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Introduction

While 4G focuses on mobile internet access, 5G addresses a wide range of business use cases (called
verticals), ranging from industry 4.0 to smart cities and augmented reality. Those business verticals
can be grouped into three prominent use cases: enhanced Mobile Broadband (eMBB), ultra Reliable
Low Latency Communications (uRLLC) and massive Machine Type Communications (mMTC). Ag-
gregating those use cases on a single physical infrastructure while respecting the associated constraints
is required to optimize deployments and resource consumption. The different use cases have antag-
onist network requirements. Indeed, while eMBB concentrates on throughput, uRLLC focuses on
latency, and mMTC has to support a huge amount of connected devices. Those constraints, and more
specifically latency and throughput, are not compatible as increasing capacity often implies a loss in
delays, and reciprocally, latency-focused systems are struggling to provide high data rates. In those
conditions, it has to be expected that naive base stations will not be able to serve multiple vertical
constraints. On the other side, deploying independent physical infrastructures for every vertical will
have an insufferable economic and ecological cost.

In this context, a new technology is required to support the heterogeneous terminals on top of a
single infrastructure. This technology is called network slicing and describes the ability of a network
to operate different verticals and use cases, called network slices, on a single physical infrastructure.
A slice represents a logical network that connects terminals with close network constraints to one or
multiple data networks. It is associated with a set of resources. Depending on the terminals connecting
a slice, a set of requirements and constraints (like throughput, delay, or reliability) is defined.

This technology is expected to provide two critical features for managing different usages. The
first one is deployment optimization and flexibility, as it would enable one to deploy multiple verticals
on top of a shared physical infrastructure. In addition, it would enable extreme energy consumption
and cost gain, which are the two main concerns while deploying mobile networks. On the other side,
network slicing must also grant isolation between slices so that different slices Service Level Agreement
(SLA) are respected.

Network slicing has received much attention in the literature. On the Core Network (CN) side,
network slicing can be achieved using virtualization methods and cloud technologies such as contain-
ers. Such virtualization techniques bring a lot of flexibility and agility to the deployment scenarios,
options, and parameters. Virtualization enables the operator to easily deploy different logical net-
works on a single infrastructure while having a minor economic impact. It also provides flexibility, so
network instances serving slices with low latency constraints can be deployed closed to base stations
on the edge, and other network instances can be gathered in the cloud for better optimization. In this
area, research projects mainly focus on orchestration and monitoring as virtualization flexibility can
only be achieved with solid orchestration methods. Such methods enable online function deployment
and resizing when traffic varies. The second main challenge for deploying CN instances is function
placement. Every combination of functions placement will have a cost while deploying a network
instance. Deploying functions on the edge might reduce delays but increase deployment complexity,
whereas cloud deployments optimize the deployment process and network centralization while increas-
ing delays. Other constraints such as resources’ availability can also be considered while computing
the deployment cost.

Nevertheless, on the Radio Access Network (RAN) side, it can be pointed out that there is a
considerable lack of technologies for network slicing. No algorithms and methods guarantying isolation
between slices and requirements fulfillment have been proposed. Especially, systems that handle high
throughput and low latency communications are missing. The work introduced in this thesis emerges
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from this statement and focuses on the RAN side. Indeed, at the RAN level, network slicing requires
the design of new methods and algorithms and the application of virtualization technologies to RAN
systems, which has never been done before. In the current state of the art, it can be supposed that
network slicing will be achieved by provisioning and associating resources to slices or a group of slices
sharing the same requirements in terms of latency and throughput. In this context, resource allocation
appears to be critical for network slicing optimization to maximize network efficiency while respecting
slices requirements.

This thesis addresses two primary challenges raised by network slicing of the RAN. The first
one is that resource allocation requires the definition of network models which consider both diverse
and heterogeneous RAN constraints. Beyond capacity and User Equipment (UE) density, which
can be easily modeled, latency and reliability are critical parameters for such models and cannot be
trivially studied. Many models already exist for resource allocation of the RAN. However, models
which take into account network slicing constraints do not exist. Moreover, the impact of network
slicing on coverage has not been studied yet, while it is one critical aspect of network reliability. One
contribution of this thesis is, therefore, to propose a RAN network slicing model. It takes into account
new constraints brought by network slicing, among which coverage is of the utmost importance.

The second main challenge raised by network slicing is the supervision of resource allocation.
Indeed, as long as the physical infrastructure is shared between the different slices, it is impossible to
guarantee complete control of the network and respect of the requirements even if the resources are
carefully allocated. This is a big issue for network slicing as some verticals have ultra-high network
control requirements. In this context, supervision systems are required to bring a second level of
control over the network. Supervision tools aim to control that the constraints of the different slices
can be respected with the current state of the system through the analyze of the data extracted from
the network. The data can be provided by network’s Application Programmable Interface (API),
but this is not reliable concerning potential cyber-attacks. In this thesis, we propose using a data
extraction system external to the network (called a probe). Therefore, another contribution of this
thesis is the implementation of a prototype of such a probe.

Given that the probe is outside the network, it must decode the different signals of a cell in order to
extract data. The data extraction mechanism that has to be implemented corresponds to the receiver’s
side of a UE’s Physical (PHY) layer for decoding downlink transmissions and to the receiver’s side
of a gNodeB’s PHY layer for decoding uplink transmissions. Therefore, the probe can be derived
from a 5G PHY layer. The last contribution of this work is the introduction of an open-source 5G
physical layer from which the probe is derived. This physical layer is designed with regard to two
main features. The first one is network slicing which implies that the PHY layer implementation
must be modular so that it can be adapted to different kinds of slices. The second one is functional
split. Indeed, in 5G, the different layers of the RAN can be split and dis-aggregated over the network.
The PHY layer is therefore built with an architecture which enables future implementation of RAN
splitting. This project is named free5GRAN and is publicly available on Github [7].

This work starts by introducing the 5G system. Then, it is split into two parts. The first one details
the implementation of the 5G physical layer, including the procedures and functions, the algorithms
and the software architecture. The second part investigates network slicing itself by reviewing the
concepts and associated resources and introducing a model for network slicing and a probe for network
supervision.
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Chapter 1

Introduction to the 5G system

Contribution

In this chapter, we give an overview of the 5G system. We provide the reader with a global under-
standing of what 5G is and how the different Quality of Service (QoS) flows are managed across the
5G system. Therefore, this chapter first introduces the whole 5G system and then focuses on the
RAN.

1.1 Introduction

In this chapter, an introduction to the 5G system is given. The objective is two-fold. First, it
aims to provide the reader with a global understanding of the 5G system: its architecture and main
technologies. Furthermore, it also aims at introducing some specific components and functions that
will be further discussed later so that the reader has all the keys to understand this work.

The 5G system can be introduced in many different ways. This chapter introduces it as the
network infrastructure designed to support a wide variety of terminals. Indeed, in 4G, the network is
built to provide end-users with data services like voice and video streaming or web traffic, whereas,
in 5G, the network is built to serve highly heterogeneous terminals like connected vehicles, sensors,
or smartphones. The main difference between the different user traffics is not the associated QoS
profile but rather the data network to which the service requires access. Indeed, a connected car
might require access to the internal manufacturer’s network, whereas a sensor for agriculture might
connect to the cloud for data collection. Therefore, in 5G, the user traffic is first handled based on the
data network to which a terminal requires access and then based on the QoS profile required by the
service. When accessing the network, a terminal is given a tunnel that directly connects the terminal
to the data network. The network is responsible for setting up the tunnel and supporting different
services with different QoS profiles within a single tunnel.

Besides the variety of terminals, multiple use-cases can be addressed in 5G. Those usages are a
combination of three fundamental use-cases that are eMBB, uRLLC and mMTC. First, eMBB is
the most common usage and corresponds to the natural evolution of 4G networks. It is designed to
enable end-users to access the network with high throughput, making applications such as augmented
reality possible. Moreover, uRLLC is designed to support critical applications such as remote surgery
or autonomous vehicles. Those applications require strong network reliability and low delay com-
munications. Finally, mMTC is a use-case where the network is used to connect millions of devices.
The network must be able to serve a huge number of UEs, and the communication must be highly
optimized in terms of power consumption. Those three fundamental use-cases delimit a triangle in
which all the other use-cases can be found. All the 5G use-cases can be seen as a combination of those
three fundamental use-cases. The triangle and the different use-cases are represented in Figure 1.1.
All the terminals connected in 5G are associated with a use case.

The first section of this chapter gives an overview of the 5G standalone architecture, the second
one describes the RAN splitting concept and the last one introduces Software Defined Radio (SDR).
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Figure 1.1: 5G usages scenarios (from ITU-R IMT 2020 requirements)

1.2 A quick introduction to virtualization

Before describing the 5G network architecture and functions, it is crucial to understand the core
concept of virtualization. Indeed, one of the main evolution from 4G to 5G is the extensive use
of virtualization technologies at the different levels of the network (both CN and RAN). The main
concepts and terms that are used in this thesis and related to virtualization are:

• Virtualization. First, the virtualization concept itself refers to the software implementation of
functions usually implemented in hardware. The main impact of virtualization is that functions
are no longer correlated to the underlying hardware as the software implementations are designed
to be deployed on generic hardware platforms.

• Microservice. When functions are virtualized, they are commonly developed as microservice
software applications. A microservice architecture refers to the split of one big function into
indivisible sub-functions that are implemented in separate software applications and work with
each other to implement the big function behavior.

• Container. Containers are one way to manage microservice applications deployment, orches-
tration and life-cycle management. A container is a standalone environment containing all the
assets the embedded application requires. In addition, this environment is seamlessly portable
across devices that support containers. There are several container management systems for
cloud environments, among which Kubernetes is the most used. It enables to define groups of
resources and services, and automates containers deployment, replication, and life cycle man-
agement to provide a given service using a set of resources.

• Cloud-native networking. It refers to the virtualization of network functions usually imple-
mented in physical nodes. For example, in Internet Protocol (IP) networks, cloud-native net-
working refers to the virtualization of the routing and switching functions usually implemented
in routers and switches.
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1.3 5G standalone system overview

The 5G system is made of two main parts that are the CN and the RAN. Those two parts work
together to build end-to-end tunnels between UEs and data networks. The RAN is responsible for
the radio connection with UEs and the CN is responsible for network control and user traffic routing.
In this section, an introduction to the 5G CN and RAN is given. Figure 1.2 represents the overall 5G
system architecture (only the main components of the CN are represented).
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Figure 1.2: 5G network architecture

The rise of virtualization techniques in the past years has introduced a significant evolution in 5G.
Indeed, in 4G, the network infrastructure is hardware-centric, meaning that the functions must be
grouped and implemented in hardware devices, and the architecture aims to distribute the different
functions alongside the network to provide the best service quality. The common infrastructure must
adjust to the different services. In 5G, the network functions are implemented in software and can be
deployed with a much higher level of flexibility and optimization, and some functions can be dedicated
to specific services. The infrastructure can, therefore, be adjusted to the different services.

1.3.1 Core Network

On the CN’s side, different functions are required for network control and user traffic routing. There
are three main differences between the 4G and the 5G CN:

• The first is the virtualization of the 5G CN. The different functions are microservice software
applications. This increases the flexibility of the CN as it can be easily deployed and managed.

• The second one is that the different functions are split between the network control and the
user traffic handling functions, which is called Control and User Plane Separation (CUPS).
This separation is defined in the latest version of the 4G CN and is native in 5G. The CUPS
architecture enables sharing the control functions between the different services and dedicating
user plane functions to services. Therefore, the infrastructure keeps a consistent overview of the
network, but the user traffic functions can be adjusted to the different services.

• The last main evolution is that two connection types between the CNs elements have been
defined. The first is the reference point connection type, which is the natural evolution of the
4G CN, where each connection from one CN function to another has its interface. The second
one, which is new in 5G, is the service-based architecture where all the network control functions
are connected to a single network and communicate with each other through REST API calls.
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The only user plane function is the User Plane Function (UPF). It is responsible for user traffic
forwarding from the data network to the UE and from the UE to the data network. The user traffic
is routed through the network from the gNodeB to the UPF using GPRS Tunneling Protocol User
plane (GTP-U) tunnels. In the downlink direction, UPF must be able to match incoming traffic from
the data network to the corresponding QoS flow. In uplink direction, UPF selects the data network
on which the packets from one QoS flow must be transmitted. Multiple UPFs can be deployed in a
single network to dedicate this function to one type of service and one data network.

The network control functions are:

• Access and Mobility Management Function (AMF): This is the entry point of the network for
all the UEs. It is responsible for:

– Network connection: setting up the Non Access Stratum (NAS) connection between the
UE and the AMF for future communications.

– Network registration: manage registration procedure with the UE. This procedure enables
the authentication of the UE to the network and the authentication of the network to the
UE.

– Mobility: manage the evolution of the UE within the network. This guarantees that the
network always knows where the UE is located for paging.

– Next Generation Application Protocol (NGAP) session management: it forwards the NAS
communications between the different components of the network and the UE. This is
specially used for Protocol Data Unit (PDU) session establishment, which is the tunnel
used by UEs for user traffic transfer.

• Authentication Server Function (AUSF): It is responsible for handling authentication procedure.
It acts as a proxy between the AMF and the Unified Data Management (UDM).

• UDM: It is responsible for managing all the user data and for generating the authentication
vectors used by the AUSF for network authentication.

• Unified Data Repository (UDR): It is the network’s database.

• Session Management Function (SMF): It is responsible for all the procedures related to user
traffic, including:

– UPF selection.

– IP address allocation.

– PDU session and GTP-U tunnel establishment and management. PDU session and GTP-
U tunnel are used for user traffic routing through the transport network until the data
network and is also responsible for QoS flows management.

• Policy Control Function (PCF): It is responsible for managing network policies like QoS, service
access etc. It interacts with the SMF and AMF for determining which services can be accessed
by UEs. Moreover, it is responsible for helping the network components to select the QoS
profiles that can be used by UEs.

• Network Slice Selection Function (NSSF): It is responsible for selecting the slice to which a UE
can access.

One principal aspect of the 5G CN is that it is the first telecommunication technology designed as
a cloud-native network. Indeed, the microservice architecture, as well as the service-based interface,
make that the functions can be managed like any other cloud application:

• The microservice architecture makes it easy to virtualize the CN into small software functions.
Those functions can be deployed and managed using cloud technologies like containers and
Kubernetes.
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• Moreover, the service-based interface enables to consider the communications between the dif-
ferent components of the CN to be like standard and widely used application-to-application
communications. Many network technologies already exist to support those communications.

Deploying the 5G CN as a cloud-native network brings two main assets. The first one is increased
flexibility and optimization. Indeed, it is much easier to manage a set of cloud applications than a
set of hardware devices (as it was the case for previous generations). The resources can be shared
between the different components of the network, which enables a better optimization. The second
main advantage is that it becomes possible to deploy on-the-fly dedicated 5G CN functions. This is
especially precious regarding the number of heterogeneous use-cases that the 5G network could serve:
dedicating CN instances to a given use-case and efficiently managing the associated resources is a
crucial point to make those use-cases possible.

1.3.2 Radio Access Network

The RAN is responsible for radio communications between UEs and gNodeB. Given that the 5G
network offers many functionalities, it requires a large set of protocols for transmitting user data and
control information.

1.3.2.1 RAN protocol stack

The 5G RAN protocol stack is not the same for control and user plane. Figure 1.3 represents the
protocol stack for the control plane whereas Figure 1.4 represents the protocol stack for user traffic.
It can be seen that on the UE’s and gNodeB’s sides, the protocol stack remain the same from PHY
to Packet Data Convergence Protocol (PDCP).
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Figure 1.3: 5G RAN protocol stack for network control

Table 1.1 introduces the different layers of the control and user plane protocol stacks.

1.3.2.2 Air interface

1.3.2.2.1 Operating bands: In 5G, the operating frequency range is split into two parts. The
first one, Frequency Range 1 (FR1), ranges from 410MHz to 7.125GHz, and the second one noted FR2
ranges from 24.25GHz to 52.6GHz. FR1 is the natural evolution of the frequency range defined for 4G,
whereas FR2 brings millimeter waves to 5G. Multiple bands are defined within those frequency ranges
and have a specific configuration (like operating frequency, multiplexing mode, or radio configuration).
The operating bands are defined in Tables 5.2-1, and 5.2-2 of TS38.104 [8].
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Layer Description

PHY The physical layer is responsible for radio communications from the gNodeB to the
UE. This includes channel coding, modulation mapping, Orthogonal Frequency
Division Multiplexing (OFDM) modulation, and signal transmission.

MAC The Medium Access Control (MAC) layer has two main purposes. The first one
is to ensure the data transmission is successful and to perform re-transmission if
it is not the case by implementing Hybrid Automatic Repeat Request (HARQ).
The second one is to multiplex and prioritize the different traffics that are being
transmitted.

RLC Radio Link Control (RLC) is responsible for segmentation and concatenation of
packets for transmission. It is also responsible for allocating the packets to one
or another radio bearer. A radio bearer is the equivalent of a tunnel on the radio
interface and can be dedicated to a specific QoS profile. Finally, depending on
the transmission mode, it can implement automatic repeat request for packet re-
transmissions in case of errors.

PDCP It is responsible for packets compression, ciphering and integrity protection.

RRC Radio Resource Control (RRC) is used by the gNodeB for PHY layer control. It
enables the configuration of the different PHY layer functionalities like beamform-
ing or Multiple Input Multiple Output (MIMO). Furthermore, RRC signaling is
used for different purposes like RRC connection management or paging.

NAS NAS is the protocol that handles the communications between the UE and the
AMF. It carries the user’s authentication, registration, and mobility management.

SDAP It is responsible for multiplexing the different QoS flows on the RAN side.

IP This is the actual user traffic. In 5G, other kinds of traffic are possible, like
ethernet or raw packets, but the most usual one remains IP.

Table 1.1: RAN protocol stack layers
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Figure 1.4: 5G RAN protocol stack for user traffic

1.3.2.2.2 OFDM: The 5G physical layer uses two resources, time and frequency bandwidth, to
transmit data from a transmitter to a receiver. In order to share the resources between the UEs, the
available time and bandwidth resources are split into small elements that are called Resource Element
(RE):

• In the frequency domain, 5G uses OFDM. The core concept of OFDM is to divide the available
bandwidth into sub-bandwidths that are orthogonal to each other and are called subcarriers.
Given that the subcarriers are orthogonal to each other, they can be placed contiguously so that
the spacing between subcarriers is also the width of a subcarrier. In OFDM systems, the width
of a subcarrier is denoted the Subcarrier Spacing (SCS). As a subcarrier can be small regarding
the cell’s bandwidth, the Resource Block (RB) is defined as a set of 12 contiguous subcarriers.

• In the time domain, the resources are split into radio frames, subframes, slots, and symbols. A
radio frame is 10ms long and comprises 10 subframes that are 1ms long. The OFDM symbol
is the smallest time-domain unit. Its duration is nearly equal to one period of a signal at the
SCS frequency. To avoid interference due to spread delay, all the OFDM symbols are added a
cyclic prefix in front of them, which is a copy of the end of the symbol. There are 14 symbols
per slot. Depending on the SCS, the number of slots per subframe varies.

The RE is defined as being one subcarrier over one OFDM symbol. The available resources can be
seen as a time and frequency grid (called OFDM grid), as presented in Figure 1.6. The RE is one
element of this grid.

1.3.2.2.3 Flexible numerology: In 4G, SCS is fixed to 15kHz whereas in 5G it can be either
15kHz, 30kHz, 60kHz, 120kHz or 240kHz. This is called flexible numerology and is the major evolution
of the radio interface from 4G to 5G. Each time the SCS is multiplied by two, the symbol duration is
divided by two. Different SCS and symbol duration can answer different use-cases, where higher SCS
can be used for short-delay communications and lower SCS can be used for standard communications.
Especially, low SCS narrows frequency selectivity and decreases computation complexity at the re-
ceiver. It can be used for UEs with energy consumption constraints. On the opposite, 5G systems
may be mainly deployed in Time Division Duplex (TDD), and the downlink to uplink switching can
be done at the slot level or even at the symbol level in case of dynamic scheduling. This means that
the shorter the symbol is (and thus, the higher the SCS), the finer the downlink to uplink switching
can be, and this is an optimization that can be done for low latency communications.

As different numerologies cannot be mixed on a single bandwidth, Bandwidth Part (BWP) has
been defined. A BWP is a sub-bandwidth of the cell bandwidth with a given SCS and symbol duration.
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Figure 1.5: Bandwidth Parts, Resource Blocks and subcarrier Spacing

Each UE can be allocated to one or more BWP, but can be active on only one BWP simultaneously.
UEs sharing the same constraints in terms of latency and energy consumption might share the same
BWP. Figure 1.5 and 1.6 represent BWPs and radio frame structure in FR1 bands (bands below
7.125Ghz). In those diagrams, there is three BWPs allocated to three verticals that are mMTC,
eMBB and uRLLC. For mMTC, a SCS of 15kHz is applied to narrow the frequency selectivity. For
uRLLC, the maximum SCS, 60kHz is applied and finally, for eMBB, an intermediate SCS of 30kHz is
applied. In the first one, we present the base station bandwidth which is split into the three BWPs.
Each BWP is composed of an integer number of RBs (i.e. 12 subcarriers). Given that the symbol
duration is inversely proportional to the SCS and that a slot is made of 14 symbols, each time the
SCS is mutliplied by two, the slot duration is divided by two. Thus, the slot duration is 1ms for 15kHz
SCS, 0.5ms for 30kHz and 0.25ms for 60kHz. In the second diagram, we present the REs of the three
BWPs. For the eMBB and mMTC BWPs, the DL/UL switching is long and set to 0.5ms. There is
1 slot (for eMBB) and 0.5 slot (for mMTC) of downlink data followed by a guard period and then
by uplink symbols on the next slot / half slot. Between eMBB and uRLLC BWPs, there is a guard
band as the DL/UL switching is not the same. This guard band prevents downlink symbols of the
two BWPs from interfering with uplink symbols of the other one. For the uRLLC BWP, the DL/UL
switching is as quick as possible as it is done at the symbol level. One downlink symbol is followed by
an uplink symbol, with a guard symbol between them. The guard symbol prevents downlink symbols
spread delay from interfering with uplink symbols.
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Figure 1.6: 5G radio frame structure

1.3.2.3 5G PHY layer channel coding

1.3.2.3.1 Polar codes: Polar codes in a channel coding technique introduced by Arikan in 2009
[9]. It is a simple method that consists in polarizing the channel. It is used in 5G for broadcast and
control channels: Broadcast Channel (BCH) and Downlink Control Information (DCI). The specificity
of this method is that it is theoretically possible to reach Shannon capacity. A good introduction to
this method is given in [10].

1.3.2.3.1.1 Polar transform: The first step toward channel polarization is polar transform.
It is a procedure that consists in multiplying an input bit sequence (noted c) of size N by a matrix
GN . This matrix is generated from a generator matrix G2:

G2 =

(

1 0
1 1

)

Where GN is the n-th Kronecker power of G2, with N = 2n. For example:

G4 =









1 ·

(

1 0
1 1

)

0 ·

(

1 0
1 1

)

1 ·

(

1 0
1 1

)

1 ·

(

1 0
1 1

)









=









1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1









The output of polar transform when N = 4 for message c ({c0, c1, c2, c3}) is c · G4 = {c0 + c1 +
c2 + c3, c1 + c3, c2 + c3, c3}. The sum is made modulo 2, which corresponds to a XOR operation.

This polar transform operation can be done for any N = 2n.
As represented in Figure 1.7, polar transform can also be understood as a binary tree. The leaves

of the tree correspond to the input message c and at each parent node (noted p), the two child nodes
(noted nl for left child and nr for right child) are combined such as p = [nl + nr, nr]. The output of
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Figure 1.7: Polar transform binary tree representation

the polar transform is obtained at the root node (node which does not have a parent). The depth of
one node is the layer in the binary tree, starting from the root node. Figure 1.7 shows the binary tree
representation of polar transform operation for N = 4. It can be seen that the combination obtained
at the root node is equal to c ·G4. Binary tree representation is only a graphical way of understanding
the polar transform, but it is critical to understand the decoding algorithm.

1.3.2.3.1.2 Channel polarization: Channel polarization comes from the statement that
when applying polar transform, the channel is polarized. Indeed, when decoding the received channel
after going through a noisy channel, it is observed that some bits are nearly never well decoded and
others are nearly always decoded. After polar transform, the channel becomes either very bad or very
good.

An intuitive way to explain the polarization is that it can be observed in the previous paragraph
that when applying polar transform, some input bits are transmitted with much higher energy than
others. In the previous example, bit 3 is transmitted with 4 times more energy than bit 0 as c3 is
present in the 4 output bits of polar transform, whereas bit c0 is only present once.

It is possible to determine what are the positions where the channel will become very bad and what
are the positions where the it will become very good. This can be done by performing simulations
with different kinds of radio channels. For a given sequence of N bits, the most reliable and less
reliable positions can be determined based on those simulations. When the input sequence size is N ,
all the input bits are placed in positions where the channel will become very good but also in positions
where the it becomes very bad.

The concept of polar coding is to use polar transform for input sequences whose size (noted K)
is smaller than N . Therefore, the K input bits can be placed in the most reliable positions of the
channel, and the other N −K bits are frozen (set to 0). Therefore, the reliability of the transmission
depends on the ratio between N and K.

In 5G, polar coding is defined in TS28.212 section 5.3.1 [11] and the array of the most reliable
positions is given in Table 5.3.1.2-1 for an input bit sequence of size N = 1024 (which is the maximum
input size): the bits positions are sorted in order of reliability. The array of the most reliable bit for
other sequence lengths can be deduced from this table.

1.3.2.3.2 Low Density Parity Check: Low Density Parity Check (LDPC) is a method that
assigns a set of parity check bits to an input sequence to strengthen the input bit sequence. The
parity bits can be used at the receiver’s side to recover the initial input sequence. The output of the
LDPC coder contains the systematic bits and the computed parity bits. It was first introduced in
1960 by Gallager [12]. In 5G, LDPC are used for encoding the data channels that are the Downlink
Shared Channel (DL-SCH) and Uplink Shared Channel (UL-SCH).

1.3.2.3.2.1 Parity check concept: A parity bit is a bit which is computed depending on a
sequence of input bits so that the final sequence (input and parity bits) is even. For example, if the
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input size if 3 and there is one parity bit, then [0, 1, 0] would be given a parity bit 1 (as 0+1+0+1 = 0
(mod 2)) and [0, 1, 1] would be given a parity bit 0 (as 0 + 1 + 1 + 0 = 0 (mod 2)).
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Figure 1.8: Tanner graph and associated parity check matrix

Given an input sequence of size K and a number of output bits N , N−K parity bits are computed.
The linkage between input bits and parity bits (i.e., which parity bit depends on which input bits)
is a specific research topic as the way the association is made impacts the performances in terms of
robustness and complexity. The ratio K/N is called the code rate. Figure 1.8 represents a possible
association between input bits and parity bits with K = 4 and N = 8 (i.e. there is 4 parity bits,
i.e. code rate is 0.5). The 4 first black bits are input bits, and the last 4 colored bits are the parity
ones. Check nodes represent the link between input and parity bits: the sum of all the bits connected
to a single check node must equal 0. For example, in Figure 1.8, the first check node requires that
input bits 1 and 3 and parity bits 0 and 3 are even. The graph is called the Tanner graph, and the
associated matrix (noted H) is called the parity check matrix. The matrix lines represent the check
nodes, and the columns represent the bits (input and parity bits). Hi,j = 1 when bit j is connected
to check node i. The parity bits w are generated such that H · (c, w)T = 0, with c being the input
bits sequence.

1.3.2.3.2.2 Low density parity check concept: LDPC is a specific kind of parity check
coding method. Its specificity resides in the way the parity check matrix is built. Indeed, a naive way
to increase the robustness of parity-check codes is to increase the density of the edges in the Tanner
graph (by increasing the number of relations between the input bits and parity bits). The main issue
is that the higher the density of the graph, the highest the complexity.

The major improvement of LDPC compared to parity check coding is its capability to provide
high robustness while keeping the number of edges in the graph low. It provides a very good balance
between robustness and complexity. This is achieved by building the parity check matrix with two
main ideas:

• The matrix is random (or pseudo-random) so that the relations between input bits and parity
bits do not follow a pattern. As the number of edges is low, there are a few ones in the matrix,
which is, therefore, a sparse matrix.

• In usual parity-check codes, the parity bits are not interconnected whereas, in LDPC, the parity
bits are interconnected with a low number of relations.

A good introduction to LDPC codes is given in [13].

1.3.2.3.2.3 5G LDPC: As detailed in TS38.212 section 5.3.2, the method used in 5G is
derived from the basic LDPC concept and is called Quasi-Cyclic LDPC (QC-LDPC). This method
is slightly different from the usual LDPC. Indeed, the bits (both input and parity bits) are grouped
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(the size of a group is called the lifting size and is noted Zc). The parity check matrix is built based
on Zc ×Zc zeros sub-matrices and Zc ×Zc right-shifted identity sub-matrices. The cyclic term refers
to the shifted identity sub-matrices where the association between bits and check nodes is sequential
(bit 0 is only connected check node 0, bit 1 to check node 1, etc) with an initial offset due to the
shift. 5G LDPC is ”quasi-cyclic” as the parity check matrix is not only composed of shifted identity
sub-matrices but also of zeros sub-matrices.

Given that the receiver must be able to decode the channel, both transmitter and receiver must
use the same parity check matrix defined in the standard. The generation of this matrix depends on
K, N , Zc, and the Base Graph (BG) to be used. Depending on the transport block size and code
rate, two different BGs are used in 5G. For high transport block size and high code rates, BG 1 is
used, otherwise BG 2 is used. H is not defined as-is but is generated using a two steps procedure:

• First, a primary matrix called HBG is built based on the BG and the set index (noted iLS),
which depends on Zc. HBG is a m × n (46 × 68 for BG 1 and 42 × 52 for BG 2) matrix and
is generated using Tables 5.3.2-2 (for BG 1) and 5.3.2-3 (for BG 2) from TS38.212. First, the
matrix is initialized with −1. Then, for each row i and column j present in the tables, the
associated HBG(i, j) is set to the value corresponding to the iLS parameter.

• Then, H matrix can be derived from HBG. First, elements HBG(i, j) = −1 are replaced by
Zc × Zc zeros sub-matrices and elements with HBG(i, j) ≥ 0 by a Zc × Zc identity matrix right
shifted HBG(i, j) times.

Let us consider a toy example where Zc = 3 and HBG is given by:

HBG =

(

0 2 −1
1 −1 2

)

The associated parity check matrix H is :

H =

(

IZc I
(−2)
Zc

0Zc

I
(−1)
Zc

0Zc I
(−2)
Zc

)

Where In and 0n are the identity matrix and zero matrix of size n. A(s) is the matrix A left shifted
s times (and thus A(−s) the matrix A right shifted s times).

Therefore, H is given by:

H =





















1 0 0
0 1 0
0 0 1









0 0 1
1 0 0
0 1 0









0 0 0
0 0 0
0 0 0









0 1 0
0 0 1
1 0 0









0 0 0
0 0 0
0 0 0









0 0 1
1 0 0
0 1 0





















=

















1 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0
0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0

















1.3.3 QoS management

The network’s QoS management is a fundamental aspect of the 5G system to support the variety of
terminals that might access the network. In 5G NR, the traffic is routed based on the PDU session.
The PDU session is an end-to-end concept as it goes from the UE to the UPF. Within a PDU session,
the user traffic can be either IP, ethernet, or even custom datagrams traffic to fit specific customer’s
requirements. One PDU session is associated with a single UPF and therefore defines a gateway from
the mobile network towards the data network. Within a PDU session, multiple QoS profiles can be
multiplexed depending on the services the UE is accessing.

1.3.3.1 CN

On the CN side, the PDU session is implemented by associating one PDU session with one GTP-U
tunnel, which goes from the gNodeB to the UPF. Given that multiple QoS profiles can be multiplexed
within a single PDU session, the components involved in GTP-U tunnel routing must be able to
support different QoS profiles.
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1.3.3.2 RAN

On the RAN side, the QoS is managed at the different levels of the stack:

• First the Service Data Adaptation Protocol (SDAP) protocol is responsible for mapping packets
from one PDU session to the corresponding QoS flow. Each QoS flow is tagged with a 5G
QoS Identifier (5QI) which gives the associated constraints. 5QI are defined in Table 5.7.4-1 of
TS23.501 [6].

• Then, the RLC layer associates QoS flows to Data Radio Bearers (DRB). Multiple QoS flows
can be mapped onto the same DRB. After multiplexing flows onto a DRB, they cannot be
distinguished by the lower layers, and therefore, mapping different QoS flows onto a single DRB
can only be done if the flows have close requirements. Especially, Guaranteed Bit Rate (GBR)
and non-GBR traffics should not be mapped onto the same DRB.

• Finally, the MAC layer allocates the resources and configures the transport blocks based on the
DRB of the RLC Service Data Unit (SDU). For example, for sensitive DRB, a low modulation
with a high code rate can be chosen, but it requires more radio resources for the same data.
Multiple RLC SDUs with different DRB can be multiplexed in a single transport block if the
constraints associated with each DRB can be met together.

It can be seen that the RLC layer is critical for QoS management. Indeed, this layer is responsible
for informing the MAC layer about how to handle the traffic on the radio link by assigning a DRB to
each QoS flow. The higher the number of DRB, the higher the complexity at the MAC layer, but the
finer the QoS management and reversely. Therefore, the RLC must find the best trade-off between
complexity and QoS management granularity.
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Figure 1.9: QoS management in 5G

Figure 1.9 represents how QoS flows are multiplexed and managed in 5G.

1.3.4 Deployment schemes

Given that moving from one generation to the next is a highly challenging process, and to smooth
the expenses along time, the 5G network can be deployed in two modes that are Standalone (SA)
and Non Standalone (NSA). In 5G SA, the 5G RAN communicates with a 5G CN whereas in NSA,
it is possible to connect a 5G RAN to a 4G CN or reciprocally a 4G RAN to a 5G CN. Even if
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the long-term objective is to have all the 5G networks deployed in SA, using the NSA deployment
scheme with the 5G RAN and 4G CN is a first way to deploy the 5G network, while still leveraging
4G infrastructure. The interest of such deployment is that 5G base stations can be deployed, and the
operator can propose increased performances to its customers and use new frequency bands without
considering the migration of the CN. When the operator is ready, it can finally move from 5G NSA
to SA by deploying the 5G CN.

5G NSA is called non-standalone as it cannot operate without a 4G cell: the 4G cell is responsible
for network control, and the 5G cell carries user traffic. Therefore, UEs start the cell search, and
registration procedure on a 4G cell, and the CN decides to move the UE from the 4G base-station to
the 5G base-station for user traffic. 5G NSA is also depicted as Dual Connectivity with New Radio
(DCNR).

Different options have been introduced for 5G NSA among which options 3 and 3a are the most
likely to be used for 4G to 5G evolution. In both cases, the control traffic goes from the UE to the
4G eNodeB and from the eNodeB to the 4G CN. The difference is for the user traffic. As represented
in Figure 1.10, in option 3, user traffic goes from the UE to the gNodeB and reaches the CN through
the 4G eNodeB. On the other side, as represented in Figure 1.11, in option 3a the user traffic goes
directly from the gNodeB to the CN. In both cases, the UE keeps a user traffic link with the 4G
eNodeB, even if the network will prioritize the 5G cell for user traffic.
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Figure 1.10: 5G NSA option 3
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Figure 1.11: 5G NSA option 3a
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Figure 1.12: 5G SA

When the operator has deployed the 5G CN, the 5G RAN can be operated in SA mode, as
represented in Figure 1.12.
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1.4 5G RAN functional split

1.4.1 General concept

The introduction of the functional split is a significant evolution of the RAN from 4G to 5G. It consists
of dis-aggregating the RAN functions over the network. Then, the functions are grouped and deployed
on different devices connected through standardized interfaces. This new paradigm emerges in the
context of the network’s virtualization, where all the functions are moved from hardware to software
implementations. This concept is also depicted as open-RAN. While functional split refers to the dis-
aggregation of the RAN layers and is defined in TR38.801 section 11.1 [14], open-RAN refers to the
implementation aspects of the dis-aggregated RAN like the deployment, monitoring, and interfaces.
The principal motivations for functional split and open-RAN are the flexibility, the optimization, the
centralization and the ability to deploy multi-vendors RAN stacks.
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Figure 1.13: Dis-aggregated RAN architecture

Figure 1.13 represents the architecture of a dis-aggregated RAN.
The RAN functions are grouped and placed in the Centralized Unit (CU), Distributed Unit (DU)

and Radio Unit (RU) which represent three levels of centralization. The CU is the most centralized
and might be deployed in the cloud, whereas the DU is the intermediate between the cell’s site and
the CU. Finally, the RU is the radio unit that contains the lowest layers. It is directly connected to
the antenna system and must therefore be onsite.

The Management and Orchestration (MANO) is a component that is responsible for managing and
orchestrating the different components. Depending on a set of constraints and available resources,
it decides where to place the CU and DU and how to split the functions. This is not a real-time
function.

Finally, the RAN Intelligent Controler (RIC) is the component that contains the network’s intelli-
gence and protected algorithms. Indeed, the CU, DU and RU contain the different standardized func-
tions but the RAN also contain manufacturer-specific functions and algorithms that will be deployed
in the RIC. For example, the MAC layer scheduler, the handover algorithm, the radio neighborhood
and UE’s context and session management functions can be placed into the RIC. In a more general
perspective, the RIC contains functions and APIs enabling better control of the network elements.
This includes network functions like the one listed above and new ones like AI-powered network mon-
itoring. Furthermore, in Figure 1.13, there is only one RIC but depending on the constraints and
placement, there can be multiple RICs collocated with the CU and DU. Given that it might contain
some highly critical functions, the RIC is a near real-time component.

The CU can be split into two different components: the CU-CP and CU-UP. The first one con-
tains the functions for control plane processing, and the second contains the functions for user plane
processing.

Therefore, open-RAN is the meeting point between the network’s virtualization and the control
and user plane separation. As a result, it can be leveraged to bring to the RAN the flexibility already
existing at the CN’s side. This flexibility is a crucial asset to support the heterogeneous services and
associated tunnels implied by the various terminals connected in 5G.
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1.4.2 Possible splits

A fundamental question in open-RAN is how the functions are grouped and where to split between the
CU, DU and RU. This is a critical aspect as this has a huge impact on the underlying network. Indeed,
the lowest the split, the largest the required bandwidth, and the highest the latency constraints. On
the other side, the lowest the split, the highest the flexibility and optimization capabilities. A very
good global picture of the possible splits and the associated constraints is given in [15]. Figure 1.14
gives an abstraction of this poster, where the network capacity is given for a 100MHz cell, with
256-QAM modulation, 8 layers and 32 antennas.

!"#$ $"%$ &'()*+,% ,-.*+,% &'()*/#% ,-.*/#% &'()*$&0 ,-.*$&0

! " # $ % & '

+1

()*+,-.

/0123.

/0-2451.5647-30,4-.

829:,32;.-3047*63-.

42-<63=.50*05,-1.

>?/@A/.,4.!"#$%B63.0.

!CC&'(%")*+D

!C.,$ !C.,$ !E%.,$ F!CC.!" F!CC.!" F!CC.!" F!CC.!" F!CC.!"

#.@.$ #.@.$ #.@.$ $E%.@.%E" 'E!.@.%E& 'E!.@.%E& !%E".@.GE( !%'E#.@.!%'E#

Figure 1.14: Open-RAN split options and constraints

1.4.3 Enhanced Common Public Radio Interface

The definition of an interface between the different components of an open-RAN base station is
fundamental. The critical trade-off of this interface is to be flexible enough to support the different
splits while being well-standardized to enable multi-vendors base stations. Ericsson, Huawei, NEC,
and Nokia have addressed this issue by defining enhanced Common Public Radio Interface (eCPRI),
which is defined in [1]. The eCPRI interface is multi-vendor and supports the different possible splits.

Figure 1.15 represents the eCPRI protocol stack where the left part represents the eCPRI protocol
itself, and the right part represents other protocols that can be used in the context of open-RAN.

Two main deployment schemes exist for the user plane:

• eCPRI over ethernet: the user plane messages are directly encapsulated in ethernet frames.

• eCPRI over IP: the messages are encapsulated in UDP packets.

Different message types are defined for the eCPRI user plane. The three major types are:

• In-phase Quadrature (IQ) Data: This type of user plane message carries IQ samples. Depending
on the split, the samples can be either in the time or frequency domain. For example, it can
transfer IQ samples between the channel mapper and the inverse Fast Fourier Transform (iFFT).
The header transfers information about the sequence to which belongs a message (when the
sequence has been split over multiple messages) and an identifier that enables to distinguish
multiple streams (like multiple users, MIMO layers etc). The user data contains the IQ samples
to be transmitted.

• Bit sequence: this is used to transfer user plane data for all the splits above the modulation
(i.e., split 7-3). For example, it can be used by the MAC layer to transfer transport blocks to
the PHY layer. Once again, the header contains the sequence number and a stream identifier,
and the user data contains the bits to be transmitted.

• Real-Time Control Data: this is used to carry internal base-station control data. It can be either
metadata to be transferred with the bit sequence or IQ samples, or it can be data for sharing
information from one layer to another. For example, it can be used to inform the MAC layer
that a new QoS profile is being used on the network. This message is not standardized, meaning
the content and format may vary from vendor to vendor. The header contains an identifier that
refers to the kind of control message being transmitted and a sequence number, and the user
data contains the control payload.
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Figure 1.15: eCPRI protocol stack from [1] Figure 6

1.5 Software Defined Radio

Choosing a split among the possible ones depends on the use case and constraints. For example,
in operator networks, splits 7.2x and 3 are likely to be used as it provides a good balance between
centralization, transport network constraints, and resource sharing.

For the sake of this work, another use case is considered: lab experimentation and prototyping.
Here are the constraints and objectives of this use case:

• The purpose is to build software prototypes of RAN stack (L1, L2, and L3).

• The number of base stations to be deployed on the network and the deployment area are much
smaller than the operators’ network and can even be reduced to one cell deployed in a testing
room.

• This prototype should support RAN splitting.

It is decided that the two main challenges must be addressed one after the other. The first is to
build a 5G base station, and the second one is to split this base station to create an open-RAN one.

Therefore, for the first developments, which consist in implementing a 5G base station, it is decided
not to implement the functional split within the base-station protocol stack and split 8 is the easiest
option in this case. It enables building the whole base station in one software while not considering
functional split issues as a first step. Moreover, all the functions can be implemented in software to
better disseminate the knowledge by open-sourcing the code.

The second challenge, which will consist in splitting the base station, can be anticipated by
designing a base-station architecture that can be easily split.

SDR is one way to implement split 8. This is a new Radio Frequency (RF) paradigm where all the
signal processing functions are implemented in software. The baseband signal is transmitted to and
from the RF device, which carries frequency transposition, digital to analog conversion, and signal
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transmission. SDR is a great option for experimentation as it can support all the radio technologies
(from 2G to 5G). Moreover, given that software implementation is usually easier than hardware
implementation, SDR enables quicker development and iterations even for the lowest functions of the
stack.

Nevertheless, SDR is facing two main bottlenecks. The first one is that software implementations
are likely to provide less good performances than hardware ones. Furthermore, it implies the highest
constraints on the underlying transport network. Therefore, split 8 and SDR appears to be a great
option for building prototypes and cloud-RAN deployments but might not fit all the market segments.

1.6 Conclusion

In this chapter, an introduction to the 5G system has been given. First, the overall system’s architec-
ture was detailed. Then, the 5G RAN was described, including the protocol stack, the air interface,
the channel coding techniques, and QoS management. Finally, an introduction to RAN splitting was
given. It is established that SDR is the technology that will be used in this work to implement the
physical layer. This technology implements the open-RAN split 8, implying the highest constraints
on the link between the RF device and the base station. However, it provides the highest degree
of flexibility and enables a full-software implementation of the physical layer, which is great in the
context of network slicing and RAN splitting.
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5G PHY layer implementation
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Introduction

The 5G system introduces many new technologies, from the CN to the RAN. Those technologies
are critical enablers for various 5G use cases such as industry 4.0, augmented reality, and smart
cities. Virtualization is the fundamental building block for such new technologies. On the CN side,
virtualization methods are mature as they mostly come from the data center and cloud world. On
the other side, virtualization must be adapted to new RAN constraints (like network slicing and RAN
splitting).

In this context, 5G RAN research and education frameworks are required. Such frameworks should
enable one to deeply understand the technology by clearly exposing the key components and clarifying
the threshold between standard definitions and manufacturers’ implementations. Moreover, such a
research framework should also enable one to develop new RAN technologies, algorithms, and methods
by having a modular architecture and providing APIs. Finally, its modular architecture should also
ease RAN virtualization.

In this part, free5GRAN, an open-source 5G physical layer, is introduced. It is designed to be an
easy-to-understand, easy-to-use, and highly modular framework. It can be used by qualified engineers
and researchers for new technology testing and developments and by beginners who will go through the
main components of a 5G RAN stack. For people willing to test and develop new RAN technologies,
free5GRAN provides a modular architecture and a rich library, and the existing code-base can easily
be leveraged to build new projects and experiments. Moreover, for beginners willing to have a clear
view of the RAN architecture and understand the development trade-offs, free5GRAN exposes the key
components of a RAN stack and provides an implementation of the system from scratch. Other open-
source projects such as srsLTE [16] and OpenAirInterface [17] already exist but are mostly designed
to deploy efficient testbeds. free5GRAN aims at developing a software and documentation framework
to understand the 5G system, like the approach used in the Linux From Scratch project [18].

Beyond prototyping and knowledge dissemination, the modularity of this physical layer intends to
ease the customization of the different functions for the implementation of network slicing. Further-
more, its software architecture is designed to envision the use of free5GRAN in open-RAN deploy-
ments.

This part is split in four chapters. Chapters 2 and 3 give a global understanding of the physical
layer, its procedures and main functions. Chapter 4 reviews the different algorithms used by the PHY
layer. Finally, chapter 5 describes the free5GRAN code structure and software architecture.

