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Abstract

In this thesis, we study a variation of the graded loop space construction for
mixed graded derived schemes endowed with a Frobenius lift. We develop a theory
of derived Frobenius lifts on a derived stack which are homotopy theoretic ana-
logues of d-structures for commutative rings. This graded loopspace construction
is the first step towards a definition of the de Rham-Witt complex for derived
schemes.

In this context, a loop is given by an action of the "crystalline circle", which is a
formal analogue of the topological circle, endowed with its natural endomorphism
given by multiplication by p. In this language, a derived Dieudonné complex can
be seen as a graded module endowed with an action of the crystalline circle.

We also develop a theory of saturation of a derived Dieudonné complex which
coincides with the one previously defined for p-torsion-free commutative rings. We
include a short section on the study of graded functions of linear stacks where we
prove that the 1-weighted functions on a linear stack recover the quasi-coherent
sheaf defining the stack, under mild assumptions. We also give a full description
of graded functions on a linear stack when working in characteristic zero.

Finally, we give many directions for further developments regarding graded
loopspaces and Frobenius lifts. More specifically, we outline a theory of symplectic
forms based on our construction of the de Rham-Witt complex and similarly, a
theory of Dieudonné foliations using derived Frobenius lifts.
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I Introduction

I.1 De Rham cohomology

De Rham cohomology is a cohomology theory offering a purely algebraic construction,
based on differential forms, which recovers the Betti cohomology of a smooth algebraic
variety of characteristic zero. Precisely, the algebraic de Rham cohomology groups
H} r(X/C) are isomorphic to the singular cohomology groups with complex coefficients
of the underlying complex manifold X (C) when X is a smooth complex algebraic variety.
When X is the affine scheme Spec(A), the de Rham complex is based on the A-module
Q4 of Kéhler differentials associated to A. This module represents the functor of
derivations :

Derk(A, M) = HomA,Mod(QA/k, M) = HomCngk/A (A, A ) M)
The universal property of the Kdhler module defines the universal differential
d: A— QA/k

which extends to a chain complex

d d d
QO = Qe = Ly = o

where QF == A Q4. The algebraic de Rham cohomology H},(X/k) is then defined

as the hypercohomology of the de Rham complex.

The HKR theorem, originally proven in [HKR62|, connects de Rham forms and
Hochschild cohomology by giving functorial isomorphisms

W = HH'(A)

for a smooth commutative k-algebra A and k a field of characteristic zero. The de Rham
cohomology is not as well-behaved for non-smooth algebras : it needs to be replaced
by a derived variant using the cotangent complex L4, instead of Kéhler differentials.
The comparision between de Rham complex and Hochschild cohomology is recovered
for arbitrary algebras A over a field of zero characteristic, see [TV09]. In fact, we get
an equivalence of commutative differential graded algebras

DR(A) = Syma(Las[l]) ~ HH(A) = A ®g®% A
In characteristic zero, the equivalence of co-categories
€ —cdga ~ S — SCR

between graded mixed algebras and S!'-equivariant simplicial algebras identifies the
mixed structure on Syma(Lx/x[1]), given by the de Rham differential, and the circle
action on
st L
A7 = A O AgLa A
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These observations rely heavily on oo-categorical notions, such as derived tensor
products of simplicial rings or cotensorization of a simplicial ring by a space. We will
use derived geometry in this thesis to formulate and prove our results. The de Rham
algebra

DR(A) = Syma(Las[1])

has been central in the study of notions and theorems imported from differential geom-
etry to the world of algebraic geometry or derived geometry. It is used to define shifted
symplectic forms in order to study deformation quantization in [CPTVV]| and it also
appears in the definition of foliations in [TV20]. Using the langage of derived geometry,
the de Rham algebra can be described as a mapping stack from a derived stack called
the graded circle S, :

Map (S}

gr

Spec(A)) ~ Spec(Syma(LLai(1]))

The graded circle Sglr is a formal version of the topological circle S which has a
canonical grading, see Definition IV.12.3 and [MRT20| for details. By analogy with the
circle S1, a mapping stack from the graded circle S;,, will be called a graded loopspace.

The main purpose of this thesis is to find a similar description of the de Rham-Witt
complex, as a graded loopspace in the appropriate category.

I.2 Crystalline cohomology

Crystalline cohomology was born to fill a gap in the theory of [-adic cohomologies for
algebraic varieties over a field of characteristic p. When [ # p, [-adic cohomology is a
well-behaved Weil cohomology theory, but it is badly behaved for [ = p. Initially, an
analog of [-adic cohomology for | = p was motivated by the Riemann hypothesis for
algebraic varieties.

When X is a smooth and proper algebraic variety over F,, the zéta function of X
is given by the formal series

n

Z(X,4) = cxp (Z C’ard(X(IFpn))t—> € 1+ 1Z][1]

n
n>1

Pulling back to the algebraic closure of F,, X admits an action of the Frobenius F'r
and we can identify fixed points of F'r" with F.-points of X. To show the function
Z(X, —) is rational using the Lefschetz fixed points formula, we need a sufficiently well-
behaved cohomology theory for varieties over a finite field which takes value in a finite
dimensional vector space over a field of characteristic zero.

Grothendieck’s idea for a definition of such a cohomology theory was as follow. Let
X be a smooth proper scheme over a perfect field k of positive characteristic p. A
natural candidate for the ring of coefficients of this cohomology theory is the ring of
Witt vectors W (k). If X lifts to a smooth proper scheme X over W(k), taking the
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hypercohomology of the de Rham complex of X over W (k) is independent of the lift.
This definition, although allowing easy computations for well-behaved schemes, is not
satisfactory and does not define a cohomology theory for a large class of schemes.

So as to give an intrinsic definition, the notion of divided powers of an ideal in
a ring was used by Berthelot to define crystalline cohomology in [Ber74|. He intro-
duced a ringed site of divided power thickenings over the Zariski site. Cohomology of
the structural sheaf defines crystalline cohomology. This powerful approach to build a
cohomology theory allowed for easy functorial properties, and a similar type of construc-
tion was used more recently by Bhatt and Scholze to define a more general cohomology
theory for p-adic schemes called prismatic cohomology, see [BS22].

I[.3 De Rham-Witt complex

The definition of the de Rham-Witt complex was motivated by the study of the Hodge
filtration on crystalline cohomology. The de Rham complex being endowed with a
natural filtration, the associated de Rham cohomology acquires a canonical filtration
called the Hodge filtration. However, when defining crystalline cohomology of a smooth
scheme as de Rham cohomology of a smooth lift to Witt vectors, the canonical filtration
is dependant on the chosen lift. The de Rham-Witt complex bridges this gap as it
is endowed with a canonical "slope" filtration. Illusie introduced the de Rham-Witt
complex W, Q% in [I179]. This complex was defined as an initial object in a category
of elements having the same structure as the de Rham complex and also the structure
naturally arising on Witt vectors. Such elements are called pro-V-complex, they are
given by families of commutative differential graded W, (k)-algebras endowed with a
Verschiebung map V' and a Frobenius morphism [ satisfying compatibility conditions.
A natural element in this category is 2}, (X)> the de Rham complex of the Witt vectors,
therefore there is a canonical map

Q;/Vn(X) — W%

As the category of pro-V-complexes is modeled from the properties of Q{,Vn( x)- The
de Rham-Witt complex W, Q% can be thought of as applying a left adjoint functor to
Q",Vn( X)s that is taking quotients and completion procedures. We will denote W, Q2% the
limit of the tower W%, we will call it the de Rham-Witt complex of X.

The construction of the de Rham-Witt complex has being recently revisited by
Bhatt, Lurie and Matthew in [BLM22]. In this paper, the authors give a simplified
construction of this complex and we will review the main definitions and some of the
results which motivated this thesis.

Definition I.3.1. A Dieudonné complex (M, d, F') is a cochain complex of abelian
groups (M,d) and F' a morphism of graded abelian groups F': M — M such that

dF = pFd

The category of Dieudonné complexes is denoted DC.

8



Following |BLM22|, a Dieudonné algebra (A, d, F') is given by (A, d) a commutative
differential graded algebra and F' : A — A is a morphism of graded rings satisfying
compatibilities analogous to the ones defining a Dieudonné complex.

Morphisms between Dieudonné algebras are ring morphisms compatible with dif-
ferentials and Frobenius structures. This defines the category of Dieudonné algebras,
which we denote DA.

Forgetting the multiplication defines the forgetful functor DA — DC. The following
construction defines what we may call the de Rham complex of a p-torsion-free ring
endowed with a Frobenius lift.

Let R be a p-torsion-free commutative ring and ¢ : R — R a classical Frobenius
lift. Then there is a unique ring morphism F': Q% — Q% such that

o [(z) = ¢(x) for x € R = QY.

o F(dr) = zPtdx + d(W) forz € R.

In this case, (Q%,d, F') is a Dieudonné algebra.

The main purpose of this thesis is to give a geometrical interpretation of these com-
plexes in terms of graded loopspaces, which will give a generalization of this proposition
for R a non-necessarily p-torsion-free simplicial algebra. The de Rham complex has the
following universal property, which we will generalize.

Let R be a p-torsion-free commutative ring and ¢ : R — R be a classical Frobenius
lift. For A a p-torsion-free Dieudonné algebra, the construction given before defines a
functorial bijection

Hompa (25, A) = Homp, (R, A°)

where Homp,(R, A°) is the set of morphisms R — A° compatible with Frobenius
structures.

In this thesis, we have generalized the previous constructions to simplicial rings
with a Frobenius lift. The co—category of simplicial rings with a Frobenius lift being a
"derived enhancement" of the 1-category of commutative rings endowed with a classical
Frobenius lift, this thesis aims at constructing a derived version of the de Rham-Witt
complex.

Our constructions extend the ones previously defined in the following ways :

e Working in simplicial rings allows for derived tensor products and homotopy limits
and colimits.

e The constructions will be co-categorical and the functors will be co-functors.

e The assumption of the ring to be p-torsion-free is dropped.



e We outline definitions and theorems for global objects, thus defining the de Rham-
Witt complex for schemes or derived stacks.

Dieudonné complexes and algebras can have the property of being saturated, defin-
ing full subcategories of DC and DA. Furthermore there is a functorial construction
called saturation making a Dieudonné complex or algebra saturated. We will define
these constructions in the context of derived Dieudonné complexes and algebras.

I.4 Witt vectors, 6-rings and Frobenius lifts

We give a short presentation of some results using d-rings or Frobenius lifts. A central
notion for this thesis is that of homotopy Frobenius lift. It seems to be the appropriate
structure to study p-adic schemes.

The most recent results on p-adic cohomology theories are based on the notion of
d-rings, see [BS22|. We also note that the section 3.7 of [BLM22] gives generalizations
of their definitions of de Rham-Witt complex for rings with p-torsion using J-rings.

Definition I.4.1. ([BLM22, Definition 3.7.4]) A é-cdga is a commutative differential
graded algebra (A, d) endowed with a morphism of graded rings F': A — A such that

e The groups A" vanishes for n < 0, that is A is coconnective since we are using
cohomological conventions where the differential increases the degree.

e The pair (Ag,d) is a o-ring,.

e For z € A°, we have F(z) = 2 + pd(z).

e For x € A", we have dF(x) = pF(dx).

e For z € A°, we have F(dz) = 2P~ 'dz + d(x)

Proposition 1.4.2. ([BLM22, Definition 3.7.6]) Let (R,0) be a §-ring, the de Rham
complex 1%, is canonically a 6-cdga, this defines a functor

Q_:0—CRing — § — cdga
which 1s left adjoint to the forgetful functor

0 —cdga — 6 — CRing

The theory of prismatic cohomology is also based on the notion of d-rings through
the definition of prisms.

Definition I1.4.3. ([BS22, Definition 3.2|) A prism is a pair (A, ) where A is a 0-ring
and I C A is an ideal defining a Cartier divisor on Spec(A) such that A is derived
(p, I)-complete and p € I+ ¢(I)A where ¢ : A — A is the Frobenius morphism induced
by the -structure

10



We recall a classical theorem about the de Rham-Witt complex.

Theorem 1.4.4. (/[BLM22, Theorem 1.1.2]) Let k be a perfect ring of characteristic p.
Let X be a smooth , formal scheme over Spf(W(k)) with special fiber X. The data of a

Frobenius lift I - X=X of the canonical Frobenius Fr : X — X, if it exists, induces
a natural quasi-isomorphism

Fnt D = W

This theorem defines a natural transformation between

X € fSchin Wk — 0% € D(X)

X /W (k)

and B
X € fSchyyiyy — WQ € D(X)

where fSchyy,) denotes the 1-category of smooth formal schemes over Spf(W (k)) and
D(X) is the derived 1-category of quasi-coherent sheaves on X. Therefore working on
categories of schemes or commutative rings with Frobenius lifts seems fundamental.

I.5 Derived geometry and cohomology theories

In the past few years, the use of homotopy algebraic arguments to study cohomology
theories of schemes has not stopped growing. We give a brief summary of some work
related to derived algebra, or derived geometry, and the cohomology of schemes.

In the papers [TV09], [MRT20] and [Rak20], a universal property is given connecting
graded mixed structures with the de Rham functor.

Definition I.5.1. We define the category of mixed graded simplicial algebras e — SCR9"
as the full subcategory of

S!, — st
on S -equivariant derived stacks which are affine schemes.

Theorem 1.5.2. The de Rham functor defines a functor to graded mized algebras
SCR —e¢— SCR

which is left adjoint to taking the 0-weighted part of a mized graded simplicial algebra.

An explicit connection is also given between Hochschild cohomology and De Rham
cohomology in [MRT20]. Since each of these cohomology theories have geometrical
avatars in derived geometry, we can obtain a global comparision between Hochschild
cohomology and de Rham cohomology of a derived scheme.

Let X be a derived scheme over Z,, the loopspace of X is given by the mapping
stack
L(X) := Map(S*, X)

11



It admits a natural filtration which has as its associated graded stack the shifted tangent
stack
T[-1]X = Specx Symo, (Lx[1])

Taking global functors defines a filtration of Hochschild cohomology of X which
admits as its associated graded the de Rham algebra of X.

We will use in this thesis the geometrical interpretation of graded derived stacks as
G n-equivariant derived stacks and filtered derived stacks as A!/G,,-equivariant derived
stacks, see [Moul9].

In the world of p-adic schemes, derived crystalline cohomology has proven to be
better-behaved than naive crystalline cohomology. Several papers have compared de
Rham and derived crystalline cohomology, such as [BDJ11] and [Mon21b]|. We recall a
theorem of the latter.

Theorem 1.5.3. (/Mon21b, Theorem 5.0.1]) Let
dR : ExAlgg" — CAlg(Mody,)

be the algebraic de Rham cohomology functor defined on the category of smooth Eo, —TF,-
algebras. Given (A,m) an Artinian local ring with residue field F,, the functor dR
admits a unique deformation

dR' : B Algs) — CAlg(Mod )

This deformation dR' is unique up to unique isomorphism. Furthermore, this deforma-
tion s given by crystalline cohomology.

We also note the importance of derived p-completions instead of classical
p-completions used in [BS22] and [BDJ11].

Related work We would like to mention connections between this thesis and work in
progress of Antieau. The following principle seems to central : graded objects defined
by geometric constructions should be naturally associated graded to canonical HKR-
type filtrations defined geometrically. As the graded circle is the associated graded
of the affinization of the topological circle, any geometrical object defined with the
graded circle Sglr should satisfy this heuristic. This philosophy will probably be cor-
rect for our construction of de Rham-Witt complex as a graded loopspace and also to
the definition of foliations which relies on the graded circle and graded mixed com-
plexes. Indeed, in Section VIII, we will outline the construction of an analogue of the
Hochschild cohomology complex, based on a crystalline topological circle, which should
admit a filtration which has as its associated graded the de Rham-Witt complex. This
Hochschild cohomology complex seems to be a new and interesting object to study.

12



1.6 Content of the thesis

We present the results of this thesis and some intuitions behind the main definitions and
theorems. We will work over the base commutative ring k = Z,, therefore simplicial
algebras will be simplicial Z)-algebras and derived stacks will be derived stacks over
Spec(Zy)).

I.6.1 Frobenius lifts and graded loopspaces

Definition I.6.1. We define the category of derived stacks with a derived, or homotopy,
Frobenius lift dStf™ as the pullback of categories

dStendo X dstﬁzdo dSt]Fp

where the functor dStp, — dSthzdo is the canonical functor adjoining the Frobenius
endomorphism to a derived stack on [F,,. Similarly, we define the category of graded de-
rived stacks endowed with a derived Frobenius lift dSt9f" as the pullback of categories

gr,endo
dSt XdSt]?‘;Ldo dSt[ﬁ‘p

where the forgetful functor dStIrende — dStfg’;dO is given by taking O-weights, that is
Gy,-fixed points, and taking the fiber on F,.

Remark 1.6.2. Similarly, we define the category of simplicial algebras endowed with a
derived Frobenius lift SCR'™ and the category of graded simplicial algebras endowed
with a derived Frobenius lift SCRI™I'".

As the classical definition of Dieudonné module encodes the structure of the de
Rham complex of a smooth commutative ring A endowed with a classical Frobenius
lift, our notion of mixed graded Dieudonné modules is modeled on

which is naturally a mixed graded complex. The usual compatiblity
dF = pFd

becomes
eF = pFe

A central object of our construction is the "crystalline graded circle" denoted S;r
which is a group in dSt9"I". It is the affine stack

S3y 2 Spec™ (L) ® Zy[—1))

where Zgy ® Zg)[—1] = Zgy)[n] is the denormalized cosimplicial algebra of a square
zero extension commutative differential graded algebra. Sending 7 to pn defines the

13



Frobenius structure on this stack. For details on the functor Spec®(—) and affine
stacks, see [To06]. Now interpreting mixed graded modules as quasi-coherent sheaves
in

QCoh(BS..)
the forgetful functor along [p] is given by
(M,d,e) € QCoh(BS,,) — (M,d, pe) € QCoh(BS,,)

Therefore we will see a graded mixed Dieudonné complex as a colax fixed points of [p]*,
that is a pair (M, f) where M is a mixed graded complex and f is morphism of mixed
graded complexes

folp'M — M

Remark 1.6.3. The category of quasi-coherent complexes QCoh(BSglr) is interpreted
with S;T seen as a graded stack, therefore this category is implicitly defined as

QC’oh(B(Sglr X Gp))
See Remark IV.12.11 for details.

Definition 1.6.4. We define the category of mixed graded Dieudonné complexes, also
called derived Dieudonné complexes, by

€ =D — Mod" = CFPy-(e — Mod®")
where C'F Py (e — Mod?") denotes the category of colax fixed points in € — Mod".

The category of mixed graded Dieudonné complexes admits the following alternative
description.

Proposition 1.6.5. (Proposition VII.2.12) We have a natural identifications
¢ — D — Mod™ =~ (k[e], [p]) — Modd™*"%
where [p] is the canonical endomorphism on kle], given by
€ € kle] — pe € k[€]
The object (kle], [p]) is seen here as a commutative algebra object in Mod9m<"e.

Definition I1.6.6. Motivated by the previous proposition, we define mixed graded
Dieudonné stacks, also called derived Dieudonné stacks, by

e— D —dSt == 5] — dStrF
This notion gives a definition of Dieudonné structures on global objects, such as

derived schemes or derived stacks.

We also define mixed graded Dieudonné simplicial algebras, also called Dieudonné
simplicial algebras, by

€ — D — SCRI = (S}, — dAf forFronyor
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In this definition, by abuse of notation, S;T — dAf frtred is the category of elements
of S — dSt9"F7°" which have as an underlying derived stack an affine derived scheme.
An element of S;, — dAff9°" can be thought of as a morphism X — BS] , in the
topos dSt9"F° which is relatively affine.

A description of the category of derived Dieudonné stacks in terms of strict models,
for example using a model category, seems difficult. Therefore, the use of derived stacks
and the language of co-categories is essential in order to define these objects. Similarly,
in [Rak20], the use of co-monads and homotopical algebra is essential to the description
of the universal property of the de Rham complex.

The definition of derived Dieudonné stack is fundamental for the study of the mul-
tiplicative structure on the de Rham-Witt complex, however it adds a considerable
amount of difficulty by requiring the use of the oco-categories of simplicial rings and
derived stacks.

The graded stack S glr admits an action from G,,, which is identified with the grading
structure on S glr, it also has a natural action of N induced by its Frobenius lift structure,
therefore we can form the semi-direct product (S}, % (N x G,,)). We notice that the
category Sj, —dSt9""% identifies with (S}, % (Nx Gy,))-equivariant derived stacks, that
is derived stacks over B(S], x (N x Gy,)). Furthermore, the category QCoh(B(S],
(Nx G,,)) identifies with e — D — Mod. These identifications can be seen as geometrical

interpretations of Dieudonné algebras and complexes.

We will then construct the functor of functions on a Dieudonné derived stack
C:e—D—dSt"P e —D — Mod?"
refining the usual functor of functions

C:dSt — Mod

Definition 1.6.7. Let X a derived scheme endowed with a Frobenius lift. We define
the Frobenius graded loopspaces on X as the mapping stack internal to the category
sttt .

L7F7(X) = Mapger (S), X)

gr
where S, is endowed with its canonical Frobenius action. It is a graded derived stack

endowed with a Frobenius lift.

The canonical point * — S, defined by the augmentation Zy)[n] — Zy), is a
morphism of graded derived stacks with Frobenius structures and induces a morphism
of graded derived stacks with Frobenius structures

LX) = X

The following proposition and corollary asserts that the crystalline graded circle is
the correct analogue of the graded circle in order to recover the de Rham-Witt complex.
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Proposition 1.6.8. (Proposition VII.2.36) Let (X, F) be a affine derived scheme en-
dowed with a Frobenius structure. We write X = Spec(C). The graded Frobenius
loopspace’s underlying graded stack identifies with the shifted linear stack:

ULIET(X) ~ Specx Symo, (Lf}‘éF)[l])
where Sym denotes the free (C, F)-module construction of Proposition VII.1.26.

The (C, F)-module L. .= ILJE%F) fits in a triangle of (C, F)-modules

@ Licr ®F, = L = L.
N

Corollary 1.6.9. (Corollary VII.2.538) With the notation of the previous proposition,
the Beilinson truncated derived stack associated to L9 (X)) is given, after moding out
by the p-torsion, by

Spec(Sym(Qc[1]))

where the induced endomorphism is induced by

% : Qc[l] — Qc[l]

To construct the Dieudonné de Rham functor, we will need a classification the-
orem of Dieudonné structures on free simplicial algebras. This result is inspired by
Proposition 2.3.1 in [To20|, which was stated with a partial proof.

Theorem 1.6.10. (Theorem VII.3.1) Let A be smooth commutative Zy)-algebra, M a
projective A-module of finite type. We define X as the derived affine scheme
Spec(Syma(M[1])) = V(M[1]) endowed with its natural grading. The classifying space
of mized graded structures on X compatible with its grading is discrete and n
bijection with the set of commutative differential graded algebra structures on the
graded commutative Z,)-algebra @, Ny M[—1].

This key theorem will be proven using an analogue of the usual cellular decomposi-
tion of the topological space BS' ~ CP*. Since BS,, is given by

BSglr ~ Spec®(D(H*(BS", Z))))

where D is the denormalization functor, we will need a decomposition on the denor-
malized cosimplicial algebra

D(H*(BS", Z))) ~ D(Z)[u]/u?)

where u is in degree 2. This decomposition is not the one obtained from the topo-
logical decomposition therefore the construction has to be made from scratch. This is
due to the fact that a pushout of topological spaces has a cosimplicial chain complex
which is given by a pullback of the cosimplicial chain complexes of the spaces, how-
ever, this identification is not compatible with the natural grading. We will introduce
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weight-shifted formal spheres S?"1(n + 1) which will exhibit D(H*(BS*,Z))) as the
appropriate limit, as a graded cosimplicial algebra.

Another fundamental ingredient of the proof will be a Postnikov decomposition to
compute the various mapping stacks, using obtruction theory. We will first show that
we can reduce to the 4-skeleton (BS), )<y, this stack will be given by the homotopy
cofiber of

S3(2) — S3(1)
where S3(2) and S7(1) are formal version of the topological spheres S® and S? with a

shift of the gradings. This map is an analogue of the Hopf fibration and we will study
it using Koszul duality.

We will extend the previous theorem to the case of Dieudonné mixed graded struc-
tures. This theorem is the main result of this thesis.

Theorem 1.6.11. (Theorem VII.3.15) Let A be smooth commutative Zy)-algebra, M a
projective A-module of finite type. We fiz a derived Frobenius lift structure on the graded
simplicial algebra Syma(M|[1]), with M in weight 1. From Proposition VII.1.8, it is
equivalent to a classical Frobenius lift F' on A and a linear map of A-modules ¢ : M —
M. We define X as the derived affine scheme Spec(Syma(M[1])) = V(M[1]) endowed
with its natural grading, we regard it as an element of dSt9F7°. The classifying space
of Dieudonné mized graded structures on X compatible with its grading and Frobenius
structure is discrete and in bijection with the set of Dieudonné algebra structures on
the graded commutative Zy)-algebra @, NyM|—i] endowed with its natural canonical
Frobenius lift structure.

