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vraiment qu’on pourra continuer à travailler ensemble pendant le postdoc !
Je n’oublie évidemment pas Camille, Matteo et tous les jeunes du LBMC, pour le soutien, les
discussions scientifiques ou politiques stimulantes et les bières au foyer, Maxime pour l’élevage
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Introduction

The difference between cells does not come from the DNA that it contains, since all of an organ-
ism’s cells contain the same DNA, but from the genes that it expresses. Within a eukaryotic cell’s
nucleus, DNA is first transcribed into an intermediary form, called mRNA (messenger-RNA).
The transcription occurs only when an enzyme called RNA polymerase can bind to a region of
the DNA which is called promoter. mRNA molecules are then transported out of the nucleus,
where they are translated into proteins (see Figure 1). Proteins will then carry out cell functions
like carrying oxygen through the blood, giving structure to tissue, or recognizing specific antigens.
Observing these functional properties allows to assign each cell a certain phenotype, called
a cell type. We call differentiation the process whereby a cell acquires a specific phenotype,
by differential gene expression over time. Considering the huge amount of reactions that take
place within a cell and determine its differentiation, a fundamental and complex question in
cell biology is then to understand the mechanisms by which cells differentiate to a cell type or
another, and, as a corollary, how they are stabilized or destabilized.

DNA mRNA Prot.

Regulation

Transcription Translation

Figure 1: Gene expression mechanism within a single cell.

In addition to carrying out vital functions, gene expression products (namely, proteins) also
interact both directly and indirectly with the DNA, and therefore with the expression mechanisms
(as represented by the regulation arrow in Figure 1). In particular, the expression of one gene
can lead to the activation or inhibition of another. These interactions are commonly referred to
as gene regulation and are known to play a central role in the development and differentiation of
cells.
The underlying topology of these interactions can be represented by a Gene Regulatory Network
(GRN), a powerful concept for representing the interactions between genes through their protein
levels. A classical GRN, which is known to play an important role in many biological processes, is
the toggle-switch: 2 genes that active themselves and inhibit each other. it can be represented by
a graph θ, the weight associated to each of its edges representing the nature of the interactions,
as illustrated in Figure 2. The previous questions can then be made more precise: in a given
organism, what GRN drive the differentiation of cells ? Note however that what we call GRN
in this context is an abstraction, that does not only take into account direct interactions, as the
binding of a protein on a promoter, but also indirect effects as well as many factors, such as
proliferation or cell-to-cell communication that could influence GRN’s action.

These issues are difficult to address, and this is mainly due to the nature of the data that
have been and are now available. Indeed, the most accessible data are mRNA levels, also

4



Figure 2: Example of a graph represented a toggle-switch GRN between two genes that activate themselves
and inhibit each other, which is represented by the weight matrix θ ∈ R2×2.

called gene expression measurements or transcriptomic data. They have long been limited to
population-based measurements, that is the observation of the mean of gene expression products
among a (potentially high) number of cells. Until the 2000’s and beyond, most biologists were
thinking differentiation as a nearly deterministic process: the genes expressed by a cell and
their intensity were thought to be deterministically determined by its DNA and its environment.
When it became possible to observe mRNA levels within single cells, about twenty years ago,
biologists established that there is a high cell-to-cell variability in gene expression [77], even
between cells with the same DNA and in the same environment. This variability has also been
shown to be not Gaussian [58]: it seems thus that it is not only due to the accumulation of
a large amount of small factor making the cells to slightly deviate from their mean behavior,
and that it is biologically relevant when examining a differentiation process. Interestingly, it is
now widely accepted that this non-Gaussian variability is mainly due to the bursty nature of
mRNAs synthesis [71], also known as transcriptional bursting phenomenon, making trajectories
of mRNAs of an individual cell very far from those of a diffusion process and particularly difficult
to reconstruct from partial observations of the system. Thus, differentiation can be considered as
a highly stochastic process [43]: a group of cells with the same DNA and in a same environment
are not likely to behave in a similar way. Thus, the mechanisms underlying cell differentiation
cannot be understood by the observation of their mean behavior [46] and single-cell data has
been available for a relatively short time, which explains that many questions are still to address.
Furthermore, even single-cell data does not allow an easy understanding of cell differentiation
mechanisms. Indeed, stochasticity prevents the attribution of precise causes to an observed
dynamics: a precise analysis of the latter can only be done by using adapted statistical tools, and
possible conclusions are meaningful within a certain confidence interval. Moreover, performing
such dynamical analysis would require the real trajectories of cell expression products during
differentiation. Importantly, this is not possible since the observation process necessarily kills
the cells of interest: we have only access to independent samples of cells collected at various
time-points instead of real trajectories. We will call these type of data time-stamped datasets in
the rest of the manuscript.
In that context, we can reformulate once again our previous fundamental biological issue in
a more practical way, asking how, from time-stamped datasets, we can reconstruct the GRN
driving the differentiation of the cells that are observed. An additional question would be also
to ask what part of the process is it able to explain.

From biology to mathematics

Since measurements technologies now allow the expression of thousands of genes to be measured
at the same time, bringing ”big data” to biology, it is clear that statistical methods are naturally
suited for analyzes. There exists a huge range of statistical methods for analyzing these data in
various directions, and it would be difficult to enumerate them. We can mention methods for
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representing data in a lower-dimensional space (like the most classical PCA, or recent non-linear
methods like UMAP [62]), for analyzing the effect of conditions (analysis of variance, mixture
effect models), for measuring correlations between genes or cells (using Pearson or Spearman
coefficient or copula), or for ordering the observations along a pseudo-temporal axis [89].

Two types of methods would be of particular interest for us in the following. On one side, to get
information about the mechanisms that drive the dynamics of an individual cell, a solution would
be to reconstruct most-probable trajectories of differentiation from one or many independent
samples of cells collected at various time-points along a developmental progression. Many
methods have been developed for reconstructing such trajectories [93, 104], allowing to identify
key mechanisms driving certain biological processes [84]. On the other side, under the previous
hypothesis that the dynamics of cells mainly results from the action of an underlying GRN,
another way of getting information about the underlying mechanisms would to reconstruct this
GRN from experimental datasets. To this aim, a large amount of bioinformatics tools have been
developed those last twenty years [41, 3], both for population or single-cell data. However, all
these methods are almost systematically ”top-down” (they do not take into account explicitly
the molecular complexity within single-cells) instead of “bottom-up” (based on the molecular
processes driving cells dynamics): although they allow to fill some gaps in the information
provided by the single-cell data, it is tendentious to interpret their result in a mechanistic way.
They also have a major drawback, that is their incompatibility. Indeed, these two categories of
methods have actually the same aim, which is the understanding of gene expression patterns
observed in an experimental dataset as the emergent property of an underlying GRN. However,
the probabilistic models used for trajectories reconstruction are generally too simple to explain
their dynamics by the action of a GRN, while most GRN inference methods does not allow to
build a reliable link between the inferred network and cell dynamics.
In that context, an important challenge is to develop a bottom-up approach of cell differentiation,
able to link the molecular mechanisms within a cell, whose effects are parameterised by the
GRN structure, to the dynamics of this cell. It should also allow to analyze time-stamped datasets.

In our work, we are often going to refer to a popular metaphor for understanding cell dynamics,
which is the notion of Waddington’s landscape, introduced by Waddington himself in 1942 [100].
At that time where the physical nature of genes was not yet well known, Waddington developed
the metaphor that cells could be seen as marbles following probabilistic trajectories, as they roll
through a developmental landscape of ridges and valleys (see Figure 3A) for the original drawing).
These trajectories takes place in a so-called gene expression space, describing the space of possible
mRNAs and/or proteins levels for all of the genes that are expressed (or observed) within a
cell. Following our previous considerations, the resulting landscape can be considered to be
mainly shaped by an underlying GRN: interestingly it was already the vision of Washington, who
represented the interactions between genes (even if it was imagined before this notion was well
defined) giving to the landscape its structure (see Figure 3B). Moreover, the variability observed
at the individual cell level argues for a probabilistic description of cell differentiation processes.
In that context, the developmental landscape introduced by Waddington can be defined as ”a
time-varying distribution on gene expression space” [84]: these distributions characterize areas
of low and high probabilities in the gene expression space, determining the probable fate of cells
in this landscape. Relating this distribution to a GRN should allow to build a mathematical
framework allowing to link the mechanisms that drive differentiation processes to the estimation
of these time-varying distributions, from time-stamped datasets.
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(a) (b)

Figure 3: Waddington epigenetic landscape: reproduction from [100].

From the molecular to the functional level

The variability observed in gene expression has also led to question the traditional notion of cell
types. Indeed, if the behavior of a cell is subject to stochasticity, how to explain the fact that
cells can be distinguished a posteriori by their functional properties ? Moreover, although this
concept has to be interrogated in the era of single-cell omics [18], cell types seem to remain most
of the time stable over time in an organism. More precisely, differentiation is now considered as a
metastable process, which is evidenced by the limited number of existing cellular phenotypes [67,
11] and the possibility for a cell to trans-differentiate from on type to another, these transition
being rare events. This question sheds light on the link existing between cell biology and
statistical physics, yet mentioned in [46]. Indeed, it is a commonplace for physicians that random
phenomena at a molecular level can lead to macroscopic structures (which can be the cell types
at the single-cell level or the formation of organoids or other macro-organization at a broader
scale): there is no paradox between the stochasticity of gene expression on the scale of a cell and
the fact that the development of an organism is structured and even reproducible. In this point
of view, we can consider that the behavior of a cell is an emergent property of the underlying
GRN driving its differentiation. The cell types can be seen as macrostates associated to an
underlying mechanistic model describing the behavior of a cell at the molecular level, driven by
the GRN. This paradigm has been developed in the case of a diffusion process in [39, 108], where
the authors define the cell types as the stable basins of attraction associated to the deterministic
drift of a stochastic differential equation modeling gene expression dynamics. We can thus
modify our fundamental question once again: Is it possible to understand, from a GRN, the
diversity of cell types observed in an organism as an emergent property the molecular processes
induced by its action, and how to reconstruct it from experimental observations ?

Context and challenges

We can now detail the context of our PhD. In this work, we are going to consider a cell as a
complex system, the functional properties of which emerge from the complex molecular processes
acting on it, represented by the action of a GRN. Starting from a mechanistic model describing
these complex multivariate processes, we are going to embrace a statistical physics point of
view on cell differentiation in order to understand the resulting functional behavior of a cell in
probabilistic terms. We should also be able to consider the reverse problem of reconstructing
a GRN from observable transcriptomic profiles, in such a way that the associated functional
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behavior is consistent with the observations. Although this approach is not completely new
-analogies between biology and statistical physics for understanding cell differentiation processes
have been often proposed those last few years [102, 108, 13, 84]- it has been realized nearly
exclusively by considering that differentiation can be well described by the most common
stochastic processes used in this field, that is stochastic differential equations (SDEs). For such
processes, existing mathematical tools indeed allow to understand the emergent properties of
stochastic process (using Large deviations theory [92]), or for reconstructing the landscape of
a given process from experimental observations (using Optimal transport theory [75]). But
these processes are known to be not in adequacy with the highly stochastic and bursty nature
of observable transcriptomic profiles, and it is often not clear how the mathematical theories
coming from statistical physics can be extended to realistic models of cellular differentiation.
Thus, a mechanistic extension of these theories able to capture the nature of biological processes
is still to develop [91].

Overview of the manuscript

In Chapter 1, we are going to present the theoretical context of the questions developed in this
introduction, as well as the mathematical notions that we are going to use throughout the thesis.
We will also detail some state-of-the-art methods and approaches developed those last few years
that have been important references for our personal achievements, either because we used them
as a starting point for our work, or because we tried to overcome their limits. In particular, we
are going to detail the main probabilistic model of gene expression dynamics, that has been
developed by Ulysse Herbach during its PhD within the same team, and that we will use as
a building brick throughout the manuscript. In Chapter 2, we will develop an analytical link
between the GRN dynamics at the molecular level associated to this model, and the resulting
functional behavior of an individual cell. In Chapter 3, we will use these results for developing
a numerical method able to reconstruct a GRN from gene expression data, that we will apply
on both in silico generated and experimental dataset from the literature in Chapter 4. At this
stage, we would have then addressed most of the questions stated in this introduction, that is the
link between molecular and functional scales of cellular dynamics, and how to characterize this
dynamics as the action of an underlying GRN using single-cell datasets. The last two chapters
consist in the preliminary development of a mathematical method able to evaluate the accuracy
of the model with respect to experimental data, while remaining at a level of precision consistent
with the nature of the available data.

We present in Figure 4 a graphical abstract of these PhD projects, with the main mathematical
field that will be used. In the following chapter, we are going to introduce these mathematical
notions and detail the technical framework and existing methods which will serve as a starting
point for our projects.
We present in Figures 5-6-7 an overview of the different projects of this manuscript, illustrating
each part with a graphical abstract. Once again, the mathematical background for understanding
the content of each picture will be exposed in Chapter 1. We also hope that it may be useful to
return to these figures at the end of each section for a synthesis.

Regarding our contributions, Chapter 1 does not contain any original work, and Chapters 2, 3, 4
and 5 contain articles that have been published or submitted for publication. They are presented
in their publication format, at the cost of sometimes redundant definitions or presentations
of models. Chapter 6 contains the preliminary results of an ongoing project, which has been
initiated with Aymeric Baradat.
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Figure 4: Global view of the PhD. In Part I, starting from a mechanistic model of gene expression, we will
use Large deviations theory for reducing this model, in order to link a GRN with an explicit approximate
description of the associated ”Waddington” landscape. This reduction will be used in Part II to conceive
a reverse-engineering method, allowing in particular to infer a most-likely GRN from time-stamped
datasets. Combined to some information available in the literature, this method also allow to simulate
realistic data that mimicks experimental ones. This allow in particular to evaluate the model against
experimental datasets, that we do first using standard statistical tools like Wasserstein distances and
dimension reduction techniques, and then the Schrödinger problem in Part III.

Building an approximate landscape 
of cellular differentiation
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Figure 5: Global view of Part 1. In Chapter 2, we are going to perform a Large deviations analysis of this
model in order to reduce it, from any GRN, to a discrete Markov chain on the basins of attraction seen as
cell type. We approximate its jump rates by integrating the Lagrangian on the optimal trajectories which
characterize the transitions between the attractors of the basins. We then deduce a phenomenological
model describing protein dynamics, the stationary distribution of which is explicitly known.
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Figure 6: Global view of Part 2. The phenomenological model developed in Part I will be used to conceive
in Chapter 3 an original reverse-engineering method from time-stamped scRNA-seq datasets. The method
transforms the inference on a set of regression problems, which appears each as the learning step of a
simple perceptron. In Chapter 4, we demonstrate the efficiency of this method on both in silico generated
and experimental datasets, by comparing the results to other state-of-the-art methods and analyzing
their biological interpretability.
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Figure 7: Global view of Part 3. Motivated by the need of a new metric for characterizing the distance
between the mechanistic stochastic process and experimental observations, we develop the theoretical
basis for solving entropy minimization problems (called Schrödinger problems) when the mechanistic
model is used as a reference. We use this method for assessing the quality of the model with respect to
experimental observations and a calibrated reference process.
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Chapter 1

Mathematical preliminaries and existing
related methods.

In this first chapter, we introduce the principal definitions and mathematical notions that are
going to be used throughout the manuscript, as well as some state-of-the-art methods that are
relevant to contextualize the rest of our work. The aim is to present the works pre-existing to
our thesis, which initiated or guided the orientation of our research, and whose limits we tried
to identify and overcome.

1.1 A probabilistic point of view on cellular differentiation

1.1.1 Landscape of cellular differentiation

All along this manuscript, we will be interested in the dynamical behavior of a cell under-
going a differentiation process. We first need to describe the space in which we study this
dynamics. We consider that a cell evolving in the so-called gene expression space is represented
by a vector X = (X1, · · · , Xn) where each Xi represents the expression level of the ith gene,
and n is the number of genes of interest. For the sake of simplicity, we consider that every
gene is associated to an unique type of mRNA and protein. Remark however that this is
generally not the case, mainly due to phenomena such as alternative splicing: it is considered
for example that in mammalian tissues, there are at least 4 times more mRNA types and
proteins than genes. However, although important for understanding cell dynamics [64], theses
different versions of mRNAs and proteins associated to a gene can be generally identified from
experimental data in such a way that we can estimate the quantity of mRNAs and proteins
associated to each gene: the study of such phenomena is thus beyond the scope of our studies.
In that context, every Xi is then itself a vector of size two: Xi = (Mi, Pi), where Mi and Pi
are the levels of mRNA and protein associated to gene i that are in the organism. We call
a trajectory (Xt)t∈[0,T ] the trajectory of a cell in the gene expression space between times 0 and T .

This formalism motivated the development of dynamical models based on differential equations
for describing cell trajectories in the gene expression space, the flow of which depends on the
dynamical parameters involved in the chemical reactions driving differentiation [65]. Interestingly,
this dynamical formulation allowed to give a first mathematical description of the Waddington’s
landscape landscape. Every position taken by the cell (seen as a marble) in the gene expression
space represents a cellular state, i.e a vector X characterizing the level of expressed mRNAs and
proteins in our case. Although the number of possible states is infinite, the number of phenotype
observed are limited: for the human, there are about 200 cell types, defined generally by its
functional properties. In the representation of Figure 3A, the final basins of low elevation where
a high proportion of cells end up correspond to these experimentally observable, terminal cell
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types. In that point of view, a marble starts its journey in a valley at the back of the landscape
and as it progresses in the gene expression space, it might face branching points along the path,
representing the series of fate choices made by a developing cell, before reaching a terminal cell
state. Thus, the formalism of dynamical systems gives a clear interpretation of this notion of
landscape : if a cell X evolves according to a differential system of equation

Ẋ(t) = F (X(t)),

the trajectories would be the one generated by this equation, depending only on the initial
conditions and the cell types to the basin associated to each stable equilibrium of the system.
The branching points would corresponds to the unstable equilibria, at the boundary of the
different basin of attraction, and the slope would represent the velocity of the process along
time. Moreover, if there exists a function V : E → R such that F = −∇V , the landscape is
shaped by this potential function.

Following the probabilistic point of view developed in the introduction, such deterministic
system can only describe average trajectories in the gene expression space, and not individual
cell trajectories. When studying a probabilistic system, this is not the evolution of the state
which is deterministic, but the evolution of its probability. To give a mathematical formalism
to the notion of epigenetic landscape which takes into account stochasticity, we should not
consider that there are equations describing trajectories of individual cells in the gene expression
space, but instead equations describing the trajectories of cells distribution in the space of
probability measures that take values in the gene expression space. In that context, the elevation
of the epigenetic surface (the surface representing the landscape in the sens described before)
should reflect the probability of observing a particular state in the gene expression space: states
that have the highest probability locally will have lower potential and hence will act as the
valley-bottoms on the landscape, surrounded by a basin of attraction which would correspond to
cells with slightly different states but exhibiting the same phenotype [66]. However, the notion
of probability is not clear at this stage: indeed, the probability of a system evolves over time,
and so should the landscape, making Waddington’s picture less obvious. As we will see later, the
solution is often to consider that the landscape is characterised by the steady-state probability
of the system, and that this probability also characterizes some of its dynamical aspects.

The most popular approach to describe the epigenetic landscape where cells are subject to
stochasticity is to model cell differentiation process by a system of stochastic differential equations
(SDEs):

dXt = F (Xt)dt+ σ(Xt)dBt. (1.1)

In analogy with the deterministic case, if there exists a potential function V such that F = −∇V ,
this function and the diffusion coefficient σ characterize the epigenetic landscape [108]. If not,
several methods and approximations have been proposed to find potential functions, generally
decomposing the drift in a potential and a rotational part which would characterizes the flux [101,
13], that we will detail in Section 1.3.

In parallel, for a general stochastic system, one common definition of landscape is related to the
steady-state distribution û (whenever there exists) through the relation V (x) = − ln

(
û(x)

)
[19].

For the so-called Smoluchowski SDE dXt = −∇V (Xt) +
√
2εdBt, both definitions coincide

exactly since in this case the stationary distribution is û(x) ∝ e−V (x)
ε .

This function thus characterizes well the areas of the gene expression space with the lowest
potential values as the most probable states of a cell at the equilibrium, and its minimum as low
probable states, the difference of potential between these two types of areas characterizing an
energetic barrier between them [109].
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However, it is no longer the case for more complex stochastic systems, for which a general notion
of potential function (and landscape) linking the dynamical and the stationary points of view is
still to define.

As mentioned in the introduction, the landscape is often regarded to be shaped by an underlying
GRN, which can be itself influenced by many factors like cell-to-cell communication, proliferation,
etc. In the framework of SDEs, a relevant way to link the dynamics of differentiation processes
with a GRN would therefore be to build a model allowing to parameterize the potential function
by the latter. However, the nature of the chemical processes driving cell differentiation makes
SDE-based model inaccurate for describing the dynamics of cells in the gene expression space. In
particular, we have mentioned in the introduction that the bursty synthesis of mRNAs gives rise
to highly variable and non-Gaussian expression profiles [58], that would be more in adequacy
with the class of switching ODEs [9] than with diffusion processes [4, 38]. For this class of
stochastic processes, the characterization of a landscape is also more complicated, and requires to
adapt the large panel of mathematical tools that are used in statistical mechanics, with the aim
of understanding the macroscopic behavior of a system involving a large amount of microscopic
sub-processes. Note now that the first goal of this thesis, which will be achieved in Chapter 2
and serve as a starting point for the algorithmic methods developed afterwards, will precisely be
this landscape characterization for a specific mechanistic model of gene expression.

1.1.2 Mathematical preliminaries

In this section, we will introduce the principal mathematical notions that we will use throughout
the manuscript. They are mainly related to the field of Stochastic calculus, but also to the fields
of Schrödinger problem and Optimal transport, whose connections have been intensively studied
the last few years. The aim of this section is to provide a simple (and sometimes not completely
rigorous) presentation of these mathematical theories, as well as some insights on the way they
are going to be interesting for addressing the questions that drive the PhD.

Measures

For introducing Probability theory, we are going to use the notion of measures. If we denote Ω a
measurable topological space, we denote P(Ω) the set of all its probability measures, i.e the
positive measures that sums to 1 on Ω. We will use in many situations the notion of pushforward
measure:

Definition 1. Let (Ω;m) a measure space (m is a measure) and E a measurable space. Let us
consider f : Ω→ E a measurable application from Ω to E. The pushforward measure of m by f
is denoted f#m. It is a measure on E defined for every subset A ⊂ E by:

f#m(A) = m(f−1(A)),

with f−1(A) := {ω ∈ Ω, f(ω) ∈ A}.

For every measurable and positive application ϕ on E, we have:

∫

E
ϕ(y)df#m(dy) =

∫

Ω
ϕ ◦ f(x)dm(dx).

Observe that if m is a probability measure and f is positive on E, f#m is the law of f , that we
can see as a random variable with value in E.

Finally, when we consider a stochastic process taking values in E (as we will detail in the
following section), we generally identify the random variable describing the process at time t to
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the time projection of the measure P ∈ C([0, T ];E) at this time, denoting Xt#P the measure
defined by:

∀t > 0, Xt#P (·) := P (Xt ∈ ·) ∈ P(E).

Some notions about stochastic processes

We are interested in the theory of stochastic processes. In a general setting, considering (Ω,F ,P)
a probability space (F denotes the σ-algebra of Ω), (E, E) a measurable space (E denotes the
σ-algebra of E), and a real number T > 0, the application X : [0, T ] × Ω → E is said to be
a stochastic process defined on Ω, indexed by [0, T ] and with values in E if for all t ∈ [0, T ],
the application Ω → X(t,Ω) is measurable from (Ω,F) to (E, E). We denote by (Xt)t∈[0,T ]
the random variable characterizing such stochastic process in [0, T ], and it will also sometimes
denote a realization (when there is no confusion).

Let us denote (F)t∈[0,T ] a filtration in F . We define a Markov stochastic process by a transition
semi-group (Qt)t∈[0,T ] such that for all t: Qt : E × E → [0, 1] satisfying classical semi-group
properties:

• For all x ∈ E, the application A→ Qt(x,A) defines a probability on (E, E);

• For all A ∈ E: (t, x)→ Qt(x,A) is measurable for B(R+)× E ;

• For all x ∈ E: Q0(x, dy) = δx(y);

• For all s, t > 0 and A ∈ E: Qt+s(x,A) =
∫
E Qs(y,A)Qt(x, dy).

A Markov stochastic process relatively to (Ft)t∈[0,T ] with semi-group (Qt)t∈[0,T ] is a (Ft)t∈[0,T ]-
adapted process on F with values in E such that for all s, t > 0 and for all function f : E → R
measurable and bounded:

E (Xt+s|Fs) =
∫

E
f(y)Qt(Xs,dy) := Qtf(Xs),

where E is the expected value under the probability measure P.

When E is a polish space and (Qt)t∈[0,T ] satisfies some regularity properties (for all f ∈ C0(E),
Qtf ∈ C0(E) and ||Qtf − f || → 0 as t → 0), we say that (Qt)t∈[0,T ] is a Feller semi-group, in
which case the stochastic process (Xt)t can be characterized by its generator L defined by:

Lf := lim
t→0+

Qtf − f
t

,

for all f ∈ D(L), D(L) being the set of functions in C0(E) such that the limit is well defined
on C0(E). We call a Markov process associated to a Feller semi-group a Feller Markov process.
In this manuscript, all the random variables will be defined implicitly on the same probability
space with values on a metric space E (which will be often Rn). As they will have a natural
construction, the Markov processes that we will consider will be systematically associated to a
Feller semi-group, and be then characterized by their generator L.

Finally, Markov Feller processes are often characterized by martingale properties. We recall
that a Markov process (Xt)t∈[0,T ] relatively to (Ft)t∈[0,T ] called a martingale (w.r.t the filtration
(Ft)t∈[0,T ]) if (Xt)t∈[0,T ] is integrable and for all 0 < s < t:

E(Xt|Fs) = Xs.
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It is well known that with the previous notation, if (Xt)t∈[0,T ] is a Markov Feller process, then
for every f ∈ D(L) the stochastic process (Mf t)t∈[0,T ] defined for all t ≥ 0 by

Mf t = f(Xt)− f(X0)−
∫ t

0
Lf(Xs)ds, (1.2)

is a martingale w.r.t (Ft)t∈[0,T ] under P. This is relatively simple to see using the semi-group
properties of Qt and the Hille-Yosida theorem which states that for all t:

d

dt
Qtf = LQtf.

Conversely, we say that (Xt)t∈[0,T ] is the solution of the martingal problem associated to the
generator L if for every f ∈ D(L), the process defined by (1.2) is a is a martingale w.r.t (Ft)t∈[0,T ].

The probability distribution of a Markov Feller process is the solution of the so-called master
equation of the process, defined for all t > 0, x ∈ E by:

d

dt
ρ(t, x) = L∗ρ(t, x),

L∗ being the adjoint operator of L in D(L). In plain word, the state of a Markov Feller process
is random, but the evolution of its probability distribution is deterministic: knowing an initial
distribution ρ(0, ·), there is an unique time-dependent distribution ρ which is the solution of the
master equation associated to the process.

As in this thesis, we want to deal with experimental observations, we are never going to know
the real probability distributions of a stochastic process, which could only be characterized by an
infinite number of observations. We will nevertheless approximate them from the observations,
and try to deduce information about the forces (i.e the GRN in our case) driving the stochastic
processes that are observed. A powerful theory for studying the gap between an expected process
and its observation, and its consequences, is the theory of Large deviations that we are going to
present now.

A first Large deviations principle and its link with the relative entropy

In this section, we introduce the notion of Large deviations when the number of observations of
a system tends to infinity, and its link with the relative entropy justified by the Sanov theorem.

When we observe a serie of N independent and identically distributed random variables (Xn)n≤N ,
following a law R ∈ P(E), we expect from the central limit theorem that, when N is high,
(Xn)n≤N follows a Gaussian distribution centered on the mean of the law R, the variance of
which is in O( 1

N ). In particular, the empirical distribution

µN =
1

N

N∑

n=1

δXn ,

verifies: ∫

E
xµN (dx) =

1

N

N∑

n=1

Xn →
N→∞

ER(X).

A rare event, when N is large, could be then that (Xn)n≤N are such that | 1N
N∑
n=1

Xn−ER(X)| > ε,

with ε > 0.

15



Equivalently, if we observe a large number N of independent realizations of a stochastic process
((Xt)

n
t∈[0,T ])n∈N starting from a same initial probability distribution ρ0, we expect at any time T

the collection of values ((XT )
n)n≤N to follow a Gaussian distribution centered on E(Xt|X0 ∼ ρ0)

with a variance in O( 1
N ), and a rare event could be that the mean trajectory observed is at a

strictly positive distance from the trajectory whose value at each time is the previous expected
value.

When we face a rare event in practice, it is natural to question if the observations are very
unlikely or the reference measure has to be modified. A question that arises is thus the following:
given the observations, what can we say about the reference measure R under which the data
were supposed to be chosen? This issue has been addressed by Sanov in 1958 [82], using the
notion of relative entropy.

Definition 2. The relative entropy of a probability measure P ∈ P(E) w.r.t R is defined by:

H(P |R) =
{
EP
(
log dP

dR

)
if P ≪ R,

+∞ if not,

where dP
dR is the Radon-Nikodym derivative of P w.r.t R. For any measure R The function

H(·|R) is convex and lower semi-continuous. Moreover, it vanishes only on P = R, and for this
reason is often used as a pseudo-distance in statistics (but it is not symmetric).

Remark 3. Interestingly, the way we formulated the relative entropy is not limited to static
measure on P(E), but can be also applied to path measure in P(C([0, T ], E)), where dP

dR becomes
the Radon-Nikodym derivative of P w.r.t R on F∞ (or FT if the process is considered on [0, T ]).

We can now expose the Sanov theorem [82]:

Theorem 4. Under the previous notation, by denoting MN ∈ P(P(E)) the law on the empirical
measure µN associated to the set of observations (Xn)n≤N , for every open set O and closed set
C of P(E) for the narrow topology we have:

lim inf
N→∞

1

N
log(MN (O)) ≥ − inf

P∈O
H(P |R),

lim sup
N→∞

1

N
log(MN (C)) ≤ − inf

P∈C
H(P |R).

We say that the sequence (MN )N≥0 satisfies a large deviations principle with rate function
H(·|R).

Heuristically, for N large enough we then expect the probability that µN is in a small neighbor-
hood V of a measure P to be:

P(µN ∈ V ) ≃ e−NH(P |R).

Then, conditionally to a rare event, with high probability, everything happens as if each
observations had been realized independently under the measure P instead of the reference
measure R. The Sanov Theorem, which gives access to the rate function of a Large deviations
problem, allows to approximate the probability of the rare event by solving a convex minimisation
problem. Finally, returning to our original question about the reference measure R, by a change
of point of view similar to that of a maximum likelihood problem, we can consider that the
measure P characterizes the most probable law of the process given the reference process (which
can be seen as a prior) and the observation µN ∈ V .
Recalling that we are interested in this PhD to dynamical aspects of cell differentiation, we
expect the biological observations to be measured not only at one, but at least a two timepoints
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in order to get information about cell dynamics. Thus, following Remark 3, the reference measure
has to be understood as the path measure of a stochastic process, and the empirical measure as
the partial observation of the process at (at least) two timepoints. This motivates a deeper study
of the entropy minimisation problem in such situation, which is called the Schrödinger problem.

The Schrödinger problem

In this section, we introduce some general results about the Schrödinger problem and its link
with Large deviations of stochastic processes.

We recall that we denote R a reference path measure in P(C([0, T ], E)). R then characterizes
the law of a stochastic process between 0 and T > 0 with values in E. The joint law on the
initial and final position is:

R0T := (X0 ×XT )#R ∈ P(E × E). (1.3)

We consider the Schrödinger problem:

inf
π∈Π(µ,ν)

H(π|R0T ), (1.4)

that we denote Sch(R0T ;µ, ν). Π(µ, ν) denotes the set of probability measures π ∈ P(E × E)
with marginals µ ∈ P(E) and ν ∈ P(E) at times 0 and T , i.e satisfying:

{
π(dx× E) = µ(dx),

π(E × y) = ν(dy).

Remark 5. Here, we define Sch(R0T ;µ, ν) as the optimal value of our problem. However, with
an abusive terminology, we will refer to the minimizer of the r.h.s. of (1.4) as ”the solution
of Sch(R0T ;µ, ν)”. More generally, we will call ”the problem Sch(R0T ;µ, ν)” the optimization
problem consisting in computing the value Sch(R0T ;µ, ν).

From the Sanov theorem 4, the Schrödinger problem as an interpretation in terms of large
deviations. To see this, let us build an example. Consider that we are working on the tore
Td. Consider a large number of particles that we choose independently under the law of a
Brownian motion on Td, at times 0 and 1, with an initial random uniform position. Under these
hypotheses, the law of large numbers ensures that with very high probability, the initial and
final distributions of these particles are very close to be uniform. Conditionally to the rare
event that they are close to two non-uniform distributions that we denote µ and ν, the Sanov
theorem ensures that with very high probability, the behaviour of the system is the same as if
all the particles had been chosen according to a joint probability law P ∗

01, which is the solution
of the Schrödinger problem Sch((X0 ×X1)#B;µ, ν) (where B denotes the path measure of the
Brownian motion on Td).

Interestingly, it is possible from this joint law to find an optimal path measure P ∗ on [0, 1],
characterizing (with very high probability) the law of the Brownian motion conditionally to
the observations. This point of view was precisely Schrödinger’s original ones, who aimed to
understand the law of a Brownian motion at t = 1

2 conditionally to two temporal marginal
constraints [85]. For this, we have to introduce the so-called dynamical Schrödinger problem:

inf
P∈M+(C([0,T ],E))

{
H(P |R) | X0#P = µ,XT#P = ν

}
, (1.5)

that we still denote Sch(R;µ, ν) when there is no ambiguity on the space on which the measure
R is defined. The entropy has been characterized in that case in Remark 3.
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Before considering the link between the two problems (normal and dynamical), we introduce a
lemma which will be used afterwards:

Lemma 6. Let X be a random variable with values in E. With the previous notations, we have:

H(P |R) = H(X#P |X#R) + EP
(
H(PX |RX)

)
,

where PX et RX are the conditional probabilities P (·|X) and R(·|X) respectively.

This is a simple consequence of the additive property of the relative entropy, and the proof can
be found in [52] (Theorem 1.6). Typically, we can take X = X0 the initial position of a process
(Xt)t∈[0,T ]: X#P and X#R then denotes the initial law of the process under P and R respectively.

Denoting Rxy the bridge between x and y, i.e the measure defined by:

Rxy(·) := R(·|X0 = x,X1 = y),

we have the following theorem, the proof of which is based on Lemma 6 and can be found in [27]:

Theorem 7. The Schrödinger problems (1.4) and (1.5) admit at most one solution, which are
denoted respectively π∗ ∈ P(E × E) and P ∗ ∈ P(C([0, T ], E)) whenever they exist. They are
characterized by the relation:

P ∗(·) =
∫ ∫

Rxy(·)π∗(dx, dy). (1.6)

Moreover, we have P ∗
01 = π∗, and P ∗ shares the same bridges as R:

∀x, y ∈ E, P ∗xy = Rxy.

Finally, the costs associated to the two problems (defined as the objective values) are equal:

H(P ∗|R) = H(π∗|R01).

The equality of the bridges P ∗xy and Rxy is consistent with Sanov’s point of view, as we expect
that the optimal path measure conditionally to the observations is the same than the reference’s
one.

The uniqueness of the solutions is straightforward due the strict convexity of the problems.
Moreover, the link between the two problems stated by (1.6) ensures that it will be enough
to consider conditions of existence for the non-dynamical Schrödinger problem (which will be
the subject of Chapter 5 in a discrete setting), the solution of the dynamical one following from it.

The dynamical Schrödinger problem is then interesting as it allows to characterize the law of a
stochastic process conditionally to partial observations (at given times), and a reference measure.
Moreover, although it seems a priori complicated to solve in its dynamical formulation, the
solution is completely determined by a coupling solving the non-dynamical Schrödinger problem,
which may be simpler to solve. We are now going to detail how this theory is linked to the
optimal transport (OT) theory, which has drawn a lot of attention these last 20 years, through a
second type of Large deviations analysis on the reference process.
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A second Large deviations principle for a stochastic process and its link with the relative entropy

In addition to the Large deviations principle in the number of observations, stated by the Sanov
theorem, there exists another type of Large deviations principle for stochastic processes, which is
related to the level of noise characterizing the system. It has been largely developed within the
context of SDEs [29, 23]: in that case, a noise coefficient

√
ε scales the diffusion coefficient, and

we can then build a sequence of stochastic processes ((Xε
t )t∈[0,T ])ε. We say that the sequence

((Xε
t )t∈[0,T ])ε satisfies a Large deviations principle if there exists a lower semi-continuous function

JT : càdlàg([0, T ],Rn)→ [0,∞], such that for all open set O and closed set C of càdlàg([0, T ],Rn)
for the narrow topology, we have:

lim inf
ε→0

ε log
(
P((Xε

t )t∈[0,T ] ∈ O)
)
≥ − inf

(ϕt)t∈[0,T ]∈O
JT ((ϕt)t∈[0,T ]),

lim sup
ε→0

ε log
(
P((Xε

t )t∈[0,T ] ∈ C)
)
≤ − inf

(ϕt)t∈[0,T ]∈C
JT ((ϕt)t∈[0,T ]).

The function JT is called the rate function of the process in [0, T ], and the quantity JT ((ϕt)t∈[0,T ])
is called the cost of the trajectory (ϕt)t∈[0,T ]. In particular, we say that the rate function has the
form of an action if the cost of any piecwise differentiable trajectory ϕt)t∈[0,T ] can be expressed
as

JT (ϕ) =

∫ T

0
L(ϕ(t), ϕ̇(t))dt, (1.7)

where L is a convex lower semi-continuous function in the phase space, called the Lagrangian of
the system.

Remark that the link between this type of Large deviations principle and Large deviation
principle of random variables has been studied by Feng and Kurtz [26], and we refer to [2] for a
simple exposition of these ideas. In particular, in analogy with Varadhan’s lemma, which relates
large deviations for sequences of random variables to the asymptotic behaviour of functionals of
the form 1

n logE(e
nf(Xn)), they extended the Fleming’s approach that relates the rate function

JT to the the asymptotic behaviour of the semi-group V ε(T )f(x) = ε logE
(
e
f(XεT )

ε |Xε
0 = x

)
.

Interestingly, this second type of large deviations principle is still related to the entropy by the
notion of Γ-convergence. We begin by recalling the definition of this type of convergence in
first-countable spaces:

Definition 8. In a first-countable space E, the sequence of functional Fε : E → R is said to
Γ-converge to F : E → R if:

1. For every sequence Xε in E such that xε → x as ε→ 0:

F (x) ≤ lim inf
ε→0

Fε(xε),

2. For every x in E, there exists a sequence xε → x as ε→ 0 such that:

F (x) ≥ lim sup
ε→0

Fε(xε).

In plain words, the first condition means that F provides an asymptotic common lower bound
for the Fn, and the second condition that this lower bound is optimal. As the Skorokhod space is
first-countable (the space of trajectories which are continuous to the right, with a limit to the left)
the definition holds for the stochastic processes that are going to be of interest in this manuscript.

19



The mathematical details concerning the Γ-convergence approach of large deviations for stochastic
processes are beyond the scope of this thesis, but it is interesting to have in mind that it has
been recently shown [59] that there exists a large deviations principle for a sequence of stochastic
processes ((Xε

t )t∈[0,T ])ε (with corresponding sequence of law (Rε)ε), with rate function JT , iff:

Γ− lim
ε→0

H(P |Rε) = EP
(
JT ((Xt)t∈[0,T ])

)
, (1.8)

where H(P |Rε) is then seen as a function of P .

Large deviations and optimal transport theory

We now introduce the Monge-Kantorovitch problem, which is the starting point of the OT
theory, and we detail the link with what we previously exposed. Even if very good introductions
to these notions can be already found elsewhere, we believe that a simple (and sometimes not
completely rigorous) presentation of these results is relevant in this introduction as it highlight
what should be done before considering a mechanistic approach of OT applied to biological
systems.

The idea of optimal transport, initiated by Monge and Kantorovich in the beginning of the
19th century, is to transport in the most economical way some mass between two prescribed
distributions µ and ν. We consider E := Rn for simplicity, and we take as for the Schrödinger
problem µ, ν ∈ P(Rn). We also introduce a cost function c : Rn × Rn → R+. Then the
Monge-Kantorovich problem can be written:

inf
π∈Π(µ,ν)

∫

Rn×Rn
c(x, y)π(dx, dy). (1.9)

In particular, when c is the quadratic cost (c(x, y) = ||x− y||22), the quantity seen as a function
of µ and ν is a distance on the space P(Rn) called the Wasserstein distance W2. When
c(x, y) = ||x− y||1, it is sometimes called the Earth mover distance (EMD) and is often used by
bioinformaticians for comparing empirical distributions.
This problem also admits a dynamical formulation [61], which takes into account the whole
trajectory of the system and not only the initial and final position and can be written:

inf
(Zt)t∈[0,T ]

{∫

Rn
C((Zt(x))t∈[0,T ])µ(dx) |T0 = Id, ZT#µ = ν

}
, (1.10)

where C is a non-negative function on C([0, T ],Rn). These formulations are equivalent provided
that the functions c and C satisfy the relation for all x, y ∈ Rn:

c(x, y) = inf
(ϕt)t∈[0,T ]

C((ϕt)t∈[0,T ]) |ϕ0 = x, ϕT = y,

when we identify the value of ϕt to the function Zt(ϕ0) for all t ∈ [0, T ].

For example, when c is the quadratic cost, the corresponding functional is:

C((ϕt)t∈[0,T ]) =
∫ T

0

ϕ̇2t
2
dt. (1.11)

In this case, an important result established by Brenier in the 1980’s is that whenever µ, ν are
measures with second order moment finite, and µ is absolutely continuous w.r.t the Lebesgue
measure, then the optimal coupling π is given by:

π = (Id×∇ϕ)#µ,
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where ϕ is a convex function such that ∇ϕ#µ = ν, called the Brenier’s map. In the equivalent
dynamical formulation, the solution is given by (Zt)t∈[0,T ] such that for all 0 < t < T :

Zt#µ = ((1− t)Id+ t∇ϕ)#µ.

In this quadratic case, an other important result established by Benamou and Brenier in [10]
states that the objective value of the OT problem (1.9) is equal to the objective value of the
following optimization problem:

inf
ρ,v

{∫

Rn

∫ T

0
||v(t, x)||2ρ(dt, dx) | ρ(0) = µ, ρ(T ) = ν,

dρ

dt
+∇(ρv) = 0

}
. (1.12)

We observe that the quantity which is minimized in (1.12) is related to the functional C appearing
in the Mc-Cann formulation: if ρ is interpreted as a time-evolving probability distribution in Rn
associated to a stochastic process of measure P , the quantity which is minimized is precisely
EP
(
C((Xt)t∈[0,T ])

)
. This form suggests that C should be related to the rate function J on the

right-hand side of the formula (1.8).
It can be shown that the Benamou-Brenier formulation is precisely the Gamma-limit of the
entropy minimisation problem when the reference measure is the one of a Brownian motion,
for which the rate function corresponds well to the function C defined for the quadratic case
by (1.11) [50].
More generally, it is common to talk about the Benamou-Brenier formulation of a problem
when the latter is shown to be equivalent to the minimization of a quantity of the form
EP
(
C((Xt)t∈[0,T ])

)
.

With these results in mind, we can now observe that the quantity on the right-hand side of (1.8)
corresponds in fact to the one appearing in the Benamou-Brenier formulation of an OT problem.
In particular, if the LDP has the form of an action, in analogy with the quadratic case, the cost
function of the associated OT problem should be precisely defined for all x, y ∈ Rn by:

c(x, y) = inf
(ϕt)t∈[0,T ]

{
∫ T

0
L(ϕt, ϕ̇t)dt |ϕ0 = x, ϕ1 = y},

which corresponds to the variational problem appearing for characterizing an optimal cost
function in the theory of Large deviations (see Chapter 2 for more details).

All the mathematical theory that we presented in this section are related to stochastic processes.
Before to see how they can be used to address the fundamental biological questions presented
in the introduction, we are going to present the stochastic processes that we will consider
throughout the manuscript, and the analysis of which will be at the core of the projects.

1.2 Mechanistic models of gene expression

In this chapter, we detail the different models that are used throughout the manuscript. All of
them are derived, in a certain limit, from a mechanistic model describing the stochastic dynamics
of promoters, mRNAs and proteins within a single cell under the action of a GRN. It has been
previously developed by Ulysse Herbach in its PhD project [36].

1.2.1 Mechanistic model for one gene within a single cell

The model which is going to be used throughout this manuscript is based on a hybrid version of
the well-established two-state model of gene expression [45], [74], including both mRNA and
protein production [87]. A gene is described by the state of a promoter, which can be {on, off }.
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If the promoter is on, mRNAs will be transcripted with a rate sm and degraded with a rate
dm. If it is off , only mRNA degradation occurs. Translation of mRNAs into proteins happens
regardless of the promoter state at a rate sp, and protein degradation at a rate dm. A gene
is described by the state of the promoter, which can be {on, off }. kon and koff denote the
exponential rates of transition between the states on and off (see Figure 1.1).

OFF ON RNA Prot.

RNA Prot.

kon

koff

sm sp

dm dp

Figure 1.1: The two-states model of gene expression [38], [74].

This model can be expressed as a Markov chain process [36] on the 3 random variables describing
the promoter state E, mRNA levels M and protein levels P , respectively, but in practice it
is not necessary to keep a discrete description for M and P , which are abundant species and
without conservation relationships. Indeed, quantitative experiments suggest that the creation
and degradation parameters typically verify sm ≫ dm and sp ≫ dp [86]. In this regime, the scale
of mRNA and protein levels is large enough to neglect their molecular noise, considering them
as continuous quantities that follow the differential equations given by the classical mass action
law. We obtain the following model, that belongs to the class of piecewise deterministic Markov
processes (PDMP) [9]: 




E(t) : 0
kon−−→ 1, 1

koff−−→ 0,

M ′(t) = smE(t)− dmM(t),

P ′(t) = spM(t)− dpP (t),
(1.13)

E(t),M(t), P (t) denote respectively the promoter state, and the mRNA and protein concen-
tration in the cell at time t. We used here the notations of Herbach et al. [38], which were
themselves inspired from the work of Rudnicki [80]: the arrows between 0 and 1 express the fact
that the stochastic process (Et)t≥0 is a Markov chain with discrete space {0, 1}, continuous in
time, the transitions of which follow exponential laws of rates kon and koff .

It is worth noticing that this model has been shown to be exactly the limit of the Markov chain
described by Herbach [36], in the limit regime sm ≫ dm and sp ≫ dp [20]. In particular, this
ensures that the model (1.13) is well defined as a Markov Feller process.

1.2.2 Mechanistic model for n genes in interaction within a single cell

The key idea for studying a GRN is to embed this two-states model into a network. Still denoting
by n the number of genes, the vector (E,M,P ) describing the process is then of dimension 3n.
The jump rates for each gene i are expressed in terms of two specific functions kon,i and koff ,i.
To take into account the interactions between the genes, we consider that for all i = 1, · · · , n,
kon,i is a function which depends on the full vector P via the GRN, represented by a matrix θ
of size n. We denote these functions kθon,i and assume that kθon,i is upper and lower bounded by
a positive constant for all i. The function is chosen such that if gene i activates gene j, then
∂Pikon,j ≥ 0. For the sake of simplicity, and because it is experimentally observed that the time
spent by a promoter on state 1 is poorly regulated w.r.t the frequency of the transition between
the states 0 and 1, we consider that koff ,i does not depend on the protein levels. We obtain a
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system of n PDMP coupled by the jump rate functions kθon,i

∀i = 1, · · · , n :





Ei(t) : 0
kθon,i(P (t))
−−−−−−−→ 1, 1

koff ,i−−−→ 0,

M ′
i(t) = sm,iEi(t)− dm,iM(t),

P ′
i (t) = sp,iMi(t)− dp,iPi(t).

(1.14)

As a system of n Markov Feller processes, this is also a Markov Feller process.

The precise form of the functions kon,i will be detailed afterwards. Note that a model of chromatin
dynamics around the promoters has been built in Herbach et al. [38] and used for deriving a
mechanistic form of these functions. It will be used in Chapter 2, and then simplified into a
multivariate sigmoidal function in the next chapters.

1.2.3 Simplified model describing proteins dynamics

A scaling analysis allows to simplify this model. Indeed, degradation rates play a crucial role
in the dynamics of the system. The ratio

dm,i
dp,i

controls the buffering of promoter noise by

mRNAs and, since it is observed in practice that koff ,i ≫ kon,i [69, 79], the ratio
kon,i
dm,i

con-

trols the buffering of mRNA noise by proteins. In line with several experiments [4, 53], we

consider that mRNA levels evolve rapidly in regards to protein levels dynamics, i.e
dm,i
dp,i
≫ 1

with
kon,i
dm,i

fixed. The correlation between mRNAs and proteins produced by the gene is then

very small, and the model can be reduced by removing mRNA and making proteins directly
depend on the promoters. A mathematical analysis of this statement can be found in [36],
and we refer to [105] for a rigorous proof in the case of a model of gene expression close to this one.

We then obtain the following simplification: if the state of the promoter is on, mRNAs are
transcripted and translated into proteins, which are considered to be produced at a rate s. If
the state of the promoter is off , only degradation of proteins occurs at a rate d (see Figure 1.2).

OFF ON Prot.

Prot.

kon

koff

s

d

Figure 1.2: Simplified two-states model of gene expression.

Finally, the parameters si can be removed by a simple rescaling of the protein concentration Pi
for every gene i by its equilibrium value when Ei = 1 (see [38] for more details). We obtain a
reduced dimensionless PDMP system modeling the expression of n genes in a single cell:

∀i = 1, · · · , n :




Ei(t) : 0

kθon,i(X(t))
−−−−−−−→ 1, 1

koff ,i−−−→ 0,

X ′
i(t) = di(Ei(t)−Xi(t)).

(1.15)

Here, X(t) describes the protein vector in the renormalized gene expression space Ω := (0, 1)n

and E(t) the promoters state in PE := {0, 1}n, at time t. This model will be used in Chapter 2.
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1.2.4 Mechanistic model in the bursty regime and simplification

We now consider the so-called bursty regime of this model, when kon ≪ koff , which corresponds
to the experimentally observed situation where active periods are short but characterised by
a high transcription rate, thereby generating bursts of mRNA [69], [79], [94]. We describe the
random times at which these bursts occur by an exponential law of parameter kon, and their
random intensity by an exponential law of parameter koff /sm (see Figure 1.3).

+E
(
koff
sm

)
RNA Prot.

RNA Prot.

kon
sp

dm dp

Figure 1.3: Approximation of the two-states model of gene expression in the bursty regime.

As for the model with promoters, neglecting the molecular noise associated to mRNA and protein
levels and adding interactions between genes through the functions kθon,i, we obtain the following
mathematical description of the model:

∀i = 1, · · · , n :





Mi(t)
kθon,i(P (t))
−−−−−−−→Mi(t) + E

(
koff ,i
sm,i

)
,

M ′
i(t) = −dm,iMi(t),

P ′
i (t) = sp,iMi(t)− dp,iPi(t).

(1.16)

Using the same arguments as for the model (1.15), we can simplify this model by removing
mRNAs. In that case, we remark that it is no more necessary to rescale protein concentrations,
as the creation rates sp,i only appear in the exponential law characterizing the jumps. We obtain:

∀i = 1, · · · , n :




Pi(t)

kθon,i(P (t))
−−−−−−−→ Pi(t) + E (ci) ,

P ′
i (t) = −diPi(t),

(1.17)

where we define ci =
koff ,idm,i
sm,isp,i

. This model will be used in Chapters 3-6.

1.2.5 Simulations and stationary distributions of the models in case of constant rate
functions

When the rate functions kθon,i for every gene i are constant (then the parameter θ has no effect
and can be removed from the notations), the models correspond to a set of n independent PDMP.
In that case, some of the marginal stationary distributions are known. For the models taking
into account mRNAs and proteins, the marginals on mRNAs of the stationary distribution
are known, and correspond to Beta and Gamma distributions for the models (1.14) and (1.16)
respectively. For the simplified models without mRNAs, the marginal on proteins of the
stationary distributions are known, corresponding also to Beta and Gamma distributions for the
models (1.15) and (1.17), respectively. These models are thus compatible with real single-cell
data: indeed Beta and Gamma distributions, or multimodal mixtures of them, are known to
describe accurately single-cell data [4, 16, 58].
The form of these stationary distributions and the reference where the proofs can be found are
summarized in Table 1.1. We also illustrate a stochastic trajectory associated to each of these
models in Figure 1.4.

24



Model Stationary distribution References

(1.14) M ∼ sm,i

dm,i
Beta

(
kon,i

dm,i
,
koff ,i

dm,i

)
[21, 37]

(1.15) P ∼ sm,isp,i
dm,idp,i

Beta
(

kon,i

dp,i
,
koff ,i

dp,i

)
[21, 38]

(1.16) M ∼ Gamma
(

kon,i

dm,i
,
koff ,i

dm,i

)
[57, 38]

(1.17) P ∼ Gamma
(

kon,i

dp,i
,
dm,ikoff ,i

sm,isp,i

)
[30, 56]

Table 1.1: Known stationary distributions for models described in this section, with M and P denoting
mRNA and protein levels. The stationary distribution of P in complete models (1.14) and (1.16) is still
lacking in terms of analytical results, motivating the construction of the reduced models. This table is
inspired from Herbach [35].

Model (1.14) Model (1.16)

Model (1.15)
Model (1.17)

Figure 1.4: Sample time trajectories for the stochastic gene expression models described previously.
Promoter activity, mRNA levels and protein levels are denoted by E, M and P , respectively. Figure from
Herbach [35].

1.2.6 Master equation for the models describing proteins dynamics

As all the processes characterized by the models previously described are Markov Feller processes,
they are characterized by their infinitesimal generator, and there exists a probability distribution
characterizing the evolution of the process which is solution to the master equation associated to
the generator. We describe in this section the master equations associated to the models (1.15)
and (1.17) that are going to be used in the different parts of the manuscript. The generator of
the model (1.15) appears as the limit of the generator of the pure jump process characterizing
the dynamics, described in [36], which has been proved in Crudu et al. [20]. The generator of the
model (1.17) is the limit of the generator of the model (1.15) when koff ,i ≫ kθon,i with koff ,i/sp,i
fixed. We provide a complete proof of this convergence result in Chapter 6, strongly inspired
by [20].

Master equation of the PDMP model with promoters

As card(PE) = 2n, we can write the joint probability density ρ(t, e, x) of (Et, Xt) as a 2n-
dimensional vector ρ(t, x) = (ρ(t, e, x))e∈PE ∈ R2n . The master equation on u can be written:

dρ

dt
(t, x) +

n∑

i=1

∂xi (Fi(x)ρ(t, x)) =
n∑

i=1

Ki(x)ρ(t, x). (1.18)
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For all i = 1, · · · , n, for all x ∈ Ω, Fi(x) and Ki(x) are matrices of size 2n. Each Fi is diagonal,
and the term on a line associated to a promoter state e corresponds to the drift of gene i:
di(ei − xi). Ki is not diagonal: each state e is coupled with every state e’ such that only the
coordinate ei changes in e, from 1 to 0 or conversely. Each of these matrices can be expressed as
a tensorial product of (n− 1) two-dimensional identity matrices with a two-dimensional matrix
corresponding to the operator associated to an isolated gene:

• Fi(x) = I2 ⊗ · · · ⊗ F (i)(x)︸ ︷︷ ︸
ith position

⊗ · · · ⊗ I2 • Ki(x) = I2 ⊗ · · · ⊗ K(i)(x)︸ ︷︷ ︸
ith position

⊗ · · · ⊗ I2,

• F (i)(x) =

(
−dixi 0
0 di(1− xi)

)
• K(i)(x) =

(−kθon,i(x) koff ,i(x)

kθon,i(x) −koff ,i(x)

)
.

For the sake of clarity, we detail this tensorial expression (1.18) for a two-dimensional network.
The general form for the infinitesimal operator can be written:

Lρ(t, e, x) = ⟨F (e, x) ,∇ρ(t, e, x)⟩+
∑

e′∈PE
Q(e, e′)(x)ρ(t, e′, x)

where F is the vectorial flow associated to the PDMP and Q the matrix associated to the jump
operator. A jump between two promoters states e, e′ is possible only if there is exactly one gene
for which the promoter has a different state in e than in e′: in this case, we denote e ∼ e′.
We have, for any x: F (e, x) = (d0(e0 − x0), · · · , dn(en − xn))T . Then, for all e ∈ PE , the
infinitesimal operator can be written:

Lρ(t, e, x) =
n∑

i=1

Fi(e, x)∂xiρ(t, e, x) +
∑

{e′|e′∼e}

(
kθon,i(x)δei=0 + koff ,iδei=1

) (
ρ(t, e′, x)− ρ(t, e, x)

)
.

For a two-dimensional process (n = 2), there are four possible configurations for the promoter
state: e00 = (0, 0), e01 = (0, 1), e10 = (1, 0), e11 = (1, 1). It is impossible to jump between the
states e00 and e11. If we denote ρ(t, x) the four-dimensional vector: (ρ(t, e, x))e∈PE , we can write
the infinitesimal operator in a matrix form:

Lρ(t, x) =




−d1x1 0 0 0
0 −d1x1 0 0
0 0 d1(1− x1) 0
0 0 0 d1(1− x1)




︸ ︷︷ ︸
F1(x)




∂x1ρe00(t, x)
∂x1ρe01(t, x)
∂x1ρe10(t, x)
∂x1ρe11(t, x)


 +




−d2x2 0 0 0
0 d2(1− x2) 0 0
0 0 −d2x2 0
0 0 0 d2(1− x2)




︸ ︷︷ ︸
F2(x)




∂x2ρe00(t, x)
∂x2ρe01(t, x)
∂x2ρe10(t, x)
∂x2ρe11(t, x)


 +




−kon,1(x) 0 kon,1(x) 0
0 −kon,1(x) 0 kon,1(x)

kθoff ,1 0 −kθoff ,1 0

0 kθoff ,1 0 −kθoff ,1




︸ ︷︷ ︸
Q1(x)




ρe00(t, x)
ρe01(t, x)
ρe10(t, x)
ρe11(t, x)


 +




−kon,2(x) kon,2(x) 0 0
kθoff ,2 −kθoff ,2 0 0

0 0 −kon,2(x) kon,2(x)
0 0 kθoff ,2 −kθoff ,2




︸ ︷︷ ︸
Q2(x)




ρe00(t, x)
ρe01(t, x)
ρe10(t, x)
ρe11(t, x)


 .
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We remark that each of these matrices can be written as a tensorial product of the corresponding
two-dimensional operator with the identity matrix:

• F1(x) = F (1)(x)⊗ I2 • Q1(x) = Q(1)(x)⊗ I2
• F2(x) = I2 ⊗ F (2)(x) • Q2(x) = I2 ⊗Q(2)(x)

• F (i)(x) =

(
−dixi 0
0 di(1− xi)

)
• Q(i)(x) =

(−kθon,i(x) kθon,i(x)

koff ,i −koff ,i

)
.

The master equation (1.18) is obtained by taking the adjoint operator of L:

du

dt
(t, x) = L∗ρ(t, x) = −

2∑

i=1

∂xi(Fiu)(t, x) +
2∑

i=1

Kiρ(t, x)

where K(x) = QT (x) is the transpose matrix of Q.

Master equation of the bursty model

The master equation on the probability density ρ(t, ·) of the bursty model (1.17), describing
only proteins, associated to a GRN θ appears as an integro-differential equation:

d

dt
ρ(t, x) =

n∑

i=1

[
∂xi [dixiρ(t, x)] +

xi∫

0

kθon,i(x− hbi)ρ(t, x− hbi)cie−cihdh− kθon,i(x)ρ(t, x)
]
,

(1.19)

where for all i, bi is a vector of size n with only zero entries except on the ith position.

1.3 Existing probabilistic methods for analyzing gene expression data

In this section, we clarify how the biological questions presented in the introduction will be
articulated with the mathematical questions. We start by presenting the type of data with
which we are going to work and from which we will thus try to address these questions. We then
present, in a non-exhaustive way, some methods developed these last few years for exploiting
such data. We separate the presentation of methods aiming to infer a GRN from the ones aiming
to infer a landscape. It is important to keep in mind that, as the landscape is considered to be
mainly shaped by a GRN, these methods follow implicitly a similar goal provided that there
exists a notion of landscape associated to a GRN model. However, there are only a few methods
that take a dynamical probabilistic point of view in the field of GRN inference, and a few models
used for trajectories reconstruction that take into account a GRN. This explains why these two
fields are generally considered as distinct. An important goal of our PhD will be to articulate
them, using the mechanistic models presented in Section 1.2.

1.3.1 Gene expression data

The data that we will consider consists in the total number of mRNAs expressed by cells,
also called transcriptomic data or gene expression measurements. They can be divided into
population-based (when we have access to the mean expression level on a population of cells) and
single-cell-based (when we have access to the expression of each cell, individually). As mentioned
before, we are interested in the second type because it contains the richest information: from a
probabilistic point of view, they give access to a joint probability distribution of gene expression,
while the first type corresponds only to the average. Thus, mathematically, it can be considered
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that such data corresponds to partial observations of the stochastic process modeling each cell
of the population.
However, measurement techniques used for obtaining these data involve the physical destruction
of the cells that are measured: thus, when measurements are made at several time points, for
example to study how a population of cells would evolve in response to a perturbation, we
do not obtain cell trajectories: the data then consists in series of time-ordered datasets of
independent cells, that are called time-stamped datasets [77, 31] in the rest of the manuscript. In
practice, the data that we use in this PhD correspond to count tables (or series of them in case
of time-stamped datasets), of size C ×n, where C denotes the number of cells and n the number
of genes measured. Each coordinate of a table corresponds to an integer value, corresponding to
the number of mRNA fragments associated to a gene that have been measured experimentally.
Remark that these count tables are themselves the result of a pre-treatment on the raw data
obtained using standard bioinformatic tools, but the latter is beyond the scope of our work.

It is worth noticing that many measurement technologies allow to get different observations at
the single-cell level. In addition to the class of transcriptomic data that we just described, we
can mention:

• The class of epigenomic data:

– ChIP-seq [42], that detects proteins interactions with DNA, giving access to sequences
on which proteins have been fixed. We are going to use these data in Chapter 4
for assessing whether the genes interactions predicted by a GRN are supported by
physical interactions or not;

– ATAC-seq [88], that assesses genome-wide chromatin accessibility. They can also be
used for detecting the binding of proteins on some sequences of the chromatin. Their
interest is to have very large information about the chromatin accessibility of the
genome, which can be explained by the transcriptional activity, but also to physical
constraints;

– Hi-C [95], that quantifies interactions between fragments of DNA along the genome.
They are nevertheless more difficult to relate directly to the transcriptional activity
than the two previous ones, but are central for understanding how information, for
example about chromatin accessibility, can propagate along the genome.

• The class of proteomic data [99], which estimates the total number of proteins expressed by
cells. It can be realized using flow cytometry with fluorescent markers, or mass spectrometry.
In the first case, we can have access to single-cell level, but only for membrane proteins and
when specific antibodies known for binding to the proteins are known. Mass spectrometry
is supposed to overcome these limits, but the development of these techniques at the
single-cell level are limited at the moment [44].

Finally, there now exists techniques allowing to trace the lineage of a population of cells, called
CRISPR-based lineage tracing [63], allowing the identification of all progeny of a single cell, or
techniques of spatial transcriptomics that give access to the transcriptomic profiles as well as the
spatial position of the cells, and thus allows to question possible communication between cells.
Combining these type of data for a set of cells would be of great interest for understanding
the mechanisms which drive their development. This is being made possible by the advent of
multiomics technologies [49, 90], that will probably revolutionise cell biology in the coming years.
However, these multiomics data are very difficult to obtain, especially at multiple timepoints as
we want to use (to study dynamical processes) in this PhD.

As mentioned in the introduction, transcriptomic data are difficult to analyze. Indeed, mRNA
levels are highly-variable (which is mainly due to their low half-life value), and the transcriptional
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bursting phenomenon makes their distribution far from Gaussian, which prevents from using
many standard statistical tools used in data analyzes. They are nevertheless the most accessible
at the moment, at the single-cell level, which explains why we are going to focus on these data
in the following.

1.3.2 Dynamical methods for reconstructing a GRN

One of the main challenges for biologists for the ten last years is then to find relevant tools
to analyze these widely available datasets. In practice, a wide range of multivariate methods
have been applied to expression data and more specifically to gene network inference [41, 103,
68]. For example, one popular inference algorithm is based on a regression approach using
random forests [40], and Granger causality is often used for reconstructing the interactions [72,
76]. These statistical approaches suffer from a principal drawback, underlined for example
by Chan et al. [15], which is that it is very easy to infer graphs (and then GRN) from the
data, it is very difficult to know if these graphs correspond to a biological reality. Indeed,
there are almost no known reference networks in systems biology, and the few that are con-
sidered as such are often derived from old analyses that the new type of available data, and
the associated new probabilistic paradigm, are now questioning. We should then be interested
in methods that are able not only to reconstruct a GRN from experimental data, but also
to simulate new data from this GRN in order to test the inferred GRN. This is the novelty
of the approach developed by Bonnaffoux et al. [12], that we will developed in a more scalable way.

Let us recall that one of the main questions that we addressed in the introduction was to
understand differentiation of a cell as the action of an underlying GRN driving the molecular
reactions within the cell, in such a way it would be possible to reconstruct this GRN from
experimental data. In our probabilistic framework, we can see the evolution of a cell as the
realization of a stochastic process, and the data as partial observations of this process, i.e of
a sequence (ρ1, · · · , ρn) when the number of cells measured at each timepoint is large enough.
These goals can be now detailed in a precise mathematical framework:

• Build a model of the stochastic process characterizing differentiation configured by a GRN;

• Make appear the link between the temporal distributions and the underlying GRN;

• Find the most-likely GRN associated to a sequence of the form (ρ1, · · · , ρn).

This is in fact a generalization of methods suited for population data which aimed to reconstruct
the drift of the underlying ODE modeling the average trajectory of cells from its value at different
timepoints. Some methods recently developed for single-cell data still used a similar framework,
using the variability for improving the drift estimation [5, 60] or transforming the ODE into an
SDE of the form (1.1) with constant diffusion coefficient [1].

However, while population data were not able to question the normal distribution paradigm,
meaning that the variability between cells would be the effect of a high number of independent
small perturbations and not central in the study of differentiation, single-cell data revealed that
this variability is better described by Gamma distributions or multimodal mixtures of them [16,
58], which is known to be related to the bursty transcription of mRNAs [4, 38]. In that context,
models based on ODEs or SDEs does not hold anymore, unless adapted artificial noise is added
as an additional layer [24], leading to untractable analyzes. This motivated the introduction of
the models presented in Section 1.2, which we have shown to be compatible with these Gamma
distribution, at least when the rate functions are constant. Note that it has been also shown
in Herbach [36] that the model (1.15) was able to generate mixture of Beta distributions when
the rate functions were depending only on the gene that they regulated. However, neither
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the temporal nor stationary distribution of these models are explicitly known when the rate
functions kθon,i depend on the whole protein field through a general GRN represented by a matrix θ.

The 3-step method described previously consists precisely in the approach of the algorithm
HARISSA [38], when only one distribution ρ is observed and is supposed to be stationary, using
the model (1.14). It has been extended more recently [35] using the model (1.16). Another
numerical method called WASABI [12], which uses a divide-and-conquer approach where the
problem of GRN inference is solved one gene at a time, has been developed at the same time.
However, these approach suffered from some drawbacks. For HARISSA, it was accurate for
small networks but computationally intractable for more than a few genes in its first version,
and not precise enough in the second version, regarding other existing inference algorithms. The
main uncertainty stemmed from the fact that this method was based on a so-called Hartree
approximation, inspired by statistical physics, providing a parametric distribution (w.r.t a GRN)
but for which there was no bound for the error characterizing the deviation to the true stationary
distribution, and which was difficult to extend in the dynamical case. For WASABI, although it
was able to propose relevant GRNs, it required days of computation for a GRNs with 50 genes
and proposed a (potentially long) list of candidates GRNs.

1.3.3 Methods for reconstructing a landscape

We now describe methods aiming to analyze or reconstruct a landscape, independently of the
notion of an underlying GRN. We emphasize that these methods could be generally used, by
adding a parametric model on the functions characterizing the landscape, for GRN inference
purposes as it has been presented in the previous section.

Methods for landscape analyses

Before talking about landscape reconstruction, we have to understand precisely how we can
characterize a landscape associated to a model of gene expression. We recall that, as mentioned
in Section 1.1.1, for a deterministic system of the form Ẋt = −∇V (Xt), the potential V provides
a first natural candidate for characterizing the landscape.
In the case of a SDE with non-gradient drift like (1.1) with constant diffusion coefficient σ, the
notion of potential is still natural. Indeed in that case the master equation is of the form:

dρ

dt
= − d

dx
(Fρ) +

σ

2

d2ρ

dx2
. (1.20)

If the stationary distribution û exists, we have :

d

dx

(
− Fû+

σ

2

dû

dx

)
= 0→

(
− Fû+

σ

2

dû

dx

)
= Ĵ

where Ĵ is called the stationary flux. Thus, if û is non-zero everywhere, we have:

F = − Ĵ
û
− σ

2

d

dx
(− ln û) = Fr −∇V,

where Fr = − Ĵ
û can be seen as the rotational part of the drift, and V = σ

2 (− ln û) the part
which derives from a potential, which is then called the quasipotential. We can remark that he
nullity of the flux depends directly on the possibility to find a stationary distribution of the form
û(x) ∼ e−V (x). More details about the interpretation of the quasi-potential defined in this way
can be found in [108].
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Figure 1.5: Potential landscape characterizing an energetic barrier between two basins Zi and Zj ,
corresponding to areas of high probability in the gene expression space. Xi and Xj are the attractors
associated to these basins, and Yij is a saddle point at the boundary of these basins.

A general definition of a quasipotential for SDEs has been introduced by Freidlin and Wentzell [29],
when the diffusion is scaled by a noise coefficient ε:

dXt = F (Xt)dt+
√
εσ(Xt)dBt, (1.21)

Indeed for such SDEs, they showed that under some regularity conditions on the drift and the
diffusion coefficient, these stochastic processes were satisfying a Large deviations principle which
had the form of an action. In that situation, the Fenchel-Legendre transform of the Lagrangian,

H(x, p) = sup
v
⟨x, v⟩ − L(x, v),

is called the Hamiltonian of the system and allows to define the quasipotential of the process as
the unique solution (whenever there exists) of the so-called stationary Hamilton-Jacobi equation:

∀x ∈ Rn : H(x,∇V (x)) = 0.

It can be proved (and it will be in Chapter 2) that when V is C1 on Rn, the difference of the
function V characterizes the minimum of the rate function on some specific sets of trajectories,
and then characterizes probabilities of realizing stochastic transitions between the basins of
attraction of the deterministic system Ẋt = F (Xt). Note that since the work of Huang [39],
these basins are generally associated to the cell types, which is a very convenient mathematical
definitions of this notion (provided that cell dynamics is well described by such stochastic
process). Indeed, it is consistent with the probabilistic point of view on differentiation while
justifying the reproducibility and stability of the process at the functional level, as soon as the
noise coefficient is small enough for the transitions between these cell types to be rare. Note
that we are going to adapt this characterization for the mechanistic model (1.15) in Chapter 2.

It has also been proved that the function V corresponds to the first-order approximation in ε of
the transform − log û, where û is the stationary distribution of the SDE [29]. Thus, this function
V makes it possible to match the two expected definitions of potential, as it characterizes both
the areas of high and low probability in the gene expression space and the optimal trajectories
between the basins of attraction of the deterministic system, in the weak noise limit ε → 0.
When there is no regular solution V , the potential may also be defined by the minimum of
the rate function on specific sets of trajectories in the gene expression space [109], in order to
characterize at least the transitions between the different ”potential wells”, i.e the areas of
highest probabilities, as illustrated in Figure 1.5.

This methodology has been used for characterizing the landscape associated to mechanistic
stochastic models of gene expression [55, 54], but in simple cases where only one or two chemical
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species were modeled. In the second reference, the model was a stochastic hybrid process close
to the model (1.15), but the results were limited to the case of a very specific network. In
Chapter 2, we will use Large deviations theory for reducing the PDMP model (1.15) into a
coarse-grained discrete model on the cellular types.

