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INTRODUCTION EN FRANÇAIS

Résumé. Après une présentation générale de l’inférence bayésienne et ses

méthodes, nous faisons une introduction aux deux sujets principaux de la thèse,
à savoir les échantillonneurs séquentiels par Monte-Carlo et les algorithmes de

lissage, suivie d’un résumé de nos contributions pour chacun.

1. L’inférence bayésienne et ses méthodes

1.1. La formulation du problème. Cette section présente de manière très suc-
cincte le cadre de la statistique bayésienne, en mettant l’accent sur ce qui est
nécessaire pour la suite. Pour une introduction plus complète, nous conseillons
vivement le livre de Robert (2007).

L’estimation de paramètres est un problème fondamental de la statistique. Un
paramètre θ (dont l’espace auquel il appartient est souvent noté par Θ) capture
une explication possible de la dynamique derrière la génération des données y.
Plus formellement, à chaque θ est associée une mesure de probabilité (notée soit
par Pθ, soit par pθ ou encore par p(·|θ)) définie sur l’espace des observations Y.
Très souvent, il existe une mesure λ(dy) qui domine toutes les (Pθ)θ∈Θ au sens de
Radon-Nikodym, ce qui implique, pour chaque θ, l’existence d’une densité de Pθ
par rapport à λ. Par abus de notation, la lettre p est recyclée et ladite densité est
notée pθ(y) ou encore p(y|θ).

Supposons que les données y aient été générées par un paramètre inconnu θ∗.
Deux approches principales existent pour extraire des informations sur θ∗ à partir
des données y : l’approche fréquentiste et l’approche bayésienne. Le principe phare
de la première consiste à maximiser la vraisemblance, c’est-à-dire à chercher

θ̂ := arg max
θ
pθ(y).

Ainsi, les techniques d’optimisation jouent un rôle capital dans l’approche fréquentiste.
L’incertitude est ensuite communiquée aux utilisateurs à l’aide d’un intervalle de

confiance [θ̂`, θ̂h], par ex. de niveau 95% :

Pθ∗
(

[θ̂`, θ̂h] 3 θ∗
)

= 0.95.

Malheureusement, il n’existe pas de technique universelle pour construire θ̂` et θ̂h.
On peut se baser sur des fonctions dites � pivotales � ou des théorèmes de normalité
asymptotique, mais le détail exact varie d’un problème à l’autre.

La statistique bayésienne exige une structure supplémentaire sur Θ, celle d’une
distribution de probabilité à priori π0(dθ). Elle admet plusieurs interprétations,
mais la plus courante est qu’elle représente une information dont on dispose avant
le recueil des données sur une région probable de θ∗. Si une telle information n’est
pas disponible, on prend souvent une loi à priori très générique, par ex. une loi
normale de grande variance ou une loi uniforme sur Θ si celui-ci est borné. Le
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point crucial est que désormais, (θ, y) peut être vu comme un couple de variables
aléatoires dont la loi jointe est donnée par

p(dθ,dy) := π0(dθ)p(dy|θ)
où l’on acceptera à nouveau un abus de notation. Si le modèle est dominé par une
mesure λ, la formule de Bayes implique alors

(1) p(dθ|y) =
p(y|θ)π0(dθ)

Z

où

Z =

∫
p(y|θ)π0(dθ)

est une constante de normalisation que l’on ne connâıt pas en général. A la différence
de l’inférence fréquentiste, le résultat de l’estimation n’est pas communiqué à l’usa-

ger à travers un certain θ̂, mais est donné sous la forme d’une distribution aléatoire.
Celle-ci s’appelle la distribution a posteriori et est en l’occurrence p(dθ|y). Elle a
l’avantage de prendre en compte, par construction, l’incertitude. De plus, une fois
que la distribution a priori a été choisie, la distribution a posteriori (1) est automa-
tiquement définie. Ainsi, la démarche d’inférence (au moins en principe) ne varie
pas d’un problème à l’autre, contrairement à la statistique fréquentiste. Toute la
question est donc comment échantillonner à partir de, ou calculer une espérance
par rapport à, la mesure (1).

1.2. Les méthodes d’inférence. Pour ce faire, deux familles de méthodes existent :
les méthodes exactes et les méthodes approchées. Les algorithmes de la deuxième
famille sont plus rapides, mais les garanties théoriques sont moins solides. Nous
renvoyons à Chopin and Ridgway (2017) pour un survol de la discipline du calcul
bayésien. Nous nous contentons ici de présenter deux méthodes exactes qui sont à
la base des échantillonneurs séquentiels : l’échantillonnage pondéré et la méthode
de Monte-Carlo par châıne de Markov (MCMC). Toutes les deux permettent de
calculer une espérance par rapport à une densité de probabilité calculable unique-
ment à une constante de normalisation près. Ainsi, elles sont capables d’attaquer
le problème posé par (1).

Etant donnée une distribution cible Q, l’échantillonnage pondéré simule un échantillon
X1, . . . , XN suivant une autre distribution M plus facile d’accès et approche l’espérance
d’une fonction ϕ sous Q (notée par Q(ϕ) := EQ[ϕ(X)]) via la quantité

ω(X1)ϕ(X1) + · · ·+ ω(XN )ϕ(XN )

ω(X1) + . . .+ ω(XN )

où ω(x) ∝ dQ
dM est, à une constante de normalisation près, la dérivée Radon-

Nikodym de Q par rapport à M. On peut alors dire que l’échantillon X1, . . . , XN

avec des poids ω(X1), . . . , ω(XN ) permet d’approcher la loi Q. (Si les poids ne
somment pas à 1, on fait référence implicitement aux poids normalisés obtenus en
divisant chaque terme avec la bonne constante de normalisation.) L’échantillonnage
pondéré est un algorithme standard dans toutes les références sur la méthode de
Monte-Carlo (voir par ex. Robert and Casella, 2004, Chap. 3.3 ou Chopin and
Papaspiliopoulos, 2020, Chap. 8). Ces références mentionnent systématiquement
l’effondrement de sa performance quand la dimension augmente (fléau de la di-
mension). En revanche, son avantage principal est qu’il fournit un estimateur très
simple et sans biais de la constante de normalisation

∫
ω(x)M(dx).
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La méthode MCMC permet de briser le fléau de la dimension en explorant la loi
Q de manière plus intelligente que par une loi de proposition globale M. Elle consiste
à simuler une châıne de Markov ayant Q comme la mesure invariante et se justifie
par des théorèmes ergodiques. Là encore, elle est incluse dans toutes les références
sur la méthode de Monte Carlo. L’article Roberts and Rosenthal (2004) survole
les techniques pour étudier la convergence. Nous présentons dans l’Algorithm 1 la
méthode la plus basique (Metropolis-Hastings via marche aléatoire, ou RWMH).

Algorithme 1 : Metropolis-Hastings via marche aléatoire (RWMH)

Entrées : Densité cible q : Rd → R+ ; fonction ϕ : Rd → R ; point de départ
x ∈ Rd ; matrice de covariance Σ de taille d× d de la distribution
de proposition ; nombre d’itérations N

Assigner X1 ← x

pour n← 2 à N faire
Simuler X∗n ∼ N (Xn−1,Σ)

Simuler Un ∼ Uniform[0, 1]

si Un ≤ min (1, q(X∗n)/q(Xn−1)) alors
Assigner Xn ← X∗n

sinon
Assigner Xn ← Xn−1

Output : Estimateur N−1
∑N
n=1 ϕ(Xn) de EQ[ϕ(X)]

Aujourd’hui, on utilise des algorithmes plus avancés que l’Algorithme 1, tels que
ceux basés sur la diffusion de Langevin (Roberts and Tweedie, 1996), la dynamique
hamiltonienne (Duane et al., 1987; Neal, 2011; Hoffman and Gelman, 2014) ou en-
core les processus en temps continu (Fearnhead et al., 2018). L’Algorithme 1 semble
donc bien daté, mais il souligne déjà des problèmes importants avec MCMC qui ne
sont pas encore complètement résolus. En effet, ses trois paramètres x, Σ et N cor-
respondent aux trois problèmes difficiles pour les utilisateurs de MCMC : le rodag
(burn-in), l’échelle optimale des paramètres (scaling) et le diagnostic de la conver-
gence. Nous renvoyons aux références plus spécialisées (par ex. Brooks et al., 2011)
mais nous souhaitons signaler d’ores et déjà que les échantillonneurs séquentiels
permettront d’atténuer certaines de ces difficultés. Pour terminer, nous attirons
l’attention sur une nouvelle direction dans le domaine de MCMC. Elle consiste à
chercher des algorithmes qui présentent des compromis intéressants entre perfor-
mance et robustesse, voir par ex. Livingstone and Zanella (2022); Riou-Durand and
Vogrinc (2022).

2. Les echantillonneurs séquentiels par Monte-Carlo

2.1. Les suites de distributions. Au moins deux situations en inférence bayésienne
conduisent à produire des échantillons venant d’une suite de distributions :

— quand les données y1, . . . , yD arrivent en temps réel (par ex. une donnée par
seconde) et il est nécessaire par conséquent de mettre à jour l’estimation du
paramètre θ continuellement ; et
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Figure 1. Une suite de distribution menant d’une simple gaus-
sienne à une loi multimodale. Figure extraite de Chopin and Pa-
paspiliopoulos (2020, Chapitre 3.3)

— quand on s’intéresse uniquement à une certaine loi a posteriori de θ sachant
les données y, mais le fait de passer par de distributions intermédiaires se
justifie par une meilleure performance.

Nous développons maintenant le deuxième cas. Etant donnée la distribution a pos-
teriori souhaitée

π(θ|y) ∝ π0(θ)L(y|θ)
où π0 est la distribution a priori et L est la fonction de vraisemblance, une suite
fréquemment utilisée dans la littérature (par ex. Neal, 2001) est

(2) πλt
(θ|y) ∝ π0(θ)L(y|θ)λt

où 0 < λ0 < . . . < λT = 1 est une suite de nombres réels. Plusieurs motivations
sont à l’origine de l’introduction de telles distributions intermédiaires. D’abord,
elles pourraient mieux se comporter que la loi cible (Figure 1). Ensuite, elles per-
mettent aux utilisateurs d’adapter les échantillonneurs petit à petit. Une multitude
(si ce n’est pas la totalité) d’algorithmes dépendent de paramètres d’ajustement
qui, lorsqu’ils sont mal choisis, peuvent entrâıner une réduction drastique de la
performance. On pense notamment aux algorithmes de MCMC pour lesquels une
littérature entière se consacre à la recherche d’une � échelle optimale � des pa-
ramètres (par ex. Roberts and Rosenthal, 2001; Beskos et al., 2013 ; voir aussi la
discussion en fin de la Section 1.2).

De plus, en observant de petits changements d’une distribution à l’autre, on
peut produire des estimations très précises de la constante de normalisation. On
reviendra à ce point dans la suite.

2.2. Le principe de base. Les échantillonneurs dits de Monte-Carlo séquentiel
(les échantillonneurs SMC) permettent d’attaquer la simulation à partir d’une suite
de distributions de manière particulièrement efficace. Suite à leur formalisation
(Del Moral et al., 2006), ils ont été appliqués avec succès dans plusieurs domaines
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et sur des problèmes réputés difficiles (Ridgway, 2016; Beskos et al., 2017; Buchholz
et al., 2020).

Pour apprécier les échantillonneurs SMC, il faut d’abord bien comprendre ses
deux ingrédients : l’échantillonnage pondéré et la méthode MCMC. Nous ren-
voyons à la Section 1.2 et aux références qui y figurent. Nous allons maintenant
décrire précisément les étapes d’un échantillonneur SMC. A partir d’un échantillon
X1
t−1, . . . , X

N
t−1 avec des poids normalisés W 1

t−1, . . . ,W
N
t−1 qui approche πλt−1

, on

procède à un ré-échantillonnage qui aboutit à un nouvel échantillon X
A1

t
t−1, . . . , X

AN
t

t−1

sans poids, qui suit toujours à peu près πλt−1
. Plus précisément, les indices Ant sont

tirées conditionnellement i.i.d. à partir de la loi discrète à support {1, 2, . . . , N} et à
poids W 1

t−1, . . . ,W
N
t−1. Cette loi sera notéeM(W 1:N

t−1 ). Le ré-échantillonnage a pour
avantage d’initialiser les poids, mais son inconvénient est de créer des groupes de

particules identiques. Par conséquent, les particules ré-échantillonnées X
An

t
t−1 sont

ensuite injectées dans un noyau Mt laissant invariante la loi πλt−1 , afin de produire
un échantillon de meilleure qualité. Ce noyau peut consister en plusieurs itérations
d’un noyau MCMC Kt, au bout desquelles sortent les nouvelles particules qu’on
nommera X1

t , . . . , X
N
t . C’est à ce moment que l’échantillonnage pondéré intervient

pour redonner des poids aux particules Xn
t , en vue d’en faire une approximation

de πλt . La formulation complète est donnée dans l’Algorithme 2.

Algorithme 2 : Echantillonneur SMC

Entrées : Distribution a priori π0 ; Fonction de vraisemblance L ; Exposants
0 < λ0 < . . . < λT = 1 ; Noyaux MCMC K1, . . .KT laissant
invariant respectivement πλ0

, . . . , πλT−1
; Nombre de particules N ;

Nombre d’itérations MCMC k
pour n← 1 à N faire

Simuler Xn
0 ∼ π0

Calculer ωn0 ← L(Xn
0 )λ0

Assigner `N0 ← 1/N
∑
n ω

n
0

Assigner Wn
0 ← ωn0 /N`

N
0 pour n = 1, . . . , N

pour t← 1 à T faire
pour n← 1 à N faire

Simuler Ant ∼M(W 1:N
t−1 )

Simuler Xn
t ∼ Kk

t (X
An

t
t−1, ·)

Calculer ωnt ← L(Xn
t )λt−λt−1

Assigner `Nt ← 1/N
∑
n ω

n
t

Assigner Wn
t ← ωnt /N`

N
t pour n = 1, . . . , N

Output : Estimateur
∑
Wn
T ϕ(Xn

T ) pour π(ϕ) := Eπ[ϕ(X)] ; estimateur∏T
t=1 `

N
t pour

∫
L(x)π0(dx)

2.3. L’aspect théorique. La convergence de l’Algorithme 2 quand N →∞ est ga-
rantie par une construction théorique qui s’appelle le modèle de Feynman-Kac dont
il est un cas particulier. Il s’agit d’un cadre général qui englobe les échantillonneurs
SMC mais aussi une grande variété des algorithmes dits génétiques comprenant des
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opérations de mutation ou sélection. Historiquement, ces algorithmes étaient mo-
tivés par des applications en physique ou en chimie (Rosenbluth and Rosenbluth,
1955; Hetherington, 1984) et faisaient leur apparition plus tard dans la communauté
statistique (Gordon et al., 1993; Kitagawa, 1996). De premiers résultats rigoureux
(estimation sans biais de la constante de normalisation, convergence presque sûre,
etc.) ont été publiés dans Del Moral (1997); Crisan et al. (1998), suivis par des
théorèmes de la limite centrale (Del Moral and Guionnet, 1999; Del Moral and
Miclo, 2000; Del Moral and Ledoux, 2000; Chopin, 2004).

Le lecteur intéressé trouvera une présentation complète du formalisme de Feynman-
Kac dans le livre Del Moral (2004). On se content ici de résumer les points im-
portants : l’Algorithme 2 converge presque surement, admet des théorèmes de la
limite centrale et fournit un estimateur sans biais de la constante de normalisation∫
L(x)π0(dx).
L’analyse théorique des échantillonneurs SMC doit prendre en compte, en complément

de la structure de Feynman-Kac, les propriétés des noyaux MCMC utilisés. L’in-
teraction entre l’échantillonnage pondéré et le noyau MCMC n’est pas encore to-
talement comprise, mais des travaux ont été effectués pour étudier son implication
sur le comportement de l’algorithme en grande dimension (Beskos et al., 2014) et
en régime non-asymptotique (Giraud and Del Moral, 2017).

2.4. L’aspect pratique. Deux précautions très importantes sont à prendre pour
que les échantillonneurs SMC aient de bonne performance. D’abord, il est essen-
tiel d’adapter les paramètres des noyaux MCMC à la distribution invariante. Cette
tâche, normalement ardue faute d’information suffisante sur la distribution cible,
est grandement facilitée dans le cadre des échantillonneurs SMC grâce à la dispo-
nibilité d’un échantillon pondéré suivant à peu près la loi en question. Pour dire la
même chose avec des notations, avant de déclencher le noyau Kt ayant pour distri-
bution invariante πλt−1 , on a déjà accès à un échantillon X1

t−1, . . . , X
N
t−1 pondéré

de W 1
t−1, . . . ,W

N
t−1 qui approche cette loi.

Le second point crucial est le choix de la suite 0 < λ0 < . . . < λT = 1. Le bon
sens dit qu’il ne faut pas une croissance trop rapide. Sa traduction mathématique
est une distance contrôlée entre deux distributions successives πλt−1

et πλt
. Si l’on

choisit la distance de chi-deux, une estimation empirique est donnée par

N
N∑

n=1

[(Wt)
n]2 − 1.

Cet estimateur est très proche du concept de la � taille effective � de l’échantillon
(ESS, Kong et al., 1994). La recommandation est donc de choisir les λ de manière
adaptative telle que cet estimateur prend toujours une valeur fixée, par ex. 1. Dans
le cadre des échantillonneurs SMC, cette manière de faire est devenue populaire
après l’article Jasra et al. (2011).

Pour ceux qui souhaitent mettre la main à la pâte, nous conseillons le logi-
ciel particles accompagnant le livre de Chopin and Papaspiliopoulos (2020) et
téléchargeable sur https://github.com/nchopin/particles sous la forme d’une
librairie pour Python.

Pour terminer, nous notons que malgré sa technicité, les échantillonneurs SMC
restent une alternative intéressante à la méthode MCMC pour des raisons suivantes
(Chopin and Papaspiliopoulos, 2020, Chap. 17 ; Dai et al., 2022) :

— ils peuvent être parallélisés ;
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X0 X1
. . . XT

Y0 Y1
. . . YT

Figure 2. Représentation graphique d’un modèle à espace d’états

— ils permettent d’estimer la constante de normalisation (qui joue le rôle de la
vraisemblance du modèle) ; et

— ils facilitent l’adaptation des paramètres d’ajustement des noyaux MCMC.

3. Les algorithmes de lissage

3.1. Les modèles à espace d’états. Un modèle à espace d’états est composé d’un
processus de Markov (Xt)

T
t=0 non observé et de données (Yt) qui sont grosso modo

des observations bruitées des Xt. Plus précisément, la loi de Yt sachant X0:T ne
dépend que de Xt et est supposée connue. Figure 2 décrit la relation probabiliste
entre les variables dans le langage des modèles graphiques (Bishop, 2006, Chap.
8). Cette définition étant énoncée, le problème dit de � lissage � correspond à la
question la plus naturelle : retrouver les états cachés à partir des observations.

Il est clair que ce genre de modèle a une portée applicative très large (en
biologie, économie, finance, ingénierie, etc.) : en effet, on s’y ramène dès qu’un
phénomène quelconque peut être modélisé de manière markovienne (possiblement
non homogène) et qu’on est capable de l’observer, ne serait-ce que de manière par-
tielle et bruitée ! De plus, même si un phénomène (Xt)

T
t=0 ne se passe pas forcément

de manière markovienne, on peut se permettre de mettre une loi à priori marko-
vienne au profit de l’inférence bayésienne p(x0:T |y0:T ). Nous renvoyons au Chap. 2
de Chopin and Papaspiliopoulos (2020) pour une revue détaillée des applications.

3.2. Le lissage par remontée de généalogie. Il est aisé de vérifier la récurrence
suivante

(3) p(x0:t|y0:t) ∝ p(x0:t−1|y0:t−1){p(xt|xt−1)} [p(yt|xt)]
où le terme dans l’accolade correspond à la dynamique markovienne et celui dans
le crochet à la pondération. Le filtre de Bootstrap, présenté dans l’Algorithme 3,
devrait ainsi parâıtre très naturelle une fois que l’échantillonnage pondéré (expliqué
brièvement dans la Section 2.2) a été compris. (Voir la Sous-section 2.3 pour le
contexte historique.) On notera Xt l’espace dans lequel vit l’état xt.

A chaque itération, l’Algorithme 3 � tue � certaines trajectoires et prolonge celles
encore vivantes, mais à aucun moment il ne modifie les états antérieurs d’une tra-
jectoire. Ainsi, à mesure que T →∞ et N reste fixe, toutes les trajectoires finissent
par avoir le même état au point 0. Ce phénomène s’appelle l’appauvrissement et on
dit que les trajectoires sont devenues dégénérées.

D’un point de vue légèrement différent, on peut ajouter une dernière étape de
ré-échantillonnage à l’Algorithme 3 au temps t = T pour produire N trajectoires
Ẑ1
T , . . . , Ẑ

N
T sans poids qui approchent p(x0:T |y0:T ). Dans ce cas, on peut dire que

l’Algorithme 3 produit des suites d’indices, chacune de la forme (b0, . . . , bT ) qui est
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Algorithme 3 : Une itération du filtre de Bootstrap pour approcher (3)

Entrées : N trajectoires Z1
t−1, . . . , Z

N
t−1 pondérées de W 1

t−1, . . . ,W
N
t−1 qui

approchent p(x0:t−1|y0:t−1). Chacune a pour longueur t et vit dans
X0 × . . .Xt−1.

pour n← 1 à N faire
Simuler Ant ∼M(W 1:N

t−1 )

Simuler Xn
t à partir de la dernière composante de Z

An
t

t−1 en suivant la

dynamique markovienne du temps t− 1 au temps t

Prolonger Znt−1 en Znt par l’ajout de Xn
t à sa fin

Assigner ωnt ← p(yt|Xn
t )

Assigner `Nt ← 1/N
∑
n ω

n
t

Assigner Wn
t ← ωnt /N`

N
t , pour n = 1, . . . , N

Output : N trajectoires Z1
t , . . . , Z

N
t pondérées de W 1

t , . . . ,W
N
t qui

approchent p(x0:t|y0:t)

une représentation compacte de la trajectoire zt = (Xb0
0 , . . . , X

bt
T ). Si on définit les

indices Bnt par

ẐnT = (X
Bn

0
0 , . . . , X

Bn
T

T )

alors il est facile de démontrer que

(4) Bnt−1 = A
Bn

t
t

ce qui justifie le terme � remontée de généalogie �.

3.3. Le lissage statique. Pour contrer l’appauvrissement, il est nécessaire de re-
nouveler d’une manière ou d’une autre les états antérieurs d’une trajectoire. Pour
ce faire, il est naturel de considérer

p(xt−1|xt, y0:T ) ∝ {p(xt−1|y0:t−1)} [p(xt|xt−1)] .

Le terme en accolade peut être approché par l’échantillon X1
t−1, . . . , X

N
t−1 pondéré

par W 1
t−1, . . . ,W

N
t−1 et le terme en crochet joue désormais le rôle d’une pondération.

Ainsi, au lieu d’obtenir Bnt−1 par (4), on peut simuler Bnt−1 à partir d’une loi à
support discret {1, 2, . . . N} dont la probabilité de l’élément i est

(5)
W i
t−1p(X

Bn
t

t |Xi
t−1)

∑N
j=1W

j
t−1p(X

Bn
t

t |Xj
t−1)

.

La procédure qui consiste à tourner d’abord l’Algorithme 3 puis simuler les Bnt par
(5) a été proposée par Godsill et al. (2004) sous le nom FFBS (filtrage en aval –
lissage en amont). Sa complexité est O(N2). Le point important est qu’elle forme
des trajectoires en piochant à chaque temps t une particule parmi les X1

t , . . . , X
N
t .

L’ensemble des N × (T + 1) particules (Xn
t )n=1,...,N
t=0,...,T qu’on notera par commodité

X1:N
0:T constitue ainsi la squelette de lissage.
Ensuite, Del Moral et al. (2010); Douc et al. (2011) étudient en grand détail l’al-

gorithme FFBS et démontrent ses convergence et stabilité – terme faisant référence
à sa capacité de produire des trajectoires non-dégénérées. De plus, sous l’hypothèse
p(xt|xt−1) ≤ C pour une certaine constante C, Douc et al. (2011) proposent de
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simuler (5) par l’algorithme de rejet (Robert and Casella, 2004, Chap. 2.3) en uti-
lisant pour distribution de proposition celle ayant les poids W i

t−1. Le coût de cet
algorithme (judicieusement appelé FFBS-Rejet) est alors aléatoire mais peut être
contrôlé si la densité p(xt|xt−1) est aussi bornée inférieurement par une constante
c > 0.

Enfin, remarquons que indépendamment de l’utilisation ou pas de l’échantillonnage
par rejet, le coût de cet algorithme augmente linéairement avec T , d’où la dénomination
� statique �. C’est-à-dire qu’il n’est pas convenable de l’utiliser quand les données
sont obtenues en temps réel.

3.4. Le lissage en ligne. Le lissage en ligne ne s’intéresse pas à la construction
des trajectoires stricto sensu mais à l’estimation d’une espérance par rapport à
la loi de lissage. Pour qu’elle soit faisable sans que l’on soit obligé de tout garder
en mémoire, la fonction en question doit être additive. On s’intéressera donc à la
quantité

(6) E[ψ0(X0) + ψ1(X0, X1) + . . .+ ψt(Xt−1, Xt)|Y0, Y1, . . . , Yt]

dont on limite la discussion au cas où seule la fonction ψ0 est non-triviale et les
autres ψt sont égales à la fonction nulle. Compte tenu de notre discussion ci-dessus,
l’espérance E[ψ0(X0)|Y0, . . . , YT ] admet comme estimateur

µNT := E[ψ0(XB0
0 )|X1:N

0:T ]

où, sachantX1:N
0:T , l’indiceBT suit la loiM(W 1:N

T ) et les autres sont définis récursivement
par

Bt−1|Bt:T , X1:N
0:T ∼M

(
W i
t−1p(X

Bt
t |Xi

t−1)
∑N
j=1W

j
t−1p(X

Bt
t |Xj

t−1)

)

à l’instar de (5). On voit que conditionnellement à X1:N
0:T , la suite BT , . . . , B0

est donc une châıne de Markov non-homogène dont les matrices de transition
B̂NT , . . . , B̂

N
1 sont explicitement calculables. Ainsi, la quantité µNT s’écrit

µNT =
[
W 1
T . . . WN

T

]
B̂NT . . . B̂N1



ψ0(X1

0 )
. . .

ψ0(XN
0 )


 .

Il est désormais aisé de comprendre comment elle peut se calculer en ligne à tra-
vers les quantités SNt (communément appelées les statistiques représentatives ou
summary statistics) définies par la récursion

(7)





SNt := B̂Nt S
N
t−1

SN0 :=



ψ0(X1

0 )

. . .

ψ0(XN
0 )




et la réécriture

µNT =
[
W 1
T . . . WN

T

]
SNT .

Cette façon d’approcher en ligne (6) a été présentée pour la première fois dans
Del Moral et al. (2010). Elle a pour coût O(N2), ce qui a motivé Olsson and
Westerborn (2017) à proposer une version à complexité O(N) sous réserve que
p(xt|xt−1) ≥ c > 0. Cet algorithme (baptisé l’algorithme de PaRIS) se base sur
l’échantillonnage par rejet, dans les mêmes lignes que Douc et al. (2011). Nous
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Figure 3. Représentation graphique de la réduction de
corrélation grâce à l’algorithme WFSMC (voir texte). Figure ex-
traite de Dau and Chopin (2022).

n’entrerons pas dans les détails, mais nous contentons d’évoquer l’idée principale :
le calcul de (7) est coûteux car la matrice B̂Nt est pleine. Une estimation sans

biais et creuse B̂N,PaRIS
t est alors proposée avec des simulations de Monte-Carlo

supplémentaire, qui font appel à la méthode de rejet.

4. Les contributions de la thèse

4.1. Pour un échantillonneur séquentiel sans gaspillage. La performance des
échantillonneurs SMC dépend grandement de k, le nombre d’itérations de noyaux
MCMC. Des expériences numériques (par ex. Chopin and Papaspiliopoulos, 2020,
Chap. 17) font l’état de résultats calamiteux quand k est choisi trop faible. On
observe que les valeurs optimales de k sont souvent très grandes, de l’ordre d’une
centaine (Buchholz et al., 2020) ; alors qu’une grande variété de recettes empiriques
existent pour choisir k sans qu’une procédure véritablement fiable se dégage. Au
bout des itérations, les valeurs intermédiaires des châınes de Markov ne sont pas
prises en compte. Or les itérations MCMC sont très coûteuses en temps de calcul.

Nous proposons l’échantillonneur SMC sans gaspillage (WFSMC, Dau and Cho-
pin, 2022), un algorithme libéré de ces contraintes. Au lieu de ré-échantillonner N
particules à chaque étape, on n’en conserve que M . Le reste est régénéré par N/M
itérations de M châınes MCMC en parallèle.

Une motivation alternative pour WFSMC réside dans l’étape de ré-échantillonnage,
à l’issue de laquelle une particule peut être sélectionnées plusieurs fois et donne lieu
donc à plusieurs descendants. Si le nombre de pas de MCMC est faible, ces descen-
dants seront fortement corrélés. En revanche, s’ils sont générés par des itérations
successives du noyau, on peut espérer que l’échantillon ainsi obtenu sera moins
dégénéré (Figure 3).

Au cours de la révision du papier, nous avons constaté que Tan (2015) a déjà
introduit un algorithme équivalent au nôtre. Toutefois, nous sommes les premiers
à effectuer une analyse théorique rigoureuse de ses propriétés. En construisant une
mesure appropriée sur un espace étendu, nous avons proprement exprimé l’algo-
rithme dans le langage des modèles de Feynman-Kac. Les résultats théoriques tels
que le caractère sans biais de l’estimateur de la constante de normalisation en
découlent alors naturellement. Cependant, nos expériences numériques suggèrent
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Figure 4. Comparaison de la performance de l’échantillonneur
SMC standard et notre algorithme WFSMC dans le comptage des
carrés latins (Dau and Chopin, 2022).

que le régime optimal est atteint quand M est petit et fixe alors que N → ∞.
Notre deuxième contribution est de démontrer la convergence et les théorèmes cen-
traux limites dans ce régime, ce qui nécessite de faire intervenir l’ergodicité et pas
seulement l’invariance des noyaux MCMC. Les particules intermédiaires jouent ainsi
un rôle central dans notre algorithme, alors qu’elles ne sont pas incorporées dans
l’échantillon final dans l’algorithme classique.

Plus les châınes MCMC sont longues, plus les variances des estimateurs qu’elles
donnent peuvent être estimées avec fiabilité. Basée sur les travaux précédents évaluant
l’erreur des moyennes ergodiques issues des algorithmes MCMC (Geyer, 1992; Fle-
gal and Jones, 2010), notre troisième contribution est de proposer des estimateurs
de la variance pour l’algorithme WFSMC. Nous observons qu’ils sont plus précis
que l’estimateur générique (Lee and Whiteley, 2018) qui ne prend en compte que la
structure de Feynman-Kac du modèle et passe donc à côté des propriétés spécifiques
aux noyaux MCMC. Nous utilisons également les estimateurs de la variance pour
adapter le nombre de particules N notamment quand les noyaux deviennent de plus
en plus mauvais à mesure que la température descend.

Notre quatrième contribution est de quantifier l’amélioration apportée par l’al-
gorithme WFSMC en comparaison avec les échantillonneurs SMC standard. Nous
avons démontré rigoureusement la supériorité de WFSMC dans un exemple très
simple. Nous l’avons constatée également de manière empirique à travers plusieurs
exemples numériques, mettant en jeu l’espace Rd classique mais aussi l’espace dis-
cret des carrés latins (Figure 4) ainsi qu’un modèle hors du cadre des mesures
tempérées (celui du calcul de la probabilité qu’une loi gaussienne en grande dimen-
sion se trouve dans un pavé donné).

4.2. Pour de nouveaux algorithmes de lissage plus puissants. L’échantillonnage
par rejet est censé réduire le temps d’exécution des algorithmes de lissage tout en
le rendant aléatoire. Cet aléa est contrôlé si p(xt|xt−1) ≥ c > 0 pour tout xt−1 et
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Figure 5. Box plots, pour les différents modes d’échantillonnage
par rejet, des nombres d’évaluations de la densité de transition
divisés par N dans un modèle linéaire gaussien. La performance
de la méthode classique (rejet pur) dépend fortement d’un certain
paramètre σy du modèle.

xt, mais la plupart des modèles en pratique (y compris les modèles linéaires gaus-
siens) ne satisfont pas cette hypothèse. Notre première contribution est d’étudier
précisément ce qui se passe alors. Nous montrons que le temps d’exécution peut de-
venir si aléatoire qu’il finit par ne pas avoir d’espérance, ou pas de moment d’ordre
k pour une valeur assez faible de k. Les expériences numériques montrent des temps
de calcul très variables (même après avoir étés divisés par N ×T ) qui dépendent de
manière incontrôlable des paramètres du modèle et même le type de filtrage utilisé
(le filtre Bootstrap ou le filtre guidé).

Nous proposons alors deux solutions à ce problème. La première consiste à
alterner habilement entre l’échantillonnage par rejet et l’algorithme classique ; la
deuxième remplace la simulation exacte de (5), qui est chère en terme de temps de
calcul, par un pas de MCMC gardant cette distribution invariante. Ces deux algo-
rithmes ont été présentés dans la littérature dans un cadre restreint et sans résultat
théorique (Taghavi et al., 2013; Bunch and Godsill, 2013). Nous les avons analysés
rigoureusement et nous les avons formulées pour à la fois le scénario statique et le
scénario en ligne. Notre deuxième contribution est de démontrer que l’algorithme
hybride qui abandonne la méthode de rejet au bon moment a une performance in-
termédiaire entre O(N) et O(N2). De plus, dans des modèles linéaires gaussiens, la
complexité est ramenée àO(N) à un facteur de log près. Nos expériences numériques
indiquent que l’algorithme hybride affiche un coût de calcul presque déterministe,
en comparaison avec l’imprévisibilité frappante de l’algorithme de rejet classique
(Figure 5).

Notre troisième contribution est de démontrer rigoureusement la convergence et
la stabilité quand le lissage s’effectue avec MCMC. Si la châıne de MCMC gardant
invariante (5) démarre au bon endroit (i.e. l’ancêtre généré pendant l’étape de
filtrage), nous montrons qu’un seul pas de MCMC suffit pour avoir un algorithme
de lissage convergent et stable, que ce soit statique ou en ligne.
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Notre quatrième contribution concerne des modèles dont la densité de transition
n’est pas calculable, mais la dynamique markovienne peut toujours être simulée. On
pense notamment aux diffusions discrétisées ou aux processus markoviens de saut.
Toutes les méthodes de lissage mentionnées jusqu’alors devenant caduques, nous
proposons une procédure originale basée sur le couplage. L’échec de la méthode de
remontée généalogique (Section 3.2) tient au fait que chaque particule a une seul
ancêtre. Ainsi, comme le nombre de particules N est fini, au bout d’un certain
nombre de remontées, les deux lignées ancestrales vont forcément se rencontrer,
moment à partir duquel elles se cöıncident jusqu’au temps 0. En revanche, si l’on
peut, d’une manière ou d’une autre, considérer une particule comme ayant deux
ancêtres (à l’instar des êtres humains !), ledit appauvrissement n’aura pas lieu. Bien
évidemment, dans la mesure de probabilité sur les indices engendrée par l’algorithme
FFBS, une particule peut avoir plusieurs ancêtres, mais le défi est de les générer
en temps de calcul réduit. Le problème devient encore plus dur dans le scénario
où la densité de transition est inaccessible et par conséquent, le noyau FFBS l’est
également. Dans le cadre des modèles ordinaires, l’idée de trouver deux parents a été
réalisée par l’algorithme PaRIS (Olsson and Westerborn, 2017), notamment quand

Ñ = 2. Le point original, c’est que nous l’avons transportée aux modèles ayant
une densité de transition incalculable en utilisant le couplage pendant l’étape de
filtrage. Nous avons démontré la convergence et la stabilité grâce à un cadre général
qui admet comme cas particuliers tous les algorithmes de lissage basé sur le squelette
de filtrage, y compris celui-ci. Sur le plan numérique, nous avons réussi à mettre
en œuvre le couplage des deux diffusions – tâche non triviale car la construction
théorique (Lindvall and Rogers, 1986) est rendue délicate par la discrétisation.
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WASTE-FREE SEQUENTIAL MONTE CARLO

HAI-DANG DAU & NICOLAS CHOPIN

Abstract. A standard way to move particles in an SMC sampler is to apply

several steps of an MCMC (Markov chain Monte Carlo) kernel. Unfortunately,

it is not clear how many steps need to be performed for optimal performance.
In addition, the output of the intermediate steps are discarded and thus wasted

somehow. We propose a new, waste-free SMC algorithm which uses the out-

puts of all these intermediate MCMC steps as particles. We establish that
its output is consistent and asymptotically normal. We use the expression of

the asymptotic variance to develop various insights on how to implement the

algorithm in practice. We develop in particular a method to estimate, from a
single run of the algorithm, the asymptotic variance of any particle estimate.

We show empirically, through a range of numerical examples, that waste-free
SMC tends to outperform standard SMC samplers, and especially so in sit-

uations where the mixing of the considered MCMC kernels decreases across

iterations (as in tempering or rare event problems).

1. Introduction

1.1. Background. Sequential Monte Carlo (SMC) methods are iterative stochas-
tic algorithms that approximate a sequence of probability distributions through
successive importance sampling, resampling, and Markov steps. Historically, they
were mainly used to approximate the filtering distributions of a state-space model.
More recently, they have been extended to an arbitrary sequence of probability dis-
tributions (Neal, 2001; Chopin, 2002; Del Moral et al., 2006); in such applications,
they are often called “SMC samplers”.

As an illustrative example, consider the tempering sequence:

(1) πt(dx) ∝ ν(dx)L(x)γt

based on increasing exponents, 0 = γ0 < . . . < γT = 1. This sequence may be used
to interpolate between a distribution ν(dx), which is easy to sample from, and a
distribution of interest, π(dx) ∝ ν(dx)L(x) (e.g. a Bayesian posterior distribution),
which may be difficult to simulate directly. Other sequences of interest will be
discussed later.

When used to sample from a fixed distribution (as in tempering), SMC samplers
present several advantages over MCMC (Markov chain Monte Carlo). First, they
provide an estimate of the normalising constant of the target distribution at no
extra cost; this quantity is of interest in several cases, in particular in Bayesian
model choice (e.g. Zhou et al., 2016). Second, they are easy to parallelise, as the
bulk of the computation treats the N particles independently (Lee et al., 2010).
Third, it is easy to make SMC samplers “adaptive”; that is, to use the current
particle sample to automate the choice of most of its tuning parameters. This is
often crucial for good performance.
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To elaborate on the third point, a common strategy to move the particles is to
apply a k−fold MCMC kernel that leaves the current distribution πt invariant. One
may use for instance a random walk Metropolis kernel, with the covariance of the
proposal set to a small multiple of the empirical covariance of the particle sample.
In that way, the algorithm automatically scales to the current distribution.

However, one tuning parameter of SMC samplers that is often overlooked in the
literature is the number k of MCMC steps that should be applied to move the
particles. For instance, Chopin and Ridgway (2017) set k = 3 arbitrarily in their
numerical experiments, but it turns out that this value is very sub-optimal, as we
show in our first numerical example.

A second issue with k is that there is no reason to set it to a fixed value across
iterations. In application such as tempering, πt may become more and more difficult
to explore through MCMC; thus k should be increased accordingly, and may become
very large.

To deal with these two issues, one could set k adaptively; that is, iterate MCMC
steps until a certain stability criterion is met (Drovandi and Pettitt, 2011; Kantas
et al., 2014; Ridgway, 2016; Salomone et al., 2018; Buchholz et al., 2020). However,
in our experience, these approaches are not always entirely reliable. There seems
to be a fundamental difficulty in determining, after k steps have been performed,
that this value of k is optimal, without performing several extra steps.

A third, and perhaps more essential issue, is that, if indeed large values of k are
required for good performance, the intermediate output of these k MCMC steps
are not used directly, and seems somehow wasted.

1.2. Motivation and plan. These issues motivated us to develop a waste-free
SMC algorithm that exploits the intermediate outputs of these MCMC steps; see
Section 2. The basic idea is to resample only M = N/P out of the N previous
particles, for some P ≥ 2. Then each resampled particle is moved P − 1 times
through the chosen MCMC kernel. The resampled particles and their P −1 iterates
are gathered to form a new sample of size N .

Standard results on the convergence of SMC estimates cannot be applied directly
to this new algorithm. We establish the consistency and asymptotic normality of
the output of waste-free SMC in Section 3. We also establish that wasteless SMC
dominates standard SMC in terms of asymptotic variance in a simplified scenario.