Physical layer main procedures

The 5G PHY layer is a set of functions and algorithms used to implement procedures which enable
the gNodeB and the UE to communicate with each other.
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Figure 1.16: Procedures for UE’s cell selection and attachment
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Figure 1.16 represents the steps required for a UE to select and attach to a cell. The first step
is downlink time synchronization which enables the UE to decode information from the gNodeB.
The second step is to recover the network’s clock and extract basic cell information, which is done
through the reception of Master Information Block (MIB). Decoding System Information Block 1
(SIB1) enables the UE to extract the basic cell’s RRC configuration. Once those three steps are done,
the UE can determine whether or not it has to connect to the cell. If the cell is selected, the Random
Access (RA) process enables the UE to establish a radio connection with the gNodeB and perform
uplink synchronization. Finally, the gNodeB and the UE can exchange data.

Quick introduction to RRC protocol

The 5G physical layer processing is made according to many parameters. Those parameters are
configured by default or transmitted from the gNodeB to the UE. RRC protocol has been defined for
managing those parameters:

• It is first responsible for determining the best parameters to be used for a given UE at a given
time, depending on constraints like channel quality or traffic requirements.

• It is also responsible for configuring the UE with those parameters.

Figure 1.17 represents the overall RRC configuration process. First, the gNodeB’s RRC layer
computes the best configuration for the UE. Then the configuration is communicated to the UE using
the previous or default PHY configuration. When the UE’s RRC layer receives the new configuration,
it applies it to the UE PHY layer.
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Figure 1.17: RRC configuration process

The RRC protocol is standardized in TS38.213 [19], and a good introduction is given in [20]. In
this part, the core operation of the RRC protocol is not detailed, but some of the main parameters
are introduced. Moreover, it is often explained where they can be found and how they are initialized
to a default value.
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Chapter 2

Downlink synchronization procedures

Contribution

In this chapter, we give an overview of the downlink synchronization procedures. A review of the
Synchronization Signal Block (SSB) is proposed, and we explain how Primary Synchronization Signal
(PSS) and Secondary Synchronization Signal (SSS) are used to determine the symbols borders. Then,
we detail the broadcasting of the MIB, which contains the basic cell’s information. First, we describe
the MIB payload and fields, then we explain how it is encoded and placed into the SSB, and finally, we
detail how UEs use it to recover the network’s timing information. The contribution of this chapter is
to expose some key information acquired during the implementation of the 5G physical layer in order
to complete the detailed information contained in the standard. It gives a global understanding of
the procedures and references to the standard, where further details can be found.

2.1 Introduction

Downlink synchronization between the gNodeB and UEs is the first mechanism that must be imple-
mented at the UEs’ side. It is required because the different components of the cell do not have the
same internal clock. Therefore, downlink synchronization is required to synchronize the internal clock
of UEs with that of gNodeB.

First, UEs must determine what are the symbols, slots, and frames borders in order to recover the
OFDM grid which enables UEs to extract and decode data. Furthermore, in Orthogonal Frequency
Division Multiple Access (OFDMA) systems, the resources are allocated in time and frequency, and
synchronization also enables UEs to recover the network’s timing before receiving resources allocations.
Finally, as the internal clock of the gNodeB and the UE are different, the transmission frequency of the
two components might be slightly different, and synchronization is used to determine and compensate
the frequency offset between the gNodeB and the UE.

This chapter introduces the downlink synchronization procedure. The first section investigates
how UEs can determine symbols borders to recover OFDM grid. The second section details how the
broadcasting of basic cell information is made and how UEs use it to recover the network’s clock.

2.2 Global objective and method

Downlink synchronization between the gNodeB and the UE is two-fold. The first step, called symbol
synchronization, enables the UE to recover the symbols’ borders. After symbol synchronization, the
UE can recover the OFDM grid in order to extract and decode data but is not yet fully synchronized
with the cell as the network’s clock, given by the current Sequence Frame Number (SFN) and slot
ID, and radio frames start have not been determined. The second step is radio frame synchronization
and enables the UE to determine the radio frames and slots borders and recover the network’s time.

Figure 2.1 represents the different signals, variables, and parameters involved in the downlink
synchronization process.
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Figure 2.1: Synchronization signals representation for SSB pattern C with an operating band between 3GHz and
7.125GHz

The synchronization process relies on SSB, which is a block of 3 signals: PSS, SSS and Physical
Broadcast Channel (PBCH). SSB is transmitted periodically by the gNodeB and used by UEs for
initial, periodic and frequency synchronization. PSS and SSS are used for symbol synchronization.
The gNodeB uses PBCH to broadcast basic information to UEs called MIB. It is also used by UEs
for radio frames and slots synchronization and to recover the network’s time. Figure 2.2 represents
the SSB: PSS is located in the first SSB symbol, SSS is located in the third one, and PBCH is located
in the second, third and fourth symbols.

SSB is a four symbols by 240 subcarriers signal located anywhere in the cell’s bandwidth: its
center frequency is given by the Global Synchronization Channel Number (GSCN). There are five
SSB patterns (A, B, C, D, and E) that depend on the operating band and give the SSB’s SCS and
first symbol index.

The SSB transmission period can be either 5, 10, 20, 40, 80, 160ms, and the default value is
20ms. SSB can be transmitted several times in one period if beamforming is activated. The number
of possible iterations is noted Lmax, which corresponds to the maximum number of beams. Each SSB
iteration is sent on a specific beam, and the receiver can compare the received power of the different
beams. It is used by UEs to select the best beam. A SSB burst is the set of all the SSB iterations
per SSB period. The index of an SSB iteration within an SSB burst is noted iSSB ∈ [0, Lmax − 1].

Table 2.1 shows the different SSB cases. More information about the time and frequency position
of the four signals can be found in TS38.211 section 7.4.3. For example, for NR band n78 (band
between 3.3GHz and 3.8GHz), the SSB pattern is case C, the SCS is 30kHz, and Lmax is 8. In
this case, 8 beams will be activated in the cell and consequently there is 8 SSB transmissions per
radio frame. For example, the 7-th beam (associated with iSSB = 6) will be sent at symbol 44 of the
radio frame. This information is used by the UE to determine the start of the radio frame after SSB
decoding. In this case, the UE knows that the radio frame starts 44 OFDM symbols before the start
of the received SSB. The slot number within the frame and symbol number within the slot can be
derived from the symbol number: the slot number is ⌊44/14⌋ = 3, and the symbol number within the
slot is 44 (mod 14) = 2.

The PSS and SSS sequences are generated based on the Physical Cell ID (PCI) noted N cell
ID ∈
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Figure 2.2: Time and frequency position of SSB, from TS38.300, Figure 5.2.4-1 [2]

[0, 1007], from which two parameters N
(1)
ID ∈ [0, 335] and N

(2)
ID ∈ [0, 2] can be computed such as:

N cell
ID = 3 ·N

(1)
ID +N

(2)
ID

The PCI is used in order to avoid the cell’s confusion at the cell’s edges. The physical channels are
scrambled with a sequence computed from the PCI. The PCI is determined by the UE by searching

for the PSS (for N
(2)
ID ) and SSS (for N

(1)
ID ).

2.3 Symbol synchronization

The first step in downlink synchronization is symbol synchronization, which enables the UE to deter-
mine what are the symbols’ borders in the received signal. It uses PSS and SSS signals located into
the SSB.

2.3.1 Primary Synchronization Signal

PSS is a 127 subcarriers signal located from subcarrier 56 to 182 with respect to subcarrier 0 of the
SSB (which corresponds to GSCN − 120 subcarriers) in the first SSB symbol. PSS signal is a Binary
Phase Shift Keying (BPSK) sequence noted dpss(n) (n ∈ [0, 126]) which values are 1 and −1. Three

possible sequences can be generated depending on N
(2)
ID (N

(2)
ID ∈ [0, 2]). Each sequence is a cyclic

permutation of a single root sequence and the first sequence is the root sequence itself. Each sequence
element is placed in subcarriers 56 to 182 in the first SSB symbol. PSS sequence generation is defined
is appendix A.1.1 (from TS38.211 section 7.4.2.2.1 [21]).

PSS is a m-sequence, which is a specific kind of Linear Feedback Shift Register (LFSR). LFSR
are deterministic pseudo-random sequences among which m-sequences are a subset with the lowest
possible repetition. In 4G, Zadoff-Chu sequences were used for PSS and SSS but it is not highly robust
while facing frequency offset between the gNodeB and the UE, as described in [22]. In 5G, Zadoff-
Chu sequences are replaced by m-sequences which have better performances regarding frequency
offset while still having strong auto-correlation properties. Having three possible PSS sequences is a
trade-off between the number of cells using the same frequency without confusion and the frequency
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Pattern SCS

SSB First symbol index (f is the cell frequency) in frame

f ≤ 3GHz 3GHz < f ≤ 7.125GHz f > 7.125GHz

Lmax = 4 Lmax = 8 Lmax = 64

Case A 15kHz {2, 8, 16, 22} {2, 8, 16, 22, 30, 36, 44, 50}

Case B 30kHz {4, 8, 16, 20} {4, 8, 16, 20, 32, 36, 44, 48}

Case C 30kHz {2, 8, 16, 22} {2, 8, 16, 22, 30, 36, 44, 50}

Case D 120kHz

{4, 8, 16, 20}

+28× n

n ∈ {0, 1, 2, 3, 5, 6, 7, 8, 10,

11, 12, 13, 15, 16, 17, 18}

Case E 240kHz

{8, 12, 16, 20, 32, 36, 40, 44}

+56× n

n ∈ {0, 1, 2, 3, 5, 6, 7, 8}

Table 2.1: SSB cases and starting symbol in the frame for non-shared spectrum (from TS38.213 section 4.1 [5])

Parameter or variable Definition

iSSB Index of the SSB iteration

Lmax Maximum number of iterations per SSB burst

N cell
ID Cell’s identifier also called PCI

N
(1)
ID Parameter derived from N cell

ID for SSS generation

N
(2)
ID Parameter derived from N cell

ID for PSS generation

v Two Least Significant Bit (LSB)s of the SFN in BCH payload

Table 2.2: Parameters and variables used in section 2.3

offset robustness. It could be possible to increase the number of cells using the same frequency while
keeping strong frequency robustness by increasing the sequence size, but this would increase the search
complexity at the UE’s side.

2.3.2 Secondary Synchronization Signal

As PSS, SSS is a 127 subcarriers signal located from subcarrier 56 to 182 in the third SSB OFDM

symbol. SSS is a BPSK sequence noted dsss(n) (n ∈ [0, 126]) and depends on N
(1)
ID (N

(1)
ID ∈ [0, 335]).

dsss(n) is defined in A.1.2 (from TS38.211 7.4.2.3.1 [21]). SSS sequences are Gold sequences. A
Gold sequence is a combination of two m-sequences that have a specific characteristic: the number
of sequences with low mutual correlation is high compared to the sequence’s size. In 5G, there is 336
possible SSS sequences, whose length is 127.

2.3.3 Implementation

2.3.3.1 gNodeB

Given that the gNodeB is the time and frequency reference for the cell, it has to broadcast the SSB.

The base-station first computes N
(1)
ID and N

(2)
ID based on N cell

ID .
It then generates dpss and dsss and places them into the SSB. PBCH also has to be placed, but

this will be detailed in section 2.4, as this is not an initial synchronization requirement. The SSB’s
time and frequency position within the OFDM grid depends on GSCN and iSSB.
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2.3.3.2 UE

On the UE’s side, the cell search and synchronization procedure is detailed in TS38.213 section 4.1 [5].

The first step is to determine what are the SSB symbols borders and what is the N
(2)
ID value used

by the gNodeB. It is considered that the UE knows the cell’s GSCN, so that the UE can center its
receiving frequency with the center frequency of the SSB. If it were not the case, the synchronization
procedure would also have to be done in the frequency domain. A correlation is made between the
received signal and the three possible sequences to identify the right PSS sequence. Based on the
identified sequence, the following information is obtained:

• The N
(2)
ID parameter used by the gNodeB.

• The index of the first sample of the PSS, which corresponds to the highest correlation peak.
This information is used to determine the four SSB symbols’ borders (PSS, SSS and PBCH).

The second step determines the N
(1)
ID value by identifying the right SSS sequence. First, the

received SSS signal is located based on the synchronization index determined during PSS search. It
is then possible to correlate the 336 possible SSS sequences against the received SSS. The highest

correlation peak gives the gNodeB’s N
(1)
ID value and UE can finally compute the PCI.

On the UE’s side, the symbol synchronization process is done periodically in parallel to other PHY
functions. The periodicity of the time synchronization is implementation-specific. In free5GRAN, it
is done every 20ms.

In order to get rid of receiver and transmitter clock de-synchronization and mitigate the Doppler
effect, frequency tracking must be done. Different methods exist, and the one used in free5GRAN is
joint frame boundary and frequency offset estimation (detailed in [23]). This method detects a fine
frequency offset between −SCS/2 and +SCS/2. It is considered that the frequency offset is never
outside those bounds. Otherwise, other methods such as frequency domain frequency tracking should
be implemented. This method computes the frequency offset for each SSB symbol, noted f symb

offset and

the final frequency offset foffset is the average of the four offsets. Frequency offset f symb
offset between

transmitter and receiver can be deduced from dΦ and the SCS with the equation:

f symb
offset = SCS ·

dΦ

2 · π

Where dΦ is the phase offset between the cyclic prefix and the corresponding part of the symbol.
Further details and code implemented in free5GRAN for frequency offset computation are given in
appendix A.1.3. Finally, received signal s(k) can be corrected by applying the computed frequency
offset:

scorrected(k) = s(k) · e
−2·j·π·foffset·

k
Srate

Where Srate is the signal sampling rate, and k is the sample index in the received signal. This
frequency correction can be applied continuously by the UE to the received signal.

At the end of this procedure, the UE knows at which sample in the received signal the first SSB
symbol starts. It enables the UE to extract the time domain SSB signal from the received signal as
being the four symbols following the PSS synchronization index.

2.4 Radio frame synchronization and Master Information Block de-
coding

Once the symbol synchronization has been performed, the UE recovered the SSB symbols’ borders
and can extract and decode the PBCH. This is the second downlink synchronization procedure which
enables the UE to perform radio frames and slots synchronization. After this procedure, the UE is
fully synchronized with the cell, as the symbols, slots, and radio frames borders and the network’s
time are known. Furthermore, MIB payload, which is carried by the PBCH, contains information that
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Parameter Description

SFN Identifier of the current frame (i.e the network’s
time)

PDCCH configuration 8 bits information used to determine Coreset 0 and
Search Space 0: 4 MSB is the index of one of the
Table from TS 38.213 Table 13.1 to 13.4 and 4 LSB
is the index in TS 38.213 Table 13.11

Common SCS SCS used until UE uses a specific BWP, i.e. for
SIB1 transmission and RA procedure.

Cell barred Whether or not the cell is accessible

DMRS type A position Symbol index where Demodulation Reference Sig-
nal (DMRS) is located

k SSB Offset (in 15kHz subcarriers) between the first sub-
carrier of the SSB and the first subcarrier of the
nearest lower RB in the cell’s band.

Intra freq reselection Indicates where to search for other cell if cell is
barred

Table 2.3: MIB payload

enables the UE to find, extract and decode the SIB1, which is the first RRC configuration message
notified to the UE. The MIB is broadcasted from the gNodeB within the SSB using the PBCH.
PBCH is a specific channel dedicated to broadcasting as it is optimized for low-throughput but high
robustness communications. PBCH is the most robust 5G data channel so that it can be received
everywhere in the cell, even when radio conditions are awful.

The content of the MIB payload is detailed in Table 2.3.
The MIB payload is described in appendix A.2.1, from TS38.212 section 7.1.1 [11].
The total number of PBCH IQ samples to be placed in the SSB is 576. The subcarriers are from

subcarrier 0 to subcarrier 239 in the second and fourth SSB symbols, subcarrier 0 to 47 and subcarrier
192 to 239 in the third one. Within the 576 available positions, 144 are reserved for PBCH DMRS
transmission and 432 are occupied by the actual PBCH payload.

2.4.1 MIB payload processing functions

Once the MIB payload has been built, it has to be encoded in order to be transmitted. Figure 2.3
represents the processing functions performed by the gNodeB for encoding or by the UE for decoding
MIB payload. The different steps are detailed in appendix A.2.2. The channel mapping block contains
to the low-PHY functions like channel mapping, OFDM modulation and signal transmission.

2.4.2 Demodulation Reference Signal

DMRS is a signal sent with every physical channel. It is a reference signal that mitigates channel
impairments. This impairment is corrected by channel estimation and equalization. The method used
in free5GRAN is described in section 4.8.

Even if the DMRS generation depends on the physical channel, the signal is always of the same
type. It is a Quadrature Phase Shift Keying (QPSK) signal generated based on a pseudo-random
sequence. As for SSS, DMRS is following a Gold sequence. The sequence is initialized depending on
parameters like the PCI or the UE’s identifier.

For each physical channel in the uplink or downlink direction, the corresponding DMRS sequence
must be generated and placed together with the physical channel. The DMRS signal generation and
placement for PBCH is defined in TS38.211 sections 6.4.1 and 7.4.1 [21].
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Figure 2.3: MIB payload processing functions

2.4.3 Computing channels positions (TS38.211 section 7.4.3.1.3)

Before sending the computed PBCH and DMRS IQ samples to the channel mapper, it is required to
compute the position of each sample within the SSB.

• For the DMRS, the 144 IQ samples positions are within the PBCH resources, every four sub-
carriers, with an offset from subcarrier 0 of the SSB noted v = N cell

ID (mod 4). For example,
if N cell

ID = 250, then v = 2, so the first DMRS IQ sample will be placed at subcarrier 2 of the
second SSB symbol, and the next ones are placed every four subcarriers. Given that PBCH
is placed from subcarrier 0 to subcarrier 239 in the second and fourth SSB symbols, and from
subcarrier 0 to 47 and subcarrier 192 to 239 in the third one, the final DMRS positions are
{2, 6, 10, ..., 238} for the second and fourth SSB symbols and {2, 6, 10, ..., 46, 194, 198, ..., 238}
for the third one.

• The 432 PBCH IQ samples positions are the available positions within PBCH resources, after
placing the DMRS. With the same example (N cell

ID = 250), the PBCH positions are {0, 1, 3, 4, 5,
7, ..., 239} for the second and fourth SSB symbols and {0, 1, 3, 4, 5, 7, ..., 47, 192, 193, 195, ..., 239}
for the third one.

After computing the positions, PBCH and PBCH DMRS IQ samples can be transmitted.
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2.4.4 Implementation

2.4.4.1 gNodeB

The gNodeB MIB encoding implementation basically follows the processing steps defined in section
2.4.1.

2.4.4.2 UE

Before decoding the physical channel, channel estimation and equalization must be performed. This
is the case for all the physical channels. The channel estimation function is detailed in section 4.8.

Furthermore, given that MIB decoding is an initial cell search process, the UE is blind and does
not know much about the cell. The only information decoded at this level is N cell

ID . All the other
parameters used by the gNodeB are not known by the UE. UE must perform a blind search of those
parameters.

Extracting those parameters will enable the UE to perform radio frame synchronization and de-
termine the current cell’s SFN and slot ID. The parameters identified by the blind search process are
the following:

• iSSB (defined in section 2.2): the UE does not know the index of the current SSB iteration.
This information will enable it to know when slots and frames start. To find this information,
UE will loop over all the possible iSSB values. As this value is used for DMRS generation,
UE’s channel estimation and equalization process should only be successful for the right iSSB
value. Once the UE has determined what is the iSSB used by the gNodeB, it can determine
slots and frames borders by looking into Table 2.1. For example, let assume that in band n78
(SSB case C) the best beam received by the UE has iSSB = 6. The start of the current radio
frame is 44 symbols before the first symbol of the current SSB. As there is 14 symbols per slot,
the 44th symbol corresponds to symbol 2 of slot 3 (3 · 14 + 2 = 44). Radio frames and slots
synchronization have been done.

• The two LSBs of the SFN (Used in appendix A.2.2.2): as the UE does not know the network’s
clock yet, it cannot determine what are the LSBs of the SFN and thus cannot perform BCH
de-scrambling. It will have to test all the 4 possible two LSBs of the SFN. For each possible
values, the BCH payload is de-scrambled and the correct value is the one which equals the LSBs
value after de-scrambling. Once the correct value is determined, the correct SFN is decoded
and the UE has recovered the network’s time. The two LSBs of the SFN give a value between
0 and 3 which is noted v.

The UE procedure to extract and decode MIB is detailed in Algorithm 1.

2.5 Conclusion

In this chapter, an overview of the downlink synchronization mechanisms was given. The SSB was
introduced as the signals’ block, enabling UEs to determine symbols and frames borders and recover
the network’s clock. From now on, it is considered that UEs are synchronized with the cell so that they
can recover the cell’s OFDM grid, and their clock is set to the network’s clock. This synchronization
procedure is made periodically, and UEs do not lose the synchronization with the cell. After decoding
basic cell information, UEs are ready to extract and decode downlink data. They can perform uplink
synchronization and start transmitting uplink data.

47



CHAPTER 2. DOWNLINK SYNCHRONIZATION PROCEDURES

Algorithm 1 UE MIB extraction and decoding

1: ⊲ Recover SSB OFDM grid from SSB signal
2: SSB grid = ofdm demodulation(SSB signal)
3: ⊲ Compute channels positions
4: [pbch positions, dmrs positions] = compute pbch and dmrs positions(N cell

ID )
5: ⊲ Channel de-mapping
6: [pbch samples, dmrs samples] = channel demap(SSB grid, pbch positions, dmrs positions)
7: ⊲ Blind search iSSB: loop over all the possible values
8: for iSSB ∈ [0, Lmax − 1] do
9: ⊲ Compute corresponding DMRS sequence

10: dmrs sequence = compute dmrs sequence(iSSB, N
cell
ID )

11: ⊲ Perform channel estimation and equalization
12: coefficients = channel estimation(dmrs positions, dmrs samples, dmrs sequence)
13: pbch samples = channel equalization(pbch samples, pbch positions, coefficients)
14: ⊲ Decode PBCH (demodulation and de-scrambling)
15: bch bits = pbch decoding(pbch samples)
16: ⊲ Decode BCH (rate recovering, channel decoding, CRC validation)
17: [validated, scrambled mib bits] = bch decoding(bch bits)
18: ⊲ If CRC validated (i.e. iSSB has been found)
19: if validated then
20: ⊲ Get frames and slots borders from iSSB
21: [frames borders, slots borders] = extract frames and slots borders(iSSB)
22: ⊲ Blind search the 2 LSBs of the SFN (v): loop over all the possible values
23: for v ∈ [0, 3] do
24: ⊲ Decode MIB and retrieve SFN
25: mib bits = mib decoding(bch bits)
26: SFN = retrieve sfn from mib(mib bits)
27: ⊲ If SFN LSBs correspond to v, then v has been found
28: if v matches sfn(v, SFN) then
29: return(mib bits)
30: end if
31: end for
32: end if
33: end for
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Chapter 3

Downlink and uplink data
transmissions

Contribution

In this chapter, we explain how downlink transmissions are made. Furthermore, we explain the
uplink synchronization procedure and uplink data transmission mechanisms. Once again, the main
contribution is to expose the critical steps for implementing a physical layer and propose an abstract
of the standard. We also explain the way the different procedures and components interact with each
other.

3.1 Introduction

Once UEs are synchronized with the cell, data can be transmitted between the gNodeB and UEs.
However, the time and frequency domain resources are shared between the different UEs. Therefore, a
mechanism has to be implemented between the gNodeB and UEs so that the gNodeB can notify UEs
of the resources allocated for data transmissions. Furthermore, given that the different UEs are not in
the same location within the cell, uplink synchronization must be done so that the uplink transmissions
arrive simultaneously at the base station. The uplink synchronization process is integrated into the
RA procedure, performed by UEs to access the cell.

The first section of this chapter introduces the mechanism for resource allocation and data ex-
traction and decoding. The second section details how initial cell’s RRC configuration is broadcasted
by the gNodeB to UEs. Then, the third section explains how the RA procedure is made by UEs to
access the cell and perform uplink synchronization. Finally, the last section gives an overview of the
procedure for downlink and uplink data transmissions after RRC connection setup.

3.2 Data communication

This section details the overall operation of the 5G PHY downlink and uplink data communications.
Understanding those two procedures is a prerequisite to understand how to transmit and decode SIB1
for radio connection setup, and it is also used for all the future downlink and uplink data exchanges
between the gNodeB and the UE.

3.2.1 Overall concept

The data transmission in both directions involves two physical channels that are Physical Downlink
Control Channel (PDCCH) and Physical Downlink Shared Channel (PDSCH) for the downlink and
PDCCH and Physical Uplink Shared Channel (PUSCH) for the uplink. The PDSCH and PUSCH
are the channels that carry the data. The gNodeB uses the PDCCH to notify resource allocation for
a UE. The UE decodes the PDCCH to determine where PDSCH/PUSCH is located. Downlink data
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Term or notation Definition

CORESET RE grid where PDCCH can be placed

Search space PDCCH and CORESET configuration

NCORESET
RB Number of RBs in the Control Resource Set (CORESET)

NCORESET
symb Number of OFDM symbols in the CORESET

CCE Logical CORESET resource

REG Physical CORESET resource

REG bundle Physical CORESET resource

Aggregation level Number of CCEs used for PDCCH transmission

PDSCH mapping type Way PDSCH IQ samples are mapped to physical resources

dmrs−AdditionalPosition Number of additional symbols with DMRS

l0 First symbol with DMRS in resources allocation

ld Duration of the resources allocation

Table 3.1: Terms and notations used in section 3.2

reception and uplink data transmission (in a UE perspective) are consequently based on those three
channels:

• First, the UE continuously searches for PDCCH elements in specific areas of the OFDM grid.
Given that there are multiple UEs in the cell (and thus multiple potential PDCCH elements
to be transmitted simultaneously), the PDCCH location is defined by a search zone within the
OFDM grid. Inside this zone, multiple PDCCH elements can be sent. The different positions of
the possible PDCCH elements within the search zone are called PDCCH candidates. The shape
(time and frequency positions) of this search zone within the grid is given by an object called the
CORESET. The search space gives the periodicity and timing information of the CORESET.
To extract and decode PDCCH, the UE has to determine which CORESET and search space
must be used depending on the current procedure step. Then, it uses those information to locate
the different possible PDCCH candidates in the grid and tries to decode them. If any data is
transmitted from the gNodeB to the UE, decoding one of the candidates must be successful.
After extracting PDCCH, DCI can be extracted. DCI is the transport block payload that carries
information about the time and frequency position of the PDSCH or PUSCH. Furthermore,
DCI informs the UE about whether or not the current resources grant is for downlink or uplink
communication.

• If the DCI carries downlink grant, the UE uses it to find and extract PDSCH IQ samples in the
OFDM grid. It can then perform PDSCH and DL-SCH (transport channel carried by PDSCH)
decoding and extract the data transmitted by the gNodeB.

• Otherwise, if the DCI carries uplink resources grant, the UE can notify MAC layer that uplink
resources have been granted. The transport block is UL-SCH (transport channel carried by
PUSCH) and PUSCH encoded. Finally, the PUSCH IQ samples are placed in the OFDM grid
according to the resource allocation (given by the DCI), and the generated signal is transmitted
to the gNodeB. The gNodeB also uses the DCI to wait for uplink transmission and can recover
the transmitted uplink transport block by performing PUSCH and UL-SCH decoding.

Figure 3.1 represents the different channels and notations involved in the data transmission process.

3.2.2 DCI and PDCCH encoding

The first step to communicate between a gNodeB and a UE is to notify where the resources for
downlink or uplink data are located in the OFDM grid. That information is contained in a transport
payload called DCI, carried by the PDCCH. Depending on the configuration and current procedure,
there are different DCI payload formats. It will be discussed later as it depends on the procedure step
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Figure 3.1: Data transmission representation for a CORESET with 8 CCEs and no CCE-to-REG mapping

and the direction (downlink or uplink). Figure 3.2 represents the DCI and PDCCH encoding steps
for a generic payload. Given that the Cyclic Redundancy Check (CRC) attachment process is specific
for PDCCH, it is detailed below and the other processing steps are detailed in appendix A.3.1.

3.2.2.1 CRC masking and attachment (Transport channel processing - TS38.212 section
7.3.2)

CRC computation and validation follows the basic CRC process and is made using gCRC24C polynom,
as detailed in section 4.2. The specificity to PDCCH relies on Radio Network Temporary Identifier
(RNTI) masking. Indeed, after CRC computation, the CRC is scrambled with the RNTI. The RNTI
is the UE’s identifier within the cell. RNTI masking enables to identify to which UE the allocation
is intended. Indeed, as the PDCCH might be transmitted in shared resources, UEs need to be able
to distinguish what are the PDCCH/DCI elements dedicated to them. With RNTI masking, CRC
validation is successful only for the UE to which the element is intended. The 24 CRC bits are added
to the DCI payload.

3.2.2.2 PDCCH candidates position in CORESET

Before understanding how to place PDCCH IQ samples into the OFDM grid, it is critical to understand
how the possible PDCCH elements can be placed in the CORESET.

3.2.2.2.1 CORESET object: The CORESET object contains the following information:

• CORESET ID.

• Frequency domain resources: RBs allocated for the CORESET.

• Duration (in OFDM symbols).
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Figure 3.2: DCI payload processing steps

• CCE-to-REG mapping: Whether or not PDCCH IQ samples are placed contiguously in the
grid.

Frequency domain resources information gives both the number of RBs in the CORESET
(NCORESET

RB ) and the position of those RBs within the active BWP. The duration parameter, ex-
pressed in symbols, is noted NCORESET

symb . The CORESET can be considered as a REs sub-grid of

NCORESET
RB RBs by NCORESET

symb symbols.

3.2.2.2.2 Splitting the CORESET in groups of resources: The CORESET is first split
into Resource Element Group (REG). Unlike the RB (which is a frequency only information), the
REG is a time and frequency information: 1 REG is 1 RB over 1 OFDM symbol. For example, if
NCORESET

RB = 48 and NCORESET
symb = 1 or NCORESET

RB = 24 and NCORESET
symb = 2, then the number of

REGs in the CORESET is 48. Within the CORESET, REGs are numbered in time direction first
and frequency direction then. Figure 3.3 represents the different REGs for two different CORESET
configurations (48 RBs by 1 symbol CORESET on the left and 24 RBs by 2 symbols CORESET on
the right). The REG represents the unit of resource which can be used to place PDCCH elements.

Then, the CORESET is split into physical and logical resources:

• First, it is split in groups of physical resources that are called REG bundles. A REG bundle is
a group of 6 REGs. In some specific configurations, the number of REGs in a REG bundle can
vary.

• Furthermore, the CORESET is split in Control Channel Element (CCE). One CCE is also a set
of 6 REGs. However, CCEs are only representing an amount of logical resources whereas REG
bundles represent a physical resource and position in the CORESET.

For example, if NCORESET
RB = 48 and NCORESET

symb = 1 or NCORESET
RB = 24 and NCORESET

symb = 2,
then the CORESET contains 8 CCEs and REG bundles.
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Agreggation level Candidate CCEs

8 0 {0, 1, 2, 3, 4, 5, 6, 7}

4
0 {0, 1, 2, 3}

1 {4, 5, 6, 7}

2

0 {0, 1}

1 {2, 3}

2 {4, 5}

3 {6, 7}

1

0 {0}

1 {1}

2 {2}

3 {3}

4 {4}

5 {5}

6 {6}

7 {7}

Table 3.2: Candidates CORESET with 8 CCEs

First, the PDCCH elements are associated to logical resources (i.e., CCEs) which are then mapped
to physical resources (i.e., REG bundles). The mapping, which is defined in TS38.211 section 7.3.2.2
[21], is made so that CCE x is mapped onto REG bundle f(x). When CCE-to-REG mapping field
from CORESET object is set to false, the mapping is deactivated and f(x) = x.

Using logical and physical resources enables the base station to increase the frequency diversity
of the CORESET. Indeed, the number of elements in each CORESET occurrence depends on the
type of PDCCH elements carried by the CORESET. When the CORESET is likely not to be full,
CCE-to-REG mapping is activated so that the resources used in the CORESET are not grouped but
distributed over the whole CORESET to increase the frequency diversity. On the other side, when
the CORESET is likely to be full, it is not necessary to activate the mapping as frequency diversity
is already made by occupying all the available resources.

The number of CCEs that are used by a PDCCH element is given by the aggregation level. It
can be 1, 2, 4, 8 or 16 but it is limited to the number of CCEs in the CORESET. Using the same
example, with a CORESET containing 8 CCEs, the possible aggregation levels are 1, 2, 4 and 8.

As a result, several sets of CCEs can be selected for transmission of a PDCCH element with a
given aggregation level. The possible sets of CCEs are called candidates. Table 3.2 gives all the
aggregation levels and candidates for a case where there is 8 CCEs in the CORESET. For example, if
the aggregation level is 4 and the selected candidate is the second one (with index 1), then the CCEs
used for PDCCH transmission are {4, 5, 6, 7}.

3.2.2.2.3 Placing PDCCH elements in the CORESET: Therefore, the different PDCCH
elements are placed in the CORESET by selecting an aggregation level and candidate for each. That
information gives the CCEs that can be used for transmission. Finally, the CCEs are mapped to
REG bundles depending on the CCE-to-REG mapping field. Once the REG bundles to be used for
transmission are determined, the IQ samples of the PDCCH element can be placed in the REGs
belonging to the identified REG bundles.

For example, in Figure 3.1, there is three PDCCH elements to be placed in the CORESET. The
MAC layer decides to transmit element 1 with aggregation level 4, element 2 with aggregation level
2 and element 3 with aggregation level 1. This decision is based on the transmission importance and
UE’s channel quality. Indeed, the higher the aggregation level, the higher the number of IQ samples
that can be transmitted and, therefore, the higher the number of code bits and channel robustness.
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When the aggregation level is chosen, the candidate must be selected. In Figure 3.1, candidate 0
is chosen for the element 1, candidate 2 for element 2 and candidate 6 for element 3. The associated
CCEs are therefore {0, 1, 2, 3}, {4, 5} and {6} respectively. Other candidates could have been selected
such as candidate 1 for the first element, candidate 0 for the second one and candidate 2 for the third
one. The associated CCEs would have been {4, 5, 6, 7}, {0, 1} and {2} respectively. Given that the
CCE-to-REG mapping is deactivated in Figure 3.1, the REG bundles to be used for each PDCCH
element correspond to the selected CCEs.

3.2.2.3 Computing positions (Physical channel processing - TS38.211 section 7.3.2.2)

The placement of the PDCCH IQ samples into the OFDM grid is made in three steps. First, the
search space to be used has to be selected, then the IQ samples are placed into the CORESET, and
finally, the CORESET is placed itself into the OFDM grid using search space information.

3.2.2.3.1 Search Space: Search space is an object which defines the PDCCH configuration used
by the gNodeB. It is transmitted to the UE using RRC messages. Search space can be UE specific or
common to all the UEs.

As defined in TS38.331, search space contains that information:

• Search space ID.

• Monitoring slot periodicity and offset: PDCCH periodicity in slots and offset from the beginning
of a frame.

• Monitoring symbols within slot: symbols in the slot where the CORESET is located.

• Number of candidates: table representing the number of PDCCH candidates per aggregation
level.

• Search space type: whether or not the search space is common or UE specific and which format
of DCI payload can be placed (and found by the UE) in it.

• CORESET ID: Pointer to the CORESET that must be used.

Search space selection depends on DCI format that must transmitted. The data transmission of
PDCCH and PDSCH / PUSCH must be scheduled by the MAC layer according to the selected search
space configuration. The search space to be used for the transmission is selected and notified by the
MAC layer.

3.2.2.3.2 Placing the IQ samples into the CORESET: As defined in section 3.2.2.2, the
PDCCH IQ samples are placed in the CORESET by selecting an aggregation level and candidate.
Once the CCEs and corresponding REG bundles are identified, the IQ samples can be placed into
the CORESET. Within one REG (1 RB over 1 OFDM symbol), REs {1, 5, 9} are reserved for DMRS
transmission and the remaining ones ({0, 2, 3, 4, 6, 7, 8, 10, 11}) carry PDCCH payload. Given that
there is 9 PDCCH payload IQ samples per REG, the size of the PDCCH payload must be adjusted
at the rate matching level to be equal to 9 · 6 ·AL (where AL stands for aggregation level).

3.2.2.3.3 Placing the CORESET in the OFDM grid: The PDCCH IQ samples’ positions
within the OFDM grid can be computed when their positions within the CORESET are known. The
frequency-domain resources parameter of the CORESET defines its position within the grid. The
search space gives the time-domain position. It specifies the slots in the frame and symbols in slots
where PDCCH can be located. One usual configuration is to position the CORESET at the beginning
of each downlink slot (i.e. at symbols 0 and 1 of each slot for a 2 symbols CORESET). For example,
if the CORESET starts at the RB 2 within the BWP and is placed at the beginning of the slot, then
the positions within the slot OFDM grid are the same as the positions within the CORESET but
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with a subcarrier index shifted by 2 RBs (i.e. 24 REs). The shift offset in the time-domain is equal
to 0.

Once the PDCCH IQ samples are placed in the grid, the PDCCH DMRS IQ samples are placed
in positions {1, 5, 9} of every RB where there are PDCCH IQ samples. DMRS generation is detailed
in appendix A.3.1.5.

3.2.2.3.4 gNodeB: On the gNodeB’s side, the MAC layer gives the aggregation level, candidate
and DCI payload. Encoding and IQ samples placement is made according to the above sections.

3.2.2.3.5 UE: UEs continuously loop over all the monitoring occasions (defined as being one
CORESET occurrence) to search PDCCH elements. Both aggregation level and selected candidate
are unknown, and the UEs have to loop over all the possible aggregation levels and candidates to search
for PDCCH elements. This process is called PDCCH blind search. In some cases, RRC signaling can
reduce the number of possible aggregation levels and candidates to make the blind search easier.

For each aggregation level and candidate, the associated CCEs and corresponding REG bundles
are identified. The UE extracts the IQ samples from the OFDM grid based on the determined REG
bundles and performs PDCCH and DCI decoding. If CRC validation is successful, a DCI payload has
been found.

3.2.3 DL-SCH and PDSCH encoding

Once DCI is encoded and ready to be placed in the OFDM grid, DL-SCH must be encoded. Figure
3.5 represents the different DL-SCH/PDSCH processing steps.
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Those functions are detailed in appendix A.4.1. All the PDSCH functions dedicated to MIMO
and beamforming are omitted here as they were not investigated yet, and those technologies are not
supported in the current version of free5GRAN. Those functions are layer mapping (for MIMO),
antenna port mapping (for beamforming), and VRB-to-PRB mapping (for beamforming).

3.2.3.1 Computing PDSCH and PDSCH DMRS positions (TS38.211 section 7.3.1.5 and
7.4.1.1.2)

Computing channel positions depends on the RRC configuration. The DCI payload gives the set of
REs where PDSCH can be placed. PDSCH DMRS IQ samples are first placed within those REs.
PDSCH IQ samples are then placed, either by occupying all the remaining resources or by only
occupying all the REs of the symbols where there is no DMRS.

The first step is to compute PDSCH DMRS positions, which is detailed in TS38.211 section
7.4.1.1.2. Unlike PBCH and PDCCH, PDSCH DMRS is not placed at every symbol of the resource
allocation. The RRC configuration gives the symbols used for DMRS. There is at least one symbol
with PDSCH DMRS. The DMRS placement process relies on four parameters, given by the RRC
configuration:

• The first one is the PDSCH mapping type. It can be either type A or type B (defined in
TS38.214 section 5.1.2.1 [24]) and defines how the PDSCH and DMRS samples are placed in
the OFDM grid. In a default configuration, mapping type A is used.

• The second one is the duration of the allocation and noted ld. For mapping type A, it is defined
as being the number of symbols between the first symbol of the slot and the last symbol allocated
for PDSCH.

• The third one is the index of the first symbol where DMRS is transmitted. It is noted l0.

• The last one is dmrs−AdditionalPosition. By default, there is always one symbol with DMRS
per PDSCH transmission, and this parameter gives the number of additional symbols where
DMRS must be transmitted.

For example, for PDSCH mapping type A and if the configuration specifies that PDCCH occupies the
first symbol of each slot (i.e. symbol 0) and PDSCH all the other symbols (i.e. symbols [1, ..., 13]),
then ld = 14. If, moreover, it is considered that dmrs−AdditionalPosition is set to 2, then, according
to Table 7.4.1.1.2-3 of TS38.211, the symbols where DMRS samples are placed are {l0, 7, 11}. In this
case, l0 equals 2. DMRS IQ samples are positioned in every even subcarrier of the allocated RBs on
symbols {2, 7, 11}. The number of DMRS IQ samples to be placed is 3 · 6 = 18 per allocated RB
(there are 3 symbols with DMRS IQ samples placed every even subcarrier in each RB).

The first step to place the PDSCH IQ samples is to determine whether or not MIMO is activated.
Indeed, when MIMO is activated, the resources allocated for DMRS of one layer might not be used
on other layers to ensure DMRS transmission is the best possible. This configuration is given by the
number of CDM (Code Division Multiplexing) groups without data which gives the number of DMRS
resource groups reserved for DMRS transmission across all the layers.

Its default value is 2, which means that 2 DMRS resource groups are reserved on all the layers.
The first one is the one described above (i.e., all the even subcarriers of all the RBs on symbols with
DMRS), and the second one is its complement (i.e., all the odd subcarriers of all the RBs on symbols
with DMRS). Therefore, when the number of CDM groups without data is set to 2, all the REs of
symbols where there is DMRS are reserved, which means that PDSCH cannot be transmitted on
those symbols.

On the other side, when the number of CDM groups without data is 1, there is only one DMRS
resources group to be reserved (the first one, i.e., the even subcarriers of each RBs on symbols with
DMRS). It means that PDSCH samples can be positioned in every odd subcarrier of each RB on
symbols with DMRS. Furthermore, PDSCH can be placed in all the REs of all the symbols without
DMRS.
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The number of CDM groups without data is given in Tables 7.3.1.2.2-1 to 7.3.1.2.2-4A and depends
on the antenna port field of the DCI payload. More information about data and DMRS positioning
can be found in TS38.214 section 5.1.6.2.

3.2.4 UL-SCH and PUSCH encoding

In this chapter, it is considered that UL-SCH and PUSCH encoding follow the DL-SCH and PDSCH
encoding steps (defined in the above section 3.2.3). The process is defined in TS38.212 section 6.2
and TS38.211 section 6.3.1. This is not true for all the configurations, but it is the case for simple
PHY configurations. The main differences between DL-SCH / PDSCH and UL-SCH / PUSCH are:

• For UL-SCH, data and control can be multiplexed after rate matching, which avoids the trans-
mission of a supplementary Physical Uplink Control Channel (PUCCH). It is implemented in
free5GRAN but not detailed in this chapter. The core concept is to select a set of places in
the PUSCH channel used for Uplink Control Information (UCI) placement. UCI can be either
punctured onto UL-SCH if the number of UCI bits is small or multiplexed for a higher number
of UCI bits.

• In uplink, DFT-OFDM can be used instead of the usual downlink OFDM (described in section
2.9.2 of [25]). This process involves the transform precoding (DFT) of the PUSCH channel.

• Precoding can be applied to the PUSCH for beamforming purposes.

• DMRS location might be different but the process to determine the positions in the OFDM grid
is the same. It is detailed in TS38.211 section 6.4.1.1.

3.2.5 Implementation

3.2.5.1 gNodeB

On the gNodeB’s side, the first step when uplink or downlink data must be transmitted between
the UE and the gNodeB is to build the DCI payload according to the corresponding DCI format.
The gNodeB uses the information from the MAC layer like the resources grant and transmission
configuration (like modulation, code rate or mapping type) to build the DCI payload. The PDCCH
implementation follows the procedure detailed in section 3.2.2. The gNodeB’s L2 defines the search
space and the CORESET for each UE, the aggregation level and the candidate for a given PDCCH
and PDSCH / PUSCH transmission. That information is required before encoding the DCI as the
output size depends on the available resources. For example, if the aggregation level is 4, there is
4 ·6 ·9 = 216 (where 9 is the number of REs available for PDCCH payload in each RB and the 3 others
are used for DMRS) REs available for PDCCH samples, which means that the DCI encoding output
size is 432 (as PDCCH is QPSK modulated). The inputs of DCI encoding are: the RNTI for CRC
scrambling (UE’s identifier), search space and CORESET, the aggregation level, the corresponding
candidate and the DCI payload.

The PDSCH encoding and PUSCH decoding implementation follow the procedure detailed in
the previous section. Before starting encoding or decoding, the gNodeB needs to determine some
information:

• The PDSCH/PUSCH and DMRS configuration used to determine the allocation’s size and the
channel positions.

• The allocation’s size (number of REs allocated for PDSCH and DMRS). The allocation’s size
depends on the RBs and symbols allocated (which can be found in DCI payload) and on the
PDSCH and DMRS configuration (section 3.2.3.1 explains how those configurations impact the
allocation’s size).

• The Modulation and Coding Scheme (MCS) to be used (located in the DCI payload), which
enables to determine the code rate and the modulation order.
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• The UE’s RNTI.

All those information will be used for DL-SCH and PDSCH encoding and channel positions com-
putation. In the uplink direction, after DCI/PDCCH transmission, the gNodeB waits for the UE to
transmit the data and can then use the information from the DCI and the above configuration to
extract the IQ samples, perform PUSCH equalization and decoding and finally decode UL-SCH.

The global procedure for data transmission on the gNodeB side is thus:

• Receive information/command from MAC.

• Build DCI payload.

• Compute PDSCH/PUSCH information.

• For downlink communication, use the above information for DL-SCH encoding, PDSCH encod-
ing and PDSCH placement in the OFDM grid.

• For uplink communication, use it for computing the position of the PUSCH, wait for the UE to
actually transmit PUSCH and then extract and decode it.
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Figure 3.6: Downlink data transmission overview (gNodeB’s perspective)

Figure 3.6 represents the downlink data transmission procedure on the gNodeB’s side. The trans-
mission configuration field contains information like the MCS or the PDSCH configuration.

3.2.5.2 UE

On the UE’s side, the implementation of PDCCH decoding is based on blind search. The global process
is given by TS38.213 section 10.1. At each procedure step, the UE knows which search space might
use the gNodeB to transmit PDCCH. First, it determines the monitoring occasions using the search
space and the CORESET. Then, it performs a blind search to find possible PDCCH transmissions:
for each candidate of each aggregation level, it computes the corresponding IQ samples’ positions,
extracts them, and tries to decode PDCCH and DCI. If CRC validation is successful (after RNTI
de-masking), a PDCCH transmission has been found. UE loops over all the aggregation levels and
candidates as there might be multiple PDCCH elements within a single monitoring occasion.

