
HAL Id: tel-03848058
https://theses.hal.science/tel-03848058

Submitted on 10 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Riemannian-Geometry approach to the online
estimation of elliptical distribution

Jialun Zhou

To cite this version:
Jialun Zhou. A Riemannian-Geometry approach to the online estimation of elliptical distribution.
Signal and Image Processing. Université de Bordeaux, 2021. English. �NNT : 2021BORD0252�. �tel-
03848058�

https://theses.hal.science/tel-03848058
https://hal.archives-ouvertes.fr
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Titre : Une approche basée sur la géométrie Riemannienne
pour l'estimation en ligne des distributions elliptiques

Résumé : Durant les dix dernières années, les méthodes basées sur la
géométrie Riemannienne et la géométrie de l'information ont eu un impact important
sur le traitement des signaux et des images, la science des données, et l'intelligence
artificielle. L'objectif de cette thèse est de proposer de nouveaux algorithmes, basés
sur la géométrie Riemannienne et la géométrie de l'information, pour l'estimation en
ligne des lois dites à contours elliptiques, et de leurs mélanges. En général,
l'estimation en ligne est réalisée à travers la minimisation d'une divergence
statistique, la divergence de Kullback-Leibler, grâce à l'application d'une méthode de
gradient Riemannien stochastique. Afin d'implémenter cette méthode, l'espace des
paramètres de la famille de lois elliptiques (ou de mélanges de lois elliptiques) doit
être équipé d'une métrique Riemannienne, de préférence la métrique d'information
de Fisher. Malheureusement, pour les lois elliptiques, cette métrique est souvent
inconnue, ou n'a pas d'expression analytique exploitable. Pour répondre à cette
difficulté, nous avons introduit une alternative à la métrique d'information de Fisher,
que nous avons appelée métrique d'information par composantes. En utilisant cette
métrique, nous avons développé la méthode du gradient d'information par
composantes. La méthode du gradient d'information par composantes est une
méthode en ligne, avec un faible coût calculatoire, qui lui permet de prendre en
compte les jeux de donnés massifs ou de grandes dimensions. De plus, cette
méthode a deux variantes, une à pas d'optimisation décroissants, et l'autre à pas
d'optimisation adaptatifs. Cette seconde variante permet d'éviter le choix manuel
(habituellement très long et pénible) des pas d'optimisation, et d'atteindre une vitesse
de convergence qui s'approche d'une vitesse exponentielle. Nous avons appliqué la
méthode du gradient d'information par composantes à l'estimation de deux familles
de lois elliptiques, les lois Gaussiennes généralisée multivariées, et les lois de
Student multivariées, ce qui nous a permis de mettre en évidence à la fois son faible
coût calculatoire et sa vitesse de convergence optimale. Finalement, nous avons
réalisé des applications concrètes, en traitement des images et vision par ordinateur,
à la conversion de couleurs et à la classification de textures. Pour les images de
haute résolution (avec plus de 2 millions de pixels), notre méthode du gradient
d'information par composantes n'a besoin que d'une centaine de secondes pour
effectuer le travail, avec des résultats nettement meilleurs qu'avec les autres
méthodes.

Mots clés : Estimation en ligne, Géométrie Riemannienne, Gradient
d'information, traitement des signaux et images

Title : A Riemannian-Geometry approach to the online
estimation of elliptical distribution

Abstract : Over the past ten years, methods based on Riemannian geometry and
on information geometry have had a notable impact on signal and image processing,
as well as on data science and artificial intelligence. The aim of this thesis is to



propose new algorithms, based on Riemannian geometry and information geometry,
for the online estimation of so-called elliptically-contoured distributions and of their
mixture distributions. In general, online estimation is achieved by minimising a
statistical divergence function, the Kullback-Leibler divergence, using a Riemannian
stochastic gradient method. In order to implement this method, the parameter space
of the family of elliptically-contoured distributions has to be equipped with a
Riemannian metric, preferably the Fisher information metric. Unfortunately, this
metric is often unknown, or does not have a useful closed-form expression. In order
to overcome this difficulty, we have introduced an alternative metric, which we have
called the component-wise information metric. Using this metric, we have developed
the component-wise information gradient method. The component-wise information
gradient method is an online method, with a low computational cost, which allows it
to process large or high-dimensional datasets. Moreover, this method has two
versions, a decreasing step-size version and an adaptive step-size version. This
second version avoids the often very laborious manual choice of step-sizes, and also
achieves a nearly-exponential rate of convergence. We have applied the component-
wise information gradient method to two families of elliptically-contoured distributions,
multivariate generalised Gaussian distributions, and multivariate Student t-
distributions, and experimentally verified the low computational cost and optimal rate
of convergence of this method. Finally, we have carried out two concrete applications,
in image processing and computer vision, to color conversion and to texture
classification. For high-resolution images (with more than 2 million pixels), our
component-wise information gradient method only needs about a hundred seconds in
order to do the job, with much better results, in comparison to other methods.

Keywords : Online estimation, Riemannian geometry, Information gradient,
Signal and image processing
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Frédéric Pascal, Nicolas Le Bihan, et Florent Bouchard, pour le temps qu’ils ont accepté
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1 Introduction 17
1.1 ECD and their mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 The estimation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 State of the art 24
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Geometry of ECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Affine-invariant metric . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Fisher information metric . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Estimation of ECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Euclidean methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Riemannian methods . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Estimation of MECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 Euclidean methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Riemannian methods . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 The component-wise information metric 38
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Geometry of (µ,Σ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Geometry of (µ,Σ,β) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Mixtures of ECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

10



3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Riemannian information gradient method 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Application to scatter-matrix estimation . . . . . . . . . . . . . . . . . . . 53
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Estimation of ECD with CIG 56
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 CIG offline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 CIG Online . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Global convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Online estimation of MECD 65
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 CIG-DS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 CIG-AS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Experiments and applications 72
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2 Computer experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.1 ECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.2 Mixture of ECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3 Applications to real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.3.1 Colour transformation with MGGD . . . . . . . . . . . . . . . . . . 80
7.3.2 Texture segmentation with Mixture of MGGD . . . . . . . . . . . . 84

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8 Conclusion and perspectives 87

A Proofs of chapter 4 88
A.1 Proofs of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.1.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.1.2 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.1.3 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.1.4 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.1.5 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2 Proofs of geometric lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.2.1 Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.2.2 Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.2.3 Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.3 Conditions of the martingale CLT . . . . . . . . . . . . . . . . . . . . . . . 97
A.4 Background on the Fisher information metric . . . . . . . . . . . . . . . . 99

11



B Proof for chapter 5 101
B.1 Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
B.2 Proof of Proposition 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.3 Proof of Propositions 8 and 9 . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.4 Proof of Proposition 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.5 Proof of Corollary 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C Proofs for Chapter 6 105
C.1 Proof of proposition 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
C.2 Proof of proposition 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
C.3 Proof of Polyak-Lojasiewicz inequality in Riemannian context . . . . . . . 109

Bibliography 110

12



Résumé en Français

Cette thèse s’appuie sur trois articles de revue [88, 90, 89], dont le premier est déjà paru
dans le journal Entropy, et les deux autres sont en cours de révision, dans les journaux
Signal Processing et IEEE Transactions on Signal Processing, respectivement. Sa contri-
bution principale est de proposer une nouvelle famille de méthodes pour l’estimation des
lois à contours elliptiques et de leurs mélanges, que nous avons appelées méthodes CIG
(en anglais, component-wise information gradient).

Les lois à contours elliptiques
Rappelons qu’une loi à contours elliptiques est une loi de probabilité sur Rm, qui a une
densité de probabilité de la forme

p(x|θ) =
c(β)√
det(Σ)

gβ(δ) (1)

où θ = (µ,Σ, β), avec µ ∈ Rm le paramètre de position, Σ une matrice définie positive,
dite matrice de dispersion, et β > 0 le paramètre de forme. Dans (1), c(β) est une
constante de normalisation, gβ une certaine fonction, dite fonction génératrice de la loi,
et δ = (x− µ)†Σ−1(x− µ).

Par ailleurs, un mélange de lois à contours elliptiques est une loi de probabilité sur
Rm, avec une densité de probabilité de la forme

f(x|θ) =
K∑
k=1

wk p(x|θk) (2)

où K est le nombre de composantes de mélange, et chaque composante de mélange p(x|θk)
est de la forme (1). Les paramètres wk sont les poids du mélange, et vérifient wk ∈ (0, 1)
avec

∑K
k=1wk = 1. Le paramètre “général" θ est donné par θ = (wk, θk ; k = 1, . . . , K),

où θk = (µk,Σk, βk).
Parmi les lois à contours elliptiques, nous avons souvent considéré les cas particuliers

des lois gaussiennes généralisées multivariées, et des lois t de Student multivariées. Ces
deux sous-familles de lois ont prouvé leur utilité en traitement des images, vision par
ordinateur, traitement radar, et imagerie biomédicale [35, 81, 26, 50].

Également, les mélanges de lois gaussiennes généralisées multivariées, ou de lois T
de Student multivariées, sont reconnues en tant que généralisations des mélanges de lois
gaussiennes multivariées, aux données à queues lourdes ou corrompues par des valeurs
aberrantes [30, 41]. Ces mélanges ont été appliqués aux traitements des images et des
vidéos, et plus généralement en analyse des données [57, 76, 38].
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Contexte de la thèse
Le problème de l’estimation des lois à contours elliptiques est un problème classique,
pour lequel il existe déjà plusieurs méthodes de référence. En revanche, l’estimation des
mélanges de lois à contours elliptiques est un problème plus récent dans la littérature, et
bien plus difficile.

En règle générale, les méthodes existantes sont basées sur l’estimation par maximum
de vraisemblance (la méthode des moments, applicable à l’estimation des lois gaussiennes
généralisées multivariées, est une exception à cette règle [82]). Bien sûr, l’estimation par
maximum de vraisemblance garantit la consistance (convergence des estimateurs vers les
vrais paramètres) et l’efficacité asymptotique (la performance asymptotique optimale).
Cependant, les estimateurs du maximum de vraisemblance, pour les lois à contours ellip-
tiques et leurs mélanges, ne peuvent pas être calculés sous forme explicite. Plutôt, des
méthodes itératives spéciales doivent être développées pour les obtenir.

Pour les lois à contours elliptiques, la méthode itérative la plus connue, pour calculer
l’estimateur du maximum de vraisemblance, est la méthode du point fixe [59, 50, 84].
Dans [75], cette méthode est comparée à des méthodes d’optimisation riemannienne,
comme le gradient conjugué ou BFGS riemannien.

Pour les mélanges de lois à contours elliptiques, l’approche standard pour calculer
l’estimateur du maximum de vraisemblance reste la méthode espérance-maximisation
(e.m.) [23, 37, 59]. Des méthodes plus sophistiquées n’ont été proposées que très récemment,
comme la méthode d’optimisation proximale alternée de [38].

Dans le cadre de la thèse, nous avons commencé par recenser les méthodes existantes,
pour réaliser l’estimation par maximum de vraisemblance des lois à contours elliptiques
et de leurs mélanges. Nous avons classé ces méthodes en méthodes hors ligne/en ligne, et
aussi en méthodes euclidiennes/riemanniennes.

Les méthodes hors ligne utilisent toutes les données disponibles, à chacune de leurs
itérations. En revanche, les méthodes en ligne n’utilisent qu’une seule donnée, ou mini-
batch, à chaque itération. Les méthodes hors ligne sont mieux adaptées pour les jeux de
données de taille modérée, alors que les méthodes en ligne sont mieux adaptées aux jeux
de données de haute dimension ou de grande taille.

Par ailleurs, la différence entre les méthodes euclidiennes et riemanniennes est la suiv-
ante. Les paramètres des lois à contours elliptiques et de leurs mélanges obéissent à
certaines contraintes non linéaires (par exemple, les matrices de dispersion doivent être
définies positives). Les méthodes euclidiennes imposent ces contraintes à travers des tech-
niques ad hoc (par exemple, rajouter une constante positive à la matrice de dispersion,
afin qu’elle reste définie positive [38]), alors que les méthodes riemanniennes font appel à
la géométrie intrinsèque des paramètres.

En réalité, les lois à contours elliptiques sont mieux adaptées à la modélisation des
jeux de données de taille modérée, alors que les mélanges de lois à contours elliptiques
répondent mieux aux jeux de données de grande taille (puisqu’on peut augmenter le
nombre de composantes de mélange). Il n’est donc pas surprenant que les méthodes
existantes pour l’estimation des lois à contours elliptiques soient toutes des méthodes
hors ligne. Pour l’estimation des mélanges de lois à contours elliptiques, il est beaucoup
plus intéressant de développer des méthodes en ligne. Or, on remarque que de telles
méthodes n’ont été proposées que très récemment [57, 38]. De plus, il n’existe aucune
méthode en ligne riemannienne, dans la littérature à présent.

C’est dans ce contexte que nous avons introduit, à travers cette thèse, des méthodes
d’estimation en ligne riemanniennes, pour les lois à contours elliptiques et leurs mélanges.
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Contribution de la thèse
La contribution principale de cette thèse est d’avoir introduit une nouvelle famille de
méthodes, appelées méthodes CIG (pour component-wise information gradient), pour
l’estimation des lois à contours elliptiques et de leurs mélanges. Le cas des lois à contours
elliptiques a été traité en premier, dans [90], et celui des mélanges un peu plus tard,
dans [89].

Les méthodes CIG sont des méthodes d’estimation riemanniennes, basées sur une
nouvelle géométrie pour les lois à contours elliptiques, également développée dans le cadre
de la thèse. Cette géométrie est fondée sur une métrique riemannienne, que nous avons
proposée, sous le nom de CIM (pour component-wise information metric).

La motivation pour l’introduction de la CIM, et ensuite des méthodes CIG, se trouve
dans notre premier article de revue [88]. Cet article a étudié une méthode d’estimation
en ligne riemannienne, appelée méthode du gradient d’information riemannien.

La méthode du gradient d’information riemannien est une extension au cadre rieman-
nien d’une méthode classique assez connue, qui est la méthode du gradient naturel [4].
C’est une méthode en ligne riemannienne, facile à utiliser, et avec d’excellentes propriétés
de convergence.

En effet, la méthode du gradient d’information riemannien ne demande aucun cali-
brage de la part de l’utilisateur (précisément, la sélection des pas d’optimisation se fait
de manière automatique). En même temps, elle est rapidement convergente et asympto-
tiquement efficace.

Cela étant dit, cette méthode a un champ d’application limité, comme elle ne peut
être appliquée que si la métrique d’information de Fisher est connue sous forme explicite.
Par exemple, elle ne permet d’estimer les lois à contours elliptiques que dans le cas où le
paramètre de forme est déjà connu (dans ce cas, la métrique d’information de Fisher a
été donnée sous forme explicite dans [8]).

Dans [90], notre objectif était de trouver une méthode capable de remplacer la méthode
du gradient d’information riemannien, pour l’estimation des lois à contours elliptiques
“complètes”, avec un paramètre de forme inconnu. Au lieu de chercher l’expression de la
métrique d’information de Fisher, qui devenait de plus en plus compliquée, nous avons
choisi de la remplacer par une autre métrique, plus simple et plus facile à calculer. C’est
ainsi que nous avons introduit la CIM, qui est une approximation diagonale par blocs de
la métrique d’information de Fisher.

Intuitivement, les méthodes CIG sont liées à la CIM de la même manière que la
méthode du gradient d’information riemannien est liée à la métrique d’information de
Fisher. Cela permet de retenir au moins une partie des propriétés de convergence de la
méthode du gradient d’information riemannien, tout en élargissant son champ d’application
aux lois à contours elliptiques avec un paramètre de forme inconnu.

La méthode CIG pour l’estimation des lois à contours elliptiques a deux versions,
une version hors ligne et une version en ligne. La version en ligne est particulièrement
intéressante, dans les applications aux jeux de données réels de haute dimension ou de
grande taille. Par exemple, elle est capable de réaliser une transformation de couleurs,
entre deux images qui font plus de 106 pixel, en 21 secondes, seulement. Pour cette même
transformation, les méthodes existantes, dans l’état de l’art, mettent jusqu’à 2 heures,
pour une performance comparable. En fait, les méthodes CIG en ligne ont même donné
d’excellents résultats sur des images de haute définition, bien plus grandes.

Nous avons effectué des expériences numériques détaillées, pour comparer les méthodes
CIG aux méthodes déjà existantes pour l’estimation des lois à contours elliptiques.
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Ces expériences ont montré que la méthode CIG en ligne est similaire à la méthode
des moments (de [82]), par sa faible complexité calculatoire et son temps de calcul réduit,
mais aussi similaire à la méthode du point fixe (de [50, 59, 84]), grâce à sa performance
supérieure. La méthode CIG en ligne réussit donc à réunir les meilleures qualités des
méthodes existantes, à la fois en termes de temps de calcul et de performance.

Dans notre dernier article [89], nous avons étendu les méthodes CIG, de l’estimation
des lois à contours elliptiques à l’estimation de leurs mélanges. Nous n’avons considéré
que la méthode CIG en ligne, comme les lois de mélange sont habituellement utilisées
pour modéliser des jeux de données plus compliqués, de grande taille. En revanche, nous
avons encore développé deux versions de la méthode CIG en ligne, la première avec des
pas d’optimisation décroissants, et la deuxième avec des pas d’optimisation adaptatifs.
Nous avons appelé ces deux versions CIG-DS et CIG-AS (pour decreasing step-size et
adaptive step-size, respectivement).

La méthode CIG-AS implémente une sélection adaptative des pas d’optimisation. De
plus, on peut montrer qu’elle a un taux de convergence très rapide, puisqu’elle réalise ce
qu’on appelle un taux de convergence linéaire (ce qui signifie que l’erreur d’optimisation
décrôıt avec une vitesse exponentielle [2]). La méthode CIG-AS est très intéressante, d’un
point de vue pratique aussi bien que théorique.

Cependant, dans les expériences avec des données simulées ou réelles, nous avons
implémenté une méthode hybride, entre CIG-DS et CIG-AS. En effet, CIG-DS est préférable
dans la phase préliminaire de l’optimisation, alors que CIG-AS est préférable dans la phase
finale, à l’approche d’un point cible. De manière impressionnante, cette méthode hybride
avait une meilleure performance que les méthodes existantes dans l’état de l’art, telles que
la méthode du gradient stochastique euclidien et la méthode e.m. [37, 57]. De plus, cette
méthode hybride avait un temps de calcul deux à trois fois plus faible que les méthodes
de l’état de l’art.

En résumé, les méthodes CIG ont plusieurs avantages sur les méthodes existantes pour
l’estimation des lois à contours elliptiques et de leurs mélanges.

• les méthodes CIG en ligne n’utilisent qu’une seule donnée ou mini-batch (de taille
constante), pour chaque itération. Cela leur permet de prendre en compte des jeux
de données de haute dimension ou de grande taille, avec un temps de calcul assez
réduit. A l’inverse, la majorité des méthodes existantes sont des méthodes hors ligne
(point fixe ou e.m. [50, 59]), qui doivent utiliser des ressources en temps et mémoire
beaucoup plus importantes, pour traiter des jeux de données plus grands.

• la méthode CIG-AS implémente une sélection adaptative, complètement automa-
tique, des pas d’optimisation. Cela permet d’éviter une phase de calibrage avec
sélection manuelle des pas, habituellement longue et pénible. La majorité des
méthodes d’estimation en ligne sont très sensibles aux pas d’optimisation, et doivent
faire appel à une phase de calibrage (voir la discussion dans [80]).

• les méthodes CIG en ligne garantissent une convergence rapide et une précision
élevée des estimateurs, même en comparaison avec des méthodes hors ligne. Les
autres méthodes en ligne décrites dans l’état de l’art (notamment [38, 57]) restent
difficiles à mettre en place lorsque les paramètres de forme des lois à contours el-
liptiques sont inconnus. Dans ce cas, ou bien elles manquent de précision, ou bien
elles ont besoin d’utiliser des mini-batch d’une taille croissante.
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Organisation de la thèse
La thèse contient sept chapitres, dont le contenu s’organise de la façon suivante.

• le chapitre 1 est un chapitre introductif. Il rappelle la définition des lois à con-
tours elliptiques et de leurs mélanges, et présente de façon générale les différentes
approches à leur estimation. Ensuite, il décrit la contribution et l’organisation de
la thèse.

• le chapitre 2 contient une revue des travaux existants dans la littérature, sur la
géométrie des lois à contours elliptiques, ainsi que sur l’estimation de ces lois et
de leurs mélanges. Les sections 2.3 et 2.4 présentent les méthodes existantes pour
l’estimation des lois à contours elliptiques et de leurs mélanges, respectivement. A
la fin du chapitre, ces méthodes sont regroupées dans les tableaux 2.1 et 2.2, sous
une forme synthétique.

• le chapitre 3 contient la contribution de la thèse à la géométrie des lois à contours
elliptiques et de leurs mélanges : l’introduction d’une nouvelle métrique Riemanni-
enne, appelée CIM (component-wise information metric), dans les sections 3.3 et 3.4.
Ces deux sections donnent l’expression de la CIM, du gradient riemannien qui lui est
associé (le CIG), et de la rétraction à utiliser avec ce gradient, pour l’estimation des
lois à contours elliptiques et de leurs mélanges, respectivement. A la fin du chapitre,
ces expressions sont réunies dans le tableau 3.5. Elles seront fondamentales pour les
nouvelles méthodes d’estimation, introduites dans les chapitres 5 et 6.

• le chapitre 4 introduit la méthode du gradient d’information riemannien, basée sur
notre premier article en revue [88]. Cette méthode est applicable au cas particulier
des lois à contours elliptiques avec un paramètre de forme connu. Ses propriétés
de convergence sont énoncées dans les Propositions 1 à 5. Celles-ci montrent que
la méthode du gradient riemannien d’information converge rapidement, et qu’elle
est asymptotiquement efficace, tout en ayant une sélection automatique des pas
d’optimisation.

• le chapitre 5 introduit la méthode CIG, pour l’estimation des lois à contours el-
liptiques complètes, issue de notre article en revue [90]. La section 5.2 décrit la
méthode CIG hors ligne (Algorithme 1), et donne des conditions suffisantes pour sa
convergence, dans la proposition 6. La section 5.3 décrit la méthode CIG en ligne
(Algorithme 2), ainsi que ces propriétés théoriques (taux de convergence, normalité
asymptotique), dans les propositions 7 à 9.

• le chapitre 6 introduit la méthode CIG en ligne pour l’estimation des mélanges de
lois à contours elliptiques, issue de notre article en revue [89]. La section 6.2 décrit
la version à pas d’optimisation décroissants de cette méthode (Algorithme 3), et la
section 6.3 décrit la version à pas d’optimisation adaptatifs. La convergence et le
taux de convergence de ces deux versions sont donnés par les propositions 11 et 12.

• le chapitre 7 met en évidence les propriétés des méthodes CIG, à travers des ap-
plications à des données simulées et réelles. Il compare aussi les méthodes CIG
aux méthodes existantes dans la littérature, en termes de leur performance et de
leur temps de calcul. Dans ce chapitre, la section 7.2 présente les applications aux
données simulées, alors que la section 7.3 s’adresse aux données réelles.
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Chapter 1

Introduction

1.1 ECD and their mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 The estimation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1 ECD and their mixtures
Elliptically-contoured distributions (ECD) are a far-reaching extension of multivariate
Gaussian distributions. They go by this name because, when an ECD has a probability
density function, its contours (level surfaces) are multi-dimensional ellipsoids.

The common centre of these ellipsoids is determined by the location parameter (or expec-
tation) µ ∈ Rm, while the squares of the principal axes are proportional to the eigenvalues
of the scatter matrix Σ ∈ Pm (here, Pm denotes the space of m×m symmetric positive-
definite matrices). An additional shape parameter β ∈ R+ (For some distributions it is
also called degree of freedom or scale parameter) determines the factor for this propor-
tionality.

Let X be an m-dimensional random vector following an ECD model. Its probability
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density function (if it exists) takes on the form

p(x|θ) = c(β)
1√

det(Σ)
gβ(δ) (1.1)

where θ = (µ,Σ, β), the constant c(β) is a normalizing factor, and δ = (x−µ)†Σ−1(x−µ).
Here, † denotes the transpose of the matrices. The density generator function gβ depends
on the specific sub-family of ECD distributions.

ECD were originally introduced in [46] and investigated in [17, 27, 31]. They inherit
a lot of the nice properties of multivariate Gaussian distributions, and also make up for
some of their deficiencies. Compared with multivariate Gaussian distribution, ECD are
more flexible and powerful (e.g. they allow for heavy tails), and contain many widely-
used sub-families of statistical distributions (elliptical Gamma, Pearson type II, elliptical
multivariate logistic distributions, ...).

In terms of applications, the most popular sub-families of ECD are Multivariate Gen-
eralized Gaussian Distributions (MGGD), and Multivariate Student t-Distributions [34,
47, 69]. These are location-scale distributions, and are further parameterised by a shape
parameter, or a degrees of freedom parameter. MGGD are used in image processing,
as models for wavelet and curvelet coefficients, and as models for three-channel colour
vectors, in image denoising, context-based image retrieval, image thresholding, texture
classification, and image quality assessment [6, 12, 21, 35, 70, 81]. MGGD are also used
in video coding and denoising, radar signal processing, and biomedical signal process-
ing [24, 26]. Some applications of Student t-distributions are presented in [50], involving
image denoising. In radar imaging, the Student t-distribution is related to the so-called
G0 model within the family of spherically invariant random vectors (SIRVs), which is
largely exploited in the context of SAR or PolSAR imaging, for tasks such as despeckling,
classification, segmentation or detection [10, 20, 29, 32].

Mixtures of ECD generalise mixtures of multivariate Gaussians (we will use the ab-
breviation MECD). An MECD is a convex combination of a finite number of ECD. Its
density function is given by

f(x|θ) =
K∑
k=1

wk p(x|θk) (1.2)

Where K is the number of mixture components (or order of the mixture). The parameters
wk are called mixture weights and must satisfy wk ∈ (0, 1) and

∑K
k=1wk = 1. The function

p(x|θk) is the k-th component of the mixture, with its parameters θk = (µk,Σk, βk), given
as in equation (1.1). We will use θ to denote the ordered set of all the parameters of this
mixture model θ = (wk, µk,Σk, βk; k = 1, · · · , K).

MECD are capable of modelling general, real-world probability distributions. For
example, they have been recognized as generalizations of Gaussian mixture models, for
data with heavy tails or outliers [30, 41]. Mixtures of MGGD have been applied to object
or action recognition in videos [57]. Moreover, mixtures of Laplace distributions have been
applied to image denoising [76]. Mixtures of Multivariate Student T-distributions have
been used for robust modelling, clustering and classification of data with outliers [5, 38, 52,
60]. Based on MECD model, a new clustering algorithm for PolSAR images segmentation
is introduced in [66]

Because ECD and MECD have been successful in real-world signal and image pro-
cessing applications, much attention has been devoted to developing effective methods for
estimating their parameters. The estimation of ECD is an important problem that has
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received extensive attention. On the other hand, the estimation of MECD is currently an
emerging problem, which is significantly harder than the estimation of ECD.

1.2 The estimation problem
There already exist several well-established methods for ECD estimation, while a few
methods for MECD estimation have been recently proposed in the literature. Practically
all of these methods are based on maximum-likelihood estimation (MLE), but one no-
table exception is the method of moments (MM), which can sometimes be used for ECD
estimation.

The method of moments was introduced for MGGD estimation, in [82]. As its name
indicates, it is based on the idea of matching first, second, and fourth order moments of
an unknown ECD with their empirical estimates.

The main advantage of this method is its low computational cost. However, it is much
less accurate than maximum-likelihood estimation, and cannot be applied at all, to ECD
which do not have higher-order moments (e.g., higher order moments are infinite), such
as Student T-distributions [33, 18].

Maximum-likelihood estimation focuses on maximising the log-likelihood function1.
The maximum-likelihood estimate, based on a dataset X = {x1, · · · , xT}, drawn from an
unknown ECD density p(x|θ∗), is a global maximiser of the log-likelihood function

L(θ;X ) =
T∑
t=1

`p(θ;xt) (1.3)

where `p(θ;x) = log p(x|θ) for the ECD density p(x|θ) in (1.1), and the maximum is taken
over all θ = (µ,Σ, β).

Similarly, if the dataset X = {x1, · · · , xT} is drawn from an unknown MECD density
f(x|θ∗), then the maximum-likelihood estimate is a global maximiser of the log-likelihood
function

L(θ;X ) =
T∑
t=1

`f (θ;xt) (1.4)

where `f (θ;x) = log f(x|θ) for the MECD density f(x|θ) in (1.2), and the maximum is
taken over all θ = (wk, µk,Σk, βk; k = 1, · · · , K) — recall K is the number of mixture
components, in (1.2).

The advantage of maximum-likelihood estimation is that the maximum-likelihood es-
timate is known to converge to the true parameter θ∗ or θ∗, and to be asymptotically
efficient (roughly speaking [44, 78], it enjoys the best possible asymptotic performance).
On the other hand, it is not immediately clear how to compute maximum-likelihood
estimates, and special methods must be developed for this purpose.

For ECD and MECD estimation, these methods can be divided into offline and online,
and also into Euclidean and Riemannian methods. An iterative method for computing
maximum-likelihood estimates uses available data to update (at each new iteration) an
approximation θ(n), and obtain a new and improved θ(n+1).