These theoretical results (in particular the expression of the asymptotic variance)
gives us various insights on how to implement waste-free SMC in practice; see
Section 4. In particular, we are able to derive variance estimates and confidence
intervals for any particle estimate, which may be computed from a single run.

To assess the performance and versatility of waste-free SMC, we perform nu-
merical experiments in three different scenarios where SMC samplers already give
state-of-the-art performance: logistic regression with a large number of predictors;
the enumeration of Latin squares; and the computation of Gaussian orthant prob-
abilities; see Section 5. In each case, waste-free SMC performs at least as well as
properly tuned SMC samplers, while requiring considerably less tuning effort.

Proofs are delegated to the appendix.

1.3. Related work. We focus on SMC samplers based on invariant (MCMC) ker-
nels. These algorithms have proved popular recently in a variety of applications,
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such as rare events (Johansen et al., 2006; Cérou et al., 2012); experimental de-
signs (Amzal et al., 2006); cross-validation (Bornn et al., 2010); variable selec-
tion (Schäfer and Chopin, 2013); graphical models (Naesseth et al., 2014); PAC-
Bayesian classification (Ridgway et al., 2014); Gaussian orthant probabilities (Ridg-
way, 2016); Bayesian model choice in hidden Markov models (Zhou et al., 2016),
and un-normalised models (Everitt et al., 2017); among others.

We note in passing that SMC samplers may be generalised to non-invariant
kernels, as shown in Del Moral et al. (2006); see also Heng et al. (2020) for how to
calibrate such kernels. On the other hand, it is also possible to add MCMC steps to
various SMC algorithms that are not SMC samplers; the idea goes back to Berzuini
et al. (1997). In particular, SMCMC (Sequential MCMC, Septier et al., 2009;
Septier and Peters, 2016; Finke et al., 2020) algorithms approximate recursively
the filtering distribution of a state-space model: each iteration t runs a MCMC
chain that leaves invariant a certain (partly discrete) approximation of the current
filter. It is not clear however how to derive a waste-free version of these algorithms,
and thus we do not consider them further.

Several improvements proposed for standard SMC samplers might be also adapted
to waste-free SMC, such as methods to combine the output of the intermediate
steps, see Beskos et al. (2017) and South et al. (2019).

Finally, Tan (2015) proposes several algorithms presented as variations of the
resample-move algorithm of Gilks and Berzuini (2001); one of them (generalized
resample-move) is essentially equivalent to waste-free SMC in the context of temper-
ing (with fixed temperatures). Note however that this paper gives little theoretical
guidance on why the algorithm should work better than alternatives, on how to
choose M and P (for a given N), and so on. Also, its numerical experiment does
not use calibrated MCMC kernels, although, in our experience, using such kernels
has a dramatic impact on performance.

2. Proposed algorithm

2.1. Notations. Throughout the paper, (X ,X) stands for a measurable space, and
ϕ : X → R for a measurable function; let ‖ϕ‖∞ := supx∈X |ϕ(x)| (supremum
norm). The expectation of ϕ(X) when X ∼ π(dx) is denoted by π(ϕ); i.e. π(ϕ) :=∫
ϕ(x)π(dx). Recall that a Markov kernel K(x, dy) is a map K : X × X → [0, 1]

such that x → K(x,A) is measurable in x, for any A ∈ X; and A → K(x,A) is
a probability measure (on (X ,X)), for any x ∈ X . We use the following standard
notations for the integral operators associated to Markov kernel K: πK is the
distribution such that πK(A) =

∫
X π(dx)K(x,A), and K(ϕ) is the function x →∫

X K(x,dy)ϕ(y), for ϕ : X → R.
Symbol ⇒ means convergence in distribution, and ‖·‖TV stands for the total

variation norm, ‖µ− ν‖TV = supA∈X |µ(A)− ν(A)|.

2.2. A generic SMC sampler. We consider a generic sequence of target proba-
bility distributions of the form (for t = 0, 1, . . . , T ):

(2) πt(dx) =
1

Lt
γt(x)ν(dx)

where ν(dx) is a probability measure, with respect to measurable space (X ,X), γt
is a measurable, non-negative function, and Lt :=

∫
X γt(x)ν(dx), the normalising

constant, is assumed to be properly defined, i.e. 0 < Lt < ∞. In the tempering
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scenario mentioned in the introduction, γt(x) = L(x)γt , for certain exponents γt.
Other interesting scenarios include data tempering (sequential learning), where x
represents a parameter, ν(dx) its prior distribution, and γt(x) is the likelihood of
data-points y0, . . . , yt; rare-event simulation (and likelihood-free inference), where
γt(x) = 1Et(x), the indicator function of nested sets E0 ⊃ E1 ⊃ . . .; among others.
See e.g. Chapter 3 of Chopin and Papaspiliopoulos (2020) for a review of common
applications of SMC samplers, and the sequence of target distributions arising in
these applications.

One way to track the sequence πt would be to perform sequential importance
sampling: sample particles (random variates) from the initial distribution ν(dx),
then reweight them sequentially according to weight functionGt(x) := γt(x)/γt−1(x)
(for t ≥ 1, and G0(x) := γ0(x)). In most applications however, the weights degen-
erate quickly, making this naive approach useless.

SMC samplers alternate such reweighting steps with resampling and Markov
steps. For the latter, we introduce Markov kernels Mt(xt−1,dxt) which leave in-
variant the target distributions: πt−1Mt = πt−1 for t ≥ 1. It is easy to check that
the sequence of Feynman-Kac distributions (for t = 0, . . . , T ) defined as:

(3) Qt(dx0:t) =
1

Lt
ν(dx0)

t∏

s=1

Ms(xs−1,dxs)
t∏

s=0

Gs(xs)

is such that the marginal distribution of variable Xt (with respect to Qt) is πt.
We call Feynman-Kac model the set of the components that define this sequence of
distributions, that is, the initial distribution ν, the kernels Mt, t = 1, . . . , T , and the
functions Gt, t = 0, . . . , T . For more background on Feynman-Kac distributions,
see e.g. Del Moral (2004).

Algorithm 1 recalls the structure of an SMC sampler that corresponds to this
Feynman-Kac model; and in particular which targets at each iteration t distribution
πt. It takes as inputs: N , the number of particles, the considered Feynman-Kac
model, and the chosen resampling scheme (function resample). Several resampling
schemes exist. In this paper, we focus for simplicity on multinomial resampling,
which generates ancestor variables Ant independently from the categorical distribu-
tion that generates label m with probability Wm

t .

At any iteration t, quantity
∑N
n=1W

n
t ϕ(Xn

t ) is an estimate of the expectation

πt(ϕ), for ϕ : X → R, and quantity LNt :=
∏t
s=0 `

N
s , where `Ns := N−1

∑N
n=1 w

n
s ,

is an estimate of the normalising constant Lt. These estimates are consistent and
asymptotically normal (as N → +∞) under general conditions.

2.3. Note on the generality of Algorithm 1. While generic, Algorithm 1 is a
simplified version of most practical SMC samplers. In particular, we have stressed
in the introduction the importance of making SMC samplers adaptive; that is, to
adapt both the distributions πt and the Markov kernels Mt on the fly. This means
that these quantities may depend on the current particle sample. For simplicity,
our notations do not account for this. We will see later that similar adaptation
tricks may be developed for waste-free SMC.

Another interesting generalisation is when the state space X evolves over time; in
particular when its dimension increases. This happens for instance when performing
sequential inference on a model involving latent variables. The ideas developed in
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Algorithm 1: Generic SMC sampler

Input: Integer N ≥ 1, a Feynman-Kac model (initial distribution ν(dx),
functions Gt, Markov kernels Mt)

for t← 0 to T do
if t = 0 then

for n = 1 to N do
Xn

0 ∼ ν(dx0)

else
A1:N
t ∼ resample(N,W 1:N

t−1 )

for n = 1 to N do

Xn
t ∼Mt(X

Ant
t−1,dxt)

for n← 1 to N do
wnt ← Gt(X

n
t )

for n← 1 to N do

Wn
t ← wnt /

∑N
m=1 w

m
t

this paper may easily be adapted to this scenario, as we shall see in our third
numerical example. For the sake of exposition, however, we focus on the fixed state
space case.

2.4. Proposed algorithm: waste-free SMC. The idea behind waste-free SMC
is to resample only M ancestors, with M � N . Then each of these ancestors is
moved P − 1 times through Markov kernel Mt. The resulting M chains of length
P are then put together to form a new particle sample, of size N = MP . See
Algorithm 2.

The output of the algorithm may be used exactly in the same way as for standard

SMC: e.g.
∑N
n=1W

n
t ϕ(Xn

t ) is an estimate of πt(ϕ).
To get some intuition why waste-free SMC may be a valid and interesting alter-

native to standard SMC, consider at time t − 1 a fictitious particle Xn
t−1, whose

weight Wn
t−1 is large. In a standard SMC sampler, this particle is selected many

times as an ancestor for the Markov step. Then, if Mt mixes poorly, its many
children will be strongly correlated.

On the other hand, in waste-less SMC, provided that M � N , the particle Xn
t−1

is selected a much smaller number of times; each time it is selected, P successive
variables are introduced in the sample. By construction, two such variables should
be less correlated than if they had the same ancestor (as in standard SMC); see
Figure 1 for a graphical representation of this idea.

Another insight is provided by chaos propagation theory (Del Moral, 2004, Chap.
8), which says that, when M � N , M resampled particles behave essentially like
M independent variables that follows the current target distribution. Thus, in a
certain asymptotic regime, we expect the particle sample to behave like the variables
of M independent, stationary Markov chains, of length P .

Before backing these intuitions with a proper analysis, we provide a last insight
regarding the underlying structure of waste-free SMC.
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Algorithm 2: Waste-free SMC sampler

Input: Integers M,P ≥ 1 (let N ←MP ), a Feynman-Kac model (initial
distribution ν(dx), functions Gt, Markov kernels Mt)

for t← 0 to T do
if t = 0 then

for n← 1 to N do
Xn

0 ∼ ν(dx0)

else
A1:M
t ∼ resample(M,W 1:N

t−1 )

for m← 1 to M do

X̃m,1
t ← X

Amt
t−1

for p← 2 to P do

X̃m,p
t ←Mt(X̃

m,p−1
t ,dxt)

Gather variables X̃m,p
t so as to form new sample X1:N

t

for n← 1 to N do
wnt ← Gt(X

n
t )

for n← 1 to N do

Wn
t ← wnt /

∑N
m=1 w

m
t

Figure 1. Pictorial representation of dependencies in standard
SMC and waste-free SMC. Left: in standard SMC, an ancestor
generates 3 children for the next iteration. Right: in waste-free
SMC, the same ancestor generates itself, one child, and one grand-
child. Each arrow corresponds to one transition through kernel
Mt.

2.5. Feynman-Kac model associated with waste-free SMC. Algorithm 2
may be cast as a standard SMC sampler that propagates and reweights parti-
cles that are Markov chains of length P . The components of the corresponding
Feynman-Kac model may be defined as follows. Assume P ≥ 1 is fixed. Let
Z = XP , and, for z ∈ Z, denote component p as z[p]: z = (z[1], . . . , z[P ]). Then
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define the potential functions as:

(4) Gwf
t (z) :=

1

P

P∑

p=1

Gt(z[p])

the initial distribution as: νwf(dz) :=
∏P
p=1 ν(dz[p]), and the Markov kernels as:

(5) Mwf
t (zt−1,dzt) :=
{

P∑

p=1

Gt−1(zt−1[p])
∑P
q=1Gt−1(zt−1[q])

×Mt(zt−1[p],dzt[1])

}
P∏

p=2

Mt(zt[p− 1],dzt[p]).

The following proposition explains how this waste-free Feynman-Kac model re-
lates to the initial Feynman-Kac model of Algorithm 1.

Proposition 1. The Feynman-Kac model associated with initial distribution νwf ,
Markov kernels Mwf

t , and functions Gwf
t , that is, the sequence of distributions:

Qwf
t (dz0:t) =

1

Lwf
t

νwf(dz0)
t∏

s=1

Mwf
s (zs−1,dzs)

t∏

s=0

Gwf
s (zs)

where Lwf
t is a normalising constant, is such that:

• Lwf
t = Lt, the normalising constant of (2) and (3);

• Qwf
t (dzt) is the distribution of a stationary Markov chain of size P whose

Markov kernel is Mt (and thus whose initial distribution is πt):

Qwf
t (dzt) = πt(dzt[1])

P∏

p=2

Mt(zt[p− 1],dzt[p]).

We can now interpret Algorithm 2 as an instance of Algorithm 1 where the
number of particles is M , and the underlying Feynman-Kac model is defined as
above. In particular, consider how Algorithm 1 would operate if applied to that
Feynman-Kac model. At time t, it would select randomly an ancestor zt−1 (a chain

of length P ), with probability ∝ ∑P
p=1Gt−1(zt−1[p]). Then, when kernel Mwf

t is
applied to this chain, one component would be selected randomly, with probability

Gt−1(zt−1[p])/
∑P
q=1Gt−1(zt−1[q]). Thus, this particular component would be used

as a starting point of the subsequent chain with probability ∝ Gt−1(zt−1[p]). This
is precisely what is done in Algorithm 2.

This interpretation of waste-free SMC as a standard SMC sampler makes it
easy to derive several of its properties; for instance, regarding its estimates of the
normalising constants.

Proposition 2. At iteration t ≥ 0 of Algorithm 2 , the quantity

(6) LNt :=
t∏

s=0

`Ns , where `Ns :=
1

N

N∑

n=1

Gs(X
n
s )

is an unbiased estimate of Lt, the normalising constant of target distribution πt, as
defined in (2).

For a proof, see Section A.1 in the Appendix.
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This proposition is a small variation over the well known result of (Del Moral,
1996) that, in a standard SMC sampler, the estimate of the normalising constant
estimate is unbiased.

We can also use the interpretation of waste-free SMC as a standard SMC sampler
to derive asymptotic results.

Proposition 3. For P ≥ 1 fixed, and ϕ : X → R measurable and bounded, the
output of Algorithm 2 at time t ≥ 0 is such that

√
N

(
1

N

N∑

n=1

ϕ(Xn
t )− πt−1(ϕ)

)
⇒ N

(
0, ṼPt (ϕ)

)
(7)

√
N

(
N∑

n=1

Wn
t ϕ(Xn

t )− πt(ϕ)

)
⇒ N

(
0,VPt (ϕ)

)
(8)

as M → +∞, N = MP , where πt−1 means ν in (7) when t = 0, ṼP0 (ϕ) := Varν(ϕ),

ṼPt (ϕ) := VPt−1(M̄P
t ϕ) + vP (Mt, ϕ), t ≥ 1,(9)

VPt (ϕ) := ṼPt
(
Ḡt(ϕ− πtϕ)

)
, t ≥ 0,(10)

Ḡt := Gt/`t, M̄
P
t = P−1

∑P
p=1M

p−1
t ,

vP (Mt, ϕ) := Var

(
1√
P

P−1∑

p=0

ϕ(Yp)

)

and (Yp)p≥0 stands for a stationary Markov chain with kernel Mt (i.e. Y0 ∼ πt).

This proposition is stated without proof, as it amounts to applying known cen-
tral limit theorems (see Chapter 11 of Chopin and Papaspiliopoulos, 2020, and
references therein) for SMC estimates to the waste-free Feynman-Kac model men-
tioned above. Notice how the asymptotic variances depend on P in a non-trivial
way. This suggests that the fixed P regime is not very convenient; in particular it
is not clear how to choose P for optimal performance. If we take P → +∞, we
expect the first term of (9) to go to zero, and the second term to converge to the
asymptotic variance of kernel Mt. This suggests, at the very least, that taking P
large may often be reasonable. The next section studies the asymptotic behaviour
of the algorithm as P → +∞.

3. Convergence as P → +∞
3.1. Assumptions. This section is concerned with the behaviour of waste-free
SMC in the “long-chain” regime, that is, when P → +∞, while M is either fixed
or may grow with P at some rate. We start by remarking that this regime requires
some assumption on the mixing of the Markov kernels Mt. Indeed, assume that Mt

is the identity kernel: Mt(xt−1,dxt) = δxt−1
(dxt). In that case, at time 1, one has:

1

N

N∑

n=1

ϕ(Xn
1 ) =

1

M

M∑

m=1

ϕ(X
Am0
0 )

since the P particles X̃m,p
t are identical for a given m. The variance of this quantity

should be O(M−1), and cannot go to zero if M is kept fixed.
We thus consider the following assumptions.

28



Assumption (M). The Markov kernels Mt are uniformly ergodic, that is, there
exist constants Ct ≥ 0 and ρt ∈ [0, 1[ such that,

∥∥Mk
t (xt−1,dxt)− πt−1(dxt)

∥∥
TV
≤ Ctρkt , ∀xt−1 ∈ X , k ≥ 1.

Assumption (G). The functions Gt are upper-bounded, Gt(x) ≤ Dt for some
Dt > 0 and all x ∈ X .

Ergodic Markov kernels in an SMC sampler was also considered in Beskos et al.
(2014) in order to study the behaviour of the algorithm as the dimension of the
state space gets high.

3.2. Non-asymptotic bound. We first state a non-asymptotic result.

Proposition 4. Under Assumptions (M) and (G), there exist constants ct and
c′t such that the following inequalities apply to the output of iteration t ≥ 0 of
Algorithm 2, for any M,P ≥ 1, and any bounded function ϕ : X → R:

E

{
1

N

N∑

n=1

ϕ(Xn
t )− πt−1(ϕ)

}2

≤ ct
‖ϕ‖2∞
N

(11)

E

{
N∑

n=1

Wn
t ϕ(Xn

t )− πt(ϕ)

}2

≤ c′t
‖ϕ‖2∞
N

(12)

where πt−1 means ν in (11) at time t = 0.

For a proof, see Section A.2 of the Appendix.
The constants ct and c′t are not sharp. However, this result remains interesting, in

that it shows that waste-free SMC is consistent (in L2 norm, and thus in probability)
whenever N = MP → +∞, that is, whenever P → +∞, or M → +∞, or both
simultaneously, possibly at different rates.

3.3. Central limit theorems. We now state a central limit theorem for the long
chain regime.

Theorem 1. Under Assumptions (M) and (G), for M = M(P ) = O(Pα), α ≥ 0
(i.e. M is either fixed or grows with P at a certain rate) and ϕ : X → R measurable
and bounded, one has at any time t ≥ 0

√
N

(
1

N

N∑

n=1

ϕ(Xn
t )− πt−1(ϕ)

)
⇒ N

(
0, Ṽt(ϕ)

)
(13)

√
N

(
N∑

n=1

Wn
t ϕ(Xn

t )− πt(ϕ)

)
⇒ N (0,Vt(ϕ))(14)

as P →∞ (or equivalently as N →∞, since N = MP ), where πt−1 in (13) means

ν at time t = 0, Ṽ0(ϕ) = Varν(ϕ),

Ṽt(ϕ) := v∞(Mt, ϕ) := Var (ϕ(Y0)) + 2
∞∑

p=1

Cov (ϕ(Y0), ϕ(Yp)) , t ≥ 1,(15)

Vt(ϕ) := Ṽt
(
Ḡt(ϕ− πtϕ)

)
, t ≥ 0,(16)

and (Yp)p≥0 stands for a stationary Markov chain with kernel Mt (hence Y0 ∼ πt).
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For a proof, see Section A.3 in the Appendix.
The most striking feature of the asymptotic variances above is that they depend

only on the current time step t; in standard CLTs for SMC algorithms, these quan-
tities are a sum of terms depending on all the previous time steps. More precisely,

v∞(Mt, ϕ) is the asymptotic variance of an average P−1
∑P
p=1 ϕ(Yp) obtained from

a single stationary Markov chain with kernel Mt. Equation (15) shows that the
N particles Xn

t behave like M independent, ‘long’ Markov chains. This simple
interpretation will make it possible to construct estimates of the asymptotic vari-
ances above; see Section 4.3. We also note that these asymptotic variances do not
depend on M (when M is fixed), or its growth rate (when M = O(Pα), α > 0).
This suggests that the performance of the algorithm should depend weakly on the
actual value of M , provided M � N .

We now consider a similar result for the normalising constant estimates that may
be obtained from Algorithm 2.

Theorem 2. Under Assumptions (M) and (G), for M = O(Pα), α ∈ [0, 1) (i.e.
either M is fixed, or M grows sub-linearly with P ), and ϕ : X → R measurable and
bounded, one has at time t ≥ 0:

(17)
√
N
(
logLNt − logLt

)
⇒ N

(
0,

t∑

s=0

v∞(Ms, Ḡs)

)

as P →∞ (or equivalently as N →∞ since N = MP ).

For a proof, see Section A.4 in the Appendix.
The theorem above puts a stronger constraint on M ; i.e. it requires M � P ,

and thus M � N1/2 (while Theorem 1 requires only M � N).
Note that

logLNt − logLt =
t∑

s=0

(
log `Ns − log `s

)
, where `Ns =

1

N

N∑

n=1

Gs(X
n
s ),

and we could already deduce from (13) and the delta-method that
√
N
(
log `Ns − log `s

)
⇒ N

(
0, v∞(Ms, Ḡs)

)
.

Thus, (17) suggests that the error terms in this decomposition are nearly in-
dependent. Again, we shall use this interpretation to derive an estimate of the
asymptotic variance of LNt .

3.4. Comparing the asymptotic variances of standard and waste-free SMC.
In this sub-section, we use the previous results to compare formally the performance
of standard SMC and waste-free SMC in an artificial example.

Let At, t = 0, 1, . . . be a sequence of subsets of X such that A0 ⊃ A1 ⊃ . . . and
ν(At) = rt for some r < 1, and some initial distribution ν. Consider the Feynman-
Kac distributions such that Gt(xt) = 1At(xt) and Mt = Kk

t , i.e. the k−fold kernel
such that Kt(x,B) = (1− p)1B(x) + pπt−1(B) for some 0 < p < 1. (In words, with
probability p, do not move, with probability 1− p, sample exactly from the current
target.)

A standard SMC sampler applied to this problem will fulfil a CLT of the form:

√
N

(
N∑

n=1

Wn
t ϕ(Xn

t )− πt(ϕ)

)
⇒ N

(
0,Vstd,k

t (ϕ)
)

;

30



see (31) in the proof of Proposition 5 for an expression for Vstd,k
t (ϕ) and e.g. Chapter

11 of Chopin and Papaspiliopoulos (2020) for more details. Define the ‘inflation
factor’ (relative error) for standard SMC to be:

IFstd,k
t (ϕ) :=

Vstd,k
t (ϕ)

Varπt(ϕ)
.

For waste-free SMC, we take k = 1, i.e. Mt = Kt, and define similarly its

inflation factor to be IFwf
t (ϕ) :=

Vwf
t (ϕ)

Varπt (ϕ)
, where Vwf

t (ϕ) is the asymptotic variance

defined in Theorem 1.

Proposition 5. For the model considered above, let k0 := log r/2 log(1− p), then

(1) The quantities IFstd,k
t (ϕ) and IFwf

t (ϕ) do not depend on ϕ.

(2) For the standard SMC sampler, the inflation factor IFstd,k
t is stable with

respect to t if and only if k ≥ k0. If k < k0 however, IFstd,k
t explodes

exponentially with t.

(3) For the waste-free SMC sampler, IFwf
t is stable with respect to t and is

always equal to 1
r

(
2
p − 1

)
.

(4) For any choice of k, we have

lim
t→∞

IFwf
t

k IFstd,k
t

≤ 4.

For a proof, see Section A.5 in the Appendix.
In words, the performance of standard SMC may deteriorate very quickly when-

ever the number of MCMC steps, k, is set to a too small value. On the other
hand, up to small factor, waste-free SMC provides the same level of performance
as standard SMC based on a well chosen value for k.

Of course, these statements are proven here for a specific example; however, our
numerical experiments (Section 5) suggest they apply more generally.

4. Practical considerations

4.1. Choice of M . By default, we recommend to take M � N , first, because our
previous results indicate that, within this regime, performance should be robust
to the precise value of M ; and, second, because we observe empirically that this
regime usually leads to best performance (i.e. lowest variance for a given CPU
budget). See our numerical experiments in Section 5.

On parallel hardware, we recommend to take M equal to, or larger than the
number of processors, as it is easy to divide the computational load of each iteration
of Algorithm 2 into M independent tasks.

4.2. Choice of kernels Mt. As discussed in the introduction, a standard practice
is to set Mt to be a k−fold Metropolis kernel, whose proposal is calibrated on
the current particle sample; e.g. for a random walk proposal, set the covariance
matrix of the proposal to a certain fraction of the empirical covariance matrix of
the particles.

This type of recipe may be used within waste-free SMC, with one important
twist. Contrary to standard SMC, we recommend to always take k = 1. This
recommendation is based on the following thinning argument. We know from
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MCMC theory that thinning (subsampling) an MCMC chain is generally detrimen-
tal: Geyer (1992, Theorem 3.3) shows that kv∞(Mk

t , ϕ) > v∞(Mt, ϕ) (provided
Mt is reversible and irreducible). In words, between two estimates computed from
the same long chain, one using all the samples, and the other using only one every
other k-sample, the former will have a lower variance (asymptotically, as the length
of the chain goes to infinity).

The same remark applies to waste-free SMC: if we compare a waste-free SMC
sampler with N particles, and Markov kernels Mt = Kk

t , for a certain Kt, with the
same algorithm with kN particles, and kernels Mt = Kt, then the latter will have
(asymptotically) lower variance, given the expression of the asymptotic variances
in Theorem 1.

As announced in the introduction, we see therefore that waste-free SMC is indeed
more economical than standard SMC, as it is able to exploit all the intermediate
steps of a given MCMC kernel (while standard SMC often requires to take k � 1
for optimal performance).

4.3. Variance estimation from a single run. As explained below Theorem 1,
the output of waste-free SMC at time t behaves asymptotically like M independent,
stationary chains of size P . Thus, to estimate the asymptotic variance Ṽt(ϕ) =

v∞(Mt, ϕ) in (13), we propose the following ‘M -chain estimate’. Denote by γM,P
t,q

the empirical autocovariance of order q ∈ {0, 1, . . . , p− 1} computed from the M
chains:

γM,P
t,q :=

1

MP

M∑

m=1

P−q∑

p=1

[
ϕ(X̃m,p

t )− µM,P
t (ϕ)

] [
ϕ(X̃m,p+q

t )− µM,P
t (ϕ)

]

where µM,P
t (ϕ) := N−1

∑M
m=1

∑P
p=1 ϕ(X̃m,p

t ) is the empirical mean. Then, the
estimator is defined as

ṼM,P
t (ϕ) := ψP

(
γM,P
t,0 (ϕ), . . . , γM,P

t,P−1(ϕ)
)

where ψP : RP → R is a certain estimator of the asymptotic variance v∞(Mt, ϕ)
based on the autocorrelations of a single chain of length P .

Several such single-chain estimators ψP have been proposed in the literature, see
e.g. the introduction of Flegal and Jones (2010). In our experiments, we found the
initial monotone sequence estimator of Geyer (1992) to be a convenient default, as
it is simple to use (no tuning parameter), and it seems to work well. Note however
that this estimator is based on a property which is specific to reversible kernels
(namely that sums of adjacent pairs of autocovariance form a decreasing sequence).
When the chosen kernels Mt are not reversible, one may consider an alternative
estimator; see our third numerical experiment (Section 5) for more discussion on
this point.

To estimate Vt(ϕ) = Ṽt(Gt(ϕ − Qt(ϕ))), we use the same approach with ϕ re-

placed by Gt(ϕ − QNt (ϕ)), QNt (ϕ) =
∑N
n=1W

n
t ϕ(Xn

t ). Similarly, to estimate each
term in the asymptotic variance of the log normalising constant, (17), we replace
Ḡt = Gt/`t by Gt/`

N
t .

We note that there is an alternative approach to obtain variance estimates from
a single run of waste-free SMC. It consists in (a) casting waste-free SMC as a
standard SMC sampler, as we did in Section 2.5 (taking P fixed); and (b) to apply
the method of Lee and Whiteley (2018), see also Chan and Lai (2013), Olsson
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and Douc (2019) and Du and Guyader (2019), for obtaining variance estimates
from SMC outputs. This method relies on genealogy tracking (i.e. tracking the
ancestors at time 0 of each current particle).

This alternative approach has two drawbacks however. First, it relies on the
fixed P regime, while, as already said, we recommend by default to run waste-free
SMC in the P → +∞ regime, i.e. by taking M � N . Second, the method of Lee
and Whiteley (2018) degenerates as soon as the number of common ancestors of
the N particle drops to one; something which tends to occur quickly as t increases.

One may mitigate the degeneracy by tracking the genealogy only up to time t−l,
for a certain lag value l, as recommended by Olsson and Douc (2019). However this
introduces a bias, and choosing l is non-trivial.

We will compare both approaches in the numerical experiments of Section 5.

4.4. On-line adaptation of P . In certain applications, the mixing of kernels Mt

may vary wildly with t; for instance, for a tempering sequence, the mixing of Mt

may deteriorate over time. The second numerical example in Section 5 illustrates
this phenomenon.

In such a case, it makes sense to adjust the computational effort to the mixing of
the chain. That is, at time t, take P = Pt so that the variance of estimates computed
at time t stay of the same order of magnitude. In practice, we found the following
strategy to work reasonably well: at iteration t, adjust Pt so that it exceeds κ times
the auto-correlation time of kernel Mt, i.e. the quantity v∞(Mt, ϕ)/2Varπt(ϕ) for
a certain constant κ ≥ 1, and a certain function ϕ, as estimated from the current
sample (which consists of M chains of length Pt). In our simulations, we took
ϕ = logGt, and κ between 2 and 10. To adjust Pt, we set it to an initial value,
then we doubled it until the requirement was met.

The main drawback of this adaptive approach is that it makes the CPU time of
the algorithm random, which is less convenient for the user. On the other hand,
it seems to present two advantages, as observed in our experiments (see second
example in Section 5): (a) it avoids the poor performance one obtains by taking a
value for P that is too small for certain iterations t; and (b) it makes the variance
estimates more robust in this type of scenario.

5. Numerical experiments

In this section, we evaluate the performance of waste-free SMC in a variety of
challenging scenarios, covering different types of state-spaces (continuous or dis-
crete, with a fixed or an increasing dimension), of sequence of target distributions
(based on tempering or something else), and of MCMC kernels (Metropolis or
Gibbs). In each example, standard SMC is known to be a competitive approach,
and we assess in particular how waste-free SMC may improve on the performance
of standard SMC.

5.1. Logistic regression. We consider the problem of sampling from, and com-
puting the normalising constant of, the posterior distribution of a logistic regression
model, based on data (yi, zi) ∈ {−1, 1} × Rp, parameter x ∈ Rp, and likelihood

L(x) =

nD∏

i=1

F (yix
T zi), F (x) =

1

1 + e−x
.
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Figure 2. Logistic regression: estimates of the normalising con-
stant obtained from waste-free SMC (N = 2 × 105) and standard
SMC (N = 2× 105/k).

We consider the sonar dataset (available in the UCI machine learning repository),
which is one of the more challenging datasets considered in Chopin and Ridgway
(2017), and for which SMC tempering is one of the competitive alternatives (and
the only one that may be used to estimate the marginal likelihood). Following
standard practice, each predictor is rescaled to have mean 0 and standard deviation
0.5; an intercept is added; the dimension of X is then p = 63. The prior is an
independent product of centred normal distributions, with standard deviation 20
for the intercept, 5 for other coordinates.

We compare the performance of standard SMC and waste-free SMC when applied
to the tempering sequence πt(dx) ∝ ν(dx)L(x)γt . In both cases, the tempering
exponents are set automatically (using Brent’s method) so that the ESS of each
importance sampling step equals αN , and the Markov kernel Mt is a k-fold random
walk Metropolis kernel calibrated to the resampled particles (see Section 4.2). For
waste-free, we always take k = 1 (as per the thinning argument of the same Section).
We take α = 1/2 here; see the supplement for results with other values of α.

Figure 2 plots box-plots of estimates of the log of the normalising constant of
the posterior obtained from 100 independent runs of standard SMC, for k = 5, 20,
100, 500, and 1000 and waste-free SMC for k = 1, and M = 50, 100, 200, 400
and 800. The number of particles is set to N = N0/k, with N0 = 2× 105, so that
all algorithms have roughly the same CPU cost. (For waste-free, P is adjusted
accordingly, i.e. P = N/M , with N = 2 × 105.) Figure 3 does the same for the
estimate of the posterior expectation of the mean of all components of x, namely
πT (ϕ) with ϕ(x) := p−1

∑p
s=1 xs for x ∈ Rp.

These figures deserve several comments. First, waste-free seems to perform best
in the “long chain” regime, when M � N . Second, within this regime, the perfor-
mance seems robust to the choice of M ; notice how the same level of performance
is obtained whether M = 50 or M = 400 (similar performance is also obtained for
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Figure 3. Same plot as Figure 2 for the estimate of the posterior
expectation of the mean of all coordinates.

M < 50, results not shown. We focused on M ≥ 50 for reasons related to parallel
hardware as discussed in Section 4.1.) Third, in contrast, it seems difficult to choose
k to obtain optimal performance; notice in particular that Figure 3 suggests to take
k = 100, but, for this value of k, the estimate of the log-normalising constant seems
biased, see Figure 2. (Interestingly, we observed such an upward bias for all values
of k when we ran standard SMC for a smaller value of N , N = 105; hence stan-
dard SMC seems also slightly less robust to the choice of N ; results not shown.)
Fourth, and perhaps most importantly, we are able to obtain better performance
from waste-free SMC for a given CPU budget.

We now evaluate the performance of the variance estimates discussed in Sec-
tion 4.3. Figure 4 shows box-plots of these estimates obtained from 100 runs of
waste-free SMC, for N = 2 × 105 and M = 50: the M−chain estimate advocated
in Section 4.3; the estimate of Olsson and Douc (2019), with a lag of 3 (the biased,
but more stable version of Lee and Whiteley (2018), as explained in Section 4.3)
and finally, the empirical variance over 10 independent runs. All these variance
estimates are re-scaled by the same factor, such that the empirical variance over
the 100 runs equals one. (Other values for the lag in the method of Olsson and
Douc (2019) did not seem to give better results.)

Clearly, the M−chain estimator is more satisfactory, as it performs better (espe-
cially for the normalising constant, left plot) than the empirical variance, although
being computed from a single run. On the other hand, the approach of Lee and
Whiteley (2018) performs poorly. To be fair, this approach works more reasonably
if we increase significantly M (results not shown), but since taking M too large de-
creases the performance of the algorithm, it seems fair to state that this approach
is not useful for waste-free SMC, at least in this example.

5.2. Latin squares. Our second example concerns the enumeration of Latin squares
of size d; that is, d× d matrices with entries in {0, . . . , d− 1}, and such that each
integer in that range appears exactly once in each row and in each column; see
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Figure 4. Logistic regression: box-plots of variance estimates
over 100 runs obtained with waste-free SMC. Left: variance of the
log-normalising constant estimate. Right: variance of the mean of
all coefficients estimate. The variance estimates are re-scaled so
that the empirical variance over the 100 runs equals one; see text
for more details.

1 5 0 3 7 8 9 6 2 4
0 4 5 8 6 9 1 7 3 2
2 8 7 0 9 4 5 3 1 6
3 7 4 1 5 2 8 0 6 9
6 0 9 5 1 3 2 8 4 7
8 2 1 9 4 0 6 5 7 3
9 6 3 2 0 5 7 4 8 1
5 1 6 4 3 7 0 2 9 8
4 9 2 7 8 6 3 1 5 0
7 3 8 6 2 1 4 9 0 5

Table 1. A Latin square of size 10

Table 5.2 for an example. The number l(d) of Latin squares of size d increases very
quickly with d, and is larger than 1043 for d = 11, the largest value for which it is
known; see sequence A002860 of the OEIS database (OEIS Foundation Inc., 2020).

Let X be the set of permutation squares of size d, that is, d × d matrices such
that each row is a permutation of {0, . . . , d − 1}, and let p(d) its cardinal, p(d) =
(d!)d. We consider the following sequence of tempered distributions: πt(dx) =
ν(dx) exp{−λtV (x)}/Lt, where ν(dx) stands for the uniform distribution over X ,
and V is a certain score function such that V (x) = 0 if x is a Latin square, V (x) ≥ 1
otherwise. Specifically, denoting the entries of matrix x by x[i, j], we take

V (x) =
d∑

j=1





d∑

l=1

(
d∑

i=1

1(x[i, j] = l)

)2

− d



 .

The quantity Lt×p(d) will be at distance ε of l(d), the number of Latin squares,
as soon as λt ≥ log(p(d)/ε). Thus, we select adaptively the successive exponents
λt (as in the previous example), and stop the algorithm at the first iteration t such
that this condition is fulfilled, for ε = 10−16.
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Figure 5. Latin squares: box-plots of estimates of logLT (log of
number of Latin squares) obtained from 100 independent runs of
the following algorithms: waste-free SMC (N = 2 × 105, different
values of M , the number of resampled particles), and standard
SMC (N = 2×105/k, different values for k, the number of MCMC
steps).

We set the Markov kernel Mt to be a k-fold Metropolis kernel based on the
following proposal distribution: given x, select randomly a row i, two columns j,
j′, and swap components x[i, j] and x[i, j′].

Figure 5 compares the performance of standard SMC and waste-free SMC for
evaluating the log of the normalising constant LT , that is (up to a small error as
explained above), the log of the number of Latin squares l(d); we take d = 11 since
this is the largest value of d for which l(d) is known exactly.

As in the previous example, the compared algorithms are given (roughly) the
same CPU budget: N = 2 × 105/k for standard SMC, while N = 2 × 105 for
waste-free (and k = 1, as already discussed). We make the same observations as
in the previous example: best performance is obtained from waste-free SMC in the
long chain regime (M � N), and, within this regime, performance does not seem
to depend strongly on M .

One distinctive feature of this example is that the mixing of the Metropolis
kernel used to move the particles significantly decreases over time; see Figure 6,
which plots the acceptance rate of that kernel at each iteration t of a waste-free
SMC run.

It is interesting to note that waste-free SMC seems to work well despite this.
Unfortunately, it does seem to affect the performance of our M−chain variance
estimate. The left panel of Figure 7 makes the same comparison as Figure 4 in
our first example. This time, however, the M−chain estimator seems to be biased
downward, by a factor of two. This bias seems to originate from the terms of for
the last values of t; these terms are both larger, and more difficult to estimate if P
is not large enough.
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Figure 6. Latin squares: acceptance rate of the Metropolis kernel
described in the text at each iteration t of a run of waste-free SMC.
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Figure 7. Latin squares: same plot as Figure 4, for the estimate of
log-normalising constant logLT . Left: non-adaptive version (M =
50, N = 2× 105); Right: adaptive version (M = 50, N0 = 5). See
text for more details.

These results showcase the interest of adapting P across time, as discussed in
Section 4.4. We re-run waste-free SMC for the same problem, with M = 50,
and κ = 5; that is, at each iteration t, Pt is adjusted to be close to κ times
the auto-correlation time, for function Ḡt. The right side of Figure 7 repeats the
comparison of the variance estimates, but for the adaptive P algorithm. This time,
our M−chain estimate seems to perform satisfactorily.

In addition, Figure 8 compares the CPU vs error trade-off for both variants
of waste-free SMC. In both cases, we set M = 50; “CPU time” on the x-axis
is measured by the number of calls to the score function, re-scaled so that the
smallest observed value is 1. (Both axis use a log 2-scale.) Each dot corresponds to
an average over 100 runs. For the vanilla version, we set N = 6250, 2.5× 104, 105,
4× 105 and 8× 105. For the adaptive version, we set κ = 2, 5 and 10. The dotted
lines have slope −1. For high CPU time both algorithms show the same level of
performance. If N is set to too low a value for vanilla waste-free (e.g. N = 6250),
then one obtains a very large MSE, because P = N/M = 125 is too small relative
to the auto-correlation time of the kernels Mt for large t. Note that for the adaptive
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Figure 8. Latin squares: MSE (mean square error) vs CPU time
(number of calls to score function), averaged over 100 independent
runs of vanilla waste-free (grey dots, N = 6250, 2.5 × 104, 105,
4 × 105, 8 × 105), and adaptive waste-free (black dots, κ = 2, 5,
10). Both axes use a log 2−scale; parallel dotted lines have slope
−1.

version, it does not make sense to take κ� 2, as one cannot properly estimate the
auto-correlation time of a chain without running it for a length commensurate with
its auto-correlation time. In a sense, the adaptive version of waste-free prevents us
from setting P to too low a value, where performance becomes sub-optimal.

