bandwidth usage and energy consumption. rewriting that includes the operator reordering and the operator replication and (ii) operator placement. We describe bellow these policies by highlighting in Table 2.1 whether they change the topology of the DSPA application and whether they are applied to adapt its previously scheduled deployment, consequently whether the optimization policy can occur respectively at deployment time or at run-time.

Graph rewriting enables to rewrite a DSPA application graph into an equivalent one that when executed on a number of allocated computational resources can satisfy a QoS objective. It essentially rewrites operators using well-known equivalence rules of relational algebra [START_REF] Hueske | Opening the black boxes in data flow optimization[END_REF]. We present in the following few of these rules where we consider S as the input data stream and p as the predicate associated with an operator:

1. Conjunctive selection can be rewritten as a sequence of selections:

σ p1∧p2 (S) ≡ σ p1 (σ p2 (S)) (2.13)
2. Selection over Join can be rewritten as Join:

σ p (S 1 1 S 2 ) ≡ S 1 1 P S 2 (2.14) 
3. Conjunctive selection can be distributed over Join:

σ p1∧p2 (S 1 1 S 2 ) ≡ (σ p1 (S 1 )) 1 (σ p2 (S 2 )) (2.15)
4. Filter, Map, Aggregation, etc. can be distributed over Union:

σ p (S 1 S 2 ) ≡ σ p (S 1 ) σ p (S 2 ) (2.16)
The translation of a logical DSPA DAG to a physical one that will be executed on the resource nodes relies on two main rewriting policies described as follows [START_REF] Jonathan | Wasp: Wide-area adaptive stream processing[END_REF]:

Definition 1. (Reordering) "moves an operator from one node to another by following the topological order of operators in the DAG. For instance, a selection can be moved near to the source of the DAG to reduce the amount of data tuples of two streams that are joined afterwords (see Formula 2.14). As the performance gains achieved by this policy depends on the actual selectivity of operators which may change at run-time, operators reordering at deployment time may not always be sufficient".

Definition 2. (Replication) "replicates a operator in the DAG, so that each replica can process a portion of the operator input data stream to enhance parallel data processing [7].

As the performance gains achieved by this policy heavily depends on the actual dynamics of the DSPA application workload, operators replication should be decided at run-time".

Changing at run-time a running DSPA DAG composed of stateless operators is easy. We need to simply replace the old by the new execution. This is not the case of graphs composed of statefull operators. In this case, the new execution of the DSPA DAG should preserve the execution state of the old one. For example, the window state of the join operator in the application graph σ(S 1 1 S 2 ) can not be recovered by the application graph rewrites as σ(S 1 1 S 3 ).

Nevertheless, in this thesis we do not explicitly cover the reconfiguration of DSPA application constituted by state-full operators to manage state migration.

operator placement In order to deploy a physical DSPA DAG on our computing infrastructure, we need to select the nodes on which operators will be executed to respect the QoS objective of the DSPA application and eventually an overall optimal resource usage. Placement decisions are usually made once at deployment time [START_REF] Cardellini | Optimal operator placement for distributed stream processing applications[END_REF][START_REF] Prosperi | Planner: cost-efficient execution plans placement for uniform stream analytics on edge and cloud[END_REF][START_REF] Nardelli | Efficient operator placement for distributed data stream processing applications[END_REF]. Some placement algorithms [START_REF] Jonathan | Wasp: Wide-area adaptive stream processing[END_REF][START_REF] Pietzuch | Network-aware operator placement for stream-processing systems[END_REF][START_REF] Rizou | Solving the multi-operator placement problem in large-scale operator networks[END_REF] continue to be active also at run-time, in order to response to changes in the DSPA application workload or changes in the availability of the allocated resources.

DSPA Engines Architecture

We consider general DSPA engines that leverage the relational model of Data Base Management Systems (DBMS) for specifying DSPA applications using SQL-Like continuous queries. Unlike one-shot operators of traditional DBMS, once a operator is deployed, its results are computed each time a new data tuple becomes available in its input [7]. DSPA engines are typically categorized under 3 generations [START_REF] Heinze | Cloud-based data stream processing[END_REF] while a fourth one [START_REF] Arkian | Model-based stream processing auto-scaling in geo-distributed environments[END_REF] has been recently proposed to accommodate the growth of IoT applications.

First generation of DSPA engines heavily relies on DBMS technology extended to process long running queries in a centralized setting. They have been built to run as standalone prototype or as an extension to an existing DBMS [START_REF] Heinze | Cloud-based data stream processing[END_REF]. The notorious examples of DSPA engines of this generation are Aurora [START_REF] Abadi | Aurora: a new model and architecture for data stream management[END_REF] and TelegraphCQ [START_REF] Chandrasekaran | Telegraphcq: continuous dataflow processing[END_REF].

Second generation of DSPA engines introduces distributed processing of operators to take the advantage of abundant computational resources available in clusters. In this respect, these DSPA engines have been extended to support more expressive operators [START_REF] Barga | Event correlation and pattern detection in cedr[END_REF] but also additional services such as fault tolerance [START_REF] Abadi | The design of the borealis stream processing engine[END_REF] and adaptive query processing [START_REF] Rundensteiner | Cape: Continuous query engine with heterogeneous-grained adaptivity[END_REF]. Borealis [START_REF] Abadi | The design of the borealis stream processing engine[END_REF], CEDR [START_REF] Barga | Event correlation and pattern detection in cedr[END_REF],

CAPE [START_REF] Rundensteiner | Cape: Continuous query engine with heterogeneous-grained adaptivity[END_REF], etc. are typical examples of this generation.

Third generation of DSPA engines is influenced by the trends of massively parallel and distributed systems for cloud computing. Beside SQL-like queries, engines of this generation are able to support a wide range of complex jobs like iterative machine learning (ML), interactive queries and online processing on different data modalities (record or graph data). Well known DSPA engines are among others Apache Storm [START_REF] Iqbal | Big data analysis: Apache storm perspective[END_REF], Apache Flink [START_REF] Carbone | Apache flink: Stream and batch processing in a single engine[END_REF], Apache Kafka [START_REF] Garg | Apache Kafka[END_REF],

Apache Spark [START_REF] Shoro | Big data analysis: Apache spark perspective[END_REF], etc. It is worth noting that such DSPA engines can also be deployed on heterogeneous computing systems such as Edge/Fog nodes to process data streams near to their source of creation.

Fourth generation of DSPA engines aims to overcome the limitations of Edge/Fog computing architectures in terms of constrained resources that can impair the performance of DSPA applications [START_REF] Arkian | Resource management for data stream processing in geo-distributed environments[END_REF]. In particular, this generation of DSPA engine becomes aware of the Edge/Fog resources at the IoT network edge that could execute an application eventually in cooperation with a cloud-based DSPA engine. Nevertheless, the development of such DSPA engines are still in their infancy. Apache Minifi [START_REF] Hansen | Ffi-notat[END_REF] is a framework for deploying data collection applications on resource-poor nodes characterized by a lightweight energy footprint. It aims to supplement the core tenets of NiFi [START_REF]Apache nifi[END_REF] as a powerful and reliable DSPA engine designed for resource-rich computing nodes. IBM Apache Edgent [START_REF]Apache edgent[END_REF] is a stream processing programming model and lightweight run-time framework to support IoT data analytics at the edge nodes or the gateway. Edgewise [START_REF] Fu | Edgewise: a better stream processing engine for the edge[END_REF] and Resense [START_REF] Giouroukis | Resense: Transparent record and replay of sensor data in the iot[END_REF] are recent efforts to support IoT data analytics on resource-constraint devices at the edge or fog nodes. Furthermore, several commercial DSPA engines such as Amazon IoT greenglass [START_REF] Kurniawan | Learning AWS IoT: Effectively manage connected devices on the AWS cloud using services such as AWS Greengrass, AWS button, predictive analytics and machine learning[END_REF] aim to extend the cloud IoT analytics to local IoT devices, enabling devices to efficiently collect and analyse data closer to data sources. Finally, FogHorn [START_REF]Foghorn[END_REF] aims to enable Artificial Intelligence (AI) at the IoT edge for high volumes, varieties and velocities of live sensors and machine data, that is optimized for resource-constrained devices. More recently, NebulaStream [START_REF] Zeuch | The nebulastream platform: Data and application management for the internet of things[END_REF] is emerging as the major engine to overcome the limitation of the Edge/Fog computing. It is designed to incorporate all computing resources, even outside the cloud (i.e. IoT network edge), and apply processing wherever possible.

Edge/Fog Cloud continuum

In this section, we describe a multi-tier architecture that introduce between the Cloud and the IoT devices, Edge and Fog layers.

Definitions and motivation

According to National Institute of Standard and Technology (NIST) [START_REF] Mell | The nist definition of cloud computing[END_REF]:

Definition 3. (The Cloud computing) "is defined as model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction".

The main Cloud providers are among other OVH [START_REF]Ovhcloud[END_REF], Google Cloud [START_REF] Geewax | Google Cloud Platform in Action[END_REF], Amazon Web Service (AWS) [START_REF] Golden | Amazon web services for dummies[END_REF], etc. They mostly offer Cloud services with a pay-as-you-go model [START_REF] Arkian | Resource management for data stream processing in geo-distributed environments[END_REF][START_REF] Vaquero | A break in the clouds: towards a cloud definition[END_REF].

The Cloud is the prevalent environment for executing DSPA applications that requires to transfer the data streams produced by IoT devices over the WAN links. This Cloud-based IoT Analytics architecture (see Figure 1.1a) was enabled by the increasing connectivity of IoT devices (i.e., things) and the practically unlimited Cloud resources offered to host the third generation of DSPA engines.

In particular, the Cloud provides [START_REF] Mell | The nist definition of cloud computing[END_REF]: (i) On demand self-service to enable Cloud resources to be provisioned on-demand automatically without human interaction; (ii) Broad network access to enable IoT devices to access via the internet to the Cloud resources in a seamless manner; The terms Edge and Fog computing are often used interchangeably [START_REF] Issarny | Lattice: A framework for optimizing iot system configurations at the edge[END_REF]. However, in this thesis we consider them as different layers where the boundary between the two is tiny [START_REF] Varshney | Demystifying fog computing: Characterizing architectures, applications and abstractions[END_REF]. In particular, we consider that Edge/Fog layers provide complementary computational and network resources to the Cloud enabling IoT edge analytics in the Edge-Fog-Cloud continuum as depicted in Figure 1.1b.

In this context, we refer to the definitions of the Edge and Fog as provided by the National Institute of Standards and Technology [START_REF] Iorga | The nist definition of fog computing[END_REF]:

Definition 4. (The Fog computing) "is a horizontal, physical or virtual resource paradigm that resides between smart end-devices and the traditional Cloud. This paradigm supports vertically-isolated, latency-sensitive applications by providing ubiquitous, scalable, layered, federated, and distributed computing, storage, and network connectivity".

Definition 5. (The Edge computing) "is referred as the IoT network encompassing the smart end-devices and their users, to provide, for example, local computing capability on a sensor, metering or some other devices that are network-accessible".

Fog computing is generally a geographical distributed (or not virtualized) platform providing computational, network and storage service between the IoT devices at the Edge and the Cloud.

While the Edge computing is highly distributed including all the IoT devices augmented with computational and networking capabilities and connected to the Cloud through a Fog computing nodes.

Benefits

Event though that the initial concepts of Edge/Fog computing aiming to process data at the IoT network edge were formulated more than a decade ago, its main motivations are still prevailing today. In the context of the recent growth of IoT industry, it evenly shows high benefits in terms of (i) preventing network congestion; (ii) reducing the network delay, and (iii) ensuring privacy of sensitive data. It worth noting that ongoing research works intend to demonstrate that Edge/Fog computing may support sustainability in terms of electricity consumption and carbon footprint. However, further insights from large-scale measurement exercises are required to make a more informed case [START_REF] Varghese | Revisiting the arguments for edge computing research[END_REF].

Reduce network delay

Reducing the network delay by processing IoT data streams at the IoT network edge is one of the motivations in favor of the Edge/Fog computing. However, different technology providers may consider the network delay in different ways. Therefore, for the sake of clarity we define in the following what should constitutes the network delay.

The network delay includes the propagation delay on the network link medium that depends on the distance (number of hops) between the source node and the destination node. The propagation delay is the time it takes to transmit bits of data between a source node and a destination node and it is independent on the data size [START_REF] Rizou | Fulfilling end-to-end latency constraints in large-scale streaming environments[END_REF][START_REF] Prasad | Bandwidth estimation: metrics, measurement techniques, and tools[END_REF]. However, it depends on the type of the network link medium, the distance between the connected endpoints and is limited by the speed of the light. For instance if a source node and a destination node are in the same building at the distance of 200m, the propagation delay will be 1 microsecond. However, if they are located in different countries at a distance of 20000 Km, the delay is in order of 0.1 second [START_REF] Khanvilkar | Multimedia networks and communication[END_REF]. Finally, the network delay includes also the processing and queuing delays of a packet at the intermediate routers [START_REF] Patroumpas | Window specification over data streams[END_REF][START_REF] Lohrmann | Elastic stream processing with latency guarantees[END_REF][START_REF] Röger | Combining it all: Cost minimal and low-latency stream processing across distributed heterogeneous infrastructures[END_REF]. The latter can be big in case of congestion at the router but in general these delays can be considered as constant [START_REF] Varghese | Revisiting the arguments for edge computing research[END_REF].

If we assume that the processing and queuing delays of a packet at the intermediate routers are constant, the main components that constitute the network delay become the propagation and transmission delays. Although the theoretical 1ms of network delay of 5G, real deployment in USA and United Kingdom have demonstrated respectively 30ms and 20ms of network delays to the distant Cloud.

According to [START_REF] Varghese | Revisiting the arguments for edge computing research[END_REF], such network delay can support many time sensitive applications. However, they will not be adequate to support applications requiring constrained response time (sub millisecond), such as those involving autonomous cars or robots.

In this respect, by combining communication technology providing low network delay like 5G and the Edge/Fog computing is one of the solutions to further reduce the network delay for supporting both time sensitive and highly time sensitive applications.

Prevent network congestion

Sending data stream from the IoT devices to the distant Cloud require traversing WAN links with several hops. According to Varghese et al [START_REF] Varghese | Revisiting the arguments for edge computing research[END_REF] the network bandwidth between two VM located in the same AWS data centers have been demonstrated to be on average 900Mbps.

However when the WAN is involved, the network bandwidth to the same VMs was between 30Mbp-160Mbps.

For a DSPA application relying on intensive IoT data streams, sending huge volume of data stream to the distant Cloud may overwhelm the network resources to reach the Cloud and cause network congestion that can consequently increase the network delay. Additionally, most Cloud providers limit the bandwidth when the total data transfer reaches a certain threshold [START_REF] Varghese | Revisiting the arguments for edge computing research[END_REF].

In this respect, relying on the Edge/Fog computing enables to partially process data streams and sending to the Cloud reduced size data stream, thus preventing network congestion.

Ensure data privacy

With the high growth of the IoT industry, the IoT devices collect and produce data that are useful for consumers, businesses and public sector policy-making. In this context privacy arise naturally as IoT data has to be transmitted to the distant Cloud while non anonymous data can sometime provide real insights into an individual behavior, health or relationships.

For example in Figure 2.1 data tuples related to driving speed and location can be used against car owners by the car insurance companies. The latter, can set high insurance price according to whether car has a sportive driving behavior. In this respect, by leveraging Edge/Fog computing as a privacy preservation means [START_REF] Lopez-Fenner | Privacy preserving multi party computation for data-analytics in the iot-fog-cloud ecosystem[END_REF], IoT data can be aggregated closer to where they are created and send to the Cloud only the average values per district or street. Nevertheless, the Edge/Fog providers should be trustworthy.

Challenges

Even though that IoT Edge Analytics enables to reduce the network delays, prevent network congestion and ensure data privacy, the environment on which a DSPA application is deployed influences drastically the associated QoS in terms of security, response time (i.e., the sum of network delays and processing time), throughput, and resource usage cost (i.e., CPU, memory, storage, energy, bandwidth, etc.). In the following, we revisit the challenges that come with IoT edge analytics.

Resource heterogeneity at Edge/Fog layers

In IoT cloud analytics, application providers can scale cloud resources (CPU, memory, storage, bandwidth, etc) on demand by using a pay-as-you-go model [START_REF] Liu | Resource management and scheduling in distributed stream processing systems: a taxonomy, review, and future directions[END_REF]. However in IoT Edge Analytics, the Edge/Fog computing consider different execution models [START_REF] De Assuncao | Distributed data stream processing and edge computing: A survey on resource elasticity and future directions[END_REF] and rely on geographical distributed heterogeneous nodes such as mobile or fixed IoT devices (e.g., camera, connected vehicle, smartphone, etc.), small data centers, routers, wireless base stations, etc.

that come with stringent resource constraints in terms of limited computational resources (e.g., CPU, RAM, etc.) and limited power supply (e.g., rechargeable batteries, solar energy, etc.)

that may have to be shared amongst several DSPA applications. Therefore, computing resource allocation becomes a prominent challenge. Insufficient computational resource allocation leads to workload imbalance, increase of computation time, QoS violations, and affects energy consumption of Edge/Fog nodes [START_REF] Varghese | Revisiting the arguments for edge computing research[END_REF][START_REF] Chaurasia | Comprehensive survey on energy-aware server consolidation techniques in cloud computing[END_REF] In this respect, an efficient resource allocation mechanism is required [START_REF] Hong | Resource management in fog/edge computing: a survey on architectures, infrastructure, and algorithms[END_REF].

Even though significant developments are achieved, techniques are very diverse, to name [START_REF] Liu | Resource management and scheduling in distributed stream processing systems: a taxonomy, review, and future directions[END_REF][START_REF] Hong | Resource management in fog/edge computing: a survey on architectures, infrastructure, and algorithms[END_REF] propose taxonomies for resource management solutions in Edge-Fog-Cloud. Nevertheless, the problem is still very challenging which always presents a hot issue for the research community.

Dynamic Workload

The workload of a system is defined as the set of all inputs received by the system from its environment during a time period. Long running DSPA application is characterized by a dynamic workload owing to the spatial and temporal dynamics of IoT device distributions. Thus, the IoT data stream rate can be dynamic until it influences the workload behavior. Clearly a dynamic workload has an impact on QoS requirement of DSPA application: higher workload may incur high usage of computational resources, energy and bandwidth along with high network and processing delays. Therefore, dynamic scheduling of DSPA operators according to the evolution of the workload is necessary to ensure the associated QoS requirements. However, it requires appropriate model and mechanisms to decide, how to schedule, when to schedule and by how much [START_REF] Hung | Dynamic workload allocation for edge computing[END_REF][START_REF] Hong | Resource management in fog/edge computing: a survey on architectures, infrastructure, and algorithms[END_REF] 

Privacy and Security

Today's IoT devices rise many vulnerabilities due to the lack of adoption of well-known security techniques, such as encryption, authentication, access control, and role-based access control.

The reason for this lack is that existing security techniques, tools, and products may not be easily deployed to IoT devices because of, the variety of hardware platforms and limited computing resources of devices. Although the concept of processing IoT data at the network edge by providing computing resource close to IoT devices provides better structure to enforce data privacy [START_REF] Lopez-Fenner | Privacy preserving multi party computation for data-analytics in the iot-fog-cloud ecosystem[END_REF], the distributed architecture of IoT edge analytics increases in fact the dimension of attack vectors [START_REF] Cao | An overview on edge computing research[END_REF]. Therefore, revisiting and extending existing privacy and security techniques to address the specificities of IoT analytics systems entails not only many scientific and engineering challenges but also public policy challenges.

Framework overview to support IoT Edge Analytics

Edge/Fog computing paradigms are still struggling to find an official implementation. However, several efforts continue to be made in order to provide simulated or real prototype implementations. Thus, we survey the main prototype implementations that we present a brief summary in Table 2.2, where we consider: (i) architecture to describe the number of intermediate layers between the IoT devices and the Cloud; (ii) App. type to describe the type of the application whether it is based on DSPA, micro-service (MS); interconnected application modules (AppM), etc. that the prototype supports; (iii) mobility to describe whether the prototype includes mobile resource by enabling dynamic discovery and federation of mobile resources to the global prototype architecture; (iv) monitoring to describes if the monitoring is supported by the prototype to give insight of resource state at run-time; and (v) Type: to define whether the prototype is a simulator or is implemented on real resources as a private or open source platform.

In the sequel, we briefly present the main efforts to implement or simulate an Egde-Fog-Cloud computing platform [START_REF] Tao | A survey of virtual machine management in edge computing[END_REF].

KubeEdge

KubeEdge [START_REF] Xiong | Extend cloud to edge with kubeedge[END_REF] is an open source system for extending native containerized application orchestration at the IoT network edge. It is built on top of Kubernetes and provides fundamental infrastructure support for network, application deployment and metadata synchronization between the Cloud and the Edge. Kubernetes is an open-source system that enable to automatically deploy and manage large scale cloud applications using containers such as docker. The communication of module in KubeEdge is based on the decouple communication protocol called MQTT protocol. In this respect a mobile node can connect and disconnect without significant impact of the overall KubeEdge.

iFogSim

iFogSim [START_REF] Gupta | ifogsim: A toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments[END_REF] is a toolkit based on the well adopted CloudSim framework. CloudSim [START_REF] Calheiros | Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[END_REF] is the most used framework for modeling and simulating the Cloud environment. Thus, iFogSim extends the basic abstract classes of Cloud to offer a framework for modeling and simulating the Edge/Fog computing environment with large number of layers between the IoT devices and the Cloud. iFogSim applies Sense-Process-Actuate and distributed data-flow model while simulating any application scenario in Fog computing environment. It facilitates evaluation of end to end latency, network congestion, power usage and computational resource usage. However iFogSim does not yet support run-time reconfiguration of simulated application. In this respect MobFogSim [START_REF] Puliafito | Mobfogsim: Simulation of mobility and migration for fog computing[END_REF] extends iFogSim to support reconfiguration of simulated application.

Enorm

Enorm [START_REF] Wang | Enorm: A framework for edge node resource management[END_REF] is a framework providing a 3-tier architecture composed of Cloud, Edge and IoT devices. The management is centralized in the Cloud. IoT devices offload tasks to Edge nodes when necessary, either due to user mobility or QoS (e.g. violation of latency constraint). Enorm dynamically allocates resources by an auto-scaling mechanism which scales up/down the resources, considering the network latency and task execution time. However Enorm does not support dynamic reconfiguration of application.

FogFlow

FogFlow [START_REF] Cheng | Fogflow: Easy programming of iot services over cloud and edges for smart cities[END_REF] is programmable Fog computing environment on resource network divided vertically The data processing view manages to worker to perform data processing task assigned by TM.

(iii) Context management view enables to establish data flow across the tasks via NGSI [START_REF] Bauer | The context api in the oma next generation service interface[END_REF].

OpenStack

OpenStack [START_REF]Openstack[END_REF] is an open-source platform designed for deploying a Cloud computing by using virtualization through infrastructure as a service model. Even though that the main goal of OpenStack is to support the cloud computing in data center. Today's OpenStack is extended to support an Edge-Cloud computing use case by providing a flexible and modular design [START_REF]New: Openinfra foundation edge computing group defines architectures, open source components, and testing activities for massively distributed systems[END_REF].

EdgeNet

EdgeNet [START_REF] ¸enel | Edgenet: a multi-tenant and multi-provider edge cloud[END_REF] is a public Kubernetes cluster dedicated to network and distributed systems research, supporting experiments that are deployed concurrently by independent groups. Its nodes bernetes to the edge, making three key contributions: multi-tenancy, geographical deployments, and single-command node installation.

Research prototype

Due to the lack of well defined architecture that include both Edge, Fog and Cloud computing, researchers propose prototype implementation of such architecture that focus on specific application use cases. For instance, (and not limited to) Pan et al. [START_REF] Wang | A fog-based architecture and programming model for iot applications in the smart grid[END_REF] propose a prototype architecture of Fog computing for smart grid based application. In essence, it provides an architecture that strengths the coordination between Fog nodes to reduce smart grid based application latency.

This prototype takes into account mobile devices as well as resource usage monitoring. However it is designed for specific application and does not support DSPA application.

Conclusion

In this Chapter, we described the main functionality of DSPA applications for processing data streams on the fly via a series of operators. More precisely, a DSPA application that can be represented as DAG of operators that could be executed in a network of computational resources. In this respect, we highlighted the main optimization techniques (i.e., graph rewriting and operators' placement) used to reconfigure a DSPA DAG in order to satisfy the associated QoS objective. We also described how operators of a DSPA DAG can be executed by Edge-Fog-Cloud nodes. Then, we presented both simulating and real prototype frameworks that allow us to experiment with an Edge-Fog-Cloud architecture.

In the next Chapter, we will present the state of the art on scheduling algorithms used to execute DSPA applications in Edge-Fog-Cloud nodes and we will position the contributions of this thesis.

Chapter 3 This chapter contains 20 pages.

State of the Art

Introduction

Identifying optimal scheduling solutions of operators across the resource nodes of a network is a tedious task in particular for nodes with heterogeneous resources (e.g., in Edge/Fog layers) which are shared by different DSPA applications over dynamic IoT data streams.

Several approaches have been introduced to schedule operators in order to fulfil the QoS objective of a DSPA application [START_REF] Liu | Resource management and scheduling in distributed stream processing systems: a taxonomy, review, and future directions[END_REF]. They differ in the architecture of the execution environment (hierarchical, peer to peer, centralized, etc.), the scheduling objectives (response time, throughput, network resource usage, computational resource usage, energy consumption, etc.), the optimization methodologies (heuristic, meta-heuristic, mathematical optimization, predictive, etc. ), whether the scheduling strategy produces a scheduling solution and later it enables

Execution Environments

to reschedule the current solution at run-time. For the latter case, existing approaches additionally differ in how rescheduling is triggered at run-time (time-based, proactive approach, reactive approach, etc.). This chapter attempts to survey the related work and is structured according to the aforementioned dimensions. At the end, we position the contributions of our thesis.

Execution Environments

Initially DSPA applications were designed to run in centralized environments as an extension of a data base management system (DBMS) server capable of generating data streams. Thus, cluster nodes with high computational resources was the prevailing environment for executing DSPA applications specified e.g., in TelegraphCQ [START_REF] Chandrasekaran | Telegraphcq: continuous dataflow processing[END_REF].

As data streams were generated by multiple sources, operators started to be distributed across the computational resources of a peer-to-peer (P2P) network. In this context, the challenge was how to improve the performance of a DSPA application by minimizing the network resource usage [START_REF] Jonathan | Wasp: Wide-area adaptive stream processing[END_REF][START_REF] Cardellini | Optimal operator placement for distributed stream processing applications[END_REF][START_REF] Nardelli | Efficient operator placement for distributed data stream processing applications[END_REF][START_REF] Pietzuch | Network-aware operator placement for stream-processing systems[END_REF][START_REF] Rizou | Solving the multi-operator placement problem in large-scale operator networks[END_REF][START_REF] Lohrmann | Elastic stream processing with latency guarantees[END_REF][START_REF] Nardelli | Qos-aware deployment and adaptation of data stream processing applications in geo-distributed environments[END_REF][START_REF] Cardellini | Optimal operator replication and placement for distributed stream processing systems[END_REF]. High performance computing (HPC) nodes have been additionally

exploited in [START_REF] Kamburugamuve | Low latency stream processing: Apache heron with infiniband & intel omni-path[END_REF] providing high computational resources and interconnectivity (i.e., Infiniband with network delay in the order of microsecond) to speedup the execution of a DSPA application.

With the emergence of the Cloud facilitating to scale up or out computational resources, DSPA applications were naturally deployed in the Cloud to benefit from practically unlimited computational and network resources in order to guarantee high availability and performance (i.e.

real-time response, high throughput) [START_REF] Liu | Resource management and scheduling in distributed stream processing systems: a taxonomy, review, and future directions[END_REF]. Wireless sensor networks have been also employed to schedule DSPA applications [START_REF] Traub | Optimized on-demand data streaming from sensor nodes[END_REF]. For example a hierarchical wireless sensor network is used in [START_REF] Srivastava | Operator placement for in-network stream query processing[END_REF], where computational resources and network bandwidth capacity are progressively increasing as we go from the bottom to the top of the hierarchy.

New challenges emerged with the upcoming of the IoT, where IoT devices are inter-connected through the Internet, interact and continuously generate huge volumes of data as streams, where the latter may require real-time processing. In this context, the Cloud was de facto the right execution environment. However, IoT data streams need to be transferred to the distant Cloud, involving WAN links, in order to be processed there [START_REF] Gu | A general communication cost optimization framework for big data stream processing in geo-distributed data centers[END_REF][START_REF] Chen | Cost-aware streaming workflow allocation on geo-distributed data centers[END_REF][START_REF] Kamburugamuve | A framework for real time processing of sensor data in the cloud[END_REF]. Cloud-based DSPA solutions may involve a high cost in terms of network bandwidth usage and network delays.