The method is called offline or batch if it uses all of the available data for each update.
It is called online or stochastic if it uses only one datapoint or one mini-batch of datapoints,

1In later chapters of this thesis, we will consider an alternative formulation, which focuses on min-
imising the Kullback-Leibler divergence, rather than maximising the log-likelihood.
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for each update. Offline methods are suitable for dealing with small or moderate-sized
datasets, while online methods are suitable for high-dimensional or large-scale datasets.

Furthermore, the distinction between Euclidean and Riemannian methods is the fol-
lowing. The parameters of ECD and MECD are subject to certain non-linear constraints
(such as scatter matrices being positive-definite). Euclidean methods enforce these con-
straints using ad hoc techniques (such as adding a positive number to the scatter matrix,
to make sure it is positive-definite [38]), while Riemannian methods appeal to the intrinsic
Riemannian geometry of the parameters.

Usually, ECD are better at modelling moderate-sized datasets, while MECD are better
with large-scale datasets. This is the reason why most currently existing methods for ECD
estimation are offline methods, perhaps the most popular among them being the fixed-
point method (FP) [59, 50, 84]. For now, existing methods for MECD estimation are
mostly based on expectation-maximization (EM), which is an offline method [59, 37].
Very recently, a few works have considered online methods [57, 38]. To our knowledge,
there still do not exist any general Riemannian online methods for MECD estimation.

Within this context, the present thesis will introduce new Riemannian and online
estimation methods both for ECD and MECD, designed to overcome the major difficulties
which we have observed with currently existing methods.

1.3 Contribution of this thesis
The contribution made in the present thesis is based on our three journal papers [88,
90, 89]. Above all, it consists in a new family of methods, for the estimation of ECD
and MECD, called CIG methods. The abbreviation CIG stands for component-wise
information gradient, and will be explained below.

The present section will discuss some of the main features of CIG methods. These
features can be summarised as follows.

• the CIG methods include the CIG online estimation method. For each iteration,
this only requires one datapoint or one mini-batch of datapoints. This makes it able
to process high-dimensional or large-scale datasets, within short amounts of time.

• the CIG methods include the CIG adaptive step-size method. This implements a
fully automatic selection of optimisation step-sizes (learning rates). This makes it
easy to use, since it avoids the cumbersome task of manual selection of step-sizes.

• the CIG methods are able to guarantee fast rates of convergence, and high estimation
accuracies, even in comparison to offline methods, which process the entire dataset
at each iteration.

The importance of these features can be appreciated, in applications to real data. For
example, in image editing, the CIG online method can be used to perform a colour
transformation on a pair of images, with over 106 pixels, in only 21 seconds. For this
same colour transformation, other state-of-the-art methods require two hours to do the
same job, with a comparable performance. In fact, the CIG online method will be seen
to produce excellent results, in applications with much larger, full HD images.

Our motivation, for introducing the CIG methods, is the fact that the Fisher infor-
mation metric (FIM) of ECD and MECD models can be very difficult to compute. This
metric does have a tractable, closed-form expression, but only in the case of ECD models
with a known and fixed shape parameter.
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In this particular case, the closed-form expression of the FIM was given in [8]. In
our journal paper [88], we used it to introduce the Riemannian information gradient
method. This is an online method, with automatic selection of step-sizes, which has, in a
certain sense, the “best" convergence properties : fast rate of convergence and asymptotic
efficiency.

The Riemannian information gradient method cannot be applied to complete ECD
models (with unknown location and shape parameters), and cannot be applied to MECD
models. This is because the FIM is not known, in a tractable closed form, for these
models. In fact, for MGGD, there does exist an analytic expression of the FIM, but it is
overly complicated [83].

In the journal paper [90], our aim was to somehow extend the Riemannian infor-
mation gradient method to complete ECD. Instead of pursuing increasingly complicated
expressions of the FIM, we decided to replace it with another metric, which we called
the component-wise information metric (CIM). Concretely, the CIM is a block-diagonal
approximation of the FIM, and can be computed in a tractable closed form, even for
complete ECD.

Roughly speaking, the CIG method for ECD estimation is based on the CIM, in the
same way that the Riemannian information gradient method is based on the FIM. The
CIG method for ECD estimation has two versions, CIG offline and CIG online.

The CIG method shows comparable, and sometimes superior performance, to that
of state-of-the-art methods, such as the MM (method of moments) and FP (fixed-point)
methods [82, 59, 50]. However, the main advantage lies with its CIG online version, which
requires significantly shorter amounts of time, in order to converge. Precisely, this CIG
online version is similar to the more elementary MM method, for its short convergence
time, and similar to the more sophisticated FP method, for its improved performance.

In the journal paper [89], we extended the CIG method, from the estimation of ECD
models to the estimation of MECD models. We only considered the online version, be-
cause MECD are high-dimensional, and usually used to model more complex, large-scale
datasets. However, we developed two sub-versions of the online version, one with decreas-
ing step-sizes, and the other one with adaptive step-sizes, which we called the CIG-DS an
CIG-AS methods, respectively.

The CIG-AS method implements an adaptive, fully automatic selection of step-sizes,
and is theoretically shown to achieve a so-called linear rate of convergence (the term “linear
convergence" means the optimisation error decreases exponentially fast [2]). This makes
the CIG-AS method quite attractive, both from a practical and a theoretical perspective.

In computer experiments, with simulated or real data, we implemented a “hybrid
method", combining CIG-DS and CIG-AS. The CIG-DS method is preferable in the early
stages of optimisation, and the CIG-AS method in the later stages. Impressively, this
hybrid method had better performance than state-of-the-art methods, such as Euclidean
stochastic gradient, expectation-maximization with fixed-point method (EMFP) [57], and
proximal alternating linearized minimization (inertial stochastic PALM) [38]. At the same
time, the computation time it requires in order to converge is two to three times less than
any other existing method.

The reason why CIG-DS and CIG-AS outperform existing methods for MECD esti-
mation is because they were designed to overcome the most problematic issues, observed
with these methods. Most important among these issues were the following,

• offline methods (such as EMFP [59, 37, 57]), when applied to large-scale datasets,
require very extensive computational resources (time and memory), making them
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quite impractical.

• existing online methods (described in [57, 38]) are difficult to implement when the
shape parameters of ECD are unknown. In this case, they are either inefficient, or
they require increasingly large mini-batch sizes.

• in addition, online methods involve the particularly delicate task of selecting step-
sizes, which critically influence their rate of convergence [80].

The first of these issues is overcome thanks to the fact that CIG-DS and CIG-AS are online
methods. The second issue is overcome thanks to the fact that CIG-DS and CIG-AS use
the CIM to “pre-calibrate" stochastic gradients, which greatly improves their efficiency.
Finally, the last issue is resolved thanks to the adaptive step-size selection, included in
CIG-AS.

In addition to the above-mentioned contributions, based on the journal papers [88,
90, 89], the CIG online method for ECD estimation was applied to change detection in
multivariate image time series, in our additional journal paper [13].

1.4 Organization of the thesis
In addition to the current introductory chapter, the present thesis includes Chapters 2 to
7, as well as Appendices A to C. The contents of these chapters and appendices may be
summarised as follows.

• Chapter 2 provides a detailed discussion of existing literature on the geometry of
ECD, and on the estimation of ECD and MECD. In particular, Sections 2.3 and
2.4 discuss state-of-the-art methods for ECD and MECD estimation, respectively.
These methods are finally summarised in Tables 2.1 and 2.2.

• Chapter 3 lays out our contribution to the geometry of ECD and MECD : the
introduction of the component-wise information metric (CIM). Sections 3.3 and 3.4
define the CIM for ECD and MECD, respectively. Each one of these sections gives
expressions of the CIM, and of the associated information gradient and retraction
maps. These expressions are summarised in Table 3.5. For Chapters 5 and 6, it
should be kept in mind that the information gradient associated to the CIM is called
the component-wise information gradient (CIG).

• Chapter 4 introduces the Riemannian information gradient method, based on our
journal paper [88]. This method can be applied, in the particular case of ECD
models with known shape parameter. Its main properties are stated in Propositions
1 to 5. These propositions show that the Riemannian information gradient method
can achieve a fast rate of convergence, as well as asymptotic efficiency, with an
automatic choice of step-sizes.

• Chapter 5 introduces the CIG method, for the estimation of complete ECD models
(with unknown location and shape parameters). Section 5.2 presents the offline
version of this method (Algorithm 1), and states its convergence in Proposition 6.
Section 5.3 presents the online version of this method (Algorithm 2), and states its
convergence, rate of convergence, and asymptotic normality, in Propositions 7 to 9.
Section 5.4 studies the global convergence properties of the CIG method, for MGGD
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and Student t-distribution models, with known shape parameters. These properties
are summarised in Tables 5.1 and 5.2.

• Chapter 6 extends the CIG method, from the estimation of ECD models to the es-
timation of MECD models. Section 6.2 introduces the decreasing step-size version
of the CIG method for MECD estimation (Algorithm 3), while Section 6.3 is con-
cerned with the adaptive step-size version (Algorithm 5). The convergence and rate
of convergence of these two methods is given by propositions 11 and 12, respectively.

• Chapter 7 illustrates, through applications to simulated and real data, the various
properties of CIG methods, introduced in Chapters 5 and 6. It also compares
CIG methods to existing state-of-the-art methods, in terms of performance and
computation time. In this chapter, Section 7.2 presents computer experiments with
simulated data, while Section 7.3 deals with applications to real data, such as image
editing and texture segmentation.

Appendices A to C are devoted to the proofs of various propositions and corollaries, stated
in Chapters 4 to 6.
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Chapter 2

State of the art

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Geometry of ECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Affine-invariant metric . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Fisher information metric . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Estimation of ECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Euclidean methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Riemannian methods . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Estimation of MECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 Euclidean methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Riemannian methods . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1 Introduction
This chapter gives a detailed presentation of the existing estimation methods for ECD
and MECD models. Some of these methods rely on the Riemannian geometry of ECD
models, which will therefore also be presented in this chapter.

The problem of estimating an ECD model is typically formulated as a mathematical
optimisation problem, such as maximising the log-likelihood function (MLE estimation),
or minimising the Kullback-Leibler divergence. This optimisation problem is then ad-
dressed using some kind of iterative method, such as the fixed-point method or gradient
descent method.

To formulate these iterative methods (e.g. to define and compute the gradient), or to
study their convergence (e.g. to determine whether a fixed-point iteration is contractive
or not), it is first of all necessary to equip the parameter space with a geometry. The
most classical choice is just that of a Euclidean geometry.

However, the Euclidean geometry has its limitations in applications. First of all, the
parameters of the ECD model are subject to non-linear constraints (such as the scatter
matrix being positive-definite). Using the Euclidean geometry means these constraints
should be checked and then re-enforced at each iteration, leading to additional compu-
tations and time consumption, or even to numerical instability. Second, in Euclidean
geometry, the convexity of the cost function (the negative log-likelihood or the Kullback-
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Leibler divergence) cannot be guaranteed, and global convergence of gradient descent is
therefore difficult to obtain.

These issues are the main motivation for the introduction of the Riemannian geometry
of ECD. Existing work on this geometry is presented in the following Section 2.2. The
state of the art on estimation of ECD and MECD is then presented in Sections 2.3 (for
ECD) and 2.4 (for MECD).

2.2 Geometry of ECD
Estimation methods for ECD and MECD can be classified into classical Euclidean meth-
ods and recent, more refined Riemannian methods. Riemannian methods take into ac-
count the intrinsic geometry of the parameter space of ECD and MECD models, and
provide a better understanding of the structure of the optimisation problems involved in
estimating these models.

For example, Riemannian methods automatically preserve fundamental non-linear
constraints, such as positive-definiteness of the scatter matrix. Moreover, even when
the negative log-likelihood or the Kullback-Leibler divergence is not convex, with respect
to the scatter matrix, in the Euclidean sense, it is often convex in the Riemannian sense
(geodesically convex) [85].

Thus, the introduction of a Riemannian metric leads to new Riemannian methods
which have both practical and theoretical advantages. Mostly, existing works have focused
on deriving a Riemannian metric for the scatter matrix, without considering the other
parameters (location and shape parameters). These works consider two possibilities for
the Riemannian metric of the scatter matrix.

The first, older metric is the affine-invariant metric introduce by [61]. The second is
the Fisher information metric which was derived in [8]. In fact, the Fisher information
metric is intimately related with the statistical properties of ECD models.

The Fisher information metric was first introduced by Rao [64]. It was later made
popular by Amari [3]. In this thesis, we will be interested in the Fisher information metric,
because it allows dramatic improvements in the estimation of ECD and MECD. In the
context of maximum-likelihood estimation, the gradient of the log-likelihood function,
computed with respect to this metric, is the information gradient (sometimes also called
the natural gradient). Estimation methods based on the information gradient are easy to
implement and have excellent convergence properties, including fast rate of convergence
and asymptotic efficiency. These properties would be very hard, or even impossible, to
obtain without using the information gradient.

To begin, let us recall the definition and properties of the affine-invariant metric. The
Fisher information metric will be discussed in Subsection 2.2.2.

2.2.1 Affine-invariant metric

Recall that an ECD has three parameters, namely the location parameter µ ∈ Rm, the
scatter matrix Σ ∈ Pm, and the shape parameter β ∈ (0,∞). Out of these three, due
to the non-linear geometry of Pm, the estimation of Σ is the most difficult. Therefore,
existing contributions have mostly focused on the Riemannian geometry of Pm.

Geometrically, Pm is a cone, sitting inside the vector space of m × m symmetric
matrices. An affine-invariant Riemannian metric on this cone was first introduced by
[73]. For any point Σ ∈ Pm and any tangent vectors U , V in the tangent space TΣPm
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(these will always be real m×m symmetric matrices), this affine-invariant metric is given
by

〈U, V 〉↑Σ = tr(Σ−1UΣ−1V ) (2.1)

Here, instead of the conventional symbol "〈·, ·〉", we added a symbol "↑" in order to
distinguish it from the Fisher information metric that will appear in the following section.

In the same way, the norm of this metric is denoted by ‖U‖↑Σ =
√
〈U,U〉↑Σ.

The geodesics of the affine-invariant metric (2.1) are given by the exponential map [61]

ExpΣ(U) = Σ
1
2 exp(Σ−

1
2UΣ−

1
2 )Σ

1
2 = Σ exp(Σ−1U) (2.2)

The geodesic is the generalization of the straight line, which is defined by a starting point
Σ and a starting velocity U . For the starting velocity U , there exists a unique geodesic
curve γ : [0, 1]→ Pm, t 7→ γ(t) such that γ(0) = Σ, γ′(0) = U and ExpΣ(U) = γ(1). The
introduction of the exponential map allows us to compute this geodesic. That is to say,
the non linear constraints are respected by using this exponential map. Its inverse is the
Riemannian logarithm

logΣ(U) = Σ
1
2 log(Σ−

1
2UΣ−

1
2 )Σ

1
2 = Σ log(Σ−1U) (2.3)

Another important concept is the Riemannian distance. For any pair of points Σ and
T = ExpΣ(U) in Pm, we define the Riemannian distance d(Σ, T ) to be the infimum of the
lengths of all admissible curves from Σ to T . The Riemannian distance corresponding to
the metric (2.1) has the following expression,

d2
↑(Σ, T ) =

(
‖logΣ(T )‖↑Σ

)2

= tr
[
log(Σ−1T )

]2
Σ, T ∈ Pm (2.4)

Here, all matrix functions, such as matrix power, exponetial and logarithm, are symmetric
matrix functions [40].

Now consider the log-likelihood function `p(θ;x) = log p(x|θ) where p(x|θ) is given by
(1.1). Using the first order of Tyler’s development, the Riemannian gradient of `(Σ) is
defined by the unique vector field that satisfies 〈∇↑Σ`p, U〉 = d`p(Σ)[U ], where d is the
differential operator. The Riemannian gradient of `p(θ;x) with respect to Σ, computed
using the affine-invariant metric (2.1) has the following expression

∇↑Σ`p(θ;x) = −1

2
Σ− ∂hβ(δ)

∂δ
(x− µ)(x− µ)† (2.5)

where hβ(δ) = log gβ(δ) for the density generator function gβ in Equation (1.1).
The above Riemannian metric, exponential map, distance, and Riemannian gradient,

can be used to define the geodesic convexity (g-convexity, for short) with respect to Σ. We
say that a function f is geodesically convex, if for any geodesic curve γ(t), the composite
function f ◦ γ(t) is a convex function in the classical sense.

Definition 1 If Θ is a Riemannian manifold, a function f : Θ 7→ R is said to be geodesi-
cally α-strongly convex if for any θ, θ′ ∈ Θ,

f(θ′) > f(θ) +
〈
∇θf(θ),Exp−1

θ (θ′)
〉
θ

+
α

2
d2(θ, θ′)

where 〈·, ·〉θ denotes the Riemannian metric on Θ. The vector ∇θf(θ) means the Rie-
mannian gradient of f , computed using this metric, Exp and d(·, ·) mean the Riemannian
exponential map and distance (again, with respect to the same Riemannian metric). For
example, when θ = (Σ), the metric 〈·, ·〉θ can be the affine-invariant metric (2.1), with
the gradient, exponential and distance given by (2.2), (2.4) and (2.5).
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Specific to the ECD distribution family, the geodesic convexity of the log-likelihood func-
tion `p(θ;x), with respect to Σ, has been studied by several authors [74, 75, 87].
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2.2.2 Fisher information metric

In addition to the affine-invariant metric (2.1), it is very interesting to consider the Fisher
information metric of the ECD model, with respect to Σ, for fixed µ and β.

The Fisher information metric, as the affine-invariant metric, is defined by a scalar
product 〈U, V 〉∗ =

∑
i,j I∗(Σ)U iV j. The matrix [I∗(Σ)]i,j is the Fisher information matrix

of ECD model, which is a symmetric positive definite matrix and given by its definition

[I∗(Σ)]i,j = −E
[
∂2`(Σ)

∂Σi∂Σj

]
The analytical expression is given as [8]

〈U, V 〉∗Σ = IΣ,1tr(Σ−1UΣ−1V ) + IΣ,2tr(Σ−1U)tr(Σ−1V ) (2.6)

where ∗ is the notation for Fisher information metric, not the conjugate transpose. The
information coefficients IΣ,1 and IΣ,2 are defined by

IΣ,1 =
2A

m(m+ 2)
IΣ,2 =

A
m(m+ 2)

− 1

4
A = E

[(
∂hβ(δ)

∂δ
δ

)2
]

(2.7)

with hβ(δ) = log gβ(δ) as in equation (2.5).
This Fisher information metric shares the same exponential map and logarithmic map

with the affine-invariant metric in (2.1). That is, both of these metrics have their exponen-
tial map given by (2.2) and logarithmic map given by (2.3). Similar to the affine-invariant
metric, according to d∗(Σ, T ) = ‖LogΣ(T )‖∗, the Fisher information metric can also derive
a Riemannien distance, that is analytically expressed as

d2
∗(Σ, T ) = IΣ,1tr

[
log(Σ−1T )

]2
+ IΣ,2tr2

[
log(Σ−1T )

]
Σ, T ∈ Pm (2.8)

From definition (2.6) of the Fisher information metric, it is possible to compute the
information gradient with respect to Σ. This turns out to be

∇∗Σ`p(θ;x) = JΣ,1 [∇↑Σ`p(θ;x)]
⊥

+ JΣ,2 [∇↑Σ`p(θ;x)]
‖ (2.9)

Here, the vector ∇↑Σ`p(θ;x) denotes the affine-invariant Riemannian gradient (2.5). More-
over, the coefficients JΣ,1 and JΣ,2 are given by

JΣ,1 =
1

IΣ,1

JΣ,2 =
1

IΣ,1 +mIΣ,2

(2.10)
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in terms of IΣ,1 and IΣ,2 defined in (2.7), and the symbols ⊥ and ‖ denote the following
orthogonal decomposition of ∇↑Σ`p(θ;x),

[∇↑Σ`p(θ;x)]
‖

=
1

m
tr
(
Σ−1∇↑Σ`p(θ;x)

)
Σ (2.11a)

[∇↑Σ`p(θ;x)]
⊥

= ∇↑Σ`p(θ;x)− [∇↑Σ`p(θ;x)]
‖ (2.11b)

The gradient (2.9) is our first example of an information gradient. The information
gradient is a central theme in this thesis, and we attempt to use it directly, for gradient
descent, whenever possible. This is because the information gradient is "pre-calibrated",
thanks to the presence of coefficients such as JΣ,1 and JΣ,2 in (2.9), which greatly simplify
the task of choosing step-sizes.
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2.3 Estimation of ECD
Typically, single ECD models (that is, one ECD rather than a mixture) are not used for
modeling large-scale or high-dimensional datasets. Therefore, existing approaches to the
estimation of ECD have focused on offline methods, where there is a finite number of
datapoints. For a given dataset X = {x1, · · · , xT}, the objective function of MLE is

L(θ;X ) =
T∑
t=1

`p(θ;xt) = T log c(β)− T

2
log det(Σ) +

T∑
t=1

hβ(δt) (2.12)

where δt = (xt − µ)†Σ−1(xt − µ) and hβ(δ) = log gβ(δ), in the notation of (1.1). The
methods of maximizing this objective function can be classified into two categories, the
first contains Euclidean (or classical) methods, and the second contains the methods based
on Riemannian geometry.

2.3.1 Euclidean methods

In the context of Euclidean geometry, if the dataset is supposed to be centred, the MLE of
(Σ, β) for MGGD was studied in [59, 84]. Also for MGGD, under the framework of block
majorization-minimization, the MLE of all the three parameters (µ,Σ, β) is considered
in [84]. For Student t-distributions, with the degree of freedom parameter being fixed, the
MLE of (µ,Σ) is given in [50], according to a new parameterization of the couple (µ,Σ).
Here is a more detailed description.

The estimation of Σ: In all the three works just mentioned ([59, 50, 84]), the fixed-point
(FP) equation of Σ is obtained by differentiating the log-likelihood L(θ;X ) with respect
to Σ. This follows from

∂L(θ;X )

∂Σ
= −1

2
Σ−1 − 1

T

T∑
t=1

∂hβ(δt)

∂δt
Σ−1(xt − µ)(xt − µ)†Σ−1

Setting this derivative to zero results in the FP (Fixed-Point method) equation

Σ = F (Σ) where F (Σ) = − 2

T

T∑
t=1

∂hβ(δt)

∂δt
(xt − µ)(xt − µ)† (2.13)

The sequence generated by the fixed-point iteration Σ(n+1) = F (Σ(n)) converges to a
stationary point of L(Σ). Note that, in [59], the scatter matrix Σ is normalized according
to tr(Σ) = m and Σ = mM . Also in this same work [59], for MGGD models, the existence
and uniqueness of the estimator of Σ is proved, whenever β ∈ (0, 1).

The estimation of (µ,Σ): When both µ and Σ are unknown, the MLE can be achieved
in two ways. The first one is implemented according to a new parameterization

S =

[
Σ + µµ† µ
µ† 1

]
therefore S ∈ Pm+1 (2.14)

If the new random vector y is given by y† = (x†, 1), then the log-likelihood function can
be reformulated as

L̃(S) = −T
2

log det(S)−
T∑
t=1

h̃β(δyt) δyt = y†tS−1yt (2.15)
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where the function h̃β is proportional to the original hβ. Therefore, the FP equation for S
can be obtained by replacing Σ with S and then hβ with h̃β in (2.13). In [50], for Student
t-distributions, the maximization of this new function L̃(S) was proven to be equivalent
to the maximization of L(µ,Σ). In addition, the existence and uniqueness of the MLE
were also proved in [50].

Another idea is to find the MLE of µ and Σ through an alternating iteration. This
idea is realized, in the case of MGGD, in [84]. The derivative of L with respect to µ is
(recall that, here, θ = (µ,Σ))

∂L(θ)

∂µ
= −2

T∑
t=1

∂hβ(δt)

∂δt
Σ−1(xt − µ)

its FP equation is derived by setting ∂L(θ)
∂µ

= 0

µ =

∑T
t=1

∂hβ(δt)

∂δt
xt∑T

t=1
∂hβ(δt)

∂δt

(2.16)

In [84], equations (2.13) and (2.16) are used in an alternating manner to iteratively update
estimates of µ and Σ, leading to the MLE of (µ,Σ). Global convergence of this method is
guaranteed under the block majorization-minimization framework (BMM framework) [65].

The estimation of (µ,Σ, β): For the MGGD model, the estimation of the shape pa-
rameter β was achieved by solving a nonlinear equation [59, 84]. Let the derivative of L
with respect to β equal to 0

∂L(θ)

∂β
= T

∂ log c(β)

∂β
+

T∑
t=1

∂hβ(δt)

∂β
= 0 (2.17)

The update formula for β is then

β = solution of equation (2.17) (2.18)

The Newton-Raphson method is employed to solve equation (2.17) in [59]. In [84], the
FP equations (2.13), (2.16) and (2.18) are applied in an alternating manner to find MLE
estimates of the complete ECD model. Note that the negative log-likelihood function
−L(β;µ∗,Σ∗) is proved to be strongly convex for any fixed µ = µ∗ and Σ = Σ∗. Therefore,
under the framework of BMM, this alternating procedure converges to a stationary point
of the log-likelihood L(θ;X ) [84].

2.3.2 Riemannian methods

In the context of Riemannian geometry, all currently existing methods focus only on the
MLE of the scatter matrix Σ, with the other parameters considered to be fixed [14, 74, 75,
87]. The gradient of the MLE objective function (2.12), with respect to the affine-invariant
metric (2.1), can be found from (2.5)

∇↑ΣL(θ) = −T
2

Σ−
T∑
t=1

∂hβ(δt)

∂δt
(xt − µ)(xt − µ)† (2.19)
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Setting this gradient to zero, the same equation as (2.13) can be obtained. This FP
equation is used for MLE of MGGD in [87], and of general ECD in [74]. For MGGD, the
global g-convexity of the log-likelihood function is also studied in [87]. When the shape
parameter β is fixed and β ∈ [1

2
,∞), the log-likelihood function is globally geodesically

convex, in the sense of Definition 1. Note that this is a different range of β than the one
found in [59] using an Euclidean method.

A Riemannian-averaged fixed-point method was introduced in [14], which overcame
the problem of instability of the FP iteration for larger values of the shape parameter.
Precisely, this method implements successive Riemannian averages of fixed-point iter-
ates. Recall the definition of the Riemannian average of Σ, T ∈ Pm. For t ∈ (0, 1), the
Riemannian average with ratio t of Σ and T is

Σ#tT = Σ
1
2 (Σ−

1
2TΣ−

1
2 )t Σ

1
2

The Riemannian-averaged algorithm is defined as follows. When Σ(n) is given, instead of
defining Σ(n+1) by F (Σ(n)) according to (2.13), let

Σ(n+1) = Σ(n)#tnF (Σ(n)), tn =
1

n+ 1

Thanks to the stability of the Riemannian average, this method can give an efficient
estimate of Σ for any value of the shape parameter β.

In addition to the fixed-point method, many Riemannian line-search methods are
studied in [75]. The line-search optimization methods on Riemannian manifolds are all
based on the following general iterative formula

Σ(n+1) = ExpΣ(n)(η(n)U(Σ(n),X )) (2.20)

where η(n) > 0 is a step-size and U(Σ(n),X ) denotes a vector in TΣ(n)Pm, which refers to
the search direction (for example, U(Σ(n),X ) = gradΣL(θ), defined in (2.19)).

With this general iterative formula, the most common line-search optimization meth-
ods, such as steepest descent, BFGS, and conjugate gradient methods, are compared with
the FP methods, in [75]. The conclusion is that the Riemannian line-search methods
and the FP method each have their own advantages. Although the Riemannian line-
search methods have excellent performance, the FP algorithm is still competitive in many
scenarios.
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2.4 Estimation of MECD
Mixtures of ECD (MECD) are quite useful in fitting more complicated, large-scale datasets,
of possibly higher dimension. For this reason, most existing methods for the estimation
of MECD pay closer attention to online algorithms, which are time-saving and use up less
memory. As in section 2.3, existing methods are classified into Euclidean and Riemannian.

2.4.1 Euclidean methods

In the Euclidean framework, the estimation of mixture models is classically addressed
using Expectation-Maximization methods (EM) [23]. In these methods, a latent variable,
(Zk

t ; k = 1, . . . , K) is introduced to indicate the membership of each datapoint xt (then,
Zk
t = 1 if xt belongs to the kth mixture component, and Zk

t = 0 otherwise). The
E (expectation) step computes the marginal log-likelihood of observed data. The M
(maximization) step maximizes this marginal log-likelihood. These two steps are repeated
until convergence.