By and large, in any problem when there is some evidence that the mixing of
kernels Mt may decrease significantly over time, we recommend to use the adaptive
P strategy. It is a bit less practical to use, as it gives less control to the user on
the running time of the algorithm; but on the other hand it seems to provide more
reliable variance estimates in this kind of scenario.

5.3. Orthant probabilities. Finally, we consider the problem of evaluating Gauss-
ian orthant probabilities, i.e. p(a,Σ) := P(Z ≥ a), where a ∈ Rd, Z ∼ Nd(0,Σ),
and Σ is a covariance matrix of size d× d.

Ridgway (2016) developed the following SMC approach for evaluating such prob-
abilities. Let Γ be the lower triangle in the Cholesky decomposition of Σ: Σ = ΓΓT ;
Γ = (γij) and γii > 0 for all i. The orthant probability p(a,Σ) may be rewritten
as the joint probability that Xt ≥ ft(X1:t−1) for t = 1, . . . , d, where ft(x1:t−1) =
(at −

∑
s<t γstxs)/γtt, and the Xt’s are IID N (0, 1) variables. (At time 1, f1(x1:0)

is simply a1, i.e. the constraint is X1 ≥ a1.)
The SMC algorithm of Ridgway (2016) applies the following operations to par-

ticles Xn
1:t, from time 1 to time T = d. (We change notations slightly and start at

time 1, for the sake of readability.) (a) At time t, particles Xn
1:t−1 are extended by

sampling an extra component, Xn
t , from a univariate truncated Gaussian distribu-

tion (the distribution of Xt ∼ N(0, 1) conditional on Xt ≥ ft(x0:t−1)); (b) particles
Xn

1:t are then reweighted according to function Φ(−ft(Xn
1:t−1)), where Φ is the

N (0, 1) cumulative distribution function; and (c) when the ESS (effective sample
size) of the weights gets too low, the particles are moved through k iterations of
a certain MCMC kernel that leaves invariant πt, the distribution that corresponds
to X1:t ∼ Nt(0, It) constrained to Xs ≥ fs(X1:s−1) for s = 1, . . . , t. Based on
numerical experiments, Ridgway (2016) recommended to use for the MCMC kernel
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Figure 9. Orthants: estimates of the log normalizing constant
obtained from waste-free SMC (N = 2 × 105) and standard SMC
(N = 2× 105/k).

at time t a Gibbs sampler that leaves πt invariant. (the update of each variable
amounts to sampling from a univariate truncated normal distribution.)

This SMC algorithm does not fit in the framework of Algorithm 1; in particular
the dimension of the state-space X = Rt increases over time. However, we can
easily generalise waste-free SMC to this setting: whenever an MCMC rejuvenation
step is applied, resample M � N particles, apply P −1 steps of the chosen MCMC
kernels to these M resampled particles, and gather the N = MP so obtained values
to form the new particle sample.

To make the problem challenging, we take d = 150, a = (1.5, 1.5, . . .), and Σ a
random correlation matrix with eigenvalues uniformly distributed in the simplex
{x1 + · · ·+ xd = 150, xi ≥ 0}, which we simulated using the algorithm of Davies
and Higham (2000). As in Ridgway (2016), before the computation we re-order the
variables according to the heuristic of Gibson et al. (1994).

Figures 9 and 10 do the same comparison of standard SMC and waste-free SMC
as in the two previous examples: N = 2 × 105 for waste-free, N = 2 × 105/k for
standard SMC, and M (resp. k) varies over a range of values. Figure 9 plots box-
plots of estimates of logLT (the log of the orthant probability), while Figure 10

does the same for QT (ϕ), with ϕ(x0:T ) = (
∑T
t=0 xt)/T ; i.e. the expectation of ϕ

with respect to the corresponding truncated Gaussian distribution.
We observe again that waste-free SMC outperforms standard SMC, at least

whenever M � N . In addition, the greater robustness of waste-free is quite striking
in this example.

Finally, Figure 11 compares M−chain estimators of the variance of the orthant
probability estimate based on two single-chain estimators: the initial sequence esti-
mator we recommended by default in Section 4.3, and we used in the two previous
examples; and a spectral estimator based on the Tukey-Hanning window (see e.g.
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Figure 10. Orthants: Same plot as Figure 9 for QT (ϕ), the ex-

pectation of function ϕ(x0:T ) = (
∑T
t=0 xt)/T with respect to trun-
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Figure 11. Orthants: box-plots of variance estimates over 100
runs for the estimate of the log orthant probability. The variance
estimates are re-scaled so that the empirical variance over the 100
runs equals one; see text for more details.

Flegal and Jones, 2010). In this example, the kernels Mt are Gibbs kernels, and are
therefore not reversible. This seems to explain the poor performance of the former.

(As in previous plots, Figures 4 and 7, we include for comparison the variance
estimator obtained by taking an empirical variance over 10 runs; however we do
not include, for the sake of readability, the estimator based on Lee and Whiteley
(2018), but note simply it performs poorly in this case too.)

6. Concluding remarks

6.1. Connection with nested sampling. In our definition of waste-free SMC,
we took N = MP , with P ≥ 2; thus M divides N . We may generalise the algorithm
to any pair (M,N), M < N : at time t, resample M particles, generate M chains of
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length k := bN/Mc (using kernel Mt, and the resampled particles as the starting
points); then select (without replacement) N−Mk chains and extend them to have
length k + 1. The total number of particles is then N .

One interesting special case is M = N − 1. In that case, N − 1 particles are re-
sampled (thus at least one particle is discarded), and, among these N−1 resampled
particles, only one particle is moved through kernel Mt. In addition, if the target
distributions πt are of the form πt(dx) ∝ ν(dx)1{L(x) ≥ lt}, where ν is a prior
distribution, and L a likelihood function, then one recovers essentially the nested
sampling algorithm of Skilling (2006).

This raises the question whether the regime M = N − 1 is useful, either for
such a sequence of distributions, or more generally. For the former, the numerical
experiments of Salomone et al. (2018) seem to indicate than standard SMC, when
applied to this type of sequence, may perform as well as nested sampling. This
suggests waste-free SMC should also perform at least as well as nested sampling,
although we leave that point to further investigation. For the latter, we note that
taking M = N − 1 is not very convenient, as this means we move only one particle
at each iteration, although each iteration costs O(N). (In nested sampling, the
cost of a single iteration may be reduced to O(1) by using the fact that weights are
either 0 or 1.)

6.2. Further work. Our convergence results assume that the kernels Mt are uni-
formly ergodic. However, many practical MCMC kernels are not uniformly ergodic,
hence it seems worthwhile to extend these results to, say, geometrically ergodic ker-
nels. Another result we would like to establish is that waste-free SMC dominates
standard SMC in terms of asymptotic variance, at least under certain conditions
on the mixing of the kernels Mt.

In terms of applications, we wish to explore how waste-free may be implemented
in various SMC schemes, in particular in the SMC2 algorithm of Chopin et al.
(2013). This algorithm is an SMC sampler with expensive Markov kernels (as a
single step amounts to propagate a large number of particles in a “local” particle
filter), hence the benefits brought by waste-free SMC may be particularly valuable
in this type of scenario.

The original implementation of the numerical examples may be found at https:
//github.com/hai-dang-dau/waste-free-smc. Waste-free SMC is also now im-
plemented in the particles library, see https://github.com/nchopin/particles.
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Appendix A. Proofs

A.1. Proof of Proposition 2. We may rewrite (6) as:

t∏

s=0

{
1

M

M∑

m=1

(
1

P

P∑

p=1

Gs(z
m
s [p])

)}

where zms [p] stands for variable X̃m,p
s which is defined inside Algorithm 2.
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We recognise the normalising constant estimate of a standard SMC sampler,
Algorithm 1, when applied to the waste-free Feynman-Kac model defined in Propo-
sition 1. The expectation of this quantity is therefore the normalising constant
Lwf
t = Lt (Proposition 1), since such estimates are unbiased (Del Moral, 1996).

A.2. Proof of Proposition 4. We start by establishing two technical lemmas
regarding a uniformly ergodic Markov chain (Xp)p≥0, (Xp) for short, on probability
space (X ,X); i.e.

∥∥Kk(x, dx′)− π(dx′)
∥∥
TV
≤ Cρk for certain constants C > 0 and

ρ < 1 and a certain probability distribution π, where Kk(x, dx) stands for the
k−fold Markov kernel that defines the distribution of Xp+k given Xp. Then π(dx)
is its stationary distribution.

Lemma 1. Assume that (Xp) is stationary, i.e. X0 ∼ π(dx), and therefore Xp ∼
π(dx) for all p ≥ 0. Then there exists a constant C1 > 0 such that:

Var (ϕ(X0)) + 2
∞∑

k=1

|Cov (ϕ(X0), ϕ(Xk))| ≤ C1 ‖ϕ‖2∞

for any measurable bounded function ϕ : X → R.

Proof. One has

|Cov (ϕ(X0), ϕ(Xk))| = |E[ϕ(X0)ϕ(Xk)]− E[ϕX0]E[ϕXk]|

=

∣∣∣∣
∫ {∫

ϕ(xk)Kk(x0,dxk)−
∫
ϕ(xk)π(dxk)

}
ϕ(x0)π(dx0)

∣∣∣∣

≤ 2ρkC ‖ϕ‖2∞
from which the result follows. �

In the second lemma, the distribution of the initial state X0 is arbitrary, and
therefore the chain is not necessarily stationary.

Lemma 2. There exists a constant C2 > 0 (which does not depend on the initial
distribution of the chain, i.e. the distribution of X0), such that

Var

(
1

P

P∑

p=1

ϕ(Xp)

)
≤ C2

‖ϕ‖2∞
P

for any P ≥ 1 and any bounded measurable function ϕ : X → R.

Proof. The proof relies on a standard coupling argument, see e.g. Chapter 19 of
Douc et al. (2018). We introduce an arbitrary integer R, 1 ≤ R ≤ P , and a Markov
chain (X?

p ) constructed as follows: (a) X?
0 ∼ π(dx), the stationary distribution of

(Xp); (b) variables XR, X?
R are maximally coupled, which implies that:

(18) P(XR 6= X?
R) =

∥∥∥∥
∫
µ(dx0)K(x0,dxp)− π(dxp)

∥∥∥∥
TV

≤ CρR

where µ(dx0) denotes the probability distribution of X0, and the inequality stems
from the uniform ergodicity of the chain; (c) if XR = X?

R, the two chains re-
main equal until time P , otherwise they are independent; (d) the distribution of
X?

1 , . . . , X
?
R−1 given X?

0 , X?
R is the conditional distribution of these states induced

by K(x,dx′), the Markov kernel of (Xp). For more details on maximal coupling of
two probability distributions, see e.g. Chap. 19 of Douc et al. (2018).
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Using the inequality Var(X + Y +Z) ≤ 3(Var(X) + Var(Y ) + Var(Z)), we have:

Var

(
1

P

P∑

p=1

ϕ(Xp)

)
≤ 3Var

(
1

P

P∑

p=1

ϕ(X?
p )

)
+ 3Var

(
1

P

R∑

p=1

{
ϕ(Xp)− ϕ(X?

p )
}
)

+ 3Var


1{XR 6= X?

R}
1

P

P∑

p=R

{
ϕ(Xp)− ϕ(X?

p )
}



≤ 3C1 ‖ϕ‖2∞
P

+
12R2 ‖ϕ‖2∞

P
+ CρR ‖ϕ‖2∞

where we have applied Lemma 1 to the first term, and (18) to the third term. We

conclude by taking R = d
√
P e.

�

We now prove Proposition 4 by induction. Clearly, (11) holds at time 0. The
implication (11) ⇒ (12) at time t follows the same lines as for a standard SMC
sampler, see e.g. Section 11.2.2 in Chopin and Papaspiliopoulos (2020). Now
assume that (12) holds at time t−1 ≥ 0, and let ϕ̄ = ϕ−Qt−1(ϕ), Ft−1 = σ(X1:N

t−1 )
(the σ-field generated by variables Xn

t−1, n = 1, . . . , N). Then

E



(

1

N

N∑

n=1

ϕ(Xn
t )− Qt−1(ϕ)

)2
∣∣∣∣∣∣
Ft−1




= E



(

1

M

M∑

m=1

1

P

P∑

p=1

ϕ̄(X̃m,p
t )

)2
∣∣∣∣∣∣
Ft−1




=

(
E

[
1

P

P∑

p=1

ϕ̄(X̃1,p
t )

∣∣∣∣∣Ft−1
])2

+
1

M
Var

(
1

P

P∑

p=1

ϕ̄(X1,p
t )

∣∣∣∣∣Ft−1
)

since the blocks of variables Xm,1:P
t are IID (independent and identically dis-

tributed) conditional on Ft−1.

The expectation of the first term may be bounded by c′t−1 ‖ϕ‖2∞ /N by applying

(12) to function P−1
∑P−1
p=0 M

p
t ϕ. The second term may be bounded by C2 ‖ϕ‖2∞ /N

using Lemma 2.

A.3. Proof of Theorem 1. We start by proving a few basic lemmas. The first
one concerns product measures. We use symbol

⊗
throughout to represent the

product of two probability measures.

Lemma 3 (Total variation distance for product measure). Let µ1:N and ν1:N be
2N probability measures on (X ,X). Then the following inequality holds:

∥∥∥∥∥
N⊗

n=1

µn −
N⊗

n=1

νn

∥∥∥∥∥
TV

≤
N∑

n=1

‖µn − νn‖TV .

Proof. Take N = 2. Then

‖µ1 ⊗ µ2 − ν1 ⊗ ν2‖TV ≤ ‖µ1 ⊗ µ2 − µ1 ⊗ ν2‖TV + ‖µ1 ⊗ ν2 − ν1 ⊗ ν2‖TV
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and we may bound the first term as follows:

‖µ1 ⊗ µ2 − µ1 ⊗ ν2‖TV

= sup
f :X 2→[0,1]

∣∣∣∣
∫ (∫

f(x, y)µ1(dx)

)
µ2(dy)−

∫ (∫
f(x, y)µ1(dx)

)
ν2(dy)

∣∣∣∣

≤ sup
g:X→[0,1]

∣∣∣∣
∫
g(y)µ2(dy)−

∫
g(y)ν2(dy)

∣∣∣∣ = ‖µ2 − ν2‖TV .

The result follows by bounding the second term similarly. For N ≥ 3, proceed
recursively. �

The two next lemmas concern the behaviour of M ≥ 1 independent, stationary,
Markov chains, (Y mp )p≥0 on (X ,X), m = 1, . . . ,M with uniformly ergodic Markov

kernel K, and invariant distribution π: ‖δxKp − π‖TV ≤ Cρk for constants C ≥ 0
and ρ ∈ [0, 1).

Lemma 4. The product kernel

K⊗M (x1:M ,dx
′
1:M ) =

M∏

m=1

K(xm,dx
′
m)

is uniformly ergodic, with stationary distribution π⊗M .

Proof. This is a direct consequence of Lemma 3:

∥∥∥δx1:M

(
K⊗M

)p − π⊗M
∥∥∥
TV
≤

M∑

m=1

‖δxmKp − π‖TV

≤ CMρp.

�

Lemma 5. For ϕ : X → R measurable and bounded, one has:

√
MP

(∑M
m=1

∑P
p=1 ϕ(Y mp )

MP
− π(ϕ)

)
⇒ N (0, v∞(K,ϕ))

as P → +∞, whether M ≥ 1 is fixed, or M grows with P ; i.e. M = M(P )→ +∞
as P → +∞.

Proof. For M = 1, this is simply the classical central limit theorem for uniformly
ergodic Markov chains, see e.g. Theorem 23 in Roberts and Rosenthal (2004) and
references therein. For M ≥ 2 fixed, we may apply the same theorem to the Markov
chain (Y 1:M

p )p in (XM ,XM ), which is also uniformly ergodic (Lemma 4) and to test

function ϕM (y1:M ) = M−1
∑M
m=1 ϕ(ym).

Assume now M = M(P ) grows with P . Let ϕ̄ = ϕ− π(ϕ) and let SP denote a

variable with the same distribution as SmP := P−1/2
∑P
p=1 ϕ̄(Y mp ) for m = 1, . . . ,M .

(These M variables are IID.) By the formula (19) of Roberts and Rosenthal (2004),
we have E[S2

P ]→ v∞(K,ϕ). Therefore, fixing u ∈ R, we wish to prove that ∆P → 0,
where

∆P :=

∣∣∣∣∣
(

EeiuSP /
√
M
)M
−
(

1− u2

2M
E(S2

P )

)M ∣∣∣∣∣ .
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Let M0 ≥ 1 be fixed such that u2E[S2
P ]/2M0 < 1 for all P > M0. Since∣∣aM − bM

∣∣ ≤ M |a− b| for |a| , |b| ≤ 1 and
∣∣eix − 1− ix+ x2/2

∣∣ ≤ min(x2, |x3|/6)
for x ∈ R, we have, for any M ≥M0:

(19) ∆P ≤ E min

(
u2S2

P ,

∣∣u3S3
P

∣∣
6
√
M

)
≤ EfM0(SP )

where fm(x) := min
(
u2x2,

∣∣u3x3/6√m
∣∣) = f1m(x) + f2m(x), f1m(x) := u2x2 and

f2m(x) := 1|x|≤6√m/|u|
(∣∣u3x3

∣∣ /6√m− u2x2
)
. Then, if G is a Gaussian variable

with variance v∞(K,ϕ), we have Ef1M0
(SP ) → Ef1M0

(G) as P → +∞. Moreover,

Ef2M0
(SP )→ Ef2M0

(G) by Theorem 23 of Roberts and Rosenthal (2004) and the fact

that f2M0
is a bounded function and is only discontinuous on a set of measure zero

with respect to a Gaussian distribution. Thus (19) implies that lim supP→∞∆P ≤
EfM0

(G). But EfM0
(G)→ 0 as M0 →∞ by the dominated convergence theorem,

hence ∆P → 0 and the lemma is proved. �

We now prove Theorem 1. We proceed by induction: (13) at time 0 is simply
the standard central limit theorem for IID variables. The implication (13) ⇒ (14)
at time t may be established exactly as in other proofs for central limit theorems
for SMC algorithms; see e.g. Section 11.3 of Chopin and Papaspiliopoulos (2020).

We now assume that (14) holds at time t−1 ≥ 0, and we wish to show that (13)
holds at time t, or, equivalently, that:

(20)
1√
P

P∑

p=1

ϕM (Zp)⇒ N (0, v∞(Mt, ϕ))

where (dropping the dependence on t as it is fixed) Zp := (X̃1,p
t , . . . , X̃M,p

t ) is
a Markov chain on XM , which is uniformly ergodic (Lemma 4), and ϕM (z) =

M−1/2
∑M
m=1 ϕ̄(z[m]).

We apply the coupling construction we used in the proof of Lemma 2 to this
Markov chain: we introduce a stationary Markov chain, (Z?p ), with the same Markov

kernel as (Zp), i.e. M⊗Mt , which is coupled to (Zp) at time R, 1 ≤ R ≤ P , with
maximum coupling probability:

(21) P(ZR 6= Z?R) =
∥∥L(Z1)(M⊗Mt )R − π⊗Mt−1

∥∥
TV
≤MCρR

If the two chains are successfully coupled at time R, they remain equal at times
R+ 1, . . . , P .

We decompose the left-hand side of (20) as:

(22)
1√
P

P∑

p=1

ϕM (Zp) =
1√
P

P∑

p=1

ϕM (Z?p ) +
1√
P

R∑

p=1

ϕM (Zp)

− 1√
P

R∑

p=1

ϕM (Z?p ) +
1√
P

1{ZR 6= Z?R}
P∑

p=R+1

(
ϕM (Zp)− ϕM (Z?p )

)
.

The first terms converges to N (0, v∞(Mt, ϕ)), see Lemma 5. What remains to
prove is that the three other terms converge to zero in probability.

The fourth term is non-zero with probability (21), and tends to zero as soon as
R → +∞; e.g. R = O(P β), β ∈ (0, 1). Using the inequality Var(Y1 + . . . + YR) ≤
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R (Var(Y1) + . . .+ Var(YR)), we may bound the the L2 norm of the third term as
follows:

Var

(
1√
P

R∑

p=1

ϕM (Z?p )

)
≤ R2

P
Varπ(ϕ̄) ≤ 2

R2

P
‖ϕ‖2∞

which tends to zero as soon as R2 � P , e.g. R = O(P β), β ∈ (0, 1/2).
The second term equals:

(23) R

√
M

P

(
1

M

M∑

m=1

1

R

R∑

p=1

ϕ̄(X̃m,p
t )

)

and, since the M chains X̃m,1:P
t are independent, for m = 1, . . . ,M , conditional on

Ft−1 = σ(X1:N
t−1 ), we have:

E



(

1

M

M∑

m=1

1

R

R∑

p=1

ϕ̄(Xm,p
t )

)2
∣∣∣∣∣∣
Ft−1




=

(
E

[
1

R

R∑

p=1

ϕ̄(X̃1,p
t )

∣∣∣∣∣Ft−1
])2

+
1

M
Var

(
1

R

R∑

p=1

ϕ(X̃m,p
t )

∣∣∣∣∣Ft−1
)

≤
{

QNt−1

(
1

R

R∑

p=1

Mp−1
t ϕ̄

)}2

+
2

M
‖ϕ‖2∞

where QNt−1(ϕ) =
∑N
n=1W

n
t−1ϕ(Xn

t−1).

The expectation of the first term can be bounded by a constant times ‖ϕ‖2∞ /N

by Proposition 4, thus the L2 norm of (23) is O(R/
√
MP ), which tends to zero as

soon R2 � MP . Taking R = O(P β), β ∈ (0, 1/2) therefore ensures that all the
terms in (22), minus the first, goes to zero.

A.4. Proof of Theorem 2. Before proving Theorem 2, we need to define some new
notations to work comfortably with the convergence of conditional distributions.
We start with a simple example.

Most Markov chains used in MCMC algorithms admit a central limit theorem
regardless of its starting point, i.e., one has, for a Markov chain (Yp) with invariant
distribution π, and and a fixed point y1,

√
P

(
1

P

P∑

p=1

ϕ(Yp)− π(ϕ)

)∣∣∣∣∣Y1 = y1 ⇒ N (0, σ2)

for some σ2, as P → ∞. For uniformly ergodic Markov chains, stronger results
hold. For example, for any deterministic sequence (yp)

∞
p=1:

√
P

(
1

P

P∑

p=1

ϕ(Yp)− π(ϕ)

)∣∣∣∣∣Y1 = yP ⇒ N (0, σ2).

If instead of having a single Markov chain, we have M = M(P ) chains (Y mp ),
m = 1, . . . ,M , running in parallel, then, provided that the number of chains M
is negligible compared to their length P , it is possible to average the result of M

47



chains to get a better one. Specifically, it can be shown that for any deterministic
sequence (ymP ) indexed by m and p,

(24)
√
MP

(
1

M

M∑

m=1

1

P

P∑

p=1

ϕ(Y mp )− π(ϕ)

)∣∣∣∣∣Y
1:M
1 = y1:MP ⇒ N (0, σ2)

as P →∞. It is natural to reformulate (24) using the following simplified notation:

(25)
√
MP

(
1

M

M∑

m=1

1

P

P∑

p=1

ϕ(Y mp )− π(ϕ)

)∣∣∣∣∣Y
1:M
1 ⇒ N (0, σ2)

while keeping in mind that M = M(P ) and in particular the σ-algebra generated
by Y 1:M

1 does not stay the same when P →∞. While the interpretation (24) of the
notation of (25) is intuitive, a more rigorous formalization will make manipulations
easier. That is the point of the following definition and lemma, which are simple
specific cases of more general results in Sweeting (1989). The difference with Sweet-
ing (1989) is that we prefer, if possible, to work with probability conditioned on an
event, which is simpler than probability conditioned on a filtration or a variable.

Definition 1 (Convergence of conditional distributions). Let (Xn)∞n=1 be a se-
quence of random variables and let (Fn)∞n=1 be a sequence of σ-algebras (which
are not necessarily nested as in a filtration). We say that the sequence Xn|Fn of
conditional distributions converge as n→∞ to distribution π,

Xn|Fn ⇒ π,

if for any sequence (Bn)∞n=1 of events such that Bn ∈ Fn and P(Bn) > 0, we have
Xn|Bn ⇒ π.

Lemma 6. Under the notations of definition 1, we have, for any continuous
bounded function ϕ : X → R,

E [ϕ(Xn)| Fn]
a.s.→ π(ϕ).

Remark. This result is in fact used in Sweeting (1989) as the definition of
convergence in conditional probability. As said above, we prefer Definition 1 as
we find it more convenient to work with probability conditioned on events than
probability conditioned on sigma-algebras.

Proof. For some ε > 0, define the events Bn as

Bn := {E [ϕ(Xn)| Fn]− π(ϕ) ≥ ε} .
If P(Bn) > 0, one can write, since Bn ∈ Fn:

(26) E [ϕ(Xn)|Bn] = E [E [ϕ(Xn)| Fn]|Bn] ≥ π(ϕ) + ε.

If there exists an infinity of n such that P(Bn) > 0, we have by Definition 1 that
Xn|Bn ⇒ π, which leads to a contradiction if we let n→∞ in both sides of (26).
Thus, there exists some n1 such that P(Bn) = 0,∀n ≥ n1. Similarly, one may show
that there exists n2 such that P(Cn) = 0, ∀n ≥ n2, where

Cn = {E[ϕ(Xn)|Fn]− π(ϕ) < −ε} .
Now, note that the desired almost-sure convergence is equivalent to the fact that
the random variable

R := lim sup
n→∞

|E[ϕ(Xn)|Fn]− π(ϕ)|
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equals 0 almost surely. Indeed, for any ε > 0, the event {R ≥ ε} is contained in(⋃∞
n=n1

Bn
)
∪
(⋃∞

n=n2
Cn
)
, which has probability zero. �

Lemma 7. Let (Xn)∞n=1 and (Yn)∞n=1 be two sequences of random variables such
that Xn ⇒ PX and Yn|Xn ⇒ PY where the latter is understood in terms of Defini-
tion 1. Then (Xn, Yn) ⇒ PX ⊗ PY .

Proof. Let Y be a PY -distributed random variable. We have that
∣∣E[eiuXn+ivYn ]− E[eiuXn ]E[eivY ]

∣∣ =
∣∣E
[
eiuXn

(
E[eivYn |Xn]− E[eivY ]

)]∣∣

tends to 0 by dominated convergence theorem and the fact that E[eivYn |Xn]−E[eivY ]
converges almost surely to 0 (Lemma 6). �

We are now able to prove Theorem 2.

Proof. The idea of the proof is to show something very similar to (24). Indeed, we
shall show the following conditional version of (20):

(27)
1√
P

P∑

p=1

ϕM (Zp)

∣∣∣∣∣Ft−1 ⇒ N (0, v∞(Mt, ϕ))

which by Definition 1 means

(28)
1√
P

P∑

p=1

ϕM (Zp)

∣∣∣∣∣Bt−1 ⇒ (0, v∞(Mt, ϕ))

for any sequence Bt−1 (implicitly indexed by P ) of events such that BPt−1 ∈ FPt−1.
The left hand side of (28) can be decomposed into four terms as in (22), where

now (Z?p ) is a stationary Markov chain constructed via a maximal coupling of Q⊗Mt−1
and the conditional (instead of the full) distribution of ZR. The first, third and
the fourth terms of (22) can be treated exactly as before. The second term tends
to 0 in probability when R = N ε for small enough ε, because M = O(Nα) for
α < 1/2. Thus (27) holds. Applying it for ϕ = Gt and using the delta method give

the convergence of
√
N(log ˆ̀

t − log `t)|Ft−1 with asymptotic variance v∞(Mt, Ḡt).
Furthermore, note that by Definition 1, the convergence of XN |FN implies the
convergence of XN |F ′N if F ′n ⊂ Fn for all n. Hence

(29)
√
N
(
log `Nt − log `t

)∣∣∣
√
N
(
logLNt−1 − logLt−1

)
⇒ N

(
0, v∞(Mt, Ḡt)

)
.

We can now proceed by induction. Suppose that the assertion is verified up to
time t− 1, that is,

(30)
√
N
(
logLNt−1 − logLt−1

)
⇒ N

(
0,
t−1∑

s=0

v∞(Ms, Ḡs)

)
.

Then, (29), (30) and Lemma 7 prove the assertion at time t. �

A.5. Proof of Proposition 5. We first calculate Vstd,k
t (ϕ) by using e.g. formula

(11.14) in Chopin and Papaspiliopoulos (2020):

(31) Vstd,k
t (ϕ) =

t∑

s=0

Qs−1
[{
ḠsRs+1:tCtϕ

}2]
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where Ḡt = Gt/r, Rt(ϕ) := MtḠtϕ, Rs+1:t := Rs+1 ◦ . . . ◦ Rt, and Ct(ϕ) :=
ϕ− Qt(ϕ). Note that Mt, Ḡt and Ct are all linear functionals. From the definition
of Mt, we have

Mt(xt−1, B) = (1− p̃k)1B(xt−1) + p̃kπt−1(B),

with p̃k = 1− (1− p)k, which leads to

ḠsRs+1:tCtϕ = Ḡs
[
p̃kQ?sḠs+1 + (1− p̃k)Ḡs+1

]
. . .
[
p̃kQ?t−1Ḡt + (1− p̃k)Ḡt

]
Ctϕ.

It is easy to fully extend the above expression if one remarks that for any l < t,
p̃kQ?l Ḡl+1:tCtϕ = 0. Therefore only terms without any p̃kQ?l Ḡl+1 actually con-
tribute to the result. Thus

ḠsRs+1:tCtϕ = (1− p̃k)t−sḠs:tCtϕ.

We can now plug this into (31) and get

Vstd,k
t (ϕ) =

t∑

s=0

(1− p̃k)2(t−s)Qt−1
[
Ḡ2
s:t(Ctϕ)2

]

=

t∑

s=0

(1− p̃k)2(t−s)Qs−1

[
Ḡs:t

1

rt−s+1
(Ctϕ)2

]

=
t∑

s=0

1

r

[
(1− p̃k)2

r

]t−s
Qt
[
(Ctϕ)2

]

=
1

r

t∑

s=0

(
(1− p)2k

r

)s
VarQt(ϕ).

We thus see that the variance of the standard SMC sampler evolves proportion-
ally to the sum of a geometric series and its stability depends on whether the base
of the series is smaller than or greater than 1. This proves the second point of the
proposition. For the third point, note that

Ṽt(ϕ) = Qt−1

[
(Ct−1ϕ)2 + 2

∞∑

s=1

(Ct−1ϕ)(Ks
tCt−1ϕ)

]

= Qt−1

[
(Ct−1ϕ)2 + 2

∞∑

s=1

(Ct−1ϕ)2(1− p)s
]

=

(
2

p
− 1

)
Qt−1

[
(Ct−1ϕ)2

]
,

from which

Vwf
t (ϕ) = Ṽt(ḠtCtϕ)

=

(
2

p
− 1

)
Qt−1

[
(Ct−1ḠtCtϕ)2

]

=

(
2

p
− 1

)
Qt−1

[
(ḠtCtϕ)2

]

=
1

r

(
2

p
− 1

)
VarQt(ϕ).
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Finally, to prove the last point of the proposition, we write

(32) lim
t→∞

IFwf
t

k IFstd,k
t

=
r−1( 2

p − 1)

r−1k
(

1− (1−p)2k
r

)−1 ≤
(

2

p
− 1

)
1− (1− p)2k

k

as the second to last expression is non-decreasing in r. Next, consider the function
f(p) := (1 − p)2k + 2kp of which the derivative f ′(p) = 2k(1 − (1 − p)2k−1) is
non-negative thanks to the fact that k ≥ 1. We have f(p) ≥ f(0) = 1, which, when
plugged into Equation (32), gives

lim
t→∞

IFwf
t

k IFstd,k
t

≤
(

2

p
− 1

)
2kp

k
≤ 4.
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ON THE COMPLEXITY OF BACKWARD SMOOTHING

ALGORITHMS

HAI-DANG DAU & NICOLAS CHOPIN

Abstract. In the context of state-space models, backward smoothing algo-

rithms rely on a backward sampling step, which by default has a O(N2) com-
plexity (where N is the number of particles). An alternative implementation

relying on rejection sampling has been proposed in the literature, with stated

O(N) complexity. We show that the running time of such algorithms may have
an infinite expectation. We develop a general framework to establish the con-

vergence and stability of a large class of backward smoothing algorithms that

may be used as more reliable alternatives. We propose three novel algorithms
within this class. The first one mixes rejection with multinomial sampling; its

running time has finite expectation, and close-to-linear complexity (in a cer-

tain class of models). The second one relies on MCMC, and has deterministic
O(N) complexity. The third one may be used even when the transition of the

model is intractable. We perform numerical experiments to confirm the good
properties of these novel algorithms.

1. Introduction

1.1. Background. A state-space model is composed of an unobserved Markov
process X0, . . . , XT and observed data Y0, . . . , YT . Given X0, . . . , XT , the data
Y0, . . . , YT are independent and generated through some specified emission distri-
bution Yt|Xt ∼ f t(dyt|xt). These models have wide-ranging applications (e.g. in
biology, economics and engineering). Two important inference tasks related to
state-space models are filtering (computing the distribution of Xt given Y0, . . . , Yt)
and smoothing (computing the distribution of the whole trajectory (X0, . . . , Xt),
again given all data until time t). Filtering is usually carried out through a particle
filter, that is, a sequential Monte Carlo algorithm that propagates N weighted parti-
cles (realisations) through Markov and importance sampling steps; see Chopin and
Papaspiliopoulos (2020) for a general introduction to state-space models (Chapter
2) and particle filters (Chapter 10).

This paper is concerned with smoothing algorithms that approximate the smooth-
ing distributions with empirical distributions based on the output of a particle filter
(i.e. the locations and weights of the N particles at each time step). A simple ex-
ample is genealogy tracking (initially introduced by Kitagawa, 1996), which keeps
track of the ancestry (past states) of each particles. This smoother suffers from
degeneracy: for t large enough, all the particles have the same ancestor at time 0.

The forward filtering backward smoothing (FFBS) algorithm (Godsill et al.,
2004) has been proposed as a solution to this problem. Starting from the filtering
approximation at time t, the algorithm samples successively particles at times t−1,
t − 2, etc. using backward kernels. The naive implementation has an O(N2) cost.
However, if the Markov transition density is bounded, a rejection sampling–based

1
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scheme can be used (Douc et al., 2011). Its complexity is shown to be O(N) under
restrictive assumptions on the model.

In many applications, one is mainly interested in approximating smoothing ex-
pectations of additive functions of the form

E [ψ0(X0) + ψ1(X0, X1) + · · ·+ ψt(Xt−1, Xt)|Y0, . . . , Yt]

for some functions ψ0, . . . , ψt. Such expectations can be approximated on-line in
O(N2) time by a procedure described in Del Moral et al. (2010). Inspired by this,
the particle-based, rapid incremental smoother (PaRIS) algorithm of Olsson and
Westerborn (2017) replaces some of the calculations with an additional layer of
Monte Carlo approximation. Again, it is possible to employ rejection sampling at
this level and get an O(N) cost under strong assumptions.

There are three problems however with the rejection versions of FFBS and
PaRIS. First, the O(N) claim does not hold for realistic models (as we shall demon-
strate theoretically and numerically). Second, their running time is random (we
elaborate below why this is a drawback). Third (and this problem also apply to
the O(N2) versions of FFBS and PaRIS), they require the Markov transition of the
model to be tractable, which is not the case for certain models of practical interest.
These three problems are deeply linked to the way the backward sampling step
operates.

1.2. Motivation and structure. We will therefore propose new methods to ad-
dress these issues. Since backward sampling is central to a wide variety of algo-
rithms (e.g. FFBS, forward-additive smoothing, PaRIS), Section 2 presents them
in a unified framework. We show how they can all be expressed in terms of dis-
crete backward kernels, which are essentially random N ×N matrices. We specify
how these matrices are used differently for off-line and on-line smoothing scenarios.
Importantly, we state generic sufficient conditions which ensure that the resulting
algorithms are consistent and stable as T →∞.

Having at hand the necessary theoretical framework, the rest of the article is
spent on methodological innovations. We first closely look at the use of rejection
sampling and realise that in many models, the resulting execution time may have
an infinite expectation; see Section 3. In highly parallel computing architectures,
each processor only handles one or a small number of particles. As such, the heavy-
tailed nature of the execution time means that a few machine might prevent the
whole system from moving forward. In all computing architectures, an infinite
mean running time makes it difficult to know when a program will stop, even
after having performed few pilot runs. We introduce a hybrid rejection sampling
procedure which fixes this problem and leads to a nearly O(N) algorithm (up to
some log factor) in an important class of practical models; again see Section 3.

To make the execution time fully linear and deterministic, we propose in Sec-
tion 4.1 backward kernels based on MCMC (Markov chain Monte Carlo). Con-
vergence and stability of the resulting algorithm are inherited from the general
framework developed in Section 2. MCMC methods require evaluation of the like-
lihood and thus cannot be applied to models with intractable transition densities.
In Section 4.2, we show how the use of forward coupling can replace the role of
backward MCMC steps in these scenarios. This makes it possible to obtain stable
performance in both on-line and off-line scenarios.
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Section 5 illustrates the aforementioned algorithms in both on-line and off-
line uses. We highlight how hybrid and MCMC samplers lead to a more user-
friendly (i.e. smaller, less random and less model-dependent) execution time than
the pure rejection sampler. We also apply our smoother for intractable densities to a
continuous-time diffusion process with discretisation. Further numerical examples,
in particular those concerning Markov jump processes, are planned to be included
in a future version of this paper. We observe that our procedure can indeed prevent
degeneracy as T → ∞, provided that some care is taken to build couplings with
good performance.

Finally, Section 6 concludes the paper with final practical recommendations and
further research directions.

1.3. Related work. Interestingly, the potential issue with the complexity of FFBS-
reject has been suggested by their authors of this method. Indeed, Proposition 1
of Douc et al. (2011) implies that the asymptotic complexity of FFBS-reject might
tend to infinity in some situations. However, we show that the infiniteness might
already happen at finite values of N . Moreover, we propose concrete solutions to
fix this problem and analyse them both theoretically and practically.

Figure 1 of Olsson and Westerborn (2017) and the accompanying discussion
provide an excellent intuition on the stability of smoothing algorithms based on the
support size of the backward kernels. We formalise these insights and use them to
construct new efficient and stable algorithms.

The heavy-tailed distribution of the running time of FFBS-reject have been re-
marked in Taghavi et al. (2013), who proposed a hybrid algorithm combining multi-
nomial and rejection sampling. However, theoretical analysis of the complexity was
not performed and the extension to online smoothing was not considered. (The
PaRIS algorithm had not be invented then.) Using MCMC steps (started at the
previous ancestor) instead of rejection sampling has been explored in Bunch and
Godsill (2013). Again, consistency and stability were not formally proved and the
article was limited to the offline scenario. Gloaguen et al. (2019) briefly mention
the use of MCMC in PaRIS algorithm, without doing further theoretical or nu-
merical analyses. Moreover, since their MCMC chains do not start at the previous
ancestors, a large number of steps are necessary to get a correct algorithm. As we
shall see, our procedure requires only one MCMC step.

Another way to reduce the computation time is to perform the expensive back-
ward sampling steps at certain times t only. For other values of t, the naive ge-
nealogy tracking smoother is used instead. This idea has been recently proposed
by Mastrototaro et al. (2021), who also provided a practical recipe for deciding at
which values of t the backward sampling should take place and derived correspond-
ing theoretical results.

Smoothing in models with intractable transition densities is very challenging. If
these densities can be estimated accurately, the algorithms proposed by Gloaguen
et al. (2019) permit to attack this problem. A case of particular interest is diffusion
models, where unbiased transition density estimators are provided in Beskos et al.
(2006); Fearnhead et al. (2008). More recently, Yonekura and Beskos (2022) use a
special bridge path-space construction to overcome the unavailability of transition
densities when the diffusion (possibly with jumps) must be discretised.

Our smoother for intractable models are based on a general coupling principle
that is not specific to diffusions. We only require users to be able to simulate their
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dynamics (e.g. using discretisation in the case of diffusions) and to manipulate
random numbers in their simulations so that dynamics starting from two different
points can meet with some probability. Our method does not directly provide an
estimator for the gradient of the transition density with respect to model param-
eters and thus cannot be used in its current form to perform maximum likelihood
estimation (MLE) in intractable models; whereas the aforementioned work have
been able to do so in the case of diffusions. However, the main advantage of our
approach lies in its generality beyond the diffusion case. Furthermore, modifica-
tions allowing to perform MLE are possible and might be explored in further work
specifically dedicated to the parameter estimation problem.