Edge/Fog computing is gaining nowadays increasing attention as it enables to schedule DSPA applications at the IoT network edge. Hence, reduced data size is sent to the Cloud, which decreases the network bandwidth usage and network delays. In this setting, works like [START_REF] Amarasinghe | A data stream processing optimisation framework for edge computing applications[END_REF][START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF][START_REF] Souza | Scalable joint optimization of placement and parallelism of data stream processing applications on cloud-edge infrastructure[END_REF][START_REF] De Souza | An optimal model for optimizing the placement and parallelism of data stream processing applications on cloud-edge computing[END_REF][START_REF] Sajjad | Spanedge: Towards unifying stream processing over central and near-the-edge data centers[END_REF][START_REF] Li | Online workload allocation via fog-fog-cloud cooperation to reduce iot task service delay[END_REF][START_REF] Peixoto | Hierarchical scheduling mechanisms in multi-level fog computing[END_REF] consider the Edge-Fog-Cloud architecture as the execution environment. Each of these works comes with specific network resource organization. For instance, [START_REF] Peixoto | Hierarchical scheduling mechanisms in multi-level fog computing[END_REF] proposes a shareable hierarchical Edge-Fog-Cloud architecture that comes with several layers of Fog nodes between the IoT devices at the Edge and the Cloud node, while [START_REF] Sajjad | Spanedge: Towards unifying stream processing over central and near-the-edge data centers[END_REF][START_REF] Li | Online workload allocation via fog-fog-cloud cooperation to reduce iot task service delay[END_REF] introduce only one layer of Fog nodes. Furthermore, [START_REF] Souza | Scalable joint optimization of placement and parallelism of data stream processing applications on cloud-edge infrastructure[END_REF][START_REF] De Souza | An optimal model for optimizing the placement and parallelism of data stream processing applications on cloud-edge computing[END_REF] propose an Edge-Cloud architecture where the Edge contains 
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two layers, namely IoT devices and micro data centers, both providing computational resource capacity for hosting operators. In the Cloud layer, they consider federated Cloud sites.

Similarly, works like [START_REF] Prosperi | Planner: cost-efficient execution plans placement for uniform stream analytics on edge and cloud[END_REF][START_REF] Neophytou | Optimizing the energy consumption of continuous query processing with mobile clients[END_REF][START_REF] Neophytou | Power-aware operator placement and broadcasting of continuous query results[END_REF][START_REF] Yang | A framework for partitioning and execution of data stream applications in mobile cloud computing[END_REF][START_REF] Elgamal | Droplet: Distributed operator placement for iot applications spanning edge and cloud resources[END_REF] consider a hierarchical resource network where IoT devices are placed at the bottom (Edge) and the Cloud is placed at the top of the hierarchy. A hybrid network architecture is proposed in [START_REF] Da Silva | Latency-aware strategies for deploying data stream processing applications on large cloud-edge infrastructure[END_REF][START_REF] Da Silva | Latency-aware strategies for deploying data stream processing applications on large cloud-edge infrastructure[END_REF][START_REF] Da | Quality of service aware mechanisms for (re) configuring data stream processing applications on highly distributed infrastructure[END_REF] including a P2P local area network (LAN)

for connecting different Edge nodes grouped by region and a hierarchical WAN between the grouped Edge nodes and the Cloud nodes. Finally, distributing DSPA applications only in the Fog layer is considered by [START_REF] Hiessl | Optimal placement of stream processing operators in the fog[END_REF][START_REF] Arkian | Model-based stream processing auto-scaling in geo-distributed environments[END_REF]. In this setting, Fog nodes are interconnected via a P2P network architecture.

Summarizing table

Table 3.1 summarizes and classifies the execution environments used for scheduling DSPA applications in terms of network architecture to interconnect distributed resource nodes, which can be Centralized (Central), Hierarchical (Hierarc) or Peer-to-Peer (P2P). Then, the type of resource nodes on which operators of DSPA applications can be distributed to, which can be Cluster (or bare-metal), High performance computing (HPC), Cloud, Fog, Edge nodes. Furthermore, whether the target execution environment assumes that its resources can be shared among several applications. The summary shows that in this thesis, we consider a hierarchically Edge-Fog-Cloud architecture as the execution environment, where the resources can be shared among several (DSPA) applications.

Scheduling Objectives

A scheduling strategy can come with a single or multi-fold objective that specifies the QoS required by a DSPA application. For the latter case, preferences must be set to sort eventually competing scheduling targets that cannot be fulfilled at the same time [START_REF] Cardellini | Optimal operator placement for distributed stream processing applications[END_REF]. To set a common ground for comparison with the contributions of this thesis, in the sequel we distinguish between resource aware and performance aware scheduling objectives.

Performance-aware

Throughput and Response time are the two dominant metrics to measure the performance of a DSPA application from an end-user perspective [START_REF] Liu | Resource management and scheduling in distributed stream processing systems: a taxonomy, review, and future directions[END_REF], while other metrics used are: application availability [START_REF] Cardellini | Optimal operator placement for distributed stream processing applications[END_REF], accuracy of analytic results [START_REF] Jonathan | Wasp: Wide-area adaptive stream processing[END_REF], data loss [START_REF] Pham | Avoiding class warfare: managing continuous queries with differentiated classes of service[END_REF], etc.

Response time is defined as the time interval between the moment a data item is produced and the moment this data item has been fully processed by a DSPA application [START_REF] Sharaf | Algorithms and metrics for processing multiple heterogeneous continuous queries[END_REF]. Some other works consider the response time metric as the maximum end-to-end latency [START_REF] Arkian | Resource management for data stream processing in geo-distributed environments[END_REF] or makespan [START_REF] Prosperi | Planner: cost-efficient execution plans placement for uniform stream analytics on edge and cloud[END_REF]. In the following, we use these terms interchangeably.

In this respect, response time has been considered in [START_REF] Jonathan | Wasp: Wide-area adaptive stream processing[END_REF][START_REF] Cardellini | Optimal operator placement for distributed stream processing applications[END_REF][START_REF] Nardelli | Efficient operator placement for distributed data stream processing applications[END_REF][START_REF] Nardelli | Qos-aware deployment and adaptation of data stream processing applications in geo-distributed environments[END_REF][START_REF] Cardellini | Optimal operator replication and placement for distributed stream processing systems[END_REF] that model the problem of scheduling DSPA application as a multi-objective optimization problem on peer network resources. A similar multi-objective optimization is followed by [START_REF] Hiessl | Optimal placement of stream processing operators in the fog[END_REF] to schedule a DSPA application at the Fog layer by assuming a P2P network. A single objective optimization problem for minimizing the response time of DSPA applications executed over the Edge/Fog and Cloud nodes of P2P network is presented in [START_REF] Amarasinghe | A data stream processing optimisation framework for edge computing applications[END_REF]. Indirect minimization of the makespan is studied in [START_REF] Prosperi | Planner: cost-efficient execution plans placement for uniform stream analytics on edge and cloud[END_REF] for splitting a DSPA application between the Edge and Cloud aiming actually to minimize the network resource usage to reach the Cloud. The works proposed by [START_REF] Sajjad | Spanedge: Towards unifying stream processing over central and near-the-edge data centers[END_REF][START_REF] Li | Online workload allocation via fog-fog-cloud cooperation to reduce iot task service delay[END_REF] consider the response time as objective metric for scheduling a DSPA application across the Edge-Fog-Cloud nodes of hybrid network resource architecture (hierarchical and P2P). [START_REF] Da Silva | Latency-aware strategies for deploying data stream processing applications on large cloud-edge infrastructure[END_REF] minimizes the response time of DSPA application by splitting the resulting application graph model, and distributing the operators across federated Cloud resources and distributed Edge resources.

On the other hand, throughput is defined as the number of data items in a stream that a DSPA application can process in a given amount of time. Throughput is used as a scheduling objective metric in [START_REF] Arkian | Model-based stream processing auto-scaling in geo-distributed environments[END_REF] to maintain the maximum number of simultaneously processed data items when scheduling a DSPA application on peer network resources of Fog nodes. This work as well as [START_REF] Lambert | Rethinking operators placement of stream data application in the edge[END_REF] rather consider the Maximum Sustainable Throughput instead of simple throughput as performance-aware scheduling objective. Going one step beyond, [START_REF] Lohrmann | Elastic stream processing with latency guarantees[END_REF] guarantees not only a high throughput but also low response time of DSPA applications running on P2P network nodes with high computational resources such as cluster. In [START_REF] Yang | A framework for partitioning and execution of data stream applications in mobile cloud computing[END_REF] throughput is maximised in the context of mobile cloud computing. A model is proposed in [START_REF] De Souza | A throughput model for data stream processing on fog computing[END_REF] for estimating the throughput of a DSPA application deployed at the Fog based on the placement solution of its operators.

Some other works consider both two metrics as optimization objectives. For instance, [START_REF] De Souza | An optimal model for optimizing the placement and parallelism of data stream processing applications on cloud-edge computing[END_REF] solves the operator placement problem between the Cloud and the Edge with the objective to minimize the response time of DSPA application while satisfying a given throughput constraint.

Moreover, [START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF] attempts to maximise the number of successfully deployed DSPA applications between the Cloud and Fog nodes requiring that network and computational resources should be allocated with parsimony to meet response time constraint for each deployed DSPA applications.

Resource-aware

Resource-aware scheduling aims to consume less computational resources (e.g. CPU/GPU, RAM, etc.) and network resources (e.g. bandwidth, network delay, etc.) in order to achieve the required QoS of a DSPA application [START_REF] Hirzel | A catalog of stream processing optimizations[END_REF]. In this respect, [START_REF] Cardellini | Optimal operator placement for distributed stream processing applications[END_REF][START_REF] Nardelli | Efficient operator placement for distributed data stream processing applications[END_REF][START_REF] Nardelli | Qos-aware deployment and adaptation of data stream processing applications in geo-distributed environments[END_REF][START_REF] Cardellini | Optimal operator replication and placement for distributed stream processing systems[END_REF] consider minimizing the network resource usage besides the response time while maximizing the application availability when scheduling DSPA applications across a P2P network subject to constraints on the bandwidth usage of network links and the computational resource usage of nodes. Similarly, [START_REF] Rizou | Fulfilling end-to-end latency constraints in large-scale streaming environments[END_REF][START_REF] Rizou | Providing qos guarantees in large-scale operator networks[END_REF] consider the network resource usage as the scheduling objective to minimize constrained by the response time, the bandwidth usage of network links as well as the computational resource usage.

Beside the response time, [START_REF] Hiessl | Optimal placement of stream processing operators in the fog[END_REF] considers also the network resource usage in their multi-objecting scheduling problem of DSPA application at the Fog. [START_REF] Srivastava | Operator placement for in-network stream query processing[END_REF] minimizes the combined usage cost of the computational and network resources for deploying a DSPA application over as hierarchical network of sensors.

Besides the objective of minimizing the response time, [START_REF] Da Silva | Latency-aware strategies for deploying data stream processing applications on large cloud-edge infrastructure[END_REF] considers also the constraints of using the computational resources and network bandwidth resources for distributing operators across federated Cloud resources and distributed Edge resources. However, network resource usage is considered as a scheduling objective to minimize in [START_REF] Sajjad | Spanedge: Towards unifying stream processing over central and near-the-edge data centers[END_REF][START_REF] Li | Online workload allocation via fog-fog-cloud cooperation to reduce iot task service delay[END_REF] in order to deploy a DSPA application over a hybrid resource network architecture. In the same setting, [START_REF] Jonathan | Wasp: Wide-area adaptive stream processing[END_REF] minimizes the response time as the scheduling objective subject to constraints regarding the usage of the computational and network bandwidth resources.

The energy consumed is finally an optimization target when scheduling DSPA applications over limited computational and network resources. In this respect, [START_REF] Neophytou | Optimizing the energy consumption of continuous query processing with mobile clients[END_REF][START_REF] Neophytou | Power-aware operator placement and broadcasting of continuous query results[END_REF] consider as the scheduling objective, the total energy consumption of mobile devices (e.g. smartphones) processing DSPA application in the continuum of mobile devices and a central data center (e.g.

Cloud).

Reducing computational and network resource usage along with energy consumption participate in reducing the monetary cost for executing a DSPA application. For instance, [START_REF] Röger | Combining it all: Cost minimal and low-latency stream processing across distributed heterogeneous infrastructures[END_REF] minimizes the monetary cost subject to response time constraint for scheduling a DSPA application on peer to peer network resources. Furthermore, besides the response time scheduling objective, [START_REF] De Souza | An optimal model for optimizing the placement and parallelism of data stream processing applications on cloud-edge computing[END_REF] considers also minimization of the combined usage cost of computational (i.e., cpu and memory) and network resources (i.e., bandwidth), from a monetary cost perspective.

Scheduling Strategies

So far, we have described the execution environments and the scheduling objectives of DSPA applications. However we have not yet explained how the related works achieve these objectives when scheduling DSPA applications on a specific execution environment. In this subsection, we distinguish scheduling strategies between those proposing an initial (static) operator scheduling solution and those enabling to dynamically adapt the initial scheduling solution in response to the evolution of the DSPA application workload.

Static Scheduling of operators

Scheduling strategies in the related work rely either on mathematical optimization techniques or on heuristic techniques. Mathematical optimization techniques [START_REF] Cardellini | Optimal operator placement for distributed stream processing applications[END_REF][START_REF] Cardellini | Optimal operator replication and placement for distributed stream processing systems[END_REF][START_REF] Amarasinghe | A data stream processing optimisation framework for edge computing applications[END_REF] are used to find the minimal or maximal value of an objective function with respect to a set of constraints [START_REF] Wang | Electronic design automation: synthesis, verification, and test[END_REF].

To solve the formulated optimization problem, optimization tools (or solvers) may be employed, such as CPLEX [START_REF] Studio-Cplex | Users manual-version 12 release 8[END_REF], Gurobi [START_REF] Bixby | The gurobi optimizer[END_REF], Gecode [START_REF] Schulte | Gecode[END_REF], Coin and Branch-and-Cut (CBC) [START_REF] Forrest | Cbc user guide[END_REF], etc.

On the other hand, heuristic techniques aim to find more rapidly a solution that approximates sufficiently well the optimal solution [START_REF] Prosperi | Planner: cost-efficient execution plans placement for uniform stream analytics on edge and cloud[END_REF][START_REF] Nardelli | Efficient operator placement for distributed data stream processing applications[END_REF][START_REF] Röger | Combining it all: Cost minimal and low-latency stream processing across distributed heterogeneous infrastructures[END_REF][START_REF] Neophytou | Optimizing the energy consumption of continuous query processing with mobile clients[END_REF][START_REF] Neophytou | Power-aware operator placement and broadcasting of continuous query results[END_REF].

Mathematical optimization based

[22] relies on integer linear programming (ILP) to formulate the problem of scheduling operators over a P2P network of heterogeneous computational nodes with the objective to minimize the response time and related network resource usage cost as well as to maximize the application availability. This multi-objective optimization problem is reduced to a single objective optimization problem by using simple additive weighting technique. Then, the formulated ILP problem is solved using the optimization software tool CPLEX. This work is extended in [START_REF] Cardellini | Optimal operator replication and placement for distributed stream processing systems[END_REF] in order to replicate the operators then placing them across a P2P network of heterogeneous computational nodes.

Constraint programming (CP) model is also used to find optimal solution to the operator scheduling problem defined as a constraint satisfaction problem. For instance, [START_REF] Amarasinghe | A data stream processing optimisation framework for edge computing applications[END_REF] proposes a framework that models the initial operator scheduling problem between the Cloud and the Dynamic programming algorithm is used by [START_REF] Elgamal | Droplet: Distributed operator placement for iot applications spanning edge and cloud resources[END_REF] to partition an IoT application modelled as DAG of operators between the Edge and the Cloud. In this work a specific IoT application is considered that process stream of video in data chunk of equal size. The objective is to minimize the overall completion time (response time) of the graph of operators. In this respect, the proposed dynamic programming algorithm navigates through various possible operators'

placement and chooses the one with the minimum total cost w.r.t. the operator graph completion time.

Heuristic based

Several heuristic methods have been proposed to approximate an optimal value (min or max) of an objective function with respect to a set of constraints. For instance, [START_REF] Nardelli | Efficient operator placement for distributed data stream processing applications[END_REF] proposes several heuristics to solve the operator placement problem on peer resource networks introduced in [START_REF] Cardellini | Optimal operator placement for distributed stream processing applications[END_REF].

These contributions are distinguished between model free and model based heuristics. The proposed heuristics involve the selection of suitable computational resources and/or network links to guide the operator placement decision. In this respect, a penalty function is used for capturing the cost in terms of the objective function of using any computational resource or network link.

Model free heuristics from [START_REF] Nardelli | Efficient operator placement for distributed data stream processing applications[END_REF] rely on well known search algorithms such as greedy first fit or local search to solve the operator placement problem. These algorithms involve a risk of getting stuck in a local optimum. To tackle this, authors use Tabu search (TS) algorithm. starting from an initial operator placement, TS finds a local optimum through a set of iterations, then it explores the search space by selecting the best non improving operator placement which can be found in the neighbourhood of the local optimum. This solution uses a limited tabu list to avoid cycling back to an already visited operator placement.

On the other hand, model based heuristics from [START_REF] Nardelli | Efficient operator placement for distributed data stream processing applications[END_REF] attempt to reduce the search space by restricting the set of candidate computational resources to host the operator by using a penalty function. Then, they model the operator placement problem as an instance of ILP in the reduced problem space, which can be solved by using the CPLEX tool.

By modelling a DSPA application as a DAG of operators, some heuristics split the resulting graph of operators into several subgraphs where each individual sub-graph will be mapped to a specific computational resource node with the aim of optimizing some criterion of the QoS requirement.

For instance, the edge-cut algorithm is used in [START_REF] Neophytou | Optimizing the energy consumption of continuous query processing with mobile clients[END_REF][START_REF] Neophytou | Power-aware operator placement and broadcasting of continuous query results[END_REF], where the authors propose the heuristic algorithm called BOSe. BOSe splits the processing load of DSPA applications defined as Continuous queries (CQs) between a central server and several mobile user devices in order to optimize the trade-off between data communication cost and data processing cost. These costs are expressed in terms of energy consumption on mobile devices. The results of the CQs take the form of individual data streams disseminated to the mobile devices over a shared broadcast medium. BOSe relies on a greedy search of edge-cut moves to split the load of CQs.

The edge-cut algorithm is also used by [START_REF] Prosperi | Planner: cost-efficient execution plans placement for uniform stream analytics on edge and cloud[END_REF], to propose a uniform approach for deploying a DSPA application between the Cloud and the Edge. The objective is to minimize the network resource usage and indirectly minimize the response time for transmitting data stream produced by IoT devices at the Edge toward the Cloud. In this respect, they consider the minimum edgecut to split the DAG of operators for each data stream produced at the Edge in two disjoint sub-graphs. The sub-graph that includes the sink of the DAG of operators remains on the Cloud.

The remaining sub-graph that is connected with the data source is deployed on the devices at the Edge, the operators that are deployed on the device are subject to the constraint of data locality. Despite the limited computational resources at the Edge, this work does not minimize the usage of these resources.

Furthermore, [START_REF] Röger | Combining it all: Cost minimal and low-latency stream processing across distributed heterogeneous infrastructures[END_REF] addresses the problem of distributing a DSPA application on an execution environment constituted with resource nodes which have different management policy (e.g. pricing models). The objective is to minimize the overall resource usage cost in terms of monetary cost of the resource nodes hosting the DSPA application while its end-to-end latency bound is respected. By modeling a DSPA application as a DAG of operators, they split this graph into DAG of control units (CU) where each CU is an operator subgraph that can be deploy on a resource node with a specific management policy. In terms of solution they proposed an algorithm that models the problem as an instance of ILP model which is solved with the CBC solver. To address the scalability issue of the initial algorithm,they propose a heuristic based scheduling strategy. This algorithm initially distributes the available end-to-end latency evenly among all CUs of a DSPA application and then a greedy strategy is used to swap the assigned latency from one CU to another if this leads to a reduced monetary cost. The greedy strategy is repeated step-wise until no more improvement of the monetary cost is possible. However, this work does not consider operator replication neither minimizing specifically computational and network resources.

Splitting a DAG of operators between the Cloud and the Edge is also addressed by [START_REF] Renart | Distributed operator placement for iot data analytics across edge and cloud resources[END_REF] aiming to minimize the DSPA application response time, the usage of WAN bandwidth between the Edge and the Cloud as well as the monetary cost of exchanging data streams between the Edge and the Cloud. This problem is constrained by the computational resource usage (CPU and memory), however, it does not consider minimization of the computational resources usage.

Given that they model the response time of DSPA application by using queuing model, the input data stream rate to an operator should be lower than the service rate of this operator and the network link should not be saturated. In terms of solution they propose a programming model called R-Pulsar, in which they implement an operator placement algorithm that firstly splits the application graph by regions to deploy between the Edge and the Cloud nodes. The Algorithm gives priority to Edge since Cloud is expected to store message for batch processing while Edge nodes may host the actuators. In this respect if the Edge nodes can not meet the operator computational resource usage constraint then the operator is moved in the Cloud that provide practically unlimited computational resources.

[114] extends the work in [START_REF] Silva Veith | Latency-aware placement of data stream analytics on edge computing[END_REF] to model the DSPA application as data-flow graph. Then authors propose heuristic algorithm that splits the application graph between the Edge and Cloud with the objective to minimize the sum of the end-to-end latency of all the individual operator path in the application graph subject to usage constraint of the computational resources of the Edge nodes and the network resources between both the edge nodes and the Edge node to the Cloud node. The proposed heuristic initially creates a deployment sequence which is essentially a list of operators in topological order and the list of the resources that can host these operators. From the deployment sequences, different heuristics are proposed such as AELS which is a greedy strategy that places operators incrementally by evaluating the aggregated operator path end-to-end latency while respecting the computational and network resource constraints.

Furthermore, they extend AELS algorithm to account for the region pattern aka AELS+RP algorithm. This strategy handles complex data-flows that contain multiple paths from sources to sinks and hence, it considers the requirement of each individual operator path and gives priority to message according to their destination. Finally they improve AELS+RP algorithm in order to reduce end-to-end latency so that the search can be applied on the Edge resource node regions which provide higher end-to-end operator path latency. This work does not optimize the computational and network resources. Furthermore, this work considers the operator placement. [START_REF] Souza | Scalable joint optimization of placement and parallelism of data stream processing applications on cloud-edge infrastructure[END_REF] proposes a heuristic approach to address the scalability issues of the algorithm proposed in [START_REF] De Souza | An optimal model for optimizing the placement and parallelism of data stream processing applications on cloud-edge computing[END_REF]. The proposed heuristic algorithm attempts to reduce the search space of the Edge (IoT devices and Micro data centers) nodes or Cloud nodes, by removing the resource nodes that do not satisfy the operator resource demand. Then, based on the reduced search space, the optimization problem is framed using MILP and solved with CPLEX tool.

[109] introduces a heuristic algorithm that takes into account the trade off between the Fog nodes location and the application latency requirements for scheduling IoT application module across a hierarchical Edge-Fog-Cloud architecture. However, the Fog nodes are set in more than one layer of Fog. Within this hierarchy the computational resource capacity of the Fog node is increasing as we move from the Edge to the Cloud. The proposed heuristic algorithm starts upon request of application arrival, it first generates a set of group of application components sharing the same source. The algorithm calculates the communication impact of each group in the set then it decides to deploy each group of component on the Fog layer with respect to lower the communication impact. This work consider general IoT application that can be modelled as directed graph while in our work we consider DSPA application that can be modelled as DAG of operator. Furthermore, they focus on application latency requirement while in our work we target not only the application latency requirement but also the network and computational resources usage costs.

[104] addresses the problem of scheduling DSPA applications in the form of query requests between Fog and Cloud resources, assuming that computational resources are practically infinite in the Cloud and limited in the Fog. The objective is to maximize the percentage of successfully deployed DSPA applications. In this respect, a DSPA application is successfully deployed if it satisfies the Fog resource constraint, the DSPA application response time constraint and use as less as possible the Fog to Cloud WAN resources. They distinguish between non timecritical DSPA applications that have their sink in the Cloud and DSPA applications with strict latency requirements that have their sink in the Fog. As baseline solutions they propose state of the art strategies such as as FogOnly that deploys the whole DSPA application in the Fog so that Fog computational resource usage is maximised and the Fog to Cloud network resource usage is maximised, AllDC deploys the whole DSPA application in the Cloud so that the Fog computational resource usage is minimized (i.e., zero) and the Fog to Cloud network resource usage is maximised. On the other hand, they propose heuristic algorithms that make interplay placement of DSPA application between the Fog and the Cloud. In particular, they propose Network aware FogGreedy (NAFogGreedy) algorithm that deploys the whole DSPA application in the Cloud if its sink is in the Cloud and deploy the whole DSPA application in the Fog in case it has its sink in the Fog. For the latter case, if the Fog nodes does not have sufficient resources, then some part of DSPA application will be deployed in the Cloud. They also propose Network-Aware Application oriented (NAAO) algorithm that similarly to NAFogGreedy deploys the whole DSPA application in the Cloud if its sink is in the Cloud. However if the DSPA application has its sink in the Fog, NAAO decides to deploy each individual operator path of DSPA application in Cloud or Fog where this operator path achieves to satisfy the response time constraint. 
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Summarizing table

Table 3.2 summarizes scheduling strategies for static deployment of DSPA application and hence it generate an initial operator placement solution. We classify these works in terms of the following: (i) Strategy identifies whether the approach used is heuristic (Heur) based or mathematical optimization (Math) based; (ii) Policy defines the type of the policy used by the scheduling strategy to achieve the optimization goal -we distinguish between operator placement (Plac) policy and operator replication (Repl) policy; (iii) Objective specifies the QoS objective targeted by the scheduling strategy -this can be whether to minimize the computational resource usage (comp), the network resource usage (net), the application response time (T), or the application throughput (TP); and (iv) Constraint captures the constraints imposed by the execution environment or the application QoS objective -we distinguish between computational resource usage (CPU, RAM) constraint, bandwidth usage (Bwd) constraint, and operator replicability constraint (Repl).

The summary shows that in this thesis, we propose heuristic based and mathematical based scheduling strategies for the static deployment of DSPA application. It also shows that the scheduling strategies that we propose use the operator placement and operator replication policies in order to achieve the objective of minimizing the computational and network resource usage costs, ensuring real time response of DSPA application while satisfying the resource usage constraint and the operator replicability constraint.

Dynamic Scheduling of Continuous Operators

Besides mathematical optimization and heuristic techniques used for scheduling operators at runtime, predictive techniques have been also used to predict future application and system metrics, such as, resource utilisation, DSPA application performance, etc. [START_REF] Lohrmann | Elastic stream processing with latency guarantees[END_REF][START_REF] Da Silva | Monte-carlo tree search and reinforcement learning for reconfiguring data stream processing on edge computing[END_REF][START_REF] Russo | Reinforcement learning based policies for elastic stream processing on heterogeneous resources[END_REF][START_REF] Russo | Mead: Model-based vertical auto-scaling for data stream processing[END_REF][START_REF] Wang | Model-based scheduling for stream processing systems[END_REF][START_REF] Fu | Drs: Auto-scaling for real-time stream analytics[END_REF][START_REF] Kombi | A preventive auto-parallelization approach for elastic stream processing[END_REF][START_REF] Lombardi | Elastic symbiotic scaling of operators and resources in stream processing systems[END_REF][START_REF] Zhang | A data stream prediction strategy for elastic stream computing systems[END_REF][START_REF] Hu | Stream data load prediction for resource scaling using online support vector regression[END_REF]. Based on these predictions, DSPA engines are able to anticipate a possible QoS objective degradation and hence apply adequate strategies. In the sequel, we classify dynamic operator scheduling strategies under the above two categories and the predictive based strategy.

Mathematical Optimization based

Despite the scalability concerns raised by mathematical optimization techniques, few works rely on them to solve dynamically the operator scheduling problem. For example, [START_REF] Hiessl | Optimal placement of stream processing operators in the fog[END_REF] employs ILP to schedule operators in the Fog layer. To accommodate dynamic workloads of nodes due to the spatio-temporal evolution of IoT data stream rates, the scheduling problem originally introduced in [START_REF] Cardellini | Optimal operator placement for distributed stream processing applications[END_REF] has been extended with: (i) the enactment cost, which is the cost per second to run an operator on a Fog node; and (ii) the migration cost, which considers the operator size and the data rate for pulling this operator from the Cloud to a Fog node. [START_REF] Lambert | Rethinking operators placement of stream data application in the edge[END_REF] leverages Constraint Programming to model the maximum sustainable throughput for dynamic operator placement in the Edge over a P2P network with highly heterogeneous network resources. The problem is constrained by the maximum computational resource capacity of each Edge node and the maximum bandwidth capacity of each network link. This model is solved using the software optimization tool CPLEX.

Heuristic based

Heuristic based approaches are largely used to enable dynamic scheduling of operators. This is due to the fact that these approaches come with lower execution cost to approximate the optimal solution and they can scale for large problem instances.

In this respect, [START_REF] Pietzuch | Network-aware operator placement for stream-processing systems[END_REF] proposes a heuristic approach called SBON that dynamically places operator on P2P network resources. SBON relies on multidimensional cost model that considers data stream rates and resource availability of computational and network resources. For each computational resource node, SBON encodes the CPU load and the network latency for routing data streams with its peer nodes. SBON operates in a scalable and decentralized manner that allows individual nodes to make dynamic placement decisions with local information. To determine the placement of an operator to a computational resource node, SBON relies on a spring-relaxation algorithm: a link between operators is modeled as a spring, whose extension is mapped to the network latency of the operator link and spring constant is mapped to the data stream rate flowing on this link.

Similarly, [START_REF] Rizou | Solving the multi-operator placement problem in large-scale operator networks[END_REF] proposes a multidimensional cost model to build a Cartesian space where every physical node has a virtual position called virtual node such that the Cartesian distance between any pair of physical nodes corresponds to the propagation delay between these physical nodes.

Each operator then autonomously determines its optimal virtual node in this cartesian space that minimizes its network resource usage, depending on its current position and the data stream rate of its neighbour operators. The selected virtual node is then mapped to the available closest physical node, if the selected physical node is not overloaded after deployment of the additional operator. Otherwise the algorithm excludes this physical node from the search space and assigns the operator to the next nearest physical node. Even though that [START_REF] Rizou | Solving the multi-operator placement problem in large-scale operator networks[END_REF] proposes a decentralized heuristic while SBON is a centralized heuristic approach. However both two solutions do not minimize the computational resource usage as they consider resource nodes with higher computational resource capacity (i.e., cluster). Nevertheless they consider only the constraints on the computational resource usage. Their proposed scheduling algorithms consider only the operator placement as the optimization policy of DSPA application.