Landscape reconstruction using probabilistic tools

In the last few years, mathematicians have rushed to develop methods for reconstructing a
landscape, seen as a potential energy surface, from gene expression datasets. These tools were
generally developed for reconstructing cellular dynamics in the gene expression space, under
the hypothesis that cellular development are governed by such potential, in order to overcome
the fundamental limitation that we do not have access to cell trajectories. They may use static
data [104, 73, 106] or time-stamped datasets [84, 31].

A first interesting example is the work developed by Pearce et al. [73], who propose the following
method for reconstructing state transition of a population of cells from a static dataset, seen as
a stationary distribution:

1. Infer from the observations a mixture of Gaussian distributions û, supposed to approximate
the distribution of the dataset. The function V = − ln û then approximates the potential
characterizing the landscape associated to the observations;

2. Find the minima and maxima of this potential function and identify the transitions between
two areas between two maxima to a cellular type;

3. Use the difference of potential between these minima and maxima for characterizing (up
to an adequate correction) the energetic barrier between each pair of cellular type, and
deduce the associated transition rates.

They obtained a Markovian transition network directly from time-independent data sampled
from stationary equilibrium distributions, without introducing any underlying model. To our
point of view, this approach is of interest as it uses a proxy for the stationary distribution
(a Gaussian mixture), which is accessible in high dimension, to reconstruct an approximate
landscape. As it will be discussed further, Chapters 2 and 3 will adopt a similar approach,
but achieved in a mechanistic way. It will also overcome some limitations of this work, as the
important fact that the maxima of the potential function V corresponds to areas of the gene
expression space with low probability, and are then very difficult to estimate reliably.

A second example has been developed by Gao et al. in [31], where the authors reconstructed a
measure of what they called the ”transcriptional uncertainty” from time-course series of datasets.
It corresponds to the potential V = − ln û, where û is the stationary distribution of a model of
the form (1.14), when the exact stationary distribution is the one of an uncoupled system of
PDMPs (i.e with only self-regulated genes). They applied this method for revealing that a peak
of this transcriptional uncertainty is experimentally observed on several datasets during differen-
tiation, before decreasing. Interestingly, they used this same approximation for GRN inference
purposes [72], by computing temporal changes in gene expression through the distance between
two consecutive timepoints of the marginal distributions before using Granger causality for recon-
structing GRN causal links. Note that our developments of Chapters 2-4 will aim to overcome this
approximation by reconstructing an approximation of the potential V which takes into account
the underlying GRN, allowing for a better reconstruction of the landscape and a direct inference
of the GRN from the approximate potential V which does not requires additional statistical tools.

Finally, we present two interesting landscape reconstruction methods have been developed under
the hypothesis that cell dynamics is well modeled by a system of SDEs. Despite this restrictive
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assumption, their great strength consists in taking into account the proliferation of cells in
addition to the variability due to the transcriptional activity, paving the way for a broader
approach of cellular variability. Note that the term proliferation has to be understood in this
section as a possible creation (birth of new cells, by division) and loss (death of cells, for example
by apoptosis) of mass for the observed population of cells.

The first one, which is called PBA, has been proposed in Weinreb et al. [104], and aims to
reconstruct a Markov chain between a set of observed cells under the hypothesis that they are
sample under the stationary distribution of a SDE with proliferation, the master equation of
which is of the form (1.20) plus an addition term C(x)u(t, x) where C is the proliferation rate
and u the distribution of cells. They construct a graph associated to the observation using the
k-nearest-neighbours method, each node being characterized by a cell and the k-neighbours of a
cell being the k most similar cells. Using mathematical results on graph theory ensuring that an
asymptotically exact solution of the master equation can be calculated on such nearest-neighbor
graph, they estimate the the potential V of the system and define the law P of the Markov chain
between the observed cells using the so-called Arrhenius formula:

Pij ∼ eV (Xj)−V (Xi),

where Xi and Xj are the two vectors characterizing the cells i and j in the gene expression space
and Pij is the transition rate associated to the Markov chain on the discrete space of cells. This
Markov chain allows the construction of pseudo-trajectories, as well as probabilities associated
to distinct cell fates. This method is particularly interesting because the Markov chain has been
shown to converge asymptotically to the underlying continuous stochastic process in the limit of
an infinite number of cells. We nevertheless believe that for available datasets, we are too far
from this asymptotic hypothesis to be able to predict reliably the potential function in most
areas of the gene expression space: that is why we will not use directly graph theory on the
observations, but rather we will reduce our mechanistic process into a Markov chain on the
discrete space of cell types, identified from the observations (see Chapters 2-4).

The second one, which is called Waddington-OT, is going to be particularly of interest for
us, as it will be developed in a mechanistic version (but not exactly for the same purpose)
in Chapter 6. It has been developed in Schiebinger et al. [84], and mathematically refined in
Lavenant et al. [47]. The aim of the method is to reconstruct most-probable trajectories of
cells from time-stamped data. More precisely, the authors use the Schrödinger problem for
reconstructing a serie of most-probable couplings between time-stamped datasets. They deduced
a most-probable trajectory in the space of distribution with values on the gene expression space,
given observations and for a given level of noise, and they predicted associated most probable
trajectories of cells in the limit of small noise, using analogies with OT theory. The principle still
relies on the hypothesis that cell dynamics is driven by a SDE of the form (1.21), with a gradient
drift. They estimate this gradient by solving a Schrödinger problem of the form (1.4), where
the reference measure is the joint law on the initial and final position associated to a simple
Brownian motion. For justifying this reference measure, they prove the following theorem:

Theorem 9 (Lavenant, 2021). If P ∈ P(C([0, T ],Rn)) characterizes a solution of the SDE 1.21
with gradient drift (with H(P0|Leb) < ∞), and consider R ∈ P(C([0, T ],Rn)) any probability
measure on the set of path measures with values in Rn and satisfying Rt = Pt for all t ∈ [0, T ].
Then there holds

H(P |W σ) ≤ H(R|W σ),

with equality if and only if P = R.

This ensures that when the stochastic process generating the data is a SDE with a gradient drift,
the Schrödinger problem (1.5) allows to find the measure of this SDE when the reference measure
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is a Brownian motion (without drift), at least when the level of stochasticity is known and the
number of observed cells is large enough. Thus, using the equality between the two problems
(non-dynamical and dynamical), the authors were able to characterize an optimal drift w.r.t
two timepoints, and then extended the method for an arbitrary number of timepoints. Knowing
the characteristics of the SDE, they could therefore reconstruct the trajectory in the space of
distributions. As detailed in Section 1.1.2, the optimal coupling solving the Schrödinger problem
converges, when the level of noise goes to 0, to the solution of the optimal transport with a
quadratic cost (which is the cost associated to the Brownian motion in the weak noise limit).
The solution of such problem associates to any cell at a timepoint ti an unique descendant cell at
ti+1, allowing to predict the most probable fate of a cell between two timepoints. Moreover, the
most probable trajectory between each pair of cells is thus characterized by the deterministic
system ẊT = ∇V (Xt), V being the potential of the SDE associated to the path measure solving
the dynamical Schrödinger problem.
Importantly, this methodology has been extended (but with some heuristics) to the case with
proliferation, when the master equation of the process generating the observations is supposed
to be of the form (1.20) plus a proliferation term (as for the PBA method). To this end, the
authors use a splitting scheme for solving at each timepoint alternatively the transport map and
then a ”proliferation map” explaining the change of total mass between datasets. To the best of
our knowledge, this is the first dynamical method that takes into account stochasticity arising
from transcriptional activity and proliferation at the same time. Note also that an alternative
methodology has been proposed for the stationary case, when the dataset consists in one single
snapshot, provided that a reliable estimation of the proliferation rates is available [107].
We will develop in Chapter 6 a framework similar to the one of Waddington-OT, using the
connections between stochastic processes and Schrödinger problems, but using the crucial fact
that cell dynamics is driven by a PDMP process of the form (1.16). Importantly, we will see that
although very preliminary, our results suggest that such method is more suitable for assessing
the relevance of mechanistic assumptions to data than for actually reconstructing cell dynamics
or inferring process characteristics from minimal assumptions.

Some comments about methods with asymptotic guarantees

In all this section, we insisted on the importance of the number of observations that are used for
reconstructing the features of a stochastic process. For some methods (PBA and Waddington-
OT), we also mentioned the guarantee of asymptotic convergence, i.e the assurance that in
case of an infinite number of observations, and under the additional hypotheses specific to the
methods, the results are exact. Such asymptotic convergence is obviously considered as an
important advantage for a given statistical method. It is nevertheless worth noticing that it does
not systematically guarantees the efficiency of the procedure. For example, a method which uses
information about low-probable events may have this kind of asymptotic guarantees, but if the
number of observations is not high enough for estimating reliably these events (and it needs
to be all the greater as these events are rare), the results will break down. Thus, if a method
has no convergence bounds ensuring that the result that it provides is reliable when applied
to a realistic number of observations, we believe that it is more important to evaluate it on its
practical results than on its theoretical guarantees of asymptotic convergence. For example, as
it will be mentioned in the following chapters, we believe that the methods developed in [73]
and [104], which needs to estimate the potential function on areas of law probability of the gene
expression space for reconstructing the transition between cell states, may be strongly inaccurate
when we have not enough cells and/or that the transitions in the gene expression space are too
rare.
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Part I

Building an approximate landscape of
cellular differentiation.
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Chapter 2

Reduction of a mechanistic model of gene
expression. Article published in Journal
of Mathematical Biology.

The aim of this chapter is provide a mathematical framework able to link the behavior of a cell
at the molecular level to the dynamics between observable cell types, in order to understand
the global patters of cell differentiation as the emergent property of an underlying GRN. We
will use the cell types characterization proposed by Huang [39], mentioned in the introduction,
who considered that they correspond to the basins of attraction of the deterministic limit of the
stochastic model describing differentiation. We are going to consider the PDMP model (1.15),
and focus on proteins dynamics: the link with mRNA levels will be completed in the next chapter.
For deriving a deterministic, we will use the experimentally-observed fact that promoters switches
are fast regarding proteins dynamics. The scaling between these two dynamics plays the role
of the factor scaling the diffusion coefficient in an SDE of the form (1.21). Indeed, considering
the model (1.15), in the limit of infinitely fast promoters switches, proteins always behave as if
promoters had reached their steady state (knowing proteins), as they reach it at the limit before
proteins levels can change. This makes the mean behavior of proteins deterministic. Then, we
will keep the classical notation ε for this scaling factor in analogy to Large deviations theory
developed for SDEs [29].
We will first derive the deterministic limit for the rescaled PDMP model, and extend results from
Large deviations theory to this model by showing that the rate function of a Large deviations prin-
ciple shown in [25] can be found analytically from a spectral characterization developed in [14]. We
will then use these results for developing a numerical method able to compute, from a given GRN,
the cell types and the transition rates of the discrete Markov chain characterizing their dynamics.
This reduction allow to deduce a new phenomenological model describing explicitly both the cell
types and the cell dynamics in the gene expression space, which has the great advantage of having
an explicit stationary distribution, allowing an approximation of the landscape. Altogether this
work establishes a formal basis for the definition of an genetic/epigenetic landscape, given a GRN.

This chapter contains an article which has been published in Journal of Mathematical biology [97].
Note that we added a new appendix K to the published article that precises the link between
the phenomenological model and the Beta-mixture that is used for approximating the landscape.
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Abstract
Differentiation is the process whereby a cell acquires a specific phenotype, by dif-
ferential gene expression as a function of time. This is thought to result from the
dynamical functioning of an underlying Gene Regulatory Network (GRN). The pre-
cise path from the stochastic GRN behavior to the resulting cell state is still an open
question. In this work we propose to reduce a stochastic model of gene expression,
where a cell is represented by a vector in a continuous space of gene expression,
to a discrete coarse-grained model on a limited number of cell types. We develop
analytical results and numerical tools to perform this reduction for a specific model
characterizing the evolution of a cell by a system of piecewise deterministic Markov
processes (PDMP). Solving a spectral problem, we find the explicit variational form
of the rate function associated to a large deviations principle, for any number of genes.
The resulting Lagrangian dynamics allows us to define a deterministic limit of which
the basins of attraction can be identified to cellular types. In this context the quasipo-
tential, describing the transitions between these basins in the weak noise limit, can be
defined as the unique solution of an Hamilton–Jacobi equation under a particular con-
straint. We develop a numerical method for approximating the coarse-grained model
parameters, and show its accuracy for a symmetric toggle-switch network. We deduce
from the reduced model an approximation of the stationary distribution of the PDMP
system, which appears as a Beta mixture. Altogether those results establish a rigorous
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frame for connecting GRN behavior to the resulting cellular behavior, including the
calculation of the probability of jumps between cell types.

Keywords Single cell · Gene regulation network · Energetic landscape · Piecewise
deterministic Markov processes · Large deviations ·Metastability

Mathematics Subject Classification 92C42 · 60J25 · 60F10

1 Introduction

Differentiation is the processwhereby a cell acquires a specific phenotype, by differen-
tial gene expression as a function of time. Measuring how gene expression changes as
differentiation proceeds is therefore of essence to understand this process. Advances in
measurement technologies now allow to obtain gene expression levels at the single cell
level. It offers a much more accurate view than population-based measurements, that
has been obscured by mean population-based averaging (Mar 2019; Coskun et al.
2016). It has been established that there is a high cell-to-cell variability in gene
expression, and that this variability has to be taken into account when investigating
a differentiation process at the single-cell level (Moris and Arias 2017; Mohammed
et al. 2017; Antolovic et al. 2017; Semrau et al. 2017; Mojtahedi et al. 2016; Richard
et al. 2016; Moussy et al. 2017; Guillemin et al. 2019; Stumpf et al. 2017).

A popular vision of the cellular evolution during differentiation, introduced by
Waddington in Waddington (1957), is to compare cells to marbles following prob-
abilistic trajectories, as they roll through a developmental landscape of ridges and
valleys. These trajectories are represented in the gene expression space: a cell can be
described by a vector, each coordinate of which represents the expression of a gene
(Huang and Ingber 2007; Moris et al. 2016). Thus, the state of a cell is characterized
by its position in the gene expression space, i.e its specific level for all of its expressed
genes. This landscape is often considered to be shaped by the underlying gene regula-
tory network (GRN), the behavior of which can be influenced by many factors, such
as proliferation or cell-to-cell communication.

Theoretically, the number of states a cell can take is equal to the number of possible
combination of protein quantities associated to each gene. This number is potentially
huge (Braun 2015). But metastability seems inherent to cell differentiation processes,
as evidenced by limited number of existing cellular phenotypes (Morris 2019; Bizzarri
et al. 2018), providing a rationale for dimension reduction approaches (Moon et al.
2018). Indeed, since (Kauffman 2004) and (Huang et al. 2005), many authors have
identified cell types with the basins of attraction of a dynamical system modeling the
differentiation process, although the very concept of “cell type” has to be interrogated
in the era of single-cell omics (Clevers et al. 2017).

Adapting this identification for characterizingmetastability in the case of stochastic
models of gene expressionhas been studiedmostly in the context of stochastic diffusion
processes (Wang et al. 2010, 2011; Zhou et al. 2012), but also for stochastic hybrid
systems (Lin and Galla 2016). In the weak noise limit, a natural development of this
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Fig. 1 Simplified two-states
model of gene expression
(Herbach et al. 2017; Peccoud
and Ycart 1995) (colour figure
online)

analysis consists in describing the transitions between different macrostates within the
large deviations framework (Lv et al. 2014; Bressloff 2014).

We are going to apply this strategy for a piecewise-deterministic Markov process
(PDMP) describing GRN dynamics within a single cell, introduced in Herbach et al.
(2017), which corresponds accurately to the non-Gaussian distribution of single-cell
gene expression data. Using the work of Bressloff and Faugeras (2017), the novelty of
this article is to provide analytical results for characterizing the metastable behavior
of the model for any number of genes, and to combine them with a numerical analysis
for performing the reduction of the model in a coarse-grained discrete process on cell
types. We detail the model in Sect. 2, and we present in Sect. 3 how the reduction of
this model in a continuous-time Markov chain on cell types allows to characterize the
notion of metastability. For an arbitrary network, we provide in Sect. 4.1 a numerical
method for approximating each transition rate of this coarse-grainedmodel, depending
on the probability of a rare event. In Sect. 4.2,we show that this probability is linked to a
large deviations principle. The main contribution of this article is to derive in Sect. 5.1
the explicit variational form of the rate function associated to a Large deviations
principle (LDP) for this model. We discuss in Secs. 5.2 and 5.3 the conditions for
which a unique quasipotential exists and allows to describe transitions between basins.
We replace in Sect. 5.4 these results in the context of studying metastability. Finally,
we apply in Sect. 6 the general results to a toggle-switch network. We also discuss in
Sect. 7.1 some notions of energy associated to the LDP and we propose in Sect. 7.2 a
non-Gaussian mixture model for approximating proteins distribution.

2 Model description

The model which is used throughout this article is based on a hybrid version of the
well-established two-state model of gene expression (Ko 1991; Peccoud and Ycart
1995). A gene is described by the state of the promoter, which can be {on, off }. If
the state of the promoter is on, mRNAs are transcripted and translated into proteins,
which are considered to be produced at a rate s. If the state of the promoter is off ,
only degradation of proteins occurs at a rate d (see Fig. 1). kon and koff denote the
exponential rates of transition between the states on and off . This model is a reduction
of a mechanistic model including both mRNA and proteins, which is described in
“Appendix A”.
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Neglecting themolecular noise associated to proteins quantity, we obtain the hybrid
model:

{
E(t) : 0 kon−→ 1, 1

koff−−→ 0,

P ′(t) = sE(t)− dP(t).

where E(t) denotes the promoter state, P(t) denotes the protein concentration at time
t , and we identify the state off with 0, the state on with 1.

The key idea for studying a GRN is to embed this two-states model into a network.
Denoting the number of genes by n, the vector (E, P) describing the process is then
of dimension 2n. The jump rates for each gene i are expressed in terms of two specific
functions kon,i and koff ,i . To take into account the interactions between the genes, we
consider that for all i = 1, . . . , n, kon,i is a function which depends on the full vector
P via the GRN, represented by a matrix � of size n. We assume that kon,i is upper
and lower bounded by a positive constant for all i . The function is chosen such that if
gene i activates gene j , then ∂Pi kon, j ≥ 0. For the sake of simplicity, we consider that
koff ,i does not depend on the protein level.

We introduce a typical time scale k̄ for the rates of promoters activation kon,i , and a
typical time scale d̄ for the rates of proteins degradation. Then, we define the scaling
factor ε = d̄

k̄
which characterizes the difference in dynamics between two processes:

1. gene bursting dynamics and 2. protein dynamics. It is generally considered that
promoter switches are fast with respect to protein dynamics, i.e that ε � 1, at least for
eukaryotes (Suter et al. 2011). Driven by biological considerations, we will consider
values of ε smaller than 1/5 (see “Appendix A”).

We then rescale the time of the process by d̄. We also rescale the quantities kon,i

and koff ,i by k̄, and di by d̄ , for any gene i , in order to simplify the notations. Finally,
the parameters si can be removed by a simple rescaling of the protein concentration Pi
for every gene by its equilibrium value when Ei = 1 (see Herbach et al. 2017 for more
details). We obtain a reduced dimensionless PDMP system modeling the expression
of n genes in a single cell:

∀i = 1, . . . , n :
⎧⎨
⎩Ei (t) : 0

kon,i (X(t))
ε−−−−−→ 1, 1

koff ,i
ε−−−→ 0,

X ′i (t) = di (Ei (t)− Xi (t)).
(1)

Here, X describes the protein vector in the renormalized gene expression space � :=
(0, 1)n and E describes the promoters state, in PE := {0, 1}n . We will refer to this
model, that we will use throughout this article, as the PDMP system.

As card(PE ) = 2n , we can write the joint probability density u(t, e, x) of (Et , Xt )

as a 2n-dimensional vector u(t, x) = (ue(t, x))e∈PE ∈ R2n . The master equation on
u can be written:

∂u

∂t
(t, x)+

n∑
i=1

∂

∂xi
(Fi (x)u(t, x)) = 1

ε

n∑
i=1

Ki (x)u(t, x). (2)
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For all i = 1, . . . , n, for all x ∈ �, Fi (x) and Ki (x) are matrices of size 2n . Each Fi
is diagonal, and the term on a line associated to a promoter state e corresponds to the
drift of gene i : di (ei−xi ). Ki is not diagonal: each state e is coupled with every state e’
such that only the coordinate ei changes in e, from 1 to 0 or conversely. Each of these
matrices can be expressed as a tensorial product of (n − 1) two-dimensional identity
matrices with a two-dimensional matrix corresponding to the operator associated to
an isolated gene:

• Fi (x) = I2⊗· · ·⊗ F (i)(x)︸ ︷︷ ︸
i th position

⊗ · · ·⊗ I2 • Ki (x) = I2⊗· · ·⊗ K (i)(x)︸ ︷︷ ︸
i th position

⊗ · · ·⊗ I2,

• F (i)(x) =
(−di xi 0

0 di (1− xi )

)
• K (i)(x) =

(−kon,i (x) koff ,i (x)
kon,i (x) −koff ,i (x)

)
.

We detail in Appendix B the case of n = 2 for a better understanding of this tensorial
expression.

3 Model reduction in the small noise limit

3.1 Deterministic approximation

The model (1) describes the promoter state of every gene i at every time as a Bernoulli
random variable. We use the biological fact that promoter switches are frequent com-
pared to protein dynamic, i.e ε < 1 with the previous notations. When ε � 1, we can
approximate the conditional distribution of the promoters knowing proteins, ρ, by its
quasistationary approximation ρ:

∀i = 1, . . . , n, ∀x ∈ � : ρi (x) 	 ρi (x) =
kon,i (x)

koff ,i + kon,i (x)
, (3)

which is derived from the stationary distribution of theMarkov chain on the promoters

states, defined for a given value of the protein vector X = x by the matrix
n∑

i=1
Ki (x)

(see Papanicolaou 1975; Newby and Keener 2011).
Thus, the PDMP model (1) can be coarsely approximated by a system of ordinary

differential equations:

∀i = 1, . . . , n : ẋi (t) = di

(
kon,i (x(t))

koff ,i + kon,i (x(t))
− xi (t)

)
. (4)

Intuitively, these trajectories correspond to the mean behaviour of a cell in the weak
noise limit, i.e when promoters jumpmuch faster than proteins concentration changes.
More precisely, a random path Xε

t converges in probability to a trajectory φt solution
of the system (4), when ε → 0 (Faggionato et al. 2009). The diffusion limit, which
keeps a residual noise scaled by

√
ε, can also be rigorously derived from the PDMP

system (Pakdaman et al. 2012), which is detailed in “Appendix C.1”.
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Fig. 2 Comparison between the average on 100 simulated trajectories with ε = 1/7 (a), ε = 1/30 (b)
and the trajectories generated by the deterministic system (c) for a single pathway network: gene 1 −→
gene 2 −→ gene 3

In the sequel, we assume that every limit set of a trajectory solution of the system
(4) as t → +∞ is reduced to a single equilibrium point, described by one of the
solutions of:

∀i = 1, . . . , n : kon,i (x)

kof f ,i + kon,i (x)
− xi = 0. (5)

Note that the condition above strongly depends on the interaction functions
{kon,i }i=1,...,n . Alternatively speaking, in this work we rule out the existence of attrac-
tive limit cycles or more complicated orbits. We also assume that the closure of the
basins of attraction which are associated to the stable equilibria of the system (5)
covers the gene expression space �.

Without noise, the fate of a cell trajectory is fully characterized by its initial state
x0. Generically, it converges to the attractor of the basin of attraction it belongs to,
which is a single point by assumption. However, noise can modify the deterministic
trajectories in at least twoways. First, in short times, a stochastic trajectory can deviate
significantly from the deterministic one. In the case of a single, global, attractor, the
deterministic systemgenerally allows to retrieve the global dynamics of the process, i.e
the equilibrium and the order of convergence between the different genes, for realistic
ε (see Fig. 2).

Second, in long times, stochastic dynamics can even push the trajectory out of
the basin of attraction of one equilibrium state to another one, changing radically the
fate of the cell. These transitions cannot be catched by the deterministic limit, and

happen on a time scale which is expected to be of the order of e
C
ε (owing to a Large

deviations principle studied below), whereC is an unknown constant depending on the
basins. In Fig. 3a, we illustrate this situation for a toggle-switch network of two genes.
We observe possible transitions between three basins of attraction. Two examples
of random paths, the stochastic evolution of promoters and proteins along time, are
represented in Fig. 3b, c for different values of ε. All the details on the interaction
functions and the parameters used for this network can be found respectively in the
“Appendices D and E”.
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Fig. 3 a Phase portrait of the deterministic approximation for a symmetric toggle-switch with strong
inhibition: two genes which activate themselves and inhibit each other. b Example of a stochastic trajectory
generated by the toggle-switch, for ε = 1/7. c Example of a stochastic trajectory generated by the toggle-
switch, for ε = 1/30

3.2 Metastability

When the parameter ε is small, transitions from one basin of attraction to another are
rare events: in fact the mean escape time from each basin is much larger than the time
required to reach a local equilibrium (quasi-stationary state) in the basin.

Adopting the paradigm of metastability mentioned in the introduction, we identify
each cell type to a basin of attraction associated to a stable equilibrium of the determin-
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istic system (4). In this point of view, a cell type corresponds to ametastable sub-region
of the gene expression space. It also corresponds to the notion of macrostate used in
the theory of Markov State Models which has been recently applied to a discrete cell
differentiation model in Chu et al. (2017). Provided we can describe accurately the
rates of transition between the basins on the long run, the process can then be coarsely
reduced to a new discrete process on the cell types.

More precisely, let m be the number of stable equilibrium points of the system
(4), called attractors. We denote Z the set of the m basins of attraction associated to
these m attractors, that we order arbitrarily: Z = {Z1, · · · , Zm}. The attractors are
denoted by (Xeq,Zi )Zi∈Z . Each attractor is associated to a unique basin of attraction.
By assumption, the closure of these m basins, Z = {Z1, · · · , Zm}, covers the gene
expression space �. To obtain an explicit characterization of the metastable behavior,
we are going to build a discrete process Ẑ ε, with values in Z . From a random path Xε

t

of the PDMP system such that Xε
0 ∈ Z , we define a discrete process Ẑ ε describing

the cell types:

∀l ∈ N : Ẑ ε
l =

m∑
i=1

Zi1{Xε
τl
∈Zi },

where (τ ε
l )l∈N is a sequence of stopping times defined by:

τ ε
0 = 0, ∀l ∈ N∗ : τ ε

l = inf{t ≥ τ ε
l−1 | Xε

t ∈ Z \ Ẑ ε
l−1}. Note that Ẑ ε

l are the
successive metastable states, and that τ ε

l are the successive times of transition between
them. From the convergence of any random path to a solution of the deterministic
system (4) , that we mentioned in Sect. 3.1, we know that for every basin Zi such that
Ẑl = Zi , whatever is the point on the boundary of Zi which has been first attained,
Xε
t reaches any small neighborhood of the attractor Xeq,Zi of Zi before leaving the

basin, with probability converging to 1 as ε → 0. In addition, for any basin Z j , the
probability P(Ẑl+1 = Z j ) is asymptotically independent of the value of Xε

τl
, and is

then asymptotically determined by the value of Ẑl . In other words, Ẑ ε converges to
a Markov chain when ε → 0. We refer to Kurtz and Swanson (2019) to go further
in the analysis of the coupling between the processes Ẑ ε and Xε for general Markov
processes.

For small ε, it is natural to approximate the distribution of the exit time from a basin
by an exponential distribution. The in silico distribution represented in Fig. 4 suggests
that this assumption seems accurate for the toggle-switch network, even for a realistic
value of ε. Note, however, that the exponential approximation slightly overestimates
the probability that the exit times are small.

To completely characterize the coarse-grained resulting process, it remains to com-
pute the transition rates {aε

i j }i, j of the time-continuous Markov chain on the basins,

that we define for all pair of basins (Zi , Z j ) ∈ Z2, i 
= j , by:

aε
i j =

P(Ẑ ε
1 = Z j | Ẑ ε

0 = Zi )

E(τ ε
1 | Ẑ ε

0 = Zi )
, (6)

123 44



Reduction of a stochastic model of gene expression... Page 9 of 63 59

Fig. 4 Comparison between the distribution of the exit time from a basin, obtained with a Monte-Carlo
method, and the exponential law with appropriate expected value, for ε = 1/7. We represent the two
densities in normal scale (on the left-hand side) and in logarithmic scale (on the right-hand side) to observe
that the exponential law overestimates the probability that the exit times are small

where E(τ ε
1 | Ẑ ε

0 = Zi ) is called the Mean First Exit Time of exit from Zi . This
Markov process with discrete state space Z represents accurately, when ε is small
enough, the main dynamics of the metastable system in the weak noise limit (Freidlin
and Wentzell 2012). This reduced model is fully described by m2 transition rates:
when the number of genes n is large, it is significantly smaller than the n2 parameters
characterizing the GRN model (see “Appendix D”).

This collection of transition rates are characterized by rare events: when ε � 1 or
when the number of genes is large, it would be too expensive to compute them with a
crude Monte-Carlo method. We are then going to present a method for approximating
these transition rates from probabilities of some rare events. We will detail afterwards
how these probabilities can be computed either by an efficient numerical method or
an analytical approximation.

4 Computing the transition rates

4.1 Transition rates from probabilities of rare events

In this Section,we approximate each transition rate between any pair of basins (Zi ,Z j ),
j 
= i in terms of the probability that a random path realizes a certain rare event in the
weak noise limit.

Let us consider two small parameters r , R such that 0 < r < R. We denote γZi
the r -neighborhood of Xeq,Zi , and 
Zi its R-neighborhood. For a random path Xε

t of
the PDMP system starting in x0 ∈ ∂
Zi , we denote the probability of reaching a basin
Z j , j 
= i before any other basin Zk , k 
= i, j , and before entering in γZi :
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pε
i j (x0) = Px0

(
T ε
Z j

< T ε

γZi ∪{Z\{Zi∪Z j }}

)
, (7)

where T ε
A = inf{t ≥ 0 | Xε

t ∈ A} is the hitting time of a set A ⊂ �.
The method developed in Cérou et al. (2011) aims to show how it is possible, from

the knowledge of the probability (7), to approximate the transition rate aε
i j presented

in (6). Briefly, it consists in cutting a transition path into two pieces, a piece going
from Xeq,Zi to ∂
Zi and another reaching Z j from ∂
Zi : the transition rates ai j can be
then approximated by the reverse of the mean number of attempts of reaching Z j from

Zi before entering in γZi , which is close to the inverse of the rare event probability
given by (7) when x0 ∈ ∂
Zi , multiplied by the average time of each excursion, that
we denote T

ε

Zi ,Zi . We obtain:

aε
i j 	

pε
i j (x0)

T
ε

Zi ,Zi

. (8)

It is worth noticing that to be rigorous, this method need to redefine the neighborhoods
γZi and 
Zi by substituting to the squared euclidean distance a new function based
on the probability of reaching the (unknown) boundary: ∀x, y ∈ Zi , || x − y ||2←|
pε
i j (x)− pε

i j (y) |. The details are provided in “Appendix F”.

We observe that the average time T
ε

Zi ,Zi can be easily computed by a crude Monte-
Carlo method: indeed, the trajectories entering in γZi are not rare. It thus only remains
to explain the last ingredient for the approximation of the transition rates, which is
how to estimate the probabilities of the form (7).

4.2 Computing probabilities of the form (7)

A powerful method for computing probabilities of rare events like (7), is given by
splitting algorithms. We decide to adapt the Adaptative Multilevel Splitting Algo-
rithm (AMS) described in Bréhier et al. (2016) to the PDMP system: all the details
concerning this algorithm can be found in Appendix G. In Sect. 6, we will verify that
the probabilities given by the AMS algorithm are consistent with the ones obtained
by a crude Monte-Carlo method for the toggle-switch network.

However, estimating the probability (7) becomes hard when both the number of
genes of interest increases and ε decreases. Indeed, the AMS algorithm allows to
compute probabilities much smaller than the ones we expect for biologically relevant
parameters (ε ≈ 0.1), but the needed number of samples grows at least with a polyno-
mial factor in ε−1. If the number of genes considered is large, these simulations can
make the algorithm impossible to run in a reasonable time. A precise analysis of the
scalability of this method for the PDMP system is beyond the scope of this article, but
we have been able to get consistent results on a laptop in time less than one hour for a
network of 5 genes, with ε > 1/15. The resulting probabilities were of order 5.10−3.

In order to overcome this problem, we are now going to develop an analytical
approach for approximating these probabilities, by means of optimal trajectories exit-
ing each basin of attraction. The later can be computed within the context of Large
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deviations. As we will see in Sect. 6, this approach is complementary to the AMS
algorithm, and consistent with it.

4.2.1 Large deviations setting

In this section, we derive a variational principle for approximating the transition prob-
ability (7) introduced in Sect. 4.1. A powerful methodology for rigorously deriving a
variational principle for optimal paths is Large deviations theory. It has been developed
extensivelywithin the context of StochasticDifferential Equations (SDE) (Freidlin and
Wentzell 2012; Dembod et al. 1996). For the sake of simplicity, we present here only
an heuristic version. There exists a Large deviations principle (LDP) for a stochastic
process with value in� if for all x0 ∈ � there exists a lower semi-continuous function
definedon the set of continuous trajectories from [0, T ] to�, JT : C0T (Rn)→ [0,∞],
such that for all set of trajectories A ⊂ C0T (Rn):

−ε ln
(
Pε
x0(X

ε
t ∈ A)

) →
ε→0

min
φ∈A JT (φ). (9)

The function JT is called the rate function of the process in [0, T ], and the quantity
JT (φ) is called the cost of the trajectory φ over [0, T ].

The particular application of this theory to stochastic hybrid systems has been
developed in detail in Kifer (2009) and Faggionato et al. (2009). We now present
consequences of results developed in Bressloff and Faugeras (2017).

Definition 1 The Hamiltonian is the function H : � × Rn �→ R, such that for all
(x, p) ∈ �×Rn , H(x, p) is the unique eigenvalue associated to a nonnegative right-
eigenvector ζ(x, p) ∈ R2n , (which is unique up to a normalization), of the following
spectral problem:

M(x, p)ζ(x, p) = H(x, p)ζ(x, p), (10)

where the matrix M(x, p) ∈ M2n ,2n (R) is defined by:

M(x, p) =
n∑

i=1
(Ki (x)+ pi Fi (x)) . (11)

We remark that thematrixM(x, p)has off-diagonal nonnegative coefficients.More-
over, the positivity of the functions kon,i makes M irreducible (the matrix allows
transition between any pair (e, e′) ∈ P2

E after at most n steps). Thereby, the Perron
Frobenius Theorem may be applied, and it justifies the existence and uniqueness of
H(x, p). Moreover, from a general property of Perron eigenvalues when the variable
p appears only on the diagonal of the matrix, H is known to be convex (Cohen 1981).

The following result is a direct consequence of theoretical results of Bressloff and
Faugeras (2017) applied to the PDMP system (1).

Theorem 1 Let us denote �v(x) =
n⊗

i=1
[−di xi , di (1− xi )] and �̊v(x) its interior.
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TheFenchel-Legendre transform of theHamiltonian H is well-defined and satisfies:
∀x ∈ �, ∀v ∈ �̊v(x),

L(x, v) = sup
p∈Rn

(〈p, v〉 − H(x, p)) .

Moreover, the PDMP system (1) satisfies a LDP, and the associated rate function has
the form of a classical action: the cost of any piecewise differentiable trajectory φt in
C0T (Rn) satisfying for all t ∈ [0, T ), φ̇(t) ∈ �̊v(φ(t)), can be expressed as

JT (φ) =
∫ T

0
L(φ(t), φ̇(t))dt . (12)

The function L is called the Lagrangian of the PDMP system.
We are now going to show how in certain cases, trajectories which minimize the

quantity (12) between two sets in � can be defined with the help of solutions of an
Hamilton–Jacobi equation with Hamiltonian H .

4.2.2 WKB approximation and Hamilton–Jacobi equation

The Hamiltonian defined in (10) also appears in the WKB (Wentzell, Kramer, Bril-
louin) approximation of the master equation (Newby and Keener 2011; Bressloff and
Faugeras 2017). This approximation consists in injecting in the master equation (2)
of the PDMP system, a solution of the form:

∀e ∈ PE , ue(x, t) = πe(x, t)e
− S(x,t)

ε , (13)

where e−
S(·,t)

ε then denotes the marginal distribution on proteins of the distribution u
at time t , and πe(x, t) is a probability vector denoting the conditional distribution of
the promoters knowing that proteins are fixed to X = x at t . The expression (13) is
justified under the assumption that the density ue is positive at all times.

Under the regularity assumptions S ∈ C1(�×R+, R) andπ ∈ (C1(�× R+, R)
)2n

,
we can perform a Taylor expansion in ε of the functions S and πe, for any e ∈ PE ,
and keeping in the resulting master equation only the leading order terms in ε, that we
denote S0 and π0 = (π0,e)e∈PE , we obtain:

−∂t S0(x, t)π0(x, t) =
n∑

i=1

(
Ki (x)+ ∂xi (S0)Fi (x)

)
π0(x, t).

Identifying the vectors π0 and ∇x S0 with the variables ζ and p in Eq. (10), we
obtain that S0 is solution of an Hamilton–Jacobi equation:

∀x ∈ � : H(x,∇x S0(x, t))+ ∂t S0(x, t) = 0. (14)
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More precisely, if at any time t , the marginal distribution on proteins of the PDMP
process, denoted u(·, t), follows a LDP and if its rate function, denoted V (·, t), is
differentiable on �, then the function H(·,∇x V (·, t)) appears as the time derivative
ofV (·, t) at t .Moreover, theWKBmethod presented above shows that the rate function
V (·, t) is identified for any time t with the leading order approximation in ε of the
function S(·, t) = −ε log(u(·, t)). Note that (13) is also reminiscent of the Gibbs
distribution associated with a potential S. Some details about the interpretation of this
equation and its link with the quasistationary approximation can be found in Newby
and Keener (2011).

Next, we consider a function V , solution of the Hamilton–Jacobi Eq. (14), that
we assume being of class C1(� × R+, R) for the sake of simplicity. Then, for any
piecewise differentiable trajectory φt ∈ C0T (�) such that φ̇(t) ∈ �v(φ(t)) for all
t ∈ [0, T ), one has, by definition of the Fenchel-Legendre transform:

∫ T

0
L(φ(t), φ̇(t))dt =

∫ T

0
sup
p

(
n∑

i=1
pi φ̇i (t)− H(φ(t), p)

)
dt

≥
∫ T

0

(
n∑

i=1
∂xi V (φ(t), t)φ̇i (t)− H(φ(t),∇x V (φ(t), t))

)
dt

=
∫ T

0

(
n∑

i=1
∂xi V (φ(t), t)φ̇i (t)+ ∂t V (φ(t), t)

)
dt

= V (φ(T ), T )− V (φ(0), 0). (15)

Moreover, when H is strictly convex in p, we have:

∀v ∈ �v(x),∀x, p ∈ Rn × Rn, (L(x, v) = 〈p, v〉 − H(x, p)) ⇐⇒ (
v = ∇pH(x, p)

)
.

Then, the equality in (15) is exactly reached at any time for trajectories φt such that
for all t ∈ [0, T ), i = 1, . . . , n:{

pi (t) = ∂xi V (φ(t), t),

φ̇i (t) = ∂pi H(φ(t), p(t)).
(16)

4.2.3 General method for computing probabilities of the form (7)

We now detail the link existing between the regular solutions V of the Hamilton–
Jacobi Eq. (14) and the probabilities of the form (7). For this, we introduce the notion
of quasipotential.

Definition 2 Denoting C1,pw
0T (�) the set of piecewise differentiable trajectories in

C0T (�), we define the quasipotential as follows: for two sets A, B ⊂ � and a set
R ⊂ � \ (A ∪ B),

QR(A, B) = inf
φt ,T
{JT (φ) | φt ∈ C1,pw

0T (�), φ(0) ∈ A, φ(T ) ∈ B,∀t ∈ (0, T ) : φ(t) /∈ R}.
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We call a trajectory φt ∈ C1,pw
0T (�) an optimal trajectory between the two subsets

A, B ⊂ � in � \ R, if it reaches the previous infimum.

For the sake of simplicity, if R = ∅, we will write QR(A, B) = Q(A, B).
With these notations, the LDP principle allows to approximate for any basin Z j ,

i 
= j , the probability pε
i j (x0) defined in (7), which is the probability of reaching Z j ,

from a point x0 ∈ 
min,Zi , before γmin,Zi , by the expression:

−ε ln
(
pε
i j (x0)

)
→
ε→0

Q ⋃
k 
=i, j

{∂Zi∩∂Zk }(x0, ∂Zi ∩ ∂Z j ).

A direct consequence of the inequality (15), in the case where equality is reached,
is that a regular solution V of the Hamilton–Jacobi Eq. (14) defines trajectories for
which the cost (12) is minimal between any pair of its points. Moreover, if V is a
stationary solution of (14), the cost of such trajectories does not depend on time: these
trajectories are then optimal between any pair of its points among every trajectory in
any time. We immediately deduce the following lemma:

Lemma 1 For a stationary solution V ∈ C1(�, R) of (14) and for all T > 0, any
trajectory φt ∈ C1,pw

0T (�) satisfying the system (16) associated to V is optimal in �

between φ(0) and φ(T ), and we have:

Q(φ(0), φ(T )) = JT (φ) = V (φ(T ))− V (φ(0)).

Thus, for approximating the probability of interest (7), between any pair of basin
(Zi , Z j ), we are going to build a trajectory


i j
t , which verifies the system (16) associ-

ated to a stationary solution V of (14), with
i j (0) = x0 ∈ 
min,Zi , andwhich reaches
in a time T a point x ∈ ∂Zi∩∂Z j such that Q(x0, x) = Q ⋃

k 
=i, j
{∂Zi∩∂Zk }(x0, ∂Zi∩∂Z j ).

For such trajectory, from Lemma 1, we could then approximate the probability (7) by
the formula

pε
i j (x0) 	 Ci j e

−JT (

i j
t )

ε , (17)

where Ci j is an appropriate prefactor. Unfortunately, if there exists an explicit expres-
sion of Ci j in the one-dimensional case (Newby and Keener 2011), and that an
approximation has been built formulti-dimensional SDEmodel (Bouchet andReygner
2016), they are intractable or not applicable in our case. In general, the prefactor does

not depend on ε (Berglund 2011). In that case − ln
(
pε
i j (x0)

)
is asymptotically an

affine function of ε−1, the slope of which is JT (

i j
t ) and the initial value − ln(Ci j ).

Then, the strategy we propose simply consists in approximating the prefactor by com-
parison between the probabilities given by theAMSalgorithmand theLarge deviations
approximation (17) for a fixed ε (large enough to be numerically computed.)

To conclude, for every pair of basins (Zi , Z j ), i 
= j , one of the most efficient
methods for computing the probability (7) is to use the AMS algorithm. When the
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dimension is large, and for values of ε which are too small for this algorithm to be effi-
ciently run, we can use the LDP approximation (17), provided that the corresponding
optimal trajectories 


i j
t can be explicitly found. The latter condition is studied in the

next sections. The AMS algorithm is then still employed to approximate the prefactor,
which is done using intermediate values of ε by the regression procedure mentioned
above.

5 Analytical approximation of probabilities of the form (7) for the
PDMP system

5.1 Expressions of the Hamiltonian and the Lagrangian

In this section, we identify the Perron eigenvalue H(x, p) of the spectral problem
(10), and prove that its Fenchel-Legendre transform L with respect to the variable p
is well defined on Rn . We then obtain the explicit form of the Hamiltonian and the
Lagrangian associated to the LDP for the PDMP system (1).

Theorem 2 For all n in N∗, the Hamiltonian is expressed as follows: for all (x, p) ∈
�×Rn, the unique solution of the spectral problem (10) (with nonnegative eigenvector)
is:

H(x, p) =1

2

n∑
i=1

(
pidi (1− 2xi )− (kon,i (x)+ koff ,i )

+
√

(pidi + kon,i (x)− koff ,i )2 + 4kon,i (x)koff ,i

)
. (18)

Moreover, the function H is strictly convex with respect to p.

Theorem 3 The Lagrangian is expressed as follows: for all (x, v) ∈ �×Rn, one has:

⎧⎪⎪⎨
⎪⎪⎩

L(x, v) =
n∑

i=1

(√
koff ,i

vi + di xi
di

−
√
kon,i (x)

di (1− xi )− vi

di

)2

if v ∈ �v(x)

L(x, v) = ∞ if v /∈ �v(x).

(19)

In addition, for all x ∈ �, L(x, v) = 0 if and only if for all i = 1, . . . , n:

vi = di

(
kon,i (x)

kon,i (x)+ koff ,i
− xi

)
.

As detailed in “Appendix C.2”, we remark that the Lagrangian of the PDMPprocess
defined in (19) is not equal to the Lagrangian of the diffusion approximation defined
in “Appendix C.1”, which is:
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Ld(x, v) =
n∑

i=1

(kon,i (x)+ kof f ,i )3

4d2i kon,i (x)kof f ,i

(
vi − di

(
kon,i (x)

kon,i (x)+ kof f ,i
− xi

))2

.

More precisely, the Lagrangian of the diffusion approximation is a second order
approximation of the Taylor expansion of the Lagrangian of the PDMP system around
the velocity field associated to the deterministic limit system (4). Observe that the
Lagrangian of the diffusion approximation is a quadratic mapping in v, which is
expected since the diffusion approximation is described by a Gaussian process. On
the contrary, the Lagrangian L given by (19) is not quadratic in v. As it had been
shown in Bouchet et al. (2016) for Fast–Slow systems, this highlights the fact that the
way rare events arise for the PDMP system is fundamentally different from the way
they would arise if the dynamics of proteins was approximated by an SDE.

Proof of Theorem 2 Defining the 2× 2 matrix

M (i)(x, pi ) = pi F
(i)(x)+ K (i)(x) =

(−xi pi di − kon,i (x) koff ,i
kon,i (x) −koff ,i + (1− xi )pidi

)
,

the Perron eigenproblem associated to M (i)

M (i)(x, p)ζ (i)(x, p) = Hi (x, p)ζ
(i)(x, p), ζ (i) > 0,

implies immediately that

Hi (x, p) = 1

2

(
Tr(M (i))+

√
(Tr(M (i)))2 − 4det(M (i))

)

= 1

2

(
pidi (1− 2xi )− (kon,i (x)+ koff ,i )

+
√

(pidi + kon,i (x)− koff ,i )2 + 4kon,i (x)koff ,i

)
.

If we impose the constraint ζ (i)
0 + ζ

(i)
1 = 1, i.e that there exists for all x, pi , αp,i (x) ∈

(0, 1) such that ζ (i)(x, p) =
(
1− αp,i (x)

αp,i (x)

)
, we obtain the following equation:

Tx (αp,i (x)) = kon,i (x)(1− αp,i (x))+ (−koff ,i + (1− xi )pidi )αp,i (x) = Hi (x, p)αp,i (x).

Since Tx (0) = −kon,i (x) and Tx (1) = koff ,i , Tx has one and only one root in (0, 1).
After a quick computation, one gets for all x, p ∈ �× Rn :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αp,i (x) = 1

2

⎛
⎝1+

√
(pi di + kon,i (x)− koff ,i )2 + 4kon,i (x)koff ,i − (kon,i (x)+ koff ,i )

pi di

⎞
⎠ if pi 
= 0

αp,i (x) = kon,i (x)

kon,i (x)+ koff ,i
if pi = 0.

(20)

123 52



Reduction of a stochastic model of gene expression... Page 17 of 63 59

Considering the tensorial structure of the problem, denoting Mi (x, p) = pi Fi (x) +
Ki (x) (the tensorial version, see Sect. 2), we have by definition of M (11):

M =
n∑

i=1
Mi (x, p).

For ζ(x, p) =⊗n
i=1 ζ (i)(x, p), we obtain:

M(x, p)ζ(x, p) =
n∑

i=1
ζ (1)(x, p)⊗ · · · ⊗ M (i)(x, p)ζ (i)(x, p)︸ ︷︷ ︸

i-th position

⊗ · · · ⊗ ζ (n)(x, p)

=
n∑

i=1
Hi (x, pi )ζ

(1)(x, p)⊗ · · · ⊗ ζ (i)(x, p)⊗ · · · ⊗ ζ (n)(x, p)

=
(

n∑
i=1

Hi (x, pi )

)
ζ(x, p).

Since ζ > 0, one obtains the expression (18) for the Hamiltonian:

H(x, p) =
n∑

i=1
Hi (x, pi ) =

n∑
i=1

pidi (αp,i (x)− xi ). (21)

Weverify that H is strongly convexwith respect to p, which follows from the following
computation: for all i, j = 1, . . . , n,

∂2

∂ p2i
H(x, p) = 2d2i kon,i (x)koff ,i

((pidi + kon,i (x)− koff ,i )2 + 4kon,i (x)koff ,i )
3
2

> 0,

and the cross-derivatives are clearly 0. This concludes the proof of Theorem 2. ��
Proof of Theorem 3 The objective is to compute the Fenchel-Legendre transform of
the Hamiltonian H given by (18) in Theorem 2.

For all x ∈ � and for all vi ∈ R, the function g : pi �→ pivi − Hi (x, pi ) is
concave. An asymptotic expansion (when pi →±∞) gives:

g(pi ) =pi

(
vi − di

(
1

2
(1+ sgn(pi ))− xi

))

+ 1

2

(
kon,i (x)+ koff ,i − sgn(pi )

(
kon,i (x)− koff ,i

))
+ O

(
1

pi

)
. (22)

Let us study three cases. If vi ∈ (−di xi , di (1− xi )), g goes to−∞ when pi →±∞:
thus g reaches a unique maximum in R. At the boundary vi = −di xi (resp. vi =

12353



59 Page 18 of 63 E. Ventre et al.

di (1 − xi )), g goes to −∞ as pi goes to +∞ (resp. −∞) and converges to kon,i (x)
(resp. koff ,i ) as pi goes to −∞ (resp. +∞): then g is upper bounded and the sup is
well defined. If vi /∈ [−di xi , di (1− xi )], g(pi ) goes to +∞ when either pi → −∞
of pi →+∞, thus g is not bounded from above.

As a consequence, Li (x, vi ) = sup
pi

(
pivi − Hi (x, pi )

)
is finite if and only if

vi ∈ [−di xi , di (1− xi )].
The Fenchel-Legendre transform of H is then given as follows: for all x ∈ � and

v ∈ Rn

L(x, v) =
∑
i

Li (x, vi ) =
n∑

i=1
sup
pi∈R

(
pivi − Hi (x, pi )

)
,

and L(x, v) is finite for every v ∈ �v(x). To find an expression for L(x, v), we have
to find for all i = 1, . . . , n the unique solution pv,i (x) of the invertible equation:
vi = ∂Hi

∂ pi
(x, pi ). Developing the term on the right-hand side, we obtain:

vi = 1

2

⎛
⎝di (1− 2xi )+ di (di pi + kon,i (x)− koff ,i )√

(di pi + kon,i (x)− koff ,i )2 + 4kon,i (x)koff ,i

⎞
⎠

⇐⇒ ui = di zi√
z2i + ci

, (23)

where ui = 2(vi + di xi )− di , ci = 4kon,i (x)koff ,i > 0, zi = di pi + kon,i (x)− koff ,i .
When vi ∈ (−di xi , di (1− xi )), we have ui ∈ (−di , di ). Thus, we obtain

zi = ± ui
√
ci√

d2i − u2i

,

and as zi andui must have the same sign,we can conclude for everyvi ∈ (−di xi , di (1−
xi )):

pv,i (x) = 1

di

(
koff ,i − kon,i (x)+

√
koff ,i kon,i (x)

2(vi + di xi )− di√
(vi + di xi )(di (1− xi )− vi )

)
.

(24)

Injecting this formula in the expression of the Fenchel-Legendre transform, we obtain
after straightforward computations:

Li (x, vi ) = pv,i (x)vi − Hi (x, pv,i (x))

= 1

2

(√
2koff ,i

vi + di xi
di

−
√
2kon,i (x)

di (1− xi )− vi

di

)2

.
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We finally obtain the expression when v ∈ �v(x):

L(x, v) =
n∑

i=1

(√
koff ,i

vi + di xi
di

−
√
kon,i (x)

di (1− xi )− vi

di

)2

.

Finally, if v /∈ �v(x), i.e. if there exists i such that vi /∈ [−di xi , di (1 − xi )], then
L(x, v) = Li (xi , vi ) = ∞. As expected, the Lagrangian is always nonnegative. In
addition, it is immediate to check that L(x, v) = 0 if and only if the velocity field v

is the drift of the deterministic trajectories, defined by the system (4). ��

5.2 Stationary Hamilton–Jacobi equation

We justified in Sect. 4.2.3 that the stationary solutions of the Hamilton–Jacobi Eq. (14)
are central for finding an analytical approximation of the transition rates described in
Sect. 4.1. Thus, we are going to study the existence and uniqueness (under some
conditions) of functions V ∈ C1(�, R) such that for all x ∈ �:

H(x,∇x V (x)) = 0. (25)

Recalling that from (21), H(x, p) =
n∑

i=1
pidi (αp,i (x)− xi ), we construct two classes

of solutions V , such that for all i = 1, . . . , n, ∂xi V (x) = 0 or α∇x V ,i (x) = xi .
The first class of solutions contains all the constant functions on �. From the

expression (20). The second class contains all functions V such that for all x ∈ �:

∀i = 1, . . . , n : ∂xi V (x) = −kon,i (x)

di xi
+ koff ,i

di (1− xi )
. (26)

In particular, we show in “Appendix D” that the condition (26) holds for the toggle-
switch network described in “Appendix E” and studied in Sect. 6.

We will see in the next section that the class of constant solutions are associated
to the deterministic system (4), which are the trajectories of convergence within the
basins. We describe in Sect. 5.3.2 a more general class of solutions than (26), which
defines the optimal trajectories of exit from the basins of attraction of the deterministic
system.

5.3 Optimal trajectories

In the sequel we study some properties of the optimal trajectories associated to the
two classes of solutions of the stationary Hamilton–Jacobi Eq. (25) introduced above.

5.3.1 Deterministic limit and relaxation trajectories

From Lemma 1, for every constant function V (·) = C on �, the associated collection
of paths φt satisfying the system (16) is optimal in � between any pair of its points.
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Replacing p = ∇x V = 0 in (16), we find that these trajectories verify at any time
t > 0 the deterministic limit system (4):

∀i ∈ {1, . . . , n} : φ̇i (t) = di

(
kon,i (φ(t))

kon,i (φ(t))+ koff ,i
− φi (t)

)
.

Moreover, for every trajectory φt solution of this system, we have for any T > 0:

JT (φt ) =
∫ T

0
L(φt , φ̇t )dt = V (φT )− V (φ0) = 0. (27)

We call such trajectories the relaxation trajectories, as they characterize the optimal
path of convergence within every basin. From Theorem 3, these relaxation trajectories
are the only zero-cost admissible trajectories.

5.3.2 Quasipotential and fluctuation trajectories

We now characterize the optimal trajectories of exit from the basins. We are going to
show that the condition (C) defined below is sufficient for a solution V ∈ C1(�, R)

of the Eq. (25) to define optimal trajectories realizing the rare events described by the
probabilities (7).

Definition 3 We define the following condition on a function V ∈ C1(�, R):

(C) The set {x ∈ � | ∇x V (x) = 0} is reduced to isolated points.

The results presented below in Theorem 4 are mainly an adaptation of Theorem
3.1, Chapter 4, in Freidlin and Wentzell (2012). In this first Theorem, we state some
properties of solutions V ∈ C1(�, R) of (25) satisfying the condition (C):

Theorem 4 Let V ∈ C1(�, R) be a solution of (25).

(i) For any optimal trajectory φt satisfying the system (16) associated to V , for any
time t we have the equivalence:

(
∀i ∈ {1, . . . , n}, φi (t) = kon,i (φ(t))

kon,i (φ(t))+ koff ,i

)
⇐⇒ φ̇(t) = 0.

(ii) The condition (C) implies that the gradient of V vanishes only on the stationary
points of the system (4).

(iii) If V satisfies (C), then V is strictly increasing on any trajectory which solves
the system (16), such that the initial condition is not an equilibrium point of the
system (4). Moreover, for any basin of attraction Zi associated to an attractor
Xeq,Zi , we have:

∀x ∈ Zi \ Xeq,Zi , V (x) > V (Xeq,Zi ).
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(iv) If V satisfies the condition (C), under the assumption that lim
x→∂�

V (x) = +∞,

we have the formula:

∀x ∈ �, V (x) = min{a∈�|∇x V (a)=0} V (a)+ Q(a, x).

(v) Let us consider V , Ṽ ∈ C1(�, R) two solutions of (25) satisfying the con-
dition (C). The stable equilibria of the system defined for every time t by
φ̇t = −∇pH (φt ,∇x V (φt )) are exactly the attractor of the deterministic sys-

tem (4) (Xeq,Zi )Zi∈Z . We denote (Z f
i )Zi∈Z the basins of attraction which are

associated to these equilibria: at least on
⋃

Zi∈Z
Z̄ f
i , the relation ∇x V = ∇x Ṽ is

satisfied.
Moreover, under the assumptions 1. that lim

x→∂�
V (x) = lim

x→∂�
Ṽ (x) = ∞, and

2. that between any pair of basins (Z f
i , Z f

j ), we can build a serie of basins

(Z f
uk )k=1,...,m such that u0 = 1, um = j and for all k < m, Z̄ f

uk ∩ Z̄ f
uk+1 
= ∅,

then V and Ṽ are equal in � up to a constant.

Note that the point (iii) makes these solutions consistent with the interpretation
of the function V as the rate function associated to the stationary distribution of the
PDMP system, presented in Sect. 4.2.2. Indeed, as every random path converges in
probability when ε → 0 to the solutions of the deterministic system (4) (Faggionato
et al. 2009), the rate function has to be minimal on the attractors of this system, which
then corresponds to the points of maximum likelihood at the steady state. It should
also converge to +∞ on ∂�, as the cost of reaching any point of the boundary is
infinite (see Corollary 2, in the proof of Theorem 5). However, we see in (v) that the
uniqueness, up to a constant, needs an additional condition on the connection between
basins which remains not clear for us at this stage, and which will be the subject of
future works.

If V ∈ C1(�, R) is a solution of (25) saitsfying (C), we call a trajectory solution
of the system (16) associated to V a fluctuation trajectory.

We observe that any function satisfying the relation (26) belongs to this class of
solutions of (25), and then that in particular, such C1 function exists for the toggle-
switch network. In that special case, we can explicitly describe all the fluctuation

trajectories: for any time t , replacing pi (t) = − kon,i (φ(t))
diφi (t)

+ koff ,i
di (1−φi (t))

in the system
(16), we obtain

∀i ∈ {1, . . . , n} : φ̇i (t) = di

(
koff ,iφi (t)2

kon,i (φ(t))(1− φi (t))2 + koff ,iφi (t)2
− φi (t)

)
.

(28)

In the second theorem (Theorem 5), we justify that the fluctuation trajectories are
the optimal trajectories of exit:
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Theorem 5 Let us assume that there exists a function V ∈ C1(�, R)which is solution
of (25) and satisfies the condition (C). For any basin Zi ∈ Z, there exists at least one
basin Z j , j 
= i , such that there exists a couple (x0, φt ), where x0 ∈ 
Zi and φt is a
fluctuation trajectory, and such that φ(0) = x0, φ(T ) →

T→∞ xi j = argmin
y∈∂Zi∩∂Z j

V (y).

Let us denote Xi j
un = {x ∈ ∂Zi ∩ ∂Z j | ∇x V (x) = 0}, xi jun = argmin

y∈Xi j
un

V (y) and

Ri j = ⋃
k 
=i, j
{∂Zi ∩ ∂Zk}. Under the following assumption

(A) any relaxation trajectory starting in ∂Zi ∩ ∂Z j stays in ∂Zi ∩ ∂Z j ,

we have xi j = xi jun and:

QRi j (Xeq,Zi , ∂Zi ∩ ∂Z j ) = V (xi jun)− V (Xeq,Zi ).

In particular, if there exists a fluctuation trajectory between any attractor Xeq,Zi and
every saddle points of the deterministic system (16) on the boundary ∂Zi , and if the
assumption (A) of Theorem 5 is verified for every basin Z j , j 
= i , the function
V allows to quantify all the optimal costs of transition between the basins. This is
generally expected because the attractors are the only stable equilibria for the reverse
fluctuations (see the proof of Theorem 4.(v)). The proofs of Theorems 4 and 5 use
classical tools from Hamiltonian system theory and are postponed to Appendix H.

When a solution V ∈ C1(�, R) satisfying (C) exists, the saddle points of the deter-
ministic system (4) are then generally the bottlenecks of transitions between basins
and the function V characterizes the energetic barrier between them. The function
Q(Xeq,Zi , ·) depends on the basin Zi , which is a local property: it explains why the
function V is generally called the global quasipotential, and Q(Xeq,Zi , ·) the local
quasipotential of the process (Zhou and Li 2016).

The precise analysis of the existence of a regular solution V satisfying (C) for a
given network is beyond the scope of this article. When it is impossible to find a
regular solution, more general arguments developed within the context of Weak KAM
Theory can allow to link the viscosity solutions of the Hamilton–Jacobi equation to
the optimal trajectories in the gene expression space (Fathi 2008).

5.4 Partial conclusion

Wehave obtained inTheorem3 the formof theLagrangian in the variational expression
(12) for the rate function JT associated to the LDP for the PDMP system (1). We have
also highlighted the existence and interpretation of two types of optimal trajectories.

The first class consists in relaxation trajectories,which characterize the convergence
within the basins. The fact that they are the only trajectories which have zero cost
justifies that any random path Xε

t converges in probability to a relaxation trajectory.
When there exists a function V ∈ C1(�, R) satisfying (26), the system (28) defines

the second class of optimal trajectories, called the fluctuation trajectories. From Theo-
rem 5, for every basin Zi , there exists at least one basin Z j , j 
= i , and a trajectory


i j
t

which verifies this system, starts on x0 ∈ 
min,Zi and reaches a point of x ∈ ∂Zi ∩∂Z j
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such that Q(x0, x) = Q(x0, ∂Zi ∩∂Z j ). This trajectory then realizes the rare event of
probability pi j (x0). Injecting the velocity field defining (28) in the Lagrangian (19),
we deduce:

−ε ln
(
pε
i j (x0)

)
→
ε→0

JT (

i j
t ) =

∫ T

0

n∑
i=1

(
kon,i (φ(t))(1− φi (t))− koff ,iφi (t)

)2
kon,i (φ(t))(1− φi (t))2 + koff ,iφi (t)2

dt .

(29)

If the assumption (A) of Theorem 5 is verified, this minimum is necessarily reached on
a saddle point of V on ∂Zi ∩ ∂Z j and in that case, the time T must be taken infinite.
Then, the formula (29) can be injected in the approximation (17), and the method
described in Sect. 4.2.2 allows to compute the probability of the form (7) for the pair
(Zi , Z j ).

Moreover, for every basin Zk , k 
= i , if the assumption (A) of Theorem 5 is verified
and if there exists, for any saddle point xikun ∈ ∂Zi ∩ ∂Zk , a trajectory satisfying the
system (28) which starts at x0 and reaches xikun (at T →∞), the formula (29) can also
be injected in the approximation (17) for the pair (Zi , Zk), and the method described
in Sect. 4.2.3 allows then to compute the probabilities of the form (7) for any pair of
basins (Zi , Zk)k=1,...,m .

6 Application to the toggle-switch network

In this section, we consider the class of interaction functions defined in Appendix D
for a network with two genes (n = 2). This function comes from a chromatin model
developed in Herbach et al. (2017) and is consistent with the classical Hill func-
tion characterizing promoters switches. Using results and methods described in the
previous sections, we are going to reduce the PDMP system when the GRN is the
toggle-switch network described in “Appendix E”. After defining the attractors of the
deterministic system (4), building the optimal fluctuation trajectories between these
attractors and the common boundaries of the basins, we will compute the cost of the
trajectories and deduce, from the approximation (17), the transition probabilities of
the form (7) as a function of ε, up to the prefactor. We will compute these probabil-
ities for some ε with the AMS algorithm described in “Appendix G” for obtaining
the prefactor. We will then approximate the transition rates characterizing the discrete
Markov chain on the cellular types, given by the formula (8), for many values of ε. We
will finally compare these results to the ones given by a crude Monte-Carlo method.

6.1 Computation of the attractors, saddle points and optimal trajectories

First, we compute the stable equilibrium points of the PDMP system (1). The system
(5) has no explicit solution. We present a simple method to find them, which consists
in sampling a collection of random paths in �: the distribution of their final position
after a long time approximates the marginal on proteins of the stationary distribution.
We use these final positions as starting points for simulating the relaxation trajectories,
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Fig. 5 a 100 cells are plotted under the stationary distribution. The relaxation trajectories allow to link
every cell to its associated attractor. b 1000 cells are plotted under the stationary distribution. They are then
classified depending on their attractor, and this figure sketches the kernel density estimation of proteins
within each basin. c The ratio of cells that are found within each basin gives an estimation of the stationary
distribution on the basins

described by (4), with an ODE solver: each of these relaxation trajectories converges
to one of the stable equilibrium points. This method allows to obtain all the stable
equilibrium corresponding to sufficiently deep potential wells (see Fig. 5). Possible
other potential wells can be omitted because they correspond to basins where the
process has very low probability of going, and which do not impact significantly the
coarse-grained Markov model.

Second, we need to characterize the fluctuation trajectories. In “Appendix D”, we
introduced the interaction function and proved that for any symmetric two-dimensional
network defined by this function, i.e such that for any pair of genes (i, j), θi j = θ j i

(where θ is the matrix characterizing the interactions between genes), there exists a
function V such that the relation (26) is verified. This is then the case for the toggle-
switch network, which is symmetric. We have proved in Sect. 5.2 that such function V
solves the Hamilton–Jacobi Eq. (25), and verifies the condition (C). Thus, the system
(28) defines the fluctuation trajectories.

Third, we need to find the saddle points of the system (4). As we know that for any
attractor, there exists at least one fluctuation trajectory which starts on the attractor
and reaches a saddle point (in an infinite time), a naive approach would consist in
simulating many trajectories with different initial positions around every attractors,
until reaching many saddle points of the system. This method is called a shooting
method and may be very efficient in certain cases. But for the toggle-switch, we
observe that the fluctuation trajectories are very unstable: this method does not allow
to obtain the saddle points.

We develop a simple algorithm which uses the nonnegative function l(·) =
L(·, νv(·)), which corresponds to the Lagrangian evaluated on the drift νv of the
fluctuation trajectories defined by the system (28). We have :

l : x → L(x, νv(x)) =
n∑

i=1

(
kon,i (x)(1− x)− koff ,i x

)2
kon,i (x)(1− x)2 + koff ,i x2

.
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Fig. 6 The optimal fluctuation trajectories from a first attractor continued by the relaxation trajectories
reaching the second attractor, for the pair (Z+−, Z−+). We omit the other pairs of attractors (Z+−, Z−−)

and (Z−−, Z−+), because their optimal trajectories are simply straight lines (colour figure online)

As expected, since νv cannot be equal to the drift of a relaxation trajectory except on
the stationary points of the relaxation trajectories and since the Lagrangian L(x, v) is
equal to 0 if and only if v corresponds to the drift of a relaxation trajectory, the function
l vanishes only on these stationary points. If there exists a saddle point connecting
two attractors, this function will then vanish there. The algorithm is described in
Appendix I. For the toggle-switch network, it allows to recover all the saddle points
of the system (4).

Fourth, we want to compute the optimal trajectories between every attractors and
the saddle points on the boundary of its associated basin. Using the reverse of the
fluctuation trajectories, for which the attractors of the system (4) are asymptotically
stable (see the proof of Theorem 4.(v)), we can successively apply a shooting method
around every saddle points. We observe that for the toggle-switch network, for any
saddle point at the boundary of two basins, there exists a reverse fluctuation trajectory
which converges to the attractors of both basins. For any pair of basins (Zi , Z j ), we
then obtain the optimal trajectories connecting the attractor Xeq,Zi and the saddle
points belonging to the common boundary ∂Zi ∩ ∂Z j (see Fig. 6).

Finally, we want to compute the optimal transition cost between any pair of basins
(Zi , Z j ). We observe that every relaxation trajectories starting on the common bound-
ary of two basins stay on this boundary and converge to a unique saddle point inside:
the assumption (A) of Theorem 5 is then verified. It follows from this theorem that the
optimal trajectory between any basin Zi and Z j necessarily reaches ∂Zi ∩ ∂Z j on a
saddle point, and then that the optimal transition cost is given by the trajectory which
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Fig. 7 Comparison between the optimal trajectory of the Fig. 6 and 30 random paths conditioned on
reaching, from a point of the boundary of the R-neighborhood of an attractor Xeq,Z−+ , the r -neighborhood
of a new attractor Xeq,Z+− before the r neighborhood of the first attractor Xeq,Z−+ , with r < R. We
represent this comparison for a ε = 1/7 and b ε = 1/21. For each figure, one of these random paths is
colored, separating the fluctuation and the relaxation parts (colour figure online)

minimizes the cost among all those found previously between the attractor and the
saddle points. We denote this optimal trajectory φ

i j
t . Its cost is explicitly described by

the formula (29) (with T →∞), which is then the optimal cost of transition between
Zi and Z j .

The LDP ensures that for all δ, η > 0, there exists ε′ such that for all ε ∈ (0, ε′),
a random path Xε

t reaching Z j from 
Zi before γZi , verifies: supt {| Xε
t − φ

i j
t |} ≤ δ

with probability larger than 1 − η. In other words, given a level of resolution δ, we
could then theoretically find ε such that any trajectory of exit from Zi to Z j would

be indistinguishable from trajectory φ
i j
t at this level of resolution. But in practice, the

event {τ ε
Z j

< τε
γZi
} is too rare to be simulated directly for such ε.

We plot in Fig. 7 two sets of random exit paths, simulated for two different ε,
illustrating the fact that the probability of an exit path to be far from the optimal
fluctuation trajectory decreases with ε.

6.2 Comparison between predictions and simulations

For each pair of basins (Zi , Z j ), the expression (29) provides an approximation of the
probability of the rare event {τ ε

Z j
< τε

γZi
}, up to a prefactor, and the approximation

(17) allows to deduce the associated transition rate. We plot in Fig. 8 the evolution of
these two estimations, as ε decreases, comparing respectively to the probabilities given
by the AMS algorithm and the transition rates computed with a Monte-Carlo method.
As in Bréhier and Lelièvre (2019), we decide to plot these quantities in logarithmic
scale. We observe that, knowing the prefactor, the Large deviations approximation
is accurate even for ε > 0.1, and that induced transition rates are close to the ones
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observed with a Monte-Carlo method too. We represent in Fig. 10b the variance of the
estimator of the transition rates given by the AMS method.

We also remark that our analysis provides two ways of estimating the stationary
measure of the discrete coarse-grained model. On the one hand, we can obtain a long-
time proteins distribution of thousands of cells by simulating the PDMP system (1)
from random initial conditions: by identifying each cell with a basin, as shown in
Fig. 9a, we can find a vector μb describing the ratio of cells belonging to each basin.
When the number and length of the simulations are large enough, this vectorμb should
be a good approximation of the stationary measure on the basins. On the other hand,
the transition rates allows to build the transition matrix M of the discrete Markov
process on the basins, Ẑ ε

l , defined in Sect. 3.2. If the exponential approximation of
the first passage time from every basin is accurate, then the stationary distribution
on the basins should be well approximate by the unique probability vector such that
μzM = 0 (see Fig. 9b).

Monte-Carlo methods for approximating the transition rates have a very high com-
putational cost when ε is small. Thus, comparing these two stationary distributions
appears as a good alternative for verifying the accuracy of the transition rates approxi-
mations. We plot in Fig. 10a the evolution of the total variation distance between these
two stationary distributions as ε decreases. We observe that the total variation is small
even for realistic values of ε. The variance of the estimator μb is very small (given it
is estimated after a time long enough) but the estimator μz accumulates all numeri-
cal errors coming from the estimators needed to compute the transition rates: this is
likely to explain the unexpected small increases observed in this curve for ε = 1/6.
We represent in Fig. 10b the variance of the transition rates estimators between every
pair of attractors used for estimating the distribution μz in Fig. 10a, for ε = 1/7: as
expected, this variance increases with the transition rates.

The similarity between the two distributions μz andμb seems to justify the Marko-
vian approximation of the reduced process Ẑ ε

t for small but realistic ε: at least for the
toggle-switch network, the coarse-grained model, evolving on the basins of attractions
seen as cellular types, describes accurately the complex behaviour of a cell in the gene
expression space.