To state this in a precise way, recall the MECD density (1.2) and its parameters
θ = (wk, µk,Σk, βk; k = 1, · · · , K). In the Expectation step, using the current estimates
of the parameters

θ(n) = (w
(n)
k , µ

(n)
k ,Σ

(n)
k , β

(n)
k ; k = 1, · · · , K)

the conditional expectation of the Zk
t is determined by Bayes theorem, which gives "mem-

bership probabilities"

ok(xt|θ(n)) =
w

(n)
k p(xt|θ(n)

k )∑K
k=1w

(n)
k p(xt|θ(n)

k )
(2.21)

Then, the function Q(θ|θ(n)) is defined to be the conditional expectation of the complete
log-likelihood function

Q(θ|θ(n)) =
K∑
k=1

T∑
t=1

ok(xt|θ(n)) log(wk) +
K∑
k=1

T∑
t=1

ok(xt|θ(n)) log p(xt|θk)

In the Maximization step, a Lagrange multiplier is added, for the weights w, in order to
guarantee

∑K
k=1wk = 1. After differentiating the function Q(θ|θ(n)) with respect to w,

the update formula for w is found to be

w
(n+1)
k =

1

T

T∑
t=1

ok(xt|θ(n))

In [57], the update formula for the other parameters (µ
(n)
k ,Σ

(n)
k , β

(n)
k ), is performed by

repeating the same operation as in equations (2.13), (2.16) and (2.18), for each sub-
distribution (i.e. each mixture component). The resulting method is called the EM with
fixed point method (EM-FP). In the same work [57], it was implemented for mixtures of
MGGD, and then compared to the Euclidean stochastic gradient method.

For this Euclidean stochastic gradient method, the well-known logit parameterization
is applied to ensure the constraints

∑K
k=1wk = 1. This parameterization is given by

wk =
exp(πk)

1 +
∑K−1

j=1 exp(πj)
, for k ∈ {1, · · · , K − 1}

and wK =
1

1 +
∑K−1

j=1 exp(πj)

(2.22)
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The logit parameterization yields the reparameterized log-likelihood function of the mix-
ture model

`f (θ;x) = log

[
K−1∑
k=1

exp(πk)

1 +
∑K−1

j=1 exp(πj)
p(x|θk) +

1

1 +
∑K−1

j=1 exp(πj)
p(x|θK)

]
The Euclidean gradient with respect to the parameters πk is given by

gradπk`f (θ;x) = ok −
exp(πk)

1 +
∑K−1

j=1 exp(πj)

with ok =
exp(πk)

1 +
∑K−1

j=1 exp(πj)

p(x|θk)
f(x|θ)

f(x|θ) =
K−1∑
k=1

exp(πk)

1 +
∑K−1

j=1 exp(πj)
p(x|θk) +

1

1 +
∑K−1

j=1 exp(πj)
p(x|θK)

The stochastic gradient update formula for the πk is then

π
(n+1)
k = π

(n)
k + η(n+1)gradπk`f (θ

(n);xn+1) (2.23)

Where the coefficient η(n+1) denotes a step-size, and the vector xn+1 is a new data point
(it can also be replaced by a mini-batch). From (2.23), the new weights w(n+1)

k can be
obtained according to (2.22).

The gradients with respect to the other parameters are

gradµk`f (θ;x) = −2ok
∂hβk(δk)

∂δk
Σ−1
k (x− µk) (2.24a)

gradΣk
`f (θ;x) = −ok

[
1

2
Σk +

∂hβk(δk)

∂δk
(x− µk)(x− µk)†

]
(2.24b)

gradβk`f (θ;x) = ok

(
∂ log c(βk)

∂βk
+
∂hβk(δk)

∂βk

)
(2.24c)

where hβk(δk) = log gβk(δk) as in (1.1). Then, the Euclidean stochastic gradient updates
for θk = (µk,Σk, βk) are

µ
(n+1)
k = µ

(n)
k + η(n+1)gradµk`f (θ

(n);xn+1) (2.25a)

Σ
(n+1)
k = Σ

(n)
k + η(n+1)gradΣk

`f (θ
(n);xn+1) (2.25b)

β
(n+1)
k = β

(n)
k + η(n+1)gradβk`f (θ

(n);xn+1) (2.25c)

In [57], the gradients (2.24) are used in the standard formulation of a stochastic gradient
descent, (2.25). However, in [38], they are used in the framework of an online proximal
alternating linearized minimisation method (PALM), applied to the estimation of mixtures
of Student T-distributions. In this work, the cost function is reshaped by adding the
following surjective mappings to keep βk ∈ (0,∞) and Σk ∈ Pm after each iteration.

ϕβk(βk) = β2
k + ε ϕΣk(Σk) = Σ†kΣk + εIm with ε > 0

In addition, an inertial gradient is applied to this PALM method to accelerate the iterative
process, with a hyper parameter ρk ∈ [0, 1], for each sub-component θk of θ

θ̃
(n)
k = θ

(n)
k + ρk(θ

(n)
k − θ

(n)
k )

θ
(n+1)
k = θ̃

(n)
k + η(n)gradθk`f (θ;x)
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2.4.2 Riemannian methods

In the Riemannian context, the MLE of a mixture of multivariate Gaussian distributions
was studied in [42]. This work proposed an offline batch gradient method, and also an
online mini-batch gradient method. The expectation µk and covariance matrix Σk of
Gaussian model are integrated into a single parameter according to (2.14). The geometry
of the new integrated matrix Sk is considered based on the affine-invariant gradients (2.5)
and the exponetial map (2.2). The affine-invariant gradient of the reformulated ˜̀

f (θ;x)
with respect to Sk is

∇↑Sk ˜̀
f (θ;x) = −ok

[
1

2
Sk +

∂h̃βk(δk(y))

∂δk(y)
yy†

]
(2.26)

where y† = (x, 1)†, and δk(y) = y†S−1
k y. The ok are the membership probabilities, given

in (2.21).
Moreover, the weights of the Gaussian mixture model have the same reformulation

as in the in Euclidean method (2.22). Then, an alternating iteration scheme is adopted
between the weights and the new parameter (Sk)16k6K . The resulting Riemannian online
method (stochastic gradient method) has the following general form.

1. Update π(n)
k according to (2.23)

2. Reparametrize S(n)
k according to (2.14) with current (µ

(n)
k ,Σ

(n)
k )

3. Compute the Riemannian gradient ∇↑Sk ˜̀
f (θ

(n);xn+1) using (2.26)

4. Update S(n)
k according to the exponential map (2.2)

S(n+1)
k = ExpS(n)

k

(
η(n+1)∇↑Sk ˜̀

f (θ
(n);xn+1)

)
Possibly, the new datapoint xn+1 can be replaced with a mini-batch.

5. Decompose S(n+1)
k → (µ

(n+1)
k ,Σ

(n+1)
k )

In the experiments of [42], the Riemannian gradient method, offline or stochastic with
mini-batch, is compared with other standard methods, such as EM-FP, conjugate gradient
and BFGS. The Riemannian stochastic gradient method shows remarkable convergence
behavior, making it a potential candidate for large scale mixture learning.

In addition to mixtures of multivariate Gaussians, an offline estimation method for
MECD models with a fixed shape parameter was proposed in [51]. This method is very
similar to [42], also employing the reparametrization (2.14). Then, it implements a Rie-
mannian conjugate gradient rule, into the alternating iterative scheme of the form just
described.
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2.5 Conclusion
We summarize the existing estimation methods of ECD and MECD, reviewed in Sections
2.3 and 2.4, in the following two tables.

ECD
Euclidean Riemannian
Pascal, Frédéric, et al. [59]
“Parameter estimation for MGGDs.”
2013
Method: FP
Unknown parameters: (Σ, β)
Other results: MLE of Σ exists and is unique
for fixed β in (0, 1)

Boukouvalas, Zois, et al. [14]
“A new Riemannian-averaged FP
algorithm for MGGD parameter
estimation.” 2015
Method: Riemannian-averaged FP
Unknown parameters: (Σ)
Other results: More stable than FP

Laus, Friederike, and Gabriele Steidl. [50]
“Multivariate myriad filters based on
parameter estimation of Student t
distributions.” 2019
Method: Alternate FP
Unknown parameters: (µ,Σ)
Other results: MLE of (µ,Σ) exists and is
unique

Zhang, Teng, Ami Wiesel, and
Maria Sabrina Greco. [87]
“MGGD: Convexity and graphical
models.” 2013
Method: FP
Unknown parameters: (Σ)
Other results: MLE of Σ exists and is
unique for fixed β in (1

2
,∞)

Wiesel Ami [85].
“Geodesic convexity and covariance
estimation.” 2012

Wang, Bin, et al. [84]
“Globally convergent algorithms for
learning MGGD.” 2021
Method: Alternate FP
Unknown parameters: (µ,Σ, β)
Other results: log-likelihood function is
marginally convex with respect to β

Sra, Suvrit, and Reshad Hosseini. [74]
“Geometric optimisation on positive
-definite matrices for ECDs.” 2013
Method: FP
Unknown parameters: (Σ)

Sra, Suvrit, and Reshad Hosseini. [75]
“Conic geometric optimization on
the manifold of positive-definite
matrices.” 2015
Method: FP, steepest gradient,
BFGS, conjugate gradient
Unknown parameters: (Σ)

Note that all the methods above are offline.

Table 2.1: State of the art: existing methods for ECD estimation

In the following chapter, we will introduce a new geometry for ECD and MECD mod-
els. This will be based on the original concept of component-wise information metric
(CIM). Later on, in Chapters 5 and 6, the CIM will be used to define a new online esti-
mation method, which we have called the component-wise information gradient method
(CIG). This new method is one of the main contributions of the present thesis. It will
be shown to have several significant advantages, in comparison with existing estimation
methods, summarized here in Tables 2.1 and 2.2.
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MECD
Euclidean Riemannian

Najar, Fatma, et al. [57]
“Online recognition via a finite mixture
of MGGD.” 2020
Method: EM-FP, SGD
Unknown parameters: (w, µ,Σ, β)

Hosseini, Reshad, and Suvrit Sra. [42]
“An alternative to EM for Gaussian
mixture models: batch and stochastic
Riemannian optimization.” 2020
Method:EM-FP,steepest gradient,
BFGS,conjugate gradient
Unknown Parameters: (w, µ,Σ)

Hertrich, Johannes, and Gabriele Steidl. [38]
“Inertial Stochastic PALM and its
Application for Learning Student T
Mixture Models.” 2020
Method: Inertial PALM with SGD
Unknown parameters: (w, µ,Σ, β)

Li, Shengxi, Zeyang Yu, and Danilo
Mandic. [51]
“A universal framework for learning the
elliptical mixture model.” 2020
Method: conjugate gradient
Unknown parameters: (w, µ,Σ)

Roizman Violeta, Matthieu Jonckheere,
and Frédéric Pascal [67]. “A flexible EM
-like clustering algorithm for noisy data.”
2019

Table 2.2: State of the art: existing methods for MECD estimation
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Chapter 3

The component-wise information metric

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Geometry of (µ,Σ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Geometry of (µ,Σ,β) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Mixtures of ECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Introduction
Our contribution to the geometry of ECD and MECD lies in the introduction of the
component-wise information metric (CIM). Our objective is to propose a new online
estimation algorithm for ECD and their mixtures (that is, MECD). For ECD, if the
shape parameter is known, efficient online estimation can be carried out using the Fisher
information metric. However, if the shape parameter is unknown, the Fisher information
metric does not have a closed-form expression. We specifically introduce the CIM as a
computationally advantageous alternative to the Fisher information metric (FIM), in this
case, and also in the more difficult case of MECD.

The aim of an online estimation algorithm is to find the true parameter θ∗. Here, this is
formulated as an optimisation problem on a Riemannian manifold, which is the parameter
space Θ of an ECD, or Θ of an MECD model. This is the problem of minimising the
Kullback-Leibler (or KL) divergence. For ECD models, the KL divergence is given by

D(θ) =

∫
p(x|θ∗) log

(
p(x|θ∗)
p(x|θ)

)
dx = Eθ∗ [log p(x|θ∗)]− Eθ∗ [log p(x|θ)] (3.1)

for θ ∈ Θ, where p(x|θ) is given by (1.1) and θ∗ is supposed to be the true parameter of
the ECD model. Note that θ∗ is the unique global minimum of D(θ). Another way of
formulating (3.1) is to say that any online estimation algorithm searches for the minimum

arg min
θ∈Θ

−Eθ∗ [`p(θ;x)] with `p(θ;x) = log p(x|θ) (3.2)

For MECD, the density function p and parameter θ from (1.1) are replaced by the
density f and the parameter θ from (1.2), respectively. The KL divergence is given by

D(θ) =

∫
f(x|θ∗) log

(
f(x|θ∗)
f(x|θ)

)
dx = Eθ∗ [log f(x|θ∗)]− Eθ∗ [log f(x|θ)] (3.3)
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for θ ∈ Θ. Then, online algorithms aim to search for the minimum

arg min
θ∈Θ

−Eθ∗ [`f (θ;x)] with `f (θ;x) = log f(x|θ) (3.4)

Here, unlike the ECD case, the true parameter θ∗ is a global minimum of D(θ), but it is
not unique (this is because it is possible to permute mixture components).

The target problems (3.2) and (3.4) are optimisation problems on the Riemannian
manifolds Θ and Θ, respectively. The general update rule, for offline (batch) gradient
optimisation methods on Riemannian manifolds, takes on the following form [2]

θ(n+1) = Retθ(n)

(
η(n)U(θ(n);X )

)
(3.5)

with U(θ(n);X ) the direction of descent. On the other hand, the general form of an update
rule for online (stochastic) gradient optimisation methods is the following

θ(n+1) = Retθ(n)

(
η(n+1)U(θ(n);Xn+1)

)
(3.6)

Here, the smooth mapping Retθ from the tangent space TθΘ to Θ is required to be a
retraction, in the sense that it verifies

Retθ(0θ) = θ

dRetθ(0θ) = IdTθΘ

(3.7)

where 0θ denotes the zero element in TθΘ, dRetθ(·) means the differential of retraction
map Retθ : TθΘ → Θ, and IdTθΘ denotes the identity mapping on TθΘ. The positive
scalars η(n) are step-sizes.

For offline methods (3.5), each vector U(θ(n);X ) depends on the entire dataset X .
For online methods (3.6), each vector U(θ(n);Xn+1) depends only on a new mini-batch
Xn+1, which may reduce to a single datapoint xn+1. Ideally, U(θ(n);X ) or U(θ(n);Xn+1)
is the Riemannian information gradient, which can be computed, assuming the Fisher
information metric is known.

However, in general, ECD and MECD models do not admit any tractable expression
of the Fisher information metric. Therefore, there is no tractable means of evaluating the
Riemannian information gradient.

In the present chapter, several specific situations are discussed. The Fisher information
metric for θ = (Σ) (with known µ and β) has already been given in Subsection 2.2.2. In
the following, Section 3.2 gives the Fisher information metric for θ = (µ,Σ) (with known
β), and introduces a retraction map Ret for this case θ = (µ,Σ).

Sections 3.3 and 3.4, respectively, consider the most general cases, of complete ECD
models and MECD models, where the shape parameter β is unknown. In these cases,
the parameter space does not admit any tractable expression of the Fisher information
metric [83]. Sections 3.3 and 3.4 introduce the component-wise information metric (CIM),
as a computationally advantageous alternative to the Fisher information metric (FIM).
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3.2 Geometry of (µ,Σ)
Fisher information metric of (µ,Σ): The Fisher information metric for the case θ =
(Σ) (with known and fixed µ and β), has already been discussed, in Subsection 2.2.2.

Furthermore, when the location parameter µ is also unknown, but the shape parameter
β is still known, the Fisher information metric for θ = (µ,Σ) can be computed explicitly.
In fact, this metric takes on a simple form (this can be seen as a “direct product")

〈Uθ, Vθ〉∗θ = 〈Uµ, Vµ〉∗µ + 〈UΣ, VΣ〉∗Σ (3.8)

where 〈Uµ, Vµ〉∗µ and 〈UΣ, VΣ〉∗Σ are Fisher information metrics in Rm and Pm respectively.
Here, each tangent vector Uθ, Vθ ∈ TθΘ is of the form Uθ = (Uµ, UΣ)† and Vθ = (Vµ, VΣ)†.
Moreover, the second term 〈UΣ, VΣ〉Σ is given by the same formula as in (2.6). For the
first term, we have computed it to be [90],

〈Uµ, Vµ〉∗µ = Iµ U
†
µ Σ−1 Vµ (3.9)

where the information coefficient Iµ is given by

Iµ = − 4

m
E
[
∂2 h(δ, β)

∂ δ2
δ

]
− 2E

[
∂ h(δ, β)

∂ δ

]
(3.10)

Adding up (2.6) and (3.9), one gets the full Fisher information metic for θ = (µ,Σ),

〈Uθ, Vθ〉θ = Iµ U
†
µ Σ−1 Vµ + IΣ,1tr(Σ−1UΣΣ−1VΣ) + IΣ,2tr(Σ−1UΣ)tr(Σ−1VΣ) (3.11)

where the information constants IΣ,1 and IΣ,2 were given in equation (2.7). The Fisher
information metric (3.11) generalises the one studied in the multivariate Gaussian case [9].
Retraction map of (µ,Σ): The Fisher information metric (3.11) on the product manifold
Θ = Rm×Pm, does not admit a tractable expression, for its Riemannian exponential map.
However, when it is restricted to the subspace Pm, its exponential map is well-known,
and was given in equation (2.2). In addition, the exponential map on the subspace Rm (a
Euclidean space) reduces to vector addition. Accordingly, we proposed to use a retraction
map which is defined by the product of these two exponentials [90],

Retθ : TθΘ −→ Θ

Uθ =

(
Uµ
UΣ

)
7−→

(
Expµ(Uµ)
ExpΣ(UΣ)

)
=

(
µ+ Uµ

Σ exp(Σ−1UΣ)

)
(3.12)

Both of the exponential maps Expµ and ExpΣ verify the properties (3.7). Therefore, their
direct product (3.12) also verifies these properties, and is a well-defined retraction.

Information distance of (µ,Σ): We also introduced a distance function on the product
manifold Θ = Rm × Pm, defined as the sum of squares of the distances in the subspaces
Rm and Pm. This will be called the component-wise information distance (CID) [90].

For Pm, the information distance is defined as in Equation (2.8). For Rm, the informa-
tion distance is proportional to the usual Euclidean distance. Now, the component-wise
information distance is the following distance on Θ [90],

d2
∗(θ1, θ2) =d2

∗(µ1, µ2) + d2
∗(Σ1,Σ2)

=Iµ (µ1 − µ2)†(µ1 − µ2)

+ IΣ,1tr
[
log(Σ−1

1 Σ2)
]2

+ IΣ,2tr2
[
log(Σ−1

1 Σ2)
] (3.13)

41



where θ1 = (µ1,Σ1) and θ2 = (µ2,Σ2), with µ1, µ2 ∈ Rm and Σ1,Σ2 ∈ Pm. The constant
Iµ was given in (3.10), and the constants IΣ,1 and IΣ,2 were given in (2.7).

Information gradient of (µ,Σ): The information gradient associated to the Fisher
information metric (3.11) is just the product of the information gradients, with respect
to µ and Σ [90],

∇∗θ`p(θ;x) =

(
∇∗µ`p(θ;x)
∇∗Σ`p(θ;x)

)
=

(
I−1
µ Σ gradµ`p(θ;x)

JΣ,1 [∇↑Σ`p(θ;x)]
⊥

+ JΣ,2 [∇↑Σ`p(θ;x)]
‖

)
(3.14)

where the coefficients JΣ,1 and JΣ,2 of ∇∗Σ`p were given in equation (2.10), and the infor-
mation constant Iµ in (3.10). Here, the vector gradµ`p(θ;x) is the gradient in the classical
Euclidean sense

gradµ`p(θ;x) = −2
∂hβ(δ)

∂δ
Σ−1(x− µ) (3.15)

and the affine-invariant gradient ∇↑Σ`p(θ;x) is given by Equation (2.5).
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3.3 Geometry of (µ,Σ,β)
When the shape parameter β is also unknown, the Fisher information metric of the
complete ECD model, with θ = (µ,Σ, β), does not have a closed form expression, and
it is therefore impossible to derive applicable expressions of the Riemannian exponential
map, the information gradient, or any other useful geometric objects.

A similar situation arises in the field of artificial neural networks, where the Fisher
information metric is too difficult to compute. The Fisher information metric is then
replaced with a quasi-diagonal reduction [53]. Motivated by this idea, from the field
of artificial intelligence, we introduce the component-wise information metric of ECD
models [90].

Each one of the three parameters µ, Σ, and β has a closed form expression for its
Fisher information metric. These closed form expressions give the three main diagonal
blocks of the ECD model Fisher information metric. The other (off-diagonal) blocks being
unknown, we just set them to zero. In this way, we obtain the component-wise information
metric (CIM) of the ECD model, at θ = (µ,Σ, β),

I�(θ) =

Vµ VΣ Vβ[ ]Uµ Iµ 0 0
UΣ 0 IΣ 0
Uβ 0 0 Iβ

The blocks Iµ, IΣ and Iβ are respectively the Fisher information matrics of Rm, Pm and
R+ for ECD.

Component-wise information metric of (µ,Σ, β): The Fisher information metric for
(µ,Σ) was given in Equation (3.11). The component-wise information metric is obtained
by adding to (3.11) a further term for the shape parameter β. The CIM of the ECD
model follows [90]

〈Uθ, Vθ〉�θ = 〈Uµ, Vµ〉∗µ + 〈UΣ, VΣ〉∗Σ + 〈Uβ, Vβ〉∗β
=Iµ U

†
µ Σ−1 Vµ + IΣ,1tr(Σ−1UΣΣ−1VΣ) + IΣ,2tr(Σ−1UΣ)tr(Σ−1VΣ)

+ Iβ Uβ Vβ

(3.16)

where � is the symbol for component-wise information metric, Uθ = (Uµ, UΣ, Uβ) and
Vθ = (Vµ, VΣ, Vβ) are tangent vectors at the point θ = (µ,Σ, β). The information
constants IΣ,1, IΣ,2 and Iµ are given in (2.7) and (3.10), respectively. The information
constant of β is

Iβ = −E
[
∂2 log c(β)

∂ β2
+
∂2 hβ(δ)

∂ β2

]
(3.17)

Retraction map of (µ,Σ, β): We introduce a retraction map for (µ,Σ, β), using the
same idea as in (3.12). Recall that the exponential map for µ is the vector addition, and
the intrinsic exponential map on Pm was given in equation (2.2). Since β belongs to R+,
a 1−dimensional version of (2.2) is used as the exponential map for β.

Combining these three exponential maps, The retraction for the complete ECD model
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is given as [90],

Retθ : TθΘ −→ Θ

Uθ =

UµUΣ

Uβ

 7−→

Expµ(Uµ)
ExpΣ(UΣ)
Expβ(Uβ)

 =

 µ+ Uµ
Σ exp(Σ−1UΣ)

βeUβ/β

 (3.18)

where Uθ is the tangent vector (in the following, Uθ will represent the direction of de-
scent). All the three exponential maps Expµ, ExpΣ and Expβ verify the properties (3.7).
Therefore, their direct product (3.18) also verifies these properties, and is a well-defined
retraction.

Component-wise information distance of (µ,Σ, β): The information distance of
(µ,Σ) was given in (3.13). In order to include β, which belongs to (0,∞), a one-
dimensional version of Equation (2.4) is added to (3.13). The component-wise infor-
mation distance for the complete model (with all three parameters µ, Σ and β), then has
the expression [90]

d2
�(θ1, θ2) =d2

∗(µ1, µ2) + d2
∗(Σ1,Σ2) + d2

∗(β1, β2)

=Iµ (µ1 − µ2)†(µ1 − µ2) + IΣ,1tr
[
log(Σ−1

1 Σ2)
]2

+ IΣ,2tr2
[
log(Σ−1

1 Σ2)
]

+ Iβ log2
(
β−1

1 β2

) (3.19)

Where the information constants Iµ, IΣ,1, IΣ,2 and Iβ are given respectively in (3.10), (2.7)
and (3.17).

Component-wise information gradient of (µ,Σ, β): Consider now the Component-
wise Information Gradient (CIG for short), derived from the metric (3.16). The CIG is
the unique vector field ∇�θ `p(θ;x) on Θ which satisfies

d `p(θ;x) [Uθ] =
〈
∇�θ `p(θ;x), Uθ

〉�
θ

recall `p = log p (3.20)

where the scalar product on the right-hand side is the CIM (3.16), and d`p is the dif-
ferential of `p. Accordingly, the component-wise information gradient has the following
form [90]

∇�θ `p(θ;x) =

∇∗µ`p(θ;x)
∇∗Σ`p(θ;x)
∇∗β`p(θ;x)

 =

 I−1
µ Σ gradµ`p(θ;x)

JΣ,1 [∇↑Σ`p(θ;x)]
⊥

+ JΣ,2 [∇↑Σ`p(θ;x)]
‖

I−1
β gradβ`p(θ;x)

 (3.21)

where the coefficients Iµ, JΣ,1, JΣ,2 and Iβ are respectively given in (2.7), (3.10), and
(3.17). For the third component in (3.21), the derivative of `p with respect to β is

gradβ`p(θ;x) =
∂ log c(β)

∂β
+
∂hβ(δ)

∂β
(3.22)
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3.4 Mixtures of ECD
A mixture of ECD is given by the probability density f(x|θ) in (1.2). This density is
parameterised by θ = (wk, θk; k = 1, · · · , K) where θk = (µk,Σk, βk) are the parameters
of mixture components p(x|θk), which are single ECD of the form (1.1).

In this thesis, the mixture weights w = (wk)k are mapped to a point r = (rk)k on
the unit sphere SK−1 ⊂ RK , by setting wk = r2

k. In this way, the parameter space Θ
of the MECD model is a product manifold, with subspaces SK−1 (for the weights), and
Θk = Rm × Pm × R+ (for each single ECD mixture component). In other words,

Θ = SK−1 ×Θ1 × . . .×ΘK Θk = Rm × Pm × R+

This parameter space will be given the structure of a d-dimensional Riemannian manifold
(the dimension d is given by d = K(m(m+ 3)/2 + 1)).

Ideally, one hopes to equip Θ with the Fisher information metric, and derive the
corresponding Riemannian information gradient and exponential map. However, as in
the single ECD case (of the previous section), this Fisher information metric does not
have a closed form expression, and the same is true of the corresponding exponential map
and information gradient.

Therefore, as in the previous section, a component-wise information metric, of quasi-
diagonal form, is introduced on Θ,

I�(θ) =

dr Vµk VΣk Vβk


Ur Ir 0 0 0
Uµk 0 Iµk 0 0
UΣk 0 0 IΣk 0
Uβk 0 0 0 Iβk

Its explicit expression is [89]

〈Uθ, Vθ〉�θ = 〈Ur, Vr〉∗r +
K∑
k=1

〈Uµk , Vµk〉
∗
µk

+
K∑
k=1

〈UΣk , VΣk〉
∗
Σk

+
K∑
k=1

〈Uβk , Vβk〉
∗
βk

(3.23)

where Uθ, Vθ are tangent vectors, in the tangent space TθΘ, and all sub-metrics are
the Fisher information metrics in the corresponding subspaces. Precisely, the Fisher
information metric 〈·, ·〉∗r on unit sphere coincides with the scalar product in Euclidean
sens [4]. For each mixture component, the Fisher information metric in each subspace
has the same form as in Equation (3.16).

〈Uµk , Vµk〉
∗
µk

= Iµk U
†
µk

Σ−1
k Vµk (3.24a)

〈UΣk , VΣk〉
∗
Σk

= IΣk,1tr(Σ−1
k UΣkΣ

−1
k VΣk) + IΣk,2tr(Σ−1

k UΣk)tr(Σ
−1
k VΣk) (3.24b)

〈Uβk , Vβk〉
∗
βk

= Iβk Uβk Vβk (3.24c)

The information constants in Equations (3.24) are also equal to the values given above.

IΣk,1 =
2A

m(m+ 2)
IΣk,2 =

A
m(m+ 2)

− 1

4
A = E

[(
∂hβk(δk)

∂δk
δk

)2
]

(3.25a)

Iµk = − 4

m
E
[
∂2 hβk(δk)

∂ δ2
k

δk

]
− 2E

[
∂ hβk(δk)

∂ δk

]
(3.25b)
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Iβk = −E
[
∂2 log c(βk)

∂ β2
k

+
∂2 hβk(δk)

∂ β2
k

]
(3.25c)

where δk = (x− µk)†Σ−1
k (x− µk).

To define a retraction on Θ, the retraction map in (3.18) is used for each component θk.
For the weights, as given by the parameters r = (rk)k ∈ SK−1, the intrinsic Riemannian
exponential on the sphere SK−1 ⊂ RK has an easy expression

Expr (Ur) = cos (‖Ur‖) r +
sin (‖Ur‖)
‖Ur‖

Ur (3.26)

The direct product of these maps is chosen as the retraction for MECD [89],

Retθ : TθΘ → Θ

Uθ =


Ur

(Uµk)k
(UΣk)k
(Uβk)k

 7→


Expr (Ur)(

Expµk (Uµk)
)
k(

ExpΣk
(UΣk)

)
k(

Expβk (Uβk)
)
k

 (3.27)

here, for any component k, following (3.18),Expµk(Uµk)
ExpΣk

(UΣk)
Expβk(Uβk)

 =

 µk + Uµk
Σk exp(Σ−1

k UΣk)

βke
Uβk/βk



The component-wise information gradient (CIG), derived from the metric (3.23), is given
as [89],

∇�θ `f (θ;x) =


∇∗r`f (θ;x)(
∇∗µk`f (θ;x)

)
k(

∇∗Σk`f (θ;x)
)
k(

∇∗βk`f (θ;x)
)
k

 (3.28)

Each element ∇∗i `f (θ;x) in this column vector is the information gradient with respect
to the corresponding i-th subspace. Concretely, the information gradient with respect to
r is

∇∗r`f (θ;x) =
∂

∂r
`f (θ;x)−

〈
∂

∂r
`f (θ;x) , r

〉
× r (3.29)

where 〈·, ·〉 denotes the scalar product in RK (the dot product). The information gradients
for µk, Σk and βk are consistent with (3.21)∇∗µk`f (θ;x)

∇∗Σk`f (θ;x)
∇∗βk`f (θ;x)

 =

 I−1
µk

Σk gradµk`f (θ;x)

JΣk,1

[
∇↑Σk`f (θ;x)

]⊥
+ JΣk,2

[
∇↑Σk`f (θ;x)

]‖
I−1
βk

gradβk`f (θ;x)


Here, all necessary information constants are defined in (3.25). The vectors gradµk`f (θ;x),
∇↑Σk`f (θ;x) and gradβk`f (θ;x) are defined in (2.24) and (2.5).