For PDSCH decoding or PUSCH encoding, the first step on the UE’s side is to extract and
determine the parameters listed in the gNodeB’s section 3.2.5.1. Then, for downlink, it can perform
channel extraction and equalization, PDSCH decoding and DL-SCH decoding. The UE’s reception
of PDSCH is described in TS38.214 section 5.1. For uplink, it can perform UL-SCH and PUSCH
encoding, perform channel mapping, OFDM modulation and finally transmit the signal. The UE’s
transmission of PUSCH is detailed in TS38.213 section 6.1.

Algorithm 2 details the DCI blind search for one monitoring occasion and must be repeated for all
the occasions. For usual UL/DL communications, i.e. after RRC connection, UE’s blind search must
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be done continuously. Algorithms 3 and 4 detail the processing steps for a UE to decode DL-SCH
transport blocks or to transmit UL-SCH. In algorithm 4, function push to channel mapper performs
OFDM modulation and signal transmission.

The global procedure for data communication on the UE’s side is thus:

• Blind search and decode DCI.

• For downlink allocation, extract, decode DL-SCH/PDSCH and push the transport block to the
MAC layer.

• For uplink allocation, notify the MAC layer and wait for the transport block. Then, perform
UL-SCH/PUSCH encoding and transmit the signal.
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Figure 3.7: Downlink data transmission overview (UE’s perspective)

Figure 3.7 represents the downlink data transmission procedure on the UE’s side.

3.3 System Information Block 1

Once the UE is fully synchronized with the cell and has determined the network’s time, a new trans-
mission from the gNodeB to the UE is required to provide the UE with the default cell’s RRC
configuration. This default configuration is called SIB1 and enables the UE first to choose whether
or not it is willing to attach the cell and to know how to connect to it. The SIB1 is transmitted peri-
odically by the gNodeB, and UEs decode it upon successful cell synchronization and MIB reception.
SIB1 transmission requires the implementation of PDCCH and PDSCH transmission (introduced in
section 3.2) and reception at the gNodeB’s and UE’s side. Having a strong understanding of those
channels is therefore required.

3.3.1 SIB1 payload

SIB1 is a RRC payload defined in TS38.331 [19]. It is passed through the RLC and MAC layers in
transparent mode, which means that the RRC bits are directly transmitted to the PHY layer as being
the input transport block to be encoded. It contains:

• cellSelectionInfo: Minimum thresholds for cell access like minimum reception power and qual-
ity.

• cellAccessRelatedInfo: Network and cell identity used by the UE to determine whether or not
it has to connect this cell.

• connEstFailureControl: How to handle connection establishment failures.

• servingCellConfigCommon: Default cell’s configuration. This includes:
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Algorithm 2 UE DCI blind search

1: ⊲ Determine which search space and CORESET to use
2: search space = determine search space()
3: coreset = determine coreset(search space)
4: received allocations = []
5: ⊲ Determine monitoring occasion where DCI could be located
6: mon occ = determine mon occ(received frame, search space, coreset)
7: ⊲ Compute the possible DCI sizes of the different DCI formats
8: dci sizes = compute possible sizes()
9: ⊲ Loop over all the possible aggregation levels

10: for agg level ∈ {1, 2, 4, 8, 16} do
11: num cand = compute candidates(agg level, coreset)
12: ⊲ Loop over all the candidates of the current aggregation level
13: for cand ∈ [0, num candidates− 1] do
14: ⊲ Identify CCEs used by this candidate
15: cces = compute cces(agg level, cand)
16: ⊲ Identify associated REG bundles
17: reg bundles = cce to reg mapping(cces)
18: ⊲ Compute PDCCH and DMRS positions according to selected REG bundles
19: [pdcch pos, dmrs pos] = compute cand pos(mon occ, reg bundles)
20: ⊲ Perform channel de-mapping
21: [pdcch samp, dmrs samp] = channel demap(received frame, pdcch pos, dmrs pos)
22: ⊲ Compute expected DMRS sequence
23: dmrs sequence = compute dmrs sequence(dmrs positions,N cell

ID )
24: ⊲ Perform channel estimation and equalization
25: coefficients = channel estimation(dmrs pos, dmrs samp, dmrs sequence)
26: pdcch samp = channel equalization(pdcch samp, pdcch pos, coefficients)
27: ⊲ Decode PDCCH
28: pdcch bits = pdcch decoding(pdcch samp)
29: ⊲ Loop over all possible DCI sizes
30: for size ∈ sizes do
31: ⊲ Decode DCI
32: [validated, dci payload] = dci decoding(pdcch bits, size)
33: ⊲ If CRC validated, one DCI payload has been found
34: if validated then
35: ⊲ Decode information from DCI payload
36: dci object = extract fields from dci(dci payload, dci format)
37: received allocations.push(dci object)
38: end if
39: end for
40: end for
41: end for
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Algorithm 3 UE DL-SCH reception

1: ⊲ Loop over all the resources allocations
2: for dci object ∈ received allocations do
3: ⊲ If downlink allocation
4: if dci object.direction == DL then
5: ⊲ Compute PDSCH and DMRS positions
6: [pdsch pos, dmrs pos] = compute pdsch pos(dci object)
7: ⊲ Perform channel de-mapping
8: [pdsch samp, dmrs samp] = channel demap(received frame, pdsch pos, dmrs pos)
9: ⊲ Compute expected DMRS sequence

10: dmrs sequence = compute dmrs sequence(dmrs positions,N cell
ID )

11: ⊲ Perform channel estimation and equalization
12: coefficients = channel estimation(dmrs pos, dmrs samp, dmrs sequence)
13: pdsch samp = channel equalization(pdsch samp, pdsch pos, coefficients)
14: ⊲ Decode PDSCH
15: pdsch soft bits = pdsch decoding(pdsch samp)
16: ⊲ Decode DL-SCH
17: [validated, dl sch payload] = dlsch decoding(pdsch soft bits)
18: ⊲ If CRC validated, downlink communication is successful
19: if validated then
20: push dl sch to mac(dl sch payload)
21: end if
22: end if
23: end for

Algorithm 4 UE UL-SCH transmission

1: ⊲ Loop over all the resources allocations
2: for dci object ∈ received allocations do
3: ⊲ If uplink allocation
4: if dci object.direction == UL then
5: ⊲ Notify upper layer that uplink resources have been granted and wait it to provide the

transport block
6: ul sch payload = get ul sch from mac(dci object)
7: ⊲ Encode the transport block
8: pusch bits = ulsch encoding(ul sch payload)
9: [pusch samp, dmrs samp] = pusch encoding(pusch bits)

10: ⊲ Compute PUSCH and DMRS positions
11: [pusch pos, dmrs pos] = compute pusch pos(dci object)
12: ⊲ Generate signal and transmit PUSCH
13: push to channel mapper(pusch samp, dmrs samp, pusch pos, dmrs pos)
14: end if
15: end for
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– downlinkConfigCommon which contains the downlink configuration (initial downlink
BWP, PDCCH and PDSCH configuration etc).

– uplinkConfigCommon which contains uplink configuration (uplink BWP, RACH and
PUSCH configuration etc).

• ueT imersAndConstants: Set of timers and constants to be used for the initial procedures.

3.3.2 Implementation

The SIB1 payload is carried by the DL-SCH transport channel and PDSCH physical channels. The
DL-SCH transport block and corresponding resource allocation are received from the MAC layer.
Following section 3.2, each PDSCH payload is notified to the UE by a PDCCH/DCI payload, and the
first step is, therefore, to build the DCI payload and place it into the OFDM grid.

3.3.2.1 PDCCH placement and DCI payload

Some information must be determined before building the DCI payload, like the appropriate DCI
format and size, search space, CORESET and RNTI. First, SIB1 transmission uses CORESET 0 and
search space 0, which are the default cell’s CORESET and search space. The configuration of the
CORESET 0 and search space 0 are given by the parameter PDDCHconfigcommon from the MIB.
The procedure to determine the position of the PDCCH for SIB1 in the OFDM grid is detailed in
appendix A.5.

On the UE’s side, the MIB is used to determine the configuration of CORESET 0 and search
space 0. The process is reversed on the gNodeB’s side: the gNodeB first chooses CORESET 0 and
search space 0 configurations and builds the MIB payload accordingly.

The DCI format used for SIB1 is DCI format 1 0 with SI-RNTI. SI-RNTI is the RNTI used to
communicate System Information. As it is static and known by all the UEs, they can decode DCI
elements which CRC is masked with SI-RNTI. As described in TS38.212 section 7.3.1.2.1 [11], the
DCI payload size depends on NCORESET

RB . The size of the other fields is fixed.
For example, if NCORESET

RB = 48, the size of the frequency domain assignment field is 11 bits, and
so the total DCI payload is 41 bits, including the reserved bits. The gNodeB uses this information to
build the DCI payload and the UE also requires it for DCI blind search.

The main fields of the DCI format 1 0 with SI-RNTI are the frequency and time domain resources
allocated for PDSCH:

• Frequency domain allocation noted Resource Indicator Value (RIV). On the gNodeB’s side, this
information is provided by the upper layers. The allocation is given by the number of RBs to
be allocated (noted LRB) and the first RB (noted RBstart). The RIV is computed following
TS38.214 section 5.1.2.2.2 [24]:

RIV = NCORESET
RB · (LRB − 1) +RBstart

In the same way, at the UE’s side, LRB and RBstart can be recovered from RIV with:

LRB =

⌊

RIV

NCORESET
RB

⌋

+ 1

And
RBstart = RIV −

(

(LRB − 1) ·NCORESET
RB

)

• The time domain resource assignment is a 4 bits field which gives an index in Table 5.1.2.1.1-2
of TS38.214. K0 is the slot offset between the PDCCH and the PDSCH, S is the first symbol
allocated for PDSCH and L is the number of allocated symbols. For example, if PDSCH is
transmitted in the same slot as the PDCCH (K0 = 0), and if the allocation starts at symbol 2
and has a duration of 12 symbols, then this field should be 0.
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The way frequency resource allocations are transmitted to the UE in the DCI is the same between
the different DCI formats and for both directions (uplink and downlink): a RIV field is given to
the UE which computes the corresponding LRB and RBstart. This process will be used for future
communications. However, unlike frequency resources assignment, time-domain resource allocation is
not the same between DCI formats and procedures. Indeed, for future procedures, and both uplink
and downlink assignments, the list of the possible time-domain assignments will be transmitted in
RRC messages, and DCI will give a pointer to an element of this list. Details about the different DCI
formats can be found in TS38.212 section 7.3.1 [11].

3.3.2.2 gNodeB

When the information regarding CORESET 0 and search space 0 are determined, and when DCI
payload is built, DCI and DL-SCH payloads can be encoded. After encoding, those channels can be
placed into the OFDM grid according to section 3.2 and transmitted.

3.3.2.3 UE

On the UE’s side, the first step is to determine information about CORESET 0, search space 0 and
the DCI’s size to perform the blind search. The monitoring of PDCCH with search space 0 is detailed
in TS38.213 section 13. Once DCI has been found and CRC is validated, DCI fields can be recovered
from DCI payload, and those fields can be used to extract and decode PDSCH. Once PDSCH and
DL-SCH have been decoded, SIB1 RRC message can be recovered.

3.4 Random Access

Term or notation Definition

PRACH occasion PRACH time and frequency position in the OFDM grid

PRACH format Number of repetitions of the PRACH signal in one transmission

Preamble Parameter used for PRACH sequence generation

LRA PRACH sequence size

NCS Cyclic shift size

Table 3.3: Terms and notations used in section 3.4

Once UEs are synchronized with the cell and have received the initial RRC configuration, they can
determine whether or not to access the cell. This decision is taken with regard to different information
like the cell identity and configuration.

The uplink radio connection must be initiated if the UE decides to access the cell. It is done
through a procedure called RA which is detailed in TS38.213 section 8 [5] and in TS38.321 section
5.1 [26]. It is the first procedure that involves uplink transmissions. The RA procedure can be either
Contention Based Random Access (CBRA) or Contention Free Random Access (CFRA). During RA,
contention may happen when multiple UEs use the same resources and the same configuration, and
CBRA must be used to resolve the contention. Contention resolution is the process by which the
gNodeB selects one of the UEs for which contention happened and informs UEs of which one is
selected. The selected one considers RA is successful, whereas the others must restart the procedure.
On the opposite, when the gNodeB can notify the UE of which resources and configuration to use
for RA, contention does not happen, and CFRA can be used. When a UE initializes a first RRC
connection, it is not already known and configured by the gNodeB, so CBRA must be used.

As represented in Figure 3.8, CBRA is made of four steps:

• Physical Random Access Channel (PRACH) transmission (uplink - noted msg1): this is the
initial uplink channel transmitted from UEs to the gNodeB. It enables the gNodeB to detect
the presence of the UE in the cell and compute its Timing Advance (TA).
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Figure 3.8: Random access procedure

• Random Access Response (RAR) (downlink - noted msg2): this is a MAC PDU that notifies
the UE that PRACH has been received and contains two more information: the propagation
delay, called the TA, and a resources allocation for subsequent uplink transmission.

• RRC Setup Request (uplink - noted msg3): this is an RRC message transmitted using the
resources allocated in the RAR: the UE asks to establish an RRC connection with the gNodeB.

• RRC Setup (downlink - noted msg4): RRC response from the gNodeB, which contains all the
initial configuration of the radio connection between the UE and the gNodeB.

3.4.1 Physical Random Access Channel (TS38.211 section 6.3.3)

The PRACH is the channel used by UEs to initiate a uplink radio connection with the gNodeB.
Like PSS and SSS (and unlike MIB and SIB1), PRACH is a signal that does not contain data,
making it a highly robust channel. The signal is generated depending on the preamble parameter,
which is randomly selected. The PRACH configuration is received in SIB1 and enables the UE to
determine PRACH occasions. A PRACH occasion is a time and frequency location where UEs can
transmit PRACH. The configuration contained within the SIB1 enables the UE to determine the set
of PRACH occasions and possible preambles. Based on that information, the UE can generate the
PRACH sequence by randomly selecting one preamble and positioning it into the OFDM grid by
selecting a time and frequency PRACH occasion. The OFDM modulation of PRACH is different
from the usual one used in 5G (which is described in section 4.9). A dedicated function for PRACH
time-domain signal generation must be implemented.

Beyond initiating the uplink connection, the purpose of the PRACH is to perform uplink syn-
chronization. Indeed, until now, UEs are synchronized to the cell in the downlink direction, which
means that UEs know the cell’s time. However, uplink synchronization is also required and crucial
as the different UEs are not located at the same distance of the gNodeB and do not have the same
processing speed. This means that when a UE transmits a signal at a given time, it will arrive at the
gNodeB with a delay which reflects the propagation and processing times. As those two delays are
not the same from one UE to another, UEs transmissions do not arrive simultaneously at the gNodeB
and might interfere with each other. This is why uplink synchronization is required. The gNodeB
evaluates the processing and propagation delays, and the UE transmits uplink communications in
advance. The TA is the parameter reflecting the two delays and is computed by the gNodeB upon
reception of the PRACH and communicated to the UE in the RAR. UEs use TA to compute the
required advance for uplink transmissions.

The PRACH channel is designed with regard to one primary constraint: the gNodeB must be
able to decode multiple non-synchronized RAs located on the same time and frequency resources (i.e.,
PRACH occasion). Indeed, before RA, the gNodeB did not know the UE and could not allocate
dedicated uplink resources for RA. Therefore, several UEs may be using the same PRACH occasion
for RA transmission. In this case, the distinction between the different RAs at the gNodeB’s level
is based on the different preambles used by UEs for signal generation: PRACH signal is generated
so that the gNodeB can distinguish simultaneous transmissions on the same occasion with different
preambles. Zadoff-Chu sequences are used for PRACH generation as the correlation between two
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shifted sequences generated from a single root sequence equals zero. Moreover, the correlation of two
sequences generated with different root sequences is not equal to zero but still very low. The different
PRACH signals are generated based on shifted Zadoff-Chu root sequences so that transmissions on
the same PRACH occasion do not interfere with each other. If multiple UEs use the same preamble
for PRACH transmission on a single PRACH occasion, the gNodeB cannot distinguish them (i.e.
there is a PRACH contention), and future RA procedure will be used to resolve the contention.

3.4.1.1 Parameters

In this section, we present the main parameters that are used for PRACH generation and where they
can be found. This is not an exhaustive list. On a UE’s perspective, the entry point for PRACH
configuration is rachConfigCommon from SIB1:

• rachConfigGeneric: Object containing those information:

– prachConfigurationIndex: Index in Tables 6.3.3.2-2 to 6.3.3.2-4 from TS38.211. Table
6.3.3.2-2 is used for Frequency Division Duplex (FDD) cells in FR1 bands, Table 6.3.3-2.3
is used for TDD cells in FR1 bands and 6.3.3.2-4 is used for TDD cells in FR2 bands. This
table provides those information:

∗ Preamble format: The format of the PRACH signal (cyclic prefix length, number of
PRACH repetitions and post signal guard period. This parameter is used to determine
LRA in Tables 6.3.3.1-1 and 6.3.3.1-2 from TS38.211. LRA is a fundamental parameter
which gives the size of the PRACH sequence.

∗ Frames number where PRACH can be transmitted, given by x and y such as PRACH
can be transmitted in frames with SFN (mod x) = y. For example, if x = 2 and
y = 0, PRACH can be transmitted every even frames.

∗ Subframe number: subframe where PRACH can be transmitted.

∗ Starting symbol in slot.

∗ Number of slots containing PRACH in a subframe.

∗ Number of PRACH occasions within a PRACH slot.

∗ PRACH duration (in symbols).

– msg1FDM (Frequency Division Multiplexing): Number of PRACH occasions in frequency
domain.

– msg1FrequencyStart: Offset in RBs between the lowest RB allocated to the first frequency
domain PRACH occasion and the Physical Resource Block (PRB)0 of the uplink BWP.
This offset is given in number of PUSCH RBs.

– zeroCorrelationZoneConfig: Index in Tables 6.3.3.1-5 to 6.3.3.1-7 from TS 38.211.

• ssbperRACHOccasionAndCBPreamblesPerSSB: Number of SSB per PRACH occasion and
number of preambles per SSB.

• msg1SubcarrierSpacing: SCS used for PRACH transmission. It can be 1.25, 5, 15, 30, 60 or
120 kHz.

• restrictedSetConfig: Whether or not the number of cyclic shifts per root sequence is restricted.
Together with zeroCorrelationZoneConfig, it enables to recover NCS parameter (which will
be explained below).

• prachRootSequenceIndex: Root sequence index used to generate the PRACH sequence.
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3.4.1.2 Parameters selection

Before starting the cell, the gNodeB must determine the PRACH configuration. The two main
parameters that must be determined are LRA, which is the PRACH sequence length, and NCS , which
is the cyclic shift size. Multiple PRACH sequences can be generated by shifting a root sequence NCS

times. Given that the sequence’s size is LRA, n
seq
shift = ⌊LRA/NCS⌋ sequences can be generated with

a single root sequence. Those two parameters are selected to provide a good trade-off between those
two constraints:

• The first one is that multiple cyclic shifted Zadoff-Chu sequences generated using the same
root sequence are orthogonal to each other for all the possible shift values. On the other hand,
sequences generated with different root sequences are not orthogonal. Given that the receiver
detects PRACH by correlating the possible sequences with the received signal, the lower the
number of available root sequences, the lower the reception complexity. The optimal case would
be to have a unique root sequence with multiple shifts as all the possible sequences would be
orthogonal to each other. It would make the reception correlation more selective on the gNodeB
side. With regard to this constraint, the smallest NCS , the highest the number of PRACH
sequences generated with a single root sequence (which equals nseq

shift), and therefore the lowest
the complexity of the PRACH detection.

• On the other side, one main purpose of PRACH is to estimate TA, which corresponds to the
UE’s processing and propagation delays. It means that PRACH is always received with an offset
which can therefore be of two kinds:

– The first one is the offset due to the transmission and propagation delay.

– The second one is the offset due to the cyclic shift of a given Zadoff-Chu root sequence.

The gNodeB must be able to distinguish those two received offsets. For example, if LRA = 139
and NCS = 69, then two sequences can be generated with one root sequence: the first one
(v = 0, where v denotes the cyclic shift index) with no cyclic shift and the second one (v = 1)
with a 69 cyclic shift. The offset, proportionally to one PRACH symbol, from the second one
to the first one is NCS/LRA = 0.49 = 49%. For example, if the gNodeB receives a PRACH
transmission with an offset of 70%, it must be able to determine whether or not the 70% are
fully due to the TA (and therefore UE generated PRACH with v = 0) or if the sequence was
generated with v = 1 which implies an offset of 49% and a TA of 21%. If the receiver cannot
distinguish those two cases, then there might be confusion between the preamble used by the
UE and the TA, which would certainly lead to a connection error. Thus, the receiver must
distinguish those two kinds of offsets.

This is where the PRACH configuration is critical. As the first offset is due to the TA, it is
related to the distance between the UE and the gNodeB. The PRACH configuration must be
chosen with regard to the cell’s size so that the maximum processing and propagation delay is
never bigger than the cyclic shift offset. With the same example, the cell coverage should be
limited to the area where UEs’ TA is smaller than 49% of a PRACH symbol. In this case, it
becomes possible for the gNodeB to detect what is the offset due to the delay and what is the
one due to the cyclic shift. The distinction is made as follows:

– first, all the possible cyclic shifts are substracted to the received offset. With the same
example, the two possible shifts are 0 and 49%, and the received offset is 70%. The
subtraction gives 70− 0 = 70% and 70− 49 = 21%.

– Then, the candidate whose subtraction is higher than 0 and lower than the cyclic shift
offset is selected as the correct one. In this case, the correct offset must be between 0 and
49%, which is the case of the second one. The receiver will therefore state that it received a
PRACH transmission with a preamble generated with v = 1 and a TA of 21% of a PRACH
symbol. The zero correlation zone is the distance, within a PRACH symbol, between the
symbol’s start and the cyclic shift offset (it equals 49% in this example).

68



CHAPTER 3. DOWNLINK AND UPLINK DATA TRANSMISSIONS

Therefore, the PRACH configuration should be selected such as it uses the highest possible number
of cyclic shifts per root sequence (for complexity reasons) and respects the coverage constraints. For
example, as detailed earlier, with LRA = 139 and NCS = 69, the number of preambles that can be
generated per root sequence is 2 and the maximum offset due to the UE’s delay is 49% of an OFDM
symbol but if NCS = 34, the number of preambles that can be generated per root sequence is 4 and
the maximum offset due to the UE’s propagation and transmission delay is 34/139 = 0.24 = 24%.
The second case decreases the receiver complexity as it requires the use of half the number of different
root sequences for the same number of preambles. However, it also decreases the potential size of the
cell as the maximum TA that the gNodeB could support is half the one of the first case.

The second key parameter for PRACH configuration is the preamble format, which gives the
number of repetitions of the PRACH sequence. Indeed, the receiver can leverage the different repeti-
tions to refine the PRACH detection. Therefore, the highest the number of repetitions, the finer the
PRACH detection. On the other side, resources that can be used for PRACH must be reserved and
cannot be used for uplink or downlink communications. The highest the number of repetitions, the
highest the resource consumption of the PRACH. Therefore, the PRACH format must be chosen to
provide a trade-off between resource consumption and PRACH detection quality.

3.4.1.3 UE

As done for BCH, DCI and DL-SCH encoding, we first introduce how PRACH is encoded and then
how the receiver can handle it. We start here by explaining how a UE generates the PRACH signal
and will in the next section explain how the gNodeB detects it. The PRACH signal generation
depends on many parameters and can therefore be a very tricky process. In this section, we introduce
PRACH generation using a simple configuration. Further information can be found in TS38.211
section 6.3.3 [21] and in section 7.2 and 13.1 of [25].
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Figure 3.9: PRACH occasions and format

The details can be found in appendix A.6. Nevertheless, the main steps are:

1. Preamble selection. The preamble is required for PRACH signal generation. It is used to
distinguish multiple PRACH transmissions performed on the same occasion. The preamble is a
value between 0 and 63 but can be restricted for two reasons.

• First, the gNodeB can configure the cell (through SIB1) so that only a sub-set of preambles
are available for PRACH initial PRACH transmission. Other preambles can be used for
CFRA or other purposes.

• Moreover, the selection depends on the radio configuration, especially beamforming. In-
deed, the set of available preambles is split between the different beams. When the UE
searches for SSB, it selects a beam based on the reception quality. Selecting a preamble
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that corresponds to the selected beam enables the UE to inform the gNodeB of the selected
beam.

2. PRACH occasion selection. Depending on the cell’s configuration, PRACH transmissions can
be done at different times and frequencies:

• In the frequency domain, multiple PRACH transmissions can happen simultaneously and
are therefore stacked in the frequency domain. Selecting a frequency domain PRACH
occasion comes to selecting an index in this stack.

• In the time domain, the PRACH configuration specifies the frames, slots and symbols
where PRACH can be transmitted. A time-domain PRACH occasion is a set of symbols
where PRACH can be transmitted.

3. Frequency domain sequence generation. After selecting a preamble, the time domain Zadoff-Chu
sequence can be computed and transformed into the frequency domain by performing a DFT.

4. Time-domain signal generation. Once the frequency domain samples have been computed, they
can be placed in the band based on the selected frequency domain candidate. iFFT is therefore
performed in order to generate the time-domain PRACH signal.

5. Final PRACH signal generation. The signal generated until now is only one repetition of the
PRACH signal. The final PRACH signal contains a set of repetitions of the time domain signal
and a cyclic prefix. The PRACH format gives the number of repetitions and the size of the
cyclic prefix.

6. PRACH transmission. The final PRACH signal can be transmitted at the selected time domain
PRACH occasion.

Figure 3.9 represents the PRACH occasions and format.

3.4.1.4 gNodeB

3.4.1.4.1 PRACH detection: PRACH detection is the process by which a gNodeB continuously
searches for PRACH attempts and computes TAs. Some different methods and variations can be used,
and the one described here is inspired by the method described in [27]. For the sake of simplicity, the
algorithm is split into two parts that are the detection of a PRACH transmission (detected by a high
correlation peak) and the determination of the corresponding shift and TA offset.

The first part, detailed in Algorithm 5 (for one time and frequency domain PRACH occasion noted
time prach occ and freq prach occ), consists in correlating in the frequency domain the received
signal with all the possible PRACH signals generated from the possible root sequences and by selecting
the correlation peaks that are above an input threshold.

The second part, detailed in Algorithm 6 determines the UE’s cyclic shift by looping over all the
possible shifts for each peak. For each one, the offset from the beginning of the PRACH symbol to
the beginning of the received signal is computed by subtracting the corresponding cyclic shift from
the candidate’s received peak index. Negative offsets are then invalid as that would mean that UE
is in advance compared to the gNodeB, and offsets above the zero correlation zone are also invalid
as the cell must have been configured so that it is impossible with regard to the cell’s size. The shift
used by the UE is then the one that is inside the zero correlation zone.

3.4.2 Random Access Response

Once the PRACH has been transmitted from the UE to the gNodeB, the UE waits for the gNodeB’s
response, the RAR (TS38.213 section 8.2). RAR is a MAC message containing different information
that enables the UE to send an RRC Setup Request message to initiate the RRC connection.
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Algorithm 5 Detection of PRACH peaks

1: function detectPRACHTransmission(time prach occ, freq prach occ, max p)
2: ⊲ v max is nseq

shift

3: v max = ⌊LRA/NCS⌋
4: prach preambles = []
5: prach offsets = []
6: ⊲ Compute zero correlation zone size
7: zero corr size = compute zero correlation zone size(LRA, NCS)
8: u p max = ⌈max p/v max⌉
9: ⊲ Loop over all the possible root sequences u′

10: for u p ∈ [0, u p max− 1] do
11: ⊲ Compute the corresponding preamble value
12: p = u p · v max
13: avg td correlation = []
14: ⊲ Generate PRACH signal for preamble p
15: ref signal = generate prach signal(freq prach occ, p)
16: ⊲ Loop over all the PRACH repetitions
17: for r ∈ [0, repetitions− 1] do
18: ⊲ Get corresponding received signal
19: input signal = get signal(time prach occ, r)
20: ⊲ Get frequency domain signals and correlate them
21: fd input signal = fft(input signal)
22: fd ref signal = fft(ref signal)
23: fd correlation = correlate(fd input signal, fd ref signal)
24: ⊲ Transform to time domain correlations and average over all the repetitions
25: td correlation = ifft(fd correlation)
26: avg td correlation+ = td correlation/repetitions
27: end for
28: for [value, index] ∈ avg td correlation do
29: ⊲ If correlation is greater than an input threshold, a PRACH transmission has been

detected
30: if value > threshold then
31: ⊲ Determine the cyclic shift and TA offset corresponding to this peak
32: [preamble, ta offset] = deter shift and offset(u p, avg td correlation, index)
33: prach preambles.push(preamble)
34: prach offsets.push(ta offset)
35: end if
36: end for
37: end for
38: return [prach preambles, prach offsets]
39: end function
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Algorithm 6 PRACH shift and offset determination

1: function deter shift and offset(u p, avg td correlation, index)
2: ⊲ Loop over all possible shifts
3: for v ∈ [0, v max− 1] do
4: ⊲ Compute cyclic shift size, proportionally to the PRACH symbol duration
5: shift size = compute shift size(NCS , LRA, v)
6: ⊲ Compute offset between the correlation peak and the shift size
7: offset = index− shift size
8: ⊲ If offset is correct
9: if offset ∈ [0, zero corr size− 1] then

10: ⊲ Offset is within the zero correlation zone
11: ⊲ Return the associated preamble and offset
12: return [u p · v max+ v, offset]
13: end if
14: end for
15: end function

3.4.2.1 MAC payload (TS38.321 section 6.1.5)

This section gives a quick introduction to the RAR MAC payload. Like any other MAC PDU, RAR
PDU comprises different sub-PDUs and subheaders. There can be three types of sub-PDUs and
subheaders for the RAR:

• RAR sub-PDU (TS38.321 section 6.2.3): This is the RAR, which contains that information:

– TA: as explained in the previous section, the PRACH transmission enables the gNodeB to
estimate the transmission and propagation delay of the different UEs. The TA command
contains a value that corresponds to an estimated delay. The UE can compensate it by
sending all the future transmissions in advance, using the TA value. It enables future
uplink transmissions to be synchronized with the cell.

– Uplink grant: This is a uplink resource allocation that the UE uses to transmit the RRC
Setup Request (msg3). It mainly contains:

∗ Frequency resource allocation: RBs allocated to UE for msg3.

∗ Time resources allocation: symbols and slot where msg3 can be transmitted.

∗ MCS: modulation scheme and code rate to be applied for transmission.

– Temporary C-RNTI: TC-RNTI is the RNTI used for communications with the UE until
the RA procedure is finished. After the end of this procedure (i.e. after contention resolu-
tion), TC-RNTI becomes C-RNTI and is then used for all the future uplink and downlink
communications.

• RAPID subheader (TS38.321 section 6.2.2): This sub-PDU contains the Random Access Pream-
ble Identity (RAPID) corresponding to the current RAR sub-PDU. It is a 6 bits value (between
0 and 63) which contains the preamble used for PRACH transmission to which the RAR is
responding. It enables UEs to differentiate multiple RARs when multiple preambles have been
used on a single PRACH occasion.

• Back-off Indicator (BI) subheader (TS38.321 section 6.2.2): This sub-PDU is transmitted to the
UE when the gNodeB could not handle the transmitted PRACH for overload reasons. In this
case, BI is used to notify the UE when to send another PRACH transmission. This field is an
index in Table 7.2-1 from TS38.321 [26] and gives a value in milliseconds.

3.4.2.2 Transmission

The RAR is transmitted to the UE using a classic downlink communication scheme, i.e. using PDCCH
and PDSCH (see section 3.2). As for SIB1 transmission (section 3.3), CORESET, search space and
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RNTI to be used must be determined before encoding or extracting RAR:

• search space: the search space for RAR is identified in SIB1 by the parameter raSearchSpace.
It gives the ID of a search space that must be defined in the SIB1 payload.

• CORESET: the CORESET used for RAR is identified in the search space. It can be a CORESET
defined in SIB1 or the CORESET 0 used for SIB1 transmission.

• RNTI: The RNTI to be used for DCI CRC masking (detailed in section 3.2.2.1) is RA-RNTI.
The RA-RNTI is not dedicated to one UE but depends on the time and frequency occasion
used for PRACH transmission. Both the UE and the gNodeB can compute it. It enables to
identify a PRACH occasion. Two UEs using the same preamble on two different occasions will
not receive the DCI for RAR with the same RA-RNTI, and two UEs using the same occasion
and different preambles will not receive the same RAR message (RAPID subheader will differ).
The RA-RNTI is computed according to the following Equation (from TS38.321 section 5.1.3):

RA−RNTI = 1 + s id+ 14 · t id+ 14 · 80 · f id+ 14 · 80 · 8 · ul carrier id

Where s id and t id are the indexes of the first symbol and the first slot of the PRACH occasion,
f id is the frequency PRACH occasion index and ul carrier id is 0 for normal uplink carrier
and 1 when PRACH is transmitted using supplementary uplink carrier.

The DCI payload is DCI Format 1 0 using RA-RNTI. This format is defined in TS38.211 section
7.3.1.2.1 and is pretty much the same as for DCI Format 1 0 using SI-RNTI (see section 3.3.2.1),
except that redundancy version and system information indicator are not present, but another field
Transport Block scaling is present. This field is used to help the UE to determine the transport block
size.

The MAC layer of the UE must receive the RAR before raResponseWindow timer expires. This
timer is started when UE transmits PRACH and should not expire before the reception of the RAR.
If it expires, the RA procedure is considered to be failed. raResponseWindow is provided by SIB1
and is expressed in slots.

3.4.2.2.1 gNodeB: On the gNodeB’s side, the RAR transmission is made by generating a DCI
payload Format 1 0 using RA-RNTI and by encoding it as well as encoding the RAR transport block
using DL-SCH and PDSCH encoding procedure. The positions of the PDSCH IQ samples in the
OFDM grid is given by the MAC layer and the positions of the PDCCH IQ samples depend on the
aggregation level and candidate used for PDCCH transmission. This process is detailed in section
3.2.5.1.

3.4.2.2.2 UE: On the UE’s side, the reception of the RAR is done by first searching for PDCCH
transmission with RA-RNTI and by then decoding corresponding PDSCH and DL-SCH payload. As
for SIB1 blind search, RAR search requires the UE to determine the search space, CORESET and
RNTI used for PDCCH/DCI transmission. Then, it performs blind search by looping over all the
possible aggregation levels and candidates and trying to decode associated DCI payload. When DCI
CRC is validated, DCI payload can be extracted and PDSCH position in the grid can be determined.
PDSCH can then be extracted and decoded to recover the MAC RAR transport block. This process
is detailed in section 3.2.5.2.

3.4.3 RRC Setup Request

Once RAR has been received by the UE and to finalize the RRC connection, UE transmits RRC Setup
Request to the gNodeB in order to get the RRC configuration and to establish the RRC connection.
This process is described in TS38.213 section 8.3. RRC Setup Request is an RRC message carried by
the Common Control Channel (CCCH) MAC logical channel. It is passed through RLC in transparent
mode. It contains the RRC connection establishment cause and a long random bits sequence used
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for contention resolution. The RRC payload is encapsulated in a MAC PDU which finally gives a
PHY transport block. This transport block is carried by the UL-SCH transport channel and the
PUSCH physical channel defined in section 3.2.4. The UE generates the RRC payload, encapsulates
it in a MAC PDU and can then perform UL-SCH and PUSCH encoding. The generated PUSCH and
DMRS IQ samples are placed in positions allocated in RAR UL grant field and transmitted. On the
gNodeB’s side, the RRC Setup Request can be decoded by extracting the samples allocated in RAR
UL grant and by performing PUSCH and UL-SCH decoding.

3.4.4 RRC Setup

Upon reception of the RRC Setup Request message, the gNodeB generates the RRC Setup message
containing the UE’s RRC configuration and encapsulates it in a MAC PDU together with a MAC
Control Element (CE) called UE Contention Resolution Identity (UECRI).

UECRI is used for contention resolution and is the bit’s representation of the RRC Setup Request
message. As the RRC Setup Request message contains a long random bits sequence, it is used to
differentiate the different UEs that would have experienced contention by selecting the same preamble
on the same PRACH occasion. When, the UE receives the msg4 transmission containing the RRC
Setup and the UECRI, it is able to compare UECRI with the transmitted RRC Setup Request. UE
considers RA is successful and that contention is solved if the received UECRI matches the transmitted
RRC Setup Request. Otherwise, it considers that RA failed and will try a new RA procedure. If RA
is successful, the TC-RNTI used for RA procedure becomes the C-RNTI and will be used for all the
future communications with the UE.

Once the PHY transport block is ready to be transmitted from the gNodeB to the UE, the DCI
payload can be built. For msg4, the DCI format used is DCI Format 1 0 with TC-RNTI. This format
is described in TS38.212 section 7.3.1.2.1. The TC-RNTI value to be used is the one contained in the
RAR message and the search space and CORESET are the same as for RAR (i.e. raSearchSpace
from SIB1). After building the DCI payload, DCI and PDCCH encoding can be performed and the
transport block can be DL-SCH and PDSCH encoded. The IQ samples are placed in the OFDM grid
and transmitted.

On the UE’s side, the first step is to perform blind search on the RA search space and CORESET,
and to decode the DCI payload. Once DCI is decoded, the corresponding PDSCH IQ samples can be
extracted and decoded to recover the MAC and RRC messages.

After RRC Setup message transmission, the RRC connection is established. The RRC configu-
ration can be applied. The PHY layer is fully operational for future transmissions like upper layers
procedures and data communications.

3.5 Data communication after RRC connection setup

Once the RRC connection has been established, the PHY layer is fully configured and initialized.
Then, it can be used by upper layers for uplink and downlink data communications. This section
details the process for uplink and downlink communications after RRC connection.

3.5.1 DCI payloads

Once the RRC connection has been set up, the formats used for DCI transmissions are 1 1 for downlink
and 0 1 for uplink. Those formats are defined in TS38.212 sections 7.3.1.2.2 and 7.3.1.1.2. The content
can vary depending on the configuration, but the main fields are the time and frequency allocation,
the modulation scheme and code rate, the redundancy version, and finally, the HARQ process:

• Frequency domain resources allocation (TS38.214 section 5.1.2.2 [24]): this field is given by
an indicator called RIV. The number of RBs (noted LRB) and the first allocated RB (noted
RBstart) can be recovered from the RIV following the method described in section 3.3.2.1.
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• Time domain resources allocation (TS38.214 section 5.1.2.1 [24]): this field is given by an indica-
tor named time domain resources index. It gives an index in a list of possible time domain allo-
cations. This list is initially provided in the SIB1 message (pdsch−T imeDomainAllocationList
for downlink and pusch− T imeDomainAllocationList for uplink) and can be updated in later
RRC configurations. One element of this list gives the mapping type (configuration for PDSCH
and PUSCH) and the Start and Length Indicator Value (SLIV). The index of the first allocated
symbol S and number of symbols L can be recovered from the SLIV. The possible combinations
of S and L is given in Table 5.1.2.1-1 from TS38.214 [24] and the SLIV is computed using those
two equations:

SLIV = 14 · (L− 1) + S

If (L− 1) ≤ 7 and
SLIV = 14 · (14− L+ 1) + (14− 1− S)

Otherwise.

• The MCS: this field gives an index in Tables 5.1.3.1-1, 5.1.3.1-2 and 5.1.3.1-3 in TS38.214 [24].
The table used depends on the configuration and is usually Table 5.1.3.1-1. The field Modulation
Order noted Qm gives the modulation scheme to be used (2 means BPSK, 4 means QPSK, 6
means 16-QAM, 8 means 64-QAM, and 10 means 256-QAM). The field code rate noted R gives
the proportion between the number of transport block bits and the number of code bits added
by the channel coding function.

• HARQ process number and redundancy version: information about MAC layer HARQ process.
The MAC HARQ process is a procedure defined in TS38.321 sections 5.3.2 and 5.4.2 [26] which
enables the correction of transmissions errors. It is done in multiple parallel processes. The
HARQ process number is the index of the process to which the transmission belongs, and the
redundancy version is used to determine which part of the transport block is being transmitted
or retransmitted.

3.5.2 gNodeB

On the gNodeB’s side, the input for data transmission is the reception of a downlink transport block
or uplink resource grant from the MAC layer. The command contains the data (transport block to
be transmitted in the downlink, empty in uplink) and the metadata, which contains the RNTI, the
resource grant and transmission configuration (modulation, code rate, HARQ process etc).

For downlink communication, the procedure is:

1. Reception of a command from the MAC layer.

2. • The DCI payload (DCI Format 1 1) is generated based on the metadata (resource alloca-
tion, RNTI, search space and CORESET to be used, transmission configuration etc) and
DCI encoded.

• The transport block is DL-SCH encoded.

3. • DCI bits are PDCCH encoded, and DMRS sequence and IQ samples positions are com-
puted.

• DL-SCH bits are PDSCH encoded, and DMRS sequence and IQ samples positions are
computed.

4. OFDM modulation is performed and signal is transmitted.

For uplink communication, the procedure is:

1. Uplink grant is received from MAC layer.
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2. The DCI payload (DCI Format 0 1) is generated based on the metadata (resource allocation,
RNTI, search space and CORESET to be used, transmission configuration etc) and DCI en-
coded.

3. DCI bits are PDCCH encoded, and DMRS sequence and IQ samples positions are computed.

4. OFDM modulation is performed and signal is transmitted.

5. The gNodeB waits until grant time has come, extracts the IQ samples, performs equalization,
and decodes PUSCH and UL-SCH.

3.5.3 UE

On the UE’s side, the downlink process is:

1. Blind search for DCI transmissions.

2. DMRS sequence and IQ samples positions computation, PDSCH extraction and decoding.

3. Received transport block is pushed to MAC layer.

The global uplink process is:

1. Blind search for DCI transmissions.

2. PHY layer gets transport block from MAC layer.

3. UL-SCH and PUSCH encoding, DMRS sequence and IQ samples positions computation and
OFDM modulation and transmission.

3.6 Conclusion

In this chapter, we explained how the gNodeB notifies UEs of allocated resources and how UEs
use that information to decode or transmit data. We explained how this process is applied to SIB1
transmission, which contains the default cell’s RRC configuration. We detailed the RA procedure used
by UEs to access the cell, perform uplink synchronization and establish the RRC connection. Finally,
we explained how the gNodeB and UEs can communicate after RRC connection establishment. The
different procedures and mechanisms implemented in this chapter and chapter 2 enable to build a
minimal physical layer. It can now be used for upper layers purposes like network attachment and
user traffic transmission. Other PHY layer procedures exist for RRC configuration update, MIMO
configuration, beamforming, mobility etc, but they are not mandatory.
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Chapter 4

Physical layer algorithms

Contribution

The main contribution of this chapter is to expose feasible algorithms that can be implemented for
the non-standardized functions. Those functions are the object of a lot of research, but the proposed
algorithms are not always implementable or understandable. This chapter gives a concrete overview
of simple algorithms that work in good radio conditions and are implemented in free5GRAN. It
provides the reader with a complete understanding of the physical layer, including both the procedures
(introduced in chapters 2 and 3) and the associated algorithms.

4.1 Introduction

All the procedures implemented in chapters 2 and 3 are precisely defined in the standard and enable the
gNodeB and UEs to synchronize with each other and to exchange data. However, those procedures
rely on functions not precisely defined in the standard. The functions’ input, output, and global
behavior are defined, but the algorithms implemented within the functions to achieve the standardized
behavior are not defined. Indeed, the purpose of the standard is to enable components from different
manufacturers to work together on the same network by defining the procedures, mechanisms, and
functions chaining. Nevertheless, the way functions are implemented is manufacturer-specific as it is
where resides the core value of the implementation: manufacturers with better algorithms provide
better products.

Unlike chapters 2 and 3, the purpose of this chapter is not to give a global understanding of
the standard and procedures but to introduce the main functions used across procedures. For each
function, we delimit what is defined by the standard and what is manufacturer-specific. Furthermore,
we propose simple algorithms for non-standardized functions. The algorithms introduced in this
chapter are the ones used in free5GRAN. They are selected to work well in our environment, a
Faraday cage, where the radio conditions are good. Furthermore, they provide a good balance between
optimization and readability.

In this chapter, the different functions that are not standardized are reviewed, and possible al-
gorithms are proposed. First, the functions used for transport channel encoding and decoding are
detailed. Then, the functions used for physical channel encoding and decoding are detailed. Finally,
the functions used for signal processing are detailed.

4.2 Cyclic Redundancy Check (Transport channel processing - TS38.212 section
5.1)

In 5G, 6 CRC polynoms are defined, as detailed in TS 38.212 section 5.1 [11] and in Table 4.1. The
different polynoms are used for different use-cases, depending on the sequence’s length and reliability
requirement. The sequence on which the CRC is computed can be either the full transport block or
one code block when there are multiple code blocks per transport block.
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Name Channel Designed for

gCRC24A UL/DL-SCH transport block Large to ultra large sequences

gCRC24B UL/DL-SCH code block Medium sized sequences

gCRC24C BCH and DCI transport block Small sequences with high reliability re-
quirement

gCRC16 UL/DL-SCH transport block Small sequences

gCRC11 UCI transport block Very small sequences

gCRC6 UCI transport block Very small sequences

Table 4.1: 5G CRC polynoms

First, gCRC6 and gCRC11 are defined for small UCI transport blocks. Then, gCRC24C is dedicated
to small transport blocks with high-reliability requirements, which is the case of the BCH and DCI
transport channels. Furthermore, for UL/DL-SCH sequences with normal reliability requirements,
the polynom depends on the sequence’s size. For small transport blocks whose size is smaller than
3824, gCRC16 is used whereas, for large transport blocks (whose maximum size is of the order of a
million bits), gCRC24A is used. Finally, when UL/DL-SCH transport block size is larger than 8448 or
3840 (depending on the LDPC configuration), it is split into code blocks. Each code block is applied
a CRC generated with gCRC24B.

4.2.1 Computing CRC

The CRC is the remainder of the division of the input sequence by the CRC polynom.

4.2.2 Validating CRC

CRC validation is made by dividing the received sequence (bits sequence + CRC) by the polynom.
The CRC is validated if the remainder equals 0. The code snippet for CRC validation in free5GRAN
is given in appendix A.7.