The idea of coupling has been incorporated in the smoothing problem in a dif-
ferent manner by Jacob et al. (2019). There, the goal is to provide offline unbiased
estimates of the expectation under the smoothing distribution. Coupling and more
generally ideas based on correlated random numbers are also useful in the context
of partially observed diffusions via the multilevel approach (Jasra et al., 2017).

In this work, we consider smoothing algorithms that are based on a unique pass
of the particle filter. Offline smoothing can be done using repeated iterations of the
conditional particle filter (Andrieu et al., 2010). Another approach to smoothing
consists of using an additional information filter (Fearnhead et al., 2010), but it is
limited to functions depending on one state only. Each of these algorithmic families
has their own advantages and disadvantages, of which a detailed discussion is out
of the scope of this article (see however Nordh and Antonsson, 2015).

2. General structure of smoothing algorithms

2.1. Notations. Measure-kernel-function notations. Let X and Y be two
measurable spaces with respective σ-algebras B(X ) and B(Y). The following def-
initions involve integrals and only make sense when they are well-defined. For a
measure µ on X and a function f : X → R, the notations µf and µ(f) refer to∫
f(x)µ(dx). A kernel (resp. Markov kernel) K is a mapping from X × B(Y) to R

(resp. [0, 1]) such that, for B ∈ B(Y) fixed, x 7→ K(x,B) is a measurable function
on X ; and for x fixed, B 7→ K(x,B) is a measure (resp. probability measure) on
Y. For a real-valued function g defined on Y, let Kg : X → R be the function
Kg(x) :=

∫
g(y)K(x, dy). We sometimes write K(x, g) for the same expression.

The product of the measure µ on X and the kernel K is a measure on Y, defined
by µK(B) :=

∫
K(x,B)µ(dx).

Other notations. • The notation X0:t is a shorthand for (X0, . . . , Xt) • We
denote byM(W 1:N ) the multinomial distribution supported on {1, 2, . . . , N}. The
respective probabilities are W1, . . . ,WN . If they do not sum to 1, we implicitly refer
to the normalised version obtained by multiplication of the weights with the appro-

priate constant • The symbol
P→ means convergence in probability • The geometric

distribution with parameter λ is supported on Z≥1, has probability mass function
f(n) = λ(1 − λ)n−1 and is noted by Geo(λ) • Let X and Y be two measurable
spaces. Let µ and ν be two probability measures on X and Y respectively. The
o-times product measure µ ⊗ ν is defined via (µ ⊗ ν)(h) :=

∫∫
h(x, y)µ(dx)ν(dy)

for bounded functions h : X × Y → R. If X ∼ µ and Y ∼ ν, we sometimes note
µ⊗ ν by X ⊗ Y .
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2.2. Feynman-Kac formalism and the bootstrap particle filter. Let X0:T

be a sequence of measurable spaces and M1:T be a sequence of Markov kernels such
that Mt is a kernel from Xt−1 to Xt. Let X0:T be an unobserved inhomogeneous
Markov chain with starting distribution X0 ∼ M0(dx0) and Markov kernels M1:T ;
i.e. Xt|Xt−1 ∼ Mt(Xt−1,dxt) for t ≥ 1. We aim to study the distribution of X0:T

given observed data Y0:T . Conditioned onX0:T , the data Y0, . . . , YT are independent
and

Yt|X0:T ≡ Yt|Xt ∼ f t(·|Xt)

for a certain emission distribution f t(dyt|xt). Assume that there exists dominating

measures λ̃t not depending on xt such that

f t(dyt|xt) = ft(yt|xt)λ̃t(dyt).

The distribution of X0:t|Y0:t is then given by

(1) Qt(dx0:t) =
1

Lt
M0(dx0)

t∏

s=1

Ms(xs−1,dxs)Gs(xs)

where Gs(xs) := f(ys|xs) and Lt > 0 is the normalising constant. Moreover,
Q−1 := M0 and L−1 := 1 by convention. Equation (1) defines a Feynman-Kac
model (Del Moral, 2004). It does not require Mt to admit a transition density,
although herein we only consider models where this assumption holds. Let λt be
a dominating measure on Xt in the sense that there exists a function mt (not
necessarily tractable) such that

(2) Mt(xt−1,dxt) = mt(xt−1, xt)λt(dxt).

A special case of the current framework are linear Gaussian state space models.
They will serve as a running example for the article, and some of the results will be
specifically demonstrated for models of this class. The rationale is that many real-
world dynamics are partly, or close to, Gaussian. The notations for linear Gaussian
models are given in Appendix A.1 and we will refer to them whenever this model
class is discussed.

Particle filters are algorithms that sample from Qt(dxt) in an on-line manner. In
this article, we only consider the bootstrap particle filter (Gordon et al., 1993) and
we detail its notations in Algorithm 1. Many results in the following do apply to
the auxiliary filter (Pitt and Shephard, 1999) as well, and we shall as a rule indicate
explicitly when it is not the case.

We end this subsection with the definition of two sigma-algebras that will be
referred to throughout the paper. Using the notations of Algorithm 1, let

Ft := σ(X1:N
0:t , A

1:N
1:t ),

F−t := σ(X1:N
0:t ).

(3)

2.3. Backward kernels and off-line smoothing. In this subsection, we first de-
scribe three examples of backward kernels, in which we emphasise both the random
measure and the random matrix viewpoints. We then formalise their use by stating
a generic off-line smoothing algorithm.
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Algorithm 1: Bootstrap particle filter

Input: Feynman-Kac model (1)

Simulate X1:N
0

i.i.d.∼ M0

Set ωn0 ← G0(Xn
0 ) for n = 1, . . . , N

Set `N0 ←
∑N
n=1 ω

n
0 /N

Set Wn
0 ← ωn0 /N`

N
0 for n = 1, . . . , N

for t← 1 to T do

Resample. Simulate A1:N
t

i.i.d.∼ M(W 1:N
t−1 )

Move. Simulate Xn
t ∼Mt(X

An
t

t−1,dxt) for n = 1, . . . , N

Reweight. Set ωnt ← Gt(X
n
t ) for n = 1, 2, . . . , N

Set `Nt ←
∑N
n=1 ω

n
t /N

Set Wn
t ← ωnt /N`

N
t for n = 1, 2, . . . , N

Output: For all t ≥ 0 and function ϕ : Xt → R, the quantity∑N
n=1W

n
t ϕ(Xn

t ) approximates
∫

Qt(dx0:t)ϕ(xt) and the quantity
`Nt approximates Lt/Lt−1

Example 1 (FFBS algorithm). Once Algorithm 1 has been run, the FFBS proce-
dure generates a trajectory approximating the smoothing distribution in a backward
manner. More precisely, it starts by simulating index IT ∼ M(W 1:N

T ) at time T .
Then, recursively for t = T, . . . , 1, given indices It:T , it generates It−1 ∈ {1, . . . , N}
with probability proportional to Wn

t−1mt(X
n
t−1, X

It
t ). The smoothing trajectory is

returned as (XI00 , . . . , XITT ). Formally, given FT , the indices I0:T are generated
according to the distribution

M(W 1:N
t )(diT )

[
BN,FFBS
T (iT ,diT−1)BN,FFBS

T−1 (iT−1,diT−2) . . . BN,FFBS
1 (i1,di0)

]

where the (random) backward kernels BN,FFBS
t are defined by

(4) BN,FFBS
t (it,dit−1) :=

N∑

n=1

Wn
t−1mt(X

n
t−1, X

it
t )

∑N
k=1W

k
t−1mt(Xk

t−1, X
it
t )
δn.

More simply, we can also look at these random kernels as random N×N matrices
of which entries are given by

(5) B̂N,FFBS
t [it, it−1] :=

W
it−1

t−1 mt(X
it−1

t−1 , X
it
t )

∑N
k=1W

k
t−1mt(Xk

t−1, X
it
t )
.

We will need both the kernel viewpoint (4) and the matrix viewpoint (5) in this
paper as the better choice depends on the context.

Example 2 (Genealogy tracking). It is well known that Algorithm 1 already gives
as a by-product an approximation of the smoothing distribution. This information
can be extracted from the genealogy, by first simulating index IT ∼ M(W 1:N

T ) at
time T , then successively appending ancestors until time 0 (i.e. setting sequentially

It−1 ← AItt ). The smoothed trajectory is returned as (XI00 , . . . , XITT ). More for-
mally, conditioned on FT , we simulate the indices I0:T according to

M(W 1:N
t )(diT )

[
BN,GT
T (iT ,diT−1)BN,GT

T−1 (iT−1,diT−2) . . . BN,GT
1 (i1,di0)

]
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where GT stands for “genealogy tracking” and the kernels BN,GT
t are simply

(6) BN,GT
t (it,dit−1) := δ

A
it
t

(dit−1).

Again, it may be more intuitive to view this random kernel as a random N ×N
matrix, the elements of which are given by

B̂N,GT
t [it, it−1] := 1

{
it−1 = Aitt

}
.

Example 3 (MCMC backward samplers). In Example 2, the backward variable

It−1 is simply set to AItt . On the contrary, in Example 1, we need to launch a

simulator for the discrete measure Wn
t−1mt(X

n
t−1, X

It
t ). Interestingly, the current

value of AItt is not taken into account in that simulator. Therefore, a natural idea
to combine the two previous examples is to apply one (or several) MCMC steps to

AItt and assign the result to It−1. The MCMC algorithm operates on the space

{1, 2, . . . , N} and targets the invariant measure Wn
t−1mt(X

n
t−1, X

It
t ). If only one

independent Metropolis-Hastings (MH) step is used and the proposal is M(W 1:N
t−1 ),

the corresponding random matrix B̂N,IMH
t has values

B̂N,IMH
t [it, it−1] = W

it−1

t−1 min

(
1,mt(X

it−1

t−1 , X
it
t )/mt(X

A
it
t

t−1, X
it
t )

)

if it−1 6= Aitt , and

B̂N,IMH
t [it, A

it
t ] = 1−

∑

n6=Ait
t

B̂N,IMH
t [it, n].

This third example shows that some elements of the matrix B̂N,IMH
t might be ex-

pensive to calculate. If several MCMC steps are performed, all elements of B̂N,IMH
t

will have non-trivial expressions. Still, simulating from BN,IMH
t (it,dit−1) is easy

as it amounts to running a standard MCMC algorithm. MCMC backward samples
are studied in more details in Section 4.1.

We formalise how off-line smoothing can be done given random matrices B̂N1:T ; see

Algorithm 2. Note that in the above examples, our matrices B̂Nt are Ft-measurable
(i.e. they depend on particles and indices up to time t), but this is not necessarily
the case in general (i.e. they may also depend on additional random variables, see
Section 2.5). Furthermore, Algorithm 2 describes how to perform smoothing using

the matrices B̂N1:T , but does not say where they come from. At this point, it is
useful to keep in mind the above three examples. In Section 2.4, we will give a
general recipe for constructing valid matrices B̂Nt (i.e. those that give a consistent
algorithm).

Algorithm 2 simulates, given FT and B̂N1:T , N i.i.d. index sequences In0:T , each
distributed according to

M(W 1:N
T )(diT )

1∏

t=T

BNt (it,dit−1).

Once the indices I1:N
0:T are simulated, the N smoothed trajectories are returned as

(X
In0
0 , . . . , X

InT
T ). Given FT and B̂N1:T , they are thus conditionally i.i.d. and their
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Algorithm 2: Generic off-line smoother

Input: Filtering results X1:N
0:T , W 1:N

0:T , and A1:N
1:T from Algorithm 1; random

matrices B̂N1:T (see Section 2.3 for two examples of such matrices and
Section 2.4 for a general recipe to construct them)

for n← 1 to N do
Simulate InT ∼M(W 1:N

T )

for t← T to 1 do
Simulate Int−1 ∼ BNt (Int ,dit−1) (the kernel BNt (It, ·) is defined by the

It-th row of the input matrix B̂Nt )

Output: The N smoothed trajectories (X
In0
0 , . . . , X

InT
T ) for n = 1, . . . , N

conditional distribution is described by the x0:T component of the joint distribution

(7) Q̄NT (dx0:T ,di0:T ) :=M(W 1:N
T )(diT )

[
1∏

t=T

BNt (it,dit−1)

][
0∏

t=T

δ
X

it
t

(dxt)

]
.

Throughout the paper, the symbol Q̄NT will refer to this joint distribution, while
the symbol QNT will refer to the x0:T -marginal of Q̄NT only. This allows the notation
QNT ϕ to make sense, where ϕ = ϕ(x0, . . . , xT ) is a real-valued function defined on
the hidden states.

2.4. Validity and convergence. The kernels BN,FFBS
t and BN,GT

t are both valid
backward kernels to generate convergent approximation of the smoothing distribu-
tion (Del Moral, 2004; Douc et al., 2011). This subsection shows that they are not
the only ones and gives a sufficient condition for a backward kernel to be valid. It
will prove a necessary tool to build more efficient BNt later in the paper.

Recall that Algorithm 1 outputs particles X1:N
0:T , weights W 1:N

0:T and ancestor
variables A1:N

1:T . Imagine that the A1:N
1:T were discarded after filtering has been done

and we wish to simulate them back. We note that, since the X1:N
0:T are given, the

T ×N variables A1:N
1:T are conditionally i.i.d. We can thus simulate them back from

p(ant |x1:N
0:T ) = p(ant |x1:N

t−1, x
n
t ) ∝ wa

n
t
t−1mt(x

ant
t−1, x

n
t ).

This is precisely the distribution of BN,FFBS
t (n, ·). It turns out that any other

invariant kernel that can be used for simulating back the discarded A1:N
1:T will lead

to a convergent algorithm as well. For instance, BN,GT
t (n, ·) (Example 2) simply

returns back the old Ant , unlike BN,FFBS
t (n, ·) which creates a new version. The

kernel BN,IMH
t (n, ·) (Example 3) is somewhat an intermediate between the two. We

formalise these intuitions in the following theorem. It is stated for the bootstrap
particle filter, but as a matter of fact, the proof can be extended straightforwardly
to auxiliary particle filters as well.

Assumption 1. For all 0 ≤ t ≤ T , Gt(xt) > 0 and ‖Gt‖∞ <∞.

Theorem 1. We use the same notations as in Algorithms 1 and 2 (in particular,

B̂Nt denotes the transition matrix that corresponds to the considered kernel BNt ).

Assume that for any 1 ≤ t ≤ T , the random matrix B̂Nt satisfies the following
conditions:
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X1:N
t−1 Ant

Xn
t

B̂Nt (n, ·) Jnt

Figure 1. Relation between variables described in Theorem 1.

• given Ft−1 and B̂N1:t−1, the variables (Xn
t , A

n
t , B̂

N
t (n, ·)) for n = 1, . . . , N

are i.i.d. and their distribution only depends on X1:N
t−1 , where B̂Nt (n, ·) is

the n-th row of matrix B̂Nt ;

• if Jnt is a random variable such that Jnt | X1:N
t−1 , X

n
t , B̂

N
t (n, ·) ∼ BNt (n, ·),

then (Jnt , X
n
t ) has the same distribution as (Ant , X

n
t ) given X1:N

t−1 .

Then under Assumption 1, there exists constants CT > 0 and ST <∞ such that,
for any δ > 0 and function ϕ = ϕ(x0, . . . , xT ):

(8) P

(
∣∣QNT ϕ− QTϕ

∣∣ ≥
√
−2 log(δ/2CT )ST ‖ϕ‖∞√

N

)
≤ δ

where QTN is defined by (7).

A typical relation between variables defined in the statement of the theorem
is illustrated by a graphical model in Figure 1. (See Bishop 2006, Chapter 8 for
the formal definition of graphical models and how to use them.) By “typical”, we
mean that Theorem 1 technically allows for more complicated relations, but the
aforementioned figure captures the most essential cases.

Theorem 1 is a generalisation of Douc et al. (2011, Theorem 5). Its proof thus
follows the same lines (Appendix E.1). However, in our case the measure QNT (dx0:T )
is no longer Markovian. This is because the backward kernel BNt (it,dit−1) does not

depend on Xit
t alone, but also possibly on its ancestor and extra random variables.

As we have seen in (7), QNT is fundamentally a discrete measure of which the
support contains NT+1 elements. As such, QNT ϕ cannot be computed exactly in

general and must be approximated using N trajectories (X
In0
0 , . . . , X

InT
T ) simulated

via Algorithm 2. Theorem 1 is thus completed by the following corollary, which is
an immediate consequence of Hoeffding inequality (Appendix E.13).

Corollary 1. Under the same setting as Theorem 1, we have

P




∣∣∣∣∣
1

N

∑

n

ϕ(X
In0
0 , . . . , X

InT
T )− QTϕ

∣∣∣∣∣ ≥

√
−2 log

(
δ

2(CT +1)

)
(ST + 1) ‖ϕ‖∞

√
N


 ≤ δ.

2.5. Generic on-line smoother. As we have seen in Section 2.3 and Section 2.4,
in general, the expectation QNT ϕ, for a real-valued function ϕ = ϕ(x0, . . . , xT ) of
the hidden states, cannot be computed exactly due to the large support (NT+1

elements) of QNT . Moreover, in certain settings we are interested in the quantities
QNt ϕt for different functions ϕt. They cannot be approximated in an on-line manner
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without more assumptions on the connection between ϕt−1 and ϕt. If the family
(ϕt) is additive, i.e. there exists functions ψt such that

(9) ϕt(x0:t) := ψ0(x0) + ψ1(x0, x1) + · · ·+ ψt(xt−1, xt)

then we can calculate QNt ϕt both exactly and on-line. The procedure was first

described in Del Moral et al. (2010) for the kernel QN,FFBS
t (i.e. the measure defined

by (7) and the random kernels BN,FFBS
t ), but we will use the idea for other kernels

as well. In this subsection, we first explain the principle of the method, then
discuss its computational complexity and the link to the PaRIS algorithm (Olsson
and Westerborn, 2017).

Principle. For simplicity, we start with the special case ϕt(x0:t) = ψ0(x0). Equa-
tion (7) and the matrix viewpoint of Markov kernels then give

QNt ϕt =
[
W 1
t . . .W

N
t

]
B̂Nt B̂

N
t−1 . . . B̂

N
1



ψ0(X1

0 )
...

ψ0(XN
0 )


 .

This naturally suggests the following recursion formula to compute QNt ϕt:

QNt ϕt =
[
W 1
t . . .W

N
t

]
ŜNt

with ŜN0 = [ψ0(X1
0 ) . . . ψ0(XN

0 )]> and

(10) ŜNt := B̂Nt Ŝ
N
t−1.

In the general case where functions ϕt are given by (9), simple calculations (Ap-
pendix E.2) show that (10) is replaced by

(11) ŜNt := B̂Nt Ŝ
N
t−1 + diag(B̂Nt ψ̂

N
t )

where the N ×N matrix ψ̂Nt is defined by

ψ̂Nt [it−1, it] := ψt(X
it−1

t−1 , X
it
t )

and the operator diag : RN×N → RN extracts the diagonal of a matrix. This is
exactly what is done in Algorithm 3.

Algorithm 3: Generic on-line smoother for additive functions (one step)

Input: Particles X1:N
t−1 and weights W 1:N

t−1 at time t− 1; the N × 1 vector ŜNt−1

(see text); additive function (9)
Generate X1:N

t and W 1:N
t according to the particle filter (Algorithm 1)

Calculate the random matrix B̂Nt (see Section 2.3 and Section 2.4)

Create the N × 1 vector ŜNt according to (11). More precisely:

for it ← 1 to N do

ŜNt [it]←
∑
it−1

B̂Nt [it, it−1]
(
ŜNt−1[it−1] + ψt(X

it−1

t−1 , X
it
t )
)

Output: Estimate
∑
nW

n
t Ŝ

N
t [n] of Qt(ϕt); particles X1:N

t , weights W 1:N
t

and vector SNt for the next step
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Computational complexity and the PaRIS algorithm. Equations (10) and (11) in-
volve a matrix-vector multiplication and thus require, in general, O(N2) operations

to be evaluated. When B̂Nt ≡ B̂N,FFBS
t , Algorithm 3 becomes the O(N2) on-line

smoothing algorithm of Del Moral et al. (2010). The O(N2) complexity can how-

ever be lowered to O(N) if the matrices B̂Nt are sparse. This is the idea behind the

PaRIS algorithm (Olsson and Westerborn, 2017), where the full matrix B̂N,FFBS
t

is unbiasedly estimated by a sparse matrix B̂N,PaRIS
t . More specifically, for any

integer Ñ > 1, for any n ∈ 1, . . . , N , let Jn,1t , . . . , Jn,Ñt be conditionally i.i.d. ran-

dom variables simulated from BN,FFBS
t (n, ·). The random matrix B̂N,PaRIS

t is then
defined as

B̂N,PaRIS
t [n,m] :=

1

Ñ

Ñ∑

ñ=1

1

{
Jn,ñt = m

}

and the corresponding random kernel is

(12) BN,PaRIS
t (n, dm) =

1

Ñ

Ñ∑

ñ=1

δJn,ñ
t

(dm).

The following straightforward proposition establishes the validity of the BN,PaRIS
t

kernel as well as the corresponding O(N) complexity of (10) and (11), provided

that Ñ is fixed as N →∞.

Proposition 1. The matrix B̂N,PaRIS
t has only O(NÑ) non-zero elements out of

N2. It is an unbiased estimate of B̂N,FFBS
t in the sense that

E
[
B̂N,PaRIS
t

∣∣∣Ft
]

= B̂N,FFBS
t .

Moreover, the sequence of matrices BN,PaRIS
1:T satisfies the two conditions of Theo-

rem 1.

It is important to remark that the O(N) complexity only refers to the cost of
computing the recursions (10) and (11). It does not include the cost of generating

the matrices B̂N,PaRIS
t themselves, i.e., the operations required to simulate the

indices Jn,ñt . In Olsson and Westerborn (2017) it is argued that such simulations
have an O(N) cost using the rejection sampling method whenever the transition
density is both upper and lower bounded. Section 3 investigates the claim when
this hypothesis is violated.

2.6. Stability. When B̂Nt ≡ B̂N,GT
t , Algorithms 2 and 3 reduce to to the genealogy

tracking smoother (Kitagawa, 1996). The matrix B̂N,GT
t is indeed sparse, leading

to the well-known O(N) complexity of this on-line procedure. As per Theorem 1,
smoothing via genealogy tracking is convergent at rateO(N−1/2) if T is fixed. When
T →∞ however, all particles will eventually share the same ancestor at time 0 (or
any fixed time t). Mathematically, this phenomenon is manifested in two ways:
(a) for fixed t and function φt : Xt → R, the error of estimating E[φt(Xt)|Y0:T ]

grows linearly with T ; and (b) the error of estimating E
[∑T

t=0 ψt(xt−1, xt)
∣∣∣Y0:T

]

grows quadratically with T . These correspond respectively to the degeneracy for
the fixed marginal smoothing and the additive smoothing problems; see also the
introductory section of Olsson and Westerborn (2017) for a discussion. The random

matrices B̂N,GT
t are therefore said to be unstable as T →∞, which is not the case
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for B̂N,FFBS
t or B̂N,PaRIS

t . This subsection gives sufficient conditions to ensure the

stability of a general B̂Nt .

The essential point behind smoothing stability is simple: the support ofBN,FFBS
t (n, ·)

or BN,PaRIS
t (n, ·) for Ñ ≥ 2 contains more than one element, contrary to that of

BN,GT
t (n, ·). This property is formalised by (13). To explain the intuitions, we use

the notations of Algorithm 2 and consider the estimate

N−1
(
ψ0(X

I10
0 ) + · · ·+ ψ0(X

IN0
0 )

)

of E [ψ0(X0)|Y0:T ] when T → ∞. The variance of the quantity above is a sum of

Cov(ψ0(X
Ii0
0 ), ψ0(X

Ij0
0 )) terms. It can therefore be understood by looking at a pair

of trajectories simulated using Algorithm 2.
At final time t = T , I1

T and I2
T both follow the M(W 1:N

T ) distribution. Under
regularity conditions (e.g. no extreme weights), they are likely to be different, i.e.,
P(I1

T = I2
T ) = O(1/N). This property can be propagated backward: as long as

I1
t 6= I2

t , the two variables I1
t−1 and I2

t−1 are also likely to be different, with however
a small O(1/N) chance of being equal. Moreover, as long as the two trajectories
have not met, they can be simulated independently given F−T (the sigma algebra
defined in (3)). In mathematical terms, under the two hypotheses of Theorem 1,

given F−T and I1,2
t:T , it can be proved that the two variables I1

t−1 and I2
t−1 are

independent if I1
t 6= I2

t (Lemma 2, Appendix E.3).
Since there is an O(1/N) chance of meeting at each time step, if T � N , it is

likely that the two paths will meet at some point t � 0. When I1
t = I2

t , the two
indices It−1 and It−2 are both simulated according to BNt (I1

t , ·). In the genealogy

tracking algorithm, BN,GT
t (i, ·) is a Dirac measure, leading to I1

t−1 = I2
t−1 almost

surely. This spreads until time 0, so Corr(ψ0(X
I10
0 ), ψ0(X

I20
0 )) is almost 1 if T � N .

Other kernels like BN,FFBS
t or BN,PaRIS

t do not suffer from the same problem.
For these, the support size of BNt (I1

t , ·) is greater than one and thus there is some
real chance that I1

t−1 6= I2
t−1. If that does happen, we are again back to the regime

where the next states of the two paths can be simulated independently. Note also
that the support of BNt (I1

t , ·) does not need to be large and can contain as few as 2
elements. Even if I1

t−1 might still be equal to I2
t−1 with some probability, the two

paths will have new chances to diverge at times t− 2, t− 3 and so on. Overall, this

makes Corr(ψ0(X
I10
0 ), ψ0(X

I20
0 )) quite small (Lemma 4, Appendix E.3).

We formalise these arguments in the following theorem, whose proof (Appen-
dix E.3) follows them very closely. The price for proof intuitiveness is that the
theorem is specific to the bootstrap filter, although numerical evidence (Section 5)
suggests that other filters are stable as well.

Assumption 2. The transition densities mt are upper and lower bounded:

M̄` ≤ mt(xt−1, xt) ≤ M̄h

for constants 0 < M̄` < M̄h <∞.

Assumption 3. The potential functions Gt are upper and lower bounded:

Ḡ` ≤ Gt(xt) ≤ Ḡh
for constants 0 < Ḡ` < Ḡh <∞.
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Remark. Since Assumption 2 implies that the Xt’s are compact, Assumption 1
automatically implies Assumption 3 as soon as the Gt’s’ are continuous functions.

Theorem 2. We use the notations of Algorithms 1 and 2. Suppose that Assump-
tions 2 and 3 hold and the random kernels BN1:T satisfy the conditions of Theorem 1.

If, in addition, for the pair of random variables (Jn,1t , Jn,2t ) whose distribution given

X1:N
t−1 , Xn

t and B̂Nt (n, ·) is defined by BNt (n, ·)⊗BNt (n, ·), we have

(13) P
(
Jn,1t 6= Jn,2t

∣∣∣X1:N
t−1 , X

n
t

)
≥ εS

for some εS > 0 and all t, n, m; then there exists a constant C not depending on
T such that:

• fixed marginal smoothing is stable, i.e. for s ∈ {0, . . . , T} and a real-valued
function φs : Xs → R of the hidden state Xs, we have

(14) E

[(∫
QNT (dxs)φs(xs)− E [φs(Xs)|Y0:T ]

)2
]
≤ C ‖φs‖2∞

N
;

• additive smoothing is stable, i.e. for T ≥ 2 and the function ϕT defined in
(9), we have

(15) E
[(

QNT (ϕT )− QT (ϕT )
)2] ≤ C

∑T
t=0 ‖ψt‖

2
∞

N

(
1 +

√
T

N

)2

.

The (1+
√
T/N)2 term in (15) appeared in Dubarry and Le Corff (2013, Theorem

3.1) (which we used in our proof) and we do not know whether it can be dropped.
However, it does not affect the scaling of the algorithm. Indeed, with or without
it, the inequality implies that in order to have a constant error in the additive
smoothing problem, one only has to take N = O(T ) (instead of N = O(T 2) without
backward sampling). This scaling has also been shown in Del Moral (2013, Chapter

17) in the case of the BN,FFBS
t kernel. Moreover, from an asymptotic point of view,

we always have σ2(T ) = O(T ) regardless of the presence of the (1 +
√
T/N)2 term,

where

σ2(T ) := lim
N→∞

NE
[(

QNT (ϕT )− QT (ϕT )
)2]

.

Theorem 2 is stated under strong assumptions (similar to those used in Chopin and
Papaspiliopoulos 2020, Chapter 11.4, and slightly stronger than Douc et al. 2011,
Assumption 4). On the other hand, it applies to a large class of backward kernels
(rather than only FFBS), including the new ones introduced in the forthcoming
sections.

3. Sampling from the FFBS Backward Kernels

Sampling from the FFBS backward kernel lies at the heart of both the FFBS
algorithm (Example 1) and the PaRIS one (Section 2.5). Indeed, at time t, they

require generating random variables distributed according to BN,FFBS
t (it,dit−1) for

it running from 1 to N . Since sampling from a discrete measure on N elements
requires O(N) operations (e.g. via CDF inversion), the total computational cost
becomes O(N2). To reduce this, we start by considering the subclass of models
satisfying the following assumption, which is much weaker than Assumption 2.
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Assumption 4. The transition density mt(xt−1, xt) is strictly positive and upper
bounded, i.e. there exists M̄h > 0 such that 0 < mt(xt−1, xt) ≤ M̄h,∀ (xt−1, xt).

The motivation for the first condition 0 < mt(xt−1, xt) will be clear after As-

sumption 5 is defined. For now, we see that it is possible to sample fromBN,FFBS
t (it,dit−1)

using rejection sampling via the proposal distribution M(W 1:N
t−1 ). After an O(N)-

cost initialisation, new draws can be simulated from the proposal in amortised O(1)
time; see Chopin and Papaspiliopoulos (2020, Python Corner, Chapter 9), see also
Douc et al. (2011, Appendix B.1) for an alternative algorithm with a O(logN) cost
per draw. The resulting procedure is summarised in Algorithm 4. Compared to
traditional FFBS or PaRIS implementations, these rejection–based variants have a
random execution time that is more difficult to analyse. Under Assumption 2, Douc
et al. (2011) and Olsson and Westerborn (2017) derive an O(NM̄h/M̄`) expected
complexity. However, the general picture, where the state space is not compact and
only Assumption 4 holds, is less clear.

Algorithm 4: Pure rejection sampler for simulating from BN,FFBS
t (it,dit−1)

Input: Particles X1:N
t−1 and weights W 1:N

t−1 at time t− 1; particle Xit
t at time t;

constant M̄h; pre-initialised O(1) sampler for M(W 1:N
t−1 )

repeat
It−1 ∼M(W 1:N

t−1 ) using the pre-initialised O(1) sampler

U ∼ Unif[0, 1]

until U ≤ mt(X
It−1

t−1 , X
it
t )/M̄h

Output: It−1, which is distributed according to BN,FFBS
t (it,dit−1).

The present subsection intends to fill this gap. Our main focus is the PaRIS
algorithm of which the presentation is simpler. Results for the FFBS algorithm can
be found in Appendix B. We restrict ourselves to the case where Xt = Rdt , although
extensions to other non compact state spaces are possible. Only the bootstrap
particle filter is considered, and results from this section do not extend trivially to
other filtering algorithms. In Section 5, we shall employ different types of particle
filters and see that the performance could change from one type to another, which
is an additional weak point of rejection-based algorithms.

Assumption 5. The hidden state Xt is defined on the space Xt = Rdt . The
measure λt(dxt) with respect to which the transition density mt(xt−1, xt) is defined
(cf. (2)) is the Lebesgue measure on Rdt .

This assumption together with the condition mt(xt−1, xt) > 0 of Assumption 4
ensures that the state space model is “truly non-compact”. Indeed, if mt(xt−1, xt)
is zero whenever xt−1 /∈ Ct−1 or xt /∈ Ct, where Ct−1 and Ct are respectively two
compact subsets of Rdt−1 and Rdt , then we are basically reduced to a state space
model where Xt−1 = Ct−1 and Xt = Ct.

3.1. Complexity of PaRIS algorithm with pure rejection sampling. We

consider the PaRIS algorithm (i.e. Algorithm 3 using the BN,PaRIS
t kernels). Al-

gorithm 5 provides a concrete description of the resulting procedure, using the
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bootstrap particle filter. At each time t, let τn,PaRIS
t be the number of rejection

trials required to sample from BN,FFBS
t (n, dm). We then have

(16) τn,PaRIS
t | Ft−1, X

n
t ∼ Geo

(∑
iW

i
t−1mt(X

i
t−1, X

n
t )

M̄h

)

with M̄h defined in Assumption 4.

Algorithm 5: Concrete implementation of PaRIS algorithm (i.e. Algorithm 3

with the BN,PaRIS
t backward kernel) using the bootstrap particle filter

Input: Particles X1:N
t−1 ; weights W 1:N

t−1 ; vector SNt−1 in RN ; pre-initialised

sampler for M(W 1:N
t−1 ); function ψt (cf. (9)); user-specified parameter

Ñ
for n← 1 to N do

Ant ∼M(W 1:N
t−1 ) (?)

Xn
t ∼Mt(X

An
t

t−1,dxt)

Simulate Jn,1:Ñ
t

i.i.d.∼ BN,FFBS
t (n, dn′) using either the pure rejection

sampler (Algorithm 4) or the hybrid rejection sampler (Algorithm 6)

SNt [n]← Ñ−1
∑Ñ
ñ=1

{
SNt−1[Jn,ñt ] + ψt(X

Jn,ñ
t
t−1 , X

n
t )
}

for n← 1 to N do
Wn
t ← Gt(X

n
t )/

∑
iGt(X

i
t)

µNt ←
∑N
n=1W

n
t S

N
t (n)

Initialise a sampler for M(W 1:N
t )

Output: Estimate µNt of E [ϕ(X0:t)|Y0:t]; particles X1:N
t ; weights W 1:N

t ;
vector SNt in RN and pre-initialised sampler M(W 1:N

t ) for the next
iteration

By exchangeability of particles, the expected cost of the PaRIS algorithm at step

t is proportional to NÑE[τ1,PaRIS
t ], where Ñ is a fixed user-chosen parameter. Oc-

casionally, X1
t falls into an unlikely region of Rd and the acceptance rate becomes

low. In other words, τ1,PaRIS
t is a mixture of geometric distribution, some compo-

nents of which might have a large expectation. Unfortunately, these inefficiencies
add up and produce an unbounded execution time in expectation, as shown in the
following proposition.

Proposition 2. Under Assumptions 4 and 5, the version of Algorithm 5 using the

pure rejection sampler satisfies E[τ1,PaRIS
t ] =∞, where τ1,PaRIS

t is defined in (16).
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Proof. We have

E[τ1,PaRIS
t ] = M̄hE

[
1∑

nmt(Xn
t−1, X

1
t )Wn

t−1

]
via (16)

= M̄hE

[
E

[
1∑

nmt(Xn
t−1, X

1
t )Wn

t−1

∣∣∣∣Ft−1

]]

= M̄hE

[∫

Xt

1∑
nmt(Xn

t−1, x)Wn
t−1

(∑
mt(X

n
t−1, x)Wn

t−1

)
λt(dx)

]

= M̄hE

[∫

Xt

1× λt(dx)

]
=∞ by Assumption 5.

�

As we mentioned in Subsection 1.2, a heavy-tailed execution time for each indi-
vidual particle is not suitable for highly parallel environments, since a small number
of processors might block the whole system. In a non-parallel setting, an execu-
tion time without expectation is essentially unpredictable. A common practice
to estimate execution time is to run a certain algorithm with a small number N
of particles, then “extrapolate” to the Nfinal of the definitive run. However, as

E[τ1,PaRIS
t ] is infinite for any N , it is unclear what kind of information we might

get from preliminary runs. In Appendix B, besides studying the execution time of
rejection-based implementations of the FFBS algorithm, we will delve deeper into
the difference between the non-parallel and parallel computing.

From the proof of Proposition 2, it is clear that the quantity
∑
nW

n
t−1mt(X

n
t−1, xt)

will play a key role in the upcoming developments. We thus define it formally.

Definition 1. The true predictive density function rt and its approximation rNt
are defined as

rt(xt) :=
(Qt−1Mt)(dxt)

λt(dxt)

rNt (xt) :=
∑

Wn
t−1mt(X

n
t−1, xt)

where the first equation is understood in the sense of the Radon-Nikodym derivative
and the density mt−1(xt−1, xt) is defined with respect to the dominating measure
λt(dxt) on Xt (cf. (2)).

3.2. Hybrid rejection sampling. To solve the aforementioned issues of the pure
rejection sampling procedure, we propose a hybrid rejection sampling scheme. The
basic observation is that, for a single m, direct simulation (e.g. via CDF inversion)

of BN,FFBS
t (it,dit−1) costs O(N). Thus, once K = O(N) rejection sampling trials

have been attempted, one should instead switch to a direct simulation method. In
other words, it does not make sense (at least asymptotically) to switch to direct
sampling after K trials if K � O(N) or K � O(N). The validity of this method
is established in the following proposition, where we actually allow K to depend
on trails drawn so far. The proof, which is not an immediate consequence of the
validity of ordinary rejection sampling, is given in Appendix E.4.

Proposition 3. Let µ0(x) and µ1(x) be two probability densities defined on some
measurable space X with respect to a dominating measure λ(dx). Suppose that there
exists C > 0 such that µ1(x) ≤ Cµ0(x). Let (X1, U1), (X2, U2), . . . be a sequence of
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i.i.d. random variables distributed according to µ0 ⊗ Unif[0, 1] and let X∗ ∼ µ1 be
independent of that sequence. Put

K∗ := inf

{
n ∈ Z≥1 such that Un ≤

µ1(Xn)

Cµ0(Xn)

}

and let K be any stopping time with respect to the natural filtration associated with
the sequence {(Xn, Un)}∞n=1. Let Z be defined as

Z :=

{
XK∗ if K∗ ≤ K
X∗ otherwise.

Then Z is µ1-distributed.

Proposition 3 thus allows users to pick K = αN , where α > 0 might be chosen
somehow adaptively from earlier trials. In the following, we only consider the
simple rule K = N , which does not induce any loss of generality in terms of the
asymptotic behaviour and is easy to implement. The resulting iteration is described
in Algorithm 6.

Algorithm 6: Hybrid rejection sampler for simulating from BN,FFBS
t (it,dit−1)

Input: Particles X1:N
t−1 and weights W 1:N

t−1 at time t− 1; particle Xit
t at time t;

constant M̄h; pre-initialised O(1) sampler for M(W 1:N
t−1 )

accepted← False

for i← 1 to N do
It−1 ∼M(W 1:N

t−1 ) using the pre-initialised O(1) sampler

U ∼ Unif[0, 1]

if U ≤ mt(X
It−1

t−1 , X
it
t )/M̄h then

accepted← True

break

if not accepted then

It−1 ∼M(Wn
t−1m(Xn

t−1, X
it
t ))

Output: It−1, which is distributed according to BN,FFBS
t (it,dit−1).

When applied in the context of Algorithm 5, Algorithm 6 gives a smoother of
expected complexity proportional to

NÑE[min(τ1,PaRIS
t )]

at time t, where τ1,PaRIS
t is defined in (16)). This quantity is no longer infinite,

but its growth when N → ∞ might depend on the model. Still, in all cases, it
remains strictly larger than O(N) and strictly smaller than O(N2). Perhaps more
surprisingly, in linear Gaussian models (see Appendix A.1 for detailed notations),
the smoother is of near-linear complexity (up to log factors). The following two
theorems formalise these claims.

Assumption 6. The predictive density rt of Xt given Y0:t−1 and the potential
function Gt are continuous functions on Rdt . The transition density mt(xt−1, xt)
is a continuous function on Rdt−1 × Rdt .
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Theorem 3. Under Assumptions 1, 4, 5 and 6, the version of Algorithm 5 using the

hybrid rejection sampler (Algorithm 6) satisfies limN→∞ E[min(τ1,PaRIS
t , N)] = ∞

and limN→∞ E[min(τ1,PaRIS
t , N)]/N = 0, where τ1,PaRIS

t is defined in (16).

Theorem 4. We assume the same setting as Theorem 3. In linear Gaussian state

space models (Appendix A.1), we have E[min(τ1,PaRIS
t , N)] = O((logN)dt/2).

4. Alternative backward kernels

4.1. MCMC Backward Kernels. This subsection analyses and extends the MCMC

backward kernel defined in Example 3. As we remarked there, the matrix B̂N,IMH
t

is not sparse and even has some expensive-to-evaluate entries. We thus reserve
it for use in the off-line smoother (Algorithm 2) whereas in the on-line scenario
(Algorithm 3), we use its PaRIS-like counterpart

(17) B̂N,IMHP
t [it, it−1] :=

1

Ñ

Ñ∑

ñ=1

1

{
it−1 = J̃ it,ñt

}

where J̃ it,1:Ñ
t is an independent Metropolis-Hastings chain started at J it,1t :=

Aitt , targeting the measure BN,FFBS
t (it,dit−1) and using the proposal distribution

M(W 1:N
t−1 ). The validity and the stability of B̂N,IMH

t and B̂N,IMHP
t are established

in the following simple proposition (proved in Appendix E.9). For simplicity, only

the case Ñ = 2 is examined, but as a matter of fact, the proposition remains true
for Ñ ≥ 2.