Corollary 1.6.12. (Corollary VII.3.19) With the notations of Theorem VII.3.15, the
graded derived affine scheme Spec(Syma(Qa[l])) admits a unique Dieudonné structure
induced by the standard Dieudonné structure on - A Qy.

Definition 1.6.13. Let (A, F') be a simplicial algebra with a Frobenius lift, we define
the Dieudonné de Rham complex of (A, F') as

0L (Spec(A), Spec(F)))
where O is the functor of "simplicial functions" on derived Dieudonné stacks
e—D—dSt"" —e— D — SCRY
defined in the previous proposition. We denote the element we obtain DDR(A, F).

Theorem 1.6.14. (Theorem VII.3.22) When A is a smooth discrete algebra,
DDR(A, F) is naturally the derived Dieudonné algebra

Spec(Syma(Qa[l1]))

endowed with its canonical Frobenius lift and mized graded structure.

We will prove a theorem analoguous to Theorem 1.5.2 and Proposition 1.4.2. Tt
asserts that the Dieudonné de Rham functor is left adjoint to forgetting a graded mixed
structure.
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Theorem 1.6.15. (Theorem VII.3.23) The Dieudonné de Rham functor
SCR™ — e~ D — SCR"
18 left adjoint to the forgetful functor

(0):¢e =D — SCRY — SCR"

We also compare more precisely our construction of Dieudonné de Rham functor
with the one defined in [BLM22]. We define a t-structure inspired by Beilinson t-
structure, see [Rak20, §3.3|, and prove truncation with respect to this t-structure of our
Dieudonné de Rham functor recovers the one in [BLM22]| for non-necessarily smooth
algebras.

Definition I.6.16. We recall the definition of the Beilinson t-structure on graded mixed
complex. Let M be a graded mixed complex, M is said to be t-connective for the t-
structure when H'(M(n)) = 0 for ¢ > —n, M is said to be t-coconnective for the
t-structure when H'(M(n)) = 0 for i < —n.

A derived Dieudonné complex or algebra is said to be t-truncated when its under-
lying graded mixed complex is. We will abuse terminology and call these constructions
"t-structures".

Proposition 1.6.17. (Proposition VII.2.17) The heart of e — D — Mod identifies with
the abelian category of Dieudonné complexes of [BLM22].

Theorem 1.6.18. For A a commutative algebra, non-necessarily smooth, the
t-truncation of DDR(A), with respect to the Beilinson t-structure, is equivalent to the
classical Dieudonné complex. That is

t>o(DDR(A)) ~ i(Q%)

where Q% s endowed with its canonical classical Dieudonné structure, see Proposition
VI.3.14 and i is the functor

1: DA —-e—D—SCRIY

wdentifying the category of classical Dieudonné algebra with the heart of e — D — SC'RI".

We will then define and study the notion of of saturation of a mixed graded
Dieudonné algebra.

Definition 1.6.19. We define the décalage 7, functor as an endofunctor of 1-categories
¢ — Mod®" sending M to the sub-graded mixed complex of M x M on elements (x,y)
such that ez = py and ey = 0.

The following proposition defines and characterizes the saturation oo-functor.
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Proposition 1.6.20. (Proposition VII.4.3) We have an adjunction of 1-categories

[p]" : € — Mod® = ¢ — Mod®" : n,

In fact, this adjunction is a Quillen adjunction for the injective model structures,
therefore it induces an adjunction of oco-categories.

A derived Dieudonné algebra is said to be saturated if its underlying Dieudonné
complex is. We will verify that the definition of saturated Dieudonné complexes coin-
cides with the one in [BLM22].

I.6.2 Graded functions on graded stacks
This thesis also contains the results presented in [Mon21| on graded functions on linear
stacks. We fix X = Spec(A) an affine derived scheme.

Definition 1.6.21. Let F be a quasi-coherent complex on X, the linear stack associated
with E is the stack over X given by

u: Spec(B) = X — Mapy(B)—mod(u"E, N(B)) € SSet
with N the normalization functor. It is denoted V(E).

Proposition 1.6.22. (Proposition V.1.1) The functor
V 1 QCoh(X)™ — Gy, — dSt )y
has a left adjoint given by Oy (—)(1).

Theorem 1.6.23. (Theorem V.2.3) For E € QCoh™(X), ie a bounded above complex
over X, the natural map constructed above

E— Og(V(E))(1)
18 an equivalence.

Corollary 1.6.24. (Corollary V.2.7) The functor V : QCoh(X)? — G, — dSt;x is
fully faithful when restricted to QCoh™ (X).

This corollary is a crucial result for the study of foliations as it allows the study of
foliations of non-zero characteristic with cotangent complexes which are not necessarily
connective. We will combine it with the notion of Dieudonné foliations so as to construct
examples of Dieudonné foliations.

Proposition 1.6.25. (Proposition V.3.1) If k is a Q-algebra and E is perfect complex
on X, Og,.(V(E))(p) is canonically identified with Symy_ (E), where the monad Symg.,
15 the one associated to the formation of free Eoo-k-algebras, or equivalently commutative
differential graded algebras.
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1.6.3 Notations

Notation 1.6.26. In this thesis, all higher categorical notations are borrowed from
[Lur09, Lurl7]. We fix k to be a discrete commutative ring.

e "oo-category" will always mean (oo, 1)-categories, modeled for example by qua-
sicategories developed in [Lur09]. Everything is assumed to be oo-categorical,
e.g "category" will mean oo-category. We will refer to the 1-categories and 1-
categorical notions as "classical" or "discrete", for example the 1-category of dis-
crete commutative rings will be the usual category of commutative rings, denoted
CRing.

e We will denote 1-categories and model categories with bold text, e.g dg — mody
will be the 1-category of chain complexes on k. The model structure on a
I-category will be denoted in subscripts or omitted, e.g dg — mody proj Or
dg — mody will be the model category of chain complexes on k with the
projective model structure. All oco-categories will be denoted without bold text,
e.g Modj or Mod the oco-category of chain complexes on k.

e We will use cohomological conventions : all chain complexes with have increasing
differentials, hence negative chain complexes will be connective.

e Mody, is the co-category of chain complexes of k-modules, M 0d,§0 or Mod is the
full sub-oo-category of connective complexes and M odf0 or Mod®" is the full sub-
oo-category of coconnective complexes. Similarly, for A a simplicial commutative
k-algebra, Mod, will denote the usual co-category obtained by inverting quasi-
isomorphisms in the 1-category of differential graded modules N(A) — dg — Mod
on the normalization of A.

e C'Alg(C) is the oo-category of commutative algebra objects in a symmetric
monoidal co-category, see |Lurl7|.

o E Algr, = CAlg(Mody) is the oco-category of E-algebras on k, see [Lurl7|.
e CRingy is the 1-category of discrete commutative algebras on k.
e SCRy is the oo-category of simplicial commutative rings over k

e LSym or simply Sym denotes the monad on Mod,fO associated with the forgetful
functor SCR;, — ]\4061,?0

e St; and dSt; will denote respectively the co-category of stacks over the étale site
of discrete commutative k-algebras and the co-category of derived stacks, also on
the étale site.

e Following [Lurl8, 6.2.2.1, 6.2.2.7, 6.2.3.4], Qcoh(X) will be the oo-category of
quasi-coherent sheaves on a derived stack X, ie QCoh(X) is informally given as
the limit of stable co-categories

QCoh(X) = limgpec axModa
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A simplicial set or a derived stack X will be n-truncated when 7;(X) = 0 for
i > n, it will be n-connected when m;(X) = 0 for ¢ < n.

e All tensor products are assumed to be derived.

e The subscript notation C, will denote the category of objects over k®F, when C is
a category of "algebra type objects" over k. For example, when SC'R denoted the
category of simplicial algebras over k, SCR, is the category of simplicial algebras
over k ® [,

e The letters €, p and n will be reserved for generators of commutative differential
graded algebras in specific degrees : € will be in degree —1, p in degree 0 and 7
in degree 1. As commutative differential graded algebras, we have identifications

H*(S%) ~ k]

and
H*(Sl) ~ k[e]

These three generators will be in weight 1 when they generate a graded commu-
tative differential graded algebra.

IT Categorical notions

In order to define our crystalline circle and to describe the de Rham-Witt complex, in
mixed characteristics, as a graded loopspace

Map(S),, X)

gr

we will need to review some results on oo-categories and derived geometry.

II.1 oo-categories
This section gives the oco-categorical notations and results which will be used in this
thesis. We ferer to [Lur09] for more details.

Notation II.1.1. We will use the following notations and conventions regarding co-
categories :

e We will use quasi-categories as models for our co-categories.
e We will use Kan complexes as models for our oo-groupoids.

e The oo-category of oo-categories is denoted Cats,, and the sub-co-category of
Kan complexes is denoted Gpd...
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e The inclusion Cat,, — Gpdy admits a left adjoint denoted (—).
e The oco-category of spaces is denoted S.

e When C is an oo-category, and x and y are elements of C, Mapc(x,y) denotes the
mapping space of morphisms from x to y. The set of connected components of
morphisms from z and y is denoted Home(z,y) or [z,y]c.

e For K a simplicial set and C an oo-category, Fun(K,C) = C¥ is the co-category
of functors from K to C. In particular, Arrow(C) = C2' is the oo-category of
morphisms in C.

e The oo-category of presheaves on an oo-category C is C .= Fun(C,S)

e In an oo-category C, with X € C and K a simplicial set, the tensorization of X
by K denoted K ® X is, when it exists, e.g when C is presentable, an object
representing the functor

7 € Crs Mape(X, 2)X

and the cotensorization of X by K denoted X¥ is, when it exists, e.g when C is
presentable, an object representing the functor

7 € C v Mape(Z, X)%

e A localization is a full sub-oco-category Cy C C admitting a left adjoint.

Theorem II.1.2 (Adjoint functor theorem). Let F' : C — D be a functor between
presentable co-categories.

e The functor ' admits a right adjoint if and only if it preserves small colimits.

o The functor F' admits a left adjoint if and only if it is accessible and preserves
small limats.

Proof. See |Lur09, Corollary 5.5.2.9]. O

II.2 Lax and colax fixed points

Definition II.2.1. Let C be a category and F' an endofunctor of C. We define the
category of lax fixed points with respect to F' as the fiber product of categories

LFPF(C) = CAl chcc

where C — C x C is given by the composition :

cAheoxc®E cxe
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We define the category of fixed points with respect to F' as the fiber product of

categories
1

FPp(C) = CP xene C

The inclusion Al € Al defines an inclusion FPy(C) C LEPp(C).

Remark I1.2.2. The elements of the lax fixed points category LF Pg(C) are given by
pairs (z, f) with € C and f : x — Fz. Then the category of fixed points F'Pr(C) is
the full subcategory of LF Pr(C) on pairs (x, f) where f is an equivalence.

Remark II.2.3. Colax fixed points are defined similarly : CFPp(C) has elements of
the form (x, f) with z € C and f: Fz — x.

Proposition 11.2.4. We have natural identifications

CFPF<C)Op >~ LFPF<COP)

II.3 Objects with endomorphisms

Definition I1.3.1. Let C be a category, we define the category of objects of C endowed
with an endomorphism as Fun(BN,C), where BN is the 1-category with one object
and N as its monoid of arrows. We denote the associated category Ce"d.

The base point x — BN gives by restriction the forgetful functor
(X,a)eC"™ s X €C
Proposition 11.3.2. When C has N-indexed coproducts, the forgetful functor

Cendo N C

admits a left adjoint L, given by
L:Xw( |X9)
N

with the shift S given by the inlusion in the second factor

UX%XuUXgUX
N N N

When C has N-indexed products, the forgetful functor

Cendo N C

admits a right adjoint R, given by
R:Xw (J[X.9)
N

with the shift S induced by the projection map

[[x=([xnx) =[x
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Definition I1.3.3. Let (X,a) and (Y, 3) be two objects in C"®, we define, when it
exists, the morphism object with endomorphism Homgenao ((X, @), (Y, 3)) as an element
of Ce"d° representing :

(Ta ’Y) = MapCendo(<X X T’ a X f}/)’ (Y’ ﬁ)) . Cendo = S

Proposition I1.3.4. We assume C has internal morphism objects and equalizers. Let
(X,a) and (Y,B) be two objects in C%, the morphism object with endomorphism
Homeenao (X, @), (Y, B)) can be computed as the equalizer :

GQ(MC((Xv Oé), <Y7 ﬁ))N = MC((Xv O‘)v (Y, 5))N)

where one of the arrows is given by postcomposing by 5 and the other is defined as by
applying the shift ((f;) — (fix1)) and precomposing by . Its endomorphism is given by

Ezplicitly, an object of Homeenao((X, ), (Y, 3)) can be thought of as a sequence of
morphisms f; : X — Y such that 3o f; is identified with ;11 o a.

I1.4 Nerve and conerve constructions

Definition I1.4.1. Let C be a presentable category endowed with the cartesian sym-
metric monoidal structure. We denote Gp(C) the category of group objects in C, it
can be described by a full subcategory of Fun(A°, C) on objects satisfying the Segal
condition. See |Lur09| for details.

The colimit functor, or geometric realization, will be denoted
B=|—-1]:GplC)— C,
where C, is the category of pointed objects in C.

Proposition 11.4.2. The functor B admits a right adjoint sending * — X to its Cech
nerve.

Remark 11.4.3. Informally the nerve of U — X has n-simplices given by
UxxUxx..xxU
with n 4+ 1 copies of U. See [Lur09, Proposition 6.1.2.11] for details on Cech nerves.

Definition I1.4.4. Similarly, we denote coGr(C) the category of cogroup objects in C,
it can be described by a full subcategory of Fun(A,C) on objects satisfying the Segal
condition.

The limit functor, or totalization, will be denoted
lima = Tot(—) : coGr(C) = C.
where C/, is the category of copointed objects in C.

Proposition 11.4.5. The functor lima admits a left adjoint where X — % 1s sent to
1ts conerve.
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II.5 Simplicial sets

Definition I1.5.1. Let X be a simplicial set, the cosimplicial algebra of cohomology
of X has n-simplices given by
(k) = kX

where faces and degeneracies are induced by the ones on X.

I1.6 Chain complexes

Theorem I1.6.1 (The projective model structure on chain complexes). For f : M — N
a chain compler morphism in dg — mody, f is said to be :

e o weak equivalence if it is a quasi-isomorphism, ie it induces an isomorphism on
homology groups H'(M) — H'(N).

e a fibration if it is a levelwise surjection.

This data makes dg — mody into a model category called the "projective model
structure on chain complezes”. We will denote this model category dg — mody proj

Proof. See [Ho91|. O

Theorem I1.6.2 (The injective model structure on chain complexes). For f: M — N
a chain complex morphism in dg — mody, f s said to be :

e o weak equivalence if it is a quasi-isomorphism, ie it induces an isomorphism on
homology groups H' (M) — H'(N).
e a cofibration if it is a levelwise injection.

This data makes dg — mody into a model category called the "injective model struc-
ture on chain complexes”. We will denote this model category dg — mody jn;

Proof. See [Dun10]. O

Definition I1.6.3. We define the naive coconnective truncation of a chain complex on
k as the left adjoint to inclusion of dg — modf0 C dg — mody It can be described as

(A,1—>A0—>A1%AQ)H(O%AO—)Al%AQ)
It does not preserve quasi-isomorphisms.

We define the coconnective truncation of a chain complex on k as the right adjoint
to inclusion of dg — modf0 C dg — mody It can be described as

(A — Ao — A1 — Ay) — (0 — coker(d) — Ay — As)
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It does induces a functor of co-categories Mody, — M oalf0 which is right adjoint to the
inclusion.

We define the naive connective truncation of a chain complex on £k as the right
adjoint to inclusion of dg — modlf0 C dg — mody It can be described as

(A,Q — A,1 — AO — Al) — (A,Q — A,1 — AO — 0)
It does not preserve quasi-isomorphisms.

We define the connective truncation of a chain complex on k as the left adjoint to
inclusion of dg — modlf0 C dg — mody It can be described as

(Aog—A1—-A > A)—~(Ay— A1 — Ker(d) —0)

It does induces a functor of oco-categories Mod, — M od,?0 which is left adjoint to the
inclusion.

Definition I1.6.4. A commutative differential graded algebra is a chain complex (A, d)
endowed with a graded algebra structure over k such that

e The multiplication is graded commutative, that is, for z € A, and y € A,,, we
have xy = (—1)™"yx in Apin.

o If v € Ay, is in odd degree, 22 = 0.
e The differential d satisfies the Leibniz rule
d(zy) = (dz)y + (—1)"z(dy)
forx € A,,.

Remark I1.6.5. The category of commutative differential graded algebras is identified
with a subcategory of the category of commutative algebra objects in the 1-category
dg — mody on objects satisfying 22 = 0 for x € Ay, 1.

I1.7 Graded mixed chain complexes

We recall here elementary results on graded mixed complexes. We recommend [TV09]
for definitions and usage of graded mixed complexes in derived geometry.

Definition I1.7.1. We define the 1-category of graded mixed complexes ¢ — mod§' as
the module category kle] — dg — mod}" where k[e] is the commutative algebra object
in dg — mod§" where € is in weight 1 and degree —1, therefore the action of € on a
graded mixed module is a morphism M — M((1))[—1] : the operator decreases the
degree, contrary to the differential, and increases the weight.

Remark I1.7.2. The object k[e] as an algebra object in dg — mod{" can be alterna-
tively defined as the cohomology algebra of the circle H*(S'; k). In fact Proposition
IV.12.9 makes this identification more precise.
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Definition I1.7.3. The object k[e] is naturally a coalgebra in graded differential graded
modules using the comultiplication

Ateckl = 1Re+e®1 € kle] @ kle]
and counit
n:eckleg—0ek
This makes ¢ — dg — mod{" into a symmetric monoidal category.

Definition I1.7.4. The oo-category of graded mixed complex is the localization of
e —dg — mod}" at quasi-isomorphisms. It is naturally a symmetric monoidal oo-
category.

Proposition I1.7.5. Defining fibrations and trivial fibrations in € — dg — mod§' as
the ones in dg — mody proj, makes it into a model category called the projective model
structure on € — dg — mod§'.

Defining cofibration and trivial cofibration in ¢ —dg — mody as the ones in
dg — mody proj, makes it into a model category called the injective model structure on
e —dg — mod{".

They both present the same oo-category denoted € — Mod;' .

Proof. See [TV09] for details. O

I1.8 The bar construction

We recall the following construction which is useful to construct resolutions, see [II171,
§1.1.5] for details.

Definition I1.8.1. Let 7" be a comonad on a category C. Let ¢ € C, we define an
augmented simplicial object in C by T**!(¢) — ¢. We call this the bar construction
and denote the simplicial object Barg(c).

IIT Reminders on algebra

III.1 Simplicial and cosimplicial rings
I11.1.1 Simplicial algebras

Definition ITI.1.1. We define SC'R), the oo-category of simplicial commutative algebra
over k as the localization of the 1-category of simplicial commutative algebra over k
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with respect to the model structure where we ask weak equivalences to be isomorphisms
on homology and fibrations to be level-wise surjections. From [Lurl8, §25.1.1|, this
category admits a useful alternative description as the category generated from Poly;
under sifted colimits, where Poly, C C'Rings is the full sub-1-category of polynomial
rings on a finite set of variables. Explicitly this category can be defined by the full
subcategory Fun(Poly”,S) on functors preserving finite products.

Definition III.1.2. The simplicial version of the Dold-Kan construction induces a
functor

0" . SCRy, — E Algy"
where E Algi" = C Alg(Mod{") is the co-category of connective E.-algebra on k.

Proposition 111.1.3. The functor 0" previously defined preserves small limits and
colimits and s conservative.
Proof. See |Lurl8, Proposition 25.1.2.2]. O

Definition I11.1.4. Let A be a simplicial algebra and M a simplicial module over A.
The square zero extension A@® M of A by M is given by a square zero extension degreee
wise :

(A M), = A, d M,

with the canonical faces and degeneracies maps, every element in M,, squares to zero.

I11.1.2 Cosimplicial algebras

Definition III.1.5. Let f : A — B be a morphism of cosimplicial algebras.

e The map f is said to be a weak equivalence when it induces an equivalence on all
the homology groups.

e The map f is said to be a fibration if it is levelwise surjective
Proposition I11.1.6. The data of weak equivalences and fibrations defines a simplicial
model structure on coSCRy.
Proof. See [To06, Theorem 2.1.2]. O

Definition III.1.7. We define the oo-category of cosimplicial commutative rings
coSCRy, over k as the localization of coOSCRy = Fun(A, CRingy) with respect to
the simplicial model structure defined above.

Definition ITI.1.8. The cosimplicial version of the Dold-Kan construction induces a
functor

0" : coSCR — CAlgi™

Furthermore, 0 preserves small limits and colimits and is conservative.
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Definition IIT.1.9. We recall the cotensorization of a cosimplicial algebra A by a
simplicial set X, it is the cosimplicial algebra which has as n-simplices the algebra

(A =]] An

The mapping space of cosimplicial algebras, by requiring the usual universal prop-
erty, is given by the following construction. Let A, B € coSCRy,

MapCOSCRk (A’ B)TL = HOmcoSCRk (A7 BA")

I11.1.3 Dold-Kan correspondance

Definition III.1.10. For A an abelian category, the normalization construction is a
functor :

A 5 Ch=0(A)

where we denote by Ch=%(A) the category of connective chain complexes in A. A
simplicial object E'is sent to a chain complex having in degree —n the element (_, d7',
meaning the intersection of the ¢-th face maps for ¢ > 0 : the induced differential is
given by the remaining O-face map.

Proposition I11.1.11. The normalization functor N admits a right adjoint D called
denormalization. And they are equivalences of categories. Let A be a simplicial ring,
there is a Quillen equivalence

NA —dg — mod=® ~ A — Mod

between the category of connective dg-modules over NA and the category of simplicial
modules over A.

Remark III.1.12. The natural isomorphism ND ~ Id is naturally monoidal with
respect to the shuffle and Alexander-Whitney maps and the isomorphism DN =~ Id
admits a non-symmetriccal monoidal structure.

The normalization is lax symmetric monoidal but D is only lax monoidal.

Proof. See : [SS03] O

Definition II1.1.13. The normalization functor
N : cosMody — dg — modf0

from cosimplicial modules to differential graded modules induces the notion of homology
group of a cosimplicial algebra A by composing the forgetful functor

coSCRy — cosMody

with the normalization functor and the cohomology functor of a chain complex H*.
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I11.2 §-structures

Definition ITI.2.1. Let A be a discrete commutative ring, a classical Frobenius lift
on A is given by a ring endomorphism F': A — A such that F' induces the Frobenius
morphism on A/p, ie F(a) — a? is p-divisible for any a € A.

Definition IT1.2.2. Let A be a discrete commutative ring, a d-structure on A is given
by a function A — A such that §(0) =0, 6(1) = 0, and for any a,b € A,

6(a+b)=d(a)+4(b) — pi 1 (P) o

im1 P\
d(ab) = aPé(b) + bPo(a) + pd(a)d(b)

Remark III1.2.3. Any -structure induces a classical Frobenius lift F(a) = a? + pd(a).
This defines a bijection between J-structures and classical Frobenius lifts when A is
p-torsion free. In fact, Theorem III.3.8 identifies d-structures with derived Frobenius
lifts .

II1.3 The ring of Witt vectors

As seen in [Ser62|, when k is a field of positive characteristic p, there is a unique
complete discrete valuation ring of characteristic 0 having k as a residual field and (p)
as its maximal ideal, this is the ring of Witt vectors on k. The ring of Witt vectors
admits various generalizations when k need not be a field of positive characteristic. For
details on Witt vectors, see [Haz08] and [Rabl14].

Definition IIL.3.1. We define the ring of p-typical Witt vectors W (A) associated to
a commutative ring A. As a set W(A) is given by AN,

We define the ghost map as function :
gh : (a,) € W(A) = (w,) € AY

n—1

where w,, =Y  p'al

The set W (A) admits a unique functorial ring structure making gh into a natural
transformation of commutative rings. An element z = (a,) € W(A) will have (a,) as
its "Witt coordinates" and (w,,) as its "ghost coordinates".

The ghost morphism can be seen as a morphism of commutative rings in affine
schemes
W — GY

Proposition II1.3.2. The ghost map :
gh: W(A) — AN

s injective when A is p-torsion free. In this case, the ghost coordinates can be use
without ambiguity.
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Definition I11.3.3. We define the p-typical Witt vectors of length m as the quotient
ring

Win(A) = W(A)/I

where [ is the ideal of elements (a,) where a,, = 0 for n < m. Elements of W,,(A) can
be written (ag, ..., a,_1).

Definition II1.3.4. The Verschiebung map is a natural transformation
V:W(A) — W(A)
defined as (a;) — (0, ag, ai,...). In ghost coordinates, it is expressed as

(wy) — (0, pwo, pwy, ...)