46



3.5 Conclusion
Our main contribution to the geometry of ECD and MECD is the introduction of the
component-wise information metric (CIM), in Sections 3.3 and 3.4 of the above. The
CIM coincides with the Fisher information metric (FIM) whenever the shape parameter
is known (when θ = (Σ) or θ = (µ,Σ)). When the shape parameter is unknown (when
θ = (µ,Σ, β)), the CIM has a straightforward “direct product" structure, while the FIM
does not admit any closed-form expression.

The following Table 3.5 details the geometric objects introduced in the present chapter,
for each special case of ECD or MECD models.

Model Summary

ECD with θ = (Σ)
• the CIM coincides with the FIM (2.6)
• the information gradient is given by (2.9)
• Exp is tractable, given by (2.2)

ECD with θ = (µ,Σ)
• the CIM coincides with the FIM (3.11)
• the information gradient is given by (3.14)
• use Ret given by (3.12), instead of intractable Exp

ECD with θ = (µ,Σ, β)
• the CIM is different from the FIM, and given by (3.16)
• the component-wise information gradient is given by (3.21)
• use Ret given by (3.18), instead of intractable Exp

MECD with θ = (w, θ1, · · · , θK)
• the CIM is different from the FIM, and given by (3.23)
• the component-wise information gradient is given by (3.28)
• use Ret given by (3.27), instead of intractable Exp

Table 3.1: The CIM and related geometric objects for ECD and MECD

The above table shows that there are certain special cases where the CIM coincides
with the FIM, which is known in closed form. In such cases, the Riemannian information
gradient can be computed explicitly, and replaced into the general update rules (3.5) or
(3.6). The following Chapter 4 will be exactly concerned with such cases, and studies
Riemannian online estimation of a general statistical model, whose Fisher information
metric is known. More difficult cases, where the CIM is used, because the FIM is unknown
in closed form, will be the subject of subsequent chapters 5 and 6.
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Chapter 4

Riemannian information gradient
method

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Application to scatter-matrix estimation . . . . . . . . . . . . . . . . . . . 53
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Introduction
The present chapter reflects our work, published in the journal paper [88]. Its central
theme is the application of the Riemannian information gradient method, to online (also
called recursive or stochastic) estimation of statistical models parameterised on Rieman-
nian manifolds.

For these statistical models, the information gradient method can be applied, under
the assumption that the Fisher information metric is known in closed form. Then, the
information gradient can be computed directly from the Fisher information metric. The
information gradient method greatly simplifies the task of selecting step-sizes. Moreover,
this method guarantees fast convergence, asymptotic normality, and asymptotic efficiency
of online estimation.

Unlike other chapters of this thesis, the present chapter does not focus solely on ECD
models, but considers general statistical models, whose parameters belong to a Rieman-
nian manifold. After stating general results on the Riemannian information gradient
method, it returns to certain special cases of ECD, in order to illustrate these results.

The focus will be on an online update rule which falls under the general form (3.6). The
aim of this update rule is to minimise a statistical divergence function D(θ) (such as the
Kullback-Leibler divergence), defined on some Riemannian manifold Θ. This minimisation
is equivalent to finding the true value θ∗ of the statistical parameter θ, as already discussed
in Section 3.1, before equation (3.1).

Specifically, the general online update rule considered in the following is (4.1a). The
Riemannian information gradient method is a special case of this general rule, which
will be given by (4.5). The main problem considered in the present chapter is how to
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choose the step-sizes in (4.1a), in order to obtain fast and asymptotically efficient online
estimates. In solving this problem, several original results are introduced.

First, under mild assumptions on the divergence function, it is proved that, with an
adequate choice of step-sizes, the update rule computes online estimates which achieve a
fast rate of convergence.

Second, the asymptotic normality of these online estimates is proved, by employing a
novel linearisation technique (see Appendix A.1.4).

Third, it is proved that the Riemannian information gradient method is asymptotically
efficient, in the sense that it achieves an optimal asymptotic rate of convergence.

These results, while relatively familiar in the Euclidean context (for example, see [25,
58]), were formulated and proved for the first time, in a Riemannian context, in our
paper [88]. They will be illustrated with a numerical application to the online estimation
of the scatter matrix of an ECD model, with known location and shape parameters.

The mathematical problem, considered in the present chapter, is formulated in Section
4.2. This involves a parameterised statistical model P of probability distributions Pθ,
where the statistical parameter θ belongs to a Riemannian manifold Θ. Given independent
observations, with distribution Pθ∗ for some θ∗ ∈ Θ, the aim is to estimate the unknown
true parameter θ∗.

In principle, this is done by minimising a statistical divergence function D(θ), which
measures the dissimilarity between Pθ and Pθ∗ . Taking advantage of the observations,
there are two approaches to minimising D(θ) : stochastic minimisation, which leads to
online estimation, and empirical minimisation, which leads to classical techniques, such
as maximum-likelihood estimation [15, 16].

The original results, obtained in the present chapter are stated in Section 4.3. In
particular, these are Propositions 2, 4, and 5. Overall, these propositions show that
online estimation, which requires less computational resources than maximum-likelihood
estimation, can still achieve the same optimal performance, characterised by asymptotic
efficiency. Recall that asymptotic efficiency means the asymptotic Cramér-Rao lower
bound is achieved [44, 78].

To summarise these propositions, consider a sequence of online estimates θ(n), com-
puted using a Riemannian online update rule of the form (3.6). Informally, under as-
sumptions which guarantee that θ∗ is an attractive local minimum of D(θ), and that the
updates are neither too noisy, nor too unstable, in the neighborhood of θ∗,
• Proposition 2 states that, with an adequate choice of step-sizes, the θ(n) achieve

a fast rate of convergence to θ∗. Precisely, the expectation of the squared Riemannian
distance between θ(n) and θ∗ is O (n−1). This is called a fast rate, because it is the best
achievable, for any step-sizes which are proportional to n−q with q ∈ (1/2, 1] [7, 25].
• Proposition 4 states that the distribution of the θ(n) becomes asymptotically normal,

centred at θ∗, when n grows increasingly large, and also characterises the corresponding
asymptotic covariance matrix.
• Proposition 5 is concerned with the Riemannian information gradient method. If the

Riemannian manifold Θ is equipped with the Fisher information metric of the statistical
model P , then Riemannian information gradient descent computes online estimates θ(n)

which are asymptotically efficient. This is illustrated, with a numerical application to the
online estimation of the scatter matrix of an ECD model, in Section 4.

The end-result of Proposition 5 is that the Riemannian information gradient method,
which uses the Fisher information metric, achieves asymptotic efficiency. In [77], an
alternative route to asymptotic efficiency is proposed, using the averaged Riemannian
stochastic gradient method. This method does not require any prior knowledge of the
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Fisher information metric, but has an additional computational cost, which comes from
computing on-line Riemannian averages.

The proofs of Propositions 2, 4, and 5 are detailed in Appendices A.1, A.2 and A.3.

4.2 Problem statement
Let P = (P,Θ, X) be a statistical model, with parameter space Θ and sample space X.
To each θ ∈ Θ, the model P associates a probability distribution Pθ on X. Here, we
consider the case where Θ is a Riemannian manifold, and X is any measurable space.

The Riemannian metric of Θ will be denoted 〈·, ·〉, with its Riemannian distance d (·, ·).
In general, the metric 〈·, ·〉 is not the information metric of the model P .

Let (Ω,F ,P) be a complete probability space, and (xn ;n = 1, 2, · · · ) be i.i.d. random
variables on Ω, with values in X. While the distribution of xn is unknown, it is assumed
to belong to the model P . That is, P ◦ x−1

n = Pθ∗ for some θ∗ ∈ Θ, which is the true
parameter.

Consider the following problem : how to obtain fast, asymptotically efficient, online
estimates θ(n) of the true parameter θ∗, based on observations of the random variables
xn? The present work proposes to solve this problem through a detailed study of the
decreasing-step-size online update rule,

θ(n+1) = Expθ(n)

(
η(n+1) U(θ(n),X new

mb )
)

n = 0, 1, · · · (4.1a)

starting from an initial guess θ(0) . Here, X new
mb could be just one sample or a mini-batch.

When it is one sample, it is also denoted as xn. This update rule is similar to the one
in [11], and falls under the general form (3.6). Instead of the general retraction Ret in
(3.6), it uses the Riemannian exponential Exp of the metric 〈·, ·〉 of Θ. In the following,
the step-sizes η(n) are strictly positive, decreasing, and verify the usual conditions for
stochastic approximation [48, 58]∑

η(n) = ∞
∑

(η(n))2 < ∞ (4.1b)

Moreover, U(θ, x) is a continuous vector field on Θ for each x ∈ X, which generalises the
classical concept of score statistic [39, 44].

A priori knowledge about the model P is injected into the update rule (4.1a) using a
divergence function D(θ). As defined in [3], this is a positive function, equal to zero if
and only if Pθ = Pθ∗ , and with positive-definite Hessian at θ = θ∗. Since one expects that
minimising D(θ) will lead to estimating θ∗, it is natural to require that

Eθ∗U(θ, x) = −∇D(θ) (4.1c)

In other words, that U(θ, x) is an unbiased estimator of minus the Riemannian gradient
of D(θ). With U(θ, x) given by (4.1c), the update rule (4.1a) is a Riemannian stochastic
gradient method, of the form considered in [11, 77, 86].

In practice, a suitable choice of D(θ) is often the Kullback-Leibler divergence [72],

D(θ) = −Eθ∗ [`(θ;x)] `(θ;x) = log

(
pθ(x)

pθ∗(x)

)
(4.2)

where it is assumed that Pθ and Pθ∗ have common support, with probability density
functions pθ(x) and pθ∗(x), respectively. Indeed, if D(θ) is chosen to be the Kullback-
Leibler divergence, then (4.1c) is satisfied by

U(θ, x) = ∇`(θ;x) (4.3)

50



which, in many practical situations, can be evaluated directly.

Riemannian information gradient method:
When the Fisher information metric 〈·, ·〉∗ of the model P is known, it is natural to equip
Θ with this Fisher information metric. Then, the Riemannian gradient on the right-hand
side of equation (4.3) coincides with the Riemannian information gradient,

U(θ, x) = ∇∗`(θ;x) (4.4)

If this expression of U(θ, x) is replaced into equation (4.1a), this equation becomes

θ(n+1) = Expθ(n)

(
η(n+1)∇∗θ`(θ(n);X new

mb )
)

(4.5)

which will be called the Riemannian information gradient method. �

Before stating the main results, in the following Section 4.3, it may be helpful to
recall some general background, on online estimation [58]. For simplicity, let D(θ) be
the Kullback-Leibler divergence (4.2). The problem of estimating the true parameter
θ∗ is equivalent to the problem of finding a global minimum of D(θ). Of course, this
problem cannot be tackled directly, since D(θ) cannot be computed without knowledge
of θ∗. There exist two routes, around this difficulty.

The first route is empirical minimisation, which replaces the expectation in (4.2) with
an empirical mean over observed data. Given the first N observations, instead of min-
imising D(θ), one minimises the empirical divergence D̂(θ),

D̂(θ) = − 1

N

N∑
n=1

`(θ;xn) (4.6)

where `(θ;x) is the likelihood function of (4.2). Now, given the minus sign ahead of
the sum in (4.6), it is clear that minimising D̂(θ) amounts to maximising the sum of
log-likelihoods. Thus, this lead to the method of maximum-likelihood estimation.

It is well-known that maximum-likelihood estimation, under general regularity con-
ditions, is asymptotically efficient [44]. Roughly, this means the maximum-likelihood
estimator has the least possible asymptotic variance, equal to the inverse of the Fisher
information matrix. On the other hand, as the number N of observations grows very
large, it can be especially difficult to deal with the empirical divergence D̂(θ) of (4.6).
In the process of searching for the minimum of D̂(θ), each evaluation of this function,
or of its derivatives, will involve a massive number of operations, ultimately becoming
unpractical.

Aiming to avoid this difficulty, the second route, that applies to online estimation,
is based on observation-driven updates, following the general scheme of (4.1a). In this
scheme, each new online estimate θ(n+1) is computed using only one new observation xn+1,
or eventually a mini-batch. Therefore, as the number of observations grows very large,
the overall computational effort required by online estimation, remains the same.

The main results in the following section show that online estimation can achieve the
same asymptotic performance as maximum-likelihood estimation, as the number N of
observations grows large. As a word of caution, it should be said that online estimation
does not, in general, fare better than maximum-likelihood estimation for moderate values
of the numberN of observations, and models with a small number of parameters. However,
it is a very desirable substitute to maximum-likelihood estimation for models with a large
number of parameters, which typically require a very large number of observations, in
order to be estimated correctly.
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4.3 Main results
The motivation of the following Propositions 1 to 5 is to provide general conditions,
which guarantee that the update rule (4.1a) computes fast, asymptotically efficient, online
estimates θ(n) of the true parameter θ∗. In the statement of these propositions, it is
implicitly assumed that conditions (4.1b) and (4.1c) are verified. Moreover, the following
assumptions are considered.

(d1) the divergence function D(θ) has an isolated stationary point at θ = θ∗,
and Lipschitz gradient in a neighborhood of this point.

(d2) this stationary point is moreover attractive : D(θ) is twice differentiable
at θ = θ∗, with positive-definite Hessian at this point.

(u1) in a neighborhood of θ = θ∗, the function V (θ) = Eθ∗ ‖U(θ, x)‖2
θ is

uniformly bounded.

(u2) in a neighborhood of θ = θ∗, the function R(θ) = Eθ∗ ‖U(θ, x)‖4
θ is

uniformly bounded.

For Assumption (d1), the definition of a Lipschitz vector field on a Riemannian man-
ifold may be found in [56]. For Assumptions (u1) and (u2), ‖·‖ denotes the Riemannian
norm.

Assumptions (u1) and (u2) are so-called moment control assumptions. They imply
that the noisy nature of the observations xn does not cause the iterates θ(n) to diverge,
and are also crucial to proving the asymptotic normality of these iterates.

Let Θ∗ be a neighborhood of θ∗ which verifies (d1), (u1), and (u2). Without loss of
generality, it is assumed that Θ∗ is compact and convex (see the definition of convexity
in [62, 72]). Then, Θ∗ admits a system of normal coordinates (θα;α = 1, · · · , d) with
origin at θ∗. With respect to these coordinates, denote the components of U(θ∗, x) by
uα(θ∗) and let Σ∗ = (Σ∗αβ),

Σ∗αβ = Eθ∗
[
uα(θ∗)uβ(θ∗)

]
(4.7)

When (d2) is verified, denote the components of the Hessian of D(θ) at θ = θ∗ by H =
(Hαβ),

Hαβ =
∂2D

∂θα∂θβ

∣∣∣∣
θα=0

(4.8)

Then, the matrix H = (Hαβ) is positive-definite [2]. Denote by λ > 0 its smallest
eigenvalue.

Propositions 1 to 5 require the condition that the estimates θ(n) are stable, which
means that all the θ(n) lie in Θ∗, almost surely. The need for this condition is discussed in
Remark 3. Note that, if θ(n) lies in Θ∗, then θ(n) is determined by its normal coordinates
(θ(n))α.

Proposition 1 (consistency) assume (d1) and (u1) are verified, and the estimates θ(n)

are stable. Then, lim θ(n) = θ∗ almost surely.

Proposition 2 (mean-square rate) assume (d1), (d2) and (u1) are verified, the es-
timates θ(n) are stable, and η(n) = a

n
where 2λa > 1. Then

E d2(θ(n), θ∗) = O
(
n−1
)

(4.9)
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Proposition 3 (almost-sure rate) assume the conditions of Proposition 2 are verified.
Then,

d2(θ(n), θ∗) = o(n−p) for p ∈ (0, 1) almost surely (4.10)

Proposition 4 (asymptotic normality) assume the conditions of Proposition 2, as
well as assumption (u2), are verified. Then, the distribution of the re-scaled coordinates
[n1/2 (θ(n))α] converges to a centred d-variate normal distribution, with covariance matrix
Σ given by Lyapunov’s equation

AΣ + ΣA = −a2 Σ∗ (4.11)

where A = (Aαβ) with Aαβ = 1
2
δαβ − aHαβ (here, δ denotes Kronecker’s delta).

Proposition 5 (asymptotic efficiency) assume the Riemannian metric 〈·, ·〉 of Θ co-
incides with the information metric of the model P , and let D(θ) be the Kullback-Leibler
divergence (4.2). Further, assume (d1), (d2), (u1) and (u2) are verified, the online
estimates θ(n) are stable, and η(n) = a

n
where 2a > 1. Then,

(i) the rates of convergence (4.9) and (4.10) hold true.

(ii) if a = 1, the distribution of the re-scaled coordinates [n1/2 (θ(n))α] converges
to a centred d-variate normal distribution, with covariance matrix Σ∗.

(iii) if a = 1, and U(θ, x) is given by (4.4), then Σ∗ is the identity matrix,
and the online estimates θ(n) are asymptotically efficient.

(iv) the following rates of convergence also hold

ED(θ(n)) = O(n−1) (4.12a)

D(θ(n)) = o(n−p) for p ∈ (0, 1) almost surely (4.12b)

Remark 1 assumptions (d2), (u1) and (u2) do not depend on the Riemannian metric
〈·, ·〉 of Θ. Precisely, if they are verified for one Riemannian metric on Θ, then they
are verified for any Riemannian metric on Θ. Moreover, if the function D(θ) is C2,
then the same is true for assumption (d1). In this case, Propositions 1 to 5 apply for
any Riemannian metric on Θ, so that the choice of the metric 〈·, ·〉 is a purely practical
matter, to be decided according to applications.

Remark 2 the conclusion of Proposition 1 continues to hold, if (4.1c) is replaced by

Eθ∗ 〈U(θ, x),∇D(θ)〉 < 0 for θ 6= θ∗ (4.13)

Then, it is even possible to preserve Propositions 2, 3, and 4, provided assumption (d2)
is replaced by the assumption that the mean vector field, X(θ) = Eθ∗U(θ, x), has an
attractive stationary point at θ = θ∗. This generalisation of Propositions 1 to 4 can be
achieved following essentially the same approach as laid out in Section 4.3. However, in
the present work, it will not be carried out in detail.

Remark 3 the condition that the online estimates θ(n) are stable is standard in all prior
work on stochastic optimisation in manifolds [11, 77, 86]. In practice, this condition can
be enforced through replacing (4.1a) by a so-called projected or truncated update rule. This
is identical to (4.1a), except that θ(n) is projected back onto the neighborhood Θ∗ of θ∗,
whenever it falls outside of this neighborhood [48, 58]. On the other hand, if the θ(n) are
not required to be stable, but (d1) and (u1) are replaced by global assumptions,
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(d1’) D(θ) has compact level sets and globally Lipschitz gradient.

(u1’) V (θ) 6 C (1 +D(θ)) for some constant C and for all θ ∈ Θ.

then, applying the same arguments as in the proof of Proposition 1, it follows that the θ(n)

converge to the set of stationary points of D(θ), almost surely.

Remark 4 from (ii) and (iii) of Proposition 5, it follows that the distribution of n d2(θ(n), θ∗)
converges to a χ2-distribution with d degrees of freedom. This provides a practical means
of confirming the asymptotic efficiency of the online estimates θ(n).

4.4 Application to scatter-matrix estimation
Here, the conclusion of Proposition 5 is illustrated, by applying the update rule (4.1a) to
the estimation of the scatter matrix of an ECD, with fixed location and shape parameters.

Precisely, in the notation of Section 4.2, let Θ = Pm the space of m × m positive-
definite matrices, and X = Rm. For each θ ∈ Θ, let Pθ be the ECD distribution with
density p(x|θ) given by (1.1), with location parameter µ = 0, scatter matrix Σ = θ, and
known shape parameter β = β∗,

p(x|θ) = c(β∗)
1√

det(θ)
gβ∗(δ) (4.14)

where δ = x†θ−1x. In the following, the familiar notation hβ(δ) = log gβ(δ) is also used.
In addition, let (x(n);n = 1, 2, · · · ) be i.i.d. random vectors in Rm, with distribution

Pθ∗ , where θ∗ ∈ Θ is the true scatter matrix. The standard approach to estimating the
true scatter matrix θ∗ is based on maximum-likelihood estimation [59, 75]. An original
approach, based on online estimation, is now introduced using the update rule (4.1a).

As in Proposition 5, the parameter space Θ = Pm is equiped with the Fisher informa-
tion metric (2.6). Here, this can be written as follows

〈U, V 〉∗θ = Iθ,1 tr
(
θ−1Uθ−1V

)
+ Iθ,2 tr

(
θ−1U

)
tr
(
θ−1V

)
(4.15)

for U, V ∈ TθΘ, where the information coefficients Iθ,1 and Iθ,2 are given by (2.7),

Iθ,1 =
2A

m(m+ 2)
Iθ,2 =

A
m(m+ 2)

− 1

4
A = Eθ

[(
∂hβ∗(δ)

∂δ
δ

)2
]

(4.16)

Note that these coefficients Iθ,1 and Iθ,2 do not depend on θ, but only on β∗.
The Fisher information metric with respect to θ being given by (4.15), it becomes pos-

sible to specify the update rule (4.1a). Indeed, recall from Section 2.2 that the exponential
map of the metric (4.15) is given by (2.2),

Expθ(u) = θ exp
(
θ−1u

)
(4.17a)

Then, according to (ii) of Proposition 5, consider the step-sizes

η(n) =
1

n
(4.17b)

Finally, according to (iii) of Proposition 5, let U(θ, x) be equal to the Riemannian infor-
mation gradient,

U(θ, x) = ∇∗`(θ;x) (4.17c)
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This is the gradient of `(θ;x) = log p(x|θ) with respect to the Fisher information metric
(4.15), and can be computed from (2.9). Now, replacing (4.17) into (4.1a) defines an
original update-rule (i.e. an original algorithm) for online estimation of the true scatter
matrix θ∗.

Figures 4.1 and 4.2 below display numerical results from an application to MGGD,
which correspond to h(δ) = − δβ

2
in (4.14) and A = m

2

(
m
2

+ β
)
in (4.16) [8, 28].

These figures were generated from 103 Monte Carlo runs of the algorithm defined by
(4.1a) and (4.17), with random initialisations, for the specific values β = 4 and m = 7.
Essentially the same numerical results could be observed for any β 6 9 and m 6 50.

Figures 4.1 and 4.2 are concerned with the Riemannian information distance d∗(θ(n), θ∗)
induced by the Fisher information metric (4.15). This distance is given by (2.8)

d2
∗(θ, θ

∗) = Iθ,1 tr
[
log
(
θ−1θ∗

)]2
+ Iθ,2 tr2

[
log
(
θ−1θ∗

)]
θ , θ∗ ∈ Θ (4.18)

Figure 4.1 confirms the fast rate of convergence (4.9), stated in (i) of Proposition 5. On
a log-log scale, it shows the empirical mean EMCd

2
∗(θ

(n), θ∗) over Monte Carlo runs, as a
function of n. This decreases with a constant negative slope equal to −1, starting roughly
at log n = 4.

Figure 4.2 confirms the asymptotic efficiency of the online estimates θ(n), stated in
(iii) of Proposition 5, using Remark 4.

Figure 4.2 shows a kernel density estimate of n d2
∗(θ

(n), θ∗) where n = 105 (solid blue
curve). This agrees with a X 2-distribution with 28 degrees of freedom (dotted red curve),
where d = 28 is indeed the dimension of the parameter space Θ = Pm for m = 7.

Figure 4.1: Riemannian information
gradient: Fast rate of convergence

Figure 4.2: Riemannian information
gradient: Asymptotic efficiency

4.5 Conclusion
This chapter introduced the Riemannian information gradient method, in the form of the
update rule (4.5), applying it to online estimation of statistical models parameterised on
Riemannian manifolds. The Riemannian information gradient method leads to a fast rate
of convergence, and even to asymptotic efficiency. However, it can only be applied if the
Fisher information metric is known.

The main results obtained in this chapter describe the convergence behavior of online
estimates θ(n), computed using the the general decreasing-step-size online update rule
(4.1a), under Assumptions (d1), (d2), (u1), and (u2), formulated at the beginning of
Section 4.3.

• Proposition 1 states that the θ(n) converge almost surely to the true parameter θ∗,
under Assumptions (d1) and (u1). The rate of almost sure convergence is stated in
Proposition 3, with the additional Assumption (d2).
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• Proposition 2 states the mean-square rate of convergence of the θ(n). If the step-sizes
η(n) are chosen correctly, this becomes a fast rate O(n−1). This proposition requires
Assumptions (d1), (d2), and (u1).

• Propositions 4 states that the asymptotic distribution of the θ(n) is a normal dis-
tribution, centred at θ∗, and characterises its covariance matrix. This proposition
requires Assumptions (d1), (d2), (u1), and (u2).

• Proposition 5 states that, when the Fisher information metric is used to implement
the update rule (4.1a) (this corresponds to the Riemannian information gradient
method), there is an automatic choice of step-sizes (η(n) = 1/n) which guarantees
the θ(n) are asymptotically efficient.

Section 4.4 applies Proposition 5 to the estimation of the scatter matrix of an ECD,
with known location and shape parameters. It is impossible to extend this application
to the case of a general ECD model (with unknown shape parameter), since the Fisher
information metric is unknown, in this case. In order to overcome this difficulty, the
following Chapter 5 will consider the component-wise information gradient method (CIG
method).
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Chapter 5

Estimation of ECD with CIG
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5.1 Introduction
The main body of this chapter is based on our article [90], currently under review.

As shown in the previous chapter, the Fisher information metric and the related in-
formation gradient have significant advantages. The Riemannian information gradient
method has a fast rate of convergence, and achieves asymptotic efficiency, with a simple
(universal) choice of step-sizes (η(n) = 1/n).

For a complete ECD model, with unknown parameter θ = (µ,Σ, β), including loca-
tion and shape parameters, the Fisher information metric does not have a closed form
expression, so the Riemannian information gradient method cannot be applied.

Here, the Component-wise Information Metric (CIM), introduced in Chapter 3, will
be used instead of the Fisher information metric (FIM). The gradient with respect to the
CIM is the component-wise information gradient (CIG), which will now be used to define
the CIG method for estimation of the complete ECD model.

The CIM is a quasi-diagonal reduction of the FIM. Thus, the CIG method retains some
of the good properties of the Riemannian information gradient method (fast convergence
and asymptotic efficiency, as seen in Proposition 5 of the previous Chapter 4), but not
all of them. For example, the CIG method can still achieve a fast rate of convergence
when estimating the true parameter θ∗ = (µ∗,Σ∗, β∗), but will fail to achieve asymptotic
efficiency (theoretical results about the CIG method are given in Section 5.3).

The CIG method has an offline version, which can be applied to moderate-sized
datasets, and an online version, more suited for recursive computations, which may be
needed in applications such as change detection [13]. Both of these methods compute
updated estimates (µ(n+1),Σ(n+1), β(n+1)) from current estimates (µ(n),Σ(n), β(n)), based
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on the alternating scheme

step 1 : µ(n+1) ← (µ(n),Σ(n), β(n))

step 2 : Σ(n+1) ← (µ(n+1),Σ(n), β(n))

step 3 : β(n+1) ← (µ(n+1),Σ(n+1), β(n))

(5.1)

where each sub-parameter µ, Σ, or β is updated separately, in its own turn.
In the following, Section 5.2 starts with offline version of the CIG method. The online

version and its theoretical convergence properties are introduced in Section 5.3. The
question of the geodesic convexity of the Kullback-Leibler divergence D(θ), in the case of
ECD estimation (recall Equation (3.1)), is studied in Section 5.4.

5.2 CIG offline
The CIG offline method is a second-order deterministic gradient method, somewhat sim-
ilar to a Newton method. In the Newton method, the direction of descent is found by
solving the Newton equation [2]. In the CIG offline method, the Hessian in the Newton
equation is approximated by the component-wise information metric (or matrix) I�(θ),
from Section 3.3.

For the CIG offline method, the choice of update direction depends on the complete
dataset. The cost function (3.1) is reformulated, by replacing the KL divergence, with
the empirical average of −`p(θ;x), as in equation (4.6). This empirical average will be
denoted by D̂(θ).

If the current estimate is θ(n) = (µ(n),Σ(n), β(n)), the direction of update is given by
one of the three components (depending on which sub-parameter is being updated)

∇∗µD̂(θ(n)) = − 1

T

T∑
t=1

∇∗µ`p(θ(n);xt) (5.2a)

∇∗ΣD̂(θ(n)) = − 1

T

T∑
t=1

∇∗Σ`p(θ(n);xt) (5.2b)

∇∗βD̂(θ(n)) = − 1

T

T∑
t=1

∇∗β`p(θ(n);xt) (5.2c)

where the vectors ∇∗µ`p, ∇∗Σ`p and ∇∗β`p under the empirical averages are given in (3.21).
Using the expressions in (5.2), the CIG offline algorithm can now be stated as follows.