Proposition 4. The kernels BN,IMH
t and BN,IMHP

t with Ñ = 2 satisfy the hypothe-
ses of Theorem 1 and, under Assumptions 2 and 3, those of Theorem 2. Hence, their
respective uses in Algorithms 2 and 3 guarantee a convergent and stable smoother.

The advantages of independent Metropolis-Hastings MCMC kernels compared
to the rejection samplers of Section 3 are the dispensability of specifying an ex-
plicit M̄h and the deterministic nature of the execution time. It is not hard to
imagine situations where some proposal smarter than M(W 1:N

t−1 ) would be benefi-
cial. However, we only consider that one here, mainly because it already performs
satisfactorily in our numerical examples.

4.2. Dealing with intractable transition densities.

4.2.1. Intuition and formulation. The purpose of backward sampling is to re-generate,
for each particle, a new ancestor that is different from that of the filtering step.
However, backward sampling is infeasible if the transition density mt(xt−1, xt) can-
not be calculated. To get around this, we modify the particle filter so that each
particle might, in some sense, have two ancestors right from the forward pass.

Consider the standard PF (Algorithm 1). Among the N resampled particles

X
A1:N

t
t−1 , let us track two of them, say xt−1 and x′t−1 for simplicity. The move step

of Algorithm 1 will push them through Mt using independent noises, resulting
in xt and x′t (that is, given xt−1 and x′t−1, we have xt ∼ Mt(xt−1, ·) and x′t ∼
Mt(x

′
t−1, ·) such that xt and x′t are independent). Thus, for e.g. linear Gaussian

models, we have P(xt = x′t) = 0. However, if the two simulations xt ∼ Mt(xt−1, ·)
and x′t ∼Mt(x

′
t−1, ·) are done with specifically correlated noises, it can happen that

P(xt = x′t) > 0. The joint distribution (xt, x
′
t) given (xt−1, x

′
t−1) is called a coupling
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of Mt(xt−1, ·) and Mt(x
′
t−1, ·); the event xt = x′t is called the meeting event and

we say that the coupling is successful when it occurs. In that case, the particle xt
automatically has two ancestors xt−1 and x′t−1 at time t − 1 without needing any
to perform a backward sampling step.

The precise formulation of the modified forward pass is detailed in Algorithm 7.

It consists of building in an on-line manner the backward kernels BN,ITR
t (where

ITR stands for “intractable”). The main interest of this algorithm lies in the fact
that while the function mt may prove impossible to evaluate, it is usually possible
to make xt and x′t meet by correlating somehow the random numbers used in their
simulations. One typical example which this article focuses on is the coupling of
continuous-time processes, but it is useful to keep in mind that Algorithm 7 is
conceptually more general than that.

Algorithm 7: Modified forward pass for smoothing of intractable models (one
time step)

Input: Feynman-Kac model (1), particles X1:N
t−1 and weights W 1:N

t−1

that approximate the filtering distribution at time t− 1

for n← 1 to N do

Resample. Simulate (An,1t , An,2t ) such that marginally each component is

distributed according to M(W 1:N
t−1 )

Move. Simulate (Xn,1
t , Xn,2

t ) such that marginally the two components are

distributed respectively according to Mt(X
An,1

t
t−1 ,dxt) and Mt(X

An,2
t

t−1 ,dxt)

Choose L ∼ Uniform({1, 2})
Set Xn

t ← Xn,L
t

Calculate backward kernel.

if Xn,1
t = Xn,2

t then

BN,ITR
t (n, dit−1)←

(
δ
{
An,1t

}
+ δ

{
An,2t

})
/2

else

BN,ITR
t (n, dit−1)← δ

{
An,Lt

}

Reweight. Set ωnt ← Gt(X
n
t ) for n = 1, 2, . . . , N

Set `Nt ←
∑N
n=1 ω

n
t /N

Set Wn
t ← ωnt /N`

N
t for n = 1, 2, . . . , N

Output: Particles X1:N
t and weights W 1:N

t that approximate the filtering

distribution at time t; backward kernel BN,ITR
t that can be used in

either Algorithm 2 or 3

4.2.2. Validity and stability. The consistency of Algorithm 7 follows straightfor-
wardly from Theorem 1. To produce a stable routine however, some conditions
must be imposed on the couplings (An,1t , An,2t ) and (Xn,1

t , Xn,2
t ). We want An,1t

to be different from An,2t as frequently as possible. On the contrary, we aim for a

coupling of the two distributions Mt(X
An,1

t
t−1 , ·) and Mt(X

An,2
t

t−1 , ·) with high success

rate so as to maximise the probability that Xn,1
t = Xn,2

t .

73



Assumption 7. There exists an εA > 0 such that

P(An,1t 6= An,2t |X1:N
t−1 ) ≥ εA.

Assumption 8. There exists an εD > 0 such that

P(Xn,2
t = Xn,1

t |X1:N
t−1 , A

n,1
t , An,2t , Xn,1

t ) ≥ εD


1 ∧ mt(X

An,2
t

t−1 , X
n,1
t )

mt(X
An,1

t
t−1 , X

n,1
t )


 .

The letters A and D in εA and εD stand for “ancestors” and “dynamics”. As-

sumption 8 means that the user-chosen coupling of Mt(X
An,1

t
t−1 , ·) and Mt(X

An,2
t

t−1 , ·)
must be at least as εD times as efficient as their maximal couplings. For details on
this interpretation, see Proposition 10 in the Appendix. In Lemma 13, we also show
that in spite of its appearance, Assumption 8 is actually symmetric with regards
to Xn,1

t and Xn,2
t .

We are now ready to state the main theorem of this subsection (see Appen-
dix E.11 for a proof).

Theorem 5. The kernels BN,ITR
t generated by Algorithm 7 satisfy the hypothe-

ses of Theorem 1. Thus, under Assumption 1, Algorithm 7 provides a consistent
smoothing estimate. If, in addition, the Feynman-Kac model (1) satisfies Assump-
tions 2 and 3 and the user-chosen couplings satisfy Assumptions 7 and 8, the kernels

BN,ITR
t also fulfil (13) and the smoothing estimates generated by Algorithm 7 are

stable.

4.2.3. Good ancestor couplings. It is notable that Assumption 7 only considers the
event An,1t 6= An,2t , which is a pure index condition that does not take into account

the underlying particles X
An,1

t
t−1 and X

An,2
t

t−1 . Indeed, if smoothing algorithms prevent
degeneracy by creating multiple ancestors for a particle, we would expect that their
separation (i.e. that they are far away in the state space Xt−1, e.g. Rd) is critical to
the performance. Surprisingly, it is unnecessary: two very close particles (in Rd) at
time t − 1 may have ancestors far away at time t − 2 thanks to the mixing of the
model.

We advise choosing an ancestor coupling (An,1t , An,2t ) such that the distance be-

tween X
An,1

t
t−1 and X

An,2
t

t−1 is small. It will then be easier to design a dynamic coupling

of Mt(X
An,1

t
t−1 , ·) and Mt(X

An,2
t

t−1 , ·) with a high success rate. Furthermore, simulating
the dynamic coupling with two close rather than far away starting points can also
take less time when, for instance, the dynamic involves multiple intermediate steps,
but the two processes couple early. One way to achieve an ancestor coupling with
the aforementioned property is to first simulate An,1t ∼M(W 1:N

t−1 ), then move An,1t

through an MCMC algorithm which keeps invariant M(W 1:N
t−1 ) and set the result

to An,2t . It suffices to use a proposal looking at indices whose underlying particles

are close (in Rd) to X
An,1

t
t−1 . Finding nearby particles are efficient if they are first

sorted using the Hilbert curve, hashed using locality-sensitive hashing or put in a
KD-tree (see Samet, 2006, for a comprehensive review). In the context of parti-
cle filters, such techniques have been studied for different purposes in Gerber and
Chopin (2015), Jacob et al. (2019) and Sen et al. (2018).

4.2.4. Conditionally-correlated version. In Algorithm 7, the ancestor pairs (An,1t , An,2t )Nn=1

are conditionally independent given F−t and the same holds for the particles (Xn
t )Nn=1.
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These conditional independences allow easier theoretical analysis, in particular, the
casting of Algorithm 7 in the framework of Theorems 1 and 2. However, they are
not optimal for performance in two important ways: (a) they do not allow keeping

both Xn,1
t and Xn,2

t when the two are not equal, and (b) the set of ancestor vari-

ables (An,1t )Nn=1 is multinomially resampled from {1, 2, . . . , N} with weights W 1:N
t−1 .

We know that multinomial resampling is not the ideal scheme, see Appendix C.1
for discussion.

Consequently, in practice, we shall allow ourselves to break free from conditional
independence. The resulting procedure is described in Algorithm 9 (Appendix C).
Despite a lack of rigorous theoretical support, this is the algorithm that we will use
in Section 5 since it enjoys better performance and it constitutes a fair comparison
with practical implementations of the standard particle filter, which are mostly
based on alternative resampling schemes.

5. Numerical experiments

5.1. Linear Gaussian state-space models. Linear Gaussian models constitute a
particular class of state space models. They are characterised by Markov dynamics
that are Gaussian and observations that are projection of hidden states plus some
Gaussian noises. Appendix A.1 defines, for different components of these models,
the notations that we shall use here. In this section, we consider an instance de-
scribed in Guarniero et al. (2017), where the matrix FX satisfies FX [i, j] = α1+|i−j|

for some α. We consider the problem with dimX = dimY = 2 and the observations
are noisy versions of the hidden states with CY being σ2

Y times the identity matrix
of size 2. Unless otherwise specified, we take α = 0.4 and σ2

Y = 0.5.
In this section, we focus on the performance of different online smoothers based

on either genealogy tracking, pure/hybrid rejection sampling or MCMC. Rejection-

based online smoothing amounts to the PaRIS algorithm, for which we use Ñ = 2

for the BN,PaRIS
t kernel. We take T = 3000 and simulate the data from the model.

The benchmark additive function is simply

(18) ϕt(x0:t) =

t∑

s=0

xs(0)

where xs(0) is the first coordinate of the R2 vector xs = [xs(0), xs(1)]. For a study
of offline smoothers (including FFBS), see Appendix D.1. In all programs here
and there, we choose N = 1000 and use systematic resampling for the forward
particle filters (see section C.1). Regarding MCMC smoothers, we employ the

kernels BN,IMH
t or BN,IMHP

t consisting of only one MCMC step. All results are
based on 150 independent runs.

Although our theoretical results are only proved for the bootstrap filter, we stress
throughout that some of them extend to other filters as well. Therefore, we will
also consider guided particle filters in the simulations. An introduction to this
topic can be found in Chopin and Papaspiliopoulos (2020, Chapter 10.3.2), where
the expression for the optimal proposal is also provided. In linear Gaussian models,
this proposal is fully tractable and is the one we use.

To present efficiently the combination of two different filters (bootstrap and
guided) and four different algorithms (naive genealogy tracking, pure/hybrid rejec-
tion and MCMC) we use the following abbreviations: “B” for bootstrap, “G” for
guided, “N” for naive genealogy tracking, “P” for pure rejection, “H” for hybrid
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Figure 2. Squared interquartile range of the estimators Qt(ϕt)
with respect to t, for different online smoothing algorithms. The
model is linear Gaussian with parameters specified in section 5.1.
See text for full explanation of the legend. For readability, the
curves are down-sampled to 50 points before being drawn.

rejection and “M” for MCMC. For instance, the algorithm referred to as “BM”
uses the bootstrap filter for the forward pass and the MCMC backward kernels to
perform smoothing. Furthermore, the letter “R” will refer to the rejection kernel
whenever the distinction between pure rejection and hybrid rejection is not nec-
essary. (Recall that the two rejection methods produce estimators with the same
distribution.)

Figure 2 shows the squared interquartile range for the online smoothing estimates
Qt(ϕt) with respect to t. It verifies the rates of Theorem 2, although linear Gaussian
models are not strongly mixing in the sense of Assumptions 2 and 3: the grid lines
hint at a variance growth rate of O(T ) for the MCMC and reject-based smoothers
and of O(T 2) for the genealogy tracking ones. Unsurprisingly guided filters have
better performance than bootstrap.

Figure 3 (and its zoomed-in, Figure 4) show box-plots of the execution time
(divided by NT ) for different algorithms over 150 runs. By execution time, we
mean the number of Markov kernel transition density evaluations. We see that the
bootstrap particle filter coupled with pure rejection sampling has a very heavy-
tailed execution time. This behaviour is expected as per Proposition 2. Using
the guided particle filter seems to fare better, but Figure 5 (for the same model
but with σ2

Y = 2) makes it clear that this cannot be relied on either. Overall,
these results highlight two fundamental problems with pure rejection sampling:
the computational time has heavy tails and depends on the type of forward particle
filter being used.

On the other hand, hybrid rejection sampling, despite having random execution
time in principle, displays a very consistent number of transition density evaluations
over different independent runs. Thus it is safe to say that the algorithm has a
virtually deterministic execution time. The catch is that the average computational
load (which is around 16 in Figure 4) cannot be easily calculated beforehand. In any
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Figure 3. Box plots (based on 150 runs) of averaged execution
times (numbers of transition density evaluations divided by NT )
for different algorithms on the linear Gaussian model of section 5.1.
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Figure 4. Zoomed-in of Figure 3.

case, it is much larger than the value 1 of MCMC smoothers (since only 1 MCMC

step is performed in the kernel BN,IMHP
t ); whereas the performance (Figure 2) is

comparable.
The bottom line is that MCMC smoothers should be the default option, and

one MCMC step seems to be enough. If for some reason one would like to use
rejection-based methods, using hybrid rejection is a must.

5.2. Lotka-Volterra SDE. Lotka-Voleterra models (originated in Lotka, 1925 and
Volterra, 1928) describe the population fluctuation of species due to natural birth
and death as well as the consumption of one species by others. The emblematic
case of two species is also known as the predator-prey model. In this subsection,
we study the stochastic differential equation (SDE) version that appears in Hening
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Figure 5. Same as Figure 3, but for the modified model where
σ2
Y = 2.

and Nguyen (2018). Let Xt = (Xt(0), Xt(1)) represent respectively the populations
of the prey and the predator at time t and let us consider the dynamics

(19)





dXt(0) =
[
β0Xt(0)− 1

2
τ0[Xt(0)]2 − τ1Xt(0)Xt(1)

]
dt+Xt(0)dEt(0)

dXt(1) =
[

−β1Xt(1) + τ1Xt(0)Xt(1)
]
dt+Xt(1)dEt(1)

where Et = ΓWt with Wt being the standard Brownian motion in R2 and Γ being
some 2×2 matrix. The parameters β0 and β1 are the natural birth rate of the prey
and death rate of the predator. The predator interacts with (eats) the prey at rate
τ1. The quantity τ0 encodes intra-species competition in the prey population. The
1
2 in its parametrisation is to line up with the Lotka Volterra jump process in Z2

(to be included in a future version of this paper), where the population sizes are
integers and the interaction term becomes τ0Xt(0)[Xt(0)− 1]/2.

The state space model is comprised of the process Xt and its noisy observations
Yt recorded at integer times. The Markov dynamics cannot be simulated exactly,
but can be approximated through (Euler) discretisation. Nevertheless, the Euler
transition density mE

t (xt−1, xt) remains intractable (unless the step size is exactly
1). Thus, the algorithms presented in Subsection 4.2 are useful. The missing bit
is a method to efficiently couple mE

t (xt−1, ·) and mE
t (x′t−1, ·), which we carefully

describe in Appendix D.2.1.
We consider the model with τ0 = 1/800, τ1 = 1/400, β0 = 0.3125 and β1 = 0.25.

The matrix Γ is such that the covariance matrix of E1 is

[
1/100 1/200
1/200 1/100

]
. The

observations are recorded on the log scale with Gaussian error of covariance ma-

trix

[
0.04 0.02
0.02 0.04

]
. The distribution of X0 is two-dimensional normal with mean

[100, 100] and covariance matrix

[
100 50
50 100

]
. This choice is motivated by the fact
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that the preceding parameters give the stationary population vector [100, 100]. Ac-
cording to Hening and Nguyen (2018), they also guarantee that neither animal goes
extinct almost surely as t→∞.

By discretising (19) with time step δ = 1, one can get some very rough intuition
on the dynamics. For instance, per second there are about 31 preys born. Ap-
proximately the same number die (to maintain equilibrium), of which 6 die due to
internal competition and 25 are eaten by the predator. The duration between two
recorded observations corresponds more or less to one-third generation of the prey
and one-fourth generation of the predator. The standard deviation of the variation
due to environmental noise is about 10 individuals per observation period, for each
animal.

Again, these intuitions are highly approximate. For readers wishing to get more
familiar with the model, Appendix D.2.2 contains real plots of the states and the
observations; as well as data on the performance of different smoothing algorithms
for moderate values of T . We now showcase the results obtained in a large scale
problem where T = 3000 and the data is simulated from the model.

We consider the additive function

ϕt(x0:t) :=
t∑

s=0

[xs(0)− 100] .

Figure 6 represents using box plots the distributions of the estimators for QT (ϕT )
using either the genealogy tracking smoother (with systematic resampling; see Ap-
pendix C.1) or Algorithm 9. Our proposed smoother greatly reduces the variance,
at a computational cost which is empirically 1.5 to 2 times greater than the naive
method. Since we used Hilbert curve to design good ancestor couplings (see Sec-
tion 4.2.3), coupling of the dynamics succeeds 80% of the time. As discussed in the
aforementioned section, starting two diffusion dynamics from nearby points make
them couple earlier, which reduces the computational load afterwards.

Figure 7 plots with respect to t the squared interquartile range of the two meth-
ods for the estimation of Qt(ϕt). Grid lines hint at a quadratic growth for the
genealogy tracking smoother (as analysed in Olsson and Westerborn, 2017, Sect.

1) and a linear growth for the kernel BN,ITRC
t (as described in Theorem 2).

Finally, Figure 21 (Appendix D.2.2) shows properties of the effective sample size
(ESS) ratio for this model. In a nutshell, while being globally stable (between
40% and 70%), it has a tendency to drift towards near 0 from time to time due to
unusual data points. At these moments, resampling kills most of the particles and
aggravates the degeneracy problem for the naive smoother. As we have seen in the
above figures, systematic resampling is not enough to mitigate this in the long run.

6. Conclusion

6.1. Practical recommendations. Our first recommendation does not concern
the smoothing algorithm per se. It is of paramount importance that the particle
filter used in in the preliminary filtering step performs reasonably well, since its
output defines the support of the approximations generated by the subsequent
smoothing algorithm. (Standard recommendations to obtain good performance
from a particle filter are to increase N , or to use better proposal distributions, or
both.)
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with T = 3000. They are calculated using either the naive geneal-
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models (Algorithm 9).
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Figure 7. Squared interquartile range for the genealogy tracking
smoother and our proposed one. Same context as in Figure 6

Then, if the transition density is tractable, we recommend the MCMC smoother
by default. One to two MCMC steps seem to be sufficient in most situations. If
one still prefers to use rejection sampling (see below for a possible motivation), it
is safe to say that there is no reason not to use the hybrid method.

Although the assumptions under which we prove the stability of the smoothing
estimates are strong, the general message still holds. The Markov kernel and the
potential functions must make the model forget its past in some ways. Otherwise,
we get an unstable model for which no smoothing methods can work. The rejection
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sampling – based smoothing algorithms can therefore serve as the ultimate test.
Since they simulate exactly independent trajectories given the skeleton, there is
no hope to perform better, unless one switches to another family of smoothing
algorithms.

For intractable models, the key issue is to design couplings with high meeting
probability. Fortunately, the inherent chaos of the model makes it possible to choose
two very close starting points for the dynamics and thus easy to obtain a reasonable
meeting probability.

If further difficulties persist, there is a practical (and very heuristic) recipe to
test whether one coupling of Mt(x, ·) and Mt(x

′, ·) is close to optimal. It consists
in approximating Mt(x, ·) and Mt(x

′, ·) by Gaussian distributions and deduce the
optimal coupling rate from their total variation distance. There is no closed for-
mula for the total variation distance between two Gaussian distributions in high
dimensions. However, it can be reliably estimated using the geometric interpre-
tation of the total variation distance being one minus the area of the intersection
created by the corresponding density graphs. In this way, one can get a very rough
idea of to what extent a certain coupling realises the meeting potential that the
two distributions have. If the coupling seems good and the trajectories still look
degenerate, it can very well be that the model is unstable.

6.2. Further directions. The major limitation of our work is the exclusive theo-
retical analysis under the bootstrap particle filter. Moreover, we require that the N
new particles generated at step t are conditionally independent given previous par-
ticles at time t−1. This excludes practical optimisations like systematic resampling
and Algorithm 9.

Finally, the backward sampling step is also used in other algorithms (in particular
Particle Markov Chain Monte Carlo, see Andrieu et al., 2010) and it would be
interesting to see to what extent our techniques can be applied there.

6.3. Data and code. The code used to run numerical experiments is available
at https://github.com/hai-dang-dau/backward-samplers-code. The algorithms will
soon be implemented in the particles package at https://github.com/nchopin/particles.
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Appendix A. Additional notations

This section defines new notations that do not appear in the main text (except
notations for linear Gaussian models) but are used in the Appendix.

A.1. Linear Gaussian models. Let dimX and dimY be two strictly positive
integers and FX and FY be two full-rank matrices of sizes dimX ×dimX and
dimY ×dimX respectively. Let CX and CY be two symmetric positive definite
matrices of respective sizes dimX ×dimX and dimY ×dimY . A linear Gaussian
state space model has the underlying Markov process defined by

Xt|X0:t−1 ∼ N (FXXt−1, CX),

where X0 also follows a Gaussian distribution; and admits the observation process

Yt|Xt ∼ N (FYXt, CY ).

The predictive (Xt given Y0:t−1), filtering (Xt given Y0:t) and smoothing (Xt given
Y0:T ) distributions are all Gaussian and their parameters can be explicitly calculated
via recurrence formulas (Kalman, 1960; Kalman and Bucy, 1961). We shall denote

their respective mean vectors and covariance matrices by (µpred
t ,Σpred

t ), (µfilt
t ,Σfilt

t )

and (µsmth
t ,Σsmth

t ). In particular, the starting distribution X0 is N (µpred
0 ,Σpred

0 ).

A.2. Total variation distance. Let µ and ν be two probability measures on X .
The total variation distance between µ and ν, sometimes also denoted TV(µ, ν),
is defined as ‖µ− ν‖TV := supf :X→[0,1] |µ(f)− ν(f)|. The definition remains valid
if f is restricted to the class of indicator functions on measurable subsets of X . It
implies in particular that |µ(f)− ν(f)| ≤ ‖f‖osc TV(µ, ν).

Next, we state a lemma summarising basic properties of the total variation dis-
tance and defining coupling-related notions (see, e.g. Proposition 3 and formula
(13) of Roberts and Rosenthal (2004)). While the last property (covariance bound)
is not in the aforementioned reference and does not seem popular in the literature,
its proof is straightforward and therefore omitted.

Lemma 1. The total variation distance has the following properties:

• (Alternative expressions.) If µ and ν admit densities f(x) and g(x) respec-
tively with reference to a dominating measure λ, we have

TV(µ, ν) =
1

2

∫
|f(x)− g(x)|λ(dx) = 1−

∫
min(f(x), g(x))λ(dx).

• (Coupling inequality & maximal coupling.) For any pair of random vari-
ables (M,N) such that M ∼ µ and N ∼ ν, we have

P(M 6= N) ≥ TV(µ, ν).
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There exist pairs (M∗, N∗) for which equality holds. They are called max-
imal couplings of µ and ν.
• (Contraction property.) Let (Xn) be a Markov chain with invariant measure
µ?. Then

TV(Xn, µ
∗) ≥ TV(Xn+1, µ

∗).

• (Covariance bound.) For any pair of random variables (M,N) such that
M ∼ µ and N ∼ ν and real-valued functions h1 and h2, we have

|Cov(h1(M), h2(N))| ≤ 2 ‖h1‖∞ ‖h2‖∞ TV ((M,N), µ⊗ ν) .

A.3. Cost-to-go function. In the context of the Feynman-Kac model (1), define
the associated cost-to-go function Ht:T as (see e.g. Chopin and Papaspiliopoulos
(2020, Chapter 5))

(20) Ht:T (xt) :=
T∏

s=t+1

Ms−1(xs−1,dxs)Gs(xs).

This function bridges Qt(dxt) and QT (dxt), since QT (dxt) ∝ Qt(dxt)Ht:T (xt).

A.4. The projection kernel. Let X and Y be two measurable spaces. The pro-

jection kernel Π
(X ,Y)
X is defined by

Π
(X ,Y)
X ((x, y),dx∗) := δx(dx∗).

In particular, for any function g : X → R and measure µ(dx, dy) defined on X ×Y,
we have

(Π
(X ,Y)
X g)(x, y) = g(x)

(µΠ
(X ,Y)
X )(g) =

∫∫
g(x)µ(dx, dy) =

∫
g(x)µ(dx)

where the second identity shows the marginalising action of Π
(X ,Y)
X on µ. In the

context of state space models, we define the shorthand

Π0:T
t := Π

(X0,...,XT )
Xt

.

A.5. Other notations. For a real number x, let bxc be the largest integer not
exceeding x. The mapping x 7→ bxc is called the floor function • The Gamma func-
tion Γ(a) is defined for a > 0 and is given by Γ(a) :=

∫
R+
e−xxa−1dx • Let X and

Y be two measurable spaces. Let K(x, dy) be a (not necessarily probability) kernel
from X to Y. The norm of K is defined by ‖K‖∞ := supf :X→Y,f 6=0 ‖Kf‖∞ / ‖f‖∞.
In particular, for any function f : X → Y, we have ‖Kf‖∞ ≤ ‖K‖∞ ‖f‖∞ • Let
Xn be a sequence of random variables. We say that Xn = OP(1) if for any ε > 0,
there exists M > 0 and N0, both depending on ε, such that P(|Xn| ≥ M) ≤ ε
for all n ≥ N0. For a strictly positive deterministic sequence an, we say that
Xn = OP(an) if Xn/an = OP(1). See Janson (2011) for discussions • We use the
notation N (x|µ,Σ) to refer to the value at x of the density function of the normal
distribution N (µ,Σ) • Let f : U → V be a function from some space U to another
space V . Let S be a subset of U . The restriction of f to S, written f |S , is the
function from S to V defined by f |S(x) = f(x), ∀x ∈ S.
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Appendix B. FFBS complexity for different rejection schemes

B.1. Framework and notations. The FFBS algorithm is a particular instance

of Algorithm 2 where BN,FFBS
t kernels are used. If backward simulation is done

using pure rejection sampling (Algorithm 4), the computational cost to simulate
the t− 1-th index of the n-th trajectory has conditional distribution

(21) τn,FFBS
t | FT , Int:T ∼ Geo

(∑
iW

i
t−1mt(X

i
t−1, X

Int
t )

M̄h

)
.

At this point, it would be useful to compare this formula with (16) of the PaRIS
algorithm. The difference is subtle but will drive interesting changes to the way
rejection-based FFBS behaves.

If hybrid rejection sampling (Algorithm 6) is to be used instead, we are interested

in the distribution of min(τn,FFBS
t , N), for reasons discussed in Subsection 3.2. In

a highly parallel setting, it is preferable that the distribution of individual exe-

cution times, i.e. τn,FFBS
t or min(τn,FFBS

t , N), are not heavy-tailed. In contrast,

for non-parallel hardware, only cumulative execution times, i.e.
∑N
n=1 τ

n,FFBS
t or∑N

n=1 min(τn,FFBS
t , N), matter. Even though the individual times might behave

badly, the cumulative times could be much more regular thanks to effect of the
central limit theorem, whenever applicable. Nevertheless, studying the finiteness

of the k-th order moment of τ1,FFBS
t is still a good way to get information about

both types of execution times, since it automatically implies k-th order moment
(in)finiteness for both of them.

B.2. Execution time for pure rejection sampling. We show that under cer-
tain circumstances, the execution time of the pure rejection procedure has infinite
expectation. Proposition 1 in Douc et al. (2011) hints that the cost per trajectory
for FFBS-reject might tend to infinity when N → ∞. In contrast, we show that
infinite expectation might very well happen for finite sample sizes. We first give
the statement for general state space models, then focus on their implications for
Gaussian ones. In particular, while infinite expectations occur only under certain
configurations, infinite higher moments happen in all linear Gaussian models with
non-degenerate dynamics.

Theorem 6. Using the setting and notations of Appendix B.1, under Assump-

tions 1 and 4 , we have E[τ1,FFBS
t ] =∞ whenever

∫

Xt

Gt(xt)Ht:T (xt)λt(dxt) =∞

where the cost-to-go function Ht:T is defined in (20) and the measure λt is defined
in (2).

Theorem 7. Using the setting and notations of Appendix B.1, we consider lin-
ear Gaussian models and their notations defined in Appendix A.1. Then we have

E[(τ1,FFBS
t )k] =∞ whenever k is greater than a certain k0 being the smallest eigen-

value of the matrix Id +C
1/2
X

(
(Σsmth

t )
−1 − (Σpred

t )
−1
)
C

1/2
X .

The proofs of the two assertions are given in Appendix E.7. We now look at how
they are manifested in concrete examples. The first remark is that for technical

reasons, Theorem 7 gives no information on the finiteness of E[(τ1,FFBS
t )k] for k = 1
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(since k0 is already greater than or equal to 1 by definition). To study the finiteness

of E[τ1,FFBS
t ], we thus turn to Theorem 6.

Example 4. In linear Gaussian models, the integral of Theorem 6 is equal to
∫
N (yt|FY xt, CY )

T∏

s=t+1

N (xs|FXxs−1, CX)N (ys|FY xs, CY )dxt:T

where the notation N (µ,Σ) refers to the density of the normal distribution. The
integrand is proportional to exp[−0.5(Q(xt:T )− R(xt:T ))] for some quadratic form
Q(xt:T ) and linear form R(xt:T ). The integral is finite if and only if Q is positive
definite. In our case, this means that there is no non-trivial root for the equation
Q(xt:T ) = 0, which is equivalent to

{
FY xs = 0,∀s = t, . . . T

FXxs−1 = xs,∀s = t+ 1, . . . , T.

Put another way, E[τ1,FFBS
t ] is infinite whenever the intersection

T−t⋂

k=0

Ker(FY F
k
X) =

T−t⋂

k=0

F−kX (Ker(FY ))

contains other things than the zero vector. A common and particularly troublesome
situation is when FX = c Id for some c > 0 (but CX can be arbitrary) and the
dimension of the states (dimX) is greater than that of the observations (dimY ).
Then the above intersection remains non-trivial no matter how big T − t is. Thus,

E[τ1,FFBS
t ] has no expectation for any t. In general, the problem is less severe as

successive intersections will shrink the space quickly to {0}. Consequently, Theo-

rem 6 only points out infiniteness of E[τ1,FFBS
t ] for t close to T . The bad news

however will come from higher moments, as seen in the below example.

We will now focus on a simple but particularly striking example. Our purpose
here is to illustrate the concepts as well as to show that their implications are
relevant even in small, familiar settings. More advanced scenarios are presented in
Section 5 devoted to numerical experiments.

Example 5. We consider two one-dimensional Gaussian state-space models: they
both have FX = 0.5, CX = 1, X0 ∼ N (0, C2

X/(1 − F 2
X)) and T = 3. The only

difference between them is that one has σ2
y := CY = 0.52 and another has σ2

y = 32.

We are interested in the execution times τn,FFBS
1 at time t = 1 (i.e. the rejection-

based simulation of indices In0 at time t = 0). Theorem 7 then gives k0 ≈ 1.14 for

σy = 3 and k0 ≈ 5 for σy = 0.5. The first implication is that in both cases, τn,FFBS
1

is a heavy-tailed random variable and therefore FFBS-reject is not a viable option in
a highly parallel setting. But an interesting phenomenon happens in the sequential
hardware scenario where one is rather interested in the cumulative execution time,

i.e.
∑N
n=1 τ

n,FFBS
1 , or equivalently, the mean number of trials per particle. In the

σy = 3 case, non-existence of second moment prevents the cumulative regularisation
effect of the central limit theorem. This is not the case for σy = 0.5, in which the
cumulative execution time actually behaves nicely (Figures 8 and 9). However, the
most valuable message from this example is perhaps that the performance of FFBS-
reject depends in a non-trivial (hard to predict) way on the model parameters.
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Figure 8. Box plots for the mean number of trials per particles to
simulate indices at time 0, for models described in Example 5 and
for FFBS algorithms based on pure and hybrid rejection sampling.
The figure is obtained by running bootstrap particle filters with
N = 500 over 1500 independent executions.
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Figure 9. Zoom of Figure 8 to 0 ≤ y ≤ 8

B.3. Execution time for hybrid rejection sampling. Formula (21) suggests

defining the limit distribution τ∞,FFBS
t as

τ∞,FFBS
t | X∞,FFBS

t ∼ Geo

(
rt(X

∞,FFBS
t )

M̄h

)

where X∞,FFBS
t ∼ QT (dxt) and rt given in Definition 1. These quantities provide

the following characterisation of the cumulative execution time for the hybrid FFBS
algorithm (proved in Section E.8).
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Theorem 8. Under Assumptions 1 and 4 and the setting of Section B.1, we have
∑N
n=1 min(τn,FFBS

t , N)

N
= OP

(
E[min(τ∞,FFBS

t , N)]
)

where the notation OP is defined in Appendix A.

This theorem admits the following corollary for linear Gaussian models (also
proved in Section E.8).

Corollary 2. For linear Gaussian models (Appendix A.1), if smoothing is per-
formed using the hybrid rejection version of the FFBS algorithm, the mean execu-

tion time per particle at time step t is OP(logdt/2N) where dt is the dimension of
Xt.

The boundOP(logdt/2N) is actually quite conservative. For instance, with either

σy = 0.5 or σy = 3, the model considered in Example 5 admits E[τ∞,FFBS
t ] < ∞.

(Gaussian dynamics can be handled using exact analytic calculations and enables
to verify the claim straightforwardly.) Theorem 8 then gives an execution time per
particle of order OP(1) for hybrid FFBS, which is better than the OP(

√
logN) pre-

dicted by Corollary 2. Yet another unsatisfactory point of the result is its failure to
make sense of the spectacular improvement brought by hybrid rejection sampling
over the ordinary procedure in the σy = 3 case (see Figure 8). As explained in

Example 5, this is connected to the variance of E[τ1,FFBS
t ] and not merely the ex-

pectation; so a study of second order properties of N−1
∑
n min(τn,FFBS

t , N) would
be desirable.

Appendix C. Conditionally-correlated versions of particle
algorithms

C.1. Alternative resampling schemes. In Algorithm 1, the indices A1:N
t are

drawn conditionally i.i.d. from the multinomial distribution M(W 1:N
t−1 ). They sat-

isfy

E




N∑

j=1

1Aj
t=i

∣∣∣∣∣∣
Ft−1


 = NW i

t−1

for any i = 1, . . . , N . There are other ways to generate A1:N
t from W 1:N

t−1 that still
verify this identity. We call them unbiased resampling schemes, and the natural
one used in Algorithm 1 multinomial resampling.

The main motivation for alternative resampling schemes is performance. We
refer to Chopin (2004); Douc et al. (2005); Gerber et al. (2019) for more details,
but would like to mention that the theoretical studies of particle algorithms using
other resampling schemes are more complicated since X1:N

t are no longer i.i.d. given
Ft−1. We use systematic resampling (Carpenter et al., 1999) in our experiments.
See Algorithm 8 for a succinct description and Chopin and Papaspiliopoulos (2020,
Chapter 9) for efficient implementations in O(N) running time.

C.2. Conditionally-correlated version of Algorithm 7. In this part, we present
an alternative version of Algorithm 7 that does not create conditionally i.i.d. par-
ticles at each time step. The procedure is detailed in Algorithm 9. It creates on

the fly backward kernels BN,ITRC
t (for “intractable, conditionally correlated”). It
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Algorithm 8: Systematic resampling

Input: Weights W 1:N
t−1 summing to 1

Generate U ∼ Uniform[0, 1]

for n← 1 to N do
Set Ant to the unique index k satisfying

W1 + · · ·+Wk−1 ≤ nU < W1 + · · ·+Wk

Output: Resampled indices A1:N
t

involves a resampling step which can be done in principle using any unbiased re-
sampling scheme. Following the intuitions of Subsection 4.2.3 and the notations
of Algorithm 9, we want a scheme such that in most cases, A2k−1

t 6= A2k
t but the

Euclidean distance between X
A2k−1

t
t−1 and X

A2k
t

t−1 is small. Algorithm 10 proposes such
a method (which we name the Adjacent Resampler). It can run in O(N) time using
a suitably implemented linked list.

Algorithm 9: Conditionally-correlated version of Algorithm 7

Input: Feynman-Kac model (1), particles X1:N
t−1 and weights W 1:N

t−1 that
approximate Qt−1(dxt−1)

Resample A1:N
t from {1, 2, . . . , N} with weights W 1:N

t−1 using any resampling

scheme (such as the Adjacent Resampler in Algorithm 10)

for k ← 1 to N/2 do

Move. Simulate X2k−1
t and X2k

t such that marginally,

X2k−1
t ∼Mt(X

A2k−1
t

t−1 , ·) and X2k
t ∼Mt(X

A2k
t

t−1 , ·)
Calculate backward kernel.

if X2k−1
t = X2k

t then

Set BN,ITRC
t (2k − 1, ·)←

(
δ
{
A2k−1
t

}
+ δ

{
A2k
t

})
/2

Set BN,ITRC
t (2k, ·)←

(
δ
{
A2k−1
t

}
+ δ

{
A2k
t

})
/2

else

Set BN,ITRC
t (2k − 1, ·)← δ

{
A2k−1
t

}

Set BN,ITRC
t (2k, ·)← δ

{
A2k
t

}

Reweight. Set ωnt ← Gt(X
n
t ) for n = 1, 2, . . . , N

Set `Nt ←
∑N
n=1 ω

n
t /N

Set Wn
t ← ωnt /N`

N
t for n = 1, 2, . . . , N

Output: Particles X1:N
t and weights W 1:N

t that approximate Qt(dxt);
backward kernel BN,ITRC

t for use in Algorithms 2 and 3

Appendix D. Additional information on numerical experiments

D.1. Offline smoothing in linear Gaussian models. In this section, we study
offline smoothing for the linear Gaussian model specified in Section 5.1. Since offline
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Algorithm 10: The Adjacent Resampler

Input: Particles X1:N
t−1 , weights W 1:N

t−1

Sort the particles X1:N
t−1 using the Hilbert curve. Let s← [s1 . . . sN ] be the

corresponding indices

Resample from {1, . . . , N} with weights W 1:N
t−1 using systematic resampling

(Carpenter et al., 1999; Gerber et al., 2019), then let f : {1, . . . , N} → Z be
the function defined by f(i) being the number of times the index si was

resampled. Obviously
∑N
i=1 f(i) = N

Initialise i← 1

for n← 1 to N do
Set Ant ← si
Update f(i)← f(i)− 1
Let Ω1 be the set {min {` > i | f` > 0}} (which has one element if the
minimum is well-defined and zero element otherwise)

Let Ω2 be the set {max {` < i | f` > 0}} (which has one element if the
maximum is well-defined and zero element otherwise)

If Ω1 ∪ Ω2 is not empty, update i← argmax f |Ω1∪Ω2
(see section A.5 for

the restriction notation). If there is more than one argmax, pick one
randomly

Output: Resampled indices A1:N
t

processing requires storing particles at all times t in the memory, we use T = 500
here instead of T = 3000. Apart from that, the algorithmic and benchmark settings
remain the same.

Figure 10 plots the squared interquartile range of the estimators QT (ϕt) with
respect to t, for different algorithms. For small t, the function ϕt only looks at states
close to time 0, whereas for bigger t, recent states less affected by degeneracy are
also taken into account. In all cases though, we see that MCMC and rejection-based
smoothers have superior performance.

Figure 11 shows box plots of the averaged execution times (per particle N per
time t) based on 150 runs. The observations are comparable to those in Section 5.1.
We see a performance difference between the rejection-based smoothers using the
bootstrap and the guided filters. Both have an execution time that is much more
variable than hybrid rejection algorithms. The latter still need around 10 times
more CPU load than MCMC smoothers, for essentially the same precision.