6.3 Applicability for more complex networks

It is in general very complex to find a solution V ∈ C1(�, R) to the stationary
Hamilton–Jacobi Eq. (25) which satisfies the condition (C) for general networks, when
the number of genes is greater than 2. In order to apply the strategy developed in Sect. 5,
for computing the cost of the optimal trajectories of transition between two basins,
it would be then necessary to build a computational method for approximating such
solution. Although the most common approach in this case consists in finding optimal
trajectories without computing a potential (see Heymann and Vanden-Eijnden 2008
or Li et al. 2021 for more recent works), some methods have been recently built for
SDEs model, like Langevin dynamics (Brackston et al. 2018). Such computational
method for the PDMP system is beyond the scope of the article. However, we remark
that even if there are no reasons for the trajectories satisfying the system (28) to be
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Fig. 8 a Comparison between the probabilities (7) between the basins Z+− and Z−−, in logarithmic scale,
given by the Large deviations approximation (in red) and the AMS algorithm (in green). The prefactor
is computed for ε = 1/8 and the red curve is then adjusted to fit the numerical results. The blue curve
corresponds to the probabilities obtained with a Monte-Carlo method. b Comparison between the transition
rates between the basins Z+− and Z−−, in logarithmic scale, given by the formula (8), where the probability
(7) is given by the Large deviations approximation (in red) and theAMS algorithm (in green). The blue curve
corresponds to the transition rates obtained with a Monte-Carlo method, by the formula (6). The quantities
obtained by a Monte-Carlo method, in blue, are not represented after ε = 1/8 because the transition rates
become too small to be efficiently computed (colour figure online)

Fig. 9 Comparison between the two methods for obtaining estimators of the stationary distributions on the
basins: μb (a) and μz (b)
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Fig. 10 a The total variation of the difference between μb and μz as a function of ε−1. b Boxplots
representing the variation of the transition rates for 10 iterations of the method used in a, between each pair
of basins for ε = 1/7

optimal when no function satisfying the relation (26) can be found, our computational
method still allows to compute these trajectories, and we observe that they generally
still bound the attractors and the saddle points of the deterministic system (4). Their
costs can then be used as a proxy for the probabilities of the form (7): we observe in
Figs. 16b and 17b in Appendix J that for two non-symmetric networks of respectively
3 and 4 genes, our method still provides good results.

7 Discussion

Using the WKB approximation presented in Sect. 4.2.2 and the explicit formulas for
the Hamiltonian and the Lagrangian detailed in Sect. 5.1, we are going now to analyze
more precisely how the LDP for the proteins can be interpreted in regards to the
dynamics of promoters, and we will see how two classical notions of energies can be
interpreted in light of this analysis.

7.1 Correspondences between velocities and promoters frequency lead to
energetic interpretations

The main idea behind the LDP principle for the PDMP system is that a slow dynamics
on proteins coupled to the fastMarkov chain on promoters rapidly samples the different

states of PE according to some probability measure π = (πe)e∈PE . The value
n∑

e,ei=1
πe

corresponds then to the parameter of the Bernoulli describing the random variable Ei ,
and can be interpreted as the frequency of the promoter of gene i .

The point of view of Faggionato et al. (2009) consisted in stating a LDP for the
PDMP system by studying the deviations of π from the quasistationary distribution
(3). The work of Bressloff and Faugeras (2017) consists in averaging the flux asso-
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ciated to the transport of each protein over the measure π , in order to build a new
expression of this LDP which depends only on the protein dynamics. Its coupling
with an Hamiltonian function through a Fenchel-Legendre transform allows to apply
a wide variety of analytical tools to gain insight on the most probable behaviour of
the process, conditioned on rare events. In this Section, we see how correspondences
between these different points of view on the LDP shed light on the meaning of the
Hamiltonian and Lagrangian functions and lead to some energetic interpretations.

7.1.1 Correspondence between velocity and promoter frequency

Let us fix the time. The velocity field of the PDMP system, that we denote 
, is a
n-dimensional vector field, function of the random vectors E, X , which can be written
for any i = 1, . . . , n:


i = (1− Ei )× voff ,i (Xi )+ Ei × von,i (Xi ), (30)

with the functions voff ,i : xi �→ −di xi and von,i : xi �→ di (1− xi ) for any x ∈ �.
For all i = 1, . . . , n, let ρi : x �→ E(Ei | X = x) denote the conditional

expectation of the promoter Ei knowing a protein vector X . As presented in Sect. 3.1,
the quasistationary approximation identifies the vector field ρ to the invariant measure
of the Markov chain on the promoter states.

For a given conditional expectation of promoters ρ, the vector field vρ : x �→
EE∼ρ(x)(
 | X = x) is defined for all x ∈ � by:

∀i = 1, . . . , n, vρ,i (x) = (1− ρi (x))voff ,i (x)+ ρi (x)von,i (x)

= di (ρi (x)− xi ) ∈ [−di xi , di (1− xi )]. (31)

Denoting �v the set of vector fields v continuous on �, such that for all x ∈ �,
v(x) ∈ �v(x), we see that vρ ∈ �v . Conversely, the formula (31) can be inverted
for associating to every velocity field v ∈ �v , characterizing the protein dynamics,
a unique conditional expectation of promoters states knowing proteins, ρv , which is
the unique solution to the reverse problem v(·) = EE∼ρ(·)(
 | X = ·), and which is
defined by:

∀x ∈ �, ∀i = 1, . . . , n : ρv,i (x) = vi (x)− voff ,i (x)

di
∈ [0, 1]. (32)

7.1.2 Dynamics associated to a protein field

We detailed above the correspondence between any admissible velocity field v ∈ �v

and a unique vector field ρv describing a conditional expectation of promoters states
knowing proteins. Moreover, the proof of Theorem 2 reveals that for any vector field
p : � �→ Rn , we can define a unique vector field αp : � �→ (0, 1)n by the expression
(20).

As presented in Sect. 4.2.2, we denote V the leading order term of the Taylor
expansion in ε of the function S defined in (13), such that the distribution of the
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PDMP system is defined at a fixed time t , and for all e ∈ PE , by ue(·) = πe(·)e− S(·)
ε ,

where π(x) is a probability vector in SE for all x ∈ �.
On the one hand, we have seen in Sect. 4.2.2 that for all x ∈ �, the eigenvector

ζ(x,∇x V (x)) of the spectral problem (10) (for p = ∇x V (x)) corresponds to the
leading order term of the Taylor expansion in ε of π(x). For all i = 1, . . . , n, the
quantity

∑
e∈PE ,ei=1

ζe(x,∇x V (x)) then represents the leading order approximation of

the conditional expectation ρi (x) = E(Ei | X = x). On the other hand, if we
denote the gradient field p = ∇x V defined on �, we recall that for all x ∈ �:

ζ(x, p) =
n⊗

i=1

(
1− αp,i (x)

αp,i (x)

)
. We then obtain:

αp,i (x) =
∑

e∈PE ,ei=1
ζe(x,∇x V (x)) ≈ ρi (x).

This interpretation of the vector αp, combined with the relation (32), allows us to state
that the velocity field defined for all x ∈ � by vαp (x) =

(
di (αp,i (x)− xi )

)
i=1,...,n ∈

�v(x) characterizes, in the weak noise limit, the protein dynamics associated to the

proteins distribution u = e−
S(·)
ε .

We see that the velocity field vαp corresponds to the drift of the deterministic system

(4) if and only if αp = kon
kon+koff , and then if and only if p = 0 (see Sect. 5.2). The

gradient field p can be understood as a deformation of the deterministic drift, in the
weak noise limit.

We recall that for all p ∈ Rn , we have from (21):

H(x, p) =
n∑

i=1
pidi (αp,i (x)− xi ).

With the previous notations, the Lagrangian associated to a velocity field v can then
be written on every x ∈ � as a function of αp and ρv:

L(x, v(x)) =
n∑

i=1
pi (x)di (ρv,i (x)− xi )−

n∑
i=1

pi (x)di (αp,i (x)− xi )

= 〈p(x), v(x)− vα,p(x)〉,

where p(x) = pv(x) is defined by the expression (24). Thus, we see that the duality
between the Lagrangian and the Hamiltonian, that we intensively used in this article
for analyzing the optimal trajectories of the PDMP system, and which is expressed
through the relation (24) between the variables v and p, also corresponds to a duality
between two promoters frequencies ρv and αp associated to the velocity fields v and
vαp .

The situation is then the following: for a given proteins distribution u(·) = e−
S(·)
ε

such that the first order approximation of S in ε, V , is differentiable on �, the velocity

12367



59 Page 32 of 63 E. Ventre et al.

field v associated by duality to the gradient field p = ∇x V , and which characterizes
a collection of optimal trajectories of the PDMP system (satisfying the system (16)
associated to V ) when u is the stationary distribution, does not correspond to the
protein velocity vαp associated to the distribution u in the weak noise limit, except
when the Lagrangian vanishes on (x, v). Alternatively speaking, the optimal trajec-
tories associated to a distribution in the sense of Large deviations, characterized by
the velocity field v, do not correspond to the trajectories expected in the weak noise
limit, characterized by the velocity field vαp . This is an important limit for develop-
ing a physical interpretation of the Hamiltonian system in analogy with Newtonian
mechanics. However, the correspondence between promoters states distributions and
velocity fields developed above leads us to draw a parallel with some notions of energy.

7.1.3 Energetic interpretation

Following a classical interpretation in Hamiltonian system theory, we introduce a
notion of energy associated to a velocity field:

Definition 4 Let us consider x ∈ � and v ∈ �v . The quantity Ev(x) = H(x, pv(x)) is
called the energy of the velocity field v on x , where pv(x) is defined by the expression
(24).

Interestingly, combining the expression of the Hamiltonian given in Theorem 2
with the expressions (24) and (32), the energy of a velocity v on every x ∈ � can be
rewritten:

Ev(x) =
n∑

i=1

√
kon,i (x)koff ,i

di

(Eρv,i (|
i | | X = x)

σ (ρv,i (x))
− Eρi (|
i | | X = x)

σ (ρi (x))

)

where for all i = 1, . . . , n, 
i is the random variable defined by the expression (30),
which follows, conditionally to proteins, a Bernoulli distribution of parameter ρv,i ,
and σ(ρv,i (x)) =

√
ρv,i (x)(1− ρv,i (x)) denotes its standard deviation.

Finally, we have Eρv,i (|
i | | X = x) = (1 − ρv,i (x))vof f ,i (x) + ρv,i (x)von,i (x),
and ρ denotes the quasistationary distribution described in (3).

Formally, the energy of a promoter distribution can then be decomposed in two
terms : a first term describing its velocity in absolute terms, scaled by its standard
deviation, and a second term depending on the network. A high energy distribution
on a point x is characterized by a fast and deterministic protein dynamics in regards
respectively to the velocity of the quasistationary approximation on x and the standard
deviation of its associated promoter distribution.

We remark that this notion of energy does not depend on the proteins distribution,
but only on the promoters frequency ρv around a certain location x . Depending on x
only through the vector field ρv (and the functions kon,i ), it is likely to be interpreted
as the kinetic energy of a cell.

The potential V = − ln(û), where û is the marginal on proteins of the stationary
distribution of the stochastic process, is classically interpreted as a notion of potential
energy, not depending on the effective promoter frequency. Apparently, this notion of
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Fig. 11 Weak noise approximate
model. The Markov chain on the
set of basins Z is here illustrated
by the one corresponding to the
toggle-switch network of Fig. 3a

energy is not related to the one described previously. Once again, the difficulty for
linking these two notions of energy comes from the fact that the dynamics associated
to the "momentum" p = ∇x V , which is characterized by the velocity field v defined
by the formula (23), is not the same that the protein dynamics associated in the weak

noise limit to the marginal distribution on proteins e−
V (·)
ε , which is defined by the

promoters frequency vαp .

7.2 Mixturemodel

The results of Sect. 6 lead us to consider the coarse-grained model as promising for
capturing the dynamics of themetastable system, even for realistic ε.We are nowgoing
to introduce a mixture model which provides an heuristic link between the protein
dynamics and the coarse-grained model, and appears then promising for combining
both simplicity and ability to describe the main ingredients of cell differentiation
process.

When ε is small, a cell within a basin Z j ∈ Z is supposed to be most of the time
close to its attractor: a rough approximation consists in identifying the activation rate
of a promoter ei in each basin by the dominant rate within the basin, corresponding to
the value of kon,i on the attractor. For any gene i = 1, . . . , n and any basin Z j ∈ Z ,
we can then consider:

∀x ∈ Z j : kon,i (x) ≈ kon,i (Xeq,Z j ).

Combining this approximation of the functions kon,i by their main mode within
each basin with the description of metastability provided in Sect. 3.2, we build another
process described by the 2n + 1-dimensional vector of variables (Z(t), E(t), X(t)),
representing respectively the cell type, the promoter state and the protein concentration
of all the genes (see Fig. 11).

Considering that the PDMP system spends in each basin a time long enough to
equilibrate inside, we decide to approximate the distribution of the vector (E(t), X(t))
in a basin Z j by its quasistationary distribution. It is then equivalent to the stationary
distribution of a simple two states model with constant activation function, which is a
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product of Beta distributions (Herbach et al. 2017). Thus, the marginal on proteins of
the stationary distribution of this new model, that we denote u, can be approximated
by a mixture of Beta distributions:

u ≈
∑
Z j∈Z

μz(Z j )
∏
i

Beta

(
kon,i (Xeq,Z j )

εdi
,
koff ,i
εdi

)
, (33)

where μz is the stationary distribution of the Markov chain characterizing the coarse-
grained model.

In that point of view, the marginal distribution on proteins of a single cell X is
characterized by a hidden Markov model: in each basin Z j , which corresponds to the
hidden variable, the vector X is randomly chosen under the quasistationary distribution
uZ j of the reduced process (E, X | Z j ). This simplified model provides a useful
analytical link between the proteins distribution of the PDMP system (depending on
the whole GRN) and the coarse-grained model parameters.

This mixture also provides an approximation for the potential of the system on �:

V (x) ≈ − ln

⎛
⎝∑

Z j∈Z
μz(Z j )

∏
i

Beta

(
kon,i (Xeq,Z j )

εdi
,
koff ,i
εdi

)
(x)

⎞
⎠. (34)

We remark that this new phenomenological model is a generalization of the local
approximations of both the potential and the distribution within each basin that we
have used for building the isocomittor surfaces and the score function of the AMS
algorithm in “Appendices F.3 and G”.

7.3 One application for themixturemodel

An interesting application for the mixture approximation presented in Sect. 7.2 is the
computation of the potential energy of the system, as defined in the previous section.
The potential energy of a population of cellsC located on (xc)c∈C can be approximated
by the sum

∑
c∈C

V (xc), where V is defined by (34)

We represent in Fig. 12 the evolution of the potential energy of a population of cells
during the differentiation process, simulated from the PDMP system associated to the
toggle-switch network presented in “Appendix E”. The population is initially centered
on the attractor of the undifferentiated state Z−−. We observe that the potential energy
reaches a peak before decreasing.

We remark that in Gao et al. (2020), the authors have revealed the universality
of such feature during cell differentiation, for what they called the transcriptional
uncertainty landscape, for many available single-cell gene expression data sets. This
transcriptional uncertainty actually corresponds to the stationary potential V of our
model, approximated for each cell from the exact stationary distribution of an uncou-
pled system of PDMPs (i.e with a diagonal interaction matrix). Although it cannot
be formally linked to intracellular energetic spending yet, we can note that one of
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Fig. 12 Evolution of the potential energy V of a population of 500 cells along the differentiation process

the authors recently described a peak in energy consumption during the erythroid
differentiation sequence (Richard et al. 2019).

The mixture model also paves the way for interpreting non-stationary behaviours.
Indeed, let us denote μz,t the distribution of the basins at any time t . The mixture
distribution can be used as a proxy for non stationary distributions of a PDMP system:

pt ≈
∑
Z j∈Z

μz,t (Z j )
∏
i

Beta

(
kon,i (Xeq,Z j )

εdi
,
koff ,i
εdi

)
.

In that case, the only time-dependent parameters are the coordinates of the vector
μz,t ∈ [0, 1]m where m is the number of basins, and μz,t = μz if t is such that the

stationary distribution is reached. The parameters (μz,t (Z j ),
kon,i (Xeq,Z j )

di
,
koff ,i
di

)Z j∈Z
could be inferred from omics data at any time t , for example with an EM algorithm
(Pearce et al. 2019; Ma and Leijon 2009).

8 Conclusion

Reducing a model of gene expression to a discrete coarse-grained model is not a new
challenge, (Lv et al. 2014; Lin andGalla 2016), and it is often hard to performwhen the
dimension is large. This reduction is closely linked to the notion of landscape through
the quasipotential, the analysis of which has been often performed for nonmechanistic
models, where the random effects are considered as simple noise (Brackston et al.
2018; Wang et al. 2010), or for a number of genes limited to 2.

In this work, we propose a numerical method for approximating the transition
rates of a multidimensional PDMP system modeling genes expression in a single cell.
This method allows to compute these transition rates from the probabilities of some
rare events, for which we have adapted an AMS algorithm. Although this method
theoretically works for any GRN, the computation cost of the AMS algorithm may
explode when both the number of genes increases and the scaling factor ε decreases.
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In order to approximate these probabilities within the Large deviations context, we
provided an explicit expression for the Hamiltonian and Lagrangian of a multidimen-
sional PDMP system, we defined the Hamilton–Jacobi equation which characterizes
the quasipotential, for any number of genes, and we provided the explicit expres-
sion of the associated variational problem which characterizes the landscape. We have
deduced for some networks an analytical expression of the energetic costs of switching
between the cell types, fromwhich the transition rates can be computed. These approx-
imations are accurate for a two-dimensional toggle-switch. We also verified that these
analytical approximations seem accurate even for networks of 3 or 4 genes for which
the energetic cost provided by the method is not proved to be optimal. However, test-
ing the accuracy of this method for describing more complex networks would imply
to build an approximate solution to the stationary Hamilton–Jacobi Eq. (25), which
would be the subject of future works.

Finally, we have derived from the coarse-grained model a Beta-mixture model able
to approximate the stationary behavior of a cell in the gene expression space. As far
as we know, this is the first time that such an explicit link between a PDMP system
describing cell differentiation and a non-Gaussian mixture model is proposed.

Altogether this work establishes a formal basis for the definition of a genetic/
epigenetic landscape, given a GRN. It is tempting to now use the same formalism to
assess the inverse problem of inferring themost likely GRN, given an (experimentally-
determined) cell distribution in the gene expression space, a notoriously difficult task
(Pratapa et al. 2020; Herbach et al. 2017).

Such random transitions between cell states have been recently proposed as the
basis for facilitating the concomitant maintenance of transcriptional plasticity and
stem cell robustness (Wheat et al. 2020). In this case, the authors have proposed a
phenomenological view of the transition dynamics between states. Our work lays
the foundation for formally connecting this cellular plasticity to the underlying GRN
dynamics.

Finally ourwork provides the formal basis for the quantitativemodelling of stochas-
tic state transitions underlying the generation of diversity in cancer cells (Zhou et al.
2014; Gupta et al. 2011), including the generation of cancer stem cells (Tong et al.
2018).
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A Mechanistic model and fast transcription reduction

We recall briefly the full PDMP model, which is described in details in Herbach et al.
(2017), based on a hybrid version of the well-established two-state model of gene
expression (Ko 1991; Peccoud and Ycart 1995) including both mRNA and protein
production (Shahrezaei and Swain 2008) and illustrated in Fig. 13.

Agene is described by the state of a promoter,which can be {on, off }. If the promoter
is on, mRNAs will be transcripted with a rate sm and degraded with a rate dm . If it
is off , only mRNA degradation occurs. Translation of mRNAs into proteins happens
regardless of the promoter state at a rate sp, and protein degradation at a rate dm .
Neglecting the molecular noise of proteins and mRNAs, we obtain the hybrid model:

⎧⎪⎪⎨
⎪⎪⎩
E(t) : 0 kon−→ 1, 1

koff−−→ 0,

M ′(t) = sm E(t)− dmM(t),

P ′(t) = spM(t)− dp P(t).

where (E(t), M(t), P(t)) denote respectively the promoter, mRNA and protein con-
centration at time t . As detailed in Sect. 2, the key idea is then to put this two-states
model into a network by characterizing the jump rates of each gene by two specific
functions kon,i and koff ,i , depending at any time on the protein vector X(t).

In order to obtain the PDMP system (1) that we use throughout this article, we
exploit the two modifications that are performed in Herbach et al. (2017) to this mech-
anisticmodel. First, the parameters sm and sp can be removed to obtain a dimensionless
model, from which physical trajectories can be retrieved with a simple rescaling.

Second, a scaling analysis leads to simplify the model. Indeed, degradation rates
play a crucial role in the dynamics of the system. The ratio dm,i

dp,i
controls the buffering

of promoter noise by mRNAs and, since koff ,i  kon,i , the ratio kon,i
dm,i

controls the
buffering of mRNA noise by proteins. In line with several experiments (Albayrak
et al. 2016; Li and Xie 2011), we consider that mRNA bursts are fast in regard to
protein dynamics, i.e dm,i

dp,i
 1 with kon,i

dm,i
fixed. The correlation between mRNAs and

proteins produced by the gene is then very small, and the model can be reduced by
removing mRNA and making proteins directly depend on the promoters. We then
obtain the PDMP system (1).

Fig. 13 The two-states model of
gene expression (Herbach et al.
2017; Peccoud and Ycart 1995) OFF ON RNA Prot.

RNA Prot.

kon

koff

sm sp

dm dp
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Denoting ki themean value of the function kon,i , i.e its value where there is no inter-

action between gene i and the other genes, the value of a scaling factor εi = dp,i
ki

can

then be decomposed in two factors: one describing the ratio between the degradation
rates of mRNA and proteins,

dp,i
dm,i

, which is evaluated around 1/5 in Schwanhäusser
et al. (2011), and one characterizing the ratio between promoter jumps frequency and
the degradation rates of mRNA, dm,i

ki
. This last ratio is very difficult to estimate in

practice. Assuming that it is smaller than 1, i.e that the mean exponential decay of
mRNA when the promoter Ei is off is smaller than the mean activation rate, we can
consider that εi is smaller than 1/5. Finally, for obtaining the model (1), we consider
two typical timescales d̄ and k̄, for the rates of proteins degradation and promoters

activation respectively, such that for all genes i , ki
k̄
and

dp,i
d̄

are of order 1 (when the

disparity between genes is not too important). We then define ε = d̄
k̄
.

B Tensorial expression of themaster equation of the PDMP system

Wedetail the tensorial expression of themaster Eq. (2) for a two-dimensional network.
We fix ε = 1 for the sake of simplicity.

The general form for the infinitesimal operator can be written:

Lu(t, e, x) = 〈F (e, x) ,∇xu(t, e, x)〉 +
∑
e′∈PE

Q(e, e′)(x)u(t, e′, x)

where F is the vectorial flow associated to the PDMP and Q the matrix associated to
the jump operator.

A jump between two promoters states e, e′ is possible only if there is exactly one
gene for which the promoter has a different state in e than in e′: in this case, we denote
e ∼ e′.

We have, for any x : F(e, x) = (d0(e0 − x0), . . . , dn(en − xn))T . Then, for all
e ∈ PE , the infinitesimal operator can be written:

Lu(t, e, x) =
n∑

i=1
Fi (e, x)∂xi u(t, e, x)

+
∑
{e′|e′∼e}

(
kon,i (x)δei=0 + koff ,iδei=1

) (
u(t, e′, x)− u(t, e, x)

)
.

For a two-dimensional process (n = 2), there are four possible configurations
for the promoter state: e00 = (0, 0), e01 = (0, 1), e10 = (1, 0), e11 = (1, 1). It
is impossible to jump between the states e00 and e11. If we denote u(t, x) the four-
dimensional vector: (ue(t, x))e∈PE , we can write the infinitesimal operator in a matrix

123 74



Reduction of a stochastic model of gene expression... Page 39 of 63 59

form:

Lu(t, x) =

⎛
⎜⎜⎝
−d1x1 0 0 0

0 −d1x1 0 0
0 0 d1(1− x1) 0
0 0 0 d1(1− x1)

⎞
⎟⎟⎠

︸ ︷︷ ︸
F1(x)

⎛
⎜⎜⎝

∂x1ue00(t, x)
∂x1ue01(t, x)
∂x1ue10(t, x)
∂x1ue11(t, x)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
−d2x2 0 0 0

0 d2(1− x2) 0 0
0 0 −d2x2 0
0 0 0 d2(1− x2)

⎞
⎟⎟⎠

︸ ︷︷ ︸
F2(x)

⎛
⎜⎜⎝

∂x2ue00(t, x)
∂x2ue01(t, x)
∂x2ue10(t, x)
∂x2ue11(t, x)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
−kon,1(x) 0 kon,1(x) 0

0 −kon,1(x) 0 kon,1(x)
koff ,1 0 −koff ,1 0
0 koff ,1 0 −koff ,1

⎞
⎟⎟⎠

︸ ︷︷ ︸
Q1(x)

⎛
⎜⎜⎝
ue00(t, x)
ue01(t, x)
ue10(t, x)
ue11(t, x)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
−kon,2(x) kon,2(x) 0 0
koff ,2 −koff ,2 0 0
0 0 −kon,2(x) kon,2(x)
0 0 koff ,2 −koff ,2

⎞
⎟⎟⎠

︸ ︷︷ ︸
Q2(x)

⎛
⎜⎜⎝
ue00(t, x)
ue01(t, x)
ue10(t, x)
ue11(t, x)

⎞
⎟⎟⎠ .

We remark that each of these matrices can be written as a tensorial product of the
corresponding two-dimensional operator with the identity matrix:

• F1(x) = F (1)(x)⊗ I2 • Q1(x) = Q(1)(x)⊗ I2
• F2(x) = I2 ⊗ F (2)(x) • Q2(x) = I2 ⊗ Q(2)(x)

• F (i)(x) =
(−di xi 0

0 di (1− xi )

)
• Q(i)(x) =

(−kon,i (x) kon,i (x)
koff ,i −koff ,i

)
.

The master Eq. (2) is obtained by taking the adjoint operator of L:

∂u

∂t
(t, x) = L∗u(t, x) = −

n∑
i=1

∂

∂xi
(Fiu)(t, x)+

n∑
i=1

Kiu(t, x)

where K (x) = QT (x) is the transpose matrix of Q.
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C Diffusion approximation

C.1 Definition of the SDE

In this section, we apply a key result of Pakdaman et al. (2012) to build the diffusion
limit of the PDMPsystem (1). Let us denote Xt a trajectory satisfying theODE system:

ẋ(t) = v(x(t)),

where v : x → d
(

kon(x)
kon(x)+koff − x

)
characterizes the deterministic system (4). We

consider the process Z ε
t defined by:

Z ε
t =

1√
ε
(Xε

t − Xt ),

where Xtε verifies the PDMP system. Then, from the theorem 2.3 of Pakdaman et al.
(2012) the sequence of processes {Z ε

t }ε converges in law when ε → 0 to a diffusion
process which verifies the system:

dZt = ∂xv(Xt )Ztdt + σ(Xt )dBt , (35)

where Bt denotes the Brownian motion. The diffusion matrix �(x) = σ(x)σ T (x) is
defined by:

∀i, j = 1, . . . , n, �i, j (x) :=
∑
e

2Wi (x, e)φ j (x, e)ζ(x, e),

where ∀e ∈ PE , W (x, e) = d(e− x)− v(x), and φ is solution of a Poisson equation:

⎧⎨
⎩
∀e ∈ PE ,∀i = 1, . . . , n : ∑e′ Qee′(x)φi (x, e′) = −Wi (x, e),∑
e∈PE

φi (x, e)ζ(x, e) = 0. (36)

Let ζ be a probability vector in SE representing the stationary measure of the jump
process on promoters knowing proteins : ∀x ∈ �, ζ(x, ·)Q(x) = 0. We have: ∀e ∈
PE , ζ(x, e) =

n∏
i=1

k
ei
on,i (x)k

1−ei
off ,i

kon,i (x)+koff ,i .

It is straightforward to see that for all i = 1, . . . , n:Wi (x, e) = di
(
ei − kon,i (x)

kon,i (x)+kof f ,i
)
.

Then, let us define φ such that:

∀e ∈ PE ,∀i = 1, . . . , n : φi (x, e) = di
kon,i (x)+ kof f ,i

(
ei − kon,i (x)

kon,i (x)+ kof f ,i

)
.
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We verify that this vector φ is solution to the Poisson equation (36) for all x . The
matrix �(x) is then a diagonal matrix defined by:

∀i = 1, . . . , n : �i i (x) = 2
d2i k

2
on,i (x)kof f ,i + d2i k

2
of f ,i kon,i (x)

(kon,i (x)+ kof f ,i )4

= 2
d2i kon,i (x)kof f ,i

(kon,i (x)+ kof f ,i )3
. (37)

For all x ∈ �, the matrix σ(x) is then also diagonal and defined by:

∀i = 1, . . . , n, σi i (x) =
√

2d2i kon,i (x)kof f ,i
(kon,i (x)+ kof f ,i )3

,

and we have defined all the terms of the diffusion limit (35).

C.2 The Lagrangian of the diffusion approximation is a second-order
approximation of the Lagrangian of the PDMP system

It is well known that the diffusion approximation satisfies a LDP of the form (12)
(Freidlin and Wentzell 2012). The formula (37) allows to define the Lagrangian asso-
ciated to this LDP, that we denote Ld . From the theorem 2.1 of Freidlin and Wentzell
(2012), we have:

∀x, v ∈ �×�v(x) : Ld(x, v)

=
n∑

i=1

(kon,i (x)+ kof f ,i )3

4d2i kon,i (x)kof f ,i

(
vi − di

(
kon,i (x)

kon,i (x)+ kof f ,i
− xi

))2

. (38)

Note that for any fixed x ∈ �, Ld(x, ·) is a quadratic function.
We recall that the Lagrangian associated to the LDP for the PDMP system, that we

found in Theorem 3, is defined for all x, v ∈ �×�v(x) by:

L(x, v) =
n∑

i=1

(√
koff ,i

vi + di xi
di

−
√
kon,i (x)

di (1− xi )− vi

di

)2

.

Expanding this Lagrangian with respect to v around v (the drift of the relaxation
trajectories), we obtain:

L(x, v) =
n∑

i=1

⎛
⎝ kon,i (x)+ kof f ,i

2di
√

kon,i (x)kof f ,i
kon,i (x)+kof f ,i

⎞
⎠

2

(vi − vi )
2 + o (vi − vi )

2 = Ld (x, v)+ o (vi − vi )
2 .
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Thus, we proved that the Lagrangian of the diffusion approximation of the PDMP
process corresponds to the two first order terms in (vi − vi ) of the Taylor expansion
of the real Lagrangian.

D Example of interaction function

We recall that we assume that the vector koff does not depend on the protein vector.
The specific interaction function chosen comes from a model of the molecular

interactions at the promoter level, described in Herbach et al. (2017):

kon,i (X) = k0,i + k1,i (σi Xi )
mii
i (X)

1+ (σi Xi )mii 
i (X)
, (39)

with:

• k0,i the basal rate of expression of gene i ,
• k1,i the maximal rate of expression of gene i ,
• mi, j an interaction exponent, representing the power of the interaction between
genes i and j ,

• σi is the rescaling factor depending on the parameters of the full model including
mRNAs,

• θ a matrix defining the interactions between genes, corresponding to a matrix with
diagonal terms defining external stimuli, and

• 
i (X) = eθi,i
∏

j 
=i
1+eθ j,i+θ j, j (σ j X j )

m ji

1+eθ j, j (σ j X j )
m ji

.

For a two symmetric two-dimensional network, we have for any x = (x1, x2) ∈ �:

∂x2kon,1(x)

x1
= m21eθ22xm21−1

2 eθ11xm11−1
1 (1− eθ12)

1+ eθ22xm21
2 + eθ11xm11

1 + xm21
2 xm11

1 eθ11+θ22+θ12
.

When m11 = m22 = m12 = m21 and θ12 = θ21, we have then for every x ∈ �:

∂x2kon,1(x)

x1
= ∂x1kon,2(x)

x2
.

Thus, for all x ∈ �, when d1 = d2 we have:

∂x2

(
−kon,1(x)

d1x1
+ koff ,1

d1(1− x1)

)
= ∂x1

(
−kon,2(x)

d2x2
+ koff ,2

d2(1− x2)

)
.

As a consequence, owing to the Poincaré lemma, there exists a function V ∈ C1(�, R)

such that the condition (26) is satisfied: one has

∀i = 1, 2 : ∂xi V (x) = −kon,i (x)

di xi
+ koff ,i

di (1− xi )
.
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E Description of the toggle-switch network

This table describes the parameters of the symmetric two-dimensional toggle-switch
used all along the article. These values correspond to the parameters used for the
simulations. The rescaling in time by the parameter scale d̄ , for the model presented
in Sect. 2, corresponds to divide every k0,i , k1,i , di by d̄ = 0.2. The mean values k̄i
and di are then, as expected, of order 1 for every gene i .

(i, j) k0,i k1,i di σi mi,i mi, j θi,i θi, j koff ,i

(1,2) 0, 012/ε 0.39/ε 0, 2 5 3 3 7 −7 1, 25/ε
(2,1) 0, 012/ε 0.39/ε 0, 2 5 3 3 7 −7 1, 25/ε

F Details on the approximation of the transition rate as a function of
probability (7)

In this section, we adapt the method developed in Cérou et al. (2011) to justify the
formula (8) provided in Sect. 4.1, which approximate for every pair of basins (Zi , Z j )
the transition rate ai j as a function of the probability (7).

F.1 General setting

Let us consider r , R such that 0 < r < R, we recall that γZi and 
Zi denote
respectively the r -neighborhood and the R-neighborhood of the attractor Xeq,Zi .
Let us consider a random path Xε

t of the PDMP system, with initial condition
Xε
0 = x0 ∈ ∂
Zi . We define the series of stopping times (με

l )l∈N, (σ ε
l )l∈N∗ such

that με
0 = 0 and for all l ∈ N∗ :

• σε
l = inf{t ≥ με

l−1 | Xε
t ∈ {γZi ∪ {

⋃
k 
=i

Zk}},
• με

l = inf{t ≥ σε
l | Xε

t ∈ Zi \ 
Zi }.
We then define Y ε

l = Xε
σl
. If Y ε

l ∈ Z j , we set ∀k > l : σε
k = με

k = ∞ and the chain
Y ε
l stops.
From the formula (6) characterizing the transition rates, we can write:

aε
i j 	

Px0(Ẑ
ε
1 = Z j )

Ex0(τ
ε
1 )

=
Px0

(
T ε
Z j

< T ε

{Z\{Zi∪Z j }}
)

E(σwε
i
)

, (40)

where we define the random variable: wε
i = inf{l | Y ε

l ∈
⋃
k 
=i

Zk}.
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Fig. 14 Illustration of the
stopping times σl and μl
describing respectively the lth

entrance of a random path Xt in
a r -neighborhood γ of an
attractor Xeq , and its lth exit
from a R-neighborhood 


Let us denote T
ε

Zi ,Zi = E(σ ε
l+1 − σε

l | Y ε
l ∈ γZi , Y

ε
l+1 ∈ γZi ). We can make the

following approximation:

E(σwε
i
) 	 E(wε

i )× T
ε

Zi ,Zi .

Indeed, the quantity on the left hand side is close to the mean number of attempts
for reaching, from ∂
Zi , a basin Zk , k 
= i , before γZi , which is equal to E(wε

i ),
multiplied by the mean time of each attempt (knowing that at each step l, Y ε

l ∈ γZi ),
which is exactly T

ε

Zi ,Zi . We should add the mean time for reaching ∂Z j from ∂
Zi
at the last step, but it is negligible when the number of attempts is large, which is the
case in the small noise limit.

F.2 Method when@0Zi is reduced to a single point

We consider the case when ∂
Zi is reduced to a single point. It can happen for example
when we consider only one gene (� = (0, 1)) and when the attractor Xeq,Zi is located
at a distance smaller than r from one of the boundaries of the gene expression space
(Xeq,Zi < r or Xeq,Zi > 1− r ). In such situation, a random path crosses necessarily
the same point x0 to both exit 
Zi and come back to γZi (if it does not reach a
basin Z j before): the Markov property of the PDMP process then justifies that the
quantities E

(
σε
l − με

l−1 | Y ε
l−1 /∈ Z j

)
and E

(
με
l − σε

l | Y ε
l /∈ Z j

)
do not depend of l.

Then 1Y ε
l ∈Z j behaves like a discrete homogeneous Markov chain with two states, 1

being absorbing.
Let us define a second random variable W ε

i j = inf{l | Y ε
l ∈ Z j }. The homogeneity

of the Markov chain 1Y ε
l ∈Z j ensures that W

ε
i j follows a geometric distribution. Its

expected value is then the reverse of the parameter of the geometric law, i.e:E(W ε
i j ) =

(pε
i j (x0))

−1.
Moreover, it is straightforward to see that from the same reasoning applied to any

Zk , k 
= i :

E(wε
i ) =

1∑
k 
=i

pε
ik(x0)

= 1

pε
i j (x0)

pε
i j (x0)∑

k 
=i
pε
ik(x0)

= E(W ε
i j )× Px0

(
T ε
Z j

< T ε

{Z\{Zi∪Z j }}
)
.

Thus, from (40) we can approximate the transition rate by the formula (8).
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F.3 Method in the general case

The difficulty for generalizing the approach described above,when ∂
Zi is not reduced
to a single point, is to keep the Markov property, which has been used to cut the
trajectories into pieces. Heuristically, the same argument which led us to approximate
the PDMP system by a Markov jump process can be used to justify the asymptotic
independence on l of the quantity E(με

l − σε
l | Y ε

l /∈ Z j ): for ε � 1, any trajectory
starting on ∂γZi will rapidly loose the memory of its starting point after a mixing time
within γZi . But it is more complicated to conclude on the independence from l of the
quantity E(σ ε

l −με
l−1 | Y ε

l−1 /∈ Z j ), which may depend on the position of Xε
μl−1 when

the gene expression space is multidimensional.
We introduce two hypersurfaces γmin,Zi = {x ∈ Zi , pε

i j (x) = c1} and 
min,Zi =
{x ∈ Zi , pε

i j (x) = c2}, where c1 < c2 are two small constants. We substitute to
the squared euclidean distance, used for characterizing the neighborhood γZi and

Zi , a new function based on the probability of reaching the (unknown) boundary:
∀x, y ∈ Zi , || x − y ||2←| pε

i j (x) − pε
i j (y) |. The function pε

i j is generally called
committor, and the hypersurfaces γmin,Zi and 
min,Zi isocommittor surfaces. The
committor function is not known in general; if it was, employing a Monte-Carlo
method would not be necessary for obtaining the probabilities (7). However, it can be
approximated from the potential of the PDMP systemwithin each basin, defined in the
equilibrium case by the well-knownBoltzman law: V = − ln(û), û being themarginal
on proteins of the stationary distribution of the process. Indeed, for reasons that are
precisely the subject of Sect. 4.2 (studied within the context of Large deviations), the
probability pε

i j (x) is generally linked in the weak noise limit to the function V by the
relation:

∀x ∈ Zi : pε
i j (x) ∼

ε→0
Ci j e

V (x)/ε,

where Ci j is a constant specific to each pair of basins (Zi , Z j ). We remark that when
ε is small, a cell within a basin Z j ∈ Z is supposed to be most of the time close
to its attractor: a rough approximation could lead to identify the activation rate of a
promoter ei in each basin by the dominant rate within the basin, corresponding to the
value of kon,i on the attractor. For any gene i = 1, . . . , n and any basin Z j ∈ Z , we
can then approximate:

∀x ∈ Z j : kon,i (x) ≈ kon,i (Xeq,Z j ).

Under this assumption, the stationary distribution of the process is close to the sta-
tionary distribution of a simple two states model with constant activation function,
which is a product of Beta distributions (Herbach et al. 2017). We then obtain an
approximation of the marginal on proteins of the stationary distribution within each
basin Z j :

pZ j ≈
n∏

i=1
Beta

(
kon,i (Xeq,Z j )

εdi
,
koff ,i
εdi

)
,
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By construction, this approximation is going to be better in a small neighborhood of
the attractor Xeq,Z j . Thus, this expression provides an approximation of the potential
V around each attractor Xeq,Z j :

V ≈ − ln
(
pZ j

)
. (41)

In every basin Zi , and for all x ∈ Zi close to the attractor, the hypersurfaces where pε
i j

is constant will be then well approximated by the hypersurfaces where the explicitly
known function ξZi = − ln (pZi ) is constant.

For each attractor Xeq,Zi , we can then approximate the two isocommittor surfaces
described previously:

{
γmin,Zi 	 {x ∈ Zi | ξZi (x) = c′1}

min,Zi 	 {x ∈ Zi | ξZi (x) = c′2},

(42)

where c′1 and c′2 are two constants such that ξZi (Xeq,Zi ) < c′1 < c′2.
We then replace γZi and 
Zi by, respectively, γmin,Zi and 
min,Zi in the definitions

of the stopping times με
l and σε

l provided in Sect. F.1. From the proposition 1. of
Cérou et al. (2011), we obtain that, as in the simple case described in Sect. F.2,
E(σ ε

l − με
l | Y ε

l /∈ Z j ) is independent of l. Defining W ε
i j = inf{l | Y ε

l ∈ Z j },
the definition of 
min,Zi allows to ensure that W ε

i j does not depend on the point x0
of 
min,Zi which is crossed at each step l ′ < W ε

i j . This random variable follows

then a geometric distribution, with expected value (pε
i j (x0))

−1, and we can derive an
expression of the form (8).

G AMS algorithm

We use an Adaptive Multilevel Splitting algorithm (AMS) described in Bréhier et al.
(2016). The algorithm provides for every Borel sets (A, B) an unbiased estimator of
the probability:

Pε
x (τ

ε
A < τε

B).

It is supposed that the random process attains easily A from x , more often than B,
called the target set.

The crucial ingredient we need to introduce is a score function ξ(·) to quantify the
adaptive levels describing how close we are from the target set B from any point x .
The variance of the algorithm strongly depends on the choice of this function.

The optimal score function is the function x �→ Pε
x (τ

ε
A < τε

B) itself, called the
committor which is unknown. It is proved, at least for multilevel splitting algorithms
applied to stochastic differential equations in Dean and Dupuis (2009), Budhiraja and
Dupuis (2019), that if a certain scalar multiplied by the score function is solution of the
associated stationary Hamilton–Jacobi equation, where the Hamiltonian comes from
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the Large deviations setting, the number of iterations by the algorithm to estimate the
probability in a fixed interval confidence grows sub-exponentially in ε.

For the problem studied in this article, for every basin Z j ∈ Z , we want to esti-
mates probabilities substituting A to γ j and B to another basin Zk , k 
= j . Using
the approximation of V given by the expression (34), we obtain the following score
function, up to a specific constant specific to each basin:

ξ(x) = − ln

(
sup
Zm∈Z

(∏
i

Beta

(
kon,i (Xeq,Zm )

εdi
,
koff ,i
εdi

)
(x)

))
.

We remark that this last approximation allows to retrieve the definition of the local
potential (41) defined on Appendix F.3, when the boundary of the basins are approx-
imated by the leading term in the Beta mixture. The approximation is justified by the
fact that for small ε, the Beta distributions are very concentrated around their centers,
meaning that for every basin Zk ∈ Z , k 
= j :

∀x ∈ Z j ,
∏
i

Beta

(
kon,i (Xeq,Zk )

εdi
,
koff ,i
εdi

)
(x)�

∏
i

Beta

(
kon,i (Xeq,Z j )

εdi
,
koff ,i
εdi

)
(x).

We supposed that ∀Z j ∈ Z , μz(Z j ) > 0, where μz denotes the distributions on
the basins. This is a consequence of the more general assumption that the stationary
distribution of the PDMP system is positive on thewhole gene expression space, which
is necessary for rigorously deriving an analogy of the Gibbs distribution for the PDMP
system (see Sect. 4.2.2).

We modify the score function to be adapted for the study of the transitions from
each basin Z j to Zk , k 
= j :

ξk(x) = − ln

(
sup
Zm∈Z

(∏
i

Beta

(
kon,i (Xeq,Zm )

εdi
,
koff ,i
εdi

)
(x)

))

+ ln

(∏
i

Beta

(
kon,i (Xeq,Zk )

εdi
,
koff ,i
εdi

)
(x)

)
.

This function is specific to each transition to a basin Zk but defined in the whole gene
expression space. We verify: ξk(x) ≤ 0 if x ∈ � \ Zk and ξk(x) = 0 if x ∈ Zk . We
use ξk as the score function for the AMS algorithm.

In order to estimate probabilities of the type Pε
x (τ

ε
Zk

< τε
γ j

) for x ∈ Z j , we need
to approximate the boundaries of the basins of attraction, which are unknown. For
this sake, we use again the approximate potential function ξ ≈ V to approximate the
basins only from the knowledge of their attractor:

∀Zk ∈ Z : Zk 	 {x ∈ � | argmax
Zm∈Z

(∏
i

Beta

(
kon,i (Xeq,Zm )

εdi
,
koff ,i
εdi

)
(x)

)
= Zk}.
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We use the Adaptative Multilevel Splitting algorithm described in Section 4 of
Bréhier et al. (2016), with two slight modifications in order to take into account the
differences due to the underlying model and objectives:
• First, a random path associated to the PDMP system does not depend only on the

protein state but is characterized at each time t by the 2n-dimensional vector: (Xt , Et ).
For any simulated random path, we then need to associate an initial promoter state.
However, we know that in the weak noise limit, for a protein state close to the attractor
of a basin, the promoter states are rapidly going to be sampled by the quasistationary
distribution: heuristically, this initial promoter state will not affect the algorithm. We
decide to initially choose it randomly under the quasistationary distribution. For every
x0 ∈ 
min, j beginning a random path in a basin Z j , we choose for the promoter state
of any gene i , ei0 , following a Bernoulli distribution:

ei0 ∼ B

(
1,

kon,i (x0)

koff ,i + kon,i (x0)

)
.

• Compared with (Bréhier et al. 2016), an advanced algorithm is used to improve
the sampling of the entrance time in a set γmin, j . In practice timestepping is required
to approximate the protein dynamics, and it may happen that the exact solution enters
γmin, j between two time steps, whereas the discrete-time approximation remains out-
side γmin, j .We propose a variant of the algorithm studied inGobet (2000) for diffusion
processes, where a Brownian Bridge approximation gives a more accurate way to test
entrance in the set γmin, j .

In the case of the PDMP system, we replace the Brownian Bridge approximation,
by the solution of the ODE describing the protein dynamics: considering that the
promoter state e remains constant between two timepoints, the protein concentration
of every gene i , xi (t) is a solution of the ODE: ˙xi (t) = di (ei − xi (t)), which implies:

∀t ∈ [0,�t] : xi (t) = ei + (xi (0)− ei )e
−tdi .

We show that for one gene, the problem can be easily solved. Indeed, let us denote
Xieq,Z j

the i th component of the vector Xeq,Z j . The function: fi (t) = (xi (t)−Xeq,Z j i
)2

is differentiable and its derivative

f ′i (t) = −2di (xi (0)− ei )e
−tdi ((ei − Xieq,Z j

)+ (xi (0)− ei )e
−tdi ),

vanishes if and only if (xi (0)− ei )e−tdi = (Xieq,Z j
− ei ), i.e when

t = 1

di
ln

(
Xieq,Z j

− ei

xi (0)− ei

)
= ci .

Then, if ci ≤ 0 or ci ≥ �t , the minimum of the squared euclidean distance of the i-th
coordinate of the path to the attractor is reached at one of the points xi (0) or xi (�t). If
0 ≤ ci ≤ �t , the extremum is reached at xi (ci ). This value, if it is a minimum, allows
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us to determine if the process has reached any neighborhood of an attractor Xeq,Z j

between two timepoints.

For more than one gene, the minimum of the sum: || x − Xeq,Z j ||2=
n∑

i=1
(xi (t)−

Xieq,Z j
)2 is more complicated to find. If for all i = 1, . . . , n, di = d, which is the

case of the two-dimensional toggle-switch studied in Sect. 6, the extremum can be
explicitly computed:

t = 1

d
ln

⎛
⎜⎜⎝

n∑
i=1

(Xieq,Z j
− ei )(xi (0)− ei )

n∑
i=1

(xi (0)− ei )2

⎞
⎟⎟⎠ = c.

But we recall that for more than one gene, the set of interest is the isocommittor surface
γmin, j and not a neighborhood γ j . An approximation consists in identifying γmin, j

to the r -neighborhood of Xeq,Z j , where r is the mean value of || x − Xeq,Z j ||2 for
x ∈ γmin, j .

If the parameters di are not all similar, we have to make the hypothesis that the
minimum is close to the minimum for each gene. In this case, we just verify that
for any gene i , the value of the minimum xi (ci ) for every gene is not in the set
{xi | x ∈ γZ j }: if it is the case for one gene, we consider that the process has reached
the neighborhood γZ j of the basins Z j between the two timepoints.

H Proofs of Theorems 4 and 5

First, we recall the theorem of characteristics applied to Hamilton–Jacobi equation
(Evans 2010), which states that for every solution V ∈ C1(�, R) of (25), the system
(16) associated to V

{
p(t) = ∇x V (φ(t))

φ̇(t) = ∇pH(φ(t), p(t)),

is equivalent to the following system of ODEs on (x, p) ∈ �× Rn , for x(0) = φ(0)
and p(0) = ∇x V (x(0)):

{
ṗ(t) = −∇x H (x(t), p(t))

ẋ(t) = ∇pH (x(t), p(t)) .

A direct consequence of this equivalence with an ODE system is that two optimal
trajectories associated to two solutions of the stationary Hamilton–Jacobi equation
cannot cross each other with the same velocity. We then have the following lemma:

Lemma 2 Let V1 and V2 be two solutions of (25) in C1(�, R).
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For any trajectories φ1
t , φ

2
t ∈ C1,pw

0T (�) solutions of the system (16) associated
respectively to V1 and V2, if there exists t ∈ [0, T ] such that φ1(t) = φ2(t) and
φ̇1(t) = φ̇2(t), then one has φ1(t) = φ2(t) for all t ∈ [0, T ].

This corollary is important for the two first items of the proof of Theorem 4:

Corollary 1 For any solution V ∈ C1(�, R) of (25) and any trajectoryφt ∈ C1,pw
0T (�)

satisfying the system (16) associated to V , we have the equivalence:

∃ t ∈ [0, T ], ∀i ∈ {1, . . . , n} : φ̇i (t) = di

(
kon,i (φ(t))

kon,i (φ(t))+ koff ,i
− φi (t)

)
⇐⇒∀t ∈ [0, T ] : ∇x V (φ(t)) = 0.

Proof We recall that the relaxation trajectories correspond to trajectories satisfying
the system (16) associated to a constant function V , i.e such that ∇x V = 0 on the
whole trajectory. At any time t , the correspondence between any velocity field v of
�v and a unique vector field p, proved in Theorem 3 with the relation (24), allows to
ensure that:

∀i ∈ {1, . . . , n} : φ̇i (t) = di

(
kon,i (φ(t))

kon,i (φ(t))+ koff ,i
− φi (t)

)
⇐⇒ p(t)

= ∇x V (φ(t)) = 0.

The Lemma 2 ensures that any trajectory which verifies the same velocity field than a
relaxation trajectory at a given time t is a relaxation trajectory: we can then conclude.

��
Finally, the following lemma is important for thefirst itemof the proof ofTheorem4:

Lemma 3 ∀i ∈ {1, . . . , n}, ∀x ∈ � we have:

• ∂

∂ pi
H(x, p′) = 0 ⇐⇒ Hi (x, p

′
i ) = min

pi∈R
Hi (x, pi ),

• min
pi∈R

Hi (x, pi ) ≤ 0,

• min
pi∈R

Hi (x, pi ) = 0 ⇐⇒ xi = kon,i (x)

kon,i (x)+ koff ,i
.

Proof We have seen in the proof of Theorem 2 that for all i = 1, . . . , n and for all
x ∈ �, Hi (x, ·) is strictly convex, and that Hi (x, pi )→∞ as pi →±∞. Moreover,

Hi (x, pi ) vanishes on two points pi1 = 0 and pi2 = − kon,i (x)
di xi

+ koff ,i (x)
di (1−xi ) inside R.

Then, the min on pi is reached on the unique critical point p′i ∈ [pi1, pi2 ], and we
have: H(x, p′i ) = min

pi∈R
Hi (x, pi ) ≤ 0.

Finally:

min
pi∈R

Hi (x, pi ) = 0 ⇐⇒ p′i = pi1 = pi2 = 0
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⇐⇒ xi = kon,i (x)

kon,i (x)+ koff ,i
.

��
We now prove the theorem 4.

Proof of Theorem 4.(i) Weconsider a trajectoryφt satisfying the system (16) associated
to V . We recall that the Fenchel-Legendre expression of the Lagrangian allows to
state that the vector field p associated to the velocity field φ̇(t) by the relation (24)
is precisely p = ∇x V (φ(t)). When V is such that H(·,∇x V (·)) = 0 on �, we have
then for any time t :

L(φ(t), φ̇(t)) =
n∑

i=1
∂xi V (φ(t))φ̇i (t). (43)

We recall that from Theorem 3 :

L(φ(t), φ̇(t)) = 0 ⇐⇒
(
∀i = 1, . . . , n : φ̇i (t) = di

(
kon,i (φ(t))

kon,i (φ(t))+ koff ,i
− φi (t)

))
.

From this and (43), we deduce that for such an optimal trajectory:

φ̇(t) = 0 "⇒
(
∀i = 1, . . . , n : φ̇i (t) = di

(
kon,i (φ(t))

kon,i (φ(t))+ koff ,i
− φi (t)

))
.

The velocity field then vanishes only at the equilibrium points of the deterministic
system.

Conversely, we recall that for such trajectory we have for any t :

{
φ̇(t) = ∂H

∂ p (φ(t),∇x V (φ(t))),

H(φ(t),∇x V (φ(t)) = 0.

Assume that for all i = 1, . . . , n, φi (t) = kon,i (φ(t))
kon,i (φ(t))+koff ,i . Then, by Lemma 3, we

have: min
pi∈R

Hi (φ(t), pi ) = 0 for all i .

Thereby, H(φ(t),∇x V (φ(t))) = 0 if and only if for all i Hi (φ(t), ∂xi V (φ(t)) =
min
pi∈R

Hi (φ(t), pi ) = 0,which implies: ∂H
∂ p (φ(t),∇x V (φ(t))) = φ̇(t) = 0.The lemma

is proved. ��
Proof of Theorem 4.(ii) From the Corollary 1, if ∇x V (φ(t)) = 0, the trajectory is a
relaxation trajectory, alongwhich the gradient is uniformly equal to zero. The condition
(C) implies that it is reduced to a single point: φ̇(t) = 0. Conversely, with the same
reasoning that for the proof of (i):

φ̇(t) = 0 "⇒ L(φ(t), φ̇(t)) = 0 "⇒ ∀i : φ̇i (t) = di

(
kon,i (φ(t))

kon,i (φ(t))+ koff ,i
− φi (t)

)
.
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We recognize the equation of a relaxation trajectory, which implies: ∇x V (φ(t)) = 0.
Thus, for any optimal trajectory satisfying the system (16) associated to a solution V
of the Eq. (25) satisfying the condition (C), we have for any time t :

φ̇(t) = 0 ⇐⇒ ∇x V (φ(t)) = 0.

From the equivalence proved in (i), the condition (C) then implies that the gradient of
V vanishes only on the stationary points of the system (4). ��
Proof of Theorem 4.(iii) As a consequence of (ii), for any optimal trajectory φt associ-
ated to a solution V of (25) which satisfies the condition (C), we have for all t > 0:

φ̇(t) = 0 ⇐⇒ ∇x V (φ(t)) = 0.

Then, if there exists t > 0 such that φ̇(t) 
= 0, it cannot be equal to the drift of a
relaxation trajectory, defined by the deterministic system (4), which is known to be
the unique velocity field for which the Lagrangian vanishes (from Theorem (3)). Then
it implies:

φ̇(t) 
= 0 "⇒ L(φ(t), φ̇(t)) 
= 0.

The relation (43), combined to the fact that the Lagrangian is always nonnegative
allow to conclude:

φ̇(t) 
= 0 "⇒
n∑

i=1
∂xi V (φ(t))φ̇i (t) = ∂V

∂t
(φ(t)) > 0.

Thus, the function V strictly increases on these trajectories.
Furthermore, on any relaxation trajectory φr (t), from the inequality (15) we have

for any times T 1 < T 2 :

0 =
∫ T2

T1
L(φ f (t), φ̇r (t))dt ≥ V (φr (T2))− V (φr (T1)).

The equality holds between T 1 and T 2 if and only if for any t ∈ [T 1, T 2]:
L(φ(t), φ̇(t)) = 0. In that case, from Theorem 3the drift of the trajectory is nec-
essarily the drift of a relaxation trajectory between the two timepoints and then, from
Corollary 1, ∇x V = 0 on the set of points {φ(t), tR+}, which is excluded by the
condition (C) (when this set is not reduced to a single point). Thus, if φ(T1) 
= φ(T2),
we have: V (φ(T1)) > V (φ(T2)).

By definition, for any basin Zi and for all x ∈ Zi there exists a relaxation trajectory
connecting x to the associated attractor Xeq,Zi . So ∀x ∈ Zi , V (x) > V (Xeq,Zi ). ��
Proof of Theorem 4.(iv) Let V be a solution of (25) satisfying the condition (C).
We consider trajectories solutions of the system defined by the drift φ̇(t) =
−∇pH(φ(t),∇x V (φ(t))). We recall that from (iii), the condition (C) ensures that
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V decreases on these trajectories, and that for all t1 < t2: V (φ(t1)) − V (φ(t2)) =
Q(φ(t2), φ(t1)) > 0. Then, the hypothesis lim

x→∂�
V (x) = ∞ ensures that such trajec-

tories cannot reach the boundary ∂�: if it was the case, we would have a singularity
inside�, which is excluded by the condition V ∈ C1(�, R). The same reasoning also
ensures that there is no limit cycle or more complicated orbits for this system.

Recalling that from (i) and (ii), the fixed point of this system are reduced to the
points where ∇x V = 0 on �, we conclude that for all x ∈ �, there exists a fixed
point a ∈ �, satisfying ∇x V (a) = 0, such that a trajectory solution of this system
converges to a, i.e: V (x)− V (a) = Q(a, x).

As from the inequality (15), we have for every point a the relation V (x)− V (a) ≤
Q(a, x), the previous equality corresponds to a minimum and we obtain the formula:

∀x ∈ �, V (x) = min{a∈�|∇x V (a)=0} V (a)+ Q(a, x).

��
Proof of Theorem 4.(v) Let V be a solution of (25) satisfying the condition (C). We
denote by νV the drift of the optimal trajectories φt on [0, T ] satisfying the system
(16) associated to V : ∀t ∈ [0, T ], φ̇(t) = ∇pH(φ(t),∇x V (φ(t))) = νV (φ(t)). We
call trajectories solution of this system reverse fluctuations trajectories.

For any basin Zi associated to the stable equilibrium of the deterministic system
Xeq,Zi , we have:

• From (i), νV (Xeq,Zi ) = 0 and ∀x ∈ Zi \ Xeq,Zi : νV (x) 
= 0.
• From (iii), we know that V increases on these trajectories: ∀x ∈ Zi \ Xeq,Zi :
〈∇x V (x), νV (x)〉 > 0.

• From (iii), we also have: V (Xeq,Zi ) = min
x∈Zi

V (x).

Without loss of generality (since we only use ∇x V ), we can assume V (Xeq,Zi ) = 0.
We have then: ∀x ∈ Zi \ {Xeq,Zi } , V (x) > 0. Moreover, since we have assumed
that Xeq,Zi is isolated, there exists δV > 0 such that Zi contains a ball B(Xeq,Zi , δV ).
Therefore, V reaches a local minimum at Xeq,Zi . Conversely if V reaches a local
minimum at a point x̄ , then x̄ is necessarily an equilibrium (from (ii)), and the fact
that V strictly decreases on the relaxation trajectories ensures that it is a Lyapunov
function for the deterministic system, and then that x̄ is a stable equilibrium. The
stable equilibria of the deterministic system are thereby exactly the local minima of
V , and for any attractor Xeq,Zi , V is also a Lyapunov function for the system defined
by the drift−νV , for which Xeq,Zi is then a locally asymptotically stable equilibrium.
Thereby, stable equilibria of the deterministic system are also stable equilibria of the
system defined by the drift −νV .

It remains to prove that no unstable equilibria the deterministic system is stable
for the system defined by the drift −νV . Let x̄ be an unstable equilibrium of the
relaxation system, then V does not reach a local minimum at x̄ . Therefore, as close as
we want of x̄ there exists x such that V (x) < V (x̄). We recall that reverse fluctuations
trajectories φt starting from such a point and remaining in�will have V (φ(t)) striclty
decreasing: by Lyapunov La Salle principle, they shall be attracted towards the set
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{y,∇〈V (y), νV (y)〉 = 0}, which contains from (iii) only the critical points of V ,
which are from (i) the equilibria of both deterministic and reverse fluctuation systems.
In particular, either φt leaves � (and the equilibrium is unstable) or φt converges to
another equilibrium (since they are isolated) and this contradicts the stability. So we
have proved that stable equilibria of both systems are the same.

We then obtain that for any Zi , there exists δV such that:

∀x ∈ B(Xeq,Zi , δV ), ∃φt ∈ C1(�) : {φ(0) = x, ∀t ∈ [0, T ] : φ̇(t)

= −νV (φ(t)), , φ(T ) →
T→∞ Xeq,Zi }.

Reverting time, any point of B(Xeq,Zi , δV ) can then be reached from any small neigh-
borhood of Xeq,Zi . We deduce from Lemma 1 that:

∀x ∈ B(Xeq,Zi , δV ) : Q(Xeq,Zi , x) = V (x)− V (Xeq,Zi ).

Applying exactly the same reasoning to another function Ṽ solution of (25) and
satisfying (C), this ensures that V (x)− Ṽ (x) = V (Xeq,Zi )− Ṽ (Xeq,Zi ), at least for
x ∈ B(Xeq,Zi ,min(δV , δṼ )).

We recall that that from Lemma 2, two optimal trajectories φt , φ̃t solutions of the
system (16), associated respectively to two solutions V and Ṽ of the Eq. (25), cannot
cross each otherwithout satisfying∇x V = ∇x Ṽ along thewhole trajectories. Thereby,
we can extend the equality ∇x V = ∇x Ṽ on the basins of attraction associated to the
stable equilibrium Xeq,Zi for both systems defined by the drifts−νV or−νṼ . Thus, we
have proved that the basins associated to the attractors are the same for both systems.
We denote (Z f

i )Zi∈Z these common basins.
Under the assumption 2. of the theorem, we obtain by continuity of V that for every

pair of basin (Z f
i , Z f

j ), V (Xeq,Zi )− Ṽ (Xeq,Zi ) = V (Xeq,Z j )− Ṽ (Xeq,Z j ). It follows
that under this assumption, there exists a constant c ∈ R such that for every attractor
Xeq,Zi :

V (Xeq,Zi ) = Ṽ (Xeq,Zi )+ c. (44)

Moreover, the assumption 1. ensures that fromTheorem4.(iv), there exists a fixed point
a1 ∈ � (with∇x V (a1) = 0), such that a trajectory solution of the systemdefined by the
drift−νV converges to a1, i.e: V (x)−V (a1) = Q(a1, x). On one side, if a1 is unstable,
it necessarily exists on any neighborhood of a1 a point x2 such that V (x2) < V (a1). As
for all y ∈ �, Q(·, y) is positive definite,we have then another fixed pointa2 
= a1 such
that V (x2) = Q(a2, x2)+ V (a2). We obtain: V (x) > h(x, a1)+ Q(a2, x2)+ V (a2).
On the other side, by continuity of the function Q(a2, ·), for every δ1 > 0, x2 can be
chosen close enough to a1 such that: Q(a2, x2) ≥ Q(a2, a1)− δ1. We obtain:

∀δ1 > 0, ∃x2, ∃a2 
= a1 : V (x) > Q(a1, x)+ Q(a2, a1)+ V (a2)− δ1.

Repeating this procedure until reaching a stable equilibrium at a step N , which is
necessarily finite because we have by assumption a finite number of fixed points, we
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obtain the inequality

∀x ∈ �, ∀δ > 0, ∃(ak)n=1,...,N : V (x) > Q(a1, x)+ V (aN )+
N−1∑
k=1

Q(ak+1, ak)− δ,

where every ak denotes a fixed point and aN is an attractor. Using the triangular
inequality satisfied by Q, and passing to the limit δ→ 0, we find that V (x)−V (aN ) ≥
Q(aN , x). Moreover, from the inequality (15), we have necessarily Ṽ (x)− Ṽ (aN ) ≤
Q(aN , x). It then follows from (44) that Ṽ (x)+ c ≤ V (x).

Applying exactly the same reasoning for building a serie of fixed point (ãk)n=1,...,Ñ
such that ãÑ is an attractor and Ṽ (x) − Ṽ (ãÑ ) ≥ Q(ãÑ , x), we obtain Ṽ (x) ≥
V (x)− c. We can conclude:

∀x ∈ � : V (x) = Ṽ (x)+ c.

��
Proof of Theorem 5 First, we prove the following lemma:

Lemma 4 ∀i ∈ {1, . . . , n}, we have:
(i) ∃δl > 0, ∃ηl > 0, such that ∀x, y ∈ �, if yi < xi ≤ δl , then we have:

Q(x, y) ≥ ηl ln
xi
yi

.

(ii) ∃δr < 1, ∃ηr > 0, such that ∀x, y ∈ �, if yi > xi ≥ δr , then we have:

Q(x, y) ≥ ηr ln
1− xi
1− yi

.

Proof (i) We denote mi = min
x∈� kon,i (x). We have mi > 0 by assumption. We choose

a real number δ which satisfies these two conditions:

1. 0 < δl <
mi

di (mi+koff ,i ) ,

2.
√
koff ,iδl −√mi (1− δl) ≤ −

√
mi
2 .

On the one hand, we recall that the function vi → Li (x, vi ) =
(√

koff ,i
vi+di xi

di
−√

kon,i (x)
di (1−xi )−vi

di

)
is convex and vanishes only on vi = di

(
kon,i (x)

kon,i (x)+koff ,i − xi
)
.

Then, Li (x, ·) is decreasing on [−di xi , di
(

kon,i (x)
kon,i (x)+koff ,i − xi

)
].

On the other hand, for all x ∈ �, if xi ≤ δl , we have necessarily:

di
(

kon,i (x)
kon,i (x)+koff ,i − xi

)
≥ di (mi − δl) > 0 from the condition 1. Then, we obtain

that for all x ∈ �, if xi ≤ δl :

∀vi ∈ [−di xi , 0] : Li (x, vi ) ≥ Li (x, 0).
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From the condition 2., we also see that for all x ∈ �, if xi ≤ δl :

√
koff ,i xi −

√
kon,i (x)(1− xi ) ≤

√
koff ,iδl −

√
mi (1− δl) ≤ −

√
mi

2
,

which implies:

Li (x, 0) =
(√

koff ,i xi −
√
kon,i (x)(1− xi )

)2 ≥ mi

2
.

Then,weobtain that for any admissible trajectoryφt ∈ C1,pw
0T (�) (i.ewith a velocity

in �v(φ(t)) at all time) and such that φ(0) = x and φ(T ) = y, if yi < xi ≤ δl we
have:

JT (φ) =
T∫

0

L(φ(t), φ̇(t))dt ≥
T∫

0

Li (φ(t), φ̇i (t))dt ≥
T∫

0

1{φ̇i (t)≤0, φi (t)≤δl }Li (φ(t), φ̇i (t))dt,

≥
T∫

0

1{φ̇i (t)≤0, φi (t)≤δl }Li (φ(t), 0)dt ≥
T∫

0

1{φ̇i (t)≤0, φi (t)≤δl }
mi

2
dt,

≥ mi

2

l∑
k=1

(tr ,k − tl,k), (45)

where we denote {[tl,k, tr ,k]}k=1,...,l the l intervals on which the velocity φ̇i (t) < 0
and φi (t) < δl on the interval [0, T ]. As we now by assumption that φi (0) = xi ≤ δl
and φi (T ) = yi < φi (0), this set of intervals cannot be empty.

Moreover, for every k = 1, . . . , l,wehavebyassumption:∀t ∈ [tl,k, tr ,k], −diφi (t) ≤
φ̇i (t) ≤ 0. Then:

φi (tr ,k) ≥ φi (tl,k)e
−di (td,k−tg,k ).

As by definition, for every k = 1, . . . , l − 1, φ̇i (t) ≥ 0 on [tr ,k, tl,k+1], we have
φi (tl,k+1) ≥ φi (tr ,k) (because φ̇i (t) ≥ 0 on [tr ,k, tl,k+1]). Finally, we obtain:

φ(T ) = yi ≥ e
−di

(
l∑

k=1
tr ,k−tl,k

)
φi (0) = xi ,

which implies:

l∑
k=1

(tr ,k − tl,k) ≥ 1

di
ln

xi
yi

.
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This last inequality combined with (45) allows to conclude:

JT (φ) ≥ mi

2di
ln

xi
yi

.

Thus, if δl satisfies conditions 1. and 2., and fixing ηl = mi
2di

> 0, for every x, y ∈ �

such that yi < xi ≤ δl we have:

Q(x, y) ≥ ηl ln
xi
yi

.

(ii) Denoting Mi = max
x∈� kon,i (x) (which exists by assumption), we chose this time

the real number δr in order to satisfy these two conditions:

1. 1 > δr >
Mi

di (Mi+koff ,i ) ,

2.
√
koff ,iδr −√Mi (1− δr ) ≥

√
koff ,i
2 ,

and we fix ηr = koff ,i
2di

. The rest consists in applying exactly the same reasoning than
for the proof of (i) in a neighborhood of 1 instead of 0. ��

We deduce immediately the following corollary:

Corollary 2 ∀x ∈ �, lim
y→∂�

Q(x, y) = ∞.

Let us denote V ∈ C1(�, R) a solution of the Eq. (25), which satisfies the condition
(C). From the proof of Theorem 4.(v), we know that for any attractor Xeq,Zi , there

exists a ball B(Xeq,Zi , δ) ⊂ Z f
i , where Z f

i is the basin of attraction of Xeq,Zi for the
system defined by the drift −νV (·) = − ∂

∂ p H(·, ∂x V (·)). Moreover, as V decreases

on trajectories solutions of this system, the set ZV
i = {x ∈ Zi | V (x) ≤ min

y∈∂Zi
V (y)}

is necessarily stable: we have ZV
i ⊂ Z f

i .
We deduce that:

∀x ∈ ZV
i , ∃φt ∈ C1(�) : {φ(0) = x, ∀t ∈ [0, T ] : φ̇(t) = −νV (φ(t)), φ(T ) →

T→∞ Xeq,Zi },

and in that case Q(Xeq,Zi , x) = V (x) − V (Xeq,Zi ). If there existed y ∈ ∂� ∩ Z
V
i ,

we would have, by continuity of V and from Corollary 2:

lim
x→y

(V (x)− V (Xeq,Zi ) = lim
x→y

Q(Xeq,Zi , x) = ∞.

It would imply that min
y∈∂Zi

V (y) = ∞, which is impossible when ∂Zi 
= ∂�, which is

necessarily the case when there is more than one attractor.
Thus, there exists at least one point xi on the boundary ∂Zi \ ∂�, such that for

any neighborhood of Xeq,Zi , there exists a fluctuation trajectory starting inside and
converging to xi .
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We recall that we assume that � ⊂ ⋃
Zi∈Z

Zi . Then we have ∂Zi \ ∂� = ⋃
k 
=i
{∂Zi ∩

∂Zk} and there exists Z j such that: xi ∈ ∂Zi ∩ ∂Z j = ∂Zi \ Ri j . We obtain, by
continuity of V :

QRi j (Xeq,Zi , ∂Zi ∩ ∂Z j ) = min
y∈∂Zi∩∂Z j

V (y)− V (Xeq,Zi ) = V (xi )− V (Xeq,Zi ).