It is an additive morphism and induces a morphism of truncated Witt vectors :
Vi Wi (A) = Wi (4)
Definition IIT1.3.5. The Frobenius map is a natural transformation
F:W(A) — W(A)

defined implicitly in ghost coordinates as (w,) — (wq,ws, ...) and by requiring functo-
riality.

The Frobenius F' is a ring morphism and induces a morphism of truncated Witt
vectors :

F:Wh(A) = W,_1(A)
Proposition 111.3.6. We have the usual identities :
FV =p
and
V(F(z)y) = 2V (y)
Proof. Both results can be proven by functoriality and reducing to the case of A being
without p-torsion where ghost coordinates can be used. 0

Definition III.3.7. The projection morphism W(A) — A admits a multiplicative
section a — [a] == (a,0, ...), [a] is called the Teichmiiller representative of a.

Theorem II1.3.8. The ghost coordinates induce a homotopy pullback diagram :

Wa(A) —22 5 A
4

w1 lFrpopr

A" ARLF,

As sections of the projection morphism wg : Wa(A) — A are given by d-structures,
we can identify d-structures with derived Frobenius lifts on A.
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Proof. See |BS22, Remark 2.5]. O

Proposition II1.3.9. The Witt vectors admits a natural d-structure, the forgetful func-
tor

o — CRingk — CRingk

admits W as a right adjoint. From the previous proposition, we see the Witl vector
functor as the construction of adding cofreely a 0-structure on a commutative ring.

We also recall a theorem of Almkvist for the reference, see [AT8|, which we will not
use. For a commutative ring R, we define Proj(R) the category of projective finitely
generated R-modules. We write the category of endomorphisms in Proj(R) :

End(Proj(R)) := Fun(BN, Proj(R))

as a functor category where BN is the category with one object and N as its monoid of
arrows.

Definition III1.3.10. We define Ky(End(Proj(R))) as the free abelian group gener-
ated by isomorphism classes of objects in End(Proj(R)) modulo the subgroup gener-
ated by elements of the form

[(M, )] = (M7, f9)] = (M, f7)]

when there is a morphism of short exact sequences :

0 —— M s M s M s 0
lf/ lf lfﬁ
0 —— M s M s M s 0

The category Ko(Proj(R)) is similarly defined. The tensor product of modules
endows Ko(End(Proj(R))) and Ky(Proj(R)) with the structure of commutative rings.

The kernel of the canonical morphism
(M, f)] € Ko(End(Proj(R))) — [M] € Ko(Proj(R))
is denoted Ko(End(Proj(R))).
Theorem II1.3.11. There is a canonical ring isomorphism
Ko(End(Proj(R))) = Rat(R)

where Rat(R) is the subring of the ring of big Witt vectors Wy;,(R) which are rational
functions. When Wy,(R) is identified with formal series (1 + tR([[t]]), Rat(R) is the
subring

{1—+aﬁ—+“s+amﬂ”

s ag, b; 1
14by+ ...+ byt @, bi ER} < (L+ R[]

The morphism s given by taking the characteristic polynomial of the endomorphism

(M, f)] € Ko(End(Proj(R))) — x(t) € (1 +tR[[t]))
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Remark III.3.12. Many construction on the Witt vectors can be described at the
level of the category End(Proj(R)), therefore defining a satisfying explanation for the
structure arising on Witt vectors and the compatibility between the various maps.

For example, the Frobenius F), acts on End(Proj(R)) as follows

(M, )] = [(M, f*)]
The Verschiebung V,, acts as

(M, f)] = [(ME", f)]

where f, sends the i-th copy of M to the (i + 1)-th copy of M by identity and sends
the n-th copy of M to the first copy of M by f.

The A-structure can be seen as taking exterior products : [(M, f)] — [(A, M, A, f)]

IV  Preliminaries in derived geometry

In this section we recall notions of derived geometry. We refer to |[To06b| and |To13] for
overviews on the subject. The various notions and results of this section are borrowed
from [TV06], [Lurl7] and [Lurl8].

IV.1 Stacks and derived stacks

Definition TV.1.1. We will consider stacks and derived stacks with respect to the
étale topology on simplicial algebras. We denote St the oo-category of hypercomplete
stacks and dSt; the oo-category of hypercomplete derived stacks.

Proposition IV.1.2. The inclusion of stacks into derived stacks : Sty C dSty admits
a right adjoint called truncation, denoted ty, any derived stack X admils a canonical
morphism from its truncation to(X) — X.

Remark IV.1.3. On affine derived schemes, truncation is given by
to(Spec(A)) = Spec my(A)

Remark IV.1.4. Seeing a derived scheme (X, Ox) as a classical scheme (X, my(Ox))
with m;(Ox) being a quasi-coherent 7y(Ox)-modules, the truncation to(X, Ox) is given
by the underlying scheme (X, 79(Ox)).

We include here a motivation for the importance of the Frobenius morphism.

Proposition IV.1.5. Let k be a commutative ring, there is an isomorphism of abelian
groups

Endey, (Ga) = kId® @ D klp) Fyr
p

n>1
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where p belongs in the prime numbers and kl[p] = {x € k : px = 0} is the ideal of
p-torsion elements of k.

The set k[p|EFpn corresponds with morphisms of the form
b€ B=GuB) ot € B=G,4(B)
where x € k[p]. We notice that composition is characterized by
TFym o yFyn =

when p # q and
xFym o yFyn = xymepm+n

Proof. The derived stack G, being a classical stack, the space of group endomorphisms
on G, is a set. It identifies with the set of polynomials P € k[X] satisfying

P(0) =0

and

PX+Y)=PX)+ P(Y)
the second condition can be checked degreewise, meaning we have to find the elements
x € k such that

(X +Y)" =z X" 4+ 2Y™
elementary computations using the Legendre formula find that x is null when m admits
two disctinct prime divisors and x must satisfy pxr = 0 when m = p” withn > 1. 0O

Remark IV.1.6. In particular, for k£ a torsion-free commutative ring, morphisms of
group schemes of G, — G, are given by multiplication by an element of k. That is

Endgy, (G,) = k

For k a field of characteristic p, the ring of morphisms is given by the
non-commutative algebra k[F] with F' the Frobenius, with the relations F.a = a”.F,
for a € k.

IV.2 (O-modules and quasi-coherent sheaves

Definition IV.2.1. For a derived stack X, we introduce the oo-category of Ox-
modules. We first define the structure stack Ox of X as the stack over the big étale
site over X sending Spec(B) — X to the underlying E-ring 0(B). It is a stack of
E.-rings. Then the category Ox — Mod of Ox-modules is the category of modules over
the commutative ring object in derived stack Ox.

Remark IV.2.2. Intuitively an Ox-module a given by a 6(B)-module for every sim-
plicial commutative algebra B, functorially in B and satisfying descent as a presheaf on
the étale site over X. In this description the full subcategory QCoh(X) C Ox — Mod
consists of Ox-modules where transition maps between modules are equivalences.
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Proposition IV.2.3. The inclusion QCoh(X) C Ox — Mod has a right adjoint, which
we will denote ().

Proof. The source and target categories are both presentable, and the inclusion pre-
serves limits. We conclude using [Lurl7, 5.5.2.9]. O

Proposition IV.2.4 (Functoriality of modules and quasi-coherent sheaves). A mor-
phism of derived stack m : X — Y induces an adjunction between their category of
O-modules :

%*IOy—MOdZOX—MOdZ%*
and between their category of quasi-coherent sheaves :
7™ QCoh(Y) 2 QCoh(X) : .,

We have compatibility between pullbacks and the inclusion of quasi-coherent sheaves
into O-module :

QCoh(Y) —=— QCoh(X)

| |

Oy — Mod —~— Ox — Mod,

which means that the O-module pullback of a quasi-coherent sheaf is quasi-coherent.
However, the analogous statement for pushforwards is incorrect, the adjunctions allow
the calculation of quasi-coherent pushforwards as the composition of O-module pushfor-

ward with the adjoint of the inclusion QCoh(Y) C Oy — Mod, ie

e = () O Ty,

Proof. See |Lurlle, Proposition 2.5.1] . O

Definition IV.2.5. We will use the standard t-structure on quasi-coherent complexes,
see |Lurl8, Remark 6.2.5.8| for details. Let X be a derived stack, a quasi-coherent
complex is said to be connective when its pullback to every affine is connective.

Proposition IV.2.6. Let X a derived stack and F € QCoh(X), the following condi-
tions are equivalent: :

o The quasi-coherent sheaf F is perfect.
e The quasi-coherent sheaf F is dualizable in QCoh(X).

Proof. See |Lurlle, Proposition 2.7.28|. O
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Proposition IV.2.7. Let X be a Deligne-Mumford stack, then :

o The inclusion QCoh(X) C Ox — Mod preserves small colimits.
e QCoh(X) is stable and presentable.
o QCoh(X) is both right and left t-complete, with respect to the standard t-structure.

Proof. See |Lurlle, Proposition 2.3.13, Proposition 2.3.18|. OJ

Remark IV.2.8. Let X is a stack represented as a simplicial scheme Spec(A®) with A
an augmented cosimplicial commutative algebra such that H'(A) = k and k is p-torsion-
free. Proposition B.8 provides with a cofibrant replacement QA such that boundary
maps QA™ — QA™ are flat. Then proceeding as in [MRT20, Notation 1.2.12| and
[Lurl8, §6.2.5] defines a left-complete t-structure on QCoh(X) compatible with the
equivalence
QCoh(X) ~ lim, Modgar

Then

QCoh(X)zg ~ lim, Modg),
and

QCoh(X)<o ~ lim, Modg.

Furthermore A — Mod admits a t-structure and the inclusion
QCoh(A) C A— Mod

identifies QCoh(A) with the left completion of A — Mod with respect to its ¢-tructure.
We will not prove the previous result, the proof in [Lurl8, §6.2.5] should carry out
without difficulty.

IV.3 Construction of derived stacks

Linear stacks

Definition IV.3.1. Let E be a quasi-coherent complex on X, the linear stack associ-
ated to E is the stack over X given by

u: Spec(B) = X — Mapn(B)—mod(u"E, N(B)) € SSet
with NV the normalization functor. It is denoted V(E).

For example, if E is connective, V(E) is simply the relative affine scheme
Specx Symo, (E).

Definition IV.3.2. We define the derived stack G,, associating to a simplicial com-
mutative algebra B the simplicial set of autoequivalences of N(B) :

G (B) = Mapyy (N(B),N(B))

(B)—mod

In fact, G,, is representable by the discrete ring k[X, X '], and is equivalent to the
usual derived stack classifying the group of units of a simplicial algebra : B — B*.
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K(—,n) construction

Definition IV.3.3. When G is a group, we can define the simplicial set E(G, 1) which
m-simplices are (G™*1),, and faces and degeneracies are given by projections and di-
agonals, G acts on the left on F(G,1) and BG = K(G,1) is defined as the quotient
simplicial set E(G,1)/G = (G"),.

This construction generalizes to a simplicial group G where K (G, 1),, = K(G,,1),.
The simplicial set E(G, 1) is simply G"T!

We generalize further to a group in derived stacks G, then BG = K(G,1) and
E(G,1) are defined by functoriality.

Inductively, we define, when G is abelian,
E(G,m) = E(K(G,m—1),1)

and
K(G,m)=K(K(G,m-—1),1)

Proposition 1V.3.4. For G a group in derived stacks, BG is connected and its homo-

topy groups are given by
mi(BG) ~ m_1(Q)

Furthermore, when A is an abelian group in derived stacks, K(A,n) classifies co-
homology of derived stacks and Hom(F, K(A,n)) will be denoted H"(F, A). This con-
struction recovers various cohomology theories, such as sheaf cohomology and singular
cohomology.

Proof. See [TV06]. O

Mapping stack

Definition I'V.3.5. Let X and Y be derived stacks, the mapping stack Map(X,Y) of
morphisms from X to Y is defined as a derived stack by

Map(X,Y): B € SCR— Map(X x Spec(B),Y)

IV.4 Postnikov towers

Definition IV.4.1. The inclusion of n-truncated derived stacks into derived stacks
admits a left adjoint denote t<, and it will be called truncation. We have an induced
tower of morphisms

F— tgn(F) — tSn—l(F) — . — tgo(F)

The induced morphism F' — lim,t<,(F) is not necessarily an equivalence.
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IV.5 Functions on a derived stack

Proposition IV.5.1. Let 7 : X — Y be a morphism of derived stacks. The pushfor-
ward of quasi-coherent sheaves

e : QCoh(X) — QCoh(Y)
18 canonically laz monoidal.
Proof. Its left adjoint 7*, the pullback of quasi-coherent sheaves, is canonically sym-
metric monoidal, see [Lurl7, Corollary 7.3.2.7]. O

Definition IV.5.2. We recall the definition of the E-algebra of functions on a mor-
phism of derived stack 7 : X — Y. Since the structural sheaf O of F'is an E-algebra
over F', meaning an object of C'Alg(QCoh(F)), m.(Or) has a canonical E-algebra
structure, see Proposition IV.5.1. We denote this quasi-coherent algebra Cg_(F') or
simply C'(F) when there is no ambiguity.

The pushforward functor also induces a morphism on [E;-algebras :
E,Alg(QCoh(X)) — E Alg(QCoh(Y))

It sends Ox to an Ej-algebra on Y denoted Cg, (X).

IV.6 Affine stacks

Following [To06], we recall the definition and basic properties of affine stacks.

Definition IV.6.1. Let A a cosimplicial algebra, the affine stack associated to A is the
stack
Spec®(A) : Aff — SSet

sending B to the simplicial set HomcRing, (A4, B.)

We can see Spec®(A) as a derived stack by Kan extension. We define the category
of affine stacks as the essential image of Spec®, we denote it Af fSt.

Definition IV.6.2. The cosimplicial algebra of functions on a stack F'is defined as
CA(F) = Hom(F,,G,)
where we use the set of morphisms from F), to G, seen as presheaves.

Proposition I1V.6.3. The previous two functors give an adjunction
C% : St = coSCR : Spec®

and Spec® is fully faithful.
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Proof. See |To06, Corollary 2.2.3|. O

Proposition IV.6.4. The cosimplicial functor Ca(—) is an exhancement of the E.-
algebra functor Cg_ (=), meaning that Cy__(—) factors as the composition of taking the
normalization 0°™ of the cosimplicial functions Ca(—).

Proposition IV.6.5. The category of affine stacks is stable by small limits in stacks.

Proof. See [To06, Proposition 2.2.7] O

Definition IV.6.6. We say a derived stack is an affine stack if it lives in the essential
image of Spec®. We denote this image Af fSt,.

We define the affinization of a stack F as Spec®(Ca(F)).

Definition I'V.6.7. A morphism of derived stacks X — Y is said to be a relative affine
stack when the pullback functor

sends affine stacks to affine stacks.

Proposition IV.6.8. Let X be a space, ie a simplicial set, its stack affinization is
given by
AffSt(X) = Spec® k™

where kX ~ C*(X) is the cosimplicial algebra of cohomology of X.

Proposition IV.6.9. Let i be a positive integer, the stack K(Gg,n) is an affine stack
and we have
K(Gg,n) =~ Spec™(D(k[n]))

Proof. See [To06, Lemma 2.2.5] O

IV.7 Cotangent complex and deformation theory

Definition IV.7.1. Let X be a derived stack, X admits cotangent complex at z :
SpecA — X if there exists f*Lx € A — Mod representing the functor

HomSpecA/dSt<Spec(A S5 _)7 X)

explicitly,
Homgpecajasi(Spec(A @ M), X) = fib(X(A® M) — X(A))

is given by the fiber over x.
We say X has global cotangent complex if it has a cotangent complex at any point
and for every two points z € X(A) and y € X(B) and v : A — B compatible with x

and y, we have an equivalence
u'r* Ly ~ y*Lx
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Proposition 1V.7.2. When X is a derived Artin stack locally of finite presentation,
its cotangent compler Lx is perfect, see [TV06, Corollary 2.2.5.3]. We denote Tx its

dual in QCoh(X). Then its shifted tangent stacks T X|[—n] = V(ILx[n]) are also derived
Artin stack locally of finite presentation.

Definition IV.7.3. Let X be a derived stack, 7' = Spec(A) a derived affine scheme
and z : T — X a T-point. Let M be an A-module, we write the square zero extension
A @ M and the associated derived affine scheme T[M]. The set of derivations from T'
to M at x is

Defx (T, M) = Mapras:(T[M], X)

Remark IV.7.4. When it exists, the cotangent complex Lx , of X at x represents the
functor Derx (T, —)

Definition IV.7.5. We define the cotangent stack of X as the linear stack 7% X [n] =
V(Lx[—n]), for an integer n.

Definition IV.7.6. Let A be a simplicial algebra over k, M an A-module and
d:A— Ad M[1]
a derivation, we define the square zero extension induced by d denoted A &4 M by

Aps M —2— A
.
A— 35 4 A

where s is the "zero" section. The morphism p : A®; M — A will be called the natural
projection.

Proposition IV.7.7. Let X be a derived stack which has an obstruction theory, see
[TV06, Definition 1.4.2.2]. Let A be a simplicial algebra, M a simplicial A-module,
d € Der(A, M[1]) a deriation with A @&, M the corresponding square zero extension.
We denote

T = Spec(A) — T[M] = Spec(A @y M)

the morphism corresponding to the projection A &g M — A. Let x : T — X be an
A-point.
o There exists a natural obstruction
a(x) € Mapa—nroa(Lix ., M[1])
vanishing if and only if x extends to a morphism ' : T[M] — X.
o [f we assume a(x) = 0, then the space of lifts of x
Mapx jas:(T[M], X)
18 non canonically isomorphic to

MapA—Mad(LX,xa M)
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Proof. See |TV06, Proposition 1.4.2.5]. O

We will need the relative version of the previous proposition, so as to apply obstruc-
tion theory to derived stacks endowed with a grading.

Proposition IV.7.8. Let f : X — Y be a morphism of derived stack which has
obstruction theory. Let A € SCR, M € A— Mod™, d € Der(A, M[1]) a derivation
with A @®q M the corresponding square zero extension. We denote

T = Spec(A) — T[M] = Spec(A @y M)
the morphism corresponding to the projection A ®q M — A. Let x : T — X be a point
in Map(T, X') X srapirimy,yy Map(T,Y). The fiber at x of the morphism
Map(T[M], X) = Map(T, X') X smaprim,yy Map(T,Y)
is denoted L(x).

There is a natural point o(x) € Mapa—nmod(Lix/ve, M[1]) and a natural equivalence

L(ZL’) ~ Qa(x)pM(lpA—Mod(LX/Y,xa M[l])

The tangent bundle formalism

Definition IV.7.9. Following [Lur07], let C be a presentable co-category, the tangent
bundle of C is a functor Tp — C2" which exhibits 7¢ as the stable envelope of cA C,
the evaluation at {1} C Al

We can think of an element of T as a pair (A, M) where A € C and M an infinite
loop space in C.

Proposition IV.7.10. Let A be a simplicial algebra, we denote Stab(SCR,4) the stable
category constructed as the stable enveloppe of SCR4,. The functor sending a non
necessarily connected module M over A to the square zero extension simplicial algebra
A @ M, with its natural augmentation defines an equivalence :

A — Mod = Stab(SCR4)

Proposition IV.7.11. The cotangent complex formalism from [Lur07] defines a func-
tor
SCRAI — TSCR

which 1s tdentifies under the equivalence of the previous proposition with the cotangent
complex formation A — B+ Lp 4.

We deduce by composition the absolute complex functor
SCR — Tscr
which is left adjoint to the forgetful functor Tscr — SCR sending (A, M) to A.

Proof. See [Lur07, Remark 1.2.3]. O

Remark IV.7.12. This description of the cotangent complex makes it easier to un-
derstand and prove the usual formulas of base change for the cotangent complex.
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IV.8 Group actions

Definition IV.8.1. Let GG be a group in derived stacks, the trivial action functor :
dSt — G — dSt

admits a left adjoint denoted (—)g and a right adjoint denoted (—)¢, called (homotopy)
coinvariants and (homotopy) fixed points.

Definition IV.8.2. In the case G = G,,,, G,,, — dSt is the category of graded derived
stacks, then taking fixed points correspond to taking the O-weighted associated derived
stack.

Proposition IV.8.3. Taking fized points (=) of a derived stack endowed with a G
action and taking weight 0 of a graded derived stack preserve small limits.

Proposition IV.8.4. For G a group in derived stacks, we have a natural equivalence :

G — dStk ~ dStk/BG

Proof. See [TV06, Proposition 1.3.5.3]. O

IV.9 Graded and filtered objects

In this section, we review basic definitions and properties of graded and filtered objects
in oo-categories, following [Lurl5, §3.1, §3.2]

Definition IV.9.1. Let C be an co-category, we define the category of graded objects
in C:
CI" == Fun(Z*,C) HC

where Z%*¢ is the discrete 1-category on Z. We also define the category of filtered
objects in C :
Fil(C) = Fun((Z,<),C)

where (Z, <) is the 1-category associated to the usual partial ordered structure on Z.
The inclusion Z%*¢  (Z, <) induces a forgetful functor :

Fil(C) — ¢

Remark IV.9.2. In our definition, the structure morphisms X,, — X, of a filtered

object need not be monomorphisms. However the two notions are shown to be equiva-
lent in [SS13].

Definition IV.9.3. When C is a symmetric monoidal oco-category, C9" and Fil(C) are
both symmetric monoidal oco-category when endowed with the Day product.

42



Definition IV.9.4. The associated graded and underlying object functors are given
by symmetric monoidal functors :

gr: Fil(C) — CY"
and
colim : Fil(C) — C

See [Lurl5| for details on these construction.

We now recall the geometrical interpretation of graded modules and filtered modules.
See [Sim96] and [Moul9] for details.

Proposition IV.9.5. There s an equivalences of stable symmetric monoidal
o0-cateqories :

QCoh(A'/G,,) ~ Fil(Mody,)

and

QCoh(BG,,) ~ Mod]"

when A' and G,,, are the usual additive and multiplicative groups in derived stacks over
k.

Furthermore, pullback along the closed point 0 : BG,, — A'/G,, and the open point
1:%~G,,/G,, = A'/G,, recover respectively the associated graded and the underlying
object constructions.

Proof. See [Moul9, Theorem 1.1, Theorem 4.1] and [MRT20, Theorem 2.2.10]. O

IV.10 Graded stacks

Definition IV.10.1 (Graded derived stack). A graded derived stack is defined as a
derived stack endowed with an action of G,,, a morphism of graded derived stack is
one compatible with the actions. The category of derived affine schemes endowed with
a G,,-action is naturally equivalent to the category of graded simplicial algebras over
k, see [Moul9|]. The category of graded derived stacks is denoted G,,-dSt.

Remark 1V.10.2. A G,,-action on a derived stack X is equivalent to a morphism of
derived stacks Y — BG,, and an identification of Y X gg, * with X, using Proposition
IV.8.4. We call X the total space associated to Y — BG,,.

Theorem IV.10.3. From [Moul9], there is a symmetric monoidal equivalence of cat-
eqgories
Mody ~ QCoh(BG,, x Spec(B))
We will call graded quasi-coherent complex over X an object of either category.

Definition IV.10.4. For E a quasi-coherent complex of X, and n an integer, E((n))
is defined to be the graded quasi-coherent complex with E in pure weight n.
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Definition IV.10.5 (Relative global functions on graded derived stacks). Given a
morphism of graded stacks Y — X, we define graded functions on Y relative to X as

with 7 the canonical morphism [Y/G,,| — [X/G,,].

Definition IV.10.6. We introduce graded O-module function similarly :

Ogr,X(Y) = %*(O[y/@,m]) S CAlg(O[X/G Mod)

m] T

using the pushforward 7. : Oyg,,) — Mod — Oix/g,,) — Mod. It is lax monoidal,
as left adjoint of a symmetric monoidal functor, therefore it induces a canonical mor-
phism on commutative algebras in the respective symmetric monoidal categories. We
deduce that quasi-coherent graded functions are simply O-module graded functions af-
ter applying the left adjoint of the forgetful functor from quasi-coherent complexes to
O-modules.

Definition IV.10.7 (Graded stacks over a base). Let X be a graded derived stack,
the oo-category of graded derived stacks over X is the undercategory G,, —dSt,x, with
the trivial grading on X.

Example IV.10.8. Linear stacks are naturally G,,-graded, we can construct the action
G x V(E) = V(E)

as follows. For a given simplicial commutative k-algebra B, G,,(B) is
Mapy N(B), N(B)), it naturally operates on

(B)fmod(
V(E)(B) = MapN(B)—Mod(Eu N(B))
through the composition map

Mapys)-moa(N(B), N(B)) x Mapn(p)-mod(E, N(B)) = Mapnp)-moa(E, N(B))

Definition IV.10.9. Let X be a graded derived stack, the associated derived stack of
0-weights is defined as the derived stack of fixed points by the action of G,,, we denote
it

X=0 = X

Proposition 1V.10.10. The functor
SCR — SCR
endowing a simplicial algebra with its trivial grading admits a left adjoint, which we

denote (—)°.