Algorithm 1 CIG offline algorithm for ECD estimation

Input: A finite dataset X , an initialization θ(0) = (µ(0),Σ(0), β(0));
Output: The estimate θ̂;
1: for n = 0, 1, 2 · · · , N do
2: Update µ:
3: θcurrent ← (µ(n),Σ(n), β(n));
4: Compute ∇∗µD̂(θcurrent);
5: ηµ ← Armijo-Goldstein(X , θcurrent);
6: µ(n+1) ← Expµ(n)

(
−ηµ∇∗µD̂(θcurrent)

)
;
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7: Update Σ:
8: θcurrent ← (µ(n+1),Σ(n), β(n));
9: Compute ∇∗ΣD̂(θcurrent);
10: ηΣ ← Armijo-Goldstein(X , θcurrent);
11: Σ(n+1) ← ExpΣ(n)

(
−ηΣ∇∗ΣD̂(θcurrent)

)
;

12: Update β:
13: θcurrent ← (µ(n+1),Σ(n+1), β(n));
14: Compute ∇∗βD̂(θcurrent);
15: ηβ ← Armijo-Goldstein(X , θcurrent);
16: β(n+1) ← Expβ(n)

(
−ηβ∇∗βD̂(θcurrent)

)
;

17: end for
18: θ̂ ← (µ(N+1)),Σ(N+1), β(N+1));

In this algorithm, the three exponential maps Expµ, ExpΣ and Expβ are defined in (3.18),
and the gradients are computed based on (5.2). The constant η denotes the step-size,
which is selected according to the Armijo-Goldstein rule, thanks to a backtracking pro-
cedure (Definition 4.2.2. in [2]). The following Proposition 6 states the convergence of
Algorithm 1.

In this proposition, θ∗ denotes a stationary point of the cost function D̂(θ) (defined
as in (4.6)), and Θ∗ a compact neighborhood of θ∗.

Proposition 6 Assume that θ∗ is the unique stationary point of D̂(θ) in Θ∗ and let
(θ(n))n>0 be a sequence generated by Algorithm 1. If the (θ(n))n>0 remain within Θ∗, then
limn→∞ θ

(n) = θ∗.

The proof is given in Appendix B.1.
For the cases θ = (Σ) or θ = (µ,Σ), the CIM coincides with the FIM (recall Table

3.5). However, it is well know that, near the true value θ∗, the Hessian of the function
D̂(θ) is approximated by the FIM [3]. Therefore, in these two cases, one should expect
the θ(n) to converge to θ∗ with a superlinear rate of convergence, just like the Newton
method does (Theorem 6.3.2 in [2]).

Precisely, if θ = (Σ) or θ = (µ,Σ), with a fixed shape parameter β∗, then, under
the assumptions of Proposition 6, one should expect Algorithm 1 to generate a sequence
(θ(n))n>0 converging superlinearly to θ∗. Here, this will not be proved mathematically,
but will be observed experimentally in Subsection 7.2.1 (see Figure 7.1).

5.3 CIG Online
The CIG online method is a stochastic gradient method, entirely based on the geometry
of the component-wise information metric (CIM), described in Section 3.3. This method
aims to minimise the original cost function in Equation (3.1).

In the CIG online method, for the current estimate θ(n) = (µ(n),Σ(n), β(n)), its cor-
respond stochastic information gradients are given in (3.21). Accordingly, the expected
direction of descent is is equal to 0 at any stationary point θ∗ of D(θ) in (3.1).

As in the classic stochastic gradient descent method, the step-size η(n) = a
n
is strictly

positive, decreasing, and verifies the usual conditions (4.1b).
The choice of the coefficient a requires some attention. Whenever the true shape pa-

rameter β∗ is known, optimal performance is obtained by taking a = 1 (see also Corollary
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1, below). However, if β∗ is unknown, then a has to be chosen manually, by trial and
error. This will be discussed in connection with Proposition 8 and with Figure 7.2 in
Section 7.2.1.

The CIG online algorithm can now be stated as follows.

Algorithm 2 CIG online algorithm for ECD estimation

Input: A dataset X , an initialization θ(0) = (µ(0),Σ(0), β(0)), the coefficient a > 0;
Output: The estimate θ̂;
1: for n = 0, 1, 2, · · · , N do
2: η(n+1) ← a

n+1
;

3: Update µ:
4: θcurrent ← (µ(n),Σ(n), β(n));
5: Pick a new mini-batch X new

mb ;
6: Compute ∇∗µ`p(θcurrent;X new

mb );
7: µ(n+1) ← Expµ(n)

(
η(n+1)∇∗µ`p(θcurrent;X new

mb )
)
;

8: Update Σ:
9: θcurrent ← (µ(n+1),Σ(n), β(n));
10: Pick a new mini-batch X new

mb ;
11: Compute ∇∗Σ`p(θcurrent;X new

mb );
12: Σ(n+1) ← ExpΣ(n)

(
η(n+1)∇∗Σ`p(θcurrent;X new

mb )
)
;

13: Update β:
14: θcurrent ← (µ(n+1),Σ(n+1), β(n));
15: Pick a new mini-batch X new

mb ;
16: Compute ∇∗β`p(θcurrent;X new

mb );
17: β(n+1) ← Expβ(n)

(
η(n+1)∇∗β`p(θcurrent;X new

mb )
)
;

18: end for
19: θ̂ ← (µN+1,ΣN+1, βN+1);

Here, the three exponential maps Expµ, ExpΣ and Expβ are defined in Equation (3.18),
and the stochastic gradients are computed based on (3.21). In each update, X new

mb could
be just one sample, or a mini-batch. If X new

mb is a mini-batch (with more than one sample),
then an empirical average over this mini-batch should be introduced, for the stochastic
gradients.

The following proposition 7 states the convergence of Algorithm 2. In this proposition,
θ∗ is a stationary point of D(θ) in (3.1), and Θ∗ is a compact neighborhood of θ∗, which
verify the following assumption.

A1. θ∗ is the unique stationary point of D(θ) in Θ∗. Moreover, the second derivatives
∇∗2µ D(θ∗), ∇∗2Σ D(θ∗), ∇∗2β D(θ∗) are all positive-definite.

Proposition 7 Assume that A1 is verified and that the estimates (θ(n))n>0 generated by
Algorithm 2 remain within Θ∗. Then, lim θ(n) = θ∗ almost surely.

The proof of this convergence is given in Appendix B.2.
In addition to almost-sure convergence, stated in Proposition 7, we have also studied

the convergence rate and asymptotic normality of Algorithm 2. Recall Θ∗ is a neighbor-
hood of θ∗ which satisfies the conditions in Proposition 7. This neighborhood Θ∗ admits a
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system of normal coordinates (θi; i = 1, · · · , d) with origin at θ∗, where d is the dimension
of the parameter space Θ, d = m(m+1)

2
+ m + 1. Since D(θ) has an isolated stationary

point at θ = θ∗, its Hessian at this point θ = θ∗ can be expressed in normal coordinates

Hij =
∂2D

∂θi∂θj

∣∣∣∣
θi=0

(5.3)

When θ∗ is a local minimum of D(θ), the matrix H = (Hij) is positive-definite [2]. With
these notations, the rate of convergence is given by the following Proposition 8.

Recall that the step-sizes in Algorithm 2 are of the form η(n) = a/n, where the constant
a is chosen by the user.

Proposition 8 Under the assumptions of Proposition 7, if a > 1
2λ
, where λ > 0 is the

smallest eigenvalue of H,
E
[
d2
�(θ∗, θ(n))

]
= O(n−1) (5.4)

Here, d�(·, ·) stands for the CID in (3.19), and the "big O" notation means that there
exist K > 0 and n0 > 0 such that

∀n > n0 E[d2
�(θ∗, θ(n))] 6

K

n

In terms of the normal coordinates (θi), let the component-wise information gradient
∇�θ `p(θ∗;x) at the point θ = θ∗, given by (3.21), have components (ui(θ∗)). Let G∗ = (G∗ij),
be the matrix

G∗ij = Eθ∗
[
ui(θ∗)uj(θ∗)

]
(5.5)

Then, the following proposition gives the asymptotic normality of the CIG online algo-
rithm.

Proposition 9 (asymptotic normality) Under the assumptions of Propositions 7 and
8, the distribution of the re-scaled coordinates (n

1
2 θi)i∈{1,··· ,d} converges to a centred d−variate

normal distribution, where d is the dimension of Θ, with covariance matrix G given by
the following Lyabunov equation

AG + GA = −a2G∗ (5.6)

Here, A = (Aij) with Aij = 1
2
δij − aHij (δ denotes Kronecker’s delta).

The proofs of Propositions 8 and 9 and are discussed in Appendix B.3.
For the cases θ = (Σ) or θ = (µ,Σ), the CIM coincides with the FIM (recall Table 3.5).

Therefore the component-wise information distance (the CID (3.19)) also coincides with
the “true" information distance, which is the distance associated with the FIM. Thus,
in these cases, Assumptions (d1) to (u1) in Proposition 5 of the previous Chapter 4 are
satisfied, and the following corollary may be obtained [88].

Corollary 1 For the ECD model, parameterised by θ = (Σ) or θ = (µ,Σ), with a fixed
β∗, the CIM (3.16) coincides with the Fisher information metric.

1. the rate in equation (5.4) holds, whenever a > 1/2.

2. if a = 1 the distribution of the re-scaled coordinates (n1/2θi) converges to a centred
d-variate normal distribution, with covariance matrix equal to the identity G∗ = Id,
and the recursive estimates θ(n) are asymptotically efficient.
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Note that, Item 2) of Corollary 1 implies that the distribution of nd2
∗(θ
∗, θ(n)) converges

to a χ2-distribution with d degrees of freedom.

nd2
∗(θ
∗, θ(n))

dist−→ χ2

(
m(m+ 1)

2

)
for θ = (Σ)

nd2
∗(θ
∗, θ(n))

dist−→ χ2

(
m(m+ 1)

2
+m

)
for θ = (µ,Σ)

This provides a practical means of confirming the asymptotic normality of the estimators
θ(n).

5.4 Global convergence analysis
This section studies the global convergence of the CIG algorithm, in both its offline
and online versions. The term "global convergence" means that the iterates (θ(n))n≥0,
generated by Algorithm 1 or Algorithm 2, always converge to the true parameter value
θ∗, whatever the initial guess θ(0).

We will mainly consider the two most well-known sub-families of ECD, the Multivariate
Generalized Gaussian Distribution (MGGD) and Multivariate Student t-Distribution, and
only in the cases θ = (Σ) and θ = (µ,Σ). The main results are stated in the following
two tables. In these tables, the shape parameter β is considered fixed and known.

MGGD
θ = (Σ) global convergence holds for β > 0
θ = (µ,Σ) global convergence holds for β > 0

Table 5.1: Global convergence analysis: MGGD

Student
θ = (Σ) global convergence holds for β > 0
θ = (µ,Σ) global convergence holds β > 0

Table 5.2: Global convergence analysis: Student T

For the cases indicated in Tables 5.1 and 5.2, the cost function (D̂(θ) for the offline
version, and D(θ) for the online version) has a unique stationary point at the true pa-
rameter θ∗, which is the global minimizer. This follows from the strict g-convexity (i.e.
geodesic convexity of this cost function), which will now be considered.

First, for the case of θ = (Σ) with known µ∗ and β∗, let

f(δ, β) =
1

gβ(δ)
(5.7)

then, for the MGGD model

f(δ, β) = exp

(
1

2
δβ
)

β > 0 (5.8a)
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and for the Student t model,

f(δ, β) =

(
1 +

δ

β

)β+m
2

β > 0 (5.8b)

The following proposition introduces a sufficient condition for the Kullback-Leibler diver-
gence D(Σ) and its empirical approximation D̂(Σ) to be geodesically strictly convex.

Proposition 10 Assume that the function f : R+ → R+ in (5.7) verifies the following
condition : for any function ϕ : R→ R+

ϕ is strictly log-convex ⇒ f ◦ ϕ is strictly log-convex (5.9)

Then, the Kullback-Leibler divergence D(Σ) and the empirical divergence D̂(Σ) are geodesi-
cally strictly convex.

In particular, when the conclusion of Proposition 10 holds, the unique global minimum
of D(Σ) is at the true Σ∗. Moreover, Σ∗ is also the unique stationary point of D(Σ).

Proposition 10 directly yields the following corollary, for the MGGD and Student
T models. By plugging (5.8a) and (5.8b) into (5.9), it is easy to obtain the following.
Compared with [87], this proposition can give a wider range of shape (or degree of freedom)
parameters, for geodesic convexity.

Corollary 2 the Kullback-Leibler divergence D(Σ) and its empirical approximation D̂(θ)
are geodesically strictly convex, with unique global minimum (and unique stationary point),
in both of the following cases.

1. the dataset X is distributed according to an MGGD model, with scatter matrix Σ∗

and with shape parameter β > 0.

2. the dataset X is distributed according to a Student T model, with scatter matrix Σ∗

and degree of freedom β > 0.

Thus, when Σ is unknown and β satisfies the conditions of Corollary 2, this corollary
implies the global convergence of Algorithms 1 and 2. Precisely, these algorithms will
always converge to the true value θ∗ = (Σ∗) of the parameter θ = (Σ), whatever the
initial guess θ(0).
For the more complicated situation θ = (µ,Σ), global convergence does not always hold.
The cost function D(θ) is not geodesically convex, but may be reformulated, using a new
matrix argument [50].

S =

[
Σ + µµ† µ
µ† 1

]
Precisely, if the new random vector y is given by

y† =
(
x†, 1

)†
then the cost function can be reformulated as

D̃(θ) = −1

2
log det(S)− log f̃(δy)

where
δy = y†S−1y = (x− µ)†Σ−1(x− µ) + 1
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Here, the function f̃ for MGGD is

f̃(δy) = exp

[
1

2
(δy − 1)β

]
and for Student T-distributions

f̃(δy) =

(
1− 1

β
+
δy
β

)β+m
2

(5.10)

In [50], the minimization of D̃(θ) was proven to be equivalent to the minimization of D(θ).
Replacing the new function f̃ into (5.9), the following corollary is obtained.

Corollary 3 The KL divergence D(µ,Σ), and the empirical divergence D̂(µ,Σ), both
have a unique global minimum (and unique stationary point) at (µ∗,Σ∗), in the following
cases

1. the dataset X is distributed according to an MGGD model, with expectation and
scatter matrix (µ∗,Σ∗) and with fixed shape parameter β > 0.

2. the dataset X is distributed according to a Student t model, with expectation and
scatter matrix (µ∗,Σ∗) and with the fixed degree of freedom β > 0.

For these two cases, global convergence is then guaranteed.
Finally, for the most complicated case θ = (µ,Σ, β), the cost function is always non-

convex. Moreover, we have verified experimentally that it has multiple stationary points
in the parameter space Θ = Rm × Pm × R+. Therefore, the iterates (θ(n))n≥0 generated
by Algorithms 1 and 2 cannot be guaranteed to converge to the true parameter θ∗, unless
the initial guess θ(0) is close enough to θ∗.

5.5 Conclusion
This chapter introduced the CIG methods, which has two versions, an offline (batch)
version and an online (stochastic) version. Both versions aim to estimate the complete
ECD model, where all the parameters are unknown, including the shape parameter β.

Propositions 6 and 7 state the convergence of the offline and online CIG methods,
respectively. For Proposition 7, the assumption A1 is required.

The online CIG method retains some of the good properties of the Riemannian infor-
mation gradient method, seen in the previous Chapter 4. For example, Propositions 8
and 9 state the fast convergence and asymptotic normality of this method, provided the
step-size η(n+1) = a

n+1
is chosen correctly, with a > 1

2λ
as explain in Proposition 8.

In general, when the shape parameter β is unknown, this choice of step-size is carried-
out manually, and may be very time consuming. On the other hand, when β is known,
Corollary 1, after Proposition 9, shows that it is possible to recover all of the good
properties of the Riemannian information gradient method, by choosing η(n+1) = 1

n+1
. In

particular, the online CIG method even turns out to be asymptotically efficient.
In fact, when β is known, there is also a notable improvement in the performance of

the offline CIG method, which turns out to have a super-linear rate of convergence.
For the MGGD and Student T models, the global convergence of the CIG methods

was considered in Section 5.4, and it summarized in Tables 5.1 and 5.2. For the cases
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indicated in these tables, the CIG method converges to the true parameter θ∗ = (µ∗,Σ∗)
independently of the initial guess θ(0).

All of the results obtained in this chapter will be illustrated by computor experi-
ments in Chapter 7. The following Chapter 6 will extend the online CIG method to the
estimation of mixtures of ECD (MECD).

65



Chapter 6

Online estimation of MECD
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6.1 Introduction
The main body of this chapter is based on our article [89], which is currently under review.

An MECD model is a mixture (i.e. a weighted sum) of K ECDs, where K is called
the number of components. The dimension of its parameter space can be quite large, as
it is more than K times the dimension of the parameter space of a single ECD model. In
addition, MECD are typically used to model more complex, large-scale datasets. Accord-
ingly, traditional offline methods may become impractical when applied to the estimation
of MECD, due to lack of computational resources (time and memory).

Therefore, it seems more suitable to use online (stochastic) methods. However, Eu-
clidean stochastic gradient methods may need increasingly large mini-batch sizes, to over-
come instability [38]. Besides, choosing optimal step-sizes, for stochastic gradient meth-
ods, is a difficult task, especially for the estimation of MECD.

The present chapter proposes a different approach, by applying the CIG online method
to the estimation of MECD. This extends the previous Chapter 5, which focused on
estimating a single ECD, rather than a full mixture.

The geometric background, needed to introduce the CIG online method for MECD
estimation, was given in Section 3.4 of Chapter 3. This includes the component-wise
information metric (CIM) and component-wise information gradient (CIG) for MECD,
respectively given by (3.23) and (3.28).

The CIG online method for the estimation of MECD has two versions, a decreasing
step-size version (CIG-DS) and an adaptive step-size version (CIG-AS). The decreasing
step-size version is a direct extension of the CIG online method of the previous chapter,
Algorithm 2. It can be obtained by introducing the retraction map (3.27) and CIG (3.28)
of MECD models, instead of the retraction map (3.18) and CIG (3.21) of ECD models.

This decreasing step-size version requires manual selection of the step-sizes, according
to a rule similar to the one in Proposition 8 of the previous Chapter 5, for single ECD.
This is not always practical for MECD.
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The adaptive step-size version involves an automatic selection of the step-sizes, which
guarantees a fast rate of convergence. Automatic selection of the step-sizes is very helpful
in saving time, since a manual selection involves running the algorithm several times,
selecting a suitable step-size by trial and error.

The CIG method turns out to have several significant advantages. First, being an
online (i.e. stochastic) method, each iteration requires access to only one mini-batch,
of a constant size, instead of the whole dataset (or mini-batch with increasing size).
This considerably reduces the required time and memory usage. Second, when shape
parameters are unknown, it still converges to accurate estimates, without increasing the
size of mini-batches (compare to [38]). Third, the CIG-AS variant (with an adaptive
step-size) avoids manual step-size selection.

In the following, Section 6.2 presents the CIG-DS method, as well as a short description
of another method, which is an online backtracking method, called CIG-OB. In Section
6.3, the CIG-AS method is stated in detail. Here, the theoretical convergence properties,
of the CIG-DS and CIG-AS methods, will be stated in Propositions 11 and 12, respectively.
In the following Chapter 7, these properties will be evaluated by numerical experiments,
in Section 7.2.2.

6.2 CIG-DS
The CIG-DS method uses the most common decreasing step-size, η(n) = a

n
with a > 0,

in order to verify the usual stochastic approximation Conditions (4.1b). The constant a
should be selected in advance, before running the algorithm, (just as in Algorithm 2).
The choice of this constant has a crucial influence on the rate of convergence.

Recall here the MECD density (1.2) is parameterised by θ = (r, (µk)k, (Σk)k, (βk)k)
where k = 1, . . . , K, and r = (rk)k is related to the mixture weights w = (wk)k by wk = r2

k.

Algorithm 3 CIG-DS algorithm for MECD

Input: A dataset X , an initialization θ(0) =
(
r(0), (µ

(0)
k )k, (Σ

(0)
k )k, (β

(0)
k )k

)
, a constant

a > 0;
Output: The estimate θ̂;
1: for n = 0, 1, 2, · · · , N do
2: η(n+1) ← a

n+1
;

3: Update r:
4: θcurrent ←

(
r(n), (µ

(n)
k )k, (Σ

(n)
k )k, (β

(n)
k )k

)
;

5: Pick a new mini-batch X new
mb ;

6: Compute ∇∗r`f (θcurrent;X new
mb );

7: r(n+1) ← Expr(n)

(
η(n+1)∇∗r`f (θcurrent;X new

mb )
)
;

8: Update µ:
9: θcurrent ←

(
r(n+1), (µ

(n)
k )k, (Σ

(n)
k )k, (β

(n)
k )k

)
;

10: for k = 1, 2, · · · , K do
11: Pick a new mini-batch X new

mb ;
12: Compute ∇∗µk`f (θcurrent;X

new
mb );

13: µ
(n+1)
k ← Exp

µ
(n)
k

(
η(n+1)∇∗µk`f (θcurrent;X

new
mb )

)
;

14: end for
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15: Update Σ:
16: θcurrent ←

(
r(n+1), (µ

(n+1)
k )k, (Σ

(n)
k )k, (β

(n)
k )k

)
;

17: for k = 1, 2, · · · , K do
18: Pick a new mini-batch X new

mb ;
19: Compute ∇∗Σk`f (θcurrent;X

new
mb );

20: Σ
(n+1)
k ← Exp

Σ
(n)
k

(
η(n+1)∇∗Σk`f (θcurrent;X new

mb )
)
;

21: end for

22: Update β:
23: θcurrent ←

(
r(n+1), (µ

(n+1)
k )k, (Σ

(n+1)
k )k, (β

(n)
k )k

)
;

24: for k = 1, 2, · · · , K do
25: Pick a new mini-batch X new

mb ;
26: Compute ∇∗βk`f (θcurrent;X

new
mb );

27: β
(n+1)
k ← Exp

β
(n)
k

(
η(n+1)∇∗βk`f (θcurrent;X new

mb )
)
;

28: end for
29: end for
30: θ̂ ←

(
r(N+1), (µ

(N+1)
k )k, (Σ

(N+1)
k )k, (β

(N+1)
k )k

)
In the above algorithm, all the exponential maps are given in (3.27), and all the gradients
are computed using (3.28) and the formulas just after.

The following proposition gives the convergence and rate of convergence for Algorithm
3. In this proposition, D(θ) is the Kullback-Leibler divergence (3.3).

Proposition 11 (Convergence rate of CIG-DS) Assume the Kullback-Leibler diver-
gence function D(θ) has a stationary point at θ = θ∗, Θ∗ ⊂ Θ is a compact and convex
neighborhood of θ∗, such that θ∗ is the unique stationary point of D(θ) in Θ∗, and the
estimates (θ(n))n>0, generated by Algorithm 3, remain within Θ∗. Then, for the sequence
(θ(n))n>0,

lim
n→∞

θ(n) = θ∗

If a > 1
2λ
, where λ > 0 is the smallest eigenvalue of the Hessian matrix of D(θ) at the

point θ = θ∗, then
D(θ(n))−D(θ∗) = O(n−1) (6.1)

Here, the "big O" notation means that there exist C > 0 and n0 > 0 such that

∀n > n0 D(θ(n))−D(θ∗) 6
C

n

The proof of this proposition is given in Appendix C.1. In Algorithm 3, X new
mb denotes

a mini-batch of samples drawn at random from the complete dataset X . Theoretically,
the optimal value for a can be selected based on the condition a > 1

2λ
. In practice, it is

very difficult to do so, and a blindly selected a may not guarantee the convergence rate in
equation (6.1). One way of overcoming this issue is to introduce an online backtracking
line-search technique [80]. When applied to the CIG method, this leads to the following
CIG-OB (online backtracking) version.

Algorithm 4 CIG-OB algorithm for MECD

Input: A dataset X , an initialization θ(0) =
(
r(0), (µ

(0)
k )k, (Σ

(0)
k )k, (β

(0)
k )k

)
;
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Output: The estimate θ̂;
1: for n = 0, 1, 2 · · · , N do
2: Update r:
3: θcurrent ←

(
r(n), (µ

(n)
k )k, (Σ

(n)
k )k, (β

(n)
k )k

)
;

4: Pick a new mini-batch X new
mb ;

5: Compute ∇∗r`f (θcurrent;X new
mb );

6: ηr ← Armijo-Goldstein(X new
mb ,θcurrent);

7: r(n+1) ← Expr(n) (ηr∇∗r`f (θcurrent;X new
mb ));

8: Update µ:
9: θcurrent ←

(
r(n+1), (µ

(n)
k )k, (Σ

(n)
k )k, (β

(n)
k )k

)
;

10: for k = 1, 2, · · · , K do
11: Pick a new mini-batch X new

mb ;
12: Compute ∇∗µk`f (θcurrent;X

new
mb );

13: ηµk ← Armijo-Goldstein(X new
mb ,θcurrent);

14: µ
(n+1)
k ← Exp

µ
(n)
k

(ηµk∇µk`f (θcurrent;X new
mb ));

15: end for

16: Update Σ:
17: θcurrent ←

(
r(n+1), (µ

(n+1)
k )k, (Σ

(n)
k )k, (β

(n)
k )k

)
;

18: for k = 1, 2, · · · , K do
19: Pick a new mini-batch X new

mb ;
20: Compute ∇∗Σk`f (θcurrent;X

new
mb );

21: ηΣk ← Armijo-Goldstein(X new
mb ,θcurrent);

22: Σ
(n+1)
k ← Exp

Σ
(n)
k

(ηΣk∇Σk`f (θcurrent;X new
mb ));

23: end for

24: Update β:
25: θcurrent ←

(
r(n+1), (µ

(n+1)
k )k, (Σ

(n+1)
k )k, (β

(n)
k )k

)
;

26: for k = 1, 2, · · · , K do
27: Pick a new mini-batch X new

mb ;
28: Compute ∇∗βk`f (θcurrent;X

new
mb );

29: ηβk ← Armijo-Goldstein(X new
mb ,θcurrent);

30: β
(n+1)
k ← Exp

β
(n)
k

(ηβk∇βk`f (θcurrent;X new
mb ));

31: end for
32: end for
33: θ̂ ←

(
r(N+1), (µ

(N+1)
k )k, (Σ

(N+1)
k )k, (β

(N+1)
k )k

)
In the algorithm above, Armijo-Goldstein(·, ·) means the Armijo-Goldstein backtracking
criterion [2, 80], for which one needs to provide the current estimator and a mini-batch.
The CIG-OB method inherits the properties of classic deterministic line-search methods.
With respect to number of iterations, it has a fast rate of convergence, but the actual
time consumption is more expensive than CIG-DS. Moreover, the size of the mini-batch
significantly affects its accuracy, this will be discussed in detail, in Section 7.2.2.
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6.3 CIG-AS
The CIG-AS method is similar in structure to the CIG-DS method. The main difference
between the two methods is the following. In CIG-DS, the step-size η(n) is chosen in
advance (for example, η(n) = a

n
). On the other hand, in CIG-AS, η(n) is computed based

on the current estimate θ(n), in order to ensure a faster rate of convergence. In other
words, CIG-AS involves an adaptive choice of the step-size η(n).

The idea of introducing an adaptive step-size is loosely based on [54], which deals with
classical (Euclidean) gradient descent.

All the steps of CIG-AS are similar to algorithm 3, except the step-size is adaptive.
This is reflected in the following algorithm (in this algorithm, the adaptive step-size η(n)

is set in line 2).

Algorithm 5 CIG-AS algorithm for MECD

Input: A dataset X , an initialization θ(0) =
(
r(0), (µ

(0)
k )k, (Σ

(0)
k )k, (β

(0)
k )k

)
;

Output: The estimate θ̂;
1: for n = 0, 1, 2 · · · do
2: η(n+1) ← τ

(n)
min

ρ′ Lτ
(n)
max

;
3: Update r:
4: θcurrent ←

(
r(n), (µ

(n)
k )k, (Σ

(n)
k )k, (β

(n)
k )k

)
;

5: Pick a new mini-batch X new
mb ;

6: Compute ∇∗r`f (θcurrent;X new
mb );

7: r(n+1) ← Expr(n)

(
η(n+1)∇∗r`f (θcurrent;X new

mb )
)
;

8: Update µ:
9: θcurrent ←

(
r(n+1), (µ

(n)
k )k, (Σ

(n)
k )k, (β

(n)
k )k

)
;

10: for k = 1, 2, · · · , K do
11: Pick a new mini-batch X new

mb ;
12: Compute ∇∗µk`f (θcurrent;X

new
mb );

13: µ
(n+1)
k ← Exp

µ
(n)
k

(
η(n+1)∇∗µk`f (θcurrent;X

new
mb )

)
;

14: end for

15: Update Σ:
16: θcurrent ←

(
r(n+1), (µ

(n+1)
k )k, (Σ

(n)
k )k, (β

(n)
k )k

)
;

17: for k = 1, 2, · · · , K do
18: Pick a new mini-batch X new

mb ;
19: Compute ∇∗Σk`f (θcurrent;X

new
mb );

20: Σ
(n+1)
k ← Exp

Σ
(n)
k

(
η(n+1)∇∗Σk`f (θcurrent;X new

mb )
)
;

21: end for

22: Update β:
23: θcurrent ←

(
r(n+1), (µ

(n+1)
k )k, (Σ

(n+1)
k )k, (β

(n)
k )k

)
;

24: for k = 1, 2, · · · , K do
25: Pick a new mini-batch X new

mb ;
26: Compute ∇∗βk`f (θcurrent;X

new
mb );
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27: β
(n+1)
k ← Exp

β
(n)
k

(
η(n+1)∇∗βk`f (θcurrent;X new

mb )
)
;

28: end for
29: end for
30: θ̂ ←

(
r(N+1), (µ

(N+1)
k )k, (Σ

(N+1)
k )k, (β

(N+1)
k )k

)
In the algorithm above,

τ
(n)
min = min

{
1,

(
λ

(n)
min,k

I
(n)
µk

)
k

,
(
J

(n)
Σk,2

)
k
,

(
1

I
(n)
βk

)
k

}

τ (n)
max = max

1,

(
λ

(n)
max,k

I
(n)
µk

)2

k

,
(
J

(n)
Σk,1

)2

k
,

(
1

I
(n)
βk

)2

k


where λmin,k is the smallest eigenvalue of Σk, and λmax,k is the biggest eigenvalue of Σk.
Moreover, the coefficients Iµk , JΣk,1, JΣk,2, and Iβk are computed from (2.10) and (3.25).