It remains to prove that under the assumption (A) of the theorem, xi = xi jun . On one
hand, from Theorem 4.(iii), V decreases on the relaxation trajectories. On the other
hand, if every relaxation trajectories starting in ∂Zi ∩∂Z j stay inside, they necessarily
converge from any point of ∂Zi ∩ ∂Z j to a saddle point (also in ∂Zi ∩ ∂Z j ). Then,

the minimum of V in ∂Zi ∩ ∂Z j is reached on the minimum of V on Xi j
un (the set of

all the saddle points in ∂Zi ∩ ∂Z j ), which is x
i j
un . Thus, if every relaxation trajectories

starting in ∂Zi ∩ ∂Z j stay inside, then XZi ∈ ∂Z j implies XZi = xi jun . The theorem
is proved. ��

I Algorithm to find the saddle points

We develop a simple algorithm using the Lagrangian associated to the fluctuation tra-
jectories (28) to find the saddle points of the deterministic system (4). This Lagrangian
is a nonnegative function which vanishes only at the equilibria of this system. Then,
if there exists a saddle point connecting two attractors, this function will vanish at this
point. Starting on a small neighborhood of the first attractor, we follow the direction
of the second one until reaching a maximum on the line (see 15a). Then, we follow
different lines, in the direction of each other attractor for which the Lagrangian func-
tion decreases (at least, the direction of the second attractor (see 15b)), until reaching
a local minimum.We then apply a gradient descent to find a local minimum (see 15c).
If this minimum is equal to 0, this is a saddle point, if not we repeat the algorithm
from this local minimum until reaching a saddle point or an attractor. Repeating this
operation for any ordered couple of attractors (Xeq,Zi , (Xeq,Z j )Zi ,Z j∈Z ,i 
= j , we are
likely to find most of the saddle points of the system. This method is described in
pseudo-code in Algorithm 1.
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Fig. 15 Saddle-point algorithm between two attractors. The color map corresponds to the Lagrangian
function associated to the fluctuation trajectories

Algorithm 1 Find the list of saddle points: list-saddle-points
Require: • The list of attractors: list-attractors = (Xeq,Zi )Zi∈Z
• The Lagrangian function to minimize on the saddle points: Lag : Rn → R+
• A gradient descent function, finding a local minimum of Lag from a point x : gradient-descent(x)
• A subdivision coefficient: α � 1
while Xeq,Zi ∈ list-attractors do

X = Xeq,Zi
while Xeq,Z j ∈ list-attractors\Xeq,Zi do

Lag0 = Lag(X)

X ← X + α(Xeq,Zi − Xeq,Z j )

while Lag(X) >= Lag0 do
Lag0← Lag(X)

X ← X + α(Xeq,Zi − Xeq,Z j )

end while
while Xeq,Z j ∈ list-attractors\Xeq,Zi do

while Lag(X) < Lag0 do
Lag0← Lag(x)
X ← X + α(Xeq,Zi − Xeq,Z j )

end while
X0 = gradient-descent(X)

if Lag(X0) = 0 then
list-saddle-points← X0

end if
end while

end while
end while

J Applicability of themethod for non-symmetric networks andmore
than two genes

We present in Figs. 16b and 17b an analogy of Fig. 8, which was presented for the
toggle-switch network, for two non-symmetric networks of respectively 3 and 4 genes.
The networks are presented on the left-hand side of Figs. 16b and 17b: the red arrows
represent the inhibitions and the green arrows represent the activations between genes.
A typical random trajectory for each network is presented in Figs. 16a and 17a.
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Fig. 16 a A random trajectory associated to the non-symmetric toggle-switch network of 3 genes with
ε = 1/8. The network is associated to 2 attractors only: Z−−− all the genes inactive, and Z+−− gene
1 active and gene 2 and gene 3 inactive due to the inhibitions. b Analogy of Fig. 8 between Z−−− and
Z+−−. We see that the analytical approximations of the transition rates are very accurate although we had
no theoretical evidence for the trajectories computed by the method presented in Sect. 5.3 to be optimal

We recall that we build the LDP approximation (in red) by using the cost of the
trajectories satisfying the system (28) between the attractors and the saddle points of
the system (4). The cost of these trajectories is known to be optimal when there exists a
solution V of the Eq. (25) which verifies the relations (26), which can generally happen
only under symmetry conditions. This is not the case nor for the 3 genes network of
Fig. 16b when there is no symmetry between the interactions, neither for the 4 genes
network of Fig. 17b. Then, we could expect that these LDP approximations would be
far from the Monte-Carlo and AMS computations, especially for the 4 genes network,
since we have no symmetry between the interactions, not only in value but also in sign.
However, we observe that the approximations given by our method seem to remain
relatively accurate.
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Fig. 17 a A random trajectory associated to the non-symmetric 4 genes network with ε = 1/8. The
network is associated to 3 attractors: Z−−−− all the genes inactive, Z+++− genes 1–2–3 active and gene
4 inactive, and Z++++ all the genes active. b: Analogy of Fig. 8 between Z++++ and Z+++−. The
analytical approximations seem to become accurate from ε 	 1/9
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Appendix K - Stationary distribution of the phenomenological model

In this new appendix, we prove that the stationary distribution characterizing the phenomeno-
logical model, described in Figure 11 (but slightly modifying the Markov chain on the basins),
appears as the mixture of Beta distributions stated in (33).
We consider ε = 1 for simplifying the notations. We consider a PDMP system on the 2n+ 1
variables (Xi, Ei)i=1,··· ,n and Z. Ei and Z are then discrete variables modeling the promoter
state pf gene i and the cellular type and Xi a continuous variable modeling the protein state. We
consider that Z follows a Markov chain on the discrete space (Z1, · · · , ZNZ ), where NZ denotes
the number of basins, with exponential rates defined by:

∀(k, l) ∈ {1, · · · , NZ}2 : aZk,Zl(x) =
ãZk,Zl∏

i
Beta

(
kon,i(Xeq,Zk )

di
,
koff ,i
di

)
(x)

. (2.1)

This process is well defined, by the same arguments as the ones used for justifying the process
(1.15). We denote µZ the stationary distribution of the Markov chain defined by the rates
(ãZk,Zl)k,l, whenever there exists. We consider that knowing the state Z = Zk, (X,E) follows a
PDMP system of the form (1.15) with constant burst rate functions kon,i(Xeq,Zk) and koff ,i. We
have the following theorem:

Proposition 10. Under the hypothesis that the Markov chain defined by the rates (ãZk,Zl)k,l
converges to a stationary distribution, the stationary distribution û of the phenomenological
model on (X,E,Z) with transition rates on Z defined by (2.1) has the density:

û(e, x, z) = µZ(z)
∏

i

Beta

(
kon,i(Xeq,z)

di
,
koff ,i
di

)
(x)× xi(1− xi)

|ei − xi|
. (2.2)

Proof. We can write the joint probability density u(t, e, x, z) of (Et, Xt, Zt) as a 2n-dimensional
vector u(t, x, z) = (ue(t, x, z))e∈PE ∈ R2n . Using similar arguments that for justifying (1.18), the
master equation on u can be written:

d

dt
u(t, x, z) = −

n∑

i=1

∂xi (Fi(x)u(t, x, z))+
n∑

i=1

Ki(x)u(t, x, z)+

NZ∑

k=1

aZk,z(x)u(t, x, Zk)−az,Zk(x)u(t, x, z).

Taking for all e ∈ PE the density (2.2), we obtain (see [36] for the details) that

n∑

i=1

d

dxi
(Fi(x)û(x, z))−

n∑

i=1

Ki(x)û(x, z) = 0,

and
[
NZ∑

k=1

aZk,z(x)û(x, Zk)− az,Zk(x)û(x, z)
]

e

=
∏

i

xi(1− xi)
|ei − xi|

×
NZ∑

k=1

(ãZk,zµZ(Zk)− ãz,ZkµZ(z)) .

Thus, if µZ is the stationary distribution of the Markov chain defined by the transitions rates
ãZk,Zl , the term on the right hand side is clearly equal to 0.

Taking the marginal on X of this distribution, we then obtain the Beta mixture of the form (33).
Interestingly, the modification (2.1) of the transition rates, with respect to the ones computed by
the formula (17), tends to force the jumps between cellular states when the proteins state is far
from the basins associated to the actual cellular state. Intuitively, this correction thus improves
the coupling between the process defined by the indicator function on the basins (seen as cell
types) when (E,X) follows the PDMP process associated to a given GRN, and the marginal on
the random variable Z of the phenomenological process associated to this GRN.
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Part II

Inference and simulation of gene
regulatory networks.
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Chapter 3

Method for reverse-engineering a
mechanistic model and application to
simulated datasets. Article published in
In Silico Biology.

We have seen in Chapter 2 that it was possible to reduce the PDMP model (1.15) into a discrete
coarse-grained model on the cellular types, and that this reduction motivated the construction
of an approximate phenomenological model associated to a GRN, able to reproduce the main
dynamics of the process while having an explicit stationary distribution.
In this chapter, we use these results for developing an algorithm which aims to infer a most-
likely GRN from a time-course serie of scRNA-seq data. The main idea consists in using the
Hamiltonian function found in Chapter 2 associated to a given GRN. To introduce the principle
of the method, let us consider that we observe a dataset X ∈ RC×n containing the expression of
proteins of C cells for n genes. We have seen in Chapter 2 that under the hypothesis that we
can estimate from this dataset the stationary distribution û of the underlying PDMP process
modeling the differentiation of cells, denoting V the potential associated to this process, we
should have the relation

− ln(û) = V +O(ε),

where ε characterizes the ratio between promoters and proteins dynamics. Recalling that Hθ

denotes the Hamiltonian of the PDMP process driven by the GRN θ, we should then obtain the
relation

Hθ(·,∇− ln(û(·))) = 0,

uniformly on the gene expression space, provided that û is a good estimation of the true stationary
distribution and that ε is small enough. We recall that Hθ has an explicit form depending on
the GRN and some other parameters of the PDMP model (which is given in Chapter 2, formula
(18), when the burst rate functions kon are parameterized by θ). Thus, knowing û, we could
estimate the GRN by solving a problem of the form:

θ∗ = min
θ

∫

X
Hθ(x,∇− ln(û(x)))dx.

As û is supposed to be close to a Beta mixture, thanks to the phenomenological model, it should
be possible to estimate it from the observations using standard statistical tool like MCMC
methods or EM algorithms. This method then seems applicable in practice.

Based on this reasoning, we developed an algorithm that we presented in an article published in the
journal In Silico Biology [96]. In this work, we use the bursty model (1.17) instead of the PDMP
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model (1.15). Indeed, its stationary distribution is close to a mixture of Gamma distributions
instead of Beta distributions, which are more convenient to use than Beta distributions in two
ways:

• They are not bounded from above, which implies that it is not necessary to assume any
maximal value of expression. Indeed, for the PDMP model (1.15), there exists a maximal
protein level for every gene i, which is equal to the ratio si/di. However, these parameters
are unknown and estimating this ratio from the data involves risks because there is no
guarantee that this maximum level is reached by a cell during the experiment. Thus, it is
convenient to not make this assumption for the bursty model (in practice we will see that
we still need to assume that for each gene, there is a cell which reaches the maximal burst
frequency during the experiment, but this is a weaker assumption);

• When dealing with integer-valued count data, as it is the case for scRNA-seq datasets, we
can consider that the number of mRNAs expressed by each gene correspond to a Poisson
distribution whose mean is the value corresponding to the continuous mechanistic process
modeling gene expression [83]. The marginal distributions characterizing the observations
can then be considered close to Gamma-Poisson distributions (or mixture of them) when
we consider the bursty model (1.17), which correspond to Negative-Binomial distributions.
If we considered the PDMP model (1.15), we would obtain Beta-Poisson distributions,
which do not correspond to any convenient probability law.

We then extended the method described previously in the realistic case where mRNAs are
observed rather than proteins, and proposed an other heuristic extension of the method to the
case where we have access to time-stamped datasets.
The resulting algorithm is called CARDAMOM (Cell type Analysis from scRna-seq Data achieved
from a Mixture MOdel). It consists in two steps: to characterize in a first time the metastable
parameters associated to the coarse-grained model which describes the best the data, and to solve
in a second time a serie of regression problems aiming to link these parameters to a most-likely
GRN. The simplicity of the regression step is particularly remarkable, and appears close to
the learning of a neural network. We show its efficiency on reconstructing a GRN for two in
silico generated datasets. Such inference method based on a mechanistic model has the great
advantage to make quantitative predictions that can then be easily tested by simulating the
model, which will be the subject of the next chapter.

Note that the method developed for the first step, that returns the metastable parameters
describing the data, has been used in another paper in order to find the most-likely number of
metastable basins associated to each gene in four datasets. By analyzing the molecular proximity
between reverting and undifferentiated cells in terms of their number of metastable basins,
this contributed to demonstrate the biological hypothesis that differentiating cells (chicken
erythrocytic progenitors (T2EC)) retain for 24 hours the ability to self-renew when transferred
back in self-renewal conditions, in an article accepted for publication in BMC Biology [110].
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Abstract. Differentiation can be modeled at the single cell level as a stochastic process resulting from the dynamical
functioning of an underlying Gene Regulatory Network (GRN), driving stem or progenitor cells to one or many differentiated
cell types. Metastability seems inherent to differentiation process as a consequence of the limited number of cell types.
Moreover, mRNA is known to be generally produced by bursts, which can give rise to highly variable non-Gaussian behavior,
making the estimation of a GRN from transcriptional profiles challenging. In this article, we present CARDAMOM (Cell type
Analysis from scRna-seq Data achieved from a Mixture MOdel), a new algorithm for inferring a GRN from timestamped
scRNA-seq data, which crucially exploits these notions of metastability and transcriptional bursting. We show that such
inference can be seen as the successive resolution of as many regression problem as timepoints, after a preliminary clustering
of the whole set of cells with regards to their associated bursts frequency. We demonstrate the ability of CARDAMOM to
infer a reliable GRN from in silico expression datasets, with good computational speed. To the best of our knowledge, this
is the first description of a method which uses the concept of metastability for performing GRN inference.

Keywords: Single cell, gene regulation network, inference, metastability, transcriptional bursting, machine learning

1. Introduction

Differentiation is the process whereby a cell
acquires a specific phenotype, by differential gene
expression as a function of time. Measuring how
gene expression changes as differentiation proceeds
is therefore of essence to understand differentiation.
Advances in measurement technologies now allow to
obtain gene expression levels at the single cell level.
It offers a much more accurate view than population-
based measurements, that has been obscured by mean
population-based averaging [9, 25]. It has among
other things established that there is a high cell-to-cell
variability in gene expression, and that this variabil-
ity has to be taken into account when examining a

∗Corresponding author: Elias Ventre. Email: elias.ventre@ens-
lyon.fr.

differentiation process at the single-cell level [3, 13,
28, 30, 33, 41, 46, 47].

A popular vision of the cellular evolution during
differentiation, introduced by Waddington in [52],
is to compare cells to marbles following probabilis-
tic trajectories, as they roll through a developmental
landscape of ridges and valleys. The landscape is gen-
erally described by the graph of a potential function
V : � → R, where � denotes the space where these
trajectories evolve, and is called the gene expression
space. In that space, a cell can be described by a vec-
tor, where each coordinate represents the expression
products of a gene [17, 31].

A cell has theoretically as many states as the com-
bination of proteins and mRNAs quantity possibly
associated to each gene, which is potentially huge
[7]. But metastability, that is the coexistence of multi-
ple stable states, seems inherent to cell differentiation

ISSN 1386-6338 © 2021 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).
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processes as evidenced by limited number of existing
cellular phenotypes [4, 32]. Since [20] and [18], many
authors have identified cell types with the basins of
attraction of a dynamical system modeling the dif-
ferentiation process. In that context, noise in gene
expression, or cell to cell heterogeneity, appears to
be closely related to the transition between these
cell types [12]. This provides a rationale for coarse-
graining stochastic models of gene expression into
reduced processes on a limited number of metastable
basins, seen as cell types. Such reduction has been
studied mostly in the context of stochastic diffusion
[53, 54, 57], but also for stochastic hybrid systems
[23]. This last case is particularly interesting because
the basins can be classified regarding to the modes
associated to the jumps frequency of the discrete vari-
able, leading to local approximations of the potential
function V describing the landscape [51].

This landscape is often regarded to be shaped
by an underlying gene regulatory network (GRN),
which appears as a powerful abstraction for describ-
ing interactions between genes through their proteins
production. The construction of GRNs from literature
being a very time-consuming and labor intensive pro-
cess, and sometimes impossible due to the limitation
of our current knowledge, their automated recon-
struction from large datasets has become a classic
task in systems biology [44]. This task is notoriously
difficult, in particular when dealing with single-cell
transcriptomics, the bursty synthesis of mRNAs [35,
58] giving rise to highly variable and non-Gaussian
expression data [26]. The methods that are used
cover a wide range of statistical and modeling tools
[1], including the analysis of stochastic models of
gene expression [5, 16]. In the latter case, expres-
sion datasets are identified to independent samples of
the time-varying distribution describing the process.
GRN inference can then be seen as the reconstruction
of the most-likely GRN from a set of partial observa-
tions of independent realizations of the model.

To our knowledge, the use of metastability for
performing such reverse engineering has not been
studied yet. The main contribution of this article
is to derive an efficient algorithm for linking the
landscape analysis of a mechanistic model of gene
expression using metastability, to the most-likely
associated GRN parameters. In Section 2, we are
going to present a mechanistic model of gene expres-
sion developed in [16], which describes single-cell
dynamics associated to a GRN with transcriptional
bursting. With a methodology similar to the one
developed in [51], we perform its reduction into a

discrete coarse-grained model on a limited number
of metastable basins. We deduce from this reduction
an approximation of the time-dependent proteins dis-
tribution of the original model, presented in Section
3, which appears as a mixture of Gamma distribu-
tions. We develop in Section 4 a statistical method
for linking the parameters of such mixture to the
GRN parameters of the model. In Section 5, we
extend this method for estimating GRN parameters
from scRNA-seq timestamped datasets. We show in
Section 6 the accuracy of the method for in silico
datasets simulated from the mechanistic model with
various networks of different sizes. Finally, we dis-
cuss more precisely in Section 7 the interpretation of
the method in terms of landscape, its applicability to
real datasets, and we highlight its similarity with a
machine learning approach.

We draw the reader’s attention to the fact that
the problem of inferring a GRN using a mecha-
nistic model with transcriptional bursting has been
recently elsewhere using distinct mathematical tools
[15]. We are currently setting up a collaborative effort
for benchmarking both algorithms on in silico gener-
ated data as well as on real datasets from the literature.
This benchmarking is therefore beyond the scope of
the present article and will be exposed elsewhere.

2. GRN model and reduction

2.1. Mechanistic model

The model which is used throughout this article
has been introduced in [16]. It is based on a hybrid
version of the well-established two-state model of
gene expression [21, 38], where a gene is described
by the state of a promoter, which can be {on, off }.
If the promoter is on , mRNAs are transcribed at a
rate s0, which are then translated into proteins at a
rate s1. Degradation of both mRNAs and proteins
occurs respectively at a rate d0 and d1. The transitions
between the states on and off occur at exponential
times of rates kon and koff . We consider the so-called
bursty regime of this model, when kon � koff , which
corresponds to the experimentally observed situation
where active periods are short but characterised by a
high transcription rate, thereby generating bursts of
mRNA [34, 43, 50]. We describe the random times
at which these bursts occur by an exponential law
of parameter kon, and their random intensity by an
exponential law of parameter koff /s0 (see Figure 1).
This model is compatible with real single-cell data, as
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Fig. 1. Approximation of the two-states model of gene expression
in the bursty regime.

mRNAs quantity at the steady state follows a Gamma
distribution, which is known to describe accurately
continuous single-cell data [2].

Neglecting the molecular noise associated to
mRNA and protein quantities, we obtain the follow-
ing mathematical description of the model:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

M(t)
kon−→ M(t) + E

(
koff
s0

)
,

M ′(t) = −d0M(t),

P ′(t) = s1M(t) − d1P(t).

(1)

where M(t) and P(t) denote respectively the mRNA

and protein concentration at time t and E
(

koff
s0

)
is an

exponential law of mean s0
koff

. The key idea for study-

ing a GRN is to embed this model into a network.
Denoting the number of genes by n, the vector (M, P)
describing the process is then of dimension 2n. The
burst rates for each gene i are characterized by two
gene-specific functions kθ

on,i and koff ,i. For the sake
of simplicity, we consider that koff ,i does not depend
on the protein level (i.e that proteins do not affect the
quantity of mRNAs which are transcribed during a
burst). To take into account the interactions between
the genes, we consider that for all i = 1, · · · , n, kθ

on,i

is a function which depends on the full vector P via
the GRN, represented by a squared matrix θ of size
n. We call these functions the bursts rate functions in
the following. We define for all i = 1, · · · , n:

kθ
on,i(P) = k0,i + (k1,i − k0,i)σ

θ
i (P), (2)

where σθ
i (P) =

(
1 + exp

(
−βi −∑n

j=1 θijPj

))−1
.

The parameter βi represents the basal activity of gene
i, and each parameter θij encodes the interaction j →
i. Every function kθ

on,i is then comprised between two
positive constants k0,i < k1,i, and ∂Pjk

θ
on,i has the

sign of θij . This sigmoidal form for the bursts rate
functions can be interpreted as a simplification of the
mechanistic form used in [5, 16].

We point out that assuming that this model is able
to reproduce real single-cell datasets, we make the
underlying hypothesis, which is implicit in most GRN
inference methods, that, contrary to its state, the GRN
structure is not modified under the action of some
hidden variables. One should not that our interac-
tion model is an approximation of the underlying
biochemical cascade reactions, and that the genes
we modeled need not to be transcription factors.
This is possible thanks to the use of our mechanis-
tic model which integrates the notion of timescale
separation [16]. It assumes that every biochemical
reaction such as metabolic changes, nuclear translo-
cations or post-translational modifications are faster
than gene expression dynamics and that they can be
abstracted in the interaction between 2 genes [5]. To
explicitly model slow changes like some epigenetic
changes by allowing the structure of the GRN to
change during differentiation, would definitely add
realism but at the cost of a much higher complex-
ity: the number of additional unobserved parameters
would dramatically increase the problems of identifi-
ability, making a reverse-engineering method out of
reach.

2.2. Simplification in the fast transcription
regime

In line with several experiments [2, 22], we con-
sider that mRNA bursts are fast in regard to protein
dynamics, i.e d0,i � d1,i with k1,i

d0,i
fixed. The cor-

relation between mRNAs and proteins produced by
a gene i is then very small, and the model can be
reduced by removing mRNA and making proteins
directly depend on the burst. We obtain a simplified
network model in which only proteins are described:

⎧
⎨
⎩

Pi(t)
kθ
on,i

(Pi(t))−−−−−−→ Pi(t) + E (ci) ,

P ′
i (t) = −d1,iPi(t),

(3)

where we define ci = koff ,id0,i

s0,is1,i
. The gene expression

space � is then the set of possible values for the vec-
tor P , which is Rn+. The related master equation,
characterizing the time-dependent distribution of P ,
turns out to be integro- differential (see Appendix B).
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2.3. Metastability and reduction

We now perform a reduction of the model 3
into a coarse-grained model on a limited number of
metastable basins, providing an approximate land-
scape of the differentiation process. For this sake,
we introduce a typical time scale k̄ for the rates of
promoters activation kθ

on,i, and a typical time scale d̄

for the rates of proteins degradation. Then, we define
the scaling factor ε = d̄

k̄
which characterizes the dif-

ference in dynamics between two processes: 1. gene
bursting dynamics and 2. protein dynamics. It is gen-
erally considered that promoter switches are fast with
respect to protein dynamics, i.e that ε � 1, at least
for eukaryotes [48].

In that context, we can approximate the condi-
tional expectation of the bursts of proteins associated
to a gene i knowing the proteins vector P , that
we denote ρi(P), by its quasistationary approxima-

tion ρi(P) = kθ
on,i

(P)
ci

. The model (3) can therefore
be coarsely approximated by a system of ordinary
differential equations:

∀i = 1, · · · , n : P ′
i (t) = kon,i(P(t))

ci

− d1,iPi(t).

(4)
Intuitively, these trajectories correspond to the mean
behaviour of a cell in the weak noise limit, i.e when
bursts occur much faster than proteins concentration
changes. As shown in [11] (in the general case where
promoters are explicitly included in the model), for
any T < ∞, a random path (Xε(t))0≤t≤T converges
in probability to a trajectory (x(t))0≤t≤T solution of
the system (4) when ε → 0.

Assuming that the dynamical system (4) has no
limit cycles or more complicated orbits, the gene
expression space can be then decomposed in a set of
basins of attraction Z = {Z1, · · · , Zm}, respectively
associated to m stable solutions of:

∀i = 1, · · · , n :
kon,i(P)

cid1,i

− Pi = 0, (5)

which are called the attractors of the process. With-
out noise, the fate of a cell is fully characterized by
its initial state x0, as it converges to the attractor of
the basin of attraction it belongs to, which is a single
point by assumption. However, noise can modify the
deterministic trajectories in at least two ways. First,
in short times, a stochastic trajectory can deviate sig-
nificantly from the deterministic one. In long time,
stochastic dynamics can even push the trajectory out
of its basin of attraction to another one, changing

radically the fate of the cell in a way that cannot be
catched by the deterministic limit. We illustrate in
Figure 2 this situation for a toggle-switch network
of two genes, where the scaling factor ε determines
the observation of random transitions between two
basins of attraction in a given time.

Adopting the paradigm of metastability referred in
the introduction, we identify the basins of attraction
associated to the equilibrium of the deterministic sys-
tem (4) to cell types [18]. A cell type then corresponds
to a metastable sub-region of the gene expression
space, and the process can be coarsely reduced to
a new (Markovian) discrete process on the cell types.
These cell types represent the potential wells in the
developmental landscape of differentiation associ-
ated to the model (3) [49], the centers of which are
the attractors solutions of the system (5). To charac-
terize more precisely the landscape, it would remain
to describe:

1. The energetic barrier separating the cell types;
2. The curvature of the potential wells.

Point 1. corresponds to the transition rates of the
coarse-grained model on the cell types, which are
known to be very difficult to link analytically to a
GRN [51]. They generally depends on the values of
the stationary distribution ûθ of proteins on the saddle
point of the system (4), which are located on areas
of the gene expression space where the probability
to find a cell is weak. As discussed in Section 7.2
with more details, this feature does not seem to be
exploitable in the context of GRN inference. Point
2. can be described by the behaviour of the poten-
tial function Vθ = − ln

(
ûθ)
)

in the neighborhood
of the attractors. This feature seems more accessible
because cells are likely to be measured around the
attractors in the gene expression space. We are now
going to develop an heuristic reasoning for approxi-
mating the function ûθ when the bursts rate functions
are of the form (2).

3. From GRN to mixture approximation

3.1. Mixture approximation of the proteins
distribution

On one side, the transitions of the coarse-grained
model described in Section 2.3 happen at a time

scale which is expected to be of the order of e
C
ε ,

where C is an unknown constant depending on the
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Fig. 2. Example of trajectories associated to the symmetric toggle-switch network described in Table 1, for different values of ε: from top
to bottom, ε = 0, ε = 1/50 and ε = 1/10. For ε = 1/10, we observe stochastic transitions between the two metastable basins denoted Z+−
and8 Z−+.

basins (owing to a Large deviations principle stud-
ied in [51]). For small ε, such transitions are then
generally rare events, and it can be considered that
the process spends in each basin a time long enough
to equilibrate inside, i.e that a cell reaches between
each transition its quasistationary distribution within
a basin. On the other side, the sigmoidal form (2) for
the functions kθ

on,i implies that these functions must
not vary significantly within a basin: a rough approx-
imation could lead to identify the bursts rate in each
basin by its dominant rate inside, corresponding to
the value of the function kon,i on the attractor Pz.
For any gene i = 1, · · · , n and any basin z ∈ Z, we
can then approximate:

∀P ∈ z : kθ
on,i(P) ≈ kθ

on,i(Pz).

This implies that the quasistationary distribution of a
cell within a basin can be approximated by the sta-

tionary distribution of the model when the burst rates
are constant. The marginal distribution of each gene
then appears as a Gamma distributions, which can
be shown to be the unique solution of the stationary
master equation of the model in one dimension when
kon is constant [24]. We obtain the following approx-
imation for the quasistationary distribution ûθ

z within
each basin z ∈ Z associated to the network θ:

ûθ
z ≈

n∏

i=1

Gamma

(
kθ
on,i(Pz)

d1,i

, ci

)
,

Finally, we can approximate the stationary distri-
bution of the process associated to a given GRN ûθ by
a mixture of Gamma distributions. Denoting for any
z ∈ Z, i = 1, · · · , n, kz,i = kθ

on,i(Pz), we obtain

ûθ ≈ ûε =
∑

z∈Z

μ(z)
n∏

i=1

Gamma

(
kz,i

d1,i

, ci

)
, (6)
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where μ is the probability vector on the basins at
the steady-state, and we recall that ε depends on
the values of the vectors d1 and kz. In some sense,
this approximation consists in reducing the depen-
dence between genes resulting from the GRN to the
coexistence and relative weight of different basins
corresponding to the different possible modes of pro-
moters frequency.

The heuristic analysis presented above then states
that when the functions kon,i are close to constant
functions inside the basins and that the scaling fac-
tor ε is small, the mixture approximation (6) is a
good approximation of the distribution ûθ . We remark
that this is straightforward when the scaling factor
ε is close to 0. Indeed, any GRN θ is associated
for any value of ε to an unknown stationary dis-
tribution, that we denote ûθ

ε, which converges to a
sum of Dirac on the attractors when ε → 0 [36].
Then we see that the Gamma mixture ûε associ-
ated to the same ε converges to the same sum of
Dirac when ε → 0, as the mean of each Gamma does
not depend on ε while the variance is proportional
to ε: we have |ûθ

ε − ûε| → 0 as ε → 0. When the
noise ε is not negligible, the problem is more com-
plex and finding a theoretical bound for the quantity
|ûθ

ε − ûε|, depending on ε, is beyond the scope of
this paper. Nevertheless, we see in Figure 3 that the
Wasserstein distance between the empirical distribu-
tion associated to a proteins dataset simulated from
the mechanistic model (3) and the Gamma mixture
distribution (6) is much smaller than the distance
between the same dataset and a mixture of normal
distribution (fitted with a Gaussian Mixture Model).
This let us think that the Gamma mixture approxi-
mation is indeed close to the true distribution even
when the weak noise limit assumption is not realis-
tic (and that the distribution is then far from a sum
of Diracs).

3.2. Linking a GRN to mixture parameters

Building an analytical link between the GRN and
the mixture parameters is generally out of range.
Indeed, even if it was possible to solve explicitly
the equation (5) defining the equilibrias associated to
a GRN, it would remain challenging to study their
stability in order to identify the attractors. More-
over, the probability vector μ is obviously linked
to the transition rates of the coarse-grained model,
which we recall to be very difficult to estimate
from a GRN [51]. However, these parameters can
be obtained with a simple numerical method, which

Fig. 3. Evolution in function of 1/ε of the Wasserstein distances
between the empirical distribution associated to a set of 2000 cells,
simulated with the model (3), and both the Gamma mixture approx-
imation (6) (in red) and a GMM approximation (in green), for the
toggle-switch network described in Table 1.

Table 1
Description of the parameters of the symmetric two-dimensional
toggle-switch used for the illustrations of Sections 2, 3 and
Appendix C, and the network for the inference in Section 6.2 which

consists in two such toggle-switch functioning in parallel

(i,j) / param. k0,i k1,i d1,i ci θi,i θi,j

(1,2) 0, 1 2 0, 2 10 5 −7
(2,1) 0, 1 2 0, 2 10 5 −7

consists in sampling a collection of random paths
in the gene expression space: the distribution of
their final position after a long time approximates
the stationary distribution on proteins. We can then
use these final positions as starting points for sim-
ulating the deterministic trajectories, given by the
system (4), with an ODE solver: each of them con-
verges to one of the stable equilibrium points. This
method allows to obtain all the stable equilibria cor-
responding to sufficiently deep potential wells (see
Figure 4(A)). Possible other potential wells can be
omitted because they should correspond to basins
that the process has very low probability of visiting,
which do not impact significantly the coarse-grained
Markov model. Repeating this operation for thou-
sands of cells, we can find a vector μ describing the
ratio of cells belonging to each basin (see Figures
4(B) and 4(C)). When the number and length of the
simulations are large enough, the vector μ should be
a good approximation of the stationary measure on
the basins.
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Fig. 4. (A): 100 cells are plotted under the stationary distribution. The relaxation trajectories allow to link every cell to its associated attractor.
(B): 500 cells are plotted under the stationary distribution. They are then classified depending on their attractor, and this figure sketches the
kernel density estimation of proteins within each basin. (C): The ratio of cells that are found within each basin gives an estimation of the
stationary distribution on the basins.

3.3. Mixture approximation of time-varying
distribution

In the mixture approximation, the marginal on pro-
teins of the stationary distribution of a single cell is
characterized by a hidden Markov model: in each
basin z ∈ Z, which corresponds to the hidden vari-
able, the vector P is randomly chosen under the
quasistationary distribution ûz of X | Z = z. There-
fore, the mixture distribution can also be used as a
proxy for the time-varying distributions of the bursty
model (3). Denoting μt the distribution on the basins
at any time t, and considering that a cell reaches
almost immediately its quasistationary distribution
after entering in a basin, we obtain the approximation:

uθ
t ≈
∑

z∈Z

μt(z)
n∏

i=1

Gamma

(
kz,i

d1,i

, ci

)
.

In that case, the only time-dependent parameters are
the coordinates of the vector μt ∈ [0, 1]m where m is
the number of basins, and μt(z) = μ(z) if t is such
that the stationary distribution is reached.

We remark that with the method described in Fig-
ure 4, it would be possible to miss some basins that
are important for describing the network, but which
would not appear in the stationary distribution. It
is expected to be a common situation for networks
showing complex behaviours, as feedback loops or
unbalanced branching structure, because the proba-
bility after a long time may be too weak for some
basins to be visited, while playing an important role

in the process beforehand. For such networks, the
method should then be applied on a series of time-
points, and the union of all the basins identified
at every timepoint should be considered (fixing the
value μt(z) = 0 for basins z that are not observed
at time t). In that point of view, the basins appear-
ing in the stationary distribution can be considered
as (almost) absorbing states of the coarse-grained
model.

Altogether the reduction and methods described
above establish a formal basis for the definition of a
simplified epigenetic landscape given a GRN, under
the form of a mixture model. As the mixture parame-
ters seem possible to obtain from a single-cell dataset
(see Section 5.2), it would be fruitful to use the same
formalism to assess the inverse problem of inferring
the most likely GRN, given an (experimentally-
determined) cell distribution in the gene expression
space, a notoriously difficult task [16, 39].

4. Method for inferring a GRN from a
mixture distribution

In this section, we discuss the problem of iden-
tifying the most-likely GRN which is associated to
an approximate landscape described by the Gamma
mixture distribution of the form (6). We identify such
landscape to the set of parameters:

α =
{

μ(z),
kz,i

d1,i

, ci

}

z∈Z,i=1,··· ,n
. (7)
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The preliminary problem of finding the most-likely
vector α from a single-cell dataset using classical
tools of statistical analysis will be developed in the
presentation of the final algorithm (see Section 5.2.1).

4.1. Linking the GRN and the attractors

The main idea of the method consists in using the
fact that all the attractors Pz of the bursty model ver-
ify the equation (5), i.e that for all i = 1, · · · , n,:
kθ
on,i(Pz) = cid1,iPz,i.

Thus, from the definition of kz,i = kθ
on,i(Pz), we

have the relation:

∀i = 1, · · · , n, ∀z ∈ Z : kθ
on,i

(
kz

cd

)
= kz,i. (8)

Considering that α is known and that we have to deter-
mine θ, we obtain for every gene i a system of m

equations and n unknowns parameters correspond-
ing to the ith line of the matrix θ. This simple strategy
may be efficient provided that there is enough basins
in regards to the number of genes of interest. This is
in particular the case for the toggle-switch network
described in Table 1, for which its has been observed
in Figure 4 that there are exactly two attractors.

4.2. GRN inference from a Gamma mixture as a
minimization problem

GRN inference from a Gamma mixture is formally
equivalent to identifying an adapted function R such
that the "real" GRN θ∗ associated to a set of mixture
parameters α would be defined by

θ∗ = arg min
θ∈Mn(R)

R(θ, α).

It is nevertheless important to remark that they may
be no function R such that this equality is hold for any
GRN, as a high (unknown) number of GRNs could
be associated to the same mixture distribution (6).
This problem is not specific to our method, and GRN
inference is known to be generally a non-identifiable
problem [5].

Regarding to the analysis which has been made in
Section 4.1, a natural candidate for this function is

R(θ, α) =
∑

z∈Z

n∑

i=1

(
kθ
on,i

(
kz

cd

)
− kz,i

)2

, (9)

to which it may be added an adapted penalization
(see Section 5.2). Taking into account the probability
vector μ is discussed at the end of Section 5.2.2, and

stems for a generalization of the method presented in
this section, developed in Appendix C.

5. Method for inferring a GRN from
timestamped scRNA-seq data

In this section, we use the analysis provided in Sec-
tions 3 and 4 for developing a numerical method able
to infer a GRN from scRNA-seq data, which rep-
resents the most available single-cell data at present.
From a statistical point of view, scRNA-seq data gives
access to the joint probability distribution of mRNAs
levels associated to a given set of genes in a set
of individual cells independently. Importantly, mea-
surement techniques usually involves the physical
destruction of the cell. Then, when measurements are
made at several time points, for example to study con-
vergence to a possibly new steady state after applying
a perturbation to the system, we assume that the data
correspond to independent samples of the marginal
on mRNA of the time-varying distribution associated
to the mechanistic model (1).

5.1. Simplified statistical model for the data

Along with the system of n coupled systems of the
form (3) describing proteins dynamics, as presented
in Section 2.2, we obtain when ε � 1, i.e when the
bursts are frequent in regard to proteins dynamics, a
quasi steady-state approximation for the conditional
distribution of M given P . Under this approximation,
mRNAs levels Mi are independent conditionally to
the protein vector, and follow Gamma distributions
depending on P :

Mi | P ∼ Gamma

(
kon,i(P)

d0,i

,
koff ,i

s0,i

)
.

Combining this statistical model of gene expression
with a Poisson model, which is claimed in [45] to
adequately describe the measurement process, we
then obtain the following model for a set of observed
single-cell mRNA transcriptomic data:

Mi | P ∼ NB

(
kon,i(P)

d0,i

,
koff ,i

koff ,i + s0,i

)
.

Here, NB denotes the negative binomial distribution:
∀k ∈ N : NB(k, a, b) = 
(k+a)


(a)k! bk(1 − b)a.
Contrary to what has been done in [15], where the

inference strategy consists in treating proteins level as
latent variables and using the law on mRNAs knowing
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proteins as a statistical likelihood for the data, we
are going to use the analysis provided in Section 3
to directly estimate the set of mixture parameters α

from the data without the need of proteins quantity.
The main idea is the following. On one side, the only
information on the proteins that can be obtained is
contained in the value of kon,i(P). On the other side,
proteins being known to be less noisy than mRNAs, a
vector P characterizing a cell in the gene expression
space is going to be generally close to one of the
attractor. Moreover, the functions kon,i(P) are almost
constant within each basin, and in particular around
their attractor. Thus, the precise knowledge of the
proteins quantity can be considered out of reach from
scRNA-seq data, and the best information on proteins
we can get from the marginal distribution on mRNAs
of a gene i is the set of the modes of bursts frequency
normalized by the degradation rate, that is kz,i

d0,i
.

We finally derive a simplified statistical model,
making appear the distribution of mRNA counts as a
mixture of negative binomial:

M ∼
∑

z∈Z

μ(z)
n∏

i=1

NB

(
kz,i

d0,i

,
koff ,i

koff ,i + s0,i

)
. (10)

5.2. Inference procedure

We now describe the inference procedure for
a set of l timestamped scRNA-seq data M =
(Mt1 , · · · , Mtl ), where each Mtk is a matrix of gene
expression containing the ntk cells (xk

1, · · · , xk
ntk

). We
decompose the algorithm in 2 steps:

1. A clustering step, for identifying the set of
parameters αk

M associated to the data at each
timepoint tk;

2. A regression step, consisting in identifying
the most-likely GRN θ associated to the sets
(αk

M)k=1,··· ,l, by successively solving a set of
regression problems.

5.2.1. Clustering
From the statistical model (10), the first step con-

sists in inferring for each timepoint tk the set of
parameters

αk
M = {μtk (z), αz, c

}
z∈Z

,

where c = koff
koff +s0

∈ Rn and for every z ∈ Z, αz =
kz

d0
∈ Rn. The number of genes being potentially

large, a minimization of the maximum likelihood
function f on the gene expression matrix Mtk ∈

Mntk
,n(N), defined by

f (Mtk
) =

ntk∏

j=1

(∑

z∈Z

μtk
(z)

n∏

i=1

NB

(
kz,i

d0,i

,
koff ,i

koff ,i + s0,i

)
(xk

j )

)
,

even using an EM algorithm or an other variational
method, would be very uncertain, such algorithms
being known to be trapped into local minima [10].
The number of components of the mixture, i.e the size
of the set Z, remains also unknown. A good method
for fitting αk

M would be to apply a Bayesian procedure
like a Reversible-Jump Monte-Carlo Markov Chain
(RJMCMC) algorithm [42] to the whole dataset. We
propose a slightly different approach, which over-
comes the numerical limits of such Bayesian method
on the multivariate procedure, consisting in two steps:

1. We first identify the modes of the bursts fre-
quency which are associated to every gene i,
independently, for the whole set of cells M.
For this sake, we use a RJMCMC algorithm
which is inspired from [6]. We obtain the values
of αz,i = kz,i

d0,i
. Each cell y ∈ Mtk , represented

by a vector in Nn, can be then associated to
a discretized representation of the form: ỹ =
αz = (αz1 , · · · , αzn ), where every zi character-
izes one of the modes associated to the gene
i;

2. For each timepoint tk, we group together the
vectors ỹ which are equals. The different groups
that are obtained correspond to the modes
(αz)z∈Z observable at tk. The relative weights
associated to these modes provide an estimation
of the probability vector μtk .

This simplified method, in which the coupling
between the different genes is taken into account only
in a second stage, is likely to provide more basins than
the expected number. However, we will see in Section
5.2.2 that this may be corrected by a simple modifi-
cation of the cost function used in the regression step.
We also discuss in Section 6.5 the fact that the number
of modes associated to each gene is generally limited
to 2 in the case of the sigmoidal bursts rate functions
(2): then each cell y ∈ Nn is generally projected in
step 1. in a reduced discrete space of dimension 2n.

5.2.2. Regression
First, in order to reduce the number of parameters

and since protein levels Pi are not observed, we can
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arbitrarily set:

s1,i = d1,id0,ikoff ,i

k1,is0,i

, (11)

which leads to ci = k1,i

d1,i
. Injecting this value in the

formula (5), the attractors are then defined for any
z ∈ Z by the formula: Pz = kz

k1
. It is worth notic-

ing that the choice of this scaling may not affect the
accuracy of the inference. Indeed, the value of the
parameter s1,i only affects the number of proteins Pi

that are created when Mi is positive: the value of Pi

is then proportional to s1,i. As every parameter θij

affects the dynamics of the process through the value
of the product θij × Pi in the function kon,j , consid-
ering such scaling for s1,i will only affect the scaling
for the interaction coefficients θij , but not the GRN
topology.

The clustering step only allows to find the values of
the vectors αz = kz

d0
rather than kz. This is not a prob-

lem since the fraction which characterizes Pz allows
to simplify the term d0, provided that k1

d0
can be com-

puted. We therefore consider that each gene reaches
its minimal and maximal frequency through the time-
points, at least for some cells. Thus, we define for
every gene i, k0,i = min

z
kz,i and k1,i = max

z
kz,i, and

equivalently:

α0,i = min
z

αz,i, α1,i = max
z

αz,i. (12)

We finally obtain a characterization of the attractors
which is directly accessible from scRNA-seq data:

Pz = αz

α1
. (13)

Injecting (13) in the definition of R given by (9),
we obtain the following characterization of a cost
between a GRN θ and a vector α describing the
approximate landscape of the model (1):

R(θ, α) =
∑

z∈Z

n∑

i=1

(
σθ

i

(
αz

α1

)
− αz,i

α1,i

)2

. (14)

In order to define a regression problem on the vari-
able θ which may associate a vector α obtained in the
clustering step (see Section 5.2.1) to a GRN, we add
three modifications to the cost function R given in
(14).

First, we solve the problem of the possibly too high
number of basins due to the clustering method, that
we mentioned in Section 5.2.1, by taking into account
the weight of the basins in the cost function. Then,
given that we have enough cells that are detected in

existing basins, the "false" basins detected in the clus-
tering step, which should not be associated to many
cells, would almost not affect the inference.

Second, in line with the idea that missing inter-
actions is preferable to inferring false interactions
between genes, we decide to use a LASSO penal-
ization, which is known to enforce the sparsity of
the network. We also add a custom penalization to
deal with oriented interactions. Indeed, for every pair
of nodes {i, j} there are two possible interactions
with respective parameters θij and θji, but it is likely
that only one is actually present in the true network.
Our method is likely to favor symmetric interactions
because when an interaction is present in the network
(e.g θij > 0), then gene j is generally upregulated in
the same time than gene i and it is hard to distin-
guish whether θji > 0 or not. Then we want these
two interaction parameters to compete each other,
such that only one is nonzero after the regression
step, unless there is enough evidence in the data that
both interactions are present. We obtain the following
penalization

|θ − θ0| =
n∑

i,j=1

|θi,j − θ0
i,j| + 1

2
|θi,jθj,i|, (15)

where θ0 is defined as the null matrix of size n if there
is no prior information on the GRN. The coefficient in
front of the product | θjiθij | is chosen small enough
to ensure that if both θji and θij have been detected at
a timepoint, it would generally cost more to put one
back close to 0 than to keep it at its computed value.

Third, the temporal dynamics of the process, when
available, must be considered. As developed in Sec-
tion 3.3, the basins that have to be taken into account
are all the basins identified during the differentiation
process, i.e in the different snapshots of the time-
varying distribution. But three principal reasons lead
to consider that we should not try to infer the network
from all the basins at the same time:

1. We can generally see the effect of a GRN in a
cell as a signal which is transmitted to the genes
[5]. Before the signal has been completely trans-
mitted in the network, many genes are likely to
be in a state which does not reflect the GRN. At
these moments, the cell is far from the equilib-
rium. For this reason we would like to take into
account the first timepoints, where some genes
have not seen the signal, in a weaker way than
the last timepoints, where the signal has been
well transmitted to all the genes.
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2. A population of cells is likely to be more
often observed far from the attractors before
it has reached its equilibrium than after reach-
ing it. This is due to the fact that when the
distribution is far from the equilibrium, some
shallow or even unstable basins can be explored,
from which the cell can easily escape. In par-
ticular, the regions around bifurcations in the
cell lineage are expected to be often identi-
fied as shallow basins. These basins should then
almost be erased if deeper basins are explored
afterwards. This also suggests that the first time-
points have to be taken into account in a weaker
way than the final ones.

3. Finally, recalling that GRN inference is known
to be generally a non-identifiable problem, we
simply cannot neglect the information that is
brought by temporal information when it is
available.

We thereby adopt an iterative approach: for each
timepoint, the network is actualized by minimizing
the function (14) with the penalization (15), taking
as initial condition the network inferred at the previ-
ous timepoint. Then, we do not penalize the network
itself but its variations to the initial condition. This
should satisfy the points 1. and 2., because an erro-
neous interaction that would have been catched at an
early timepoint would be conserved in the final net-
work only if it does not appear in contradiction with
the interactions that are inferred afterwards.

Finally, the regression step consists in solving suc-
cessively, for k = 1, · · · , l, the problem

θk = arg min
θ

Rk(θ, αk
M) + λ|θ − θk−1|, (16)

where θ0 is defined as the null matrix of size n, |θ −
θk−1| is given by (15), λ is a penalization coefficient
and the function R is defined for every θ and αk

M ={(
μtk (z)

)
z∈Z

, (αz)z∈Z

}
by:

Rk(θ, αk
M) =

n∑

i=1

∑

z∈Z

μtk (z)

(
σθ

i (
αz

α1
) − αz,i

α1,i

)2

.

(17)

The procedure is illustrated in Figure 5. For the
applications presented in Section 6, the value of
the coefficient λ has been calibrated in order to
be optimal for various datasets simulated from
randomly-generated tree-like networks, like those
studied in Section 6.6.

Interestingly, the cost function (17) can be obtained
as the particular case of a more general method for
linking a GRN to a set of mixture parameters in the
case where single-cell proteomic data were available,
and that mRNAs are seen as a proxy for the proteins
level. We present this method in Appendix C.

We underline the fact that the function σθ , defined
in (2), depends only on the GRN θ and αz

α1
, which can

be directly estimated from scRNA-seq data, using the
method described in Section 5.2.1 and the relations
(12). Thus, we do not need to make any assumption
on the value of the hyperparameters of the model,
not even the ratio d0

d1
as it was the case in [15]. This

is due to the fact that we do not infer the protein
distribution but only the values of its main modes,
which are completely characterized by the mean of
the proteins distribution within each basin, and do not
depend on its variance.

The two-steps method presented in Sections 5.2.1
and 5.2.2, that we call CARDAMOM (Cell types
Analysis from scRna-seq Data Achieved from a Mix-
ture MOdel), shows good results for the simulated
datasets that are presented in Section 6.

5.2.3. Back to the model: consistency of the
algorithm and verifications

The inference method presented above corre-
sponds to the calibration of the mechanistic model (1)
driven by burst rates functions of the form (2). Recall-
ing that GRN inference is generally not an identifiable
problem, many networks are likely to reproduce a
dataset. Beyond the topology of the network that we
expect to be well reconstructed by the algorithm,
a GRN given by CARDAMOM should be consid-
ered as accurate if it allows to reproduce the datasets
used for the inference, seen as partial observations of
the time-varying distribution associated to the mech-
anistic model. It would then be natural to use the
quantitative parameters inferred with CARDAMOM
to simulate new snapshot data that we could compare
to the original data. However, we point out the fact
that the inference method described in Section 5 only
used the attractors of the metastable basins associated
to the deterministic limit (4), while we recall that the
dynamics of the model is mainly determined by the
transition rates of the coarse-grained model on the
basins, which depends on the value of the potential
on the saddle points of the system (4) rather than the
attractors. This is in line with the fact that the vector α

is supposed to approximate accurately the potential
wells of the landscape but not the energetic barrier
between them, which remains out of reach. Thus, the
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Fig. 5. (A) Example of a 4-genes network (G1 to G4) with a stimulus (S) (see Section 6.1). (B) Illustration of the method described in
Section 5.2.2: the interactions being observable only at some particular timepoints, they are progressively inferred, each optimization taking
into accounts the interactions that are observed on the previous ones.

method is supposed to find a network which should
allow to recover the same metastable basins than the
ones observed in the data, the order in which they are
visited, but not the right temporal dynamics.

In order to estimate the quality of the inference
while taking into account the limitations mentioned
above, we should simulate the model (1) for compar-
ing both the initial and the long-time distribution of
the model associated to the inferred GRN with the
first and the latest snapshot which is available on the
data, and verify that simulated cells have a transitory
evolution similar to the data (in terms of distribution),
even if not necessary with the same temporality. This
is the object of Section 6.4.

6. Results

In this section, we present the performance of
CARDAMOM on simulated datasets from 3 different
types of networks. For each network, the datasets are
obtained by sampling independent cells at a certain
number of timepoints after applying a stimulus.

6.1. Simulating data with stimulus

The simulations of the model (1) are performed
with the python package HARISSA presented in [15],

which is based on an efficient thinning method for
simulating the model (1). For reproducing in vitro
differentiation processes, we first simulate every net-
work until reaching a first equilibrium before t = 0.
At t = 0, we introduce a new gene called "stimulus",
the proteins level of which is artificially maintained at
the value of 1. This value corresponds to to its highest
possible attractor: indeed, the proteins scaling (11)
implies that no coordinates of the attractors can be
greater than 1 in the gene expression space. Proteins
being much less noisy than mRNA (i.e d0,i

d1,i
� 1),

the protein level associated to a gene is expected
to be close to the attractor associated to the basin
it belongs to, and forcing a gene to be fully expressed
in the model (1) with the scaling (11) is equivalent to
force its value to 1. Then, the stimulus represents the
effect of an artificial perturbation in the differentia-
tion environment inducing cells to evolve towards a
new equilibrium. The datasets correspond to the sam-
ple of independent cells at a sequence of timepoints.

6.2. Inference of a toggle-switch network from a
static expression data sampled under the long
time distribution

We first evaluated the ability of CARDAMOM to
find the parameters of a 4-genes network consisting
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in 2 independent toggle-switch of the same form than
the one described in Table 1. To this aim, we simu-
late 10 dataset by sampling 50 independent cells at 2
timepoints 0 and 20h. In that case, the stimulus has no
effect on the system. Inference is then independently
performed for every datasets and the mean of all the
significant values obtained for each network is pre-
sented in Figure 6, compared to the network used for
the simulations. We observe in Figure 6 that the algo-
rithm allows to reconstruct very well the topology of
the network, detecting which pairs of genes are in
relation together and the sign of the interactions. All
other coefficients of the GRN matrix are smaller than
0.3, which can be considered as a residual noise with
regards to the principal edges. However, the algorithm
computes the values of the coefficients up to a multi-
plicative factor, which is in line with the limitations
we pointed out in Section 5.2.3.

We remark that the algorithm slightly overesti-
mates the diagonal coefficients, which correspond to
self-regulation parameters of the genes : the problem
of the inference of these parameters being notoriously
difficult to infer reliably [40], we will not take into
account the diagonal coefficient of the GRN matrix
for evaluating the algorithm performances in the fol-
lowing.

6.3. Inference of a 4-genes network with
branching and feedback loop from timestamped
data

We now evaluate CARDAMOM on the 4-gene net-
work described in Figure 5 and Table 2. Although
such a small network may appear very simple, it
already has some interesting features (branching,
feedback loop with inhibition) and is interesting for
inference. To this aim, we simulate 10 datasets by
sampling independent cells at 10 time points t =
0, 2, 4, 6, 8, 11, 13, 15, 17, and 20h, with 50 cells

Table 2
Description of the parameters of the 4-genes network used for the
inference in Section 6.3. All others parameters are similar than for
the toggle-switch network of Table 1, the same for every genes.
The ith line (resp. the ith column) of the matrix θ, correspond to
the influence of every genes on the gene i (resp. the influence of

the gene i on every genes)

θij θ·,0 θ·,1 θ·,2 θ·,3 θ·,4
θ0,· 0 0 0 0 0
θ1,· 10 0 0 0 −10
θ2,· 0 10 10 0 0
θ3,· 0 10 0 10 0
θ4,· 0 0 0 10 0

Fig. 6. Inference of a 4-genes network (G1 to G4) consisting in
two independent symmetric toggle-switch networks with param-
eters described in Table 1. The stimulus (S) has no effect on the
network, but is nevertheless represented in order to verify whether
the inferred network takes it into account or not. The network used
for simulating the datasets in (A) is compared with the network
inferred by CARDAMOM in (B).

per timepoint (then 500 cells in total for each
dataset). Inference is independently performed for
every dataset and the results are merged into receiver
operating characteristic (ROC) and precision-recall
(PR) curves that are shown in Figure 7. CAR-
DAMOM turns out to reconstruct very efficiently the
topology of the network. We precise that the sign
of the interactions that are inferred is well preserved
comparing to the original network.

6.4. Reproduction of the data

The bursty model (1) with kon functions defined
by (2) can satisfactorily produce expression data for
which marginal distributions of genes are close to
mixtures of negative binomial distributions, which is
known to be biologically relevant. In line with what
was discussed in Section 5.2.3, we do not expect the
temporal dynamics associated to the network inferred
by CARDAMOM to be synchronised with the orig-
inal data. We then focus on the comparison between
the initial and final distributions of the model when
simulated by the network presented in Table 2 and the
network inferred in Section 6.3, observed at respec-
tively 0h and 20h after applying the stimulus (see
Figure 9). We underline the fact that we do not take
the initial distribution of the data to initialize the sim-
ulation, but we rather sample a distribution using the
inferred network with the stimulus fixed to 0.

We also compare in Figure 10 the two temporal
dynamics of the two complete datasets, one used for
the inference and one simulated with the inferred
network. The data are projected altogether with the
method umap [27] and we show on each subfigure
the cells corresponding to one of the datasets. These
cells are then classified depending on the time where
the measures are realized after applying the stimulus.
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Fig. 7. Inference results for the 4-gene network described in Table 2. Performances are measured in terms of receiver operating characteristic
curves (ROC) and precision-recall curves (PR) obtained for 10 independently simulated datasets. Each dataset contained the same 10
timepoints and 50 cells per time point. The dashed gray line indicates the average score that would be obtained by the random estimator
(detecting a link or not with equal probability).

The results suggest that the model has been relatively
well calibrated through the inference procedure.

6.5. Simplification of the method for sigmoidal
burst rate functions

The clustering method described in Section 5.2.1
allows to take into account any number of modes for
the burst frequency associated to each gene. However,
it is natural to ask if such complexity is compatible
with the one allowed by the choice of the functions
kon,i. In fact, when these functions have the sigmoidal
form described in (2), they cannot be expected to
be associated to a high number of attractors with
intermediate values comprised between k0,i and k1,i.
A rough simplification consists in considering that
every gene is the result of a mixture of the form (6)
with only two modes, which can be expected to be
close to the values of k0,i and k1,i. Following this idea,
the clustering step of CARDAMOM can be replaced
by a simple binarization of the cells, where the mRNA
value measured for each gene is classified as belong-
ing either to the mode k0,i or k1,i, with a likelihood
ratio between the two negative binomials associated
to these parameters. We underline that this approxi-
mation does not mean that the data always exhibits
strong bimodality. It only means that the fact that they
are sometimes observed far from their extremum,

which is expected at least during the period of tran-
sition after applying the stimulus, does not mean that
these transitory states are stable.

The simplification consisting in imposing a num-
ber of clusters equal to 2 for each gene would not
affect the efficiency of the algorithm for the 4-genes
network studied in Section 6.3. Indeed, we observe
in Figure 8(A) that the RJMCMC algorithm applied
to each gene of the network for every datasets simu-
lated from this network usually computes a number
of clusters equal to 2, and in Figure 8(B) that impos-
ing a number of cluster greater than 2 makes slightly
decreases the efficiency of the algorithm. We discuss
in Section 7.4 the consequences of the accuracy of
such simplified method, which may argue in favor of
more complex burst functions than the ones of the
form (2), or even adaptive functions depending on
the clustering step described in Section 5.2.1.

6.6. Application to larger networks

We now consider the cases of tree-like activa-
tion networks of 5, 10, 20, 50 and 100 genes. For
each case, we simulate ten datasets corresponding
to 10 random networks of the same size, that sam-
pled from the uniform distribution over trees rooted
in the stimulus [15]. All datasets contain the same 10
timepoints t = 0, 2, 5, 8, 11, 13, 16, 19, 22, and 25h,
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Fig. 8. (A): Distribution of the number of clusters found by the RJMCMC algorithm during the clustering step for each gene of the 4-genes
network described in Table 2. (B): Comparison of the performances of CARDAMOM for the same network, when imposing different values
for the number of clusters in the clustering step. Performances are measured in terms of area under precision-recall curve (AUPR), based on
10 datasets corresponding to the same network.

Fig. 9. Comparison of the initial (t = 0h) and final (t = 20h) empirical marginal distributions of 4 genes simulated by the mechanistic model
with the GRN described in Table 2, and the dataset simulated from the GRN inferred by CARDAMOM from the previous dataset (with 200
cells per timepoints).

with 100 cells per timepoint (then 1000 cells in total
for each dataset). Inference is then independently per-
formed for all dataset with CARDAMOM and the
state-of-the-art method GENIE3 [19]. The results are
presented in terms of Area Under Precision-Recall
curves (AUPR), in Figure 11A). CARDAMOM turns
out to reconstruct more efficiently the topology of the
network than GENIE3. The strong decrease in perfor-
mance when the number of genes gets higher is due
not only to the lack of data per timepoints in regards
to the number of interactions, but also to the choice
of the timepoints. Indeed, a sequence of timepoints
that is too coarse to catch the dynamics would lead

to a lack of accuracy in the inference, and a sequence
which is too tight would often be too short, leading
to miss the activity of some genes. This appears to be
the case from 20 genes in Figure 11A).

For every size of network, an average runtime is
obtained after inferring the 10 datasets associated to
the 10 tree-like networks, on a 16-GB RAM, 2,4 GHz
Intel Core i5 computer. We see in Figure 11B) that for
both algorithms the computational speed increases
linearly with respect to the number of genes, with a
slope which is significantly lower for CARDAMOM.
These results show that the algorithm is suitable for
realistic number of genes and cells.
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Fig. 10. Representation in 2 dimensions of (A) the dataset used for the inference, simulated from the GRN described in Table 2 and (B) the
dataset simulated from the GRN inferred by CARDAMOM. Each dataset contains 500 cells divided in 10 timepoints.

Fig. 11. (A) Evolution of the performances of CARDAMOM and GENIE3 when increasing the number of genes. For each number of genes,
we represent a boxplot of the AUPR scores computed for ten datasets simulated with 10 different randomly generated tree-like networks.
(B) Evolution of the average computational time measured for inferring the tree-like networks with respect to the number of genes.

7. Discussion and prospects

In this discussion, after clarifying in Section 7.1 the
importance of the clustering step of CARDAMOM,
we go deeper in Section 7.2 into the link between
the mixture approximation and the popular notion of
Waddington landscape. Then, we discuss in Section
7.3 the applicability of our method to real single-
cell datasets. Finally, we show in Section 7.4 that
the regression step of the method highlight the link
existing between the mechanistic model and a neural
network, and in what way this analogy paves the way
for a more general method using adaptive bursts rates
functions.

7.1. Importance of the clustering

The attentive reader should have remarked that the
function (17) which is optimized in the second step
of CARDAMOM appears very simple and close to a

generalized linear model, which is surprising for an
analysis based on a mechanistic model. It is then natu-
ral to ask whether the clustering step remains impor-
tant or if it is possible to reduce the method to the
regression step by identifying each cell to a distinct
attractor without losing an important accuracy (the
clustering step would then simply consists in rescal-
ing each count of a gene i by the parameters ci). We
compare in Figure 12 this coarse simplification with
CARDAMOM on the datasets used in Section 6.3. We
observe that such simplification generates a signifi-
cant decrease in accuracy, confirming that the method
cannot be reduced to such generalized regression.

7.2. Limits of the method for finding the
developmental landscape

In this section, we come back on the Gamma
mixture approximation (6) and its limitations for
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Fig. 12. Analogy of Figure 7, where we compare (A) the ROC curves and (B) the PR curves of the GRN reconstruction performed by
CARDAMOM with clustering (in purple) and without clustering (in red, considering that there are as many clusters as cells in each dataset).

describing the developmental landscape of differen-
tiation, in order to remove some of the confusion that
might arise from misuse of this approximation. As we
presented in Section 3, this mixture approximation is
based on two assumptions:

1. The functions kon,i are close to constant inside
the basins:

2. The jump of a cells from one basin of attraction
of the deterministic limit (4) to another is a rare
event.

Then, in terms of Waddington landscape, the mix-
ture is supposed to describe accurately the bottom
of the potential wells associated to a GRN and, at
least under the assumption 1., the curvature of the
potential wells that are deep enough. However, it does
not describe accurately the boundaries of these wells,
which characterize the energetic barrier and corre-
spond precisely to areas of the gene expression space
where the functions kon,i have an important gradi-
ent, making the approximation not accurate. In other
words, the potential

Vα = − ln

⎛
⎝∑

z∈Z

μ(z)
n∏

j=1

Gamma

(
kz,j

d1,j

, cj

)⎞
⎠

is not supposed to be a good approximation of the real
potential Vθ = − ln

(
ûθ
)

associated to a GRN when
a cell is far from the attractors. This explains, with a

statistical physic point of view, why our algorithm is
not able to catch the temporal dynamics of the data,
but only the same sequence of temporal distributions.

This limitation is very hard to overcome. For this
sake, we should either get knowledge on the values of
the cells distribution on saddle points of the landscape
which are located in areas of the gene expression
space where it is very unlikely to find cells, which
would require to have thousands of cells just for a
small network, or to take into account explicitly the
value of time in the inference method. The latter point
would require to have analytical results on the tempo-
ral distribution of cells in the gene expression space,
which is generally out of range for realistic models
like (1). For example, using the temporal dynamics
of the probability vector μt on the basins for recon-
structing the transition rates (see Section 3.3) would
be challenging as an analytical link between these
transition rates and the GRN can only be obtained
up to a prefactor, which does not depend on the scal-
ing factor ε but is specific to each transition [51].
The only solution seems then to combine analyti-
cal results with simulations, in the same philosophy
than [5], but this leads to much more complex and
time-consuming algorithms that the one which is
developed in this article. To our point of view, this
also argues against methods where a mixture model
is used for reconstructing the temporal dynamics of a
metastable process from stationary distributions [37].
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7.3. Applicability of CARDAMOM to real
single-cell datasets

The algorithm CARDAMOM has been shown
to reconstruct accurately a most-likely GRN from
timestamped in silico datasets, through the estima-
tion of the metastable parameters associated to these
data. It is then natural to ask whether the method could
deal with real datasets or not. The method for estimat-
ing the metastable parameters should be well suitable
for real datasets, provided that the Negative Binomial
mixture approximation of mRNAs is accurate, and we
have seen in Section 6.6 that the algorithm is suitable
for realistic number of genes and cells. The main dif-
ficulty that could appear would then be related to the
decrease in the performance of the algorithm with the
number of modes appearing in the sample. Indeed,
we recall that the regression step aims to infer a GRN
matrix of size n × n from the values of the functions
kon,i at each attractor. First, it implies that too few
clusters in the sample would mean too little infor-
mation for the inference. Second, as developed in
Section 6.5, too many clusters for each gene would
make the sigmoidal bursts rate functions unsuitable,
which could also lower the performances of the algo-
rithm. Then, the level of multistability seems then to
be critical for the accuracy of the inference. For the
first point, we argue that regarding the noisy nature of
mRNA counts, it is impossible to infer a reliable GRN
when there is not enough multistability in the sample,
i.e when the marginal distribution of mRNA associ-
ated to each gene is described by a simple negative
binomial, the parameters of which does not evolve in
time. We discuss in Section 7.4 the implications of
the second point in terms of modeling.

To go further, we recall that the mathematical anal-
ysis beyond CARDAMOM lays on the point of view
that cell differentiation processes can be coarsely
reduced into a discrete process on a limited num-
ber of cell types, i.e that the main ingredients for
characterizing stochasticity are the frequency modes
describing the cell types and the random transitions
between them, which is commonly accepted since
[18]. Such transitions have been for example recently
proposed as the basis for facilitating the concomitant
maintenance of transcriptional plasticity and stem
cell robustness [55]: in this case, the authors had
proposed a phenomenological view of the transition
dynamics between states, and our work may typi-
cally connect this cellular plasticity to an underlying
GRN dynamics. This connection between a GRN
and associated cell states should also be used for

the quantitative modeling of stochastic state transi-
tions underlying the generation of diversity in cancer
cells [14, 56], or for investigating transitions between
the large diversity of clusters that can be observed in
human ES cell differentiation datasets [29].

7.4. Gene expression as a neural network

Interestingly, CARDAMOM appears close to a
machine learning approach. Indeed, since each func-
tion kon,i is independent from the others, depending
only on the ith line of the matrix θ, the regression step
is fairly close to parallel regressions of each gene on
the others. The choice of sigmoidal bursts rate func-
tions makes these regressions appear as the learning
step of an artificial neural network, which is simply
a set of one-layer perceptron for each gene coupled
by the crossed-penalization between the symmetric
coefficients of the matrix θ (see (15)). In the light of
this framework, the first step of the algorithm can be
seen as an identification of the outputs from the data,
by identifying the mode associated to each mRNA
count. For sigmoidal bursts rate functions, we have
seen in Section 6.5 that it is reasonable to consider
only two modes. This makes the clustering step close
to the prepossessing of a Boolean network analysis,
which consists in assigning every cell to the state of
a Boolean model, where a 0 may rather take any val-
ues between 0 and 1. Without crossed-penalization,
the second step would exactly consist in learning the
parameters of a perceptron as represented in Fig-
ure 13, where each line of the matrix θ corresponds
to the weight of the perceptron. The method then
builds an interesting link between machine learning
and dynamical modeling.

The results presented in Section 6.5 let us suppose
that the sigmoidal bursts rate functions of the form

Fig. 13. CARDAMOM can be interpreted as the learning of a per-
ceptron, where the clustering step (Section 5.2.1) corresponds to
the classification of the data, regarding to their associated modes
of frequency, and the regression step (Section 5.2.2) to the iden-
tification of the weights of the perceptron, corresponding to the
GRN.
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(2) have a limited complexity, i.e that they are not
able to catch a multistability which would be associ-
ated to more than two potential wells for each gene.
Thus, when applying the clustering step to a dataset
showing an important multimodality, at least for some
genes, the sigmoidal function may be not adapted
for modeling the behaviour of the underlying pro-
cess.The clustering step of CARDAMOM, described
in Section 5.2.1 could therefore be seen as a prelim-
inary to the choice of the "right" bursts rate function
that should be used for minimizing the risk (17)
(see Section 5.2.2): this function should be chosen
in accordance with the number of modes detected for
each gene. The neural network framework introduced
above is interesting, as it suggests that the choice of
the bursts rate function could correspond to the choice
of the number of layers in the neural network of Fig-
ure 13. In that point of view, the work achieved in this
paper treats the basic case of one layer, which could
be extended, although the interpretability of the nodes
for more than one layer remains an open question.
We believe that this adaptability is necessary when
dealing with highly complex single-cell data.

8. Conclusion

We proposed in this work an efficient method
for performing GRN inference from single-cell data,
seen as the calibration of a mechanistic model of gene
expression involving mRNA and protein levels. To
the best of our knowledge, our approach is the first one
which uses explicitly the popular notion of approxi-
mate developmental landscape, through the concept
of metastability, for performing the inference. The
method relies on a previous analysis of the mecha-
nistic model developed in [51]. It provides a modular
algorithm which consists in two steps: in a first time
characterizing the metastable parameters associated
to the coarse-grained model which describes the best
the data, and in a second time solving a serie of
regression problems aiming to link these parameters
to a most-likely GRN. The method is implemented
as a Python package called CARDAMOM, which is
available on open-access. This algorithm seems to be
very accurate for small but complex networks, and
its computational speed allows to make it suitable
for realistic number of genes and cells. Furthermore,
such inference method based on a mechanistic model
has the great advantage to make quantitative predic-
tions that can then be easily tested by simulating the
model. The simplicity of the regression step is partic-
ularly remarkable, and appears close to the learning

step of a neural network. We believe that in addition
to efficiently infer GRNs from timestamped datasets
while keeping a high interpretability, CARDAMOM,
which combines explicitly machine learning methods
with mathematical modeling, could pave the way for
new adaptive methods.

The next step would be to conceive bigger and
more complex networks for which all the non-zeros
entries of the GRN matrix do have an impact on the
data when simulating the model, which is in itself
a challenge, and to compare the performances of
CARDAMOM to state-of-the-art algorithms used for
GRN inference. As the problem of inference from a
mechanistic model like (1) has been recently studied
elsewhere using distinct mathematical tools [15], a
collaboration is in progress for realizing an impor-
tant benchmark of our method together with another
algorithm specifically developed for facing transcrip-
tional bursting and well-known methods such as
GENIE 3 [19] and PIDC [8], and studying the abil-
ity of the mechanistic model to reproduce in vitro
expression datasets when the model is calibrated by
CARDAMOM.

Code availability

The algorithm CARDAMOM presented in Sec-
tion 5.2, as well as the code for generating the
Figure 7, are available on https://gitbio.ens-lyon.fr/
eventr01/cardamom.

The algorithm used for simulating the model as
well as to generate the tree-like networks used in
Section 6.6 can be found on https://github.com/
ulysseherbach/harissa.
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Appendix A Description of the parameters used for the model

We provide here a list of the main variables that are used throughout the article.
1. For the gene expression model:

• θ a matrix defining the interactions between genes, corresponding to a matrix with diagonal terms defining
external stimuli,

• k0,i is the basal rate of expression of gene i,
• k1,i is the maximal rate of expression of gene i,
• βi is the basal activity of gene i, which can be also considered as the constant activity of set of genes which

are not measured and act on the network,
• d0,i is the degradation rates for mRNAs of gene i,
• d1,i is the degradation rate for proteins of gene i,
• s0,i is the creation rate for mRNAs of gene i,
• s1,i is the creation rate for proteins of gene i,
• koff ,i is the exponential rate of switching from state on to state off for the promoter of gene i,
• kon,i is a sigmoidal function depending on the global protein field P ∈ �, defined in (2), which characterizes

the exponential rate of switching from state off to state on for the promoter of gene i,

• ci = koff ,id0,i

s0,is1,i
is the exponential rate of proteins of gene i that are created at every burst, in the model (3).