Operator placement policies are additionally exploited. A dynamic scheduling strategy for P2P sensor networks is proposed in [START_REF] Rizou | Providing qos guarantees in large-scale operator networks[END_REF] with the objective to minimize the network resource usage subject to the constraint of the end-to-end latency. The latency model provided by [START_REF] Pietzuch | Network-aware operator placement for stream-processing systems[END_REF] is used to estimate the propagation delay between sensor nodes. However, data transmission delays are omitted and the operator processing time is considered to be negligible for the small data volumes generated by sensors. The proposed strategy solves the dynamic operator placement problem in two phases. The unconstrained optimization phase finds the minimum network resource usage of the whole operator graph across the overall network of physical sensors. If this initial phase satisfies the end-to-end latency constraint then the optimal solution is found.

Otherwise, the constraint satisfaction phase is apply that degrades a little as possible the network resource usage in order to satisfy the end-to-end latency constraint. The proposed solution is also used to solve their extended problem in [START_REF] Rizou | Fulfilling end-to-end latency constraints in large-scale streaming environments[END_REF] where they account for the fact that data streams produced by sensors are of considerable size. Thus, the end-to-end latency includes not only the propagation delay but also the tuple transmission delay and the tuple processing delay by an operator on nodes. Despite such extension, however they do not minimize the computational resources usage. [112] proposes a framework for adaptive computation partitioning and multi-tenancy component as a Service for partitioning and executing DSPA application between the Cloud and mobile devices. The objective is to maximize the application throughput while minimizing the cost of using the Cloud resources with the constraint on bandwidth usage to reach the Cloud.

The proposed algorithm splits the application designed as DAG between the mobile devices and the Cloud. However, the proposed algorithm is based on the genetic meta-heuristic algorithm that involves high execution cost and require specific parameter tuning enabling the algorithm to quickly converge toward the optimal solution.

Operator replication policy is frequently used to scale (i.e., increase or decrease) the parallelization degree of an operator in order to improve the computational resource usage and consequently the DSPA application response time. For instance, [START_REF] Heinze | Latency-aware elastic scaling for distributed data stream processing systems[END_REF] addresses the problem of end-to-end latency violation when improving dynamically the computational resource utilization of DSPA applications. In this respect, they propose a heuristic approach that firstly analyzes whether the system is overloaded or under-loaded. Then, decide to scale-down or scale-up operator replicas to update the operator placement on the hosts that are respectively overloaded or underloaded. In this respect, the operator placement problem is defined as bin packing problem constrained by the CPU, memory and bandwidth capacity of each host. To solve this operator placement problem, they consider a first fit algorithm by sorting the operator to place on host in decreasing order of their computational resource demands. Then, the upstream or downstream of the currently placed operator on a host is preferred during the placement to favor in memory data communication over transferring data on network links.

Furthermore, [START_REF] Arkian | Model-based stream processing auto-scaling in geo-distributed environments[END_REF] exploits operator replication and placement policies. To this end they consider a Monitor, Analyze, Plan and Execute (MAPE) loop design pattern to dynamically schedule operators in the Fog layer. The objective is to maximize the overall DSPA application throughput. The MAPE loop pattern relies on the monitored system and application performance metrics. It analyzes these metrics in order to determine when to scale-up or scale-down an operator. In this respect, for the scale-up, a resource node is added with the replica of the operator that experiences the back-pressure as long as the throughput is lower than a maximum threshold. For the scale-down, the solution iteratively removes the resource node that hosts the replica of the operator that experience lowest throughput by keeping the maximum throughput higher than a certain threshold. To execute the identified operator placement, the selected resource nodes are sorted by latency with their peers. Conversely to this work, in this thesis we consider not only the Fog resources but also the Cloud resources. Then, we aim at optimizing the trade-off between the usage of the Fog computational resources and the usage of the Cloud network resources. Furthermore, in terms of DSPA application performance, we consider the response time rather than the throughput and aim to ensure the real time response constraint.

Predictive based

Several techniques are used in this context to proactively schedule DSPA applications in order to prevent a possible degradation in the DSPA application performances or in its resource usage cost. In this respect, Markov decision process (MDP) [START_REF] Da Silva | Monte-carlo tree search and reinforcement learning for reconfiguring data stream processing on edge computing[END_REF][START_REF] Russo | Reinforcement learning based policies for elastic stream processing on heterogeneous resources[END_REF][START_REF] Russo | Mead: Model-based vertical auto-scaling for data stream processing[END_REF] and Queuing Theory [START_REF] Lohrmann | Elastic stream processing with latency guarantees[END_REF][START_REF] Wang | Model-based scheduling for stream processing systems[END_REF][START_REF] Fu | Drs: Auto-scaling for real-time stream analytics[END_REF] are the most prominent techniques used to model the dynamic scheduling problem of operators. More recently, machine learning (ML) techniques have been also exploited to propose predictive scheduling of DSPA applications across distributed resources [START_REF] Kombi | A preventive auto-parallelization approach for elastic stream processing[END_REF][START_REF] Lombardi | Elastic symbiotic scaling of operators and resources in stream processing systems[END_REF][START_REF] Zhang | A data stream prediction strategy for elastic stream computing systems[END_REF][START_REF] Hu | Stream data load prediction for resource scaling using online support vector regression[END_REF].

In this respect, [START_REF] Da Silva | Monte-carlo tree search and reinforcement learning for reconfiguring data stream processing on edge computing[END_REF] Edge-Cloud as execution environment, [START_REF] Russo | Reinforcement learning based policies for elastic stream processing on heterogeneous resources[END_REF] considers a general geo-distributed resource network, similarly to [START_REF] Cardellini | Optimal operator placement for distributed stream processing applications[END_REF]. The authors model the problem of acquiring an optimal rescheduling of operators as an infinite horizon of MDP. Then, they address the problem of operator scheduling on heterogeneous infrastructure while minimizing the response time and reconfiguration overhead as well as satisfying the computational resource usage constraint. Unlike [START_REF] Da Silva | Monte-carlo tree search and reinforcement learning for reconfiguring data stream processing on edge computing[END_REF], where the proposed solution leverages RL techniques which suffer for slow convergence in particular as the problem size growth, the solution in [START_REF] Russo | Reinforcement learning based policies for elastic stream processing on heterogeneous resources[END_REF] involves both RL techniques and linear Function Approximation (FA) techniques. Furthermore, [START_REF] Russo | Mead: Model-based vertical auto-scaling for data stream processing[END_REF] exploits markovian arrival processes to address the problem of auto scaling computational resources (CPU) (rather than scaling operators) while minimizing these computational resources subject to the response time constraint. RL is also used by [START_REF] Cardellini | Decentralized self-adaptation for elastic data stream processing[END_REF], which proposes a hierarchical approaches for self-adapting DSPA applications at run-time to minimize response time under the constraint of computational resource usage.

In this respect, the authors exploit Q-learning algorithms that consider different levels of system knowledge: either a model free learning algorithm or a model based approach. The latter exploits the current knowledge or what can be estimated about the system and application at run-time.

[77] proposes dynamic operator scheduling strategies in order to guarantee the DSPA application response time constraint while minimizing resource consumption across a Geo-distributed network of resources that comes with resource-rich homogeneous nodes. They build a latency model based on a G/G/1 queuing model to predict the latency of each individual operator.

Then, based on the prediction model, they employ operator replication policy by increasing the number of replica of each individual operators to satisfy the operator latency constraint. The higher the number of operator replica, the lower the operator latency however the higher the resources consumption. Thus, they use gradient descent algorithm to trade-off between satisfying operator latency and minimizing resource consumption.

[132] designs an adaptive operator scheduling algorithm that replicates and places operators on P2P network in the Cloud. The objective is to ensure lower response time. In this respect, they devise a predictive model of response time and throughput by modeling the problem as a Jackson network model, where each operator is modeled as a GI/G/K queuing model where K

indicates the number of replica per operator.

ML techniques such as linear regression is used in [START_REF] Kombi | A preventive auto-parallelization approach for elastic stream processing[END_REF] to propose a strategy, in response to dynamic data stream rates, that dynamically increases or decreases the number of replicas of each individual operator of a DSPA application. This aims to prevent operator congestion, to free unnecessary resource usage (i.e., RAM, CPU, etc.), and hence to yield results with acceptable data loss and minimum response time. On the other hand, an online support vector regression algorithm is used in [START_REF] Hu | Stream data load prediction for resource scaling using online support vector regression[END_REF] to improve the accuracy of data load prediction for dynamic resource allocation of DSPA applications. Furthermore, a neural network technique is used in [START_REF] Lombardi | Elastic symbiotic scaling of operators and resources in stream processing systems[END_REF] to forecast variations in the input load of operators. It periodically checks if the current provisioning of resources and operator replication need to be scaled-in or scaled-out to accommodate for foreseeable load fluctuations. Recently, a data stream rate prediction model and resource estimation model have been proposed in [START_REF] Zhang | A data stream prediction strategy for elastic stream computing systems[END_REF] to satisfy the response time constraint while minimizing the communication cost across a P2P resource network of clusters. They rely on the neural network prediction based on genetic simulated annealing algorithm to predict the pattern of data stream rate in near future of the cluster, then according to the response time, the resource estimation model adjusts the computational resources allocated to the critical operator of the critical operator path of DSPA application modeled as a DAG.

With the exception of [START_REF] Da Silva | Monte-carlo tree search and reinforcement learning for reconfiguring data stream processing on edge computing[END_REF] considering an Edge-Cloud architecture, most of the predictive based scheduling strategies are used in the context of execution environments providing higher computational resource capacity [START_REF] Cardellini | Run-time adaptation of data stream processing systems: The state of the art[END_REF]. The MDP model introduced in [START_REF] Da Silva | Monte-carlo tree search and reinforcement learning for reconfiguring data stream processing on edge computing[END_REF] has issues of high computational resource demands and may require high execution time in order to converge to the optimal solution. In particular, MDP requires complete knowledge of the system that is not always possible in dynamic environments such as an Edge-Fog-Cloud architecture. 
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Summarizing table

Table 3.3, uses a classification similar to the one of Table 3.2. There is only an additional Strategy category (Pred) for the predictive based approaches.

In this respect, the summary shows that in this thesis, we propose only heuristic based scheduling strategies for the dynamic deployment of DSPA application. In this context, the dynamic scheduling strategy use the operator placement and operator replication policies in order to achieve the objective of minimizing the computational and network resource usage costs, ensuring real time response of DSPA application while satisfying the resource usage constraint and the operator replicability constraint.

Triggering Dynamic Scheduling of Operators

Proposing dynamic scheduling strategies is necessary for adapting the current operator mapping in response to the evolution of the DSPA application workload or changing conditions of the underlying network and computational resources. However, it is necessary also to decide when these strategies should be triggered. Thus, according to [START_REF] Cardellini | Run-time adaptation of data stream processing systems: The state of the art[END_REF] we distinguish three different means used to trigger the adaptation of operator placement at run-time. 

Time-based

Dynamic scheduling strategies can be performed on a regular basis based on a period of time that can be in the order of few seconds to several minutes. For instance, a time period called activation time is defined in [START_REF] Kalavri | Three steps is all you need: fast, accurate, automatic scaling decisions for distributed streaming dataflows[END_REF] to trigger DS2, a controller for dynamic scaling of distributed operators.

DS2 periodically collects operator metrics (i.e., throughput) to build a model that enables to identify whether the running application is overloaded or has over-provisioned resources. Then, at each activation time, DS2 invokes the scheduling strategy for re-scaling the current operator placement.

It is worth noting that triggering a dynamic scheduling of DSPA applications periodically provides design and implementation simplicity as it requires only a single parameter. However the challenge remains in specifying the length of the time period to set that allows collecting sufficient application and system metrics for taking an appropriate scheduling decision. Setting a short period of time involves small quantities of collected metrics, while setting a long period of time may reduce responsiveness to rapidly evolving situations. Thus, it is important to take into account the trade-off between efficiency and responsiveness [START_REF] Cardellini | Run-time adaptation of data stream processing systems: The state of the art[END_REF].

Reactive

A reactive approach adapts the operator scheduling in reaction to the current system or application changes. Several dynamic operator scheduling strategies have been proposed, such as [START_REF] Jonathan | Wasp: Wide-area adaptive stream processing[END_REF][START_REF] Hiessl | Optimal placement of stream processing operators in the fog[END_REF][START_REF] Rizou | Fulfilling end-to-end latency constraints in large-scale streaming environments[END_REF][START_REF] Lohrmann | Elastic stream processing with latency guarantees[END_REF][START_REF] Peixoto | Hierarchical scheduling mechanisms in multi-level fog computing[END_REF][START_REF] Rizou | Providing qos guarantees in large-scale operator networks[END_REF][START_REF] Cardellini | Decentralized self-adaptation for elastic data stream processing[END_REF][START_REF] Lohrmann | Massively-parallel stream processing under qos constraints with nephele[END_REF]. The aforementioned strategies are mainly triggered by threshold violations, which are evaluated against the latest collected system or application metrics.

Proactive

Proactive approach considers past and current system and application metrics, based on which they try to forecast operator and execution environment changes in the near future, in order to adapt the current operator scheduling in advance if necessary [START_REF] Arkian | Model-based stream processing auto-scaling in geo-distributed environments[END_REF][START_REF] Arkian | Model-based stream processing auto-scaling in geo-distributed environments[END_REF][START_REF] Da Silva | Monte-carlo tree search and reinforcement learning for reconfiguring data stream processing on edge computing[END_REF][START_REF] Kombi | A preventive auto-parallelization approach for elastic stream processing[END_REF][START_REF] Lombardi | Elastic symbiotic scaling of operators and resources in stream processing systems[END_REF][START_REF] Zhang | A data stream prediction strategy for elastic stream computing systems[END_REF][START_REF] Hu | Stream data load prediction for resource scaling using online support vector regression[END_REF][START_REF] Cardellini | Decentralized self-adaptation for elastic data stream processing[END_REF].

Summarizing table

In Table 3.4, we compare the aforementioned works in terms of when dynamic scheduling is triggered: (i) after a fixed time interval (Time-based); (ii) upon a threshold of a monitored metric is reached (Reactive); and (iii) by predicting (Proactive) in the near future when a threshold of a monitored metric will be reached. This summary shows that this thesis consider a the reactive approach in order to trigger the rescheduling of operator if necessary.

Discussion and Positioning

The operator scheduling problem aiming to ensure DSPA application performance and at the same time efficient resource usage has been largely discussed in related work. This is demonstrated by the quality and quantity of the contributions made to address the inherent challenges.

These contributions differ in the execution environment and related network architecture where the DSPA application is deployed (Edge/Fog, Cloud, Cluster, etc.) (see Table 3.1). They differ also in the scheduling objectives, strategies and policies, as well as the specificities of the DSPA application under consideration (see Table 3.2, Table 3.3 and Table 3.4).

For processing data stream at the IoT network edge, Table 3.1 shows that some works consider only the Edge as the only execution environment [START_REF] Traub | Optimized on-demand data streaming from sensor nodes[END_REF][START_REF] Srivastava | Operator placement for in-network stream query processing[END_REF] and few works consider only the Fog [START_REF] Arkian | Model-based stream processing auto-scaling in geo-distributed environments[END_REF]. Some other works consider the execution environment constituted with Edge and Cloud nodes connected by either hierarchical or P2P network [START_REF] Prosperi | Planner: cost-efficient execution plans placement for uniform stream analytics on edge and cloud[END_REF][START_REF] Neophytou | Optimizing the energy consumption of continuous query processing with mobile clients[END_REF][START_REF] Neophytou | Power-aware operator placement and broadcasting of continuous query results[END_REF][START_REF] Yang | A framework for partitioning and execution of data stream applications in mobile cloud computing[END_REF][START_REF] Da Silva | Latency-aware strategies for deploying data stream processing applications on large cloud-edge infrastructure[END_REF][START_REF] Da | Quality of service aware mechanisms for (re) configuring data stream processing applications on highly distributed infrastructure[END_REF][START_REF] Da Silva | Monte-carlo tree search and reinforcement learning for reconfiguring data stream processing on edge computing[END_REF]. The works that consider the Edge-Fog-Cloud architecture as the execution environment, the resource nodes in this architecture are connected either only by a P2P network [START_REF] Amarasinghe | A data stream processing optimisation framework for edge computing applications[END_REF][START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF][START_REF] Souza | Scalable joint optimization of placement and parallelism of data stream processing applications on cloud-edge infrastructure[END_REF][START_REF] De Souza | An optimal model for optimizing the placement and parallelism of data stream processing applications on cloud-edge computing[END_REF] or by both P2P and hierarchical networks [START_REF] Sajjad | Spanedge: Towards unifying stream processing over central and near-the-edge data centers[END_REF][START_REF] Li | Online workload allocation via fog-fog-cloud cooperation to reduce iot task service delay[END_REF][START_REF] Peixoto | Hierarchical scheduling mechanisms in multi-level fog computing[END_REF] while in this thesis we consider a hierarchical Edge-Fog-Cloud architecture. Furthermore, we consider that the resources across this hierarchical architecture can be shared among several DSPA applications. Few work have dealt with the shareable resource characteristic however at very high level [START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF][START_REF] Peixoto | Hierarchical scheduling mechanisms in multi-level fog computing[END_REF].

The computational and network resources across the Edge-Fog-Cloud (or Edge-Cloud) architecture are heterogeneous where the resources at the Edge/Fog can be constrained. Most of the works that rely on this architecture focus on optimizing the network resource usage and the DSPA response time by ensuring only constraint of computational resource usage [START_REF] Prosperi | Planner: cost-efficient execution plans placement for uniform stream analytics on edge and cloud[END_REF][START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF][START_REF] Peixoto | Hierarchical scheduling mechanisms in multi-level fog computing[END_REF][START_REF] Da | Quality of service aware mechanisms for (re) configuring data stream processing applications on highly distributed infrastructure[END_REF][START_REF] Souza | Scheduling solutions for data stream processing applications on cloud-edge infrastructure[END_REF].

While we introduce a resource usage cost model that: (i) addresses both computational and network resources and enables to deal with the trade-offs that are inherent to their joint usage; (ii) characterizes the usage cost of resources by distinguishing between abundant and constrained resources as well as based on their dynamic availability, hence covering both dedicated and shareable resources.

In this respect, we formulate and solve the problem of scheduling operators of DSPA applications across a hierarchical Edge-Fog-Cloud resource architecture that: (i) jointly optimizes the resource usage cost for computational and network resources. Few works take computational resources into account in their optimization goals [START_REF] Souza | Scalable joint optimization of placement and parallelism of data stream processing applications on cloud-edge infrastructure[END_REF][START_REF] De Souza | A throughput model for data stream processing on fog computing[END_REF]; (ii) subject to a response time constraint. Few works deal with such a constraint [START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF], most works that aim to schedule real-time DSPA applications include the response time in their optimization goals (See Table 3.5. Discussion and Positioning

and Table 3.3).

Our objective is to schedule a DSPA application in a way that it uses available resources in the most efficient way. This enables saving valuable resources for other DSPA (or non DSPA)

applications that share the same resource architecture.

We introduce several scheduling algorithms that deal with different versions of the problem: static scheduling and time aware scheduling (see Table 3.2) and dynamic scheduling (see Table 3.3). In this respect, we consider both mathematical optimization based approach and heuristic based approach. However as the former bears the issues of scalability and high execution cost which is not acceptable for dynamic scheduling strategy of DSPA application requiring real-time response. Therefore, we consider the mathematical based optimization approach as benchmark solution for the static scheduling algorithms. Then for the dynamic scheduling strategy, we rely only on heuristic based approach as it enables to approximate the optimal solution within reasonable amount time and take at bay the scalability issues in case of high problem size. The proposed heuristics for dynamic scheduling is triggered through a reactive technique (See Table 3.4).

We extensively and comparatively evaluate our algorithms against several baselines that either we introduce or they originate / are inspired from the state of the art literature [START_REF] Cardellini | Optimal operator placement for distributed stream processing applications[END_REF][START_REF] Rizou | Fulfilling end-to-end latency constraints in large-scale streaming environments[END_REF][START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF][START_REF] Delahaye | Simulated annealing: From basics to applications[END_REF]. It worth noting that, the related works rely on testbed (real environment) [START_REF] Prosperi | Planner: cost-efficient execution plans placement for uniform stream analytics on edge and cloud[END_REF][START_REF] Nardelli | Qos-aware deployment and adaptation of data stream processing applications in geo-distributed environments[END_REF] for evalutaing scheduling algorithms. A testbed uses real data on real (or near real) execution environment. For example, [START_REF] Prosperi | Planner: cost-efficient execution plans placement for uniform stream analytics on edge and cloud[END_REF] uses the Grid'5000 as the Edge-Cloud architecture by deploying the DSPA engine Apache Edgent at the Edge and Apache Flink DSPA engine on the Cloud. It worth noting that in the context of Edge/Fog computing, there is lack of solid established edge-oriented DSPA engines [START_REF] Cardellini | Run-time adaptation of data stream processing systems: The state of the art[END_REF]. Furthermore, existing testbeds does not enable to reproduce experiments.

For these reasons, we use the simulation tool iFogSim to evaluate the scheduling strategies proposed in this thesis. iFogSim enables to realistically design an execution environment such as Edge-Fog-Cloud architecture, the DSPA application and implement all the scheduling strategies.

Furthermore, iFogSim provides means to monitor the execution of a running DSPA application (see This chapter contains 15 pages.

Introduction

In this chapter we highlight the main cost factors when executing DSPA applications over Edge-Fog-Cloud nodes offering network and computational resources. We focus here on cost in terms of required resource quantities, as: (i) resources may be limited; (ii) they may be shareable among multiple DSPA applications; and (iii) their use may incur a monetary cost, which however is not considered here. Long lasting DSPA applications may exhibit a dynamic workload due to the spatio-temporal dynamics of IoT devices generating the data streams. Such dynamic workload impacts not only the resource usage cost of Edge-Fog-Cloud nodes but also the way DSPA 

Preliminaries

Prior to introducing the resource usage cost model and the response time model, in this section we present core models of the DSPA applications and Edge-Fog-Cloud architectures which are summarized respectively in Table 4.1 and Table 4.2.

DSPA application

We represent a DSPA application as a directed acyclic graph (DAG) of operators (or simply application graph), denoted by G, where the vertices represent operators (O x , x ∈ N ) and the edges represent the data stream flowing between two operators [7]. G topology further includes the sources that produce the raw data streams S j , (j ∈ N ) of rate |S j | consumed by the operators and the sinks (Sink 1 , Sink 2 , etc.) that capture the stream of the computed results. To cope with the infinite nature of data streams, we consider that operators are executed in time windows ω x to process a finite set of data items d x arising within a time interval. Thus, the application graph G is characterized by the following parameters:

Operator selectivity (sel x ) In related work [START_REF] Neophytou | Optimizing the energy consumption of continuous query processing with mobile clients[END_REF][START_REF] Neophytou | Power-aware operator placement and broadcasting of continuous query results[END_REF][START_REF] Da Silva | Latency-aware strategies for deploying data stream processing applications on large cloud-edge infrastructure[END_REF], the authors often distinguish on one hand selectivity as the ratio between the input and output data tuple size, and on the other hand productivity as the ratio between the input and output data tuple number. However, in this work we consider the operator selectivity as the product of the two metrics. Thus, we define the operator selectivity as the ratio between the input and output data rate of an operator O x .

Operator cumulative selectivity (csel x ) defined as the product of operator selectivity from a source to a target operator O x according to their topological order in the application graph G.

Edge data rate (λ x,y ) defined as the rate of data stream flow between the two operators connected via this edge.

Operator cost (c x ) defined in terms of CPU demand (e.g., million instructions (MI) per byte of data) and/or RAM demand (e.g., Mb per Mb of data) for an operator O x to process its data load D x [START_REF] Djemai | Mobility support for energy and qos aware iot services placement in the fog[END_REF].

Operator data load (D x ) defined as the aggregation of the input data streams per time window ω x :

D x = I i=1 ω x • λ i,x (4.1) 
Where I is the number of upstream operators O i producing data stream at rate λ i,x towards the operator O x .

Operator resource demand (req x ) defined as the computational resource (i.e., CPU/memory) required by an operator O x to process its data load D x at a time t with respect to its associated cost c x :

req x = D x • c x (4.2)
To replicate and migrate a part of G on different computational resources n i = E i |F j |C of Edge-Fog-Cloud nodes that make part of the resource architecture H, we need to partition G in disjoint sub-graphs, denoted by Gmig i , according to some workload criteria, such that the resulting graph to deploy is defined as follows:

G dep = ∀ n i ∈H Gmig i (4.3)
To specify a replication and migration point in G, we rely on the edge-cut algorithm [START_REF] Edmonds | Theoretical improvements in algorithmic efficiency for network flow problems[END_REF] which partitions G in two disjoint subgraphs. An edge-cut ec j contains the set of edges having one endpoint in each subgraph of the partition. Additionally, let |ec j | denotes the rate of an edgecut ec j defined as the sum of edge data rates crossing this edge-cut. Finally, let the minimum edge-cut be the edge-cut that has the smallest value among all the edge-cuts in the application graph G. To calculate the minimum edge-cut we may rely on the Edmond-Karp algorithm [START_REF] Edmonds | Theoretical improvements in algorithmic efficiency for network flow problems[END_REF] that is proven to be efficient for dense graph.

Finally, we consider that each sub-graph Gmig i to be deployed at the IoT network edge should satisfy the operator replicability constraint to ensure geographical placement constraint of part of DSPA application. Union of subgraphs Gmig i to deploy across the Edge-Fog-Cloud architecture ec j

An edge-cut in G, the replication and migration point of S j |ec j | Data rate of the edge-cut ec j

Edge-Fog-Cloud architecture

We abstract an Edge-Fog-Cloud architecture as a hierarchical wide-area resource network defined by the set H={E, F, C} [START_REF] Li | Online workload allocation via fog-fog-cloud cooperation to reduce iot task service delay[END_REF]. The Edge (E) layer consists of M IoT devices E={E 1 , ..., E M } moving in N geographic areas A j , j={1...N }, the Fog (F) layer consists of N Fog nodes F={F 1 , ..., F N }

where each Fog node F j provides nearby computational service to the geographic area A j . One Cloud node C is considered at the top of the hierarchy. In this respect, we consider S j as the sum of data streams arriving to a Fog node F j and produced by m j (t) ≤ M IoT devices moving at a time t in the geographic area A j . Given the above at time t, M = N j=1 m j (t). Figure 4.2 illustrates this abstraction of the Edge-Fog-Cloud architecture.

In this architecture, we distinguish between the computational resources of the Edge/Fog/-Cloud nodes in terms of CPU/GPU or RAM for executing operators and the network resources in terms of the bandwidth and delay of each WAN link connecting two nodes through which data stream are transmitting from an operator to another.

Computational resources

For each individual Edge-Fog-Cloud node, we consider the maximum computational resources (in terms of CPU/GPU, RAM) cm Ei , cm Fj and cm C for respectively the Edge node E i , the Fog node F j and the Cloud node C. We additionally consider the available computational resources at a time t cma Ei , cma Fj and cma C for respectively the Edge node E i , the Fog node F j and More specifically, a physical or virtual node may be dedicated to a single DSPA application.

For example, a Raspberry pi at the Edge or a VM in the Cloud. In this case, cm Ei is the maximum capacity of the physical node at the Edge and cm C is the maximum reserved capacity of the VM in the Cloud. Then, available capacity cma Ei < cm Ei or cma C < cm C may occur when some operators of the DSPA application are already deployed on respectively this Edge node or this Cloud node. In a different case, a physical or virtual node may be shareable among multiple DSPA applications and / or other processes. For example, a gateway server at the edge or a VM in the Fog. In this case, cm Ei is the maximum capacity of the physical node at the Edge and cm Fj is the maximum reserved capacity of the virtual node in the Fog, shared among multiple processes. Here, the available capacity cma Ei < cm Ei or cma Fj < cm Fj may occur due to the DSPA application of interest and / or due to other (DSPA or non DSPA) applications.

Network resources

Let nb EiFj be the maximum network bandwidth to reach a Fog node F j from the closest Edge nodes E i and nb Fj C the maximum network bandwidth on the network link from a Fog node F j to the Cloud node C. While, nba EiFj is the available network bandwidth capacity on the network links from the Edge to the nearest Fog nodes F j and nba Fj C is the available network bandwidth on the network link from the Fog node F j to the Cloud node C.

Several techniques have been proposed to estimate the available network bandwidth of a network link. The interested reader can refer to [START_REF] Prasad | Bandwidth estimation: metrics, measurement techniques, and tools[END_REF]. Practically speaking, a network link is a logical link dedicated to a DSPA application, which however shares the same underlying physical links with other DSPA applications and processes. In this respect, if nb Fj C is the maximum bandwidth (best effort, not reserved) of the logical link from the Fog node F j to the Cloud C that can be used by a DSPA application, the available network bandwidth nba Fj C < nb Fj C may occur due to the utilisation of this network link by the DSPA application of interest but also due to the utilization of other (DSPA or non DSPA) applications, even if nb Fj C is not shared The network delay on a network link is the time it takes for the first byte to arrive to the destination. It depends on the distance between the source and the destination of this network link as well as on the network congestion due for example on the available network bandwidth capacity, the data size to transmit on this network link, etc. In this respect, let nd EiFj be the network delays of the network link from an Edge node E i to its nearest Fog node F j and nd Fj C the network delay of the network link from a Fog node F j to the Cloud node C. In Chapter 6, we discuss the network delay in detail.

Resource usage model

Computational and network resources across the Edge-Fog-Cloud architecture are heterogeneous as they can be constrained and this in very different degrees. Furthermore, these resources are in most cases shareable among several (DSPA) applications. So, it is important to assess the usage cost of these resources in a representative way that can ensure their most efficient utilization for whether at static (initial) deployment or dynamic deployment of DSPA applications.