4.3 Channel coding (Transport channel processing - TS38.212 section 5.3)

Two methods are defined for channel coding in 5G: polar coding and LDPC. Polar coding is used
for channels with high robustness requirements like BCH and DCI. LDPC is used for channels with
high throughput requirements (DL-SCH and UL-SCH). Those two coding techniques are described in
chapter 1.

4.3.1 Polar coding (TS38.212 section 5.3.1)

As introduced in section 1.3.2.3.1, polar coding consists in polarizing the channel by applying polar
transform. Before applying polar transform, a few steps are required. The details of this procedure
are given for the encoding and decoding direction in appendix A.8.

The overall process is:

1. Interleaving: the input sequence of K bits is mixed so that the CRC bits are mixed with the
data bits. In case of channel errors, there is no contiguous data or CRC loss.

2. Most reliable positions selection: once the bits are interleaved, a set of K most reliable positions
are determined from the table provided in the standard (Table 5.3.1.2-1 from TS38.212 [11]).
The most reliable positions are placed in a set called Q̄N

I .

3. An intermediate sequence with size N called u is generated. It contains the input bits placed at
the most reliable positions of the channel and the frozen bits (set to 0) in the other positions.

4. Polar transform: this is the actual polar encoding done by multiplying the intermediate sequence
u with the matrix GN .
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4.3.1.1 Successive cancellation decoding

Different algorithms can be used to decode polar codes, and successive cancellation is the principal.
An introduction to this algorithm and its application to polar codes is given in [3]. In this section,
the principle of the successive cancellation algorithm is explained. The binary tree representation of
polar codes, defined in section 1.3.2.3.1 must be used to understand this algorithm. The decoding is
made sub-tree by sub-tree, starting at the root node. The inputs of polar decoding are the received
soft bits where bits values are not a hard 0 or 1 value but an Log-Likelihood Ratio (LLR) belief which
enables to compute the probability for the bit to be equal to 0 or 1. More details about soft bits are
given in section 4.6. Soft bits with negative value are likely to be 1, and soft bits with positive value
are likely to be 0.

Figure 4.1: Successive cancellation for one sub-tree, from [3]

4.3.1.1.1 Non-leaf node: For one sub-tree v which is not a leaf, the successive cancellation
process is represented in Figure 4.1:

1. Node v receives a set of beliefs αv.

2. It computes a set of beliefs αvl that will be transmitted to its left child node using Equation:

∀i ∈ [0, 2n−dv−1 − 1],αvl(i) = αv(i)⊞αv(i+ 2n−dv−1)

Where dv is the depth of node v and ⊞ is called the activation function. It is defined by:

x⊞ y = 2 · atanh
(

tanh
(x

2

)

· tanh
(y

2

))

3. Left child vl returns its set of hard decisions which is noted βvl .

4. Node v computes a set of beliefs αvr to be transmitted to its right child using Equation:

∀i ∈ [0, 2n−dv−1 − 1],αvr(i) = αv(i)(1− 2βvl(i)) + αv(i+ 2n−dv−1)

5. Right child vr returns its set of hard decisions which is noted βvr .

6. Node v returns its hard decision which is βv = {βvl + βvr ,βvr}

For root node r, the input beliefs αr are the received soft bits. The final corrected codeword is
given by the set of hard-decisions made by the leaf nodes.

4.3.1.1.2 Leaf node: If node v is a leaf, the input belief αv is not a set but only contains one
element. The returned hard decision is βv = 1 if αv < 0 and βv = 0 otherwise.
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4.3.1.1.3 Successive cancellation list decoding: Given that successive cancellation might not
decode all the errors and might not work perfectly in real implementations, it has been derived to
build another algorithm called successive cancellation list decoding. The core concept is the same
as for successive cancellation. The main difference is that, at each step, it does not return a hard
decision βv but a set of possible hard decisions together with a metric called the penalty metric. The
highest the penalty metric, the lowest the probability for the hard decision to be the good one. At
each step, a set of possible hard decisions is kept by selecting the candidates with the lowest penalty
metric. Therefore, the output of this algorithm is not a single hard decision codeword but a set of
possible codewords. The correct one can be identified at the next step by validating the CRC. A
detailed explanation of this algorithm is given in [28].

4.3.2 Low Density Parity Check (TS38.212 section 5.3.2)

Term or notation Definition

K Input size

N Output size

Zc Lifting size

iLS Set index, depends on Zc

BG Base graph used for parity check matrix generation

k Number of groups of Zc bits in the input (k = K/Zc)

n Number of groups of Zc bits in the output (n = N/Zc)

m Number of groups of Zc check nodes used for LDPC

c Input sequence

c′ Input sequence, by groups of Zc bits

w Parity bits sequence, by groups of Zc bits

H Parity check matrix

HBG Parity check intermediate matrix

A, B, F1, F2 Sub matrices of HBG

d′ Received soft bits (for LDPC decoding)

bj Hard decision corresponding to soft bit d′j

Table 4.2: Terms and notations used in section 4.3.2

LDPC is a parity check coding method which concept is detailed in section 1.3.2.3.2. 5G LDPC
process is made of 4 steps as described in TS38.212 5.3.2 [11]. Steps 1, 2 and 4 are not detailed here.
The actual LDPC encoding function is located in step 3.

Before encoding or decoding, some parameters must be determined. First, the lifting size Zc has to
be computed following the procedure detailed in TS38.212 section 5.2.2. The lifting size is the number
by which the bits are processed in 5G LDPC: bits are not processed individually but by groups of Zc

bits.
Once Zc is computed, the set index (noted iLS) can be found in Table 5.3.2-1 of TS38.212. The

set index is used to build the parity check matrix and it is associated with a lifting size. Then, the
output size (noted N) can be computed: N = 66 · Zc for BG 1 and N = 50 · Zc for BG 2.

The parity check matrix must also be computed based on the above parameters. As described in
section 1.3.2.3.2, in 5G, the parity check matrix H is given by an intermediate matrix HBG.

4.3.2.1 Encoding

Then, LDPC encoding can be performed. The objective of this step is to compute the parity bits
sequence w. In this section, we use a method described and proved in [29], and we recapitulate the
main processing steps here. This method processes input and parity bits by groups of Zc and therefore
uses parity check matrix HBG. We note k the number of groups of Zc bits in the input (k = K/Zc).
The encoding method is based on two observations about the parity check matrix. The first statement
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is that HBG is always built in such a way that it can be split in 6 sub-matrices (A, B, F1, F2, a zeros
sub-matrix and an identity sub-matrix I) as shown in Figure 4.2.
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Figure 4.2: HBG matrix can be split into 6 sub-matrices

Based on this observation, parity bits w generation can be split into two parts w = [w1, w2]. We
note w = w1,0, ..., w1,3, w2,0, ..., w2,m−5 and c = c′0, ..., c

′

k−1 (each wj,i and c′i is a Zc long sub-sequence

of w and c). w must be generated such as HBG · [c′0, ..., c
′

k−1, w1,0, ..., w1,3, w2,0, ..., w2,m−5]
T = 0 which

gives the following Equation:

(

A B 0
F1 F2 I

)

·





cT

wT
1

wT
2



 = 0

Which leads to:

{

A · cT +B · wT
1 = 0

F1 · c
T + F2 · w

T
1 + wT

2 = 0

Furthermore, sub-matrix B can only take 4 different values depending on BG and iLS (B1 is used
for BG 1 and iLS ∈ {0, 1, 2, 3, 4, 5, 7}, B2 is used for BG 1 and iLS = 6, B3 is used for BG 2 and
iLS ∈ {0, 1, 2, 4, 5, 6} and B4 is used for BG 2 and iLS ∈ {3, 7}):

B1 =









1 0 −1 −1
0 0 0 −1
−1 −1 0 0
1 −1 −1 0









, B2 =









0 0 −1 −1
105 0 0 −1
−1 −1 0 0
0 −1 −1 0









B3 =









0 0 −1 −1
−1 0 0 −1
1 −1 0 0
0 −1 −1 0









, B4 =









1 0 −1 −1
−1 0 0 −1
0 −1 0 0
1 −1 −1 0









We note a(l) the sequence a left shifted l times (and thus a(−l) the sequence a right shifted l times).
The first step of the parity bits generation computes w1 parity bits and the second one computes w2:

• First, compute w1 = (w1,0, w1,1, w1,2, w1,3), using the equation system corresponding to the BG
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and iLS :

B1 :























w1,0 =
∑3

i=0

∑k−1
j=0 c

′(ai,j)
j

w1,1 =
∑k−1

j=0 c
′(a0,j)
j + w

(1)
1,0

w1,3 =
∑k−1

j=0 c
′(a3,j)
j + w

(1)
1,0

w1,2 =
∑k−1

j=0 c
′(a2,j)
j + w1,3

B2 :



























w1,0 =
(

∑3
i=0

∑k−1
j=0 c

′(ai,j)
j

)(−105 (mod Zc))

w1,1 =
∑k−1

j=0 c
′(a0,j)
j + w1,0

w1,3 =
∑k−1

j=0 c
′(a3,j)
j + w1,0

w1,2 =
∑k−1

j=0 c
′(a2,j)
j + w1,3

B3 :



























w1,0 =
(

∑3
i=0

∑k−1
j=0 c

′(ai,j)
j

)(−1)

w1,1 =
∑k−1

j=0 c
′(a0,j)
j + w1,0

w1,2 =
∑k−1

j=0 c
′(a1,j)
j + w1,1

w1,3 =
∑k−1

j=0 c
′(a3,j)
j + w1,0

B4 :























w1,0 =
∑3

i=0

∑k−1
j=0 c

′(ai,j)
j

w1,1 =
∑k−1

j=0 c
′(a0,j)
j + w

(1)
1,0

w1,2 =
∑k−1

j=0 c
′(a1,j)
j + w1,1

w1,3 =
∑k−1

j=0 c
′(a3,j)
j + w

(1)
1,0

Where ai,j is the element in line i and column j of sub-matrix A.

• Then, w2 = w2,0, ..., w2,m−5 can be computed using the following Equation:

w2,i =

k−1
∑

j=0

c′
(fi,j)
j +

3
∑

j=0

w
(fi,k+j)
1,j

Where fi,j is the element in line i and column j of sub-matrix F (with F = (F1F2)).

4.3.2.2 Decoding

Different methods exist for LDPC decoding and the one used in free5GRAN is Belief Propagation.
As for polar decoding, this algorithm uses soft bits. Unlike encoding, which is based on intermediate
parity check matrix HBG, Belief Propagation decoding is based on the full parity check matrix H.

This section gives a global overview of the belief propagation algorithm. Deeper details about this
method can be found in the literature like in [30].
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Figure 4.3: Tanner graph and associated parity check matrix

In order to make things understandable, the decoding process is explained using a toy example.
We consider an example with 4 input bits and 4 parity bits with the parity check matrix H proposed
in Figure 4.3. The input bits and parity bits are c = {0, 1, 0, 1} and w = {0, 1, 0, 0}. In this example,
we consider that we receive d′ = {0, 0, 0.9,−1.0, 0.7,−0.9, 1.1, 0.8}. The belief propagation method
describes how a soft bit value can be updated depending on other bits values. It must be done for all
the bits j in the sequence. Here is the process for updating (correcting) d′0 (j = 0):

1. First, the probability for bit j (noted bj , which is the hard bit value of d′j) to be equal to 1 is
computed for all the bits in d′j :

P (bj = 1) =
1

1 + e2·d
′
j
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With our example, we obtain {0.5, 0.5, 0.14, 0.88, 0.19, 0.86, 0.1, 0.17}.

2. Then, the set of all the rows in the column j where Hi,j = 1 is computed and noted Cj = {i :
Hi,j = 1}. It contains the check nodes to which bit j is connected. With our example (j = 0),
C0 = {i : Hi,0 = 1} = {1, 3}.

3. Then, for each element of Cj , the set Ri = {j : Hi,j = 1} is computed. Ri gives the set of the
bits j involved in check node i. Ri\j is also determined as being the set of the other bits than
bit j to be involved in check node i. Here, R1\0 = {1, 5, 6} and R3\0 = {2, 6, 7}.

4. Then, the expected probability for bit j to be equal to 1 or 0 in order to satisfy check node i is
computed. It is noted ri,j(1) (and ri,j(0)) and is computed as follows:

∀i ∈ Cj , ri,j(1) =
1

2
− 1

2
·

∏

j∈Ri\j

(1− 2 · P (bj = 1))

and
∀i ∈ Cj , ri,j(0) = 1− ri,j(1)

In our example, we have:

r1,0(1) =
1

2
− 1

2
· (1− 2 · P (b1 = 1)) · (1− 2 · P (b5 = 1)) · (1− 2 · P (b6 = 1)) = 0.5

and

r3,0(1) =
1

2
− 1

2
· (1− 2 · p(d′2 < 0)) · (1− 2 · p(d′6 < 0)) · (1− 2 · p(d′7 < 0)) = 0.31

with
r1,0(0) = 0.5

and
r3,0(0) = 0.69

This means that to satisfy check node 1, bit 0 should be as likely to be 0 as 1 and that to satisfy
check node 3, bit 0 should have a probability of being equal to 0 of 0.69.

5. Finally, all the information is put together in one metric, which reflects the expected probability
of bit j to be 1 or 0 with regard to all the check nodes in which it is involved as well as confronting
it with the actual received value.

qj(1) = P (bj = 1) ·
∏

i∈Cj

ri,j(1)

and
qj(0) = (1− P (bj = 1)) ·

∏

i∈Cj

ri,j(0)

With our example, it gives for j = 0:

q0(1) = P (b0 = 1) · r1,0(1) · r3,0(1) = 0.5 · 0.5 · 0.31 = 0.08

and
q0(0) = (1− P (b0 = 1)) · r1,0(0) · r3,0(0) = 0.5 · 0.5 · 0.69 = 0.17

6. This metric can finally be normalized to update probability of bit j to be 1 or 0:

P (bj = 1) =
qj(1)

qj(0) + qj(1)

Which gives, for example:

P (bj = 1) =
0.08

0.17 + 0.08
= 0.32
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7. Finally, the new LLR value of bit j can be recovered:

d′j =
1

2
· ln

(

1

P (bj = 1)
− 1

)

Here:
d′0 = 0.37

As d′0 > 0, bit 0 is likely to be equal to 0, which corresponds to the initial input of the example
(input bits were {0, 1, 0, 1}). Using the same procedure, soft bit 1 (d′1) can be recovered, and the
new value is d′1 = −0.31: bit 1 is likely to be 1, which also corresponds to the input sequence.

The above process can be repeated for each bit j of d′ until condition H · d′T = 0 is met. Finally,
the input sequence c can be recovered by taking the first K elements of d′. After channel decoding,
the LLR bits can be moved to hard bits using hard decision: cj = 1 if d′j < 0 and cj = 0 otherwise.

Algorithm 7 LDPC decoding

1: ⊲ First, recover d′ (d p) from d (d p is then a N + 2 · Zc long sequence)
2: d p = push zeros(d, 2 · Zc)
3: while H · d pT ! = 0 do
4: ⊲ Compute p(d′j < 0) for each j and put it in prob array
5: prob array = compute probabilities(d p)
6: for j ∈ [0, N + 2 · Zc − 1] do
7: ⊲ Update value of bit j with Belief Propagation algorithm
8: d p[j] = update value(H, prob array, j)
9: end for

10: end while
11: ⊲ Recover c from d′

12: for j ∈ [0,K − 1] do
13: if d p[j] > 0 then
14: c[k] = 0
15: else
16: c[k] = 1
17: end if
18: end for

Algorithm 7 represents the overall procedure for LDPC correction using Belief Propagation.
update value is the function that actually performs the Belief Propagation process described above.
In Algorithm 7, the decoding loop (line 3) is infinite, which means that if the received signal contains
too many errors, the decoder will try to decode indefinitely and never succeed.

In free5GRAN and other implementations, a maximum number of iterations has to be defined
so that decoder does not try indefinitely but stops after trying a given number of times, after which
it can be considered that decoding was not successful. This maximum number of iterations is a
trade-off between the decoding capacity (the highest the number of iterations, the highest decoding
capacity) and the algorithm complexity. A value between 5 and 10 can be typically used in usual
implementations.

4.4 Rate matching (Transport channel processing - TS38.212 section 5.4)

Rate matching (or rate recovering in decoding direction) is a process that enables to adapt the size of
the channel coding output (noted N) to the size of the allocated channel (noted E). If N > E, there
are too many bits to transmit compared to the allocation size, and some bits have to be punctured or
shortened. Otherwise, if E > N , there is too much space in the allocation compared to the number
of bits to be transmitted. In that case, the bits are repeated. The rate matching strategy depends
on the algorithm used for channel coding. The rate matching algorithm described in the standard
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can be directly implemented. Nevertheless, it is essential to understand the algorithm’s purpose and
concept.

4.4.1 Rate matching for polar codes (TS38.212 section 5.4.1)

The rate matching process for polar codes follows the standard (TS38.212 section 5.4.1 [11]). It is
detailed in appendix A.9.1.

4.4.2 Rate matching for LDPC (TS38.212 section 5.4.2)

The rate matching for LDPC follows the same purpose as for Polar Codes (i.e., adapting the transport
block size to the available size on the grid) but is done in a completely different way. The main
difference is that rate matching for LDPC will remove a significant part of the transport block payload,
enabling the transfer of the fewer possible data. Selecting the bits to transfer is based on a parameter
called the Redundancy Version (RVID).

Figure 4.4: HARQ buffer transmission, from [4], Figure 13.3

This selection is part of the upper layer HARQ process: the transport block is first transmitted
with RVID = 0. If the receiver cannot recover the entire message at the LDPC level, then it notifies
the transmitter to send the same transport block with RVID = 1 (which selects other bits to be
transmitted at the rate matching level). Then, the receiver can concatenate the data received with
RVID = 0 and RVID = 1 and try again to recover the missing data using LDPC decoding. This
process can be done 4 times until RVID = 3, and if the receiver cannot even decode after the 4
transmissions, then transport block transmission is reported as failed to the upper layers. Figure 4.4
represents the part of the buffer that is transmitted for each RVID. The systematic bits are the LDPC
input bits, and the other ones are the parity check bits. This process enables the reduction of the
transmission size. The role of rate matching for LDPC is to select which bits must be transmitted
depending on the HARQ state. This process is split into bits selection and interleaving, performed for
each code block, i.e., before code blocks concatenation. Details about bits selection and interleaving
can be found in appendix A.9.2.

4.5 Scrambling (Physical channel processing - TS38.211 6.3 and 7.3)

Scrambling consists in mixing an input sequence with a pseudo-random sequence. Its purpose is
to avoid confusion at the different levels of the PHY layer. The outputs of the scrambling of a
single input sequence with two different pseudo-random sequences will be highly different. In 5G, the
pseudo-random sequences are Gold sequences defined in TS38.211 section 5.2.1 [21] and depend on
an input parameter noted cinit.
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One primary use case is inter-cell confusion. The physical channels are scrambled with a pseudo-
random sequence generated with the cell’s PCI. Thus, the UEs can only decode the transmissions sent
by the cell to which they are attached. UEs located at the cell’s edges could receive transmissions
from other cells but might not be able to decode them as the PCI is different.

Scrambling a sequence a into a sequence a′ is done using the following equation:

a′i = (ai + si) (mod 2)

Where i ∈ [0, A − 1], A is a sequence size, and s is the scrambling pseudo-random sequence.
De-scrambling a sequence a′ into a sequence a is done by reversing a and a′ sequences in the equation.

4.6 Modulation (Physical channel processing - TS38.211 section 5.1)

The modulation is the process by which a sequence of Mbit bits is transformed into a sequence of
Msymb IQ samples. Different modulation schemes can be used depending on the channel’s quality and
the robustness requirement: the worst the channel is, or the highest the robustness requirement is,
the lowest the modulation order is. The modulation order m (also noted Qm in the standard) gives
the number of bits that are encoded per IQ sample: m = Mbit/Msymb.

Scheme Order

BPSK 1
π

2 -BPSK 1

QPSK 2

16-QAM 4

64-QAM 6

256-QAM 8

Table 4.3: Modulation schemes

4.6.1 Modulation mapping

The modulation mapping process is defined in TS38.211 section 5.1. It consists in taking sequences
of m bits and assigning them an output IQ sample following equations provided by the standard. It
is equivalent to assigning a sequence of bits to one point in the complex plane. Figure 4.5 represents
the mapping between bits sub-sequences and IQ sample for 16-QAM modulation. The set of all the
possible modulation points is called the constellation. For example, the sub-sequence [0, 1, 1, 0] is
mapped to complex 0.94− j · 0.31.

4.6.2 Modulation de-mapping

The modulation de-mapping enables the receiver to recover a sequence of Mbit bits from a sequence
of Msymb IQ samples. This process is done sample per sample. Given that channel is never ideal,
the received sample never corresponds precisely to the sample that the transmitter has sent, i.e.,
the position of the sample varies in the complex plane. Coming back to example in the last section
(4.6.1), if the sent sample is 0.94− j ·0.31, then the received sample might be 1.1− j ·0.45. The better
the channel conditions are, the closer to the sent sample the received one is. In these conditions,
modulation de-mapping tries to recover the sent bits based on the analysis of the received IQ sample.
Two different methods exist.

4.6.2.1 Hard modulation de-mapping

The first one, hard modulation de-mapping, is the most basic one, which is efficient in terms of
complexity but not in terms of accuracy. It approximates the received IQ sample to the closest possible
constellation point. Figure 4.6a illustrates hard modulation de-mapping for QPSK modulation. If the
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Figure 4.5: 16-QAM complex plane mapping

received sample is in the blue area, it will be approximated to the 0.7 − j · 0.7 QPSK constellation
point. The modulation de-mapping output will thus be [0, 1].

4.6.2.2 Soft modulation de-mapping

Even if hard modulation de-mapping is very efficient, it is not an operational algorithm as channel
conditions will highly impact its performances. The main issue is that hard modulation de-mapping
does not transfer to the channel decoder how close the received sample was to the constellation point,
so the channel decoder cannot estimate how reliable the values of the received bits are. For example,
considering Figure 4.6a, the hard modulation de-mapping does not make a difference between a sample
received in position 0.72− j · 0.69, which is close to the constellation point (and so the values of the
bits are reliable and not likely to be false) and a sample received at position 0.1−j ·0.15. They will be
both assigned the bit sequence [0, 1]. To solve this problem, soft modulation de-mapping is introduced
as a way not to allocate a fixed value to each bit but a value that represents the probability for the bit
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Figure 4.6: QPSK modulation de-mapping
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to be equal to 1 or 0. In such conditions, the channel decoder can rely on bits with a high probability
to be equal to 1 or 0 to correct errors of bits with the lowest probability. For soft modulation de-
mapping, bit values are called LLR, and the modulation de-mapping is not done sample per sample
(as for hard-demodulation) but bit per bit. A good overview of the LLR is given in [31]. The LLR
value of bit i for received sample r is defined as follows:

llri = ln

(

P (bi = 0|r)

P (bi = 1|r)

)

(4.1)

Where P (bi = 0|r) and P (bi = 1|r) denote the probabilities for bit i to be equal to 0 and 1.
According to [31], this leads to:

llri = ln







∑

k/ki=0 e
−‖r−c(k)‖2

2·σ2

∑

k/ki=1 e
−‖r−c(k)‖2

2·σ2






(4.2)

Where σ is the estimated noise variance. The sum is made across all the modulation points k for
which the value of bit i (ki) is 0 or 1 and c(k) gives the coordinates of point k in the complex plane
(and ‖r − c(k)‖2 is the distance from received sample r and the point k).

Given that computing the LLR for every bit can be highly complex, some approximations must
be made. A commonly used approximation is to consider that the most important element of the
sum in Equation 4.2 corresponds to the closest constellation point whose value is 1 or 0. The sum can
therefore be approximated by only keeping the element that corresponds to the closest modulation
point. The LLR value can therefore be approximated such as:

llri ≈ ln





e
−‖r−c(k0i )‖

2

2·σ2

e
−‖r−c(k1

i
)‖2

2·σ2



 ≈ 1

2 · σ2
· (‖r − c(k1i )‖2 − ‖r − c(k0i )‖2)

Where k0i and k1i are the closest constellation points to r whose values for bit i is 0 and 1.
Moreover, a second approximation can be done by not considering the noise (σ = 1). Finally, the

LLR approximation for bit i is:

llri ≈
1

2
· (‖r − c(k1)‖2 − ‖r − c(k0)‖2) (4.3)

The LLR value for bit i is therefore the difference between the distance from r to the closest con-
stellation point which value for bit i is 1 (noted d1) and the distance from r to the closest constellation
point which value for bit i is 0 (noted d0).

Let us consider an example where the modulation scheme is QPSK, and the received sample is
0.1 − j · 0.15 (red point in Figures 4.6). As the modulation is QPSK, there are two bits ([llr0, llr1])
to recover from each IQ sample:

• llr0 (Figure 4.6b): The two closest points which have 0 and 1 values for llr0 are −0.7 − j · 0.7
(value 1 for bit 0) and 0.7 − j · 0.7 (value 0 for bit 0). The distance from those two points are
d1 = 0.97 and d0 = 0.81. The LLR value for the first bit will be llr0 = d1 − d0 = 0.16.

• llr1 (Figure 4.6c): The two closest points which have 0 and 1 values for llr1 are 0.7 − j · 0.7
(value 1 for bit 1) and 0.7 + j · 0.7 (value 0 for bit 1). The distance from those two points are
d1 = 0.81 and d0 = 1.04. The LLR value for the second bit will be llr1 = d1 − d0 = −0.23.

In this example, the output LLRs for IQ sample 0.1− j ·0.15 are [0.16,−0.23]. It would have been
[1.4,−1.37] if the received sample had been 0.72− j · 0.69.

Finally, following Equation 4.1 and given that p(bi = 0|r) + p(bi = 1|r) = 1, the probability for
each bit to be equal to 1 or 0 is given by Equation 4.4.

p(bi = 1|r) =
1

1 + e2·bi
, p(bi = 0|r) = 1− p(bi = 1|r) (4.4)
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Received IQ sample r Bit Value p(bi = 1|r) p(bi = 0|r)

0.1− j · 0.15
b0 0.16 0.42 0.58
b1 −0.23 0.61 0.39

0.72− j · 0.69
b0 1.4 0.05 0.95
b1 −1.37 0.93 0.07

Table 4.4: LLR bits associated probabilities

In our example, the probability for the different bits to be equal to 1 or 0 is given by Table 4.4.
It can be observed that the probabilities associated with IQ sample 0.1−j ·0.15 are much closer to

0.5 than the probabilities associated with IQ sample 0.72−j ·0.69. As 0.5 is the non-determined value,
where the bit is as likely to be 0 or 1, the channel decoder considers that the bits whose associated
probability is the furthest from 0.5 are the most reliable. In this case, it can consider that LLR bits for
IQ sample 0.72− j ·0.69 are much more reliable than LLR bits for IQ sample 0.1− j ·0.15. Using hard
modulation de-mapping, those two samples would have been given the same value, and the reliability
information would not have been propagated back to the decoder. Soft modulation de-mapping is a
much more complex process, but it enables a much finer channel decoding and thus increases channel
quality.

The code snippet in appendix A.10 is an example from free5GRAN for 16-QAM soft modulation
de-mapping. The code is specific for each modulation scheme for performance reasons, but the process
is the same.

4.7 Channel mapping / de-mapping (Physical channel processing - TS38.211
6.3 and 7.3)

The purpose of channel mapping is to map different signals and channels onto a single OFDM grid.
This is used both for uplink and downlink transmissions at the gNodeB and UE side. Channel
mapping is the function performed by the transmitter (gNodeB in downlink direction and UE in
uplink direction), and channel de-mapping is performed at the receiver side.

4.7.1 Transmitter side

On the transmitter side, the channel mapper receives a list of channels and signals together with their
position in the slot OFDM grid. The mapper should place all the IQ samples at the given position
into the grid. The mapper upper-layer input is the list of channels IQ samples and positions.

4.7.2 Receiver side

On the receiver side, the channel de-mapper receives a list of channels and signals that must be
extracted from the grid. The de-mapper must put all the IQ samples from the OFDM grid in the
corresponding signal/channel buffer, based on the list of positions. The de-mapper input is the list of
channels’ positions, and the output is the channels’ IQ samples.

The code snippet in appendix A.12 shows the free5GRAN implementation of channel de-mapping.
Figure 4.7 represents the channel mapping and de-mapping process. On the left (channel map-

ping), the input channel IQ samples and their positions are placed in the OFDM grid. On the right
(channel de-mapping), the OFDM grid and the channel positions are used to extract the IQ samples
from the grid.

4.8 Channel estimation and equalization (Signal processing)

Upon reception of a physical channel (in the receiving direction, i.e., after channel de-mapping),
gNodeB and UEs have to estimate and equalize the channel before performing upper layers decoding.
This process aims to mitigate the effects of noise and interference over the signal. It relies on the
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Figure 4.7: Channel mapping and de-mapping

DMRS signal, sent together with the physical channels, which the receiver uses as a reference. Figure
4.8a and 4.8b represent a constellation before and after equalization for a QPSK modulation.

4.8.1 Channel estimation

The first step is channel estimation, which consists of computing a channel coefficient for each position
in the OFDM grid. The coefficient reflects the channel perturbations. Different methods exist for
channel estimation, and the one used in free5GRAN is zero-forcing, which is the most simple and
effective. Robert Lucky introduced it in 1965 [32]. It consists in computing the channel coefficients
by reversing the channel at the DMRS positions and propagating them over the whole OFDM grid by
performing linear interpolation. Figure 4.9 represents the overall procedure for zero-forcing channel
estimation.
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Figure 4.8: IQ samples constellation before and after equalization
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Figure 4.9: Channel estimation process for 4 symbols by 8 subcarriers OFDM grid (DMRS REs are in green)

The main steps are:

1. Compute the DMRS sequence that the transmitter has sent.

2. Compute the channel coefficients for the DMRS positions:

ĥi,j =
yi,j
xi,j

where ĥi,j is the estimated channel coefficient at OFDM symbol i and subcarrier j, xi,j is the
complex representation of the expected DMRS IQ sample previously computed and yi,j is the
complex representation of the actual received IQ sample. This computation is made for all the
(i, j) positions where DMRS has been sent.

3. Finally, those coefficients can be propagated over the whole OFDM grid (in positions where there
are no DMRS) by interpolating the computed coefficients in time and frequency directions.

The output of channel estimation is an OFDM grid that contains, for each RE, the associated
channel coefficient ĥi,j , which represents the perturbations implied by interference and noise.

The code snippet in appendix A.11 is the implementation of channel estimation in free5GRAN.

4.8.2 Channel equalization

Channel equalization consists in reversing interference and noise effects using the estimated channel
coefficients. Equalized IQ samples x̂i,j can be computed using the following Equation:

x̂i,j =
yi,j

ĥi,j

This must be done for all the (i, j) positions of the physical channel being decoded. Once channel
equalization has been performed, modulation de-mapping and upper layer processing can be done.

4.9 OFDM modulation (Signal processing - TS38.211 section 5.3.1)

When the different channels have been placed into a single OFDM grid, the frequency-domain signal
must be transformed to generate the corresponding time-domain signal. This process is called OFDM
modulation and is a two-step function. First, the frequency domain symbols are passed through an
iFFT and then, the cyclic prefix is added to each time domain symbol. All the time-domain symbols
can finally be concatenated. The OFDM modulation is defined in TS38.211 section 5.3.1 [21].

Before performing those two steps, the process should be initialized by computing the number of
iFFT elements and the cyclic prefix lengths for each symbol of the slot:
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• Fast Fourier Transform (FFT) size: the number of FFT elements is given by the SCS and the
number of RB in the band. For example, if the number of RB in the band is 50 (i.e. 12 ·50 = 600
subcarriers) then the FFT size should be the lowest power of two bigger than 600, i.e. 1024. The
600 subcarriers might be centered in the 1024 FFT elements and the other 424 elements should
be filled with zeros. Please note that the RF device should have been previously initialized
accordingly, by setting the sampling rate to 1024 × 30 · 103 = 30.72MHz, in case the SCS is
30kHz. That information is computed while initializing the RF device and physical layer.

• Cyclic prefix length: the cyclic prefix length depends on the FFT size, SCS and the symbol
position in slot. As specified in TS 38.211 section 5.3.1 [21], it is given by the following equation
(we consider the case of normal cyclic prefix length):

NCP (l) =

{

144 · κ · 2−µ l /∈ {0, 7 · 2µ}
144 · κ · 2−µ + 16 · κ l ∈ {0, 7 · 2µ}

Where NCP (l) is the cyclic prefix length of symbol l, µ is the numerology index (0 for a SCS of
15kHz and 1 for 30kHz for example) and κ = FFTsize/1024.
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Figure 4.10: OFDM modulation on the transmitter’s side

Figure 4.10 represents the OFDM modulation process. For each symbol in slot:

• Perform the iFFT on all the symbol’s subcarriers. The output is the time domain symbol,
without cyclic prefix. In Figure 4.10, this is represented with blue iFFT blocks for symbols 0
and 13.
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• Perform the cyclic prefix addition by copying the NCP (l) last samples and putting them in front
of the iFFT output (where l is the symbol index within the slot). For example, in Figure 4.10,
the cyclic prefix addition is the green block, and the cyclic prefix size is 2 for symbol 0 and 1
for symbol 13.

• Put the obtained time-domain symbol signal inside the time domain slot signal. For example,
in Figure 4.10, the final time-domain signal is represented in the lowest array.

The OFDM demodulation is the reverse procedure:

• Cyclic prefix addition is replaced by cyclic prefix deletion: the NCP (l) first samples of each
symbols are deleted.

• iFFT is replaced by FFT.

• The slot OFDM grid can be recovered when all the symbols FFT have been perfomed

An example code snippet from free5GRAN for OFDM demodulation can be found in appendix
A.13.

4.10 Conclusion

In this chapter, we introduced the different physical layer functions whose input, output, and behavior
are defined in the standard but whose implementation is not precisely defined. We explained the
purpose of the different functions and proposed concrete algorithms that work in our environment
inside a Faraday cage.

The algorithms where reside the highest challenges are channel decoding, modulation de-mapping
and channel estimation. Belief propagation and successive cancellation are used for LDPC and polar
decoding. Modulation de-mapping is approximated by only considering the two closest constellation
points. The zero-forcing method is used for channel estimation.

All the other functions are still crucial, but a smaller number of possible algorithms exist, and per-
formances mostly reside in algorithmic optimization. Those algorithms are implemented in
free5GRAN. From now on, all the minimal physical layer procedures and associated algorithms have
been detailed.
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Chapter 5

Software implementation and
architecture

Contribution

This chapter exposes the free5GRAN project’s structure and software architecture. The structure is
made so one can easily modify functions and algorithms in the free5GRAN project. This chapter also
overviews a possible physical layer architecture, which is a critical aspect of the PHY implementation.
The software architecture is modular so that it can be used for different services and uses multi-
threading so that free5GRAN can be easily deployed in dis-aggregated networks.

5.1 Introduction

This chapter introduces the project structure and software architecture that enables the implementa-
tion of the free5GRAN PHY layer. Indeed, a PHY layer is a system that includes different procedures
and algorithms. While building a system, understanding how to read the standards and implement
each component is half of the problem, which has received attention in the previous chapters. Un-
derstanding how to create an operational code structure that can be incremented components after
components is the other half and is the heart of this chapter. Different architectures can be used.
We expose the free5GRAN project structure and software design to give a concrete example, but
especially to show the problems that the design has to answer.

Two main challenges must be solved. The first one is that telecommunication systems evolve very
quickly, and the implementation is not a one-step task but rather an iterative process where each
component can be updated independently. Therefore, the project must be structured so it can be
easily incremented over the standard versions and global evolutions. The second main challenge is that
the PHY layer is highly constrained. Indeed, it is a near real-time application with high-performance
requirements, but some functions have high algorithmic complexity. The software architecture must
deal with those two constraints.

The proposed software design is not monolithic but extensively uses multi-threading for two rea-
sons. The first one is that the 5G standard introduces different base-station architectures, among
which dis-aggregated RAN receives a lot of attention. Therefore, even if the current PHY layer im-
plementation does not support functional split, the software architecture has been thought so that
it is easy to derive the current architecture to implement RAN splitting option 7.2x (which is the
option selected by the O-RAN alliance). The second reason is related to the high heterogeneity of
the services that can be provided over the 5G system. Indeed, as some services might have strong
requirements in terms of reliability and isolation, implementing a modular architecture enables to
dedicate resources to one or another service. Therefore, the current architecture can be easily derived
to allocate threads to services to strengthen the reliability and control over the PHY layer processing.

The first section of this chapter focuses on the project’s structure, whereas the second one inves-
tigates the software architecture and design.
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5.2 Project structure

free5GRAN architecture is split into two parts. The first part is the library which contains common
functions, and the second part is the implementation which contains custom code for the transmitter
and the receiver. free5GRAN code and documentation are available online (https://github.com/
free5G/free5GRAN). Figure 5.1 represents free5GRAN structure.
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Figure 5.1: free5GRAN architecture overview

5.2.1 Library

The library is a set of static functions and variables commonly used by both the UE and gNodeB. All
the functions have been designed to be used independently. It is split into four parts, which are phy,
utils, variables and asn1c.

5.2.1.1 phy

The phy library contains the code for PHY layer processing. It is split into four parts which represent
different 5G PHY components. Those parts are libphy for signal processing functions, physical channel
for physical channels processing, transport channel for transport channels processing and synchroniza-
tion for time and frequency synchronization procedures. The main functions of the different libraries
are:

• libphy : channel estimation, channel mapping/de-mapping and OFDM modulation.

• physical channel : PBCH, PDCCH, PDSCH and PUSCH encoding and decoding, defined in
TS38.211 [21].

• transport channel : BCH, DCI, DL-SCH and UL-SCH encoding and decoding, and all related
sub-functions, defined in TS 38.212 [11].

• synchronization: PSS, SSS and PRACH detection for time synchronization.

5.2.1.2 utils

It contains functions that are called at different levels of the code. It includes:

• Synchronization sequences generation: generates PSS, SSS and PRACH sequences for receiver
time synchronization, as defined in TS 38.211 section 7.4.2 [21].

• DMRS sequences generation: generates pilot sequences for channel estimation, as defined in TS
38.211 [21].

• Pseudo random sequence generation: generates the pseudo random sequence defined in TS
38.211 section 5.2 [21] based on an initialization value cinit.
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5.2.1.3 variables

It is a set of variables and data structures definitions used by both the library and implementation.
The most important variables are:

• Global variables defined in the standard.

• Polar coding matrices: Gn matrices, n ∈ [5, 10], for polar coding (defined in TS 38.212 section
5.3.1.2 - [11]) and corresponding inverse matrices for polar decoding.

• LDPC base graphs, defined in TS 38.212 section 5.3.2 [11].

5.2.1.4 asn1c

It contains the code and structures for encoding and decoding RRC messages. It uses the ASN1C
library [33]. In the current implementation, it is used by the receiver to decode SIB1 data. The library
can currently parse and encode all the RRC PDU messages and types defined in TS 38.331 section
6.2 [19].

5.2.2 Implementation

The implementation part provides code dedicated to the receiver. It uses objects that store different
processing information and exposes methods for implementing receiver functionalities. It is split into
two main classes that are rf and phy.

5.2.2.1 rf

This class represents the RF device. It stores information about RF device configuration and current
state and exposes methods for receiving and transmitting the signal. It implements an interface so
that different RF devices can be supported through the same methods calls. In the current version,
free5GRAN supports USRP B210 and uses USRP UHD library [34] for device exchanges.

5.2.2.2 phy

This class represents the PHY layer. It stores different cell’s and PHY layer status information and
implements the methods used by the gNodeB and the UE for signal transmission and reception.

5.3 Software architecture and design

This section introduces the software components defined to implement the different functions of the
PHY layer.

5.3.1 Data structures

One critical aspect of the implementation of the PHY layer is how signals, channels, and other
information are shared from one component to another. This section introduces the central data
structures used at both the gNodeB and UE sides.

5.3.1.1 Channel buffer

The first data structure is a structure that carries a channel and its metadata. This structure is called
channelElement and is described in Table 5.1. It is used for communicating data between the different
threads.

The data field is the main one and contains the IQ samples or bits, depending on the case where
this structure is used. All the other fields are metadata. It is used for placing the channel in the
OFDM grid (fields position, SFN, slot id and periodicity) and for building the DCI payload at the
gNodeB’s side. The RNTI field is used to identify a UE and the configuration field contains the
transmission configuration to be used for processing like modulation scheme and code rate.
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Parameter Description

data Vector of bits or complex IQ samples.

position Where to map the signal / channel into the slot OFDM grid.

sfn SFN where signal / channel should be mapped

slot id slot where signal / channel should be mapped

periodicity signal / channel periodicity in slots. If non-periodic signal / channel,
this is set to 0. For example, if PSS and SSS are sent every frame
(10ms) and SCS is 30kHz, then their periodicity is 20 slots.

RNTI UE’s identifier (if applicable)

Configuration Information about resources allocation (if applicable)

Table 5.1: channelElement data structure

Parameter Description

samples Vector of slot complex IQ samples.

sfn Slot SFN

slot id Slot ID

Table 5.2: slotElement data structure

5.3.1.2 Slot buffer

The second main data structure defined is used to transfer slots between components. The structure
is called slotElement and is described in Table 5.2.

The first field, called samples, contains the IQ samples of a slot, and the SFN and slot id fields
give the network’s time associated with the slot.

5.3.2 gNodeB
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Figure 5.2: gNodeB’s structure

Figure 5.2 represents the global software architecture of the gNodeB. The blue components are
threads, and the green are variables and buffers used to communicate between the threads.

99



CHAPTER 5. SOFTWARE IMPLEMENTATION AND ARCHITECTURE

The different components are:

• Threads:

– The main thread: it is responsible for initializing all the components and threads. In the
future, the main thread will also implement the PHY configuration API and the MAC-to-
PHY API.

– Channel mapper thread: it is a thread that continuously maps the different signals and
channels to be sent on the OFDM grid and performs OFDM modulation. This thread is
designed to support all the possible signals and channels. It operates slot by slot.

– One thread for BCH and PBCH encoding.

– One thread for DCI / PDCCH payload generation and encoding. It gets the resource
allocation from the UL/DL-SCH buffer and the corresponding RNTI and builds the DCI
payload, performs DCI and PDCCH encoding and computes the IQ samples positions in
the OFDM grid. The encoded channel and DMRS, together with their position, are pushed
to the Channel mapping buffer.

– A DL-SCH / PDSCH thread which performs DL-SCH and PDSCH encoding of the trans-
port block and computes the position in the OFDM grid. The encoded channel and DMRS,
together with their position, is pushed to the Channel mapping buffer.

– A RX thread which receives slots from the RF device and pushes them into the RX buffer.

– A PUSCH extraction and decoding thread which extracts the uplink resource allocation
given by the UL/DL-SCH buffer. It waits grant’s time has come and then extracts the
corresponding IQ samples, performs PUSCH/UL-SCH decoding and finally pushes the
transport block to the UL/DL-SCH buffer.

– A PRACH thread which receives PRACH transmissions. It pushes the information to the
main thread using the PRACH buffer.

• Buffers:

– A channelElement buffer for channel mapping (called Channel mapping buffer in Figure
5.2) which is used by the different threads to push data to the channel mapper thread.

– A channelElement buffer used by the Main thread to push BCH payloads to be transmitted
(called BCH buffer in Figure 5.2).

– A channelElement buffer used by the Main thread to push downlink transport blocks to
be transmitted and uplink allocations to be notified (called UL/DL-SCH buffer in Figure
5.2).

– A slotElement buffer called RX buffer.

5.3.2.1 Channel mapper

Algorithm 8 details the channel mapping thread’s main processing steps (where the input parameter
mappingChElemsBuff is the Channel mapping buffer).

Line 6, the first transmission time is initialized to 0.5ms in the future, which is the estimated time
of the first iteration.

For each iteration, the first step is to wait (line 9) for the next slot transmission time to be less
than 0.5ms in the future. This is the first flow control step: channel mapping must remain consistent
with the current network slot. Without control, the channel mapping could be done very quickly and
take a huge advance compared to the current network slot and SFN, and the channel mapper might
become inconsistent. Therefore, it is required to wait to be close to the transmission time of the slot
for performing channel mapping and OFDM modulation. In free5GRAN, we wait to be less than
0.5ms (which corresponds to one slot when the SCS is 30kHz) before the transmission time of the
slot.
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Algorithm 8 gNodeB channel mapper

1: ⊲ mappingChElemsBuff is the bufferElement Channel mapping buffer
2: function channelMapper(mappingChElemsBuff)
3: ⊲ Initialize sfn and slot ID
4: sfn = 0
5: slot id = 0
6: ⊲ Initialize next slot starting timestamp
7: nextSlotT ime = getCurrentT ime+ 0.5ms
8: while true do
9: ⊲ Wait next slot is less than 0.5ms in the future

10: while nextSlotT ime− currentT ime > 0.5ms do
11: sleep(5us)
12: end while
13: toSend = ∅
14: ⊲ Put in toSend all the buffer elements with current SFN and slot
15: for bufElem ∈ mappingChElemsBuff do
16: if bufElem.sfn = sfn and bufElem.slot id = slot id then
17: toSend.push(bufElem)
18: if bufElem.periodicity = 0 then
19: ⊲ If non-periodic element, remove it from buffer
20: mappingChElemsBuff.remove(bufElem)
21: else
22: ⊲ If periodic element, setup next element occurence
23: [bufElem.sfn, bufElem.slot id] = next occ(sfn, slot id, bufElem.periodicity)
24: end if
25: end if
26: end for
27: grid = init empty grid()
28: ⊲ Place all the elements in one grid (channel mapping)
29: for elem ∈ toSend do
30: place in grid(elem, grid)
31: end for
32: ⊲ Initialize an empty time domain slot
33: tdSlot = []
34: ⊲ For each symbol in slot
35: for symbol ∈ grid do
36: ⊲ Perform iFFT, add cyclic prefix and push back symbol into time domain slot
37: tdSymbol = ifft(symbol)
38: tdSymbolCP = add cp(tdSymbol)
39: tdSlot+ = td symbol cp
40: end for
41: ⊲ Transmit signal over the air
42: tx send(tdSlot, nextSlotT ime)
43: ⊲ Update next slot time, sfn and slot ID
44: next slot time+ = slotDuration
45: iterate sfn slots(sfn, slot id)
46: end while
47: end function
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Line 22, for periodic channels, the channel mapper will set the SFN and slot ID of the element
to the next occurrence. For example, if PSS is sent every two frames on slot ID 3, then the main
thread will push an initial occurrence into the Channel mapping buffer with SFN 0 and slot ID 3 and
periodicity of 40 (if we consider a case where there are 20 slots per frame). The channel mapper will
not delete the PSS from the buffer as its periodicity is not equal to 0, but it will iterate the SFN and
slot ID to the next occurrence, that will be, in that case, SFN 2 and slot ID 3 (which corresponds to
40 slots after slot 3 of SFN 0).