2. For the numerical analysis allowing to understand the algorithm CARDAMOM:

• Z denotes a set of basins of attraction associated to the deterministic limit for a given GRN, and (Pz)z∈Z

the set of corresponding attractors,
• kz,i = kon,i(Pz) corresponds to frequency mode of the promoter of gene i associated to the basin z ∈ Z,
• μt is a probability vector describing the probability for a cell to be in each basin z ∈ Z at time t. μ denotes

this probability vector at the steady state,

• α =
{

μ(z), kz,i

d1,i
, ci

}
z∈Z,i=1,··· ,n

is the set of parameters which describe a Gamma mixture of the form (6),

• αk
M is the set of parameters which describe a Gamma mixture associated to a gene expression matrix Mtk

measured at time tk,
• αz,i = kz,i

d0,i
denotes the renormalized frequency mode for the promoter of gene i of a cell within a basin

z ∈ Z, that is accessible from scRNA-seq data.

Appendix B Master equation of the reduced model

The master equation on the probability density u(t, ·) of the bursty model (3), describing only proteins,
associated to a GRN θ appears as an integro-differential equation:

∂tu(t, x) =
n∑

i=1

[
∂xi

[
d1,ixiu(t, x)

]+
xi∫

0

kθ
on,i(x − hei)u(t, x − hei)cie

−cihdh − kθ
on,i(x)u(t, x)

]
, (18)

where each ei is a vector of size n with only zero entries except on the ith position.

Appendix C Regression method in case of proteomic data

In this section, we show how CARDAMOM, which aims to infer a GRN from scRNA-seq data, can be
interpreted as a restriction of a more general algorithm where mRNAs are seen as a proxy for the proteins levels,
which uses more intensively the characteristics of the Gamma mixture approximation (6) instead of the modes
only.
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In the model (1), a GRN is completely encoded through the functions kθ
on,i. Then, it is straightforward that

knowing the exact values taken by these functions on the whole protein space would allow to determine the value
of the associated GRN. The method described in Section 4.1 consists in using the value of these functions on the
set of the attractors, but we did not directly use the information provided by the probability vector on the basins
μ. Given a experimentally observed distribution of proteins, it would be fruitful if the mixture approximation
allowed to evaluate the functions kon,i not only on the attractors of the basins but also on the position of the cells
that are observed. For this sake, we define the functions kα

on,i for all i = 1, · · · , n, for all x ∈ �:

kα
on,i(x) =

∑
z∈Z

μzkz,i

∏n
j=1 Gamma(kzj , cj)(x)

∑
z∈Z

μz

∏n
j=1 Gamma(kzj , cj)(x)

. (19)

The two following lemmas are proved at the end of this section:

Lemma 1. Replacing kθ
on,i by kα

on,i in the model (3), the stationary distribution is exactly given by the mixture
distribution (6).

Lemma 2. We consider the evolution of a population of cells, initially distributed under a Gamma mixture ûα

of the form (6), in the model (3) driven by the functions kθ
on,i. We have the inequality:

∀x ∈ �,
∫
�

|∂tûα(x)||t=0dx ≤ 2Eûα ||kθ
on(X) − kα

on(X)||1.

Lemma 1 suggests that the difference between the distributions ûθ and ûα, which is supposed to be small
according the the analysis of Section 3, should be related to the difference between the two classes of parametric
functions kθ

on,i and kα
on,i. The inequality of Lemma 2 gives a more precise reason for considering this difference.

Indeed, the expected value of the 1-norm of the difference between these two functions is an upper bound of
a quantity which measures how rapidly the associated mixture distribution is going to change when it is taken
as an initial condition in the master equation of the model (3) driven by kθ

on,i, that we call the impulsion of this
mixture. We remark that for every product of Gamma distributions centered on one of the attractors associated
to a GRN, the expected value on the right hand side of the inequality of Lemma 2 is expected to be small, as
the cells are not going to jump to another basin in short times. The "right" mixture associated to a GRN θ is
then the one which is going to be accurate in the highest part of the gene expression space, i.e that takes into
account the highest number of basins. But a simple sum of Gamma mixture would not be accurate on the areas
of the gene expression space where the Gamma distributions cross each other, as it does not take into account the
potential depth associated to each attractor. The balance μ(z) can then be seen as a balance which characterizes
the most-likely energetic barrier between the potential wells for reconstructing the right steady-state behavior.
Note that this ability of the vector μ to identify the depth of the basins should be closely linked to the ability of
a quasipotential to describe the transitions between the basins [51].

We compare in Figure 14 the functions kθ
on,1 and kα

on,1 for the toggle-switch network described in Table
1, illustrating the fact that the approximation seems accurate inside the basins and allows to reproduce quite
accurately the basins of attraction of the deterministic system, although the functions on the boundary of the
basins have a slightly different behaviour. This is in line with the ideas developed in Section 5.2.3.

The upper bound of the impulsion of a mixture distribution in the model driven by a GRN θ, which is provided
by the inequality of Lemma (2), appears as a good choice for the function R described in Section 4.2. It is natural
to substitute the distribution ûα(X) by the empirical distribution associated to the matrix X. We also decide to
take the 2-norm in order to simplify the minimization problem. We would finally obtain instead of (17):

R(θ, α(X)) =
∑

x∈X

n∑

i=1

(
kθ
on,i(x) − k

α(X)
on,i (x)

)2
. (20)

We remark that the function to be optimized in CARDAMOM (17) corresponds exactly to this new function
(20) when the cells x are exactly located on the attractors. This is in line with the fact that in our framework, the
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Fig. 14. (A): Color map of the function kθ
on,1/k1,1 characterized by the toggle-switch described in Table 1, on the gene expression space.

(B): Color map of the function kα
on,1/k1,1 characterized by the mixture parameters associated to the same network, obtained with the method

described in Figure 4, on the gene expression space. (C): Color map of the function |kθ
on,1 − kα

on,1|/k1,1, on the gene expression space.

most likely position for the proteins vector P knowing mRNAs are on the attractors of the basins to which the
cell belongs. This lack of information cannot be compensated: indeed, it would either suppose that an observed
deviation of a count of mRNA from an attractor is better explained by the fact that the proteins are far from their
most-likely position than mRNA itself, which is not the case since mRNAs are known to be much more noisy
than proteins, either that the functions kon,i are far from their value on the attractors even when proteins are far
from the boundary, in which case the Gamma mixture approximation (6) would not be accurate and our method
is no more relevant.

Proof of Lemma 1
Injecting the functions kα

on,i instead of kθ
on,i and the distribution ûα of the form (6) instead of u on the right-hand

side of the master equation (18), we obtain for all i = 1, · · · , n:

∂xi

[
d1,ixiû

α(x)
]+

xi∫

0

kα
on,i(x − hei)û

α(x − hei)cie
−cihdh − kα

on,i(x)u(t, x) =

∑

z∈Z

μ(z)
∏

j /= i

Gamma

(
kz,j

d1,j

, cj

)[
∂xi

[
d1,ixiGamma

(
kz,i

d1,i

, ci

)
(x)

]
+

xi∫

0

kz,iGamma

(
kz,i

d1,i

, ci

)
(x − hei)cie

−cihdh − kz,iGamma

(
kz,i

d1,i

, ci

)
(x)

]
= 0,

because Gamma
(

kz,i

d1,i
, ci

)
is the unique stationary distribution of the model (3) for one gene and a constant

kon,i = kz,i [24]. Then, the right-hand side of the master equation is null and ûα is the unique stationary distribution
of the model (3) when the burst rates functions are of the form (19).

Proof of Lemma 2 This lemma follows from the previous Lemma 1. Indeed, from the master equation at t = 0,
defining u(0, x) = ûα(x), we have:

∂tu(t, x)|t=0 =
n∑

i=1

⎛
⎝∂xi

[
d1,ixiû

α(x)
]+

xi∫

0

kθ
on,i(x − hei)û

α(x − hei)cie
−cihdh − kθ

on,i(x)uα(x)

⎞
⎠

=
n∑

i=1

⎛
⎝

xi∫

0
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where the second equality comes from the fact that ûα is the stationary solution of the master equation (18) with
burst rates functions kα

on,i. Thus, we obtain:
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Chapter 4

Benchmark with state-of-the-art methods
and application to an experimental
dataset. Article submitted for publication
in Plos Computational Biology.

Those last few years many GRN inference algorithms based on the analysis of single-cell
transcriptomic data have been developed. Concurrently, GRN simulation tools have also
been proposed for generating synthetic datasets with statistical characteristics similar to the
experimental ones. Despite their successes, these two types of methods suffer from severe
limitations:

1. GRN inference methods are “top-down” (they do not take into account explicitly the
molecular complexity within single-cells) instead of “bottom-up” (based on the molecular
processes driving cells dynamics). This makes the inferred interactions difficult to interpret
in a mechanistic way, and prevents the possibility of simulating data from the inferred
GRN.

2. Simulation methods often need the addition of some adapted technical noise to fit the
experimentally-observed variability of gene expression, and the expected patterns generally
have to be hard-coded in the model parameters instead of emerging from the GRN
mechanistic behavior, preventing their calibration from scRNA-seq data.

In this chapter, we aim to show that using the same mechanistic model (1.16) for both data
simulation and network inference allows to overcome these limitations. We already proposed in
Chapter 3 a method called CARDAMOM [96] for inferring a most-likely GRN from time-stamped
datasets and proved its efficiency on in silico datasets generated from small specific networks. In
this chapter, we go further in the applications. First, we establish the precision of CARDAMOM
as a GRN inference tool, using synthetic datasets generated with HARISSA [38]. Second, we
apply the method on a previously published dataset and show that this calibration allows to
recover many aspects of the original data when running the model, while providing biological
insights into the nature of the detected interactions. For analyzing the results, we use both
standard statistical methods and custom criteria based on statistical tests on the marginals of
each gene, Wasserstein distances [75] and the reduction dimension algorithms UMAP [62]. These
results demonstrate the benefits of using the same model for simulation and inference purposes.

The chapter contains an article which has been submitted for publication in the journal Cell
Systems [98].
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Abstract:
The rise of single-cell data highlights the need for a nondeterministic view of gene expression,
while offering new opportunities regarding gene regulatory network inference. We recently
introduced two strategies that specifically exploit time-course data, where single-cell profiling
is performed after a stimulus: HARISSA, a mechanistic network model with a highly efficient
simulation procedure, and CARDAMOM, a scalable inference method seen as model calibration.
Here, we combine the two approaches and show that the same model driven by transcriptional
bursting can be used simultaneously as an inference tool, to reconstruct biologically relevant
networks, and as a simulation tool, to generate realistic transcriptional profiles emerging from
gene interactions. We verify that CARDAMOM quantitatively reconstructs causal links when
the data is simulated from HARISSA, and demonstrate its performance on experimental data
collected on in vitro differentiating mouse embryonic stem cells. Overall, this integrated strategy
largely overcomes the limitations of disconnected inference and simulation.

Keywords: gene regulatory networks, causal inference, data simulation, transcriptional bursting,
stochastic gene expression, single-cell transcriptomics, time-course profiles, lineage commitment
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Introduction
Cell decision making as a response to exogenous or endogenous stimuli (e.g., differentiation,
proliferation, cell death or biological activity modulation) is often supported by time-dependent
modulation of gene expression upon stimulation. Understanding how and why gene expression
changes as a function of time in response to specific stimuli is therefore critical to understand the
underlying biological processes.

The “how” question can now be approached using single-cell-based technologies, offering an
unprecedented resolution and a much finer view than population-based measures [1, 2]. The
“why” question relates to the functioning of an underlying gene regulatory network (GRN) which
describes interactions between genes through their expression products. GRNs are thus a central
notion for understanding and predicting cellular behavior, but their construction from literature is
a very laborious task, sometimes even impossible due to the lack of knowledge.

Reconstructing most-likely GRNs from transcriptomic datasets has therefore become a major
goal in systems biology [3] but is also notoriously difficult, especially in the case of single-cell
transcriptomic data. Indeed, the bursty synthesis of mRNAs, now clearly evidenced [4, 5], gives
rise to highly variable and non-Gaussian expression data [1, 6], and current GRN inference
methods employ a wide range of statistical and modeling tools [7]. Methods based on a specific
mechanistic model have the great advantage of providing biological interpretability, since each
inferred interaction between genes can be understood in terms of model behavior. Moreover,
such approach generally provides interactions with their direction and intensity, which is not the
case for most purely statistical methods.

However, the results of a method based on a mechanistic model can only be considered relevant
if the model is able to correctly reproduce single-cell datasets. For instance, it is now widely
accepted that the transcriptional bursting phenomenon is associated to specific patterns of gene
expression products [8, 9], making continuous single-cell data close to Gamma distributions [10]
and discrete data close to negative binomial distributions [11], the latter being themselves
mathematically equivalent to Poisson distributions with Gamma-distributed random parameters.
Thus, executable network models should at least be able to generate these patterns in their
marginal distributions. In any case, the use of a mechanistic model-based method requires
prior strong evidence that the underlying model is relevant for simulating realistic single-cell
transcriptomic data sets.

We recently developed several methods for inferring GRNs from single-cell data based on a
particular mechanistic network model, defined as a ‘multi-agent’ generalization of the well-known
two-state stochastic model of gene expression [8] where genes are now being described by
interacting two-state models [6]. These methods are well suited for single-cell RNA-seq (scRNA-
seq) time-course data, each dataset being considered as a partial observation of the model at a
certain time. Crucially, they do not require the observation of cell trajectories, whose inference is a
problem in itself [12, 13], but only that the cells sampled at each timepoint are driven by the same
dynamical process, i.e., resulting from the same GRN. Our first proposal was called WASABI [14],
which uses a divide-and-conquer approach where the problem of GRN inference is solved one
gene at a time. Although able to propose relevant GRNs, this approach suffered from two
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drawbacks: it required days of computation for a GRN with 50 genes, and proposed a potentially
long list of candidate networks. We therefore developed two other methods: HARISSA [6], a
GRN simulation algorithm based on the mechanistic model together with a proof-of-concept
inference method derived from likelihood maximization, and CARDAMOM [15], a simplified and
scalable alternative for the GRN inference part that crucially exploits the notions of landscape
and metastability.

In this work, we sought to investigate the benefits of using this model as an integrated tool for both
GRN inference and data simulation. We therefore assessed its ability to allow for efficient network
reconstruction from time-course scRNA-seq data, while accurately reproducing the dataset main
features from the functioning of the inferred network. Note that to the best of our knowledge, this
is not performed by existing GRN-based simulation tools, which are generally based on more
phenomenological than mechanistic models [16, 17], meaning that gene expression patterns, and
especially transitions between cell types, are hard-coded instead of emerging from interactions
between genes.

After introducing the setup of our benchmark made from in silico datasets generated with the
mechanistic model, we first evaluate the performances of HARISSA and CARDAMOM together
with four state-of-the-art GRN inference algorithms: GENIE3 [18], PIDC [19], SINCERITIES [20]
and SCRIBE [21]. We study the limits of the different categories of inference methods in the
case of transcriptional bursting, and verify that the two model-based methods perform better than
the others on these datasets. CARDAMOM appears as the best performing algorithm during
this benchmark step, which only considers network structures. Importantly, the output of this
algorithm is not only a matrix of interaction scores, but also a set of quantitative parameters that
can be plugged into the GRN model for simulations.

In a second step, we use CARDAMOM to calibrate the model with a real time-stamped scRNA-seq
dataset of differentiating mouse embryonic stem (ES) cells [22]. We demonstrate the ability of the
model to reproduce the global features of real time-course transcriptomic profiles. We also show
that most of the inferred interactions are indeed supported by biological evidence such as ChIP-
seq experiments, although this evidence was not used during the inference process. Altogether,
these results establish the ability of an executable network model not only to simulate realistic
single-cell datasets, but also to provide an effective reverse-engineering algorithm capable of
reproducing the main gene expression patterns of an experimental dataset as emergent properties
of the underlying GRN.

Results

HARISSA simulates single-cell datasets from a mechanistic GRN model
We first wanted to benchmark the ability of the different inference algorithms to reconstruct
correct network structures from in silico generated datasets, i.e., when the ground truth is known.
For this, we used the simulation module of HARISSA [23], which generates trajectories of a
mechanistic model describing gene expression dynamics (both mRNA and the corresponding
proteins) within a single cell, these dynamics being influenced by an underlying GRN and driven
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by transcriptional bursting (see Methods and Figure S1). As shown in previous work, this model
is indeed able to generate scRNA-seq datasets with realistic marginal distributions [6, 23].

We simulated nine types of datasets corresponding to different network structures (Figure 1): a
network of 4 genes with a branching structure and inhibition feedback loop (FN4); a network of 5
genes with a cycling structure (CN5); a network of 8 genes with multiple branching structure and
feedback loops (FN8); a network of 8 genes with branching trajectories (BN8); networks with a
tree structure of 5, 10, 20, 50, and 100 genes (Trees). These networks represent the main types
of network structures that have been used for benchmarking GRN inference algorithms [17].
Overall, the objective was to reproduce time-course experiments in which single-cell profiling is
performed after a given stimulus, typically a change of medium [22, 24, 25]. This stimulus was
therefore taken into account in all the simulations, in the form of a virtual gene defined as being
inactive before the beginning of the experiment and fully activated afterwards.

For each network structure (Figure 1A), the transcriptional bursting model implies that typical
single-cell trajectories do not follow a diffusion-like process (at least in the space of mRNA levels),
and differ strongly from the more usual and intuitive population-average trajectory (Figure 1B).
The practical datasets were obtained by sampling independent cells at a specific sequence of
timepoints, therefore not keeping the real cell trajectories but rather considering different cells
at each timepoint, forming time-stamped snapshots (Figure 1C). Interestingly, both feedback
networks (FN4 and especially FN8) produce a recognizable “differentiation trajectory” across the
UMAP space with a clear temporal order of cells. Due to the stochastic nature of cell trajectories
generated by the mechanistic model, branching trajectories in snapshots only appear in specific
cases, generally when a toggle-switch is dominating the GRN structure and then generates
distinct branches in the UMAP representation (see BN8 in Figure 1).

As mentioned previously, HARISSA consists of twomodules for performing respectively simulation
and inference. Whereas the original inference module of HARISSA was limited to a few genes [6],
it recently integrated an effective CARDAMOM-inspired simplification [23] that allows to infer
networks with a much larger number of genes. We therefore also benchmarked this method
along with the others.

CARDAMOM quantitatively reconstructs causal GRN links
We then inferred GRN structures from the in silico generated datasets using the six algorithms
presented in the Methods section (HARISSA, CARDAMOM, GENIE3, PIDC, SINCERITIES,
and SCRIBE). Note that neither GENIE3 nor PIDC are able to use the temporal information
(except for the stimulus state information, which they are also provided with), giving them a
disadvantage compared to the other algorithms. They were nevertheless used in the benchmark
as they are considered to be among the best algorithms for single-cell data, and given that very
few algorithms are specifically adapted to time-stamped datasets. Indeed, most methods are
limited to static data, and those that are not (such as SCRIBE) require temporally-ordered cell
trajectories instead of independent snapshots, thus requiring a pre-processing step that can itself
be subject to errors. Moreover, it was not known how they would fare in a time-course setting
with transcriptional bursting, which was an interesting question per se.
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Figure 1: Single-cell data simulation using HARISSA. (A) Networks used for subsequent tests, in-
cluding feedback loop networks (FN), a cycling network (CN) and a branching network (BN). Genes
and stimulus are represented by numbered nodes and an empty node, respectively, while green arrows
indicate activation and red blunt arrows indicate inhibition. (B) Corresponding trajectories, defined as
time-dependent mRNA levels (in copies per cell). For each network, the first plot shows one example of
single-cell trajectoryM while the second plot shows the population average 〈M〉 from 1000 cells. The
transcriptional bursting model underlying HARISSA implies that every single-cell trajectory differs strongly
from the more usual population average. (C) Two-dimensional UMAP representations of corresponding
single-cell snapshots, defined as mRNA levels sampled at 10 timepoints in different cells from 0h to
96h, with 100 cells per timepoint. Such snapshots are called time-stamped data in the text and are
fundamentally different from single-cell trajectories, which are currently not available experimentally.
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We also emphasize that among these algorithms, only CARDAMOM and HARISSA have the
significant advantage of providing biological interpretability, thanks to the mechanistic model
on which they are based: here the network parameters are not mere interaction scores, but
quantitative parameters that can be plugged into the model for simulations. From this perspective,
even similar performances compared to the other algorithms would be satisfying.

Inference was performed on ten independent datasets for each condition, and the results were
merged into the area under the precision-recall curve (AUPR) which measures the quality of the
inferred GRN structure. We also compared the inferred GRNs with a naive method consisting
in assigning to each edge of the network the value given by the Pearson correlation coefficient
between the corresponding genes (abbreviated as PEARSON): this comparison with Pearson
coefficients makes it possible to verify, when the algorithms show good performances, that
these are not only due to highly correlated data which are thus not difficult to analyze. The
results are presented in Figure 2A-B for the first five algorithms. We present the results for
SCRIBE separately in Figure 2C because this algorithm requires temporally or pseudo-temporally
ordered trajectories, and the results then depend on the pre-processing that is applied on the
time-stamped data.

CARDAMOM and HARISSA appeared to outperform the other algorithms for most of these
datasets. In particular, in terms of directed interactions, these two methods always clearly
performed better than the others. The undirected networks for which GENIE3 and PIDC have
similar performances (CN5 and BN8) correspond to cases where the Pearson correlation method
is also accurate.

Also, if GENIE3 and PIDC represent an improvement over the Pearson correlation method, they
seem to perform poorly when the correlation between genes is not sufficient to infer a reliable
GRN. More precisely, we observe that GENIE3 and PIDC are accurate for tree-like networks
(Trees), even with bifurcating trajectories (BN8) and cycling (CN5), which was not the case in [17].
On the contrary, SINCERITIES performs very poorly for these type of networks, but seems
however competitive for networks with feedback loops (FN4 and FN8) where GENIE3 and PIDC
have lower performances. These networks are more difficult to reconstruct. Indeed, as visible in
Figure 1, the population-average trajectories of some genes are completely similar. Some genes
also have the same marginal distribution of mRNA levels: for example in the network FN4, gene
2 and gene 3 have the same input (gene 1), so their marginal distributions evolve similarly at
each timepoint. Then SINCERITIES, which bases the inference procedure on the approximate
distribution for each gene, fails to make this subtle distinction, illustrating the improvement that is
typically expected from HARISSA and CARDAMOM. On all the networks, GENIE3 fails to infer
reliably the direction of the interaction, i.e., to distinguish the interaction i → j from the interaction
j → i . On the contrary, because of their mechanistic assumptions, CARDAMOM, HARISSA and
SINCERITIES have always quite similar results for directed and undirected inference. Finally, we
observed that CARDAMOM outperforms HARISSA on most of the networks.

Regarding SCRIBE, we tested its performances for 3 types of data (Figure 2C):

1. When we have access to real trajectories (Real traj.): each cell at each timepoint is being
associated to a real ancestor at the previous timepoint and a real descendant at the
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Figure 2: Benchmark of inference methods for five different network structures. For each network,
inference is performed on ten independently simulated datasets, each dataset containing the same 10
timepoints with 100 cells per timepoint (1000 cells sampled per dataset). The performance on each
dataset is then measured as the area under the precision-recall curve (AUPR), based on the unsigned
inferred weights of edges. Finally, the performance of each method is summarized as a box plot of the
corresponding AUPR values, or the average AUPR value for the tree-structure activation networks (Trees).
For each plot, the dashed gray line indicates the average performance of the random estimator (assigning
to each edge a weight 0 or 1 with 0:5 probability). For the Trees networks, each dataset corresponds to a
random tree structure of fixed size (5, 10, 20, 50, and 100 genes) sampled from the uniform distribution
over trees of this size. (A) Performance of all methods when considering only undirected interactions.
(B) Performance of the methods able to infer directed interactions. (C) Performance of the SCRIBE
inference method for the same networks, in three conditions: when one has access to real single-cell
trajectories (in brown), when pseudo-trajectories are reconstructed from time-stamped data using a
coupling method similar to Waddington-OT (in pink), and when a single pseudo-trajectory is reconstructed
using the pseudotime algorithm SLINGSHOT (in light green).
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following one. Such knowledge can of course only be accessed with in silico generated
datasets or in vitro for a very limited number of genes by using live-cell imaging of short-lived
transcriptional reporters [26];

2. When we do not have access to real trajectories, and each cell at each timepoint is
associated to a pseudo-ancestor at the previous timepoint and a pseudo-descendant at
the following one, using the Waddington-OT method described in [27] (Coupling);

3. When we do not have access to real trajectories, and the algorithm SLINGSHOT [28] is
used for reconstructing a pseudo-temporally ordered trajectory (Pseudotime).

We observed that SCRIBE performs well when the datasets are built with the method 1, but poorly
when the datasets are built with the methods 2 and 3, at least on the tested networks (Figure 2C).
These poor performances are due to the loss of temporal coupling between measurements of
genes that interact. They suggest that neither optimal coupling nor pseudotime reconstruction are
sufficiently efficient for GRN inference in case of transcriptional bursting. Concerning the optimal
coupling method, we notice that this might be due to the "movement by diffusion" assumption on
which the method Waddington-OT is built, which does not takes into account the constraints on
the trajectories imposed by the GRN.

When computing the average runtime of each algorithm on the tree-like networks, we observed
that except for SCRIBE, all algorithms are suitable for inferring GRN with a realistic number of
genes (see Table S1). Thus, due to this computational limit and its poor performances when
using time-stamped data, we did not consider SCRIBE for further analysis.

We then investigated the limit performances with respect to the number of cells and/or timepoints.
We observed that the performances of the first five algorithms decrease for the tree-like networks
when the number of genes increases (Figure 2). This can be due to three main factors:

1. A sequence of timepoints too coarse in relation to the dynamics would directly lead to a
lack of inference accuracy;

2. A sequence of timepoints which is too restricted may not allow to see interactions involving
some genes that are regulated late in the process. For example, in Figure 2, we observe
that the inference on the Trees networks is very poor for more than ten genes: it comes
from the fact that some genes are never activated before 96h;

3. The number of cells at each timepoint can simply not be enough to infer a reliable GRN.

We therefore investigated the effects of these three factors on the accuracy of the algorithms by
studying their performances in terms of AUPR for ten datasets generated from ten randomly-
generated tree-like network of ten genes, when varying the number of cells at each timepoint
(Figure 3A), the length of the interval for a fixed time gap between each timepoint (Figure 3B),
and the density of the sequence of timepoints for an interval with fixed length (Figure 3C). As
anticipated, all these conditions have an impact on the quality of the inference: augmenting
their values tends to produce a better quality of inference. We also observed that the number of
sampled cells seems less critical than the other factors, confirming that few cells at a sequence
of timepoints which is dense and long-enough is preferable to many cells on a sequence of
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Figure 3: Dependence of inference methods on data collection parameters. For simplicity, only the
case of undirected interactions is considered here and the datasets are restricted to 10-gene tree-structure
networks (see Figure 2 for the general benchmark). Inference is performed for each method and condition
on ten independently simulated datasets and summarized by box plots of AUPR values as in Figure 2.
(A) Performance as a function of the number of cells per timepoint, while keeping the same timepoints.
(B) Performance as a function of the length of the measurement period, while keeping the same gap
between timepoints and the same total number of cells. (C) Performance as a function of the density of
the measurements, while keeping the same final timepoint and the same total number of cells.

timepoints which is too coarse and/or too short. This should be kept in mind when designing
single-cell transcriptomics experiments aiming at GRN inference.

Hence, both CARDAMOM and HARISSA, with a benefit for using CARDAMOM, allowed to
efficiently reconstruct network structures by reverse engineering the generative model on which
they are based. We then needed to test its ability to reproduce an experimental dataset from the
literature after network inference.

Application to a real dataset yields a biologically relevant network
As a test case, we used a time-stamped in vitro dataset from Semrau et al. [22] obtained by
scRNA-seq of a retinoic acid (RA)-induced differentiation of mouse ES cells (see Methods).
This well-characterized model system of in vitro differentiation recapitulates the transition from
pluripotent embryonic stem cells towards two cellular lineages (ectoderm- and extraembryonic
endoderm-like cells), all characterized by well-established molecular markers that were further
used in GRN inference.

In order to interpret the resulting GRN, we sought to assess whether the inferred interactions
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Figure 4: Comparison between inference methods and physical interactions derived from ChIP-
seq. The four directed GRN inference methods were applied to the experimental dataset from [22]
restricted to a panel of 41 marker genes identified by the authors, and a reference network was obtained
independently from edges supported by ChIP-seq data. As we only have access to physical interactions
involving the retinoic acid (RA) stimulus or genes Pou5f1, Sox2, and Jarid2, the comparison only considers
the related edges. (A) Receiver operating characteristic (ROC) curve and corresponding area under
the curve (AUROC) for each inference method. (B) Precision-recall (PR) curve and corresponding
area under the curve (AUPR) for each inference method. (C) Venn diagram showing the overlap, for
interactions involving the RA stimulus, between directed edges predicted by CARDAMOM and known
physical interactions identified by ChIP-seq analysis.

are supported by known biochemical evidence of physical interaction between regulators and
regulated genes (Figure 4). For this, we annotated the inferred edges coming from genes
encoding known transcription regulators (i.e., transcription factors and cofactors) included in the
network and for which ChIP-seq data are currently available in ES or the closely related embryonic
carcinoma (EC) cell system. Since the RA stimulus exerts its differentiating effect mainly through
the members of the RA-activated nuclear receptors subfamily RAR (NR1B) that encompass
3 paralogs (i.e., RAR¸, RAR˛ and RAR‚), the annotation of the interaction edges linking the
stimulus and the regulated genes was based on the presence/absence of ChIP-seq peaks for any
RAR paralogs at less than 10 kb upstream or downstream of the annotated transcription start site
(TSS) in RA-stimulated ES or EC cells [29, 30]. Although arbitrary, the chosen distance between
TSS and DNA binding site for the indicated transcription regulator is relatively conservative
as transcriptional effect could be exerted from greater distance up to megabases [31] and the
absence of supporting peak as defined should not be interpreted as a proof of absence of any
direct modulating effect. Similarly, the edges supported by physical interactions data for Sox2
and Pou5f1, or Jarid2 were extracted from [32, 33].

Using these known physical interactions as a ground-truth, we compared the receiver operating
characteristic (ROC) and precision-recall (PR) curves related to the network structures inferred
by the four algorithms (Figure 4A-B). We observed that, in accordance with the previous results,
CARDAMOM and HARISSA appear as the top-ranked algorithms, displaying both a very close
ability to infer known edges.

We then examined the structure of the network inferred by CARDAMOM (Figure 5). Importantly, in
agreement with its differentiating effect in ES/EC cell systems, we observed that the RA stimulus
is densely connected with genes involved in pluripotency maintenance as supported by multiple
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biological analyses [29, 30, 34] and to a lesser extent with gene nodes corresponding to genes
associated with specific cell fates, this latter observation likely reflecting how the stimulus is
modeled (see Methods). Notably, these last nodes also exhibit a relatively high interconnectivity
(e.g., endodermal differentiation) as compared to intergroup connectivity. Although biologically
interesting, these observations illustrate our previous conclusion and likely mirrors the unbalanced
experimental design characterized by a dense sequence of timepoints during the early phase
(0h to 36h) of the differentiation process analysed and a coarser sequence of timepoints in the
mid (36h to 48h) and late (48h to 96h) phases of the process [22].

Most notably, the overwhelming majority (0.85%) of the inferred edges that involve the RA stimulus
are supported by biochemical evidence (Figure 4C). Similarly, the edges inferred from Pou5f1,
Sox2, and Jarid2 nodes are globally supported by physical interaction (2/3 for Pou5f1, 2/3 for
Sox2, and 1/1 for Jarid2).

We also observed that some inferred edges are not supported by documented physical inter-
actions, as expected for genes encoding proteins unable to directly interact with DNA. As an
example of such node, Sparc (also known as Osteonectin) appears highly connected to genes
associated with all four cell states despite its inability to directly interact with gene basal tran-
scription machinery (i.e., RNA polymerase complex). However, the inferred edges are clearly in
agreement with its documented role in promoting endodermal differentiation [35]. Additionally,
unsupported inferred edges may mirror the lag time between the expression and therefore the
physical interaction between regulator and regulated genes and the observed transcriptional
effect. By contrast with TFs that establish contact with the transcription machinery, modifying
cofactors often catalyse deposition/erasure of epigenetic marks (e.g., acetylation/methylation of
histones, DNA methylation) that will likely modulate transcription in a longer lasting manner. In
this respect it is interesting to note that the Dnmt3b gene negatively interacts with many other
genes in the network, which mirrors the fact that Dnmt3b is a de novo DNA methyltransferase,
and has an indirect effect on gene regulation through CpG methylation, a well documented
epigenetic mark generally associated with gene expression silencing. Altogether, this illustrates
that our GRN model does incorporate various epigenetic information or indirect effects and is not
restricted to physical interactions between transcription factors and their target genes.

While most inferred edges involving genes that encode TFs appear to be supported by physical
interactions, many physical interactions detected by ChIP-seq are missed by CARDAMOM (e.g.,
50% for RA, see Figure 4C). This observation is however not necessarily the sign of a lack
of accuracy of the inferred GRN, since the detection of a physical interaction is not per se the
hallmark of a modulating effect on the transcription level of the target gene [30]. Additionally,
some specific regulatory structures are notoriously difficult to infer as illustrated by the high failure
rate (96%) in inferring edges from Jarid2, a component of a repressive complex expressed in
the pluripotent state and directly involved in the silencing of differentiation-associated genes.
Interestingly, the interaction between Jarid2 and most of its physical targets presented in our GRN
were instead wrongly detected as an inhibitory effect of the regulated genes on their regulators.
This is due to the fact that CARDAMOM works by going forward in time, and thus fails to capture
an inhibition that has an effect at the beginning of the process and which can be detected only
further: instead, it would be prone to interpret the increase of the repressed genes by the effect
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of other intermediate genes, and the decrease of the repressor by an inhibitory effect of the
repressed genes. We discuss further such bias of the algorithm in the Discussion section.

For a better understanding of the inferred GRN dynamics, we also examined a dynamical network
representation, where each edge appears at the timepoint for which it was detected with the
strongest intensity by the inference algorithm (Figure 6). Unsurprisingly, the RA stimulus is
detected at the earliest timepoint of the response (6h) and then ceases to influence the signal,
which propagates in waves through the network as we described in a previous study [14]. For
example, we do clearly observe the late increase of interactions for genes involved in specifying
the extraembryonic endoderm.

Simulation of the inferred network reproduces the original dataset
While inferring the GRN structure, CARDAMOM also inferred all the other parameters of the
model, as described in Methods, except the mRNA degradation rates d0;i for each gene i . These
parameters d0;i are not negligible as they scale the dynamics of the process. To address this
problem, we used values from the literature that can be found in [36] (see Methods and Table S2).
Once the model has been calibrated, one can simulate an in silico dataset and sample the
nine timepoints corresponding to the in vitro experiment. More precisely, we simulated two
different datasets after calibrating the mechanistic model: one actually using the inferred network
interactions, and one corresponding to the “null network” defined by removing the interactions
(i.e., all genes individually calibrated with the same parameters but kept independent).

We first decided to verify, as advocated by Soneson et al. [37], the suitability of our generated
synthetic data. We used countsimQC [37], a recent tool for comparing multivariate single-cell
datasets, already used for benchmarking synthetic scRNA-seq data [38] (see Methods for more
details). The synthetic dataset indeed mimics experimental data for a large number of tested
characteristics (Figure S2). However, we observed that except for correlations, the features
considered by countsimQC are also well reproduced by the dataset simulated with the null
network. This suggests that countsimQC features are not sufficient for measuring the accuracy
of the dataset reproduction.

We then explored the ability of the synthetic dataset to recapitulate more sophisticated dimensions
of the experimental data. At that stage, the critical question concerns the temporality of the
synthetic data. Indeed, as developed in [15] and [23], none of the algorithms used for the
benchmark (and presented in Methods) allows to take into account the real temporality of the
data: the only information they use is the order of the sequence of timepoints at which the cells
are measured. It is therefore not necessarily expected that a dataset simulated with the network
inferred by CARDAMOM can reproduce the data distribution exactly at the same timepoints. The
temporality is taken into account in a second time, by setting the value of the degradation rates
from the literature. However, the hypothesis that these degradation rates are not time-dependent
(which of course oversimplifies the biological reality [39]) may prevent us from being able to
perfectly fit the time-dependent evolution of the data.

We observed that this hypothesis indeed limits our ability to simulate the true dynamics at the last
timepoint. In particular, the process seems to accelerate between 72h and 96h and the model
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Figure 5: Network inferred by CARDAMOM from a real time-stamped scRNA-seq dataset. The
CARDAMOM inference method was applied to the experimental dataset from [22] restricted to a panel
of 41 marker genes identified by the authors. The network structure is obtained by keeping only the 5%
strongest activations (green arrows) and inhibitions (red blunt arrows) acting on each gene. Genes are
colored according to four groups related to different cell states (pluripotency, post-implantation epiblast,
neuroectoderm, extraembryonic endoderm) following the proposed classification of [22]. Edges supported
by a ChIP-seq interaction are marked with black dots (see main text for the definition of what is considered
as an interaction) and edges that are not supported are marked with white dots. Edges for which we have
no reliable information have no mark.
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Figure 6: Time decomposition of the network inferred by CARDAMOM from a real time-stamped
scRNA-seq dataset. Decomposition of the network shown in Figure 5, where each edge appears at the
timepoint for which it was detected with the strongest intensity. This dynamic representation highlights a
consistent flow of information coming from the stimulus. Gene positions and colors as well as activation
and inhibition representations are the same as in Figure 5.
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cannot be in adequacy with both the dynamics between 0h and 72h, and between 72h and 96h
with the same degradation rates. It is important to note that such a global variation in degradation
rates has been observed experimentally during the differentiation of chicken erythroid progenitors
(see [24] and data at https://osf.io/k2q5b/). We thus decided to multiply the degradation
rates by a scaling factor after 72h, allowing the process to reach its final state in time.

We compared these datasets using different metrics. First, we examined the extent to which
the simulations matched the experimental marginal distributions of each gene. In Figure 7A, we
represent the time-dependent evolution of the p-value of a Kolmogorov-Smirnov test between
the GRN-generated distributions and the experimental dataset. We can see that some genes
are better fitted than others, as exemplified by the Esrrb gene that is correctly fitted while the
Sparc gene seems more difficult to catch (see Figure 7B). We nevertheless observe that for
most genes and timepoints, the p-value is above 5%, meaning that the marginal distributions of
the experimental data are quite well reproduced by the GRN model. We compare in Figure 7C
the mean Earth Mover Distance (EMD), and in Figure 7D the mean p-value of the Kolmogorov-
Smirnov test applied on the 41 genes at each timepoint, between the empirical distributions of
the experimental dataset and the two simulated datasets (with and without GRN). We observe
that without GRN, the distance between the distributions generated by the model are constantly
increasing, that is diverging from the experimental datasets (Figure 7C). This is corroborated by
the fact that the mean p-values are decreasing monotonically (i.e. the model’s output is more and
more significantly different from the experimentally observed distributions, see Figure 7D). The
behavior of the GRN-simulated dataset is much closer to the experimental one, as seen from a
smaller (and constant) EMD distance as well as a larger mean p-value. However, we observe in
Figure 7A that the mid-timepoints (the central portion of the dynamics) seems to be the most
difficult to capture, since mid-time p-value are often higher that at the beginning or end of the
kinetics. This is corroborated by Figure S3, where we plotted the temporal marginal distributions
of six genes, and where Sox2 and Sparc in particular appear to have a final distribution close to
the experimental one but not the correct transient behavior.

Finally, we were interested in how well we could capture the joint distributions. For this, we
compared UMAP representations of the experimental dataset (Figure 7E) and the datasets
simulated from the inferred network (Figure 7F) and from the null network (Figure 7G). These
three datasets were projected on the same pseudo-axes based on the UMAP computed from the
experimental dataset, using the methodology described by McInnes et al. [40]. This common
projection allows a better side-by-side comparison between datasets. It is immediately evident
that our GRN-generated data points are very closely mimicking the actual experimental data
points, and that this resemblance is completely lost if all interactions are removed. The fact that
UMAP is not linear requires some precautions, that we discussed in the Methods section.

To conclude, we observed that the mechanistic model can reproduce the major characteristics of
the gene expression patterns observed during a differentiation process examined at the single cell
level. It also appears clearly that simulating the model with the network inferred by CARDAMOM
significantly improves the fit to the experimental dataset compared to the simulation with the null
network (see Figure 7 and Figure S5).
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Figure 7: Inferred network simulations compared to the original dataset. (A) Heatmap of p-values
associated with Kolmogorov–Smirnov (KS) tests between real and simulated mRNA distributions, for each
of the 41 genes of the network and for each timepoint. The green color indicates p-values greater than
5%, implying that the model output is not significantly different from the experimental dataset. (B) Time-
dependent distributions of Esrrb and Sparc genes for the experimental dataset (original data, in beige) and
datasets simulated after calibrating the mechanistic model, one including interactions (inferred network,
in blue) and one obtained after removing interactions (without interactions, in orange). (C-D) Average
earth’s mover (EM) distance (C) and average KS p-value (D) between real and simulated distributions,
for the inferred network and without interactions. The dispersion corresponds to the first and ninth decile
from ten simulations. (E-F-G) Two-dimensional UMAP representations of the original dataset (E) and
the datasets simulated from the inferred network (F) and without interactions (G). In these three plots,
Sparc is removed from the genes represented in Figure 5 as its dynamics are not well captured by the
mechanistic model, so the three datasets consist of 2449 cells with mRNA levels of 40 genes.
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Discussion
The major interest of the method we proposed in this work is that it uses the same model for
both inferring and simulating a gene regulatory network. The simulation part is not a novelty:
a growing number of algorithms are proposed for simulating realistic single-cell gene expres-
sion datasets [38], and some have already been used for benchmarking GRN reconstruction
methods [16, 17, 41].

Part of the success of our GRN model lies in its ability to reproduce the main characteristics of
cell-cell heterogeneity observed in experimental datasets by making stochasticity an inherent
part of the model, instead of adding an adapted noise a posteriori (see Methods). This is not
the case of most algorithms that are used to simulate gene expression data associated to a
regulatory network for benchmarking purposes [42, 43], even when they are based on underlying
mechanistic models [16]. This point is also crucial for developing analytical results able to be used
for the reverse engineering of the model, as it has been done for HARISSA and CARDAMOM.

Among the recently described algorithms, SERGIO [16] is the closest to our work. Nevertheless,
we want to highlight some key differences:

1. SERGIO’s mechanistic model is based on SDEs, treating noise as a Gaussian white noise.
This is clearly insufficient to capture the biological zeros and Gamma-shaped variability,
which in SERGIO arise only from the addition of technical noise. In our modeling scheme,
these features arise naturally from the transcriptional bursting phenomenon.

2. As stressed by the authors, SERGIO seeks to simulate data with an explicit GRN as an input,
a forward simulation goal, rather than attempt to estimate it from data, a reverse engineering
goal. This is a fundamental difference with our work where we seek simultaneously to infer
and to simulate data. To the best of our knowledge, the ability to do so using a mechanistic
model is a true novelty of our work.

3. Our modeling scheme is amenable to in-depth mathematical analysis [6, 15, 23, 44].

4. The use of a specific module to add technical noise, as well as SERGIO’s ability to generate
both spliced and unspliced versions of mRNAs are welcome innovation that we will consider
in future versions of our work.

We also mention that there has been a recent surge of interest in using generative adversarial
networks (GANs) for producing realistic new single-cell transcriptomics data [45]. Although it
can be an efficient strategy for data generation and augmentation, its behaves as a black box
regarding the underlying biology. Our main added value here is that our model is based on the
biophysical reality of the cell and provides a clear materialistic explanation for generated data.
Since we have shown that this generative model can be calibrated from single-cell datasets, it
can also be used for control purposes, aiming at controlling the cellular phenotype by interfering
with the GRN behavior.

While the test case was made using a dataset obtained during a differentiation sequence,
one should note that our approach can be applied to any biological process for which time-
stamped single-cell transcriptomic data are obtained after applying a given stimulus. When
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such time-stamped snapshots are not available, the algorithm could in principle take as an input
time-reconstructed data (i.e., artificially ordered snapshots). In that case, the quality of the
inference will strictly depend on the effectiveness of the time reconstruction algorithm.

Although efficient and promising, the model and the method we presented here have some
limitations that are clearly identified, and that should guide future research efforts. First, we
consider that the burst frequencies, which are critical parameters of the regulation, are sigmoid
functions of protein levels. This implies that the distribution of a gene generally cannot have
more than 2 modes [15], one associated to a low frequency of bursts and one to a high frequency
of bursts, which correspond to the regions of the gene expression space where the sigmoid is
relatively flat. Thus, if the distributions of some genes appear more complex than a mixture of
these 2 modes, the model is not expected to reproduce accurately its dynamics, since some
minor regulatory interactions should be not detected (in particular if the "hidden" mode is much
closer to one of the two main modes than the other). This seems to be the case for example
for the slight decrease of Sparc at t = 24h, that would have been better capture by adding an
extra mode. To solve these kind of errors, it could be necessary to complexify the model, for
example by modeling the burst rate functions by a multi-layer perceptron rather than a sigmoid
as proposed in [15].

Second, CARDAMOM uses the temporality linearly, by taking into account the timepoints one
after the other without possibility of backward step. This explains why the algorithm is unable to
detect the known fact that a gene like Jarid2 inhibits some Extraembryonic and Neuroectoderm
genes: indeed these inhibitions could only be detected by going up the arrow of time when the
target genes see their expression increase, in order to find the real cause of this effect. Instead,
we have seen that the algorithm interprets it as an activation of some other genes. We believe
that it could be tackled by taking inspiration from the Recurrent Neural Network (RNN) theory,
but it should be achieved while keeping the interpretability of the results. Note that we already
developed a similar analogy for the regression step at each timepoint, which can be interpreted
as the learning step of a perceptron [15].

From that point of view, if the information was indeed transmitted forward, the network would be
supposed to be completed step by step until reaching its complete form. However, two types of
incompatibilities may still occur:

1. A direct incompatibility occurs when an edge which has been inferred at a certain timepoint
is chosen to be reset to a value close to 0 or even to change sign at another one.

2. An indirect incompatibility corresponds to the case where the effect of an edge (j → i),
which has been inferred at a certain timepoint, is compensated by another edge (k → i)

at a following timepoint, but that the gene k expression products were high enough at the
previous timepoint to thwart the effect of the relation (j → i).

This explains why, for the experimental dataset presented in the Results section, the model is
not able to reproduce the behavior of some genes. One good example is Pou5f1 between t = 0h
and t = 24h: indeed, the edges that could generate the slight increase of Pou5f1 at t = 6h are
thwarted by the edges inferred at the following timepoints which lead to the strong decrease of
Pou5f1 after t = 48h. However, these incompatibilities could also have a biological meaning, and
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be impossible to solve by modifying the regression problems. To go further, it is necessary to
discuss the notions of structure and states of the network, which is related to the importance of
possibly hidden variables. If the network incorporates all critical nodes, then the structure should
not change. But it is different if there are some hidden variables, like genes the level of which
are not measured, which results in modifying the network structure. For example, the problem
of Pou5f1 that we have presented above could be explained in the following way: at t = 0h, an
hidden variable may act on the interaction by preventing its possibility, before the hidden variable
disappear at t = 24h. So if the hidden variable was integrated, then the network structure would
not change anymore, but it is likely that we should in our case consider a modification of the
network structure at t = 24h.

Third, the model does not allow the synthesis and degradation rates to vary over time. We
have already mentioned that this was a problem for simulating the passage from t = 72h to
t = 96h, and we decided to speed up the last time step for the model to reach its stationary
distribution at 96h. We believe that most of the errors observed in the simulation with respect to
the experimental dataset could be solved by finding an appropriate degradation rate. Thus, a
significant improvement would consist in taking into account at each regression step the size of
the time interval, and not only its order in the series of timepoints as it is now the case. This could
allow to find a most-likely GRN in accordance to the degradation rate at each timepoint, or even to
infer a most-likely degradation rate for each timepoint. Note however that if the latter case could
both provide us a new information on the variation of degradation rates during differentiation
and a better accuracy on the relative importance of the interactions in the GRN, it could also
accentuate the problems of identifiability, and should therefore be studied carefully.

Fourth, the model does not take into account proliferation nor apoptosis while studying the
stochasticity of the differentiation processes, nor the regulation of the proliferation rate by gene
expression products. When sampling a distribution of n cells at a time t, the initial condition
is built by sampling n cells under the uniform distribution among the set of cells at 0h, and to
simulate its evolution during t hours. However, if some cells are supposed to have a higher
death rate, and others to have a higher division rate, the process should evolve preferably in
a certain direction in the gene expression space, which is going to be ignored in the current
version of CARDAMOM. Taking into account these characteristics is a notoriously difficult task:
a significant improvement has been recently achieved with Waddington-OT [27, 46], where a
stochastic diffusion process models gene expression dynamics. Extending this kind of approach
for the mechanistic model will be the subject of future works.

Finally, future versions of our method may consider additional biological features such as spatial
cell-cell communication as the advent of multiomics datasets should provide data allowing to
analyze the effect of these processes on differentiation, which is not possible in the case of
scRNA-seq data without seriously compromising identifiability. We believe that the work presented
here could serve as a basis for developing multiscale approaches to differentiation processes.
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Methods

Mechanistic model of gene regulatory networks
The model used throughout this article is based on a hybrid version of the well-established two-
state model of gene expression [6], where a gene is described by the state of a promoter, which
can be either on or off. If the promoter is on, mRNAs are being transcribed at a rate s0, which
are then translated into proteins at a rate s1. Degradation of both mRNAs and proteins occurs at
a rate d0 and d1, respectively. The transitions between the on and off states occur at times of
rates kon and koff . We consider the bursty regime of this model (kon � koff), corresponding to
short active periods with high transcription rates, as experimentally observed [47–50]. In this
regime, mRNA is then transcribed by bursts of tens to hundreds of molecules. The random times
at which these bursts occur are still described by an exponential distribution of parameter kon,
and their random size by an exponential distribution with mean s0=koff . This model is compatible
with experimental single-cell data, as steady-state mRNA levels follow for each gene a Gamma
distribution, in line with continuous single-cell data [10].

The key idea is to incorporate this model into a network: the burst rate for each gene i is given
by a gene-specific function k„on;i(P ), where P is the vector of protein quantities (Figure S1).
This function depends on proteins through a GRN, represented by an n-by-n matrix „ = („i j)

where n is the number of genes in the network. The value of k„on;i(P ) then corresponds to the
transcriptional burst frequency of gene i given protein levels P . Each parameter „i j encodes the
interaction j → i with its direction, sign, and intensity. Recent work suggests that burst sizes
are smaller and more uniform than previously anticipated [49] therefore leaving more room for
burst frequency modulation [51] as a mechanism for gene expression regulation. We therefore
consider that interactions come mainly from the modulation of burst frequencies k„on;i and that for
any gene i , the rates koff;i do not depend on P . The burst frequencies can be represented by
sigmoid functions [23] as a simplification of the mechanistic form used in [6, 14]:

k„on;i(P ) = k0;i + (k1;i − k0;i)

 
1 + exp

 
−˛i −

nX

j=1

„i jPj

!!−1

where k0;i (resp. k1;i ) is the minimal (resp. maximal) burst frequency of gene i and ˛i is the
basal activity of gene i , which can be also considered as the constant activity of a set of genes
that are not measured but act on the network.

Simulation of time-stamped datasets
In order to simulate the mechanistic model, we used the simulation module of the HARISSA
package [23]. One computational advantage of this method, which consists in sampling burst
times with maximum rate and then deciding with an appropriate rule which ones to keep, is that it
is guaranteed to be exact without requiring any numerical integration.

To simulate discrete “count” data that are produced by current scRNA-seq technologies, each
mRNA level is generated by sampling from a Poisson distribution whose mean is the simulated
expression level. The resulting cell profiles are exactly (resp. approximately) distributed according
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to the discrete-valued “Gillespie” version of the mechanistic model in the absence (presence) of
interactions between genes [52].

In order to reproduce in vitro experiments for a specific GRN, we use the following method: (1)
let the model run for t < 0h until its (stochastic) steady state is reached; (2) introduce at t = 0h a
virtual stimulus gene with a constant maximal value for its protein. Such stimulus represents a
perturbation in the environment of the cells, inducing them to evolve towards a new (stochastic)
steady state. For example, in the case of mouse ES cell differentiation, this corresponds to the
addition of all-trans RA in the medium. A time-stamped dataset corresponds to the sampling
of independent cells at a specific sequence of timepoints (therefore “killing” sampled cells at
each timepoint) starting from t = 0h. Namely, for the benchmark of Figure 2, the sequence of 10
timepoints was set to 0, 6, 12, 24, 36, 48, 60, 72, 84, and 96h.

Relevance to biological data
The exact probability distribution associated to the mechanistic model remains unknown for
general networks. However, the analysis developed in [15] suggests that the marginal on mRNAs
of the distribution at each time t can be reasonably approximated by a Gamma mixture:

Mt ∼
X

z∈Z
—t(z)

nY

i=1

Gamma

„
kz;i
d0;i

;
koff;i

s0;i

«
; (1)

where Z denotes the set of cell types seen as the basins of attraction of the deterministic limit,
kz;j denotes the mode of bursts frequency associated to a gene j within a basin z ∈ Z, and —t is
a probability vector describing the relative weight of the basins in the process at time t.

The Poissonian layer transforms the Gamma distributions into negative binomial (NB) distributions,
which gives:

Mt ∼
X

z∈Z
—t(z)

nY

i=1

NB

„
kz;i
d0;i

;
koff;i

koff;i + s0;i

«
: (2)

Such mixture distributions are known to be compatible with continuous single-cell data [1, 10].
In particular, we recover the second order relationship between pairs of variables that are
characteristic of experimental datasets. Indeed, we remark that the mean of a negative binomial
distribution NB(a; b) is m = a(1−b)

b
and its variance v = a(1−b)

b2 , which implies that:

CV 2 =
v

m2
=

1

a(1− b) =
1

b

1

m
:

Thus, for every gene i , by replacing b by koff;i

koff;i+s0;i
, we see that the relation CV 2 ∼ 1

m
, which

is characteristic of cell-cell heterogeneity in single-cell data is well verified by the mechanistic
model, provided that koff;i does not depend on the protein field. This also argues in favor of
the assumption that a GRN does not affect significantly the bursts size. Note however that
following this criteria, any model generating negative binomial distributions could be considered
as realistic. Such criteria is therefore not sufficient for characterizing the accuracy of a model of
gene expression, in particular when a synthetic noise well adapted is added to be in accordance
with experimental datasets [16].
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Tested algorithms
The six algorithms that we are going to use for the benchmark represent together the main
categories of GRN inference methods presented in [7]:

• GENIE3 [18], which computes the regulatory network for each gene independently, using
tree-based ensemble methods to predict the expression profile of each target gene from
the profiles of all the other genes;

• PIDC [19], which infers undirected network using the notion of mutual information;

• SINCERITIES [20], which uses Granger causality after computing temporal changes in
gene expression through the distance between two consecutive timepoints of the marginal
distributions;

• SCRIBE [21], which is based on the notion of conditioned Restricted Directed Information
and ideally needs real cells trajectories, which is unrealistic experimentally. We then
pseudo-temporally order the time-stamped synthetic data used for the benchmark with
two methods, one using a pseudotime algorithm and the other using an optimal coupling
method with optimal transport, following the idea developed in [27]. We also tested with
a dataset with real trajectories in order to compare the performances. The results of this
algorithm are presented separately, due to the difference in the information that is needed.

• HARISSA [15] and CARDAMOM [23] which are based on the mechanistic model presented
above, and both compute the network by solving a set of regression problems. They are
nevertheless based on distinct mathematical analyses of the same model. HARISSA aims
to solve a maximum likelihood problem on the protein distributions after computing a most-
probable position for the protein concentration in each cell, CARDAMOM reconstructs the
GRN by comparing the function kon to the modes associated to a joint mRNA distribution
previously inferred.

Measuring algorithm performance for the benchmark
We evaluated the GRN inference algorithms on simulated datasets using the area under the
precision-recall curve (AUPR). Since inferring these coefficients is a notoriously difficult task [17],
we do not take into account diagonal coefficients of the GRN matrix, which correspond to self-
regulations. Note also that we chose precision-recall (PR) curves rather than receiver operating
characteristic (ROC) curves because of the well-known class imbalance problem. Indeed, the
sparsity hypothesis suggests that the number of interactions expected for a network of size n
is smaller than half of the total number of possible interactions (n2): it is then natural to focus
on minimizing false positives (interactions that are detected but not present) rather than false
negatives (interactions that are present but not detected), which explains the preference of PR
over ROC.

Experimental dataset
We used data collected from a differentiation experiment of mouse embryonic stem cells induced
by all-trans retinoic acid treatment [22]. This scRNA-seq dataset consists of 9 timepoints (0,
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6, 12, 24, 36, 48, 60, 72, and 96h), each timepoint containing between 137 and 335 sampled
cells after pre-processing (272 on average, for a total number of 2449 cells). To limit artificial
correlations between genes (due to a multiplicative cell-specific technical factor mainly related to
the reverse-transcription step), we selected cells with a total number of UMI counts ≥ 2000 in
line with Semrau et al. [22], which resulted in keeping only 2449 out of 3456 measured cells.

On the other hand, we did not normalize cells by their respective total UMI counts and argue
that this type of sample normalization is hazardous in the case of single-cell data. Indeed, such
“library sizes” are small compared to bulk data (because here 1 sample = 1 cell) and are in fact
biologically fluctuating, likely reflecting the transcriptional bursting phenomenon (this is easily
seen when simulating “perfect” data from the mechanistic model, see Figure S2). In practice,
since the CARDAMOM inference method starts with a binarization step (applying a specific,
statistically derived threshold to each gene based on the mechanistic model), a multiplicative
factor on each cell should not have too much impact as long as the number of cells is large
enough. More generally, we argue that such normalization of cells should rather be “soft-coded”
as a random factor to be estimated within a statistical framework.

The total number of genes measured in this experiment is 17452, which is much larger than
in our benchmark. As they are unlikely to all be important in characterizing the differentiation
process, we decided to restrict our analysis to a panel of 41 genes that had previously been
identified as key marker genes for pluripotency, post-implantation epiblast, neuroectoderm and
extraembryonic endoderm [22]. This number of genes allows to infer a network rich enough
to make cell types emerge in a non-trivial way, while keeping a reasonable statistical power
regarding the number of sampled cells. Note that the speed of the algorithms (Table S1) would
allow a much larger subset of genes to be used: the limiting factor here is not computational
speed but statistical power resulting from the number of cells available (see Figure 2).

Calibration of the mechanistic model
The principle of CARDAMOM is based on a two-step procedure :

• In a first step, we find the set of parameters ¸ defining the mixture of negative binomial
distributions (2) which fits well the data. The only parameter which is allowed to vary at
each timepoint is the mixture parameters (allowing to estimate the values of the typical
modes associated to the functions kon;i , for every gene i ). Note that every parameters are
computed except the degradation rates, which are constant for each gene and scale the
dynamics of gene expression;

• In a second step, we calibrate the mechanistic model in order to obtain the distribution
which is the closest to this Gamma mixture distribution. The network „ is then actualized
at each timepoint in order to fit the mixture parameters.

The degradation rates are then fixed at the values that are found in tables from the literature
[36]. Since many genes do not appear in these tables, we decide to set the same value for the
degradation rates of all the genes belonging to the same functional group identified in [22] (see
Table S2). The detail concerning these two steps can be found in [15]. Note that the first step
has been modified since the original publication in order to replace the MCMC algorithm, which
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was used to find the parameters of the negative binomial distributions associated to each cell
type, by a simpler variational method.

As mentioned previously, the model cannot be in adequacy with both the dynamics from 0h to
72h and from 72h to 96h with the same degradation rates for the experimental dataset used
in Results, due to the acceleration of the process between 72h and 96h. For this reason, we
decided for our simulation to multiply degradation rates before the last timepoint by a factor f = 6,
large enough to reach the steady state between 72h and 96h.

Comparing datasets using countsimQC
We used countsimQC [37] to compare the experimental dataset, the dataset simulated with the
inferred network and the dataset simulated with the null network (Figure S2). Although there
are no significant difference between the first two datasets, we observe in Figure S2F, that the
correlations between genes are not perfectly reproduced (they are clearly more accurate than for
the dataset simulated with the null network). This gap between the correlations between genes
is also illustrated in Figure S4, which compares joint distributions between the simulated dataset
(with the inferred network) and the experimental one for three pairs of genes at the final timepoint.
We observe that if the global form of the correlation is respected, they are not as strong in the
simulated dataset as in the experimental dataset. This suggests that the inferred GRN recovers
the true correlation but not with the right intensity, which may be due to the sensitivity of model to
the value of its parameters.

The fact that except for the correlations (sample-sample and feature-feature), the statistical
characteristics explored by countsimQC are also well reproduced by the dataset simulated with
the null network, suggests that they are generally not sufficient for measuring the accuracy of a
dataset reproduction. This is partly due to the fact that any calibration of the model with the right
scaling parameters but not the right GRN should matches most of these characteristics. In that
meaning, the successes of simulation algorithms prior to our work are limited when measured
with similar criteria. Our methodology, for which we used distinct criteria which are particularly
well illustrated in Figure S5 and Figure 7, then appears as a significant improvement in the field
of executable GRN inference.

Comparing datasets using UMAP
Since UMAP is not linear, the projections of datasets shown in Figure S5 are likely to force
the projected data to be artificially close to the reference dataset. Thus, we decide to present
two figures similar to Figure 7E-F-G, but where instead of projecting the simulated dataset on
the pseudo-axis corresponding to the projection of the experimental dataset, we project both
datasets together and show separately the cells corresponding to each dataset. Using this
methodology, we represented in Figure S5A the UMAP projection of the experimental dataset and
in Figure S5B the one of the dataset simulated with the inferred network. We did the same for the
experimental dataset (Figure S5C) and the dataset simulated with the null network (Figure S5D).
Then, although they have different representations, Figures Figure S5A and Figure S5C represent
the same dataset, and the difference comes from the second dataset (the simulated one) with
which the reduction has been performed. This allows to emphasize that the representation of a
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distribution of cells with UMAP is very sensitive to the choice of the data that are integrated in
the projection. Once again, we observed that the dataset simulated using the inferred network
does seem much closer to the experimental dataset than the one simulated with the null network:
in particular, Figure S5B demonstrates that the UMAP projection of the dataset with network is
close to the one of the experimental dataset both in the arrangement of the cells between the
different timepoints and in the general form of the subspace occupied by the cells, which is not
the case for the UMAP projection of the dataset simulated with the null network, represented in
Figure S5D.

Code availability
CARDAMOM is available at https://gitbio.ens-lyon.fr/eventr01/cardamom.
HARISSA is available at https://github.com/ulysseherbach/harissa.
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Supplementary information

Table S1: Related to Figure 2. Average runtime for inferring a network from datasets simulated with
tree-like networks for which the results of the inference are represented in Figure 2, for the six algorithms
that are used in the benchmark. Timings measured on a 16-GB RAM, 2.4 GHz Intel Core i5 computer.

Runtime PIDC SINCERITIES HARISSA CARDAMOM GENIE3 SCRIBE
5 genes 0:02 s 0:01 s 0:16 s 0:24 s 9:02 s 34:36 s
10 genes 0:04 s 0:03 s 0:28 s 0:64 s 17:27 s 136:51 s
20 genes 0:06 s 0:06 s 0:45 s 1:70 s 31:17 s > 5min
50 genes 0:18 s 0:24 s 0:96 s 7:87 s 83:18 s > 1h
100 genes 0:75 s 0:77 s 1:80 s 18:57 s 159:42 s > 3h

Table S2: Related to Figure 7. Numerical values of mRNA and protein degradation rates (in h−1) used
for data simulation (sim.), compared with experimental (exp.) measures from the literature. Group
abbreviations: Pluri = Pluripotency, Epi = Post-implantation epiblast, Neuro = Neuroectoderm, Endo =
Extraembryonic endoderm.

Gene Sox2 Zfp42 Klf2 Dnmt3 Cdh2 Sparc Col4a2 Lamb1
Group Pluri Epi Neuro Endo

mRNA (exp.) 0.044 0.053 0.067 - 0.015 0.012 0.012 0.015
mRNA (sim.) 0.075 0.2 0.03 0.005
Protein (exp.) 0.0073 0.05 0.0027 0.023 0.022 0.17 0.078 0.038
Protein (sim.) 0.0075 0.02 0.02 0.1
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Figure S1: Related to Figure 1. Graphical (A) and mathematical (B) descriptions of the mechanistic
model for the dynamics of a gene i . (C) Bursts of mRNA occur at random times with rate kon;i and their
size follows an exponential distribution E(koff;i=s0;i ). The variablesMi and Pi describe respectively the
mRNA and protein quantities associated to gene i in the cell. The vector of protein levels is denoted by
P = (P1; · · · ; Pn) while „ denotes the GRN which couples the genes together through functions kon;i .
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Figure S2: Related to Figure 7. Comparison of various statistical characteristics across datasets using
the countsimQC package. Each plot shows the experimental dataset (real, in blue) and datasets simulated
from the mechanistic model calibrated by CARDAMOM, including interactions (network, in green) and
without interactions (naive, in red). Each dataset consists of 41 genes (features) measured in 2433 single
cells (samples). (A) Distribution of “library sizes”, defined as the total read count in each sample. (B)
Association between the library size and the fraction of zeros observed per cell. (C) Distribution of the
fraction of zeros observed per cell. (D) Distribution of cell-cell correlations, based on random cell pairings.
(E) Distribution of the fraction of zeros observed per gene. (F) Distribution of gene-gene correlations, based
on all possible gene pairings. Notably, the cell-cell correlation (D) bimodal pattern shows two possible
pairings of cells: pairs with similar expression profiles (same genes on, same genes off ) and therefore
positively correlated, and pairs with opposite, “antinomic” profiles and therefore negatively correlated.
This pattern is an indirect sign of the emergence of different cell types, a characteristic that is clearly not
reproduced in the absence of interactions between genes (naive dataset).
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Figure S3: Related to Figure 7. Comparison between empirical distributions along timepoints, for six
genes that have been found to play a key role in the regulation of the process (as visible in Figure 5). The
experimental dataset (in beige), the dataset simulated from the inferred network (in blue) and the dataset
simulated without interactions (in orange) correspond to Figure 7E, F and G, respectively.
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Figure S4: Related to Figure 7. Comparison of the joint distributions of three pairs of genes at the final
timepoint between the experimental dataset (A) compared to the dataset simulated when the mechanistic
model is calibrated by CARDAMOM (B) and the dataset simulated without interactions (C). The genes in
each pair are expected to have interactions (direct or indirect) in the network represented in Figure 5.
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Figure S5: Related to Figure 7. Two-dimensional UMAP representations of the experimental dataset
(original data) and datasets simulated after calibrating the mechanistic model with CARDAMOM, one
including interactions (inferred network) and one obtained after setting „ = 0 (without interactions). The
four plots are based on two different projections, computed after merging the experimental dataset with
(A-B) the simulated dataset including interactions or (C-D) the simulated dataset without interactions.
Hence A and C are two representations of the exact same data, while B is to be compared with A, and D
is to be compared with C.
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Part III

A mechanistic approach of entropy
minimization problems for single-cell gene

expression analyzes.
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We have seen in Part II that it was possible, from time-stamped datasets, to efficiently reverse-
engineer the bursty model in order to simulate synthetic datasets that accurately reproduce
the original data. In Chapter 4, the accuracy of this reproduction was measured using different
criteria, including the p-value of a statistical test between the experimental and simulated
empirical distributions on the marginals of each gene, the comparison of UMAP projections and
Wasserstein distances between the datasets. However, it remains unclear whether these metrics
are adapted or not for these data (especially for UMAP and Wasserstein distance, which may
appear as arbitrary choices) and it is then difficult to precisely quantify the differences between
simulations and observations. Moreover, the CARDAMOM algorithm that we developed for
reverse-engineering the data, although it seems very efficient in practice, is not exact in the sense
that it does not give any theoretical guarantee of convergence to an ”optimal” calibration when
the number of observed cells is infinite. Thus, it would be of great interest not only to quantify
the differences between observations and simulations but also to answer key questions like:

1. Is the model well calibrated with respect to the data ?

2. If the calibration is not optimal with respect to data, how to find the optimal parameters ?

3. Is the model good enough for reproducing the data with an optimal calibration ?

Remark that the last question is more subtle, as it implies to distinguish an error due to the
calibration from an error due to the limitations of the model, which could be hard when the
calibration problem is not clearly identifiable.

In this last part, we propose to use the notion of relative entropy for addressing these issues. As
mentioned in the introduction, the choice of the relative entropy is very natural for analyzing
stochastic processes (Sections 1.1.2 and 1.1.2), and has already been used in pioneer works, as
well as its connections with the theory of optimal transport [84, 47]. However, although inspired
by these studies, we are going to use a slightly different approach. We are not going to consider
a Brownian motion as the reference process, but rather consider a realistic bursty process of the
form (1.17), and try to address the issues 1-2-3. In that context, the parameters of the reference
process can be seen as a prior knowledge on the system. Typically, one may consider that the
process is calibrated by CARDAMOM in a first step, and the method then consists in solving
a Schrödinger problem with this reference. When the Schrödinger problem has a solution, we
know that the associated dynamical formulation (1.5) has a solution too, that is related to the
one of the Schrödinger problem by Theorem 7, and we obtain a cost characterizing the distance
of the reference process to the observations.
However, since the bursty model is constrained by dynamical parameters, the data in the
Schrödinger problem may be such that the latter admits no solution. We then provide a general
point of view in Chapter 5, showing that whatever be the reference process and the observations,
the most classical algorithm for solving Schrödinger problems –the Sinkhorn algorithm– converges
to exactly two limit points, each of them being the solution of a problem with modified constraints,
that characterize themselves relevant auxiliary optimization problems.
In Chapter 6, we analyze the link between the solution of the Schrödinger problem and the
associated dynamical problem, in order to deduce the optimal modifications of the reference
process with respect to the observations. In particular, we show how to find the optimal jump
kernel associated to any couple of experimental observations and a reference bursty process, using
the results of Chapter 5. We also propose a method for reconstructing the optimal parameters,
and in particular a GRN, associated to this optimal kernel. Note that our results suggest that
this method seems to be nevertheless more adapted for evaluating the accuracy of a model which
would have been yet calibrated than for calibrating the model directly.
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Chapter 5

Resolution of the Schrödinger problem
when it has no solution. Preprint
available on arXiv.

The Schrödinger problem (1.4) is going to be the cornerstone of the approach developed in the
next section for assessing the model calibration against gene expression datasets. We place this
chapter in a discrete setting, and consider that the reference joint distribution is simply a matrix
R ∈ M+(D × F), D and F being to finite subsets of the gene expression space. In that case,
according to the Sanov theorem, when the number of observations is large enough, the solution
of the Schrödinger problem provides an estimation of the coupling of the process knowing to the
observations.
It is known that if the reference matrix R has nonnegative but possibly cancelling entries,
observations could happen to be such that there exists no coupling compatible with the observed
marginals while being absolutely continuous w.r.t R (and then of finite entropy): the Schrödinger
problem would thus have no solution. This happens to be precisely the case for the mechanistic
models of gene expression like (1.17): indeed, the dynamical constraints involving mRNAs
half-life times can lead to a degenerate R such that the corresponding Schrödinger problem has
no solution, not because of a lack in the model but because of inaccuracies in the measurements.
We would like to characterize nevertheless these small measurement errors and be able to find
a coupling which explains the best the data while being absolutely continuous with respect to
R. Although alternative methods are available in such cases, in particular an algorithm which
solves the so-called unbalanced problem [17], it is not totally satisfying for our purposes. In
addition to the fact that it introduces a new parameter quantifying the balance between the
proximity to the data and to the reference coupling, whose value will often be arbitrarily chosen,
the relation with the corresponding dynamical Schrödinger problem is not clear.
We show in this article that interestingly, the most popular algorithm for solving the Schrödinger
problem, the Sinkhorn algorithm, is still adapted when the problem has no solution. Our main
finding is that it leads to exactly two limit points, each of them being the solution of a Schrödinger
problem with modified data, that we characterize as solutions of auxiliary optimization problems.
Also, we show that these limit points are related to a problem where the marginal constraints of
the original problem are replaced by marginal penalizations. We therefore provide a new outlook
on the question of the support of the solution in this case, allowing to design an approximate
method for improving the Sinkhorn algorithm’s convergence in cases where it is not linear.