In essence when we deploy statically a DSPA application, we do not take into account its current deployment state neither the current state of the Edge-Fog-Cloud resources on which it is deployed. However, in the case of dynamic deployment, we need to take into account, the actual deployment state of the DSPA application as well as the actual Edge-Fog-Cloud resources.

One step further, we need also to take into account the state of the resource if it is selected to be used.

In this respect, prior to introduce the resource usage cost model, we first introduce how to weight the usage of each resource of the Edge-Fog-Cloud architecture. Table 4.3 summarizes the symbol used for modelling the resource usage cost.

Weighting the usage of a resource

We need to distinguish a resource node n i = E i |F j |C over another with their underlying network links by weighting the request of using both the computational and network resources. In this respect, for any computational or network resource, we consider:

• M ax: the maximum reserved resource capacity; that can be either the maximum computational resource capacity cm Ei , cm Fj or cm C for respectively the Edge node E i , Fog node To weight a resource, we distinguish between weight factor that is calculated statically in the case of static deployment of DSPA application and the weight factor that is calculated dynamically in case dynamic deployment of DSPA applications.

F

Static weights

This weight factor should be used in the case a DSPA application is deployed statically from scratch across the Edge-Fog-Cloud architecture. In this context, it only considers the maximum reserved capacities of each individual resources of the Edge-Fog-Cloud architecture.

In particular, this weight factor reflects the strategy that we should use with parsimony resources with constrained maximum reserved capacities and favor the usage of resources with higher maximum reserved capacities. In this respect, we weight the request Req of using each resources across the Edge-Fog-Cloud architecture by the inverse of its maximum reserved capacity M ax. Hence, the weight factor in this case is formulated as following:

W = 1 M ax (4.4)

Dynamic weights

This weight factor should be used in the case of a DSPA application is deployed (redeployed) dynamically at run-time across the Edge-Fog-Cloud architecture. In this context, we need to take into account the current state (available capacity) of each individual resources across the Edge-Fog-Cloud architecture which can already be used by the current DSPA application or other (DSPA) application.

Specifically, this dynamic weight factor reflects the strategy that, before selecting a resource, we should take into account not only its maximum capacity but also its current state and even further its resulting state if this resource is selected to be used.

In this respect, for a resource with the maximum resource capacity M ax and available resource capacity Avail, the current state of this resource is the difference: M ax -Avail. The current usage ratio of this resource is (M ax-Avail) M ax

. If we want to deploy a DSPA application that requires resource usage Req on this resource, the usage ratio will be (M ax-Avail+Req)

M ax

. We propose to use this resulting usage ratio to weight the usage cost of a resource when minimizing the resource usage cost. Hence, when deploying a new DSPA application, we will favor the usage of resources with low resulting usage ratios.

W = (M ax -Avail + Req) M ax ≡ M ax M ax - Avail M ax + Req M ax ≡ 1 - Avail M ax + Req M ax (4.5)
Another intuitive interpretation of W can be drawn from Formula 4.5 as following: with the term (1 -Avail M ax ), we favor using resources with high relative available capacity; and with the term Req M ax , we favor using resources with high maximum capacity. In order to calculate the computational (or network) resource usage cost of a node n i (or a network link) across the Edge-Fog-Cloud architecture, we need to capture the fact that this resource is limited and can be shared by several other DSPA applications or processes at any time. Therefore, we need to efficiently use the node or network link that has the smallest available resource capacity.

Computational resource usage cost

To assess the cost of using an Edge node E i , a Fog node F j or a Cloud node C, we multiply the usage of each node by either of the weight versions.

For the case of the static weight, we use Formula (4.4) and hence we calculate the weight W Ei , W Fj and W C of using respectively an Edge node E i , a Fog node F j and Cloud node C as following:

W Ei = 1 cm Ei (4.6) W Fj = 1 cm Fj (4.7) W C = 1 cm C (4.8)
However for the case of the dynamic weight, we use Formula (4.5). In this respect, we calculate the weight W Ei , W Fj and W C of using respectively an Edge node E i , a Fog node F j and Cloud node C as following:

W Ei = 1 - cma Ei cm Ei + cmu Ei cm Ei (4.9) W Fj = 1 - cma Fj cm Fj + cmu Fj cm Fj (4.10) W C = 1 - cma C cm C + cmu C cm C (4.11) 
Given the above Formulas that weight (statically or dynamically) respectively the request of using an Edge node E i , a Fog node F j and a Cloud node C, the overall resource usage cost is calculated as following:

cru = M i=1 (cmu Ei * W Ei ) + N j=1 (cmu Fj * W Fj ) + (cmu C * W C ) (4.12)
Where M is the total number of the Edge nodes E i , N is the total number of the Fog nodes 

Network resource usage cost

Given that we abstracted the Edge-Fog-Cloud architecture as a hierarchical WAN resources, we observe that the network bandwidth increases up in the hierarchy as we go from the Edge to the Cloud and the network delay also increases as we go from the Edge to the Cloud. Furthermore, we consider that the network delays and the available network bandwidth capacities of each individual WAN links can be dynamic with regard to the network conditions [START_REF] Jonathan | Wasp: Wide-area adaptive stream processing[END_REF].

In the literature [START_REF] Cardellini | Optimal operator placement for distributed stream processing applications[END_REF][START_REF] Pietzuch | Network-aware operator placement for stream-processing systems[END_REF], concerning peer node networks, network delay is used as the only weight factor for differentiating network links. We additionally include network bandwidth as a weight factor: using network links of limited capacity with parsimony allows an efficient sharing among several DSPA applications. In this respect, the cost of using a network link is calculated by multiplying the requested network bandwidth usage by the weight factor (static or dynamic) of using this link and its network delay. 

W Fj C = 1 - nba Fj C nb Fj C + nbu Fj C nb Fj C (4.16)
Given the weight factor statically or dynamically calculated, the overall network resource usage cost if formulated as following:

nru = N j=1 M i=1 (nbu EiFj • W EiFj • nd EiFj ) + N j=1 (nbu Fj C • W Fj C • nd Fj C ) (4.17)
Where M is the total number of the Edge nodes E i and N is the total number of the Fog nodes F j .

Response time model

According to the criteria of minimizing cru and nru, the resulting G dep defined in Formula (4.3) becomes the disjoint partition in subgraphs Gmig i to deploy across the Edge-Fog-Cloud architecture. However, G dep should also take into account any time-constraint imposed to a DSPA application. In this respect, we need to introduce the response time model of DSPA application. Similarly to [START_REF] Cardellini | Optimal operator placement for distributed stream processing applications[END_REF], we define the response time T as the worst end-to-end latency

Lπ ij among all the operator paths π ij ∈ G dep :

T = max πij ∈G dep (Lπ ij ) (4.18)
where each data stream S j is processed by n π > 0 operator paths π ij in G dep with i={1, . . . , n π }.

To calculate the end-to-end latency Lπ ij of an operator path π ij , we consider the network delay of each network link traversed by this operator path along with the latency of each operator O x ∈ π ij for processing its data load D x .

Lπ ij = exy∈πij nd M(x),M(y) + Ox∈πij l x (4.19)
where M is the mapping function, that gives the resource node n i =E i |F j |C on which a data source node, an operator O x or a sink node is (or can be) mapped to. Then, nd M(x)M(y) is the network delay for transmitting data from a resource node that hosts the data source x or the operator O x to the resource node that hosts the operator O y or the sink y. nd M(x),M(y) is negligible if the source x or the operator O x and the operator O y or the sink y are placed on the same resource node (i.e., M(O x ) == M(O y )). Otherwise it is not negligible. Furthermore, l x is the latency of the operator O x to process its input data load D x .

In the following, we define in detail the principle components that participate in the response time model, namely the network delay and the operator latency.

Network link delay

In general, the network delay includes: (i) the propagation delay on the network link medium, which depends on the distance between the connected nodes and includes the processing and queuing delays of a packet at the intermediate routers; and (ii) the transmission delay of a packet.

The transmission delay depends on the available bandwidth on the network link. Hence, the network delay can be defined as the sum of the propagation and transmission delays [START_REF] Prasad | Bandwidth estimation: metrics, measurement techniques, and tools[END_REF]:

nd ninj = pd ninj + td ninj (4.20)
Where pd ninj is the propagation delay between two resource nodes n i and n j and td ninj is the transmission delay between these two resource nodes.

Propagation delay

The propagation delay of a network link nl ninj is the time it takes to transmit a single bit between two resource nodes (i.e. Edge node E i to Fog node F j or Fog node F j to Cloud node C); it is independent of the data size [START_REF] Rizou | Fulfilling end-to-end latency constraints in large-scale streaming environments[END_REF]. However, it depends on the type of the network link medium and the distance between the connected resource nodes; it is limited by the speed of the light. It also depends on the link conditions, e.g., network congestion. The Vivaldi algorithm is largely used in the literature to approximate propagation delays between peers in a network [START_REF] Dabek | Vivaldi: A decentralized network coordinate system[END_REF].

Transmission delay

The transmission delay is the time for putting data on the wire by the source resource node n i in order to be transmitted on the network link nl ninj for reaching the destination resource node n j .

It depends on the size of data to transmit and the available network bandwidth nba ninj . The latter is impacted by several factors, including the number of active sessions, the transmission capacity of the link (nominal network bandwidth capacity), the link conditions, e.g., network congestion. In this respect, in order to estimate the transmission delays, we need to know the available network bandwidth capacity. However, estimating the available network bandwidth capacity on a network link is a tedious task. Several techniques have been proposed for this purpose [START_REF] Prasad | Bandwidth estimation: metrics, measurement techniques, and tools[END_REF].

Therefore in this thesis we proceed as follows. To estimate the transmission delay of any data d xy of size |d xy | from the operator O x mapped on the node n i to the operator O y mapped on the node n j , where n i ̸ = n j , we first measure the network delay nd ′ ninj of data d of considerable size |d| between these two nodes. The transmission delay of data d is td ′ ninj = nd ′ ninj -pd ′ ninj , where pd ′ ninj is the propagation delay between these two resource nodes (previously estimated). Then, the transmission delay of any data d xy is calculated as follows [START_REF] Rizou | Fulfilling end-to-end latency constraints in large-scale streaming environments[END_REF]:

td ninj = td ′ ninj • |d xy | |d| (4.21)

Operator latency

The latency of an operator O x depends on its current data load D x , the type of operation it performs (e.g., filtering, projection, aggregation, etc.) and the available computational resources in terms of CPU (cpu j ) of the hosting resource node. Thus, let µ x be the rate at which an operator O x can process its data load D x on a resource node n j [START_REF] Renart | Distributed operator placement for iot data analytics across edge and cloud resources[END_REF] and it is formulated as following:

µ x = cpu j req x (4.22)
Where cpu j is the available resource capacity of node n j in terms of MIPS and req x the computational resource demands of operator O x in terms of MIPS which is defined in Formula (4.2).

We assume that, the resource nodes use a time sharing overbooking strategy in order to enable CPU allocation even if the CPU demand is greater than the total CPU capacity [START_REF] Djemai | Mobility support for energy and qos aware iot services placement in the fog[END_REF].

Thus, if M IP S j is the total CPU capacity of a resource node n j , we calculate cpu j as follows [START_REF] Rizou | Fulfilling end-to-end latency constraints in large-scale streaming environments[END_REF]:

cpu j = min(M IP S j , M IP S j q j ) (4.23)
where q j is the number of processes (including the operators) running on the resource node n j .

Given the infinite nature of a data stream, let wt x be the waiting time that data elements remain in the operator queue if this operator is busy. However, the service rate µ x , the waiting time wt x and the number of data elements in an operator queue (i.e.,operator data load D x ) are random variables over a continuous time parameter. For this reason, to calculate the operator latency l x we model each operator as a queuing system with one server and following the first in first out policy [START_REF] Shortle | Fundamentals of queueing theory[END_REF] as depicted in Figure 4.3. Then, the operator latency l x is approximated as follows:

E(l x ) = E(wt x ) + 1 µ x (4.24)
To approximate the waiting time E(wt x ), we need to consider the characteristics of each operator O x in G, in particular, whether it relies on count based or time based windows. may follow an exponential distribution [START_REF] Jiang | Queueing analysis of relational operators for continuous data streams[END_REF].

However, given that the operator O x always process windows of finite data D x received at each time interval β x , thus we can consider the arrival rate λ x of each window is deterministic.

Hence, as the service rate depends on the size of the data to process, it also follows an exponential distribution. Thus, we can model a time based sliding window operator as a D/M/1 queuing system. The waiting time is estimated as following:

E(wt x ) = 1 µ x • γ (1 -γ) (4.25)
Where γ is the root of the equation e -(µx•βx•(1-γ)) that should have the smallest absolute value. For further reading, reader can referee to [START_REF] Jansson | Choosing a good appointment system-a study of queues of the type (d, m, 1)[END_REF].

Tuple based window

This window considers a fixed number (K) of data to be processed. In this respect, it starts at each specified time t, selects data by going steadily backwards in time until the K data are collected. Then, the operator is triggered to process the K data contained in the window [START_REF] Patroumpas | Window specification over data streams[END_REF]. To estimate the waiting time wt x of data element in the queue of O x , each window is processed when K data element have arrived in the window. If the arrival rate of data follows an exponential distribution, the arrival rate of windows can be also exponential as it needs to wait until all K data items is reached. On the other hand, given that each window contains a fixed size of data to process, the service rate is deterministic. Hence, we model such an operator as an M/D/1 queuing system, where the waiting time is estimated as:

E(wt x ) = ρ x 2 • µ x • (1 -ρ x ) (4.26)
Where ρ x = λx µx is the utilization rate of an operator O x . Allocated CPU resources to each process on a resource node n j (in terms of MIPS) q j

Total number of processes running on resource node n j

Conclusion

In this chapter, we modelled a DSPA application as DAG of operators and the Edge-Fog-Cloud architecture as hierarchical WAN resources. We then presented a general cost model that weights statically or dynamically the usage of a resource when distributing operators of DSPA application across the Edge-Fog-Cloud architecture.

In this respect, the static weight should favor the usage of resources with high maximum capacities. The resources with constrained maximum capacities should be used efficiently. On the other hand, the dynamic weight should favor the usage of resources with high available capacities while resources with constrained available capacities should be used with parsimony.

Furthermore, we introduce the response time model to take into account the real time response constraint of DSPA application.

In the next chapter, we will exploit the proposed resource usage cost model to devise resource aware scheduling algorithms of DSPA application across the Edge-Fog-Cloud architecture. Then latter we will extend the resource aware scheduling algorithms to take into the response time constraint of DSPA application to be scheduled across the Edge-Fog-Cloud architecture.

This chapter contains 28 pages.

Introduction

This chapter relies on the resource usage cost model presented in Chapter 4 (see Section 4.3).

We consider static deployment of the DSPA application across the Edge-Fog-Cloud architecture.

Consequently, the DSPA application is deployed from scratch and hence the maximum capacity of a resource is available to the reserving DSPA application. We also consider in this Chapter that data steam are not processed by IoT devices at the Edge layer and the computational resources of the Cloud are practically unlimited while those of the Fog layer are limited.

Additionally, the algorithms of this chapter that aim at optimizing resource usage calculate a new operator placement each time they are employed without taking into account the previous state of resource usage. Consequently, they assume that the available capacity of a resource equals its maximum capacity.

In this respect, we formulate the resource allocation problem to identify opportunities for operator replication and placement between the Fog and Cloud nodes that optimizes at the same time the computational resource usage cost of Fog nodes and the network resources usage cost to reach the Cloud while respecting the maximum resource usage constraints.

In this perspective, in Section 5.3 we first propose a baseline solution called resource constraint satisfaction (RCS) algorithm that identifies scheduling solution of operator between the Fog and the Cloud nodes while satisfying only the maximum resource usage constraint. In essence, the RCS algorithm improves the typical Cloud based processing architecture where the DSPA application is deployed in the Cloud and the data streams produced by IoT devices are directly sent to the Cloud.

As the RCS algorithm does not optimize the resources usage cost, in Section 5.4 we formulate the operators scheduling problem as a single objective optimization (SOO) problem of the combined usage costs of the computational resources and the network resources and we show that the SOO problem is an NP-hard problem. Then, we propose new scheduling strategies for solving the SOO problem. To do so, we formulate the SOO problem as an instance of integer linear programming (ILP) model subject to inequality constraints and we rely on the CPLEX tool [START_REF] Studio-Cplex | Users manual-version 12 release 8[END_REF] to find an optimal solution of this problem. As our SOO-CPLEX solution may incur a high execution time for large problem sizes, we introduce a heuristic algorithm called SOO-H.

SOO-H exploits the characteristics of the application graph G and of the hierarchical network model abstracting the Edge-Fog-Cloud architecture to achieve an optimal overall resource usage cost, both in best-case and worst-case executions.

The contributions described in this Chapter have been published in respectively the fourth International Workshop on Edge Systems, Analytics and Networking (EdgeSys 2021) [START_REF] Ntumba | Scheduling continuous operators for iot edge analytics[END_REF] and in the Sixth International Conference on Fog and Mobile Edge Computing (FMEC 2021) [START_REF]Efficient scheduling of streaming operators for iot edge analytics[END_REF].

Resource allocation problem

We choose to initially work under the assumption of static deployment of DSPA application across the Edge-Fog-Cloud architecture, where the DSPA applications are deployed from scratch without taking into account the current resource state of the Edge-Fog-Cloud architecture. To enable efficient usage of constrained resources that may be selected to host a part of the DSPA application, we use the static weight version (see Formula Formula (4.4) ) in which the usage of each resource is weighted by the inverse of its maximum reserved capacity. In other terms the cost of using an Edge-Fog-Cloud resource is calculated by multiplying the request of using this resource by the inverse of its maximum resource capacity.

Computational resource usage cost

If we consider cmu E i , cmu F j and cmu C respectively as the request of using the Edge node E i , the Fog node F j and the Cloud node C that have respectively maximum computational resource capacities cm E i , cm F j and cmu C . Considering the static weight version, the weight of using the

Edge node E i , the Fog node F j or the Cloud node C is respectively

W Ei = 1 cm E i , W Fj = 1 cm F j
and W C = 1 cm C . In this thesis, to calculate the computational resource usage cost, we make the following intuitive assumptions [START_REF] Li | Online workload allocation via fog-fog-cloud cooperation to reduce iot task service delay[END_REF]: (i) the computational resources are practically unlimited in the Cloud, cm C → ∞, thanks to the on-demand resource scaling, and hence the weight in the cloud is practically zero, W C → 0; (ii) the computational resources of Fog nodes are limited as they can not be scaled on demand, thus the weight in a Fog node is non-zero, W Fj ∈]0, 1]; and (iii) data stream produced by IoT devices are not processed by the Edge nodes. Then, the focus of our work is to minimize the Fog computational resource usage cost. In this respect, the overall computational resource usage cost (i.e. cru) defined in Formula (4.12) becomes:

cru = N j=1 cmu Fj • W Fj ≡ N j=1 cmu Fj • 1 cm Fj (5.1)
cmu Fj is the sum of the CPU/memory usage required by each operator of the subgraph Gmig j ∈ G dep , which is replicated on the Fog node F j .

Network resource usage cost

For the network resource usage cost, If we consider nbu EiFj and nbu Fj C as the request of using the network link respectively from the Edge node E i to the Fog node F j and from the the Considering the static weight version defined in (4.4), the weights of using these network links are respectively

W EiFj = 1 nb E i F j and W Fj C = 1 nb F j C
. By assuming that data streams are not processed at the Edge, the Edge to Fog network resource usage cost is constant as the data stream produced by IoT devices at the Edge reach the Fog in anyway. Thus, the cost part concerning the Edge to Fog network links is fixed (set as c constant) in the overall network resource cost (i.e. nru) defined in Formula (4.17). We then focus on minimizing the Fog to Cloud network resource usage cost that why Formula (4.17) becomes:

nru = c + N j=1 nbu F j C • W Fj C • nd Fj C ≡ c + N j=1 nbu F j C • 1 nb Fj C • nd Fj C (5.2)
Although the network delay on a WAN link can vary due to the condition of the underlying physical link that is shared by multiple data connections [START_REF] Pietzuch | Network-aware operator placement for stream-processing systems[END_REF], we assume that the network delays nd Fj C between each Fog node and the Cloud can be considered equal and that can be assigned statically calculated average values. Consequently, rather than to consider the maximum network bandwidth capacity of each individual Fog to Cloud network link, we assume nb F C as their aggregated values. If we assume nd F C as the average network delay value of the Fog to Cloud network links, we can consider nd F C as a constant a. Consequently, Formula (5.2) becomes:

nru = c + a • N j=1 nbu F j C • 1 nb F C (5.3)
In this respect, the network bandwidth effectively used on all the Fog-to-Cloud network links is defined as follows:

B = N j=1 nbu Fj C (5.4)
While we considered Cloud computational resources are practically infinite in our resource cost model, we opt for considering Cloud network bandwidth as a resource the usage of which incurs a cost that should be taken into account. Indeed, Cloud providers rely on contracts with ISPs for network bandwidth. For distributed data intensive applications, the usage of the Cloud network bandwidth can be a bottleneck when sending huge volumes of data streams. Hence, for such applications the (monetary) cost charged by Cloud providers for network bandwidth usage can be much larger than the cost charged for computational resource usage [START_REF] Amazon | Aws whitepapers guides[END_REF]. Thus, we assume an upper threshold Bmax of B which is set for a specific DSPA application.

Problem statement

Our goal is to schedule operators of the application graph G so that we respect resource constraints and we jointly minimize the computational resource usage cost on the Fog nodes and the Fog-to-Cloud network resource usage cost. The problem is formalized as follows:

minimize (cru, nru) (5.5) subject to B ≤ Bmax, (5.6) 
cmu Fj ≤ cm Fj j = 1, . . . , N, .

(5.7)

the function replicateAndMigrateToFog() (line 1-2). If the constraint B ≥ Bmin is not satisfied, RCS triggers the function migrateBackToCloud() (line 3-4). Finally, if the computational resource usage constraint (i.e., cmu Fj > cm Fj ) of a Fog node F j is not satisfied, RCS triggers the function adjustEdgeCut() (line 5-6). In the following, we present in detail these three functions used by the RCS algorithm. 

Replicate and migrate to the Fog

When B > Bmax, RCS triggers the function replicateAndMigrateToFog (Algorithm 2). The objective is to lower the Fog-to-Cloud network bandwidth usage B below the upper threshold Bmax while using as less as possible the Fog computational resources. In this respect, RCS favors migrating the processing of high-rate data streams, which have a high impact on the Fog-to-Cloud network bandwidth usage. To this end, RCS sorts all the data streams S j based on their rates, then RCS selects the highest-rate data stream S j (lines 2-4). For the selected S j , RCS identifies the maximum subgraph Gsat j ⊆ Grep that can be migrated to the nearest Fog node F j while satisfying the related computational resource constraint (5.7). Then, RCS identifies the subgraph Gmig j ⊆ Gsat j delimited by the minimum edge-cut of Gsat j , and marks Gmig j as the part of the application graph G to replicate and migrate to the Fog (lines 7-12).

RCS updates B and checks if B is still above Bmax, in order to select the next highest-rate data stream (lines [START_REF] Varghese | Revisiting the arguments for edge computing research[END_REF][START_REF] Ali-Eldin | The hidden cost of the edge: A performance comparison of edge and cloud latencies[END_REF][START_REF] Mcchesney | Defog: fog computing benchmarks[END_REF][START_REF] Shi | Edge computing: Vision and challenges[END_REF]. Otherwise RCS performs the reconfiguration of G (lines 17-19).

Single Objective Optimization (SOO)

The RCS algorithm merely aims to satisfy the constraints defined in our resource allocation problem (i.e., Section 5.2.3). Even though RCS uses as less as possible the computational resources in the Fog, it is oblivious to the minimization of the cost of the computational and network resources actually used. In this section, we model the resource allocation problem for scheduling operators between the Fog and Cloud nodes as a Single Objective Optimization (SOO) problem. We show that this SOO problem is NP-hard and we propose adequate solutions namely: (i) SOO-CPLEX, which models the SOO problem as an integer linear programming (ILP) problem and solves it with the CPLEX solver; and (ii) SOO-H, which uses a heuristic approach to solve the SOO problem more time-efficiently.

Problem formulation

We transform the multi-objective optimization problem introduced in Section 5.2.3 to a singleobjective optimization (SOO) problem by taking the weighted sum of the two optimization metrics. As cru and nru have different units and scales, we first normalize these two metrics by using the min-max scaling technique.

In this respect, cru is the non-normalized form of the overall resource usage cost where the usage cost of each Fog node F j takes value between 0 and 1 (see Formula (5.1)). Hence, if we have N (N ≥ 1) Fog nodes that may be used as necessary, cru will take values between 0 and N. Then, we normalize cru to CRU as following:

CRU = cru cru max (5.11)
With cru max = N , CRU in this case will take values between 0 and 1.

For the overall network resource usage cost (i.e. nru in Formula (5.3)), the weight of using a Fog to Cloud network bandwidth is equal to the inverse of the aggregated maximum bandwidth capacity of each individual Fog to Cloud network link. Hence, nru takes values between 0 and 1 if we eliminate the constant values c and a. In this respect, the normalized form of nru is as follows:

N RU = N j=1 nbu F j C • 1 nb F C
(5.12)

Where nb F C = N j=1 nb F j C . Following from the above, we aim at minimizing the overall resource usage cost RU defined as the weighted sum of CRU and N RU : Where w c ≥ 0 and w n ≥ 0 are respectively the weights for the computational and network resource usage costs, which enable to specify a usage preference for one of the two types of resources over the other. In this work, we assume no such preference (w c = w n = 1).

Given the application graph G and the set of edge-cuts in G, we observe that we can select only one edge-cut ec j as the replication and migration point per data stream S j and Fog node F j . We observe also that the resulting subgraph Gmig j , delimited by ec j , to replicate on the Fog node F j for partially processing the data stream S j there, requires the computational resource usage cmu F j and network bandwidth usage nbu Fj C for sending the processed data stream S j from the Fog node F j to the Cloud node C. Thus, each individual selection of the replication and migration point ec j per each data streams S j and Fog nodes F j produces different values of cmu F j and nbu Fj C .

For each selected replication and migration points ec j per each data streams S j and Fog nodes F j , the resulting cmu F j and nbu Fj C enable to individually calculate the effect of this selection on the overall resource usage cost RU . Thus, we assume that the computational and network resource usage costs can be split for each individual data stream S j as follows:

RU = N j=1
RU j , where RU j = CRU j + N RU j (5.16)

Where RU j , CRU j and N RU j are respectively the contributions to RU , CRU , and N RU for processing a data stream S j .

In this respect, to solve our SOO problem we need to search in the application graph G the replication and migration points ec j for each individual data streams S j and Fog nodes F j such that RU should be minimized, each Gmig j should satisfy the computational resource usage constraint in (5.14) and the operator replicability constraint. On the other hand, the processed data streams S j that will be transmitted on the Fog to Cloud network links should jointly satisfy the network bandwidth usage constraint (5.15).

Considering our SOO problem, the objective of minimizing RU , given the values of RU j at each edge-cut ec j and for all data streams S j and Fog nodes F j , under the global constraint of network bandwidth usage, the SOO problem can be mapped to a 0/1 knapsack problem [START_REF] Salkin | The knapsack problem: a survey[END_REF],

which is NP-hard. An exhaustive search approach is not tractable, particularly for a large search space, i.e., a big size of application graph G and/or a high number of Fog nodes and data streams. Hence, specialized algorithms that quickly rule out large parts of the search space or approximation algorithms should be used instead. 

Operators (O x ): O 1 O 2 O 3 O 4 O 5 O 6 O 7 O 8 
Selectivity (sel x ): 0.8 0.7 0.6 0.8 0.5 0.4 0.6 0.7 Cost (c x ):

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Experimental Evaluation

In this set of experiments, we compare SOO-CPLEX against the baseline RCS algorithm. In this respect, we use the simulator tool iFogSim [START_REF] Gupta | ifogsim: A toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments[END_REF]. iFogSim enables modeling both the hierarchical Edge-Fog-Cloud architecture and the DSPA application. It also enables implementing in Java different scheduling strategies. We implement the algorithms RCS and SOO-CPLEX.

To ensure that SOO-CPLEX produces the optimal solution, we set the optimality gap (OG) to 0.0%. OG is a metric used by CPLEX to trade off between optimality and performance.

Simulated Edge-fog-Cloud architecture and DSPA application We set in iFogSim an Edge-Fog-Cloud architecture comprising 4 Fog nodes, 1 Cloud node, and 4 IoT areas at the Edge. Each individual IoT area A j produces an aggregated data stream S j . Thus, the 4 IoT areas A 1 , A 2 , A 3 and A 4 produce the data streams S 1 , S 2 , S 3 and S 4 towards the closest Fog node F 1 , F 2 , F 3 and F 4 , respectively. Each Fog node forwards further its data stream (that can be or not partially processed) to the Cloud node.

We set also in iFogSim the DSPA application as depicted in Figure 5.1. The cumulated operator selectivity is decreasing and the cumulated operator cost is increasing as we go from the source to the sink (see Table 5.1).

Dynamic IoT data stream rates To simulate, the random behaviour of the rates of the data streams S 1 , S 2 , S 3 and S 4 , we create arbitrarily a set of 9 total data stream rate values in the interval [512, 2256] (in KB/sec). We wish to have around 15 results of the resource usage costs for each total data stream rate value and plot the average of these results per total data stream rate value. In this respect, we create a suite of 135 (9*15) instances of the 9 selected total data stream rate values that evolve randomly as depicted in Figure B.1. For each total data stream rate value instance, we set an interval [0, total data stream rate] in which we randomly We feed the resulting suite of random data stream rates of the streams S 1 , S 2 , S 3 , S 4 to RCS and SOO-CPLEX. For RCS, we maintain the deployment state of the DSPA application between the successive experiments, while for SOO-CPLEX each experiment is independent as SOO-CPLEX does not take into account this state.