5.3.2.2 Downlink data transmission

Figure 5.3 represents what are the different components used for downlink data transmissions and
associated processes. For the sake of simplicity, the channel mapping thread is not represented.
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Figure 5.3: Overall gNodeB’s procedure for downlink communication

5.3.2.3 Random access

Figure 5.4 represents how the different components interact together for the RA procedure. As the
figure is complex, the procedure steps have been numbered, the downlink threads (DCI / PDCCH
and DL-SCH / PDSCH threads in Figure 5.3) have been merged in one downlink thread and the
channel mapping thread is not represented. The process is:

1. PRACH thread receives PRACH transmission. It pushes the information to the main thread
using the PRACH buffer.
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Figure 5.4: Overall gNodeB’s random access procedure

2. Main thread forwards RA request to MAC layer and waits RAR.

3. It pushes the RAR into the UL/DL-SCH buffer. It includes the downlink RAR response and
the uplink grant for RRC Setup Request.

4. DCI/PDCCH and DL-SCH/PDSCH encoding are performed for RAR transmission. The two
channels are pushed into the Channel mapping buffer for transmission.

5. PUSCH thread extracts the uplink resources allocation pushed in step 3 by the main thread. It
waits grant time has come and then extracts the corresponding IQ samples and perform PUSCH
decoding.

6. After PUSCH decoding, UL-SCH decoding is performed and the transport block is pushed to
the main thread.

7. The main thread forwards the RRC Setup Request to the MAC layer and waits for RRC Setup
message.
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8. It pushes the message in the UL/DL-SCH buffer.

9. Downlink threads handle the message by creating the DCI payload and performing DCI/PDCCH
and DL-SCH/PDSCH encoding. The two channels are pushed into the Channel mapping buffer
for transmission.

5.3.3 UE

!"#$$%&'(#))%*

!"#$$%&'(#))*$+'+,--%*

./

0#1$'

.2'3%415%

678!9

67!!9

,-*(#-. /&01/'+,--%*

8:$5"*;$1<#=1;$
>3?,@=

@&;=@

2.$3 /&01/'+,--%*

4562!7

+,--%*

4!8 +,--%* 6A8!9

9562!7 +,--%*

B'C"*%#3@B'3"#$$%&:&%(%$1 +,--%*@

B'/&01:&%(%$1 +,--%*@

Figure 5.5: UE’s overall structure

The UE’s architecture, represented in Figure 5.5 differs from the gNodeB’s one. The main dif-
ference is that the UE’s structure must include the synchronization related components. The main
elements are:

• The main thread. As for the gNodeB, it initializes the physical layer and will, in the future,
implement the MAC and RRC API.

• The second element is the RX thread. This thread is responsible for receiving the signal from the
RF device and putting it into a primary shared buffer. Once started, this thread continuously
receives buffers of samples from the RF device. After receiving one buffer, it tags it with the
current internal SFN and slot ID (initialized at 0 at the beginning) and pushes it into the shared
buffer.

• The primary slotElement buffer (called Primary slots buffer in Figure 5.5), used by the RX
thread to share slots with other threads. It is called primary because, at this level, the synchro-
nization is not done. This means that the network’s SFN and slot ID are unknown, and the slot
is not cell-synchronized, i.e., it cannot be used to recover the slot’s OFDM grid.

• The synchronization thread. It will be responsible for initial and continuous synchronization.
Once started, this thread first performs PSS and SSS lookup within the signal as well as MIB
decoding. This is initial time and frequency synchronization, and it enables to know where
a cell’s synchronized slot starts within a primary slot. Then, the periodic re-synchronization
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process starts: an infinite loop continuously searching for PSS and SSS signals to keep time and
frequency synchronization.

• The slots adjustment thread is responsible for building the cell’s synchronized slots and tagging
them with the accurate SFN and slot ID. This thread uses synchronization information provided
by the synchronization thread and the Primary slots buffer.

• The synchronized slotElement buffer (called Sync slots buffer in Figure 5.5). It contains the
cell’s synchronized slots pushed by the slots adjustment thread.

• The PDCCH thread. It continuously blind searches for DCI transmissions. The search space
and CORESET to be used for blind search are given by the RRC Setup message.

• A DCI channelElement buffer (called DCI buffer in Figure 5.5) used by the PDCCH thread to
push decoded DCI payloads. This buffer is connected to the PDSCH thread for downlink DCI
and to the main thread for uplink DCI.

• A PDSCH thread: get downlink resource allocation from DCI buffer and extract the corre-
sponding IQ samples. Perform PDSCH and DL-SCH decoding.

• The DL-SCH channelElement buffer (called DL-SCH buffer in Figure 5.5) used by the PDSCH
thread to push downlink transport blocks to the main thread.

• The UL-SCH channelElement buffer (called UL-SCH buffer in Figure 5.5) used by the main
thread to push uplink transport blocks to be transmitted.

• PUSCH thread: get uplink transport block from the UL-SCH buffer, perform UL-SCH encoding
and PUSCH encoding.

• A channelElement buffer for channel mapping (called Channel mapping buffer in Figure 5.5)
and uplink channels transmission.

• Channel mapping thread: as for the gNodeB, a channel mapping thread is required to get all
the uplink channels of the UE, place them into the OFDM grid, perform OFDM modulation
and transmit them to the gNodeB.

5.3.3.1 Slots adjustment

Figure 5.6 represents the overall operation of the slots adjustment process. For the sake of simplicity,
the synchronization thread is not represented but it is used to provide synchronization information
for slots cutting.

5.3.3.2 Data communication

Figure 5.7 represents how the different threads work together for uplink and downlink data transmis-
sions. The channel mapper and RX thread are not represented for readability reasons. The downlink
process is:

1. The DCI thread blind searches for DCI transmission.

2. The PDSCH thread extracts and decodes the transport block.

3. The main thread pushes the received transport block to the MAC layer.

The uplink process is:

1. The DCI thread blind searches for DCI transmission.

2. The main thread notifies the MAC layer and waits for the transport block to be provided.

3. The PUSCH thread encodes the transport block and pushes it to the channel mapping thread.
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Figure 5.6: Overall UE procedure for slots adjustment

5.4 Conclusion

In this chapter, we introduced the free5GRAN project’s structure and software architecture. Those
two aspects are critical because the physical layer is a highly constrained system that evolves over time.
Therefore, the project’s structure and software architecture are of the utmost importance to guar-
antee that the physical layer can be easily updated over time and can address multiple performance
constraints.

The project’s structure is built so the functions and algorithms can easily be modified. It should
enable one to implement and test new algorithms and also to implement future standards evolution.

The software architecture is built with modularity so that the PHY layer can be adapted to the
different services and slices. Moreover, it relies on multi-threading, so the current architecture can
easily be modified to implement a RAN splitting ready base-station.

This chapter concludes the first part of this thesis. First, the minimal procedures and functions
chaining defined in the standard have been reviewed to provide a global understanding of the physical
layer operation. Then, the functions whose algorithm is not defined in the standard have been detailed,
and a possible implementation has been proposed. Finally, this chapter proposed an architecture that
is used in free5GRAN to put together the procedures, mechanisms and algorithms in order to build
a minimal gNodeB’s and UE’s 5G physical layer.
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Figure 5.7: Overall UE’s procedure for downlink and uplink data communications
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Introduction

The main evolution between 4G and 5G is the high heterogeneity of the terminals that might connect
the network. Those terminals must not connect to the same data network; some connect to the
internet while others connect to private data networks. Furthermore, the user traffic associated with
the multiple terminals will be highly different, and some might be critical. Therefore, it is necessary
to reproduce, on the 5G system, the concept of Virtual Private Network (VPN), which already exists
on usual IP networks. Such VPNs have two main aspects. The first one is that it enables to create
a virtual network between one or multiple data networks hosting applications, and the terminals,
such as the public infrastructure is transparent for UEs, that are therefore working as if they were
connected to a private mobile network. The second aspect is that it enables isolating and identifying
the different user traffics on top of a single infrastructure.

Implementing such VPNs would not have been possible in 4G. Indeed, in 4G, the network is
hardware-centric, which means that the different functions are grouped and implemented in dedi-
cated hardware devices. The architecture is built so that the devices are close enough to the UE to
provide better performances and are centralized enough so that the operator maintains a consistent
understanding of the network. Therefore, it is impossible to dynamically place and dedicate resources
to one logical network. The implementation of VPNs is therefore static and highly expensive, as it
must be done by deploying dedicated hardware. Virtualization is the leading technology that makes
VPNs possible in 5G. Indeed, in 5G, the different network functions are microservice software appli-
cations implemented to be executed on generic hardware. The way the functions are grouped and
placed in the architecture is flexible, enabling to split the control and user plane functions. This split
is named CUPS.

The virtualization technologies enable much better flow management and can be used to implement
VPNs. Indeed, given that the constraints are on the user’s traffic, user plane functions can be dedicated
and optimized (configuration and position in the network) to one or another virtual network, whereas
the control functions can be shared to keep a global view of the network. In 4G, dedicating a
function to a virtual network requires the deployment and dedication of a device, whereas in 5G,
dedicating a function can be made by deploying a software application on top of an existing generic
hardware platform. Furthermore, cloud technologies can be leveraged to ease the provisioning and
orchestration of the different functions and virtual networks. The two requirements for deploying
VPNs on the network are that generic computing devices must be deployed at the different levels
of the infrastructure (edge, middle-edge, and cloud) so that the functions can be placed based on
the requirements. The second requirement is that the operator must be able to deploy and manage
functions with ease and flexibility.

The 5G standard introduces network slicing as the mobile networks implementation of such VPNs.
Indeed, network slicing aims at building virtual networks on top of the 5G physical infrastructure.
Furthermore, those networks are private as they can be dedicated to one customer willing to connect
a set of terminals to a specific data network. However, in IP networks, VPNs mainly refer to the
topology which connects multiple sites to the same network whereas, in 5G, network slicing represents
the logical networks connecting terminals to data networks but also the associated service and QoS
profiles.

Network slicing is achieved by allocating resources to one or multiple slices. In this part, we first
detail the network slicing concept and propose a review of the different resources allocated to network
slices. Then, we introduce a model for RAN resource allocation which takes into account network
slicing constraints. Finally, we propose a supervision system that controls the resource allocation
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quality to strengthen the network’s reliability.

110





Chapter 6

RAN architecture for network slicing

Contribution

In this chapter, we first clarify the concept of network slicing and define which type of network slicing
might be achievable in the first deployments. Then, we explain how it can be implemented in the base
station. Given that network slicing resides in resource allocation, we review the different resources
that the base station can associate with slices. Furthermore, we also detail the technologies that
can be used for associating resources to slices. Finally, we use the knowledge acquired during the
implementation of the physical layer to review some key configuration aspects of the radio interface
and PHY layer that can be customized to support heterogeneous QoS profiles.

6.1 Introduction

Network slicing is one of the central technology introduced in 5G. It enables to build logical networks
on top of a single physical infrastructure that connect terminals to one or multiple data networks.
Those logical networks can be customized to fit specific service requirements. Operators will use this
technology to address new verticals. Given that network slicing is a critical component of the 5G
system, it has received much attention. Considerable work has been done to explain how network
slicing can be used to address new verticals. However, there is a lack of clear information about how
network slicing can be implemented.

In the standard, it is defined that network slice instances are a set of resources that are associated
with a slice. Therefore, the implementation of network slicing resides in resource allocation. However,
it is not trivial to determine the different kinds of resources that can be used for network slicing
implementation. Furthermore, some techniques and technologies must be used to associate resources
with slices for each kind of resource.

This chapter first clarifies the concept of network slicing. Then, the different resources used for
network slicing are reviewed to clearly explain how network slicing can be implemented. The different
technologies and techniques that can be used to share or dedicate the resources to one or another slice
are detailed for each type of resource. Finally, some key configuration aspects of the physical layer to
support diverse network requirements are reviewed.

This work focuses on the base station’s perspective and does not investigate the UE’s and CN’s
levels. It is considered that a UE does not require access to multiple slices simultaneously and that
the CN is deployed and provisioned to support the different logical networks.

6.2 Network slicing

A network slice is defined in TS23.501 [6] as a logical network that provides specific network capabilities
and characteristics. Similarly, the network slice instance is a set of network function instances and the
required resources (e.g., compute, storage, and networking resources) which form a deployed network
slice. It can be understood as the mobile networks’ implementation of the usual IP networks’ VPNs.
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Slice Service type SST value

eMBB 1

uRLLC 2

mMTC 3

V2X 4

Table 6.1: Standardized SST (TS23.501 Table 5.15.2.2-1 [6])

Therefore, network slicing refers to the ability of the 5G network and the underlying infrastructure
to operate multiple logical networks. A network slice is a logical network between terminals and one or
a couple of data networks, and the network slice instance refers to the different resources associated
with a network slice. Two parameters define a network slice. The first one is the service type to
which the slice is dedicated. It refers to the addressed business vertical and corresponding kind of
UEs that are likely to connect the slice. For example, all the smartphones will be associated with the
same service type, and the connected vehicles will be associated with another. Multiple types of user
traffic can be supported within one kind of service but must have close network requirements and
constraints. The second parameter that defines a slice is the customer or set of customers to which it
is associated. The main group of customers is the public end-users, and another group could be prime
users. The customer can also be companies like car manufacturers in the case of connected vehicles.

In the standard (TS23.501 [6]), a slice is identified by its Slice Service Type (SST) and a Slice
Differentiator (SD). The SST defines the slice associated service type and can be either a standardized
value, as detailed in Table 6.1, or an operator-specific value. The SD is an operator-specific value
that identifies a customer or group of customers with a given SST. The network manages the different
slices based on the identifier (SST + SD). Each network function exposes its list of supported slices,
and the network will allow a UE to connect a slice based on the availability of network functions that
support the required slice.

A network slice creates a logical network between terminals and one or multiple data networks.
When a UE connects the network and is associated with a specific slice, multiple PDU sessions are
created from the terminal to the different data networks that the UE can connect. The PDU session
can be understood as being a session of the VPN between a UE and a data network. The QoS profiles
corresponding to the different user traffic types likely to go through a specific data network are
configured for each PDU session. For example, two PDU sessions might be defined for smartphones,
one toward the IP Multimedia Subsystem (IMS), where the configured QoS profiles are signaling and
conversational voice (5QI 5 and 1) and another one toward the internet, where the configured QoS
profiles are video streaming and TCP traffic (5QI 8).

As long as possible, the different slices are deployed using shared resources, granting the best
optimization and flexibility. However, some slices require dedicated resources for two main reasons.
The first one is that some slices have strong isolation, control, and reliability constraints, which
imposes the use of dedicated resources. The second reason is that the user traffics associated with the
different slices can be so heterogeneous that the traffics requirements respect cannot be guaranteed
using shared resources. Therefore, the two main challenges while implementing network slicing are
the association of the different resources (like network or computing resources) with the slices and the
configuration of the resources to support a single or set of services.

In this chapter, we first review the different kinds of resources to study which can be shared
between the slices and which must be dedicated. Then, some key configuration aspects of the PHY
layer are detailed to support the different services.

6.3 Scope of work

Given that the main concern about network slicing is resource allocation, it is essential to precise
which kind of network slicing is considered in this work so that resource allocation can be made
accordingly. The global objective, which is the object of much research, is dynamic network slicing:
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a UE connects the network and requires access to a given slice and service. Then, the network
dynamically and autonomously allocates the resources to the UE depending on the required service
type. Furthermore, all the slices are available everywhere in the network, and every cell has to be able
to serve all the slices simultaneously. This works for non-critical and weakly constrained slices: all
the slices are multiplexed by the base-station and access the network one after another. However, for
highly constrained slices such as uRLLC, it is a complex problem regarding scheduling and resource
allocation. First, this would require the operator to provision low latency capabilities everywhere in
the network, which would have a considerable cost. Furthermore, this would be achievable with one
uRLLC slice activated among other eMBB slices, as the network can prioritize uRLLC. Nevertheless,
this becomes highly challenging if there is a massive amount of uRLLC slices that are activated
simultaneously in a single cell, as the network will have to prioritize uRLLC slices among other
uRLLC slices, which will break the reliability constraint of such services.

Therefore, it appears that dynamic network slicing, thought as ”every slice can be activated
everywhere at every time”, might be tricky with the current technologies. In this chapter, we assume
another kind of network slicing must be considered, at least for the first deployments. This other type
can be called semi-static network slicing and is mainly based on provisioning. The operator knows
which slice can be activated in which cell and at what time. This means that for a given cell in
the network and at a given time, the operator knows the slices that can be activated and provisions
the network so that the cell can serve all the potential slices. Furthermore, each slice’s services and
underlying traffic constraints must also be known in advance.

It is semi-static as the presence of a slice in a given cell is not fully dynamic and requires a call
admission function. Such function validates that the slice required by a UE is active and that there
are enough resources in the cell to serve the UE. However, it is not fully static as the presence of a
slice in a cell can evolve with time as long as the operator has the agility to properly re-provision the
network. Furthermore, the slice-dedicated resources are dynamically preempted by the slice when it
is activated but can be used by other slices when the slice is not activated. On the other hand, this is
not fully dynamic as any slice cannot be activated anytime in every network cell. This is a radically
different way of thinking about network slicing. In this chapter, it is assumed that the operator knows
in advance the different slices that can be activated in an area and places the resources (like base
stations, CPUs, or memory) depending on the slices’ requirements.

Furthermore, we assume that each network slice is associated with a single application’s type and
that there is no heterogeneous traffic multiplexing within one slice. We propose a slicing implemen-
tation architecture for one cell where three slices can be activated: eMBB, mMTC and uRLLC. This
is a fundamental assumption for our work, all the architecture elements and propositions consider
semi-static network slicing.

6.4 Resources association

This section investigates how the different resources used by a 5G base station can be associated
with the different slices. In addition, the cases where the resources cannot be shared between slices
are discussed. The two main features that the network must provide to the slices are isolation and
heterogeneous traffic multiplexing.

At the RAN level, the main conflict between heterogeneous traffics requirements and constraints
is between throughput (network’s capacity) and reliability and delay. Indeed, the approach is not
the same while building the network for high throughput and low latency services. To implement
high throughput services, the usual question is how to optimize resource sharing to maximize the
throughput while keeping a reasonable latency. On the other side, to implement low delay services
with high reliability, it is first considered that the resources are dedicated to ensure network control,
and then the question is how much the resources can be shared while still respecting and controlling
the delay requirements.

This section investigates how the different resources can be used to implement a multi-slice base
station with the objective of explaining how to reconcile the two approaches for deploying low latency
and high throughput services on a single system. Table 6.2 gives an overview of the different resources
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Level Associated resources

RF RF device

Radio interface BWPs

Network RAN layers instances

System Computing resources and OS scheduler

Software Software design and algorithms

Cross-haul Segment routing policies and physical nodes

Table 6.2: Resources associated with the slices in the base-station

associated with the slices.

6.4.1 RF device and RF scheduler

With the virtualization of the network functions, the RF device becomes the only hardware component
of the base station. It is possible to deploy a dedicated RF device for each slice or service type,
ensuring isolation between the slices. However, this does not enable to manage the network and slices
dynamically. Therefore, this work proposes sharing the RF device between the slices. The operator
deploys the RF devices across the network to guarantee a good coverage, after which it manages the
different slices without needing on-site intervention.

Nevertheless, the RF device can be slice-aware. Indeed, most of the time (especially in the context
of open-RAN), the RF device is connected to the base station through a transport network that carries
the signal to be transmitted and received. A slice-agnostic RF device would have a single data flow
with the base station to transfer IQ samples of the signal, whereas a slice-aware RF device has one
data flow per slice. Therefore, in case of troubles on the transport network, both the RF device and
base-station can select which slice to prioritize. This guarantees the prioritization of the critical slices
for the access to the RF device. This mechanism requires the use of a flexible RF scheduler, which
manages the access of the different slices to the transport network based on the transport network’s
health and slices requirements. It is called flexible as it must be able to support the dynamic creation,
deletion, and adjusting of the different slices, which might imply an update of the prioritization rules.

6.4.2 Radio interface resources

On the radio interface level, the main resource used by the base station is the bandwidth. There are
two ways to share the bandwidth between different UEs:

• First, in usual OFDMA systems, like 4G or 5G, the bandwidth is shared between all the terminals
by scheduling the access to the resource at the MAC layer. In this configuration, the radio
resource is shared between all the slices and the MAC scheduler ensures the respect of the
different services requirements.

• The second way is to use BWPs, introduced in section 1.3.2.2.3. A BWP is a part of the cell’s
bandwidth with a specific configuration. The purpose of the BWP is three-fold. It can first be
used for energy saving as the full cell’s band is split, and UEs with power consumption constraints
are operating on a portion of the band and not on the full cell’s bandwidth which reduces the
power consumption. Furthermore, it can be used to have multiple radio configurations within a
single cell. Finally, it can isolate the resources between different groups of UEs.

Even if sharing the resources between the slices is the best in terms of optimization and flexibility,
it does not ensure the respect of the different slices heterogeneous traffics and isolation requirements.
In this chapter, it is proposed to specify BWPs to the different types of services. Two BWPs are
defined for the eMBB and mMTC services, where the corresponding radio configuration is optimized
for high throughput and low energy consumption. The different slices associated with those two
service types share the same BWP given that there is no strong isolation requirement. Finally, each
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uRLLC slice will be dedicated a BWP. Beyond optimizing the radio configuration, the objective is to
grant isolation to the uRLLC slices. In this chapter, we consider that there are only three slices that
are one eMBB slice, one mMTC slice, and one uRLLC slice. Three BWPs are defined, and each slice
has its dedicated BWP.

In a more general perspective, BWPs can be configured for each type of service with close un-
derlying traffics requirements. When the associated slices do not require isolation, the BWPs are
shared between the slices to increase the flexibility and optimization of the radio resources. However,
it is possible to allocate radio resources to one or another slice which requires strong isolation by
dedicating a BWP to a single slice.

6.4.3 RAN resources

At the RAN level, the available resources are the protocol stack layers. In usual systems, the protocol
stack is monolithic, which means that all the slices share a single protocol stack. However, in 5G,
virtualization and functional split can be leveraged to dedicate the network’s resources to one or
another slice. This section reviews the functional split in the context of network slicing, and a RAN
stack composition is proposed.

6.4.3.1 5G functional split

As introduced in section 1.4, 5G functional split gives the ability to split the RAN stack into different
groups of functions or layers. The RAN implementation becomes flexible and must not be mandatory
deployed with a monolithic architecture. This work considers that the functions are split and grouped
by layers (PHY, MAC, RLC etc).

5G functional split enables the implementation of different layers in different software applications
that can be deployed on different physical devices. Furthermore, it enables the building of a flexible
RAN architecture as there can be multiple replicas of a single layer in a single RAN stack. The unique
constraint to integrate multiple replicas of a single layer in a stack is that upper and lower layers must
be able to determine which replica of the layer they must communicate with. For example, multiple
MAC layers can exist within one RAN stack as long as the RLC layer can distinguish which MAC
layer to use for each payload (it can be based on the payload’s DRB for example). Moreover, the PHY
layer must also be able to send the uplink transport block to the correct MAC layer. This can be
done as the uplink allocation is received from the MAC layer. The PHY layer can therefore forward
the uplink transport block to the MAC layer that communicated the corresponding uplink allocation.

Multiple versions of a single layer can be used to dedicate resources to one or another slice or
type of service. Furthermore, the deployment and software implementation options used for one layer
might differ (and be specific to a slice or service) from one version to another. Therefore, in this
section, a layer instance is defined as being one version of a protocol layer that can be optimized for
one or another slice or type of service. In this context, RAN layers can be considered as being network
resources that the gNodeB can associate with slices.

5G functional split is thus leveraged as the 5G RAN stack of a single cell can be composed of
common layers instances (shared for multiple slices) or slice-specific layers instances (dedicated to one
slice). Dedicating layer instances to one slice provides isolation between slices and better controls the
available resources and the processing delay. Hence, it might be used for low delay slices. On the other
side, for high throughput slices, it is worth sharing the instances as it enables a better optimization
of the resources to provide the highest throughput.

6.4.3.2 RAN stack composition

Given that the different layers can be used with flexibility, depending on the requirements and con-
straints, a possible RAN architecture composed of common and slice-specific layers instances is pro-
posed in this section. Similar architectures have been proposed for 4G in [35]. The main difference
is that the functional split is standardized in 5G, whereas the work in [35] is a non-standardized
modification of the 4G RAN stack.
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Figure 6.1: Proposed RAN architecture

Figure 6.1 represents the RAN architecture. It is proposed to share the operating band and RF
device between the different slices. Depending on the constraints, other resources and layers can be
shared or slice-specific. The three lowest components are the RF device and the two RF flexible
schedulers introduced in section 6.4.1.

At the PHY layer, it is crucial to split the components between the uRLLC slice and the others
as there are many functions whose performances regarding delay and throughput profoundly depend
on the implementation. Dedicating a PHY instance to one or another slice enables to implement
different algorithms for each function depending on the constraints. Furthermore, the PHY layer
is usually implemented in hardware. However, with the rise of virtualization technologies, more
and more implementations are either hybrid (software using hardware acceleration) or full software
implementations. Each of these three options has pros and cons and better corresponds to one kind of
requirement (like reliability, performance, or flexibility). Therefore, dedicating a PHY instance to a
slice enables the use of different kinds of implementations (hardware, hybrid, or software) for different
slices.

In the architecture presented in Figure 6.1, single MAC layer instances have been deployed for
each slice. The main reason for deploying dedicated MAC layer instances is that MAC contains
the RAN scheduling algorithm. This function is a key component for achieving network slicing
as it is responsible for allocating resources to UEs and respecting slices requirements. A lot of
research projects focused on the design of scheduling algorithms that support heterogeneous slices.
The scheduler must provide isolation between the slices and serve heterogeneous traffics but it should
also provide the ability to compute outage probability for network control and reliability. Therefore,
this work proposes deploying one MAC instance for each slice to have a slice-dedicated MAC scheduler.
The classic Proportional Fair algorithm can be used for the eMBB slice as this is a good trade-
off between throughput maximization and network accessibility. An introduction of this algorithm
applied to OFDMA systems is given in [36]. For the uRLLC slice, the Earliest Deadline First algorithm
appears to be a good option to respect the delay constraints. An introduction to this algorithm is
given in [37]. Finally, for the mMTC slice, the scheduling algorithm might depend on the traffic type:
it will not be the same if there is mainly uplink traffic, downlink traffic, or a balance between uplink
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and downlink.
From the RLC layer, it is proposed to share all the components between the eMBB and mMTC

slices and to deploy dedicated instances for the uRLLC slice. Indeed, the layers above RLC can be
considered slice-agnostic as they mainly contain encapsulation, de-capsulation, and flow management
functions. Nevertheless, it is still interesting to dedicate layers’ instances to the uRLLC slice as
it enables first to optimize the component for real-time processing but also to isolate the network
resources for the critical slices. In a more general perspective, it can be considered that the layers
above RLC are slice agnostic for non-critical slices, but it is still worth dedicating resources to critical
services.

6.4.4 System resources

On the system level, there are two kinds of resources that the base station uses. The first type is
computing resources like Central Processing Unit (CPU) and memory and the second one is Operating
System (OS) scheduler, which manages the access of the instances to the computing resources. Those
two kinds of resources are deeply correlated. The resources must be dedicated to the layer instances
associated with slices with high control and delay constraints. Indeed, dedicating computing resources
ensures that the instances have immediate access to the computing resources so that the network’s
response is the shortest possible, and it also provides the best possible control of the network as
both the set of resources and set of UEs with strong requirements are known. Furthermore, it is
worth dedicating the OS scheduler as the computing resources must be accessed with strict timing
requirements, which is not optimized for other services like eMBB. The layer’s instances associated
with the eMBB and mMTC slices can share both the computing and OS resources as it enables better
optimization of the resources usage and high flexibility. Indeed, those slices do not have specific
requirements in terms of isolation. Furthermore, given that the latency requirements are not strong,
the associated instances can afford not to have immediate access to the resources. Depending on the
layer and the implementation design, different OS schedulers might be used. A comparison between
two main general-purpose schedulers, FreeBSD ULE and Linux CFS, can be found in [38].

Three options exist today to dedicate computing resources and OS features to slices:

• The first one is to deploy the components on different devices where each device has its dedicated
resources and an OS which is configured to satisfy the constraints. The instances with low
constraints can be deployed on shared devices, and highly-constrained instances can be deployed
on dedicated ones. However, this requires the transport network connecting all the devices to
meet the slices requirements. As this is not trivial, this is further investigated in section 6.4.6.
Furthermore, this does not meet the flexibility and optimization requirements, as the resources
are statically associated with slices, and the allocation cannot be dynamically re-adjusted.

• The second solution is to deploy all the components on a single machine running different
Virtual Machine (VM) where each VM instance has its own OS and resources. For example, an
hypervisor like OpenStack (well introduced in [39]) can be deployed on a host device running
a generic OS. Given that usual hypervisors might not be able to serve both real-time and
general-purpose VMs, other CPU resource management systems must be integrated into those
hypervisors, as it was done in RT-OpenStack, introduced in [40] or in Poris, introduced in [41].
Therefore, two VMs can be deployed, one for the eMBB and mMTC slices and one for the
uRLLC slice. The first one can use a standard OS whereas, the second one can use a real-time
OS like RTLinux (which is defined in [42]).

• The last solution is to deploy all the components on one device and create pools of resources,
where each pool has its scheduler. The components are allocated to a resource group that
matches the resources and scheduling requirements of the slice running on it. In modern Linux
distributions, this can be done using cpuset [43] mechanism. An introduction of this mechanism
applied to high-performance computing is given in [44]. Two resource sets can be declared
where one will contain the CPUs, memory and scheduler optimized for eMBB and mMTC
slices, and the other one will contain resources optimized for uRLLC. This solution is promising
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as all the components can be run on the same host, and it does not involve virtual machines.
Cloud technologies like containers and Kubernetes can be leveraged to ease the management and
orchestration of the layers instances and the corresponding dedicated resources. Furthermore,
another key asset of this method is that it is much easier to resize and re-optimize the resource
allocation compared to the two previous options. The use of Linux CPU scheduler for real-time
applications running on containers has been investigated in [45].

A good introduction to the differences between VMs and containers is given in [46], which also
introduces Kubernetes. Furthermore, performances comparison between VMs and containers can be
found in [47] and [48]. Containers might be the best solution as they provide excellent capabilities in
terms of resources and OS functions allocation together with the best flexibility and greatest lightness.

6.4.5 Software resources

On the software level, the resources available are the software architecture and algorithms. This section
investigates the software designs that might be used to implement the layer’s instances associated with
the different slices. Indeed, components serving eMBB/mMTC must be designed to support ultra
high throughput and a massive number of UEs whereas, for uRLLC, it must be designed with a
focus on latency. Differentiating the implementation method based on the slice’s constraints is made
possible by dedicating layers instances to slices.

On one side, components with low delay and high reliability constraints may be implemented using
a real-time processing design. A good introduction to real-time processing of streams is given in [49].
As explained at the beginning of section 6.4, the implementation of functions with a focus on delay
starts by stating that the resources are dedicated to one or another UE, and then resources sharing
can be envisioned as long as it respects the delay constraints.

Therefore, in a first step, the resources are dedicated to UEs by extensively using multi-threading.
Each UE is allocated a thread and, beyond a thread, a CPU. This method provides strong reliability
as it guarantees that the computing resources are available when there are data transmissions between
the gNodeB and the UE. Immediate access to the computing resources is guaranteed. However, this
is not enough as this does not enable control of the delay. Controlling the delay is made by having
a precise estimation of the algorithmic complexity and the number of operations of the different
functions performed in a layer. Given that a CPU is dedicated to one UE and that the CPU’s
performances and the number of operations are known, the network infrastructure can compute the
processing delay of a layer for one user traffic transmission. Even if this method consumes a lot of
CPUs, it provides reliability and control over the delay, which is critical for some slices.

In this context, it is fundamental to estimate precisely the algorithmic complexity and number
of operations of all the functions of the different layers. Therefore, for the slices with low delay and
high reliability constraints, probabilistic algorithms must not be used as the number of operations
required to achieve a function is not precisely known by advance. This substantially impacts the
different layers, especially at the PHY layer, as this kind of algorithm is typically used for channel
decoding as proposed in [50] for convolutional codes. From a more general perspective, the complexity
and number of operations might not be easy to determine, even for non-probabilistic algorithms. For
example, for belief propagation, which is one of the possible algorithms for the decoding of LDPC
codes in 5G, the number of operations of one iteration can be computed (as described in [51]), but
its number of iterations depends on the quality of the received signal. Therefore, the processing delay
of this algorithm cannot be estimated precisely, but an upper bound can be given by imposing a
maximum number of iterations.

Once an implementation with dedicated resources is made, it is possible to start sharing those
resources between multiple UEs. In this case, the processing delay cannot be estimated precisely
as access to the computing resources cannot be guaranteed immediately. However, it is possible to
compute an upper bound of the processing delay as the number of UEs per thread, and the processing
delay of one UE are known. The upper bound of the processing delay corresponds to the worst
case where the UE must wait for all the other UEs to perform a task before accessing the resources.
The upper bound of the delay equals the number of UEs times the processing delay of one UE’s
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transmission. Furthermore, when resources are shared between UEs, the context switching overhead
from one thread to another must be considered. Tools like lmbench [52] on Linux exist to estimate
this overhead.

On the other hand, this design does not meet high throughput and UEs density requirements.
Indeed, the number of threads increases with the number of UEs (or tasks in general), and a vast
amount of CPUs might be required. This would be highly un-optimized as eMBB, and mMTC traffic
are uneven, and the dedicated CPUs might be unused a significant part of the time. The different
threads must therefore be multiplexed onto CPUs. This is achievable for a small number of threads,
but the context switching overhead from one thread to another might explode when the number of
threads increases. This is why other software designs are required, among which batch processing
seems to be the most interesting.

The different options for implementing functions with low delay requirements and others with high
throughput requirements is widely reviewed like in [53] and [54]. In general, it appears that software
architecture and design are fundamental in network slicing, especially for ultra-reliable communica-
tions components where network control is of the utmost importance. Indeed, the reliability of a
component is given by its outage probability and processing time. It is then required to choose an
architecture and algorithms which provide the ability to compute those two key information. Beyond
algorithm complexity, all the operations have to be considered.

6.4.6 Transport network resources

In this last section, we investigate the possibility of spreading all the instances represented in Figure
6.1 across the network. This is the concept introduced by open-RAN, where the base station is split
into three components: the RU, DU, and CU. Then, those three components are spread across the
network.

In this section, we consider that the RAN functions are virtualized and deployed in the cloud.
Therefore, the main concern is the network connecting the functions, called the cross-haul network.
The first naive solution is to dedicate point-to-point links like dark fiber, but this is not flexible nor
optimized. Therefore, the cross-haul network has to leverage frame-based (Ethernet) or packet-based
(IP, MPLS, Segment Routing) networks. The question is then: what technologies can be used on
the cross-haul network to support dis-aggregated RAN deployments? The constraints that are on the
cross-haul network depend on the layer and the slices constraints.

First, for the two lower layers, the network constraints are huge. Indeed, the samples sent from the
PHY layer to the RF device have to arrive in order, with a very short delay, and with high reliability.
Indeed, the loss of a single sample or the inversion of groups of samples imply a loss of data and a
loss of cell’s synchronization. Such losses can be bearable for non-critical slices but not highly critical
ones. Finally, the network must support ultra-high throughput as signal transmission requires a huge
capacity. For example, let us consider a cell with a bandwidth of 100MHz with 32x32 Massive-MIMO
and that the samples are encoded in 8 bits complexes (2 · 8 bits). The required network throughput,
just for the data, is around 100 ·106 ·8 ·2 ·32 = 51.2 Gbits/s. In addition, different network headers for
traffic routing and samples re-ordering might be added and increase the throughput, but this might
be mitigated by the compression mechanism used to transport samples. All those constraints make
spreading the two lower components over the cross-haul difficult and expensive.

For the upper layers, the constraints are not as great as the lower ones as the data payloads
contain bits sequences and not IQ samples. Two major issues remain. The first one is the synchro-
nization between the components. Indeed, both the MAC and RLC layers use timers for different
network procedures. If components are spread across the network, the transmission time between
the component and the RF device must be considered while computing the timing expiration of one
procedure. Furthermore, for the uRLLC slice, the backhaul network still has to ensure the reliability
of the communications and the respect of a specific delay between the components, which is not trivial
on a classic IP networks.

On the cross-haul network level, the resources available are the physical nodes (routers and
switches), the links deployed to interconnect the RAN functions, and the virtualized network con-
structs in the servers where these functions are deployed and running.
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These resources form the cross-haul transport network, which includes multiple segments (front-
haul, mid-haul, and back-haul) with different latency, jitter, packet drop, and bandwidth service level
objectives. With open-RAN, the Common Public Radio Interface (CPRI) is evolving towards eCPRI,
which decreases the required capacity between the DU and the RU. With that interface enhancement,
it is now possible to leverage frame or packet-based transport networks (like Ethernet, IP or Segment
Routing), which provide much more flexibility compared to legacy transport methods like dark fiber,
Dense Wavelength-Division Multiplexing (DWDM) or Passive Optical Networks (PONs) commonly
used in 4G architectures.

In the following, we consider only frame or packet-based transport networks as they allow flex-
ible deployments of 5G open-RAN architecture, and we describe the mechanisms available to meet
stringent open-RAN requirements.

6.4.6.1 Physical cross-haul transport network

First, the physical nodes of the cross-haul must be configured to support the different slices. Two
main technologies can be leveraged to support slices with heterogeneous constraints.

6.4.6.1.1 Time Sensitive Network: The open-RAN front-haul connectivity requires low-latency
and jitter requirements which can be addressed by IEEE 802.1 Time Sensitive Networking [55]. Time
Sensitive Network (TSN) is an ethernet-based transport network and consists of multiple standards.

A TSN profile is defined for each TSN use case (like TSN applied to open-RAN front-haul) to
narrow the breadth of features and requirements and retain only the required options, protocols,
and configuration parameters. TSN profiles have been standardized to support eCPRI front-haul
interfaces over ethernet-based transport. The standard seeks to reduce latency for the aggregation
and switching portions of the front-haul network. It defines two main profiles:

• Profile A addresses latency in two ways. First, time-sensitive traffic is prioritized over non-
time-sensitive traffic so that the non-time-sensitive traffic gets buffered as time-sensitive traffic
receives scheduling precedence. Additionally, Profile A limits the maximum frame size to 2, 000
bytes to minimize the time that time-sensitive traffic must wait when it arrives behind non-
time-sensitive traffic.

• Profile B goes a step further by adding frame preemption, which allows transmission-in-progress
of a non-time-sensitive frame to be interrupted when a time-sensitive frame needs to be transmit-
ted. Once the time-sensitive frame is transmitted, the transmission of the non-critical transmis-
sion can resume. Profile B with frame preemption has two implications compared to Profile A.
First, frame preemption eliminates the need to limit frame size. Second, it ensures a bounded
latency, which is impossible with Profile A. This is a crucial feature with regard to network
control requirements.

6.4.6.1.2 Segment routing: Segment routing (introduced in [56] and standardized in IETF RFC
8402 [57]) runs natively on an MPLS or IPv6 data planes. It provides complete control over the for-
warding paths by combining simple network instructions with the source routing paradigm. Segment
routing allows a node to steer a packet flow along any path. The head-end is the node where the
instructions for segment routing are written into the packets and hence becomes the starting node for
a specific segment routing path. Intermediate per-path states are eliminated thanks to source routing.

A segment routing policy is an ordered list of segments (i.e., instructions) representing a source-
routed policy. The policy takes place between a source and destination pair. The source calculates
the path and encodes it in the packet header as a segment. The segment instructs the routers in the
provider network to follow the specified path instead of the shortest path calculated by the Interior
Gateway Protocol (IGP). The source can also delegate the path computation to a centralized Path
Computation Engine (PCE).

Flexible Algorithm (noted flex-Algo) is an algorithm that defines how the best path is computed
by IGP. Routers advertise the support for the algorithm as a node capability. Segments are also
advertised with an algorithm value and are tightly coupled with the algorithm itself.
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In order to meet open-RAN systems transport requirements, segment routing policy and flex-Algo
can be leveraged. Path computation constraints can be made based on attributes like latency, jitter,
and reliability. Policies are installed in the head-end routers interconnecting with the open-RAN
functions and guarantee end-to-end service level objectives related to the path constraints.

6.4.6.2 Virtualized cross-haul transport network

Given that the RAN functions are virtualized and deployed in servers, it is also necessary to optimize
the virtualized routing and switching functions that enable the RAN instances to communicate with
each other and with the physical network.

6.4.6.2.1 Real Time Performance: The first challenge to be addressed is to provide real-time
performances and low latency on virtualization platforms where different workloads with different
profiles (like real-time, high throughput, CPU or memory-intensive) share the same resources.

For a TTI down to 0.2ms, the preferred OS response time for L1/L2 must be less than 5 µs, and
the determinism must also be preserved when the system is scaled out over many CPU cores. It means
that, for the RAN functions, the same software solution might be used on systems of different sizes,
ranging from 4 or 8 cores deployments to much larger systems, including central units with pooled
resources on massive multi-core devices.

Assuming virtualization platforms are based on the Linux OS, it is possible to leverage Symmetrical
Multi-Processing (SMP) Linux feature to consolidate real-time critical L1/L2 functions with more
relaxed L2/L3 functions. Further information about SMP can be found in [58].

6.4.6.2.2 High Throughput: The second challenge is related to the high throughput required
for open-RAN applications. Assuming applications are deployed on the Linux operating system,
optimizing packet processing using the pool mode driver instead of the kernel driver and interacting
with the network card or virtual devices in the user space is possible.

DPDK [59] is a commonly used framework for packet processing optimization. It leverages multi-
core architectures and can achieve ≈ 20 million packets/second on a single Intel Xeon E5-2695v4 core
with 64 bytes packets and ≈ 60 million packets/second with 4 cores system.

6.4.6.3 Physical and Virtualized Network anchoring

Assuming open-RAN functions are deployed as cloud-native applications on a container orchestration
platform like Kubernetes, service level objectives must be advertised from the application infras-
tructure to the cross-haul transport network. Given that RAN functions use IP technologies, that
inter-working is only possible with IP based transport networks.

In that case, the Border Gateway Protocol (BGP) (standardized in RFC 4271 [60]), which is
responsible to advertise network reachability, is used to propagate QoS objectives information like
low-latency or high-reliability. The BGP extended community attribute provides a mechanism for
labeling information carried in BGP. It allows the usage of network policies based on the community
value associated with an open-RAN application.

It is possible to seamlessly advertise a RAN application with a given QoS objective in the transport
network. It is done by mapping the Kubernetes service (RAN function in this case) with a BGP
extended community attribute. This mapping must be done in the Container Network Interface
(CNI) plugin that is responsible for containers interface management.

For example, it can differentiate data flows between the eMBB and uRLLC slices. The uRLLC
instances can be advertised with a specific extended community. It allows propagating the information
to the segment routing transport infrastructure to handle the related traffic with a policy optimized for
low latency. On the other hand, the eMBB instances are not announced with any specific community,
and the traffic will be managed within the IGP cost-optimized topology.
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6.5 Optimization of the PHY layer configuration

After reviewing the different levels of resources associated with the slices, this section investigates
how to optimize the radio interface and PHY layer to support the heterogeneous user traffics. We
focus on the radio interface and PHY layer as this topic has been widely investigated in this thesis.
For end-to-end network slicing, all the network components must be optimized in such a way. In
this section, we state that the three slices are given a dedicated BWP and that, therefore, the radio
interface and PHY configuration can be slice-specific by configuring the corresponding BWP.

The first key configuration aspect is numerology. Indeed, in 5G, the SCS is flexible and can be
tuned depending on the service requirements. For FR1 bands, the three possible SCS are 15kHz,
30kHz and 60kHz. The three slices can have different SCS:

• First, for uRLLC, a 60kHz SCS might be chosen as this provides the shortest symbol’s duration,
which enables the base station to be as responsive as possible. With this configuration, the
time unit of the radio interface is the smallest possible, which is a starting point for further
optimization of the PHY layer to finally provide the shortest possible end-to-end transmission
delays.

• Then, for mMTC, a SCS of 15kHz might be chosen as it minimizes the frequency selectivity
of the channel and, consequently, maximizes the channel’s quality. Given that the channel’s
quality directly impacts the complexity of the signal processing functions and associated power
consumption, it is worth selecting the smallest possible SCS for UEs with power consumption
constraints.

• Finally, for eMBB terminals, which does not have strong delay requirements nor strict power
consumption constraints, a SCS of 30kHz is chosen. This provides a trade-off between two
constraints:

– On one side, as for mMTC, it is worth selecting the smallest possible SCS for energy-
saving purposes, as the terminals associated with eMBB slice are mainly battery-powered
smartphones.

– On the other side, given that eMBB is expected to provide high throughput, it can be
expected that the BWP associated with this slice will be wide. Given that the number
of points in the FFT/iFFT is inversely proportional to the SCS, the highest the SCS, the
lowest the number of points and complexity of the FFT/iFFT. Therefore, with regard to
the expected width of the BWP associated with eMBB, it is worth selecting the highest
possible SCS to minimize the complexity of the time to frequency domain transforms.

Figure 6.2 represents the three slices together with their BWPs and associated SCS.
The second key configuration aspect of the PHY layer is the TDD UL/DL configuration. As

represented in 6.2, depending on the slice, the downlink to uplink switching periodicity is not the
same. This is fundamental for achieving network slicing. Indeed, between uplink and downlink
symbols, it is better to add a guard period as recommended by GSMA in [61] (recommendation
number 10). The guard period enables to mitigate the interference between uplink and downlink
symbols, and from one cell to another. Therefore, the longer the downlink to uplink switching period,
the fewer resources are lost in guard periods. On the other hand, the smaller it is, the higher the
network’s reactivity. The downlink to uplink switching periodicity must be dedicated to slices with
heterogeneous constraints.