We now take a closer look at the reason behind the performance difference be-
tween the bootstrap filter and the guided one when pure rejection sampling is used.
Figure 12 shows the effective sample size (ESS) of both filters as a function of time.
We can see that there is an outlier in the data around time t = 40. Figure 13 box-
plots the execution times divided by N at t = 40 for the pure rejection sampling
algorithm, whereas Figures 14 and 15 do the same for t = 38 and t = 42. The root
of the problem is now clear: at most times t there is very few difference between
the execution times of the bootstrap and the guided filters. However, if an outlier
is present in the data, the guided filter suddenly requires a very high number of
transition density evaluation in the rejection sampler. This gives yet another reason
to avoid using pure rejection sampling.
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Figure 10. Squared interquartile range of the estimators of
QT (ϕt) with respect to t, for different algorithms applied to the
model of Section D.1. See Section 5.1 for the meaning of the
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Figure 11. Box plots of the number of transition density evalu-
ations divided by NT for different algorithms in the offline linear
Gaussian model of Section D.1.

D.2. Lotka-Volterra SDE.

D.2.1. Coupling of Euler discretisations. Consider the SDE

(22) dXt = b(Xt)dt+ σ(Xt)dWt

and two starting points XA
0 and XB

0 in Rd. We wish to simulate XA
1 and XB

1 such
that the transitions from XA

0 to XA
1 and XB

0 to XB
1 both follow the Euler-discretised

version of the equation, but XA
1 and XB

1 are correlated in a way that increases, as
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Figure 12. Evolution of the ESS for the linear Gaussian model of Section D.1.
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Figure 13. Box plots of the average execution time per particle
for the pure rejection algorithm at time t = 40. Figure produced
based on 150 independent runs of the model described in Sec-
tion D.1.

much as we can, the probability that they are equal. Algorithm 11 makes it clear
that it all boils down to the coupling of two Gaussian distributions.

Lindvall and Rogers (1986) propose the following construction: if two diffusions
XA
t and XB

t both follow the dynamics of (22), that is,

dXA
t = b(XA

t )dt+ σ(XA
t )dWA

t

dXB
t = b(XB

t )dt+ σ(XB
t )dWB

t

and the two Brownian motions are correlated via

(23) dWB
t = [Id−2u(XA, XB)u(XA, XB)>]dWA

t
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Figure 14. Same as Figure 13, but for t = 38.
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Figure 15. Same as Figure 13, but for t = 42.

where Id is the identity matrix and the vector u is defined by

u(x, x′) =
σ(x′)−1(x− x′)
‖σ(x′)−1(x− x′)‖2

,

then under some regularity conditions, the two diffusions meet almost surely. (Note
two special features of (23): it is valid because the term in the square bracket is
an orthogonal matrix; and it ceases to be well-defined once the two trajectories
have met.) Simulating the meeting time τ turns out to be very challenging. The
Euler discretisation (Algorithm 11 + Algorithm 12) has a fixed step size δ, and
there is zero probability that τ is of the form kδ for some integer k. Since the
coupling transform is deterministic, the two Euler-simulated trajectories will never
meet. Figure 16 depicts this difficulty in the special case of two Brownian motions
in dimension 1 (i.e. b(x) ≡ 0 and σ ≡ 1). Under this setting, (23) means that
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Algorithm 11: Coupling of two Euler discretisations

Input: Functions b : Rd → Rd and σ : Rd → Rd×d, two starting points XA
0

and XB
0 at time 0, number of discretisation step Ndist

Initialise XA ← XA
0

Initialise XB ← XB
0

Set δ ← 1/Ndist

for i← 1 to Ndist do

Simulate (X̃A, X̃B) from a coupling of

N (XA + δb(XA), δσ(XA)σ(XA)>)

and
N (XB + δb(XB), δσ(XB)σ(XB)>),

such as Algorithm 14

Update (XA, XB)← (X̃A, X̃B)

Set (XA
1 , X

B
1 )← (XA, XB)

Output: Two endpoints XA
1 and XB

1 at time 1, obtained by passing XA
0 and

XB
0 in a correlated manner through a discretised version of (22)

the two Brownian increments are symmetric with respect to the midpoint of the
segment connecting their initial states. Note that the two dashed lines do cross at
two points, but using them as meeting points is invalid: since they are not part of
the discretisation but the result of some heuristic “linear interpolation”, it would
change the distribution of the trajectories.

Algorithm 12: Lindvall-Rogers coupling of two Gaussian distributions

Input: Two vectors µA, µB in Rd and two d× d matrices σA and σB

Calculate u← (σB)−1(µA − µB)

Normalise u← u/ ‖u‖2
Simulate WA ∼ N (0, Id)

Set WB ← (Id−2uu>)WA

Set XA ← µA + σAWA

Set XB ← µB + σBWB

Output: Two correlated points XA and XB marginally distributed according
to N (µA, σA(σA)>) and N (µB, σB(σB)>) respectively

We therefore need some coupling that has a non-zero meeting probability at each
δ-step. This can be achieved by the rejection maximal coupling (Algorithm 13, see
also, e.g. Roberts and Rosenthal, 2004) as well as the recently proposed coupled
rejection sampler (Corenflos and Särkkä, 2022). However, they all make use of re-
jection sampling in one way or another, which renders the execution time random.
We wish to avoid this if possible. The reflection-maximal coupling (Bou-Rabee
et al., 2020; Jacob et al., 2020) has deterministic cost and optimal meeting proba-
bility, but is only applicable for two Gaussian distributions of the same covariance
matrix, which is not our case.

95



0 1 2 3 4 5
time

0

1

2

3

4

True Lindvall-Rogers coupling
Discretised Lindvall-Rogers coupling
Reflection "plane"
True meeting point 

Figure 16. Coupling of two Brownian motions in R starting from
0 and 4 respectively. The true Lindvall-Rogers coupling (23) is
represented by the continuous grey lines. The dicretised simulation
(Algorithm 11 + Algorithm 12) is shown by the dashed lines. The
discretised trajectories not only miss the true meeting point τ but
also never meet afterwards (see text).

Algorithm 13: Rejection maximal coupler for two distributions

Input: Two probability distributions fA and fB

Simulate XA ∼ fA

Simulate UA ∼ Uniform[0, fA(XA)]

if UA ≤ fB(XA) then
Set XB ← XA

else
repeat

Simulate XB ∼ fB

Simulate UB ∼ Uniform[0, fB(XB)]

until UB > fA(XB)

Output: Two maximally-coupled realisations XA and XB, marginally
fA-distributed and fB-distributed respectively

As suggested by Figure 16, the discretised Lindvall-Rogers coupling (Algorithm 12)
is actually great for bringing together two faraway trajectories. Only when they
start getting closer that it misses out. At that moment, the two distributions cor-
responding to the next δ-step have non-negligible overlap and would preferably be
coupled in the style of Algorithm 13. We propose a modified coupling scheme that
acts like Algorithm 12 when the two trajectories are at a large distance and behaves
as Algorithm 13 otherwise.

The idea is to preliminarily generate a uniform draw in the “overlapping zone” of
the two distributions (if they are close enough to make that easy). Next, we perform
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Algorithm 12 and then, any of the two simulations belonging to the overlapping
zone will be replaced by the aforementioned preliminary draw (if it is available).
The precise mathematical formulation is given in Algorithm 14 and the proof in
Appendix E.12.

Algorithm 14: Modified Lindvall-Rogers (MLR) coupler of two Gaussian dis-
tributions

Input: Two vectors µA and µB in Rd, two d× d matrices σA and σB

Let fA and fB be respectively the probability densities of N (µA, σA(σA)>)
and N (µB, σB(σB)>)

Simulate XA and XB from Algorithm 12

Simulate U ∼ Uniform[0, 1]

Set UA ← UfA(XA) and UB ← UfB(XB)

Simulate Y ∼ fA and V ∼ Uniform[0, fA(Y )]

if V ≤ fB(Y ) then
if UA ≤ fB(XA) then update (XA, UA)← (Y, V )

if UB ≤ fA(XB) then update (XB, UB)← (Y, V )

Output: Two correlated random vectors XA and XB, distributed marginally
according to N (µA, σA(σA)>) and N (µB, σB(σB)>)

Algorithm 14 has a deterministic execution time, but it does not attain the
optimal coupling rate. Yet, as δ → 0, we see empirically that it still recovers
the oracle coupling time defined by (23) (although we did not try to prove this
formally). In Figure 17, we couple two standard Brownian motions starting from
a = 0 and b = 1.5 using Algorithm 14 with different values of δ. It is known,
by a simple application of the reflection principle (Lévy, 1940; see also Chapter
2.2 of Mörters and Peres, 2010), that the reflection coupling (23) succeeds after a
Levy(0, (b− a)2/4)-distributed time. We therefore have to deal with a heavy-tailed
distribution and restrict ourselves to the interval [0, 5]. We see that the law of
the meeting time is stable and convergent as δ → 0. Thus, at least empirically,
Algorithm 14 does not suffer from the instability problem as δ → 0, contrary to
a naive path space augmentation approach (see Yonekura and Beskos, 2022 for a
discussion).

D.2.2. Supplementary figures. Figure 18 plots a realisation of the states and data
with parameters given in Subsection 5.2, for a relatively small scale dataset (T =
50). While the periodic trait seen in classical deterministic Lotka-Volterra equa-
tions is still visible (with a period of around 20), it is clear that here random
perturbations have added considerable chaos to the system. Figures 19 and 20
show respectively the performances of the naive genealogy tracking smoother and
ours (Algorithm 9) on the dataset of Figure 18. Our smoother has successfully
prevented the degeneracy phenomenon, particularly for times close to 0. Figure 21
shows, in two different ways, the properties of effective sample sizes (ESS) in the
T = 3000 scenario (see Section 5.2).
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Figure 18. A realisation of the Lotka-Volterra SDE with param-
eters described in Section 5.2. The stationary point of the system
is [100, 100].

Appendix E. Proofs

E.1. Proof of Theorem 1 (general convergence theorem). In line with (7),
we define the distribution QNt (dx0:t) for t < T as the x0:t marginal of the joint
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Figure 19. Smoothing trajectories for the dataset of Figure 18

using the naive genealogy tracking smoother (BN,GT
t kernels) with

systematic resampling (see Section C.1). We took N = 100 and
randomly plotted 30 smoothing trajectories.
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Figure 20. Same as Figure 19, but smoothing was done using
Algorithm 9 instead.

distribution

(24) Q̄Nt (dx0:t,di0:t) :=M(W 1:N
t )(dit)

[
1∏

s=t

BNs (is,dis−1)

][
0∏

s=t

δXis
s

(dxs)

]
.

The proof builds up on an inductive argument which links QNt with QNt−1 through
new innovations at time t. More precisely, we have the following fundamental
proposition, where F+

t is defined as the smallest σ-algebra containing Ft and B̂N1:t.
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Figure 21. Effective sample size (ESS) for the Lotka-Voltterra
SDE model with T = 3000 (Section 5.2). The left pane draws the
box plot of the collection of all estimated ESS for t = 0, . . . , 3000.
The right pane plots the evolution of ESS with time. The quantity
changes so chaotically that the curve only plots one value every 20
time steps for readability.

Proposition 5. QNt is a mixture distribution that admits the representation

(25) QNt (dx0:t) = (`Nt )−1N−1
∑

n

Gt(xt)K
N
t (n, dx0:t)

where `Nt is defined in Algorithm 1 and KN
t (n, dx0:t) is a certain probability measure

satisfying

(26) E
[
KN
t (n, dx0:t)

∣∣F+
t−1

]
= QNt−1(dx0:t−1)Mt(xt−1,dxt).

In other words, for any (possibly random) function ϕNt : X0 × · · · × Xt → R such
that ϕNt (x0:t) is F+

t−1-measurable, we have

E

[∫
KN
t (n,dx0:t)ϕ

N
t (x0:t)

∣∣∣∣F
+
t−1

]
=

∫
QNt−1(dx0:t−1)Mt(xt−1,dxt)ϕ

N
t (x0:t).

Moreover,
∫
KN
t (n,dx0:t)ϕ

N
t (x0:t), for n = 1, . . . , N are i.i.d. given F+

t−1.

The proof is postponed until the end of this subsection. This proposition gives
the expression (25) for QNt , which is easier to manipulate than (24) and which
highlights, through (26), its connection to QNt−1. To further simplify the notations,
let us define, following Douc et al. (2011), the kernel Lt1:t2 , for t1 ≤ t2, as

(27) Lt1:t2(x?0:t1 ,dx0:t2) := δx?
0:t1

(dx0:t1)

t2∏

s=t1+1

Ms(xs−1,dxs)Gs(xs).

In other words, for real-valued functions ϕt2 = ϕt2(x0, . . . , xt2), we have

Lt1:t2(x?0:t1 , ϕt2) =

∫
ϕt2(x?0, . . . , x

?
t1 , xt1+1, . . . , xt2)

t2∏

s=t1+1

Ms(xs−1,dxs)Gs(xs).
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The usefulness of these kernels will come from the simple remark Qt2 ∝ Qt1Lt1:t2 .
We also see that

‖Lt1:t2ϕt2‖∞ ≤ ‖ϕt2‖∞
t2∏

s=t1+1

‖Gs‖∞ ,

which gives ‖Lt1:t2‖∞ <∞, where the norm of a kernel is defined in Subsection A.
We are now in a position to state an importance sampling-like representation of
QNt .

Corollary 3. Let ϕNt : X0×· · ·×Xt → R be a (possibly random) function such that
ϕNt (x0:t) is F+

t−1-measurable. Suppose that ϕNt is either uniformly non-negative (i.e.

ϕNt (x0:t) ≥ 0 almost surely) or uniformly bounded (i.e. there exists a deterministic
C such that |ϕNt (x0:t)| ≤ C almost surely). Then

QNt ϕ
N
t =

N−1
∑
n K̃

N
t (n, ϕNt )

N−1
∑
n K̃

N
t (n,1)

,

where K̃N
t (n, ·) is a certain random kernel such that

• E
[
K̃N
t (n, ϕNt )

∣∣∣F+
t−1

]
= (QNt−1Lt−1:t)ϕ

N
t ;

• N−1
∑
n K̃

N
t (n,1) = `Nt ;

•
(
K̃N
t (n, ϕNt )

)
n=1,...,N

are i.i.d. given F+
t−1;

• almost surely,
∣∣∣K̃N

t (n, ϕNt )
∣∣∣ ≤

∥∥ϕNt
∥∥
∞ ‖Gt‖∞ if ϕNt is uniformly bounded

and K̃N
t (n, ϕNt ) ≥ 0 if ϕNt is uniformly non-negative.

These statements are valid for t = 0 under the convention QN−1L−1:0 = Q−1L−1:0 =
M0 and F−1 being the trivial σ-algebra.

Proof. Put K̃N
t (n, ϕNt ) :=

∫
Gt(xt)K

N
t (n, dx0:t)ϕ

N
t (x0:t) where KN

t is defined in
Proposition 5. Then

QNt (ϕNt ) =
N−1

∑
n

∫
Gt(xt)K

N
t (n,dx0:t)ϕ

N
t (x0:t)

`Nt

=
N−1

∑
n K̃

N
t (n, ϕNt )

`Nt
.

Since QNt is a probability measure, applying this identity twice yields

QNt (ϕNt ) =
QNt (ϕNt )

QNt (1)
=
N−1

∑
n K̃

N
t (n, ϕNt )

N−1
∑
n K̃

N
t (n,1)

.

The remaining points are simple consequences of the definition of K̃N
t and Lt−1:t.

�

The corollary hints at a natural induction proof for Theorem 1.

Proof of Theorem 1. The following calculations are valid for all T ≥ 0, under the
convention defined at the end of Corollary 3. They will prove (8) for T = 0 and, at
the same time, prove it for any T ≥ 1 under the hypothesis that it already holds

101



true for T −1. Let ϕT = ϕT (x0, . . . , xT ) be a real-valued function on X0×· · ·×XT .
Write

(28)
√
N(QNT ϕT − QTϕT ) =

√
N

(
N−1

∑
n K̃

N
T (n, ϕT )

N−1
∑
n K̃

N
T (n,1)

− QT−1LT−1:TϕT
QT−1LT−1:T1

)

where the rewriting of QTϕT is a consequence of QT ∝ QT−1LT−1:T . We will bound
this difference by Hoeffding’s inequalities for ratios (see Appendix E.13 for nota-
tions, including the definition of sub-Gaussian variables that we shall use below).
We have

• that
√
N(N−1

∑
K̃N
T (n, ϕT )−QNT−1LT−1:TϕT ) is (1, ‖ϕT ‖∞ ‖GT ‖∞)-sub-

Gaussian conditioned on F+
t−1 because of Theorem 9 (and thus uncondi-

tionally, by the law of total expectation);

• and that
√
N(N−1QNT−1LT−1:TϕT −QT−1LT−1:TϕT ) is sub-Gaussian with

parameters

(CT−1, ST−1 ‖LT−1:T ‖∞ ‖ϕT ‖∞)

if T ≥ 1 by induction hypothesis. The quantity is equal to 0 if T = 0.

This permits to apply Lemma 16, which results in the sub-Gaussian properties of

• the quantity
√
N(N−1

∑
K̃N
T (n, ϕT ) − QT−1LT−1:TϕT ), with parameters

(1 + CT−1, S
′
T−1 ‖ϕT ‖∞), for a certain constant S′T−1;

• and the quantity
√
N(N−1

∑
K̃N
T (n,1)−QT−1LT−1:T1), which is a special

case of the former one, with parameters (1 + CT−1, S
′
T−1).

Finally, we invoke Proposition 11 and deduce the sub-Gaussian property of (28)
with parameters (

2 + 2CT−1, 2
S′T−1 ‖ϕT ‖∞
QT−1LT−1:T1

)

which finishes the proof. �

Proof of Proposition 5. From (24), we have

QNt (dx0:t) =
∑

it

Q̄Nt (dit)Q̄
N
t (dx0:t|it)

= (`Nt )−1N−1
∑

it

Gt(X
it
t )Q̄Nt (dx0:t|it)

= (`Nt )−1N−1
∑

it

Gt(xt)Q̄
N
t (dx0:t|it)

since Q̄Nt (dx0:t|it) has a δ
X

it
t

(dxt) term. In fact, the identity

Q̄Nt (dx0:t,dit−1|it) = δ
X

it
t

(dxt)B
N
t (it,dit−1)Q̄Nt−1(dx0:t−1|it−1)

follows directly from the backward recursive nature of Algorithm 2, and thus

(29) Q̄Nt (dx0:t|it) = δ
X

it
t

(dxt)

∫

it−1

BNt (it,dit−1)Q̄Nt−1(dx0:t−1|it−1).

The QNt−1(dx0:t−1|it−1) term is F+
t−1-measurable. We shall calculate the expectation

of δ
X

it
t

(dxt)B
N
t (it,dit−1) given F+

t−1. The following arguments are necessary for

formal verification, but the result (30) is natural in light of the ancestor regeneration
intuition explained in Section 2.4.
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Let fNt : {1, . . . , N} × Xt → R be a (possibly random) function such that

fNt (it−1, xt) is F+
t−1-measurable. Let J itt be a random variable such that given

F+
t−1, Xit

t and B̂Nt (it, ·), J itt is BNt (it,dit−1)-distributed. This automatically makes

J itt satisfy the second hypothesis of Theorem 1. Additionally, by virtue of its first

hypothesis, the distribution of (J itt , A
it
t ) is the same given either F+

t−1 or X1:N
t−1 (see

also Figure 1). We can now write

E

[∫
fNt (it−1, xt)δXit

t
(dxt)B

N
t (it,dit−1)

∣∣∣∣F
+
t−1

]

=E

[∫
fNt (it−1, X

it
t )BNt (it,dit−1)

∣∣∣∣F
+
t−1

]

=E
[

E
[
fNt (J itt , X

it
t )
∣∣F+

t−1, X
it
t , B̂

N
t (it, ·)

]∣∣∣F+
t−1

]

=E
[
fNt (J itt , X

it
t )
∣∣F+

t−1

]
by the law of total expectation

=E
[
fNt (Aitt , X

it
t )
∣∣F+

t−1

]
by the second hypothesis of Theorem 1

=

∫
fNt (it−1, xt)M(W 1:N

t−1 )(dit−1)Mt(X
it−1

t−1 ,dxt).

This equality means that

(30) E
[
δ
X

it
t

(dxt)B
N
t (it,dit−1)

∣∣∣F+
t−1

]
=M(W 1:N

t−1 )(dit−1)Mt(X
it−1

t−1 ,dxt),

Now, put

KN (it,dx0:t) := Q̄Nt (dx0:t|it).

From (29) and (30), we have

E
[
KN (it,dx0:t)

∣∣F+
t−1

]
=

∫

it−1

M(W 1:N
t−1 )(dit−1)Mt(X

it−1

t−1 ,dxt)Q̄
N
t−1(dx0:t−1|it−1)

= Mt(xt−1,dxt)

∫

it−1

M(W 1:N
t−1 )(dit−1)Q̄Nt−1(dx0:t−1|it−1)

since Q̄Nt−1(dx0:t−1|it−1) has a δ
X

it−1
t−1 (dxt−1)

term

= Mt(xt−1,dxt)Q
N
t−1(dx0:t−1)

which finishes the proof. �

E.2. Proof of Equation (11) (online smoothing recursion).

Proof. Using (7) and the matrix notations, the distribution Q̄Nt (dis) can be repre-
sented by the 1×N vector

q̂Ns|t := [W 1
t . . .W

N
t ]B̂Nt . . . B̂Ns+1.

Defining the N ×N matrix ψ̂Ns as

ψ̂Ns [is−1, is] := ψs(X
is−1

s−1 , X
is
s ),
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we have

EQN
t

[ψs(Xs−1, Xs)] =
∑

is,is−1

q̂Ns|t[1, is]B̂
N
s [is, is−1]ψ̂Ns [is−1, is]

=
∑

is

q̂Ns|t[1, is](B̂
N
s ψ̂

N
s )[is, is]

= q̂Ns|t diag(B̂Ns ψ̂
N
s ).

Therefore,

QNt ϕt =
t∑

s=0

[W 1
t . . .W

N
t ]B̂Nt . . . B̂Ns+1 diag(B̂Ns ψ̂

N
s )

from which follows the recursion{
QNt ϕt = [W 1

t . . .W
N
t ]ŜNt ,

ŜNt := B̂Nt Ŝ
N
t−1 + diag(B̂Nt ψ̂

N
t ).

This is exactly (11). �

E.3. Proof of Theorem 2 (general stability theorem). The following lemma
describes the simultaneous backward construction of two trajectories I1

0:T and I2
0:T

given F−T .

Lemma 2. We use the same notations as in Algorithms 1 and 2. Suppose that the
hypotheses of Theorem 1 are satisfied. Then, given I1

t:T , I2
t:T and F−T ,

• if I1
t 6= I2

t , the two variables I1
t−1 and I2

t−1 are conditionally indepen-

dent and their marginal distributions are respectively BN,FFBS
t (I1

t , ·) and

BN,FFBS
t (I2

t , ·);
• if I1

t = I2
t , under the aforementioned conditioning, the two variables I1

t−1

and I2
t−1 are both marginally distributed according to BN,FFBS

t (I1
t , ·). More-

over, if (13) holds, we have

(31) P
(
I1
t−1 6= I2

t−1

∣∣ I1,2
t:T ,F−T

)
1I1t =I2t ≥ εS 1I1t =I2t .

In particular, the sequence of variables (I1
T−s, I2

T−s)
T
s=0 is a Markov chain given

F−T .

Proof. To simplify the notations, let b̃nt denote the Rn vector B̂Nt (n, ·). The relation
between variables generated by Algorithm 2 is depicted as a graphical model in
Figure 22. We consider

p(b̃1:N
t , i1:2

t−1|F−T , i1:2
t:T ) = p(b̃1:N

t |F−T , i1:2
t:T ) p(i1:2

t−1|b̃1:N
t ,F−T , i1,2t:T )

= p(b̃1:N
t |x1:N

t−1, x
1:N
t ) p(i1:2

t−1|b̃1:N
t , i1:2

t )

(by properties of graphical models, see Figure 22)

=

[∏

n

p(b̃nt |x1:N
t−1, x

n
t )

]
b̃
i1t
t (i1t−1)b̃

i2t
t (i2t−1).

(32)

The distribution of i1t−1 given F−T and i1:2
t:T is thus the i1t−1-marginal of

(33) p(b̃
i1t
t |x1:N

t−1, x
i1t
t )b̃

i1t
t (i1t−1),
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x1:N
t−2

x1:N
t−1

x1:N
t

x1:N
t+1

. . .

x1:N
T

. . .

b̃1:N
t−1

b̃1:N
t

b̃1:N
t+1

. . .

b̃1:N
T

i1:2
T

. . .

i1:2
t−2

i1:2
t−1

i1:2
t

. . .

i1:2
T−1

Figure 22. Directed graph representing the relations between
variables generated in Algorithm 2. Only those necessary for the
proof of Lemma 2 are included.

which is exactly the distribution of p(j
i1t
t |x1:N

t−1, x
i1t
t ) where the J ’s are defined in

the statement of Theorem 1. By the second hypothesis of that theorem, the afore-

mentioned distribution is equal to p(a
i1t
t |x1:N

t−1, x
i1t
t ), which is in turn no other than

BN,FFBS
t (i1t , ·). Moreover, if i1t 6= i2t , (32) straightforwardly implies the conditional

independence of i1t−1 and i2t−1. When i1t = i2t , the distribution of i1:2
t−1 given F−T

and i1:2
t:T is the i1:2

t−1-marginal of

p(b̃
i1t
t |x1:N

t−1, x
i1t
t )b̃

i1t
t (i1t−1)b̃

i1t
t (i2t−1).

Thus, we can apply (13) for n = i1t , where i1:2
t−1 here plays the role of J1:2

t there.
Equation (31) is now proved. �

As Lemma 2 describes the distribution of two trajectories, it immediately gives
the distribution of a single trajectory.

Corollary 4. Under the same settings as in Lemma 2, given F−T , the distribution
of I1

0:T is

M(W 1:N
T )(diT )BN,FFBS

T (iT ,diT−1) . . . BN,FFBS
1 (i1,di0).

Note that the corollary applies even if the backward kernel used in Algorithm 2 is
not the FFBS one. This is due to the conditioning on F−T and the second hypothesis
of Theorem 1.
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Proof of Theorem 2. First of all, we remark that as per Algorithm 2, using index
variables I1:N

0:T adds a level of Monte Carlo approximation to QNT (dx0:T ). Therefore

E
[
(QNT (ϕT )− QT (ϕT ))2

]
= E



(

1

N

N∑

n=1

ϕT (X
In0
0 , . . . , X

InT
T )− QT (ϕT )

)2



= E
[
(QN,FFBS
T (ϕT )− QT (ϕT ))2

]
+(34)

+ E

[
Var

(
1

N

N∑

n=1

ϕT (X
In0
0 , . . . , X

InT
T )

∣∣∣∣∣F
−
T

)]

where the ultimate inequality is justified by the law of total expectation and Corol-
lary 4. (Note that (In0:T )Nn=1 are identically distributed but not necessarily in-
dependent given F−T .) Using Lemma 4 (stated and proved below) and putting
ρ := 1− M̄`/M̄h, we have

(35)

Var

(
1

N

N∑

n=1

ϕT (X
In0
0 , . . . , X

InT
T )

∣∣∣∣∣F
−
T

)

= Var

(
1

N

N∑

n=1

T∑

t=0

ψt(X
Int−1

t−1 , X
Int
t )

∣∣∣∣∣F
−
T

)

=
1

N2

∑

n,m≤N

∑

s,t≤T
Cov

(
ψt(X

Int−1

t−1 , X
Int
t ), ψs(X

Ims−1

s−1 , X
Ims
s )

∣∣∣F−T
)

≤ 2

N2

∑

n,m≤N
n=m

∑

s,t≤T
‖ψt‖∞ ‖ψs‖∞ ρ|t−s|−1+

+
4

N2

∑

n,m≤N
n 6=m

∑

s,t≤T

C̃

N
‖ψt‖∞ ‖ψs‖∞ ρ|t−s|−1

=


∑

s,t≤T
2 ‖ψt‖∞ ‖ψs‖∞ ρ|t−s|−1


 (2C̃ + 1)N − 2C̃

N2

≤


 ∑

s,t≤T

(
‖ψt‖2∞ + ‖ψs‖2∞

)
ρ|t−s|−1


 2C̃ + 1

N
≤ 4(2C̃ + 1)

Nρ(1− ρ)

∑
‖ψt‖2∞ .

We now look at the first term of (34). In the fixed marginal smoothing case, for
any s ∈ Z+, s ≤ T and any function φs : Xs → R, Douc et al. (2011) proved that

P
(∣∣∣QN,FFBS

T (ϕT )− QT (ϕT )
∣∣∣ ≥ ε

)
≤ B′e−C′Nε2/‖φs‖2∞

for ϕT (x0:T ) = φs(xs) and constants B′ and C ′ not depending on T . Using E[∆2] =∫∞
0

P(∆2 ≥ t)dt, the inequality implies

(36) E

[∣∣∣QN,FFBS
T (ϕT )− QT (ϕT )

∣∣∣
2
]
≤ B′ ‖φs‖2∞

C ′N
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for ϕT (x0:T ) = φs(xs). In the additive smoothing case, Dubarry and Le Corff
(2013) proved that, for T ≥ 2,

(37) E

[∣∣∣QN,FFBS
T (ϕT )− QT (ϕT )

∣∣∣
2
]
≤ C ′

N

(
T∑

t=0

‖ψt‖2∞

)(
1 +

√
T

N

)2

.

Equations (36), (37), (35) and (34) conclude the proof. �

The following lemma quantifies the backward mixing property induced by As-
sumption 2.

Lemma 3. Under the same setting as Theorem 2, we have

TV
(
BN,FFBS
t (m, ·), BN,FFBS

t (n, ·)
)
≤ 1− M̄`

M̄h

for all m,n ∈ {1, . . . , N} and t ∈ {1, . . . , T}.
Proof. We have

1− TV
(
BN,FFBS
t (m, ·), BN,FFBS

t (n, ·)
)

=

[
N∑

i=1

min

(
Gt−1(Xi

t−1)mt(X
i
t−1, X

m
t )

∑N
j=1Gt−1(Xj

t−1)mt(X
j
t−1, X

m
t )

,

Gt−1(Xi
t−1)mt(X

i
t−1, X

n
t )

∑N
j=1Gt−1(Xj

t−1)mt(X
j
t−1, X

n
t )

)]
by Lemma 1 (Appendix A.2)

≥
[
N∑

i=1

Gt(X
i
t−1)M̄`∑N

j=1Gt(X
j
t−1)M̄h

]
by Assumption 2

= (M̄`/M̄h).

�

Lemma 4. Under the same settings as in Theorem 2, for any m,n ∈ {1, . . . , N}
and s, s′ ∈ {0, . . . , T}, we have

(38) Cov
(
ψs(X

Ims−1

s−1 , X
Ims
s ), ψs′(X

In
s′−1

s′−1 , X
In
s′

s′ )
∣∣∣F−T

)

≤ 2

(
1− M̄`

M̄h

)|s−s′|−1

‖ψs‖∞ ‖ψs′‖∞ ×
{

2C̃/N if m 6= n

1 if m = n

where C̃ = C̃(M̄`, M̄h, Ḡ`, Ḡh, εS) is a constant that does not depend on T (and
which arises in the formulation of Lemma 5). If s or s′ is equal to 0, we adopt the
natural convention ψ0(x−1, x0) := ψ0(x0).

Proof. We first handle the case m 6= n. Without loss of generality, assume that
m = 1, n = 2 and s ≥ s′. The covariance bound of Lemma 1 yields

(39) Cov

(
ψs(X

I1s−1

s−1 , X
I1s
s ), ψs′(X

I2
s′−1

s′−1 , X
I2
s′

s′ )

∣∣∣∣F
−
T

)

≤ 2 ‖ψs‖∞ ‖ψs′‖∞ TV
(
(I1
s−1:s, I2

s′−1:s′)|F−T , (I1
s−1:s|F−T )⊗ (I2

s′−1:s′ |F−T )
)
.
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We shall bound this total variation distance via the coupling inequality of Lemma 1
(Appendix A.2). The idea is to construct, in addition to I1

0:T and I2
0:T , two trajecto-

ries I∗10:T and I∗20:T i.i.d. given F−T such that each of them is conditionally distributed
according to I1

0:T (cf. Corollary 4). To make the coupling inequality efficient, it
is desirable to make I1

0:T and I∗10:T as similar as possible (same thing for I2
0:T and

I∗20:T ).
The detailed construction of the four trajectories I1

0:T , I2
0:T , I∗10:T and I∗20:T given

F−T is described in Algorithm 15. In particular, we ensure that ∀t ≥ s− 1, we have
I1
t = I∗1t . For t ≤ s − 1, if I2

t = I∗2t , it is guaranteed that I2
` = I∗2` holds ∀` ≤ t.

The rationale for different coupling behaviours between the times t ≥ s − 1 and
t ≤ s− 1 will become clear in the proof: the former aim to control the correlation
between two different trajectories m = 1 and n = 2 and result in the C̃/N term
of (38); the latter are for bounding the correlation between two times s and s′ and

result in the (1− M̄`/M̄h)|s−s
′|−1 term of the same equation.

Algorithm 15: Sampler for the variables I1
0:T , I2

0:T , I∗10:T and I∗20:T (see proof
of Lemma 4)

Input: Feynman-Kac model (1), variables X1:N
0:T from the output of

Algorithm 1, integer s ≥ 0 (see statement of Lemma 4)

Sample I1
T , I2

T
i.i.d.∼ M(W 1:N

T )

Set I∗1T ← I1
T and I∗2T ← I2

T

for t← T to 1 do
if I1

t 6= I2
t then

for k ∈ {1, 2} do

Sample (Ikt−1, I∗kt−1) from any maximal coupling of BN,FFBS
t (Ikt , ·)

and BN,FFBS
t (I∗kt , ·) (cf. Lemma 1)

else

Sample the RN vector B̂Nt (I1
t , ·) from p(b̂Nt (i1t , ·)|x1:N

t−1, x
i1t
t )

Sample I1
t−1, I2

t−1
i.i.d.∼ B̂Nt (I1

t , ·)
Set k ← 1, `← 2 if t ≥ s and k ← 2, `← 1 otherwise

Sample I∗kt−1 ∼ BN,FFBS
t (I∗kt , ·) such that (I∗kt−1, Ikt−1) is any maximal

coupling of BN,FFBS
t (I∗kt , ·) and BN,FFBS

t (Ikt , ·) given I1:2
t:T , I∗1:2

t:T and
F−T ((?) - see text for validity of this step)

Sample I∗`t−1 ∼ BN,FFBS
t (I∗`t , ·)

Output: Four trajectories I1
0:T , I2

0:T , I∗10:T , I∗20:T to be used in the proof of
Lemma 4

The correctness of Algorithm 15 is asserted by Lemma 2. Step (?) is valid

because that lemma states that the distribution of Ikt−1 given F−T , I1,2
t:T and I∗1,2t:T

is BN,FFBS
t (Ikt , ·). Furthermore, we note that (RT−t)Tt=0 where

Rt := (I1
t , I2

t , I∗1t , I∗2t ),

is a Markov chain given F−T .
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From (39), applying the coupling inequality of Lemma 1 gives

(40) Cov

(
ψs(X

I1s−1

s−1 , X
I1s
s ), ψs′(X

I2
s′−1

s′−1 , X
I2
s′

s′ )

∣∣∣∣F
−
T

)

≤ 2 ‖ψs‖∞ ‖ψs′‖∞ P
(

(I1
s−1:s, I2

s′−1:s′) 6= (I∗1s−1:s, I∗2s′−1:s′)
∣∣F−T

)

= 2 ‖ψs‖∞ ‖ψs′‖∞ P
(
I2
s′−1:s′ 6= I∗2s′−1:s′

∣∣F−T
)

where the last equality results from the construction of Algorithm 15. The sub-case
s = s′ following directly from Lemma 5, we now focus on the sub-case s ≥ s′ + 1.
For all t ≤ s− 1,

(41)

P
(
I2
t−1 6= I∗2t−1

∣∣F−T
)

= P
(
I2
t−1 6= I∗2t−1, I2

t 6= I∗2t
∣∣F−T

)

by construction of Algorithm 15

= E
[
P
(
I2
t−1 6= I∗2t−1, I2

t 6= I∗2t
∣∣Rt,F−T

)∣∣F−T
]

by the law of total expectation

= E
[

TV
(
BN,FFBS
t (I2

t , ·), BN,FFBS
t (I∗2t , ·)

)
1
{
I2
t 6= I∗2t

}∣∣∣F−T
]

≤
(

1− M̄`

M̄h

)
P
(
I2
t 6= I∗2t

∣∣F−T
)

by Lemma 3.

Thus

P
(
I2
s′−1:s′ 6= I∗2s′−1:s′

∣∣F−T
)

= P
(
I2
s′ 6= I∗2s′

∣∣F−T
)

by construction of Algorithm 15

≤
(

1− M̄`

M̄h

)s−s′−1

P
(
I2
s−1 6= I∗2s−1

∣∣F−T
)

by applying (41) recursively

≤
(

1− M̄`

M̄h

)s−s′−1
C̃

N
by Lemma 5,

which, combined with (40) finishes the proof for the current sub-case s ≥ s′ + 1.
It remains to show (38) when m = n. The proof follows the same lines as in the
case m 6= n, although we shall briefly outline some arguments to show how the
factor C̃/N disappeared. The case s = s′ being trivial, suppose that s ≥ s′+ 1 and
without loss of generality that m = n = 3. To use the coupling tools of Lemma 1,
we construct trajectories I3

0:T , I∗30:T and I∗40:T via Algorithm 16 and write, in the
spirit of (40):

(42) Cov

(
ψs(X

I3s−1

s−1 , X
I3s
s ), ψs′(X

I3s−1

s′−1 , X
I3
s′

s′ )

∣∣∣∣F
−
T

)

≤ 2 ‖ψs‖∞ ‖ψs′‖∞ P
(

(I3
s−1:s, I3

s′−1:s′) 6= (I∗3s−1:s, I∗4s′−1:s′)
∣∣F−T

)

= 2 ‖ψs‖∞ ‖ψs′‖∞ P
(
I3
s′ 6= I∗4s′

∣∣F−T
)
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Algorithm 16: Sampler for the variables I3
0:T , I∗30:T and I∗40:T (see proof of

Lemma 4)

Input: Feynman-Kac model (1), variables X1:N
0:T from the output of

Algorithm 1, integer s ≥ 0 (see statement of Lemma 4)

Sample I∗3T , I∗4T
i.i.d.∼ M(W 1:N

T )

Set I3
T ← I∗3T

for t← T to 1 do
if t ≥ s then

Sample I∗3t−1 ∼ BN,FFBS
t (I∗3t , ·) and I∗4t−1 ∼ BN,FFBS

t (I∗4t , ·)
Set I3

t−1 ← I∗3t−1

else

Sample (I3
t−1, I∗4t−1) from a maximal coupling of BN,FFBS

t (I3
t , ·) and

BN,FFBS
t (I∗4t , ·)

Sample I∗3t−1 ∼ BN,FFBS
t (I∗3t , ·)

Output: Three trajectories I3
0:T , I∗30:T and I∗40:T to be used in the proof of

Lemma 4

where the last equality follows from the construction of Algorithm 16 and the
hypothesis s ≥ s′ + 1. For all t ≤ s− 1, the inequality

(43) P
(
I3
t−1 6= I∗4t−1

∣∣F−T
)
≤
(

1− M̄`

M̄h

)
P
(
I3
t 6= I∗4t

∣∣F−T
)

can be proved using the same techniques as those used to prove (41): applying
Lemma 3 given (I3

t , I∗3t , I∗4t ) then invoking the law of total expectation. Repeatedly
instantiating (43) gives

P
(
I3
s′ 6= I∗4s′

∣∣F−T
)
≤
(

1− M̄`

M̄h

)s−s′−1

P
(
I3
s−1 6= I∗4s−1

∣∣F−T
)

≤
(

1− M̄`

M̄h

)s−s′−1

which, when plugged into (42), finishes the proof. �

Lemma 5. For I2
s and I2∗

s defined by the output of Algorithm 15, we have

P
(
I2
s 6= I∗2s |F−T

)
≤ C̃/N, and

P
(
I2
s−1 6= I∗2s−1

∣∣F−T
)
≤ C̃/N, if s ≥ 1,

for some constant C̃ = C̃(M̄`, M̄h, Ḡ`, Ḡh, εS).