Setting parameters For RCS, we set Bmin = 800KB/sec and Bmax = 1450KB/sec so that we have at least 2 total data stream rate values lower than Bmin and 2 others between Bmin and Bmax. Furthermore the evaluation is carried in two cases: (i) with costly (i.e., relatively more constrained) Fog computational resources in terms of memory, where we set cm Fj = 1280KB for each Fog node; and (ii) with less costly Fog resources, where we set cm Fj = 2048KB for each Fog node.

For the evaluation metrics, we compare the metrics RU , CRU and N RU of each RCS and SOO-CPLEX . In this respect, we consider as modest rate values, for the total data stream rate produced at the Edge, values that are lower than Bmax (512KB/sec to 1221KB/sec), and as higher rate values, values that are higher than Bmax (1500KB/sec to 2256KB/sec).

Evaluation results in the case of less costly Fog computational resources Figure 5.2

shows that whatever the data stream rates, SOO-CPLEX outperforms RCS, with a gap up to 37% at modest data stream rates and up to 18% at higher data stream rates. Evaluation results in the case of costly Fog computational resources At modest data stream rates, Figure 5.5 shows that RCS performs like SOO-CPLEX in terms of RU for data stream rates lower than Bmin. For modest data stream rates greater than Bmin, SOO-CPLEX has a slightly lower RU , hence outperforms RCS with a gap up to 0.6%. At higher data stream rates, SOO-CPLEX again slightly outperforms RCS by up to 0.6%. However as long as data stream rates increase, the difference between SOO-CPLEX and RCS is getting smaller.

Figures 5.7 and 5.6 show that SOO-CPLEX balances CRU and N RU , since at modest data stream rates it minimizes CRU so that its value is null and constant while N RU is monotonically increasing up to 0.84 as long as the modest data stream rates are lower than Bmax. However for higher data stream rates, the behaviour of SOO-CPLEX is reversed, CRU is increasing monotonically but in small proportions up to 0.74 while N RU has high values up to 0.9 but keep constant in the form of a tray, until the Fog computational resources are no longer sufficient to serve the maximum data stream rate 2256KB/sec, then N RU > 1.0.

SOO-H Algorithm

SOO-CPLEX provides optimal solutions to the scheduling problem we target. However, given the NP-hardness of the problem, it may incur a high execution time for large problem sizes.

Hence, this solution is not appropriate for dynamic scheduling of operators in response to highly dynamic data streams. In this section, we introduce a heuristic algorithm, which we call SOO-H.

SOO-H approximates the optimal operator scheduling with a lower execution cost. SOO-H is inspired from BOSe [START_REF] Neophytou | Power-aware operator placement and broadcasting of continuous query results[END_REF].

As presented in Algorithm 5, SOO-H first applies a parallel search to generate a solution that attempts to minimize the overall resource usage cost RU by minimizing independently RU j Thus in a second step, SOO-H applies a greedy search that produces local optimal solutions to approximate the global optimal solution in a reasonable amount of time. In this respect, we first use the minimum edge-cut approach to identify the solution that minimizes N RU by minimizing independently N RU j for each data stream S j (line 8), with the function dataMinCut(). If this solution does not satisfy the constraint B ≤ Bmax, the problem has no solution. By relaxing accordingly the Bmax constraint, we may accept this last solution as the best possible one.

On the other hand, if the constraint B ≤ Bmax is satisfied, SOO-H applies a greedy search to Figure 5.9: DSPA application used in the evaluation

Experimental Evaluation

We use the simulator tool iFogSim driven by realistic parameter settings that are proposed in [START_REF] De Souza | A throughput model for data stream processing on fog computing[END_REF]. As benchmarks, we consider: (i) SOO-CPLEX that produces optimal solutions, and

(ii) RCS as baseline approach. In this respect, we implement SOO-H, SOO-CPLEX and RCS in Java inside the simulator. We set the CPLEX optimality gap to OG = 0.0% to ensure that SOO-CPLEX produces the optimal solution.

For our simulation experiments, we build a model of the TLC application (New York City Taxi and Limousine Commission rides) [START_REF] Silva | Investigating edge vs. cloud computing trade-offs for stream processing[END_REF]). The TLC application finds the busiest taxi driver every two hours, where each vehicle emits at the end of a ride a data record containing driver identification, pick-up and drop-off times and locations. It comprises 5 operators and 1 sink as depicted in Figure 5.9.

We also build a simulation model of the Edge-Fog-Cloud architecture presented in Figure 1.3, where we scale the numbers of Fog nodes and IoT devices.

Dynamic IoT data stream rates

We statically simulate the variability of the data stream rates arriving to the Fog nodes by selecting randomly (uniform distribution) 10 values of M (number of IoT devices) in the interval [5000, 50000], where each IoT device produces data at a rate of 4KB/s [START_REF] Xhafa | Evaluation of iot stream processing at edge computing layer for semantic data enrichment[END_REF]. Then for each value of M, we set an interval [0, M ] in which we randomly (uniform distribution) set m j (t) IoT devices per geographical area A j , so that the sum of m j (t) is equal to M. In this respect, each Fog node F j receives data stream S j at rate |S j | = m j (t) × 4KB/s. As we wish to have around 

Parameter setting

We evaluate the performance of SOO-H against RCS and SOO-CPLEX in both best-case and worst-case executions of the SOO algorithm. Best-case execution is related to the set of experiments where SOO-H applies only RU minCut. Worst-case execution is related to the set of experiments where, additionally, SOO-H applies a greedy search including dataM inCut and edgeCutM ove.

In this respect, we observed that SOO-H executes in the worst case only in a narrow subspace of parameter settings. Thus, we generate parameter settings inside and outside this subspace by proceeding as follows.

Assuming that the graph G of the DSPA application is a two-degree graph (as the one of Table 5.2 shows the values of csel x and sum csel c x for the DSPA application of Figure 5.9.

Given the normalized forms of cru (i.e. CRU) and nru (i.e. NRU), we identify the following equilibrium, which represents a balance between the maximum CRU and N RU values over all possible edge-cuts selected as replication and migration points:

max Ox∈G (sum csel c x ) N j=1 cm Fj ≈ max Ox∈G (csel x ) Bmax (5.24) 
This equilibrium qualifies the case when, while moving from an edge-cut to another, network resources are replaced by computational resources of, more or less, equal cost. Then RU = CRU + N RU will be almost constant.

We have observed that, for a best-case execution of SOO-H, the Fog computational resources should be less costly (i.e., relatively more abundant) than the Cloud network resources. To do so, we increase cm Fj for each Fog node F j or decrease Bmax with respect to the equilibrium (5.24). This ensures that RU minCut produces a solution where the constraint B ≤ Bmax is satisfied.

Accordingly, we consider N=30 Fog nodes, and we set their computational capacity in terms of RAM so that 20% of the nodes have 256MB, 30% have 1GB and 50% have 2GB. Then we set For a worst-case execution of SOO-H, the Fog computational resources should be more costly (i.e., relatively less abundant) than the Cloud network resources. To this end, we decrease cm Fj for each Fog node F j or increase Bmax with respect to the equilibrium (5.24). However, we cannot go very far away from the equilibrium, otherwise by decreasing too much cm Fj of each Fog nodes F j or increasing too much Bmax, dataM inCut may produce a solution with B > Bmax, and hence the TSOO algorithm will produce a solution where the constraint B ≤ Bmax is not satisfied. Accordingly, we consider N=10 Fog nodes where all of them have 256MB of RAM, and we keep Bmax = 125000KB/s. Additionally for the baseline solution RCS, we set Bmin = 75000KB/s.

Evaluation results

We distinguish the evaluation results between the best-case and the worst-case executions. In the former, SOO-H applies RUminCut, which directly identifies the optimal solution. In the latter case, SOO-H in contrary applies greedy search with dataMinCut and edgeCutMove, in which an approximation of the optimal solution is identified.

Best-case execution

In this set of experiments, the Fog computational resources are relatively abundant and hence their usage is less costly than the usage of the Cloud network resources. As depicted in Figure 5.10, whatever the number of IoT devices at the Edge and consequently the data stream rates reaching the Fog nodes, SOO-H performs like SOO-CPLEX, thus it finds the optimal RU with RU minCut, for which the resulting solution satisfies directly the constraint B ≤ Bmax. When comparing to RCS, SOO-H outperforms it with a difference ratio that lies between 43.96% and 2.48% with respect to the evolution of the number of IoT devices at the Edge. Furthermore, we can see in Figure 5.11 that CRU values of SOO-H, SOO-CPLEX and RCS are very small, lower than 0.1. This is due to the specific computational requirements of the DSPA application (Figure 5.9) and the high capacities of the Fog computational resources.

Worst-case execution

In this set of experiments, the Fog computational resources are pretty limited, thus their usage is more costly than the usage of the Cloud bandwidth.

As shown in Figure 5.13, the RU plots are steeper (compared to Figure 5.10) for RCS, SOO-H and SOO-CPLEX, with small differences between them. More specifically, SOO-H achieves a lower RU compared to RCS with a difference ratio ranging between 14.77% and 0.76% with 12. On the other hand, SOO-H and SOO-CPLEX achieve a smoother and more balanced use of the two types of resources, even with limited Fog resources.

Scalability analysis

We assess the scalabilty of SOO-H against SOO-CPLEX in terms of execution time, i.e., the time it takes for either algorithm to find the best operator placement. In this respect, we use as starting point the parameter settings for SOO-H worst-case execution with N = 10 Fog nodes, M = 40000 IoT devices and Bmax = 125000KB/s. To maintain the same ratio in parameter setting with respect to the equilibrium (5.24), we consider the scaling up ratio N Ninit , where N init = 10 Fog nodes, then we scale Bmax and M by multiplying their initial values with the scaling up ratio for each increase of N , where initially N = N init .

Besides the setting of SOO-CPLEX with OG = 0.0% (see Section 5.4.2.1), we additionally consider the setting of SOO-CPLEX with OG = 50% to enable the CPLEX tool to balance between optimality and execution time.

As depicted in Figure 5.16, for the different scaling up ratios, SOO-H has lower execution times, with a difference ratio ranging between 54% and 70%, compared to SOO-CPLEX with OG = 0%. Even when compared to SOO-CPLEX with OG = 50%, SOO-H has lower execution times with a difference ratio between 1% and 30%.

In terms of the produced RU solution, Figure 5.17 shows that SOO-H fails to find the optimal solution compared to SOO-CPLEX with OG = 0%, but the approximation error is very small, ranging from 0.01% to 0.0003%, following the scaling-up ratio increase. On the other hand, when comparing to SOO-CPLEX with OG = 50%, SOO-H produces a better RU solution whatever the scaling-up ratio. 

Conclusion

In this chapter, we designed and implemented resource aware scheduling algorithms that statically deploys DSPA application between the Fog and Cloud nodes in order to process the dynamic data stream rates produced by IoT devices at the Edge. These algorithms rely on our holistic resource usage cost model that uses the static weight version.

In this respect, the baseline RCS algorithm does not optimize the resource usage cost, it only satisfies the problem constraint by using as less as possible the Fog computational resources. However, by solving our problem as a single objective optimization problem, the main conclusions drawn from our experiments follows. First, compared to simple baseline such as RCS, SOO-CPLEX and SOO-H are not only capable in finding scheduling solutions that satisfy the resource usage constraints, but also that exhibit interesting trade-offs between the usage of the Fog computational resources and the usage of Cloud network bandwidth resources so that the sum of the two costs is minimized.

Second, SOO-H identifies optimal solutions like SOO-CPLEX when Fog computational resources are abundant. Even though that for very limited (or constrained) computational resources at the Fog layer, SOO-H may fail to approximate the optimal solutions found by SOO-CPLEX. However, the approximation error is very small up to 0.01%.

In overall, we observe that the resource usage cost model achieve enough to respond to a resource-aware QoS requirement for the static deployment of DSPA application at the IoT network edge featuring constrained and heterogeneous computational resources. However, due to these constrains, replicating operators at Fog nodes may increase their processing times even if the reduced data streams sent toward the Cloud will lower the involved network delays. This observation fosters us to consider not only the resource usage cost model but also the response time model of DSPA applications distributed between the Fog and the Cloud. For these reasons, in the next Chapter 6, we will extend the formulation of our optimization problem to take into This chapter contains 19 pages.

Introduction

In this chapter, we extend the SOO problem introduced in Chapter 5 with response time constraints of DSPA application, and hence we formulate the extension of SOO problem as a Time Otherwise it is not negligible. Furthermore, l x is the latency of the operator O x to process its input data load.

Resource usage cost

Unlike in SOO problem where the Fog to Cloud network delays are assumed to be equal (statically calculated). By introducing the response time, we need to take into account the network delay of transmitting data streams from the Fog to Cloud. This network delay along with the network bandwidth can be dynamic and hence, we need to take into account these two factors in order to differentiate these Fog to Cloud network links. Thus, in this Chapter we consider the overall network resource usage cost (nru) defined in Formula (5.2). However, in order to have nru without unit, we divide the network delay of each individual Fog to Cloud network links by the maximum network delay among all the network links. In this respect the overall network resource usage cost becomes:

nru = c + N j=1 nbu F j C • 1 nb Fj C • nd Fj C nd max (6.2) 
Where nd max = max i,j

{nd EiFj , nd Fj C } is the maximum network delay.

In order to normalize nru to N RU , we can eliminate the constant value c as it can not change during the optimization. In this respect, the cost of using each Fog to Cloud network link takes values between 0 and 1. Consequently nru takes values between 0 and N, as we have N (N ≥ 1) Fog to Cloud network links across the Edge-Fog-Cloud architecture. In this respect the normalized form of nru is as follows:

N RU = nru N ≡ N j=1 nbu F j C • 1 nb F j C • nd F j C ndmax N (6.3)
In this respect, N RU takes values between 0 and 1.

However, introducing the response time constraint in the problem does not require to adjust the formulation of the overall computational resource usage cost (i.e. cru). We consider cru defined in Formula (5.1) along with its normalized form CRU defined in Formula (5.11). To ensure the real time constraint, Formula (6.7) imposes that the response time of a specific DSPA application should not exceed a threshold T max.

Problem formulation

Problem complexity

Our TSOO problem can be mapped to the job shop scheduling (JSS) problem. In JSS problem we have n jobs that will need to be processed using m machines. Each job consists of X tasks, each of which needs to be processed in a certain order. The objective is to find the scheduling of these n jobs on the m machines in order to ensure resource usage fairness, to minimize the completion time of the jobs or to ensure deadline constraint (i.e. completion time within a certain threshold).

To map the TSOO problem as an instance of JSS problem, we can consider the Fog and Cloud nodes as the m machines, each operator path π ij ∈G dep as a job, each operator in the path as a task job and the edges between operators determine the operator processing order. Each operator requires computational and network resources to process and transmit data stream with a certain latency and network delay. Furthermore, we can consider the DSPA application response time as the completion time.

Finding the scheduling of operators between the Fog and Cloud nodes with the objective to ensure the response time constraint and fairness in resource usage [START_REF] Strusevich | Shop scheduling problems under precedence constraints[END_REF], where the latter is defined in terms of: (i) optimal trade-off between CRU and N RU (cfr Formula (6.4)), (ii) resource usage constraints (cfr Formulas (6.5) and (6.6)) and (iii) operator replicability constraint.

In this respect, our TSOO problem can be set as an instance of JSS problem with deadline constraint [START_REF] Strusevich | Shop scheduling problems under precedence constraints[END_REF][START_REF] Balas | Job shop scheduling with deadlines[END_REF]. The JSS problem is known to be NP-hard and hence, the TSOO problem is NP-hard as well. Its complexity increases as we increase the number of resource nodes, data streams and the size of the application graph G.

Solving the JSS problem consistently is still challenging [START_REF] Stastny | Job shop scheduling problem optimization by means of graphbased algorithm[END_REF]. In this respect, meta-heuristic based approaches are largely used as ways of obtaining better solutions, because of their flexibility and global optimization capabilities [START_REF] Stastny | Job shop scheduling problem optimization by means of graphbased algorithm[END_REF]. Meta-heuristics that have been used to solve the JSS problem include but are not limited to: (i) Genetic Algorithm (GA), used for example by Souleiman et al. [START_REF] Suleiman | Qos-driven job scheduling: Multi-tier dependency considerations[END_REF] to solve the problem of optimal scheduling and allocation of jobs under a QoS requirement in terms of job waiting time on a multi-cloud tier; (ii) Simulated Annealing (SA), applied for example by Fang et al. [START_REF] Fang | Sap: An iot application module placement strategy based on simulated annealing algorithm in edge-cloud computing[END_REF] to solve the application modules placement problem between the Edge and Cloud while minimizing IoT application response time and energy consumption; (iii) Tabu search (TS), used by Zang et al. [START_REF] Zhang | A very fast ts/sa algorithm for the job shop scheduling problem[END_REF] in combination with SA to solve time-efficiently the JSS problem; (iv) Particle swarm optimization (PSO), used for instance by Djemai et al. [START_REF] Djemai | A discrete particle swarm optimization approach for energyefficient iot services placement over fog infrastructures[END_REF] to efficiently place IoT application modules on the Fog with the goal of minimizing energy consumption and application response time violations, subject to resource nodes capacity constraints and module placement constraints.

In this thesis, we do not seek to demonstrate the superiority of one meta-heuristic over the other. Even though each one of these approaches comes with its own limitations [START_REF] Stastny | Job shop scheduling problem optimization by means of graphbased algorithm[END_REF]. The common limitations of these approaches are parameter setting and high execution time. Therefore, we propose a greedy approach, TSOO-H, for solving the TSOO problem time-efficiently.

To evaluate the quality of the results of TSOO-H, we also develop TSOO-SA, a solution based on the SA meta-heuristic to solve the TSOO problem. The choice of SA is motivated by the fact that it is designed to escape from the local minimum compared to TS thanks to its capability of accepting non local minimum solution. Moreover it requires less parameter setting compared to GA [START_REF] Zhang | A very fast ts/sa algorithm for the job shop scheduling problem[END_REF].

TSOO-SA algorithm

Simulated annealing (SA) is an iterative search method for approximating the global optimum for a given optimization problem [START_REF] Van Laarhoven | Job shop scheduling by simulated annealing[END_REF]. Starting from the current solution with cost f i and based on an adequate perturbation method to generate a neighbour solution of the current one with cost f j , SA accepts the neighbourhood solution as the current one on the basis of a probability controlled by a parameter called temperature τ :

P[accept f j ] = 1, if (f j -f i ) < 0. e -f j -f i τ , otherwise. (6.8) 
Besides the initial temperature τ at which SA starts, SA includes also [START_REF] Delahaye | Simulated annealing: From basics to applications[END_REF]: (i) the cooling rate α, which determines how quickly the temperature decreases: τ = τ • α, where typically α ∈ [0.8; 0.99]; (ii) a finite number of transitions for each value of τ , which determines after how many neighbour solutions generated SA will decrease the temperature; and (iii) the final temperature value τ f inal , which determines the temperature at which SA will end.

To solve the TSOO problem using SA, we need to define the corresponding problem:

Search space any edge-cut ec j ∈ G that can be set as the replication and migration point of an individual data stream S j to be processed on the Fog node F j .

Solution the graph G dep to be deployed across H and the corresponding operator placement M for an RM . RM is the set of selected edge-cuts ec j to be each the replication and migration point of a data stream S j .

Cost function In the TSOO problem, we consider RU as the cost function to minimize, under the constraints of the Fog to Cloud bandwidth usage, the Fog computational resource usage, and the response time T calculated as the maximum end-to-end latency among all the operator paths π ij ∈ G dep .

It has to be noted that TSOO is a minimization problem with constraints, while SA is designed to solve unconstrained optimization problems. For this reason, we need to consider an approximation of the TSOO problem for SA. In particular, we consider a constraint relaxation method frequently used in this context [START_REF] Delahaye | Simulated annealing: From basics to applications[END_REF]. We add to the cost function to minimize (i.e., RU ) a penalty ζ k for the violation of each individual constraint of the TSOO problem:

f = w c • CRU + w n • N RU + kmax k=1 ζ k (6.9) We set ζ k = 1 if val k -max k > 0, otherwise ζ k = 0.
Where val k can be the value of cmu F j , B or T and max k can be the value of cm Fj , Bmax or T max , respectively.

Algorithm description

The pseudo-code of the TSOO-SA algorithm is presented in Algorithm 9. We set Grep as the subgraph of G containing the set of operators that can be replicated on the Fog. Given that SA starts from an initial solution which is likely to lead the search to converge towards the global optimum, TSOO-SA produces this solution by applying the function dataM inCut() (presented in Algorithm 7), which identifies for each data steam S j and Fog node F j , the minimum edge-cut ec j as the replication and migration point. This solution comprises: RM, the set of replication and migration points; and M, the set of subgraphs Gmig ni to replicate and deploy on each individual resource node n i = F j |C. This solution becomes the current best solution with cost f (Algorithm 9, line 4). It also becomes the current solution to improve further, if it satisfies the constraint B ≤ Bmax (Algorithm 9, line 5).

For each set of L iterations, TSOO-SA applies the temperature value τ , while it decreases it progressively at the end of each set by using the cooling rate α (Algorithm f , the new solution becomes the best solution (Algorithm 9, line [START_REF] Varghese | Revisiting the arguments for edge computing research[END_REF][START_REF] Ali-Eldin | The hidden cost of the edge: A performance comparison of edge and cloud latencies[END_REF][START_REF] Mcchesney | Defog: fog computing benchmarks[END_REF]. On the other hand, if f l is not smaller than f curr , the new solution can be accepted as current solution (Algorithm 9, lines [START_REF] Shi | Edge computing: Vision and challenges[END_REF][START_REF] Hong | Resource management in fog/edge computing: A survey on architectures, infrastructure, and algorithms[END_REF][START_REF] Al-Khafajiy | Iot-fog optimal workload via fog offloading[END_REF] with the probability defined in Formula (6.8). The probability for accepting a neighbour solution decreases as τ decreases. For high values of τ , the search is almost random, while for low τ values, the search becomes almost greedy.

Generating neighbour solution

The function neighboringSolution() is illustrated in Algorithm 10 in which we represent RM the set of replication and migration points as an array. At each array index of RM, we have the mapping data stream S j and edge-cut ec j to be selected as the replication and migration point of S j . In order to avoid TSOO-SA to be trapped in a local minimum during the search [START_REF] Zhang | A very fast ts/sa algorithm for the job shop scheduling problem[END_REF], we guide the search so that the selection of the replication and migration points goes continuously from the source to the sink in G. Opposite to a random selection of a neighborhood solution (as in the mutation technique called shift move (SM) [START_REF] Hosseini Nasab | A simulated annealing heuristic for the facility location problem[END_REF]) we only randomly select a data stream

TSOO-H Algorithm

To overcome the high execution cost of TSOO-SA, we propose a heuristic approach called TSOO-H. TSOO-H extends the SOO-H algorithm introduced in Chapter 5. It reuses the functions of SOO-H: RUminCut (cf. Algorithm 6), DataMinCut (cf. Algorithm 7), EdgeCutMove (cf. Algorithm 8).

Algorithm description

TSOO-H (cf. Algorithm 11) starts by applying RU minCut() to generate a solution that attempts to minimize directly RU . If the output solution of RU minCut() satisfies the constraints B ≤ Bmax and T ≤ T max, then the achieved RU is optimal (Algorithm 11, line 6). Otherwise the problem may not have a solution or, if a solution exists, finding the optimal solution is NP-hard.

As a next step, TSOO-H applies a greedy search that produces local optimal solutions to approximate the global optimal solution in a reasonable amount of time. In this respect, we apply the function dataM inCut() to identify the solution that minimizes N RU and consequently B ( Algorithm 11,. If the output solution of dataM inCut() does not satisfy the constraint B ≤ Bmax, the TSOO problem has no solution satisfying this constraint, unless we relax Bmax in order to accept this solution as the least bad one.

If the constraint B ≤ Bmax is satisfied, TSOO-H further checks whether the constraint T ≤ T max is satisfied or not: (i) if the constraint T ≤ T max is satisfied, this means that the solution produced by dataM inCut() satisfies all the problem constraints; (ii) if the constraint T ≤ T max is not satisfied, starting from the solution of dataM inCut(), we search in the subgraphs Gmig j and Gmig C the operators to move from the Fog to the Cloud (or the inverse) in order to reduce T until we satisfy this constraint, while keeping satisfied the constraint B ≤ Bmax ( Algorithm 11,. This greedy search is performed with the functions operatorM oveback() and operatorM oveDown(), which we describe in Section 6.4.1.1. If the greedy search does not find a solution that satisfies the time constraint, we relax T max to accept this last solution as the least bad one that we can find.

If both constraints B ≤ Bmax and T ≤ T max are finally satisfied, as a next step, TSOO-H applies a greedy search to minimize RU while keeping satisfied the problem constraints (Algorithm 11, lines 14-30). We describe this greedy search in Section 6.4.1.2.

Satisfy the Response time constraint

When moving an operator from the Cloud to the Fog, the operator latency will probably increase, if we assume that the computational resources of a Fog node are smaller than the ones of the Cloud. At the same time, if other operators of the same operator path are already hosted on this Fog node, the latency of these operators will also probably increase, if we assume that the node resources will now be shared among more processes. Regarding the operators of the same path that remain in the Cloud after this move, we assume that the effect on their latency is negligible.

On the other hand, the effect of this move on the network delay of network link between the Fog node F j and the Cloud depends on the size of the data produced by the moved operator in comparison to the size of the data that were transmitted from the Fog node F j to the Cloud before. In the opposite case, when moving an operator from the Fog to the Cloud, the operator latency on the same path will probably decrease, while the network link delay may increase or decrease.

framework the following competitor methods:

Approach by Rizou et al. [START_REF] Rizou | Fulfilling end-to-end latency constraints in large-scale streaming environments[END_REF] This solution proposes an algorithm for distributing operators on a peer resource network. This algorithm considers a latency (i.e., propagation delay) space, where each host has a virtual position. It determines for each operator its optimal hosting node that minimises its network resource usage in the latency space, depending on the data stream rates between this operator and its neighbour operators. Starting from this solution, if the response time constraint is not satisfied, the algorithm tries moving each operator to the host that increases the network usage as little as possible, until satisfying the response time constraint. In particular, this approach can be mapped to TSOO-H, with the differences that it minimizes only the overall network resource usage cost (i.e. N RU ). Then if the resulting solution does not satisfy the constraint T ≤ T max but it satisfies the constraint B ≤ Bmax, in this case it attempts to satisfy the constraint T ≤ T max by applying operatorM oveback() and operatorM oveDown() like in TSOO algorithm, see ).

TRCS (Time and Resource Constraint Satisfaction)

We extend here the baseline approach RCS (cf. Algorithm 1). TRCS enhances pure IoT Cloud analytics by dynamically placing the operators between the Cloud and the Fog in synergy with the evolution of the IoT data stream rates. More specifically, assuming an initial deployment of all the operators in the Cloud, TRCS minimally uses the Fog computational resources to satisfy the constraints T ≤ T max, B ≤ Bmax and B ≥ Bmin, where Bmin is a lower threshold of B used to avoid the oscillation of operator placement between the Fog and the Cloud. Algorithm 14 presents the pseudo-code of TRCS.

More specifically, if the constraint B ≤ Bmax is satisfied while the constraint T ≤ T max is not satisfied, TRCS (similarly to TSOO-H) applies a search in the subgraphs Gmig j and Gmig C to select the operators to move from the Fog to the Cloud (or the inverse) in order to reduce T until the time constraint is satisfied, while keeping satisfied the constraint B ≤ Bmax and B ≥ Bmin. This greedy search is performed with the functions operatorM oveback() and operatorM oveDown(), which we described in Section 6. TSOO-SA satisfies the time constraint at lower data stream rates (M ≤ 20000). Upon moderate or higher data stream rates, it may not satisfy this constraint with an increasing percentage of constraint violations (from 6.67% to 100%) as the data stream rate value increases. This means that in certain cases, relaxation of the time constraint was necessary in order to allow to TSOO-SA to find a solution, which was finally slightly better than the solution found by TSOO-H, as presented in Section 6.5.2.1. The results of TSOO-SA could possibly be improved with careful tuning of its parameters. However, this was not the focus of our work.

Finally, TRCS may fail to satisfy the time constraint even at low data stream rates (93.3% of constraint violations at M = 10000). This is due to the fact that TRCS prioritizes the satisfaction of the cloud bandwidth constraint. Nevertheless, TRCS performs better than all the other approaches at high data stream rates. It sometimes manages to find solutions that satisfy the time constraint where all the other approaches register 100% of constraint violations. However this result of TRCS does not lead to solutions without any constraint relaxation, as TRCS registers at these data stream rates more violations of the cloud bandwidth constraint than the other approaches (cf. Figure 6.2).

Scalability analysis

We assess the scalability of TSOO-H against TSOO-SA and Rizou et al. in terms of execution time, i.e., the time it takes for each algorithm to find the best operator placement. In this respect, we consider 6 different DSPA applications built based on the TLC application. Thus, App-1 has 5 operators (cf. Figure 5.9), App-2 has 6 operators, ..., and App-6 has 10 operators. We keep the same configuration of the Edge-Fog-Cloud architecture along with the parameter setting as presented in Section 6.5.1. We plot the results for low data stream rates where M =15000 and high data stream rates where M =40000.

At low data stream rates (cf. Figure 6.4 in log scale), the execution time increases with the At high data stream rates (cf. Figure 6.5 in log scale), the execution time similarly increases with the number of operators per DSPA application. TSOO-SA has still very high execution times; when comparing to TSOO-H, the latter reduces this execution time in the order of 99%.