For the eMBB and mMTC slices, the DL/UL switching is long and set to 0.5ms. There is a 1
slot (for eMBB) and 0.5 slot (for mMTC) of downlink data followed by a guard period and then by
uplink symbols on the next slot/half slot. This uplink to downlink switching assumes the uplink and
downlink traffics are balanced for both eMBB and mMTC as there are almost the same amount of
resources in uplink and downlink. Between eMBB and uRLLC BWPs, we propose to add a guard
band as the DL/UL switching is not the same. This guard band prevents downlink symbols of the two
BWPs from interfering with the uplink symbols of the other. If the UL/DL switching configuration
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Figure 6.2: 5G radio frame structure from chapter 1

is not the same between eMBB and mMTC, another guard band should be added between the two
BWPs. For example, if the mMTC slice is used to connect sensors that feedback data, more uplink
resources are needed, so the balance will not be the same as the eMBB slice. For the uRLLC slice,
the DL/UL switching is as quick as possible as it is done at the symbol level. One downlink symbol
is followed by an uplink symbol, with a guard symbol between them. The guard symbol prevents
downlink symbols spread delay from interfering with uplink symbols. The use of BWPs eases the
DL/UL switching differentiation between the slices.

The last configuration aspect to be investigated in this section is resource allocation. When there
is data to exchange between the UE and the gNodeB, the gNodeB allocates resources to the UE for
reception or transmission. This is done at the MAC layer by the scheduling algorithm. Depending
on the direction (uplink or downlink), the scheduling process is not precisely the same. For downlink
data, the gNodeB transmits resource allocation to the UE using the PDCCH. On the other hand, for
uplink transmission, the UE sends a Scheduling Request (SR) to the gNodeB using the PUCCH and
the gNodeB sends back the allocation via the PDCCH. The PDCCH and PUCCH configurations are
given by the RRC layer.

As UEs are always listening for resource allocation in the PDCCH and could be trying to send SR
in the PUCCH, the resources allocated to those two channels cannot be used for other communications
when there is no scheduling information to transmit. Therefore, for eMBB and mMTC slices, the
PDCCH and PUCCH must be configured with a long periodicity to optimize resources usage. A
typical configuration is to have one PDCCH and PUCCH occasion per slot, or even less. However,
the longer the periodicity is, the longer the transmission delay. Indeed, when a UE must transmit an
uplink transport block, it waits for the first PUCCH occasion to transmit SR, and the gNodeB waits for
the first PDCCH occasion to transmit the resource allocation, which implies a high communication
overhead. Therefore, long periodicity configurations must be avoided for delay-constrained slices.
The PDCCH and PUCCH should be present once a symbol to enable UEs and gNodeB to initiate
communications at the finest possible scale.
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6.6 Conclusion

In this chapter, a network slice has been defined as being a logical network that provides specific
network capabilities and network characteristics. A slice instance was introduced as the resources
associated with one slice, and finally, network slicing was defined as the ability of the 5G physical
infrastructure to operate multiple logical networks by allocating resources. This work focused on the
base station’s perspective. It did not investigate the impact of network slicing on the CN and how
UEs can move from one slice to another.

Furthermore, the different resources associated with network slices have been reviewed. Those
resources are bandwidth parts at the radio interface level, RAN instances at the network level, CPUs
and memory and the system level, algorithms and threads at the software level, and physical nodes
and links at the transport network level. For each resource, we introduced technologies and techniques
that can be used to share or dedicate resources to one or another slice.

Finally, we went through three configuration aspects of the radio interface and the physical layer
that can be tuned to fit heterogeneous traffics requirements.
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Chapter 7

Network slicing modeling

Contribution

In this chapter, we introduce a model for resource allocation at the RAN level. This model considers
network slicing and various constraints like capacity, UE’s density, latency, and reliability. The main
contribution is to relate the network’s reliability with the coverage quality. Furthermore, simplicial
homology is used to study the coverage quality of a deployment and validate that the constraints of the
different slices are respected. Finally, this model is applied to power optimization as it is fundamental
to respect heterogeneous traffics constraints.

7.1 Introduction

As described in chapter 6, network slicing mainly relies on resource association and allocation. Many
solutions have been proposed in the literature for slice-aware resource allocation, mainly from a data
center perspective. The resources allocated are CPU, memory, and bandwidth. Allocating those
resources can be done using classic linear optimization algorithms like in [62] and [63]. However,
the previous methods do not take into account RAN specific constraints where coverage is of the
utmost importance. As resource allocation relies on system modeling, this chapter investigates how
network models can include slices. Beyond capacity and density, which can be easily modeled, latency
and reliability are critical parameters for such models and cannot be trivially studied. Reliability is
modeled as a multiple connectivity constraint. For that matter, simplicial homology is used for
studying network’s coverage and connectivity. It has already been successfully applied for energy-
saving methods, like in [64].

Furthermore, transmission power optimization is a paramount concern. Indeed, a too low trans-
mission power leads to coverage holes, and such decreases the network’s reliability, and a too high
transmission power could increase interference and decrease the network’s capacity. Given that cov-
erage constraints (implied by slices reliability requirements) are hardly linear by nature, classic opti-
mization methods cannot be used to solve the power optimization problem. Specific heuristics have
to be developed. This work provides a near-optimal heuristic for 5G slice-aware systems based on
simulated annealing. It can be used to determine the required power budget for a set of slices deployed
on a given physical network.

The first part of this chapter details the system model where 5G flexible numerology is used to fit
slices latency and throughput requirements, the second one describes simplicial homology, the third
one explains the method used for power optimization and the last part presents our simulations results
and analysis.
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Notation Definition Unit

C Set of cells in the network -

i or c A cell -

S Set of slices -

s A slice -

WT Total bandwidth Hz

Ws Bandwidth allocated to slice s Hz

κis Capacity offered by cell i to slice s b/s

P i
t Transmission power of cell i W

P i
r(d) Received power from cell i at distance d W

Ii Interference undergone by cell i W

Ns Noise for slice s W

ηis SINR undergone by slice s on cell i dB

d0 Reference distance for the Path Loss model m

γ Path Loss exponent -

λ Signal wavelength m

Dxy Distance between cell x and cell y m

pxy Critical point where interference of cell y over cell x is the higher -

dxy Distance between cell y and critical point pxy m

kB Boltzmann constant J / K

T Ambient air temperature K

ρs UEs density for slice s UE / km2

as UEs activity for slice s -

ts Per UE throughput required for slice s b/s

ls Latency importance for slice s -

rs Connectivity and reliability requirement for slice s -

K Maximum simplicial complex dimension -

k Simplicial complex dimension -

σ A simplicial complex -

βk Betti number of dimension k -

B Set of Betti numbers for all dimensions -

∂k(σ) The boundary operator of dimension k applied to simplicial complex σ -

BWPs BWP allocated to slice s -

ωs SCS for slice s Hz

NRB
s Number of RBs allocated to slice s -

M Number of temperature steps for simulated annealing process -

R Set of cells radius -

L Temperature step length for simulated annealing process -

α Cooling factor for simulated annealing process -

T0 Initial temperature for simulated annealing process -

∆P Transmission power variation for simulated annealing process -

G and Gl Set of Betti numbers for simulated annealing process -

Table 7.1: Notations used in chapter 7

7.2 System model

7.2.1 Cellular network

We consider a cellular network in which circles represent cells. The circles centers are base stations,
and the circles radii represent the cells’ coverage zone. The set of all the cells in the network is noted
C.
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We define the capacity κis offered by a cell i to a specific slice s with allocated bandwidth Ws and
undergoing a Signal over Signal over Interference plus Noise Ratio (SINR) ηis as being the Shannon
capacity:

κis = Ws · log2(1 + ηis) (7.1)

The capacity offered by a cell is expressed in bits per second and corresponds to the maximum capacity
the cell could deliver to a specific slice at a given time.
We define the SINR by equation (7.2), where P i

r(d) is the received power from cell i at distance d, Ii

the interference and Ns the noise.

ηis =
P i
r(d)

Ii +Ns
(7.2)

7.2.1.1 Received power

We consider the following channel model. The power received from a cell i is given by the Path Loss
model, which is described in [65] section IV. The received power at distance d, P i

r(d), can be written:

P i
r(d) = P i

t ·

(

d0
d

)

γ

·

(

λ

4πd0

)2

(7.3)

where P i
t is the transmission power of cell i, λ is the signal wavelength and d0 is the reference

distance, below which the Path Loss model is not realistic.
The Path Loss exponent, noted γ, is a parameter which reflects the propagation conditions.

7.2.1.2 Interference

Interference of cell y on cell x is computed based on the received power of cell y at a critical point
pxy represented in Figure 7.1 which is the point where interference of y on x is the higher.
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Figure 7.1: Representation of critical point pxy

The distance dxy between y and pxy is given by:

dxy = |Dxy − rx|

Where rx is the radius of cell x and Dxy the distance between x and y.
Interference I i on cell i can finally be written as the sum over all the cells c inside C (excluding

cell i) of the received power at distance dic using Equation (7.3). This gives an upper bound of
interference as it comes to considering that all the base stations communicate over all their resource
blocks simultaneously.

Ii =
∑

c∈C\{i}

P c
t ·

(

d0
dic

)

γ

·

(

λ

4πd0

)2

(7.4)

7.2.1.3 Noise

The noise Ns is computed as the thermal noise, which depends on the Boltzmann constant kB, the
ambient air temperature T in Kelvin (generally taken at 290 Kelvin), and the allocated slice bandwidth
Ws.

Ns = kB.T.Ws

In general, kB · T = 4.0039 · 10−20W/Hz.
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7.2.2 Flexible numerology and network slicing

7.2.2.1 Bandwidth parts:

5G NR flexible numerology enables an operator to split its bandwidth in different BWPs. All the
BWPs have a different set of parameters that are BWP width (number of RBs) and BWP SCS.
BWP width is related to the capacity, as described in section 7.2.1 and BWP SCS is related to
the communication latency. Those two parameters can be tuned by the operator depending on the
requirements of the UEs that will connect to the network through the allocated BWP. As described
in chapter 6, it makes sense to consider that BWPs will be dedicated to each slice or service type.

7.2.2.2 Network slicing:

Consequently, a slice is allocated a BWP depending on its capacity and latency requirements. There-
fore, we define slices as a set of parameters representing their capacity and latency requirements.

For capacity requirements, we define three parameters:

• UE density (noted ρs): This parameter represents the density of UEs that might connect to a
base station. This parameter is the number of UEs per surface unit.

• Activity (noted as): This represents the time proportion a UE might be in connected mode.

• Per UE throughput (noted ts): This represents the capacity required by a single UE while in
connected mode.

To take into account latency requirements, we define one parameter:

• Latency importance (noted ls): This parameter represents the latency requirement level, and is
represented by 0,1 or 2. This is used to compute BWP SCS which will be equal to 15, 30 or
60kHz respectively.

Finally, as some network slices might require ultra reliable communications, we define a parameter
to take this aspect into account:

• Connectivity (noted rs): This represents the number of antennas to which each UE should be
connected simultaneously. As the handover procedure can take a lot of time compared to the
latency requirements, network reliability can be improved by increasing the number of antennas
to which each UE is connected, avoiding handovers communication overhead. This parameter
is a crucial reason for using simplicial homology, which enables us to compute coverage quality,
including multiple network connectivity constraints.

In the evaluation framework described in section 7.5, we define three typical 5G network slices:

• Slice 1 (eMBB): Legacy mobile communications for making calls, surfing on the web and video
streaming.

• Slice 2 (uRLLC): Industry 4.0 for connecting critical actuators and sensors.

• Slice 3 (mMTC): Smart cities that collect data from ultra dense sensors.

7.3 Simplicial Homology

The need for a method for analyzing network coverage and computing network connectivity led us to
use simplicial homology, which is a mathematical tool from algebraic topology. We model a cellular
network as a set of cells represented by a vertex (the base station) and a radius r. We consider that
the intersection between two vertices is not empty if the coverage zones of the corresponding cells
intersect each other, as depicted in Figure 7.3.
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The first step for studying a cellular network is to get its simplicial complex representation. A
simplicial complex is a combination of vertices (i.e., a combination of base stations) that intersect
each other. The number of elements in the combination gives the dimension of the simplicial complex.
A k dimension simplicial complex is called a k-simplex. Thus, a vertex is a 0-simplex, an edge is a
1-simplex, a triangle a 2-simplex, a tetrahedron a 3-simplex, etc.

There are two main simplicial complexes for network topology representation: the Cěch complex
and the Rips complex. The real network representation is given by the Cěch complex, but its compu-
tation complexity is high compared to the Rips complex. Indeed, for each dimension k, Cěch complex
ensures there is at least one point in the topology which is covered by (k+1) cells. On the other side,
Rips complex in dimension k is a combination of (k + 1) (k − 1)-simplexes. Therefore, to build the
Cěch complex, it is required to loop over all the points of the topology, whereas the Rips complex is
made by combining lower-order simplexes, which has a much lower algorithmic complexity.
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Figure 7.2: Rips complex error representation

However, Rips complexes are not fully accurate as they can capture simplexes that do not exist.
For the topology represented in Figure 7.2, for both the Cěch and Rips complex, the 0-simplexes are
{1, 2, 3} and the 1-simplexes are {[1, 2], [1, 3], [2, 3]}. For 2-simplexes, following the definition of Rips
complex, 2-simplexes are a combination of 3 1-simplexes which intersect each other. Therefore, using
the Rips complex, there is one 2-simplex in this topology, which is {[1, 2, 3]}. However, as it can be
seen, there is no point in the topology connected to the three vertices, and there is, therefore, no
2-simplex when using Cěch complex. When looking at the topology, the Cěch complex is accurate as
there is one coverage hole. The Rips complex has captured a non-existing 2-simplex which implies
that it was not able to detect the coverage hole in the middle of the topology.

Nevertheless, it has been shown by [66] that between 0% and 11% of the time, the Rips complex
captures k-simplexes that do not exist compared to the Cěch complex. Therefore, regarding the error
rate and the complexity gain, the Rips complex provides a good engineering approximation and is
used in this chapter.
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Figure 7.3: Cell deployment example and corresponding two-by-two cells intersections. Points represent base stations
and circles represent cells coverage.

In the example shown in Figure 7.3, using Rips complexes, the 0-simplexes are the vertices
{1, 2, 3, 4, 5}, 1-simplexes are {[1, 2], [2, 3], [3, 4], [2, 4], [4, 5], [1, 5]} and there is one 2-simplex: {[2, 3, 4]}.

Betti numbers (noted β0, β1,...,βk) are the dimension of each homology group whose geometric
meaning is the number of k-dimension holes in the network. Thus, β0 represents the number of
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connected components in the network, β1 represents the number of coverage holes, β2 represents the
number of zones where there is no 2-connectivity etc.

Betti numbers are computed based on equation:

βk = rank(ker(∂k))− rank(Im(∂k+1))

Where ∂k is the boundary operator of dimension k applied to simplex σ which is defined by:

∂k(σ) =
k

∑

i=0

(−1)i · (σ0, ...,σi−1,σi+1, ...,σk−1)

The rank nullity theorem states that:

rank(ker(∂k)) + rank(Im(∂k)) = dim(∂k)

Betti numbers can therefore be computed by:

βk = dim(∂k)− rank(Im(∂k))− rank(Im(∂k+1))

The rank of Im(∂k) is equal to the rank of the matrix (noted Hk) of the elements of Im(∂k) in
the base defined by the (k − 1)-simplexes.

With the above example, β1 can be computed with the following steps:

∂2([2, 3, 4]) = (−1) · [3, 4] + (1) · [2, 4] + (−1) · [2, 3]

Therefore:

∂2([2, 3, 4]) = 0 · [1, 2] + (−1) · [2, 3] + (−1) · [3, 4] + 1 · [2, 4] + 0 · [4, 5] + 0 · [1, 5]

And:

H2 =

















0
−1
−1
1
0
0

















Similarly:

H1 =













−1 0 0 0 0 −1
1 −1 0 −1 0 0
0 1 −1 0 0 0
0 0 1 1 −1 0
0 0 0 0 1 1













Finally:
β1 = dim(∂1)− rank(H1)− rank(H2) = 1

In the example shown in Figure 7.3, β0 and β1 equal one: there is one related component and one
coverage hole.

7.4 Energy saving algorithm

In this section, the model presented above is applied to the power optimization problem. Power
optimization is critical for two main reasons. First, it enables to reduce the network’s transmission
power budget. Foremost, it enables to mitigate interference while maintaining a good coverage quality.
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7.4.1 Optimization problem

The value to be minimized is the total network transmission power, and the constraint is network
coverage. The Betti numbers give the coverage quality.

The global optimization problem is defined as follows:

min
∑

c∈C

P c
t (7.5a)

subject to βk ≤ βinit
k , ∀k ∈ [0,K − 1] (7.5b)

with P c
t the transmission power of cell c, K the maximum simplicial complexes dimension and

βinit
k the initial kth Betti number. The set of initial Betti numbers βinit

k is noted Binit. Slices do not
appear here as there are taken into account while computing cells radius (in section 7.4.2.2), which is
not directly the optimization problem.

7.4.2 Sub-optimal heuristic

As a power increase might imply new interference and thus decrease coverage quality, the optimization
problem described in section 7.4.1 is not convex and cannot be solved with classic linear optimization
methods. Therefore, the metaheuristic we use is the simulated annealing method which is a prob-
abilistic algorithm that gives a sub-optimal solution. We use this method as it has already shown
promising results in different similar projects such as [64] and [67].

Algorithm 9 gives an overview of the simulated annealing algorithm. Cells are initialized with
an transmission power which is an algorithm input. At each algorithm iteration, a cell is randomly
chosen, and we try either to reduce or increase its transmission power. An transmission power decrease
can only be accepted if there is no lack of k-connectivity in the ending state. A power increase will be
accepted with a probability given by a defined temperature cooled over iterations. The parameters of
this algorithm are M (number of temperature steps), L (temperature step length), α (cooling factor),
T0 (initial temperature) and ∆P (transmission power variation). The statement if Bl > Binit (line
25) has to be understood as: if one new Betti number from 0 to K (β0,...,βK) is greater than initial
Betti numbers. It corresponds to the optimization problem issued in section 7.4.1. K is the maximum
connectivity dimension we check and is equal to the maximum slices connectivity requirement (defined
in section 7.2.2.2). C and P c

t are the set of cells and the transmission power of cell c.
The different functions used in Algorithm 9 are explained below:

7.4.2.1 BWP allocation (allocate bwps line 2)

Each slice s is allocated a BWP noted BWPs. The SCS, ωs, is allocated depending on slice latency
importance. The number of RBs (NRB

s ) is allocated proportionally to the total available bandwidth
WT with the following equation. ts, as and ρs are respectively the per UE throughput, activity and
density for slice s.

NRB
s =

⌊

1

12.ωs
·

ts · as · ρs
∑

x∈S tx · ax · ρx
·WT

⌋

7.4.2.2 Computing cells radii (compute radius lines 4 and 22)

The process for computing the cells radii is the following (made cell by cell):

1. For each cell, we initialize the current radius at d0, which is the minimal cell’s radius.

2. Then we compute the maximum radius of the cell using a minimum reception threshold. This is
made using the Path Loss model by reversing equation (7.3). The distance d (maximum radius
of the cell) is expressed in function of the received power P i

r (which is set to the minimum
reception threshold). This distance corresponds to the maximum distance from the base station
for which a UE could decode the radio signal. Beyond this distance, no UE could connect the
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Algorithm 9 Simulated annealing

1: ⊲ Allocate BWP to slices
2: allocate bwps()
3: ⊲ Compute initial cells radius
4: R = compute radius(C)
5: ⊲ Compute initial network’s connectivity
6: Binit = compute connectivity(C,R)
7: ⊲ Loop over all temperature steps
8: for m ∈ [0,M ] do
9: ⊲ Compute current temperature and probability to accept a power increase

10: Tm = T0.α
m

11: p = e
−∆P
Tm

12: ⊲ Iterate over one temperature step
13: for l ∈ L do
14: ⊲ Randomly select a cell and a direction (power increase or decrease)
15: c = rand(C)
16: s = rand({−1, 1})
17: ⊲ If power decrease
18: if s = −1 then
19: ⊲ Compute new cell’s transmission power
20: P c

t = P c
t −∆P

21: ⊲ Compute new cells radius and network’s connectivity
22: R = compute radius(C)
23: Bl = compute connectivity(C,R)
24: ⊲ If the connectivity is worse than the initial one
25: if Bl > Binit then
26: ⊲ Cancel power decrease
27: P c

t = P c
t +∆P

28: end if
29: else
30: ⊲ If power increase
31: if s = 1 then
32: ⊲ Increase cell’s transmission power with a probability of p
33: v = rand([0, 1])
34: if v < p then
35: P c

t = P c
t +∆P

36: end if
37: end if
38: end if
39: end for
40: end for
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base station, so this distance is the maximum cell’s radius. The circle defined by the base station
and the maximum cell’s radius defines the maximum coverage zone.

3. We create sub-circles inside the maximum coverage zone and study the cell’s capacity for each
sub-circle. The number of sub-circles to be tested inside the maximum coverage zone is an input
parameter. As we observed that the cell’s capacity decreases exponentially over distance, we
create a geometric series to increase the sub-circles radius exponentially so that capacity over
sub-circles is expected to decrease linearly.

4. For each sub-circle:

(a) We compute the received power depending on the cell’s transmission power following Equa-
tion (7.3). The distance d is set to the current sub-circle radius. Interference is also cal-
culated by computing the received power from all the other cells of the network. It is
computed following Equation (7.4), by considering that the cell’s radius is the sub-circle
radius.

(b) We loop over each slice, and for each slice, we compute the required capacity (given by
slices parameters, see section 7.2.2.2) and the offered capacity (described in section 7.2.1)
using Ws and undergone SINR.

(c) • If, for each slice, the offered capacity is greater than the required capacity, the sub-
circle can serve the different slices, so the current radius is set to the current sub-circle
radius, and the algorithm continues.

• Otherwise, the sub-circle cannot serve the different slices, and the algorithm ends. The
cell’s radius is set to the last validated sub-circle radius.

7.4.2.3 Computing connectivity (compute connectivity lines 6 and 23)

This function computes simplicial complexes based on the topology and return the derived Betti
numbers as explained in section 7.3.

7.5 Simulations and results

We have investigated four different scenarios. The first three scenarios are based on single slice simula-
tions. eMBB and mMTC simulations have been done for a connectivity requirement equal to one and
uRLLC simulation for a connectivity requirement equal to three. The last scenario integrates all the
previously defined slices with a connectivity requirement of three. The network is made of a set of an-
tennas randomly deployed inside a finite square area according to a Poisson Point Process (PPP). Table
7.2 gives the deployment parameters of the cells used in the different scenarios. Table 7.3 describes
the cells’ radio parameters associated with different slices. Ten thousand simulations are performed
for each scenario to compare power budget and transmission energy efficiency. The power budget is
defined as the total power consumed by cells of a given deployment. The code and parameters used
for these simulations are available online (https://github.com/adejavel/5GSliceAwareEnergySaving).

Table 7.4 gives the different slices parameters used in the four simulation scenarios: ρs is the
UEs density, as is the UE activity factor, ts is the required per UE throughput, ls is the slice latency
importance, rs is the connectivity requirement and the last column is the total throughput per squared
kilometer required by the slice. Slice 1 capacity requirements are low compared to what has been
announced in 5G as massive MIMO and beam-forming are not considered. Simulations have been
performed for the single slice scenarios in their specific frequency bands. In the last scenario, the
three slices share the same frequency band in a context where bandwidth is limited.

The different results obtained during the simulations are shown in Table 7.5. The mean power
budget is expressed per squared kilometers, and energy efficiency represents the power budget per
transmitted bit. Figures 7.4a, 7.4b, 7.4c and 7.4d are histograms representing the overall distribution
of the antennas transmission power (expressed in Watts) at the end of the algorithm for all the
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Slice Vertical Square width (m) Cells density (cells/km2)

Slice 1 eMBB 500 50

Slice 2 uRLLC 300 500

Slice 3 mMTC 500 30

All slices All 300 500

Table 7.2: Deployment parameters

Slice Initial power ∆P Band Bandwidth γ

Slice 1 40 W 0.5 W 3.5GHz 400 MHz 3

Slice 2 0.5 W 5 mW 26GHz 500 MHz 6

Slice 3 1 W 10 mW 700 MHz 10 MHz 3

All slices 10 W 0.1 W 3.5 GHz 400 MHz 4

Table 7.3: Simulations parameters

Slice s ρs (UE/km2) as ts (b/s) ls rs Total throughput (b/s)

Slice 1 102 0.1 100 · 106 0 1 109

Slice 2 2 · 104 0.05 103 2 3 106

Slice 3 105 0.05 103 0 1 5 · 106

Table 7.4: Slices parameters

Slice Power budget (W/km2) Energy efficiency (W/b)

Slice 1 777 7.77 · 10−7

Slice 2 70 7 · 10−5

Slice 3 10.8 2.16 · 10−6

All slices 1425 1.41 · 10−6

Table 7.5: Simulations results
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(a) Slice 1: eMBB (W) (b) Slice 2: uRLLC (W)

(c) Slice 3: mMTC (W) (d) All slices (W)

Figure 7.4: Simulations results: histograms representing cells power distribution

Figure 7.5: Cells cluster illustration

simulation cases. It can be observed that all the histograms have the same shape: an initial peak
followed by a second one around the median.

The initial peak is due to the clustering inherent to PPP. This process often creates clusters of
close cells. Inside these clusters, base stations can reduce their transmission power to the minimum
without impacting the number of coverage holes and connectivity. This is illustrated in Figure 7.5
where Betti numbers are equals in both the left and right deployments for different transmission
power.

The results obtained with those simulations can be analyzed to understand the behavior of the
5G system in one or another deployment scheme. However, the results for the different slices cannot
be strictly compared as the simulation parameters are not the same. Therefore, it is impossible to
directly compare the impact of the slices requirements on the power budget. Nevertheless, those
simulations enable to compare four cases. In the first three cases, the network is dedicated to one
slice, and the associated parameters are tuned to best meet the slices requirements. In the last case,
all the slices run on a single network whose parameters provide a balance between the requirements
of the three slices.

What can be deduced from the results is that the power budget required for eMBB slice is the
highest compared to the mMTC and uRLLC ones. This can be expected as the noise is proportional
to the bandwidth from Equation 7.2.1.3. Given that the capacity of a network depends on the cell’s
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bandwidth, the highest the capacity requirement, the highest the required bandwidth, and the highest
the noise. To compensate for the noise, the transmission power has to be increased to meet this slice’s
high capacity requirement.

Furthermore, it can be observed that the slice with the worst energy efficiency is uRLLC. It seems
normal as the energy efficiency gives the energy required per unit of transmitted data. The capacity
requirement is low for the uRLLC, and a high power budget is mainly required to provide the best
coverage to UEs with multiple connectivity constraints. Therefore, it is normal to have a bad energy
efficiency for this slice as the multiple connectivity constraint considerably impacts the power budget
even if the amount of transmitted data is low.

Finally, for the last simulation, where all the slices are deployed on a single network, the power
budget explodes. This can be explained as the high capacity requirement of eMBB has an effect on
noise which is antagonist with the high connectivity and coverage requirement of uRLLC, which is
compensated by increasing the transmission power of the different cells. However, the energy efficiency
is of the same order as that of the eMBB and mMTC (and not as high as for uRLLC). It can be
explained by the fact that, unlike for the uRLLC slice, where the power budget is mainly used to
increase the connectivity, the power budget here is used both to increase the coverage and provide
high capacity to UEs.

7.6 Conclusion

In this chapter, we introduced a model for network slicing in 5G. Beyond classic parameters such as
capacity, reliability has been introduced as a multiple connectivity constraint, and simplicial homology
has been used for computing coverage’s quality.

Furthermore, a solution for determining the per-slice power budget has been proposed. It takes
into account slices capacity, latency, and reliability constraints. Simplicial homology was introduced
as a way to model reliability requirement. A simulated annealing method was used to reduce RAN
power budget. Extensive simulations has been realized for three different types of slices : eMBB,
uRLLC and mMTC. Simulations have shown that reliability constraints imply a huge loss of energy
efficiency and that deploying slices independently with a dedicated radio configuration preserves power
budget.
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Chapter 8

Implementation of a 5G probe

Contribution

The contribution of this chapter is the implementation of a 5G probe that can be used for supervising
the network. This probe is derived from the free5GRAN project. It is a standalone probe as it does
not require information from the network. It can be used to extract data from a 5G SA cell. The
data extracted by the probe is the PHY layer DCI and data transport blocks (DL/UL-SCH). The
MAC layer SDUs and control elements can be parsed from the transport blocks. This probe can be
used by supervision tools to monitor the network and increase the network’s reliability.

8.1 Introduction

The major evolution of the 5G system is the huge diversity of the terminals that connect the network.
It has been detailed in chapter 1. The diversity of the terminals has two impacts on the network
infrastructure that network slicing must manage. First, given that the different terminals do not
connect to the same data network, the infrastructure must implement tunnels that transport commu-
nications between terminals and data networks. Furthermore, the various terminals will have highly
heterogeneous user traffic, which implies that the network must support many different QoS profiles.

Among those heterogeneous user traffics, some have strong constraints regarding reliability and
network control. The network control constraint requires that the QoS that can be offered to the
UE is strictly mastered by the network at every moment. This is where a major challenge is raised.
Indeed, the purpose of 5G networks is to support those diverse user traffics on top of a single physical
infrastructure. However, complete network control cannot be ensured when the infrastructure is shared
between critical and non-critical slices. Some techniques can be used to increase the reliability and
control of the network when the infrastructure is shared by dedicating resources to slices (investigated
in chapter 6). Nevertheless, even if the infrastructure can be optimized to provide the highest possible
network control, it cannot reach full control and reliability. The only way to have complete control
over the network for critical user traffics is to deploy a dedicated infrastructure for the associated
terminals, but this is not the vision of the 5G system.

Therefore, supervision tools are required to provide the highest possible network control over an
infrastructure shared between critical and non-critical slices. Those tools are expected to add a second
level of reliability and control on top of the first level provided by the network itself. To supervise the
network, they must be fed with the highest possible volume of data in order to reach high accuracy.
The infrastructure can provide the data using network APIs. However, for highly critical services and
especially for services that might be exposed to security issues, it is worth that the supervision tools
also rely on data from outside the network. Indeed, in case of a security attack over the network, the
data provided by the APIs might be corrupted, and the supervision tools might not be able to detect
the attack. On the other side, using data from outside the network guarantees that the data is not
corrupted even in case of a security attack.

In this chapter, the work done for the PHY layer is derived to implement a standalone 5G probe
that can extract all the downlink and uplink communications of all the UEs of a cell. The purpose of
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this probe is to provide supervision tools with data from outside the network to increase the network’s
reliability and control. The first section details how the probe has been implemented, and the second
section investigates what is the data extracted by the probe and how supervision tools can use it to
provide network control.

8.2 Implementation and software architecture

After implementing all the PHY functions introduced in chapters 2 and 3, the free5GRAN code
architecture needs to be adapted in order to implement a probe that can decode the downlink and
uplink communications of all the UEs. For downlink communications, the probe is derived from the
receiver’s side of the UE, and for the uplink direction, it is derived from the receiver’s side of the
gNodeB. Furthermore, it is required for the probe to decode all the communications of all the UEs,
whereas the PHY layer decodes transmissions on a per UE basis. This section details the architecture
of the probe and some implementation specificity.
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Figure 8.1: Overall probe’s architecture

Figure 8.1 represents the architecture of the probe. In this section, all the probe components are
reviewed to explain how it is implemented and expose the architecture.

8.2.1 Main

The main thread is responsible for managing all the different components of the probe. Its main
responsibility is to perform the initial cell’s synchronization. It includes the PSS and SSS search, the
MIB decoding and the SIB1 decoding. Once the probe is fully synchronized with the cell, the main
thread can start the other components to start listening the transmissions.

8.2.2 RNTI sniffer

The second component is the RNTI sniffer. The purpose of this component is that the first step
towards downlink and uplink transport block decoding is DCI decoding. The issue is that the CRC
of all the DCI payloads are masked with the UE’s RNTI to which it is intended. Therefore, decoding
the DCI payloads is impossible without having a list of all the RNTIs being used on the network.
Furthermore, this component is responsible for decoding the RRC Setup messages. This message is
critical as it contains all the RRC configuration used for exchanges between the UE and the gNodeB.

The RNTI sniffer decodes two transmissions:

• The first one is the RAR. Indeed, as explained in section 3.4, the RAR is the response of the
gNodeB to the PRACH transmission of a UE. The RAR contains different information, among
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which TC-RNTI is the main one used here. The TC-RNTI is the RNTI used by the UE for
completing the RA procedure. If the procedure succeeds, the TC-RNTI becomes the C-RNTI,
which is the actual RNTI used for traffic communications in uplink and downlink.

• The second one is the RRC Setup message, which is the last message of the RA procedure. This
message is decoded for two reasons. The first one is that it enables to confirm that the TC-RNTI
decoded while decoding the RAR is used and actually corresponds to a UE. The second one
is that it contains the RRC configuration used for communications between the UE and the
gNodeB. In the current version of the probe, it is considered that the RRC configuration is the
same for all the UEs, so the message is decoded once to complete the probe configuration, and
then it is not used anymore. In a future version of the probe, the RRC configuration could be
stored for each UE in order to support per UE RRC configuration.

To decode those two transmissions, the first step is to extract the search space and CORESET used
for RA. It can be found in SIB1. Those two objects give the configuration used for the transmission
of the DCI during the RA process.

When the search space and CORESET are determined, the RNTI sniffer can start searching for
DCI transmissions. It performs blind search as explained in section 3.2.5.2. For the RAR, the RNTI
used for CRC masking is RA-RNTI which can be computed based on the PRACH occasion that has
been used by the UE. As the probe does not know what is the occasion used by UEs, it computes the
set of all the RA-RNTI corresponding to the possible PRACH occasions. For RRC Setup transmission,
the RNTI used for CRC masking is the TC-RNTI transmitted in the RAR message. The probe builds
a set of possible RNTIs that are the possible RA-RNTI and the TC-RNTI for which RRC Setup has
not been transmitted. DCI blind search is done for all the PDCCH candidates and CRC validation
is tried for each RNTI.

Once the probe has extracted and decoded one DCI in the RA search space, it determines if it is
an allocation for RAR or for RRC Setup based on the RNTI type (RA-RNTI or TC-RNTI). In both
cases, it extracts and decodes the corresponding PDSCH and DL-SCH transport block. Finally, for
RAR, it parses the MAC PDU and for RRC Setup, it performs unaligned PER decoding to recover
the ASN1 RRC Setup message.

The last step is to extract the TC-RNTI in the RAR message and to validate that it is actually
used by decoding the RRC Setup. This enables to build a set of C-RNTIs used in the cell. When
the first UE connects the cell, the RRC Setup message is used by the probe to determine the cell’s
detailed RRC configuration.

8.2.3 DCI sniffer

Once the RNTIs used on the cell have been determined by the probe, the probe can start to search for
DCI messages. The DCI messages are the first information that has to be extracted as they contain
the resource allocation for UL-SCH and DL-SCH. The two DCI formats the probe is looking for are
DCI Format 1 1 and 0 1 with C-RNTI.

The first step is also to determine the search space where the PDCCH transmissions are located.
This information can be found either in the SIB1 or RRC Setup message. Once the search space has
been determined, the size of the two DCI payloads must be determined to perform a blind search.

When all the required information have been determined, the DCI sniffer can start to continuously
blind search for PDCCH candidates. One successful candidate is a DCI message which size is one of
the DCI payloads sizes and which CRC is validated after de-masking with one of the C-RNTI used
in the cell (determined in section 8.2.2).

Given that blind searching for DCI transmissions for each UE has a high processing complexity,
the DCI sniffer component is multi-threaded. The main thread will run one DCI sniffer thread for
each downlink slot. Each DCI sniffer element is responsible for blind searching DCI payloads in one
slot.

The RNTI and DCI sniffers give the first version of the probe. All the information for physical
layer resource assignment and usage is known at this level.

Figure 8.2 represents the overall procedure for the RNTI and DCI sniffer.
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Figure 8.2: Overall procedure for RNTI and DCI sniffer

8.2.4 DL-SCH decoding

Once the probe decodes the DCI, the corresponding PDSCH / DL-SCH transmissions can be extracted
and decoded. Figure 8.3 represents the processing steps for the decoding of the PDSCH / DL-SCH
transport blocks. The input of this component is the OFDM grid together with the resource allocation.
The resource allocation information contains the following information:

• Symbols and subcarriers where PDSCH can be found. It enables the probe to extract the IQ
samples corresponding to PDSCH and DMRS, to perform channel estimation and equalization.

• It also contains information about redundancy version, modulation scheme, and code rate. The
modulation scheme is used for modulation de-mapping for IQ samples to bit transformation, the
redundancy version is used for rate recovering, and the code rate is used for LDPC decoding.

• The last important information is the HARQ process. After DL-SCH decoding, if the CRC is not
validated, the current transport block is not dropped but kept in a buffer. The UE (and therefore
the probe) waits for a second transmission of the transport block with another redundancy
version. The UE (and the probe) combines the previous buffer with the new transmission of the
transport block and tries the LDPC decoding and CRC validation again. This process is done
in parallel for multiple transport blocks, and the HARQ process identifies the process to which
the transmission belongs.

Given that LDPC decoding is highly consuming and that multiple transmissions can be done in
parallel (for each HARQ process), the PDSCH decoder is multithreaded. One occurrence of this
function is responsible for one HARQ process.
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Figure 8.3: Procedure for PDSCH decoding

8.2.5 PRACH detection
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Figure 8.4: UE to probe TA computation

Given that the probe is not at the same location as the gNodeB, the uplink synchronization must
be done on a per UE basis. Indeed, within a cell, the uplink synchronization is made with regard to
the gNodeB: the PRACH transmission enables the gNodeB to compute the TA, and the UE transmits
all the transmissions in advance, with a TA offset. With this kind of synchronization, all the uplink
transmissions of all the UEs are synchronized with the cell when they arrive at the gNodeB. In Figure
8.4, as UE1 sends its transmissions with TA1 offset and UE2 with TA2, the uplink transmissions are
synchronized at the gNodeB. On the opposite, as the probe is not in the same location as the gNodeB,
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the TA with regard to the probe (noted TAprobe
x , where x identifies a UE) is different, which means

that the uplink transmissions will not be synchronized at the probe. Therefore, the probe has to
compute the synchronization offset (noted ∆

probe
x ), which is the synchronization offset of the UEs

with regard to the probe. This offset is computed with Equation:

∆
probe
x = TAprobe

x − TAx

The uplink synchronization of the probe follows the steps:

1. First, UE x transmits PRACH signal towards the gNodeB.

2. The gNodeB answers with the RAR which contains the TA. The probe extracts and decodes
the RAR and is able to determine the UE’s TA with regard to the cell (noted TAx is Figure
8.4).

3. As the probe implements the PRACH detection, it will also detect the UE’s PRACH trans-
mission and estimate the TA of the UE with regard to the probe, noted TAprobe

x in Figure
8.4.

4. The final offset ∆probe
x is computed.

5. For extracting uplink resources, the probe extracts the time domain signal based on the UE’s
offset, performs OFDM demodulation and decodes the PUSCH.

8.2.6 PUSCH detection

Once the probe is synchronized in uplink with the UE, it can use the information extracted from the
DCI sniffer to extract and decode the PUSCH. Here is the overall process:

• The probe gets the uplink DCI payload from the DCI buffer. As for PDSCH (section 8.2.4), the
important information is the resource allocation, the transmission configuration and the HARQ
process.

• It extracts the corresponding time-domain signal and apply the uplink synchronization offset
(∆probe

x ) before performing OFDM demodulation.

• Once the frequency domain grid is recovered, the probe extracts the allocated resources.

• Finally, it performs PUSCH and UL-SCH decoding. In case of HARQ re-transmission, the
current transmission must be combined with the previous transmission that happened with the
same HARQ process.

As for PDSCH, given that LDPC decoding is highly consuming and that multiple transmissions
can be done in parallel (for each HARQ process), the PUSCH decoder is multithreaded. One occurence
of this functions is responsible for one HARQ process.

Figure 8.5 represents the process for extracting UL-SCH transport blocks and interactions between
PRACH detector and PUSCH decoder.

8.3 Extracted data and supervision

The different components of the probe enable it to extract a significant amount of data. Supervision
tools can use this data to increase the overall network control. This section introduces the different
information extracted from the cell with the probe and the possible understanding of the network
that can be derived from the data and leveraged by supervision tools.

The objective of this probe is to gather as much data as possible from the cell. Given that the
raw data is extracted at the PHY layer, we try to parse and decode the most possible upper layers.
Figure 8.6 represents the layers from which data can be extracted. The PHY data is the data actually
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Figure 8.5: Overall procedure for uplink synchronization and decoding

extracted by the probe and does not need to be parsed. At the MAC layer, the data is accessible after
parsing the control elements and SDUs. After the MAC layer, it becomes highly challenging. First,
given that all the transmissions are ciphered at the PDCP level, no data can be extracted from the
layers above the PDCP layer. Finally, the data is not ciphered at the RLC layer, but the format of
the SDUs depends on the transmission mode (acknowledged, non-acknowledged or transparent). It is
then required to implement an inference mechanism to determine the transmission mode used. With
such a mechanism, the probe could parse the RLC SDUs and extract data from this layer.

Given that there is a huge complexity gap between the DCI extraction and corresponding uplink
and downlink transport block decoding, the probe can be restricted to the DCI extraction when
the computing resources are limited and extended to transport block decoding when the number of
available resources is high. Therefore, the first part of this section focuses on the data accessible
when only extracting the DCIs, and the second part investigates the data accessible after decoding
the transport blocks.

8.3.1 DCI

The DCI extraction enables to recover all the DCI payloads for both the uplink and downlink directions
and for all the UEs. As introduced in section 3.2, the DCI is carried by the PDCCH and is used by
the gNodeB to grant resources to UEs. It can be downlink grant for transmitting PDSCH to UEs or
uplink grant when UEs have to transfer PUSCH to the gNodeB. The DCI payload contains different
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Figure 8.6: Layers in the stack from which data can be extracted

fields, as defined in TS38.212 section 7.3.1 [11]. Among the different fields, some are critical:

• Time and frequency domain resource allocation. Those two fields give the position of the data
transmission in the OFDM grid. The time-domain allocation gives the first symbol and number
of symbols in a slot where the PDSCH / PUSCH is located, and the frequency-domain allocation
gives the first RB and the number of RBs in the cell’s bandwidth. Therefore, those two fields
define a rectangle within the OFDM grid where data is transmitted to or from one UE. The
frequency-domain information is a single value called RIV and the number of RBs and first
RB are recovered using an equation given in TS38.214 section 5.1.2.2.2 [24]. The time-domain
information is an index in a list of possible time-domain allocations. This list is given in RRC
messages like SIB1 or RRC Setup.

• MCS. This field gives the way PDSCH and PUSCH are transmitted. The modulation scheme
gives the number of bits transmitted in a single IQ sample, whereas the code rate gives the
proportion between the number of information bits and the number of code bits. Those two
values are given by a single field which gives an index in Table 5.1.2.1-1 from TS38.214 [24].

• HARQ process and redundancy version. Those two fields give information about the upper
MAC HARQ process. For one process (identified by the HARQ process field), the redundancy
version equals zero for the first transmission of a transport block. A redundancy version higher
than zero means that the transport block is being re-transmitted.

Supervision tools can use that information for different purposes:

• First, given that the number of IQ samples being transmitted in PDSCH / PUSCH is known
by the resource allocation field and that the number of bits per IQ sample and code rate are
known, the transport block size of every data transmission can be computed using the method
given in TS38.214 section 5.1.3.2 [24].

Given that the DCI is usually transmitted with a granularity of the slot, it enables to determine
the number of bits being transmitted each millisecond or half-millisecond, depending on the
numerology. Therefore, computing the transport block size of the data transmissions enables to
build, for each UE and direction, a traffic profile that reflects the data transmissions of a UE
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over the time. Those users’ uplink and downlink profiles can be used to infer the type of traffic
transmitted on the network. Indeed, some user traffics have precise payload size and periodicity
profiles. For example, voice streaming might produce traffic with low transport block sizes but
high regularity, whereas Hypertext Transfer Protocol (HTTP) traffic might produce uneven
traffic with peaks. Supervision tools can leverage this data to identify the service associated
with each user profile. However, this only works for terminals that do not transfer different
traffics simultaneously.

Machine learning or deep learning algorithms can be used to classify the user traffics and identify
the related services. Those algorithms must be trained by generating and labeling data sets and
can then be used to classify the traffic based on a user profile. Traffic classification based on DCI
extraction has already been investigated in 4G in [68]. The probe introduced in this chapter
can be used to derive this work to 5G.

• The time and frequency position of the data transmissions can also be used to estimate the
overall load of the cell. Indeed, given that the allocations of all the UEs can be decoded in both
directions, it becomes possible to determine the available resources at every time. The load of
the cell at a given time can be further analyzed to determine whether network congestion is
due to an uneven peak or to a long-term overload of the cell. Furthermore, it can be used by
supervision tools to raise alerts when the load of the cell reaches a given threshold.

• If the two previous KPIs are combined, the cell load can also be estimated per service, which can
be helpful for network planning and optimization. Indeed, the operator may not position and
allocate the resources similarly for different services. When the load of one service increases, the
operator can re-deploy resources collocated with the resources already dedicated to this service.

• Furthermore, the time and frequency positions, together with the traffic classification, enable to
infer how the MAC scheduler works and which scheduling algorithm is implemented. Supervision
tools can leverage this data by controlling that the MAC scheduler implements the expected
scheduling strategy for each service. It can raise an alarm if the scheduling algorithm used in
the cell does not match the requirements of the services.

• Finally, the quality of the radio channel of a UE can be estimated by looking at the PHY
configuration used for data transmissions. Indeed, the scheduler might use a low modulation
scheme and code rate when the communication quality decreases. Furthermore, the HARQ
process information and redundancy version can be combined to determine the number of re-
transmissions required for a transport block. It can be estimated that the highest the number
of re-transmissions, the lowest the channel’s quality. This is essential information as critical
services can be notified by supervision tools when the quality of the channel of a terminal
accessing this service is decreasing.