The following proposition gives the convergence of this algorithm. The meaning of
strong geodesic convexity, for Condition (i), was explained in Definition 1, of Chapter 2.
The definitions of Conditions (ii) and (iii) can be found in Equation (C.7) and Equation
(C.20), of Appendix C.2.

The L-geodesically smooth assumption gives a sequence that upper bounds the error
EXnew [D(θ(n+1))]−D(θ∗). Then, this sequence is proved to be convergent to 0 by employing
the α-geodesically strongly convexity and ρ-strong growth condition. The step-size which
convient to this convergence condition is under the following form

η(n+1) =
τ

(n)
min

ρ′ L τ
(n)
max

Proposition 12 (Linear convergence of CIG-AS) Assume that θ∗ is the unique sta-
tionary point of the Kullback-Leibler divergence D(θ) in a compact convex neighborhood
Θ∗. Assume that D(θ) satisfies the following properties on Θ∗,

(i) α-geodesically strongly convex [86],

(ii) L-geodesically smooth [86],

(iii) satisfies the ρ-strong growth condition [79].

If θ(0) belongs to Θ∗, then the sequence generated by Algorithm 5 with the step-size η(n) =
τ

(n)
min

ρ′ Lτ
(n)
max

and a constant batch size b converges to θ∗, with the following rate

EXmb
[
D
(
θ(N)

)]
−D (θ∗) 6 c(N)

(
D
(
θ(0)
)
−D (θ∗)

)
(6.2)

where

c(N) =
N∏
n=1

1−
α
[
τ

(n)
min

]2

ρ′ L τ
(n)
max


ρ′ =

(N − b)(ρ− 1)

(N − 1)b
+ 1

Remark that, c is a real positive scalar in (0, 1), not the normalizing constant. The
constant b is the size of mini-batch, Xmb denotes the law for selection of mini-batch, and
the constant N denotes the number of iterations.
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The proposition above shows that the convergence rate is linear. Linear convergence
means that the following definition holds [71].

Definition 2 Suppose that the sequence D(θ(N)) converges to the number D(θ∗). The
sequence is said to converge linearly to D(θ∗) if there exist constants c, A > 0 such that

log
(
D(θ(N))−D(θ∗)

)
6 −cN + A (6.3)

Indeed, it can be shown that this definition holds, as a consequence of Proposition 12,
simply by taking logarithms in Equation (6.2), and noting that log c(N) 6 −cN , where

c = min
n>1

log

 1

1−
α
[
τ

(n)
min

]2

ρ′ Lτ
(n)
max


 > 0

The fact that c > 0 can be proved using the fact that θ(n) → θ∗.
Note that, in practice, it may be difficult to select L and ρ. Too big a value of L and

ρ will lead to a very slow convergence at early stages of the estimation. Therefore, in nu-
merical experiments and real applications, we used the following step-size, a combination
of the CIG-DS and CIG-AS step-sizes,

η(n) = max

{
τ

(n)
min

ρ′ L τ
(n)
max

,
a

n+ 1

}
(6.4)

The use of this “hybrid” step-size selection rule will be illustrated in Subsection 7.2.2 of
the following Chapter 7.

6.4 Conclusion
The present chapter introduced the CIG method for the estimation of MECD. Since
MECD models are high-dimensional and typically used to model large datasets, only the
online form of the CIG method was developed.

In particular, two new algorithms were proposed, CIG-DS (CIG with decreasing step-
size) and CIG-AS (CIG with adaptive step-size), in Sections 6.2 and 6.3 respectively. The
rate of convergence of the CIG-DS method was stated in Proposition 11, and the rate of
convergence of the CIG-AS method was stated in Proposition 12.

The CIG-AS method carries out an adaptive step-size selection, avoiding the difficult
and time-consuming manual step-size selection. It also achieves a faster, linear rate of
convergence (in the sense of Definition 2).

The present chapter completes the theoretical part of this thesis. We have now ex-
tended CIG estimation methods to the estimation of complete MECD models. In the
following chapter, we will present numerical experiments, with simulated and real data,
in order to illustrate the performance of CIG methods, theoretically discussed in Chapters
5 and 6.
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Chapter 7

Experiments and applications

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2 Computer experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.1 ECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.2 Mixture of ECD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3 Applications to real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.3.1 Colour transformation with MGGD . . . . . . . . . . . . . . . . . . 80
7.3.2 Texture segmentation with Mixture of MGGD . . . . . . . . . . . . 84

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1 Introduction
The present chapter is the final chapter, in the main body of this thesis. It aims to illus-
trate, through applications to simulated and real data, the various theoretical properties
of the CIG estimation methods, for ECD and MECD, as introduced in Chapters 5 and 6.

Section 7.2 is devoted to experiments carried out with simulated data. In this section,
Subsection 7.2.1 corresponds to the CIG methods of Chapter 5, applied to the estimation
of ECD. Subsection 7.2.2 is devoted to the CIG methods of Chapter 6, applied to the
estimation of MECD.

Section 7.3 is concerned with applications to real data. Subsection 7.3.1 applies the
CIG offline and online methods, from Chapter 5, to colour transformation for image
editing. Subsection 7.3.2 applies the CIG methods of Chapter 6 to texture segmentation.

The results of Section 7.2 confirm the theoretical results in Chapters 5 and 6. In
particular, they verify the conclusions of Proposition 8, Corollary 1, and Propositions 11
and 12.

In addition, Section 7.2 demonstrates some properties which were not obtained the-
oretically in Chapters 5 and 6, such as the super-linear convergence rate of the CIG
offline method. It also compares CIG methods to other, state-of-the-art methods, such as
method of moments, fixed-point, expectation-maximization, and classical stochastic gra-
dient [82, 59, 50, 57]. The comparison involves both estimation accuracy and computation
time.

The applications of Section 7.3 showcase all the advantages of CIG online methods,
when used on real data. For example (see Subsection 7.3.1), the CIG online method
is able to perform the crucial estimation step, for a colour transformation application
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to a pair of images, with over 106 pixels, in only 21 seconds. For this this application,
other state-of-the-art methods require two hours to do the same job, with a comparable
performance.

7.2 Computer experiments

7.2.1 ECD

This subsection presents a set of computer experiments, which confirm the theoretical
results of Sections 5.2 and 5.3, and provide a detailed comparison of the CIG estimation
methods, with the already existing MM and FP [82, 59]. For every experiment, 1000
Monte Carlo trials were carried out. For each trial, the dataset X = {x1, · · · , xT} is
independent and identically distributed, according to true parameters (µ∗,Σ∗, β∗). The
dimensionm of xt is taken equal to 10. The true µ∗ is randomly chosen from a multivariate
normal distribution. The scatter Σ∗ is defined as Σ(i, j) = ρ|i−j| for i, j ∈ {1,m}, and ρ
uniformly distributed in [0.2, 0.8]. The shape parameter β∗ is uniformly selected from the
interval [0.2, 5], for MGGD and for Student t.

(a) The case θ = (Σ) (b) The case θ = (µ,Σ)

Figure 7.1: ECD: The superlinear convergence rate for CIG offline

The first experiment confirms the super-linear convergence rate of the CIG Offline
method, for a dataset, distributed according to the MGGDmodel, which containsN = 104

samples. The initial value θ(0) is defined as the MM estimate, using 10% of the entire
dataset. Figure 7.1(a) presents the case of θ = (Σ) with known (µ∗, β∗). The CIG Offline
method converges after only two iterations, and if the same accuracy needs to be achieved,
the classic deterministic gradient method (not using the information gradient) requires at
least 88 iterations. For the case of θ = (µ,Σ) with known (β∗), things are similar. Figure
7.1(b) shows that CIG Offline method, after two iterations, achieves the same accuracy as
the traditional deterministic gradient method, after 200 iterations. Here, the traditional
deterministic gradient means the classical (Euclidean) deterministic gradient method,
with step-sizes also selected according to the Armijo-Goldstein line search criteria [2].

In Figure 7.1, d2
∗(θ
∗, θ(n)) denotes the information distance, given by Equation (3.13).

In Figure 7.2, d2
�(θ∗, θ(n)) denotes the component-wise information distance, given by

Equation (3.19).
The second experiment demonstrates the convergence rate of the CIG online method.

In this experiment, both MGGD and Student T datasets are used. The initialization
θ(0) is randomly chosen. Figures 7.2(a), 7.2(b), and 7.2(c) display the mean-square rate
of convergence, stated theoretically in Proposition 8. In these log-log plots, the x-axis
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(a) The case θ = (Σ) (b) The case θ = (µ,Σ) (c) The case θ = (µ,Σ, β)

Figure 7.2: ECD: O(n−1) convergence rate for CIG Online method

and y-axis represent the number of iterations and E[d2
�(θ∗, θ(n))], respectively, where E

denotes the Monte Carlo approximation of the expectation, obtained by averaging over
the 1000 trials. As θ(n) approaches the true value θ∗, the slope of each curve approaches
−1, indicating the mean-square rate E[d2

�(θ∗, θ(n))] = O(n−1) in Equation (5.4). Note
that, for the cases of θ = (Σ) and θ = (µ,Σ), the initialization θ(0) can be chosen far away
from θ(0) (e.g. d2

�(θ∗, θ(0)) > 10). However, when θ = (µ,Σ, β), the initialization should
be in a neighbourhood of θ∗ (this is according to the conditions stated in Proposition 8).
For the results obtained in Figures 7.2(a) and 7.2(b) (that is to say, when β∗ is known),
the step-size coefficient a always equals 1, but for the case of unknown β, the step-size
coefficient a is taken much larger, a = 100 (these choices correspond to the conditions of
Proposition 8 and Corollary 1).

(a) The case θ = (Σ) (b) The case θ = (µ,Σ)

Figure 7.3: ECD: Asymptotic normality of CIG online method

For the case of θ = (Σ) and θ = (µ,Σ), Figures 7.3(a) and 7.3(b) demonstrate the asymp-
totic normality of CIG online method, obtained theoretically in Corollary 1. The samples
being vectors of dimension m = 10, the dashed blue curve is the probability density of a
chi-squared distribution with 55 and 65 degrees of freedom, for Figures 7.3(a) and 7.3(b),
respectively. The solid lines are the smoothed histograms of Nd2

∗(θ
∗, θ(N)) where N = 105.

These "estimated p.d.f." coincide very closely with the theoretical chi-squared probability
density, confirming the fact that θ(N) is asymptotically normally distributed about θ∗.

In the third experiment, we compare the efficiency of the CIG offline and online meth-
ods with other common estimation methods, MM (method of moments) and FP (fixed-
point method). In each trial, the dataset is generated from an MGGD model. For MGGD,
the MM was given in [82], and the FP method in [59]. In Figures 7.4(a), 7.4(b) and 7.4(c),
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(a) The case θ = (Σ) (b) The case θ = (µ,Σ) (c) The case θ = (µ,Σ, β)

Figure 7.4: ECD: Efficiency comparison between MM, FP and CIG methods

the x-axis denotes the size of the dataset, and the y-axis denotes the expectation of the
squared distance between θ∗ and the final estimate θ̂. This expectation is approximated
by the average of 103 Monte Carlo trials. For the cases θ = (Σ) and θ = (µ,Σ), the CIG
offline and online algorithms show a better accuracy. When θ = (µ,Σ, β), the accuracy of
the MLE methods is still significantly better than MM, and the accuracies of CIG offline
and FP coincide. However, the accuracy of CIG online is not as good as as FP or CIG
offline. This phenomenon may be explained theoretically. Indeed, when θ = (µ,Σ, β), the
component-wise information metric does not coincide with the Fisher information metric
of the ECD model, and this leads to a less efficient estimation. The fluctuations of the
curves in Figure 7.4(c) are quite significant. This means the variance of the final estimate
θ̂ is not negligible. Two additional experiments were carried out, in order to explain these
fluctuations.

The first additional experiment shows that both the CIG offline and CIG online meth-
ods eventually converge to a stationary point. Figure 7.5(a) shows that the norm of the
component-wise information gradient of the Kullback-Leibler divergence (3.1) always con-
verge to 0, independently of the initial value θ(0). Here, this component-wise information
gradient is estimated empirically based on the Equation (5.2).

The second additional experiment shows that, for the CIG online method, even tough,
the gradient of the Kullback-Leibler divergence converge to 0 (as seen in the first addi-
tional experiment), the iterates θ(n) do not necessarily converge to the global minimum
θ∗ (the true parameter value). In Figure 7.5(b), two different initial values were used
for this method. The blue curve has θ(0) farther away from θ∗. This curve shows that
the component-wise information distance d�(θ∗, θ(n)) converges to a non-zero constant,
meaning that θ(n) do not converge to θ∗. The red curve has θ(0) closer to θ∗. In this
case, the component-wise information distance d�(θ∗, θ(n)) converges to 0. Of course, this
means θ(n) converge to θ∗.

In conclusion, for θ = (µ,Σ, β), the convergence to the global minimum θ∗ can only
be guaranteed locally. For the CIG offline methods, if the initial guess θ(0) is chosen in
a neighbourhood Θ∗ of θ∗, the θ(n) always converge to θ∗, as soon as Θ∗ satisfies the
assumptions of Proposition 6.

The difference between the CIG online and offline methods is that, due to its stochastic
nature, CIG online may jump out of the neighbourhood Θ∗ during the first few iterations.
This leads to convergence to a local minimum, different from θ∗. This explains why the
final averaged accuracy of CIG online is not as good as that of the CIG offline and FP
methods, making the variance of the CIG online estimator notably larger.
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As a possible remedy to this problem, the mini-batch CIG online was also tested, and
compared with other methods, in the Figure 7.4(c). Two sizes of the mini-batch, 10 and
100 samples, were considered. However, the results show that increasing the mini-batch
size has no significant effect on the accuracy of CIG online.

(a) The CIG always converges to 0 (b) The θ(n) do not always con-
verge to θ∗

Figure 7.5: Complete ECD: existence of local minima

As for computation time, CIG online method has a significant advantage. The com-
putation time of the CIG online algorithm is similar to that of MM, and is significantly
less than that of FP. Meanwhile, its accuracy is significantly better than that of MM. In
most experiments, the accuracy of CIG online method is similar to, or even better than,
FP. Although the computation time of CIG offline is greater than that of CIG online, it is
comparable to that of FP, while, in most cases, CIG offline can achieve the best accuracy,
among the four estimation methods considered.

Figure 7.6 refers to the same experiment as in Figure 7.4. In Figures 7.6(a), 7.6(b) and
7.6(c), the x-axis denotes the size of the dataset, and the y-axis denotes the computation
time necessary to achieve convergence.

(a) The case θ = (Σ) (b) The case θ = (µ,Σ) (c) The case θ = (µ,Σ, β)

Figure 7.6: ECD: Time consumption until convergence

7.2.2 Mixture of ECD

In this subsection, computer simulations are presented, to evaluate the performance of the
CIG online method for MECD estimation, as considered in Chapter 6. These simulations
will focus on two models, mixtures of MGGD and mixtures of Student T-distriutions.
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A comparison of the CIG online method with the already existing EMFP (Expectation-
Maximisation with Fixed-Point [59, 37]) and SG (Euclidean Stochastic Gradient [57])
methods is provided.

The dimension of the observed samples (datapoints) is supposed to be m = 5 and the
number of mixture components K = 5. The mixture weights w = r2 are drawn from
a uniform distribution on the unit sphere (recall this representation of mixture weights,
in terms of the unit sphere, from Subsection 3.4). The true location parameters (µ∗k)k
are randomly chosen from a multivariate normal distribution. The true scatter matrices
(Σ∗k)k are defined as Σ(i, j) = ρ|i−j| for i, j ∈ {1, · · · ,m}, and ρ uniformly distributed
in the interval (0.2, 0.8). Then, the shape parameters (degree of freedom for Student T)
(β∗k)k are uniformly chosen in the interval [0.2, 10].

For each scenario, we have done 100 Monte Carlo trials. The dataset for each trial has
3× 105 observations. For all scenarios, algorithms are initialized by a k-mean with 0.1%
of the complete dataset.

The first point we would like to illustrate is the rate of success. Under the same
initialization conditions, we compared the rate of success of five methods (CIG-DS, CIG-
OB, CIG-AS, EMFP, and Euclidean SG). Here, ’success’ means that the log-likelihood
increases with each update and finally converges.

In [57], expectation-maximisation using the fixed-point algorithm in [59] (EMFP) is
proved to be the most robust method for mixtures of MGGD. Therefore, this method is
included in our comparison. Also in [57], an online classic (that is, Euclidean) SG method
was introduced, which we also included for comparison. All gradient methods (CIG and
SG) used the same mini-batch size b = 1000.

In the following Table 7.1, the rates of success are presented. We can see that the
rates of success of CIG methods are significantly better. This shows that the intrinsic
geometric structures on the parameter space provide a more stable estimation process.
Second, we confirm the convergence rates of the CIG-DS and CIG-AS methods, stated in

Table 7.1: MECD: percentage of successful runs

method success rate
EM-FP 83%
SG 77%

CIG-DS 90%
CIG-OB 89%
CIG-AS 90%

Propositions 11 and 12. In Figure 7.7, two log-log plots are presented. In these plots, the
x-axis denotes the number of updates and the y-axis denotes the empirically estimated
Kullback-Leibler divergence (4.6). In both these plots, the slope of the curve approaches
−1, which means the empirical divergence D̂(θ) is O(n−1), as in (6.1).

As mentioned in Proposition 11, the coefficient a, used in computing step-sizes (η(n) =
a/n), needs to verify the condition a > 1

2λ
. Here, since it is quite difficult to compute λ,

the coefficient a was selected manually, through trial and error. This procedure lead to
a = 1000 for mixtures of MGGD, and a = 10 for mixtures of Student T.

Then, we compared the performance of the five methods (CIG-DS, CIG-OB, CIG-AS,
EMFP, and Euclidean SG). In Figure 7.8, the x-axis represents the number of epochs (one
epoch means all samples in the dataset have been traversed exactly once), and the y-axis
represents the log-likelihood.
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(a) mixture of MGGD (b) mixture of Student T

Figure 7.7: MECD: The convergence rate of CIG-DS and CIG-AS

For mixtures of MGGD, EMFP converged in 3 epochs. The classic SG method is
faster, but it still takes almost 2 epochs. The CIG-DS and CIG-AS methods can achieve
the same efficiency as EMFP in only 1 epoch. The CIG-OB is less efficient than the others,
because the mini-batch size is constant b = 1000, leading to an insufficient number of good
line-search step-sizes.

For mixtures of Student T, EMFP took nearly 5 epochs to obtain convergence. The
classic SG converges slowly and is less efficient than the other methods. CIG-DS and
CIG-AS have the best performance, since they achieve the same efficiency as EMFP in 1
epoch. Thanks to the line-search step-size, CIG-OB converges quickly. However, due to
the fixed mini-batch size, its efficiency is not good enough.

(a) mixture of MGGD (b) mixture of Student T

Figure 7.8: MECD: Number of epochs versus log-likelihood1

Finally, we observed the variation of the log-likelihood versus time consumption. In
Figure 7.9, the x-axis represents the time consumption (in seconds), and the y-axis rep-
resents the variation of log-likelihood.

For mixtures of MGGD, EMFP converged in 1000 seconds. The classic (Euclidean)
SG is similar to EMFP for time consumption. Then, CIG-DS and CIG-AS are the fastest
methods, as they converged in 600 seconds, but CIG-OB did not show any advantages
in terms of time consumption. We think that the reason is the sensitivity for β in the
MGGD case, which requires more time for the best step-size to be selected.

1The number of epochs means the number of times that the complete dataset is traversed. For the
EMFP method, which is a batch (offline) method, the number of epochs is equal to the number of
complete parameter updates.
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For mixtures of Student T, EMFP took 1750 seconds to converge to the maximum
likelihood value, while the SG did not converge in this time interval. The CIG-DS and
CIG-AS methods showed the fastest convergence, as they converged in 750 seconds. CIG-
OB converged in less than 250 seconds, but it is still not rather inefficient. Based on the

(a) mixture of MGGD (b) mixture of Student T

Figure 7.9: MECD: Time-consumption versus log-likelihood

above comparisons, we believe that CIG-DS and CIG-AS are the most effective methods
for online estimation of MECD.
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7.3 Applications to real data

7.3.1 Colour transformation with MGGD

Here, we consider a first application of the CIG method for ECD estimation, to colour
transformation for image editing [43]. Precisely, this application will focus on the esti-
mation of MGGD. Its goal is to replace the colour distribution of an input image by the
colour distribution of a given target image. The main idea is to fit the input and the tar-
get distributions, with two different MGGD models. Then, the transformation between
these two MGGD is implemented by a linear Monge-Kantorovich transformation for Σ,
and a stochastic transformation for β [43, 63]. In each image, the pixels correspond to
3-dimensional vectors, in the case of RGB images, and to 5-dimensional vectors, when
spatial gradient-field information is added to colour information.

Starting with the 3D RGB case, Figure 7.10 presents the transformed images and some
of their details. The detail (a1) clearly shows that the cloud ’drawn’ by MM appears too
green. Similarly, FP also presents a green appearance, in detail (a2). On the contrary,
the CIG offline and CIG online methods show pure white cloud colour in (a3) and (a4).
Note also the difference in the amount of blue in the shadows on the grass. Too much
blue is mixed with the shadows, in MM’s output detail (b1). In details (b2),(b3),(b4),
the results of FP and CIG methods lead to a more natural appearance.

From our point of view, the most interesting aspect of this application is in terms of
computation time. The CIG online method takes about 10 seconds for two images (input
and output). In contrast, FP and CIG offline methods each require more than two hours.
In other words, CIG online has a decisive advantage, in terms of time consumption.

Then, gradient-field information was included, so the transformation came to involve
5-dimensional vectors, which consist in three colour components (of CIELAB) and two
components of the image spatial gradient field (dx and dy). For this application, the
shape parameter of the MGGD model was supposed to fixed. Figure 7.11 presents the
four different outputs. It can be observed that the output of the FP and CIG methods is
significantly better than that of MM. In the transformed result of MM, the hue is darker
and greener. FP and CIG results are better, since the frost on the grass is whiter and
appears more natural, and the forest on the mountain in the image also appears darker.
The two images in Figure 7.11 have more than 1.2 × 106 pixels (i.e. 1.2 × 106 samples).
The FP and CIG offline methods need more than 4 hours to run, on the these two images.
The CIG online method needs only 21 seconds.

We also considered an application to full HD images. In this case, as demonstrated
in Figure 7.12, the advantages of the CIG online algorithm were significant. The result
of MM failed to achieve the colour of the autumn leads in the target image, showing
light green instead of yellow. Since the input image and the target image have more than
4×106 pixels (that is 4×106 samples), it was not feasible to run FP and CIG offline, with
the entire dataset. Rather, the estimation was done on subsets of the complete dataset.
These two subsets have 4×105 samples, that are randomly taken from the original images.
In the autumn leafs obtained using FP and CIG offline, the yellow colour has obviously
been smeared. CIG online is more natural, and the yellow colour is more uniform, and it
is closer to the style of the target image.
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Figure 7.10: 3D colour transformation
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Figure 7.11: 5D colour transformation
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Input Target MM

c1

FP

c2

CIG offline

c3

CIG online

c4

c1 c2

c3 c4

Figure 7.12: 5D colour transformation for full HD image
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7.3.2 Texture segmentation with Mixture of MGGD

This section applies the CIG online method for MECD estimation, to the problem of
texture segmentation. Specifically, we consider mixtures of MGGD, as they have been
successfully used to model wavelet statistics of texture images [82, 49].

For this application, we randomly selected five pictures from the VisTex database [55],
fabric, white flowers, pink flowers, leafs and water. Each texture image was considered as
an RGB 3-dimensional image, and modelled by a mixture of MGGD, whose parameters
θ = (w, (µk)k, (Σk)k, (βk)k)k were estimated using five different methods, EMFP, SG,
CIG-DS, CIG-OB and CIG-AS, already discussed in Subsection 7.2.2.

In order to evaluate the true performance of these estimation methods, we did not use
special filters or feature extraction techniques. Rather, each given picture element was
directly classified by its log-likelihood value. The sub-distribution (mixture component)
with the largest log-likelihood value is the class to which the picture element is affected.

Each of the five methods was run for the same number of epochs (the number of
epochs means the number of times that the complete dataset is traversed), and all were
initialized using a k-means method.

For the first application, we considered a scenario with K = 2 textures. Figure 7.13
shows the visual segmentation results, and table 7.3.2 gives the accuracy of segmentation.
In terms of accuracy, CIG-DS, CIG-AS and EMFP have the best performance (greater
than 99%), followed by SG, while CIG-OB is the worst.

In terms of visual segmentation results, CIG-DS and AS are similar to the EMFP-
method. The two parts (fabric and flower) are completely and clearly segmented. How-
ever, in Figure 7.13(c), the results of SG show traces in the fabric were misidentified as
flowers, and in Figure 7.13(e), the green leafs in the flowers were misclassified as fabric.
For this scenario, it is clear that CIG-DS and CIG-AS are the most effective methods.

(a) Texture 1 (b) EM-FP (c) SG

(d) CIG-DS (e) CIG-OB (f) CIG-AS

Figure 7.13: MECD: Segmentation with K = 2 textures

For the second application, the number of components is K = 5. The textures of leafs
and water were added. The visual results are presented in Figure 7.14(b). For this more
complicated cas, the five segmentations are evaluated by the confusion matrices, and the
confusion matrices are summarized in Table 7.3.2 with accuracy and F1 score (weighted
average).

According to Table 7.3.2 and Figure 7.14(b), EMFP is always rather satisfactory. The
fabric and the pink flowers are totally identified, while some traces in leafs, water and
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method correct estimates
EM-FP 99%
SG 97%

CIG-DS 99%
CIG-OB 73%
CIG-AS 99%

Table 7.2: MECD: Accuracy of segmentation (Texture 1)

white flowers are slightly misclassified. For SG method, in Figure 7.14(c), the fabric was
completely misjudged as water, consequently, the accuracy was as low as 63.328% (see
Table 7.3.2). For CIG methods, DS and AS also share the good performance of EMFP. In
figures 7.14(d) and 7.14(f), fabric, leafs and pink flowers were clearly segmented. There
are only some minor errors in water and white flowers. What is of note is that, with
regard to the leafs texture, the performance of CIG-DS and CIG-AS is even better than
EMFP.

Their accuracy is also quite good, with CIG-AS producing a similar accuracy to EMFP,
i.e. 92%, and CIG-DS achieving an even better accuracy 96%. CIG-DS has almost
achieved the same F1 score as EMFP with less computation time.

(a) Texture 2 (b) EM-FP (c) SG

(d) CIG-DS (e) CIG-OB (f) CIG-AS

Figure 7.14: MECD: Segmentation with K = 5 textures

Method Accuracy F1 score (weighted average)
EMFP 93% 0.93
SG 63% 0.58

CIG-DS 96% 0.92
CIG-OB 85% 0.78
CIG-AS 92% 0.88

Table 7.3: MECD: Accuracy of segmentation (Texture 2)
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7.4 Conclusion
This final chapter compared the CIG methods, introduced in Chapters 5 and 6, to other,
state-of-the-art methods, for ECD and MECD estimation, such as method of moments,
fixed-point, expectation-maximization, and classical stochastic gradient [82, 59, 50, 57].

For ECD estimation, the CIG offline and CIG online methods were compared to the
method of moments (MM) and to the fixed-point method (FP), as given in [82] and [59].
Figures 7.4 and 7.6 present the comparison, in terms of efficiency (roughly speaking, final
estimation accuracy) and time consumption, respectively.

Figure 7.4 shows that the CIG offline method provides the best efficiency, being slightly
better than the FP method. However, from Figure 7.6, it appears the CIG offline method
is less attractive than the FP method, in terms of time consumption.

On the other hand, the same two figures (7.4 and 7.6) show the CIG online method
is still comparable to the FP method, in terms of efficiency, but is highly attractive, in
terms of time consumption, since it on par with the method of moments, and converges
“instantly", even as the size of the dataset increases.