The execution cost of TSOO-H is higher than the one of Rizou et al. with a difference ratio of up to 51.37%.

Conclusion

In this chapter, we extended the problem of scheduling DSPA operators between the Cloud and the Fog in order to account for response time constraints of DSPA applications.

When evaluating the proposed algorithms, we can see that for lower data stream rates, TSOO-H is likely to find the optimal solution in terms of minimum overall resource usage cost and satisfaction of the problem constraints. However at higher data stream rates, TSOO-H may fail to find the optimal solution with an approximation error of up to 5.14%. Nevertheless, these solutions have lower rate of constraint violation of the problem constraint when comparing to TSOO-SA, TRCS and Rizou et al. Unless at highest data stream rates where all the proposed algorithms are likely to not satisfy the problem constraints. Furthermore, we investigate also the scalability of the TSOO-H, we observed reduction in execution time of TSOO-H in the order of up to 99% when compared to TSOO-SA. Even though that Rizou et al. has lower execution time, TSOO-H provides the lower overall resource usage cost with lower lower constraint violation rates.

The current resource usage cost model fits for static deployment of DSPA application across the Edge-Fog-Cloud architecture. Static deployment of a DSPA application does not take into account the actual state of the Edge-Fog-Cloud resources. Whereas, it may require to dynamically re-schedule the current deployed DSPA application in reaction to the evolution of its workload since we assumed that DSPA application process data streams that come with different rates. Furthermore the Edge-Fog-Cloud resources can be used by other (DSPA) applications and hence, the available Edge-Fog-Cloud resource capacities can be dynamic. Thus, in the next Chapter, we will improve the current resource usage cost model to fit for dynamic deployment of DSPA application. We will also extend the TSOO-H algorithm in order to adaptively re-schedule the current deplyment of DSPA application with respect to the dynamic environment (i.e. dynamic DSPA application workload and dynamic available Edge-Fog-Cloud resource capacities.

Chapter 7

Adaptive Scheduling of Continuous Operators This chapter contains 25 pages.

Introduction

In the previous chapters, we studied how to obtain a scheduling of a DSPA application that takes into account the constraints in the computational resources of the Fog layer and the network resources between the the Fog and Cloud layers, as well as the DSPA application response time constraint.

Given that long running DSPA applications are characterized by a dynamic workload related to the varying IoT data stream rates [START_REF] Tadakamalla | Characterization of iot workloads[END_REF], the algorithms that we proposed so far produce only 7.2. Problem statement a static scheduling for each individual workload. This means that they do not take into account the previous deployment state of the DSPA application (except in the case of RCS/TRCS).

In this Chapter, we study how to adapt scheduling decisions to take into account the workload dynamics of the DSPA application, its deployment state, as well as, the dynamic available resource capacities of the Edge-Fog-Cloud architecture supporting the execution of several DSPA applications. Specifically, in this chapter we consider that the Edge-Fog-Cloud resources can be shared among several DSPA application.

The remainder of this Chapter is organized as follows. In Section 7.2, we extend the TSOO problem by introducing the dynamic operator placement problem. In Section 7.3, we propose the aTSOO-H algorithm for solving this problem. Finally, in Section 7.4 we thoroughly evaluate aTSOO-H.

Problem statement

For scheduling dynamically DSPA application across the Edge-Fog-Cloud architecture, we need to consider its current resource state in order to differentiate the usage of any individual resource across the Edge-Fog-Cloud architecture not only by its maximum resource capacity but also by its available resource capacity. In this respect, to assess the cost of using each computational or network resource, we use the dynamic weight version (see Formula (4.5)).

Computational and network resource usage costs

This chapter extends the TSOO problem in order to address the problem of adaptively scheduling the DSPA applications between the Fog and Cloud nodes. In this respect, for the computational resource usage cost, we use Formula (5.1) as in the TSOO problem we still focus on minimizing the usage of Fog computational resources. However rather than to statically calculate the weight, in this chapter we use the dynamic weight version to cope with the dynamic requirement of the environment. Thus, we use the dynamic weight version Formula (4.5) to calculate formulate weight factor of using a Fog node F j at run-time:

W F j = 1 - cma F j cm F j + cmu F j cm F j , (7.1) 
Where, for a Fog node F j , cm F j and cma F j are respectively the maximum and available computational resource capacities and cmu F j is the request of using the computational resources of a Fog node F j .

Given the Formula (7.1) of the dynamic weight, given the overall Fog computational resource usage cost (cru) defined in Formula (5.1), the overall Fog computational resource usage cost becomes:

cru = N j=1 (cmu Fj • W F j ) ≡ N j=1 (cmu Fj • (1 - cma F j cm F j + cmu F j cm F j )) (7.2)
Furthermore, for the network resource usage cost, we use Formula (5.2) as in the TSOO problem we still focus on minimzing the Fog to Cloud network resource usage. However we use the dynamic weight version to cope with the dynamic environment. In this case, the weight factor of using a network link from a Fog node F j to a Cloud node C is as following:

W Fj C = 1 - nba Fj C nb Fj C + nbu Fj C nb Fj C (7.3)
where nb Fj C denotes the maximum network bandwidth capacity, nba Fj C the available network bandwidth capacity, and nbu Fj C the request of using the available network bandwidth.

Then, by taking into account the weight factor defined in Formula (7.3), the overall Fog to Cloud network resource usage cost defined in Formula (5.2) becomes:

nru = c + N j=1 (nbu Fj C • W Fj C ) • nd Fj C ≡ c + N j=1 (nbu Fj C • (1 - nba Fj C nb Fj C + nbu Fj C nb Fj C )) • nd Fj C (7.4)
To normalize the computational resource usage cost, we devise cur by the sum of the maximum capacity of all the Fog nodes F j (i.e. cm Fj ). In this respect the normalized form of cru defined in Formula (7.2) becomes: To decide whether M still satisfies our optimisation objective, we consider (i) RU max an upper threshold of RU ; and (ii) ϕ k a term that penalizes the violation of any constraint k of the TSOO problem: 

CRU = cru
ϕ k = max(0, U k -A k ) ( 7 

Experimental Evaluation

This section describes our experimental setup and the analysis of the obtained results. We use iFogSim to simulate two DSPA applications sharing the same Edge-Fog-Cloud architecture for processing the IoT data streams produced at the Edge.

We evaluate aTSOO-H against the algorithms TSOO-H and TRCS, described respectively in Section 6.4 and Section 6.5.1. For this comparison, we apply for all the algorithms our resource usage cost model version with dynamic weights, introduced in Section 4.3.1.2. As TSOO-H does not solve the TSOO problem dynamically, we run these algorithms from scratch each time a rescheduling is needed.

Furthermore, we compare aTSOO-H against the scheduling strategies proposed in [START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF],

where the authors target a scheduling problem that is pretty similar to ours.

Experimental Setup

We present the two DSPA applications that we used in our experiments and the parameters that we applied to simulate the Edge-Fog-Cloud architecture. Then, we describe how we generate dynamic data streams produced by IoT devices to be processed by the two DSPA applications.

DSPA applications

As in Chapter 6, we consider the TLC application (New York City Taxi and Limousine Commission rides) [START_REF] Silva | Investigating edge vs. cloud computing trade-offs for stream processing[END_REF]. From this application, we build two DSPA applications: App-1 and App-2, containing respectively 9 operators and 11 operators. We need that the two applications come with different requirement in terms of resource usage. To this end, for App-1 depicted in Figure In this scenario the input data steam rate toward App-1 is static. In this respect, we present the overall resource usage cost of App-1 in Table 7.

aTSOO-H like TSOO-H achieves optimal

RU when comparing to TRCS, thanks to RUminCut algorithm. As introduced in Chapter 6, RUminCut attempts to select the edge-cut ec j as the replication and migration point that minimizes directly the overall resource usage cost RU j of each data stream S j and Fog node F j , then the resulting solution is optimal if all the TSOO problem constraints are satisfied. This is shown in Table 7.3, where aTSOO-H like TSOO-H has the lowest RU when comparing to TRCS.

In the second hand, when scheduling a DSPA application across the Edge-Fog-Cloud resources which are already used by other applications (e.g. App-1), the available resource capacities are reduced and hence the weight of using these resources are higher. As depicted in Figure 7.3, aTSOO-H provides lower RU when comparing to TRCS with a difference ratio of up to 15.88% from lower data stream rates until to the highest data stream rates (M1 to M11).

However, when comparing aTSOO-H against TSOO-H, we notice that TSOO-H provides optimal operator placement at lower data stream rates (i.e. M1 to M3). For the other data stream rates, TSOO-H approximates the optimal operator placement. Whence, TSOO-H outperforms aTSOO-H in terms of RU with a small difference of up to 0.0045 for all the data stream rates, except for the moderate data stream rate (i.e. M8) where aTSOO-H approximate the optimal operator placement than TSOO-H with a small difference of 0.01. At each time TSOO-H is triggered, the algorithm is executed from scratch without taking into account the The plots of the overall resource usage cost (RU) are steeper as depicted in Figure 7.5a. In this respect, we observe that when scheduling App-1, aTSOO-H performs like TSOO-H. In particular TSOO-H produces the optimal solution from M 1 to M 10 IoT devices, thanks to RUminCut M8 for TSOO-H. Then, the constraint violation rate keep increase with the data stream rates.

Analysis of execution cost

As introduced above, we consider the execution cost of the algorithms in terms of the execution time and the rescheduling cost. In this respect, we purposely not put the plot of execution cost of App-1, as we consider constant data stream rate and consequently the initial scheduling solution identified by each of the algorithms is sufficient.

For App-2, the achieved results are depicted in Figure 7.7, Figure 7.8 and Figure 7.9. In these figures, we plot the average execution times and rescheduling costs of the 15 random executions of each value of M IoT devices.

Scenario 1 Figure 7.7a shows the execution times of the algorithms in scenario 1 when scheduling App-2. At lower data stream rates (i.e. M1 to M3), TSOO-H has lower execution time when comparing to both aTSOO-H and TRCS with a difference ratio of respectively up to 56.63% and 54.71%. In this case, TSOO-H is executed in the favorite case of applying only RUminCut to find directly the optimal solution. From the next lower to the highest data data stream rate (i.e. M4 to M11), we observe that aTSOO-H has lower execution time than TSOO-H for 6 data points and the rest of 3 data points, the execution times are closer. In this case, TSOO-H relies on the costly greedy search part of the algorithm. Thanks to its adaptive approach, aTSOO-H achieves to identify the scheduling solution faster than TSOO-H. On the other hand, TRCS has the lowest execution time for the data stream rates produced from M4 to M7, in this setting the search for identifying the operators to replicate on Fog or to move back in Cloud in order to meet the TSOO problem constraint is reduced that may involve fewer Fog nodes. However at high data stream rates (i.e. M8 to M11), TRCS has highest execution time except for M10

where it performs costly like TSOO-H. In this case TRCS expands the search space that may involve all the Fog nodes and hence high execution time.

When analyzing the rescheduling cost, we can see in Figure 7.7b that at moderate and higher data stream rates (i.e., M5 to M11) TSOO-H replicates more operator in order to address the change in the DSPA application workload thus imposing high reconfiguration cost of the DSPA application The rescheduling cost of TRCS is lower however the resulting RU is higher than the one of aTSOO-H. In contrast, aTSOO-H reconfigures the current operator placement to a new one by replicating or/and removing only a minimal number of operator. Thus, aTSOO-H has lowest rescheduling cost than TSOO-H.

Scenario 2

In scenario 2 when scheduling App-1, Figure 7.8a shows that TSOO-H has the highest execution times from the lowest to the highest data stream rates (i.e. M1 to M11) except at M3 and M9 where aTSOO-H equals the high execution cost of TSOO-H. Even thought that TSOO-H is executing in the best case from M 1 to M 10 by applying only RUminCut algorithm.

However the adaptive approach of aTSOO-H is much faster than the RUminCut algorithm. On the other hand, we observe that TRCS has the lowest execution times among all the algorithms except at M 3 where aTSOO-H as the lowest execution time.

In terms of the rescheduling cost, Figure 7.8b shows that the rescheduling cost of aTSOO-H is the lowest among all the algorithms except for M 5 and M 6 where TRCS provides the lowest rescheduling cost. Thanks to the adaptive approach of aTSOO-H that replicates or/and removes only the operator that are likely to solve the TSOO problem. In contrast TSOO-H has the highest rescheduling cost, this cost is constant from lower to moderate data stream rates (i.e.

M 1 to M 7) as TSOO-H is executed from scratch in its best case by applying only the RUminCut algorithm that provides the same number of operator to replicates on the Fog. However, from moderate to higher data stream rates (i.e. M8 to M9), this cost is increasing with the data stream rate.

The execution cost when scheduling App-2 after App-1 follows the same pattern as the execution cost when scheduling App-1. However, in this case available resource capacities between 

Comparison with state of the art solutions

As introduced in Chapter 3, Rzepka et al. [START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF] address the problem of scheduling on the fly several DSPA applications sharing the Ege-Fog-Cloud resources. The objective is to maximize the number of successfully deployed DSPA applications while limiting the WAN resources usage for transmitting data streams on the Fog to Cloud WAN links and using efficiently the Fog computational resources. However they distinguish between DSPA applications that have sink in the Cloud and those have sink in the Fog which are categorized respectively between non • limite the WAN resources usage for transmitting data stream on the Fog to Cloud WAN links;

• efficiently use the Fog computational resources so that it can (also) be used by several (DSPA) applications;

• save the Fog computational resources for DSPA applications with strict latency requirements and use the Cloud for non time-critical DSPA applications.

Among all the scheduling strategies of [START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF], we observe that only FogOnly strategy can be applied directly in order to solve the TSOO problem. FogOnly deploys in the Fog the overall DSPA application even if it has the sink in the Cloud in order to maximize the Fog resource usage.

When applying the rest of the strategies to the TSOO problem, it falls that the overall DSPA application is deployed in the Cloud as in this thesis we assumed that each DSPA application has the sink in the Cloud. Deploying the overall DSPA application in the Cloud is the solution we want to avoid as it may bring network congestion and high network delays.

In this respect, we inspire from their insights to build another scheduling strategy called Fog Cloud Interplay (FCInterplay) to solve the TSOO problem. In this respect, given the data streams S j , given the application graph G, FCInterplay attempts to solve the TSOO problem as follows:

• Send directly a data stream S j to be processed in the Cloud if the resulting end-to-end operator path latency can not satisfy in any way the response time constraint. This is to avoid wasting the Fog computational resources. However if only the Cloud bandwidth usage constraint is satisfied.

• A data stream S j for which the resulting end-to-end operator path latency can meet the response time constraint without being partially processed in the Fog is placed in the Cloud to avoid wasting Fog resources. However if only it also satisfies the Cloud bandwidth usage constraint. Otherwise, it should be partially processed on the Fog. For the latter case, we identify the sub-graph Gmig j delimited by the minimum edge-cut ec j to be replicated on the corresponding Fog node F j .

• For the remaining data streams S j , for which the resulting end-to-end operator path latency can meet the response time constraint by using the Fog resources, we identify the sub-graph Gmig j delimited by the minimum edge-cut ec j to be replicated on the corresponding Fog node F j .

Evaluation results

We compare aTSOO-H and TSOO-H with the FogOnly algorithm proposed in [START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF] and the FCInterplay algorithm inspired from [START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF]. As a reminder, FogOnly deploys the whole DSPA application in the Fog in order to maximize the Fog computational resource usage under the constraint of available resource capacity. However if the computational resources at the Fog are not sufficient, the request of deploying the DSPA application is rejected [START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF].

We use the same experimental setting parameters introduced earlier in this chapter. However, we use the same VM in the Cloud as in the Fog. In this way the Fog can have a time advantage over the Cloud as there is no network delay.

Then, to compare the identified algorithms we consider the following metric used in [START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF]:

(i) the overall Fog to Cloud bandwidth usage ratio; (ii) the overall Fog computational resource usage ratio; and (iii) the DSPA application deployment success rate. The latter is calculated Fog computational resource usage ratio Figure 7.10a shows that FogOnly has the highest usage of these resources. This is due to its strategy of deploying the overall DSPA application on the Fog. However, FCInterplay adapts the usage of the Fog computational resources according to the data stream rates. In particular, at lower data stream rates (i.e. M1 to M2), FCInterplay has higher Fog computational resource usage than aTSOO-H and TSOO-H as by partially processing each individual data stream S j on the Fog, the resulting end-to-end latency satisfies the response time constraint (i.e. Lπ ij ≤ T max). Consequently the constraints T ≤ T max and B ≤ Bmax are satisfied. In this way the Fog to Cloud bandwidth resources are saved for other applications.

For the next data stream rates (i.e., M3 to M6), we observe that the Fog computational resource usage of FCInterplay starts decreasing when comparing to TSOO-H (and aTSOO-H). In this respect, FCInterplay favors processing entirely the data stream S j in the Cloud whose when partially processed in the Fog, their resulting end-to-end latency did not satisfy the response time constraint (i.e. Lπ ij ≤ T max). In this way FCInterplay saves the Fog resources for other applications. Finally, at the data stream rate M 7, we observe that FCInterplay has a sudden increase in the Fog resource usage compared for instance to data stream rate produced by M 6

IoT devices. This is due not only in the increase of data stream rates, it is also due to the fact that for certain data stream S j that should be processed entirely in the Cloud, however the constraint B ≤ Bmax was not satisfied. Hence, theses data streams are partially processed in the Fog.

While aTSOO-H and TSOO-H try to jointly optimize the usage of the Fog resources and Fog to Cloud network resources.

Fog to Cloud wide area bandwidth usage ratio At lowest data stream rates (i.e., M1 and M2), Figure 7.10a shows that FCInterplay has the lowest Fog to Cloud bandwidth usage ratio thanks to dataM inCut algorithm which was applied in order to partially process data streams S j in the Fog. For the other data stream rates (i.e., M3 to M7) as they are increasing, the Fog to Cloud bandwidth usage ratio of FCInteraplay is also increasing. It becomes even the highest among all the algorithms at the data stream rate produced by M 6 and M 7. This is due to the FCInterplay favors processing some data streams in the Cloud if partially processing them in the Fog would not satisfy the response time constraint.

At the lowest data stream rates (i.e. M1 and M2), FogOnly has the second lowest Fog to Cloud bandwidth usage ratio when comparing to FCInteraplay. However as the data stream rates is increasing, FogOnly has the lowest Fog to Cloud bandwidth usage ratio among all the algorithms. FogOnly does not apply dataM inCut as F CInterplay. However, given that it replicates as much as possible the operators for each individual data streams on the Fog, as we go from the source to the sink the cumulated selectivity and hence data stream rates most often decrease. As a result the Fog to Cloud bandwidth usage also decreases.

On the other hand, aTSOO-H and TSOO-H have slightly higher usage of these resources when comparing to FogOnly but lower when comparing to FCInterplay. This is due to fact that aTSOO-H and TSOO-H aim to jointly minimize the Fog resources and Fog to Cloud network resources. As the data stream rate is increasing the strategy of FCInetraplay is not sufficient to solve the TSOO problem, an optimization approach is necessary.

On the other hand FogOnly has the second lowest success rate and it achieves 100% of success rate only at the lowest data stream rates (i.e. M1 and M2). This is due to the choice of maximizing Fog resource usage. However the operator processing times are higher on the Fog which impacts on the response time constraint. The major cause in the decrease of the success rate of FogOnly is the violation of the response time constraint. This is exacerbated by the violation of the Cloud bandwidth constraint at higher data stream rates.

TSOO-H has 100% of success rate from M 1 to M 4 while aTSOO-H has 100% of success rate only from M 1 to M 2. The success rate of TSOO-H starts decreasing only from M 5, while aTSOO-H has a success rate lower than TSOO-H but higher than FCInterplay. We believe that the dynamic optimization approach of aTSOO-H that takes into account the current operator placement in order to produce a new operator placement does not enable aTSOO-H to converge to the best possible scheduling solution even if it provides lower execution cost.

Conclusion

In this chapter, we introduced the dynamic version of the TSOO problem, the problem of continuously scheduling DSPA application between the Fog and Cloud nodes in synergy with the change in the data stream rates and the available Edge-Fog-Cloud resource capacities. The objective was to jointly optimize the Fog computational resource usage and Fog to Cloud network resource usage while satisfying the real time response constraint of DSPA application.

In this respect, we use the version of the resource usage cost model with dynamic weights in order to take into account both maximum and available resource capacities when deploying 

Summary of Contributions

Data stream processing and analytics (DSPA) engines have been originally designed to run on centralized environments (e.g., Cloud) featuring high computational resource capacities. With the exponential growth of the Internet of Things (IoT), the quality of service (QoS) of DSPA applications is challenged by the need to systematically transmit data streams from IoT devices to the Cloud.

In this respect, processing data streams at the IoT network edge emerges as a promising solution for addressing congestion issues on long-distance communication network links. However, to this end we need to deploy DSPA applications on Edge/Fog nodes that come with non-trivial constraints in terms of heterogeneous, shareable and limited computational resources. In respect, a thorough allocation of Edge/Fog resources becomes crucial in order to meet QoS requirements of DSPA applications over dynamic IoT data streams. In this thesis, we leverage the computational resources available in the Edge/Fog layers to distribute DSPA computations performed in the Cloud. Hence, only partially processed IoT data streams at the Edge/Fog need to be finally send to the Cloud for further analysis.

Summary of Contributions

In a nutshell, we address in this thesis the main challenges of distributing DSPA applications between the Fog and Cloud resources. As Fog computational resources and wide area network resources to reach the Cloud may exhibit a workload fluctuation that could impair on DSPA application response time constraints, we consider both static and dynamic scheduling approaches.

These fluctuations are due to the fact that computational and network resources can be shared among several applications but also to the dynamics of the IoT data stream rates according to spatio-temporal patterns. More precisely, we are answering three particular questions: (i)

How can we model the computational and network resources of Edge-Fog-Cloud nodes and the continuous operations of DSPA applications? (ii) How can we estimate the usage of resources allocated to the execution of a DSPA application given that Edge-Fog-Cloud nodes are highly heterogeneous and could be shared by different applications? and (iii) How can we afford an adaptive scheduling of DSPA applications in the Edge-Fog-Cloud continuum given the resource fluctuation at the Fog and Cloud layers as well the fluctuation of data stream rates from the Edge layer to the Fog layer ?

In the first contribution, we proposed abstraction models of the DSPA application and Edge-Fog-Cloud architecture. The DSPA application is abstracted as a directed acyclic graph of operators based on which we propose a model for estimating the resource required by each operator in terms of CPU/RAM to process its input data stream and network bandwidth for sending the processed data streams on the wire. In this respect, we consider the operator selectivity, the operator window type and the operator cost. The Edge-Fog-Cloud architecture is abstracted as a wide area resource network by specifying for each resource its available and maximum capacities. Based on the two abstractions, we build a holistic resource usage cost model for replicating and placing operators of DSPA applications from the Cloud to Fog resources, by distinguishing static and dynamic weighting the required computational and network resource usage of each operator respectively in the case of static and dynamic deployment of DSPA application. To cope with the response time constraint, we further propose a response time model that takes into account the network delay of sending a data stream on each individual wide area network link and the time required per continuous operator to process its input data streams. For the latter case, we model each operator as a queuing system.

In the second contribution, we exploited the above models to propose resource aware and time aware scheduling strategies for statically distributing a DSPA application between the Fog and the Cloud nodes by assuming that the target Edge-Fog-Cloud resources are dedicated to a single application. In this respect, we consider the version of the resource usage cost model with static weights. The static weights distinguish the usage a each resource by the inverse of its maximum capacity. Based on this resource usage cost model version, we first proposed resource aware scheduling algorithms, namely RCS, SOO-CPLEX and SOO-H. RCS is a resource constraint satisfaction approach that dynamically evolves the DSPA application between the Fog and the Cloud, aiming to satisfy the computational and network resource requirement by using as less as possible the Fog computational resources. SOO-CPLEX is a mathematical optimization based approach that aimed at an optimal overall resource usage cost due to an optimal trade-off between the Fog computational resource usage cost and the Fog-to-Cloud network resource usage cost. Finally, SOO-H is a heuristic based approach that efficiently achieved the optimal overall resource usage cost in the best case like SOO-CPLEX, while it approximated in the worst case in a time efficient way the overall resource usage cost, with a small approximation error when compared to SOO-CPLEX.

In the third contribution, we proposed a time and resource aware scheduling strategy.

In this respect, we extended SOO-H to TSOO-H to account for response time constraints.

Experimental results showed that TSOO-H is scalable and time efficient when comparing to state of the art solutions. It approximates the optimal solution, while managing the trade-off between the usage costs of Fog computational resources and Fog-to-Cloud network resources and satisfying the response time constraint.

In the fourth contribution, we used the version of the resource usage cost model with dynamic weights to account for dynamic deployment of DSPA application on the Edge-Fog-Cloud resources that are shared among several applications. In this way the dynamic weights distinguish the usage of each Edge-Fog-Cloud resource by take into account not only its maximum resource capacity but also its available resource capacity. We account also for the fact that the dynamic data stream rates produced by IoT devices require dynamic and lightweight scheduling solutions. Hence, we proposed a monitoring framework for analyzing the workload of a DSPA application deployed between the Fog and Cloud resources and triggering an adaptive scheduling of the current operator placement whenever it is necessary. To this end, we proposed aTSOO-H, which, adaptively and with lower execution cost, reschedules the current operator placement of a DSPA application in order to minimize the overall resource usage and satisfy the response time constraint.

Future Research Directions

This work opens new challenges for future research that we briefly detail in the sequel.

Integrating with existing DSPA engines

To integrate our proposed scheduling solutions with widely-used DSPA engines (e.g., Apache

Storm [START_REF] Iqbal | Big data analysis: Apache storm perspective[END_REF], Apache Kafka [START_REF] Garg | Apache Kafka[END_REF], Apache Flink [START_REF] Carbone | Apache flink: Stream and batch processing in a single engine[END_REF]), we need to understand the architectural characteristics of the DSPA engine to be used.

al. [START_REF] Chao | R-mstorm: A resilient mobile stream processing system for dynamic edge networks[END_REF] propose a solution to improve the resilience of DSPA applications deployed on mobile Edge resources interconnected via a wireless network in which the communication quality is severely affected by the environment condition, signal attenuation, channel contention. On the other hand, the upcoming of 5G network technologies [START_REF] Li | 5g internet of things: A survey[END_REF][START_REF] Akyildiz | 5g roadmap: 10 key enabling technologies[END_REF] enables increased network bandwidth capacity, high connectivity density of IoT devices, and, more importantly, highly reliable communication network links. In spite of these efforts, there are still challenges to address. We believe that a future exploration should pay particular attention to resource churning caused by the mobility of IoT devices and to energy consumption of mobile devices, in order to enhance the resilience of DSPA applications deployed on Edge resources.

Leverage Machine Learning Techniques

Applying machine learning (ML) techniques to the problem of scheduling DSPA applications in the Edge-Fog-Cloud continuum can be useful in various ways. In this respect, our threshold based monitoring approach can be enhanced by using ML techniques such as linear regression in order to predict in the near future the status of the resource usage and performance of a DSPA application, based on which the rescheduling of the current operator placement can be proactively triggered if necessary by taking into account the DSPA application characteristics, how the data stream rate evolve and also how much time it takes to deploy a new scheduling [START_REF] Jonathan | Wasp: Wide-area adaptive stream processing[END_REF] Furthermore, ML techniques such as reinforcement learning (RL) can be used in order to evolve the scheduling of a DSPA application in synergy with the evolution of available resources and data stream rates [START_REF] Da | Quality of service aware mechanisms for (re) configuring data stream processing applications on highly distributed infrastructure[END_REF].

On the other hand, training ML models can be resource greedy, while the Edge/Fog layers may come with limited computational resources. Thus, it is necessary to investigate the use of Edge/Fog resource aware machine learning models, like in Federated Learning.

Privacy and security

Today IoT devices collect and produce data that are useful to consumers, businesses and public sector policy-making. In this context, privacy issues naturally arise, as these devices can collect and transmit personal data, from which insights about an individual's behavior, health or relationships can be inferred. On the other hand, existing security techniques, tools and products may not be easily deployable on IoT devices because of the variety of hardware platforms and limited computational resource capacity. Although processing data at the network edge through Edge/Fog computing can enforce data privacy [START_REF] Lopez-Fenner | Privacy preserving multi party computation for data-analytics in the iot-fog-cloud ecosystem[END_REF], the distributed architecture of edge analytics increases the risk of attack vectors [START_REF] Cao | An overview on edge computing research[END_REF]. Therefore, revisiting and extending existing privacy and security techniques deserve to be explored further to address the specificity of IoT edge analytics systems. Certainly, these challenges entail not only research and system engineering challenges but also public policy challenges.
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  -aware scheduling of operators for IoT Edge analytics. The second contribution of the thesis is a set of new scheduling algorithms for statically deploying DSPA applications between the Fog and the Cloud with dedicated Edge-Fog-Cloud resources. In this respect, we use the version of resource usage model with static weights (Step 2 in Figure 1.4). Then with this version of the resource usage model, we introduce a resource constraint satisfaction (RCS) algorithm that replicates and migrates operators from the Cloud to the Fog nodes. This baseline solution allows us to regulate the Fog computational resource usage and the Fog to Cloud network resource usage according to the evolution of IoT data stream rates, by minimally resorting to Fog resources in order to satisfy Cloud bandwidth constraints. RCS does not optimze the resource usage cost.