8.3.2 Data decoding

When the number of computing resources on the probe is not limited or high, it is worth decoding
the transport blocks corresponding to the previously extracted resource allocations. Once decoded,
the MAC PDUs can be parsed, and the following information can be recovered:

• MAC control elements: un-encrypted MAC payload which contains the MAC control data.

• MAC SDUs: sub payload of the data to be transmitted. The headers include the MAC Logical
Channel ID (LCID) and the SDU’s size. A logical channel is a MAC layer channel that carries
one specific traffic type. Some channels are reserved for network control and signaling, and
others are used for user traffic.

The MAC layer headers and control elements provide much information about the network. Given
that heterogeneous traffics use different logical channels at the MAC layer, the different QoS flows
(and also signaling) can be split.
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Therefore, the probe can build the traffic profile of each UE in each direction and for each type
of traffic by combining the LCID information with the corresponding SDU size. This is a significant
evolution compared to what can be done by just extracting the DCIs as the different traffics of one
UE can be differentiated, and the user’s profile can be built on a per traffic basis.

Finally, the MAC control elements can be used to understand the state and behavior of the
network. The most interesting control element is the Buffer Status Report (BSR). It is used by UEs to
report the buffer’s state to the network. This is critical information that supervision tools can leverage.
Indeed, it is interesting to provide critical services (especially services with delay constraints) with
this information so that the service can adapt itself to the buffer state. Furthermore, the supervision
application can estimate the required time to transmit the whole buffer by combining the available
information: channel quality, overall cell load, and MAC scheduling strategy. It can raise an alarm
when the estimated transmission delay exceeds the maximum service’s delay constraint.

8.4 Simulations

In this section, we present the tests that have been done to validate the probe. Figure 8.7 represents
the system architecture used for our test-bed. There are three components in the setup:

• The RF device: a USRP X310, which is connected to the host server through an optical fiber.

• The host device (server in Figure 8.7). Given that decoding all the downlink and uplink transport
blocks of all the UEs can be highly resources consuming, the probe is not implemented in a local
server close to the RF device but inside a VM in a datacenter.

• A telemetry stack (database in Figure 8.7). It is used to gather, store and display the data.
Different stacks exist, and the one used in this setup is TICK Stack from Influx Data [69].
It includes a data collector (Telegraf), a time-series database (Influx DB), a graphing tool
(Chronograf), and an alerting tool (Kapacitor).

The probe uses gRPC [70] to transfer data from the host to the telemetry stack. It is used as it
is a modern and one of the most used protocols for data streaming.
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Figure 8.7: Probe testing system overview

The probe is tested and validated against an Amarisoft setup [71]. On one side, there is the
Amarisoft 5G network which comprises the CN, the gNodeB and the SDR devices. On the other side,
there is the Amarisoft UE’s simulator.
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Figure 8.8: User’s downlink profile for LCID 5 (HTTP traffic)

Figure 8.9: User’s downlink profile for LCID 6 (RTP traffic)

The purpose of the simulation is to validate the probe in a generic case where a UE is doing voice
calls and web browsing simultaneously. In this simulation, we focus on traffic classification and try
to validate that classification algorithms can use the probe to recognize the different types of traffic
within one cell. Therefore, we trigger a UE which connects the cell and generates 10 seconds of
Real-time Transport Protocol (RTP) and HTTP traffic. RTP is the protocol used to carry the voice
during Voice over IP (VoIP) calls and HTTP carries the web traffic. Using the Amarisoft’s API, we
determine that the LCID 5 is used for HTTP transfer and that LCID 6 is used for RTP transfer. The
downlink and uplink profiles for the 2 MAC LCIDs of the user are shown in Figures 8.8, 8.9, 8.10 and
8.11, where the x-axis is the reception’s time of the MAC SDU and the y-axis is the number of bytes
of the corresponding SDU.

It can be observed that HTTP and RTP traffics produce very different downlink and uplink
profiles. The simulations performed enable to validate that the data extracted from the cell indeed
contains accurate and relevant information. It can be expected that classification algorithms will be
able to identify the different traffics on the cell.
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Figure 8.10: User’s uplink profile for LCID 5 (HTTP traffic)

Figure 8.11: User’s uplink profile for LCID 6 (RTP traffic)

8.5 Conlusion

In this chapter, we proposed the implementation of a 5G probe. This probe is derived from
free5GRAN. It can be used to extract data from a 5G SA cell and does not require a connection
to the network from which the data is extracted. The data extracted from the probe is two-fold.
First, the DCIs, which provide resource allocation, are extracted. Then, the downlink and uplink
transmissions are extracted. Depending on the requirements and available computing resources, the
probe can be used to only decode the DCIs or to decode both the DCIs and the associated transmis-
sions. Decoding the data transmissions has a high impact on the required computing resources.

The data extracted from the probe can be used to address different use cases. First, the resource
allocation and MAC LCIDs can be used to infer the traffic type which is being transmitted. This
information can be used to estimate the load of the network per traffic type but also to optimize the
network’s deployment. Furthermore, there are a lot of other Key Performance Indicator (KPI) that
can be extracted with the probe, like the channel’s quality (derived from the code rate and modulation
scheme) or the users’ buffer state (derived from the BSR MAC CE). Supervision tools can use all
that information to monitor the network and validate that the network’s state is good enough to
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respect the different slices requirements. This brings a second level of control over the network, which
increases the network’s reliability.
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Conclusion

In this thesis, network slicing was investigated. This technology enables the operators to deploy log-
ical networks on top of a single physical infrastructure. Those logical networks can be dedicated to
one type of service and one customer. Network slicing has been introduced to support the highly
diversified terminals that connect the 5G network and require access to different data networks with
heterogeneous user traffics constraints. It has received much attention as it is the technology that
enables operators to address the new verticals introduced in 5G. Given that network slicing is achieved
by associating resources to network slices, resource allocation is of the utmost importance for network
slicing deployment. Network slicing implementation raises multiple problems, among which a signifi-
cant part resides at the RAN level. This thesis addressed two challenges raised by network slicing at
the RAN level.

The first one is the network modeling for resource allocation. Indeed, many models exist for
resource allocation of the RAN but we are missing models which take into account new constraints
implied by network slicing. The first contribution of this thesis was to define a new model for net-
work slicing at the RAN level. This model, introduced in chapter 7, takes into account diverse slices
constraints such as capacity, UEs density, latency, and reliability. Network coverage was introduced
as being a fundamental criteria for network reliability. Simplicial homology was used to validate
slices constraints fulfillment. Finally, this model was applied to power optimization, which is a crit-
ical aspect of network deployment. For future research, it would be interesting to include new radio
technologies such as massive MIMO and beam-forming in this model. Furthermore, while the opti-
mization algorithm introduced in this thesis only tries to decrease power consumption, it would be
worth deriving the current algorithm so that it can also optimize the placement of the different cells.

The second challenge that has been addressed in this work is the network’s supervision and control.
Indeed, some new verticals have ultra high control requirements, and the network itself might not
be able to satisfy this constraint fully. Therefore, in chapter 8, we introduced a probe that can
extract data from the network to feed supervision tools for the network’s monitoring and control.
This probe was designed to be resilient to cyber-attacks and is thus independent of the network. In
today’s version, the probe can extract all the DCI messages which carry resource allocation and the
associated uplink and downlink transmissions. Based on this raw data extracted by the probe, the
MAC layer SDUs and control elements can be recovered. Further work could investigate the possibility
of extracting more data, especially to parse the RLC SDUs. This would require inferring the RLC
transmission mode (transparent, acknowledged, or un-acknowledged) and would enable supervision
systems to leverage new KPIs such as RLC DRBs. Furthermore, it would be worth implementing
BWPs in the probe as it is a fundamental technology for network slicing. Finally, future works could
concentrate on using the data extracted by this probe. Indeed, the probe extracts a massive volume
of data that can be streamed to supervision systems. Therefore, implementing algorithms that can
analyze the different KPIs to control the network’s health and classify the traffic is of paramount
interest. We received a fund from the IP Paris doctoral school for this purpose, and this work has
started within the laboratory to study the different algorithms that can be applied to the extracted
data. The first use-case being investigated during this work is traffic classification.

The last main contribution of this thesis is the introduction of an open-source 5G physical layer
called free5GRAN. This project (described in chapters 2, 3, 4 and 5) has been developed in parallel
with the probe, as the two projects are closely related. The physical layer provides all the minimal
procedures and algorithms for communications between the gNodeB and UEs. The project’s structure
was built so that one can easily modify it and implement new features. The software architecture
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Conclusion

has been designed so that the physical layer is modular and can be derived to implement the open-
RAN split 7.2. Further works could implement new radio technologies like MIMO and beamforming.
Furthermore, it would be interesting to support FR2 bands, as those bands might raise a lot of new
challenges. Finally, in the context of RAN virtualization and cloud deployments, it appears that
software implementations paired with hardware acceleration are a good trade-off between flexibility
and performance. Therefore, implementing resource consuming functions like channel coding and
decoding on dedicated hardware devices like Field Programmable Gate Array (FPGA) and Graphics
Processing Unit (GPU) is promising. This work has started by one intern in our laboratory. He
worked on the implementation of the LDPC decoder in FPGA (leveraging USRP X3xx and X4xx
FPGA cards) and integrated it in free5GRAN.

In this thesis, we showed that network slicing can be implemented with the current technologies.
However, it requires much attention and the consideration of all the network’s levels (like network
functions, hardware resources, transport network, or radio interface). Furthermore, we exposed all the
main procedures and algorithms involved in the 5G physical layer and proposed a concrete open-source
implementation called free5GRAN.
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• A. de Javel, P.Martins, free5GRAN, An open-source 5G RAN PHY layer, code available at:
https://github.com/free5G/free5GRAN.

• The probe introduced in chapter 8 will be available publicly under the free5G organization of
Github: https://github.com/free5G/
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Appendix A

PHY layer implementation details

A.1 Synchronization

Synchronization relies on PSS and SSS signals. The sequences x, x0 and x1 (used below) are m-
sequences. For PSS, a single m-sequence is used to generate the PSS sequence whereas, for SSS,
a combination of two m-sequences (which produces a Gold sequence) is used. Those signals are

generated based on two parameters N
(1)
ID and N

(2)
ID which depend on the cell’s ID (N cell

ID ), such as:

N cell
ID = 3 ·N

(1)
ID +N

(2)
ID

On the gNodeB’s side, N
(1)
ID and N

(2)
ID are computed and the PSS and SSS signals can be generated

accordingly. On the UE’s side, N cell
ID is not known and the UE generates all the possible PSS and SSS

signals corresponding to the possible N
(1)
ID and N

(2)
ID values.

A.1.1 PSS sequence generation

PSS sequence, noted dpss(n), is defined in TS38.211 section 7.4.2.2.1 [21] and follows Equation:

dpss(n) = 1− 2 · x(m)

Where
m = (n+ 43 ·N

(2)
ID ) (mod 127)

and
x(i+ 7) = (x(i+ 4) + x(i)) (mod 2)

with
[x(0), ..., x(6)] = [0, 1, 1, 0, 1, 1, 1]

A.1.2 SSS sequence generation

SSS sequences can be generated by the following equation:

dsss(n) = [1− 2 · x0((n+m0) (mod 127))]× [1− 2 · x1((n+m1) (mod 127))]

Where

m0 = 15 ·

⌊

N
(1)
ID

112

⌋

· 5 ·N
(2)
ID , m1 = N

(1)
ID (mod 112)

and
x0(i+ 7) = (x0(i+ 4) + x0(i)) (mod 2)

x1(i+ 7) = (x1(i+ 1) + x1(i)) (mod 2)

with
[x0(0), ..., x0(6)] = [1, 0, 0, 0, 0, 0]

[x1(0), ..., x1(6)] = [1, 0, 0, 0, 0, 0]
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A.1.3 Frequency tracking implementation
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Figure A.1: Frequency offset estimation process

This section details how the fine frequency offset between the gNodeB and the UE can be com-
puted. Figure A.1 represents the process to estimate the frequency offset between the gNodeB and
the UE. The frequency offset between the gNodeB and the UE is estimated by averaging the fre-
quency offsets of the four SSB symbols. Indeed, the frequency offset over one symbol is due to the
spread delay and the actual frequency offset with the gNodeB. Given that delay spread varies from
one symbol to another and that frequency offset is expected to be consistent over symbols, averaging
the frequency offset over the four SSB symbols enables mitigation of the effects of spread delay over
the frequency offset estimation.

The first step to compute the frequency offset for one symbol is to compute the phase difference
(noted dΦ) between the cyclic prefix and the corresponding part of the symbol, which is made by
correlating the cyclic prefix with the symbol. Indeed, the result of the correlation, noted c, is a
complex such as:

c = ρc · e
2πj·dΦ

Therefore:

dΦ =
arg(c)

2π

Finally, given that the frequency offset for one symbol (noted f symb
offset) equals:

f symb
offset =

dΦ

dt

And that the duration of a symbol is equal to the inverse of the SCS, we obtain:

f symb
offset =

arg(c)

2π
· SCS

The frequency offset between the gNodeB and the UE (noted foffset) is computed by averaging
the frequency offsets of the four SSB symbols. Here is the free5GRAN code for frequency offset
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Parameter Length Payload position

SFN 10 a1, a2, a3, a4, a5, a6, a24, a25, a26, a27
PDCCH config 8 a13, a14, a15, a16, a17, a18, a19, a20
Common SCS 1 a7 (0: 15kHz, 1: 30kHz for FR1 bands)

Cell barred 1 a21
DMRS Type A pos. 1 2 + a12
k SSB 5 a29, a8, a9, a10, a11
Int. Freq. Reselection 1 a22

Table A.1: MIB payload for Lmax = 8

computation:

// input_signal is the time domain received signal

// fft_size is the number of samples in a symbol (without cyclic prefix)

// cp_length is the number of samples in the cyclic prefix

// symbol_duration is the number of samples in a symbol with cyclic prefix = cp_length + fft_size

// avg_frequency_offset is the final output frequency offset

float avg_frequency_offset = 0;

// Looping over all the symbols

for (int symbol = 0; symbol < num_symbols; symbol++) {

// Initialize correlation to 0

complex<float> correlation = 0;

// Compute correlation between the cyclic prefix and the symbol

// Loop over all the samples of the cyclic prefix

for (int i = 0; i < cp_length; i++) {

correlation += conj(input_signal[i + symbol * symbol_duration]) *

input_signal[i + symbol * symbol_duration + fft_size];

}

// phase_offset_symbol is the symbol's phase offset

float phase_offset_symbol = arg(correlation);

// Compute symbol frequency offset from phase offset

// M_PI is the PI value in C++

// scs is the subcarrier spacing

float frequency_offset_symbol = scs * phase_offset_symbol / (2 * M_PI);

avg_frequency_offset += frequency_offset_symbol;

}

// Average frequency offsets over all the symbols

avg_frequency_offset /= num_symbols;

A.2 Master Information Block

A.2.1 MIB payload compositions

The generic MIB payload size is 24 bits, but it is added another 8 bits for finer timing information,
which leads to a 32 bits payload. The MIB payload is generated depending on Lmax, as specified in
TS38.212 section 7.1.1 [11]. Table A.1 gives an example of MIB payload composition for Lmax = 8.
Some indexes do not appear are they are reserved and not used for MIB payload.

A.2.2 MIB processing functions

Figure A.2 represents the overall BCH and PBCH processing functions together with the size of the
associated sequences.
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Figure A.2: Size of the sequences involved in BCH/PBCH encoding

A.2.2.1 Bits interleaving (Transport channel processing - TS38.212 section 7.1.1)

Bits interleaving is the process by which the initial 24 MIB bits are interleaved with the 8 other bits
to form a 32 bits payload. In our case, this is not a specific function as it is done while computing
the MIB payload: Table A.1 shows the MIB payload composition after bits interleaving.

A.2.2.2 BCH scrambling (Transport channel processing - TS38.212 section 7.1.2)

BCH scrambling is based on the LSB of the SFN, and guarantees that no confusion is possible between
two MIB payloads with a close SFN. The first step is to choose a v value depending on SFN, using TS
38.212 Table 7.1.2-1. Then, scrambling can be performed following Algorithm 4.5, where s sequence
is generated based on v using the algorithm described in TS 38.212 section 7.1.2.

A.2.2.3 CRC attachment (Transport channel processing - TS38.212 section 7.1.3)

CRC attachment and validation is made using gCRC24C polynom, as detailed in section 4.2. If the
receiver do not validate the CRC, the MIB decoding process is failed.

A.2.2.4 Channel coding (Transport channel processing - TS38.212 section 7.1.4)

The BCH channel coding algorithm is polar coding. This algorithm is detailed in section 4.3.1.

A.2.2.5 Rate matching (Transport channel processing - TS38.212 section 7.1.5)

Rate matching is detailed in section 4.4.1. The parameters are E = 864 (BCH channel size) and
IBIL = 0. After rate matching, BCH encoding is done and the channel can be sent to the PBCH
encoder.

A.2.2.6 Scrambling (Physical channel processing - TS38.211 section 7.3.3.1)

Scrambling is the first function of the PBCH encoding. It consists in scrambling the 864 bits with
a sequence determined by the PCI in order to avoid confusion at the cells’ borders. Scrambling is
made according section 4.5, by setting si = ci+iSSB ·Mbit

, where Mbit = E = 864. For FR2 bands, the
parameter iSSB is encoded on 6 bits, and another parameter called īSSB is introduced as being the
3 LSB of iSSB (̄iSSB = iSSB (mod 8)) and iSSB is replaced by īSSB in the previous formula. c is a
Gold sequence computed according to TS38.211 section 5.2 [21] using cinit = NCELL

ID (PCI).

A.2.2.7 Modulation (Physical channel processing - TS38.211 section 7.3.3.2)

The 864 bits are modulated according section 4.6 using QPSK modulation scheme, which returns a
set of 432 IQ samples.

A.2.2.8 DMRS generation (Physical signal processing - TS38.211 section 7.4.1.4)

DMRS is a pilot signal that will be used by UEs to correct the received signal. As detailed earlier,
there is 144 available positions for DMRS in the PBCH allocation within SSB. The 144 elements of
the DMRS sequence can be generated according TS38.211 section 7.4.1.4.1. It depends on iSSB and
the cell’s PCI (N cell

ID ).
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A.3 PDCCH

A.3.1 PDCCH processing functions
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Figure A.3: Size of the sequences involved in DCI/PDCCH encoding

Figure A.3 represents the overall DCI and PDCCH processing functions together with the size’s
notation of the associated sequences.

A.3.1.1 Channel coding (Transport channel processing - TS38.212 section 7.3.3)

The DCI channel coding algorithm is polar coding. This algorithm is detailed in section 4.3.1.

A.3.1.2 Rate matching (Transport channel processing - TS38.212 section 7.3.4

Rate matching is detailed in section 4.4.1. After rate matching, DCI encoding is completed and the
payload can be moved to the PDCCH encoder.

A.3.1.3 Scrambling (Physical channel processing - TS38.211 section 7.3.2.3)

Scrambling process is made according section 4.5, by setting si = ci, where c is computed according to
TS38.211 section 5.2. cinit depends on the cell’s configuration. In a default configuration, cinit = N cell

ID .

A.3.1.4 Modulation (Physical channel processing - TS38.211 section 7.3.2.4)

Modulation is defined in section 4.6 and modulation scheme is QPSK.

A.3.1.5 DMRS generation (Physical signal processing - TS38.211 section 7.4.1.4)

DMRS signal is computed using equation A.1.

rl(m) =
1√
2
· (1− 2 · c(2 ·m)) + j ·

1√
2
· (1− 2 · c(2 ·m+ 1)) (A.1)

Where c is computed according to TS38.211 section 5.2 using :

cinit =
[

217 · (N slot
symb · n

µ
s,f + l + 1) · (2 ·NID + 1) + 2 ·NID

]

(mod 231)

Where N slot
symb is the number of symbols per slot (i.e. 14), nµ

s,f is the slot number within the frame,

l is the symbol number within the slot and NID = N cell
ID in a default configuration.

A.3.2 CCE-to-REG mapping

When CCE-to-REG mapping is activated, the CCEs selected for PDCCH transmission must be in-
terleaved to be mapped to REG bundles.

The interleaver function is defined in TS38.211 section 7.3.2.2 [21]. Figure A.4 represents the map-
ping between CCEs and REG bundles when R = 2 (Interleaver size) and nshift = N cell

ID = 250 for two
CORESETs (one with 48 RBs by 1 symbol and another one with 24 RBs by 2 symbols). C is defined by
C = NCORESET

REG /(6 ·R) where NCORESET
REG is the number of REGs in the CORESET. In this example,

C = 4. If CCEs {4, 5, 6, 7} are selected, then PDCCH element IQ samples will be placed in REG bun-
dles {4, 0, 5, 1}, i.e. in REGs {24, 25, 26, 27, 28, 29, 0, 1, 2, 3, 4, 5, 30, 31, 32, 33, 34, 35, 6, 7, 8, 9, 10, 11}.
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The REGs order is important, as the IQ samples are placed in increasing order of CCE, i.e. respect-
ing the order after CCE-to-REG mapping.

Once the REGs are selected and ordered, the PDCCH IQ samples can be placed into the REGs.
REs {1, 5, 9} of each RB are reserved for PDCCH DMRS placement and PDCCH IQ samples can be
placed in the 9 other positions. With the same example and with a 24 RBs by 2 symbols CORESET,
PDCCH IQ samples will be placed in the positions (i, j) (which corresponds to subcarrier i of symbol
j in the CORESET) from: (144, 0), (146, 0), (147, 0), (148, 0), (150, 0), (151, 0), (152, 0), (154, 0),
(155, 0), (144, 1), (146, 1), (147, 1), (148, 1), (150, 1), (151, 1), (152, 1), (154, 1), (155, 1) for REG 24 to
positions (60, 0), (62, 0), (63, 0), (64, 0), (66, 0), (67, 0), (68, 0), (70, 0), (71, 0), (60, 1), (62, 1), (63, 1),
(64, 1), (66, 1), (67, 1), (68, 1), (70, 1), (71, 1) for REG 11.
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Figure A.4: Example of CCE-to-REG mapping for two possible CORESETs (with nshift = Ncell
ID = 250 and R = 2)
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A.4 PDSCH

A.4.1 PDSCH processing functions
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Figure A.5: Size of the sequences involved in DL/UL-SCH and PDSCH/PUSCH encoding

Figure A.5 represents the overall DCI and PDCCH processing functions together with the size’s
notation of the associated sequences.

A.4.1.1 CRC attachment (Transport channel processing - TS38.212 section 7.2.1)

Depending on the transport block (DL-SCH payload) size A, the CRC polynom to be used can be
either gCRC24A when A > 3824 or gCRC16 otherwise. Once computed, the CRC is appended to the
end of the payload and the new payload size is B = A + 24 or B = A + 16 depending on the CRC
polynom.

A.4.1.2 Base graph selection (Transport channel processing - TS38.212 section 7.2.2)

The BG is the parity check matrix used for LDPC encoding and decoding. Its selection is based upon
transport block size A and the code rate R and impacts the channel coding parity check matrix to be
used. If A > 3824 and R > 0.67, BG 1 is used and BG 2 is used otherwise.

A.4.1.3 Code block segmentation (Transport channel processing - TS38.212 section 7.2.3)

Before performing channel coding, DL-SCH payload can be split into different code blocks when the
payload size is high. When splitting the payload into different code blocks, each code block will
be added another CRC (using gCRC24B polynom). Given that the code block size can only take a
given number of values, some filler bits (also called NULL bits) are added to the end of each code
block. The code block segmentation process is described in TS38.212 section 5.2.2. The two following
procedure steps, channel coding and rate matching, are done for each code block before code blocks
are concatenated after rate matching.

A.4.1.4 Channel coding (Transport channel processing - TS38.212 section 7.2.4)

DL-SCH channel coding method is LDPC. Each code block is added a set of parity bits, as detailed
in sections 4.3.2 and 1.3.2.3.2.

A.4.1.5 Rate matching (Transport channel processing - TS38.212 section 7.2.5)

After channel coding, the size of each code block has to be adjusted to match the number of available
resources in the allocation. This is done following section 4.4.2.

A.4.1.6 Code block concatenation (Transport channel processing - TS38.212 section 7.2.6)

After rate matching, all the code blocks are concatenated to give a final physical layer payload.
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A.4.1.7 Scrambling (Physical channel processing - TS38.211 section 7.3.1)

After DL-SCH encoding, PDSCH encoding can be performed. The first step is scrambling. Scrambling
is made according section 4.5 by setting si = ci, where c is computed according to TS38.211 section
5.2. In a default configuration, we consider there is only one code word per transmission and cinit is
then given by cinit = nRNTI ·2

15+nID where nRNTI is the UE’s identifier and nID = N cell
ID by default.

A.4.1.8 Modulation (Physical channel processing - TS38.211 section 7.3.2)

Modulation is made following section 4.6. For PDSCH, modulation order m (or Qm) is given by the
MCS field of the DCI.

A.4.1.9 DMRS generation (Physical channel processing - TS38.211 section 7.4.1.1.1)

DMRS sequence r is generated using Equation:

r(n) =
1√
2
· (1− 2 · c(2 · n)) + j ·

1√
2
· (1− 2 · c(2 · n+ 1))

Where n is the subcarrier index within the BWP. c is computed according to TS38.211 section
5.2 using different parameters. In a default configuration:

cinit =
(

217 · (N slot
symb · n

µ
s,f + l + 1) · (2 ·N cell

ID + 1) + 2 ·N cell
ID

)

(mod 231)

Where N slot
symb is the number of symbols per slot (i.e. 14), nµ

s,f the slot number within the frame
and l the symbol number within slot.

A.5 PDCCH with CORESET 0 and search space 0 placement

The configuration of CORESET 0 and search space 0 used for SIB1 transmission are given by the
parameter PDDCHconfigcommon from the MIB. This parameter is an 8 bits sequence where the
4 first bits give an index (between 0 and 15) in Tables 13-1 to 13-10 of TS38.213 [5] and the 4 last
bits give an index in Tables 13-11 to 13-15. The appropriate tables to be used depend on the cell’s
configuration and are either fixed for a specific band or provided by the MIB. For example, in band
n78 and with a CommonSCS (from MIB) of 30kHz, the two tables to be used are Table 13-4 and
13-11. If the PDDCHconfigcommon is set to 160, then the index in the Table 13-4 is 10 and the
index in Table 13-11 is 0 (10 · 16 + 0 = 160). The first Table gives the configuration of CORESET
0. For example, in Table 14-4 with index 10, CORESET 0 is a 1 symbol per 48 RBs CORESET
(NCORESET

symb = 1 and NCORESET
RB = 48). The offset column defines the offset, in RBs, between the

lowest RB of the SSB and the lowest RB of the CORESET. This defines the position of the CORESET
with regard to the SSB (CORESET 0 is a specific CORESET as it is used at a very initial connection
step, and the frequency position is thus not given with regard to the BWP but with regard to the
SSB as the UE does not know yet the BWP configuration). The second table provides information
used to build search space 0, which is not a usual search space, but rather a simplified search space
used to locate CORESET 0. The four values given by the second table are two variables called O and
M as well as the number of occurrences per slot and the first symbol index of the CORESET within
the slot. O and M are used to determine the frames where CORESET 0 can be found and the slot
index within frame n0, using Equations:

n0 = (O · 2µ + ⌊iSSB ·M⌋) (mod Nframe,µ
slot )

Where µ is the numerology indicator and Nframe,µ
slot the number of slots per frame when numerology

is µ. The frames where CORESET 0 is sent must respect:

SFN (mod 2) =

⌊

O · 2µ + ⌊iSSB ·M⌋
Nframe,µ

slot

⌋

(mod 2)
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For example, with index 0 in TS38.213 Table 13-11, O = 0 and M = 1. Given that µ = 1
(SCS is 30kHz), Nframe,µ

slot = 20 and iSSB = 6, CORESET 0 must be placed every even frame
(
⌊

(0 · 21 + ⌊6 · 1⌋)/20
⌋

(mod 2) = 0). Within even frames, it is placed on the first symbol of slot
n0 = 6.

A.6 PRACH signal generation

A good introduction of the PRACH signal generation can be found in [72].

A.6.1 Preamble selection

The first step for a UE willing to access a cell is to choose a preamble for RA. This process is
detailed in TS38.213 section 8.1. Indeed, the existence of multiple preambles enables multiple UEs
to transmit PRACH on the same occasion without interfering with each other. All the possible 5G
preambles are between 0 and 63, but the available ones may be restricted to a subset depending
on the configuration. Indeed, the preambles might be split into different groups in order to reduce
the contention probability. Moreover, for the sake of beamforming, preambles are allocated to each
SSB (and thus to beams) so that the gNodeB can detect what is the beam chosen by the UE. For
example, it is considered that there are no preamble groups (i.e., the 64 preambles are available for
the UE). If there are two SSBs per SSB period and ssbperRACHOccasionAndCBPreamblesPerSSB
equals (two, n8), which means that there is two SSBs per PRACH occasion and 8 preambles per SSB,
then the number of available preambles is 16 and preambles 0 to 7 are used when the first SSB in
the period is selected by the UE and 8 to 15 when the second one is used. In a simpler case, if there
is only one SSB per SSB period and ssbperRACHOccasionAndCBPreamblesPerSSB equals (one, n8),
which means that there is one SSB per PRACH occasion and 8 preambles per SSB, then the number
of available preambles is 8 and preambles 0 to 7 must be used. Once the set of available preambles is
determined by the UE, it has to select one randomly.

A.6.2 Frequency domain sequence generation

Once a preamble p is chosen, a sequence root index u′ and a cyclic shift index v can be determined.
Then, an initial time-domain sequence is generated based on u′ and shifted v times by NCS . NCS is
called cyclic shift size, giving the number by which the initial sequence is shifted. Before determining
u′ and v, UE has to compute the number of possible shifts per root sequence nseq

shift using following
Equation:

nseq
shift =

⌊

LRA

NCS

⌋

Where LRA is the size of the PRACH sequence and NCS is the size of the cyclic shift.
For example, for a TDD FR1 cell with prachConfigurationIndex = 160, then the PRACH

format is B4 and therefore LRA = 139. Furthermore, Table 6.3.3.1-7 from TS38.211 must be used to
determine NCS . If zeroCorrelationZoneConfig = 15, then NCS = 69. In this case, nseq

shift = 2.

u′ and v can be determined from p such as p = u′ · nseq
shift + v (i.e. u′ = ⌊p/nseq

shift⌋ and

v = p (mod nseq
shift)). Using the same example, if the preamble is p = 5, then u′ = 2 and v = 1.

The initial time domain sequence is generated using a parameter u, which is deduced from u′

(u′ is an index in a Table whereas u is the value associated with this index). u is the (u′ +
prachRootSequenceIndex + 1)-th element of one table (Tables 6.3.3.1-3 to 6.3.3.1-4B in TS38.211).
In our example, if prachRootSequenceIndex = 1, u′ = 2 and LRA = 139, then u is the element of
Table 6.3.3.1-4 with index (2 + 1) which is 137.

The initial time domain sequence xu,v is computed using:

xu,v(n) = xu((n+ Cv) (mod LRA))

Where Cv = v ·NCS (for a simple configuration) and:
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xu(i) = e
−j

π·u·i·(i+1)
LRA

Once the initial time domain sequence is computed, it can be converted to frequency domain
sequence yu,v using an FFT:

yu,v(n) =

LRA−1
∑

m=0

xu,v(m) · e
−j 2·π·m·n

LRA

with n, i ∈ [0, LRA − 1] for all the above Equations.

A.6.3 Time domain signal generation (TS38.211 sections 5.3.2 and 6.3.3)

Before generating time domain signal, a frequency domain PRACH occasion must be selected. The
RRC parameter msg1FDM gives the number of frequency domain PRACH occasions. A PRACH
occasion is selected by picking a value o ∈ [0,msg1FDM − 1].

The time-domain PUSCH signal can be generated from the frequency domain sequence. The first
step is to create an OFDM grid of one symbol with a subcarrier spacing equal to
msg1SubcarrierSpacing. The LRA elements of the sequence can be placed contiguously in the fre-
quency domain from the first subcarrier of the selected frequency domain PUSCH occasion SC0:

SC0 = msg1FrequencyStart · 12 ·
SCSPUSCH

SCSPUSCH
+ o · (12 ·NRA

RB ·
SCSPUSCH

SCSPRACH
) + k̄ (A.2)

Where k̄ and NRA
RB are determined from Table 6.3.3.2-1 of TS38.211. k̄ is the first subcarrier in

the RB where PRACH can be transmitted and NRA
RB is the number of RBs occupied by one PRACH

occasion. o corresponds to the selected frequency domain PRACH occasion (o ∈ [0,msg1FDM − 1]),
SCSPUSCH is the SCS used for PUSCH (given in SIB1) and SCSPRACH is the SCS used for PRACH
transmission (SCSPRACH = msg1SubcarrierSpacing).

For example, for msg1FDM = 1 (i.e. there is only one frequency domain PRACH occasion),
msg1FrequencyStart = 0 (i.e. the first RB allocated for the first PRACH occasion is the first RB
of the band) and LRA = 139 (i.e. k̄ = 2), then the 139 elements of the sequence are placed from
subcarriers 2 to 140 in the OFDM symbol. Once the elements are placed in the OFDM symbol, iFFT
can be performed to get the time domain sequence noted s′.

After time domain sequence generation, the PRACH signal has to be built according to the PRACH
format using Tables 6.3.3.1-1 and 6.3.3.1-2 (with κ = FFTsize/1024). Final time domain PRACH
signal can be generated by repeating s′ several times and by copying the NCP

RA last IQ samples of s′

in front of the repetitions. The number of repetitions is given by the above tables. For example, for
FFTsize = 1024, µ = 1 and PRACH format B4, NCP

RA = 936 · 1024/1024 · 2−1 = 468. The PRACH
signal s can be generated by repeating 12 times the 1024 elements of s′ and by pushing in front of it
the 468 last elements of s′. The free space between the end of the PRACH signal and the start of the
next symbol is reserved for guard period.

Once the PRACH signal s has been generated, it must be transmitted by selecting a time-domain
PRACH occasion. As described in section 3.4.1.1, time-domain PRACH occasions are given by the
configuration in Tables 6.3.3.2-2 to 6.3.3.2-4 of TS38.211. The first step is to determine PRACH
occasions within an eligible slot, and the second one is to determine the eligible slots. We propose
two examples in order to explain how time domain PRACH occasions are determined (both of those
examples are for µ = 1 with TDD FR1 cells: table 6.3.3.2-3 is used):

• First, for prachConfigurationIndex = 74. PRACH duration is 2 symbols and there is 6
occasions per eligible slots starting at symbol 0 (6 × 2 symbols from symbol 0 to symbol 11).
Then, it is specified that there is two eligible slots per subframes. This is possible only when
there is more that 1 slot per subframe. In our example, µ = 1 which means that the SCS is
30kHz and that there is two slots per subframe. The two slots of subframes 8 and 9 (slots 16,
17, 18 and 19 within a frame) are eligible for PRACH occasions. Finally, x = 2 and y = 1 which
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means that PRACH occasions occur every odd frames (i.e. SFN (mod 2) = 1). The PRACH
occasions are then the 6 pairs of two symbols from 0 to 11 of slots 0 and 1 of subframes 8 and
9 within every odd frames.

• For the second example, we consider prachConfigurationIndex = 160. PRACH duration is
12 and there is 1 occasion per slot which starts at symbol 2 (12 symbols from 2 to 13). The
number of PRACH slots per subframe is 1. As µ = 1 (2 slots per subframe), slot 1 is selected
as detailed in TS38.211 section 5.3.2. If there were only one slot per subframe, slot 0 would
have been mandatory selected. Eligible subframes are subframes 9 and PRACH occasions occur
every frame (SFN (mod 1) = 0). The PRACH occasions are therefore the 12 symbols 2 to 13
of slots 1 of subframes 9 (i.e. slot 19 within a frame) of every frames.

Once UE has determined the time domain PRACH occasions, it can select one of them and
transmit s.
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A.7 CRC validation code

CRC validation is made by dividing the received transport block with the polynom used for CRC
computation. CRC is validated if the remainder equals 0. Here is the code in free5GRAN :

// CRC VALIDATION

// length_crc is the number of bits in the polynom

// Vector that will contain the division remainder

vector<uint8_t> remainder(length_crc);

// Vector that will contain the temporary input

vector<uint8_t> temp_input(length_input);

// temp_input is initialized with the input sequence

for (int i = 0; i < length_input; i++) {

temp_input[i] = input_bits[i];

}

// crc_validated is the returned boolean, initialized to true (CRC validated)

crc_validated = true;

// Number of iterations

int num_steps = length_input - length_crc + 1;

// Loop over all the iterations

for (int step = 0; step < num_steps; step++) {

// If the step-th temp_input element is 1 (otherwise, move to next step)

if (temp_input[step] != 0) {

// Loop over the CRC polynom

for (int j = 0; j < length_crc; j++) {

// crc_polynom is the polynom used for CRC computation

// XOR the temp_input element with the polynom

remainder[j] = temp_input[j + step] ^ crc_polynom[j];

// Update temp_input element

temp_input[j + step] = remainder[j];

}

// Early return is case there is still 1 in position that

// will not be updated anymore, CRC is not validated

if (temp_input[step] == 1){

crc_validated = false;

break;

}

}

}

// Loop over the final remainder, if there is 1, CRC is not validated

for (int i = 0; i < length_crc; i++) {

if (temp_input[i + (length_input - length_crc)] == 1){

crc_validated = false;

break;

}

}

A.8 Polar coding (Transport channel processing - TS38.212 section 5.3.1)

This section introduces the main processing steps and algorithms used for polar coding. The case
where nPC > 0 (nPC is the number of parity bits) is not covered in this section. Table A.2 gives
an overview of the polar coding inputs and outputs. In the encoding direction, the processing steps
follow the order of this section whereas, in the decoding direction, the order is reversed, which means
that the first step is to recover u from d, the second step is to recover c′ from u, and the last one is
to recover c from c′.

Before starting, the output sequence size N has to be computed following Algorithm given in
TS38.211 section 5.3.1.
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Name Input or output Description

K Input Input bits sequence size

ci, i ∈ [0,K − 1] Input for coding, output for decoding Input bits sequence

E Input Rate matching output size (i.e.
number of PBCH bits)

N Input Polar coding output size

di, i ∈ [0, N − 1] Output for coding, input for decoding Output bits sequence

nPC Input Number of parity bits

IIL Input Indicates whether or not inter-
leaving should be performed

Table A.2: Polar coding and decoding input parameters

A.8.1 Interleaving

The first step while performing polar coding is to interleave input sequence c into sequence c′. In the
decoding direction, de-interleaved is the last step before recovering input bits sequence c. Interleaving
is activated if input parameter IIL = 1 and deactivated if IIL = 0. The interleaving process is based
on a sequence called Π that can be computed following Algorithm 10, by setting Kmax = 164 and
getting Π

max
IL (n) sequence from TS38.212 Table 5.3.1.1-1.

Algorithm 10 Π sequence computation

1: k = 0
2: for n ∈ [0,Kmax − 1] do
3: if Π

max
IL (n) ≥ Kmax −K then

4: Π(k) = Π
max
IL (n)− (Kmax −K)

5: k = k + 1
6: end if
7: end for

A.8.1.1 Encoding

Interleaving process is detailed in Algorithm 11.

Algorithm 11 Interleaving

1: for k ∈ [0,K − 1] do
2: c′k = cΠ(k)

3: end for

A.8.1.2 Decoding

De-interleaving is done by replacing c′k = cΠ(k) by cΠ(k) = c′k in Algorithm 11, line 2.
The following code snippet is extracted from free5GRAN receiver for Π sequence generation and
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de-interleaving:

// POLAR DECODING: PI SEQUENCE GENERATION AND DE-INTERLEAVING

// free5GRAN::INTERLEAVING_PATTERN is TS38.212 Table 5.3.1.1-1

// K_max is the maximum size after CRC attachment

// K is the payload size after CRC attachment

// int count_seq = 0;

for (int m = 0; m < K_max; m++) {

if (free5GRAN::INTERLEAVING_PATTERN[m] >= K_max - K) {

pi_seq[count_seq] = free5GRAN::INTERLEAVING_PATTERN[m] - (K_max - K);

count_seq++;

}

}

// De-interleaving

// c_p is c' sequence

// output_bits is c sequence

for (int k = 0; k < K; k++) {

output_bits[pi_seq[k]] = c_p[k];

}

A.8.2 Polar encoding

A.8.2.1 Computing u sequence (selecting the most reliable positions of the channel)

A.8.2.1.1 Encoding: The first step for polar encoding is to compute an intermediate sequence u
following the algorithm detailed in TS38.212 section 5.3.1.2. This procedure is based on a sequence
Q̄N

I . This sequence can be computed based on the algorithm described in TS38.212 section 5.4.1.1. It
contains the most reliable positions of the channel. This process is defined in the rate matching section
as bit positions might be changed by puncturing or shortening (see section 4.4.1). Anticipating the
rate matching process enables to know what will be the most reliable positions after rate matching.
Sequence u takes bits from the c′ sequence and places them at the most reliable position of the channel.

The code snippet below shows how to compute Q̄N
I . For performances reasons, all the possible
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Q̄N
I,tmp sequences are pre-computed at initialization, which leads to a pretty simple algorithm.

// POLAR DECODING: Q_I_N COMPUTATION

// First, select the pre-computed q_itmp_n sequence that corresponds to the current case.

// polar_decoding_struct contains all the possible values of q_itmp_n.

// The different cases are:

// - Q_ITMP_N_CASE_0[E] for E >= N (there is more space in the allocation than

// in the coded block, rate matching will perform repetition).

// - Q_ITMP_N_CASE_1[E] for E < N and K / E <= 7 / 16 (There is too much bits to

// be sent regarding the allocation size, future rate matching will perform puncturing)

// - E < N and K / E > 7 / 16 : not supported (There is too much bits to be sent

// regarding the allocation size, future rate matching will perform shortening)

// E is the payload size after rate matching

// K is the payload size after CRC attachment

if (E < N) {

if ((float)K / (float)E <= 7.0 / 16.0) {

q_itmp_n = polar_decoding_struct->Q_ITMP_N_CASE_1[E];

} else {

// The shortening case is not supported

cout << "POLAR CODE PARAM NOT SUPPORTED" << endl;

}

} else {

q_itmp_n = polar_decoding_struct->Q_ITMP_N_CASE_0;

}

// n_pc is the number of parity bits

// Take the (K + n_pc) most reliable elements of q_itmp_n,

// which corresponds to the (K + n_pc) last elements

for (int n = 0; n < K + n_pc; n++) {

q_i_n[n] = q_itmp_n[q_itmp_n.size() - (K + n_pc) + n];

}

Once Q̄N
I is computed, Algorithm 12 can be used to compute u sequence.

Algorithm 12 Polar encoding: computing u sequence

1: k = 0
2: for n ∈ [0, N − 1] do
3: if n ∈ Q̄N

I then
4: un = c′k
5: k = k + 1
6: end if
7: end for

A.8.2.1.2 Decoding: In the decoding direction, recovering c′ from u can be done using Algorithm
12 by replacing un = c′k by c′k = un in line 4.

A.8.2.2 Computing output sequence d (polar transform)

A.8.2.2.1 Encoding: Finally, polar transform can be applied to u with following Equation:

d = u ·GN

Where GN is the n-th Kronecker power of G2, with N = 2n and :

G2 =

(

1 0
1 1

)
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For example:

G4 =









1 ·

(

1 0
1 1

)

0 ·

(

1 0
1 1

)

1 ·

(

1 0
1 1

)

1 ·

(

1 0
1 1

)









=









1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1









A.8.2.2.2 Decoding: In the decoding direction, successive cancellation algorithm introduced in
section 4.3.1.1 has not been implemented yet. In the current version, u sequence is recovered from d
using equation:

u = d ·G−1
N

This method does not enable to correct errors in the channel but works well if there are no
errors. It is used in the first version as the physical layer implementation is tested in a Faraday
cage, which is a noise-limited system and where the channel’s quality is good. However, a successive
cancellation algorithm must be implemented for the PHY layer to work in real environments, which
are interference-limited systems, and where the channel’s quality is bad.

A.9 Rate matching

A.9.1 Rate matching for polar codes (Transport channel processing - TS38.212 section
5.4.1)

Rate matching for polar codes is a three-step process made of a first sub-block interleaving, followed
by the bit selection and second bits interleaving. In this section, we consider only the case where
IBIL = 0, which means that the last interleaving is deactivated.

A.9.1.1 Sub-block interleaving (TS38.212 section 5.4.1.1)

The first rate matching function is the sub-block interleaver. The rate matching input sequence is d
and the interleaver output is y. The details about interleaving procedure are given is TS38.212 section
5.4.1.1. In the decoding direction, d can be recovered from y by replacing yn = dJ(n) by dJ(n) = yn.
The following code snippet is the de-interleaver from free5GRAN receiver:

// RATE RECOVERING FOR POLAR CODES: DE-INTERLEAVING

// N is the payload size after polar coding

// output_bits is the output of rate recovering process

// y is the input to de-interleaving function

for (int n = 0; n < N; n++) {

int i = floor(32 * (double)n / (double)N);

// free5GRAN::SUB_BLOCK_INTERLEAVER_PATTERN is TS38.212 Table 5.4.1.1-1

int j_n = free5GRAN::SUB_BLOCK_INTERLEAVER_PATTERN[i] * N / 32 + n % (N / 32);

// output_bits is d sequence

output_bits[j_n] = y[n];

}

A.9.1.2 Bit selection (TS38.212 section 5.4.1.2)

The bit selection function is the core of the rate matching process as it is where the bits are actually
selected if N > E or repeated if E > N (where E is the output size of rate matching and N is
the input size). The method is described in TS38.212 section 5.4.1.2. In the decoding direction,
rate recovering is done in a slightly different way, as repetition consists in taking the first sequence
occurrence, and on the opposite, punctured bits cannot be recovered and are set to 0. The receiver
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implementation illustrates the rate recovering process.