Proof. Define At := 1
{
I1
t 6= I2

t

}
, Bt := 1

{
I2
t = I∗2t

}
and Γt := AtBt and recall

that Rt := (I1
t , I2

t , I∗1t , I∗2t ). The sequence (RT−`)T`=0 is a Markov chain given F−T ,
but this is not necessarily the case for the sequence (ΓT−`)T`=0 of Bernoulli random
variables. Nevertheless, Lemma 6 below shows that one can get bounds on two-step
“transition probabilities” for (ΓT−`), i.e. the probabilities under F−T that Γt−2 = 1
given Γt and Rt. This motivates our following construction of actual Markov chains
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approximating the dynamic of Γt. Let Γ∗T and Γ∗T−1 be two independent Bernoulli

random variables given F−T such that

(44)
P
(

Γ∗T = 1| F−T
)

= P
(

ΓT = 1| F−T
)

P
(

Γ∗T−1 = 1
∣∣F−T

)
= P

(
ΓT−1 = 1| F−T

)
.

Let Γ∗T ,Γ
∗
T−2,Γ

∗
T−4, . . . and Γ∗T−1,Γ

∗
T−3, . . . be two homogeneous Markov chains

given F−T with the same transition kernel
←−
C2 defined by

(45)

PF−T (Γ∗t−2 = 1|Γ∗t = 1) = 1− 2

N

(
ḠhM̄h

Ḡ`M̄`

)2

=:
←−
C2

11

PF−T (Γ∗t−2 = 1|Γ∗t = 0) =
M̄`εS

2M̄h
=:
←−
C2

01

where for two events E1, E2, the notation PF−T (E1|E2) is the ratio between P
(
E1, E2| F−T

)

and P
(
E2| F−T

)
. We shall now prove by backward induction the following state-

ment:

(46) P
(

Γt = 1| F−T
)
≥ P

(
Γ∗t = 1| F−T

)
,∀t ≥ s− 1.

Firstly, (46) holds for t = T and t = T − 1. Now suppose that it holds for some
t ≥ s+ 1 and we wish to justify it for t− 2. By Lemma 6,

P
(

Γt−2 = 1|Rt,F−T
)

1Γt=1 ≥
←−
C2

111Γt=1

P
(

Γt−2 = 1|Rt,F−T
)

1Γt=0 ≥
←−
C2

011Γt=0.

Applying the law of total expectation gives

P
(

Γt−2 = 1| F−T
)
≥
←−
C2

11P
(

Γt = 1| F−T
)

+
←−
C2

01P
(

Γt = 0| F−T
)

=
(←−
C2

11 −
←−
C2

01

)
P
(

Γt = 1| F−T
)

+
←−
C2

01

≥
(←−
C2

11 −
←−
C2

01

)
P
(

Γ∗t = 1| F−T
)

+
←−
C2

01

if N is large enough, by induction hypothesis

= P
(

Γ∗t−2 = 1
∣∣F−T

)

and (46) is now proved. To finish the proof of the lemma, it is necessary to lower
bound its right hand side. We start by controlling the distribution Γ∗t for t = T
and t = T − 1. We have

(47)

P
(

Γ∗T = 1| F−T
)

= P
(

ΓT = 1| F−T
)

by (44)

= 1− P
(
AT = 0| F−T

)
as BT = 1 by Algorithm 15

= 1−
N∑

i=1

P
(
I1
T = I2

T = i
∣∣F−T

)

= 1−
N∑

i=1

(
G(Xi

T )
∑N
j=1G(Xj

T )

)2

≥ 1− 1

N

(
Ḡh
Ḡ`

)2

by Assumption 3
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and

(48)

P
(

Γ∗T−1 = 1
∣∣F−T

)
≥ P

(
ΓT = 1,ΓT−1 = 1| F−T

)

= E
[
P
(

ΓT = 1,ΓT−1 = 1|RT ,F−T
)∣∣F−T

]

by the law of total expectation

= E
[
P
(

ΓT−1 = 1|RT ,F−T
)

1ΓT =1

∣∣F−T
]

≥
[

1− 1

N

(
ḠhM̄h

Ḡ`M̄`

)2
]

P
(

ΓT = 1| F−T
)

via (53)

≥
[

1− 1

N

(
ḠhM̄h

Ḡ`M̄`

)2
][

1− 1

N

(
Ḡh
Ḡ`

)2
]
.

The contraction property of Lemma 1 makes it possible to relate the intermediate
distributions Γ∗t |F−T to the end point ones Γ∗T−1|F−T and Γ∗T |F−T . More specifically,
(45) and Lemma 1 lead to

(49) TV(Γ∗t |F−T , µ∗) ≤ max
(
TV(Γ∗T |F−T , µ∗),TV(Γ∗T−1|F−T , µ∗)

)

where µ∗ is the invariant distribution of a Markov chain with transition matrix
←−
C2,

namely

(50)




µ∗({0}) =

←−
C2

10←−
C2

01+
←−
C2

10

µ∗({1}) = 1− µ∗({0}).

Furthermore, an alternative expression of the total variation distance given in
Lemma 1 implies that the total variation distance between two Bernoulli distri-
butions of parameters p and q is |p− q|. Combining this with (49), the triangle
inequality and the rough estimate max(a, b) ≤ a+ b ∀a, b ≥ 0, we get

P
(

Γ∗t = 0| F−T
)
≤ 3µ∗({0}) + P

(
Γ∗T = 0| F−T

)
+ P

(
Γ∗T−1 = 0

∣∣F−T
)
≤ C̃/N

where C̃ = C̃(M̄`, M̄h, Ḡ`, Ḡh, εS). The last inequality is straightforwardly derived
by plugging respectively (50), (47) and (48) into the three terms of the preceding
sum. This combined with (46) finishes the proof. �

Lemma 6. For s defined in the statement of Lemma 4; At, Bt and Rt defined in
the proof of Lemma 5 and all t ≥ s+ 1, we have

P
(
At−2Bt−2 = 1|Rt,F−T

)
1AtBt=1 ≥

(
1− 2

N

(
ḠhM̄h

Ḡ`M̄`

)2
)

1AtBt=1;

P
(
At−2Bt−2 = 1|Rt,F−T

)
≥ M̄`εS

2M̄h

where the inequalities hold for N large enough, i.e., N ≥ N0 = N0(M̄`, M̄h, Ḡ`, Ḡh, εS).
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Proof. We start by showing the following three inequalities for all t ≥ s and N
sufficiently large:

P
(
At−1 = 1|Rt,F−T

)
≥ εS;(51)

P
(
At−1Bt−1 = 1|Rt,F−T

)
1At=1 ≥ (M̄`/2M̄h)1At=1;(52)

P
(
At−1Bt−1 = 1|Rt,F−T

)
1AtBt=1 ≥

[
1− 1

N

(
ḠhM̄h

Ḡ`M̄`

)2
]

1AtBt=1.(53)

For (51), we have

(54) P
(
At−1 = 1|Rt,F−T

)
1At 6=1 = P

(
I1
t−1 6= I2

t−1

∣∣Rt,F−T
)

1I1t =I2t ≥ εS1At 6=1

by Lemma 2. Next,

(55)

P
(
At−1 = 1|Rt,F−T

)
1At=1

= P
(
I1
t−1 6= I2

t−1

∣∣Rt,F−T
)

1I1t 6=I2t

=

[
1−

∑

i

P
(
I1
t−1 = I2

t−1 = i
∣∣Rt,F−T

)
]

1I1t 6=I2t

=


1−

N∑

i=1

2∏

k=1

Gt−1(Xi
t−1)mt(X

i
t−1, X

Ikt
t )

∑N
j=1Gt−1(Xj

t−1)mt(X
j
t−1, X

Ikt
t )


1I1t 6=I2t by Lemma 2

≥
[

1− 1

N

(
ḠhM̄h

Ḡ`M̄`

)2
]

1At=1 by Assumptions 2 and 3.

Combining (54) and (55) yields (51) for N large enough. To prove (52), we write

(56)

P
(
At−1Bt−1 = 1|Rt,F−T

)
1At=1

=
[
1− P

(
At−1Bt−1 = 0|Rt,F−T

)]
1At=1

≥
[
1− P

(
At−1 = 0|Rt,F−T

)
− P

(
Bt−1 = 0|Rt,F−T

)]
1At=1

=
[
P
(
At−1 = 1|Rt,F−T

)
+ P

(
Bt−1 = 1|Rt,F−T

)
− 1
]

1At=1.

We analyse the second term in the above expression. We have

(57)

P
(
Bt−1 = 1|Rt,F−T

)
1At=1

= P
(
I2
t−1 = I∗2t−1

∣∣Rt,F−T
)

1I1t 6=I2t

=
[
1− TV

(
BN,FFBS
t (I2

t , ·), BN,FFBS
t (I∗2t , ·)

)]
1At=1

by construction of Algorithm 15

≥ (M̄`/M̄h)1At=1 by Lemma 3.

Plugging (55) and (57) into (56) yields

P
(
At−1Bt−1 = 1|Rt,F−T

)
1At=1 ≥

(
− 1

N

(
ḠhM̄h

Ḡ`M̄`

)2

+
M̄`

M̄h

)
1At=1

and thus (52) follows if N is large enough. The inequality (53) is justified by
combining (55), the simple decomposition 1AtBt=1 = 1At=11Bt=1 and the fact that
Algorithm 15 guarantees Bt−1 = 1 if At = Bt = 1.
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We can now deduce the two inequalities in the statement of the Lemma. The
first one is a straightforward double application of (53):

P
(
At−2Bt−2 = 1|Rt,F−T

)
1AtBt=1

≥ P
(
At−2Bt−2 = 1, At−1Bt−1 = 1|Rt,F−T

)
1AtBt=1

= E
[
P
(
At−2Bt−2 = 1, At−1Bt−1 = 1|Rt−1, Rt,F−T

)∣∣Rt,F−T
]

1AtBt=1

by the law of total expectation

= E
[
P
(
At−2Bt−2 = 1|Rt−1,F−T

)
1At−1Bt−1=1

∣∣Rt,F−T
]

1AtBt=1

since (RT−`)
T
`=0 is Markov given F−T

≥ E

[(
1− 1

N

(
ḠhM̄h

Ḡ`M̄`

)2
)

1At−1Bt−1=1

∣∣∣∣∣Rt,F
−
T

]
1AtBt=1

≥
[

1− 1

N

(
ḠhM̄h

Ḡ`M̄`

)2
]2

1AtBt=1 ≥
(

1− 2

N

(
ḠhM̄h

Ḡ`M̄`

)2
)

1AtBt=1.

Finally, we have

P
(
At−2Bt−2 = 1|Rt,F−T

)

≥ P
(
At−2Bt−2 = 1, At−1 = 1|Rt,F−T

)

= E
[
P
(
At−2Bt−2 = 1|Rt−1,F−T

)
1At−1=1

∣∣Rt,F−T
]

using law of total expectation and the Markov property as above

≥ M̄`

2M̄h
P
(
At−1 = 1|Rt,F−T

)
by (52)

≥ M̄`

2M̄h
εS by (51)

and the second inequality is proved. �

E.4. Proof of Proposition 3 (hybrid rejection validity).

Proof. Put Zn := (Xn, UnCµ0(Xn)). Then Zn is uniformly distributed on

G0 := {(x, y) ∈ X × R+, y ≤ Cµ0(x)} .

The proof would be done if one could show that, given K∗ ≤ K, the variable ZK∗

is uniformly distributed on

G1 := {(x, y) ∈ X × R+, y ≤ µ1(x)} .
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Note that K∗ is, by definition, the first time index where the sequence (Zn) touches
G1. Let B be any subset of G1. We have

(58)

P (ZK∗ ∈ B|K∗ ≤ K) ∝ P(ZK∗ ∈ B,K∗ ≤ K)

=
∞∑

k∗=1

P (Zk∗ ∈ B,K∗ = k∗,K ≥ k∗)

=
∞∑

k∗=1

P (Zk∗ ∈ B,Z1:k∗−1 /∈ G1,K > k∗ − 1)

=

∞∑

k∗=1

P(Zk∗ ∈ B)P (Z1:k∗−1 /∈ G1,K > k∗ − 1) since K stopping time

= P(Z1 ∈ B)
∞∑

k∗=1

P (Z1:k∗−1 /∈ G1,K > k∗ − 1)

∝ P(Z1 ∈ B) ∝ P (Z1 ∈ B|Z1 ∈ G1) .

By considering the special case B = G1, we see that the constant of proportionality
between the first and the last terms of (58) must be 1, from which the proof
follows. �

E.5. Proof of Theorem 3 (hybrid algorithm’s intermediate complexity).

From (16), one may have the correct intuition that as N → ∞, τ1,PaRIS
t tends in

distribution to that of the variable τ∞,PaRIS
t defined as

(59) τ∞,PaRIS
t | X∞,PaRIS

t ∼ Geo

(
rt(X

∞,PaRIS
t )

M̄h

)

where X∞,PaRIS
t ∼ Qt−1Mt(dxt) is distributed according to the predictive distri-

bution of Xt given Y0:t−1 and rt is the density of X∞,PaRIS
t with respect to the

Lebesgue measure (cf. Definition 1). The following proposition formalises the con-

nection between τ1,PaRIS
t and τ∞,PaRIS

t .

Proposition 6. We have τ1,PaRIS
t ⇒ τ∞,PaRIS

t as N →∞.

Proof. From (16) and Definition 1 one has

(60) τ1,PaRIS
t | X1

t ,Ft−1 ∼ Geo

(
rNt (X1

t )

M̄h

)
.

In light of (59), it suffices to establish that

(61)
rNt (X1

t )

M̄h
⇒ rt(X

∞,PaRIS
t )

M̄h
.

Indeed, this would mean that for any continuous bounded function ψ, we have

E[ψ(τ1,PaRIS
t )] = E

[
(Geo? ψ)

(
rNt (X1

t )

M̄h

)]
→ E

[
(Geo? ψ)

(
rt(X

∞,PaRIS
t )

M̄h

)]

= E[ψ(τ∞,PaRIS
t )]
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where Geo? is the geometric Markov kernel that sends each λ to the geometric
distribution of parameter λ, i.e. Geo?(λ,dx) = Geo(λ). To this end, write

rNt (X1
t )− rt(X1

t ) =

∑
nGt−1(Xn

t−1)mt(X
n
t−1, X

1
t )∑

nGt−1(Xn
t−1)

− rt(X1
t )

=

∑
nN

−1Gt−1(Xn
t−1)

[
mt(X

n
t−1, X

1
t )− rt(X1

t )
]

N−1
∑
nGt−1(Xn

t−1)
.

(62)

We study the mean squared error of the numerator:

E

{
1

N

∑

n

Gt−1(Xn
t−1)

[
mt(X

n
t−1, X

1
t )− rt(X1

t )
]
}2

=
1

N
E
{
Gt−1(X1

t−1)2
[
mt(X

1
t−1, X

1
t )− rt(X1

t )
]2}

+
N(N − 1)

N2
E
{
Gt−1(X1

t−1)Gt−1(X2
t−1)

[
mt(X

1
t−1, X

1
t )− rt(X1

t )
]

×
[
mt(X

2
t−1, X

1
t )− rt(X1

t )
] }

where we have again used the exchangeability induced by step (?) of Algorithm 5.
The first term obviously tends to 0 as N →∞ by Assumptions 4 and 1. The second
term also vanishes asymptotically thanks to Lemma 7 below and Assumption 6.
Assumption 1 also implies that the denominator of (62) converges in probability to
some constant, via the consistency of particle approximations, see e.g. Del Moral
(2004) or Chopin and Papaspiliopoulos (2020). Thus, rNt (X1

t ) − rt(X1
t ) ⇒ 0 by

Slutsky’s theorem. Moreover, rt(X
1
t ) ⇒ rt(X

∞,PaRIS
t ) by the continuity of rt and

the consistency of particle approximations. Using again Slutsky’s theorem yields
(61). �

The following lemma is needed to complete the proof of Proposition 6 and is
related to the propagation of chaos property, see Del Moral (2004, Chapter 8).

Lemma 7. We have (X1
t−1, X

2
t−1, X

1
t )⇒ Qt−2Mt−1 ⊗ Qt−2Mt−1 ⊗Qt−1Mt.

Proof. For vectors u, v, and w, we have, by the symmetry of the distribution of
particles:

E
[
exp

(
iuX1

t−1 + ivX2
t−1 + iwX1

t

)]

= E

[(
1

N

∑
eiuX

n
t−1

)(
1

N

∑
eivX

n
t−1

)(
1

N

∑
eiwX

n
t

)]

− N

N2
E

[
eiuX

1
t−1eivX

1
t−1

(
1

N

∑
eiwX

n
t

)]

+
N

N2
E

[
eiuX

1
t−1eivX

2
t−1

(
1

N

∑
eiwX

n
t

)]
.

Note that
1

N

∑
eiuX

n
t−1

a.s.−→ Qt−2Mt−1 (exp(iu•))
and

1

N

∑
eiwX

n
t

a.s.−→ Qt−1Mt (exp(iw•)) .
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The dominated convergence theorem, applicable since
∣∣eiu

∣∣ ≤ 1 for u ∈ R, finishes
the proof. �

Proof of Theorem 3. First of all,

(63) E[τ∞,PaRIS
t ] = E

[
M̄h

rt(X
∞,PaRIS
t )

]
=

∫

Xt

M̄h

rt(xt)
rt(xt)dxt =∞

by Assumption 5. Next, for any x ∈ R \ Z and N > x,

P
(

min(τ1,PaRIS
t , N) ≤ x

)
= P

(
τ1,PaRIS
t ≤ x

)
→ P

(
τ∞,PaRIS
t ≤ x

)

by Proposition 6. Thus, by Portmanteau theorem,

(64) min(τ1,PaRIS
t , N)⇒ τ∞,PaRIS

t .

Altogether, we have

lim inf
N→∞

E
[
min(τ1,PaRIS

t , N)
]

= lim inf
N→∞

∑
kP
(

min(τ1,PaRIS
t , N) = k

)

≥
∑

lim inf
N→∞

kP
(

min(τ1,PaRIS
t , N) = k

)
by Fatou’s lemma

=
∑

kP
(
τ∞,PaRIS
t = k

)
by (64)

=∞ by (63)

and

lim
N→∞

1

N
E
[
min(τ1,PaRIS

t , N)
]

= lim
N→∞

E

[
min

(
τ1,PaRIS
t

N
, 1

)]
→ 0

since τ1,PaRIS
t ⇒ τ∞,PaRIS

t implies that the sequence of random variables

min

(
τ1,PaRIS
t

N
, 1

)

converges to 0 in distribution while being bounded between 0 and 1. �

E.6. Proof of Theorem 4 (hybrid PaRIS near-linear complexity). The fol-
lowing proposition shows that the real execution time for the hybrid algorithm is
asymptotically at most of the same order as the “oracle” hybrid execution time.

Proposition 7. We have

lim sup
N→∞

E
[
min(τ1,PaRIS

t , N)
]

E
[
min(τ∞,PaRIS

t , N)
] <∞.

Proof. Put

(65) zN (λ) :=
1− (1− λ)N

λ
=
N−1∑

n=0

(1− λ)n.

One can quickly verify (using the memorylessness of the geometric distribution for
example) that zN (λ) = E [min(G,N)|G ∼ Geo(λ)]. It will be useful to keep in
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mind the elementary estimate zN (λ) ≤ min(N,λ−1). We can now write

E
[
min(τ1,PaRIS

t , N)
]

= E

[
zN
(
rNt (X1

t )

M̄h

)]
(by (60)) = E

[
E

[
zN
(
rNt (X1

t )

M̄h

)∣∣∣∣Ft−1

]]

= E

[∫

Xt

zN
(
rNt (xt)

M̄h

)
rNt (xt)λt(dxt)

]

≤ ct
(∫

Xt

zN
(
rt(xt)

M̄h

)
rt(xt)λt(dxt) + bt

)
by Lemma 8

= ct

(
E[min(τ∞,PaRIS

t , N)] + bt

)

from which the proposition is immediate. �

Lemma 8. In addition to notations of Algorithm 1, let the function zN be defined as
in (65) and the functions rt and rNt be defined as in Definition 1. Let φt : Xt → R>0

be a bounded non-negative deterministic function. Then, under Assumptions 1
and 4, there exist constants bt and ct depending only on the model such that

E

[∫

Xt

zN
(
rNt (xt)

M̄h

)
rNt φt

]
≤ ct

(∫

Xt

zN
(
rt(xt)

M̄h

)
rtφt + bt ‖φt‖∞

)

where for brevity, we shortened the integration notation (e.g. dropping λt(dxt),
dropping xt from φ(xt), etc.) whenever there is no ambiguity.

Proof. We have

(66) E

[∫

Xt

zN
(
rNt (xt)

M̄h

)
rNt φt

]
≤
∫

Xt

zN
(

E

[
rNt (xt)

M̄h

])
E
[
rNt (xt)

]
φt

using Fubini’s theorem and the concavity of λ 7→ λzN (λ) on [0, 1]. By a well-known
result on the bias of a particle filter (which is in fact the propagation of chaos in
the special case of q = 1 particle), we have:

∣∣E
[
rNt (xt)

]
− rt(xt)

∣∣ =
∣∣∣E
[∑

Wn
t−1mt(X

n
t−1, xt)

]
− rt(xt)

∣∣∣

=
∣∣∣E
[
mt

(
X
A1

t
t−1, xt

)]
− Qt−1 (mt (•, xt))

∣∣∣

≤ btM̄h

N
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for some constant bt. We next show that such a bias does not change the asymptotic
behavior of zN . More precisely,

(67)

zN
(

E

[
rNt (xt)

M̄h

])
≤ zN

(
rt(xt)

M̄h
− bt
N

)

=

N−1∑

n=0

(
1− rt(xt)/M̄h + bt/N

1− rt(xt)/M̄h

)n(
1− rt(xt)

M̄h

)n

≤
N−1∑

n=0

(
1 +

bt

N
(
1− rt(xt)/M̄h

)
)N (

1− rt(xt)

M̄h

)n

≤ exp

(
bt

1− rt(xt)/M̄h

)
zN
(
rt(xt)

M̄h

)

≤ e2btzN
(
rt(xt)

M̄h

)

if xt is such that rt(xt)/M̄h ≤ 1/2. In contrast, if rt(xt)/M̄h ≥ 1/2, then provided
that N ≥ 6bt, we have

(68) zN
(

E

[
rNt (xt)

M̄h

])
≤ zN

(
rt(xt)

M̄h
− bt
N

)
≤ zN

(
1

3

)
≤ 3zN

(
rt(xt)

M̄h

)
.

Putting together (67) and (68), we have, for N ≥ 6bt,

zN
(

E

[
rNt (xt)

M̄h

])
≤
(
e2bt + 3

)
zN
(
rt(xt)

M̄h

)

and so, by (66),

E

[∫

Xt

zN
(
rNt (xt)

M̄h

)
rNt φt

]
≤
(
e2bt + 3

) ∫

Xt

zN
(
rt(xt)

M̄h

)
E
[
rNt (xt)

]
φt

=
(
e2bt + 3

)
E

[
zN
(
rt(X

1
t )

M̄h

)
φt(X

1
t )

]
.

Again, using the result on the bias of a particle filter,
∣∣∣∣E
[
zN
(
rt(X

1
t )

M̄h

)
φt(X

1
t )

]
−
∫

Xt

zN
(
rt(xt)

M̄h

)
rtφt

∣∣∣∣ ≤
bt
∥∥zN

∥∥
∞ ‖φt‖∞
N

= bt ‖φt‖∞

which, together with the previous inequality, implies the desired result. �

Proposition 8. In linear Gaussian state space models, we have

E
[
min(τ∞,PaRIS

t , N)
]

= O
(

(logN)dt/2
)
.

Proof. Let µt and Σt be such that X∞,PaRIS
t ∼ N (µt,Σt). Then

log(rt(X
∞,PaRIS
t )/M̄h) = b′t −Wt

where b′t is some constant and

Wt :=
(X∞,PaRIS

t − µt)>Σ−1
t (X∞,PaRIS

t − µt)
2

∼ Gamma

(
dt
2
, 1

)
.
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We have

E
[
min(τ∞,PaRIS

t , N)
]

= E

[
zN

(
rt(X

∞,PaRIS
t )

M̄h

)]
= E

[
zN (eb

′
t−Wt)

]

=

∫ ∞

0

zN (eb
′
t−w)

wdt/2−1e−w

Γ(dt/2)
dw

≤
∫ logN

0

ew−b
′
t
wdt/2−1e−w

Γ(dt/2)
dw +

∫ ∞

logN

N
wdt/2−1e−w

Γ(dt/2)
dw

using the bound zN (λ) ≤ min(N, 1/λ). The first term is of order O(logdt/2N)

by elementary calculus, while the second term is of order O(logdt/2−1N) using
asymptotic properties of the incomplete Gamma function, see Olver et al. (2010,
Section 8.11). �

Proof of Theorem 4. The theorem is a straightforward consequence of Proposition 7
and Proposition 8. �

E.7. Proof of Theorems 6 and 7 (pure rejection FFBS complexity). We
start with a useful remark linking the projection kernels Π and the cost-to-go func-
tions defined in Appendix A with the L-kernels formulated in (27). The proof is
simple and therefore omitted.

Lemma 9. We have Lt:T (x0:t,1) = Ht:T (xt) for all x0:t. Moreover, for any func-
tion φt : Xt → R, we have

Lt:TΠ0:T
t φt = Π0:t

t (φt ×Ht:T ).

Theorems 6 and 7 both rely on an induction argument wrapped up in the fol-
lowing proposition.

Proposition 9. We use the notations of Algorithm 2. Let QNt be defined as in
(24), where the BNs kernels can be BN,FFBS

s or any other kernels satisfying the
hypotheses of Theorem 1. Suppose that Assumption 1 holds. Let fNt : Xt → R≥0

be a (possibly random) function such that fNt (xt) is Ft−1-measurable. Then the
following assertions are true:

(a) Suppose that E
[∫
Xt

{
rNt × fNt ×Gt ×Ht:T

}
(xt)λt(dxt)

]
= ∞, where rNt

and λt are defined in Definition 1. Then

E

[∫
QNT (dxt)f

N
t (xt)

]
=∞.

(b) Suppose that
∫
Xt

{
rNt × fNt ×Gt ×Ht:T

}
(xt)λt(dxt)

P→ 0. Then

∫
QNT (dxt)f

N
t (xt)

P→ 0.

Proof. Part (a). We shall prove by induction the statement

E
[
QNs Ls:TΠ0:T

t fNt
]

=∞,∀ t− 1 ≤ s ≤ T.
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For s = t− 1, it follows from part (a)’s hypothesis and Lemma 9. Indeed,

QNt−1Lt−1:TΠ0:T
t fNt

= QNt−1Lt−1:tLt:TΠ0:T
t fNt = QNt−1Lt−1:tΠ

0:t
t (fNt ×Ht:T )

=

∫∫

Xt−1×Xt

QNt−1(dxt−1)mt(xt−1, xt)λt(dxt)Gt(xt)(f
N
t ×Ht:T )(xt)

=

∫

Xt

{
rNt × fNt ×Gt ×Ht:T

}
(xt)λt(dxt).

For s ≥ t, we have

E
[
QNs Ls:TΠ0:T

t fNt
]

= E

[
N−1

∑
K̃N
s (n,Ls:TΠ0:T

t fNt )

`Ns

]
by Corollary 3

≥ 1

‖Gs‖∞
E
[
N−1

∑
K̃N
s (n,Ls:TΠ0:T

t fNt )
]

by Assumption 1 and definition of `Ns (see Algorithm 1)

≥ 1

‖Gs‖∞
E
[
QNs−1Ls−1:sLs:TΠ0:T

t fNt
]

by Corollary 3 and law of total expectation

= E
[
QNs−1Ls−1:TΠ0:T

t fNt
]

=∞ (induction hypothesis).

Part (b). Similar to part (a), we shall prove by induction the statement

QNs Ls:TΠ0:T
t fNt

P→ 0,∀ t− 1 ≤ s ≤ T.
Again, by Corollary 3, this quantity is equal to

N−1
∑
K̃N
s (n,Ls:TΠ0:T

t fNt )

`Ns
,

and the expectation of the numerator given Fs−1 is QNs−1Ls−1:TΠ0:T
t fNt , which

tends to 0 in probability by induction hypothesis. Lemma 12 (see below at the end

of the section), the classical result `Ns
P→ `s := Qs−1Ms(Gs) and Stutsky’s theorem

concludes the proof. �

Proof of Theorem 6. By (21), we have E[τ1,FFBS
t ] = E[

∫
QN,FFBS
T (dxt)f

N
t (xt)] where

fNt (xt) =
M̄h∑

Wn
t−1mt(Xn

t−1, xt)
=
M̄h

rNt

with rNt given in Definition 1. Proposition 9(a) gives a sufficient condition for

E[τ1,FFBS
t ] =∞ to hold, namely

∫

Xt

(rNt × fNt ×Gt ×Ht:T )(xt)λt(dxt) =∞,

which is equivalent to the hypothesis of the theorem. �

Proof of Theorem 7. We use notations from Definition 1 and Appendix A.1. We
note N (x|µ,Σ) the density of the specified normal distribution at point x. Using
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Lemma 10, Proposition 9 and (21), we have

E[(τ1,FFBS
t )] =∞⇔ E

[
1

rNt (X
I1t
t )k

]
=∞

⇔ E

[∫
QNT (dxt)

1

rNt (xt)k

]
=∞

⇐ E

[∫

Xt

rNt GtHt:T

(rNt )k
(xt)λt(dxt)

]
=∞

⇐
∫

Xt

rtGtHt:T

(rNt )k−1rt
(xt)λt(dxt) =∞ almost surely

⇔
∫

Xt

N (xt|µsmth
t ,Σsmth

t )

rNt (xt)k−1N (xt|µpred
t ,Σpred

t )
λt(dxt) =∞ a.s.

The theorem then follows from elementary arguments, by noting that rNt is a mix-
ture of N Gaussian distributions with covariance matrix CX . �

Lemma 10. Let L be a ]0, 1]-valued random variable. Suppose X is another random
variable such that X|L ∼ Geo(L). Then for any real number k > 0,

E[Xk] =∞⇔ E[L−k] =∞.
Proof. By the definition of X, we have

E[Xk] = E

[ ∞∑

x=1

xk(1− L)x−1L

]
.

A natural idea is then to approximate the sum by the integral
∫∞

0
xk(1−L)x−1Ldx,

from which one easily extracts the L−k factor. This is however technically laborious,
since the function x 7→ xk(1−L)x−1L is not monotone on the whole real line. It is
only so starting from a certain x0 which itself depends on L. We would therefore
rather write

E[Xk] =

∫ ∞

0

P(Xk ≥ x)dx =

∫ ∞

0

P(X ≥ x1/k)dx

=

∫ ∞

0

E
[
(1− L)bx

1/kc
]

dx

where the two integrands are equal Lebesgue–almost-everywhere

= E

[∫ ∞

0

exp
(
− |log(1− L)| bx1/kc

)
dx

]

with the natural interpretation of expressions when L = 1. Using u ∼ v as a
shorthand for “u and v are either both finite or both infinite”, we have

E[Xk] ∼ E

[∫ ∞

0

exp
(
− |log(1− L)|x1/k

)
dx

]
by Lemma 11

= k Γ(k) E

[
1

|log(1− L)|k

]
∼ E

[
1

Lk

]
by Lemma 11 again.

�

The following lemma is elementary. Its proof is therefore omitted.
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Lemma 11. Let L be a ]0, 1]-valued random variable and let f1 and f2 be two
continuous functions from ]0, 1] to R. Suppose that lim sup`→0+ f1(`)/f2(`) and
lim sup`→0+ f2(`)/f1(`) are both finite. Then E[f1(L)] is finite if and only if E[f2(L)]
is so.

Lemma 12. Let Z1, Z2, . . . be non-negative random variables. Suppose that there

exist σ-algebras F1,F2, . . . such that E[Zn|Fn]
P→ 0. Then Zn

P→ 0.

Proof. Fix ε > 0. By Markov’s inequality, P(Zn ≥ ε|Fn) ≤ ε−1E[Zn|Fn]. There-
fore, the [0, 1]−bounded random variable P(Zn ≥ ε|Fn) tends to 0 in probability,
hence also in expectation. The law of total expectation then gives P(Zn ≥ ε)→ 0,
which, by varying ε, establishes the convergence of Zn to 0 in probability. �

E.8. Proof of Theorem 8 and Corollary 2 (hybrid FFBS complexity).

Proof of Theorem 8. According to Janson (2011, Lemma 3), it is sufficient to show
that ∑

n min(τn,FFBS
t , N)

NαN

P→ 0

for any deterministic sequence αN such that αN/E[min(τ∞,FFBS
t , N)] → ∞. By

Lemma 12, we can take expectation with respect to FT to derive a sufficient con-
dition, namely

∫

Xt

αN
−1zN

(
rNt (xt)

M̄h

)
QNT (dxt)

P→ 0 with zN defined in (65)

⇐
∫

Xt

αN
−1zN

(
rNt (xt)

M̄h

)
rNt ×Gt ×Ht:T dλt

P→ 0 by Proposition 9(b)

⇐ E

[∫

Xt

αN
−1zN

(
rNt (xt)

M̄h

)
rNt ×Gt ×Ht:T dλt

]
→ 0

⇐
∫

Xt

αN
−1zN

(
rt(xt)

M̄h

)
rt ×Gt ×Ht:T dλt → 0 by Lemma 8

⇔ E[min(τ∞,FFBS
t , N)]

αN
→ 0.

The proof is now complete. �

Proof of Corollary 2. We have, using the cost-to-go, the zN functions and the

τ∞,PaRIS
t distribution defined respectively in (20), (65) and (59):

E[min(τ∞,FFBS
t , N)] =

∫

Xt

zN
(
rt(xt)

M̄h

)
QT (dxt)

= [(Qt−1Mt)(GtHt:T )]
−1
∫

Xt

zN
(
rt(xt)

M̄h

)
(GtHt:T )(xt)(Qt−1Mt)(dxt)

≤‖GtHt:T ‖∞ [(Qt−1Mt)(GtHt:T )]
−1
∫

Xt

zN
(
rt(xt)

M̄h

)
(Qt−1Mt)(dxt)

= ‖GtHt:T ‖∞ [(Qt−1Mt)(GtHt:T )]
−1 E[min(τ∞,PaRIS

t , N)].

Proposition 8 then finishes the proof. �
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E.9. Proof of Proposition 4 (MCMC kernel properties).

Proof. To show that a certain kernel BNt satisfies (13), we look at two conditionally

i.i.d. simulations Jn,1t and Jn,2t from BNt (n, ·) and lower bound the probability that

they are different. For the kernel BN,IMH
t , the variables Jn,1t and Jn,2t both result

from one step of MH applied to Ant . Let Jn,1∗t and Jn,2∗t be the corresponding

MH proposals. A sufficient condition for Jn,1t 6= Jn,2t is that Jn,1∗t 6= Jn,2∗t and
the two proposals are both accepted. The acceptance rate is at least M̄`/M̄h by

Assumption 2 and the probability that Jn,1∗t 6= Jn,2∗t is

1−
N∑

n=1

(Wn
t−1)2 ≥ 1− 1

N

(
Ḡh
Ḡ`

)2

by Assumption 3. Thus (13) is satisfied for εS = M̄`/2M̄h for N large enough.

Similarly, the probability that Jn,1t 6= Jn,2t for the BN,IMHP
t kernel with Ñ = 2

can be lower-bounded via the probability that J̃n,1t 6= J̃n,2t (where J̃n,1t and J̃n,2t

are defined in (17)). Thus using the same arguments, (13) is satisfied here for
εS = M̄`/4M̄h. �

E.10. Conditional probability of maximal couplings. In general, there exist
multiple maximal couplings of two random distributions (i.e. couplings that max-
imise the probability of equality of the two variables). However, they all satisfy a
certain conditional probability property stated in the following lemma. Its proof,
which we were unable to find in the literature, is obvious in the discrete case but
requires lengthier arguments in the continuous one.

Proposition 10. Let X1 and X2 be two random variables with densities f1 and f2

with respect to some dominating measure defined on a space X . Then, the following
inequality holds almost surely:

(69) P(X2 = X1|X1) ≤ 1 ∧ f2(X1)

f1(X1)
.

Moreover, the equality occurs almost surely if and only if X1 and X2 form a maximal
coupling.

Proof. Let h be any non-negative test function from X to R. Putting

A1 := {x ∈ X | f1(x) ≥ f2(x)}
A2 := {x ∈ X | f2(x) ≥ f1(x)} ,

we have

E[P(X2 = X1|X1)h(X1)] = E[1X2=X1
h(X1)]

= E[1X2=X11X1∈A1h(X1)] + E[1X2=X11X1∈A2h(X1)]

= E[1X2=X1
1X2∈A1

h(X2)] + E[1X2=X1
1X1∈A2

h(X1)]

≤ E[1X2∈A1
h(X2)] + E[1X1∈A2

h(X1)]

=

∫
h(x)f2 ∧ f1(x)dx = E

[(
1 ∧ f2(X1)

f1(X1)

)
h(X1)

]
.

The inequality (69) is now proved almost-surely. As a result, almost-sure equality
occurs if and only if the expectation of the two sides of (69) are equal, which means,
via Lemma 1, that the two variables are maximally coupled. �
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The following lemma establishes the symmetry of Assumption 8. Again, its
statement is obvious in the discrete case, though some work is needed to rigorously
justify the continuous one.

Lemma 13. Let X1 and X2 be two random variables of densities f1 and f2 w.r.t.
some dominating measure defined on some space X . Suppose that almost-surely

P(X2 = X1|X1) ≥ ε
(

1 ∧ f2(X1)

f1(X1)

)

for some ε > 0. Then almost-surely,

P(X1 = X2|X2) ≥ ε
(

1 ∧ f1(X2)

f2(X2)

)
.

Proof. We introduce a non-negative test function h2 : X → R and write

E[P(X1 = X2|X2)h(X2)] = E[1X1=X2h(X2)] = E[1X2=X1h(X1)]

= E[P(X2 = X1|X1)h(X1)]

≥ E

[
ε

(
1 ∧ f2(X1)

f1(X1)

)
h(X1)

]

=

∫
εf1 ∧ f2(x)h(x)dx

= E

[
ε

(
1 ∧ f1(X2)

f1(X2)

)
h(X2)

]

which implies the desired result. �

E.11. Proof of Theorem 5 (intractable kernel properties).

Proof. Let Jnt be a random variable such that

Jnt |X1:N
t−1 , X

n
t , B̂

N,ITR
t (n, ·) ∼ BN,ITR

t (n, ·).

By construction of Algorithm 7, given X1:N
t−1 , the couple (Jnt , X

n
t ) has the same

distribution as (An,Lt , Xn,L
t ). Thus, BN,ITR

t satisfies the hypotheses of Theorem 1.
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To verify (13), we define the variables Jn,1:2
t accordingly and write:

P
(
Jn,1t 6= Jn,2t

∣∣∣Xn
t = xt, X

1:N
t−1 = x1:N

t−1

)

=
1

2
P
(
Xn,1
t = Xn,2

t , An,1t 6= An,2t

∣∣∣Xn
t = xt, X

1:N
t−1 = x1:N

t−1

)

= P
(
Xn,1
t = Xn,2

t , An,1t 6= An,2t , L = 1
∣∣∣Xn

t = xt, X
1:N
t−1 = x1:N

t−1

)

=
1

2
P
(
Xn,1
t = Xn,2

t , An,1t 6= An,2t

∣∣∣L = 1, Xn
t = xt, X

1:N
t−1 = x1:N

t−1

)
(by symmetry)

=
1

2
P
(
Xn,1
t = Xn,2

t , An,1t 6= An,2t

∣∣∣Xn,1
t = xt, X

1:N
t−1 = x1:N

t−1

)

=
1

2

∑

an,1
t 6=an,2

t

P
(
Xn,2
t = xt

∣∣∣An,1t = an,1t , An,2t = an,2t , Xn,1
t = xt, X

1:N
t−1 = x1:N

t−1

)
×

× P
(
An,1t = an,1t , An,2t = an,2t

∣∣∣Xn,1
t = xt, X

1:N
t−1 = x1:N

t−1

)

≥ 1

2
εD

M̄`

M̄h

∑

an,1
t 6=an,2

t

P
(
An,1t = an,1t , An,2t = an,2t

∣∣∣Xn,1
t = xt, X

1:N
t−1 = x1:N

t−1

)

(by Assumptions 8 and 2)

≥ 1

2
εD

(
M̄`

M̄h

)2

εA by Lemma 14.

The proof is complete. �

Lemma 14. We use the notations of Algorithm 7. Under Assumptions 2 and 7,
we have

P
(
An,1t 6= An,2t

∣∣∣Xn,1
t , X1:N

t−1

)
≥ M̄`

M̄h
εA.