Proof. Using the adjoint functor theorem, see [Lur09, Corollary 5.5.2.9]. O

Remark IV.10.11. For a general graded simplicial algebra A, (A)= and A(0) will not
coincide. We will call the former "O-weights" and the latter "naive 0-weights".
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Remark IV.10.12. When A is a discrete commutative algebra, we notice that (A)="
is given by the quotient ring of A(0) where we quotient by elements of the form ab
where a is in weight n > 0 and b in weight —n.

Remark IV.10.13. When A is a graded simplicial algebra, either positively graded or
negatively graded, then (A)=° coincides with A(0).

Remark IV.10.14. The two constructions of O-weights are compatible. Meaning that
for A a graded simplicial algebra, we have a natural identification

(Spec(A))™0 ~ Spec(A™)

We verify it on a test simplicial algebra R

(Spec(A)™(R) = Mapg,, (Spec(R), Spec(A)) ~ Mapg, (A, R) ~ Map(A=°, R)

IV.11 Line bundles and graded modules

In this section we discuss the relationship between G,,-torsors and invertible modules.

Definition IV.11.1. If B is a simplicial k-algebra, a morphism Spec(B) — BG,, is
the data of an invertible B-module, we will denote both the morphism and the module
by L. There is an ambiguity in the choice, the invertible module associated to the
morphism could be defined to be £V, we choose £ in such a way that the total space
of the G,,-torsor associated to Spec(B) — BG,, is Spec((SympLY)[(LY)7']), it is the
linear stack associated to £Y where we removed the zero section, as a B-module. The
function algebra (SympLY)[(LY)™"] is simply €D,,.,(L")®". With this convention L is
functorial in the morphism Spec(B) — BG,,.

Remark IV.11.2. We can try and understand [V(E)/G,,| over BG,, x X through
its funtor of points. A morphism Y = Spec(B) — [V(E)/G,,] over BG,, x X is the
data of a morphism Y — BG,, x X, ie a G,,-torsor Y — Y with a map Y — X,
and a G,,-equivariant morphism Y — V(F) over X. The torsor has total space Y =
Spec((SympLY)[(LY)™Y]), therefore the G,,-equivariant map ¥ — V(E) corresponds
to a morphism of graded N (B)-modules u*E((1)) — (SympLY)[(L")™!] ie a morphism
of N(B)-module u*E — LY, with u* the pullback morphism induced by the morphism
u : A — B associated with Y — X. This is equivalent to having a morphism of
N(B)-modules £ ® u*E — N(B), which is a B-point of V(£ ® u*E).

Remark TV.11.3. We deduce an equivalence of B-modules
\V(E)/Gp] Xpg,,xx Spec(B) ~ V(L @ u*E).

The equivalence between graded complexes and quasi-coherent modules on BG,, is
given informally by sending a graded complex €, E; to the O-module stack

Spec(B) 5 BG,, — EBEZ ® LY

45



Therefore, for any integer k, E((k)) is the O-module

Spec(B) B, BG x X — L% @ u*E

IV.12 The graded circle
Definition IV.12.1. Let A := Z[%}] C Q[z], we define Ker the functor represented by
A pulled back to k.

Proposition IV.12.2. The presheaf Ker coincides with the intersection of the kernels
of the Frobenius morphisms on big Witt vectors

Fp : Wbig — Wbig

therefore it has a natural abelian group structure. See [Haz08] and [Rabl4] for the
construction of big Witt vectors.

Definition IV.12.3. We define the graded circle S;r as
S, = BKer

Proposition IV.12.4. Recalling from [MRT20, Proposition 3.2.7], the stacks Sglr and
BSng are affine stacks.

Lemma IV.12.5. Let M be D, 5o k[—2m]((m)) € Mod®, the space of Eo-algebra
structures on M compatible with the grading is equivalent to the set of classical com-
mutative graded algebra structures on its cohomology H*(M).

Proof. We follow the proof of [MRT20, Lemma 3.4.11|, the space of E-algebra struc-
tures considered is given by the mapping space of oo-operads :

Mapo,(EZ, Endgr(]\/[)@))

where E is the E,, operad and End,, (M)® is the endomorphism operad of M in the
category of graded modules.

The space of n-ary operations of End,, (M)® is given by Mapproger (M®™, M).
We compute

ME" = (EB k[—Qm}((m))> = P kl-2m]((m))*m

m>0 m>0

with ¢, = (";’ffl) is the cardinal of {(my, ma, ...,m,) € N*, 3"  m; = m}, since the

differential is zero, Mappsoqsr (M®™, M) is discrete.

We deduce that the space Mapo,(EZ, End,.(M)®) is discrete.
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Since H* is lax monoidal, we get a map :
Mapo,(EE, Endy,(M)®) = Mapo,(ES, Endg, o(H*(M))®)

where Endg, (H*(M))®) is the classical operad of graded endomorphisms on M. This
map is an equivalence of spaces. O

Corollary IV.12.6. The graded E,-algebra k[u], with u in degree 2 and weight 1, admits
a unique B -algebra structure.

Proposition IV.12.7. The cosimplicial functions of BS;T are given by
Ca(BS],) ~ k[u]

and the equivalence is compatible with the augmentation, given by BSglr — x. Here k[u]
denoted the denormalization of the free commutative differential graded algebra on one
generator in degree 2 and weight 1. The identification is compatible with gradings.

Proof. We start by the construction of a morphism k[u] — Ca(BS,,).

Since

H*(BS,,) ~ H*(Tot(k — kln] = k[n]®*...))

the element 7 defines an element u € HQ(BSQIT) in weight 1. We deduce a morphism
of E;-algebra kfu] — Cg, (BS,,) as k[u] is the free Ei-algebra on k[—2]. Now since the
E;-algebra klu| admits a unique E.-algebra structure, from Corollary IV.12.6, we get
a morphism of E-algebra

k[u] = Cg..(BS,,)

which is an equivalence after taking cohomology, therefore it is an equivalence. We
write it as

¢+ 0°" (k[u]) = 0°"(Ca(BS,,))

Now we prove it is an equivalence, following the proof of [MRT20, Theorem 3.4.17],
we apply the double conerve functor to ¢ :

coN?(6°"(k[u])) ~ CON2(96m(CA(BSglr)))

which is a morphism of bisimplicial E..-algebra. By definition Sglr = BKer, therefore
we deduce an equivalence

coN?(0°"(Ca(BS,,))) =~ 0“"(Ca(Ker))®®

The stack Ker being a classical affine scheme, 6°"(Cx(Ker))*® is a bisimplicial
object in discrete E, algebras. As 0" : coSCR — E,, — Alg restricts to an equivalence
on discrete objects, the equivalence

0°"(coN?(k[u))) ~ 6<™(Ca(Ker))*®
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lifts uniquely to an equivalence of bisimplicial cosimplicial algebras
coN?(k[u]) ~ Ca(Ker)*®
Now totalization of the bisimplicial objects gives the required equivalence of cosim-

plicial algebras :
klu] ~ Ca(BS,,)

Corollary 1V.12.8. The affine stack BS;T s given by
1 A
BS,, =~ Spec™(klu])
where the identification is compatible with augmentations and gradings.

Proposition IV.12.9. There is an equivalence of symmetric monoidal categories com-
patible with grading, ie which commutes with the forgetful functors to graded complezes

€ — Modj, ~ Rep(S;T) = QCOh(BSglr>

Proof. See [MRT20, Proposition 4.2.3]. O

Definition IV.12.10. We define the category of graded mixed derived stacks as the
category of S;,r—equivariant graded stacks

€ — dSt9 == S} — dSto"

Remark IV.12.11. Seeing S, as a derived stack with a G,,-action, it admits a canon-

ical morphism
Sy — BGy,

which has as a total space the semi-direct product
: 1
H =Gy XS,

Therefore we can see a graded mixed structure on a derived stack as a G,, action and
an action of Sj. which are compatible. Meaning that we have an identification

e —dSt" ~H —dSt

Similarly QCoh(BS,,) is defined with S}, considered as a element of dSt9", that is
QCoh(BS,,) is implicitly defined as QCoh(BH).

V Graded function on linear stacks

This section is devoted to the computation of 1-weighted graded functions on a linear
stack. This section is available online at [Mon21].
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V.1 Adjoint of the linear stack functor

Proposition V.1.1. The functor
V: QCoh(X)? = G,, — dSt)x

has a left adjoint given by Oy (—)(1).

Proof. Let us consider the two functors
Mame,dSt/X(—,V(E)), MCLpQCOh(X)(E, Ogr(—)(l)) - G, — dSt?ﬁ( )

landing in the category of spaces. Both functors send all small colimits to limits and
are canonically identified on the subcategory of G,,-equivariant derived stack of the
form Spec(B) x G,, with G,,, acting by multiplication on the right side : any G,,-stack
Y can be recovered as a colimit of objects of the form Y x G,, with the action being
multiplication on the right side since Y is canonically the colimit of a diagram on BG,,
sending the point to Y x G,, and sending elements of (,, to their diagonal action on
Y x G,,. Therefore the two functors are equivalent. The equivalence being functorial
in £/, we deduce the adjunction.

O

Remark V.1.2. In the adjunction above, if we restrict to G,,-equivariant derived stack
of the form Spec(B) x G,, with G,,, acting by multiplication on the right side, we deduce
another adjunction :

Mapdgt(Y, V(E)) ~ MapQCOh(X) (E, O(Y))

V.2 The equivalence

Construction V.2.1. We now construct a natural arrow E((1)) — O, (V(E)) in
QCoh([X/G,,]), ie a map of graded complexes on X a derived stack. By adjunction, it
just means we have to construct a map of graded O-modules E((1)) — Oy 0(V(E)).
For the construction, we go back and forth between quasi-coherent complexes and O-
modules, exploiting the facts that quasi-coherent complexes have better categorical
properties and O-modules are more computable.

We assume E to be cofibrant, we take B a simplicial commutative k-algebra and u
a morphism from Spec(B) to BG,, x X. We want to construct a map

E((1D))(B)~Lou'E = Oy4o(V(E))(B).

However, using Remark IV.11.3, we have :

Ogro(V(E)))(B) ~ Oo([V(E)/Gm]| X pg,,xx Spec(B)) =~ Oo(V(L @ u"E)).

49



Therefore we are reduced to constructing a functorial map £ ® u*E — Op(V(L ®
u*E)). By the adjunction property of quasi-coherent sheaves, it is equivalent to con-
structing a functorial map

LRuE—OV(LRuE)).

We can use the unit of the adjunction in Remark V.1.2 to construct this map. From
this map we deduce in weight 1 a map :

E — O (V(E)))(1)
Proposition V.2.2. If E is connective, the natural map constructed above
E — O (V(E)))(1)
18 an equivalence
Proof. Since E is connective, V(FE) is simply the relative affine scheme

Specx Symo, (E). The grading corresponds to having weight p of Syme, (E) to be
Symyg  (E). The morphism

E((1)) = Ogr(Specx Symoy (E((1)))) = Symoy (E((1)))

corresponds to the inclusion of F in weight 1. Therefore it is an equivalence when
restricting to weight 1.

O

Theorem V.2.3. Let X be a derived affine scheme, for E € QCoh™(X), ie a bounded
above complex over X, the natural map constructed above

E— Og(V(E))(1)
1$ an equivalence.
Proof. Let us proceed by induction on the Tor amplitude of £. Let E be a complex of

Tor amplitude in | — 0o, b], b a positive integer. The case b = 0 has already been dealt
with, so we assume b > 0.

We know, as X is assumed to be affine, there is a non canonical triangle
0= V[-b—>FE—=FE =0

with V' of tor amplitude 0, ie a classical vector bundle on X, and E’ concentrated of
Tor amplitude in | — 0o, b— 1]. To construct E’, we can take a model of E concentrated
in degree smaller than b and cellular as an N(A)-module, then define E’ as its naive
truncation in degree smaller than b — 1. We deduce the morphism £ — E’.

Let us introduce the notation R denoting O, (V(—))(1). By naturality of the con-
struction above, we have the following commutative diagram
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E ———— Tot(coNo(E — E'))

| !

R(E) —— Tot(R(coN,(E — E')))

with coN the conerve construction and T'ot the totalization of a cosimplicial object.
We will show these four maps are all equivalences.

The top arrow is an equivalence as F and E’ live in the stable category of quasi-
coherent sheaves on X, see |Lurl7, Proposition 1.2.4.13].

We now show that the right arrow is an equivalence, in fact coN,(E — E') —
R(coN,(E — E')) is a levelwise equivalence. We compule the conerve in the following
lemma :

Lemma V.2.4. For any natural integer n, we have a canonical equivalence

coN,(E — E') ~ E' ® V[-b+ 1]*"
Proof. The computation is standard, we proceed by induction on the degree n, in zero
degree it is obvious. Now E'@® g E’ has a canonical split projection to E’, its kernel is the

fiber of E' — K, which is V[—b]. Therefore E' &g E' is identified with £’ & V[—b+ 1].
The general case follows. [

We are reduced to showing that the natural map
EF' & V[-b+1]"" - R(E' & V[-b+ 1]%")

is an equivalence. Since E’ and V[—b+ 1] are in Tor amplitude in | — oo, b— 1], it follows
from the induction hypothesis.

We now show the bottom arrow is an equivalence. We will use a lemma to compute

V(E) :
Lemma V.2.5. V(E') — V(E) is an epimorphism of derived stacks.

Proof. Let us fix B is a simplicial commutative k-algebra and v a B-point of X. We
want to show that V(E')(B) — V(E)(B) is surjective after applying my. Let us fix
a e V(E)(B)ie a:u'E — N(B) a morphism of B-module.

Since there is an exact triangle
0—=V[-b]—>FE—E —0
therefore an exact triangle

0= u'V[-b > u'E—=uE —0

o1



we deduce that a lifts to u*E’ — N(B) if and only if composition u*V[-b] — N(B)
is zero. Since u*V[—0b] is strictly coconnective and u* N (B) is connective, the lift exists.

This concludes that V(E') — V(F) is an epimorphism of presheaves, hence is an
epimorphism of derived stacks.

OJ

Remark V.2.6. The proof of the above gives a slightly stronger result, indeed we have
shown that the morphism
V(E") — V(F)

is a epimorphism of functors.

Using this lemma and the connections between effective epimorphisms in an co-topos
and simplicial resolutions of [Lur09, Corollary 6.2.3.5], we have an equivalence

IN(V(E") = V(E))| = V(E)

with | — | the geometric realization. N is the nerve construction.

Since V and Oy, send colimits to limits, between their categories of definition, we
deduce
O, (V(E)) = Tot(0,.(V(coN(E — E'))))

We can then apply the weight 1 functor (—)(1), which commutes with limits since
limits can be computed levelwise for graded objects. Therefore

R(E) = Tot(R(coN.(E — E'))).

We conclude that £ — R(F) is an equivalence.
0

Corollary V.2.7. The functor V : QCoh(X)® — G,, — dSt,x is fully faithful when
restricted to QCoh™ (X).

Remark V.2.8. These claims are still correct for X a general derived stack. We can
check it using a descent argument.

V.3 General weights

Proposition V.3.1. If k is a Q-algebra and E is a perfect complex on X, Oy (V(E))(p)
18 canonically identified with Symf]f:w(E), the monad here Symg__ is the one associated
to the formation of free B -k-algebras, or equivalently commutative differential algebras.
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Before the proof of the proposition, we will establish a preliminary lemma.

Lemma V.3.2. If k is a Q-algebra, E s perfect complex on X and E°® is a cosimplicial
object in perfect compleres on X. An equivalence E = Tot(E®) induces a canonical
map SymP(E) — Tot(SymP(E*®)), which is an equivalence. Therefore Tot(SymP(E®))
18 perfect.

Proof. Starting from the equivalence E — Tot(E*®), we deduce by taking duals an
equivalence of perfect complexes :

(E*)"] = EY

since dualization induces an equivalence of co-category on perfect complexes. Knowing
SymP commutes with sifted colimits, we apply it on both sides

[SymP((E*)")] = Sym”(E").

We can then dualize again and use the fact that Sym? and dualization commute
since we are in zero characteristic.

SymP(E) = Tot(Sym?(E*)).
And it concludes the proof. O

Proof. The proof of the proposition follows the same structure as the main theorem.

The canonical map
E((1)) = O, (V(E))

gives by adjunction a morphism of E-algebras over X :
Sym(E((1))) = Ogr(V(E))

which is in degree p :
SymP(E) — O (V(E))(p).

We obtain a commutative diagram

SymPE —— Tot(SymP(coNe(E — E')))

| |

R,(E) —— Tot(R,(coN,(E — E')))
with R, = O, (V(=))(p)

The right arrow is similarly shown to be an equivalence by induction and the bottom
one is an equivalence by the same reasoning above.
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We now need to show the top arrow is an equivalence. Using the previous lemma
with
E* = coN,(E — E')

concludes the proof.
O

Remark V.3.3. In general characteristic, and general weight, O, (V(E))(p) seems to
correspond to Sym/,(E), the weight p part of the symmetric algebra over a monad
on complexes generalizing simplicial algebras to non-necessarily connective complexes.
This monad is currently being investigated by Bhatt-Mathew, see [Rak20|. Hopefully,
this connection will be made explicit in a following paper.

Remark V.3.4. We provide an example of a situation where functions on a linear stack
are not easily expressed in terms of the complex of sheaves. Working over a field of
characteristic zero, we can define a quasi-coherent sheaf on the point by E = k[2]®k[—2].
Then Sym(E) ~ Sym(k[2]) ® Sym(k[—2]) is a free commutative differential graded k-
algebra on two generators, one of degree 2, the other of degree —2, the differential is
identically zero.

On the other hand O(V(FE)) = H*(K(G,,2),O[u]) and it identifies with the ring
k[u][[v]] with v a generator of H?*(K(G,,2),0) : u is in degree —2 and v is a degree
2. In particular, in degree 0, we get for Sym(FE) an infinite product [ [ & generated by
the elements of the form »"v". Similarly, in degree 0, O(V(F)) only gives a direct sum
@Dy k, also generated by the elements u"v". Intuitively, the connective part of £ tends
to give a contribution by a free algebra (polynomial algebras) and the coconnective part
of E gives a contribution by a completed free algebra (power series algebras).

VI Overview of de Rham and crystalline cohomology

VI.1 Crystalline cohomology

We review the theory of classical crystalline cohomology, following [Ber74|, [CL91]| and
[LZ03]. For results on comparisions between de Rham and crystalline cohomology, see
[BDJ11] and [Mon21b].

Crystalline cohomology was motivated to fill a gap arising from [l-adic cohomology
: [-adic cohomology for schemes over a field of characteristic p is a well-behaved Weil
cohomology theory under the assumption that [ # p. However it is badly behaved when
[ = p. Crystalline cohomology was constructed to give a Weil cohomology theory in
the case | = p. Serre notices in [Ser58] that there is no Weil cohomology theory with
coefficients in Q for schemes over a field of characteristic p. This motivates the use
of Witt vectors, which give the appropriate ring of coefficients, being both a ring of
characteristic zero and having a residue field of characteristic p.
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Definition VI.1.1. For X a classical scheme over a F,-algebra k, one defines a crys-
talline site relative to W,,, the ring of Witt vector of length n on k, and a structural
sheaf Ox,w, ) which defines cohomology groups X/W,).

crys(

Crystalline cohomology is then the limit on n

(X/W) = lim H (X/W,)

crys

Remark VI.1.2. On Witt vectors of length 1, ie W = k, we recover De Rham coho-
mology, therefore this defines a canonical morphism

X/W) = Hyp(X/k)

crys(

Proposition VI.1.3. Crystalline cohomology is a Weil theory for smooth projective
schemes over a perfect field of characteristic p.

Proof. See |Ber74|. O

VI.2 De Rham-Witt complex

This section is devoted to reviewing the de Rham-Witt complex, as developed in [T1179].
The motivation for defining the de Rham-Witt complex is twofold :

e Giving an explicit tool to compute crystalline cohomology closer to the definition
of de Rham cohomology.

e Comparing crystalline cohomology to other p-adic cohomology theories, étale or
de Rham cohomology, and studying other structures, such as the Hodge filtration.

Construction VI.2.1. Let X be a scheme over [F,, the de Rham-Witt pro-complex
W.Q% is a projective system (W, Q%) of coconnective commutative differential graded
algebras such that

W,0% — W,0x
endowed with an additive morphism V : W, Q% — W,,,1Q% such that

V(zdy) = VadVy and (d[z]))Vy = V([z]" d[z]y)
There is a unique initial complex with theses properties and W, 2% is a quotient of

Qw, x by the required relations, it is a W, (k)-algébre, W1Q% is simply the de Rham
complex Q%.

We define WQ% = @WnQ’X, it is a p-torsion free commutative differential graded
W (k)-algebra.

We recover the truncated de Rham-Witt complex W, ()x by a quotient :
Wy = WQ / (V"W QY 4+ dV"WOLT)
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Since X is assumed to be smooth, there is a unique commutative differential graded
algebra morphism F': W, Q% — W,Q% such that

FdV = d and F(d[z]) = [z]"d[]

Proposition VI1.2.2. A few properties of the de Rham-Witt vectors and its structure
maps
Vi W,0% = W, 0%

F W, Q% — W, 0%
are given by :

o W,0% is given by W,Ox
o I andV are additive.

e I coincides in degree O with the Frobenius morphism and the Verschiebung map
on Witt vectors.

e FV=VF=p

o FdV =d

o dF = pFd

o Fdlz] = [27"d[z] for x € O
o Flay) =y

o 2Vy=VF(xy)

o V(zdy) =V(x)dV(y)

Remark VI1.2.3. The endomorphism deduced functorially by the Frobenius map of X
is on W, given by p'F.

Theorem VI1.2.4. There is a canonical isomorphism compatible with the Frobenius
action

between crystalline cohomology and the hypercohomology of the de Rham-Witt complex
sheaf canonically defined.

Theorem VI1.2.5. Furthermore, there is even a more structured resull : there is an
equivalence of W, (k)-chain complexes on X

where u is the forgetful functor from sheaves on the crystalline site of X to sheaves on
the Zariski site of X. We have used the notation D(X, W, (k)) to denote the derived
category of W, (k)-modules on X.
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V1.3 De Rham Witt from Bhatt and Lurie

In this section, we recall the main notions and results of [BLM22|.

Definition VI.3.1. A Dieudonné complex (M,d, F') is a cochain complex of abelian
groups (M, d) and F' a morphism of graded abelian groups F': M — M such that

dF = pFd

The 1-category of Dieudonné complexes is denoted DC.

Definition VI1.3.2. Let (M,d, F) be a Dieudonné complex, we define a Dieudonné
sub-complex of M denoted (1,M) as follows

(n,M)" = {x € p"M : dx € p"T' M" "}

Definition VI.3.3. Let (M, d) be a p-torsion-free complex, the Frobenius morphism
F induces a morphism of abelian groups

ap: M™ = (n,M)" ={z € p"M : dzx € p" "' M"}
The complex M is said to be saturated when «,, is an isomorphism for all n. This

defines the sub-1-category of saturated Dieudonné complexes DC,,, C DC.

Definition VI1.3.4. Let M be a saturated Dieudonné complex, for every x € M, there
is a unique V(x) such that F'V(x) = px. This defines an additive morphism

VeM-—>M

Proposition VI1.3.5. (See [BLM22, Proposition 2.5.1]) The inclusion of 1-categories
DC,,; C DC admits a left adjoint, called saturation. It is denoted Sat.

Remark VI.3.6. This saturation is constructed as the colimit of the diagram
M — n,M — 77£M--~

Definition VI.3.7. For M a saturated Dieudonné complex, we define W,.(M) as the
quotient complex of M by the subcomplex Im (V") + Im(dV").

The natural morphisms W, 1(M) — W, (M) defines a diagram, which admits a
limit called completion of M. We denote it W(M).

Remark VI.3.8. The maps F' and V naturally extend to the completion of M.
We have a canonical map given by the projection : py : M — W(M).

Definition VI.3.9. The Dieudonné complex M is said to be strict when it is saturated
and pys is an isomorphism.

This defines a sub-1-category DC,;,. C DC,g.
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Proposition VI1.3.10. (See [BLM22, Proposition 2.7.8]/) The inclusion
DC,, C DC,, admits a left adjoint given by WW.

Proposition VI.3.11. (See [BLM22, Notation 2.8.4]) The inclusion DCy, C DC
admits a left adjoint given by WSat.

Definition VI.3.12. A Dieudonné algebra (A, d, F') is given by (A, d) a commutative
differential graded algebra and F': A — A is a morphism of graded rings such that

e Forx € A, dF (z) = pF(dx).
e A, =0 forn <O0.

e [’z = 2P (mod p), for x € A°.

Morphisms between Dieudonné algebras are required to be ring morphisms compati-
ble with differentials and Frobenius structures. This defines the 1-category of Dieudonné
algebras DA. Forgetting the multiplication defines the forgetful functor DA — DC.