// RATE RECOVERING FOR POLAR CODES: BITS DE-SELECTION

// N is the payload size after polar coding

// E is the payload size after rate matching

// K is the payload size after CRC attachment

// e is the input of rate recovering function

// y is the output of bit de-selection function

// In case repetition was done at the transmitter side,

// Take only the first repetition occurence

if (E >= N) {

for (int n = 0; n < N; n++) {

y[n] = e[n];

}

} else {

// In case puncturing was done at the transmitter side,

// non-transmitted bits are set to 0.

if ((float)K / (float)E <= 7.0 / 16.0) {

for (int n = 0; n < N - E; n++) {

y[n] = 0;

}

// Transmitted bits are recovered

for (int n = 0; n < E; n++) {

y[n + N - E] = e[n];

}

}

// Other case is not supported

}

A.9.2 Rate matching for LDPC (Transport channel processing - TS38.212 section 5.4.2)

A.9.2.1 Bits selection (TS38.212 section 5.4.2.1)

The two first steps for bits selection are to compute Ncb, the size of the rate matching input internal
buffer and Er, the output size for the current code block. Ncb can be either the input size N when
Limited Buffer Rate Matching (LBRM) is not activated or the minimum between N and Nref when
LBRM is activated. An introduction on the LBRM concept can be found in [73]. In a default
configuration, Nref = 25344 which is the maximum code block size (N = 66 · Zc for BG 1, and the
maximum possible Zc is 384). The way Er is computed is defined in the standard (TS38.212 section
5.4.2.1 [11]).

Then, the bit selection process itself can be performed. The index of the first element to be
transmitted in the input sequence is given by k0, which depends on Ncb, Zc (LDPC lifting size), RVID

(HARQ redundancy version) and base graph. The Er bits of d after index k0 are copied to temporary
output e and filler bits are pruned.

Here is the free5GRAN code snippet for bits recovering at the receiver’s side after bit

172



APPENDIX A. PHY LAYER IMPLEMENTATION DETAILS

de-interleaving has been performed:

// RATE RECOVERING FOR LDPC: BITS DE-SELECTION

// N_cb is the size of the internal buffer

// E is the payload size after rate matching

// N is the code word size after channel coding

// K is the code word size after segmentation

// Zc is the lifting size

// K_p is the number of information bits in the code word

// k0 is the first index of the buffer which is transmitted

// with current redundancy version

// select k0

// graph is the BG to be used

int k0;

if (id_rv == 0) {

k0 = 0;

} else if (id_rv == 1) {

k0 = (graph == 1) ? floor((17.0 * N_cb) / (66.0 * Zc)) * Zc

: floor((13.0 * N_cb) / (50.0 * Zc)) * Zc;

} else if (id_rv == 2) {

k0 = (graph == 1) ? floor((33.0 * N_cb) / (66.0 * Zc)) * Zc

: floor((25.0 * N_cb) / (50.0 * Zc)) * Zc;

} else if (id_rv == 3) {

k0 = (graph == 1) ? floor((56.0 * N_cb) / (66.0 * Zc)) * Zc

: floor((43.0 * N_cb) / (50.0 * Zc)) * Zc;

} else {

cout << "LDPC RATE RECOVERING PARAM NOT SUPPORTED" << endl;

}

// output_sequence is the output of rate recovering

// Initialize output with 0

for (int i = 0; i < N; i++) {

output_sequence[i] = 0;

}

// e is the input of this function

// Actual bits recovering

int j = 0;

int k = 0;

while (k < E && j < N_cb) {

// Condition (j < N_cb) is added as at the transmitter side,

// bits are circularly repeated for j greater than N_cb

int index = (k0 + j) % N_cb;

// From TS 38.212 section 5.2.2, NULL bits are placed in positions

// (K_p - 2 * Zc) to (K - 2 * Zc)

if (index >= K_p - 2 * Zc && index < K - 2 * Zc) {

// if NULL bit, replace with 0

// As manipulated bits are soft bits,

// 0 is replaced by infinite

output_sequence[index] = numeric_limits<double>::infinity();

} else {

// else, recover bit

output_sequence[index] = e[k];

k++;

}

j++;

}

A.9.2.2 Bits interleaving (TS38.212 section 5.4.2.2)

Interleaving is performed to mix the input and parity bits and spread them across the whole buffer.
The process is defined in TS38.212 section 5.4.2.2 [11]. Here is the code implemented in free5GRAN
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for the receiver de-interleaving:

// RATE RECOVERING FOR LDPC: RECEIVER DE-INTERLEAVING

// E is the payload size after rate matching

// i_lbrm is whether or not LBRM is activated

// mod_order is the modulation scheme used for transmission

// Compute rate matching internal buffer size

int N_cb = (i_lbrm == 0) ? N : min(N, 25344);

// e is the output sequence of de-interleaving

double e[E];

int E_Q = (int)((float)E / (float)mod_order);

// input_bits is the input of rate matching

// Input de-interleaving

for (int j = 0; j < E_Q; j++) {

for (int i = 0; i < mod_order; i++) {

e[i * (E_Q) + j] = input_bits[i + j * mod_order];

}

}
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A.10 Soft modulation de-mapping

Soft modulation de-mapping is the process by which a sequence of soft bits is recovered from a sequence
of received IQ samples. Here is the code for 16-QAM soft modulation de-mapping in free5GRAN :

// 16-QAM SOFT DEMODULATION

// The complex plane is split in squares around each constellation point, this forms a grid

// ref2 is the width of a square

// 1000 is the resolution

ref2 = 2.0 * 1000.0 / sqrt(10);

// For each IQ sample

for (int i = 0; i < signal_length; i++) {

// Take the i and j indexes in the grid (the grid origin (0, 0)

// corresponds to the lowest I and Q values)

// max and min functions bound the indexes between 0 and the size of the grid

// num_linear_points is the size of the grid

// signal is the input frequency-domain signal

index_i = max(min((int)(real(signal[i]) * 1000 + ref2 * 2) / ref2,

(num_linear_points - 1)), 0);

index_j = max(min((int)(imag(signal[i]) * 1000 + ref2 * 2) / ref2,

(num_linear_points - 1)), 0);

// Take the corresponding square in pre-computed structure

free5GRAN::modulation_point_info &closest_point =

free5GRAN::QAM_16_SCHEME[index_i][index_j];

// free5GRAN::QAM_16_SCHEME contains, for each square of the grid

// - The closest point position (position) and bit values (bit_value)

// - The closest points (neighbor_points) for each alternate bit value

// (if bit value is 1, gives closest point with bit value 0)

// Compute the distance between the received IQ sample and the closest point

// (it can be d0 or d1, depending on the constellation point)

min_dist = norm(signal[i] - closest_point.position);

// modulation_order is the number of bits per IQ sample

// For each bit

for (int m = 0; m < modulation_order; m ++){

// Compute distance from the received sample to the alternate position

// (it can be d1 or d0, depending on the constellation point)

other_dist = norm(signal[i] - closest_point.neighbor_points[m]);

// Compute the difference between the two distances

// (d1 - d0) or (d0 - d1)

// soft_bits is the output soft bits sequence

soft_bits[modulation_order * i + m] = other_dist - min_dist;

if (closest_point.bit_value[m] == 1){

// If the closest point's bit value is 1, then:

// - min_dist is d1

// - other_dist is d0

// So (other_dist - min_dist) is (d0 - d1)

// Reverse to obtain (d1 - d0)

soft_bits[modulation_order * i + m] = - soft_bits[modulation_order * i + m];

}

}

}

A.11 Channel estimation

Channel estimation enables the receiver to estimate the effect of noise and interference over the
channel. It is based on DMRS signal. Here is the code for channel estimation in free5GRAN :
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// CHANNEL ESTIMATION

// pilot_indexes is an array that contains the position of the pilots REs in OFDM grid

// pilot_indexes[0][p] is the symbol position of RE p

// pilot_indexes[1][p] is the subcarrier position of RE p

// pilots contains the received DMRS IQ samples

// reference_pilot contains the expected DMRS IQ samples

// Initializing variables

// found_indexes will contain, for each symbol, the DMRS positions

vector<vector<int>> found_indexes(num_symbols);

// symbols_with_pilot will contain the symbols where there is pilot

// sc_with_pilots will contain the subcarriers with pilot

vector<int> symbols_with_pilot, sc_with_pilots;

// variables used later

int upper_index, lower_index, step, step_width;

float re_int, im_int;

// is_dmrs_symb will contain whether or not a symbol contains DMRS

// is_dmrs_sc will contain whether or not a subcarrier contains DMRS

// Those two vectors are initialized to false

vector<bool> is_dmrs_symb(num_symbols, false);

vector<bool> is_dmrs_sc(num_sc, false);

// Computing pilots coefficients h_ij

// For each DMRS sample

for (int i = 0; i < pilot_size; i++) {

// Compute corresponding channel coefficient

// coefficients contains the output matrix of channel estimates

coefficients[pilot_indexes[0][i]][pilot_indexes[1][i]] =

pilots[i] / reference_pilot[i];

// Store that subcarrier pilot_indexes[1][i] of symbol pilot_indexes[1][0]

// is a DMRS RE

found_indexes[pilot_indexes[0][i]].push_back(pilot_indexes[1][i]);

// There is at least on DMRS RE in symbol pilot_indexes[0][i]

is_dmrs_symb[pilot_indexes[0][i]] = true;

// There is at least on DMRS RE in subcarrier pilot_indexes[1][i]

is_dmrs_sc[pilot_indexes[1][i]] = true;

// Push pilot_indexes[0][i] in the list of symbols with DMRS, if not done yet

if (find(symbols_with_pilot.begin(), symbols_with_pilot.end(),

pilot_indexes[0][i]) == symbols_with_pilot.end()){

symbols_with_pilot.push_back(pilot_indexes[0][i]);

}

// Push pilot_indexes[1][i] in the list of subcarriers with DMRS, if not done yet

if (find(sc_with_pilots.begin(), sc_with_pilots.end(),

pilot_indexes[1][i]) == sc_with_pilots.end()){

sc_with_pilots.push_back(pilot_indexes[1][i]);

}

}

// num_sc is the number of subcarriers in the grid

// Frequency domain linear interpolation

for (int sc = 0; sc < num_sc; sc++) {

// If the current resource element is not a pilot

if (!is_dmrs_sc[sc]) {

// Get lower and upper pilot indexes for interpolating. If no lower,

// take the two closest upper pilots and respectively if no upper

// pilot

if (sc < sc_with_pilots[0]) {

lower_index = sc_with_pilots[0];

upper_index = sc_with_pilots[1];

} else if (sc > sc_with_pilots[sc_with_pilots.size() - 1]) {

lower_index = sc_with_pilots[sc_with_pilots.size() - 2];
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upper_index = sc_with_pilots[sc_with_pilots.size() - 1];

} else {

for (int k = 0; k < sc_with_pilots.size() - 1; k++) {

if (sc_with_pilots[k] < sc && sc_with_pilots[k + 1] > sc) {

lower_index = sc_with_pilots[k];

upper_index = sc_with_pilots[k + 1];

break;

}

}

}

// Compute the number of subcarriers between the current one

// and the lower DMRS subcarrier

step = sc - lower_index;

// Compute number of subcarriers between upper and lower DMRS subcarrier

step_width = upper_index - lower_index;

// For all the symbols that have DMRS

for (int i = 0 ; i < num_symbols; i ++){

if (is_dmrs_symb[i]){

// Interpolate

coefficients[i][sc] = complex<float>(step, 0) * (coefficients[i][upper_index] -

coefficients[i][lower_index]) / complex<float>(step_width, 0) +

coefficients[i][lower_index];

}

}

}

}

// num_symbols is the number of symbols in the OFDM grid

// Until now, all the subcarriers of all the symbols that have DMRS RE are done

// Now, compute all the subcarriers of all the symbols that do not carry DMRS

for (int s = 0 ; s < num_symbols; s ++) {

// If the symbol does not carry DMRS

if (!is_dmrs_symb[s]){

// Get lower and upper pilot indexes for interpolating. If no lower,

// take the two closest upper pilots and respectively if no upper

// pilot

if (s < symbols_with_pilot[0]) {

lower_index = symbols_with_pilot[0];

upper_index = symbols_with_pilot[1];

} else if (s > symbols_with_pilot[symbols_with_pilot.size() - 1]) {

lower_index = symbols_with_pilot[symbols_with_pilot.size() - 2];

upper_index = symbols_with_pilot[symbols_with_pilot.size() - 1];

} else {

for (int k = 0; k < symbols_with_pilot.size() - 1; k++) {

if (symbols_with_pilot[k] < s && symbols_with_pilot[k + 1] > s) {

lower_index = symbols_with_pilot[k];

upper_index = symbols_with_pilot[k + 1];

break;

}

}

}

// Compute the number of subcarriers between the current one and the lower DMRS subcarrier

step = s - lower_index;

// Compute number of subcarriers between upper and lower DMRS subcarrier

step_width = upper_index - lower_index;

// For all the subcarriers of the current symbol

for (int sc = 0; sc < num_sc; sc++) {

// Interpolate

re_int = step * (real(coefficients[upper_index][sc]) -

real(coefficients[lower_index][sc])) /
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step_width + real(coefficients[lower_index][sc]);

im_int = step * (imag(coefficients[upper_index][sc]) -

imag(coefficients[lower_index][sc])) /

step_width + imag(coefficients[lower_index][sc]);

coefficients[s][sc] = complex<float>(re_int, im_int);

}

}

}

A.12 Channel de-mapping

Channel de-mapping enables the receiver to extract IQ samples from the OFDM grid according to
resource allocation. free5GRAN implementation of the channel de-mapping:

// input_signal is the input OFDM grid

// output_channels is a 2D array containing the physical channels

// output_indexes is a 3D array containing the positions of each sample of the

// physical channels (3 dimensions = physical channel, symbol and subcarrier)

// ref is the reference grid which contains the position of the physical channel samples

// Loop over each symbol in the OFDM grid

for (int symbol = 0; symbol < num_symbols; symbol++) {

// Loop over each subcarrier of the OFDM grid

// symbol and sc are pointing to a precise RE

for (int sc = 0; sc < num_sc; sc++) {

// Loop over each physical channel

for (int channel = 0; channel < num_channels; channel++) {

// If the current resource element belongs to the physical channel,

// store the element and corresponding grid index

if (ref[channel][symbol][sc] == 1) {

// Add the current RE sample to the physical channel

output_channels[channel][channel_counter[channel]] =

input_signal[symbol][sc];

// Save the symbol and subcarrier position

// of the sample for future processing

output_indexes[channel][0][channel_counter[channel]] = symbol;

output_indexes[channel][1][channel_counter[channel]] = sc;

// Increment the channel counter,

// which counts the number of elements

// in each physical channel.

channel_counter[channel]++;

}

}

}

}

A.13 OFDM demodulation

The OFDM demodulation is the receiver’s side function by which the time domain signal is trans-
formed to OFDM grid. It includes cyclic prefix deletion and FFT. Implementation of the OFDM
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demodulation in free5GRAN :

// OFDM DEMODULATION

// time_domain_signal is the time domain input signal

// output_signal is the output OFDM grid

// Loop over all the symbols of the signal

for (int symbol = 0; symbol < num_symbols; symbol++) {

// Compute symbol index

int symb_index = (first_symb_index + symbol)

% free5GRAN::NUMBER_SYMBOLS_PER_SLOT_NORMAL_CP;

// Filling fft input signal with current symbol IQ

// Perform cyclic prefix deletion by only extracting

// the data part of a symbol

// (take the fft_size elements of the symbol

// shifted by the symbol CP = cp_lengths[symb_index])

for (int i = 0; i < fft_size; i++) {

fft_in[i][0] = real(time_domain_signal[i + offset +

cum_sum_symb[symb_index] + cp_lengths[symb_index]]);

fft_in[i][1] = imag(time_domain_signal[i + offset

+ cum_sum_symb[symb_index] + cp_lengths[symb_index]]);

}

// Execute the fft

fftw_execute(fft_plan);

// Recover RE grid from FFT output

// In FFTW3, positive and negative

// frequencies are twisted

for (int i = 0; i < num_sc_output / 2; i++) {

output_signal[symbol][num_sc_output / 2 + i] =

complex<float>(fft_out[i][0], fft_out[i][1]);

output_signal[symbol][num_sc_output / 2 - i - 1] =

complex<float>(fft_out[fft_size - i - 1][0],

fft_out[fft_size - i - 1][1]);

}

}
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Introduction

Alors que la 4G se concentre sur l’accès à internet, la 5G s’adresse à un large éventail de cas d’utilisation
(appelés verticaux), allant de l’industrie 4.0 aux villes intelligentes et à la réalité augmentée. Ces
verticaux peuvent être regroupés en trois cas d’utilisation principaux : eMBB, uRLLC et mMTC.
L’agrégation de ces cas d’utilisation sur une seule infrastructure physique tout en respectant les
contraintes associées est nécessaire pour optimiser les déploiements et la consommation des ressources.
Les différents cas d’utilisation ont des exigences réseau antagonistes. En effet, alors que eMBB se
concentre sur le débit, uRLLC se concentre sur la latence, et mMTC doit supporter un grand nombre
de dispositifs connectés. Ces contraintes, et plus particulièrement la latence et le débit, ne sont pas
compatibles car l’augmentation de la capacité implique souvent une perte de délais, et réciproquement,
les systèmes axés sur la latence peinent à fournir des débits élevés. Dans ces conditions, il faut
s’attendre à ce que des stations de base ne soient pas en mesure de répondre à des contraintes de
différents verticaux par défaut. D’autre part, le déploiement d’infrastructures physiques indépendantes
pour chaque verticale aura un coût économique et écologique insupportable.

Dans ce contexte, une nouvelle technologie est nécessaire pour prendre en charge les terminaux
hétérogènes sur une infrastructure unique. Cette technologie s’appelle le slicing du réseau et décrit
la capacité d’un réseau à exploiter différents verticaux et cas d’utilisation, appelés slices, sur une
seule infrastructure physique. Un slice représente un réseau logique qui relie des terminaux ayant des
contraintes de réseau proches à un ou plusieurs réseaux de données. Elle est associée à un ensemble
de ressources. En fonction des terminaux qui connectent une tranche, un ensemble d’exigences et de
contraintes (comme le débit, le retard ou la fiabilité) est défini.

Cette technologie devrait fournir deux caractéristiques essentielles pour gérer les différents us-
ages. La première est l’optimisation et la flexibilité du déploiement, car elle permettrait de déployer
plusieurs verticaux sur une infrastructure physique partagée. En outre, elle permettrait un gain en
consommation d’énergie et en coût, qui sont les deux principales préoccupations lors du déploiement
de réseaux mobiles. D’autre part, le slicing du réseau doit également garantir l’isolation entre les
tranches afin que les différentes tranches soient respectées.

Du côté du RAN, on peut souligner qu’il existe un manque considérable de technologies pour le
slicing du réseau. Aucun algorithme ou méthode garantissant l’isolation entre les slices et le respect
des exigences n’a été proposé. En particulier, les systèmes qui gèrent les communications à haut
débit et à faible latence manquent. Le travail présenté dans cette thèse émerge de ce constat et se
concentre sur le côté RAN. En effet, au niveau RAN, le slicing du réseau nécessite la conception de
nouvelles méthodes et algorithmes et l’application des technologies de virtualisation aux systèmes
RAN, ce qui n’a jamais été fait auparavant. Dans l’état actuel, on peut supposer que le slicing du
réseau sera réalisé par le provisionnement et l’association de ressources à des tranches ou à un groupe
de tranches partageant les mêmes exigences en termes de latence et de débit. Dans ce contexte,
l’allocation des ressources semble être critique pour l’optimisation du découpage du réseau afin de
maximiser l’efficacité du réseau tout en respectant les exigences des tranches.

Cette thèse aborde deux défis principaux soulevés par le slicing du réseau du RAN. Le premier
est que l’allocation des ressources nécessite la définition de modèles de réseau qui considèrent des
contraintes RAN diverses et hétérogènes. Au-delà de la capacité et de la densité UE, qui peuvent
être facilement modélisées, la latence et la fiabilité sont des paramètres critiques pour de tels modèles
et ne peuvent être étudiés de manière triviale. De nombreux modèles existent déjà pour l’allocation
des ressources du RAN. Cependant, les modèles qui prennent en compte les contraintes de découpage
du réseau n’existent pas. De plus, l’impact du slicing du réseau sur la couverture n’a pas encore été
étudié, alors qu’il s’agit d’un aspect critique de la fiabilité du réseau. Une des contributions de cette
thèse est donc de proposer un modèle de slicing RAN. Il prend en compte les nouvelles contraintes
apportées par le slicing, parmi lesquelles la couverture est de la plus haute importance.

Le deuxième grand défi soulevé par le slicing du réseau est la supervision de l’allocation des
ressources. En effet, tant que l’infrastructure physique est partagée entre les différentes slices, il est
impossible de garantir un contrôle complet du réseau et le respect des exigences, même si les ressources
sont soigneusement allouées. Il s’agit d’un problème important pour le slicing du réseau, car certains
verticaux ont des exigences très élevées en matière de contrôle du réseau. Dans ce contexte, des
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systèmes de supervision sont nécessaires pour apporter un second niveau de contrôle sur le réseau. Les
outils de supervision visent à contrôler que les contraintes des différents slices peuvent être respectées
en fonction de l’état actuel du système grâce à l’analyse des données extraites du réseau. Les données
peuvent être fournies par les API du réseau, mais cela n’est pas fiable concernant les cyber-attaques
potentielles. Dans cette thèse, nous proposons d’utiliser un système d’extraction de données externe
au réseau (appelé sonde). Par conséquent, une autre contribution de cette thèse est l’implémentation
d’un prototype d’une telle sonde.

Étant donné que la sonde est à l’extérieur du réseau, elle doit décoder les différents signaux d’une
cellule afin d’extraire des données. Le mécanisme d’extraction de données qui doit être mis en œuvre
correspond au côté récepteur de la couche PHY d’un UE pour le décodage des transmissions de-
scendantes et au côté récepteur de la couche PHY d’un gNodeB pour le décodage des transmissions
montantes. Par conséquent, la sonde peut être dérivée d’une couche PHY 5G. La dernière contri-
bution de ce travail est l’introduction d’une couche physique 5G open-source à partir de laquelle la
sonde est dérivée. Cette couche physique est conçue en fonction de deux caractéristiques principales.
La première est le slicing du réseau, ce qui implique que l’implémentation de la couche PHY doit
être modulaire afin de pouvoir s’adapter à différents types de slices. La seconde est le découpage
fonctionnel. En effet, en 5G, les différentes couches du RAN peuvent être divisées et désagrégées sur
le réseau. La couche PHY est donc construite avec une architecture qui permet la mise en œuvre
future du fractionnement RAN. Ce projet est nommé free5GRAN et est disponible publiquement sur
Github [7].

Introduction aux réseaux 5G

Le système 5G peut être présenté de différentes manières. Dans ce chapitre, il est présenté comme
l’infrastructure réseau conçue pour supporter une grande variété de terminaux. En effet, en 4G, le
réseau est construit pour fournir aux utilisateurs finaux des services de données comme le streaming
vidéo ou le trafic web, alors qu’en 5G, le réseau est construit pour servir des terminaux très hétérogènes
comme les véhicules connectés, les capteurs ou les smartphones. La principale différence entre les
différents trafics d’utilisateurs n’est pas le profil QoS associé mais plutôt le réseau de données auquel
le service nécessite un accès. En effet, une voiture connectée peut nécessiter un accès au réseau interne
du constructeur, tandis qu’un capteur pour l’agriculture peut se connecter au cloud pour la collecte
de données. Par conséquent, en 5G, le trafic utilisateur est d’abord traité en fonction du réseau de
données auquel un terminal doit accéder, puis en fonction du profil QoS requis par le service. Lors de
l’accès au réseau, un terminal est associé avec un tunnel qui le relie directement au réseau de données.
Le réseau est responsable de la mise en place du tunnel et de la prise en charge de différents services
avec différents profils QoS au sein d’un même tunnel.

Outre la diversité des terminaux, la 5G permet de répondre à de nombreux cas d’utilisation. Ces
utilisations sont une combinaison de trois cas d’utilisation fondamentaux qui sont eMBB, uRLLC
et mMTC. Premièrement, eMBB est l’usage le plus courant et correspond à l’évolution naturelle des
réseaux 4G. Il est conçu pour permettre aux utilisateurs finaux d’accéder au réseau avec un débit élevé,
rendant possibles des applications telles que la réalité augmentée. uRLLC est conçu pour prendre en
charge des applications critiques telles que la chirurgie à distance ou les véhicules autonomes. Ces
applications nécessitent une grande fiabilité du réseau et des communications à faible latence. Enfin,
mMTC est un cas d’utilisation où le réseau est utilisé pour connecter des millions de dispositifs.
Le réseau doit être capable de desservir un nombre énorme de UEs, et la communication doit être
hautement optimisée en termes de consommation d’énergie. Ces trois cas d’utilisation fondamentaux
délimitent un triangle dans lequel se trouvent tous les autres cas d’utilisation. Tous les cas d’utilisation
de la 5G peuvent être considérés comme une combinaison de ces trois cas d’utilisation fondamentaux.
Le triangle et les différents cas d’utilisation sont représentés dans la figure A.6. Tous les terminaux
connectés par la 5G sont associés à un cas d’utilisation.
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Figure A.6: Cas d’usages 5G (ITU-R IMT 2020 requirements)

Procédures de synchronisation de la voie descendante

La synchronisation de la liaison descendante entre le gNodeB et les UEs est le premier mécanisme qui
doit être mis en œuvre côté UEs. Elle est nécessaire car les différents composants de la cellule n’ont
pas la même horloge interne. Par conséquent, une synchronisation descendante est nécessaire pour
synchroniser l’horloge interne de UEs avec celle de gNodeB.

Tout d’abord, l’UE doit déterminer quels sont les symboles, les slots et les limites des trames afin
de récupérer la grille OFDM qui permet à l’UE d’extraire et de décoder les données. De plus, dans
les systèmes OFDMA, les ressources sont allouées en temps et en fréquence, et la synchronisation
permet également aux UEs de récupérer le timing du réseau avant de recevoir les allocations de
ressources. Enfin, comme l’horloge interne du gNodeB et celle des UEs sont différentes, la fréquence
de transmission des deux composants peut être légèrement différente, et la synchronisation est utilisée
pour déterminer et compenser le décalage de fréquence entre le gNodeB et le UE.

Ce chapitre présente la procédure de synchronisation de la liaison descendante qui ets basée sur
un bloc de signaux appelé SSB, représenté en Figure A.7.

A partir de maintenant, on considère que les UEs sont synchronisés avec la cellule afin qu’ils
puissent récupérer la grille OFDM de la cellule, et leur horloge est réglée sur celle du réseau. Cette
procédure de synchronisation est effectuée périodiquement, et les UEs ne perdent pas la synchroni-
sation avec la cellule. Après avoir décodé les informations de base de la cellule, les UEs sont prêts à
extraire et décoder les données sur la liaison descendante. Ils peuvent effectuer la synchronisation sur
la liaison montante et commencer à transmettre des données.

Procédures de transmission de données

Une fois les UEs synchronisés avec la cellule, les données peuvent être transmises entre le gNodeB
et les UEs. Cependant, les ressources des domaines temporel et fréquentiel sont partagées entre les
différents UEs. Par conséquent, un mécanisme doit être mis en œuvre entre le gNodeB et les UEs
afin que le gNodeB puisse notifier aux UEs les ressources allouées pour les transmissions de données.
De plus, étant donné que les différents UEs ne se trouvent pas au même endroit dans la cellule, une
synchronisation sur la liaison montante doit être effectuée afin que les transmissions de la liaison
montante arrivent simultanément à la station de base. Le processus de synchronisation de la liaison
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Figure A.7: Bloc SSB

montante est intégré à la procédure RA, exécutée par les UEs pour accéder à la cellule.
La Figure A.8 représente les différents signaux impliqués dans la transmission de données. Le canal

PDCCH contient les données de contrôle et les canaux PDSCH et PUSCH contiennent les données
utilisateur.

Algorithmes de couche physique

Toutes les procédures mises en œuvre dans les chapitres précédents sont précisément définies dans la
norme et permettent au gNodeB et aux UEs de se synchroniser entre eux et d’échanger des données.
Cependant, ces procédures reposent sur des fonctions qui ne sont pas précisément définies dans la
norme. L’entrée, la sortie et le comportement global des fonctions sont définis, mais les algorithmes
mis en œuvre dans les fonctions pour obtenir le comportement normalisé ne sont pas définis. En
effet, l’objectif de la norme est de permettre à des composants de différents fabricants de fonctionner
ensemble sur un même réseau en définissant les procédures, les mécanismes et le châınage des fonctions.
Néanmoins, la manière dont les fonctions sont mises en œuvre est propre à chaque fabricant, car c’est
là que réside la valeur essentielle de la mise en œuvre : les fabricants disposant de meilleurs algorithmes
fournissent de meilleurs produits.

Le but de ce chapitre n’est pas de donner une compréhension globale de la norme et des procédures
mais de présenter les principales fonctions utilisées à travers les procédures. Pour chaque fonction, nous
délimitons ce qui est défini par la norme et ce qui est spécifique au fabricant. De plus, nous proposons
des algorithmes simples pour les fonctions non standardisées. Les algorithmes présentés sont ceux
utilisés dans free5GRAN. Ils ont été sélectionnés pour bien fonctionner dans notre environnement,
une cage de Faraday, où les conditions radio sont bonnes. De plus, elles offrent un bon équilibre entre
optimisation et lisibilité.

Les principaux algorithmes de couche physique sont :

• Codage cyclic (CRC).

• Codage et décodage canal : codes polaire et LDPC.
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Figure A.8: Transmission de données avec un CORESET de 8 CCEs

• Adaptation de taux.

• Embrouillage.

• Modulation.

• Placement des REs.

• Estimation et égalisation canal.

• Modulation OFDM.

Les algorithmes où résident les plus grands défis sont le décodage du canal, la démodulation et
l’estimation du canal. Les algorithmes belief propagation et successive cancellation sont utilisés pour
le décodage LDPC et polaire. La démodulation est approximée en ne considérant que les deux points
de constellation les plus proches. L’estimation canal se fait par la méthode zero-forcing.

Les autres fonctions restent cruciales, mais il existe un plus petit nombre d’algorithmes possibles,
et les performances résident principalement dans l’optimisation algorithmique. Ces algorithmes sont
implémentés dans
free5GRAN. A partir de maintenant, toutes les procédures minimales de la couche physique et les
algorithmes associés ont été détaillés.

Architecture logicielle

Ce chapitre présente la structure du projet et l’architecture logicielle qui permet la mise en œuvre
de la couche PHY. En effet, une couche PHY est un système qui comprend différentes procédures et
algorithmes. Lors de la construction d’un système, comprendre comment lire les normes et mettre en
œuvre chaque composant est la moitié du problème, qui a fait l’objet d’une attention particulière dans
les chapitres précédents. Comprendre comment créer une structure de code opérationnelle qui peut
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être incrémentée composants après composants est l’autre moitié et constitue le cœur de ce chapitre.
Différentes architectures peuvent être utilisées. Nous exposons la structure du projet free5GRAN et
la conception du logiciel pour donner un exemple concret, mais surtout pour montrer les problèmes
auxquels la conception doit répondre.

Deux défis principaux doivent être résolus. Le premier est que les systèmes de télécommunication
évoluent très rapidement, et que la mise en œuvre n’est pas une tâche en une seule étape mais plutôt
un processus itératif où chaque composant peut être mis à jour indépendamment. Par conséquent, le
projet doit être structuré de manière à pouvoir être facilement incrémenté. Le deuxième défi principal
est que la couche PHY est fortement contrainte. En effet, il s’agit d’une application quasi temps
réel avec des exigences de performance élevées, mais certaines fonctions ont une grande complexité
algorithmique. L’architecture logicielle doit gérer ces deux contraintes.

La conception logicielle proposée n’est pas monolithique mais utilise largement le multi-threading
pour deux raisons. La première est que la norme 5G introduit différentes architectures de station de
base, parmi lesquelles le RAN désagrégé reçoit beaucoup d’attention. Par conséquent, même si la mise
en œuvre actuelle de la couche PHY ne prend pas en charge le découpage fonctionnel, l’architecture
logicielle a été pensée de telle sorte qu’il est facile de dériver l’architecture actuelle pour mettre en
œuvre l’option 7.2x (qui est l’option choisie par l’alliance O-RAN). La deuxième raison est liée à la
grande hétérogénéité des services qui peuvent être fournis sur le système 5G. En effet, comme certains
services peuvent avoir des exigences fortes en termes de fiabilité et d’isolation, la mise en œuvre
d’une architecture modulaire permet de dédier des ressources à tel ou tel service. Ainsi, l’architecture
actuelle peut être facilement dérivée pour allouer des threads aux services afin de renforcer la fiabilité
et le contrôle du traitement de la couche PHY.

Les Figures A.9 et A.10 représentent la structure de la station de base et de l’UE.
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Figure A.9: Structure de la station de base

La structure du projet est construite de manière à ce que les fonctions et les algorithmes puissent
être facilement modifiés. Elle permet d’implémenter et de tester de nouveaux algorithmes et également
de mettre en œuvre l’évolution future des normes.

L’architecture logicielle est construite de manière modulaire afin que la couche PHY puisse être
adaptée aux différents services et slices. De plus, elle s’appuie sur le multithreading, de sorte que
l’architecture actuelle peut facilement être modifiée pour mettre en œuvre une station de base prête
pour le découpage du RAN.
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Figure A.10: Structure de l’UE

Architecture RAN pour le slicing du réseau

Le slicing du réseau est l’une des technologies centrales introduites dans la 5G. Elle permet de con-
struire des réseaux logiques au-dessus d’une infrastructure physique unique qui relie les terminaux à
un ou plusieurs réseaux de données. Ces réseaux logiques peuvent être personnalisés pour répondre
à des exigences de service spécifiques. Les opérateurs utiliseront cette technologie pour adresser de
nouveaux marchés. Étant donné que le slicing du réseau est un élément essentiel du système 5G, il
a fait l’objet d’une grande attention. Des travaux considérables ont été réalisés pour expliquer com-
ment le slicing peut être utilisé pour aborder de nouveaux verticaux. Cependant, il y a un manque
d’informations claires sur la façon dont le slicing peut être mis en œuvre.

Dans la norme, il est défini que les instances de slice sont un ensemble de ressources qui sont
associées à un slice. Par conséquent, la mise en œuvre du slicing du réseau réside dans l’allocation des
ressources. Cependant, il n’est pas trivial de déterminer les différents types de ressources qui peuvent
être utilisés pour la mise en œuvre du slicing. En outre, certaines techniques et technologies doivent
être utilisées pour associer les ressources aux slices pour chaque type de ressource.

Ce chapitre se concentre sur la station de base et n’étudie pas le niveau des UE et du CN. Il est
considéré qu’un UE n’a pas besoin d’accéder à plusieurs slices simultanément et que le CN est déployé
et approvisionné pour prendre en charge les différents réseaux logiques.

La Figure A.11 représente l’architecture RAN proposée pour la mise en place du slicing.

Modélisation du slicing

Comme décrit dans le chapitre précédent, le slicing du réseau repose principalement sur l’association
et l’allocation des ressources. De nombreuses solutions ont été proposées dans la littérature pour
l’allocation des ressources en fonction des slices. Cependant, les méthodes précédentes ne prennent
pas en compte les contraintes spécifiques RAN où la couverture est de la plus haute importance.
Comme l’allocation des ressources repose sur la modélisation du système, ce chapitre étudie comment
les modèles de réseau peuvent inclure des slices. Au-delà de la capacité et de la densité, qui peuvent
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Figure A.11: Architecture RAN proposée

être facilement modélisées, la latence et la fiabilité sont des paramètres critiques pour de tels modèles
et ne peuvent être étudiés de manière triviale. La fiabilité est modélisée comme une contrainte de
connectivité multiple. À cet égard, l’homologie simpliciale est utilisée pour étudier la couverture
et la connectivité des réseaux. Elle a déjà été appliquée avec succès pour les méthodes d’économie
d’énergie.

De plus, l’optimisation de la puissance de transmission est une préoccupation majeure. En effet,
une puissance de transmission trop faible entrâıne des trous de couverture, ce qui diminue la fiabilité du
réseau, et une puissance de transmission trop élevée pourrait augmenter les interférences et diminuer
la capacité du réseau. Étant donné que les contraintes de couverture (impliquées par les exigences de
fiabilité des slices) ne sont pas linéaires par nature, les méthodes d’optimisation classiques ne peuvent
être utilisées pour résoudre le problème d’optimisation de la puissance. Des heuristiques spécifiques
doivent être développées. Ce travail fournit une heuristique quasi-optimale pour les systèmes 5G,
basée sur le recuit simulé. Elle peut être utilisée pour déterminer le budget de puissance requis pour
un ensemble de slices déployés sur un réseau physique donné.

Les résultats obtenus par simulation peuvent être analysés pour comprendre le comportement du
système 5G dans l’un ou l’autre schéma de déploiement. Cependant, les résultats pour les différents
slices ne peuvent pas être strictement comparés car les paramètres de simulation ne sont pas les
mêmes. Il est donc impossible de comparer directement l’impact des exigences des slices sur le budget
de puissance. Néanmoins, les simulations permettent de comparer quatre cas. Dans les trois premiers
cas, le réseau est dédié à un slice, et les paramètres associés sont choisis pour répondre au mieux aux
exigences des slices. Dans le dernier cas, toutes les slices fonctionnent sur un seul réseau dont les
paramètres assurent un équilibre entre les exigences des trois slices. On observe que la contrainte de
couverture a un impacte considérable sur le budget de puissance requis.

Implémentation d’une sonde 5G

La diversité des terminaux a deux impacts sur l’infrastructure du réseau que le slicing doit gérer.
Tout d’abord, étant donné que les différents terminaux ne se connectent pas au même réseau de
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données, l’infrastructure doit mettre en œuvre des tunnels qui transportent les communications entre
les terminaux et les réseaux de données. De plus, les différents terminaux auront un trafic utilisateur
très hétérogène, ce qui implique que le réseau doit supporter de nombreux profils QoS différents.

Parmi ces trafics utilisateurs hétérogènes, certains ont des contraintes fortes en matière de fiabilité
et de contrôle du réseau. La contrainte de contrôle du réseau exige que les profils de QoS qui peuvent
être offerts à l’UE soient strictement mâıtrisés par le réseau à chaque instant. C’est ici qu’un défi
majeur est soulevé. En effet, l’objectif des réseaux 5G est de supporter ces divers trafics utilisateurs
au dessus d’une infrastructure physique unique. Cependant, le contrôle complet du réseau ne peut
être assuré lorsque l’infrastructure est partagée entre des tranches critiques et non critiques. Cer-
taines techniques peuvent être utilisées pour augmenter la fiabilité et le contrôle du réseau lorsque
l’infrastructure est partagée en dédiant des ressources aux tranches (étudiées dans le chapitre 6).
Néanmoins, même si l’infrastructure peut être optimisée pour fournir le meilleur contrôle possible du
réseau, elle ne peut pas atteindre un contrôle et une fiabilité absolu. La seule façon d’avoir un contrôle
complet du réseau pour les trafics critiques des utilisateurs est de déployer une infrastructure dédiée
aux terminaux associés, mais ce n’est pas la vision du système 5G.

Par conséquent, des outils de supervision sont nécessaires pour assurer le meilleur contrôle possible
du réseau sur une infrastructure partagée entre des slices critiques et non critiques. Ces outils sont
censés ajouter un deuxième niveau de fiabilité et de contrôle au premier niveau fourni par le réseau
lui-même. Pour superviser le réseau, ces systèmes doivent être alimentés par le plus grand volume
possible de données afin d’atteindre une grande précision. L’infrastructure peut fournir les données
en utilisant les APIs du réseau. Cependant, pour les services hautement critiques et surtout pour
les services qui peuvent être exposés à des problèmes de sécurité, il est intéressant que les outils de
supervision s’appuient également sur des données provenant de l’extérieur du réseau. En effet, en cas
d’attaque de sécurité sur le réseau, les données fournies par les APIs pourraient être corrompues, et les
outils de supervision pourraient ne pas être en mesure de détecter l’attaque. D’autre part, l’utilisation
de données provenant de l’extérieur du réseau garantit que les données ne sont pas corrompues même
en cas d’attaque de sécurité.

Dans ce chapitre, le travail effectué pour la couche PHY est dérivé pour implémenter une sonde
5G autonome qui peut extraire toutes les communications descendantes et montantes de tous les UEs
d’une cellule. L’objectif de cette sonde est de fournir aux outils de supervision des données provenant
de l’extérieur du réseau afin d’augmenter la fiabilité et le contrôle du réseau. L’architecture de la
sonde est représentée sur le Figure A.12.
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Figure A.12: Architecture de la sonde

Les données extraites de la sonde peuvent être utilisées pour répondre à différents cas d’utilisation.
Tout d’abord, l’allocation des ressources et les MAC LCIDs peuvent être utilisés pour déduire le type
de trafic transmis. Ces informations peuvent être utilisées pour estimer la charge du réseau par type
de trafic mais aussi pour optimiser le déploiement du réseau. De plus, il y a beaucoup d’autres KPI
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qui peuvent être extraits avec la sonde, comme la qualité du canal (dérivée du taux de codage et du
schéma de modulation) ou l’état de la mémoire tampon des utilisateurs (dérivée du BSR MAC CE).
Les outils de supervision peuvent utiliser toutes ces informations pour surveiller le réseau et valider
que l’état du réseau est suffisamment bon pour respecter les différentes exigences des slices.

Conclusion

Dans cette thèse, nous avons montré que le slicing du réseau peut être implémenté avec les technologies
actuelles. Cependant, cela requiert beaucoup d’attention et la prise en compte de tous les niveaux
du réseau (comme les fonctions réseau, les ressources matérielles, le réseau de transport ou l’interface
radio). De plus, nous avons exposé les principales procédures et algorithmes impliqués dans la couche
physique 5G et proposé une implémentation concrète en open-source appelée free5GRAN.
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Titre : 5G RAN: implémentation de la couche physique et découpage du réseau.

Mots clés : 5G, couche physique, slicing du réseau

Résumé : Une  des  évolutions  de  la  4G  à  la  5G  est
l'hétérogénéité des terminaux qui accèdent au réseau. Ces
terminaux vont des smartphones aux véhicules connectés
en passant par les capteurs pour l'agriculture. Étant donné
que les contraintes et les exigences associées aux différents
types de terminaux sont hétérogènes, il n'est pas facile de
multiplexer les services qui leur sont associés sur une seule
infrastructure physique. Le slicing est  la technologie qui
permet  à  l'infrastructure  physique  de  fournir  plusieurs
réseaux logiques (appelés slices) pour servir les différents
terminaux et services associés : cette thèse étudie le slicing
et sa mise en œuvre au niveau RAN. 
Une des principales questions soulevées par le slicing est
l'allocation des ressources. En effet, de nombreux modèles
existent pour l'allocation des ressources du RAN mais il
manque des modèles qui prennent en compte les nouvelles
contraintes  impliquées  par  le  slicing.  La  première
contribution  de  cette  thèse  est  de  définir  un  nouveau
modèle pour le slicing au niveau RAN. Ce modèle prend
en compte différentes contraintes de slicing telles que la
capacité,  la  densité  des  UEs,  la  latence  et  la  fiabilité.
L'homologie simpliciale est utilisée pour valider le respect
des contraintes des slices. De plus, ce modèle est appliqué
à l'optimisation de la puissance, qui est un aspect critique
du déploiement du réseau. 

Le deuxième défi abordé dans ce travail est la supervision
et le contrôle du réseau. En effet, certains verticaux ont des
exigences de contrôle très élevées, et le réseau lui-même
pourrait ne pas être en mesure de satisfaire pleinement ces
contraintes. Par conséquent, nous introduisons une sonde
qui peut extraire des données du réseau pour alimenter des
outils de supervision pour le contrôle et le suivi du réseau.
Cette  sonde  est  conçue  pour  être  résiliente  aux  cyber-
attaques et est donc indépendante du réseau. 
La  dernière  contribution  principale  de  cette  thèse  est
l'introduction  d'une  couche  physique  5G  open-source
appelée free5GRAN. La couche physique fournit toutes les
procédures  et  algorithmes  minimaux  pour  les
communications entre le gNodeB et les UEs. La structure
du projet est construite de manière à pouvoir facilement la
modifier et  mettre en place de nouvelles fonctionnalités.
De plus, l'architecture logicielle est conçue de manière à ce
que  la  couche  physique  soit  modulaire  et  puisse  être
dérivée pour mettre en œuvre le split 7.2 de l'open-RAN.

Title : 5G RAN: physical layer implementation and network slicing.

Keywords : 5G, physical layer, network slicing

Abstract  : A  critical  evolution  from 4G to  5G is  the
heterogeneity of the terminals that connect the network.
Those  terminals  range  from  smartphones  to  connected
vehicles  and  sensors  for  agriculture.  Given  that  the
constraints and requirements associated with the different
kinds of terminals are heterogeneous, it  is not trivial to
multiplex the services associated with them on top of a
single  physical  infrastructure.  Network  slicing  is  the
technology  that  enables  the  physical  infrastructure  to
provide multiple logical networks (called network slices)
to serve the various devices and associated services: this
thesis studies network slicing and its implementation at
the RAN level. 
One  main  issue  raised  by  network  slicing  is  resource
allocation.  Indeed,  many  models  exist  for  resource
allocation of the RAN but we are missing models which
take  into  account  new  constraints  implied  by  network
slicing. The first contribution of this thesis is to define a
new model  for  network slicing at  the RAN level.  This
model takes into account diverse slices constraints such as
capacity, UEs density, latency, and reliability. Simplicial
homology is used to validate slices constraints fulfillment.
Furthermore, this model is applied to power optimization,
which is a critical aspect of network deployment. 

The  second  challenge  addressed  in  this  work  is  the
network's supervision and control. Indeed, some verticals
have  ultra-high  control  requirements,  and  the  network
itself  might  not  be  able  to  satisfy  this  constraint  fully.
Therefore, we introduce a probe that can extract data from
the network to  feed supervision tools  for  the network's
monitoring  and  control.  This  probe  is  designed  to  be
resilient to cyber-attacks and is thus independent of the
network. 
The last main contribution of this thesis is the introduction
of an open-source 5G physical layer called free5GRAN.
The physical  layer  provides all  the minimal  procedures
and algorithms for communications between the gNodeB
and UEs. The project's structure is built so one can easily
modify it and implement new features. Furthermore, the
software architecture is designed so that the physical layer
is  modular  and can be derived to  implement  the open-
RAN split 7.2.
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