  -aware scheduling of operators for IoT Edge analytics with time constraints. The third contribution of the thesis extends the SOO problem with response time constraints set by DSPA applications (Step 3 in Figure1.4). To this end, we exploit the response time model for estimating the DSPA application response time for a given placement solution between the Fog and Cloud nodes. Then, we formulate the related Time-based Single Objective Optimization (TSOO) problem and show that it can be mapped to a Job Shop Scheduling (JSS) problem which is NP-hard. In order to solve this TSOO problem, we exploit the meta-heuristic simulated annealing (SA) to formulate and solve the TSOO problem. We rely on SA as it has been proven in the literature to solve the instances of JSS problem. The drawback of TSOO-SA, is the high execution time of SA. Therefore, we propose a heuristic algorithm called TSOO-H to solve the TSOO problem in time efficient. TSOO-H approximates the optimal solution in a reasonable amount of time when comparing to TSOO-SA. However, it may fail to satisfy the response time constraint at highest data stream rates.Adaptive scheduling of operators forIoT Edge analytics. The fourth contribution of the thesis extends the TSOO problem with the problem of dynamic deployment of DSPA application on the Edge-Fog-Cloud resources that can be shared among several other DSPA (non DSPA ) applications. In this respect we use the version of the resource usage cost model with dynamic weights (Step 4 in Figure 1.4).
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 21 Figure 2.1: Example of a data tuple in a stream produced by connected vehicle[START_REF] Vít | loating car data collection for processing and benchmarking[END_REF] 

  according to a grouping over data tuple attributes and each substream corresponds to a combination of values D k = (a 1 , a 2 , ..., a k ) on the grouping attributes.
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 22 Figure 2.2: From deployment to execution of DSPA application
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  iii) Resource pooling to serve seamlessly multiple Cloud consumers; (iv) Rapid elasticity to scale according to the consumer demands by allocating or releasing Cloud resources automatically; and (v) Measured service to enable transparency to Cloud provider and consumers by completely monitoring Cloud resource usage. As result, the Cloud ensures high availability of DSPA applications and application owners are charged only on the basis of the Cloud resources actually consumed by the application.
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 23 Figure 2.3: Network delay differences from the IoT network edge to the distant Cloud

Figure 2 .

 2 Figure 2.3 shows the benefits in terms of network delay when sending a ping message with packet size of 1400 bytes from a Raspberry Pi 3 located at INRIA Paris to a closest VM server located in the INRIA Paris data center with average 3ms of network on WIFI , versus sending to a VM server located respectively on OVH site in Roubaix in France with average 10ms on WIFI and 79ms on 4G, and Google Cloud site in United State of America (USA) with average 150ms of network delay on WIFI and 255ms on 4G. These results show that processing data stream at the network edge will support time sensitive of DSPA application with a low network delay between 3ms to 10ms.

  in 3 layers including IoT devices layer, Fog/Edge layer and Cloud layer. To support openness and interoperability of IoT applications, FogFlow uses the data flow model for modeling DSPA application in which operators are define as dockerized application based on the standard NGSI. NGSI[START_REF] Bauer | The context api in the oma next generation service interface[END_REF] is an open standard that enables to define both data model and communication interface to exchange contextual information between applications (operators) via context broker. In this respect, FogFlow uses 3 logical views to operate on a geo-distributed resource network that include service management, data processing and context management. (i) Service management is deployed in the Cloud and includes task designer (TD), docker image repository (DIR) and topology manager (TM). TD provides the web-based interface to enable a developer to design, submit, monitor and manage operators of a DSPA application. DIR manages the images of all dockerized operators submitted by the developer. TM is responsible for orchestration and mapping operators as tasks to workers (Cloud and Edge/Fog nodes). The service orchestration has the objective to minimize the network bandwidth usage without overloading the workers. (ii)
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  Edge as a constraint satisfaction problem. The objective is to minimize the response time of DSPA application by minimizing the sum of each individual time for processing an operator on Cloud or Edge nodes and for sending data stream between two connected nodes. The problem considers the resource usage constraints in terms of CPU usage, network bandwidth usage and energy usage as well as the operator replicability constraint. The latter constraint considers the fact that some operators can be deployed on the Edge nodes while some other requiring complex processing capacity are forced to run only in the Cloud which provides higher computational resource capacity. To solve the formulated CP model, authors use the open-source software optimization tool Gecode.Mixed Integer Linear Programming (MILP) model is used in[START_REF] De Souza | An optimal model for optimizing the placement and parallelism of data stream processing applications on cloud-edge computing[END_REF] to solve the operator placement and replication problem between the IoT devices and Micro Data Center considered as Edge resources and a federation of Cloud sites. The objective is to minimize at the same time, the DSPA application response time and the combined usage costs of computational and network resources. While considering the computational resource usage constraint in terms of CPU and memory, the operator throughput constraint and the placement constraint of the source and sink of the DSPA application. They use the CPLEX tool to solve the resulting MILP model.

[ 8 ]

 8 combined both mathematical and heuristic optimization techniques to propose dynamic scheduling strategy for DSPA application over a P2P network of Cloud nodes. The proposed solution, called WASP, takes into account that the WAN bandwidth to reach the Cloud is dynamic along with the workload of DSPA application. In this respect, the objective is to minimize the DSPA application response time whatever the change in the WAN bandwidth and DSPA application workload. Then, WASP employs 3 optimization policies by executing firstly the operator placement policy to minimize the DSPA application response time. To do so they model the operator placement problem as ILP model which is solved with optimization tool Gurobi. If the operator placement policy does not satisfy the constraint on network bandwidth usage or on computational resource usage, WASP applies respectively the operator reordering to change the current plan of a DSPA application into an equivalent one that solves the network bandwidth bottleneck or the operator replication policy by scaling up/down the number of operator replicas to address the computational resource bottleneck. This work mimics in some how, the concept of content delivery network. Whence the resource network optimization of this work considers distributed Cloud resources interconnected through through WAN characterised by dynamic available bandwidth capacities. Furthermore, this work does not optimize the computational resource usage.

  models the problem of dynamic operator rescheduling between the Edge and Cloud as MDP with the objective of minimizing the DSPA application response time while satisfying the computational resource constraint of the Edge nodes. To solve the model, they use a reinforcement learning (RL) technique by employing algorithms such as Monte-Carlo Tree Search, Temporal-Difference Tree Search and Q-learning. While the previous work targets
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  j , and C is the Cloud node C. Moreover W Ei , W Fj and W C can be either of the weight versions and one should never use different weight version in the same model.
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  the Cloud node C. These network links have respectively maximum network bandwidth capacities nb EiFj and nb Fj C and network delays respectively nd EiFj and nd Fj C .

  minimize RU = w c • CRU + w n • N RU (5.13)subject to cmu Fj ≤ cm Fj j = {1, . . . , N },
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 55354 Figures 5.4 and 5.3 show as expected that RCS favors using network resources until reaching Bmax and then it has to use also fog resources. SOO-CPLEX favors using Fog computational
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  15 results of RU, CRU, and NRU for each value of M ∈ [5000, 50000] and to plot the average of these results per value of M, we repeat the splitting of each value of M among geographical areas 15 times. In this respect, the total data rate reaching the Fog follows a random (uniform distribution) sequence of the 10 values of M ×4KB/s repeated 15 times as depicted in FigureB.2. We feed this sequence to SOO-H, RCS and SOO-CPLEX. For RCS, we maintain the previous state of the DSPA application between the successive experiments. For SOO-H and SOO-CPLEX, each experiment is independent, since these two approaches calculate each time a new operator placement without taking into account the previous deployment state.
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 59 Figure 5.9), we introduce the following two parameters: i) the cost of operator O y for processing a unitary data load entering the graph, based on the cumulated selectivity of its upstream operator O x : csel c y = csel x • c y , where c y is the cost of the operator O y ; and ii) the cumulated sum of such costs up to an operator O y : sum csel c y = sum csel c x + csel c y .
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 5 Figure 5.14 and Figure 5.15 show a behavior for RCS in terms of CRU and NRU that is similar to Figures 5.11and 5.12. On the other hand, SOO-H and SOO-CPLEX achieve a smoother and
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based

  Single Objective Optimization (TSOO) problem. To take into account the response time of DSPA application, we rely on the response time model presented in Chapter 4 (see Section 4.4). hosts the operator O y or the sink y. nd M(x),M(y) is negligible if the operator O x and the operator O y or the sink y are placed on the same resource node (i.e., Fog node F j or Cloud node C).

  While the scheduling of G as G dep should take into account any response time constraint imposed by a DSPA application, we formulate the TSOO problem as following:minimize RU = w c • CRU + w n • N RU (6.4)subject to: cmu Fj ≤ cm Fj j = {1, . . . , N },

7 9 ∆ 11 fcur ← f l 12 Mcur ← M l 13 if fcur < f then 14 f ← fcur 15 M ← Mcur 16 else 17 fcur ← f l 18 Mcur ← M l 19 τ

 9111213141516171819 for l = 1 to L do 8 f l , M l ← neighboringSolution(Grep, RM ) ← f l -fcur 10 if ∆ < 0 then if rand(0, 1) ≤ P[accept f l ] then ← τ • α20 Rewrite G dep to include all Gmigni ∈ M 21 Send each Gmigni ∈ M to the corresponding node ni

16 Sort ∆RUset in increasing order 17 Pull ∆RU on top of ∆RUset 18 while ∆RU < 0 do 19 Get 21 Calculate T when considering ecj 22 B′←′≤ 25 M 26 B

 1617181921222526 123operatorM oveBack(M, RM, G dep , maxπ)12 if T > T max then 13 operatorM oveDown(M, RM, G dep , maxπ) 14 if B ≤ Bmax ∧ T ≤ T max then 15 ∆RUset ← edgeCutM ove(G, RM, M ) Sj, ej k , Gmigj k corresponding to ∆RU 20 ecj ← RM [j] B -|ecj| + |ecj k | 23 if B Bmax ∧T ≤ T max ∧ X.has(Sj) = False then 24 RM [j] ← ej p [j] ← Gmigj k ← B -|ecj| + |ecj k | 27 RU ← RU + ∆RU28 X.add(Sj) 29 Pull ∆RU on top of ∆RUset 30 Rewrite G dep to include all Gmignj (or Gmigj p ) ∈ M 31 Send each Gmignj ∈ M to corresponding resource node nj

4 . 1 . 1 .

 411 However in the case of TRCS, for each operator path, the function operatorM oveback() will move an operator from the Fog to the Cloud only if the constraints B ≤ Bmax and B ≥ Bmin are satisfied and the resulting endto-end latency is improved. In this respect, one should update Algorithm 12 (line 10) in order to include the constraint B ≥ Bmin. Similarly, the function operatorM oveDown() replicates an operator in the Fog only if the constraints B ≤ Bmax and B ≥ Bmin are satisfied and the resulting end-to-end latency is improved. We should also update Algorithm 13 (line 10) in order to add the constraint B ≥ Bmin.
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2 3 Gmigcurrent ← M [j] 4 Get 5 Find minimum ecj in Gsatj 6 Find 7 M 12 Sort Sraw2 in decreasing order 13 while B > Bmax do 14 pull 16 M 17 B

 345671213141617 Get the data stream Sj served by Fj Gsatj ⊆ Gmigcurrent where cmuF j ≤ cmaF j + cmucurrent Gmigj ⊆ Gsatj delimited by ecj [j] ←Gmigj; RM[j] ←ecj8 if B > Bmax then 9 Set Sraw1 to contain data stream Sj ∈ Sraw not yet migrated on Fog 10 M,RM,G dep ← dataMinCut(Sraw1, G) 11 Set Sraw2 ← Sraw \ Sraw1 Sj on top of Sraw2 and get current ecj 15 Gmigj, ec ′ j ← dataM inCut(Sj,G) [j] ←Gmigj ;RM[j] ←ec ′ j ← B -|ecj| + |ec ′ j | 18 if T > T max ∧ B ≤ Bmax then19 Set maxπ, sorted set of paths πij where Lπij > T max 20 operatorM oveBack(M, RM, G dep , maxπ) 21 if T > T max then 22 operatorM oveDown(M, RM, G dep , maxπ) 23 if B ≤ Bmax ∧ T ≤ T max then 24 Improve RU 25 Rewrite G dep to include all Gmignj (or Gmigj p ) ∈ M 26 Send each Gmignj ∈ M to corresponding resource node nj (a) DSPA application App-1 sharing the Edge-Fog-Cloud network resources (b) DSPA application App-2 sharing the Edge-Fog-Cloud network resources

7 .

 7 1a, we set the selectivity and cost of the operators respectively from [0.4, 1] and [1.0, 1.8], and, for App-2 depicted in Figure 7.1b, we set the selectivity and cost of operators respectively from [0.8, 1.2] and [1.0, 1.9].
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 2 1: Optimization Policies on DSPA application

	Policy	Change topology	Adapted	Occurring time
			application	
	Operator reordering	Yes	Logical	depends
	Replication	Yes	Logical	depends
	Placement	No	Physical	depends
	2.2.4.2 Optimization policies		
	[44] surveys several optimization policies used to reconfigure a DSPA application graph in order
	to satisfy a QoS objective. In our work, we consider two main optimization policies: (i) graph

Table 2 .

 2 2: Summary of Edge/Fog platforms

		Architecture	App. type	Mobility	Monitoring	Type
	KubeEdge [84]	2 layers	MS, DSPA,	Supported	Supported	Open source
			AppM			platform
	iFogSim [85]	extensible	MS, DSPA,	Not supported	Supported	Simulation
		layers	AppM			platform
	MobFogSim	extensible	MS, DSPA,	Supported	Supported	Simulation
	[87]	layers	AppM			platform
	Enorm [88]	3-layers	MS, DSPA	Supported	Supported	Open source
						platform
	FogFlow [89]	3-layers	DSPA	Supported	Supported	Open source
						platform
	OpenStack	2-layers	DSPA, MS,	Supported	Supported	Open source
	[91, 92]		AppM			platform
	EdgeNet [93]	extensible	DSPA, MS,	Not supported	-	Open source
		layers	AppM			platform
	Pan et al. [94]	3-layers	Smart grid	Supported	Supported	Research
						prototype

are hosted by multiple institutions around the world. It represents a departure from the classic Kubernetes model, where the nodes that are available to a single tenant reside in a small number of well-interconnected data centers. The free open-source EdgeNet code extends Ku-

Table 3 .

 3 1: Execution environments of DSPA applications

		Network architecture	Layer of hosting nodes
		Central. Hierarc. P2P Cluster HPC Cloud Fog Edge Shared
	[49]	✓	✓
	[22, 46, 47, 77, 95]		
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 3 2: Strategies producing a static operator scheduling

	Works	Strategy	Policy	Objective	Constraint
		Heur Math Plac Repl Comp Net T TP CPU,	Bwd Repl
				RAM	
	[103]				
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 3 3: Strategies for static and dynamic operator scheduling

	Authors	Strategy	Policy	Objective	Constraint
		Math Heur Pred Plac Repl Comp Net T TP CPU,	Bwd Repl
					RAM
	[21]				
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Table 4 .

 4 1: List of symbols used to model DSPA application

	Symbol Description
	G	Directed acyclic graph of operator (application graph)
	O x	Operator O x ∈ G
	e xy	Edge between operators O x and O y
	S j	Raw data stream
	|S j |	Rate of the data stream S j
	w x	Window size of operator O x
	sel x	Selectivity of operator O x
	csel x	Cumulated selectivity up to operator O x
	λ xy	Data rate flowing on the edge e yx
	c x	Cost of an operator O x to process its data load
	D x	Data load of the operator O x
	req	

x Computational resource demand (e.g. CPU/memory) of an operator O x Gmig i Subgraph of the application graph G to place on a resource node n i G dep

Table 4 .

 4 2: List of symbols used to model the Edge-Fog-Cloud architecture F j , C Resource node at respectively Edge layer, Fog layer and Cloud layer n i , Abstracts an Edge node E i , a Fog node F j or a Cloud node C (i.e. n i = E i |F j |C) A j Geographical area of IoT devices m j Number of IoT devices per geographical area A j cm ni Maximum computational resource capacity of node n i cma ni Available computational resource capacity of node n i cmu ni Demand of computational resource usage on a node n i nl ninj Network link for node n i = E i |F j to node n j = F j |C nb ninj Maximum network bandwidth capacity on the network link nl ninj nba ninj Available network bandwidth capacity on the network link nl ninj nbu ninj Demand of network bandwidth usage on the network link nl ninj

	Symbol	Description
	H	Hierarchical wide area resource network modelling Edge-Fog-Cloud architecture
	E i , with them.	

Table 4 .

 4 3: List of symbols used for resource usage cost model

	Symbol Description			
	W	Weight of using a resource (network or computational)
	M ax	Maximum reserved resource capacity (network or computational)
	Avail	Available resource capacity (network or computational)
	Req	Request of using a resource (network or computational)
	cru ni	Computational resource usage cost on node node n i
	cru	Overall computational resource usage cost across Edge-Fog-Cloud architecture
	nru ninj	Network resource usage cost of network link nl ninj
	nru	Overall network resource usage cost of all the network links in Edge-Fog-Cloud
		W EiFj =	1 nb EiFj	(4.13)
		W Fj C =	1 nb Fj C	(4.14)
	Formula 4.5 as following:			
		W EiFj = 1 -	nba EiFj nb EiFj	+	nbu EiFj nb EiFj	(4.15)

To calculate statically the weight factor of using each individual Edge to Fog network link (i.e. W EiFj ) or each individual Fog to Cloud network link (i.e. W Fj C ), we use Formula 4.4 as following:

On other hand, to calculate dynamically the weight factor of using each individual Edge to Fog network link (i.e. W EiFj ) or each individual Fog to Cloud network link (i.e. W Fj C ), we use

Table 4 .

 4 4: List of symbols used for the response time model Latency of an operator O x for processing its data load µ x Service rate of an operator O x for processing its data load λ x Arrival rate of data stream to operator O x ρ x utilisation rate of an operator O x wt x Waiting time of data items in the queue of an operator O x ω x Window size of an operator O x β x Sliding size of an operator O x M IP S j Maximum CPU capacity of a resource node n j (in terms of MIPS) cpu j

	Symbol Description
	nd ninj	Network delay on the network link nl ninj
	td ninj	Transmission delay on the network link nl ninj
	pd ninj	Propagation delay on the network link nl ninj
	π ij	Operator path i for processing data stream S j
	Lπ ij	End-to-end latency of operator path i for processing data stream S j
	T	DSPA Application response time
	M	Mapping function that gives the host resource node of an operator
	l x	

Table 5 .

 5 2: Parameters of the DSPA application of Figure 5.1

	Operators (O x ): O 1	O 2	O 3	O 4	O 5
	csel x	0.8	0.96	0.672	0.9408	0.84672
	sum csel c x	1.5	2.78	4.412	5.6216	7.40912

  9, line 19). TSOO-SA stops when τ reaches the predefined lower temperature threshold, τ f inal . , is compared with that of the current solution, f curr , in order to determine if an improvement has been achieved. If f l is smaller than f curr , the new solution becomes the current solution (Algorithm 9, lines 9-12). Furthermore, if f l is smaller than the cost of the best solution, Sraw, set of raw data streams Sj 1 M ← ∅, set of Gmign i , to replicate on per node ni 2 RM ← ∅ set of edge-cuts ecj ∈ Grep per Sj 3 fcur, Mcur ← dataM inCut(Grep, Sraw) 4 f ← fcur & M ← Mcur 5 if B ≤ Bmax then

	At each iteration (Algorithm 9, lines 6-19), a new solution is taken from the neighbourhood of the current solution. To generate a neighbour solution, we use the function neighboringSolution() (Algorithm 9, line 8), which is detailed in the next section. The cost of the new generated Input: G, application graph Input: Grep, subgraph of replicable operators of G Input: τ , initial temperature value Input: τ f inal , final temperature value Input: α, cooling rate Input: L, maximum iteration number solution, f l Algorithm 9: TSOO-SA Input: 6 while τ > τ f inal do

  cru max where cru max = Finally, to normalize the overall Fog to Cloud network resource usage cost, we eliminate the constant value c, we divide the network delay of each individual Fog to Cloud network links by the maximum network delay among all the network link in order to have nru without unit after the normalization. Then finally, we divide nru by the sum of the maximum capacity of all the Fog to Cloud bandwidth (i.e. nb Fj C ) and hence, the normalized form of nru defined in Formula Given the overall Fog computational resources usage cost, i.e., CRU and the overall Fog-to-Cloud network resource usage cost, i.e., N RU , the initial optimal placement M of an application graph Gdep, between the Fog nodes F j and the Cloud node C should minimize both CRU and N RU7.3.1 Monitoring the Distributed Execution of a DSPA applicationDSPA engines such as Apache Flink[START_REF] Carbone | Apache flink: Stream and batch processing in a single engine[END_REF] run several DSPA applications. A DSPA engine consists of Job Manager (JM) and multiple Task Managers (TMs) distributed across the nodes. By assuming that IoT data streams produced at the Edge are processed on Fog and Cloud nodes, the JM can be deployed on Cloud as it provides practically unlimited resources and a TM can be deployed on each Fog and Cloud nodes[START_REF] Jonathan | Wasp: Wide-area adaptive stream processing[END_REF]. Then, the JM is responsible for planning the execution of operators by the mean of a scheduler (e.g. aTSOO-H) and to assign them to the TMs. Then, each TM executes the assigned operators.We assume that the JM enabled with a global monitoring service while each TM with a local monitoring service. In this respect, at run time each TM continuously monitors metrics such as λ x , µ x of each operator O x that constitute the sub-graph Gmig nj deployed on each resource node n j , (n j = F j |C) along with the computational resource usage (i.e., cmu nj ) and the available computational resource capacity (i.e., cma nj ) on this node. Furthermore, it monitors for each individual Fog to Cloud network links, the values of the network bandwidth usage (i.e., nbu F jC )

				N		
					cm Fj	(7.5)
				j=1		
	(7.4) becomes:					
	N RU =	nru nru max	where nru max =	N j=1	nb Fj C	(7.6)
	7.2.2 Adaptive operator placement problem		

and the current network delay (i.e., nd F jC ), see Formula (4.20) and Formula (4.21). Then, it sends at each fixed time interval t the average value of the monitored metrics to the JM instance in the Cloud.

Then, JM aggregates the reported values to calculate the current overall resources usage cost RU (t m ) at each monitored time interval tm (t ≤ t m ), the current overall Cloud bandwidth usage B, and the application response time T . It also calculates the current computational usage of the target DSPA application on each individual Fog node F j (i.e., cmu(t m )), as well as, the available computational resource (i.e., cma F j ) of each individual DSPA application. Finally, it calculates the current network bandwidth usage of the target DSPA application on each individual Fog to Cloud network link (i.e., nbu F jC (t m )).

  .11) where for each constraint k, U k can be the value of cmu F j (t m ), nbu F jC (t m ), B or T and A k can be the value of cma Fj , Bmax or T max . The current deployment M is acceptable under the If both constraints B ≤ Bmax and T ≤ T max are finally satisfied, aTSOO-H algorithm applies a greedy search to further minimize RU while keeping satisfied the problem constraints (Algorithm 15, lines[START_REF] Prosperi | Planner: cost-efficient execution plans placement for uniform stream analytics on edge and cloud[END_REF][START_REF] Nardelli | Efficient operator placement for distributed data stream processing applications[END_REF]. This greedy search is described in Section 6.4.1.2.It worth noting that at the end of the algorithm execution, if aTSOO-H produces a solution where at least one constraint is still not satisfied, as our strategy is to always deploy a solution, we consider constraint relaxation to accept this last solution as the least bad one.

	in Section 6.4.1.1. Algorithm 15: aTSOO-H	
	following conditions:	
	RU (t m ) ≤ RU max,	(7.12)
	kmax	
	ϕ k = 0	(7.13)
	k=1	

Input: G, application graph Input: Grep, subgraph of replicable operators of G Input: Bmax, upper threshold for bandwidth usage Input: T max, upper threshold for response time Input: Sraw, set of raw data streams Sj Input: M, current operator scheduling solution Input: RM, replication and migration points Input: B, current overall Fog to Cloud bandwidth usage Input: Nodes, Set of Fog node Fj where cmuF j > cmaF j 1 for Fj ∈ N odes do
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Equation (5.7) represents the constraint regarding the maximum computational resource usage (i.e., CPU/RAM usage) of each individual Fog nodes, while Equation (5.6) captures the constraint on the maximum Fog to Cloud network bandwidth usage.

Clearly our two optimization objectives are conflicting. On one hand, minimizing the overall usage cost of computational resources in the Fog, i.e., cru, implies to place all operators of G in the Cloud, which results in low (zero) cru and high (overall Fog-to-Cloud) network resource usage cost, i.e., nru. On the other hand, minimizing the overall usage cost of network resources between the Fog and the Cloud, i.e., nru implies to place in the Fog the operators of G delimited by the minimum edge-cut, which may result in high or low cru and low nru. Having two optimization objectives which may be in opposition with each other indicates that an optimal scheduling solution will not be unique. As a matter of fact, a set of optimal solutions, where each represents a different trade-off between the objectives namely the computational vs network resource usage for scheduling DSPA applications between the Fog and the Cloud; the choice among these solutions can be decided by considering different resource allocation policies prioritizing one of the two optimization objectives.

Resource Constraint Satisfaction (RCS)

We initially propose a baseline solution, which we call Resource Constraint Satisfaction (RCS) algorithm. RCS algorithm regulates dynamically the computational and network resource usage so that the resource usage constraints are continuously satisfied.

B ≤ Bmax, (5.8) cmu Fj ≤ cm Fj j = 1, . . . , N, (

B ≥ Bmin.. (5.10) We additionally introduce the constraint (5.10), where Bmin is a lower threshold of B, to avoid oscillation of operator placement between the Fog and the Cloud. Based on Bmin, Fog computational resources are released when their usage is not necessary.

RCS algorithm is a resource aware based scheduling strategy aiming at using as less as possible the Fog computational resources.

RCS algorithm

We assume that the DSPA application is initially deployed in the Cloud as all the data streams produced at the Edge arrive to the Cloud in anyway. In this respect, RCS requires to constantly monitor the Fog-to-Cloud network bandwidth usage and the Fog computational resource usage.

RCS for which the pseudo code is presented in Algorithm 1 proceeds as follows: If the Fogto-Cloud network bandwidth usage constraint (i.e., B ≤ Bmax) is not satisfied, RCS triggers Redirect all selected Sj to be processed on the Fog

Migrate back to the Cloud

When RCS has replicated a part of DSPA application on the Fog, we need a way to move the processing of these data streams back to the Cloud when using the Fog computational resources is not necessary any more.

Thus, when B gets lower than Bmin, RCS triggers the function migrateBackToCloud (Algorithm 3). The objective is to raise B as much as possible above the lower threshold Bmin while still satisfying the constraint B ≤ Bmax. In this respect, RCS favors migrating back to the Cloud the data streams previously migrated to the Fog that will have the lowest impact on the constraint B ≤ Bmax. To this end, RCS sorts all the data streams S j migrated to the Fog, then selects the lowest-rate one (lines 2-4). Based on the selected data stream S j , RCS identifies Gmig j to be removed from the Fog, and checks if removing Gmig j will still keep B lower than the upper threshold Bmax (lines 7-10). If this is true, RCS actually updates B, marks Gmig j to be removed, and selects the next lowest-rate data stream S j (lines [START_REF] Akyildiz | 5g roadmap: 10 key enabling technologies[END_REF][START_REF] Amazon | Aws whitepapers guides[END_REF][START_REF] Varghese | Revisiting the arguments for edge computing research[END_REF][START_REF] Ali-Eldin | The hidden cost of the edge: A performance comparison of edge and cloud latencies[END_REF]. Otherwise, RCS performs the reconfiguration of G by removing all marked subgraphs Gmig j and redirecting the corresponding data streams to be processed directly in the Cloud (lines 15-17). Redirect all selected Sj to be processed in Cloud

Adjust edge-cut

When the computational resource usage constraint is not satisfied for at least one of the Fog nodes F j (i.e., cmu Fj > cm Fj ) on which a subgraph Gmig j is deployed, RCS triggers the function adjustEdgeCut (Algorithm 4). The objective is to readjust the current subgraph Gmig j so that the resulting cmu Fj satisfies the constraint cmu Fj ≤ cm Fj . In this respect, we identify the data stream S j that is served by the Fog node F j ; then we identify the subgraph Gmig current that is currently deployed on this Fog node F j (lines 2-3). Based on Gmig current and the rate of the data stream S j , we identify the subgraph Gsat j ⊆ Gmig current that satisfies the constraint cmu Fj > cm Fj . Then we select the minimum edge-cut ec j in Gsat j , based on which we identify the subgraph Gmig j ⊆ Gsat j to replicate (lines 4-6). After having identified the new Gmig j , we perform the reconfiguration of the application graph G to replace the current Gmig current by Gmig j on the Fog node F j (lines 7-8).

SOO-CPLEX Algorithm

We initially propose an approach that solves optimally our SOO problem by modelling it as an ILP problem. To this end, we introduce the decision variables X jk to set an edge-cut ec k ∈ Grep as the replication and migration point of a data stream S j that is to be processed on the Fog node F j . X jk is equal to 1 if ec k is the selected edge-cut for the data stream S j , otherwise X jk is equal to 0. We consider the subgraph Gmig j ∈ Grep delimited by the edge-cut ec k as the candidate subgraph to replicate and migrate on the Fog node F j for processing the data stream S j . Then, both computational and network resource usage costs defined respectively in (5.1) and ( 5.3) become:

Where N is the number of Fog nodes F j and K is the number of edge-cuts identified in the replicable subgraph Grep ⊂ G. cmu F jk is the computational resource usage for a candidate subgraph Gmig j delimited by the edge-cut ec k on the Fog node F j . nbu Fj C k is the Fog-to-Cloud network bandwidth usage from the Fog node F j to the Cloud node C when the edge-cut ec k is considered as the migration and replication point in Grep.

Given the decision variable X jk , and given the reformulation of cru and nru respectively in Formula (5.17) and Formula (5.18), we formulate the SOO problem as an ILP problem as follows:

where w c = w n = 1. Formula (5.22) ensures that only one edge-cut ec k is set as the replication and migration point in the subgraph Grep per data stream S j .