Overall, the CIG online method appears as the best choice for ECD estimation, among
all methods under consideration.

For MECD estimation, CIG online methods were compared to two already exist-
ing methods, EMFP (Expectation-Maximisation with Fixed-Point [59, 37]) and SG (Eu-
clidean Stochastic Gradient [57]).

First of all, Table 7.1 showed CIG online methods (CIG-DS and CIG-AS) had the
highest rate of success among all methods considered. Under the same initialisation
conditions, CIG online methods had the highest chance of converging to a local maximum
of the log-likelihood function.

Figures 7.8 and 7.9 compared CIG online methods to EMFP and SG, in terms of
their performance and time consumption. These figures showed the CIG-DS and CIG-AS
methods were able to achieve the same performance as EMFP and SG, while being two
to three times faster.

Overall, the CIG online methods also seemed the most attractive for MECD estima-
tion, as they achieved comparable, or even better performance, to other methods, within
a notably shorter time.

The applications to real data, discussed in Section 7.3, showed that CIG methods are
able to tackle very large datasets (in the form of HD images, for example), and produce
highly satisfactory results.

In conclusion, the numerical experiments and real-data applications in this chapter val-
idate the methodology of CIG online methods, which may be regarded as very interesting
new methods, to be considered by any users wishing to work with ECD or MECD.
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Chapter 8

Conclusion and perspectives

In this thesis, an original geometric method was proposed, for online estimation of ECD
and MECD models. This new method was named the CIG method (Component-wise
Information Gradient method).

To begin, since the parameter spaces of ECD and MECD are Cartesian product spaces,
a novel Riemannian metric was introduced on these spaces, and was named the CIM
(Component-wise Information Metric). At each point of the parameter space, the CIM is
a direct product of the Fisher Information Metrics, with respect to individual parameters
(for example, location, scatter, and shape parameters).

This leads to the component-wise information gradient, which combines the informa-
tion gradients with respect to these parameters. Based on the component-wise information
gradient, the CIG method implements an alternating update scheme for the parameters,
where each parameter is updated in its own turn.

The CIM is an easy-to-compute substitute, for the FIM (Fisher Information Metric).
Similarly, the CIG method is a computationally-advantageous substitute for the Rieman-
nian information gradient method, which would be very hard to implement, for complete
ECD or MECD models.

For some particular cases of ECD models, the CIM and FIM coincide, so the CIG
method shares many of the excellent properties of the Riemannian information gradient
method. For instance, it achieves a mean-square convergence rate of order O(n−1), and it
is asymptotically efficient, with an automatic choice of step-size.

For complete ECD or MECD models, the FIM is not tractable, and it is anyway
different from the CIM. The CIG method shares some, but not all, of the properties of
the Riemannian information gradient method. For example, it can still achieve a mean-
square convergence rate of order O(n−1), but this requires a manual selection of step-size.

At the cost of some additional computations, this situation can be improved dramat-
ically. The adaptive step-size version of the CIG method (proposed in Proposition 12),
implements adaptive selection of step-size which provides a much faster convergence rate
O(c−n) (where c > 1).

Numerical simulations and real applications have proved that the CIG method has
significant advantages over existing methods, especially in terms of time consumption.
In future work, the problem of order selection will be included into our investigation of
MECD estimation, using information criteria (AIC or BIC), or a non-parametric Bayesian
approach. In addition, new classes of algorithms (such as stochastic EM and its many
variants) will be studied and adapted to the estimation of ECD and MECD. Finally, the
idea of CIG may be generalized to online estimation of any distributions of position-scale
type, such as Riemannien Gaussian distribution and von Mise-Fisher distributions.
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Appendix A

Proofs of chapter 4

A.1 Proofs of the main results

A.1.1 Proof of Proposition 1

The proof is a generalisation of the original proof in [11], itself modeled on the proof for
the Euclidean case in [68]. Throughout the following, let Xn be the σ-field generated by
x1, · · · , xn [72]. Recall that (xn;n = 1, 2, · · · ) are i.i.d. with distribution Pθ∗ . Therefore,
by (4.1a), θ(n) is Xn-measurable and xn+1 is independent from Xn. Thus, using elementary
properties of conditional expectation [72],

E
[
U(θ(n), xn+1)

∣∣Xn] = −D(θ(n)) (A.1a)

E
[
‖U(θ(n), xn+1)‖2

∣∣Xn] = V (θ(n)) (A.1b)

where (A.1a) follows from (4.1c), and (A.1b) from (u1). Let L be a Lipschitz constant for
∇D(θ), and C be an upper bound on V (θ), for θ ∈ Θ∗. The following inequality is now
proved, for any positive integer n,

E
[
D(θ(n+1))−D(θ(n))

∣∣Xn] 6 [η(n+1)]2 LC − η(n+1)‖∇D(θ(n))‖2 (A.2)

once this is done, Proposition 1 is obtained by applying the Robbins-Siegmund theo-
rem [25].
Proof of (A.2) : let c(t) be the geodesic connecting θ(n) to θ(n+1) with equation

c(t) = Expθ(n)

(
tη(n+1)U(θ(n), xn+1)

)
(A.3)

From the fundamental theorem of calculus,

D(θ(n+1))−D(θ(n)) = η(n+1) 〈U(θ(n), xn+1),∇D(θ(n))〉

+ η(n+1)

∫ 1

0

[
〈ċ,∇D〉c(t) − 〈ċ,∇D〉c(0)

]
dt

(A.4)

Since the online estimates θ(n) are stable, θ(n) and θ(n+1) both lie in Θ∗. Since θ∗ is convex,
the whole geodesic c(t) lies in Θ∗. Then, since ∇D(θ) is Lipschitz on Θ∗, it follows from
(A.4),

D(θ(n+1))−D(θ(n)) 6η(n+1) 〈U(θ(n), xn+1),∇D(θ(n))〉
+ [η(n+1)]2 L‖U(θ(n), xn+1)‖2

(A.5)
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Taking conditional expectations in this inequality, and using (A.1a) and (A.1b),

E
[
D(θ(n+1))−D(θ(n))

∣∣Xn] 6 −η(n+1)‖∇D(θ(n))‖2 + [η(n+1)]2 LV (θ(n)) (A.6)

so (A.2) follows since (u1) guarantees V (θ(n)) 6 C. �
Conclusion: by the Robbins-Siegmund theorem, inequality (A.2) implies that, almost
surely,

limD(θ(n)) = D∞ <∞ and

∞∑
n=1

η(n+1) ‖∇D(θ(n))‖2 <∞ (A.7)

In particular, from the first condition in (4.1b), convergence of the sum in (A.7) implies

lim ‖∇D(θ(n))‖ = 0 almost surely (A.8)

Now, since the sequence of online estimates θ(n) lies in the compact set Θ∗, it has at least
one point of accumulation in this set, say θ∗. If θ(nk) is a subsequence of θ(n), converging
to θ∗,

‖∇D(θ∗)‖ = lim ‖∇D(θ(nk))‖ = lim ‖∇D(θ(n))‖ = 0 almost surely

where the third equality follows from (A.8). This means that θ∗ is a stationary point of
D(θ) in Θ∗. Thus, (d1) implies θ∗ = θ∗ is the unique point of accumulation of θ(n). In
other words, lim θ(n) = θ∗ almost surely.

A.1.2 Proof of Proposition 2

The proof is modeled on the proofs for the Euclidean case, given in [7, 58]. It relies on
the following geometric Lemmas 1 and 2. Lemma 1 will be proved in Appendix A.2. On
the other hand, Lemma 2 is the same as the trigonometric distance bound of [86]. For
Lemma 1, recall that λ > 0 denotes the smallest eigenvalue of the matrix H defined in
(4.8).

Lemma 1 for any µ < λ, there exists a neighborhood Θ̄∗ of θ∗, contained in Θ∗, with

〈Exp−1
θ (θ∗),∇D(θ)〉 6 −µ d2(θ, θ∗) for θ ∈ Θ̄∗ (A.9a)

Lemma 2 let −κ2 be a lower bound on the sectional curvature of Θ in Θ∗, and Cκ =
Rκ coth(Rκ) where R is the diameter of Θ∗. For τ, θ ∈ Θ∗, where τ = Expθ(u),

d2(τ, θ∗) 6 d2(θ, θ∗)− 2 〈Exp−1
θ (θ∗), U〉+ Cκ‖U‖2 (A.9b)

Proof of equation (4.9) : let η(n) = a
n
with 2λa > 2µa > 1 for some µ < λ, and let Θ̄∗ be

the neighborhood corresponding to µ in Lemma 1. By Proposition 1, the θ(n) converge to
θ∗ almost surely. Without loss of generality, it can be assumed that all the θ(n) lie in Θ̄∗,
almost surely. Then, (4.1a) and Lemma 2 imply, for any positive integer n,

d2(θ(n+1), θ∗) 6 d2(θ(n), θ∗)− 2η(n+1) 〈Exp−1
θ(n)(θ

∗), U(θ(n), xn+1)〉
+ [η(n+1)]2Cκ‖U(θ(n), xn+1)‖2

(A.10a)

Indeed, this follows by replacing τ = θ(n+1) and θ = θ(n) in (A.9b). Taking conditional
expectations in (A.10a), and using (A.1a) and (A.1b),

E
[
d2(θ(n+1), θ∗)

∣∣Xn] 6 d2(θ(n), θ∗) + 2η(n+1) 〈Exp−1
θ(n)(θ

∗),∇D(θ(n))〉+ [η(n+1)]2CκV (θ(n))
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Then, by (u1) and (A.9a) of Lemma 1,

E
[
d2(θ(n+1), θ∗)

∣∣Xn] 6 d2(θ(n), θ∗)(1− 2η(n+1)µ) + [η(n+1)]2CκC (A.10b)

where C is an upper bound on V (θ), for θ ∈ Θ∗. By further taking expectations

E d2(θ(n+1), θ∗) 6 E d2(θ(n), θ∗)(1− 2η(n+1)µ) + [η(n+1)]2CκC (A.10c)

Using (A.10c), the proof reduces to an elementary reasoning by recurrence. Indeed,
replacing η(n) = a

n
into (A.10c), it follows that

E d2(θ(n+1), θ∗) 6 E d2(θ(n), θ∗)

(
1− 2µa

n+ 1

)
+

a2CκC

(n+ 1)2
(A.11a)

On the other hand, if b(n) = b
n
where b > a2CκC (2µa− 1)−1, then

b(n+ 1) > b(n)

(
1− 2µa

n+ 1

)
+

a2CκC

(n+ 1)2
(A.11b)

Let b be sufficiently large, so (A.11b) is verified and E d2(θ(no), θ∗) 6 b(no) for some no.
Then, by recurrence, using (A.11a) and (A.11b), one also has that E d2(θ(n), θ∗) 6 b(n)
for all n > no. In other words, (4.9) holds true.

A.1.3 Proof of Proposition 3

The proof is modeled on the proof for the Euclidean case in [58]. To begin, let Wn be the
stochastic process given by

Wn = np d2(θ(n), θ∗) + n−q where q ∈ (0, 1− p) (A.12a)

The idea is to show that this process is a positive supermartingale, for sufficiently large
n. By the supermartingale convergence theorem [72], it then follows that Wn converges
to a finite limit, almost surely. In particular, this implies

limnp d2(θ(n), θ∗) = Lp <∞ almost surely (A.12b)

Then, Lp must be equal to zero, since p is arbitrary in the interval (0, 1). Precisely, for
any ε ∈ (0, 1− p),

Lp = limnp d2(θ(n), θ∗) = limn−ε np+ε d2(θ(n), θ∗) =
(
limn−ε

)
Lp+ε = 0

It remains to show that Wn is a supermartingale, for sufficiently large n. To do so, note
that by (A.10b) from the proof of Proposition 2,

E [Wn+1 −Wn|Xn] 6 d2(θ(n), θ∗)
p− 2µa

(n+ 1)1−p +
a2CκC

(n+ 1)2−p −
q

(n+ 1)q+1

Here, the first term on the right-hand side is negative, since 2µa > 1 > p. Moreover, the
third term dominates the second one for sufficiently large n, since q < 1 − p. Thus, for
sufficiently large n, the right-hand side is negative, and Wn is a supermartingale.
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A.1.4 Proof of Proposition 4

the proof relies on the following geometric Lemmas 3 and 4, which are used to linearise
Algorithm (4.1a), in terms of the normal coordinates (θ(n))α. This idea of linearisation in
terms of local coordinates also plays a central role in [77].

Lemma 3 let θ(n), θ(n+1) be given by (4.1a) with η(n) = a
n
. Then, in a system of normal

coordinates with origin at θ∗,

(θ(n+1))α = (θ(n))α + η(n+1) Uα
n+1 + [η(n+1)]2 παn+1

with E
∣∣παn+1

∣∣ = O(n−1/2)
(A.13a)

where Uα
n+1 are the components of U(θ(n), xn+1).

Lemma 4 let vn = ∇D(θ(n)) . Then, in a system of normal coordinates with origin at
θ∗,

vαn =Hα,β (θ(n))β + ραn

ραn =o
(
d(θ(n), θ∗)

) (A.13b)

where vαn are the components of vn and the Hα,β were defined in (4.8).

Linearisation of (4.1a) : let U(θ(n), xn+1) = −vn + wn+1. Then, it follows from (A.13a)
and (A.13b),

(θ(n+1))α = (θ(n))α − η(n+1)Hα,β (θ(n))β − η(n+1) ραn + η(n+1)wαn+1

+ [η(n+1)]2 παn+1

(A.14a)

Denote the re-scaled coordinates n1/2(θ(n))α by gαn , and recall η(n) = a
n
. Then, using the

estimate (n+ 1)1/2 = n1/2(1 + (2n)−1 +O(n−2)), it follows from (A.14a) that

gαn+1 = gαn +
Aα,β
n+ 1

gβn +
a

(n+ 1)1/2

[
Bα,β (θ(n))β − ραn + wαn+1 +

aπαn+1

n+ 1

]
(A.14b)

where Aα,β = 1
2
δα,β − aHα,β and Bα,β = O(n−1). Equation (A.14b) is a first-order,

inhomogeneous, linear difference equation, for the "vector" gn of components gαn . �
Study of equation (A.14b) : switching to vector-matrix notation, equation (A.14b) is of
the general form

gn+1 =

(
I +

A

n+ 1

)
gn +

a ξn+1

(n+ 1)1/2
(A.15a)

where I denotes the identity matrix, A has matrix elements Aα,β, and (ξn) is a sequence
of inputs. The general solution of this equation is [45, 58]

gn = An,m gm +
n∑

k=m+1

An,k
a ξk
k1/2

for n > m (A.15b)

where the transition matrix An,k is given by

An,k =
n∏

j=k+1

(
I +

A

j

)
An,n = I (A.15c)
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Since 2λa > 1, the matrix A is stable. This can be used to show that [45, 58]

q >
1

2
and E

∣∣ξn∣∣ = O(n−q) =⇒ lim gn = 0 in probability (A.15d)

where |ξn| denotes the Euclidean vector norm. Then, it follows from (A.15d) that gn
converges to zero in probability, in each one of the three cases

ξαn+1 = Bα,β (θ(n))β

ξαn+1 = ραn

ξαn+1 =
παn+1

n+ 1

Indeed, in the first two cases, the condition required in (A.15d) can be verified using (4.9),
whereas in the third case, it follows immediately from the estimate of E|παn+1| in (A.13a).
�

Conclusion : by linearity of (A.14b), it is enough to consider the case ξαn+1 = wαn+1 in
(A.15a). Then, according to (A.15b), gn has the same limit distribution as the sums

g̃n =
n∑
k=1

An,k
awk
k1/2

(A.16)

By (A.1), (wk) is a sequence of square-integrable martingale differences. Therefore, to
conclude that the limit distribution of g̃n is a centred d-variate normal distribution, with
covariance matrix Σ given by (4.11), it is enough to verify the conditions of the martingale
central limit theorem [36],

lim max
k6n

∣∣∣An,k awkk1/2

∣∣∣ = 0 in probability (A.17a)

sup E
∣∣g̃n∣∣2 < ∞ (A.17b)

lim
n∑
k=1

a2

k
An,kΣkAn,k = Σ in probability (A.17c)

where Σk is the conditional covariance matrix

Σk = E
[
wkw

†
k

∣∣∣Xk−1

]
(A.18)

Conditions (A.17) are verified in Appendix A.3, which completes the proof.

A.1.5 Proof of Proposition 5

Denote ∂α = ∂
∂θα

the coordinate vector fields of the normal coordinates (θ)α. Since 〈·, ·〉
coincides with the Fisher information metric of the model P , it follows from (4.8) and
(A.32),

Hα,β = 〈∂α, ∂β〉θ∗ (A.19a)

However, by the definition of normal coordinates [62], the ∂α are orthonormal at θ∗.
Therefore,

Hα,β = δα,β (A.19b)
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Thus, the matrix H is equal to the identity matrix, and its smallest eigenvalue is λ = 1.
Proof of (i) : this follows directly from Propositions 2 and 3. Indeed, since λ = 1, the
conditions of these propositions are verified, as soon as 2a > 1. Therefore, (4.9) and (4.10)
hold true. �
Proof of (ii) : this follows from Proposition 4. The conditions of this proposition are
verified, as soon as 2a > 1. Therefore, the distribution of the re-scaled coordinates(
n1/2(θ(n))α

)
converges to a centred d-variate normal distribution, with covariance matrix

Σ given by Lyapunov’s equation (4.11). If a = 1, then (A.19b) implies Aα,β = −1
2
δα,β, so

that Lyapunov’s equation (4.11) reads Σ = Σ∗, as required. �
For the following proof of (iii), the reader may wish to recall that summation con-

vention is used throughout the present work. That is [62], summation is implicitly un-
derstood over any repeated subscript or superscript from the Greek alphabet, taking the
values 1 , . . . , d .
Proof of (iii) : let `(θ) = logL(θ) and assume U(θ, x) is given by (4.3). Then, by the
definition of normal coordinates [62], the following expression holds

Uα(θ∗) =
∂`

∂θα

∣∣∣∣
θ∗= 0

(A.20a)

Replacing this into (4.7) gives

Σ∗α,β = Eθ∗
[
∂`

∂θα
∂`

∂θβ

]
θ∗= 0

= −Eθ∗
∂2 `

∂θα∂θβ

∣∣∣∣
θα = 0

=
∂2D

∂θα∂θβ

∣∣∣∣
θα=0

(A.20b)

where the second equality is the so-called Fisher’s identity (see [3], Page 28), and the
third equality follows from (4.2) by differentiating under the expectation. Now, by (4.8)
and (A.19b), Σ∗ is the identity matrix.

To show that the online estimates θ(n) are asymptotically efficient, let (τα ;α =
1, . . . , d) be any local coordinates with origin at θ∗ and let ταn = τα(θ(n)) . From the
second-order Taylor expansion of each coordinate function τα, it is straightforward to
show that

n1/2ταn =

(
∂τα

∂θγ

)
θ∗

(
n1/2(θ(n))γ

)
+ σα(θ(n))

(
n1/2d2(θ(n), θ∗)

)
(A.21a)

where the subscript θ∗ indicates the derivative is evaluated at θ∗, and where σα is a
continuous function in the neighborhood of θ∗. By (4.10), the second term in (A.21a)
converges to zero almost surely. Therefore, the limit distribution of the re-scaled coordi-
nates (n1/2ταn ) is the same as that of the first term in (A.21a). By (ii), this is a centred
d-variate normal distribution with covariance matrix Στ given by

Στ
α,β =

(
∂τα

∂θγ

)
θ∗

Σ∗γ,κ

(
∂τβ

∂θκ

)
θ∗

=

(
∂τα

∂θγ

)
θ∗

(
∂τβ

∂θγ

)
θ∗

(A.21b)

where the second equality follows because Σ∗γ,κ = δγ,κ since Σ∗ is the identity matrix.
It remains to show that Στ is the inverse of the Fisher information matrix Iτ as in

(A.34). According to (A.32), this is given by

Iτα,β =
∂2D

∂τα∂τβ

∣∣∣∣
τα=0

= −Eθ∗
∂2 `

∂τα∂τβ

∣∣∣∣
τα=0

= Eθ∗
[
∂`

∂τα
∂`

∂τβ

]
τα=0

(A.21c)
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where the second equality follows from (4.2), and the third equality from Fisher’s identity
(see [3], Page 28). Now, a direct application of the chain rule yields the following

Iτα,β = Eθ∗
[
∂`

∂τα
∂`

∂τβ

]
τα = 0

=

(
∂θγ

∂τα

)
θ∗
Eθ∗
[
∂`

∂θγ
∂`

∂θκ

]
θγ = 0

(
∂θκ

∂τβ

)
θ∗

By the first equality in (A.20b), this is equal to

Iτα,β =

(
∂θγ

∂τα

)
θ∗

Σ∗γ,κ

(
∂θκ

∂τβ

)
θ∗

=

(
∂θγ

∂τα

)
θ∗

(
∂θγ

∂τβ

)
θ∗

(A.21d)

because Σ∗γ,κ = δγ,κ is the identity matrix. Comparing (A.21b) to (A.21d), it is clear that
Στ is the inverse of the Fisher information matrix Iτ as in (A.34). Proof of (iv) : (4.12a)
and (4.12b) follow from (4.9) and (4.10), respectively, by using (A.33). Precisely, it is
possible to write (A.33) in the form

D(θ(n)) =
1

2
d2(θ(n), θ∗) + ω

(
θ(n)
)
d2(θ(n), θ∗) (A.22a)

where ω is a continuous function in the neighborhood of θ∗, equal to zero at θ = θ∗. To
obtain (4.12a), it is enough to take expectations in (A.22a) and note that ω is bounded
above in the neighborhood of θ∗. Then, (4.12a) follows directly from (4.9).

To obtain (4.12b), it is enough to multiply (A.22a) by np where p ∈ (0, 1). This gives
the following expression

npD(θ(n)) =
1

2
npd2(θ(n), θ∗)

(
1 + ω

(
θ(n)
))

(A.22b)

From (4.10), np d2(θ(n), θ∗) converges to zero almost surely. Moreover, by continuity of ω,
it follows that ω

(
θ(n)
)
converges to ω(θ∗) = 0 almost surely. Therefore, by taking limits

in (A.22b), it is readily seen that

lim npD(θ(n)) =
1

2

(
lim np d2(θ(n), θ∗)

) (
1 + lim ω

(
θ(n)
))

= 0 (A.22c)

almost surely. However, this is equivalent to the statement that D(θ(n)) = o(n−p) for
p ∈ (0, 1), almost surely. Thus, (4.12b) is proved.

A.2 Proofs of geometric lemmas

A.2.1 Lemma 1

Let c(t) be the geodesic connecting θ∗ to some θ ∈ Θ∗, parameterised by arc length. In
other words, c(0) = θ∗ and c(tθ) = θ where tθ = d(θ, θ∗). Denote Πt the parallel transport
along c(t), from Tc(0)Θ to Tc(t)Θ. Since the velocity ċ(t) is self-parallel [62],

ċ(tθ) = Πtθ(ċ(0))

Multiplying this identity by −tθ, it follows that

Exp−1
θ (θ∗) = −Πtθ

(
Exp−1

θ∗ (θ)
)

(A.23a)

95



Moreover, recall the first-order Taylor expansion of the gradient ∇D(θ) [19, 62]

∇D(θ) = Πtθ

(
∇D(θ∗) + tθ∇2D(θ∗) · ċ(0) + tθ φ(θ)

)
(A.23b)

where φ(θ) is continuous and equal to zero at θ = θ∗. Here, ∇2D(θ∗) is the Hessian of
D(θ) at θ = θ∗, considered as a linear mapping of Tθ∗Θ [19, 62]

∇2D(θ∗) · w = ∇w∇D(θ∗) for w ∈ Tθ∗Θ

where ∇w denotes the covariant derivative in the direction of w. By (d1), the first term
on the right-hand side of (A.23b) is equal to zero, so that

∇D(θ) = Πtθ

(
∇2D(θ∗) · Exp−1

θ∗ (θ) + tθ φ(θ)
)

(A.23c)

Taking the scalar product of (A.23a) and (A.23c),

〈Exp−1
θ (θ∗),∇D(θ)〉 = −〈Exp−1

θ∗ (θ),∇2D(θ∗) ·Exp−1
θ∗ (θ)〉 − tθ 〈Exp−1

θ∗ (θ), φ(θ)〉 (A.23d)

since parallel transport preserves scalar products. In terms of the normal coordinates θα,
this reads [62]

〈Exp−1
θ (θ∗),∇D(θ)〉 = −Hα,β θ

αθβ − t2θ θ̂
αφα (A.23e)

where H = (Hα,β) was defined in (4.8), θ̂α denotes the quotient θα/tθ , and the φα denote
the components of φ(θ). Note that t2θ = d2(θ, θ∗) = θαθα, so (A.23e) can be written

〈Exp−1
θ (θ∗),∇D(θ)〉 = (ψ(θ)δα,β − Hα,β) θαθβ (A.23f)

where ψ(θ) is continuous and equal to zero at θ = θ∗. To conclude, let µ = λ− ε for some
ε > 0, and Θ̄∗ a neighborhood of θ∗, contained in Θ∗, such that ψ(θ) 6 ε for θ ∈ Θ̄∗.
Then, since λ is the smallest eigenvalue of H = (Hα,β),

〈Exp−1
θ (θ∗),∇D(θ)〉 6 (ε− λ) θαθα = −µ d2(θ, θ∗)

for θ ∈ Θ̄∗. This is exactly (A.9a), so the lemma is proved. �

A.2.2 Lemma 3

To simplify notation, let Un+1 = U(θ(n), xn+1). Then, the geodesic c(t), connecting θ(n)

to θ(n+1), has equation
c(t) = Expθ(n)

(
tη(n+1)Un+1

)
Each one of the normal coordinates θα is a C3 function θα : Θ∗ → R, with differential dθα
and Hessian [62]

∇2θα = −Γαβ,γ(θ) dθβ ⊗ dθγ

where Γαβ,γ are the Christoffel symbols of the coordinates θα, and ⊗ denotes the tensor
product. Then, the second-order Taylor expansion of the functions θα ◦ c reads

(θα ◦ c)(1) =(θα ◦ c)(0) + η(n+1) dθα(Un+1)

− 1

2
[η(n+1)]2 Γαβ,γ(θ

(n)) dθβ(Un+1) dθγ(Un+1) + [η(n+1)]3Tαn+1

(A.24a)
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where Tαn+1 satisfies ∣∣Tαn+1

∣∣ 6 K1 ‖Un+1‖3 (A.24b)

for a constant K1 which does not depend on n, as can be shown by direct calculation. Of
course, (θα ◦ c)(1) = (θ(n+1))α and (θα ◦ c)(0) = (θ(n))α. Moreover, dθα(Un+1) = Uα

n+1 are
the components of Un+1. Replacing into (A.24a), this yields

(θ(n+1))α = (θ(n))α + η(n+1) Uα
n+1 + [η(n+1)]2 παn+1 (A.24c)

where παn+1 is given by

παn+1 = [η(n+1)]2 Tαn+1 −
1

2
Γαβ,γ(θ

(n))Uβ
n+1 U

γ
n+1 (A.24d)

Comparing (A.24c) to (A.13a), it is clear the proof will be complete upon showing
E
∣∣παn+1

∣∣ = O(n−1/2). To do so, note that each Christoffel symbol Γαβ,γ is a C1 function
on the compact set Θ∗, with Γαβ,γ(θ

∗) = 0 by the definition of normal coordinates [62].
Therefore, ∣∣Γαβ,γ(θ) ∣∣ 6 K2 d(θ, θ∗) (A.24e)

for a constant K2 which does not depend on n. Replacing the inequalities (A.24b) and
(A.24e) into (A.24d), and taking expectations, it follows that

E
∣∣παn+1

∣∣ 6 η(n+1) K1 E ‖Un+1‖3 + d2 ×K2 E
[
d(θ(n), θ∗) ‖Un+1‖2

]
(A.25a)

where d is the dimension of the parameter space Θ. However, using the fact that the xn
are i.i.d. with distribution Pθ∗ ,

E
[
‖Un+1‖3

∣∣Xn ] = Eθ∗ ‖U(θ(n), x)‖3 6 R3/4(θ(n)) (A.25b)

by (u2) and Jensen’s inequality [72]. On the other hand, by the Cauchy-Schwarz inequal-
ity,

E
[
d(θ(n), θ∗) ‖Un+1‖2

]
6
(
E d2(θ(n), θ∗)

)1/2 (E ‖Un+1‖4
)1/2

6 b n−1/2
(
E ‖Un+1‖4

)1/2

for some b > 0 as follows from (4.9). Then, by the same reasoning that lead to (A.25b),

E
[
d(θ(n), θ∗) ‖Un+1‖2

]
≤ b n−1/2

(
ER(θ(n))

)1/2
(A.25c)

By (u2), there exists a uniform upper bound M on R(θ) for θ ∈ Θ∗. Since θ(n) lies in Θ∗

for all n, it follows by replacing the inequalities (A.25b) and (A.25c) into (A.25a) that

E
∣∣παn+1

∣∣ 6 η(n+1) K1M
3/4 + d2 ×K2 b n

−1/2M1/2 (A.25d)

Finally, by recalling that η(n) = a
n
, it is clear that the right-hand side of (A.25d) is

O(n−1/2), so the proof is complete. �
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A.2.3 Lemma 4

The lemma is an instance of the general statement : let θ ∈ Θ∗ and v = ∇D(θ). Then, in
a system of normal coordinates with origin at θ∗,

vα = Hα,β θ
β + o (d(θ, θ∗)) (A.26a)

where vα are the components of v. Indeed, (A.13b) follows from (A.26a) after replacing
θ = θ(n), so that v = vn, and setting

ραn = vαn − Hα,β (θ(n))β

To prove (A.26a), recall (A.23c) from the proof of Lemma 1, which can be written

v = Πtθ

(
∇2D(θ∗) · Exp−1

θ∗ (θ)
)

+ d(θ, θ∗) Πtθ(φ(θ)) (A.26b)

Denote ∂α = ∂
∂θα

the coordinate vector fields of the normal coordinates θα. Note that [19,
62]

Exp−1
θ∗ (θ) = θβ∂β(θ∗) ∇2D(θ∗) · ∂β(θ∗) = Hα,β ∂α(θ∗)

Replacing in (A.26b), this gives

v = Hα,β θ
β Πtθ(∂α(θ∗)) + d(θ, θ∗) Πtθ(φ(θ)) (A.26c)

From the first-order Taylor expansion of the vector fields ∂α [19, 62]

∂α(θ) = Πtθ

(
∂α(θ∗) + ∇∂α(θ∗) · Exp−1

θ∗ (θ)
)

+ d(θ, θ∗) Πtθ(χ
α(θ))

where χα(θ) is continuous and equal to zero at θ = θ∗. However, by the definition of
normal coordinates [62], each covariant derivative ∇∂α(θ∗) is zero. In other words,

∂α(θ) = Πtθ(∂α(θ∗)) + d(θ, θ∗) Πtθ(χ
α(θ)) (A.26d)

Replacing (A.26d) into (A.26c), it follows

v = Hαβ θ
β ∂α(θ) + d(θ, θ∗) Πtθ

(
φ(θ)−Hαβ θ

βχα(θ)
)

(A.26e)

Now, to obtain (A.26a), it is enough to note the decomposition v = v α ∂α(θ) is unique,
and φ(θ)−Hαβ θ

βχα(θ) converges to zero as θ converges to θ∗. �

A.3 Conditions of the martingale CLT
For the verification of Conditions (A.17), the following inequality (A.27) will be useful.
Let ν = aλ− 1

2
, so −ν is the largest eigenvalue of the matrix A in (A.15a). There exists

a constant CA such that the transition matrices An,k in (A.15c) satisfy [45, 58]

|An,k|Op ≤ CA

(
k

n

)ν
(A.27)

where |An,k|Op denotes the Euclidean operator norm, equal to the largest singular value
of the matrix An,k .