Proposition V1.3.13. (See [BLM22, Proposition 3.2.1]) Let R a p-torsion-free com-
mutative ring and ¢ : R — R a classical Frobenius lift. Then there is a unique ring
morphism F : Q% — Q% such that

o F(x)=¢(x) forz € R=0Q%.

o F(dx) = 2P tdx + d(W) for x € R.

Furthermore, (%,d, F') is a Dieudonné algébra.

Proposition V1.3.14. (See [BLM22, Proposition 3.2.3]) Let R a p-torsion-free com-
mutative ring and ¢ : R — R a classical Frobenius lift. For A a p-torsion-free
Dieudonné algebra, the construction given before defines a functorial bijection

HOmDA(Q;Za A) l> HomCRingF"(R7 AO)

where Home gingr- (R, AY) is the set of morphisms R — AY compatible with Frobenius
structures.

Definition VI1.3.15. A Dieudonné algebra is said to be saturated is it is as a Dieudonné
complex. This defines a sub-1-category DA, C DA.

Proposition V1.3.16. (See [BLM22, Proposition 3.4.3]) The inclusion DA, C DA
admits a left adjoint given by Sat(A) endowed with the canonical Dieudonné algebra
structure.

Proposition VI1.3.17. (See [BLM22, Proposition 3.5.5]) The constructions of V' and
W estend naturally to Dieudonné algebras. For A a Dieudonné algebra, W(A) is a
saturated Dieudonné algebra.
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Definition VI.3.18. A saturated Dieudonné algebra A is said to be strict if it is as a
Dieudonné complex. This defines a sub-1-category DA, C DA, 4.

Proposition VI.3.19. (See [BLM22,  Proposition 3.5.9]) The inclusion
DA, C DA, admits a left adjoint given by W.

Proposition VI.3.20. (See [BLM22, Proposition 3.5.10]) The inclusion DAy, C DA
admits a left adjoint given by WSat.

Proposition VI.3.21. (See [BLMZ22, Proposition 4.1.4]) The functor B € DAy, +—
B°/VBY e CRingr, admits a left adjoint denoted by R — WQ%, and called the saturated
de Rham-Witt complex of R. The complex can be constructed as

Definition VI.3.22. Let R be a commutative F,-algebra. An R-framed V-pro-complex

is given by

e A chain of commutative differential graded algebras
o= Ad(3) = Ad(2) = Al(1) — Al(0)
with the limit denoted Aq(c0).
e A collection of maps V' : A(r) — A(r + 1) of graded abelian groups.

e A ring morphism 5 : W(R) — Ap(o0), where we denote [, the composition

W(R) 2 Ag(00) = Ag(r)
such that

e A(r) =0 when r=0 and A;(r) = 0 when i < 0.

e I commutes with the restriction maps. Therefore V' induces a morphism on A(co)
denoted V.

B W(R) — Ap(o0) is compatible with V.

Vi A(r) — A(r + 1) satisfies V(zdy) = V(z)dV (y).

For A € R and x € A(r), we have

(Va)dBea[N = V(@ (B, [\~ dB,[N])

A morphism of R-framed V-pro-complexes is a morphism of diagrams of commuta-
tive differential graded algebras compatible with restriction, Verschiebung and S maps.

This defines a 1-category V PCj.
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Proposition VI.3.23. (See [BLMZ22, Proposition 4.4.4]) Let R be a commutative F,-
algebra, the 1-category V PCr has an initial object. We denote this object (W,2Y%) and
the limit of the induced tower (WQ3,), we call it the classical de Rham-Witt complex of
R.

Remark VI.3.24. This construction gives the de Rham-Witt complex as defined in
[I1179]. See [BLM22, Warning 4.4.8| for details.

Theorem VI1.3.25. (See [BLM22, Proposition 4.4.12]) There is a functorial morphism
of commutative differential graded algebra

was, — WS,

which is an isomorphism when R is a Noetherian Fy-algebra. The left hand side it the
classical de Rham-Witl complex and the right hand side is the de Rham-Witt complex
defined by saturation and completion.

VII Graded loopspaces in mixed characteristics

In this section we will take k& = Z(p)

VII.1 Frobenius lift structures
VII.1.1 Classical and derived Frobenius lifts

Definition VII.1.1. Let A be a discrete commutative ring, a classical Frobenius lift
on A is given by a ring endomorphism F': A — A such that F' induces the Frobenius
morphism on A/p, ie F(a) — a? is p-divisible for any a € A.

Definition VII.1.2. We define the category of derived stacks with a derived, or ho-
motopy, Frobenius lift dSt'™ as the pullback of categories

dSteTLdO X dstfrz’do dStIFp

where the functor dStp, — dStE"dO is the canonical functor adjoining the Frobenius
endomorphism to a derived stack on F,. Similarly, we define the category of graded de-
rived stacks endowed with a derived Frobenius lift dSt9f" as the pullback of categories

dStg’f'geTLdO X dSt%’;do dStIFp

where the forgetful functor dStoende — dSte”dO is given by taking 0 weights, that is
Gyn-fixed points by Definition IV.10.9 and takmg the fiber on F,.

We will give a more general definition of derived Frobenius lifts.
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Definition VII.1.3 (Homotopy coherent Frobenius lift). Let C a category endowed
with a functor C — dSthZd". We define the category of Frobenius lifts on C as

CF’I’ = C det]%;zdo dSt]Fp

where the dStp, — dStﬁzdo is the canonical functor adjoining the Frobenius endomor-
phism to a derived stack on IF,.

Example VII.1.4. We give a series of examples for categories of "algebra-type
objects"

o with C = C'Ringz,, , we define the category of Frobenius lifts on C'Ringy, , :
C’Ringg(:)) = (C’Ring%?ioﬁp)ﬂ’o”

The canonical morphism CRinngd)o’Op — dSthZdo is the derived affine functor
p
modulo p.

o with C = SCRgz,,, we define the category of Frobenius lifts on SCRz, :
ro. endo,o 7,0,
SCRQ(M = (SCRy}" PyErop

The canonical morphism SCRZ:Z)O’OP — dSt§*® is the derived affine functor mod-
ulo p.

e with C = SCR%p), we define the category of Frobenius lifts on SC’R%M :

SCRgr,Fr . (SCRgT,endo,op>Fr,op
L) - Z(p)
The canonical morphism SC’R%’G)”dO’Op — dStg"™ is the derived affine functor

modulo p after taking the WeightPO componant defined by Proposition IV.10.10.
See Remark IV.10.14 for details.

Remark VII.1.5. Our definition requires a derived Frobenius lift to be homotopy
equivalent on [F, with the canonical Frobenius only on 0-weights, we do not require an
homotopy to 0 on the other weights.

Proposition VIL.1.6. Let A be a p-torsion-free commutative algebra on Zy,, the space

of Frobenius lifts on A s discrete and in bijection with the set of classical Frobenius
lifts on A
{p: A= A:¢,: A/p— A/p=Fry}

Proof. Given an endomorphism of A, the data of being a derived Frobenius lift is a
path in
Mapscr,, (A Q" F,, AQ"F,)

between the induced endomorphism and the canonical Frobenius. As A is p-torsion-free
we have

AT, ~ A/p
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which is a discrete commutative IF,, algebra. Now, we deduce

Mapscr,, (A Q" Fy, AQ"F,) ~ Mapscrs, (A/p, A/p) ~ Homcgings, (A/p, A/p)
which is a discrete space. Therefore the choice of a homotopy coherent Frobenius lift
is equivalent to the choice of a classical Frobenius lift. O

Definition VII.1.7. Let A be a p-torsion-free commutative algebra on Z,, let M
and N be A-module. An (A, F)-linear map is a morphism of Z,)-modules M — Np
where Np is the Zg)-module on N endowed with the A-module structure induced by
composition by F.

Proposition VII.1.8. Let A be a p-torsion-free commutative algebra on Zgy, M a
projective A-module of finite type. The space of Frobenius lifts on the graded simplicial
algebra Syma(M(n)), with M in weight 1 and n > 0 a positive integer, is discrete and
is made up by pairs (F, ¢) with F a Frobenius lift of A and ¢ : M — M an (A, F)-linear
map. Therefore once the Frobenius F is fized, ¢ is the data of a classical (A, F')-module
structure on the A-module M.

Proof. Taking weight 0, a derived Frobenius lift on Sym (M [n]) induces a derived
Frobenius lift on A. From the previous proposition, a Frobenius structure on A is a
classical Frobenius lift : we denote it F.

We start by considering the space of choices of endomorphisms on Sym4(Mn])
compatible with F', which are morphisms of simplicial A-algebras from Sym (M [n]) to
Syma(M[n]) with the former endowed with the canonical A-algebra structure and the
latter with the A-algebra structure induced by F'.

Endscper (Syma(M(n])) = Mapa_nroasr (M[n], Syma(Mn])r)
~ ]\/[apA,Mod(]\/[[n], Mp[n])
~ MapA_MOd(M, MF)

where Mg is M endowed by the A-module structure induced by F.

Now the weight 0 part of Sym4(M]1]) is simply A. Therefore the homotopy with
the canonical Frobenius is uniquely determined by F'. 0

Proposition VII.1.9. The space of derived Frobenius lifts on F, is empty.

Before we move on to the proof of the proposition, we will need a lemma.

Lemma VII.1.10. Let A be a discrete commutative algebra and a € A, there exists a
simplicial algebra K (A, a) with the following universal property : let B be a simplicial
A-algebra, there is a functorial equivalence

MapA_SCR(K(A, a), B) — Qa,oB
where the space of paths ,0B from a to 0 in B is defined as the fiber of
BAl evp,evi B > B

over (a,0).
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Proof. The category SCR is presentable and the functor
Be SCR — Qa,OB

preserves limits and is accessible, therefore using |Lur07, Proposition 5.5.2.7|, it is
representable. 0

Remark VIIL.1.11. We can explicitly construct K (A, a) as Sym(S') where Syma(—)
is the free simplicial A-algebra on a simplcial set and S' = A'/OA! is the simplicial
circle.

Proof of the proposition. We first compute the mapping space Mapscr(Fp, F,). We
know

MapSCRz(p) (va Fp) = Homcping (va Fp)

is contractible. The only endomorphism of F,, as a simplicial algebra over Z,) is the
identity up to contractible choice. We take

K(Z(m,]))

as a cofibrant model of F, and moding out by p :
K(Z), p) Rz, Fp K(Fp,0) ~ Fyle]

is the free simplicial algebra on one generator in degree 1, as the construction K is
stable under base change. The identity induces in homology the identity morphism,
however, the Frobenius on FF,[¢] sends the degree 1 generator € to €? = 0 in homology.
Therefore the identity does not have a derived Frobenius lift structure.

O

Lemma VII.1.12. The forgetful functor U : dSt9"Fm" — dSt9" preserves the classify-
ing space construction B.

Proof. For a graded Frobenius derived stack in groups G, BG is explicitly given as
a geometric realization of graded derived stacks of the form G". We write U as a
composition

dStF™ — dSteme — dSt

the first one is the projection of a fiber product of categories, therefore it preserves small
limits. The second map also preserves small limits since in a category of presheaves, they
are computed pointwise. Hence U preserves finite products. The same decomposition
show that U preserves geometric realizations, which concludes the proof, see the proof
of Proposition VII.2.21 for a similar argument. 0J

Remark VII.1.13. BG,, is the final element in dSt9" and it admits a unique derived
Frobenius lift structure, therefore it is also the final element in dSt9"F.
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Remark VII.1.14. By definition
SCRI™ .= dAf fFmor
We notice there is an equivalence of categories
SCH”:SCWW%QQW@SG&

compatible with the functor

Spec: SCR = dAffoP

VII.1.2 Derived Witt functor

Proposition VII.1.15. The forgetful functor

U:SCR'" — SCR

admits a right adjoint adjoint, which we call the derived Witt ring functor.

Proof. From the description of SCR!" as the fiber product

SCR'™ = SCR™® X g penao SCR,

the forgetful functor
U:SCR"™ — SCR

commutes with colimits. We conclude using the adjoint functor theorem [Lur09, Corol-
lary 5.5.2.9]. O

Remark VII.1.16. When A is discrete, W (A) is the discrete commutative ring of Witt
vectors. See |Joy85| for details on the classical adjunctions. We can see the simplicial
algebra W (A) is discrete by using the following identifications

Mapscr(R,W(A)) = Mapscre-(L(R), W(A)) = Mapscr(L(R), A)

for any simplicial algebra R, where L is left adjoint to the forgetful functor and W is
the right adjoint. The mapping space is discrete for every simplicial algebra R therefore
W(A) is discrete.

Construction VII.1.17. Let A be a graded simplicial algebra, which is positively or
negatively graded, we construct its associated graded simplicial algebra with Frobenius
lift of graded Witt vectors W9 (A) as follows. As a graded simplicial algebra with an
endomorphism, we define W9 (A) as the fiber product

AN X (A(0)N W(A(O))

where

W(A(0)) — (A(0))"
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is the ghost morphism, see Remark 1V.10.13 for the connection between naive 0 weights
and 0 weights. By construction, W9 (A) is positively or negatively graded and its 0
weights ring is given by taking naive 0 weights

W (A)(0) =~ W(A(0))
The natural Frobenius structure on W(A(0)) endowes W9 (A) with the structure of
a graded simplicial algebra with a Frobenius lift.
This construction defines a functor
W9 . SCRY™ — SCRIF™

Proposition VII.1.18. Let A be a graded simplicial algebra, which is positively or
negatiwvely graded. The functor

R € SCRgT’FT — MapscRgr(B, A) eS
is representable by WI"(A).
Proof. Let A be a graded simplicial algebra and R be a graded simplicial algebra with
Frobenius lift. By the construction of W9 (A), a morphism of graded simplicial algebras

with Frobenius lifts
R — W9 (A)

is given by a morphism of graded simplicial algebras with endomorphisms
R — AN
and a morphism of graded simplicial algebras with Frobenius lifts
R — W(A(0))

with a compatibility between the two morphisms. The former morphism is simply given
by a morphism of graded simplicial algebras A — R, the latter is given by a morphism
of simplicial algebras with Frobenius lifts

R(0) — W(A(0))
which is simply a morphism of simplicial algebras
R(0) — A(0)

which is fixed by requiring the compatibility. Therefore a morphism of graded simplicial
algebras with Frobenius lifts
R — W9 (A)

is uniquely determined by a morphism of graded simplicial algebras A — R. 0J
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VII.1.3 Modules on an algebra endowed with a Frobenius lift

Definition VII.1.19. Let (A, F) be a simplicial algebra endowed with an endomor-
phism. We define the category of modules on (A, F') as the stabilization of the category
of simplicial algebras over (A, F), see section IV.7 for details of the tangent category
formalism. That is

(A, F) — Mod™™® = Stab(SC R4

Similarly, for (A, F, h) a simplicial algebra endowed with a Frobenius lift, we define
its category of modules

(A, F,h) — Mod"™ := Stab(SCRJ{\ p1)

Remark VII.1.20. We can notice that a module on a simplicial algebra with endo-
morphism (A, F') is simply a non-necessarily connective A-module endowed with an
endophism compatible with the action of F.

Remark VII.1.21. The category (A, F,h) — Mod can be identified with
(A, F) - Modendo X(Ap7Fp)_Modendo Ap - MOd

where (A,, F},) is the simplicial algebra obtained by base changing (A, F) to F,. We
deduce this identification from the following description of SCRL” JAFR)

SCRFA Fh SCRenZOF XSCRerLdo SCva/(Aszp)

p/(Ap,Fp)

and the fact that stabilizations commute with the "endomorphism category construction
(—)emde" and small limits.

Therefore we can identify an object of (A, F,h) — Mod with a (A, F')-module and
an homotopy between Fj, and 0.

Proposition VII.1.22. Let F : (A, F) — Mod"%® — (A, F,h) — Mod"™ be the functor
sending the pair (M, a) to (M, pa) with the canonical homotopy. The functor F is an
equivalence of categories.

~

F: (A F)— Mod™"% = (A, F,h) — Mod"™

Proof. We use the exact triangle
M 25 M — M,

where M, denotes M ® F,. Given a pair (M,a) in (A, F) — Mod*®, promoting the
pair to a (A, F, h)-module is given by the data of a homotopy between

M % M — M,

and zero. Using the exact triangle, this is equivalent to specifying an element o/ : M —
M and a homotopy between pa’ and «, that is to say, this is an element in F'~((M, ).
This shows the essential surjectivity of the functor, and even the fully faithfulness on
mapping spaces with equal source and target. We proceed similarly for general mapping
spaces. O
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Remark VII.1.23. From the previous proposition, a triple in (M, a,t) in (A, F, h) —
Mod*™ may be seen as a pair (M, ) in (A, F') — Mod®"%, we will denote write < for
B, this element is constructed using the endomorphism a and the homotopy t.

Definition VII.1.24. We can define the cotangent complex of a simplicial algebra
endowed with a endomorphism or a Frobenius lift using the formalism of [Lur07].

Let (A, F) be a simplicial algebra endowed with an endomorphism. The cotangent
complex of (A, F) is an (A, F') — Mod representing the functor

Mapgcgendo j(a,1)((A, F), =)
Let (A, F,h) be a simplicial algebra endowed with a Frobenius lift. The cotangent

complex of (A, F,h) is an (A, F,h) — Mod representing the functor

Mapgcgendoapp)((A, F,h), —)

Remark VII.1.25. The cotangent complex of (A, F') is simply given by (L 4, dF') where
dF is the endomorphism functorialy induced from F.

The forgetful functor SCRF™ — SCR®*% induces a forgetful functor
(A, F,h) — Mod"" — (A, F) — Mod®®

Proposition VII.1.26. Let (A, F) be a simplicial algebra endowed with an endomor-
phism, the forgetful functor

SCR%) — (A, F) — Mod™®

admits a left adjoint denoted Syma r).

Proof. We use the adjoint functor theorem, see [Lur09, Corollary 5.5.2.9]. O

VII.2 Mixed graded Dieudonné complexes and algebras
VII.2.1 The graded circle

Definition VII.2.1. The graded circle Sj, as in [MRT20] is given by
Sglr = Spec®(Zy)[n)) ~ BKer

It is endowed with an endomorphism induced from the multiplication by p endomor-
phism on Ker, we will call this endomorphism [p].The morphism [p| sends 1 to pn in
cohomology.

Proposition VIL.2.2. The endomorphism [p| gives Sglr the structure of a group in
dStrT
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Proof. The stack Sglr is given by applying the B construction to the derived stack with
Frobenius lift Ker. O

Remark VII.2.3. Defining a morphism Z,)[%;] — Z,)[%;] by sending 7 to p"Z: is
canonically a morphism of graded classical affine schemes endowed with a Frobenius
lift. As z is in weight 1, the condition of being a Frobenius lift is trivial.

Remark VII.2.4. We also notice that [p] is compatible with the group structure,
meaning 7 — pn is compatible with the coalgebra action n — 1 ® 71+ 7 ® 1 and the
counit map.

Definition VII.2.5 (Graded spheres). We define variants of spheres as graded affine
stacks

Sk.(n) = Spec® (L) [771] /77,%)
with 7y, of weight n and degree k. We simply denote S == S¥ (1).

Remark VII.2.6. The graded sphere Sng is the graded affine stack considered in
[MRT20|. The superior spheres Sy, can be recovered from the topological spheres
as follow :

Sy = SpecA(D(H*(S",Z(p))))
where H*(S™, Zy)) is the graded commutative differential graded algebra of cohomology

of the topological sphere S™ with the zero differential and D denotes the denormalization
functor.

Definition VII.2.7. For F a pointed graded stack, we define its graded homotopy
groups :
7"(F) = Homasior~(S%.(n), F) = moMapgssers (S*.(n), F)

gr gr

The notation Hom denotes the my set of the associated mapping space.

Proposition VII.2.8. The graded circle endowed with its Frobenius structure can be
recovered as the following pushout

]' ~Y
Sgr 22 % Uspee(z o)) *

of graded affine stacks where p is a generator in degree 0 and weight 1 which squares to
zero. Furthermore, the induced diagram obtained by taking the product with Spec(B)
for B a simplicial algebra

Spec(Zy[p]) x Spec(B) ———— Spec(B)

! |

Spec(B) ————— S, x Spec(B)

s a pushout diagram against derived affine schemes, meaning it induces a pullback
diagram on the simplicial algebras of functions.

Proof. We follow the proof in [MRT20, Theorem 5.1.3]. We construct a commutative
diagram
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Spec(Z[p]) —— *

| |

* ——— BKer

that is an element Spec(Zy,)[p]) = Ker ~ QBKer. We choose

[p] = (p,0,0...) € Ker(Z[p))

It is an element of Ker(Zy)[p]) since the Frobenius F' acts on a Teichmiiller element as
Fla] = [a?].

We are reduced to showing the natural map
Ca(BEKer) = L) ® L) [—1] = Zg) Xz 0] L)

is an equivalence of graded cosimplicial algebras. We only need to show it is an equiva-
lence on the underlying complexes which is obvious. The compatibility with the endo-
morphism structures in straightforward and the additional Frobenius structure is trivial
since the weight 0 part of SJ, is simply Spec(Z)).

We move on to the second part of the proof. We want to show the following diagram
is a pushout diagram against derived affine schemes X.

Spec(Zp[p]) x Spec(B) ———— Spec(B)

J |

Spec(B) ————— S, x Spec(B)

We can reduce to the case of X = A! using [Lurll, Proposition 4.1.9] since any
derived affine scheme can be written as a limit of copies of A!. Therefore we show the
natural morphism

O(S,, x Spec(B)) = B X7 loloB B

is an equivalence. Since the functor of simplicial functions O is given by the composition
of the Dold-Kan functor with C'(—), the functor of E.-functions, we simply show we
have an equivalence

C(S,, x Spec(B)) — B X7 oloB B

of complexes. Now using the finite cohomology property of S;,,, see [IMRT20, Lemma

3.4.9] and the base change formula [HLP14, A.1.5-(2)], we have
C(S,, x Spec(B)) ~ C(S,,) @ B

Now as we know C(S,) = H*(S,

o L)) = Ly ® Zpy[—1], we deduce the result using
the first part of the proof.

O
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VII.2.2 Mixed graded Dieudonné complexes

Definition VII.2.9. The endomorphism [p] : S;, — S, induces a pullback morphism
p" : QCoh(BSL) — QCoh(BSL,)
which is an endofunctor of € — Mod9".

Remark VII.2.10. Given (M,d,e) a graded mixed complex, [p|*M is given by
(M, d, pe).

Definition VII.2.11. We define the category of mixed graded Dieudonné complexes,
also called derived Dieudonné complexes, by

e =D — Mod" .= CFPy-(e — Mod’")

where the category on the right hand side is the oo-category of colax fixed points of
[p]* on € — Mod?", as defined in Remark I1.2.3.

We see the colax fixed point morphism [p]*M — M can be seen as a morphism of
graded mixed complexes
(M,d,pe) — (M, d,e)

which is a morphism of graded complexes satisfying the usual Dieudonné relation
eF = pFe
Proposition VII.2.12. We have a natural identifications
€ — D — Mod"" ~ (k[e], [p]) — Mod?o™"%

The object (kle], [p]) is seen here as a commutative algebra object in M od9m<"d.

Proof. Given a mixed graded module M € e — Modf", promoting it to a (kle], [p])-
module (M, F) is equivalent to the data of a commutative square

kel @ M —— M

l[p]®F lF

kle) @ M —— M

which is equivalent to a colax fixed point structure

M — [p"M
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The Beilinson t-structure

Definition VII.2.13. We recall the definition of the Beilinson t-structure on graded
mixed complex. Let M be a graded mixed complex, M is said to be t-connective for
the t-structure when H*(M(n)) = 0 for i > —n, M is said to be t-coconnective for the
t-structure when H*(M(n)) = 0 for i < —n.

Remark VII.2.14. As a mixed graded complex, Sym(LLa[l]) is t-connective, for A
a simplicial algebra. It is in the heart of the t-structure when A is a smooth classical
algebra.

Proposition VII.2.15. The heart of € — dg — mod?" identifies with the 1-category of
complezes dg —modyz . We associate to a complex (M, d) the graded mized complex
being M, with trivial differential in weight —n, the differential d defines the mized
structure. This defines a functor

i:dg —modz  — ¢ —dg — mod®
which induces an equivalence on the heart.

Definition VII.2.16 (Beilinson t-structure). Following [Rak20, §3.3|, we define a t-
structure on the category of mixed Dieudonné complexes by letting a graded mixed
Dieudonné complexes be t-connective, respectively t-connective, when its underlying
graded mixed complex is.

Proposition VIL.2.17. The heart of e—D—Mody,,, identifies with the abelian category
of Dieudonné complezxes of [BLM22].

Proof. This follows from the identification without Dieudonné structures, Proposition
VIIL.2.15. O

VII.2.3 Mixed graded Dieudonné algebras

We introduce the definition of the main objects we will study.