This chapter contains a preprint which is available on arXiv [8].
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Abstract

The Sinkhorn algorithm is the most popular method for solving the Schrödinger problem:
it is known to converge as soon as the latter has a solution, and with a linear rate when the
solution has the same support as the reference coupling. Motivated by recent applications of
the Schrödinger problem where structured stochastic processes lead to degenerate situations
with possibly no solution, we show that the Sinkhorn algorithm still gives rise in this case
to exactly two limit points, that can be used to compute the solution of a relaxed version
of the Schrödinger problem, which appears as the Γ-limit of a problem where the marginal
constraints are replaced by marginal penalizations. These results also allow to develop a
theoretical procedure for characterizing the support of the solution – both in the original and
in the relaxed problem – for any reference coupling and marginal constraints. We showcase
promising numerical applications related to a model used in cell biology.
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1 Introduction

The Schrödinger problem has been introduced by Schrödinger himself in the 30’s [28, 27] in the
context of statistical mechanics. It is one of these problems in mathematics for which there
is periodically a resurgence of interest, as witnessed by the numerous works which it was the
object of for almost 100 years, among which [10, 7, 34, 9, 24]. The last of these resurgences,
over the past twenty years, occurred because of its close links with optimal transport. On the
one hand, the Schrödinger problem, that comes with a temperature parameter in its classical
formulation, converges towards optimal transport when the temperature goes to zero [21, 18,
17]. On the other hand, it is often much easier to compute the solutions of the Schrödinger
problem than the ones of the optimal transport problem [8, 23], thanks to the so-called Sinkhorn
algorithm [29]. This algorithm converges exponentially fast (i.e. at a linear rate, following the
usual terminology in the field), at least when it is applied to a reference matrix whose entries
are all below bounded by a positive number.

It is known in the theory of matrix scaling that when the reference matrix has nonnegative
but possibly cancelling entries, the data in the Schrödinger problem may be chosen in such a way
that the latter admits no solution. This is the so-called non-scalable case. Also, when the data
are located at the boundary of those for which there is a solution, the so-called approximately
scalable case, the Schrödinger problem has a solution but the convergence of the Sinkhorn
algorithm is not linear anymore.

In this paper, we want to study the Sinkhorn algorithm in the degenerate case where the
Schrödinger problem has no solution. Our main finding is that for such problem, the Sinkhorn
algorithm leads to exactly two limit points, each of them being the solution of a Schrödinger
problem with modified data, that we characterize themselves as solutions of auxiliary opti-
mization problems. Also, we show that these limit points are related to a problem where the
marginal constraints of the original problem are replaced by marginal penalizations. Moreover,
the Schrödinger problem related to the modified data is seen to belong to the approximately
scalable case in general. We therefore provide a new outlook on the question of the support of
the solution in this case, allowing to design an approximate method for improving the Sinkhorn
algorithm’s convergence both in the approximately scalable and non-scalable cases.

For simplicity and because it fits with the context of our numerical explorations and needs,
we decided to work in finite spaces, even though some of the results might be generalizable.

The Schrödinger problem in finite spaces

Let D = {x1, . . . , xN} and F = {y1, . . . , yM} be two nonempty finite spaces and R ∈M+(D×F)
be a nonnegative measure on D × F . Of course, we can identify R with a matrix R = (Rij) ∈
RN×M
+ by setting Rij := R({(xi, yj)}). Assuming that R models the coupling between the initial

and final positions of the particles of a large system, we interpret Rij as the sum of the masses
of all the particles being in xi at the initial time, and in yj at the final time.

Let us choose µ ∈ M+(D) and ν ∈ M+(F). Once again, we see µ = (µi) and ν = (νj) as
vectors of RN+ and RM+ respectively.

We call Π(µ, ν) the subset ofM+(D×F) consisting of all those matrices R̄ whose row and
column sums give µ and ν respectively, that is, such that

∀i = 1, . . . , N,
∑

j

R̄ij = µi, and ∀j = 1, . . .M,
∑

i

R̄ij = νj .

In our interpretation, it means that for the system described by R̄, the sum of the masses
of all the particles being in xi ∈ D at the initial time is µi, and the sum of the masses of all the
particles being in yj ∈ F at the final time is νj . In particular, for Π(µ, ν) to be nonempty, µ
and ν need to share their total mass.
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Remark 1. Let us point out to the readers acquainted with the notations used in the Optimal
Transport literature that calling X : D×F → D and Y : D×F → F the canonical projections
and denoting by # the push forward operation on measures, the measure R̄ belongs to Π(µ, ν)
provided X#R̄ = µ and Y #R̄ = ν. Actually, we will not use these notations, and prefer to

define µR̄ := X#R̄ and νR̄ := Y #R̄, see formula 3.

We call the Schrödinger problem w.r.t. R between µ and ν the convex optimization problem
consisting in minimizing among Π(µ, ν) the relative entropy w.r.t R:

Sch(R;µ, ν) := min
{
H(R̄|R)

∣∣∣ R̄ ∈ Π(µ, ν)
}
,

where for all R̄ ∈M+(D ×F), the relative entropy of P w.r.t. R is defined by

H(R̄|R) :=
∑

ij

{
R̄ij log

R̄ij
Rij

+Rij − R̄ij
}
,

taking the conventions a log a
0 = +∞ if a > 0, and 0 log 0 = 0 log 0

0 = 0. Notice that if
H(R̄|R) < +∞, then for all i, j such that Rij = 0, we also have R̄ij = 0, i.e., R̄ ≪ R in the
sense of measures.

Remark 2. Of course, as before, for a solution R∗ to exist, µ and ν need to have the same total
mass, and R∗ will then have the same total mass as µ and ν.

By strict convexity of the relative entropy as a function of R̄, when there is a solution, the
latter is unique. Also, the relative entropy being lower semicontinuous w.r.t. R̄ and Π(µ, ν)
being compact, the existence of a solution R∗ for Sch(R;µ, ν) is equivalent to the existence of
a R̄ ∈ Π(µ, ν) satisfying H(R̄|R) < +∞. In what follows, such an R̄ is called a competitor for
Sch(R;µ, ν).

Heuristically, we seek for the measure R∗ that is the closest possible to R in the entropic
sense while imposing its first and second marginals.

In virtue of the Sanov theorem [25], this problem has an interpretation in terms of large
deviations. It is also known to be connected to optimal transport problems, see [18, 17, 11, 5]: if
for all i, j, cij models the cost to transport a unit of mass from xi to yj , and Rij ∝ exp(−cij/ε)
for some small ε > 0, then the solution of Sch(R;µ, ν) is a good approximation of a solution of
the optimal transport problem between µ and ν, of cost (cij).

The Sinkhorn algorithm

When the solution of Sch(R;µ, ν) exists, it is well known for a very long time that this solution
turns out to be the limit of the sequences (Pn)n∈N∗ and (Qn)n∈N∗ appearing in the following so-
called the Sinkhorn algorithm, also called IPFP for iterative proportional fitting procedure [29,
30, 14, 22]: 




Q0 := R,

∀n ≥ 0, Pn+1 := argmin
{
H(P |Qn), X#P = µ

}
,

∀n ≥ 0, Qn+1 := argmin
{
H(Q|Pn+1), Y #Q = ν

}
.

(1)

This formulation is implicit as it involves minimization problems. In fact, easy results concerning
these problems, detailed in Corollary 6 below, give access to an explicit and easily computable
version, which takes the following form, when expressed in terms of the so called dual variables
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or potentials (an)n∈N∗ ∈ (RN+ )N and (bn)n∈N ∈ (RM+ )N:





∀j, b0j := 1,

∀n ≥ 0, ∀i, j, an+1
i :=

µi∑

j′
bnj′Rij′

, Pn+1
ij := an+1

i bnjRij ,

∀n ≥ 0, ∀i, j, bn+1
j :=

νj∑

i′
an+1
i′ Ri′j

, Qn+1
ij := an+1

i bn+1
j Rij .

(2)

A reason for the popularity of this algorithm is that in a lot of contexts, the sequences of
potentials (an) and (bn), and hence the sequence of couplings (Pn) and (Qn) converge at a linear
rate, and the limit of (Pn) and (Qn) coincide with the unique solution of Sch(R;µ, ν). For this
reason, the Sinkhorn algorithm is nowadays the most efficient way to compute approximate
solutions of optimal transport problems [8, 2, 23].

Observe that a priori, the existence of a solution for the Schrödinger problem is not necessary
to give a meaning to the Sinkhorn algorithm. Actually, we will see that there are lots of situations
where the Schrödinger problem has no solution, and yet the Sinkhorn algorithm is perfectly well
defined. These are the cases that we want to study in this text.

A degenerate case

As we just said, our aim is to study the Sinkhorn algorithm in the cases where the existence of
a solution of the Schrödinger problem is either false, or at least nontrivial. This includes the
case where µ and ν do not have the same total mass, see Remark 2. However, this is not the
main new situation that we want to encompass, since the Sinkhorn algorithm behaves trivially
under normalization. More interestingly, we will give a detailed study of the case where some
entries of R cancel, or in optimal transport terms, when the cost function takes the value +∞.

In that situation, it can be hard to exhibit a competitor, since the natural candidate that is
usually chosen, namely, the product measure of µ and ν, is not absolutely continuous w.r.t. R
in general. In fact, there are cases where it is easy to see that no competitor exists. We give in
Appendix A an explicit and simple example of such a case. To illustrate our findings, we also
describe the behaviour of the Sinkhorn algorithm applied to this example.

Note that beyond the theoretical interest, there are practical motivations for studying cases
where the problem has no solution. Indeed, the Schrödinger problem can be used as follows.
Suppose that µ and ν are some observed densities of a random phenomenon at two different
timepoints, obtained for instance by building the empirical distributions associated to some
collected data. Suppose also that we have at our disposal a good model for this phenomenon,
that is, a reference stochastic process chosen based on our knowledge of the system prior to the
observations of µ and ν. Let us call R the coupling of this process between the two studied
timepoints. If we believe enough in our model and in our data, but still the marginals of R are
not µ and ν, then it is reasonable to try to improve our model by looking for the coupling that
is the closest to R (for instance in the entropic sense), but which is compatible with the data:
this means solving Sch(R;µ, ν).

Now imagine that there is no lower-bound for the coupling R, which can be perfectly jus-
tified (think for instance of a nondecreasing process, like the size of some randomly growing
phenomenon). Then, small measurement errors due to imprecision of the devices or even to
too restricted samplings may result in the non-existence of any coupling with marginals µ and
ν being absolutely continuous with respect to R: the Schrödinger problem would thus have
no solution. In that case, we would like to be able to find a coupling which explains the best
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the data while being entropically close to R. Some methods are available for doing so, like for
instance algorithms solving the so-called unbalanced problem [6], but at the cost of introducing
a new parameter quantifying the balance between the proximity to the data and to the reference
coupling, whose value will often be arbitrarily chosen. We show in this article that interestingly,
the Sinkhorn algorithm allows to overcome this choice in the specific situation where the data
are more trustworthy than the model.

In particular, we were motivated by an application of the Sinkhorn algorithm related to
systems biology, and more specifically to the treatment of single-cell data. The quick progresses
of acquisition methods for such data raises the hope of a better understanding of the cell-
differentiation process, which would in turn pave the way for major medical breakthroughs.
In the seminal papers [26, 16], Schiebinger and his coauthors suggest to analyse the collected
data through an approach based on optimal transport and more specifically on the Schrödinger
problem.

In this field, the unknown is the law of the evolution of the quantity of mRNA molecules
in the cells through time: this evolution cannot be followed, as our techniques of measurement
destroy the cells. Hence, to study it between two timepoints, the approach consists in:

(i) choosing a reference theoretical model R, where for all i, j, Rij is the expected quantity
of cells whose mRNA levels are given by the vector xi at the initial time, and by yj at the
final time;

(ii) measuring the mRNA levels of samples of cells at the initial and final times to get approx-
imate distributions µ and ν of these levels among the population of cells under study;

(iii) solving the Schrödinger problem Sch(R;µ, ν) to get a law R∗ that is close to our model
R, but which explains the data.

In the case of Schiebinger, R is the coupling produced by a Brownian motion between two
time points, and therefore admits a below bound. In a separated work [31], the second author
argues that a more realistic model would be obtained by replacing the Brownian motion by
a piecewise deterministic Markov process as described in [13]. For such models, dynamical
constraints involving mRNAs half-life times lead to a degenerate R and the corresponding
Schrödinger problem could thus have no solution, not because of a lack in the model, but
because of inaccuracies in the measurements. Our results show that the Sinkhorn algorithm
can still be used in this situation, without any pre-treatment of the data. We refer once again
to Appendix A for a further discussion on this topic.

Contributions

In this article, we work with a potentially degenerate R, and our main contributions are the
following.

• We show that the two sequences (Pn)n∈N∗ and (Qn)n∈N∗ defined in (1) converge towards
two possibly different matrices P ∗ and Q∗, each of them being the solution of a Schrödinger
problem with modified marginals. More precisely, the matrice P ∗ is the solution of the
problem Sch(R;µ, ν∗), where ν∗ minimizes the relative entropy w.r.t. ν within the set
of marginals ν̄ for which the Schrödinger problem Sch(R;µ, ν̄) admits a solution, and a
similar statement holds for Q∗. This result, stated at Theorem 11, is the main result of
Section 3.

• We show in Section 4 that the Sinkhorn algorithm enables to compute the solution of a
modified Schrödinger problem where the marginal constraints are replaced by marginal
penalizations: as shown at Theorem 17, the limit of the solution of the problem

min
{
H(R̄|R) + λ

(
H(µR̄|µ) +H(νR̄|ν)

) ∣∣∣ R̄ ∈M+(D ×F)
}
,
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(where once again, µR̄ and νR̄ are the first and second marginal of R̄, see Remark 1)
converges towards the componentwise geometric mean of the two limits P ∗ and Q∗ of the
Sinkhorn algorithm as λ→ +∞.

• In Section 5, we recall a well known necessary and sufficient condition on R, µ and ν for
Sch(R;µ, ν) to admit a solution. Using this condition, we develop at Proposition 28 a
procedure to find the (common) support S of P ∗ and Q∗ without computing them. As
explained in Subsection 5.2, our motivation is that the convergence rate of the Sinkhorn
algorithm is linear if and only if S coincides with the support of R. When it is not
the case, as often when Sch(R;µ, ν) has no solution, we can therefore improve the speed
of convergence by first computing S, and then by applying the Sinkhorn algorithm to
Sch(1SR;µ, ν) instead of Sch(R;µ, ν), which does not change the limits P ∗ and Q∗.

• Section 6 is an application of the developments made at Section 5. We implement an
approximate but fast algorithm, usable in practice, allowing to recover an estimate of the
support S. We then compare the Sinkhorn algorithm and the technique coming from [6]
with our method consisting in first computing S with our approximate algorithm and then
applying the Sinkhorn algorithm to Sch(1SR;µ, ν). We also detail the regimes in which
our method is a significant improvement of the other techniques.

Some of the results of this paper can be generalized by replacing D and F by general Polish
spaces without much effort. This is the reason why we will often write H(P |R) < +∞ instead
of P ≪ R: these are equivalent in the finite case, but not in the continuous one. In the latter
case, we often need the stronger entropic assumption. Even if we decided to stick to the finite
case in order to stress the key arguments that make everything work in practice, we believe that
the continuous case is also interesting, and we wish to study it in a further work.

Before coming up with our contributions, we recall a few facts about the relative entropy
functional at Section 2.

2 Notations, properties of the entropy and terminology

In this preliminary section, we introduce some notations, provide well known elementary results
concerning the entropy, and recall the terminology usually used in the theory of matrix scaling.

2.1 Notations

Let us first give a few notations that will be used systematically in this work. Most of them
were already given in the introduction.

• Whenever I is a finite set of labels and E = {uk, k ∈ I} is a finite set indexed by I, we
denote by M+(E) the set of nonnegative measures on E . This set is identified with RI+
through the the correspondence

r ∈M+(E)↭ (rk := r({uk}))k∈I ∈ RI .

For all r ∈M+(E), we denote by M(r) :=
∑

k rk its total mass. If M(r) = 1, we say that r
is a probability measure on E , and we write r ∈ P(E). The topology considered onM+(E)
is nothing but the one of RI .

• In the same way, we identify the set F(E ;R) of real functions Z on E with RI through
the correspondence

Z ∈ F(E ;R)↭ (Zk := Z(uk))k∈I ∈ RI+.
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Depending on the context, we will either call such functions Z test functions, or random
variables, thinking of E as a measurable set. The random variables that we will consider
will actually often be slightly more general, and be allowed to take the value −∞, in which
case we will tell it explicitly.

• Through our identifications, the duality betweenM+(E) and F(E ;R) is nothing but the
usual scalar product on RI , and denoted for all Z ∈ F(E ;R) and r ∈M+(E) by

⟨Z, r⟩ :=
∑

k

Zkrk.

When Z possibly takes the value −∞, we always choose by convention −∞× 0 = 0.

• In the context of the introduction, when D = {x1, . . . , xN} and F = {y1, . . . , yM} are
two nonempty finite spaces and E = D × F , then the corresponding I is the product
space {1, . . . , N} × {1, . . . ,M}, and R̄ ∈ M+(D × F), is seen as a matrix. We define its
marginals µR̄ ∈M+(D) and νR̄ ∈M+(F) by the formulas

∀i = 1, . . . , N, µR̄i :=
∑

j

R̄ij , and ∀j = 1, . . .M, νR̄j :=
∑

i

R̄ij . (3)

Of course, µR̄ and νR̄ have the same total mass as R̄, that is:

M(R̄) = M(µR̄) = M(νR̄). (4)

In particular, if R is a probability measure, its marginals are probability measures as well.

• As before, if µ ∈M+(D) and ν ∈M+(F), we call Π(µ, ν) the set of those R ∈M+(D×F)
such that µR = µ and νR = ν.

• For the sake of simplicity, we do not use different notations for the same functions applied
in different context. For instance, notations for the total mass M or the relative entropy
H (see Definition 3 below) might be applied to different sets E namely D, F and D ×F .

2.2 First properties of the relative entropy

This subsection only contains easy and very well known results concerning the relative entropy
that will be useful in the sequel. We stick to the finite case as this is the one studied in this paper,
and we provide some proofs for the readers who are not acquainted with this notion of entropy,
but all the properties given here are known in a much wider context, see for instance [19].

As already said in the introduction, the relative entropy is defined as follows.

Definition 3. Let E = {uk, k ∈ I} be a finite set and r = (rk) ∈ M+(E). For all r̄ = (̄rk) ∈
M+(E), the relative entropy of r̄ w.r.t r is the value in [0,+∞] given by

H (̄r|r) :=
∑

k

{
r̄k log

r̄k
rk

+ rk − r̄k

}
=
∑

k

r̄k log
r̄k
rk

+M(r)−M(̄r),

with convention a log a
0 = +∞ for all a > 0, and 0 log 0 = 0 log 0

0 = 0.

First, this definition provides a convex function with good continuity properties. We state
them in the following proposition, for which we omit the straightforward proof.

Proposition 4. Let E be a finite set and r ∈M+(E). The functional

r̄ ∈M+(E) 7→ H (̄r|r) ∈ [0,+∞]
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is strictly convex, lower semicontinuous, and continuous on its domain, which is the closed set
{r̄≪ r} ⊂ M+(E).

For a given r̄ ∈M+(E), the functional

r ∈M+(E) 7→ H (̄r|r) ∈ [0,+∞]

is convex and continuous for the canonical topology of [0,+∞]. Its domain is the open set
{r≫ r̄} ⊂ M+(E).

The most useful property of the relative entropy is the computation of its Legendre trans-
form. This property can be stated as follows.

Theorem 5. Let E = {uk, k ∈ I} be a finite set, and r ∈ M+(E). For all test function Z
possibly taking the value −∞ on E and all nonnegative measure r̄ on E, we have

⟨Z, r̄⟩ ≤ H (̄r|r) + ⟨eZ − 1, r⟩, (5)

with conventions e−∞ = 0, −∞× 0 = 0 and +∞−∞ = +∞.
Moreover, equality in R holds if and only if r̄≪ r and for all k ∈ I,

Zk = log
r̄k
rk
∈ [−∞,+∞) (6)

with convention log 0
a = −∞ for all a ≥ 0.

Proof. Let r, r̄ and Z be as in the statement of the theorem. If H (̄r|r) = +∞, there is nothing
to prove, and we assume r̄≪ r.

By direct real computations, with the same conventions as in the statement of the theorem,
we find that for all k ∈ I:

Zk r̄k ≤ r̄k log
r̄k
rk

+ rk − r̄k +
(
eZk − 1

)
rk,

with equality if and only if rk = r̄k = 0 or rk > 0 and

Zk = log
r̄k
rk
∈ [−∞,+∞).

We find (5) and (6) by summing this inequality over k.

This theorem will be useful as such, but also implies the following corollary which gives a
full understanding of one step in the Sinkhorn algorithm (1).

Corollary 6. Let D and F be two finite sets, and R̄, R ∈ M+(D × F). With the notations
of (3), we have

H(µR̄|µR) ≤ H(R̄|R) and H(νR̄|νR) ≤ H(R̄|R). (7)

In the case where H(R̄|R) is finite, equality holds if and only if for all i, j, respectively:

R̄ij =
µR̄i
µRi

Rij and R̄ij =
νR̄j

νRj
Rij ,

with convention 0
0 = 0.

In particular, given R ∈M+(D ×F) and µ ∈M+(D), the problem

min
{
H(P |R)

∣∣∣µP = µ
}

(8)
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admits a solution if and only if H(µ|µR) < +∞, and in this case, this solution P is unique and
satisfies for all i, j

Pij =
µi

µRi
Rij (9)

with convention 0
0 = 0. Moreover, H(P |R) = H(µ|µR).

Similarly, given R ∈M+(D ×F) and ν ∈M+(F), the problem

min
{
H(Q|R)

∣∣∣ νQ = ν
}

admits a solution if and only if H(ν|νR) < +∞, and in this case, this solution Q is unique and
satisfies for all i, j

Qij =
νj

νRj
Rij

with convention 0
0 = 0. Moreover, H(Q|R) = H(ν|νR).

Proof. The first inequality in (7) is a direct application of (5) with r = R, r̄ = R̄ and for all i, j,

Zij = log
µR̄i
µRi

.

The second inequality is proved in the same way, and the equality case is a consequence of (6).
For the second part of the statement, let us observe that for all P satisfying the constraint

in (8), because of (7), H(P |R) ≥ H(µ|µR), which – by the equality case – is attained if and
only if (9) holds. The problem involving the second marginal is treated in the same way.

2.3 The Schrödinger problem: assumptions and terminology

Let D = {x1, . . . , xN} and F = {y1, . . . , yM} be two nonempty finite sets, and let us choose
a reference measure R ∈ M+(D × F). Given µ ∈ M+(D) and ν ∈ M+(F), the Schrödinger
problem, already defined in the introduction, rewrites with the notations of Subsection 2.1:

Sch(R;µ, ν) := min
{
H(R̄|R)

∣∣∣ R̄ ∈M+(µ, ν) such that µR̄ = µ and νR̄ = ν
}
. (10)

Remark 7. Here, we define Sch(R;µ, ν) as the optimal value of our problem. However, with
an abusive terminology, we will refer to the minimizer of the r.h.s. of (10) as ”the solution of
Sch(R;µ, ν)”. More generally, we will call ”the problem Sch(R;µ, ν)” the optimization problem
consisting in computing the value Sch(R;µ, ν).

As we will see in Theorem 11, the Sinkhorn algorithm (1) associated with the problem
Sch(R;µ, ν) is well defined if and only if the following assumption holds.

Assumption 8. Let R ∈M+(D ×F), µ ∈M+(D) and ν ∈M+(F), and let us call

E :=
{
(xi, yj) ∈ D × F such that Rij > 0, µi > 0 and νj > 0

}
. (11)

We say that the triple (R;µ, ν) satisfies Assumption 8 provided R0 := 1E ·R is such that:

H(µ|µR0
) < +∞ and H(ν|νR0

) < +∞. (12)

This assumption is easily seen to be necessary for Sch(R;µ, ν) to admit a solution. Under
Assumption 8 either M(µ) = M(ν) = 0, or none of them is 0. In the second case, up to replacing
D by D′, the support of µ, F by F ′, the support of ν, and R by its restriction (or equivalently
of the one of R0) on D′ ×F ′, we end up with the following assumption, that will often be used
in this paper.
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Assumption 9. Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F). We say that the triple
(R;µ, ν) satisfies Assumption 9 provided the support of µ and µR is D and the support of ν and
νR is F .

The Schrödinger problem (10) consists in minimizing a convex function under linear con-
straints. Therefore, the functional (µ, ν) ∈ M+(D) × M+(F) 7→ Sch(R;µ, ν) ∈ [0,+∞] is
convex.

In the case where Assumption 9 holds, following the usual terminology of the matrix scaling
theory (except for the last item which is more exotic), see [14], we say that:

• The problem is scalable if (µ, ν) is in the relative interior of the domain of Sch(R; ·). In
this case, M(µ) = M(ν), the Schrödinger problem admits a unique solution R∗, R∗ ∼ R
in the sense of measures, and the Sinkhorn algorithm converges towards R∗, at a linear
rate. In Lemma 24, we recall an explicit necessary and sufficient condition on R, µ, ν for
Sch(R;µ, ν) to be scalable.

• The problem is approximately scalable if (µ, ν) is at the relative boundary of the domain
of Sch(R; ·). In this case, M(µ) = M(ν), the Schrödinger problem admits a unique solution
R∗, and the Sinkhorn algorithm converges towards R∗. However, in this case, the support
of R∗ is strictly included in the support of R (else, we easily see that we are in the scalable
case), and the rate cannot be linear anymore: as proved in [1], a linear rate of convergence
for the Sinkhorn algorithm is not compatible with the appearance of new zero entries at
the limit. We recall at Theorem 23 a necessary and sufficient condition on R, µ and ν for
Sch(R;µ, ν) to be at least approximately scalable, that is, either approximately scalable
or scalable.

• The problem is non-scalable if M(µ) = M(ν), but the Schrödinger problem Sch(R;µ, ν)
does not admit a solution. This is the case when the condition of Theorem 23 does not
hold. This case is the main case of interest in this work.

• The problem is unbalanced if M(µ) ̸= M(ν). Calling µ′ := µ/µ(D) and ν ′ := ν/ν(F) their
normalized versions, we will say that Sch(R;µ, ν) is respectively unbalanced scalable,
unbalanced approximately scalable and unbalanced non-scalable whenever Sch(R;µ′, ν ′)
is scalable, approximately scalable or non-scalable.

Yet, with an abuse of terminology, we will often refer to the non-scalable case for results that
are true in any situation, including the balanced and unbalanced non-scalable ones, which are
often the most difficult.

3 The Sinkhorn algorithm in the non-scalable case

In this section, we consider R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F) that we identify
respectively with a matrix and two vectors, as before.

The goal of this section is to show that under obvious necessary assumptions, then the
algorithm given in (1) is well defined, and that the sequences (Pn)n∈N∗ and (Qn)n∈N∗ that it
provides converge separately towards matrices P ∗ and Q∗ that we define now. It will be obvious
from their definition that these matrices coincide if and only if the problem Sch(R;µ, ν) defined
in (10) admits a solution, that is, if it is at least approximately scalable. Hence our proof
recovers the classical fact that the Sinkhorn algorithm converges towards the solution of the
Schrödinger problem as soon as the latter exists.
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The first step to define P ∗ and Q∗ is to define a pair of new marginals µ∗ ∈ M+(D) and
ν∗ ∈M+(F) as solutions of the following optimization problem:

µ∗ := argmin
{
H(µ̄|µ)

∣∣∣ µ̄ = µQ for some Q with H(Q|R) < +∞ and νQ = ν
}
,

ν∗ := argmin
{
H(ν̄|ν)

∣∣∣ ν̄ = νP for some P with H(P |R) < +∞ and µP = µ
}
.

(13)

The question of existence of µ∗ and ν∗ is treated in Theorem 11 below. Of course, if the problem
Sch(R;µ, ν) admits a competitor, then µ∗ = µ and ν∗ = ν.

Remark 10. In the unbalanced case, notice that the total mass of ν∗ is the one of µ, and the
total mass of µ∗ is the one of ν, that is, M(ν∗) = M(µ) and M(µ∗) = M(ν).

Then P ∗ andQ∗ are simply defined as the solutions of the Schrödinger problems Sch(R;µ, ν∗)
and Sch(R;µ∗, ν) respectively, that is:

P ∗ := argmin
{
H(P |R)

∣∣∣P ∈ Π(µ, ν∗)
}

and Q∗ := argmin
{
H(Q|R)

∣∣∣Q ∈ Π(µ∗, ν)
}
. (14)

Of course, if the problem Sch(R;µ, ν) admits a competitor, and hence a solution, then both P ∗

and Q∗ coincide with this solution.
Our convergence theorem can be stated as follows.

Theorem 11. Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F) satisfy Assumption 8. The
sequences (Pn)n∈N∗ and (Qn)n∈N∗ from (1), the marginals µ∗ and ν∗ from (13) and the matrices
P ∗ and Q∗ from (14) are well defined, and

Pn −→
n→+∞

P ∗ and Qn −→
n→+∞

Q∗.

Remark 12. • Assumption 8 is necessary: it is straightforward to check that if Q1 from (1)
is well defined, then H(Q1|R0) < +∞. In particular, projecting on the second marginal,
we conclude that H(ν|νR0

) < +∞. Arguing in the same way with P 2 in place of Q1

and the second marginal in place of the first one, we see that if P 2 is well defined, then
H(µ|µR0

) < +∞. In particular, there is nothing to check before starting the algorithm:
if the algorithm is able to compute P 2, then it means that our assumption is satisfied and
that the convergence holds.

• Note that the topology for the convergence stated in the theorem does not matter since
we are working in finite dimensional spaces. However, we believe that the result is still
true replacing D and F by general Polish spaces. In this case, the convergence needs to
be understood in the sense of the narrow topology, a topology for which the sequences
(Pn) and (Qn) can be proved to be compact due to the properties of their marginals.

• Remarkably, we will be able to prove this theorem without deriving the optimality con-
ditions for µ∗ and ν∗. However, these optimality conditions will be needed in the next
section, and hence written at Proposition 19.

• As developed in [7], there exists a strong analogy between the relative entropy and square
Euclidean distances, and this in spite of the lack of symmetry of the first. In particular,
following this analogy, the Sinkhorn algorithm (1) consists in iteratively othogonaly pro-
jecting on the convex sets of measures absolutely continuous w.r.t. R satisfying the first
and second marginal constraint respectively.

With this picture in mind, we can give in Figure 1 a visual representation of the scal-
able and non-scalable case. In the scalable case, the two convex sets intersect, and the
sequences (Pn)n∈N∗ and (Qn)n∈N∗ converge towards the point of the intersection that is
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Figure 1 : Sketchy representation of the Sinkhorn algorithm in the scalable case (to the left)
and nonscalable case (to the right).

the closest to R. In the non-scalable case, the two convex sets do not intersect. However,
the sequences (Pn)n∈N∗ and (Qn)n∈N∗ still converge respectively to P ∗ and Q∗, the two
extreme points of the shortest line segment connecting both sets. Theorem 11 indeed
justifies this type of behaviour for the Sinkhorn algorithm.

One should still keep in mind that this analogy and our drawings are only sketchy. In
reality, the projections are not orthogonal, and the convex sets have polygonal borders.

Proof. Step 1: All the objects are well defined.
Let us first show that under the assumption of the theorem, the sequences (Pn)n∈N∗ and

(Qn)n∈N∗ are well defined. We start with P 1. As by assumption µ ≪ µR
0 ≪ µR, Corollary 6

shows that P 1 is well defined, and that for all i, j,

P 1
ij =

µi

µRi
Rij ,

with convention 0
0 = 0. Clearly, R0 ≪ P 1, as the support of the latter is

{
(xi, yj) ∈ D × F s.t. Rij > 0 and µi > 0

}
⊃ E .

Therefore, ν ≪ νR
0 ≪ νP

1
. So once again, Corollary 6 shows that Q1 is well defined, and that

for all i, j,

Q1
ij =

νj

νP
1

j

P 1
ij ,

with convention 0
0 = 0. The support of Q1 is

{
(xi, yj) ∈ D × F s.t. P 1

ij > 0 and νj > 0
}

=
{
(xi, yj) ∈ D × F s.t. Rij > 0 and µi > 0 and νj > 0

}
= E .

Then, a direct induction argument relying on the following formulas holding for all n ∈ N
and all i, j:

Pn+1
ij =

µi

µQ
n

i

Qnij and Qn+1
ij =

νi

νP
n+1

j

Pn+1
ij , (15)

with convention 0
0 = 0 show that for all n ≥ 2, Pn and Qn are well defined and admit E as their

common support.
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Let us now show that µ∗ and ν∗ are well defined. Their role are symmetric, so we just need
to show that µ∗ is well defined. First Q1 satisfies νQ

1
= ν and H(Q1|R) < +∞. Therefore, the

problem

inf
{
H(µ̄|µ), µ̄ = µQ for some Q with H(Q|R) < +∞ and νQ = ν

}

consists in minimizing the continuous (on its domain) and strictly convex function µ̄ 7→ H(µ̄|µ)
over the nonempty compact convex set

{
µ̄ = µQ for some Q with H(Q|R) < +∞ and νQ = ν

}
.

Hence, it admits a unique solution µ∗.
Finally, let us show that P ∗ and Q∗ are well defined. Once again, their role are symmetric,

so we only show the existence of Q∗. We already saw that µ∗ is well defined. By definition of
the latter, there exists Q̄ with νQ̄ = ν, µQ̄ = µ∗ and H(Q̄|R) < +∞. So Sch(R;µ∗, ν) consists
in minimizing the continuous (on its domain) and strictly convex function Q 7→ H(Q|R) on the
nonempty compact convex set

Π(µ∗, ν) ∩
{
Q ∈ P(D ×F) such that H(Q|R) < +∞

}
.

So it admits a unique solution Q∗.

Step 2: A formula for H(Q|R), for all Q ∈ Π(µ∗, ν) with H(Q|R) < +∞.
Recalling Q0 = R, we infer from (15) that for all (xi, yj) ∈ E and n ∈ N∗,

Qnij =
νj

νP
n

j

× µi

µQ
n−1

i

× · · · × νj

νP
1
j

× µi

µQ
0

i

×Rij . (16)

Observe that in the product in the r.h.s., because we assumed that (xi, yj) ∈ E , the common
support of all the iterates of the Sinkhorn algorithm, all the factors are positive.

In addition, for all Q ∈ Π(µ∗, ν) with finite entropy w.r.t. R, the support of Q is included
in E . This is because H(µ∗|µ) < +∞, and thereby µ∗ ≪ µ. Therefore, we deduce that Q≪ Qn.

So as a consequence of (16), for all i, j in the support of Q,

log
Qij
Rij

= log
Qij
Qnij

+

n∑

k=1

{
log

νj

νP
k

j

+ log
µi

µQ
k−1

i

}

= log
Qij
Qnij

+

n∑

k=1

{
log

νj

νP
k

j

− log
µ∗i
µi

+ log
µ∗i

µQ
k−1

i

}
.

Let us multiply this equality by Qij , and sum over i, j. We get

∑

i,j

Qij log
Qij
Rij

=
∑

i,j

Qij log
Qij
Qnij

+

n∑

k=1




∑

i,j

Qij log
νj

νP
k

j

−
∑

i,j

Qij log
µ∗i
µi

+
∑

i,j

Qij log
µ∗i

µQ
k−1

i



 .

Fix k in {1, . . . , n}, and consider the term:

∑

i,j

Qij log
νj

νP
k

j

=
∑

j

(∑

i

Qij

)
log

νj

νP
k

j

.

As the second marginal of Q is ν, we find

∑

i,j

Qij log
νj

νP
k

j

=
∑

j

νj log
νj

νP
k

j

.
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As the first marginal of Q is µ∗, we can reason in the same way for the other terms of the same
type, and find

∑

i,j

Qij log
Qij
Rij

=
∑

i,j

Qij log
Qij
Qnij

+

n∑

k=1




∑

j

νj log
νj

νP
k

j

−
∑

i

µ∗i log
µ∗i
µi

+
∑

i

µ∗i log
µ∗i

µQ
k−1

i



 .

We now use the Definition 3 of the relative entropy to find that this identity means:

H(Q|R)−M(R) +M(Q) = H(Q|Qn)−M(Qn) +M(Q)

+
n∑

k=1

{
H(ν|νPk)−M(ν) +M(νP

k
)−H(µ∗|µ) +M(µ∗)−M(µ)

+H(µ∗|µQk−1
)−M(µ∗) +M(µQ

k−1
)
}
,

or, simplifying the masses M(Q) and M(µ∗) appearing several times,

H(Q|R)−M(R) = H(Q|Qn)−M(Qn)+
n∑

k=1

{
H(ν|νPk)−M(ν)+M(νP

k
)−H(µ∗|µ)−M(µ)

+H(µ∗|µQk−1
) +M(µQ

k−1
)
}
.

Let us check how the masses simplify. By (4) as Q and Qk, k ∈ N∗ admit ν as their second
marginals, they have the same total masses, and it coincides with the one of their first marginals.
Namely,

∀k ≥ 1, M(ν) = M(Qk) = M(Q) = M(µQ
k
) = M(µ∗).

In the same way,

∀k ≥ 1, M(µ) = M(P k) = M(νP
k
).

And finally, as Q0 = R, we also have

M(R) = M(Q0) = M(µQ
0
).

Coming back to our entropy identity, we can simplify more and get

H(Q|R) = H(Q|Qn) +
n∑

k=1

{
H(ν|νPk)−H(µ∗|µ)

}
+

n∑

k=1

H(µ∗|µQk−1
). (17)

(The only subtlety is that for k = 1 and for k = 1 only, M(µQ
k−1

) does not simplify with M(ν).

But then M(µQ
k−1

) = M(µQ
0
) simplifies with M(R), and M(ν) simplifies with M(Qn).)

Now, we claim that every term in the first sum in the r.h.s. is nonnegative, i.e. that
H(ν|νPk) ≥ H(µ∗|µ). First, we know that νQ

k
= ν, so that:

H(ν|νPk) =
∑

j

νj log
νj

νP
k

j

+M(νP
k
)−M(ν)

=
∑

ij

Qkij log
νj

νP
k

j

+M(νP
k
)−M(ν)

=
∑

ij

Qkij log
Qkij

P kij
+M(P k)−M(Qk) = H(Qk|P k),

where we used at the third line that from (15), we know that for all j and 1 ≤ k ≤ n,

νj/ν
Pk
j = Qkij/P

k
ij . Second, by Corollary 6,

H(ν|νPk) = H(Qk|P k) ≥ H(µQ
k |µPk) = H(µQ

k |µ).
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Finally, Qk has finite entropy w.r.t. R (use for instance (16) with n = k) and admits ν as a first

marginal. So by optimality of µ∗, H(µQ
k |µ) ≥ H(µ∗|µ). Our claim follows.

Step 3: Consequence of (17), convergence of the marginals.
As a consequence of Step 2, both sums in the r.h.s. of (17) are bounded sums of nonnegative

terms. Therefore, they converge as n→ +∞, and their terms tend to 0 as k → +∞. We deduce
in particular that

H(µ∗|µQn) −→
n→+∞

0.

In particular, by continuity of H w.r.t. its second variable as stated in Proposition 4, and by
compactness of {µ̄ ∈ M+(D) s.t. M(µ̄) = M(ν)}, µQn → µ∗. So now let us pick Q̄ any limit
point of (Qn). Such a limit point exist by compactness of {Q ∈M+(D×F) s.t. M(Q) = M(ν)}.
It follows from µQ

n → µ∗ that µQ̄ = µ∗.

Step 4: Q̄ = Q∗.
Let us show that Q̄ = Q∗, so that actually the whole sequence (Qn) converges towards Q∗.

On the one hand, passing to the limit n → +∞ along the subsequences generating Q̄ in (17)
and using the continuity of H w.r.t. the second variable as stated in Proposition 4, we find

H(Q|R) = H(Q|Q̄) +
+∞∑

k=1

{
H(ν|νPk)−H(µ∗|µ)

}
+

+∞∑

k=1

H(µ∗|µQk−1
). (18)

On the other hand, as for all n ∈ N∗, Qn ≪ R, this is also true for Q̄. In particular, H(Q̄|R) <
+∞, and as Q̄ ∈ Π(µ∗, ν), we can apply (18) with Q̄ in place of Q, and find

H(Q̄|R) =
+∞∑

k=1

{
H(ν|νPk)−H(µ∗|µ)

}
+

+∞∑

k=1

H(µ∗|µQk−1
). (19)

Now it remains to apply (18) with Q = Q∗ and to plug the previous equality to find

H(Q∗|R) = H(Q∗|Q̄) +H(Q̄|R).

As by optimality of R∗, H(Q̄|R) ≥ H(Q∗|R), we can conclude that H(Q∗|Q) = 0. Therefore,
Q̄ = Q∗, as announced.

The proof of Pn → P ∗ follows the same lines.

As a free output of the proof of Theorem 1, we can show that we could have swapped µ and
µ̄, and ν and ν̄ in the definitions (13) of µ∗ and ν∗ respectively. This is justified in the following
remark.

Remark 13. Observe the following optimization problem, where R, µ and ν are given, and where
the competitor is ν̄:

min
{
H(ν|ν̄)

∣∣∣ ν̄ = νP , for some P with H(P |R) < +∞ and µP = µ
}
. (20)

This problem is almost the same as the one defining ν∗ in (13), except from the fact that ν
and ν̄ are swapped in the relative entropy. In this remark, we justify that the solution of this
problem is ν∗ as well, and that the corresponding optimal value is H(µ∗|µ).

Provided there exists a competitor ν̄ for this problem with H(ν|ν̄) < +∞, we can find P
such that H(P |R) < +∞ and P ∈ Π(µ, ν̄), and Q ∈ P(D ×F) defined for all i, j by

Qij :=
νj
ν̄j
Pij ,
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which is legitimate since H(ν|ν̄) < +∞. We have then H(Q|R) < +∞ and νQ = ν. Hence,
using the definition (13) of µ∗, we have

H(ν|ν̄) = H(Q|P ) ≥ H(µQ|µ) ≥ H(µ∗|µ),

where the first equality is a direct computation, and where the first inequality is obtained using
Corollary 6.

On the other hand, as soon as the assumption of Theorem 11 holds, ν∗ is a competitor for
the problem in (20), and so in particular H(ν|ν∗) ≥ H(µ∗|µ). But because the terms of the first

series in (18) tend to 0 and νP
k → ν∗, we conclude that actually, H(ν|ν∗) = H(µ∗|µ) and ν∗ is

a solution of (20). Finally, it is easy to see that a solution ν̄ of (20) must satisfy ν̄ ≪ ν (because
conditioning on the support of ν reduces the entropy), and by strict convexity of ν̄ 7→ H(ν|ν̄)
on the set {ν̄ ≪ ν}, under the assumption of Theorem 11, the problem (20) admits ν∗ as its
unique solution, so that (20) can be used as an alternative definition of ν∗.

Of course, we could argue in the same way to provide an alternative definition of µ∗, and
we have the following equalities:

H(ν|ν∗) = H(µ∗|µ) and H(µ|µ∗) = H(ν∗|ν).

In particular, µ∗ ∼ µ and ν∗ ∼ ν in the sense of measures.

We also give another remark concerning the generalization of Theorem 11 to Polish spaces.

Remark 14. We crucially use the fact that D and F are finite in order to obtain (18) and (19).
In the continuous case, as H is not more than lower semicontinuous w.r.t the second variable,
identity (18) becomes an inequality, where = is replaced by ≥, which is the good direction for
the proof. The difficulty is then to find an equality sign in (19).

4 Γ-convergence in the marginal penalization problem

In this section, we want to show that when R, µ and ν are such that the Schrödinger problem
Sch(R;µ, ν) has no solution, then the limit points P ∗ and Q∗ given by Theorem 11 are relevant
in view of the possible applications of the Sinkhorn algorithm.

To do so, let us think of R as an imperfect theoretical model describing the coupling between
the initial and final positions of the particles of a large system. Also, let us imagine that µ and
ν are data obtained by measuring the positions of the particles of the actual system that R
is supposed to describe, at the initial and final time. In this situation, if Sch(R;µ, ν) has a
solution R∗, this solution is interpreted as the model that is the closest to R that can explain
the data.

However, even when R is a rather good model, and when µ and ν are rather precise mea-
surements, it is possible that Sch(R;µ, ν) has no solution for several reasons:

• The first reason could be that our modeling does not take into account some physical
phenomena. For instance, in Subsection 4.1, we will consider the case where the true
system allows creation or annihilation of mass with very small probability, whereas the
modeling does not.

• Another reason could be that µ and ν are only approximations of the real marginals.
This can result from imprecise or biased measurements, or from a restricted amount of
collected data. This will be considered in Subsection 4.2.

In both cases, it is very natural to relax the marginal constraints in (10) by introducing a
fitting term in the value functional, that cancels when the constraints are satisfied, but which
remains finite otherwise.
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The main result of this section asserts that in these two situations, that are actually very
close, the limit points P ∗ and Q∗ of the Sinkhorn algorithm allow to compute the solution of the
relaxed problem when the new fitting term takes the form of an entropy, in the limit where the
level of marginal penalization tends to +∞. The second case is a direct consequence of the first
one, but that we wanted to keep separated because it does not have the same interpretation.

4.1 Unbalanced problems

In this subsection, we give ourselves R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F) as
before, and we study the following optimization problem, which is a reasonable modification of
Sch(R;µ, ν) where the marginal constraints are replaced with marginal penalizations:

min
{
H(R̄|R) + λ

(
H(µR̄|µ) +H(νR̄|ν)

) ∣∣∣ R̄ ∈M+(D ×F)
}
, (21)

where λ > 0 parametrizes the level of penalization.
This approach is extremely reminiscent of the idea introduced by Liero, Mielke and Savaré

in [20] to deal with unbalanced data, that is, when M(µ) ̸= M(ν), in optimal transport prob-
lems. This was the starting point of the theory of unbalanced optimal transport, also discovered
independently by other teams [15, 6].

More precisely, we will study the limit of the problem in (21) as λ→ +∞. In this limit, it
is actually more convenient to call ε = 1/λ and to multiply the value functional by ε, to find
the problem that we call Schε(R;µ, ν):

Schε(R;µ, ν) := min
{
εH(R̄|R) +H(µR̄|µ) +H(νR̄|ν)

∣∣∣ R̄ ∈M+(D ×F)
}
.

As we want to study the behavior of this problem in the limit ε → 0, we define the following
functionals:

Λε : R̄ ∈M+(D ×F) 7→ εH(R̄|R) +H(µR̄|µ) +H(νR̄|ν),
Λ : R̄ ∈M+(D ×F) 7→ χH(R̄|R)<+∞ +H(µR̄|µ) +H(νR̄|ν),

where χH(R̄|R)<+∞ is the convex indicatrix taking value 0 on the set

{
R̄ ∈M+(D ×F) such that H(R̄|R) < +∞

}
,

and +∞ elsewhere.
The following proposition follows from standard arguments in the theory of Γ-convergence,

see for instance [3, Theorem 1.47], and from the strict convexity of the relative entropy w.r.t.
its first variable. We omit the proof.

Proposition 15. We have:
Γ− lim

ε→0
Λε = Λ.

In particular, assuming that Λ is not uniformly infinite, let us call Ropt one of its minimizers,
µg := µRopt and νg := νRopt. The marginals µg and νg do not depend on the choice of Ropt,
and as ε→ 0, the unique solution Rε of Schε(R;µ, ν) exists and converges towards the solution
of Sch(R;µg, νg).

Remark 16. In the notations µg and νg, the g stands for geometric. This is because as shown in
Theorem 17, µg and νg are respectively the componentwise geometric means of µ and µ∗, and
of ν and ν∗.
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Therefore, studying the behavior of Schε(R;µ, ν) in the limit ε → 0 reduces to the study
of the Schrödinger problem with modified marginals µg and νg. The following theorem shows
the link between R∗ – the solution of Sch(R;µg, νg) – on the one hand, and P ∗ and Q∗ from
Theorem 11 on the other hand.

Theorem 17. Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F) satisfy Assumption 8.
Then the functional Λ is not uniformly infinite. Moreover, considering P ∗ and Q∗ as given by
Theorem 11, and µg and νg as given by Proposition 15, the solution of Sch(R;µg, νg) is the
componentwise geometric mean of P ∗ and Q∗, that is, the matrix R∗ defined for all i, j by

R∗
ij :=

√
P ∗
ijQ

∗
ij . (22)

Also, if µ∗ and ν∗ are defined by (13), µg and νg are the componentwise geometric means
of µ∗ and µ for the first one, and of ν∗ and ν for the second one. In other terms, we have for
all i, j,

µgi =
√
µ∗iµi and νgj =

√
ν∗j νj . (23)

Remark 18. • Having in mind the approach of [20], we can give the following interpretation
of the matrix R∗: In the degenerate case where the Schrödinger problem has no solution,
it is necessary to allow creation and annihilation of mass to find solutions. Following [20],
we can do this by replacing the balanced problem Sch(R;µ, ν) by the unbalanced problem
Schε(R;µ, ν). Following this analogy, λ = 1

ε parametrizes the cost of creating particles.
The matrix R∗ from Theorem 17 is therefore the limit of these solutions when the cost of
creating or destroying matter tends to +∞.

• A small adaptation of the proof shows that given α ∈ [0, 1], if we replace the problem
in (21) by

min
{
H(R̄|R) + λ

(
(1− α)H(µR̄|µ) + αH(νR̄|ν)

) ∣∣∣ R̄ ∈M+(D ×F)
}
,

and if we call Rα,λ its solution, then as λ→ +∞, we have for all i, j:

Rα,λij −→
λ→+∞

(
P ∗
ij

)1−α(
Q∗
ij

)α
.

To prove this theorem, we will need to study carefully the optimality conditions for µ∗

and ν∗. This could be done writing the Karush-Kuhn-Tucker conditions for the corresponding
optimalization problems. We will rather adopt a more hand by hand approach, that is more
likely to be generalizable in the continuous case. This is done in the following proposition.

Proposition 19. Assume that the conditions of Theorem 11 are fulfilled. For all i, j, we have

P ∗
ij =

µi
µ∗i
Q∗
ij and Q∗

ij =
νj
ν∗j
P ∗
ij , (24)

with convention 0
0 = 0. In particular, P ∗ and Q∗ are equivalent, and we call S their common

support. Also, recall the definition of E in (11). Of course S ⊂ E. Finally, we call for all i, j

φi := log
µ∗i
µi

and ψj := log
ν∗j
νj
. (25)

For all (i, j) ∈ E, φi and ψj are well defined in R, and:
{
φi + ψj = 0, if (i, j) ∈ S,
φi + ψj ≥ 0, if (i, j) ∈ E . (26)
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Proof of Proposition 19. To get (24), it suffices to let n tend to +∞ in (15). The fact that
S ⊂ E relies on the closed property of Pn and Qn defined in (1) to have its support included
in E for n ≥ 2. If (i, j) ∈ E , let us check that φi and ψj are well defined. On the one hand,
by definition of E , i is in the support of µ and j is in the support of ν. On the other hand, as
observed in Remark 13, µ∗ ∼ µ and ν∗ ∼ ν. Our claim follows.

Now, let (i, j) ∈ S. A consequence of (24) is

P ∗
ij =

µ∗i
µi

ν∗j
νj
P ∗
ij = exp(φi + ψj)P

∗
ij .

As (i, j) is in the support of P ∗ by definition of S, we conclude that φi + ψj = 0.
Finally, it remains to prove that for all (i, j) ∈ E , φi+ψj ≥ 0. For this we use the optimality

of H(µ∗|µ) = H(µQ
∗ |µ) over all Q satisfying νQ = ν. So let us take (i, j) ∈ E . As νj > 0, there

exists i′ such that (i′, j) ∈ S, that is, such that Q∗
i′j > 0. Let us define for ε > 0

Qε = Q∗ + εδij − εδi′j ,

where δij is the matrix whose only nonzero coefficient is a one at position (i, j), and similarly
for δi′j . If ε is sufficiently small, Qε ∈ M+(D × F), νQε = ν and with obvious notations,
µQ

ε
= µ∗ + εδi − εδi′ . Therefore, for such ε,

H(µQ
ε |µ) ≥ H(µ∗|µ).

derivating to the right this inequality at ε = 0, we find

log
µ∗i
µi
− log

µ∗i′
µi′
≥ 0,

which rewrites φi − φi′ ≥ 0. But (i′, j) ∈ S so φi′ = −ψj , and so φi + ψj ≥ 0.

With this proposition at hand, we can prove Theorem 17.

Proof of Theorem 17. The fact that under Assumption 8, Λ is not uniformly infinite follows
from observing that Λ(R0) < +∞, where R0 was defined Assumption 8. Now we reason in two
steps. First we will prove using Proposition 19 that R∗ defined by (22) is an optimizer of Λ,
and then that it is the solution of the Schrödinger problem between its marginals.

Step 1: R∗ is an optimizer of Λ.
To see that R∗ is an optimizer of Λ, we first give a formula relating the vectors φ and ψ as

defined by formula (25) and the marginals µR
∗
and νR

∗
of R∗. Using (24) and the definition (22)

of R∗, we see that for all i, j,

R∗
ij =

√
νj
ν∗j
P ∗
ij =

√
µi
µ∗i
Q∗
ij . (27)

Summing respectively these identities w.r.t. i and j, we deduce that for all i, j,

µR
∗

i =
√
µ∗iµi =

√
µ∗i
µi
µi and νR

∗
j =

√
ν∗j νj =

√
ν∗j
νj
νj .

Let us define for all i, j:

Zµi := log
µR

∗
i

µi
=

1

2
φi and Zνj := log

νR
∗

j

νj
=

1

2
ψj .

Note that for all (xi, yj) ∈ E , Zµi and Zνj are well defined in R.
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Now let R̄ be such that Λ(R̄) < +∞. Using inequality (5) to bound from below each relative
entropy, we have

Λ(R̄) = H(µR̄|µ) +H(νR̄|ν)
≥ ⟨Zµ, µR̄⟩ − ⟨eZµ − 1, µ⟩+ ⟨Zν , νR̄⟩ − ⟨eZν − 1, ν⟩

=
1

2
⟨φ, µR̄⟩+ 1

2
⟨ψ, νR̄⟩ −

∑

i

{
µR

∗
i − µi

}
−
∑

j

{
νR

∗
j − νj

}

=
1

2
⟨φ⊕ ψ, R̄⟩+M(µ) +M(ν)− 2M(R∗),

where φ⊕ψ is the matrix defined for all i, j by (φ⊕ψ)ij := φi+ψj . Now, because of the second
line of (26), as the support of R̄ is easily seen to be a subset of E , we get

Λ(R̄) ≥ M(µ) +M(ν)− 2M(R∗).

On the other hand, by definition of Zµ and Zν ,

Λ(R∗) = H(µR
∗ |µ) +H(νR

∗ |ν)
= ⟨Zµ, µR∗⟩+M(µ)−M(R∗) + ⟨Zν , νR∗⟩+M(ν)−M(R∗)

=
1

2
⟨φ⊕ ψ,R∗⟩+M(µ) +M(ν)− 2M(R∗).

But now, as the support of R∗ is precisely S, by the first line of (26), we get

Λ(R∗) = M(µ) +M(ν)− 2M(R∗).

We deduce that Λ(R̄) ≥ Λ(R∗) and R∗ is indeed an optimizer of Λ. In particular, µg = µR
∗
and

νg = νR
∗
, which proves (23).

Step 2: R∗ is the solution of Sch(R;µg, νg).
To show that R∗ solves the Schrödinger problem between its marginals, we consider another

R̄ ∈M+(D ×F) such that R̄ ∈ Π(µg, νg) and H(R̄|R) < +∞. Then, for ε > 0, we define

P ε := P ∗ + ε(R̄−R∗).

As R∗ ≪ P ∗ (see (22)), whenever ε is sufficiently small, P ε ∈M+(D×F), and in addition, we
easily check that P ε ∈ Π(µ, ν∗). So by definition (14) of P ∗,

H(P ∗|R) ≤ H(P ε|R).
Derivating this inequality to the right at ε = 0, we find

∑

ij

R∗
ij log

P ∗
ij

Rij
≤
∑

ij

R̄ij log
P ∗
ij

Rij
,

with convention 0
0 = 0, 0 log 0 = 0 and a log 0 = −∞ for all a > 0. In particular, we deduce

that R̄≪ P ∗ ∼ R∗, and our inequality rewrites

H(R∗|R) +H(R̄|P ∗)−H(R∗|P ∗) ≤ H(R̄|R).
The last thing to observe is that because of (27), R∗ is the solution of the Schrödinger problem

Sch(P ∗;µg, νg): a direct application of (5) with Zij = log
R∗
ij

P ∗
ij

= −ψ̄j (which is well defined on

the support of P ∗, and so on the support of R̄) provides

H(R̄|P ∗) ≥ ⟨Z, R̄⟩ − ⟨eZ − 1, P ∗⟩
= −⟨ψ̄, νg⟩+

∑

ij

P ∗
ij −R∗

ij

= ⟨Z,R∗⟩+
∑

ij

P ∗
ij −R∗

ij = H(R∗|P ∗).

The result follows.
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Remark 20. In Step 2, we used a particular case of the following more general result that is
proved in the same way:

Lemma 21. Let R ∈M+(D×F), µ, µ′ ∈M+(D) and ν, ν ′ ∈M+(F). Assume that Sch(R;µ, ν)
admits a solution P and that Sch(P ;µ′, ν ′) admits a solution Q. Then the unique solution of
Sch(R;µ′, ν ′) exists: it is Q.

4.2 Balanced version

In the last subsection, we interpreted the fact that Sch(R;µ, ν) has no solution by the fact that
our model does not incorporate the ability of the real system to create or destroy mass. In that
case, the total mass of R∗ is not the same as the one of µ and ν in general, even when the latter
two coincide. Therefore, R∗ cannot be interpreted directly as a joint law for the initial and final
positions of the particles. Following the lines of [20], we see that its interpretation is actually
rather complicated.

In this subsection, we want to consider the case where the real system under study is
truly balanced, that is, no creation of annihilation of mass is possible at all. In this situation,
whatever the way we are obtaining the data, µ and ν must have the same mass, and up to
renormalizing, we can assume that they are probability measures. We want to interpret the
fact that Sch(R;µ, ν) has no solution by the fact that µ and ν are imperfect measurements of
the true marginals, and we want to find a probability measure R̄∗ that is entropically close to R
while having its marginals entropically close to µ and ν, that can be interpreted as a joint law.

Therefore, we introduce the following problem that is a slight modification of Schε where
the competitor R̄ needs to be a probability measure: for all R ∈ P(D × F), µ ∈ P(D) and
ν ∈ P(F),

Schε(R;µ, ν) := min
{
εH(R̄|R) +H(µR̄|µ) +H(νR̄|ν)

∣∣∣ R̄ ∈ P(D ×F)
}
.

The following theorem states the behaviour of this optimization problem as ε→ 0, and is a
direct adaptation of Theorem 17 to the balanced case.

Theorem 22. Let R ∈ P(D × F), µ ∈ P(D) and ν ∈ P(F) satisfy the conditions of Assump-
tion 8, and call

Z :=
∑

ij

√
P ∗
ijQ

∗
ij ,

where P ∗ and Q∗ are given by Theorem 11. Then for all ε > 0, the solution R̄ε of Schε(R;µ, ν)
exists, is unique, and satisfies for all i, j:

R̄εij −→
ε→0

R̄∗
ij :=

√
P ∗
ijQ

∗
ij

Z .

Its marginals are given for all i, j by

µR̄
∗

i =

√
µ∗iµi
Z and νR̄

∗
j =

√
ν∗j νj

Z .

Proof. Theorem 22 is a direct consequence of Theorem 17 once noticed the following fact: If
R,µ, ν are as in the statement of the theorem, if ε > 0 and if Rε is the solution of Schε(R;µ, ν),
then Rε/M(Rε) is the solution of Schε(R;µ, ν). To see this, consider R′ ∈ P(D × F). Direct
computations imply

H(R′|R) =
H
(
M(Rε)R′

∣∣∣R
)

M(Rε)
+ log

1

M(Rε)
+ 1− 1

M(Rε)
,

H

(
Rε

M(Rε)

∣∣∣∣R
)

=
H(Rε|R)
M(Rε)

+ log
1

M(Rε)
+ 1− 1

M(Rε)
.
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By optimality of Rε, H(M(Rε)R′|R) ≥ H(Rε|R), and therefore H(R′|R) ≥ H(Rε/M(Rε)|R).
Our claims follows, and hence the theorem as M is a continuous functional and Z = M(R∗),
where R∗ is given by Theorem 17.

5 Existence and support of the solutions to Schrödinger problems

In this section, our goal is to give a detailed study of the support of the solution of Sch(R;µ, ν)
when the latter exists, or of the common one of P ∗, Q∗ and R∗ from Theorems 11 and 17 in
the non-scalable case. This study will rely on a new interpretation of the well known existence
conditions for the Schrödinger problem in finite spaces, for which we refer to [4, 14].

We start with our new formulation of these conditions of existence, which is very close to
the ones introduced by Brualdi [4], but has the advantage of helping understanding the shape
of the support of the optimizers seen as a bipartite graph.

In the second part of the section, we provide a theoretical procedure allowing to get the
support of the optimizers, both in the approximately scalable and non-scalable cases, without
using the Sinkhorn algorithm. This procedure will be used in the next section as a preliminary
step, before launching the Sinkhorn algorithm, in order to recover a linear rate for the latter.

5.1 A necessary and sufficient condition of existence for the Schrödinger problem in
finite spaces

Let us state a necessary and sufficient condition on R, µ and ν for the existence of a solution
R∗ of Sch(R;µ, ν), that is, for Sch(R;µ, ν) to be scalable or approximately scalable. In order to
do so, we need to give a few definitions. First, we endow the set D ∪ F with a bipartite graph
structure related to R: we set

∀i = 1, . . . , N and j = 1, . . . ,M, xi△yj ⇔ Rij > 0.

We have xi△yj whenever it is possible to travel from xi to yj under R. We write indifferently
xi△yj or yj△xi.

With this structure in hand, we are able to push forward or pull backward subsets of D and
F , that is, we define:

∀A ⊂ D, FR(A) :=
{
y ∈ F | ∃x ∈ A s.t. x△y

}
,

∀B ⊂ F , DR(B) :=
{
x ∈ D | ∃y ∈ B s.t. x△y

}
.

(28)

Heuristically, for all A ⊂ D, FR(A) is the set of all possible final positions of particles starting
from A, under R. Correspondingly, for all B ⊂ F , DR(B) is the set of all possible initial
positions of particles arriving in B under R. Notice the explicit mention of R in the notations:
in the following, we will allow ourselves to replace R by any other measure R̄ ∈M+(D ×F).

The main result of this section is the following.

Theorem 23. Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F). The three following
assertions are equivalent:

(a) M(µ) = M(ν) and for all A ⊂ D, µ(A) ≤ ν(FR(A)).

(b) M(µ) = M(ν) and for all B ⊂ F , ν(B) ≤ µ(DR(B)).

(c) Sch(R;µ, ν) is scalable or approximately scalable.
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Note that the implications (c) ⇒ (a) and (c) ⇒ (b) are straightforward, and that only the
reverse implications are challenging. Also, we already noticed in Subsection 2.3 that (c) implies
Assumption 8. Hence, it is also the case for (a) and (b).

The proof relies on the following Lemma 24, which gives a necessary and sufficient condition
on R, µ and ν ensuring R∗ to have the same support as R, that is, to be in the scalable
case. In this statement, we use the notations µR and νR as defined in (3), and we work under
Assumption 9, which is always possible under Assumption 8 up to considering subspaces of D
and F , see Subsection 2.3.

Lemma 24. Let R ∈M+(D×F), µ ∈M+(D) and ν ∈M+(F), satisfying Assumption 9. The
three following assertions are equivalent:

(a’) M(µ) = M(ν) and for all A ⊂ D, µ(A) ≤ ν(FR(A)), with a strict inequality whenever
µR(A) < νR(FR(A)).

(b’) M(µ) = M(ν) and for all B ⊂ F , ν(B) ≤ µ(DR(B)), with a strict inequality whenever
νR(B) < µR(DR(B)).

(c’) Sch(R;µ, ν) is scalable.

In plain words, it highlights the difference between the approximately scalable and scalable
cases, by showing that the scalable case consists in assuming as much strict inequalities in (a)
or in (b) as possible. Although both Theorem 23 and Lemma 24 can be directly deduced from
the work of Brualdi [4], we provide in Appendix B a short and independent proof based on
topological arguments.

5.2 Theoretical construction of the support

In the scalable case, the Sinkhorn algorithm is known to have a linear rate of convergence.
On the other hand, in the approximately scalable case, the algorithm still converges, but the
(unknown) convergence rate cannot be linear [1].

In this subsection, we study the support of the solution of the Schrödinger problem in the
approximately scalable and non-scalable cases for the following reason. Take R, µ and ν such
that Sch(R;µ, ν) is approximately scalable, R∗ the solution of this problem, and S the support of
R∗. Then Sch(1SR;µ, ν) is scalable and its solution is R∗. In particular, the Sinkhorn algorithm
applied to this problem has a linear rate of convergence. Interestingly, a similar reasoning is
valid in the non-scalable case, as we show in Proposition 25 below.

Without loss of generality, and for the sake of simplicity, in the whole subsection, we work
under Assumption 9. By Remark 13, if µ∗ and ν∗ are defined by (13), we have ν ∼ ν∗ and
µ ∼ µ∗. So under Assumption 9, they have a full support as well.

Proposition 25. Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F) satisfying Assumption 9.
Let us call S the common support of P ∗ and Q∗ from Theorem 11, and R∗ from Theorem 17. Let
(Pn)n∈N∗ and (Qn)n∈N∗ be given by (2) applied to Sch(1SR;µ, ν). They converge respectively
towards P ∗ and Q∗, both of them at a linear rate.

Proof. Let (Pn)n∈N∗ and (Qn)n∈N∗ be given by the equivalent formulations (1) and (2) applied
to Sch(1SR;µ, ν). Let us show that (Pn) converges towards P ∗ at a linear rate. The case of (Qn)
follows the same arguments. The idea is that if (P̃n)n∈N∗ and (Q̃n)n∈N∗ are given by (1) and (2)
applied to Sch(1SR;µ, ν∗), then for all n ∈ N∗, Pn = P̃n. As the problem Sch(1SR;µ, ν∗)
is scalable (its solution, P ∗, has the same support as 1SR), the rate of convergence of (P̃n)
towards P ∗ is linear, and the result follows.

So let us prove by induction that for all n ∈ N∗, Pn = P̃n. According to (1), P 1 and P̃ 1 are
solutions to the same problem, and therefore coincide. Let us now consider n ∈ N∗ such that
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Figure 2 : If A ⊂ D, up to reordering the lines, we can assume that it corresponds to the
last lines. Up to reordering the columns, we can assume that FR(A) corresponds to the last
columns. Then, R has the form given in the picture. In this situation, A is a SISP set for
(R;µ, ν) if R∗ cancels on the block B and if the supports of R and R∗ coincide on the block C.

Pn = P̃n and show that Pn+1 = P̃n+1. By construction, the support of Pn+1 and P̃n+1 is S,
so we just need to check that for all (xj , yj) ∈ S, Pn+1

ij = P̃n+1
ij . By the first line of (26), for all

(xi, yj) ∈ S, we have:

νj =
µ∗i ν

∗
j

µi
.

Hence, for all (xi, yj) ∈ S:

Pn+1
ij =

µi

µQ
n

i

Qnij =
µi∑

j′

νj′

νP
n

j′
Pnij′
× νj

νP
n

j

Pnij =
µi

µ∗i
µi

∑

j′

ν∗j′

νP̃
n

j′
P̃nij′

× µ∗i
µi

ν∗j

νP̃
n

j

P̃nij =
µi

µQ̃
n

i

Q̃nij = P̃n+1
ij ,

where the change from Pn to P̃n in the middle coming from the induction assumption Pn = P̃n.
The result follows.

Therefore, even in the non-scalable case, a way to improve the Sinkhorn algorithm consists
in first finding S, and then computing the solution of a scalable problem. We propose in
this subsection a theoretical procedure allowing to get this support without using the Sinkhorn
algorithm in both the approximately and non-scalable cases, and we will propose an approximate
method for achieving this task numerically at Section 6.

To detail our procedure, we introduce a class of subsets of D associated with a triple (R;µ, ν).

Definition 26. Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F) satisfying Assumption 9.
Let us consider R∗ from Theorem 17. We say that a subset A ⊂ D is the source of an isolated
scalable problem (or for short that A is a SISP set) for (R;µ, ν) if A ̸= ∅ and:

• The set (D\A)× FR(A) is R∗-negligible, i.e.

R∗
(
(D\A)× FR(A)

)
= 0. (29)

• For all xi ∈ A and yj ∈ F ,
R∗
ij > 0 ⇔ Rij > 0. (30)

We show at Figure 2 an illustration of what a SISP is.
Of course, as P ∗ and Q∗ from Theorem 11 are equivalent to R∗ in the sense of measures, we

could have replaced R∗ in the previous definition by one of them.
On the one hand, SISP sets always exist, at least under Assumption 9, as announced in the

following lemma. Its proof is our main task in this part of our work, and is given at the end of
the subsection.
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Figure 3 : In the situation of Figure 2 where we have reordered the lines and columns, our
procedure consists in recursively add zeros to R at positions where we know thanks to (29) that
R∗ admits a zero. We know that we did not forget any zero in M × FR(M) thanks to (35).

Lemma 27. Let R ∈M+(D×F), µ ∈M+(D) and ν ∈M+(F) satisfying Assumption 9. Then
there exists a SISP set for (R;µ, ν).

On the other hand, once we know how to find SISP sets, an iterative procedure consisting
in finding SISP sets for a sequence of more and more restricted problems makes is possible to
reconstruct the whole subset S.

Proposition 28. Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F) satisfying Assumption 9.
Let us call S the common support of P ∗ and Q∗ from Theorem 11, and R∗ from Theorem 17.

We define by inference (Rn)n∈N a sequence in M+(D × F), (Dn)n∈N a nonincreasing se-
quence of subsets of D and (Fn)n∈N a nonincreasing sequence of subsets of F in the following
way:

• For n = 0, we set R0 := R, D0 := D and F0 := F ;

• For all n ∈ N, if Dn and Fn are nonempty and (Rn⌞Dn×Fn ;µ⌞Dn , ν⌞Fn) satisfies As-
sumption 9, we pick Mn a SISP set as given by Lemma 27, and we set:

Dn+1 := Dn\Mn, Fn+1 := Fn\FRn⌞Dn×Fn (Mn),

∀i, j, Rn+1
ij :=

{
0, if yj ∈ FRn⌞Dn×Fn (Mn) and xi ∈ Dn+1,

Rnij , otherwise.

Otherwise, we set Rn+1 := Rn, Dn+1 := Dn and Fn+1 := Fn.

With this construction, the sequence (Rn,Dn,Fn)n∈N is stationary. More precisely, there
exists N ∈ N∗ such that for all n ≥ N ,

Dn = ∅, Fn = ∅, Rn = 1SR.

An illustration of the procedure at each iteration, is provided in Figure 3. An illustration
of the full procedure in a specific non-scalable case is provided in Figure 4.

Proof. In this proof, in order to lighten the notations, we call Rnr := Rn⌞Dn×Fn . We will prove
by inference the following facts. For all n ∈ N:

1. Calling Sn the support of Rn, and therefore S0 the support of R,

Sn∩
(
(D×F)\(Dn×Fn)

)
= S∩

(
(D×F)\(Dn×Fn)

)
= S0∩

(
n−1⋃

k=0

Mk × FRkr (Mk)

)
, (31)

S ⊂ Sn, and Sn ∩ (Dn ×Fn) = S0 ∩ (Dn ×Fn).
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Figure 4 : Illustration of the procedure of Proposition 28 when the matrix R is upper diagonal
and R∗ a staircase matrix (see Appendix A for more details). Only A0 is a SISP set for
(R;µ, ν), but A1 and A2 are SISP sets for the restricted problems at the iterations 2 and 3. In
this example, the procedure is stationary after 3 steps. In this example, the SISP set at each
iteration is the unique maximal θ-set existing for the reduced problem, as presented in Definition
30. We remark that we can also build ν∗, the second marginal of P ∗ defined in Theorem 11, on
the successive SISP sets obtained along the procedure, thanks to the second step of the proof
of Proposition 27 which ensures that the ratio ν

ν∗ is constant inside the maximal θ-sets.

2. Dn is empty if and only if Fn is empty.

3. If Dn and Fn are not empty, (Rnr ;µ⌞Dn , ν⌞Fn) satisfies Assumption 9 and the matrices
Pn,∗, Qn,∗ and Rn,∗ associated with (Rnr ;µ⌞Dn , ν⌞Fn) through Theorems 11 and 17 are
the restrictions of P ∗, Q∗ and R∗ to Dn ×Fn.