Proof. We write (and define new notations along the way):

π(an,1t , an,2t ) := p(an,1t , an,2t |Xn,1
t , X1:N

t−1 )

∝ p(an,1t , an,2t |X1:N
t−1 )mt(X

an,1
t
t−1 , X

n,1
t )

=: p(an,1t , an,2t |X1:N
t−1 )φ(an,1t )

=: π0(an,1t , an,2t )φ(an,1t ).

Thus

P
(
An,1t 6= An,2t

∣∣∣Xn,1
t , X1:N

t−1

)
=

∫
1

{
an,1t 6= an,2t

}
π(an,1t , an,2t )

=

∫
1

{
an,1t 6= an,2t

}
π0(an,1t , an,2t )φ(an,1t )

∫
π0(an,1t , an,2t )φ(an,1t )

≥
∫
1

{
an,1t 6= an,2t

}
π0(an,1t , an,2t )

M̄`

M̄h

by the boundedness of the function φ between M̄` and M̄h. From this, we get the
desired result by virtue of Assumption 7. �
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E.12. Validity of Algorithm 14 (modified Lindvall-Rogers coupler). Recall
that generating a random variable is equivalent to uniformly simulating under the
graph of its density (see e.g. Robert and Casella, 2004, The Fundamental Theorem
of Simulation, chapter 2.3.1). Algorithm 14’s correctness is thus a direct corollary
of the following intuitive lemma.

Lemma 15. Let SA and SB be two subsets of Rd with finite Lebesgue measures. Let
A and B be two not necessarily independent random variables distributed according
to Uniform(SA) and Uniform(SB) respectively. Denote by S0 the intersection of
SA and SB; and by C a certain Uniform(SA)-distributed random variable that is
independent from (A,B). Define A? and B? as

A? =

{
C if (A,C) ∈ S0 × S0

A otherwise

and

B? =

{
C if (B,C) ∈ S0 × S0

B otherwise

Then A? ∼ Uniform(SA) and B? ∼ Uniform(SB).

Proof. Given (A,C) ∈ S0×S0, the two variables A and C have the same distribution
(which is Uniform(S0)). Thus, the definition of A? implies that A and A? have
the same (unconditional) distribution. The same argument applies to B and B?

notwithstanding the asymmetry in the definition of C. �

E.13. Hoeffding inequalities. This appendix proves a Hoeffding inequality for
ratios, which helps us to bound (28). It is essentially a reformulation of Douc et al.
(2011, Lemma 4) in a slightly more general manner.

Definition 2. A real-valued random variable X is called (C, S)-sub-Gaussian if

P

( |X|
S

> t

)
≤ 2Ce−t

2/2,∀ t ≥ 0.

This definition is close to other sub-Gaussian definitions in the literature, see
e.g. Vershynin (2018, Chapter 2.5). It basically means that the tails of X decreases
at least as fast as the tails of the N (0, S2) distribution, which is itself (1, S)-sub-
Gaussian. The following result is classic.

Theorem 9 (Hoeffding’s inequality). Let X1, . . . , XN be N i.i.d. random variables
with mean µ and almost surely contained between a and b. Then N1/2(

∑
Xi/N−µ)

is (1, (b− a)/2)-sub-Gaussian.

The following lemma is elementary from Definition 2. The proof is omitted.

Lemma 16. Let X and Y be two (not necessarily independent) random variables.
If X is (C1, S1)-sub-Gaussian and Y is (C2, S2)-sub-Gaussian, then X+Y is (C1 +
C2, S1 + S2)-sub-Gaussian.

We are ready to state the main result of this section.

Proposition 11 (Hoeffding’s inequality for ratios). Let aN , bN , a∗, b∗ be random

variables such that
√
N(aN − a∗) is (Ca, Sa)-sub-Gaussian and

√
N(bN − b∗) is
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(Cb, Sb)-sub-Gaussian. Then
√
N (aN/bN − a∗/b∗) is sub-Gaussian with parame-

ters (C∗, S∗) where
{
C∗ = Ca + Cb

S∗ =
∥∥ 1
b∗

∥∥
∞ (Sa + Sb

∥∥∥aNbN
∥∥∥
∞

).

The terms with inf-norm can be infinite if the corresponding random variables are
unbounded.

Proof. We have∣∣∣∣
√
N

(
aN
bN
− a∗

b∗

)∣∣∣∣ ≤
∣∣∣∣
√
N

(
aN
bN
− aN

b∗

)∣∣∣∣+

∣∣∣∣
√
N

(
aN
b∗
− a∗

b∗

)∣∣∣∣

=

∣∣∣∣
aN
bN

∣∣∣∣
∣∣∣∣

1

b∗

∣∣∣∣
∣∣∣
√
N(bN − b∗)

∣∣∣+

∣∣∣∣
1

b∗

∣∣∣∣
∣∣∣
√
N(aN − a∗)

∣∣∣

by which the proposition follows from Lemma 16. �
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ROBUST IMPORTANCE SAMPLING VIA MEDIAN OF MEANS

Abstract. Although importance sampling estimates are asymptotically nor-

mal under standard conditions, they may have a heavy-tailed distribution in

practical scenarios. We apply the idea of median of means from the robust
statistics literature to produce more robust estimates. In addition, we propose

a new way to build confidence intervals that prove more reliable than those

derived from asymptotic normality.

1. Introduction

Importance sampling is a Monte Carlo method that approximates expectations
with respect to a target distribution using simulations from another distribution
(the so-called proposal distribution). The main requirement is that one is able to
calculate the ratio between the densities of the two distributions, either exactly or
up to some unknown normalising constant. We focus on the latter (more general)
case from now on. Importance sampling is a classical method which is covered in
all textbooks on Monte Carlo, e.g. Robert and Casella (2004); Gobet (2016).

Importance sampling estimates are consistent and asymptotically normal asN →
+∞ (N being the Monte Carlo sample size) under second moment assumptions.
One may construct asymptotic confidence intervals for such estimates by estimating
their asymptotic variance. Unfortunately, the distribution of importance sampling
estimates is often far from Gaussian for a finite N , and may have heavy tails. When
this happens, an estimate of its variance (or equivalently of its second moment) will
be even more unreliable. Another common recipe is to measure the performance
of importance sampling via the effective sample size (ESS, Kong et al., 1994), but
this quantity is also based on the second moment of the weights.

The solutions proposed so far in the literature include truncated importance
sampling (Ionides, 2008) and Pareto-smoothed importance sampling (Vehtari et al.,
2015). However, these methods either converge under conditions that are difficult to
check or do not even converge. In fact, there is an inherent danger in modifying the
weights without knowing more about the underlying distributions. Furthermore,
building a confidence interval for such estimates would still require second-moment
estimation.

In the robust statistics literature, the median of means (MoM) estimator has
gained considerable traction in recent years; see the excellent survey of Lugosi and
Mendelson (2019). The objective of this paper is to apply this idea to importance
sampling, and to derive more reliable confidence intervals for the resulting esti-
mates. Our construction of these intervals is reasonably straightforward, but we
are not aware of similar efforts elsewhere. Recently, Orenstein (2019) suggested
a Bayesian version of median of means for use in importance sampling. However,
auto-normalised importance sampling (the version of importance sampling where
the ratio of densities is known up to a constant) is not studied, and the proposed
confidence interval simply uses the bootstrap method. Derumigny et al. (2019)
derived confidence intervals for ratios of expectations, of which auto-normalised
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importance sampling is a special case. However, their construction still aims at
accompanying the traditional importance sampling estimator and requires the es-
timation of second moments.

After introducing importance sampling and the median of means method in
Section 2, we combine the two to produce better importance sampling estimators.
Their construction and properties are studied in Section 3. In Section 4, we consider
a new method to build confidence intervals. We show that it guarantees asymptot-
ically the required cover rate. We also prove that it works better than confidence
intervals built via the central limit theorem, especially when high confidence levels
are required. Simple numerical examples accompany the discussion. More extensive
experiments are expected in a future version of the paper.

2. Framework and notations

2.1. Importance sampling. Let X be a measurable space and let Q, M be re-
spectively the target and proposal probability distributions on X . (We assume it
is easy to sample independent random variables from M.) Let ω̄ := dQ/dM be
the Radon-Nikodym derivative of Q with respect to M and suppose that we can
calculate the function ω defined by ω(x) := Zω̄(x) where Z is some unknown nor-
malising constant. Let X1, . . . , XN be i.i.d. random variables distributed according
to M. Then, given a function ϕ : X → R, the auto-normalised importance sampling
estimator of µ := Q(ϕ) :=

∫
ϕ(x)Q(dx) is

(1) µNAIS :=

∑N
n=1 ω(Xn)ϕ(Xn)
∑N
n=1 ω(Xn)

and an unbiased estimator of the normalising constant is

(2) ZN :=
1

N

N∑

n=1

ω(Xn).

The estimate µNAIS can also be rewritten in the form µNAIS =
∑
nW

nϕ(Xn), where
Wn := ω(Xn)/NZN . Then

∑
nW

n = 1 and the quantity Wn can be interpreted as
the weight of the draw Xn. More formally, one can define a weighted approximation
QN of Q as

QN (dx) :=
N∑

n=1

WnδXn(dx)

and µNAIS is then equal to QN (ϕ).
It is elementary to show that

(3)
√
N
(
µNAIS − µ

)
⇒ N (0,M(ω̄2ϕ̄2))

where ϕ̄(x) := ϕ(x)− Q(ϕ) and ⇒ denotes convergence in distribution. A natural
question is then how much the asymptotic variance M(ω̄2ϕ̄2) is inflated with respect
to M(ω̄ϕ̄2), the ideal asymptotic variance if we were able to simulate from Q directly.
The following proposition (proved in Appendix A.1) answers this.

Proposition 1. Using the notations defined in this subsection, suppose that X = Rd

and Q is dominated by the Lebesgue measure. Then

sup
ϕ:X→R

M(ω̄2ϕ̄2)

M(ω̄ϕ̄2)
= esssupQ(ω̄)
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Figure 1. Box plots of 104 independent replicates of two esti-
mates of Q(ϕ) when N = 250 in Example 1: the ordinary im-
portance sampling estimate (1), and our MoM estimate (10), with
K = 6 subgroups.

where esssupQ(ω̄) is the essential supremum of ω̄ with respect to the measure Q.

In words, the worst-case variance inflation factor coincides with the peak value
of the normalised weight function. This justifies the use of the largest empirical
weights among W 1, . . . ,WN to measure the quality of importance sampling (Chat-
terjee and Diaconis, 2018; Huggins and Roy, 2019). In particular, scenarios in which
the function ω is unbounded are troublesome. For instance, if X = Rd, we could
have limx→∞ ω(x) = ∞; i.e. the target distribution Q has heavier tails than the
proposal distribution M. If in our sample X1, . . . , XN there is a certain draw Xn

coming from a rare region of M, it is likely to be assigned a high weight. It will then
dominate the rest of the sample and thus “spoils” the resulting estimate. This is
made clear by the following running example.

Example 1 (Running example). Let M and Q be exponential distributions with
respective mean λ−10 := 1 and λ−11 := 1.5, and ϕ be the function ϕ(x) = x2. Take
N = 250.

It is easy to check that the normalised weight function ω̄(x) ∝ e−(λ1−λ0)x1x≥0
is unbounded, while the asymptotic variance M(ω̄2ϕ̄2) is finite. At a finite sample
size (N = 250 here), the distribution of the estimate looks very skewed and non-
Gaussian (left side of Figure 1).

A popular diagnostic for the quality of importance sampling is the effective
sample size (Kong et al., 1994), defined as a function of the weights W 1, . . . ,WN :

ESS(W 1, . . . ,WN ) =
1∑
nW

2
n

.

This quantity lies in [1, N ]. In Figure 2, we show the box plot of the effective
sample size divided by N over the runs. Two lessons may be learnt here: (a) the
estimation of the effective sample size itself is unstable, and (b) in most cases the
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Figure 2. Box plot of the effective sample size divided by N in
Example 1, again based on 104 independent replications.

diagnostic does not detect any problem, as a high ESS ratio (more than 60%) is
reported.

Truly or practically unbounded weight functions happen in Bayesian cross val-
idation as well as discrete problems, such as the simulation of random walks or
permutations. The references (Vehtari et al., 2015; Orenstein, 2019; Chatterjee and
Diaconis, 2018) discuss these examples, among others. We provide yet another
scenario in Example 2.

Example 2 (Approximate Bayesian Computation). Consider a Bayesian inference
problem where θ is the parameter variable with prior p(θ) and y is the data variable.
Suppose that it is possible to simulate y given θ, but the probability density p(y|θ)
is intractable. Approximate Bayesian Computation provides a workaround by sam-
pling from p (θ, y | ‖y − y0‖ ≤ ε), where y0 is the observed data and the threshold ε
and the norm ‖·‖ are user-chosen. Importance sampling can be employed using the
proposal distribution r(θ)p(y|θ), where r can be any distribution on θ. The weight
function

ω(θ, y) =
p(θ)

r(θ)
1‖y−y0‖≤ε

is fully computable. When the data is informative and ε is small, a concentrated r
is needed to prevent ω from being 0 most of the time. Unfortunately, this will also
make ω unbounded.

2.2. Median of means. We now deviate from importance sampling and investi-
gate a simpler problem: mean estimation. We remark that ZN (Equation (2)) is
an empirical mean estimator, whereas µNAIS is more complicated, being the ratio of
two estimators of that type. The normalised importance sampling estimator (com-
putable in the case Z is known) is also simply an empirical mean. Studying mean
estimation is therefore central to understanding importance sampling, and is done
at depth in this paper. To distinguish between the two problems, we make the fol-
lowing convention: importance sampling aims at estimating Q(ϕ) =

∫
Q(dx)ϕ(x)
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and mean estimation aims at estimating M(ψ) =
∫

M(dx)ψ(x), both using i.i.d.
M-distributed random variables X1, . . . , XN .

The most natural estimator for M(ψ) is the empirical mean estimator

θNEMP :=
ψ(X1) + · · ·+ ψ(XN )

N
.

Unfortunately, if M is heavy-tailed and ψ is unbounded, the distribution of θNEMP

may have heavy tails, and may tend to generate outliers, like the importance sam-
pling estimator in Figure 1. The median of means (MoM) method has been pro-
posed as a solution (see Lugosi and Mendelson, 2019 and references therein). It
consists in dividing the N data points into K groups of size M (so that N = MK).
Next, it calculates the classical mean estimate for each group. This results in K

estimates θ̂1, . . . , θ̂K defined by

(4) θ̂k :=
1

M

Mk∑

n=M(k−1)+1

ψ(Xn).

The final mean estimate is returned as the empirical median of {θ̂1, . . . , θ̂K}:

(5) θN,KMoM := θN,KMoM(ψ(X1), . . . , ψ(XN )) := empmed(θ̂1, . . . , θ̂K).

To understand in which sense the MoM estimator is better than the empirical
mean, it is necessary to change the benchmark for performance. Monte Carlo users
usually focus on the mean squared error (MSE), which might not fully capture the
behaviour of an estimator. Consider the shifted log-normal distribution with the
density

(6) f∗(x) =
1

s0
f(
x− `
s0

, s)

where s = 1.5, s0 =
[
(es

2 − 1)es
2
]−1/2

, ` = −es2/2s and f is the non-shifted density

f(x, s) =
1

sx
√

2π
exp

(
− log2 x

2s2

)
.

The shifted distribution has mean 0 and variance 1. The first two box plots of
Figure 3 correspond to 104 replicates of the empirical mean estimator for theN (0, 1)
distribution and the aforementioned shifted log-normal distribution respectively.
According to the MSE benchmark, the two cases should lead to similar performance.
However, it is clear that the estimates in the normal distribution scenario have a
much more desirable behaviour.

Therefore, we switch our attention from the MSE to the tail behaviour of the
error. Given some threshold δ > 0, we can benchmark a certain estimator θN based
on the (1 − δ)-quantile of its error

∣∣θN − M(ψ)
∣∣; and use this criterion to compare

different estimators. From Figure 3, we see that it is desirable to have θN − M(ψ)
look as Gaussian-like as possible.

An estimator is said to be sub-Gaussian if the (1 − δ)-quantile of its error∣∣θN − M(ψ)
∣∣ is comparable to the (1−δ)-quantile of the absolute value of a suitably

scaled Gaussian distribution. The following definition formalises this.
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Figure 3. The first two box plots represent the empirical distribu-
tion (over 104 independent runs) of the empirical mean estimator
with N = 120 when M is the N(0, 1) distribution (left), and the
shifted log-normal distribution (6) described in the text (middle).
The third box plot shows the distribution of the MoM estimator
(N = 120 and K = 6) of the expectation of (6), using the same
number of independent runs.

Definition 1. An estimator θN = θN (ψ(X1), . . . , ψ(XN )) of M(ψ) is said to be
(C,D)-sub-Gaussian at level δ ∈]0, 1[ if

P

(
∣∣θN − M(ψ)

∣∣ ≥ Cσ
√

log(D/δ)√
N

)
≤ δ

where σ =
√

VarM(ψ) :=
√

M(ψ2)− [M(ψ)]2.

If the distribution of θN is absolutely continuous with respect to the Lebesgue
measure, this can be rewritten more intuitively as

(7) q1−δ(
∣∣θN − M(ψ)

∣∣) ≤ Cσ
√

log(D/δ)√
N

where q1−δ(X) denotes the (1− δ)-quantile of a random variable X. Devroye et al.
(2016) show that in general, there does not exist an estimator that is (C,D)-sub-
Gaussian for simultaneously all δ. However, there exists absolute constants C and
D such that, for each δ and for N large enough with respect to δ, one can construct
a (C,D)-sub-Gaussian estimator at level δ. The following theorem has been proved
in Lerasle and Oliveira (2011); Lugosi and Mendelson (2019).

Theorem 1. For all δ ∈]0, 1[, for N > 8 log(1/δ) and for K = d8 log(1/δ)e, the

estimator θN,KMoM is (32, 1)-sub-Gaussian at level δ.

In contrast, the empirical mean estimator is not sub-Gaussian. The following
result has been shown in Catoni (2012, Prop. 6.2).
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Theorem 2. For all δ < 1/e and N ≥ 1, there exists a distribution M and a
function ψ such that VarM(ψ) = σ2, M(|ψ|3) <∞ and

P

(
∣∣θNEMP − M(ψ)

∣∣ ≥
√
σ2

Nδ

(
1− δe

N

)N−1
2

)
≥ δ.

Similar to (7), one can express this in term of the quantile function as

(8) sup
M,ψ

VarM(ψ)=σ2

q1−δ
(∣∣θNEMP − M(ψ)

∣∣) ≥
√
σ2

Nδ

(
1− δe

N

)N−1
2

.

Comparing (7) and (8) shows that the smaller δ is, the more the empirical mean
estimator is dominated by MoM (at least in the worst-case scenario) in the sense
of the (1 − δ)-quantile of the error. In practice, Figure 3 shows that using MoM
prevents outliers in the resulting estimates.

Theorem 1 makes it clear that the number of groups K depends on the error
threshold δ. As such, the user chooses K based on the risk of extreme errors in
the particular application at hand. The log dependence of K on δ means that the
behaviour of the estimate is expected to be robust to K. We will return to the
choice of this parameter when discussing confidence intervals.

3. Combining importance sampling and median of means

There are at least two ways to combine importance sampling and median of
means. Recall that µNAIS (defined in (1)) is a ratio of two empirical means, and µ
can be expressed as M(ωϕ)/M(ω). One natural idea is then to use MoM twice to
estimate M(ωϕ) and M(ω) individually, then return the ratio of the two estimations.
However, if ϕ is replaced by ϕ+ 1, the estimator using this idea is not guaranteed
to increase by exactly 1. Therefore, we shall prefer the second way described below.

We divide the N data points into K groups of size M each. For each group, we
compute an importance sampling estimator using only its data points. This results
in K different estimates, µ̂1, . . . , µ̂K , defined as

(9) µ̂k :=

∑Mk
n=M(k−1)+1 ϕ(Xn)ω(Xn)
∑Mk
n=M(k−1)+1 ω(Xn)

.

The final estimate is returned as their empirical median

(10) µN,KMoM := empmed(µ̂1, . . . , µ̂K).

The first result establishes the sub-Gaussian property of µMoM. For that, it is useful
to define the following two quantities:

σ2
CS := M(ω̄2)− 1

σ2
IS := M(ω̄2ϕ̄2)

(11)

where ω̄ = ω/Z is the normalised weight function; σ2
IS is simply the asymptotic

variance in (3), whereas σ2
CS is the chi-squared pseudo-distance of Q with respect

to M.
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Proposition 2. Let δ ∈]0, 1[ and suppose that N ≥ 8(32σ2
CS ∨ 1) log(1/δ). Then

the µN,KMoM estimator with K = d8 log(1/δ)e satisfies

P

(∣∣∣µN,KMoM − Q(ϕ)
∣∣∣ ≥ 16

√
σ2
IS log(1/δ)

N

)
≤ δ.

Proposition 2 is proved in Appendix A.2. The main difference with Theorem 1 is
that the latter only requires N > 8 log(1/δ), instead of N > 8(32σ2

CS∨1)(log(1/δ)).
For importance sampling, the minimum sample size does not depend only on δ but
also on σ2

CS, which is strongly linked to the ESS.
A natural question is whether a value of N depending only on δ, like Theorem 1,

is possible in the case of importance sampling. The negative answer is given in the
following proposition (proved in Appendix A.3).

Proposition 3. For any function f , let f(X1:N ) be a shorthand for (f(X1), . . . , f(XN ).
Suppose that 0 < δ < 1/2. Then, there do not exist a function N0 = N0(δ), an es-
timator µN = µN (ϕ(X1:N ), ω(X1:N ), δ) and absolute constants C,D such that; for
all N ≥ N0(δ) and all importance sampling problems defined by the triple (M, ω, ϕ)
with σ2

IS <∞ and σ2
CS <∞, we have

(12) P

(
∣∣µN − Q(ϕ)

∣∣ ≥ C
√
σ2
IS log(D/δ)

N

)
≤ δ.

We end this section by returning to the running example (Example 1). Figure 1
shows that the MoM estimator (with K = 6 subgroups here) again displays a much
more regular behaviour than the ordinary importance sampling one.

4. Constructing confidence intervals

4.1. CI for mean estimation. As before, we start the discussion with the simpler
problem of mean estimation, targeting M(ψ). The usual way to construct a confi-
dence interval is to use the central limit theorem. However, this requires estimating
its asymptotic variance. If the mean estimation is already difficult, the variance
estimate will be even more so. Even if the variance is known, the asymptotic nor-
mality might not yet manifest at small sample sizes. As far as we know, in the
literature there has been little effort to get around the variance estimation issue.
One reason is that the variance is ubiquitous in theoretical bounds, including that
of the MoM estimates (e.g. see (7) or Proposition 2).

We propose a new confidence interval for the mean estimation problem that is
based on three observations. The first one is that the MoM estimator (5) does not
directly target EM[ψ(X)], but rather

med

[
ψ(X1) + · · ·+ ψ(XM )

M

]
,

where med[Z] denotes the median of the random variable Z.
Secondly, let Z1, . . . , ZN be an i.i.d. sample from some real distribution Z. While

it is impossible to get exact non-asymptotic confidence interval for E[Z] without
further information, the task is possible for med[Z]. Denote by Z(1), . . . , Z(N)

the sorted observations. One can construct a confidence interval with the desired
level of the form [Z(u), Z(v)] using concentration inequalities for binomial random
variables.
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Thirdly, under finite third moment assumptions, med
[
ψ(X1)+···+ψ(XM )

M

]
con-

verges to M(ψ) at rate O(1/M). This result is well-known, see e.g. Orenstein
(2019); Minsker (2019). It can be proved by a simple application of the Berry-
Esseen theorem, which we detail in a more general setting in Appendix A.6. If K
is fixed while N → ∞, the O(1/M) gap is negligible compared to the O(1/

√
N)

length of any confidence interval.
The following proposition describes our confidence interval. Its proof (Appen-

dix A.4) simply puts together the three points above.

Proposition 4. Let K = dlog2(1/δ)e + 1 and let θ̂(1) < . . . < θ̂(K) be the sorted

group means, where the unsorted values are defined in (4). Then, if M(|ψ|3) <∞,
we have

lim
N→∞

P
(

[θ̂(1), θ̂(K)] 3 M(ψ)
)

= 1− δ.

A disadvantage of this proposition is that the length of the resulting confidence
intervals may vary a lot (since it relies on a minimum and a maximum). One
workaround is to increase K and choose other order statistics. For instance, it can
be proved, using similar techniques, that if K = d8 log(2/δ)e then the confidence

interval [θ̂(K/4), θ̂(3K/4)] also has level δ asymptotically. However, we still recom-
mend to stick with Proposition 4, in order to take M as large as possible. Indeed,
the non-asymptotic cover rate of this kind of confidence intervals depends strongly
on the symmetry of ψ(X1) + · · · + ψ(XM ), which is unknown to the user. Hence
we should not take any chance to take M smaller than possible.

We will now quantify the superiority of this confidence interval relative to con-
fidence intervals relying o the central limit theorem (CLT). In this comparison, we
will give an advantage to the CLT confidence interval by assuming that it has access
to the true variance. The CLT interval is then given by

(13)

[
θNEMP − z1−0.5δ

√
σ2

N
, θNEMP + z1−0.5δ

√
σ2

N

]

where σ2 := VarM(ψ) and zγ is the γ quantile of the standard normal distribution.
This interval, as well as the one of Proposition 4, are only valid asymptotically. To
study their adequateness for finite sample sizes, we introduce the notion of length-
to-go, which quantifies, for a given sample size N , the “missing length” needed to
really achieve the asymptotic level.

Definition 2 (Length-to-go). The length-to-go of a random interval [θN` , θ
N
h ] with

respect to a target quantity θ and a level δ is defined as

R := inf{r ≥ 0 | P
(

[θN` −
r

2
, θNh +

r

2
] 3 θ

)
≥ 1− δ}.

Proposition 5. For all distributions M and functions ψ such that VarM(ψ) = σ2 <
∞, for all δ > 0 and N > 2 + log2(1/δ), the length-to-go of the confidence interval
constructed in Proposition 4 is less than

2

√
σ2

N
(2 + log2(1/δ)).

In contrast, given any N ≥ 1 and 0 < δ < 1/e, there exists a distribution M and
a function ψ such that VarM(ψ) = σ2, M(|ψ|3) < ∞ and the length-to-go of the
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CLT-based confidence interval (13) is at least

2

√
σ2

N

(
1√
δ

(
1− δe

N

)N−1
2

− z1−0.5δ
)+

.

The main difference between the two length-to-go expressions is their depen-
dences on δ (which are

√
log(δ) for one and

√
1/δ for the other). Thus, this

proposition (proved in Appendix A.5) shows that the smaller δ is, the more our
confidence interval dominates the CLT-based one. A similar result also holds for
the [θ̂(K/4), θ̂(3K/4)] interval described above.

4.2. CI for importance sampling. We show that it is possible to extend the
confidence interval of Proposition 4 to importance sampling.

Proposition 6. Let K = dlog2(1/δ)e+ 1 and let µ̂(1), . . . , µ̂(K) be the sorted group
means, where the unsorted values are defined in (9). Suppose that the distribution
of µMAIS has a unique median, where M = N/K and µMAIS defined in (1). Then, if
M(|ω|3) <∞ and M(|ω3ϕ3|) <∞, we have

lim
N→∞

P
(
[µ̂(1), µ̂(K)] 3 Q(ϕ)

)
= 1− δ.

Proposition 6 is proved in Appendix A.6. We now come back to our running
example (Example 1). We compare two constructions of confidence intervals: either
using (3) or Proposition 6. We aim at confidence level 96.875% (which is 1 − 2−5

and results in K = 6). Using 105 runs, we see that the CLT-based interval only
covers the true value 78% of the time, whereas our interval reaches 87%. While both
values are still behind the required level, an increase of nearly 10% is significant.

5. Conclusion

We recommend to use our MoM estimator (10) and the confidence interval de-
fined in Proposition 6 in lieu of the classical importance sampling estimate (1) and
the CLT-based confidence interval. Proposition 2 suggests that the required sample
size for good performance of the IS-MOM estimator is related to the chi-squared
distance, whereas a related result for the classical importance sampling estimator
(Chatterjee and Diaconis, 2018) relies on the Kullback-Leiber distance instead. It
would be interesting to understand more thoroughly the connection between the
two bounds. Finally, more numerical experiments are necessary to understand the
behaviour of the newly proposed estimator and confidence interval in real-world
settings.
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Appendix A. Proofs

A.1. Proof of Proposition 1.

Proof. Let Mn be a strictly increasing sequence of real numbers such that Mn →
esssupQ(ω̄). Define Sn := {x ∈ X | ω̄(x) ≥ Mn}. By definition of the essential
supremum, we have Q(Sn) > 0. Moreover

0 < Q(Sn) =

∫
q(x)1Sn

(x) dx

where q is the density of Q with respect to the Lebesgue measure. The function

R 7→
∫
q(x)1Sn(x)1‖x‖≤Rdx

equals to 0 at R = 0, tends to Q(Sn) as R → ∞ and is continuous in between,
thanks to the monotone convergence theorem. As such, it maps a certain R∗

to 1/2, which means that one can divide the set Sn into S1
n and S2

n such that
Q(S1

n) = Q(S2
n) = Q(Sn)/2. Define the function ϕn as

ϕn(x) :=





1 if x ∈ S1
n

−1 if x ∈ S2
n

0 otherwise.

Then ϕ̄n = ϕn and ϕ2
n = 1Sn . Consequently,

M(ω̄2ϕ̄2
n)

M(ω̄ϕ̄2
n)

=
Q(ω̄ϕ̄2

n)

Q(ϕ̄2
n)

=
Q(ω̄1Sn

)

Q(1Sn)
≥Mn

by the definition of Sn. The proof follows by letting n→∞. �
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A.2. Proof of Proposition 2.

Proof. Define the local importance sampling estimates µ̂1, . . . , µ̂K as in (9). We
have

|µ̂1 − Q(ϕ)| =
∣∣∣∣∣
M−1

∑M
m=1 ϕ̄(Xm)ω̄(Xm)

M−1
∑M
m=1 ω̄(Xm)

∣∣∣∣∣.

Using Chebychev’s inequality, we have




∣∣∣∣∣M
−1

M∑

m=1

ϕ̄(Xm)ω̄(Xm)

∣∣∣∣∣ ≤
√

8σ2
IS/M with prob. at least 7/8

∣∣∣∣∣M
−1

M∑

m=1

ω̄(Xm)− 1

∣∣∣∣∣ ≤
√

8σ2
CS/M with prob. at least 7/8.

Therefore, using the fact that M ≥ 32σ2
CS, the following holds with prob. at least

3/4:

|µ̂1 − Q(ϕ)| ≤
√

8σ2
IS/M

1−
√

8σ2
CS/M

≤
√

8σ2
IS/M

1− 1/2
= 16

√
σ2
IS log(1/δ)

N
=: ε.

Thus

P (|empmed(µ̂1, . . . , µ̂K)− Q(ϕ)| ≥ ε) = P

(
K∑

k=1

1{|µ̂k − Q(ϕ)| ≥ ε} ≥ K/2
)

≤ P (Bin(K, 1/4) ≥ K/2)

≤ e−K/8 by Hoeffding’s inequality

= δ

where Bin(n, p) refers to the binomial distribution of parameters n and p. �

A.3. Proof of Proposition 3.

Proof. We use similar ideas to the proof of Theorem 3.1 in Devroye et al. (2016).
Suppose that there exist N0 and µN satisfying (12). By considering two importance
sampling problems (M−, ω−, ϕ−) and (M+, ω+, ϕ+) such that Q−(ϕ−) 6= Q+(ϕ+)
but the law of µN− and µN+ are very similar, we conclude that at least one of the
two estimators must have a bad performance. More specifically, let 0 < α < 1,
β := 1− α and define

M+ := βδ0 + αδ1 M− := βδ0 + αδ−1
Q+ := αδ0 + βδ1 Q− := αδ0 + βδ−1

ϕ+(x) := 1{x = 1} ϕ−(x) := −1{x = −1}

Let X1:N
+

iid∼ M+, X1:N
−

iid∼ M− and define µN+ and µN− as deterministic functions of

X1:N
+ and X1:N

− respectively

µN+ = µN (ϕ+(X1:N
+ ), ω+(X1:N

+ ), δ)

µN− = µN (ϕ−(X1:N
− ), ω−(X1:N

− ), δ)

where ω+ = dQ+

dM+
and ω− = dQ−

dM−
.
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Since P(X1:N
+ = 0) = P(X1:N

− = 0) = βN , the two estimators µN+ and µN− are

equal with probability at least β2N . However, their target quantities Q+(ϕ+) and
Q−(ϕ−) are 2β apart. Therefore

P
(∣∣µN+ − Q+(ϕ+)

∣∣ ≥ β or
∣∣µN− − Q−(ϕ−)

∣∣ ≥ β
)
≥ β2N .

Hence one of the two events under consideration must have probability greater than
β2N/2. Without loss of generality, we may suppose that

(14) P
(∣∣µN+ − Q+(ϕ+)

∣∣ ≥ β
)
≥ β2N/2.

Comparing (12) and (14) would lead to contradiction if one could choose a β such
that {

β2N/2 ≥ δ
β ≥ C

√
σ2
IS log(D/δ)

N .

Satisfying these conditions is easy by letting β → 1, since σ2
IS = αβ and δ ∈

]0, 1/2[. �

A.4. Proof of Proposition 4.

Proof. Put θ̃ := med
[
ψ(X1)+···+ψ(XM )

M

]
where med[L] denotes the median of a

random variable L. For any v ∈ {1, 2, . . . ,K}, we have

P
(
θ̃ > θ̂(v)

)
= P

(
θ̂(1) < θ̃, . . . , θ̂(v) < θ̃

)

= P

(
K∑

k=1

1{θk < θ̃} ≥ v
)

= P (Bin(K, 1/2) ≥ v)

where Bin(·, ·) refers to the Binomial distribution with specified parameters. In

particular, for v = K, we have P(θ̃ > θ̂(K)) = 2−K = δ/2. Similarly P(θ̃ < θ̂(1)) =
δ/2. Thus

(15) P
(

[θ̂(1), θ̂(K)] 3 θ̃
)

= 1− δ.

It remains to bound

(16)
∣∣∣P
(

[θ̂(1), θ̂(K)] 3 θ̃
)
− P

(
[θ̂(1), θ̂(K)] 3 M(ψ)

)∣∣∣

≤ P
(

[θ̂(1), θ̂(K)] contains exactly one of θ̃ and M(ψ)
)

≤ P
(

either θ̂(1) or θ̂(K) lies between θ̃ and M(ψ)
)

≤ KP
(
θ̂1 lies between θ̃ and M(ψ)

)

= KP
(√

M
(
θ̂1 − M(ψ)

)
lies between 0 and

√
M
(
θ̃ − M(ψ)

))
.

Note that K is fixed, so M tends to infinity at the same rate as N . Moreover,√
M(θ̂1 − M(ψ)) tends to a normal distribution and

√
M(θ̃ − M(ψ)) tends to 0

by a simple application of the Berry-Esseen theorem (see proof of Proposition 6,
Appendix A.6 for a proof of this result in a more general setting). Therefore (16)
converges to 0 as N →∞. �
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A.5. Proof of Proposition 5.

Proof. Recall that the confidence interval of Proposition 4 satisfies

P
(

[θ̂(1), θ̂(K)] 3 θ̃
)

= 1− δ

where θ̃ = med
[
ψ(X1)+...+ψ(XM )

M

]
(see (15)). Using the classical inequality |E[Z]−med[Z]| ≤

√
Var(Z) for any r.v. Z (see, e.g. Orenstein, 2019, Prop. 16), we have that∣∣∣θ̃ − M(ψ)

∣∣∣ ≤
√
σ2/M , from which the first part of the proposition follows.

For the second part, let R be the length-to-go for the CLT-based confidence
interval. Then

P

(
M(ψ) ≥ θNEMP − z1−0.5δ

√
σ2

N
− R

2

)
≥ 1− δ

which is equivalent to

P

(
θNEMP − M(ψ) > z1−0.5δ

√
σ2

N
+
R

2

)
≤ δ.

According to Theorem 2, there exists M and ψ such that

P

(
θNEMP − M(ψ) >

√
σ2

Nδ

(
1− δe

N

)N−1
2

)
≥ δ.

Thus

z1−0.5δ

√
σ2

N
+
R

2
≥
√
σ2

Nδ

(
1− δe

N

)N−1
2

from which the second part follows. �

A.6. Proof of Proposition 6.

Proof. We need to prove that

(17) med

[∑M
m=1 ϕ(Xm)ω(Xm)
∑M
m=1 ω(Xm)

]
= Q(ϕ) +O(

1

M
)

as M →∞. The rest follows the same lines as the proof of Proposition 4 (Appen-
dix A.4) and is therefore omitted. Put

γM :=

√
M

σIS

[∑M
m=1 ϕ(Xm)ω(Xm)
∑M
m=1 ω(Xm)

− Q(ϕ)

]

where σIS is defined in (11). Let FM be the cumulative distribution function of
γM . Recall that ϕ̄ = ϕ− Q(ϕ) and ω̄(x) = ω(x)/M(ω). For any t ≥ 0, we have

1− FM (t) = P(γM > t) = P

(∑
m ϕ̄(Xm)ω̄(Xm)√

MσIS
> t

∑
m ω̄(Xm)

M

)

≤ P

(∑
m ϕ̄(Xm)ω̄(Xm)√

MσIS
>
t

2

)
+ P

(∑
m ω̄(Xm)

M
≤ 1

2

)

≤ 1− Φ

(
t

2

)
+O

(
1√
M

)
+

4σ2
CS

M
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where Φ is the cumulative distribution function of the standard normal variable.
In the last inequality, the first three terms follow from the Berry-Esseen theorem
and the hypothesis M(

∣∣ϕ̄3ω̄3
∣∣) <∞, whereas the last term results from Chebychev

inequality. Thus

Φ

(
t

2

)
≤ FM (t) +O

(
1√
M

)
,∀t ≥ 0.

A similar argument leads to

Φ

(
3

2
t

)
≥ FM (t) +O

(
1√
M

)
,∀t ≤ 0.

Now put

(18) zM := med[γM ].

By the hypothesis on the uniqueness of zM , we have FM (zM ) = 1/2. Thus, if
zM ≥ 0,

Φ

(
1

2
zM
)
≤ 1

2
+O(1/

√
M)

which entails
1

2
zM ≤ Φ−1

(
1

2
+O(1/

√
M)

)
= O(1/

√
M)

since the inverse of Φ at 1/2 is 0 and Φ−1 is differentiable everywhere. If zM ≤ 0,
similar arguments lead to

3

2
zM ≥ O(1/

√
M).

In all cases, we have |zM | = O(1/
√
M), which, via (18), justifies (17). �
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Résumé : Cette thèse est composée de deux
parties. La première concerne les échantillonneurs
dits de Monte-Carlo séquentiel (les échantillonneurs
SMC). Il s’agit d’une famille d’algorithmes pour pro-
duire des échantillons venant d’une suite de distribu-
tions, grâce à une combinaison de l’échantillonnage
pondéré et la méthode de Monte-Carlo par chaı̂ne
de Markov (MCMC). Nous proposons une version
améliorée qui exploite les particules intermédiaires
engendrées par l’application de plusieurs pas de
MCMC. Elle a une meilleure performance, est plus
robuste et permet la construction d’estimateurs de

la variance. La deuxième partie analyse des algo-
rithmes de lissage existants et en propose des nou-
veaux pour les modèles espace-état. Le lissage étant
coûteux en temps de calcul, l’échantillonnage par re-
jet a été proposé dans la littérature comme une so-
lution. Cependant, nous démontrons que son temps
d’exécution est très variable. Nous développons des
algorithmes ayant des coûts de calcul plus stables et
ainsi plus adaptés aux architectures parallèles. Notre
cadre peut aussi traiter des modèles dont la densité
de transition n’est pas calculable.

Title : Sequential Bayesian Computation

Keywords : sampler, sequential, smoothing, Monte Carlo, particles

Abstract : This thesis is composed of two parts. The
first part focuses on Sequential Monte Carlo sam-
plers, a family of algorithms to sample from a se-
quence of distributions using a combination of im-
portance sampling and Markov chain Monte Carlo
(MCMC). We propose an improved version of these
samplers which exploits intermediate particles crea-
ted by the application of multiple MCMC steps. The
resulting algorithm has a better performance, is more
robust and comes with variance estimators. The se-

cond part analyses existing and develops new smoo-
thing algorithms in the context of state space mo-
dels. Smoothing is a computationally intensive task.
While rejection sampling has been proposed as a so-
lution, we prove that it has a highly variable execution
time. We develop algorithms which have a more stable
computational cost and thus are more suitable for pa-
rallel environments. We also extend our framework to
handle models with intractable transition densities.
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