98



Condition (A.17a) : to verify this condition, note that for arbitrary ε > 0,

P
(

max
k≤n

∣∣∣An,k awkk1/2

∣∣∣ > ε

)
≤

n∑
k=1

P
(∣∣∣An,k awkk1/2

∣∣∣ > ε
)
≤

n∑
k=1

P
(
CA

(
k

n

)ν ∣∣∣awk
k1/2

∣∣∣ > ε

)
(A.28a)

where the second inequality follows from (A.27). However, it follows from (u2) that there
exists a uniform upper bound Mw on the fourth-order moments of |wk| . Therefore, by
Chebyshev’s inequality [72]

n∑
k=1

P
(
CA

(
k

n

)ν ∣∣∣awk
k1/2

∣∣∣ > ε

)
≤
(
aCA
ε

)4
Mw

n4ν

n∑
k=1

k4ν−2 (A.28b)

Since ν > 0, the right-hand side of (A.28b) has limit equal to 0 as n→∞, by the Euler-
Maclaurin formula [22]. Replacing this limit from (A.28b) into (A.28a) immediately yields
Condition (A.17a). �
Condition (A.17b) : to verify this condition, recall that (wk) is a sequence of square-
integrable martingale differences. Therefore, from (A.16)

E
∣∣g̃n ∣∣2 =

n∑
k=1

a2

k
E tr

(
A2
n,kΣk

)
(A.29a)

where Σk is the conditional covariance matrix in (A.18). Applying (A.27) to each term
under the sum in (A.29a), it follows that

E
∣∣g̃n ∣∣2 6 d

1
2

n∑
k=1

a2

k
E |An,k|2Op

∣∣Σk

∣∣
F
6
(
d

1
2 a2C 2

A

) 1

n2ν

n∑
k=1

k2ν−1 E
∣∣Σk

∣∣
F

(A.29b)

where d is the dimension of the parameter space Θ, and |Σk|F denotes the Frobenius
matrix norm. However, it follows from (u1) that there exists a uniform upper bound S
on |Σk|F . Therefore, by (A.29b)

E
∣∣g̃n ∣∣2 6 (d 1

2 a2C 2
A

) S

n2ν

n∑
k=1

k2ν−1 (A.29c)

Since ν > 0, the right-hand side of (A.29c) remains bounded as n → ∞, by the Euler-
Maclaurin formula [22]. This immediately yields Condition (A.17b). �
Condition (A.17c) : to verify this condition, it is first admitted that the following limit is
known to hold

lim E (Σk) = Σ∗ (A.30a)

where Σ∗ was defined in (4.7). Then, let the sum in (A.17c) be written

n∑
k=1

a2

k
An,kΣkAn,k =

n∑
k=1

a2

k
An,kΣ∗An,k +

n∑
k=1

a2

k
An,k

[
Σk − Σ∗

]
An,k (A.30b)

Due to the equivalence An,k ∼ exp(ln(n/k)A) (see [58], Page 125), the first term in (A.30b)
is a Riemann sum for the integral [45, 58]

a2

∫ 1

0

e− ln(s)A Σ∗ e− ln(s)A d ln(s) = a2

∫ ∞
0

e−t A Σ∗ e−t A dt
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which is known to be the solution Σ of Lyapunov’s equation (4.11). The second term in
(A.30b) can be shown to converge to zero in probability, using inequality (A.27) and the
limit (A.30a), by a similar argument to the ones in the verification of Conditions (A.17a)
and (A.17b). Then, Condition (A.17c) follows immediately. �
Proof of (A.30a) : recall that wk = Uk + vk−1 where Uk = U(θ(k−1), xk) and vk−1 =
∇D(θ(k−1)). Since (wk) is a sequence of square-integrable martingale differences, it is
possible to write, in the notation of (A.18),

Σk = E
[
UkU

†
k

∣∣∣Xk−1

]
− vk−1v

†
k−1 (A.31a)

By (A.8), the second term in (A.31a) converges to zero almost surely, as k →∞. It also
converges to zero in expectation, since ∇D(θ) is uniformly bounded for θ in the compact
set Θ∗. For the first term in (A.31a), since the xk are i.i.d. with distribution Pθ∗ , it
follows that

E
[
UkU

†
k

∣∣∣Xk−1

]
= Eθ∗

[
U(θ(k−1), x)U †(θ(k−1), x)

]
(A.31b)

Since U(θ, x) is a continuous vector field on Θ for each x ∈ X, and θ(k−1) converge to
θ∗ almost surely, it follows that U(θ(k−1), x) converge to U(θ∗, x) for each x ∈ X, almost
surely. On the other hand, it follows from (u2) that the functions under the expectation
Eθ∗ in (A.31b) have bounded second order moments, so they are uniformly integrable [72].
Therefore,

lim Eθ∗
[
U(θ(k−1), x)U †(θ(k−1), x)

]
= Eθ∗

[
U(θ∗, x)U †(θ∗, x)

]
= Σ∗ (A.31c)

almost surely, by the definition (4.7) of Σ∗. It now follows from (A.31a), (A.31b), and
(A.31c) that the following limit holds

lim Σk = Σ∗ almost surely (A.31d)

To obtain (A.30a) it is enough to note, as already stated in the verification of Condition
(A.17b), that the Σk are uniformly bounded in the Frobenius matrix norm. Thus, (A.31d)
implies (A.30a), by the dominated convergence theorem. �

A.4 Background on the Fisher information metric
Let D(θ) be the Kullback-Leibler divergence (4.2), or any other so-called α-divergence [3].
Assume the Riemannian metric 〈·, ·〉 of Θ coincides with the Fisher information metric of
the model P . Then, for any local coordinates (τα ;α = 1, . . . , d ), with origin at θ∗, the
following relation holds, by definition of the Fisher information metric (see [3], Page 54),

∂ 2D

∂τα∂τβ

∣∣∣∣
τα=0

=

〈
∂

∂τα
,
∂

∂τβ

〉
θ∗

(A.32)

where ∂
∂τα

denote the coordinate vector fields of the local coordinates τα. It is also
possible to express (A.32) in terms of the Riemannian distance d(·, ·), induced by the
Fisher information metric 〈·, ·〉. Precisely,

D(θ) =
1

2
d 2(θ, θ∗) + o

(
d 2(θ, θ∗)

)
(A.33)
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This follows immediately from the second-order Taylor expansion of D(θ), since θ∗ is a
minimum of D(θ), by using (A.32). Formula (A.33) shows that the divergence D(θ) is
equivalent to half the squared Riemannian distance d 2(θ, θ∗), at θ = θ∗.

The scalar products appearing in (A.32) form the components of the Fisher information
matrix Iτ of the coordinates τα,

Iταβ =
∂ 2D

∂τα∂τβ

∣∣∣∣
τα=0

In any change of coordinates, these transform like the components of a (0, 2) covariant
tensor [62]. That is, if (θ α ;α = 1, . . . , d ) are any local coordinates defined at θ∗,

Iταβ =

(
∂θ γ

∂τα

)
θ∗
Iθγκ

(
∂θ κ

∂τβ

)
θ∗

where the subscript θ∗ indicates the derivative is evaluated at θ∗, and where Iθγκ are the
components of the Fisher information matrix Iθ of the coordinates θ α.

The recursive estimates θ(n) are said to be asymptotically efficient, if they are asymp-
totically efficient in any local coordinates τα, with origin at θ∗. That is, according to
the classical definition of asymptotic efficiency [44, 78], if the following weak limit of
probability distributions is verified [72],

L
{

(n1/2ταn )
}

=⇒ Nd (0,Στ ) Στ = (Iτ )−1 (A.34)

where L{. . .} denotes the probability distribution of the quantity in braces, ταn = τα(θ(n))
are the coordinates of the recursive estimates θ(n), and Nd (0,Στ ) denotes a centred d-
variate normal distribution with covariance matrix Στ .

It is important to note that asymptotic efficiency of the recursive estimates θ(n) is
an intrinsic geometric property, which does not depend on the particular choice of local
coordinates τα, with origin at θ∗. This can be seen from the transformation rule of
the components of the Fisher information matrix, described above. In fact, since these
transform like the components of a (0, 2) covariant tensor, the components of Στ transform
like those of a (2, 0) contravariant tensor, which is the correct transformation rule for the
components of a covariance matrix.
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Appendix B

Proof for chapter 5

B.1 Proof of Proposition 6
Let (θ(n))n>0 be a sequence generated by Algorithm 1. Recall the retraction Retθ is defined
in (3.18). Consider the sequence of tangent vectors

(
U(θ(n))

)
n>0

where U(θ(n)) belongs to
Tθ(n)Θ, with

U(θ(0)) = −∇∗µD̂(µ(0),Σ(0), β(0))

U(θ(1)) = −∇∗ΣD̂(µ(1),Σ(0), β(0))

U(θ(2)) = −∇∗βD̂(µ(1),Σ(1), β(0))

and so on for U(θ(n)) with n > 0.
It is easy to see that either there exist infinitely many vectors U(θ(n)) such that

U(θ(n)) 6= 0, or θ(n) = θ∗ for all n greater than some n1. Indeed, if there are only
finitely many U(θ(n)) such that U(θ(n)) 6= 0, then there exists n0 such that U(θ(n)) = 0
for all n greater than n0. This implies there exists n1 > n0 with

U(θ(n1)) = −∇∗µD̂(θ(n1)) = 0

U(θ(n1+1)) = −∇∗ΣD̂(θ(n1+1)) = 0

U(θ(n1+2)) = −∇∗βD̂(θ(n1+2)) = 0

From Algorithm 1, this implies that θ(n1) = θ(n1+1) = θ(n1+2) and ∇�θ D̂(θ(n1)) = 0 (since
all three components of ∇�θ D̂(θ(n1)) are zero). Since θ(n1) ∈ Θ∗, this implies θ(n1) = θ∗.
Then (again by Algorithm 1) θ(n) = θ∗ for all n > n1.

Let
(
θ(ni), U(θ(ni))

)
i>0

be the subsequence of
(
θ(n), U(θ(n))

)
n>0

which consists of all the
couples

(
θ(n), U(θ(n))

)
such that U(θ(n)) 6= 0 (i 7→ ni is a function which counts the terms

of this subsequence). Clearly, since U(θ(n)) = 0 means that θ(n) will not be updated, it
is enough to restrict attention to the subsequence

(
θ(ni), U(θ(ni))

)
i>0

. For simplicity, this
will be denoted

(
θ(i), U(θ(i))

)
i>0

.
The subsequence

(
θ(i)
)
i>0

is given as in Algorithm 1 of [2], θ(i+1) = Retθ(i)

(
ti U(θ(i))

)
with step-size ti chosen according to Armijo-Goldstein rule (precisely, ti = tni where tn is
given by t0 = ηµ, t1 = ηΣ, t2 = ηβ, etc.). Moreover, (θ(i))i>0 remains within the compact
neighborhood Θ∗ of θ∗. According to Corollary 4.3.2 in [2], if (η(i))i>0 is gradient-related
then limi→∞ ‖∇�θ D̂(θ(i))‖� = 0.

Then, since θ∗ is the only stationary point of the cost function (4.6) in Θ∗, it follows
that limi→∞ θ

(i) = θ∗, as required. To show that the subsequence
(
U(θ(i))

)
i>0

is gradient-
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related, note that 〈
U(θ(0)),∇�θ D̂(θ(0))

〉
�

= −
∥∥∥∇∗µD̂(µ(0),Σ(0), β(0))

∥∥∥2

∗〈
U(θ(1)),∇�θ D̂(θ(1))

〉
�

= −
∥∥∥∇∗ΣD̂(µ(1),Σ(0), β(0))

∥∥∥2

∗〈
U(θ(2)),∇�θ D̂(θ(2))

〉
�

= −
∥∥∥∇∗βD̂(µ(1),Σ(1), β(0))

∥∥∥2

∗

and so on, for n > 3. Therefore,
〈
U(θ(n)),∇�θ D̂(θ(n))

〉
�
< 0 whenever U(θ(n)) 6= 0. This

means that
〈
U(θ(i)),∇�θ D̂(θ(i))

〉
�
< 0 for the whole subsequence

(
U(θ(i))

)
i>0

, and this
subsequence is indeed gradient related.

B.2 Proof of Proposition 7
The proof is a direct application of Remark 2, concerning Proposition 1, in [88]. According
to this remark, if U

(
θ(n),X (n+1)

mb

)
denotes the direction of descent, and if

En
〈
U(θ(n),X (n+1)

mb ),∇�θD(θ(n))
〉
�
< 0, almost surely, for n > 0 (B.1)

where Ei denotes conditional expectation with respect to (X (0)
mb ,X

(1)
mb , · · · ,X

(i)
mb, · · · ), then

lim θ(n) = θ∗ almost surely. Here (compare to the proof of Proposition 6), the direction
of descent is given by

U(θ(0),X (1)
mb ) = ∇∗µ`p(µ(0),Σ(0), β(0);X (1)

mb )

U(θ(1),X (2)
mb ) = ∇∗Σ`p(µ(1),Σ(0), β(0);X (2)

mb )

U(θ(2),X (3)
mb ) = ∇∗β`p(µ(1),Σ(1), β(0);X (3)

mb )

and so on. Therefore, the expectations in (B.1) can be found from

E0

〈
U(θ(0),X (1)

mb ),∇�θD(θ(0))
〉
�

= −‖∇µD(θ(0))‖2
∗ (B.2a)

E1

〈
U(θ(1),X (2)

mb ),∇�θD(θ(1))
〉
�

= −‖∇ΣD(θ(1))‖2
∗ (B.2b)

E2

〈
U(θ(2),X (3)

mb ),∇�θD(θ(2))
〉
�

= −‖∇βD(θ(2))‖2
∗ (B.2c)

and so on, for n > 3. Thus, the expectation in (B.1) is always negative. Recall the
assumption A1 in Proposition 7.

A1. θ∗ is the unique stationary point of D(θ) in Θ∗. Moreover, the second derivatives
∇∗2µ D(θ∗), ∇∗2Σ D(θ∗), ∇∗2β D(θ∗) are all positive-definite.
We now show that Assumption A1 guarantees it is strictly negative, as required.

By assumption A1, and a direct application of the implicit function theorem (after
taking Θ∗ sufficiently small) [1], there exist three submanifolds of Θ, which pass through
θ∗,

Hµ = {θ ∈ Θ∗ : ∇∗µD(θ) = 0}
HΣ = {θ ∈ Θ∗ : ∇∗ΣD(θ) = 0}
Hβ = {θ ∈ Θ∗ : ∇∗βD(θ) = 0}
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Moreover, Hµ is uniquely parameterised by (Σ, β), HΣ is uniquely parameterised by
(µ, β) and Hβ is uniquely parameterised by (µ,Σ). In particular, this implies that Hµ,
HΣ and Hβ are submanifolds of lower dimension, and therefore have zero Riemannian
volume.

The expectations in (B.2) are therefore almost surely all strictly negative. Indeed, each
θn with n > 0 has a probability density function with respect to Riemannian volume, and
therefore almost surely does not belong to Hµ, HΣ or Hβ.

B.3 Proof of Propositions 8 and 9
As for Proposition 7, this is an application of Remark 2 in [88]. According to this remark,
in order to obtain the mean-square rate and the asymptotic normality, it is enough to
show the mean vector field X(θ) = Eθ∗ [U(θ, x)] has an attractive stationary point at
θ = θ∗. Since U(θ, x) = ∇�θ `(θ;x)

Eθ∗ [U(θ, x)] =

−∇∗µD(θ)
−∇∗ΣD(θ)
−∇∗βD(θ)

 (B.3)

The covariant derivative of this vector field at the point θ = θ∗ is equal to the Hessian
H(θ∗), which is positive-definite. Therefore, the results of Propositions 8 and 9 follow by
Remark 2 in [88].

B.4 Proof of Proposition 10

For the case of θ = (Σ), the geodesic convexity of the cost function D(θ) (or of D̂(θ))
follows by proving −`p(θ;x) is geodesically strictly convex in θ = (Σ) for any x.

Recall that, geodesic curves on Pm are of the form [61]

γ :R → Pm
t 7→A exp(tr)A†

(B.4)

where exp denotes the matrix exponential map, A is an invertible matrix, and r is a
diagonal matrix, both of same size as Σ. Then, −`p(θ) is geodesically convex if and only
if the composition (−`p ◦ γ)(t) is always a convex function with respect to t. Moreover,
geodesic strict convexity is defined in exactly the same way. The composition (−`p ◦γ)(t)
can be expressed

(−`p ◦ γ)(t) = log det(A) +
1

2
tr(r)t+ log [(f ◦ ϕ)(t)] (B.5)

recall that, the funtion f is defined in equation (5.7) and (5.8), and here

ϕ(t) =
m∑
i=1

u2
i exp(−rit) (B.6)

with u = A−1x, its components ui, and ri are the diagonal elements of r. The function
ϕ : R → R+ is strictly log-convex, because it is the Laplace transform of a positive
measure [72]

ϕ(t) =

∫ ∞
0

exp(−tx)µ(dx) (B.7)
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where µ =
∑m

i=1 u
2
i δri , and δri is the Dirac measure concentrated at ri.

Assume that the function f verifies Condition (5.9). Then, since ϕ is strictly log-
convex, f ◦ ϕ is strictly log-convex. Thus, the term log [(f ◦ ϕ)(t)] of (B.5) is a strictly
convex function of the real variable t. Since the term tr(r) t

2
of (B.5) amounts to an affine

function of t, it is now clear that (−`p ◦ γ)(t) is a strictly convex function of the real
variable t, for any geodesic curve γ : R → Pm. Finally, since x was chosen arbitrarily,
−`p(θ;x) is geodesically strictly convex in θ = (Σ) for each x. Therefore, D(θ) and D̂(θ)
are both geodesically strictly convex.

B.5 Proof of Corollary 2 and 3
For the case of θ = (Σ), note that ϕ : R → R+ is strictly log-convex if and only if
ϕ(t) = exp(ψ(t)) where ψ : R→ R is strictly convex.
1) plugging equation (5.8a) into equation (5.9),

log(f ◦ ϕ)(t) =
1

2
exp (β (ψ(t))) (B.8)

Therefore, condition (5.9) is verified since β > 0.
2) plugging equation (5.8b) into equation (5.9),

log (f ◦ ϕ) (t) =
β +m

2
log

(
1 +

exp(ψ(t))

β

)
(B.9)

Therefore, condition (5.9) is verified since β +m > 0.
For the case of θ = (µ,Σ), as mentioned above, the function f̃ is reformulated. Then,

the same strategy is applied for this reformulated f̃.
1) For MGGD, recall the geodesic curve for reformulated matrix S(t),

S(t) = B exp(st)B†

where exp denotes the matrix exponential map, B is an invertible matrix, and s is a
diagonal matrix, both of same size as S.

δy(t) = y†S−1y =
m+1∑
i=1

v2
i e
−sit with v = B−1y (B.10)

According to equation (B.10), we have δy > 1. Therefore, ∃w ∈ Rm+1 and ∃q ∈
(0,+∞)m+1 (e.g. w = (u, 0) and q = (r, 1) ) such that

m+1∑
i=1

v2
i e
−sit =

m+1∑
i=1

w2
i e
−qit + 1 (B.11)

Plugging
∑p+1

i=1 w
2
i e
−qit + 1 into the reformulated f̃

f̃ ◦ δy(t) = exp

1

2

(
m+1∑
i=1

w2
i e
−qit

)β
 (B.12)

This function is proved to be log-convex in equation (B.6). Therefore, condition (5.9) is
verified since β > 0 for MGGD model.
2) For Student T, plugging (5.10) into (5.9),

log
(
f̃ ◦ ϕ

)
(t) =

β +m

2

[
1− 1

β
+

1

β
exp(ψ(t))

]
(B.13)

Therefore, condition (5.9) is verified since β > 0.
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Appendix C

Proofs for Chapter 6

C.1 Proof of proposition 11
This proof is based on Remark 2 of [88]. Denote U

(
θ(n), x

)
the direction of descent.

According to this remark, if

E
〈
U
(
θ(n), x

)
,∇�θD

(
θ(n)

)〉�
θ(n) < 0, for t > 0 (C.1)

almost surely, we have limn→∞ θ(n) = θ∗. In this situation, for each iteration, the direction
of descent could be considered as

U
(
θ(0), x

)
= −


∇∗r`f

(
θ(0);x

)(
0∇∗µk

)
k(

0∇∗Σk

)
k(

0∇∗βk

)
k

 (C.2a)

U
(
θ(1), x

)
= −


0∇∗r(

∇∗µk`f
(
θ(1);x

))
k(

0∇∗Σk

)
k(

0∇∗βk

)
k

 (C.2b)

U
(
θ(2), x

)
= −


0∇∗r(

0∇∗µk

)
k(

∇∗Σk`f
(
θ(2);x

))
k(

0∇∗βk

)
k

 (C.2c)

U
(
θ(3), x

)
= −


0∇r(

0∇∗µk

)
k(

0∇∗Σk

)
k(

∇∗βk`f
(
θ(3);x

))
k

 (C.2d)
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where
θ(0) =

(
r(0),

(
µ

(0)
k

)
k
,
(

Σ
(0)
k

)
k
,
(
β

(0)
k

)
k

)
θ(1) =

(
r(1),

(
µ

(0)
k

)
k
,
(

Σ
(0)
k

)
k
,
(
β

(0)
k

)
k

)
θ(2) =

(
r(1),

(
µ

(1)
k

)
k
,
(

Σ
(0)
k

)
k
,
(
β

(0)
k

)
k

)
θ(3) =

(
r(1),

(
µ

(1)
k

)
k
,
(

Σ
(1)
k

)
k
,
(
β

(0)
k

)
k

)
(C.3)

Recall that D(θ) = −E [`f (θ;x)] and the form of ∇�θD(θ) is defined as

∇�θD(θ) =


∇∗rD(θ)(
∇∗µkD(θ)

)
k(

∇∗ΣkD(θ)
)
k(

∇∗βkD(θ)
)
k

 (C.4)

Therefore, for step 0 to 3, the expectation in (C.1) are

E
〈
U
(
θ(0), x

)
,∇θD

(
θ(0)
)〉�

θ
= −

(∥∥∇rD
(
θ(0)
)∥∥∗

r

)2

E
〈
U
(
θ(1), x

)
,∇θD

(
θ(1)
)〉�

θ
= −

K∑
k=1

(∥∥∇µkD
(
θ(0)
)∥∥∗

µk

)2

E
〈
U
(
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And so on, for t > 3, all these verify condition (C.1). According to remark 2 in [88], in
order to obtain the asymptotically linear convergence rate, it is enough to show the mean
vector field X(θ) = Eθ∗ [U (θ, x)] has an attractive stationary point at θ = θ∗. Since
U (θ, x) = −∇θ`f (θ;x)

Eθ∗ [U (θ, x)] =


∇∗rD(θ)(
∇∗µkD(θ)

)
k(

∇∗ΣkD(θ)
)
k(

∇∗βkD(θ)
)
k

 (C.6)

Under the same assumptions of B.2, the covariant derivative of this vector field at the
point θ = θ∗ is equal to the Hessian H(θ∗), which is positive-definite. Therefore the linear
convergence rate holds.

C.2 Proof of proposition 12
Note Θ∗ is the neighborhood of θ∗ which satisfies all assumptions in proposition 12. The
objective function D(θ) is geodesically strongly convex and L-lipschitz smooth in Θ∗.
Recall the geodesically L-lipschitz

D(θ(n+1)) 6D(θ(n))− η(n)
〈
∇θD(θ(n)), U(θ(n),X (n)

mb )
〉
θ(n)

+
L

2
d2
(
θ(n),θ(n+1)

) (C.7)
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Where 〈·, ·〉 denotes the Riemannian metric in the general sense, therefore ∇θD(θ(n))
denotes the general Riemannian gradient, and d(·, ·) denotes the general Riemannian
distance. The vector U(θ(n),X (n)

mb ) denotes the direction of descent, and η(n) is the step-
size.

The set X (n)
mb is supposed to be a random mini-batch that is uniformly selected from

the complete dataset. Therefore

EXmb
[
U(θ(n),X (n)

mb )
]

= U
(
θ(n),X

)
(C.8)

here X denotes the complete dataset. Take expectation with respect to Xmb

EXmb
[
D(θ(n+1))

]
6D(θ(n))− η(n)

〈
∇θ(θ(n)), U(θ(n),X )

〉
θ(n)

+
L

2
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[
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)] (C.9)

Expand the last term

d2(θ(n),θ(n+1)) =d2(r(n), r(n+1)) +
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Recall the square distance in each sub-space
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therefore
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For r ∈ SK−1, the classic Euclidean gradient coincides with the Riemannian information
gradient (3.29).∥∥∥Ur(θ(n),X

(n)
mb)
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For µk in Rp, ∥∥∥Uµk(θ(n),X
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where λ(n)
max,k is the largest eigenvalue of Σ

(n)
k . Then for Σk, its information gradient is
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Using the affine invariant metric, the square norm of UΣk(θ
(n),X (n)

mb ) is∥∥∥UΣk(θ
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After some necessary simplifications, the following relation ship could be summarized∥∥∥UΣk
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Finally, for βk, it is easy to obtain∥∥∥Uβk (θ(n),X (n)
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We have then
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Where τ (n)
max = max
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. Recall the definition of ρ-strong

growth condition
EXmb ‖∇θD(θ,Xmb)‖2 6 ρ ‖∇θD(θ,X )‖2 (C.20)

Then, using Lemma 1 of [54], we could obtain
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where ρ′ = (n−b)(ρ−1)
(n−1)b

+ 1, and b is the size of mini-batch, n is the size of dataset. The
expected decrease becomes
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Then, for item
〈
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where λmin,k is the smallest eigenvalue of Σ
(n)
k . For scatter matrix Σk〈
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Finally, the shape parameter βk〈
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Therefore
EXmb

[
D(θ(n+1))

]
6D(θ(n))− η(n+1)τ (n)

min

∥∥∇θD(θ(n),X )
∥∥2

+
L [η(n+1)]2 τ (n)

max ρ
′

2

∥∥∇θD(θ(n),X )
∥∥2

(C.27)

where τ (n)
min = min
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, we have
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Using the Polyak-Lojasiewicz inequality in Riemannian context (which is proved in sec-
tion C.3)
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, we have
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substracting D(θ∗) from both sides
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Range these N times of iteration
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C.3 Proof of Polyak-Lojasiewicz inequality in Rieman-
nian context

Consider a continuous and differentiable function defined on a Riemannian manifold f :
M→ R. Note x∗ = arg infx∈M f(x) its minimum, there exists a neighborhoodM∗ ⊂M
of x∗ such that the function f is strongly geodesically convex in M∗. For any x ∈ M∗,
∃α > 0 such that

f (x∗)− f (x) >
〈
Exp−1

x (x∗) ,∇xf(x)
〉
x

+
α

2
d2 (x, x∗) (C.32)

Take the negative on both sides of this inequality to get
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where there is the result.
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