This is enough to prove the proposition: if the conclusion of the inference is true, then by
the third point and Lemma 27, as long as Dn and Fn are nonempty, (Rnr ;µ⌞Dn , ν⌞Fn) admits
a SISP set Mn, which is not empty by definition. Therefore, (Dn) is strictly decreasing in the
sense of inclusion as long as it is not empty, so it has to reach ∅ at a certain rank N . At this
rank, because of the first point, we also have FN = ∅, and because of (31), SN = S, so that
the conclusion follows. So let us prove the inference.

At rank 0, everything is clear, so let us assume that the conclusions of points one, two and
three hold at rank n, and prove them at rank n + 1. First, if Dn is empty, by assumption Fn
is empty as well, so we have reached a stationary point, and everything is still true at rank
n+ 1. So we can assume without loss of generality that Dn, and hence Fn, are nonempty. By
assumption, (Rnr ;µ⌞Dn , ν⌞Fn) satisfies Assumption 9, and by Lemma 27, we can find a SISP set
Mn. In this context, let us check the points one by one at rank n+ 1.

First point. Observing that Dn is the disjoint union ofMn and Dn+1, and that Fn is the disjoint
union of FRnr (Mn) and Fn+1, we have

(D ×F)\(Dn+1 ×Fn+1)

=
(
(D ×F)\(Dn ×Fn)

)
∪
(
Dn+1 × FRnr (Mn)

)
∪
(
Mn ×Fn+1

)
∪
(
Mn × FRnr (Mn)

)
.
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So in order to prove (31) at rank n+ 1, we need to show that

Sn+1 ∩
(
(D ×F)\(Dn ×Fn)

)
= Sn ∩

(
(D ×F)\(Dn ×Fn)

)
, (32)

Sn+1 ∩
(
Mn ×Fn+1

)
= S ∩

(
Mn ×Fn+1

)
= ∅, (33)

Sn+1 ∩
(
Dn+1 × FRnr (Mn)

)
= S ∩

(
Dn+1 × FRnr (Mn)

)
= ∅, (34)

Sn+1 ∩
(
Mn × FRnr (Mn)

)
= S ∩

(
Mn × FRnr (Mn)

)
= S0 ∩

(
Mn × FRnr (Mn)

)
. (35)

To prove these equalities, the main tool is the following formula which is a direct consequence
of the construction:

Sn+1 = Sn\
(
Dn+1 × FRnr (Mn)

)
. (36)

With this formula at hand, we see that (32) follows from Dn+1 × FRnr (Mn) ⊂ Dn ×Fn. We
also deduce very easily that Sn+1∩(Dn+1×Fn+1) = Sn∩(Dn+1×Fn+1) = S0∩(Dn+1×Fn+1),
where the last equality follows from the first point at rank n.

Then, to prove (33), as both S (by assumption) and Sn+1 (by (36)) are included in Sn, it
suffices to show that Sn ∩ (Mn ×Fn+1) = ∅. But that last assertion follows from the definition
of Fn+1 = Fn\FRnr (Mn): these are precisely the columns where Rnr has only zero entries on the
intersection with the lines Mn.

To prove (34), let us observe that the equality Sn+1 ∩ (Dn+1 × FRnr (Mn)) = ∅ is a direct
consequence of (36). The other equality, namely, S ∩ (Dn+1 × FRnr (Mn)) = ∅ follows from the
fact that Mn is a SISP set for (Rnr ;µ⌞Dn , ν⌞Fn), so that (29) applies with Mn instead of A, Rnr
instead of R, Dn instead of D and Rn,∗ = R∗⌞Dn×Fn instead of R∗ (here, we use the point three
at rank n). Notice that as S ∩ (Dn+1×FRnr (Mn)) = ∅ and S ⊂ Sn, by (36), we have also proved
that S ⊂ Sn+1.

Finally, to prove (35), as S ⊂ Sn+1 ⊂ S0, we just need to prove that S ∩ (Mn×FRnr (Mn)) =
S0 ∩ (Mn × FRnr (Mn)). But this is a direct consequence of the fact that Mn is a SISP set for
(Rnr ;µ⌞Dn , ν⌞Fn), so that (30) applies with Rnr instead of R, Rn,∗ instead of R∗, Mn instead of
A and Fn instead of F .

Second point. By definition, Dn+1 is empty if and only if Mn = Dn. So if Dn+1 = ∅, then by

Assumption 9 applied to (Rnr ;µ⌞Dn , ν⌞Fn), we clearly have FR
n
r (Mn) = Fn and so Fn+1 = ∅.

On the other hand, if Dn+1 ̸= ∅ we have

0 < µ(Dn+1) = P ∗
(
Dn+1 ×F

)
= P ∗

(
Dn+1 ×Fn

)

= P ∗
(
Dn+1 × FRnr (Mn)

)
+ P ∗

(
Dn+1 ×Fn+1

)

= P ∗
(
Dn+1 ×Fn+1

)
,

where the inequality comes from Assumption 9, the second equality is an easy consequence
of (31) at rank n, and the last one comes from the definition of SISP sets (see (29)) and from
the fact that P ∗ and R∗ has the same support. So Fn+1 cannot be empty, as announced.

Third point. To check that (Rn+1
r ;µ⌞Dn+1 , ν⌞Fn+1) satisfies Assumption 9, we need only need

to show that the support of µR
n+1⌞Dn+1 is Dn+1 and the support of νR

n+1⌞Fn+1 is Fn+1. But as
we already proved that S ⊂ Sn+1, we know that P ∗ ≪ Rn+1 and Q∗ ≪ Rn+1, so the conclusion
follows from the fact that µ and ν have full support by Assumption 9 applied to (R;µ, ν).
The last thing to check, namely that the matrices Pn+1,∗, Qn+1,∗ and Rn+1,∗ associated with
(Rn+1

r ;µ⌞Dn+1 , ν⌞Fn+1) through Theorems 11 and 17 are the restrictions of P ∗, Q∗ and R∗ to
Dn+1 × Fn+1 is a direct consequence of Proposition 29 below (that we wanted to separate to
the rest of the proof because we will use it again later), and of (34).
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Proposition 29. Let R ∈M+(D×F), µ ∈M+(D) and ν ∈M+(F) satisfy Assumption 8. Let
P ∗, Q∗ and R∗ be the matrices associated with the problem Sch(R;µ, ν) by Theorems 11 and 17.
Finally, let A ⊂ D be such that

R∗
(
(D\A)× FR(A)

)
= 0. (37)

Then (with slightly sloppy notations), P ∗⌞A×FR(A), Q∗⌞A×FR(A) and R∗⌞A×FR(A) are the
matrices associated with the restricted problem Sch(R⌞A×FR(A), µ⌞A, ν⌞FR(A)) by Theorem 11
and 17.

Similarly, calling A′ := D\A and F ′ := F\FR(A), P ∗⌞A′×F ′, Q∗⌞A′×F ′ and R∗⌞A′×F ′ are the
matrices associated with the restricted problem Sch(R⌞A′×F ′ , µ⌞A′ , ν⌞F ′) by Theorem 11 and 17.

Proof. We show the result in the case of P ∗, related to the ”block” A×FR(A). The case of Q∗

is similar, the case of R∗ easily follows from the two previous ones, and the similar results on
A′ × F ′ follow the same lines. Let ν∗ be defined by (13). The first thing to prove is

ν∗⌞FR(A)
= argmin

{
H(ν̄|ν⌞FR(A))

∣∣∣ ν̄ = νP for some P with H(P |RA×FR(A)) < +∞ and µP = µ⌞A
}
.

The measure ν∗⌞FR(A) is a competitor for the problem in the r.h.s. because it corresponds to
P := P ∗⌞A×FR(A). Let us show that it is the optimizer. To do this, we call ν̄ the optimizer, and
we show that ν∗FR(A) = ν̄∗. Let us consider P̄ a P corresponding to ν̄∗ in the problem above,

P̄ ∗ the matrix obtained by replacing the entries of P ∗ on A × FR(A) by the entries of P̄ , and
ν̄∗ := νP̄

∗
. We have

H(ν̄∗|ν) = H(ν̄|ν⌞FR(A)) +H(ν∗⌞F ′ |ν⌞F ′) ≤ H(ν∗⌞FR(A)|ν⌞FR(A)) +H(ν∗⌞F ′ |ν⌞F ′) = H(ν∗|ν),

where the inequality, being a consequence of the optimality of ν̄∗, is an equality if and only if
ν∗FR(A) = ν̄∗. But by optimality of ν∗ in (13) this inequality is indeed an equality, and therefore
ν∗FR(A) = ν̄∗.

It remains to show that P ∗⌞A×FR(A) is the solution of Sch(R⌞A×FR(A), µ⌞A, ν∗⌞FR(A)). For
this, let us consider P̄ the solution of Sch(R⌞A×FR(A), µ⌞A, ν∗⌞FR(A)), and P̄ ∗ the matrix ob-
tained by replacing the entries of P ∗ on A × FR(A) by the entries of P̄ . Because of (37), we
have

H(P̄ ∗|R) = H(P̄ |R⌞A×FR(A)) +H(P ∗⌞A′×F ′ |R⌞A′×F ′)

≤ H(P ∗⌞A×FR(A)|R⌞A×FR(A)) +H(P ∗⌞A′×F ′ |R⌞A′×F ′) = H(P ∗|R∗),

where the inequality is a consequence of the optimality of P̄ , and is an equality if and only
if P̄ = P ∗⌞A×FR(A). But by optimality of P ∗, this inequality is indeed an equality, and we
conclude that P̄ = P ∗⌞A×FR(A). The proposition is proved.

Now, we want to prove Lemma 27. To do this, we introduce a new class of subsets of D,
associated with a triple (R;µ, ν).

Definition 30. Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F) satisfying Assumption 9.
The maximal θ associated to (R;µ, ν) is defined by:

θm := max
A⊂D
A ̸=∅

µ(A)

ν(FR(A))
. (38)

We say that A ⊂ D is a maximal θ-set for (R;µ, ν) if A is a maximizer of (38). We say that
it is a smallest maximal θ-set if in addition, it is a minimal element in the sense of inclusion
among all maximal θ-sets associated with (R;µ, ν).
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As maximal θ-sets are optimizers of a finite function (thanks to Assumption 9) on a finite
set (the set of all nonempty subsets of D), any triple (R;µ, ν) satisfying Assumption 9 admits
at least one maximal θ-set. The set of all maximal θ-sets being itself finite, we know that there
exists at least one minimal element in this set, so that smallest maximal θ-sets always exist
under Assumption 9. Hence, Lemma 27 is an obvious consequence of the following proposition,
whose proof heavily relies on the optimality conditions stated in Proposition 19.

Proposition 31. Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F) satisfying Assumption 9.
A smallest maximal θ-set for (R;µ, ν) is a SISP set for (R;µ, ν).

Proof. Let µ∗ and ν∗ be defined by (13). We first define the two following quantities

θD := max
i∈D

µi
µ∗i
, θF := max

j∈F

ν∗j
νj
.

(Recall that under Assumption 9, by Remark 13, µ∗ and ν∗ defined by (13) have full support.)
Then, we define the two following sets, that are nonempty subsets of D and F respectively:

M :=
{
xi ∈ D s.t.

µi
µ∗i

= θD
}
, F :=

{
yj ∈ F s.t.

ν∗j
νj

= θF
}
.

The main argument of the proof consists in showing that θD and θF coincide with θm, the
maximal θ for (R;µ, ν). Even if M is not a smallest maximal-θ set in general (more precisely, it
is a maximal θ-set that is not minimal in general), we show at Step 3 below how this information
allows to conclude. As before, P ∗ is the matrix defined by (14).

Step 1: θD = θF .
Let xi ∈M and yj ∈ F be such that P ∗

ij > 0 (such a j exists thanks to Assumption 9). By
the first line of (26), we have

µ∗i
µi

ν∗j
νj

= 1, (39)

which implies that ν∗j /νj = θD, and hence that θF ≥ θD. The other inequality is proved in the
same way, and the result follows. From now on, we call

θ := θD = θF .

Step 2: θ = θm.

First, θ ≥ θm. Indeed, for any A ⊂ D, by Theorem (23), as Sch(R;µ, ν∗) is at least
approximately scalable, we have µ(A) ≤ ν∗(FR(A)). But on the other hand, by definition of θ,
we have ν∗ ≤ θν, so that actually, µ(A) ≤ θν(FR(A)), and hence θ ≥ θm.

Also, θ ≤ θm. To see this, let us first observe that P ∗((D\M)× F ) = P ∗(M × (F\F )) = 0.
This is because if xi, yj are such that P ∗

ij > 0, still by (39), µi/µ
∗
i = θ if and only if ν∗j /νj = θ,

so that xi ∈ M if and only if yj ∈ F . Therefore, on the one hand, FR(M) ⊂ F , and on the
other hand, projecting on both marginals:

µ(M) = P ∗(M ×F) = P ∗(M × F ) + P ∗(M × (F\F ))︸ ︷︷ ︸
=0

= P ∗(M × F ) + P ∗((D\M)× F )︸ ︷︷ ︸
=0

= P ∗(D × F ) = ν∗(F ).

As by definition of F and θ, ν∗(F ) = θν(F ), we conclude that

θν(FR(M)) ≤ θν(F ) = µ(M),
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so that θ ≤ θm, as announced.

Step 3: Conclusion.
We are now in position to conclude. Let A be a smallest maximal θ-set. As Sch(R;µ, ν∗)

is at least approximately scalable, we know that µ(A) ≥ ν∗(FR(A)). On the other hand, as A
is a maximal θ-set, we know that µ(A) = θmν(FR(A)) = θν(FR(A)). But by definition of θ,
we know that θν ≥ ν∗, so that ν∗(FR(A)) ≤ µ(A). We conclude that ν∗(FR(A)) = µ(A), that
ν∗⌞A= θν⌞A= θmν⌞A, and hence that

P ∗
(
(D\A)× FR(A)

)
= P ∗(D × FR(A))− P ∗(A× FR(A)) = ν∗(FR(A))− µ(A) = 0,

so that (29) holds.
In addition, by Proposition 29 the measure P ∗⌞A×FR(A) is the solution of the problem

Sch(R⌞A×FR(A);µ⌞A, ν∗⌞FR(A)). So in order to prove (35), it suffices to prove that this problem
is scalable. For this purpose, we will use Lemma 24. We call Rr := R⌞A×FR(A). Let B be a
nonempty strict subset of A. As A is a minimal element in the set of maximal θ-sets for (R;µ, ν),
we know that µ(B) < θmν(FR(B)). Then, as FR(B) ⊂ FR(A), we have FR(B) = FRr(B), so
µ(B) < θmν(FRr(B)). Finally, as ν∗⌞A= θmν⌞A, we have µ(B) < ν∗(FRr(B)). So Lemma 24
applies, and Sch(R⌞A×FR(A);µ⌞A, ν∗⌞FR(A)) is scalable, which concludes the proof.

We close this section with a remark concerning the stability with respect to union of SISP
sets.

Remark 32. It is easy to check that SISP sets associated with a triple (R;µ, ν) are stable by
union. Therefore, there exists an upper bound in the set of all SISP sets for (R;µ, ν), that we
call the largest SISP set. If we want the procedure described in Proposition 28 to be as fast as
possible, it is logical to look for SISP sets that are as large as possible, in order to minimize the
rank N at which the procedure reaches its stationary point. This is what we are going to do in
the next section.

6 Numerical applications

A simple consequence of the theoretical procedure described in the previous section is that
in a lot of cases, if the problem Sch(R;µ, ν) is non-scalable, the matrices P ∗ and Q∗ from
Theorem 11, and R∗ from Theorem 17 have more zero entries than R. For instance, if the
problem is balanced (i.e. M(µ) = M(ν)), and if the bipartite graph of R is connected (that is,
µ(A) = ν(FR(A)) only holds for A = ∅ or A = D, which is a reasonable assumption in a lot of
contexts), we can check that the matrix R1 from Proposition 28 cannot coincide with R.

Therefore, typically, the Sinkhorn algorithm in the non-scalable case does not converge
linearly. We are going to detail an approximate algorithm allowing to find the common support
of P ∗, Q∗ andR∗, and therefore to recover a linear rate of convergence for the Sinkhorn algorithm
by Proposition 25.

6.1 Stopping criterion

Before any numerical application, we need to define a stopping criterion for the Sinkhorn algo-
rithm when the Schrödinger problem is non-scalable. When the problem is scalable, the classical
criterion that is used is the duality gap estimated at each step n ∈ N∗ of the Sinkhorn algorithm:

SCn = H(Pn|R)− ⟨log(an), µ⟩ − ⟨log(bn−1), ν⟩, (40)

where Pn, an and bn−1 are defined by the relations (2). Indeed, it is known that this quantity is
always positive when the relation Pnij = ani b

n−1
j Rij holds for all i, j, and the Fenchel-Rockafellar
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duality ensures that SCn → 0 as n→∞ when the problem is scalable, i.e. when (an) and (bn)
converge.

In the approximately scalable case, numerical instabilities may appear when n→∞ because
(an) and (bn) do not converge, but this criterion may remain useful if the error that is tolerated
is not too small. However, in the non-scalable case, this criterion does not hold as the problem
Sch(R;µ, ν) has no solution. The results presented in the previous sections allow nevertheless
to define an approximate criterion. Indeed, it has been shown in [6] that for a given λ > 0, the
problem defined with the notations of Subsection 2.1 by

Schuλ(R;µ, ν) = min
{
H(P |R) + λH(νP |ν)

∣∣∣P s.t. µP = µ
}
, (41)

can be solved numerically with a generalization of the Sinkhorn algorithm. More precisely, the
duality gap defined for all n ∈ N∗ by

SCunλ = H(Pn|R) + λ
(
H(νP

n |ν)−
〈
1− (1/bn−1)

1
λ , ν
〉)
− ⟨log(an), µ⟩, (42)

converges to 0 whenever Pnij := ani b
n−1
j Rij for all i, j, and with an, bn defined for all n ∈ N∗ by

the relations: 



∀j, b0j := 1,

∀n ≥ 0, ∀i, an+1
i :=

µi∑

j

bnjRij
,

∀n ≥ 0, ∀j, bn+1
j :=

(
νj∑

i

an+1
i Rij

) λ
1+λ

.

(43)

On the other hand, a slight modification of our Γ-convergence result of Proposition 15 asserts
that P ∗, from Theorem 11, is the limit of the solution of (41) as λ→ +∞. So if we now define
SCunλ by the formula (42) where Pn, an and bn−1 are computed with the standard Sinkhorn
algorithm (2), instead of the modified one (43), we conclude that for all ε > 0, there exists a
threshold λε such that for all λ ≥ λε,

lim sup
n→+∞

SCunλ ≤ ε.

Therefore, the stopping criterion (42) can still be used for the sequence (Pn)n∈N generated
by the classical Sinkhorn algorithm (2), as long as λε is chosen to be sufficiently large w.r.t. ε.
In practice, we observe that taking λε = 1

ε works well. This is what we are going to do in the
following section, considering a level of error ε := 10−3.

6.2 An approximate numerical method for constructing the support of R∗

An interesting application of the theoretical procedures described in Subsection 5.2 is the con-
struction of an approximate algorithm allowing the identification of the support S of R∗ w.r.t.
R, when the problem Sch(R;µ, ν) is approximately scalable or non-scalable. Our motivation
is double. First, the fact that knowing the support allows to recover a linear rate for the
Sinkhorn algorithm, thanks to Proposition 25, suggests that if this algorithm is simple enough,
the full procedure to obtain R∗ (preprocessing to know the S and then the Sinkhorn algo-
rithm applied to Sch(1SR;µ, ν) is excepted to be faster than the Sinkhorn algorithm applied
directly to Sch(R;µ, ν). Second, even if we have shown that the Sinkhorn algorithm converges
in the non-scalable case, the Schrödinger potentials appearing in the Sinkhorn procedure are
likely to be too high to be computed numerically before the algorithm has converged: thus,
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finding the support before to run the Sinkhorn algorithm can be an advantage, as long as this
preprocessing prevents this potential’s explosion and even if it does not accelerate the procedure.

We recall that we identified, at each iteration n of the procedure described in Proposi-
tion 28, a SISP set, denoted Mn, for a reduced problem Sch(R⌞Dn×Fn ;µ⌞Dn , ν⌞Fn). Regarding
the proof of Lemma 27, a natural choice for Mn is an union of smallest maximal θ-sets for
Sch(R⌞Dn×Fn ;µ⌞Dn , ν⌞Fn), that we introduced in Definition 30. The approximate procedure
that we design for finding Mn at each iteration consists in two steps:

1. Find the largest set M ′
n (in the sens of inclusion) such that the supports of R and R∗

coincide in M ′
n ×F ;

2. Find Mn ⊂M ′
n, an union of smallest maximal θ-set for (R⌞M ′

n×FR(M ′
n)
;µ⌞M ′

n
, ν⌞FR(M ′

n)
).

Indeed, finding M ′
n in the first step can be achieved with a slightly modified Sinkhorn

procedure applied to
Sch(R⌞Dn×Fn , µ⌞Dn , ν⌞Fn). More precisely, we initialize U = Dn and V = Fn, and at each
step of this Sinkhorn procedure, for all xi ∈ Dn, if there exists yj ∈ V such that the coupling
obtained at this step is smaller than a given threshold, we set U = U\xi. Since Lemma 27
ensures that there exists at least one SISP set, M ′

n is not empty and thus we do not set all the
lines to 0 (given that the threshold is sufficiently small). For all yj ∈ V , if yj /∈ FR⌞Dn×Fn (U),
we set V = V \yj .

After several steps of this modified Sinkhorn procedure, the elements remaining in U and V
coincide respectively with M ′

n and FR⌞Dn×Fn (M
′
n). Since the Sinkhorn algorithm restricted to

U × V converges linearly (thanks to Proposition 25), we then rapidly observe the convergence
of the procedure.

For detailing how to obtain Mn at the second step, we need to introduce the notion of
connected components:

Definition 33. Let U ⊂ D and V ⊂ F . We say that A × B is a connected component of the
graph (U ∪ V,△) (using the notation of 28) if:

• R⌞U×V (A×Bc) = R⌞U×V (Ac ×B) = 0;

• (A ∪B,△) is connected.

Finding connected components for such undirected graph is a classical task in Graph theory,
for which there exists ready-to-use algorithms [12]. We show in the following proposition that
we can define at the second step of the procedure

Mn =
⋃
{Ui, |

µ(Ui)

ν(Vi)
= max

j=1,··· ,C
µ(Uj)

ν(Vj)
, (44)

where (U1×V1, · · · , UC×VC) are the C connected components of the graph (M ′
n∪FR⌞Dn×Fn (M

′
n),△).

Proposition 34. Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F) satisfying Assumption 9,
and let us denote U the largest subset of D (in the sens of inclusion) such that the supports of
R and R∗ coincide in U × F , and V = FR(U). Let us denote (U1 × V1, · · · , UC × VC) the C
connected components of the graph (U ∪ V,△). Then, for any Ui × Vi such that

µ(Ui)

ν(Vi)
= max

j=1,··· ,C
µ(Uj)

ν(Vj)
, (45)

Ui is a smallest maximal θ-sets for (R;µ, ν).
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Proof. The main point consists in showing that a smallest maximal θ-set for (R;µ, ν), that we
denote A is such that A × FR(A) is a connected component of (U ∪ V,△). Indeed, assuming
this claim, the fact that there always exists such smallest maximal θ-set ensures that for any
Ui × Vi maximizing (45), Ui is a maximal θ-set. Ui is thus necessarily a smallest one because it
cannot contain any other connected component, and then any smallest maximal θ-set neither.
We now prove the claim.

As A is a SISP set (thanks to the proof of Proposition 27), it is in U and we have necessarily
R∗(Ac × FR(A)) = R∗(A × FR(A)c) = 0. The supports of R and R∗ being the same in U × V
by construction of U and V , we have thus R⌞U×V (Ac × FR(A)) = R⌞U×V (A × FR(A)c) = 0.
Moreover, A × FR(A) cannot contain any connected component of (U ∪ V,△): if it was the
case, this connected component would characterize a maximal θ-set for (R;µ, ν), which would
contradict the minimality of A. Thus, A× FR(A) is necessarily a connected component of the
graph (U ∪ V,△).

As we already showed that Assumption 9 holds for (R⌞Dn×Fn , µ⌞Dn , ν⌞Fn) for every n,
we can apply Proposition 34 to this triple. Moreover, as we have seen in the proof that
any smallest maximal θ-set characterizes a connected component of (U ∪ V,△), the choice
of Mn defined by (44) corresponds in fact to the union of all the smallest maximal θ-sets for
(R⌞Dn×Fn , µ⌞Dn , ν⌞Fn).

We provide in Algorithm 1 the pseudo-code of this iterative method.

Let us make a few comment on this algorithm. The support of R∗ only depends on the
support of R and not of its values, so when identifying S, we can equivalently consider the
problem Sch(R′;µ, ν), where R′ = 1R ̸=0. This explains why we consider the minimum min

yj∈V
ai×bj

rather than min
yj∈V

ai × bj ×Rij in Algorithm 1.

The stopping criterion corresponds to the criterion (42) detailed in the previous section,
which has to be smaller than a certain threshold ε to be satisfied.

Choosing in an appropriate way the set of minimal factors {mi, i = 1, · · · , N}, is crucial: it
determines the level of approximation that is considered as acceptable, i.e. the minimal value
at which we can consider that the algorithm should create a new zero entries. In practice, we
observe that

mi :=
1

n

µi

µRi
, (46)

seems to be a good tradeoff between efficiency and security in most of the cases that we explored.

Remark 35. • This method can be seen as an improvement over the naive approximate
method which consists, at each iteration of the Sinkhorn algorithm applied to Sch(R;µ, ν),
to set all the entries of R that are smaller to a certain threshold to zero. With our
method, we do not have to identify all the zero entries one by one but line by line,
which can avoid numerical errors which may appear for some entries converging slowly
to zero. However, this is done at the cost of identifying the connected components of
some subgraphs of (D ∪ F ,△) at every iteration of the procedure, which slows down the
algorithm in cases where these subgraphs are large. Note that in typical cases where the
matrix R is structured, we do not expect to find more than one connected component at
each iteration as in Figure 4.

• We emphasize the fact that this algorithm is only approximate, and this for two reasons.
The first one occurs when the set of thresholds {mi, i = 1, . . . , N} are too large. Then,
we can set to zero lines which should not be, just because some of the entries of R∗
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Algorithm 1 Find the support Supp of R∗: return Supp

Require: • A set of minimal factors: {mi, i = 1, · · · , N},
• A stopping criterion: stop(a, b, R, µ, ν).
We set A = D, B = F , Supp = Support(R).
while A ̸= ∅ do
R̄ = R⌞A×B, µ̄ = µ⌞A, ν̄ = ν⌞B
b = 1B, a = 1A
U = A, V = B
while stop(a, b, R̄, µ̄, ν̄) ̸= 1 do
for xi ∈ U do
if
∑
yj∈V

R̄ijbj = 0 then

U = U\{xi}
else

ai =
µ̄i∑

yj∈V
R̄ijbj

if min
yj∈V

ai × bj < mi then

U = U\{xi}
end if

end if
end for
R̄ = R̄⌞U×V , µ̄ = µ̄⌞U , a = a⌞U
for yj ∈ V do
if
∑
xi∈A

R̄ijai = 0 then

V = V \{yj}
else

bj =
ν̄j∑

xi∈A
R̄ijai

end if
end for
R̄ = R̄⌞U×V , ν̄ = ν̄⌞V , b = b⌞V

end while
(U1 × V1, · · · , UC × VC) = connected components of the graph (U ∪ V,△)

U × V =
⋃{

Ui × Vi, | µ(Ui)ν(Vi)
= max

j=1,··· ,C
µ(Uj)
ν(Vj)

}

A = A\U , B = B\V
Supp = Supp\

(
(A\U)× V

)

end while
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Figure 5 : Number of iterations needed for convergence vs. number of additional zero entries
of the limits P ∗ and Q∗ from Theorem 11 w.r.t. R, using: the Sinkhorn algorithm (2) (solid
line); the Sinkhorn algorithm where at each step, the entries below the threshold (46) are set to
zero (dashed line); Algorithm 1 to compute the support S of the limits, and then the Sinkhorn
algorithm replacing R by 1SR (dotted line). When the threshold ε is small enough, as it is the
case here, these three methods provide the same limits.

should be small on this line. This must be avoided as then the algorithm cannot converge
towards R∗.

The other case where our algorithm does not identify S exactly is either when the threshold
ε of the stopping criterion is large, or when the thresholds {mi, i = 1, . . . , N} are small.
Then, the Sinkhorn algorithm can satisfy the stopping criterion before all the zeroes have
been identified. This is not a big problem, since it means that the algorithm converges
well without having to identify the additional zeroes of R∗.

With these observations, we conclude that the thresholds {mi, i = 1, . . . , N} need to be
taken rather small w.r.t. the threshold ε of the stopping criterion, even though of course,
if they are taken too small, efficiency is lost since then the algorithm just behaves as
Sinkhorn without any improvement.

We illustrate in Figure 5 the efficiency of this procedure. As emphasized at the beginning
of this section, the number of iterations of a Sinkhorn-like algorithm is a better indicator than
the computation time of the full procedure because our main motivation to find the support
of R∗ before running the Sinkhorn algorithm is that we want the Schrödinger potentials not
to explode before reaching convergence, which could be the case for non-scalable problems.
We thus represent the number of iterations needed for the Sinkhorn algorithm to converge
as a function of the number of additional zero entries in R∗ w.r.t. to R, and compare when
we apply or not the preprocessing described in Algorithm 1. For varying the number of zero
entries, we take R upper-diagonal, build µ and ν similarly to what we described in Figure 4,
and then vary the number of blocks from 1 (corresponding to the scalable case) to 10. For
the case with preprocessing, we consider the sum of the iterations needed for the Sinkhorn-like
method described in Algorithm 1 to find the support S, and of the ones needed for the Sinkhorn
algorithm then applied to the problem Sch(1SR;µ, ν). We observe that the preprocessing makes
the number of iterations needed for the convergence to be significantly smaller than for the case
without preprocessing when the number of additional zero entries is high. It is also smaller
than for the case when the naive approximate method is applied, illustrating the benefit of our
approach.

35 200



6.3 Comparison of the method with the balanced and unbalanced Sinkhorn algorithms

We compared in Figure 6 the outputs of the Sinkhorn algorithm when the problem Sch(R;µ, ν)
is non-scalable, given by the geometric mean described in Theorem 17, and two alternatives:

• When the reference coupling R is modified such that it has only positive entries. For that,
we built a new coupling Rε by adding on every zero entry of R a small quantity ε. We
then found the optimizers R∗

ε of the Schrödinger problems Sch(Rε;µ, ν) and compared its
distance in total variation of its solution to R∗, for different values of ε.

• When we the marginal constraints are replaced by marginal penalizations, leading to an
unbalanced problem of the form (21), using the scaling algorithm described in [6]. We
then compared the distance in total variation of its solution to R∗, for different values
of λ.

For the comparison realized here, we took a coupling R of size 100×100 and R,µ, ν as in Figure 4
in such a way that R∗ has only two blocks A1×B1 and A2×B2 for which the factor λ appearing
in the procedure of Proposition 28 is greater than one for the first component, and smaller for
the second one. The problem is thus non-scalable. As expected, we observe in Figure 6a that
in the first case it is impossible for the solution R∗

ε of Sch(Rε;µ, ν) to be close to R∗ (and then
to recover the right minimum entropy), and that the faster is the convergence, the further R∗

ε

is from R∗. In the second case, we observe in Figure 6b that the solution R∗
λ of the unbalanced

problem with penalization λ converges to R∗ when λ → ∞. However, the convergence goes
faster only for values of λ smaller than 150, for which we still observe a significant difference
between R∗ and R∗

λ.
Note that these results are not limited to Schrödinger problems similar to the one described

in Figure 4, and that we observed the same type of results for randomly-generated R, µ and ν
in non-scalable cases.
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Appendices

A Example of Schrödinger problems without solutions

There exists a lot of degenerate cases where the problem Sch(R;µ, ν) has no solution. Indeed,
in the extreme situation where most of the entries of R cancel, two randomly chosen vectors µ
and ν have more chance to be non-scalable than to satisfy the conditions of Theorem 23. For
example, in the typical example of a squared diagonal reference coupling R, we must necessarily
have µ = ν for these conditions to be satisfied.

When illustrating our results at Sections 5 and 6, we chose R to be a squared upper-diagonal
matrix (see Figure 4). This is of particular interest, as it corresponds to a case that typically
arises when considering entropy minimization problems in cell biology. Indeed, the dynamics
of mRNA levels within a cell, which drives cellular differentiation processes, is often modeled
by a piecewise deterministic Markov process, where stochastic bursts of mRNAs compensate

36 201



(a)

(b)

Figure 6 : Comparison of the outputs of the Sinkhorn algorithm in a non-scalable case, where
R∗ is given by Theorem 17, and: 6a the Sinkhorn algorithm (2) where the zero entries of R are
replaced by a small value ε; 6b the unbalanced Sinkhorn algorithm from [6] applied to solve
Schuλ(R;µ, ν) for large values of λ.

37 202



their deterministic degradation [32, 33]. Considering the simplest cartoonish but enlightening
situation where there is no degradation, a constant number of cells, and where we measure the
activity of only one gene, the quantity of mRNAs in the cells corresponding to this gene can
only increase with time. Therefore, if R is the matrix whose entry Rij gives the number of cells
having i molecules of mRNA at a first timepoint and j molecules at a later timepoint, R must
be upper-diagonal.

To give an insight of the behaviour of the Sinkhorn algorithm in the non-scalable case with
an upper-diagonal reference matrix, let us treat explicitly a simple example. We consider:

R =



1 1 1
0 1 1
0 0 1


 , µ = (2, 2, 2), ν = (2, 3, 1).

In this example, µ3 > ν3 while the image of x3 by the graph associated to R is reduced to y3,
that is, with the formalism of Section 5, FR({x3}) = {y3} and hence ν(FR({x3}) < µ({x3}).
In view of Theorem 23 (which is very easy to check in our simple situation), the problem is
therefore indeed non-scalable: no matrix can satisfy the marginal constraints and be absolutely
continuous w.r.t R at the same time.

With the notations of (2), let us reproduce below the output of the Sinkhorn algorithm at
some of the first iterations. Starting at Iteration 5, we only give approximate numerical values.
Iteration 1:

a1 = (2/3, 1, 2), b0 = (1, 1, 1), P 1 =



2/3 2/3 2/3
0 1 1
0 0 2


 .

Iteration 2:

a1 = (2/3, 1, 2), b1 = (3, 9/5, 3/11), Q1 =



2 6/5 2/11
0 9/5 3/11
0 0 6/11


 .

Iteration 5:

a3 = (2.7e−1, 8.6e−1, 1.7e1), b2 = (5.0, 2.2, 1.2e−1), P 3 =



1.4 0.59 3.2e−2

0 1.9 1.0e−1

0 0 2.0


 .

Iteration 11:

a6 = (1.2e−1, 5.1e−1, 1.5e2), b5 = (1.3e1, 3.9, 1.3e−2), P 6 =



1.55 0.45 1.5e−3

0 2.0 6.6e−3

0 0 2.0


 .

Iteration 80:

a40 = (5.5e−5, 2.8e−4, 2.7e12), b40 = (3.6e4, 9.1e3, 3.8e−13), Q40 =



2.0 0.50 1.7e−17

0 2.5 8.4e−16

0 0 1.0


 .

Iteration 81:

a41 = (4.4e−5, 2.2e−4, 5.3e12), b40 = (3.6e4, 9.1e3, 3.8e−13), P 40 =



1.6 0.40 4.2e−17

0 2.0 2.1e−16

0 0 2.0


 .
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Of course, in this case, the matrices P ∗, Q∗, R∗ from Theorem 11, 17 are given by

P ∗ =



8/5 2/5 0
0 2 0
0 0 2


 , Q∗ =



2 1/2 0
0 5/2 0
0 0 1


 , R∗ =



4/
√
5 1/

√
5 0

0
√
5 0

0 0
√
2


 .

Finally, to get R̄∗ from Theorem 22, it suffices to normalize R∗.

This very simple example illustrates the different points developed in this article:

• When R does not have only positive entries, the limits of the sequences (Pn) and (Qn)
given by the Sinkhorn algorithm may be different and have more zero entries than R;

• Because new zero entries appear, the potentials (an) and (bn) that are updated at each
iteration of the Sinkhorn algorithm cannot converge: some of their coordinates have to
tend to 0 and then some other ones need to diverge to +∞ as the number of iterations
increases;

• More precisely, for (i, j) on the common support of P ∗ and Q∗ from Theorem 11, the
infinitely small and high values of the two potentials are compensated. For (i, j) outside
of this common support, but still in the one of R, the multiplication of the two potentials
generate infinitely small values. Outside of the support of R, the multiplication of the
potentials can diverge. Also, the zero entries of R prevent the sums involved in the
computations of (an) and (bn) to diverge: the large values of the potentials are sent to
zero in the multiplication with R;

• When the problem is non-scalable, the algorithm still converges to two limits and the
algorithm alternates between them. These two limits correspond to solutions of the
Schrödinger problem with modified marginals, that is with modified µ or modified ν
alternatively (see the iterations 80 and 81).

Going back to the context of the beginning of the section, where the upper-diagonal R
models the evolution of the quantity of mRNAs corresponding to one gene in a population of
cells between two timepoints, we see that the non-scalable case appears when there exists a
threshold such that more cells with less mRNAs than the threshold are measured at the second
timepoint than at the first one, which is incompatible with the model where the quantity of
mRNAs can only increase. If we believe enough in our model, it is natural to look for a solution
with modified marginals – like for instance the law R̄∗ described in Theorem 22 – and to advocate
for a bad sampling or imprecise measurements when collecting data.

If we consider that such incompatibilities between the theoretical model R and the obser-
vations µ and ν should be rare, this law R̄∗ is a natural choice since among all the solutions
of a Schrödinger problem w.r.t. R, it is the one whose marginals are the closest (in a specific
entropic sense) to the experimental ones.

B Proof of Theorem 23

In this section, we prove Lemma 24 and then Theorem 23. The following classical proposition
will be used in the proof of Lemma 24:

Proposition 36. Let R ∈ M+(D × F), µ ∈ M+(D) and ν ∈ M+(F) be such that the problem
Sch(R;µ, ν) admits a solution R∗. Then for all P ∈ Π(µ, ν) such that P ≪ R, we necessarily
have P ≪ R∗.
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Proof of Proposition 36. Let P ∈ Π(µ, ν) be such that P ≪ R. For all ε > 0, P ε := (1− ε)R∗+
εP is a competitor for Sch(R;µ, ν), so that by minimality of R∗, H(P ε|R) ≥ H(R∗|R). But
because s 7→ s log s is decreasing with infinite slope near s = 0, this is possible for ε small only
if P ≪ R∗.

Let us now prove Lemma 24.

Proof of Lemma 24. In Lemma 24, we are looking for necessary and sufficient conditions for
Sch(R;µ, ν) to be scalable. As M(µ) = M(ν) is clearly a necessary condition because of Re-
mark 2, we assume once for all that it is true. Up to normalizing, we assume that µ ∈ P(D)
and ν ∈ P(F).

In order to clarify what (a’) and (b’) mean, we start by considering the case where the
reference matrix R is such that the graph (D ∪ F ,△) is connected. In that case, recalling that
µ and ν are assumed to be probability measures, the conditions (a’) and (b’) are equivalent to:

(a”) The measures µ and ν have full support, and for all ∅ ⊊ A ⊊ D, µ(A) < ν(FR(A)),

(b”) The measures µ and ν have full support, and for all ∅ ⊊ B ⊊ F , ν(B) < µ(DR(B)).

Indeed, it is easy to see that in the balanced and connected case, the only subsets A of D for
which µR(A) = νR(FR(A)) are A = ∅ and A = D. Similarly, the only subsets B of F for which
νR(B) = µR(DR(B)) are B = ∅ and B = F .

We are going to prove Lemma 24 under this connectivity assumption. Passing to the general
case is direct, up to restricting ourselves to connected components of (D ∪ F ,△).

We only prove (b”)⇔(c’), as (a”)⇔(c’) is proved in the same way. The idea of the proof is
to fix µ ∈ P(D) of full support, that is, such that for all i = 1, . . . , N , µi > 0, and to introduce
the two following subsets of P(F):

A := {ν ∈ P(F) | ∀∅ ⊊ B ⊊ D, ν(B) < µ(DR(B)) and ∀j = 1, . . . ,M, νj > 0},
B := {ν := νR̄ | R̄ ∼ R and µR̄ = µ}.

With these definitions, proving (b”)⇔(c’) exactly means proving

A = B,

and this is what we will prove now. To do so, we will first show that B ⊂ A, and then that B
is open and closed in A. As A is convex, and hence connected, the result will follow.

Step 1: B ⊂ A.
Let us show that B ⊂ A. To this end, let us consider ν ∈ B, and R̄ such that R ∈ Π(µ, ν)

and R̄ ∼ R. For all ∅ ⊊ B ⊊ D we have:

ν(B) =
∑

xi∈D

∑

yj∈B
R̄ij =

∑

xi∈DR(B)

∑

yj∈B
R̄ij ≤

∑

xi∈DR(B)

∑

yj∈F
R̄ij = µ(DR(B)),

and the equality holds only if for all (xi, yj) ∈ DR(B) × Bc, R̄ij = 0 and hence Rij = 0. As
by definition of DR(B), for all (xi, yj) ∈ DR(B)c × B, we have Rij = 0, an equality in the
formula above would imply that DR(B) × B is not connected to DR(B)c × Bc in (D × F ,△),
which contradicts our connectivity assumption. We have thus a strict inequality. Finally, the
full support of ν is also an consequence of the connectivity of (D × F ,△): For all yj ∈ F , let
xi ∈ D such that Rij > 0, and hence R̄ij > 0. We have νj ≥ R̄ij > 0. Thus, B ⊂ A.

Step 2: B is open in A.
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It is clear by its definition that A is open in P(F). Therefore, to prove that B is open in A,
it suffices to prove that B is open in P(F). Let ν ∈ B, and R̄ be such that R̄ ∼ R and νR̄ = ν.
We choose:

0 < ε < min{R̄ij | i, j s.t. R̄ij > 0}, (47)

which is possible because D and F are finite. By convexity, it is enough to prove that for
all j ̸= j′ in {1, . . . ,M}, ν + ε(δj − δj′) ∈ B. As (D ∪ F ,△) is connected, we can find
j = j0, i1, j1, . . . , ip, jp = j′ such that

yj = yj0△xi1△yj1△ . . .△xip△yjp = yj′ .

Then we set

P := R̄+ ε

p∑

n=1

(
δinjn−1 − δinjn

)
.

It is easy to check that P ∼ R (by the definition (47) of ε), that µP = µ, and that νP =
ν + ε(δj − δj′), which therefore belongs to B.

Step 3: B is closed in A, strategy of the proof.
Let us introduce the following subset of P(F):

C := {ν := νR̄ | R̄≪ R and µR̄ = µ}.

This set is clearly closed in P(F), so to prove that B is closed in A, it suffices to prove that
B = A∩C. As we have already seen that B ⊂ A, and as clearly B ⊂ C, the only inclusion that
needs to be justified is A ∩ C ⊂ B.

Let us choose ν ∈ A ∩ C, and let us consider R∗ the solution of Sch(R;µ, ν). We will prove
by contradiction that R∗ ∼ R, and hence that ν ∈ B.

So let us assume that R∗ ≁ R. Once again, we choose 0 < ε < min{R∗
ij | i, j s.t. R∗

ij > 0}.
For all i, j, we write

xi▲yj
whenever R∗

ij > 0. We will first prove that (D ∪ F ,▲) is connected (this is the hardest part of
the proof), and then that it coincides with (D ∪ F ,△), which exactly means that R∗ ∼ R.

Step 4: (D ∪ F ,▲) is connected.
We call D1 ∪ F1, . . . ,Dp ∪ Fp the connected components of (D ∪ F ,▲). Let us assume that

p > 1, and show that it leads to a contradiction.
First, we claim that if p > 1, there exist k1, . . . , kl ∈ {1, . . . , p} a family of two by two distinct

indices, xik1 , . . . , xikl ∈ D and yjk1 , . . . , yjkl ∈ F such that for all q = 1, . . . , l, xikq ∈ Dkq and
yjkq ∈ Fkq , and with the convention l + 1 = 1, yjkq△xikq+1 .

For proving this claim, we start by building a directed graph structure on {1, . . . , p}, the set
of indices of the connected components of (D∪F ,▲). For all k, k′ ∈ {1, . . . , p}, we write k ⇝ k′

whenever k ̸= k′ and there exists yj ∈ Fk and xi ∈ Dk′ such that yj△xi. Of course, our claim
precisely means that the directed graph ({1, . . . , p},⇝) admits a cycle. Let us prove that for all
k = 1, . . . , p, there exists k′ ∈ {1, . . . , p} such that k ⇝ k′, which is clearly enough to conclude.

Let us consider k ∈ {1, . . . , p}. Because ν ∈ A, we have µ(DR(Fk)) > ν(Fk). On the other
hand, ν(Fk) = µ(Dk) (as under R∗, all the mass on Dk is sent to Fk and vice versa), and
Dk ⊂ DR(Fk) (as R∗ ≪ R). Therefore, µ(DR(Fk)\Dk) = µ(DR(Fk))−µ(Dk) > 0, and we con-
clude that DR(Fk)\Dk ̸= ∅. Let xi ∈ DR(Fk)\Dk, and k′ such that xi ∈ Dk′ . As xi ∈ DR(Fk),
there is yj ∈ Fk such that yj△xi. It follows that k ⇝ k′, and the claim is proved, and we can
consider k1, . . . , kl satisfying the properties above.
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We now show that we reach a contradiction, which allows to conclude that actually, p must
be equal to 1 and hence that (D ∪ F ,▲) needs to be connected.

For all q = 1, . . . , l, as (Dkq ∪ Fkq ,▲) is connected, we can find a family of indices ikq =

i
kq
1 , j

kq
1 , . . . , i

kq
nq , j

kq
nq = jkq such that

xikq = x
i
kq
1

▲y
j
kq
1

▲ . . .▲x
i
kq
nq

▲y
j
kq
nq

= yjkq

Now, still keeping the convention l + 1 = 1, we set

P := R∗ + ε
l∑

q=1

δ
ikq+1jkq

− ε
l∑

q=1



nq−1∑

n=1

(
δ
i
kq
n j

kq
n
− δ

i
kq
n+1j

kq
n

)
+ δ

i
kq
nq j

kq
nq


 .

The matrix P has less zeros than R∗: by the definition (47) of ε, it has no additional zero and we
have for instance Pik2jk1 > 0 and R∗

ik2jk1
= 0. Moreover, P ∈ Π(µ, ν), and the construction of

the indices ensures that P has new non-zero entries w.r.t. R∗ only on (xi, yj) such that Rij > 0,
which ensures that P ≪ R. In virtue of Proposition 36, this contradicts the fact that R∗ is the
solution of Sch(R;µ, ν), and we conclude that p = 1.

Step 5: (D ∪ F ,▲) = (D ∪ F ,△).
Our last task is to prove that whenever xi△yj , for some xi ∈ D and yj ∈ F , then we also

have xi▲yj (the reciprocal statement follows from R∗ ≪ R). So let us consider xi ∈ D and
yj ∈ F with xi△yj , assume that we do not have xi▲yj , and show that we reach a contradiction.
As we know that (D ∪ F ,▲) is connected., we can find i = i1, j1, i2, . . . , ip, jp = j′ such that

xi = xi1▲yj1▲xi2 . . .▲xip▲yjp = yj .

We set

P := R∗ + εδij − ε
(
p−1∑

n=1

(
δinjn − δin+1jn

)
+ δipjp

)
.

Once again, P has less zeros than R∗, which is a contradiction, and the result follows.

We are now ready to conclude the proof of Theorem 23.

Proof of Theorem 23. It remains to show that if µ and ν are such that (a) is verified (and
not (a’)), then the problem is approximately scalable (once again, (b)⇒(c) is proved in the
same way, and (c)⇒(a) and (c)⇒(b) are easy).

Let us first remark that the problem Sch(R;µR, νR) is obviously scalable. Let us consider
ε ∈ (0, 1). We define:

µε := (1− ε)µ+ εµR and νε = (1− ε)ν + ενR.

The condition (a) implies that for all A ⊂ D:

µε(A) ≤ (1− ε)ν(FR(A)) + ενR(FR(A)) = νε(A).

with a strict inequality whenever µR(A) < νR(FR(A)).

Let us now assume that Assumption 9 holds. In this case, in virtue of Lemma 24, the
problem Sch(R;µε, νε) is scalable. In particular, there exists Rε ∈ Π(µε, νε) such that Rε and
R have the same support. As the family (Rε) has value in the compact set

{R′ ∈M+(D ×F) |M(R′) ≤ max(M(µ),M(R))},
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we can chose one of its limit points R̄ as ε → 0. Obviously, R̄ ≪ R and R̄ ∈ Π(µ, ν) so that
Sch(R;µ, ν) is approximately scalable.

It remains to prove that (a)⇒(c) even when Assumption 9 does not hold. To do so, we
claim that under (a), assuming Assumption 9 is not restrictive. The reason is that (a) implies
Assumption 8, and hence Assumption 9 up to restricting the problem to the supports of µ
and ν, as explained in Subsection 2.3.

So let us prove that (a) implies Assumption 8. We suppose that (a) holds, and we consider
E and R0 as defined in Assumption 8.

Let us show that µ≪ µR
0
. Let xi ∈ D be such that µi > 0, and let us show that µR

0

i > 0.
By (a), ν(FR({xi}) ≥ µi > 0. Therefore, FR({xi}) is nonempty, and there exists yj ∈ FR({xi})
such that νj > 0. This pair (xi, yj) belongs to E , so R0

ij > 0, and then µR
0

i > 0.

Let us show that ν ≪ νR
0
. Let yj ∈ F be such that νj > 0, and let us show that νR

0

j > 0. Let
us call D′ the support of µ. By (a), M(ν) ≥ ν(F (D′)) ≥ µ(D′) = M(µ). But as M(ν) = M(µ), we
conclude that ν(F (D′)) = M(ν), and so in particular that yj ∈ F (D′). So there exists xi ∈ D′

such that Rij > 0. This pair (xi, yj) belongs to E , so R0
ij > 0, and then νR

0

j > 0.
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[20] M. Liero, A. Mielke, and G. Savaré. “Optimal entropy-transport problems and a new
Hellinger–Kantorovich distance between positive measures”. In: Inventiones mathematicae
211.3 (2018), pp. 969–1117.

[21] T. Mikami. “Monge’s problem with a quadratic cost by the zero-noise limit of h-path
processes”. In: Probability theory and related fields 129.2 (2004), pp. 245–260.

[22] M. Nutz. “Introduction to Entropic Optimal Transport”. In: ().
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[28] E. Schrödinger. Über die Umkehrung der naturgesetze. Verlag Akademie der wissenschaften
in kommission bei Walter de Gruyter u. Company, 1931.

[29] R. Sinkhorn. “A relationship between arbitrary positive matrices and doubly stochastic
matrices”. In: The annals of mathematical statistics 35.2 (1964), pp. 876–879.

[30] R. Sinkhorn. “Diagonal equivalence to matrices with prescribed row and column sums”.
In: The American Mathematical Monthly 74.4 (1967), pp. 402–405.

[31] E. Ventre. “Analyse, calibration et évaluation de modèles stochastiques d’expression des
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Chapter 6

Analysis of the dynamical Schrödinger
problem and application to simulated
datasets.

In this chapter, we return to the dynamical Schrödinger problem (1.5), when the reference R is
the path measure associated to a stochastic process modeling gene expression dynamics. We
have seen in the previous chapter that at least in the discrete case, for the reference coupling
R0T defined by (1.3) and two empirical measures µ and ν describing the observations at two
timepoints t = 0 and t = T (in hours), the Sinkhorn algorithm always gives access to a relevant
coupling:

R∗
0T = lim

λ→∞
argmin

P
H(P |R0T ) + λH(X#P |µ) + λH(Y#P |ν).

This coupling also coincides with the solution of the problem Sch(R0T ;µ
∗, ν∗), where µ∗ and ν∗

are defined by the formula (12) of Chapter 5.
In this last chapter, we aim to link this coupling R∗

0T to the solution of the dynamical Schrödinger
problem (1.5), denoted R∗, when the reference R is the path measure associated to the bursty
model (1.17). In that case, the main challenge is to derive an explicit form for the entropy
relatively to such process, that we do in Section 6.2. Then, we find in Section 6.3 a formula
linking the jump kernel of the reference process to the one associated to the solution of the
Schrödinger problem. As in the case of SDEs for the optimal velocity [], this new kernel depends
on time and space. In order to be able to interpret the jump kernel as a function of the burst rate
functions kon and koff , we provide beforehand in Section 6.1 a general proof of the convergence of
a PDMP process of the form (1.15) to a bursty process of the form (1.17). We then derive from
these results a methodology for analyzing single-cell data given two experimental observations
and a reference process, and we present some results on very simple in silico generated datasets,
as a proof of concept. We emphasize that contrary to optimal-transport methods in machine
learning, that are generally well-suited to high-dimensional datasets, this method is thought to be
relevant for relatively small networks, of the same order than the one obtained by CARDAMOM
in Chapter 4. Furthermore, it is worth noticing that the method that we develop is only suited
for the moment for pair of timepoints, and not for time-course series of datasets as it was the case
in Part II, preventing us from comparing the results to the ones obtained with CARDAMOM on
experimental datasets. More importantly, the fact that we will perform the Schrödinger problem
analysis when simplified models representing only proteins dynamics are taken as reference, the
practical section will be limited to single-cell proteomic observations, instead of transcriptomic
profiles as in the previous parts. We nevertheless believe that this limitation could be overcome
by a scaling analysis similar to the one performed in Chapter 3 when developing CARDAMOM,
for approximating the main modes of the protein levels from the observation of the mRNA levels.
This work is still in progress and as such, some mathematical results will need to be refined
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in the future. Most of the results presented here have been obtained with the occasional but
important help of Aymeric Baradat.

We consider a generalization of the PDMP and bursty processes presented in Section 1.2 and
used in Parts I and II. We fix T > 0 in the following.
We define a bursty process, with values in Rn. It is defined by a time-dependent drift F :
R+ ×Rn → R, differentiable with respect to the variable in Rn and uniformly bounded together
with its derivatives, and a time-dependent jump probability kernel q : R+×Rn×Rn → R+ such
that for every test function ϕ : R+ × Rn → R, the generator is of the form:

Aq,Fϕ(t, x) = ∂tϕ(t, x) + ⟨F (t, x),∇ϕ(t, x)⟩+
∫

(ϕ(t, y)− ϕ(t, x)) q(t, x, y)dy. (6.1)

q must be such that there exists a positive function λ : R+ ×Rn → R+ and a probability kernel
p : R+ × Rn × Rn → R+ such that for all t, x, p(t, x, ·) is a probability measure on Rn, and for
all t, x, y, q(t, x, y) = λ(t, x)p(t, x, y). The jump rate λ is also differentiable with respect to the
variable in Rn and uniformly bounded together with its derivatives. Rq,F denotes a measure,
on the space càdlàg([0, T ],Rn) associated to a bursty process with generatorAq,F defined by (6.1).

We define a PDMP process, with values in PE×Rn, by a time-dependent drift F : R+×PE×Rn →
R, differentiable with respect to the variable in Rn and uniformly bounded together with its
derivatives, and a time-dependent jump probability kernel Q : R+ × PE × PE × Rn → R+ such
that for every test function ϕ : R+ × PE × Rn → R, the generator is of the form:

AQ,Fϕ(t, e, x) = ∂tϕ(t, e, x) + ⟨F (t, e, x),∇ϕ(t, e, x)⟩+
∑

e′∈PE

(
ϕ(t, e′, x)− ϕ(t, e, x)

)
Q(t, e, e′, x).

(6.2)
Q must be such that there exists a positive function λ : R+ × PE × Rn → R+ and a probability
kernel p : R+×Rn×Rn → R+ such that for all t, e, x, p(t, e, ·, x) is a probability measure on PE ,
and for all t, e, e′, x, Q(t, e, e′, x) = λ(t, e, x)p(t, e, e′, x). The jump rate λ is also differentiable
with respect to the variable in Rn and uniformly bounded together with its derivatives.
RQ,F denotes a measure, on the space càdlàg([0, T ], PE × Rn), associated to a PDMP process
with generator AQ,F defined by (6.2).

Note that in the following, we always denote by q,Q, and F the quantities described above
without mentioning the specific assumptions that characterize them.

6.1 Convergence of the PDMP model to the bursty model

In order to study the Schrödinger problem when the reference is the bursty model (1.17), we
need to provide beforehand a general setting for the convergence of the PDMP model (1.15) to
the bursty model (1.17), which had only been stated for bursts rate functions kon,i ∈ C(Rn,R)
constant in time and scalar function koff ,i ∈ R in the introduction.

Indeed, as detailed in the previous section, the Schrödinger problem allows to find an optimal
coupling knowing observations (at two timepoints) and a reference coupling. From the results
presented in Section 1.1.2, this optimal coupling could be related to an optimal stochastic process,
that we would like to relate to its characteristics (for example its kernel Q and its drift F if it is
a PDMP process of the form (6.2)).
If we were able to study the dynamical Schrödinger problem for the PDMP model (1.15), we
could deduce from Q∗ the optimal burst rate functions k∗on,i and k

∗
off ,i for every gene i, and use

a parametric form for the burst rate functions similar to the one described in the formula (2) of
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Chapter 3 in order to deduce an optimal GRN. However, since the promoters are not observed,
solving the Schrödinger problem for this model is not possible, at least without considering
that the temporal marginals only describes a subset of the variables describing the process,
which would complicate the analyzes. We need for a model which takes only into account the
expression levels.
We are then going to consider the bursty model (1.17), which is completely characterized by
protein levels, and thus more likely to be used for the Schrödinger problem (even if, as mentioned
in the introduction, we would like to be able to deal with mRNA levels, but this leads to too
complex model at this stage). The bursty model is characterized by a deterministic drift and a
transition kernel q, but the latter has not a parametric form driven by mechanistic assumptions.
The form used in Chapter 3 results from the convergence of the PDMP model towards the
bursty model for scalar koff ,i functions. Thus, if the functions koff ,i are not scalar, it is not clear
at the moment what would be the form of the kernel q of the limit process. We then need a
more general convergence result in order to link the non-parametric characteristics a an optimal
bursty process to the parametric ones of an associated PDMP process.
Moreover, we would like to be sure that solving the Schrödinger problem when the reference
measure is the one of a PDMP process is equivalent to solve the Schrödinger problem when the
reference measure is the one of the limit bursty process. That is why we are going to study the
convergence of the PDMP model (6.2) to the bursty model (6.1), and the Γ-convergence of the
entropies relatively to these two processes.

We consider the space of promoters PE := {0, 1}n, where n is the number of genes of interest,
and that the kernel Q is such that ∀e, e′ ∈ PE , ∀t > 0:

{
Qε(t, e, e′, x) = kon,i(t, x)1e′i−ei=1

+ 1
εkoff ,i(t, x)1ei−e′i=1

if∃i : ∀j ̸= i, ej = e
′
j and ei ̸= e

′
i,

Qε(t, e, e′, x) = 0 if not,

(6.3)

where for all i, kon,i and koff ,i are two functions differentiable with respect to their second
variables and uniformly bounded together with their derivatives. We also assume that for all
gene i:

∀x, e ∈ Rn × PE : F εi (t, e, x) = F0,i(t, x)1ei=0 +
1

ε
F1,i(t, x)1ei=1, (6.4)

with F0,i, F1,i two functions differentiable with respect to their second variables and uniformly
bounded together with their derivatives.
We are interested in the case ε≪ 1. We are going to prove that when ε→ 0, the PDMP model
(6.2) verifying (6.3) and (6.4) converges to a bursty process of the form (6.1). We emphasize that
the aim of this analysis is to precise the form of the jump kernel q appearing in the convergence,
in order to be able to relate an optimal kernel q∗, appearing in the solution of the dynamical
Schrödinger problem, to the parametric functions kon,i and koff ,i .

6.1.1 Convergence in law

The following theorem is an extension to the multidimensional case of the Theorem 6.1 of Crudu
et al. [20]. We can also simplify some steps in comparison with this reference because the creation
and degradation of proteins are deterministic knowing the promoters states.

Theorem 11. Let us consider (RQ
ε,F ε)ε a sequence of measures characterizing PDMP processes

of the form (Eεt , X
ε
t )t∈[0,T ] for every ε, with generator defined by (6.2) and (Qε, F ε) verifying

(6.3) and (6.4). Moreover, we assume that:

• For all i, Eεi 0 → 0 in law as ε→ 0;
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• Xε
0 → X0 in law as ε→ 0, and for all i: E(Xε

i 0) <∞;

• There exists α such that ∀t, x ∈ R+ × Rn and for all i: koff ,i(t, x) ≥ α.

Then (Eεt , X
ε
t )t∈[0,T ] converges in law to the bursty process (0, Xt)t∈[0,T ] where the path measure

of (Xt)t∈[0,T ] is of the form Rq,F0 , with generator defined by (6.1). The drift F0 and the kernel q
are defined for all t > 0, x ∈ Rn and for all i by:

q(t, x, ψi(t, u, x)) = kon,i(t, x)P
i
ukoff ,i(t, x), (6.5)

where ψi is the flow associated to the drift F1,i, i.e for all t, u > 0 and x ∈ Rn:

∂uψi(t, u, x)) = F1,i(t, x)∂xiψi(t, u, x),

and for all i, P iu is a semigroup defined for every test function ϕ : R+ × Rn → R by:

P iuϕ(t, x) = ϕ(t, ψi(t, u, x)) exp

(
−
∫ u

0
koff ,i(t, ψi(t, s, x))ds

)
. (6.6)

If (t, x, y) are such that there does not exist any gene i and u > 0 such that y = ψi(t, u, x), then
q(t, x, y) = 0.

Proof. We denote AQε,F ε the generator defined by (6.2) when the jump kernel Qε and the drift
F ε are defined by the relations (6.3) and (6.4). We first justify for every gene i the tightness of
Eεi and Xε

i . The aim is to use then the Prokhorov theorem, which ensures that the sequence
((Eεt , X

ε
t )t∈[0,T ])ε has a weak subsequential limit. The core of the proof consists then in proving

the convergence of the generator AQε,F ε to Aq,F0 with q defined by (6.5), which is performed at
Step 2. This allows to show that any limit is the solution of the martingale problem associated
to the generator Aq,F0 . By unicity of the martingale problem, we will finally conclude on the
convergence of the PDMP process to the bursty process.

Step 1: The sequence ((Eεt , X
ε
t )t∈[0,T ])ε has a weak subsequential limit.

First, we characterize the limit of the stochastic process (Eεi t)t characterizing promoters i
dynamics when ε→ 0.
We consider the test function for all i, t ∈ R+, e, x ∈ PE × Rn:

{
ϕi(t, e, x) = 1 if ei = 1and ∀j ̸= i : ej = 0,

ϕi(t, e, x) = 0 if not.

Then, noting that terms with ∂tϕi,∇ϕi are cancelled here, we have:

AQε,F εϕi(t, e, x) = kon,i(t, x)1ei=0 −
koff ,i(t, x)

ε
1ei=1.

Moreover, using the classical martingale property (1.2) associated to the PDMP process with
generator (6.2), applied to the function ϕi, we know that:

M ε(t) = 1Eεi t=1 − 1Eεi 0=1 −
∫ t

0

(
kon,i(u,X

ε
u)1Eεi u=0 −

koff ,i(u,X
ε
u)

ε
1Eεi u=1

)
du,

is a martingale. Thus, using the fact that E(Mε(t)) = 0, we obtain that for every T > 0 and for
all t ∈ [0, T ]:

α

ε
E
(∫ t

0
1Eεi u=1du

)
≤ ||kon,i||∞T + 1, (6.7)
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We obtain that for all i:

E
(∫ t

0
1Eεi u=1du

)
→
ε→0

0,

from which the tightness of the sequence of processes ((Eεi t)t)ε in L
1([0, T ]; {0, 1}) follows.

The tightness of the sequence of processes (Xε
i t)t)ε requires a little more work. Still adapting

ideas of Crudu et al. [20], we are going to show that we can control the bounded variations norm
on [0, T ] of the random process (Xε

i t)t.
We denote BV (0, T ) the space of functions of bounded variations on [0, T ]. Its norm is defined
for all f ∈ BV (0, T ) by:

||f ||BV (0,T ) = ||f ||L1([0,T ]) + sup
σ=(tr)r

{∑

i

|f(tr+1)− f(tr)|
}
,

where (tr)r denotes a finite subdivision of [0, T ]. As for anyK > 0, the set {f ∈ BV (0, T ), ||f ||BV (0,T ) ≤
K} is relatively compact in L1([0, T ];R) (see for example in Giusti et al. [33]), it is enough to
prove that for all δ > 0, there exists Kδ > 0, such that for all ε:

P
(
||Xε

i ||BV (0,T ) > Kδ
)
≤ δ. (6.8)

For all gene i, we can write at every time t ∈ [0, T ]:

Xε
i t = Xε

i 0 +

∫ t

0

(
F0,i(s,X

ε
i s)1Eεi s=0 +

1

ε
F1,i(s,X

ε
i s)1Eεi s=1

)
ds.

Then, for any subdivision σ : 0 = t0, · · · , tN = T , we have:

N−1∑

r=0

|Xε
i tr+1

−Xε
i tr
| ≤

N−1∑

r=0

∫ tr+1

tr

∣∣∣∣F0,i(s,X
ε
i s)1Eεi s=0 +

1

ε
F1,i(s,X

ε
i s)1Eεi s=1

∣∣∣∣ds

=

∫ T

0

∣∣∣F0,i(s,X
ε
i s)1Eεi s=0

∣∣∣ ds+
∫ T

0

∣∣∣∣
1

ε
F1,i(s,X

ε
i s)1Eεi s=1

∣∣∣∣ds.

Thus, as the right-hand side term does not depend on the subdivision, we can pass to the sup
and take the expected value to see that, using the relation (6.7):

E

(
sup

σ=(tr)r

{N−1∑

r=0

|Xε
i tr+1

−Xε
i tr
|
}
)
≤ ||F0,i||∞T + ||F1,i||∞

βT + 1

α
.

Moreover, using the same upper bound as previously we have:

E
(∫ T

0
|Xε

i t|dt
)
≤ TE(Xε

i 0) + ||F0,i||∞T 2 + ||F1,i||∞
βT 2 + T

α
.

Thus, the expected value E
(
||Xε

i ||BV (0,T )

)
is uniformly bounded, and we deduce the relation (6.8).

The tightness for all i in L1([0, T ]; {0, 1})×L1([0, T ];R) of the sequence of processes ((Eεi t, X
ε
i t)t∈[0,T ])ε

allows to apply the Prokhorov Theorem, which ensures the existence of a subsequence (Eεkt , X
εk
t )

converging weakly in L1([0, T ]; {0, 1})× L1([0, T ];R) as ε→ 0.

As we have seen that for all t ∈ [0, T ], lim
ε→0

E
(∫ t

0 1Eεi u=1du
)
= 0, the limit is necessarily of the

form (0, Xt) for almost all t ∈ [0, T ]. In order to simplify notations, the subsequence is still
denoted (Eεt , X

ε
t )ε.
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Step 2: A limit formulation for the generator of the PDMP process.

Reasoning as previously for showing the relation (6.7), we define for all i, j the test function:

{
ϕij(t, e, x) = 1 if ei = 1and ej = 1and ∀k ̸= i, j : ek = 0,

ϕij(t, e, x) = 0 if not.

We know that:

M(t) = 1Eεi t=11Eεj t=1 − 1Eεi 0=11Eεj 0=1 −
∫ t

0

(
kon,i(u,X

ε
u)1Eεi u=01Eεj u=1 − kon,j(u,Xε

u)1Eεi u=11Eεj u=0

− koff ,i(u,X
ε
u) + koff ,j(u,X

ε
u)

ε
1Eεi u=11Eεj u=1

)
du,

is a martingale. Using the fact that Eεi t → 0 for almost all t ∈ [0, T ], we obtain that for all i, j
and all t > 0:

1

ε
E
(∫ t

0
1Eεi u=11Eεj u=1du

)
→
ε→0

0.

We are know going to prove a simple lemma which details useful relations satisfied by the
semigroup P iu:

Lemma 12. The semigroup defined by the formula 6.6 verifies the three following relations:

1. ∂uP
i
uϕ(t, x) = F1,i(t, x)∂xi(P

i
uϕ(t, x))− koff ,iP iuϕ(t, x),

2.
∫∞
0 P iukoff ,i(t, x)du = 1,

3. P iu(koff ,iϕ)(t, x) = P iukoff ,i(t, x)× ϕ(t, ψi(u, x)).

Proof. The points 2 and 3 are obvious due to the exponential form. The first point 1 is well
known but is slightly less obvious, so we detail the small justification here. On one side we have
for all u, t, x:

∂uP
i
uϕ(t, x) =

(
∂uψi(t, u, x)∇ϕ(t, ψi(t, u, x)−

koff ,i(t, ψi(t, u, x))ϕ(t, ψi(t, u, x))
)
exp−

(∫ u

0
koff ,i(t, ψi(t, s, x))ds

)
.

On the other side:

∂xiP
i
uϕ(t, x) =

(
∂xiψi(t, u, x)∇ϕ(t, ψi(t, u, x))−∫ u

0
∂xi(koff ,i(t, ψi(t, s, x)))ds× ϕ(t, ψi(t, u, x))

)
exp−

(∫ u

0
koff ,i(t, ψi(t, s, x))ds

)
.

Using the relation ∂skoff ,i(t, ψi(t, s, x)) = F1,i(t, x)∂xikoff ,i(t, ψi(t, s, x)), we obtain:

∫ u

0
∂xi(koff ,i(t, ψi(t, s, x)))ds =

1

F1,i(t, x)

∫ u

0
∂skoff ,i(t, ψi(t, s, x)),

=
koff ,i(t, ψi(t, u, x))− koff ,i(t, x)

F1,i(t, x)
.

We finally obtain the equation 1.

We now define a test function ϕ by, for all s, x ∈ R+ × Rn:

ϕf (t, e, x) =

n∑

i=1

[∫ ∞

0
P iu(koff ,if)(t, x)du

]
1ei=1 + f(t, x)1e=0, (6.9)
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where f is such that for all t, f(t, ·) ∈ C1
b (Rn). We emphasize that here e = 0 means that for

the state e ∈ PE , for all gene i, we have ei = 0.
This test function satisfies for all t, x and e such that ei = 1 and ∀j ̸= i, ej = 0:

AQε,F εϕf (t, e, x) =
∫ ∞

0
∂t(P

i
u(koff ,if)(t, x))du+

F1,i

ε
(t, x)

∫ ∞

0
∂xi(P

i
u(koff ,if)(t, x))du+

koff ,i
ε

(
f −

∫ ∞

0
P iu(koff ,if)

)
(t, x)du+

∑

j ̸=i

∫ ∞

0

(
kon,jP

j
u(koff ,jf)

)
(t, x)du,

=

∫ ∞

0
∂t(P

i
u(koff ,if)(t, x))du+

∑

j ̸=i

∫ ∞

0

(
kon,jP

j
u(koff ,jf)

)
(t, x)du+

1

ε

[ ∫ ∞

0
∂uP

i
u(koff ,if)(t, x)du+ koff ,if(t, x)

]
,

=

∫ ∞

0
∂t(P

i
u(koff ,if)(t, x))du+

∑

j ̸=i

∫ ∞

0

(
kon,jP

j
u(koff ,jf)

)
(t, x)du.

where we used the equation 1 defining P iu on the test function koff ,if from the first to the second
line, and the fact that ∀t, x :

∫∞
0 ∂uP

i
u(koff ,if)(t, x)du = −koff ,if(t, x) from the second to the

third line.

Recalling that the functions kon,i and koff ,i are uniformly bounded together with their derivatives,
we have then shown that the value of the generator applied on ϕf is in O(1) when there is
only one ei ̸= 0. It is easy to see that when there are two (or more) ei, ej > 0, with i ̸= j, the
generator applied on ϕf is in O(1ε ).

We also recall that for all i, j, t: lim
ε→0

E
(∫ t

0 1Eεi u=1du
)
= 0 and lim

ε→0

1
εE
(∫ t

0 1EεiE
ε
j u

=1du
)
= 0.