Integer Linear Programming is known to be NP-hard [START_REF] Papadimitriou | On the complexity of integer programming[END_REF]. To solve the SOO problem, we use the CPLEX solver; we call this approach SOO-CPLEX. 

Sort ∆RUset in increasing order

Pull ∆RU on top of ∆RUset We use the function RUminCut; its pseudo code is presented in Algorithm 6. More specifically, for each data stream S j we identify Gsat j ⊆ Grep as the part of Grep that satisfies the computational resource constraint on the Fog node F j receiving the data stream S j . Then, we select the edge-cut ec j ∈ Gsat j that produces the minimum RU j (lines 3-5). We identify the candidate sub-graph Gmig j ⊆ Gsat j to replicate on the Fog node F j delimited by the identified edge-cut ec j , and we set this edge-cut as the replication and migration point of S j on the Fog node F j (line 6-8). Finally, we update the Fog-to-Cloud network bandwidth usage B and the overall resource usage cost RU (line 9-11). dataMinCut Similarly to RU minCut, for each data stream S j , we identify Grep ⊆ G and Gsat j ⊆ Grep for selecting, in this case, the minimum edge-cut ec j that produces the minimum N RU j . In this way, we identify the resulting candidate subgraph Gmig j ⊆ Gsat j delimited by the minimum edge-cut ec j . Then, we compute the overall N RU , RU and B. The pseudo code of dataM inCut is presented in Algorithm 7. edgeCutMove Departing from the solution produced by dataM inCut and for each individual data stream S j , any backward move of an edge-cut ec j in Gmig j will decrease CRU j (consequently also CRU ) while it will increase N RU j (consequently also N RU ).

For example, in Figure 5.8 we identify Gmig 2 as the subgraph to replicate on the Fog at the minimum edge-cut ec 3 for processing the stream S 2 . The possible backward edge-cut moves to consider are: ec Given the above, for any backward edge-cut move ec j on a data stream S j , we assume the changes ∆CRU and ∆N RU respectively in CRU and N RU , where ∆CRU is in general negative and ∆N RU may be negative or positive. Thus, we can calculate the change in the resource usage cost RU as follows:

The objective of the greedy search is first to identify all possible backward edge-cut moves, as produced by edgeCutM ove (Algorithm 8), then to apply the edge-cut moves that produce the smallest ∆RU < 0 (i.e., the ones that reduce RU the most), while satisfying the constraint

To apply the edge-cut moves, in the SOO-H algorithm (Algorithm 5), we retrieve ∆RUset, the result of edgeCutM ove, which is the set of ∆RU's, then we sort this set in increasing order, then we pull from the top of the set the smallest ∆RU (Algorithm 5, lines 10-12). If ∆RU is lower than 0, we set its corresponding edge-cut move ec j k as the current replication and migration point of the data stream S j , and we set Gmig j k as the current subgraph to deploy in the Fog, only if the constraint B ≤ Bmax is satisfied (Algorithm 5, lines [START_REF] Varghese | Revisiting the arguments for edge computing research[END_REF][START_REF] Ali-Eldin | The hidden cost of the edge: A performance comparison of edge and cloud latencies[END_REF][START_REF] Mcchesney | Defog: fog computing benchmarks[END_REF][START_REF] Shi | Edge computing: Vision and challenges[END_REF][START_REF] Hong | Resource management in fog/edge computing: A survey on architectures, infrastructure, and algorithms[END_REF][START_REF] Al-Khafajiy | Iot-fog optimal workload via fog offloading[END_REF][START_REF] Liu | Resource management and scheduling in distributed stream processing systems: a taxonomy, review, and future directions[END_REF][START_REF] Cardellini | Run-time adaptation of data stream processing systems: The state of the art[END_REF][START_REF] Hiessl | Optimal placement of stream processing operators in the fog[END_REF]. Then, we pull from ∆RUset the next lowest ∆RU to continue improving RU (Algorithm 5, line 22), as long as ∆RUset is not empty and we do not encounter a ∆RU ≥ 0. It is worth noting that we update at most once each data stream S j with its best (lowest) ∆RU (Algorithm 5, line 16).

The remainder of this Chapter is organized as follows: In Section 6.2 we formulate the TSOO problem and show that we can map this problem to a job shop scheduling (JSS) problem known to be NP-hard [START_REF] Strusevich | Shop scheduling problems under precedence constraints[END_REF]. In Section 6.3, we first solve the TSOO problem by using metaheuristic algorithm based on simulated annealing (SA) (TSOO-SA) [START_REF] Delahaye | Simulated annealing: From basics to applications[END_REF]. Next, in Section 6.4

we introduce a heuristic algorithm called TSOO-H which extends our SOO-H algorithm in order to take into account the response time constraint. In Section 6.5 we experimentally evaluate TSOO-SA and TSOO-H. Finally, Section 6.6 concludes this chapter.

The contributions described in this Chapter have been published in the International Conference on Smart Computing (Smartcomp2022) [START_REF] Ntumba | Scheduling of continuous operators for iot edge analytics with time constraints[END_REF].

Time based Single Objective Optimization (TSOO)

Prior to formulate the TSOO problem, we need to adjust the response time model and the network resource usage model.

Adjusting the models

As TSOO problem extends the SOO problem that assumes the data streams are processed only between the Fog and Cloud, we need to formulate the response time model to cope with this assumption. Furthermore by introducing the response time model we need also to take into account the network delay of each individual Fog to Cloud network link that may have an impact on the network resource usage cost defined in Formula (5.3).

Response time model

We defined the response time T as the worst end-to-end latency Lπ ij among all the operator paths π ij of the deployable application graph G dep . In this Chapter we assume that the data streams are not processed at the Edge and the G dep is distributed only between the Fog and Cloud nodes. In this respect the operator latency at the Edge is zero and hence the end-to-end operator path latency defined in Formula (4.19) becomes:

Where the first term gives the maximum network delay among all the network links connecting each individual Edge nodes E i of the IoT area A j to the closest Fog node F j .

Given that data streams are processed only between the Fog and Cloud, M is the mapping function, that gives the resource node (i.e. Fog node F j or Cloud node C) on which an operator O x or a sink node is (or can be) mapped to. Then, nd M(x)M(y) is the network delay for transmitting data from a Fog node F j that hosts the operator O x to the Cloud node C that Get < Sj, ecj > from RM that corresponds to Sj

S j (Algorithm 10, line 2). From the selected data stream S j , we select its current replication and migration point ec j that we replace by ec ′ j (Algorithm 10, lines 7-9). ec ′ j is the edge-cut that directly succeeds ec j as we go from the source to the sink of G. If ec j is the last edge-cut in G (or Grep, the sub-graph of replicable operators), ec ′ j will take the value of the first edge-cut in G (or Grep). Then, we move for all the data streams S k ̸ = S j , the replication and migration points from one position (i.e. array index) in RM . This move can be right or left, in the present work we consider right move (Algorithm 10, line 10-13).

Example of generating a neighbourhood solution:

To illustrate the generation of a new solution in the neighbourhood of the current solution, let consider an application graph G (which is equal to its Grep). This G has the following edge-cuts: ec 1 , ec 2 , ec 3 , ec 4 , ec 5 and it process the data streams Sraw={S 1 , S 2 , S 3 }. If we consider that the function dataM inCut() identifies the following initial solution that we represent as an array of replication and migration points:

To generate the neighbourhood solution by applying the Algorithm 10, we process as follows: randomly select S 2 , as ec 5 succeeds directly ec 4 in the set of edge-cuts of G, we set ec 5 as the new replication and migration point of S 2 that replaces ec 4 . Then, we move (to right) the replication and migration point of S 1 and S 3 . This means that S 1 will have ec 1 as its current replication and migration point the one that S 3 had before and S 2 is not concerned as its has a new replication and migration point ec 5 . Then S 3 will have ec 4 the previous replication and migration point of S 2 . Thus, we have the following neighbour solution RM 1 ={(S 1 , ec 1 ); (S 2 , ec 5 ); (S 3 , ec 4 )}. Get exy in ecj of the path πij

Replace exy by eux in ecj and calculate

Update GmigC accordingly and calculate T

13 More specifically as presented in Algorithm 12, we iteratively select the operator paths π ij where Lπ ij > T max, in decreasing order of their end-to-end latencies Lπ ij . For each selected π ij , we start from the edge-cut ec j that delimits the two subgraphs Gmig j and Gmig C , through which this operator path π ij traverses, and we select the upstream replicated operator of ec j to be removed from the Fog node F j . If this action improves the resulting end-to-end latency, we continue to remove the next upstream replicated operator, as long as the constraint B ≤ Bmax is satisfied. We stop applying operatorM oveback() if the constraint T ≤ T max is satisfied.

However, if the constraint is finally not satisfied or if removing a replicated operator does not improve the resulting end-to-end latency, we next apply the function operatorM oveDown().

Operator move down operatorM oveDown() processes similarly. Rather than removing the replicated operators from the Fog, it replicates and migrates non yet replicated operators from the Cloud to the Fog. Then, it stops if the constraint T ≤ T max is satisfied. If the constraint is not satisfied or if replicating an operator on the Fog does not improve the resulting end-to-end latency, we stop improving the response time. The pseudo-code of the function Replace exy by eyz in ecj and calculate

Update GmigC accordingly and calculate T

13 

Improve the overall resource usage cost

Aiming to improve the overall resource usage cost, we apply the function edgeCutM ove() (Algorithm 11, line 16) to identify all possible backward edge-cut moves [START_REF]Efficient scheduling of streaming operators for iot edge analytics[END_REF]. We put the identified edge-cut moves and their ∆RU values in the set ∆RUset.

To apply the edge-cut moves (Algorithm 11, line 17-30), we sort the set ∆RUset in increasing order. Then, we pull from the top of the set the smallest ∆RU. If ∆RU is lower than 0, we apply its corresponding edge-cut move ec j k to the data stream S j , only if the constraints B ≤ Bmax and T ≤ T max are satisfied. Then, we pull from ∆RUset the next lowest ∆RU to continue improving RU , as long as the remaining ∆RUset is not empty or we do not yet encounter a ∆RU ≥ 0. Like in SOO-H, TSOO-H updates at most once each data stream S j with its best (lowest) ∆RU.

Experimental evaluation

We use iFogSim to simulate an Edge-Fog-Cloud architecture as well as several DSPA applications. Besides the TSOO-H and TSOO-SA algorithms, we also implement in our experimental 

Experimental Setup

The experimental setup of data stream rates, DSPA application and Edge-Fog-Cloud architecture is the same as in the the previous Chapter (Chapter 5) with some differences that we point out in the following. For the execution environment, we simulate the Edge-Fog-Cloud architecture as in Chapter 5, that includes 1 Cloud node, 10 Fog nodes and up to 50000 IoT devices at the Edge at the bottom. We use the tool Ether [START_REF] Rausch | Synthesizing plausible infrastructure configurations for evaluating edge computing systems[END_REF] to generate plausible (based on real data set) network configurations of the Edge-Fog-Cloud architecture. The distribution of the resulting network configurations follows the one used in [START_REF] Jonathan | Wasp: Wide-area adaptive stream processing[END_REF]. For the computational resources, we simulate the Cloud node as an AWS VM instance of type m6g.xlarge [START_REF] Amazon | Aws whitepapers guides[END_REF]. At the Fog, we simulate ESXi virtual machines [START_REF] Wöbker | Fogernetes: Deployment and management of fog computing applications[END_REF]. The MIPS evaluation of each resource node comes from [167]. Table 6.1 presents the configuration of the Edge-Fog-Cloud architecture. Finally for the threshold parameters, we set Bmax=125MB/s and Bmin=30MB/s. Given that the maximum propagation delay among all the network links is 300ms (Table 6.1), we set T max=500ms.

Evaluation results

We present in this section the evaluation results of TSOO-H against the competitor algorithms.

We first discuss the results in terms of the resource usage cost achieved, then in terms of satisfaction of the resource usage constraint and response time constraint. Finally, we present the results in terms of scalability. 

Resource usage cost

Constraint satisfaction

We adopt the strategy of deploying a scheduling solution in all cases, the best one found or the least bad one. Hence, we apply constraint relaxation when an algorithm does not find a solution that satisfies all the constraints. In this section, we analyze how often the RU result achieved for each value of M satisfies or not the response time constraint (T ≤ T max) and the Fog to Cloud bandwidth usage constraint (B ≤ Bmax). To do so, we divide by 15 the number of times that the value of B (or T ) does not satisfy the related constraint per each value of M (as we run while satisfying the resource usage constraint and the response time constraint. As in Chapters 5 and 6, we consider the initial optimization of the TSOO problem as following:

Subject to:

Unlike in the previous Chapters where we constrained the usage of each Fog node F j by its maximum capacities. In order to take into account the computational resource state of each Fog node F j , in this Chapter we constrain the usage of each Fog node F j by its available resource capacities (i.e. cma F j ) (see Formula (7.10)).

By considering that the Edge-Fog-Cloud resources are shared among several DSPA application, the available computational and network resource capacities can be dynamic as long as the DSPA applications can be (re)deployed or removed on the fly. Moreover, the number and rate of individual data streams S j produced from an IoT area A j may vary according to the mobility patterns of IoT devices E i [START_REF] Hung | Dynamic workload allocation for edge computing[END_REF]. Under these conditions, an optimal placement M statically defined may not anymore be a feasible solution to the TSOO problem. For this reason, we need to adapt the current operator placement M by rescheduling an already deployed application graph G dep at run-time.

In essence we need to compute a new operator placement M that optimizes RU and satisfies the TSOO problem constraints by taking into account the current state of the Edge-Fog-Cloud resources.

Such adaptive scheduling of operator requires to take into account: (i) the cost of monitoring the current operator placement scheme, which may cause delay and network resource usage overhead; and (ii) the rescheduling cost that should take into account the number of replicated or removed operators. An efficient rescheduling strategy should have lower cost.

Proposed solution

To find an initial scheduling of DSPA application at deployment time we rely on the TSOO-H algorithm presented in Algorithm 11. However, we consider that the overall resource usage cost model takes into account both the available and maximum resource capacities. Moreover, the available resource capacities are used as upper bound of the resource usage constraints. Then, we propose the adaptive solution called aTSOO-H algorithm for evolving the DSPA application at run-time. Before detailing aTSOO-H, we first explain how we can monitor the execution of a deployed DSPA application between the Fog and Cloud nodes that processes dynamic data stream rate produced by IoT devices (Edge layer).

In this context, we need to search for a new operator placement M if at least one of the conditions (7.12) and (7.13) is not satisfied. However, defining statically the value of RU max does not guarantee to have RU bellow RU max. In this respect RU max should be relative to RU. In this way rescheduling of the current M at time t m is triggered when RU (t m ) value exceeds or falls below RU max; where RU max is equal to the RU value (optimal or best found) achieved with the last scheduling decision by more than a given relative threshold, (e.g., 10%). A small relative threshold will probably lead to more frequent rescheduling, depending also on how much and how fast the data stream rates evolve. This mechanism could also be complemented by setting a second, upper threshold for limiting the frequency of rescheduling execution

aTSOO-H Algorithm

The scheduler takes the current operator placement M and the corresponding application graph G dep as input, then it produces as output a new operator placement M and the resulting application graph G dep to deploy so that the conditions defined in Formulas (7.12) and (7.13) are satisfied. The pseudo code of the algorithm aTSOO-H that we introduce to solve this problem is depicted in Algorithm 15. aTSOO-H checks whether there is a Fog node F j where the computational resource usage constraint is not satisfied. In this case, aTSOO-H selects another edge-cut as the replication and migration point. This is used to identify a new sub-graph Gmig j so that the resulting computational resource usage satisfies the constraint (cmu F j ≤ cma F j) (Algorithm 15, lines 2-7).

In the next step, aTSOO-H checks whether the overall Cloud bandwidth usage constraint is not satisfied. In this case, aTSOO-H migrates the data stream S j on the Fog if they are not yet processed there. To this end aTSOO-H applies the function dataM inCut() (Algorithm 15, lines 9-10). Then, aTSOO-H builds the set Sraw2 that contains the data stream S j that have been already migrated in the Fog and sorts them in decreasing order by their rates (Algorithm We again rely on iFogSim to simulate an Edge-Fog-Cloud architecture. In this architecture, we consider 1 Cloud node and 10 Fog nodes. On the other hand, we consider up to 75000 IoT devices at the Edge in order to vary the size of the data streams to be processed by the two DSPA applications.

For the computational and network resource parameters of our Edge-Fog-Cloud simulation, we consider that the Cloud node is an Amazon VM instance of type m6g.xlarge [START_REF] Amazon | Aws whitepapers guides[END_REF]. In the Fog, we simulate ESXi virtual machines [START_REF] Wöbker | Fogernetes: Deployment and management of fog computing applications[END_REF]. The maximum reserved capacity of CPU and RAM of the Cloud node and the Fog nodes along with the parameters for the network topology in terms of propagation delay and network bandwidth capacities are the same as in Chapter 6. Table 7.1

presents the computational and network resource parameters used in these experiments. for each value of M, we set an interval [0, M ] in which we uniformly set m j (t) IoT devices per geographical area A j so that the sum of m j (t) be equal to M.

As we want to deploy both App-1 and App-2 across the Edge-Fog-Cloud resources, some IoT devices at the Edge should produce data streams to be processed by App-1 while some others

IoT devices should produce data streams to be processed by App-2. In this respect, we split each m j (t) between m j 1 (t) and m j 2 (t) so that each Fog node F j receives data stream S j splits between S j 1 and S j 2 with rate respectively

as the input of respectively App-1 and App-2.

For the number of repetitions per run, we consider around 15 repetitions as in our previous set of experiments. In this respect, we repeat the splitting of each value of M per geographical area and per DSPA application 15 times. The total data rate reaching the Fog follows a sequence of 11 uniformly distributed values of M ×6KB/s repeated 15 times. We feed this sequence to aTSOO-H, TSOO-H, TRCS and to the state of the art solutions. We produce 15 results of T, B, 

Value 5000 12000 19000 26000 33000 40000 47000 54000 61000 68000 75000 Scenario 1 In this scenario, the rates of data streams to be processed by App-1 are constant.

Compared to the data stream rates of App-1, the rates of data streams to be processed by App-2 vary with values that are, for about half of them, lower than App-1, and for the other half, higher than App-1. In this respect, we fix the rate of input data streams of APP-1 approximately in the middle of possible values of M (i.e. M=40000 IoT devices in Table 7.2) and we leave the rest of the data streams for App-2. This is depicted in 

Scenario 2

In this scenario, we want to have close but not equal rates for the input data streams of App-1 and App-2. In this respect, we split the load of each M value between the two applications so that App-1 processes the data streams produced by 55% of the M IoT devices, and App-2 processes the data streams produced by the other 45%. Thus, Figure 7.2b depicts the total input data stream rate per DSPA application for each value of M. The sequence in time of the data stream rates for either DSPA application is depicted in Figure B.4.

Setting threshold parameters

For each DSPA application, we set the threshold parameters Tmax, Bmax and Bmin as follows.

Bmax = 125M B/s. Given that the maximum propagation delay among all the network links is 300ms (Table 7.1), we set T max = 1000ms, to allow some margin for operator latency and transmission delay. Finally, for TRCS we set Bmin = 50M B/s.

Given that we aim to evaluate the dynamic scheduling algorithm aTSOO-H and not the dynamic triggering mechanism described in Section 7.3.1. In this respect, we set the experiment to trigger aTSOO-H as well as TSOO-H at each change in data stream rates. In this way, we can evaluate all the scheduling algorithms on a common basis.

Evaluation results

In these evaluation results, we pay particular attention to the capability of the algorithms to solve the TSOO problem when scheduling two different DSPA applications one (App-1) after the other (App-2) across the Edge-Fog-Cloud resources, while taking into account the available resource capacities, thanks to the resource usage cost model version with dynamic weights. As evaluation metrics, we consider RU, T, B and the execution cost.

The execution cost encompasses the execution time and the rescheduling cost. The execution time is the time it takes for each algorithm to find the new operator placement and to rewrite the application graph based on the identified operator placement. We define the rescheduling cost as the number of operators that are: (i) instantiated, i.e., they are replicated in the Fog or they are deployed for the first time (like union operator) in the Fog or Cloud or (ii) deleted, i.e., they are 'migrated' back to the Cloud. I;porvement of the resource usage cost model will be necessary in order to take into account state migration between the Fog and Cloud in case of statefull operator. In this work we assume stateless operators.

Analysis of resource usage costs and related constraint satisfaction rates

Scenario 1 For this scenario, the results achieved by each algorithm are presented in Table 7. current operator placement, and hence TSOO-H has higher probability to identify the operator placement which approximates the most the optimal RU (see Chapter 6). On the other hand, when aTSOO-H is triggered, it considers the current operator placement from which it produces the new operator placement that minimizes RU and satisfies the TSOO problem constraint.

In this respect aTSOO-H is more likely to produce RU which is a bit higher than the one of TSOO-H (except for M8).

When analyzing the constraint violation rate of each algorithm, we observe that all the algorithms satisfy the TSOO problem constraint when deploying the App-1, that why we omit to present the related plots. However, when the available capacities of Edge-Fog-Cloud resources are reduced due to the workload of App-1 initially deployed, when scheduling App-2 the constraint violation rate is increasing with the data stream rates. For instance, Figure 7.4a, shows that for TRCS the violation rate of the constraint B ≤ Bmax is already 20% at the data stream rates produced by IoT devices of M9 value and it keeps increasing until to reach 100% at the highest data stream rate produced by IoT devices of M11 value. While for aTSOO-H and TSOO the violation rate of this constraint is lower, specifically 6.67% at M8 and 6.67% at M9 and it keeps increasing however without reaching 100%.

Last but not least, Figure 7.4b shows that TRCS has the highest violation rate of the constraint T ≤ T max from M7 to M9 with respectively 20% to 46%. However it has the same violation rate as TSOO-H and aTSOO-H at M10 and it gets even lower than the latter at the highest data stream rate (i.e. M 11) with 73.3% while they have the same highest violation rate of 93.3%.

Scenario 2 We consider dynamic data loads for both App-1 and App-2 where App-1 is initially deployed across the Edge-Fog-Cloud architecture, then the App-2 is deployed when App-1 is processing data stream. Thus, both App-1 and App-2 have to share the Edge-Fog-Cloud resources to process the dynamic data stream rate produced at the Edge. The results achieved in this scenario are presented in Figure 7.5 and 7.6.

algorithm, and it approximates the optimal solution at the highest data stream rates (i.e. M 11).

Since we run TSOO-H from scratch at each time the rescheduling is triggered, it is more obvious to observe such performance of TSOO-H as long as we have shown in Chapter 6 that TSOO-H is more likely to identify the optimal (or near optimal) solution. Unlike TSOO-H, aTSOO-H is executed from scratch only for the first data stream rates in the random sequence of data stream rates where it produces also the optimal solution. For the following data stream rates, aTSOO-H adapts the current operator placement solution in order to provide an (near) optimal operator placement solution with respect to the actual workload. In this respect, aTSOO-H takes the advantage of the abundant available resources capacities across the Edge-Fog-Cloud architecture which does not trigger constraint violations and hence it improves only RU . However TRCS provides the highest RU when comparing to both TSOO-H and aTSOO-H with a difference ratio of up to 7.65%

It worth noting that all the algorithms satisfy the constraint T ≤ T max when scheduling

App-1 at any data stream rates that why we omit to put the related plots. Even though that TSOO-H and aTSOO-H provide the lowest RU , like TRCS they are more likely to fail to satisfy the constraint B ≤ Bmax with an increasing probability as the data stream rates are increasing from M8 to M11 spanning from 20% to 86.67% of constraint violation rate, see Figure 7.6a.

When Scheduling App-2 with respect to the load of App-1 already scheduled between the Fog and Cloud nodes, Figure 7.5b shows that TSOO-H has the lowest RU among all algorithms for the data stream rates produced from M 1toM 8 IoT devices. However the difference ratio is very small this is due to fact that the input data stream rates are closer for the two DSPA applications. Even though that aTSOO-H is outperformed by TSOO-H, the difference ratio is very small up to 1.29%. However, at higher data stream rates from M 9 to M 11 IoT devices, aTSOO-H outperforms TSOO-H with a small difference ratio of up to 1.88%. This happens in general when both algorithms fail to satisfy the constraint T ≤ T max. In particular, both algorithm provide a different operator placement solution from which to improve the response time in order to satisfy the related constraint. Then, the greedy search to satisfy the response time is applied differently based on the input operator placement. Moreover, when comparing to TRCS, aTSOO-H and TSOO-H provide lower RU with a difference ratio respectively of up to 17.68% and 18.02%.

Regarding the TSOO problem constraints, we observe that TRCS is likely to not satisfy the constraint B ≤ Bmax. As depicted in Figure 7.6b, both aTSOO-H, TSOO-H and TRCS start failing to satisfy this constraint at higher data stream rates (i.e. M 9 to M 11) with hover high constraint violation rate spanning from 20% to 73.33% for TRCS, while TSOO-H and aTSOO-H have the same constraint violation rate spanning from 13.3% to 60%.

For the real time response constraint, Figure 7.6c shows that all the algorithms start failing to satisfy this constraint up on moderate data stream rate, i.e. M7 for aTSOO-H and TRCS and DSPA application across the Edge-Fog-Cloud resources. Then we propose aTSOO-H algorithm that adaptively schedules DSPA application by taking into account its current deployment state in order to solve the dynamic version of the TSOO problem.

aTSOO-H exhibits significant advantages when compared to TSOO-H and TRCS. In particular, aTSOO-H approximates better the optimal solution of the TSOO problem when comparing to TRCS. It worth noting that TSOO-H approximates better than aTSOO-H the optimal solution, however aTSOO-H has lower execution cost in terms of algorithm execution time and the number of operators replicated or removed at each rescheduling of the current deployment of DSPA application.

Lastly, we evaluate aTSOO-H against FogOnly from the recent related work and FCInterplay inspired from the related work. It shows that aTSOO-H has better performance than FogOnly and FCInterplay in terms of optimizing resource usage and successfully deploying DSPA application. In particular aTSOO-H has 100% of success rate when deploying DSPA application at lower data stream rates and the success rates is decreasing with the increasing of the data stream rates while never reach 0%. However this success rate remains higher than those of FogOnly and FCInterplay. It worth noting that TSOO-H outperforms also aTSOO-H in terms of DSPA application deployment success rate.

For instance, when a DSPA application is submitted to the JobManager of Apache flink, the latter converts this application as JobGraphs. Then, the JobManager will call a schedule method that invokes an ExecutionGraph to subsequently call scheduleForExecution. This triggers a task allocation method for each of the vertices in the ExecutionJobVertex (a collection of vertices in JobGraphs). So, basically the idea is to override the task allocation algorithm with the scheduling strategies that we propose in this thesis. To re-schedule a running application, the idea could be to generate and maintain multiple plans of JobGraphs for each submitted DSPA application. These plans will be considered when evaluating a running DSPA application.

However, it is worth noting that the popular DSPA engines enumerated above are designed to run on resource-rich environments, while the Edge/Fog computing environment may come with constrained computational resources. Thus, effective deployment of DSPA engines in the Edge/Fog environment requires lightweight DSPA engines such as NebulaStream [START_REF] Zeuch | The nebulastream platform: Data and application management for the internet of things[END_REF]. We expect this direction to be further explored as stable Edge/Fog oriented DSPA engines are still not yet established [START_REF] Cardellini | Run-time adaptation of data stream processing systems: The state of the art[END_REF].

Generalization of the DSPA application type

In this thesis, we focused on the problem of scheduling a DSPA application in the Edge-Fog-Cloud continuum where the DSPA application is initially deployed in the Cloud and it has its sink there. One of the recent works that we surveyed proposed interplay strategies between the Fog and the Cloud for scheduling DSPA applications that have their sink either in the Cloud or in the Fog [START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF]. One of the insights drawn in [START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF] is that the best scheduling strategy is to favor deploying a DSPA application entirely in the Cloud or entirely in the Fog if it has respectively its sink in the Cloud or in the Fog. Actually, we compared our solutions with a strategy that we implemented inspired from [START_REF] Rzepka | Sdn-based fog and cloud interplay for stream processing[END_REF] in Section 7.4.3. A future extension of our work is to consider not only DSPA applications that have their sinks in the Cloud, but also DSPA applications that have their sink in the Fog or in both the Fog and the Cloud. In the latter cases, a scheduling algorithm should possibly also take into account data streams in the direction Cloud to Fog.

Explore mobile Edge resources

In this thesis, we consider only Fog and Cloud computational resources, while IoT devices at the Edge come with non negligible processing capacities. However, extending the processing of data streams at the Edge layer possibly means dealing with mobile nodes, which can have a disruptive impact on the whole DSPA application. In this context, some efforts have been made to tackle the challenges associated with deploying DSPA applications on mobile IoT devices at the Edge.

To cite some of them, O'Keeffe et al. [START_REF] O'keeffe | Frontier: Resilient edge processing for the internet of things[END_REF] design an edge-based IoT data processing approach that leverages the computing abilities of multiple IoT devices in order to process data streams in parallel and to account for the unreliable network conditions in wireless networks. Chao et Appendix A

Use case detailed operators

In the following we detail the operators that constitute the DSPA application introduced in the use example for country wide traffic monitoring in Section 1.1:

Union (U ): combines raw traffic data streams from street antennas into a single data stream for further processing: The resulting data stream after applying the previous operators is given as input for the countrywide traffic monitoring and city-wide traffic regulation IoT applications.

The first application for country-wide traffic monitoring reports on an hourly basis traffic statistics for the entire country. In this respect, we need to group the input data stream per city to provide the average speed and number of vehicles per city: Sequence of random data stream rates in Chapter 7 
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