Definition VII.2.18. Motivated by Proposition VII.2.12, we define mixed graded
Dieudonné stacks, also called derived Dieudonné stacks, by

e—D —dSt9" = S;r — dStortrob
We also define mixed graded Dieudonné simplicial algebras, also called Dieudonné
simplicial algebras, by
e—D— SCRY = (S;T — dAfng’F”’b)Op

An element of S, — dAff9"""° can be thought of as a morphism X — BS} , in the
topos dSt9"Fm° which is relative affine.
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Remark VII.2.19. A derived Dieudonné stack can be seen as a derived stack endowed
with an endomorphism, which has a Frobenius lift structure, a grading and a compatible
Sgl,,—action and a compatibility condition between the Frobenius lift and the action of
Sglr. This compatibility condition is an analogue of the Dieudonné complex equation
dF = pFd for derived stacks.

Remark VII.2.20. We expect ¢ — D — SCRY" to admit another description as the
category of modules over a monad LSym on ¢ — D — Mod9" as is done in [BM19]
and|Rak20].

Proposition VIIL.2.21. The two oco-categories dSt9tm and Sglr — dStmErod gre oco-
topot.

Proof. The category dSt9"fm is, by definition, given by

endo
T X T;ndo Tp

with 7 = dSt" and 7, = dSt%Z. Recalling [Lur09, Proposition 6.3.2.3|, to show that

dSt9"Fro is a topos, it is enough to show that the projection morphisms 764 — rend
and 7, — 75"% are left adjoints and they preserve finite limits, as 7%, 7¢"% and 7,

are already topoi.

Using |Lur09, Proposition 6.3.5.1], the morphism 7 admits a right ad-
joint and commutes with finite limits, since it admits a left adjoint : the forgetful
functor.

endo - T;ndo

The morphism 7, — T;”do commutes with finite limits, since it admits a left adjoint,
which is given by sending (X, F') the homotopy coequalizer of F' and the Frobenius on
X : Xp~pr and admits a right adjoint, which is given by sending (X, F') the homotopy
equalizer of F' and the Frobenius on X : X" see Proposition B.3.

Therefore, Sng — dSt9"FTb s also a topos as the classifying topos of objects in
dSt9mFreb with a S), action. O

Remark VII.2.22. From the previous proposition, the previous categories can admit
Postnikov decomposition and obstruction theory, see [Lur07, Proposition 7.2.1.10| for
details.

Dieudonné functions on a Dieudonné stack

Construction VII.2.23. We construct the functor of functions on a Dieudonné derived
stack
C:e—D—dSt9"P € —D — Mod"

by composition with the forgetful functor

S;r . dStgr,Frob N S;T . dSth,endo
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we simply construct

Sglr _ dstgr,endo,op N S;r _ Modgr,endo

The category S}, — dSt"% identifies with (Sj, x (N x Gy,))-equivariant derived
stacks, that is derived stacks over B(S), x (N x Gy,)). Indeed a N x G,,-action is given
by a grading and a graded endomorphism and an (S ;T X (N x G,,))-action is given by
an additional S;T—action compatible with gradings and the endomorphisms.

Let us consider X € ¢ — D — dSt9", with its structure morphism
m: X = B(S,, % (N xGy,))
Now the pushforward of the structure sheaf 7,0y defines an element of
QCoh(B(S,, x (N x G,,)))

The category QCoh(B(S,, x (NxG,))) identifies with S, — QCoh(B(NxG,,))), which
is € — D — Mod. We denote this element 7,0 in € — D — Mod?" as C(X).

Remark VII.2.24. The inclusion ¢ — D — SCRI"P C e — D — dSt9" defines functions
on a Dieudonné simplicial algebra by composition

e—D—-SCR" - e€—D — Mod”

Remark VII.2.25. Since the pushforward . is canonically lax monoidal, C'(X) is in
fact an element of CAlg(e — D — Mod). We may call C Alg(e — D — Mod) the category
of mixed Dieudonnée E.-algebras. This notion could give the definition of Dieudonné
structures for spectral stacks but we will not explore these notions.

Proposition VII.2.26. The forgetful functor e—D—SCRY" — e—D—Mod?" commutes
with filtered colimits and small limits.

Proof. Since the forgetful functor e — D — Mod9" — Mod commutes with the filtered
colimits and small limits and is conservative, we show the forgetful functor

e—D—SCRY" — Mod
preserves the necessary colimits and limits.
Now this functor factors as a composition
¢—D—SCR" — S} — SCR""” ~ (N x Gy,) x S, — SCR — Mod
where both functors commute with the desired limits and colimits.

O

Proposition VII.2.27. The forgetful functor U : dSt'™ — dSt admits a left adjoint
denoted L.
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Proposition VII.2.28. We define the two pullback squares :

SCRI " ——— SCR9™ende — - SCR

I [

CRingP~t/9mfr — CRingp~t/9mende — . CRingP~t/

where C' Ring?~'t is the category of discrete commutative rings which are p-torsion-free.

Then the morphism
CRingpftf,gr,Fr N CRZ-ngpftf,gr,endo
1s a fully faithful functor of 1-categories.

Remark VII.2.29. The previous proposition is often going to be used implicitly
throughout this thesis. In our constructions, the graded simplicial algebras will have
underlying weight 0 simplicial algebras which are discrete and p-torsion free. Therefore
the choice of a Frobenius lift on such graded simplicial algebras will simply be the choice
of an endomorphism which is equal to the canonical Frobenius after reduction modulo

Pp.

Definition VII.2.30. We define a subcategory (e — D — SCRY )< C e — D — SCR9"
on objects which are sent into (e — D — Mod?" )<, when applying the forgetful functor

U:e—D—SCRY" —-¢e¢— D — Mod’
We define a subcategory (e — D — SCRY" )<y C € — D — SCRY" on objects which are
sent into (e — D — Mod9" )<y when applying the forgetful functor
U:e—D—SCR" —-e¢— D — Mod”

We will abuse terminology and call these objects coconnective, respectively connec-
tive, for a "t-structure" on the non-stable category e — D — SCRI".

Let us denote (e — D — SCRI")” the subcategory on connective and coconnective
objects. We will call this category the heart of e — D — SC'RY".

Remark VII.2.31. These notions might be formalized using the notion of connectivity
structure on an oo-category, developed in |[BL21].

Proposition VII.2.32. The inclusion
(e—D—SCR)<y Ce— D — SCR
admits a left adjoint denoted t<y.
The left adjoint t<o commutes with the forgetful functor

U:e—D—-SCR" - e€—D — Mod”™
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Proof. The category (e — D — SCRI") < is given by the pullback of categories

(€—D—SCR")cy —— e—D — SCRY"

N

(€= D — Mod’ )<y —— € — D — Mod?"

Using the adjoint functor theorem, see [Lur09, Corollary 5.5.2.9|, we are reduced to
proving that ¢ commutes with filtered colimits and small limits, since e — D — SCRY" is
presentable and (e — D — SCR9")< is presentable as a limit of presentable categories.
The functor ¢ is a projection associated to a fiber product, hence we deduce the result
from the fact that U and j commute with the required colimits and limits. O

Remark VII.2.33. The subcategory of (e — D — SCRY)¥ on objects which are of
p-torsion-free identify with the 1-category of classical Dieudonné algebra, see Remark
VI1.3.12. This defines a functor

i:DA — (e—D— SCR")Y

Remark VII.2.34. As seen before, the graded derived stack with Frobenius lift S;,,
admits a canonical morphism
Sy — BGy,

which has as a total space the semi-direct product
: 1
H =Gy XS,

Therefore we can see a graded mixed Dieudonné structure on a derived stack as a G,
action and an action of Sglr which are compatible. We have identifications

€ —dStY" ~H — dSt

VII1.2.4 Graded loopspace

Definition VII.2.35. Let X a derived stack endowed with a Frobenius lift. We define
the category of Frobenius graded loopspaces on X as

LgT?FT(X) = MapdStFr<Sl X)

gr

where Sglr is endowed with its canonical Frobenius action.

The canonical point *+ — S;. defined by the augmentation Zg,[n] — Zg), is a
morphism of graded derived stacks with Frobenius structures and induces a morphism
of graded derived stacks with Frobenius structures

LX) = X

We also define
Egr,endo (X) — MapdStendo (Sl X)

triv gr’

where Sng is endowed with the trivial endomorphism structure given by identity.
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We recall the forgetful functor
U :dStt — dStor

Proposition VI1.2.36. Let (X, F') be a affine derived scheme endowed with a Frobenius
structure. We write X = Spec(C). The graded Frobenius loopspace’s underlying graded
stack identifies with the shifted linear stack:

ULIF"(X) ~ Specx Symo, (L@F)[l])
where Sym denotes the free (C, F')-module construction of Proposition VII.1.26.

The (C, F)-module L. := LYE%F) fits in a triangle of (C, F)-modules

@L(qp) (24 Fp — L — L(QF)
N

Proof. Using the description of the graded circle as a graded derived stack with a
Frobenius lift of Proposition VII.2.8:

~ ql
* Uspec(Z ) [o]) * = Sgr
which induces an equivalence

LX) 5 X XN 0 (S0 . 5) X

AS U preserves limits, we deduce an equivalence of underlying graded derived stacks

U»Cgr’FT (X) ; UX x UMap g, rr (Spec(Zp [p]),X) vx

Let us compute the target of this map. We take B a graded simplicial algebra en-
dowed with an Frobenius structure and Spec(B) — X a B-point of X. Using Corollary
B.5, we can reduce to points on derived affine schemes with a free Frobenius lift. We
may assume B to be negatively graded as £9"(X) is negatively graded. We compute
the former stack at D := L(Spec(B)) over X, where L denotes the free graded derived
stack with Frobenius lift construction :

M apgsarst(L(Spec(B)), Map gg; - (Spec(Z(p) 1)), X))

o~ MapdStg}pr(Spec(Z(p) [p]) x D, X)
~ Mapgoporrr  (C,W9(B) @ Zg)[p])

JWIT(B)

where we have used the following identification

O(Spec(Zy)|p]) x D) = O(Spec(Zg)[pl)) x O(D)
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which can be seen on the underlying modules where it follows from base change, see
[HLP14, A.1.5-(2)].

Therefore we want to compute the fiber of the canonical morphism from the source
space
Mapscporendo(C, B) XMap_, or.enio (€, 20)y) MaPscrg (Cp, R(0)p)
P

where R denotes W9"(B) ® Zy)[p], to the target space
Mapgcgor.endo (C> R/) X MapSCRgr,endo(Cp,R/(O)p) M apscry” (C,’m R/(O)p)
where R’ denoted W9 (B). This fiber is simply given by the fiber of
Mapgeporendo(Cy R) — Mapgeporendo(C, R')
which is

MapSCRgr,endo (C, WgT(B) ® Z(p) [p]) ~ Ma’pSCRe"dO

/WIT(B) /WIT(B)(0)

(C, (W(B) @ Z[p])(0))
as C'is concentrated in degree 0. Explicitly, we have
(W (B) ® Zg[p])(0) = W(B(0)) & BY,

where W(B(0)) is endowed by its canonical endomorphism and BY, is endowed by its
twisted endomorphism pS, by taking into account the endomorphism of Z[p| sending p
to pp. Therefore, the fiber is computed as

Mapgepenss  (C,W(B(0)) ® BY,) ~ Mapc,p)—nroa(Lc,ry, (B, pS5))

/w(B(0))

Lemma VII1.2.37. Let (M,u) and (N,v) be (C, F, h)-modules, the fiber of

Map(A,F,h)—]V[odFT((Ma U), (N7 U)) — Map(A,F)—Mode"do<<M7 U), (N7 U))

18 given by
Mape_nroa(Mp, N)

Proof. Using Remark VII.1.21, the mapping space Mapa g p)—nroarr((M,u), (N,v)) is
given

Ma’p(A,F)—MOdE"dO((M7 u’)? (N7 U)) XMap(Ap’Fp),zwodendo((Mprup)r(NvaP)) MapAP_MOd(Mp’ Np)

Therefore the fiber of the map

Map(A,Rh)_Modpr((M, u), (N,v)) — Map(A7F)_MOdendo<<M, u), (N, v))

coincides with the fiber of
MapAp—Mod(Mp7 Np) — Map(Ap,Fp)—Mode"do((Mp> up)v (NIN vp))
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Now since M and N have (A, F, h)-structures, u, and v, are homotopic to the zero
endomorphisms. Therefore we have an identification

Map(Ap’Fp),Modendo((Mp, up), (Np, ’Up)) ~ MapAp,Mod(Mp, Np) X MapAp,Mod(Mp[l], Np)

We deduce the fiber is given by
QMapAp—Mod(Mp[1]> Np) = MapA—Mod<Mp[1]a N)

using the identification
Hom_yoq(Fp, N) ~ N[—1]

We deduce that the fiber of
Mapc,rp)-mod((Lic,ry, dF), (BYy,pS)) = Mapc,py—oa(Lic,r), (B, pS5))

is given by
Mapc-woa(Lic,ry @ Fy[1], BY,)

which is also given by

Map(ovF)*MOd((® ]L(C:F) ® Fp[l]v 5)7 (BTD S))
N

Using Proposition VII.1.22, we have a natural identification

dF
Mapc,rn)-mod((Lic,ry, dF), (BY,, pS)) =~ Mapc,r)-noa((Lic,r), ?)7 (BY,,9))

Therefore there exists L which fits in a triangle of (C, F')-modules
@PLrer @F, +L—Le
N

such that

Mapc,ry-moaLic,r), (B, pS)) = Mapc,ry—moa(L, (BY,, 5))

Then we deduce the equivalence

Lo (X)) 2 X X Map, g, 1 (Spec(Zp) [p]), X) X = Spec(Symc,ry(L[1]))
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Corollary VII1.2.38. With the notation of the previous proposition, the derived stack
associated to L9 (X)) is given, after moding out by the p-torsion, by

Spec(Sym(L¢[1]))

where the induced endomorphism is induced by

E%gi : HJ(j[l] — HJCj[l]

Proof. The underlying derived stack of £9¥7(X) is given by
Spec(Sym(L{1]))

From Remark VII.1.25, the cotangent complex LL(c ) has Lo as an underlying C-
module. In the description of the twisted cotangent complex in a triangle of (C, F')-
modules

PLceF, »L - Le

N

where Lo is endowed with the endomorphism %F, we notice this sequence is split since
the first morphism is null. This concludes the proof. 0

The proof of Proposition VII.2.36 can easily be adapted to prove the following result.

Remark VII.2.39. The trivial graded endomorphism loopspace identifies with the
shifted tangent stack of X :

LX) == Speex Symoy (Lix,m, dF)[1))

triv

where X is no longer required to have a p-torsion free cotangent complex.

VII.3 Comparison theorems
VII.3.1 Mixed structures classification : the non-Dieudonné case

In this section, we recall a theorem of [To20, Proposition 2.3.1|, which was announced
with an outlined proof. We give a detailed proof so as to generalize to a Dieudonné
variant of this theorem.

Theorem VIL.3.1. Let A be smooth commutative Zy,)-algebra, M be a projective A-
module of finite type. We define X as the derived affine scheme Spec(Syma(M][1])) =
V(M][1]) endowed with its natural grading. The classifying space of mized graded struc-
tures on X compatible with its grading is discrete and in bijection with the set of com-
mutative differential graded algebra structures on the graded commutative Z,)-algebra

S WN V()
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Proof. The classifying space of mixed structures is given by the fiber of the forgetful
functor
(Gm % S,,) —dSt — G,, — dSt

over X.

Since (G, x S,,) — dSt identifies naturally with S}, — (G,, — dSt), the classifying
space is given by the mapping space

MapMon dsStar) (S El’ld (X))

gr

is also

MapMon (dSt9r) (S Endo (X))

gr’

which, by connexity of S;,,

where we define

End).(X) = fib(End, (X) — m(End),(X)))

the fiber over the identity, meaning End;,(X) is the substack on End,,(X) on endo-
morphisms that are homotopy equivalent to identity. This space is equivalent to the
mapping space of pointed stacks

Mapasysr+ (BS,,, BEndj, (X))

gr
Since BS;, is a stack, we may consider BEnd’(X) as a stack in St C dSt. Therefore,
we are reduced to the computation of

Mapgyor+(BS,,, BEnd), (X))

gr

We will need a Postnikov decomposition on BEndgr(X ), therefore we have to com-
pute its homotopy groups. To study the behaviour on the base scheme S = Spec(A),
we notice that we have a fiber sequence of graded derived stacks :

End), (X) ——— BG,,

| - |

End),.(X) —— Hom) (X, S)

where BG,, is the final object in St9" = St /BG,,, Hom,, s(X) is the graded
derived stack of endomorphisms of X over S and Homg , (X) is the substack of maps
that are equivalent to the canonical projection X — S. In this diagram, the bottom
arrow is the composition with the projection X — S and the left arrow is the inclusion.

Being a relative linear stack, X — S has a section : the "zero" section. Therefore
End’(X) — Hom"(X, S)

is surjective on all homotopy groups and the long exact sequence of homotopy groups
splits as short exact sequences of graded sheaves of abelian groups on S

0 — mEnd%(X) — mEnd’(X) — m.Hom"(X,S) — 0
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Computation of 7, End%(X) Since all the derived stacks are now truncated, we can
take B a test graded commutative Z,-algebra and Spec(B) — S a B-point of S, which
is an A-algebra structure on B, ie B is a relative affine scheme over S x BG,,. We
compute, for £ > 0 :

Ends,. (X)(B) = Mapsoy (Syma(M[1)), Syma(M[1]) @4 B)
= MapA_Modgr(M[l], SymA(M[l]) ®A B)

From which we deduce

mEndy . (X) = mEndg,, (X)
= Homa—proasr (M [k + 1], Syma(M[1]) @ 4 B)
= Homa_proqor (M, NF"'M ® 4 B)
= Homa_proqer (M @4 (N"TTM)Y, B)

Therefore m,End%(X) ~ V(M @ (A1 M)Y)

Computation of m, Hom®(X,S) We have on B-points :
Hom’(X, S)(B) = Mapcr(A, Syma(M[1]) ® B)
where the 0 exponent denotes the connected component of the canonical map

A — Syma(M[1]) — Syma(M][1]) ® B

We can recover the homotopy groups from the Postnikov decomposition :

mHom"(X, S)(B)[k] = fib(t<;Hom"(X, S)(B) — t<,_;Hom"(X, S)(B))

As Map(A, —) preserves Postnikov decompositions, m,Hom"(X, S)(B)[k] is given
by the fiber

fib(Mapep(A, Sym3* (M[1]) ® B) = Maplep(A, Sym3* ™ (M[1]) ® B))

Which is simply Mapyep, (94, A*M[k] ® B)
We find m,Hom"(X, S) = V(Q} ®,4 (AFM)V)

When k is strictly greater than the rank of M as an A-module, A*M and A*1M
both vanish, therefore 7, = 0, we deduce BEnd®(X) is (n + 1)-truncated.

We will, in fact, need a more precise description of m, = WkEndgr(X |
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Proposition VII.3.2. For k > 1, the sheaf of groups m is given on a commutative
algebra B by the discrete set of pairs (do, dy) with dy : Ap — /\ZB Mg a derivation and

di: Mg — /\IX;1 Mp a Z)-linear map, with the compatibility condition
di(am) = ady(m) + do(a) Am
fora e Ag and m € Mp.

In this proposition, we have defined Ap == A ®z,, B and Mp =M @z, B.

Proof. On a B point,

Mapscr(Syma(MI1]), Syma(M([1]))(B) =~ Mapscr, (Syma,(Mp[1]), Syma, (Mg[1]))

We want to compute
TeMapgep,, (Symag (M1]), Syma,(Mp[1])) = meMapscrg (Syma, (Mp[1]), Symag (Mp(1]))
which is given by the fiber over the identity of
mo(Map(S*, Mapscr,(Cp,Cp)) — Mapscr,(Cs, Cp))
where C'p denotes Syma,(Mg[1]).

Since Map(S*, Mapscr,(Cr, Cg)) can be computed as Mapscr, (Ch, Cgk), we can
rewrite

mMap§ep, (Syma, (Ms[1]), Syma, (Mg(1])) ~ Homscry o, (Cr, C )

We will use the following lemma.

Lemma VII.3.3. Let D be a simplicial commutative algebra, we have a natural iden-
tification

roMapscr(Syma(M[1]), D) ~ {(u,v) : u: A = mo(D) € CRing,v: M — m (D) € A— Mod}

where w1 (D) is endowed with the A-module structure induced by u.

Proof. We explicitly construct this bijection. An element
f € moMapscr(Syma(M]1]), D)
induces by composition a morphism of commutative rings
A = Syma(M[1]) L D — 70(D)
which we call uw. It also induces
M[1] — Syma(M][1]) — D
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which defines v after taking 7.

On the other hand, let us give ourselves a pair (u,v) satisfying the required condi-
tions. By smoothness of A, u extends to a morphism of simplicial rings

a:A—D

Now giving a morphism Sym4(M[1]) — D under A is equivalent to the data of an
A-module morphism
MI[1] - D

We check that these maps are mutually inverse.

O

The lemma can be used for the base-changed versions of A and M : Ag and Mp.
Taking D = Sym.a, (Mg[1])%*, we know that

WQ(D) = AB ED AkMB
and

m(D) = Mg ® A¥ Mp

Now the set .
Homscry /oy (Co, CF )

is identified with the set of pairs of (J, d) with § being a morphism of simplicial algebras
§:Ap — Ap ® A" Mp
and d being a morphism of A-modules
d: Mg — Mp & A Mg

such that they induce the identity Cp — Cp after composition. Therefore ¢ is a
derivation

d(a) = a+ dy(a)

and d is given by
d(m) =m +di(m)

Requiring d the be A-linear gives the compatibility condition on (dg, d;).
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Cell decomposition on BS;, : We now define a variation of cellular decomposition
for BS! .
gr

The classical cellular decomposition of the topological space BS* ~ CP>, from its
CW complex description, gives a tower of topological spaces

(BSl)SO = % — (BSl)Sl = % — (BSl>§2 ~ SQ — (le)gg ~ S2 — (BSl)S4 — ...

The tower is given by iterated homotopy pushouts :

(BS")<on —— (BS")<anta
| -]

SQn—i—l ; D2n+2 ~ %

We want a similar decomposition for BS;,, as a graded affine stack.

Definition VII.3.4. Let us define a sequence of affine stacks (BS,,)<, for n >0 :
(BS))<2n = (BS),)<ans1 = Spec™(Zgy[u] / (u"*))
where wu is in weight 1 and degree 2.

The canonical projection Z,[u]/(u"™?) — Zg)[u]/(u"™) induces a morphism of
derived stack (BS,,)<on — (BS,,)<on+2.

Proposition VII.3.5. There is a homotopy pushout diagram of graded affine stacks

(BSglr)gm - (BS;r)S%Jr?

I "]

Senti(n 1) —

where S2H (n + 1) is defined as Spec®(Zg) ® L) [—2n — 1]((n + 1))).

Remark VII1.3.6. The diagram is shown to be a pushout diagram in affine stacks, not
in derived stacks.

Proof. This pushout diagram is equivalent to a pullback diagram in graded cosimplicial
algebras :

Bl (1+) e Tl ()
l |

Ly ® Lpy[—2n — 1)((n + 1)) +——— Z)
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We define a diagram of commutative differential graded algebras :

Zigy 0] (w42, do = w ) ——L— [/ (1) e Zi[u]/(u+?)

TTh— |

Z(10) SZ Z(p)[_Qn - 1]((” + 1)) A — Z(:D)

where f; is a quasi-isomorphism sending u to u and v to 0 and ¢ sends v to 0 and v to
€an_1, ¥ being in degree 2n — 1 and weight n + 1.

Let us denote T' the fiber of
L) [u, ]/ (w2, dv = u"T) = L) @ Ly [—2n — 1]((n + 1))
over Z,. We check that sending u to u defines a quasi-isomorphism
L) [u]/(w"?) =T
which recovers the canonical projection
Ly [ul /(") = L [u] /(")
after composing with f;.

Therefore this diagram in homotopy pullback diagram on the underlying complexes
: it is strictly a pullback diagram and f5 is a fibration.

Since denormalization D respects quasi-isomorphisms, applying D yields the re-
quired diagram, which is a homotopy pullback diagram since it is on the underlying
complexes and the forgetful functor from cosimplicial algebras to complexes is conser-
vative.

0
Lemma VIL.3.7. The diagram on (N, <) defined by the tower (BS,,)<n admits BS;,

as a colimit in affine stacks.

Proof. The canonical projections Zyy[u] — Zy[u]/(u™*"), where u is in weight 1 and
cohomological degree 2, are morphisms of graded cosimplicial algebras. This defines a
morphism of graded cosimplicial algebras

Z(p) [u] — ling(p) [u]/(u"“)
which is an equivalence on the underlying complexes, therefore it is an equivalence.

Passing to Spec® yields the result, using Proposition IV.12.8.

As we want to compute Mapgr(BS},, BEndg,‘(X)), we first need a result :
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Proposition VII1.3.8. The commutative diagram, denoted (%),
(BS,,)<on —— (BS;,)<ant2
[ "]
Serttn+1) ——— *

is a pushout against BEndgT(X), meaning

MapSth’* ((BSglr>S2n7 BEndgr (X)) A — Ma’pStg"’* ((BSglr)<2n+27 BEndgr (X))

—

Mapsor+ (S (n + 1), BEnd, (X)) <

18 a pullback diagram.