We then obtain that for all t:

∀e ∈ PE ,
n∑

i=1

ei ≥ 1 : lim
ε→0

E
(∫ t

0
|AQε,F εϕf (u,Eεu, Xε

u)|1Eεu=e
)
du = 0. (6.10)

We also observe that:

AQε,F εϕf (t, 0, x) = ∂tf(t, x) + ⟨F0(t, x),∇f(t, x)⟩+
n∑

i=1

(
kon,i(t, x)(

∫ ∞

0
P iu(koff ,if)(t, x)du− f(t, x))

)
,

= ∂tf(t, x) + ⟨F0(t, x),∇f(t, x)⟩+
n∑

i=1

∫ ∞

0

(
P iu(koff ,if)(t, x)− f(t, x)

)
kon,iP

i
ukoff ,i(t, x)du,

= Aq,F0f(t, x),

where Aq,F0 is the generator defined in (6.1) and q is the jump kernel predicted by the
theorem. The passage from the first to the second line comes from the hypothesis that∫∞
0 P iu(koff ,i)(t, x) = 1, and from the second to the third line from the relation 3 of Lemma 12.

We have then for the subsequence (Eεt , X
ε
t )ε that for all t ∈ [0, T ]:

lim
ε→0

E
(∫ t

0

∣∣∣AQε,F εϕf (u,Eεu, Xε
u)−Aq,F0f(u,X

ε
u)
∣∣∣ du

)
= 0,

Step 3: Any subsequence that converges almost-surely is the unique solution of a martingale
problem.
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The Skorokhod representation Theorem implies the existence of a subsequence (Eεkt , X
εk
t ) which

converges to (0, Xt) almost surely, for almost all t ∈ [0, T ]. Once again, the subsequence is still
denoted (Eεt , X

ε
t )ε.

Let us consider t ∈ [0, T ], a subdivision 0 = t0 ≤ · · · ≤ tN = t and ψ ∈ Cb(Rn×N ). The fact
that f is bounded ensures that the function ϕf is bounded. Thus, it is clear that as ψ is also
bounded, using the dominated convergence theorem:

lim
ε→0

E
([
ϕf (t, Eεt , X

ε
t )− ϕf (0, Eε0, Xε

0)

]
ψ(Xε

t0 , · · · , Xε
tN
)

)
= E

([
f(t,Xt)− f(0, X0)

]
ψ(Xε

t0 , · · · , Xε
tN
)

)
.

Moreover, from (6.10) we have, as ψ is bounded:

lim
ε→0

E
([∫ t

0

∑

e̸=0

AQε,F εϕf (u,Eεu, Xε
u)1Eεu=edu

]
ψ(Xε

t0 , · · · , Xε
tN
)

)
= 0.

Finally, using the fact that AQε,F εϕf (t, 0, Xε
t ) → Aq,F0f(t,Xt) almost surely, for almost all

t ∈ [0, T ], and that
∫ t
0 AQε,F εϕf (t, 0, Xε

t )du is bounded for all t ∈ [0, T ], we can still use the
dominated convergence theorem and conclude that:

lim
ε→0

E
([
ϕf (t, Eεt , X

ε
t )− ϕf (0, Eε0, Xε

0)−
∫ t

0
AQε,F εϕf (u,Eεu, Xε

u)du

]
ψ(Xε

t0 , · · · , Xε
tN
)

)
=

E
([
f(t,Xt)− f(0, X0)−

∫ t

0
Aq,F0f(u,Xu)du

]
ψ(Xε

t0 , · · · , Xε
tN
)

)
.

As the term of the left-hand side is equal to 0, thanks to the martingale property of the PDMP
process, we obtain:

E
([

f(t,Xt)− f(0, X0)−
∫ t

0
Aq,F0f(u,Xu)du

]
ψ(Xε

t0 , · · · , Xε
tN
)

)
= 0.

The martingale characterization of the bursty processes has been shown in Crudu et al. [20],
Theorem 2.5, stating that the law of the bursty process determined by a generator of the form
(6.1) with a drift F0 and a jump kernel q defined by the relation (6.5), is the unique solution of
the martingale problem associated to the generator Aq,F0 .
We can thus conclude, by unicity of the solution of the martingale problem, that the limit
(Xt)t∈[0,T ] is a bursty process whose generator is given by the formula (6.1), with a drift F0 and
a jump kernel defined by the relation (6.5).

When for all i, the koff ,i are scalar functions, we recover the convergence that we used in
particular in Part II of the manuscript:

Corollary 13. In the particular case where for all i, the koff ,i are scalar functions and that
F0,i(x) = −dixi and F1,i(x) = si, where di and si are the degradation and creation rates defined
in Section 1.2, we recover the convergence used throughout the manuscript. The kernel q can be
defined for all t, x, y by:




q(t, x, y) = kon,i(t, x)

koff ,i
si

e
koff ,i
si

h
if∃i : ∀j ̸= i, xj = yj and ∃h > 0, yi = xi + h,

q(t, x, y) = 0 ifnot.
(6.11)

Proof. In that case, the flow ψi is simply defined for all t, x by:

ψi(t, x) = sit+ x.
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For all test function f , the generator Aq,F0 of the limit process is then, by Theorem 11:

∀t, x : Aq,F0f(t, x) = ∂tf(t, x)+ ⟨F0(t, x),∇f(t, x)⟩+
∫ ∞

0
(f(t, x+ su)− f(t, x))koff ,ie−koff ,iudu.

A simple substitution y ← x+su in the integral allow to obtain the modified q of the corollary.

6.2 Relative entropies and Gamma-convergence

In this section, we build the relative entropy, defined by the formula (2) in Chapter 1, relatively
to the processes of interest. We provide an explicit formula for the entropy relatively to a bursty
processes defined by (6.1). We then expose the formula defining the entropy relatively to a
PDMP process of the form (6.2) (but skipping the proofs that are still under construction) and
how these formula allow to recover the Γ-convergence of the entropy relatively to a PDMP process
to the entropy relatively to a bursty process. The aim is to show that studying the Schrödinger
problem when the reference is a bursty process is equivalent to studying the Schrödinger problem
when the reference is a PDMP process, in the limit ε→ 0.

For simplifying the notation, we consider that the time of observations are simply 0 and 1 (then
the stochastic processes are defined on [0, 1]).

6.2.1 Entropy of the bursty model

We first show that when working with an entropy minimization problem, we can equivalently
consider a pure jump process defined by a measure Rq̃ instead of a bursty process of the form
(6.1) defined by a measure Rq,F , where q and q̃ are linked by a specific relation. This will allow
us to use later important results presented by Leonard in [52] about Girsanov theory.

Equivalence of the bursty process with a pure jump process

We consider the application ξ : R+× [0, 1]×Rn → Rn such that for all (s, t, x) ∈ [0, 1]× [0, 1]×Rn:
{
∂1ξ(s, t, x) = F (s, ξ(s, t, x)),

ξ(t, t, x) = x.
(6.12)

The fact that F is lipschitz ensures that the application is well defined, and satisfies for all
t1, t2, t3 a semi-group property, which means:

ξ(t3, t2, ξ(t2, t1, x)) = ξ(t3, t1, x).

We have then for all 0 ≤ t ≤ 1:

ξ(t, 0, ξ(0, t, x)) = ξ(t, t, x) = x.

We define:

∀x ∈ Rn, (ξ(0, t, ·)#ρ(·))(x) = ρ(ξ(0, t, x)), (6.13)

∀ϕ ∈ C∞
c (Rn), Eξ#Rq,F [ϕ(Xt)] = ERq,F [ϕ(ξ(0, t,Xt))] . (6.14)

For all test function ϕ ∈ C∞
c (Rn) and t > 0, we denote ψ(t, x) = ϕ(ξ(0, t, x)). By classical results

of transport equation theory (see for example [48]) we know that:

∀(t, x) ∈ [0, 1]× Rn : ∂tψ(t, x) + ⟨F (t, x),∇ψ(t, x)⟩ = 0. (6.15)
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Then we obtain for all t ∈ [0, 1]:

d

dt
Eξ#Rq,F [ϕ(Xx

t )] =
d

dt
ERq,F [ψ(t,Xx

t )] ,

= ERq,F
[
∂tψ(t,Xt) + ⟨F (ψ(t,Xt)),∇ψ(t,Xt)⟩+

∫
{ψ(t, y)− ψ(t,Xt)}q(t,Xt, y)dy

]
,

= ERq,F
[∫
{ϕ(ξ(0, t, y))− ϕ(ξ(0, t,Xt))}q(t,Xt, y)dy

]
,

= ERq,F
[∫
{ϕ(z)− ϕ(ξ(0, t,Xt))}q(t, ξ(t, 0, ξ(0, t,Xt)), ξ(t, 0, z))|detJζt(z)|dz

]
,

= Eξ#Rq,F
[∫
{ϕ(z)− ϕ(Xt)}q(t, ξ(t, 0, Xt), ξ(t, 0, z))|detJζt(z)|dz

]
.

where we denote Jζt(z) the Jacobian matrix of the application ζt : z → ξ(t, 0, z). The second
line comes from the well known Hille-Yosida theorem and the third line comes from the rela-
tion (6.15). Then, we see (formally) that the process ξ#R

q,F is a pure jump process driven by
the transition kernel q̃(t, x, z) = q(t, ξ(t, 0, x), ξ(t, 0, z))|detJζt(z)|, for all (t, x, z) ∈ R+×Rn×Rn.

Moreover, we can show that for any kernels q, q̄ and a drift F , we have the relation:

H(Rq,F |Rq̄,F ) = H(ξ#R
q,F |ξ#Rq̄,F ). (6.16)

This is justified by Lemma 6 which ensures that for any measurable function
ϕ : càdlàg([0, 1];Rn)→ càdlàg([0, 1];Rn) (seen as a random variable),

H(Rq,F |Rq̄,F ) ≥ H(ϕ#R
q,F |ϕ#Rq̄,F ).

Thus, using the fact that ζ(t, ·) is a bijection for any t, we can apply two times the lemma to
ϕ = ζ and ϕ = ζ−1 to obtain:

H(Rq,F |Rq̄,F ) ≥ H(ξ#R
q,F |ξ#Rq̄,F ) ≥ H(Rq,F |Rq̄,F ).

For proving general results about entropy minimization problems, we will then consider in the
following pure jump processes with time-dependent transition kernel q̃ instead of bursty processes
of the form (6.1) with kernel q and drift F . For simplicity, we keep the notation q rather than q̃
when considering the pure jump process associated to a bursty process, and we denote its path
measure Rq.

Entropy of the bursty model

In the following we consider that a : [0, 1] × Rn × Rn,→ R is a function which is measurable
and bounded. The following proposition is a simplified version of Theorems 2.6 and 2.9 of
Leonard [51].

Proposition 14. Let us consider Rq,F and Rq̄,F the laws of two bursty processes with the same
drift F and kernels q and q̄, respectively. We also assume that this process have the same initial
conditions. We have then:

H(Rq,F |Rq̄,F ) = ERq,F
(∫ 1

0

∫
h

(
q

q̄

)
q̄(s,Xs, y)dyds

)
, (6.17)

where ∀a, h (a) = a ln a+ 1− a.
Conversely, for any P ∈ P(C([0, T ],Rn)) such that H(P |Rq̄) <∞, there exists a jump kernel q
such that P ∼ Rq,F .
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Remark 15. As the relative entropy between bursty processes is equal to the one between the
associated modified jump processes, this proposition falls within the framework of the theorems
of Leonard [51]. We are nevertheless going to provide a formal proof of the formula (6.17), which
will be useful for considering the case of PDMP processes.

Proof. The fact that every measure of finite entropy, relatively to the measure of a jump process,
characterizes an other jump process, follows from the Girsanov theorem (see Theorem 2.6 of [51]).
Moreover, it is clear that two bursty processes with different drifts and same initial conditions
have not the same support, and thus cannot be absolutely continuous one with respect to the
other: the relative entropy between two such processes is necessarily infinite.
Thus, for every measure P of finite entropy with respect to Rq̄ , there exists a jump kernel q such
that P ∼ Rq. From the equality (6.16), denoting ξ the solution of the system (6.12) associated
to the drift F of the reference process, the corresponding measure of finite entropy with respect
to Rq̄,F corresponds to ξ−1

# Rq ∼ Rq,F . Thus, every measure of finite entropy with respect to

Rq̄,F is the one of a bursty process of the form (6.1).

We now prove the formula (6.17). We first characterize the jump process in terms of martingale.
We define for all t ∈ [0, 1]:

J [a]t =
∑

s≤t,X−
s ̸=X+

s

a(s,X−
s , X

+
s ).

This first lemma comes from classical results about Markov jump processes [22]:

Lemma 16. Let R ∈ P(càdlàg([0, 1],Rn)).R = Rq if and only if:

∀a, exp
[
J [a]t −

∫ t
0

∫
{exp(a(s,Xs, y))− 1}q(s,Xs, y)dyds

]
is a R-local martingale.

We deduce the following lemma:

Lemma 17. We define for every t > 0 the random variable Zt by:

Zt = exp

[
J

[
ln

(
q

q̄

)]

t

−
∫ t

0
{q(s,Xs,Rn)− q̄(s,Xs,Rn)}ds

]
.

Then, under the assumption that ln
(
q
q̄

)
is measurable and bounded on [0, 1] × Rn2, Zt is the

Radon-Nikodym derivative of the process of law Rq with respect to the process of law Rq̄ on Ft.

Proof. Let us denote P = ZRq̄. Z is the Radon-Nikodym derivative dRq

dRq̄,F0
if and only if P = Rq,

which is equivalent from Lemma 16 to:

∀a, exp
[
J [a]t −

∫ t

0

∫
{exp(a(s,Xs, y))− 1}q(s,Xs, y)dyds

]
is a P -local martingal.

Then we have the equivalence:

P = Rq ⇐⇒ ∀a, exp
[
J

[
a+ ln

(
q

q̄

)]

t

−
∫ t

0
{q(s,Xs,Rn)− q̄(s,Xs,Rn)}ds−

∫ t

0

∫
{exp (a(s,Xs, y))− 1}q(s,Xs, y)dyds

]
is a Rq̄-local martingal,

⇐⇒ ∀a, exp
[
J

[
a+ ln

(
q

q̄

)]

t

−
∫ t

0

∫
{exp

(
a(s,Xs, y) + ln

(
q

q̄

))
− 1}q̄(s,Xs, y)dyds

]
is a Rq̄-local martingale.

The last equivalence is true thanks to the lemma 16. We have then proved that P = dRq

dRq̄,F0
.
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Thus, we obtain:

H(Rq|Rq̄) = ERq
[
ln

dRq

dRq̄,F0

]
,

= ERq
[
J

[
ln
q

q̄

]

1

−
∫ 1

0
{q(s,Xs,Rn)− q̄(s,Xs,Rn)}ds

]
,

= ERq
[∫ 1

0

∫
{q
q̄
ln
q

q̄
+ 1− q

q̄
}q̄(s,Xs, y)dyds

]
,

= ERq
[∫ 1

0

∫
h

(
q

q̄

)
q̄(s,Xs, y)dyds

]
,

and the passage from the second line to the third one comes from the fact that ∀a:
J [a]t −

∫ t
0

∫
a(s,Xs, y)q(s,Xs, y)dy is a Rq-local martingale. The formula (6.17) is proved.

6.2.2 Entropy of the PDMP model

We just sketch the reasoning allowing to deduce the form of the entropy of a PDMP process. A
precise analysis is still in construction and we only provide the expected results.
In the following we consider that a : [0, 1]× PE2 × Rn → R is a function which is measurable
and bounded.

Proposition 18. Let us consider RQ,F and RQ̄,F the laws of two PDMP processes in [0, 1]×PE×Rn
related to the jump kernels Q and Q̄ and drift F , with the same initial conditions. We have:

H(RQ,F |RQ̄,F ) = ERQ,F

(∫ 1

0

∑

e

h

(
Q

Q̄

)
Q̄(t, Et, e,Xt)dydt

)
, (6.18)

Sketch of the proof. Once again, we characterize the process RQ,F in terms of local martingale.
We define for all t ∈ [0, 1]:

J [a]t =
∑

s≤t,E−
t ̸=E+

t

a(s, E−
t , E

+
t , Xt).

Wa have the following martingale characterization:

Lemma 19. Let R ∈ P(càdlàg([0, 1], PE × Rn).R = RQ,F if and only if:

∀a, exp
[
J [a]t −

∫ t
0

(
⟨F (s, Es, Es),∇J [a]s⟩+

∑
e∈PE
{exp(a(s, Es, e,Xs))− 1}Q(s, Es, e,Xs)dy

)
ds

]

is a R-local martingale.

Intuitively, the fact that J [a]t depends only on Xt and not on the whole trajectory (Xs)s∈[0,t]
comes from the fact that the knowing (Es)s∈[0,t], it is possible to reconstruct these trajectories
from the value of Xt only. We deduce the following lemma:

Lemma 20. We define for every t > 0 the random variable Zt by:

Zt = exp

[
J

[
ln

(
Q

Q̄

)]

t

−
∫ t

0

(
⟨F (s, Es, Xs), J [ln

(
Q

Q̄

)
]s(Xs)⟩

+{Q(s, Es, PE , Xs)− Q̄(s, Es, PE , Xs)}
)
ds

]
.

Then, under the assumption that ln
(
Q
Q̄

)
is measurable and bounded on [0, 1]× Rn × P 2

E, Zt is

the Radon-Nikodym derivative of the process of law RQ,F with respect to the process of law RQ̄,F

on Ft.
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Thus, using similar reasoning than in the proof of Proposition 14 we obtain the form of (6.18).

6.2.3 Gamma-convergence of the entropies

In that section, we will slightly abuse the notation and denote Rq̄,F0 the path measure of a
modified bursty process, defining a stochastic process (0, Xt)t∈[0,1], where (Xt)t∈[0,1] is a bursty
process. The measure then belongs then the set of path measures P(càdlàg([0, 1];PE × Rn))
for which the random variable on PE is 0 with probability 1. It is clear that, as this random
variable does not bring any information, the formula defining the relative entropy between two
such processes is the same as for two bursty processes.

We now prove this corollary of Theorem 11, using the definition of Γ-convergence presented in
(8):

Corollary 21. Let us consider RQ̄,Fε a measure path characterizing a PDMP process (6.2) as
defined in the assumptions of Theorem 11, and Rq̄,F0 its limit as defined in the same theorem.
The functional Fε = H(·|RQ̄ε,F ε) : P(càdlàg([0, 1];PE×Rn))→ R+ Γ-converges to the functional
F = H(·|Rq̄,F0) : P(càdlàg([0, 1];PE × Rn))→ R+.

Proof. Under the conditions of Theorem 11, the functional H(·|RQ̄ε,F ε) : P(càdlàg([0, 1];Rn))→
R+ can be written for every measure path RQ,Fε characterizing a PDMP process of finite entropy
relatively to RQ̄

ε,F ε and with same initial conditions:

H(RQ
ε,F ε |RQ̄ε,F ε) = ERQε,Fε

[ ∫ 1

0

( n∑

i=1

k̄on,ih

(
kon,i

k̄on,i

)
(t,Xε

t )1Eεi t=0+ (6.19)

n∑

i=1

k̄off ,ih

(
koff ,i

k̄off ,i

)
(t,Xε

t )1Eεi t=1

)
dt

]
.

Denoting Rq,F0 the limit of RQ
ε,F ε stated by Theorem 11, we have also:

H(Rq,F0 |Rq̄,F0) = ERq,F0

[∫ 1

0

(∫ ∞

0

n∑

i=1

k̄on,iP̄
i
uk̄off ,ih

(
kon,iP

i
ukoff ,i

k̄on,iP̄ iuk̄off ,i

)
(t,Xt)du

)
dt

]
. (6.20)

Step 1: First, we prove that for every measure P in P(càdlàg([0, 1];Rn)) such thatH(P |Rq̄) <∞,
there exists a sequence (P ε)ε such that P ε → Rq as ε → 0 for the narrow topology and:
H(P |Rq̄) ≥ lim sup

ε→0
H(P |RQ̄ε,F ε).

First, we have already seen that for a bursty process, the Girsanov theorem ensures that for
every path measure P with finite entropy relatively to Rq̄,F0 , there exists a jump kernel q such
that P ∼ Rq,F0 , Rq,F0 being the path measure associated to a bursty process characterized by the
jump kernel q and the same drift F0 as Rq̄,F0 [52]. From Theorem 11, for every kernel q such that
H(Rq,F0 |Rq̄,F0) <∞ we can build a sequence (RQ

ε,F ε)ε such that RQ
ε,F ε → Rq,F0 for the narrow

topology. Thus, we just have to show that for every kernel q such that H(Rq,F0 |Rq̄,F0) <∞, the
sequence (RQ

ε,F ε)ε is such that: H(Rq,F0 |Rq̄,F0) ≥ lim sup
ε→0

H(RQ
ε,F ε |RQ̄ε,F ε). We are going to

show a stronger result, which is that actually:

lim
ε→0

H(RQ
ε,F ε |RQ̄ε,F ε) = H(Rq,F0 |Rq̄,F0).

We consider the test function defined for all gene i and for all t ∈ [0, 1], (e, x) ∈ PE × Rn by:

{
ϕi(t, e, x) := f(t, x) =

∫∞
0 P iukoff ,i ln

(
P iukoff ,i
P̄ iuk̄off ,i

)
(t, x)du if ei = 1and ∀j ̸= i : ej = 0,

ϕi(t, e, x) = 0 if not.
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Then, we have: Using the martingale characterization associated to the PDMP process, we
obtain that for all 0 ≥ T ≥ 1,

M(T ) = f(T,Xε
T )1Eεi T=1−f(0, Xε

0)1Eεi 0=1 −
∫ T

0

(
∂tf −

F1,i

ε
∂xif

)
(t,Xε

t )1Eεi t=1dt−
∫ T

0

(
kon,if(t,X

ε
t )1Eεi t=0 −

koff ,i
ε

f1Eεi t=1(t,X
ε
t )

)
dt

is a martingale. From the proof of Theorem 11, we know that Eεi converges to 0 weakly, which
implies that

lim
ε→0

ERQε,Fε
(
f(1, Xε

1)1Eεi t=1 − f(0, Xε
0)1Eεi 0=1 −

∫ T
0 ∂tf(t,X

ε
t )1Eεi t=1dt

)
= 0.

We then obtain:

lim
ε→0

ERQε,Fε
[ ∫ 1

0

(
kon,if(t,X

ε
t )1Eεi t=0

)
dt−

(∫ 1

0

(
koff ,i
ε

f − F1,i

ε
∂xif

)
(t,Xε

t )1Eεi t=1dt

)]
= 0.

We detail the terms in the second integral for all t, x:

(
koff ,if+F1,i∂xif

)
(t, x) =

∫ ∞

0

((
koff ,iP

i
ukoff ,i − F1,i∂xi(P

i
ukoff ,i)

)
ln
(P iukoff ,i
P̄ iuk̄off ,i

)
(t, x)

)
du−

∫ ∞

0

((
F1,iP

i
ukoff ,i

P̄ iuk̄off ,i
P iukoff ,i

× P̄ iuk̄off ,i∂xi(P
i
ukoff ,i)− P iukoff ,i∂xi(P̄ iuk̄off ,i)

(P̄ iuk̄off ,i)
2

)
(t, x)

)
du,

=

∫ ∞

0

(
∂u(P

i
ukoff ,i) ln

(
P iukoff ,i

P̄ iuk̄off ,i

)
(t, x)

)
du−

∫ ∞

0

((
P iukoff ,i∂u ln

(
P iukoff ,i

P̄ iuk̄off ,i

)
+ koff ,i(P

i
ukoff ,i)− k̄off ,i(P iukoff ,i)

)
(t, x)

)
du,

=

∫ ∞

0
∂u

(
(P iukoff ,i) ln

(
P iukoff ,i

P̄ iuk̄off ,i

)
(t, x)

)
du+ k̄off ,i(t, x)− koff ,i(t, x),

= k̄off ,ih

(
koff ,i

k̄off ,i

)
(t, x).

where we used the equation 1 of Lemma 12 between the second and the third line. We have
then the relation:

lim
ε→0

ERQε,Fε
[ ∫ 1

0

(∫ ∞

0
kon,iP

i
ukoff ,i ln

(P iukoff ,i
P̄ iuk̄off ,i

)
(t,Xε

t )du1Eεi t=0

)
dt−

(∫ 1

0
k̄off ,ih

(
koff ,i

k̄off ,i

)(
t,Xε

t )1Eεi t=1dt

)]
= 0.

Moreover, it is easy to verify that for all t, x:

k̄on,ih

(
kon,i

k̄on,i

)
(t, x) = k̄on,iP̄

i
uk̄off ,ih

(
kon,iP

i
ukoff ,i

k̄on,iP̄ iuk̄off ,i

)
(t, x)− kon,iP iukoff ,i ln

(
P iukoff ,i

P̄ iuk̄off ,i

)
(t, x).

Thus, we have for all gene i that:

lim
ε→0

ERQε,Fε
[ ∫ 1

0

(∫ ∞

0
k̄on,iP̄

i
uk̄off ,ih

(
kon,iP

i
ukoff ,i

k̄on,iP̄ iuk̄off ,i

)
(t,Xε

t )du1Eεi t=0

)
dt−

(∫ 1

0
k̄on,ih

(
kon,i

k̄on,i

)
(t,Xε

t )1Eεi t=0dt+

∫ 1

0
k̄off ,ih

(
koff ,i

k̄off ,i

)(
t,Xε

t )1Eεi t=1dt

)]
= 0.
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We finally deduce, using the formula (6.19), that:

lim
ε→0

H(RQ
ε,F ε |RQ̄ε,F ε) = lim

ε→0
ERQε,Fε

[∫ 1

0

(∫ ∞

0

n∑

i=1

k̄on,iP̄
i
uk̄off ,ih

(
kon,iP

i
ukoff ,i

k̄on,iP̄ iuk̄off ,i

)
(t,Xε

t )du

)
1Eεi t=0dt

]
.

We remark that the quantity inside the integral on the right-hand side is exactly the quantity
appearing in the formula (6.20). Then, the convergence in law of (Eεt , X

ε
t )t to (0, Xε

t ) allows to
conclude.

Step 2: Second, we prove that for every sequence (P ε)ε of measures in P(càdlàg([0, 1];PE ×Rn))
such that P ε → P narrowly, we have H(P |Rq̄,F0) ≤ lim inf

ε→0
H(P ε|RQ̄ε,F ε).

We are going to use the dual formulation of the entropy, that we presented in Chapter 5. We
recall first that the Legendre transform of h(u) = u log u is h∗(v) = ev−1, and that we have in
particular for all u, v:

u log u ≥ uv − ev−1.

Then, for function G ∈ Cb(càdlàg([0, 1];PE × Rn)), taking u = dP ε

dRQε,Fε
and v = G, integrating

with respect to RQ
ε,F ε we obtain:

H(P ε|RQ̄ε,F ε) =
∫

dP ε

dRQε,F ε
log

dP ε

dRQε,F ε
dRQ

ε,F ε ,

≥
∫

dP ε

dRQε,F ε
GdRQ

ε,F ε −
∫
eG−1RQ̄

ε,F ε ,

=

∫
GdP ε −

∫
eG−1RQ̄

ε,F ε .

Moreover, as P ε → P and RQ̄
ε,F ε → Rq,F0 narrowly (by Theorem 6.1 for the second one), we

have for all G ∈ Cb(càdlàg([0, 1];PE × Rn)):
∫
GdP ε →

∫
GdP,

∫
eG−1RQ̄

ε,F ε →
∫
eG−1dRq̄,F0 .

Thus, we obtain:

lim inf
ε→0

H(P ε|RQε,F ε) ≥
∫
GdP

∫
eG−1dRq̄,F0 ,

and we can conclude passing to the sup on the right-hand side.

In conclusion, minimizing the entropy relatively to the bursty model is equivalent to minimizing
the entropy relatively to the PDMP model in the limit ε→ 0.

6.3 Dual of the Schrödinger problem when the reference is a bursty
process

In this section, we build the dual formulation of the dynamical Schrödinger problem when the
reference is a bursty process. It appears similar to the dual of the Schrödinger problem when the
reference is a coupling associated to the bursty process. The relation between the Schrödinger
potentials and the jump kernel characterizing the solution of the dynamical Schrödinger problem
will provide a method for building this kernel from two temporal observations.

Remark that in this section, most of the analyses are formal: the results that are presented will
nevertheless allow to motivate some numerical applications afterwards.
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6.3.1 Dual of the dynamical Schrödinger problem

We now establish the dual formulation of the dynamical Schrödinger problem given two marginal
distributions µ and ν at times 0 and 1. For a reference kernel q̄, a drift F , we recall that any
process of finite entropy with respect to a bursty process Rq̄,F is a bursty process itself, which is
then characterized by a jump kernel q, the same drift F , and its distribution ρ which verifies the
master equation:

∀t, x : ∂tρ(t, x) = div(Fρ)(t, x) +

∫
ρ(t, z)q(t, dz, x)− ρ(t, x)

∫
q(t, x, dz).

From the Proposition 6.17, we have then the following formulation for the Schrödinger problem
relatively to Rq̄,F on [0, 1], with two probability measures µ and ν at times 0 and 1 respectively:

Sch(Rq̄,F ;µ, ν) = inf
ρ,q

{∫ 1

0

∫ ∫
h

(
q

q̄

)
q̄(t, x,dy)ρ(t,dx)dt |

∀t, x : ∂tρ(t, x) = div(Fρ)(t, x) +

∫
ρ(t, z)q(t, dz, x)− ρ(t, x)

∫
q(t, x, dz),

ρ(0, ·) = µ(·), ρ(1, ·) = ν(·)
}

Proposition 22. For a reference kernel q̄, a drift F , and two probability measures µ and ν, the
dual of the dynamical Schrödinger problem on [0, 1] can be written:

Sch∗(Rq̄,F ;µ, ν) := sup
ϕ(t,·)∈C∞

c

{
∫
ϕ(1, y)ν(dy)−

∫
ϕ(0, x)µ(dx) | (6.21)

∂te
ϕ(t,x) + ⟨F (t, x),∇eϕ(t,x)⟩ =

∫ (
eϕ(t,x) − eϕ(t,z)

)
q̄(t, x, dz)}.

Moreover, for the optimum q∗ and ϕ∗ of both problems, we necessarily have for all t > 0, x, z ∈ Rn
the relation:

q∗

q̄
(t, x, z) = eϕ

∗(t,z)−ϕ∗(t,x). (6.22)

Remark 23. We realized that the form of this dual formulation is the same of the general form
proved in Gentil et al. [32] for Markov processes. Indeed, the PDE defining eϕ in (6.21) is the
backward equation associated to a bursty process with kernel q̄ and drift F : for all t, x we have

∂te
ϕ(t,x) = −Aq̄,F eϕ(t,x).

Then, if we denote ϕ∗ the solution of the dual dynamical problem (6.21), we obtain that for all
x ∈ Rn:

ϕ∗(0, ·) = lnT q̄,F1 eϕ
∗(1)(·), (6.23)

where (T q̄,Ft )t∈[0,1] is the semigroup associated to the reference bursty process, which allow to
retrieve the form presented in Gentil et al.[78]. We nevertheless derive the non trivial relation
(6.22), which will appear in the dual construction.

Proof. We denote ϕ a Lagrange multiplier such that for all t ∈ [0, 1], ϕ(t, ·) ∈ C∞
c (Rn). We

replace the condition on the master equation linking ρ and q on the formula of Sch(Rq̄,F ;µ, ν)
by a term of the form:

sup
ϕ

∫ 1

0

(
∂tρ(t, x) = div(Fρ)(t, x) +

∫
ρ(t, z)q(t, dz, x)− ρ(t, x)

∫
q(t, x, dz)

)
ϕ(t, x)dt.
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In plain word, this forces the master equation to be verified for almost all t, x unless the the
value of Sch(Rq̄,F ;µ, ν) is infinite. Integrating by parts w.r.t t, we obtain:

Sch(Rq̄,F ;µ, ν) = inf
ρ,q

{∫ 1

0

∫ ∫
h

(
q

q̄

)
q̄(t, x,dy)ρ(t,dx)dt+ sup

ϕ

{∫
ϕ(1, y)ρ(1,dy)−

∫
ϕ(0, x)ρ(0, dx)

−
∫ 1

0

∫ [
∂tϕ(t, x) + ⟨F (t, x),∇ϕ(t, x)⟩ −

∫
(ϕ(t, z)− ϕ(t, x))q(t, x, dz)

]
ρ(t, dx)dt

}
|

ρ(0, ·) = µ(·), ρ(1, ·) = ν(·)
}
,

≥ sup
ϕ

{∫
ϕ(1, y)ρ(1,dy)−

∫
ϕ(0, x)ρ(0,dx) + inf

ρ,q

{∫ 1

0

∫ [ ∫
h(
q

q̄
) q̄(t, x, dz)

− ∂tϕ(t, x)− ⟨F (t, x),∇ϕ(t, x)⟩ −
∫
(ϕ(t, z)− ϕ(t, x))q(t, x, dz)

]
ρ(t, dx)dt |

ρ(0, ·) = µ(·), ρ(1, ·) = ν(·)
}}

:= Sch∗(Rq̄,F ;µ, ν).

The sign ≥ comes from the fact that an inf sup is always greater than a sup inf. Remark that
an equality would hold at the second line provided that we could invert the sup and the inf at
the second line, but we have not yet explored this direction.

Then, by denoting f(t, x, z) = q(t,x,z)
q̄(t,x,z) , we obtain:

Sch∗(Rq̄,F ;µ, ν) = sup
ϕ

{∫
ϕ(1, y)ρ(1, dy)−

∫
ϕ(0, x)ρ(0, dx)+

inf
ρ,f

{∫ 1

0

∫ [
− ∂tϕ(t, x)− ⟨F (t, x),∇ϕ(t, x)⟩+

∫ [
(f ln f + 1− f)(t, x, z)−

f(t, x, z)× (ϕ(t, z)− ϕ(t, x))
]
q̄(t, x, dz)

]
ρ(t, dx)dt |

ρ(0, ·) = µ(·), ρ(1, ·) = ν(·)
}}

.

Deriving with respect to f , we obtain at the optimum the following relation:

ln f(t, x, z) = ϕ(t, z)− ϕ(t, x),
from which the optimality condition (6.22) follows.
Replacing into the equation, we finally obtain:

Sch∗(Rq̄,F ;µ, ν) = sup
ϕ

{∫
ϕ(1, y)ρ(1,dy)−

∫
ϕ(0, x)ρ(0, dx)−

inf
ρ

{∫ 1

0

∫ [
∂tϕ(t, x) + ⟨F (t, x),∇ϕ(t, x)⟩−

∫ (
1− eϕ(t,z)−ϕ(t,x)

)
q̄(t, x, dz)

]
ρ(t, dx)dy | ρ(0, ·) = µ(·), ρ(1, ·) = ν(·)

}}
,

= sup
ϕ

{∫
ϕ(1, y)ν(dy)−

∫
ϕ(0, x)µ(dx) |

∂tϕ(t, x) + ⟨F (t, x),∇ϕ(t, x)⟩ = e−ϕ(t,x)
∫ (

eϕ(t,x) − eϕ(t,z)
)
q̄(t, x, dz)

}
,

where the passage from the first to the second equality comes from the fact that the inf on ρ is
necessarily infinite if ϕ is not solution of the PDE at the last line. We finally deduce the dual
formulation (6.21).
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6.3.2 Formal relation with the non-dynamical Schrödinger problem

As mentioned in Section 1.1.2, there is an equivalence between the ”non-dynamical” Schrödinger
problem (1.4) and the dynamical one (1.5) in that meaning that they are associated to the
same objective values and that we can link the solutions of the two problems by the formula
(1.6). However, it is not clear at the moment how to find the function ϕ characterizing the
optimal jump kernel in (6.22). Denoting R∗

01 the solution of (1.4) when the reference kernel is
R01, we are going to show, at least formally, that the two entropic potentials characterizing the

Radon-Nikodim derivative
dR∗

01
dR01

allow to define this kernel.

First, we recall some results about the dual of the non-dynamical Schrödinger problem (1.4) that
can be found in [70] (and the references herein). We begin by presenting the dual formulation of
the Schrödinger problem:

Proposition 24. We have:

inf
P∈Γ(µ,ν)

H(P |R01) = sup
ϕ∈L1(µ),ψ∈L1(ν)

∫
ϕ(x)µ(dx)+

∫
ψ(y)ν(dy)+1−

∫
eϕ(x)+ψ(y)R01(x, y)dxdy.

We are going to assume that the solution R∗
01 has a density of the form

dR∗
01

dR01
= eϕ

∗⊕ψ∗
, R01 − as, (6.24)

where ϕ∗ ∈ L1(µ) and ψ∗ ∈ L1(ν) are called the Schrödinger potentials, we have the following
corollary:

Corollary 25. Assuming the relation (6.24), the Schrödinger potentials phi∗ and ψ∗ are the
maximizers of the dual problem and we have at the optimum:¡

H(R∗
01|R01) =

∫
ϕ∗(x)µ(dx) +

∫
ψ∗(y)ν(dy).

Moreover, it is also known that, still assuming (6.24), eϕ
∗
and eψ

∗
are the limits of the Sinkhorn

algorithm, that solve the system:




∀x, eϕ∗(x) = µ(x)∫

eψ
∗(y)R01(x,y)dy

,

∀y, eψ∗(y) = ν(y)∫
eϕ

∗(x)R01(x,y)dx
,

(6.25)

We now develop a formal reasoning by associating, for all t ∈ [0, T ] and x ∈ Rn, the transition
probability kernel associated to the reference measure Rq̄,F at time t, pq̄,Ft (x,dy), which is a

probability measure on Rn, to its probability density function pq̄,Ft (x, y). We aim to show,

formally, that the solutions ϕ∗ and ψ∗ of the system (6.25) for R01 = pq̄,F1 µ, characterizing the

solution of Sch(pq̄,F1 (x, y)µ(x);µ, ν), allow to build a function ϕ solution of the dual’s dynamical
problem Sch∗(Rq̄,F ;µ, ν). We consider the function ϕ : [0, 1]× Rn → R such that:

∀t ∈ [0, 1] : ϕ(t, ·) = lnT q̄,F1−te
ψ∗
(·). (6.26)

where we recall that (T q̄,Ft )t∈[0,1] is the semigroup associated to Rq̄,F .
We observe first that the system (6.25) becomes:




∀x, eϕ∗(x) = 1

T q̄,F1 eψ
∗(x) ,

∀y, eψ∗(y) = ν(y)∫
eϕ

∗(x)pq̄,F1 (x,y)µ(dx)
,

(6.27)
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Thus, the first line implies that we have ϕ(0, ·) = −ϕ∗ = lnT q̄,F1 eϕ
∗(1,x), and then the condition

(6.23) between ϕ(0) and ϕ(1) is well verified with ϕ(0, ·) = −ϕ∗ and ϕ(1, ·) = ψ∗.

Second, the objective values of the non-dynamical and dynamical problems being the same, we
necessarily have by Corollary 25:

Sch(Rq̄,F ;µ, ν) =

∫
ϕ∗(x)µ(dx) +

∫
ψ∗(y)ν(dy).

As Sch∗(Rq̄,F ;µ, ν) ≤ Sch(Rq̄,F ;µ, ν), and that we have seen that the function ϕ defined in (6.26)
with ϕ(0) = −ϕ∗ and ϕ(1) = ψ∗ is compatible with the constraints of the dual problem, we have
necessarily:

Sch∗(Rq̄,F ;µ, ν) =
∫
ϕ∗(x)µ(dx) +

∫
ψ∗(y)ν(dy).

We also remark that, still formally, the second line of the system (6.27) implies that defining

pq
∗,F

1 (x, y) = eϕ(1,y)−ϕ(0,x)pq̄,F1 (x, y),

which corresponds to the condition (6.22) for the optimal jump kernel in the case of a bursty
process, the resulting distribution ρ∗ verifies well ρ∗(1, ·) = ν when ρ∗(0, ·) = ρ(0, ·) = µ. Indeed
we have:

ρ∗(1,dy) =
∫
pq

∗
1 (x,dy)µ(dx),

=

∫
eϕ

∗(x)eψ
∗(y)pq̄1(x,dy)µ(dx),

=

∫
eϕ

∗(x) ν(dy)∫
eϕ∗(x)pq̄,F1 (x,dy)µ(dx)

pq̄,F1 (x,dy)µ(dx),

= ν(dy).

Remark 26. We emphasize that this formal analysis does not take into account difficulties that
may appear, in particular when considering the second line of (6.27). Indeed, pt(x,dy) on the
right-hand side is actually a measure, although on the left-hand side we have a function. The
most common hypothesis used for tackle this problem is that the underlying stochastic process is
revertible, like for the revertible Brownian motion, which is not the case for the bursty process.

6.3.3 Partial conclusion

We recall that we developed in Chapter 5 a numerical method, combining a preprocessing
step and the Sinkhorn algorithm, in order to find from from any triplet (R01;µ, ν) a coupling
R∗

01 ∈ Π(µ∗, ν∗), with µ∗ and ν∗ defined by the formula (12) of Chapter 5, and a, b two strictly
non-negative functions such that:

∀x, y, R∗(x, y) = a(x)b(y)R(x, y),

as soon as R∗(x, y) > 0.
In that case, the Schrödinger potentials ϕ∗ and ψ∗ of Sch(R,µ∗, ν∗) can then be approximated
by ln a and ln b on this support. Indeed, they correspond to the potentials of the Schrödinger
problem Sch(R01;µ

∗, ν∗), which is the problem having a solution whose marginals are the closest
to µ and ν.
Identifying ϕ(0) to ϕ∗ and ϕ(1) to ψ∗ in (6.21), and taking R(x, y)dxdy = pt(x,dy)µ(dx), we
can then deduce a method to compute the optimal jump kernel q∗ associated to the solution of
the problem Sch(Rq̄,F ;µ∗, ν∗):
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1. Find the Schrödinger potential ϕ∗ and ψ∗ associated to the Schrödinger problem
Sch(pt(x,dy)µ(dx);µ

∗, ν∗) on the support of R∗;

2. Set ∀x, y, t ∈ Rn × Rn × [0, 1], q∗(t, x, y) =
T q̄,F1−tb(y)

T q̄,F1−tb(x)
q̄(t, x, y).

In particular, we have q∗(1, x, y) = b1(y)
b1(x)

q̄(1, x, y).

We obtain a formula allowing to compute the time-dependent jump kernel characterizing the
optimal process, solution of the dynamical Schrödinger problem, at the time of the second obser-
vation. According to the interpretation of the entropy regarding the Sanov theorem, developed
in Section 1.1.2, this formula allows thus to characterize the optimal modifications that are
needed for the process to be compatible with the observations.

However, two difficulties appear for answering the questions that we addressed in the introduction
of Part III:

• The optimal kernel q∗ is not parametric, and then does not allow to be directly linked to
the mechanistic parameters of the model (1.17), and in particular an underlying optimal
GRN for inference purposes;

• There are some numerical difficulties related to the fact that the bursty model has no close
formula for characterizing the semigroup T q̄t and its transition probability kernel.

These points will be addressed in the next section. We will then show preliminary applications
on in silico generated datasets.

6.4 Practical aspect

We now consider that we are observing two sets of independent cells S0 and ST at t = 0 and
t = T (in hours). We also consider that we have a prior knowledge on the system, under the
form of a set of parameters calibrating the PDMP process. In particular, we denote θR and kRoff
the matrix describing the GRN calibrating the functions kon,i, and the vector describing the
switching rates from the state off to the state on for every gene i. The aim of this section is
to describe an numerical method for estimating the optimal network θ∗ and rate k∗off w.r.t the
observations and the reference parameters.
Relying on the results about the Schrödinger problem previously shown, we propose a 3-steps
method which consists in:

• Solving the Schrödinger problem on appropriate starting and ending spaces, with a bursty

reference process associated to a Kernel q(x, x+ hei) = kθ
R

on,i(x)
koff ,i
si

e
− koff ,i

si
h
;

• Finding the optimal kernel q∗, and using the form (6.5) for the optimal jump kernel, the
associated optimal burst rate functions k∗on,i and k

∗
off ,i;

• Finding the optimal associated parameters at time T , and in particular θ∗, of the associated
PDMP process.

The second step requires some assumptions on the dependence in time and space of the burst rate
functions, in order to be able to identify two sets of functions kon,i and koff ,i from the formula
(6.5) which is a combination of them. The third step consists in considering a parametric model
for these functions, which could be then inferred by a specific set of regression problems as we
did in Chapter 3.
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Remark 27. As we only consider two timepoints, we would like to consider a dataset generated by
a bursty model such that the parameters are likely to be recovered from the observation of these
two timepoints. That is the case of a toggle-switch network (two genes which activate themselves
and inhibit each other), similar to the one used throughout Chapter 2 and described in Appendix
C of this chapter. Indeed, we have shown that CARDAMOM was able to infer accurately such
GRN from the observations of two timepoints (see Chapter 3, Figure 6). We will thus consider
datasets generated using the bursty model (1.17) and calibrated by this toggle-switch GRN in
the following.

6.4.1 Starting and ending spaces of interest

In order to link this framework to the analyses of Section 6.3, the sets of cells S0 and ST are
described by two probability distributions ρ0 and ρT . For the set S0, it is natural to use the
empiric distribution, i.e to consider:

ρ0(dx) =
1

N0

∑

X∈S0

δX(dx),

where N0 = |S0|.
It is however not sufficient to consider a discrete ending space. Indeed, as it will be justified
more precisely afterwards in Proposition 28, we need for estimating the optimal jump kernel,
at time t = T , a minimum amount of vectors of Rn that verify together a certain condition,
that can be not found in ST . We thus need to extend the space. For this sake, we convolve the
distribution ρ̂T (dy) =

∑
Y ∈ST

δY (dy) against a Gaussian of width h. We denote ρhT the resulting

distribution. We then consider a discretization of the gene expression space, and build a gird
denoted GnN ,of size Nn, where N corresponds to the number of bins in each direction, and n
the number of genes. Every point on this gird then corresponds to a vector of Rn, where each
coordinate i has its value in {yi0, · · · , yiN}. For example, we may choose:

yi0 = min
Y ∈ST

Yi, y
i
N = max

Y ∈ST
Yi, and ∀1 ≤ k ≤ N : yik = yi0 +

k

N
(yiN − yi0).

Finally with the notations of the Schrödinger problem, we obtain that:

• µ is a vector of size N0 for which each entry is equal to 1
N0

;

• ν is a vector of size Nn, and for all y in GnN : ν(y) = ρhT (y).

6.4.2 Approximating the Kernel associated to the bursty process

A major numerical difficulty when studying the Schrödinger problem with the bursty process in
[0, T ] as a reference, is that the reference measure between two timepoints, R0T , has no explicit
analytical form. We recall that the quantity of interest for building R0T is pT (x, dy), where pT is
the transition probability kernel associated to the bursty process at time T . Thus, before solving
the Schrödinger problem, we must be able to estimate this coupling. For this, we used two
different methods. On one hand, we built a numerical scheme for solving the master equation of
the bursty process. Starting from any cell x ∈ S0 at time 0, we then estimated the exact value
of pT (x,dy) on the grid GnN , allowing to build the vector ν on this grid. However, solving this
numerical scheme may be computationally very intensive when the number of genes is high. An
alternative method consisted in estimating pT (x, dy) using a Monte-Carlo method: we simulated
from any cell x ∈ S0 at time 0 a certain number of realization of the process. Convolving the
empirical distribution obtained ρ̂T (dy|x) against a Gaussian of width h, we then obtained an
estimation of pT (x,dy) on the grid GnN .
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Figure 6.1: Comparison of the kernel associated to the mechanistic model from a cell (the blue dot in the
figure), estimated from the exact resolution of the master equation (on the right) and a Monte-Carlo
method with 200 simulated cells (on the left).

We compare in Figure 6.1 the transition probability kernel pT (x,dy) obtained with the two
methods, from a certain x in [0, 1]2 (represented by a blue dot). As mentioned at the beginning
of this section, we used as a reference the bursty process calibrated by a toggle-switch network.
In the following, we will choose the second method for the numerical applications, which is easier
and faster to use than the first one when considering many genes.

6.4.3 Solving the Schrödinger problem

With the reference coupling R0T = pT (x, dy)µ(dx) estimated for all x ∈ S0, we can now solve
the Schrödinger problem Sch(R0T ;µ, ν), with µ, ν defined as previously. The results of Chapter
5 ensure that the Sinkhorn algorithm will converge, and that taking the geometric mean of the
two limits defined in Theorem 12 of Chapter 5, we are able to recover an optimal coupling with
respect to the data. We represented in Figure 6.2 the evolution of the minimal relative entropy
min

R∈Π(µ,ν)
H(R|R0T ) in two cases: when the transition probability kernel pT (x, dy) is the one of a

bursty process with a null network (i.e the functions kon,i are scalar), in blue, and when it is the
one of the right network, i.e the one used for simulating the datasets S0 and ST , in red. We
observe that from T = 2h, the metric is able to distinguish the wrong reference process from the
right one: the minimal relative entropy, which can be interpreted as a kind of distance between
the reference process and the observations, increases almost linearly with respect to the time
gap between the observations in the first case, while it remains close to 0 in the second case,
even for a large time gap.

6.4.4 Computing an optimal kernel and inferring an associated gene regulatory network

We now aim to deduce, from the optimal kernel measured at a time t = T , an estimation of the
optimal burst rate functions k∗on,i at this time. For this, we need to make assumptions on the
kernel associated to the optimal bursty process. From the convergence result of Theorem 11, we
can state the following simplification of Proposition 22:

Proposition 28. If the burst rate functions k∗off ,i calibrating the optimal process with respect to
the data are constant in time and space, the associated optimal functions k∗on,i verify the relation
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Figure 6.2: Evolution of the minimal entropy associated to the optimal coupling as a function of the time
gap between the two timepoints, when the reference kernel is computed with the right network (in red)
and a null network (in blue).

at every T :

∀(x, y) ∈ Rn : kθ
∗
on,i(T, x) =

bT (y)

bT (x)
× kθon,i(x)︸ ︷︷ ︸

reference GRN

× koff ,i
k∗off ,i

e
k∗off ,i−koff ,i

s
h

︸ ︷︷ ︸
scaling of mRNA bursts

, (6.28)

if ∃h > 0 such that ∀j ̸= i, xj = yj, and yi = xi + h.

Remark 29. This proposition is the direct consequence of Proposition 22, under the hypothesis
that the rates k∗off ,i does not depend on space. However, it is easy to see that the value of y
does not play any role and should be always compensated by bT (Y ). We should have for all
x, h > 0 and every gene i:

d

dh

[
bT (x+ hei)e

k∗off ,i−koff ,i
si

h

]
= 0, (6.29)

where ei is a vector with all coordinates are equal to 0 except the ith which is equal to 1.
Although we are going to work under this assumption, we have to keep in mind that all the
results that we deduced from Proposition (28) may be inaccurate if the relation (6.29) is not
verified.
In particular, from the grid GnN , we could compute en error for each gene i:

erri =

N∑

l=1

[ ∑

k1,yik1
>yil

∑

k2,yik2
>yil

| bT (yik1)e
k∗off ,i−koff ,i

si
(yik1

−yil ) − bT (yik2)e
k∗off ,i−koff ,i

si
(yik2

−yil ) |
]
,

which would quantify how wrong the hypothesis that k∗off,i is a scalar.

From Proposition 28, we can deduce an approximate method for estimating the optimal network
θ and rates koff ,i at t = Th associated to two sets of data S0 and ST , and a reference PDMP

process associated to a network θR and burst rates kθ
R

on , k
R
off . Considering that the burst rate

functions k∗off ,i calibrating the optimal process with respect to the data are constant in time and
space, it consists in solving the following minimization problem:

θ∗, k∗off = argmin
θ,koff

∑

x∈GnN

n∑

i=1

Fi(θ, koff ,i, x, b) + λ|θ − θR|, (6.30)
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where λ is a penalization coefficient and for all gene i:

Fi(θ, koff ,i, x, b) =
∑

y∈GnN

(
bT (x)k

θ
on,i(x)koff ,i − bT (y)kθ

R

on,i(x)k
R
off ,ie

koff ,i−kRoff ,i
s

h

)2

1y=x+hei .

Solving these problems then allows to find the optimal θ∗ and k∗off,i regarding the data.

We represent in Figure 6.3b the results obtained by this method for reconstructing the optimal
θ∗, depending on the time gap between the two timepoints, when the right network is still a
toggle-switch network of two genes. We observe that the network obtained when the reference
process is a bursty process calibrated by a null network becomes closer to the right network
when the time gap increases: this is due to the fact that the process needs time to equilibrate,
i.e for final measure to be far enough from the first one to be representative of the effect of
the network. However, the distance to the right network (in total variation) remains not so
small even after a certain time. More precisely, we observe that the method is able to detect the
inhibitions of the network, but not the activations, or at least not with the right intensity.
When the reference process is calibrated with the right network (the one used for generating the
data), we observe that except for too small time gaps (when the data is not representative of
the dynamics induced by the network), the network inferred is close to the right one. This was
expected from the results of Figure 6.2: the relative entropy between the optimal coupling and
the reference one was close to 0 for any value of the time gap.

We also represent in Figure 6.3a the mean of the potential bT obtained by the Sinkhorn algorithm,
on the ending space GnN , as well as the 90th percentile of its variations. A mean value close to 1
associated to a small variation means by Proposition 28 that the optimal network is close to the
one of the reference process (as it is the case when it is calibrated by the right network, in red),
while a high variance means that the reference process is not calibrated by the right network (as
it the case when it is calibrated by a null network, in blue).

We finally represent in Figure 6.4 the optimal burst rate function kon,1 found by our method in
the two cases (right and wrong calibration of the reference process), compared to the function
used to simulate the data. We observe that the global form of the burst rate function is well
reproduced in both cases, except in some areas of the gene expression space for the case of the
wrong initial calibration. This may be due to the lack of data, preventing us from being able
to identify the form of the function on these areas. This leads to incorrect evaluations when
performing the inference part (using the relation (6.30)), and to a wrong network. Remark that
this could be probably improved by identifying areas of the gene expression space for which
we have no reliable information, which should be avoided from the grid GnN when solving this
regression problem.

6.5 Discussion and limits

As emphasized in the introduction, the work that is presented here is still under construction.
The results are promising, first mathematically, since we have obtained explicit formulas that
allowed us to relate the different objects we manipulate, and to a lesser extent numerically. We
have seen that we could construct a suitable entropic cost measuring the gap between the data
and our model, and that it seemed possible to use this distance to infer the optimal parame-
ters of the model with respect to the data. This work suffers nevertheless from several limitations.

First, we remark that the approach we developed in this Chapter, which transforms the inference
problem in a set of regression problems of the form (6.30), specific to each gene, has similarities
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(a) (b)

Figure 6.3: 6.3a Evolution of the entropic potential b computed with the Sinkhorn algorithm, as a function
of the time gap between the two timepoints, when the reference kernel is computed with the right network
(in red) and a null network (in blue). For the right network, we expect b = 1. 6.3b Distance of the
network inferred with the formula (6.30) by using the kernels like the ones presented in Figures 6.4b
(when the reference coupling is computed with a null network) in blue, and 6.4c (when the reference
coupling is computed with the right network), estimated for the different values of the time gap between
the measures.

(a) (b) (c)

Figure 6.4: Comparison of the burst rate functions of gene 1, kon,1, 6.4a used for simulating the data,
6.4b estimated with the formula (6.28) when the reference coupling is computed with a null network and
6.4c estimated with the formula (6.28) when the reference coupling is computed with the right network.
The levels of the colormap is the same for the three figures. For 6.4b and 6.4c, the reference coupling in
the Schrödinger problem is computed for T = 3h.
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with the one which had been developed in Chapter 3 (Section 4.4) for CARDAMOM. However,
an important limit of this method is that that the sum has to be performed on the grid GnN
leading to numerical intractability when the number of genes is high. This is difficult to overcome
because we need, in order to be able to estimate the value of kθon,i(x), to find for each cell X ∈ S0
and for all gene i, at least one cell Y in the ending space such that ∀j ̸= i,∃h,Xj = Yj , and
Yi = Xi + h. To our point of view, this method could be largely simplified by reducing the
dimension of the problem, by using similar arguments as the ones developed for the algorithm
CARDAMOM in Chapter 3. The gene expression space could be discretized in a grid much
coarser than the one we used here, taking into account only the values leading to distinct
modes for the promoters frequency, and the Schrödinger problem could be applied on the
discrete measure describing the set of cells ST on this simplified discrete space. Moreover,
this could allow to overcome the fact that the current method requires protein measurements,
which is critical as we recall that it is very difficult at the moment to observe proteins at the
single-cell level experimentally [44]. Indeed, we could build from scRNA-seq data a coarse
approximation of the proteins distributions on a discrete space, in a similar way that what we
developed in Chapter 3, and then perform the Schrödinger problem analysis by considering
these reduced observations. The mathematical link between these approximations and the re-
sults for the relative entropy developed in this section would nevertheless require further analyzes.

Second, the framework that we developed is restricted to the case of two timepoints, which
prevents us from being able to compare the accuracy of the method to CARDAMOM for real
datasets like the one used in Chapter 4. Developing this framework in the multi-marginal case,
as it has been done in [47] when the reference process is an SDE with gradient drift, should be
the subject of future works.

Finally, an important question that remains open for the moment is the sensibility of the method
with respect to the choice of the jump kernel q̄ used in the reference process Rq̄. We do not
expect a property similar to Theorem 9, which ensures in the diffusion case that the law of the
process is correctly reconstructed by minimizing the entropy relatively to the Brownian motion.
However, we claim that this is not as crucial as in [84, 47], because our method does not aim to
reconstruct the characteristics of the process without prior knowledge. On the contrary, we have
motivated our analysis by the need to test hypotheses and to study their limits regarding an
experimental dataset. This work should be continued during my post-doctorate, which will be
supervized by the last author of [84], Geoffrey Schiebinger.
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Discussion and perspectives

Discussion

As introduced in Chapter 1 and at different stages of our manuscript, the notion of landscape is
a powerful concept for representing the forces driving cellular differentiation and the resulting
behavior of individual cells. The mathematical theory of dynamical systems, and of their
perturbations, allow to define certain quantities that characterize the landscape associated to a
stochastic system. In particular, the theory of Large deviations and our work of Part I allows to
make the link between these two points of view for the mechanistic model 1.14. In this section, we
highlight that the extended notions of static and transitory landscapes are particularly interesting
for illustrating the framework of the different approaches that we developed in Parts II and III
of this manuscript. In particular, we are going to detail how the landscape associated to the
model 1.15 can appear as a generalization of the landscape associated to the phenomenological
model presented at the end of Chapter 2, but also how the latter can question the modeling
choices that have been made.
On one side, in this manuscript, we have made the hypothesis that the landscape was shaped by
an underlying network. On the other side, some authors consider that perturbation of the system
that induce differentiation may be seen as modification of the network. To our point of view,
the word Networks itself generates ambiguity. It is essential to distinguish the structure and the
state of the network. If one says that our network incorporates all critical nodes, then structure
should not change. That of course would be very different if there are some ” hidden variables ”
(i.e. genes the level of which are not measured), and which results in modifying the network
structure. Say for example that at time 1, we observe A ← B and and time 2, we observe A B
(no more interaction) this can only result from the effect of a hidden variable C that appears
at time 2 and ” cuts ” the connection (i.e. a gene the product of which makes the promoter
of B not accessible to A anymore). So if C is integrated, then the network structure does not
change anymore (see Figure 6.5). In this point of view, assuming that the gene network does not
vary with time consists in assuming that all the variables allowing to explain the data are observed.

However, even with these explanation, an ambiguity often remains about the parameters of the
GRN: do they capture only chemical reactions involving only proteins and promoters, or do
they take into account hidden variables, such as epigenetic marks ? In the first case, considering
that we take into account in the model all the genes of interest (which is nevertheless a strong
assumption), the network should therefore be constant regardless of everything else. However,
as explained in the introduction and observed in Chapter 4 (see Figure 5), the GRN calibrating
the burst rate functions is able to detect not only physical interactions between regulators
and regulated genes, but also various epigenetic information or indirect effects. Following the
same reasoning as in Figure 6.5, the processes characterizing these indirect effects, that are not
observed nor directly modeled, could then affect the behavior of the model through a modification
of the network. In that point of view, the hypothesis that the network does not change over time
is then reasonable when we have to deal with ”standard” single-cell data, but leads to errors
that should be quantified.
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Figure 6.5: Action of a hidden variable C which modifies the structure of a network between A and B
(figure courtesy of O. Gandrillon, personal communication).

Interestingly, that is precisely what allows the entropy minimization approach developed in Part
III. The fact that this method provides time-dependent optimal jump kernels, even when the
kernel of the reference process is constant, can be interpreted as a way of characterizing the
influence of the hidden variables on the system, and the resulting time-dependent GRN as the
modified states of the GRN under the action of these variables.
If it was possible to incorporate in the model every variables acting on the differentiation process,
the model parameters would not depend on time. In that case, the landscape characterizing
cellular differentiation is statical. The price to pay is nevertheless not negligible: this static
landscape is potentially extremely complex, depending on all the parameters of this full model.
This is the reason why, when modeling a biological process, we always make various assumptions
and simplifications, in order to get a model, the complexity of which is proportional to the
wealth of data available and ideally make the model parameters identifiable. In such situation,
the model is affected by hidden variables and the landscape which characterizes differentiation is
dynamical.

Without modeling assumptions, the best way to integrate this dynamical point of view would be
to consider time-dependent parameters, as obtained with the method developed in Chapter 6. In
order to link these modifications to interpretable phenomena, it would be necessary to consider
”higher” models, taking into account various possible features such as knock-outs, methylation,
cell-to-cell interactions, and to express the simplified model as a Markov transitory process from
the global one, depending on these additional features. Considering the PDMP model (1.14),
the natural way of doing that would be to make the burst rate functions kon,i (and eventually
koff,i) to depend on the hidden variables that we want to consider, denoted Y . This could be
a way of interpreting in a general framework the dependence in time of these functions in in
Chapter 6. Combining with a specific model for the dynamics of Y (which could be a diffusion,
a discrete Markov chain, another PDMP process...) we could then understand the dynamical
landscape as the landscape resulting from the coupling of the process on Y to the PDMP process
(1.14) through these burst rate functions.

This provides for example a natural definition for knock-out potentials, fixing Y = c, c being
a constant. Such potential corresponds to the transform − logµfrozen, where µfrozen is the
stationary measure of the PDMP process (1.14) with burst rate functions kon(·, c). We emphasize
that it is exactly in that way that we have taken into account the effect of a stimulus in Part II,
considering that Y denotes the state of an hidden gene acting on the network, which is set to
1 at time t = 0. This framework can also be used for characterizing the effect of a very slow
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variable on the system. In the latter case, slow changes could be taken into account by modifying
the value of c, at rare events characterizing jumps of the slow variable from one state to another.
Interestingly, this is exactly the framework of the phenomenological process described in Chapter
2, and used in Chapter 3 for building the Gamma-mixture approximation used in the algorithm
CARDAMOM. In this simplified model, the functions kon,i are considered to be constant within
each basin, and then depends only of the slow variable characterizing the basins, which follows a
Markov chain on the discrete space of metastable basins. As shown in Theorem 10, this model
has the great advantage to have a known stationary distribution, which is a mixture of Beta
distributions (and of Gamma distributions in the bursty regime).

This framework can also be extended to mean-field rate functions, by integrating a measure ν
on the hidden variables Y . We take then:

kon,ν(x) =

∫
kon(x, y)ν(dy). (6.31)

This new rate provides a natural way to define a ”mean-field” landscape Vν(x) = − log
(
µν(x)

)
,

where µν is the stationary measure of the PDMP process (1.14) with this new burst rate function.
This framework should be particularly adapted for characterizing the effect of a fast variable on
the system, which reaches its equilibrium knowing the observed variables X at each time.

With this method, we recover the modified rate functions kαon,i in Appendix A of Chapter 3, as
the mean-field rate function associated to the phenomenological model described in Chapter 3,
Section 3. Indeed, under the current notations, we recall that this function is defined for all i by:

kαon,i(x) := E(ky,i|X = x) =

∑
y∈Y

µ(y)ky,i
∏n
j=1Gamma(kyj , cj)(x)

∑
y∈Y

µ(y)
∏n
j=1Gamma(kyj , cj)(x)

,

where µ denotes the marginal on the variable Y of the stationary distribution û of the phenomeno-
logical model. It corresponds exactly to the formula (6.31) when the density ν corresponds to
the law of density û(y|X = x), with:

û(dx, dy) = µ(y)
n∏

j=1

Gamma(kyj , cj)(x)dxdy.

We had also proved in Chapter 3 that in this case, the stationary distribution µν is a Gamma-
mixture, which corresponds to the stationary distribution of the phenomenological model. Note
that this exact correspondence between the marginal (on the continuous variable X) of stationary
distribution of a full model on (E,X, Y ) and the one of the model on (E,X) with mean-field
rate function defined by (6.31), when ν = û(y|x), is not easily generalizable.

Finally, we summarize below how the few examples we have seen in this section can be formulated
under the same formalism, and could be used to consider complex models and their relationship
to simpler models. This list should be extended according to the needs, depending on the context,
the underlying assumptions, reasonable approximations or information at disposal.

1. Taking ν(dy) = δy=c leads to a notion of knock-out landscape, that allow to take into
account disturbance that affects the whole trajectory, as knock-outs, or stimuli.

2. Taking ν(dy) = µ(d | x) the conditional stationary distribution of the hidden variables
Yt knowing the observed variables Xt leads to a definition of static landscape, see the
following section for an intuitive explanation about this terminology.
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3. Taking ν(dy) = µt(d | x), with µt the joint temporal distribution of (Xt, Yt), corresponds
to a natural definition for a transitory landscape.

The last case is the most interesting, as it could allow to directly link the time-dependent burst
rate functions obtained from entropy minimization problems to the characteristics of the hidden
processes. The two previous cases are nevertheless to be kept in mind when considering GRN
models only, as they highlight the approximation that may be not evidenced when considering a
model with specific burst rate functions. This is for example the case for the mechanistic model
of the kon functions developed in [38], that we used in Chapter 2. We believe that this general
point of view could pave the way for a methodology able to extend the model in a tractable way,
i.e adapted both to our knowledge and the nature of the available data.

Conclusion

The goal of the thesis was to develop a general framework for describing the landscape of cellular
differentiation under the hypothesis that it is shaped by an underlying GRN, and to reconstruct
it from single-cell data, when the latter is set up by biologically interpretable parameters. We
started from a mechanistic model developed in a previous thesis [36], which had been shown
to accurately reproduce the experimentally-observed distribution of gene expression products.
We adopted a different approach, investigating mathematical tools related to statistical physics
like Large deviations theory and optimal transport, that we developed for such non-diffusive
process. In terms of landscape, we used results from [25, 14] to build an approximate landscape
by computing exactly the transitions rates between the different cell types emerging from a
GRN, seen as macrostates. This led us to propose a phenomenological model, the distribution of
which is close to a mixture of Gamma distributions specific to each cell type. This simplified
model, combined to the analytical description of the approximate landscape as a function of the
GRN, has allowed us to build an efficient algorithm for reconstructing a most-likely GRN from
time-course series of gene expression datasets. Although this method contains some heuristic
arguments, and that the identifiability is not ensured, we have shown that it is able to repro-
duce accurately the characteristics of the approximate landscape inferred from experimental
observations, and then the main characteristics of gene expression dynamics. Thus, contrary to
methods for reconstructing a landscape that are purely statistical [73, 81], or based on diffusion
approximation [84, 13], our algorithm starts from a complex mechanistic model directly able to
reproduce the characteristics of single-cell data without any addition of artificial noise, and leads
to a simple statistical model where all the parameters are directly interpretable from the original
model. This is also very different from most of the methods that are used in GRN inference,
which do not consider variability in a mechanistic way, making the inferred interactions difficult
to relate to an underlying landscape of cell differentiation. One of the great advantage of our
work is that it explicitly combines GRN inference and landscape reconstruction in a single task.

Once we obtained a calibrated mechanistic model from single-cell datasets, the challenge that
naturally arose was to evaluate both the accuracy of the calibration and the model. Indeed,
even well calibrated, it may appear that the model is not adapted to the data used for the
calibration, and we should have an appropriate distance for estimating whether it is the case
or not. Following our statistical physics point of view on cellular differentiation, we used the
relative entropy for quantifying the difference between the data and the calibrated model: due
to Sanov’s theorem, the Schrödinger problem indeed appears as a natural tool for this task.
Using theoretical results of [52], we thus proposed a method for solving the Schrödinger problem
when the reference process is the model calibrated by CARDAMOM, and used the solution
for estimating the accuracy of both the calibration and the model. We observed first that this
approach seems to be well suited for estimating the accuracy of a model with respect to the
data, and interpreting its successes and limitations, but less for reconstructing the underlying
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Figure 6.6: Conceptual framework for using entropy minimization problems (or optimal transport theory
at the limit) integrating new features to the models and testing hypotheses against single-cell datasets.

landscape when we have no accurate prior knowledge on the parameters that shape it. Note
that does not contradict the works developed in [84, 47, 107]: our approach can rather be seen
as the preliminaries to a mechanistic version of them. Indeed, the authors of these works deal
with high-dimensional data, for which a mechanistic approach would be very difficult: it is then
natural for them to use a diffusion approximation of the process driving gene expression dynam-
ics, for which properties specific to the Brownian motion ensure that efficient computational
methods based on optimal transport can be used to reconstruct a landscape. To our point of
view, this non-mechanistic approach should be considered not as a complete tool for under-
standing the whole landscape complexity, but as a pre-processing step of the data allowing to
identify some characteristics of the landscape (for example, subsets of genes or subspaces of inter-
est in the gene expression space...), in order to apply in a second step mechanistic-based methods.

As illustrated in Figure 6.6, we believe that the theory of Schrödinger problems (and optimal
transport at the weak noise limit) could be efficiently used in a general framework as a validation
step of a mechanistic model when compared to single-cells datasets. The dependence in time of
the optimal characteristics of the model associated to the solution of the Schrödinger problem
could also serves as an help for modeling choices, like the way of taking into account additional
hidden processes in the burst rate functions, as discussed previously. A main advantage of this
framework is its adaptability. Indeed, it has the great advantage to allow the integration of
complex and multi-faceted information in the data, as it has been initiated for proliferation or
lineage tracing estimation in [47] and [28] respectively, when the reference process is a stochastic
diffusion. In the era of multiomics data [49, 90], this makes this theory very promising. In
particular, very recent developments in the Schrödinger problem theory concerning stochastic
processes with proliferation [7] or mean field Schrödinger problem [6] could pave the way
for developing such mathematical framework allowing to consider proliferation or cell-to-cell
communication in a mechanistic way. However, analytical and statistical methods adapted for
these new extended models, as the ones developed in Parts I and II of this manuscript for the
GRN model (1.14), should also be developed in parallel for calibration purposes.

Take-home message

The message of this thesis is double. First, we highlighted the benefits of adopting a probabilistic
point of view on gene expression dynamics, demonstrating the possibility of developing an
approach similar to what is done in statistical mechanics with models of cell differentiation
taking into account the complexity of molecular mechanisms and features like transcriptional
bursting. This is an important step in the direction of what advocated the authors of [91], that
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”more bottom-up modelling of single-cell data were needed to help attain a deeper understanding
of single-cell systems biology”, or more recently the authors of [34] that ”we are unaware of any
trajectory inference methods that explicitly parameterize the underlying stochastic model using
the Chemical Master Equation”. In particular, we developed in Part II a method which uses
metastability and Large deviations analysis for transforming the reverse-engineering problem
of a probabilistic model on a set of regression problems closely related to the learning of a
neural network. This approach has the great advantage of combining a mechanistic point of
view on gene expression with the numerical power of machine learning algorithms (but it is
worth noticing that it would probably loose its interpretability in case of too highly dimensional
problems). As this method has been developed under the hypothesis that simple rate functions
characterize the dynamics of the model, the neural network associated to the regression problems
are simple one-layer perceptron, but there would be no obstacle to extend this same method to
more complex functions (and thus networks) if the data seemed to require it.
Second, our work shed a new light on the complex notions of static and transitory landscape.
We have seen with the phenomenological model developed in Chapter 2 and used afterwards that
splitting a static landscape into simpler transitory landscapes can allow the original landscape
to be reconstructed piece by piece. This corresponds to a mathematical description in terms
of landscape of the notion of transitory states defined in Moris et al. [66] for characterizing
cell decision mechanisms during differentiation. Moreover the method developed in Chapter 6,
which allows to build an optimal time-dependent kernel from a reference process and partial
observations of a system, provides a rational for understanding the limits of a static landscape
point of view for understanding the system. It could be used to initiate a modeling work in
order to integrate this static landscape associated to the reference process into a more complex
landscape that would better explains the data. Doing this, we use the Schrödinger problem not
as a machine learning tool for inferring trajectories from high-dimensional data, as in [84], but
as a way of refining and complexifying the landscape of cell differentiation. To this end, it would
be necessary to develop modeling approaches like the one outlined in the Discussion, to link the
dynamical landscape associated to the solution of the Schrödinger problem with a bigger static
landscape integrating new dynamical processes interacting with the GRN.
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inégalités fonctionnelles”. PhD thesis. Université de Lyon, 2017.
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