The result is not obvious as BEndgr(X) need not be an affine stack.

Lemma VII.3.9. The diagram QCoh(x) is a pullback diagram, ie the following diagram
18 a pullback diagram.

QCoh((BSg,)<2n) +——— QCoh((BS,,)<2n+2)

QCoh(S2H (n + 1)) «+———— QCoh(x)

Proof. We first show the canonical morphism
QCOh(‘S';?Jrl(n + 1)) - QCOh((BSglr)SQH) XQCOh(S§f+1(n+1)) QCOh(*)
is an equivalence on bounded complexes.

We use the canonical t-structure on QCoh(A) for A an affine stack defined in Remark
IV.2.8. With this dévissage argument, we are reduced to showing the morphism is an
equivalence on hearts and on extension groups between objects in the heart.

The 1-connectivity of the stacks, see Proposition B.8, identifies their quasi-coherent
complexes with Mody, . Therefore we have an equivalence on the heart.

We invoke Proposition B.1, we deduce

MapQeon((Bst,)<an) (M, N) = C((BS,,)<2n) ® Mapyoa(M, N)

Similar results for QCoh(SZ ! (n + 1)), QCoh(SZ*!(n + 1)) and Mod hold. We
deduce the result from the pullback diagram of C'(x). Now, adding small limits gives
the equivalence on eventually coconnective complexes, then left-completing the category
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with respect to the t-structure recovers the categories of quasi-coherent complexes and
yields the equivalence, see [MRT20, Notation 1.2.12] and [Lur18, §6.2].

O
Lemma VII.3.10. Let F be a stack such that

e F is 1-connective, ie mo(F') = * and m(F) = *.
e [ is n-truncated for some n.

e m;(F) is quasi-coherent for all i.
then the pushout diagram (x) is a pushout diagram against F.

Proof. The Postnikov tower of F' exhibits F<;;; as the fiber of

ng — K(Wi+1,i + 2)

Therefore, we can assume I’ be an Eilenberg-MacLane stack K (). We have, for
Y a stack,

Maps (Y, F) = Mapgcony)(Oy, p*nlil)

where p : Y — Spec(Z,)) is the canonical projection. Now using Lemma VI1.3.9 and
the fact that mapping spaces of fiber products of categories are given by fiber products
of the mapping spaces, we deduce that

Mapst(_a F)

sends x to a pullback diagram. O

Proof of Proposition VII.3.8 . We combine VIIL.3.9, VII.3.10 and the fact that
BEndgr(X) is truncated. O

We now move on to the computation of Mapger-(BS,,, BEndgr(X)) using Propo-
sition VIL.3.8. We will compute Mapgyr+(S7*"!(n + 1), BEnd),(X)) using the Post-
nikov decomposition of BEndgr(X). By convention, m, is ﬂn(Endgr(X)), it is a graded
abelian sheaf on EndST(X ). We will denote I'(m,) the graded abelian group of global

sections and I'®~ () the abelian group of weight 0 functions.

We need a lemma to compute Mapgor- (S, BEndgr(X)).

Lemma VIIL.3.11. Using the previous notations, we have an equivalence of spaces

BT (m) ifn=0
Ma,pgtgr,*(S]%”“(n +1), BEnd) (X))~ ¢ T%(m) ifn=1
0 ifn>1
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Proof. The Postnikov tower exhibits the graded stack (BEndST(X ))<m as a homotopy
fiber
(BEndj,(X))<m — (BEndy, (X)) <m—1 — K (-1, m + 1)

We deduce a triangle of topological spaces

Mapsior (S (n + 1), (BEndY, (X)) <)

J

M&pStg?“,* (S]%n+1 (n + 1)a (BEndgr (X))§m71>

J

MapStgr,*(S?”H(n +1), K(mp_1,m+ 1))

Now,
TeMapsior- (ST (n 4+ 1), K (-1, m + 1))

can be computed, following |To06, §1.3| as
T D(BG o, pup T 1[m + 1))

where p : S]%"H(n—i— 1) = BG,, is the structure morphism. The later is simply given by

ngjlf’f(sj%"“(n + 1), Tm1)

which is trivial when n +1 # m — 1 as m,,_1 is in weight m — 1. When m = n + 2,
HEP M (ST (4 1), m)
is non-trivial only when k = 2 — n, then it is simply I'®m (m,,1).

We deduce
Mapgtgr,*(S}(l), K(7,3)) ~ K(I'®" (), 2)

Mapgsr+ (53(2), K (m2,4)) = K(I'®"(m3),1)
Mapsor-(S3(3), K (m3,5)) ~ T (m3)

Using the fact that BEndST(X ) is truncated, therefore its Postnikov tower con-
verges, we have

Mapgior.» (S?”H(n + 1), BEndS,,(X)) ~ Q. (Mapsgiar.s (SJ%”H(n + 1), K(mps1,n + 3)))
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which yields the required result.

Lemma VII.3.12. Forn > 1,
Mapsior((BS})<onso, BEndS, (X)) = Mapsir- ((BSh) <o, BEndS, (X))

18 an equivalence.
Proof. The result is easily deduced from Proposition VII[.3.8 and Lemma VIL.3.11. [

We need to compute the fiber product

Mapsyor-((BS;,) <2, BEndy, (X)) +—— Mapgsor~((BSL,) <4, BEnd,, (X))

N

Mapsor~(S*(2), BEndj, (X)) <
that is
[€n(m) +—— Mapsior~((BS},) <1, BEnd, (X))

l -

FGm (7'('2) <

Intuitively, we want ['®=(m;) + I'®m(7y) to send a pair (§,d), with § : A — M
and d : M — AM, to its "composition with itself". The equation d o d = 0 involves
Syma(M][1]) as a complex, without the full simplicial algebra structure. We first make
the following reduction.

Lemma VII.3.13. The canonical commutative diagram

Mapsior((BS') <4, BEndgop(X)) —— Mapsisr~((BS") <4, BEndoi(X))

J !

Mapgior~(S7(1), BEndgop(X)) ——— Mapgyr+(SF(1), BEndyoa(X))

18 a pullback diagram.

Proof. We have the following commutative diagram

89



Mapstgr,* ((BSI)§4, BEIldOSCR<X)) — MapStgr,* ((BSI)§4, BEndMOd(X>>

| |

Mapsor~(S3(1), BEndgop(X)) ——— Mapsior-(S3(1), BEndyroq(X))

| J

Ma/pSth‘,* (S?(Q), BEndOSCR<X)) e MapStgr,* (S?(Q), BEndMod(X))

showing a natural transformation of triangles of spaces. Formality of End;.q(X)
allows ~ for  a  computation  of  Mapgr~(S}(2), BEndya(X)) and
MapStgr,*(S]%(l),BEndMod(X)) using similar methods as before. We compute the

homotopy groups of EndY, ;(X) :

T (7 (EndS,,(X))) = @) Hom(A" M, A" M)

A Postnikov decomposition argument yields

Mapgior+(53(2), BEnd zoa(X)) 2 T (my(End), (X)) = @D Hom(A" M, A" M)

is discrete. Similarly,

Mapgior+(57(1), BEndysea(X)) ~ T (m1 (End},,4(X))) = @) Hom(A" M, A" M)

is also discrete. To show the commutative diagram of the lemma is a pullback diagram,
we simply show

Mapsisr+(S$(2), BEndger(X)) = Mapsier+(53(2), BEndeq(X))
is injective. But this map is the inclusion

o (my) C @) Hom(A"M, A2 M)

We need to compute the fiber of the morphism

Ma,pstgr,* (S‘?(l), BEndMOd(X)) — Masztgn* (S‘?(Q), BEndMOd(X))

Taking B a test commutative algebra,
BEndqcon(spec(z ) (X)(B) =~ BEndqcons) (Syma, (Mp[1]))
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which is the connected component of the space QCoh(B) at Syma,(Mg[1]).

This defines a morphism of stacks BEndQCOh(Spec(Z(p)))(X) — QCoh(—) that is fully
faithful, meaning it induces an equivalence on homotopy sheaves m, for k£ > 0.

This induces a commutative diagram

MapStg'r‘,* (S?‘(l), BEndMOd(X)> E— MapStg'r‘,* (S]??(Q), BEndMOd(X))

| |

Mapgor-(S3(1), QC0h(—)) ———— Mapgsor-(53(2), QCoh(—))

Therefore we identify the fiber of the top arrow with the fiber of the bottom arrow.
We now compute the fiber of
QCoh(S7(1)) ~ Zy[ul/u® — Mod — Z,ylv] — Mod ~ QCoh(S}(2))
using a Koszul duality argument.
Using Remark 1V.2.8, we can simply compute the fiber of the morphism
Zp[u)Ju® — Mod — Z,)[v] — Mod

where v is in degree 2 and v is in degree 3.

Lemma VII.3.14 (Koszul duality). We have equivalences
Zp{a}t — Mod ~ IndCoh(Zyyu]/u* — Mod)

and
Zpy{B} — Mod ~ IndCoh(Zyv] — Mod)

where Ly o] is the free differential graded algebra on one generator in degree 1, Zy,) 0] is
the free differential graded algebra on one generator in degree 2 and IndCoh(—) denotes
the completion by filtered colimits applied to the quasi-coherent complex construction

QCoh(—) .
Moreover, the induced morphism
Lipy{ay — Mod — Z){B} — Mod
sends (M, : M — M[—1]) to (M,a0«a : M — M[-2]), that is the forgetful functor

induced by
o € Zpy{a} — aoa € Zip{B}

Proof. The functor Homz,, 1u)/u? (Zp), —) gives an adjunction

Bndg,, uu2(Ziy) — Mod = IndCoh(Z[u] /u® — Mod)
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which is an equivalence of category using Schwede-Shiple-Lurie’s theorem, see |Lurl?,
Theorem 7.1.2.1]. We can take Z, as a compact generator of IndCoh(Zu]/u® —
Mod).

Similarly, Homz, ] (Zp), —) induces the equivalence

Endz(p)[v}(Z(p)) — Mod = ]ndC’oh(Z(p) [U} — MOd)

Now to conclude the proof of the lemma, we only need to show
2 2
Eaty  10)(Zw), L) = L) = L) = Exty 10 (L), L)

is an isomorphism. The standard resolutions of Z, yields the required result. O

The fiber of Zyy{a} — Mod — Zy) {8} — Mod is given by (M,a : M — M|[-1])
where M is a complex and o o ~ 0 : which is the relation we wanted.

O

VII.3.2 Mixed structures classification : the Dieudonné case

Theorem VIL.3.15. Let A be smooth commutative Zyy-algebra, M a projective A-
module of finite type. We fix a derived Frobenius lift structure on the graded simplicial
algebra Syma(MI1]), with M in weight 1. From Proposition VII.1.8, it is equivalent
to a classical Frobenius lift F' on A and a linear map of A-modules ¢ : M — M. We
define X as the derived affine scheme Spec(Syma(M[1])) = V(M[1]) endowed with
its natural grading, we regard it as an element of dSt9™F". The classifying space of
Dieudonné mixed graded structures on X compatible with its grading and Frobenius
structure is discrete and in bijection with the set of Dieudonné algebra structures on
the graded commutative Zy)-algebra @, NyM|—i] endowed with its natural canonical
Frobenius lift structure.

Proof. The classifying space of mixed structures is given by the fiber of the forgetful
functor
S;r o dStgr,Frob N dStgr,Frob

over X.

The classifying space is given by the mapping space
Mapyjon(astsrrry(Syy, End,, 1, (X)), here End,, .(X) is a monoid in graded derived
stack endowed with a Frobenius lift. By connexity of S}, the classifying space is

grs
equivalent to
MapMon(dStgr’F’") (Sglra E_ndgr,Fr (X))

which is equivalent to the mapping space of pointed stacks

Mapyggorrr-(BS) , BEnd® . (X))

gry O ==2=2gr Fr
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Here EndgT #r(X) is the full subcategory on End , . (X) on endomorphisms that
are homotopy equivalent to identity. Since BSglr is a stack, we may consider

BEnd), ,.(X) as a stack in St"F" C dStomFT.

We first reduce the classification to the computation of mapping spaces compatible
with endomorphisms instead of Frobenius structures. The mapping space
Mapeyasioryrr (S, Endor (X)) is computed by the fiber product

gr’

MapGp(dSth endo(Sg,r,, Z) Mapcp(dStIg)T>endo(S;r-,p(o)azp(o)) Ma’pGp(dSth) (Sgl’r,p(o)’ ZP(O))

where Z := End°

End,, ., (X) and the p index denotes base changing to [F,,.

We start with a lemma to compute Z,(0)
Lemma VII1.3.16. We have

E’n’dgr endo( )(0) = *

Proof. By definition of End®, we have a triangle of derived stacks

(X) - M (X> — To (Mgr,endo(){»

gr,endo

and since taking 0-weighted invariants of a graded stack preserve limits (see Proposition
IV.8.3), we have an induced triangle

Endy, ;,0,(X)(0) = Endyr,endo(X)(0) = mo(Endgr.endo(X))(0) 2 mo(Endgr.endo(X)(0))

We only need to see that End,, cnq,(X)(0) is a discrete stack. Now, by Proposition
I1.3.4, End, cnao(X) is computed as an equalizer

End,, cn00(X) =~ eq(End,, (X)" = End,,(X)(0)")
which gives on 0 weighted invariants :

End,, cnao(X)(0) =~ eq(End,, (X)(0)Y = End,,(X)(0)Y)

From the proof of Theorem VIL.3.1, End,, (X)(0) is discrete, which concludes the
proof. 0

Lemma VII.3.17. If we denote ¢ the endomorphism of Endg,, (X)) and B the ho-
motopy between qﬁ‘ and Fr, and v the endomorphism of End’ (X). We have an
p

gr,endo
equivalence between the underlying graded derived stacks endowed with endomorphisms

(End), p.(X),¢) = (Endg, ngo(X), )

meaning that we forget the "being homotopic to the canonical Frobenius modulo p" part
on the left hand side.
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Proof. We will promote (Endgr endo(X ), ¥) from an object with an endomorphism to
an object with a Frobenius lift in an essentially unique way, then we will show that this
object has the universal property that holds for (Endgr (X)), 0).

Promoting (End’

gr,endo

(X),v) to a graded derived stack with a Frobenius has

©0)(¥p, Frp)

as a space of choices. We know, by Lemma VII.3.16, that

(0) (Vp, Fp)

M apgpqo

=g, endo

M apgpq0

=g, endo(

is discrete and equivalent to a point, therefore Mapg, 40 (X
—=——=gr,endo
tractible and (End?

gr,endo

)p(0) (wvaTp) is con-
(X), ) can be promoted to an object with Frobenius in an
essentially unique way : (Endy, ., (X), ¥, h).

Let (T, \, hr) be an object of dSt!™ and we write y the endomorphism of X and hy
the homotopy between p, and F'r,.

The data of a morphism

(T, ) x (X, 1) = (X, p)

is equivalent to the data of a morphism

(T )\) (End(g)r endo(X)7 Z/})
by the universal property of (End’ (X),%), which is equivalent to the data of a

===gr.endo
morphism of objects with Frobenius lifts

(T7 >\7 hT) (Endgr endo( )7 w> h)

since the choice of compatibility of the morphism of endomorphism objects with the
Frobenius lift structures is given by the data of a commutative cube as follows :

1,(0) Zp (0)
~ (hr) |p, l%,v
T,(0) Zp(0) Fry
Y,(0) > Zp(0)

where 7 = EndgT endo(X). This data lives in a 2-simplex in Map,,(Y,(0), Z,(0))

and since Z,(0) is contractible, so is Mapy,(Y,(0), Z,(0)), therefore the morphism of
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endomorphism objects extends in an essentially unique way to a morphism of objects
with Frobenius lifts.

Now a similar argument shows that any morphism
(T, ) x (X, p) = (X, )
extends in an essentially unique way to a morphism of objects with Frobenius lifts

(T7)\7 hT) X (X,/L, hX) — (X>N> h’X)

Therefore  (End), .., (X),®,h) satisfies the universal  property  of
(Endgr mr(X),0,h') and they are equivalent. O

Lemma VII.3.18. We have

End), ,(X),(0) = »

Proof. 1t is enough to show that EndgT #(X)(0) is contractible. We simply combine
Lemma VII.3.16 and Lemma VII.3.17.

O

We deduce that

MapGp(dStgr,Fr)<Sgr’ End(g),, #r(X)) = Mapeyasiorendoy (S} End’

gry =222gr, endo(

X))

We have reduced the study of the Frobenius structure to a mere endomorphism
structure. The previous mapping space is given by the equalizer

MapGp dStIr) (S Endg’r endo( )) = MapGp dStIT) (S Endg’r endo(X))

gro gr?

where the top map is given by precomposing by [p] and the bottom map is postcom-

posing by S the endomorphism of Endgr endo(X)-

Now, an element of Mapgyp(asisr)(S,,, Endm endo(X)) can be described using Propo-
sition II.3.4 as the set of maps

. ql 0
fe S, — End,, (X)

with precs, o fry1 = posty, o fi, where prec and post are the precomposing and
postcomposing morphisms. The equalizer is then given by a family (f) such that
fr+1 = fr o [p]. This amount to the data of

f: S, — End) (X)

such that precy, o f o [p] = posts, o fi.
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We now use the classification for classical mixed structures, Theorem VII.3.1, to
identify the element
f: S, — End) (X)

with a couple (6 : A — M,d : M — A% M) satisfying the usual equations. Unwinding
the action of the endomorphisms on f. We see that precomposing with ¢y induces the
postcomposition map

(6,d) = (¢ar 00, (dnr A dr) 0 d)
Similarly, postcomposing with ¢x induces the precomposition map

(0,d) — (00 pa,do )

And finally the action of [p] is multiplication by p

(6,d) — (pd, pd)

The equations are therefore

Grod=piopy

and
(Om A oar) o d = pdoay

which are the relations required for (§,d) to define a Dieudonné algebra structure on
D; NaM[—i]. O

Corollary VII1.3.19. With the notations of Theorem VII.3.15, the graded derived affine
scheme Spec(Syma(Qa[l])) admits a unique Dieudonné structure induced by the stan-
dard Dieudonné structure on P, Ay Qy.

VII.3.3 De Rham-Witt complex

Construction VII.3.20. The functor of "simplicial functions"
O :dSt? — SCR
induces a functor from G-equivariant derived stacks, where G is a group in dSt :
O:G—-dSt? - G- SCR

where G — SC'R is abusively defined as the category of relative affine derived schemes
over BG. Therefore we can see this construction as taking the scheme-affinization of a
derived stack, relatively to BG, using Proposition TV.3.4.

By taking G' = S, % (G, x N), we can check that we obtain a functor
O:e—D—-dSt"? - e—D—SCR
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Definition VII.3.21. Let (A, F') be a simplicial algebra with a Frobenius lift, we define
the Dieudonné de Rham complex of (A, F') as

O(LIFr (Spec(A), Spec(F)))
where O is the functor of "simplicial functions" on derived Dieudonné stacks
e—D—dSt"? - e— D — SCRY
defined in the previous proposition. We denote the element we obtain DDR(A, F).

Theorem VII.3.22. Let A be a smooth discrete p-torsion-free algebra, the Dieudonné
de Rham complex coincides with the de Rham complexr endowed with its classical
Dieudonné structure defined in [BLM22]

Proof. It is a simple application of Corollary VII.3.19. 0

Proof. 1t is an easy corollary of Theorem VII.3.15. 0
Theorem VI11.3.23. The Dieudonné de Rham functor

SCR'"" — e— D — SCR"
18 left adjoint to the forgetful functor
(0):e—D — SCR — SCR'

Proof. This is an application of the definition of the various categories and the
Dieudonné de Rham functor. OJ

Theorem VII1.3.24. For A a commutative algebra, mon-necessarily smooth, the t-
truncation of DDR(A), with respect to the Beilinson t-structure, is equivalent to the
classical Dieudonné complex. That is

t>o(DDR(A)) ~ (1)

where Q% is endowed with its canonical classical Dieudonné structure, see Proposition
VI.3.14 and i is the functor

1: DA —e—D—SCRY

wdentifying the category of classical Dieudonné algebra with the heart of e — D — SCR9".

Proof. As the t-truncation is compatible with the forgetful map
e—D—SCRY — e¢— Mod”
and the forgetful map is conservative, the natural morphism
Syma(24[1]) = t=o(Syma(LLa[l]))

is an equivalence on underlying graded mixed Dieudonné complexes, therefore it is an
equivalence. O
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VII.4 Saturation

In this section we study in more details the properties of saturation and comparing it
to the classical saturation for Dieudonné algebras.

VII.4.1 The décalage functor

Definition VII.4.1. We define an endofunctor of e~ Mody = denoted [p]* by forgetting
along
€€ Z(p) [6] — pe € Z(p) [E]

Definition VII.4.2. We define the décalage 7, functor as an endofunctor of
1-categories € — Mod%fp) sending M to the graded mixed subcomplex of M x M on

elements (x,y) such that ez = py and ey = 0.

Proposition VII1.4.3. We have an adjunction of 1-categories
[p]" : e — Mod%fp) Ze— Mod%fp) M

Proposition VII1.4.4. The adjunction is a Quillen adjunction

*

[p]" : (e — dg —mod7 )in; = (¢ — dg — mod7’ )in; : 7p

Therefore this adjunctions induces an adjunction between the corresponding
00-Cateqories.

Proof. The injective model structure on (e—dg—mod%p) )inj is defined by transfer along
the forgetful functor U : € — dg — mod%fp) — dg —modz . We need to verify that
F; sends cofibrations and trivial cofibrations to cofibrations and trivial cofibrations.
Since for any graded mixed complex M, the underlying complex of [p|*M and M are
the same, the result is obvious. O

Proposition VII.4.5. Under the equivalence (e—Mod%p))@ ~ Mody,,, of VIL.2.15, the
endofunctor n, induces an endofunctor on Mody,, , which, when restricted to p-torsion
free complex, identifies with the décalage functor n, from [BLM22].

Proof. When M is a p-torsion free graded mixed complex, an element x € M, such
that ex is p-divisible defines a unique y € M,, ., such that ex = py, furthermore ey =0
is automatic since pey = 2z = 0. O

Remark VII.4.6. From the definition of Dieudonné structures on complexes and the
adjunction of Proposition VII.4.3, the data of a Dieudonné structure on a graded mixed
complex is equivalent to the data of a lax fixed structure with respect to 7,,.

Proposition VIL.4.7. The functor n, : € — Mod%:p) — € — Mody — commutes with
filtered colimits.
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Proof. The forgetful functor e — Mod) — M odz,, is conservative. Furthermore the
composition U o7, is given by forming a finite limit

MHMXMD] M[l] XM[Q}O

where the arrow are e : M — M][1l], — xp : M[1] — M1}, € : M[1] — M]2] and
0:0— M]J2]. Then U o, commutes with filtered colimits, hence so does U. O

Proposition VII1.4.8. The fully faithful inclusion of fized points
ipp: FP, (e— Mod%p)) C LFP, (e — Mod%p))

admits a left adjoint.

Proof. The category ¢ — M od%:p) is presentable as a module category. The functor 7,

commutes with filtered colimits (Proposition VII.4.7) and with small limits (Proposition
VII.4.3). We conclude using Proposition A.3. O

Definition VII.4.9. Identifying the category of mixed Dieudonné complexes with the
category LF P, (e—M od%:p)), the subcategory of saturated mixed Dieudonné complexes

is defined as F'P, (e — Mod%p)), we denote it € — D — Mod9™5".

VII.4.2 Saturated Dieudonné algebra

Definition VII.4.10. We define the décalage functor for Dieudonné stacks. Let 7 :
X — BSglr be a Dieudonné stack, the décalé Dieudonné stack is simply X endowed with

the composed structure morphism : X = BSglr l, BS;T. This décalage construction
defines an endofunctor of D — dSt.

Remark VII.4.11. A Dieudonné simplicial algebra, that is a Dieudonné derived stack
X = BSglr which is relatively affine, has an associated décalé Dieudonné derived stack,
which is not necessarily a Dieudonné simplicial algebra.

Proposition VII.4.12. The décalage construction has a right adjoint given by taking
the fiber product of the structure map along [p] : BS;, — BS,,.

Definition VII.4.13. We define ¢ — D — SCR9"%% the category of saturated mixed
graded Dieudonné simplicial algebras, as the subcategory of mixed graded Dieudonné
algebras having an underlying mixed graded Dieudonné complex which is saturated.
Meaning :

e—D —SCRY*" =¢—D — SCRY Xc_p_proger € — D — Mod9™%
Proposition VII.4.14. The inclusions
i:e—D — Mod"**" C e— D — Mod

and
jie—D—SCRY*" Ce— D — SCRY

both admit a left adjoint.
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Proof. For the first inclusion, it follows from Remark VII.4.6 and Proposition A.3.

By definition of saturated Dieudonné algebras, we have a pullback diagram :

c—D— SCRIsat _ I ¢ _ D_ SCRo"

e I

e — D — Mod*% —* s ¢ — D — ModI"

We show j commutes with filtered colimits and small limits. Since U commutes
with these colimits and limits and it is reflective, we show U o j ~ i o Uy preserves the
required colimits and limits. The functor j preserves these colimits and limits from the
proof of Proposition A.3 and so does Uj since it is the projection of a fiber product and
fibered product commutes with filtered colimits and small limits. We conclude with the
adjoint functor Theorem I1.1.2.

O

Remark VII.4.15. We can notice the décalé Dieudonné derived stack of a Dieudonné
stack has functions given by the saturation of functions of the Dieudonné stack, therefore
this construction gives a geometrical interpretation of saturation.

VIII Future perspectives

VIII.1 Improvements

We will expose many possible directions for improvements and generalizations of the
results. In this thesis, we have defined the de Rham-Witt complex of a simplicial Z,)-
algebra with a Frobenius lift. In order to define de Rham-Witt of a simplicial F-algebra
R, we will need to construct the functor Verschiebung V. We will consider a completed
version with respect to a V-filtration of the Dieudonné de Rham algebra of (W (R), F').

The V functor and the V filtration Following the construction of the de Rham-
Witt complex in [BLM22|, we can construct a Verschiebung map V. The fundamental
compatibility

FV =p

is expected to hold. From which we deduce, assuming we work on p-torsion-free satu-
rated Dieudonné complexes
peV = Ve

That is, we want to construct a decomposition of multiplication by p :

M5 S M

100



The construction of such a map is obvious for M a p-torsion-free saturated derived
Dieudonné complex. We assume to have constructed such a map V.

Definition VIII.1.1. For M a saturated derived Dieudonné complex, we denote
W, (M) the graded mixed complexes representing the functor

N € e — Mod v Map"" (M, N)

where Map"" (M, N) is the mapping space of graded mixed morphisms M — N such

that the composition M ~s M — N is homotopic to zero. Meaning Map¥" (M, N) is
the fiber of .
Mape_ progor (M, N) B Mapyroa(M, N)

We have a canonical restriction map

res : M — lim, W,(M)

We denote W(M) = lim, W,.(M).

The Dieudonné complex M is said to be strict when res is an equivalence.
Remark VIII.1.2. The usual definition of W,.(M) is given by
Wi (M) = M/(Im(V")+ Im(dV"))

they coincide as taking the cofiber of M — M in the category of graded mixed complexes
kills Im(dV") automatically.

We recall an alternative description of the process of strictification.

Corollary VIIL.1.3. ([BLM22, Corollary 2.8.2]) Let M be a saturated Dieudonné
complezx. The restriction map

M — W(M)
exhibits W(M) as a p-completion of M in the derived category of abelian groups.

This corollary motivates defining a derived Dieudonné complex to be strict when is
is derived p-complete.

We can then extend these definitions to derived Dieudonné algebras : a derived
Dieudonné algebra is said to be strict when it is as a derived Dieudonné complex.
However the description of the strictification process seems more involved, in particular,
defining the A/V A as a simplicial algebra seems to be a difficult task in this homotopy
context.

We define the category of strict derived Dieudonné complexes and algebras, respec-
tively DCy;,. and DA,.. We expect the inclusion

DAstr - DA
to admit a left adjoint denoted WSat(—).

Defining f : B € DA, — B°/VB® € SCRg,, we can ask ourselves
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Question VIII.1.4. Does the functor
f: DAy, — SCRy,
admit a left adjoint given by
R +— WSat(DDR(R"%))

where R"? is the reduction of R ?

Remark VIII.1.5. The construction of the left adjoint might not need to consider
the reduction since our main results hold for simplicial algebras which are not p-torsion
free.

De Rham-Witt complex of a [F,-algebra To complete the construction of the de
Rham-Witt complex, we need a universal property of the Witt vectors. In [BLM22,
Proposition 3.6.3], the Witt vectors give the following identification

Homp(W(R), B) = Hompa (R, B°/V B°)

where B is a strict Dieudonné algebra and R is a F,-algebra. The set Hompr(W (R), B)
consists of ring morphisms commuting with the Frobenius morphisms.

We hope to have a similar result in the context of simplicial algebras with Frobenius
lifts.

Definition VIII.1.6. We can define the Dieudonné algebra of a simplicial F,-algebra
R as WSat(Ly (g))-

A more general base Our main results are given for schemes on Z,, we could
develop a theory of graded loopspaces on a derived scheme endowed with a Frobenius
over a general commutative ring k. However some precautions have to be taken, for
example, for the crystalline circle

A
Sy = Spec® (k @ k[1])

to have a derived Frobenius lift, we need k£ to admit a derived Frobenius lift. When
k = Z), such a lift is essentially unique, for & = I, there is not such lift since a
commutative ring of finite p-torsion does not admit a d-ring structure. Therefore the
base commutative ring k must be endowed with a Frobenius lift structure.

Another generalization would be to replace the base Z,) by Z. In this context, all
prime numbers have to be considered for the Frobenius lifts, therefore, we have to use
the more general notion of commutating Frobenius lifts. Furthermore big Witt vectors
need to be used instead of p-typical Witt vectors.

Construction VIII.1.7. Let C be an oo-category. We define the category of commu-
tating endomorphisms on C

chendo .— Fun(BN*,C)

102



where (N*, x) ~ N® is the free abelian monoid on the set N. Sending 1 to the i-th
prime number p; induces a morphism of monoids

N — N*

which gives by restriction
D : CN*endo N Cendo

Taking C = SCRy,,, we define the category of simplicial algebras with commutating
Frobenius lifts as
SCRN*FT = CN*CTLdO X(SCR;ndO)N (SCRP)N

An element in this category is a simplicial algebra A endowed with morphisms
op: A— A

commutating up to coherent homotopy and the data of a homotopy between ¢,|r, and
the canonical Frobenius F'r,,.

This definition is close to the notion of cyclic spectra developed in [NS18| and some
connections with topological cyclic homology might be found.

Combining these notions could allow us to work over any general discrete commu-
tative ring endowed with commutating Frobenius lifts.

Study of derived stacks with Frobenius lift The theory of derived stacks with
Frobenius lift has been quickly description in this thesis but a deeper examination could
be fruitful. In particular, a theory of Postnikov towers could shorten many proofs.

We have proven that dSt!™ is an oo-topos. Extending PropositionB.7, we can ask
ourselves the following question.

Question VIIIL.1.8. Let Cy be the full subcategory of dStE™ on objets which are given
by freely adjoining a Frobenius to a derived affine scheme, these objects are of the form
L(Spec(C)), with C' a simplicial algebra. Does the category Cy admit a site structure
such that the topos of sheaves on Cy identifies with dSt'"™ ? In this case, we would have
the identification :

Sh(Cy) ~ dSt'™

A precise description of the contructions and results of this thesis on derived stacks
with endomorphisms instead of Frobenius lifts could be illuminating. We expect to be
able to recover the construction of the de Rham-Witt complex when considering

Map gyenio (S, X)

gr’

when X admits a Frobenius lift, instead of

Map g7 (SE., X)

gr
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HKR-type filtration Inspired by [MRT20|, we could construct a filtration analogu-
ous to the one on hochschild cohomology. In the classical case, the affinization of the
circle

Aff(SY) ~ BFix

admits a filtration which has BKer as its associated graded stack.

The stack BFiz admits an endomorphism structure induced by the morphism

2|(})] - t@ecaom ez e czy -z ()]

n
sending @ to Q(pX).
This endomorphism is not a Frobenius lift. We denote it [p].

Definition VIII.1.9. Let (X, F') be a derived scheme endowed with an endomorphism,
we define the loopspace of X as

LC((X, F)) = Map gienao (BFiz, [p]), (X, F))

similarly, the graded loopspace is defined as
LE1((X, F)) = Map s (BKer, [p]), (X, F))
Remark VIII.1.10. The "multiplication by p" map of topological spaces
St st

defines an endomorphism of the stack S*. And we can expect an identification of graded
affine stacks with endomorphisms

AfF((S, xp)) = (BFiz, [p])
and also an equivalence
Map ygyenao((S", xp), (X, F)) = Mapygyenao (BFiz, [p)), (X, F))

Definition VIII.1.11. When A is a simplicial algebra over Z,) and F is en endomor-
phism of A, we define the Hochschild cohomology of (A, F') as

HH((A, F)) == Osca(L((Spec(A), Spec(F))))
and the de Rham algebra of (A, F) as

DR((A, F)) = Oscr(L5((Spec(A), Spec(F))))
Remark VIIL.1.12. We expect DR((A, F)) to be very close to

Syma((Lall], %))

at least when A is p-torsion free and the endomorphism can be promoted to a Frobenius
lift.
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We can ask the following

Question VIII1.1.13. Does the Hochschild cohomology of a simplicial algebra with
endomorphism (A, F') admit a natural filtration which has DR(A, F') as its associated
graded simplicial algebra ?

Defining such a filtration can be achieved by constructing a filtered analogue of
our graded circle. However some precautions have to be taken since the natural endo-
morphism on the affinization of the circle Aff(S') is not a Frobenius lift. Therefore
a careful comparision between Frobenius graded loopspace and endomorphism graded
loopspace will probably be necessary.

Prismatic circle We expect our construction of graded circle to have an analogue
over the prismatic site. We would call this object the prismatic circle. Precisely, for
(A, I) a prism, A is a d-ring, therefore it has a canonical Frobenius lift. We can then

consider
MapdStFr (Sl

gr

Spec(A))

We expect taking levelwise mapping space with the crystalline circle to define a
sheaf on the prismatic site. This sheaf could then recover prismatic cohomology from
a mixed graded complex.

Remark VIII.1.14. The above definition is incomplete and needs to be modified to
take into account the ideal I when the prism is not a crystalline prism.

VIII.2 Symplectic forms

One of the main motivations behind our work on the graded Dieudonné loopspaces was
to define a theory of shifted symplectic forms in mixed characteristic. The theory of
shifted symplectic structures and shifted Poisson structures is carried out in [PTVV]
and [CPTVYV]. Furthermore they are helpful for the study of quantization deformations.

We recall some definitions from [PTVV].

Definition VIII.2.1. Let F' be a derived Artin stack over a commutative ring of
characteristic zero k. The space of n-shifted p-forms on F' is

Ap(F’ n) = MapMod(k(p)[_p - ’fl], DR(X)>
and the space of closed n-shifted p-forms on F'is

AP (F,n) == Mape_nroas (k(p)[—p — n], DR(X))

We have a natural forgetful functor

AP(F n) — AP(F,n)
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and the differential induces
dpr : AP(F,n) — APTHA(F n)

Definition VIII.2.2. Let w be a closed 2-form of degree n on F, by adjunction it
induces a morphism of quasi-coherent sheaves on

@w : TF — LF [n]
since F'is a derived Artin stack, therefore Ly is dualizable. The form w is said to be

an n-shifted symplectic form when ©,, is an equivalence.

We generalize these notions to the Dieudonné de Rham complex.

Definition VIIIL.2.3. Let X be a derived scheme over Z,), endowed with a Frobenius
lift F'. The space of n-shifted Dieudonné p-forms on X as

AP(X, F.n) == Mapyod(k(p)[—p — n], DDR(X, F'))
and the space of closed n-shifted Dieudonné p-forms on X as

APN(X, Fyn) = Mape_toqer (k(p)[—p — n], DDR(X, F))

We have a natural forgetful functor
AP(X Fon) — AP(X, F,n)
and the differential induces

dpp : AP(X,F,n) — APTYY(X, F n)

Furthermore, the endomorphism on DDR(X, F'), which we can see as %F on Ly

induces natural transformations :
Frorm : AP(X, F,n) — AP(X, F,n)
and

F,: APY(X, F,n) — AP(X, F,n)

We define a variation on the definition which takes the Frobenius structure into
account.

Definition VIII.2.4. The space of n-shifted Dieudonné p-forms on X as
AL (X, F.n) = Mapysogendo (k(p)[—p — n], DDR(X, F))

where we endow k(p)[—p — n] with the "multiplication by p" endomorphism and the
space of closed n-shifted Dieudonné p-forms on X as

AI;";Z(X> F’ n) = MapE—Modg“re”do (k(p)[_p - TZ], DDR(X7 F))

106



We have a natural forgetful functor
AP(X Fon) — A2 (X, F,n)
and the differential induces
dpr : AL (X, F,n) — AZYY(X Fon)

Remark VIII.2.5. We recall the definition of Frobenius-derivations used for Fedosov
quantization in [BK07|. Let A be commutative ring and M an A-module, a Frobenius-
derivation D : A — M is a morphism of abelian groups such that D(1) =0 and

D(ab) = a?D(b) + V¥ D(a)

This definition suggest yet another notion of n-shifted p-forms, on a simplicial al-
gebra with Frobenius lift (A, F'), based on a notion of Frobenius-twisted cotangent
complex

LYETZ,F) = LA XA A

where the morphism A — A is F.
We expect to be able to define symplectic forms and use them to study deformation
quantizations for derived schemes in mixed characteristic.

The difference between the Frobenius-twisted cotangent complex and the cotan-
gent complex we study here L4 r) seems to be connected to the difference between
p-restricted and partition Lie algebra, see [BM19].

VIII.3 Foliations

We recall from [To20], the definition of derived foliations.

Definition VIIL.3.1. Let X be a derived scheme over a commutative ring k. A derived
foliation on X is the data of a graded mixed derived stack F and a morphism of graded
mixed derived stack F — £97(X) such that

e The projection F — X is relatively affine.

e The quasi-coherent complex Ox(1) is in Tor-amplitude | — oo, m], for an integer
m, where Oz(1) is the 1-weighted part of functions of F relative to X.

e The natural morphism of graded derived stack
F = V(0x(1))

is an equivalence.
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In this definition, we were able to define Dieudonné foliations for possibly non-
connective cotangent complexes ILz using Corollary V.2.7. Indeed, we keep the expected
property that

F = L]:

18 conservative.

We extend the definition of foliations to our framework.

Definition VIIIL.3.2. Let X be a derived scheme over Z,), endowed with a Frobenius
lift. A Dieudonné foliation on (X, F') is the data of a derived Dieudonné stack F' and
a morphism of derived Dieudonné stack F — L£97(X, F') such that

e The projection F — X is relatively affine.

e The quasi-coherent complex Ox(1) is in Tor-amplitude | — oo, —1] where Ox(1)
is the 1-weighted part of functions of F relative to X.

e The natural morphism of graded derived stack endowed with a Frobenius lift
F = V(0Ox(1))

is an equivalence.

Our classification Theorem VII.3.15 gives a more precise description of Dieudonné
foliations.

Theorem VIII1.3.3. Let A be a smooth commutative k-algebra, M a projective A-
module of finite type. We fix a derived Frobenius lift structure on the graded simplicial
algebra Sym(M][1]), with M in weight 1. From Proposition VIL.1.8, it is equivalent
to a classical Frobenius lift F' on A and a linear map of A-modules ¢ : M — M. The
space of Dieudonné foliations F over A having M as a cotangent complex is discrete
and in bijection with the set of Dieudonné algebra structures on the graded commutative
k-algebra @; Ny M[—i] endowed with its natural canonical Frobenius lift structure.

This theorem gives an easier description of Dieudonné foliations, which have a quite
abstract definition.

Example VIII.3.4. We outline the construction of a fundamental example of a
Dieudonné foliation using the previous theorem. Let (X, F) be a smooth derived
scheme endowed with a Frobenius lift. We define the tangent complex T x r) as the
dual of the cotangent complex L(x py in the category of (X, F)-modules, we note that
T (x,r) does not admit Tx as an underlying Ox-module : an element of T (x ) can be
thought of as a sequence of elements of Ty which satisfy compatibility conditions with
the Frobenius morphism. We fix a sub-bundle I of T(x ) which is stable by the Lie
bracket. The derived stack
F =V(I'[1])
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has a canonical mixed graded structure and a Frobenius structure. The canonical map
I — T(X,F)

induces a morphism

F = LI(X,F)
which makes F into a Dieudonné foliation.

Example VIIIL.3.5. Let f : X — Y be a morphism of derived schemes with Frobenius
lifts. Pulling back along f should define a canonical foliation f*0y € Fol(X).

Extending on the theory of Dieudonné foliations, we hope to construct, for a fixed
Dieudonné foliation, the de Rham-Witt complex along the leaves of the foliation, from
which we will deduce crystalline cohomology along the foliation.

From these constructions, we can expect results on Dieudonné foliations regarding
the vanishing of cohomology classes. In [To20|, for a crystal E on a foliation F, coho-
mology classes ¢;(E(0)) in HE,(X/S) are shown to vanish in H%z(X/F) where F is
a foliation on X relative to S. These classes are shown to come from classes in crys-
talline cohomology and a similar vanishing theorem is proven. These classes are, in fact,
canonically lifted to rigid cohomology classes and the theory of Dieudonné foliations
could help better understand the vanishing of the crystalline classes and give similar
results for rigid cohomology classes.
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Appendices

A Categorical results

Proposition A.1. Let C be an oco-topos, G a group in C"%. G is naturally a group in
C and it has a compatible endomorphism « : G — G which induces a forgetful functor
a*:G—C — G —C. Then there is an equivalence :

G — C™° ~ CFP,. (G — C)

Proposition A.2. Let Cy — Co1 < Ci a pullback diagram of co-categories and G be
group in Cy X¢,, C1. G induces a group Gy in Cy, Gy in Cy, Go1 in Coy. The canonical
morphism is an equivalence :

G — (CO X Co1 Cl) = (GO - CO) X Go1—Co1 (Gl - Cl)

Proposition A.3. Let C a presentable category and n an endofunctor of C which com-
mutes with filtered colimits and small limits. Then the inclusion functor

U:FP(C) C LFP(C)

admits a left adjoint.

Proof. The functor U commutes with filtered colimits and with small limits as the func-
tor 1) does. The categories F'P,(C) and LF P(C) are presentable as limits of presentable
categories, see Proposition I1.2.1. Using the adjoint functor theorem, Theorem II.1.2,
concludes the proof. O

B Geometrical results

Proposition B.1. Let F' be an affine stack with C(F') projective of finite type as a
complex on k. We denote p : F' — x the canonical structure morphism. Let M and N
be k-complexes.

C(F) ® Mapnoa(M, N) — Mapoconry(p*M,p*N)

is an equivalence, where Mapyoq(M, N) is considered with its k-module structure.

Proof. As a complex, C'(F') is a retract of a free complex, therefore tensoring with C'(F)
preserves all limits. Now, the morphism

C(F) ® Mappsea(M, N) = Mapgconr) (M, N)

is compatible with colimits in M and limits in N. We are reduced to proving the result
for M = k and N = k, where the result is obvious. O
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Proposition B.2. Let A be a simplicial algebra over F,,. Endowing a simplicial algebra
over A with its canonical Frobenius endomorphism defines a functor

B € SCRy v+ (B, Frg) € SCR™

which admits a right adjoint given by laking the homotopy equalizer
Frp
(B,F) € SCRY"™ s BF~I'"5 .= ¢q(B == B) € SCRy4
F
and a left adjoint given by taking homotopy coinvariants

Fr
(B, F) € SCRY™ + Bpep,, = coeq(B :B§ B) e SCR4
F

Proof. We sketch the proof. Let B € SCR4 and C € SCRG%.

In the following diagram :

B0 1, ¢
lFrB lFrc lF
B-—1l.c0c 1, ¢

the left diagram is a commutative diagram.

For a fixed morphism f : B — (', a homotopy making the outer diagram commute
is equivalent to a homotopy between Fro o f and F o f in the following diagram.

The latter is then the data of f factoring through

Fro

CF:FTC = eq(C — C)
F

The dual proof for the left adjoint goes similarly.

A similar proof yield the following proposition.
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Proposition B.3. Let A be a simplicial algebra over F,. Endowing a derived stack
over A with its canonical Frobenius endomorphism defines a functor

X €dSty v (X, Fry) € dSt§®

which admits a right adjoint given by taking the homotopy equalizer
N Frx
(X, F) € dSt% s X=X = eq(X == X)) € dSt,
F
and a left adjoint given by taking homotopy coinvariants
d Frx
(X, F) € dSt3" — Xpapr, = coeq(X == X) € dSty
F

Proposition B.4. Let C, be the full subcategory of dSt'" on objects which are given by
freely adjoining a Frobenwus lift to a derived affine scheme, these objects are of the form
L(Spec(C)), with C a simplicial algebra. See Proposition VII.2.27 for the construction
of L.

The subcategory Cy generates dStE™ under colimits.

Proof. The comonad T induced from the adjunction
L:dSt=dSt" U

induces a resolution of X denoted T*™!(X) using the bar construction, by combining
the fact that 7' commutes with small colimits with the Barr-Beck Theorem, see [Lurl?,
Theorem 4.7.3.5] and the proof of Proposition VII.2.21. Therefore X is given by the
geometric realization of T (X).

Now we consider Y = L(Z) obtained by freely adjoining a Frobenius lift to a derived
stack. Writing Z as a colimit of derived affine schemes, using the co-Yoneda lemma

Z =~ colim;Spec(A;)

we deduce
Y = L(colim;Spec(4;)) =~ colim;L(Spec(4;))

Corollary B.5. The restriction of the Yoneda embedding gives a functor
dSt'" — Fun(Cy, S)

which s fully faithful.

Similar arguments provide analoguous results for derived stacks endowed with en-
domorphisms.

112



Proposition B.6. Let Cy be the full subcategory of dSt"® on objets which are given
by freely adjoining an endomorphism to a derived affine scheme, these objects are of
the form L(Spec(C)), with C' a simplicial algebra.

The subcategory Cy generates dSt"% under colimits.

Corollary B.7. The restriction of the Yoneda embedding gives a functor
dSt — Fun(Cy,S)
which s fully faithful.

Proposition B.8. Let A — k be an augmented cosimplicial k-algebra such that
H°(A) — k is an isomorphism, where k is a principal torsion-free commutative ring.
Let n > 0 be such that

H'(A) =0

for 1 <i < n. Note that this condition is empty for n = 0. Then there is a cofibrant
replacement of A

QA S A
such that

o All coface maps QA; — QA; are flat.

o All coface maps QA; — QAq are isomorphisms for i <n — 1.
Proof. We construct a tower of cosimplicial algebras by adding successive cells to kill
the various cohomology groups since the model structure on cosimplicial algebras is cofi-

brantly generated. Let us define X := Spec®(A). We assume that we have constructed
a cofibrant model X™ = Spec®(A,,) with a canonical morphism

Pm s X = X™

which is an isomorphism on all cohomology groups H* for i < n. We have a natural
identification
H™ M (A) 2 [X, K(Gg,m + 1)]

We define I = [X, K(G,, m + 1)] as a set, and the tautological morphism
X = K(Gy,m+1)!

We define X' (1) :== X™ x K(G,,m+1)! = Spec®(A™(1)), where A™(1) is the tensor
product of the free cosimplicial algebra on a coproduct of I copies of k[—m — 1] and

A™. The natural morphism
A™(1) — A

is surjective on the H™™! group. From the isomorphisms
H™ Y A™(1)) 2 H™ YK (G, m 4 1)) x H™HA™) 22 Endg,(G,)") x H™(A™)
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We deduce
Hm+1(A/m(1)) ~ k(]) % Hm+1(Am)

because k is torsion-free. The kernel of the surjective morphism
KD s ™ (A™) — H™HH(A)
is denoted J. We deduce a map
X™ = X"™(1) = K(Gg,m +1)7
which factors through

X™(1) = X"(1) Xg(Gams1)? BE(Ga,m+1)7

We iterate this construction to obtain a tower
X™— = X"(k) = X™(k)— .. X™(1) = X™(1)

which gives
Q0 X™ — X

where X™*! is the limit of the tower
X™k) = X™(k) — .. X™(1) = X"™(1)
We check that o, is an isomorphism on the H® groups where i < m + 1 and we define

QA by requiring
Spect (QA) = colim, X™

where we take the colimit in the category of affine stacks.
The flatness of the transition morphisms come from the flatness of
E(Gg,i) — K(Gyg,1)
when ¢ > 0.

Now to get the last assertion, we choose a specific model for K(G,,i) and E(G,, 7).
We take the following :

K(Gg,i) = SpecA(FTeeCOSCR(k‘[—m]))

and
K(Gg,i) = SpecA(FTeeCOSCR(km_l 1d, k)

As the associated cosimplicial algebras of these affine stacks satisfy
Y, = Yo
where ¢ < m — 1, this concludes the proof. O
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Remark B.9. We notice in the proof that if H""!(A) is a free k-module, A" 1(1) — A
is an isomorphism on H™! groups, therefore we can take X™*1(1) to be X’"*1(1) and
we obtain a cofibrant model such that QA,, — QAq is also an isomorphism.

From the remark, we deduce :

Corollary B.10. The formal n-sphere
S} = Spec®(DH*(S™, k))

is (n — 1)-connective.
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